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Zusammenfassung

Die vorliegende Arbeit ist aus der Intention entstanden, die Möglichkeiten des Strahlungstransport-
Frameworks PHOENIX 3DRT auf die Spektrumssynthese extrasolarer Planeten anzuwenden. Wie fast
immer im Kontext astronomischer Untersuchungen ist Licht der dominierende Informationslieferant
und insofern ist es naheliegend, die Fingerabdrücke der Atmosphären von Planeten im Spektrum ihrer
Wirtssterne zu untersuchen.

Während der Entwicklung der Arbeit hat sich jedoch ebenfalls gezeigt, dass die reine Strahlungs-
transport-Theorie, wie sie seit langer Zeit bei der Untersuchung von Sternatmosphären Anwendung
findet, bei der Untersuchung von Exoplaneten an ihre Grenzen stößt. Hydrodynamische Prozesse in
den Atmosphären, die bei der Spektrumssynthese von Sternen häufig als nachgelagerter Einflussfaktor
ignoriert oder eingeschränkt behandelt werden, können im Zusammenhang mit der Modellierung von
Planeten-Spektren nicht ausgeklammert werden. Dies ist nicht verwunderlich, da die Spektren vor
allem thermodynamische Eigenschaften wiedergeben, die in den Atmosphären der Planeten in großem
Maße von hydrodynamischen Prozessen bestimmt werden. Diese Tatsache ist lange bekannt und gut
verstanden: Sie sind die Grundlage aller meteorologischer Modelle und kein Wetterbericht würde
ohne ihre detaillierte Berücksichtigung sinnvolle Voraussagen treffen können.

In diesem Sinne versteht der Autor diese Arbeit vor allem als eine Brücke zwischen den zwei Dis-
ziplinen Astrophysik und Meteorologie und entsprechend liegt das Hauptaugenmerk darauf, die zu-
grundeliegenden theoretischen Grundlagen zu harmonisieren und miteinander kompatibel zu machen,
sodass ein kombiniertes numerisches Modell entsteht, das beide Welten verbindet.

Im Ergebnis dieser Arbeit wird ein kombiniertes Modell aus 3D-Strahlungstransport und hydro-
dynamischem Atmosphärenberechnungen präsentiert. Beide Modelle werden auf ihre theoretischen
Grundlagen hin untersucht um festzustellen, welche impliziten Annahmen in den jeweiligen Model-
len enthalten sind und welche Beschränkungen in Bezug auf ihre Allgemeingültigkeit sich hieraus
ergeben.

Da das Atmosphärenmodell bereits über einen sehr einfachen Strahlungstransport-Mechanismus
verfügt wird dieser Teil durch den sehr viel mächtigeren Strahlungstransport aus dem PHOENIX 3DRT-
Modell ersetzt. Um den Umfang der Arbeit zu begrenzen und den Fokus auf die grundsätzliche Frage
der Kombinierbarkeit beider Modelle zu legen, werden die Berechnungen iterativ durchgeführt und
die jeweiligen Ergebnisse manuell zwischen beiden Modellen ausgetauscht.

Es kann dabei am Beispiel von Mars gezeigt werden, dass die Kombination beider Modelle die be-

9



obachtbaren Eigenschaften wie atmosphärische Temperaturverteilungen in Anbetracht der beschriebe-
nen Limitierungen des Atmosphärenmodells mit einer erstaunlichen Genauigkeit reproduzieren kann.
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Abstract

The present work arose from the intention to apply the possibilities of the radiative transfer framework
PHOENIX 3DRT to the spectrum synthesis of extrasolar planets. As almost always in the context of
astronomical investigations, light is the dominant source of information and in this respect it makes
sense to examine the fingerprints of the atmospheres of planets in the spectrum of their host stars.

During the development of the work, however, it has also become apparent that the pure radiative
transfer theory, which has long been used in the study of stellar atmospheres, reaches its limits when
studying exoplanets. Hydrodynamic processes in the atmosphere, which are often ignored or limited
as a downstream influencing factor in the spectrum synthesis of stars, cannot be excluded in connec-
tion with the modeling of planetary spectra. This is not surprising since the spectra primarily reflect
thermodynamic properties that are largely determined by hydrodynamic processes in the planetary
atmospheres. This fact has long been known and well understood: they are the basis of all meteoro-
logical models and no weather report would be able to make meaningful predictions without taking
them into account in detail.

In this sense, the author sees this work primarily as a bridge between the two disciplines of astro-
physics and meteorology, and accordingly the main focus is on harmonizing the underlying theoretical
principles and making them compatible with each other, so that a combined numerical model is cre-
ated that connects both worlds .

As a result of this work, a combined model of 3D radiative transport and hydrodynamic atmospheric
calculations is presented. Both models are examined for their theoretical foundations in order to
determine which implicit assumptions are contained in the respective models and which limitations
arise in relation to their general validity.

Since the atmosphere model already has a very simple radiative transport mechanism, this part is
replaced by the much more powerful radiative transport from the PHOENIX 3DRT-model. In order
to limit the scope of the work and to focus on the fundamental question of whether both models
can be combined, the calculations are carried out iteratively and the respective results are exchanged
manually between the two models.

Using the example of Mars, it can be shown that the combination of both models can reproduce
the observable properties such as atmospheric temperature distributions with astonishing accuracy in
view of the described limitations of the atmospheric model.
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1. Introduction

“If we knew what it was we were doing,
it wouldn’t be called ‘research’, would it..?”
— ALBERT EINSTEIN

In the last few decades, the technological progress of modern astronomical observation facilities
has enabled us to investigate issues that seemed to be completely out of reach just a few years ago.
In the context of space-based observation missions such as the Hubble Space Telescope (HST), the
Kepler space observatory or James Webb Space Telescope (JWST), launched in December 2021,
as well as ground-based telescopes with primary mirrors’ diameters of or even beyond the magical
number of ten meters as for instance the Keck I/II observatories or the European Extremely Large
Telescope (E-ELT), currently at the construction stage, already have changed our own idea of the
cosmos forever. For the first time in history, we have the possibility to not only study the bright
shining stars which have attracted peoples attention since ancient times but also their companions in
other solar systems, so-called exoplanets, revealing new planetary configurations, completely different
from everything we knew so far but also—and thus not less exciting—planets which might be similar
to our Earth in may aspects. Though people all over the world have been fascinated by stars ever since,
recent astrophysical publications have attracted public attention in much larger degrees. This is not
surprising: although the analysis of extrasolar planetary systems has an extraordinary meaning for the
understanding of star-planet-formation mechanisms as well as other astrophysically relevant issues,
the current discourse on exoplanets is not just another field of research to be examined, it concerns the
basic question of our own role in universe. Hence, the relatively young field of exoplanet research has
developed very rapidly during the last few decades and led to a number of 5250 exoplanet candidates
(effective: February 20, 2023) (Brennan, 2022).

In the early days, the discovery of exoplanets was limited to so called hot Jupiters, planets whose
mass equal or exceed the mass of Jupiter orbiting between approximately 0.015AU1 and 0.5AU.
Those close-in planets have a much greater chance of transiting their star as seen from a further out-
lying point than planets of the same mass in larger orbits. The most notable of these are HD209458b,
the first transiting hot Jupiter found (Fortney et al., 2005), HD189733b, first mapped in 2007 by the
Spitzer Space Telescope (Grillmair et al., 2007), as well as HAT-P-7b which was recently observed
by the Kepler mission (Pál et al., 2008). Later, planets with masses below the solar system’s gas gi-

1One astronomical unit (AU) is defined as the mean distance between Earth and sun, 1AU ⇡ 149.6 ⇥ 106 km
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1 Introduction

ants could be detected which are referred to as super-Earths. The first super-Earths were discovered
around the pulsar PSR B1257+12 in 1992 (Wolszczan and Frail, 1992). Since the two outer planets
of the system have masses approximately four times of Earth, they are too small to be gas giants.
The first super-Earth around a main sequence star was discovered in 2005. It orbits Gliese 876 and
received the designation Gliese 876 d (two Jupiter-sized gas giants had previously been discovered
in that system). It has an estimated mass of 7.5M˚

2 and a very short orbital period of just about
two days. Due to the proximity of Gliese 876 d to its host star (a red dwarf), it may have a surface
temperature of 430K – 650K and may support liquid water (Marcy et al., 2008). On December 21,
2011 a new study, published in Nature, reported the detection of two Earth-sized planets, Kepler-20
e and Kepler-20 f, orbiting the Sun-like star Kepler-20, bringing us closer to the ultimate goal – the
discovery of a true Earth analogue suitable for life (Fressin et al., 2011).

Nearly all information we can gather about exoplanets is transported by radiation and encoded
in the planets transmission and reflectance spectra, respectively. While passing through a planetary
atmosphere, the individual atmospheric properties such as temperature, density or chemical composi-
tion are imprinted on the radiation and thus, all of the planet’s properties are right there, packaged in
the observed spectra. So why do we need computer models of radiative transfer processes in planetary
atmospheres? Because of the complexity of the physical processes that finally led to the spectral com-
position we can observe it is not possible to simply “decode” the information packed in the spectra.
This means that the spectrum can be thought of as some kind of fingerprint of the planet’s atmosphere.
Just like fingerprints, this correlation describes a mapping from a mathematical point of view, corre-
lating each point of our parameter space of atmospheres to a spectrum that is unique but again, as well
as fingerprints, the corresponding mapping cannot be inverted in terms of reading the atmospheric
properties out of it’s fingerprint easily. Hence, if we want to learn about planetary atmospheres we
need a way to create synthetic, computer generated fingerprints that may be compared to observations.
But even if we do not have observed spectra of adequate quality right now, the analysis of synthetic
spectra can help us in many other scientific applications like design of future observational instru-
ments: only if we know about the important spectral features that should be observable we can opti-
mize our instrumental designs accordingly. Using the state-of-the-art radiative transfer code PHOENIX
a first one-dimensional planetary atmosphere model approach was performed by M. Wagner in her
PhD-thesis (Wagner, 2011). While one-dimensional spherical symmetrical models may act as a good
approximation for a wide range of stellar models, the corresponding planetary atmospheric models
are much more limited in various aspects of their applications: because of the symmetry breaking due
to the direction of incident irradiation we need to model these problems using full three-dimensional
radiative transfer theory to achieve more realistic results. Therefore, the PHOENIX three-dimensional
radiative transfer framework (PHOENIX 3DRT) has been used for the radiative transfer calculations
throughout this thesis, extended by a generic bidirectional reflectance distribution function (BRDF)
model which may easily be adjusted to a wide range of surface textures and accounts for the important

2Quantities index by ˚ refer to Earth properties.
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reflection at the solid surface due to the optically thin atmospheres in earth-like exoplanets.
Moreover, planetary models cannot give realistic spectra as long as only radiative transfer through

the atmosphere is considered: The incident irradiation drives the atmospheric dynamics that transport
energy all around the planet and thus, are responsible for the temperature structure of the atmosphere
to a high degree which affects the radiative transfer in return. Hence, radiative transfer and atmo-
spheric dynamics are coupled, which is routine business in all kinds of climate and meteorological
forecast models but thereby primarily specialized to earth conditions, of course. As a consequence,
the Portable University Model of the Atmosphere (PUMA) as a highly flexible general circulation model
has been coupled to the PHOENIX 3DRT model to consider the atmospheric dynamics feedback on the
radiative transfer and vice versa. Therefore, a closed model framework at the border between as-
trophysics and meteorology has been created for the purpose of this thesis extending the degree of
realism with respect to exoplanet modeling far beyond simple radiative transfer models.

First, this thesis gives a short introduction into the radiative transfer theory (ch. 2). The chapter is
intended to describe the basic theory of radiative transfer as the basis for the PHOENIX modeling code
this thesis uses for radiative transfer calculations. The description of the theoretical connections is
substantial for the understanding of what can be achieved in terms of modeling reflection and trans-
mission spectra, how to consider reflection at the planetary surface in earth-like planetary atmospheres
and where to expect limitations. On the other hand, it is neither feasible nor sensible to describe all the
theory at full length in the context of a PhD thesis as there are enough books on the subject out there
and this would definitely go beyond the scope of this thesis. Thus the presentation of the theoretical
background in this thesis does neither claim completeness nor strict formal correctness for itself but
just intends to compile the parts of the theory important for the understanding of the further thesis as
well as for reference purposes with respect to nomenclature issues.

In chapter 3, the details of the surface reflection model are presented including details on the im-
plementation as well as model tests for various surface textures. Since the implementation of the
reflection model represents one of the main tasks in order to model exoplanet atmospheres, both the
theoretical derivation as well as the actual implementation are described in detail.

The basic theoretical introduction is continued in chapter 4 which deals with the fundamental con-
cepts of climate dynamics simulations and the methods used to solve corresponding modeling setups.
The governing equations describing the physical principles in the context of fluid dynamics are the
Navier-Stokes equations. As these equations are badly suited for numerical modeling methods (Ad-
croft et al., 2004), they are transformed into the so-called primitive equations, classically used in
nearly all modeling frameworks on climate dynamics as in the PUMA code (Lunkeit et al., 2011). This
derivation induces some assumptions on the model setup and thus, the primitive equations are less
general with respect to the atmospheric conditions. The limitations in the flexibility of the model-
ing code, given by these adaptions of the Navier-Stokes equations are discussed and followed by a
description of the PUMA code used for atmospheric dynamics modeling throughout this thesis.

In chapter 5, the capabilities of the developed model are tested using the example of Mars as a well-
known planet with lots of measured data to act as reference for the model results. Mars is well-suited
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1 Introduction

for testing the developed model, as it is not only our direct neighbor but also the most earth-like planet
in the solar system, except for our own earth of course but nevertheless shows many specifics which
are quite different from Earth conditions.

Finally, conclusions are summarized in chapter 6. The chapter is finished with a short outlook on
the future works as well as potential improvements of the developed model.
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2. Radiative Transfer Theory

This chapter deals with the basic concepts of radiative transfer that are described in detail e.g. in
the book on stellar atmospheres by Hubeny and Mihalas (2014) or in the lecture notes on radiative
transfer in stellar atmospheres by Rutten (2003). The theory of modeling radiative transfer in three-
dimensional setups can be found in the 3D radiative transfer framework by P. H. Hauschildt and
E. Baron e.g. Hauschildt and Baron (2006, 2007, 2008, 2009a,b) as well as Hauschildt and Baron
(2011); Jack et al. (2012); Baron et al. (2012); Hauschildt and Baron (2014) and Hauschildt and
Baron (2021). If not denoted otherwise the further description of the theoretical background is guided
by the aforementioned resources.

This chapter is organized as follows: A primer for radiative transfer is given in chapter 2 which
includes some very basic definitions for reference and nomenclature issues (2.1), followed by some
basic radiative transfer theory to compile the theoretical tools that are needed for the further discussion
(2.2) and continued with a short presentation of the numerical method used to solve the classical model
atmospheres’ problem (2.3). The section ends with a paragraph on the 3D radiative transfer module
PHOENIX 3DRT that is used for model calculation throughout this thesis (2.4).

2.1 Basic Definitions

The basic quantity that is used to describe radiative transfer processes is the specific intensity I⌫ which
is defined as the amount of energy dE in the frequency interval Œ⌫, ⌫ C d⌫ç passing a surface element
of cross-section d� which is orientated in the direction n in the time dt in the direction r into the
solid angle d˝. If we define ✓ to be the angle between the orientation of the surface element d� the
radiation passes through and the direction r of the radiation itself ✓ ⌘ †.r,n/, we get the following
defining equation of the specific intensity

dE D I⌫.r/ cos.✓/ d⌫ d� dt d˝ (2.1)

which results in the dimension of the specific Intensity to be in the CGS-System of Units1

ŒI⌫ ç D ergs cm�2 s�1 Hz�1 sr�1. (2.2)

1It is convention to describe radiative transfer processes in the CGS-System of Units and as this thesis has been developed
from this field of research this convention is preserved throughout the whole thesis even though is is more common to
use SI units in meteorology.
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2 Radiative Transfer Theory

For most applications it is more sensible to consider the mean intensity J⌫ as the specific intensity’s
average over all solid angles as well as the flux F⌫ as the net rate of energy flow across a unit area in
the atmosphere

J⌫.r/ D
1
4⇡

I

4⇡

I⌫.r,˝/ d˝

D
1
4⇡

2⇡Z

0

d'

1Z

�1

I⌫.r,�,'/ d�, (2.3)

where � has been defined to be � ⌘ cos ✓ . The mean intensity J is the averaged intensity over all
solid angles and used if the overall amount of photons is of interest, irrespective of the photon origin
e.g., when excitation and ionization rates have to be considered.

To calculate the net rate of energy flow F⌫ at a given point r we have to integrate the specific
intensity I⌫.r/ ⌘ I⌫.r,n/ � On over all solid angles

F⌫ D

I

4⇡

I⌫.r/ d˝

D

2⇡Z

0

d'

1Z

�1

I⌫.r,�,'/� d�. (2.4)

This quantity describes the energetics of radiation transfer when passing through a stellar or planetary
atmosphere.

2.2 Radiative Transfer Equation

While passing along a characteristic2 through the atmosphere, the radiation’s intensity may be in-
creased or decreased due to various processes which shall phenomenologically be divided into two
categories, according to whether there is a prominent coupling between the radiation energy and the
thermal energy of the atoms and molecules constituting the atmosphere or the radiation can penetrate
the atmosphere without significant interaction. This distinction is important, because if we want to
probe the properties of the atmospheric matter such as temperature, pressure etc. by virtue of the re-
ceived radiation, we have to possess profound knowledge of the coupling conditions that imprint the
properties of the atmospheric matter on the radiation field.

Scattering denotes all the processes without strong coupling between radiative energy and atmo-
spheric thermal energy pool, e.g. bound-bound transitions, where a photon interacts with an

2A characteristic is the path on which an undisturbed photon would travel and is basically represented by a straight line
in the absence of relativistic effects. More precisely, it is the mathematical description of the geodesic, a photon,
characterized by some specific momentum, moves along.
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2.2 Radiative Transfer Equation

atom and excites a bound electron from a lower energy level a to a higher energy level b, di-
rectly followed by a deexcitation of the electron, returning the excitation energy to the radiation
field by emitting a photon of the same (or slightly different) frequency. The specific intensity
along a characteristic is altered by scattering processes because they may change the photon’s
frequency S : ⌫ ! ⌫0, so that the photon contributes to the specific intensity I⌫0 rather than to
I⌫ or/and the photon’s direction S : n ! n0, so that a photon may be scattered into or out of the
characteristic. These processes may mathematically be described by the so-called redistribution
function R D R.⌫,n, ⌫0,n0/, that gives the probability density of a photon with frequency ⌫
along a characteristic in the direction n to be converted into a photon with frequency ⌫0, travel-
ing along a characteristic in the direction n0. As this probability distribution must apparently be
normalized, the integral over all initial and final frequencies as well as over all initial and final
characteristic’s orientations equals one

�
1
4⇡

�2 I

4⇡

d˝

I

4⇡

d˝ 0

1Z

0

d⌫

1Z

0

d⌫0R.⌫,n ; ⌫0,n0/ D 1. (2.5)

The redistribution function may be used to define scattering '.⌫/ and emission profiles  .⌫0/,
describing the probability density of a photon in the frequency domain Œ⌫, ⌫Cd⌫ç actually to be
scattered without contributing to the specific intensity I⌫ along the characteristic under consid-
eration any longer and of a photon in the frequency domain Œ⌫0, ⌫0 C d⌫ç and/or characteristic n

to be scattered so that it now contributes to I⌫ respectively.

