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Abstract

In this work the dynamic behavior of classical spins coupled via an indirect magnetic

exchange and its interplay with topological effects is studied. We investigate the central

role of the spin Berry curvature in the adiabatic dynamics of classical impurity spins

coupled to a quantum system of itinerant electrons and explore the spin Berry curvature

as the pivotal quantity driving a local topological phase transition

Our investigation starts with the study of an effective low-energy theory for slow classi-

cal impurity spins embedded in a lattice of fast classical spins. Exploring the adiabatic

constraint, we reveal a geometric spin torque arising as a holonomy effect in the close-

to-adiabatic regime. This non-Hamiltonian geometric spin torque is found to be the

classical analogue of the spin Berry curvature. By comparing our effective theory to nu-

merical solutions, we identify the regime in which the adiabatic approximation is valid,

particularly, when there are two well separated slow and fast timescales. We improve

the effective theory by relaxation of the adiabatic constraint to encompass a broader

range of slow-spin configurations while maintaining a clear separation of timescales.

In the second study, we investigate the adiabatic dynamics of classical impurity spins

coupled to an insulating electron system. Deriving the quantum-classical impurity

dynamics under the adiabatic constraint, an anomalous non-Hamiltonian geometrical

spin torque driven by the spin Berry curvature emerges. To explore the relationship

between the spin Berry curvature and the bulk band topology of the electron system,

we consider a spinful extension of Haldane’s model of a Chern insulator. Our com-

prehensive theoretical framework and numerical calculations provide insights into the

dependence of the spin Berry curvature on model parameters and the spatial impu-

rity structure. We find the effective low-energy theory being sensitive to bulk band

topology, which is validated by comparing numerically obtained dynamics for the full

system with adiabatic spin dynamics.

Finally, we address the impact of local magnetic impurities, modeled as classical spins

SSS, on the electronic structure of the spinful Haldane model. We examine the spectral

flow of bound states concerning the coupling strength J , encompassing both the topo-

logically trivial and the Chern-insulating phases of the electron system. Our investiga-

tion reveals a local S-space topological phase transition in the J-spectral flow, which

is different from the global k-space topology of the Chern insulator. This spatially
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local topological phase transition is characterized by the spin Chern number, which is

obtained by integrating the spin Berry curvature over the manifold of SSS configurations.

We study implications of the spin Chern transition on the local electronic structure

near the impurities, particularly concerning bound in-gap states. The characteristics of

bound states induced by local impurities decisively depends on the global topological

properties of the host system. We evaluate the local topological phase diagrams for

various impurity configurations, providing valuable insights into the interplay between

S-space and k-space topology. Eventually, in-gap states induced by local magnetic

moments can reveal the bulk band topology of the surrounding electron system.
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Kurzzusammenfassung

In dieser Arbeit wird das dynamische Verhalten klassischer Spins, die durch eine in-

direkte magnetische Wechselwirkung gekoppelt sind, analysiert und dessen Zusam-

menhang mit topologischen Effekten untersucht. Wir analysieren die zentrale Rolle

der Spin-Berry-Krümmung in der adiabatischen Dynamik von klassischen Störstellen-

Spins, die mit einem quantenmechanischen System itineranter Elektronen gekoppelt

sind. Darüber hinaus wird die Spin-Berry-Krümmung als die definierende Größe eines

lokalen topologischen Phasenübergangs erforscht.

Zunächst wird eine effektive Niederenergie-Theorie für langsame klassische Störstellen-

Spins hergeleitet, die an ein Gitter aus schnellen klassischen Spins gekoppelt sind.

In quasi-adiabatischen Dynamik dieses Systems tritt als Holonomie-Effekt ein geome-

trisches Spindrehmoment auf. Dieses nicht-Hamiltonsche geometrische Spindrehmo-

ment wird durch das klassische Pendant zur Spin-Berry-Krümmung beschrieben. Durch

den Vergleich unserer effektiven adiabatischen Theorie mit numerischen Lösungen der

Dynamik des Gesamtsystems identifizieren wir den Parameterbereich, in dem die adia-

batische Näherung gültig ist, insbesondere wenn die langsame und die schnelle Zeitskala

sich deutlich unterscheiden. Darüber hinaus verfeinern wir die effektive Theorie, indem

wir die adiabatische Zwangsbedingung zu einer ’tight-binding’-Zwangsbedingung ab-

schwächen. Hiermit lässt sich ein größeren Bereich der Störstellen-Spin-Konfigurationen

effektiv beschreiben, sofern die klare Trennung der Zeitskalen beibehalten wird.

In einer zweiten Studie untersuchen wir die adiabatische Dynamik klassischer Stör-

stellen-Spins, die an ein isolierendes Elektronsystem gekoppelt sind. Die quanten-

klassische Dynamik der Störstellen-Spins unter der adiabatischen Näherung beinhaltet

ein anomales nicht-Hamiltonsches geometrisches Spindrehmoment, welches durch die

Spin-Berry-Krümmung definiert wird. Um die Beziehung zwischen der Spin-Berry-

Krümmung und der Bulk-Topologie des Elektronsystems zu untersuchen, betrachten

wir als Elektronensystem eine Erweiterung von Haldanes Modell eines Chern-Isolators,

welche Spin-Freiheitsgrade einbezieht. Unsere analytischen Betrachtungen sowie nu-

merische Berechnungen liefern Erkenntnisse über die Abhängigkeit der Spin-Berry-

Krümmung von Modellparametern und der räumlichen Geometrie der Störstellen-

Spins. Wir stellen fest, dass die effektive adiabatischen Spindynamik von der Bulk-

Topologie beeinflusst wird. Dies wird validiert durch einen Vergleich der Dynamik des
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Gesamtsystems mit der Dynamik, die aus den Bewegungsgleichungen der adabatischen

Spindynamik resultiert.

Abschließend widmen wir uns dem Einfluss lokaler magnetischer Störstellen, mod-

elliert als klassische Spins SSS, auf die elektronische Struktur des Spin-beinhaltenden

Haldane-Modells. Wir untersuchen den spektralen Verlauf gebundener Zustände in

Bezug auf die Störstellen-Kopplungsstärke J , wobei sowohl die topologisch triviale als

auch die Chern-isolierende Phase des Elektronsystems betrachtet wird. Im J-abhängi-

gen Spektrum zeigt unsere Untersuchung einen lokalen topologischen Phasenübergang

im S-Raum, der sich von der globalen k-Raum-Topologie des Chern-Isolators unter-

scheidet. Dieser räumlich lokale topologische Phasenübergang wird durch die Spin-

Chern-Zahl charakterisiert. Die Spin-Chern-Zahl wiederum ist durch die Integration

der Spin-Berry-Krümmung über die Mannigfaltigkeit der SSS-Konfigurationen definiert.

Wir analysieren die Einflüsse des Spin-Chern-Übergangs auf die lokale elektronische

Struktur in unmittelbarer Nähe der Störstellen, insbesondere in Bezug auf gebundene

Zustände, die energetisch innerhalb der Bandlücke liegen. Die Charakteristika der

von lokale Störstellen hervorgerufenen gebundenen Zustände sind maßgeblich von den

globalen topologischen Eigenschaften des Elektronensystems abhängig. Diese gebun-

denen Zustände, die energetisch in der Bandlücke liegen, können Aufschluss über die

Bulk-Topologie des umgebenden Elektronsystems geben. Wir erstellen lokale topol-

ogische Phasendiagramme für verschiedene Störstellenkonfigurationen und betrachten

das Zusammenspiel zwischen der S-Raum- und der k-Raum-Topologie.
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1 – Introduction

Condensed matter surrounds us, and our world builds on its properties. Condensed

matter physics yields a fascinating variety of features which are, in many cases, related

to emergent phenomena. In his highly recognized paper More is different from 1972 [1],

P.W. Anderson phrased it in apt words: ”. . . we can see how the whole becomes not

only more than but very different from the sum of its parts.” Many body properties

that go beyond the characteristics of their constituent parts are called emergent. Such

emergence prevails in numerous facets across various disciplines. Examples are the

swarming behavior of animals [2, 3], artificial intelligence, e.g. with large language

models like Chat GPT [4–6], and eventually live itself [7]. The essence of emergence

in physics arises from an assemblage of constituents ’competing’ or ’cooperating’ to,

e.g., reduce some overall energy functional defining the many body system. Minimizing

the energy functional can feature novel phenomena, such as superconductivity [8] or

collective magnetism [9,10].

Emergence-based phenomena can exhibit properties beyond the characteristics of the

individual constituents. Examples hereto are emergent excitations like skyrmions

[11–14] and effective magnetic monopoles [15–18] or gapless zero modes at the ’edges’ of

topological insulators [19–21]. In recent years, increasing popularity arose for emergent

phenomena in topologically nontrivial states of matter [22]. Topology is a branch of

mathematics characterizing properties that remain invariant under continuous trans-

formations. Accordingly, topological quantities refer to global properties of the system.

Hence, they are exceptionally robust against local perturbations [23]. This robustness

is what makes topologically protected quantities appealing to future applications, e.g.

quantum computing is longing for topological quantum-bits due to their predicted

stability [23–25]. Hence, investigating topological phases of matter, detecting and

eventually controlling emergent topological properties is not only of academic interest

but may be crucial for future data storage and processing that surpasses the current

limitations. This prompted our investigation on topological properties in condensed

matter systems and the observable consequences attributed to these features.

In condensed matter physics, a system is described by a Hamiltonian with a set of

parameters which defines the interplay of its constituents. Some change of these pa-

rameters can lead to a collective response of the constituents of the ensemble, which

1



1 – Introduction

might occur in order to minimize the energy functional according to the new param-

eter values. Changes of the system’s ’structure’ caused by such a collective response

are known as phase transitions. In the ’conventional’ theory of phase transitions, e.g.

of the solid-liquid-gas transition of water [26] or the spontaneous magnetization of a

paramagnet below the Curie temperature [9], each phase is determined by certain sym-

metries of the system. Transitions between symmetry-related phases are characterized

by Landau’s [27] theory of spontaneous symmetry breaking, as the system’s symme-

try changes right at the phase transition. But beyond the symmetry-defined phase

transitions, there is a fundamentally different type of transitions. These are topolog-

ical phase transitions, where the symmetry of the system remains unchanged among

distinct topological phases.

As it yields an alluring field of novel phenomena, the theoretical discovery of topo-

logically distinct phases of matter and transitions between topologically phases was

awarded with the Nobel prize in physics 2016 to D.J. Thouless, F.D.M. Haldane and

J.M. Kosterlitz [28–30]. An ensuing milestone in the topological understanding of

matter was the exhaustive topological classification of gapped non-interacting fermion

systems by the means of generic unitary and anti-unitary symmetries [31]. Symmetry

classes were linked to topological invariants and defect modes [20, 32]. The ’periodic

table’ of topological insulators and superconductors is also referred to as the tenfold

way, since there are ten classes of generic symmetries.

A quantum system with a Hamiltonian depending on external parameters has been

studied in a seminal paper by M. Berry [33]. He pointed out, that the low energy

physics of two energy surfaces in parameter space intersecting in a single point is for-

mally always described by a quantum spin-1/2 in an external magnetic field. The

spin-1/2 model nicely serves as an illustration of various concepts required for this the-

sis. The model’s ground state |ψ0(BBB)⟩ is a function of the external parameter BBB. Thus,

the question of the quantum system’s adaptation to a gradual change of that parame-

ter arises. Berry applied the adiabatic theorem [34–37] when slowly, i.e. adiabatically,

’steering’ a gapped quantum system with a unique ground state by an external param-

eter. The adiabatic theorem states, that a quantum system with gapped spectrum that

is in an instantaneous eigenstate remains in this eigenstate when an external pertur-

bation is slow as compared to the inverse gap that separates the eigenergy of this state

from the rest of the spectrum. Accordingly, the quantum system remains in its ground

state corresponding to the momentary control parameter configuration throughout an

adiabatic steering process. The parallel transport of ground states |ψ0(BBB)⟩ in parame-

ter space can be described by the Berry connection AAA. It is defined by the overlap of

ground states to infinitesimally modified external parameters. Integration of the Berry

connection along a closed path C in parameter space yields the Berry phase, also known

as the geometric phase, since it results from the parallel transport of |ψ0(BBB)⟩ on the

2



1 – Introduction

manifold of the control parameters [38] and only depends on the path in that manifold.

By Stokes’ theorem [39], the line integral of the Berry connection AAA along a closed path

C can be expressed as a surface integral of dAAA over an ’area’ S enclosed by C = ∂S. The

exterior derivative of the Berry connection defines the Berry curvature ΩΩΩ = dAAA, which

is invariant under local gauge transformations. The Berry curvature takes a central

role for the studies presented in this thesis and it serves a dual purpose. For one, the

Berry curvature defines the the quantum system’s feedback to adiabatic dynamics of

the control parameter. For the other, it is utilized to provide a topological invariant

which characterizes the space of the quantum system’s ground state ’attached’ to a

closed orientable manifold. Such manifolds are for example the k-space of translational

invariant lattice models or the parameter space of the control parameters BBB ∈ R3 \{0}.

This twofold character of the Berry curvature sets the theme of this thesis. Berry phase

physics is a general concept, that applied to various field of physics. Two popular

examples are the adiabatic dynamics of electrons interacting with nuclei in molecules,

where the position of nuclei is taken as a classical parameter [40, 41]. Hence, position

space is the classical parameter manifold to Born-Oppenheimer surfaces. As it is a

system of few localized particles, the energy spectrum is gapped. A different example

taken from condensed matter physics is the band structure of an insulator. Though

electron states are macroscopically extended, their energy spectrum is gapped. The

intrinsic parameter manifold hereto is given by the first Brillouin zone in k-space, which

is of purely geometrical origin.

Here, we study yet another setup where Berry curvature effects arise. To probe adi-

abatic dynamics, we model the local magnetic moments of magnetic atoms as three

component ’classical spins’ SSSi of unit length and take these as the slowly varying ex-

ternal control parameter that steer the quantum system. The classical approximation

of magnetic moments of the adsorbed atoms (adatoms) is appropriate in limit of large

|⟨ŜSS⟩| [42]. In a setup of local magnetic moments coupled to a quantum system, the

classical parameter manifold is S = S2 × S2 × ..., i.e. a two sphere S2 for each mag-

netic impurity. Contrary to the torus T d that characterizes the first Brillouin zone

of a d-dimensional topological insulator, S is extrinsic to the quantum system. Since

impurities SSSi locally couple to the electronic degrees of freedom, unlike the k-space

Berry curvature, the spin Berry curvature is not related to the lattice geometry of the

quantum system.

Importantly, the Berry curvature is known to feed back to the dynamics of the external

parameters that adiabatically steer the quantum system [43–47]. Our approach pro-

vides an adiabatic equation of motion for the external parameter SSSi, that determines

their dynamics when coupled to a gapped quantum system with a unique ground

state [48]. The adiabatic equation of motion features a geometric torque beyond the

Hamiltonian dynamics. That non-Hamiltonian contribution is generated by the spin

3



1 – Introduction

Berry curvature ΩΩΩ. The electron system must, however, break time-reversal invariance

inherently to exhibit a non-zero spin Berry curvature in the limit of weak exchange cou-

pling between impurities and the electron system. Hence, Haldane’s two dimensional

model of a topological quantum Hall insulator [28] is a suitable quantum host. It serves

the dual purpose of breaking time reversal symmetry as well as featuring topologically

nontrivial insulating phases. Furthermore, the Haldane model marked an inception for

the ensuing advances in topological band theory [20, 49, 50], as it was the first model

of a topological Chern insulator without external fields.

To start off, we study the geometric spin torque in a purely classical system. Next, we

transfer the gained insight to a quantum-classical setup, where only magnetic adatoms

are modeled by classical spins. The quantum host of the semiclassical setup is a spinful

Haldane model, which is trivially composed of one copy of the Haldane model for each

spin-projection σ ∈ {↑, ↓}. The two copies are interconnected by the local interaction

with the classical impurities. We investigate the feedback of the topology of a spinful

Haldane model to the dynamics of the impurities SSSi. Particular interest is in the

spin Berry curvature which gives rise to a geometric spin torque beyond Hamiltonian

dynamics. We study the spin Berry curvature in various geometries and its dependence

on parameters of the quantum-classical hybrid model.

Moreover, the spin Berry curvature is the curvature of a fiber bundle, which intrigued us

to study the spin Chern number as it is a topological invariant of this bundle. It was S.S.

Chern that linked (global) topology to intrinsic geometry, which was achieved by means

of the (local) curvature in the context of fiber bundles [51]. We utilize Chern numbers,

which are topological invariants resulting from Chern’s findings [20,39,52], to identify

topologically distinct phases. A change of a Chern number requires a topological

transition in its defining space. In our case, that space is a fiber bundle, compounded

by the quantum system’s ground state ’attached’ to each point of a base manifold.

Here, that base manifold is either the k-space torus T 2 of the Haldane model or the

configuration space ΠiS2
i of the classical control parameters SSSi. We emphasize that the

spin Chern topology has to be distinguished from the band topology of the Haldane

model, as it is subject to a different topological space. The spin Chern number results

from a suitable integration of the spin Berry curvature over ΠiS2
i , while the Chern

number that defines the band topology of the Haldane model results from an integral

of the Berry curvature over the k-space torus T 2. We address the uncharted question of

the interplay of quantum-host band topology and the spin Chern topology induced by

magnetic impurities. As a function of the host-impurity exchange coupling J , we find

a transition of the spin Chern number and study the J-dependent electronic structure.

Notably, in-gap states are found to be indicators of the k-space topology of the host.

4



2 – Setting the Stage

In these preparatory considerations, we introduce fundamental concepts that are uti-

lized throughout the course of this thesis. Initially, the adiabatic theorem is introduced

and subsequently applied to a quantum system steered by external parameters. Adi-

abatic dynamics of the external control parameters features effects emerging from the

Berry curvature, for example the Berry phase. The Berry curvature in the context of

differential geometry and topology is the curvature of a fiber bundle. Thus, the Berry

curvature can be utilized to compute a topological invariant, the Chern number. We

guide to the Chern number as topological invariant and briefly integrate this invari-

ant in a topological context. As the Chern number is frequently utilized in (condensed

matter) physics, our approach draws a rather pedagogical picture without the endeavor

of a rigorous mathematical derivation. For the proceedings of sections 2.1 and 2.2 we

follow [33,53]. Moreover, section 2.3 is based on [39,54].

2.1 – Adiabatic Theorem

We introduce the adiabatic theorem by discussing a Hamiltonian H(RRR), that smoothly

depends on a set of parameters RRR = (R1, ..., RN). The configuration space of these

parameters is a smooth N -dimensional manifold MN . Throughout the scope of this

thesis we assume non-degenerate ground states. A distinct ground state |ψ0(RRR)⟩ im-

plies a finite gap ∆(RRR) to the first excited state |ψ1(RRR)⟩. To each set of parameters

RRR ∈ MN , the Hilbert space local to that point of the manifold is given by the or-

thonormal eigenbasis of H(RRR), thus H(RRR)|ψj(RRR)⟩ = Ej(RRR)|ψj(RRR)⟩. Next, we slowly

vary the external parameters in time, so RRR(t) is a trajectory in M. Consequently,

the Hamiltonian becomes explicitly time dependent, H(t) = H(RRR(t)). Time evolution

of a state |Ψ(0)⟩ is described by the Schrödinger equation. We set ℏ = 1, as we do

throughout the thesis, and denote time ordering by T , which leads to

|Ψ(t)⟩ = T exp

(
− i

∫ t

0

dt′H(t′)

)
|Ψ(0)⟩. (2.1)

If the system is in its ground state to the initial H(RRR(0)), so |Ψ(0)⟩ = |ψ0(RRR(0))⟩, the

adiabatic theorem [34–37] states that the system remains in its ground state when the
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2 – Setting the Stage

evolution of parameters RRR(t) is sufficiently slow. Assuming that this is the case, the

system at time t is in the instantaneous ground state toH(RRR(t)), so |Ψ(t)⟩ ∝ |ψ0(RRR(t))⟩.
The sole degree of freedom that remains to be determined for the adiabatically time-

evolved state |Ψ(t)⟩ is its phase, hence we note

|Ψ(t)⟩ = e−iγ(t)|ψ0(RRR(t))⟩. (2.2)

We refer to this constraint resulting from the adiabatic theorem as the adiabatic con-

straint. It is not easy to rigorously define when the dynamics of RRR is sufficiently slow

for this statement to hold true. As a general rule, the adiabatic constraint is deemed

valid when the parameter dynamics is slow as compared to the inverse gap. Say ∆ is

the gap between the ground and the first excited state and τ is the typical time scale

of the parameter dynamics, then τ >> 1/∆ is necessary to validate equation 2.2.

2.2 – Berry Phase, Connection and Curvature

In order to derive adiabatic dynamics, the holonomic adiabatic constraint (eq. 2.2) has

to be applied to a description of the system that is suited to derive constraint dynamics.

The Lagrange formalism provides such a framework. In 1984 Michael Berry [33] showed,

that deriving equations of motion from the constraint Lagrangian yield insight of the

phase γ(t).

From the stationary action principle δS = δ
∫
dtL = 0 of Lagrangian

L(⟨Ψ|, |Ψ⟩, ∂t⟨Ψ|, ∂t|Ψ⟩, t) = ⟨Ψ|
(
i∂t −H(RRR(t))

)
|Ψ⟩ (2.3)

the Schrödinger equation is obtained. In fact, 0 = ∂L/∂⟨Ψ| − ∂t
(
∂L/∂(∂t⟨Ψ|)

)
=(

i∂t − H(RRR(t))
)
|Ψ⟩ is obtained when utilizing the second Euler-Lagrange equation

with respect to ⟨Ψ|. The effective Lagrangian subject to the adiabatic constraint is

Leff =eiγ̄(t)⟨ψ0(RRR(t))|
(
i∂t −H(RRR(t))

)
|ψ0(RRR(t))⟩e−iγ(t) (2.4)

=eiγ̄(t)e−iγ(t)
[
AAA0(RRR(t))∂tRRR(t) + ∂tγ(t) − E0(RRR(t))

]
(2.5)

with

AAA0(RRR) = i⟨ψ0(RRR)|∇RRR|ψ0(RRR)⟩, (2.6)

where ∇RRR = ( ∂
∂R1

, ..., ∂
∂RN

) is the gradient with respect to RRR. Here, we exploited that

|ψ0(RRR)⟩ is the eigenstate to eigenvalue E0(RRR) ofH(RRR) andAAA0(RRR)∂tRRR =
∑N

α=1A0,α(RRR)Ṙα

with Ṙα = ∂tRα, where we omit the time argument. AAA0(RRR) is the Berry connection,

which mediates between the ground state at RRR and the one at RRR + dRRR. It connects

6
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’adjacent’ ground states that are dRRR ’apart’ on M. For more details on the connection

we refer to section 2.3 and to literature for further insight on the connection in the con-

text of differential geometry, e.g. [39]. Since i∇RRR is a hermitian operator and |ψ0(RRR)⟩
can be normalized, AAA0(RRR) is a real quantity. The effective Lagranginan is a function

Leff = Leff (γ, γ̄, ∂tγ, ∂tγ̄, t). Initially, γ and γ̄ have to be treated independently just

like ⟨Ψ| and |Ψ⟩ in order to apply the Euler-Lagrange equation correctly. Doing so for

γ(t) results in

γ̇(t) = E0(RRR(t)) −AAA0(RRR(t))ṘRR(t). (2.7)

Straight forward integration yields γ(t) = γ(0) +
∫ t
0
E0(RRR(t′))dt′−

∫ t
0
AAA0(RRR(t′))∂RRR(t′)

∂t′
dt′.

We rewrite the last term to
∫ RRR(t)

C,RRR(0)
AAA0(RRR)dRRR , where C is the trajectory RRR traces in

M parameterized by time t′. Trajectory C ranges from RRR(0) to RRR(t). Without loss of

generality we set γ(0) = 0 and substitute the result to eq. 2.2, which leads to

|Ψ(t)⟩ = exp

(
−
∫ t

0

E0(RRR(t′))dt′
)

exp

(
i

∫ RRR(t)

C,RRR(0)

AAA0(RRR)dRRR

)
|ψ0(RRR(t))⟩. (2.8)

The first phase factor is referred to as the ’dynamic’ phase, while the second one is

the ’geometric’ phase. The latter is solely determined by trajectory C in the param-

eter manifold and is therefore labeled as geometric. Unlike the dynamical phase, the

geometric phase is independent of the rate at which C is traversed.

Next, we discuss the physical relevance of the obtained geometrical phase. To this

end, we consider gauge transformations as observable quantities are linked to gauge

invariance. Choosing an orthonormal eigenbasis {ψi(RRR)} implies the choice of phases

ϕi(RRR). Unlike the initial ambiguity of the phase, a phase change may induce nontrivial

effects. We perform a local gauge transformation to the ground state

|ψ0(RRR)⟩ 7→ eiϕ(RRR)|ψ0(RRR)⟩, (2.9)

which is local as ϕ(RRR) is a function on M. A global transformation would, however,

affect |ψ0(RRR)⟩ equally on all of M, i.e., |ψ0(RRR)⟩ 7→ eiϕ|ψ0(RRR)⟩.

The Berry connection (eq. 2.6) is gauge dependent and transforms as

AAA0(RRR) 7→ AAA′
0(RRR) = AAA0(RRR) − ∂ϕ(RRR)

∂RRR
(2.10)

under the local gauge transformation defined in equation 2.9. Since the initial choice

of the local phase of the ground state is ambiguous, this gauge dependence is of no

measurable consequence. Along an open path in M, one can find a local gauge trans-

formation, such that the product of the dynamical phase factor exp
(
−
∫ t
0
E0(RRR(t′))dt′

)
7
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and the geometric phase factor exp
(
i
∫ RRR(t)

C,RRR(0)
AAA0(RRR)dRRR

)
) becomes trivial. Contrarily,

along a closed path C in M, the geometric phase factor is gauge invariant. The in-

tegral of the Berry connection over a closed path C is the Berry phase γC [33], which

transforms as

γC =

∮
C
AAA0(RRR)dRRR 7→ γC −

∮
C

∂ϕ(RRR)

∂RRR
dRRR = γC + 2πk (2.11)

with k ∈ Z. Consequently, the Berry phase factor eiγC is gauge invariant and of physical

relevance. Gauge invariance of the Berry phase itself is satisfied as a consequence of

rather general conditions specific to the Poicaré lemma. In particular, continuity of
∂ϕ(RRR)
∂RRR

is required to argue γC 7→ γC −
∮
C
∂ϕ(RRR)
∂RRR

dRRR = γC.

As C is a closed path in M, it encloses an area S, thus C = ∂S. Accordingly, the Berry

phase is also obtained by

γC =

∮
C
AAA0(RRR)dRRR =

∫
S

ΩΩΩ0(RRR)dSSS, (2.12)

where dSSS is an area element on M and ΩΩΩ0(RRR) is the Berry curvature. In three di-

mensions (dim(M) = 3) the Berry curvature is the curl of the Berry connection,

ΩΩΩ0(RRR) = ∇RRR × AAA0(RRR), and eq. 2.12 exploits Stokes’ theorem to transform the line

integral into a surface integral. Theory of differential forms generalizes the relation of

the Berry connection, the Berry curvature and the Berry phase to arbitrary dimensions

(see e.g. [55] or [39]). In that language, the Berry connection is extended to a differ-

ential 1-form (Berry connection one form A) and the Berry curvature to a differential

2-form (Berry curvature two form ω). Stokes’ theorem states, that integrating Berry

connection over C equals an integral of the Berry curvature over a compact orientable

submanifold of M. Generalization requires replacement of ∇RRR by the exterior deriva-

tive d. Subsequently, wedge products yield the total antisymmetic nature of the Berry

curvature. Further details are discussed in section 5.1.

Next, we seek to express the components Ω0,αβ(RRR) of the Berry curvature matrix ΩΩΩ0(RRR)

in a way that does not require any state derivatives. Exploiting orthogonality of the

eigenbasis (see appendix A.2.2.1), Ω0, αβ(RRR) is expressed in terms of derivatives of

the Hamiltonian instead. We use the compact notion ∂α = ∂
∂Rα

for partial derivatives

with α ∈ {1, ..., N} and exploit the anti-symmetry of the wedge product dRα ∧ dRβ =

−dRβ ∧ dRα to define the Berry curvature tensor ΩΩΩ0 with elements Ω0,αβ.The Berry

connection one-form reads

A0(RRR) =
∑
α

A0α(RRR) =
∑
α

i⟨ψ0(RRR)|∂α|ψ0(RRR)⟩dRα, (2.13)

8
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and the Berry curvature two-form

ω0(RRR) =dA0(RRR) =
∑
α,β

∂αA0β(RRR)dRα ∧ dRβ

=
∑
α<β

(∂αA0β(RRR) − ∂βA0α(RRR)) dRα ∧ dRβ

=
∑
α<β

Ω0, αβ(RRR)dRα ∧ dRβ, (2.14)

with

Ω0, αβ(RRR) =∂αA0β(RRR) − ∂βA0α(RRR) = −2Im
∑
j ̸=0

⟨∂αψ0(RRR)|ψj(RRR)⟩⟨ψj(RRR)|∂βψ0(RRR)⟩

= − 2Im
∑
j ̸=0

⟨ψ0(RRR)|∂H(RRR)
∂Rα

|ψj(RRR)⟩⟨ψj(RRR)|∂H(RRR)
∂Rβ

|ψ0(RRR)⟩(
E0(RRR) − Ej(RRR)

)2 (2.15)

as elements of the Berry curvature tensor. Anti-symmetry of the wedge product yields

Ω0, αβ = −Ω0, βα, thus, the Berry curvature matrix is antisymmetric. Intermediate

steps in the derivation of the Berry curvature tensor are analogue to the detailed

discussion of the spin Berry curvature (eq. 4.16) in section 4.1.2. Commonly, index

’0’ is omitted as a unique ground state is considered. In the language of fiber bundles

subsequently introduces in section 2.3, that is a one dimensional fiber, but the generic

framework is not restricted to this assumption.

Qualitatively, the Berry phase γC can be understood as a measure of the non-preservation

of geometrical information during parallel transport. On flat manifolds M, parallel

transport along a closed path is trivial in the sense that orientations, e.g. of vectors,

are preserved. But on manifolds of nontrivial curvature, e.g. the surface of a sphere,

parallel transport along a closed loop can affect geometric information. Depending on

the path and the manifold, a vector’s orientation may differ from its initial orientation

after traversing a closed path γC .

Furthermore, an analogy to electrostatics can be made. In this picture, γC is the flux of

a ’magnetic field’ ΩΩΩ through the surface S bounded by path C. The Berry connection

AAA takes the role of a vector potential when the Berry curvature is interpreted as a

magnetic field. A prime example hereto is the situation of a quantum spin 1/2 in

an external magnetic field. The magnetic field is treated as the external parameters

RRR ∈ M = R3 \ {0}. The two level Hamiltonian

H = −1

2
RRRσσσ, (2.16)

with σσσ = (σσσ1,σσσ2,σσσ3)
T as the vector of Pauli matrices, describes this situation. Straight

9
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forward proceedings (see [19] or [53] for a detailed analysis) yield

ΩΩΩ0(RRR) = −1

2

RRR

R3
(2.17)

for the Berry connection and

AAA0(RRR) = − 1

2R2

eee×RRR

1 + eeeRRR/R
(2.18)

for the Berry curvature, where eee is an arbitrary unit vector. The curl of vector potential

AAA0(RRR) (eq. 2.18) leads to the field strength ΩΩΩ(RRR) of a ’magnetic monopole’ as pointed

out by P. Dirac 1931 [15]. That monopole is a ’magnetic point charge’ of q = −1/2

and located at the origin RRR = 0. At RRR = −Reee the vector potential is singular and

choosing a different gauge results in a different eee. Thus, another gauge only moves this

singularity around, but we cannot get rid off it by a gauge transformation. The ray

defined by unit vector eee is commonly called a Dirac string. The existence of the Dirac

string implies ΩΩΩ0(RRR) = ∇R × AAA0(RRR) can only be true locally. It tells us, that there

exists no global gauge, such that ΩΩΩ0(RRR) = ∇R ×AAA0(RRR) holds everywhere, e.g. on all

of R3 \ {0} or S2. Therefore, the Poincaré lemma cannot be applied and ΩΩΩ0(RRR) is not

divergence-free.

The Berry phase to any great circle C = ∂S, respectively any half-sphere S is nontrivial,

as γC =
∫
S(RRR/R3)dSSS = ±π. This path corresponds to a rotating of the spin-1/2 by 2π

caused by (manually) rotating the magnetic field RRR. The external field adiabatically

traverses a great circle C in time t so RRR(t) = RRR(0). Such a rotation results in the

well known minus sign |ψ0(RRR(0)⟩ → e±iπ|ψ0(RRR(t)⟩ = −|ψ0(RRR(0)⟩. Accordingly, the

spin-1/2 state remains invariant under rotations of multiples of 4π = 720◦. The sign

of γC depends on the arbitrary choice of the gauge, but as the Berry phase is defined

up to multiples of 2π only, thus the Berry phase factor is unaffected by the gauge.

Characteristic to a nontrivial Berry phases is the fact, that one cannot find a global

gauge satisfying ΩΩΩ0(RRR) = ∇RRR ×AAA0(RRR) on the entire manifold M. One can, however,

always find a local gauge that satisfies Ωαβ(RRR) = ∂αAβ(RRR) − ∂βAα(RRR) locally, which

corresponds to ΩΩΩ = ∇×AAA in three dimensions. Consequently, the Berry curvature is

invariant under local gauge transformations (eq. 2.9) and effects due to finite Berry

curvature ΩΩΩ are measurable.

2.3 – Chern Number as a Topological Invariant

It is a natural and insightful question to ask, whether two topological spaces are the

same, i.e. homeomorphic to one another. Unfortunately, the complete homeomor-

phism classification of topological spaces is so vast a problem, that it has not been

10
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accomplished yet. In order to discern whether two topological spaces are the same

or not, we therefore resort to comparing properties that we call topological invariants

of such spaces. A topological invariant is any property of (or any object associated

to) a topological space, that is invariant under homeomorphisms. A homeomorphism

is a bijective continuous transformation and can roughly be thought of as continuous

(smooth) deformation of a geometrical object. Two topological spaces that differ in at

least one topological invariant cannot be homeomorphic. One topological invariant of

bundle spaces is obtained when the Berry curvature is integrated over the entire pa-

rameter manifold M. That invariant is the Chern number, but a general formulation

demands some further mathematical machinery. Here, we cover a brief introduction

only, as details are beyond the scope of this thesis. For extensive proceedings we refer

to the literature, e.g. [39, 56–58]. Within this section, the Chern number is motivated

as a topological invariant without being mathematically rigorous in the subsequent

proceedings. We rather draw a comprehensible picture from the physical perspective

to provide (intuitive) understanding of the widely utilized Chern number. A selection

of primary literature with fundamental contributions that lead to the development of

the presented proceedings can be found in [51,59–65].

At first, the space of the parameter manifold M and the ground states eiϕ(RRR)|ψ0(RRR)⟩
with RRR ∈ M is generalized. Mathematically, this space is a fiber bundle, that is locally

a product space, but globally can have a nontrivial topological structure. For our

considerations it is sufficient to imagine a fiber bundle as a possibly twisted product

of a base manifold M and the fiber eiϕ(RRR)|ψ0(RRR)⟩. To each point of the base manifold

there is a ground state |ψ0(RRR)⟩ with a phase ϕ(RRR). The space of phase factors is

U(1) ≃ {z ∈ C||z| = 1}, which defines the typical fiber. Topological properties of the

system are governed by the map RRR 7→ eiϕ(RRR) with RRR ∈ M as the following example

illustrates.

Imagine a circle as a base manifold (M = S1) and a typical fiber F = {z ∈ R| − 1 <

z < 1}. Locally we ’glue’ a copy of the typical fiber to each point in M, but globally

there are topologically distinct ways to construct this fiber bundle. For illustration, we

imagine the product of the two one-dimensional manifolds M and F embedded in three

dimensional space. One option is to glue all fibers ’pointing’ in the same direction, so

the resulting object is cylindrical. A second possibility is to ’glue’ the fibers with some

twist, so adjacent fibers are not collinear in the embedded three dimensional space.

A well known result of a total twist of π among fibers along the full base manifold

results in a Möbious strip. Locally, the cylinder and the Möbius strip appear to be the

same, but globally they are clearly different. In fact, they are of different curvature

and yield a distinct connection among fibers. Ultimately, they are associated with

different values of a topological invariant. A topological invariant attributed to both

object is the orientability, which is clearly of different nature among these two object.

11



2 – Setting the Stage

Figure 2.1: Fiber bundles of M = S1 and a typical fiber F = {z ∈ R| − 1 < z < 1}
embedded in R3. The base manifold is indicated by the gray line. A trivial structure
group results in a cylinder like geometry (left) and G = Z2 as a structure group in a
Möbius-strip-like geometry (right).

While the cylinder has a clear orientation, i.e., pictorially one can identify an inside

and an outside, the Möbius strip is not orientable. Consequently, these two bundles

are topologically distinct and they cannot be continuously deformed into one another.

As it is natural to ask about ’higher windings’, we briefly comment on odd and even

’twists’, but leave a detailed elaboration to literature. In three dimension, a twist by

2π appears different from a cylinder (take a paper strip and glue the ends together with

a twist of 2π) and cannot be unwound. The cylinder and the doubly twisted Möbisus

strip are not isotopic in R3, i.e., cannot be deformed into each other without tearing.

They are, however, a geometric instantation of the same trivial cylinder bundle and

there is an isotopy in R4 that continuously transforms them one into the other. In

fact, one finds that any two bundles with an even (odd) number of π-twists can be

deformed into each other in R4 such that there are only two distinct bundles that

can be constructed from S1 and F : the cylinder and the Möbius strip. This pictorial

example emphasizes the importance of structure group to a fiber bundle. Even though,

a fiber bundle is locally the direct product of the base manifold and a (typical) fiber,

the structure group determines how to ’glue’ the fibers to the base manifold globally.

A rigorous definition of a fiber bundle is relinquished to literature, e.g. chapter 9.2

of [39]. The preceding discussion on topologically distinguishing between a cylinder

and a Möbius strip emphasizes our objective to quantify a topological invariant that

classifies fiber bundles.

