Aus der Abteilung für Virologie, Leitung Prof. Dr. H. Schmitz

Bernhard-Nocht-Institut für Tropenmedizin, Hamburg

Direktor Prof. Dr. Fleischer

Sequenzanalyse der L-RNA von Lassavirus und Aufbau moderner Nachweissysteme für hochpathogene Arenaviren

DISSERTATION

Zur Erlangung des Grades eines Doktors der Medizin

dem Fachbereich Medizin der Universität Hamburg vorgelegt von

Simon Vieth

aus Hamburg

Hamburg 2004

Angenommen von dem Fachbereich Medizin

Der Universität Hamburg am: 22.06.05

Veröffentlicht mit Genehmigung des Fachbereichs

Medizin	der	Univers	sität]	Hambu	rg

Prüfungsausschuss, der	Vorsitzende:	PD Dr. S. Günther
------------------------	--------------	-------------------

Prüfungsausschuss: 2. Gutach	terin: PD Dr. S. Polywka

Prüfungsausschuss: 2. Gutachterin: PD Dr. J. van Lunzen

Gewidmet meiner Mutter, meinem Vater, meinem Bruder und meiner lieben Schwester.

Veröffentlichungen und Kongressbeiträge im Rahmen der Promotionsarbeit

Vieth S, Asper M, und Günther S. Sequence analysis of Lassa virus L gene: Protein structure prediction, phylogenetic analysis, and establishment of a novel diagnostic RT-PCR assay. *Jahrestagung Gesellschaft für Virologie, Berlin, 2003*

Vieth S, Drosten C, Lenz O, Vincent M, Hass M, Becker-Ziaja B, ter Meulen J, Nichol ST, Charrel R, Feldmann H, Schmitz H, und Günther S. Broadly-reacting PCR assays – reliable tools for detection of pathogenic and unknown arenavirus species. *Medizinische B-Schutz-Tagung, München, 2004*

Vieth S, Torda AE, Asper M, Schmitz H, Günther S. Sequence analysis of L RNA of Lassa virus. *Virology 2004; 318:153-68.*

Vieth S, Drosten C, Charrel R, Feldmann H and Günther S. Establishment of conventional and fluorescence resonance energy transfer-based real-time PCR assays for detection of pathogenic New World arenaviruses.

Journal of Clinical Virology, online Oktober 2004 doi:10.1016/j.jcv.2004.07.011

Vieth S, Drosten C, Lenz O, Vincent M, Hass M, Becker-Ziaja B, ter Meulen J, Nichol ST, Schmitz H, Günther S. A reverse transcription PCR assay for detection of Lassa virus and related Old World arenaviruses targeting the L gene. (*zur Publikation eingereicht*)

Weitere im Verlauf der Promotion entstandene Arbeiten

Vieth S, Manegold C, Drosten C, Nippraschk T, Günther S. Sequence and phylogenetic analysis of hepatitis B virus genotype G isolated in Germany. *Virus Genes 2002; 24:153-6*.

Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, **Vieth S**, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. *New England Journal of Medicine 2003; 348:1967-76*

Abkürzungsverzeichnis

°C	Grad Celsius	GTP	(
μg	Mikrogramm	h	S
μl	Mikroliter	HCl	S
μmol	Mikromol	HCV	ł
aa	Aminosäure (amino acid)	IgG	I
Abb.	Abbildung	IgM	I
ALT	Alanin-Transaminase	IGR	i
Aminosä	iüren Ein- und Drei-Buchstabencode siehe Seite 47	IPTG	<i>r</i> i
AST	Aspartat-Transaminase		t
ATP	Adenintriphosphat	kb	ł
BSA	bovines Serumalbumin	kDa	ŀ
BSL	Biosicherheitsstufe (<i>Bio Safety Level</i>)	l LacZ	l t
bzw.	beziehungsweise	LB-Med	iu
С	Cytosin	LCMV	Ι
cDNA	komplementäre Desoxyribonuk- leinsäure	LVL	I
cm	Zentimeter	LVLav	Ι
СТР	Cytosintriphosphat	LVLcsf	Ι
ddNTP	di-desoxy Nukleotidtriphosphat	LVLnl	Ι
DMSO	Dimethylsulfoxid	LVS	Ι
DNA	Desoxribunukleinsäure (acid)	М	r
dNTP	desoxy Nukleotidtriphosphat	ME	1
DTT	Dithiothreitol	Mg	ľ
E. coli	Escherichia coli	mg	N
EDTA	Äthylendiamintetraessigsäure (ethylene diamine tetraacetic acid)	MgSO	ľ
ELISA	enzyme-linked immuno sorbent assay	ml	ľ
et al.	und andere (et alteri)	ML	1
FRET	Fluorescence resonance energy	mМ	r
	transfer	mmol	N
g	Gramm	MopL	ľ
GP	Glycoprotein	mRNA	r

GTP	Guanintriphosphat
h	Stunde
HC1	Salzsäure
HCV	Hepatitis C Virus
IgG	Immunglobulin der Klasse G
IgM	Immunglobulin der Klasse M+
IGR	intergenische Region (<i>intergenic</i> region)
IPTG	isopropyl-beta-D- thiogalactopyranosid
kb	Kilobasen
kDa	Kilodalton
1	Liter
LacZ	beta-galactosidase monomer Gen
LB-Med	ium Luria-Bertani-Medium
LCMV	Lymphozytäres Choriomeningiti Virus
LVL	Lassavirus-L-Gen
LVLav	Lassavirus-L-Gen Stamm AV
LVLcsf	Lassavirus-L-Gen Stamm CSF
LVLnl	Lassavirus-L-Gen Stamm NL
LVS	Lassavirus-S-Gen
М	molare Konzentration
ME	Minimum-Evolution
Mg	Magnesium
mg	Milligramm
MgSO	Magnesium Sulfat
min	Minute
ml	Milliliter
ML	Maximum-Likelihood
mМ	milli Molar
mmol	Millimol
MopL	Mopeiavirus-L-Gen
mRNA	messenger Ribonukleinsäure

n	Anzahl	SP6	SP6-RNA-Polymerase
NCR	Nicht codierende Region	~	Bindungssequenz
ng	Nanogramm	SpM	Schüttlungen pro Minute (<i>shakes</i>)
NJ	Neighbor-Joining	s.u.	siehe unten
nm	Nanometer	t	Zeit
NP	Nukleoprotein	Т3	T3-RNA-Polymerase Bindungssequenz
nt	Nukleotide	Τ7	T7-RNA-Polymerase Bindungsse-
PCR	Polymerase Ketten (chain)		quenz
	Reaktion	Tab.	Tabelle
PFU	Plaque forming units	TAE	Tris-Acetate-EDTA Puffer
рН	<i>pondus hydrogenii</i> (neg. dekadische Logarithmus der Wasserstoffionen-	Taq	Thermus aquqticus Polymerase
	konzentration $pH = -log [H^+])$	Tris	Tris-(hydroxymethyl)- aminomethan
PML	promyelozytisches Leukämie Protein	U	Einheiten (Unit)
pmol	Picomol	UpM	Umdrehungen pro Minute
RdRP	RNA-abhängigen (dependent)	USA	Vereinigte Staaten von Amerika
	RNA-Polymerasen	UTP	Uridintriphosphat
RHDV	rabbit hemorrhagic disease Virus	UTR	untranslatierte Region
RING	Really Interesting New Gene	UV	Ultraviolett
RNA	Ribonukleinsäure (acid)	V	Volumen
RNase H	I Ribonuklease H	VHF	virales hämorrhagisches Fieber
RNP	Ribonukleoprotein	VS	gegen (varsus)
rpm	Umdrehungen pro Minute	VS.	Vesikuläres Stomatitis Virus
	(rounds per minute)	V 5 V	Consist (unick)
RT	Reverse Transkriptase	W	Gewicht (<i>weight</i>)
S.	siehe	W/V	Gewicht-Volumen-Verhältnis
SARS	Severe Acute Respiratory Syndrome (schweres akutes Atemnotsyndrom)	X-Gal	5-bromo-4-chloro-3-indolyl-beta- D-galactopyranosid
sec	Sekunde	Y2k	Jahr 2000 (Year 2000)
SL	Sierra Leone	z.B.	zum Beispiel
SNSRV	segmentierte Negativ-Strang- RNA-Viren		

Inhaltsverzeichnis

1 ARBEITSHYPOTHESE UND FRAGESTELLUNG	1
2 EINLEITUNG	2
2.1 Epidemiologie von Arenaviren	2
 2.2 Lassavirus 2.2.1 Klinik der Lassavirusinfektion 2.2.2 Spezifische Therapie des Lassafiebers 2.2.3 Lassafieberimpfstoff 	3 4 5 6
2.3 Lymphozytäres Choriomeningitisvirus	6
2.4 Neuwelt-Arenaviren	6
2.5 Struktur und Molekularbiologie der Arenaviren2.5.1 L-Protein	6 8
2.6 RNA-abhängige RNA-Polymerase	8
 2.7 Phylogenese 2.7.1 Phylogenese der Arenaviren 2.7.2 Phylogenese der Lassaviren 2.7.3 Phylogenetische Einordnung der Arenaviren innerhalb der Negativ-Strang-RNA-Viren 	9 10 10 11
2.8 Diagnostik von Arenavirus-Infektionen	12
3 MATERIALIEN UND METHODEN	14
3.1 Materialien 3.1.1 Geräte3.1.2 Computersoftware3.1.3 Chemikalien3.1.4 Oligonukleotide3.1.5 Enzyme3.1.6 Kits3.1.7 Puffer und Lösungen3.1.8 Biologische Agenzien3.1.8.1 Virusstämme3.1.8.2 Bakterienstämme	14 14 14 15 20 20 20 21 21 22
 3.2 Methoden 3.2.1 Molekularbiologische Methoden 3.2.1.1 Präparation von Virus-RNA für die PCR 3.2.1.2 RNA-Präparation aus gefrorenem frischen Gewebe für die PCR 3.2.1.3 Reverse Transkription 3.2.1.4 Polymerasekettenreaktion 3.2.1.5 Standard PCR 3.2.1.6 Expand High Fidelity PCR 3.2.1.7 Reverse Transkription und PCR im Ein-Schritt-Verfahren 	22 22 22 23 23 23 24 25

3.2.1.9 Allgemeine Kriterien zur Oligonukleotidauswahl	
• • • • • • • • • • • • • • • • • • • •	27
3.2.1.10 Agarosegelelektrophorese	27
3.2.1.11 Aufreinigung der PCR-Produkte durch Natriumacetat/Ethanol-Fällung	28
3.2.1.12 Präparation von DNA-Fragmenten aus Agarosegel	28
3.2.1.13 DNA-Sequenzierung	28
3.2.1.14 Ethanolpräzipitation	29
3.2.1.1.5 Klonierung von PCR-Produkten	30
3.2.1.15 Ligation von PCR-Produkten in Vectoren	30
3.2.1.15.2 Tansformation	30
2.2.1.15.2 Salaktion und Über Nacht Kultur	20
2.2.1.15.5 Selektion und Ober-Nacht-Kultur 2.2.1.15.4 Übernrüfen der kultivierten Klone	30
2.2.1.15.4 Oberprinten der Kuntvierten Kione	20
2.2.1.15.5 Flashilu-Flapalation	21
3.2.1.15.6 Photometrische DNA-Quantifizierung	21
3.2.1.10 Herstellung von KINA-Transcripten	21
3.2.1.16.1 In-vitro-Transcription	31
3.2.1.16.2 Reinigung des Transcriptes	31
3.2.1.16.3 Photometrische RNA-Quantifizierung	31
3.2.1.17 Denaturierende Formamid/Agarosegelelektrophorese für RNA	32
3.2.2 Sequenzanalyse	32
3.2.2.1 Auswertung der Sequenzdaten	32
3.2.2.2 Datenbanksuche	32
3.2.2.3 Sekundärstrukturvorhersage und Strukturmodelling	32
3.2.3 Phylogenese	35
3.2.3.1 Arenavirus-Phylogenese	35
3.2.3.2 Phylogenese der Negativ-Strang-RNA-Viren	35
4 ERGEBNISSE	37
4.1 Angwahl von Saguangiannyimann	37
4.1 Auswani von Sequenzierprimern	31
4 I I Analyse existierender L-KINA-Sequenzen	37
	20
4.1.2 Kriterien zur Oligonukleotidauswahl	38
4.1.2 Kriterien zur Oligonukleotidauswahl4.2 Sequenzierung von Lassavirus L-RNA	38 38
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 	38 38 38
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 	38 38 38 39
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 	38 38 38 39 40
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 4.3 Sequenzvergleiche und Sequenzanalyse 	38 38 38 39 40 40
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 4.3 Sequenzvergleiche und Sequenzanalyse 4.4 Strukturvorhersage 	38 38 38 39 40 40 40 40
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 4.3 Sequenzvergleiche und Sequenzanalyse 4.4 Strukturvorhersage 4.5 Phylogenetische Analyse 	38 38 38 39 40 40 40 43 48
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 4.3 Sequenzvergleiche und Sequenzanalyse 4.4 Strukturvorhersage 4.5 Phylogenetische Analyse 4.6 Aufbau eines RT-PCR Assavs zur Detektion von Lassavirus und verwandten 	38 38 39 40 40 40 43 48
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 4.3 Sequenzvergleiche und Sequenzanalyse 4.4 Strukturvorhersage 4.5 Phylogenetische Analyse 4.6 Aufbau eines RT-PCR Assays zur Detektion von Lassavirus und verwandten Altwelt-Arenaviren im L-Gen 	38 38 39 40 40 43 43 48 51
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 4.3 Sequenzvergleiche und Sequenzanalyse 4.4 Strukturvorhersage 4.5 Phylogenetische Analyse 4.6 Aufbau eines RT-PCR Assays zur Detektion von Lassavirus und verwandten Altwelt-Arenaviren im L-Gen 4.6.1 Identifizierung von konservierten Abschnitten im L-Gen als Zielsequenz 	38 38 39 40 40 43 48 51
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 4.3 Sequenzvergleiche und Sequenzanalyse 4.4 Strukturvorhersage 4.5 Phylogenetische Analyse 4.6 Aufbau eines RT-PCR Assays zur Detektion von Lassavirus und verwandten Altwelt-Arenaviren im L-Gen 4.6.1 Identifizierung von konservierten Abschnitten im L-Gen als Zielsequenz 	38 38 39 40 40 43 48 51
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 4.3 Sequenzvergleiche und Sequenzanalyse 4.4 Strukturvorhersage 4.5 Phylogenetische Analyse 4.6 Aufbau eines RT-PCR Assays zur Detektion von Lassavirus und verwandten Altwelt-Arenaviren im L-Gen 4.6.1 Identifizierung von konservierten Abschnitten im L-Gen als Zielsequenz ür eine L-Gen-RT-PCR 4.6.2 Testung verschiedener Primerkombinationen 	38 38 39 40 40 40 43 48 51 51 55
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2.2 Kriterien zur Oligonukleotidauswahl 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 4.3 Sequenzvergleiche und Sequenzanalyse 4.4 Strukturvorhersage 4.5 Phylogenetische Analyse 4.6 Aufbau eines RT-PCR Assays zur Detektion von Lassavirus und verwandten Altwelt-Arenaviren im L-Gen 4.6.1 Identifizierung von konservierten Abschnitten im L-Gen als Zielsequenz für eine L-Gen-RT-PCR 4.6.2 Testung verschiedener Primerkombinationen 4.6.3 Herstellung in-vitro transkribierter Lassavirus-RNA 	38 38 39 40 40 43 48 51 51 55 56
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 4.3 Sequenzvergleiche und Sequenzanalyse 4.4 Strukturvorhersage 4.5 Phylogenetische Analyse 4.6 Aufbau eines RT-PCR Assays zur Detektion von Lassavirus und verwandten Altwelt-Arenaviren im L-Gen 4.6.1 Identifizierung von konservierten Abschnitten im L-Gen als Zielsequenz für eine L-Gen-RT-PCR für eine L-Gen-RT-PCR 4.6.3 Herstellung in-vitro transkribierter Lassavirus-RNA 4.6.4 Vergleich verschiedener <i>one-sten</i> RT-PCR Kits und <i>two-sten</i> PCR 	38 38 39 40 40 43 48 51 55 56 59
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 4.3 Sequenzvergleiche und Sequenzanalyse 4.4 Strukturvorhersage 4.5 Phylogenetische Analyse 4.6 Aufbau eines RT-PCR Assays zur Detektion von Lassavirus und verwandten Altwelt-Arenaviren im L-Gen 4.6.1 Identifizierung von konservierten Abschnitten im L-Gen als Zielsequenz für eine L-Gen-RT-PCR 4.6.2 Testung verschiedener Primerkombinationen 4.6.3 Herstellung in-vitro transkribierter Lassavirus-RNA 4.6.4 Vergleich verschiedener <i>one-step</i> RT-PCR Kits und <i>two-step</i> PCR 4.6.5 Ontimierung 	38 38 39 40 40 43 48 51 55 56 59 60
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 4.3 Sequenzvergleiche und Sequenzanalyse 4.4 Strukturvorhersage 4.5 Phylogenetische Analyse 4.6 Aufbau eines RT-PCR Assays zur Detektion von Lassavirus und verwandten Altwelt-Arenaviren im L-Gen 4.6.1 Identifizierung von konservierten Abschnitten im L-Gen als Zielsequenz für eine L-Gen-RT-PCR 4.6.2 Testung verschiedener Primerkombinationen 4.6.3 Herstellung in-vitro transkribierter Lassavirus-RNA 4.6.4 Vergleich verschiedener <i>one-step</i> RT-PCR Kits und <i>two-step</i> PCR 4.6.5 Optimierung 4.6.51 Optimierung A 6.51 	38 38 39 40 40 43 48 51 55 56 59 60 60
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2.1 Strategie 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 4.3 Sequenzvergleiche und Sequenzanalyse 4.4 Strukturvorhersage 4.5 Phylogenetische Analyse 4.6 Aufbau eines RT-PCR Assays zur Detektion von Lassavirus und verwandten Altwelt-Arenaviren im L-Gen 4.6.1 Identifizierung von konservierten Abschnitten im L-Gen als Zielsequenz für eine L-Gen-RT-PCR 4.6.2 Testung verschiedener Primerkombinationen 4.6.3 Herstellung in-vitro transkribierter Lassavirus-RNA 4.6.4 Vergleich verschiedener one-step RT-PCR Kits und <i>two-step</i> PCR 4.6.5 Optimierung 4.6.5.1 Optimierung der Annealingtemperatur 4.6.5.2 Optimierung der Annealingtemperatur	38 38 39 40 40 43 48 51 51 55 56 59 60 60 60
 4.1.2 Kriterien zur Oligonukleotidauswahl 4.2.2 Kriterien zur Oligonukleotidauswahl 4.2.3 Sequenzierung von Lassavirus L-RNA 4.2.1 Strategie 4.2.2 Sequenzierung der sehr stabilen <i>stem-loop</i> Struktur zwischen L- und Z-Gen 4.2.3 Aufbereitung der Sequenzdaten 4.3 Sequenzvergleiche und Sequenzanalyse 4.4 Strukturvorhersage 4.5 Phylogenetische Analyse 4.6 Aufbau eines RT-PCR Assays zur Detektion von Lassavirus und verwandten Altwelt-Arenaviren im L-Gen 4.6.1 Identifizierung von konservierten Abschnitten im L-Gen als Zielsequenz für eine L-Gen-RT-PCR 4.6.2 Testung verschiedener Primerkombinationen 4.6.3 Herstellung in-vitro transkribierter Lassavirus-RNA 4.6.4 Vergleich verschiedener <i>one-step</i> RT-PCR Kits und <i>two-step</i> PCR 4.6.5 Optimierung der Annealingtemperatur 4.6.5.1 Optimierung der Annealingtemperatur 4.6.5.2 Optimierung der RT-Temperatur 	38 38 39 40 40 43 43 48 51 55 56 59 60 60 60 61 62

	4.6.5.	4 Optimierung der Magnesiumsulfatkonzentration	63
4	4.6.6	Einfluss des RNA-Extraktes auf die RT-PCR	64
4	4.6.7	Mischung mehrerer Primer zum Ausgleich von Sequenzvariabilität	64
4	4.6.8	Vergleich der L-Gen-RT-PCR im 9600-Thermocycler und im LightCycler	65
4	4.6.9	Einfluss von RNA-Extraktion und Primersynthese auf die RT-PCR-Effizienz	66
4	4.6.10	Vergleich der L-Gen-RT-PCR mit der etablierten S-Gen-RT-PCR	66
4	4.6.11	Abschätzung der analytischen Sensitivität mittels verschiedener In-vitro-Transkripte	68
4	4.6.12	Exakte Bestimmung der analytischen Sensitivität mittels	
		PROBIT-Regressionsanalyse.	69
4	4.6.13	Nachweisgrenze der RT-PCR hinsichtlich infektiöser Partikel	70
4	4.6.14	Nachweis von Ippyvirus- und Mopeiavirus-RNA	70
4	4.6.15	Testung klinische Lassavirusproben	71
4	4.6.16	Testung klinischer LCMV-Proben	71
4	4.6.17	Ausführliches Protokoll zu den Reaktionsbedingungen der	
		Arenavirus-L-Gen-RT-PCR	73
4.7	' Etabl	ierung von RT-PCR-Assavs zum Nachweis von	
	Neuw	elt-Arenaviren der Gruppe-B	75
4	4.7.1	Identifizierung geeigneter Targetregionen	75
	4.7.1.	1 Machupovirus und andere Gruppe-B-Viren	75
	4.7.1.	2 Guanaritovirus	76
	4.7.1.	3 Juninvirus	78
4	4.7.2	Herstellung synthetischer Targetregionen	79
	4.7.2.	1 Zusammenbau der Targetregion mit langen Oligonukleotiden	79
4	4.7.3	Etablierung der Guanaritovirus-PCR	81
	4.7.3.	1 Optimierung der Guanaritovirus-PCR	82
	4.7.3.	2 Exakte Bestimmung der analytischen Sensitivität mittels	
		PROBIT-Regressionsanalyse	83
4	4.7.4	Etablierung der Juninvirus-PCR	84
	4.7.4.	1 Optimierung der Juninvirus-PCR	85
	4.7.4	2 Exakte Bestimmung der analytischen Sensitivität mittels	
		PROBIT-Regressionsanalyse	86
4	4.7.5	Testung der Guanaritovirus- und Juninvirus-PCR mit unterschiedlichen	
		klinischen Materialien	86
4	1.7.6	Etablierung der Neuwelt-Arenavirus Gruppe-B übergreifenden PCR	89
	4.7.6	1 Spezifität und Sensitivität der Gruppe-B-PCR	90
4	1.7.7	Reagenzien und Reaktionsbedingungen der etablierten	
		Neuwelt-Arenavirus Gruppe-B PCRs	92
5	DISK	USSION	95
6	ZUSA	AMMENFASSUNG	102
LI	TERA	TURVERZEICHNIS	104

ANHANG

115

Sequenzanalyse der L-RNA von Lassavirus und Aufbau moderner Nachweissysteme für hochpathogene Arenaviren

1 Arbeitshypothese und Fragestellung

Das Lassavirus gehört zur Familie der Arenaviren, die insgesamt 23 Virusspezies umfasst. Geographische, serologische und genetische Gesichtspunkte machen eine Aufteilung in zwei Gruppen möglich, die Gruppe der Altwelt-Arenaviren (Lassavirus, LCMV u.a.) und die Gruppe der Neuwelt-Arenaviren (Junin-, Machupovirus u.a.). Fünf Spezies, Lassa-, Machupo-, Guanarito-, Juninund Sabiávirus können beim Menschen ein virales hämorrhagisches Fieber (VHF) mit einer Sterblichkeitsrate von bis zu 20% hervorrufen. Auf Grund ihrer hohen Pathogenität sind diese Arenavirusspezies als Kategorie-A-Pathogen eingestuft. Die Handhabung ist nur unter der höchsten Biosicherheitsstufe 4 möglich. Die Polymerasekettenreaktion ist heute der unentbehrliche Standard in der Diagnostik von Arenavirusinfektionen. Arenaviren besitzen zwei RNA-Segmente (L und S). Alle existierenden PCR-Assays amplifizieren Teile der S-RNA. Die Auswertung neuer Sequenzen des S-RNA-Segmentes von Lassavirus zeigt jedoch eine bemerkenswert hohe Variabilität dieser Genabschnitte. Die L-RNA besitzt dagegen hoch konservierte Sequenzen im Bereich des L-Gens, welches für die virale Polymerase codiert (L-Protein). Allerdings sind nur sehr unzureichende Informationen über das L-Gen bzw. L-Protein bekannt. Eine biochemische, strukturelle und genetische Charakterisierung fehlt. Für Lassavirus ist bisher nur eine L-RNA-Sequenz bekannt. Aufgabe dieser Arbeit ist es, neue Lassavirus-L-RNA-Sequenzen von Viren aus unterschiedlichen geographischen Regionen Westafrikas (Sierra Leone, Liberia, Nigeria) zu generieren. Ein breites Spektrum von Genotypen soll damit abgedeckt werden. Die neuen Daten bilden die Voraussetzung für eine in dieser Arbeit durchgeführte Strukturvorhersage des Lassavirus-L-Proteins auf der Basis bekannter Strukturen von anderen viralen RNA-abhängigen RNA-Polymerasen (RdRP). Es soll ein Beitrag für zukünftige biochemische, strukturelle sowie genetische Charakterisierungen des Lassavirus-L-Proteins geleistet werden. Als potentielles Ziel antiviraler Therapien sind Strukturdaten des L-Proteins besonders interessant.

Die neuen Sequenzdaten dienen außerdem dazu, eine L-Gen basierte Phylogense von Lassavirus sowie eine durch die Strukturvorhersage vermittelte Phylogenese aller Familien segmentierter Negativ-Strang-RNA-Viren zu erstellen. Die Identifizierung hoch konservierter Sequenzen im Lassavirus-L-Gen für die Etablierung einer diagnostischen RT-PCR ist weiterer Bestandteil dieser Arbeit. Zusätzlich generierte Sequenzen verschiedener Altwelt-Arenaviren sollen die Etablierung einer Spezies übergreifenden Altwelt-Arenavirus-RT-PCR ermöglichen.

Die Analyse von S-RNA von Neuwelt-Arenaviren und die Identifizierung konservierter Bereiche zum Aufbau der weltweit ersten diagnostischen *real-time* RT-PCRs für Vertreter dieser Gruppe ist Bestandteil dieser Arbeit. Damit stünden moderne, sensitive und schnelle Teste für die Diagnostik von Arenavirusinfektionen unter besonderer Berücksichtigung der VHF-Erreger zur Verfügung.

2 Einleitung

2.1 Epidemiologie von Arenaviren

Arenaviren sind umhüllte segmentierte Negativ-Strang-RNA-Viren. Zu den segmentierten Negativ-Strang-RNA-Viren zählen neben den Arenaviren *Orthomyxoviridae* (Influenzavirus) und *Bunyaviridae* (Bunyamweravirus). Zur Familie der Arenaviren (*Arenaviridae*) gehören insgesamt 23 Virusspezies (Tabelle 2.1). Der Name der Arenaviren ist von dem lateinischen Wort *arena* (Sand) abgeleitet und weist auf die körnige, granuläre Struktur hin, welche die Viruspartikel im elektronenmikroskopischen Bild besitzen [1-3]. Arenaviren können genetisch, serologisch und geographisch in zwei große Gruppen unterteilt werden, die Arenaviren der "Alten Welt", die in Europa oder Afrika verbreitet sind, und die Viren der "Neuen Welt" in Nord- und Südamerika (Abbildung 2.1 und 2.8).

Spezies	Natürlicher Hauptwirt	Region
Altwelt-Arenaviren		
Ippy Virus	Arvicanthis sp.	Zentralafrikanische Republik
Lassa Virus*	Mastomys sp.	Westafrika
Lymphozyt. choriomening. V	Mus musculus	Europa, Amerika
Mobala Virus	Praomys sp.	Zentral Afrikanische Republik
Mopeia Virus	Mastomys natelensis	Mozambique, Zimbabwe
Neuwelt-Arenaviren		
Allpahuayo Virus	Oecomys bicolour	Peru
Amapari Virus	Oryzomys capito, Neacomys-	Brasilien
Bear Canyon Virus	Peromyscus sp. guianae.	Kalifornien USA
Cupixi Virus	Oryzomys capito	Brasilien
Flexal Virus	Oryzomys spp.	Brasilien
Guanarito Virus*	Zygodontomys brevicauda	Venezuela
Junin Virus*	Calomys muskulinus	Argentinien
Latino Virus	Calomys callosus	Bolivien
Machupo Virus*	Calomys callosus	Bolivien
Oliveros Virus	Bolomys obscurus	Argentinien
Pampa Virus	Bolomys sp.	Argentinien
Paraná Virus	Oryzomys buccinatus	Paraguay
Pichinde Virus	Oryzomys albigularis	Kolumbien
Pirital Virus	Sigmodon alstoni	Venezuela
Sabiá Virus*	Unbekannt	Brasilien
Tacaribe Virus	Artibeus spp. **	Trinidad
Tamiami Virus	Sigmodon hispidus	Florida, USA
Whitewater Arroyo Virus	Neotoma albigula	Südwesten der USA

Tab. 2.1. Virusspezies der Familie Arenavi	ridae
--	-------

*Erreger viraler hämorrhagischer Fieber (VHF)

**Früchte fressende Fledermausart

Die natürlichen Wirte der Arenaviren sind, mit einer Ausnahme, verschiedene Nagetierarten. Nur vereinzelt kommt es zur Übertragung auf den Menschen oder andere Säugetiere. Als Erreger viraler hämorrhagischer Fieber sind das Altwelt-Arenavirus Lassavirus so wie die Neuwelt-Arenaviren Guanarito-, Junin-, Machupo- und Sabiávirus von besonderem medizinischen und epidemiologischen Interesse. Hämorrhagische Fieber verursacht durch Arenaviren sind schwere, generalisierte, fiebrige Erkrankungen mit einer Sterblichkeitsrate von 16–30% bei unbehandelten hospitalisierten

Patienten. Im Vordergrund stehen Multiorganversagen, Gewebe- und Lungenödem sowie hypovolämischer Schock [4].

Abb. 2.1. Geographische Verteilung der 23 heute bekannten Arenaviren mit Altwelt-Arenaviren in Afrika und Europa, Neuwelt-Arenaviren in Nord- und Südamerika.

2.2 Lassavirus

Das Lassavirus ist der wichtigste Vertreter der Altwelt-Arenaviren. Es ist endemisch in Westafrika und verursacht beim Menschen das sogenannte Lassafieber. Lassafieber wurde erstmals im Zusammenhang mit dem mysteriösen Tod dreier Missionarinnen in Nordnigeria im Jahr 1969 beschrieben [5, 6]. Die klinischen und epidemiologischen Untersuchungen dieser Fälle sprachen für ein neues virales hämorrhagisches Fieber, welches vorher noch nicht in Afrika beschrieben worden war. Das Virus wurde isoliert, charakterisiert, und nach dem Namen der Stadt Lassa in Nigeria benannt, in der sich diese Fälle ereignet hatten [7]. Nach seiner Entdeckung wurde das Virus in weiteren westafrikanischen Ländern beschrieben. Als klassische Endemiegebiete gelten Nigeria, Liberia, Guinea und Sierra Leone [8-10]. Aufgrund eines importierten Falls von Lassafieber nach Deutschland gibt es Hinweise dafür, dass das Lassavirus auch in der Region Ghana, Burkina Faso und der Elfenbeinküste endemisch ist [11] (Abbildung 2.2). Immer wieder kam es zu vereinzelten importierten Fällen von Lassafieber in Großbritannien, den USA, Japan, Kanada [12] und Deutschland [11].

Im Jahr 1972 wurde die Ratte *Mastomys natalensis* als natürlicher Wirt identifiziert [13]. Nach Infektion des Fötus oder des Neugeborenen kommt es in den Nagetieren zu einer stillen, persistierenden Infektion [14]. Das Virus wird anschließend lebenslang mit dem Urin ausgeschieden. Die Übertragung des Virus vom Nagetier auf den Menschen geschieht durch Kontakt mit Urin an kontaminierten Gegenständen oder den Verzehr von kontaminierten Nahrungsmitteln, vermutlich aber auch durch Inhalation von virushaltigem Staub. Ein hohes Infektionsrisiko besteht bei direktem Kontakt mit den Nagetieren, z.B. beim Fangen und beim Zubereiten zum Verzehr. Mensch-zu-Mensch-Übertragungen sind ebenfalls möglich [15, 16]. Die ersten beschriebenen Fälle von Lassafieber waren nosokomiale Infektionen in Krankenhäusern [9, 17, 18]. Die Übertragung auf das Krankenhauspersonal oder andere Patienten geschieht durch Kontakt mit infektiösen Sekreten, Blut oder Gewebe von infizierten Patienten. Für eine Mensch-zu-Mensch-Übertragung durch Aerosole gibt es keine Anhaltspunkte. Als signifikanter Risikofaktor gilt vielmehr der Umgang mit Patienten im Haushalt und der Kontakt mit infektiösen Sekreten [19].

Abb. 2.2. Endemiegebiet von Lassavirus in Westafrika.

In den in Krankenhäusern der Endemiegebiete ist eine effektive Prävention gegen Mensch-zu-Mensch-Übertragungen durch Isolation der infizierten Patienten und *Barriernursing* (strickte Anwendung von persönlichen Schutzmaßnahmen mit Kittel, Handschuhen, Maske und Hygiene) zu erreichen. [20-22].

2.2.1 Klinik der Lassavirusinfektion

Die Lassavirusinfektion des Menschen ist durch ein weites Spektrum an klinischen Manifestationen charakterisiert. Es reicht von einer asymptomatischen Infektion bis zur lebensbedrohlichen Krankheit [23, 24] (Abbildung 2.3). Die Erkrankung beginnt nach einer Inkubationszeit von 7–18 Tagen mit Fieber und Unwohlsein, 1–2 Tage später gefolgt von allgemeinen Symptomen wie Muskelschmerzen, Kopfschmerzen, Halsschmerzen, Erbrechen und Durchfall. Mehr als 50% der Patienten entwickeln Gelenk- und Rückenschmerzen, 60% einen nicht-produktiven Husten. Es gibt kein charakteristisches Exanthem, keine Petechien oder Ekchymosen. Ein Teil der Lassafieberpatienten zeigt eine schnelle und dramatische klinische Verschlechterung zwischen dem 7. und 12. Tag der Krankheit und entwickelt Gesichts- und Nackenödeme, akutes Atemnotsyndrom, Organversagen, Enzephalopathie und Hämorrhagie [24]. Hämorrhagien sind mit einer hohen Mortalität verbunden. Neurologische Symptome reichen von Verwirrtheit bis zu schwerer Enzephalopathie mit generalisierten Krämpfen. Sie sind selten und sprechen für eine schlechte Prognose [20, 24, 25]. Die Todesrate bei Lassavirusinfektion liegt bei symptomatischen Patienten, die ein Krankenhaus aufsuchen, bei 15–20%. Werden die asymptomatischen Infektionen mit einbezogen, liegt die Todesrate bei weniger 2% [26]. Auch bei schwer kranken Patienten liegt meistens nur eine mäßige Thrombozytopenie vor. Die Thrombozytenfunktion ist allerdings gestört. Im Verlauf der Erkrankung kommt es zu einer starken Erhöhung der Aspartat-Transaminase (AST) auf Werte bis zu 2000 U/l, ein AST-Wert von >150 U/l bei Einweisung ins Krankenhaus ist mit einer ungünstigen Prognose mit hoher Letalität assoziiert. Die Alanin-Transaminase (ALT) ist oft nur gering erhöht.

Symptome bei Lassa Fieber

2.2.2 Spezifische Therapie des Lassafiebers

Das Breitbandvirostatikum Ribavirin ist das einzige Medikament zur Therapie des Lassafiebers. Das Nukleosidanalogon Ribavirin reduziert die Replikation von Lassavirus in Zellkultur bei einer Konzentration von 10 µg/ml und wirkt bei Lassavirus infizierten Affen [27-30]. In einer klinischen Studie konnte die Wirksamkeit von Ribavirin beim Menschen gezeigt werden [31]. Bei Patienten mit ungünstiger Prognose (AST Werte über 150 U/l), bei denen die Therapie mit Ribavirin in den ersten sechs Tagen nach Beginn des Fiebers begonnen wurde, sank die Sterblichkeitsrate von 55% auf 5%. Auch Patienten mit hoher Virämie profitierten deutlich von einer Therapie mit Ribavirin. Gute Ergebnisse wurden auch dann noch erzielt, wenn die Therapie erst am siebten Tag oder später begonnen wurde. Ein früher Therapiebeginn ist aber unter allen Umständen von großem Vorteil.

2.2.3 Lassafieberimpfstoff

Ein Impfstoff gegen Lassafieber für den Menschen steht nicht zur Verfügung [32]. Verschiedene experimentelle Impfstoffe wurden entwickelt und an Meerschweinchen, Affen und Mäusen getestet. Impfstoffe mit inaktiviertem Lassavirus führten zu keinem guten Ergebnis [33]. Ein Vollständiger Impfschutz bei Affen konnte mit dem apathogenen Arenavirus Mopeiavirus als Lebendimpfstoff erreicht werden [34-36]. Die Virusinfektion sowie eine Virämie mit niedrigen Titern konnte allerdings nicht verhindert werden [35, 37]. In der nahen Zukunft kann nicht mit einem Impfstoff gegen Lassavirus gerechnet werden.

2.3 Lymphozytäres Choriomeningitisvirus (LCMV)

Das lymphozytäre Choriomeningitisvirus (LCMV) ist der Prototyp der Arenaviren [38]. LCMV stellt eines der gebräuchlichsten Modellsysteme zum Studium der viralen Persistenz und Pathogenese dar [39-41]. Es kommt in Europa und Nordamerika in verschiedenen Hausmausarten vor und verursacht beim Menschen grippeähnliche Symptome. In seltenen Fällen kommt es zu einer akuten, aseptische Meningitis. Darüber hinaus ist LCMV teratogen. Infektionen in der Schwangerschaft führen beim Fetus zu einem häufig fatalen Syndrom mit Hydrozephalus und Chorioretinitis. LCMV scheint als Pathogen in der Schwangerschaft heute unterschätzt zu sein [42, 43]. Ein Impfstoff exsistiert für LCMV ebenfalls nicht.

2.4 Neuwelt-Arenaviren

Unter den zahlreichen Neuwelt-Arenaviren können vier Spezies ein virales hämorrhagisches Fieber auslösen: Juninvirus als Erreger des argentinischen hämorrhagischen Fiebers, Machupovirus als Erreger des bolivianischen hämorrhagischen Fiebers, Guanaritovirus als Erreger des venezuelanischen hämorrhagischen Fiebers und Sabiávirus als Erreger des brasilianischen hämorrhagischen Fiebers. Auch bei Infektionen mit diesen Viren ist Ribavirin das einzig verfügbare Therapeutikum. Einzig für Juninvirus existiert ein attenuierter Lebendimpfstoff, der für Risikogruppen zur Verfügung steht [44].

2.5 Struktur und Molekularbiologie der Arenaviren

Die Viruspartikel der Arenaviren sind pleomorph. Sie haben überwiegend eine sphärische Form mit variablem Durchmesser von 90–110 nm. Die Nukleocapside im Innern sind von einer Hüllmembran umgeben. In die Hüllmembran sind zwei Glycoproteine GP-1 und GP-2 eingelagert, die elektronenoptisch aus der Partikeloberfläche hervorragen. Die virale RNA ist mit dem Nukleocapsid assoziiert. Weitere Komponenten des Virions sind Z-Protein und L-Protein. Das Genom der Arenaviren besteht aus zwei einzelsträngigen RNA-Segmenten, dem kleinen S-Segment (small) und dem großen L-Segment (large) der Größe 3,4 kb bzw. 7 kb. Jedes RNA-Segment enthält zwei Gene in entgegengesetzter Orientierung, die sogenannte Ambisense-Genorganisation (Abbildung 2.4 A). Getrennt sind die Gene durch eine intergenische Region (intergenic region, IGR), die in der RNA eine stabile Haarnadelstruktur ausbildet [45, 46]. An den 3'- und 5'-Enden der Segmente, die auch 3'- und 5'-untranslatierte Region (UTR) genannt werden, sind 19 konservierte Nukleotide, die gegenseitig komplementär sind (17 der 19 Nukleotide sind komplementär). Deshalb können diese Enden hybridisieren, was dem Genom eine quasizirkuläre, pfannenstielähnliche Konfiguration verleiht. Diese konservierten Sequenzen enthalten die Promotoren für Transkription und Replikation.

Abb. 2.4. Schematische Darstellung der Genomorganisation der Arenaviren (A) sowie *Ambisense*-Expressionsstrategie am Beispiel der S-RNA (B). *Erläuterungen siehe Text*.

Die nackte genomische und antigenomische RNA ist nicht infektiös. Die S-RNA codiert für das Nukleoprotein NP (ca. 63 kDa) und für die beiden Glycoproteine GP-1 (40–46 kDa) und GP-2 (35 kDa), welche durch posttranslationale Prozessierung aus dem Vorläufer Polypeptid GP-C (glycoprotein precursor, 75 kDa) hervorgehen. GP-C wird in der 5'-Hälfte des S-Genoms codiert, jedoch in positiver Orientierung. Für die Synthese dieses Polypeptids wird das S-genomische RNA-Segment ins Antigenom umgeschrieben. Das Antigenom dient als Matrize für die Transkription der GP-C-spezifischen mRNA (Abbildung 2.4 B). NP ist in negativer Orientierung in der 3'-Hälfte der S-RNA codiert und wird von der NP-spezifischen mRNA translatiert. NP ist das häufigste Virusprotein in einer infizierten Zelle. Das L-RNA-Segment codiert am 5'-Ende für das kleine Z-Protein (ca. 11 kDa). Das Z-Protein besitzt ein zinkbindendes RING-Fingermotiv [47]. Es interagiert mit zellulären Proteinen wie PML (Promyelozytisches Leukämie Protein), ribosomalen Proteinen und Elongationsfaktoren. Es übt die Funktion eines Matrixproteins aus, da es für die Freisetzung der Viruspartikel verantwortlich ist [48-51]. Am 3'-Ende codiert die L-RNA für das L-Protein mit einer molekularen Masse von 180-250 kDa [52, 53].