'.⌫/ d⌫ D
�

1
4⇡

�2
d⌫

I

4⇡

I

4⇡

1Z

0

R.⌫,n ; ⌫0,n0/ d⌫0 d˝ d˝ 0 (2.6)

 .⌫0/ d⌫0
D

�
1
4⇡

�2
d⌫0

I

4⇡

I

4⇡

1Z

0

R.⌫,n ; ⌫0,n0/ d⌫ d˝ d˝ 0 (2.7)

Again, both the scattering and emission profiles are normalized as the redistribution function is
normalized itself

1Z

0

'.⌫/ d⌫ D

1Z

0

 .⌫0/ d⌫0
D 1. (2.8)

True Absorption/Emission characterizes processes where strong coupling between radiation field
and thermal energy pool is evident, e.g. photo-ionization processes (bound-free absorption)
where the photon’s energy is (at least) partly converted into kinetic energy of the ionized elec-
tron and, as such, adds to the thermal energy of the atmospheric matter or the emission of
bremsstrahlung by an electron, moving in the field of an ion where thermal energy is payed
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2 Radiative Transfer Theory

over to the radiation field. All these processes are characterized by an energy transfer between
radiation field and thermal energy pool of the atmosphere under consideration. This energy
transfer imprints the physical characteristics of the atmosphere such as temperature, pressure
or density at the location of interaction on the radiation field, which enables us to probe the
atmospheric properties by virtue of the emitted radiation.

Keeping the aforementioned in mind, the change in intensity of a radiation beam penetrating a volume
element of density ⇢ along the geometrical depth ´ can be written as

�

⇢

dI⌫

d´
D j⌫ � k⌫I⌫ (2.9)

where the specific total extinction k⌫ and emission coefficient j⌫ have been defined. Both the ab-
sorption and extinction coefficient are composed of a scattering and a true emission/absorption part
reflecting the aforementioned processes. Thus, the total extinction coefficient k⌫ represents the pro-
cesses decreasing the specific intensity along the characteristic under consideration while the emission
coefficient j⌫ accordingly describes the processes leading to an increase. If we furthermore define the
optical depth ⌧ to be the geometrical depth, weighted by the matter’s absorption capacity along the
way

d⌧⌫ ⌘ �⇢k⌫ d´ (2.10)

as well as the so-called source function S as the ratio the volume element’s emission and absorption
characteristics

S⌫ ⌘
j⌫

k⌫
(2.11)

equation 2.9 can be simplified to the well-known radiative transfer equation

�
dI⌫

d⌧⌫
D I⌫ � S⌫ . (2.12)

From a mathematical point of view, the radiative transfer equation is an inhomogeneous linear differ-
ential equation of first order with the formal solution

I⌫.⌧ ,�/ D
1
�

1Z

⌧

S⌫.t/e
�.t�⌧/=� dt , .0  �  1/ (2.13)

I⌫.⌧ ,�/ D �
1
�

⌧Z

0

S⌫.t/e
.⌧�t/=� dt , .�1  �  0/. (2.14)
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2.3 Numerical Radiative Transfer

Using the formal solution of the radiative transfer equation to calculate the mean intensity J⌫ (Eq. 2.3),
we get

J⌫.⌧⌫/ D
1
2

1Z

0

S⌫.t⌫/E1.jt � ⌧ j/ dt (2.15)

⌘ ƒ⌧ ŒS ç (2.16)

where E1 denotes the first exponential integral. Equation 2.16 introduces the lambda operator ƒ to
have an abbreviating notation for the integral expression in equation 2.15.

If we had knowledge about the run of the source function along the characteristics through the
atmosphere of interest, equation 2.15 could easily be solved by (numerical) integration but this case
usually never occurs, as explained below.

2.3 Numerical Radiative Transfer

In (nearly) all astrophysically relevant situations, the source function S itself depends on the run of
the mean intensity and the integral expression of Eq. 2.15 cannot easily be solved. Even though the
source function as the ratio of emission and absorption properties of the atmospheric material at the
location under consideration may be thought of as a material property, it depends on the excitation and
ionization rates of the corresponding material and thus, on the radiation field penetrating the matter.
Hence, the properties of the atmospheric matter, describing the emission and absorption characteristics
and the radiation field itself are strongly coupled. As the radiation field may propagate information
of the matter due to scattering processes from one location to another, spatially divided points are
connected to each other. This connection is stronger and couples spatially further away points within
the atmosphere, the more prominent the scattering processes are as compared to the true absorption
and emission processes. Actually this dependence on the radiation field itself, that from a physical
point of view describes the radiative scattering, is responsible for the global communication of the
boundary conditions over the atmosphere (Hauschildt and Baron, 2006). Even in the simple case
of local thermodynamic equilibrium (LTE) thermal emission and coherent isotropic scattering, the
source function must be written as

S⌫ D
⌫

⌫ C �⌫
B⌫ C

�⌫

⌫ C �⌫
J⌫ (2.17)

D .1 � ✏⌫/B⌫ C ✏⌫J⌫ (2.18)

where  and � denote the pure absorption and scattering coefficient respectively, ✏ the thermal cou-
pling parameter and B is the well-known Planck function which describes the photon distribution in
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2 Radiative Transfer Theory

the case of strict thermodynamic equilibrium. Hence, we obtain Eq. 2.16 to be3

J D ƒŒ.1 � ✏/J C ✏Bç. (2.19)

This equation can be solved numerically by iteration methods where the ƒ-Operator is used to define
a recursive sequence Jn, n 2 N that converges to the desired mean intensity

JnC1 D ƒŒ.1 � ✏/Jn C ✏Bç. (2.20)

This sequence fails to converge in an appropriate number of iterations in the case of large optical
depths and small ✏ (Hauschildt and Baron, 2006) since the largest eigenvalue of the amplification
matrix is approximately

�max ⇡ .1 � ✏/
�
1 � T �1

�
, (2.21)

where T is the optical thickness of the medium. For small ✏ and large T the largest eigenvalue �max

is close to unity which leads to an extremely slow convergence rate. Because of this, various iteration
acceleration methods have been applied which are intended to increase the convergence speed. The
operator splitting (OS) technique as used in PHOENIX 3DRT makes use of an ƒ-operator splitting
method to reduce the eigenvalues of the amplification matrix in the iteration scheme by introducing
an approximate ƒ-operator (ALO) ƒ? and splitting ƒ according to Cannon (1973)

ƒ D ƒ?
C

�
ƒ �ƒ?

�
. (2.22)

By virtue of this splitting of the ƒ-operator Eq. 2.20 can be rewritten as

⇥
1 �ƒ?.1 � ✏/

⇤
JnC1 D Jfs �ƒ?.1 � ✏/Jn, (2.23)

where Jfs D ƒŒSnç is the formal solution with respect to the current estimate of the source function
and Jn the corresponding mean intensity.

2.4 3D Radiative Transport

While one-dimensional radiative transfer simulations where plane parallel atmospheric structures are
assumed perform as a good approximation for a wide range of stellar atmosphere calculations, these
simplifications do not hold as soon as planetary atmospheres are considered: It is not just that the
incident irradiation of the host star causes an obvious symmetry breaking by inducing a day- and
night-side hemisphere respectively, at least in the case of terrestrial (rocky) planets every reasonable
realistic model has to take the inhomogeneous surface coverage into account. The different surface

3Frequency subscript ⌫ will be suppressed for clarity reasons from now on.
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2.4 3D Radiative Transport

Figure 2.1. Radiative transfer processes are solved on voxel (volume element)-grids where each voxel represents the rele-
vant physical quantities as an average over the volume element. Typical grids consist of about 32 voxels along
each positive axis in Cartesian coordinates nx D ny D n´ D 32 resulting in a total of .2 � 32 C 1/3 D 274625
voxels.

textures like glacier ice, water (oceans) or sand/rocks (deserts) interact with the incident irradiation
in completely different ways which has to be reflected in different boundary conditions for the model
setup and hence to influence the radiative transfer calculations. The three-dimensional constellation
of the star-planet-observer-system defines the spectra to be observed which may easily be seen in our
own solar system where the relative fraction of transmission, reflection and emission spectra causes
varying spectra of planets like Mars if observed at different dates.

Throughout this thesis, the model calculations have been performed with an extended (see ch.
3) version of the PHOENIX 3D radiative transfer framework (PHOENIX 3DRT) which accounts
for the reflection of the host star’s irradiation at the solid planetary surface. PHOENIX is a general-
purpose state-of-the-art stellar and planetary atmosphere code, developed within the theory group of
the Hamburg Observatory at the University of Hamburg. In PHOENIX 3DRT radiative transfer pro-
cesses are solved on voxel (volume element)-grids where each voxel represents the relevant physical
quantities such as temperature, density, opacities and mean intensities of the corresponding physi-
cal space as an average over the volume element (cf. fig. 2.1) and thus, the voxel grid also fixes the
physical resolution of the atmospheric properties. To map a given model setup onto the voxel-grid,
appropriate scaling factors have to be applied, depending on the problem to be modeled. A typical
voxel-grid in the Cartesian coordinate system that is manageable by current maximum performance
computation facilities like the Höchstleistungsrechenzentrum Nord (HLRN) or the National Energy
Research Scientific Computing Center (NERSC) consist of about 32 voxels along each positive axis
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2 Radiative Transfer Theory

in Cartesian coordinates nx D ny D n´ D 32 which specifies a voxel grid from voxel coordinates
.�32,�32,�32/ to .32, 32, 32/, resulting in a total of .2 � 32C 1/3 D 274, 625 voxels, 65 along each
axis (Hauschildt and Baron, 2006). In general, PHOENIX 3DRT is able to calculate models in different
coordinate systems such as Cartesian coordinates, spherical coordinates or cylindrical coordinates. In
a full three-dimensional model setup, the basic radiative transfer equation may be written as

On � rI⌫.r,n/ D j⌫.r/ � k⌫.r/I⌫.r,n/. (2.24)

The formal solution can be performed if we assume characteristics that pass continuously through
the atmosphere’s voxel grid representation and use the distances between different voxels along the
various characteristics to compute optical depths. The formal solution is then derived using piece-wise
parabolic (PPM) or piece-wise linear (PLM) interpolation and integration of the source function where
PHOENIX 3DRT automatically restricts itself to piece-wise linear interpolation. If either the piece-wise
parabolic interpolation along the three points is larger than a prescribed threshold (typically factors of
100) or the optical depth along the characteristic is very small (typically less the 10�3) (Hauschildt and
Baron, 2006) the high-order interpolations may cause problems in these cases (Auer, 2003). Along a
characteristic the transfer equation again simplifies to4

dI

d⌧
D I � S (2.25)

(cf. Eq. 2.12). If ⌧i denotes the optical depths along the characteristics through the atmosphere with
⌧1 ⌘ 0; ti�1  ⌧i , the formal solution of the transfer equation can be written as

I.⌧i / D I.⌧i�1/ exp.⌧i�1 � ⌧i /C

⌧iZ

⌧i�1

S.⌧/ exp.⌧ � ⌧i / d⌧

D Ii�1 exp.�Å⌧i�1/CÅIi (2.26)

where i labels the points along the characteristic and Å⌧i is calculated using piece-wise linear inter-
polation of k along the characteristic (Hauschildt and Baron, 2006)

Å⌧i�1 D
1
2.ki�1 C ki /jsi�1 � si j. (2.27)

As mentioned above, the source function S.⌧/ is calculated using piece-wise parabolic or piece-wise
linear interpolation. Hence, the specific intensity results in

ÅIi D ˛iSi�1 C ˇiSi C �iSiC1 (2.28)

4For the sake of clarity, again, the frequency subscript ⌫ is suppressed from now on.

24



2.4 3D Radiative Transport

where the interpolation coefficients ˛i , ˇ1 and �i are defined as

˛i D
e0i C Œe2i � .Å⌧i C 2Å⌧i�1/e1i ç

Å⌧i�1.Å⌧i CÅ⌧i�1/
(2.29)

ˇi D
.Å⌧i CÅ⌧i�1/e1i � e2i

Å⌧iÅ⌧i�1
(2.30)

�i D
e2i � ⌧i�1e1i

Å⌧i .Å⌧i CÅ⌧i�1/
(2.31)

for the case of parabolic interpolation and

˛i D e01 �
e1i

Å⌧i�1
(2.32)

ˇi D
e1i

Å⌧i�1
(2.33)

�i D 0 (2.34)

for the case of linear interpolation respectively. The auxiliary functions e1i , e2i and e3i are given by

e0i D 1 � exp.�Å⌧i�1/ (2.35)

e1i D Å⌧i�1 � e0i (2.36)

e2i D Å⌧2i�1 � 2e1i (2.37)

(cf. Olson and Kunasz, 1987). The linear interpolation coefficients have to be used at the last inte-
gration step along each characteristic and may also be used within the integration path along a given
characteristic to improve numeric stability (Hauschildt and Baron, 2006).

As demonstrated in the latter section the mean intensity Ji is needed at every point of the corre-
sponding grid to compute the full solution of the radiative transfer problem. Hence, the integral of
the specific intensity over all solid angles is numerically performed, using Monte-Carlo integration
methods

Ji D
1

2⇡2

X
.✓ ,'/

Ii .✓ ,'/ sin ✓ (2.38)

where the summation is done over all pairs of ✓ and ', specifying the characteristics passing through
of voxel under consideration. The total number of pairs, sampling the characteristics’ phase space is
ntot D n✓n' where the directions are evenly distributed.
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3. Planetary Albedo

To model planetary transmission and reflection spectra it is crucial to get the individual intrinsic
spectra right, on the one hand of the irradiating host star and on the other hand of the planet’s thermal
emission itself. Furthermore, the reflected intensities of the host star’s irradiation at the planetary
surface have to be taken into account. Because of the linearity of the radiative transfer equation, the
different radiation fields may be treated as individual from each other from a mathematical point of
view. But as the host star is the dominant energy source in the planetary system—thermal energy
from planetary geological activities such as intrinsic planetary heat from the inner core, radioactive
decays as well as tidal heating or accretional heating, can typically be neglected after some point
in the planet’s evolution—this has to be reflected in the corresponding model setup. Of course, the
planet’s intrinsic thermal spectra is not independent from the host star’s radiation field, because the
star’s irradiation feeds the planet’s thermal energy pool and thus, determines the planet’s radiation
field, the thermal emission as well as the reflected light.

The amount of energy from the incident irradiation which is deposited in the planet’s thermal energy
pool is generally described in terms of surface albedos. In its most basic form, albedo describes
the diffuse, i.e. Lambertian, reflectivity of a planet’s surface and is defined as the ratio of reflected
radiation leaving the surface under consideration to the total irradiation to the surface. This basic
description of surface reflectivity may be thought of as some kind of energy budget treatment where
neither the directions of incoming and outgoing intensities nor the intensity’s wavelength distribution
are considered. Hence, valid albedo values range from zero, which mean no reflected radiation at all
and thus total absorption, to one which describes a perfect white reflector that does not absorb any of
the incident irradiation. Of course, albedo is generally both wavelength and angular dependent and
during a reflection event the direction as well as the wavelength may be altered. These dependencies
can be expressed by the bidirectional reflectance distribution function (BRDF) fr that characterizes
surface reflectance for all combinations of incident and reflected angles and may be integrated over
source and detector solid angles to get measurable optical properties, such as biconical reflectance, as
defined in Nicodemus’ National Bureau of Standards monograph (Nicodemus et al., 1977)

fr ,⌫
�
✓#,'# ; ✓",'"

�
D

I⌫,"

�
✓",'"

�
I⌫,#

�
✓#,'#

�
cos ✓# d˝#

, (3.1)

where ✓ and ' denote the polar and azimuthal angle, respectively of the corresponding directional
vector and quantities indexed by # and " refer to the downward (irradiated) and upward (reflected)
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3 Planetary Albedo

intensities, respectively. For the sake of simplicity, the frequency subscript ⌫ will be suppressed from
now on.

From an astrophysical point of view the BRDF describes a redistribution function in a specialized
case (lower boundary) where the characteristics necessarily have to be reflected at a solid surface.
The incident irradiation is either reflected in some direction within the half sphere above the surface
or absorbed by the planet. This is where the boundary condition of an earth-like planet with a solid
surface crust finds its representation in the corresponding model setup: all the incident irradiation
has either to be stored and contribute to the planet’s thermal energy pool or to be reflected where the
BRDF works as a specialized redistribution function.

In some situations—as in meteorological model setups for the sun-earth configuration—it might be
reasonable to consider the basic albedo description which accounts for the energy budget only and
thus neglects the wavelength and angular dependencies of the surface reflection. This usually implies
a simplified treatment of the incident and emitted radiation onto/from the planet’s surface, where
the planet’s long wavelength radiation field is considered as independent from the host star’s short
wavelength irradiation if the corresponding Planck functions peak at very different wavelengths1.
This is a common simplification in many meteorological model codes as with the PUMA and Plasim
model code, where the whole spectrum is described by two extremely broad spectral bands (short
and long wavelength radiation). In the case of the PUMA/Plasim model, short and long wavelength
domains are defined as D< D Œ0 nm, 750 nmç and D> D Œ750 nm,1 nmç respectively and averaged
opacities are calculated by parameterized transmissivity functions for ozone (affecting short wave
domain), water vapor and CO2 (long wave domain) and H2O-clouds (short wave domain: Rayleigh
scattering, long wave domain: Rayleigh scattering and absorption). With this description only the
total energy budget is taken into account and albedo is treated as independent of angle and evaluated
at the peak wavelength of the host star’s irradiation. This concept holds as long as only energy budgets
are of interest and naturally fails if spectral energy distributions are to be calculated. Nevertheless this
approach has proven itself valuable in the circulation models and hence, the model code developed
for this thesis makes use of an energy budget based circulation model as well to calculate surface and
atmospheric temperature profiles.

Treated in more detail as for astrophysical radiative transfer modeling purposes, the concept of
BRDFs is highly complex because of the vast parameter-space if the model setup should be realistic
to some extent and must be approached with advanced numerical models in nearly all applications2.
The basic question in this context is the desired scale of details to be modeled: On the one hand,
the generalized concept of wavelength and angular independent albedo—which can be understood as
extremely low scale of model detail—is inappropriate for the aim of extending the PHOENIX 3DRT
model code to simulate planetary reflection and transmission spectra where the spectral composition

1In the sun-earth system the Planck functions have their maxima at about �ˇ
max D 500 nm (Tˇ

eff D 5778K) for the sun and
at �˚

max D 11.36 µm (T˚

eff D 255K) for our own earth, respectively.
2Again, this is the reason why fully resolved radiative transfer calculations cannot be used to achieve self-consistent

temperature corrections in a 3D radiative transfer setup.

