Transkriptomanalyse des visuellen Systems von Drosophila melanogaster (Meigen, 1830) mit Hilfe der DNA-Microarray-Technologie

Dissertation

zur Erlangung des Doktorgrades des Fachbereichs Biologie der Universität Hamburg

vorgelegt von Guido Schramm Hamburg im Juli 2004 Genehmigt vom Fachbereich Biologie der Universität Hamburg auf Antrag von Herrn Professor Dr. M. GEWECKE Weitere Gutachter der Dissertation: Herr Priv.-Doz. Dr. M. ROEDER

Tag der Disputation: 24. September 2004

Hamburg, den 10. September 2004

 \sim

Professor Dr. Arno Frühwald Dekan

Für meine Kinder Joshua, Johanna, Lena und meine Eltern Helga und Uwe.

Inhaltsverzeichnis

1 Ei	nleitung	7
1.1	Drosophila melanogaster als Modellorganismus	7
1.2	Das visuelle System der adulten Taufliege	9
1.2	2.1 Das Komplexauge	.9
1.	2.2 Der optische Lobus	10
	1.2.2.1 Lamina	11
	1.2.2.2 Medulla	12
	1.2.2.3 Lobula-Komplex	13
1.3	Die Signaltransduktion im visuellen System	13
1.4	Das Transkriptom	16
1.5	DNA-Microarray-Technologie	17
1.6	Zielsetzung der Arbeit	19
2 M	aterial und Methoden	22
2.1	Bezugsfirmen	22
2.2	Geräte	23
2.3	Chemikalien	24
2.4	Puffer, Medien und Lösungen	25
2.5	Gebrauchsfertige Reagenziensysteme (Kits)	26
2.6	Enzyme	26
2.7	Oligonukleotide (<i>Primer</i>)	27
2.2	7.1 Genspezifische sense- und reverse- Primer (GSSP/GSRP)	27
2.7	7.2 Primer für die CapFinder-cDNA-Synthese	27
2.8	Versuchstiere	28
2.	8.1 Entamoeba histolytica und Entamoeba dispar	28
2.	8.2 Fliegenstämme	28
2.9	Haltung und Zucht von Drosophila	29
2.10	Fluorescence activated cell sorting (FACS)	29
2.11	Ektopische Expression von GFP in L2-Neuronen der LMCs	30
2.12	Gefriertrocknen von Drosophila nach Fujita	31
2.13	Präparation	31
2.	13.1 Retina- und Laminagewebe	31
2.	13.2 L2-Neuronen der Lamina	32
2.14	Mikroskopie	32
2.	14.1 Konfokale Laser-Scanning Mikroskopie	32
2.	14.2 Rasterelektronenmikroskopie (REM)	33

2.15 Molekularbiologische Methoden	33
2.15.1 Molekularbiologische Standardmethoden	33
2.15.2 Extraktion von Nukleinsäuren	33
2.15.2.1 PCR-Produkt Reinigung	33
2.15.2.2 Plasmid-DNA-Präparation	33
2.15.2.3 Isolierung von Gesamt-RNA	34
2.15.2.4 Isolierung von Nukleinsäuren aus Agarosegelen	34
2.15.3 Bestimmung von DNA- und RNA-Konzentrationen	34
2.15.4 PCR (Polymerase Chain Reaction)	35
2.15.5 CapFinder-cDNA-Synthese (nach Schramm et al., 2000)	35
2.15.6 5'-RACE (Rapid Amplification of cDNA Ends;	
nach Schramm et al., 2000)	40
2.15.7 Klonierung von DNA-Fragmenten	40
2.15.8 cRNA-Synthese	40
2.15.9 Subtraktive Hybridisierung	42
2.16 Datenanalyse	42
2.16.1 Genom- und genspezifische Daten	42
2.16.2 Microarray-Daten	43
2.17 DNA-Microarrays	43
2.17.1 Drosophila 7K Version 2 (D7KV2)	43
2.17.2 Signaltransduktions-Chip (STDC)	43
2.17.2.1 EST-Klone	44
2.17.2.2 Klone mit potenziellen Genen der Signaltransduktion	44
2.18 Hybridisierung von DNA-Microarrays	45
2.18.1 Hybridisierung des D7KV2	45
2.18.2 Hybridisierung des STDC	45
3 Ergebnisse	48
3.1 Methodenoptimierung	48
3.1.1 Präparation und Gewebegewinnung	48
3.1.1.1 Retina- und Laminagewebe aus gefriergetrockneten Taufliegen	49
3.1.1.2 Isolierung von L2-Neuronen aus der Lamina mit Hilfe des FACS	52
3.1.2 <i>CapFinder</i> -cDNA-Synthese und 5'-RACE	55
3.1.3 Modell: cRNA aus CapFinder-cDNA	61
3.1.3.1 cDNA aus <i>Drosophila</i> -Gewebe	62
3.1.3.2 cRNA-Synthese an <i>CapFinder</i> -cDNA	63
3.1.3.3 Reverse Transkription von <i>sense</i> -cRNA	65
3.1.4 Modell: Subtraktive Hybridisierung (SH) mit cRNA	66

3.2	Herstellun	g des Signaltransduktions-Chips (STDC)	69
3.2	.1 Array-	-Design	69
3.2	2.2 Ampli	ifikation von Proben-DNA	70
3.2	2.3 Hybri	disierung des Signaltransduktions-Chips (Testversion)	71
3.3	Transkript	tome des visuellen Systems von Drosophila m	72
3.3	8.1 Visua	lisierung des Transkriptoms der Retina	73
3.3	.2 Transl	kriptomanalyse:	
	Molek	culare Ausstattung von Retina und Lamina	75
	3.3.2.1	Differenzielle Genexpression: Retina und Lamina	75
	3.3.2.2	Gene der Phototransduktion	78
	3.3.2.3	Gene der G-Protein-gekoppelten Rezeptoren	79
	3.3.2.4	Gene der Second-Messenger-Kaskade	80
	3.3.2.5	Gene für Ionenkanäle: liganden- und spannungsgesteuert	80
	3.3.2.6	Gene der Transmittersynthese und der Neurosekretion	81
4 Dis	skussion		83
4.1	Methoden	optimierung	85
4.1	.1 Präpa	ration und Gewebegewinnung	86
	4.1.1.1	Gefriertrocknen von Drosophila-Gewebe	86
	4.1.1.2	FACS-Analysen	88
4.1	.2 Molek	sularbiologische Methoden	90
	4.1.2.1	CapFinder-cDNA-Synthese und 5'-RACE	90
	4.1.2.2	cRNA-Synthese	91
	4.1.2.3	Subtraktive Hybridisierung	91
4.2	Serotonin	im visuellen System von Drosophila melanogaster	93
4.2	2.1 Seroto	onin moduliert den Photorezeptor	95
4.2	2.2 Seroto	onin in der Lamina	
4.3	Acetylchol	lin im visuellen System von Drosophila melanogaster	
4.4	Zusammer	nfassung	99
4.5	Ausblick		102
5 Lit	teratur		104
Anha	ng		I-XVI

Abkürzungsverzeichnis

5-HT	5-Hydroxytryptamin (Serotonin)
A	Adenin
Abb.	Abbildung
A. dest.	Aqua destillata (einfach destilliertes Wasser)
ADP	Adenosin-5'-Diphosphat
AP	alkalische Phosphatase
ATP	Adenosin-5'-Triphosphat
BCIP	5-Brom-4-chlor-3-indolyl-phosphat
BDGP	Berkeley Drosophila Genome Project
bidest.	doppelt destilliert
bp	Basenpaar(e)
С	Cytosin
cameleon	Gen codierend für GFP Mutante
cAMP	3', 5'-cyclo-Adenosinmonophosphat
cDNA(s)	complementary DNA(s) (komplementäre DNA(s))
dA/dC/dG/dT	Desoxy-Adenosin-/Cytidin-/Guanosin-/Thymidin
	Ribonukleotid
DEPC	Diethylpyrokarbonat
DNA	desoxyribonucleic acid (Desoxyribonukleinsäure)
dNTP(s)	2'-Desoxyribonukleotid-5'-Triphosphat(e)
dsDNA	double stranded DNA (doppelsträngige DNA)
dsRNA	doppelsträngige RNA
DTT	Dithiotreitol
E. coli	Escherichia coli
EDTA	Ethylendiamintetraacetat
ERG	Elektroretinogramm
EST(s)	expressed sequence tag(s), unvollständige(s)
	Transkript(e) aus einer cDNA-Bibliothek
EtOH	Ethanol
FACS	fluorescence activated cell sorting, fluoreszenz-
	aktiviertes Zellsortieren, Durchflusszytometrie
G	Guanin

GFP bzw. <i>gfp</i>	Grünfluoreszenz-Protein bzw. Gen codierend für GFP
G-Protein	Guanosin-Nukleotid bindendes Protein
GPCR	G-protein coupled receptor (G-Protein gekoppelter
	Rezeptor)
GTP	Guanosin-5'-Triphosphat
HEPES	2-(4-(2-Hydroxyethyl-)-Piperazino-)-Ethansulfonsäure
hydrol.	hydrolysiert
KAc	Kaliumacetat
La	Lamina
LB	Luria Broth Medium
LMC(s)	Lamina Monopolar Cell(s) (Lamina Monopolar-
	zelle(n))
Lo	Lobula
LP	Lobula Platte
mAChR	muskarinischer Acetylcholinrezeptor
MCS	multiple cloning site (multiple Klonierungsstelle)
Me	Medulla
M-MLV	Moloney-Maus Leukämie Virus
MOPS	3-(N-Morpholino)-Propansulfonsäure
NaAc	Natriumacetat
mRNA	messenger ribonucleic acid (Boten-Ribonukleinsäure)
NaAc	Natriumacetat
nAChR	nikotinischer Acetylcholinrezeptor
NBT	4-Nitroblue-tetrazolium-chlorid
OD	optische Dichte
PCR(s)	polymerase chain reaction(s) (Polymerase-
	Kettenreaktion(en))
poly(A) ⁺ -RNA	RNA mit polyadenyliertem 3'-Ende
R1-8	Photorezeptoren
RACE	Rapid Amplification of cDNA Ends (Schnelle
	Amplifikation von DNA)
RNA	ribonucleic acid (Ribonukleinsäure)
Re	Retina
RNA	ribonucleic acid (Ribonukleinsäure)
RNase	Ribonuklease

rpm	rounds per minute (Umdrehungen pro Minute)
RT-PCR	Reverse Transkriptions PCR
SDS	Sodiumdodecylsulfat (Natriumdodecylsulfat)
ssDNA	single stranded DNA (Einzelstrang DNA)
Т	Thymin
TAE	Tris-Acetat-EDTA
Taq	Thermus aquaticus
TB	Terrific Broth Medium
TBE	Tris/Borat/EDTA
TE	Tris-EDTA
Tris	2-Amino-2-(hydroxymethyl)-1,3-Propandiol
U	Unit (Enzymaktivitätseinheit)
UAS	Upstream Activating Sequence
UV	Ultraviolett
v/w	weight per volume (Gewicht pro Volumen)
WT	Wildtyp
w/w	Gewicht per Gewicht
ZNS	Zentralnervensystem

Allgemein gebräuchliche Abkürzungen und Maßeinheiten, die auf Empfehlungen der IFDC (International Federation for Clinical Chemistry) und IUPAC (International Union of Pure and Applied Chemistry) beruhen, oder die zu den SI-Einheiten (Système Internationale d'Unités) zählen, werden nicht gesondert aufgeführt.

1. Einleitung

1.1 Drosophila melanogaster als Modellorganismus

Um zu verstehen, wie Leben funktioniert, ist es eine denkbar ungeeignete Idee, mit der Forschung bei dem Menschen zu beginnen. Die Alternative hiefür sind überschaubare Modelle, an denen man zunächst das Verständnis für einzelne Prozesse - von Entwicklungsprozessen über Stoffwechselvorgänge bis hin zu Verhaltensweisen – erarbeitet, diese dann auf komplexere Systeme überträgt und dort nach etwas Vergleichbarem sucht. Der Mensch als Versuchstier für die Forschung ist unbrauchbar, denn Menschen sind groß, teuer zu halten, anspruchsvoll, und sie vermehren sich nur langsam und unkontrolliert. Kreuzungs- oder Mutageneseversuche am Menschen sind aus ethischen und moralischen Gründen nicht durchführbar. *Drosophila* ist einfach und ohne großen materiellen Aufwand zu züchten, hat einen Generationswechsel von zwei Wochen und ein kleines, überschaubares Genom auf lediglich vier Chromosomen.

1908 begann Thomas Hunt Morgan mit *Drosophila* zu arbeiten. Anfänglich war er gegenüber den heute als allgemeingültig anerkannten Vererbungsregeln von Gregor Mendel sehr skeptisch eingestellt. Seine Experimente konnten aber zeigen, dass die Gene auf den Chromosomen diskrete Einheiten der Vererbung sind. 1910 entdeckte er die geschlechtsgekoppelte Vererbung bei *Drosophila* und vermutete eine Beziehung zwischen der Augenfarbe bei *Drosophila* und der Farbenblindheit des Menschen. Seit diesen frühen Anfängen der Genetik war die Taufliege *Drosophila melanogaster* stets im Mittelpunkt genetischer und molekularbiologischer Fragestellungen.

Die Veröffentlichung des kompletten Genoms im März 2000 war ein Meilenstein in der Forschung am Modellorganismus *Drosophila melanogaster* (Adams et al., 2000). Überraschenderweise zeigte sich im Vergleich zum Fadenwurm *Caenorhabditis elegans* sehr schnell, dass der offensichtlich höher entwickelte Organismus der Taufliege mit *120* Megabasen Euchromatin ein kleineres Gesamtgenom hat als der primitive Nematode und diesen mit geschätzten *13500* Genorten in der Anzahl seiner prognostizierten Gene nicht überbieten kann. Allerdings scheint das *Drosophila*-Genom im Aufbau komplexer, denn die Menge funktioneller Produkte eines Genlocus, die so genannten Transkripte, wird bei der Fliege höher eingeschätzt (Pennisi, 2000).

besondere Rolle von Drosophila melanogaster in der Funktion Die als Modellorganismus wird dann eindrucksvoll deutlich, wenn Homologe (Genprodukte mit konservierten Strukturen und Funktionen) identifiziert, von einem Organismus in den anderen übertragen werden und dort identische Arbeit verrichten. Dieses konnte für humanpathogene Gene, z.B. dem Parkin-Gen und dem p53-Tumorsupressorgen, gezeigt werden und rechtfertigt den kostspieligen und zeitintensiven Forschungsaufwand an einem Invertebraten (Rubin et al., 2000). Es wurde schon früh erkannt, dass Drosophila als Modell einzigartige Möglichkeiten auf dem Gebiet der Entwicklungsbiologie (Rubin, 1988) und in der Neurobiologie (Miklos, 1993) bietet. Allgemeine, grundlegende Entwicklungsmechanismen wurden entdeckt: Die Entwicklung eines Grundbauplans mit Hilfe der homöotischen Gene (Gehring, 1992), die Anlage eines Auges über das Kontrollgen Pax (Gehring und Ikeo, 1999) oder die Organisation von Gehirnstrukturen (Hirth und Reichert, 1999).

Von besonderem Interesse sind Gene, die ein gehirnspezifisches Expressionsmuster zeigen oder solche, die unter spezifischen funktionalen Bedingungen im Gehirn aktiviert werden. Neuronale Ultrastrukturen und Funktionen sind durch homologe Proteine in der Evolution konserviert. Viele Gene, die sowohl im Gehirn von Drosophila als auch von Säugetieren exprimiert werden, haben Homologe in anderen Tiergruppen. Offensichtliche Beispiele hierfür sind das eveless Gen von Drosophila, ein Mitglied aus der Familie der Pax-6 Familie, welches an der Determination der Augenentwicklung beteiligt ist (Quiring, 1994; Callaerts, 1997) und Gene, welche verantwortlich sind für die Phototransduktion (Ranganathan, 1995). Ein Beispiel für den konservativen Charakter einer Genfunktion liefert das humane Homolog von white, welches beim Menschen sowohl für Stimmungsstörungen verantwortlich zeichnet, als auch für den Transport von Metaboliten (Croop, 1997; Nakamura, 1999; Klucken, 2000). Diese Homologien werden durch molekulare und genetische Ansätze gefunden. Sie verdeutlichen auch, dass einige Verhaltensmuster von Drosophila und Säugetieren auf "eingefrorenen" Prozessen und anatomischen Strukturen im Gehirn beruhen. Ein Beispiel liefert der circadiane Schrittmacher und seine Abhängigkeit von der zyklischen Transkription der Drosophila Gene period (Hall, 1995) und timeless (Sehgal, 1994) eine Situation, die in sehr ähnlicher Form auch bei Säugetieren anzutreffen ist (Sun, 1987; Tei, 1997; Koike, 1998).

1.2 Das visuelle System der adulten Taufliege

Generell ist das visuelle System der Insekten aus zwei Subsystemen aufgebaut: aus dem Facetten- oder Komplexauge und dem darunter liegenden optischen Lobus. Weitere Lichtsinnesorgane sind die Ocellen und die extraokulären Photorezeptoren. Das visuelle System dient der Bild- und Bewegungswahrnehmung und in Verbindung mit dem hoch entwickelten Gehirn wird ein Insekt befähigt, komplexe Sinnesleistungen zu vollbringen.

1.2.1 Das Komplexauge

Von außen sind die Einzelaugen des Komplexauges, die Ommatidien, als hexagonale Facetten sichtbar. Eng aneinander gepackt ergibt sich aus ihnen das typische, paarig angelegte Insektenauge mit einer konvexen Oberfläche.

Abb. 1: Komplexauge von *Drosophila melanogaster*. Das Photo zeigt eine Rasterelektronenmikroskopaufnahme eines Facettenauges von *Drosophila melanogaster*. In der Aufsicht sind bis 750 hexagonale Facetten erkennbar. In den Zwischenräumen der Facetten nehmen mechanosensorische Haare ihren Ursprung (Cagan und Ready, 1989).

Die bikonvexe Cornea-Linse und der Kristallkegel bilden den dioptrischen Apparat; ihm angeschlossen folgt eine Rezeptorschicht, die so genannte Retinula. Ein Ommatidium besteht aus einem festen Satz von Pigmentzellen, Rezeptorzellen und den Zellen, welche die Linse bilden. Bei *Drosophila* sind in jedem Ommatidium 8 Photorezeptorzellen (R1-R8) in einem regelmäßigen, radiärsymmetrischen Muster angeordnet. Drei Rezeptortypen sind unterscheidbar: Die Zellen R1-R6, die peripher im Ommatidium angeordnet sind, und die Zellen R7 und R8, die das Zentrum des Ommatidiums bilden; die Rezeptorzelle R8 liegt unter der Zelle R7. Die Photorezeptoren können auf Grund der spektralen Empfindlichkeit der Sehpigmente (Opsine) (Papatsenko *et al.*, 1997; Chou *et al.*, 1999) und auch bezüglich der axonalen Projektion in den optischen Lobus charakterisiert werden. Die Opsine der R1-R6 sind empfindlich für grünes oder blaugrünes Licht (Burkhardt, 1962), die von R7 und R8 dagegen sensitiv für blaues und ultraviolettes Licht. Die lichtsensitiven Zellorganellen der Rezeptoren sind die Rhabdomere. Eine Besonderheit der Diptera und Heteroptera ist das so genannte Superpositionsauge. Die Rhabdomere formen hierbei keinen axialen Sehstab (geschlossenes Rhabdom), sondern sind voneinander isolierte Lichtwellenleiter (offenes Rhabdom), die in einer determinierten geometrischen Anordnung zum Facettenraster stehen.

Die Photorezeptorzellen antworten bei Erhöhung der Lichtintensität mit einer Depolarisation. An den terminalen Endigungen wird Histamin (HA) als Neurotransmitter ausgeschüttet (Hardie, 1987; Sarthy, 1991). Offensichtlich stehen die Photorezeptoren unter dem Einfluss des biogenen Amins Serotonin. Hevers und Hardie konnten *in vivo* zeigen, dass Serotonin die Spannungsabhängigkeit von Kaliumkanälen moduliert und sie bringen diesen Effekt in einen Zusammenhang mit der Hell/Dunkel-Adaptation der Rezeptoren (Hevers und Hardie, 1995)

1.2.2 Der optische Lobus

Auf die Retina folgend, getrennt durch eine gefensterte Basalmembran, schließt sich der optische Lobus an. Der Lobus wird anatomisch hauptsächlich durch drei optische Ganglien gebildet. Ganglien sind strukturelle und funktionelle Einheiten, wobei die Zellkörper der Neuronen randständig, die Dendriten und Axone zentral liegen. Das komplexe Geflecht der neuronalen Ein- und Ausgangsregionen und ihrer synaptischen Verbindungen zusammen mit den häufig vorkommenden Gliazellen wird auch Neuropil genannt. Im visuellen System sind diese Verarbeitungsstationen, von der Retina ausgehend, die Lamina, die Medulla und der Lobula-Komplex. Letzterer ist bei den Lepidoptera, den Dipteren und Trichoptera in Lobula und Lobula-Platte, zwei parallele Neuropile, aufgeteilt. Die Lamina ist durch Rezeptoraxone und Laminaneurone mit der Medulla über ein äußeres horizontales Chiasma verbunden. Das innere Chiasma verbindet die Medulla mit dem Lobulakomplex.

So wie die Retina aus Ommatidien zusammengesetzt ist, bestehen die Ganglien aus kolumnären Untereinheiten, besonders deutlich in der Lamina und Medulla, wo sie als Cartridges bzw. als Medullasäulen bezeichnet werden. Allen optischen Neuropilen ist außerdem eine regelmäßige Schichtung eigen. Diese Schichten sind senkrecht zu den Cartridges und Medullasäulen orientiert. Das gesamte System ist streng retinotopisch organisiert. Das Abbild der Umwelt wird, kodiert durch das Facetten-Rezeptor-Raster, bis hin zur Lobula auf allen neuronalen Ebenen ortsgetreu abgebildet. Photorezeptoren aus benachbarten Ommatidien projizieren auf benachbarte Cartridges der Lamina (R1-R6 eines jeden Ommatidiums) und die Säulen der Medulla (R7 und R8 eines jeden Ommatidiums). Eine Cartridge, auch als Neuro-Ommatidium bezeichnet, bildet die anatomische Grundlage der visuellen Verarbeitung nach dem Superpositionsprinzip, das im visuellen System von *Drosophila* realisiert ist (Heisenberg und Wolf, 1984).

1.2.2.1 Lamina

Das erste optische Neuropil, die Lamina, ist ein Nervensystem im Kleinformat und das zurzeit am besten verstandene Neuropil. Die Axonendigungen der peripher im Ommatidium gelegenen Rezeptorzellen R1-R6 (Braitenberg, 1967) enden in der Lamina und innervieren dort lokale Interneuronen (Fischbach und Dittrich, 1989), so genannte Lamina-Monopolarzellen (L1-L5) mit determinierten Verbindungen (Meinertzhagen und O'Neil, 1991). Die synaptischen Endigungen der R1-R6 und alle Zelltypen der Lamina, 12 an der Zahl (Strausfeld und Nässel, 1980), bilden zusammen eine strukturelle Einheit, die Cartridge. Cartridges sind durch Gliazellen voneinander isoliert und innerhalb dieser werden die Erregungen der Sehzellen R1-R6 gleicher Blickrichtung durch L1- und L2-Neuronen aufsummiert und auf zwei diskrete Verarbeitungsebenen L2 und L1 in der Medulla übertragen. Vergleichbar mit den triadischen Synapsen der Photorezeptoren der Vertebraten bildet innerhalb einer Cartridge jede der R1-R6 Terminalen viele afferente Synapsen, von denen jede eine unterschiedliche Tetrade ist (Burkhardt und Braitenberg, 1967; Nicol und Meinertzhagen, 1982). An unterschiedlichen Stellen schalten L1, L2 und amakrine Zellen der Lamina präsynaptisch auf die Terminalen der R1-R6, so genannte "feedback"-Synapsen (Meinertzhagen und O'Neil, 1991). In diesem Zusammenhang sei darauf hingewiesen, dass Glutamat und Acetylcholin als Neurotransmitter der LMCs diskutiert werden. Bei Drosophila und der Biene konnte Glutamat durch histochemische und immunocytochemische Studien nachgewiesen werden (Chase und Kankel, 1987; Bicker et al., 1988). Die L1, L3 und L5-Neuronen terminieren aber ausschließlich in der Medulla. In Folge des Nachweises von Acetylcholinesterase in den L1- und L2-Neuronen der Fliege wird Acetylcholin als deren möglicher Transmitter gehandelt (Gorczyca und Hall, 1987; Ikeda und Salvatera, 1989; Kitamoto et al., 1992). Andere Zellen der Lamina, Weitfeldneuronen, verzweigen diffus mit den Axonen durch den gesamten optischen Lobus, auf einer Fläche tangential zu den Neuropilen. Unter diesen befinden sich Zellen, die immunreaktiv sind gegen 5-HT (LBO5HT: Nässel, 1988), gegen den Pigment-Dispersing-Factor (PDF; Helfrich-Föster und Homberg, 1993) und gegen FMRFamide (Taghert et al., 2000). Das ausgeschüttete Histamin der Photorezeptorzellen wirkt in der Lamina auf inhibitorische Chloridkanäle (Hardie, 1989). Zwei (DmHisCl-1/2) der aus fünf Untereinheiten bestehenden Chloridkanäle konnten kloniert und in situ nachgewiesen werden (Zheng et al., 2002; Witte et al., 2002). Modulatorischen Einfluss auf die Lamina könnten aminerge Neuronen mit Somata in der Medulla haben. Bei den meisten untersuchten Insekten finden sich zentrifugale Neurone kleiner Zahl mit axonalen Verzweigungen in die Lamina. Unter ihnen finden sich sowohl dopaminerge, als auch serotonerge Zellen (Schürmann und Klemm, 1984; Schäfer und Bicker, 1987; Homberg und Hildebrand, 1989). Oft sind Neuropeptide co-lokalisiert nachzuweisen. Weitere Zentrifugalneuronen mit präsynaptischem Eingang in die Lamina sind GABA-immunreaktiv, (C2- und C3-Neurone; Datum et al., 1986; Meyer et al., 1986; Schäfer und Bicker, 1986; Homberg et al., 1987; Füller et al., 1989), oder zeigen Genexpression der Cholinacetyltransferase, sind also cholinerg (T1-Neurone, Kitamato et al., 1992).

Abb. 2: Schematischer Horizontalschnitt durch den optischen Lobus und die Retina von *Drosophila*. Zu erkennen sind drei Klassen von Photorezeptoren (R1-6, R7, R8) in der Retina sowie amakrine Zellen des optischen Lobus. La: Lamina, Me: Medulla, Lo: Lobula, LP: Lobula Platte, CBr: Zentralgehirn. Verändert nach Fischbach und Heisenberg (1984).

1.2.2.2 Medulla

Die Axone der Rezeptorzellen R7 und R8 ziehen ohne Kontaktaufnahme durch die Lamina und enden im zweiten optischen Ganglion, der Medulla, um hier auf Neurone zweiter Ordnung zu verschalten. Dieses Neuropil ist weniger gut beschrieben als die Lamina, aber hinsichtlich der Anzahl an Zellen, Zelltypen und Verschaltungen deutlich komplexer (Meinertzhagen und Hanson, 1993). Auch die Lamina-Monopolarzellen (L1-

L5) entsenden hierher ihre Axone. Zusammen mit den Rezeptoraxonen bilden diese das äußere Chiasma. An dem ebenso modularen Aufbau der retinotopen Medullasäulen sind über 100 unterschiedliche Zelltypen beteiligt (Fischbach und Dietrich, 1989). Die Medulla zeigt wie die Lamina eine horizontale Schichtung. Auf Grund der geringen Größe der Zellen und fehlender molekularer Marker konnte eine exakte Beschreibung der medullären Zellpopulation bis dato nicht geleistet werden. Nur wenige Zellen wurden morphologisch mit Hilfe von Golgi-Färbungen identifiziert (Strausfeld, 1976; Fischbach und Dietrich, 1989). Jede der Medullasäulen wird von jeweils einer R7- und R8-Zelle innerviert. Elektrophysiologische Untersuchungen einiger Medullaneuronen liegen für die Fliege und die Heuschecke vor. Tangentialzellen mit großen rezeptiven Feldern wurden eingehend an der Heuschrecke untersucht (Gewecke und Hou, 1993). In der Medulla werden erste Sinneseindrücke verarbeitet und an höhere Gehirnzentren weitergeleitet. Damit Insekten bei drohender Gefahr schnell reagieren können, schalten Medullaneurone, über Inter- und Motoneurone, direkt auf Muskeln, um so schnelle Reaktionen zu ermöglichen. Diese primären Verarbeitungsschritte sind Gegenstand intensiver Forschung. Ersatzschaltkreise und Computersimulationen der neuronalen Filter liefern nicht nur den Biologen wertvolle Informationen und Erkenntnisse über die Sinnesphysiologie.

1.2.2.3 Lobula-Komplex

Lobula und Lobula-Platte bilden den Lobula-Komplex. Diese Neuropile wurden bei einigen Insektenarten näher untersucht, sind aber am wenigsten gut verstanden. Als die prominentesten Zellen in der Lobula-Platte sollen hier zwei Klassen von Tangentialzellen erwähnt werden: HS-Zellen (Hausen, 1982) und CH-Zellen (Eckert und Dvorak, 1983). Obwohl sehr unterschiedlich (Durr et al., 2001) vermitteln beide Zellklassen die Relativbewegung von Retina und Umwelt, induziert durch die Eigenwahrnehmung der Fliege (Kern et al., 2001)

1.3 Die Signaltransduktion im visuellen System

Die Taufliege *Drosophila melanogaster* ist ein besonders gut geeigneter Modellorganismus zur Analyse der molekularen Prozesse der Signaltransduktion im visuellen System. Durch genetische und molekularbiologische Manipulationen an diesem Tier ist es möglich, Funktionen und Regulationsmechanismen dieses äußerst komplexen Vorganges im normalen zellulären Umfeld zu überprüfen und zu studieren. Problematisch sind allerdings elektrophysiologische Untersuchungen, weil *Drosophila* einfach zu klein ist. So ist es zwar möglich, ein Elektroretinogramm (ERG) zu erstellen, doch Untersuchungen am visuellen System sind sehr schwierig, wenn nicht gar unmöglich. Experimentell an *Drosophila* gewonnene Daten müssen elektrophysiologisch an anderen Organismen, so z.B. an *Calliphora*, der Heuschrecke oder anderen holometabolen Insekten verifiziert werden.

Ganz allgemein wird der Prozess, bei dem ein extrazelluläres Signal zur Änderung des Membranpotentials einer Zelle führt, als Transduktion bezeichnet. Die Signaltransduktion im visuellen System ist dem entsprechend der Prozess, bei dem das auf einen Photorezeptor einfallende Licht in ein messbares Ereignis, das so genannte Rezeptorpotential, überführt wird. Ein überschwelliges Rezeptorpotential kann zu einem Aktionspotential führen. Im Falle eines Photorezeptors aber, einer Sinneszelle, führt dieses Potential direkt zur Ausschüttung eines Neurotransmitters an seiner Rezeptorterminalen. Der Transmitter erregt oder hemmt dann nachgeschaltete Neuronen, welche die Photorezeptoraktivität in ein neuronales Signal konvertieren. Studien über die Hormonaktivierung der Adenylatzyklase und Arbeiten an der Phototransduktion machten die Entdeckung und Charakterisierung der G-Proteine möglich (Hille, 1992). Die Prozesse der Phototransduktionskaskade in den Photorezeptoren der Wirbeltiere sind bis ins kleinste Detail verstanden, anders hingegen sieht es bei denen der Invertebraten aus.

In der Evolution der Tiere haben sich zwei Klassen von Photorezeptoren etabliert: Vertebraten besitzen Zapfen und Stäbchen vom ciliären Typ, während sich bei Arthropoden und den meisten Mollusken der mikrovilläre oder rhabdomäre Typ durchgesetzt hat. Einher mit der Divergenz der Photorezeptortypen geht auch eine Divergenz der molekularen Maschinerie zur Umsetzung von Lichtenergie in eine elektrische Antwort. Generell gleichen sich die Systeme der Phototransduktion von Vertebraten und Invertebraten: Am Anfang einer G-Protein-vermittelten Signalkaskade höchster Sensitivität und breitem Dynamikbereich steht das Rhodopsin. Die Lichtantwort der aller Photorezeptoren ist ein verändertes Rezeptorpotential. Die Lichtaktivierung des "Vertebratenrezeptors" führt über die Stimulation einer cGMP-Phosphodiesterase zum Schließen von Na⁺-Kanälen, also zu einer hyperpolarisierenden Antwort. Im Gegensatz dazu generiert Licht durch Aktivierung einer Phospholipase C (PLC) bei *Drosophila*, wie bei den meisten Invertebraten, ein depolarisierendes Rezeptorpotential durch das Öffnen von zwei Klassen "lichtsensitiver" Ca²⁺-Kanäle. Der gegenwärtige Wissenstand bei *Drosophila* soll nachfolgend kurz dargestellt werden.

Das durch Licht aktivierte Rhodopsin (ninaE) stimuliert eine Augen-spezifisches G-Protein-Untereinheit Galphaq ($G_{\alpha}\alpha$). Sechs Gene konnten gefunden werden, die für Rhodopsine kodieren. Diese werden in unterschiedlichen Photorezeptorzellen exprimiert (Papatsenko et al., 1997; Huber et al., 1997; Chou et al., 1999). In dem Photorezeptor der Fliege ist eine G-Protein-vermittelte Phototransduktionskaskade verwirklicht, die ihresgleichen sucht. Drosophila-Photorezeptoren antworten auf einen Lichtreiz innerhalb einer Latenzzeit von lediglich 20 ms mit einer Membrandepolarisation (Ranganathan, 1991). Das zeitliche Auflösungsvermögen ist damit um einen Faktor 10 höher als das von Wirbeltierrezeptoren. Aktiviertes Galphag reagiert mit einer PhospholipaseC-beta (PLCB4), auch bekannt unter dem Namen NorpA (no receptor potential A). Die PhospholipaseC katalysiert den Abbau des membranständigen Phosphatidylinositols (PIP₂) zu Inositoltrisphosphat (InsP₃) und Diacylglycerol (DAG). Bei Limulus und anderen Invertebraten konnte gezeigt werden, dass InsP₃ ein Signal zum Freisetzen von Ca²⁺ aus internen Ca²⁺-Speichern ist. Bei Drosophila aber haben Mutationen des einzigen Rezeptors für InsP₃ (InsP₃ R) keinen Einfluss auf das Entstehen des Rezeptorpotentials, sodass weiterhin die Herkunft und die Regulation der Ca²⁺-getragenen Spannung unklar bleibt (Acharva, 1997).

Vor kurzem konnte gezeigt werden, dass bei *Drosophila* die "lichtsensitiven" Kanäle TRP und TRPL durch mehrfach ungesättigte Fettsäuren (*polyunsaturated fatty acids*, PUFAs) aktiviert werden können. Da bei *Drosophila* keine Arachidonsäure gefunden wurde, werden andere Fettsäuren, wie z. B. die Linolensäure, als *Second Messenger* der Erregung der Photorezeptoren diskutiert (Chyb, 1999). Das Öffnen von Ca²⁺-Kanälen führt zu einer Depolarisation der Photorezeptoren. Die Depolarisation wiederum führt zu einer Aktivierung des spannungsabhängigen Ca²⁺-Kanals Trp.

Abb. 3: Schematische Darstellung des derzeitig diskutierten Modells der Phototransduktionskaskade von Drosophila melanogaster. Nach Hardie (2001). Eingefügt (oben links): Querschnitt durch ein Drosophila-Rhabdomer bestehend aus eng gepackten Mikrovilli. (1) Photoisomerisation des Rhodopsins in Metarhodopsin (Rh M, kodiert durch das Gen ninaE) aktiviert Gq (2); Gq aktiviert die PhospholipaseC (PLC). Diese setzt PIP2 in InsP3 und DAG um. DAG könnte mehrfach ungesättigte Fettsäuren (PUFAs) über die Wirkung der DAG-Lipase freisetzen; (3) Zwei Klassen von lichtsensitiven Kanälen (die Gene *trp* und *trpl*) werden durch unbekannte Mechanismen aktiviert. Diverse Komponenten der Kaskade werden durch ein Gerüstprotein (*scaffolding protein*, INAD) zu einem Signalkomplex (*signaling complex*) koordinierend zusammengefügt (4).

1.4 Das Transkriptom

Der Begriff Proteom wurde 1994 als ein sprachliches Äquivalent zu dem bestehenden Konzept des Genoms ins Leben gerufen. Ein Proteom beschreibt den kompletten Satz von Proteinen, die zu einem bestimmten Zeitpunkt in einer Zelle oder einem Gewebe existiert. Proteomik ist der Versuch, im großen Maßstab ein Proteom mit Hilfe der bestehenden technischen Möglichkeiten zu separieren und zu identifizieren. Das Genom ist die zu einem bestimmten Zeitpunkt in einer Zelle vorhandene gesamte Erbinformation, das Transkriptom ist entsprechend die Gesamtheit aller daraus übersetzten RNAs. Das Proteom entspricht dem tatsächlichen Proteinbestand einer Zelle, also den transkribierten mRNAs und bestimmt damit direkt Aussehen und Funktionen der Zelle durch Struktur- und Enzymproteine. Per Definition zählt demnach alles, das transkribiert wurde, zum Transkriptom, also auch rRNA, hnRNA und tRNA. Da über 90 % der RNA einer Zelle aus ribosomaler RNA besteht, die zusammen mit Proteinkomplexen die Ribosomen bildet, spielt auch das Transkriptom in Zusammenarbeit mit dem Proteom eine wichtige Rolle für den ablaufenden Stoffwechsel einer Zelle. Ein sehr wichtiger Teilschritt auf dem Weg zur Beschreibung des Transkriptoms ist das vollständige Isolieren der gesamten mRNA-Population aus einzelnen Zellen oder Geweben, bzw. aus Subarealen von Geweben, und das Umschreiben der sehr empfindlichen mRNA in cDNA, was zu so genannten cDNA-Bibliotheken führt.