2.5.1 L-Protein

Das L-Protein hat vermutlich die Funktion einer RNA-abhängigen RNA-Polymerase (RdRP) und ist mit dem Nukleocapsid assoziiert [52, 54, 55]. NP bildet zusammen mit der RNA und dem L-Protein das virale Ribonukleoprotein (RNP). Das Ribonukleoprotein ist die aktive Einheit der Transkription und Replikation und ist nach Transfektion in eine Zelle infektiös [54]. Neuere Arbeiten zur Funktion des L-Proteins zeigen die essentielle Rolle des Proteins für die Genomtranskription und Replikation mit Hilfe eines Replicon-Systems [56, 57]. Biochemische Charakterisierungen des L-Proteins erfolgten bisher nicht. Mögliche andere enzymatische Aktivitäten des L-Proteins sind ebenfalls unbekannt. Insgesamt sind sehr wenig Sequenzdaten für das Lassavirus-L-Gen bekannt; nur die Sequenz des Josiah-Stamms war zu Beginn dieser Arbeit bekannt [52, 58]. Weitere bekannte Arenavirus-L-RNA-Sequenzen sind: LCMV-WE und LCMV-Armstrong [47, 53, 55, 59], Tacaribevirus [60, 61] und Pichindevirus [62]. Ziel dieser Arbeit war es, weitere Sequenzdaten über die Lassavirus-L-RNA und L-RNAs anderer Arenaviren zu generieren und diese Daten als Basis für Strukturvorhersagen und phylogenetische Analysen zu nutzen.

2.6 RNA-abhängige RNA-Polymerase (RdRP)

Alle Positiv-Strang-RNA-Viren und wahrscheinlich auch alle Negativ-Strang-RNA-Viren codieren für eine RNA-abhängige RNA-Polymerase (RdRP), welche die Transkription und Replikation der RNA-Viren katalysiert. Das L-Protein wie auch andere virale RNA-abhängige RNA-Polymerasen besitzen hoch konservierte Sequenzmotive in den katalytischen Domänen, genannt Prämotiv A (entspricht Motiv F in anderen Untersuchungen [63]) sowie Motiv A, B, C, D und E [64, 65]. Die Motive A und C stellen das katalytische Zentrum der Polymerase dar. In Ihnen liegen hoch konservierte Aspartat-Reste, welche die katalytisch wichtigen Mg²⁺-Ionen koordinieren (Abbildung 2.5). Aminosäurereste in anderen konservierten Motiven sind für die Interaktion der Polymerase mit der Matrize und für die Nukleotidbindung an das Enzyms von funktioneller Bedeutung [66]. Über die Struktur viraler RdRPs ist wenig bekannt. Lediglich von drei Positiv-Strang-RNA-Viren ist die Kristallstruktur der RdRP bekannt. Es handelt sich dabei um Hepatitic C Virus (HCV) aus der Familie der *Flaviviridae* [63, 67, 68], Poliovirus (*Picornaviridae*) [69] und *Rabbit Hemorrhagic Disease Virus* (RHDV) (*Caliciviridae*) [70]. Alle Proteine haben die übliche Polymerasestruktur, vergleichbar mit einer rechten Hand. Mit den drei Domänen, bekannt als Finger, Handfläche

Abb. 2.5. 3-Dimensionale Strukturen bekannter viraler RNA-abhängige RNA-Polymerasen. A) Calicivirus,
B) Poliovirus und C) Hepatitis-C-Virus. Die konservierten aktiven Aspartat-Reste (Asp-250 und Asp-254 in Calicivirus) sind hervorgehoben, die Mg²⁺-Ionen erscheinen als rosa Punkte.

und Daumen [71] (Abbildung 2.5).Die gesamte Struktur dieser drei RNA-Polymerasen ist sehr ähnlich und erlaubt eine genaue Superposition (Übereinanderlegen) weiter Teile des Polypeptidstrangs. Die Struktur von RNA-abhängigen RNA-Polymerasen ist anscheinend in hohem Maße konserviert, trotz der ausgeprägten Variabilität in der Aminosäuresequenz. Computergestützte Vorhersagen von Polymerasen vieler verschiedener Positiv-Strang-RNA-Viren unterstützen diese Erkenntnis. Vermutlich besitzt auch die RdPR-Domäne des L-Proteins eine ähnliche Faltung. Aufgabe dieser Arbeit war es, auf der Basis der neuen L-Protein Sequenzdaten eine Strukturvorhersage der RdPR-Domäne des Arenavirus L-Proteins zu machen.

2.7 Phylogenese

Eine phylogenetische Analyse hat die Vorhersage der evolutionären Verwandtschaft zum Ziel. Als Ergebnis der Analyse erhält man in der Regel ein sich verzweigendes Diagramm (phylogenetischer Baum), welches die Vorhersage der Verwandtschaft von z.B. Viren darstellt. Die meisten heute angewandten Methoden gehen davon aus, dass evolutionäre Ereignisse einem bifukationalen Modell folgen und demzufolge aus einem Vorfahren immer genau zwei evolutionäre Nachfahren entstehen. Der mögliche Transfer genetischer Information zwischen Molekülen oder Organismen einer evolutionären Stufe und die Möglichkeit der Aufteilung in mehr als zwei Nachfahren bleiben dabei unbeachtet. Nukleinsäure- und Aminosäuresequenzen sind besonders starken Veränderungen unterworfen und sind daher die am häufigsten gebrauchten Daten für phylogenetische Analysen.

2.7.1 Phylogenese der Arenaviren

Phylogenetische Analysen aller Arenaviren, basierend auf einem Alignment der S-RNA-Sequenzen, zeigen deutlich die evolutionäre Trennung in Altwelt- und Neuwelt-Arenaviren. Darüber hinaus lassen sich die Vertreter der Neuwelt-Arenaviren in drei genetische Gruppen gliedern, Gruppe A, B und C [72] (Abbildung 2.6). Die Gruppe B schließt alle vier hoch pathogenen Neuwelt-Stämme ein, die beim Menschen ein hämorrhagisches Fieber auslösen können.

Abb. 2.6. Phylogenetische Rekonstruktion des partiellen NP-Gens aller Arenaviren in einem *unrootet tree*. Deutlich zu erkennen ist die Trennung in die zwei Gruppen Neu- und Altwelt-Arenaviren und die Aufteilung in drei Untergruppen A, B und C für die Neuwelt-Viren.

Die phylogenetische Rekonstruktion der Verwandtschaft unter den Arenaviren entspricht früheren Ergebnissen aus serologischen Studien [73-75]. Ein mit Hilfe der Sequenzen des NP-Gen erstellter phylogenetischer Baum der Arenaviren zeigt eine engere Verwandtschaft unter den Altwelt-Arenaviren als unter den Neuwelt-Arenaviren [76].

2.7.2 Phylogenese der Lassaviren

Für die Lassavirus-S-RNA steht umfangreiche Sequenzinformation zur Verfügung, unter anderem die kompletten Lassavirus-S-RNA-Sequenzen von allen phylogenetisch wichtigen Gruppen: Stämme aus Sierra Leone [77], aus der Region Elfenbeinküste, Ghana und Burkina Faso [11] und aus Nigeria [78-80]. Phylogenetische Analysen mit partiellen sowie vollständigen S-RNA-Sequenzen zeigen ein geographisches Verteilungsmuster der Stämme. Dies lässt vermuten, dass die Evolution von Lassavirus in Westafrika von Osten nach Westen erfolgte [78] (Abbildung 2.7).

Abb. 2.7. Der phylogenetische Baum zeigt die Verwandtschaft unter den Altwelt-Arenaviren. Tacaribevirus wurde als Neuwelt-Arenavirus zum *rooten* des Baums verwendet. Der phylogenetischen Rekonstruktion liegen Alignments des partiellen NP-Gens zugrunde. Für Lassavirus wurde eine Einteilung in fünf genetische Gruppen vorgenommen. Die geographische Richtung der Evolution von Ost nach West ist zu erkennen.

Für die L-RNA von Lassavirus sind bisher keine ausreichenden Sequenzdaten veröffentlicht, um eine Phylogenese in diesem Bereich zu erstellen. Teil dieser Arbeit war es, mit den neu generierten L-RNA-Sequenzdaten eine Phylogenese zu rekonstruieren. Dabei soll auch die Frage beantwortet werden, ob es in der Evolution von Lassavirus zu Rekombination zwischen den L- und S-Segmenten gekommen ist.

2.7.3 Phylogenetische Einordnung der Arenaviren innerhalb der Negativ-Strang-RNA-Viren

Virusfamilienübergreifende phylogenetische Rekonstruktionen sind nur möglich, wenn ein entsprechender, über die Familie hinaus konservierter Bereich im Genom der zu untersuchenden Spezies existiert. Aus diesem Grund wurden in der Vergangenheit häufig Polymerase-Sequenzen für die Berechnung phylogenetischen Beziehungen verschiedener Virusfamilien verwendet [52, 81-84]. Eine statistische Reevaluierung einiger dieser Phylogenesen zeigt allerdings, dass die verwendeten Datensätze keine ausreichenden Informationen enthalten, um die phylogenetischen Beziehungen zwischen vielen Virusfamilien zu rekonstruieren [85]. In der Vergangenheit rekonstruierte Phylogenesen für Negativ-Strang-RNA-Viren (*Bunya-*, *Orthomyxo-*, und *Arenaviridae*) unterschieden sich beträchtlich und die Beziehungen zwischen einer Reihe von Taxa konnte nicht aufgelöst werden [52, 84].

Die evolutionäre Stellung der Arenaviren innerhalb der Negativ-Strang-RNA-Viren ist folglich nicht klar. Ziel dieser Arbeit war es, unter Verwendung zusätzlicher Information aus den Strukturvorhersagen die Stellung der Arenaviren innerhalb der Negativ-Strang-RNA-Viren darzustellen und eine stabile Phylogenese aller Negativ-Strang-RNA-Viren zu finden.

2.8 Diagnostik von Arenavirus-Infektionen

Die relativ unspezifische Klinik einer Arenavirus-Infektion macht eine klinische Diagnose praktisch unmöglich. Von entscheidender Bedeutung ist daher die Labordiagnostik. Die Labordiagnostik des Lassafiebers stützt sich im wesentlichen auf drei Methoden: RT-PCR, Virusisolation und Nachweis von spezifischen IgG- und IgM-Antikörpern im Serum. Die RT-PCR ist heute die Methode der Wahl. Mit ihr lässt sich Virus-RNA in Blut, Serum, Plasma, Liquor und Gewebe nachweisen [86]. Alle zur Zeit verfügbaren PCRs liegen im NP- oder GP-Gen der S-RNA [87]. Neuere Sequenzanalysen der Lassavirus-S-RNA haben allerdings hohe virale Variabilität in den Primerbindungssequenzen gezeigt, wodurch die Sensitivität der Assays beeinträchtigt wird. Liegen mehr als fünf Mutationen vor, ist die PCR-Effizienz deutlich reduziert. Unbeeinträchtigt davon ist lediglich ein PCR-Protokoll, welches die gesamte 3,4 kb lange S-RNA amplifiziert. Dabei werden die bei allen Arenavirusspezies hoch konservierten Enden der S-RNA als Primerbindungssequenzen verwendet [80]. Diese Methode ist sehr aufwändig und für die Routinediagnostik ungeeignet. Die Inokulation von Zellkulturen mit Serum, Liquor, Rachenspülwasser und anderen Patientenmaterialien wie Gewebelysate ist die klassische Methode zur Isolation und Detektion von Lassaviren. Ein erstes unspezifisches Zeichen für ein Viruswachstum ist der zu beobachtende zytopathische Effekt. Der spezifische Nachweis des Isolates gelingt durch Detektion des Virus-Antigens in den Zellen mittels Immunfluoreszenz und Verwendung spezifischer Antikörper oder durch Nachweis der Viruspartikel im Elektronenmikroskop. Ein Vorteil dieser Methode ist die relative Unempfindlichkeit gegenüber Substanzen in den Patientenmaterialien, die eine PCR inhibieren würden. Die Möglichkeit der detaillierten Charakterisierung des Erregers ist ein weiterer Vorteil. Nachteilig wirkt sich der hohe Zeitaufwand von Tagen bis Wochen sowie die Notwendigkeit eines BSL-4-Labors aus. Der elektronenmikroskopische Nachweis von Lassaviren ist aufgrund der spezifischen Morphologie theoretisch möglich, doch müssen hohe Virustiter vorliegen. In der Praxis findet diese Methode kaum Anwendung. Der serologische Nachweis Lassavirus spezifischer Antikörper mittels Immunfluoreszenz [88] oder ELISA (enzyme-linked immunosorbend assay) [89] ist keine verlässliche diagnostische Methode. IgG- oder IgM-Antikörper sind lediglich in der Hälfte der Lassafieberpatienten bei Aufnahme in ein Krankenhaus nachzuweisen [90]. Ziel dieser Arbeit was es, eine neue RT-PCR im Bereich der L-RNA zu entwickeln. Mit dem neuen Assay sollte sowohl der

Nachweis von Lassavirus, als auch von LCMV und aller anderen bekannten Altwelt-Arenaviren möglich sein. Die Identifizierung neuer, unbekannter Arenaviren der Altweltgruppe wäre ein weiterer Einsatzbereich dieser RT-PCR.

Für die Diagnostik der humanpathogenen Neuwelt-Arenaviren bestehen noch eingeschränktere Möglichkeiten. Zur Zeit existieren für keinen Erreger der südamerikanischen viralen hämorrhagischen Fieber (Junin-, Guanarito-, Machupo-, Sabiávirus) diagnostische RT-PCRs. Teil dieser Arbeit sollte es sein, diagnostische RT-PCRs bzw. *real-time* RT-PCRs für diese Viren zu etablieren, die in der Routinediagnostik anwendbar sein sollten.

3 Materialien und Methoden

3.1 Materialien

3.1.1 Geräte

Sequencer ABI PRISM TM 377 Genetic Analyzer	PE Applied Biosystems
LI-COR Sequenzer	LI-COR
Brutschrank	Heraeus
Elektrophoresekammer	Biorad
Gelphotodokumentationsanlage	Sony
Photometer	Eppendorf
Schüttler Rocky	LTF-Labortechnik
Bead-Mill; Fast Prep; FP 120	SAVANT Instr. Farmingdale
Spektralphotometer UV-160A	Shimadzu
Thermocycler Modell 9600	Perkin-Elmer
Thermocycler Modell Primus	MWG-Biotech
LightCycler	Roche
Tischzentrifuge Modell 5415C	Eppendorf
Thermomixer Modell 5436	Eppendorf

3.1.2 Computersoftware

Bildbearbeitung:	Photoshop 5.0 Adobe	
Sequenzanalyse:	uenzanalyse: Sequence Navigator	
	MacVector 4.5	Oxford Molecular Group
Tabellenkalkulation:	Excel 2000	Microsoft
Textverarbeitung:	Word 2000	Microsoft
Internet:	InternetExplorer	Microsoft

Weitere Programme zur Sequenz- und Strukturanalyse:

Psi-BLAST, COILS 2.1, SAUSAGE, ClustalW, PHYLIP 3.75, DNADIST, NEIGHBOR, DNAML, GENECONV 1.81, RDP 1.09, TREE-PUZZLE 5.1, MEGA 2.1 (Public domain).

3.1.3 Chemikalien

Agarose, ultra pure, electrophoresis grade	Gibco BRL
DE81-Membran	Whatman
Diethanolamin	Sigma
Dimethylsulfoxid (DMSO)	Sigma
Dithiothreitol (DTT)	Serva

Enhancer solution for G/C-rich templates	Invitrogen
Essigsäure	Roth
Ethanol	Roth
Ethidiumbromid	Roth
Formaldehyd	Roth
Formamid	Roth
Isopropanol	Roth
Magnesiumchlorid	Roth
Natriumacetat	Roth
Natriumchlorid	Roth
SYBRGreen	Roche
Tris	Roth
GeneRuler	MBI Fermentas

3.1.4 Oligonukleotide

с <u>г</u> с						
Bezeichnung	Primersequenz					
1. allgemeine Lassavirus L-Gen Primer						
LVL rc7279A-minus Asc,Bam 8048	tat <u>ggcgcgcC</u> GCACCGA <u>GGATCC</u> TAGGCATT					
LVL .449-plus	CTAATACTGCTGGAGTGTTTTGTTAG					
LVL .483-minus	GGAGATGATCTAACAAAACACTCCAG					
LVL .680-plus	AATTCACTTTTTGAAGAGTCAGAGTA					
LVL .715-minus	GAGTCTGCTATACTCTGACTCTTCAA					
LVL 1159-plus	TTTGAGGATATTGAACACAAGGAGGA					
LVL 1664-plus	CTCGCTTTGGTGAACTCTATGAAAAC					
LVL 1937-plus	ACAATAAGCACTATGATTTCTTGGAT					
LVL 2309-plus	TTGACAGATCAGATAAAATGTTTTGA					
LVL 2624-plus	AGCAAGAAAAGTGTTGTTGTTAATAA					
LVL 3390-minus	GCCTCTGAATTGCTCTCCCTTTCACT					
LVL 3728-plus	CATAGTAAGTGGGGGCCCAATGATGTG					
LVL 3762-minus	AAAAATGGACACATCATTGGGCCCCA					
LVL 4170-minus	TCAAAGAGAGAAATCTGATCATCACT					
LVL 4407-minus	GCCAGTTGGTGTGGCTCTTTACACTT					
LVL 4957-plus	GTCTGAAGCTATCAACAAATCTGCATTCCA					
LVL 4984-plus	CCAAAGTTCCATTGCATCTGGCTTTGTAGG					
LVL 5023-minus	TCTGCACAATCCTACAAAGCCAGATG					
LVL 5520-minus	AACGCTACACAGAGATCTAGAAATTT					

LVL	5845-plus	CAAAGGTGTTGAAAGGCCAATGTTTA
LVL	5883-minus	ATCAGATCATGCTTAAACATTGGCCT
LVL	6679-plus	CAAGGGTTATGCTCTCTGTTATAGTAAGTC
LVL	6775-minus	CTCCTCACATGTTCTGCCCTTCAATCTCAA
LVL	6828-minus	CCATCACCAAAAAACTACTCAATGTC
LVL	7003-plus	AGAGGCATCTTGCAAATGGGACACCT
LVL	7051-plus	GTGAGGCAGTTGAGACACAGATAGTG
LVL	7060-plus	TTGAGACACAGATAGTGGTTGTTGCA
LVL	7129-plus	TGTGGCCCTAGATGTGTGGCATCTGG

2. Lassavirus AV spezifische Primer

LVLav	.134-minus	TGAGGAGTGCTACTGAGTCAGTGA
LVLav	.214-minus	ATTGTCCACCAGGTATTTTGATAC
LVLav	.388-plus	TATCTTAACCCCATCTCTGTGTTTTGTGGT
LVLav	.631-minus	GTCATTGACCCAATCAGGCAGTTG
LVLav	1845-plus	CAATAATGACAAGGTTGGTGAGGT
LVLav	1900-minus	GAAGTACCTTTTAGGATCAGCATA
LVLav	2298-plus	GAGACACCAGATAGACTGACAGATCA
LVLav	2407-minus	TTCCTCCTCTGTGGCTATGTCTGC
LVLav	2704-minus	TAATGCTGTGAGTTTGTTGAAGTCATAGTT
LVLav	3019-plus	CCACATTAGACTGATTAAAGGTGAATTATC
LVLav	3121-minus	AACATTGTCACAGAATTCTTTGTA
LVLav	3478-minus	GTAGGATTGTGGTGACTCTTGGCTATAAAA
LVLav	3883-minus	AGGTATCTCAACCATTTTGTGCATATGCCA
LVLav	4288-plus	TAGATTTGTCGCAGAGTTTAAATCTAGATT
LVLav	4672-plus	ACTGGGCAACTCCATGAGGAGTTCAC
LVLav	4795-minus	TGAGAACTCTAAGTCAGATTCTGA
LVLav	5065-minus	ATTTTCTTTATTTGGCCCCCGGACACATTT
LVLav	5383-plus	CAATCACATCATTCATTCTTTAAGAAGGCT
LVLav	5739-plus	GGACTTTGGGGTCATTCACATGGT
LVLav	6001-plus	CATTGAGTCACTACCTCCAGGATC
LVLav	6090-minus	AAACTTTCCCTAAAGCTAGCATCTTG
LVLav	6516-minus	AGGAGATGTGTCACCAACCTCTCT
LVLav	6734-plus	AGTGGTGGGAAATTAAGATTGAAAGGCAGAACATG
LVLav	6764-minus	TCTGCCTTTCAATCTTAATTTCCCACCACT
LVLav	6954-minus	CAAGGAAAACACCACCAACCCCTCGCCATACAC
LVLav	7109-plus	ACCAGCAGCTCTTGCAGAACTGTG
LVLav	7133-minus	CCACAGTTCTGTAAGAGCTGCTGGTTCGAAAACAA
LVLav	7166-plus	CCCTTGGGCTGTTCTCCACCTCTG
3. Las	ssavirus CSF spezifische Prime	r

LVLcsf .600-plus	ACAATGAGCAAATCCCTGATTGGGTTAATG
LVLcsf 1224-minus	TTGCAAGGAGTATCATTGTGTCA
LVLcsf 3883-minus	TGGTATCTCCACCATCTTGTGCATGTGCCA
LVLcsf 4287-plus	GGAGATTTGTTGCAGAATTTAAGTCAAGGT
LVLcsf 6766-plus	TGTGAAGAGTTGATCTGGGGAACAAGACTAGTG
LVLcsf 6772-IRD+	IRD800-GAGTTGATCTGGGGAACAAGACTAGTG
LVLcsf 6832-minus	GCAAGCACAACAAAGCAATCAATCGATATC
LVLcsf 6948-IRD-	IRD800-CAACACCACAAGTCCCTCACCATATAG
LVLcsf 6954-minus	AGAGGCCAACACCACAAGTCCCTCACCATATAG
LVLcsf 7014-plus	GCAAATGGGACACCTGCTGCTGAC
4. Lassavirus NL spezifische Primer	
LVLnl .628-plus	TGATAAGCTGAGGGATACGCTCTTCTCACT
LVLnl 1048-minus	TATTGGTGATGCTCTTTTAAACTG
LVLnl 1405-minus	TTGATTCTTACTCAAGCACTGGGA
LVLnl 2404-minus	TTCCTCCGTGGCTGTATCTGCAGGATTAGT
LVLnl 5932-plus	TCAAAATCAATTGATCGCATCAGGTTTAGT
LVLnl 6050-minus	ACCTCACTGTCTGACTCAGTTTTGCAGACC
LVLnl 6361-plus	TGACTTTGTGTTGGTGGGTCCTTGCACTGA
LVLnl 6734-plus	AGTGGTGGTAAATTAAGACTGAAGGGCAGAACATG
LVLnl 6766-plus	TGTGAGGAGTTGACTGGAAAGGATGAACACATCLVL
nl 6954-minus	AGCAGCGCACAGCGCCAGACCTCCACCCTACAG
5. Primer für die Sequenzierung von	Ippyvirus
LVL 3359-plus	AGAATYAGTGAAAGGGARAGCAATTC
LVL 4470-minus	CCCCACACATAAAATCTAGATTTAAAYTC
LVL 2406-plus	ACAGATCAGATAAAGTGTTTTGARAAGTT
LVL 3754-minus	CACATCATTGGTCCCCATTTACTRTGATC
LVL 2718-plus	GATCTAGCCAGCAACAAAAGTGTKGT
6. Primer für die Sequenzierung von	Mobalavirus
LVLav 3019-plus	CCACATTAGACTGATTAAAGGTGAATTATC
LVLav 3883-minus	AGGTATCTCAACCATTTTGTGCATATGCCA
LVI. 3051-plus	
	accacamccamcarcavmmmca
T T T 2011 minud	ACCACATGGTTGARGAYTTTGA
LVL 3914-minus	ACCACATGGTTGARGAYTTTGA GACTTCATCATKGCTGTCACMACATT
LVL 3914-minus LVL 3754-minus	ACCACATGGTTGARGAYTTTGA GACTTCATCATKGCTGTCACMACATT CACATCATTGGTCCCCCATTTACTRTGATC
LVL 3914-minus LVL 3754-minus LVL 3359-plus	ACCACATGGTTGARGAYTTTGA GACTTCATCATKGCTGTCACMACATT CACATCATTGGTCCCCCATTTACTRTGATC AGAATYAGTGAAAGGGARAGCAATTC
LVL 3914-minus LVL 3754-minus LVL 3359-plus 7. Primer für die Sequenzierung von	ACCACATGGTTGARGAYTTTGA GACTTCATCATKGCTGTCACMACATT CACATCATTGGTCCCCCATTTACTRTGATC AGAATYAGTGAAAGGGARAGCAATTC Mopeiavirus
LVL 3914-minus LVL 3754-minus LVL 3359-plus 7. Primer für die Sequenzierung von LVL 2406-plus	ACCACATGGTTGARGAYTTTGA GACTTCATCATKGCTGTCACMACATT CACATCATTGGTCCCCCATTTACTRTGATC AGAATYAGTGAAAGGGARAGCAATTC Mopeiavirus ACAGATCAGATAAAGTGTTTTGARAAGTT
LVL 3914-minus LVL 3754-minus LVL 3359-plus 7. Primer für die Sequenzierung von LVL 2406-plus LVL 3754-minus	ACCACATGGTTGARGAYTTTGA GACTTCATCATKGCTGTCACMACATT CACATCATTGGTCCCCCATTTACTRTGATC AGAATYAGTGAAAGGGARAGCAATTC Mopeiavirus ACAGATCAGATAAAGTGTTTTGARAAGTT CACATCATTGGTCCCCATTTACTRTGATC

LVL 3359-plus	AGAATYAGTGAAAGGGARAGCAATTC
MopL 3990-minus	GGCCGTAAAAATCAGATGTATTATG
MopL 4030-minus	CTAATACAATAATTGATGAACCTCTC
MopL 4090-minus	CAAAGAGACTTATTTGGTCATCACT
MopL 4210-minus	AGTTCCCCACCACACTTTTAGGGCT

Oligonukleotide zur Etablierung der diagnostischen Arenavirus-L-Gen-RT-PCR

Bezeichnung	Primersequenz
LVL 3350-plus	GATGATGTAAGAATTAGTGAAAGGGAGAGCAATTC
LVL 3359A-plus	AGAATTAGTGAAAGGGAGAGCAATTC
LVL 3359D-plus	AGAATCAGTGAAAGGGAAAGCAATTC
LVL 3359B-plus	AGAATTAGTGAAAGGGAGAGCAATT
LVL 3363A-plus	TTAGTGAAAGGGAGAGCAATTC
LVL 3363D-plus	TCAGTGAAAGGGAAAGCAATTC
LVL 3359C-plus	AGAATCAGTGAAAGGGAAAGCAATTCTGAGGTAA
LVL 3760-minus	AATGGCACATCATTGGTCCCCATTTACTATGATC
LVL 3754A-minus	CACATCATTGGTCCCCATTTACTATGATC
LVL 3754D-minus	CACATCATTGGTCCCCATTTACTGTGATC
LVL 3754C-minus	CACATCATTGGTCCCCATTTGCTGTGATC
LVL 3754B-minus	CACATCATTGGTCCCCATTTACTATGAT
LVL 3747A-minus	TTGGTCCCCATTTACTATGATC
LVL 3760B-minus	AATGGCACATCATTGGTCCCCACTT
LVL 3760A-minus	AATGGCACATCATTGGTCCCCATTT
LVL 3762-minus	AAAAATGGCACATCATTGGGCCCCA
LVS 36E2	ACCGGGGATCCTAGGCATTT
LVS 80F2	ATATAATGATGACTGTTGTTCTTTGTCA

Oligonukleotide für die Neuwelt-Arenaviren-RT-PCRs

1.	Oligor	nukleotide	zur Synthese	e der (Guanarit	ovirus	Kontroll	l-RNA	
Gua	a-A+	TGCC	GTGTGAGTGCCI	ACTTC	CATTTTTA	AAACCTT	TCTCATC	ATGAGGTT	TTCTGA
Gua	a-B+	CTCATCAT	GAGGTTTTCTGA	AACAG	IGTACATA	GTTTCCT	GAAGAAGO	GTTGGAAA	ACTGCCA
Gua	a-C+	AGAAGGTT	rggaaaactgcc	AACTCC	ACAGGAT	CAGTTGGC	GGGCCTT	CAATGTC	CATCCAG
Gua	a-D+	GGCCTTCAAT	IGTCCATCCAGA	TTGTGT	CTGATGA	АТСТААТТ	TCCTCAT	TGCTTCC	TTACGA
Gua	a-E-	TCCTCAT	TGCTTCCTTTA	CGATCG	CTTCTTG	CATTTCAG	SAAAGATT	TGATAGT	CTGATAT
Gua	a-F-	AAGAT	TTGATAGTCTG	ATATTT	TGTCCAT	FCTTTTCA	GGAGCTC	GGGGACC	IGTTACA
Gua	a-G-	GAGCTCO	GGGGACCTGTTA	CAGGTC	TTGCATT	FAAATCGA	CACTTGT	GTTGTCC	CAAGACC
Gua	a-H-		ACTTGTGT	TGTCCC	AAGACCT	CCCGAGTA	TTTGTGA	CCTTGAT	CCAATAT

2.	Oligonukleotide	zur	Synthese	der	Juninvirus	Kontroll-RNA
----	-----------------	-----	----------	-----	------------	--------------

Jun-A+ TGCCGTGAGGTGTCTGCT	ACCATTTTTAAACCCTTTCTCATCATGTGGTTTTCTGA
Jun-B+ CTCATCATGTGGTTTTCTGAAGCA	GTGAATGTACTGCTTACCTGCAGGTTGGAATAATGCCA
Jun-C+ TGCAGGTTGGAATAATGCCATC	TCAACAGGGTCAGTGGCTGGTCCTTCAATGTCGAGCCA
Jun-D+ GGTCCTTCAATGTCGAGCCAAAGGGT	GTTGGTGGGGTCGAGTTTCCCCACTGCCTCTCTGATGA
Jun-E- AGGGGTGACGGAGAGACTACTGTC	GAAGAACATAGAGACAGTTCAATCGGTTAGAGTTTAAG
Jun-F- TCAATCGGTTAGAGTTTAAGA	CTGGCAAAAAAAGGCCGACAGATCCTGGTCGTTGACCA
Jun-G- CAGATCCTGGTCGTTGACC	AAAGGAACAGTCTAGTTATGAACACAACAGGGTACTGG
Jun-H- TGAACACAACAG	GGTACTGGACGGATACTAAACACTAGATCTTGGTTATA
3. Oligonukleotide zur Synthese der	Machupovirus Kontroll-RNA
Mac-A+ TGCCATGTGAATGTCTGCT	GCCATTTTTGAAGCCCTTCTCATCATGTGGCTTTCTAA
Mac-B+ CTCATCATGTGGCTTTCTAAAAC	AATGAATATAATGCTTGTTGGCTGGCTGATATAGTGCC
Mac-C+ TGGCTGGCTGATATAGTGCCAA	TTCCACAGGGTCTGTTGGAGGCCCTTCAATGTCAAGCC
Mac-D+ AGGCCCTTCAATGTCAAGC	CACAGTGTATTAGTGGGGTCTAACTTCTTTACAGCCTC
Mac-E- CAGATTGAAGAAATGTCGGAGAAATTAG	TGACGAAGAACGTAAAGTCAGTCCAAACGATCAGAATC
Mac-F- CAGTCCAAACGATCAGAATCTAAGA	CTGGCAAAAAGAGCCCAACAGAGCCAGGTTGAACTCCA
Mac-G- CAGAGCCAGGTTGAACTCC	AAAGAAACAATCTAGTTGTGAACACAACAGGGTTCTAG
Mac-H- TGAACACAACAG	GGTTCTAGAGGGTTCTTAAACACTAGACCTTGGTTACA
4. Oligonukleotide zur Durchführung	g der Neuwelt-Arenavirus-RT-PCRs
GuaS 2041a-plus	CCATTTTTAAACCCTTTCTCATCATG
GuaS 2041b-plus	CCATTTTTGAAGCCCTTCTCATCATG
GuaS 2333a-minus	CAAATACTCGGGAGGTCTTGGGACAACAC
GuaS 2333b-minus	CAAATTCTTGGGAGATCTTGGGACAACAC
GuaS 2333c-minus	CAAATCATCGGCAGGTCATGGGACAACAC
5. Hybridisierungs Sonden für die G Juninvirus <i>real-time</i> RT-PCRs	Guanaritovirus und
GuaROX 84-113	GGTTGGAAAACTGCCAACTCCACAGGATCA
GuaFL 49-78	GTTTTCTGAAACAGTGCACATAGTTTCCTG
JunRox 120-45	GGTCCTTCAATGTCGAGCCAAAGGGT
JunFL 87-115	TGGAACAATGCCATCTCAACAGGGTCAGT

3.1.5 Enzyme

RNase H	pEQLab
Superscript II RT	Gibco BRL
Expand-High-Fidelity (Taq/Pwo Polymerase)	Roche/Life Technologies
Superscript 2 RT/Platinum Taq	Roche/Life Technologies
Taq-Polymerase	Pharmacia
Pwo-Polymerase	Roche
T4 RNA Ligase	BioLabs
Quick T4 DNA Ligase	NEB
RNase Inhibitor	Promega
Tobacco Acid Pyrophosphatase	Epicentre
DNase 1	BioLabs

3.1.6 Kits

ABI PRISM BigDye Terminator	ABI
SequiTherm EXCEL sequencing Kit	Epicentre Technologies
NucleoSpin Plasmid Kit	Macherey & Nagel
Plasmid Purification Midi-Kit	Qiagen
QIAamp Viral RNA Mini Kit	Qiagen
QIAquick Gel Extraktion Kit	Qiagen
QIAquick PCR Purification Kit	Qiagen
OneStep RT-PCR Kit	Qiagen
NucleoSpin Extract	Macherey & Nagel
pT-Adv Vector	BD Biosciences/Clontech

3.1.7 Puffer und Lösungen

6 x Auftragspuffer (DNA-Gelelektrophorese):

0,15	%	Xylencyanol FF
0,15	%	Bromphenolblau
40	%	Sucrose
		in H ₂ O

Dretzen-Puffer:

10	mM	Tris
1,5	М	Natriumchlorid
1	mM	EDTA pH 8,0

50 x TAE-Puffer (DNA-Agarosegelelektrophorese):

2	М	Tris-HCl	
0,25	М	Natriumacetat	
0,05	М	EDTA	pH 7,8

Laufpuffer für RNA-Gele:

1 x MOPS pH 7,0 10% Formaldehyd

3.1.8 Biologische Agenzien

3.1.8.1 Virusstämme

Die Lassavirusstämme AV, CSF und NL, mit denen die Versuche dieser Arbeit durchgeführt wurden, sind Primärisolate aus Patientenseren (Stamm AV, NL) bzw. Liquor (Stamm CSF).

Lassavirus AV:

Lassavirus AV wurde aus einer Patientin isoliert, die sich in Ghana, der Elfenbeinküste oder Burkina Faso infiziert hatte [11]. In diesen Regionen Westafrikas wurde bis dato kein Lassafieber beschrieben. Die Patientin starb mit Hämorrhagie, Organversagen und Enzephalopathie am 14. Tag nach Ausbruch der Krankheit [91, 92]. Die komplette Sequenz der 3,4-kb S-RNA ist bekannt. Die codierenden S-Gen-Sequenzen des AV-Stammes differieren zu 20% im Vergleich zu den bereits bekannten Stämmen Josiah, Nigeria und LP [11].

Lassavirus NL:

Lassavirus NL wurde aus dem Serum eines Patienten isoliert, der als Chirurg in einem Krankenhaus in Sierra Leone gearbeitet hatte. Der Patient hatte unter Übelkeit, krampfartigen Bauchschmerzen, wässriger Diarrhoe sowie Muskel-, Gelenk- und Kopfschmerzen gelitten. Der Patient starb trotz erfolgter Ribaviringabe am 16. Tag der Krankheit [92-94].

Lassavirus CSF:

Lassavirus CSF wurde aus dem Liquor eines nigerianischen Patienten isoliert, der unter Fieber, Desorientiertheit und Krampfanfällen litt. Der Patient starb mit Zeichen einer Lungenembolie. Im Serum des Patienten konnte kein Virus nachgewiesen werden konnte [80].

Lassavirus Isolate SL620, SL15, SL20, SL21, SL25, SL26:

Die Virus-RNA dieser Isolate wurde freundlicherweise von Dr. ter Meulen (Universität Marburg) zur Verfügung gestellt.

LCMV:

LCMV-CH isoliert an Krallenaffen mit Callitrichid-Hepatitis [95].

Ippyvirus:

IPPY Dak An B, 28.3.73 [96]. Die Virus-RNA dieses Isolates wurde freundlicherweise von Dr. Deubel (Institut Pasteur, Lyon, Frankreich) zur Verfügung gestellt.

Mopeiavirus:

Aus den National Collection of Pathogenic Viruses, Center for Applied Microbiology and Research, Porton Down, Salisbury, UK.

Juninvirus Impfstamm und Tacaribevirus: Freundlicherweise zur Verfügung gestellt von Prof. Dr. Erik De Clercq. Departement Microbiologie en Immunologie, Katholieke Universiteit Leuven.

3.1.8.2 Bakterienstämme

Zellen des E.-coli-Stammes DM5α oder Derivate.

3.2 Methoden

3.2.1 Molekularbiologische Methoden

3.2.1.1 Präparation von Virus-RNA für die PCR

Virus-RNA wurde aus 140 µl Serum oder Zellkulturüberstand von Lassavirus oder LCMV infizierten Verozellen unter Verwendung des QIAamp Viral RNA Kit (Qiagen) nach dem Protokoll des Herstellers isoliert. Die Probe wurde im ersten Schritt in 560 µl AVL-Puffer bei Raumtemperatur lysiert. Dabei wurden innerhalb von 10 Minuten RNasen inaktiviert, um die Isolation von intakter RNA zu gewährleisten. Im zweiten Schritt wurde die für eine optimale Bindung an die QIAamp Membran mit 560 µl Ethanol gepufferte Probe auf die QIAamp-Säule gebracht. Mögliche Kontamination wurde in zwei Waschschritten mit speziellen QIAamp-Waschpuffern (AW1 und AW2) entfernt. Die RNA wurde mit 60 µl eines RNase freien Puffers (AVE) eluiert und konnte sofort verwendet oder bei -20°C bzw. -70°C gelagert werden.

3.2.1.2 RNA-Präparation aus gefrorenem frischen Gewebe für die PCR

Etwa 10 mg gefrorenes Gewebe wurde in ein 2 ml Bead-Mill-Gefäß gegeben und mit Hilfe des Fast Prep 120 in 600 µl RLT-Puffer (QIAgen RNeasy Mini Kit) homogenisiert, 2 x 20 sec, 6.000 Schüttelungen pro Min. (SpM). Das Zelllysat wurde anschließend 2 x 2 min bei 12.000 Umdrehungen pro Min. (UpM) zentrifugiert. Das Pellet wurde jeweils verworfen. Aus dem Überstand erfolgte die RNA-Extraktion mit dem QIAgen RNeasy Mini Kit nach den Herstellerangaben.

3.2.1.3 Reverse Transkription

Bei der reversen Transkription findet eine Überführung von RNA in komplementäre DNA (cDNA) mit Hilfe der reversen Transkriptase (RT) statt. Es können verschiedene Primer Verwendung finden, z.B. spezifische Primer oder random Hexamere. Hier wurden spezifische Primer benutzt. In dieser Arbeit wurde zur Amplifikation langer RNA-Fragmente, wie etwa im zweiten Schritt der L-RNA-Sequenzierung (Abbildung 4.2 B), ein *two-step* Protokoll gewählt, mit einer reversen Transkriptase Reaktion als ersten Schritt und anschließender PCR. Für einen 8 µl Ansatz wurden je 20 pmol des Vorwärts- und Rückwärtsprimers mit 4 µl aufgereinigter Lassavirus-RNA für 15 min bei 70°C denaturiert und anschließend auf Eis abgekühlt. Ein 19 µl Reaktions-Ansatz bestehend aus dem 8 µl RNA-Primer-Mix, 50 mM Tris-HCl (pH 8,3), 75 mM KCl, 3 mM MgCl₂, 10 mM DDT und 500 µM dNTP wurde für 2 min bei 50°C inkubiert. Es wurden 20 Units Superscript II und ein Tropfen Mineralöl hinzugegeben und wie folgt inkubiert: 50°C 30 min, 55°C 5 min, 50°C 20 min, 60°C 1 min, 50°C 10 min, 70°C 15 min, 4°C Kühlung. Anschließend erfolgte ein Verdau der RNA mit 4 Units RNase H für 20 min bei 37°C. Die Lagerung der cDNA erfolgte bei -20°C.

3.2.1.4 Polymerasekettenreaktion

Die Polymerasekettenreaktion (PCR) ist ein Verfahren zur gezielten In-vitro-Replikation spezifischer DNA-Fragmente. In einem zyklischen Prozess wird die Template-DNA durch Hitzedenaturierung in Einzelstränge aufgetrennt. Anschließend wird bis zu einer Temperatur abgekühlt, bei der die Primer an ihre Zielsequenz hybridisieren können (Annealing). Die Kettenverlängerung findet am Temperaturoptimum der thermostabilen DNA-Polymerase (bei 72°C) statt. Mit jedem Zyklus verdoppelt sich die Kopienzahl der Zielsequenz.