28
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of the radiation itself is of basic interest rather than just the planetary energy budget that is used
in most meteorological model applications. On the other hand it is not sensible to model each and
every little detail of a complex structured surface because this would not increase the accuracy of the
modeled spectra but expand the model parameter-space beyond any manageable limit.

Because of the presented arguments, albedo is treated in a two-pronged way in the model used
for this thesis: The simplified albedo description that is used by the PUMA/Plasim framework is still
used for energy budget calculation and hence for all effects concerning the atmospheric circulation
calculations. In particular this includes the surface temperature as well as atmospheric temperature
profile. The corresponding albedo map, describing the albedo values for the latitude/longitude grid
of the planet may be prescribed if needed but is calculated by default, using the diffuse, Lambertian
part of the detailed wavelength and angular dependent BRDF model which is derived in this chapter.
Having a valid temperature structure, the full BRDF model is used for all radiative transfer purposes.

3.1 BRDF Formalism in Astrophysical Applications

Nicodemus et al. (1977) give an adequate definition of the average BRDF that is appropriate for
structured surfaces where the BRDF is extended to the Bidirectional Surface Scattering Reflectance
Distribution Function (BSSRDF) Sr and defined at an horizontal reference plane above all surface
structure. The BSSRDF is a generalization of the BRDF where the incident irradiation hits a horizontal
reference plane above the structured surface at an infinitesimal surface element d�# rather than the
structured surface itself, may scatter internally and exit at another location. If a surface element d�#,
centered at .x#, y#/ on the horizontal reference plane, is irradiated by the incident intensity I# from
an angle .'#, ✓#/, the radiation will be reflected (at least partly) and leave the reference plane as I" at
.x", y"/ in the direction .'", ✓"/ (cf. fig. 3.1). The BSSRDF is defined as

Sr.✓#,'# ; ✓",'" ; �#, �"/ D
I".✓",'" ; �"/

I#.✓#,'# ; �#/ cos ✓# d˝#

. (3.2)

Using this definition the average BRDF for structured surfaces is then defined by the integral of the
BSSRDF over an appropriate averaging area. Of course, this area depends on the scale of the material
structure and is simply large enough so that the resulting average BRDF is independent of the point
of observation. Here, the integral is over the neighborhood B of the incident position �# for a fixed
observation point (C. Snyder and Wan, 1998)

fr.˝#,˝", ⌫#, ⌫"/ D

Z

B.�#/

Sr.˝#,˝", �#, �", ⌫#, ⌫"/ d�#. (3.3)
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reference plane

structured surface

Figure 3.1. Schematic diagram of the BSSRDF geometry. A surface element d�# centered at .x#, y#/ on the horizontal
reference plane is irradiated by the incident intensity I# from an angle .'#, ✓#/. The radiation will be reflected
and leave the reference plane as I" at .x", y"/ in the direction .'", ✓"/.

3.2 BRDF Model Requirements

BRDF models have to fulfill two important requirements to represent sensible models from a physical
point of view. The first requirement is the trivial assumption of energy conservation. If energy sources
apart from radiative and deposed thermal energy are neglected, this basically states that the integral
of the reflected intensities over all solid angles and frequencies at a surface element d� , in addition
to the amount of energy that has been emitted by the surface element in the time dt , must equal
the integral of the incident irradiation over all solid angles, in addition to the amount of energy that
has been absorbed by the surface element in the same time, which is commonly known as radiative
equilibrium. Neglecting energy sources apart from the aforementioned radiative and deposed thermal
energy—where deposed refers to the host star’s irradiation—means in particular that some geological
effects cannot be considered within the model even though they might play an important role in the
energy budget such as intrinsic planetary heat from the inner core, radioactive decays, tidal heating or
accretional heating. Especially at an early point in the planetary evolution the intrinsic thermal energy
due to the planet’s core or accretional heating can be dominant with respect to it’s energy budget and
hence, one has to keep in mind that the model developed in this thesis is not applicable to these young
planets, where the surface temperature is dominantly determined by it’s geological activity, without
further modifications.

In the following it is assumed that the planet is in a quasi steady-state situation, where the host
star’s irradiation is balanced with the planet’s thermal emission and that a periodic surface temperature
correlated with the planet’s rotational and orbital period may be defined. In the case of a steady-state
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3.2 BRDF Model Requirements

situation of the planet’s thermal energy pool the abovementioned demand simplifies to

1Z

0

d⌫

Z

˝C

d˝I#.˝#, ⌫#/ D

1Z

0

d⌫

Z

˝C

d˝I".˝", ⌫"/ (3.4)

where ˝C refers to the positive hemisphere with respect to the reference plane’s normal Onr which
may be defined as

˝C
D fOe j Oe � Onr � 0g. (3.5)

In principle, only tidally locked planets can strictly fulfill radiative equilibrium as the different day-
and night-side irradiation of the host star causes the planet to absorb more radiative energy than it
emits on the day-side hemisphere and vice versa, of course. This has to be neglected in the model and
radiative equilibrium is assumed for surface elements of rotating planets as well.

The latter equation does not hold in the case of the generalized BRDF which is defined via a
reference plane above the structured surface, because the incident irradiation may leave the plane
at another location, and therefore this condition has to be reformulated into a demand where the
quantities of equation 3.4 equal each other when integrated additionally over some adequate area
B.�#/ so that the generated averages compensate for the details of the structured surface

Z

B.�#/

d�#

1Z

0

d⌫

Z

˝C

d˝ I#.�#,˝#, ⌫#/ D

Z

B.�#/

d�"

1Z

0

d⌫

Z

˝C

d˝ I".�",˝", ⌫"/. (3.6)

The areaB.�#/ defines the degree of detail that can be modeled and is characterized by the underlying
BRDF model. With respect to the BRDF itself this states that the amount of reflected energy flux may
not exceed the amount of irradiated energy flux when integrated over the hemisphere

Z

˝C

fr.˝#,˝", ⌫#, ⌫"/ cos ✓" d˝"  1. (3.7)

The second important requirement is the Helmholtz reciprocity principle. A reciprocal model is
one which gives the same value of the BRDF when the incident and reflected angles are switched

fr.'#, ✓# ; '", ✓"/ D fr.'", ✓" ; '#, ✓#/. (3.8)

It is evident from 3.3 that if the BSSRDF Sr is reciprocal, in other words, if

Sr.'#, ✓#, x#, y# ; '", ✓", x", y"/ D Sr.'", ✓", x", y" ; '#, ✓#, x#, y#/ (3.9)

then the integrated average BRDF is reciprocal as well. It is not possible to prove in general that a
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given material will have a reciprocal BRDF, but reciprocity holds for common materials. If it does
hold, then for the single scattering case of a structure of common materials, each BSSRDF path is
reciprocal. Any arbitrary combination of incident angle, reference surface locations and output angle
defines a transfer geometry at some scattering element on the surface structure, or it defines a blocked
path. If the path is blocked, the transfer is zero in both directions, so it is reciprocal trivially. In the case
of a single-reflection path, reciprocity of the BSSRDF can be shown by straightforward radiometric
calculations (Snyder, 1998). Multiple scattering events with opaque and translucent materials also
give reciprocal BSSRDF paths, which is more difficult to show and hence, is addressed separately by
Snyder (1998). Thus all BSSRDF paths are reciprocal, and so the average BRDF is reciprocal.

3.3 BRDF Models

The BRDF is needed in remote sensing for the correction of view and illumination angle effects (for
example in image standardization and mosaicking), for deriving albedo, for land cover classification,
for cloud detection, for atmospheric correction and other applications. It gives the lower radiometric
boundary condition for any radiative transfer problem in the atmosphere and is hence of relevance
for climate modeling and energy budget investigations as well as calculation of planetary spectra, of
course. In all these fields of research, the development of adequate BRDF models has been strained
for a variety of different applications. These models may be categorized as follows:

Direct Measurement Models BRDFs can be measured directly using gonioreflectometers which
mechanically vary the direction to a small light source and a spectral sensor and thus collect
a large number of point samples for the BRDF (Greenberg, 1999). Simpler and less accurate
devices can also be constructed using CCD imaging devices (Ward, 1992). More complex CCD
devices can also be used which gather data quickly with accuracy very close to full goniore-
flectometry (Ashikhmin et al., 2000; Marschner et al., 1999). If enough is known about the
microstructure of a material, a BRDF can be simulated by using a virtual gonioreflectometer
where statistical ray tracing followed by density estimation is used to create BRDF data (Cabral
et al., 1987; Gondek et al., 1994; Westin et al., 1992). Although these models are very accu-
rate for a given material or surface structure they are most inflexible too. BRDFs of this kind
are usually just tabulated measurement data that must be inter- or extrapolated in all applica-
tions that have not directly been measured e.g. wavelength domains beyond the visual band.
Therefore, these models are inappropriate in astrophysical applications.

Empirical Models There exists a variety of purely empirical reflection models, the most familiar be-
ing the models introduced by Gouraud and Phong (Gouraud, 1971; Phong, 1975). These two
initial models were meant to be used with hand-picked parameters, and thus these parameters
are intuitive. A variety of more complex methods have been introduced to improve character-
istics of the Phong model for efficiency (Kurt et al., 2010), to include anisotropy (Ward, 1992),
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3.3 BRDF Models

and enforce physical constraints such as reciprocity (Lafortune and Willems, 1994). Other mod-
els have been developed to fit measurement data as opposed to being intuitive (Lafortune et al.,
1997). Although some extensions to existing models have been proposed to account for physi-
cal principles such as energy conservation, the focus of these models is on the visual impression
when used in computer graphics rather than on physical correctness and in that these models
are less sensible for the usage in astrophysical applications as well.

Height Correlation Models In these methods a rough surface is a realization of some Gaussian ran-
dom process. Such a process can be described by its correlation function which is directly
related to surface height correlations. This is the most complete surface representation used
in computer graphics. Some of the most detailed descriptions of light scattering by a surface,
including wave optics effects, were obtained using this approach (He et al., 1991). In particular
these kinds of BRDF models take a lot of electrodynamical effects such as polarization into
account and in that can be thought of as most accurate models from a physical point of view.
However, the price of this accuracy is high complexity, as well as restriction to applications
where a very detailed knowledge about all micro-structure properties of the structured surface
is available. As the BRDF model for this thesis is intended to model planetary surface re-
flectance for a variety of surface structures at an adequate degree of accuracy, and the PHOENIX
3DRT model code is currently incapable of handling polarization effects, these models, again
are inappropriate in this context although a more detailed investigation in further research on
this topic could possibly make an adapted model of this kind a good choice, but this would
definitely go beyond the scope of this thesis.

Microfacet Models Somewhere between the height correlation methods and empirical methods lie
models based on microfacet theory (Blinn, 1977; Cook and Torrance, 1982). Microfacet models
assume the surface consists of a large number of small flat “micromirrors” (facets) each of which
reflect light only in the specular direction. By computing the number of visible microfacets at
the appropriate orientation to specularly reflect light from the source to the viewer, one can
determine the BRDF (Ashikhmin et al., 2000).

All of these methods have their place. In applications where little is known about the low-level
properties of the surface, measurement is essential. Where physical optics effects are important,
height correlation methods should be used (Ashikhmin et al., 2000). The interest of this thesis is to
model planetary reflectance properties of structured planetary surfaces to a degree of realism that takes
all important physical principles e.g., energy conservation and reciprocity into account and is adjusted
to the degree of realism that can be expected from other components of the model framework like the
radiative transfer or the meteorological circulation effects. Hence, the microfacet BRDF model has
been chosen as lower boundary model in this thesis.
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3 Planetary Albedo

3.4 Microfacet BRDF

The basis for microfacet BRDF is microfacet theory. This theory has been developed to describe
surface reflection from general (non-optically flat) surfaces (Walter et al., 2007). The basic assumption
underlying microfacet theory is that the surface is composed of many microfacets, too small to be
seen individually. Each microfacet is assumed to be optically flat. The microfacet BRDF was first
described by Cook and Torrance (1982). If not denoted otherwise the following section is based on
the Microfacet reflection model by Walter et al. (2007), the Microfacet-based BRDF generator by
Ashikhmin et al. (2000) and the lecture notes by McAuley et al. (2012) describing physically-based
shading effects. The model requires that the wavelength of the incident irradiation is much smaller
than the average size of the individual microfacets

� ⌧

vuut 1

N

NX
iD1

�2
i (3.10)

where� is the size of an individual microfacet. As the BRDF model has originally been developed for
the case of modeling reflection of light in the visual wavelength domain (� ⇠ 102 nm) for rendering
purposes in computer graphics, this has not been a real limitation, but if we want to model reflection
of surface textures like forests (leaves: � ⇠ 10 cm) or deserts (grain of sand: � ⇠ 1mm) we have
to keep in mind that the model does not hold for wavelengths of the microwave regime or longer.
In fact, the size of a single microfacet to be considered mainly depends on the degree of realism to
be achieved: Of course, a leaf could be subdivided into multiple microfacets to map the surface more
precisely but again, the degree of detail has to be in keeping with capabilities of the overall framework.
Furthermore the size of the microfacets is not directly considered in the final BRDF model and hence,
the size limitation is just a rough estimate for the validity of the developed model.

In the microfacet theory two assumptions are made concerning the overall appearance of the surface
to be modeled:

1. The normals Onm of the individual microfacets are distributed according to an underlying proba-
bility density function p. Onm/. Although the distribution may in principle be arbitrary, the aver-
age over all solid angles should point in the ✓ D 0 direction for any reasonable distributions as
this actually is the definition of the surface orientation.

2. An individual microfacet contributes to the BRDF at a given pair of incident irradiation direction
Ok# D .✓#,'#/ and reflection direction Ok" D .✓",'"/ if, and only if, it is visible i.e. neither
shadowed (the incident irradiation direction Ok# is blocked) nor masked (the reflected direction
Ok" is blocked) Although in microfacet theory the terms shadowed and masked are used to
describe different effects, the BRDFs have to fulfill the reciprocity requirement and as each
effect is transformed in the other effect respectively, when incidence and reflection direction is
switched, both effects are denoted as shadowing.
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structured surface

reference plane

Figure 3.2. Schematic diagram of the microfacet BRDF configuration. The microfacets (bold black lines) are supposed
to be equally distributed with respect to the reference plane and the normals Onm of the individual microfacet
to have an inclination ˛ to the normal of the reference plane Onr where the inclination angles are distributed
according to p. Onm/. Note in particular that some of the microfacets are not visible i.e. they are shadowed or
blocked.

For the following derivation of the BRDF model, the geometry illustrated in fig. 3.3 is assumed.
If the surface element under consideration is irradiated by the incident intensity I#, coming from the
infinitesimal solid angle d˝# around Ok#, the reflected intensity along the characteristic in the direction
Ok" will be

I" D fr. Ok#, Ok"/I#�. Ok#, Onm/ d˝# (3.11)

where �. Ok#, Onm/ D cos†. Ok#, Onm/. This is directly deduced from the definition of the BRDF and
my even be thought of as an alternative definition in the manner of the specific intensity’s definition
(Eq. 2.1). Moreover the reflected energy flux dE at the frequency under consideration can be written
as

dE D I"��. Ok", Onm/ d˝" (3.12)

and the combination of the latter two equations gives

fr. Ok#, Ok"/ D
dE

�I#�. Ok#, Onm/�. Ok", Onm/ d˝# d˝"

. (3.13)

As the microfacets’ normals are distributed according to a probability density function p. Onm/ only a
fraction of all microfacets will contribute to the reflection from characteristic Ok# to characteristic Ok".
The vector Onm of the microfacets, appropriate to reflect the incident irradiation to the direction under
consideration is the normalized half-vector between Ok# and k" (cf. figure 3.3). The angle ˛ is defined
as the angle between the normal of the microfacets Onm and the normal of the reference plane Onr. In the
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3 Planetary Albedo

Figure 3.3. Schematic diagram of the BRDF reflection geometry. Incidence direction, reflection direction and microfacet
normal Onm form a great circle on the sphere around the reflection point. The microfacet normal Onm is the
bisector of the angle between incidence and reflection direction.

case of an isotropic BRDF the probability density function p only depends on this angle and may be
simplified to p. Onm/ D p.˛/. If all microfacets have the same size �m D ⇡�2 and a total number of
Nactive microfacets participate in the reflection progress, the projected area of all relevant microfacets
is

� D Nactive �m �. Ok, Onm/ (3.14)

the total reflected energy flux can be written as

dE D I#Nactive �m �. Ok, Onm/ F.�. Ok, Onm// (3.15)

where subscript of Ok has been dropped because �. Ok, Onm/ is symmetric with respect to incidence and
reflection direction and F.�. Ok, Onm// denotes the Fresnel coefficient giving the fraction of specularly
reflected light with respect to the incident irradiation of a given material under the angle of considera-
tion. The Fresnel coefficients describe the behavior of light with respect to reflection and transmission
at a boundary of media with differing refractive indices.

According to the probability density function p only Np. Onm/ d˝ Onm microfacets are oriented in an
appropriate direction to contribute to the reflected intensity. Moreover Torrence and Sparrow (1967)
showed that for the case of specularly reflecting microfacets the relationship between the solid angle of
the reflected intensity d˝" and the solid angle in the space of the microfacets’ orientation distribution3

3It has to be emphasized that the space of solid angles with respect to incident and reflected intensities and the space of
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3.4 Microfacet BRDF

d˝ Onm is

d˝" D 4�. Ok#, Onm/ d˝ Onm . (3.16)

As mentioned above, not only the orientation of the microfacets determines if an individual micro-
facet will contribute to the single-bounce reflection event, the microfacet must also be visible i.e. not
shadowed. Introducing the probability P. Ok#, Ok", Onm/ of an individual microfacet not to be shadowed,
the number of microfacets that contribute Nactive may be written as

Nactive D Np. Onm/P. Ok#, Ok", Onm/ d˝ Onm (3.17)

and combining the equations (3.15), (3.16), (3.17) with (3.13) yields to

fr. Ok#, Ok"/ D
N�mp. Onm/P. Ok#, Ok", Onm/F.�. Ok, Onm//

4��. Ok#, Onm/�. Ok", Onm/
. (3.18)

The area � of the surface element can be written as the projected areas of all microfacets that are
not shadowed with respect to the direction of the reference plane’s normal Onr. Given the probability
P. Onr, Onm/ that an individual microfacet with normal Onm is not shadowed with respect to the reference
plane’s normal Onr the surface element’s area � can be written as

� D

X
facets

�m�. Onr, Onm/P. Onr, Onm/ (3.19)

D N�m

Z

˝

�. Onr, Onm/P. Onr, Onm/p. Onm/ d˝ Onm (3.20)

D N�mh�. Onr, Onm/P. Onr, Onm/i (3.21)

where the ensemble average of Eq. 3.19 has been replaced by the integral over the corresponding
probability density function and hence the average over the distribution of its random variable in
Eq. 3.20 while the term hf . Onm/i in Eq. 3.21 is just a shorthand for the distribution average

hf . Onm/i ⌘

Z

˝

f . Onm/p. Onm/ d˝ Onm . (3.22)

Using Eq. 3.21 for the surface element’s area in the denominator of Eq. 3.18 the BRDF can be written
as

fr. Ok#, Ok"/ D
p. Onm/P. Ok#, Ok", Onm/F.�. Ok, Onm//

4�. Ok#, Onm/�. Ok", Onm/h�. Onr, Onm/P. Onr, Onm/i
. (3.23)

Eq. 3.23 for the BRDF also holds if the individual microfacets have different sizes, as long as the size

microfacet orientations have to be considered as independent from each other.
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distribution is not correlated with the distribution of the microfacets’ normals.