Topological invariants in general are quantities, that are invariant under continuous

transformations. One way to approach a topological classification is to quantify ’holes’

in topological spaces, which is a rather universal concept. Homotopy is a first approach
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that classifies ’different ways to catch a hole’ in a topological space M with an n-sphere

Sn. The Sn can be pictured as an n-dimensional lasso. In fact, the equivalence classes

of homotopy-equivalent loops (F : Sn → M) in M form a group Πn(M), that we call

the n-th homotopy group of M. For instance the winding of an S2 lasso around an

M = S2 topological space intuitively leads to Π2(S2) = Z. One can wrap a two-sphere

any number of times around another S2 and orientation determines the sign. There is

no such thing as ’half a wrapping’, so intuitively Π2(S2) is integer. But it turns out,

that the holes detected by homotopy are not consistent with our ’natural’ notion of

holes. For example, Π6(S2) = Z12 or Π14(S2) = Z84 × Z2
2. Wrapping a six-dimensional

sphere around a two-sphere is hard to imagine and why there are exactly 12 different

ways to accomplish this wrapping is not conceived by our intuition.

We therefore proceed to another approach that does not include the counterintuitive

scenario of ’strange-dimensional’ holes in M caught with lassos of higher dimension

than N = dimM. To this end we proceed to Homology. The guiding idea is to find

closed n-dimensional submanifolds, i.e. submanifolds without boundary, of a manifold

M that are not boundaries to n+ 1-dimensional submanifolds themselves. The equiv-

alence classes of such closed regions that are not boundaries themselves again form

a group, which is referred to as the n-th Homology group. Roughly, n-th Homology

group is

Hn(M) =
n-dimensional things without boundary

boundaries of n+ 1-dimensional things
.

Numerator and denominator of this quotient are free Abelian groups on the respective

objects. One benefit of Hn(M) over Πn(M) is that nontrivial Hn(M) terminate at

n = N = dimM. Hn with n > N are trivial (Hn>N(M) = 0) by definition, which

matches our intuitive understanding of holes. Two illustrative examples are

H0(S2) =
points of S2

points that are end-points (boundaries) of lines
= Z

and

H1(T 2) =
closed lines, i.e., 1-cycles in T 2

closed lines that are boundaries of areas, i.e., 2-chains
= Z2.

The latter is the group of equivalence classes of closed 1D-paths on a 2-torus (M = T 2)

that are not boundaries of 2D-areas. Representatives of the two group elements of

H1(T 2) are the two black lines a and b in figure 2.2. They are toplogically distinct,

as the two path cannot be deformed into each other continuously. Lines a and a′,

however, are representatives of the same group element, as a′ can be generated by a

continuous ’shift’ of a, as indicated by the shaded area. In fact, a and b are orientable
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a0

a

b

Figure 2.2: T 2 torus with examplary representants a and b of H1(T 2). a and a′

are representants of the same group element, as a′ can be generated by a continuous
transformation of a. White lines are point-contractable, hence elements of H0(T 2).

closed one-dimensional paths, each circumventing a ’hole’ of the torus and referred to

as nontrivial cycles. Any cycle that is homologous to a point (white paths in fig. 2.2)

is accounted for by the intersection point of two nontrivial cycles.

Next, we proceed to de Rham cohomology, as it can be used to conveniently access

topological information since it involves rich algebraic and geometric structure. It is,

for instance, utilized to deduce topological information of fiber bundles over smooth

orientable manifolds, i.a. due to their appearance in index theorems. Stokes’ theorem∫
C
dω =

∫
∂c
ω [39] formulates a duality of a boundary of a manifold ∂C and a closed

differential form dω. This outlines the way in which de Rham cohomology is a dual

theory of homology. The n-th de Rham cohomology group Hn(M) of a smooth ori-

entable manifold M is loosely speaking the class of closed differential forms modulo

exact differential forms [39],

Hn(M) =
closed forms

exact forms
.

Characteristic classes are a particular kind of cohomology classes, which measure the

’twisting’ of a fiber bundle [39]. Furthermore, characteristic classes are a subset of

de Rham cohomology classes, which form the Rham cohomology group Hn(M), i.e.

characteristic classes are elements of Hn(M). In fact, characteristic classes of a fiber

bundle are elements of the cohomology group of the base manifold.

Our objective of a topological classification of fiber bundles can be attained through a

representative of H2N(M) with 2N = dimM. We restrict the dimension of the base

manifold to be even and refer to the literature for base manifolds of odd dimension,

see for example [39]. The base manifold M of fiber bundles we consider is a closed

and orientable manifold. For smooth complex vector bundles, Chern classes are char-

acteristic classes of integer coefficients and all characteristic classes of complex vector

bundles are polynomials in Chern classes. The j-th Chern character

chj(ω) :=
1

j!
tr

(
iω

2π

)j
(2.19)
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is a representative of a characteristic class, i.e., an element of the 2j-th cohomology

group H2j(M). The cohomology group H2N(M) is of top degree when 2N = dimM.

Pairing a representative of an element of the top degree cohomology group H2N(M),

e.g. chN , with the entire base manifold (aka with a representative of the fundamental

orientation homology-class) leads to an integer [39], since characteristic classes are ’by

definition’ associated with cohomology groups with integer coefficients.

Characteristic classes are designed to classify bundle spaces and each fiber bundle is

naturally assigned with a connection and curvature. The existence of a characteristic

connection on a bundle means that de Rham pairing can be used to easily access the

topological information contained by the characteristic classes. Adapted to our situa-

tion, a topological invariant is determined by an appropriate integral of a representative

of a characteristic class over the base manifold M.

Chern characters are of special relevance to us, as they feature prominently in the

Atiyah-Singer [52] index theorem. This frequently applied index theorem establishes an

equivalence of topological and analytical indices. The analytical index is by definition

integer valued, hence, we can ’deduce’ the integer nature of the topological index using

the Atiyah-Singer index theorem. The topological invariant we are striving for is an

instance of such a topological index. The Atiyah Singer index theorem quantifies the

number of zero energy modes and relates them to a topological invariant. Thus, it

constitutes the essence of the well-known bulk-boundary correspondence in solid-state

physics.

The next step is to make the rather general statements more concrete by defining the

Chern number. Denoting the exterior derivative by d we can generalize the concept

of the Berry connection (eq. 2.6) and Berry curvature (eq. 2.15) to differential forms.

Let RRR be an element of M with RRR = (x1, ..., xN). Using the sum convention of co-

and contra-variant indices, the connection is the differential one-form A = Aµdx
µ and

the curvature the differential two form ω = 1
2
Ωµνdx

µ ∧ dxν . Specifying the fiber to the

unique ground state of a quantum system yields

A =⟨ψ0(RRR)|d|ψ0(RRR)⟩ = ⟨ψ0(RRR)| ∂
∂xµ

|ψ0(RRR)⟩dxµ (2.20)

ω =dA = (d⟨ψ0(RRR)|) ∧ (d|ψ0(RRR)⟩) =
1

2

∂⟨ψ0(RRR)|
∂xµ

∂|ψ0(RRR)⟩
∂xν

dxµ ∧ dxν . (2.21)

Connection and curvature are characteristic to each fiber bundle, thus, well suited to

generate representatives of the 2N -th cohomology class, which finally serves a topo-

logical classification of the fiber bundle. It was Chern who related the curvature of

a fiber bundle to characteristic classes, which eventually linked the curvature to the

bundle’s topology [51, 56]. The N -th Chern character chN(ω) is a 2N -form and van-

ishes for 2N > dimM. Moreover, chN(ω) is a representative of a cohomology class in

H2N(M). For 2N = dimM we can ’pair’ the 2N -form with the 2N -dimensional base
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manifold. This pairing is a natural operation between group and dual group, much like

the linear pairing between vector space and covectors space is. Here, we can explicitly

carry out the ’pairing’ by integrating the form defining a de Rham cohomology class,

i.e. chN(ω), over the base manifold, which itself is a representative of the fundamental

orientation class. Integrating the N -th Chern character chN(ω) over base manifold M
(dim(M) = 2N) of a fiber bundle defines the N -th Chern number [20]

CN :=
1

N !

(
i

2π

)N ∫
M

tr(ωN). (2.22)

We note, that for one dimensional fibers the trace is trivial. The Chern number is

naturally integer, since the Chern character is a representative of a characteristic class

that is associated with a cohomology group with integer coefficients.

Topological classification in condensed matter is the classification of Hilbert bundles.

They are constituted by a closed orientable base manifold M and Hilbert spaces H(RRR)

as fibers. Fiber bundles are particular topological spaces, naturally assigned with a

connection(form) (eq. 2.20) and a curvature(form) (eq. 2.21). A prominent use case of

equation 2.22 is the integer quantum Hall effect, where a quantized Hall conductance

is related to the first Chern number [19, 66]. The Chern number also appears in the

classification of topological insulators [20]. In this context, the topological band index

C1 is canonically evaluated for the ground state of translational invariant models. The

k-space curvature is

Ωµν(kkk) = i
∂⟨ψ0|
∂kµ

∂|ψ0⟩
∂kν

− i
∂⟨ψ0|
∂kν

∂|ψ0⟩
∂kµ

, (2.23)

where the fiber is isomorphic to U(1) for non-degenerate ground states. The k-space

curvature is integrated over a two-torus T 2 for translational invariant models in two

dimensions to obtain C1. An exemplary model, where distinct phases of the bulk band

topology are characterized by C1, is the Haldane model discussed in section 4.2. In fact,

2d-models that are time reversal invariant (even or odd under time reversal) inevitably

lead to C1 = 0. Consequently, these models do not feature an (integer) quantum Hall

effect [19, 66]. Time reversal invariant systems can, however, still exhibit topological

phenomena. A prominent example is the quantum spin Hall effect [66,67] that features

a topological Z2-invariant, e.g. in the Kane-Mele model [68]. Generalization of 2.20 and

2.21 to degenerate ground-states leads to a non-Abelian curvature ΩΩΩ which is beyond

the scope of this thesis and we refer to [39,69] for further insight. Physically interpreted,

the Chern number is sensitive to the ’obstruction’ of smoothly defining a set of Bloch

wave functions over the entire base manifold [20]. A prime example prompting this

issue is the study of a spin-1/2 in an external magnetic field, thoroughly studied in

literature [19,53] and briefly referred to in section 5.2.1.2.
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The interaction between two local magnetic moments can manifest as a direct coupling,

such as the short-range quantum Heisenberg exchange interaction and the long-range

classical dipole interaction, or as an indirect coupling [70–72]. Indirect coupling mech-

anisms, such as the Ruerman-Kittel-Kasuya-Yoside (RKKY) interaction [73–75], the

Anderson super exchange [76] or the double exchange [77] share a commonality in that

they are derived through the use of perturbation theory. All of these approaches pro-

vide an effective interaction between local magnetic moments or spins, which takes the

generic form JeffSSS1SSS2. Typically, the effective interaction strength Jeff is significantly

weaker than the intrinsic energy scales of the host that mediates the indirect coupling

between the local magnetic moments. Such effective low energy exchange coupling

results from a clear separation of timescales and can be utilized to predict real time

spin dynamics [78].

When considering the RKKY-exchange, magnetic impurities are imbedded in an elec-

tronic host system, typically a metallic host system. To evade intertwining of RKKY

coupling and the Kondo effect [79–83], we model the local magnetic moments by clas-

sical Heisenberg spins. At sufficiently weak host-impurity exchange K, the inherent

timescales of the host and the dynamics due to an indirect coupling of the impurities are

of well separated timescales. In this limit of weak K, time-dependent first-order-in-K

perturbation theory, i.e., linear-response theory, is applicable [84–86]. Linear-response

theory predicts, that the effective coupling among impurities is a ground state property

of the host, which is given in terms of the ground-state magnetic susceptibility in case

of the effective RKKY coupling. Closely related to linear response theory is the idea

that the host system remains in its ground state to the momentary impurity config-

uration (SSS1(t),SSS2(t)) at any instant of time t, which is referred to as the adiabatic

constraint.

Dynamics under the adiabatic constraint results from the separation of timescales given

weak K. When the host system’s electronic structure is gapped, the adiabatic theorem

[34–37] enforces the adiabatic constraint throughout slow dynamics of the impurities.

Adiabatic dynamics is a suitable approximation when the relaxation time of inherent

host dynamics is significantly shorter than the typical timescale of impurity dynamics.

For physical reasons, the host system is expected to be close to the momentary ground
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state under these circumstances.

Here, we reassess this paradigm in a simplified setup where both the host system and

the local impurities are modeled by classical spins. The interaction among classical

Heisenberg spins of the fast host-spin system is defined by J . Our primary focus is

on the adiabatic dynamics of the slow spins that emerges from a time-scale separation

caused by 1/|J | ≪ 1/|K|. Concepts and results presented within this chapter are

published in [87,88].

3.1 – Theory of Classical Adiabatic Spin Dynamics

In the subsequent section we derive equations of motion for the classical spins. Devoid

of constraints, both the slow and fast degrees of freedom display individual equations

of motion. Our aim is an effective equation of motion for the slow degrees of free-

dom when a constraint is applied to the fast degrees of freedom. Such an effective

description of the impurity dynamics drastically reduces the dynamical degrees of free-

dom. Furthermore, the effective equations of motion provide valuable insights to the

underlying mechanisms that determine the dynamics when the constraint applies.

3.1.1 – Derivation of the Adiabatic Equation of Motion

Within this section the adiabatic equations of motion for classical Heisenberg spins

under the ’adiabatic constraint’ are derived. To this end, we introduce two types of

classical spins, slow spins SSS and fast spins FFF . The full system is considered to be in an

adiabatic state if the fast spins arrange themselves in the state of lowest energy, i.e.,

the ground state, to a given configuration of the slow spins. This setting is noted as

FFF = FFF 0
(
SSS
)
.

When the fast spins evolve on a significantly faster typical timescale than the slow spins,

the dynamics of the entire system can be approximated by assuming that the system is

in an adiabatic state at all times. Accordingly, as the slow spins configuration evolves

over time, the fast spins instantaneously adapt their ground state to the momentary

slow spin configuration. This constraint is known as the adiabatic approximation,

which results in adiabatic spin dynamics when enforced at all times.

A system of the aforementioned form is described by the Hamiltonian

H(SSS,FFF ) = −1

2

∑
i,j

JijFFF iFFF j −
∑
q,i

KqiSSSqFFF i (3.1)

where the typical timescale of the fast spins is of order 1
|J | while the typical timescale

of the slow spins is proportional to 1
|K| . Thus, the desired timescale separation which

justifies the adiabatic approximation is satisfied when |J | ≫ |K|.
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As is known, e.g., from analytical mechanics [89], holonomic constraints are prop-

erly applied to the Lagrangian, resulting in an effective Lagrangian. Applying the

stationary-action principle [90] to the effective Lagrangian leads to the constraint equa-

tions of motion. Applying constraints directly to the Hamiltonian, and deriving the

constraint equations of motion solely form an effective Hamiltonian obtained in this

manner, is conceptually incorrect. Such dynamics obtained via ṠSS
N

q = ∂H(SSS;FFF 0(SSS))
∂SSSq

× SSSq

is referred to as the naive approach to adiabatic spin dynamics. In the context of

these classical spin systems, the Lagrangian is not directly obtained through Legendre

transformation of the Hamiltonian [87]. Instead, it reads

L(SSS,FFF , ṠSS, ḞFF ) =
∑
q

AAA(mmmq)Sq
d

dt
SSSq +

∑
i

AAA(nnni)Fi
d

dt
FFF i −H(SSS,FFF ) −

∑
q

λq(mmm
2
q − 1).

(3.2)

In the first two terms, spins are expressed in terms of there magnitudes (Sq and Fi) as

well as their direction unit vectors (mmmq and nnni), i.e. SSSq = mmmqSq and FFF i = nnniFi. This

notion proofs to be convenient since the magnitude of each classical spin is preserved

throughout the dynamics. The latter is explicitly ensured by the last term containing

Lagrange multipliers λq. Hence, only directionality is a dynamical variable and the

adiabatic constraint can be reformulated as nnni = nnn0
i

(
mmm(t)

)
.

As the stationary-action principle is applied to the unconstrained Lagrangian, the well

known Landau-Lifschitz-like [91,92] equations of motion

ṠSSq =
∂H
(
SSS,FFF

)
∂SSSq

×SSSq =
∑
αβγ

∂H
(
SSS,FFF

)
∂Sqα

Sqβ eeeγ ϵαβγ (3.3)

ḞFF i =
∂H
(
SSS,FFF

)
∂FFF i

×FFF i (3.4)

are obtained. eeeα is the unit vector in α-direction (α ∈ {x, y, z}) and ϵαβγ the total

antisymmetric Levi-Civita tensor in three dimensions. These equations of motion are

equally derived through a Hamiltonian framework [87] or by the spin Poisson bracket

[93], which justifies the Lagrangian (eq. 3.2).

In the Lagrangian (e.q. 3.2), AAA(mmmq) takes the form of the vector potential of a magnetic

monopole at the origin [15,16,47], satisfying

∇∇∇mq ×AAA(mmmq) = − mmmq

|mmmq|3
. (3.5)

The vector potential can be defined as AAA(mmmq) = − 1
mq

eeez×mmmq

mq+eeezmmmq
in standard gauge [15].

Subsequently, applying the stationary-action principle to the effective Lagrangian, we

derive the adiabatic equations of motion, with a detailed derivation presented in ap-
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pendix A.1.1. The effective Lagrangian under the adiabatic constraint reads:

Leff
(
mmm,ṁmm;nnn0(mmm)

)
=
∑
qα

SqAα(mmmq)ṁqα +
∑
iβ

FiAβ
(
nnn0
i (mmm)

)∑
qα

∂n0
iβ

∂mqα

ṁqα

−Heff(mmm;nnn0(mmm)) −
∑
q

λq(mmm
2
q − 1). (3.6)

As a consequence of the stationary-action principle δ
∫
dtL(mmm,nnn,ṁmm, ṅnn) = 0, the Euler-

Lagrange equation ∂L
∂mqα

− d
dt

∂L
∂ṁqα

= 0 [90] are obtained. Explicitly utilizing the previ-

ously mentioned property of the curl of the vector potential (e.q. 3.5) and the Euler-

Lagrange equation result in

0 =Sr
∑
αν

mrνṁrαεαµν +
∑
i,q
αβγν

Fin
0
iν

∂n0
iγ

∂mrµ

∂n0
iβ

∂mqα

ṁqαεβγν −
∂Heff

∂mrµ

− 2λrmrµ . (3.7)

By taking the vector product of this result (eq. 3.7) and mmmr, the implicit equations

of motion are obtained. Consequently, a classical pendant to the spin Berry curvature

defined as

Ωrµ,qα :=
∑
i

βγν

Fi
∂n0

iβ

∂mqα

∂n0
iγ

∂mrµ

n0
iνεβγν (3.8)

emerges is in the adiabatic equations of motion. ΩΩΩ is a quantity of major interest to

our studies, as it gives rise to an anomalous non-Hamiltonian dynamics of the slow

spins.

The Lagrange multipliers are determined by the condition

λr =
∑
µ

mrµ

2

(∑
qα

Ωrµ,qαṁqα −
∑
µ

∂Heff

∂mrµ

)
. (3.9)

Hence, the implicit form of the adiabatic equations of motion reads

Ṡrκ =
∑
µλ

∂Heff

∂mrµ

mrλεµλκ −
∑
q

αµλ

Ωrµ,qαmrλṁqαεµλκ . (3.10)

Since implicit differential equations can be difficult to work with, the aim is an explicit

formulation of the adiabatic equations of motion. This is achieve through the definition

of a tensor Trκ,qα := 1
Sq

∑
µλ Ωrµ,qαmrλϵµλκ. At the expense of performing a matrix
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inversion, the explicit adiabatic equation of motion for classical spins is

ṠSS =
(
111 + TTT

)−1 ·
(
∂Heff

∂SSS
×SSS

)
. (3.11)

With NS counting the number of slow spins, 111 and TTT are 3NS × 3NS matrices and SSS

is a 3NS-component vector.

The adiabatic equation of motion (eq. 3.10 in an implicit and eq. 3.11 in an explicit

form) meets the aim of an effective description of the SSS-spin dynamics. It relies solely

on the slow system’s degrees of freedom SSS and the geometric property ΩΩΩ (eq. 3.8) of

the fast subsystem. Notably, ΩΩΩ remains constant throughout the dynamics.

3.1.2 – Analytical Analysis of the FFF -spin Ground State

In a setup with slow SSS and fast FFF classical spins as discussed in the section 3.1.1,

the timescale disparity required for adiabatic dynamics can be realized by a significant

difference in the modulus of coupling parameters (|J | ≫ |K|). While the intra-class

coupling (J) of the fast subsystem is of large magnitude to ensure fast dynamics, the

inter-class coupling (K) between slow and fast spins is of much smaller magnitude.

Within our proceedings we omit direct coupling between the slow degrees of freedom

SSS, which are indirectly interconnected solely via the fast subsystem FFF . Incorporation

of direct coupling between SSS-spins is, however, straight forward.

An intuitive understanding of |J | ≫ |K| can be obtained by examining the Hamilto-

nian, which corresponds to the energy of the system. First, imagine the entire system

to be in its overall ground state where classical spins are of fixed magnitude. Any

excitation requires a deviation of one or multiple spins from their ground state config-

uration, which results in a relative change of some spins’ directionality. Mismatches

between host spins FFF i from their energetically most favorable configuration are scaled

by a large |J |, while mismatches between host and impurity spin are scaled by the small

|K|. In the limit of |K|
|J | → 0 with |K| ̸= 0, an energetically weak excitation therefore

favors impurity-host deviations from the overall ground state configuration, while the

host itself rather remains in its free ground state configuration. The free ground state

configuration of the host is the lowest energy configuration of the host with K = 0.

This assumption of weak interaction between impurities and host is a significant sim-

plification when compared to the much more complex scenario of arbitrary host spin

configurations.

Two remarks concerning this idea should be made. To begin with, any |K|
|J | will be finite

in numerical calculations, thus, only approximate the limit |K|
|J | → 0. Furthermore,

the presented idea includes an upper bound in the excitation energy where adiabatic

dynamics is feasible. For a system with a fixed set of parameters the miss-alignment

of the host relative to a given impurity configuration can only account for some finite
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excitation energy. Any excitation energy exceeding this upper limit causes excitation

of the host, which renders the concept of adiabatic dynamics infeasible.

Scenarios considered here do not take external fields into account and the host-impurity

coupling is deemed to be isotropic. The host spins FFF i = Fnnni are considered to be

classical (three component) Heisenberg spins of fixed magnitude F , thus, the host spin

ground state configuration is SO(3) degenerate. However, any weak coupling to the

impurities SSSq = Smmmq typically breaks this degeneracy. Thus, the host-spin ground

state orientation FFF 0 = Fnnn0 = FFF 0(SSS) is obtained by minimizing the energy, or to be

precise, the host-impurity interaction −
∑

q,iKqiSSSqFFF i of the Hamiltonian [88]. Host

spins are in their free ground state nnn0,i and small but finite K lead to nnn0
i = RRRnnn0,i with

some fixed RRR ∈ SO(3). RRR = RRR(SSS) depends on the impurity configuration. We assume,

that the host system’s ground-state orientation that minimizes the overall impurity-

host interaction is realized at all times. In contrast to the degenerate free ground state

configuration nnn0,i notion nnn0
i indicates the typically unique ground state configuration

of the host spins with respect to the impurity configuration.

Our goal is to find the RRR(SSS) that minimizes

−SF
∑
q,i

Kqimmmq

(
RRRnnn0,i

) !
= min. (3.12)

for some given impurity configuration SSS = Smmm. To this end it proofs to be beneficial

to express RRR ∈ SO(3) in terms of the real, antisymmetric generators RRRα ∈ so(3) of

SO(3) [94], where RRRα are the components of RRR (see eq. A.15 for an explicit form of

RRRα with α ∈ {x, y, z}). When unit vector aaa defines the axis of a rotation and φ the

rotation angle one can write RRR = RRR(aaa, φ) = exp(φRRRaaa).

In the case where nnni = nnn0
i ∀ i the energy is minimized for a given mmm-configuration,

which implies condition 3.12 to be satisfied for φ = 0 and for any axis aaa. Therefore,

the derivative of equation 3.12 with respect to φ has to vanish at φ = 0. Using the

general relation [88,94] ∂
∂φ

exp(φLLLaaa)
∣∣
φ=0

(·) = aaa× (·) the necessary condition

∑
q,i

Kqimmmq

(
aaa× nnn0

i

)
= 0 (3.13)

for the impurity-host interaction to be minimal is derived. This condition holds for

any aaa as well as any Kqi and reduces to∑
q,i

Kqinnn
0
i ×mmmq = 000 (3.14)

due to the triple product being invariant under cyclic permutations. From a physical

standpoint, the assumptions above result in an equilibrium condition where the total
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S1 S2
impurity spins

host spins Fi

K
J

S1

S2
m0

Figure 3.1: Typical setup of slow spins SSS1 and SSS2 locally coupled via K to fast host
spins FFF i1 and FFF i2 . FFF i are coupled via J to their nearest neighbor host spins. Impurities
SSS1 and SSS2 enclose relative angle θ∡(SSS1,SSS2) and define mmm0, which eventually defines
orientation ηηη of the overall host orientation (eq. 3.20).

torque between the impurities and host system becomes zero.

In general, any configuration nnni can be expressed via some axis ηηηi (|ηηηi| = 1) as well as

an azimutal angle θi and a polar angle ϕi for each individual spin relative to ηηηi. The

ground state configuration nnn0
i of any classical host-system can therefore be expressed

as nnn0
i = nnni(ϕ

0
i , θ

0
i , ηηηi). Given some overall orientation of that host spin configuration,

respectively fixing a global frame of coordinates, ηηηi = ηηη is generic for all impurities.

Hence, one can define some rotation matrix RRR0
i := RRR(ϕ0

i , θ
0
i ) and denote nnn0

i = RRR0
iηηη.

This general representation of nnn0 can be used to compute ΩΩΩ, since our setup of con-

straint dynamics enforces allRRR0
i to remain constant. Hence, ηηη = ηηη(mmm(t)) in the adiabtic

limit, which results in

∂nnn0
i

∂mqα

= RRR0
i

∂ηηη(mmm(t))

∂mqα

. (3.15)

A general requirement of the classical adiabatic spin dynamics is obtained by substi-

tuting nnn0
i = RRR0

iηηη into condition 3.14, resulting in

0 =
∑
q,i

∑
µαβ

KqiR
0
iαµηµmβ εαβγ ∀γ

→ ΛΛΛηηη =000, with Λγµ :=
∑
q,i

∑
αβ

KqiR
0
iαµmβ εαβγ. (3.16)

Accordingly, ηηη has to be in the kernel of ΛΛΛ, which obligates det(ΛΛΛ) = 0 to be able

to calculate any nontrivial ηηη from eq. 3.14. Note, that det(ΛΛΛ) ̸= 0 is found to be an

obstruction to adiabatic dynamics.

Aforementioned ideas apply to generic systems, but next, the focus is on bipartite

lattices with nearest-neighbor interaction and collinear host spin ground states. In

those cases nnn0
i = ziηηη with ηηη being a unit vector determined by equation 3.14 and

zi ∈ {−1,+1}. Hence, the ansatz of a collinear host configuration is applied to the
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equilibrium condition to fix ηηη. Choosing the sign of e.g. one particular zi lifts the

remaining redundancy, as the host spin ground state would be invariant under a simul-

taneous transformation of ηηη → −ηηη and zi → −zi. Exploiting the ansatz of a collinear

host yields ∑
q,i

Kqiziηηη ×mmmq = ηηη ×
∑
q,i

Kqizimmmq = 000. (3.17)

As one can see, ηηη has to be parallel or antiparallel to

mmm0 :=
∑
q,i

Kqizimmmq =
∑
q

Zqmmmq (3.18)

Zq :=
∑
i

Kqizi (3.19)

to fulfill condition 3.14. A brief check of the energy related to ηηη ∼ ±mmm0 clarifies, that

the negative sign is related to the maximal host-impurity interaction and the positive

sign to minimal one. Since the latter one is our case of interest, we define ηηη := mmm0

m0
with

m0 = |mmm0|. Thus,

nnn0
i

(
mmm
)

= ziηηη = zimmm0/|mmm0| = zi

∑
q,jKqjzjmmmq

|
∑

q,jKqjzjmmmq|
(3.20)

defines the host-spin ground state nnn0 as a function of the impurity spin configuration

mmm to fixed system parameters Kqi.

One final remark has to be made on cases where mmm0 =
∑

q,iKqizimmmq = 0. The sub-

manifold at which m0 = 0 is of zero measure in the full space of mmm configurations,

nonetheless, such initial conditions have to be excluded. Furthermore, trajectories

mmm(t) are not allowed to cross this submanifold in the given setup of adiabatic spin

dynamics, because m0 = 0 leaves an ambiguity in the orientation of the host, i.e., ηηη.

Such scenarios can lead to dynamics incompatible with the initially made assumption

of impurities evolving slowly as compared to the host spins. Already known from other

applications of the adiabatic approximation [87], m0 = 0 implies an inherent breakdown

of the theory for singular points of the parameter space.

3.1.2.1 The Effective Hamiltonian and Naive Adiabatic Theory for Host

Systems with a Collinear Ground State

Preceding considerations clarified the determination of the host system’s ground state

to a given impurity spin configuration. The resulting constraint nnn0(mmm) (eq. 3.20)

is now applied to the Hamiltonian H(mmm,nnn) which leads to an effective Hamiltonian

Heff (mmm) = H
(
mmm,nnn0(mmm)

)
. The effective Hamiltonian Heff contains only impurity
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degrees of freedom as dynamical variables.

Within the adiabatic approximation the functional relation nnn0(mmm) holds at all times,

thus, it eliminates all independent dynamical host degrees of freedom. Dynamics that

is solely derived from such constraint Hamiltonians is referred to as the naive approach

to adiabatic spin dynamics. The constraint Hamiltonian for the case considered here

is

Heff (mmm) = −1

2

∑
i,j

JijFiFjzizj −
∑
q,i

KqiSqFizimmmqηηη(mmm) −
∑
q

SqmmmqBBBq. (3.21)

The first part H0
host = −1

2

∑
i,j JijFiFjzizj is the constant, free ground state energy of

the host which does not depend on mmm and the last term describes some local magnetic

fields BBBq interacting with the impurities. All impurity spins are assumed to be of mag-

nitude S, and all host spins are assumed to have the magnitude F . In the interaction

term one can identify mmm0 =
∑

q,iKqizimmmq to simplify the constraint Hamiltonian even

further. With ηηη = mmm0/|mmm0| the effective Hamiltonian reads

Heff (mmm) = H0
host − SFm0 −

∑
q

SmmmqBBBq. (3.22)

The Hamiltonian time evolution of classical spins is determined by equation 3.3. With
∂m0

∂mmmr
= Zr

mmm0

m0
where Zr =

∑
iKrizi, the naive approach to adiabatic dynamics results in

ṁmmN
r =

1

S

∂Heff (mmm)

∂mmmr

×mmmr

=

(
− FZr

m0

mmm0 −BBBr

)
×mmmr

= − FZr
m0

∑
q,i

Kqizimmmq ×mmmr −BBBr ×mmmr. (3.23)

The superscript N in ṁmmN
q denotes that this equation of motion is obtained when using

the constraint in a naive fashion.

Holonomic constraints applied to the equation of motion or the Hamiltonian directly

do, however, not lead to a correct description of the constraint dynamics. Rather, such

constraints are correctly taken into account in the Lagrangian formalism [89].

Before continuing with the explicit derivation of the conceptually correct adiabatic

equation of motion, the naive global host dynamics determined by ṁmm0 is evaluated in

the absence of external magnetic fields BBBq = 0. We assume the interaction between

impurities and host to be isotropic and homogeneous across all impurities. Furthermore

host-impurity exchange coupling is taken to be local, which means the q-th impurity

spin interacts with the iq-th host spin only. Under these assumptions, Zq = Kziq ,
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which leads to

ṁmm0 =
∑
q

Zqṁmmq

= − F

m0

mmm0 ×
∑
q

(Kziq)
2mmmq

=
FK2

m0

mmmT ×mmm0. (3.24)

The obtained expression yields that mmm0 obeys a precessional motion around the total

impurity spin (mmmT = const) with frequency ωp = FK2mT

m0
. For such dynamics mmmT ,

m0 as well as the total energy Heff are conserved. In this scenario, the relative angle,

i.e. the product mmm1mmm2, is also conserved for scenarios with two impurity spins. The

impurities then precess in a Larmor-like [91, 95] motion with the same frequency ωp

around the total impurity spin mmmT and so does mmm0.

Assuming Kiq = Kδqiq and, for the moment, restricting ourselves to two impurities on

an antiferromagnetic host system, allows for two fundamentally distinct setups. On

the one hand zi1 = zi2 which implies m0 = KmT , which leads to precession frequency

ωp = FK and on the other hand zi1 = −zi2 , which results in mT =
√

2
√

1 + cos(θ)

and m0 = K
√

2
√

1 − cos(θ) with θ being the enclosed angle of the impurities. For the

latter case, the precession frequency

ωp = FK

√
1 + cos(θ)

1 − cos(θ)
= FK cot(θ/2) (3.25)

heavily depends on the geometry, respectively the angle between the two impurities.

In fact, ωp = FK holds for even more than two impurities, when all ziq are of equal

sign and the initial impurity geometry is not collinear. The precession frequency ωp is

independent of the geometry of the impurities in those cases and all impurities precess

with that same frequency around mmmT .

One final remark should be made on a somewhat unconventional consequence of this

naive approach. The total impurity spin SSST = SmmmT is a constant of motion in the

absence of external magnetic fields. The total host spin FFF T = F
∑

i ziηηη, however, is

proportional to ṁmm0 (eq. 3.24) when ∆ :=
∑

i zi ̸= 0. Hence, the overall total spin

SSST + FFF T is not conserved by this naive approach. This inadequacy is rectified by

utilizing the conceptually correct approach to adiabatic spin dynamics.
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3.1.2.2 The Explicit Adiabatic Equation of Motion for a Collinear Host-

Spin Ground State

Within this section an analytical ansatz (eq. 3.20) for the host-spin ground state is

applied to the adiabatic equation of motion (eq. 3.10). To this end, we recall that

some classical analogue of the spin Berry curvature Ωrµ,qα =
∑

iβγν Fi
∂n0

iβ

∂mqα

∂n0
iγ

∂mrµ
n0
iνεβγν

affects the dynamics beyond the naive approach that has been considered previously

(see section 3.1.2.1). To obtain an analytical expression for ΩΩΩ, derivatives
∂n0

iβ

∂mqα
are

evaluated using equation 3.20

∂n0
iβ

∂mqα

= zi
∂

∂mqα

m0β

m0

=
Zqδαβ
m0

− Zqm0αm0β

m3
0

. (3.26)

Detailed calculations are presented in A.1.2. With this expression at hand it is straight

forward to obtain an analytical expression for the spin Berry curvature analogue, which

reads

Ωrµ,qα =
∑
iβγν

Fi
∂n0

iβ

∂mqα

∂n0
iγ

∂mrµ

n0
iνεβγν

=
∑
iβγν

Fi

(
Zqδαβ
m0

− Zqm0αm0β

m3
0

)(
Zrδµγ
m0

− Zrm0µm0γ

m3
0

)
zim0ν

m0

εβγν

=
∑
iν

Fi
ziZqZr
m3

0

m0νεαµν . (3.27)

If the interaction between impurities and host spins is equal for all impurities and

act only locally between impurity q and host spin iq, Ω takes the form Ωrµ,qα =∑
iν
K2Fi

ziziq zir
m3

0
m0νεαµν .

Another generic specification is the assumption, that the host is composed of spins of

equal magnitude, i.e., Fi = F ∀i. We define

∆ :=
∑
i

zi, (3.28)

which is a property of the host system only. This ∆ can be seen as a indicator to trace

non-Hamiltonian contributions to the dynamics.

With the aforementioned assumptions mmm0 = K
∑

q ziqmmmq, ΩΩΩ takes the rather simple

form

Ωrµ,qα = F∆ziqzir

∑
sν zismsν εαµν(∑

β

(∑
s zismsβ

)2)3/2 = F∆K2ziqzir
∑
ν

m0ν

m3
0

εαµν . (3.29)

Accordingly, Ωrµ,qα is a host and geometry dependent quantity. Noteworthy, however,
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is the independence of ΩΩΩ on the host-impurity exchange coupling K. The latter is

easily recognized when pointing out m0 ∼ K.

Finally, the adiabatic equation of motion (eq. 3.10) is combined with the preceding

considerations concerning collinear host systems, which results in

ṁmmr =
(
− FZr

m0

mmm0 −BBBr −
F∆Zr
Sm3

0

mmm0 × ṁmm0

)
×mmmr. (3.30)

The Hamiltonian part has been calculated in the preceding of section (eq. 3.23) and

elements of ΩΩΩ are given by equation 3.29.

Following the steps described in subsection 3.1.1, the dynamics can be expressed as an

explicit differential equation (see eq. 3.11) at the cost of a matrix inversion. Elements

of the concerning tensor are

Trκ,qα =
1

Sq

∑
µλ

Ωrµ,qαmrλϵµλκ

=
F∆ZrZq
Sm3

0

(mmm0mmmrδακ −m0κmrα). (3.31)

Next, the dynamics of mmm0 and mmmT are evaluated in the absence of external magnetic

fields and again under the assumption of local and homogeneous interaction (Kqi =

Kδiiq). For ṁmm0 we find

ṁmm0 =K
∑
r

zirṁmmr

=K2

(
− F

m0

mmm0 −
F∆

Sm3
0

mmm0 × ṁmm0

)
×mmmT . (3.32)

In the given from it is straight forward to read of that ṁmm0mmmT = 0, which is exploited to

simplify
(
mmm0×ṁmm0

)
×mmmT = ṁmm0

(
mmm0mmmT

)
. Using the latter relation, the explicit equation

of motion

ṁmm0 =
1

m0

FK2 + F∆
Sm2

0
mmm0mmmT

mmmT ×mmm0 (3.33)

is obtained. Clearly, magnitude m0 = |mmm0| is conserved, since ṁmm0mmm0 = 0.

Having the previous relations at hand, ṁmmT is determined to

ṁmmT =
∑
r

ṁmmr = − F∆

Sm0

ṁmm0

=
F∆
Sm0

m0

FK2 + F∆
Sm2

0
mmm0mmmT

mmm0 ×mmmT . (3.34)

28



3 – Classical Adiabatic Spin Dynamics

Analogously to m0 = const, ṁmmTmmmT = 0 implies mT = |ṁmmT | = const. Furthermore,

mmm0ṁmmT = 0 is deduced. Combining the latter with the previously obtained ṁmm0mmmT = 0,

we find the product of mmm0mmmT to be a constant of motion in the adiabatic dynamics.