3.2.1.5 Standard PCR

Zur Amplifikation von DNA-Fragmenten aus Plasmiden und zur Reamplifikation von PCR-Produkten wurde eine Standard-PCR verwendet. Zu einem Reaktionsvolumen von 25 μ l wurde 1 μ l Template-DNA (~5 ng/ μ l), 2,5 μ l 10 x Puffer mit 1,5 mM Mg²⁺, 500 μ M dNTP, je 0,4 μ M Senseund Antisense-Primer und 1 U Taq-DNA-Polymerase gegeben. Amplifiziert wurde im Thermocycler Modell 9600 oder im Thermocycler Primus nach gleichem Protokoll. Tabelle 3.1 zeigt das Temperaturprofil der Reaktion.

Temperatur [°C]	Zeit [sec]	Zyklenzahl
95	20	
50	20	40
72	60	
8	Abkühlung	

Tab. 3.1. Universelles Temperaturprofil

3.2.1.6 Expand High Fidelity PCR

Zur Amplifikation langer cDNA-Fragmente wurde das Expand High Fidelity (Hifi) PCR-System verwendet. Dieses System besteht aus einem Gemisch aus Taq- und Pwo-DNA-Polymerase, wobei letztere eine 3'-5'-Exonuklease (*proofreading*) Aktivität besitzt und daher besonders niedrige Fehlerraten erreicht. Die Enzymkombination kann lange DNA-Fragmente mit großer Zuverlässigkeit und Sensitivität amplifizieren. Die Amplifikation erfolgt im 50 µl Standardansatz (Tabelle 3.2)

Tab. 3.2. Standardansatz für Expand High Fidelity PCR

Komponente	Ansatz Hifi-Pol. V [µl]	Endkonzentration
Mix I		
H ₂ O	32,5	
10 x PCR-Puffer	4,5	
dNTPs (2mmol/l)	5,0	200 µM
Primer 1 (10 µmol/l)	1,0	0,2 µM
Primer 2 (10 µmol/l)	1,0	0,2 µM
cDNA (aus RT-Reaktion)	1,0	
Mix II		
H ₂ O	3,75	
10 x PCR Puffer	0,5	
Hifi-Polymerase	0,75	2,6 U

Die Zugabe des Mix II erfolgt im ersten Zyklus bei 55°C (*hot start*). Für die Reaktion wurde folgendes Temperaturprofil verwendet (Tabelle 3.3).

Temperatur [°C]	Zeit	Zyklenzahl	Vorgang
95	2 min	1	Initiale Denaturierung
95	20 sec		Denaturierung
55	30 sec	40	Primeranlagerung (Annealing)
72	4 min		Polymerisation (Elongation)
8	10 min	1	abschließende Verlängerung
bis zur weiteren Analyse Lagerung bei 8°C			

Tab. 3.3. Standard Temperaturprofil für Expand High Fidelity PCR

3.2.1.7 Reverse Transkription und PCR im Ein-Schritt-Verfahren (one-step RT-PCR)

Bei dieser Methode wird die reverse Transkription und die PCR in einem Ansatz kombiniert durchgeführt. Erst synthetisiert man aus RNA die cDNA und verwendet diese anschließend als Template für die PCR. Die reverse Transkription wurde hier mit Superscript II RT durchgeführt, doch können auch thermostabile DNA-Polymerasen mit RT-Aktivität wie Tth- oder Tfl-Polymerase verwendet werden. Als Primer kann man Oligo-dT-Primer, Hexamere oder spezifische Primer verwenden. Als Basis für die *one-step* RT-PCR wurde in dieser Arbeit der Superscript II RT mit Platinum Taq Kit verwendet. Dieses System besteht aus einem Gemisch aus Superscript II RT und Platinum Taq-Polymerase. Die Amplifikation erfolgte im 50 µl oder 20 µl Reaktionsansatz (Tabelle 3.4).

Komponente	50 µl An- satz [µl]	20 µl Ansatz [µl]	Endkonzentration
H ₂ O	17,2	5,08	
2 x Reaktionsmix	25	10	
MgSO ₄ (50 mM)	1,8	0,72	1,8 mM
Primer 1 (20 mM)	1	0,4	0,4 µM
Primer 2 (20 mM)	1	0,4	0,4 µM
Enzym Mix	1	0,4	
Template RNA	3	3	

Tab. 3.4. Standardansatz für die Amplifikation mit Superscript II RT/Platinum Taq Kit für verschiedene Reaktionsvolumina

Für die Reaktion wurde ein Thermocycler mit folgendem Temperaturprofil verwendet (Tab. 3.5).

Temperatur [°C]	Zeit	Zyklenzahl	Vorgang
95	2 min	1	Initiale Denaturierung
55	30 min	1	Reverse Transkription
95	20 sec		Denaturierung
55	30 sec	40	Primeranlagerung (Annealing)
72	2 - 4 min		Polymerisation (Elongation)
72	10 min	1	abschließende Verlängerung
bis zur weiteren Analyse Lage	erung bei 8	°C	

Tab. 3.5. Standard Temperaturprofil für die Amplifikation mit Superscript II RT/Platinum Taq Kit. Je nach Länge des Amplifikates variiert die Dauer der Polymerisation

3.2.1.8 LightCycler real-time RT-PCR

Der LightCycler von Roche Diagnostics ist ein extrem schneller Thermocycler mit der Möglichkeit der Online-Fluoreszenz-Detektion. Dadurch ist es möglich, die Amplifikation einer Nukleinsäure während des Laufs zu verfolgen. Das ermöglicht die Quantifizierung von RNA und DNA sowie die Typisierung von Proben mittels einer Schmelzpunktanalyse. Zur Zeit werden im wesentlichen zwei fluoreszenzbasierte Messprinzipien angewendet: DNA interkalierende Farbstoffe (*SYBRGreen*) oder Hybridisierungssonden, (TaqMan Sonden und *Fluorescence resonance energy transfer* (FRET) Sonden).

Bei der in dieser Arbeit angewandten Methode mit farbstoffmarkierten Sonden handelt es sich um eine spezifische Detektion von PCR-Produkten, unspezifische Produkte und Primerdimere werden nicht detektiert. Zum PCR-Ansatz werden zusätzlich zwei sequenzspezifische Oligonukleotide (Hybridisierungssonden) zugefügt, welche zwischen den beiden Primern in räumlicher Nähe zueinander (1-5 Nukleotide Abstand) an die Ziel-Sequenz binden. Die Sonden sind mit zwei verschiedenen Fluoreszenzfarbstoffen markiert (hier Fluorescein und Rox). Die Detektion basiert auf dem FRET-Prinzip. Binden beide Sonden an das PCR-Produkt und regt man gleichzeitig das Fluorescein der ersten Sonde an, emittiert dies keine Fluoreszenz, sondern überträgt die Energie auf den benachbarten zweiten Farbstoff (Abbildung 3.1). Dieser emittiert nun rote Fluoreszenz, deren Intensität direkt proportional zur Menge PCR Produkt ist. Die Messung des Signals erfolgt einmal pro PCR-Zyklus nach der Primerbindung. Zu diesem Zeitpunkt sind beide Sonden an das PCR-Produkt gebunden und es erfolgt ein Energietransfer. Ungebundene Sonden geben auf Grund der fehlenden räumlichen Nähe kein Signal. Sequenzvariation unter den Sonden kann deren Bindung und damit die Zuverlässigkeit des Nachweises beeinträchtigen.

Abb. 3.1. Schematische Darstellung der Hybridisierung der farbstoffmarkierten Sonden nach dem FRET-Prinzip. Die Summe an emittiertem Signal (gelb gezeichnet) entspricht der Menge des Amplifikates.

3.2.1.9 Allgemeine Kriterien zur Oligonukleotidauswahl

PCR-Primer-Oligonukleotide sollten zwischen 18 und 30 Basen lang sein und einen Anteil von mindestens 40 bis 60% Guanidin und Cytosin besitzen (G-C-Gehalt). Bei besonders langen Amplifikaten können sich Primer mit 25 bis 35 Basen als vorteilhaft erweisen. Um Fehlhybridisierung und Leserasterverschiebung zu vermeiden, sollten PCR-Primer nicht mehr als vier gleiche Basen hintereinander enthalten. Die Schmelztemperatur sollte 55 bis 80°C betragen, um ausreichend hohe Annealingtemperaturen zu erlauben. Das Design des 3'-Endes ist von besonderer Bedeutung für die Funktion des Primers. Am 3'-Ende sollten ein bis zwei G oder C sitzen, um eine bessere Bindung und Elongation zu erhalten. Um fehlhybridisierte Primer nicht zu stark zu stabilisieren, sollten aber nicht mehr als drei G oder C am 3'-Ende platziert werden. Selbstverständlich sollten die Primer so ausgewählt werden, dass sie keine internen Sekundärstrukturen bilden können und nicht in der Lage sind, miteinander zu hybridisieren.

3.2.1.10 Agarosegelelektrophorese

Der Nachweis von DNA-Fragmenten nach PCR oder Restriktionsspaltung erfolgte durch Agarosegelelektrophorese. Mit Hilfe der Gelelektrophorese wurden die DNA-Fragmente als Polyanionen getrennt. Es besteht zwischen der Wanderungsgeschwindigkeit und dem Molekulargewicht ein logarithmischer Zusammenhang. Die Detektion erfolgte mit Ethidiumbromid, einem interkalierenden Fluorophor, das im UV-Licht (312 nm Anregungswellenlänge) mit orangener Farbe fluoresziert. Zur Herstellung eines Gels wurde 1,0 bis 2,5% (w/v) Agarose in TAE-Puffer durch Erhitzen bis zum Sieden gelöst. Das Gel wurde gegossen und zum Erkalten stehen gelassen. Zur Kontrolle der PCR wurden 5 μ l des Ansatzes mit 2 μ l des Auftragspuffers versetzt und in die Geltaschen gebracht. Die Trennung erfolgte in TAE-Puffer bei 10 Volt/cm. Anschließend wurde das Gel in einem Ethidiumbromidbad (1:10.000) für >10 min gefärbt. Das Agarosegel wurde zur Dokumentation mit einer Gel-Dokumentationsanlage photographiert.
3.2.1.11 Aufreinigung der PCR-Produkte durch Natriumacetat/Ethanol-Fällung

PCR-Produkte können im Anschluss an die PCR durch eine Natriumacetat/Ethanolfällung aufgereinigt werden, um verbleibende Desoxynukleotide zu entfernen. Dabei wurden 45 µl des PCR-Ansatzes mit 4,5 µl 3 M Natriumacetat pH 4,6 (1/10 des Volumens) und 112,5 µl Ethanol (2,5 Volumenanteile) versetzt. Dieses Gemisch wurde 15 min bei 14.000 UpM und Raumtemperatur präzipitierend zentrifugiert. Anschließend wurde der Überstand vorsichtig abgenommen und verworfen. Das Pellet wurde einmal mit 70% Ethanol gewaschen (5 min, 14.000 UpM, Raumtemperatur) Und in 40 µl bidestilliertem Wasser resuspendiert. Die Lagerung erfolgte bei –20°C. Die aufgereinigten PCR-Produkte wurden für Restriktionsspaltung, Klonierung, In-vitro-Transcription oder Sequenzierung verwendet.

3.2.1.12 Präparation von DNA-Fragmenten aus Agarosegel

DNA-Fragmente wurden nach elektrophoretischer Auftrennung und Anfärbung mit Ethidiumbromid unter UV-Licht mit einem Skalpell aus dem Gel herausgeschnitten. Zur Isolierung der DNA wurde das Extraktionskit NucleoSpin Extract verwendet. Alternativ wurden PCR-Produkte, geschnittene DNA-Fragmente und Vektoren präparativ aus dem Agarosegel mittels Dretzen-Methode aufgereinigt. Die DNA-Fragmente wurden nach elektrophoretischer Auftrennung zur Detektion mit SYBRGreen (1:600 in 1x TAE) gefärbt und durch eine Flu-O-blue-Lampe sichtbar gemacht. Die Detektion mit SYBRGreen umgeht die Benutzung von hochenergetischem UV-Licht, welches zu Mutationen in den Fragmenten führen kann. Unterhalb und oberhalb des zu isolierenden Fragmentes wurde eine DNA-bindende Membran (DE81-Membran) eingesetzt und das Gel noch weitere 20 min bei entsprechenden Voltzahlen in die Kammer gelegt. Die DNA wurde anschließend wieder aus der Membran eluiert. Dazu wurde die untere Membran in ein Reaktionsgefäß überführt und mit 200 µl Dretzen-Puffer versetzt. Es folgte eine Inkubation bei 70°C für 45 min. Anschließend wurde das Gefäß zuerst oben, dann unten mit einer Kanüle durchstochen, in ein zweites Gefäß platziert und 1 min bei 400 UpM zentrifugiert. Die Membran wurde einmal mit 50 µl Dretzen-Puffer gewaschen und das Eluat 10 min bei 13.000 UpM zentrifugiert. Der Überstand wurde in ein neues Reaktionsgefäß überführt, die DNA mit 2,5 Volumenanteilen Ethanol präzipitiert und 20 min bei 13.000 UpM pelletiert. Anschließend wurde einmal mit 70% Ethanol gewaschen, das Pellet getrocknet und in 20 µl bidestilliertem Wasser aufgenommen. Zur Kontrolle der Aufreinigung wurde eine Agarosegelelektrophorese durchgeführt.

3.2.1.13 DNA-Sequenzierung

Das verwendete enzymatische DNA-Sequenzierungsverfahren beruht auf der Kettenterminationsmethode nach Sanger [97]. Dabei wird ausgehend von einem DNA-Matrizenstrang und einem hieran hybridisierten Oligonukleotid eine Zweitstrangsynthese mit Hilfe einer DNA-Polymerase durchgeführt. Zu einem geringen Anteil enthält das Reaktionsgemisch neben den obligatorischen Desoxynukleotid-Triphosphaten (dNTP), auch Didesoxynukleotid-Triphosphate (ddNTP), die in den wachsenden Strang eingebaut werden, dann aber wegen der fehlenden 3'-OH Gruppe zum Strangabbruch führen. Jedes der vier Didesoxynukleotide ist mit einem spezifischen Farbstoff markiert, so dass die generierten Terminationsfragmente in einer Elektrophorese nach Molekülmasse getrennt und durch gleichzeitige Fluoreszenzdetektion nach Art der terminierenden Base unterschieden werden können. Für Elektrophorese und Detektion wurde der ABI PRISM 377 Genetic Analyzer Sequencer verwendet. Die erforderlichen Reagenzien wurden als Fertigmischung in Form des BigDye Terminator Ready Reaction Mix bezogen. Die Sequenzdaten wurden mit dem Programm Sequence Navigator ausgewertet.

Der 20 µl Ansatz der Reaktion bestand aus: 1 µl Primer (10 pmol/l), 4 µl BigDye-Lösung (Ready Reaction Mix), 0,1-1 µg aufgereinigtes PCR-Produkt und Wasser. Für den Reaktionsansatz wurde der Thermocycler mit folgendem Temperaturprofil programmiert (Tabelle 3.6).

Temperatur [°C]	Zeit	Zyklenzahl
96	10 sec	
50	5 sec	25
60	4 min	

Tab. 3.6. Standard Temperaturprofil für einen 20 µl Reaktionsansatz mit BigDye Ready Reaction Mix

Die sehr stabilen *stem-loop* Abschnitte in der L-RNA von Lassavirus wurden nach der Zugabe von Additiven (5% DMSO oder 10% Formamid), sowie bei einer höheren Denaturierungstemperatur (bis 98°C) sequenziert. Alternativ wurde für diese Sequenzabschnitte das SequiTherm EXCEL sequencing Kit für den LI-COR Sequenzer verwendet. Nach der Sequenzreaktion wurden nichteingebaute ddNTPs durch eine Natriumacetat/Ethanolpräzipitation entfernt.

3.2.1.14 Ethanolpräzipitation

Zur Abtrennung von verbleibenden ddNTPs wurden die Produkte der Sequenzreaktion gefällt. Zu den 20 µl des Sequenzieransatzes wurden 80 µl bidestilliertes Wasser, 1/10 Volumenanteile 3 M Natriumacetat (pH 4,6) und 2,5 Volumenanteile Ethanol. Das Gemisch wurde 15 min bei 14.000 UpM zentrifugiert. Der Überstand wurde entfernt und das Pellet einmal mit 70% Ethanol gewaschen (5 min, 14.000 UpM). Der restliche Alkohol wurde entfernt und das Pellet 10 min bei 37°C getrocknet.

3.2.1.15 Klonierung von PCR-Produkten

3.2.1.15.1 Ligation von PCR-Produkten in Vectoren

Die Ligation dient der Verknüpfung von zwei DNA-Fragmenten. Die Phosphodiesterbindung zwischen einem 5'-Phosphat und einem 3'-OH wird dabei durch das Enzym T4-Ligase katalysiert. In dieser Arbeit wurden PCR-Produkte in den Plasmidvektor pT-Adv ligiert. Ein 10 µl Ligationsansatz enthielt: 2,5 µl PCR Produkt, 1 µl 10xPuffer, 2 µl pT-Adv Vektor, 1 µl T4 DNA-Ligase. Der Ansatz wurde für 16 h bei 14°C inkubieren.

3.2.1.15.2 Tansformation

Unter Transformation versteht man die Übertragung von Plasmid-DNA in Bakterienzellen. Die Transformation erfolgte in DH5 α (E.coli) Zellen: 50 µl DH5 α Zellen und 2 µl Ligationsprodukt wurden für 30 min auf Eis gestellt, danach für 90 sec bei 42°C im Wasserbad (Hitzeschock) erhitzt und weitere 2 min auf Eis gestellt. Nach Zugabe von 250 µl LB-Medium wurde der Ansatz für 60 min bei 37°C im Schüttler inkubiert. Anschließend wurden die Bakterien auf Selektiv-Medium (LB-Ampicillin-Platten) ausplattiert und über Nacht bei 37°C inkubiert.

3.2.1.15.3 Selektion und Über-Nacht-Kultur

Um Kolonien zu selektieren, die ein Plasmid mit PCR-Produktinsert aufgenommen haben, bedient man sich verschiedener Verfahren. Neben dem *Screenen* von Klonen mittels PCR oder Restriktionsverdau besteht die Möglichkeit des so genannten *blue white screenng*. Bei dieser häufig angewandten Methode wird das LacZ-Gen durch die Insertion des DNA-Fragments zerstört. LacZ codiert für das N-terminale α -Fragment der β -Galaktosidase, das allein keine β -Galaktosidase-Aktivität besitzt. Zusammen mit dem ebenfalls inaktiven C-terminalen ω -Fragment aus E.coli wird die Aktivität jedoch wieder hergestellt (α -Komplementation). Klone die keine β -Galaktosidase-Aktivität mehr besitzen bleiben nach Inkubation mit IPTG und X-Gal weiß, während Klone ohne Insertion das α -Fragment exprimieren und sich blau färben. Das *blue white screening* wurde in der vorliegenden Arbeit als initiale Selektionsmethode verwendet. Dazu wurde die Kolonie von der Agarplatte gepickt, in 5 ml LB-Ampicillin-Medium überführt und für 16 h bei 37°C inkubiert.

3.2.1.15.4 Überprüfen der kultivierten Klone (Screening)

Um die korrekte Orientierung des klonierten DNA-Fragments im Plasmid zu überprüfen, wurde eine PCR mit einem Insert- und einem vektorspezifischen Primer durchgeführt. Für die PCR wurden 100 µl Kultur abgenommen, pelletiert und in 500 µl Wasser resuspendiert. Nach Erhitzen auf 95°C für 15 min wurde 1 µl des Lysates als Template-DNA in die Standard-PCR eingesetzt.

3.2.1.15.5 Plasmid-Präparation

Die Aufreinigung von Plasmid-DNA aus der 5 ml Kultur wurde mit Hilfe des NucleoSpin Plasmid Kit durchgeführt. Die DNA wurde anschließend in 60 µl Elutionspuffer eluiert und photometrisch vermessen. Nach der Plasmid-Präparation wurden die Plasmide sequenziert, um mögliche Mutationen auszuschließen. Danach standen die Plasmide für weiter Schritte wie die In-vitro-Transcription zur Verfügung.

3.2.1.15.6 Photometrische DNA-Quantifizierung

Die DNA-Konzentration in der Plasmid-Lösung wurde photometrisch bestimmt. Die Konzentration einer Lösung berechnet wie folgt:

C=A₂₆₀ * **50** * **d** [µg/ml], wenn A₂₆₀/A₂₈₀ = (1,8...2,0)

 A_{260}/A_{280} = Absorption bei 260 nm bzw. 280 nm

d = Verdünnungsfaktor

3.2.1.16 Herstellung von RNA-Transcripten

3.2.1.16.1 In-vitro-Transcription (In-vitro-Synthese von RNA)

Erforderlich für eine In-vitro-Transcription sind Vektoren, die oberhalb der Klonierungsstelle Promotoren für SP6-, T7- oder T3-Polymerase besitzen. In dieser Arbeit wurde das zu transcribierende DNA-Fragment in den Vektor pT-Adv kloniert, der einen T7-Promotor enthält. Anschließend wurde das DNA-Fragment inklusive des T7-Promotors mittels PCR amplifiziert. Dieses DNA-Fragment diente nach Aufreinigung durch Natriumacetat/Ethanolfällung als Matrize für die Transcription. Die In-vitro-Transcription wurde mit dem MEGAscript Kit, mit T7-RNA-Polymerase durchgeführt. Ein 20 µl Ansatz enthielt 1 µg DNA sowie je 2 µl ATP-, CTP-, GTP-, UTP-Lösung; 2 µl 10x Reaktions-Puffer; 2 µl Enzym Mix; 8 µl RNase freies Wasser. Der Ansatz wurde für 12 h bei 37°C inkubiert. Die relativ lange Inkubationszeit von 12 h hat sich als vorteilhaft erwiesen, um größere Mengen RNA zu erhalten. Reste der DNA wurden in einem anschließenden DNase-Verdau entfernt. Es wurde zu den 10 µl Transcriptionsansatz 1 µl RNase freie DNase 1 gegeben und bei 37°C für 30 min inkubiert.

3.2.1.16.2 Reinigung des Transcriptes

Zur Reinigung der RNA wurde der Qiagen RNeasy Kit nach Herstellerangaben verwendet. Anschließend wurde das aufgereinigte Transcript zur Quantifizierung photometrisch vermessen.

3.2.1.16.3 Photometrische RNA-Quantifizierung

Der RNA-Gehalt einer Lösung wurde mit dem Spektralphotometer bestimmt. Die Konzentration der Lösung berechnet wie folgt:

C=A₂₆₀ * **40** * **d** [µg/ml], wenn $A_{260}/A_{280} = (1,6...2,0)$ $A_{260}/A_{280} =$ Absorption bei 260 nm bzw. 280 nm d = Verdünnungsfaktor

3.2.1.17 Denaturierende Formamid/Agarosegelelektrophorese für RNA

RNA bildet unter normalen Bedingungen im Agarosegel Sekundärstrukturen, wodurch das Laufverhalten während der Elektrophorese stark beeinflusst sein kann. Aus diesem Grund wurde eine denaturierende Elektrophorese in Gegenwart von Formamid und Formaldehyd durchgeführt. Die denaturierende Formamid/Agarosegelelektrophorese erlaubt eine Aussage über die Qualität der RNA. Für ein 30 ml Gel, wurden 0,45 g Agarose (1,5%) und 18,7 ml H₂O zum Kochen gebracht. Auf 70°C abgekühlt, fügte man 6 ml 5 x Laufpuffer und 5,36 ml 12,3 M (37%) Formaldehyd hinzu. Das Gel wurde gegossen und 30 min abgedeckt. Für den Ladepuffer benötigte man: 2 μ l 5 x Laufpuffer, 3,5 μ l 12,3 M (37%) Formaldehyd und 10 μ l Formamid (50%). Der Elektrophoresepuffer bestand für ein Endvolumen von 200 ml aus 40 ml 5 x Laufpuffer und 160 ml H₂O. Zuletzt wurden 3 μ l Template RNA mit 3 μ l Laufpuffer für 15 min bei 65°C inkubiert, anschließend auf Eis gestellt und mit 2 μ l Gelladepuffer versetzt.

3.2.2 Sequenzanalyse

3.2.2.1 Auswertung der Sequenzdaten

Die Überprüfung und Korrektur der Sequenzen wurde mit Hilfe des Programms Sequence Navigator durchgeführt. Jede automatisch gelesene Base wurde auf ihre Richtigkeit überprüft. Mit dem Programm MacVector wurden mehrere Sequenzen gleichzeitig mit einer bestimmten Nukleotidoder Aminosäure-Referenz-Sequenz verglichen (*aligned*). Damit wurden Basen- und Aminosäurenaustausche identifiziert.

3.2.2.2 Datenbanksuche

Die Proteinsequenz-Datenbanksuche wurde mit der kompletten Lassavirus-AV-Sequenz mit Hilfe des Programms Psi-BLAST [98] durchgeführt. Die Psi-BLAST Analyse erfolgte in zwei Schritten. Zuerst wurde die Datenbank nach engverwandten Homologen Proteinsequenzen durchsucht, die einen Erwartungswert (*Expectation value*) von weniger als 10^{-7} (vier Größenordnungen stringenter als der Standard) hatten. Als Ergebnis dieses ersten Schrittes fanden sich sieben sehr homologe Sequenzen (alles Arenaviren). Mit diesem initialen Profil wurde im zweiten Schritt eine weitere Datenbanksuche durchgeführt: Homologien mit einem Expectation value von $<5 \times 10^{-3}$ werden akzeptiert. Die Sequenzdatenbankanalyse wurde freundlicherweise von Prof. Dr. Torda vom Zentrum für Bioinformatik der Universität Hamburg durchgeführt.

3.2.2.3 Sekundärstrukturvorhersage und Strukturmodelling

Coiled coil Domänen wurden mit dem Programm COILS 2.1 [99] (http://www.ch.embnet.org/ software/COILS_form.html) gesucht. Es wurden die Matrices MTIDK und MTK mit und ohne Wichtung der hydrophoben Positionen angewendet. Für die *threading* Analyse (Einfädelung einer Sequenz in eine 3D-Struktur) wurden zwei unterschiedliche Programme verwendet. Für die erste Analyse wurde die L-Protein-Sequenz in Fragmente von 500 Residuen zerlegt, jeweils um 250 Positionen überlappend. Jedes Fragment wurde am 3D-PSSM-Server (http://www.sbg.bio.ic.ac.uk /~3dpssm/html/ffhome.html) analysiert. Die zweite Analyse wurde mit dem *theading* Programm SAUSAGE [100] durchgeführt. Dazu wurde die L-Protein-Sequenz in 150 Aminosäurereste lange Fragmente zerlegt. Dieser Vorgang wurde noch einmal mit 200 Residuen langen Fragmenten wiederholt. Die zweite *threading* Analyse wurde freundlicherweise von Prof. Dr. Torda durchgeführt. Die Sekundärstrukturvorhersage der konservierten zentralen L-Protein-Domäne aller Arenaviren (Position 1050-1490 im Lassavirus Stamm Josiah) wurde mit dem Neuronalen-Netzwerk-Programm Janet [101] (http://www.compbio.dundee.ac.uk/~www-jpred/) durchgeführt. Zusätzlich wurde die Sekundärstruktur für weitere 25 Polymerase-Sequenzen vorhergesagt (Tabelle 3.7). In allen Sequenzen wurde zuerst das hoch konservierte Motiv C identifiziert. 400 Aminosäurereste vor und 300 Aminosäurereste hinter dem Motiv C wurden für die Sekundärstrukturvorhersage heran gezogen.

Homologe Sekundärstrukturelemente und Aminosäurepositionen der RNA-Polymerasen von HCV, RHDC und Poliovirus wurden durch räumliches Übereinanderlegen (*superimposing*) ihrer Kristallstrukturen mit dem Programm Swiss-PdbViewer 7.3b2 [102] (http://www.expasy.org/spdbv/ mainpage.htm) bestimmt. Anschließend wurden die mit Jnet vorhergesagten Elemente den homologen Strukturen von HCV, RHDV und Poliovirus gegenübergestellt. Dabei dienten die konservierten Motive prä-A bis E als Orientierung. Das resultierende Aminosäure-Sequenz-Alignment wurde noch geringfügig manuell bearbeitet, ohne dabei neue Lücken in die Sekundärstrukturelemente einzusetzen.

Ein 3D-Modell der Arenavirus-RNA-Polymerase wurde mit dem Server SWISS-MODEL [102, 103] (http://www.expasy.org/swissmod) erstellt. Dazu wurde die Kristallstruktur (1C2P) der HCV-Polymerase als Template verwendet. Die Qualität der hypothetischen Struktur wurde mit WHAT IF-Testen [104, 105] (http://www.cmbi.kun.nl/gv/servers/WIWWWI/model.html) evaluiert. Die Abbildungen wurden mit Swiss-PdbViewer generiert.

Virusspezies	GenBank-Nummer	Virusfamilie
Bunyamwera Virus	P20470	Bunyaviridae
Dugbe Virus	Q66431	Bunyaviridae
Hantaan Virus	P23456	Bunyaviridae
Rift valley fever Virus	P27316	Bunyaviridae
Influenza B Virus	O36430	Orthomyxoviridae
Influenza C Virus	P19703	Orthomyxoviridae
Influenza A Virus	AAA43639	Orthomyxoviridae
Thogoto Virus	O41353	Orthomyxoviridae
Rice stripe Virus	NP_620522	Tenuivirus
Tomato spotted wilt Virus	RRVUTW	Bunyaviridae
Borna disease Virus	AAA20228	Bornaviridae
Bovine ephemeral fever Virus	NP_065409	Rhabdoviridae
Ebola Virus	AAD14589	Filoviridae
Marburg Virus	AAA46562	Filoviridae
Hemorrhagic septicemia Virus	AAF04486	Rhabdoviridae
Measles Virus	AAD29091	Paramyxoviridae/Paramyxovirinae
Human respir. syncytial Virus	NP_056866	Paramyxoviridae/Pneumovirinae
Human Metapneumo Virus	AAK62941	Paramyxoviridae/Pneumovirinae
Mumps Virus	P30929	Paramyxoviridae/Paramyxovirinae
Nipah Virus	NP_112028	Paramyxoviridae/Paramyxovirinae
Northern cereal mosaic Virus	NP_597914	Rhabdoviridae
Rabies Virus	P16289	Rhabdoviridae
Rice Yellow Stunt Virus	NP_620502	Rhabdoviridae
Sendai Virus	P27566	Paramyxoviridae/Paramyxovirinae
Vesicular Stomatitis Virus	AAA48371	Rhabdoviridae

Tab. 3.7. Speziesname, Virusfamilie und GenBank-Nummer aller 25 Polymerasesequenzen, die für die Sekundärstrukturvorhersage verwendet wurden

3.2.3 Phylogenese

3.2.3.1 Arenavirus-Phylogenese

Die Nukleotid- und Aminosäure-Sequenzen der Lassavirus-Gene NP, GPC, Z und L wurden mit dem Programm CLUSTAL, implementiert in MacVector 7.0 und mittels manueller Feinabstimmung, verglichen. Weitere Arenavirus-Sequenzen wurden in die phylogenetische Analyse eingeschlossen (Tabelle 3.8).

Die Nukleotidalignments wurden mit Hilfe der Aminosäurealignments manuell nachgebessert. Das Maß der Übereinstimmung zweier Sequenzen wurde mit einem Omnis Studio 3.1 (Raining Data Corporation) basierten Programm (freundlicherweise geschrieben von Christian Schmitz, Universität Hamburg) berechnet. Für die phylogenetische Analyse wurde das Programm PHYLIP 3.75c [106] mit Standardeinstellungen verwendet. *Neighbor joining* (NJ) Analysen wurden mit dem Programm DNADIST und NEIGHBOR und *Maximum likelihood* (ML) Analysen mit DNAML durchgeführt. Die Existenz von genetischer Rekombination wurde mit dem Programm GENECONV 1.81 [107] getestet.

Tab. 3.8.Virusstamm, Virusfamilie und GenBank-Nummer aller Sequenzen, die für die phylogenetische Analyse der Lassavirus NP-, GP-, Z-, und L-Gene verwendet wurden. Sequenzen dieser Arbeit sind mit * gekennzeichnet

Virusstamm	GenBank-Nummer	Virusfamilie
Pichinde Virus	3739 (K02734, AF427517)	Arenaviridae (Neuwelt)
Tacaribe Virus Klone p2b-2	M20304	Arenaviridae (Neuwelt)
Tacaribe Virus T.RVL.II 573	J04340	Arenaviridae (Neuwelt)
LCMV Armstrong	M20869, J04331, M27693	Arenaviridae (Altwelt)
LCMV WE	M22138, AF004519	Arenaviridae (Altwelt)
Lassa Virus Josiah	J04324, U73034	Arenaviridae (Altwelt)
Lassa Virus AV*	AF246121	Arenaviridae (Altwelt)
Lassa Virus CSF*	AF333969	Arenaviridae (Altwelt)

3.2.3.2 Phylogenese der Negativ-Strang-RNA-Viren

Die phylogenetische Rekonstruktion der Negativ-Strang-RNA-Viren wurde basierend auf dem Sekundärstrukturalignment (s.o.) berechnet. Dafür wurde das komplette Alignment durch die Entfernung der variablen Loop-Sequenzen verkürzt. Das endgültige Alignment mit 32 Sequenzen war 313 Aminosäurereste lang und beinhaltete die α -Helices B, C, D, E, H, I, J und K sowie die β -Faltblattstrukturen 2, 3, 4, 5, 6, 7, 8, 9 und 10 (Nummerierung wie in Abbildung 4.7 A). Der Informationsgehalt des phylogenetischen Datensatzes wurde mit *Likelihood mapping* [108] evaluiert

(TREE-PUZZLE 5.1 8, http://www.tree-puzzle.de/). Die phylogenetische Rekonstruktion erfolgte mit dem *parsimony* Programm PROTPARS aus dem PHYLIP 3.75c Softwarepaket [106]. *Neighbor joining* (NJ)- und *Minimum evolution* (ME)-Analysen wurden mit der MEGA 2.1 Software [109] (http://www.megasoftware.net/) durchgeführt. Außerdem wurde noch eine phylogenetische Analyse mit dem Programm MrBayes 2.01 [110] mit den Substitutionsmodellen JONES [111] und DAYHOFF [112] durchgeführt. Die Analyse wurde zweimal mit identischen Ergebnissen durchgeführt. Eine weitere Analyse des gesamten phylogenetischen Datensatzes wurde mit dem Programm TREE-PUZZLE 5.1 [113] und dem WHELAN-GOLDMAN [114] Substitutions-Modell durchgeführt. Phylogenetische Bäume wurden graphisch mit dem Programm TreeView dargestellt.

4 Ergebnisse

4.1 Auswahl von Sequenzierprimern

4.1.1 Analyse existierender L-RNA-Sequenzen

Im ersten Teil der Arbeit sollte die L-RNA dreier Lassavirusstämme (AV, NL, CSF) vollständig sequenziert werden. Bis zu diesem Zeitpunkt war allerdings nur eine vollständige Lassavirus-L-RNA-Sequenz bekannt. Es war von einer großen Variabilität in der L-RNA auszugehen, da auch in der S-RNA erhebliche Sequenzdifferenzen zwischen verschiedenen Stämmen bestehen [11]. Zunächst lag die Aufgabe darin, PCR-Primer zu entwerfen, mit denen die Amplifikation und Sequenzierung unbekannter Lassavirus-L-RNA gelingen würde. Um einen Anhaltspunkt dafür zu bekommen, wo konservierte Sequenzabschnitte in der L-RNA liegen, wurde die bekannte Sequenz des Lassavirusstamms Josiah (GenBank U63094) mit bekannten Sequenzen von LCMV (AF004519 und J03440) und Tacaribevirus (J04340) verglichen. Das Alignment wurde mit dem Programm MacVector 7.1 erstellt. Mit Hilfe dieses Alignments wurden Abschnitte identifiziert, die bei allen Sequenzen konserviert und als Primerbindungsorte geeignet schienen. Ein Teil des initialen Sequenzalignments zur Identifizierung der konservierten Regionen ist in Abb. 4.1 dargestellt.

Α								
			LV-449-plus	5		>		
				<	< <u></u>		LV-4	483-minus
Josiah	270	280	290	300	310	320	330	340
Lassa	CCCGGACGGT	TACAAACTGA	CGGGCAATGT	TCTAATACTG	CTGGAGTGTT	TTGTTAGATC	ATCTCCTGCT	AACTTTGAGC
LCMV I	TT	TGT	TT.ATC	CTTT	TA	AG	CA.AA	.GTAA
LCMV II	ТТТ	G	TA.ATC	CTT	T	GAG	CAAC	.GTA
Tacaribe	ATTA	.TC.	.TAAAC	ATA	TAACA.	GGGT	CAAA.AA	G.AA
В								
_	LV-680-plu	ıs <u></u>			- >			
			<			- LV-715-m:	inus	
	520	530	540	550	560	570	580	590
U63094	GCACAGGAGA	GTAATTCACT	TTTTGAA	GAGTCAGAGT	ATAGCAGACT	CTGTGAATCT	TTATTCATGA	CTTCGGGTAG
AF004519	T.TAGTC.AG	A.G.GAA.G.	G	T	.CTTG	G	C.GAAG.CC.	GTT.AC.A
J04331	T.TA.CC.A.	A.G.GAA.G.	C	TA.	TTT	GC	C.GAAG.CT.	ATC.AC.A
J04340	T.C.GATC.T	CCGCAGAGA.	.GATAG	TCA	CAAC.T	GATAC.CAG.	C.T.CA.ACG	T.CGTAA.CA
С								
•	2890	2900	2910	2920	2930	2940	2950	2960
U63094	TCAATAAATG	ATCTAGATGA	GATTGTCTCA	AATAAG		-TTTTACATT	AGGTTGA	TCAAGGGTGA
AF004519	AAC.CA.	GAC.CC.	CCCAGATT	GT.TT.TCAG	GTCAAAGAGC	T.A.CTG.GG	A.G.C.	.TTTATCA
J04331	AAT.CA.	GACC.	TT.ACAGCTT	.T.CTAACAG	GGAAGATGGC	TCAC.TA.GA	AAG.T.	TT.TCA
J04340	GA.GGC.GG.	T.AA.AGCAG	C.CA.GTA	CT.GGAAC	TTTGGGGTCC	TGGG	ATGAGA	.T.G.ACA

Abb. 4.1. Ausschnitt aus dem initialen Alignment der bekannten Lassavirus L-Sequenz mit LCMV und Tacaribevirus. Sequenzabschnitte A und B enthalten konservierte Regionen, die als Primerbindungsstellen ausgewählt wurden. Ausgesuchte Primer sind unterstrichen oberhalb der Sequenz dargestellt. Sequenzabschnitt C ist ein Beispiel für die nicht konservierten Bereiche in der L-RNA, die nicht als Primerbindungsstellen geeignet waren.

4.1.2 Kriterien zur Oligonukleotidauswahl

Die für die PCR und Sequenzierung verwendeten Primer wurden anhand des initialen Primeralignments entsprechend der bekannten Lassavirus-L-RNA-Sequenz entworfen. Kriterien waren die Lage in der L-RNA und die Entfernung der einzelnen Primer zueinander. Für spätere Sequenzierungen mit den Primern mussten Entfernungen von mehr als 600 bp vermieden werden. Neben den initial entworfenen ca. 30 Primern wurden im Laufe der Arbeit weitere ca. 50 virusstammspezifische Primer entworfen, sobald neue Sequenzdaten zur Verfügung standen.

4.2 Sequenzierung von Lassavirus L-RNA

4.2.1 Strategie

Für die Sequenzierung der 7 Kilobasen langen L-RNA wurde eine dreistufige Sequenzierstrategie gewählt, dargestellt in Abbildung 4.2. Aufgrund der Variabilität der L-RNA wurden zunächst nur wenige kurze Sequenzen erhalten (Abbildung 4.2 A). Entsprechend dieser kurzen Sequenzen wurden neue Primer hergestellt und mit diesen lange Fragmente amplifiziert (Abbildung 4.2 B). In einem dritten Schritt wurden unter Verwendung der langen Fragmente als Matrize zahlreiche kürzere PCR-Fragmente generiert, die mit den PCR-Primern anschließend sequenziert wurden (Abbildung 4.2 C). Ein Beispiel für diese PCRs ist in Abbildung 4.3 dargestellt. Insgesamt wurden 85 L-RNA spezifische Primer für die PCRs und Sequenzierungen verwendet. Eine Liste aller Primer ist im Abschnitt Materialien 3.1.4 dieser Arbeit aufgeführt. Die Sequenzierung der S-RNA des Lassavirusstamms NL wurde mit Hilfe einer *full-lenght* RT-PCR durchgeführt, wie für die S-RNA der Lassavirusstämme AV und CSF früher beschrieben [11].

Abb. 4.2. Strategie zur Amplifikation und Sequenzierung der L-RNA. Die Genorganisation der L-RNA ist oben dargestellt. Waagerechte Balken stellen die amplifizierten Fragmente dar. Erklärung siehe Text.

Μ М

Abb. 4.3. Beispiel für die dritte Phase der L-RNA-Amplifikation (Abb. 4.2 C). Durch Einrücken der Primer vom 3'- (Spur 1-9) und 5'-Ende (Spur 10-16) eines langen Fragmentes, das als Template dient (Abb. 4.2 B), entstehen unterschiedlich große, PCR-Fragmente, die anschließend mit den PCR-Primern sequenziert wurden.