3.4.1 Shadowing Term

With a given distribution of the microfacets’ normals, the only expressions that are not straightfor-
ward to compute are the shadowing terms P. Ok#, Ok", Onm/ and P. Onr, Onm/, respectively. The probability
P. Ok#, Ok", Onm/ that a given microfacet is neither shadowed nor masked for a particular set of incidence
and reflection directions equals the product of the probability P. Ok#, Onm/ that the microfacet is visible
from the incidence direction and the probability P. Ok", Onm j Ok#/ that the same microfacet is visible
from the reflection direction under the condition of not being shadowed from the direction Ok#. In
general the conditional probability is unequal to the unconditional one P. Ok", Onm j Ok#/ ¤ P. Ok", Onm/,
which means that visibility of incoming and outgoing directions in fact are correlated. This can be
seen easily in the extreme case where Ok# D Ok" and hence P. Ok", Onm j Ok#/ D 1. More generally it is
obvious that the correlation between the incoming and outgoing directions is higher the smaller the
angle between both directions is. Hence van Ginneken et al. (1998), proposed a shadowing term of
the form

P. Ok#, Ok", Onm/ D .1 � t .�//P. Ok#, Onm/P. Ok", Onm/C t .�/min.P. Ok#, Onm/P. Ok", Onm// (3.24)

where �⇡ < � < ⇡ is the angle between the projection of Ok# and Ok" onto the reference plane and
0 < t.�/ < 1 is a correlation factor. This shadowing term is composed of two parts whose weights
are controlled by a correlation term accounting for the reflection angle by damping the probability for
smaller angles. While van Ginneken et al. (1998) could show that energy conservation is fulfilled for
arbitrary runs of t .�/ sensible forms of t .�/ should fulfill t .0/ D 1 and decrease monotonically to
almost zero as j� j increases (van Ginneken et al., 1998). Moreover van Ginneken et al. (1998) found
the range of correlation effects to be of the order 15 ı and, hence, a Gaussian with standard deviation
of 15 ı ⌘ ⇡=12 is used in this model

t .�/ D

r
72

⇡3
exp

✓
�
72�2

⇡2

◆
. (3.25)

All that is needed now is an expression for the probability P. Ok, Onm/ that a microfacet with normal Onm

is visible from a given direction Ok as the probabilities P. Ok", Onm/, P. Ok#, Onm/ and P. Onr, Onm/ are just
special cases of P. Ok, Onm/. The key assumption we make here is that this probability is independent
from the microfacet’s normal Onm as long as it is not turned away from the reference plane (self-
shadowing), i.e.

P. Ok, Onm/ D

8<
:
P. Ok/ if �. Ok, Onm/ > 0

0 otherwise.
(3.26)
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Basically, this assumes the visibility of an individual microfacet to be uncorrelated with its orientation
which is more likely, the rougher the surface is, and fails, if certain orientations are more likely
to be found at certain heights. As this conjecture is perfectly valid for all surface textures under
consideration (e.g., ice, deserts ! sand, forests ! leaves) the visibility probability will be treated as
independent from its microfacet orientation henceforth.

Using the latter result for the visibility probability in combination with eq. (3.19 – 3.21) the pro-
jected area of the surface element under consideration in the direction Ok may be written as

��. Ok, Onr/ D

X
facets

�m�. Ok, Onm/CP. Ok/ (3.27)

D N�mP. Ok/

Z

˝C. Ok/

�. Ok, Onm/p. Onm/ d˝ Onm (3.28)

D N�mP. Ok/h�. Ok, Onm/Ci (3.29)

D N�mP. Ok/g. Ok/ (3.30)

where the ‘C’ subscript in Eq. 3.27 refers to the fact that the summation is done over microfacets
oriented towards Ok, in Eq. 3.28 that the integration is done over the positive hemisphere with respect
to Ok and in Eq. 3.29 that the averaging is done over the part of the distribution with microfacets’
normals oriented towards Ok, respectively. In Eq. 3.30 the notation

g. Ok/ ⌘ h�. Ok, Onm/Ci D

Z

˝C. Ok/

�. Ok, Onm/p. Onm/ d˝ Onm (3.31)

has been introduced as a shorthand for the averaging with respect to the positive hemisphere in the
direction Ok. As each microfacet that is turned away from the direction Ok i.e., �. Ok, Onm/  0 will cast
a shadow of an area �m�. Ok, Onm/, this area has to be subtracted from the contribution of microfacets’
areas turned towards Ok

N�mP. Ok/g. Ok/ D N�mg. Ok/CN�mh�. Ok, Onm/�i (3.32)

which immediately gives a useful expression for the visibility probability

P. Ok/ D 1 C
h�. Ok, Onm/�i

g. Ok/
. (3.33)

As the numerator of the second term is computed by integration over the negative hemisphere ˝�. Ok/

that is complementary to the positive hemisphere˝C. Ok/ that is used as the integration volume for the
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averaging in the denominator g. Ok/ it is obvious that

�1 
h�. Ok, Onm/�i

g. Ok/
 0. (3.34)

Moreover any valid distribution of microfacets’ normals is characterized by the requirement that the
average over all normals should lie in the direction of the reference plane’s normal Onr as this actually
is the definition of the reference plane:

Z

˝C. Ok/

Onmp. Onm/ d˝ Onm C

Z

˝�. Ok/

Onmp. Onm/ d˝ Onm D Onrh�. Onr, Onm/i (3.35)

where the term h�. Onr, Onm/i is just a normalization factor and ensures the proper norm of the expres-
sions on both sides of the equation. If the latter equation is multiplied by Ok, we get

h�. Ok, Onm/�i D �. Ok, Onr/h�. Onr, Onm/i � g. Ok/. (3.36)

Substituting this result in the expression for the visibility probability (Eq. 3.33) gives

P. Ok/ D
�. Ok, Onr/h�. Onr, Onm/i

g. Ok/
(3.37)

which may be used in combination with Eq. 3.24 in Eq. 3.23 to get the final result for the specular
component microfacet BRDF that only depends on the actual distribution of microfacets’ normals.

fr. Ok#, Ok"/ D
1
4p. Onm/h�. Onr, Onm/i

F.�. Ok, Onm//

g. Ok#/g. Ok"/
(3.38)

3.4.2 Specular and Diffuse Components

Until now the BRDF has been developed under the assumption that all the microfacets may be con-
sidered as small ‘mirrors’ that reflect or absorb the incident radiation due to their Fresnel coefficients
but at a single-bounce event. This is not valid for a realistic BRDF model as this must take multi-
ple bounce and subsurface scattering events into account. Therefore the presented BRDF model for
the specular component must be extended by the diffuse component that accounts for these multiple
bounce events. The simplest form for the diffuse component is a pure Lambertian reflection term

fr. Ok#, Ok"/ D
cd

⇡
f

d
r C csf

s
r.

Ok#, Ok"/ (3.39)

where the superscripts d and s refer to the diffuse and specular components of the combined BRDF,
respectively. The first reflection term 0  f

d
r  1 is nothing but the diffuse albedo of the structured

surface while the second reflection term f
s
r.

Ok#, Ok"/ is the BRDF that has been derived in the previous
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section. To fulfill energy conservation one only has to ensure that cd C cs  1. The problem with this
definition is first it is unclear how to choose the weights of the two coefficients cd and cs and second,
that the coefficients, in principle, have to be angular dependent themselves because if the specular part
would reach one for some specific combination of angles the other component must vanish to ensure
energy conservation for all angles if the coefficients were angular independent. To address these
problems in a way that preserves energy conservation and reciprocity, a method of Shirley, Smits and
Lafortune (Shirley et al., 1997) to determine the coefficient of the diffuse component is used in this
thesis

cd. Ok#, Ok"/ D c.f d
r �R. Ok#//.f

d
r �R. Ok"// (3.40)

where again f
d
r is the (wavelength dependent) diffuse albedo of the surface and

R. Ok/ D

Z

˝

f
s
r.

Ok, Ok0/�. Ok0, Onr/ d˝ Ok0 (3.41)

is the directional hemispherical reflectance of the specular component where Ok0 is the mirrored direc-
tion of Ok. To also drop the coefficient of the specular component as well, all we have to do is to absorb
that coefficient in the normalization constant c of the diffuse component and to ensure (by virtue of
this normalization constant) that the total amount of reflected intensity—when integrated over all solid
angles—equals the total amount of incident intensities weighted by the surface element’s wavelength
dependent albedo f

d
r . This yields a form of the BRDF that combines the diffuse and specular com-

ponent and introduces the wavelength dependence of the BRDF by the normalization constant c that
ensures the total ratio of reflected and incident irradiation to be determined by the diffuse albedo f

d
r .

fr. Ok#, Ok"/ D c.f d
r �R. Ok#//.f

d
r �R. Ok"//f

d
r C f

s
r.

Ok#, Ok"/. (3.42)

3.4.3 Implementation Details

With a given microfacets’ normal distribution, the BRDF presented in the latter section is straight-
forward to compute. The first two terms in the specular BRDF component eq. (3.38) are inde-
pendent from the actual incoming and outgoing direction under consideration and may be globally
pre-evaluated for a given distribution to save computational effort. The Fresnel coefficient is ap-
proximated using Schlick’s approximation formula also commonly used in 3D computer visualization
regimes Schlick (1994)

F.�. Ok, Onm// D f
d
r C .1 � f

d
r /.1 � �. Ok, Onm//

5 (3.43)

where again f
d
r is the diffuse albedo. This approximation massively speeds up the computation with-

out introducing problems or errors as the difference between the approximation formula and the full
Fresnel expression can be shown to be less than one percent (Schlick, 1994).
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The integration for the g. Ok/ and R. Ok/ term is done using a simple Monte Carlo integration. For
a given distribution, the corresponding values are pre-computed as well on a close-meshed grid of
360 ⇥ 91 D 32 760 grid points where eleven sets of R. Ok/ are computed for f

d
r 2 f0, 0.1, : : : , 1g,

respectively. Values of R. Ok/ for arbitrary values of f
d
r are then computed using linear interpolation.

For a given texture, i.e. distribution of the microfacets’ normals, the computation of the BRDF for
some combination of wavelength �, incidence direction Ok# and reflection direction Ok" is done as
follows

1. The first term of the specular component of the BRDF, namely 1
4p. Onm/h�. Onr, Onm/i is computed

globally using the given distribution p. Onm/.

2. g. Ok/ is computed using a Monte Carlo integration routine with respect to the given distribution
p. Onm/ for both, incidence and reflection direction on a close-meshed grid of 32 760 grid points.

3. The wavelength dependent diffuse albedo f
d
r .�/ of the texture under consideration is read from

an input file4

4. The Fresnel coefficients are calculated for the reflection angles �. Ok, Onr/ 2 f0, 0.05, : : : , 1g and
the diffuse albedos f

d
r 2 f0, 0.1, : : : , 1g resulting in a grid of 231 grid points.

5. The specular component of the BRDF f
s
r is computed as eleven grids each of 32 760 grid points

for the diffuse albedos f
d
r 2 f0, 0.1, : : : , 1g.

6. The diffuse to specular component weight R. Ok/ is computed for each of the eleven specular
components.

7. All components calculated so far are used for the final specular-diffuse BRDF using quadratic
interpolation.

All values are tabulated giving the BRDF fr.f
d
r , Ok#, Ok"/ on a grid of 11 ⇥ 32 760 D 360 360 grid

points. Together with the input file of f
d
r .�/ the BRDF fr.�, Ok#, Ok"/ is computed using quadratic

interpolation. The equidistant sampling of � (step 4) causes a relative oversampling of the corre-
sponding reflection angle in the domain of arccos� ⇠ ⇡=2 which is quite useful as it can easily be
shown that each microfacet distribution that is centered around ✓ D 0 leads to a distribution of reflec-
tion angles centered around ⇡=2 when integrating the microfacet distribution over the irradiated day
side hemisphere of the planet. Hence this relative oversampling accounts for the center of the reflec-
tion angle distribution of a planet illuminated by an infinite distant host star. Although the reflection
angle distribution center shifts towards larger angles for finite distant host stars, the shift is small as
compared to the domain of oversampling and may be ignored in this context.

Until now only the distribution of the microfacet normals with respect to the reference plane’s
normal has been described but not the orientation of the reference plane itself. As the reference plane

4input files may be found at $PHX_SURFACE/textures/<#>/albedo.dat where <#> refers to the number of the texture
to be used.
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can be thought of as the low detail surface structure of the planet under consideration it is internally
represented as surface polygon mesh based on the planets topography map used for the PUMA model
as well. As the surface topography map is specified in terms of geopotential W it is first converted
into a height field map before the surface polygon mesh is created. With the surface polygon mesh of
the planet’s topography map the surface normal, i.e., the normal of the BSSRDF’s reference plane, is
calculated as the vector product of the polygon’s contacting edge vectors. If the polygon is described
by the position vectors ri specifying the individual vertices of the polygon the normal vector Onr is
calculated as

Onr D sgnO Œ.r2 � r1/ ⇥ .r3 � r1/ç (3.44)

where O is defined to be C1 if the vector created by the vector product is oriented outwards i.e. not
enclosed by the polygon mesh and �1 otherwise. This definition ensures the reference plane’s normal
to have the right orientation.

3.4.4 OpenGL Acceleration

Because of the high computational effort which is needed to compute the polygon mesh itself, the sur-
face normals Onr and the BRDF reflection and absorption properties as described in the latter sections,
the whole formalism is implemented in the OpenGL Shading Language GLSL that may outsource the
whole computation pipeline to GPUs (if available) in order to limit the CPU load and in that account
for the fact that the PHOENIX 3DRT model itself needs as much computational power as available. As
the BRDF is entirely written in GLSL and may be compiled individually and linked to the PHOENIX
3DRT core module, it is called a (OpenGL) shader in OpenGL usage.

Calculations of reflection models is one the key concepts of the OpenGL language even though for
the purpose of computer graphics in most applications. Nevertheless the same routines that are used to
calculate eye-catching computer graphics can be used to implement BRDF models that are based on
physical principles as described above. All the polygon mesh calculations can easily be performed as
these meshes are used in 3D computer graphics as well, and the corresponding reflection calculations
are parallelized on the GPUs that are constructed especially for these kind of calculations whereby
the underlying OpenGL implementation abstracts away the manual effort of parallelization to a large
extent (McCool et al., 2001).

GPU calculations can only be performed if the corresponding hardware is available, of course. As
the PHOENIX 3DRT usually runs on high performance cluster computer centers it is unclear if the GPU
hardware is always available and accessible. Hence all implemented code has been tested to be com-
pilable with the Low Level Virtual Machine (LLVM) compiler infrastructure. The Low Level Virtual
Machine Just In Time (LLVM JIT) compiler can determine the local system properties of the executing
system and compiles additional procedures that run on the CPUs and emulate instructions that cannot
be performed by the GPU. This technique is also used in many modern OpenGL applications.
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Figure 3.4. Distribution of microfacet normals with roughness factor s D ⇡=2, anisotropy factor ˇ D 1 and rotational
factor 'r D 0. Plots are rotated by 90ı around ✓ D 0 axis each time from top left to bottom right.

3.4.5 Microfacets’ Normals Distribution

Until now all statements about the BRDF have been very general with respect to a specific surface
structure (ice, water, sand, forest etc.). Hence we now draw attention to the individual surface proper-
ties of a specific texture. As the wavelength dependence is encoded in the diffuse albedo of the com-
bined BRDF (3.42) the angular dependency arises from the microfacets’ normal distribution p. Onm/.
As we may assume the microfacets’ orientations to be more or less normally distributed a 2D Gaussian
is used for the probability density function

p.✓ ,'/ D c exp


� tan2 ✓

✓
cos2.' � 'r/

s2
C ˇ2 sin

2.' � 'r/

s2

◆�
(3.45)

where ✓ is the angle between the microfacet’s normal and the reference plane’s normal and ' the
azimuth angle of the microfacet’s normal. While c is just a normalization constant, the parameters
s, ˇ and 'r control the shape of the normals’ probability distribution and in that the characteristics
of the surface texture to be modeled: The parameter s can be thought of as the distributions standard
deviation and in that controls the concentration of normals around the zenith angle or—in terms of
texture properties—the roughness of the surface. As large values of s correspond to a wide spread
of normals with respect to the zenith angle, s is referred to as roughness factor. The parameter ˇ
is a weighting factor that controls the relative roughness of the texture in the ' D ⇡ direction with
respect to the perpendicular ' D ⇡=2 direction and hence causes a symmetry break with respect to
the azimuth angle for ˇ ¤ 1. This can easily be seen as the ' dependence vanishes in the case of
ˇ D 1 and the distribution becomes isotropic with respect to '. Hence the parameter ˇ is referred to
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Figure 3.5. Distribution of microfacet normals with roughness factor s D 3⇡=2, anisotropy factor ˇ D 1 and rotational
factor 'r D 0. Plots are rotated by 90ı around ✓ D 0 axis each time from top left to bottom right.

Figure 3.6. Distribution of microfacet normals with roughness factor s D 3⇡=2, anisotropy factor ˇ D 5 and rotational
factor 'r D 0. Plots are rotated by 90ı around ✓ D 0 axis each time from top left to bottom right.
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Figure 3.7. Distribution of microfacet normals with roughness factor s D 3⇡=2, anisotropy factor ˇ D 5 and rotational
factor 'r D ⇡=6. Plots are rotated by 90ı around ✓ D 0 axis each time from top left to bottom right.

as anisotropy factor. The parameter 'r is a simple shifting factor that rotates the distribution around
the ✓ D 0 axis and with that 'r is referred to as rotation factor.

3.4.6 Parameter Calibration

To develop individual surface textures out of the presented parameterized BRDF model for e.g., sand,
water, forest the Moderate Resolution Imaging Spectroradiometer MODIS NASA data is used to
optimize the model parameters for the individual textures. MODIS consists of two instruments, both
are part of the NASA Earth Observing System (EOS) project aboard the Terra (EOS AM) and Aqua
(EOS PM) satellites, respectively, observing the entire Earth’s surface every 24h to 48h acquiring data
in 36 spectral bands (cf. tab. A.1, A.2) from 405 nm to 14.385 µm and at three spacial resolutions:
250m, 500m and 1000m.