1.5 DNA-Microarray-Technologie

Das zu Grunde liegende Prinzip der DNA-Microarray-Technologie ist der Prozess der Hybridisierung. DNA-Microarrays sind massiv parallele Versionen der bekannten Methoden Southern- und Northern-Blot, mit dem einzigen Unterschied, dass die Proben-DNA auf einer Oberfläche immobilisiert ist. Die zu überprüfende DNA/RNA (Ziel-DNA/RNA) kann auf unterschiedlichste Art und Weise markiert werden. Ist die Ziel-DNA/RNA mit Fluorophoren markiert, kann das Hybridisierungsereignis visualisiert werden, indem der Fluoreszenzfarbstoff mit Licht angeregt wird. Ein so genannter Array-Reader (Laserscanner) tastet die Oberfläche des Arrays (DNA-Chip) ab und misst die Intensitätswerte der Emission einzelner Punkte (Spots), abhängig von der Menge gebundener Ziel-DNA/RNA an der Probe-DNA, aus. Das Ganze ist also eine semiquantitative Detektion von individuellen Transkripten. Mittlerweile kann die Proben-DNA in µm-Abständen mit Robotern auf diversen Oberflächen immobilisiert werden -meistens auf Glas oder einer Membran- sodass es möglich ist, viele verschiedene Proben auf kleinster Fläche unterzubringen. Erstmals wurde die Technik von Schena et al. vorgestellt (1995). Die Probendichte ist abhängig von der derzeitigen Technik, die Anzahl der verwendeten Proben von der Kenntnis individueller Transkripte.

18

Genome wurden entschlüsselt für diverse Organismen, seien sie ein- oder mehrzellig, pflanzlicher oder tierischer Abstammung. Neben dem Genom des Menschen sind, um nur einige zu nennen, die Genome des Fadenwurms C. elegans, der Taufliege Drosophila melanogaster, der Maus Mus musculus, der Ackerschmalwand Arabidopsis thaliana und der Bäckerhefe Saccharomyces cerevisiae bekannt. Die gewonnenen Daten liegen in Form von Basensequenzen vor und sind den jeweiligen Chromosomen zugeordnet. Diese Informationen sind von jedermann aus öffentlich zugänglichen Datenbanken über das Internet abrufbar. Das Zeitalter der Genomik bescherte der medizinischen und biologischen Forschung damit eine unglaubliche Flut an Informationen, die allerdings zunächst einmal interpretiert werden muss. Welche Gene hat der Organismus, welcher Sequenzabschnitt codiert überhaupt ein Gen? Die Gene der Eukaryota weisen in der Regel allesamt eine Intron-Exon-Struktur auf. Demnach kann ein Gen für mehrere Transkripte codieren, entsprechend der Auswahl und Anordnung der Exone. Die hier angedeutete Möglichkeit des Spleißens ist eine posttranskriptionelle Modifikation und auch nur eine von vielen Möglichkeiten der differenziellen Genexpression. Genau hier aber offenbart sich die Achillesverse einer Genomdatenbank. Der Transkriptionsort im Organismus bestimmt das Translationsprodukt. Anhand der Genstruktur ist weder die tatsächliche mRNA-Sequenz noch das räumlich-zeitliche Muster der Expression oder die Abundanz zu erkennen. Die Ursachen für zell- und gewebespezifische Genexpression sind vielfältig und derzeit noch unzureichend bekannt. Auch haben epigenetische Faktoren Einfluss auf das Expressionsmuster. Das Genexpressionsmuster ist aber der eigentliche Schlüssel zum Verständnis für die physiologische oder funktionelle Leistung eines Gewebes oder einzelner Zellen in einem Organismus. Nur durch Genexpressionsprofile können Adaptationen auf variable Umweltkonditionen oder ganz generell, die molekulare Antwort auf äußere und innere Faktoren im großen Maßstab charakterisiert und analysiert werden.

Die DNA-*Microarray*-Technologie ist die Methode der Wahl bei der Untersuchung von differenzieller Genexpression, weil mit nur einem Experiment gleichzeitig Aussagen gemacht werden können über eine Vielzahl von Genen, bzw. über die Expression von Genen. Auf einem *Array* befinden sich manchmal tausende von unterschiedlichen DNA-Sequenzen. Die Proben werden mit definiertem Muster in äquivalenten Mengen auf die DNA-Chips aufgebracht und immobilisiert. Die aufgetragenen cDNAs sind aber in keinem Fall vollständige Transkriptkopien, sondern lediglich Repräsentanten für die

Gene, welche in einem speziellen Kontext untersucht werden sollen. Die Anzahl der *Spots* auf den *Microarrays* wächst stetig mit dem Voranschreiten der Produktionstechniken und mit der Anzahl der zur Verfügung stehenden Klone. Mit *Microarrays* werden pro Versuch und Zielgewebe parallel tausende von Transkripten bzw. deren Expressionsmuster analysiert. Es sei an dieser Stelle aber deutlich darauf hingewiesen: Mit einem *Array* können "nur" bekannte Gene analysiert werden.

1.6 Zielsetzung der Arbeit

Ziel dieser Doktorarbeit war die Identifizierung von Genen mit Bedeutung für die Signalverarbeitung im visuellen System der Taufliege *Drosophila melanogaster*. Dazu sollte das Transkriptom des visuellen Systems mit Hilfe der DNA-*Microarray*-Technik entschlüsselt werden. Für diese Untersuchungen werden die DNA-*Microarrays Drosophila* 7K Version 2 (D7KV2) des *Canadian Drosophila Microarray Centre* (CDMC) verwendet.

Das visuelle System ist ein hochkomplexes System mit der Funktion der Reiz-Erregungs-Transformation in den Photorezeptoren der Retina und der neuronalen Bildverarbeitung in den optischen Ganglien der Sehbahn. Das Prozessieren der visuellen Information vollzieht sich in hoch spezialisierten Geweben mit modularem Charakter. Besonders interessant erscheint dabei auch die informationstheoretische Betrachtungsweise, dass die Retina (als Eingangsschicht) der Lamina (der ersten neuronalen Verarbeitungsschicht) gegenübersteht. Vieles deutet darauf hin, dass es sich hierbei um eine Netzwerkstruktur mit modulierbaren Eigenschaften handelt.

In biologischen Systemen wird ein hoher Grad an Spezialisierung stets durch Kompartimente auf zellulärer Ebene oder durch den Zusammenschluss von unterschiedlichen Zellen zu Geweben erreicht. Das Nervensystem erreicht eine hohe funktionelle Anpassung durch das Ausbilden von Verarbeitungszentren. Jeder Sinnesmodalität ist ein spezifisches Areal zugeordnet, in der Reizqualitäten erzeugt werden. Das Nervensystem erreicht diese Spezialisierung nicht nur anatomisch und morphologisch, sondern auch durch den Gebrauch von diversen chemischen Botenstoffen, den Neurotransmittern und Neuropeptiden. Diese chemische Architektur ermöglicht eine deutliche Trennung der spezifischen Sinnesbahnen. Die Rhabdomere der Photorezeptoren auf Zellebene und die optischen Ganglien der Sehbahn auf neuronaler Ebene sind Musterbeispiele für das Prinzip der Spezialisierung. Eine funktionelle Anpassung an eine jeweilige Aufgabe wird immer durch hoch spezialisierte Proteine realisiert, das heißt aber auch, dass ausdifferenzierte Zellen oder Gewebe ihren eigenen Satz exprimierter Gene besitzen. Um genau diese differenziellen Gene zu identifizieren, wurde im Rahmen dieser Arbeit sehr viel Wert auf eine sinnvolle präparative Trennung einzelner Subsysteme der Verarbeitungseinheit visuelles System gelegt. Erstmalig sollte an der Taufliege *Drosophila melanogaster* der Versuch unternommen werden, Transkriptome von Modulen mit definierter Funktion des Sehprozesses zu entschlüsseln. Andersherum sollte es dann möglich sein, von der molekularen Ausstattung Rückschlüsse auf physiologische Relevanz der funktionellen Einheiten ziehen zu können.

Ein zweiter präparativer Ansatz sollte es ermöglichen, eine kleine Gruppe homogener Zellen der Lamina bezüglich ihrer molekularen Ausstattung zu charakterisieren. Durch das Gal4/UAS-System (Brand und Perrimon, 1993) sollte ektopisch GFP (*green fluorescent protein*) in L2-Zellen der Lamina-Monopolarzellen dirigiert werden, um diese dann mittels des FACS (*fluorescence activated cell sorting*) isolieren zu können. Das FACS ist in der medizinischen Forschung etabliert, wurde aber bei Insekten noch nie verwendet.

Ein großes methodisches Problem ergab sich aus der gewählten Strategie. Minimale Gewebemengen ergeben auch nur minimale Mengen mRNA. Es musste daher ein Weg gefunden werden, cDNA in ausreichender Menge zu amplifizieren, ohne das ursprüngliche Transkriptionsmuster der zu untersuchenden Gewebe/Module zu verändern, welches mit DNA-*Microarrays* entschlüsselt werden sollte.

Ein nicht unerheblicher Anteil des heutigen Wissensstands der modernen Biologie konnte nur durch das Forschen an Mutanten erarbeitet werden. Dieses wird schon dadurch deutlich, dass viele Gene den Namen der entsprechenden Mutation tragen. Ein großer Vorteil bei der Identifikation von Genen der visuellen Verarbeitung versprach die parallele Analyse des Transkriptoms der *Drosophila*-Mutante *sevenless*. Bei *sevenless* wird der Photorezeptor R7, wie der Name schon sagt, nicht gebildet. Diese Strategie wurde für sinnvoll gehalten, weil vermutet werden konnte, dass gerade das Expressionsprofil augenspezifischer Gene bei *sevenless* empfindlich gestört bzw. verändert ist. Insofern sollte ein Vergleich beider Transkriptionsmuster der Bewältigung der Aufgabenstellung dienlich sein.

Eine Schlüsselrolle im Prozess der Signalverarbeitung spielen die *ionotropen* und *metabotropen* Rezeptoren. Die Kenntnis über die Verteilungsmuster und die Expressionsprofile der einzelnen Mitglieder dieser großen Familie membranständiger Proteine, den "Antennen" der Neuronen für neuroaktive Substanzen, ist von Bedeutung für das Abschätzen der physiologischen Leistung, die in der Retina und in den optischen Ganglien erbracht werden können. Während die Verteilung von Neurotransmittern und Neuropeptiden in Insektengehirnen umfangreich und vielfältig dokumentiert wurde, ist das Wissen bezüglich der distinkten Rezeptoren oder deren Untereinheiten in diesen Geweben lückenhaft und unzureichend.

Schon zu Beginn der Doktorarbeit war bekannt, dass nur ein kleiner Teil aller bekannten und prospektiven *Drosophila*-Gene der Signaltransduktion auf den kanadischen DNA-Chips der Version 2 repräsentiert ist. Aus diesem Grunde sollte im Rahmen dieser Doktorarbeit ein DNA-Chip entworfen und hergestellt werden, der diese Lücke schließt.

2 Material und Methoden

2.1 Bezugsfirmen

Ambion, Henkelstrasse 15, D-65187 Wiesbaden Applied Precision, 121 High Street, Marlborough SN8 1LZ, UK Appligene Oncor, D-69120 Heidelberg Beckmann Instruments GmbH, D-80807 München Becton Dickinson GmbH, Tullastr. 8-12, D-69126 Heidelberg Bioform, D-90419 Nürnberg Biometra GmbH, D-37079 BioRad Laboratories GmbH, D-80939 München Biozym Diagnostik GmbH, D-31883 Hessisch Oldendorf Boehringer Ingelheim Bioproducts Partnership, D-69112 Heidelberg Carl Roth GmbH & Co., D-76185 Karlsruhe Corning Cable Systems GmbH & Co KG, 58093 Hilden Edge Bio Systems, 19208 Orbit Drive, Gaithersburg, MD 20879-4149, USA Eppendorf-Netheler-Hinz GmbH, D-22331 Hamburg Genomed GmbH, Wielandstrasse 28a, D-32545 Bad Oeynhausen Gibco BRL Life Technology GmbH, D-76339 Eggenstein Haereus Instruments GmbH, D-63450 Hanau Invitrogen, San Diego, CA, USA Kisker GbR, D-48543 Steinfurt Leica Mikrosysteme Vertrieb GmbH, D-64625 Bensheim Leybold Vakuum GmbH, Bonner Strasse 498, D-50968 Köln MBI Fermentas, D-68789 St.Leon-Rot Membra Pure, Reinstwasser, Am Kuemmerling 37a, D-55294 Bodenheim Merck KGaA, D-64271 Darmstadt Mo Bi Tec, Lotzestraße 22a, D-37083 Göttingen MWG-Biotech AG, D-85560 Ebersberg LEO (siehe Zeiss) PeqLab Biotechnologie GmbH, Am Weichselgarten 7, D-91058 Erlangen Pharmacia Biotech Europe GmbH, D-79111 Freiburg Promega GmbH, High-Tech-Park, D-68199 Mannheim Qiagen GmbH, D-40724 Hilden Quantifoil Micro Tools GmbH, Winzerlaer Str. 2a, D-7745 Jena

Roche, D-69112 Heidelberg RothGmbH,D-76185 Karlsruhe Sakura Finetek Inc, Torrance, CA 90501, USA Science Products GmbH, Hofheimer Starße 63, ??? Serva Feinbiochemica & Co. KG, D-69042 Heidelberg Sigma-Aldrich Chemie GmbH, D-82039 Deisenhofen Stratagene GmbH, D-69000 Heidelberg TaKaRa Bio Whittaker Europe, D-82024 Taufkirchen Trizol Reagent, Life Technologies GmbH, D-76339 Eggenstein Whatman, Springfield Mill, UK Zeiss, D-07745 Jena

2.2 Geräte

Standard-Gerätschaften sind nicht gesondert aufgeführt.

ArrayWorx Scanner	Applied Precision
BD FACSCalibur System	Becton Dickinson GmbH
Biofuge 13	Haereus
BioPhotometer	Eppendorf
Centrifuge 5415 D	Eppendorf
Corning Hybridisierungskammer	Corning
Dark Reader [™] (Model DR-45 M)	Mo Bi Tec
Gel-Dokumentation	MWG
Hybridisierungsofen (APT Line)	Biometra
Konfokales Laser-Scanning Mikroskop DM_IRBE	Leica
Robocycler Gradient 96	Stratagene
REM LEO 1525	LEO
Speed Vac SC 110	Savant
Stratalinker 1800	Stratagene
Vakuumpumpe Lyrovac GT2	Leybold Vakuum GmbH

2.3 Chemikalien

Chemikalien ohne einen entsprechenden Vermerk wurden von Merck (Darmstadt, D) bezogen. Standard-Gerätschaften sowie Einweg-Verbrauchsmaterialien werden nicht gesondert aufgeführt.

1-Methyl-2-Pyrrolidinon	Sigma
Agarose	Sigma
Alexa Dye	Mo Bi Tec
Aminoallyl-UTP	Ambion
Bactotrypton	Serva
BCIP	Roth
Bernsteinsäureanhydrid	Sigma
Borsäure	Roth
dNTP	MBI Fermentas
DEPC	Serva
EDTA	Serva
Ethanol	Roth
Ethidiumbromid	Sigma
Glycerol	Roth
I-Block	Tropix
Isoamylalkohol	Roth
Isopropanol	Roth
Lachssperma	Sigma
LB-Agar	Gibco BRL
LB-Medium	Gibco BRL
NBT	Roth
OCT	Sakura
Phenol	Roth
Polyethylenglycol	Sigma
SDS	Serva
Select Agar	Gibco BRL
SOB-Medium	Invitrogen
SYBER Gold	FMC Bio Products

Tris	Sigma
Triton X-100	Serva
Tween-20	Serva
ULTRAhyb	Ambion
Yeast Extract	Serva

2.4 Puffer, Medien und Lösungen

BCIP	50 mg/ml in Dimethylformamid
Blockierlösung	0,5% I-Block in Maleinsäurepuffer
DNA-Ladepuffer 6x	40% (w/v) Saccharose, 0,25% (w/v) Bromphenolblau,
	0,25% Xylencyanol
Drosophila-Ringer	182 mM KCl, 46 mM NaCl, 3 mM CaCl ₂ , 10 mM
	Tris/HCl ad 1Liter A. dest., pH 7,2 mit 1 N HCl einstellen,
	autoklavieren
LB-Agar	32 g LB Agar (Lennox L Agar) ad 1L A. dest.,
	autoklavieren
LB-Medium	20 g LB (Lennox L Broth Base) ad 1L A. dest.,
	autoklavieren
Maleinsäurepuffer	23,31g Maleinsäure, 17,53g NaCl, 16g NaOH-Pellets in
	ca. 1,9 L A. bidest. lösen, pH auf 7,5 einstellen und auf
	2 L auffüllen
MOPS	400 mM MOPS, 100 mM Natriumacetat, 20 mM EDTA
NBT	75 mg/ml in 70% Dimethylformamid
Nipaginlösung	1 g Nipagin in 10 ml 50% Ethanol lösen
PBS pH 7.4	140 mM NaCl, 2,7 mM KCl, 10 mM Na ₂ HPO ₄ , 1,8 mM
	KH ₂ PO ₄
PBS pH 9.5	140 mM NaCl, 10 mM Na ₂ PO ₄
Reaktionspuffer	100 mM Tris/HCl pH 9,5, 100 mM NaCl, 50 mM MgCl ₂ ,
	0,1% Tween, sterilfiltrieren mit 0,45 µl Filter (Schaeren-
	Wiemers, 1993)

RNA Ladepuffer	2,88 ml deionisiertes Formamid, 0,32 ml 20X MOPS,	
	1,0 ml Formaldehyd, 0,72 ml DEPC H_2O , 0,02%	
	Bromphenolblau, 0,02% Xylencyanol	
SOB-Medium	30,7 g SOB Medium (Invitrogen) ad 1L A. dest.,	
	autoklavieren	
SSC 20x	3 M NaCl, 0,3 M Trinatriumcitrat x 2H ₂ O, ad 1L A. dest.,	
	pH 7 mit 25% HCl einstellen	
TAE 50x	2 M Tris, 0,5 M Essigsäure, 50 mM EDTA, pH 7,5	
TBE 10x	108 g Tris, 55 g Borsäure, 40 ml 0,5 M EDTA, pH 8 mit	
	HCl einstellen, ad 1L A. dest	
TE	10 mM Tris/HCl, 1 mM EDTA, pH 8,0	

2.5 Gebrauchsfertige Reagenziensysteme (Kits)

Jetstar Plasmid Mini Kit	Genomed
Jetquick Gel Extraction Spin Kit	Genomed
Jetquick PCR Purification Spin Kit	Genomed
MEGAscript	Ambion
Perfect RNA, Eukaryotic, Mini Kit	Eppendorf
QIAGEN PCR Cloning Kit	Qiagen
Trizol [®]	Gibco BRL

2.6 Enzyme

Entsprechende Puffer wurden stets vom Hersteller bezogen und nach Anleitung eingesetzt.

Superscript [™] II ⁺	Invitrogen
Taq-Polymerase	Appligene
Pwo-Polymerase	PeqLab
RNaseOut	Gibco BRL
T7 RNA Polymerase	Ambion
SP6 RNA Polymerase	Ambion

2.7 Oligonukleotide (Primer)

Für das *Primer*-Design wurde die Software Medusa verwendet. Alle verwendeten *Primer* wurden bei Invitrogen bestellt. 5'-Primer werden als *sense*-Primer, 3'-Primer als *reverse-Primer* bezeichnet. Die für eine PCR-Amplifikation benötigte Zusammenstellung von zwei sequenzspezifischen *Primern*, bestehend aus einem *sense*- und einem *reverse-Primer*, wird als *Primer*-Kombination bezeichnet.

2.7.1 Genspezifische sense- und reverse- Primer (GSSP/GSRP)

Für die Herstellung des Signaltransduktions-Chips (STDCs) wurden diverse Proben-DNAs aus *CapFinder*-cDNA oder aus EST-Klonen mit der PCR amplifiziert. Sequenzen für kodierende Bereiche von Genen der Wahl wurden der Genomdatenbank des BDGP entnommen. *Primer*-Kombinationen wurden so ausgewählt, dass die erzeugten PCR-Fragmente im Schnitt eine Länge von 500 bp (150 bis 1000 bp als untere und obere Grenze) aufwiesen. Die abgeleiteten *Primer* sind in der Regel 18-24 bp lang, weisen ein GC-Gehalt von 20-80 % auf und haben Schmelztemperaturen zwischen 57 und 65 °C.

Die Sequenzen für die Versuche mit *E. histolytica* und *E. dispar* wurden einer Datenbank des NCBI entnommen.

2.7.2 Primer für die CapFinder-cDNA-Synthese

CapFinderB1rG:	5'-GAGAGAACGCGTGACGAGAGATCGACArGrGrG-3'
CapFinder II:	5'-GAGAGAACGCGTGACGAGAGACTGACAG-3'

Oligo-dT I: 5'-bio-ACTCTATGAGAATTCGATGAGCGATCTG(T)₂₅G/A/C-3' Oligo-dT II: 5'-ACTCTATGAGAATTCGATGAGCGATCTG-3'

OdT-T7 III:

5'-bio-GAGAGCGAGCCACTAATACGACTCACTTAGGGAGAGCGCCCGCAA TACGACTAGG(T)₂₅ A/C/G-3'

OdT-T7 IV: 5'-bio-GGGAGAGCGGCCGCAATACGACTAGG -3'

CF-SP6rG:

5′- GAGAGAATTTAGGTGACACTATAGAATATGCTGATGGACGCGTGAACA rGrGrG-3′

CF-SP6-PCR:

5'- GAGAGAATTTAGGTGACACTATAGAATATGCTGATGGACGCGTGAACA-3'

SP6 -PCR: 5'- GAATATGCTGATGGACGCGTGAACAG-3'

2.8 Versuchstiere

2.8.1 Entamoeba histolytica und Entamoeba dispar

Trophozoiten des humanpathogenen Protozoons *Entamoeba histolytica* und der verwandten Art *Entamoeba dispar* wurden über Frau Dr. Iris Bruchhaus vom Bernhard-Nocht-Institut für Tropenmedizin (Hamburg) bezogen. Durch Zentrifugation in Falconröhrchen wurden die Zellen pelletiert und nach Abnahme des Kulturmediums in Trizol aufgenommen. Das Isolieren der RNA erfolgte nach Protokoll des Herstellers (Trizol Reagent).

2.8.2 Fliegenstämme

WT Canton-S	Dieser Fliegenstamm wurde freundlicherweise von					
	Prof.	Dr.	Heisenberg	(Uni	Würzburg)	zur
	Verfüg	gung g	estellt.			
21D-GAL4	Dieser Fliegenstamm wurde freundlicherweise von					
	Prof.	Dr.	Heisenberg	(Uni	Würzburg)	zur
	Verfüg	gung g	estellt.			
sev	Dieser	· Flieg	enstamm wur	de freu	ndlicherweise	von
	Prof. Dr. Pflugfelder (Uni Mainz) zur Verfügung					
	gestell	t.				

Die *Drosophila* 6966 P{w[+mC]-UAS-Cameleon.2.2.1}76-Linie stammt aus dem Bloomington *Drosophila* Stock Center.

2.9 Haltung und Zucht von Drosophila

Die unterschiedlichen Fliegenstämme wurden gut von einander isoliert in Mini-Life-Stopfen Gläsern (Bioform, 50mm x 100mm oder 35mm x 80mm) gehalten, welche zu ~1/4 mit Aufzuchtnährmedium gefüllt waren. Das Umsetzen von mit Stickstoff betäubten adulten Fliegen in neue Futtergläser erfolgte nach 1-2 Wochen. Die günstigste Aufzuchttemperatur liegt bei 25 °C (Miller, 1950); die relative Luftfeuchtigkeit sollte mindestens 50-60 % betragen.

Aufzuchtmedium nach Bicker (pers. Mitteilung):

840	ml	Wasser
60	ml	Rübensirup
60	ml	Mehl
8,4	g	Select Agar
24,7	g	Hefeextrakt od. Pepton
5	ml	Propionsäure
20	ml	Nipagin (1 g Nipagin/ 10 ml 50% EtOH)

Die Ingredienzen werden unter ständigem Rühren in kochendem Wasser gelöst bis die Masse gut homogenisiert ist. Propionsäure und Nipagin als Schutz gegen Milben und Pilze werden erst kurz vor dem Erkalten zugegeben. Die Zuchtgläser werden mit dem Nahrungsbrei zu \sim 1/4 ausgegossen und sofort mit Stopfen verschlossen.

2.10 Fluorescence activated cell sorting (FACS)

Um das Transkriptom einer neuronalen Zellpopulation des visuellen Systems der Taufliege charakterisieren zu können, sollten lebende L2-Zellen aus der Lamina adulter Fliegen isoliert und mit Hilfe des FACS separiert werden. FACS ist eine spezielle Methode der Durchflusszytometrie. Die Durchflusszytometrie ist eine Technik, mit der gleichzeitig eine Vielzahl physikalischer Eigenschaften von Partikeln in einer Flüssigkeit durch einen Laserstrahl gemessen und analysiert werden können. Erfasst werden dabei die relative Größe, Granularität und Fluoreszenz der Partikel, bei denen es sich in der Regel um Zellen handelt. Aufgrund festgelegter Eigenschaften können so Zellpopulationen gezielt aus einem inhomogenen Gemisch dissoziierter Zellen aus einer Nährlösung isoliert und in einer separaten Fraktion angereichert werden. Der FACS-Vorgang wurde durchgeführt von Frau Vivianne Welge, Serviceabteilung FACS-Analytik, am Institut für Immunologie, Universitätsklinikum Hamburg-Eppendorf. Verwendet wurde das BD FACSCalibur System, Becton Dickinson GmbH.

2.11 Ektopische Expression von GFP in L2-Neuronen der LMCs

Lebende, GFP-exprimierende L2-Zellen der Lamina adulter Fliegen sollten mit Hilfe des FACS in einer Nährlösung angereichert werden. Dazu musste zunächst durch das Gal4/UAS System (Brand und Perrimon, 1993) die GFP-Expression in den L2-Zellen einer Effektorlinie aktiviert werden. In Tieren der P{w[+mC]- UAS-Cameleon.2.2.1}76 Linie ist die Transkription des *gfp* unter die Kontrolle eines artfremden Transkriptionsfaktors Gal4 gestellt, welcher aber nicht in dieser Linie vorhanden ist. Gal4 wiederum wird in einer Treiberlinie, vermittelt durch einen zellspezifischen Promotor, in distinkten Zellen oder Geweben abgeschrieben. Werden Treiber- und Effektorlinien gekreuzt, wird in Tieren der F1-Generation lokal begrenzt der Transkriptionsfaktor translatiert und sorgt so für die exklusive ektopische Expression des GFP. Als Treiberlinie wurde 21D-Gal4 gewählt. Das Gal4-Expressionmuster ist über die gesamte larvale Entwicklungsphase einer Taufliege nicht zellspezifisch, wird aber in adulten Organismen über einen Promotor 21D, der nicht genauer charakterisiert ist, ausschließlich in den L2-Neuronen der Lamina transkribiert (Heisenberg, M., Universität Wüzburg, Lehrstuhl für Genetik, persönliche Mitteilung).

Abb. 4: Schematische Darstellung des Kreuzungsschemas zur Erzeugung transgener Tiere mit exklusiver, ektopischer Expression von GFP in Lamina-Monopolarzellen des Typs L2. Gekreuzt wurde die 21D-Gal4-Linie mit der P{w[+mC]- UAS-Cameleon.2.2.1}76-Linie.

Für die Kreuzungen werden jungfräuliche Weibchen der Treiber- oder Effektorlinie (F0-Generation) benötigt. Deshalb wurden vereinzelte Puppen kurz vor dem Schlupf in je ein Falconröhrchen überführt. Die Tiere sollten schon als adult zu erkennen sein. Bei dem Transfer dürfen die Puparien nicht beschädigt werden. Für ausreichende Temperatur und Luftfeuchtigkeit ist zu sorgen. Geschlüpfte Weibchen wurden in ein Aufzuchtglas zu Männchen der jeweils anderen Linie gesetzt. Waren Eier auf dem Substrat abgelegt, wurde die F0-Generation aus dem Aufzuchtglas entnommen. Nicht präparierte transgene Tiere wurden mit Stickstoff betäubt, aus den Gläsern entfernt und autoklaviert. Optische Loben von Fliegen mit ektopischer GFP-Expression in den L2-Zellen der Lamina wurden präpariert, die L2-Zellen mit dem FACS separiert und aus den gewonnenen Zellen wurde RNA isoliert.

2.12 Gefriertrocknen von Drosophila nach Fujita

In einem Erlenmeyerkolben wurden zu 70 ml Aceton 6 g Na₂SO₄-Anhydrit gegeben und in flüssigem Stickstoff gekühlt, bis das Aceton zu ²/₃ gefroren war (Fujita et al., 1987). Dann wurden die Tiere betäubt und dazugegeben. Der Kolben wurde mit Parafilm abgedeckt (Achtung Explosionsgefahr!) und 10 bis 14 Tage bei –25 °C gelagert, bis die Tiere getrocknet waren. Einzelne Tiere wurden entnommen (Erlenmeyer auf Eis) und nach Wahl der Gewebe entsprechend präpariert. Die Proben können problemlos bis zur RNA-Isolierung in 0,5 ml Eppendorf Reaktionsgefäßen im Kühlschrank aufbewahrt werden.

2.13 Präparation

Fliegen, die präpariert werden sollten, wurden durch das Einleiten von Stickstoff in die Zuchtgläser betäubt. In der Regel wurden dabei 10-15 Fliegen beiderlei Geschlechts verwendet. Präparationen erfolgten stets unter zu Hilfenahme eines Binokulars (WILD/Heerbrugg) bei 25-50facher Vergrößerung.

2.13.1 Retina- und Laminagewebe

Für diese Art der Präparation wurden 10-15 Gefriergetrocknete Fliegen (s. 2.12) ohne Beachtung des Geschlechts verwendet. Dieses *Drosophila*-Gewebe ist komplett wasserfrei und hat eine styroporartige Konsistenz. Das Öffnen der Kopfkapsel erfolgte von dorsal mit zwei Feinpinzetten; die Kutikula konnte dann unproblematisch beiseite geklappt werden. In den meisten Fällen haftet die Retina dann samt Lamina der Cornea an. Die Lamina ist als weißes Oval zentral innerhalb der roten Retina zu erkennen. Durch Anstoßen der Lamina mit einer Pinzette ist diese leicht von der Retina abzutrennen. Danach wurde sie in ein 0,5 ml Eppendorf Reaktionsgefäß transferiert. Nach vorsichtigem Zerreißen der Cornea konnte auch die Retina eingesammelt werden.

2.13.2 L2-Neuronen der Lamina

Um L2-Neuronen der Lamina mit dem FACS isolieren zu können, wurden die optischen Loben transgener Tiere (s. 2.11) aus der Kopfkapsel herauspräpariert (s. 2.13) und als Vorbereitung für eine FACS-Analyse (s. 2.10) homogenisiert. Die Retinae wurden sorgsam entfernt. Die Loben wurden nach der Entnahme aus der Kopfkapsel in ein 1,5 ml Eppendorf Reaktionsgefäß mit L15-Medium überführt. Nach Beendigung der Präparation werden die Gewebe ca. 5 min bei 3000-4000 U/min zentrifugiert und das überstehende Medium abgenommen. Das Dissoziieren erfolgt mit Hilfe von 1 mg Enzym-Mix (Collagenase/Dispase) pro 1 ml L15-Medium (persönliche Mitteilung Bicker, G., Universität Hannover). Das Protokoll verläuft hiernach folgendermaßen: Inkubation für 45-60 min bei RT, ca. alle 15 min aufschütteln. Zentrifugieren ca. 5 min bei 3000-4000 U/min, Medium abnehmen und 3x mit 200µl L15-Medium waschen. In einem kleinen Volumen L15-Medium aufnehmen $(10-15\mu l)$ und mit einer 10 μl Pipette vorsichtig trituieren, bis die Lösung milchig ist und keine Zellklumpen mehr zu erkennen sind. Aufnehmen in 100µl L15-Medium. Kontrolle im Durchlichtmikroskop; die Zellen müssen vereinzelt sein. Auf Eis zum FACS. Nach dem FACS wurden die Zellen in einem 50 ml Falconröhrchen. 15 min bei 2500 U/min (4 °C) zentrifugiert. Überstand abnehmen und in 1 ml L15-Medium plus 10% FBS resuspendieren, in 1,5 ml Eppendorf-Reaktionsgefäß überführen. 5 min bei 2000 U/min zentrifugieren. Überstand abnehmen und in 350µl Lysis-Puffer des entsprechenden RNA-Isolierungs-Kits (Qiagen) aufnehmen und resuspendieren. Auf Eis transportieren und sofort mit der RNA-Isolierung beginnen (s. 2.15.2.3).

2.14 Mikroskopie

2.14.1 Konfokale *Laser-Scanning* Mikroskopie

Als Kontrolle der ektopischen GFP-Expression in transgenen Tieren der F1-Generation und zur Dokumentation wurde das Gehirn der Fliegen herauspräpariert (s. 2.13) und mit dem Konfokalen *Laser-Scanning* Mikroskop *gescannt*. Konfokale *Laser-Scanning* Mikroskopie ermöglicht es, optische Schnitte durch ein fluoreszenzmarkiertes Objekt anzufertigen. Licht außerhalb der Schärfeebene wird dabei ausgeblendet. Als Anregungsquelle diente ein Krypton-Argon-Laser. Dieser stellt drei Spektrallinien zur Verfügung: blau (488 nm), grün (568 nm) und rot (647 nm). Da in der transgenen *Drosophila*-Linie (s. 2.11) cameleon-GFP (Ex: 488 nm / Em: 511 nm) als Fluorochromträger in den L2-Zellen der LMCs exprimiert wurde, musste mit blauem Licht angeregt werden. Die Bilderserien wurden als eine Stapeldatei auf der Festplatte des angeschlossenen Rechners gespeichert und untersucht. Verwendet wurde das Konfokale *Laser-Scanning* Mikroskop DM_IRBE der Firma Leica.

2.14.2 Rasterelektronenmikroskopie (REM)

Als Kontrolle der Präparation und zur Dokumentation wurden Retina- und Laminaproben (s. 2.13.1) unter Hochdruck mit Gold bedampft und mit dem Rasterelektronenmikroskop analysiert. Verwendet wurde dabei das REM LEO 1525 der Firma LEO.

Die Arbeiten wurden unter Anleitung von Frau Renate Walter, Abteilung Elektronenmikroskopie des Zoologischen Instituts durchgeführt.

2.15 Molekularbiologische Methoden

2.15.1 Molekularbiologische Standardmethoden

Alle molekularbiologischen Methoden wurden, soweit nicht anders spezifiziert, nach Standardprotokollen durchgeführt (Sambrook *et al.*, 1989).

2.15.2 Extraktion von Nukleinsäuren

2.15.2.1 PCR-Produkt Reinigung

Die Reinigung von PCR-Produkten erfolgt stets mit Hilfe des Jetquick PCR Purification Spin Kit (Genomed) nach Angaben des Herstellers.

2.15.2.2 Plasmid-DNA-Präparation

Die Isolierung von Plasmid-DNA aus Klonen wurde stets mit dem Jetstar Plasmid Mini -Kit von Genomed nach Angaben des Herstellers durchgeführt.
2.15.2.3 Isolierung von Gesamt-RNA

Gesamt-RNA aus *Drosophila*-Gewebe wurde grundsätzlich mit dem Qiagen RNA-Pure System isoliert und nach Angaben des Herstellers angewendet. Zur Kontrolle wurde in Einzelfällen anschließend die Konzentration der RNA photometrisch bestimmt. Bei geringer Gewebemenge wurde auf eine Quantifizierung verzichtet. Die isolierte RNA wurde für 5 min bei 65 °C denaturiert, auf Eis gestellt und komplett zur *CapFinder*cDNA-Synthese (s. 2.15.5) eingesetzt.

2.15.2.4 Isolierung von Nukleinsäuren aus Agarosegelen

Die Agarose-Gelelektrophorese wurde zur Analyse und präparativen Isolierung von DNA oder RNA eingesetzt. DNA-Proben wurden in 1%-igen Agarosegelen in 1X TBE-Puffer getrennt. Bei einer präparativen Gelelektrophorese wurde der Agarose kein Ethidiumbromid zugefügt. Das Gel wurde in diesem Fall nach der Elektrophorese mit 1-2 ml SYBR-Gold (1/10000 verdünnt in 1X TBE) gefärbt. Die visuelle Darstellung der aufgetrennten Fragmente erfolgte unter Blaulicht-Anregung mit Hilfe des *Dark Readers* (Model DR-45 M). Für die elektrophoretische Auftrennung von RNA wurde ein 1%-iges RNA-Agarosegel eingesetzt. Hierfür wurde 1 g Agarose in 89,25 ml DEPC-H₂O gelöst, kurz aufgekocht und auf 60 °C abgekühlt. Anschließend wurden 5 ml 20X MOPS Puffer, 5,75 ml Formaldehyd sowie 0,6 µl/ml Ethidiumbromid zugesetzt und in die Gießkammer gefüllt. Die Auftrennung der RNA erfolgte in 1X MOPS Puffer.

Eine Elution von DNA-Fragmenten aus präparierten Gelstücken erfolgt stets mit Hilfe des Jetquick Gel Extraction Spin Kits (Genomed) nach Angaben des Herstellers.

2.15.3 Bestimmung von DNA- und RNA-Konzentrationen

Die Konzentration von Nukleinsäuren wurde mit einem Spektralphotometer gemessen und in Abhängigkeit der definierten Schichtdicke *d* der verwendeten Küvette bestimmt. Ein Absorptionswert von $E_{260} = 1$ bei einer Schichtdicke von d = 1 cm entspricht einem Gehalt von 50 µg/ml doppelsträngiger DNA oder 40 µg/ml einzelsträngiger RNA. Zusätzlich wurde der Proteingehalt bei einer Wellenlänge von 280 nm gemessen. Der Quotient aus E_{260}/E_{280} stellt einen Wert für die Reinheit der Lösung dar und sollte zwischen 1,7 und 2,0 liegen.