Moreover, a link to the naive approach can be made when considering ∆ =
∑

i zi = 0.

In such scenarios, the non-Hamiltonian geometrical torque in the adiabatic dynamics

vanishes. Hence, ∆ = 0 referred to as the ’trivial’ case. In such trivial cases, ṁmmT = 0

and ṁmm0 takes the same form as obtained via the naive approach (eq. 3.24). Consistently,

mmm0 recovers the precessional motion aroundmmmT with frequency ωP = FK2mT

m0
for ∆ = 0

(see eq. 3.33 and eq. 3.24).

In nontrivial cases (∆ ̸= 0), however, the dynamics of the global quantities mTmTmT and mmm0

is governed by a set of coupled differential equations with an analytical solution that

can easily be derived as sketched in Appendix A.1.3. Combining 3.33 and 3.34 to that

analytical solution (eq. A.5) results in

ωp =
√
c2mT

m2
0 + c2m0

m2
T ± 2|cm0cmT

|mmm0mmmT . (3.35)

with

cm0 =
1

m0

FK2 + F∆
Sm2

0
mmm0mmmT

(3.36)

cmT
=

F∆
Sm0

m0

FK2 + F∆
Sm2

0
mmm0mmmT

. (3.37)

This precession takes place around the axis of the total spin FFF T +SSST , which matches

the intuition one may have for physical reasons. Once more, a rather simple expression

for ωp is obtained when specifying to two impurities and Kiq = Kδiiq . Here, zi1 = −zi2
is required to observe nontrivial dynamics with non-Hamiltonian contributions to the

equations of motion. Moreover, this choice of the geometry leads to mmm0mmmT = 0 and

results in a precession frequency

ωp =
FK2

m0

√
∆2F 2

S2
+m2

T . (3.38)

Without loss of generality one can choose zi1 = 1 resulting in m0 = K|mmm1 −mmm2| for

two impurities. With θ as the conserved enclosed angle of mmm1 and mmm2, an analytical

expression for ωp is given by

ωp =FK

√
∆2F 2

2S2(1 − cos(θ))
+ cot2

(
θ

2

)
. (3.39)

The value of ωp is determined solely by the initial impurity configuration and system
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parameters.

Conclusively, some comparing remarks on the conceptually correct adiabatic and the

conceptually incorrect naive approach to constraint spin dynamics are made. Assume

a setup of two impurities locally coupled to a collinear host with zi1 = −zi2 . As the

overall system approaches its global ground state (θ → π), the adiabatic theory predicts

ωAp → KF 2|∆|
2S

. In contrast thereto, the naive approach predicts fundamentally different

dynamics with ωNp → 0 in that case. The initial configuration of highest energy on

the other hand (θ → 0) results in diverging precession frequencies ωp(θ → 0) ∼ 1
θ

in both cases. The proportionality constant, however, differs as ωNp → 2FK
θ

while

ωAp → FK
Sθ

√
∆F 2+4S2

2
. This divergence originates from an intrinsic singularity of the

constraint, since θ → 0 causes m0 → 0. But m0 = 0 is associated with a singular,

ill-defined point in the configuration space. An impurity configuration of this kind

leaves ambiguity to the host configuration, which is not compatible with the employed

constraint as mentioned in the discussion preceding eq. 3.20.

3.1.3 – Beyond the Adiabatic Constraint: Tight Binding Spin Dynamics

The tight-binding spin dynamics exploits the same picture of an overall system build

up by fast FFF and a slow SSS subsystem. Compared to adiabatic spin dynamics, however,

the constraint imposed on the dynamics of the fast subsystem is somewhat relaxed.

The adiabatic approximation implies, that the fast subsystem is in its ground state to

a given slow subsystem configuration FFF = FFF 0(SSS) at all times. Hence, all dynamical

host degrees of freedom are eliminated. While the tight-binding constraint also requires

the host system to remain in its ground state, i.e. fast spins are tightly bound among

each other, it is now assumed that this ground state is a function of an independent

dynamical axis ηηη(t) (|ηηη| = η = 1). Accordingly, the tight-binding constraint reads

FFF = FFF 0(ηηη). Contrary to the adiabatic constraint, FFF 0(ηηη) includes dynamic host degrees

of freedom.

We apply this holonomic constraint to the spin Lagrangian (eq. 3.2) and add a La-

grange multiplier to ensure that the norm of ηηη is fixed to unity. Thus, the effective

tight-binding Lagrangian is

Leff
(
mmm,ṁmm,ηηη, η̇ηη;nnn0(ηηη)

)
=
∑
qα

SqAα(mmmq)ṁqα +
∑
iβ

FiAβ
(
nnn0
i (ηηη)

)∑
α

∂n0
iβ

∂ηα
η̇α

−Heff(mmm;nnn0(ηηη)) −
∑
q

λq(mmm
2
q − 1) − λ(ηηη2 − 1) . (3.40)

For the sake of clarity, here, the arguments of Leff and Heff denote dynamical variables

in front of the semicolon and the applied constraint hereinafter. The constraint will be

omitted in latter proceedings as it is clear from the context.
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Analogously to the adiabatic case (section 3.1.1) the equations of motion are derived

using the stationary action principle, respectively the Euler-Lagrange equations (eq.

A.1). All steps are carried out in a similar fashion as in section 3.1.1 to obtain the

dynamics of the impurities. There is, however, an additional equation of motion for

ηηη(t) in the tight-binding set of coupled differential equations. A detailed derivation is

presented in appendix A.1.4. The conditional equations for the Lagrange multipliers

are

λr = − 1

2

∑
µ

∂Heff

∂mrµ

mrµ, (3.41)

λ =
1

2

∑
αµ

Ωµαηµη̇α −
1

2

∑
µ

∂Heff

∂ηµ
ηµ. (3.42)

Eventually, the tight-binding equations of motion read

ṁmmr =
1

Sr

∂Heff

∂mmmr

×mmmr (3.43)

η̇ηη =T̃̃T̃T−1

(
∂Heff

∂ηηη
× ηηη

)
. (3.44)

Here, the definitions of ΩΩΩ with elements

Ωµα :=
∑
iβγν

Fi
∂n0

iβ

∂ηα

∂n0
iγ

∂ηµ
n0
iν εβγν (3.45)

and TTT with elements

T̃ξα :=
∑
µκ

Ωµαηκεµκξ (3.46)

are deployed.

Note that the impurity dynamics (eq. 3.43) is nothing but the constraint Hamiltonian

equation of motion, despite the derivation being carried out using the conceptually

correct approach of applying the constraint to the Lagrangian and utilizing the ac-

tion principle. The dynamics of ηηη (eq. 3.44) is, however, non-Hamiltonian. Matrix

T̃̃T̃T−1 might mix and rescale contributions obtained in the tight-binding Hamiltonian

dynamics

η̇ηηN =
∂Heff

∂ηηη
× ηηη. (3.47)
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3.1.3.1 Tight Binding Spin Dynamics for a Collinear Host

The tight binding equations of motion 3.43 and 3.44 are now formulated for cases of

collinear host systems. In such ground states host spins are constraint to

nnn0
i (ηηη) = ziηηη (3.48)

where axis ηηη = ηηη(t) is a dynamical variable itself. Trivially,
∂n0

iβ

∂ηα
= ziδαβ, so elements

of the curvature tensor are

Ωµα =
∑
iβγν

Fi
∂n0

iβ

∂ηα

∂n0
iγ

∂ηµ
n0
iν εβγν

=
∑
iν

Fiziην εαµν

=F∆
∑
ν

ην εαµν . (3.49)

For the last line Fi = F ∀ i is assumed and we utilize ∆ =
∑

i zi. Exploiting the

constraint (eq. 3.48) to evaluate elements of tensor T̃̃T̃T leads to

T̃ξα =F∆(δαξ − ηξηα). (3.50)

We note, that for ∆ = 0 the inverse of that tensor does not exist. Such cases have to

be considered cautiously and will be discussed later on. Other than that, only singular

points of ηηη ∈ S2 lead to det(T̃̃T̃T ) = 0 and therewith to an inherent breakdown of the

theory. These singular points, however, are of zero measure in the configuration space,

similar to the scenario mentioned in section 3.1.2.

We consider a system defined by the Hamiltonian

H0
eff (mmm,ηηη) = H0

host − SF
∑
q,i

Kqizimmmqηηη − S
∑
q

mmmqBBBq. (3.51)

For the sake of simplicity, Fi = F ∀i and Sq = S ∀q is assumed to analytically analyzed

its dynamics. Again, H0
host is taken to be SO(3) invariant, respectively, independent

of ηηη. Straight forwardly,

∂H0
eff

∂ηηη
= − SF

∑
q,i

Kqizimmmq = −SFmmm0, (3.52)

∂H0
eff

∂mmmr

= − SF
∑
i

Kriziηηη − SBBBr (3.53)

is obtained. It is convenient to rewrite η̇ηη (eq. 3.44) as T̃̃T̃Tη̇ηη =
∂Heff

∂ηηη
× ηηη. Substituting
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equation 3.50 herein, exploiting |ηηη| = 1 and mmm0 =
∑

q,iKqizimmmq results in

∆η̇ηη = − Smmm0 × ηηη. (3.54)

Dynamics of the impurities, on the other hand, is defined by

ṁmmr = − F
∑
i

Kriziηηη ×mmmr −BBBr ×mmmr. (3.55)

Here, we substituted the obtained expression for
∂H0

eff

∂mmmr
(eq. 3.53) in equation 3.43.

Considering the evolution of the global impurity quantities mmmT and mmm0, local and

homogeneous interaction (Kqi = Kδiiq) as well as homogeneous external fields (BBBr =

BBB ∀r) are assumed. For the defining vector of the total impurity magnetization we get

ṁmmT =
∑
r

ṁmmr = −Fηηη ×mmm0 −BBB ×mmmT (3.56)

and furthermore

ṁmm0 =
∑
r

Kzirṁmmr = −FK2ηηη ×mmmT −BBB ×mmm0. (3.57)

In the absence of external magnetic fields the total spin is conserved, since

d

dt
(FnnnT + SmmmT ) = F∆η̇ηη + SṁmmT = 0 . (3.58)

An important remark on the constraint tight-binding dynamics for collinear host spin

systems has to be made for cases of ∆ = 0. Considering the equation of motion of

the global host degrees of freedom η̇ηη (eq. 3.54) the left hand site ∆η̇ηη vanishes for

∆ = 0. A non-zero right hand side, however, −Smmm0 × ηηη ̸= 0 is compatible with the

initial conditions of the tight-binding constraint. This inherent inconsistency arises

when the host possesses no net magnetic momentum. It stems from a singular effective

Lagrangian, which although subtle, is the source of this inconsistency. Therefore, a

brief note on the dynamics of a system of point particles is included to provide further

understanding [88].

Consider a point-particle system described by coordinates qqq = (q1, ..., qN) and evaluate

the Euler-Lagrange equations for a specific coordinate

0 =
∂L(qqq, q̇qq)

∂qi
− d

dt

∂L(qqq, q̇qq)

∂q̇i

=
∂L

∂qi
−
∑
j

∂2L

∂qj∂q̇i
q̇j −

∑
j

∂2L

∂q̇j∂q̇i
q̈j.
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When the determinant of the Hessian matrix HHH with elements Hij = ∂2L
∂q̇i∂q̇j

equals zero,

HHH cannot be inverted. In such cases, the Lagrangian is said to be singular [96–98].

The Hamiltonian and the Lagrangian of classical spin systems are not related via

simple Legendre transformation. In fact, a classical spin system’s Lagrangian obtained

via Legendre transformation is typically singular (see e.g. supplementary material

of [87]). Principally, the Dirac-Bergman formalism [98–100] can be applied to derive

a Hamiltonian from a singular Lagrangian. The issue, however, exacerbates if not

only the Hessian matrix, but also the coefficient matrix Kij = ∂2L
∂qi∂q̇j

becomes singular,

e.g. when L(qqq, q̇qq) = L(qqq). In such cases, inconsistencies might render the Lagrangian

inadmissible. The tight binding constraint that was imposed to the spin Lagrangian

can leads to such an unphysical, invalid effective theory.

We illustrate the occurrence of such an inadmissible Lagrangian by imposing the tight-

binding constraint for collinear host spin ground states (nnn0
i = ziηηη) to the spin La-

grangian (eq. 3.2). Again, all host and impurity spins are assumed to be of equal

magnitude (Fi = F ∀i and Sr = S ∀r), so the effective Lagrangian is

Leff
(
mmm,ṁmm,ηηη, η̇ηη;nnn0

i = ziηηη
)

=S
∑
qα

Aα(mmmq)ṁqα + F
∑
iα

Aα(ziηηη)ziη̇α (3.59)

−Heff(mmm,ηηη;nnn0
i = ziηηη) −

∑
q

λq(mmm
2
q − 1) − λ(ηηη2 − 1).

Only the curl of the vector potential AAA(ηηη) ≡ AAAeeez(ηηη) = − eeez×ηηη
1+eeezηηη

is of relevance to the

equations of motion and ∇∇∇ηηη × AAA(ηηη) remains invariant under gauge transformations

eeez 7→ eee, where eee is an arbitrary unit vector. The physical intuition to this is, that

measurable effects do not depend on the choice of the coordinate system.

Furthermore, the Euler-Lagrange equations are invariant under local, i-dependent

gauge transformations eeez 7→ zieeez with zi ∈ {−1, 1}. Applying this local gauge trans-

formation to the vector potential yields

AAAeeez(ziηηη) → AAAzieeez(ziηηη) = − (zieeez) × (ziηηη)

1 + (zieeez)(ziηηη)
= − eeez × ηηη

1 + eeezηηη
. (3.60)

The resulting AAAzieeez(ziηηη) = AAAeeez(ηηη) is independent of the site index i.

Now the sum over all host spin sites i can easily be carried out in the second term

of the effective Lagrangian (eq. 3.60). The resulting F
∑

iAAAeeez(ηηη)ziη̇ηη = F∆AAAeeez(ηηη)η̇ηη

vanishes for ∆ =
∑

i zi = 0. After the gauge transformation the constraint Lagrangian

does not depend on η̇ηη when ∆ = 0, which causes inconsistencies as it is inadmissible.

As discussed earlier, the inconsistency becomes apparent in a contradiction of the left

and the right hand side of equation 3.54 for cases when ∆ = 0. That contradiction,

however, is caused by a conceptual mistake of deriving an equation of motion from an

Lagrangian that is not admissible.
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3.2 – Numerical Results of the Classical Adiabatic Spin Dy-

namics

In the following section, we present numerical findings on the purely classical adiabatic

spin dynamics, as well as the naive and tight-binding approach to adiabatic dynamics.

These results are published in [88]. We assume local and homogeneous interactions

throughout the entire section, with all K, J > 0, resulting in antiferromagnetic spin

alignment in the ground state. The time-scale separation required for the adiabatic

limit is attained by ensuring that K ≪ J .

3.2.1 – Dynamics from K = J to the Adiabatic Limit

We study dynamics of a classical spin setup where impurities are weakly coupled to

a host of classical spins, i.e., three component vectors. Our goal is to analyze the

parameter regime, where the spin dynamics is adiabatic. Strictly speaking, there is no

adiabatic theorem to this purely classical model, in particular, since the spectrum of

the host model is not gapped. Nonetheless, we compare predictions of the adiabatic

spin dynamics (eq. 3.30 and eq. 3.33) with the numerical solution obtained from the

full set of equation of motion (eq. 3.3) and asses the conformity.

For now, we stick to a linear chain of L = 5 sites as a host and two impurities locally

coupled to that host at sites i1 = 1 and i2 = 4. This exemplary setup is pictured

in figure 3.1. Due to zi1 = −zi2 = 1 and an uneven number of host spins, this is a

prototypical setup of the nontrivial case, where ∆ = 1 enables non-zero geometric spin

torque, i.e. ΩΩΩ ̸= 0 (eq. 3.29). Moreover, this setup features dynamics of the total host

spin (eq. 3.34) and non-static ΩΩΩ, since mmm0 ̸= ±mmmT .

Real-time dynamics of the impurities for K = J to an initial impurity configuration far

from the antiferromagnetic (θ0 = π) ground state is displayed in figure 3.2. The host

system is initialized in the ground state to the given impurity configuration (eq. 3.20).

We observe complex dynamics where trajectories over time cover entire phase space

accessible under the restriction of energy and total spin conservation. Such dynamics

is characteristic for a non-linear set of classical Hamiltonian equations of motion with

numerous degrees of freedom.

Adiabatic spin dynamics, on the other hand, is expected for K ≪ J . In that limit, the

number of effective dynamical degrees of freedom is drastically reduced as compared

to a generic setup with K and J being of the same order of magnitude. Figure 3.3a

displays exemplary dynamics for K/J = 10−5 in the same setup as considered in figure

3.2 obtained via the full set of equations of motion (eq. 3.3 and eq. 3.4). For small ratios

of host-impurity interaction K to intra-host-coupling J , the dynamics appears more

regular. Impurities generally exhibit precessional motion, with additional nutational
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Figure 3.2: Trajectories of the two impurity spins (mmm1: blue,mmm2: red) acquired through
numerical solutions of the full set of equations of motion (eq. 3.3 and eq. 3.4) plotted on
a two-sphere. A setup of equal host-impurity exchange and intra-host coupling (K = J)
is considered. Initially the total spin is parallel to the z-axis, impurities enclose θ = π/2
and the host is in the ground state to the given impurity configuration. Impurity spins
at t = 0 are indicated by the arrows. The maximum propagation time tmax in units of
K−1 increases from left to right.

dynamics being observed. These nutations are not described by the adiabatic spin

dynamics, but accounted for by the tight binding dynamics derived in section 3.1.3.

It originates from an unconstraint precession of axis ηηη around mmm0 (eq. 3.18). The

feedback of the η̇ηη to the impurity dynamics beyond the adiabatic description, where

ηηη = mmm0, is less pronounced when the initial configuration is closer to the overall ground

state. In the setup under investigation, that corresponds to an angle θ0 = π enclosed

by the impurities.

For θ = 0.95π = 0.95θ0, the trend towards improved agreement of impurity dynamics

obtained from the full set of equations of motion and approximated dynamics in the

adiabatic limit is presented in figure 3.3b. It displays the azimuthal angle ϕ of mmm0 with

respect to the conserved total spin SSST+FFF T modulo 2π. In the adiabatic limit, this angle

grows linearly with time (green trajectory in fig. 3.3b). For K = J , the dynamics of the

impurities is non-adiabatic and typically intricate as depicted in figure 3.2 for θ = π/2.

In the mmm0-dynamics for K/J = 1, one observes a smaller rate of increase dϕ/dt than

predicted by adiabatic theory. Additionally, there is a superimposed structure beyond

the linear increase of ϕ(t) predicted by the adiabatic equations of motion.

For smaller K/J values, that additional oscillation superimposed on the precessional

motion becomes weaker and is barely notable for K/J = 10−2. Also, the incline of

ϕ over time seems to approaches adiabatic rate when reducing K/J . The naive ap-

proach to adiabatic spin dynamics (orange trajectory in fig. 3.3b), where equations of

motion are incorrectly derived solely from the Hamiltonian subjected to the adiabatic

constraint, predicts precessional impurity dynamics as well. Incorrectly, however, that

precession is predicted to take place around the axis of total impurity spin mmmT . Figure

3.3b shows, that besides a wrong axis, the angular velocity dϕ/dt of mmm0 is estimated
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tmax = 100

z

y
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(a) Trajectories of the two impurities,
mmm1 blue and mmm2 red, for K/J = 10−5

obtained by numerical integration of
the full set of equations of motion for
tmax = 100K−1 time steps. Initially
impurities enclose θ = π/2.

ASD K/J=10-2

10-1
K/J=100 naive 

theory

(b) Time evolution of azimuthal angle ϕ (modulo
2π) of mmm0 around conserved total spin axis for
θ = 0.95π. Blue indicates Trajectories obtained
from the full set of equation of motion for various
K/J . Green relates to adiabatic spin dynamics
and orange to the naive adiabatic theory.

Figure 3.3: Setup as shown in figure 3.1. Initially, the host is in the ground state to
the corresponding impurity spin configuration.

much too small. Even in the limit of K/J → 0 and when θ is close to θ0 the predicted

trajectory of mmm0 obtained via the naive approach deviates significantly from the trajec-

tory obtained form the full set of equations of motion. Based on these observations, we

conclude that the naive approach is an inadequate description of impurity dynamics.

3.2.2 – Analysis of the Precession Frequency

In the preceding section, we qualitatively considered dynamics of the slow impurity

spins in the limit of small K/J ratios. Here, we approach a systematic study in

parameter space to quantify the characteristics of the naive (eq. 3.23), the adiabatic

(eq. 3.30) and the tight-binding (eq. 3.55) approximation. The parameter space to the

linear-chain host model with two impurities at sites i1 = 1 and i2 = L− 1, is spanned

by K/J and angle θ enclosed by two impurities. We compare impurity dynamics

obtained through the aforementioned approximations with the dynamics of the slow

spins acquired from the full set of equations of motion (eq. 3.3).

The frequency of dominant weight in the Fourier spectra of impurity trajectories is

referred to as ωp. For the naive approach and the adiabatic theory we derived an

analytical expression for ωp. In the naive theory, ωNp (eq. 3.25) depends on θ only.

For the adiabatic approach, however, the geometry of the impurity setup affects ωAp

(eq. 3.39). We consider a setup of nontrivial geometric spin torque (∆ = 1), where the

ground state impurity configuration is θ0 = π.
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(a) Precessional frequencies as a func-
tion of K/J with θ = 0.95π.
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(b) Precessional frequencies as a func-
tion of θ with K/J = 10−5.

Figure 3.4: Relating dynamics of the impurities obtained within the naive, the adiabatic
and the tight-binding approximation to impurity dynamics acquired from the full set
of equations of motion. A setup with a collinear host of L = 5 sites and impurities
at i1 = 1 and i2 = 4 (geometry of fig. 3.1) is considered. Initially, the host is in the
ground state to the impurity configuration.

In figure 3.4a, the precession frequencies are studied in the limit K/J → 0. The

entire system is initialized close to the ground state with θ = 0.95θ0. The normalized

precession frequency ωFp /K of the full dynamics reaches saturation at K/J ≈ 10−3.

When K/J < 10−3, we may construe the system as being in the classical analogue

to the adiabatic limit. In this limit, the host system behaves as if it was effectively

’rigid,’ maintaining roughly its ground state throughout the entire dynamic process,

i.e., FFF iFFF i+1 ≈ −F 2 at all times. Consequently, there is practically no independent

inherent dynamics of individual fast spins for K/J < 10−3.

The adiabatic prediction ωAp is about 15% off, even in the limit of small K/J ≪ 10−3.

A residual miss-prediction of the precession frequency in the adiabatic theory is due

to inaccurate anticipation of solely precessional impurity dynamics. The host does not

just follow the impurity dynamics, but its orientation-defining axis ηηη exhibits inherent

dynamics beyond the precessional motion. In fact, SSSqFFF iq is not constant as foreseen

by the adiabatic theory, but only
∑

q SSSqFFF iq = const is.

The tight-binding theory allows for independent dynamics of ηηη. It is for this reason,

that the tight-binding approximation is an excellent description of the impurity dynam-

ics in the limit of small K/J . Figure 3.4a shows near perfect agreement of precession

frequencies derived from the tight-binding dynamics and dynamics obtained via the

full set of equations of motion for K/J < 10−3. In the full dynamics, non-constant

SSSqFFF iq feeds back to the impurities, which causes a nutational motion in addition to

the presessional dynamics foreseen by the adiabatic theory. This feature is perceptible

as a subdominant peak in the Fourier spectra of impurity trajectories (see fig. A.1
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Figure 3.5: Deviation of the precession frequency deduced from the main peak in
the Fourier specturm of the real time dynamics of mmm0 in the θ-K/J parameter space.
The color code is the normalized difference of ωAp and ωFp . ωAp is derived from the
adiabatic theory (eq. 3.39) and ωFp results from numerical time evolution of the full
set of equations of motion (eq. 3.3).

in the appendix). Such a second peak is visible in the Fourier spectra of both, the

impurity dynamics obtained from the tight-binding approach and from the full set of

equations of motion. Such a second peak is, however, absent in the adiabatic and the

naive approach.

Aside from an incorrect axis for the impurity precession, the naive approach to adiabatic

theory significantly underestimates ωp as K/J → 0 for the setup studied in figure 3.4a.

Again, the naive approach is a insufficient approximation of the impurity dynamics.

Fluctuations of SSSqFFF iq diminish close to the ground state (θ ≈ θ0). Figure 3.4b shows,

that adiabatic spin dynamics is suited to approximate ωp in the limit of θ → θ0 when

K/J is sufficiently small. Close to the ground state, the adiabatic approach is more

accurate in approximating impurity dynamics. We can understand the improvement by

noting that in the ground state m0 = 0. The nutational impurity dynamics originates

from η̇ηη ∼mmm0 × η, as shown by the tight-binding approach. Hence, nutations diminish

for θ → θ0.

Even though timescales of impurity and host dynamics are well separated (K/J =

10−5), ωAp becomes worse of an approximation for ωFp the higher the energy of the

initial impurity configuration (see fig. 3.4b). In the adiabatic theory, the frequency of

impurity precessions ωAp ∼ 1/θ diverges for the maximally excited impurity configura-

tion (θ → 0), which is rooted in the ambiguity to determine the host ground state in

that case. Moreover, fast impurity dynamics contradicts the assumption of slow, i.e.
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adiabatic, dynamics. Consequently, when θ is far from θ0, i.e. far from the ground

state, the adiabatic equations of motion are no longer a reliable approximation of the

impurity dynamics.

The naive approach, on the other hand, is a faulty approximation for any θ, although

time-scales of host and impurity dynamics are well separated (K/J = 10−5). As

depicted in figure 3.4b, the naive approach to adiabatic dynamics is non-reliant to

approximate the frequency of the impurity precession. It incorrectly predicts that ωNp

approaches zero as θ approaches the overall ground state, i.e. θ → θ0 = π. Moreover,

the naive approach suffers the same flaw as the adiabatic approximation for θ → 0.

A thorough analysis of ωAp and ωFp over a broad θ-K/J parameter range is presented

in figure 3.5. The trend deduced for exemplary parameters in figure 3.4 is confirmed.

The agreement of ωAp and ωFp improves close to ground state and for K/J ≪ 1. For

θ → 0, i.e. in the limit of maximally excited impurity configurations, the adiabatic

theory is an incorrect prediction for ωp. Even for small K/J the adiabatic theory does

not describe impurity dynamics thoroughly, since it lacks to describe the nutational

dynamics, which becomes of increasing significance when θ is far from θ0. The tight

binding approach, however, characterizes impurity dynamics in the weak coupling limit

very well for all θ (see fig. 3.4b and fig. A.3 in the appendix).

Results of this section similarly apply to larger systems (see fig. A.2). Increasing

distance of the impurities demands smaller K/J to ensure an approximately collinear

host configuration throughout the dynamics. The approximation, that the host is in its

ground state at all times, is justified when inherent canting of host spins is insignificant,

i.e. the host can be seen as ’rigid’. Insignificant canting of the host spins, where canting

refers to a deviation from the ground state configuration, can always be attained by

sufficiently small values of K/J .

3.3 – Summary of the Classical Adiabatic Spin Dynamics

Within this chapter, we consider a purely classical system of localized magnetic mo-

ments, where slow degrees of freedom SSS are weakly coupled to fast degrees of freedom

FFF . The goal is to develop an efficient theory for the dynamics of SSS, which minimizes

the number of dynamic degrees of freedom. Initially, we apply the adiabatic constraint

FFF = FFF 0(SSS), where host spins are in the ground state to the momentary impurity con-

figuration at all times. We derived the effective SSS-dynamics through both the naive

approach of implementing the adiabatic constraint in the Hamiltonian and the concep-

tually correct approach of enforcing the constraint in a Lagrangian formulation. When

the constraint is imposed to the Lagrangian, we identify a Berry-curvature-like tensor

ΩΩΩ in the adiabatic equation of motion (eq. 3.10). In the adiabatic approach, the slow

degrees of freedom exhibit an additional geometric torque due to ΩΩΩ that is absent in the
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naive Hamiltonian approach to adiabatic dynamics (eq. 3.23). Moreover, an effective

impurity equation of motion is derived in the tight-binding approach (eq. 3.43). Here,

the adiabatic constraint is relaxed by allowing for an independent dynamical axis ηηη

(eq. 3.44) for the host, so the tight-binding constraint reads FFF = FFF 0(ηηη).

Comparing dynamics obtained via each of these effective approaches with dynamics

obtained from the full set of equations of motion, the tight binding dynamics is found

to cover all relevant features in the limit of well separated timescales. In the discussed

linear chain setup (see fig. 3.1), that is achieved by K/J ≪ 1. Precessional as well

as nutational motion of the SSS-spins is observed in the dynamics obtained via the full

set of equations of motion (3.3 and 3.4). Both are well approximated within the tight-

binding approach to adiabatic impurity dynamics, since it takes an effective impurity

coupling, a dynamical axis of the host system as well as the geometric spin torque into

account. However, intricate inconsistencies can arise from singular Lagrangian in the

thigh-binding approach to adiabatic spin dynamics (see section 3.1.3.1).

The adiabatic approach, on the other hand, does not exhibit such inconsistencies. It is,

however, a suitable approximation of the impurity dynamics only close to the overall

ground state and when K/J ≪ 1. Even though it is conceptually correct to derive

effective dynamics from a Lagrangian subjected to a constraint, the adiabatic approach

is suffers a systematic misconception. In the dynamics, the host remains in its ground

state, but not necessarily in the ground state to momentary impurity configuration.

The adiabatic approach, however, takes only an effective impurity coupling and the

geometric spin torque into account. Nonetheless, adiabatic dynamics is considerably

better of an approximation for the precessional impurity dynamics, than the naive ap-

proach, which proofs to be insufficient to approach an effective theory for the dynamics

of the slow degrees of freedom.

This naive approach of deriving impurity dynamics from an effective-Hamiltonian is

incorrect. It predicts a false precession axis and is unreliable for all θ when the host-

impurity geometry is nontrivial, i.e., when ∆ ̸= 0 (eq. 3.28). Accounting solely for an

effective impurity coupling is insufficient to generically describe adiabatic dynamics in

a setup of slow and fast classical spins.
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namics

Following the previous study of a purely classical spin model, we now explore a quantum-

classical model. This model still utilizes classical spins to model local magnetic impuri-

ties, but the role of the host is now taken on by a model of itinerant electrons. Within

this chapter we study such a Kondo-impurity-like model in the adiabatic limit.

The model derives its name from the Kondo impurity model introduced by Kondo in

1964 [101] to elucidate the resistance minimum observed in metals such as Au or Cu

when slightly doped with magnetic impurities like Fe or Ni. The quantum-classical

Kondo impurity model, in which magnetic impurities are modeled by classical spins,

departs from the Kondo effect responsible for the resistance minimum. It does, however,

capture a variety of captivating phenomena and finds frequent application in various

contexts [86, 102–108]. Here, our particularly interest is in the long time dynamics

of the quantum-classical model, which is inaccessible in the full quantum description.

We review the dynamics of such a quantum classical hybrid model [86,109] and derive

quantum-classical spin dynamics under the adiabatic constraint in section 4.1.

In addition to our focus on adiabatic spin dynamics in the quantum-classical Kondo

impurity model, our research is motivated by the burgeoning interest in investigating

magnetic impurities in topological insulators [110–121]. Our focus is on the interplay

between host topology and the dynamics of the impurities in the adiabatic limit, aiming

to answer the question on whether the topological phase of the host is discernible in

impurity dynamics. To address this question, we introduce Haldane’s model of a Chern

insulator [28] in section 4.2. The spinful Haldane model serves as a quantum host in

which the bulk band topology can be adjusted via the model’s parameters.

In section 4.3 we present numerical results for such a Haldane-impurity setup. Pri-

marily, we address the limit of weak host-impurity coupling where impurities merely

disturb the electronic structure of the host. We delve into the influence of the geometric

and parametric aspects of the Haldane model on the spin Berry curvature.

Finally, we discuss examples of (adiabatic) spin dynamics and evaluate the quality of

the approximations we have made throughout our investigation. This comprehensive

exploration provides an example for the interplay between host system’s bulk topology
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and (adiabatic) impurity dynamics.

4.1 – Theory of Quantum-Classical Adiabatic Spin Dynamics

We begin the analytical considerations with a comprehensive review of the dynamics

of quantum-classical hybrid model [86,109] in section 4.1.1 and obtain a set of coupled

differential equations for the equations of motion of the host system and the impurities.

Typically, the inherent timescale of the electron system (femtoseconds) is much shorter

than the timescale of the comparatively slow classical spins (picoseconds) [48]. Since

we consider gapped models, the adiabatic theorem is applicable when the typical slow

timescale is large compared to the inverse gap between the ground and the first excited

state [122, 123]. Against this backdrop, we derive the adiabatic spin dynamics for the

impurities in section 4.1.2 by enforcing the adiabatic constraint to the host model. The

resulting adiabatic equation of motion (eq. 4.18) yields a non-Hamiltonian geometric

spin torque associated with the spin Berry curvature. We analytically examine the

effects of adiabatic spin-torque on the adiabatic dynamics of the model in the context

of weak (section 4.1.3) and strong (section 4.1.4) exchange coupling. Eventually, section

4.1.5 addresses the technical realization and computational details.

4.1.1 – Unconstrained Dynamics of the Quantum Host and the Impurities

The host systems considered within this chapter are lattice models of itinerant non-

interacting electrons, which can be described by the generic non-interacting quantum

Hamiltonian

ĤQ =
∑
iσ,i′σ′

TQiσ,i′σ′ ĉ
†
i′σ′ ĉiσ. (4.1)

Generically, the elements of the quantum hopping matrix TQiσ,i′σ′ are complex numbers

that determine the microscopic details of the host system like hopping amplitudes and

phase factors. Operator ĉ†iσ creates an electron at lattice site i with spin projection

σ ∈ {↑, ↓} and the annihilation operator ĉiσ is its adjoint counter part.

We define the reduced one-particle density matrix as

ρiσ,i′σ′ := ⟨ĉ†i′σ′ ĉiσ⟩. (4.2)

Its elements are the expectation values of creation-annihilation operator tuples in the

system’s state at time t [86]. The definition of ρρρ with elements ρiσ,i′σ′ is convenient for

non-interacting models, as it allows a compact matrix notion of the dynamics. The

time evolution of the density matrix is determined by its commutator with the hopping

matrix and takes the form of the von Neumann equation i d
dt
ρρρ(t) = [TTTQ, ρρρ(t)] [124].
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As the quantum system is coupled to classical impurities, the quantum hopping matrix

TTTQ can be extended to an effective quantum-classical hopping matrix TTT . To this end

we recall the expectation value of a quantum spin-1/2 at site i

⟨ŝssi⟩ =
1

2

∑
σσ′

σσσσσ′⟨ĉ†iσ ĉiσ′⟩ =
1

2

∑
σσ′

σσσσσ′ρiσ′,iσ, (4.3)

where σσσ = (σσσx,σσσy,σσσz)T is the vector of Pauli matrices [86]. A standard representation

of the Pauli matrices is

σσσx =

(
0 1

1 0

)
, σσσy =

(
0 −i
i 0

)
, σσσz =

(
1 0

0 −1

)
.

Accordingly, impurity-host exchange interactions like Ĥex =
∑

qα,iβ Jqα,iβSqαŝiβ add to

the effective hopping matrix in form of

Tiσ,i′σ′(t) = TQiσ,i′σ′ +
∑
qα

Jqα,iβSqα(t)σβσσ′δii′ , (4.4)

where σσσβ is the β Pauli matrix (α, β ∈ {x, y, z}) [86]. Even when the Hamiltonian of

the quantum host and thus TTTQ is not explicitly time dependent, the effective hopping

matrix is a function of time due to the generically time dependent configuration of

the impurities. The dynamics of the quantum system in this quantum-classical hybrid

model is described through a modification of the von Neumann equation, wherein the

quantum hopping matrix is replaced by the effective hopping matrix [86,125], so

i
d

dt
ρρρ(t) = [TTT (t), ρρρ(t)]. (4.5)

Only the combination of the von-Neumann-like equation of motion (eq. 4.5) together

with the equations of motion of the classical impurities

ṠSSq =
∂⟨Ĥex⟩
∂SSSq

×SSSq = J⟨ŝssiq⟩ ×SSSq (4.6)

form a closed set of differential equations. The second equality in equation 4.6 im-

plies local and homogeneous interaction of the impurities and the host, thus Ĥex =

J
∑

q ŝssiqSSSq. Analytical solutions to this set of coupled differential equations are chal-

lenging and often do not exist for generic cases. On that account numerical solutions

are prevailing.

44



4 – Quantum-Classical Adiabatic Spin Dynamics

4.1.2 – Constraint Quantum-Classical Equation of Motion

Next, we derive equations of motion for the quantum-classical system under the adia-

batic constraint. Conceptually the derivation of the quantum-classical adiabatic equa-

tions of motion is similar to the classical case discussed in 3.1.1. Let the system be

defined by a Lagrangian of the following form

L(⟨ψ|, |ψ⟩, d
dt
⟨ψ|, d

dt
|ψ⟩,SSS, d

dt
SSS) =⟨ψ|i d

dt
|ψ⟩ +

∑
q

AAA(mmmq)
d

dt
SSSq

− ⟨ψ|Ĥ(SSS)|ψ⟩ −
∑
q

λq(mmm
2
q − 1). (4.7)

The pure multi-particle state of the quantum system is described by |ψ⟩ = |ψ(t)⟩ and

the classical spins are given in terms of SSS = {SSSq(t)} = {Sqmmmq(t)}, where Sq is the

magnitude and mmmq a unit vector determining the orientation of the q-th classical impu-

rity spin. Furthermore, AAAq = AAA(mmmq) is the vector potential of a unit Dirac monopole

located at SSSq = 0 [15, 16], which satisfies ∇∇∇q ×AAAr = −δqr mmmq

|mmmq |3 . The last term of the

Lagrangian explicitly ensures conservation of the spin length via Lagrange multipliers

λq. Moreover, the Hamiltonian Ĥ(SSS) = ĤQ + Ĥex(SSS) + Hcl(SSS) contains contributions

defining the quantum system ĤQ which interacts with the classical spins via Ĥex. Di-

rect coupling between the impurities and external fields acting on SSS are described by

the classical Hamiltonian Hcl, which contains no quantum degrees of freedom. Our

major interest being the indirect exchange between classical spins mediated via the

quantum mechanical host we set Hcl = 0. Including nontrivial Hcl to the presented

formalism is, however, a straight forward adaptation.

