Institut für Neurale Signalverarbeitung Zentrum für Molekulare Neurobiologie Hamburg Direktor: Prof. Dr. O. Pongs

Subfamilienübergreifende Interaktion von Kaliumkanal-Untereinheiten

Struktur-Funktionsanalysen am Beispiel von hKv2.1 und hKv6.2

Dissertation zur Erlangung des Doktorgrades des Fachbereichs Medizin der Universität Hamburg

vorgelegt von

Birgit Hantzsch

aus Winsen / Luhe

Hamburg 2005

Angenommen vom Fachbereich Medizin der Universität Hamburg am 08.06.2005

Veröffentlicht mit Genehmigung des Fachbereichs Medizin der Universität Hamburg

Prüfungsausschuss, die/der Vorsitzende:	Prof. Dr. O. Pongs
Prüfungsausschuss, 2. Gutachter/in:	PD Dr. P. Friedrich
Prüfungsausschuss, 3. Gutachter/in:	PD Dr. R. Bähring

Inhaltsverzeichnis

Ι	Ein	leitung	1
	1	Struktur und Funktion spannungsgesteuerter Kaliumkanäle	1
	2	Assoziation von Kaliumkanal-Untereinheiten	3
	3	Regulatorische α -Untereinheiten	6
	4	Ziel der Arbeit	8
II	Mat	terial	9
	1	Chemikalien und Gebrauchsmaterialien	9
	2	Lösungen und Puffer	9
	3	Nährmedien	12
	4	Bakterien- und Hefestämme	13
	5	Molekulargewichtsstandards Vektoren	13
TTT	о М4		15
111	Met	noden	15
	1	DNA-Techniken	15
		1.1 Herstellung kompetenter Bakterien	15
		1.2 Transformation von Bakterien	15
		1.5 Plasmidisolierung aus <i>E. Coll</i> 1.3.1 Plasmidisolierung aus 2 ml Kulturan	10
		1.3.2 Plasmidisolierung aus 50 ml-Kulturen	10
		1.4 Restrictionsverdau von DNA	10
		1.5 Polymerasekettenreaktion (<i>PCR</i>)	17
		1.5.1 Standard-PCR	17
		1.5.2 Overlap-PCR	18
		1.5.3 Gezielte <i>in-vitro</i> -Mutagenese	20
		1.6 Gelelektrophorese von DNA	21
		1.7 Isolierung von DNA aus Agarosegelen	21
		1.8 Mikrodialyse von DNA	21
		1.9 Dephosphorylierung von Plasmid-DNA	22
		1.10 Elgation von DNA-Magnenten	22
	2	Hefe-Zwei-Hybrid-System	23
	-	2.1 Kultivierung von Hefestämmen	24
		2.2 Präparation kompetenter Hefezellen	24
		2.3 Transformation von Hefezellen	24
		2.4 Identifikation interagierender Proteine mit dem	
		Hefe-Zwei-Hybrid-System	25
	3	Computergestützte Analysen	25
IV	Erg	ebnisse	26
	1	Identifikation des für Proteinwechselwirkungen verantwortlichen	
		Bereichs im N-Terminus von hKv2.1	26
		1.1 Klonierung von Chimären der N-Termini aus hKv6.2 und	
		hKv2.1	26
	•	1.2 Testung auf Interaktion im Hefe-Zwei-Hybrid-System	28
	2	Identifikation der N- bzw. C-terminal von $TI_{A,B}$ notwendigen	20
		Aminosauren	32

2.1	Klonierung von N- bzw. C-terminal verkürzten Konstrukten	32
2.2	2 Testung im Hefe-Zwei-Hybrid-System	32
3 Str	uktur-Funktionsanalyse der T1 _{A,B} -Domäne	34
3.1	Identifikation des Interface zwischen Kv6.2 und Kv2.1	34
3.2	Identifikation möglicher notwendiger Residuen	35
3.3	Konstruktion von Chimären im Bereich der T1 _{A,B} -Domäne	
	sowie von Punktmutanten	39
3.4	Testung auf Interaktion im Hefe-Zwei-Hybrid-System	41
4 Tes	stung einer Chimäre mit allen drei möglichen Interface-Domänen	47
4.1	Konstruktion einer Chimäre mit allen drei möglichen	
	Interface-Domänen	47
4.2	2 Testung auf Interaktion im Hefe-Zwei-Hybrid-System	47
Diskussio	n	49
1 Ide	entifikation des N-terminal notwendigen Interaktionsbereichs	50
2 Ide	entifikation notwendiger Aminosäuren durch Struktur-	50
Fu	nktionsanalvsen	52
3 Be	dingungen für subfamilienspezifische Erkennung	56
Zusamme	enfassung	58
Literatur	verzeichnis	59
Anhang		64
8		
1 Ab	okürzungsverzeichnis	64
2 Da	tenbanknummern relevanter Kanäle	65
3 Lis	ste der verwendeten Oligonukleotide	66
4 DN	NA-Sequenzen	68
5 Le	benslauf	71
	2.1 2.2 3 Str 3.1 3.2 3.3 4 Te 4.1 4.2 Diskussio 1 Ide 2 Ide 5 Le 2 Da 3 Be 2 Literatur 4 Anhang_ 1 At 2 Da 3 Lis 4 DN 5 Le	 2.1 Klonierung von N- bzw. C-terminal verkürzten Konstrukten 2.2 Testung im Hefe-Zwei-Hybrid-System 3 Struktur-Funktionsanalyse der T1_{A,B}-Domäne 3.1 Identifikation des <i>Interface</i> zwischen Kv6.2 und Kv2.1 3.2 Identifikation nöglicher notwendiger Residuen 3.3 Konstruktion von Chimären im Bereich der T1_{A,B}-Domäne sowie von Punktmutanten 3.4 Testung auf Interaktion im Hefe-Zwei-Hybrid-System 4 Testung einer Chimäre mit allen drei möglichen <i>Interface</i>-Domänen 4.1 Konstruktion einer Chimäre mit allen drei möglichen <i>Interface</i>-Domänen 4.2 Testung auf Interaktion im Hefe-Zwei-Hybrid-System Diskussion 1 Identifikation des N-terminal notwendigen Interaktionsbereichs 2 Identifikation notwendiger Aminosäuren durch Struktur-Funktionsanalysen 3 Bedingungen für subfamilienspezifische Erkennung Zusammenfassung 1 Abkürzungsverzeichnis 2 Datenbanknummern relevanter Kanäle 3 Liste der verwendeten Oligonukleotide 4 DNA-Sequenzen 5 Lebenslauf

I Einleitung

1

Т

Struktur und Funktion spannungsgesteuerter Kaliumkanäle

Kaliumselektive Ionenkanäle bilden eine heterogene Familie von Membranproteinen, die in nahezu allen erregbaren und nicht-erregbaren Zellen vorkommen (Rudy, 1988). Die verschiedenen Typen unterscheiden sich sowohl in ihren strukturellen als auch in ihren elektrophysiologischen und pharmakologischen Eigenschaften (Chandy und Gutman, 1995). Die ausgeübten Funktionen sind vielfältig und reichen von der Erhaltung des Ruhemembranpotentials über Weiterleitung und Modulation von Aktionspotentialen bis hin zur Regulation von Sekretionsprozessen, wie zum Beispiel der Insulinausschüttung (Hille, 1992).

Kaliumkanäle sind tetramere Moleküle, die aus vier membranintegrierten α -Untereinheiten bestehen, die eine zentrale Pore bilden (MacKinnon, 1991). Diese enthalten alle Strukturmotive, um *in vitro* funktionelle Kanäle zu formieren (Rudy, 1988; Pongs, 1992; Jan und Jan, 1994). Als Hilfsproteine werden die β -Untereinheiten eingeordnet, die membranintegriert oder assoziiert vorliegen und die elektrophysiologischen Eigenschaften der Kanäle modulieren können (Rettig *et al.*, 1994).

verschiedene Strukturklassen erfolgt nach der Anzahl Die Unterteilung in der Transmembranbereiche der Porenregionen (TM) und (P) der jeweiligen α-Kanaluntereinheiten: einwärtsrektifizierende Kaliumkanäle mit zwei Transmembransegmenten (2TM), Kanäle mit vier Transmembransegmenten (4TM) und die große Gruppe der Kaliumkanäle mit sechs Transmembransegmenten (6TM).

In der Klasse der Kaliumkanäle mit 6TM-Untereinheiten unterscheidet man als wichtigste Genfamilien die spannungsgesteuerten K⁺-Kanäle (Kv), die KCNQ-Kanäle, *eag*-Kanäle, CNG-Kanäle und SK/IK-Kanäle (Übersichten bei Wei *et al.*, 1996; Jan und Jan, 1997; Pongs, 1999).

Die in der vorliegenden Arbeit untersuchten Kanäle gehören zur Familie der Kv-Kanäle. Das erste Mitglied dieser Familie wurde 1987 aus dem *Shaker-Locus* von *Drosophila melanogaster* kloniert (Papazian *et al.*, 1987; Kamb *et al.*, 1987; Pongs *et al.*, 1988). Durchsuchen von cDNA-Bibliotheken nach phylogenetisch konservierten Motiven führte zur Isolierung zahlreicher weiterer homologer Proteine (Übersicht bei Pongs, 1992), die bis heute in neun Subfamilien mit jeweils mehreren Vertretern eingeordnet werden konnten (Chandy und Gutman, 1995).

Durch Hydropathieanalysen und Struktur-Funktionsuntersuchungen konnte ein topologisches Modell erstellt werden (Miller, 1992; Durell und Guy, 1992), das durch Kristallisation des prokaryotischen Kaliumkanals KcsA aus *Streptomyces lividans* (Doyle *et al.*, 1998; MacKinnon *et al.*, 1998) sowie verschiedener Domänen eukaryotischer Kanäle bestätigt werden konnte (Kreusch *et al.*, 1998; Bixby *et al.*, 1999).

Diese Struktur ist allen Kv-Kanälen trotz ihrer großen funktionellen Diversität gemein. Sie setzen sich aus vier homologen α -Untereinheiten zusammen, die jeweils sechs α -helikale Transmembransegmente S1 bis S6 sowie zytoplasmatische N- und C-Termini aufweisen (Kyte und Doolittle, 1982; Pongs, 1993). S1, S2, S3, S5 und S6 bestehen hauptsächlich aus hydrophoben Aminosäuren, während S4 basische Aminosäuren enthält, die in regelmäßiger Abfolge angeordnet sind (Catterall, 1988). Die hochkonservierte Struktur (R/K-X-X)_n mit X als beliebiger hydrophober Aminosäure und n als Zahl zwischen vier und sieben(Pongs, 1993) dient als Spannungssensor, der die Öffnung des Kanals bei Depolarisation über einen spezifischen Schwellenwert induziert (Papazian *et al.*, 1991; Larsson *et al.*, 1996).

Die zentrale Pore der Kanäle entsteht durch die symmetrische Anordnung der α -Untereinheiten (MacKinnon, 1991; MacKinnon *et al.*, 1993). Sie weist eine hohe Selektivität für Kalium auf, die durch die in allen Kaliumkanälen konservierte Signatursequenz innerhalb der P-Region vermittelt wird (Heginbotham *et al.*, 1992, 1994). Diese hydrophobe Porenregion zwischen S5 und S6 taucht von extrazellulär in die Membran ein und verläßt sie, ohne sie zu durchqueren (Yellen *et al.*, 1991). Gemeinsam mit den flankierenden hydrophoben Transmembransegmenten S5 und S6 bilden die P-Regionen den permeablen Bereich des Kanals (Durell und Guy, 1992).

Die Änderung des Öffnungszustandes durch äußere Reize, in diesem Fall durch Spannungsänderungen, wird als *gating* bezeichnet. Das eigentliche Öffnen der Pore erfolgt vermutlich durch Konformationsänderungen der inneren Helices der α -Untereinheiten, die sich wie an einem Scharnier um etwa 30° nach außen biegen. Struktur-Funktionsanalysen ordnen damit den nach extrazellulär gewandten Abschnitten eher die Funktion der Selektivität

2

zu, während die zum Poreninneren gewandten Abschnitte das *gating* bestimmen (Doyle *et al.*, 1998; Zhou *et al.*, 2001; Jiang *et al.*, 2002).

Abbildung 1.1 zeigt ein schematisches Modell des Kanalaufbaus im Bereich der Pore.

Abbildung 1.1: Struktur der Porenregion von Kaliumkanaluntereinheiten

Die Abbildung zeigt zwei α-Untereinheiten des Kaliumkanals KcsA. Die extrazelluläre Seite der Zellmembran weist nach oben. Die zentrale Pore ist mit einem roten Stern markiert, der Selektivitätsfilter ist orange eingefärbt. Die inneren Helices bilden das *gate* ("Bundle"), hier im geschlossenen Zustand dargestellt. M1: äußere Helix; P: Porenhelix; M2: innere Helix. (Abbildung aus Jiang *et al.*, 2002)

Assoziation von Kaliumkanal-Untereinheiten

Die funktionelle Diversität von Kaliumkanälen übertrifft die strukturelle um ein Vielfaches. Neben der Assoziation der α -Untereinheiten mit β -Untereinheiten begründet sich dies vor allem in der Möglichkeit der Zusammenlagerung verschiedener α -Untereinheiten (Isacoff *et al.*, 1990; Ruppersberg *et al.*, 1990; Covarrubias *et al.*, 1991; Li *et al.*, 1992; Shen *et al.*, 1993). Die Bildung von Heteromultimeren konnte allerdings bisher nur für Mitglieder derselben Subfamilie nachgewiesen werden (Covarrubias *et al.*, 1991; Rettig *et al.*, 1992). Vermittelt wird diese spezifische Interaktion – sowohl mit α - wie auch β -Untereinheiten und KChIPs – durch eine zytoplasmatische Tetramerisierungsdomäne 1 (T1_{A,B}) am aminoterminalen Ende der Untereinheiten (Li *et al.*, 1992; Shen *et al.*, 1993; Gulbis *et al.*, 2000; Scannevin *et al.*, 2004). Dieser hochkonservierte Bereich besteht aus rund 130 Aminosäuren (Pfaffinger und DeRubeis, 1995; Tu *et al.*, 1996), von denen etwa 24 einem

Subfamilien-spezifischen *Interface* zugeordnet werden konnten (Bixby *et al.*, 1999). Diese hauptsächlich polaren Residuen nähern sich ihren Interaktionspartnern im Tetramer bis auf unter 3,5 Ångström an. So entsteht ein charakteristisches Gerüst für die spezifische Bindung, das gleichzeitig die Assoziation mit anderen Subfamilien verhindert. Von besonderer Bedeutung ist hierbei ein Zinkionen-bindendes Sequenzmotiv, HX₅CX₂₀CC. Bixby *et al.* gelang die Identifikation dieses Motivs durch Kristallisation des *Shaw*T1-Tetramers (Bixby *et al.*, 1999). Ein Modell dieser Struktur zeigt Abbildung 1.2.

Abbildung 1.2: Der Shaw T1 Tetramer

Die Grafik zeigt ein Modell der N-terminalen Tetramerisierungsdomäne, das anhand der *Shaw*T1-Kristallstruktur generiert wurde. Die vorn liegende Untereinheit wurde zur besseren Übersicht weggelassen. Die grauen Kugeln stellen Zink-Atome dar, die zur Stabilisierung der Interaktion von großer Bedeutung zu sein scheinen. Die einzelnen Schichten sind farblich gekennzeichnet: Schicht 1 (aa 10-56) grün, Schicht 2 (aa 57-71) blau, Schicht 3 (aa 72-94) rot, Schicht 4 (aa 95-111) gelb. (Abbildung aus Bixby *et al.*, 1999)

Die genaue Betrachtung des *Interface* im Vergleich zwischen *Shaw* und *Shaker* ermöglichte Bixby *et al.* Rückschlüsse auf den Mechanismus der subfamilienspezifischen Erkennung der verschiedenen Kv-Typen. Der überwiegende Teil der Residuen in diesem Bereich ist polar (20 von 24 Aminosäuren in *Shaw*, 20 von 22 in *Shaker*).

Von diesen sind acht zwischen *Shaw* und *Shaker* konserviert und liegen an äquivalenten Positionen des *Interface*. Entgegen der Erwartung formen aber nur vier dieser Residuen dieselben spezifischen Interaktionen mit anderen Seitenketten. Aufgrund unterschiedlicher Konformationen der Proteine kommt es zur Ausbildung gänzlich anderer Brücken. So liegen

beispielsweise zwischen Glu 78 und Arg 76 in *Shaker* starke Salzbindungen vor, während bei identischer Lage dieser Aminosäuren in *Shaw* keinerlei Interaktionen entstehen. Abbildung 1.3 zeigt den schematischen Vergleich der *Interfaces* zwischen *Shaw* T1 und *Shaker* T1.

Abbildung 1.3: Shaw T1 und Shaker T1 Interface im Vergleich

Die Grafiken zeigen schematisch die *Interface*-Kontakte in *Shaw* T1 (b) und *Shaker* T1 (c). Die einzelnen Schichten sind farblich gekennzeichnet: Schicht 1 (aa 10-56 in *Shaw*) grün, Schicht 2 (aa 57-71in *Shaw*) blau, Schicht 3 (aa 72-94 in *Shaw*) rot, Schicht 4 (aa 95-111 in *Shaw*) gelb. Zwischen den gegenüberliegenden Untereinheiten sind die Interaktionen gekennzeichnet, die Zahlen geben den räumlichen Abstand in Ångström an. (Abbildung aus Bixby *et al.*, 1999)

Dies macht deutlich, dass die subfamilienspezifische Erkennung vor allem durch die unterschiedliche Konformation der Proteine und damit Präsentation unterschiedlicher Seitenketten zum *Interface* hin erfolgt. Untersuchungen mit gezielter Mutagenese einzelner Residuen, denen aufgrund der Proteinfaltung eine hohe Bedeutung in der Interaktion der T1-Untereinheiten zugesprochen worden war, belegten deren wichtige Rolle: Durch Austausch dieser Aminosäuren kam es zum Verlust der Bindungsfähigkeit, statt tetramerer Proteine ließen sich lediglich Monomere nachweisen (Strang *et al.*, 2001).

Zusätzlich haben auch Transmembransegmente Einfluß auf die Tetramerisierung (Babila *et al.*, 1994; Tu *et al.*, 1996). Die Ausbildung funktioneller Kanäle durch Kv2.1-Untereinheiten trotz Deletion des Aminoterminus weist außerdem auf relevante Wechselwirkungen in bisher nicht identifizierten Bereichen hin (VanDongen *et al.*, 1990).

3

Т

Regulatorische α -Untereinheiten

Mehrere der isolierten Kv α -Untereinheiten, die aufgrund von Sequenzidentitäten unter 50 % keiner der vier klassischen Familien *Shaker* (Kv1), *Shab* (Kv2), *Shaw* (Kv3) oder *Shal* (Kv4) zugeordnet werden konnten (Chandy und Gutman, 1995), weisen ein gemeinsames Charakteristikum auf: Bei alleiniger heterologer Expression bilden sie keine homomultimeren funktionellen Kanäle aus, das heißt, in *Patch-Clamp*-Experimenten konnten keine Ströme gemessen werden. Werden sie allerdings mit Mitgliedern der Kv2-Subfamilie koexprimiert, entstehen Subfamilien-übergreifende heteromultimere Kanäle mit deutlich veränderten funktionellen Eigenschaften (Hugnot *et al.*, 1996; Castellano *et al.*, 1997; Zhu *et al.*, 1999). Für die α -Untereinheit von Kv2.3 konnte eine aus etwa 60 Aminosäuren bestehende N-terminale regulatorische Domäne identifiziert werden, die allein für diese funktionellen

terminale regulatorische Domäne identifiziert werden, die allein für diese funktionellen Eigenschaften verantwortlich zu sein scheint (Chiara *et al.*, 1999).