2.15.4 PCR (Polymerase Chain Reaction)

Die PCR ist eine *in vitro*-Methode zur enzymatischen Synthese spezifischer DNA-Sequenzen zwischen zwei Oligonukleotid-*Primern*. Als Vorlage (*template*) dient DNA. Die Methode ist beschrieben in "PCR - Grundlagen und Anwendungen der Polymerase-Kettenreaktion", (Gassen, Sachse, Schulte, Gustav Fischer Verlag, 1994). Die Reaktionen erfolgten in einem Robocycler Gradient 96 mit Deckelheizung. Überschichten der PCR Ansätze mit Mineralöl entfällt damit.

2.15.5 CapFinder-cDNA-Synthese (nach Schramm et al., 2000)

Die gesamte CF-cDNA-Synthese ist ein mehrstufiger Prozess, der sich in separaten Teilschritten vollzieht:

- Kopplung von biotinylierten OligodT-*Primern* an Avidin-gekoppelte Polystyren-Partikel (Kisker).
- Isolieren von poly(A)⁺mRNA an OligodT-*Primer*-gekoppelte Polystyren-Partikel.
- cDNA-Synthese an der Festphase (an Polystyren-Partikel).
- LA-PCR-Amplifikation (bei Bedarf, nähere Definition s.u.).

Das Amplifizieren mittels einer PCR-Reaktion erfolgt stets als Vorbereitung für die cRNA-Synthese (s 2.15.8) und die Subtraktive Hybridisierung (s. 2.15.9). Für eine 5'-RACE (s. 2.15.6) ist die Amplifikation nicht zwingend notwendig.

Kopplung von biotinylierten OligodT-Primern an Avidin-gekoppelte Polystyren-Partikel

Das Isolieren von poly(A)⁺-mRNA aus Gesamt-RNA erfolgt mittels eines OligodT-T7-*Primers*, der an Avidin-gekoppelte Polystyren-Partikel gebunden wird und aus diesem Grunde am 5'-Ende biotinyliert ist. Am 3'-Ende trägt er einen OligodT-Anker (ein Wobble bestehend aus A, G, oder C). Für die Kopplung an die Partikel sind immer der OligodT-T7 I oder der OligodT-T7 III zu verwenden. Der OligodT-T7 III ist mit einer Erkennungssequenz für die T7-RNA-Polymerase vor den 25 Thyminresten ausgestattet. Partikel mit einer Bindungskapazität für annähernd 5 pmol Biotin werden in 1X BiotinBindungspuffer an 1 pmol OligodT-*Primer* gekoppelt. Der Biotin-Bindungspuffer ist ein Hochsalzpuffer, der die Bindung des Biotins an das Streptavidin ermöglicht. Die Kopplung des *Primers* an die Partikel erfolgte nach Angaben des Herstellers (Kisker-Biotech).

Biotin-Bindungspuffer (2X)

10	mМ	Tris/HCl pH 7,5
2	mМ	EDTA pH 8,0
2	М	NaCl

Das Inkubieren erfolgt in 1,5 ml Reaktionsgefäßen für 15-30 min bei 37 °C. Anschließend werden die Partikel-gekoppelten *Primer* durch Zentrifugation pelletiert, der Überstand verworfen und das Pellet -die verbleibenden Partikel mitsamt den gebundenen *Primern*- in sterilem TE-Puffer gereinigt. Dieser Vorgang muss mindestens 2 mal wiederholt werden, um ungebundene *Primer* zu entfernen. Die gekoppelten *Primer* werden in TE-Puffer resuspendiert und können so für das Isolieren der mRNA eingesetzt werden. Das hierfür verwendete Volumen TE-Puffer sollte annähernd dem Volumen der eingesetzten *Primer*-Lösung entsprechen.

Isolieren von mRNA an OligodT-Primer-gekoppelte Polystyren-Partikel

Das Vorgehen richtet sich nach der RNA-Konzentration. Wurde mit geringsten Gewebemengen gearbeitet, musste die isolierte Gesamt-RNA komplett eingesetzt werden (s. 2.15.2.2, nicht quantifizierte RNA-Konzentration). In der Regel gilt aber 1 µg mRNA für 10 pmol OligodT-*Primer*, was 1-2 µl der Partikel-gekoppelten *Primer* entspricht. Die Bindung der mRNA an die Partikel erfolgt unter Standardkonditionen (Dynal, 1995). Anders als nach dem Protokoll der Firma Dynal verbleiben die Partikel nach der so modifizierten Bindungsreaktion an der mRNA. Eingefügt wurde ein zusätzlicher Waschschritt mit cDNA-Waschpuffer. Alternativ kann auch der Synthesepuffer des Herstellers der Reversen Transkriptase verwendet werden. Folgende Puffer werden die für die Bindung der mRNA an die Partikel benötigt:

2X mRNA-Bindungspuffer (mRNABP)

- 20 mM Tris/HCl pH 7,5
- 2 mM EDTA
- 1 M LiCl

mRNA-Waschpuffer (mRNAWP)

10	mМ	Tris/HCl pH 7,5
1	mМ	EDTA
0,15	М	LiCl

cDNA-Waschpuffer

50 mM Tris/HCl pH 8,3

75 KCl

Die Gesamt-RNA wird in einer entsprechenden Menge (s. 2.15.2.3) sterilem Wasser aufgenommen, für 10 min bei 65 °C inkubiert und mit der gleichen Menge mRNABP versetzt. Zu diesem Ansatz werden 1-2 µl der an die Partikel gekoppelten OligodT-*Primer* hinzugefügt. Um eine spezifische Bindung an die *Primer* zu gewährleisten, erfolgt eine 10-15 minütige Inkubation bei 37 °C. Anschließend werden die Partikel zentrifugiert und 2X mit mRNA-Waschpuffer (mRNAWP) und 1X mit cDNA-Waschpuffer gewaschen. Dieser Vorgang sollte auf Eis stattfinden, um ein Abloslösen der mRNA von den Partikel während des Waschvorgangs zu verhindern. Sowohl das Binden der mRNA als auch das Waschen kann in sterilen Minisäulen erfolgen. Dies beschleunigt den gesamten Vorgang signifikant und reduziert die Verluste an Partikeln.

cDNA-Synthese an der Festphase (Erststrang-Synthese)

Eingesetzt wird die Partikel-gekoppelte mRNA, die zuvor durch Zentrifugation pelletiert werden muss. Die Reverse Transkiptase beginnt ihre Syntheseaktivität direkt an dem Oligo(dT)-*Primer*.

cDNA-Synthese (Endvolumen 20 µl)

5 X cDNA-Synthese Puffer	4	μl
DTT (100 mM)	2	μl
dNTPs (10 mM)	2	μl
$MnCl_2(40mM)$	1	μl
BSA (1mg/ml)	1	μl
RNaseOut (40 U/µl)	0,5	μl
Superscript RT II ⁺ (200 U/µl)	1	μl
Aqua dest.	7,5	μl

Der Ansatz wird komplett auf die pelletierten Partikel gegeben und diese durch vorsichtiges auf- und abpipettieren wieder in Lösung gebracht. Die cDNA-Synthese erfolgt nun für 45-60 min bei 42 °C. Erst danach wird 1µl des entsprechenden *CapFinder-Primers* (CapFinderB1rG oder CF-SP6rG1 (10pmol/µl)) hinzugegeben und nochmals für 15 min inkubiert. Nach dem Synthesevorgang werden die Partikel einige Male mit TE-Puffer gewaschen und in 20 ml TE-Puffer resuspendiert. Die cDNA kann nun direkt für die 5-RACE eingesetzt oder einer LA-PCR-Amplifikation unterzogen werden.

LA-PCR-Amplifikation:

Das Amplifizieren der *CapFinder*-cDNA mit der LA-PCR (*long and accurate* PCR; nach Barnes, 1994) wird aus folgenden Gründen durchgeführt:

- ds-cDNA ist über längere Zeiträume stabil
- die verwendeten RNA-Polymerasen benötigen doppelsträngiges DNA-template
- sie dient der Anreicherung von full-length-cDNAs

Die PCR-*Primer* unterscheiden sich von den cDNA-Synthese-*Primern*. Es gibt zu jedem cDNA-Synthese-*Primer* einen PCR-*Primer*. Zum Einsatz kommen die entsprechenden Paare der unten stehenden OligodT-T7-und *CapFinder-Primer*. Die PCR wird immer mit Taq/Pwo (Verhältnis der Einheiten 20 :1) durchgeführt.

cDNA-Synthese PCR-Primer

OligodT-Primer:

OligodT-T7 I	mit	OligodT-T7 II
OligodT-T7 III	mit	OligodT-T7 IV

CapFinder-Primer:

CapFinder B1rG	mit	CapFinderB2
SP6rG1	mit	SP6- PCR oder CF-SP6-PCR

Als *template* für die LA-PCR dient die *CapFinder*-cDNA. In der Regel werden 1-2 μ l verwendet.

LA-PCR (Endvolumen 50 µl):

10 X PCR-Puffer			5	μl
MgCl ₂ (25mM)			5	μl
dNTPs (10mM)			1	μl
OdT-T7-Primer (10pmol/µl)			1	μl
CF-Primer (10pmol/µl)			1	μl
cDNA			1-2	μl
Taq/Pwo (5U/µl)			0,2	μl
A. dest.				ad. 50 µl
Die Cycling-Parameter :				
1 min	95	°C		1X
20 s	95	°C		
20 s	55	°C		variabel (8-20 Zyklen)
8 min	68	°C		

Die Zyklenzahl muss experimentell ermittelt werden. Auf einem Agarosegel getrennte cDNA sollte gerade eben als DNA-Schmier sichtbar sein. Die Reaktion sollte nicht bis zur Sättigung gelangen (distinkte Banden müssen erkennbar sein).

Erfolgreich amplifizierte cDNA (aus 4-10 Amplifikationen zusammengeführt) wird mit Hilfe des Jetquick PCR Purification Spin Kits nach Angaben des Herstellers gereinigt. Dieser Schritt ist essentiell für die Güte der nachfolgenden Reaktionen, da sonst freie, biotinylierte *Primer* die cRNA-Synthese negativ beeinflussen. Außerdem führt das Vorhandensein freier *Primer* zur Bildung unspezifischer Produkte bei der T7-Polymerase Reaktion (Baugh et al., 2001).

An diesem Punkt ist die cDNA-Synthese abgeschlossen und das Produkt kann für zahlreiche Anwendungen eingesetzt werden.

Das Koppeln längerer DNA-Populationen erfordert deutlich längere Inkubationszeiten (in Abhängigkeit von der Länge der cDNA) von 1h bis über Nacht.

2.15.6 5°-RACE

(Rapid Amplification of cDNA Ends; nach Schramm et al., 2000)

Die 5'- RACE ist eine auf der PCR basierenden Strategie zur Analyse der vollständigen 5'-Enden einer cDNA. Als *template* kann jede *CapFinder*-cDNA eingesetzt werden. Zwei alternative Wege können beschritten werden:

- 1. 5'-RACE ausgehend von Erststrang-cDNA
- 2. 5'-RACE ausgehend von amplifizierter cDNA

Die PCR-Strategie richtet sich nach der Länge der zu erwartenden Transkripte:

- 1. Standard PCR für Transkripte < 1 kbp
- 2. LA-PCR für Transkripte > 1kbp

Die *Primer*-Kombination für die 5'-RACE PCR besteht immer aus dem CapFinderII *Primer* (s. 2.7.3) und einem abgeleiteten genspezifischen *Reverse Primer* GSRP (s. 2.7.1) oder CF-SP6-PCR/SP6-PCR mit dem GSRP. Als Vorlage für die PCR werden 1-2 µl *CapFinder*-cDNA eingesetzt.

2.15.7 Klonierung von DNA-Fragmenten

Für die Herstellung des Signaltransduktions-Chips wurden diverse Proben-cDNAs (s. 2.17.2.2) aus *CapFinder*-cDNA mit der PCR amplifiziert. PCR-Amplifikate wurden aus Agarosegelen isoliert (s. 2.15.2.4) und mit dem QIAGEN PCR Cloning Kit nach Angaben des Herstellers kloniert.

2.15.8 cRNA-Synthese

Als *template* für eine cRNA-Synthese wird stets eine amplifizierte *CapFinder*-cDNA verwendet, welche mit dem *Primer* CF-SP6rG geschrieben wurde. Die cRNA wurde mit MEGAscript (Ambion, nach Protokoll des Herstellers) synthetisiert. Dieser Schritt

war notwendig, um ausreichende Mengen Hybridisierungsmaterial in Form von Nukleinsäuren zu produzieren. Die cRNA wurde dann eingesetzt für die Subtraktive Hybridisierung, als *template*-Ersatz für mRNA bei der Hybridisierung des D7KV2 und als fluoreszenzmarkierte Ziel-RNA bei der Hybridisierung des STDC. Hierbei wurde dann Aminoallyl-UTP (aaUTP) bei dem Syntheseschritt in die cRNA eingebaut, was die Kopplung des Fluoreszenzfarbstoffes Alexa Fluor ermöglicht. Verwendet wurden 4-10 amplifizierte cDNAs eines Gewebetyps, die allesamt über PCR-Purification-Säulen nach Vorschrift des Herstellers gereinigt wurden (s.2.15.2.1). Auf eine Kopplung an Partikel wurde verzichtet. Die *template*-cDNA wurde mit Ethanol gefällt und getrocknet. Danach wurde die cDNA bei RT in 4 μ l A. dest und 2 μ l 10X Reaktionspuffer wieder in Lösung gebracht. Alle verwendeten Materialien sollten nach Möglichkeit RNase-frei sein. Für den Einbau von aaUTP wurde das Ambion-Protokoll wie folgt modifiziert:

Ansatz cRNA-Synthese mit aaUTP:

10X Reaktionspuffer	2	μl
Enzym-Mix	2	μl
ATP/CTP/GTP (je 50mM) je	3	μl
UTP (50mM)	1,5	μl
aaUTP (50mM)	1,5	μl
A. dest	4	μl

Der Enzym Mix enthält die DNA-abhängige RNA-Polymerase und einen RNase-Inhibitor. Mit SP6-Polymerase wird *sense*-cRNA, mit der T7-Polymerase wird *antisense*-cRNA synthetisiert. Die *sense*-cRNA entspricht der 5'-3' Orientierung der mRNA. Der Ansatz wurde für 8 h bei 37 °C in einen Hybridisierungsofen gestellt, um eine Kondensation von Wasser an den Deckeln der Reaktionsgefäße zu vermeiden. Anschließend an die cRNA-Synthese erfolgte die Reinigung des Produkts mit Hilfe der Qiagen RNA-Pure Systems (s 2.15.2.2). Die RNA wird in zwei Durchgängen in 50 µl A. dest. (RNase-frei, pH überprüfen, auf 50 °C angewärmt) eluiert. 5 µl werden entnommen und die Konzentration photometrisch bestimmt. Die Volumina der zwei cRNA-Proben werden vereint, in der SpeedVac auf 2-7 µl eingeengt und mit A. dest. auf 10 µl aufgefüllt.

2.15.9 Subtraktive Hybridisierung

Zur Vorbereitung der Subtraktiven Hybridisierung wurde CapFinder-cDNA unter Verwendung des Primers CF-SP6rG für Gewebe A (Treiber) und Gewebe B (Subtraktor) geschrieben (s. 2.15.5). Pro Gewebe werden 2 erfolgreich amplifizierte cDNAs als template verwendet, um cRNA zu synthetisieren: sense-cRNA von TreibercDNA mit SP6-Polymerase, antisense-cRNA von Subtraktor-cDNA mit T7-Polymerase (s. 2.15.8). Nach der Konzentrationsbestimmung werden Treiber- und Subtraktor-cRNA im Verhältnis 1:10 (1 µg : 10 µg) in einem 1,5 ml Reaktionsgefäß vereint, gefällt und getrocknet. Das cRNA-Pellet wird in 5 µl A. dest. eluiert und mit ULTRAhyb auf ein Volumen von 20 µl aufgefüllt. Der Reaktionsansatz wird dann für 2 h bei einer Temperatur von 56 °C in einen Hybridisierungsofen gestellt. Nach der Hybridisierung wird der Reaktionsansatz mit A. dest. auf 200 µl aufgefüllt. Die cRNA wird gefällt und getrocknet. Das komplette cRNA-Pellet wird dann für die reverse Transkription eingesetzt. Verwendet wurde die Superscript[™]II⁺ von Invitrogen nach Angaben des Herstellers. Als Primer dient der OligodT-T7 III. Diese cDNA kann wieder als template für eine LA-PCR mit der Primer-Kombination CF-SP6-PCR/ OligodT-T7 IV verwendet (s. 2.15.5) werden.

2.16 Datenanalyse

2.16.1 Genom- und genspezifische Daten

Die Fülle der anfallenden Datenmengen aus den einzelnen Genomprojekten ist ohne Computer nicht zu bewerkstelligen. Datenbanken und Analyseprogramme sind über das Internet zugänglich. Die wichtigsten Quellen waren:

- National Center for Biotechnology Information, NCBI
- Berkeley Drosophila Genome Project, BDGP
- Genome Annotation Database of Drosophila, GadFly des BDGP
- LocusLink des NCBI

Für Homologievergleiche wurde die *Alignment*-Software *Blast* (Altschul et al., 1997) eingesetzt. Die Datenbank wurde unter dem Betriebssystem Linux der SuSe-Distribution 8.0 als *Standalone WWW Blast Server* auf einem PC implementiert.

2.16.2 Microarray-Daten

Fluoreszenz, vermittelt durch das Hybridisierungsereignis mit Fluorophoren markierter Ziel-DNA/RNA mit Probe-DNA auf den *Microarrays*, wird mit einem *Microarray*-Lesegerät (*Reader*) eingelesen. Unter Laserlicht definierter Wellenlänge emittiert jeder Hybrid Licht in Intensitätswerten abhängig von der Hybridisierungsdichte und hebt sich dadurch mehr oder weniger stark vom Hintergrund ab. Intensitätswerte auf dem gesamten *Array* werden durch den Reader digitalisiert und in numerischen Werten codiert. Da jede DNA-Probe festgelegte x,y-Koordinaten auf dem *Array* besitzt, kann jeder Probe ein charakteristischer Intensitätswert auf der digitalen Photographie des *Arrays* zugeordnet werden. Die Photos in Form von Graphikdateien und die numerischen Intensitätswerte in Form einer geordneten Tabelle wurden mit einer Demo-Version des Computerprogramms GenePix Pro 5.0 unter dem Betriebsystem Windows XP ausgewertet. Das Analysepotential der Software dieser Version ist nur für einen sehr kleinen Teil des vollständigen Datensatzes freigeschaltet.

2.17 DNA-Microarrays

2.17.1 Drosophila 7K Version 2 (D7KV2)

Verwendet wurden die DNA-*Microarrays Drosophila* 7K Version 2 des *Canadian Drosophila Microarray Centre* CDMC. Sämtliche Informationen über diesen Chip sind über das Internet abrufbar unter: http://142.150.8.217 oder www.flyarrays.com. Das Projekt wurde durch eine Kooperation mit Prof. Dr. Ian Meinertzhagen, *Dalhousie University, Halifax, Nova Scotia*, Kanada, ermöglicht.

2.17.2 Signaltransduktions-Chip (STDC)

Ein großer Teil der für die Signaltransduktion relevanten Gene von *Drosophila* ist nicht auf dem D7KV2-Chip vorhanden. Damit ein möglichst detailliertes Transkriptom

erstellt werden kann, sollte im Rahmen der vorliegenden Arbeit ein universell einsetzbarer Signaltransduktions-Chip (STDC) konzipiert und hergestellt werden. Die Proben-DNA wurde auf Objektträger aus Glas (*Slides*, QMT Amino Slides der Firma Quantifoil) auf einer aminomodifizierten Oberfläche immobilisiert. Die Nukleinsäure bindet dabei nichtkovalent über das Zucker-Phosphodiester-Band auf den *Slides*. Das Auftragen der Proben (*Spotting*) wurde an der Universität Würzburg, Institut für Hygiene, Abteilung Prof. Dr. Frosch, maschinell und nach Angaben des Herstellers (Quantifoil) durchgeführt. Nachfolgend aufgeführt werden die Quellen sämtlicher auf dem STDC vorhandenen Proben-DNAs. Diese sind namentlich einer Tabelle "Übersichtstabelle STDC Chip" dem Anhang zu entnehmen. Alle erforderlichen Amplifikationsschritte wurden mit speziell abgeleiteten *Primer*-Kombinationen (s. 2.7) mit der PCR (s. 2.15.4) durchgeführt. Die dazu notwendigen *Primer* werden auf Grund ihrer Vielzahl nicht explizit erwähnt.

2.17.2.1 EST-Klone

Für die Bereitstellung der DNA-Proben, die auf dem STDC vertreten sein sollte, wurden 118 EST-Klone von ResGen (Invitrogen) käuflich erworben. Ausgewählt wurden diese ESTs aufgrund höchster Homologie zu verifizierten oder potenziellen Genen der Signaltransduktion. Obwohl die meisten EST-Kandidaten einer Datenbank des BDGP zu entnehmen sind, wurden alle Sequenzen von Kadidaten einem Sequenzvergleich (s. 2.16.1) unterzogen und durch ESTs mit höherer Homologie ersetzt. Diese Vorgehensweise war nötig, da die Datenbanken nicht immer dem aktuellsten Stand entsprechen.

2.17.2.2 Klone mit potenziellen Genen der Signaltransduktion

"Potenzielle Gene" sind durch Computerprogramme prognostizierte Gensequenzen. Diese Sequenzen sind auf der chromosomalen *Drosophila*-DNA vorhanden, korrespondieren aber nicht in jedem Fall mit bekannten EST-Klonen bzw. wurden noch nicht aus cDNA-Bibliotheken isoliert. Die Gensequenzen werden von Computerprogrammen, z.B. *GeneFinder*, als Kandidaten vorhergesagt, weil sie entsprechende Strukturmerkmale tragen und bekannten homologen Genen anderer Organismen entsprechen. cDNAs der Kandidaten wurden mit genspezifischen *Primern* (s.2.7.1) aus der *CapFinder*-cDNA amplifiziert (s. 2.15.5) und kloniert (s. 2.15.7).

2.18 Hybridisierung von DNA-Microarrays

2.18.1 Hybridisierung des D7KV2

Pro zu untersuchendem Gewebe wurden 2 x 80 µg *sense*-cRNA geschrieben (s. 2.15.7, Achtung! Mit UTP, kein aaUTP), in der SpeedVac in 0,2 ml Reaktionsgefäßen lyophilisiert und per Luftfracht zur Serviceabteilung des CDMC versendet. Vor Ort wurde die *sense*-cRNA durch reverse Transkription in Erststrang-cDNA umgeschrieben. Das Markieren der cDNA mit Fluorophoren (*Labeln*) und die Hybridisierung der *Slides* erfolgte nach Protokoll des CDMC (*RNA direct labeling and hybridisation*). Das Protokoll und eine Liste der verwendeten Materialien (*Materials list for direct labeling*) sind abrufbar unter http://www.flyarrays.com/downloads.html.

2.18.2 Hybridisierung des STDC

Pro zu untersuchendem Gewebe wurden 40 µg sense-cRNA geschrieben (s. 2.15.7).

Kopplung von Alexa an cRNA:

Ein Aliquot Farbstoff wird in 4 μ l DMSO aufgenommen (Aktivierung). Dazu werden 10 μ l Probe gegeben (mit mindestens 5 μ g Aminoallyl-markierter cRNA). Die Kopplungsreaktion wird durch Zugabe von 7 μ l 0,3 M Na-Tetraborat pH 8,5 (mit HCl einstellen) gestartet und für 30 min bei RT inkubiert. Nicht alle Farbstoffmoleküle werden gebunden. Um diese zu entfernen, werden 4,5 μ l einer 4M Hydroxylamin-Lösung (pH 8,5) hinzugegeben (*quenchen*), gefolgt von einer 15 minütigen Inkubation bei RT.

Folgende Puffer sind möglichst frisch anzusetzen bzw. nach dem Sterilfiltrieren in Aliquots einzufrieren:

0,3 M Natrium-Tetraborat (Decahydrat) pH 8,5

4,5 M Hydroxylamin pH 8,5

Auch diese Probe wird mit Hilfe des Qiagen RNA-Pure Systems gereinigt, und es wird ein 5 μ l Aliquot zur Quantifizierung entnommen. Die restliche Probe wird dann in der SpeedVac bei niedriger Temperatur (Deckel mit Alufolie bedeckt) auf ca. 5 μ l eingedampft (s. 2.15.7)

Hybridisierungslösung:

5 μl Heringsspermien-DNA (10mg/ml), 5 μl Hefe-tRNA (10 mg/ml) und 1 μl OdT-T7 I *Primer* werden mit 100 μl Hyb-Lösung vermengt. Diese Lösung dient auch zur Prähybridisierung (1 h bei 50 °C). Die 5 μl Probe werden mit 85 μl dieser Hyb-Lösung vermengt, auf 65 °C gebracht (denaturiert) und dann auf den Chip gegeben (Inkubation bei 50 °C).

Der STD-Chip bedarf einer Vorbehandlung, die ihn hybridisierungsfähig macht. Um die noch reaktiven Oberflächen zu inaktivieren, werden die *Arrays* mit folgender Lösung inkubiert. (alle Puffer sollten steril filtriert werden, um Kontaminationen zu verringern):

Ausspüllösung (Rinsing Solution):

2,5 ml 10% SDS + 247,5 ml A. bidest.

Amino-Blockierungslösung:

5 g Bernsteinsäureanhydrid + 315 ml 1-Methyl-2-pyrrolidon + 35 ml 0,2 M NaBorat-Puffer (Na-Borat) pH 8. NaBorat-Puffer erst kurz vor dem Gebrauch hinzufügen. Borsäure mit NaOH auf pH 8 einstellen.

Sofort nach dem Lösen des Bernsteinsäureanhydrids muss der NaBorat-Puffer hinzugegeben werden.

Inkubation für 1 X 15 min in Amino-Blockierlösunglösung bei RT.

X 10-20 s in Ausspüllösung bei RT
X 20 s in A. bidest. bei RT

1 X 3 min in kochendem Wasser

Trocknen der Slides (sofort), dann Abpusten mit steriler Druckluft.

Die Hybridisierung erfolgt über Nacht bei 50 °C in einer Corning Hybridisierungskammer. Nach dem Hybridisieren erfolgen die Stringenzwaschungen.

Stringenzwaschungen:

1 X 10 min in 2 X SSC, 0,1% TritonX-100 bei RT 1 X 10 min in 2 X SSC bei RT 1 X 10 min in 0,2 X SSC bei RT 2 X 10 min in 0,2 X SSC bei 50 °C

Trocknen der Slides (Abpusten).

Die hybridisierten *Slides* müssen vor Licht jedweder Herkunft geschützt werden, da die Fluorophore sonst ausbleichen. *Slides* wurden mit dem *ArrayWorx Scanner* der Firma Applied Precision am Botanischen Institut der Universität Hamburg *gescannt*. Das *Scannen* konnte nach einer Einweisung von Dr. Stefan Scholten selbstständig durchgeführt werden.

3 Ergebnisse

3.1 Methodenoptimierung

3.1.1 Präparation und Gewebegewinnung

Das Transkriptom des visuellen Systems der Taufliege Drosophila m. sollte mit Hilfe DNA-*Microarravs* analysiert werden. Um aus den zu erstellenden von Transkriptionsprofilen oder einzelnen Transkripten den untersuchten Geweben eine Funktion oder eine physiologische Relevanz zuordnen zu können, wurde bei der Herangehensweise an die Aufgabenstellung ein besonderer Wert auf präparative Trennung von funktionellen Einheiten gelegt. Das Prozessieren der visuellen Information vollzieht sich bei Insekten, wie bei allen höheren Organismen, in einem mehrstufigen Prozess, beginnend mit der Phototransduktion in den Photorezeptoren R1-8 der Retina (Re) und eine anschließende neuronale Auswertung der Erregungsmuster in besonderen Gehirnarealen. Die Sehbahn der Insekten gliedert sich in die drei optischen Loben Lamina (La), Medulla (Me) und den Lobula-Komplex. Eine besondere Herausforderung bestand demnach darin, so weit wie möglich einen präparativen Zugang zu den entsprechenden Verarbeitungsschichten oder deren zellulären Bestandteilen zu bekommen.

Abb. 5: Horizontalschnitt durch den Kopf von Drosophila m. (schematische Darstellung) Angedeutet sind die Zentren der visuellen Verarbeitung im Kopf der Fliege und ihre anatomische Lage. In der Retina liegen die Photorezeptoren (nicht gezeigt). Links, schwarz umrandet: eine schematische Ausschnittsvergrößerung der Lamina. Die Zellkörper der Lamina-Monopolarzellen liegen am distalen Rand der Lamina (mit Pfeilen markiert). Die Axone durchziehen die Lamina und terminieren in unterschiedlichen Schichten der Medulla.

Retina und optische Loben sind inhomogene Gewebe, bestehend aus diversen unterschiedlichen Zelltypen. Die Abb. 5 bietet einen schematischen Überblick über die anatomische Lage der zu präparierenden Areale im Kopf der Taufliege. Es sollte auch eine distinkte Zellpopulation, L2-Zellen der Lamina-Monopolarzellen (LMC) isoliert und das Transkriptom dieser analysiert werden. Zur Verdeutlichung der Lage der LMCs innerhalb der Lamina ist eine schematische Ausschnittvergrößerung der Lamina links im optischen Lobus abgebildet. Zur Präparation der Gewebe wurden gefriergetrocknete Exemplare von *Drosophila*-Fliegen verwendet (s. 2.12). Das Isolieren von Lamina-Monopolarzellen erfolgte mit Hilfe des FACS (*Fluorescence activated cell sorting*, s. 2.10) aus transgenen *Drosophila*-Tieren, die eine ektopische GFP-Expression in den L2-Neuronen aufweisen (s. 2.11).

3.1.1.1 Retina- und Laminagewebe aus gefriergetrockneten Taufliegen.

Verwendet wurden die Fliegenstämme WT Canton-S und *sev*. Die Arbeiten wurden bei RT im Labor durchgeführt. Außer den üblichen Maßnahmen zur Einhaltung der Sterilität wurden keine besonderen Vorkehrungen für das Präparieren getroffen. Pro Fliegenstamm wurden bis zu 20 Tiere aus dem Aceton genommen (s. 2.10) und -getrennt nach Stämmen- für einige Minuten in einer Präparationsschale zum Abdampfen des Acetons unter dem Abzug gelagert. Mit Feinpinzetten wurden die Köpfe der Tiere vom Thorax abgetrennt und in Blockschälchen gesammelt. Unter dem Binokular wurden die Kopfschalen geöffnet und die Gewebe präpariert (s. 2.13.1).

Retina- und Laminagewebe wurden getrennt voneinander in 0,2 ml Reaktionsgefäßen gesammelt, bis eine Anzahl von je 10 -12 Geweben pro Ansatz erreicht war. Medulla und der Lobula-Komplex konnten von mir nicht sauber voneinander getrennt werden und wurden deshalb nicht präpariert. Das Abstreifen der kleinen, wasserfreien Gewebe an dem Reaktionsgefäß erwies sich als der schwierigste Teil der Präparation. Auf Grund von elektrostatischen Aufladungen konnte es dazu kommen, dass Gewebe von der Pinzette sprang und nicht mehr gefunden ward. Nach Beendigung der Präparation wurden die Reaktionsgefäße mit den Geweben für einige Minuten zentrifugiert. Zum Transfer der Gewebe wurden 50 μ l des Lysis-Puffers (s. 2.15.2.3) in die Gefäße gegeben. Gewebe, welches noch an der Gefäßwand haftete, wurde ebenfalls durch den Lysis-Puffer abgespült. Durch vorsichtiges auf- und abpipettieren in einer 100 μ l Pipettenspitze wurde das Gewebe homogenisiert. Das Probenmaterial wurde dann für

die RNA-Isolierung nach Angaben des Herstellers weiter verarbeitet. Wegen der geringen Gewebemengen konnte die RNA-Konzentration nicht bestimmt werden. Die RNA wurde mit der *CapFinder*-cDNA-Synthese in cDNA umgeschrieben (s. 2.15.5). Verwendet wurde dazu der *Primer* CF-SP6rG. Zur Dokumentation der Präparation wurden gefriergetrocknete Retinae und Laminae vom Stamm WT Canton-S mit dem Rasterelektronenmikroskop (REM) mikroskopiert (s. 2.14.2). Bis auf das Bedampfen mit Gold wurden die Gewebe verwendet wie präpariert. Die Arbeiten am REM wurden unter Anleitung von Frau Renate Walter aus der Arbeitsgruppe Keyser im Hause des Zoologischen Instituts und Zoologischem Museum durchgeführt.

Das Retina-Präparat behält trotz der Behandlung mit Aceton die typisch rote Färbung bei. In der Regel konnten vollkommen unversehrte Gewebe präpariert werden. Die Kristallkegel fehlen oder sind zerstört. Ebenso offensichtlich ist, dass die Axone der Photorezeptoren nicht durch die gefensterte Membran ragen. Die Abb. 6. zeigt eine gefriergetrocknete Retina bei einer Vergrößerung um den Faktor 577.

Die Lamina, wie auch die anderen neuronalen Gewebe des optischen Lobus und das Gehirn, sind nach der Behandlung mit Aceton weiß und haben eine styroporartige Konsistenz. Bei der Präparation haftete die Lamina in den meisten Fällen der Retina an. Das Abtrennen der Lamina von der Retina konnte durch vorsichtiges Rütteln mit der Pinzette an der Retina bewerkstelligt werden.

Auch das Laminapräparat war aus diesem Grund in den meisten Fällen unversehrt zu präparieren. Unter dem Binokular betrachtet sieht die Lamina aus wie ein Schild. Sie ist oval, und die Seite, mit der die Lamina mit der Retina Kontakt aufnimmt, sieht aus wie ein roter Gipsabdruck der gefensterten Membran. Die Eintrittsstelle der Photorezeptoraxone in die Lamina wurde nicht genauer dokumentiert. Den Übergang von der Lamina zur Medulla bildet, anatomisch betrachtet, das erste optische Chiasma. An dieser Kontaktfläche, welche die Lamina zur Medulla hat, fehlen -analog zu der Situation an der Kontaktstelle zwischen Retina und Lamina- die zu erwartenden Axone, welche dort das Chiasma ausmachen. Die Abb. 7 dokumentiert dieses deutlich. Das Laminagewebe kann -ebenso wie die Retina- als Ganzes präpariert werden.

Abb. 6: "Innenansicht" eines Retinapräparates von *Drosophila melanogaster*. Zu sehen ist hier eine 577-fache Vergrößerung einer gefriergetrockneten, mit Gold bedampften Retina der Taufliege im REM. Im Zentrum der kreisförmigen, konkaven Struktur sind deutlich Poren in der gefensterten Basalmembran zu erkennen. Die Membran selber ist ein Abschlussgewebe an der Kontaktstelle zur Lamina. Die Axone der Photorezeptoren, welche durch die Poren der Membran hindurch der Lamina entgegenwachsen, sind "abgebrochen". An der Abbruchkante links unten sind deutlich Aggregate von eng stehenden Ommatidien zu erkennen. Durch die Art der Präparation wurde die Cornea von der Retina getrennt. Zerstört sind deshalb auch die Kristallkegel, zu erkennen am unteren Rand der REM Aufnahme.

Abb. 7 (folgende Seite): Laminapräparat von Drosophila m. Zu sehen ist hier eine 3500-fache Vergrößerung einer gefriergetrockneten, mit Gold bedampften Lamina der Taufliege im REM. Die traubenförmigen Strukturen am unteren Bildrand sind zum Teil Lamina-Monopolarzellen. Zur besseren Orientierung ist oberhalb der REM Aufnahme eine Übersichtsskizze der Lamina (links, Horizontalschnitt) und eine Aufsicht auf die Lamina (rechts, REM, 910-fache Vergrößerung). Angedeutet sind die Somata der LMCs L1-5. Die Lage der Lamina im optischen Lobus von Drosophila melanogaster ist der Abb. 5 zu entnehmen.

Retina- und Laminagewebe konnten jeweils als Einheit sauber präpariert werden. Aus beiden Geweben wurde RNA isoliert (s. 2.15.2.3) und mit der CF-cDNA-Synthese in cDNA umgeschrieben (s. 2.15.5). Verwendet wurde der *Primer* CF-SP6rG.

3.1.1.2 Isolierung von L2-Neuronen aus der Lamina mit Hilfe des FACS

Innerhalb der Lamina adulter Fliegen machen die Axone der Photorezeptoren R1-6 präsynaptischen Kontakt auf die LMCs. Das Erregungsmuster wird durch L1- und L2-Neuronen "aufsummiert" und auf zwei diskrete Verarbeitungsebenen -L2 und L1- in die Medulla übertragen. Das Ziel war es, intakte L2-Neuronen aus dem optischen Lobus einer transgenen Linie zu isolieren, um so das Transkriptom dieser Neuronenpopulation beschreiben zu können.

Durch das Kreuzen einer Treiber- und einer Effektorline nach dem Gal4/UAS System (Brand und Perrimon, 1993) wurde eine transgene *Drosophila*-Linie erzeugt, in welcher GFP (*green fluorescent protein*) exklusiv in den L2-Neuronen im optischen Lobus exprimiert wird. Diese Linie wurde L2-Linie genannt. Als Treiberlinie diente 21D-Gal4, als Effektorlinie P{w[+mC]-UAS-Cameleon.2.2.1}76 (s. 2.11). Das GFP diente als Selektionsmarker für eine FACS-Analyse. Mit dem FACS können GFP exprimierende Zellen aus einem inhomogenen Zellgemisch isoliert werden (s. 2.10). Dazu mussten optische Loben aus Tieren der L2-Linie präpariert und möglichst schonend homogenisiert werden, um so die Integrität der Zellen zu erhalten (s. 2.10).