4.2.2 Sequenzierung der sehr stabilen stem-loop Struktur zwischen L- und Z-Gen

Besonders schwierig gestaltete sich die Sequenzierung der intergenischen Region zwischen L- und Z-Gen. Die hier liegende extrem stabile Haarnadelstruktur (*stem-loop*) musste nach dem für besonders lange Fragmente verwendeten Protokoll (*two-step* Verfahren) amplifiziert werden. Es ergaben sich immer zwei eng beieinanderliegende PCR-Fragmente (Abbildung 4.4A). Die Aufreinigung der PCR-Produkte erfolgte mit der Methode nach Dretzen (s.a. Methoden 3.2.1.12), um das lange Fragment sicher von dem kürzeren zu trennen, bei dem, wie die Sequenzierung zeigte, der *stem-loop* fehlte (Abbildung 4.4). Nach der Aufreinigung wurde das lange Fragment unter Zugabe von 0,5 x PCR Zusatzlösung für G/C-reiche Templates reamplifiziert und erneut nach Dretzen aufgereinigt. Die Sequenzierung bei Standard-Reaktionsbedingungen erbrachte anfangs ebenfalls keine zufriedenstellenden Ergebnisse. Erst nach Experimenten mit verschiedenen Zusätzen wie Zugabe von 5% DMSO oder 10% Formamid zur Sequenzreaktion und durch eine Erhöhung der Denaturierungstemperatur auf 98°C, gelang es, auswertbare und vollständige Sequenzen zu bekommen. Trotz dieser Anstrengungen konnte die Sequenz des *stem-loop* vom Lassavirusstamm CSF nicht vollständig entschlüsselt werden.

Abb. 4.4. Gelbild mit den zwei Banden der *stem-loop* Region. (A) Doppelbande mit dem langem kompletten und dem kurzem Fragment ohne *stem-loop* Sequenz. (B) Aufgereinigtes langes Fragment mit der *stem-loop* Sequenz.

4.2.3 Aufbereitung der Sequenzdaten

Die L-RNA-Sequenzierung ergab zwei bis sechs auswertbare Rohsequenzen pro sequenzierte Nukleotidposition. Überlappende Sequenzen waren identisch. Lediglich an einer Position lag Zweideutigkeit vor, wobei auch hier die dominante Sequenz bestimmt werden konnte. Mit Hilfe der Programme Sequenz Navigator und MacVector 7.1 wurden die Rohsequenzen zusammengefügt und zu einer Vollsequenz (*unanimity sequence*) verbunden. Die L-RNA-Sequenzen der Lassavirusstämme AV, NL und CSF wurden an die Gen-Bank geschickt und sind unter den Zugangsnummern AY179171, AY179172, AY179174 und AY179175 verzeichnet. Die ebenfalls sequenzierte S-RNA des Lassavirusstamms NL ist unter der Nummer AY179173 verzeichnet.

4.3 Sequenzvergleiche und Sequenzanalyse

Die Länge der neu sequenzierten sowie der bereits bekannten Lassavirus-L-Gen-Sequenzen lag zwischen 6654 und 6663 Nukleotiden. Die Länge der Lassavirus-Z-Gen-Sequenzen war bei allen Stämmen mit 300 Basen identisch (Tabelle 4.1). Die nicht codierenden Regionen (NCR) waren in der Regel am 3'-Ende länger als am 5'-Ende und zeigten beide eine starke Heterogenität in Länge und Sequenz.

Lassavirus			L-RNA			
Stamm	Herkunft	5' NCR nt	Z-Gen nt	L-Gen nt	3' NCR nt	Referenz
Josiah	Sierra Leone	65	300	6657	157	[52, 58]
NL	Sierra Leone	68	300	6663	158	Diese Arbeit [115]
AV	Ghana, Elfenbeinküste, Burkina Faso	66	300	6663	137	Diese Arbeit [115]
CSF	Nigeria	70	300	6654	77	Diese Arbeit [115]

Tab. 4.1. Allgemeine Charakteristika der Lassavirus L-RNA

Einige konservierte Sequenzen konnten auch in den nicht codierenden Regionen identifiziert werden. Sie befanden sich direkt hinter den hoch konservierten RNA-Enden sowie direkt vor dem Startcodon (KOZAK-Sequenz). Die Sequenz der Haarnadelstruktur in der Region zwischen dem L- und Z-Gen war identisch bei allen Stämmen. Um den Grad der Sequenzvariabilität unter allen Lassavirusstämmen sowie zwischen Lassavirus und anderen Arenaviren zu bestimmen, wurden Nukleotid- und Aminosäuresequenzen aller Gene verglichen (Tabelle 4.2). Die Lassavirus-Sequenzen der beiden Viren aus der selben geographischen Region (Josiah und NL) waren hoch konserviert. Der Vergleich von Stämmen aus unterschiedlichen geographischen Regionen Afrikas ergab für das L- und Z-Gen eine durchschnittliche Variabilität von 26% auf Nukleotidebene und 20% auf Aminosäureebene. Die Variabilität von Lassavirus-L- und Z-Gen ist damit deutlich höher als die der Strukturgene GPC und NP mit 16% bis 22% Variabilität auf Nukleotidebene und 5% bis 9% auf Aminosäureebene [11]. Auch der Vergleich von Lassavirus-Sequenzen mit anderen Altwelt- und Neuwelt-Arenaviren ergab eine stärkere Variabilität bei L-und Z-Gen als bei GPC- und NP-Gen (Tabelle 4.2).

Gen	% Übereinstimmung												
	Lassa Josiah vs. Lassa NL 		Innerhalb Lassa Stä	aller mme	Lassa vs.	LCMV	Lassa vs. Neuwelt- Arenaviren						
			nt	aa	nt	aa	nt	aa					
NP	93.6	96.6	78.8	92.2	61.7	63.9	56.2	51.1					
GPC	93.2	97.5	80.6	92.9	61.8	60.7	49.8	42.3					
Z	93.3	93.9	74.1	78.0	53.3	55.3	46.7	39.7					
L	92.5	95.8	74.3	81.5	53.3	48.1	45.7	35.8					

Tab. 4.2. Übereinstimmung der Nukleotid- und Aminosäuresequenz innerhalb der Arenaviren

Die Proteinsequenz-Datenbanksuche für das Lassavirus-L-Protein (freundlicherweise von Prof. Dr. Torda durchgeführt) zeigt, in welchem Maße das L-Protein Ähnlichkeiten zu bekannten Sequenzen hat (Abbildung 4.5 A). Die Abbildung zeigt von Position 1043 bis 1546 einen über die Virusfamilie hinaus reichenden konservierten Bereich, der die RNA-abhängigen RNA-Polymerase-Domäne darstellt. Für diese Region finden sich mehr als 200 Sequenzen oder Sequenzfragmente in der Datenbanksuche.

Abb. 4.5. Sequenzhomologie des Lassavirus-L-Proteins. (A) Anzahl homologer Sequenzen in der Datenbank (unterer Teil). Der obere Teil zeigt die Sequenzhomologie der RNA-Polymerase-Region. Die Aminosäure-Residuen der hoch konservierten Positionen (Entropie nahe 0) und die konservierten Polymerase-Motive sind oberhalb der Graphik abgebildet. (B) Die Sequenzhomologie für das L-Protein von Lassavirus und verwandten Arenaviren. Konservierte Regionen sind oberhalb der Graphik markiert.

Genauere Betrachtung der homologen Sequenzen zeigt, dass es sich dabei ausnahmslos um virale RNA-Polymerasen von segmentierten Negativ-Strang-RNA-Viren handelt. Häufigste Vertreter sind PB1-Sequenzen von Influenzavirus-Stämmen (n=184), gefolgt von L-Protein-Sequenzen von Bunyaviren (n=23) und Tenuiviren (n=5). Um die Variabilität innerhalb der homologen Sequenzen zu bestimmen, wurde die Sequenzhomologie im Bereich der vermuteten RNA-Polymerase ermittelt (Abbildung 4.5 A, oben). Zu erkennen sind mehrere Positionen mit einer Entropie nahe Null. Das heißt sie sind 100% konserviert innerhalb der Polymerase-Sequenzen aller segmentierten Negativ-Strang-RNA-Viren. Die konservierten Positionen liegen fast ausnahmslos in den bekannten Polymerase-Sequenz-Motiven (Abbildung 4.5 A oben und Abbildung 4.6; D1193, D1334 und D1335 sind vermutlich die katalytischen Aminosäurereste).

Die Sequenzhomologie innerhalb der Arenaviren wurde berechnet. Abbildung 4.5 B zeigt die Analyse für Lassavirus (4 Sequenzen) und für alle bekannten Arenavirus-L-Gen-Sequenzen (8 Sequenzen). Es lassen sich vier konservierte Regionen identifizieren: vom N-Terminus bis Position 250 (Region I), zwischen Position 500 und 900 (Region II), zwischen Position 1000 und 1650 (Region III) und zwischen Position 1750 und 1900 (Region IV). Wie erwartet, besitzt die vermutliche RNA-Polymerase-Domäne in Region III die meisten konservierten Positionen (Abbildung 4.5 B eingerahmt). Die konservierten Bereiche sind von Abschnitten hoher Variabilität unterbrochen. Dazu zählen die Bereiche um Position 300, 950, 1700 und der Bereich von 1900 bis zum C-Terminus als variabelster Bereich (Abbildung 4.5 B).

Eine niedrig-stringente psi-BLAST-Suche in der sub-Datenbank für Virussequenzen ergab einige Homologien, allerdings ohne statistische Bedeutung, zwischen Arena- und Hantaviren für die Regionen I und II (Abbildung 4.5 markiert), die auch mit bereits beschriebenen Regionen korrespondieren [65].

Das Z-Protein war nur im Bereich des RING-Fingermotivs konserviert und an den äußersten Enden der N- und C-Termini.

4.4 Strukturvorhersage

Außerhalb der vermutlichen RNA-Polymerase-Domäne konnte durch die Sequenzanalyse keine weitere Region mit biologischer Funktion identifiziert werden. Daher wurde eine Sequenz-*threa-ding*-Analyse durchgeführt, um eventuelle strukturelle Homologie zu bekannten 3D-Protein-Strukturen zu identifizieren, wo keine Sequenzhomologie besteht. Die Analyse wurde freundlicherweise von Prof. Dr. Torda mit überlappenden L-Protein-Sequenzfragmenten mit dem SAUSAGE-Programm durchgeführt. Auch hier zeigten sich keine statistisch signifikanten Homologien die einen Anhaltspunkt für die Funktion des N- und C-Terminus des L-Proteins ergeben hätten.

Abb. 4.6. Vergleich der L-Protein-Sequenz von Lassavirus NL (1), AV (2) und CSF (3) sowie LCMV WE (4), Pichindevirus (5) und Tacaribevirus (6). Die konservierten Residuen sind grau unterlegt. Die vermutete RNA-Polymerase-Domäne ist eingerahmt. Positionen, die bei segmentierten Negativ-Strang-RNA-Viren konserviert sind, sind mit einem Rechteck markiert (s. a. Abb. 4.5 A). Die Pfeile markieren die Region, für die eine Strukturvorhersage gemacht wurde (s. a. Abb. 4.7). Sterne markieren die Residuen, die außerhalb der Polymerase liegen, aber zwischen dem L-Protein von Lassaviren und Hantaviren (Hantavirus-L-Protein 85-138 und 610-678) konserviert sind. Die vorhergesagten *coiled-coil* Domänen in Lassavirus-L-Protein sind mit einem Balken markiert, die hydrophoben Positionen a und d ist ebenfalls gekennzeichnet.

Neben der *threading*-Analyse wurde nach *coiled-coil* Domänen mit einem dafür geeigneten Programm [99] gesucht. Die erste Berechnung ergab eine *coiled-coil* Domäne von Position 110 bis 138 mit einer Wahrscheinlichkeit von 0,8 bis 1,0 in allen Lassavirus-Sequenzen, nicht aber in den L-Protein-Sequenzen von LCMV, Pichindevirus und Tacaribevirus.

Die 3D-Strukturen der RNA-abhängigen RNA-Polymerasen von HCV, Poliovirus und RHDV [63, 67-70], besitzen dieselbe Faltung und eine nahezu identische Anordnung ihrer Sekundärstrukturelemente, obwohl nur eine niedrige oder gar keine nachweisbare Sequenzhomologie besteht. Es stellte sich daher die Frage, ob auch bei der vermuteten RNA-abhängigen RNA-Polymerase der Arenaviren eine ähnliche Anordnung der Sekundärstrukturelemente und eine entsprechende Faltung des Proteins vorliegt. Um dies zu untersuchen, wurden in einem ersten Schritt bei den drei Kristallstrukturen der RNA-abhängigen RNA-Polymerasen von HCV, Poliovirus und RHDV (1C2P, 1KHV und 1RDR) homologe Sekundärstrukturelemente sowie Aminosäurepositionen bestimmt. Im nächsten Schritt wurde die Sekundärstruktur der vermuteten Polymerase-Domäne von Lassavirus (Stämme Josiah, NL, AV und CSF), LCMV (Stämme Armstrong und WE), Pichindevirus und Tacaribevirus mit dem Programm Jnet berechnet (Vorhersagegenauigkeit 76% [101]) und alignet. Um die Genauigkeit der Analyse weiter zu erhöhen, wurden die errechneten Sekundärstrukturen der Polymerase-Domäne von weiteren 25 verwandten Viren mit in das Alignment aufgenommen. Aufgenommen wurden: *Bunyaviridae*/Tenuivirus (n=6), *Orthomyxoviridae* (n=4), *Filoviridae* (n=2), *Rhabdoviridae* (n=6) und *Bornaviridae* (n=1).

Für alle Negativ-Strang-RNA-Viren konnten, bis auf geringe Variabilitäten, identische Sekundärstrukturelemente vorhergesagt werden und homologen Bereichen in den Kristallstrukturen eindeutig zugeordnet werden (Abbildung 4.7 A). Einige Unterschiede sind dennoch offensichtlich. In allen segmentierten Negativ-Strang-RNA-Viren (Arena-, Bunya- and Orthomyxoviridae) wurde eine helikale Region (Helices F und G) zwischen den Beta-Strängen 5 und 6 vorhergesagt. Diese Region fehlt in den genannten Kristallstrukturen genauso wie bei den nicht-segmentierten Negativ-Strang-RNA-Viren, bei denen eine verlängerte Schleifen-Struktur in diesem Bereich vorhergesagt wurde. Auch wurde für die Arenavirus-Polymerase eine Beta-Schleifenstruktur (Beta-Stränge 11 und 12) zwischen den Helices L und M vorhergesagt, ein strukturelles Element das bisher nur in der HCV-Polymerase nachgewiesen wurde und für das eine wichtige Rolle in der HCV-Replikation gezeigt werden konnte [116-118]. Außerdem besitzen die Kristallstrukturen einen Beta-Strang (zwischen Strang 10 und Helix J), der bei Arena- und Bunyaviren fehlt, nicht aber bei Orthomyxoviren und allen nicht-segmentierten Negativ-Strang-RNA-Viren. Basierend auf dem Sekundärstrukturlignment und mit der HCV-Polymerase als Template wurde ein hypothetisches Modell der Arenavirus-Polymerase entworfen (Abbildung 4.7 B). Das Modell zeigt die mögliche Position der zusätzlichen Helices F und G und der Beta-Stränge 11 und 12 in der Gesamtstruktur. Aufgrund der geringen Sequenzhomologie zwischen dem Modell und der Templatestruktur war es nicht möglich, Interaktionen auf atomarer Ebene vorherzusagen. Die farbige Darstellung des Polypeptidstranges der hypothetischen Struktur, entsprechend dem Grad der Sequenzvariabilität (blau=konserviert, rot=variabel) zeigt, dass der zentrale Bereich des Moleküls, das katalytische Zentrum, hoch konserviert ist, hingegen die peripheren Teile, häufig Schleifen, variabel sind.

Abb. 4.7. Sekundärstruktur und räumliches Faltungsmodell der vermutlichen RNA-Polymerase-Domäne des Arenavirus-L-Proteins.

(A) Alignment der Aminosäuresequenzen und Sekundärstrukturelemente von Lassavirus CSF (1), LCMV WE (2), Pichindevirus (3), Tacaribevirus (4), Dugbevirus (5), HCV (6), RHDV (7) und Poliovirus (8). Damit ist nur ein Teil der 33 Negativ-Strang-RNA-Viren abgebildet, die für das in der Arbeit verwendete Alignment analysiert wurden. Bei den Sekundärstrukturen der Negativ-Strang-RNA-Viren handelt es sich um Vorhersagen, die Strukturen HCV, RHDC und Poliovirus beruhen auf kristallographischen Daten. Alpha-Helices sind durch blaue Balken und Buchstaben gekennzeichnet, Beta-Stränge durch rote Balken und Ziffern. Konservierte Motive sind eingerahmt. Die Aminosäuren sind entsprechend ihrer chemischen Gruppe farbig unterlegt: sauer/rot (D und E), basisch/blau (R, K und H), Hydroxygruppe/orange (S und T), aromatisch/gelb (F, Y und W), Aminogruppe/hellblau (N und Q), Prolin/grün (P), aliphatisch und Schwefelgruppe/hellgrau (L, I, V, G, A, M und C). In die Dugbevirus-Sequenz wurden Deletionen (X) von 12-14 Aminosäuren eingefügt, um Platz zu sparen.

(B) Modell der Arenavirus-Polymerase auf der Basis des zentralen Teils der HCV-Polymerase (typischer Blick von vorne in das katalytische Zentrum). Die Helices F und G, die keine homologen Entsprechungen in der HCV-Kristallstruktur haben, wurden durch Verlängerung der in der Vorlage vorhandenen Schleife modelliert. Die mögliche Position der RNA ist mit einem grauen Pfeil gekennzeichnet. (C) Das Aminosäuren-Modell ist entsprechend der Sequenz-Variabilität unter den acht Arenavirus-Sequenzen farbig dargestellt, von vollständig konserviert (dunkelblau) bis hoch variabel (rot).

Aminosäuren:

А	Ala	Alanin	М	Met	Methionin
С	Cys	Cystein	Ν	Asn	Asparagin
D	Asp	Asparaginsäure	Р	Pro	Prolin
Е	Glu	Glutaminsäure	Q	Gln	Glutamin
F	Phe	Phenylalanin	R	Arg	Arginin
G	Gly	Glycin	S	Ser	Serin
Н	His	Histidin	Т	Thr	Threonin
Ι	Ile	Isoleucin	V	Val	Valin
Κ	Lys	Lysin	W	Trp	Tryptophan
L	Leu	Leucin	Y	Tyr	Tyrosin

4.5 Phylogenetische Analyse

Die vollständigen NP-, GPC-, L- und Z-Gene wurden für die Rekonstruktion der Arenavirusphylogenese verwendet (Abbildung 4.8). Die Analyse schließt Lassavirusstämme (Josiah, AV, NL und CSF), LCMV-Stämme (Armstrong und WE), Pichindevirus und Tacaribevirus ein. Mit beiden Methoden (ML und NJ der PHYLIP Software [106]) wurde dieselbe Phylogenese für alle untersuchten Gene errechnet. Die identische Anordnung der Virusstämme im phylogenetischen Baum, unabhängig vom verwendeten Gen, zeigt, dass während der Evolution der Lassavirusstämme kein *Reassortment* von S- und L-RNA stattgefunden hat. Teste auf Rekombination innerhalb der Gene wurdne mit den Programmen GENECONV [107] und RDP [119] durchgeführt. Beide Methoden zählen zu den sensitivsten Verfahren zur Detektion von Rekombination [120], konnten aber bei den untersuchten Arenavirusgenen keine Rekombination nachweisen.

Abb. 4.8. Phylogenetische Beziehungen innerhalb der Arenaviren, analysiert mit den vollständigen NP-, GPC-, L- und Z-Genen. Die Bäume, die mit NJ (dargestellt in der Abbildung) und ML erstellt wurden, sind identisch. *Bootstrap*-Werte sind für die Äste angegeben (in der Reihenfolge NJ/ML).

Neben der Rekonstruktion der Phylogenese aller hier untersuchten Arenavirusspezies sollte versucht werden, die phylogenetischen Beziehungen der *Arenaviridae* zu anderen segmentierten und nicht-segmentierten Negativ-Strang-RNA-Viren darzustellen. Das Sekundärstrukturalignment der Polymerase-Sequenzen (s.o.) wurde als Basis für diese phylogenetische Rekonstruktion herangezogen. Aus dem vollständigen Alignment wurden die variablen Schleifen herausgeschnitten, so dass im wesentlichen nur die Sekundärstrukturelemente, und zwar die Alpha-Helices B, C, D, E, H, I, J, K und L sowie die Beta-Stränge 2, 3, 4, 5, 6, 7, 8, 9 und 10 (siehe Abbildung 4.7 A) übrig blieben. Diese Abschnitte wurden in einem Alignment von 313 Aminosäuren zusammengefasst. Die Genauigkeit eines solchen Alignments kann nicht direkt gemessen werden. Einen indirekten Wert für die Genauigkeit erhält man allerdings über den phylogenetischen Gehalt in einem Alignment. Dieser wurde durch *Likelihood mapping* bestimmt, eine Methode, die ML-Bäume für alle möglichen Quartette von Sequenzen berechnet und dabei deren Häufigkeit und Qualität bewertet [108]. Eine Bifurkation in allen Ästen erreichten 87,2% aller Quartette, ein teilweise aufgeschlüsselter Baum konnte für 4,9% erstellt werden und nur 7,9% der Sequenzquartette konnten nicht phylogenetische Bäume zu generieren. Um die Verlässlichkeit der Analyse weiter zu erhöhen wurde die phylogenetische Rekonstruktion mit verschiedenen Algorithmen und Substitutionsmodellen durchgeführt: NJ-, ME- [109], und Parsimony-Algorithmen [106]; *Bayesian*-Wahrscheinlichkeitsanalyse [110] mit den Substitutionsmodellen DAYHOFF [112] und JONES [111]; sowie ML-Analyse [113] mit dem Substitutionsmodell WHELAN-GOLDMAN [114].

Die phylogenetische Rekonstruktion ergab fast vollständig identische und stabile Bäume mit *support* Werten zwischen 80 und 100% (Abbildung 4.9). Der phylogenetische Baum besitzt drei Hauptäste: Positiv-Strang-RNA-Viren, die für das *rooten* des Baums verwendet wurden, nichtsegmentierte Negativ-Strang-RNA-Viren und segmentierte Negativ-Strang-RNA-Viren. Bei den nicht-segmentierten Negativ-Strang-RNA-Viren entsprach die phylogenetische Rekonstruktion der gültigen taxonomischen Ordnung in Familien und Subfamilien. Einzige Ausnahme stellt die Familie der *Paramyxoviridae* dar. Sie erscheint als paraphyletisches Taxon, da ihre Subfamilie *Pneumovirinae* in engerer Beziehung zur Familie der *Filoviridae* als zu anderen Subfamilien der *Paramyxoviridae* steht. Die phylogenetische Beziehung zwischen den Familien *Borna-, Rhabdo- und Paramyxoviridae* konnte nicht aufgelöst werden.

Innerhalb der segmentierten Negativ-Strang-RNA-Viren deutet der phylogenetische Baum eine unabhängige Evolution von zwei Hauptgruppen an, den *Orthomyxoviridae* auf der einen Seite und den *Bunyaviridae/Arenaviridae* auf der anderen Seite. Erstaunlicherweise wurden die *Arenaviridae* von allen angewandten Methoden an einen distalen Ast der Bunyavirus-Familie in enger Beziehung zu dem Nairovirus Dugbe gesetzt. Dies lässt vermuten, dass die *Arenaviridae* von einem intermediären Vorfahren der *Bunyaviridae* abstammen. Demzufolge sind die *Bunyaviridae* ein paraphyletisches Taxon mit einer engen Verwandtschaft zwischen dem Genus Nairovirus und den *Arenaviridae*, während die Taxas *Orthomyxoviridae* und *Arenaviridae* monophyletisch sind.

Abb. 4.9. Phylogenetische Beziehungen unter Negativ-Strang-RNA-Viren, basierend auf einem sekundärstruktur vermittelten Alignment der Polymerasesequenzen. Die phylogenetische Rekonstruktion wurde mit NJ- (dargestellt), ME- und *Parsimony* Algorithmen, sowie *Bayesian* Wahrscheinlichkeitsanalyse und ML-Analyse mit *Quartet puzzling*, durchgeführt. *Bootstrap-* und Glaubwürdigkeits- (*credibility*) Werte sind in folgender Reihenfolge an den Verzweigungen angezeigt: 1. Zeile, NJ/ME/*Parsimony*, 2. Zeile, *Bayesian* (JONES Matrix)/*Bayesian* (DAYHOFF Matrix)/ML *Quartet puzzling*.

4.6 Aufbau eines RT-PCR Assays zur Detektion von Lassavirus und verwandten Altwelt-Arenaviren im L-Gen

Alle zu Beginn der Arbeit verfügbaren diagnostischen Lassavirus-PCRs amplifizierten in der S-RNA die für die Strukturproteine GPC und NP codiert [86, 121-123]. Neuere Untersuchungen haben allerdings gezeigt, dass bestimmte Lassavirusstämme aufgrund von Variabilität in den PCR-Primerregionen der S-RNA schwer nachgewiesen werden können [124]. Aufgrund fehlender Sequenzinformationen existierten keine PCR-Teste für die L-RNA. Besonders das L-Gen, welches für die virale RNA-Polymerase codiert, könnte aber eine geeignete PCR-Zielregion sein. RNA-Polymerasen besitzen hoch konservierte Motive sogar über die Virusfamilien hinaus [52, 64, 65]. Sollte es gelingen, eine PCR-Zielregion im L-Gen zu finden, welche bei Lassavirus und anderen Altwelt-Arenaviren konserviert ist, wäre diese PCR wahrscheinlich äußerst stabil gegenüber Virusvariabilität. Außerdem könnte eine solche PCR diagnostisch für verschiedene Arenaviren (z.B. Lassavirus und LCMV) zum Einsatz kommen. Auch stünde mit dieser universellen PCR eine Methode zur Identifizierung bisher unbekannter Arenaviren zur Verfügung.

4.6.1 Identifizierung von konservierten Abschnitten im L-Gen als Zielsequenz für eine L-Gen-RT-PCR

Ein eigens zu diesem Zweck geschriebenes Computerprogramm (Autor: Christian Schmitz, Universität Hamburg) half die hochkonservierten Regionen zu identifizieren. Der Grad der Homologie wird dabei durch ein über die gesamte L-Gensequenzen gleitendes Analysefenster bestimmt. Die Analyse wurde erstens für Altwelt-Arenaviren (Lassavirus und LCMV) und zweitens für Alt- und Neuwelt-Arenaviren (Lassa, LCMV, Pichinde und Tacaribe) durchgeführt. Die Ergebnisse sind in Abbildung 4.10 dargestellt. In beiden Analysen wurden in der Polymerase-Domäne des L-Gens zwei ca. 400 Basen entfernt liegende Sequenzbereiche identifiziert (Pfeile in Abbildung 4.10), die innerhalb der Altwelt-Arenaviren ca. 90% und innerhalb der Alt- und Neuwelt-Arenaviren ca. 85% konserviert sind. Diese Regionen schienen für die Etablierung einer PCR geeignet.

Beide identifizierten Regionen zeigten auch bei genauerer Inspektion hohe Homologie innerhalb aller bekannten Sequenzen (Abbildung 4.11). Um größtmögliche Sicherheit beim Design der universellen Arenavirus-PCR-Primer zu erreichen, wurden weitere 6 Lassavirusstämme (SL15, SL20, SL21, SL25, SL26 und SL620), die freundlicherweise von Dr. ter Meulen (Universität Marburg) zur Verfügung gestellt wurden, sequenziert. Ebenfalls zu diesem Zweck wurden die entsprechenden Sequenzen bei einem weiteren kürzlich im Bernhard-Nocht-Institut isolierten LCMV-Stamm (Y2k), einem von Prof. Deubel (Inst. Pasteur, Lyon) zur Verfügung gestellten Ippyvirus-Stamm und einem Mopeiavirus-Stamm bestimmt. Damit standen an den Primerbindungsstellen 19 bzw. 17 Sequenzen verschiedener Arenaviren zur Verfügung, wobei jeweils 12 Sequenzen im Rahmen dieser Arbeit sequenziert wurden (Abbildung 4.11). Dies ist deutlich mehr als bei der bestehenden Lassavirus-S-Gen-PCR.

Abb. 4.10. Identifizierung konservierter Bereiche im L-Gen der Altwelt-Arenaviren (A) sowie Neuwelt- und Altwelt-Arenaviren (B) mittels Computeranalyse. Nach einem Alignment aller L-Gen-Sequenzen wurden die Sequenzen paarweise verglichen und anschließend die durchschnittliche Übereinstimmung (in %) über die gesamte Sequenz bestimmt. Der Bereich der RNA-Polymerase-Domäne ist eingerahmt. Die für die L-Gen-RT-PCR identifizierten konservierten Bereiche sind mit Pfeilen gekennzeichnet.

A 3310	326	50		32	270	I		3280)		329	90		33	300			
LVU63094	AAA	CTC	TCT	GAT	GAT	GTA	AGA	ATT	AGT	GAA	AGG	GAG	AGC	AAT	тса	GAG	GCA	С
	К	L	S	D	D	v	R	I	S	Е	R	Е	S	N	S	Е	A>	
Lassavirus																		
1. LVU63094												• • •						
2. LV-NL	G		•••	•••	• • •	G	•••			• • •		• • •	•••			A		
3. LV-csf	G			• • •		G									G	A	т	
4. SL620	G			• • •		G										A		
5. SL20	G					G										A		•
6. SL25						G	• • • •						т	C	G	• • • •		
7. SL26						G							т	C	G			
8. SL15						G		C		G						A		
9. SL21						G		C		G						A		
10.LV-AV		G	A					C				A			т	• • • •		
LCMV																		
11.AF004519		T.G	GAA	A		G		C				A			т	A	т.т	
12.LCVLPY		G	GAA	A	C	G		C		G		A	т		. т	• • • •	T.C	
13.LCVPOLC		T.G	GAA	G	C	G		C				A			. т	•••		
14.LCVPOLD	G	G	GAA	A	C			C	C		A	A	т		. т	•••		
15.LCMV-Y2k				G	C	G		C	C	G		A			. т	• • • •	т.т	
Ippy																		
16. DakAnB	.G.	T.G	ATG			тCG	•••	A			A	A	т	C	т	A	C	
Mopeia																		
17.	.GG	G	ATG	Α		T	G	C			A				т	• • • •		Т
Tacaribe																		
18. TACLSEG					A			С	C	ATG	A				т	A	• •	
Pichinde																		
19. AF42751	7					TC.	C.C			TC.	A			C	т	•••		
Primer																		
1. LVL3350+															>			
2. LVL3359A-	+														>			
3. LVL3359D-	+							C				A			>			
4. LVL3359B-	+														.>			
5. LVL3363A-	+							••		• • •		•••	•••		>			
6. LVL3363D-	+							.C				A			>			
7. LVL3359C-	+							C				A			т	>		

В			364	40		36	650			3660			367	70		36	580
LVU63094	TCT	TAT	AGC	ATG	GAT	CAT	AGT	AAG	TGG	GGC	CCA	ATG	ATG	TGI	CCA	TTT	TTG
	S	Y	S	М	D	Н	S	K	W	G	P	М	М	С	P	F	L
Lassavirus																	
1. LVU63094															• • • •		
2. LV-NL	C												•••				C.A
3. SL620															• • • •		A
4. SL20	C							• • •				• • •			•••		C.A
5. SL15	C		т	•••								• • •			•••		A
6. SL21	C		т										• • •		• • • •		
7. SL25	C									т	G		• • •		• • • •		• • •
8. SL26	C									т	G	• • •			•••		
9. LV-AV	C	C		•••		• • •		A		т	T	• • •			•••	C	• • •
10.LV-csf		C	т	•••		• • •		A		G	C	• • •			т	C	с
LCMV																	
11.AF004519		C				C	C	A		G	G		• • •	¢	2	C	C.A
12.LCMV-Y2k		C	т			C		A		A		• • •		¢	2		
13.LCVLPY			т			C	C	A		A		• • •		¢	2		
Ippy																	
14. DakAnB		C	TCA	Τ				A		A	C	• • •		¢	2	C	
Mopeia																	
15.		т		C.C		C	C	• • •		G	т	• • •		.c¢	ст		C.T
Tacaribe																	
16.TACLSEG	A	.G.	TCT	C.T		C	TC.	A		A		.CC	• • •	Α.	т	GCG	C.T
Pichinde																	
17.AF427517					C	C	TCA	A		G		CAC		.c/	A	G.C	A.C
Primer																	
1. LVL3760-				<				A		A		• • •			• • • •	•••	
2. LVL3754A-	-			<				A		A		• • •					
3. LVL3754D-	-			<	÷	C		A	•••	A	• • •	• • •	•••	• •			
4. LVL3754C-	-			<		C	C	A		A				• •			
5. LVL3754B-	-				<	• • •		A	•••	A		• • •	•••	•••			
6. LVL3747A-	-			<				A		A							
7. LVL3760B-	-							<	•••	A		• • •	•••	• • •	•••	••	
8. LVL3760A-	-							<a< td=""><td></td><td>A</td><td></td><td></td><td>• • •</td><td></td><td>• • • •</td><td>••</td><td></td></a<>		A			• • •		• • • •	••	
					L												

Abb. 4.11. Konservierte Zielsequenzen der Arenavirus-RT-PCR mit Primersequenzen. (A) Vorwärts-Primer.(B) Rückwärts-Primer. Punkte sind Übereinstimmungen mit der Referenz-Sequenz.

4.6.2 Testung verschiedener Primerkombinationen

Initial wurden verschiedene Primerkombinationen (für Primersequenzen siehe Abbildung 4.11) im Vergleich zur bestehenden S-Gen-Lassavirus-PCR getestet. Der Superscript/Platinum *one-step* Kit wurde unter Standardbedingungen verwendet. Die Experimente wurden im 9600-Thermocycler als auch im LightCycler durchgeführt. Bei hoher Virus-RNA-Konzentration waren alle Primerkombinationen in der Lage, das 400 bp Fragment zu amplifizieren (Abbildung 4.12 A). Im LightCycler ergab sich, je nach verwendeter Primerkombination, ein Produkt mit einem Schmelzpunkt zwischen 84 und 88°C (Abbildung 4.13 A). Die hohe Sensitivität der S-Gen-PCR wurde allerdings noch nicht erreicht (Abbildung 4.12 B). Eine Analyse der Amplifikationseffizienz im LightCycler ergab für alle Primerkombinationen eine vergleichbare Effizienz mit Ausnahme der langen Primer LVL3350+/LVL3760-, die deutlich schlechter amplifizierten (Abbildung 4.13 B). Sie wurden von weiteren Tests ausgeschlossen.

Abb. 4.12: L-Gen-RT-PCR (1-5) mit verschiedenen Primerkombinationen im Vergleich zur
S-Gen-RT-PCR (6) Template: Lassavirus-RNA isoliert aus Zellkultur (A) Verdünnung 1:10³;
(B) Verdünnung 1:10⁷. Primerkombinationen:

1	LVL3350+	LVL3760-	4	LVL3359A+	LVL3754B-
2	LVL3359A+	LVL3754A-	5	LVL3359B+	LVL3754A-
3	LVL3359B+	LVL3754B-	6	36E2	80F2 (S-Gen)

Ebenso wurden die am 3'-Ende verkürzten Primer LVL3359B+/LVL3754B- nicht in die weiteren Tests einbezogen, da sie nicht effizienter amplifizierten, als die um eine Base längeren Primer LVL3359A+/LVL3754A-. Letztere Primer haben am 3'-Ende einen längeren konservierten Bereich an der Bindungsstelle und wurden deshalb den verkürzten Primern vorgezogen.

Abb. 4.13. L-Gen-RT-PCR (1-5) mit verschiedenen Primerkombinationen im Vergleich zur S-Gen-RT-PCR
(6) im LightCycler. (A) Schmelzkurvenanalyse; (B) *real-time* PCR Kinetik. Template: Lassavirus-RNA isoliert aus Zellkultur Verdünnung 1:10³. Primerkombinationen:

1	LVL3350+	LVL3760-	4	LVL3359A+	LVL3754B-
2	LVL3359A+	LVL3754A-	5	LVL3359B+	LVL3754A-
3	LVL3359B+	LVL3754B-	6	36E2	80F2 (S-Gen)

4.6.3 Herstellung in-vitro transkribierter Lassavirus-RNA

Da die initialen Tests positiv verlaufen waren, wurde für die Etablierung der PCR in-vitro transkribierte RNA hergestellt. Dafür wurde ein 865 bp langes Fragment, welches die Primerbindungsstellen für die diagnostische PCR enthielt, mit den Primern LVLav3019 und LVLav3883 revers transkribiert und amplifiziert (Abb. 4.14). Als Matrize wurde aufgereinigte RNA des Lassavirusstammes AV verwendet. Die PCR-Fragmente wurden in den Vektor pT-Adv kloniert (Abb. 4.15). Eine Testung auf korrekt eingefügte Fragmente erfolgte mit dem L-Gen Primer LVLav3019- und dem Vektor spezifischen Vorwärts-Primer. Zwei positive Klone wurden erhalten (Abb. 4.16).

Abb. 4.14. Amplifikation eines 865 bp langend L-Gen-Fragmentes von Lassavirus AV mit den Primern LVLav3019 und LVLav3883 zur Klonierung in pT-Adv.

Abb. 4.15. Vektorkarte und Klonierungsort von pT-Adv.

Abb. 4.16. Identifizierung positiver Klone (2 und 3) durch Amplifikation des pT-Adv-Inserts.

Von einem Klon wurde die Plasmid-DNA präpariert und die gesamte inserierte Region sequenziert. Die Sequenz des Klons L-AV-Diag stimmte exakt mit der bei der direkten Sequenzierung ermittelten Referenzsequenz überein (Abbildung 4.17).