Among the various data products5 of the MODIS project, two data products are used for the pur-
pose of parameter optimization with respect to the described model: the MODIS Land Cover data
product (MOD12-Q1) and the Surface Reflectance BRDF/Albedo Parameter data product (MOD43).
The Land Cover data product contains land cover type and land cover change parameters, which is
produced at 1 km resolution and identifies 17 different classes of land cover types following the In-
ternational Geosphere-Biosphere Programme (IGBP) global vegetation database, which defines nine
classes of natural vegetation, three classes of developed lands, two classes of mosaic lands, and three
classes of nonvegetated lands (snow/ice, bare soil/rocks, water) (Moreira et al., 2006). Out of these

5The term data product is used by the MODIS project and refers to a coherent set of data, intended to be used for a specific
purpose like determining the BRDF for various land cover classes.

46



3.4 Microfacet BRDF

17 land cover classes (textures) four classes have been chosen with an eye toward the Mars modeling
which is described below: Water (class 0) for reference purposes as it is the best data set with respect
of data quality due to the large fraction of earth surface coverage, Mixed Forest (class 5) since this is
a good example class representing a complex structured surface to test the BRDF model flexibility,
Savannas/Non-vegetated (class 9) as the best classification for sand textures/deserts which are very
prominent on Mars as well as Snow and Ice (class 15) to model ice covered regions.

The Surface Reflectance BRDF/Albedo Parameter data product contains BRDF values for the wave-
length bands 1 to 7 (cf. tab. A.1) as well as for the three broad bands (0.3 µm–0.7 µm, 0.7 µm–5.0 µm,
and 0.3 µm–5.0 µm). The BRDF is obtained by fitting a semi-empirical kernel-driven Ross-Li BRDF
model Lucht et al. (2000) to the MODIS measurements

fr D fiso.�/C fvol.�/Kvol.✓#,'# ; ✓",'"/C fgeo.�/Kgeo.✓#,'# ; ✓",'"/ (3.46)

where the different parameters f represent the magnitude of isotropic, volumetric and geometric
scattering and are found by fitting to kernels K expressing the geometric nature of that scattering.
As mentioned above the semi-empirical BRDF model is optimized for the purpose of describing and
reproducing measured data while simultaneously being easy to handle. This is actually a slightly
different focus as compared to the BRDF model derived above as this model tries to be easy to handle
as well but accepts minor accuracy for a particular surface texture for the benefit of being more flexible
in terms of adaptability to other surface textures if no measurements are available as all parameters
represent meaningful properties from a physical point of view.

The fitting of the BRDF is done using the least-squares fitting method. The MODIS BRDF/Albedo
Science data products are provided in a sinusoidal grid projection with standard tiles representing
10ı ⇥ 10ı (2400 ⇥ 2400 px) on the Earth Wolfe et al. (1998). For each surface texture a grid point of
10ı ⇥ 10ı has been chosen that best represents the particular surface texture with more than 95% of
the 2400 ⇥ 2400 px ⇡ 5.76 ⇥ 106 px corresponding to the land cover class under consideration. For
each individual pixel the parameters of the BRDF model have been adjusted using the least square
deviation for all 18 ⇥ 72 D 1296 (✓ D 0ı, 5ı, : : : , 85ı ; ' D 0ı, 5ı, : : : , 355ı) incidence and
reflection directions (12962 ⇡ 1.68 ⇥ 106 [data points]).

The free parameters to be adjusted are roughness factor s, anisotropy factor ˇ, rotational factor
'r and diffuse albedo f

d
r . Whereas the first three parameters are angular dependent and wavelength

independent, the latter parameter is angular independent and wavelength dependent. Hence only the
first three parameters are fitted in this first step using a normalization factor for both the MODIS
BRDF and the model BRDF to be fitted, to ensure independence of the diffuse albedo, which can be
thought of as constant for a given wavelength. The fit is calculated in the MODIS 1 wavelength band
(620 nm  �  670 nm).

In a second step the angular dependent parameters are held constant while the angular independent
diffuse albedo is fitted to the semi-empirical BRDF model. As mentioned above the MODIS albedo
data is available for the wavelength bands 1 to 7. Again the diffuse albedo is fitted using the least-
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Figure 3.8. Fit of the water surface texture. The three individual plots show a (normalized) histogram of the s-, ˇ- and
'-parameter distribution when fitting the model BRDF for all 2400 ⇥ 2400 px. The roughness-factor s D

0.271 ˙ 0.05 states that the surface is moderate smooth while the anisotropy parameter ˇ D 0.988 ˙ 0.13
shows the texture to be or very isotropic. That also explains the fit of the rotation parameter 'r D 3.776˙3.14:
Because of the isotropy any rotation parameter fits the model equally well.
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Figure 3.9. Fit of the water surface texture. The three individual plots show a (normalized) histogram of the s-, ˇ- and '-
parameter distribution when fitting the model BRDF for all 2400⇥2400 px. The roughness-factor s D 0.103˙

0.01 states that the surface is quite smooth, as expected while the anisotropy parameter ˇ D 1.060˙0.18 shows
the texture to be or more or less isotropic. That also explains the fit of the rotation parameter 'r D 3.831˙2.854:
Because of the isotropy any rotation parameter fits the model equally well.
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Figure 3.10. Fit of the ice surface texture. The roughness-factor s D 0.166 ˙ 0.02 states that the surface is quite smooth
(between sand and water) while the anisotropy parameter ˇ D 1.132˙0.42 shows a minor anisotropy although
perfect isotropy lies within one standard-deviation. The rotation parameter 'r D 0.628 ˙ 1.57 shows a clear
accumulation and is not distributed as uniform as seen in the case of water and sand.
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Figure 3.11. Fit of the ice forest texture. The roughness-factor s D 0.339˙ 0.03 states that the surface is less smooth as in
the latter cases while the anisotropy parameter ˇ D 1.220 ˙ 0.33 shows a distinct anisotropy although again
perfect isotropy lies within one standard-deviation. The rotation parameter 'r D 3.454 ˙ 1.08 shows a clear
accumulation with a periodicity of ⇡ as expected in the case of anisotropy.
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Figure 3.12. Fit of the diffuse albedo parameter for the seven MODIS wavelength bands 1 to 7 (top) and average relative
deviation the developed BRDF model and the semi-empirical reference BRDF model is calculated for the
remaining six wavelength bands 2 to 7 with fixed model parameters (bottom). The average relative deviation
is always between 10% and 20% and does not change dramatically in the different wavelength bands. This
shows that the derived BRDF model is flexible enough to realistically represent the observed reflectance data.
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squares fitting method for each of the seven wavelength bands.
Finally, a consistency check is performed where the average relative deviation of the developed

BRDF model and the semi-empirical reference BRDF model is calculated for the remaining six wave-
length bands 2 to 7 with fixed model parameters. The test shows that the average relative deviation
of the two models is less than 20% for nearly all textures in all wavelength bands even though the
parameters are optimized for the MODIS 1 wavelength band only. Furthermore, it should be noted
that the deviation is not increasing monotonically when moving away from the MODIS 1 wavelength
band—e.g., the deviation of the mixed forest texture is less in the MODIS 3 band although optimized
in the MODIS 1 band—and the general deviation slope is small enough to achieve reliable data for a
wide spectral range.
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4. Climate Dynamics Theory

This section intends to describe the basic concepts of climate dynamics as needed to understand the
PUMA/Plasim extension of the PHOENIX modeling framework. It cannot and is not intended to replace
a complete theoretical description of climate dynamics calculations but should just be thought of as a
compilation of the key concepts of the modeling code to be able to evaluate the modeling framework’s
capabilities and limits.

As already mentioned, the climate dynamics calculations are based on the so-called Planet Simula-
tor (Plasim) which itself uses the Portable University Model of the Atmosphere (PUMA) as a simplified
three-dimensional global General Circulation Model (GCM) for the dynamic core, both developed by
the Theoretical Meteorology at the Meteorological Institute of the University of Hamburg (Lunkeit
et al., 2011). PUMA is based on the multi-level spectral Simple Global Circulation Model (SGCM)
described by Hoskins and Simmons (1975) and James and Gray (1986). As a spectral model, the
corresponding equations are solved in Fourier space by expanding the dependent variables in terms
of a finite series of smooth orthogonal functions. Although PUMA originates from the Simmons and
Hoskins SGCM version, it has been completely rewritten in portable FORTRAN-90 code, which
removes any problems associated with machine-specific properties like word lengths, floating point
precision, output, etc. PUMA is a stand alone program which does not use any external libraries. All
necessary routines are in the source code, even the Fast Fourier Transform (FFT) and the matrix in-
version (Lunkeit et al., 2011), which makes it beneficial in terms of merging the PUMA and PHOENIX
frameworks. The dynamic core is the heart of every GCM, it is the part that deals with the solutions of
the dry, adiabatic primitive equations. The dynamical core solves the primitive equations numerically
on a global scale (Polvani et al., 2004).

4.1 Model Approximations

The governing equations used in numerical model calculations to describe a real fluid like a planet’s
atmosphere, are the Navier-Stokes equations (Phillips, 1956) which are based on the conservation of
momentum and mass and hence, extend the classical Euler equations by inner friction and viscosity.
These equations are supplemented by the conservation of heat, given by the first law of thermody-
namics and an equation of state, representing the physical-chemical properties of the atmosphere.
However, these equations support a lot of critical features, such as fast acoustic modes and involve
nonlinearities in many terms that makes solving them both, difficult and expensive with respect to the
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computational effort as well as particularly ill suited for long time scale calculations (Lunkeit et al.,
2011). Hence, some adjustments and simplifications are applied for the sake of modeling atmospheric
flow dynamics in global circulation models (Adcroft et al., 2004). These simplifications are necessary
to make climate dynamics manageable and commonly used in atmospheric modeling codes as well
as the PUMA framework. Therefore, these adjustments, with the corresponding limitations in terms of
model capabilities, have to be discussed below, as they have originally been derived for atmospheric
calculations on earth conditions which might be quite different from the conditions found on some
exoplanets to be modeled.

4.1.1 Hydrostatic Approximation

In hydrodynamical model applications, the stability of numerical solving methods is closely associated
with numerical error, as well. A finite difference scheme is stable if the errors made at one time step
of the calculation do not cause the errors to increase as the computations are continued. A neutrally
stable scheme is characterized by the demand that errors remain constant as the computations are
carried forward. If the errors decay and eventually damp out, the numerical scheme is said to be
stable (Owolabi and Atangana, 2019). If, on the other hand, the errors grow with time the numerical
scheme is said to be unstable (Smith, 1985). In numerical analysis, von Neumann stability analysis
(Charney et al., 1950) (also known as Fourier stability analysis) is a procedure used to check the
stability of finite difference schemes as applied to linear partial differential equations. As atmospheric
motion occurs on a wide variety of time-scales, from the fast propagation of acoustic and gravity
waves via the slower motions induced by the Coriolis force through to very slow dynamics due to
seasonal cycles, the numerical models have to be optimized to deal with these different phenomena in
terms of being numerically stable. Since the spectral model operates with a finite number of waves to
approximate physical fields, the non-interaction with the waves outside the truncation limit, a so-called
blocking effect occurs at the highest wave numbers, amplifying the small scale waves and leading to
serious errors for the large scale components after a certain number of modeling time-steps (Liakka,
2006).

The speed of sound in air is of the order cs ⇠ 350ms�1 which makes sound travel about 20 km
per minute and hence, limiting the stability criteria of modeling time-steps to the order of minutes,
even for a coarse resolution model which is unpractical for long term climate calculations. Hence the
Navier-Stokes equations are “filtered” to remove the acoustic modes as natural modes of the system
which is done by removing the density dependence on the pressure together with the assumption
that dynamic perturbations in density �⇢ are small as compared to the mean density N⇢ (Boussinesq
approximation)

�⇢ ⌧ N⇢. (4.1)

Essentially the Boussinesq approximation allows to linearize terms involving a product with the den-
sity ⇢ (e.g. ⇢v ! N⇢v) (Adcroft et al., 2004). The hydrostatic approximation states that the pressure
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at any point in the atmosphere is completely defined by the weight of atmospheric material above it
or, in other words, that the flow velocity at each point is constant over time. This implies that external
forces, such as gravity or centrifugal force are balanced by a pressure gradient force and excludes
highly convective flows from the modeling capabilities as well as high frequency internal waves such
as the aforementioned acoustic modes.

In 2006, hydrostatic equilibrium was adopted as one of the main distinguishing criterion between
dwarf planets and small Solar System bodies by the International Astronomical Union in their defi-
nition of a planet (IAU, 2006). This qualification typically means that the object has the shape of a
spheroid or ellipsoid with only slight deviation from the spherical shape, where any irregular surface
features are due to a relatively thin solid crust. Sometimes the equilibrium shape is an oblate spheroid,
as is the case with the Earth. However, in the cases of moons in synchronous orbit, near unidirectional
tidal forces create a scalene ellipsoid, and the dwarf planet Haumea appears to be scalene due to its
rapid rotation (Rabinowitz et al., 2006).

In the Solar System, it appears that icy objects with a diameter larger than ca. 400 km are usually
in hydrostatic equilibrium, while those smaller than that are not. Icy objects, though, can achieve
hydrostatic equilibrium at a smaller size than rocky objects because of their much lower surface tem-
perature (Vallis, 2006). The smallest object known to be in hydrostatic equilibrium is the icy moon
Mimas at 397 km with a surface temperature of Ts ⇠ 64K (Jacobson et al., 2006), while the largest
object known not to be is the rocky asteroid Pallas at 532 km with a surface temperature of Ts ⇠ 164K
(Schmidt et al., 2008). As hydrostatic equilibrium is a key assumption in the context of atmospheric
modeling as used in this thesis, all objects that are to be modeled have to be planets according to
the IAU definition or at least planetary mass objects (PMOs), fulfilling the hydrostatic equilibrium
assumption.

4.1.2 Gravity Waves

The next fast process after acoustic waves that can limit the time step is external gravity waves.
Gravity waves are waves generated in a fluid medium or at the interface between two media (e.g. the
atmosphere and the ocean) where gravity is the restoring force. In the Earth’s atmosphere, gravity
waves are a mechanism for the transfer of momentum from the troposphere to the stratosphere (Vallis,
2006). These waves propagate with phase speed cp D

p
g� where g is the acceleration of gravity

and � the corresponding wavelength resulting in wave speeds of 200ms�1 for a typical nominal
wavelength of � D 4 km. For a resolution of 100 km an explicit time-step would be limited to of
order 10min which is somewhat smaller than the next explicit frequency in the system, the inertial
waves due to the Coriolis force with a period of .2˝/�1 ⇠ 7000 s ⇠ 2 h, where ˝ is the earth’s
angular velocity, accounting for the planets diurnal rotation (Vallis, 2006). The fast gravity modes are
linearized around a reference temperature profile T0. Hence the corresponding terms can be separated
into fast linear gravity modes and slower non linear terms where the linear terms contain the effect of
divergence on the surface pressure, the temperature tendency and the potential of the Earth’s gravity
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field (Lunkeit et al., 2011).
The hydrodynamic approximation filters vertical sound waves at the lower boundary condition in

� -coordinates (see below), which leads to a vanishing vertical velocity at the surface, suppresses
horizontal sound waves. As the fast propagation of gravity waves strongly reduces the time-step of
explicit numerical schemes an implicit scheme is used for the divergence, while mode splitting is
applied to the spectral model (Dahms, 2013). The vorticity equation (see below) is solved by an
explicit leapfrog integration method where the Robert-Asselin time filter is applied (Smith, 2010), a
filter specifically designed for the leapfrog scheme that dampens the computational mode but leaves
the physical mode relatively undamped.

4.2 Primitive Equations

The primitive equations describing the dynamical core of all circulation models consist of the con-
servation of (angular) momentum as well as mass and energy, respectively, the primitive laws of
thermodynamics and some equation of state describing the atmospheric properties. These equations
are usually simplified—as with the PUMA/Plasim model code—by the hydrostatic approximation
dp D �⇢ d˚ which assumes an exact equilibrium in the vertical between the pressure gradient force
and the gravitational force where p is the atmospheric pressure, ⇢ the atmospheric density and ˚ the
geopotential1. These primitive equations relate the basic circulation model variables u and v which
describe the zonal and meridional velocities of the atmospheric flows as well as the vertical velocity
! to the temperature T and the geopotential ˚ . They consist of a set of coupled partial differential
equations.

With the primitive equations the horizontal velocities u D .u, v/ are related to the temperature T
and the geopotential ˚ in the following way

du

dt
C f On ⇥ u C rp˚ D 0 (4.2)

dT

dt
�
T!

p
D 0 (4.3)

rp � u C
@!

@p
D 0 (4.4)

@˚

@p
D 0 (4.5)

where On is the surface normal, rp the nabla-operator with respect the vertical pressure scale2 and
f D 2˝ sin' the Coriolis parameter defined by the planets angular velocity ˝ and the latitude as
measured from the planets equator3. Equation (4.2) is called momentum equation describing hydro-

1As the term geopotential with its prefix is a set expression in meteorological applications, it is used in this thesis even
though the focus is mainly on exoplanets.

2In meteorological applications the pressure p or some derived variable is used as the vertical coordinate rather than a
spacial ´ coordinate which is comparable to the use of optical depth in astrophysical applications.

3Spherical coordinates in the field of meteorological research are defined with a reference to the sphere’s equator .' D 0/
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Figure 4.1. Schematic diagram of the � -coordinate system. The � -levels (solid lines) are terrain-following in contrast to
the geometrical height levels (dashed lines).

dynamical flow on the surface of a sphere under the assumption that vertical motion is much smaller
than horizontal motion (hydrostasis) and that the atmospheric depth is small as compared to the ra-
dius of the sphere4, equation (4.3) is the thermodynamic equation relating the overall temperature
of the system to heat sources and sinks, equation (4.4) is named continuity equation, representing
the conservation of mass while equation (4.5) is the hydrostatic equation, a special case of the verti-
cal momentum equation in which there is no background vertical acceleration. The thermodynamic
equation is described by the pressure p, the vertical velocity ! and  D R=cp, where R is the gas
constant for dry air, and cp is the specific heat capacity for dry air at constant pressure (Liakka, 2006).
Furthermore, ˛ is defined as ˛ D ⇢�1, where ⇢ is the atmospheric density. As the frame of reference
is not comoving with the atmospheric material the total time derivative has to be written as

d

dt
D

@

@t
C u � r C !

@

@p
(4.6)

where the first term accounts for the actual temporal alteration at the place under consideration and
the second and third term regards the atmospheric property change which is induced by the movement
of the flowing material in horizontal and vertical direction, respectively.

4.2.1 Sigma Coordinate System

Longitude �- and latitude '-coordinates describe the horizontal position onto the surface of the sphere.
As a first step to obtain the equations in Hoskins and Simmons (1975) the vertical coordinate will be

rather than to its pole which is common convention with respect to spherical coordinates in other domains. To account
for this, spherical coordinates that are defined with respect to the sphere’s equator are denoted as .',�/ while those with
reference to the sphere’s pole are referred to as .✓ ,'/.