Das Diagramm zeigt den Verwandtschaftsgrad von Kv6.2 zu anderen Mitgliedern der Kv-Familie. Übereinstimmungen in der Aminosäuresequenz sind am rechten Rand prozentual angegeben. (Abbildung aus Zhu *et al.*, 1999)

Um die charakteristischen Unterschiede zu bisher beschriebenen α-Untereinheiten auch in der Namensgebung zum Ausdruck zu bringen, schlagen einige Autoren die Verwendung des Terminus "γ-Untereinheiten" vor (Robertson, 1997). Zu diesen sind die Untereinheiten Kv2.3, Kv5.1, Kv6.1, Kv6.2, Kv7.1, Kv8.1, Kv9.1, Kv9.2 und Kv9.3 zu zählen. Im Dendrogramm ist die Einordnung in Subfamilien aufgrund von Sequenzidentitäten nachvollziehbar (Abb. 1.4).

Der in der vorliegenden Arbeit untersuchte Kanal Kv6.2 formierte mit Kv2.1 heteromultimere Kanäle mit elektrophysiologischen Eigenschaften der *delayed-rectifier*-Kanäle. Im Vergleich zu Kv2.1-Homomeren fand sich eine Verschiebung der Aktivierungsschwelle zu negativeren Potentialen und eine deutlich verlangsamte Deaktivierung (Abb. 1.5). Außerdem veränderte sich die Sensitivität gegenüber dem Antiarrhythmikum Propafenon. Da Kv6.2 zudem in menschlichem Herzgewebe nachgewiesen wurde, deuten die Daten auf eine Beteiligung an der Repolarisation kardialer Aktionspotentiale hin (Zhu *et al.*, 1999).

Abbildung 1.5: Veränderung der elektrophysiologischen Eigenschaften in Kv2.1/Kv6.2-Heteromultimeren *Whole-cell patch-clamp*-Messungen an CHO-Zellen zeigten eine deutliche Verschiebung der Aktivierungsschwelle zu negativeren Potentialen (A, B) sowie eine Verlangsamung der Deaktivierung (C,D). (Abbildung aus Zhu *et al.*, 1999)

Es konnte gezeigt werden, daß die Interaktion von Kv6.2 mit Kv2.1 spezifisch ist und von den N-Termini der beiden Kanäle vermittelt wird. Während der Kv6.2 N-Terminus im Hefe-Zwei-Hybrid-System keine Bindung mit sich selbst zeigt, ist die Fähigkeit zur Interaktion in Koexpression mit dem Kv2.1 N-Terminus gegeben (Zhu *et al.*, 1999). In diesem Bereich liegen die bekannten $T1_{A,B}$ -Domänen, deren Beteiligung an der spezifischen Tetramerisierung von Kv-Kanaluntereinheiten bereits nachgewiesen wurde (s.o.).

4 Ziel der Arbeit

Ziel der Arbeit war die Identifikation einzelner Bereiche und Aminosäuren, die die spezifische Bindung von hKv6.2 an hKv2.1 vermitteln.

Anhand von chimären Konstrukten aus hKv6.2 und hKv2.1 sollten im Hefe-Zwei-Hybrid-System größere Bereiche ermittelt werden, deren Vorhandensein für die Interaktionsfähigkeit des Proteins notwendig, eventuell sogar hinreichend sein könnten.

Angelehnt an die Kristallstruktur der *Shaker*-Tetramerisierungsdomäne und die identifizierten *Interface*-Aminosäuren (Bixby *et al.*, 1999) sollten außerdem einzelne, nach der Strukturanalyse ausgewählte Residuen mutiert werden, um ihre Rolle in der Assoziation der beiden Kanaluntereinheiten zu bewerten. Diese Untersuchungen sollten dazu beitragen, ein Motiv zu erkennen, das die Subfamilien-spezifische bzw. -übergreifende Erkennung vermittelt.

Ш

II Material

1 Chemikalien und Gebrauchsmaterialien

Falls nicht anders angegeben, wurden alle Chemikalien von den Firmen Amersham, Baker, BD, Fluka, GibcoBRL, Macherey-Nagel, Merck, Perkin-Elmer, Riedel-de-Haen, Roth, Serva und Sigma-Aldrich in p.A.- oder Reinstqualität bezogen.

Enzyme, Molekulargewichtsstandards und Nukleosidtriphosphate wurden von den Firmen Boehringer Mannheim, Clontech, Eurogentec, Invitrogen, New England Biolabs, Novagen, MBI Fermentas, Pharmacia Biotech, Promega, Quagen, Stratagene und USB erworben.

Oligonukleotide wurden von der Firma MWG Biotech synthetisiert. Eine Liste der verwendeten Oligonukleotide befindet sich im Anhang.

Die Bezugsquelle wird im Folgenden gesondert erwähnt, wenn ein Einfluss auf die Versuchsdurchführung vorstellbar ist.

2 Lösungen und Puffer

Alle Lösungen wurden mit bidestilliertem Wasser angesetzt.

3-AT-Lösung	1	Μ	3-Amino-1,2,4-triazol	
(Zwei-Hybrid-System)	steril fi	ltrieren		
AP-Puffer	50	mM	Tris-HCl, pH 8,5	
(Dephosphorylierung)	100	mM	EDTA	
Dextrose-Stammlösung	40	% (w/v)	Dextrose	
(Zwei-Hybrid-System)	steril fi	steril filtrieren		
DNA-Probenpuffer (5x)	20	% (w/v)	Ficoll	
(DNA-Gele)	100	mM	EDTA	
	0,025	% (w/v)	Bromphenolblau	
	0,025	% (w/v)	Xylenxyanol	
dNTP-Stammlösung (PCR)	20	mM	pro dATP, dCTP, dGTP, dTTP	

Dropout-Lösung (10x)	200	mg/l	L-Adenin Hemisulfat
(Zwei-Hybrid-System)	200	mg/l	L-Arginin HCl
	200	mg/l	L-Histidin Monohydrat
	300	mg/l	L-Isoleucin
	1000	mg/l	L-Leucin
	300	mg/l	L-Lysin HCl
	200	mg/l	L-Methionin
	500	mg/l	L-Phenylalanin
	2000	mg/l	L-Threonin
	200	mg/l	L-Tryptophan
	300	mg/l	L-Tyrosin
	200	mg/l	L-Uracil
	1500	mg/l	L-Valin
	autoklay	vieren	
	Ie nach	Selektionsber	dingungen werden der <i>Dropout</i> -
		alle oder wen	iger Komponenten zugesetzt
	Losung	une oder wen	nger Komponenten zugesetzt.
Ethidiumbromid-Lösung	10	mø/ml	Ethidiumbromid
(DNA-Gele)	dunkel	agern	Zundumoronnu
	duniter	lugoin	
Ligationspuffer (10x)	200	mМ	Tris-HCl pH 7 9
Ligationspanier (10x)	100	mM	MgCl ₂
	100	mM	Dithiotreitol (DTT)
	6	mM	
	0	111111	AII
Lösung I	25	mM	Tris-HCl pH 7 9
(Plasmidisolierung)	10	mM	FDTA
(1 iusmiuisotierung)	100	ug/ml	PNase A
	100	μg/III	KNase A
Lösung II	0.2	М	NaOH
(Plasmidisolierung)	0, _ 1	% (w/v)	SDS
(Trasmaisorierang)	1	/0 (11/1)	505
Lösung III	3	М	Kaliumacetat pH 4.8
(Plasmidisolierung)	5	171	Kununucetut, pri 1,0
(Trasmaisotterang)			
NaAc/FDTA	15	М	Natriumacetat
(Sequenzierung)	250	mM	FDTA
(Sequenzierung)	250	111111	
PCR-Puffer $(10x)$	200	mM	Tris-HCl pH 8 8
Terr Fuller (Tox)	200	mM	MgSO4
	100	mM	KC1
	100	mM	
	100	$\frac{1111}{9}$	$\frac{(1114)SO_4}{Triton V 100}$
	1	$\frac{70}{10}$ (V/V)	DSA publicasofrei
	1	mg/m	DSA, nukleasentei
PEG/Lithiumacetat_Lösung	40	$\frac{0}{100}$ (111/12)	PEG 4000
(Zwai Hybrid Lösung)	+0 10	mM	Tris HC1 = PU 7.5
(Zwei-11yona-Losung)	10	mM	ты-нсі, рп 7,3 Ерта
	1	mM	EDIA Lithiumaaatat
	100		Liimumacetat
	ster11 f1	Itrieren	

Puffer N2 (Plasmidisolierung)	100 15 0,9	mM % (v/v) M	Tris-H ₃ PO ₄ , pH 6,3 Ethanol KCl
Puffer N3 (Plasmidisolierung)	100 15 1,15	mM % (v/v) M	Tris-H ₃ PO ₄ , pH 6,3 Ethanol KCl
Puffer N5 (Plasmidisolierung)	100 15 1	mM % (v/v) M	Tris-H ₃ PO ₄ , pH 8,5 Ethanol KCl
Puffer PE (DNA-Reinigung)	70 10 100	% (v/v) mM mM	Ethanol Tris-HCl, pH 7,5 NaCl
Puffer QXI (DNA-Reinigung)	5 3 4 0,1	mM mM mM % (w/v)	Tris-HCl, pH 7,5 NaI NaClO ₄ Na ₂ SO ₃
Puffer S1 (Plasmidisolierung)	50 10 100	mM mM μg/ml	Tris-HCl, pH 8,0 EDTA RNase A
Puffer S2 (Plasmidisolierung)	0,2 1	M % (w/v)	NaOH SDS
Puffer S3 (Plasmidisolierung)	2,8	М	Kaliumacetat, pH 5,1
Restriktionspuffer	Es wu geliefe	rden jeweils o erten Puffer v	die vom Hersteller zum Enzym erwendet.
TAE (50x) (DNA-Gele)	2 100	M mM	Tris-Acetat, pH 8,0 EDTA
TB-Puffer (kompetente Bakterien)	3 15 250 10,88 steril f	g/l mM M g/l ïltrieren	PIPES CaCl ₂ KCl MgCl ₂
TE (10x)	0,1 10	M mM	Tris-HCl, pH 7,5 EDTA

TE/Lithiumacetat-Lösung	0,01	Μ	Tris-HCl, pH 7,5
(Zwei-Hybrid-System)	1	mM	EDTA
	0,1	Μ	Lithiumacetat, pH 7,5
	steril f	filtrieren	
Träger-DNA (Zwei-Hybrid-System)	10 autokl	mg/ml avieren	Heringssperma-DNA in 1x TE

3 Nährmedien

Antibiotika wurden den Nährmedien erst nach Autoklavieren und Abkühlung zugesetzt.

10	g/l	Bacto-Trypton, pH 7,4
10 5	g/1 c/1	Naci
3	g/1	Heleextrakt
100	mg/l	Ampicillin in LB-Medium
20	g/l	Agar in LB-Medium
100	mg/l	Ampicillin
20	g/l	Agar in LB-Medium
25	mg/l	Tetracyclin
6,7	g/l	Hefe-Stickstoffbasis, pH 5,8
100	ml	10x Dropout-Lösung
ad 850) ml	H ₂ O
autokl	avieren	-
50	ml	Dextrose-Stammlösung
20	g/l	Agar in SD-Medium
20	g/l	Bacto-Trypton, pH 7,0
5	g/l	Hefeextrakt
0,5	g/l	NaCl
10	mM	KCl
20	g/l	Bacto-Trypton, pH 7,0
5	g/l	Hefeextrakt
10	mM	NaCl
2,5	mМ	KCl
10	mM	$MgCl_2$
10	mM	$MgSO_4$
20	mM	Glucose
20	g/l	Pepton, pH 5,8
10	g/l	Hefeextrakt
ad 950) ml	H ₂ O
autokl	avieren	
50	ml	Dextrose-Stammlösung
20	g/l	Agar in YPD-Medium
	$ \begin{array}{c} 10\\ 10\\ 5\\ 100\\ 20\\ 100\\ 20\\ 25\\ 6,7\\ 100\\ ad 850\\ autokl\\ 50\\ 20\\ 20\\ 5\\ 0,5\\ 10\\ 20\\ 5\\ 10\\ 20\\ 5\\ 10\\ 20\\ 5\\ 10\\ 20\\ 20\\ 10\\ ad 950\\ autokl\\ 50\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 2$	10 g/l 10 g/l 5 g/l 100 mg/l 20 g/l 100 mg/l 20 g/l 100 mg/l 20 g/l 20 g/l 20 g/l 100 ml ad 850 ml autoklavieren 50 50 g/l 20 g/l 20 g/l 20 g/l 10 mM 20 g/l 10 g/l ad 950 ml autoklavieren 50 20 g/l

4

Bakterien- und Hefestämme

Escherichia coli XL1-Blue	recA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, lac[F´proAB lacl ^q ZΔM15Tn10(Tet ^r)] (Stratagene)
Escherichia coli TOP10	F mcrA Δ (mrr-hsdRMS-mcrBC) Φ 80lacZ Δ M15 Δ lacX74 recA1 deoR araD139 Δ (ara-leu)7697 galU galK rpsL (Str ^R) endA1 nupG (Invitrogen)
Saccharomyces cerevisiae CG1945	MATa, ura3-52, his3-200, lys2-801, ade2-101, trp1-901, leu2-3, 112, gal4-542, gal80-538, cyh ^r 2, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3, URA3::GAL4 _{17mers(x3)} -CyC1 _{TATA} -lacZ (Clontech)

5 Molekulargewichtsstandards

Smart DNA Ladder	14 Banden in regelmäßigem Abstand von 200 bis
	10000 bp
	(Eurogentec)

GeneRuler 100bp 14 Banden in regelmäßigem Abstand von 100 bis 3000 bp (Eurogentec)

6 Vektoren

pAS2-1 Klonierungsvektor im Hefe-Zwei-Hybrid-System, enthält die GAL4-Bindedomäne (Clontech) pGAD424 Klonierungsvektor im Hefe-Zwei-Hybrid-System, enthält die GAL4-Aktivierungsdomäne (Clontech)

pBluescript KS⁺ Klonierungsvektor (Stratagene)

III Methoden

1 DNA-Techniken

1.1 Herstellung kompetenter Bakterien

(Inoue et al., 1990)

Die Bakterien wurden auf einer LB/Tet-Platte ausgestrichen und üN (37°C) kultiviert. Ein Ansatz von 125 ml SOB-Medium wurde mit 5 Kolonien angeimpft und nach Zugabe von Magnesium (Endkonzentration: 10 mM MgCl₂ und 10 mM MgSO₄) bei 22-25°C bis zu einer optischen Dichte (OD₆₀₀) von 0,3-0,5 bebrütet. Nach Abkühlen (10 min, Eis) und Zentrifugation (2500 x g, 5 min, 4°C) wurden die Bakterien in TB-Puffer resuspendiert (40 ml, Eis), inkubiert (10 min, Eis) und erneut zentrifugiert (s.o.). Der Niederschlag wurde in TB-Puffer resuspendiert (10 ml, Eis) und nach Zugabe von 750 µl Dimethylsulfoxid (DMSO) inkubiert (10 min, Eis). Die resuspendierten Zellen wurden aliquotiert (200 µl), in flüssigem Stickstoff schockgefroren und bei -70°C gelagert.

1.2 Transformation von Bakterien (Sambrook *et al.*, 1989)

Zur Transformation des *E. coli*-Stammes XL1-*Blue* wurden 100 μ l einer Suspension kompetenter Bakterien mit Plasmid-DNA (50-100 ng) oder einem Ligationsansatz (20 ng DNA) für 30 min auf Eis inkubiert. Nach Hitzeschock (2 min, 42°C) und Abkühlen des Ansatzes (5 min, Eis) erfolgte die Zugabe von 800 μ l LB-Medium und eine Inkubation bei 37°C für 30 min im Schüttler (200 UpM). Die Zellen wurden sedimentiert (3000 x g, 5 min, RT), in 100 μ l LB-Medium aufgenommen, auf LB/Amp-Platten (100 μ g/ml Ampicillin) ausplattiert und üN kultiviert (37°C).

Zur Transformation des *E. coli*-Stammes TOP10 wurden 50 µl einer Suspension kompetenter Bakterien mit Plasmid-DNA (50-100 ng) oder einem *QuikChange™ PCR*-Ansatz für 30 min auf Eis inkubiert. Nach Hitzeschock (30 s, 42°C) und Abkühlen des Ansatzes (2 min, Eis) erfolgte die Zugabe von 250 µl SOC-Medium und eine Inkubation bei 37°C für 30 min im Schüttler (200 UpM). Anschließend wurden die Zellen kurz abgekühlt (2 min, Eis), auf LB/Amp-Platten ausplattiert und üN bei 37°C kultiviert.

1.3 Plasmidisolierung aus *E. coli*

1.3.1 Plasmidisolierung aus 2 ml-Kulturen (Sambrook *et al.*, 1989)

2 ml LB/Amp-Medium (100 μ g/ml Ampicillin) wurden mit einer Plasmid-tragenden Einzelkolonie der verwendeten *E. coli*-Stammes angeimpft und üN im Warmluftschüttler (37°C, 170 UpM) kultiviert. 1,5 ml dieser Kultur wurden in ein Eppendorf-Reaktionsgefäß überführt und zentrifugiert (3000 x g, 1 min, RT). Das Sediment wurde in 100 μ l Lösung I resuspendiert, mit 200 μ l Lösung II versetzt und vorsichtig durch Invertieren gemischt, bis die Lösung klar und viskös wurde. Nach Zugabe von 150 μ l Lösung III sowie 50 μ l Chloroform wurde der Ansatz durchmischt, auf Eis inkubiert (5 min) und zentrifugiert (15000 x g, 5 min, RT). Die wässrige Phase wurde abgenommen, zur Fällung der Plasmid-DNA mit 300 μ l Isopropanol versetzt und zentrifugiert (15000 x g, 15 min, RT). Der Niederschlag wurde mit Ethanol (75 %) gewaschen, getrocknet und in 20 μ l TE aufgenommen.