Die GFP-Expression in der L2-Linie wurde stichprobenartig durch Untersuchung präparierter Loben mit dem Konfokalen *Laser-Scanning* Mikroskop überprüft (s. 2.14.1). Die Retina wurde bei der Präparation entfernt. Für die Untersuchung mit dem Mikroskop wurden die Präparate in *Drosophila*-Ringer überführt. Von fünf gescannten Loben waren fünf positiv, zeigten also die charakteristische Fluoreszenz des GFP in den L2-Neuronen. Die Abb. 8 zeigt das Ergebnis dieser Mikroskopie.

Zu sehen sind GFP exprimierende L2-Neuronen in der Lamina (Horizontalschnitt). Mittels eines L2spezifischen Promotors wurde GFP mit dem Gal4/UAS System (Brand und Perrimon, 1993) exklusiv in einer Subpopulation (L2) der Lamina-Monopolarzellen (LMC) ektopisch exprimiert. Zu sehen ist links ein Detailausschnitt einer Analyse mit dem Konfokalen Laser-Scanning Mikroskop. Die Retina wurde bei der Präparation entfernt. Der Pfeil markiert die Lage einer Gruppe von L2-Somata am distalen Rand der Lamina. Zur besseren Orientierung ist rechts eine Übersichtsskizze der Lamina abgebildet. Angedeutet sind die Somata der LMCs L1-5. L2 ist grün dargestellt. Die Lage der Lamina im optischen Lobus von D. melanogaster ist der Abb. 5 zu entnehmen. Als Vorbereitung für die FACS Analyse wurden die optischen Loben von 10 Gehirnen adulter Fliegen der L2-Linie präpariert. Die Retinae wurden so weit wie möglich entfernt. Die Zellen der Loben wurden durch einen Collagenase/Dispase-Verdau in L15-Medium für 45-60 min bei RT dissoziiert (persönliche Mitteilung Bicker, G., Tierärztliche Hochschule Hannover) und nach der Inkubation vorsichtig durch das Triturieren mit einer Pipette homogenisiert (s 2.13.2).

Dieses Zellgemisch wurde dem Prozess des FACS unterzogen. Der FACS-Vorgang wurde durchgeführt von Frau Vivianne Welge, Serviceabteilung FACS-Analytik, am Institut für Immunologie, Universitätsklinikum Hamburg-Eppendorf. Verwendet wurde das BD FACSCalibur System, Becton Dickinson GmbH. Als Kontrolle dienten optische Loben aus 10 Tieren der Linie WT Canton-S. Die Abb. 9 zeigt das Ergebnis zweier FACS-Analysen.

Abb. 9: FACS zum Isolieren von GFP-markierten Zellen aus Gehirnhomogenaten von Drosophila m. Jeder Punkt in den Graphen stellt ein Ereignis dar, wobei es sich bei diesen Ereignissen um Zellen mit bestimmten messbaren Eigenschaften (Granularität oder interne Komplexität, Größe der Zellen, Beschaffenheit der Zelloberfläche usw.) handelt. Von dem internen Analysesystem werden zunächst die Parameter dieser Zelleigenschaften erfasst und bewertet, um dann anhand der Parameter Zelltypen einer heterogenen Zellpopulation differenzieren zu können. Letztendlich kann eine zelluläre Subpopulation aufgrund von GFP-Aktivität detektiert (*gating*) und isoliert werden. Gezeigt werden die Analyse-Fenster aus zwei getrennten FACS-Vorgängen. Das *Gating* im Graphen links wird durch das Quadrat P3 symbolisiert. Bei dieser Subpopulation (blau dargestellt) handelt es sich mit hoher Wahrscheinlichkeit um GFP-exprimierende Neuronen der L2-Linie. Zum Vergleich rechts: Bei dem Wildtyp-Homogenat wurden keine Zellen als GFP-exprimierend erkannt.

Beim FACS werden Zellen in einer Flüssigkeit transportiert und durch einen Laserstrahl geführt. Jede Zelle oder jedes Zellaggregat erzeugt dabei eine individuelle charakteristische Lichtbrechung, aufgrund der bestimmte Eigenschaften wie Komplexität, Oberflächenbeschaffenheit Granularität. interne oder Zellgröße gleichzeitig abgeleitet werden können. Die Parameter dieser Eigenschaften ermöglichen die Differenzierung von Zelltypen einer heterogenen Zellpopulation, was dann zu einer Klassifizierung führt. Zellen, die zu einer vom Experimentator festgelegten Klasse gehören und GFP exprimieren, werden als solche erkannt und können isoliert werden. FACS selber ist ein technisch sehr komplizierter Vorgang und soll hier nicht genauer erläutert werden. Es wird sehr häufig in der Humanmedizin oder bei der Forschung an anderen Wirbeltieren angewendet. Für die Anwendung bei Insekten ist keine Literaturangabe nachzuweisen.

Durch das FACS wurden 4,4 % der Zellen aus dem Lobenhomogenat der L2-Linie isoliert. Die Negativkontrolle war erfolgreich: Es wurden keine Zellen isoliert. RNA wurde aus den L2-Zellen isoliert und mit der *CapFinder*-cDNA-Synthese in cDNA umgeschrieben.

3.1.2 CapFinder-cDNA-Synthese und 5'-RACE

Im Rahmen der vorliegenden Arbeit sollte eine Methode entwickelt und etabliert werden, um das Transkriptom des visuellen Systems der Taufliege *Drosophila melanogaster* charakterisieren zu können. Voraussetzung dafür war eine möglichst vollständige, repräsentative cDNA aus minimalen Gewebemengen als Ausgangspunkt zur Amplifikation aller exprimierten Gene. Für weiterführende Analysen, z.B. *in situ*-Hybridisierungen oder heterologe Expression, muss die vollständige Sequenz der Transkripte bekannt sein. Die zu erstellende cDNA sollte es ermöglichen, auf sogenannte *full-length*-Klone, also vollständige Transkipte, Zugriff zu haben, um möglichst einfach und praktikabel eine 5'- oder 3'-RACE (*Rapid Amplification of cDNA Ends*) durchführen zu können. Dafür wurde die Festphasen-cDNA-Synthese (Roeder, 1998) mit der sogenannten *CapFinder*-Methode kombiniert (Schramm et al., 2000).

Ergebnisse

Bei der Festphasen-cDNA-Synthese werden 5'-Biotin-modifizierte Oligo(dT)-*Primer* an poly(A)⁺-mRNA gebunden. Über eine Biotin/Streptavidin-Bindung kann die mRNA an Polystyren-Partikel gekoppelt und isoliert werden. Die so an Partikel gekoppelte mRNA dient der Reversen Transkriptase als *template* (Abb.: 10, Schritt 1). Die *CapFinder*-Methode bedient sich der hochspezifischen, intrinsischen Eigenschaft der MMLV (*Moloney murine Leukemia virus*) Reversen Transkriptase, beim Beenden der Transkription an der 7-Methylguanin-Kappe der *template*-mRNA einige Cytosinreste an das neu synthetisierte 3`-Ende der cDNA anzuhängen. Die Anzahl der angehängten Cytosinreste variiert zwischen zwei und vier Nukleotiden und zeigt eine Abhängigkeit von den gewählten Reaktionsbedingungen (Schmidt und Mueller, 1999).

Für eine komplementäre Basenpaarung ist dieser 3'-Überhang vollkommen ausreichend, so dass ein *CapFinder-Primer*, der an seinem 3'-Ende über die entsprechende Sequenz aus drei Guaninresten und einer zusätzlichen *Wobble*-Base verfügt, binden kann. Die Reverse Transkriptase setzt ihre Aktivität am *CapFinder* als neues *template* fort (*template switch*) und verlängert noch einmal das 3'-Ende der synthetisierten Erststrang-cDNA um eine Sequenz komplementär zur *CapFinder*-Sequenz (Matz *et al.*, 1999)(Schritt 2).

Schon diese Erststrang cDNA kann für eine 5'-RACE eingesetzt werden. Wenn nur geringste Mengen Ausgangsgewebe verwendet werden, muss die Erststrang-cDNA mit einer PCR amplifiziert werden. Für diesen Amplifikationsschritt wurde die LA-PCR (*long and accurate* PCR) gewählt (Barnes, 1994). Die für die PCR verwendeten *Primer* sind vom 5'-Ende her mit 28 Basen sequenzhomolog zum *CapFinder-* und dem Oligo(dT)-*Primer* (Schritt 3).

Durch die LA-PCR ist das Endprodukt selektiv mit *full-length*-cDNAs angereichert, weil durch die Wahl der *Primer* Artefakte, die bei herkömmlichen PCR Strategien durch Fehlpaarungen der *Primer* oder durch Kettenabbruch entstehen können, unterdrückt werden. Nach der PCR kann die biotinylierte cDNA erneut an Partikel gekoppelt (*Capture*) und gewaschen werden. Die voramplifizierte cDNA kann zur Konstruktion von cDNA-Bibliotheken verwendet werden oder als *template* für die Synthese von DNA-Proben bzw. für das 5'-RACE.

Abb. 10: Schematische Darstellung der CapFinder-cDNA-Synthese.

5'-Biotin-modifizierte Oligo(dT)-*Primer* werden an Avidin-gekoppelte Polystyren-Partikel gebunden. Mit den Partikeln wird mRNA isoliert und direkt an diesen wird die Erststrang cDNA-Synthese gestartet (1). Die intrinsische Aktivität der MMLV-RT fügt 2-4 dCs an das 3'-Ende der neu synthetisierten cDNA. An diese Region bindet das 3'-Ende des verwendeten *CapFinder-Primers* durch komplementäre Basenpaarung. Die Sequenz des *Primers* dient nun der RT als Vorlage (*template switch*). Das 3'-Ende der cDNA ist damit bekannt, weil komplementär zur Sequenz des *CapFinder-Primers*. Sind nur geringe Ausgangsmengen von mRNA vorhanden, kann die cDNA mit einer LA-PCR amplifiziert werden, indem die entsprechenden 5'- und 3'-*Primer* verwendet werden (2) und (3). Nach der PCR kann das biotinylierte Produkt erneut an Partikel gekoppelt (*Capture*) und gewaschen werden (4). Erststrang-cDNA oder voramplifizierte cDNA kann als *template* für das 5'-RACE eingesetzt werden. Das 5'- RACE ist eine auf der PCR basierende Strategie zur Analyse der vollständigen 5'-Enden einer cDNA. Generell stehen zwei Wege offen, um ein unbekanntes 5'-Ende zu identifizieren: Der erste geht von einer *CapFinder*-Erststrang-cDNA aus, die an Polystyren-Partikel gekoppelt ist. Mit einem 5'-Pimer, der -beginnend am 5'-Ende- mit 28 Nukleotiden sequenzhomolog mit dem *CapFinder-Primer* ist, und einem genspezifischen *Primer* kann mittels einer PCR das unbekannte 5'-Ende eines Transkriptes amplifiziert werden (s. Abb. 11, A). Als Alternative zur Erststrang-cDNA kann die Reaktion auch an einer voramplifizierten *CapFinder*-cDNA durchgeführt werden (s. Abb. 11, A). In beiden Fällen erhält man ein identisches Produkt.

Abb. 11: Schematische Darstellung der 5'-RACE Reaktion. Für eine 5'-RACE Reaktion kann entweder eine Erststrang-*CapFinder*-cDNA (A) oder eine PCR-amplifizierte cDNA (B) verwendet werden. Das 5-RACE wird durchgeführt mit einem genspezifischen *Reverse-Primer* (GSRP) und einem 5'-*Primer*, der mit 28 Nukleotiden sequenzhomolog zu den Nukleotiden des *CapFinder-Primers* ist (beginnend am 5-Ende). Das PCR-Amplifikat repräsentiert in beiden Fällen die 5-Region des untersuchten Gens. Die Enden des Amplifikats entsprechen der Sequenz bzw. der komplementären Sequenz des 5'- *Primers* und der des verwendeten GSRPs

Zur Überprüfung der hier vorgestellten 5'-RACE sollten 5'-Enden von bekannten Genen der Protozoen *E. histolytica* und *E. dispar* aus einer *CapFinder*-cDNA isoliert werden. Verwendet wurden Trophozoiten der humanpathogenen Protozoen *Entamoeba histolytica* und *Entamoeba dispar*, die von Frau Dr. Iris Bruchhaus vom Bernhard-Nocht-Institut für Tropenmedizin (Hamburg) bezogen wurden. Durch Zentrifugation in Falconröhrchen wurden die Zellen pelletiert und nach Abnahme des Kulturmediums in Trizol aufgenommen. Die Gesamt-RNA (10 μ g) wurde nach Protokoll des Herstellers (Trizol Reagent) isoliert. Die RNA wurde dann in *CapFinder*-cDNA umgeschrieben (s. 2.15.5). Verwendet wurde der *Primer* CapFinderB.

Die für das 5'-RACE verwendeten genspezifischen *Primer* (GSRP) wurden von bekannten Sequenzen abgeleitet (s. 2.7.1). Als 5'-*Primer* wurde der CapFinderII eingesetzt (s 2.7.3). Untersucht wurden 10 Gene, die für Cystein-Proteasen (6), für Thioredoxine (2) und für Disulfid Isomerasen (2) codieren. Zwei der Gene für Cystein-Proteasen (CP1 und CP112) wurden sowohl bei *E. histolytica* als auch bei der nah verwandten Art *E. dispar* analysiert. Hier wurden die GSRP derart gewählt, dass Amplifikate um die 900bp (CP1) und um die 1400 bp erwartet werden konnten.

Zunächst diente für alle 5'-RACE Versuche eine Erststrang-*CapFinder*-cDNA als *template* (s. Abb. 11, A). Sämtliche PCRs wurden nach Standardprotokollen durchgeführt (s 2.15.4). Nach Beendigung der Reaktionen wurden die PCR-Produkte auf 1%-igen Agarosegelen elektrophoretisch getrennt und durch interkalierendes Ethidiumbromid unter UV-Anregung sichtbar gemacht. Aufgetragen wurden je 5 μ l eines 50 μ l Ansatzes.

Die Ergebnisse sind in Abbildung 12 auf der folgenden Seite dargestellt. Die singulären Banden als Produkte der 5'-RACE entsprechen den 5'-Regionen der untersuchten cDNAs. Auf der linken Gelphotographie sind in Bahn 1 und 2 zwei Cystein-ProteasencDNAs, in Bahn 3 und 4 zwei Thioredoxin-cDNAs und in Bahn 5 und 6 zwei cDNAs von Protein-Disulfid-Isomerasen zu sehen. Alle Amplifikate haben die erwartete Länge. Die untere der zwei Banden in Bahn 5 ist ein PCR-Artefakt. Auf der rechten Gelphotographie werden in Bahn 1 und 3 cDNAs der Cystein-Protease CP1, in Bahn 2 und 4 cDNAs der Cystein-Protease CP112 gezeigt. Die 5'-Regionen in Bahn 1 und 2 stammen aus der Erststrang-cDNA von *E. histolytica*, die in Bahn 3 und 4 aus *E. dispar*.

Abb. 12: 5'-RACE Versuche mit unterschiedlichen Genen der Protozoen *E. dispar* und der humanpatogenen *E. histolytica*. Unter Verwendung des 5'-RACE Protokolls, wie in Abb. 12 B dargestellt, konnten diverse bekannte Gene des Protozoen *E. histolytica* nachgewiesen werden. Genspezifische *Reverse-Primer* (GSRP) konnten aufgrund der bekannten Sequenz der untersuchten Gene abgeleitet werden. Aus einer Kombination der 5'-*Primer* und GSRPs wurden die 5'-Regionen aus der *CapFinder*-cDNA amplifiziert. *Links*: In Bahn 1 und 2 getrennt korrespondieren zwei 5'-RACE Produkte mit den 5'-Regionen von Cystein-Proteasen-cDNAs, in Bahn 3 und 4 die von zwei Thioredoxin-cDNAs und in Bahn 5 und 6 die von zwei Protein-Disulphid-Isomerasen cDNAs. Die kleinere Bande in Bahn 5 ist ein PCR Artefakt, die nur bei Verwendung des GSRPs in der PCR-Reaktion auftritt. *Rechts*: 5'-Regionen der Cystein-Proteasen CP 1 (Bahn 1 und 3) und CP 112 (Bahn 2 und 4) wurden aus cDNA amplifiziert, die von den Amoeben *E. histolytica* (Bahn 1 und 2) und *E. dispar* (Bahn 3 und 4) angefertigt wurde. Die GSPRs wurden derart gewählt, dass Amplifikate um die 900 (CP 1, Bahn 1 und 3) oder ~ 1400 bp (CP 112, Bahn 2 und 4) erwartet werden konnten. Die 5'-RACE-Amplifikationen ergaben singuläre Banden. Die Identität der Produkte wurde durch Sequenzierung verifiziert.

Alle 5'-RACE-Experimente wurden mit einer amplifizierten *CapFinder*-cDNA wiederholt, führten aber zu identischen Ergebnissen und werden deshalb nicht gezeigt (s. Abb. 11 B). Sowohl aus Erststrang- als auch aus voramplifizierter cDNA konnten 5'-Enden isoliert und durch Sequenzierung verifiziert werden. Die untersuchten Gene werden allesamt bekanntermaßen niedrig exprimiert und es handelt sich in allen Fällen um *"single copy genes"*. Die analysierten Sequenzieren wurde von einer Serviceabteilung am Bernhard-Nocht-Institut für Tropenmedizin (Hamburg) durchgeführt.

3.1.3 Modell: cRNA aus *CapFinder*-cDNA

Eine Analyse von begrenztem Ausgangsmaterial kann zwangsläufig nur über eine PCRvermittelte Analyse der mRNA-Pools der zu untersuchenden Gewebe geführt werden. Das Erzeugen von amplifizierter *full-length*-cDNA ausgehend von mRNA ist in diesem Fall eine Voraussetzung zur Konstruktion von cDNA-Bibliotheken und zur Synthese der DNA-Proben, die als Repräsentanten für Gene auf den *Microarrays* oder DNA-Chips aufgetragen werden. Für das Erstellen von Expressionsprofilen oder Transkriptomen ist es aber wichtig, die ursprüngliche relative Abundanz der einzelnen Transkripte zueinander möglichst unverändert zu lassen. Die bestehende Methode der *CapFinder*-cDNA-Synthese (s. Abb. 10) wurde dahingehend modifiziert, dass die voramplifizierte *CapFinder*-cDNA als *template* für DNA-abhängige RNA-Polymerasen verwendet werden kann.

Der ursprüngliche Oligo(dT)-Primer beinhaltet jetzt zusätzlich die Erkennungssequenz der T7-RNA-Polymerase vor den 25 Ts und wird als Oligo(dT)-T7-Primer bezeichnet. Am 3'-Ende trägt er einen OligodT-Anker (ein Wobble bestehend aus A, G, oder C) (s. Abb.10, Schritt 1, vgl. mit Abb. 13, Schritt 1). Die CapFinder-Reaktion (s. Abb. 13, Schritt 2) wird mit einem neuen CapFinder-Primer gestaltet. Dieser trägt die SP6-RNA-Polymerase Promotorsequenz und wird als CF-SP6rG-Primer bezeichnet (vgl. Abb. 10, Schritt 2). Die LA-PCR ist zwingend erforderlich, da beide RNA-Polymerasen doppelsträngige-cDNA als template benutzen. Für die PCR wird der Primer SP6-PCR verwendet (Schritt 3). Nach dem Capture oder einer Ethanolfällung der amplifizierten cDNA (Schritt 4) kann an dieser, je nach belieben, sense- oder antisense-cRNA geschrieben werden. Die SP6-Polymerase synthetisiert die sense-RNA, welche mit der ursprünglichen mRNA sequenzhomolog ist und dieselbe Orientierung aufweist. Mit einer T7-Polymerase kann die zur Ausgangs-mRNA komplementäre antisense-cRNA geschrieben werden. Beide cRNAs können als templates wieder für eine reverse Transkription eingesetzt werden (Schritt 6) und stehen damit für eine weitere Amplifikation mittels einer PCR zur Verfügung.

Abb. 13: Schematische Darstellung der cRNA-Synthese an voramplifizierter *CapFinder*-cDNA. Mit 2 Ausnahmen sind die Schritte 1-4 identisch mit dem Schema der *CapFinder*-cDNA-Synthese (s. Abb. 10). Erstens: Der ursprüngliche Olig(dT)-*Primer* trägt eine T7-Promotorsequenz. Zweitens: Für die CF-Reaktion (2) wird ein SP6rG-*Primer* verwendet. Dieser beinhaltet eine SP6-Promotorsequenz. Konsequenterweise werden dann für die LA-PCR (3) die entsprechenden 5'- und 3'-*Primer* verwendet. Nach dem *Capture* oder der Fällung (4) dient die voramplifizierte cDNA als *template* für die cRNA-Synthese. *Sense*-RNA kann mit SP6- und *antisense*-RNA mit T7-RNA-Polymerase synthetisiert werden (5). Beide cRNAs können entsprechend weiter verwendet werden: Schritt (6) zeigt das Umschreiben der cRNA in cDNA mit einer Reversen Transkriptase.

3.1.3.1 cDNA aus Drosophila-Gewebe

Die Gewebeproben wurden wie folgt bezeichnet: Retina = R_W und R_S , Lamina = L_W und L_S , wobei das tiefgestellte W für die Canton-S - und das tiefgestellte S für die *sevenless*-Linie steht. Proben von L2 Lamina-Neuronen werden mit L2 bezeichnet und sind aus der transgenen L2-Linie. Diese Bezeichnungen werden in diesem Kapitel durchgehend beibehalten. Präpariert wurde wie unter 2.13.1 und 2.13.2 beschrieben. Aus den präparierten Geweben Retina und Lamina und aus den isolierten L2-Zellen wurde RNA isoliert (s. 2.15.2.3) und in *CapFinder*-cDNA umgeschrieben (s.2.15.5). Verwendet wurde dabei der SP6rG-*Primer*. Die Erststrang *CapFinder*-cDNA wurde dann mit der LA-PCR amplifiziert (s. 2.15.5). Die Abb. 14 zeigt das Ergebnis.

Abb. 14: Amplifizierte *Drosophila melanogaster* **CF-cDNA aus minimalen Gewebemengen.** Die cDNAs wurden in 1 %-igen Agarosegelen elektrophoretisch getrennt. Aufgetragen wurden jeweils die Produkte von LA-PCRs aus unterschiedlichen *CapFinder*-cDNA-Synthesen (5 μl). Zu sehen ist in allen Fällen ein durchgehender DNA-Schmier, resultierend aus der Amplifikation unterschiedlich langer Transkripte der mRNA-Pools. a): cDNA der L2 Lamina-Neuronen (L2). Zu sehen sind cDNAs aus zwei identischen Reaktionsansätzen, geschrieben mit unterschiedlichen Schreibzyklen. b): cDNA aus Gefriergetrockneten Geweben Retina und Lamina. Aus Gründen der Abbildungsfähigkeit wurden mit der PCR mehr Zyklen geschrieben als nötig. Die Reaktionen sind schon in der Sättigung. Molekulargewichts-Marker **M**. Kontrollreaktion **K**, hier wurde als *template* A. dest. für die PCR-Reaktion verwendet. Der leichte Schmier im niedermolekularen Bereich resultiert aus *Primern* und ungebundenen Nukleotiden. Die Bezeichnungen der Proben sind dem Text zu entnehmen.

Aus jedem Gewebe konnte RNA isoliert und in cDNA umgeschrieben werden. Diese *CapFinder*-cDNAs sind Ausgangspunkt für alle folgenden Schritte (cRNA Synthese und Subtraktive Hybridisierung).

3.1.3.2 cRNA-Synthese an CapFinder-cDNA

Zur Überprüfung der hier vorgestellten Strategie der cRNA-Synthese an der modifizierten CF-cDNA wurde *sense-* und *antisense-*cRNA synthetisiert (s. 2.15.8). Als *templates* für diese Reaktionen wurden CF-cDNAs von Retina- und Laminaproben (Wildtyp und *sevenless*) und L2-CF-cDNA aus Versuch 3.1.3.1 verwendet. Pro Gewebe

wurden jeweils 8 erfolgreich amplifizierte CF-cDNAs zu einem *template* vereint. Da jede Gewebeprobe einmal mit SP6- und einmal mit T7-Polymerase in cRNA umgeschrieben werden sollte, mussten 2 x 4 *templates erzeugt* werden. Als Kontrolle der Reaktionen wurde jeweils 3 μ l Probe pro Ansatz auf ein 1%-iges Agarosegel aufgetragen und elektrophoretisch getrennt. Die Abb. 15 zeigt das Ergebnis.

Abb. 15: cRNA von unterschiedlichen cDNA-*templates.* Zu sehen ist ein cRNA-Schmier vermittelt durch Ethidiumbromid unter UV-Anregung. Je Reaktion wurde 3 μl Probe aufgetragen. Die cRNAs wurden in 1 %-igem Agarosegel elektrophoretisch getrennt. Als *templates* dienten cDNAs aus Versuch 3.1.3.1 (pro Gewebe wurden 8 LA-PCR Amplifikationen vereint). Jedes *template* wurde einmal mit SP6-, einmal mit T7-RNA-Polymerase geschrieben. Von links nach rechts alternierend aufgetragen: Proben der mit SP6- und T7-Polymerasen geschriebenen cRNA. Die Bezeichnungen der Proben wurde bereits im Text erklärt.

Jede der angesetzten cRNA-Synthesen erzeugt cRNA. Pro Ansatz wurden zwischen 80 und 100 µg cRNA synthetisiert. Zur weiteren Verwendung wurden die Proben über RNA-Säulen gereinigt (s. 215.2.3).

Die cRNA-Synthese wurde auch mit modifizierten NTPs überprüft. Verwendet wurden Aminoallyl-UTP (aaUTP) und Digoxigenin-modifizierte Ribonukleotide. Ein exaktes Maß für die Einbaurate der modifizierten NTPs wurde aber noch nicht bestimmt. Ein Gelvergleich (s. Abb. 15) zeigte aber identische Ergebnisse und wird deshalb nicht abgebildet.

Sense-cRNAs (geschrieben mit SP6-Polymerase) der Retina- und Laminaproben wurden für die Hybridisierung der D7KV2-Chips per Luftpost nach Kanada zum CDMC befördert. Die Hybridisierungen wurden dort von einer Serviceabteilung durchgeführt. (s. 2.18.1).

3.1.3.3 Reverse Transkription von sense-cRNA

Um die Güte der cRNA zu kontrollieren und um zu überprüfen, ob der Poly-(A)-Schwanz vollständig erhalten ist, wurde mit SP6-Polymerase geschriebene *sense*-cRNA mit einer Reversen Transkriptase in Erststrang-cDNA umgeschrieben. Als *Primer* diente der OdT-T7 III. Dieser wurde auch für die Erststrang-cDNA-Synthese an der mRNA eingesetzt. Als zusätzliche Kontrolle wurden die Reaktionsbedingungen nach Protokoll des CDMC (*RNA direct labeling and hybridisation*, s. 2.18.1) gewählt. Abweichend vom Protokoll wurden Digoxigenin-modifizierte Desoxynukleotide verwendet. Als *template* diente 0,5 und 1 µl cRNA der Retina- und Laminaproben aus Versuch 3.1.3.2. Die Abb. 16 zeigt das Ergebnis.

Abb 16: DNA-Blot von Digoxigenin-markierter Erststrang-cDNA. Zu sehen ist durchgehender DNA Schmier vermittelt durch eine Farbreaktion. Aufgetragen wurde je ein kompletter Ansatz (20 µl). SensecRNA wurde mit einer Reversen Transkriptase in Erststrang-cDNA umgeschrieben. Als *template* diente *sense*-cRNA (0,5 und 1 µl) der Retina- und Laminaproben aus Versuch 3.1.3.2. Die beiden linken Bahnen zeigen cDNA von 1 µl *template*, die beiden rechten Bahnen cDNA von 0,5 µl *template*. Die cDNAs wurden auf einem 1%-igen Agarosegel elektrophoretisch getrennt und anschließend auf eine Nylonmembran geblottet. Bei der cDNA-Synthese wurden Digoxigenin-modifizierte Desoxynukleotide in die cDNA eingebaut, die mit einem Antikörper detektierbar sind. Der Nachweis erfolgte durch eine Farbreaktion mit den Substraten der alkalischen Phosphatase NBT und BCIP. Die Bezeichnungen der Proben sind dem Text zu entnehmen.

3.1.4 Modell: Subtraktive Hybridisierung (SH) mit cRNA

Die *Microarray*-Technik ermöglicht durch den Vergleich zell- oder gewebespezifischer Transkriptome die Identifizierung differenziell exprimierter Gene. *Microarrays* werden aber im Wesentlichen nur für Organismen angewandt, deren Genome sequenziert wurden. Andere Methoden zur Analyse differenzieller Genexpression wurden entwickelt, so z.B. die *Differential Display* PCR oder die Subtraktive Hybridisierung. Beide Methoden sind aber limitiert durch die Menge benötigter mRNA aus den Vergleichsgeweben, was durch den Einsatz amplifizierter cDNAs kompensiert werden sollte. Im Rahmen der vorliegenden Arbeit wurde eine neue Strategie für die Subtraktive Hybridisierung entwickelt, die mit Hilfe der *Microarrays* eines Modellorganismus überprüft werden sollte.

Ausgangsmaterial für die SH sind zwei CapFinder-cDNAs (Treiber- und SubtraktorcDNA aus unterschiedlichen Geweben), die mit dem Primer SP6rG geschrieben und anschließend mit einer LA-PCR amplifiziert wurden (Schritt 1). An der Treiber-cDNA wird mit der SP6-Polymerase Treiber-sense-cRNA geschrieben und an der SubtraktorcDNA wird mit der T7-Polymerase Subtraktor-antisense-cRNA geschrieben (Schritt 2). Die Treiber-sense-cRNA und die Subtraktor-antisense-cRNA werden im Verhältnis 1:10 zu einem Reaktionsansatz vereint und in einer geeigneten Lösung hybridisiert (Schritt 3). In diesem Reaktionsansatz hybridisieren komplementäre sense- und antisense-cRNAs aus den unterschiedlichen cRNA-Pools zu stabilen RNA:RNA-Doppelsträngen. Differenzielle Transkripte aus den beiden cRNA-Pools bleiben einzelstängig, weil sie keinen geeigneten Reaktionspartner finden. Der Reaktionsansatz wird gefällt (Schritt 4) und als template für eine reverse Transkription verwendet. Der Primer Oligo(dT)-T7 bindet an den Poly-A-Schwanz des 3'-Endes der Treiber-sensecRNA. Die Reverse Transriptase startet von dort und verlängert die Sequenz des Oligo(dT)-T7 Primers von 5' nach 3' bis zum Ende der Treiber-sense-cRNA (Schritt 5). Bedingt durch den Schreibprozess der SP6-Polymerase fehlt dem 5'-Ende der Treibersense-cRNA ein Teil der SP6-Erkennungssequenz (s. Schritt 2). Bei der anschließenden LA-PCR (Schritt 6) bindet der Primer CF-SP6-PCR mit einem 5'-Überhang an das 3'-Ende der neu synthetisierten Erststrang-cDNA. Die amplifizierte cDNA trägt dann wieder die SP6 Erkennungssequenz. Nach einem Capture oder einer Fällung (Schritt 7) kann an der Subtraktions-cDNA erneut cRNA amplifiziert werden (Schritt 8).

17: der Abb. Schematische Darstellung Subtraktiven Hybridisierung mit cRNA. Voraussetzung für eine Subtraktive Hybridisierung sind CF-cDNAs von unterschiedlichen Geweben (Schritt 1). An der Treiber-cDNA wird mit der SP6-RNA-Polymerase Treiber-sense-cRNA geschrieben, an der Subtraktor-cDNA wird mit der T7-RNA-Polymerase Subtraktor-antisense-cRNA geschrieben (Schritt 2). Treiber- und Subtraktor-cRNA werden im Verhältnis 1:10 unter stringenten Bedingungen hybridisiert. Komplementäre Transkripte hybridisieren zu einem RNA:RNA-Doppelstrang. Differenzielle Transkripte, sowohl aus der Treiber- als auch aus der Subtraktor-population bleiben einzelsträngig (Schritt 3). Nach einer Fällung des gesamten Ansatzes (Schritt 4) wird eine cDNA-Synthese durchgeführt. Durch die Wahl des Oligo(dT)-T7-Primers kann nur differenzielle Treiber-cRNA in cDNA umgeschrieben werden (Schritt 5). Bedingt durch den Transkiptionsprozess der SP6-Polymerase trägt die ursprüngliche Treiber-cRNA (Schritt 2) keine SP6-Promotorsequenz. Dieses kann bei der LA-PCR mit der neuen Erststrang-cDNA durch den Primer CF-SP6-PCR korrigiert werden (Schritt 6). Nach einer Fällung oder Capture am Biotin (Schritt 7) kann die amplifizierte cDNA erneut in cRNA umgeschrieben werden (Schritt 8) und steht für weitere Analysen zur Verfügung.

Zur Überprüfung des Modells Subtraktive Hybridisierung wurde eine Subtraktionsbibliothek Retina - Lamina erstellt. Als Treiber-cRNA (1 μ g) wurde R_W-sense-cRNA und als Subtraktor-cRNA (10 μ g) wurde L_W-antisense-cRNA aus dem Versuch 3.1.3.2 verwendet. Die Hybridisierung erfolgte wie unter 2.15.9 beschrieben. Das Produkt des Hybridisierungsansatzes wurde mit einer Reversen Transkriptase unter Verwendung des *Primers* OdT-T7 III in Erststrang-cDNA (s. 2.15.5) umgeschrieben. Bei der anschließenden LA-PCR (s. 2.15.5) wurden die *Primer* Oligo-dT IV und der CF-SP6-PCR eingesetzt. Das Ergebnis ist in Abb. 18 dargestellt.

Abb. 18: PCR amplifizierte Subtraktions-cDNA. Zu sehen ist amplifizierte cDNA als durchgehender Schmier, vermittelt durch Ethidiumbromid unter UV-Anregung (1-4, flankierend dazu Marker 100 bp). Pro Reaktion sind 5 μ l aufgetragen. Die cDNA wurde auf einem 1%-igen Agarosegel elektrophoretisch getrennt. In den cDNAs sind Transkipte unterschiedlichster Größen vertreten. In Bahn 1 und 3 wird die cDNA der Ausgangsgewebe (1 Treiber-cDNA = R_w, 3 Subtraktor-cDNA = L_w) gezeigt. Von der Treiberund Subtraktor-cDNA wurde cRNA geschrieben. Komplementäre Transkripte beider cRNA-Populationen hybridisieren. Nur einzelsträngige Treiber-cRNA kann mit der Reversen Transkriptase in ErststrangcDNA umgeschrieben werden. Diese wurde dann erneut mit der LA-PCR amplifiziert. In Bahn 2 und 4 wird die Subtraktions-cDNA (Retina-Lamina) gezeigt. Die in Bahn 2 gezeigte cDNA wurde mit mehr Zyklen amplifiziert.

An der Subtraktions-cDNA wurde *sense*-cRNA synthetisiert (s. 2.15.8). Die Subtraktions-cDNA (Lamina-Retina) steht leider noch aus. Für einen Vergleich sollten beide Subtraktions-cRNAs auf einem D7KV2-Chip hybridisiert werden.

3.2 Herstellung des Signaltransduktions-Chips (STDC)

Nur ein kleiner Teil aller bekannten und vorhergesagten *Drosophila*-Gene der Signaltransduktion sind auf den kanadischen DNA-Chips der Version 2 repräsentiert. Um aber eine detaillierte Aussage hinsichtlich der physiologischen Leistung der zu untersuchenden Gewebe machen zu können, sollte im Rahmen dieser Arbeit ein DNA-Chip entworfen und hergestellt werden (s. 2.17.2), der es ermöglicht, alle bisher bekannten Signaltransduktionswege zu identifizieren. Auf diesem Chip sollten Gene für Transmitter-, Hormon- und Peptid-Rezeptoren, für Transduktionsproteine, für die primären und sekundären Effektoren, für die Transmittersynthese und für bekannte Gene der Transmitteraufnahme vertreten sein.

3.2.1 Array-Design

Die Kandidaten für Proben-DNA auf dem STDC wurden in Datenbanken (s. 2.16.1) oder in der Literatur (Brody und Cravchik, 2000; Hewes und Taghert, 2001) recherchiert und in einer nach Klassen und Klassenmitgliedern geordneten Liste zusammengestellt. Die Anzahl der Klassenmitglieder ergab sich aus identifizierten und vorhergesagten Genen. Ein exaktes *Spotting*-Schema wurde noch nicht festgelegt.

Klasse	Anzahl
G-Protein-gekoppelte Rezeptoren	
Bioaminrezeptoren	19
Metabotrope GABA/Glutamat	7
Neuropeptidrezeptoren	41
Andere (z.B. metuselah)	33
G-Protein-Untereinheiten	16
Adenylatzyklasen	14
Guanylatzyklasen	15
Second-Messenger-Systeme II	
Calmodulin Kinasen	8
ProteinKinase A	5
ProteinKinase C	6
Phosphodiesterasen	10
Phospholipasen	20
Liganden-gesteuerte Ionenkanäle	
Kationenkanäle	37
Anionenkanäle	12
Spannungsgesteuerte Ionenkanäle	12
Insulin-ähnliche Rezeptoren	18
Neurotransmittersynthese	6
Neurotransmitteraufnahme	11
Lektine	47

Tabelle 1: Übersicht Proben-DNA auf dem STDC

Eine detaillierte Tabelle befindet sich im Anhang (Übersichtstabelle STDC).
3.2.2 Amplifikation von Proben-DNA

Proben-DNA für den Signaltransduktions-Chip (STDC) wurde mit PCRs (50 μ l Ansätze) unter Standardbedingungen (s. 2.15.4) aus Plasmiden amplifiziert. Die Plasmide wurden dazu allesamt aus unterschiedlichen EST-Klonen isoliert (s. 2.15.2.2). In dem gezeigten Beispiel wurden EST-Klone mit den Nummern 5-41 verwendet (s. Anhang, Übersichtstabelle STDC). *Primer* für die PCRs waren genspezifische *Primer*-Kominationen (GSSP, GSRP; s. 2.7.1). Die Abb. 5 zeigt ein Gelphoto von typischen PCR-Reaktionen, aufgetragen (je 5 μ l) auf ein 1%-iges Agarosegel und elektrophoretisch getrennt.