4This is a first limitation with respect to the classes of exoplanets that can be modeled as the (geometrically) thin atmo-
sphere is a basic boundary condition for the model setup.
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changed from pressure p to the so-called � -coordinates, which are terrain-following (cf. fig. 4.1) and
defined as

� D
p

ps
, (4.7)

where ps is the pressure at surface level. The � -coordinate system functions as vertical height scale
which is defined as the ratio of the pressure at a given point in the atmosphere to the pressure on
the surface of the planet underneath it. The main advantage of changing to � -coordinates is the
very simple boundary condition for the vertical velocity (Liakka, 2006). If the pressure was used
as the vertical coordinate, the boundary conditions at the surface would be very difficult to define
due to the variations of the surface height. The � -coordinate values ranges from one (surface of the
planet) to zero (far out of the planetary atmosphere). According to this definition, the values of the
height coordinate increases when moving into the atmosphere and thus, show the same habit as the
optical depth that is used in radiative transfer applications. The � -coordinate decreases monotonically
with geometric height ´, hence each geometric height corresponds to some � -level and vice versa
(bijectivity). The vertical velocity in � -coordinates is referred to as

P� D
d�

dt
(4.8)

with the corresponding boundary conditions

P�.� D 1/ D P�.� D 0/ D 0. (4.9)

In order to rewrite the primitive equations in � -coordinates the r-operator has to be transformed to
the new coordinate system. The derivative with respect to the geometric height is

@

@´
D
@�

@´

@

@�
(4.10)

and the derivative to any other coordinate s, s 2 fx, y, tg may be written as
✓
@

@s

◆
�

D

✓
@

@s

◆
´

C

✓
@´

@s

◆
�

@

@´
(4.11)

where the subscript indicates the quantity to be kept constant. With the latter two equations and the
definition of the � -coordinate

✓
@�

@s

◆
p

D �
�

ps

@ps

@s
(4.12)

the r-operator as the horizontal derivative in the � -coordinate system results in

rp D r� �
�

ps
.r�ps/

@

@�
(4.13)
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and corresponding the time derivative of equation 4.6 in

d

dt
D

@

@t
C u � r� C P�

@

@�
. (4.14)

4.2.2 Primitive Equations in Sigma Coordinate System

With these derivative operators the primitive equations may be rewritten in the new � -coordinate
system. Below, each of the primitive equations will be translated into the new coordinate system.

Hydrostatic Equation With the new coordinate system, the hydrostatic equation (4.5) can be ex-
pressed as

@˚

@p
C ˛ D

1

ps

@˚

@�
C ˛ D

@˚

@�
C
RT

�
D 0 (4.15)

where the ideal gas law p˛ D RT has been used in the last step. This equation could easily be
integrated if the run of the temperature along the � -coordinate was known

˚.�/ D ˚s �

�Z

1

RT.�/

�
d� (4.16)

where ˚s denotes the geopotential at the planet’s surface. Eq. 4.16 is one of the so-called
diagnostic equations (see below) describing the geopotential for a given sigma-level.

Momentum Equation To transform the momentum equation (4.2) into the � -coordinate system, the
derivative operators (4.13) and (4.14) have to be applied resulting in

du

dt
C f On ⇥ u C r�˚ �

�

ps
.r�ps/

@˚

@�
D 0 (4.17)

or

du

dt
D �u � r�u � P�

@u

@�
� f On ⇥ u �RTr�⇡ � r�˚ (4.18)

where the logarithmic pressure ⇡ ⌘ ln.ps= Np/ has been defined, Np is a constant averaged refer-
ence pressure. To address the discontinuities at the poles of the sphere which arise from the fact
that a sphere is not homeomorph to the R2-space, the momentum equation is usually defined
in terms of vorticity and divergence for modeling purposes. A vector field cannot be defined
at ' D ˙

⇡
2 because of the directional ambiguity. In contrast to the horizontal wind field, the

divergence and vorticity are represented by scalars, which can be defined all over the sphere
(Liakka, 2006). To derive the vorticity and divergence equation the individual terms of the lat-
ter equation have to be reformulated in terms of the vorticity and divergence. Using the vector
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identity

u � r�u D
1
2r� .u � u/ � u ⇥ .r� ⇥ u/

D
1
2r� .u � u/ � u ⇥ ⇣ On

D
1
2r� .u � u/C ⇣ On ⇥ u, (4.19)

the momentum equation may be rewritten as

du

dt
D �

1
2r� .u � u/C ⌘ On ⇥ u � P�

@u

@�
�RTr�⇡ � r�' (4.20)

where the relative vorticity ⇣ ⌘ On�r� ⇥u and the absolute vorticity ⌘ ⌘ ⇣Cf have been defined.
Applying the nabla operator to the latter equation and introducing divergence ı ⌘ r� � u yields
to the final divergence equation, describing the temporal development of the first scalar field

dı

dt
D �

1
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2
� .u � u/C On � r� ⇥ .⌘u/ � r� � P�
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2
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As this equation describes the development of the vorticity over time it is referred to as prog-
nostic equation to distinguish it from the diagnostic equations. To derive the vorticity equation
as the prognostic equation for the second scalar field, the operator On � r�⇥ is applied to Eg.
4.20, resulting in

d
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. On � r� ⇥ u/ D � On � r� ⇥


1
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�

� On � r� ⇥ Œ⌘. On ⇥ u/ç (4.22)

which may be rearranged to

d⌘

dt
D �r� � .⌘u/ � Onr� ⇥
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@u

@�
CRTr�⇡

�
, (4.23)

keeping in mind that r� ⇥ r� D 0. By splitting the scalar temperature field T .x, y, � , t / into
a sigma-level average NT .�/ and its corresponding average deviation T 0.x, y, � , t / according to

T .x, y, � , t / D NT .�/C T 0.x, y, � , t /, (4.24)

the final vorticity equation may be derived as

d⌘

dt
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and the divergence equation, respectively
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Thus, using the splitting of the temperature field for both, the divergence equation (Eq. 4.21)
and the vorticity equation (Eq. 4.25) results in a consistent description of the two scalar fields,
replacing the vectorial momentum equation 4.2.

Thermodynamic Equation The thermodynamic equation may easily be transformed to sigma-coor-
dinates by applying the abovementioned nabla and time derivative operator

dT

dt
D �ur�T � P�

@T

@�
C
T!

p
(4.27)

Continuity Equation Applying the sigma-coordinate derivative operators to the continuity equation
yields to

0 D
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where the derivation of the vertical velocity ! in the sigma-coordinate system has been used
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By defining the vertical pressure flow G ⌘ ur�⇡ C r�u and integrating this equation from
the planet’s surface to the top of its atmosphere, the final continuity equation is obtained in the
form

@⇡

@t
C

1Z

0

G d� D 0. (4.30)

As aforementioned, in atmospheric modeling theory, the fundamental equations are formally di-
vided into diagnostic equations (DE), used to calculate the relevant model quantities for a given point
in time and prognostic equations (PE), using the quantities determined by the DEs to calculate the
corresponding tendencies. The definition of the logarithmic pressure and vertical pressure flow be-
long to the DEs as well as the hydrostatic equation (Eq. 4.16). Equation 4.30 may be used to derive
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the two remaining DEs (Liakka, 2006). This yields to the five diagnostic equations in the form

˚.�/ D ˚s �
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1
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�
d� (4.31)

ps D Np exp⇡ (4.32)

G D ur�⇡ C r�u (4.33)
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The prognostic equations have already been deduced in this section in the form of the divergence and
vorticity equations’ (Eq. 4.21, Eq. 4.25) as well as the temperature equation’s (Eq. 4.27) and pressure
equation’s (cf. Eq. 4.30) temporal derivative. They may be summarized as
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With a given set of atmospheric velocity u, temperature T and pressure ⇡ for a certain point in
time, the diagnostic equations may be solved. This result can then be used in return to evaluate the
tendencies of these quantities due to the prognostic equations, creating the input for the next time-step.

4.3 Parameterizations

If not denoted otherwise, the following discussion is based on the information provided by Lunkeit
et al. (2011). Processes like boundary-layer fluxes, i.e. the description of the air layer near the ground
affected by diurnal heat as well as momentum transfer to or from the surface, diffusion and moist
processes are unresolved but included as simplified parameterizations in the Planet Simulator
(Dahms, 2013). This mainly effects the treatment of the planetary boundary layer (PBL) as the lowest
part of the planet’s atmosphere whose behavior is directly influenced by its contact with the planetary
surface. The PBL is distinguished from the free atmosphere in which the wind may be approximated
as geostrophic, i.e. parallel to the isobars, while within the PBL the wind turns across the isobars.
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Figure 4.2. Visualization of PUMA-modeling capabilities: Only processes that take place in the spacial and temporal domain
marked by the dashed-line box can truly be modeled. All the other processes have influences on the overall
modeling by parametrizations that are partially adjusted to earth conditions to some degree.

Hence, the PBL is characterized by more turbulent processes. The turbulent eddies are much smaller
than the scales that can be resolved in a GCM and are parameterized following the methods of Louis
(1979) which address the vertical eddy fluxes of heat, momentum and moisture. The applied parame-
terization scheme for the surface fluxes is based on the Monin-Obukhov similarity theory (Obukhov,
1971). In the PBL, bulk formulas are used to parameterize fluxes of zonal and meridional momentum
(wind stress) as well as sensible and latent heat where the fluxes are positive in downward direction
(towards the surface) and negative in upwards direction (away from the surface) (Dahms, 2013). The
drag and the transfer coefficient for heat are calculated following the method described by Roeckner
et al. (1992) which itself again is based on the methods of Louis (1979). Actually, this parameteriza-
tion has been developed for earth conditions but do not include any assumptions that are very earth
specific and thus, it should hold in most exoplanet model setups as well, as long as surface roughness
is comparable (Tillman et al., 1994). Turbulent mixing is not resolved in the model but represented
by a vertical diffusion applied to the horizontal wind components u and v, the potential tempera-
ture ✓ as well as the specific humidity q. The turbulent fluxes of zonal and meridional velocity,
heat and moisture are parameterized by a vertical diffusion along the vertical gradient with the ex-
change coefficients for momentum and heat, which are calculated due to the mixing length approach
(Dahms, 2013). Horizontal diffusion is computed in spectral space and based on the parameterization

65



4 Climate Dynamics Theory

by Laursen and Eliasen (1989).
As the area of rising motion in moist convection processes is very small as compared to the horizon-

tal resolution of the model, some cloud formation processes have to be parameterized like cumulus
convection following a Kuo-type convection scheme (Kuo, 1965, 1974) in which convection is ac-
tivated in a conditionally unstable layer between the pressure levels, if there is net-convergence of
moisture into the grid box. Clouds are very important for the description of the planetary albedo.
Currently the parameterization is highly adjusted to cloud formation processes on Earth conditions,
e.g. it can treat water clouds only and thus, methane clouds as found in Titan’s atmosphere are not
covered. Moreover, PHOENIX-3DRT is currently not capable of handling Mie scattering which is pre-
dominant in clouds. Therefore, neither the formation of clouds nor the radiative transfer within clouds
are sufficiently resolved in the model code and model setups that are influenced by cloud coverage
effects to a high degree should be treated with caution.

In principle, phase changes of convective and large-scale precipitations within the atmosphere are
considered (Dahms, 2013). Actually, the melting and freezing of precipitation is modeled for water
(H2O) only because it is controlled by a single temperature level defining the triple point of water
indicating the phase change condition and set to Tth D 271.16K as a threshold. This threshold
temperature has been made configurable for the sake of modeling phase changes of other liquids and
to account for the change in partial pressure with respect to the corresponding species. Nevertheless,
phase changes are controlled by a constant threshold temperature that is not adjusted during modeling
phase and restricted to one predominant species. This implies that the threshold temperature acts as
an independent input variable and phase changes are modeled assuming the temperature to be valid
for the conditions within the exoplanets atmosphere. Evaporation is parameterized in terms of the
saturation deficit describing the amount of moisture in the air and how much moisture the air can hold
when it is saturated and again, is closely related to earth conditions. This means, that phase changes
are taken into account and may be adjusted to exoplanet conditions to some degree but cannot be
treated self-consistently.

Some land surface properties are parameterized in Plasim. This parameterizations include a soil
hydrology and a river transport system to have a closed circuit for the water fluxes. Surface maps,
specifying land-sea mask, orography, roughness length (turbulent fluxes) and evaporation efficiency
(phase changes) have to be provided if needed (cf. fig. 5.3), albedo (irradiative heat) may be provided
as well but is calculated by default, using the Lambertian component of the BRDF model. Since
there is no coupling to some land-ice models glaciers are treated like land points but with surface
and soil characteristics appropriate for ice (Dahms, 2013). The treatment of surface properties using
quantity maps makes the model highly flexible in terms of fine-tuning it to certain planet conditions
but, on the other hand, dramatically increases the parameter-space. This means that any observable
data with respect to today’s techniques may be ‘fitted’ with nearly unlimited combinations of input
parameters. More precisely, with a given threshold of a quantity describing the goodness of the ‘fit’
model using some statistical hypothesis testing method such as the chi-squared (�2) test, the volume in
parameter-space which represents vectors of input parameters, valid to represent models not violating
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this threshold, is huge and may show disjointed sub-volumes or the mapping, connecting some input
vector to the goodness quantity, is even discontinuous which prevent the definition of such valid
volumes at all. This basically means that e.g. the exact orography or land-sea mask may be used to
specify planetary conditions but cannot be reconstructed from the observed spectra right now.
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5. Testing the Model

The model can only reliably be tested if the calculated quantities such as temperature profiles, surface
albedo or transmission and reflection spectra may be compared to some observed and thus measured
reference values. This not just implies the observational data to be of high enough quality in terms
of resolution as well as signal-to-noise ratio (SNR) to enable reliable testing conditions, but also the
quantities to be dependable, i.e. close to the actual raw data and not calculated as part of complex
models themselves. Principally, this indicates the use of exoplanets’ observations to be inadequate
in this context, as the observed data, of course does not meet the addressed requirements, neither in
terms of resolution or SNR nor with respect to the closeness to the actual raw data if e.g. temperature
profiles are to be examined. Nevertheless, there is a perfect candidate to serve as a reference object in
our immediate neighborhood: Mars; and as the classification into planets and exoplanets is artificial
from every point of view and hence just an expression of our own perspective it is also valid in the
context of exoplanet model development.1

With respect to PHOENIX, our own sun is just an ordinary G2V star which is used as an irradiation
source within the model and as the code has never been developed with any sun specific characteristics,
it is just an example star in this model setup but may easily be exchanged for another host star with
modified spectral class in a true exoplanet model setup if desired. Although the PUMA/Plasim code
in fact has been developed for earth and hence solar-system conditions, all specifics concerning this
configuration have been removed from the code. This may easily be verified, as the PUMA/Plasim
code considered the spectrum of the host star and thus its spectral class only in terms of the short- and
long-wave separation wavelength in the radiation module, which has completely been replaced by the
PHOENIX 3DRT code. All other model input parameters beside the host star’s spectral class have to
be adapted to the Martian model anyhow and thus the model may be considered as a perfectly valid
general purpose setup without any constrains to our own solar system.

Mars is well-suited for testing the developed model, as it is not only our direct neighbor but also
the most Earth-like planet in the solar system, except for our own Earth, of course. However, the
atmospheric properties, such as flow dynamics and climate are quite different form those on Earth in
many aspects which enables the tests to check for consistency in a wide range of model dynamics.
The greater distance to the sun enables the validation of the collaboration of the model frameworks

1In terms of planetary properties, Venus is an equally valid candidate to test the model. In contrast to Mars, however, the
solar winds have a much greater influence on the atmosphere due to the shorter distance to the sun (Futaana et al., 2017).
This influence cannot be represented with the present model setup, which means that the results for Mars seem more
suitable for testing the general model capabilities.
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Figure 5.1. Illustration of the thermal tides at Mars, responsible for large, daily variations in pressure at the Martian surface
(solid line). The solar irradiation causes the atmosphere (dotted line) to expand at the day-side (right of the
terminator) while air flows out of the bulge, lowering the surface pressure. The bulge moves across the planet
each day, from east to west due to the planet’s rotation.

PHOENIX and PUMA/Plasim, as all Earth specific parameterizations concerning solar irradiation have
to be resolved to deliver reasonable results. The absence of oceans on Mars facilitates the exami-
nation of the circulation model’s applicability to atmospheric conditions that are obviously different
from those on earth, as the error source induced by the simple ocean model disappears. On the other
hand, the complete lack of liquid water leads to massive ‘continental’ climate and thus rapid changes
in the temperature profiles in response to radiative changes. Therefore, so-called thermal tides are
responsible for huge temperature and pressure variations on daily time scales (cf. fig. 5.1). The (rel-
atively) large eccentricity of Mars’ orbit results in an asymmetry of the irradiation with respect to
northern and southern summer of about 30% which shows up as an asymmetric melt and freeze out
of the polar CO2-ice caps and hence varying atmospheric mass over the year. This effect is specific
to planets with huge eccentricity which show polar ice caps and hence does not occur on earth and,
again, needs a flexible model not specialized to earth conditions.

The chemical composition of the Martian atmosphere is about 95% carbon dioxide (CO2), 2.5%
nitrogen (N2), 1.5% argon (Ar2) and 0.1% oxygen (O2), the exact composition with all relevant
species is compiled in tab. A.3. As mentioned above, the carbon dioxide condenses in the winter po-
lar regions and sublimes again in the summer with a turnover of about 25% of the total atmospheric
mass. On an inter-annual time scale, dust storms are supposed to be responsible for the strongest
variabilities with respect to solar irradiation and thus temperature and pressure profiles: Dust particles
in the atmosphere may be thought of as aerosols in the Earth’s atmosphere, absorbing the short wave
solar irradiation and resulting in a temperature decrease at the surface and increase at high altitudes,
respectively. Although, a dust model is included in the PHOENIX code (Witte, 2011), the dust storms
are not included in the model calculations, as the atmospheric circulation model is currently not capa-
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Figure 5.2. The NASA Mars Orbiter Laser Altimeter (MOLA) data is used for the orography map. The original MOLA data
at an resolution of 4 px per degree is plotted on the left, the interpolated topology map (T21 resolution) on the
right. The input map was created using bi-linear interpolation with respect to the horizontal grid configuration
(cf. fig. 5.3).

ble of handling effects like this. As the Martian atmosphere is—except for the dust storms—optically
thin the atmospheric circulation is driven by surface heating. This heating from the ground varies
massively due to the large surface elevation (cf. fig. 5.2).

5.1 Model setup

This section describes in detail the setup of the Martian model. The Martian model has been set up
with the parameters presented in tab. A.5. As with the Earth, the atmospheric dynamics on Mars are
driven by the seasonal and daily cycles of solar irradiation, as well, but unlike Earth conditions, the
relatively large eccentricity of ✏ D 0.093 of the Martian orbit causes varying radiation fluxes on the
northern and southern hemisphere during respective summers. Hence, the model has been calculated
using altering distances to the sun during the orbital period, starting with some arbitrarily chosen solar
longitudeL0

S but accounting for the correct correlation between solar Longitude and northern/southern
hemisphere summer. This is necessary to consider the increase in net solar irradiation during southern
hemisphere summer.