1.3.2 Plasmidisolierung aus 50 ml-Kulturen (Macherey-Nagel *Nucleobond* AX Handbuch, 1997)

Zur Plasmidisolierung aus 50 ml-Kulturen wurde das *Nucleobond* AX 100-System verwendet. Es wurden 50 ml LB/Amp (100 μg/ml Ampicillin) mit einer Plasmid-tragenden Einzelkolonie angeimpft und üN im Warmluftschüttler (37°C, 170 UpM) inkubiert. Die Zellen wurden sedimentiert (6000 x g, 10 min, 4°C) und in 4 ml Puffer S1 aufgenommen. Nach Zugabe von 4 ml Puffer S2 wurde die Suspension vorsichtig durchmischt und bis zum Aufklaren der Lösung inkubiert. Anschließend wurden 4 ml Puffer S3 (4°C) zugesetzt, der Ansatz durchmischt und auf Eis inkubiert (5 min). Das Gemisch wurde zentrifugiert (10000 x g, 10 min, 4°C), filtriert und auf eine mit 2 ml Puffer N2 äquilibrierte Säule gegeben. Die Säule wurde mit 8 ml Puffer N3 gewaschen. Die Elution erfolgte mit 4 ml Puffer N5. Zur Fällung der Plasmid-DNA wurden 2,8 ml Isopropanol zugesetzt und zentrifugiert. (15000 x g, 15 min, RT). Das Sediment wurde mit 5 ml Ethanol gewaschen, getrocknet und in TE-Puffer resuspendiert.

1.4 Restriktionsverdau von DNA (Sambrook *et al.*, 1989)

Die zu schneidende Menge DNA wurde mit der zweifachen Menge der berechneten Enzymeinheiten unter den vom Hersteller empfohlenen Bedingungen inkubiert. Der Restriktionsverdau wurde anschließend durch Zugabe von Probenpuffer gestoppt und zur Gelelektrophorese eingesetzt. Bei inkompatiblen Pufferbedingungen erfolgte ein sequentieller Verdau, wobei zwischen den Restriktionen eine Hitzeinaktivierung (10 min, 75°C) sowie eine Mikrodialyse des Reaktionsansatzes durchgeführt wurde.

1.5 Polymerasekettenreaktion (*PCR*)

1.5.1 Standard-PCR

(Saiki et al., 1988)

Zur Amplifikation von DNA wurde folgender Standardansatz (50 μ l) in ein steriles Reaktionsgefäß pipettiert. Die *Taq*-Polymerase und die erforderlichen Reaktionspuffer wurden von GIBCO BRL bezogen.

DNA	x ng
Oligonukleotid 1	50 pmol
Oligonukleotid 2	50 pmol
Nukleotide (dNTPs)	je 500 µM
<i>PCR</i> -Puffer (10 x)	5 µl
Taq-Polymerase	5 U
H ₂ O	ad 50 µl

Die Polymerasekettenreaktion erfolgte in einem TrioBlock (Biometra) mit Heizdeckel oder in einem Robocycler (Stratagene) nach folgendem Temperaturprofil in 20 Zyklen:

Denaturierung	94°C	30 s
Hybridisierung	T _m -4°C	45 s
Synthese	72°C	60 s / kb <i>PCR</i> -Produkt

Die Dauer der Synthese war von der Länge des zu amplifizierenden DNA-Fragmentes abhängig. Die Schmelztemperatur richtete sich nach deren Länge und Zusammensetzung und wurde entsprechend folgender Näherung ermittelt:

$$T_m = 4 x (G+C) + 2 x (A+T)$$

Bei Verwendung von Oligonukleotiden mit unterschiedlichen Schmelztemperaturen wurde die Hybridisierung bei dem niedrigeren T_m-Wert durchgeführt. Im Anschluß an die Temperaturzyklen erfolgte eine dreiminütige Inkubation bei 72°C. Danach wurde auf 4°C abgekühlt. Die Analyse und weitere Aufreinigung der *PCR*-Produkte erfolgte mittels Gelelektrophorese. Bei Amplifikation langer DNA-Fragmente wurde Turbo-*Pfu*-Polymerase (Clontech) verwendet. Bei GC-reichen Sequenzen erfolgte außerdem der Zusatz von 5 % (v/v) DMSO und / oder 1 M Betain.

1.5.2 Overlap-PCR

Zur Klonierung von chimären Konstrukten wurde nach dem Prinzip der *Overlap-PCR* vorgegangen. Dazu wurden zunächst in getrennten *PCR*-Ansätzen der 5'- bzw. der 3'- Anteil des Konstruktes hergestellt. Die verwendeten Oligonukleotide waren bereits chimär aufgebaut, so dass ein Teil des *Primers* überlappte und sich nicht an das *Template* anlagerte.

Nach Aufreinigung in der Gelelektrophorese wurden diese *PCR*-Produkte in einer weiteren Reaktion als Matrize eingesetzt. Dabei erfolgte die Zugabe der Oligonukleotide erst nach mehreren Zyklen, in denen sich die komplementär überlappenden Anteile der Produkte aneinander lagerten und die Synthese begann. Das chimäre Konstrukt wurde schließlich nach Aufreinigung über die Gelelektrophorese gewonnen.

Für die *PCR* zur Herstellung der 5'- bzw. 3'-Enden wurde nach dem Standard-Protokoll vorgegangen (siehe 1.5.1).

Für den Schritt der Amplifizierung des Gesamtprodukt wurde folgender Ansatz gewählt:

PCR-Produkt 5'-Ende	2 μl des Eluats nach Gelelektrophorese		
PCR-Produkt 3'-Ende	2 µl des Eluats nach Gelelektrophorese		
Oligonukleotid 1	ح 50 pmol		
Oligonukleotid 2	50 pmol ∫ Zugabe später		
Nukleotide (dNTPs)	je 500 μM		
PCR-Puffer (10 x)	5 µl		
Turbo-Pfu-Polymerase	5 U		
H ₂ O	ad 50 µl		

Zum Teil wurde zur Stabilisierung außerdem 10 % (v/v) DMSO zugesetzt.

Die Polymerasekettenreaktion erfolgte in einem TrioBlock (Biometra) mit Heizdeckel oder in einem Robocycler (Stratagene) nach folgendem Temperaturprofil:

Denaturierung	96°C	3 min		
Denaturierung	96°C	30 s		
Hybridisierung	40°C	60 s $>$ 3 Zykl	len	
Synthese	72°C	60 s		
Zugabe der Oligonukleotide				
Denaturierung	96°C	30 s		
Hybridisierung	53°C	30 s > 25 Zyk	clen	
Synthese	72°C	60 s		

Im Anschluß an die Temperaturzyklen erfolgte eine dreiminütige Inkubation bei 72°C. Danach wurde auf 4°C abgekühlt. Die Analyse und weitere Aufreinigung der *PCR*-Produkte erfolgte mittels Gelelektrophorese.

Abbildung 3.1 zeigt schematisch das Vorgehen bei der Overlap-PCR:

1. Zwei getrennte PCR für 5'- und 3'-Ende

2. 5'- und 3'-Ende als Matrize für das Gesamtprodukt

Abbildung 3.1: Vorgehen bei der Overlap-PCR.

Die Pfeile im unteren Teil der Abbildung symbolisieren die Synthese des Gesamtprodukts.

1.5.3 Gezielte *in-vitro*-Mutagenese

(*QuikChangeTM Site-Directed Mutagenesis Kit Instruction Manual*, Stratagene, 1996)

Die gezielte Mutagenese einzelner Aminosäuren zur Erzeugung von Punktmutanten wurde nach dem Prinzip der *QuikChangeTM Site Directed Mutagenesis* durchgeführt.

Dabei diente ein Insert-tragender Vektor als Matrize. Die Mutation wurde durch entsprechende Oligonukleotide in das Insert eingeführt. Während der *PCR* wurde das gesamte Plasmid amplifiziert. Anschließend wurde der *PCR*-Ansatz in einen Restriktionsansatz eingesetzt, in dem das Enzym *Dpn* I methylierte Matrizen-DNA abbaute. Die amplifizierten Plasmide, die die gewünschte Mutation trugen, blieben erhalten und wurden in hochkompetente Bakterienzellen transformiert.

Zunächst wurden jeweils zwei Mutagenese-*Primer* entworfen, die mittig die gewünschte Mutation trugen und mit den komplementären DNA-Strängen der betroffenen Region hybridisierten. Da bei der *PCR* der komplette Vektor amplifiziert wurde, wurden die zu modifizierenden Konstrukte in p*Bluescript* KS⁺ umkloniert. Dieser Vektor erschien von seiner Größe her geeigneter; eventuelle Amplifikationsmutationen im Trägerplasmid wurden außerdem durch die anschließende Subklonierung in die Hefevektoren beseitigt.

Die Polymerasekettenreaktion wurde nach folgendem Protokoll durchgeführt:

DNA	25-50 ng
Oligonukleotid 1	10 pMol
Oligonukleotid 2	10 pMol
dNTPs	je 2,5 mM
10 x PCR-Puffer	5 µl
Turbo-Pfu	1 µl
H ₂ O	ad 50 µl

Für den Austausch einzelner Aminosäuren wurde nach vollständiger Denaturierung (94°C, 30 s) folgendes Temperaturprofil in 16 Zyklen ausgeführt:

Denaturierung	94°C	30 s
Hybridisierung	55°C	60 s
Synthese	68°C	2 min/kb Plasmidlänge

Anschließend wurde dem Ansatz 1 μ l *Dpn* I (10 U/ μ l) zugesetzt, die Inkubation erfolgte für 1 Stunde bei 37°C. Anschließend wurde jeweils 1 μ l jedes Ansatzes in 50 μ l-Aliquots hochkompetenter TOP10-Zellen gegeben. Die Transformation und Weiterverarbeitung erfolgte wie unter 1.2 beschrieben.

1.6 Gelelektrophorese von DNA

(Sambrook et al., 1989)

Zur elektrophoretischen Auftrennung von DNA-Fragmenten wurden horizontale Agarosegele in GNA-100 Elektrophoresekammern (Pharmacia Biotech) mit 1 x TAE-Puffer und 0,5 µg/ml Ethidiumbromid verwendet. Entsprechend der aufzutrennenden Fragmentgrößen wurden Agarosekonzentrationen von 0,7 bis 2,0 % eingesetzt. Der zu analysierende DNA-Ansatz wurde mit der erforderlichen Menge an DNA-Probenpuffer versetzt und in die Probentaschen des Agarosegels pipettiert. Die Spannung wurde auf 10 V/cm eingestellt. Die Laufzeit richtete sich nach den Erfordernissen der jeweiligen Trennung.

1.7 Isolierung von DNA aus Agarosegelen (*QIAGEN QIAEX II Handbook*, QIAGEN, 1996)

Bei der Extraktion durch Adsorption an *QIAEX II*-Partikeln wurde die DNA-haltige Agarose unter schwacher UV-Strahlung ausgeschnitten, in ein Reaktionsgefäß überführt und mit dem dreifachen Volumen Puffer QX I versetzt. Nach Zugabe von 10 μ l sorgfältig resuspendierter QX II-Partikel wurde der Ansatz für 10 min bei 50°C unter Schütteln (200 UpM) inkubiert. Nach Zentrifugation (15000 x g, 30 s, RT) wurde der Niederschlag in 500 μ l Puffer QX I resuspendiert und erneut zentrifugiert (s.o.). Anschließend wurde der Niederschlag zweimal mit 500 μ l Puffer PE gewaschen und getrocknet (15 min, RT). Die Elution der DNA erfolgte durch Zugabe von 20 μ l TE und Inkubation für 10 min bei RT. Nach Zentrifugation (s.o.) konnte der DNA-haltige Überstand abgenommen und in ein frisches Reaktionsgefäß überführt werden.

1.8 Mikrodialyse von DNA

Der DNA-haltige Restriktionsansatz wurde auf einen Mikrodialyse-Filter (Millipore, Durchmesser 13 mm, Porengröße 0,025) gegen bidestilliertes Wasser dialysiert. Nach 30 min wurde die Lösung abgenommen und entsprechend weiterverwendet.

1.9 Dephosphorylierung von Plasmid-DNA (Sambrook *et al.*, 1989)

Nach Restriktionsverdau wurde der Ansatz mit dem entsprechenden AP-Puffer versetzt und mit alkalischer Phosphatase inkubiert. Die erforderliche Enzymmenge richtete sich nach der Menge eingesetzter DNA (1 U pro 50 pMol 5'-Enden, 1-2 h, 37°C). Die dephosphorylierte DNA wurde anschließend mittels Gelelektrophorese gereinigt.

1.10 Ligation von DNA-Fragmenten (Sambrook *et al.*, 1989)

Zur Ligation wurden 20 ng Vektor-DNA, die in der Regel nach einem analogen Restriktionsansatz wie die *Inserts* vorbereitet wurden, mit einem dreifachen molaren Überschuß an Fragment-DNA in einem Volumen von 10 μ l in Ligationspuffer mit T4-DNA-Ligase (1 U) inkubiert (2 h, RT oder 4 h, 16°C). Der Ligationsansatz wurde anschließend direkt zur Transformation eingesetzt (s. 1.2).

1.11 DNA-Sequenzierung

Die automatische Sequenzierung wurde am ABI PRISMTM 310 *Genetic Analyzer* durchgeführt. Die Vorbereitung der Proben erfolgte mit dem ABI PRISMTM *Big Dye Terminator Cycle Sequencing Ready Kit*, welches auf dem Prinzip des Kettenabbruchs durch Dideoxy-Nukleotide basiert. Diese sind an luminiszierende Gruppen gekoppelt, die jeweils in einem anderen Frequenzbereich luminiszieren. So braucht pro Sequenzierprobe nur eine Reaktion angesetzt werden.

Dazu wurde jeweils folgender Reaktionsansatz für die PCR verwendet:

Plasmid-DNA	100- 250 ng
Oligonukleotid	10 pMol
BigDye Premix	4 µl
H ₂ O	ad 10 µl

Die Polymerasekettenreaktion erfolgt in einem Trioblock (Biometra) mit Heizdeckel nach folgendem Temperaturprofil in 25 Zyklen:

Denaturierung	94°C	30 s
Hybridisierung	50°C	15 s
Synthese	60°C	4 min
Abkühlung auf 4°C		

Anschließend wurde der Ansatz zur Fällung der amplifizierten DNA mit 2 μ l NaAc/EDTA und 80 μ l Ethanol versetzt und 15 min auf Eis inkubiert. Anschließend wurde die Probe zentrifugiert (15000 x g, 15 min, RT) und der Niederschlag mit 500 μ l Ethanol (70 %) gewaschen. Nach erneuter Zentrifugation (15000 x g, 5 min, RT) wurde der Niederschlag getrocknet und in 20 μ l *Template Suppression Reagent* aufgenommen zur Sequenzierung eingesetzt.

2 Hefe-Zwei-Hybrid-System

Das Hefe-Zwei-Hybrid-System dient zur Identifikation von Protein-Protein-Interaktionen *in vivo*.

Grundlage bildet die Struktur eukaryotischer Transkriptionsfaktoren, die aus zwei Domänen definierter Struktur und Funktion bestehen: Die DNA-Bindungsdomäne (DNA-BD) erkennt spezifische Sequenzen einer *upstream activating sequence* (UAS), die Aktivierungsdomäne (AD) initiiert den Transkriptionskomplex. Vom Promotor ausgehend erfolgt durch Zusammenwirken dieser Komponenten die Transkription des Genprodukts.

Im Hefe-Zwei-Hybrid-System liegen die DNA-BD und AD des Transkriptionsfaktors GAL4 in zwei verschiedenen Vektoren vor. Die cDNA der auf Interaktion zu untersuchenden Proteine werden so in je einen der Vektoren kloniert, dass bei Expression Fusionsproteine aus dem GAL4-Anteil und dem jeweiligen Protein entstehen. Bei Interaktion der untersuchten Protein wird der Transkriptionsfaktor durch räumliche Annäherung wieder komplettiert. Dadurch erfolgt die Aktivierung des Reportergens, in diesem Fall des *HIS3*-Gens.

Es wurde das *Matchmaker*TM-System von Clontech verwendet. Als DNA-BD enthaltender Vektor diente pAS2-1, die AD-Domäne lag in pGAD424 vor.

Als Reporterstamm wurde der Hefestamm CG1945 verwendet. Er enthält die GAL4abhängigen Reportergene *LacZ* und *HIS3*. Die Zellen sind Leucin- und Tryptophanauxotroph. Dieser Mangel konnte durch Aufnahme des pAS2-1-Vektors mit dem *TRP1*-Gen bzw. des pGAD424-Vektors mit dem *LEU2*-Gen ausgeglichen werden. Mangelmedien ohne Leucin und Tryptophan konnten somit zur Identifikation von Doppeltransformanden verwendet werden. Das *HIS3*-Gen kann in geringem Maße autoaktiviert werden. Dies konnte durch Zugabe von 3-AT im SD-Medium unterdrückt werden. Somit war Wachstum auf Histidin-Mangelmedien nur möglich, wenn das *HIS3*-Gen durch Wiederherstellung des GAL4-Transkriptionsfaktors aktiviert wurde. Dadurch konnte der Rückschluß auf Interaktion der Fusionsproteine gezogen werden.

2.1 Kultivierung von Hefestämmen (Guthrie und Fink, 1991)

Hefestämme wurden als Glycerin-Dauerkultur (in YPD-Medium, 25 % (v/v) Glycerin, -70°C) gelagert bzw. auf YPD-Platten ausgestrichen und 2-3 Tage bei 30°C inkubiert. Die Platten konnten anschließend bei 4°C bis zu 8 Wochen gelagert werden. Dann erfolgte ein erneuter Ausstrich der Zellen. Nicht-transformierte Hefestämme wurden auf Vollmedium-Platten, transformierte Hefestämme auf Selektionsmedium-Platten kultiviert.

2.2 Präparation kompetenter Hefezellen (Guthrie und Fink, 1991)

Mehrere rötlich-braun gefärbte Kolonien (\emptyset 2-3 mm) des Hefestammes wurden in 50 ml YPD-Medium resuspendiert und unter Schütteln (250 UpM, 30°C, üN) bis zum Erreichen der stationären Phase (OD₆₀₀ > 1,5) inkubiert. Diese Vorkultur wurde mit YPD-Medium in einem Gesamtvolumen von 300 ml zu einer OD₆₀₀ von 0,2-0,3 verdünnt. Nach Erreichen einer OD₆₀₀ von 0,4-0,6 (230 UpM, 30°C, 2-3 h) wurden die Hefezellen abzentrifugiert (1000 x g, RT, 5 min) und das Sediment in 50 ml sterilem H₂O bidest. gewaschen. Nach erneuter Zentrifugation unter gleichen Bedingungen wurde das Pellet in 1,5 ml TE/Lithiumacetat-Lösung aufgenommen und bei RT gelagert.

2.3 Transformation von Hefezellen (Guthrie und Fink,1991)

Zur Transformation wurden jeweils 0,1-1 µg Plasmid-DNA der Aktivierungs- bzw. Bindedomäne tragenden Vektoren mit 100 µg Träger-DNA, 100 µl frischer Zellsuspension und 600 µl frischer PEG/Lithiumacetat-Lösung versetzt, durchmischt und bei 30°C inkubiert (200 UpM, 30 min). Nach Zugabe von 70 μ l DMSO und vorsichtigem Durchmischen durch Invertieren erfolgte der Hitzeschock bei 42°C im Wasserbad (15 min). Die Zellen wurden auf Eis abgekühlt (2 min), danach zentrifugiert (14000 UpM, RT, 5 s) und das Sediment in 100 μ l steril filtriertem TE-Puffer aufgenommen. Die Zellsuspension wurde anschließend auf Selektionsmedium ausplattiert und die Platten 2-4 Tage bei 30°C inkubiert.