Abb. 19: Proben-DNA amplifiziert aus diversen Plasmiden. Mit PCRs unter Standardbedingungen konnten 37 Genabschnitte mit genspezifischen *Primer*-Kombinationen (GSSP und GSRP) aus unterschiedlichen Plasmiden amplifiziert werden. Links beginnend: Amplifikat von einen Plasmid aus EST-Klon Nr.5, fortlaufend bis zum Amplifikat von Plasmid aus EST-Klon Nr. 41. (Die Identität der Klone ist einer Übersichtstabelle STDC dem Anhang zu entnehmen). Zu sehen sind singuläre Banden, die mit erwarteten Gensequenzen korrespondieren. Alle 37 PCR Produkten zeigen die erwartete Größe. Die Reaktion für das PCR-Amplifikats des Plasmids aus EST-Klon 15 wurde unter stringenteren PCR-Bedingungen wiederholt. Die GSSP und GSRP wurden derart gewählt, dass Amplifikate um die 500 bp (150 bis 1000 bp als untere und obere Grenze) erwartet werden konnten.

Die genspezifischen *Primer* waren so gewählt, dass die zu erwartende Größe einzelner Amplifikate in einem Bereich zwischen 150 und 1000 bp liegt. Im positiven Fall (eine singuläre Bande mit entsprechender Größe) wurde für jedes Amplifikat die PCR mehrmals unter identischen Bedingungen wiederholt, um ausreichend Probenmaterial zu bekommen. Alle erfolgreichen PCR-Reaktionen wurden auf Säulen gereinigt und später als Proben-DNA auf dem STDC immobilisiert. Eine vollständige Version des STDC stand vor Abschluss der Doktorarbeit noch nicht zur Verfügung. Hybridisierungsversuche wurden mit angefertigten Testversionen durchgeführt (s.3.2.1). Die Qualität des Testchips wurde mit SYBR-Gold verifiziert. Die ProbenDNA ist symmetrisch über die gesamte Fläche des Chips verteilt. Die DNA-Konzentrationen der *spots* sind nahezu identisch (Daten nicht gezeigt).

3.2.3 Hybridisierung des Signaltransduktions-Chips (Testversion)

Eine Hybridisierung des STDCs (Testversion) wurde mit Ziel-*sense*-cRNA durchgeführt. Dafür wurde cRNA mit der SP6-RNA-Polymerase synthetisiert (s. 2.15.8 oder 3.1.3.1). Als Ausgangsgewebe diente die Retina des Wildtyps (s. 2.13.1). Damit an die cRNA das Fluorophor Alexa Fluor 647 gekoppelt werden konnte, wurde bei der cRNA-Synthese Aminoallyl-UTP (aaUTP) integriert (s. 2.15.8 und 3.1.3.2). Für eine Hybridisierung des STDC wurden 40 µg cRNA verwendet. Das Koppeln der Fluorophore (*Labeln*) und die Hybridisierung sind unter 2.18.2 beschrieben. Das *Scannen* erfolgte mit einem *ArrayWorx Scanner* der Firma Applied Precision. Die Abb. 20 zeigt eine Ausschnittsvergrößerung der digitalen *Array*-Photographie im Graustufenformat.

Abb. 20: cDNA-*Microarray* STDC hybridisiert mit Ziel-RNA von R_W markiert mit dem Fluorophor Alexa Fluor 647. Von einem hybridisierten *Array* wurde ein Bild digitalisiert und in Graustufen dargestellt. Die Fluoreszenz von Alexa Fluor 647 erscheint in unterschiedlichen Graustufen, abhängig von den Intensitätswerten der Hybridisierungsereignisse. In einem *Subarray* ist jede DNA-Probe vierfach aufgetragen (vertikal angeordnet).

Das *Array* wurde nicht mit einer Analysessoftware ausgewertet. Auf dem *Array* sind ganzflächig unterschiedliche Proben-DNAs in identischen Konzentrationen immobilisiert, wobei identische Proben stets vierfach aufgetragen wurden (vertikal

angeordnet). In der gewählten Form der Darstellung wird die Fluoreszenz von Alexa Fluor 647 durch unterschiedliche Graustufen vermittelt. Die Intensität der Färbung korrespondiert mit der Konzentration gebundener Ziel-cRNA aus dem Retinagewebe. Zu erkennen sind unterschiedlich starke Hybridisierungsereignisse in Form von unterschiedlich stark gefärbten *spots*. Dort wo keine *spots* zu erkennen sind, befindet sich auch Proben-DNA. Die Hybridisierungsmuster einzelner Subspalten (vier identische Proben-DNAs) sind in sich konsistent. Die Intensitätswerte der *spots* auf dem *Array* variieren zwischen sehr hoch (schwarze Punkte) und sehr niedrig (leichte Graufärbung der Punkte).

3.3 Transkriptome des visuellen Systems von *Drosophila m*.

Um Trankriptome analysieren zu können, wurde sich der DNA-*Microarray*-Technologie bedient. Mit dieser Technik können parallel die Expressionsmuster von mittlerweile mehreren tausenden von Genen gleichzeitig untersucht werden. Sie ist damit eine ideale Technik zur Entschlüsselung von Transkriptomen. Das Erstellen und die Analyse der Transkriptome von Retina und Lamina aus dem visuellen System der Taufliege *Drosophila melanogaster* wird hier dokumentiert.

Pro Gewebe (R_W , R_S , L_W und L_S) wurden 80 µg *sense*-cRNA geschrieben (s. 2.15.8 und 3.1.3.2). Das Hybridisieren der DNA-*Microarrays* vom Typ D7KV2 erfolgte nach Protokoll des CDMC in Kanada (s. 2.18.1). Abweichend vom Protokoll wurde als Ausgangsmaterial *sense*-cRNA verwendet.

Insgesamt wurden 4 DNA-*Microarrays* vom Typ D7KV2 hybridisiert. Jeder dieser Chips ist durch eine Barcode-Nummer (BCN) eindeutig gekennzeichnet. Auf jedem Chip wurden zwei Ziel-DNAs hybridisiert: (R_s -647/ R_w -546, BCN 12438417), (R_s -546 / R_w -647, BCN 12438408), (L_s -546 / L_w -647, BCN 12438410) und (L_s -647 / L_w -546, BCN 12438409), wobei 647 und 546 für die verwendeten Fluorophore Alexa Fluor 647 und Alexa Fluor 546 stehen. Nach einer Hybridisierung wurde jedes *Slide* zwei mal digitalisiert - für jede emittierte Wellenlänge einmal - und die Daten in Form von Graustufenbildern im TIFF-Format exportiert. Die gewonnen Daten wurden mit dem Computer ausgewertet.

Die Auswertung der Arrays erfolgte mit der Software Genepix 5.0 (s.2.16.2).

3.3.1 Visualisierung des Transkriptoms der Retina

Exemplarisch für alle durchgeführten Hybridisierungsexperimente ist in Abb. 21 eines davon dargestellt. Es handelt sich hierbei um einen Vergleich der Transkriptome der Retinae der *sevenless*-Mutante und des Wildtyps (R_s-647/ R_w-546, BCN 12438417). Zur Verdeutlichung des *Array*-Designs sind Ausschnitte des DNA-Chips in der Graphik hervorgehoben (weitere Erläuterungen siehe Bildunterschrift). Die Falschfarbendarstellung ist wie folgt codiert: Transkripte, die nur in der Wildtyp-Retina übersetzt werden, erscheinen rot; solche die ausschließlich dem retinalen Gewebe der *sevenless*-Mutante zuzuordnen sind, zeigen sich grün. In beiden Geweben exprimierte Transkripte zeigen sich als Mischfarben. Sind die Transkripte im gleichen Mengenverhältnis vorhanden, ergibt sich daraus eine gelbe Farbe, Abweichungen davon ergeben grüngelb (überwiegend *sevenless*-Transkripte) oder orange (überwiegend Wildtyp-Transkripte). Die Intensität des Fluoreszenzsignals spiegelt die Expressionsrate der Transkripte wider.

Abb. 21 (folgende Seite): cDNA-*Microarray* D7KV2 hybridisiert mit Ziel-DNA von R_w und R_s , markiert mit den Fluorophoren Alexa Fluor 546 (R_w) und Alexa Fluor 647 (R_s). A) Von einem *Array* wurden separat zwei Bilder digitalisiert, pseudocoloriert und (digital) derart übereinandergelegt (overlay), dass eine differenzielle Expression der beiden Gewebe sichtbar wird. Die Fluoreszenz von Alexa Fluor 647 ist entgegen seines nativen Emissionsspektrums grün dargestellt, die von Alexa Fluor 532 dagegen rot. Bei identischer Fluoreszenz der beiden verwendeten Fluorophore erscheint ein *spot* gelb. Höhere Intensitätswerte der Probe R_w erscheinen grüngelb, höhere der Probe R_s orange. B) Zur Verdeutlichung des *Array*-Designs ist ein *Microarray* D7KV2 schematisch dargestellt. Ein *Array* enthält 32 (4 x 8) *Subarrays*, in A) zu erkennen. Oben links, deutlich hervorgehoben, *Subarray* 1 korrespondiert mit dem weiß eingerahmten *Subarray* in A). Analog dazu *Subarray* 32, zur besseren Ansicht in C) vergrößert dargestellt. In einem *Subarray* ist jede Proben-DNA doppelt aufgetragen (horizontal angeordnet). Ein *Subarray* besteht aus 22 Subspalten x 24 Subzeilen, beinhaltet also 22 x 24 Proben-DNAs, repräsentativ für 22 x 24 / 2 = 264 unterschiedliche Gene. Ein *Array* trägt demnach insgesamt also 32 x 264 = 8448 Proben.

Abb. 21: cDNA-*Microarray* D7KV2 hybridisiert mit Ziel-DNA von R_W und R_S , markiert mit den Fluorophoren Alexa Fluor 546 (R_W) und Alexa Fluor 647 (R_S).

3.3.2 Transkriptomanalyse:

Molekulare Ausstattung von Retina und Lamina

Die Auswertung der Transkriptome von Retina und Lamina erfolgte mit den Schwerpunkten Analyse differenzieller Genexpression und Identifizierung molekularer Komponenten der Signaltransduktionskaskaden im visuellen System von *Drosophila m*.

3.3.2.1 Differenzielle Genexpression: Retina und Lamina (Tab. 2)

Die Analyse differenzieller Genexpression im visuellen System von *Drosophila m*. erfolgte unter der Annahme, dass das Expressionsprofil augenspezifischer Gene bei *sevenless* empfindlich gestört bzw. verändert ist. In diese Analyse wurden auch die Laminatranskriptome mit einbezogen. Mit der Software Genepix wurden deshalb parallel zwei hybridisierte DNA-*Microarrays* vom Typ D7KV2 im Vierfarbmodus verarbeitet (L_S-546 / L_W-647, BCN 12438410 und R_S-546 / R_W-647, BCN 12438408). Für eine bessere Übersicht wurde bei der Pseudocolorierung folgende Farbcodierung festgelegt: R_W-647 erscheint rot, R_S-546 erscheint grün, L_W-647 erscheint blau und L_S-546 erscheint gelb. Daraus ergibt sich, dass sich jeder *spot* durch 4 Intensitätswerte auszeichnet.

Ein Filter zur Identifikation differenzieller Genexpression wurde wie folgt definiert (vereinfacht dargestellt): Ein *spot* ist positiv, wenn ein Intensitätswert im Vergleich zu drei anderen Intensitätswerten um einen Faktor 10 höher ist, jeweils bezogen auf eine DNA-Probe.

Dieser Filter führte zur Identifikation von insgesamt 101 Genen. Davon werden 26 in der Retina und 75 in der Lamina exprimiert. In Tabelle 2 sind alle Gene aufgeführt (Spalte mit der Bezeichnung CG Nummer). Die Tabelle ist horizontal zu lesen. Die Farben Rot und Grün stehen für Gene aus Retinagewebe, die Farben Blau und Gelb für Gene aus Laminagewebe (s. Tab. 2, Spalte mit der Bezeichnung Klon). In der Spalte mit der Bezeichnung *Gene Ontology* sind mögliche oder bekannte Funktionen der Genprodukte aufgeführt. Dem allgemeinen Standard entsprechend sind diese in englischer Sprache wiedergegeben. In der Spalte mit der Bezeichnung *Location* wird die Lage der Gene auf den Chromosomen verdeutlicht.

Klon	CG Nummer	Name	Gene Ontology	Location
GH06451	CG10687		asparagine-tRNA ligase	2L 37C1-37C1
GH13968	CG2025		nardilysin	X 10F2-10F2
SD04414	CG6725	Sulf1	nattern specification	3R 89B18-89B18
LD29995	CG8730	drosha	double-stranded RNA binding	2R 43F2-43F3
GH04232	CG5397	uroshu	sterol O-acyltransferase	2L 21F3-21F3
GH01554	CG8995	PGRP-LE	nentidoglycan recognition	X 13F1-13F1
LD33485	CG5818	mRnI 4	protein biosynthesis	2L 35F11-35F11
GM06266	CG5851	sds??	nrotein phosphatase type 1	3B 90A5-90A5
LD15002	CG1507	Pur-alpha	transcriptional activator	4 102C6-102C6
GM03430	CG4511	i ui uipiiu	ATP hinding	3R_86C7-86C7
LD22661	CG12264		cysteine desulfhydrase	2L 33B5-33B5
LD09732	CG3035	cm	coated vesicle	X 6F4-6F4
LP03809	CG7050	Neurexin 1	nlasma membrane	3R 94A16-94B1
L D08529	CG7938	Sry-beta	DNA binding	3R 99D3-99D3
LD31571	CG7494	mRnI 1	nrotein biosynthesis	3R 84F9-84F10
LD41613	CG1490	шфЕт	ubiquitin-specific protease	X 11A1-11A2
LD39271	CG17904		nucleotide binding	21 36412-36412
LD22559	CG18012		notein amino acid glycosylation	3B 90C6-90C6
GH08677	CG5395	nmd	endonlasmic reticulum	2L 31D1-31D1
SD07188	CG4548	XNP	nucleus	3B 96F1-96F2
LD35060	CG7840	20101	3-oxo-5-alpha-steroid 4-dehydrogenase	21 2943-2943
GH22994	CG10126		calcium ion hinding	3R 87D2-87D2
GH05741	CG4757		carboxylesterase	3R 86D7-86D7
L D28839	CG14637	abs	neurogenesis	3R 82A1-82A1
GH01107	CG1725	dlø1	regulation of synapse	X 10B6-10B10
GH11680	CG9505		endothelin-converting enzyme	2L 26C4-26C4
GH09241	CG6126		organic cation transporter	3R 89B12-89B12
GH07145	CG17035	GXIVsPLA2	phospholipase A2	3L 72B2-72B2
GM14682	CG6050	EfTuM	translation elongation factor	2R 50A14-50A14
LD19219	CG9699		septin ring	X 15A1-15A1
GH22690	CG1909		protein	4 102D1-102D1
LD30731	CG14222		acyl-CoA N-acyltransferase	X 18D7-18D7
GM03260	CG6920	mus309	DNA helicase	3R 86F4-86F4
CG10262	CG10262		DNA binding	2L 37F2-37F2
GH02505	CG10888	Rh3	UV-sensitive opsin	3R 92C5-92C5
GM14115	CG3980		protein phosphatase type 1	2L 24C8-24C8
GH14758	CG10226		multidrug transporter	3L 65A10-65A10
GH22857	CG4663		peroxisome organization and biogenesis	2R 49F11-49F11
LD26301	CG6671	AGO1	translation initiation factor	2R 50C14-50C17
LD34181	CG3423	SA	nucleus	2L 27C7-27C7
LD24634	CG4258	dbe	rRNA processing	2L 21D4-21D4
GM02553	CG6530		G-protein-coupled receptor	2R 54B15-54B16
LD22648	CG11888	Rpn2	proteasome endopeptidase	3R 98F13-98F13
LD15845	CG7693	fray	receptor signaling protein	3R 91B4-91B5
LD16758	CG10392	Ogt	transferring glycosyl groups	2R 41F2-41F2
GH06247	CG5684		general RNA polymerase II	3L 68F1-68F1
LD32130	CG7223	htl	protein tyrosine kinase	3R 90E1-90E1
GH08387	CG8327		spermidine synthase	3R 85E1-85E2
LD47054	CG11678	Actr13E	cytoskeleton organization and biogenesis	X 13E12-13E12
GH08847	CG7642	ry	xanthine dehydrogenase	3R 87D9-87D9
GH10050	CG10540		F-actin capping	2R 57B16-57B16

LD10783	CG17320	ScpX	sterol carrier protein	2L 37B1-37B1
bs29d01.y1	CG9828		chaperone	2L 34A7-34A7
LD24471	CG11303	TM4SF	plasma membrane	2R 60A7-60A7
LD41157	CG1583		phospholipase A2	X 7D16-7D17
GM13256	CG7861		tubulin-specific chaperone	2R 42A6-42A6
bs18c08.y1	CG6603	Hsc70Cb	protein folding	3L 70C15-70C15
LD37002	CG13626	Syx18	SNAP receptor	3R 96A12-96A13
LD19311	CG7970		peroxisomal membrane	3L 62A10-62A10
SD09359	CG6692	Cp1	cathepsin L	2R 50C18-50C20
LD13050	CG7540	M6	plasma membrane	3L 78D4-78D4
GM14344	CG11597		protein phosphatase type 2A	3L 68E1-68E1
GH03109	CG15855	Eip63F-1	calcium ion binding	3L 63F6-63F7
GH14654	CG5164	GstE1	glutathione transferase	2R 55C6-55C6
GH09623	CG6330		uridine phosphorylase	3R 97D10-97D11
CG6330	CG1891	sax	protein kinase	2R 43E18-43E18
LD23870	CG16788	RnpS1	RNA binding	3R 85D24-85D24
CG11109	CG11109		rRNA methyltransferase	3L 80B2-80B2
GH20785	CG5576	imd	signal transduction	2R 55C8-55C8
GM13038	CG8189	ATPsyn-b	hydrogen-transporting two-sector ATPase	3L 67C5-67C5
LD05118	CG6549	fws	Golgi transport complex	2L 36C10-36C10
LP11612	CG4914		serine-type endopeptidase	3L 70E7-70E7
GH15170	CG11459		cathepsin L	3R 83D2-83D2
GH18123	CG14813	deltaCOP	COPI vesicle coat	X 2B12-2B13
GH10306	CG5577		4-nitrophenylphosphatase	3L 75A5-75A6
LD21269	CG7182		heat shock protein	3L 66C8-66C8
bs18g10.y1	CG3971	Baldspot	plasma membrane	3L 73B5-73B5
LD15796	CG15085	mae	regulation of EGF receptor signaling pathway	2R 55E6-55E8
LD16949	CG3068	aur	centrosome cycle	3R 87A3-87A3
GH06477	CG1938	Dlic2	dynein ATPase	X 10A8-10A8
GH10767	CG10374	Lsdp 1	lipid storage	3R 95B1-95B1
GM13341	CG2100		polynucleotide adenylyltransferase	3R 83C1-83C1
CG2100	CG18028	lt	eye pigment biosynthesis	2h
LD23835	CG7838	Bub 1	protein kinase	2R 42A1-42A2
GH16072	CG4185	NC2beta	general transcriptional repressor	2L 35B8-35B8
GH12632	CG7470		glutamate 5-kinase	3L 79A6-79A6
bs17d05.y1	CG32435	chb	GTP binding	3L 78C1-78C2
LD29131	CG7831	ncd	kinesin motor	3R 99C1-99C2
GH28013	CG15096		phosphate:sodium symporter	2R 55F5-55F5
LD12029	CG6033	drk	RAS protein signal transduction	2R 50A13-50A13
GH01085	CG9659	egh	integral to plasma membrane	X 3A6-3A6
HL05903	CG12345	Cha	acetylcholine biosynthesis	3R 91C1-91C5
LD20519	CG7860		asparaginase	X 13D3-13D3
LD22344	CG4747		3-hydroxyisobutyrate dehydrogenase	2L 30F6-30F6
LP07125	CG10717	ImpL1	extracellular	3L 70A7-70A7
GH03781	CG16758		purine-nucleoside phosphorylase	3L 62E4-62E4
GH03980	CG10658	Os9	nucleus	2L 38A8-38A8
GM04269	CG3083	Prx6005	antioxidant	2L 23B7-23B7
LD43729	CG6711	Taf2	general RNA polymerase II	3L 67D1-67D1
GH14454	CG11186	toy	specific RNA polymerase II	4 102F5-102F5
GH16612	CG6320	Ca-beta	voltage-gated calcium channel	2L 32D5-32E1

Tabelle 2

3.3.2.2 Gene der Phototransduktion (Tab. 3)

In diesem und in den folgenden Unterpunkten werden Retina- und Laminatranskriptome hinsichtlich der Ausstattung mit speziellen Genen analysiert.

Mit der Software Genepix wurden parallel zwei hybridisierte DNA-*Microarrays* vom Typ D7KV2 im Vierfarbmodus verarbeitet (L_S -546 / L_W -647, BCN 12438410 und R_S -546 / R_W -647, BCN 12438408). Die Werte in den Spalten R_S , R, L und L_S sind Intensitätswerte (0-65535). Werte kleiner als 300 wurden als Hintergrundrauschen interpretiert. Alle anderen Werte gingen als positive Signale in die Auswertung ein (Transkript in Gewebe X vorhanden) und sind durch Fettdruck hervorgehoben. Dieses gilt für alle folgenden Tabellen.

Es zeigte sich, dass diejenigen Gene, von denen zu erwarten war, dass sie in der Retina exprimiert werden, auch tatsächlich in diesem Gewebe nachzuweisen waren. Zu diesen Kandidaten gehören insbesondere die in der Tabelle 3 dargestellten Gene. Interessanterweise weden einige dieser Gene auch in der Lamina exprimiert.

Klon	Name	Rs	R	L	Ls
HL05775	norpA	3177/3278	1587/1321	2210/2955	453/519
GH10316	norpA	10971/9124	1658/1892	31/127	35/176
LP11568	Pld	1356/1592	2003/2014	3803/5412	1874/3108
LD15217	Pi3K68D	997/776	957/909	971/898	200/159
GH13170	Pi3K59F	1042/929	299/275	392/550	2413/4104
CG7962	CdsA	42/0	6/0	0/37	0/4
GH08867	ninaA	60966/65152	15010/17919	1122/864	9084/9626
GH10824	ninaC	12676/13704	6669/7836	17872/19072	637/571
GH24781	inaC	33766/31676	9925/9501	4668/4312	297/225
HL06663	inaF	8911/11591	7196/7531	2743/1862	35/101
GH09970	rdgB	242/360	48/154	1025/1223	1465!991
LD14189	rdgBbeta	346/413	90/70	1030/1104	1680/1593
GH23785	rdgA	895/130	145/681	347/0	800/0
GH02505	Rh3	27192/23821	37596/40012	15718/16990	1201/1259
GH28578	Rh5	16628/16054	65535/65535	65535/65535	1278/1036
GH14208	Rh7	254/209	49/104	772/753	768/772
GH16672	cry	2076/1922	2618/2115	7100/8556	5337/6111
HL06663	inaF	8911/11591	7196/7531	2743/1862	35/101

3.3.2.3 Gene der G-Protein-gekoppelten Rezeptoren (Tab. 4)

Von besonderer Bedeutung für modulatorische Aspekte in einem Gewebe sind die sogenannten G-Protein-gekoppelten Rezeptoren. Von diesen werden einige in der Retina bzw. in der Lamina exprimiert. In der Retina konnten lediglich ein 5-HT2 Rezeptor, ein weiterer Bioaminrezeptor, eine Reihe bislang nicht näher charakterisierter Peptidrezeptoren sowie ein sogenannter methusaleh-Rezeptor nachgewiesen werden. Wie zu erwarten ist die Ausstattung der Lamina mit entsprechenden Rezeptoren vielfältiger.

Klon	Name	Rs	R	L	Ls	Ligand
CG16720	5-HT1A	102/141	0/0	136/0	370/350	Serotonin
CG15113	5-HT1B	0/0	0/0	0/0	0/0	Serotonin
HL07802	5-HT2	4415/4083	8214/8294	1633/1813	225/204	Serotonin
LD04507	5-HT7	166/401	267/397	894/1170	862/1157	Serotonin
SD05804	mth	1014/1081	611/444	8554/7958	625/472	
GM02553	mth-like 3	222/350	1088/2266	24393/36775	661/978	
GH07971	Or23a	138/139	0/0	409/311	189/164	Geruchsrezeptor
GH21228	GRHR	5887/5298	220/171	564/605	14751704	Hormon
GH28308	ERR	217/161	725/1212	244/248	940/587	Hormon
CG10001	AR-2	389/218	189/127	229/193	277/240	Allatostatin
CG3856	Oamb	0/0	0/0	546/593	77/102	Octopamin
CG2872	AlstR	0/0	0/0	126/87	0/0	Allatostatin
CG13702	AICR2	0/0	0/0	0/0	0/0	Allatostatin
CG8224	babo	0/0	0/0	0/0	0/0	Activin A
CG11318		0/0	2/0	68/0	0/0	?
CG12290		55/46	0/3	154/86	432/476	?
CG13579		180/158	106/124	156/9	47/50	?
CG13758		0/0	0/0	0/0	0/0	Calcitonin
CG15556		0/0	0/0	0/0	0/0	?
CG18314		891/1097	1220/1530	3432/2716	177/76	Bioamin
CG3004		49/226	35/29	397/358	107/226	?
CG4322		0/0	0/0	48/9	0/0	?
CG4875		2638/2983	812/1022	4204/3345	8751/8863	?
CG11144	Glu-RA	0/	0/0	0/0	0/0	Glutamat
CG5936		0/0	0/0	0/0	0/0	Neuropeptid
CG1171	Akh	1559/1322	673/532	212/69	2878/2304	Neuropeptid
CG15520	capa	9052/8565	8609/7390	5784/3182	547/245	Neuropeptid
CG8348	Dh	0/0	0/0	0/0	0/0	Neuropeptid
CG13094	Dh31	0/0	0/0	0/0	0/0	Neuropeptid
CG6440	Dms	1537/1801	0/13	561/511	410/569	Neuropeptid
CG2346	Fmrf	0/146	0/0	0/0	0/0	Neuropeptid
GH03388	hug	407/371	103/73	463/571	571/916	Neuropeptid
CG6456	Mip	9905/8781	316/127	873/879	5747/4384	Neuropeptid
GH23382	NPFR76F	0/0	251/112	1020/1545	295/315	Neuropeptid
CG13968	npf	0/0	0/0	0/0	0/0	Neuropeptid
CG3441	Nplp1	593/568	0/144	418/172	388/100	Neuropeptid
GH10154	Takr99D	3915/5552	2924/4868	346/475	2768/3934	Neuropeptid
CG10823		0/0	0/0	0/	0/0	Neuropeptid
CG13229		0/0	0/0	0/0	0/0	Neuropeptid
CG13575		0/0	0/0	0/0	0/0	Neuropeptid
CG13995		0/0	0/0	0/0	0/0	Neuropeptid
CG4395		0/0	0/0	0/0	0/0	Neuropeptid

Tabelle 4

3.3.2.4 Gene der Second-Messenger-Kaskade (Tab. 5)

Um die Informationen, die über G-Protein-gekoppelte Rezeptoren vermittelt werden in das Zellinnere weiterzuleiten, sind *Second-Messenger*-Kaskaden erforderlich. Neben den G-Proteinen sind hierbei Proteinkinasen hervorzuheben. In der Retina wird eine erstaunliche Vielzahl dieser Moleküle exprimiert, was mit der überraschend vielfältigen Ausstattung an G-Protein-gekoppelten Rezeptoren in Einklang steht.

_						
ſ	Klon	Name	Rs	R	L	Ls
	LD26182	G-salpha60A	3418/4402	119/205	14131/15591	1876/2256
	LD03453	Ggamma1	19116/26383	9216/7780	9908/10000	56509/56712
	HL05773	Ggamma30A	24012/27478	5444/8357	19829/20514	11257/11136
	GM01501	Galpha49B	1679/1911	3890/3960	406/480	4571/5253
	GM01620	G-oalpha47A	41/248	339/478	2381/1676	671/435
	LD25526	Gbeta13F	9693/9486	303/365	2143/2870	19260/22461
	HL07966	Gbeta76C	65141/65535	65535/65535	59284/65535	2059/2378
	LD22201	G-ialpha65A	1593/1408	135/33	2625/2204	360/430
	CG10564	Ac78C	0/0	0/0	1083/1352	0/0
	GH26260	Ac76E	319/315	43/28	97/341	22/232
	CG6275	Gyc32E	0/0	0/0	0/0	0/0
	CG4379	Pka-C1	0/0	0/0	0/0	0/0
	CG12066	Pka-C2	0/0	0/0	0/0	0/0
	CG6117	Pka-C3	2983/2606	2053/2026	4434/4364	163/125
	GH24529	Pka-R1	799/870	3409/3719	2465/2797	377/281
	CG10261	aPKC	365/663	264/181	731/768	592/701
	GH13631	Pkc98E	137/264	14/78	974/1153	1516/1738
	GH03188	Pkc53E	3293/3247	345/141	141/193	1590/1647
	CG2469	CaMKI	153/369	175/278	808/1349	0/0
	LD31422	CaMKII	2162/2186	11202/10792	14732/12448	754/973

Tabelle 5

3.3.2.5 Gene für Ionenkanäle: liganden- und spannungsgesteuert (Tab. 6)

Neben den G-Protein-gekoppelten Rezeptoren werden vor allem Ionenkanäle für die interzelluläre Kommunikation eingesetzt. Auch in diesem Fall werden verschiedene Rezeptoren (u.A. der Hist Cl1, der NMDA1, sowie einige nikotinische Acetylcholin-rezeptoren) in der Retina exprimiert.

Klon	Name	Rs	R	L	Ls	
GH16612	Ca-beta	0/16	17/29	542/568	17158/19469	Ca-Kanal
CG10844	Rya-r44F	0/0	0/0	268/98	0/0	Ca-Kanal
GH02471	cac	68/160	28/44	103/67	658/467	Ca-Kanal
GH02029	Ca-alpha1D	301/68	837/369	163/157	189/32	Ca-Kanal
GH14445	HisCl1	3491/4043	2676/2938	130/195	0/73	Histamin, ort
GH26622	Nmda1	2764/2412	559/471	5820/5329	601/744	Glutamat
GH22843	nAcRalpha-96Ab	316/826	127/169	174/289	722/733	Acetylcholin
GH09870	nAcRbeta-96A	26/104	0/0	432/223	235/241	Acetylcholin
GH10531	nAcRbeta-64B	588/551	574/369	1525/1589	579/675	Acetylcholin
CG4128	nAcRalpha-30D	1188/1242	5366/6578	6682/9176	2421/3236	Acetylcholin
LD20458	nAcRalpha-80B	0/0	0/163	190/313	6/145	Acetylcholin
SD09326	nAcRbeta-21C	146/132	0/298	1442/1236	1264/1072	Acetylcholin
CG10952	eag	0/0	0/0	260/121	286/414	K-Kanal
GH10853	elk	30/149	161/60	487/562	471/589	K-Kanal
LD16342	slo	582/551	1532/1634	749/971	714/824	K-Kanal
CG6747	Ir	0/0	0/0	0/0	0/0	K-Kanal
CG10706	SK	0/0	0/0	0/0	0/0	K-Kanal
GH11459	Irk2	8021/8814	235/249	26996/28657	11071118	K-Kanal
CG10369	Irk3	0/0	0/0	0/267	0/0	K-Kanal
GH25390	Ork1	0/121	63/137	201/588	120/457	K-Kanal
GH09619	Rdl	2615/2937	1155/1646	6474/7456	1682/2543	GABA-A
GH08705	Lcch3	35/129	45/42	1815/2432	298/442	GABA-A

Tabelle 6

3.3.2.6 Gene der Transmittersynthese und der Neurosekretion (Tab. 7)

Da beide Gewebe (Retina und Lamina) im Zentrum der Informationsleitung im visuellen System zu finden sind, werden dort Moleküle exprimiert, die für eine gerichtete und gesteuerte Signalleitung erforderlich sind. Dies beinhaltet unter anderem die Enzyme zur Synthese von Neurotransmittern (z.B. Dopa-Decarboxylase = Ddc) und Proteine, welche die Exozytose der Transmitter ermöglichen bzw. steuern. Letztere lassen sich in vier verschiedene Funktionskreise untergliedern: 1. Proteine, die Vesikel an das Filamentgerüst binden, 2. solche, die für eine gezielte Bewegung der freigesetzten Vesikel in Richtung der aktiven Zone sorgen (*targeting*, z.B. Rab 3a und 3b), 3. solche, die Vesikel an der aktiven Zone anheften (*docking*, z.B. Syntaxine = Syx) oder die 4. die Fusion und Exozytose (z.B. Synaptobrevin = syb) ermöglichen. Jedes der in Tab. 7 (folgende Seite) aufgeführten Gene hat eine der oben genannten Funktionen.

Klon	Name	Rs	R	L	Ls
LD15107	auxillin	8436/8435	17314/17904	2053/2024	1361/1501
GH01240	syt	3820/5182	2597/4247	3523/3463	12769/14121
SD04106	Bap	499/560	1066/1127	1532/872	953/553
LD15472	unc-13	0/0	0/0	0/0	0/0
LD24904	Arf79F	3290/2552	1024/2550	1837/1788	3063/1904
CG6025	Arf72A	90/29	109/143	2078/1683	0/0
GM01555	Arf84F	7772/12149	2363/3219	868/3346	83/628
GH04664	n-svb	11587/13638	3051/3705	6306/6689	8484/8009
SD05285	Svb	11415/13029	15361/18551	1262/1127	4838/4927
GH24702	Rab5	2835/2767	109/137	1350/1273	8405/8110
LP05860	Rab3	3382/2702	351/253	6539/7044	1360/1817
LD30575	Hrs	588/193	203/325	495/198	141/57
GM10787	lan	599/676	358/394	2051/2334	770/1140
SD04590	Cirl	4418//3533	6057/4785	4380/2704	16681/8272
LD30122	Van-33-1	13814/9991	1976/1677	4069/4379	4429/4994
SD0/216	Rop	5441/6519	1030/1188	6785/6836	1892/1831
CG11427	rb	0/0	0/0	0/0	0/0
1 D31377	AP-47	4715/5918	72/85	232/298	13798/20387
GH13039	gammaSnan	4715/5916 25550/30156	2104/4184	47403/51120	1/03/2167
L D/39/3	Svy1A	23330/30130	2194/4104	47495/51120	1726/1821
SD07852	Syx1A Syx5	6680/6168	9665/9272	11/20/10105	33506/26554
HI 02043	Syx5 Syx6	4105/3610	59/0	370/347	3312/3553
I D23667	Syx0	4105/5010	2070/2810	570/347 6043/7373	3312/3333
LD23007	Syx7	4390/3828	2979/2010	6600/7015	343/370 1762/1022
CH10140	Syx15	03/4//398	J400/2843	4264/4260	2081/2210
GH10149	Syx10	4445/4467	4504/4055	4204/4300	2901/3210
UD27002	Syx17	9377/10040	124/02	0330/092	125/45
SD03467	Syx10	010/750	134/92	11/93/8034 806/604	155/45
SD03467	seco	166/279	22/5/2495	896/604	/458/5136
CU10040	seco	230/233	170/219	538/810	334/019
GH19049	sec10	038/588	22/6/182/	054/980	228/229
CU2(9/7	Sec15	0/0	0/0	0/0	0/0
GH26867	Rim	25/0	0/0	305/248	300/15/
CU12007	кер	0/0	42/0	26/0	3139/4022
GH12907	endoA	//23	394/615	299/347	0/0
GM04934	Scamp	7009/8016	2078/2078	43995/43918	10949/11182
LD43101	Che	1237/1468	89/214	2390/2907	411/338
LD22957	shi	/6/169	209/368	666/870	461/707
LD46328	syndapın	5087/4841	684/1352	3523/3321	3375/1911
SD04710	synaptojanin	143/253	23/0	280/155	752/1105
LD29081	XIIL	578/709	0/200	519/506	945/1055
SD02883	CG3885	1756/1859	5/47	325/384	9913/11433
CG5559		0/0	36/0	0/0	0/0
SD05403	AP-50	681/718	157/189	295/294	975/1114
LD03592	usnp	3177/2043	6904/4744	8055/6043	260/316
LD14109	AP-1sigma	4814/7456	9269/15176	61699/29938	36000/16716
SD09478	Eps-15	891/760	228/379	697/577	802/1077
GM02293	Clc	4784/6792	2264/3668	14467/17074	12899/12416
LD23686	Dap160	495/586	289/506	1842/2261	1891/1999
SD02108	Csp	1601/1559	1024/833	1048/1013	1663/979
CG10501	amd	0/0	368/425	0/0	0/0
GH22929	DAT	243/0	0/0	102/120	165/42
GH12636	Dat	12536/13397	7343/8163	9446/8913	2610/1906
GH14812	Ddc	3052/2960	604/560	2764/3802	705/1128
LD23513	Catsup	14124/15849	236/414	3862/4076	4891/6499
GH25720	Ace	14/23	0/0	9556/7505	2155/1577

Tabelle 7

4 Diskussion

Die Taufliege *Drosophila melanogaster* ist ein verhältnismäßig kleines, holometaboles Insekt. Das adulte Tier ist im Schnitt nur ca. 3 mm lang. Bestehende auf DNA-*Microarrays* basierende Methoden der Transkriptomanalyse sind aber allesamt darauf ausgerichtet, mit großen Mengen poly(A)+ mRNA, bzw. mit viel Gesamt-RNA zu arbeiten. Das Standardprotokoll für eine Hybridisierung des CDMC DNA-*Microarrays* geht von 80-100 µg Gesamt-RNA aus. Diese Mengen können aber nur erreicht werden, wenn Gewebe von hunderten von Tieren verwendet werden. Dieses wiederum führte auch dazu, dass bisher nur Transkriptome von groben anatomischen Strukturen erstellt wurden. In gegenwärtigen Veröffentlichungen findet man allerhöchstens "Kopf"-Transkriptome, auf zellulärer Ebene lediglich Analysen von Zelllinien, die aus Zellkulturen stammen. Zusammenfassend kann gesagt werden: die bisherige Strategie der Transkriptomanalysen von *Drosophila* setzte eher auf Quantität denn auf Qualität.