5.1.1 Model Grid

The PUMA/Plasim model is a spectral model and thus, the corresponding equations are solved in
Fourier space by expanding the dependent variables in terms of a finite series of smooth orthogonal
functions. Functions in Fourier space are represented with finite precision, of course, implying the
spectral coefficients to be truncated at some point. This causes the horizontal grid to be determined
by the truncation scheme. With respect to the T21 truncation scheme used for atmospheric dynam-
ics calculations throughout this thesis, the horizontal grid in position-space is fixed to 32 latitudes
(�90ı  '  90ı) for each of the 64 longitudes (0ı  �  360ı) and yielding to a total of 2048 grid

71



5 Testing the Model

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

0°

28.125°

56.25°

84.375°

28.125°

56.25°

84.375°

0° 56.25° 112.5° 168.75° 225° 281.25° 337.5°

Figure 5.3. Schematic diagram of the horizontal grid configuration: The planetary surface is subdivided into 2048 grid
points, 32 in latitudinal and 64 in longitudinal direction, according to the T21 resolution used in meteorological
model frameworks as with PUMA/Plasim. Surface maps, such as orography or albedo maps are to be specified
row by row, starting with the northernmost grid-row and at some arbitrarily chosen reference longitude. The
labels inner and outer loop, respectively refer to the loop structure of the read-in procedure.

Table 5.1. Coordinates of the horizontal planetary surface grid: The grid consists of 32 latitudinal and 64 longitudinal
coordinates which results in a total of 2048 grid points.

Grid latitude coordinates 'i

85.7606 80.2688 74.7445 69.2130 63.6786 58.1430 52.6065 47.0696
41.5325 35.9951 30.4576 24.9199 19.3822 13.8445 8.3067 2.7689
-2.7689 -8.3067 -13.8445 -19.3822 -24.9199 -30.4576 -35.9951 -41.5325

-47.0696 -52.6065 -58.1430 -63.6786 -69.2130 -74.7445 -80.2688 -85.7606

Grid longitude coordinates �j

0.0000 5.6250 11.2500 16.8750 22.5000 28.1250 33.7500 39.3750
45.0000 50.6250 56.2500 61.8750 67.5000 73.1250 78.7500 84.3750
90.0000 95.6250 101.2500 106.8750 112.5000 118.1250 123.7500 129.3750

135.0000 140.6250 146.2500 151.8750 157.5000 163.1250 168.7500 174.3750
180.0000 185.6250 191.2500 196.8750 202.5000 208.1250 213.7500 219.3750
225.0000 230.6250 236.2500 241.8750 247.5000 253.1250 258.7500 264.3750
270.0000 275.6250 281.2500 286.8750 292.5000 298.1250 303.7500 309.3750
315.0000 320.6250 326.2500 331.8750 337.5000 343.1250 348.7500 354.3750
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Figure 5.4. Schematic diagram of the model’s vertical discretization. The calculation of the vertical atmospheric structure
is shown exemplarily for a total five sigma levels (dashed lines) though 10 levels have been used in the model
calculations to account for the steep orography. All relevant quantities are calculated at the levels except for the
vertical velocity P� which is examined at the boundary layer between the sigma levels (solid lines).

points (cf. fig. 5.3). The exact positions of the individual grid points are given in tab. 5.1. Thus, the
corresponding distance between adjacent grid coordinates is �' D �� ⇡ 5.6ı. All input parameter
maps such as orography (cf. fig. 5.2) are interpolated onto this surface grid using bi-linear interpola-
tion. The NASA Mars Orbiter Laser Altimeter (MOLA) data at a resolution of 4 px per degree is used
for the orography input map. Although not artificially smoothed, the interpolation causes some of the
minor topographic features to be averaged out of the input map as well as the restriction of the total
topographic range. Nevertheless, the topographic range after the interpolation process is still more
than 14 km. This is considerably more than for a comparable Earth setup and particularly with the
smaller planetary radius of Mars leads to a challenge for the circulation model.

The vertical resolution is given by 10 sigma levels representing atmospheric h between 0.2 km and
35.2 km. The exact positions of the individual levels are given in table A.4. Additionally, the model
calculates the relevant quantities for the planetary surface (h D 2m), resulting in a total of 11 height
levels. All quantities are calculated at the sigma levels except for the vertical velocity P� which is
examined at the boundary layer between the sigma levels (cf. 5.4). Horizontal and vertical grid result
in a voxel-grid of 20 480 which is quite small as compared to the big grid of about 250 000 voxels or
even more but necessary as the model computes the relevant radiative transport quite frequently to in-
teract with the circulation model (see below). Bigger voxel grids would definitely push the boundaries
of modern high performance computing centers.
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5.1.2 Time Intervals

The PUMA/Plasim time scales are formulated in terms of years, months and days as well as hours,
minutes and seconds. As these time intervals are related to earth characteristics such as (synodic)
rotational period (day) or orbital period (year) and hard-coded within the model, the much less error-
prone method of redefining the corresponding time intervals has been chosen rather than modifying
each occurrence of all the intervals in the code. Hence, a year is defined as the orbital period of
the planet consisting of 12 months with an equal number of days. A day is defined as the planet’s
(synodic) rotational period, composed of 24 hours with an equal number of minutes. A second is
related to all the fundamental physical time scales within the model and thus, must stay unaffected,
where 60 seconds still constitute a minute. With these definitions, there are two degrees of freedom
left: the number of minutes within an hour to represent the rotational period as well as the number of
days within a month to account for the orbital period. This results in a Martian year of 12 months with
55, 63 (synodic) days each. Every (synodic) day has 24 hours, where an hour is of 61.75min length.
Hereafter, all time intervals that correspond to the Martian calendar system are indicated by the index
MCS e.g. 1.75 dMCS.

5.2 Modeling Results

The initialization of the model is done with a daily mean surface temperature field which is approxi-
mated according to the planets equilibrium temperature

�T 4
s .'i / D Œ1 � A.'i /ç NFi (5.1)

where A.'i / is an initial guess for the diffuse Lambertian surface albedo and globally set to 0.24, NFi

the host star’s daily mean irradiation flux as a function of the orbital parameters axis tilt and solar
longitude of perihelion resulting in 587W m�2 at vertical irradiation and � the well-known Stefan-
Botzmann constant. The initial surface pressure is globally set to 800Pa.

The model is started with a run of the PUMA/Plasim code with a fixed radiation input scheme
doing nothing but providing the host star’s plain irradiation flux F as used for the calculation of the
equilibrium temperature. The model is run for one year (MCS) with a time-step of �t D 15min
resulting in a total of 67 771 time-steps to create a basic atmospheric structure for the PHOENIX 3DRT
model to calculate the surface irradiation. As the Martian orography may be approximated to be
isotropic in terms of BRDF textures, covering the planetary surface (mainly desert supplemented by
polar ice caps), the radiative transfer has only been solved once and held constant for all rotation
angles. Nevertheless, altering surface radiation maps are supported and needed in the case of non-
isotropic surface texture coverage. In the next step, the BRDF model is used to modify the input
albedo map. Surface irradiation flux as well as surface albedo map are then used as input maps for the
restart model of the PUMA/Plasim code. During the orbital period, the varying solar irradiation due
to the large eccentricity has be considered only in terms of a scaled surface irradiation accounting for
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the respective distance to the sun. Of course, this is an approximation, since the top-atmospheric flux
input to surface output correlation actually is not linear but calculating the radiative transfer for all 64
longitudinal grid coordinates and 669 dMCS would result in a total of 42 816 radiative transfer models
to be solved which is far from being manageable with current computer facilities, even for small voxel
grids of 20 480 voxels. This whole process is referred to as one single iteration step in the combined
radiative transfer and atmospheric dynamics model framework used within this thesis. Each iteration
step starts with the run of the atmospheric dynamics code producing an atmospheric model structure
which is used in return to perform the radiative transfer calculations. The radiative transfer results are
then used to modify input parameters for the PUMA/Plasim restart model and so forth.

Right now, there is nothing comparable to an internal termination condition for the iteration. In the
case of the Martian model, the iteration process had been continued until the annual and longitudinal
mean temperatures did not vary more than 10K for all 32 latitudinal grid coordinates. This was
achieved after 9 iteration steps.

5.2.1 Atmospheric Temperature Profiles

Atmospheric temperature profiles have been calculated for a total of seven latitudinal grid coordinates
from the northernmost grid latitude, included in the horizontal grid, in in steps of �' ⇡ 30ı (cf.
fig. 5.5) to the southernmost latitude. The equator latitude (' D 0ı) is not a grid coordinate and has
been replaced by the ' D 2.7689ı grid coordinate which is, beside the mirrored grid latitude on the
southern hemisphere, closest to the equator. In all plots throughout this chapter, graphs concerning the
northern hemisphere are drawn using solid lines while dashed lines represent graphs that are related to
the southern hemisphere. The corresponding labels use positive numbers to refer to northern latitudes
and vice versa. Although the ' D 2.7689ı grid latitude is on the northern hemisphere, it represents
the equator in all plots and thus, a dash-dotted line is used in this case.

All temperature profiles have been calculated at a solar longitude that corresponds to southern
summer. Hence, the profiles expectably start at the Martian surface with much lower temperatures
on the northern hemisphere as compared to those on the southern one. Due to an axis tilt of the
Martian rotational axis of 'i D 25.19ı, the irradiation at ' ⇡ 30ı is almost vertical and thus, the
highest surface temperatures are reached at this latitude. Due to the optically very thin atmosphere,
the profiles approach to a temperature of about 183K at an atmospheric height of h ⇡ 22 km. The
optical thin atmosphere permits the deposition of radiative energy in the upper atmosphere only to a
relatively small extent and hence, the temperature is determined by the atmospheric matter transport
rather than by the incident irradiation. This yields to a convergence of the profiles, representing
summer and winter hemispheres, in the upper atmosphere. At heights between 22 km and 32 km, the
profiles diverge again, not as much as at the surface but still conspicuously. This coincides with the
height of the so-called High Altitude Tropical Dust Maximum centered at 20 km – 30km, previously
detected by the Mars Climate Sounder (MCS) (Heavens et al., 2011). Although dust is not considered
in the radiative transfer model, the layer seems to be reproduced by the circulation model and thus, is
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Figure 5.5. Atmospheric temperature profiles have been calculated for seven latitudinal grid coordinates from the northern-
most grid latitude in steps of �' ⇡ 30ı.

visible in terms of deviations in the corresponding temperature profiles. This is reasonable since the
layer interacts with the radiation field but is generated by climate dynamics effects (Heavens et al.,
2011). Therefore, neglecting the interaction of the dust with the radiation field may cause errors with
respect to the calculated surface temperatures but does not completely remove the layer’s influences
on the atmosphere.

The measured surface temperatures on Mars (e.g. by the NASA rover Curiosity or Viking 1) vary
due to the seasonal cycle between Tmin D 184K and Tmax D 242K with an average of NT ⇡ 210K
(Grayzeck, 2013) which is subtly warmer than the modeled temperatures. Nevertheless, the calculated
surface temperatures as well as temperature profiles give reasonable values considering the approxi-
mations in the model setup discussed earlier.
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5.2.2 Seasonal Temperature Variations

To investigate the seasonal variations of the solar surface irradiation as well as the corresponding
variations of the surface temperatures, fig. 5.6 illustrates the run of both quantities for a whole orbital
period (1 yrMCS). The time scale on the abscissa of the diagram refers to the Martian months defined
above and starts at the arbitrarily chosen solar longitude L0

S, at which the summer solstice on the
northern hemisphere occurs exactly in the middle of May.

Both, solar surface irradiation and surface temperature are diurnal averaged and plotted for the
same seven latitudinal coordinates as before. Due to the axis tilt of 'i ⇡ 25ı, the polar circles lie at
'pol ⇡ ˙65ı and thus, close above and below the ' D ˙58.143ı grid latitudes, respectively. The
polar nights with vanishing diurnal averaged irradiation are clearly visible in the context of the plots
that correspond to the polar regions of Mars. As the respective latitudes do not represent the very
polar regions of the planet but are shifted towards the equator by an angle of�' ⇡ 4ı the actual polar
nights do not directly switch over from one to the other. Hence, there is a small period of time where
both outermost latitudes are irradiated.

Since the irradiation profiles are diurnal means, the maximum irradiation is reached at the polar
regions during polar days. Even though, the irradiation flux is higher at the turning circles in the
daytime, the vanishing irradiation during the night yields less net irradiation when averaged over the
whole day as compared to the polar regions without any nighttime during polar days.

Due to the eccentricity, the net irradiation flux during southern summer is increased by about 30%.
This is clearly represented in the diagram: At the planetary surface, the model calculates a net irra-
diation flux which increased by a factor of ⇠ 8% as compared to the northern summer at the same
latitudes. Though obvious in the surface irradiation diagram, this asymmetry does not find its equiva-
lent in the temperature runs over the year: The increase in southern summer temperatures as compared
to the ones during northern summer is almost neglectable demonstrating the efficiency of the energy
transport due to atmospheric circulation dynamics. At a surface pressure of ps ⇠ 800Pa which is
typical for the Martian atmosphere, the carbon-dioxide triple point is TTP ⇡ 150K. Since the temper-
atures at the polar regions come below this value, the polar CO2 ice caps are reproduced by the model
in terms of temperature limits.

5.3 Topographic Features

All test results presented so far build upon a model setup, representing the actual configuration of
Mars as realistically as possible in terms of orography or rotational period but to get an impression of
the model framework’s flexibility it is also important to compare models with minor changes in their
corresponding setup while monitoring the effects that are introduced. If used for exoplanet modeling,
the exact planet orography will usually be unknown. Hence, it is reasonable to compare the realistic
Mars model with correct orography map to a simplified model where no topographic features are
considered. This is done by using a plain orography map with constant height level of h D 0 for all
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Figure 5.6. Seasonal variations of the diurnal averaged solar irradiation at the planetary surface (top) as well as correspond-
ing variations of the surface temperatures (bottom).
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Figure 5.7. Comparison of two model setups with different topographic configurations. Surface temperatures (left) as well
as atmospheric velocities (right) are shown for both, realistic orography map as describes above (top) and plain
orography map without topographic features (bottom).

grid points. All other specifications are held constant, so that the introduced deviations are due to the
missing orographic information only.

Figure 5.7 shows the surface temperatures as contour lines as well as the horizontal atmospheric
velocity field in terms of a two-dimensional vectorfield for the whole horizontal grid for both models.
While the diagrams at the top illustrate the Mars model considering a realistic orography, the bottom
diagrams refer to the plain orography model. Obviously, the structure of the surface temperatures
is much more complex in the model considering orographic features. Nevertheless, the range of the
surface temperatures (150K  T  220K in the case of the model, accounting for the Martian orog-
raphy, and 170K  T  220K in the plain orography model, respectively) reveals a minor impact of
the orography on the highest and lowest temperature, respectively (same maximum temperature Tmax

and slightly higher minimum temperature Tmin), resulting in a marginally reduced overall tempera-
ture range. Despite the minor temperature deviations, the surface temperatures do not fall below the
carbon-dioxide triple point at TTP ⇡ 150K resulting in vanishing polar CO2 ice caps in the plain orog-
raphy model. This affects the planetary albedo in return stabilizing the increased surface temperatures
in the polar regions because of decreased diffuse Lambertian albedo values in this area.

The atmospheric velocities are much stronger in the plain orography model since no orographic
features may act as boundaries for the wind air flows. The reference length of a vector relating to
a velocity of 60 km h�1 is given in the diagrams legend. The velocities in the realistic model do
not exceed 60 km h�1 whereas in the plain orography model velocities of 150 km h�1 and above are
reached. Measured values of atmospheric velocities are between 7 km h�1 and 25 km h�1 during
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Figure 5.8. Meridional temperature profiles for three different rotational periods. Again, dashed lines corresponds to south-
ern summer whereas solid lines represent northern summer. All profiles are plotted for surface temperatures
(top) as well as for 1 km atmospheric height (bottom).

summer as well as between 18 km h�1 and 36 km h�1 in the fall. In the case of dust storms, the
velocities reach 61 km h�1 and 108 km h�1. Hence, the model gives reasonable results in both case
studies.

5.3.1 Rotational Period Variations

Another characteristic that is hard to determine is the planetary rotational period or, in terms of the
PUMA/Plasim model, the planets synodic day. Hence three model setups are calculated, considering
the default rotational period as well as rotational periods increased and decreased by a factor of 20%.
Even though tidally locked planets are of major interest in the field of exoplanet research, the model
framework is currently not capable of modeling those setups since the most basic timescale for the
atmospheric circulation code is the (synodic) day, i.e. the period for the planet to rotate once in relation
to the star it is orbiting. In the typical case under consideration where an orbit is nearly circular and
the body’s rotation axis is not significantly tilted, tidal locking results in the same hemisphere of the
revolving object constantly facing its host star. Thus, defining the rotational period to be infinite for
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a tidally locked planet, is not possible with the PUMA/Plasim model. Moreover, tests with the model
revealed the model to become unstable in the case of decreasing the rotational period below a factor
of 0.8. Therefore, the three aforementioned test cases have been chosen.

Figure 5.8 shows meridional temperature profiles for a rotational period of Mars multiplied by the
factors 0.8, 1.0 and 1.2, respectively. Again, dashed lines corresponds to southern summer whereas
solid lines represent northern summer. All profiles are plotted for surface temperatures (top) as well
as for temperatures at 1 km atmospheric height (bottom). In the case of the default rotational period
(factor 1.0), aforementioned results are reproduced, of course: The surface temperature is between
150K and 250K with slightly higher temperatures during southern summer due to the increased solar
irradiation. At 1 km atmospheric height, the damping of the higher summer hemisphere temperatures
is notably stronger as compared to the lower winter hemisphere temperatures for both hemispheres.
Remarkable is the run of the temperature profiles for the altered rotational periods: In the case of
decreased rotational period and thus, increased length of a day the temperatures during summer are
distinctly higher as compared to the default rotational period and accordingly lower in the winter
time but whereas the maximum temperate Tmax is significantly higher in the slow rotating case, the
minimum temperatures stay at a constant level of Tmin ⇡ 150K. This may be due to the polar ice caps
that act as some kind of temperature stabilization at the carbon dioxide triple point of TTP ⇡ 150K.
This assumption is supported by the temperature profiles at 1 km atmospheric height: even though
quite close to the surface, it is obvious that the minimum temperatures are much less fixed at the
triple point temperature a the same latitudes. E.g. at the latitude of �50ı the surface temperature of
the default model as well as the fast rotating planet model is still fixed at the triple point temperature
whereas the corresponding profiles at 1 km height already provide distinguishable temperature values.

5.3.2 Planetary Reflection Spectra

Although results of the radiative transfer models are implicitly included in the calculated atmospheric
model quantities discussed in the latter section, they are encoded to a high degree. Hence it is reason-
able to have a closer look at the raw planetary irradiation as well as transmission and reflection spectra
to validate computed model results against previously measured values.

To validate the model setup in terms of reflected solar irradiation, corresponding reflection spectra
for different view geometries have been calculated. To be able to compare northern and southern,
summer reflection spectra for each configuration in terms of the respective solar longitude have been
calculated. In a first series of model calculations the reflection spectra for a southern summer config-
uration have been calculated at the ' 2 f�30ı,�60ı,�90ıg latitudinal coordinates and in a second
series for a northern summer configuration with corresponding ' 2 f30ı, 60ı, 90ıg latitudinal coordi-
nates (cf. fig. 5.9, top).