By applying the stationary action principle to this Lagrangian (see A.2.1), a set of

coupled differential equations is obtained, that describes the dynamics of all degrees of

freedom of the quantum-classical hybrid model. For the classical degrees of freedom

this equation of motion is equivalent to the Hamiltonian one [86, 93, 126], where all

quantum quantities enter via their expectation values only [125, 127, 128], and for the

quantum system that is the Schrödinger equation:

d

dt
SSSr = ṠSSr = {SSSr, ⟨Ĥ⟩}r =

∂⟨Ĥ⟩
∂SSSr

×SSSr (4.8)

i
d

dt
|ψ⟩ = Ĥ|ψ⟩. (4.9)

In equation 4.8, the bracket {SSSr, ⟨Ĥ⟩}r denotes the spin Poisson bracket, which in

terms of generic continuously differentiable functions A(SSS), B(SSS) and with respect to
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the r-th impurity is defined as [86,124]

{A(SSS), B(SSS)}r =
∑
r,αβγ

∂A

∂Srα

∂B

∂Srβ
Srγ εαβγ. (4.10)

It can be considered as the pendant of the commutator in quantum mechanics. In

analogy to equation 4.8, the dynamics of an observable Ô(t) in the Heisenberg picture

of quantum mechanics can be determined by the Heisenberg equation of motion [124]

i
d

dt
Ô = [Ô, Ĥ], (4.11)

where Ô(t) is assumed to not be explicitly time dependent (∂Ô/∂t = 0).

We, however, derive our theory in the Lagrangian formalism using the Schrödinger

picture. The Lagrangian formalism is the conceptually correct way to implement con-

straints to dynamical degrees of freedom, similarly to widespread cases in analytical

mechanics [89]. The fundamental adiabatic constraint for the quantum system

|ψ(t)⟩ = |ψ0(SSS(t))⟩ (4.12)

leads to the adiabatic equations of motion for the classical spins. This holonomic

constraint enforces the quantum system to be in its ground state to the given impurity

configuration SSS(t) at all times and therefore eliminates any SSS-independent dynamics

of the quantum host. We assume the ground state of the quantum system to be non-

degenerate for any given impurity configuration. Thus, the subspace of instantaneous

ground states |ψ0(SSS(t))⟩ of Ĥ(SSS(t)) contains one pure many-body state for every SSS(t)

only. If, however, there are degenerate ground states to Ĥ(SSS(t)), an extension to the

presented adiabatic theory is required as presented in [69], but that is beyond the

scope of this thesis. The smooth map between SSS and |ψ0(SSS)⟩ can be characterized

topologically by use of its connection, which in our case is the spin Berry connection

CCCq(SSS) = i⟨ψ0(SSS)| ∂
∂SSSq

|ψ0(SSS)⟩. (4.13)

The spin Berry connection is a gauge-dependent quantity, which accumulates the

derivative of a smooth function χ(SSS) under a local gauge transformation. Such a

gauge transformation

|ψ0(SSS)⟩ → |ψ′

0(SSS)⟩ = eiχ(SSS)|ψ0(SSS)⟩ (4.14)

CCCm(SSS) → CCC
′

m(SSS) = CCCm(SSS) − ∂χ(SSS)

∂SSSm
(4.15)

is local in the sense that the phase χ(SSS) is a smooth function of the impurity degrees of
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freedom. The spin Berry curvature ΩΩΩ, on the other hand, is gauge invariant. Elements

of ΩΩΩ are

Ωqα,rβ(SSS) =
∂Crβ(SSS)

∂Sqα
− ∂Cqα(SSS)

∂Srβ

=i
∂⟨ψ0|
∂Sqα

∂|ψ0⟩
∂Srβ

− i
∂⟨ψ0|
∂Srβ

∂|ψ0⟩
∂Sqα

=i
∑
n̸=0

⟨ψ0|∇qαĤ|ψn⟩⟨ψn|∇rβĤ|ψ0⟩ − ⟨ψ0|∇rβĤ|ψn⟩⟨ψn|∇qαĤ|ψ0⟩
(En − E0)2

= − 2 Im
∑
n̸=0

⟨ψ0|∇qαĤ|ψn⟩⟨ψn|∇rβĤ|ψ0⟩
(En − E0)2

, (4.16)

with α, β ∈ {x, y, z}, impurity labels q, r and ∂
∂Sqα

= ∇qα. In his work [33] Michael

Berry uses a generalization of the Hellmann-Feynman theorem [129, 130] to rewrite

the derivatives of the eigenstates in the Berry-curvature in terms of derivatives of the

Hamiltonian. The same idea can straight forwardly be adapted to our derivatives of

the ground state using ⟨ψm|∇ψn⟩ = ⟨ψm|∇Ĥ|ψn⟩
Em−En

∀m ̸= n (see A.2.2.1). ΩΩΩ emerges in the

adiabatic equations of motion as shown hereinafter, which leads to measurable effects

in the dynamics connected to the topology of the smooth map SSS → |ψ0(SSS)⟩.

By enforcing the adiabatic constraint (eq. 4.12) on the Lagrangian (eq. 4.7), all

dynamical quantum degrees of freedom are eliminated. That effective adiabatic theory

is derived from

Leff (SSS, ṠSS) =⟨ψ0(SSS)|i d
dt
|ψ0(SSS)⟩ +

∑
q

AAA(mmmq)ṠSSq

− ⟨ψ0(SSS)|Ĥ(SSS)|ψ0(SSS)⟩ −
∑
q

λq(mmm
2
q − 1) (4.17)

in a similar fashion as the purely classical adiabatic spin dynamics in section 3.1.1.

Details of the quantum-classical derivation are presented in A.2.2, which lead to the

implicit formulation of the quantum classical adiabatic equation of motion given by

ṁmmr =
∂⟨Ĥ⟩0
∂mmmr

×mmmr −
∑
qαµλκ

Ωrµ,qαmrλṁqαεµλκeeeκ. (4.18)

Here, we utilizedSSSq = Sqmmmq and set Sq = 1. Defining a tensor Trκ,qα :=
∑

µλ Ωrµ,qαmrλεµλκ

analogue to the classical case, the equations of motion can be formulated in an explicit

form. The explicit adiabatic equation of motion

ṁmm = (111 + TTT )−1 ·
(
⟨ψ0|

∂Ĥ

∂mmm
|ψ0⟩ ×mmm

)
(4.19)
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involves the inversion of the matrix 111 + TTT , which is generally time-dependent and has

dimensions of 3NS × 3NS, where NS is the number of impurities. Here, the cross

product is to be understood impurity-wise, i.e., (⟨ψ0|∂Ĥ∂mmm |ψ0⟩×mmm)q = ⟨ψ0| ∂Ĥ∂mmmq
|ψ0⟩×mmmq.

The naive approach to adiabatic spin dynamics

ṁmmN
r =

∂⟨Ĥ⟩0
∂mmmr

×mmmr (4.20)

is obtained by imposing the adiabatic constraint |ψ(t)⟩ = |ψ0(SSS(t))⟩ on the Hamil-

tonian. However, deducing impurity equations of motion solely from that constraint

Hamiltonian is conceptually incorrect.

4.1.3 – Weak-J Perturbation Theory of the Constraint Equation of Motion

and an Effective Impurity Hamiltonian

By specifying the interaction between the impurities and the local magnetic moments

of the host and taking the weak coupling limit, we can conduct a more in-depth analysis

of the adiabatic equations of motion (eq. 4.18). For the present analysis, we assume the

host-impurity interaction to be local to a single lattice site, equal among all impurities

and isotropic, thus

Ĥex =
∑
qα,iβ

Jqα,iβ ŝiβSqα = J
∑
q

ŝ̂ŝsiqSSSq. (4.21)

The Hamiltonian Ĥ = ĤQ + Ĥex is expressed in terms of a purely quantum mechan-

ical contribution defining the host ĤQ and a quantum-classical part. Latter terms

determine the exchange interaction between local spin operator ŝssi of the host and the

classical impurities SSSq, whereby the q-th impurity couples with coupling strength J to

the local spin operator at the iq-th site of the host lattice. An interaction of this kind

leads to an implicit adiabatic equation of motion that reads

ṁmmr =J⟨ψ0|ŝssir |ψ0⟩ ×mmmr + 2J2
∑
qαµλκ

Im
∑
n̸=0

⟨ψ0|ŝiqα|ψn⟩⟨ψn|ŝirµ|ψ0⟩
(En − E0)2

mrλṁqαεµλκeeeκ.

(4.22)

Next, we expand the quantum states |ψn⟩ ≡ |ψn(SSS)⟩ = |ψ(0)
n ⟩+ |ψ(1)

n (SSS)⟩+ ... in orders

of J . In this notion, |ψ(0)
0 ⟩ is the free (J = 0) ground state of the host system, which is

naturally independent of the impurities. Corrections to that free ground state to the

first order in J are |ψ(1)
0 (SSS)⟩ =

∑
n̸=0 |ψ

(0)
n ⟩ ⟨ψ

(0)
n |J

∑
q ŝssiqSSSq |ψ(0)

0 ⟩

E
(0)
0 −E(0)

n

.
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The Hamiltonian part of equation 4.18 can therefore be expanded to

⟨ψ0|
∂Ĥ

∂SSSr
|ψ0⟩ =J⟨ψ(0)

0 |ŝssir |ψ
(0)
0 ⟩ + J2

∑
q,n̸=0

⟨ψ(0)
0 |ŝssir |ψ(0)

n ⟩
⟨ψ(0)

n |ŝssiq |ψ
(0)
0 ⟩SSSq

E
(0)
0 − E

(0)
n

+ J2
∑
q,n̸=0

⟨ψ(0)
n |ŝssir |ψ

(0)
0 ⟩

⟨ψ(0)
0 |ŝssiq |ψ

(0)
n ⟩SSSq

E
(0)
0 − E

(0)
n

+ O(J3)

=J⟨ψ(0)
0 |ŝssir |ψ

(0)
0 ⟩ + 2J2Re

∑
qα,n̸=0

⟨ψ(0)
0 |ŝiqα|ψ

(0)
n ⟩⟨ψ(0)

n |ŝssir |ψ
(0)
0 ⟩

E
(0)
0 − E

(0)
n

Sqα + O(J3).

(4.23)

Here, we have explicitly specified terms up to the second order in J , with higher orders

being comprised in O(J3). The non-Hamiltonian part of the adiabatic equation of

motion is, however, already of second order in J . Thus, only the 0-th order expansion

of quantum states is involved, i.e, solely quantum states of the free host contribute

up to the second order in J . The resulting adiabatic equation of motion in weak-J

perturbation theory reads

ṁmmr = J⟨ψ(0)
0 |ŝssir |ψ

(0)
0 ⟩ ×mmmr

+ 2J2
∑
qαµλκ

Re
∑
n̸=0

⟨ψ(0)
0 |ŝiqα|ψ

(0)
n ⟩⟨ψ(0)

n |ŝirµ|ψ
(0)
0 ⟩

E
(0)
0 − E

(0)
n

mrλmqαεµλκeeeκ

+ 2J2
∑
qαµλκ

Im
∑
n̸=0

⟨ψ(0)
0 |siqα|ψ

(0)
n ⟩⟨ψ(0)

n |sirµ|ψ
(0)
0 ⟩

(E
(0)
0 − E

(0)
n )2

mrλṁqαεµλκeeeκ + O(J3). (4.24)

In the weak coupling limit, the spin Berry curvature, which leads to the geometric spin

torque in the impurity dynamics, becomes independent of the classical impurities and

is a host-system only quantity up to O(J2).

Moreover one can relate the retarded magnetic spin susceptibility [48, 86] of the free

host

χiα,jβ(t) = − iΘ(t)e−ηt⟨[ŝiα(t), ŝjβ(0)]⟩(0)0 (4.25)

to equation 4.24. Here, Θ is the Heaviside step function, η a positive infinitesimal and

⟨..⟩(0)0 denotes the expectation value with the free (J = 0) ground state of the host.

Next, we assume the local magnetic moments of the host system to evolve under the free

quantum Hamiltonian only, since we aim for a 0-th order in J expression to be related to

the adiabatic equation of motion. Accordingly, one obtains ŝiα(t) = eiĤQtŝiα(0)e−iĤQt

with ĤQ = Ĥ
∣∣
J=0

. Noting, that |ψ(0)
n ⟩ form an orthogonal basis of eigenstates to ĤQ

with eigenvalues E
(0)
n , we can express unity as

∑
n |ψ

(0)
n ⟩⟨ψ(0)

n |. With this, we expand
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the commutator in equation 4.24 and insert this representation of unity to obtain

χiα,jβ(t) = − iΘ(t)e−ηtei(E
(0)
0 −E(0)

n )t
∑
n ̸=0

⟨ψ(0)
0 |ŝiα(0)|ψ(0)

n ⟩⟨ψ(0)
n |ŝjβ(0)|ψ(0)

0 ⟩

+ iΘ(t)e−ηtei(E
(0)
n −E(0)

0 )t
∑
n̸=0

⟨ψ(0)
0 |ŝjβ(0)|ψ(0)

n ⟩⟨ψ(0)
n |ŝiα(0)|ψ(0)

0 ⟩. (4.26)

Notably, n = 0 terms cancel out. Fourier transformation of the retarded magnetic spin

susceptibility now yields

χiα,jβ(ω) =

∫ ∞

−∞
dteiωtχiα,jβ(t)

=
∑
n̸=0

(
⟨ψ(0)

0 |ŝiα|ψ(0)
n ⟩⟨ψ(0)

n |ŝjβ|ψ(0)
0 ⟩

iη + ω − E
(0)
n + E

(0)
0

− ⟨ψ(0)
0 |ŝjβ|ψ(0)

n ⟩⟨ψ(0)
n |ŝiα|ψ(0)

0 ⟩
iη + ω + E

(0)
n − E

(0)
0

)
, (4.27)

where the positive infinitesimal η can be neglected for gapped systems. Next, we

evaluate

χiα,jβ(0) = − 2Re
∑
n ̸=0

⟨ψ(0)
0 |ŝiα|ψ(0)

n ⟩⟨ψ(0)
n |ŝjβ|ψ(0)

0 ⟩
E

(0)
n − E

(0)
0

, (4.28)

∂χiα,jβ(ω)

∂ω

∣∣∣∣
ω=0

= − 2iIm
∑
n̸=0

⟨ψ(0)
0 |ŝiα|ψ(0)

n ⟩⟨ψ(0)
n |ŝjβ|ψ(0)

0 ⟩
(E

(0)
0 − E

(0)
n )2

, (4.29)

which can be linked to equation 4.24. Comparing the latter expressions (eq. 4.29) with

the weak coupling expansion of the spin Berry curvature (see eq. 4.24) we recognize

Ωqα,rβ(SSS) =Ω
(0)
qα,rβ + O(J3) = −iJ2∂χiqα,irβ(ω)

∂ω

∣∣∣∣
ω=0

+ O(J3)

= − 2J2Im
∑
n̸=0

⟨ψ(0)
0 |ŝiα|ψ(0)

n ⟩⟨ψ(0)
n |ŝjβ|ψ(0)

0 ⟩
(E

(0)
0 − E

(0)
n )2

+ O(J3). (4.30)

Thus, the adiabatic equation of motion in the weak coupling limit can be formulated

as:

ṁmmr = J⟨ψ(0)
0 |ŝssir |ψ

(0)
0 ⟩ ×mmmr

+ J2
∑
qαµλκ

χiqα,irµ(0)mrλmqαεµλκeeeκ

− iJ2
∑
qαµλκ

∂χiqα,irβ(ω)

∂ω

∣∣∣∣
ω=0

mrλṁqαεµλκeeeκ + O(J3). (4.31)

Accordingly, the spin Berry curvature can be seen as the linear magnetic response

of the quantum host system due to a slow time-dependent perturbation [48]. Here,
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the perturbation is caused by the classical impurities, which have to be slow in the

sense that the quantum system adiabatically follows the time evolution of these clas-

sical degrees of freedom. The spin Berry curvature is interpreted as the first non-

trivial correction to the unperturbed (J⟨ψ(0)
0 |ŝssir |ψ

(0)
0 ⟩ ×mmmr) and static perturbation

(J2
∑

qαµλκ χiqα,irβ(0)mrλmqαεµλκeeeκ) of the dynamics where J sets the timescale. No-

tably this dynamic correction comes with the same order in J as the static perturbation.

Commonly, the second term of eq. 4.31 is written in terms of a linear response of the

quantum host to some external perturbation. In the adiabatic limit that response is in

fact instantaneous (ω = 0) and therefore referred to as the static perturbation. Some

classical magnetic perturbation SSSq coupling with interaction strength J to the local

magnetic moment ⟨siq⟩ of the quantum host causes a response of the quantum system

at site ir mediated via the magnetic susceptibility. As that response is instantaneous

in the adiabatic limit, it is described by χirβ,iqα(ω = 0). With ⟨sirβ⟩
(0)
0 as the local

magnetic moment of the unperturbed (...(0)) host in its ground state (...0) we expand

⟨sirβ⟩ = ⟨sirβ⟩
(0)
0 + J

∑
qα

χirβ,iqα(0)Sqα + O(J2). (4.32)

On that account, the exchange interaction up to second order in J can be expressed as

Hex =J
∑
q

⟨ŝ̂ŝsiq⟩SSSq

=J
∑
q

⟨ŝ̂ŝsiq⟩
(0)
0 SSSq + J2

∑
qα,rβ

χiqα,irβ(0)SrβSqα + O(J3)

=J
∑
q

⟨ŝ̂ŝsiq⟩
(0)
0 SSSq +

∑
qr

JRKKYqα,rβ SrβSqα + O(J3) (4.33)

with JRKKYqα,rβ := J2χiqα,irβ(0) [73–75,86]. Since χiqα,irβ(0) = χirβ,iqα(0) is implied by eq.

4.28, the RKKY-coupling constant is invariant under exchange of its indices. For spin-

rotation invariant quantum systems the magnetic susceptibility is furthermore diagonal

in the spin indices χirβ,iqα(0) = χir,iq(0)δαβ. Arguments hereto are analogue to those

presented in section 4.1.3.1 and in appendix A.2.2.2 for the spin Berry curvature.

For host systems that are magnetically unpolarized when not perturbed by impurities

(⟨ŝiα⟩0 = 0), the exchange up to second order in J takes the compact form of

HRKKY
ex =

∑
qr

JRKKYq,r SSSrSSSq, with JRKKYq,r := J2χiq ,ir(0). (4.34)

This effective impurity Hamiltonian comprises the host characteristics that account for

the indirect impurity interaction into an effective coupling parameter JRKKYq,r , similar to

the indirect coupling of magnetic moments in metals initially introduced by Ruderman-

Kittel-Kasuya-Yosida (RKKY) [73–75]. The dynamics of the impurities due to HRKKY
ex
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is defined by

ṠSS
N

q =
∂HRKKY

ex

∂SSSq
×SSSq (4.35)

and is referred to as the naive approach to adiabatic spin dynamics, analog to the purely

classical case in 3.1.2.1. Naive adiabatic spin dynamics is obtained from a conceptually

incorrect approach, that considers the adiabatic constraint solely via the Hamiltonian.

This naive approach dismisses the geometrical spin torque obtained by the conceptually

correct derivation, where the constraint is coped with in the Lagrangian formalism.

4.1.3.1 ΩΩΩ(0) for Spin-Rotation Invariant Host Systems

In the limit of weak exchange between impurities and the host system, the spin Berry

curvature ΩΩΩ(0) is, up to second order in the host-impurity coupling, a property of the

quantum host only (see eq. 4.30). Thus, the spin Berry curvature is expected to be

affected by symmetries of the host model.

In the following we evaluate the effect that spin-rotation invariance of the host has on

ΩΩΩ(0). To this end we recall Ĥ = ĤQ+Ĥex and choose Ĥex = J
∑

q ŝ̂ŝsiqSSSq. First, we define

spin rotations on Fock space by the unitary operator Û = Û(nnn, φ) = exp(−iŝssTnnnφ),

which acts as a spin rotation by angle φ around axis nnn [48]. Components of the

total spin ŝssT =
∑

i ŝssi are generators of these rotations. If the quantum Hamiltonian

ĤQ is invariant under spin rotations, i.e., [ĤQ, ŝssT ] = 0, its eigenstates {|ψ(0)
n ⟩} can

simultaneously be chosen as an eigenbasis of Û . Since the norm of the eigenvalues of

an unitary operator equals one, we note Û |ψ(0)
n ⟩ = eiϕn|ψ(0)

n ⟩. Rotations of the spin

operator ŝiqα can also be constructed via the defining SO(3) matrix representation RRR =

RRR(nnn, φ), thus, spin components transform as Û †ŝiqαÛ =
∑

α′ Rαα′ ŝiqα′ . By inserting

identities Î = Û Û † in the matrix elements that build up the spin Berry curvature (eq.

4.30) we find

⟨ψ(0)
0 |Û Û †ŝiαÛ Û

†|ψ(0)
n ⟩⟨ψ(0)

n |Û Û †ŝjβÛ Û
†|ψ(0)

0 ⟩

=
∑
α′β′

⟨ψ(0)
0 |eiϕ0Rαα′ ŝiα′e−iϕn|ψ(0)

n ⟩⟨ψ(0)
n |eiϕn ŝjβ′RT

β′βe
−iϕ0|ψ(0)

0 ⟩

=
∑
α′β′

Rαα′⟨ψ(0)
0 |ŝiα′|ψ(0)

n ⟩⟨ψ(0)
n |ŝjβ′|ψ(0)

0 ⟩RT
β′β. (4.36)

Consequently,
(
ΩΩΩ

(0)
ij

)
αβ

= Ω
(0)
iα,jβ =

∑
α′β′ Rαα′Ω

(0)
iα′,jβ′RT

β′β is true sinceRRRT = RRR−1, which

expressed in matrix notion takes the form [RRR,ΩΩΩ
(0)
ij ] = 0. The defining representation

of a group, however, is always irreducible, so due to the vanishing commutator and

irreducibility of RRR we find Ω
(0)
iα,jβ = Ω

(0)
ij δαβ as a result of Schur’s lemma [48, 94, 131]

(see appendix A.2.2.2 for an alternative derivation without the use of Schur’s lemma).
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Recapitulating, we just showed that host Hamiltonians ĤQ which are invariant under

spin rotations lead to spin-diagonal blocks ΩΩΩ
(0)
ij = Ω

(0)
ij 111 in the spin Berry curvature as

long as impurities couple sufficiently weak to the quantum host. Furthermore, the spin

Berry curvature in general is antisymmetric Ωiα,jβ = −Ωjβ,iα as can easily be seen from

its definition in equation 4.16. Hence, ΩΩΩ
(0)
ij = −ΩΩΩ

(0)
ji has to be true for spin-rotation

invariant host Hamiltonians. Combining the requirements of skew-symmetry and spin-

diagonality, the weak coupling spin Berry curvature ΩΩΩ(0) with elements Ω
(0)
iα,jβ takes the

form of

ΩΩΩ(0) = Ω

(
0 1

−1 0

)
⊗ 111spin (4.37)

for a setup with two impurities. Spin-diagonality is accounted for by the 3× 3 identity

matrix 111spin, while anti-symmetry has to be ensured by the an impurity-coefficient

matrix
(

0 1
−1 0

)
of dimension NS × NS. Notably, the entire spin Berry curvature is

determined by just a single real number Ω in that case. For a single impurity, however,

the combination of anti-symmetry and spin-rotation invariance enforces ΩΩΩ(0) to be zero.

Thus, a single impurity interacting with a spin-rotation invariant quantum Hamiltonian

can lead to a non-zero spin Berry curvature only beyond the weak coupling limit.

The gained insight in the structure of the spin Berry curvature is not only benefi-

cial for numerical concerns, e.g. as the number of independent components of ΩΩΩ(0) is

significantly reduced by exploiting spin-rotation invariance of the host system. Also

analytical predictions of the dynamics can become accessible, when the structure of

the spin Berry curvature is well understood.

4.1.3.2 Time-Reversal Symmetry and some Motivation to Break it

Turning our attention to time-reversal, we will now explore how it affects the spin Berry

curvature. A nontrivial geometric spin torque in the adiabatic spin dynamics (eq. 4.18

and eq. 4.19) demands a non-zero spin Berry curvature. The latter, however, vanishes if

time-reversal symmetry is not broken in the setup under consideration. Weak exchange

coupling between impurities and host, where the perturbation theory presented in

section 4.1.3 is applicable, requires the host model to break time reversal inherently

whenever Hex is odd or even under time reversal, which is demonstrated hereinafter.

Non-perturbative coupling, on the other hand, breaks time reversal explicitly, since the

classical spins can be seen as local magnetic fields. Thus, also time-reversal invariant

host models combined with exchange coupling which are symmetric or antisymmteric

under time-reversal can lead to finite topological spin torques for exchange interaction

beyond the weak coupling limit. When the exchange coupling is linear in the impurity

parameters SSS and for weak coupling strength J , the spin Berry curvature is a property
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of the free (J = 0) host subsystem only (see eq. 4.30).

To show the necessity of broken time reversal symmetry to obtain finite spin Berry

curvatures when the exchange coupling defined by Hex is odd or even under time

reversal. We define the anti-unitary time reversal operator T in Fock space whose

action reverses time (t 7→ −t). A system is classified as time reversal invariant if

[Ĥ, T ] = 0, which we also referred to as even under time reversal. Impurities SSS take

the role of external parameters to the quantum states in Fock space and are therefore

unaffected by T . The spin ŝss, as an internal angular momentum, is odd under time

reversal and flips its sign under time reversal, thus,

T ŝssT † = −ŝss. (4.38)

Accordingly, the interaction Hamiltonian between impurities and electrons Ĥex =

J
∑

q SSSqŝssiq changes sign under the action of T as well. Time reversal in this case

can bee seen as a rotation by π around some arbitrary axis, which we choose to be the

y-axis (further can be found in [19,48]). The action of time reversal on the commutator

T [x̂, p̂] = −iℏ, however, requires T to act as a complex conjugation K as well, so here

the time reversal operator takes the form of T = e−iπsssyK. This explicit form easily

illustrates that applying time reversal twice has a fundamentally different effect on a

boson than on a fermion. While a rotation by 2π equals the identity (T 2 = +1) for

integer spin particles, it results in an additional sign (T 2 = −1) for particles with half-

integer spin. Within this thesis we consider host models with non-degenerate ground

states, in particular half-filled lattice models with an even number of spin-1
2

particles.

For these cases the time reversal operator squares to unity (T 2 = +1) and we do not

exhibit Kramers degeneracy [19].

For now, we assume the quantum host system to be invariant under time reversal,

[ĤQ, T ] = 0. In that case one can choose an orthonormal time-reversal-symmetric

(real) basis of eigenstates |ψ(0)
n ⟩ to the Hamiltonian, where T |ψ(0)

n ⟩ = |ψ(0)
n ⟩ holds for the

ground state (n = 0) and all excited states (n > 0). Next, we consider one of the matrix

elements from which ΩΩΩ(0) (see eq. 4.16 and eq. 4.30) is constituted. Time reversal

invariance yields ⟨ψ(0)
0 |ŝiα|ψ(0)

n ⟩ = ⟨T ψ(0)
0 |ŝiα|T ψ(0)

n ⟩. On the other hand, anti-linearity

of the time reversal operator T implies ⟨T ψ(0)
0 |ŝiα|T ψ(0)

n ⟩ =
(
⟨ψ(0)

0 |T †ŝiαT |ψ(0)
n ⟩
)∗

[48,

132] which leads to

⟨ψ(0)
0 |ŝiα|ψ(0)

n ⟩ = −
(
⟨ψ(0)

0 |ŝiα|ψ(0)
n ⟩
)∗
. (4.39)

Consequently, the matrix element has to be purely imaginary, i.e., ⟨ψ(0)
0 |ŝiα|ψ(0)

n ⟩ ∈ iR,

which is analogously true for ⟨ψ(0)
n |ŝiα|ψ(0)

0 ⟩. As Ω
(0)
qα,rβ is constructed from summands

containing Im
(
⟨ψ(0)

0 |ŝiα|ψ(0)
n ⟩⟨ψ(0)

n |ŝjβ|ψ(0)
0 ⟩
)

(eq. 4.30), our demonstration establishes

that the spin Berry curvature and the associated geometrical spin torque vanish in the
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weak coupling regime for time-reversal-invariant host systems when the host-impurity

exchange Ĥex is odd under time reversal.

The same result holds for Ĥex that are even under time reversal as can easily be

seen from an exemplary exchange coupling Ĥex =
∑

q SSSqĥhh
+

q (ŝss) with some operator

ĥhh
+

q (ŝss) that is even under time reversal (T ĥhh
+

q T † = ĥhh
+

q ). In this case ⟨ψ(0)
0 |ĥ+qα|ψ

(0)
n ⟩ =(

⟨ψ(0)
0 |ĥ+qα|ψ

(0)
n ⟩
)∗

is true, requiring the matrix elements to be real (⟨ψ(0)
0 |ĥ+qα|ψ

(0)
n ⟩ ∈ R ),

which results in trivial spin Berry curvatures as well. One could envision an adaptation

of the Dzyaloshinsky-Moriya interaction [133, 134] with ĥhh
+

q (ŝss) =
∑

i,j Dq,ijŝssi × ŝssj as a

potential candidate that couples to the impurities which is even under time reversal.

If, however, the exchange coupling is neither even nor odd under time reversal (T ĤexT † ̸=
±Ĥex), a finite spin Berry curvature can, even in the weak coupling limit, be ob-

tained for time reversal symmetric host systems. Exemplary hereto one can imag-

ine a linear combination of some exchange contribution ĥhh
+

q (ŝss) that is even and some

exchange contribution ĥhh
−
q (ŝss) that is odd (T ĥhh

−
q T † = −ĥhh

−
q ) under time reversal (e.g.

ĥhh
−
q (ŝss) =

∑
i Jq,iŝssi). Assuming Ĥex =

∑
q SSSq

(
ĥhh
+

q (ŝss) + ĥhh
−
q (ŝss)

)
and utilizing the time

reversal invariance of |ψ(0)
0 ⟩ and |ψ(0)

n ⟩ (n > 0) as well as the anti-linearity of the time

reversal operator we obtain

⟨ψ(0)
0 |∂Ĥex

∂Sqα
|ψ0
n⟩ =⟨ψ(0)

0 |ĥhh
+

qα|ψ(0)
n ⟩ + ⟨ψ(0)

0 |ĥhh
−
qα|ψ(0)

n ⟩

=
(
⟨ψ(0)

0 |ĥhh
+

qα|ψ(0)
n ⟩ − ⟨ψ(0)

0 |ĥhh
−
qα|ψ(0)

n ⟩
)∗

=a0nqα + ib0nqα , a0nqα, b
0n
qα ∈ R (4.40)

with a0nqα = ⟨ψ(0)
0 |ĥhh

+

qα|ψ
(0)
n ⟩ and ib0nqα = ⟨ψ(0)

0 |ĥhh
−
qα|ψ

(0)
n ⟩. The spin Berry curvature is

formed by terms containing

−Im
(
⟨ψ(0)

0 |∂Ĥex

∂Sqα
|ψ0
n⟩⟨ψ(0)

n |∂Ĥex

∂Srβ
|ψ0

0⟩
)

= Im
(
(a0nqα + ib0nqα)(an0rβ + ibn0rβ)

)
= i⟨ψ(0)

0 |ĥhh
+

qα|ψ(0)
n ⟩⟨ψ(0)

n |ĥhh
−
rβ|ψ

(0)
0 ⟩

+ i⟨ψ(0)
0 |ĥhh

−
qα|ψ(0)

n ⟩⟨ψ(0)
n |ĥhh

+

rβ|ψ
(0)
0 ⟩. (4.41)

These terms generally have non-zero values. Thus, one can in general obtain a finite

spin Berry curvature in the weak coupling limit even when the host system is time-

reversal symmetric.

As demonstrated, an exchange coupling that is just odd or even under time reversal

demands a host system that breaks time reversal symmetry to possibly feature a finite

spin Berry curvature in the weak coupling limit. One canonical choice of the exchange

interaction is to locally couple the impurities to the local magnetic moments of the

host, Ĥex = J
∑

q SSSqŝssiq , which is odd under time reversal. Beyond the weak coupling
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limit the classical impurities break time reversal explicitly.

4.1.3.3 Analytical Exploration of the Adiabatic Dynamics of Two Impu-

rities in the Weak-J Limit

Without external magnetic fields a minimum of two impurities is required to initiate

nontrivial dynamics. We assume applicability of the adiabatic theorem, so the host

system is assumed to be in its ground state to the impurity configuration at all times.

A setup involving two classical impurities coupled to a quantum-mechanical host is

prototypical for assessing the fundamental characteristics of adiabatic spin dynamics,

which is analytically studied in this section. Here, we discuss the limit of weak and

local exchange interaction J , so taking terms up to O(J2) into account is sufficient.

We assume a host of zero total magnetic moment, which leads to an impurity only

formulation of the dynamics for small J .

The adiabatic equation of motion (eq. 4.19) in its explicit form is recalled as the matrix

product of (111 +TTT )−1 with Trκ,qα :=
∑

µλ Ωrµ,qαmrλεµλκ and the constraint Hamiltonian

dynamics. The latter, also referred to as naive adiabatic dynamics, originates from an

effective Hamiltonian, which takes the form of HRKKY
ex =

∑
qr J

RKKY
q,r SSSrSSSq (eq. 4.34)

for host systems that do not feature local magnetic moments in their free ground state

and which are invariant under spin rotations (see section 4.1.3). As a consequence of

the spin rotation invariance of the host model combined with the general symmetry of

χχχ(ω = 0) (eq. 4.28) in a setup of only two impurities, the effective impurity coupling

has to be symmetric under exchange of the impurity labels. Thus, JRKKY1,2 = JRKKY2,1 =

JRKKY is noted. The effective Hamiltonian yields the naive adiabatic dynamics

ṁmmN
q =

∂HRKKY
ex

∂mmmq

×mmmq. (4.42)

For now, we consider impurities SSSq = Sqmmmq of magnitude one (SSS2
q = 1 ∀q), but gener-

alization to arbitrary impurity magnitudes is straight forward.

Since we assume spin rotational invariance of the free (J = 0) host model, so ΩΩΩ(0) takes

the generic form of equation 4.37. Utilizing that predetermined structure of ΩΩΩ(0) and

JJJRKKY the adiabatic equations of motion for two impurities up to O(J2) take the from(
ṁmm

(0)
1

ṁmm
(0)
2

)
= (111 + TTT (0))−1

(
ṁmmN

1

ṁmmN
2

)
= (111 + TTT (0))−1

(
JRKKYmmm2 ×mmm1

JRKKYmmm1 ×mmm2

)
(4.43)
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with

TTT (0) = Ω

(
000 MMM1

−MMM2 000

)
and MMMq =

∑
α

RRRαmqα =

 0 −mqz mqy

mqz 0 −mqx

−mqy mqx 0

 . (4.44)

The RRRα are the generators of rotations in three dimensions and an explicit representa-

tion is given in equation A.15. We point out that MMMqmmmr is nothing but a matrix-vector

product representation for mmmq ×mmmr. To finally obtain an explicit analytical adiabatic

equation of motion we need to invert 111 + TTT (0), which requires its determinant

det
(
111 + TTT (0)

)
= det

(
111 + Ω2MMM2MMM1

)
=1 − 2Ω2mmm1mmm2 + Ω4(mmm1mmm2)

2 (4.45)

to be non-zero. Thus, the required matrix inversion can be performed, unless Ω2mmm1mmm2 =

1. If existing, the analytical inversion results in

(
111 + TTT (0)

)−1
=

1

1 − Ω2mmm1mmm2

(
111 − Ω2mmm2 ⊗mmm1 ΩMMM1

−ΩMMM2 111 − Ω2mmm1 ⊗mmm2

)
, (4.46)

where we denote the outer (dyadic) product of mmm1 and mmm2 by mmm1⊗mmm2. Evaluating the

adiabatic equations of motion by use of the just obtained matrix inverse (eq. 4.46) a

set of coupled differential equations is obtained, that is

ṁmm1 =
JRKKY

1 − Ω2mmm1mmm2

[
mmm2 ×mmm1 + Ωmmm1 × (mmm1 ×mmm2)

]
ṁmm2 =

JRKKY

1 − Ω2mmm1mmm2

[
mmm1 ×mmm2 − Ωmmm2 × (mmm2 ×mmm1)

]
.

(4.47)

For Ω = 0 the well known RKKY-dynamics (eq. 4.34 and eq. 4.42) is reacquired, where

impurities precess around the conserved total spin with frequency ωprec = JRKKY |mmm1+

mmm2|. Valid non-zero Ω, however, result in dynamics of the total impurity spin mmmT =

mmm1 +mmm2 itself. Throughout the adiabatic spin dynamics magnitudes |mmm1| and |mmm2| as

well as angle ϑ enclosed by the impurities are conserved for any valid Ω. A non-zero

ṁmmT can be regarded as a hallmark of the non-Hamiltonian nature of the adiabatic

dynamics in our scenario, as it cannot be solely governed by any RKKY-like theory.

Yet, we find vector

ΣΣΣ :=mmm1 +mmm2 − Ωmmm1 ×mmm2

=mmmT − Ωmmm1 ×mmm2 (4.48)

as a constant of motion of the adiabatic spin dynamics in the weak coupling limit.
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Impurities as well as the total spin undergo a precession around this axis. The

equations of motion (eq. 4.47) can therefore be rewritten in the compact form of

ṁmmq = JRKKY

1−Ωmmm1mmm2
ΣΣΣ ×mmmq with q ∈ {1, 2}. Thus, the dynamics of the total impurity spin

is

ṁmmT =
JRKKY

1 − Ω2mmm1mmm2

ΣΣΣ ×mmmT

=
ΩJRKKY

1 − Ω2mmm1mmm2

(mmm2 ×mmm1) ×mmmT . (4.49)

Furthermore, the modulus of conserved vector ΣΣΣ determines the precession frequency

ωprec =
√

ΣΣΣ2 =
√

4 cos2(ϑ/2) + Ω2 sin2(ϑ) (4.50)

in the inverse dimensionless timescale t′ = t/τ with τ defined in equation 4.51 and ϑ as

the conserved angle enclosed by the impurities. In units of t the precession frequency

is thus simply given by ωprec =
√

ΣΣΣ2/τ = JRKKY
√

ΣΣΣ2/(1 − Ωmmm1mmm2). Some further

details on conserved quantities in the given setup are presented in A.2.2.3.

Finally, we discuss two qualitative effects finite Ω cause in the impurity dynamics.