Die vorliegende Arbeit stellt ein Gesamtkonzept dar, welches die Erstellung von Transkriptomen ausgehend von geringsten Gewebemengen und die Analyse dieser mittels DNA-*Microarrays* ermöglicht. Das Transkriptom eines beliebigen Organismus wird definiert als die Gesamtheit aller RNAs, die dieser im Laufe seines Lebens transkribiert. Die Betonung liegt auf Gesamtheit. Doch formuliert man eine exakte Frage daraus, müsste diese lauten: "Welche Transkripte werden in welchen Kompartimenten wann im Leben eines Organismus von seinem Genom abgeschrieben?" Für höhere, mehrzellige Organismen gibt es derzeit nicht einmal annähernd die Möglichkeit, diese Frage befriedigend zu beantworten, trotz der fortschreitenden Entschlüsselung von Genomen.

Ein gangbarer und sinnvoller Weg über Teilschritte führt zur Lösung des Gesamtproblems. Analog zu dem Begriff Teilmenge einer Menge X im Sinne der Mengenlehre sollten Teiltranskriptome als Teilmengen der Menge "Transkriptom" betrachtet und untersucht werden. Die Vereinigungsmenge aller Teiltrankriptome ergibt dann das Transkriptom eines Organismus. Unter Berücksichtigung der Individualentwicklung des Organismus erscheint es logisch, z.B. von Ei-, Larven- oder Adulttranskriptomen zu sprechen. Die Erstellung eines Transkriptoms erfüllt aber keinen Selbstzweck. Steht eine physiologische Fragestellung im Vordergrund, ergibt sich die Wahl des zu untersuchenden Teiltranskriptoms auch logisch, nämlich aus dem Zusammenhang von Struktur und Funktion. Wenn z.B. die an der Phototransduktion beteiligten Gene analysiert werden sollen, muss das Gewebe präpariert werden, in dem die entsprechende Leistung verwirklicht wird, weil eben jedes Gewebe seinen eigenen Satz von exprimierten Genen besitzt. In diesem Falle also die Retina, weil sie das Gewebe ist, in welchem die Photorezeptoren diese Leistung erbringen. Folglich wurde ein Retinatranskriptom erstellt. Das visuelle System der Taufliege gliedert sich anatomisch und funktional in Retina und den optischen Lobus. Der Ansatz, sich der gestellten Aufgabe in Teilschritten zu nähern, wurde konsequent fortgeführt mit der Erstellung eines Laminatranskriptoms. Retina und Lamina sind inhomogene Gewebe mit definierten physiologischen Funktionen. Die erbrachten Leistungen werden durch einzelne Zellen, durch das Zusammenwirken unterschiedlichster Zelltypen und durch die immens komplexe Verschaltung von Neuronen untereinander erreicht. Aus informationstheoretischer Sicht betrachtet sind die Retina und die Lamina zwei besonders interessante Gewebe, weil sich hier zwei Schichten gegenüberstehen, die offensichtlich miteinander kommunizieren. Die Retina als Eingangsschicht sendet Informationen an eine Verarbeitungsschicht, die Lamina. Bekannt ist, dass die Photorezeptoren der Retina R1-6 innerhalb der Lamina auf die L2-Zellen der Lamina-Monopolarzellen verschalten. Die Photorezeptoren "sagen" über ihre Terminalen den L2-Zellen mit dem Transmitter Histamin "Licht ist da". Die L2-Zellen "hören" dieses mit den Histamin-Rezeptoren an ihren postsynaptischen Membranen und reagieren darauf. Kommunikation ist aber keine Einbahnstraße. Offensichtlich gibt es auch einen rückwärts gerichteten Informationsfluss von der Lamina zurück zur Retina über sogenannte feedback-Neuronen, wie sie erstmals bei Insekten elektronenmikroskopisch von Ian Meinertzhagen beschrieben wurden (Meinertzhagen, 1989). Eine besondere Herausforderung bestand darin, die L2-Zellen zu isolieren und deren Transkriptom, das L2-Transkriptom, zu erstellen. Wie sprechen die L2-Neuronen mit den Photorezeptoren? Welche Gene realisieren diese Leistung?

Mit Hilfe von DNA-*Microarrays* werden Transkriptome analysiert, indem sie *quasi* sichtbar gemacht werden. Mit dieser Methode gelingt die Probe, welche Gene in dem jeweils untersuchten Transkriptom vorhanden sind. Wenn sich allerdings "nur" siebentausend DNA-Fragmente (stellvertretend für Gene) auf einem DNA-Chip befinden, kann einem Transkriptom auch nur diese maximale Anzahl an Genen zugeordnet werden. Mit DNA-*Microarrays* können keine neuen Transkripte entdeckt werden! Ist aber die molekulare Ausstattung eines exakt definierten Gewebes durch

Transkriptomanalysen gegeben, kann es andersherum möglich sein, den identifizierten Transkripten mögliche Funktionen in physiologischen Prozessen zuzuweisen oder sie wie fehlende Puzzleteile in ein nur unvollständig verstandenes Bild eines Prozesses einzufügen.

4.1 Methodenoptimierung

Das Kapitel Methodenoptimierung ist untergliedert in die Unterkapitel Präparation und Gewebegewinnung und molekularbiologische Methoden. Für die Gewinnung der Gewebe wurden zwei Verfahren gewählt: Das Gefriertrocknen nach Fujita (Fujita et al., 1987) und das FACS. Das Gefriertrocknen wurde ursprünglich für die Präparation von Drosophila-Geweben unter dem Aspekt der Proteingewinnung beschrieben. FACS ist eine Standardmethode der Durchflußzytometrie zur Isolierung bestimmter Zellen aus inhomogenen Geweben. Nach Literaturlage wurde die Methode noch nie für Invertebratenzellen verwendet. Das Kapitel molekularbiologische Methoden befasst sich mit der cDNA-Synthese, der cRNA-Synthese und der Subtraktiven Hybridisierung. Diese Methoden sollen hier diskutiert werden, weil sie im Rahmen der vorliegenden Arbeit entweder modifiziert oder völlig neu konzipiert wurden und weil sie die Basis für die Transkriptomanalysen bilden. Die CF-cDNA-Synthese wurde nach einem von Autor entwickelten Protokoll durchgeführt. Um die Transkriptome mittels der DNA-Microarrays analysieren zu können, musste die Methode modifiziert werden, was im Kapitel 4.1.2.2 (cRNA-Synthese) dargestellt und diskutiert wird. Die cRNA wiederum war das Ausgangsmaterial für die Subtraktive Hybridisierung und für die Hybridisierung der beiden DNA-Chips, mit denen die Transkriptome entschlüsselt werden sollten. Die Subtraktive Hybridisierung wurde als Methode in das Gesamtkonzept der Transkriptomanalyse mit einbezogen, weil diese nach wie vor ein nicht unerhebliches Potenzial bei der Identifizierung differenzieller Gene bietet. Aus einer modifizierten Version der CF-cDNA-Synthese ergab sich die Möglichkeit, den Arbeitsaufwand der Subtraktiven Hybridisierung auf ein Mindestmaß zu reduzieren. Diese Methode wird im Rahmen der hier vorgestellten Vorgehensweise der Transkriptomanalyse als eine sinnvolle Ergänzung des Gesamtkonzeptes und nicht in Konkurrenz zur Microarray-Technologie verstanden.

4.1.1 Präparation und Gewebegewinnung

Welche Genprodukte fungieren als Bausteine für den Aufbau des visuellen Systems der Taufliege *Drosophila melanogaster*? Am Anfang dieser scheinbar so banalen Frage standen große Probleme: Wie präpariert man das Komplexauge und die Sehbahn einer Taufliege, um intakte, eindeutig definierte Zell- oder Gewebeproben zu erhalten, wenn selbst der Kopf des Tieres schon nicht viel größer ist als ein Stecknadelkopf. Wie vermeidet man methodische Fehler bei einer Präparation, wenn sich zwei der zu untersuchenden Gewebe räumlich in unmittelbarer Nähe zueinander befinden oder Strukturen des einen Gewebes in das zweite hineinragen? Können Kontaminationen der zu isolierenden Gewebepools vermieden werden? Noch viel kleiner und fragiler als das Komplexauge selbst sind die nachgeschalteten neuronalen Zentren der Sehbahn. Die molekulare Ausstattung der optischen Ganglien ist von erheblichem Interesse, aber *bis dato* konnten diesen, gerade wegen der schlechten Präparierbarkeit, nur wenige differenziell exprimierte Gene eindeutig zugeordnet werden.

4.1.1.1 Gefriertrocknen von Drosophila-Gewebe

Dieses Verfahren beruht auf der chemischen Eigenschaft des Na₂SO₄-Anhydrits stark hygroskopisch zu sein. Dem zu untersuchenden Gewebe wird schonend Wasser entzogen, welches in dem Aceton/Salz-Gemisch trotz der Kälte offensichtlich nicht zu Eis kristallisiert. Es entpuppte sich aus zweierlei Gründen als wahrer Glücksfall für die Präparation des visuellen Systems von *Drosophila m*.

Die Gewebe bleiben völlig intakt, was dazu führt, dass auch die relativen räumlichen Zuordnungen erhalten bleiben. Die Gewebe sind zwar formstabil aber dennoch sehr leicht zerbrechlich. Bei dem Eröffnen der Kopfkapsel allerdings kann es passieren, dass einem der Inhalt in Form von Einzelteilen eines dreidimensionalen Puzzles zerfällt. Dieses ist aber nur für den ungeübten Präparator von Nachteil, weil er die einzelnen Bestandteile nicht auf Anhieb identifizieren kann. Besonders leicht ließen sich die Retina und die Lamina präparieren. Die Retina haftete in der Regel der Cornea an, ließ sich aber leicht von dieser ablösen. Die Lamina wiederum haftete entweder der Retina oder den anderen Teilen des optischen Lobus an, ließ sich aber auch leicht von diesen abtrennen. Medulla und Lobula-Komplex konnten von mir nicht sauber getrennt werden. In Einzelfällen gelang dieses zwar, doch aus Zeitgründen wurde hier nicht weiter experimentiert.

Zum anderen zeigte sich keinerlei RNase-Aktivität in den untersuchten gefriergetrockneten Geweben. Es brauchten keinerlei Vorkehrungen getroffen zu werden, um das Degradieren von RNA zu verhindern. Die Gewebe lagen teilweise stundenlang bei Raumtemperatur in den Reaktionsgefäßen. Wenn das Präparieren sich bis zum folgenden Tag hinstreckte, wurden diese einfach im Kühlschrank bei 4° C verwahrt. Selbst aus diesen Geweben konnte völlig problemlos hochwertige mRNA isoliert werden. Dieses konnte auf Grund der geringen Mengen nicht in Form eines RNA-Gels dokumentiert werden, aber indirekt durch das erfolgreiche Umschreiben der mRNA in cDNA (s. 3.1.31) und durch die Hybridisierungen der D7KV2-Chips (3.3.1).

Die Ergebnisse der Präparation wurden mit dem Rasterelektronenmikroskop dokumentiert (s. 3.1.1.1). In beeindruckender Weise konnte gezeigt werden, dass Retina und Lamina als Gewebe präparierbar und weitestgehend sauber von einander zu trennen sind. Als Fujita und Kollegen (1987) diese Methode entwickelten, war es ihre Intention, Gewebe so gut wie möglich zu trennen, um aus diesen Proteine zu gewinnen. In einer kleinen Nebenbemerkung machten die Autoren auf die Möglichkeit aufmerksam, dass aus diesen Geweben wohl auch hochwertige RNA zu isolieren sei.

Dennoch ergibt sich aus dieser Art der Präparation ein nicht unproblematischer Sachverhalt. Axonanteile der Photorezeptoren und die Terminalen befinden sich auch nach der Entfernung des Retinagewebes noch in der Lamina. Dieser Umstand zeigte sich deutlich bei der Analyse der Transkriptomdaten und muss deshalb auch in besonderer Weise bei der Interpretation der Ergebnisse berücksichtig werden. Wie schon Eingangs erwähnt, besteht ein großes Interesse an der molekularen Ausstattung beider Membranen, die sich an den Synapsen zwischen den Photorezeptoraxonen und den L2-Zellen ausbilden. Auch wenn die Axonendigung der Photorezeptoren nicht der Ort der Transkription sein kann, weil sich der Syntheseort im Zellkern befindet, konnten im erstellten "Laminatranskriptom" Retina-spezifische Transkipte nachgewiesen werden. Die Ursachen dafür liegen offensichtlich in der Art der Präparation und an dem Phänomen der ortsgebundenen Translation von Transkripten. Es zeigt aber auch, wie empfindlich die Meßmethode ist, welch großes Potenzial in der *Microarray*-Technik steckt und dass die cDNA-Synthese mit den nachgeschalteten Amplifikationsschritten sehr erfolgreich war.

4.1.1.2 FACS-Analysen

Die zweite präparative Methode der Wahl war das FACS. Erstmalig sollte diese Methode zum Sortieren von Zellen aus Insektengeweben verwendet werden. Es sollten L2-Neuronen der Lamina isoliert werden, um deren Transkriptom zu analysieren. Aus oben genannten Gründen (s. Gefriertrocknen von *Drosophila*-Gewebe) war es ein besonderes Anliegen, exakt diese Zellpopulation bezüglich der molekularen Ausstattung zu charakterisieren. Wichtigste Vorraussetzung für das FACS war das ektopische Exprimieren von GFP in den L2-Zellen, weil nur so die Möglichkeit bestand, die Zellen gezielt aus einer inhomogenen Zelllösung zu isolieren.

Mittels des Gal4/UAS Systems (Brand und Perrimon, 1993) wurde eine transgene Linie "L2" generiert (s. 2.11). Um das GFP ausschließlich in die L2-Zellen der Lamina zu dirigieren, wurde als Treiberlinie eine so genannte "21D-Linie", als Effektorlinie die P{w[+mC]- UAS-Cameleon.2.2.1}76 verwendet. Die 21D-Linie ist nicht *en detail* genetisch oder molekularbiologisch untersucht, erzeugt aber ein räumlich und zeitlich interessantes Expressionmuster. Ist das GFP in der Larve noch in den unterschiedlichsten Geweben zu detektieren (Daten nicht gezeigt), beschränkt es sich bei adulten Fliegen einzig und allein auf die L2-Neuronen. Dieses konnte mit dem Konfokalen *Laser-Scanning* Mikroskop verifiziert werden (s. 3.1.1.2). Die 21D-Linie wurde unserer Arbeitsgruppe von Prof. Dr. Martin Heisenberg, Würzburg, freundlicherweise zur Verfügung gestellt.

Damit das FACS störungsfrei und effektiv von statten gehen kann und um eine hohe Trennungsrate zu erreichen, sollten im Idealfall alle Zellen des zu untersuchenden Gewebes komplett dissoziiert sein. Um diesen rigorosen Vorgang möglichst schonend und stressfrei für die Zellen zu bewerkstelligen und damit am Ende der Prozedur nicht alle Zellen abgestorben sind, ist ein Papainverdau dem Collagenase-/Dispaseverdau vorzuziehen. Papain ist eine Proteinase mit hoher Spezifität für Proteine der extrazellulären Matrix. Es verdaut ausschließlich dem Gewebezusammenhalt dienende Proteine und zerstört nicht die Zellmembranintegrität. Alles in allem ist der Papainverdau so gut wie nicht zeitkritisch und weit weniger destruktiv bei einer Überdosierung der eingesetzten *units* an Enzym als der Collagenase-/Dispaseverdau. Beim Collagenase-/Dispaseverdau muss die Menge der eingesetzten *units* der Enzyme in einem exakten Verhältnis zur Gewebemenge stehen, damit nicht eine Vielzahl der Zellen zerstört wird. Die Dauer des Verdaus, bei dem alle Zellen dissoziiert aber nicht zerstört sind, kann aber nur abgeschätzt werden. Das Dissoziieren wurde noch mit Collagenase-/Dispase durchgeführt und ist deshalb im Kapitel Material und Methoden dokumentiert (s. 2.13.2).

Die Präparation der optischen Loben war sehr problematisch, weil hierbei erstens unter Zeitdruck gearbeitet wurde und zweitens, weil es nicht immer gelang, die optischen Loben vom Gehirn abzutrennen ohne sie zu zerreißen. Für die FACS Analyse wurden jedoch nur einwandfrei separierte Loben verwendet. Die Retinae konnten in der Regel leicht entfernt werden. Da es das Ziel war, lebende Zellen zu isolieren, musste die Präparation zügig durchgeführt werden. Vielleicht wäre es besser und einfacher gewesen, ganze Gehirne zu homogenisieren.

Bezüglich der absoluten Anzahl isolierter Zellen kann keine exakte Angabe gemacht werden. Bei schätzungsweise 800 L2-Neuronen pro Lobus ergäbe dies eine Gesamtanzahl von 16000 Zellen bei zehn präparierten Tieren. Durch das FACS wurden 4,4 % der Zellen aus dem Lobenhomogenat der L2-Linie isoliert. Diese Zellen wurden aber nachträglich nicht ausgezählt. Die FACS-Analyse einer Kontrollpräparation von Loben aus dem Wildtyp war positiv - es konnten keine Zellen isoliert werden. Aus den L2-Zellen der transgenen Linie wurde RNA isoliert und mit der CF-cDNA-Synthese in cDNA umgeschrieben. Leider wurde im Rahmen dieser Arbeit mit L2-cDNA kein D7KV2-Chip hybridisiert. Aus Zeitmangel konnte dieses Experiment nicht bis zum Ende durchgeführt werden.

Beiden Methoden der Gewebegewinnung, sowohl die Präparation von Retina- und Laminagewebe mit Hilfe von gefriergetrockneten Fliegen nach Fujita, als auch die gezielte Isolation von L2 Lamina-Neuronen mit dem FACS-System ist eines gemeinsam: Die Menge an verwertbarem Zellmaterial -und damit auch die Ausbeute an mRNA- ist sehr gering. Retina- und Laminagewebe bestehen aus einer Vielzahl unterschiedlicher Zelltypen.

4.1.2 Molekularbiologische Methoden

4.1.2.1 CapFinder-cDNA-Synthese und 5'-RACE

Eine Analyse von begrenztem Ausgangsmaterial kann zwangsläufig nur über eine PCRvermittelte Analyse der mRNA-Pools der zu untersuchenden Gewebe geführt werden. Das Erzeugen von *full-length*-cDNA ausgehend von mRNA-*template* ist eine Herausforderung der modernen biotechnologischen Forschung. Dieser Vorgang ist die ultimate Voraussetzung zur Konstruktion von cDNA-Bibliotheken, zur Erstellung von Expressionsprofilen und zur Synthese der DNA-Proben, die als Repräsentanten für Gene auf den *Microarrays* oder DNA-Chips aufgetragen werden.

Die 5'- RACE ist eine auf der PCR basierenden Strategie zur Analyse der vollständigen 5'-Enden einer cDNA. Die Identifizierung der 5'-Region eines Gens von Interesse ist keineswegs trivial aber von großer Bedeutung. Die eigentliche Problematik liegt darin, das die 5'-UTRs (untranslatierte Regionen) aller bisher bekannten, vollständigen Transkripte nicht das Ableiten eines einheitlichen Motivs ermöglichen. Zu unterschiedlich ist die Sequenzabfolge der einzelnen UTRs. Selbst wenn Teilsequenzen der codierenden Region eines Gens bekannt sind, konnte keine annähernd befriedigende PCR-Strategie entworfen werden, schnell und unkompliziert die 5'-Region zu identifizieren. Gängige Methode wie das *homopolymeric tailing* oder das *ligation anchored tailing* (Schaefer, 1995) sind sehr arbeitsintensiv und erfordern enzymatische Modifikationen nach Beendigung der cDNA-Erststrang-Synthese. Jedoch auch hier bietet die von uns (Schramm et al., 2000) eingeführte Festphasen-Methodik eine große Erleichterung.

Weiterführende Analysen ausgewählter Transkripte sind nur durch den Einsatz der 5'-RACE durchführbar. So lassen sich auf einfache Weise Spleißvarianten auffinden, was durch computergestützte Vorhersagen nicht möglich ist. Auch die exakte Bestimmung der offenen Leseraster ist nur mit Hilfe der 5'-RACE möglich. Dies ist eine wichtige Voraussetzung für die gezielte heterologe Expression interessierender Proteine und damit auch für die darauf basierenden pharmakologischen Studien (z.B. bei Rezeptorproteinen in Zellkultur). Dieselben Vorteile zeigen sich bei der Erzeugung von monoklonalen Antikörpern.

4.1.2.2 cRNA-Synthese

Will man Aussagen treffen über die relative Abundanz oder über das absolute Vorkommen von Transkripten innerhalb von Zellen/Geweben so ist es essentiell, die ursprüngliche Situation in einer gegebenen mRNA-Population durch die methodische Vorgehensweise so wenig wie möglich zu verändern. Hervorgerufen durch die geringen absoluten Mengen an mRNA besteht die Notwendigkeit zu einer Amplifikation. Die normalerweise zu diesen Zwecken eingesetzte Polymerase-Kettenreaktion wirft in diesem Zusammenhang jedoch Probleme auf. Hochexprimierte Transkripte werden auf Grund des exponentiellen Verlaufs der Amplifikation in einer PCR stark bevorzugt und verfälschen auf diese Weise das wahre Expressionsmuster. Um diesen Nachteil zu umgehen, ist die PCR unbedingt in der Anzahl der Amplifikationsschritte zu limitieren oder komplett durch eine isothermale lineare Amplifikation zu ersetzen.

Wie in der vorliegenden Arbeit gezeigt werden konnte, eignet sich die cRNA-Synthese hervorragend für diese Aufgabe. Das Ergebnis ist nicht nur eine linear amplifizierte mRNA-Population, sondern auch vollständige Transkriptkopien. Dies war die wichtigste Voraussetzung für die Durchführung von Transkriptomanalysen mit Hilfe der *Microarray*-Technologie auf der Basis von geringsten Gewebemengen.

4.1.2.3 Subtraktive Hybridisierung (SH)

Subtraktive Hybridisierungsmethoden werden angewendet, um Gene, die in einzelnen Zelllinien oder spezifischen Geweben differenziell exprimiert werden, charakterisieren zu können. Vom Prinzip her unterscheidet sich die SH und die *Microarray*-Technologie nur darin, dass die Proben-DNA hierbei "Subtraktor" genannt wird, von der Zusammensetzung der Transkripte nicht bekannt ist und nicht auf einer Trägeroberfläche immobilisiert ist. Generell basieren alle Subtraktionen auf dem gleichen Prinzip: Aus zu vergleichenden Geweben werden identische Transkripte auf Grund von komplementären Basenpaarungen subtrahiert und gewebe- oder zellspezifische Transkripte durch diesen Schritt isoliert. Mehrere verschiedene Strategien wurden entwickelt, um dieses Ziel zu erreichen (s. Sargent und David, 1983; Duguid et al., 1988; Timblin et al., 1990). Das Anwendungsspektrum dieser Methoden ist sehr vielfältig, dieser Tage vor allem noch verwendet bei Problemstellungen an Organismen, die nicht zu der Gruppe der "Durchsequenzierten" gehören. Die Subtraktive Hybridisierung war technisch sehr aufwändig und arbeitsintensiv. Als

Ausgangsmaterial werden große Mengen poly(A)⁺-mRNA oder hoch gereinigte Einzelstrang-DNA benötigt, was bei geringsten Gewebemengen stets der limitierende Faktor war. Der Vorteil der Subtraktion ist aber die Entfernung redundanter molekularer Information in Form von DNA oder RNA. Nicht differenzielle Transkripte sind durch das Hybridisierungsereignis mit dem Subtraktor aus einem Reaktionsansatz eliminierbar.

Die im Rahmen dieser Arbeit entwickelte Version der SH ergab sich aus der Methode der cRNA-Synthese, bzw. aus der Möglichkeit, sowohl sense- als auch antisense-cRNA in ausreichender Menge zu synthetisieren. Des Weiteren beruhte der Ansatz auf der wohlbegründeten Annahme, dass die bei der Hybridisierung entstehenden RNA/RNA Doppelstränge nicht durch eine Reverse Transkriptase aufgebrochen werden können. Allein die Einzelstrang-cRNA des Treiber-Pools kann bei Wahl des entsprechenden Primers vom 3'-Ende her bis zum 5'-Ende durch eine Reverse Transkriptase in Einzelstrang-cDNA umgeschrieben werden. Die ersten Ergebnisse stimmen optimistisch, denn immerhin konnte die Erststrang-cDNA erfolgreich mit der LA-PCR amplifiziert werden (s. 3.1.4). Die Kontrolle der Annahme, dass doppelsträngige Hybride nicht in die Neusynthese der Erststrang-cDNA eingehen, ließe sich einfach kontrollieren, Testhybride Fremdorganismus dadurch das eines dem Hybridisierungsansatz hinzugefügt werden. Bei Verwendung spezifischer, interner Primer bekannter Gene des Fremdorganismus, dürften keine Amplifikate aus der neu geschriebenen cDNA zu amplifizieren sein.

Der eigentliche Grund, warum die neue SH in diese Arbeit mit eingefasst wurde, war, dass die Effizienz der Methode leicht auf einen DNA-Chip hätte überprüft werden können. Ein identischer Ansatz mit umgekehrten Vorzeichen (Lamina-Retina, s. 3.1.4) sollte ebenfalls durchgeführt werden. Beide Subtraktionstranskriptome hätten im Idealfall auf einem *Microarray* stark unterschiedliche Hybridisierungsmuster mit sehr wenigen Doppelsignalen produzieren müssen.

Leider konnte auch dieses Experiment nicht bis zum Ende durchgeführt werden. Es besteht jedoch großer Bedarf hinsichtlich einer simplen und effizienten SH.

4.2 Serotonin im visuellen System von Drosophila melanogaster

Serotonin (5-Hydroxytryptamin, 5-HT) ist ein Indolamin und gehört zu einer kleinen Gruppe von Neurotransmittern und Hormonen, den so genannten biogenen Aminen.

Im ZNS vieler Tierstämme hat 5-HT die Funktion eines Neurotransmitters oder Neuromodulators. Das frühe Auftreten von Serotonin-immunreaktiven Neuronen in sich entwickelnden Nervensystemen führte zu der Annahme, dass 5-HT spezifische Aufgaben bei der Entwicklung von Gehirnen hat (Lauder, 1990). Dieses beinhaltet Aufgaben, die von der Steuerung der Zellproliferation (Benton et. al., 1997; Benton und Beltz, 2001) bis hin zur Synaptogenese reichen.

Die Mehrzahl der 5-HT Neuronen sind Interneuronen, von denen die meisten in bilateralen Gruppen angeordnet sind. Zwei prominente serotonerge Zellgruppen versorgen den gesamten optischen Lobus mit Serotonin. Aus dieser Gruppe innervieren Zentrifugalneuronen mit Somata am anterioren Rand der Medulla die Lamina (s. Abb. 22).

Abb. 22: Serotonin-immunreaktive Zentrifugalneuronen der Lamina. Serotonin-immunreaktive Neuronen im optischen Lobus des Tabakschwärmers *M. sexta*. Diese Neuronen haben Somata am vorderen Rand der Medulla und verzweigen in das superiore Protocerebrum, den optischen Stiel, die Medulla und die Lamina. Antennallobus (AL), α -Lobus (aL), Calyx (Ca), Medulla (Me), Lamina (La), Pedunculus (P). Größenmaßstab: 100 µm. Aus Wendt und Homberg (1992).

Messungen mit der HPLC deuten darauf hin, dass Serotonin und seine Metaboliten im Gehirn von Fliegen zyklisch abgegeben werden (Pyza et. al., 1993). Die Ursache dafür bleibt unklar. Die Autoren vermuten einen Zusammenhang mit der circadianen Rhythmik, also eine endogene Steuerung. Denkbar wäre allerdings auch eine direkte Steuerung des Serotoninausstosses vermittelt durch Tageszeit-abhängige Reizung der Ocellen. Dieses wurde aber noch nicht gezeigt.

Die Bestätigung, dass eine Substanz bei *Drosophila* ein Neurotransmitter oder Neuromodulator ist, gestaltet sich ausgesprochen schwierig. Der eigentliche Nachweis kann nur durch elektrophysiologische Messungen an spezifischen Synapsen erbracht werden. Doch dafür ist das *Drosophila*-Gehirn viel zu klein. Dieser Nachweis kann nur indirekt gezeigt werden, indem ein Syntheseweg, ein Aufnahmesystem oder der Abbauweg für die Substanz identifiziert wird. Letztlich muss ein spezifischer Rezeptor mit einem Signaltransduktionsweg die Beweiskette schließen. Wie alle biogenen Amine entsteht Serotonin aus einer Aminosäure. Tryptophan wird durch die Tryptophan-Hydroxylase (TPH) zu 5-Hydroxy-Tryptophan oxidiert, welches dann durch die Dopa-Decarboxylase (DDC) zu Serotonin decarboxyliert wird (Valle's und White, 1986). Die DDC wird durch das Gen Ddc codiert (Budnik et al., 1986)

Abb. 23: Syntheseweg des Serotonins.

Serotoninrezeptoren und -transporter

Anders als es bei den Wirbeltieren der Fall ist, sind alle bekannten Serotoninrezeptoren der Insekten *metabotrope* membranständige Rezeptoren, also G-Protein gekoppelt. Untersuchungen an Kopfhomogenaten der Taufliege belegten schon sehr früh das

Vorhandensein von Serotoninbindungstellen (Dudai und Zvi, S., 1982). Interessanter Weise wurde bei Arbeiten an Serotoninrezeptoren auch erstmals von IP₃ als intrazellulärem *messenger* berichtet (Litosch et al., 1985).

Drosophila melanogaster hat drei neuronale 5-HT-Rezeptoren, die aber pharmakologisch kaum zu differenzieren sind. Der 5-HTdro1, auch 5-HT7 genannt, ist positiv an die Adenylatzyklase gekoppelt (Witz et al., 1990). Die beiden anderen Rezeptoren, 5-HTdro2A und 5-HTdro2B, inhibieren die Adenylatzyklase aber stimulieren die Phospholipase C (Saudou et al., 1992). Der 5-HT2 benutzt ebenfalls die PLC als primären Effektor (Colas, 1995). Alle Serotoninrezeptoren von Drosophila sind bereits kloniert. Die Expressionmuster sind durch in situ Detektion von mRNA gut dokumentiert, jedoch nicht bei dem adulten Tier. Der 5-HTdro2A wird auch als 5HT1A bezeichnet und ist in hohem Maße sequenzhomolog zum 5-HTdro2B, auch 5HT1B genannt.

Die Existenz eines weiteren neuronalen Serotoninrezeptors konnte an der Wüstenheuschrecke *Schistocerca gregaria* belegt werden. Dieser Rezeptor zeigt pharmakologische Charakteristika, die zu denen der drei bekannten *Drosophila*-Rezeptoren stark unterschiedlich sind. Die Autoren kamen daher zu der Überzeugung, dass es sich hierbei um einen vierten neuronalen Serotoninrezeptor handelt. Eine pharmakologische Zuordnung zu den bekannten Subtypen der Wirbeltiere war ebenfalls nicht eindeutig möglich (Wedemeyer et al., 1992).

Sowohl Corey et al. (1994) als auch Demchyshyn et al. (1994) gelang die Klonierung des Serotonintransporters dSERT. Dieser Transporter ist Na/Cl-abhängig und zeigt Sensitivität gegenüber Kokain und Antidepressiva (Demchyshyn et al., 1994). Von einem Calcium-abhängigen Transmitterausstoss des Serotonins wurde berichtet (Flanagan and Berlind, 1984).

4.2.1 Serotonin moduliert den Photorezeptor

Die Photorezeptoren der Insekten sind Sinneszellen mit wahrhaft phantastischen Eigenschaften. In ihnen ist der schnellste G-Protein-gekoppelte Signaltransduktionsprozess verwirklicht, der zurzeit bekannt ist. Viele Insekten sehen ultraviolettes Licht und darüber hinaus sind die Komplexaugen der Insekten empfindlich für polarisiertes Licht.

Photorezeptoren der Fliegen zeichnen sich durch eine sehr niedrige Reizschwelle aus. Bereits ein Lichtquant löst eine messbare Erregung aus. Doch trotz dieser extremen Empfindlichkeit sind ihre Photorezeptoren in der Lage über die gesamte Skala an Lichtintensität ihrer natürlichen Umwelt (Dunkelheit bis zu 10⁶ Photonen pro Sekunde) zu adaptieren. Selbst unter maximalen Intensitäten scheinen die Rezeptoren wie lineare Photonenzähler zu reagieren (Juusola und Hardie, 2001). Unter extremsten Lichtverhältnissen, wenn die Rezeptoren Hell adaptiert sind, wandern Pigmente in die Rhabdomere, was den maximalen Lichtfluss um näherungsweise 1-2 log Einheiten abschwächt (Juusola und Hardie, 2001). Die Mechanismen dieser Form der Reizkontrolle sind noch weitgehend ungeklärt.

Serotonin moduliert einen Shaker Kanal über den 5-HT2-Rezeptor

Einen erstaunlichen durch Serotonin Effekt vermittelt berichten Hevers und Hardie (1995). Ihre elektrophysiologischen Ableitungen an einem semi-intakten Retinapräparat konnten eine Modulation der Spannungsabhängigkeit von Kaliumkanälen in den Photorezeptoren zeigen. Moduliert wird ein einwärtsgerichteter Kaliumkanal und der gut untersuchte *Shaker*-Kaliumkanal. Die elektrophysiologischen Daten, die Hevers und Hardie vorlegen, lassen vermuten, dass der *Shaker*-Kanal unter normalen physiologischen Bedingungen komplett inaktiviert ist. Erst durch die serotonerge Modulation zeigt der Kanal eine transiente A-Typ Leitfähigkeit für Kalium. Es ist zu vermuten, dass dadurch der Schwellenwert des Photorezeptors für synaptische Transmitterfreisetzung beeinflusst wird.

Der Axondurchmesser von L1-Neuronen der Lamina unterliegt einer zyklischen Veränderung in einem täglichen Rhythmus. Wie gezeigt wurde, können Mikroinjektionen von Histamin und Serotonin in den optischen Lobus ein Anschwellen der L1-Axone bewirken (Pyza und Meinertzhagen, 1996). Die Autoren vermuten, dass Serotonin indirekt einen Effekt auf den Zustand des Axondurchmesser vermittelt, indem es die Ausschüttung des Transmitters Histamin steuert. Dieses steht mit der These, dass Serotonin die synaptische Transmitterfreisetzung beeinflusst, im guten Einklang.

Wie meine Transkriptomanalysen der Retina zeigen, kann dieser Effekt nur durch den 5-HT2 Rezeptor vermittelt werden (s. 3.3.2.1, Tab. 3). Als mögliche Quellen des Modulators können die serotonergen Zentrifugalneuronen der Lamina in Betracht gezogen werden (s. Abb. 22).

Der metabotrope 5-HT2 Rezeptor stimuliert mittels G_q die Phospolipase C (Colas et al., 1995), was über Freisetzung von IP₃ die Ca²⁺-Konzentration im Photorezeptor erhöht. Bislang wurde vermutet -und dieses konnte auch bei einigen Invertebraten gezeigt werden- dass über den IP₃-Weg lichtsensitive Kanäle geöffnet werden. Dieses Modell wurde auch lange Zeit bei *Drosophila* diskutiert. Neuere Befunde allerdings deuten darauf hin, dass *Drosophila* einen *lipid-messenger* mit dieser Aufgabe betraut hat und nicht Ca²⁺. Beide Möglichkeiten werden sehr kontrovers diskutiert. Eine gute Übersicht über den derzeitigen Wissensstand bieten Hardie und Raghu (2001).

Was bewirkt die Modulation der Kaliumkanäle durch Serotonin? Eine mögliche Beteiligung von eag oder eag-like Untereinheiten an der nativen Kanalzusammensetzung kann aufgrund meiner Daten ausgeschlossen werden. Beide Kanaluntereinheiten werden nicht in der Retina exprimiert. Von der Gensequenz des Shaker-Kanals werden drei mögliche Phosphorylierungsstellen berichtet. Die N-Terminale-Phosphorylierungsstelle (Drain et al., 1994) wurde mit einer Analyse der Mutante T(1;Y)W32 (Papazian et al., 1987) von Hevers und Hardie (1995) getestet, doch konnte deren Beteiligung an dem beschriebenen Phänomen ausgeschlossen werden. Zwei weitere Phosphorylierungstellen mit Serinresten (C-Terminal und im Loop zwischen S4 und S5 befindlich (Tempel et al., 1987; Pongs et al., 1988)) sind demnach potenzielle Angriffstellen für eine Proteinkinase, wobei eine cAMP-abhängige Proteinkinase durch den IP₃-Weg auszuschließen ist. Welche Wege stehen offen für eine Modulation der Kaliumkanäle? Stromabwärts der PLC-Signaltranduktion stehen zwei Second Messenger zur Verfügung: IP3 und DAG. Als sekundäre Effektoren kommen damit die Proteinkinase C (PKC) und CaM-Kinase II in betracht. Die CaM-Kinase II wird sehr stark in der Retina exprimiert und ist damit ein Kandidat. Sie ist eine serin- und threoninspezifische Proteinkinase und könnte die Serinreste am Shaker-Kanal phosphorylieren. Es wird vermutet, dass PKC das Schlüsselenzym bei dem Prozess der Adaptation ist. Jedenfalls zeigen Mutanten der PKC in der Lichtadaptation den erwarteten Phänotypus (Hardie et al., 1993).

Eine Frage, die hier nicht erörtert werden soll, sich aber stark aufdrängt: Wer re-moduliert den *Shaker*-Kanal?