In another series of model calculations the latitudinal coordinate (azimuth angle) as been fixed at
the equator and phase angle has been altered to generate reflection spectra for the phase angles of 0ı

to 120ı in steps of 30ı (cf. fig. 5.9, bottom).
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Figure 5.9. Reflection spectra of the solar irradiation at the planetary surface for a southern summer configuration (dot-
ted lines) as well as for a northern summer configuration (solid lines) for the latitudinal coordinates ' 2

f�30ı,�60ı,�90ıg (southern summer) and ' 2 f30ı, 60ı, 90ıg (northern summer), respectively (top) as
well as for five phase angles Œ0ı, 30ı : : : 120ıç at the equator latitude (bottom).
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The calculated spectra, showing the radial component of the radiative flux Fr , clearly reproduce
the axis tilt of the Martian rotational axis of 'i D 25.19ı as the irradiation at ' ⇡ 30ı is almost
vertical where the respective spectrum shows the highest intensities for all wavelengths. Furthermore,
for each corresponding pair of latitudinal coordinates f';�'g,' 2 f30ı, 60ı, 90ıg the spectrum at the
respective coordinate on the southern hemisphere shows slightly higher intensities for all wavelengths
as compared to its counterpart on the northern hemisphere. This can be easily explained by the large
eccentricity of Mars’ orbit, as mentioned earlier.

As expected, in the model calculations for the different phase angles, the radiative flux falls across
all wavelengths as the phase angle increases.
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6. Conclusions

A coupled radiative transfer and atmospheric dynamics model has been developed and presented in
this thesis. It is obvious that model frameworks appropriate for simulations of exoplanet transmission
or reflection spectra can no longer ignore neither full three-dimensional description of the radiative
transfer nor the atmospheric circulation effects. Using closed models for meteorological weather fore-
casts or long term climate simulations, accounting for the interaction of radiation and atmospheric
flows is absolutely necessary for reliable predictions and thus standard in nowadays applications with
respect to our own Earth. There is no reason why this interaction is less important when dealing with
exoplanet setups to be used as comparisons with observed data. So why are there still lots of newly
developed models ignoring this fact? The first answer of course is that combined models are much
more complex with respect to development, handling as well as reliability in terms of model results
due to the highly extended theoretical basis. But this might not be the full answer. Another important
fact becoming evident in the process of developing this thesis is that astrophysics and meteorology
are completely different disciplines with their own fields of research and views. To put it another
way, though developing numerical models based on similar physical principles, both disciplines have
a relatively small common basis: Meteorological models considering radiative transfer are usually
highly specialized with respect to Earth conditions, not just in terms of predefined solar irradiation
but deep in the derivation of the theoretical basis as well as massive parameterizations accounting for
tidy effects usually unimportant for general planetary modeling if approximated quantities such as
temperature profiles are required. On the other hand, astrophysical models tend to simply ignore at-
mospheric dynamics or try to reinvent the wheel without considering that meteorologists cover similar
simulations ever since.

The author likes to think of this thesis as some kind of feasibility study with respect to integrating
existing model codes from both worlds into one unified model framework appropriate to simulate
earth-like planetary atmospheres in terms of temperature and pressure structures and hence reflection
and transmission spectra as well. It has been shown that reasonable atmospheric properties may be
achieved with respect to a well-known Martian reference atmosphere accounting for polar ice caps and
surface albedo as well as orbital eccentricity and rotational period effects. The results of the different
test cases reveal that advanced model frameworks are appropriate even though little is known about
the exact exoplanet’s orography or rotational period and may give valuable insights in the planet’s
atmospheric configuration. On the other hand, it is clear that the results are just a first intermediate
stop on the long way of creating a complete self-consistent model framework and plenty more work
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has to be invested to make the model easily adaptable to general exoplanet modeling in terms of
creating input files, interchange intermediate model results to be used as restart for the next iteration
steps as well as termination conditions of the iteration itself. On the other hand, the presented results
are very reasonable even at the current stage of developments and it is very promising that the basis
model frameworks PHOENIX 3DRRT and PUMA/Plasim are well suited for the approach of merging
radiative transfer and atmospheric dynamics codes.

There are two concrete fields of activity for the further development of the model. On the one
hand, the two underlying models must be further combined on a common code base: Even if the
loose coupling of the model calculations offers a good opportunity to examine the interaction of
both frameworks in a flexible way, a unified code base certainly offers great benefits in terms of
maintainability as well as performance. This rather technical task does not represent progress in
relation to the modeling of realistic physical setups, but rather prepares the ground for the integration
of further influencing factors or higher resolutions.

On the other hand, the basic approaches of the underlying theoretical models must be further co-
ordinated: This work can be further divided into three subtasks, firstly, the direct integration of well-
understood meteorological influencing factors directly into the radiative transfer theory, secondly, the
generalization of the influencing factors of radiative transfer in the theory of atmospheric dynamics,
and thirdly, the integration of previously unconsidered factors such as solar winds.

In this respect, the first two subtasks represent improved interoperability of the underlying theoret-
ical approaches and mean above all a stronger interlinking of the two scientific disciplines, combined
with an alignment of the terms used as well as a stronger content-related examination of the basics, ar-
eas of application and limitations of the theoretical and numerical models in the other discipline. Only
when these tasks have been completed to such an extent that a larger spectrum of physical model se-
tups can be solved in a self-consistent manner, further influencing factors such as strong solar winds
or tidal locking situations can be meaningfully included.
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A. Reference Tables

Table A.1. Instrument specification of MODIS (Band 1–19). The table columns show the different wavelength bands
together with their primary use in the MODIS project as well as the corresponding spectral radiance and the
required signal-to-noise ratio (SNR).

Primary Use Band Bandwidth [nm] Spectral Radiance Required SNR
[W m-2 µm-1 sr-1]

Land/Cloud/Aerosols 1 620 - 670 21.8 128
Boundaries 2 841 - 876 24.7 201

Land/Cloud/Aerosols 3 459 - 479 35.3 243
Properties 4 545 - 565 29.0 228

5 1230 - 1250 5.4 74
6 1628 - 1652 7.3 275
7 2105 - 2155 1.0 110

Ocean Color/ 8 405 - 420 44.9 880
Phytoplankton/ 9 438 - 448 41.9 838
Biogeochemistry 10 483 - 493 32.1 802

11 526 - 536 27.9 754
12 546 - 556 21.0 750
13 662 - 672 9.5 910
14 673 - 683 8.7 1087
15 743 - 753 10.2 586
16 862 - 877 6.2 516

Atmospheric 17 890 - 920 10.0 167
Water Vapor 18 931 - 941 3.6 57

19 915 - 965 15.0 250
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Table A.2. Instrument specification of MODIS (Band 20–36). The table columns show the different wavelength bands
together with their primary use in the MODIS project as well as the corresponding spectral radiance and the
required noise-equivalent temperature difference (NE �T ).

Primary Use Band Bandwidth [µm] Spectral Radiance Required
[W m-2 µm-1 sr-1] NE �T(K)

Surface/Cloud 20 3.660 - 3.840 0.45 (300K) 0.05
Temperature 21 3.929 - 3.989 2.38 (335K) 2.00

22 3.929 - 3.989 0.67 (300K) 0.07
23 4.020 - 4.080 0.79 (300K) 0.07

Atmospheric 24 4.433 - 4.498 0.17 (250K) 0.25
Temperature 25 4.482 - 4.549 0.59 (275K) 0.25

Cirrus Clouds 26 1.360 - 1.390 6.00 150(SNR)
Water Vapor 27 6.535 - 6.895 1.16 (240K) 0.25

28 7.175 - 7.475 2.18 (250K) 0.25

Cloud Properties 29 8.400 - 8.700 9.58 (300K) 0.05
Ozone 30 9.580 - 9.880 3.69 (250K) 0.25

Surface/Cloud 31 10.780 - 11.280 9.55 (300K) 0.05
Temperature 32 11.770 - 12.270 8.94 (300K) 0.05

Cloud Top 33 13.185 - 13.485 4.52 (260K) 0.25
Altitude 34 13.485 - 13.785 3.76 (250K) 0.25

35 13.785 - 14.085 3.11 (240K) 0.25
36 14.085 - 14.385 2.08 (220K) 0.35

Table A.3. Most important chemical constituents of the Martian atmosphere with their molecular weight Œg=molç and por-
tion by volume (ppm and ppb are parts per million and parts per billion respectively).

chemical
species

molucular
weight Œg=mol�1ç

proportion
by volume

chemical
species

molucular
weight Œg=mol�1ç

proportion
by volume

CO2 44.01 95.32% Ne2 40.36 2.5 ppm
N2 28.00 2.71% Kr2 167.60 300 ppb
Ar2 79.90 1.62% CH2O 28.00 130 ppb
O2 32.00 0.13% Xe2 262.59 80 ppb
CO 28.01 800 ppm O3 48.00 30 ppb
H2O 18.02 200 ppm CH4 16.04 10 ppb
NO 30.01 100 ppm Air 44.05
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Table A.4. Sigma levels and atmospheric heights above Martian surface

Level Sigma p=ps Height [km]

1 0.038 35.2
2 0.119 23.0
3 0.211 16.8
4 0.317 12.4
5 0.437 8.9
6 0.567 6.1
7 0.699 3.8
8 0.823 2.1
9 0.924 0.9

10 0.983 0.2

Table A.5. Model setup specifications for the Mars model. Corresponding values for the Earth are also provided for the
purpose of comparison.

Parameter Symbol Mars Earth Ratio Units

Equator radius r 3396.2 6378.1 0.532 km
Sidereal rotational reriod Ps 24.6229 23.9345 1.029 hrs
Orbit eccentricity ✏ 0.0935 0.0167 5.599
Axis tilt 'T 25.19 23.44 1.075 deg
Semimajor axis 227.92 149.60 1.524 106 km
Surface gravity g 3.71 9.80 0.379 m s�2

Tropospheric height 40 000 12 000 3.333 km
Gas constant R 188.9 287 1.519 J kg�1 K�1

Molecular weight of air 0.0440098 0.0289644 1.519 kg mol�1

Mean surface temperature NT 214 288 0.743 K
Mean albedo NA 0.24 0.31 0.774
Mean surface pressure Np 620 101325 0.006 Pa
Mean density N⇢ 3933 5514 0.713 km m�3

Constant reference Temperature Tref 150 250 0.6 K
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Kurt, M., Szirmay-Kalos, L., and Křivánek, J. (2010). An anisotropic brdf model for fitting and monte
carlo rendering. SIGGRAPH Comput. Graph., 44(1):3:1–3:15.

Lafortune, E. P. and Willems, Y. D. (1994). Using the modified phong reflectance model for physically
based rendering. Technical report, Department of Computing Science, K.U. Leuven.

Lafortune, E. P. F., Foo, S.-C., Torrance, K. E., and Greenberg, D. P. (1997). Non-linear approx-
imation of reflectance functions. In Proceedings of the 24th annual conference on Computer

93



Bibliography

graphics and interactive techniques, SIGGRAPH ’97, pages 117–126, New York, NY, USA. ACM
Press/Addison-Wesley Publishing Co.

Laursen, L. and Eliasen, E. (1989). On the effects of the damping mechanisms in an atmospheric
general circulation model. Tellus A, 41A(5):385–400.

Liakka, J. (2006). Validation of the dynamical core of the Portable University Model of the Atmosphere
(PUMA). PhD thesis, University of Uppsala.

Louis, J.-F. (1979). A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer
Meteorology, 17:187–202.

Lucht, W., Schaaf, C. B., and Strahler, A. H. (2000). An algorithm for the retrieval of albedo from
space using semiempirical brdf models. IEEE Transactions on Geoscience and Remote Sensing,
38:977–998.

Lunkeit, F., Borth, H., Böttinger, M., Fraedrich, K., Jansen, H., Kirk, E., Kleidon, A., Luksch, U.,
Paiewonsky, P., Schubert, S., Sielmann, S., and Wan, H. (2011). Planet simulator – reference
manual. Technical Report Version 16, Meteorologisches Institut, Universität Hamburg.

Marcy, G., Butler, R., Vogt, S., Fischer, D., Wright, J., Johnson, J., Tinney, C., Jones, H., Carter,
B., Bailey, J., et al. (2008). Exoplanet properties from lick, keck and aat. Physica Scripta,
2008(T130):014001.

Marschner, S. R., Westin, S. H., Lafortune, E. P. F., Torrance, K. E., and Greenberg, D. P. (1999).
Image-based brdf measurement including human skin. In Proceedings of the 10th Eurographics
conference on Rendering, EGWR’99, pages 131–144, Aire-la-Ville, Switzerland, Switzerland. Eu-
rographics Association.

McAuley, S., Hill, S., Hoffman, N., Gotanda, Y., Smits, B., Burley, B., and Martinez, A. (2012). Prac-
tical physically-based shading in film and game production. In ACM SIGGRAPH 2012 Courses,
SIGGRAPH ’12, pages 10:1–10:7, New York, NY, USA. ACM.

McCool, M. D., Ang, J., and Ahmad, A. (2001). Homomorphic factorization of brdfs for high-
performance rendering. In Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’01, pages 171–178, New York, NY, USA. Association for
Computing Machinery.

Moreira, F. M. S., Siqueira, J. O., and Brussaard, L. (2006). Soil Biodiversity in Amazonian and Other
Brazilian Ecosystems. CABI.

Nicodemus, F., Richmond, J., and Hsia, J. (1977). Geometrical Considerations and Nomenclature for
Reflectance. Institute for Basic Standards, Washington, D.C.

94



Bibliography

Obukhov, A. M. (1971). Turbulence in an atmosphere with a non-uniform temperature. Boundary-
Layer Meteorology, 2:7–29.

Olson, G. L. and Kunasz, P. (1987). Short characteristic solution of the non-lte line transfer problem
by operator perturbation—i. the one-dimensional planar slab. Journal of Quantitative Spectroscopy
and Radiative Transfer, 38(5):325–336.

Owolabi, K. M. and Atangana, A. (2019). Finite Difference Approximations, pages 83–137. Springer
Singapore, Singapore.

Pál, A., Bakos, G., Torres, G., Noyes, R., Latham, D., Kovács, G., Marcy, G., Fischer, D., Butler, R.,
Sasselov, D., et al. (2008). Hat-p-7b: An extremely hot massive planet transiting a bright star in the
kepler field. The Astrophysical Journal, 680(2):1450.

Phillips, N. A. (1956). The general circulation of the atmosphere: A numerical experiment. Quarterly
Journal of the Royal Meteorological Society, 82:123–164.

Phong, B. T. (1975). Illumination for computer generated pictures. Commun. ACM, 18(6):311–317.

Polvani, L. M., Scott, R. K., and Thomas, S. J. (2004). Numerically converged solutions of the global
primitive equations for testing the dynamical core of atmospheric gcms. Monthly Weather Review,
132(11):2539 – 2552.

Rabinowitz, D. L., Barkume, K., Brown, M. E., Roe, H., Schwartz, M., Tourtellotte, S., and Trujillo,
C. (2006). Photometric Observations Constraining the Size, Shape, and Albedo of 2003 EL61, a
Rapidly Rotating, Pluto-sized Object in the Kuiper Belt. The Astrophysical Journal, 639:1238–
1251.

Roeckner, E., Ponater, M., and Sausen, R. (1992). Simulation of the present-day climate with the
echam model: Impact of model physics and resolution.

Rutten, R. J. (2003). Radiative transfer in stellar atmospheres. Sterrekundig Instituut Utrecht, Institute
of Theoretical Astrophysics Oslo.

Schlick, C. (1994). An inexpensive brdf model for physically-based rendering. Computer Graphics
Forum, 13(3):233–246.

Schmidt, B. E., Thomas, P. C., Bauer, J. M., Li, J.-Y., McFadden, L. A., Mutchler, M., Parker, J. M.,
Rivkin, A. S., Russell, C. T., and Stern, S. A. (2008). Hubble Takes a Look at Pallas: Shape, Size
and Surface. In Lunar and Planetary Institute Science Conference Abstracts, volume 39 of Lunar
and Planetary Inst. Technical Report, page 2502.

Shirley, P., Smits, B., Hu, H., and Lafortune, E. (1997). A practitioners’ assessment of light reflection
models. In Computer Graphics and Applications, 1997. Proceedings., The Fifth Pacific Conference
on, pages 40–49. IEEE.

95



Bibliography

Smith, G. (1985). Numerical Solution of Partial Differential Equations: Finite Difference Methods.
Oxford Applied Mathematics and Computing Science Series. Oxford University Press on Demand.

Smith, R. J. (2010). Minimising Time-Stepping Errors in Numerical Models of the Atmosphere and
Ocean. PhD thesis, University of Reading, School of Mathematics, Meteorology and Physics.

Snyder, W. (1998). Reciprocity of the bidirectional reflectance distribution function (brdf) in mea-
surements and models of structured surfaces. Geoscience and Remote Sensing, 36:685–691.

Tillman, J. E., Landberg, L., and Larsen, S. E. (1994). The Boundary Layer of Mars: Fluxes, Stability,
Turbulent Spectra, and Growth of the Mixed Layer. Journal of Atmospheric Sciences, 51:1709–
1727.

Torrence, K. E. and Sparrow, E. M. (1967). Theory for off-specular reflection from roughened sur-
faces. Journal of the Optical Society of America, 57:1105–1114.

Vallis, G. K. (2006). Atmospheric and oceanic fluid dynamics : fundamentals and large-scale circu-
lation. Cambridge University Press, first edition.

van Ginneken, B., Stavridi, M., and Koendering, J. J. (1998). Diffuse and specular reflectance from
rough surfaces. Applied Optics, 37:130–139.

Wagner, M. (2011). Reflectance spectra of Earth-like exoplanets. PhD thesis, Hamburger Sternwarte,
Universität Hamburg.

Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. (2007). Microfacet models for refrac-
tion through rough surfaces. In Proceedings of the 18th Eurographics conference on Rendering
Techniques, EGSR’07, pages 195–206, Aire-la-Ville, Switzerland, Switzerland. Eurographics As-
sociation.

Ward, G. J. (1992). Measuring and modeling anisotropic reflection. SIGGRAPH Comput. Graph.,
26(2):265–272.

Westin, S. H., Arvo, J. R., and Torrance, K. E. (1992). Predicting reflectance functions from complex
surfaces. In Proceedings of the 19th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’92, pages 255–264, New York, NY, USA. ACM.

Witte, S. (2011). Simulation of atmospheric dust clouds. PhD thesis, Hamburger Sternwarte, Univer-
sität Hamburg.

Wolfe, R. E., Roy, D. P., and Vermote, E. (1998). Modis land data storage, gridding, and compositing
methodology: Level 2 grid. IEEE Transactions on Geoscience and Remote Sensing, 36:1324–1338.

Wolszczan, A. and Frail, D. A. (1992). A planetary system around the millisecond pulsar psr 1257+
12. Nature, 355(6356):145–147.

96