Firstly, an overall renormalization of the effective RKKY-coupling JRKKY 7→ JRKKY /(1−
Ω2mmm1mmm2) is observed. In essence, this renormalization describes a re-scaling of the

timescale of the dynamics by

1

τ
:=

JRKKY

1 − Ω2mmm1mmm2

=
J2χi1i2(0)

1 − Ω2mmm1mmm2

. (4.51)

For Ω2mmm1mmm2 > 1 the direction of motion opposes the direction of the naive RKKY-

dynamics. Formulating the equations of motion (eq. 4.47) in the dimensionless time

scale t′ = t/τ yields
dmmm1

dt′
=mmm2 ×mmm1 + Ω(mmm2 ×mmm1) ×mmm1

dmmm2

dt′
=mmm1 ×mmm2 − Ω(mmm1 ×mmm2) ×mmm2.

(4.52)

The just obtained formulation of the adiabatic equations of motion emphasizes the

second contribution non-zero Ω cause in the dynamics. That is an additional torque

perpendicular to the naive RKKY dynamics (eq. 4.42). This adiabatic spin torque

contribution causes the dynamics of mmmT . We interpret Ω as the coupling strength of

e.g. mmm1 coupling to mmm2 × mmm1 ∼ ṁmmN
1 (see 4.52), which leads to the adiabatic spin

torque. This torque cannot originate from an effective Hamiltonian Heff (mmm1,mmm2) and

interchanging labels 1 ↔ 2 does not lead to an invariant set of equations of motion, but

changes the sign of the non-Hamiltonian contribution. That sign changes can be traced

back to the anti-symmetry of the spin Berry curvature (see eq. 4.37), which requires

ΩΩΩ12 = −ΩΩΩ21 in the given scenario of spin-rotation invariant host systems. Both effects
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are determined by Ω as well as ϑ∢mmm1,mmm2.

The non-Hamiltonian spin torque can, however, not outweigh the renormalization of

the timescale in the limit of large Ω for generic ϑ ̸= π/2. Furthermore, we observe a

critical value of Ωc = 1/
√
mmm1mmm2. As Ω surpasses Ωc, the dynamics decelerates until

reaching a point of complete cessation in the limit of Ω → ∞. Comparing dynamics

with Ω < Ωc and Ω > Ωc, the impurities change the direction of their precessional

motion due to a sign change in overall prefactor JRKKY /(1 − Ω2mmm1mmm2). An Ω close

to Ωc triggers the strongest renormalization effect, but to ensure a valid application of

the adiabatic theorem, the exchange coupling J has to satisfy

J2 χi1i2(0)

1 − Ω2mmm1mmm2

≪ ∆E, (4.53)

with ∆E as the insulating energy gap of the host [48]. Hence, a setup with constant

∆E requires weaker and weaker coupling between impurities and host to assure adia-

batic dynamics as Ω approaches Ωc. For Ω = Ωc the renormlization by τ−1 (eq 4.51)

diverges for any finite JRKKY , but equations 4.47 and 4.52 do not describe the dynam-

ics correctly in that case. Under the circumstances of Ω = Ωc = 1/
√
mmm1mmm2, the theory

breaks down as det(111 +TTT (0)) = 0 in that case, thus, (111 +TTT (0))−1 exploited in equation

4.43 does not exist.

4.1.4 – Strong-J Perturbation Theory of the Constraint Equation of Mo-

tion and an Effective Impurity Hamiltonian

In the limit of strong exchange coupling between impurities and host system, local

physics dominates the spin Berry curvature. We assume a local and spin-symmetric

exchange interaction Ĥex =
∑

iα,qβ Jiα,qβ ŝiαSqβ = J
∑

q ŝssiqSSSq and |SSSq| = 1. The struc-

ture of ΩΩΩ changes qualitatively as compared to the previously discussed weak coupling

limit. In the weak-J limit, only non-local elements Ω
(0)
qα,rα with q ̸= r (see eq. 4.37) of

the spin Berry curvature are non-zero for spin-diagonal host models. Contrarily, only

elements Ωqα,qβ of the local blocks are non-zero in the strong coupling limit.

These on-site elements result form an effective local two-spin model Ĥ2−spin = J
∑

q ŝssiqSSSq

as the low energy expansion for J → ∞, where ŝssiq is a quantum spin of magnitude

|ŝssiq | = s = 1/2. The Berry curvature to that two spin model is well known in literature,

as it is analog to the prime example of a quantum spin in an external magnetic field

that can be solved analytically [19, 47]. To the lowest order, each impurity localizes

one electron at the site it couples to the host and the spin Berry curvature takes the
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form

ΩΩΩ(∞)
q,r =

1

2
δqr
∑
α

RαSqα =
1

2
δqr

 0 −Sqz Sqy

Sqz 0 −Sqx
−Sqy Sqx 0

 . (4.54)

Again, Rα are the generators of spatial rotations in three dimension as defined in equa-

tion A.15. In this context of a local two spin model it is convenient to rewrite the on-site

blocks of spin Berry curvature tensor in form of the vector ΩΩΩ
(∞)
q = (1/2)

∑
αβγ Ω

(∞)
qα,qβeeeγεαβγ

with eeeγ as the unit vector in γ ∈ {x, y, z} direction. That vector takes the form of

ΩΩΩ(∞)
q = −1

2

SSSq
|SSSq|3

= −1

2
SSSq (4.55)

for J > 0. This is nothing but the field generated by a magnetic monopole of magnetic

charge 1/2 at the origin [19,48]. Nontrivial dynamics, however, requires an effective in-

teraction between the impurities, which we again denote by HRKKY =
∑

qr J
RKKY
qr SSSqSSSr

for spin-rotation invariant models. In the strong coupling limit, the indirect magnetic

exchange scales as JRKKY ∼ J−2, which is of second order again, but the proportion-

ality is inverse to the weak coupling limit where JRKKY ∼ J2 (see eq. 4.34). The

effective Hamiltonian HRKKY yields naive dynamics of the same form as in the weak

coupling limit (eq. 4.42), just the coupling constant JRKKY is of a different nature.

Next, we derive an explicit form of the adiabatic equation of motion in the J → ∞
limit by going through the same steps as in subsection 4.1.3.3, but with a spin Berry

curvature of the strong coupling form (eq. 4.54). Since we consider local host-impurity

exchange interaction, we introduce an abbreviated notation of ⟨ŝiqα⟩ ≡ sqα for the sake

of clarity. Matrix TTT with elements Trκ,qα :=
∑

µλ Ωrµ,qαmrλεµλκ is diagonal in the site

indices r, q due to the block-diagonal character of Ωr,q (see eq. 4.54). The blocks take

the form

TTT rq = δrq

−sqySqy − sqzSqz sqxSqy sqxSqz

sqySqx −sqxSqx − sqzSqz sqySqz

sqzSqx sqzSqy −sqxSqx − sqySqy

 . (4.56)

As determinant of a block diagonal matrix is given by the product of determinants of

its diagonal blocks, the overall determinant of 111 + TTT vanishes if the determinant of at

least one block (111 + TTT )qq = 111 + TTT qq is zero. These blocks become independent from

each other in the strong coupling limit, since ⟨ŝiqα⟩ depends solely on SSSq to the lowest

nontrivial order in 1/J . In fact, for J → +∞ one electron gets not just localized, but

also fully polarized at each site that a classical impurity couples to host. Accordingly,

⟨ŝssiq⟩ = −Sq/2 is exactly antiparallel (parallel for J → −∞) to the classical spin of its

60



4 – Quantum-Classical Adiabatic Spin Dynamics

causation. Accordingly, we find

det(111 + TTT ) =
∏
q

det(111 + TTT qq) =
∏
q

(1 + sssqSSSq)
2. (4.57)

As a single orbital per lattice site is considered, the magnitude of the polarized lo-

cal magnetic moment at one site of the quantum system is bound by |⟨ŝssi⟩| ≤ 1/2.

Therefore, the determinant never vanishes in our scenario of Sq = 1. If, however,

any ⟨ŝssiq⟩ = −SSSq were to occur, the inversion of 111 + TTT would not be possible since

det(111 + TTT ) = 0 in that case. In fact, sssqSSSq = ⟨ŝssiq⟩SSSq = −1 is a condition that is

incompatible with the displayed theory of adiabatic spin dynamics.

Next, we invert 111 + TTT , which is a straight forward analytically calculation. Similar to

the determinant considerations above, the inverse of a block diagonal matrix is obtained

by its blockwise inversion, which is derived to be

(
(111 + TTT )−1

)
qq

=(111 + TTT qq)
−1 =

1

1 + sssqSSSq

1 + sqxSqx sqxSqy sqxSqz

sqySqx 1 + sqySqy sqySqz

sqzSqx sqzSqy 1 + sqzSqz


=
∑
αβ

δαβ + sqαSqβ
1 + sssqSSSq

eeeα ⊗ eeeβ. (4.58)

Finally, we recombine the naive dynamics and (111 +TTT )−1. The explicit adiabatic equa-

tions of motion of two impurities strongly coupled to the host in a local and homoge-

neous way are(
ṠSS

(∞)

1

ṠSS
(∞)

2

)
=(111 + TTT (∞))−1

(
ṠSS
N

1

ṠSS
N

2

)
= (111 + TTT (∞))−1

(
JRKKYSSS2 ×SSS1

JRKKYSSS1 ×SSS2

)

=

(
JRKKY SSS2×SSS1

1+⟨ŝssi1 ⟩SSS1

JRKKY SSS1×SSS2

1+⟨ŝssi2 ⟩SSS2

)
= 2

(
JRKKYSSS2 ×SSS1

JRKKYSSS1 ×SSS2

)
, (4.59)

where the last equality exploits ⟨ŝssiq⟩ = −SSSq/2. The deduced rescaling of the precession

frequency ωprec = JRKKY |SSS1+SSS2|/(1+⟨ŝssiq⟩SSSq) is a generalization to the strong coupling

limit obtained in [47] for a single impurity driven by an external magnetic field. The

presented derivation, however, does not assume a single impurity coupled to a linear

chain of non-interacting itinerant electrons. It is valid for generic models that fulfill

the aforementioned assumptions (e.g. ⟨ŝssiq⟩SSSq ̸= −1) and is universal to an arbitrary

number of impurities.
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4.1.5 – Technical Realization: Host System States Expressed via Hopping

Matrix Eigenstates

To numerically evaluate the dynamics of a quantum-classical hybrid model, may it be

the full dynamics of the impurities and the host (section 4.1.1) or dynamics within the

adiabatic approximation (section 4.1.2), computation of its eigenstates is required. We

obtain them by numerical diagonalization of the (effective) hopping matrix (eq. 4.4).

This section provides detailed instructions on the computation of spin expectation

values, and it outlines the steps involved in evaluating the spin Berry curvature. We

omit ·̂ as the context resolves the nature of operators.

Since we consider non-interacting quantum systems only, the many body quantum

state factorizes into a product of single particle states. These one particle states and

energies are labeled by super index k, which comprises wave vector κ (single particle

energy level) and spin index σ. The one particle creation operator is denoted by c†k and

the annihilation operator by c†k. They obey the fermionic anticommutation relation

[c†k, ck′ ]+ = δkk′ , so single particle states form an orthonormal basis. Accordingly, the

many body ground state |0⟩ of Np particles is

|0⟩ =
∏
k

c†k|vac⟩ =
∏

0≤κ<Np

σ∈{↑,↓}

c†κσ|vac⟩, (4.60)

where |vac⟩ denotes the vacuum. Single particle states are filled up to the Fermi level

labeled by kF . An excited state |nkk′⟩ can be generated by promoting a particle from

the k-th to the k′-th single particle state

|nkk′⟩ = c†k′ck|0⟩, (4.61)

with k < kF and k′ ≥ kF . The set of the ground and all excited states {|0⟩, |nkk′⟩}
form an orthonormal basis for the many body states. Implication of the introduced

notion is, that |nkk′⟩ is not the ground state for k ̸= k′, but for any k = k′ < kF we

have |nkk⟩ = |0⟩ and we note |nkk⟩ = 0 if k = k′ ≥ kF .

The effective hopping matrix TTT (eq. 4.4) is diagonalized by a unitary (UUU−1 = UUU †)

matrix UUU , so UUU †TTTUUU = ϵϵϵ. Diagonal matrix ϵϵϵ contains the single particle eigenenergies

ϵk, which are the eigenvalues of TTT . The eigenvectors UUUk of TTT form the columns of UUU .

For a system of n sites and spin degree σ ∈ {↑, ↓} per site, UUU and ϵϵϵ are 2n × 2n ma-

trices. Accordingly, half filling is achieved for Np = n. Aiming for the thermodynamic

limit (n → ∞) it is, however, convenient to fix a chemical potential µ instead of a

predetermined number of particles. For a given chemical potential the ground state

is |0⟩ =
∏

k θ(µ − ϵk)c
†
k|vac⟩, where θ is the Heaviside step function. As we consider

non-interacting lattice models, the many body ground state is the tensor product of
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all single particle states with energies ϵk below the chemical potential. Single particle

states with ϵk > µ are unoccupied in the many body ground state. Generically, we as-

sume half filling if not specified otherwise. The aforementioned remarks can, however,

serve as a straightforward guide for arbitrary filling.

Moreover, we can use UUU for a basis transformation from real-space to a single particle

energy-level formulation. A formulation in terms of k is convenient [86] to evaluate the

one particle reduced density matrix (eq. 4.2) and matrix elements like ⟨nkk′|siα|0⟩. In

the preceding consideration sums rum over all possible values of the summation indices

if not specified otherwise. The relation between operators in real space and k-space is

given by

ciσ =
∑
k

Uiσ,kck , c†iσ =
∑
k

U †
k,iσc

†
k =

∑
k

U⋆
iσ,kc

†
k. (4.62)

Elements ρiσ,i′σ′ = ⟨ĉ†i′σ′ ĉiσ⟩ of the one-particle reduced density matrix are consequently

determined by

⟨c†i′σ′ciσ⟩ =⟨nkk′|c†i′σ′ciσ|nkk′⟩ =
∑
l′l

U †
l′,i′σ′Uiσ,l⟨nkk′ |c†l′ cl|nkk′⟩. (4.63)

To initialize the reduced one-particle density matrix in the quantum system’s ground

state, we set k = k′ < kF so |nkk⟩ = |0⟩ and express its elements as

ρ0iσ,i′σ′ = ⟨0|c†i′σ′ciσ|0⟩ =
∑
l′l

U †
l′,i′σ′Uiσ,l⟨0|c†l′ cl|0⟩

=
∑
l′l

U †
l′,i′σ′Uiσ,l⟨0|nll′⟩. (4.64)

For any l = l′ we have ⟨0|nll⟩ = ⟨0|c†l cl|0⟩ = ⟨nl⟩0. All single particle states with

ϵk < µ are occupied in the many body ground state, which are the energetically lowest

Np single particle states at half filling. The expectation value of the l-th single particle

state to be occupied is therefore one, if l < Np and equals zero if l ≥ Np. Any l ̸= l′

does not contribute, since the ground state is orthogonal to all excited states, thus

⟨0|nll′⟩ = 0. Accordingly, the reduced one-particle density matrix for the ground state

of the quantum system is given by

ρ0iσ,i′σ′ =

Np∑
l=0

U †
l,i′σ′Uiσ,l =

Np∑
l=0

U⋆
i′σ′,lUiσ,l. (4.65)

In order to evaluate expectation values of local magnetic moments (eq 4.3), an effective

impurity coupling JRKKYqα,rβ (eq. 4.34 or eq. 4.28) and the spin Berry curvature ΩΩΩ (eq.

4.16), matrix elements like ⟨nkk′|siα|0⟩ have to be determined. Again, σασσ′ denotes the
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(σ, σ′)-component of the α Pauli matrix, so

⟨nkk′|siα|0⟩ =
∑
σσ′

1

2
⟨nkk′|c†iσσασσ′ciσ′ |0⟩

=
1

2

∑
σσ′

∑
ll′

U †
l,iσUiσ′,l′σ

α
σσ′⟨0|c†kck′c

†
l cl′ |0⟩. (4.66)

Next, we make use of Wick’s theorem [135, 136] to expand the quadruple-product in

terms of pairs of creation and annihilation operators. Only particle-number conserving

terms can be non-zero here, as many body states of different particle numbers do not

overlap, which leads to

⟨0|c†kck′c
†
l cl′|0⟩ =⟨0|c†kck′ |0⟩⟨0|c

†
l cl′|0⟩ + ⟨0|c†kcl′ |0⟩⟨0|ck′c

†
l |0⟩

=⟨0|c†kck′ |0⟩⟨0|c
†
l cl′|0⟩ + ⟨0|c†kcl′|0⟩(δlk′ − ⟨0|c†l ck′|0⟩)

=δkk′δll′⟨nk⟩⟨nl⟩ + δkl′δlk′⟨nk⟩(1 − ⟨nk′⟩). (4.67)

For now, we are interested in non-diagonal matrix elements ⟨nkk′ |siα|0⟩ where k ̸= k′,

thus |nkk′⟩ ≠ |0⟩ and the first summand vanishes.

In the adiabatic limit the host remains in its ground state, so at half filling the lowest

Np single particle states are occupied (kF = Np). Accordingly, ⟨nk⟩ = 1 if k < kF and

⟨nk⟩ = 0 if k ≥ kF , so

⟨nkk′ |siα|0⟩ =
1

2

∑
σσ′

∑
ll′

U †
l,iσUiσ′,l′σ

α
σσ′δkl′δlk′⟨nk⟩(1 − ⟨nk′⟩)

=
1

2

∑
σσ′

U †
k′iσUiσ′,kσ

α
σσ′ ∀ k < kF , k

′ ≥ kF . (4.68)

The ground state expectation value, i.e., k = k′ < kF so |nkk⟩ ≠ |0⟩ and ⟨nk⟩ = 1, is

entailed by the first summat in the last line of eq. 4.67. It can be evaluated via

⟨0|siα|0⟩ =⟨nkk|siα|0⟩ =
1

2

∑
σσ′

∑
ll′

U †
l,iσUiσ′,l′σ

α
σσ′δll′⟨nl⟩

=
1

2

∑
σσ′

∑
l<kF

U †
l,iσUiσ′,lσ

α
σσ′ . (4.69)

Subsequently, an exemplary application of the derived expressions is presented. We

formulate the spin Berry curvature in terms of quantities that can straightforwardly be

accessed through numerical diagonalization of the (effective) hopping matrix. When

assuming local exchange interaction Hex = J
∑

q SSSqsssiq , elements of the spin Berry
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curvature (eq. 4.16) can be expressed via

Ωqα,rβ(SSS) = − 2 Im
∑
n̸=0

⟨0|∇qαH|n⟩⟨n|∇rβH|0⟩
(En − E0)2

= − 2J2 Im
∑
k<kF
k′≥kF

⟨0|siqα|nkk′⟩⟨nkk′|sirβ|0⟩
(Enkk′

− E0)2

= − J2

2
Im

∑
k<kF
k′≥kF

∑
σσ′
ςς′

U †
k,iqσ

σασσ′Uiqσ′,k′U
†
k′,irς

σβςς′Uirς′,k

(ϵk′ − ϵk)2
. (4.70)

As discussed in section 4.1.3, the spin Berry curvature becomes a quantity of the

host system only in the weak coupling limit up to O(J2). The leading non-vanishing

order Ω
(0)
qα,rβ (see eq. 4.30) is determined by eigenstates of the free host Hamiltonian.

Consequently, Ω
(0)
qα,rβ is formulated in terms of eigenvectors UUU

(0)
k and eigenvalues ϵ

(0)
k of

the quantum hopping matrix TTTQ (see eq. 4.1). When the host is not explicitly time

dependent, ϵ
(0)
k and UUU

(0)
k are constant in time, thus ΩΩΩ(0) is static. Contrarily, ΩΩΩ has to be

re-evaluated at each instance of time, as it is a function of UUUk and ϵk. Eigenvalues and

eigenvectors of the effective hopping matrix (eq. 4.4) are generically time dependent

due to the dynamics of the impurities SSS(t).

Furthermore, symmetries can be exploited to enhance numerical performance. As an

example, we assume translational invariance in the free (J = 0) quantum system.

To take advantage of the translational invariance, the Hamiltonian is transformed to

reciprocal space. At first, the real space Hamiltonian is formulated in terms of unit

cells, which periodically repeat after translation vectors III. Super index r specifies

details within a unit cell (first line of eq. 4.71). This super index runs over all degrees of

freedom within a unit cell, which are sublattices (A-, and B-sites) and spin indices (σ ∈
{↑, ↓}) in our case. Next, Fourier transformation by unitary operator UIIIkkk = L−1/2eiIIIkkk

reformulates the Hamiltonian in reciprocal space. The number of unit cells are labeled

by L and kkk is a wave vector of reciprocal space. Generically, the exchange Hamiltonian

is not translational invariant, thus here we focus on the quantum Hamiltonian only.

With tIIIr,III′r′ =
∑

k UIIIkkktrr′(kkk)U †
kkkIII′ and c†kkkr =

∑
III UIIIkkkc

†
IIIr the Hamiltonian of the quantum

system can be expressed by

HQ =
∑
iσ,i′σ′

tiσ,i′σ′c†iσci′σ′ =
∑
IIIr,III′r′

tIIIr,III′r′c
†
IIIrcIII′r′

=
∑
kkk,rr′

trr′(kkk)c†kkkrckkkr′ =
∑
kkkν

ϵν(kkk)c†kkkνckkkν

=
∑
IIIr,III′r′

∑
kkkν

WIIIr,kkkνϵν(kkk)W †
kkkν,III′r′c

†
IIIrcIII′r′ . (4.71)
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Furthermore, as denoted in the second line of eq. 4.71, the intra unit cell hopping

matrix trr′(kkk) =
∑

ν Vrν(kkk)ϵν(kkk)V †
νr′(kkk) is diagonalized by the kkk-dependent unitary

transformation c†kkkν =
∑

r Vrν(kkk)c†kkkr. The band index ν is associated with all degrees of

freedom within a unit cell (e.g. site and spin degrees of freedom). Moreover, ν labels the

single particle energy bands at all kkk. In the last line of eq. 4.71 we used the combined

transformation WIIIr,kkkν = UIIIkkkVrν(kkk) to express tIIIr,III′r′ =
∑

kkkνWIIIr,kkkνϵν(kkk)W †
kkkν,III′r′ .

The unit cell of a translation-invariant lattice is naturally much smaller than the entire

lattice, resulting in a dimension of ttt(kkk) with elements trr′(kkk) that is significantly smaller

than the dimension of ttt with elements tiσ,i′σ′ . When considering a finite lattice with

periodic boundary conditions, which is build up by a large number of unit cells, the

diagonalization of the unit cell hopping matrix ttt(kkk), even thought it has to be performed

for all kkk, is in general significantly faster than diagonalizing the full real space hopping

matrix ttt once. Taking advantage hereof typically enhances numerical performance

substantially.

One application that exploits translational invariance is a formulation of the spin Berry

curvature in the weak coupling limit in terms of WIIIr,kkkν . Evaluation of the required

matrix elements is straight forward and analogue to what has been presented above.

With (III, r) = iq and (III ′, r′) = iq′ and assuming a spin-diagonal host, elements of the

weak coupling ΩΩΩ(0) (eq. 4.37) are

Ω
(0)
qα,q′β = −J

2

2
δαβIm

occ.∑
kkkν

unocc.∑
kkk′ν′

∑
rr′

W †
kkkν,IIIrWIIIr,kkk′ν′W

†
kkk′ν′,III′r′WIII′r′,kkkν(

ϵν′(kkk′) − ϵν(kkk)
)2 . (4.72)

Periodic boundary conditions do not necessarily have to be applied in all dimensions

of the lattice. A two dimensional lattice, for example, might be subject to periodic

boundary conditions in one direction only. The resulting geometry is cylinder-like and

features one-dimensional open boundaries at the rims. Conceptually, the transforma-

tion to reciprocal space is analogue to the procedure described above. The unit cell,

however, is of the dimension of the hight of the cylinder, which generically leads to a

much larger number of (sub-)bands.

66



4 – Quantum-Classical Adiabatic Spin Dynamics

4.2 – Haldanes Model of a Chern Insulator

The theory of adiabatic spin dynamics in quantum-classical hybrid models has been

developed on rather general terms of non-interacting lattices models. Our interest,

however, is in the interplay of topology and magnetism. In section 4.1, non-Hamiltonian

dynamics is derived as a consequence of a finite spin Berry curvature ΩΩΩ. But in the

weak coupling limit (section 4.1.3) the host is required to be neither symmetric nor anti-

symmetric under time reversal to feature finite ΩΩΩ for common exchange Hamiltonians

(for example eq. 4.21). Furthermore, the host has to be an insulator, so the adiabatic

theorem can apply.

A suitable candidate, that meets these conditions is Haldane’s model of a Chern in-

sulator [28]. Historically, it is the first model of a quantum anomalous Hall insulator

without external fields and contributed significantly to the development and under-

standing of topological band insulators [49, 137]. The Haldane model breaks time

reversal symmetry inherently. The conjunction of symmetries and topological invari-

ants is commonly documented in the ten fold way via the Altland-Zirnbauer classifica-

tion [31,138]. In this classification, the two-dimensional Haldane model is classified as

a topological insulator of class A, where time reversal, particle-hole, and chiral sym-

metry are broken for generic model parameters [19,48]. The Chern number (eq. 2.22)

is the topological invariant used to identify distinct topological phases in topological

insulators of this class. A prototypical hybrid model involving classical spins coupled to

a topological insulator may provide insights into the topological properties of the host

by analyzing the dynamics of the impurities in the context of adiabatic spin dynamics.

To this end, this section introduces the Haldane model and discusses its most relevant

features for the forthcoming studies, where the Haldane model serves as the quantum

host.

The Haldane model (fig. 4.1) is defined on a two-dimensional hexagonal lattice,

respectively a two-dimensional triangular Bravais lattice with a biatomic unit cell.

vvv1 = (
√

3, 0)T and vvv2 = (−
√

3/2,
√

3/2)T are basis vectors of the lattice, when we set

the spatial distance of neighboring sites (e.g. within one unit cell) to unity. Originally,

Haldane defined this model [28] for spinless particles, but to enable spin-exchange in-

teraction with the impurities we duplicate the model and consider one copy of the

Haldane model for each spin projection σ =↑ and σ =↓. The two copies are coupled

via interaction with the impurities (Ĥex =
∑

qα,iβ Jqα,iβSqαŝiβ). We refer to the spin-1
2

particles occupying the host lattice as non-interacting electrons (e.g. no Coulomb or

spin-spin interaction). The two sites of a unit cell differ in the sign of a staggered

onsite potential ±M . This staggered nature is encoded by sign-factor zi, which takes

values +1 on the A-sublattice and −1 on the B-sublattice. Accordingly, any M ̸= 0

breaks sublattice invariance. Note, that in the wording we use, next-nearest neighbors
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2e+i2e i

1 M

+M
unit cell

Figure 4.1: Scheme of the Haldane model on a honeycomb lattice. Blue dots indicate
sites of the A-sublattice with positive onsite potential +M , while red dots mark sites
of the B-sublattice with negative onsite potential −M . Dashed lines display nearest-
neighbor hopping with amplitude τ1 and purple arrows illustrate clockwise next-nearest
neighbor hopping τ2e

−iξij where the Peierls factor has negative phase ξij = −ξ, whereas
the counter-clockwise cyan colored arrows depict next-nearest neighbor hopping with
positive Peierls phase ξij = +ξ.

are always of the same sublattice. Nearest neighbors, however, are conceivably con-

stituents of the same unit cell and always of different sublattices (see fig 4.1). Electrons

can transition between adjacent sites ⟨ij⟩ of the hexagon by nearest-neighbor hopping

amplitude τ1. Further hopping between next-nearest neighbors ⟨⟨ij⟩⟩ is quantified by

transition amplitude eiξijτ2 with real weight τ2 and direction-dependent phase factor

ξij of magnitude −π ≤ ξij < π. For clockwise hopping from site j to site i, as indicated

by the purple arrows in figure 4.1, the phase ξij = −ξ is negative. Counter-clockwise

hopping, on the other hand, is of positive phase ξij = +ξ and indicated by the cyan-

colored arrows. The net flux of the orbital magnetic field corresponding to next-nearest

neighbor hopping (Peierls factors τ2e
−iξij) vanishes within a unit cell. It is exactly this

direction-dependent complex phase factor that breaks time-reversal symmetry for any

τ2 ̸= 0 when ξ ̸= 0 and ξ ̸= ±π.

The tight-binding Hamiltonian of the Haldane model is given by

ĤH = M
∑
iσ

ziĉ
†
iσ ĉiσ − τ1

∑
⟨ij⟩,σ

ĉ†iσ ĉjσ − τ2
∑

⟨⟨ij⟩⟩,σ

eiξij ĉ†iσ ĉjσ (4.73)

which is trivially invariant under spin rotations. That invariance is, however, broken by
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the exchange interaction with the impurities. In the bulk ĤH is translational invariant

and the real space Hamiltonian (eq. 4.73) can be Fourier-transformed to reciprocal

space by ĉj = 1√
2π

∫
dkkkĉke

−ikkkrrrj respectively ĉ†j = 1√
2π

∫
dkkkĉ†ke

ikkkrrrj , where the trivial

replication related to the spin degree of freedom is neglected for now. Here, rrrj is the

real space location of the j-th lattice site and kkk a reciprocal lattice vector. In the two

dimensional basis due to the two sites per unit cell, Fourier transformation of eq. 4.73

leads to

ĤH =

∫
dkkk

(
â†kkk
b̂†kkk

)
H(kkk)

(
âkkk b̂kkk

)
, (4.74)

with â†kkk as the creation operator of an electron with momentum kkk on the A-sublattice.

âkkk is its annihilator and b̂†kkk, b̂kkk act correspondingly on the B-sublattice. Disregarding

spin-degeneracy, the two-level Hamiltonian H(kkk) takes the convenient form of

H(kkk) = − 2τ2 cos(ξ)

(
6∑
i=1

cos(kkkvvvi)

)
111 +

(
M + 2τ2 sin(ξ)

6∑
i=1

sin(kkkvvvi)

)
σσσz

− τ1

(
3∑
j=1

cos(kkkeeej)σσσ
x +

3∑
j=1

sin(kkkeeej)σσσ
y

)
.

(4.75)

The eeej are the real space displacements from a B-site to its three neighboring A-sites

and vvvi describe the displacements of some site to its six next-nearest neighbors [19,28].

Again, σσσx, σσσy, σσσz are the Pauli matrices and 111 the identity in two dimensions. Since

the model is invariant under spatial rotations of 120◦, respectively Hamiltonians 4.73

and 4.75 are C3 symmetric, the two twofold spin degenerate energy bands have to

respect the same symmetry. Thus, a gap closure as required for a topological phase

transition, occurs at the KKK = 2π/3
(
1/
√

3, 1
)T

and KKK ′ = 2π/3
(
2/
√

3, 0
)T

point of the

first Brillouin zone [19]. We note that the Haldane model does not have an inversion

center and breaks time reversal symmetry when M ̸= 0 and τ2 sin(ξ) ̸= 0. For that

reason, the spectrum is not invariant under an inversion kkk → −kkk [28]. To set an energy

scale we fix τ1 = 1.

The band structure is gapped for generic model parameters M , ξ and |τ2/τ1| < 1/3,

except for the topological phase transition determined by

|M |
|τ2|

= 3
√

3| sin(ξ)|. (4.76)

Figure 4.2 shows an examplary bulk band-structure close to the topological phase

transition. The gap-closure condition is derived from an expansion of eq. 4.75 at the

KKK and KKK ′ point as shown in appendix A.2.3. That expansion also entails us to read
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kxky

(k
)

Figure 4.2: Typical bulk band structure of the Haldane model close to the topological
phase transition with τ1 = 1, τ2 = 0.1, ξ = π

4
and M = 0.95Mcrit ≈ 0.35. Depicted are

the two, in case of the spinful Haldane model twofold degenerate, bands of a square
(l1 = l2 unit cells) slab with periodic boundary conditions, thus periodic continuation
results in the well known hexagonal representation of the first Brillouin zone of a
honeycomb lattice.

off the gap at the KKK-point (see eq. A.19) for M > 0, τ2 > 0 and 0 < ξ < π, which is

∆E = 2|M − 3
√

(3)τ2 sin(ξ)|. (4.77)

The topological phase diagram of the Haldane model (fig. 4.3), is deduced from analysis

of the topological band index for generic model parameters in each region where the gap

does not close. The classifying topological invariant to this model is the Chern number

(see 2.3). Since a change of the Chern number requires the spectrum to undergo a

gap closing and reopening transition [19], the Chern number remains the same for all

model parameters in a region where the bulk gap remains non-zero [28,137]. A straight

forward analysis is the integration of the Berry curvature

Ωαβ(kkk) =
∂⟨ψ0|
∂kα

∂|ψ0⟩
∂kβ

− ∂⟨ψ0|
∂kβ

∂|ψ0⟩
∂kα

(4.78)

over the first Brillouin zone. In this case, the first Brillouin zone, respectively the base

manifold, is a two-torus T 2 = S1 ⊗ S1, as the bulk can be described by an infinite

two dimensional slab in real space (with periodic boundary conditions). Accordingly,

topological phases are characterized by the first Chern number

C =
1

2π

∫
T 2

∑
α<β

Ωα,β(kkk)dkαdkβ. (4.79)
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C = 0

E(K) = 0 E(K′) = 0

Figure 4.3: Topological phase diagram of the Haldane model, τ1 = 1 sets the energy
scale and the first Chern numbers C are declared for positive τ2. The blue line indicates
a gap-closure at the KKK and the red line at the KKK ′ point in the first Brillouin zone.

Distinct topological phases lead to different integers C.

Even though the spin Berry curvature (eq. 4.16) is of similar structure as the Berry

curvature (eq. 4.78), the subtle difference in the wording hints towards central dif-

ference in its meaning. While the spin Berry curvature encodes information of the

response of a quantum system to an external perturbation via the classical spins, the

Berry curvature is an intrinsic quantity of the quantum system itself. As we consider

the Haldane model alone here, we stick to the bulk band Chern number for now.

A change of the first Chern number through a gap closing and reopening transition

is equivalent to the total change of the Hall conductance (e = 1, ℏ = 1) during that

transition [19, 137]. So another approach to the topological phase diagram is to start

in a parameter regime where the first Chern number is known and to trace its change

via the Hall conductance through the gap closures from there. In general, the Hall

conductance of non-interacting electron systems equals the first Chern number and

thus takes integer values, which is known as the (integer) quantum Hall effect [19,28].

In the Haldane model, three topologically different phases can be identified [28]. A

topologically trivial phase with C = 0 for |M |
|τ2| > 3

√
3| sin(ξ)| and two topologically

nontrivial phases with C = ±1 for |M |
|τ2| < 3

√
3| sin(ξ)|. The sign of the topological

index depends on the sign of τ2 sin(ξ), which are exactly the contributions that break

time-reversal invariance. For positive τ2 the first Chern number is C = 1 if 0 < ξ < π

and C = −1 if −π < ξ < 0, which results the topological phase diagram shown in fig.

4.3. Along the blue line, a topological phase transition is assigned with a gap-closure

at the KKK-point and for the red line with a gap-closure at the KKK ′-point. For negative

τ2 all C change sign and the gap-closure transition lines (red and blue lines in fig.

4.3) interchange. Moreover, a spinful extension consisting of two similar copies of the
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(a) Topologically nontrivial phase with
M = 0.5Mcrit ≈ 0.18 and C = 1.

0.0 0.2 0.4 0.6 0.8 1.0
|k1| / 2

2

1

0

1

2

3

(k
1)

(b) Topologically trivial phase (C = 0)
with M = 1.5Mcrit ≈ 0.55.

Figure 4.4: Typical band structure of a Haldane ribbon with open zigzag edges. Ex-
emplary width is l2 = 30 unit cells while periodic boundary conditions are assumed
along the vvv1 direction. Further parameters are τ2 = 0.1 and ξ = π

4
.

Haldane model, one for σ =↑ and one for σ =↓, doubles all C [28].

Topological insulators in general exhibit gapless states at the interfaces of regions,

where the topological quantum number changes [49]. A prime example of such an

interface is the edge of a topological insulator when the bulk is in a topological nontrivial

state, as it is a surface to the topologically trivial vacuum outside. For that reason

the existence of gapless edge states at surfaces of topological insulators is also referred

to as bulk-boundary correspondence. In two dimensional Chern insulators, like the

Haldane model, the number of gapless edge modes corresponds to the total change

of the Chern number across that surface [139]. The existence of gapless states which

are exponentially localize at the edges of topological insulators in a any dimension,

are direct consequence of the fact that a topological invariant cannot change its value

unless the energy gap closes [19,49].

Figure 4.4 depicts the band structure of the Haldane model in a ribbon geometry, with

open boundaries are along zigzag-edges and periodic boundary conditions applied in

the vvv1 direction. Any finite number of unit cells along the vvv1 direction results in a finite

grid of k1 = |kkk1|. The two bands of that system are formed by a finite number of sub-

bands. The count of unit cells along the vvv2-expansion (open boundaries) determines

the number of sub-bands. Each sub-band is trivially twofold degenerate in the spinful

Haldane model. Since the surface states are exponentially localized at the zigzag edge,

a rather narrow expansion in the vvv2-direction is sufficient to ensure non-substantial

overlap of the edge modes. Figure 4.4a shows a band structure of a Haldane ribbon

in the topological phase. Two major energy band are separated by a bulk band gap

and two modes bridge that bulk band gap. As they bridge the bulk band gap and

eventually cross each other, they degenerate and are therefore named gapless modes or

zero modes. States of the two crossing bands are exponentially localized at the open

boundaries. The observation of two modes crossing the gap is due to the two edges
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of the chosen geometry, where the Chern number changes at the upper as well as the

lower zigzag edge of the nano-ribbon. For a lattice model at half filling, the crossing

of these two modes takes place at the Fermi energy. Model parameters τ2, ξ and M

tune the band gap as well as the k-dependence of all subbands, including the gapless

modes. For generic model parameters, the band structure is neither particle hole, nor

inversion (ϵν(k1) = ϵν(−k1)) symmetric and the bandwidth exceeds the bulk band gap

considerably. The specific choice of ξ = ±π/2 restores particle-hole symmetry. In the

topologically trivial phase, however, the Chern number does not change at the edges.