2.4 Identifikation interagierender Proteine mit dem Hefe-Zwei-Hybrid-System (Matchmaker[™] GAL4 Two-Hybrid User Manual, Clontech, 1997)

Die Plasmide wurden in Hefezellen des Stammes CG1945 transformiert und einzeln auf Fähigkeit zur Autoaktivierung der Reportergene überprüft. Autoaktivierung ließ sich durch Zusatz von 3-AT in einer Konzentration von 4-8 mM im Medium unterdrücken.

Zur Untersuchung der Interaktion zweier Proteine erfolgte die simultane Transformation der Plasmide, die die Fusionsproteine kodieren. Die Durchführung entsprach im Wesentlichen obigem Protokoll (s. 2.3).

Zur Selektion von Doppeltransformanden wurde die Zellsuspension auf –TRP/-LEU-Mangelmedium ausplattiert. Nach 3-5 Tagen Inkubation bei 30°C konnten die selektierten Doppeltransformanden auf –TRP/-LEU/-HIS-Mangelmedium überimpft werden.

Dazu wurden je Probe 3 Kolonien in je 30 μ l sterilem H₂O bidest. resuspendiert. Anschließend wurden jeweils 2,5 μ l Zellsuspension auf verschiedene Selektionsmedien aufgetropft. Dabei handelte es sich um Selektivmedium zur Bestätigung der Doppeltransformanden (-TRP, -LEU) und zur Identifikation von interagierenden Proteinen (-TRP, -LEU, -HIS, 3-AT in Konzentration zwischen 2 und 8 mM). Die Platten wurden anschließend 5-7 Tage bei 30°C inkubiert.

3 Computergestützte Analysen

Computergestützte Analysen von DNA-und Proteinsequenzen wurden mit Hilfe des Lasergene-Programmpaketes DNASTAR (DNASTAR Inc., www.dnastar.com) durchgeführt. Strukturanalysen erfolgten mit Hilfe der SGI Workstation (Silicon Graphics).

IV Ergebnisse

1 Identifikation des für Proteinwechselwirkungen verantwortlichen Bereichs im N-Terminus von hKv2.1

1.1 Klonierung von Chimären der N-Termini aus hKv6.2 und hKv2.1

HKv6.2 bildet in homologen Expressionssystemen keine funktionsfähigen Kanäle. Zhu *et al.* konnten zeigen, dass die N-terminalen Bereiche der hKv6.2-Untereinheiten in Untersuchungen im Hefe-Zwei-Hybrid-System nicht zur Interaktion fähig waren. Dagegen fanden sich Wechselwirkungen mit dem N-Terminus von hKv2.1 – diese Untereinheiten fügten sich zu heteromeren Kanälen mit veränderter Kinetik zusammen (Zhu *et al.*, 1999).

Die Bindedomänen aus hKv6.2 reichen für ein *Assembly* der homologen Untereinheiten also offenbar nicht aus. Basierend auf dieser Annahme wurden Chimären zwischen hKv6.2 und hKv2.1 entworfen, in denen N-terminale Bereiche einzeln oder in Blöcken gegen die analogen Domänen aus hKv2.1 ausgetauscht wurden. So sollten die zur Bindung notwendigen, eventuell hinreichenden Bereiche aus hKv2.1 identifiziert werden.

Zunächst sollte grob ermittelt werden, in welchem Abschnitt des N-Terminus die Interaktion der Untereinheiten vermittelt wird. Dazu kamen sowohl die Bindedomänen $T1_{A,B}$ als auch die von Lopez-Barnéo beschriebene NRD-Domäne in Frage (Chiara *et al.*, 1999). So wurden in einem ersten Schritt diese beiden Bereiche einzeln sowie in Chimären zwischen hKv2.1 und hKv6.2 untersucht. Folgende Konstrukte wurden verwendet (Abb. 4.1):

Abbildung 4.1: Übersicht der im ersten Schritt getesteten Konstrukte.

T1_A bzw. T1_B kennzeichnen schematisch die Interaktionsdomänen, NRD die von Lopez-Barnéo beschriebene Nregulatory domain (Chiara et al., 1999)

Die Konstrukte wurden mit Hilfe der *Overlap-PCR* (s. 3.1.5.2) erstellt. Eine Liste aller verwendeten Oligonukleotide findet sich im Anhang. Das jeweilige C-terminale Oligonukleotid enthielt ein Stopcodon zur Termination der Translation. Nach Aufreinigung und Restriktion mit *Eco*RI und *Sal*I wurden die Fragmente über die entsprechenden Schnittstellen in die analog vorbereiteten Hefevektoren pAS2-1 und pGAD 424 subkloniert (Abb. 4.2 und 4.3). Die entstandenen Konstrukte wurden durch Sequenzierung verifiziert.

Abbildung 4.2: Klonkarte des Konstrukts #2 (s. Abb. 4.1) im Vektor pAS2-1.

Schematisch dargestellt sind als rote Pfeile funktionell wichtige Domänen. Deutlich erkennbar ist die Sequenz, die für das Fusionsprotein aus der GAL4-Bindedomäne und dem chimären Konstrukt kodiert. Die Klonierung erfolgte gerichtet über die markierten Schnittstellen *Eco*R I und *Sal* I. Die Anschaltung erfolgt durch den ADH1 Promotor.

Abkürzungen: Amp R = Ampicillin-Resistenz; TRP1 = Tryptophan-Synthese; CYH2 = Cycloheximid-Resistenz.

Abbildung 4.3: Klonkarte des Konstrukts #2 (s. Abb. 4.1) im Vektor pGAD424.

Schematisch dargestellt sind als rote Pfeile funktionell wichtige Domänen. Deutlich erkennbar ist die Sequenz, die für das Fusionsprotein aus der GAL4-Aktivierungsdomäne und dem chimären Konstrukt kodiert. Die Klonierung erfolgte gerichtet über die markierten Schnittstellen *Eco*R I und *Sal* I. Die Anschaltung erfolgt durch den ADH1 Promotor.

Abkürzungen: Amp R = Ampicillin-Resistenz; TRP1 = Tryptophan-Synthese; CYH2 = Cycloheximid-Resistenz.

1.2 Testung auf Interaktion im Hefe-Zwei-Hybrid-System

Im Hefe-Zwei-Hybrid-System wurden die Konstrukte auf Interaktion mit dem Aminoterminus von hKv6.2 (aa 9-172) getestet (s. 3.2.4). Dabei wurden die zu überprüfenden Proben sowohl mit dem jeweiligen Leervektor als auch mit dem potentiellen Interaktionspartner kotransformiert, ersteres, um eine eventuelle Autoaktivierung einschätzen zu können.

Nach der simultanen Doppeltransformation mit den Hefevektoren entsprechend Tab. 4.1 wurden die Hefezellen auf SD-TRP/-LEU-Medium ausplattiert. Von den so selektierten Doppeltransformanden wurden nach 5-10 Tagen 3 Klone auf SD-TRP/-LEU/-HIS-Platten überführt, um eine mögliche Interaktion der Proteine nachzuweisen (Abb. 4.5 und 4.6). Die Zahl n=3 wurde gewählt, um ein reproduzierbares Ergebnis zu sichern.

Gleichzeitig wurden die ausgewählten Klone ein weiteres Mal auf SD-TRP/-LEU ausplattiert, um sicher zu verifizieren, dass es sich bei diesen in der Tat um Doppeltransformanden handelte. An dieser Stelle wird exemplarisch eine solche Platte gezeigt (Abb. 4.4), im Folgenden wird wegen fehlenden Informationsgehaltes darauf verzichtet. Gleiches gilt für die Leerkontrollen, sofern sie auf einer separaten Platte ausgestrichen wurden und keine Autoaktivierung anzeigten. Standardmäßig wurde bei jeder Transformation eine Positivkontrolle mitgeführt, die das Funktionieren der Methode belegte. Dazu diente die Kotransformation der kompletten N-Termini von hKv2.1 und hKv6.2, deren Interaktion Zhu *et al.* belegt hatten (Zhu *et al.*, 1999). Tabellarisch aufgeführt sind die eingesetzten Konstrukte: DNA-BD steht für die im Vektor pAS2-1 eingebrachten *Inserts*, die an die DNA-Bindedomäne gekoppelt vorliegen; AD entsprechend für die im Vektor pGAD424 an die GAL4-Aktivierungsdomäne gekoppelten Konstrukte.

Abbildung 4.4: Austestung der Chimären. Verifizierung der Doppeltransformanden auf SD – TRP/LEU-Medium; Nummerierung entsprechend Tab. 4.1.

Abbildung 4.5: Austestung der Chimären.

Ausplattierung der selektierten Klone auf SD –TRP/-LEU/-HIS-Platten mit Zusatz von 6mM 3-AT; Nummerierung entsprechend Tab. 4.1.

Abbildung 4.6: Austestung der Chimären.

Ausplattierung der selektierten Klone auf SD –TRP/-LEU/-HIS-Platten mit Zusatz von 6mM 3-AT; Nummerierung entsprechend Tab. 4.2.

Nr.	DNA-BD	AD	Bemerkungen	Ergebnis
1	6.2 NT	2.1 NT	Positivkontrolle	+
2	6.2 NT	-	Leerkontrolle	-
3	-	6.2 NT	Leerkontrolle	-
4	2.1 1-133 (T1 _{A,B})	-	Leerkontrolle	+
5	-	2.1 1-133 (T1 _{A,B})	Leerkontrolle	-
6	2.1 145-195 (NRD)	-	Leerkontrolle	-
7	-	2.1 145-195 (NRD)	Leerkontrolle	-
8	2.1-144/6.2 131-177	-	Leerkontrolle	-
9	-	2.1-144/6.2 131-177	Leerkontrolle	-
10	6.2 NT	2.1 1-133 (T1 _{A,B})		+
11	2.1 1-133 (T1 _{A,B})	6.2 NT		+
12	2.1 1-133 (T1 _{A,B})	2.1 1-133 (T1 _{A,B})		+
13	6.2 NT	2.1 145-195 (NRD)		-
14	2.1 145-195 (NRD)	6.2 NT		-
15	2.1 145-195 (NRD)	2.1 145-195 (NRD)		-
16	6.2 NT	2.1-144/6.2 131-177		+
17	2.1-144/6.2 131-177	6.2 NT		-
18	2.1-144/6.2 131-177	2.1-144/6.2 131-177		+

Tabelle 4.1: Nummerierung und Ergebnisübersicht der getesteten Chimären in Abb. 4.4 und Abb. 4.5.

Nr.	DNA-BD	AD	Bemerkungen	Ergebnis
1	6.2 NT	2.1 NT	Positivkontrolle	+
2	6.2 NT	-	Leerkontrolle	-
3	-	6.2 NT	Leerkontrolle	-
4	6.2-130/2.1 145-195	-	Leerkontrolle	-
5	-	6.2-130/2.1 145-195	Leerkontrolle	-
6	6.2 NT	6.2-130/2.1 145-195		-
7	6.2-130/2.1 145-195	6.2 NT		-
8	6.2-130/2.1 145-195	6.2-130/2.1 145-195		(Kontamination) -

Tabelle 4.2: Nummerierung und Ergebnisübersicht der getesteten Chimären in Abb. 4.6.

Wachstum der selektierten Klone und damit Hinweise auf eine Interaktion der eingesetzten Proteine fand sich in den Fällen, bei denen die $T1_{A,B}$ -Domäne von hKv2.1 vorhanden war. Nur eingeschränkt beurteilbar sind die Kombinationen, in denen hKv2.1 $T1_{A,B}$ im Vektor pAS2-1 (DNA-BD) eingesetzt wurde; dieses Konstrukt zeigte eine gewisse Fähigkeit zur Autoaktivierung.

Es zeigte sich, dass der N-Terminus von hKv2.1, der die $T1_{A,B}$ -Domäne, aber nicht die NRD-Einheit enthält, sowohl notwendig als auch hinreichend für eine Bindung an hKv6.2 ist. Die NRD-Domäne hingegen, der regulatorische Eigenschaften zugeschrieben werden können, scheint auf die Interaktion der Untereinheiten keinen Einfluss zu nehmen.

Identifikation der N- bzw. C-terminal von T1_{A,B} notwendigen Aminosäuren

2.1 Klonierung von N- bzw. C-terminal verkürzten Konstrukten

Um zu überprüfen, ob die T1_{A,B}-Domäne für die Interaktion im Hefe-Zwei-Hybrid-System nicht nur notwendig, sondern auch hinreichend ist, wurden sowohl N- als auch C-terminal verkürzte Konstrukte kloniert, die bis an die Grenzen dieser Bereiche heranreichen (Abb. 4.7). Die Konstrukte wurden nach dem oben beschriebenen Verfahren über die Schnittstellen *Eco*RI und *Sal*I in die Hefevektoren pAS2-1 und pGAD424 eingeführt.

Folgende Konstrukte wurden eingesetzt:

- #5: hKv2.1 T1_{A,B} hKv2.1 aa 1-118
- #6: hKv2.1 T1_{A,B} C-terminal verkürzt hKv2.1 aa 1-101
- #7: hKv2.1 T1_{A,B} N-terminal verkürzt hKv2.1 aa 36-133

Abbildung 4.7: Übersicht der verkürzten Konstrukte. T1_A bzw. T1_B kennzeichnen schematisch die Interaktionsdomänen.

2.2 Testung im Hefe-Zwei-Hybrid-System

Analog zur Austestung der Chimären wurden die verkürzten hKv2.1-Konstrukte jeweils mit dem N-Terminus von hKv6.2 kotransformiert sowie auf Interaktion mit sich selbst getestet. Dabei zeigte sich folgendes Ergebnis (Tab. 4.3, Platten nicht abgebildet):
Nr.	DNA-BD	AD	Ergebnis
1	6.2 NT	2.1 1-118	-
2	2.1 1-118	6.2 NT	-
3	2.1 1-118	2.1 1-118	-
4	6.2 NT	2.1 1-101	-
5	2.1 1-101	6.2 NT	-
6	2.1 1-101	2.1 1-101	-
7	6.2 NT	2.1 36-133	-
8	2.1 36-133	6.2 NT	-
9	2.1 36-133	2.1 36-133	-

Tabelle 4.3: Übersicht der Transformationsergebnisse der verkürzten Konstrukte.

Es zeigte sich, dass zum einen der Beginn bei Aminosäure 1 von hKv2.1 für eine Wechselwirkung notwendig zu sein scheint; ein direkt bei $T1_A$ beginnendes Konstrukt verlor die Fähigkeit zur Interaktion mit hKv6.2 und mit sich selbst. Zum anderen war es nötig, hKv2.1 C-terminal bis zur Aminosäure 133 und entsprechend hKv6.2 bis AS 119 einzusetzen; an dieser Stelle finden sich zwei Cystein-Reste, denen eine wichtige Rolle in der Zink-Bindung zugeschrieben wird (Bixby *et al.*, 1999).

3

Struktur-Funktionsanalyse der T1_{A,B}-Domäne

3.1 Identifikation des *Interface* zwischen Kv6.2 und Kv2.1

Anhand der ermittelten Kristallstruktur der Tetramerisierungsdomäne von *Shaw* T1 in *Aplysia* (AKv3.1) identifizierten Bixby *et al.* Aminosäuren, die für die Bindung der Untereinheiten aneinander von besonderer Bedeutung zu sein scheinen (Bixby *et al.*, 1999). Als Voraussetzung hierfür forderten sie eine räumliche Annäherung auf mindestens 3,5 Ångström. So ließ sich ein *Interface* erstellen, das die offenbar wichtigsten Aminosäuren in Beziehung zu denen der jeweils gegenüberliegenden Untereinheit setzt (s. Abb. 1.3).

Mit Hilfe eines *Alignments* von AKv3.1 mit hKv2.1 bzw. hKv6.2 wurden entsprechend Residuen eines möglichen hKv2.1 bzw. hKv6.2 *Interface* ermittelt (Abb. 4.8).

Abbildung 4.8: *Alignment* von *Aplysia* Kv3.1 (AKv3.1) aa 15-103 mit hKv2.1 aa 36-133 und hKv6.2 aa 22-119.

Mögliche *Interface*-Residuen wurden analog der Kristallisationsergebnisse für *Shaw*T1 in Bixby *et al.*, 1999, Abb. 3a, ermittelt. *Interface*-Kontakte sind mit einem Stern (*) markiert und eingerahmt; Aminosäuren, die zur Zn^{2+} -Koordinierung beitragen, wurden mit einer Raute (#) gekennzeichnet und fett gedruckt.

In dieses *Alignment* wurden außerdem die Kontakte eingetragen, die sich aus den Kristallisationsergebnissen für *Shaw*T1 ableiten lassen. Dabei lassen sich drei Domänen unterscheiden, die durch polare Brücken, zum Teil in sich geschlossen, zum Teil miteinander interagierend, die Bindung von Untereinheiten zu stabilisieren scheinen. Die Tetramerisierungsdomänen T1_A und T1_B überlappen sich mit diesen Bereichen (Abb. 4.9).

Abbildung 4.9: Alignment für hKv2.1 aa 36-133 und hKv6.2 aa 22-119, ergänzt um mögliche Interface-Verbindungen.

Sterne (*) markieren Interface-Residuen, Rauten (#) Zn²⁺-koordinierende Aminosäuren, schwarze Balken kennzeichnen mögliche Interaktionen analog des *Shaw* T1-Tetramers.

3.2 Identifikation möglicher notwendiger Residuen

Nachdem anhand des Konservierungsgrades der Aminosäuren bereits eine erste Einschätzung der Relevanz dieser Residuen für den Verlust bzw. Gewinn der Interaktionsfähigkeit vorgenommen worden war, wurde im nächsten Schritt die Kristallstruktur von AKv3.1 als Modell für die Tetramerisierungsdomäne von hKv2.1 bzw. hKv6.2 verwendet. Anhand deren *Alignment* wurden Residuen ausgewählt, an denen sich hKv2.1 und hKv6.2 hinsichtlich Polarität oder räumlicher Struktur des Restes auffällig unterschieden. An der SGI Workstation wurden diese Aminosäuren in die Kristallstruktur von AKv3.1 eingefügt. So konnte beurteilt werden, welche Reste aufgrund der dreidimensionalen Gesamtstruktur das *Interface* beeinflussen könnten.

Die Abbildungen 4.10 und 4.11 zeigen beispielhaft, wie sich die Verhältnisse zwischen hKv2.1 und hKv6.2 verändern: In hKv2.1 scheinen die markierten Aminosäuren Histidin 88, Glycin 90 sowie Threonin 93 die Gesamtstruktur zu stabilisieren, in hKv6.2 dagegen ragen die analogen Aminosäurereste von Serin 74, Cystein 76 und Arginin 79 in den *Interface*-Bereich hinein. Dabei ist eine Schwächung der Bindung der Untereinheiten vorstellbar.

Abbildung 4.10: Interface in hKv2.1.

Dargestellt ist die Aufsicht auf das Kanalprotein, bestehend aus vier Untereinheiten (basierend auf AKv3.1). Farbig hervorgehoben sind drei Residuen, die in der Analyse wegen großer Nähe zur gegenüberliegenden Untereinheit bzw. wegen besonderer funktioneller Bedeutung für die Interaktion auffielen. Orange: Histidin 88, grün: Glycin 90, rot: Threonin 93. Die gestrichelten Linie stellen exemplarisch die Beziehung zweier *Interface*-Aminosäurereste dar, hier im Abstand von 5, 42 Ångström.