4.2.2 Serotonin in der Lamina

Pyza und Meinertzhagen vermuten, dass Serotonin indirekt einen Einfluß auf den Zustand des Axondurchmessers der L1-Neuronen vermittelt (1996). Der 5-HT7 Rezeptor, auch 5-HTdro1 genannt, wird in der Lamina exprimiert (s. 3.3.2.1, Tab. 3). Über den 5-HT7-Rezeptor könnte der Histamin-gesteuerte Chlorid-Kanal moduliert werden, so dass der Histaminrezeptor mit einer veränderten Kinetik auf Histamin reagiert. Jedenfalls schließen sich beide Effekte -der eine auf der präsynaptischen, der andere auf der postsynaptischen Seite- nicht gegenseitig aus. Es könnte sich hierbei sogar um ein zentral gesteuertes Phänomen handeln: die Kommunikation von Sender (Photorezeptor) und Empfänger (L1-Neuron) wird exakt aufeinander abgestimmt.

Der 5-HT7-Rezeptor vermittelt seine Wirkung über eine Stimulation der Adenylatzyklase (Witz et al., 1990), was zu einer Erhöhung der intrazellulären cAMP-Konzentration führt. In diesem Falle kann eine cAMP-abhängige Proteinkinase eine Untereinheit des Histamin-gesteuerten Chlorid-Kanals phosporylieren.

4.3 Acetylcholin im visuellen System von Drosophila melanogaster

Im Nervensystem von Insekten ist Acetylcholin einer der am häufigsten vorkommenden Neurotransmitter. Im Insektengehirn ist es ein Haupttransmitter von sensorischen Neuronen und Interneuronen. Wie auch bei den Vertebraten kann bei Insekten zwischen nikotinischen (nAChR) und muskarinischen (nAChR) Rezeptoren unterschieden werden. Cholinerge Neurotransmission wird indirekt durch den Nachweis von Acetylcholinesterase oder von Acetylcholin-Rezeptoren geführt (s. Übersichtsarbeit Homberg, 1994).

Es scheint, dass Acetylcholin im visuellen System von *Drosophila*, wie bei vielen anderen Insekten auch, eine Transmitterfunktion hat. Seit dem Nachweis von Acetylcholinesterase in den L1- und L2-Neuronen wird Acetylcholin als deren möglicher Transmitter gehandelt (Gorczyca und Hall, 1987; Ikeda und Salvatera, 1989). Ein etwas detaillierteres Bild der cholinergen Neurotransmission bei *Drosophila* bieten Studien über die Genexpression von Achetylcholin-Rezeptoren (Kitamoto et al., 1992).

Völlig unklar bleibt bisher die Untereinheitenzusammensetzung eines funktionsfähigen nAChRs bei Insekten. Durch die Transkriptomanalysen konnte gezeigt werden, dass mindestens drei unterschiedliche Untereinheiten für nikotinische Acetylcholinrezeptoren (nAcRbeta-64B =ARD, nAcRbeta21C und nAcRalpha-30D) im visuellen System exprimiert werden (s. 3.3.2.5, Tab. 5). Dieses war bisher nur für die ARD-Untereinheit bekannt. Die beiden Untereinheiten nAcRbeta-64B und nAcRalpha-30D konnten sowohl in der Retina, als auch in der Lamina nachgewiesen werden. Die Untereinheit nAcRbeta21C wird in der Lamina exprimiert.

Ganz besonders interessant in diesem Zusammenhang ist das Transkript CG1909, welches aufgrund der Analyse differenzieller Genexpression identifiziert werden konnte (s. 3.3.2.1, Tab. 1). Es handelt sich dabei um ein von Gliazellen abgesondertes Acetylcholin bindendes Protein (*acetylcholine-binding protein*, AChBP). Dieses konnte in der Lamina lokalisiert werden. Bei *Lymnaea stagnalis* wurde gezeigt, dass präsynaptische Acetylcholinabgabe Gliazellen induziert das AChBP in den synaptischen Spalt zu sezernieren. Dort moduliert es die cholinerge Neurotransmission (Smit et al., 2001). Nur für die Untereinheit nAcRbeta-64B wurde eine Mutante beschrieben.

4.4 Zusammenfassung

Die molekulargenetische Analyse von Organen der Taufliege *Drosophila melanogaster* wird durch ein inhärentes Problem kompliziert - die Verfügbarkeit lediglich sehr kleiner Gewebemengen. Um trotz dieser Problematik aussagekräftige Ergebnisse zu erzielen, bestand ein entscheidender Teil dieser Arbeit in der Entwicklung und Optimierung von Methoden, die es ermöglichen, mit sehr geringen Probenmengen zu arbeiten. Im Zentrum stand hierbei die so genannte *CapFinder*-cDNA-Synthese, die methodisch konzipiert und für unterschiedliche Anwendungen adaptiert wurde (Schramm et al., 2000). Diese Methode war die Grundlage für sämtliche Ergebnisse, die im Rahmen der hier vorliegenden Dissertation erarbeitet wurden. Eine modifizierte *CapFinder*-cDNA-Synthese ermöglicht die Synthese von cRNA (*sense* und *antisense*) und ist damit ein universelles Werkzeug für die Transkriptomanalyse auf der Basis geringster Probemengen.

1) Mit der 5'-RACE konnte eine auf der PCR basierende Strategie zur Analyse von vollständigen 5'-Enden einer cDNA verbessert und für die Anwendung etabliert werden (Schramm et al., 2000). Ausgangsprodukt dieser 5'-RACE ist auch die *CapFinder*-cDNA. Mittels der 5'-RACE konnten erstmalig diverse 5'-Enden von Transkripten der Amoeben *E. histolytica* und *E. dispar* vollständig identifiziert and charakterisiert werden. Die 5'-Enden sind insofern von besonderer Bedeutung, weil es nur durch sie möglich ist, den Leseraster eines Transkriptes exakt zu bestimmen. Nur durch die Kenntnis des exakten Leserasters sind z.B. die heterologe Expression und die *in situ* Detektion von mRNAs möglich.

2) Im Rahmen meiner Arbeit wurde die FACS-Analyse zur Isolierung einer distinkten Neuronenpopulation der Lamina verwendet. Nach Kenntnislage der Literatur wurde diese Methode noch nicht bei Insekten verwendet. Aus einer inhomogenen Zellpopulation eines Lobenhomogenates wurden intakte L2-Neuronen isoliert. Die aus dieser Zellpopulation gewonnene RNA konnte mit der *CapFinder*-cDNA und der LA-PCR in eine stabile L2-cDNA-Bibliothek umgeschrieben werden. Eine *Array*-Analyse wurde aus Zeitmangel leider noch nicht durchgeführt.

3) Basierend auf der hergestellten *CapFinder*-cDNA sowohl konnten Retinatranskriptome als auch Laminatranskriptome von Drosophila melanogaster (Wildtyp und die Mutante sevenless) analysiert werden. Diese Transkriptome wurden auf DNA-Microarrays vom Typ Drosophila 7K Version 2 des Canadian Drosophila Microarray Centre CDMC hybridisiert und mit der Software Genepix 5.0 analysiert. Bei der Auswertung dieser Ergebnisse wurde ein besonderer Schwerpunkt auf die Analyse differenzieller Genexpression und auf die Identifizierung molekularer Komponenten der Signaltransduktions-Kaskaden im visuellen System von Drosophila m. gelegt. Durch die Transkriptomanalysen konnten die Expressionsorte von zwei unterschiedlichen Serotoninrezeptoren näher eingegrenzt und dadurch in einen physiologischen Zusammenhang gebracht werden. Aus der bei Insekten bekannten Gruppe der Serotoninrezeptoren wird ausschließlich 5-HT2 in der Retina exprimiert. Dort vermittelt dieser laut den von mir ermittelten Daten die Modulation eines Shaker Kaliumkanals, wie von Hevers und Hardie (1995) beschrieben. In der Lamina wird ausschließlich der 5-HT7 Rezeptor exprimiert. Dieser wurde mit einer möglichen Modulation des Histaminrezeptors in Verbindung gebracht. Ein von Gliazellen abgesondertes Acetylcholin-bindendes Protein (acetylcholine-binding protein, AChBP) wurde in der Lamina lokalisiert. Es handelt sich dabei um das Trankript CG1909, welches aufgrund der Analyse differenzieller Genexpression identifiziert werden konnte. Präsynaptische Acetylcholinabgabe induziert die Gliazellen, das AChBP in den synaptischen Spalt zu sezernieren. Dort moduliert es die cholinerge Neurotransmission (Smit et al., 2001). Dieses Ergebnis ist besonders interessant, weil ich zeigen konnte, dass drei unterschiedliche Untereinheiten für nikotinische Acetylcholinrezeptoren (nAcRbeta-64B =ARD, nAcRbeta21C und nAcRalpha-30D) in der Lamina exprimiert werden. Dieses war bisher nur für die ARD-Untereinheit bekannt. Die Untereinheiten nAcRbeta-64B und nAcRalpha-30 werden aber auch in der Retina exprimiert.

4) Basierend auf der *CapFinder*-cDNA-Synthese wurde eine neue Strategie der Subtraktiven Hybridisierung entworfen und experimentell überprüft. Eine Subtraktionsbibliothek Retina–Lamina wurde erstellt. Die Ergebnisse konnten aus Zeitmangel nicht verifiziert werden. Die Subtraktive Hybridisierung ist eine besonders wichtige Methode zur Identifizierung differenzieller Transkripte und ist von großer Bedeutung bei Arbeiten an Organismen, deren Genom nicht sequenziert wurde. Die diesbezüglichen Untersuchungen an *Drosophila* wurden deshalb als sinnvoll erachtet, weil die Effizienz der neu erdachten Strategie mittels der *Array*-Technologie leicht zu überprüfen ist.

5) Um möglichst umfassende Aussagen von Signaltransduktionsprozessen in distinkten Geweben oder Zellpopulationen von *Drosophila melanogaster* machen zu können, wurde ein so genannter Signaltransduktionschip (STDC) konzipiert und ansatzweise realisiert. Diverse cDNA-Proben, von bekannten und als wahrscheinlich eingestuften Genen, konnten aus der *Drosophila* Wildtyp *CapFinder*-cDNA mittels der PCR amplifiziert und anschließend kloniert werden. Eine Testversion des STDC konnte produziert und mit cRNA hybridisiert werden. Eine anschließende Analyse fand nicht statt. Im Vordergrund standen zunächst die Produktion und die Beseitigung von Problemen experimenteller Natur. Jedoch konnte mit der Hybridisierung des STDCs gezeigt werden, dass das erdachte Gesamtkonzept zur Transkriptomanalsye auf Grundlage der *CapFinder*-cDNA erfolgreich durchführbar ist.

4.5 Ausblick

1. Mit der Etablierung der 5'-RACE gelang eine wesentliche methodische Vereinfachung zur Identifikation von 5'-Enden untersuchter Gene. Dies fand schon in Verlauf dieser Arbeit breite Anwendung und wird auch für zukünftige Projekte allgemein von großem Nutzen sein und bestehende aufwändige Protokolle ersetzen.

2. Die FACS-Analyse ermöglicht bereits zu diesem Zeitpunkt eine differenzierte Untersuchung von Zellpopulationen in Kombination mit der DNA-*Microarray*-Technologie, denn es stehen zahllose, frei verfügbare Treiberlinien zur Auswahl, die lediglich mit dieser Technik untersucht werden müssen. Erfolg versprechende Projekte werden in unserer Arbeitsgruppe realisiert. So z.B. werden Transkriptome von Gliazellen und dopaminergen Zellen erstellt und mit *Microarrays* analysiert.

3. Die Analyse des Retina- und Laminatranskriptoms war ein viel versprechender Anfang auf dem Weg zur Aufklärung der Signaltransduktion im visuellen System von *Drosophila melanogaster*, die als Pionierarbeit auf diesem Gebiet angesehen werden kann. Zur weiteren Absicherung der vorliegenden Daten wären Wiederholungen der Experimente und eine weitergehende Analyse wünschenswert. Als eines der interessantesten Ergebnisse sticht die differenzielle Expression der Serotoninrezeptoren (5-HT2 in der Retina und 5-HT7 in der Lamina) hervor, die bereits in einen funktionellen physiologischen Kontext eingeordnet werden konnten. Hier wäre das ERG mit dafür erzeugten UAS-RNAi-Linien (Witte, 2004) der betreffenden Rezeptoren eine hervorragend geeignete Methode zur Überprüfung der in Kapitel 4.2 dargelegten Hypothesen.

4. Die in dieser Arbeit vorgestellte Methode der Subtraktiven Hybridisierung ("RTselektierte Subtraktive Hybridisierung") stellt eine starke Vereinfachung bei der Analyse differenzieller Genexpression eukaryotischer Organismen dar. In Kombination mit der DNA-*Microarray*-Technologie ergibt sich eine erhöhte Trennschärfe bei dem Vergleich der Transkriptome zweier Gewebe.

5. Der im Rahmen dieser Arbeit konzipierte und als Prototyp erstellte STDC ermöglicht eine fokussierte Analyse der differenziellen Transkripte von an der Signaltransduktion beteiligten Genen. Zum Zeitpunkt der Erstellung handelt es sich dabei um die vollständigste Zusammenstellung relevanter Gene, die von handelsüblichen DNA-Chips nicht erreicht wird. Zudem stellt die für die Produktion des STDCs genutzte Klonbibliothek für weiterführende Experimente einen Fundus von unschätzbarem Wert dar.

Durch einen kombinierten Einsatz der soeben erläuterten Methoden ergibt sich ein richtungsweisender Ansatz hinsichtlich einer detaillierten Aufklärung der molekularen Ausstattung der Zellen eines gesamten Organismus. Denn: *Microarrays* führen zur Identifikation differenzieller Transkripte. Die Promotoren dieser Transkripte wiederum können genutzt werden, um ektopisch GFP in jeder möglichen Subpopulation von Zellen zu exprimieren, welche dann mit dem FACS isoliert werden können. So befruchten sich diese Methoden gegenseitig und ermöglichen in einem konzertierten Einsatz ein immer feiner aufgelöstes Bild vom molekularen Geschehen in spezialisierten Zellen und Geweben.

5 Literaturverzeichnis

Acharya JK, Jalink K, Hardy RW, Hartenstein V und CS Zuker (1997). InsP3 receptor is essential for growth and differentiation but not for vision in *Drosophila*. *Neuron* **18**, 881-887.

Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, et al. (2000). The genome sequence of Drosophila melanogaster. Science 287(5461), 2185-95.

Altschul SF, Gish W, Miller W, Myers EW und DJ Lipman (1990). Basic local alignment search tool. *J Mol Biol* **215**, 403-410.

Barnes WM (1994). PCR amplification of up to 35-kb DNA with high fidelity and high yield from bacteriophage templates. *Proc Natl Acad Sci USA* **91**, 2216-2220.

Baugh LR, Hill AA, Brown EL und CP Hunter (2001). Quantitative analysis of mRNA amplification by in vitro transcription. *Nucleic Acids Res* **29**, E29.

Bausenwein B und K-F Fischbach (1992). Activity labeling patterns in the medulla of *Drosophila melanogaster* caused by motion stimuli. *Cell Tiss Res* **270**, 25-35.

Benton J und B Beltz (2001). Effects of embryonic serotonin depletion on local interneurons in the olfactory pathway of lobsters. *J Neurobiol* **46**, 25-35.

Benton J, Helluy S, Huber R und B Beltz (1997). Serotonin depletion by 5,7-dihydroxytryptamine alters deutocerebral development in the lobster. *J Neurobiol* **33**, 357-373.

Bicker G, Schäfer S, Ottersen OP und J Storm-Mathisen (1988). Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems. *J Neurosci* **8**, 2108-2122.

Brand AH und N Perrimon (1993). Target gene expression as a means of altering cell fates and generating dominant phenotypes. *Development* **118**, 401-415.

Braitenberg V (1967). Patterns of projection in the visual system of the fly. I. Retina-lamina projections. *Exp Brain Res* **3**, 271-298.

Brody T und A Cravchik (2000). *Drosophila melanogaster* G-Protein-coupled Receptors. *J Cell Biol* **150**, F83-F88.

Budnik V, Martin-Morris L und K White (1986). Perturbed pattern of catecholamine-containing neurons in mutant *Drosophila* deficient in the enzyme dopa decarboxylase. *J Neurosci* **6**, 3682–3691.

Burkhardt D (1962). Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp Soc *Exp Biol* **16**, 86-109.

Burkhardt W und V Braitenberg (1976). Some peculiar synaptic complexes in the first visual ganglion of the fly, *Musca domestica*. *Cell Tiss Res* **173**, 287-308.

Cagan RL und DF Ready (1989). The emergence of order in the *Drosophila* pupal retina. *Dev Biol* **136**, 346-362.
Callaerts P, Halder G und WJ Gehring (1997). Pax-6 in development and evolution. *Ann Rev Neurosci* 20, 483-532.

Chase BA und DR Kankel (1987). A genetic analysis of glutamatergic function in *Drosophila*. *J Neurobiol* **18**, 15-41.

Chou WH, Huber A, Bentrop J, Schulz S, Schwab K, Chadwell LV et al. (1999). Patterning of the R7 and R8 photoreceptor cells of *Drosophila*: evidence for induced and default cell-fate specification. *Development* **126**, 607-616.

Chyb S, Hevers W, Forte M, Wolfgang WJ, Selinger Z und RC Hardie (1999). Modulation of the light response by cAMP in *Drosophila* photoreceptors. *J Neurosci* **19**, 8799-807.

Clandinin TR und SL Zipursky (2000). Afferent growth cone interactions control synaptic specificity in the *Drosophila* Visual System. *Neuron* **28**, 427-436.

Colas JF, Launay JM, Kellermann O, Rosay P und L Maroteaux (1995). *Drosophila* 5-HT2 serotonin receptor: coexpression with fushitarazu during segmentation. *Proc Natl Acad Sci* **92**, 5441–5445.

Corey JL, Quick MW, Davidson N, Lester HA und J Guastella (1994). A cocaine-sensitive *Drosophila* serotonin transporter: cloning, expression, and electrophysiological characterization. *Proc Natl Acad Sci* **91**, 1188–1192.

Croop JM, Tiller GE, Fletcher JA, Lux ML, Raab E, Goldenson D et al. (1997). Isolation and characterization of a mammalian homolog of the *Drosophila white* gene. *Gene* 185, 77-85.

Datum KH, Weiler R und F Zettler (1986). Immunocytochemical demonstration of gamma-amino butyric acid and glutamic acid decarboxylase in R7 photoreceptors and C2 centrifugal fibers in the blowfly visual system. *J Comp Physiol A* **159**, 241-249.

Demchyshyn LL, Pristupa ZB, Sugamori KS, Barker EL, Blakely RD, Wolfgang WJ et al. (1994). Cloning, expression, and localization of a chloride-facilitated,

cocaine-sensitive serotonin transporter from *Drosophila melanogaster*. *Proc Natl Acad Sci* **91**, 5158–5162.

Douglass JK und NJ Strausfeld (1995). Visual motion detection circuits in flies: Peripheral motion computation by identified small-field retinotopic neurons. *J Neurosci* **15**, 5596-5611.

Douglass JK und NJ Strausfeld (1996). Visual motion detection circuits in flies: Parallel direction- and non-direction-sensitive pathways between medulla and lobula plate. *J Neurosci* **16**, 4551-4562.

Drain P, Dubin AE und RW Aldrich (1994). Regulation of *Shaker* K^+ channel inactivation gating by the cAMP-dependent protein kinase. *Neuron* **12**, 1097-1109.

Dudai Y und S Zvi (1982). Aminergic receptors in *Drosophila melanogaster*: Properties of [3H]dihydroergocryptine binding sites. *J Neurochem* **38**, 1551–1558.

Duguid JR, Rohwer RG und B Seed (1988). Isolation of cDNAs of Scarpie-modulated RNAs by subtractive hybridisation of a cDNA library. *Proc Natl Acad Sci* **85**, 5738-5742.

Durr V, Kurtz R und M Egelhaaf (2001). Two classes of visual motion sensitive interneurons differ in direction and velocity dependency of in vivo calcium dynamics. *J Neurobiol* **46**, 289-300.

Dynal (1995). Biomagnetic Techniques in Molecular Biology, Technical Handbook, 2nd Edn. Dynal AS, Oslo, Norway.

Eckert H und DR Dvorak (1983). The centrifugal horizontal cells in the lobula plate of the blowfly, *Phaenicia sericata*. J Insect Physiol **29**, 547-560.

Ewer J, Fritsch B, Hamblen-Coyle J, Rosbash M und JC Hall (1992). Expression of the *period* clock gene within different cell types in the brain of *Drosophila* adults and mosaic analysis of these cells influence on circadian behavioral rhythms. *J Neurosci* **12**, 3321-3349.

Fischbach K-F und AP Dittrich (1989). The optic lobe of *Drosophila melanogaster*.I. A Golgi analysis of wild-type structure. *Cell Tiss Res* 258, 441-475.

Fischbach KF und M Heisenberg (1984). Neurogenetics in Insects. J Exp Biol 112, 65-94.

Flanagan TRJ und A Berlind (1984). Serotonin modulation of the release of sequestered [3H]serotonin from nerve terminals in an insect neurohemal organ in vitro. *Brain Res* **306**, 243–250.

Füller H, Eckert M, K Blechschmidt (1989). Distribution of GABA-like immunoreactive neurons in the optic lobes of *Periplaneta americana*. *Cell Tissue Res* **255**, 225-233.

Fujita SC, Inoue H, Yoshioka T und Y Hotta (1987). Quantitative tissue isolation from *Drosophila* freeze-dried in acetone. *Biochem J* **243**, 97-104.

Gassen, Sachse, Schulte (1994). PCR - Grundlagen und Anwendungen der Polymerase-Kettenreaktion, Gustav Fischer Verlag.

Gehring WJ (1992). The homeobox in perspective. Trends Biochem Sci 17, 277-280.

Gehring WJ und K Ikeo (1999). Pax 6: mastering eye morphogenesis and eye evolution. *Trends Genet* **15**, 371-377.

Gewecke M und T Hou (1993). Visual brain neurons in *Locusta migratoria*. In: Wiese K, Gribakin FG, Popov AV, Renninger G (eds) Sensory systems of arthropods. Birkhäuser Verlag, Basel, pp 119-144.

Gorczyca MG und JC Hall (1987). Immunohistochemical localization of choline acetyltransferase during development and in Cha^{ts} mutants of *Drosophila melanogaster*. *J Neurosci* **7**, 1361-1369.

Hall JC (1995). Tripping along the trail to the molecular mechanisms of biological clocks. *Trends Neurosci* **18**, 230-240.

Hardie RC (1987). Is histamine a neurotransmitter in insect photoreceptors? *J Comp Physiol A* 161, 201-213.

Hardie RC (1989). A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. *Nature* **399**, 704-706.

Hardie RC (2001). Phototransduction in *Drosophila melanogaster*. *J Exp Biol* **204**, 3403-3409.

Hardie RC und Raghu P (2001). Visual transduction in *Drosophila*.. *Nature* **413**, 186-193.

Hausen K (1982). Motion sensitive interneurons in the optomotor system of the fly.I. The horizontal cells: Structure and signals. *Biol Cybern* 45, 143-156.

Heisenberg M und R Wolf (1984). Vision in *Drosophila*. Genetics of Microbehavior, Springer Verlag, Heidelberg.

Helfrich-Förster C und U Homberg (1993). Pigment-dispersing hormoneimmunoreactive neurons in the nervous system of wild-type *Drosophila melanogaster* and several mutants with altered circadian rhythmicity. *J Comp Neurol* **337**, 177-190.

Hevers W und RC Hardie (1995). Serotonin modulates the voltage dependence of delayed rectifier and Shaker potassium channels in *Drosophila* Photoreceptors. *Neuron* 14, 845-856.

Hewes RS und HP Taghert (2001). Neuropeptides and Neuropeptide receptors in the *Drosophila melanogaster* Genome. *Genome Res* **11**, 1126-1142.

Hille B (1992). G protein-coupled mechanisms and nervous signaling. Neuron 9, 187-195.

Hirth F und H Reichert (1999). Conserved genetic programs in insect and mammalian brain development. *Bioessays* 21, 677-684.

Homberg U (1987). Structure and functions of the central complex in insects. In: Gupta A.P. (eds) Arthropod Brain: Its Evolution, Structure, Development, Structure, and Functions. Wiley, New York, pp 347-367.

Homberg U (1994). Distribution of neurotransmitters in the insect brain. In: Rathmayer W, editor. Progress in zoology, vol 40. Stuttgart: Fischer Verlag, pp 1–88.

Homberg U, Kingan TG und JG Hildebrand (1987). Immunocytochemistry of GABA in the brain and suboesophageal ganglion of *Manduca sexta*. *Cell Tissue Res* **248**, 1-24.

Homberg U und JG Hildebrand (1989). Serotonin immunoreactivity in the optic lobes of the sphinx moth *Manduca sexta* and colocalization with FMRFamide and SCPB immunoreactivity. *J Comp Neurol* **288**, 243-253.

Huber A, Schulz S, Bentrop J, Groell C, Wolfrum U und R Paulsen (1997). Molecular cloning of *Drosophila* Rh6 rhodopsin: the visual pigment of a subset of R8 photoreceptor cells. *FEBS Lett* **406**, 6-10.

Ikeda K und PM Salvatera (1989). Immunocytochemical study of temperaturesensitive choline acetyltransferase mutant of *Drosophila melanogaster*. *J Comp Neurol* **280**, 283-290.

Juusola M und RC Hardie (2001). Light adaption in *Drosophila* photoreceptors: I. Response dynamics and signaling efficiency at 25 °C. *J Gen Physiol* **117**, 3-25.

Kern R, Lutterklas M, Petereit C, Lindemann JP und M Egelhaaf (2001). Neuronal processing of behaviourally generated optic flow: experiments and model simulations. *Network-Comp Neural* **12**, 351-369.

Kitamoto T, Ikeda K und PM Savaterra (1992). Analysis of cis-regulatory elements in the 5'flanking region of the *Drosophila melanogaster* choline acetyltranferase gene. *J Neurosci* **12**, 1628-1639.

Klucken J, Buchler C, Orso E, Kamisnski WE, Porsch-Ozcurumes M, Liebisch G et al. (2000). ABCG1 (ABC8), the human homolog of the *Drosophila white* gene, is a regulator of macrophage cholesterol and phospholipid transport. *Proc Natl Acad Sci* **97**, 817-822.

Koike N, Hida A, Numano R, Hirose M, Sakaki Y und H Tei (1998). Identification of the mammalian homologues of the *Drosophila timeless* gene, *Timeless*. *FEBS Lett* 441, 427-431.

Kral K und IA Meinertzhagen (1989). Anatomical plasticity of synapses in the lamina of the optic lobe of the fly. *Philos Trans R Soc Lond B Biol Sci* **323**, 155-183.

Lauder JM (1990). Ontogeny of the serotonergic system in the rat-serotonin as a developmental signal. *Ann NY Acad Sci* 600, 297-314.

Litosch I, Wallis C und Fain JN (1985). 5-hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. *J Biol Chem* **9**, 5464–5471.

Matz M, Shagin D, Bogdanova E, Britanova O, Lukyanov S, Diatchenko L und A Chenchik. (1999). Amplification of cDNA ends based on template-switching effect and step-out PCR. *Nucleic Acids Res* 27, 1558–1560.

Meinertzhagen IA und TE Hanson (1993). The development of the optic lobe. In: Development of *Drosophila* (eds) Bate CM und Martinez Aria A, Cold Spring Habor, NY: Cold Spring Habor Laboratory Press, pp. 1363-1491.

Meinertzhagen IA und SD O'Neil (1991). The synaptic organization of columnar elements in the lamina of the wild type in *Drosophila melanogaster*. *J Comp Neurol* **305**, 232-263.

Meyer EP, Matute C, Streit P, Nässel DR (1986). Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. *Histochemistry* **84**, 207-216.

Miklos GL (1993). Molecules and cognition: the latterday lessons of levels, language, and lac. Evolutionary overview of brain structure and function in some vertebrates and invertebrates. *J Neurobiol* **24**, 842-890.

Miller A (1950). In: Biology of Drosophila (ed). Demerec M, Wiley, New York.

Nässel DR (1988). Serotonin and serotonin-immunoreactive neurons in the nervous system of insects. *Prog Neurobiol* **30**, 1-85.

Nakamura M, Ueno S, Sano A, und H Tanabe (1999). Polymorphisms of the human homologue of the *Drosophila white* gene are associated with mood and panic disorders. *Mol Psychiatry* **4**, 155-162.

Nicol D und IA Meinertzhagen (1982). An analysis of the number and composition of the synaptic populations formed by photoreceptors of the fly. *J Comp Neurol* **207**, 29-44.

Papatsenko D, Sheng G und C Desplan (1997). A new rhodopsin in R8 photoreceptors of *Drosophila*: evidence for coordinate expression with Rh3 in R7 cells. *Development* **124**, 1665-1673.

Papazian DM, Schwarz TL und BL Tempel (1987). Cloning of genomic and complementary DNA from *Shaker*, a putative potassium channel gene from *Drosophila*. *Science* **237**, 749-753.

Pennisi E (2000). Ideas fly at gene-finding jamboree. Science 287, 2182-2184.

Pongs O, Kecskemethy N, Muller R, Krahjentgens I, Baumann A, Kiltz HH et al. (1988). *Shaker* encodes a family of putative potassium channel proteins in the nervous system of *Drosophila*. *EMBO J* **7**, 1087-1096.

Pyza E, Golembiowska K und IA Meinertzhagen (1993). Circadian rhythm in transmitters of the fly visual system. *Soc Neurosci Abstr* **19**, 336.

Pyza E und IA Meinertzhagen (1996). Neurotransmitters regulate rhythmic size changes amongst cells in the fly's optic lobe. *J Comp Physiol* **178**, 33-45.

Quiring R, Walldorf U, Kloter U und WJ Gehring (1994). Homology of the *eyeless* gene of *Drosophila* to the *Small eye* gene in mice and *Aniridia* in humans. *Science* 265, 785-789.

Ranganathan R, Harris WA und CS Zuker (1991). The molecular genetics of invertebrate phototransduction. *Trends Neurosci* 14, 486-93.

Ranganathan R, Malicki DM und CS Zuker (1995). Signal transduction in Drosophila photoreceptors. Ann Rev Neurosci 18, 283-317.

Roeder T (1998). Solid-phase cDNA library construction, a versatile approach. *Nucleic Acids Res* **26**, 3451–3452.

Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK et al. (2000). Comparative genomics of the eukaryotes, *Science* **287**, 2204-2215.

Rubin GM (1988). *Drosophila melanogaster* as an experimental organism. *Science* **240**, 1453-1459.

Sambrook J, Fritsch EF und T Maniatis (1989). Molecular Cloning - A Laboratory manual (second edition). *Cold Spring Harbor Laboratory press*, New York.

Saudou F, Boschert U, Amlaiky N, Plassat JL und R Hen (1992). A family of *Drosophila* serotonin receptors with distinct intracellular signalling properties and expression patterns. *EMBO J* **11**, 7–17.

Sargent TD und IB Dawid (1983). Differential gene expression in the gastrula of *Xenopus laevis*. *Science* 222, 135-139.

Sarthy PV (1991). Histamine: a neurotransmitter candidate for *Drosophila* photoreceptors. *J Neurochem* 57, 1757-1768.

Schäfer S und G Bicker (1986). Distribution of GABA-like immunoreactivity in the brain of the honeybee. *J Comp Neurol* 246, 287-300.

Schaeren-Wiemers N und A Gerfin-Moser (1993). A single protocol to detect transcripts of varius types and expression levels in neural tissue and cutured cells: in situ hybridization using digoxigenin-labelled cRNA probes. *Histochemistry* **100**, 431-440.

Schmidt WM und MW Mueller (1999). CapSelect: a highly sensitive method for 5' CAP-dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNAs. *Nucleic Acids Res* 27, e31.

Schramm G, Bruchhaus I und T Roeder (2000). A simple and reliable 5'-RACE approach. *Nucleic Acids Res* 28, E96.

Schürmann F-W und N Klemm (1984). Serotonin-immunoreactive neurons in the brain of the honeybee. *J Comp Neurol* 225, 570-580.

Sehgal A, Price JL, Man B und MW Young (1994). Loss of circadian behavioral rhythms and *per* RNA oscillations in the *Drosophila* mutant *timeless*. *Science* 263, 1603-1606.

Shena M, Shalon D, Heller R, Chai A, Davis RW und PO Brown (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. *Science* 270, 467-470.

Siwicki KK, Eastmen C, Petersen, G, Rosbash M und JC Hall (1988). Antibodies to the *period* gene product of *Drosophila* reveal diverse tissue distribution and rhythmic changes in the visual system. *Neuron* **1**, 141-150.

Smit AB, Syed NI, Schaap D, van Minnen J, Klumperman J, Kits KS et al. (2001). A glia-derived acetylcholine-binding protein that modulates synaptic transmission. *Nature* **411**, 261-268.

Strausfeld NJ (1976). Atlas of an Insect Brain. Springer-Verlag, Berlin, Heidelberg.

Strausfeld NJ und DR Nässel (1980). Neuroarchitectures serving compound eyes of crustacea and insects. In: *Handbook of Sensory Physiology*, Vol. VII/6B, *Comparative*

Physiology and Evolution of Vision in Invertebrates (H. Autrum, ed.), pp. 1-132. Springer-Verlag, Berlin, Heidelberg.

Sun ZS, Albrecht U, Zhuchenko O, Bailey G und CC Lee (1987). RIGUI, a putative mammalian ortholog of the *Drosophila* period gene. *Cell* **90**, 1003-1011.

Taghert PH, Roberts ME, Renn SCP und PS Jacobs (2000). Metamorphosis of tangential visual system neurons in *Drosophila*. *Dev Biol* **222**, 471-485.

Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M und Y Sakaki (1997). Circadian oscillation of a mammalian homoloque of the *Drosophila period* gene. *Nature* **389**, 512-516.

Tempel BL, Papazian DM und TL Schwarz (1987). Sequence of a probable potassium channel component encoded at *Shaker* locus of *Drosophila*. *Science* **237**, 770-775.

Timblin C, Battey J und WM Kuehl (1990). Application for PCR technology to subtractive cDNA cloning: identification of genes expressed specifically in murine plasmacytoma cells. *Nucleic Acids Res* **18**, 1578-1593.

Valle's AM und K White (1986). Development of serotonin-containing neurons in *Drosophila* mutants unable to synthesize serotonin. *J Neurosci* **6**, 1482–1491.

Valle's AM und K White (1988). Serotonin-containing neurons in *Drosophila melanogaster*: Development and distribution. *J Comp Neurol* **268**, 414–428.

Wedemeyer S, Roeder T und M Gewecke (1992). Pharmacological characterization of a 5 HT receptor in locust nervous tissue. *Eur J Pharmacol* **223**, 173–178.

Wendt B und U Homberg (1992). Immunocytochemistry of dopamine in the brain of the locust *Schistocerca gregaria*. *J Comp Neurol* **321**, 387-403.

Witte I (2004). Inhibitorische Liganden-gesteuerte Ionenkanäle bei der Fruchtfliege *Drosophila melanogaster*. Dissertation am Fachbereich Biologie der Universität Hamburg.

Witte I, Kreienkamp HJ, Gewecke M und T Roeder (2000). Putative histaminegated chloride channel subunits of the insect visual system and thoracic ganglion. *J Neurochem* 83, 504-514.

Witz P, Amlaiky N, Plassat JL, Maroteaux L, Borrelli E und R Hen (1990). Cloning and characterization of a *Drosophila* serotonin receptor that activates adenylate cyclase. *Proc Natl Acad Sci* 87, 8940–8944.

Zheng Y, Hirschberg B, Wang A, Hunt D, Yuan J, Ludmerer S und D Cully (2000). Cloning and characterization of two novel histamine-gated chloride channel genes from *Drosophila melanogaster*. *Soc Neurosci Abstr* **26**, 917.