A corresponding band structure is displayed in figure 4.4b, where gapless modes are

absent. One can still identify two distinct modes near the bulk band gap and they are

still associated with the edges of the models geometry, but they do not cross the band

gap and the model is all insulating.
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4.3 – Numerical Results of the Quantum-Classical Adiabatic

Spin Dynamics

After deriving the (adiabatic) equations of motion of a quantum classical hybrid model

in section 4.1 and an introduction of Haldanes model of a Chern insulator in section

4.2, we study the interplay of bulk band topology and classical impurities within this

section. The Hamiltonian of the Haldane-impurity model with local and isotropic

host-impurity exchange reads

Ĥ =ĤH + J
∑
q

SSSqŝssiq

=M
∑
iσ

ziĉ
†
iσ ĉiσ − τ1

∑
⟨ij⟩,σ

ĉ†iσ ĉjσ − τ2
∑

⟨⟨ij⟩⟩,σ

eiξij ĉ†iσ ĉjσ

+
J

2

∑
q,σ σ′

SSSqσσσσσ′ ĉ†iqσ ĉiqσ′ , (4.80)

where σσσ = (σσσx,σσσy,σσσz)
T is the vector of Pauli matrices.

Applying the adiabatic constraint, a geometric spin torque emerges in the adiabatic

equation of motion for the classical spins coupled to a quantum host (eq. 4.18). This

contribution beyond the conventional RKKY-like coupling of impurities is featured by

the spin Berry curvature (eq. 4.16), which is the central quantity of interest here.

Without external fields and with the quantum system initialized in the ground state

to a given impurity configuration, the minimal example to induce nontrivial dynamics

requires two impurities. We apply the theory of adiabatic spin dynamics, derived on

general terms for gapped quantum systems and an arbitrary number of impurities, to a

prototypical setup. This setup involves two classical spins coupled to a spinful Haldane

model that serves as the quantum host.

We investigate weak host-impurity exchange in the bulk of the (topological) insulator

in section 4.3.1. The host lattice is subject to periodic boundary conditions to emulate

a bulk and evade edge modes. Spatial extensions, however, are chosen such that the

KKK and the KKK ′ point are contained in the discretized first Brillouin zone. We study the

geometry of impurity positions (sections 4.3.1.1 and 4.3.1.2) and finite size effects, in

particular related to the τ2-parameter of the Haldane host (section 4.3.1.3). Moreover,

we evaluate the spin Berry curvature in the Haldane phase diagram (section 4.3.1.4)

and discuss Ω at the topological phase transition of the host (section 4.3.1.5). In section

4.3.2 we address the question on whether topological edge states feed back to the spin

Berry curvature. To achieve this, impurities are coupled to the edge of a lattice where

periodic boundary conditions apply in one direction only.

Furthermore, real time dynamics of two impurities is considered in section 4.3.3. On the

one hand, this section addresses the weak coupling impurity dynamics, where effects
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due to the spin Berry curvature are explicitly displayed. On the other hand, the

dynamics obtained from effective equations of motion is compared to the dynamics

obtained via the full set of equations of motion. By analyzing the impurity dynamics,

we assess the accuracy of the adiabatic approximation, the perturbative weak coupling

approach to adiabatic spin dynamics, and the naive Hamiltonian approach. To this

end we probe a setup in which impurities are coupled to the edge of a Haldane ribbon,

and vary the host-impurity exchange coupling. Finally, the effect of the topological

phase of the host on the dynamics of the impurities is studied.

In the following discussion of numerical results, the energy scale is set by the nearest-

neighbor hopping τ1 = 1. Most of the presented results have been published in [48].

4.3.1 – Weak Coupling in the Bulk

The geometric spin torque in the adiabatic dynamics of two impurities, SSSq and SSSr,

coupled to the local magnetic moments at sites iq and ir of a lattice of itinerant electrons

originates form the spin Berry curvature tensor ΩΩΩq,r. Here we focus on the limit of

weak host-impurity exchange coupling. The unperturbed spinful Haldane model is a

spin-rotation invariant system, thus, Ωqα,rβ = −Ωrβ,qα = Ωq,rδαβ (eq. 4.37). The first

equality is due to the anti symmetry of ΩΩΩ and the second equality is a result of the weak

coupling limit as discussed in section 4.1.3.1. When rescaling the equations of motion

as in equation 4.52, a single real number Ω determines the geometric spin torque for a

pair of impurities. The host is also translation invariant in the weak coupling limit, so

the spin Berry curvature is numerically evaluated via equation 4.72.

Before discussing numerical results, we briefly analyze symmetries of the Haldane host

(eq. 4.73) and their consequences for the spin Berry curvature. For τ2 ̸= 0 and

ξ ̸= nπ the host breaks time reversal symmetry. Local spin expectation values, how-

ever, transform as ⟨ψ(0)
0 |siα|ψ(0)

0 ⟩ 7→ −⟨ψ(0)
0 |siα|ψ(0)

0 ⟩⋆ under time reversal, which implies

Ω
(0)
qα,rβ 7→ Ω

(0)
rβ,qα (eq. 4.30) under time reversal in the weak coupling limit. Thus, for

this spin rotation invariant host, we deduce Ω 7→ −Ω for the defining element of the

two-impurity weak coupling spin Berry curvature (eq. 4.37) under time reversal. Re-

flection at a mirror axis of the hexagonal lattice that respects the staggered onsite

potential (±M within a unit cell), transforms the Haldane Hamiltonian in the same

way as time reversal. These axes are actually the mirror axes of the triangular Bra-

vais lattice, which forms the hexagonal grid when using a two-atomic unit cell. The

onsite potential and the nearest neighbor hopping (first two terms in eq. 4.73) remain

unchanged under reflection at these axis. To the next-nearest neighbor hopping (third

term in eq. 4.73), however, reflection has the same effect as the complex conjugation

of the phase, since ξij = −ξji and ξij 7→ ξji under that transformation. Consequently,

the spin Berry curvature transform as Ω 7→ −Ω under such reflections. Accordingly, Ω

and the Haldane Hamiltonian are invariant under the combined action of time reversal
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and a reflection of the aforementioned type. Moreover, the (spinful) Haldane model

is invariant under discrete spatial rotations of 2π/3 around a fixed site, thus, it is C3

invariant. Consequently, Ω remains invariant under such rotations.

4.3.1.1 Positioning of the Impurities in the Bulk

At first, we investigate the geometry of a two-impurity setup. As we fix the models

parameters, so Ω depends on the position of the impurities only. Since we consider weak

coupling and the Haldane host to be translation invariant, one can fix the position of

the first impurity and compute Ω for any other position of the second impurity to cover

the entire geometry of impurity locations. To mimic the bulk of a topological insulator,

we apply periodic boundary conditions to a lattice extending l1 unit cells in vvv1 direction

and l2 unit cells in vvv2 direction. Computations are performed with J = 0.01 as the

weak coupling host-impurity exchange.

C = 1 C = 0 / J2
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10 6
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Figure 4.5: Defining element Ω of the two-impurity weak coupling spin Berry curvature
Ωqα,rβ = Ωqrδαβ (eq.4.37) for all impurity positions ir and iq = icenter. Two classical
spins are locally coupled to the bulk of the Haldane host by weak J = 0.01. We fix
the location of the first impurity in the center (green dot) and vary the position of the
second impurity over all remaining 2l1l2 − 1 lattice sites to cover all distinct impurity
locations The color code displays the value of Ω/J2 in a lattice of l1 = l2 = 39 unit
cells. Further model parameters are τ2 = 0.1, ξ = π/4 and M = 0.8Mcrit (topologically
nontrivial, C = 1) in the left and M = 1.2Mcrit (topologically trivial, C = 0) in the
right panel. The energy gap is the same for both panels.
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In figure 4.5 the position of the fixed impurity is marked by the green circle in the center

of each panel. Since we consider the weak coupling limit where ΩΩΩ ∼ J2 (eq. 4.30) and

a spin rotation invariant host model (see section 4.1.3.1) the generic quantity Ω/J2 is

color coded for all other positions of the second impurity on lattices of 39×39 unit cells.

The two sublattices of the Haldane model are indicated by circles for the A-sites and

squares for the B-sites. Parameters are chosen such, that the host is in a topologically

nontrivial phase in the left and in a topologically trivial phase in the right panel. The

energy gap, however, is the same for both panels, i.e., ∆E(0.8Mcrit) = ∆E(1.2Mcrit),

since the gap is linear in M (eq. 4.77). In the considered scenario (τ2 = 0.2, ξ = π/4),

the topological phase transition takes place at Mcrit ≈ 0.37 (eq. 4.76) for the chosen

parameter.

At first, the set of discrete spatial lattice rotations by multiples of 2π/3 around the

fixed site is clearly visible. Invariance of Ω under C3-rotations originates from the

symmetry of the Haldane model. These spatial rotations by multiples of 2π/3 about a

site-centered axis perpendicular to the plane of the lattice are actions of elements of the

symmetry group of the Haldane Hamiltonian. Furthermore, reflections at symmetry-

axes containing the fixed impurity site cause Ω to change sign, as such reflections have

the same effect as time reversal. In figure 4.5 these are reflections at a horizontal

axis through the anchored central site (green marker) as well as the two in-plane axes

rotated by 2π/3 and −2π/3 relative to the horizontal one. As a consequence, Ω at sites

directly on these axis has to vanish, which is clearly visible by the white ’rays’ extending

from the fixed site marked by the green circle. Indirectly, also the anti symmetry of

the spin Berry curvature tensor ΩΩΩ can be recognized. For spin-rotation invariant host

systems in the weak coupling limit (eq. 4.37) this anti-symmetry manifests in a sing

change of the non-local blocks ΩΩΩqr = −ΩΩΩrq. That sign change is recognizable when

fixing the position of one impurity q to the site iq = icenter (green in fig. 4.5), and

denoting the position of the second impurity r at any other site by ir. We define a

coordinate system where iq is at the origin and determine the position of ir by IIIr, which

is the index vector of elementary translations, thus in the mentioned coordinate system

ir is at IIIrvvv = Ir,1vvv1 + Ir,2vvv2 where vvv1 and vvv2 are the two primitive translation vectors

of the Honeycomb lattice. Interchanging the impurity labels q, r ↔ r, q corresponds to

negation of IIIr. When comparing Ω at site IIIrvvv with that at −IIIrvvv in figure 4.5, we find

Ω(IIIr) = −Ω(−−−Ir), i.e., them being of equal magnitude and opposing sign.

Next, we briefly touch on the dependency of Ω/J2 on the distance between the impu-

rities. More detailed considerations hereto are discussed in section 4.3.1.2. One can

distinguish between two regions, a close range region where the proximity of the impu-

rities leads to an oscillatory distance dependence of Ω and a far range region, where Ω

does not change sign and decreases monotonically with increasing distance between the

impurities. In figure 4.5, the close range region extends about three to four unit cells
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in each direction. The spatial structure of Ω is in general rather complicated within

this proximity region. Next-nearest neighbors of the central site, however, show a clear

pattern of alternating signs in the topological (left panel) as well as the trivial (right

panel) phase. In the far range region, on the other hand, the sign of Ω for sites of

the same sublattice as the central site changes when transitioning from the topological

to the trivial Haldane phase (see fig. 4.5). The spin Berry curvature here is to some

degree sensitive to the topological phase of the host and might act as an indicator of

topological properties in this sense. However, we have to point out, that even though

in the weak coupling limit the spin Berry curvature and thus Ω is a property of the

host model and the geometry of the setup only (eq. 4.30), it is not apparent, that Ω

is directly related to its band topology. Although the k-space curvature and the spin

Berry curvature ΩΩΩ originate from the same Bloch states, ΩΩΩ (eq. 4.16) is constructed by

different matrix elements as compared to the k-space Berry curvature (eq. 4.78). But,

only the latter determines the band topology of the Haldane model. Nonetheless, both

curvatures can be expressed in a form where they share the same energy differences

in the denominator. The band topology appears to influence the spin Berry curvature

more in cases of smaller overall energy gaps, e.g. caused by smaller τ2, where finite size

effects become a major factor. An example in this regard is shown in Appendix A.2.5.

4.3.1.2 Distance Dependence

Impurity dynamics in the adiabatic limit is determined by an effective impurity-impurity

coupling JJJRKKY and the spin Berry curvature ΩΩΩ. Within this section, the dependence

of ΩΩΩ and JJJRKKY on the distance of the impurities in the bulk is analyzed in the weak

coupling regime. Again, the bulk is modeled by a finite slab of the spinful Haldane

model with periodic boundary conditions, here extending 150 × 150 unit cells in both

directions of primitive translations. Further parameters are the same as in the preced-

ing consideration of Ω and the general spatial impurity geometry (see fig. 4.5), that is

τ2 = 0.1 and ξ = π/4.

In figure 4.6, the defining elements of the weak coupling spin Berry curvature Ω (eq.

4.37) and the effective indirect impurity coupling JRKKY (eq. 4.34) are displayed

as functions of the Euclidean impurity distance d. The first non-vanishing term in

a weak J expansion of both quantities is of order O(J2), thus scaling both by 1/J2

eliminates the explicit dependence on the weak host-impurity interaction parameter J .

For small distances both quantities change sign multiple times and the generic distance

dependence is intricate. On larger distances, with 40 ≲ d ≲ 100, the dependence of

ln |Ω| is virtually linear with d (fig. 4.6a), thus one can assume |Ω| ∼ exp(−d/λ) with

λ > 0. Figure 4.6b shows a similar trend for ln |JRKKY | as well. When comparing

situations of equal gap size ∆E in the topological and the trivial phase of the Haldane

model (Mtop = 0.8Mcrit, Mtri = 1.2Mcrit), we observe a sign-change of Ω in the distant

78



4 – Quantum-Classical Adiabatic Spin Dynamics

0 20 40 60 80 100 120
distance

10 12

10 10

10 8

10 6

10 4

|
|/

J2
M/Mcrit :  1.2
M/Mcrit :  0.8

(a) Dimensionless defining element of the
spin Berry curvature Ω/J2 as a function of
distance in the topological (M = 0.8Mcrit)
and trivial (M = 1.2Mcrit) phase of the Hal-
dane model.
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(b) Dimensionless defining element of the
coupling constant JRKKY /J2 as a func-
tion of distance in the topological (M =
0.8Mcrit) and trivial (M = 1.2Mcrit) phase
of the Haldane model.

Figure 4.6: Distance dependence of Ω and JRKKY in the limit where impurities are
weakly coupled to the bulk of the spinful Haldane model. Distance is the real spatial
separation of impurities of the same sublattice in direction of the primitive translation
vector vvv1 = (0,

√
3). System parameters are the same as in fig. 4.5, that is τ2 = 0.1

and ξ = π/4, but on a lattice of 150 unit cells in both directions of primitive transla-
tions, again with periodic boundary conditions. Signs of the respective quantities are
indicated with full symbols for positive and light symbols for negative signs.

region of figure 4.6a. The absolute values of Ω are the same in the topological phase

with Mtop and the trivial phase with Mtri. On very large distances d ≳ 100, that linear

trend breaks down due to finite size effects.

The slope −1/λ in the linear region of figure 4.6a depends on the insulating gap ∆E

of the host model. We vary the gap size in the Haldane model by performing similar

calculations for numerous M and deduce a linear dependence of 1/λ ∼ ∆E as shown

in figure 4.7. The linear dependence is similar in the topological and the trivial phase

as we compare setups with gaps of equal magnitude. We find that the spin Berry

curvature becomes exponentially smaller with increasing distance and the decay rate

is controlled by the bulk band gap, i.e. Ω ∼ exp(−∆E d). These characteristics are

similar to the RKKY-exchange observed in insulating systems [140], which is known

to decline exponentially with distance as well. An example hereof is displayed in figure

4.6b, where JRKKY /J2 is given as a function of distance d in the same model as in

figure 4.6a and the exponential behavior is well recognizable in the same range of

40 ≲ d ≲ 100.

The exponential decay of Ω and JRKKY coincides with the far range region discussed

in figure 4.5. In the close range region, the Ω dependence on the distance of the

impurities appears to be less smooth and sign changes are common. To some degree

this is reminiscent of the distance dependent oscillatory behavior of RKKY-interactions
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Figure 4.7: Slope −1/λ of the distance dependence of Ω as a function of the energy
gap ∆E. The gap is controlled by varying M in analogue to setups to 4.6 of 150× 150
unit cells.

in semimetals and metals [73–75, 117, 141–143]. A qualitative understanding of the

decay of Ω and JRKKY is given by the fact, that both quantities result from virtual

second-order-in-J processes, which require excitations of electrons across the energy

gap ∆E. Thus, it is not surprising, that larger gaps result in a faster decay (fig.

4.7). Furthermore, the virtual excitations are exponentially suppressed the longer they

last. As a result, both Ω and JRKKY decrease exponentially as the distance between

impurities increases.

The topology of the host model does not have a major impact on Ω and JRKKY in

the presented study (figures 4.5, 4.6 and 4.7) as we find ∆E being the primary factor.

When comparing results of the topological and trivial phase, we therefore choose the

same ∆E in both phases. In the far range region the sign of Ω changes between the

trivial and nontrivial phase, but the absolute values of Ω/J2 and JRKKY /J2 are rather

small in the setup under investigation. Weak indirect impurity coupling, i.e. small

JRKKY , lead to a slow impurity dynamics in general. Furthermore, a small magnitude

of |Ω| leads to a weak geometric spin torque, and thereby does not refine the naive

approach to adiabatic spin dynamics significantly.

4.3.1.3 Finite Systems Sizes and Small τ2

The limit of small τ2 is interesting as large absolute values of the spin Berry curvature

can be observed. Furthermore, weak next-nearest neighbor hopping τ2 features pro-

nounced differences of the spatial structure of Ω in the topologically trivial (C = 0)

and the nontrivial (C = ±1) phases of the host. In figure 4.8 we set M = 0, therefore

any finite 0 < τ2 < 1/3 and ξ ̸= nπ with n ∈ Z leads to a topologically nontrivial phase

in the Haldane host. Adiabatic dynamics of the impurities in the discussed setup is

described by eq. 4.47 and the limiting case of weak host-impurity exchange is ana-

lytically discussed in section 4.1.3.3. We compare host models that are finite spinful
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Figure 4.8: Ω/J2 for impurities at next-nearest neighbor sites as a function of τ2 for
ξ = π/4 and M = 0. Finite lattices with periodic boundary conditions extent l unit
cells in both directions of primitive translations.

Haldane slabs with periodic boundary conditions, extending l = l1 = l2 unit cells in

the two directions of primitive translations. Thus, the overall number of sites ranges

up to 2l2 = 88200 in figure 4.8.

For these ’finite’ lattices we deduce Ω ∼ 1/τ 22 in the limit of τ2 → 0. In the adiabatic

equations of motion large Ω dominate the dynamics due to the geometric spin torque

(see eq. 4.47) and in the limit of diverging Ω the dynamics slows down as ṁmmq ∼ 1/Ω2.

Moreover, one can tune Ω via τ2, e.g. to be in the order of magnitude one, where

the rescaling effect of the adiabatic spin dynamics as compared to the naive RKKY-

dynamics is most pronounced.

The near range regime, previously mentioned in the discussion of figure 4.6, becomes

larger with smaller τ2. Ultimately, the staggered sign signature of the close range region

spreads over the entire lattice, as exemplarily depicted in figure A.4 in the appendix.

The lack of the far range region, where Ω decays exponentially with distance, is an

indicator for an incomplete description of the bulk of a topological insulator. The

divergence Ω ∼ 1/τ 22 as τ2 → 0 is symptomatic for finite lattices with periodic boundary

conditions. In the thermodynamic limit (l → ∞) one inevitably observes a far range

region of exponentially declining Ω in the insulating bulk. From figure 4.8 we infer

Ω ∼ τ2 for impurities on next-nearest neighbor sites as l → ∞ and consequently, Ω = 0

for τ2 = 0 in the thermodynamic limit. The latter is consistent with the fact, that for

M = 0 and 0 < ξ < π (or π < ξ < 2π) the Haldane model undergoes a topological

phase transition from τ2 = 0 to any finite 0 < τ2 < 1/3. For these ξ, finite next-nearest
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neighbor hopping breaks time reversal symmetry and gives rise to nontrivial bulk band

topology, while vanishing τ2 results in a time-reversal symmetric model and therefore

Ω = 0 in the weak coupling limit (see section 4.1.3.2).

An intuitive understanding of the finite size artifact is deduced when discussing the sit-

uation in reciprocal space. The smaller the slab with periodic boundaries, the rougher

the grid in k-space. All lattice extensions we choose include the K and K ′ point in their

manifold of reciprocal lattice vectors. It is exactly these two points, where the energy

gap closes at τ2 = 0. Their relative contribution in the sum over all kkk vectors of the first

Brillouin zone (see eq. 4.72) becomes more pronounced the rougher the k-space is dis-

cretized. Close to the topological phase transition, contributions of kkk = KKK and kkk = KKK ′

dominate the sum over kkk (and kkk′), as they account for the smallest gaps. Ultimately,

these summands lead to the divergence of Ω, since no kkk = KKK + δkkk (kkk = KKK ′ + δkkk, and

the same for kkk′) regularize these singular contributions. Furthermore, we can deduce

the rate of the divergence from this k-grid argument, since the matrix elements in the

numerator of the spin Berry curvature are smooth functions of τ2. The τ2 dependence

of Ω in this scenario is essentially given by the square of the closing energy gap in the

denominator. The latter scales as ∆E ∼ τ2 (eq. 4.77) at the K- and the K ′-point (also

see eq. A.19 and eq. A.17), thus Ω ∼ 1/τ 22 . In the thermodynamic limit, however,

reciprocal space is continuous and the contributions from K and K ′ are regularized.

Similar considerations as for τ2 → 0 apply for ξ → nπ with n ∈ Z and generically for a

’parametric vicinity’ to a topological phase transition. One avoids the discussed finite

size divergence by sufficient large lattices for the desired parameters. An example of a

lattice that is large enough to fulfill these criteria is displayed in figure 4.5. From figure

4.8 we deduce that the smaller τ2, and with that the closer to the topological phase

transition the models parameters are (M = 0, ξ ̸= nπ with n ∈ Z), the larger the lattice

has to be to be able to capture features of the Haldane model in the thermodynamic

limit appropriately. If the lattice becomes too small, actual host characteristics are

overshadowed by finite size effects. Further details on the spin Berry curvature at the

topological phase transition of the Haldane model are discussed in section 4.3.1.5.

4.3.1.4 Spin Berry Curvature Dependence on Parameters of the Haldane

Model

Following the prior discussion on Ω/J2 concerning τ2, our next focus is on a thor-

ough analysis of the impact of parameters M and ξ on the weak coupling spin Berry

curvature.

The next-nearest neighbor hopping is fixed to τ2 = 0.1 on a lattice of 27 × 27 unit

cells, which is of sufficient extent so that finite size effects are of minor relevance for

the majority of the M − ξ-parameter manifold (compare fig. 4.8 and fig. 4.5). Some

hints of finite size effects are, however, inevitable in our setup. The increase of |Ω| for
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M = 0 as ξ → nπ with n ∈ Z in 4.9b as well as the seeming discontinuity of the spin

Berry curvature at the topological phase boundary are still related to a finite extension

of the periodically bounded lattice. A ’boost’ of Ω for ξ → nπ and M = 0 has been

considered in section 4.3.1.3 and is explained analogously to the τ2 → 0 scenario. The

apparent discontinuity of Ω at the topological phase boundary is discussed in detail in

section 4.3.1.5.

1.0 0.5 0.0 0.5 1.0
/

6

4

2

0

2

4

6

M
/

2

10 2

10 3

10 4

10 3

10 2

/J
2

(a) Phase diagram for impurities on next-
nearest-neighbor sites (d =

√
3), i.e. impu-

rities couple to host sites of the same sub-
lattice at adjacent unit cells.
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(b) Phase diagram for impurities that are
five primitive lattice translation apart (d =
5
√
3), i.e. impurities couple to host sites of

the same sublattice at unit cells 5vvv1 apart.

Figure 4.9: Parametric dependence of Ω/J2 in the ξ − M/τ2 plane. Thick gray lines
indicate the topological phase boundaries of the hosting Haldane model (see fig. 4.3).
The defining element of the spin Berry curvature in the weak coupling limit is color
coded for a lattice of 27×27 unit cells with periodic boundary conditions and τ2 = 0.1.

In figure 4.9 we vary the on-site potential M and phase ξ which comes with the next-

nearest neighbor hopping (see eq. 4.73 and fig. 4.1). Topological phase boundaries of

the host model are indicated by the gray lines. Within the regions of the parameter

manifold enclosed by these lines, the Haldane model is in a topologically non-tivial

phase (C = ±1), and outside it is a conventional (C = 0) band insulator (see fig.

4.3). First of all, figure 4.9 shows, that Ω changes the sign as ξ 7→ −ξ, while the

sign of M does not influence the spin Berry curvature in the weak coupling limit. As

the magnitude of M increases, Ω decreases in the trivial phase for M → ±∞. This

is explained by the associated increase in the insulating gap (eq. 4.77). Other than

that, figure 4.9a displays no further features and Ω/J2 is at most O(10−3) in all of the

parameter manifold. As discussed previously (fig. 4.5 and fig. 4.6a), absolute values

of the spin Berry curvature become smaller with increasing distance of the impurities.

Therefore, the scale of the color bars in figure 4.9a and 4.9b is adjusted to the respective

magnitudes of Ω/J2. While impurities are positioned on next-nearest neighbor sites in

figure 4.9a, they are five primitive lattice translations in vvv1 direction apart in figure 4.9b.

Impurities separated by more than d =
√

3 can lead to more complicated parametric
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dependencies of Ω. An example thereof is given by figure 4.9b, which exhibits a richer

structure of the spin Berry curvature as compared to figure 4.9a. Further examples to

various d are displayed in figure A.6.

Study of the parametric dependence of Ω on quantities of the Haldane model suggests,

that the spin Berry curvature in the weak coupling regime is a smooth function of

the model parameters. Although Ω ∼ [ϵ+(kkk′) − ϵ−(kkk)]−2 (eq. 4.72) in the two band

model at hand and the gap closing at the topological phase transition (fig. A.5),

the weak coupling spin Berry curvature does not diverge at the host’s topological

phase transition in the thermodynamic limit. In fact, Ω is actually smooth across the

topological phase transition, since the gap closes only at the K or K ′ point in the

first Brillouin zone (fig. 4.2). A detailed discussion on this subject is subsequently

given in section 4.3.1.5. Although finite size effects become more pronounced close to

a topological phase transition, a lattice extension of l = l1 = l2 = 27 unit cells and

next-nearest neighbor hopping fixed to τ2 = 0.1 is sufficient to observe a clear gap

closing and re-opening transition across the topological phase transition (fig. A.5). In

a vast regime of model parameters deficiencies due to the finite extension of the lattice

are negligible. Commonly, finite size gaps are of minor relevance as compared to the

insulating gap. Furthermore, we argue that the overall small absolute values of the

spin Berry curvature are a consequence of the weak magnetic response of the spinful

Haldane model in the weak coupling regime. Also, non-zero Ω necessitate virtual

second-order-in-J processes, but these processes are suppressed by the bulk band gap.

4.3.1.5 Spin Berry Curvature at the Topological Phase Transition

Sections 4.3.1.3 and 4.3.1.4 indicate the need for a thorough study of the spin Berry

curvature at the topological phase transition of the Haldane model. Strictly speaking,

topology is associated with a continuous k-space, presuming the thermodynamic limit

of l → ∞. And indeed, approximating the bulk of the Haldane model by a finite lattice

with periodic boundary conditions leads to a jump ∆Ω of the defining element of the

spin Berry curvature in the weak coupling limit (eq. 4.37). We define that jump by

∆Ω = |Ωtriv − Ωtopo| = |Ω(Mcrit + ∆M) − Ω(Mcrit − ∆M)| (4.81)

with Mcrit = 3
√

3τ2 sin(ξ). Right at the topological phase boundary the gap closes at

the K or K ′ point, which implies degenerate eigenenergies at the Fermi level. As we

consider lattices at half filling that contain the K and the K ′ point in their discontin-

uous k-grid, the degeneracy of conduction and valence band at the topological phase

transition leads to numerical intricacies. Hence numerically Ω(Mcrit) is not readily

accessible.

In figure 4.10 we study the finite size discontinuity of Ω by variation of the on site
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Figure 4.10: Spin Berry curvature Ω for impurities on next-nearest neighbor sites as a
function of the relative onsite potential M/Mcrit across the topological phase transition
of the Haldane model. Mcrit ≈ 0.16 marks the phase boundary for τ2 = 0.1, ξ = 0.1π.
Periodic boundary conditions are applied for lattices of l unit cells in both directions
of primitive lattice translations.

potential M across the topological phase boundary for various l while maintaining

constant values for the other model parameters. We opt for τ2 = 0.1 and ξ = 0.1π,

where finite size effects are prominent (see discussion in 4.3.1.3 and 4.3.1.4). Lattices

extend l × l unit cells and we apply periodic boundary conditions. Two impurities

are locally coupled to next-nearest neighbor sites of the host. Figure 4.81 shows a

decreasing jump ∆Ω with increasing lattice size. However, linear increase of l leads to

a diminishing decline of ∆Ω, the larger the lattices become. Since Ω is inherently a

function of M , one reason we observe finite ∆Ω is a constant interval ∆M that fixes

the parametric vicinity to the topological phase boundary.

An improved numerical approach to the characteristics of Ω at the topological phase

transition of the Haldane host is made by investigating the thermodynamic limit l → ∞
and approaching the phase boundary by ∆M → 0 at the same time. A study of this

twofold limit is depicted in figure 4.11. Following the trends of both limits we conclude,

that ∆Ω vanishes when taking the two limits (l → ∞ and ∆M → 0) simultaneously.

Hence, based on this numerical study, it can be inferred that the spin Berry curvature

remains continuous at the topological phase transition of the Haldane model when

impurities are weakly coupled to the bulk.

In fact, one can give an analytical argument to this issue. Close to the topological

phase transition in the Haldane host, the contributions from kkk = KKK (respectively

kkk = KKK ′) dominate the spin Berry curvature. Right at the topological phase transition

the energy gap closes at one of these two k-points, i.e. ϵ+(KKK) = ϵ−(KKK) or ϵ+(KKK ′) =

ϵ−(KKK ′). Since Ω ∼ [ϵ+(kkk′) − ϵ−(kkk)]−2 (eq. 4.72) a divergence of the Ω is conceivable.

Expanding the dispersion of the Haldane model at the K or the K ′ point when the
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Figure 4.11: Finite size dependence of the jump ∆Ω of the spin Berry curvature at the
topological phase transition of the Haldane model, considered upon the proximity to
the phase boundary with M = Mcrit ± ∆M . Impurities are on next-nearest neighbor
sites of periodically bounded lattices of l × l unit cells, with τ2 = 0.1 and ξ = 0.5π.

model is parametrically close to a topological phase transition leads to a band structure

ϵ±(κκκ) ∼ ±
√
m+ κκκ2 which takes the form of a relativistic Dirac theory [19, 28, 48].

Wave vector κκκ with |κκκ| << 1 is taken relative to the k-point of the gap closure.

Since m ∼ ∆E is linearly related to the gap (see A.17 and A.19), approaching the

topological phase transition is equivalent to m→ 0. In fact, the Haldane Hamiltonian

in the thermodynamic limit (l → ∞) takes the form of a relativistic Dirac Hamiltonian

HD ∼ κxσσσx+κyσσσy+mσz [28] when expanded around a gap closing point. A Hamiltonian

of this form leads to the aforementioned dispersion. Furthermore, the two eigenstates

|ψ0(kkk)⟩ and |ψ1(kkk)⟩ of HD, are smooth functions of kkk = KKK+κκκ (respectively kkk = KKK ′+κκκ).

State |ψ0(kkk)⟩ refers to the eigenstate related to the occupied valence band (blue in figure

4.2) and |ψ1(kkk)⟩ to the one of the unoccupied conduction band (orange in figure 4.2)

as we assume half filling. Hence, matrix elements ⟨ψ0|ŝiqα|ψ1⟩ are finite and smooth

functions in kkk.

To analyze a conceivable divergence of Ω for impurities in the bulk at the topological

phase transition in the Haldane model we compute Ibulk. The contributions to Ibulk are

the possibly diverging terms for wave vectors in sufficiently small spherical vicinity A

with radius Λ around κκκ = 0. The sum over occupied and unoccupied single particle

states become integrals in the thermodynamic limit, so we obtain

Ibulk ∼
∫
A

d2κ

∫
A

d2κ′
1

(
√
m+ κκκ2 +

√
m+ κκκ′2)2

. (4.82)

Detailed calculations on the evaluation of the integral are presented in A.2.4. The limit

m→ 0 of Ibulk exists and is proportional to Λ2. Our focus is on the contributions to Ω
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at κκκ = 0, so we take the limit of Λ → 0 where Ibulk vanishes. Consequently, we do not

expect a divergence of the weak coupling spin Berry curvature even though the energy

gap closes at a singular point of the two dimensional k-space when the Haldane model

transitions between distinct topological phases. The result of this analytical proceeding

emphasizes that the weak coupling Ω is continuous at topological phase transitions in

the Haldane host.

4.3.2 – Weak Coupling at the Edge

So far we discussed various aspects of the spin Berry curvature for impurities coupled to

the bulk of a spinful Haldane model. As this host model is a topological insulator, the

situation of impurities coupled to the edge of the host can be fundamentally different.

For the purpose of studying edge effects in the spinful Haldane model, we consider a host

geometry with periodic boundary conditions in l1-direction and open boundaries in l2-

direction. This geometry leads to an open zig-zag edge and here impurities are coupled

to lattice sites at this edge. Due to the bulk boundary correspondence [32, 49, 52],

there must be a gapless boundary mode at any edge when the bulk is in a topological

nontrivial phase, as the Chern numbers changes from C = ±1 in the bulk to C = 0 in

the surrounding vacuum. Consequently, this edge state is featured by the topological

Haldane phases only and is absent in the topologically trivial region of the phase

diagram (fig. 4.3). Sensitivity of the spin Berry curvature on the band structure of the

underlying host model poses the question on the feedback of the host model’s topology

on ΩΩΩ in this setup.

Here, we consider lattices of large but finite extension with open boundaries in one

and periodic boundaries in the second direction of primitive translations. The host

geometry is defined by l2 unit cells in vvv2 direction, bounded by an open zig-zag edge,

and l1 unit cells in vvv1 direction where periodic boundary conditions apply. An example

of this cylinder-like geometry with a zig-zag rim is depicted in figure 4.16a (section

4.3.3). We define a unit cell of finite extension l2 in vvv2 direction and a one-dimensional

k-space by k = 2πn/l1, since analytically utilizing translational invariance enables

numerical computations on larger lattices. The number of one-particle eigenstates

equals 4l2 (A- and B-site per unit cell and spin σ ∈ {↑, ↓}), so half filling requires the

lowest 2l2 band to be filled. For large, but finite extension in vvv2 direction, the one

particle dispersions ϵν(k) with ν = 1, ..., 4l2 form two quasi-continua, separated by a

band gap ∆E (see fig. 4.4). As we label the single particle eigenenergies from the

lowest ν = 1 to the highest ν = 4l2, the dispersion of the edge states ϵ2l2 = ϵ− and

ϵ2l2+1 = ϵ+ cross is the bulk band gap if C = ±1. In the topologically trivial phase

of the Haldane model (C = 0) but close to the topological phase transition ϵ+ and ϵ−
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take the form of an avoided crossing

ϵ± ∼ ±
√
κ2 +m2. (4.83)

We define κ = k− kcrit as the distance from kcrit, which is the wave vector at which ϵ+

and ϵ− cross when C = ±1.

Once more, our focus is on Ω when the gap closes. In this setup, however, not due

to the topological phase transition in the Haldane model, but because impurities are

coupled to an open boundary, i.e., an edge of the host lattice with nontrivial bulk

band topology. For C = ±1 there are two effects that can regularize the spin Berry

curvature. These are associated with finite l1 on the one and with finite l2 on the other

hand. Concerning the latter, finite overlap of the edge states leads to a dispersion which

takes the form of an avoided crossing in the C = ±1 phase as well. In this scenario,

m and the finite size gap that comes with finite m are associated with (significant)

overlap of the edge states, which are exponentially localized at the zig-zag boundaries.

Accordingly, such an in-gap gap ∆ϵ = ϵ+(kcrit) − ϵ−(kcrit) = 2m < ∆E vanishes for

l2 → ∞. For sufficient large l2 that overlap becomes inconsequential and it is save to

assume m = 0.

Concerning finite l1 and C = ±1, we calculate the contribution Irib to the weak coupling

spin Berry curvature in a small vicinity Λ around the gap closure (κ = 0) for impurities

coupled to the edge of a Haldane ribbon. We then take the limit of l1 → ∞, thus

m → 0, similar to eq. 4.82. Vanishing energy differences in the denominator (see eq.

4.72) might cause Ω to diverge, analog to the more detailed arguments given in section

4.3.1.5. The contribution Irib yields

Irib =

∫ Λ

−Λ

dκ

∫ Λ

−Λ

dκ′
1

(
√
κ2 +m2 +

√
κ′2 +m2)2

∣∣∣∣∣
m=0

=

∫ Λ

−Λ

dκ

∫ Λ

−Λ

dκ′
1

(|κ| + |κ′|)2

∼ lim
ε→0

∫ Λ

ε

dκ

∫ Λ

ε

dκ′
1

(κ+ κ′)2

∼− ln(ϵ). (4.84)

Any finite l1 leads to a discrete k-space with δk = 2π/l1 and ε ∼ δk ∼ 1/l1. Conse-

quently, we derived a weak logarithmic divergence Ω ∼ ln(l1) when the Haldane model

is in the topological phase and opposing open boundaries are sufficiently far apart.

In figure 4.12 the defining element of the weak coupling spin Berry curvature is dis-

played as a function of l1 for various l2. Impurities are coupled to next-nearest neighbor

sites at the same edge and we set M = 0, which nullifies sublattice imbalance. Fixing

the other parameters, this choice of the on-site potential leads to the largest bulk band
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Figure 4.12: Ω/J2 depending on the extension of the slab. l1 labels the number of unit
cells in the direction with periodic boundary conditions and l2 the width of the slab
between open zig-zag boundaries. Impurities are positioned as next-nearest neighbors
on the same zig-zag edge of a Haldane ribbon with ξ = 0.1π, M = 0 and τ2 = 0.1π.

gap in the topologically nontrivial phase, thus, most localized boundary modes. Fur-

thermore, ξ close to nπ emphasizes finite size effects, so we choose ξ = 0.1π. Fixing l1,

an increase of l2 reduces the overlap of edge states localized at opposing boundaries and

the associated finite-size m decreases exponentially with l2. Already for l2 = 30 and

l2 = 45 there is no perceptible difference observable in figure 4.12. Hence, Ω quickly

converges as a function of l2 . However, the finite size regularization of Ω is still de-

pending on l1. The slope of Ω decreases with increasing l1, but even at l1 = O(104)

the spin Berry curvature still rises with increasing l1, albeit with a small slope (see

insert of fig. 4.12). We observe a close to linear dependence of Ω on ln(l1). We do not

observe a perfect consensus of the analytical and the numerical study as any non-zero

overlap of the edge states impedes the analytically predicted Ω ∼ ln(l1) divergence.