Abbildung 4.11: Interface in hKv6.2.

Einblick in den *Interface*-Bereich zwischen zwei Untereinheiten (basierend auf AKv3.1). Farbig hervorgehoben sind drei Residuen, die in der Analyse wegen großer Nähe zur gegenüberliegenden Untereinheit bzw. wegen besonderer funktioneller Bedeutung für die Interaktion auffielen. Auffällig hier das Hineinragen der Aminosäurereste in das *Interface*. Orange: Serin 74, grün: Cystein 76, rot: Arginin 79.

Schematisch sind weiterhin in Abb. 4.12 die Verhältnisse im Bereich hKv2.1 aa 88-97 bzw. analog hKv6.2 aa 74-83 dargestellt. Zunächst gezeigt ist das Modell *Shaw*T1 (entspricht *Aplysia* Kv3.1, Abb. 4.12a). Denkbar ist die Formierung einer hydrophoben Tasche, gebildet von Glutamin 67, Histidin 58 und Leucin 84; dem gegenüber liegt ein Alanin-Rest (A63), der ohne großen Effekt auf die Konformation bleiben dürfte. Außerdem ist eine Stabilisierung durch polare Brücken wahrscheinlich, insbesondere bei Glutamin 67.

In hKv2.1 entsprechen diese Residuen Glutamin 97, Histidin 88, Serin 114 und Threonin 93. Bei dieses Konstellation ist denkbar, dass die grundsätzliche Konformation erhalten bleibt (Abb. 4.12b).

In hKv6.2 sind die Aminosäuren dagegen weniger konserviert: Die entsprechenden Residuen sind verändert zu Alanin 83, Serin 74, Alanin 100 und Arginin 79. Damit könnte nicht nur die hydrophobe Tasche verloren gehen; außerdem ist eine Abstoßung durch den Arginin-Rest denkbar, der weit in das *Interface* hinein ragt (Abb. 4.12c).

Abbildung 4.12: Schematische Darstellung der räumlichen Anordnung der Aminosäuren im *Interface*-Bereich zweier gegenüberliegender Untereinheiten im Tetramer.

a) *Aplysia* Kv3.1 entsprechend *Shaw* T1 laut Kristallisation von Bixby *et al.*, 1999, b) analoge Residuen in hKv2.1, c) analoge Residuen in hKv6.2.

Gestrichelte Linien entsprechen möglichen Interaktionen, angegeben ist außerdem der Abstand in der Kristallstruktur in ngström.

So wurden insgesamt vier Aminosäuren ausgewählt, denen aufgrund der räumlichen Struktur eine wichtige Rolle in der Stabilisierung der Interaktion von Untereinheiten zukommen könnte: In hKv2.1 Histidin 88, Glycin 90, Threonin 93 und Glutamin 97, in hKv6.2 entsprechend die analogen Residuen Serin 74, Cystein 76, Arginin 79 und Alanin 83.

3.3 Konstruktion von Chimären im Bereich der T₁AB-Domäne sowie von Punktmutanten

Zur Überprüfung der Vermutungen aus der Struktur-Funktionsanalyse wurden zwei verschiedene Strategien gewählt: Zum einen wurden chimäre $T1_{A,B}$ -Domänen aus hKv2.1 und hKv6.2 konstruiert, bei denen blockweise jene Bereiche vertauscht wurden, die im *Alignment* das *Interface* zu stabilisieren schienen (vgl. Abb. 4.9). Zum anderen wurden Punktmutanten kloniert, mit denen die spezifische Rolle jener Aminosäuren untersucht werden sollte, die aufgrund der Kristallstruktur von Bedeutung sein könnten.

Folgende chimäre Konstrukte wurden mittels *Overlap-PCR* erstellt und über die Schnittstellen *Eco*RI und *Sal*I in die Hefevektoren pAS2-1 und pGAD424 eingeführt (Abb. 4.13):

Abbildung 4.13: Übersicht der chimären $T1_{A,B}$ -Konstrukte. $T1_A$ bzw. $T1_B$ kennzeichnen schematisch die Interaktionsdomänen.

Bei der Konstruktion von Punktmutanten wurde zum einen nach dem Prinzip des Funktionsverlustes (*loss of function*), zum anderen nach dem Prinzip des Funktionsgewinns (*gain of function*) bei der Veränderung wichtiger Residuen vorgegangen:

In der Erwartung eines *loss of function*, also im Hefe-Zwei-Hybrid-System eines Verlustes der Interaktionsfähigkeit, wurden die nach der Strukturanalyse identifizierten Residuen in hKv2.1 zu hKv6.2 verändert; Ausgangskonstrukt hierfür war hKv2.1 $T1_{A,B}$ (aa 1-133).

Ein *gain of function*, also die neu erworbene Fähigkeit zu Wechselwirkungen im Hefe-*Assay*, wurde beim reziproken Austausch der ausgesuchten Aminosäuren von hKv6.2 zu hKv2.1 erwartet. Als Ausgangskonstrukt hierfür diente die Chimäre A21B6221(Konstrukt #12, hKv2.1 aa 1-73; hKv6.2 aa 60-87; hKv2.1 aa 102-133). Durch Austausch von lediglich 30 Aminosäuren ging bei diesem Konstrukt die Fähigkeit zur Interaktion verloren (s. 4.3.4); ein Wechsel der ausgewählten Residuen von hKv6.2 zu hKv2.1 sollte zum Wiedererlangen dieser Funktion führen.

Die Punktmutationen wurden mit dem *QuikChange*TM *Site-Directed Mutagenesis Kit* eingeführt. Hierzu wurden die Ausgangskonstrukte nach Restriktion mit *Eco*RI und *Sal*I in den entsprechend vorbehandelten Klonierungsvektor p*Bluescript* KS⁺ umkloniert. Einerseits erleichterte dies die *PCR*, auf dem dieses System basiert: Da der gesamte Vektor repliziert wird, erzielt man mit einem kurzen Plasmid ein besseres Ergebnis. Andererseits konnten Zufallsmutationen in den Hefevektoren, wie sie in der *PCR* häufig vorkommen, durch anschließendes Rückklonieren der sequenzierten Konstrukte vermieden werden. Folgende Punktmutanten wurden kloniert (Abb. 4.14 und 4.15):

Ausgangskonstrukt: Chimäre T1_A hKv2.1 / T1_B hKv6.2/hKv2.1 (Konstrukt #12)

hKv2.1 aa 1-73 / hKv6.2 aa 60-87 / hKv2.1 aa 102-133

Abbildung 4.14: Übersicht der Punktmutanten im Konstrukt A21B6221 (Konstrukt #12).

 $T1_A$ bzw. $T1_B$ kennzeichnen schematisch die Interaktionsdomänen. Die Nummerierung der ausgetauschten Aminosäuren bezieht sich auf hKv6.2, als Abkürzungen wurden die gebräuchlichen Ein-Buchstaben-Bezeichnungen für Aminosäuren verwendet. Die senkrechten Striche zeigen grob die Lokalisation der Punktmutation.

 $T1_A$ bzw. $T1_B$ kennzeichnen schematisch die Interaktionsdomänen. Die Nummerierung der ausgetauschten Aminosäuren bezieht sich auf hKv2.1, als Abkürzungen wurden die gebräuchlichen Ein-Buchstaben-Bezeichnungen für Aminosäuren verwendet. Die senkrechten Striche zeigen grob die Lokalisation der Punktmutation.

3.4 Testung auf Interaktion im Hefe-Zwei-Hybrid-System

Zur Überprüfung der Funktionalität wurden analog zum vorbeschriebenen Verfahren alle Konstrukte sowohl mit dem N-Terminus von hKv6.2 als auch mit sich selbst kotransformiert. Nach Hochzüchten auf SD-TRP/-LEU-Platten erfolgte nach 5-10 Tagen die Umsetzung auf SD-TRP/-LEU/-HIS-Medium mit Zusatz unterschiedlicher Konzentrationen an 3-AT. In der Kombination mit 6 mM 3-AT zeigten sich meist die besten Ergebnisse, da hier zum einen die Autoaktivierung gut unterdrückt wurde, zum anderen die Interaktion aber noch ausreichend erkennbar war.

Die Überprüfung der chimären $T1_{A,B}$ - sowie der möglichen *gain of function*-Konstrukte zeigte folgendes Ergebnis (Abb. 4.16 und 4.17, Tab. 4.4 und 4.5):

Abbildung 4.16: Austestung der chimären T1_{A,B}-Konstrukte sowie der gain of function-Punktmutanten. Ausplattierung der selektierten Klone auf SD -TRP/-LEU/-HIS-Platten mit Zusatz von 6mM 3-AT; Nummerierung entsprechend Tab. 4.4.

Abbildung 4.17: Austestung der *gain of function*-Punktmutanten. Ausplattierung der selektierten Klone auf SD –TRP/-LEU/-HIS-Platten mit Zusatz von 6mM 3-AT; Nummerierung entsprechend Tab. 4.5.

Nr.	DNA-BD	AD	Bemerkungen	Ergebnis
1	6.2 NT	2.1 1-133	Positivkontrolle	+
2	6.2 NT	A21B6221 1-133	Negativkontrolle	-
3	6.2 NT	A21B62		-
4	A21B62	6.2 NT		-
5	A21B62	A21B62		-
6	6.2 NT	A21B2162		-
7	A21B2162	6.2 NT		-
8	A21B2162	A21B2162		-
9	6.2 NT	A62B21		(Kontamination)
10	A62B21	6.2 NT		-
11	A62B21	A62B21		-
12	6.2 NT	A62B6221		-
13	A62B6221	6.2 NT		-
14	A62B6221	A62B6221		-
15	6.2 NT	S74H		-
16	S74H	6.2 NT		-
17	S74H	S74H		-
18	6.2 NT	C76G		-
19	C76G	6.2 NT		-
20	C76G	C76G		-

Tabelle 4.4: Nummerierung und Ergebnisübersicht der getesteten Chimären und Punktmutanten in Abb. 4.16.

Nr.	DNA-BD	AD	Bemerkungen	Ergebnis
21	6.2 NT	2.1 1-133	Positivkontrolle	+
22	6.2 NT	A21B6221 1-133	Negativkontrolle	-
23	6.2 NT	R79T		-
24	R79T	6.2 NT		-
25	R79T	R79T		-
26	6.2 NT	C76GR79T		-
27	C76GR79T	6.2 NT		-
28	C76GR79T	C76GR79T		-
29	6.2 NT	S74HR79T		-
30	S74HR79T	6.2 NT		-
31	S74HR79T	S74HR79T		-
32	6.2 NT	S74HA83N		-
33	S74HA83N	6.2 NT		-
34	S74HA83N	S74HA83N		-
35	6.2 NT	R79TA83N		-
36	R79TA83N	6.2 NT		-
37	R79TA83N	R79TA83N		-
38	6.2 NT	S74HR79TA83N		-
39	S74HR79TA83N	6.2 NT		-
40	S74HR79TA83N	S74HR79TA83N		-
				1

Tabelle 4.5: Nummerierung und Ergebnisübersicht der getesteten Punktmutanten in Abb. 4.17.

Die getesteten Chimären mit Austausch einzelner Blöcke im Bereich der $T1_{A,B}$ -Domänen zeigten im Hefe-Zwei-Hybrid-System keinerlei Wechselwirkungen mit dem Aminoterminus von hKv6.2, ebenso wenig in der homomeren Expression. Bereits die Veränderung von lediglich 30 Residuen im Vergleich zum Aminoterminus von hKv2.1 führte zum Verlust der Interaktionsfähigkeit.

Die Austestung der Punktmutanten mit erwartetem *gain of function* im Hefe-Zwei-Hybrid-System zeigte keinen Rückgewinn der Funktionalität bei den Konstrukten auf Basis der Chimäre A21B6221 (Konstrukt #12). Die reziproken Punktmutanten mit erwartetem *loss of function* verhielten sich im *Assay* wie folgt (Abb. 4.18 und 4.19, Tab 4.6 und 4.7):

Abbildung 4.18: Austestung der *loss of function*-Punktmutanten. Ausplattierung der selektierten Klone auf SD –TRP/-LEU/-HIS-Platten mit Zusatz von 4 mM 3-AT; Nummerierung entsprechend Tab. 4.6.

Abbildung 4.19: Austestung der *loss of function*-Punktmutanten. Ausplattierung der selektierten Klone auf SD –TRP/-LEU/-HIS-Platten mit Zusatz von 4 mM 3-AT; Nummerierung entsprechend Tab. 4.7.

Nr.	DNA-BD	AD	Bemerkungen	Ergebnis
1	6.2 NT	2.1 1-133	Positivkontrolle	+
2	6.2 NT	A21B6221 1-133	Negativkontrolle	(schwach) -
3	6.2 NT	H88S		+
4	H88S	6.2 NT		+
5	H88S	H88S		+
6	6.2 NT	G90C		-
7	G90C	6.2 NT		+
8	G90C	G90C		+
9	6.2 NT	T93R		+
10	T93R	6.2 NT		+
11	T93R	T93R		+
12	6.2 NT	G90CT93R		-
13	G90CT93R	6.2 NT		+
14	G90CT93R	G90CT93R		+

Tabelle 4.6: Nummerierung und Ergebnisübersicht der getesteten Punktmutanten in Abb. 4.18.

Nr.	DNA-BD	AD	Bemerkungen	Ergebnis
1	6.2 NT	2.1 1-133	Positivkontrolle	+
2	6.2 NT	A21B6221 1-133	Negativkontrolle	-
3	6.2 NT	H88ST93R		+
4	H88ST93R	6.2 NT		+
5	H88ST93R	H88ST93R		+
6	6.2 NT	H88SN97A		-
7	H88SN97A	6.2 NT		-
8	H88SN97A	H88SN97A		(Kontamination) +
9	6.2 NT	T93RN97A		-
10	T93RN97A	6.2 NT		-
11	T93RN97A	T93RN97A		+
12	6.2 NT	H88ST93RN97A		-
13	H88ST93RN97A	6.2 NT		+
14	H88ST93RN97A	H88ST93RN97A		+

Tabelle 4.7: Nummerierung und Ergebnisübersicht der getesteten Punktmutanten in Abb. 4.19.

Einige der von hKv2.1 ausgehenden Konstrukte wiesen eine gewisse Schwächung der Bindung an hKv6.2 auf. Eine Quantifizierung ist im Hefe-Zwei-Hybrid-System nur sehr begrenzt möglich. Aufgrund des fehlenden Funktionsgewinns der reziproken Punktmutanten in A21B6221 konnten diese Ergebnisse nicht zur Identifikation absolut notwendiger Aminosäuren herangezogen werden.

4 Testung einer Chimäre mit allen drei möglichen Interface-Domänen

4.1 Konstruktion einer Chimäre mit allen drei möglichen Interface-Domänen

Die Ergebnisse der bisherigen Versuche legten den Schluss nahe, dass alle drei identifizierten *Interface*-Domänen gleichermaßen für die Bindung von hKv6.2 und hKv2.1 benötigt werden. Deshalb wurde eine Chimäre konstruiert, die bis zur AS 118 aus hKv2.1 bestand, also alle drei funktionell offenbar notwendigen Bereiche aus hKv2.1 enthielt. Lediglich die 15 C-terminalen Aminosäuren entsprachen hKv6.2, der damit die für die Zinkbindung erforderlichen Cystein-Reste stellte.

Die Klonierung erfolgte mit einem langen C-terminalen Oligonukleotid, das für alle Aminosäuren von hKv6.2 kodierte. Dadurch konnte die *Overlap-PCR* in einem Schritt durchgeführt werden. Das aufgereinigte Fragment wurde mit *Eco*RI und *Sal*I geschnitten und in die analog vorbehandelten Hefevektoren pAS2-1 und pGAD424 kloniert.

Schematisch hier das entsprechende Konstrukt (Abb. 4.20):

Abbildung 4.20: Konstrukt mit allen drei möglichen Interaktionsdomänen aus hKv2.1.

4.2 Testung auf Interaktion im Hefe-Zwei-Hybrid-System

Die Überprüfung der Interaktion im Hefe-*Assay* analog der bisherigen Versuche zeigte folgendes Ergebnis (Abb. 4.21, Tab. 4.8):

47

Abbildung 4.21: Austestung der Chimäre aus der kompletten hKv2.1 T1_{A,B}-Domäne und einem Cterminalen hKv6.2 Fragment. Ausplattierung der selektierten Klone auf SD -TRP/-LEU/-HIS-Platten mit Zusatz von 6 mM 3-AT; Nummerierung entsprechend Tab. 4.8.

Nr.	DNA-BD	AD	Bemerkungen	Ergebnis
1	6.2 NT	2.1 1-133	Positivkontrolle	+
2	6.2 NT	A21B6221 1-133	Negativkontrolle	-
3	2.1-118/6.2-119	-	Leerkontrolle	+
4	-	2.1-118/6.2-119	Leerkontrolle	-
5	6.2 NT	2.1-118/6.2-119		+
6	2.1-118/6.2-119	6.2 NT		+
7	2.1-118/6.2-119	2.1-118/6.2-119		+

Tabelle 4.8: Nummerierung und Ergebnisübersicht der getesteten Chimäre in Abb. 4.21.

Im Hefe-Zwei-Hybrid-System zeigten die Fusionsproteine eine deutliche Interaktion. Die identifizierten Interface-Domänen scheinen demnach für die Bindung der Untereinheiten von hKv2.1 und hKv6.2 aneinander notwendig zu sein.

Diskussion

V

Im Rahmen dieser Arbeit wurde versucht, einzelne Aminosäuren zu identifizieren, die die spezifische Interaktion zwischen Untereinheiten des spannungsgesteuerten Kaliumkanals hKv2.1 und regulatorischen α -Untereinheiten vom Typ hKv6.2 vermitteln. In vorhergehenden Arbeiten konnte gezeigt werden, dass ein N-terminaler Bereich der Proteine hinreichend und notwendig für die Bindung war. Außerdem konnte dabei eine subfamilienspezifische Erkennung nachgewiesen werden (Zhu *et al.*, 1999).

Ausgehend von einer Struktur-Funktionsanalyse angelehnt an die Kristallstruktur von AKv3.1 wurden einzelne Residuen der jeweiligen N-Termini mutiert. Diese chimären Konstrukte wurden anschließend im Hefe-Zwei-Hybrid-System auf ihre Interaktionsfähigkeit überprüft.

Diskussion

1

V

Identifikation des N-terminal notwendigen Interaktionsbereichs

Zhu *et al.* hatten zeigen können, dass im N-Terminus von hKv6.2 die subfamilienspezifische Interaktion mit hKv2.1 vermittelt wird. Eine weitere Eingrenzung auf spezifische Aminosäuren war jedoch nicht erfolgt (Zhu *et al.*, 1999).