Funktion	Gen	Datenbar	nkeintrag	Ligand	EST-Bez.	template	Platten-Bez.	Koordinate	Vektor
		BDGP	Celeron						
Ionenkanal Exz.	GluRIIB		CT 22307	Glutamat	SD 17808	Klon Betz			
Ionenkanal Exz.	GluRIIA		CT 21587	Glutamat	RE 27895	Klon Betz			
Ionenkanal Exz.		CG 2657	CT 8983	Glutamat		Klon	MP4 C6	j	
Ionenkanal Exz.	BG:D505899.4	CG 4498	CT 14633	nAChR		PCR	MP4 C8	1 B15	
Ionenkanal Exz.		CG 15627	CT 35778	Glutamat		PCR	MP4 C7	1 B13	pDrive
Ionenkanal Exz.		CG 4128	CT 13662	nAChR	GH 01410	Klon 74	MP9 E11	2 D3	
Ionenkanal Exz.	nACRbeta21-C		CT 33131	nAChR	SD 09326	Klon 23	MP9 E8	2 A22	
Ionenkanal Exz.	NMDA I	CG 3798	CT 12703	NMDA	GH 26622	Klon		i	
Ionenkanal Exz.	NtR		CT 20794	Ext.	SD 10415	Klon 24	MP9 E9	2 A24	
Ionenkanal Exz.	Best.CK02213		CT 12775	NMDA	AT 21555	Klon 62	MP9 E6	2 C4	
Ionenkanal Exz.		CG 6185	CT 19410	Glutamat		PCR	MP4 C5	1 B9	
Ionenkanal Exz.	nACRbeta64-B	CG 12606	CT 34874	nAChR		PCR	PCR		
Ionenkanal Exz.		CG 14076	CT 33663	Glutamat		PCR	MP4 B12	1 A24	
Ionenkanal Exz.	GluRIB	CG 4481	CT 14586	AMPA/Kainat		PCR	MP4 C1	1 B1	pDrive
Ionenkanal Exz.	GluRI		CT 24725	AMPA/Kainat	RE 03713	Klon 30	MP9 E4	2 B11	
Ionenkanal Exz.		CG 14586	CT 34327	Glutamat		PCR	MP4 B9	1 A18	
Ionenkanal Exz.	nACRbeta64-B	CG 12606	CT 31625	nAChR	GH 10531	Klon 86	MP4 C2	1 B3/2 D4	
Ionenkanal Exz.	nAcRalpha80b		CT 38583	nAChR	LD 20458	Klon 118	MP9 F3	2 E23 !!	
Ionenkanal Exz.		CG 10633	CT 29782	Glutamat		PCR	MP4 B10	1 A20	pDrive
Ionenkanal Exz.		CG 8533	CT 24909	Glutamat	LD02552	Klon 114	MP9 F2	2 E11 !!	
Ionenkanal Exz.		CG 17152	CT 38092	Glutamat		PCR	MP4 B11	1 A22	pDrive
Ionenkanal Exz.		CG 9722	CT 27402	ADAA		PCR	MP4 A1	1 A1	pDrive
Ionenkanal Exz.		CG 17274	CT 35907	Glutamat	GH 01149	Klon 63	MP9 E7	2 C6	
Ionenkanal Exz.	NMDAR I	CG 2902	CT 7868	NMDA	RE 12105	Klon 34	MP9 A10	2 B19	
Ionenkanal Exz.	KaiRIA		CT 13538	Kainat	RE 24732	Klon 27	MP9 E3	2 B5	
Ionenkanal Exz.		CG 10101	CT 28433	Glutamat		PCR	MP4 A5	1 A9	
Ionenkanal Exz.	nAcRalpha96Ac	CG 5610	CT 17702	nAChR		Klon	PCR		pDrive

Übersichtstabelle STDC Chip

Ionenkanal Exz.		CG 11775	CT 32618	Glutamat		PCR	MP4 A4	1 A7	pDrive
Ionenkanal Exz.	nAcRalpha 96A	CG 5610	CT 21703	nAChR	GH 09870	Klon 73	MP4 A9	1 A17/2 D1	
								2 E2/2 E1	
Ionenkanal Exz.	nARalpha96Ab		CT 21191	nAChR	GH 22843	Klon 97	MP9 F1	11	
Ionenkanal Exz.	ItpR 83A	CG 10633	CT 1329	IP3R		PCR	MP4 A8	1 A15	
Ionenkanal Exz.	NMDAR2	CG 14793	CT 34603	NMDA		PCR	MP4 C3	1 B5	pDrive
Ionenkanal Exz.	nAcRalpha7e	CG 2302	CT 7622	nAChR		PCR	MP4 A7	1 A13	pDrive
Ionenkanal Exz.		CG 8109	CT 24218	nAChR		PCR	MP4 A6	1 A11	pDrive
Ionenkanal Exz.		CG 15324	CT 35324	Glutamat		PCR	MP4 A2	1 A3	pDrive
Ionenkanal Exz.		CG 15327	CT 35327	Glutamat		PCR	MP4 A3	1 A5	pDrive
Ionenkanal Exz.		CG 15732	CT 35969	Glutamat		PCR	MP4 C4	1 B7	
Ionenkanal Inh.	Hist I		CT 22815	Histamine		Klon	PCR	2 F	pSport
Ionenkanal Inh.	Hist II		CT 34515	Histamine		Klon	PCR	2 F	pSport
Ionenkanal Inh.	Rdl		CT 29555	GABA		Klon	PCR	2 F	
Ionenkanal Inh.	GRD		CT 22917			Klon	PCR	2 F	
Ionenkanal Inh.	GluCl		Ct 23049			Klon	PCR	2 F	
Ionenkanal Inh.	LCCh3		CT 38330			Klon	PCR	2 F	
Ionenkanal Inh.			CT 19189			Klon	PCR	2 F	
Ionenkanal Inh.			CT 21430			Klon	PCR	2 F	
Ionenkanal Inh.			CT 23187			Klon	PCR	2 F	
Ionenkanal Inh.			CT 23391				PCR	2 F	
Ionenkanal Inh.			CT 25610			Klon	PCR	2 F	
Ionenkanal Inh.			CT 5896			Klon	PCR	2 F	pSport
			CT						
Insulin-like Rez.	InR	CG 18402	19952 Insu	llin?		PCR	MP4 B6	1 A12	
Insulin-like Rez.	htl	CG 7223	CT 22273			PCR	MP4 B5/MP8D8	1 A10	pDrive
Insulin-like Rez.	btl	CG 6714	CT 20816			PCR	MP4 B3	1 A5	pDrive
Insulin-like Rez.	mbt	CG 18582	CT 14490		LD 47563	Klon 12	MP9 G6	2 A23	
Insulin-like Rez.	ninaC	CG 5125	CT 16120		GH 10824	Klon 88	MP9 G12	2 D8	
Insulin-like Rez.	chico	CG 5686	CT 17940		GH 11263	Klon 80	MP9 G11	2 D15	
Insulin-like Rez.	egfr	CG 10079	CT 28361		LP 11484	Klon 17	MP9 G7/H5	2 A10	
Insulin-like Rez.	gig	CG 6975	CT 21583		LD 36178	Klon 3	MP9 H5	2 A5	
Insulin-like Rez.	GP 150	CG 5820	CT43305			PCR	MP4 B4/MP8D7	1 A8	pDrive
Insulin-like Rez.	Toll-6	CG 7250	CT 22359		LD 08841	Klon 115	MP9 H2	2 E13 !!	
Insulin-like Rez.	tollo	CG 6890	CT 21344		LD 33590	$\overline{\text{Klon 2}}$	MP9 H4	2 A3	

Insulin-like Rez.	Toll-7	CG 8595	CT 24947		PCR	MP4 A12	1 A23	
Insulin-like Rez.	18w	CG 8896	CT 25100	GH 23463	Klon 90	MP9 H1	2 D12	
Insulin-like Rez.	toll	CG 5490	CT 17414	GH 03720	Klon 77	MP9 G10	2 D9	
Insulin-like Rez.	Tehao	CG 7125	CT 22017		PCR	MP4 B2	1 A4	pDrive
Insulin-like Rez.	Toll-9	CG 5528	CT 17508		PCR	MP4 B1	1 A2	pDrive
Insulin-like Rez.	Toll-4	CG 18241	CT 29238		PCR	MP4 A11	1 A21	pDrive
Insulin-like Rez.	Toll-3	CG 1149	CT 1993		PCR	MP4 A10	1 A19	
Enzyme	Histidine Decarboxylas	e	CT 11641	RH 37039	Klon 54	9H 6dW	2 C11	
Enzyme	Tyramin-B-Hydroxylas	e			PCR	MP4 G12	1 D23	pDrive
Enzyme	DopaDecarboxylase				PCR	MP4 G11	1 D21	pDrive
Enzyme	Tyrosin-Hydroxylase				PCR	MP4 H1	1 D2	pDrive
							2 E6/2 E5	
Protein Kinase A	PKAC1		CT 14278	GM 05224	Klon 99	MP9 H11	=:	
Protein Kinase A	PKA-R2		CT 32068	LD 44591	Klon 5	MP9 H8	2 A9	
Protein Kinase A	PKA-R1		CT 43315	LD 43873	Klon 4	MP9 H7	2 A7	
Protein Kinase A	PKA-C3		CT 19108	AT 10577	Klon 59	6H 6dW	2 C21	
Protein Kinase A	PKA-C2		CT 4596	AT 07276	Klon 66	MP9 H10	2 C12	
Guanylatzyklasen	Gyc32E		CT 19618	AT 02643	Klon 60	MP9 E5	2 C23	
Guanylatzyklasen		CG 3216	CT 10631		PCR	MP5 G7	1 H13	
Guanylatzyklasen		CG 5719	CT 17983		PCR	MP5 G6	1 H11	
Guanylatzyklasen		CG 3618	CT 12123	LD 24894	Klon 110	MP10 A4	2 E3 !!	
Guanylatzyklasen		CG 19487	CT 29442	GH 11174	Klon 79	MP10 A2	2 D13	
Guanylatzyklasen	Glyc76C	CG 8742	CT 25233		PCR	MP4 D9	1 B18	
Guanylatzyklasen		CG 10738	CT 30091		PCR	MP5 G5	1 H9	
Guanylatzyklasen	byd		CT 27506	LP 05923	Klon 20	MP10 A1	2 A16	
Guanylatzyklasen		CG 9783	CT 27662		PCR	MP4 D8	1 B16	
Guanylatzyklasen	Glycbeta 100B	CG 1470	CT 3618		PCR	MP4 D12	1 B24	
Guanylatzyklasen		CG 14877	CT 34696		PCR	MP4 E2	1 C3	
Guanylatzyklasen		CG 14885	CT 34707		PCR	MP4 D11	1 B22	
Guanylatzyklasen		CG 14886	CT 34708	GH 09958	Klon 84	MP10 A3	2 D23	
Guanylatzyklasen	Glycalpha 99B		CT 3044	RH 70853	Klon 57	MP10 A5	2 C17	
Guanylatzyklasen		CG 4154	CT 13386		PCR	MP4 D10	1 B20	
Guanylatzyklasen		CG 4224	CT 10689	GH 09326	Klon 71	MP9 C12	2 C22	
G-alpha-Proteine	G-alpha 49B	3		PCR	PCR	MP8 C12	1 J23	pDrive
G-alpha-Proteine	Go-alpha 47A	2		PCR	PCR	MP8 D1	1 J2	pDrive
G-alpha-Proteine	Gs-alpha 60A	4		PCR	PCR	MP8 D4	1 J8	pDrive

Anhang

G-alpha-Proteine	Go-alpha 65A	5		PCR	PCR	MP8 D2	1 J4	pDrive
G-alpha-Proteine	G-alpha-73B	9			PCR	MP8 D3	1 J6	
G-alpha-Proteine		CG 17760				MP4 E12	1 C23	
G-alpha-Proteine		CG 2812				MP4 E9	1 C17	
G-alpha-Proteine		CG 3004				MP5 H4	1 H8	
G-alpha-Proteine		CG 17678				MP4 F3	1 C6	
G-alpha-Proteine		CG 17766				MP4 F4	1 C8	
G-alpha-Proteine		CG 10545				MP4 E10	1 C19	
G-alpha-Proteine		CG 10763				MP4 E11	1 C21	
G-alpha-Proteine		CG 8770				MP4 F2	1 C4	
G-alpha-Proteine		CG 8261				MP5 H5	1 H10	
G-alpha-Proteine		CG 3694				MP4 F1	1 C2	
Calmodulin-								
Kinasen	bt		CT 8086	LP 02888	Klon 18	MP10A6	2 A12	
Calmodulin-								
Kinasen	CaMK I		CT 3735	GH 04968	Klon 78	MP10A7	2 D11	
Calmodulin-			CU 10707		0 171		2 A 1 E	
Kınasen	CaMK II		CT 40503	LD 31422	Klon 8	MP10 A9	2 A15	
Calmodulin-	-1-1745		11120 TO		07 1/1	110 A 11		
Kınasen	Strn-MICK		CI 3/111	KE 30/09	Klon 40	MP10A11	2 B8	
Calmodulin-	-							
Kınasen	SIS		CT 5932	KH 25277	Klon 51	MP10 A12	2 C5	
Calmodulin-								
Kinasen	Cakı		CI 32/68	KE 09282	Klon 32	MP10 A10	2 812	
Calmodulin-							2 E20/2	
Kinasen	PhKgamma		CT 5552	GH 28523	Klon 106	MP10A8	E19 !!	
Calmodulin-Kinase	ua	CG 17698	CT 39202		PCR	MP8 D12	1 J24	
ProteinKinase C	inaC		CT 20233	GH 24781	Klon 91	MP10 B5	2 D14	
ProteinKinase C	PKC 53E		CT 20486	GH 03188	Klon 76	MP10 B3	2 D7	
ProteinKinase C	aPKC		CT 28827	RE 60936	Klon 38	MP10 B2	2 B4	
ProteinKinase C		CG 2049	CT 6660	LD 32387	Klon 10	MP10 B1	2 A19	
ProteinKinase C	PKC 98E		CT 4834	GH 13631	Klon 83	MP10 B4	2 D21	
ProteinKinase C	PKC delta		CT 8675		PCR	MP8 E1	1 P1	
Phosphodiesterase		CG 14940	CT 34768	RE 56844	Klon 37	MP10 B6	2 B2	
Phosphodiesterase		CG 10231	CT 28757	RH 43346	Klon 46	MP10 B7	2 B20	
Phosphodiesterase		CG 9296	CT 26479	RH 62806	Klon 56	MP10 B8	2 C15	
Phosphodiesterase		CG 5411	CT 17168	HL 02671	Klon 101	MP10 B9	2 E8/2 E7	

							E	
Phosphodiesterase		CG 8279	CT 24224	GH 27433	Klon 105	MP10 B10	2 E18/2 E17 !!	
Phosphodiesterase		CG 3761	CT 4294		PCR	MP4 F5	1 C10	
Phosphodiesterase		CG 3765	CT 4316		PCR	MP4 F6	1 C12	
Phosphodiesterase		CG 1627	CT 4354		PCR	MP4 F7	1 C14	
Phosphodiesterase	dnc (a)	CG 14267	CT 33889		PCR	MP4 F8	1 C16	
Phosphodiesterase	dnc (b)		CT 9758	GH 12916	Klon 82	MP10 B11	2 D19	
Adenylatzyklase	AC3		CT 3791	LD 27878	Klon 112	MP9 G4	2 E7 !!	
Adenylatzyklase	ACXC		CT 18649	GH 14744	Klon 95	MP9 G2	2 D22	
Adenylatzyklase	ACXB	CG 17174	CT 38106		PCR	MP4 E1	1 C1	
Adenylatzyklase	ACXA		CT 38108	AT 28702	Klon 65	MP9 F11	2 C10	
Adenylatzyklase	ACXE	CG 17178	CT 38110		PCR	MP5 E8	1 G15	
Adenylatzyklase		CG 8272	CT 8327	LD 27656	Klon 111	MP9 G3	2 E5 !!	
Adenylatzyklase	Ac 76E		CT 23940	GH 26260	Klon 93	19 64M	2 D18	
Adenylatzyklase		CG 12243	CT 14186	AT 09365	Klon 68	MP9 F12	2 C16	
Adenylatzyklase	AC 78C	CG 10564	CT 29620		PCR	MP4 E3	1 C5	
Adenylatzyklase		CG 8970	CT 25794		PCR	MP4 E5	1 C9	
Adenylatzyklase	ACXD	CG 5712	CT 6304		PCR	MP5 E7	1 G13	
Adenylatzyklase		CG 5921	CT 18581		PCR	MP4 E4	1 C7	
Adenylatzyklase	rut	CG 9533	CT 26958		PCR	MP4 E6	1 C11	
Adenylatzyklase	Ac13E		CT 26306	LD 19284	Klon 117	MP9 G5	2 E22 !!	
Uptake	SerI	CG 4545	CT 14412		Klon	Peter		
[[ntake	ΠΔT	0888 90	2076 T.J	GH 22979	K10n 08	APP FK	2 E4/2 E3	
Untake		CG 1732	CT 31505		PCR	MP8 D9	 1.118	
Uptake		CG 5549	CT 17574		PCR	MP4 B8	I A16	
							2	
-							E14/2E13	
Uptake	Ine	CG 15444	CT 35508	HL 05815	Klon 103	/_4 6.4M	=:	
Uptake	blot	CG 3897	CT 12977	LD 29349	Klon 6	MP9 F8	2 A11	
Uptake	shakB	CG 1321	CT 2902	RH 19163	Klon 50	MP9 F10	2 C3	
Uptake		CG 8394	CT 24677		PCR	MP8 D11	1 J22	
Uptake		CG 16700	CT 37167	LP 07767	Klon 11	MP9 F4	2 A21	
Uptake	Eaat2	CG 3159	CT 10234	GH 09856	Klon 72	MP9 F5	2 C24	
Uptake	Eaat1		CT 12517	RE 20434	klon 31	64 6dW	2 B13	

I H7	I B8	I B21	I B12	I B4	I B2	I B10	I B6	I B17	I B23	I B14	1 D10	1 D19	I E2	I E13	I F2	I E24	I F1	I E7	I E11	I F9	I E20	I E21	I E5	I E15	I F7	I E22
MP5 G4	MP4 D4	MP4 C11	MP4 D6	MP4 D2	MP4 D1	MP4 D5	MP4 D3	MP4 C9	MP4 C12	MP4 D7	MP4 C10AD8D10	MP5 A10	MP5 B1	MP5 A7	MP5 C2	MP5 B12	MP5 C1	MP5 A4	MP5 A6	MP5 C5	MP5 B10	MP5 A11	MP5 A3	MP5 A8	MP5 C4	MP5 B11
PCR	PCR	PCR	PCR	PCR	PCR	PCR	PCR	PCR	PCR	PCR	aJa	PCR	PCR	PCR	PCR	PCR	PCR	PCR	PCR	PCR	PCR	PCR	PCR	PCR	PCR	PCR
	GH 02029	GH 02741			GH 23838			GH 12235	GH 03046	GH 10853																
CT 27902	CT 15732	CT 3905	CT 32061	CT 3566	CT 24973	CT 4790	CT 7074	CT 10669	CT 23511	CT 16261	CT 20541	CT 20241														
CG 9907	CG 4894	CG 1522	CG 12915	CG 1517	CG 8585	CG 1694	CG 7875	CG 3182	CG 12348	CG 5076	CC 10057	CG 10932	CG 14003	CG 11923	CG 13995	CG 4356	CG 6536	CG 18192	CG 18447	CG 12370	CG 14593	CG 16992	CG 13803	CG 17061	CG 14575	CG 16726
para	Ca-alpha1D	cac nba			ich	trp1	trpl	sei	sh	elk	6	GluRA				mAcR60C	methusaleh like	neuropeptide receptor	met Glut	diuretic hormone recep	neuropeptide receptor		neuropeptide receptor		neuropeptide receptor	neuropeptide receptor
voltage ion channel	voltage ion channel	voltage ion channel	voltage ion channel	voltage ion channel	voltage ion channel	voltage ion	GPCR	GPCR	GPCR	GPCR	GPCR	GPCR	GPCR	GPCR	GPCR	GPCR	GPCR	GPCR	GPCR	GPCR	GPCR					

GPCR		CG 7476		PCR	MP5 A9	I E17	
GPCR	neuropeptide receptor	CG 8985		PCR	MP5 A5	I E9	
GPCR	neuropeptide receptor	CG 2114		PCR	MP5 A1	I E1	
GPCR	AR-2	CG 10001		PCR	MP5 A2	I E3	
GPCR	bioamine receptor	CG 7994		PCR	MP5 C3	I F5	
GPCR		CG 6111		PCR	MP5 A12	I E23	
GPCR	DopR2/DAMB	CG7569		PCR			
GPCR	bioamine receptor	CG 6919		Klon-pBlue			
GPCR	neuropeptide receptor	CG 8784		PCR	MP5 B8	I E16	
GPCR	bioamine receptor	CG 8007		Klon-pBlue			
GPCR	GABA-B-R1	CG 15274		PCR			
GPCR	CCKLR-17D3	CG 6881		PCR	MP5 B7	I E14	
GPCR		CG 4395		PCR	MP5 B3	I E6	
GPCR	neuropeptide receptor	CG 15050		PCR	MP5 B5	I E10	
GPCR		CG 5936		PCR	MP5 B6	I E12	
GPCR		CG 16752		PCR	MP5 B4	I E8	
GPCR		CG 4187		PCR	MP5 C6	I F11	
GPCR	fz 3	CG 16785		PCR	MP5 B9	I E18	
GPCR	Leukotriene-like	CG 10626		PCR	MP8 C11	I J21	
GPCR		CG 12290	LD 33479	Klon 1	MP9 A1	2 A1	
GPCR	frizzled fz	CG 17679	LD 32066	Klon 9	MP9 A3	2 A17	
GPCR	met Glut	CG 7155	LP 07906	Klon 13	MP9 C4	2 A 2	
GPCR	mth methusaleh	CG 6936	SD 05804	Klon 15	MP9 C5	2 A6	
GPCR		CG 4875	LD 45115	klon 16	MP9 A4	2 A8	
GPCR		CG 13406	LP 02895	Klon 19	MP9 C7	2 A13	
GPCR	rk rickets	CG 8930	RE 17250	Klon 25	MP9 A5	2 B1	
GPCR	22E5.11	CG 4322	RE 06985	Klon 26	MP9 A6	2 B3	
GPCR		CG 17084	RE 10234	Klon 28	MP9 A7	2 B7	
GPCR		CG 6965	RE 27241	Klon 29	8A 94M	2 B9	
GPCR	secretin-like	CG 17415	RE 24343	Klon 33	64 64M	2 B17	
GPCR		CG 10698	RE 51322	Klon 35	MP9 A11	2 B21	
GPCR	CCKLR-17D1	CG 6857	RE 52616	Klon 36	MP9 A12	2 B23	
GPCR	neuropeptide receptor	CG 5042	RE 38148	Klon 41	MP9 B2	2 B10	
GPCR		CG 4521	RE 43103	Klon 42	MP9 B3	2 B12	
GPCR	neuropeptide receptor	CG 8795	RE 46166	Klon 43	MP9 B4	2 B14	
GPCR		CG 11318	RE 48109	Klon 44	MP9 B5	2 B16	

	CG 9753	RH 3849	14 Klon 45	MP9 B6	2 B18
CG 7665		RH 4494	-9 Klon 47	MP9 B7	2 B22
CG 6986		RH 4759	2 Klon 48	MP9 B8	2 B24
CG 13758		RH 5626	8 Klon 49	MP9 B9	2 C1
CG 13755		RH 3167	7 Klon 52	MP9 B10	2 C7
CG 8692		RH 3641	7 Klon 53	MP9 B11	2 C9
CG 17795		RH 5755	1 Klon 55	MP9 B12	2 C13
CG 10823		RH 7152	4 Klon 58	MP9 C1	2 C19
CG 13229		AT 1964	0 Klon 61	MP9 C2	2 C2
CG 3022		AT 0190	6 Klon 64	MP9 C3	2 C8
CG 15556		AT 0759	5 Klon 67	MP9 C9	2 C14
CG 3078		GH 0633	55 Klon 69	MP9 C10	2 C18
CG 8639		GH 0733	1 Klon 70	MP9 C11	2 C20
CG 6706		GH 1140	9 klon 81	MP9 D1	2 D17
CG 7887		GH 1015	54 Klon 85	MP9 D2	2 D2
CG 1147		GH 1060	12 klon 87	MP9 D3	2 D6
CG 7395		GH 2338	32 Klon 89	MP9 D4	2 D10
CG 8422		GH 2533	(9 Klon 92	MP9 D5	2 D16
CG 11235		GH 2122	28 Klon 96	MP9 D7	2 D24
					2 E8/2E7
UG 9/39		GM 069,	25 KION 100	MP9 D8	=:
CG 8285		HL 0272	0 Klon 102	MP9 D9	2 E12/2 E11 !!
CG 4168		GH 2645	8 Klon 104		2 E16/2 E15 !!
					2 E22/2
CG 433		GM 0232	27 Klon 107	MP9 D10	E21 !!
CG 6530		GM 025	53 Klon 108	MP9 D11	2 E24/2 E23 11
CG 4626		1 D 2232	1 klon 109	MP9 D12	2 E1 U
CG 11561		LD 1387	3 Klon 116	MP9 E2	2 E19 !!
CG 4550		GH 1416	54 Klon 94	MP9 D6	2 D20
CG 6515		SD 0678	4 Klon 21	MP9 C8	2 A18
CG 9569		RH 1350	11 klon 39	MP9 B1	2 B6
CG 7485			Klon-pBlu	. 43	
CG 3856			Klon-pBlu	0	

						-	
GPCR	5-HT1A/5-HT2A	CG 16720		Klon-pBlue			
GPCR	5-HT1B/5-HT2B	CG 15113		Klon-pBlue			
GPCR	5-HT7/Dm5-HTdro1	CG 12073		Klon-pBlue			
GPCR	5-HT2/Dm5-HT2	CG 1056		Klon-pBlue			
GPCR	DopR/DmDop1	CG 9652		Klon-pBlue/B	aumann		
GPCR	bioamine receptor	CG 6989		Klon-pBlue			
GPCR	bioamine receptor	CG 7078		Klon-pBlue			
GPCR	bioamine receptor	CG 7431		Klon-pBlue			
GPCR	mAChR-like	CG 7918		Klon-pBlue			
GPCR	5-HT-like	CG 8007		Klon-pBlue			
GPCR	bioamine receptor	CG 13579		Klon-pBlue			
GPCR	dopamine-like	CG 17004		Klon-pBlue			
GPCR	bioamine receptor	CG12796		Klon-pBlue			
GPCR	bioamine receptor	CG 18314		Klon-pBlue			
	bioamine receptor/alpha						
GPCR	adrenergic-like	CG 18208		Klon-pBlue			
	bioamine						
GPCR	receptor/octopamine-like	CG 16766		Klon-pBlue			
GPCR	ALStR			Klon Kreienk	amp		
GPCR	Allatostatin 1			Klon Kreienk	amp		
GPCR	Allatostatin 1			Klon Kreienk	amp		
Lysozyme		CG11159		N	IP8 C7	I J13	
Lysozyme		CG 16756		N	IP8 C6	I J11	
Lysozyme		CG 16799		V	IP8 C3	I J5	
Lysozyme		CG 7331		N	IP8 C5	1 J9	
Lysozyme		CG 7798	CT 23692	N	IP8 C9	I J17	
Lysozyme		CG 8492		N	IP8 C8	I J15	
Lysozyme	Lysozym A			N	IP8 C4	I J7	
Lysozyme	Lysozym B						
Lysozyme	Lysozym C						
Lysozyme	Lysozym D						
Lysozyme	Lysozym E						
Lysozyme	Lysozym P						
Lysozyme	Lysozym S						
Peptidoglycan Rez		CG 2543		PCR N	IP4 F9	I C18	
Peptidoglycan Rez		CG 3390		PCR N	I P4 F10	I C20	

Peptidoglycan Rez	CC	G 4437		PCR	MP4 F12	I C24	
Peptidoglycan Rez	CG	G 4361		PCR	MP5 G11	I H21	
Peptidoglycan Rez	CC	J 14704		PCR	MP4 G5	I D9	
Peptidoglycan Rez		3 4432		PCR	MP4 F11	I C22	
Peptidoglycan Rez	CC	J 5523		PCR			
Peptidoglycan Rez	CC	J 8995		PCR	MP5 G8	I H15	
Peptidoglycan Rez	CC	G 11709		PCR	MP5 G10	I H19	
Peptidoglycan Rez	CC	j 9681		PCR	MP4 G3	I D5	
Peptidoglycan Rez	CC	j 9697		PCR	MP4 G4	I D7	
Peptidoglycan Rez	CC	314746		PCR	MP5 G9	I H17	
Peptidoglycan Rez	CC	3 8577		PCR	MP4 G2	I D3	
Peptidoglycan Rez	CC	J 7496		PCR	MP4 G1	I D1	
Lectin	CC	J 6014			MP5 C7	I F13	
Lectin	CC	J 17797			MP5 D3	I F6	
Lectin	CC	j 8343			MP5 D1	I F2	
Lectin	CC	J 11374			MP5 D6	I F12	
Lectin	CC	G 12004	SD 03655	Klon 14	MP5 E3	I G5/2 A4	
Lectin	CC	3 7763			MP5 E9	I G17	
Lectin	CC	G 12111			MP5 F3	I G6	
Lectin	CC	J 13086			MP5 G2	I H4	
Lectin	CC	j 14499			MP6 E10		
Lectin	CG	J 14500			MP5 E6	I G11	
Lectin	CC	J 14866			MP5 D9	I F18	
Lectin	CC	j 15358			MP5 E5	I G9	
Lectin	CC	J 15765			MP5 F1	I G2	
Lectin	CC	J 15815			MP5 E4	I G7	
Lectin	CC	J 6468			MP5 F2	I G4	
Lectin	CG	J 2839			MP5 E8	I G15	
Lectin	CC	J 3244			MP5 C9	I F17	
Lectin	CC	J 3921			MP5 C10	I F19	
Lectin	CC	J 4115			MP5 E7	I G13	
Lectin	CC	J 4844			MP5 D12	I F24	
					MP5		
Lectin	CO	j 5335			D7/MP8B12	I F14	
Lectin	GG	j 6055			MP5 E11	I G21	
Lectin	CC	J 6126			MP8 C1	I J1	

Lectin		CG 8645		MP5 D5	I F10	
Lectin		CG 9095		MP5 C8	I F15	
Lectin		CG 9134		MP5 D10	I F20	
Lectin		CG 9978		MP5 F5	I G10	
Lectin		CG 1084		MP5 D11	I F22	
Lectin		CG 1500		MP5 D4	I F8	
Lectin		CG 7002		MP5 C12	I F23	
Lectin		CG 2826		MP5 C11	I F21	
Lectin		CG 13686		MP8 D6	I J12	
Lectin		CG 15378		MP5 D2	I F4	
Lectin		CG 3410		MP5 E1	I G1	
Lectin		CG 2958		MP5 E2	I G3	
Lectin		CG 7106		MP5 F7	I G14	
Lectin		CG 17799		MP5 E12	I G23	
Lectin		CG 17011		MP5 F8	I G16	
Lectin		CG 16834		MP5 F4	I G8	
Lectin		CG 1656		MP5 F6	I G12	
Lectin		CG 1652		MP8 C2	I J3	
Lectin		CG 9976		MP5 F12	I G24	
Lectin		CG 17814		MP5 F10	I G20	
Lectin		CG 13395		MP5 F9	I G18	
Lectin		CG 6822		MP5 G1	I H I	
Lectin		CG 17579		MP5 F11	I G22	
Lectin		CG 11211		MP5 D8	I F16	
TUBBY	KING TUBBY			MP4 G6	I D11	
TUBBY		CG 5586		MP4 G7	I D13	
TUBBY		CG 9398		MP4 G8	I D15	
Antimikrob Pep	Drosocin			MP2 D3	I N6	
Antimikrob Pep	Drosomycin			MP8 A5	I 19	
Antimikrob Pep	Andropin			MP2 C9	I N17	
Antimikrob Pep	Metchnikowin			MP2 D5	I N10	
Antimikrob Pep	Cecropin A					
Antimikrob Pep	Cecropin A2					
Antimikrob Pep	Cecropin B					
Antimikrob Pep	Cecropin C			MP2 C12	I N23	
Antimikrob Pep	Attacin A		 			

	I N19	I N21	I N4	1 K6	I K8	I K10	I K 1 2		I K14	I K16	I N2			I H12	I H14	I H16	I H18	I H20	I H22	I H24	I J19	I H2	I H4	I H6	I D17	I D19	I K1	I K3	I K5		I K7/I 111	I K9		I K11/I I13
	MP2 C10	MP2 C11	MP2D2	MP7 B3	MP7 B4	MP7 B5	MP7 B6/MP8A9	MP7	B7/MP8A10	MP7 B8	MP2 D1			MP5 H6	MP5 H7	MP5 H8	MP5 H9	MP5 H10	MP5 H11	MP5 H12	MP8 C10	MP5 H1	MP5 H2	MP5 H3	MP4 G9	MP4 G10	MP7 A1	MP7 A2	MP7 A3	MP7	A4/MP8A6	MP7 A5	MP7	A6MP8 A7
				CG 10812	CG11520	CG 9080	CG 16978			CG 12965		CG 12070	CG 8944														CG9733	CG 1102	CG 3505		CG 16705	CG 3066		CG 4920
Attacin B	Attacin C	Attacin D	Diptericin	Drosocin-like	Drosocin-like				IM 1		Defensin	SAP-R	SAP-like	Turandot A	Turandot B	Turandot C	Turandot F	Turandot M	Turandot X	Turandot Z	Victoria	CREB A	CREB B	CREB IRA	PPOAE1	PPOAE3								easter
Antimikrob Pep	Antimikroh Pen		Antimikrob Pep	Turandot	Turandot	CREB	CREB	CREB	PPOAE	PPOAE	PPOAE	PPOAE	PPOAE		PPOAE	PPOAE		PPOAE																

ImmunRez	BlackCell					MP7 A7	I K13	
ImmunRez	CDP Diacyl					MP7 A8	I K15	
ImmunRez	ldgf 1					MP8 A2/MP2 C1	I 13/I N1	
ImmunRez	ldgf 2					MP8 A4/MP2C2	I 17/I N3	
ImmunRez	ldgf 3					MP2 C3	I N5	
ImmunRez	ldgf 4					MP2 C4	I N7	
ImmunRez		CG 13422				MP8 B7/MP2 F1	I 114/I O2	
ImmunRez	SR-CL					MP2 F2	I 04	
ImmunRez	SR-CL I					MP8 B8/MP2 F3	1 116/I O6	
ImmunRez	SR-CL2					MP2 F4	1 08	
ImmunRez	GNBP1					MP2 B10	I M20	
ImmunRez	GNBP2					MP2 B11	I M22	
ImmunRez	GNBP3					MP2 B12	I M24	
ImmunRez	GNBP-like	CG 12780				MP2 B9	I M18	
ImmunRez	TEP-1					MP2 C5	1 N9	
ImmunRez	TEP-2					MP2 C6	I N11	
ImmunRez	TEP-3					MP2 C7	I N13	
ImmunRez	TEP-3					MP2 C8	I N15	
ImmunRez	LDLR					MP2 E11	I 021	
ImmunRez	cont contactin			LD 28757	Klon 113	MP9 E1	2 E9 !!	
Serin Protease		CG 6639				MP7 A9	I K17	
Serin Protease		CG 11842				MP7 A10	I K19	
Serin Protease		CG 18563				MP7 A11	I K21	
Serpine		CG 7219				MP7 A12	I K23	
Serpine	Serpin 27A					MP7 B1	I K2	
Serpine	Serpin 4	CG 9543				MP7 B2/MP8A8	I K4/I 115	
-	-					MP7		
ImmunEnzyme	SOD					B9/MP(A11	I K18	
ImmunEnzyme	SOD2					MP7 B10	I K20	
ImmunEnzyme	SODSHB					MP7 B11	I K22	
ImmunEnzyme	Peroxidase					MP7 B12MP8	I K24/ I 123	

	I L1	I L3	I L5/I 12	71 I/L 1 1	11.0	I L 11	IL4	I L13	I L15	I 110/1 05	I 112	1 118/1 022	1018	I 020	I 024		I 122		1120	I N12	I N14	I N16	I N18	I N20	I N22	I N24	I 01	103	107	I 09	I 011
A12	MP7 C1	MP7 C2	MP7 C3/MP8B1	MP7 C4/MP8R2	MP7 C5	MP7 C6	MP7 D2	MP7 C7	MP7 C8	MP8 B5/MP2E3	MP8 B6	MP8 B9/MP2F11	MP2 F9	MP2 F10	MP2 F12	MP8	B11/MP2G2	MP8	B10/MP2 G1	MP2 D6	MP2 D7	MP2 D8	MP2 D9	MP2 D10	MP2 D11	MP2 D12	MP2 E1	MP2 E2	MP2 E4	MP2 E5	MP2 E6
						CG 5550																									
	Catalase	Hemoglobin	Transferrin 1	Transferrin 2	Coag-AnniX	Coad	NOS	gcm	Lozenge	Kenny	basket	Mankinase 38h	Mankinase 2	Mapkinase 4	IRA Fos		14-3-3 zeta		14-3-3 ensilon	spätzle	cactus	pelle	tube	dorsal	dif	dredd	serpin	IMD	IRD	kayak	shaggy
	ImmunEnzyme	ImmunEnzyme	ImmunEnzvme	ImminEnzyme	ImmunEnzyme	ImmunEnzyme	ImmunEnzyme	Signaltransduktion		Signaltransduktion		Signaltransduktion																			

Signaltransduktion	decapenta					MP2 E7	I 013	
Signaltransduktion	rolled					MP2 E8	I 015	
Signaltransduktion	basket					MP2 E9	I 017	
Signaltransduktion	puckert					MP2 E10	I 019	
Signaltransduktion	relish	CG 11992	CT 32117	GH 01881	Klon 75	MP9 G9	2 D5	
Signaltransduktion	Spätzle spz	CG 6134	CT 19282	SD 07354	Klon 22	MP9 G8	2 A20	
Signaltransduktion	LDLR					MP2 E11	I 021	
Signaltransduktion	hemipterpous					MP2 E12	I 023	
Signaltransduktion	Fos rel					MP2 F5	I 010	
Signaltransduktion	Fos 500					MP2 F6	I 012	
Signaltransduktion	JAK HOPS					MP2 F7	I 014	
Signaltransduktion	Stat 92					MP2 F8	I 016	
						MP7		
GPCR-ENZYM	GPCR-Kinase 1					C9/MP8B3	I L17/I I6	
GPCR-ENZYM	GPCR-Kinase 2					MP7 C10	I L19	
GPCR-ENZYM	Arrestin1					MP7 C11	I L21	
GPCR-ENZYM	Arrestin 2					MP7 C12	I L23	
						MP7		
GPCR-ENZYM	Arrestin Kurz					D1MP(B4	I L2	
PLA		CG 10133				MP8 A1	I I1	
PLA	PLA G14					MP2 A1	I M1	
PLA		CG 1450				MP2 A2	I M3	
PLA		CG 1583				MP2 A3	I M5	
PLA		CG 3009				MP2 A4	LM I	
PLA		CG 4346				MP2 A5	1 M9	
PLA		CG 6718				MP2 A6	I M11	
PLA		CG 7531				MP2 A7	I M13	
PLA		CG 10133				MP2 A8	I M17	
						MP8		
PLA	PLA2	CG 11124				A2/MP2B4	I I/I M8	
PLC	norpA					MP2 A9	I M17	
PLC	21C					MP2 A10	I M19	
PLC	smallwing					MP2 A11	I M21	
PLC		CG 2818				MP2 A12	I M23	
PLC		CG 3942				MP2 B1	I M2	
PLC		CG 5895				MP2 B2	I M4	

DIC		CG 10777		MD7 B3	1 MG
ILV		10/4/			1 1/10
PLC		CG 11619		MP2 B5	I M10
PLC		CG 14945		MP2 B6	I M12
PLC		CG 18135		MP2 B7	I M14
	Uch				I P3