LV-AV-L-gen TAGGCTCAAT GAAGGGAGGG AATAGTGAAC CATCAATCAA TGATTTGGAT CCCACTTAGA CCCACTTAGA CCCACTTAGA CCCATTAGA CCTACCAAAAT CATAGCAAAT CCCATTAGA CCCATTAGA CCCATTAGA CCCATTAGA CCCATTAGA CCCATTAGA CCCATTAGA CCCATTAGA CCCATTAGA ACCTGATCAAA CCATAGA CCATTAGA CCCATTAGA CCCATTAGA ACCTGATCAAA CACTGACAA CACTACAAAAT AACTGCTAAA CCATTAGA CCCATTAGA ACCTGATAAAA CCCATTAGA ACCTGATAAA CCCATTAGA ACCTGATAAAA CACTGACAAAAT ACCTGACAAAAT ACCTGACAAAAAT ACCTGACAAAAAT ACCTGACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	2810	2820	2830	2840	2850	2860	2870	2880	2890	2900
2. LVLav3019 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000 1/-AV-L-gen GAACCATATG GTTGAGATT TGGTTGTGA ANTCTCCCT GATACCTTT ACAAAATT CTGTGGCAAATT GTTTAGACA ATCAATGAAAAG	LV-AV-L-gen TAGGCTCAAT	GAAGGGAGGG	AATAGTGAAC	CATCAATCAA	TGATTTGGAT	GAACTGATTC	CCAATAAATT	CCACATTAGA	CTGATTAAAG	GTGAATTATC
2910 2920 2930 2940 2950 2960 2970 2980 2990 3000 LV-AV-L-gen GAACCATATG GTTGAAGATT TCGATTGTGA AATTCTGCT GATAGCATT CACAAGGAATT CTTGTGAAGAT GTTGAAGATT GAAAGAATT GATAGCATAT GTTGAAGATT GAAAGAATT GATAGCATAT GTTGAAGATT GAAAGAATT GAAAGAATT GAAAGAATT GAAAGAATT GAAAGAATT GAAAGAATT GAAAGAATT GAAAGAAATT GAAGGATAT GAAGGATAT GAAGGATT GAGAGGAGAT GTTGAAGAATT GAAGGAAAA AGAAGGAAAA AGAAGGAAAATT GAAGGAAAATT GAAGGAAAATT GAAGGAAAATT GAAGGAAAAATT GAAGGAAAATT GAAGGAAAATT GAAGGAAAACTGTC CAAGGAAAATT GAAGGAAAACTGTC CAAGAAACTGTC GAAAACAGTG GAAAACAGTG GAAAACAGTG GAAAACAGTG GAAAACAGTG GAAAACAGTGAAGAAGAAGAGAAGAGAAAG GAAAGGAAAA GAAAGGAAAA GAAAGGAAAA GAAGGCAAAAC GAGAGCCATATC ATTACAGGA AGAGCCATATC ATTACAGGA AGAGCCATATC ATTACAGGA AGAGCCATATC ATTACAGGA AGAGCCATATC ATTACAGGA AGAGCCATATC ATTACAGGA AGAGCCCTATC ATTACAGGA AG	2. LVLav3019									
2910 2920 2930 2940 2950 2960 2970 2980 2990 3000 1AV-Ligen GAACCATATG GTTGAAGATT TGGATGATT TGGATGGAT TGGATGGAT TGGATGGAT TGGATGGAT TGGATGGAT TGGATGGAT TGGATGGAT TGGAGGAT TGGAGGAGGAT TGGAGGAGGAT TGGAGGAGAT TGGAGGAGGAT TGGAGGAGGAT TGGAGGAGGAT TGGAGGAGGAT TGGAGGAGGAT TGGAGGAGGAT TGGAGGAGGAT TGGAGGAGGAT TGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGA										
LV-AV-L-gen GAACCATATG GTTGAAGATT TGGATGTGTA AATCCGCG GATAGCTTT ACAAGAAT GTTACAGCA ATCACAAAT GAAAGAAAG 1. L-AV-Diag	2910	2920	2930	2940	2950	2960	2970	2980	2990	3000
1. L-AV-Diag 3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 LV-AV-L-gen TACTTTATT GTCGTCATAT GTCCCATTGGG AACTGTCAA ACAGGACAT ATTTGACA AGAATATTTC CAGGTGTTATA ACCGTGACA ACAAGGACAT ATTTGACA AGAATATTTC CAGGTGTTATA ACCGTGTCATA ACCGTGACA ACAAGGACAT ATTTGACAAGA GAAAATATTC CAGGTGTTATA LV-AV-L-gen AATCGTGACT TTGGATATT ANGCAAATA AACTCATGGG AAAATATCT CACATAGGT CACAATAGGT CAGAAAATT GAACTTAAG TTGACACAG GAAAACTGTC	LV-AV-L-gen GAACCATATG	GTTGAAGATT	TCGATTGTGA	AATTCTGCCT	GATAGCTTTT	ACAAAGAATT	CTGTGACAAT	GTTTACAGCA	ATCACAAAAT	GAAAGAAAAG
3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 LV-AV-L-gen TACTTTATT GTGGTCATAT GTCCCAGTGT CCCATTGGGG AACTGTTAA AGCTGTGACA ACAAGGACA ATTTTGAGCA AGAATATTC CAGTGTTTAA ACTGTGACACA ACAAGGACA ATTTTGAGCA AGAATATTC CAGTGTTAA LV-AV-L-gen AATCTGTACT TTTGATATGA AATGCAATA AACTCATGGG AAAATTATTC CACTATAGGT CAGAAATT GAACTATGG AAAACTGTC 3110 3120 3130 3140 3150 3160 3170 3180 3180 3200 LV-AV-L-gen AATCTGTACT TTTGATATGA AATGCAATGG AAACTCATGG GAATATTC CACTATGGG CAGCAAAGT ATTTAAG TTGACACAG GAAAACTGTC TTGACACAG GAAAACTGTC TTGACACAG GAAAACTGTC AAAACTTTGC TTGACACAG GAAAACTGTC TTGACACAG GAAAACTGTC TTGACACAG GAAAACTGTC TTGACACAG GAAAACTGTC TTGACACAG GAAAACTGTC AAAATTATCT CACTATGAG CAGAGTAGAT ATTAAA TGACCATTGAGAAAGTAGT TGACACAG GAAAACTGTC TTGACACAG GAAAACTGTC TTGACACAG GAAAACTGTC TTGACACAGAGT TGACACAGAGT TGACACAGGT GACCAAAACTTGC TTGACACAGAGT GTGGTGATAA TTGACACAGA GAAACTTGC TTGACACAG GAAAACTGTC TTGACACAGAGT GACGAAAGGT GGGGGGATAA TGACGCAAAGGT GGGGGGATGA TGACGGGGGATGAAGTGC TACAGGGA AGGTGACCA TGCAGGAAGAGA AGGGCCAAAG TGCAGGAGAGAGA AGGTGACCA TGCAGGAGAGGATAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG	1. L-AV-Diag									
LV-AV-L-gen TACTTITATT GTGGTCATAT GTCCCAGTGT CCCATTGGGG AACTGTCTA AGCTGTGACA ACAAGGACA TATTTGACGA AGAATTTTC CACTATTGTA 1. L-AV-Diag	2010	2020	2020	2040	2050	2000	2070	2000	2000	21.00
I. L-AV-Diag. 3110 3120 3130 3140 3150 3160 3170 3180 3190 3200 LV-AV-L-gen AATCTGTACT TTTGATTATG AATGCAAATA AACTCATGGG AAAATATTCT CACTATAGGT CAAGAAATT GAACTTTAAG TTTGACACAG GAAAACTGTC 1. L-AV-Diag.	JULU	3020	3030	3040	3050	3060	3070	3080	3090	3100
1 DAV-Diag. 3110 3120 3130 3140 3150 3160 3170 3180 3190 3200 LV-AV-L-gen AATCGTGTACT TTTGATTATG AATGCAAATA AACCCATGGG AAAATATTCT CACTATAGGT CAAGAAATT GAACTTTAGG TTTGACACAG GAAAACCTATC 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300 LV-AV-L-gen AGATGATGTA AAGACCAGTG AAAGGGAAAG CAATTCTAGG GCATTGAGG AGGCCCTATC ATTAACAAT TOTACTACT CTATTATA AAACCTTTCC L-AV-Diag.	1 L-NV-Diag	GIGGICAIAI	GICCCAGIGI	CCCAIIGGGG	AACIGICIAA	AGCIGIGACA	ACAAGGACAI	ATTTIGAGCA	AGAATATITC	CAGIGITITA
3110 3120 3130 3140 3150 3160 3170 3180 3180 3190 3200 1V-AV-L-gen AATCTETACT TTTGATTAG AATGCAARTA AACCATGGG AAAATATTCT CACAGAAATT GAACTTAGG GAAAATCACGG GAAAATCT GAAAATCACGG GAAAATCT GAAAATCAGG GAAAATCAGG GAAATCAGG GAAATCAGG GAAATCAGG GAATTCTGAG GAAATCAGG GAATTCTGAG GAAATCAGG GAATTCTGAG GAATTCAGG GGATTGAGG AGGCCTATC ATTAACAAAT TGTGATCACC CATTGTTAA AAACCTTTC 4. LV-AV-L-gen AGATGATGTA AGAGTCACG AAAGGGAAAG CATTCTCAG GGCTTGAGCA AGGCCCTATC ATTAACAAAT TGTGATCACG CATTGTTAA AAACCTTTC 4. LV-AV-L-gen TTTTATAGC AAAGGGAAAG CAATTCAGG GGCCTGATAC AGGGCGATTA AGGGCAAGG GGGACGTGTAC GGAACTCACC AAATTCATCAGG GGCCTGATAC AGGCCTATC TTGAACAAGGGAAAG GGGACGTATA AGGTTGCAA GGGACGTGATA GAAGGCAACC AGATTGAGG GGCCTGATC GAGGCATTA AGGTTGCAA GGAGTGTGA GGAGGTGGAA GGAGGTGGAA GGAGGTGTGA GGAGGTGGAA GGAGGTGGAA GGAGGTGGAA	1. D-AV-Diag									
LV-AV-L-gen AATCTOTACT TTTGATTATG AATGCAAATA AACTCATGGG AAAATATTCT CACTATÄGGT CACAGAAATTT GAACTTTÄÄG TTTGACÄÄG GAAAACTGTC 1. L-AV-Diag	3110	3120	3130	3140	3150	3160	3170	3180	3190	3200
1. L-AV-Diag. 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300 LV-AV-L-gen AGATGATGTA AGAATCAGTG AAAGGGAAAG CAATTCTGAG GCATTGAGA AGGCCTTAC ATTAACAAT TGTACTG CTATGTTAAA AAACCTTTGC AAACCTTTGC AAACCTTGC 4. LVL3359D+	LV-AV-L-gen AATCTGTACT	TTTGATTATG	AATGCAAATA	AACTCATGGG	AAAATATTCT	CACTATAGGT	CAAGAAATTT	GAACTTTAAG	TTTGACACAG	GAAAACTGTC
3210 3220 3230 3240 3250 3260 3270 3280 3290 3300 LV-AV-L-gen AGATGATGTA AGAATCAGTG AAAGGGAAAG CAATTCTGAG GCATTGAGCA AGGCCTATC ATTAACAAAT TGTACTACTG CTATGTTAAA AAACCTTTGC ALV3359D+	1. L-AV-Diag									
3210 3220 3230 3240 3250 3260 3270 3280 3290 3300 3300 3300 3320 3290 3300 3300 3200 3280 3290 3200 3300 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3300 3400 3350 3360 3370 3380 3390 3400 LV-AV-L-gen TTTTAGCC ACAGGTCACC ACATCCTAC AATCCATGG GGCCTGATAC AGGGGCGATTA AAGTTCTCCT TATCAACAA GGAACGACA GGACCTAACAA										
LV-AV-L-gen AGATCATGTA AGAATCAGGG AAAGGGAAAG CAATTCTGAG GCATTGAGA AGGCCCTATC ATTAACAAAT TGTACTAGTG CTATGTTAAA AAACCTTTGC 1. L-AV-Diag	3210	3220	3230	3240	3250	3260	3270	3280	3290	3300
1. L-AV-Diag	LV-AV-L-gen AGATGATGTA	AGAATCAGTG	AAAGGGAAAG	CAATTCTGAG	GCATTGAGCA	AGGCCCTATC	ATTAACAAAT	TGTACTACTG	CTATGTTAAA	AAACCTTTGC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. L-AV-Diag									
3310332033303340335033603370338033903400LV-AV-L-gen TTTTATAGCCAAGAGTCACCACAATCCTACAATTCAGTGGGGCCTGATACAGGGCGATTAAAGTCTCCTTATCATACAAGGAACAGGTTGGAGCAGGTTLV-AV-L-gen GGGGTTTACATTGGTGATCATGGGCAAGAGTTCACAAGATTGATCAAGATTGATCAGAGTTGATAGAGTTGACAAGGTCGCATTGCATACAALV-AV-L-gen GGGGTTTACATTGGTGATCTGAGGACCAAGATGTTCACAAGATTGATGAGATTATTTTGAGGCATGAGGTTGCAATTGTCGATAAALV-AV-L-gen TAATGAAAAGGAGTTTGAGAATGCTATCTGTCTATAAACTCAATGTCTCTTTGGCACACGTCCTCTCAAGCATGGGATCATAGTAAAATGLV-AV-L-gen TAATGAAAAGGAGTTTGAGAATGCTATCTTGTCTATGAAACTCAATGTCTCTTTGGCACACGTCCTCTCAAGCATGGGATCATAGTAAAATGLV-AV-L-gen AGGGTCCATTCTTGTGTTTAGGTGTTTTACAAAACTTAATCTTTCTCTTTAAGGACAAGATTATCTTCAACATTGCLV-AV-L-gen AGGTGTCCATGGCGGTTTTAAGACGTTTAACCCAATGTCAAGGCGCACAGGGTCATACAGACTTACCTAAAACTTACLV-AV-L-gen TAACATGCCAAGGTGTCCAATGCGTGTTTACAAAACTTAATCTTTCTCTCTAAAGGACCAAGATTACCTTCAACATTGCLV-AV-L-gen TAACATGCCAAGGTGCCAATATCAATAGGTGTTTAAAGACTTATATCTTTCTCTCTAAAGGCACAAGATTACCTTCAACATTGCLV-AV-L-gen TAACATGCCAAGGTGGCCAATATAATCTTTCTCTCTAAAGGCCCACAAGATTACCTTTCAACATTGCTCAACATTGCTCAACATTGCLV-AV-L-gen AGGTGCCAATAGGTG	4. LVL3359D+	<u></u>		<u></u> >						
1V-AV-L-gen TTTTATAGCC AAGASTCACC ACAATCCTTCA AATCAGTGG GGCCTGATAC AGGCCGATTA AAGTTCTCCT TATCATACAG GGAACGGTG GGTGGTAACA 1. L-AV-Diag. 3410 3420 3430 3440 3450 3460 3470 3480 3490 3500 LV-AV-L-gen GGGAGTTGTA CATTGGTGAT CTGAGGACCA AGATGTCAC AAGASTTGAT GAAGATTATT TTGAGGCATT GAGTTGGAA TTGTCAGGAGT GTGCAGGAT GAGGATGATA TTGTCAGCA TTGCAGGAA TTGCTCAGA GAGTTGATA AGATGTCAC AAGASTTGAT GAAGATTATT TTGGGCACT GAGTTGGAA TTGTCAGGAGT GTGCCTAATA 1. L-AV-Diag.	2210	2220	2220	2240	2250	2260	2270	2200	2200	2400
IV-AV-D-gen 3410 3420 3430 3440 3450 3460 3470 3480 3490 3500 LV-AV-L-gen GGGAGTTGTA CATTGGTGAT CTGAGGACCA AGATGATCAC AGATGATGAC AGATGAC AGATGAC AGATGAC AGATGAC AGATGAC AGATGAC AGATGAC AGATGAC AGATGAC A	IN NUL CON TRADOCC	3320	3330	3340	3350	3360	3370	3380	3390	3400
3410 3420 3430 3440 3450 3460 3470 3480 3490 3500 LV-AV-L-gen GGGGGTTGTA CATTGGTGAT CTGAGGACCA AGATGTTCAC AAGATGTTCAC AAGATTGAT GAAGATTATT TTGAGGCAT GAGTTGCAA TTGTCAGGTA GTGCTTAAA 1. L-AV-Diag.	1 L-AV-Diag	AAGAGICACC	ACAAICCIAC	AATICAGIGG	GGCCIGAIAC	AGGGCGATIA	AAGIICICCI	IAICAIACAA	GGAACAGGII	GGIGGIAACA
3410 3420 3430 3440 3450 3460 3470 3480 3490 3500 LV-AV-L-gen GGGAGTTGTA CATGGTGAT CGAGGACCA AGATGTTCAC AAGATGATAT GAAGATTATT TTGGGGAT GAGTTGAAT TTGCAGGAT GAGTTGCAA TTGCCAGGTA GTGCTGTAAA 1 L-AV-Diag.	1. D AV DI09									
LV-AV-L-gen GGGAGTTGTA CATTGGTGAT CTGAGGACCA AGATGTTCAC AAGATGTTAT GAAGATTATT TTGAGGCAT GAGTTTGCAA TTGTCAGGTA GTGCCTAAA 1. L-AV-Diag. 3510 3520 3530 3540 3550 3560 3570 3580 3590 3600 1. L-AV-Diag. 3510 3520 3530 3540 3550 3560 3570 3580 3590 3600 1. L-AV-Diag. AGCATGGACA CGTCTCCTAC AGCATGGACT CATGGTAATG GGGTCCTATG 1. L-AV-Diag. 5. LVL3754A- 1. L-AV-Diag.	3410	3420	3430	3440	3450	3460	3470	3480	3490	3500
1. L-AV-Diag	LV-AV-L-gen GGGAGTTGTA	CATTGGTGAT	CTGAGGACCA	AGATGTTCAC	AAGATTGATT	GAAGATTATT	TTGAGGCATT	GAGTTTGCAA	TTGTCAGGTA	GTTGCTTAAA
3510 3520 3530 3540 3550 3560 3570 3580 3590 3600 LV-AV-L-gen TAATGAAAAG GAGTTTGAGA ATGCTATCTT GTCTATGAAA CTCAATGTCT CTTTGGCACA CGTCCCTAC AGCATGGATC ATAGTAATG GGGTCCTATG	1. L-AV-Diag									
3510 3520 3530 3540 3550 3560 3570 3580 3590 3600 3600 3600 3600 3600 3600 3610 3620 3630 3640 3650 3660 3670 3680 3690 3700 1 L-AV-Diag.										
LV-AV-L-gen TAATGAAAAG GAGTTTGAGA ATGCTATCATT GTCTATGAAA CTCAATGCTC CTTTGGCACA CGCCTCCTAC AGCATGGATC ATAGTAAATG GGGTCCTATG 1 L-AV-Diag	3510	3520	3530	3540	3550	3560	3570	3580	3590	3600
1. L-AV-Diag	LV-AV-L-gen TAATGAAAAG	GAGTTTGAGA	ATGCTATCTT	GTCTATGAAA	CTCAATGTCT	CTTTGGCACA	CGTCTCCTAC	AGCATGGATC	ATAGTAAATG	GGGTCCTATG
5. LVL3754A- <	1. L-AV-Diag									
3610 3620 3630 3640 3650 3660 3670 3680 3690 3700 LV-AV-L-gen AGTGTCCAT TCTGTTTTT AGCTGTTTA CAAAACTTAA TCTTTCTCTC TAAAGCTGACA TTAAAGGAAG AGATTATCTT TCAACATTGC 1. L-AV-Diag	5. LVL3754A-							< <u></u>		AA
LV-AV-L-gen ATGTGTCCAT TCTTGTTTTT AGCTGTTTTA CANAACTTAA TCTTTCTCC TAAAGACTTA CAAGCTGACA TTAAAGGAAG AGATTATCTT TCAACATTGC 1. L-AV-Diag 5. LVL3754A 3710 3720 3730 3740 3750 3760 3770 3780 3790 3800 LV-AV-L-gen TAACATGGCA TATGCACAAA ATGGTGAGA TACCTTTAA TGTTGTGTCA GCCATGATGA AATCATTCAT AAAAGCCCAG CTAGGTCTGA GGAAAAGCAC 3710 3720 3730 3740 3750 3760 3770 3780 3790 3800 LV-AV-L-gen TAACATGGCA TATGCACAAA ATGGTGAGA TACCTTTAA TGTTGTGTCA GCCATGATGA AATCATTCAT AAAAGCCCAG CTAGGTCTGA GGAAAAGCAC	3610	2620	2620	2640	2650	2660	2670	2690	2600	2700
LV-AV-L-gen TAACATGGC TATGCACAAA ATGGTTGAGA TACCTTTTAA TGTTGTGTCA GCCATGATGA AATCATTCAT AAAAGCCCAG CTAGGTCTGA GGAAAAGCAC J. LVLav3883 <	IV-NU-L-GOD ATCTCTCCAT	2020 ന്നനനനനന	3030 ACCTCTTTT	C7777777777777777777777777777777777777	TCTTTCTCTCTC	TAAACACTTA	CAACCTCACA	TTA A A CCA A C	7020	TCAACATTCC
5. LVL3754A ⁻ 10. 3710 3720 3730 3740 3750 3760 3770 3780 3790 3800 LV-AV-L-gen TAACATGGCA TATGCACAAA ATGGTTGAGA TACCTTTTAA TGTTGTGTCA GCCATGATGA AATCATTCAT AAAAGCCCAG CTAGGTCTGA GGAAAAGCAC 3. LVLAv3883	1 L-AV-Diag	1011011111	AGCIGITITA	Christian	1011101010	INFIGUEIIA	CHHOCIONCH	111111001110	NOATIATCIT	10AACA110C
2710 3710 3720 3730 3740 3750 3760 3770 3780 3790 3800 LV-AV-L-gen TAACATGGCA TATGCACAAA ATGGTTGAGA TACCTITTAA TGTTGTGTCA GCCATGATGA AATCATTCAT AAAAGCCCAG CTAGGTCTGA GGAAAAGCAC 3. LVLav3883 <	5. LVL3754A									
3710 3720 3730 3740 3750 3760 3770 3780 3790 3800 UV-AV-L-gen TAACATGGCA TATGCACAAA ATGGTTGAGA TACCTTTTAA TGTTGTGTCA GCCATGATGA AATCATTCAT AAAAGCCCAG CTAGGTCTGA GGAAAAGCAC 3. LVLav3883	······									
LV-AV-L-gen TAACATGGCA TATGCACAAA ATGGTTGAGA TACCTTTTAA TGTTGTGTCA GCCATGATGA AATCATTCAT AAAAGCCCAG CTAGGTCTGA GGAAAAGCAC 3. LVLav3883 <	3710	3720	3730	3740	3750	3760	3770	3780	3790	3800
3. LVLav3883 <	LV-AV-L-gen TAACATGGCA	TATGCACAAA	ATGGTTGAGA	TACCTTTTAA	TGTTGTGTCA	GCCATGATGA	AATCATTCAT	AAAAGCCCAG	CTAGGTCTGA	GGAAAAGCAC
	3. LVLav3883 <									

Abb. 4.17. Sequenz des pT-Adv-Klons 2 (L-AV-Diag) im Vergleich zur Lassavirus-AV-konsensus-Sequenz (LV-AV-L-gen) sowie Position der diagnostischen L-Gen-PCR-Primer (unterstrichen) und der Sequenzierprimer (unterstrichen). Das Insert des Klons L-AV-Diag wurde zur Herstellung in-vitro transkribierter RNA mit den Primern LVLav3019 und LVLav3883 amplifiziert und das Amplifikat durch Fällung aufgereinigt. Das gesamte Amplifikat wurde anschließend in die In-vitro-Transkription mit dem MEGAscript Kit eingesetzt. Insgesamt wurden zwei unabhängige Amplifikations-/Transkriptionsreaktionen durchgeführt. Die Qualität der RNA wurde im denaturierenden Formaldehydgel getestet (Abbildung 4.18). Es zeigte sich eine prominente RNA-Bande, d.h. die Synthese erfolgte in guter Qualität. Die Konzentration wurde spektrophotometrisch bestimmt. Pro Synthese wurden ca. 100 µg RNA mit einem OD 260/280 Verhältnis >2 erhalten.

Abb. 4.18. L-Gen In-vitro-Transkripte, aufgetrennt im Formaldehyd-Agarosegel. Die RNAs wurden in zwei unabhängigen In-vitro-Transkriptionen mittels des pT-Adv-Klons 2 (L-AV-Diag) hergestellt (A und B).

4.6.4 Vergleich verschiedener one-step RT-PCR Kits und two-step PCR

Die Optimierung erfolgte in einem Standard-PCR-Gerät (9600-Thermocycler) mit Agarosegel-Detektion. Die erhaltenen Daten sind auf den LightCycler übertragbar. Die Optimierungsexperimente erfolgten mit den Primern LVL3359A+ und LVL3754A- und üblicherweise mit in-vitro transkribierter RNA als Template.

Zuerst wurde getestet, welcher *one-step* RT-PCR Kit optimal geeignet ist. Der im Bernhard-Nocht-Institut für die meisten diagnostischen RT-PCRs verwendete Superscript/Platinum *one-step* Kit wurde mit einem neu entwickelten *one-step* Kit der Firma Qiagen verglichen. Beide Kits erreichten eine vergleichbare Sensitivität (Abbildung 4.19 A und B). Da mit ersterem Kit sehr gute und umfangreiche Erfahrungen bestehen, wurde er als Basis für weitere Experimente gewählt. Eine *twostep* Amplifikation mit separater reverser Transkription (Superscript II) und PCR (Platinum-Taq) war etwas weniger sensitiv als beide *one-step* RT-PCRs (Abbildung 4.19 C).

Abb. 4.19. Vergleich verschiedener PCR-Systeme mit den Primern LVL3359A+ und LVL3754A- und invitro transkribierter Lassavirus-RNA als Template. (A) Superscript/Platinum *one-step* Kit; (B) *one-step* Kit der Firma Qiagen; (C) *two-step* Amplifikation mitt separater reverser Transkription (Superscript II) und PCR (Platinum-Taq). Templatekonzentration Kopien/PCR: 1) 10⁶, 2) 10⁵, 3) 10⁴, 4) 10³, 5) 10², 6) 10¹, 7) 10⁰.

4.6.5 Optimierung

4.6.5.1 Optimierung der Annealingtemperatur

Die Optimierung der Annealingtemperatur erfolgte im Gradientencycler im Temperaturbereich von 55 bis 65,5°C mit verschiedenen RNA-Konzentrationen. Wie in Abbildung 4.20 ersichtlich ist, war durch Erhöhung der Annealingtemperatur bis auf 60,5°C ein geringer Zuwachs an Amplifikation-seffizienz zu erreichen. Bei höherer Temperatur sank die Effizienz drastisch ab, da offensichtlich der Schmelzpunkt der Primer überschritten wurde. Als optimale Annealingtemperatur wurde 55°C gewählt, da bei dieser Temperatur eine Differenz von 5°C zum Schmelzpunkt besteht. Damit besteht ein hinreichender Temperaturpuffer, sollte der Schmelzpunkt infolge von Primer-Template *mismatches* absinken. Außerdem ergab sich keine bedeutsame Steigerung der Amplifikationseffizienz bei Temperaturen oberhalb von 55°C.

55,0 55,2 55,7 56,6 57,8 59,1 60,5 61,8 63,1 64,2 65,0 65,5 M °C

Abb. 4.20. Abhängigkeit der PCR-Effizienz von der Annealingtemperatur. Die PCR erfolgte im Gradientencycler mit den Primern LVL3359A+ und LVL3754A- und in-vitro transkribierter Lassavirus-RNA als Template (obere Banden 10⁶ Kopien/PCR; unten 10⁵ Kopien/PCR).

4.6.5.2 Optimierung der RT-Temperatur

Der Einfluss der Temperatur während der reversen Transkription wurde im Gradientencycler im Bereich von 50 bis 60,4°C getestet. Anschließend wurde die PCR durchgeführt. Die optimale RT-Temperatur war 50°C, ab 55°C sank die Effizienz der Reaktion stark ab (Abbildung 4.21).

Abb. 4.21. Abhängigkeit der PCR-Effizienz von der RT-Temperatur. Die RT-PCR erfolgte im Gradientencycler mit den Primern LVL3359A+ und LVL3754A- und in-vitro transkribierter Lassavirus-RNA.

4.6.5.3 Optimierung der Primerkonzentration mittels Primermatrix

Die Bestimmung der optimalen Primerkonzentration erfolgte mittels einer 4x4 Primermatrix im Bereich von 100 bis 400 nM. Mit zunehmender Primerkonzentration wurde die Reaktion effizienter (Abbildung 4.22). Da höhere Konzentrationen die Effizienz hätten noch weiter steigern könnten, wurde eine erweiterte Matrix im Bereich von 200 bis 600 nM getestet (Abbildung 4.23). Als optimale Konzentrationen ergaben sich 400 nM Primer LVL3359A+ und 600 nM Primer LVL3754A-(Tabellen 4.3 und 4.4).

nM LVL3359A+ nM LVL3754A-М

Tab. 4.3. Primermatrix. Die optimalen Konzentrationen sind in der Tabelle hervorgehoben. Die Zahlen entsprechen den Bahnen in Abb. 422

Abb. 4.22. Primermatrix zur Bestimmung der optimalen Primerkonzentrationen. Die Primerkonzentrationen für jede Position sind aus Tab. 4.3 zu entnehmen.

Tab. 4.4. Erweiterte Primermatrix. Optimale Konzentrationen sind in der Tabelle hervorgehoben Die Zahlen entsprechen den Bahnen in Abb. 4.23

	nM LVL3359A+		
nM LVL3754A-	200	300	400
400	1	2	3
500	4	5	6
600	7	8	9

Abb. 4.23. Erweiterte Primermatrix zur Bestimmung der optimalen Primerkonzentrationen. Die Primerkonzentrationen für jede Position sind aus Tab. 4.4 zu entnehmen.

4.6.5.4 Optimierung der Magnesiumsulfatkonzentration

Im letzten Schritt der Optimierung wurde die Mg^{2+} -Konzentration sowohl im 9600-Thermocycler (Abbildung 4.24) als auch im LightCycler (Abbildung 4.25) optimiert. Die sensitivste Amplifikation wurde in beiden Geräten bei einer Mg^{2+} -Konzentration von 1,825 mM erreicht.

Abb. 4.24 PCR-Effizienz in Abhängigkeit von der Mg²⁺-Konzentration im 9600-Thermocycler. Mit Lassavirus-RNA verdünnt 1:10 und 1:100.

Abb. 4.25. PCR-Effizienz in Abhängigkeit von der Mg²⁺-Konzentration im LightCycler. Mit Lassavirus-RNA verdünnt 1:10 und 1:100.

4.6.6 Einfluss des RNA-Extraktes auf die RT-PCR

Alle bisherigen Optimierungsexperimente wurden unter Zusatz von negativem Extrakt durchgeführt (RNA präpariert aus negativem Serum), um den Einfluss des Extraktes mit zu berücksichtigen. Um zu testen, ob der Extrakt die Reaktionseffizienz beeinflusst, wurde die RT-PCR mit und ohne Extrakt durchgeführt (Abbildung 4.26). Die Reaktionen mit Extrakt waren sogar etwas effizienter als die Reaktionen ohne Extrakt. Das bedeutet, dass Extraktkomponenten die RT-PCR beeinflussen, aber bei der Optimierung im positiven Sinne berücksichtigt wurden.

Abb. 4.26. Einfluss des Extraktes auf die PCR-Effizienz. Templatekonzentration ca. Kopien/PCR: 1) 10^6 , 2) 10^5 , 3) 10^4 , 4) 10^3 , 5) 10^2 , 6) 10^1 .

4.6.7 Mischung mehrerer Primer zum Ausgleich von Sequenzvariabilität

Um den Effekt von häufig auftretenden Mutationen an den Primerbindungsstellen auszugleichen, wurden die modifizierten Primer LVL3359D+ und LVL3754D- synthetisiert (Abbildung 4.11). Diese Primer wurden mit den bestehenden Primern LVL3359A+ und LVL3754A- im Verhältnis 1:1 gemischt, wobei im ersten Ansatz die Gesamtmenge der Primer konstant gehalten wurde und im zweiten Ansatz die Primer additiv zugesetzt wurden. Gegenüber den Ausgangsbedingungen war die PCR mit additiver Primermischung effizienter (Abbildung 4.27).

Abb. 4.27. Effekt der Primermischung auf die PCR-Effizienz. Template: Lassavirus-RNA aus Zellkulturüberstand (1-3, 1:10 Verdünnungsreihe).

- (A) 0,4 μM LVL3359A+/0,6 μM LVL3754A-
- (B) 0,2 μM LVL3359A+/0,3 μM LVL3754A- und
 0,2 μM LVL3359D+/0,3 μM LVL3754D-
- (C) 0,4 μM LVL3359A+/0,6 μM LVL3754A- und 0,4 μM LVL3359D+/0,6 μM LVL3754D-

4.6.8 Vergleich der L-Gen-RT-PCR im 9600-Thermocycler und im LightCycler

Um zu testen, ob die auf dem 9600-Thermocycler optimierte PCR auch im LightCycler mit anschließender Gel-Detektion (d.h. ohne *SYBRGreen real-time* Detektion) durchgeführt werden kann, wurde die PCR in beiden Geräten parallel getestet (Abbildung 4.28). Es wurde eine vergleichbare Sensitivität sowohl mit Lassavirus als auch LCMV erreicht. Die L-Gen-PCR kann also ebenfalls im LightCycler ohne *real-time* Detektion durchgeführt werden.

Abb. 4.28. Vergleich der Amplifikationseffizienz im 9600-Thermocycler und LightCycler. Template: Lassavirus-RNA aus Zellkulturüberstand (1-3, 1:10 Verdünnungsreihe) und LCMV-RNA aus Zellkulturüberstand (4-6, 1:10 Verdünnungsreihe).

4.6.9 Einfluss von RNA-Extraktion und Primersynthese auf die RT-PCR-Effizienz

Um die Extraktionseffizienz des Qiagen viral RNA Kit, der für die Aufreinigung der RNA vor der PCR verwendet wurde, zu testen, wurden äquivalente Mengen an RNA entweder direkt oder nach Extraktion in die PCR eingesetzt. Es ergab sich kein Sensitivitätsverlust durch die Extraktion (Abbildung 4.29 A verglichen mit B). Der Qiagen viral RNA Kit ist somit sehr gut zur RNA-Aufreinigung im Zusammenhang mit der L-Gen-PCR geeignet.

Um mögliche Primerfehlsynthesen oder synthesespezifische Einflüsse auszuschließen, wurden die Primer LVL3359A+/LVL3359D+ und LVL3754A-/LVL3754D- nochmals von einer anderen Firma bezogen (ursprüngliche Synthese TIB-Molbiol, Berlin; Zweitsynthese MWG-Biotech, Ebersberg). Die Primer der Firma MWG ergaben eine etwas effizientere Reaktion als die der Firma TIB-Molbiol (Abbildung 4.29 A verglichen mit C).

Abb. 4.29. Einfluss der RNA-Extraktion und der Primersynthese auf die PCR-Effizienz. (A) RT-PCR mit Invitro-Transkript ohne vorherige Extraktion. (B) RT-PCR mit In-vitro-Transkript mit vorheriger Extraktion. (C) RT-PCR mit In-vitro-Transkript ohne vorherige Extraktion; neue Primer von MWG-Biotech. Template-konzentration Kopien/PCR: 1) 3,7x10⁶; 2) 3,7x10⁵; 3) 3,7x10⁴; 4) 3,7x10³; 5) 3,7x10²; 6) 3,7x10¹.

Grobe Fehler in der Primersynthese sind somit unwahrscheinlich, geringe, synthese-spezifische Differenzen scheinen aber zu bestehen. Es ist folglich empfehlenswert, Primer verschiedener Synthesen zu testen. Im Folgenden wurde mit Primern der Firma MWG-Biotech gearbeitet.

4.6.10 Vergleich der L-Gen-RT-PCR mit der etablierten S-Gen-RT-PCR

Nach der Optimierung wurde die L-Gen-RT-PCR nochmals mit der bestehenden, hoch-sensitiven S-Gen-RT-PCR verglichen. Im ersten Experiment wurden beide RT-PCRs parallel im 9600-Thermocycler durchgeführt (Abbildung 4.31). Beide RT-PCRs zeigten eine vergleichbare Sensitivität. Im zweiten Experiment wurde die L-Gen-RT-PCR nochmals im 9600-Thermocycler mit und ohne Extrakt durchgeführt, während die S-Gen-RT-PCR unter ihren Optimalbedingungen im LightCycler durchgeführt wurde (Abbildung 4.30). Das Ergebnis des ersten Experimentes wurde bestätigt; eine minimal höhere Sensitivität der S-Gen-RT-PCR ist erkennbar. Die L-Gen-RT-PCR kann trotzdem als sehr gut optimiert angesehen werden.

Abb. 4.30. Vergleich der Sensitivität (A) der L-Gen-RT-PCR im 9600-Thermocycler und (B) der S-Gen-RT-PCR im LightCycler. Template: Lassavirus-RNA aus Zellkulturüberstand (1-6, 1:10 Verdünnungsreihe).

Abb. 4.31. Vergleich der Sensitivität der L-Gen-RT-PCR (oben) und der S-Gen-RT-PCR (unten) im 9600-Thermocycler. Template: Lassavirus-RNA aus Zellkulturüberstand (1-8, 1:10 Verdünnungsreihe).

Eine unabhängige Evaluierung beider Assays wurde im Rahmen einer Qualitätskontrolluntersuchung für Lassavirus PCR durch das *European Network for Imported Viral Diseases (ENIVD)* durchgeführt. Die Testreihe bestand aus verschiedenen Ansätzen mit teilweise sehr geringen Viruskonzentrationen (Ansatz 8, 17 und 5). Beide Assays zeigten ein vergleichbares Ergebnis (Tab. 4.5).

Ansatz ID Nummer	Lassavirus- Stamm	Verdünnung des Original- materials ^b	Konzentration von S RNA (Kopien/ml) ^C	L-Gen-RT-PCR (positive Er- gebnisse)	S-Gen-RT-PCR (positive Ergeb- nisse)
11	AV	1:10 ²	540,000	4/4 (100%)	1/1 (100%)
4	AV	1:10 ³	25,000	4/4 (100%)	4/4 (100%)
8	AV	1:10 ⁴	< 2500	3/4 (75%)	4/4 (100%)
17	AV	1:10 ⁵	< 2500	2/4 (50%)	2/4 (50%)
5	AV	1:10 ⁶	< 2500	1/4 (25%)	1/4 (25%)
3	Josiah	1:10 ⁴	120,000	4/4 (100%)	2/2 (100%)
2	Josiah	1:10 ⁵	7200	4/4 (100%)	2/2 (100%)

Tab. 4.5. Leistung der L- und S-Gen-RT-PCR in der Lassavirus PCR Qualitätskontrolluntersuchung des *European Network for Imported Viral Diseases* im Jahre 2002

^a zu Einzelheiten der Qualitätskontrolluntersuchung siehe [125]. ^b durch Hitze und Bestrahlung inaktivierter Zellkulturüberstand. ^c mit quantitativer *real-time* S-Gen-PCR bestimmt [124].

4.6.11 Abschätzung der analytischen Sensitivität mittels verschiedener In-vitro-Transkripte

Zur Testung der analytischen Sensitivität wurden zunächst die beiden unabhängig voneinander hergestellten In-vitro-Transkripte in einer Verdünnungsreihe gegeneinander getestet. Mit beiden Transkripten wurde eine vergleichbare Sensitivität erreicht (Abbildung 4.32). Beide Synthesen erfolgten offensichtlich in ähnlich guter Qualität und die RNA kann zur Testung der analytischen Sensitivität eingesetzt werden.

Abb. 4.32. Testung von zwei verschiedenen In-vitro-Transkripten. Templatekonzentration Kopien/PCR: RNA-1: 1) 3,7x10⁶, 2) 3,7x10⁵, 3) 3,7x10⁴, 4) 3,7x10³, 5) 3,7x10², 6) 3,7x10¹. RNA-2: 7) 2,8x10⁷, 8) 2,8x10⁶,9) 2,8x10⁵, 10) 2,8x10⁴, 11) 2,8x10³, 12) 2,8x10².

4.6.12 Exakte Bestimmung der analytischen Sensitivität mittels PROBIT-Regressionsanalyse.

Zur genauen Bestimmung der analytischen Sensitivität wurden verschiedene RNA-Konzentrationen im Bereich der Detektionsgrenze in multiplen Ansätzen getestet. Die RNA wurde vor der Aufreinigung in negatives Serum inokuliert. Zwischen 6 und 24 Proben pro Messpunkt wurden getestet (Tabelle 4.6). Die Anzahl der positiven Reaktionen pro getestete Proben wurde der Probit-Regressionsanalyse unterzogen, um die 95%-Nachweisgrenze zu errechnen (Abb. 4.33).

Kopien/ml	Kopien/PCR	Positive pro getestete Ansätze
42857	300	6/6
12857	90	6/6
4285	30	11/12
1285	9	3/6
0	0	0/24

Tab. 4.6. Bestimmung der analytischen Sensitivität

Abb. 4.33. Nachweiswahrscheinlichkeit in Abhängigkeit von der Kopienzahl/ml Serum, errechnet mit der PROBIT-Regressionsanalyse.

Entsprechend dieser statistischen Analyse liegt die 95%-Nachweisgrenze der L-Gen-RT-PCR bei 4290 RNA Kopien/ml (95% Konfidenzintervall 3220-6680 RNA Kopien/ml Serum). Dies entspricht 30 Kopien pro PCR-Ansatz.

4.6.13 Nachweisgrenze der RT-PCR hinsichtlich infektiöser Partikel

Um die PCR-Sensitivität in herkömmlichen infektiösen Einheiten (*plaque forming units*) zu testen, wurde der Infektionsindex verschiedener Lassavirus- und LCMV-Stämme bestimmt. Eine PCR-Verdünnungsreihe der vermessenen Isolate zeigte, dass die L-Gen-RT-PCR in der Lage ist, zwischen 20-1120 PFU/ml nachzuweisen, abhängig vom getesteten Isolat (Abbildung 4.34). Dies entspricht 0,1-5 PFU pro PCR-Ansatz. Die L-Gen-RT-PCR kann also geringste Mengen infektiöser Partikel nachweisen.

Abb. 4.34. Nachweisgrenze der L-Gen-RT-PCR. Viruskonzentrationen in PFU/ml:
(A) LCMV-Armstrong: 1) 7,8x10⁴; 2) 7,8x10³; 3) 7,8x10²; 4) 7,8x10¹; 5) 7,8x10⁰
(B) LCMV-Armstrong II: 1) 2x10⁴; 2) 2x10³; 3) 2x10²; 4) 2x10¹; 5) 2x10⁰
(C) Lassavirus AV: 1) 3,7x10⁴; 2) 3,7x10³; 3) 3,7x10²; 4) 3,7x10¹; 5) 3,7x10⁰
(D) Lassavirus NL: 1) 1,1x10⁵; 2) 1,1x10⁴; 3) 1,1x10³; 4) 1,1x10²; 5) 1,1x10¹

4.6.14 Nachweis von Ippyvirus- und Mopeiavirus-RNA

Die speziesübergreifende Einsetzbarkeit der L-Gen-RT-PCR wurde zusätzlich mit RNA der Arenavirusspezies Ippyvirus und Mopeiavirus getestet. Beide Isolate ließen sich unter Standardbedingungen nachweisen (Abbildung 4.35 A und B).

Abb. 4.35. Arenavirus-L-Gen-RT-PCR mit (A) Ippyvirus-RNA: 1 - 4) Verdünnungen einer Standard-RNA-Extraktion. (B) Mopeiavirus-RNA: 1) und 2) Verdünnungen einer Standard-RNA-Extraktion. pos.) Positivkontrolle mit Lassavirus-RNA, neg.) Negativkontrolle mit negativem Extrakt.

4.6.15 Testung klinische Lassavirusproben

Die klinische Anwendbarkeit der L-Gen-RT-PCR wurde an verschiedenen klinischen Materialien von mit Lassavirus infizierten Personen oder LCMV infizierten Tieren untersucht. Alle mit anderen PCRs früher als positiv getesteten Lassavirusseren als auch ein Liquor waren positiv (Serum Lassavirus CSF war auch in früheren PCR-Testungen negativ) (Abbildung 4.36).

Abb. 4.36. Testung klinischer Lassavirusproben.

1) Serum Lassa AV 7.1.00; 2) Probe 1, 1:10; 3) Serum Lassa AV 8.1.00; 4) Probe 3, 1:10; 5) Probe 3, 1:100; 6) Serum Lassa NL-2; 7) Serum Lassa NL-3;8) Serum Lassa CSF (erwartet negativ); 9) Liquor Lassa CSF.

4.6.16 Testung klinischer LCMV-Proben

Die L-Gen-RT-PCR war ebenfalls in der Lage, LCMV-RNA in verschiedenen Geweben von Affen, die an Callitrichid-Hepatitis gestorben waren, nachzuweisen. Callitrichid-Hepatitis ist ein durch LCMV hervorgerufenes Lassafieber ähnliches Krankheitsbild bei Neuwelt-Affen. LCMV-RNA konnte in Serum, Urin, Leber, Darm, Milz und Lunge nachgewiesen werden (Abb. 4.37).

M 1 2 3 4 5 6 7 8 9 10 neg. 11 12

Abb. 4.37. Testung klinischer LCMV-Proben von Affen mit Callitrichid-Hepatitis.
(A) 1) Tier 5871 Niere; 2) Probe 1, 1:10; 3) Tier 5871 Milz, 4) Probe 3, 1:10; 5) Tier 1893 Leber; 6) Probe 5, 1:10; 7) Tier 1802 Leber; 8) Probe 7, 1:10.