Mehrere Autoren konnten für die Familie der spannungsgesteuerten Kaliumkanäle eine Nterminale Domäne identifizieren, die für die Erkennung und Bindung homologer Untereinheiten von entscheidender Bedeutung ist (z.B. Li *et al.*, 1992; Shen *et al.*, 1993). Dieser T1_{A,B}-Domäne wurde bisher die Fähigkeit zugeschrieben, die spezifische Tetramerisierung von Untereinheiten innerhalb einer Subfamilie zu ermöglichen. Dabei sind der genaue Mechanismus der Assoziation und damit die spezifische Funktion der T1-Domäne noch unklar. Verschiedene Autoren äußerten die Vermutung, die T1-Abschnitte könnten als Chaperone die korrekte Faltung der Kanalproteine unterstützen (Kosolapov *et al.*, 2003). Einer anderen These folgend beschleunigt die Tetramerisierung der T1-Domäne lediglich die Assoziation homomerer α -Untereinheiten: Die T1-Domäne lagert sich bereits an Ribosomen zu Tetrameren, die Restproteine folgen auf dem Weg zur Membran (Lu *et al.*, 2001). Diese Annahme wird gestützt durch die Tatsache, dass sich Kanaluntereinheiten mit Deletion der T1-Domäne durchaus zu tetrameren Kanälen zusammenlagern, allerdings mit wesentlich geringerer Effizienz (Zerangue *et al.*, 2000).

Die Zusammenlagerung eben solcher Tetramere aus hKv2.1 und regulatorischen α -Untereinheiten wie z.B. hKv6.2 oder hKv2.3 muss also entweder analog über die Erkennung in der T1_{A,B}-Domäne erfolgen oder über eine weitere Interaktionsmöglichkeit, die den "Filter", den diese Domäne in diesem Zusammenhang darstellt, außer Kraft setzt.

Als möglicher Funktionsbereich kam dafür die von Chiara *et al.* (1999) identifizierte Nregulatorische Domäne (NRD) in Frage. Ihr konnte eine entscheidende Rolle in der Veränderung der Kinetik der heteromeren Kanäle zugewiesen werden (Chiara *et al.*, 1999). Ebenso war eine Beeinflussung der Bindungseigenschaften der Untereinheiten vorstellbar. Um diese Hypothese zu überprüfen, wurden Chimären aus den N-Termini von hKv2.1 und hKv6.2 konstruiert. Aus den Arbeiten von Zhu *et al.* war bereits bekannt, dass hKv6.2 nicht zur Selbstinteraktion fähig ist.

Im Hefe-Zwei-Hybrid-System wurde die Interaktionsfähigkeit der chimären Konstrukte überprüft. Dazu wurden diese über die Restriktionsschnittstellen *Eco*RI und *Sal*I in die Systemvektoren pAS2-1 und pGAD424 einkloniert. PAS2-1 enthält die DNA-Bindedomäne, pGAD424 die Aktivierungsdomäne, die beide zum Anschalten des *HIS3*-Gens in Hefezellen

des Stammes *Saccharomyces cerevisiae* CG-1945 notwendig sind. Bei Expression im Hefe-Zwei-Hybrid-System werden Fusionsproteine aus den zu untersuchenden Kanalproteinen und den genannten Aktivierungsproteinen gebildet. Nur bei Interaktion dieser Fusionsproteine in kotransformierten Zellen ist ein Wachstum von Hefeklonen auf einem Histidin-Mangelmedium möglich.

Dabei konnte gezeigt werden, dass die N-regulatorische Domäne keinerlei Funktion in der Anlagerung von Untereinheiten übernimmt. Sie war weder hinreichend noch notwendig für die Bindung der Konstrukte. Hingegen war das Vorhandensein der $T1_{A,B}$ -Domäne hierfür ausreichend.

Somit schien die Tetramerisierung auch heteromerer Kanäle mit regulatorischen α -Untereinheiten über dieselben Erkennungsmechanismen vermittelt zu werden wie die subfamilienspezifische Interaktion. Der Vergleich unterschiedlicher Aminosäuresequenzen – auf der einen Seite hKv6.2 ohne Fähigkeit zur Bildung von Homomeren, auf der anderen Seite hKv2.1 mit der Fähigkeit zur Bildung sowohl homomerer als auch heteromerer Kanäle – bot die Möglichkeit, die Strukturen bzw. Residuen zu identifizieren, die diese Eigenschaften vermitteln. Insbesondere durch den Abgleich der konservierten Sequenzen und der bereits bekannten Kristallstrukturen von *Shaw* und *Shaker* könnte es gelingen, die Bedeutung polarer oder sterischer Veränderungen einzuschätzen.

In weiteren Versuchen wurde außerdem untersucht, wie viele Aminosäuren um die $T1_{A,B}$ -Domäne herum mindestens für eine Interaktion vorhanden sein mussten. Es zeigte sich, dass N-terminal der Beginn bei Aminosäure 1 erforderlich war. Vermutlich konnte sich das Fusionsprotein nur dann regelrecht falten. Ebenso ließ sich eine Interaktion nur dann nachweisen, wenn C-terminal mindestens die Aminosäuren bis hKv2.1 aa 133 bzw. hKv6.2 aa 118 erhalten blieben. Endständig waren damit jeweils zwei Cystein-Reste, die zu dem von Bixby *et al.* identifizierten Zink-Bindungsmotiv HX₅CX₂₀CC gehören (Bixby *et al.*, 1999). Somit ist zu vermuten, dass Zink-Ionen auch für die Assoziation der isolierten N-Termini notwendig sind. Eine generelle Beeinflussung der Interaktion unter den *in-vitro*-Bedingungen des Hefe-Zwei-Hybrid-Systems ist allerdings unwahrscheinlich, da bei Kv2.1-Konstrukten, die das Zink-Bindungsmotiv trugen, durchweg Interaktion nachweisbar war. 2

Identifikation notwendiger Aminosäuren durch Struktur-Funktionsanalysen

Mit Hilfe der MEGALIGN[™]-*Software* von DNASTAR konnten durch Gegenüberstellung der N-terminalen Aminosäuresequenzen von hKv2.1 und hKv6.2 bereits erste Residuen identifiziert werden, die sich in Polarität oder Länge der Seitenketten deutlich voneinander unterschieden.

Bixby *et al.* hatten in *Shaw* einen Bereich von 24 Aminosäuren innerhalb der Tetramerisierungsdomäne identifizieren können, die sich durch enge räumliche Annäherung bis unter 3,5 Ångström auszeichneten. 20 dieser 24 Residuen besitzen polare Seitenketten, die extensive Salzbindungen zu den korrespondierenden Untereinheiten ausbilden. Allerdings sind diese Interaktionen abhängig von der Konformation des Proteins: Identische Aminosäuren an äquivalenten Positionen in *Shaw* und *Shaker* wiesen in den Kristallstrukturen unterschiedliche Assoziationen aus. Dadurch entsteht ein kanaltypisches Gerüst, das subfamilienspezifische Erkennung ermöglicht.

Ein Vergleich des *Alignments* von hKv2.1 und hKv6.2 mit der *Shaw*-Sequenz legte das Vorhandensein dreier Domänen im Aminoterminus nahe, die durch polare Brücken, zum Teil in sich geschlossen, zum Teil miteinander interagierend, die Bindung von Untereinheiten stabilisieren könnten. Die Tetramerisierungsdomänen $T1_A$ und $T1_B$ überlappten sich mit diesen Bereichen.

Um die Bedeutung dieser Domänen für die Interaktion von hKv2.1 und hKv6.2 einzuschätzen, wurden die Bereiche blockweise ausgetauscht, also Chimären der $T1_{A,B}$ -Domänen konstruiert. Dadurch konnten größere Einheiten der N-Termini *en bloc* untersucht werden.

Gleichzeitig wurden alle Residuen, die im Sequenzvergleich von hKv2.1 und hKv6.2 deutlich voneinander abwichen, in einer computergestützten Strukturanalyse auf ihre Relevanz für das *Interface* zwischen zwei Untereinheiten überprüft.

An der SGI-*Workstation* wurde als Modell für die Struktur eines spannungsgesteuerten Kaliumkanals die von Bixby *et al.* kristallisierte Tetramerisierungsdomäne von Kv3.1 aus *Aplysia* herangezogen. Die im *Alignment* ausgewählten Aminosäuren wurden im dreidimensionalen Modell identifiziert und gegen die entsprechenden Residuen in hKv2.1 und hKv6.2 ausgetauscht.

Dabei zeigte sich, dass viele dieser Aminosäuren vom *Interface* abgewandt im Innern des $T1_{A,B}$ -Tetramers lagen, eine Beeinflussung der Bindung also unwahrscheinlich schien. Von denen der Schnittstelle zugewandten Residuen wiesen wiederum nur wenige relevante Seitenkettenunterschiede zwischen hKv2.1 und hKv6.2 auf.

So wurden letztlich vier Aminosäuren ausgewählt, denen aufgrund der Strukturanalyse eine entscheidende Rolle in der Interaktion zwischen hKv2.1 und hKv6.2 zugeschrieben wurde. Es waren dies in hKv2.1 die Aminosäuren Histidin 88, Glycin 90, Threonin 93 sowie Glutamin 97. Ihnen entsprachen in hKv6.2 die analogen Residuen Serin 74, Cystein 76, Arginin 79 und Alanin 83.

Zu diesem Auswahlverfahren muss kritisch angemerkt werden, dass es nur bedingt verlässlich ist: Zum einen geht es von der Kristallstruktur eines anderen Kanalproteins aus, das zwar eng mit den fraglichen Kanälen verwandt ist, aber doch deutliche Sequenzunterschiede und vermutlich auch eine veränderte Konformation aufweist. Zum anderen ist die Auswirkung der Mutation einzelner Residuen nur eingeschränkt beurteilbar: Weder die unterschiedliche Proteinsequenz des Restproteins noch eine denkbare Beeinflussung der Faltung finden Berücksichtigung. Wie die in dieser Arbeit beschriebenen Versuche zeigen, ist eine Einschätzung der Relevanz bestimmter Mutationen dadurch lediglich eingeschränkt möglich, nämlich dann, wenn sie den erwarteten Effekt zeigen.

Zur Untersuchung der ausgewählten Residuen im Hefe-Zwei-Hybrid-System wurden auf Grundlage von hKv2.1 und hKv6.2 reziproke Konstrukte mit einzelnen Punktmutationen erstellt, von denen entweder ein Funktionsgewinn (*gain of function*) oder ein Funktionsverlust (*loss of function*) erwartet wurde.

Da der N-Terminus von hKv2.1 in seiner nativen Form sowohl zur Assoziation mit hKv2.1 als auch mit hKv6.2 in der Lage ist, wurde bei Mutation bindungsrelevanter Residuen ein Verlust dieser Fähigkeit erwartet. Dieser Annahme folgend wurden in einem Konstrukt des aminoterminalen Endes von hKv2.1 jene Aminosäuren, die in der Strukturanalyse ausgewählt worden waren - Histidin 88, Glycin 90, Threonin 93 sowie Glutamin 97 – in unterschiedlichen Kombinationen zu den in hKv6.2 vorliegenden Resten Serin 74, Cystein 76, Arginin 79 und Alanin 83 mutiert. Bei richtiger Hypothese bzw. richtiger Auswahl der Residuen würde also die Fähigkeit zur Bindung an hKv2.1 und/oder hKv6.2 verloren gehen.

In einem reziproken Ansatz wurde von einem chimären Konstrukt zwischen hKv2.1 und hKv6.2 ausgegangen. Es bestand aus der $T1_A$ -Domäne von hKv2.1 sowie einer chimären $T1_B$ -Domäne, deren aminoterminaler Anteil der Sequenz aus hKv6.2 entsprach, während der C-terminale Teil wiederum hKv2.1 entnommen war.

Dieses Konstrukt hatte in Vorversuchen keine Fähigkeit zur Selbstinteraktion oder Bindung an hKv2.1 gezeigt. Im entscheidenden Bereich lagen zudem die in der Strukturanalyse identifizierten Residuen. Durch Austausch der Reste im hKv6.2 entsprechenden Anteil - Serin 74, Cystein 76, Arginin 79 und Alanin 83 in verschiedenen Kombinationen – gegen die analogen Aminosäuren aus hKv2.1 - Histidin 88, Glycin 90, Threonin 93 sowie Glutamin 97 – wurde ein Rückgewinn der verlorenen Assoziationsfähigkeit erwartet.

Überprüfung der chimären Konstrukte auf Interaktion im Hefe-Zwei-Hybrid-System

Die mit Hilfe der *Overlap-PCR* sowie des *QuikChange*[™] *Site-Directed Mutagenesis Kit* erstellten Konstrukte wurden wie bereits beschrieben in die Systemvektoren pAS2-1 und pGAD424 eingeführt und im Hefe-Zwei-Hybrid-System überprüft.

Dabei konnte für Chimären im Bereich der $T1_{A,B}$ -Domänen gezeigt werden, dass jeglicher Austausch eines der drei identifizierten Blöcke zu hKv6.2 zum Verlust der Interaktionsfähigkeit mit sich selbst und mit dem N-Terminus von hKv2.1 führte. Schon die Veränderung von 28 Aminosäuren, von denen wiederum ein großer Anteil mit hKv2.1 sequenzidentisch war, beeinflusste also grundlegende Eigenschaften des Proteins. Gleichzeitig ist zu vermuten, dass in allen drei bereits dargestellten Domänen Residuen vorhanden sind, die für die Tetramerisierungsfähigkeit der T1-Domäne von essentieller Bedeutung sind, am wahrscheinlichsten im Rahmen von Beeinflussung der Faltung des Tetramers durch Änderungen in der Proteinkonformation.

Der Identifikation einzelner dieser Aminosäure-Reste sollten die Konstrukte mit Punktmutationen dienen.

Bei den *loss-of-function*-Konstrukten auf Basis des N-Terminus von hKv2.1 ließen sich im Hefe-Zwei-Hybrid-System keine eindeutigen Funktionsverluste nachweisen. Zwar zeigte sich bei einigen Punktmutationen eine gewisse Abschwächung der Bindung der Fusionsproteine aneinander – abzulesen am etwas verringerten Wachstum der entsprechenden Klone auf dem Selektionsmedium. Eine Quantifizierung dieses Effektes lässt die gewählte Methode allerdings nicht zu. Im Vergleich zu den eindeutig negativen Resultaten der Kontrollen bzw.

der Konstrukte mit T1_{A,B}-Chimären fand sich letztlich ein zu starkes Wachstum, als dass diese Proben zweifelsfrei als negativ hätten bezeichnet werden können.

Außerdem fehlte der entsprechende Gegenbeweis bei den Konstrukten auf Basis der T_1A ,B-Chimäre: Ein Funktionsrückgewinn, gleichzusetzen mit Wachstum auf dem Histidin-Mangelmedium, eines Konstruktes mit reziproker Punktmutation hätte die Relevanz einer der identifizierten Aminosäuren belegen können. In den entsprechenden Versuchen konnte aber für keine der überprüften Kombinationen ein *gain of function* nachgewiesen werden. Sämtliche Proben blieben eindeutig negativ und wiesen keinerlei Wachstum auf.

Diese negativen Ergebnisse führten zu verschiedenen Überlegungen.

Zunächst wurden die Methoden auf mögliche systematische Fehler untersucht. So wurden die verwendeten Vektoren, Selektionsmedien und Hefestämme mehrfach überprüft. Auch die Ausgangskonstrukte für die Punktmutanten wurden auf ihre grundsätzliche Eignung hin in Frage gestellt. Die dabei entdeckten Fehlerquellen wurden nach bestem Wissen beseitigt.

Weiterhin können Probleme im eigentlichen Hefesystem selbst bestehen. Im Fall der Negativergebnisse fehlt der Nachweis, dass die eingebrachten Konstrukte überhaupt zur Expression entsprechender Proteine geführt haben. Denkbar ist auch, dass die Fusionsproteine nicht die native Faltung der N-Termini der untersuchten Kanäle annehmen. Somit könnte die Schnittstelle zwischen zwei assoziierenden Untereinheiten hier völlig anders aussehen als im Ausgangsmodell.

Schließlich ist anzunehmen, dass die ausgewählten Residuen nicht oder zumindest nicht in den untersuchten Kombinationen von besonderer Relevanz für die Interaktion der Untereinheiten sind. Allerdings ist angesichts des Konservierungsgrades und somit der hohen Sequenzidentität gerade in dem ausgewählten Bereich von 28 Aminosäuren schwer zu erschließen, welche der Residuen von größerer Bedeutung sein könnten.

Offensichtlich scheint das Vorhandensein aller drei identifizierten Domänen im Bereich von $T1_{A,B}$ notwendig zu sein. Dies wurde im letzten Schritt dieser Arbeit überprüft.

3

V

Bedingungen für subfamilienspezifische Erkennung

Als Nachweis der Notwendigkeit aller drei identifizierten Bindungsdomänen in hKv2.1 wurde ein chimäres Konstrukt überprüft, dass N-terminal eben diese Bereiche aus hKv2.1 bis aa 118 erhielt, C-terminal die Aminosäuren aa 105 – 119 aus hKv6.2.

In der Austestung im Hefe-Zwei-Hybrid-System zeigte sich ein eindeutig positives Ergebnis. Dies bestätigte zum einen das Funktionieren der Methode, zum anderen die Hypothese, dass in allen drei Domänen Residuen vorliegen, die für die Assoziation der Untereinheiten notwendig sind. Dabei kommen einerseits Interaktionen innerhalb einer Untereinheit in Frage, die dadurch die räumliche Struktur des Proteins beeinflussen; es ist andererseits zu vermuten, dass zwischen den Blöcken Interaktionen von Bedeutung sind, die nur dann ausgebildet werden können, wenn alle drei Domänen vorhanden sind.

Einzelne Residuen, die hierfür verantwortlich sind, ließen sich in der vorliegenden Arbeit nicht identifizieren. Dies mag zum einen an der Auswahl der untersuchten Aminosäuren liegen, zum anderen ist aber auch denkbar, dass die Interaktion der Kanalproteine wesentlich stärker von der dreidimensionalen Konformation der Untereinheiten abhängig ist als von klassischen polaren Brückenbildungen.

Strang *et al.* gelang es dagegen, mit einem anderen Ansatz Punktmutationen zu identifizieren, durch die die Tetramerisierungsfähigkeit der T1-Domänen verloren ging (Strang *et al.*, 2001). Diese Arbeit basierte nicht primär auf einer Strukturanalyse, nach der gezielt mutierte Chimären kloniert wurden, sondern begann nach dem Zufallsprinzip. In einem Konstrukt der T1-Domänen wurden zufällige Mutationen generiert, die auf ihre Interaktionsfähigkeit im Hefe-Zwei-Hybrid-System überprüft wurden. Nach Identifikation der *loss-of-function*-Mutanten wurden diese sequenziert, wodurch einer Reihe von Residuen eine entscheidende Rolle in der subfamilienspezifischen Erkennung zugewiesen werden konnte. Allerdings blieben die Erklärungen für deren große Bedeutung weitgehend hypothetisch und wurden nicht weiter verifiziert.

Möglicherweise ist dieser empirische Ansatz schneller zielführend, weil auf diese Weise in kürzerer Zeit eine größere Zahl an Residuen überprüft werden kann, ohne dass theoretische Überlegungen die Suche eventuell sogar fälschlicherweise einschränkt. So könnte deduktiv aus den faktisch funktionell relevanten Mutationen ein Prinzip der spezifischen Erkennung abgeleitet werden. Gleichzeitig werden die Untersuchungen auch dadurch erschwert, dass die Formation der Proteine – wie auch im Hefe-Zwei-Hybrid-System - hauptsächlich unter *in-vitro*-Bedingungen betrachtet werden kann. Einflüsse durch interagierende Proteine – im Fall der Kv-Kanäle insbesondere β -Untereinheiten und KChiPs – sowie durch die Zellmembran finden so keine Berücksichtigung.