By figure 4.12 we confirm, that finite size effects become of minor relevance to Ω when

increasing the extension of the lattice. As absolute values of Ω/J2 are in the order

of unity, effects of the geometric spin torque caused by the spin Berry curvature are

expected to be of major relevance to the adiabatic impurity dynamics for adequate J .

Furthermore, we emphasize, that a zero-dimensional gap closure (singular point) in a

1-dimensional k-manifold boosts Ω. In this sense, a reduction of the phase space is

favorable for large Ω. Such a scenario is realized when impurities are weakly coupled

to the edge of a topological insulator, where gapless boundary modes are accessible. A

zero-dimensional gap closure in a two-dimensional kkk-manifold, however, does not boost

Ω, as discussed in section 4.3.1.5. The latter is realized by impurities coupled to the

bulk of a Haldane model, where Ω turned out to be continuous at the topological phase

transition in the thermodynamic limit.
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4.3.2.1 Positioning with One Impurity Coupled to the Edge

To investigate the influence of the gapless edge states featured by the Haldane model

in its nontrivial topological phases, we choose a slab geometry for the host lattice. It

extends l1 unit cells in vvv1 direction to which we apply periodic boundary conditions

and l2 unit cells in the direction of vvv2 where the boundary is an open zig-zag edge.

An example of the described geometry is depicted in section 4.3.3 (fig. 4.16a). We

choose the width in the direction of open boundaries to be l2 = 15 unit cells, so there

is insignificant overlap of the edge states for the numerical results presented within

this section. The topological phase of the Haldane model is controlled by the on-site

potential M while any other parameter is kept constant. For the chosen M -values the

bulk band gap is the same in the trivial and the topological phase.

In the upper panel of figure 4.13 the Haldane model is in a topologically trivial phase

and the modulus of the defining element of the weak coupling spin Berry curvature

(eq. 4.37) decreases approximately radial-symmetric. The sign of Ω changes under

reflection at the mirror axis containing the fixed central site (green dot) as discussed

in section 4.3.1.1. Directly on that axis Ω has to vanish, which is noticeable by a ray

C = 1

C = 0

10 110 410 710 710 410 1

/J2

Figure 4.13: Positional dependence of Ω/J2 (eq. 4.37) when one impurity, marked by
the green dot, is locally exchange coupled to an edge site of a Haldane ribbon. The
position of the second impurity varies over all remaining lattice sites. In the upper
panel with M = 2Mcrit the host is topologically trivial (C = 0), while M = 0 in the
lower panel gives rise to nontrivial host topology (C = 1). The bulk band gap is the
same in both panels. Further model parameters are l1 = 51, l2 = 15, τ2 = 0.1 and
ξ = π/4.
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of uncolored lattice sites originating at the fixed green lattice site. For positions of the

non-fixed impurity reaching into the bulk, the decay of Ω is consistent with fig. 4.5 in

either phase.

In the lower panel of figure 4.13 the host is in a topologically nontrivial state, thus, the

host features gapless edge states (see sections 4.2). A signature of these states which

are exponentially localized at the open boundaries is the long-range characteristic of

Ω. When both impurities are coupled to the same edge, i.e., susceptible to the same

gapless boundary mode, the decay of Ω with impurity-distance is significantly slower

compared to the scenario where at least one impurity couples to a bulk site. This

long-range characteristic of Ω persists for a few unit cells from the edge into the bulk,

indicating the spread of the exponentially localized edge modes into the bulk.

Also the absolute values of Ω/J2 are boosted in the presence of gapless edge modes. The

maximal value of the defining element of the spin Berry curvature, divided by the square

of the coupling constant, is max(Ωtriv)/J
2 ≈ 1.6 · 10−3 in the trivial phase (C = 0). In

the topological phase (C = 1), however, it is about two orders of magnitude larger and

reaches up to max(Ωtopo)/J
2 ≈ 0.2 for the parameters of figure 4.13. Interestingly, the

largest Ω are obtained for different impurity positions in the topologically trivial and

the nontrivial phase. While impurities coupled to next-nearest neighbor sites are the

optimal choice when C = 0, the largest |Ω| are observed for impurities d = 3|vvv1| = 3
√

3

apart when C = 1. When impurities are located far apart at the same zig-zag edge,

the relative difference in Ω when transitioning from the topological to the trivial phase

is strongly pronounced. For example, the ratio of Ωtopo/Ωtriv for impurities separated

by d = 5
√

3 and positioned right at the same edge of the slab exceeds 105 in the setup

of figure 4.13. This variation of Ωtop as compare to Ωtriv is a result of the long range

characteristic featured solely by the topologically nontrivial (C = 1) phase of the host

model.

We conclude that the gap less edge modes boost the spin Berry curvature in the

weak coupling regime as their dispersion bridges the bulk band gap. Their existence

correlates to nontrivial bulk topology and the defining element Ω (eq. 4.37) being

sensitive to the gapless modes is therefore suited as marker for the topological phase of

the host. In this context, impurities positioned at the edge of a topological insulator,

ideally some distance apart, exhibit distinct dynamics (see eq. 4.47) related to the bulk

band topology of the host. These differences stem from the disparity between Ωtop and

Ωtriv. Examples hereof are discussed in section 4.3.3.

4.3.2.2 Ω in the Haldane Phase Diagram for Impurities at the Edge

Similar to section 4.3.1.4, we now explore the dependence of the defining element Ω of

the weak coupling spin Berry curvature on the parameters of the Haldane model. In

this section, however, we focus on impurities coupled to the edge of a Haldane ribbon.
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Figure 4.14: Weak coupling spin Berry curvature in the Haldane phase diagram for
impurities positioned on next-nearest neighbor sites at the zig zag edge of a l1 = 201,
l2 = 30 unit cell ribbon with periodic boundaries in the vvv1 direction and τ2 = 0.1.

The most prominent feature of figure 4.14 is the abrupt change of Ω at the topological

phase boundary of the host. The Haldane model is in a topologically nontrivial phase

(C = ±1) in the parameter regimes enclosed by the gray lines. We observe near perfect

consensus of the topological phase diagram (fig. 4.3) and Ω in the same parameter

manifold (fig. 4.14). In the topologically nontrivial parameter regime, the spin Berry

curvature is orders of magnitude larger than in areas of trivial bulk band topology,

which is caused by the change of the band structure associated with the topological

edge states (see section 4.3.2.1).

The link of the topological phase diagram and Ω reaches even further. Altering ξ → −ξ
changes the sign of Ω as well as the sign of the Chern number which defines the

topological phases of the Haldane model. In this sense, the spin Berry curvature, and

thus the impurity dynamics, is not just sensitive to whether the Haldane model is in a

trivial or topological phase, but Ω is also susceptible to the sign of the Chern number

featured by the Haldane model. Increasing the distance between the impurities does

not result in qualitative changes of the figure 4.14, as long as impurities are located at

the same edge. Minor imperfections near ξ ∼ nπ result from the finite k-grid as well

as non-zero overlap of the edge states since the slab in this numerical study is of finite

extension.
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4.3.3 – Dynamics of Two Impurities

In previous sections we discussed the weak (section 4.1.3) and the strong (section

4.1.4) coupling limit of the adiabatic spin dynamics. Here, we display examples of the

dynamics and validate the applicability of the adiabatic constraint for two impurities

coupled to a spinful Haldane model (see section 4.2) as a quantum host.

4.3.3.1 Dynamics in the Weak Coupling Limit

At first, the weak coupling limit is considered for a host that is invariant under spin

rotations, like for example the spinful Haldane model. The adiabatic equation of motion

for the two impurities (eq. 4.47) depends on an effective coupling constant JRKKY , the

enclosed angle ϑ between the impurities and the defining element Ω of the spin Berry

curvature (eq. 4.37).

As this section concentrates on the effects that the spin Berry curvature causes to the

adiabatic impurity dynamics, we opt for JRKKY = 1, which sets the timescale of the

naive adiabatic dynamics, and set Ω to fixed values. In general, JRKKY and Ω are

quantities of the host system and the geometry of the setup as derived in section 4.1.3

and with extensive examples discussed in sections 4.3.1 and 4.3.2. Subsequently, we

consider dynamics where JRKKY and ΩΩΩ follow from the setup of the quantum-classical

system in section 4.3.3.2. Furthermore we set |SSS1| = |SSS2| = 1.

Figure 4.15a displays the dynamics of two classical spins in blue and red without

geometric spin torque. Both impurities precess around the total spin, which is indicated

by the green arrow. SSST = SSS1 + SSS2 is constant of motion (black dot). As we assume

a host of zero total magnetic moment and Ω = 0 in this dynamics, we find SSST = ΣΣΣ

(eq. 4.48) as a conserved quantity. Here, the modulus of SSST determines the frequency

of the precession (ωprec = |SSST | ≈ 1.8). This scenario results in an adiabatic spin

dynamics ṠSSq (eq. 4.47) equal to the naive adiabatic dynamics ṠSS
N

q = ∂HRKKY

∂SSSq
× SSSq

with HRKKY = JRKKYSSS1SSS2. In this case, the dynamics is of a Hamiltonian nature

and ’symmetric’ in the sense that interchanging the impurity labels 1 ↔ 2 effectively

results in the same dynamics.

Non-zero Ω, on the other hand, result in ṠSSq unequal to ṠSS
N

q . Figure 4.15b displays the

dynamics of a similar setup, but with a nontrivial ΩΩΩ. The defining element of the weak

coupling spin Berry curvature (eq. 4.37) is set to Ω = 0.5. The total spin is no longer

a constant of motion (eq. 4.49), but exhibits a precessional motion around an axis

ΣΣΣ = SSST − ΩSSS1 × SSS2 (eq. 4.48). This ΣΣΣ is a constant of motion and defines the axis

that the impurities SSSq precesses around. We note that the precessional axis is tilted

compared to the Ω = 0 scenario. The frequency of the SSSq and the SSST precession is

now determined by ωprec = |ΣΣΣ|/(1 − Ω2SSS1SSS2) ≈ 2.3. Here, the nontrivial adiabatic

dynamics (Ω ̸= 0) is faster than the naive dynamics, i.e. the Ω = 0 scenario. It is to
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(a) Ω = 0 dynamics with zero adiabatic spin
torque.

(b) Ω = 0.5 dynamics with nontrivial adia-
batic spin torque.

Figure 4.15: Dynamics of two impurities (red and blue) in the weak coupling limit as
derived in section 4.1.3.3. Impurities enclose an angle of ϑ = π/4 and JRKKY = 1 sets
the timescale of the naive adiabatic dynamics (eq. 4.42). Conserved quantity ΣΣΣ/|ΣΣΣ|
(eq. 4.48) is indicated by the black dot. The normalized total spin (SSS1+SSS2)/|SSS1+SSS2| is
green and the effective field that leads to the adiabatic spin torque is magenta colored.

mention, that due to the adiabatic spin torque even the direction of motion can change,

as compared to the naive adiabatic theory. This change of directionality occurs when

Ω2SSS1SSS2 > 1 (see eq. 4.49).

The adiabatic spin torque is caused by an effective field ΩSSS2 × SSS1 (magenta arrow in

fig. 4.15b), which leads to non-Hamiltonian dynamics. Interchanging impurity labels

1 ↔ 2 requires a simultaneous change of Ω → −Ω to obtain equivalent equations of

motion, i.e., observe similar dynamics. In that sense the dynamics is ’asymmetric’ for

the two impurities and the blue and red trajectory in figure 4.15b are not symmetric

around the conserved axis ΣΣΣ (black dot in figure 4.15b). One cannot formulate a

Hamiltonian that results in dynamics of this kind, which is therefore referred to as non-

Hamiltonian. Rather, both effects that can be caused by finite Ω (see section 4.1.3.3)

are contributing to the dynamics here. That is, a rescaling of the precession frequency

(∼ (1 − Ω2SSS1SSS2)
−1) on the one hand and a nontrivial dynamics of ṠSST associated with

a tilt of the rotational axis (∼ ΩSSS2 × SSS1) on the other hand. Beside the spin Berry

curvature these effects depend on the conserved angle ϑ enclosed by the impurities.
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4.3.3.2 Applicability of Adiabatic Dynamics in the Presence of Gapless

Topological Edge Modes

Next, we approach an example of a specific host model and investigate the applicability

of the adiabatic theory. In section 4.3.2 we discussed a setup, where the impurities are

at the edge of topological insulator. We argued, that the existence or absence of gapless

topological edge states has an effect on the impurity dynamics in the weak coupling

limit. Therefore, we propose the observation of spin dynamics (in the adiabatic limit)

as a method to detect the topological phase of the host model.

Here, we investigate the dynamics of two classical impurities coupled to next-nearest

neighbor sites, i.e. d = 2
√

3, at the zig-zag edge of a spinful Haldane ribbon. Such

a setup is sketched in figure 4.16a. Time evolution of the impurities is numerically

computed for a l1 × l2 = 33 × 10 unit cell Haldane ribbon with periodic boundaries

in vvv1 direction. In the initial configuration (t = 0) impurities enclose ϑ = π/4. For

now, the Haldane host is set to be in a topologically nontrivial phase with parameters

τ2 = 0.1, M = 0.5Mcrit ≈ 0.18 and ξ = π/4.

Gapless edge modes of the Chern insulator are absent in the topologically trivial phase

of the Haldane model, but present in the topologically nontrivial phases. Due to

conceivable gapless edge modes of the Haldane host, the question arises of whether

the adiabatic spin dynamics, its expansion in the weak J limit and the naive approach

to adiabatic spin dynamics are suitable approximations of the impurity dynamics.

Strictly speaking, applicability of the adiabatic theorem is not guaranteed when the

host features gaples modes which are of non-zero weight at the lattices sites where the

impurities interact with the host.

To compare dynamics computed within different approaches (full, adiabatic, adiabatic

+ weak J, naive) we define

∆XY (t) =
1

NS

NS∑
q=0

(
SSSXq (t) −SSSYq (t)

)2
(4.85)

as a measure of deviation. In the following, abbreviation F relates to dynamics obtained

via the full set of equations of motion (eq. 4.5 and eq. 4.6). Moreover, A indicates

dynamics which results from the adiabatic equations of motion (eq. 4.19), where the

host has no intrinsic degrees of freedom but its dynamics is fully determined by the

impurity dynamics by the adiabatic constraint (|ψ0⟩ = |ψ0(SSS(t)⟩). We use P for the

dynamics computed within the weak-J perturbation theory of the adiabatic equations

of motion (eq. 4.47) and N for dynamics obtained from the naive approach to adiabatic

spin dynamics (eq. 4.20). Hence, X, Y ∈ {F,A, P,N} in equation 4.85.

Measure ∆XY describes the mean square deviation of two spin configurations at time

t. Deviations are averaged over all impurities, where SSSXq (t) is the configuration of the
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(a) Scheme of a Haldane ribbon with peri-
odic boundaries in vvv1 direction and impuri-
ties coupled to next-nearest neighbor sites
(d = 2

√
3) at the open zig-zag edge.
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(b) Deviation ∆XY (eq. 4.85) of impurity
dynamics for J = 0.5. Geometry like fig.
4.16a on a 33×10 Haldane ribbon with τ2 =
0.1, M = 0.5Mcrit, ξ = π/4 and ϑ = π/4.

Figure 4.16: Two impurities coupled to the edge of a Haldane ribbon.

q-th impurity at time t computed with equations of motion of theory X. We make

use of ∆XY to evaluate the validity and quality of various levels of approximations.

The system is initialized identically for all approaches, therefore ∆XY (t0) = 0. Time

propagation of the impurity configuration is obtained by numerically integrating the

equations of motion using an explicit eighth-order Runge-Kutta method with a relative

numerical error ∆num < 10−9 per time-step. As long as spin-configurations are not too

dissimilar and the precession frequencies of different approaches are comparable, ∆XY is

a suitable measure to compare impurity dynamics across different approaches. Periods

T0 of the precessional impurity dynamics are determined with a precision of ∆T0 = 1

throughout this section.

At first, we discuss a rather weak exchange coupling of J = 0.5, where impurities just

slightly disturb the free (J = 0) host. Largest elements of the spin Berry curvature ΩΩΩ

are the ones of the weak coupling from ΩΩΩ(0) (eq. 4.37) with Ω ≈ 0.03 (|ΩΩΩ−ΩΩΩ(0)| ≈ 0.02).

The period time of the precessional impurity dynamics obtained via the respective

equations of motion is presented in table 4.1.

Time evolution in the adiabatic theory underestimates T0 by an relative error

∆AF
0 = (TA0 − T F0 )/T F0 ≈ −4.5 · 10−4 (4.86)

per period and is consequently a very good approximation of the dynamics. Pertur-

bation theory on the other hand overestimates the period time by ∆PF
0 ≈ 5.9 · 10−3,

which is a rather good approximation of the dynamics as well. Worst of the considered

approximations is the naive theory of adiabatic spin dynamics, which overshoots T0 by

∆NF
0 ≈ 3.1 ·10−2. Comparing the latter indicates relevance of the spin Berry curvature

in this quasi adiabatic dynamics. The approach to an effective impurity dynamics is
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J T F0 TA0 T P0 TN0
0.5 4425 4423 4451 4565
2 257 243 527 193
5 787 785 253 525

Table 4.1: Period TX0 of precessional impurity dynamics measured in inverse units of
the nearest neighbor hopping, τ1 = 1, and obtained through time evolution using equa-
tions of motion of approach X ∈ {F,A, P,N} for varying values of the host-impurity
exchange coupling J . Impurities are coupled to next-nearest neighbor sites (d = 2

√
3)

at the edge of a l1 × l2 = 33 × 10 unit cell Haldane ribbon with periodic boundary
in vvv1 direction and an open zig-zag edge in vvv2 direction. Initially, impurities enclose
ϑ = π/2. The Haldane host is in a topologically nontrivial phase with parameters
τ2 = 0.1, ξ = π/4 and M = 0.5Mcrit.

significantly improved by taking even small Ω into account. Agreement of TA0 , T P0 and

T F0 advances for even smaller J , as J = 0.5 is not strictly weak coupling. For J = 0.5

we find |⟨ŝssiq⟩| ≈ 0.073, but |⟨ŝssiq⟩| = 0 is assumed in the weak coupling theory. The

adiabatic spin torque, however, diminishes for very small J due to the fact that Ω ∼ J2

in the weak coupling limit.

Figure 4.16b displays the accumulated deviations over time. The previous finding,

that the adiabatic equations of motion are a well suited approximation to determine

the period of the dynamics is affirmed by deviation measure ∆XY (t). Indeed, the

accumulated error over time is ∆FA ≈ 10−6 at t = T F0 appears to follow a linear

trend with a rather shallow slope. The much faster electron dynamics, however, feeds

back to the impurity dynamics and predominately induces an additional nutational

dynamics, which is notable by the oscillatory characteristics of ∆XY (t) in fig. 4.16b.

Such nutational dynamics is somewhat similar to the tight binding dynamics in the

purely classical setup (see section 3.1.3). Magnetic moments of the electron system are,

however, not just tightly bound. They are neither of uniform magnitude across the

entire host, nor necessarily of constant magnitude throughout the dynamics. Moreover,

magnetic moments of adjacent host sites can exhibit inherent canting, i.e., might not

be collinear. This leads to a more complex overall dynamics, which goes beyond the

simple precessional motion with superimposed nutational motion that is associated

with the classical tight binding dynamics. Nonetheless, the correction due to nutation

in the precessional dynamics can be considered as the leading correction.

The dynamics of the total magnetic moment of the electron system is observed to be of

a typical timescale of t⟨ŝssT ⟩ ∼ 100 for the non-precessional dynamics. Hence, the typical

inherent dynamics of magnetic moments in the host system are of a significantly faster

timescale than the impurity dynamics (t⟨ŝssT ⟩ ≪ T0). Eventually, the inherent dynam-

ics of host magnetic moments causes minor effects to the overall impurity dynamics.

Combining both arguments we conclude, that in our setup the assumption of adiabatic

spin dynamics is in general a viable approximation for the impurity dynamics, despite
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the lack of a strictly gapped host system.

The perturbative approach to adiabatic spin dynamic is less good of an approximation

and accumulates an error ∆FP ≈ 5 · 10−4 in the first period. A coupling strength of

J = 0.5 does, however, not strictly meet the criteria of weak coupling. At this exchange

coupling strength the impurities locally polarize the host which contradicts the weak

coupling assumption.

Nonetheless, the perturbative approach is a significantly better approximation than

the naive approach to adiabatic spin dynamics. Applying the adiabatic constraint

solely to the Hamiltonian results is the most erroneous approximation of the impurity

dynamics. Deviation ∆FN between the impurity configuration obtained by the full set

of equations of motion and the impurity configuration computed via the naive approach

to adiabatic impurity dynamics is about an order of magnitude lager than ∆FP after

one precessional period, i.e., at t = T F0 . We conclude, that even though elements

of ΩΩΩ are of small magnitude in the considered setup, the adiabatic spin torque is an

essential contribution to the impurity dynamics. Taking the spin Berry curvature into

account in the way the adiabatic equation of motion dos, leads to a significantly better

approximation of the impurity dynamics (∆FA ≪ ∆FN). This improvement arises

from a conceptual advancement. Both, the naive and the adiabatic approach, take the

same number of dynamic degrees of freedom into account.

Next, we discuss J = 2, where exchange coupling is well beyond the perturbative weak

coupling regime. Locally, the impurities affect eigenstates and eigenenergies substan-

tially. Angle ϑ enclosed by the impurities is relevant to the aforementioned manipu-

lation of the host by the impurities. In terms of the transition from the weak to the

strong J limit, J = 2 is in the intermediate regime (see section 5.2.3 and figure 5.7 for

impurities in the bulk). In this transition regime elements ΩΩΩ can be of large modulus,

here max(ΩΩΩ) ≈ 0.25. Moreover, ΩΩΩ takes an intricate form, comparable to the bulk

situation shown in fig. 5.7a. As we consider impurity exchange at the open boundary,

that intermediate regime is at weaker J in comparison to intermediate the exchange

coupling strength in the bulk.

Impurity dynamics is still approximated rather well by the adiabatic theory. For

ϑ = π/4 impurities precess at T F0 = 257, while adabatic theory predicts TA0 = 243.

Dynamics is of a significantly shorter timescale than for J = 0.5. Polarization of the

host (|⟨ŝssiq⟩| ≈ 0.26) has a stronger effect on the impurity dynamics than for J = 0.5.

This leads to a more pronounced disturbance in the fundamentally adiabatic dynam-

ics. As a consequence, the relative angle enclosed by the impurities oscillates about

∆ϑ ≈ π/40. Again, relevance of the spin Berry curvature to the impurity dynamics is

emphasized by comparing T F0 , TA0 and TN0 = 193. Theory of adiabatic spin dynamics

underestimates T F0 by about 5%. In contrast, the naive approach falls short by nearly

25%, indicating its inadequacy as an approximation.
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For large J the adiabatic theory is once more a well suited approximation to evaluate

the dynamics of the impurities (see table 4.1). We find TA0 /T
F
0 ≈ 0.997, and TN0 /T

F
0 ≈

0.667 for J = 5 and ϑ = π/4. Accordingly, adiabatic theory is a good description to

approximate the precessional impurity dynamics, while the naive approach to adiabatic

dynamics is not. The adiabatic theory predicts the angle enclosed by the impurities

to be constant of motion. Upon analyzing the dynamics obtained from the full set

of equations of motion, we find ∆ϑ ≈ π/200 in full dynamics, indicating that ϑ is

essentially conserved. This serves as another indication of the effectiveness of the

adiabatic approximation.

Since |⟨ŝssiq⟩| ≈ 0.41 < 0.5, exchange coupling J = 5 is not strictly in the strong

coupling limit. Consequently, TA0 does not yet equal 2TN0 as derived in section 4.1.4 for

the strong coupling limit. Nonetheless, we observe significantly slower dynamics than

the naive adiabatic approach suggests. Discrepancy between TN0 and T F0 stems from a

failure to consider the influence of ΩΩΩ on impurity dynamics, which is essential in this

setup. The spin Berry curvature is dominated by local blocs (Ωqα,rβ with q = r), close

to the strong coupling limit (eq. 4.54). Non-local blocks (q ̸= r) are non-zero, but take

about one order of magnitude smaller values.

As J approaches the strong coupling limit (J → ∞), the impurity dynamics decelerates,

since an electron is increasingly localized at each host site to which an impurity couples.

In this limit, ΩΩΩ rescales the naive dynamics resulting in TA0 = 2TN0 (eq. 4.59). In the

limit of J = ∞, however, the electrons are strongly bound to the impurity sites,

rendering them incapable of mediating spin dynamics through the host. Hence, there

is no impurity dynamics at all for infinitely strong host-impurity exchange coupling.

4.3.3.3 Impurity Dynamics Related to the Topological Phase of the Host

Lastly, we take the host’s topology into account. Dynamics of the impurities on a topo-

logically nontrivial host (C = 1) is compared to dynamics on a trivial band insulator

(C = 0). To this end, we choose the same setup as before (fig. 4.16a).

We keep the same model parameters τ2 = 0.1 and M ≈ 0.18 as in the preceding section.

We appoint the topological phase of host by the value of the next-nearest neighbor

hopping in the Haldane host. Setting ξ = 0 leads to a topologically trivial band

insulator (C = 0), while ξ = π/4 results in a topologically nontrivial insulating phase

(C = 1) for the host system as the topological phase diagram of the Haldane model

indicates (fig. 4.3). The bulk band gap is the same in both phases. Furthermore, we set

J = 0.5 to prevent severe disturbance of the host system’s states and ensure reasonably

fast dynamics. Details of the impurity dynamics in this setup with a topologically

nontrivial host (ξ = π/4) have previously been discussed in section 4.3.3.2.

In the topologically trivial phase, the period of precessional impurity dynamics obtained

using adiabatic spin dynamics matches extremely well with the precessional period
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d/
√

3 T F0,top T F0,tri JRKKYtop JRKKYtri

1 675 2045 −4.8 · 10−3 1.7 · 10−3

2 4425 3441 −7.5 · 10−4 9.9 · 10−4

3 6055 19855 5.1 · 10−4 1.7 · 10−4

5 3335 >20000 9.5 · 10−4 9.6 · 10−6

10 3255 >20000 9.7 · 10−4 5.4 · 10−8

Table 4.2: Period T0 of precession for impurities coupled to the edge of a l1×l2 = 33×10
unit cell Haldane slab with periodic boundary in vvv1 direction and an open zig-zag edge
in vvv2 direction. Two impurities couple d apart with J = 0.5 at the zig-zag edge.
Initially, the impurities enclose angle ϑ = π/2. The Haldane host with parameters
τ2 = 0.1, M = 0.5Mcrit is in the topological phase for ξ = π/4 and in the trivial phase
for ξ = 0.

obtained from the full system’s dynamics (T F0 = TA0 = 3441). Since the host model is

time-reversal symmetric for ξ = 0, the spin Berry curvature in the weak coupling limit

ΩΩΩ(0) (eq. 4.37) vanishes. Accordingly, the naive approach to adiabatic spin dynamics,

with TN0 = 3443 also serves as a good approximation for impurity dynamics. Minor

differences of TA0 and TN0 result from the fact, that J = 0.5 does not strictly resemble

the unperturbed host of the weak coupling limit (|⟨ŝssiq⟩| ≈ 0.05, max(ΩΩΩ) ≈ 5·10−4). The

perturbative approach is the least accurate approximation of the impurity dynamics

in this setup, predicting T P0 = 3433. Nonetheless, perturbation theory is still decent,

undershooting the period time by ∆NF
0 ≈ −2.3 · 10−3, which is of the same order of

magnitude as for the topological host considered earlier (see section 4.3.3.2).

Over all, impurity dynamics for J = 0.5 and ξ = 0 is about 20% faster than for ξ = π/4.

Thus, precessional motion occurs at a comparable rate across phases of either trivial

or nontrivial bulk band topology. We relate the differences to the intricate interplay of

local polarization of magnetic momentum and the spatial expansion of the host states

that the impurities interact with. Exchange coupling J = 0.5 is not strictly weak

coupling and for d = 2
√

3 local effects the impurities cause to the host overlap.

However, topological edge modes can affect the impurity dynamics. At large impurity

distances d along the edge, we find T0 for a topologically nontrivial host (ξ = π/4)

to be orders of magnitudes faster than for the trivial host (ξ = 0), as shown in table

4.2. Local effects in the host caused by the impurities do no longer overlap when the

impurities are sufficiently far apart. Finding T top0 ≪ T tri0 is explained by the long

range gapless edge modes featured by a topologically non-tivial host phase. At large

impurity distances along the edge, the magnetic susceptibility is drastically enhanced

in the presence of topological edge modes (C = 1), compared to the topologically

trivial phase (C = 0) where these edge modes are absent. In the weak coupling limit,

the magnetic susceptibility is directly related to the effective coupling of the impurities

mediated via the host system (eq. 4.34). But not only JRKKY is amplified by the
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gapless edge modes, also the spin Berry curvature is boosted by the topological edge

modes (see fig. 4.13). Hence, non-Hamiltonian impurity dynamics is more pronounced

when the host system is in a phase of nontrivial bulk topology.

Furthermore, the directionality of the impurity dynamics for small J can be related to

the host topology for nearby impurities at the edge. In the considered setup, JRKKY

is of different sign for the topological (C = 1) and the trivial (C = 0) host for d ≤ 2
√

3

(see table 4.2).

4.4 – Summary of the Quantum-Classical Adiabatic Spin Dy-

namics

The focal subject of this thesis is on quantum classical hybrid models, where the local

magnetic moment of adatoms is modeled by a classical spin, i.e. a three component

vector. Such adatoms are exchange coupled with interaction strength J to a gapped

quantum host with a unique ground state. Within this chapter, we discussed analytical

and numerical results on adiabatic spin dynamics of local magnetic moments modeled

by classical spins coupled to a gapped electron system.

A generic framework for adiabatic spin dynamics in the quantum classical setup is

studied in section 4.1.2. The spin Berry curvature ΩΩΩ arises in the equations of motion

for the classical degrees of freedom SSS and generates a non-Hamiltonian adiabatic spin

torque in their dynamics. An analytical expression for ΩΩΩ and the adiabatic equations of

motion ṠSS is derived in the weak (J → 0 in section 4.1.3) as well as the strong (J → ∞ in

section 4.1.4) coupling limit. On one hand, the spin Berry curvature ΩΩΩ affects impurity

dynamics ṠSS through an overall renormalization of the indirect, RKKY -like magnetic

exchange. On the other hand, ΩΩΩ leads to an additional coupling of the impurities. For

a setup with two impurities and in the weak coupling limit, the adiabatic spin torque

leads to a precessional motion of SSS1,2 perpendicular to the axis of an RKKY -like

dynamics.

We aim to study the interplay of bulk band topology and the dynamics to the magnetic

impurities. Hence, a suitable quantum host is constituted by two copies of Haldanes

model of a Chern insulator (section 4.2), one for each spin projection σ ∈ {↑, ↓}, which

we refer to as the spinful Haldane model.

Extensive studies of the parametric and geometric influences to ΩΩΩ in the weak coupling

limit are presented in sections 4.3.1 and 4.3.2. We find ΩΩΩ being smooth across the topo-

logical phase transition of the bulk band structure when impurities are weakly coupled

to the bulk of the spinful Haldane model. Noteworthy, however, is a boost of the weak

coupling spin Berry curvature when impurities couple to the edge of a topological in-

sulator. For two impurities, the defining element Ω of the weak coupling spin Berry

curvature can vary over orders of magnitude between phases of trivial and nontrivial
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bulk topology. We showed, that for two far-apart impurities weakly coupled along the

edge of a topological insulator ΩΩΩ is particularly sensitive to the bulk topology of the

host system. This finding is related to the presence or absence of gapless topological

edge modes in the quantum host.

In section 4.3.3, dynamics of the impurities is evaluated numerically with a twofold

intent. At first, the effects of non-zero geometric spin torque in the weak coupling

limit are visualized. Secondly, we validate the fidelity of the adiabatic approximation by

comparing adiabatic impurity dynamics with the impurity dynamics obtained via the

full set of equations of motion, with the latter accounting for inherent host dynamics.

We find, that generically our approach on adiabatic spin dynamics is significantly better

than the naive Hamiltonian approach whenever the spin Berry curvature is non-zero.

Equation 4.18 is a suitable description of the impurity dynamics not only in the weak,

but also towards the strong coupling limit. Moreover, our study of two impurities

weakly coupled to the edge of a topological insulator suggests, that adiabatic spin

dynamics remains appropriate despite the presence of gapless topological edge modes,

which inhibit strict application of the adiabatic theorem. For distant impurities weakly

coupled to the edge of the host, we observe significant slower impurity dynamics when

the host is in a topologically trivial phase in comparison to phases of nontrivial bulk

band topology. Not only the spin Berry curvature, but also an effective RKKY -like

impurity coupling is boosted by the gapless topological boundary modes. As such

gapless modes are featured by a topologically nontrivial phase of the host only, the

dynamics of the impurities is found to be sensitive to the topological phase of the host.
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ments on a Chern Insulator

In the theory of topological insulators, the fundamental concept of the bulk-boundary

correspondence dictates a gapless boundary mode at the edge of an insulator when

the topology of the bulk band structure is nontrivial. The presence and the nature

of these boundary modes is determined by topological invariants. An important issue

for detecting topological phases of matter is whether there are local signatures of a

band insulator’s topology. Therefore, we conduct a study to explore the possibility of

diagnosing nontrivial bulk band topology by observing changes in the local electronic

structure caused by local defects of zero spatial dimension.

Given a topologically nontrivial bulk, the bulk-defect correspondence [20, 32] deduced

from the tenfold way outlines in which scenarios zero-energy excitations, exponentially

localized at a defect, are guaranteed to exist. In our studies, magnetic impurities are

locally coupled to a two-dimensional Chern insulator, specifically the Haldane model.

These spatially zero-dimensional defects (codimension 2) are topologically classified as

trivial. Hence, for a Haldane model with nontrivial bulk topology the expectation of

topologically protected zero modes to be localized at the point defect is unjustified.

This does, however, not rule out the potential of a close correlation between localized

impurity modes and the topological characteristics of the bulk system.

Several prior studies have investigated the electronic structure in the vicinity of de-

fects in topological insulators [144–154]. Noninteracting models in different Altland-

Zirnbauer symmetry classes have been studied under the influence of various types of

defects. The aim is to find general conditions, under which eigenenergies of the Hamilto-

nian cross the bulk band gap or undergo zero-energy crossings in dependence of defect

parameters. For example, the response of a time reversal symmetric Z2 quantum-

spin-Hall insulator like the Kane-Mele model [67] to a time-reversal symmetric point

impurity has been studied in [146]. In the topologically nontrivial spin-Hall phase they

found in-gap states caused by the impurity, but such in-gap states were absent in the

topologically trivial phase. The spectral response to site and bond impurities has been

studied for the spinless Haldane model in [153]. Again, in-gap states are found to occur

for arbitrary strong impurity potentials when bulk topology is nontrivial, but were ab-
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sent in the trivial Haldane phase for strong impurity potentials. These characteristics

are, however, not generic, which has been demonstrated by models where the impurity

cannot distinguish between topologically trivial and nontrivial phases.

In our studies, we employ three-component classical spins of unit length, denoted by

SSSq, to model magnetic impurities. Consequently, the configuration space for these

classical spins can be represented as a two-sphere, denoted as S2. These SSSq act as

local magnetic fields, which couple to the local magnetic moment at site iq in a lattice

of itinerant electrons. In the numerical studies, the inherent structure of the itinerant

electron system is defined by the spinful Haldane model.

For any Hamiltonian H(SSS) with a unique ground state that smoothly depends on a

single classical spin SSS one can compute a first Chern number that characterizes the

associated U(1) ground-state bundle over S2 (see section 2.3). This topological invari-

ant is referred to as the first spin Chern number C
(S)
1 . It characterizes the fiber bundle

constructed from the base manifold S2 and the typical ground-state fiber |ψ0(SSS)⟩. C(S)
1

is a characteristic number of the ground-state bundle that takes values in Z. A change

of a topological invariant requires a gap closure, thus the spin Chern number can only

change when the ground state becomes degenerate on at least a point of the base

manifold S2, i.e., a subspace of the classical parameter space.

Our aim is to exploit the topological characterization of the S-space in addition to the

conventional k-space characterization. For the latter, the base manifold is a 2-torus

T 2 formed by the wave vectors in the first Brillouin zone. The associated principal

bundle gives rise to the first k-space Chern number C1, which categorizes, for instance,

the topological phases of the Haldane model. The topology of S-space is developed

through local interactions, whereas the topology of k-space considers infinite lattice

extensions. Hence, they reflect rather complementary physical aspects.

We seek to related these two and trace signatures of k-space topology in the transition

characteristics of the spin Chern number. To this end, we study the spectral flow of

in-gap states in dependence of the interaction parameter J , which defines the exchange

coupling strength between SSS and the electron system. In the weak coupling limit

J → 0, the electron system becomes independent of SSS, so trivially C
(S)
1 = 0. In the

strong coupling limit, however, the physics becomes local to the impurity and eventually

is gouverned by the magnetic monopole model [15,16,33,38], i.e., a quantum spin-1/2

in an external magnetic field. The spin Chern number in the magnetic monopole model

is known to be non-zero for finite external fields, thus, one expects C
(S)
1 ̸= 0 in the

strong-J limit.

The spin Berry curvature serves a twofold purpose within this thesis, besides its feed-

back to the adiabatic dynamics of the classical impurity spins, which has previously

been discussed in chapter 4, ΩΩΩ plays a crucial role in determining the spin Chern num-

ber. In fact, the spin Chern number can be calculated by integrating the spin Berry cur-
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vature over the base manifold, which, for a single impurity, is S2 ∼= {SSS ∈ R3||SSS| = 1}.

Moreover, the ΩΩΩ is associated with the Berry phase accumulated by the ground state

of the electron system as closed loops in S2 are adiabatically traversed by SSS [33] (see

section 2.2).