(B) 1) Tier 5871 Leber-1; 2) Probe 1, 1:10; 3) Tier 5871 Leber-2; 4) Probe 3, 1:10; 5) Tier 1802 Lunge; 6)
Probe 5, 1:10; 7) Tier 1802 Darm; 8) Probe 7, 1:10; 9) Tier 1802 Milz; 10) Probe 9, 1:10; 11) Tier 5871
Serum; 12) Tier 5871 Urin.

Zusammenfassend kann festgestellt werden, dass die L-Gen-RT-PCR in der Lage ist, sowohl Lassavirus als auch LCMV in verschiedenen klinischen Materialien nachzuweisen. Der Nachweis gelingt außerdem bei Ippyvirus- und Mopeiavirus-RNA, für die keine klinischen Materialien zur Verfügung standen, da sie nicht humanpathogen sind.

4.6.17 Ausführliches Protokoll zu den Reaktionsbedingungen der Arenavirus-L-Gen-RT-PCR

RNA-Aufreinigung für zellfreie Flüssigkeiten:

QIAamp viral RNA Kit (Qiagen)

RNA-Aufreinigung für Zellen/Gewebe:

1. Zerkleinerung der Gewebe in 500 μ l Puffer RLT (Qiagen) mittels Kugelmühle FP120

2. RNeasy Extraktion Kit (Qiagen)

Als optimale Reaktionsbedingungen für den Superscript/Platinum Kit wurde ermittelt:

Primer :

LVL3359A-plus	AGAATTAGTGAAAGGGAGAGCAATTC
LVL3359D-plus	AGAATCAGTGAAAGGGAAAGCAATTC
LVL3754A-minus	CACATCATTGGTCCCCATTTACTATGATC
LVL3754D-minus	CACATCATTGGTCCCCATTTACTGTGATC

1. LightCycler

Endkonzentration

H ₂ O	1,3 µl	
BSA 1 μg/μl	0,8 µl	40 ng/µl
Puffer 2x	10,0 µl	
MgSO₄ 25 mM	0,5 µl	(gesamt Mg ²⁺ 1,825 mM)
Primer LVL3359A+ 10 µM	0,8 µl	0,4 µM
Primer LVL3359D+ 10 µM	0,8 µl	0,4 µM
Primer LVL3754A- 10 µM	1,2 µl	0,6 µM
Primer LVL3754D- 10 µM	1,2 µl	0,6 µM
RNA Extrakt	3,0 µl	-
Enzym	0,4 µl	
Gesamt	20,0 µl	

Reverse Transkription	
50°C	30 min RT
Initiale Denaturierung	
95°C	5 min
PCR 10 touch-down Zyklen	
95°C	5 sec
60°C - 50°C , -1°C /Zyklus	5 sec
72°C	25 sec
PCR 40 Zyklen	
95°C	5 sec
56°C	10 sec
72°C	25 sec

2. 9600-Thermocycler (200 µl Tubes)

95°C

55°C

72°C

Finale Extension 72°C Kühlung 8°C

H_2O Puffer 2x MgSO ₄ 25 mM Primer LVL3359A+ 10 μM Primer LVL3359D+ 10 μM Primer LVL3754A- 10 μM Primer LVL3754D- 10 μM RNA Extrakt Enzym	2,1 µl 10,0 µl 0,5 µl 0,8 µl 0,8 µl 1,2 µl 1,2 µl 3,0 µl 0,4 µl	(gesamt Mg ²⁺ 1,825 mM) 0,4 μM 0,4 μM 0,6 μM 0,6 μM
Gesamt	20,0 µl	
Reverse Transkription 50°C Initiale Denaturierung	30 min	
95°C PCR 45 Zyklen	2 min	

20 sec

1 min

1 min

10 min

Endkonzentration

74

4.7 Etablierung von RT-PCR-Assays zum Nachweis von Neuwelt-Arenaviren der Gruppe-B

Die L-Gen-PCR kann nur Altwelt-Arenaviren nachweisen. Für die humanpathogenen Neuwelt-Arenaviren wurden separate PCRs etabliert. Die größte Anzahl Sequenzen für Neuwelt-Arenaviren war für das Nukleoprotein-Gen (NP) auf der S-RNA verfügbar. Für alle Gruppe-B Neuwelt-Arenaviren (Guanarito-, Junin-, Machupo-, Sabiá-, Tacaribe-, Cupixi- und Amaparivirus) konnten vollständige NP-Gen-Sequenzen aus der Sequenzdatenbank bezogen werden [126-131]. Zusätzlich standen eine große Anzahl Guanarito- und Juninvirus-Sequenzen für einen Abschnitt des NP-Gens zur Verfügung. Für das L-Gen existierte zu diesem Zeitpunkt fast keine Sequenzinformation. Aus Mangel an nativem Virusmaterial war auch eine eigene Sequenzierung des L-Gens, wie bei den Altwelt-Arenaviren, nicht möglich. Die Suche nach konservierten PCR-Regionen für die Neuwelt-Arenavirus PCRs war daher auf die S-RNA beschränkt. Es wurden insgesamt drei verschiedene PCR-Tests etabliert: 1. ein konventioneller PCR-Test, der alle Neuwelt-Arenaviren der Gruppe-B amplifiziert. Die Gruppe-B enthält alle bekannten humanpathogenen Vertreter der Neuwelt-Arenaviren. 2. ein *real-time* Assay mit *Fluoreszenz-Resonanz-Energie-Transfer* (FRET) Sondendetektion für den LightCycler zum Nachweis von Guanaritovirus und 3. ein *real-time* Assay mit FRET-Sondendetektion für den LightCycler zum Nachweis von Juninvirus.

4.7.1 Identifizierung geeigneter Targetregionen

Für die Identifizierung geeigneter Targetregionen für die Bindung von Primern und Sonden wurde auf die Region mit der umfassendsten Anzahl von Sequenzen zurückgegriffen. Diese Region befindet sich im Nukleoprotein. Ein initiales Alignment der Sequenzen der Gruppe-B Viren führte zur Identifizierung von zwei relativ konservierten Sequenzen, die als Primerbindungsstellen verwendbar waren. Zum Ausgleich von Variabilität an beiden Orten wurden verschiedene *add-in* Primer hergestellt (Abb. 4.38, GuaS2041a+/GuaS2041b+ und GuaS2333a-/GuaS2333b-/GuaS2333c-).

4.7.1.1 Machupovirus und andere Gruppe-B-Viren

Abbildung 4.38 zeigt die konservierten Regionen im NP-Gen von Gruppe-B Viren, die zur Detektion mittels konventioneller PCR unter Verwendung von fünf Primern geeignet sind.

2010 2020 2030 2040 2050 2070 2080 2060 Guanarito UUCAAGGUCC UUUAAUAGUA UGCCGUGUGA GUGCCUACUU CCAUUUUUAA AACCUUUCUC AUCAUGAGGU UUUCUGAAAC HRS <E L D G H S G N к F G Е C KLLI К DHP KRF b _NUCLEOCAPSID PROTEIN_b_ b b b b Guanarito ..

 Junin MC2
 U.U..U
 C.U..AG.
 A.
 U.G.A
 C.
 U.
 G.

 Junin-1
 U.U.U
 C.U.AG.
 A.
 U.G.A
 C.
 U.
 G.

 Junin-1
 U.U.U
 C.U.AG.
 A.
 U.G.A
 C.
 U.
 G.

 Junin-2
 U.U.U
 C.U.AG.
 A.
 U.G.A
 C.
 U.
 G.

 Junin-3
 U.U.U
 C.U.AG.
 A.
 U.G.A
 C.
 U.
 G.

 Junin-4
 U.U.U
 C.U.AG.
 A.
 U.G.A
 C.
 U.
 G.

 GuaS2041a+> .C......>

 Amapari
 C....A.U...A.
 U....G.
 U....G
 U....G
 U....U.
 U....U.

 Cupixi
 C....A.
 G..A.
 A...A.
 A.U.G.A
 G. C.C.U.
 C....

 Sabia
 ...U.
 ...GC.AC.
 C.A.
 A...G.A
 G. C.C.
 U...
 C.AU.

 Tacaribe
 C...U.
 ...CU.A.
 A.U.G.C
 ...U.C.
 U.C.
 U.C.

 Machupo
 C.G.U.U.U.GCUC.AG.
 A.U.G.G
 ...G.G.G.C.
 U.C.
 U.C.
 A.

 GuaS2041b+G. .G..C.....> 2310 2320 2330 2340 2350 2360 2370 2380 Guanarito ACUUGUGUUG UCCCAAGACC UCCCGAGUAU UUGUGACCUU GAUCCAAUAU AUGGCCAACC CUCCCCAGAC AAACACAGCU G L I Q S R S G I Y P W G E <S T N DWSR EGS LCLK b b b b Guanarito GuaS2333a- <<u>.....</u>

 Junin MC2
 ...
 U.
 ...
 G. U.UG.
 ...
 U. G. A.
 A.
 A.
 G. G. A.
 U.

 Junin-1
 ...
 ...
 G. U.UG.
 U. G. A.
 A.
 A.
 G. A.
 U.

 Junin-2
 ...
 U.
 ...
 G. U.UG.
 U. G.
 A.
 A.
 A.
 G.
 A.
 U.
 Junin-4
 A.
 G.
 A.
 G.
 A.
 U.
 U.
 U.
 U.
 U.
 U.
 Junin-4
 A.
 A.
 G.
 A.
 G.
 A.
 U.
 Junin-4
 A.
 G.
 G.
 A.
 U.</td GuaS2333c- <<u>.....U....</u>G....UG....

 Tacaribe
 G.C......G.U.G.U.G..C.UA....C.U.GA.G.U....G.A.A.U...U.

 Amapari
U.U.

 Amaphi
U.

 Machupo
U.

 GuaS2333b-<<u>.....</u>U.A..A.. ...

Abb. 4.38. Sequenzalignment der Gruppe-B Neuwelt-Arenaviren und der entsprechenden PCR-Primer (unterstrichen). Ein Punkt im Alignment ist eine Übereinstimmung mit der Referenzsequenz.

4.7.1.2 Guanaritovirus

Die konservierten Regionen für die Primer und FRET-Sonden zur Detektion von Guanaritovirus sind in Abbildung 4.39 dargestellt. Für den spezifischen Nachweis von Guanaritovirus wurden nur die Primer GuaS2041a+ und GuaS233a- in Kombination mit den folgenden Sonden verwendet:

Gua49_78FL GTTTTCTGAAACAGTGCACATAGTTTCCTG [3']Fluorescein GuaROX84_113 GGTTGGAAAACTGCCAACTCCACAGGATCA [5']ROX [3']Phosphate

Guanarito AF485258	2050 CCATTTTTAA GGTAAAAATT G N K F NUCLEOCAPSI	2060 AACCTTTCTC TTGGAAAGAG G K E ID PROTEIN A	2070 ATCATGAGGT TAGTACTCCA D H P	2080 TTTCTGAAAC AAAGACTTTG K R F C	2090 AGTGTACATA TCACATGTAT H V Y	2100 GTTTCCTGAA CAAAGGACTT N G S	2110 GAAGGTTGGA CTTCCAACCT S P Q F	2120 AAACTGCCAA TTTGACGGTT V A L	2130 CTCCACAGGA GAGGTGTCCT E V P	2140 TCAGTTGGCG AGTCAACCGC D T P P
2 GAU43686										
3 AF204180					C					
4 AF204202		с								
5 AF204200										
6. AF204190										
7. AF204198		C								
8. AF204191										
9. AF204196		C							G	
10. AF204186										
11. AF204199								.C	G	
12. AF204188	AA	.G			C					
13. GVU62564	AA	.G			C					
14. AF204187										
15. GVU62563										
16. AF204194		C			C			.T	G	
17. AF204201		C			C			.T	G	
18. AF204205							A.	T		
19. AF204197		T		C				G		
20. AF204183	G.					W.			¥R	· · · · · · · · · · · · · · · · · · ·
21. AF204204					c		G		т	A.
22. AF204189							.	• • • • • • • • • • •	1 m	A.
23. AF204193		• • • • • • • • • • •	• • • • • • • • • • •				· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • •	±	•••••••• *
24. AFZU4203					· · · · · C · · · · ·				± т	A.
25. AF204195 26 AF204195					· · · · C · · · · ·				± т	
27 AF204192	сс								т т	
28. AF204194	C								Т	
29. AF204185		. G							Т	
30. AF204207							CA.	. C	G	
31. AF204182					C	AG			TG	A.
32. AF204179		.GT	G	G.		TG		A	TG	T
33. AF204181		.GT	G	G.	C	TG		A	TG	T
GuaS2041a+ Gua49_78FL GuaROX84_11	<u></u> 3	.c	<u></u> > 	<u></u>	c	<u></u> >	<u></u>			<u></u> >
Guanarito AF485258	2310 ACTTGTGTGTTC TGAACACAAC <s n<="" t="" th=""><th>) 232(G TCCCAAGACC C AGGGTTCTGC D W S H b</th><th>0 2330 C TCCCGAGTAT G AGGGCTCATA R G L I b</th><th>) 2340 F TTGTGACCTI A AACACTGGAA Q S R b</th><th>) 2 4</th><th></th><th></th><th></th><th></th><th></th></s>) 232(G TCCCAAGACC C AGGGTTCTGC D W S H b	0 2330 C TCCCGAGTAT G AGGGCTCATA R G L I b) 2340 F TTGTGACCTI A AACACTGGAA Q S R b) 2 4					
2. GAU43686										
3. AF204180										
4. AF204202		G <u>.</u>								
5. AF204200		T								
6. AF204190		· · · · · · · · · · · · · · · · · · ·								
7. AF204198 8 AF204191		G т								
9 AF204191			Δ							
10. AF204186		Т	A							
11. AF204199		T								
12. AF204188										
13. GVU62564										
14. AF204187		4								
15. GVU62563		A								
16. AF204194		T.								
10 AF204201										
19 AF204205		• • • • • • • • • • • •		с						
20 AF204183			ак ак							
21. AF204204										
22. AF204189	G.									
23. AF204193	G	R.								
24. AF204203				A						
25. AF204195										
26. AF204192										
27. AF204206		T	T							
28. AF204184			T							
29. AF204185			T							
30. AF204207			A							
31. AF204182	T	T	A	C						
32. AF204179										
22 22201101	AA	A A	A.C							

Abb. 4.39. Sequenzalignment von Guanaritovirus-Stämmen mit den PCR-Primern und Sonden (unterstrichen). Ein Punkt im Alignment ist eine Übereinstimmung mit der Referenzsequenz.

4.7.1.3 Juninvirus

Die konservierten Regionen für die Primer und FRET-Sonden zur Detektion von Juninvirus sind in Abbildung 4.40 dargestellt. Für den spezifischen Nachweis von Juninvirus wurden nur die Primer GuaS2041a+ und GuaS2333c- verwendet sowie die folgenden Sonden:

Jun87_115FL TGGAACAATGCCATCTCAACAGGGTCAGT [3']Fluorescein JunROX120_45 GGTCCTTCAATGTCGAGCCAAAGGGT [5']ROX [3']Phosphate

2 JUNSRNA	070 AC CATTT TG GTAAAA	2080 ITAAA AATTT	20 CCCTTTCT GGGAAAGA	90 CA TCATGT GT AGTACA	2100 GGTT CCAA D K	2140 GCTGGAA CGACCTT	2150 CAACGCCATC GTTGCGGTAG	2160 TCAACAGGGT AGTTGTCCCA	2170 CAGTAGCTGG GTCATCGACC T 2 P	2180 TCCTTCAATG AGGAAGTTAC	2190 TCGAGCCAAA AGCTCGGTTT D. L. W. L.	2200 GGGTATTGGT CCCATAACCA T N T
	b		b	b	1 10	<u>v</u> 1	NUCLEOCAPS	ID PROTEIN	b	b I	b i i i	b
1. JUNSRNA												
2. JVU70803												
3. JVU70804												
4. JVU70802	••••••											
8. JVU80009	••••••	• • • • •		• • • • • • • •	• • • •	.T	T T	• • • • • • • • • • •	G		• • • • • • • • • • •	G
10. AF264270						.T	T		G			
11. AF264271						.T	T		G			
12. AF264267			Τ			.T	T		G			
13. AF264268			Τ			.T	<u>T</u>		G			
14. AF264255	••••••			• • • • • • • •		.T	T		G			
16 AF264256				•••••••		. 1 Т	т. т.		G			G
17. AF264266						.T	T. T		G			G
18. AF264272						.TA	T		G			
19. AF264273			Τ			.T	T					
20. AF264264	··· ···· <u>·</u>					.T	T	· · · · · · · · · · · · · · · · · · ·	G			· · · · · · · · · · · · · · · · · · ·
21. AF264237	C			• • • • • • • •		.T	T	A.	G			A
22. AF264276 23. AF264254	G						···· ···				A	
24. AF264259						.T	T		G			
25. AF264260						.T	T		G			
26. AF264274						.T	T		G	A		G
27. AF264236	C					.T	TT	A.	G			A
28. AF264257	•• ••••			• • • • • • • •		.T	T		G	• • • • • • • • • • •	• • • • • • • • • • •	
30 AF264242	••••••	• • • • •		•••••••	• • • •	. 1 Т	тт		G		Δ	Δ
31. AF264245						.T	T		G		A	
32. AF264252						.T	T		GC			
33. AF264256						.T	T		G			
34. AF264261			T.			.T	<u>T</u>		G			
35. AF264238	C		T.	• • • • • • • •		.T	T	A.	G		G.	A
30. AF264253 37 AF264263	••••••	• • • • •		• • • • • • • •		.1 T	I т		GC			
38. AF264239	C					.TA	T		G			
39. AF264248						.T	T	A.				
40. AF264275	C					.T	T		G			
41. AF264249						.T	<u>T</u>	A.	G		A	
42. AF264246	••••••			• • • • • • • •		.T	T	A.	G	• • • • • • • • • • •		
43. AF264247 44 AF264243	••••••	• • • • •	т	•••••••	• • • •	. 1 Т	тт	A.	G			G
45. AF264251						.T	T		GC			
46. AF264240			T.			.T	T		G.G			G
47. AF264241			T.			.T	T		G.G			G
48. AF264250			T	.G		.T	<u>T</u>	A.	.GG			G
49. AF264242	••••••	• • • • •	T.	• • • • • • • • •		.T	T	• • • • • • • • • • •	G.G		• • • • • • • • • • •	G
GuaS2041a+												
Jun 87-115F	T.						T		>			
Jun ROX120	45								<u></u> .			>
	233	LO	2320	233	0	2340	2350	2360	2370	2380		
JUNSRNA	CCAGCAAC.	IG GI	I'TCCTTGT	CAGATCAAT	A CITO	GIGIIGI	CCCATGACCT	GCCTATGATT	TGTGATCTGG	AACCAATATA		
	G A V	P I	K R T	L D T	S '	T N D	W S R	G T T	ACACIAGACC	G T V		
	S A V	b	li i i i i i i i i i i i i i i i i i i) 	b	, D	NUCLEOCAPSI	D PROTEIN b	2 D K D			
1. JUNSRNA												
2. JVU70803												
3. JVU70804												
4. JVU/U802		• • • •			• • • • •			G	 D			
5. 50000009		• • • •			• • • • •				A.			
GuaS2333c-					<			G				

Abb. 4.40. Sequenzalignment von Juninvirus-Stämmen mit den entsprechenden PCR-Primern und Sonden (unterstrichen). Ein Punkt im Alignment ist eine Übereinstimmung mit der Referenzsequenz.

4.7.2 Herstellung synthetischer Targetregionen

4.7.2.1 Zusammenbau der Targetregion mit langen Oligonukleotiden

Native Virus-RNA stand nicht zur Verfügung. Die Targetregionen mussten synthetisch hergestellt werden. Zur Herstellung synthetischer Transkripte der Targetregionen von Guanarito-, Junin- und Machupovirus wurden lange Oligonukleotide synthetisiert und durch eine schrittweise PCR zusammengefügt. Die Oligonukleotide umfassen die gesamte Targetregion der diagnostischen PCRs für diese drei Viren. Beispielhaft sind diese Oligonukleotide und ihre Position innerhalb der Targetregion für Guanaritovirus dargestellt (Abbildung 4.41).

Gua-A+	atcga	attcTGCC	GTGTGA G	IGCCTACTI	CCATTTT	TAA AACC	TTT <u>CTC A</u>	<u>FCATGAGG</u>	TTTCTGA	<u>L</u>
Gua-B+	CTC A	TCATGAGG	T TTTCTGA	AAAC AGTO	GTACATA G	TTTCCTGA	A GAAGGT	rgga aaag	CTGCCA	
Gua-C+	A GAA	GGTTGGA	AAACTGCC	<u>a</u> a ctccao	CAGGA TCA	GTTGGCG	GGCCTTCA	AT GTCCAT	ICCAG	
Gua-D+	GGCCT	TCAAT GT	CCATCCAG	ATTGTGTG	CTG ATGAA	TCTAA TT	TCCTCATT	GCTTCCT	TTA CGA	
Gua-E-	TCCTC	ATT GCTT	CCTTTA CO	<u>GA</u> TCGCTTC	C TTGCATT	TCA GA <u>AA</u>	GATTTG AT	TAGTCTGAT	<u>r at</u>	
Gua-F-	AAGAT	TTG ATAG	TCTGAT A	<u>T</u> TTTGTCC	A TTCTTTT	CAG <u>GAGC</u>	TCGGGG A	CCTGTTAC	Ŧ	
Gua-G-	GAGCT	CGGGG AC	<u>CTGTTACA</u>	GGTCTTGC	CAT TTAAA	TCGAC <u>AC</u>	TTGTGTTG	TCCCAAGA	ACC	
Gua-H-	ACTTG	TGTTG TC	<u>CCAAGACC</u>	TCCCGAGI	TAT TTGTG	ACCTT GA	TCCAATAT	gaattcato	2	
Gua 2021-2	10 TGCCGTGTGA ACGGCACACT	20 GTGCCTACTT CACGGATGAA	30 CCATTTTTAA GGTAAAAATT	40 AACCTTTCTC TTGGAAAGAG	50 ATCATGAGGT TAGTACTCCA	60 TTTCTGAAAC AAAGACTTTG	70 AGTGTACATA TCACATGTAT	80 GTTTCCTGAA CAAAGGACTT	90 GAAGGTTGGA CTTCCAACCT	100 AAACTGCCAA TTTGACGGT
8. Gua-A+ 3. Gua-B+ 4. Gua-C+						>				
Gua 2021-2	110 CTCCACAGGA GAGGTGTCCT	120 TCAGTTGGCG AGTCAACCGC	130 GGCCTTCAAT CCGGAAGTTA	140 GTCCATCCAG CAGGTAGGTC	150 ATTGTGTCTG TAACACAGAC	160 ATGAATCTAA TACTTAGATT	170 TTTCCTCATT AAAGGAGTAA	180 GCTTCCTTTA CGAAGGAAAT	190 CGATCGCTTC GCTAGCGAAG	200 TTGCATTTCA AACGTAAAGT
4. Gua-C+ 2. Gua-D+ 5. Gua-E-					>		<		>	
Gua 2021-2	210 GAAAGATTTG CTTTCTAAAC	220 ATAGTCTGAT TATCAGACTA	230 ATTTTGTCCA TAAAACAGGT	240 TTCTTTTCAG AAGAAAAGTC	250 GAGCTCGGGG CTCGAGCCCC	260 ACCTGTTACA TGGACAATGT	270 GGTCTTGCAT CCAGAACGTA	280 TTAAATCGAC AATTTAGCTG	290 ACTTGTGTTG TGAACACAAC	300 TCCCAAGACO AGGGTTCTGO
5. Gua-E- 7. Gua-F- 6. Gua-G- 9. Gua-H-	<		 		······				<	
Gua 2021-2	310 TCCCGAGTAT	320 TTGTGACCTT	330 GATCCAATAT							

AGGGCTCATA AACACTGGAA CTAGGTTATA 9. Gua-H-

Abb. 4.41. Synthetische Oligonukleotide zur Herstellung der Targetregion mittels PCR (oben) und ihre Position innerhalb der Targetregion (unten).

Der schrittweise Zusammenbau der Oligonukleotide erfolgte von innen nach außen (Abbildung 4.42). Zuerst wurde eine PCR mit den Oligonukleotiden Gua-D+ und Gua-E- durchgeführt. Um die Fehlerrate gering zu halten, erfolgte die PCR mit einem *Proofreading*-Enzym. Das Produkt wurde in eine erneute PCR eingesetzt und mit den Oligonukleotiden Gua-C+ und Gua-F- amplifiziert (Abbildung 4.43). Analog erfolgten die weiteren PCRs mit den Oligonukleotiden Gua-B+/Gua-G- und zuletzt mit Gua-A+/Gua-H-. Entsprechende PCRs wurden mit Oligonukleotiden für Juninvirus und Machupovirus durchgeführt (Abbildung 4.43).

Abb. 4.42. Schematische Darstellung der Strategie in vier PCR-Schritten zur Synthese von DNA-Fragmenten zur späteren In-vitro-Synthese von Template- und Kontroll-RNA für die Guanarito-, Junin- und Machupovirus-RT-PCRs. (A-H sind die Synthetischen Oligonukleotide zur Herstellung der Targetregion.)

Abb. 4.43. Schrittweise Verlängerung der DNA-Fragmente am Beispiel für Junin und Machupo.A: Produkt der PCR1 nach Amplifikation von Oligonukleotid D und E, ca. 100 BasenpaareB: Produkt der PCR2 nach Amplifikation von Oligonukleotid C und F, ca. 180 BasenpaareC: Produkt der PCR3 nach Amplifikation von Oligonukleotid B und G, ca. 260 BasenpaareD: Produkt der PCR4 nach Amplifikation von Oligonukleotid A und H, ca. 330 Basenpaare

Die synthetisierten DNA-Fragmente wurden in den Vektor pT-Adv kloniert (Abbildung 4.15). Das *screening* auf korrekt inserierte Fragmente erfolgte mit den Vektor-Primern puc-47 und puc-48. Es wurden jeweils eine Reihe von positiven Klonen erhalten (Abbildung 4.44 A). Von mehreren Klonen pro Virus wurde die gesamte inserierte Region sequenziert. Für alle drei Viren wurden Klone erhalten, deren Sequenz korrekt war. Lediglich bei der Guanaritovirus-Sequenz wurde eine einzelne Mutation außerhalb der Primerbindungssequenzen identifiziert. Wie sich allerdings zeigte, waren alle Sequenzen in der falschen Orientierung zum T7-Promotor in den Vektor ligiert worden. Um trotzdem das Insert transkribieren zu können, wurde ein Primer entworfen (pT-Adv 86 plus T7), der einen T7-Promotor enthält und in entgegengesetzten Richtung zum Vektoreigenen T7-Promotor liegt. Zusammen mit einem entgegengesetzten zweiten Primer (pT-Adv minus) gelang es, das Insert in der gewünschten Orientierung mit T7-Promotor für die In-vitro-Transkription zu amplifizieren (Abbildung 4.44 B). Die In-vitro-Transkription des PCR-Produktes wurde mit dem MEGAscript Kit (Ambion) durchgeführt.

Abb. 4.44. (A) *Screening*-PCR auf Klone mit Guanarito-DNA mit den Vektor-Primern puc-47 und puc-48. Klone 10, 11 und 15 enthalten das gewünschte Fragment. (B) Amplifikation des Inserts aus den Klonen mit den Primern pT-Adv-86-plus-T7 und pT-Adv-minus. (C) RNA-Bande im Formaldehyd-Gel.

Die Qualität der RNAs wurde im denaturierenden Formaldehyd-Gel getestet (Abbildung 4.44 C) Es ergaben sich saubere und deutliche RNA-Banden als Zeichen, dass die Synthese in guter Qualität erfolgt war. Die Konzentration wurde spektrophotometrisch bestimmt. Pro Synthese wurden ca. 100 μ g RNA mit einem 260/280 nm Verhältnis >2 erhalten.

4.7.3 Etablierung der Guanaritovirus-PCR

Als Basis aller PCR-Teste diente wiederum das *one-step* RT-PCR-System von Invitrogen, welches aus einer Kombination von Superscript RT und Platinum Taq besteht. Die Etablierung der PCR erfolgte mit der synthetischen RNA. Eine initiale PCR einer Verdünnungsreihe des Transkriptes zeigte, dass sowohl die Primer als auch die Sonden zur Amplifikation- bzw. Fluoreszenz-Detektion von Guanaritovirus-RNA geeignet sind (Abbildung 4.45). Der Schmelzpunkt der Sonden lag bei 58°C (Abbildung 4.46).

Abb. 4.45. Testung einer Verdünnungsreihe des Guanaritovirus-In-vitro-Transkriptes. Templatekonzentration Kopien/PCR: 1) 10⁶, 2) 10⁵, 3) 10⁴, 4) 10³, 5) 10², 6) 10¹, 7) 10⁰, 8) 10⁻¹, 9) neg..

Abb. 4.46. Schmelzpunktanalyse der Guanaritovirus-PCR-Produkte. Templatekonzentration Kopien/PCR: 1) 10⁶, 2) 10⁵, 3) 10⁴, 4) 10³, 5) 10², 6) 10¹, 7) 10⁰, 8) 10⁻¹, 9) neg..

4.7.3.1 Optimierung der Guanaritovirus-PCR

Die weitere Optimierung der PCR erfolgte hinsichtlich der Primer-, Mg²⁺- und Sondenkonzentration. Die optimalen Konzentrationen wurden mittels Matrixtitration im unteren Konzentrationsbereich ermittelt. Dieses Verfahren war auch schon bei der Arenavirus-L-Gen-PCR erfolgreich durchgeführt worden. Nach optimaler Justierung von Mg²⁺-, Primer- und Sondenkonzentration wurde die PCR erneut in einer Verdünnungsreihe getestet. Es war eine deutliche Verbesserung der Sensibilität gegenüber den Ausgangsbedingungen erkennbar (Abbildung 4.47).

Abb. 4.47. Testung einer Verdünnungsreihe des Guanaritovirus-In-vitro-Transkriptes nach Optimierung. Die Konzentration von Kurve 2 entspricht der von Kurve 1 in Abbildung 4.45. Templatekonzentration Kopien/PCR: 1) 10⁷, 2) 10⁶, 3) 10⁵, 4) 10⁴, 5) 10³, 6) 10², 7) 10¹, 8) 10⁰, 9) neg..

Weitere Optimierungsexperimente dienten dazu, den Einfluss verschiedener anderer Faktoren auf die Effizienz der PCR zu ermitteln. Damit sollte die Sensitivität der PCR wenn möglich weiter gesteigert werden. Es wurde untersucht, ob eine Erhöhung der BSA-Konzentration einen Einfluss hat. Ein signifikanter Einfluss konnte nicht nachgewiesen werden. Weiter wurde untersucht, ob eine Erhöhung der Enzymkonzentration sinnvoll ist. Ein Einfluss auf die Sensitivität konnte nicht nachgewiesen werden, obwohl das Plateau der Kurven bei hohen RNA-Konzentrationen höher lag. Auch der Einfluss unterschiedlicher Primersynthesen wurde untersucht. Eine neue Primersynthese wurde mit der alten verglichen. Beide Primerpaare erwiesen sich als gleich effizient. Zusätzlich wurde die Qualität verschiedener Synthesen der In-vitro-Transkripte untersucht. Insgesamt wurde die Synthese mit vier unterschiedlichen Plasmiden als Template durchgeführt. Alle RNA-Synthesen waren von nahezu identischer Qualität hinsichtlich ihrer Amplifikationseffizienz.

4.7.3.2 Exakte Bestimmung der analytischen Sensitivität mittels PROBIT-Regressionsanalyse

Zur genauen Bestimmung der analytischen Sensitivität wurden verschiedene RNA-Konzentrationen nahe der Detektionsgrenze in multiplen Ansätzen getestet. Die RNA wurde vor der Aufreinigung in negatives Serum inokuliert. Sechs Proben pro Messpunkt wurden getestet (Tabelle 4.7).

Kopien/ml	Kopien/PCR	Positive pro getestete Ansätze
252.000	1800	6/6
84.000	600	4/6
25.200	180	2/6
8400	60	1/6
0	0	0/6

Tab. 4.7. Bestimmung der analytischen Sensitivität der Guanaritovirus-PCR

Die Anzahl der positiven Reaktionen pro getesteter Proben wurde der Probit-Regressionsanalyse unterzogen, um die 95%-Nachweisgrenze zu errechnen (Abbildung 4.48).

Abb. 4.48. Sensitivität der Guanaritovirus-PCR. Probit-Regressionsanalyse mit den Daten aus Tabelle 4.7.

Entsprechend dieser statistischen Analyse liegt die 95%-Nachweisgrenze der Guanaritovirus-PCR bei $1,15 \ge 10^5$ RNA Kopien/ml. Dies entspricht 820 Kopien pro PCR-Ansatz.

4.7.4 Etablierung der Juninvirus-PCR

Die Etablierung der PCR erfolgte mit der oben beschriebenen synthetischen RNA. Eine initiale PCR einer Verdünnungsreihe des Transkriptes zeigte, dass sowohl die Primer als auch die Sonden zur Amplifikation bzw. Fluoreszenz-Detektion von Juninvirus-RNA geeignet sind (Abbildung 4.49). Der Schmelzpunkt der Sonden lag bei 65°C (Abbildung 4.50).

Abb. 4.49. Testung einer Verdünnungsreihe des Junivirus-In-vitro-Transkriptes. Templatekonzentration Kopien/PCR: 1) 10⁸, 2) 10⁷, 3) 10⁶, 4) 10⁵, 5) 10⁴, 6) 10³, 7)10², 8) neg..

Abb. 4.50. Schmelzpunktanalyse der Juninvirus-PCR-Produkte (s. Abb. 4.49). Templatekonzentration Kopien/PCR: 1) 10^8 , 2) 10^7 , 3) 10^6 , 4) 10^5 , 5) 10^4 , 6) 10^3 , 7) 10^2 , 8) neg..

4.7.4.1 Optimierung der Juninvirus-PCR

Optimiert wurde die PCR wie die Guanaritovirus-PCR hinsichtlich der Primer-, Mg^{2+} und Sondenkonzentration. Die optimalen Konzentrationen wurden mittels Matrixtitration im unteren Konzentrationsbereich ermittelt. Initial wurde die Mg^{2+} -Konzentration vs. Primerkonzentration gemessen. Als optimales Verhältnis ergab sich eine Mg^{2+} -Konzentration von 2,95 mM und Primerkonzentrationen zwischen 0,5 und 1,5 μ M. Bei letzteren ergaben sich die günstigsten c_t-Werte und der steilste Anstieg der Kurven. Entsprechend dem Vorgehen bei der Optimierung der Guanaritovirus-PCR, wurden auch bei der Juninvirus-PCR weitere Optimierungsexperimente unternommen, um den Einfluss verschiedener Faktoren auf die Effizienz der PCR zu ermitteln und eventuell die Sensitivität weiter zu verbessern. Eine Erhöhung der Enzym-Konzentration hatte keinen Einfluss auf die Sensitivität.

4.7.4.2 Exakte Bestimmung der analytischen Sensitivität mittels PROBIT-Regressionsanalyse

Zur Bestimmung der analytischen Sensitivität wurden verschiedene RNA-Konzentrationen nahe der Detektionsgrenze in multiplen Ansätzen getestet. Die RNA wurde vor der Aufreinigung in negatives Serum inokuliert. Zwischen 6 und 14 Proben pro Messpunkt wurden getestet (Tab. 4.8). Tab. 4.8. Bestimmung der analytischen Sensitivität der Juninvirus-PCR

Kopien/ml	Kopien/PCR	Positive pro getestete Ansätze
126.000	900	6/6
42.000	300	6/6
12.600	90	14/14
4200	30	13/14
1260	9	3/8
0	0	0/6

Die Anzahl der positiven Reaktionen pro getestete Proben wurde der Probit-Regressionsanalyse unterzogen. Die 95%-Nachweisgrenze wurde berechnet (Abbildung 4.51).

Abb. 4.51. Sensitivität der Juninvirus-PCR. Probit-Regressionsanalyse mit den Daten aus Tabelle 4.8.

Entsprechend dieser statistischen Analyse liegt die 95%-Nachweisgrenze der Juninvirus-PCR bei 4180 RNA Kopien/ml. Dies entspricht 30 Kopien pro PCR-Ansatz.

4.7.5 Testung der Guanaritovirus- und Juninvirus-PCR mit unterschiedlichen klinischen Materialien

Zur Testung der PCR mit verschiedenen Geweben wurde zunächst untersucht, welche Mengen Gewebe der PCR zugesetzt werden können, ohne dass eine signifikante Hemmung entsteht. Bei bis zu 6 mg Gewebe war keine Reduktion der Signalintensität erkennbar (Abbildung 4.52).

Abb. 4.52. Einfluss der Gewebemenge auf die Synthese des spezifischen PCR-Produktes (Pfeil).

Um zu demonstrieren, dass die Guanarito-PCR und die Juninvirus-PCR in der Lage sind, Virus in verschiedenen Geweben und Körperflüssigkeiten nachzuweisen, wurden Organproben von Mäusen (Darm, Milz, Leber, Lunge, Hirn, Niere) sowie humane Körperflüssigkeiten (Liquor, Urin, Plasma) mit einer geringen Menge Transkript versetzt, die RNA aufgereinigt und per PCR getestet. Entsprechend der obigen Analyse wurden ca. 6 mg Gewebe eingesetzt. Virus-RNA konnte in allen Geweben und Körperflüssigkeiten nachgewiesen werden (Abbildung 4.53). Die Schmelzkurvenanalyse bestätigt den spezifischen Nachweis (Abbildung 4.54).

Abb. 4.53. Nachweis von Juninvirus-RNA in verschiedenen Geweben und Körperflüssigkeiten. 1) Darm,
2) Milz; 3) Leber; 4) Lunge; 5) Hirn; 6) Niere; 7) 11) 12) Negativ Kontrollen; 8) Liquor; 9) Urin; 10) Plasma

Abb. 4.54. Schmelzkurvenanalyse der in Geweben nachgewiesenen Juninvirus-RNA. 1) Darm,2) Milz;3) Leber; 4) Lunge; 5) Hirn; 6) Niere; 7) 11) 12) Negativ Kontrollen; 8) Liquor; 9) Urin; 10) Plasma

Am Ende des Versuchszeitraums war es möglich, den Juninvirus-Impfstamm zu erhalten. Das Virus wurde in Zellkultur angezüchtet, die RNA präpariert und mit der PCR in einer Verdünnungsreihe getestet. Über mehrere Log-Stufen Verdünnung wurde ein klares Signal erhalten (Abbildung 4.55). Dies zeigt, dass die PCR nicht nur synthetische RNA, sondern auch RNA aus Virions amplifizieren und per Fluoreszenz nachweisen kann.

Abb.4.55. Amplifikation und Detektion des Juninvirus-Impfstammes aus Zellkulturmaterial. Verdünnungsreihe: 22) unverdünnte aufgereinigte RNA, 23) 10⁻¹, 24) 10⁻², 25) 10⁻³, 26) 10⁻⁴, 27) 10⁻⁵, 28) 10⁻⁶, 29) neg..

4.7.6 Etablierung der Neuwelt-Arenavirus Gruppe-B übergreifenden PCR

Die Gruppe-B übergreifende PCR wurde mit der synthetischen Machupovirus-RNA optimiert. Die Optimierung der PCR hinsichtlich der Primer-, und Mg²⁺-Konzentration erfolgte im *real-time* Format mit *SYBRGreen* als Reporterfarbstoff. Die optimalen Konzentrationen wurden mittels Matrixtitration im unteren Konzentrationsbereich ermittelt. Beispielhaft ist die Gruppe-B-PCR mit *SYBRGreen*-Detektion in einer Verdünnungsreihe der Machupovirus-RNA dargestellt (Abbildung 4.56). Der Schmelzpunkt der Amplifikate liegt bei 84°C (Abbildung 4.57).

Abb. 4.56. Testung einer Verdünnungsreihe des Machupovirus In-vitro-Transkriptes. Detektion erfolgte mit *SYBRGreen*. Templatekonzentration Kopien/PCR: 1) 10⁵, 2) 10⁴, 3) 10³, 4) 10², 5) 10¹.

Abb. 4.57. Schmelzpunktanalyse der PCR-Produkte der Machupovirus-PCR. Templatekonzentration Kopien/PCR: 1) 10⁵, 2) 10⁴, 3) 10³, 4) 10², 5) 10¹.

4.7.6.1 Spezifität und Sensitivität der Gruppe-B-PCR

Mit der Gruppe-B-PCR sollte es möglich sein Machupo-, Guanarito- und Juninvirus-RNA nachzuweisen. Um dies zu zeigen wurde die Gruppe-B-PCR mit Verdünnungsreihen aller drei RNAs durchgeführt. Der Amplifikation aller drei RNAs war möglich. Die Sensitivität des Nachweises lag zwischen 10² und 10³ Kopien RNA pro Reaktionsansatz (Abb. 4.58).

Abb. 4.58. Nachweis von Machupo-, Guanarito- und Juninvirus-RNA mit der Gruppe-B-PCR.

Um zu demonstrieren, dass die Gruppe-B-PCR in der Lage ist, Virus in verschiedenen Geweben und Körperflüssigkeiten nachzuweisen, wurden Organproben von Mäusen (Darm, Milz, Leber, Lunge, Hirn, Niere) sowie humane Körperflüssigkeiten (Liquor, Urin, Plasma) mit einer geringen Menge Transkript versetzt, die RNA aufgereinigt und per PCR getestet. Es wurden ca. 6 mg Gewebe eingesetzt. Virus-RNA konnte in allen Geweben und Körperflüssigkeiten nachgewiesen werden (Abbildung 4.59).

1 2 3 4 5 6 7 8 9 10 11 12 PK

Abb. 4.59. Nachweis von Machupovirus-RNA in verschiedenen Geweben und Körperflüssigkeiten. 1) Darm;
2) Milz; 3) Leber; 4) Lunge; 5) Hirn; 6) Niere; 7) 11) 12) Negativ Kontrollen; 8) Liquor; 9) Urin; 10) Plasma;
PK) pos. Kontrolle ohne Gewebe.