Die Lösung dieser Frage ist besonders bedeutungsvoll angesichts der vielfältigen Funktionen, die inzwischen der T1-Domäne zugeschrieben werden konnten. Strang *et al.* listeten allein fünf Kanaleigenschaften auf, die durch die T1-Domäne beeinflusst werden:

- 1. Beschleunigung der Formation tetramerer Kanäle
- 2. selektive Bildung homomere Kanäle mit subfamilienspezifischer Erkennung
- 3. Stabilisierung der Kanäle durch Interaktion mit anderen Kanalelementen
- 4. Beeinflussung der Kanalöffnung durch kleine Konformationsänderungen
- 5. Verbindungsstelle zu weiteren modulierenden Proteinen, die mit dem Kanal interagieren.

(nach Strang et al., 2001)

Während also die Funktion der T1-Domäne in der Tetramerisierung der Kanaluntereinheiten in jüngster Zeit klarer zu werden scheint, ist ein grundlegendes Prinzip in der subfamilienspezifischen und –übergreifenden Erkennung, das verlässliche Voraussagen über Proteininteraktionen möglich machen könnte, gegenwärtig nicht bekannt.

VI Zusammenfassung

Gegenstand der vorliegenden Arbeit war die Identifikation eines konservierten Motivs, das subfamilienübergreifende Interaktion spannungsgesteuerter Kaliumkanaluntereinheiten vermitteln könnte. Untersucht wurde dazu die Bindung der regulatorischen α -Untereinheit hKv6.2 an hKv2.1.

In vorhergehenden Arbeiten (Zhu *et al.*, 1999) konnte im Hefe-Zwei-Hybrid-System nachgewiesen werden, dass für deren spezifische Bindung die jeweiligen Aminotermini hinreichend waren. Durch Konstruktion chimärer Proteine der Interaktionsdomänen $T1_A$ und $T1_B$ von hKv2.1 und hKv6.2 wurde versucht, im Hefe-Zwei-Hybrid-System zu ermitteln, welcher Abschnitt für die Interaktionsfähigkeit der Untereinheiten notwendig oder sogar hinreichend war. Es zeigte sich, dass bereits der Austausch von 28 Aminosäuren des N-Terminus von hKv2.1 zu hKv6.2 ausreichte, damit das Protein die Bindungsfähigkeit sowohl an homomere Untereinheiten als auch an hKv6.2 verlor.

Um die erforderlichen Residuen genauer einzugrenzen, wurden Struktur-Funktionsanalysen vorgenommen, die vom kristallisierten Modell von *Shaw*T1 (*Aplysia* AKv3.1) nach Bixby *et al.* (1999) ausgingen. Anhand von Sequenzvergleichen wurden mögliche *Interface*-Residuen identifiziert. Abhängig vom Konservierungsgrad wurde zunächst theoretisch die Relevanz dieser Aminosäuren für die Interaktion eingeschätzt. Im dreidimensionalen Modell erfolgte computergestützt die Überprüfung dieser Aminosäuren.

Aufgrund dieser Strukturanalyse wurden vier Residuen ausgewählt, die auf ihren Einfluss auf die Interaktion zwischen hKv2.1 und hKv6.2 überprüft wurden, und zwar in hKv2.1 Histidin 88, Glycin 90, Threonin 93 und Glutamin 97. Dem entsprechen in hKv6.2 Serin 74, Cystein 76, Arginin 79 und Alanin 83.

Diese wurden über Punktmutationen in verschiedenen Kombinationen in Konstrukte eingeführt, die im Hefe-Zwei-Hybrid-System auf ihre Bindungsfähigkeit überprüft wurden. Dabei wurden reziproke Konstrukte verwendet, bei denen entweder ein Funktionsverlust oder eine Funktionsgewinn erwartet wurde. In keinem Fall konnte diese Vermutung bestätigt werden. Somit konnte keiner dieser Aminosäuren eine entscheidende Rolle in der Interaktion der Untereinheiten zugeschrieben werden.

Abschließend konnte nachgewiesen werden, dass die gesamte $T1_{A,B}$ -Domäne aus hKv2.1 für eine Interaktion erforderlich ist.

Eine genauere Eingrenzung auf ein spezifisches Motiv ist damit nicht gelungen.

VII Literaturverzeichnis

BABILA T, MOSCUCCI A, WANG H, WEAVER FE, KOREN G (1994). Assembly of mammalian voltage-gated potassium channels: evidence for an important role of the first transmembrane segment. *Neuron* **12**(3):615-26.

BIXBY KA, NANAO MH, SHEN NV, KREUSCH A, BELLAMY H, PFAFFINGER PJ, CHOE S (1999). Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels. *Nat Struct Biol* **6**(1):38-43.

CASTELLANO A, CHIARA MD, MELLSTRÖM B, MOLINA A, MONJE F, NARANJO JR, LÓPEZ-BARNEO J (1997). Identification and functional characterization of a K+ channel alpha-subunit with regulatory properties specific to brain. *J Neurosci* **17**(12):4652-61.

CATTERALL WA (1988). Structure and function of voltage-sensitive ion channels. *Science* **242**(4875):50-61.

CHANDY KG & GUTMAN GA (1995). Voltage-gated Potassium Channel Genes. In: Handbook of Receptors and Channels. Hrsg.: North, P.A. CRC, Boca Raton, FL. S. 1-71.

CHIARA MD, MONJE F, CASTELLANO A, LOPEZ-BARNEO J (1999). A small domain in the N terminus of the regulatory alpha-subunit Kv2.3 modulates Kv2.1 potassium channel gating. *J Neurosci* **19**(16):6865-73.

COVARRUBIAS M, WEI AA, SALKOFF L (1991). *Shaker, Shal, Shab, and Shaw* express independent K+ current systems. *Neuron* **7**(5):763-73.

DOYLE DA, MORAIS CABRAL J, PFUETZNER RA, KUO A, GULBIS JM, COHEN SL, CHAIT BT, MACKINNON R (1998). The structure of the potassium channel: molecular basis of K+ conduction and selectivity. *Science* **280**(5360):69-77.

DURELL SR, GUY HR (1992). Atomic scale structure and functional models of voltage-gated potassium channels. *Biophys J* **62**(1):238-50.

GULBIS JM, ZHOU M, MANN S, MACKINNON R (2000). Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dependent K+ channels. *Science* **289**(5476):123-7.

HEGINBOTHAM L, ABRAMSON T, MACKINNON R (1992). A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. *Science* **258**(5085):1152-5.

HEGINBOTHAM L, LU Z, ABRAMSON T, MACKINNON R (1994). Mutations in the K+ channel signature sequence. *Biophys J* **66**(4):1061-7.

HILLE B (1992). Ionic channels of exitable membranes. 2nd Edition. Sinauer Associates, Sutherland, MA.

HUGNOT JP, SALINAS M, LESAGE F, GUILLEMARE E, DE WEILLE J, HEURTEAUX C, MATTEI MG, LAZDUNSKI M (1996). Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards *Shab* and *Shaw* channels. *EMBO J* **15**(13):3322-3331.

ISACOFF EY, JAN YN, JAN LY (1990). Evidence for the formation of heteromultimeric potassium channels in *Xenopus* oocytes. *Nature* **345**(6275):530-4.

JAN LY, JAN YN (1994). Potassium channels and their evolving gates. *Nature* **371**(6493):119-22.

JAN LY, JAN YN (1997). Cloned potassium channels from eukaryotes and prokaryotes. *Annu Rev Neurosci* **20**:91-123.

JIANG Y, LEE A, CHEN J, CADENE M, CHAIT BT, MACKINNON R (2002). The open pore conformation of potassium channels. *Nature* **417**:523-26.

KAMB A, IVERSON LE, TANOUYE MA (1987). Molecular characterization of *Shaker*, a *Drosophila* gene that encodes a potassium channel. *Cell* **50**(3):405-13.

KOSOLAPOV A, DEUTSCH C (2003). Folding of the voltage-gated K+ channel T1 recognition domain. *J Biol Chem* **278**(6):4305-13.

KREUSCH A, PFAFFINGER PJ, STEVENS CF, CHOE S (1998). Crystal structure of the tetramerization domain of the *Shaker* potassium channel. *Nature* **392**(6679):945-8.

KYTE J, DOOLITTLE RF (1982). A simple method for displaying the hydropathic character of a protein. *J Mol Biol* **157**(1):105-32.

LARSSON HP, BAKER OS, DHILLON DS, ISACOFF EY (1996). Transmembrane movement of the *Shaker* K⁺ channel S4. *Neuron* **16**: 387-97.

LI M, JAN YN, JAN LY (1992). Specification of subunit assembly by the hydrophilic aminoterminal domain of the *Shaker* potassium channel. *Science* **257**(5074):1225-30.

LU J, ROBINSON JM, EDWARDS D, DEUTSCH C (2001). T1-T1 interactions occur in ER membranes while nascent Kv peptides are still attached to ribosomes. *Biochemistry* **40** (37):10934-46.

MACKINNON R (1991). Determination of the subunit stoichiometry of a voltage-activated potassium channel. *Nature* **350**(6315):232-5.

MACKINNON R, COHEN SL, KUO A, LEE A, CHAIT BT (1998). Structural conservation in prokaryotic and eukaryotic potassium channels. *Science* **280**(5360):106-9.

MILLER C (1992). Hunting for the pore of voltage-gated channels. Curr. Biol. 11:573-5.

PAPAZIAN DM, SCHWARZ TL, TEMPEL BL, JAN YN, JAN LY (1987). Cloning of genomic and complementary DNA from *Shaker*, a putative potassium channel gene from *Drosophila*. *Science* **237**(4816):749-53.

PAPAZIAN DM, TIMPE LC, JAN YN, JAN LY (1991). Alteration of the voltage-dependence of *Shaker* potassium channel by mutations in the S4 sequence. *Nature* **349**: 305-10.

PFAFFINGER PJ, DERUBEIS D (1995). *Shaker* K+ channel T1 domain self-tetramerizes to a stable structure. *J Biol Chem* **270**(48):28595-600.

PONGS O (1992). Molecular biology of voltage-dependent potassium channels. *Physiol Rev*. **72**(4 Suppl):S69-88.

PONGS O (1993). Structure-function studies on the pore of potassium channels. *J Membr Biol* **136**(1):1-8.

PONGS O (1997). Strukturmerkmale Kalium-selektiver Ionenkanäle. Biospektrum 3.97: 21-6.

PONGS O (1999). Voltage-gated potassium channels: from hyperexcitability to excitement. *FEBS Lett.* **452**(1-2):31-5.

PONGS O, KECSKEMETHY N, MULLER R, KRAH-JENTGENS I, BAUMANN A, KILTZ HH, CANAL I, LLAMAZARES S, FERRUS A (1988). *Shaker* encodes a family of putative potassium channel proteins in the nervous system of *Drosophila*. *EMBO J* **7**(4):1087-96.

RETTIG J, WUNDER F, STOCKER M, LICHTINGHAGEN R, MASTIAUX F, BECKH S, KUES W, PEDARZANI P, SCHROTER KH, RUPPERSBERG JP, VEH R, PONGS O (1992). Characterization of a *Shaw*-related potassium channel family in rat brain. *EMBO J* **11**(7):2473-86.

RETTIG J, HEINEMANN SH, WUNDER F, LORRA C, PARCEJ DN, DOLLY JO, PONGS O (1994). Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. *Nature* **369**(6478):289-94.

ROBERTSON B (1997). The real life of voltage-gated K+ channels: more than model behaviour. *Trends Pharmacol Sci* **18**:474-83.

RUDY B (1988). Diversity and ubiquity of K channels. Neuroscience 25(3):729-49.

RUPPERSBERG JP, SCHROTER KH, SAKMANN B, STOCKER M, SEWING S, PONGS O (1990). Heteromultimeric channels formed by rat brain potassium-channel proteins. *Nature* **345**(6275):535-7.

SCANNEVIN RH, WANG K, JOW F, MEGULES J, KOPSCO DC, EDRIS W, CARROLL KC, LU Q, XU W, XU Z, KATZ AH, OLLAND S, LIN L, TAYLOR M, STAHL M, MALAKIAN K, SOMERS W, MOSYAK L, BOWLBY MR, CHANDA P, RHODES KJ (2004). Two N-terminal domains of Kv4 K(+) channels regulate binding to and modulation by KChIP1. *Neuron* **41**(4):587-98.

SHEN NV, CHEN X, BOYER MM, PFAFFINGER PJ (1993). Deletion analysis of K+ channel assembly. *Neuron* **11**(1):67-76.

STRANG C, CUSHMAN SJ, DERUBEIS D, PETERSON D, PFAFFINGER PJ (2001). A Central Role for the T1 Domain in Voltage-gated Potassium Channel Formation and Function. *J Biol Chem* **276**(30):28493-502.

TU L, SANTARELLI V, SHENG Z, SKACH W, PAIN D, DEUTSCH C (1996). Voltage-gated K+ channels contain multiple intersubunit association sites. *J Biol Chem* **271**(31):18904-11. VANDONGEN AMJ, FRECH GF, DREWE JA, JOHO RH, BROWN AM (1990). Alteration and restoration of K⁺ channel function by deletions at the N- and C-termini. *Neuron* **5**:433-43.

WEI A, JEGLA T, SALKOFF L (1996). Eight potassium channel families revealed by *the C*. *elegans* genome project. *Neuropharmacology* **35**(7):805-29.

YELLEN G, JURMAN ME, ABRAMSON T, MACKINNON R (1991). Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. *Science* **251**(4996):939-42.

ZERANGUE N, JAN YN, JAN LY (2000). An artificial tetramerization domain restores efficient assembly of functional Shaker channels lacking T1. *Proc Natl Acad Sci USA* **97**(7), 3591–95.

ZHOU Y, MORAIS-CABRAL JH, KAUFMAN A, MACKINNON R (2001). Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. *Nature* **414**:43–48.

ZHU XR, NETZER R, BÖHLKE K, LIU Q, PONGS O (1999). Structural and functional characterization of Kv6.2 a new gamma-subunit of voltage-gated potassium channel. *Receptors Channels* **6**(5):337-50.

VIII Anhang

1	Abkürzungsverzeichnis
Ø	Durchmesser
и	micro (10^{-6})
۶۰ ۲۰	Grad Celsius
3-AT	3-Amino-1 2 4-triazol
A	Adenosin
Aa	amino acid Aminosäure(n)
Abb	Abbildung
Acc.	accession number
AD	Aktivierungsdomäne
Amp	Ampicillin
AP	Aktionspotential. Alkalische Phosphatase
AS	Aminosäure(n)
ATP	Adenosintriphosphat
BD	Bindedomäne. <i>BigDve</i>
bidest.	Bidestilliert
bp	Basenpaare
BSA	bovine serum albumine. Rinderserumalbumin
С	Cytosin, Carboxy-
cDNA	<i>copy</i> Desoxyribonukleinsäure
СНО	chinese hamster ovary, Ovar des chinesischen Hamsters
dATP	2'-Desoxyadenosintriphosphat
dCTP	2'-Desoxycytosintriphosphat
dGTP	2'-Desoxyguanosintriphosphat
dTTP	2'-Desoxythymidintriphosphat
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
DNase	Desoxyribonuklease
dNTP	2'-Desoxyribonukleotid-5'-triphosphat
DTT	Dithiotreitol
E. coli	Escherichia coli
EDTA	Ethylendiamintetraessigsäure, Dinatriumsalz
f.c.	final concentration, Endkonzentration
g	Gramm
G	Guanosin
h	human, Stunde
HIS	Histidin
kb	Kilobasenpaare
KChiP	K+-Channel-interacting-Protein, Protein, das mit Kaliumkanälen interagiert
KcsA	K+-Kanal aus Streptomyces lividans
1	Liter
LB	Luria Bertani
LEU	Leucin
m	milli (10 ⁻⁵)
Μ	molar, Mol
min	Minute
n	nano (10^{-9})

Ν	Amino-
Nt	Nukleotid(e)
OD _x	optische Dichte _{Wellenlänge}
р	pico (10^{-12})
PCR	polymerase chain reaction, Polymerase-Kettenreaktion
PEG	Polyethylenglycol
RNA	Ribonukleinsäure
RNase	Ribonuklease
RT	Raumtemperatur
S	Sekunde
SD	synthetic dropout, Hefe-Minimalmedium
SDS	sodium dodecyl sulfate, Natriumdodecylsulfat
Т	Thymidin
Tab.	Tabelle
TE	Tris-EDTA
T_m	Schmelztemperatur
TM	Transmembransegment
Tris	Tris(-hydroxymethyl)-aminomethan
TRP	Tryptophan
U	Unit, Enzymeinheit
üN	über Nacht
UpM	Umdrehungen pro Minute
V	Volt
v/v	Volumen pro Volumen
Vol.	Volumen
w/v	weight per volume, Gewicht pro Volumen
YPD	yeast peptone dextrose, Hefe-Vollmedium

2 Datenbanknummern relevanter Kanäle

Kanal	Accession number der	Accession number der
	Nukleotidsequenz	Proteinsequenz
hKv6.2	AJ011021	CAB56834
hKv2.1	NM_004975	AAB026005
rKv2.2	M77482	AAA40905
hKv2.3 (= hKv8.1)	X98564	CAA67174
hKv5.1	NM_002236	NP_002227
hKv6.1	NM_002237	NP_002228
rKv1.4	X16002	CAA34133
rKv3.1	X62840	CAA44644
hKv4.2	AJ010969	CAB56841
	1	

3 Liste der verwendeten Oligonukleotide

Name	Sequenz	Bemerkungen
<u>Sequenzier-Primer</u>		
pAS sense	TCATCGGAAGAGAGTAG	
pAS reverse	TTTTGGATTCTCAGTGA	
pGAD sense	TACCACTACAATTGGATGAT	
pGAD reverse	TCTTCCGTTTTGCTACAT	
M13 forward	GTTTTCCCAGTCACGACG	
M13 reverse	GAATTGTGAGCGGATAAC	
<u>PCR-Primer</u>		
5'-Primer		
nKv6.2-2c EcoRI		EcoRI, nKv6.2 Nt. 1-18
hKv2.1-2c EcoRI	CGGAAI"I'CATGCCGGCGGGGCATGACG AAG	<i>Eco</i> RI, hKv2.1 Nt. 1-21
hKv2.1-3c <i>Eco</i> RI	CGGAATTCAACGTCGGGGGGGCTGGCG	<i>Eco</i> RI, hKv2.1 Nt. 105-123
2' Desires ou		
5 -Primer		Call Standard LV-C 2 Nt 509 521
nKv6.2-1nc*Sall	CCCGAGTG	<i>Sal</i> , <u>Stopcodon</u> , nKv6.2 Nt. 508-551
hKv6.2-3nc stop SalI	ACGC <i>GTCGAC<u>TCA</u>GCAGCAGCGCTCC</i> AGGCG	<i>Sal</i> I, <u>Stopcodon</u> , hKv6.2 Nt. 340-357
hKv2.1-1nc*SalI	ACGC <i>GTCGAC<u>TCA</u>GGAAATTATGGCA AGGATC</i>	Sall, Stopcodon, hKv2.1 Nt. 568-586
hKv2.1-2nc stop SalI	ACGCGTCGACTCAGCAGCAGGACTCC	Sall, Stopcodon, hKv2.1 Nt. 382-399
hkv2.1-118nc stop SalI	ACGC <i>GTCGAC<u>TCA</u>CTCTTGGCTGAAG</i>	Sall, Stopcodon, hKv2.1 Nt. 336-354
hkv2.1-101nc stop SalI	ACGC <i>GTCGACTCA</i> AGTGCGGTAGAAG TTGAG	Sall, Stopcodon, hKv2.1 Nt. 286-303
Chi2.1-118 6.2-119 stop SalI nc	ACGCGTCGAC <u>TCA</u> GCAGCAGCGCTCC AGGCGCGCCTCGTCGATGCCCCAGTA GG CCAGCTCTTGGCTGAAGCTGAGCG C	hKv6.2 Nt. 313-357, hKv2.1 Nt. 331-354
Overlap-Primer		
6.2(1-130)/2.1(145-195)c	GCGAGGAGGAGGCG AACGAGGAGCTC AAGCGTGAG	hKv6.2 Nt.377-390, hKv2.1 Nt. 433-453
6.2(1-130)/2.1(145-195)nc	CTTGAGCTCCTCGTTCGCCTCCTCCT	hKv2.1 Nt.433-447, hKv6.2 Nt. 371-390
2.1(-144)/6.2c	GAAGAAAGAGCAGATGGCCGAGGCCC GCGCGGGGGC	hKv6.2 Nt. 391-409
2.1(-144)/6.2nc	CGCGCGGGCCTCGGCCATCTGCTCTT TCTTCTGGTG	hKv6.2 Nt.391-405, hKv2.1 Nt. 412-432
ChiA21B2162c	AACTTCTACCGCACTGGGAAGCTGCG ACTGCTGCGG	hKv2.1 Nt. 289-303, hKv6.2 Nt. 262-282
ChiA21B2162nc	CAGTCGCAGCTTCCCAGTGCGGTAGA AGTTGAGGAT	hKv6.2 Nt. 262-276, hKv2.1 Nt. 283-303
ChiA21B62c	CTGCTCGAGGTGTGCGACGACTACGA CGTGAGCCGC	hKv6.2 Nt. 178-198

67

ChiA21B62nc	CACGTCGTAGTCGTCGCACACCTCGA GCAGCGAGTC	hKv6.2 Nt. 178-192, hKv2.1 Nt. 199-219
ChiA62B21c	CTGCTGCGCGTGTGTGATGACTACAG CCTCGACGAC	hKv6.2 Nt. 163-177, hKv2.1 Nt. 220-240
ChiA62B21nc	GAGGCTGTAGTCATC ACACACGCGCA GCAGGTCGTC	hKv6.2 Nt. 157-177
ChiA62B6221c	GCGCTTTTGCGCGCA GGGCGACTGCA CATGATGGAG	hKv6.2 Nt. 247-261, hKv2.1 Nt. 304-324
ChiA62B6221nc	CATGTGCAGTCGCCC TGCGCGCAAAA GCGCCACGAT	hKv6.2 Nt. 241-261
QuikChange-Primer		
für hKv2.1		
H88S sense	TTCTTTGACCGC TC CCCGGGCGCCTT CACCTCC	hKv2.1 Nt. 250-282, H88S
H88S rev	GGTGAAGGCGCCCGGGGG AG CGGTCAA AGAAGTA	hKv2.1 Nt. 247-279, H88S
G90C sense	GACCGCCACCCG T GCGCCTTCACCTC CATCCTC	hKv2.1 Nt. 256-288, G90C
G90C rev	GATGGAGGTGAAGGCGC A CGGGTGGC GGTCAAA	hKv2.1 Nt. 253-285, G90C
T93R sense	CCGGGCGCCTTCA GA TCCATCCTCAA CTTCTAC	hKv2.1 Nt. 265-297, T93R
T93R rev	GAAGTTGAGGATGGA TC TGAAGGCGC CCGGGTG	hKv2.1 Nt. 262-294, T93R
T93R rev für H88S	GTTGAGGATGGATCTGAAGGCGCCCG GGGAGCG	hKv2.1 Nt. 259-291, H88S , <u>T93R</u>
G90CT93R sense	CGCCACCCG T GCGCCTTCA GA TCCAT CCTCAAC	hKv2.1 Nt. 259-291, G90C, <u>T93R</u>
G90CT93R rev	GAGGATGGA TC TGAAGGCGC A CGGGT GGCGGTC	hKv2.1 Nt. 256-288, G90C , <u>T93R</u>
N97A sense	ACCTCCATCCTC GC CTTCTACCGCAC TGGGCGA	hKv2.1 Nt. 277-309, N97A
N97A rev	AGTGCGGTAGAAG GC GAGGATGGAGG TGAAGGC	hKv2.1 Nt. 271-303, N97A
N97A sense für T93R	A GA TCCATCCTC GC CTTCTACCGCAC TGGGCGA	hKv2.1 Nt. 277-309, T93R , <u>N97A</u>
N97A rev für T93R	AGTGCGGTAGAAG <u>GC</u> GAGGATGGA TC TGAAGGC	hKv2.1 Nt. 271-303, T93R , <u>N97A</u>
QuikChange-Primer für hKy6 2		
S74H sense	TTCTTCGACCGC CA CCCGTGCGCCTT	hKv6.2 Nt. 208-240. S74H
S74H rev	CCGCGCC GCGGAAGGCGCACGGG TG GCGGTCGA	hKv6.2 Nt. 205-237, S74H
C76G sense	AGAAGAA GACCGCAGCCCG G GCGCCTTCCGCGC	hKv6.2 Nt. 214-246, C76G
C76G rev	CATCGTG GATGGCGCGGAAGGCGC C CGGGCTGC	hKv6.2 Nt. 211-243, C76G
R79T sense	GGTCGAA CCGTGCGCCTTC AC CGCCATCGTGGC	hKv6.2 Nt. 223-255, R79T
R79T rev	GCTTTTG AAGCGCCACGATGGCG GT GAAGGCGC	hKv6.2 Nt. 220-252, R79T
R79T rev für S74H	ACGGGCT AAGCGCCACGATGGCG GT GAAGGCGC	hKv6.2 Nt. 220-252, S74H, <u>R79T</u>
C76GR79T sense	ACGGG TG CGCAGCCCG G GCGCCTTC <u>AC</u> CGCCAT	hKv6.2 Nt. 217-249, C76G, <u>R79T</u>
C76CP70T rov	CGTGGCG	h Ky6 2 Nt 214 246 C76C D70T
	TGCGGTC	IIKVO.2 INI. 214-240, C/OG, <u>K/91</u>

68

CGCGCCATCGTG AAT CTTTTGCGCGC	hKv6.2 Nt. 235-267, A83N
AGGGAAG	
TGCGCGCAAAAG ATT CACGATGGCGC	hKv6.2 Nt. 229-261, A83N
GGAAGGC	
ACCGCCATCGTG <u>AAT</u> CTTTTGCGCGC	hKv6.2 Nt. 235-267, R79T , <u>A83N</u>
AGGGAAG	
TGCGCGCAAAAG ATT CACGATGGCGG	hKv6.2 Nt. 229-261, R79T , <u>A83N</u>
TGAAGGC	
	CGCGCCATCGTG AAT CTTTTGCGCGC AGGGAAG TGCGCGCAAAAG ATT CACGATGGCGC GGAAGGC A CCGCCATCGTG <u>AAT</u> CTTTTGCGCGC AGGGAAG TGCGCGCAAAAG <u>ATT</u> CACGATGGCGG T GAAGGC

4 DNA-Sequenzen

hKv2.1

1	atgccggcgg	gcatgacgaa	gcatggctcc	cgctccacca	gctcgctgcc
51	gcccgagccc	atggagatcg	tgcgcagcaa	ggcgtgctct	cggcgggtcc
101	gcctcaacgt	cgggggggctg	gcgcacgagg	tactctggcg	taccctggac
151	cgcctgcccc	gcacgcggct	gggcaagctc	cgcgactgca	acacgcacga
201	ctcgctgctc	gaggtgtgcg	atgactacag	cctcgacgac	aacgagtact
251	tctttgaccg	ccacccgggc	gccttcacct	ccatcctcaa	cttctaccgc
301	actgggcgac	tgcacatgat	ggaggagatg	tgcgcgctca	gcttcagcca
351	agagctcgac	tactggggca	tcgacgagat	ctacctggag	tcctgctgcc
401	aggcccgcta	ccaccagaag	aaagagcaga	tgaacgagga	gctcaagcgt
451	gaggccgaga	ccctacggga	gcgggaaggc	gaggagttcg	ataacacgtg
501	ctgcgcagag	aagaggaaaa	aactctggga	cctactggag	aagcccaatt
551	cctctgtggc	tgccaagatc	cttgccataa	tttccatcat	gttcatcgtc
601	ctctccacca	ttgccctgtc	cctcaacacg	ctgcctgagc	tacagagcct
651	cgatgagttc	ggccagtcca	cagacaaccc	ccagctggcc	cacgtggagg
701	ccgtgtgcat	cgcatggttc	accatggagt	acctgctgag	gttcctctcc
751	tcgcccaaga	agtggaagtt	cttcaagggc	ccactcaatg	ccattgactt
801	gttggccatt	ctgccatact	atgtcaccat	tttcctcacc	gaatccaaca
851	agagcgtgct	gcaattccag	aatgtccgcc	gcgtggtcca	gatcttccgc
901	atcatgcgaa	ttctccgcat	ccttaagctt	gcacgccact	ccactggcct
951	ccagtctctg	ggcttcactt	tgcggaggag	ctacaatgag	ttgggcttgc
1001	tcatcctctt	ccttgccatg	ggcattatga	tcttctccag	ccttgtcttc
1051	tttgctgaga	aggatgagga	cgacaccaag	ttcaaaagca	tcccagcctc
1101	tttctggtgg	gccaccatca	ccatgactac	tgttgggtat	ggagacatct
1151	accccaagac	tctcctgggg	aaaattgttg	ggggactctg	ctgcattgca
1201	ggagtcctgg	tgattgctct	tcccatcccc	atcatcgtca	ataacttctc
1251	tgagttctat	aaggagcaga	agagacagga	gaaagcaatc	aaacggcgag
1301	aggctctgga	gagagccaag	aggaatggca	gcatcgtatc	catgaacatg
------	------------	-------------	------------	------------	-------------
1351	aaggatgctt	ttgcccggag	cattgagatg	atggacattg	tggttgagaa
1401	aaatggggag	aatatgggta	agaaagacaa	agtacaagat	aaccacttgt
1451	ctcctaacaa	atggaaatgg	acaaagagga	cactgtctga	aaccagctca
1501	agtaagtcct	ttgaaaccaa	ggaacaggga	tcccctgaaa	aagccagatc
1551	gtcttctagt	cctcagcacc	tgaacgttca	gcagttggaa	gacatgtaca
1601	ataagatggc	caagacccaa	tcccaaccca	tcctcaatac	caaggagtca
1651	gcagcacaga	gcaaaccaaa	ggaagaactt	gaaatggaga	gtatccccag
1701	ccccgtagcc	cctctgccca	ctcgcacaga	aggggtcatt	gacatgcgaa
1751	gtatgtcaag	cattgatagt	ttcattagct	gtgccacaga	cttccctgag
1801	gccaccagat	tctcccacag	ccctttgaca	tcactcccca	gcaagactgg
1851	gggcagcaca	gccccagaag	tgggctggcg	gggagctctg	ggtgccagtg
1901	gtggtaggtt	tgtggaggcc	aaccccagcc	ctgatgccag	ccagcactct
1951	agtttcttca	tcgagagccc	caagagttcc	atgaaaacta	acaacccttt
2001	gaagctccga	gcacttaaag	tcaacttcat	ggagggtgac	cccagtccac
2051	tcctccccgt	tctagggatg	taccatgacc	ctctcaggaa	ccggggggagt
2101	gctgcggctg	ctgtcgctgg	actggagtgt	gccacgcttt	tggacaaggc
2151	tgtgctgagc	ccagagtcct	ccatctacac	cacagcaagt	gctaagacac
2201	ccccccggtc	tcctgagaaa	cacacagcaa	tagcgttcaa	ctttgaggcg
2251	ggtgtccacc	agtacattga	cgcagacaca	gatgatgagg	gacagctgct
2301	ctacagtgtg	gactccagcc	cccccaaaag	cctccctggg	agcaccagtc
2351	cgaagttcag	cacgggggaca	agatcggaga	aaaaccactt	tgaaagctcc
2401	cctttaccca	cctcccctaa	gttcttaagg	cagaactgta	tttactccac
2451	agaagcattg	actggaaaag	gccccagtgg	tcaggaaaag	tgcaaacttg
2501	agaaccacat	ctcccctgac	gtccgtgtgt	tgccaggggg	aggagcccat
2551	ggaagcacac	gagatcagag	catctga		

hKv6.2

1	atggagccat	ggccctgctc	cccgggcggc	ggcggcggga	cccgcgcccg
51	gcacgtcatc	atcaacgtgg	gcggctgccg	cgtgcgcctg	gcatgggccg
101	cgctggcgcg	atgccccctc	gcgcgcctgg	agcgcctgcg	cgcctgccgc
151	ggccacgacg	acctgctgcg	cgtgtgtgac	gactacgacg	tgagccgcga
201	cgagttcttc	ttcgaccgca	gcccgtgcgc	cttccgcgcc	atcgtggcgc

251	ttttgcgcgc	agggaagctg	cgactgctgc	ggggcccgtg	cgcgctggcc
301	ttccgcgacg	agctggccta	ctggggcatc	gacgaggcgc	gcctggagcg
351	ctgctgcctg	cgccgcctgc	gccgccgcga	ggaggaggcg	gccgaggccc
401	gcgcgggggcc	gacggagcgc	ggggcgcagg	ggagcccggc	gcgcgccctg
451	ggacctcggg	ggcggctgca	gcgcggccgg	cggcgcctgc	gcgacgtggt
501	ggacaacccg	cactcggggc	tggcgggcaa	gctcttcgcc	tgcgtgtccg
551	tgtccttcgt	ggccgtcacg	gccgtgggcc	tctgcctgag	caccatgccg
601	gacatccgcg	ccgaggagga	gcggggcgag	tgctccccca	agtgccgcag
651	cctgttcgtg	ctggagaccg	tgtgcgtggc	ctggttctcc	ttcgagttcc
701	tgctgcgctc	cctgcaggcc	gagagcaagt	gcgccttcct	gcgcgcgcca
751	ctcaacatca	ttgacatcct	ggcgctcctg	ccgttctacg	tgtcgctgct
801	gctggggctg	gcggcaggcc	cgggcgggac	caagctcctg	gagcgcgcgg
851	ggctggtgct	gcggctgctg	cgtgcgctgc	gcgtgctcta	cgtgatgcgc
901	ctggcgcgcc	actcgctggg	gctgcgttcg	ctgggcctga	ccatgcgccg
951	ctgcgcgcgc	gagttcgggc	tgctgctgct	gttcctctgc	gtggccatgg
1001	cgctcttcgc	gccactggtg	cacctggccg	agcgcgagct	gggcgcgcgc
1051	cgcgacttct	ccagcgtgcc	cgccagctat	tggtgggccg	tcatctccat
1101	gaccaccgtg	ggctacggcg	acatggtccc	gcgcagcctg	cccgggcagg
1151	tggtggcgct	cagcagcatc	ctcagcggca	tcctgctcat	ggccttcccg
1201	gtcacctcca	tcttccacac	cttttcgcgc	tcctactccg	agctcaagga
1251	gcagcagcag	cgcgcggcca	gccccgagcc	ggccctgcag	gaggacagca
1301	cgcactcggc	cacagccacc	gaggacagct	cgcagggccc	cgacagcgcg
1351	ggcctggccg	acgactccgc	ggatgcgctg	tgggtgcggg	cagggcgctg
1401	a				

5 Lebenslauf

Birgit Hantzsch	geboren am 11. Oktober 1976 in Winsen / Luhe		
Schulausbildung			
1983-87	Grundschule Ashausen		
1987-89	Orientierungsstufe Stelle		
1989-96	Gymnasium Winsen		
Juni 1996	Erlangung der allgemeinen Hochschulreife		
Studium			
Okt. 1996 - Juni 2003	Studium der Humanmedizin an der Universität Hamburg		
	Ärztliche Vorprüfung: August 1998		
	1. Abschnitt der Ärztlichen Prüfung: August 1999		
	2. Abschnitt der Ärztlichen Prüfung: März 2002		
	3. Abschnitt der Ärztlichen Prüfung: Juni 2003		
	Erlangung der vorläufigen ärztlichen Approbation: Juni 2003		
Okt. 1996 - März 2003	Stipendium der Studienstiftung des deutschen Volkes		
März 1999 - Aug. 2001	Dissertation im Labor von Prof. Dr. O. Pongs		
	am Zentrum für Molekulare Neurobiologie Hamburg		
	Titel: "Subfamilienübergreifende Interaktion von Kaliumkanal-		
	Untereinheiten - Struktur-Funktionsanalysen am Beispiel von		
	hKv2.1 und hKv6.2"		
Auslandsaufenthalte			
Sep. 1999	Christchurch Public Hospital, Neuseeland		
Feb./ März 2003	Centrallasarett Västerås, Schweden		
Berufliche Tätigkeit			
Okt. 2003 – Sep. 2004	Ärztin im Praktikum, II. Med. Abteilung des AK Wandsbek		
Seit Okt. 2004	Assistenzärztin, II. Med. Abteilung des AK Wandsbek		

Eidesstattliche Versicherung

Ich versichere ausdrücklich, dass ich diese Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe, Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

Hamburg, im Februar 2005

Birgit Hantzsch

Danksagung

Ich danke Herrn Prof. Dr. O. Pongs für die Überlassung des Themas und die Möglichkeit, diese Arbeit unter den hervorragenden Bedingungen am Institut für Neurale Signalverarbeitung am Zentrum für Molekulare Neurobiologie Hamburg durchführen zu können.

Dr. med. Dirk Isbrandt danke ich für seine Bereitschaft, die "ererbte" Betreuung zu übernehmen und stets mit Rat und Tat zur Verfügung zu stehen.

Dr. Christian Legros unterstützte mich bei der Durchführung der Strukturanalysen an der SGI Workstation.

Als Hefeexperten gebührt Nicole Schmitt und Jens Dannenberg Dank und Anerkennung – über die fachlichen Aspekte hinaus waren sie mir wichtige Ansprechpartner.

Sabine Wehrmann, Kathrin Sauter und Anne Rakete sorgten für moralische Unterstützung sowie Beistand in allen Lebenslagen – und sind mir darüber hinaus wertvolle Freundinnen geworden.

Bei meiner Familie und meinen Freunden und Freundinnen möchte ich mich für ihre Geduld und ihren Glauben an mich bedanken.