Nach Abschluss der Optimierung war es möglich, neben dem Juninvirus-Impfstamm auch Tacaribevirus (beide Gruppe-B der Neuwelt-Arenaviren) zu erhalten. Die Viren wurden in Zellkultur angezüchtet, die RNA präpariert und mit der Gruppe-B-PCR in Verdünnungsreihen getestet. Über mehrere Log-Stufen Verdünnung wurde ein klares Signal erhalten (Abbildung 4.60). Dies zeigt, dass die Gruppe-B-PCR nicht nur synthetische RNA, sondern auch native RNA aus Virions amplifizieren kann.

Abb. 4.60. Amplifikation und Detektion von Tacaribevirus und des Juninvirus-Impfstammes aus Zellkulturmaterial (1:10 Verdünnungsreihen).

4.7.7 Reagenzien und Reaktionsbedingungen der neu etablierten Neuwelt-Arenavirus Gruppe-B PCRs

RNA-Aufreinigung für zellfreie Flüssigkeiten:

QIAamp viral RNA Kit (Qiagen)

RNA-Aufreinigung für Zellen/Gewebe:

1. Zerkleinerung der Gewebe in 500 µl Puffer RLT (Qiagen) mittels Kugelmühle FP120

2. RNeasy Extraktion Kit (Qiagen)

Primer:

GuaS2041a+	CCATTTTTAAACCCTTTCTCATCATG
GuaS2041b+	CCATTTTTGAAGCCCTTCTCATCATG
GuaS2333a-	CAAATACTCGGGAGGTCTTGGGACAACAC
GuaS2333b-	CAAATTCTTGGGAGATCTTGGGACAACAC
GuaS2333c-	CAAATCATCGGCAGGTCATGGGACAACAC

Sonden:

Jun87_115FL	TGGAACAATGCCATCTCAACAGGGTCAGT [3']Fluorescein
JunROX120_45	GGTCCTTCAATGTCGAGCCAAAGGGT [5']ROX [3']Phosphate
Gua49_78FL	GTTTTCTGAAACAGTGCACATAGTTTCCTG [3']Fluorescein
GuaROX84_113	GGTTGGAAAACTGCCAACTCCACAGGATCA [5']ROX [3']Phosphate

1. Nachweis von Guanaritovirus mit FRET-Sonden (PCR-1)

	Ausgangs- konzentration	Volumen (µl)	Endkonzentration	
Primer GuaS2041a+	10 µM	1,5	0,75 μM	
Primer GuaS2333a-	10 µM	1,5	0,75 μM	
Sonde Gua49_78FL	10 µM	1,5	0,75 μM	
Sonde GuaROX84_113	10 µM	0,3	0,15 µM	
Mg ²⁺	50 mM	0,7	Gesamt 2,95 mM	
2x Reaktionsmix	2x	10	1x	
Bovines Serum Albumin (BSA)	1 mg/ml	0,8	40 ng/ml	
H ₂ O		0,3		
Enzym Mix		0,4		
RNA Extrakt		3		
Gesamt		20		

	Ausgangs- konzentration	Volumen (µl)	Endkonzentration
Primer GuaS2041a+	10 µM	1,5	0,75 μM
Primer GuaS2333c-	10 µM	1,5	0,75 μM
Sonde Jun87_115FL	10 µM	0,3	0,15 μM
Sonde JunROX120_45	10 μM 0,3		0,15 µM
Mg ²⁺	50 mM	0,7	Gesamt 2,95 mM
2x Reaktionsmix	2x	10	1x
Bovines Serum Albumin (BSA)	1 mg/ml	0,8	40 ng/ml
H ₂ O		1,5	
Enzym Mix		0,4	
RNA Extrakt		3	
Gesamt		20	

2. Nachweis von Juninvirus mit FRET-Sonden (PCR-2)

LightCycler Programm für Guanarito- und Juninvirus-PCR

Schritt	Zyklen	Tempe ratur (°C)	Zeit	Wechsel rate (°C/s)	Zweite Zieltem peratur (°C)	Schritt größe (°C)	Schritt- verzö- gerung	Messmodus
RT	1	50	30:00	20	0	0	0	kein
Denatu- rierung	1	95	03:00	20	0	0	0	kein
Touch-	10	95	00:05	20	0	0	0	kein
aown		60	00:05	20	50	1	0	kein
		72	00:20	20	0	0	0	kein
Zyklen	40	95	00:05	20	0	0	0	kein
		55	00:10	20	0	0	0	einmal
		72	00:20	20	0	0	0	kein
Schmelz-	1	95	00:05	20	0	0	0	kein
KUIVE		45	00:15	20	0	0	0	kein
		85	00:00	0,1	0	0	0	kontinuierlich
Kühlen	1	40	02:00	20	0	0	0	kein

	Ausgangs- konzentration	Volumen (µl)	Endkonzentration	
Primer GuaS2041a+	10 µM	1	0,5 µM	
Primer GuaS2041b+	10 µM	1	0,5 µM	
Primer GuaS2333a-	10 µM	1	0,5 µM	
Primer GuaS2333b-	10 µM	1	0,5 µM	
Primer GuaS2333c-	10 µM	1	0,5 µM	
Mg ²⁺	50 mM	0,5	Gesamt 2,45 mM	
2x Reaktionsmix	2x	10	1x	
Bovines Serum Albumin (BSA)	1 mg/ml	0,8	40 ng/ml	
H ₂ O		0,3		
Enzym Mix		0,4		
RNA Extrakt		3		
Gesamt		20		

3. Nachweis von Gruppe-B Neuwelt-Arenaviren im Agarosegel (PCR-3)

LightCycler Programm für Gruppe-B-PCR

Schritt	Zyklen	Tempe ratur (°C)	Zeit	Wechsel- rate (°C/s)	Zweite Zieltem- peratur (°C)	Schritt- größe (°C)	Schritt- verzö- gerung	Messmodus
RT	1	50	30:00	20	0	0	0	kein
Denatu- rierung	1	95	03:00	20	0	0	0	kein
Touch-	10	95	00:05	20	0	0	0	kein
aown		60	00:05	20	50	1	0	kein
		72	00:20	20	0	0	0	kein
Zyklen	35	95	00:05	20	0	0	0	kein
		55	00:10	20	0	0	0	kein
		65	00:20	20	0	0	0	kein
		80	00:15	20	0	0	0	einmal
Schmelz- kurve	1	95	00:05	20	0	0	0	kein
		60	00:15	20	0	0	0	kein
		95	00:00	0,1	0	0	0	kontinuierlich
Kühlen	1	40	02:00	20	0	0	0	kein

5 Diskussion

Die L-RNA von drei Lassavirusstämmen aus drei unterschiedlichen Regionen Westafrikas wurde sequenziert. Durch eine aufwendige Analyse des L-Gens und L-Proteins wurden zahlreiche Daten über dessen Struktur und Phylogenese gewonnen. Eine mögliche RNA-Polymerase-Domäne konnte durch Homologievergleich identifiziert werden. Die vorhergesagten Sekundärstrukturelemente in dieser Domäne waren vergleichbar mit denen in kristallographischen 3D-Strukturen von bekannten RNA-abhängigen RNA-Polymerasen von Positiv-Strang-RNA-Viren. Als bemerkenswerte Abweichungen der Arenavirus-RNA-Polymerase von den kristallographischen Strukturen wurden zwei zusätzliche Alpha-Helices zwischen den Sequenzmotiven A und B sowie eine Beta-Schleife hinter Motiv E gefunden. Ein hypothetisches Modell der Faltung der Arenavirus Polymerase-Domäne wurde abgeleitet und die Positionen hoch konservierter Bereiche in diesem Modell wurden beschrieben. Mit allen Lassavirus-Genen wurde die Phylogenese rekonstruiert. Weder Rekombination noch Reassortment konnten in der Evolution von Lassavirus nachgewiesen werden. Des Weiteren wurde eine verlässliche phylogenetische Rekonstruktion der Negativ-Strang-RNA-Viren auf Basis eines strukturvermittelten Alignments erstellt. Die neu generierten L-RNA-Sequenzdaten verschiedener Altwelt-Arenaviren waren die Grundlage für die Etablierung einer sensitiven, speziesübergreifenden Arenavirus-L-Gen-RT-PCR. Zusätzlich wurden diagnostische PCRs für die humanpathogenen Vertreter der Neuwelt-Arenaviren Guanaritovirus und Juninvirus sowie ein breit reagierender Assay zum Nachweis aller Neuwelt-Arenaviren der Gruppe-B, welche alle humanpathogenen Spezies umfasst, etabliert.

Die Sequenzanalyse der Lassavirus-L-RNA gestaltete sich aus zwei Gründen schwierig. Erstens erwies sich die Lassavirus-L-RNA über weite Abschnitte als höher variabel als erwartet, nach dem was für die S-RNA früher beschrieben wurde [78]. Viele der Primer, die nur anhand der bekannten Lassavirus-L-RNA-Sequenz (Josiah) entworfenen worden waren, waren aufgrund der Sequenzvariabilität nicht funktionell. Besonders ausgeprägt war dies bei den phylogenetisch weiter entfernten Lassavirusstämmen AV und CSF. Erst unter Einbeziehung anderer Arenavirus-Sequenzen gelang es, effektivere Primer zu synthetisieren. Die Anwendung der dreistufigen Sequenzstrategie mit diesen Primern ermöglichte eine rasche Sequenzierung trotz hoher Variabilität in den Sequenzen und stellt eine geeignete Methode für ähnliche Sequenzier-Projekte dar. Die zweite Schwierigkeit war die Amplifikation und Sequenzierung der beschriebenen stem-loop Strukturen in der intergenischen Region der L-RNA [47, 58]. Modifizierte Reaktionsbedingungen und spezielle Aufreinigungsmethoden konnten dieses Problem für die Lassavirusstämme NL und AV lösen, nicht jedoch für den CSF-Stamm. Alle Sequenzen für diesen Bereich sind identisch. Sequenzierungen der Lassavirus-S-RNA [11, 46, 78-80] zeigen ebenfalls, dass die stem-loop Struktur vollständig konserviert ist. Beides spricht für eine funktionelle Bedeutung der stem-loop Strukturen im Lebenszyklus des Virus.

Die Analyse des L-Proteins ergab einige eindeutige Ergebnisse, lässt aber eine Reihe Fragen offen. Mit der psi-BLAST-Suche konnte lediglich eine funktionelle Region, die RNA-Polymerase-Domäne identifiziert werden. Die Tatsache, dass auch andere Regionen des L-Proteins verhältnismäßig hoch konserviert sind, deutet auch auf funktionelle oder strukturelle Bedeutung dieser Regionen hin. Zu klären war außerdem die Frage, ob außerhalb der RNA-Polymerase-Domäne katalytische Regionen liegen. Die Suche nach Sequenzmotiven die spezifisch sind für virale RNA-Helikasen der Supergruppe 1, 2 und 3 [132], Methyltransferasen (involviert in RNA *capping*) oder Proteinmotive, die in der PROSITE-Datenbank gelistet sind, viel negativ aus. Das bedeutet nicht, dass entsprechende katalytische Regionen vollständig fehlen; lediglich die zur Verfügung stehenden Methoden zeigten kein Ergebnis. Bei der vorhandenen Anzahl von konservierten Bereichen im Lassavirus-L-Protein außerhalb der RNA-Polymerase-Domäne sind weitere katalytischen Regionen sogar sehr wahrscheinlich. Eine Antwort auf diese Frage könnten experimentelle Strukturuntersuchungen des L-Proteins liefern.

Innerhalb der RNA-Polymerase-Domäne lassen sich weitaus spezifischere Aussagen machen. Die strukturelle Ähnlichkeit und Sequenzhomologie zu anderen viralen RNA-Polymerasen ist offensichtlich. Das errechnete Strukturmodell kann, aufgrund der Homologien in der Sekundärstruktur als relativ verlässliche Vorhersage der Arenavirus-L-Proteinstruktur angesehen werden. Wie zu erwarten war, befinden sich die konservierten Positionen im Inneren der vorhergesagten Struktur. Ein Vorteil des Modells ist die Möglichkeit, strukturelle Unterschiede zu den bekannten Strukturen zu erkennen und eine mögliche funktionelle Bedeutung dieser Bereiche vorherzusagen. Eine zusätzliche helikale Domäne war durch das Sequenzalignment klar zu bestimmen. Mit dem Modell hat man nun die Möglichkeit, die vermutliche Position der Domäne in Beziehung zum Molekül vorherzusagen. Im Arenavirus-RNA-Polymerasemodell befindet sich die Domäne zwischen den Beta-Strängen 5 und 6, nahe dem 5'-Ende den Templates (Abbildung 4.7). Die Helices der Domän ne interagieren möglicherweise mit dem Templatestrang oder sind an der Erkennung der konservierten RNA-Termini der segmentierten Virus-RNA beteiligt, die als Promotoren für die Transkription und Replikation bei Arenaviren fungieren.

Eine Beta-Schleife im C-Terminus der HCV-Polymerase (11 und 12 in Abbildung 4.7 A) ermöglicht die selektive Bindung von einzelsträngiger Virus-RNA gegenüber doppelsträngiger RNA und sorgt zusätzlich dafür, dass die Transkription an den RNA-Termini beginnt und nicht im Verlauf des RNA-Strangs [117, 118]. Im HCV-*Minireplicon*-System ist diese Struktur essentiell für die Funktion des Enzyms [116]. Das Erkennen von einzelsträngiger Virus-RNA und die Initiation der Replikation am RNA-Terminus scheint eine Voraussetzung für die Replikation des HCV-Genoms zu sein. Ein analoges Element könnte in der Arenavirus-Polymerase vorkommen. Dies würde mit dem aktuellen Modell über die Arenavirus-Replikation und -Transkription übereinstimmen, das von einer Initiation der RNA-Synthese am RNA-Terminus ausgeht [133, 134]. Bei verschiedenen segmentierten Negativ-Strang-RNA-Viren, darunter *Bunyaviridae* und *Orthomyxoviridae*, kommt *Reassortment* der Gen-Segmente und Rekombination innerhalb der RNA-Segmente in der Natur vor [135-137]. Es gibt außerdem Hinweise dafür, dass in der Evolution von nordamerikanischen Arenaviren eine Rekombination innerhalb der S-RNA stattgefunden hat [131]. Für die eng verwandten afrikanischen Arenaviren Lassavirus und Mopeiavirus ist *Reassortment* unter Laborbedingungen beobachtet worden, wenn auch fraglich ist, ob dieses Phänomen in der Natur vorkommt [138].

In dieser Arbeit konnte kein Hinweis auf *Reassortment* oder Rekombination innerhalb der Lassavirus-Spezies gefunden werden, eine Tatsache die mit dem gängigen Modell der Evolution und Epidemiologie von Lassavirus vereinbar ist. In der Evolution von Lassavirus wird davon ausgegangen, dass sich das Virus von Osten nach Westen ausgebreitet hat [72]. Der natürliche Wirt von Lassavirus, *Mastomys natalensis*, besitz nur einen geringen räumlichen Aktionsradius, d.h. das einzelne Tier wandert keine großen Distanzen. Die verschiedenen Lassavirusstämme blieben folglich geographisch getrennt, was die Wahrscheinlichkeit für *Reassortment* oder Rekombination deutlich senkt. Die Ergebnisse der aktuellen phylogenetischen Rekonstruktion schließen *Reassortment* oder Rekombination zwischen eng verwandten, ko-zirkulierenden Stämme einer geographischen Region allerdings nicht aus.

Eine besondere Herausforderung ist die phylogenetische Rekonstruktion über die Virusfamilie hinaus. Eine RNA-abhängige RNA-Polymerase wird von vielen Virusfamilien codiert und besitzt eine Reihe konservierte Motive in den katalytischen Domänen. Diese Sequenzen scheinen für phylogenetische Analysen geeignet und es wurden schon verschiedene Versuche unternommen, die phylogenetischen Beziehungen auf Basis von RNA-Polymerasen darzustellen [81-83]. Der phylogenetische Gehalt dieser Datensätze war allerdings nicht ausreichend, um die phylogenetischen Beziehungen zwischen den meisten Taxons aufzuschlüsseln, wie moderne statistische Teste ergaben [85]. Auch phylogenetische Rekonstruktionen für segmentierte Negativ-Strang-RNA-Viren unterschieden sich beträchtlich und die Beziehungen zwischen mehreren Taxons konnten nicht aufgelöst werden [52, 84]. Bei keinem dieser Ansätze wurde die Struktur der Polymerase in den Datensätzen berücksichtigt.

Für die phylogenetische Rekonstruktion der Negativ-Strang-RNA-Viren in dieser Arbeit wurden Sekundärstrukturdaten beim Alignment der Aminosäuresequenzen berücksichtigt. Dadurch konnte die Genauigkeit des Alignment, besonders in Regionen sehr geringer Sequenzhomologie, erhöht werden. Mit Hilfe eines neuronalen Netzwerks für Sekundärstrukturvorhersagen [101] konnten alle Beta-Stränge und helikalen Elemente der katalytischen Domäne der RNA-Polymerase identifiziert werden und zu einem 313 Positionen langen Datensatz zusammengefügt werden. Verschiedene Algorithmen wurden auf den Datensatz angewandt. Alle Methoden führten zum gleichen phylogenetischen Baum und im allgemeinen zu hohen *support* Werten mit Ausnahme einiger weniger basaler Äste bei den nicht-segmentierten Negativ-Strang-RNA-Viren. Das spricht für eine relativ verlässliche phylogenetische Rekonstruktion. Unterstützt wird diese Aussage dadurch, dass mehrere früher erstellte einzelne Phylogenesen für Arenaviren [72], Bunyaviren [139, 140] und nichtsegmentierte RNA-Viren [141], mit dieser Phylogenese übereinstimmen. Der erstellten Phylogenese zu Folge können die *Arenaviridae* als Sub-Gruppe der *Bunyaviridae* angesehen werde. Arenaviren und Nairoviren sind besonders eng verwandt. Dafür, dass diese beiden Viren einen gemeinsamen direkten Vorfahren hatten, spricht auch die Entdeckung eines möglichen gemeinsamen Mechanismus bei der Spaltung des *precursor* Glykoproteins durch das zelluläre Enzym Protease SKI-1S1P [142, 143]. Das Enzym ist bisher bei keinem weiteren Virus für die Glykoproteinprozessierung beschrieben worden.

Zusammenfassend beschreibt die Arbeit die konservierte Domäne und konservierte Positionen im Arenavirus-L-Protein, was für zukünftige strukturelle, biochemische und genetische Untersuchungen von Interesse ist. Mit diesem Wissen können zum Beispiel Mutagenesestudien sehr viel gezielter durchgeführt werden. Es konnte außerdem gezeigt werden, dass die Verwendung von Strukturdaten bei der phylogenetischen Rekonstruktion von großem Nutzen sein kann. Die Kombination von Sekundärstrukturvorhersage und phylogenetischer Analyse könnte eine brauchbare Methode sein, um phylogenetische Beziehungen trotz großer evolutionärer Entfernungen aufzuschlüsseln.

Der Einsatz der Polymerase-Kettenreaktion ist heute das Standardverfahren in die Diagnostik der meisten viralen hämorrhagischen Fieber und zahlreicher anderer Virus- und Infektionskrankheiten. Die großen Vorteile dieser Methode sind die sehr hohe Sensitivität und Spezifität, der geringe Zeitaufwand und die Möglichkeit, schnell zwischen verschiedenen Spezies oder Genotypen einzelner Erregern zu differenzieren. Dem gegenüber steht die große individuelle genetische Variabilität besonders bei RNA-Viren. Sie stellt ein großes Problem für eine sichere PCR-Diagnostik dar. Um das Risiko von PCR-Fehldiagnosen durch Variabilität in den Primerbindungssequenzen auf ein Minimum zu reduzieren, müssen möglichst viele Sequenzen aller bekannten Genotypen oder phylogenetischen Gruppen beim Entwerfen der Primer berücksichtigt werden. Auch unter den Arenaviren stellt die hohe genetische Variabilität ein zunehmendes Problem für die PCR-Diagnostik dar. Für Lassavirus zeigen neuere Sequenzdaten eine hohe Variabilität über die gesamte Sequenz des S-RNA-Fragmentes, was die Sicherheit der etablierten Nachweissysteme

gesamte Sequenz des S-RNA-Fragmentes, was die Sicherheit der etablierten Nachweissysteme beeinträchtigt [11, 78, 80]. Dies bedeutet, dass die S-RNA, die für die Strukturproteine NP und GP codiert, kaum Zielsequenzen enthält, die optimal als Primebindungssequenzen geeignet sind. Polymerasegene sind aufgrund der strukturellen Zwänge dieses Enzyms im Allgemeinen hoch konserviert und daher für die PCR-Detektion besser geeignet als Strukturgene [124]. Die in dieser Arbeit gesammelten Daten über das Lassavirus-L-Gen bestätigen diese Ansicht. Neben der bekannten L-RNA-Sequenz [52], stehen jetzt zusätzlich drei vollständig sequenzierte L-RNA-Fragmente und zusätzlich zahlreiche Sequenzfragmente für die Polymerase-Domäne zur Verfügung. Unter Berücksichtigung der gewonnen Informationen über die hoch konservierten Domänen aus der Strukturvorhersage stellen diese Sequenzen eine sichere Basis für die Etablierung einer diagnostischen PCR dar. Zusätzliche Sicherheit wurde dadurch erreicht, dass die neuen Lassavirus-Sequenzen aus geographisch unterschiedlichen Regionen stammen und alle bekannten Lassavirusstämme abdecken. Bestehende Variabilität an den Primerbindungssequenzen konnte durch den gezielten Einsatz von Primerkombinationen ohne Einbußen in der Sensitivität ausgeglichen werden. Mit der neu etablierten Arenavirus-L-Gen-RT-PCR steht ein diagnostischer Test zum sicheren und, da es sich um eine one-step RT-PCR handelt, schnellen Nachweis von Lassavirus-RNA in allen üblichen klinischen Proben zur Verfügung. Die Qualität des neuen Test konnte auch in einem kürzlich durchgeführten großen europaweiten Ringversuch unter Beweis gestellt werden. Bei der neu etablierten Arenavirus-L-Gen-PCR handelt es sich um eine Spezies übergreifende PCR. Neben dem Nachweis von Lassavirus-RNA ist auch die Detektion von LCMV-RNA, Mopeiavirus-RNA und Ippyvirus-RNA möglich. Dadurch geht zwar die Spezifität für den Nachweis von Lassavirus-RNA verloren, bei einem negativen Ergebnis kann aber eine Infektion mit allen Altwelt-Arenaviren ausgeschlossen werden. Genauere Spezifizierung ist im Anschluss an ein positives Ergebnis durch andere, speziesspezifische PCRs oder Sequenzierungen möglich. Die Primerbindungsstellen der Arenavirus-L-Gen-PCR zeigen bemerkenswerte Ähnlichkeit zu den wenigen bekannten entsprechenden Sequenzen der Neuwelt-Arenaviren. Zusätzliche Sequenzinformation sollte gewonnen werden, um diese Homologie zu bestätigen und um einen entsprechenden Assay auch für diese Gruppe der Arenaviren zu entwickeln. Es sind evtl. lediglich geringe Modifikationen der hier beschriebenen L-Gen-PCR-Primer nötig, um eine L-Gen-PCR für die Neuwelt-Arenaviren zu entwickeln.

Die Arenavirus-L-Gen-RT-PCR ist ein diagnostischer Test, mit dem auch bislang unbekannte Erreger detektiert werden können. Die Detektion unbekannter Erreger stellt heute eine große Herausforderung für die virologische Diagnostik dar. Am Beispiel der nordamerikanischen Arenaviren Whitewater-Arroyovirus und Bear-Canyonvirus [144-146] lässt sich die immense Bedeutung entsprechender Diagnoseverfahren erkennen. Drei neue Spezies wurden in jüngster Zeit auch in Südamerika beschrieben (Allpahuayo-, Cupixi- und Pampavirus) [131, 147, 148]. Die systematische Suche nach neuen Arenavirusspezies in Europa und Afrika könnte erstens zur Identifizierung potentieller humanpathogener Erreger führen und zweitens könnten wichtige Daten über die Epidemiologie und Phylogenese der Altwelt-Arenaviren gewonnen werden. Die jüngst erfolgte Identifizierung eines vorher unbekannten Coronavirus als Erregers von SARS (*Severe Acute Respiratory Syndrome*) [149] mag als Beispiel für ein erfolgreiches Vorgehen dienen und die Notwendigkeit breit reagierender Testsysteme unterstreichen.

Bei der Etablierung der Neuwelt-Arenavirus-RT-PCRs stand die Verbesserung der bestehenden diagnostischen Möglichkeiten im Vordergrund der Bestrebungen. Dieses Ziel wurde mit der Etablierung der weltweit ersten *one-step real-time* RT-PCRs für den Nachweis von Guanaritovirus und
Juninvirus erreicht. Ergänzt werden diese modernen diagnostischen PCRs durch die breiter detektierende konventionelle Gruppe-B-Neuwelt-Arenavirus-PCR.

Im Zuge der Entwicklung der Neuwelt-Arenaviren-PCRs stellte sich heraus, dass suffiziente Sequenzinformation für das Entwerfen von geeigneten PCR-Primern und real-time Sonden nur für die S-RNA existiert. Eigene aufwendige Sequenzierungen, wie für das Lassavirus-L-Gen, waren von Beginn an ausgeschlossen, da von keinem der drei Virusstämme weder Viruskulturen noch echte Virus-RNA zur Verfügung standen. Aufgrund der Restriktionen im Zusammenhang mit dem Austausch von Virusmaterial hoch pathogener Viren konnte auch kein Material von Labors aus den USA organisiert werden. Der Mangel an nativem Virusmaterial führte zur Etablierung einer Methode für die Synthese von PCR-Kontrollmaterial. Die Methode ermöglicht es, in wenigen Arbeitsschritten RNA-Moleküle mit definierter Sequenz und in gewünschter Länge aus DNA-Oligonukleotiden herzustellen. Verglichen mit anderen Methoden [150-152] ist die hier gewählte Strategie einfach, schnell und kostengünstig. Die Methode könnte in der Zukunft für ähnliche Projekte hilfreich sein, besonders bei der Arbeit mit hoch pathogenen Erregern, die nicht einfach zugänglich sind. Bei allen bis heute veröffentlichten PCR-Assays für die hier behandelten Neuwelt-Arenaviren, handelt es sich um PCRs ohne real-time Detektion. Das in dieser Arbeit verwendete Verfahren, die one-step RT-PCR mit real-time Detektion, bietet eine Reihe entscheidender Vorteile. Dazu zählen der geringere Arbeits- und Zeitaufwand und die Verringerung der Kontaminationsgefahr durch Verwendung eines einzigen, verschlossenen Reaktionsgefäßes für die reverse Transkription, die PCR und die Detektion. Das Öffnen der PCR-Reaktionsgefäßes im Anschluss an die Amplifikation ist bei der real-time Detektion nicht mehr nötig. Weitere Vorteile der LightCycler-Methode gegenüber einer konventionellen PCR mit Detektion des Amplifikates in der Agarosegelelektrophorese sind ein geringerer Zeitaufwand, die gute Quantifizierbarkeit und Verringerung der Subjektivität bei der Auswertung gegenüber einer Agarosegelelektrophorese mit evtl. Mehrfachbanden. Darüber hinaus lassen sich die Ergebnisse in prozessierbaren Datenformaten erfassen, was zur Automatisierbarkeit des Verfahrens unerlässlich ist. Eine Erhöhung der Spezifität und die Verringerung der Kontaminationsgefahr durch spezifische Sonden sind, gerade bei diagnostischen Fragestellungen, als besonderer Vorteil der real-time PCR zu erwähnen.

Für die Neuwelt-Arenavirus-Gruppe-B-PCR konnte aufgrund von Sequenzvariabilität keine *realtime* Sonde entwickelt werden. Die neu etablierte *one-step* RT-PCR ist dennoch eine gute Ergänzung zu den zwei neuen *real-time* RT-PCRs, da sie speziesübergreifend RNA detektiert und somit als *screening* PCR für Gruppe-B-Neuwelt-Arenaviren angesehen werden kann. Ein negativer Befund schließt alle bekannten Neuwelt-VHF-Arenaviren aus. Bei einem positivem Befund ist der Ausschluss von Guanarito- und Juninvirus durch die spezifische PCR für diese Viren möglich. Im Zweifelsfall gelingt die Erregeridentifikation durch direkte Sequenzierung des PCR-Produktes. Zusammenfassend stehen mit den hier erarbeiteten Methoden drei sensitive Nachweisverfahren zur Verfügung, die zur routinemäßigen Diagnostik von VHF-Verdachtsfällen aus dem mittel- und südamerikanischen Raum geeignet sind. Eine sichere und schnelle Diagnose der südamerikanischen Arenaviren, die ein virales hämorrhagisches Fieber auslösen können, ist für den Erfolg einer Therapie von besonderer Bedeutung. Beispielsweise senkt die Behandlung von Juninvirusinfektionen mit Immunplasma innerhalb der ersten acht Tagen der Erkrankung die Mortalitätsrate von 20 bis 30% auf Werte um 1% [153, 154].

Die Bedeutung guter diagnostischer Methoden für exotische, in weit entfernten Regionen der Erde vorkommende Erreger, ist im Zuge des immer weiter zunehmenden interkontinentalen Reiseverkehrs groß. Auch der Bedrohung durch kriminell oder terroristisch motivierter Aktionen muss entsprechend entgegengetreten werden. Eine ausgereifte und schnelle Diagnostik ist dabei von besonders großer Bedeutung.

6 Zusammenfassung

Lassavirus ist ein bisegmentiertes RNA-Virus aus der Familie der Arenaviren. Es ist der Erreger eines in Westafrika endemischen, hämorrhagischen Fiebers: des Lassa Fiebers. Das 7000 Nukleotide-lange L-RNA Segment von Lassavirus ist genetisch kaum charakterisiert. Zu Beginn der Arbeit existierte lediglich die L-RNA Sequenz eines einzigen Lassavirusstammes. Auf dem L RNA–Segment liegt das L-Gen. Es kodiert für das L-Protein, welches RNA-abhängige RNA-Polymeraseaktivität besitzt. Erstes Ziel der Arbeit war die Generierung zusätzlicher L-RNA-Sequenzdaten, auf deren Basis konservierte Domänen und Sequenzmotive identifiziert, Strukturmodelle etabliert und phylogenetische Analysen durchgeführt werden sollten. Zweites Ziel des Projektes war die Erhöhung der Nachweissicherheit von humanpathogenen Arenaviren durch Etablierung von schnellen und breit reagierenden PCR-Assays. Arenaviren sind hoch variabel und existierende PCR-Assays können nicht sicher alle Virusstämme nachweisen. Ein Lassavirus PCR-Assay sollte auf der Basis konservierter Sequenzen im L-Gen etabliert werden.

In dieser Arbeit wurde die L-RNA von drei Lassavirusstämmen aus drei unterschiedlichen Regionen Westafrikas sequenziert. Vier konservierte Domänen wurden identifiziert, wobei die Gesamtvariabilität hoch war (20% Aminosäuresequenzdifferenz). Mittels Datenbankanalyse konnte die vermutliche RNA-Polymerase in Domäne III identifiziert werden. Die vorhergesagte Sekundärstruktur dieser Domäne entsprach weitgehend der experimentell (Kristallstrukturanalyse) bestimmten Struktur anderer viraler RNA-abhängiger RNA-Polymerasen. Als wesentliche Differenz zu den bekannten Strukturen wurde eine zusätzliche alpha-helikale Subdomäne nahe dem katalytischen Zentrum der RNA-Polymerase vorhergesagt. Die Strukturhomologien erlaubten die Entwicklung eines hypothetischen Modells der dreidimensionalen Faltung der Polymerase-Domäne des Lassavirus. Eine phylogenetischen Rekonstruktion auf der Basis der L-RNA-Sequenzen lässt vermuten, dass weder Rekombination verschiedener Virusgene noch *Reassortment* der zwei RNA-Segmente in der Evolution von Lassavirus stattgefunden haben.

Zur Etablierung einer diagnostischen PCR für Lassavirus wurden hoch konservierte Nukleotidsequenzen in der Polymerase-Domäne identifiziert. In diesen Bereichen wurden weitere Lassavirusstämme sowie andere Altwelt-Arenaviren wie Mopeia, Ippy, und lymphozytäres Choriomeningitis Virus (LCMV) sequenziert, um so viel Sequenzinformation wie möglich für das Design der Primer zu erhalten. Auf der Basis dieser Sequenzen wurde eine Einschritt L-Gen RT-PCR mit Agarosegel-Detektion etabliert. Aufgrund des hohen Grades der Sequenzkonservierung an den Primerbindungsorten ist die PCR in der Lage, neben Lassavirus alle anderen bekannten Altwelt-Arenaviren nachzuweisen. Lassavirus bzw. LCMV-RNA wurde in den verschiedensten klinischen Materialien wie Serum, Liquor, Urin, Leber, Milz und Lunge nachgewiesen. Nach gründlicher Optimierung lag die 95%-Nachweisgrenze der L-Gen RT-PCR bei 4290 RNA Kopien/ml Serum. Dies entspricht 30 Kopien pro PCR Ansatz. Für den Nachweis der humanpathogenen Neuwelt-Arenaviren Junin, Guanarito und Machupo wurden PCR-Assays im Nukleoprotein (NP)-Gen etabliert. Dies war der einzige Genbereich, in dem eine ausreichende Zahl von Sequenzen zur Identifizierung konservierter Regionen Verfügung stand. Da die Viren nicht zugänglich waren, wurden zur Etablierung der PCR-Assays die Targetregionen aller drei Viren synthetisch als DNA hergestellt, kloniert und in vitro transkribiert. Ein breit reagierender Einschritt PCR-Assay mit Agarosegel-Detektion wurde zum Nachweis aller humanpathogenen Neuwelt-Arenaviren etabliert. Für den spezifischen Nachweis von Junin- und Guanarito-Virus wurden jeweils Einschritt *real-time* PCR-Assays mit *fluorescence resonance energy transfer* (FRET)-Sondendetektion etabliert. Alle Assays wurden gründlich optimiert und mit unterschiedlichen klinischen Materialien getestet.

Mit den etablierten Einschritt RT-PCR Assays stehen für alle humanpathogenen Arenaviren schnelle und sensitive diagnostische Assays zur Verfügung, die aufgrund ihrer breiten Reaktivität eine hohe diagnostische Sicherheit hinsichtlich viraler Variabilität bieten und mit hoher Wahr-scheinlichkeit auch unbekannte Arenaviren nachweisen können.

Literaturverzeichnis

- 1. Johnson, K.M., *Virus isolation from human cases of hemorrhagic fever in Bolivia.* Proc Sor Exp Biol Med, 1965. **118**: p. 113-18.
- 2. Rowe, W.P., F.A. Murphy, G.H. Bergold, J. Casals, J. Hotchin, K.M. Johnson, F. Lehmann-Grube, C.A. Mims, E. Traub, and P.A. Webb, *Arenoviruses: proposed name for a newly defined virus group.* J Virol, 1970. **5**(5): p. 651-2.
- 3. Dalton, A.J., W.P. Rowe, G.H. Smith, R.E. Wilsnack, and W.E. Pugh, *Morphological and cytochemical studies on lymphocytic choriomeningitis virus.* J Virol, 1968. **2**(12): p. 1465-78.
- 4. Fisher-Hoch, S., *Arenavirus pathophysiologie*. The Arenaviridae, ed. M. Salvato. 1993, New York: Plenum Press. 299-323.
- 5. Frame, J.D., J.M. Baldwin, Jr., D.J. Gocke, and J.M. Troup, *Lassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings.* Am J Trop Med Hyg, 1970. **19**(4): p. 670-6.
- 6. Buckley, S.M. and J. Casals, *Lassa fever, a new virus disease of man from West Africa. 3. Isolation and characterization of the virus.* Am J Trop Med Hyg, 1970. **19**(4): p. 680-91.
- 7. Buckley, S.M., J. Casals, and W.G. Downs, *Isolation and antigenic characterization of Lassa virus*. Nature, 1970. **227**(254): p. 174.
- 8. Monath, T.P., Lassa fever. Trop Doct, 1973. 3(4): p. 155-61.
- 9. Carey, D.E., G.E. Kemp, H.A. White, L. Pinneo, R.F. Addy, A.L. Fom, G. Stroh, J. Casals, and B.E. Henderson, *Lassa fever. Epidemiological aspects of the 1970 epidemic, Jos, Nigeria.* Trans R Soc Trop Med Hyg, 1972. **66**(3): p. 402-8.
- 10. Fraser, D.W., C.C. Campbell, T.P. Monath, P.A. Goff, and M.B. Gregg, *Lassa fever in the Eastern Province of Sierra Leone, 1970-1972. I. Epidemiologic studies.* Am J Trop Med Hyg, 1974. **23**(6): p. 1131-9.
- 11. Gunther, S., P. Emmerich, T. Laue, O. Kuhle, M. Asper, A. Jung, T. Grewing, J. ter Meulen, and H. Schmitz, *Imported lassa fever in germany: molecular characterization of a new lassa virus strain.* Emerg Infect Dis, 2000. **6**(5): p. 466-76.
- 12. Freedman, D.O. and J. Woodall, *Emerging infectious diseases and risk to the traveler.* Med Clin North Am, 1999. **83**(4): p. 865-83, v.
- 13. Monath, T.P., V.F. Newhouse, G.E. Kemp, H.W. Setzer, and A. Cacciapuoti, *Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone.* Science, 1974. **185**(147): p. 263-5.
- 14. Oldstone, M.B., *The arenaviruses--an introduction.* Curr Top Microbiol Immunol, 1987. **134**: p. 1-4.
- 15. Cummins, D., D. Bennett, and S.J. Machin, *Exchange transfusion of a patient with fulminant Lassa fever.* Postgrad Med J, 1991. **67**(784): p. 193-4.
- 16. McCormick, J.B., *Epidemiology and control of Lassa fever.* Curr Top Microbiol Immunol, 1987. **134**: p. 69-78.
- Monath, T.P., P.E. Mertens, R. Patton, C.R. Moser, J.J. Baum, L. Pinneo, G.W. Gary, and R.E. Kissling, *A hospital epidemic of Lassa fever in Zorzor, Liberia, March-April 1972.* Am J Trop Med Hyg, 1973. 22(6): p. 773-9.
- Bowen, G.S., O. Tomori, H. Wulff, J. Casals, A. Noonan, and W.G. Downs, Lassa fever in Onitsha, East Central State, Nigeria in 1974. Bull World Health Organ, 1975. 52(4-6): p. 599-604.
- 19. Keenlyside, R.A., J.B. McCormick, P.A. Webb, E. Smith, L. Elliott, and K.M. Johnson, *Case-control study of Mastomys natalensis and humans in Lassa virus- infected households in Sierra Leone.* Am J Trop Med Hyg, 1983. **32**(4): p. 829-37.
- 20. Fisher-Hoch, S.P., M.E. Price, R.B. Craven, F.M. Price, D.N. Forthall, D.R. Sasso, S.M. Scott, and J.B. McCormick, *Safe intensive-care management of a severe case of Lassa fever with simple barrier nursing techniques.* Lancet, 1985. **2**(8466): p. 1227-9.
- 21. Cooper, C.B., W.R. Gransden, M. Webster, M. King, M. O'Mahony, S. Young, and J.E. Banatvala, *A case of Lassa fever: experience at St Thomas's Hospital.* Br Med J (Clin Res Ed), 1982. **285**(6347): p. 1003-5.

- Helmick, C.G., P.A. Webb, C.L. Scribner, J.W. Krebs, and J.B. McCormick, *No evidence for increased risk of Lassa fever infection in hospital staff.* Lancet, 1986. 2(8517): p. 1202-5.
- 23. Knobloch, J., J.B. McCormick, P.A. Webb, M. Dietrich, H.H. Schumacher, and E. Dennis, *Clinical observations in 42 patients with Lassa fever.* Tropenmed Parasitol, 1980. **31**(4): p. 389-98.
- 24. McCormick, J.B., I.J. King, P.A. Webb, K.M. Johnson, R. O'Sullivan, E.S. Smith, S. Trippel, and T.C. Tong, *A case-control study of the clinical diagnosis and course of Lassa fever.* J Infect Dis, 1987. **155**(3): p. 445-55.
- Cummins, D., D. Bennett, S.P. Fisher-Hoch, B. Farrar, S.J. Machin, and J.B. McCormick, Lassa fever encephalopathy: clinical and laboratory findings. J Trop Med Hyg, 1992. 95(3): p. 197-201.
- 26. Isaacson, M., *Viral hemorrhagic fever hazards for travelers in Africa.* Clin Infect Dis, 2001. **33**(10): p. 1707-12.
- 27. Jahrling, P.B., R.A. Hesse, G.A. Eddy, K.M. Johnson, R.T. Callis, and E.L. Stephen, *Lassa virus infection of rhesus monkeys: pathogenesis and treatment with ribavirin.* J Infect Dis, 1980. **141**(5): p. 580-9.
- Jahrling, P.B., C.J. Peters, and E.L. Stephen, *Enhanced treatment of Lassa fever by immune plasma combined with ribavirin in cynomolgus monkeys.* J Infect Dis, 1984. 149(3): p. 420-7.
- 29. Stephen, E.L. and P.B. Jahrling, *Experimental Lassa fever virus infection successfully treated with ribavirin.* Lancet, 1979. **1**(8110): p. 268-9.
- 30. Dvoretskaia, V.I., A.A. Evseev, G.V. Bogatikov, and V.A. Pshenichnov, [Comparative evaluation of the antiviral efficacy of virazole and ribamidil in experimental Lassa fever in monkeys]. Vopr Virusol, 1990. **35**(2): p. 151-2.
- McCormick, J.B., I.J. King, P.A. Webb, C.L. Scribner, R.B. Craven, K.M. Johnson, L.H. Elliott, and R. Belmont-Williams, *Lassa fever. Effective therapy with ribavirin.* N Engl J Med, 1986. **314**(1): p. 20-6.
- 32. Fisher-Hoch, S.P. and J.B. McCormick, *Towards a human Lassa fever vaccine*. Rev Med Virol, 2001. **11**(5): p. 331-41.
- 33. McCormick, J.B., S.W. Mitchell, M.P. Kiley, S. Ruo, and S.P. Fisher-Hoch, *Inactivated Lassa virus elicits a non protective immune response in rhesus monkeys.* J Med Virol, 1992. **37**(1): p. 1-7.
- 34. Kiley, M.P., J.V. Lange, and K.M. Johnson, *Protection of rhesus monkeys from Lassa virus by immunisation with closely related Arenavirus.* Lancet, 1979. **2**(8145): p. 738.
- Fisher-Hoch, S.P., J.B. McCormick, D. Auperin, B.G. Brown, M. Castor, G. Perez, S. Ruo, A. Conaty, L. Brammer, and S. Bauer, *Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene.* Proc Natl Acad Sci U S A, 1989. **86**(1): p. 317-21.
- 36. Walker, D.H., K.M. Johnson, J.V. Lange, J.J. Gardner, M.P. Kiley, and J.B. McCormick, *Experimental infection of rhesus monkeys with Lassa virus and a closely related arenavirus, Mozambique virus.* J Infect Dis, 1982. **146**(3): p. 360-8.
- 37. Fisher-Hoch, S.P., L. Hutwagner, B. Brown, and J.B. McCormick, *Effective vaccine for lassa fever.* J Virol, 2000. **74**(15): p. 6777-83.
- Armstrong, C. and R. Lille, Experimental lymphocytic coriomeningitis of monkeys and mice produced by a virus encountered in studies of the 1933 St. Louis encephalitis epidemic. Pub Health Rep (Washington), 1934. 49: p. 1019-27.
- Oldstone, M.B., R. Ahmed, M.J. Buchmeier, P. Blount, and A. Tishon, *Perturbation of differentiated functions during viral infection in vivo. I. Relationship of lymphocytic choriomeningitis virus and host strains to growth hormone deficiency.* Virology, 1985. 142(1): p. 158-74.
- 40. Riviere, Y., R. Ahmed, P. Southern, and M.B. Oldstone, *Perturbation of differentiated functions during viral infection in vivo. II. Viral reassortants map growth hormone defect to the S RNA of the lymphocytic choriomeningitis virus genome.* Virology, 1985. **142**(1): p. 175-82.
- 41. Oldstone, M.B., R. Ahmed, J. Byrne, M.J. Buchmeier, Y. Riviere, and P. Southern, Virus

and immune responses: lymphocytic choriomeningitis virus as a prototype model of viral pathogenesis. Br Med Bull, 1985. **41**(1): p. 70-4.

- 42. Barton, L.L., C.J. Peters, and T.G. Ksiazek, *Lymphocytic choriomeningitis virus: an unrecognized teratogenic pathogen.* Emerg Infect Dis, 1995. **1**(4): p. 152-3.
- 43. Barton, L.L. and M.B. Mets, *Congenital lymphocytic choriomeningitis virus infection: decade of rediscovery*. Clin Infect Dis, 2001. **33**(3): p. 370-4. Epub 2001 Jul 5.
- 44. Peters C.J., B.M., Rollin Pierre E., Ksiazek Thomas G., *Arenaviruses*, in *Field's Virology*. 1996, Fields Bernard N., Knipe David M., Howley Peter M. p. 1521 1551.
- 45. Auperin, D.D., M. Galinski, and D.H. Bishop, *The sequences of the N protein gene and intergenic region of the S RNA of pichinde arenavirus.* Virology, 1984. **134**(1): p. 208-19.
- 46. Auperin, D.D., D.R. Sasso, and J.B. McCormick, *Nucleotide sequence of the glycoprotein gene and intergenic region of the Lassa virus S genome RNA.* Virology, 1986. **154**(1): p. 155-67.
- 47. Salvato, M.S. and E.M. Shimomaye, *The completed sequence of lymphocytic choriomeningitis virus reveals a unique RNA structure and a gene for a zinc finger protein.* Virology, 1989. **173**(1): p. 1-10.
- 48. Salvato, M.S., K.J. Schweighofer, J. Burns, and E.M. Shimomaye, *Biochemical and immunological evidence that the 11 kDa zinc-binding protein of lymphocytic choriomeningitis virus is a structural component of the virus.* Virus Res, 1992. **22**(3): p. 185-98.
- Campbell Dwyer, E.J., H. Lai, R.C. MacDonald, M.S. Salvato, and K.L. Borden, *The lymphocytic choriomeningitis virus RING protein Z associates with eukaryotic initiation factor 4E and selectively represses translation in a RING-dependent manner.* J Virol, 2000. 74(7): p. 3293-300.
- 50. Borden, K.L., E.J. Campbelldwyer, G.W. Carlile, M. Djavani, and M.S. Salvato, *Two RING finger proteins, the oncoprotein PML and the arenavirus Z protein, colocalize with the nuclear fraction of the ribosomal P proteins.* J Virol, 1998. **72**(5): p. 3819-26.
- 51. Borden, K.L., E.J. Campbell Dwyer, and M.S. Salvato, *An arenavirus RING (zinc-binding)* protein binds the oncoprotein promyelocyte leukemia protein (*PML*) and relocates *PML* nuclear bodies to the cytoplasm. J Virol, 1998. **72**(1): p. 758-66.
- 52. Lukashevich, I.S., M. Djavani, K. Shapiro, A. Sanchez, E. Ravkov, S.T. Nichol, and M.S. Salvato, *The Lassa fever virus L gene: nucleotide sequence, comparison, and precipitation of a predicted 250 kDa protein with monospecific antiserum.* J Gen Virol, 1997. **78**(Pt 3): p. 547-51.
- 53. Salvato, M., E. Shimomaye, and M.B. Oldstone, *The primary structure of the lymphocytic choriomeningitis virus L gene encodes a putative RNA polymerase.* Virology, 1989. **169**(2): p. 377-84.
- 54. Fuller-Pace, F.V. and P.J. Southern, *Detection of virus-specific RNA-dependent RNA* polymerase activity in extracts from cells infected with lymphocytic choriomeningitis virus: in vitro synthesis of full-length viral RNA species. J Virol, 1989. **63**(5): p. 1938-44.
- 55. Singh, M.K., F.V. Fuller-Pace, M.J. Buchmeier, and P.J. Southern, *Analysis of the genomic L RNA segment from lymphocytic choriomeningitis virus.* Virology, 1987. **161**(2): p. 448-56.
- 56. Lee, K.J., I.S. Novella, M.N. Teng, M.B. Oldstone, and J.C. de La Torre, *NP and L proteins* of lymphocytic choriomeningitis virus (*LCMV*) are sufficient for efficient transcription and replication of *LCMV* genomic RNA analogs. J Virol, 2000. **74**(8): p. 3470-7.
- 57. Lopez, N., R. Jacamo, and M.T. Franze-Fernandez, *Transcription and RNA replication of tacaribe virus genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes.* J Virol, 2001. **75**(24): p. 12241-51.
- 58. Djavani, M., I.S. Lukashevich, A. Sanchez, S.T. Nichol, and M.S. Salvato, *Completion of the Lassa fever virus sequence and identification of a RING finger open reading frame at the L RNA 5' End.* Virology, 1997. **235**(2): p. 414-8.
- 59. Djavani, M., I.S. Lukashevich, and M.S. Salvato, Sequence comparison of the large genomic RNA segments of two strains of lymphocytic choriomeningitis virus differing in pathogenic potential for guinea pigs. Virus Genes, 1998. **17**(2): p. 151-5.
- 60. Iapalucci, S., N. Lopez, O. Rey, M.M. Zakin, G.N. Cohen, and M.T. Franze-Fernandez, *The* 5' region of Tacaribe virus L RNA encodes a protein with a potential metal binding domain.

Virology, 1989. 173(1): p. 357-61.

- 61. Iapalucci, S., R. Lopez, O. Rey, N. Lopez, M.T. Franze-Fernandez, G.N. Cohen, M. Lucero, A. Ochoa, and M.M. Zakin, *Tacaribe virus L gene encodes a protein of 2210 amino acid residues.* Virology, 1989. **170**(1): p. 40-7.
- 62. Zhang, L., K.A. Marriott, D.G. Harnish, and J.F. Aronson, *Reassortant analysis of guinea pig virulence of pichinde virus variants.* Virology, 2001. **290**(1): p. 30-8.
- 63. Lesburg, C.A., M.B. Cable, E. Ferrari, Z. Hong, A.F. Mannarino, and P.C. Weber, *Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site.* Nat Struct Biol, 1999. **6**(10): p. 937-43.
- 64. Poch, O., I. Sauvaget, M. Delarue, and N. Tordo, *Identification of four conserved motifs among the RNA-dependent polymerase encoding elements.* Embo J, 1989. **8**(12): p. 3867-74.
- 65. Müller, R., O. Poch, M. Delarue, D.H. Bishop, and M. Bouloy, *Rift Valley fever virus L* segment: correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerases. J Gen Virol, 1994. **75**(Pt 6): p. 1345-52.
- 66. Butcher, S.J., J.M. Grimes, E.V. Makeyev, D.H. Bamford, and D.I. Stuart, *A mechanism for initiating RNA-dependent RNA polymerization.* Nature, 2001. **410**(6825): p. 235-40.
- 67. Ago, H., T. Adachi, A. Yoshida, M. Yamamoto, N. Habuka, K. Yatsunami, and M. Miyano, *Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus.* Structure Fold Des, 1999. **7**(11): p. 1417-26.
- Bressanelli, S., L. Tomei, A. Roussel, I. Incitti, R.L. Vitale, M. Mathieu, R. De Francesco, and F.A. Rey, *Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus.* Proc Natl Acad Sci U S A, 1999. **96**(23): p. 13034-9.
- 69. Hansen, J.L., A.M. Long, and S.C. Schultz, *Structure of the RNA-dependent RNA polymerase of poliovirus.* Structure, 1997. **5**(8): p. 1109-22.
- 70. Ng, K.K., M.M. Cherney, A.L. Vazquez, A. Machin, J.M. Alonso, F. Parra, and M.N. James, *Crystal structures of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase.* J Biol Chem, 2002. **277**(2): p. 1381-7.
- 71. Ollis, D.L., P. Brick, R. Hamlin, N.G. Xuong, and T.A. Steitz, *Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP.* Nature, 1985. **313**(6005): p. 762-6.
- 72. Bowen, M.D., C.J. Peters, and S.T. Nichol, *Phylogenetic analysis of the Arenaviridae:* patterns of virus evolution and evidence for cospeciation between arenaviruses and their rodent hosts. Mol Phylogenet Evol, 1997. **8**(3): p. 301-316.
- 73. Wulff, H., J.V. Lange, and P.A. Webb, *Interrelationships among arenaviruses measured by indirect immunofluorescence*. Intervirology, 1978. **9**: p. 344-350.
- 74. Ruo, S.L., S.W. Mitchell, M.P. Kiley, L.F. Roumillat, S.P. Fisher-Hoch, and J.B. McCormick, *Antigenic relatedness between arenaviruses defined at the epitope level by monoclonal antibodies.* J Gen Virol, 1991. **72**(Pt 3): p. 549-55.
- 75. Howard, C.R., *Antigenic diversity among the Arenaviruses*, in *The Arenaviridae*, M.S. Salvato, Editor. 1993, Plenum Press: New York.
- 76. Clegg, J.C., Molecular phylogeny of the arenaviruses and guide to published sequence data. 1993.
- 77. Auperin, D.D. and J.B. McCormick, *Nucleotide sequence of the Lassa virus (Josiah strain)* S genome RNA and amino acid sequence comparison of the N and GPC proteins to other arenaviruses. Virology, 1989. **168**(2): p. 421-5.
- 78. Bowen, M.D., P.E. Rollin, T.G. Ksiazek, H.L. Hustad, D.G. Bausch, A.H. Demby, M.D. Bajani, C.J. Peters, and S.T. Nichol, *Genetic diversity among Lassa virus strains.* J Virol, 2000. **74**(15): p. 6992-7004.
- 79. Clegg, J.C., S.M. Wilson, and J.D. Oram, *Nucleotide sequence of the S RNA of Lassa virus (Nigerian strain) and comparative analysis of arenavirus gene products.* Virus Res, 1991. **18**(2-3): p. 151-64.
- 80. Gunther, S., B. Weisner, A. Roth, T. Grewing, M. Asper, C. Drosten, P. Emmerich, J. Petersen, M. Wilczek, and H. Schmitz, *Lassa fever encephalopathy: Lassa virus in cerebrospinal fluid but not in serum.* J Infect Dis, 2001. **184**(3): p. 345-9.

- 81. Bruenn, J.A., *Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases.* Nucleic Acids Res, 1991. **19**(2): p. 217-26.
- Koonin, E.V., The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol, 1991. 72(Pt 9): p. 2197-206.
- Koonin, E.V. and V.V. Dolja, Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol, 1993. 28(5): p. 375-430.
- 84. Marriott, A.C. and P.A. Nuttall, *Large RNA segment of Dugbe nairovirus encodes the putative RNA polymerase.* J Gen Virol, 1996. **77**(Pt 8): p. 1775-80.
- 85. Zanotto, P.M., M.J. Gibbs, E.A. Gould, and E.C. Holmes, *A reevaluation of the higher taxonomy of viruses based on RNA polymerases*. J Virol, 1996. **70**(9): p. 6083-96.
- 86. Trappier, S.G., A.L. Conaty, B.B. Farrar, D.D. Auperin, J.B. McCormick, and S.P. Fisher-Hoch, *Evaluation of the polymerase chain reaction for diagnosis of Lassa virus infection.* Am J Trop Med Hyg, 1993. **49**(2): p. 214-21.
- 87. Drosten, C., *Molecular diagnostic of viral hemorrhagic fevers.* Antiviral Reseach, 2003. **1783**: p. 1-27.
- Johnson, K.M., L.H. Elliott, and D.L. Heymann, *Preparation of polyvalent viral immunofluorescent intracellular antigens and use in human serosurveys*. J Clin Microbiol, 1981. 14(5): p. 527-9.
- Bausch, D.G., P.E. Rollin, A.H. Demby, M. Coulibaly, J. Kanu, A.S. Conteh, K.D. Wagoner, L.K. McMullan, M.D. Bowen, C.J. Peters, and T.G. Ksiazek, *Diagnosis and clinical virology* of Lassa fever as evaluated by enzyme- linked immunosorbent assay, indirect fluorescentantibody test, and virus isolation. J Clin Microbiol, 2000. 38(7): p. 2670-7.
- 90. Johnson, K.M., J.B. McCormick, P.A. Webb, E.S. Smith, L.H. Elliott, and I.J. King, *Clinical virology of Lassa fever in hospitalized patients.* J Infect Dis, 1987. **155**(3): p. 456-64.
- 91. WHO and W.H. Organisation, *Lassa fever, imported case, Germany.* Weekly Epidemiological Rec., 2000. **75**: p. 109.
- 92. Schmitz, H., B. Kohler, T. Laue, C. Drosten, P.J. Veldkamp, S. Gunther, P. Emmerich, H.P. Geisen, K. Fleischer, M.F. Beersma, and A. Hoerauf, *Monitoring of clinical and laboratory data in two cases of imported Lassa fever.* Microbes Infect, 2002. **4**(1): p. 43-50.
- 93. WHO and W.H. Organisation, *Lassa fever, imported case, Netherlands.* Weekly Epidemiological Rec., 2000. **75**: p. 265.
- 94. Veldkamp, P.J. and E.F. Schippers, Ned Tijdschr Geneeskd, 2002. 146(46): p. 2201-4.
- 95. Asper, M., P. Hofmann, C. Osmann, J. Funk, C. Metzger, M. Bruns, F.J. Kaup, H. Schmitz, and S. Gunther, *First outbreak of callitrichid hepatitis in Germany: genetic characterization of the causative lymphocytic choriomeningitis virus strains.* Virology, 2001. **284**(2): p. 203-13.
- 96. Swanepoel, R., P.A. Leman, A.J. Shepherd, S.P. Shepherd, M.P. Kiley, and J.B. McCormick, *Identification of Ippy as a Lassa-fever-related virus.* Lancet, 1985. **1**(8429): p. 639.
- 97. Sanger, F., S. Nicklen, and A.R. Coulson, *DNA sequencing with chain-terminating inhibitors.* Proc Natl Acad Sci U S A, 1977. **74**(12): p. 5463-7.
- 98. Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman, *Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.* Nucleic Acids Res, 1997. **25**(17): p. 3389-402.
- 99. Lupas, A., M. Van Dyke, and J. Stock, *Predicting coiled coils from protein sequences*. Science, 1991. **252**(5010): p. 1162-4.
- 100. Huber, T., A.J. Russell, D. Ayers, and A.E. Torda, *SAUSAGE: protein threading with flexible force fields.* Bioinformatics, 1999. **15**(12): p. 1064-5.
- 101. Cuff, J.A. and G.J. Barton, *Application of multiple sequence alignment profiles to improve protein secondary structure prediction.* Proteins, 2000. **40**(3): p. 502-11.
- 102. Guex, N. and M.C. Peitsch, *SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling.* Electrophoresis, 1997. **18**(15): p. 2714-23.
- 103. Peitsch, M.C., ProMod and Swiss-Model: Internet-based tools for automated comparative

protein modelling. Biochem Soc Trans, 1996. 24(1): p. 274-9.

- 104. Hooft, R.W., G. Vriend, C. Sander, and E.E. Abola, *Errors in protein structures*. Nature, 1996. **381**(6580): p. 272.
- 105. Vriend, G., WHAT IF: a molecular modeling and drug design program. J Mol Graph, 1990. **8**(1): p. 52-6, 29.
- 106. Felsenstein, J., PHYLIP (Phylogeny Inference Package) Version 3.57c. [Online] Department of Genetics, University of Washington, Washington D.C. Available from: URL: http://evolution.genetics.washington.edu/phylip.html [28 January 2000, last date accessed.]. 1995.
- 107. Sawyer, S.A., GENECONV: A computer package for the statistical detection of gene conversion. Distributed by the author, Department of Mathematics, Washington University in St. Louis, available at http://www.math.wustl.edu/~sawyer. 1999.
- 108. Strimmer, K. and A. von Haeseler, *Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment.* Proc Natl Acad Sci U S A, 1997. **94**(13): p. 6815-9.
- 109. Kumar, S., K. Tamura, I.B. Jakobsen, and M. Nei, *MEGA2: molecular evolutionary genetics analysis software.* Bioinformatics, 2001. **17**(12): p. 1244-5.
- 110. Huelsenbeck, J.P. and F. Ronquist, *MRBAYES: Bayesian inference of phylogenetic trees.* Bioinformatics, 2001. **17**(8): p. 754-5.
- 111. Jones, D.T., W.R. Taylor, and J.M. Thornton, *The rapid generation of mutation data matrices from protein sequences.* Comput Appl Biosci, 1992. **8**(3): p. 275-82.
- 112. Dayhoff, M.O., R.M. Schwartz, and B.C. Orcutt, *A model of evolutionary change in proteins*, in *Atlas of Protein Sequence and Structure*. 1978, National Biomedical Research Foundation: Washington DC. p. 345-352.
- 113. Strimmer, K. and A. von Haeseler, *Quartet puzzling: A quartet maximum likelihood method for reconstructing tree topologies.* Mol Biol Evol, 1996. **13**: p. 964-969.
- 114. Whelan, S. and N. Goldman, A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol, 2001. **18**(5): p. 691-9.
- 115. Vieth, S., A.E. Torda, M. Asper, H. Schmitz, and S. Gunther, *Sequence analysis of L RNA of Lassa virus.* Virology, 2004. **318**(1): p. 153-68.
- 116. Cheney, I.W., S. Naim, V.C. Lai, S. Dempsey, D. Bellows, M.P. Walker, J.H. Shim, N. Horscroft, Z. Hong, and W. Zhong, *Mutations in NS5B polymerase of hepatitis C virus: impacts on in vitro enzymatic activity and viral RNA replication in the subgenomic replicon cell culture.* Virology, 2002. **297**(2): p. 298-306.
- 117. Hong, Z., C.E. Cameron, M.P. Walker, C. Castro, N. Yao, J.Y. Lau, and W. Zhong, *A novel mechanism to ensure terminal initiation by hepatitis C virus NS5B polymerase.* Virology, 2001. **285**(1): p. 6-11.
- 118. Zhong, W., E. Ferrari, C.A. Lesburg, D. Maag, S.K. Ghosh, C.E. Cameron, J.Y. Lau, and Z. Hong, *Template/primer requirements and single nucleotide incorporation by hepatitis C virus nonstructural protein 5B polymerase*. J Virol, 2000. **74**(19): p. 9134-43.
- 119. Martin, D. and E. Rybicki, *RDP: detection of recombination amongst aligned sequences.* Bioinformatics, 2000. **16**(6): p. 562-3.
- Posada, D. and K.A. Crandall, Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A, 2001. 98(24): p. 13757-62.
- 121. Lunkenheimer, K., F.T. Hufert, and H. Schmitz, *Detection of Lassa virus RNA in specimens from patients with Lassa fever by using the polymerase chain reaction.* J Clin Microbiol, 1990. **28**(12): p. 2689-92.
- 122. Ter Meulen, J., K. Koulemou, T. Wittekindt, K. Windisch, S. Strigl, S. Conde, and H. Schmitz, *Detection of Lassa virus antinucleoprotein immunoglobulin G (IgG) and IgM antibodies by a simple recombinant immunoblot assay for field use.* J Clin Microbiol, 1998. 36(11): p. 3143-8.
- 123. Demby, A.H., J. Chamberlain, D.W. Brown, and C.S. Clegg, *Early diagnosis of Lassa fever* by reverse transcription-PCR. J Clin Microbiol, 1994. **32**(12): p. 2898-903.
- 124. Drosten, C., S. Gottig, S. Schilling, M. Asper, M. Panning, H. Schmitz, and S. Gunther,

Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol, 2002. **40**(7): p. 2323-30.

- 125. Niedrig, M., H. Schmitz, S. Becker, S. Gunther, J. ter Meulen, H. Meyer, H. Ellerbrok, A. Nitsche, H.R. Gelderblom, and C. Drosten, *First international quality assurance study on the rapid detection of viral agents of bioterrorism.* J Clin Microbiol, 2004. **42**(4): p. 1753-5.
- 126. Franze-Fernandez, M.T., C. Zetina, S. Iapalucci, M.A. Lucero, C. Bouissou, R. Lopez, O. Rey, M. Daheli, G.N. Cohen, and M.M. Zakin, *Molecular structure and early events in the replication of Tacaribe arenavirus S RNA.* Virus Res, 1987. **7**(4): p. 309-24.
- 127. Albarino, C.G., P.D. Ghiringhelli, D.M. Posik, M.E. Lozano, A.M. Ambrosio, A. Sanchez, and V. Romanowski, *Molecular characterization of attenuated Junin virus strains.* J Gen Virol, 1997. **78**(Pt 7): p. 1605-10.
- 128. Archer, A.M. and R. Rico-Hesse, *High genetic divergence and recombination in Arenaviruses from the Americas.* Virology, 2002. **304**(2): p. 274-81.
- 129. Ghiringhelli, P.D., R.V. Rivera Pomar, N.I. Baro, M.F. Rosas, O. Grau, and V. Romanowski, *Nucleocapsid protein gene of Junin arenavirus (cDNA sequence).* Nucleic Acids Res, 1989. **17**(19): p. 8001.
- 130. Gonzalez, J.P., M.D. Bowen, S.T. Nichol, and R. Rico-Hesse, *Genetic characterization and phylogeny of Sabia virus, an emergent pathogen in Brazil.* Virology, 1996. **221**(2): p. 318-24.
- 131. Charrel, R.N., H. Feldmann, C.F. Fulhorst, R. Khelifa, R. de Chesse, and X. de Lamballerie, *Phylogeny of New World arenaviruses based on the complete coding sequences of the small genomic segment identified an evolutionary lineage produced by intrasegmental recombination.* Biochem Biophys Res Commun, 2002. **296**(5): p. 1118-24.
- 132. Kadare, G. and A.L. Haenni, *Virus-encoded RNA helicases.* J Virol, 1997. **71**(4): p. 2583-90.
- 133. Raju, R., L. Raju, D. Hacker, D. Garcin, R. Compans, and D. Kolakofsky, *Nontemplated* bases at the 5' ends of Tacaribe virus mRNAs. Virology, 1990. **174**(1): p. 53-9.
- 134. Garcin, D. and D. Kolakofsky, *A novel mechanism for the initiation of Tacaribe arenavirus genome replication.* J Virol, 1990. **64**(12): p. 6196-203.
- 135. Henderson, W.W., M.C. Monroe, S.C. St Jeor, W.P. Thayer, J.E. Rowe, C.J. Peters, and S.T. Nichol, *Naturally occurring Sin Nombre virus genetic reassortants.* Virology, 1995. **214**(2): p. 602-10.
- 136. Zhou, N.N., D.A. Senne, J.S. Landgraf, S.L. Swenson, G. Erickson, K. Rossow, L. Liu, K. Yoon, S. Krauss, and R.G. Webster, *Genetic reassortment of avian, swine, and human influenza A viruses in American pigs.* J Virol, 1999. **73**(10): p. 8851-6.
- 137. Sibold, C., H. Meisel, D.H. Krüger, M. Labuda, J. Lysy, O. Kozuch, M. Pejcoch, A. Vaheri, and A. Plyusnin, *Recombination in Tula hantavirus evolution: analysis of genetic lineages from Slovakia.* J Virol, 1999. **73**(1): p. 667-75.
- 138. Lukashevich, I.S., *Generation of reassortants between African arenaviruses.* Virology, 1992. **188**(2): p. 600-605.
- 139. Roberts, A., C. Rossier, D. Kolakofsky, N. Nathanson, and F. Gonzalez-Scarano, Completion of the La Crosse virus genome sequence and genetic comparisons of the L proteins of the Bunyaviridae. Virology, 1995. **206**(1): p. 742-5.
- Chizhikov, V.E., C.F. Spiropoulou, S.P. Morzunov, M.C. Monroe, C.J. Peters, and S.T. Nichol, *Complete genetic characterization and analysis of isolation of Sin Nombre virus*. J Virol, 1995. 69(12): p. 8132-6.
- 141. Dhillon, J., J.A. Cowley, Y. Wang, and P.J. Walker, *RNA polymerase (L) gene and genome terminal sequences of ephemeroviruses bovine ephemeral fever virus and Adelaide River virus indicate a close relationship to vesiculoviruses.* Virus Res, 2000. **70**(1-2): p. 87-95.
- 142. Sanchez, A.J., M.J. Vincent, and S.T. Nichol, *Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus.* J Virol, 2002. **76**(14): p. 7263-75.
- 143. Lenz, O., J. ter Meulen, H.D. Klenk, N.G. Seidah, and W. Garten, *The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P.* Proc Natl Acad Sci U S A, 2001. 98(22): p. 12701-5.

- 144. Kosoy, M.Y., L.H. Elliott, T.G. Ksiazek, C.F. Fulhorst, P.E. Rollin, J.E. Childs, J.N. Mills, G.O. Maupin, and C.J. Peters, *Prevalence of antibodies to arenaviruses in rodents from the southern and western United States: evidence for an arenavirus associated with the genus Neotoma*. Am J Trop Med Hyg, 1996. **54**(6): p. 570-6.
- 145. Fulhorst, C.F., M.D. Bowen, T.G. Ksiazek, P.E. Rollin, S.T. Nichol, M.Y. Kosoy, and C.J. Peters, *Isolation and characterization of Whitewater Arroyo virus, a novel North American arenavirus.* Virology, 1996. **224**(1): p. 114-20.
- 146. Fulhorst, C.F., S.G. Bennett, M.L. Milazzo, H.L. Murray, Jr., J.P. Webb, Jr., M.N. Cajimat, and R.D. Bradley, *Bear Canyon virus: an arenavirus naturally associated with the California mouse (Peromyscus californicus).* Emerg Infect Dis, 2002. **8**(7): p. 717-21.
- 147. Lozano, M.E., D.M. Posik, C.G. Albarino, G. Schujman, P.D. Ghiringhelli, G. Calderon, M. Sabattini, and V. Romanowski, *Characterization of arenaviruses using a family-specific primer set for RT-PCR amplification and RFLP analysis. Its potential use for detection of uncharacterized arenaviruses.* Virus Res, 1997. **49**(1): p. 79-89.
- 148. Moncayo, A.C., C.L. Hice, D.M. Watts, A.P. Travassos de Rosa, H. Guzman, K.L. Russell, C. Calampa, A. Gozalo, V.L. Popov, S.C. Weaver, and R.B. Tesh, *Allpahuayo virus: a newly recognized arenavirus (arenaviridae) from arboreal rice rats (oecomys bicolor and oecomys paricola) in northeastern peru.* Virology, 2001. **284**(2): p. 277-86.
- 149. Drosten, C., S. Gunther, W. Preiser, S. van der Werf, H.R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R.A. Fouchier, A. Berger, A.M. Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J.C. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H.D. Klenk, A.D. Osterhaus, H. Schmitz, and H.W. Doerr, *Identification of a novel coronavirus in patients with severe acute respiratory syndrome.* N Engl J Med, 2003. **348**(20): p. 1967-76.
- 150. Encke, J., J. zu Putlitz, T. Heintges, and J.R. Wands, *Total chemical synthesis of the 3' untranslated region of the hepatitis C virus with long oligodeoxynucleotides.* J Virol Methods, 1998. **74**(1): p. 117-21.
- 151. Pan, W., E. Ravot, R. Tolle, R. Frank, R. Mosbach, I. Turbachova, and H. Bujard, *Vaccine candidate MSP-1 from Plasmodium falciparum: a redesigned 4917 bp polynucleotide enables synthesis and isolation of full-length protein from Escherichia coli and mammalian cells.* Nucleic Acids Res, 1999. **27**(4): p. 1094-103.
- Cello, J., A.V. Paul, and E. Wimmer, *Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template.* Science, 2002. 297(5583): p. 1016-8. Epub 2002 Jul 11.
- 153. Teyssie, A.R., L.M. Knecher, and B.L. Ayerra de Holstein, [Interferon in experimental infection with Junin virus]. Medicina, 1981. **41**(5): p. 573-8.
- 154. Martinez Pintos, I.F., H.C. Guarinos, L.A. Czeplowodski, H.D. Molteni, C.O. Petrillo, S. Meli, and F. Jaschek, [*Our experience in the treatment of "stubble disease"*]. Sem Med, 1961. **118**: p. 856-63.

Anhang

Danksagung

Ich danke Herrn Prof. Dr. H. Schmitz für die freundliche Aufnahme in seine Abteilung.

PD. Dr. med. Stephan Günther danke ich ganz besonders für die Überlassung des Themas und die hervorragende Betreuung.

Mein Dank gilt außerdem ganz besonders:

Dr. Marcel Asper für die Schweiß treibende Arbeit im L4-Sicherheitslabor und die Anzucht der Lassaviren und LCMV.

Herrn Dr. Christian Drosten für die vielen in Ruhe und zwischen Tür und Angel beantworteten Fragen zu allen Bereichen der Molekularbiologie und weit darüber hinaus.

Christian Schmitz von der Universität Hamburg für die Programmierung des Computerprogramms zur Identifizierung konservierter Bereiche im Lassavirus-L-Gen.

Herrn Prof. Dr. Andrew E. Torda vom Zentrum für Bioinformatik der Universität Hamburg für die Datenbanksuche und bei der Berechung der Sequenzentropie.

Dr. ter Meulen von der Universität Marburg für die Bereitstellung der Lassavirus-Stämme SL-15, -20, -21, 25, -26 und -620.

Prof. Dr. Deubel vom Institut Pasteur, Lyon für die Bereitstellung der Ippyvirus-RNA.

Prof. Dr. Erik De Clercq vom Departement Microbiologie en Immunologie, Katholieke Universiteit Leuven, für die Bereitstellung des Juninvirus-Impfstammes und des Tacaribevirus.

Den technischen Assistentinnen der Abteilung Virologie im Bernhard-Nocht-Institut Antje Rohde und Beate Becker-Ziaja für ihre liebevolle Unterstützung meiner Arbeit.

Lebenslauf

Persönliche Daten

NameSimon Eric ViethGeboren am9. Juli 1976 in HamburgAdresseIm Wiesengrund 7, 22147 HamburgFamilienstandledigSchulbildungIm Viesengrund 7, 22147 Hamburg/WandsbekJuni 1996Rudolf-Steiner-Schule Hamburg/WandsbekJuni 1996Abitur an der Rudolf-Steiner-Schule Hamburg/WandsbekZivildienstIm Viesengrund 7, 22147 HamburgAugust 1996Johanniter-Unfall-Hilfe HamburgSeptember 1997Johanniter-Unfall-Hilfe HamburgSeptember 1997Aufgabenfeld: Ausbildung von Betriebs- und ErsthelfernStudiumIm Viesengrund Yattiche VorprüfungSeptember 1997Studiums der Humanmedizin, Universität HamburgSeptember 1997Aufschnitt der Ärztlichen PrüfungSeptember 20001. Abschnitt der Ärztlichen PrüfungSeptember 20022. Abschnitt der Ärztlichen PrüfungSeptember 20022. Abschnitt der Ärztlichen PrüfungJuni 20043. Abschnitt der Ärztlichen PrüfungKarz 2001University of Cape Town, Groote Schuur Hospital, Kapstadt, Respiratory Medicine bei Prof. Dr. Bateman.März 2002Bernhard-Nocht-Institut für Tropenmedizin Hamburg, Klinische Abteilung bei Prof. Dr. Dietrich.September 2002Bernhard-Nocht-Institut für Tropenmedizin Hamburg, Mikrobiologische Diagnostik, Prof. Dr. B. Fleischer.		
SchulbildungRudolf-Steiner-Schule Hamburg/Wandsbek Juni 1996I983–1996 Juni 1996Rudolf-Steiner-Schule Hamburg/WandsbekZivildienstAugust 1996– September 1997Augast 1997 September 1997Johanniter-Unfall-Hilfe Hamburg Aufgabenfeld: Ausbildung von Betriebs- und ErsthelfernStudiumOktober 1997 September 1999 Árztliche Vorprüfung September 2000 Juni 2004FemulaturenE Feb./März 2000Feb./März 2001 März 2002AK-Barmbek, Hamburg, Abteilung für Chirurgie bei Prof. Dr. Gross. März 2001 März 2002März 2002 September 2002 Abteilung für Chirurgie bei Prof. Dr. Bateman. März 2002 Bernhard-Nocht-Institut für Tropenmedizin Hamburg, Klinische Abteilung bei Prof. Dr. D. Dietrich. September 2002 Bernhard-Nocht-Institut für Tropenmedizin Hamburg, Mikro biologische Diagnostik, Prof. Dr. B. Fleischer.	Name Geboren am Adresse Familienstand	Simon Eric Vieth 9. Juli 1976 in Hamburg Im Wiesengrund 7, 22147 Hamburg ledig
1983–1996 Juni 1996Rudolf-Steiner-Schule Hamburg/Wandsbek Abitur an der Rudolf-Steiner-Schule Hamburg/WandsbekZivildienstAugust 1996– September 1997Johanniter-Unfall-Hilfe Hamburg September 1997 Aufgabenfeld: Ausbildung von Betriebs- und ErsthelfernStudiumOktober 1997 Studiums der Humanmedizin, Universität Hamburg September 2000 Juni 2004Studiums der Humanmedizin, Universität Hamburg September 2000 September 2002 September 2002 Abschnitt der Ärztlichen Prüfung September 2004 September 2004Studium der Humanmedizin, Universität Hamburg Betrieber 2002 September 2002 September 2004FamulaturenFeb./März 2000 März 2001 	Schulbildung	
ZivildienstAugust 1996– September 1997Johanniter-Unfall-Hilfe Hamburg Aufgabenfeld: Ausbildung von Betriebs- und ErsthelfernStudiumOktober 1997 September 1999Studiums der Humanmedizin, Universität Hamburg Ärztliche Vorprüfung September 2000 Juni 2004September 2002 Juni 20041. Abschnitt der Ärztlichen Prüfung 3. Abschnitt der Ärztlichen PrüfungFeb./März 2000 März 2001AK-Barmbek, Hamburg, Abteilung für Chirurgie bei Prof. Dr. Gross. März 2001März 2002 März 2002Bernhard-Nocht-Institut für Tropenmedizin Hamburg, Klinische Abteilung bei Prof. Dr. B. Fleischer.	1983–1996 Juni 1996	Rudolf-Steiner-Schule Hamburg/Wandsbek Abitur an der Rudolf-Steiner-Schule Hamburg/Wandsbek
August 1996- September 1997Johanniter-Unfall-Hilfe Hamburg Aufgabenfeld: Ausbildung von Betriebs- und ErsthelfernStudiumOktober 1997 September 1999 September 2000 Juni 2004Studiums der Humanmedizin, Universität Hamburg Ärztliche Vorprüfung 	Zivildienst	
StudiumOktober 1997Studiums der Humanmedizin, Universität Hamburg Ärztliche Vorprüfung September 2000September 20001. Abschnitt der Ärztlichen Prüfung September 2002Juni 20042. Abschnitt der Ärztlichen Prüfung Juni 2004FamulaturenFeb./März 2000AK-Barmbek, Hamburg, Abteilung für Chirurgie bei Prof. Dr. Gross. März 2001März 2001University of Cape Town, Groote Schuur Hospital, Kapstadt, Respiratory Medicine bei Prof. Dr. Bateman. März 2002März 2002Bernhard-Nocht-Institut für Tropenmedizin Hamburg, Klinische Abteilung bei Prof. Dr. Dietrich. September 2002September 2002Bernhard-Nocht-Institut für Tropenmedizin Hamburg, Mikro biologische Diagnostik, Prof. Dr. B. Fleischer.	August 1996– September 1997	Johanniter-Unfall-Hilfe Hamburg Aufgabenfeld: Ausbildung von Betriebs- und Ersthelfern
Oktober 1997Studiums der Humanmedizin, Universität Hamburg Ärztliche Vorprüfung September 2000September 20001. Abschnitt der Ärztlichen Prüfung September 2002Juni 20042. Abschnitt der Ärztlichen Prüfung Juni 2004FamulaturenFeb./März 2000AK-Barmbek, Hamburg, Abteilung für Chirurgie bei Prof. Dr. Gross. University of Cape Town, Groote Schuur Hospital, Kapstadt, 	Studium	
FamulaturenFeb./März 2000AK-Barmbek, Hamburg, Abteilung für Chirurgie bei Prof. Dr. Gross.März 2001University of Cape Town, Groote Schuur Hospital, Kapstadt, Respiratory Medicine bei Prof. Dr. Bateman.März 2002Bernhard-Nocht-Institut für Tropenmedizin Hamburg, Klinische Abteilung bei Prof. Dr. Dietrich.September 2002Bernhard-Nocht-Institut für Tropenmedizin Hamburg, Mikro biologische Diagnostik, Prof. Dr. B. Fleischer.	Oktober 1997 September 1999 September 2000 September 2002 Juni 2004	 Studiums der Humanmedizin, Universität Hamburg Ärztliche Vorprüfung 1. Abschnitt der Ärztlichen Prüfung 2. Abschnitt der Ärztlichen Prüfung 3. Abschnitt der Ärztlichen Prüfung
Feb./März 2000AK-Barmbek, Hamburg, Abteilung für Chirurgie bei Prof. Dr. Gross.März 2001University of Cape Town, Groote Schuur Hospital, Kapstadt, Respiratory Medicine bei Prof. Dr. Bateman.März 2002Bernhard-Nocht-Institut für Tropenmedizin Hamburg, Klinische Abteilung bei Prof. Dr. Dietrich.September 2002Bernhard-Nocht-Institut für Tropenmedizin Hamburg, Mikro biologische Diagnostik, Prof. Dr. B. Fleischer.	Famulaturen	
September 2002 Bernhard-Nocht-Institut für Tropenmedizin Hamburg, Mikro biologische Diagnostik, Prof. Dr. B. Fleischer.	Feb./März 2000 März 2001 März 2002	AK-Barmbek, Hamburg, Abteilung für Chirurgie bei Prof. Dr. Gross. University of Cape Town, Groote Schuur Hospital, Kapstadt, Respiratory Medicine bei Prof. Dr. Bateman. Bernhard-Nocht-Institut für Tropenmedizin Hamburg, Klinische Abteilung bei Prof. Dr. Dietrich.
	September 2002	Bernhard-Nocht-Institut für Tropenmedizin Hamburg, Mikro- biologische Diagnostik, Prof. Dr. B. Fleischer.

Praktisches Jahr

April–August 2003	Klinik für Kinder- und Jugendmedizin,
	Universitätskrankenhaus Eppendorf, Hamburg.
August–Oktober 2003	Division of Surgery, Mater Adult Hospital
	University of Queensland, Brisbane, Australien.
Nov.–Dez. 2003	Department of Surgery, The Canberra Hospital,
	Canberra Clinical School, Canberra, Australien.
Januar–April 2004	Innere Medizin, AK-Altona, Hamburg.
Arzt im Praktikum	
August 2004–	Universitätsklinikum Schleswig-Hostein, Campus Lübeck.
September 2004	Klinik für Kinder- und Jugendmedizin.

Assistenzarzt

Seit Oktober 2004

Universitätsklinikum Schleswig-Hostein, Campus Lübeck. Klinik für Kinder- und Jugendmedizin.

Eidesstattliche Versicherung

Ich versichere ausdrücklich, dass ich die Arbeit mit dem Titel <u>Sequenzanalyse der L-RNA von</u> <u>Lassavirus und Aufbau moderner Nachweissysteme für hochpathogene Arenaviren</u> selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

Hamburg, den 3. November 2004

Unterschrift