In this chapter, we locally couple a number of NS impurities to different sites of the

lattice. Accordingly, the space of calssical spin-configurations is an NS-fold direct

product S2
1 × ...×S2

NS
. The fiber bundle over this 2NS-dimensional base manifold can

topologically be classified by the NS-th spin Chern number C
(S)
NS

. Similar to the single

impurity case, C
(S)
NS

= 0 for J = 0 and C
(S)
NS

= 1 for J → ∞. In addition to studying

the transitions of C
(S)
1 , we investigate the transitions of higher spin Chern numbers

(NS > 1) and study the J-spectral flow of single-particle energies ϵk. We expound on

the computation of spin Chern numbers and argue, that utilizing symmetries of the

model can significantly increase numerical efficiency in the computation of C
(S)
NS

.

This section is closely aligned with our paper [155].

5.1 – Computation of Spin Chern Numbers

The Chern number as a topological invariant has been introduced in section 2.3. In

this context, our emphasis is on the technical aspects, and we formulate the N -th spin

Chern number by employing the spin Berry curvature. The process of computing the

spin Berry curvature has previously been detailed in section 4.1.5.

The N -th spin Chern number is defined by

C
(S)
N (M2N) :=

1

N !(2π)N

∮
M2N

tr
(
ωN
)

(5.1)

with ω = dA − iA2 as the spin Berry curvature two form. The latter is derived from

the spin Berry connection one form A (eq. 5.2) [48]. The trace of ωN integrated over

a 2N -dimensional closed (compact) orientable manifold M2N leads to a topological

invariant. We note, that any multiplication of n-forms is understood as their exterior

(wedge) product and by d we denote the exterior derivative. The integer quantization of

C
(S)
N may be understood as a consequence of a suitable index theorem, but is generally

taken as given by definition [39]. A typical fiber attached to each point of an even-

dimensional closed orientable manifold forms a fiber bundle and this fiber bundle can

topologically be characterized by a Chen number.

Since ω = dA− iA2, the curvature two form is a closed differential form, by definition

that is dω = 0. The Abelian spin Berry connection one form is

A(SSS) = i
∑
qα

⟨ψ0(SSS)| ∂

∂Sqα
|ψ0(SSS)⟩dSqα. (5.2)
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This definition, moreover, causes the Abelian spin Berry curvature to be an exact

differential from, i.e. ω = dA and A2 = 0. Accordingly, the differential two form of

that spin Berry curvature is given by

ω =dA = i
∑
qα,rβ

∂

∂Srβ
⟨ψ0(SSS)| ∂

∂Sqα
|ψ0(SSS)⟩dSrβ ∧ dSqα

=i
∑
qα,rβ

∂⟨ψ0(SSS)|
∂Srβ

∂|ψ0(SSS)⟩
∂Sqα

dSrβ ∧ dSqα

=
∑
rβ<qα

Ωrβ,qαdSrβ ∧ dSqα, (5.3)

where terms of the form ⟨ψ0(SSS)| ∂2

∂Srβ∂Sqα
|ψ0(SSS)⟩dSrβ ∧ dSqα vanish in the sum.

If one were to consider degenerate ground states, the non-Abelian spin Berry connection

(see [69]) would be necessary, which leads to a non-Abelian spin Berry curvature that

is still a closed but not necessarily an exact differential form. In the Abelian case of

non-degenerate ground states, however, the trace in equation 5.1 becomes trivial, since

it is carried out over the degree of freedom of fiber that is one-dimensional in this

instance. In our case, the fiber is related to the undetermined phase degree of freedom

of the unique many-body ground state the quantum system takes to a given impurity

configuration. Thus, the typical fiber is C. Non-Abelian however, that trace runs over

the multidimensioal space of states considered in the non-Abelian adiabatic theory

[69], e.g. all degenerate ground states. Yet, throughout this thesis, we consistently

reference the Abelian spin Berry curvature and henceforth omit the explicit statement

of ’Abelian’.

After specifying the typical fiber, we next focus on the base manifold. Each classical

impurity spin can point in any direction in three spatial dimensions, but their length is

fixed, so the two dimensional parameter space of an impurity is given by the two-sphere

S2
q . Consequently, the overall base manifold

M2NS = ΠNS
q=0S2

q (5.4)

is the NS-fold direct product of the two-spheres S2
q .

The top Chern number is the one that results from pairing the entire 2NS-dimensional

basis manifold with the 2NS-form that is given by the NS-th Chern character. Hence

in our case the NS-th Chern number is a generic topological index for a setup with

NS impurities and we have N = NS. Since ω itself is a two form (see eq. 5.3),

the 2N -dimensional integral over the 2N -form ωN takes the entire base manifold into

account.

The factor of 1
N !

in 5.1 accounts for multi-counting of equivalent contributions when

the sum in eq. 5.3 runs over all possible indices. Sufficiently restricting the sum
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prevents redundant computation of identical summands and the combinatoric 1
N !

-factor

becomes dispensable. This technical detail is a first stake which enhances numerical

performance. Furthermore, our definition of the spin Berry curvature in eq. 4.16

requires a restriction of rβ < qα or an additional factor 1/2 to ensure C
(S)
N ∈ Z and

not twice an integer.

5.1.1 – Exploiting SO(3) Symmetry of the Hamiltonian

Equipped with the preceding considerations we now exemplarily deduce an expression

to calculate the top Chern number C
(S)
2 for two classical impurities coupled to a quan-

tum host. Following up on the computation of the spin Berry curvature (eq. 4.70), a

straight forwardly evaluable form of C
(S)
2 is

C
(S)
2 =

1

2!(2π)2

∮
S2
1⊗S2

2

ω2(SSS)

= − 1

2!(2π)2

∮
S2
1⊗S2

2

∑
qα,rβ
q′α′,r′β′

(
∂⟨ψ0(SSS)|
∂Srβ

∂|ψ0(SSS)⟩
∂Sqα

∂⟨ψ0(SSS)|
∂Sr′β′

∂|ψ0(SSS)⟩
∂Sq′α′

dSrβ ∧ dSqα ∧ dSr′β′ ∧ dSq′α′

)

=
1

(2π)2

∮
S2
1⊗S2

2

rβ<r′β′∑
rβ<qα
r′β′<q′α′

Ωrβ,qαΩr′β′,q′α′dSrβdSqαdSr′β′dSq′α′

=
1

(2π)2

∫ 2π

0

dϕ1

∫ π

0

dθ1

∫ 2π

0

dϕ2

∫ π

0

dθ2

rβ<r′β′∑
rβ<qα
r′β′<q′α′

(
Ωrβ,qαΩr′β′,q′α′

∣∣∣∣∣∂(Srβ, Sqα, Sr′β′ , Sq′α′)

∂(ϕ1, θ1, ϕ2, θ2)

∣∣∣∣∣
)
. (5.5)

The first line presents the general formula for the second spin Chern number. In line

two, we provided a more explicit expression of the squared Berry curvature two-form

in terms of derivatives of the quantum system’s ground state and an four-fold wedge

product. The orientation of the surface element is fixed by selecting a parametrization

(push forward) of the base manifold. Furthermore, we eliminate redundant summands

and exploit the definition of the integration of differential forms by choosing a reference

order of the base manifold coordinates, which yields the third line. The integrand is an

explicit expression of the Pfaffian Pf(ΩΩΩ). The Pfaffian specifies the general form of the

polynomial that yields all non-redundant summands for any Chern number. Finally,

we parameterized the base manifold using the two generic angles θq and ϕq of spherical

coordinates for each S2
q , resulting in an easily computable expression for the second
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spin Chern number.

This formulation, however, does not exploit any symmetries. Utilizing symmetries

of the Hamiltonian and ultimately the integrand of the spin Chern number, we can

reformulate the integral in a minimal set of generalized coordinates and symmetry

based constant factors. The Hamiltonian Ĥ(SSS) = J
∑

q SSSqŝssiq + ĤH where ĤH (eq.

4.73) is the spinful Haldane model acting as the quantum host, is symmetric under

rotations. A rotation of the quantum-classical hybrid model is defined by a spatial

rotation of the classical spins alongside a rotation of the quantum spin degrees of

freedom in Hilbert space. Thus, Ĥ is invariant under the aforementioned group action

of SO(3) and Ĥ(SSS ′) = ÛĤ(SSS)Û †. Rotation of the impurities is achieved by SSSq →
RRR(nnn, ϕ)SSSq = SSS ′

q ∀q, where RRR(nnn, ϕ) is the matrix causing rotations of angle φ around

axis nnn in three dimensions. The associated rotation of the spin degrees in Hilbert

space is described by unitary operator Û = exp(−iŝssTnnnϕ) with the same nnn and ϕ.

Consequently, three degrees of freedom associated with the thee generators of this

symmetry (see eq. A.15) can be eliminated from the integral that determines the spin

Chern number.

Since the free (J = 0) quantum host is invariant under spin rotations and Ĥ does

not contain external fields, the ground state energy is invariant under simultaneous

rotations of the impurities, E0(SSS1,SSS2, ...) = E0(RRRSSS1,RRRSSS2, ...) with RRR ∈ SO(3). We

shorten the notion of global rotation of all impurities by SSS → SSS ′ and omit arguments

(nnn, ϕ) which are set to take the same values for RRR(nnn, ϕ) and Û(nnn, ϕ). Accordingly we

find

E0(SSS
′) =⟨ψ0(SSS

′)|Ĥ(SSS ′)|ψ0(SSS
′)⟩

=⟨ψ0(SSS
′)|ÛĤ(SSS)Û †|ψ0(SSS

′)⟩

=⟨ψ0(SSS)|eiφĤ(SSS)e−iφ|ψ0(SSS)⟩ = E0(SSS). (5.6)

We made use of the fact that a non-degenerate ground state has the same symmetry

as the Hamiltonian. Furthermore, one can find a common eigenbasis of the Hamil-

tonian and the unitary operation that characterizes the symmetry, thus |ψ0(SSS)⟩ =

eiφÛ †|ψ0(RRRSSS)⟩. Operator Û does not depend on SSS, but phase φ = φ(SSS,nnn, ϕ) in prin-

ciple does.

Next, we show the invariance of the spin Berry curvature two form under simultaneous

rotations of all impurities, i.e., SSSq 7→ RRR(nnn, ϕ)SSSq = SSS ′
q ∀q. At first, we recall the

consequence of such a rotation on the one form
∑

α
∂f(SSS)
∂Sα

dSα, which is

∑
α

∂f(SSS ′)

∂S ′
α

dS ′
α =

∑
αβ

(
∂f(SSS ′)

∂Sβ

∂Sβ
∂S ′

α

)(
∂S ′

α

∂Sβ
dSβ

)
=
∑
β

∂f(SSS ′)

∂Sβ
dSβ. (5.7)
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Accordingly, the spin Berry curvature two form ω(SSS ′) of globally rotated impurities is

ω(SSS ′) =i
∑
qα,rβ

∂⟨ψ0(SSS
′)|

∂S ′
rβ

∂|ψ0(SSS
′)⟩

∂S ′
qα

dS ′
rβ ∧ dS ′

qα

=i
∑
qα,rβ

∂⟨ψ0(SSS
′)|

∂Srβ

∂|ψ0(SSS
′)⟩

∂Sqα
dSrβ ∧ dSqα

=i
∑
qα,rβ

∂
(
⟨ψ0(SSS)|Û †eiφ

)
∂Srβ

∂
(
e−iφÛ |ψ0(SSS)⟩

)
∂Sqα

dSrβ ∧ dSqα

=i
∑
qα,rβ

∂⟨ψ0(SSS)|
∂Srβ

∂|ψ0(SSS)⟩
∂Sqα

dSrβ ∧ dSqα = ω(SSS). (5.8)

Straight forwardly
(

∂
∂Srβ

⟨ψ0(SSS)|
)
|ψ0(SSS)⟩ = 0 vanishes. Furthermore, unitarity (Û †Û =

1) of the SSS-independent rotation in Hilbert space Û yields

∑
qα,rβ

∂eiφ

∂Srβ

∂e−iφ

∂Sqα
dSrβ ∧ dSqα =

∑
rβ<qα

(
∂φ

∂Srβ

∂φ

∂Sqα
− ∂φ

∂Sqα

∂φ

∂Srβ

)
dSrβdSqα = 0. (5.9)

As shown, a simultaneous rotation of all impurities has no effect on the integrand of the

second spin Chern number. This statement, in fact, holds analogously for an arbitrary

number of impurities, i.e., C
(S)
N .

Consequently, in case of C
(S)
2 , the integral taking advantage of SO(3) symmetry can be

formulated in terms of one angle ϑ enclosed by two impurities as well as α1, α2, α3. The

latter account for the three rotations of the entire impurity configuration associated

with the generators of SO(3). Transforming the integral to these coordinates leads to an

effective one dimensional integration. Hence, exploiting the aforementioned symmetry

avoids redundant numerical effort of computing ΩΩΩ on the entire four-dimensional base

manifold and makes the evaluation of the spin Berry curvature on a one-dimensional

submanifold sufficient to compute the second spin Chern number. The integral is taken

over

ω2(SSS1,SSS2) =

rβ<r′β′∑
rβ<qα
r′β′<q′α′

Ωrβ,qαΩr′β′,q′α′dSrβdSqαdSr′β′dSq′α′ , (5.10)

which is denoted as ω̃2(ϑ, α1, α2, α3) = f(ϑ, α1, α2, α3) sin(ϑ) sin(α2)dϑdα1dα2dα3 in

the new set of coordinates. By construction, however, f(ϑ, α1, α2, α3) does not actually

depend on α1, α2, α3, as it obeys SO(3) symmetry. Consequently, integration over

α1, α2, α3 trivially yields a constant factor only. Hence, by exploiting SO(3) symmetry,
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the second spin Chern number can be evaluated by

C
(S)
2 =

1

(2π)2

∮
S2
1⊗S2

2

ω2(SSS1,SSS2)

=
1

(2π)2

∮
S2
1⊗S2

2

rβ<r′β′∑
rβ<qα
r′β′<q′α′

Ωrβ,qαΩr′β′,q′α′dSrβdSqαdSr′β′dSq′α′

=
1

(2π)2

∫ π

0

dϑ

∫ 2π

0

dα1

∫ π

0

dα2

∫ 2π

0

dα3

rβ<r′β′∑
rβ<qα
r′β′<q′α′

(
Ωrβ,qαΩr′β′,q′α′

∣∣∣∣∣∂(Srβ, Sqα, Sr′β′ , Sq′α′)

∂(α1, α2, α3, ϑ)

∣∣∣∣∣
)

=2

∫ π

0

dϑ sin(ϑ)f(ϑ). (5.11)

5.1.2 – C
(S)
N in the Strong Coupling Limit

In the strong coupling limit, it is possible to simplify and analytically perform the

calculation of higher spin Chern numbers C
(S)
N with N > 1. For large J , the model be-

comes effectively local since we assume local impurity-host interaction. Each impurity

polarizes a quantum spin-1/2 at the site it couples to the host, and the host-impurity

interaction reduces to a series of uncorrelated monopole models. Recalling the spin

Berry curvature in the J → ∞ limit (eq. 4.54)

ΩΩΩ(∞) = 111NS ⊗ΩΩΩ(∞)
qr δqr, with ΩΩΩ(∞)

qq =
1

2
SSSqRRR =

1

2

 0 −Sqz Sqy

Sqz 0 −Sqx
−Sqy Sqx 0

 (5.12)

we can analytically calculate the top Chern number for an arbitrary number of impu-

rities in the strong coupling limit.

To begin with, we recover the well known result of a single quantum spin-1/2 in an

external magnetic field [19] when a single impurity is coupled to the quantum host.

Straight forward integration yields C
(S)
1 (SSS) = 1 for ΩΩΩ in the form of eq. 5.12 (see [19]

or [53]). As ΩΩΩ is of the form of equation 5.12 the spin Berry curvature two from is

ω = −1

2

∑
q,αβγ

Sqγ ϵαβγ dSqα ∧ dSqβ. (5.13)

The N -th spin Chern number C
(S)
N can be obtained through the N -fold exterior product

of ω. On the other hand, the N -th power of the spin Berry curvature two-form takes
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the factorized form

ωN =

(
−1

2

)N (∑
q,αβγ

Sqγ ϵαβγ dSqα ∧ dSqβ

)
∧

( ∑
q′,α′β′γ′

Sq′γ′ ϵα′β′γ′ dSq′α′ ∧ dSq′β′

)
...

=

(
−1

2

)N (∑
αβγ

Sqγ ϵαβγ dSqα ∧ dSqβ

)
∧

(∑
α′β′γ′

Sq′γ′ ϵα′β′γ′ dSq′α′ ∧ dSq′β′

)
...

=

(
−1

2

)N
N !

(∑
αβγ

S1γ ϵαβγ dS1α ∧ dS1β

)
·

(∑
α′β′γ′

S2γ′ ϵα′β′γ′ dS2α′ ∧ dS2β′

)
...

=

(
−1

2

)N
N ! 2N

(∑
α<β,γ

S1γ ϵαβγ dS1αdS1β

)
·

( ∑
α′<β′,γ′

S2γ′ ϵα′β′γ′ dS2α′dS2β′

)
...

(5.14)

The exterior products of equal one forms vanish, hence all (q, q′, ...) have to be pairwise

different. For q = q′ indices α, β, α′, β′ ∈ {x, y, z} have to take at least one value

twice. Thus, any q = q′ inevitably leads to some dSqα ∧ dSqα = 0, which is exploited

from the second to the third line. Sufficiently restricting the sums to avoid repeated

summation of equivalent contributions brings up a factor of N ! which cancels the 1/N !

in the definition of the spin Chern number (eq. 5.1). It is only a combinatorial factor,

as there are N ! equivalent arrangements to order the two-forms of different q. For

example dS1α1 ∧ dS1β1 ∧ S2α2 ∧ dS2β2 = dS2α2 ∧ dS2β2 ∧ dS1α1 ∧ dS1β1 , which has been

utilized from the third to the fourth line. Furthermore, restricting the sum to α < β

yields another factor of 2 for each q and finally we choose a parametrization. The

acquired equation yields N independent factors.

Next, we substitute obtained result for ωN (eq. 5.14) in the definition of the spin Chern

number, which leads to

C
(S)
N =

1

(2π)NN !

∮
∏

q S2
q

ωN

=
(−1)N

(2π)N

∮
∏

q S2
q

(∑
α<β,γ

S1γ ϵαβγ dS1αdS1β

)
·

( ∑
α′<β′,γ′

S2γ′ ϵα′β′γ′ dS2α′dS2β′

)
...

=(−1)N

(
1

2π

∮
S2
1

∑
α<β,γ

S1γ ϵαβγ dS1αdS1β

)
(

1

2π

∮
S2
2

∑
α′<β′,γ′

S2γ′ ϵα′β′γ′ dS2α′dS2β′

)
...

=(−1)N C
(S)
1 (S2

1 ) C
(S)
1 (S2

2 ) = (−1)N
∏
q

C
(S)
1 (S2

q ). (5.15)

In summary, we conclude, that the N -th spin Chern number C
(S)
N factorizes into a
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product of the first spin Chern numbers C
(S)
1 in the strong coupling limit. We derived

this explicitly for a spin Berry curvature of the strong coupling form (eq. 5.12). How-

ever, the specific structure of M2N =
∏

q S2
q has to be pointed out. The factorization

is not valid for an arbitrary decomposition of M2N into sub-manifolds. Simultaneous

decomposition of the product manifold M2N and a matching local block structure of

ΩΩΩ, i.e., uncorrelated local Hilbert spaces, enable the factorization derived in equation

5.15. It comes down to a coherent factorization of the base manifold and the ground

state. For J = ∞, the latter becomes a product of the local single particle states local-

ized at the impurity sites and a state that accounts for the rest of the electron system

which is disconnected from the impurities. The fiber bundle can be decomposed into

independent sub-bundles when no quantum state has spectral weight at impurity sites

associated with different subsets of the base manifold. In fact, any spin Chern number

over sub-manifolds other than products of the generic Bloch spheres has to be zero in

the strong-J limit.

Ultimately, the top Chern number is the topological index suited to characterize the

system. In general, ’minor’ Chern numbers, e.g. C
(S)
1 (M2) over submanifold M2 ⊂

M2N for N ≥ 2, yield little characterizing information on the entire model. The

previously discussed scenario is a specific case where the first spin Chern number,

C
(S)
1 (S2

q ), eminently qualifies as a reference for higher spin Chern numbers C
(S)
N (M2N).

5.2 – Spin Chern Transition in the Haldane-Impurity Model

Subsequent to the findings of section 5.1 and equipped with analytical insight in the

weak (section 4.1.3.1) and the strong (section 4.1.4) coupling limit, we now consider

the spin Chern transition in the Haldane-impurity model. For now we assume that all

J ≥ 0, as negative J result in similar physics, but change the sign of e.g. C
(S)
1 (SSS) when

choosing the same parametrization.

Exchange interaction between the impurities and the host model beyond the weak

coupling limit affects the eigenstates and eigenenergies of the unperturbed host. As we

assume local host-impurity exchange coupling at sites iq, only eigenenergies associated

with eigenstates of non-zero spectral weight at iq are affected by the classical spins. We

emphasize, that only for ξ = nπ/2 with n ∈ Z the Fermi energy EF is zero. In general,

however, the center of the bulk band gap of the Haldane model is a function of the

complex phase of the next-nearest neighbor hopping ξ. We choose ξ = π/4, to account

for a generic situation. Moreover, the onsite potential M determines the magnitude of

the bulk band gap ∆E (eq. 4.77) as we fix τ2 = 0.1 and ξ = π/4. At M = ±Mcrit the

Haldane model is right at the topological phase transition (∆E = 0), consequently, for

|M | < |Mcrit| the model is in an insulating phase with nontrivial bulk band topology

and for |M | > |Mcrit| it is in an insulating phase with trivial k-space topology. The
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electronic structure of the model as a function of the host-impurity exchange coupling J

is obtained by numerical diagonalization of the effective hopping matrix (eq. 4.4), since

its eigenvalues are the single particle eigenenergies of the quantum-classical model.

The chemical potential µ is set midway through the bulk band gap. At zero temper-

ature, µ approaches the center of the bulk band gap even for an unequal density of

states near the upper edge of the valence and the lower edge of the conduction band

(see fig. A.8). For a chemical potential within the bulk band gap, the model is at half

filling in the weak coupling limit.

5.2.1 – Single Impurity

At first, a single impurity (NS = 1) is coupled to site i0 of the A-sublattice in the bulk

of the Haldane host. Generally, results for an impurity at a B-site will be different.

However, swapping M → −M and ξ → −ξ interchanges the roles of the A- and the

B-sublattice. Thus, we expect only quantitative differences for an impurity coupled to

a site of either sublattice. For the sake of simplicity, we label the single impurity that

couples to the host at site i0 by SSS within this section and omit further labels.

5.2.1.1 Low-Energy Electronic Structure

For now, we examine the low-energy electronic structure and analyze the eigenenergies

within the bulk band gap as the coupling strength J is increased from the weak to the

strong coupling limit. We utilize generic parameters ξ = π/4 and τ2 = 0.1 in units

of τ1 for this analysis. Under this set of parameters, the Haldane model lacks both

particle-hole and time-reversal symmetry.

All panels of figure 5.1 are truncated in their energy range to visualize the situation

in and around the bulk band gap ∆E. The energy range with no background color

indicates the bulk band gap. A gray line in the center of ∆E refers to the Fermi

energy µ ≈ −0.21. Red background color indicates the valence band of bandwidth

Wval ≈ 2.2 and blue the conduction band of bandwidth Wcond ≈ 3.5. The varying

onsite potentials M among the three panels all result in the same bulk band gap

∆E ≈ 0.37. The bulk band gap (eq. 4.77) remains unaffected by J . A finite lattice

of 39 × 39 unit cells yields distinct eigenenergies in both the conduction and valence

bands, resulting from finite size gaps. In the thermodynamic limit, i.e., in a lattice

of macroscopic extension, eigenenergies would densely form both bands. Figure 5.1

illustrates the main characteristics of the J-dependent single-particle eigenenergies ϵk,

in particular within the bulk band gap. The ϵk within the gap show a dependence on

the electronic structure of the host, as indicated by different M .

In the left panel with M = −0.5Mcrit, the Haldane model is in a topological nontrivial

phase (C = 1). The negative onsite potential favors occupation of the A-sublattice,
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Figure 5.1: One particle eigenenergies depending on the coupling strength J for a single
impurity coupled to the bulk of a Haldane model. The panels display situations for
different onsite potentials M . Occupied energy levels are depicted by red markers and
the bulk valence band is indicated by the red background color, while blue color refers
to empty energy levels and the bulk conductance band. The Fermi energy EF centered
in the bulk band gap (uncolored background) is marked by the gray line. Computations
are performed on a 39×39 unit cell lattice with periodic boundary conditions, τ2 = 0.1
and ξ = π/4.

so ⟨n̂i0⟩ = ⟨ψ0|
∑

σ ĉ
†
i0σ
ĉi0σ|ψ0⟩ > 1 for finite J . The central panel displays a situation

where the Haldane model is in the same topological phase, but with M = 0.5Mcrit, so

occupation of the A-sublattice is energetically disadvantageous, i.e., ⟨n̂i0⟩ < 1 for finite

J . Moreover, M = 1.5Mcrit, as displayed in the right panel, yields trivial bulk band

topology for the Haldane model (C = 0).

For J = 0, the first spin Chern number C
(S)
1 = 0 always vanishes, since the parameter

manifold S of the classical impurity spin does not affect the quantum system and

the unperturbed spinful Haldane model is trivial concerning the spin Chern number

C
(S)
1 (S). For small but finite J , we find C

(S)
1 = 0 as well, which is easily concluded from

the perturbative relation ΩΩΩ ∼ J2 (eq. 4.30) in the weak coupling limit. Since ΩΩΩ = 0 for

J → 0 also C
(S)
1 = 0. Moreover, ΩΩΩ is a continuous function of J in the weak coupling

limit, but since C
(S)
1 is quantized, the spin Chern number cannot change continuously

with J . Consequently, C
(S)
1 = 0 holds for small but finite J as well.

When increasing J , the system undergoes a topological phase transition at some finite

critical coupling strength Jcrit. The spin Chern number discontinuously changes from

C
(S)
1 = 0 to C

(S)
1 = 1 at this phase transition. The quantum-classical model remains in

that spin-topologically nontrivial phase for any J > Jcrit. An in-gap state crossing the

chemical potential leads to a degeneracy of the many-electron ground state right at the

topological phase transition. Accordingly, the coupling strength where one ϵk(J) = µ

defines Jcrit.

Due to SO(3)-symmetry of the Haldane-impurity model (see section 5.1), single particle

energies ϵk(SSS) = ϵk are the same on the entire manifold of impurity configurations. This

S2 is the base manifold of the fiber bundle that defines the first spin Chern number

for a single impurity. To each non-degenerate ϵk one can assign a single particle spin

114



5 – Topology of Localized Magnetic Moments on a Chern Insulator

Chern number c
(S)
1 . The single particle energy crossing the chemical potential is non-

degenerate in all panels of figure 5.1. The single electron Chern number of the in-gap

state crossing µ is nontrivial, i.e., c
(S)
1 ̸= 0.

Since the model is non-interacting, single-electron spin Chern numbers are additive,

thus, there is a change in the total spin Chern number C
(S)
1 at Jcrit determined by

the c
(S)
1 of the in-gap states. As we consider half filling, all ϵk < µ are occupied.

Consequently, the total spin Chern number changes by ∆C
(S)
1 = −c(S)1 when a single

particle energy crosses µ from below, i.e., the in-gap state becomes unoccupied, and by

∆C
(S)
1 = +c

(S)
1 when a single particle energy crosses µ from above, i.e., the correspond-

ing state gets occupied. Single particle spin Chern number c
(S)
1 = +1 are assigned to

in-gap states (a), (c), (e) and c
(S)
1 = −1 to in-gap states (b), (d) in figure 5.1. In all

cases, ∆C
(S)
1 = +1 at Jcrit.

An exception, where ϵk ̸= µ for any finite J , i.e., no single particle energy crosses the

chemical potential, will be subject of a latter discussion. A final remark in this section

concerns the choice of µ. If the chemical potential was, for example, set just above the

conduction band rather than in the middle of the bulk band gap, possibly a different

energy level ϵk would intersect with the chemical potential. For example in the central

panel of figure 5.1, state (c) would never cross µ and be unoccupied for all J . Instead,

state (d) would cross µ from below. However, ∆C
(S)
1 = +1 would still be the case,

although at a then different Jcrit.

5.2.1.2 The Magnetic Monopole in the Strong-J Limit and the Spin Chern

Transition at Jcrit

The spinful Haldane model is unpolarized at J = 0, i.e., ⟨ŝssi⟩ = 0 at all sites. As

the coupling strength J increases, a local magnetic moment ⟨ŝssi0⟩ ̸= 0 forms in the

electron system at impurity site i0. With rising J , this spin moment forms a rigid

quantum spin-1/2, i.e., ⟨ŝss2i0⟩ → 3/4. Thus, the occupation at site i0 approaches half

filling ⟨n̂i0⟩ → 1 for J → ∞. One can assume a single electron being localized at the

impurity site for infinite J . Furthermore, the impurity polarizes the local magnetic

moment ⟨ŝssi0⟩ → −0.5SSS in the limit of strong J . Without loss of generality we set

SSS = eeez for now.

Right before the topological spin Chern transition, i.e., J → Jcrit from below, we find

⟨ŝi0,z⟩ ≈ −0.46 and ⟨ni0⟩ ≈ 0.99 for the left panel in figure 5.1 with M = −0.5Mcrit

where Jcrit ≈ 12.9. Moreover, ⟨ŝi0,z⟩ ≈ −0.5, ⟨ni0⟩ ≈ 1.00 and Jcrit ≈ 94.8 when

M = 0.5Mcrit (central panel in fig. 5.1, and ⟨ŝi0,z⟩ ≈ −0.40, ⟨ni0⟩ ≈ 0.92 and Jcrit ≈ 8.2

when M = 1.5Mcrit (right panel in fig. 5.1). The local occupation ⟨ni0⟩ as well as the

local spin polarization ⟨ŝi0⟩ are close to the J → ∞ saturation values in all three cases.

Yet, as we approach Jcrit from below, C
(S)
1 = 0.

In the extreme limit of very strong host-impurity exchange (J → ∞), hopping of elec-
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trons from and to the impurity site is suppressed. In this case, one can assume a single

electron at site i0 being fully localized and polarized by the impurity. Accordingly, the

local physics at i0 is effectively described by a single quantum spin-1/2 in an external

magnetic field in that limit. Hence, JSSS takes the role of an external magnetic field to

the electron and the effective local Hamiltonian reads

Ĥmono = JSSSŝssi0 . (5.16)

This well-known Hamiltonian serves as the paradigmatic model for a magnetic monopole

[15, 33]. The spin Berry curvature of this model is easily derived (see e.g. [33]) and

takes the form we refer to as the strong coupling ΩΩΩ (eq. 5.12) for a single impurity.

Next, we emphasize an analogy of this magnetic monopole picture to magnetostatics,

which proofs to be enlightening in the proceeding discussion. We touched upon the

monopole picture in section 2.2 already, but discuss its characteristics in more detail

hereinafter. To strengthen the analogy, we apply the notion of RRR = JSSS with RRR ∈ R3.

In this single impurity - single electron picture, the spin Berry curvature can be inter-

preted as a three-component vectorfield (see eq. 2.17) resulting from the curl of the spin

Berry connectionAAA(RRR), which itself takes the role of a vector potential. AAA(RRR) takes the

form of the vector potential of a magnetic point charge located at RRR = 0 (see eq. 2.18).

Accordingly, the magnetic charge density is ρmag(RRR) = qmagδ(RRR). The Berry curvature,

correspondingly, takes the form of the magnetic field induced by this point charge. In

case of the magnetic monopole, the spin Berry connection AAA(RRR) = i⟨ψ0(RRR)|∇RRR|ψ0(RRR)⟩
is the connection of the U(1) bundle of ground states |ψ0RRR⟩ over base manifold RRR and

one obtains

BBB(RRR) = ∇RRR ×AAA(RRR) =
µ0

4π
qmag

RRR

|RRR3|
(5.17)

for the spin Berry curvature.

Integrating the magnetic flux through a closed two-dimensional surface yields the spin

Chern number in this picture. Hence, when e.g. a sphere of radius R0 encloses the

magnetic charge, we get

C
(S)
1 =

1

2π

∮
|RRR|=R0

BBB(RRR)R2dR = 1, (5.18)

for a magnetic charge of qmag = 2π/µ.

The monopole model predicts an ill-defined spin Chern number due to the two-fold

degenerate ground state of Hmono (eq. 5.16) at J = 0, i.e., RRR = 0, and C
(S)
1 = 1 for all

J > 0. In the full Haldane-impurity model, however, the topological phase transition

and its concomitant gap closure generically takes place at some finite exchange coupling
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Jcrit > 0. Contrary to the monopole model, the Haldane-impurity model requires the

impurity to localize electrons and polarize magnetic momentum. While any finite J

fully polarizes the single electron in the monopole model, electron states in the spinful

Haldane model remain delocalized and are only marginally polarized at small J . Hence,

in the Haldane-impurity model the gap closes on the surface R = |RRR| = JcritS (S = |SSS|)
and not only in a singular pointRRR = 0 in the space of the external magnetic field. SO(3)

symmetry of the Hamiltonian (eq. 4.80) leads to infinitely degenerate eigenenergies

ϵk(SSS) = ϵk on the entire critical surface. Consequently, the N -electron ground state

energy E =
∑

ϵk<µ
ϵk is equally degenerate, which is apparent at the topological phase

transition at Jcrit.

Relating this to the analogy with magnetostatics, one conceives a magnetic charge

qmag uniformly spread over a 2-sphere with radius R = JcritS in RRR space. Hence, the

magnetic charge surface density reads

σmag =
qmag

4πJ2
critS

2
, (5.19)

and the magnetic charge density

ρmag = σmagδ(R− JcritS). (5.20)

By help of the divergence theorem and SO(3) symmetry, solving ∇RRRBBB(RRR) = µ0ρmag(RRR)

for the envisioned magnetic field, i.e., the spin Berry curvature, yields

BBB(RRR) =
µ0

4π
qmag

RRR

|RRR|3
Θ(R− JcritS). (5.21)

Herein Θ is the Heaviside step function. Since RRR = JSSS, we note Θ(R − JcritS) =

Θ(J−Jcrit). Accordingly, in the interior of the critical sphere with |RRR| = JcritS the field

BBB(RRR) vanishes, i.e., for J < Jcrit. Outside of this critical sphere, that is for J > Jcrit,

the field takes the same form as for a magnetic point charge at the origin. In this picture

one understands, why the single impurity spin Berry curvature, which takes the role

of a magnetic field in this monopole analogy, jumps at Jcrit from ΩΩΩ(J < Jcrit) = 0

to its strong coupling form, given by equation 4.54, for J > Jcrit. This jump of ΩΩΩ at

Jcrit is of topological origin and is observed in the numerically computation of ΩΩΩ(J)

as well. The Chern number as the magnetic flux through a sphere of radius |RRR| = JS

is consequently given by C
(S)
1 = Θ(J − Jcrit). Thus, it changes discontinuously from

C
(S)
1 = 0 for J < Jcrit to C

(S)
1 = 1 for J > Jcrit and is ill-defined right at J = Jcrit.

Since hopping from and to the impurity site is suppressed for J → ∞, the rest of

the host model is decoupled from the impurity site and therefore also from the locally

coupled SSS. Consequently, the Haldane model excluding impurity site i0 yields C
(S)
1,rest =
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0, since it is unrelated to S2.

For a single impurity, we reasoned that the spin Chern number of the full model (eq.

5.1) can analytically be computed via the magnetic monopole model (eq. 5.16) in the

J → ∞ limit. Combining this insight with the fact that C
(S)
1 = 0 for J → 0 (see eq.

4.30), the necessity for a topological phase transition at some intermediate J = Jcrit

becomes apparent. Such a transition requires an in-gap state to cross the chemical

potential µ as a function of J , i.e., one ϵk(Jcrit) = µ. We also calculate C
(S)
1 = 0 and

C
(S)
1 = 1 numerically for various J . In the numerical studies, the spin Chern number is

obtained from equation 5.1, with the spin Berry curvature being computed via equation

4.70.

5.2.2 – Connecting the Spin Chern Transition and k-Space Topology

Transitions of the spin Chern number are driven by the host’s electronic structure

that is localized in the vicinity of the impurity. Acting like a local magnetic field JSSS,

the impurity locally spin-polarizes the electron system, which lifts the spin SU(2)-

symmetry of total-spin multiplets of the spinful Haldane model, i.e., at J = 0. This

local Zeeman effect forms two high-energy states for large J , which are not visible in

figure 5.1, since therein only the low energy regime of eigenenergies close to the bulk

band gap are displayed.

Assuming an impurity spin orientation SSS ∼ eeez in the +z direction, a spin-down state

decreases in energy as coupling strength J increases. This spin-down state separates

from the lower edge of the valence band as the coupling strength reaches approximately

the energy of the valence band bandwidth Wval. Similarly, a spin-up state increases in

energy, separating from the upper edge of the conduction band at J ∼ Wcond. Such

Zeeman-splitting characteristics occur irrespective of the electron system’s parameters.

Both of these high-energy states, with ϵk ∼ ±J for sufficiently large J , are exponentially

localized in the vicinity of i0. In the limit of J → ∞, they become fully localized at

the impurity site and constitute the magnetic-monopole model of equation 5.16.

Concerning the localized low-energy states within the bulk band gap (see fig. 5.1),

the physical reasoning is more intricate. Their nature very much depends on the

k-space topology of the Haldane host, which is characterized by the first bulk band

Chern number C1 (see fig. 4.3). Disregarding trivial spin-duplication, the topologically

nontrivial Haldane phase has C1 = ±1.

We find two in-gap states for sufficiently large J whenever k-space topology is nontriv-

ial, examples hereof are states (a), (b) and (c), (d) in figure 5.1. Their eigenenergies lie

in the bulk band gap for sufficiently large J . With J increasing from the weak towards

the strong coupling limit, one eigenenergy splits off the upper edge of the valence band

and one off the lower edge of the conduction band. Both do not merge back into the

continuum again, instead, their energies degenerate in the bulk band gap for J → ∞.
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Contrarily, in the trivial Haldane phase (C1 = 0) the bulk band gap is completely

bridged by a single in-gap state as a function of J . Depending on parameters of the

electron system, a single particle state splits of the continuum of the valence or the

conduction band as a function of J . It merges, however, back into the respective other

continuum at finite J . Consequently, there is no in-gap state at J → ∞ as the example

of state (e) in figure 5.1 illustrates.

At infinite host-impurity exchange, the impurity acts like a hard, zero-dimensional

defect to the host. In our scenario, that is a point-defect in both the spin-up and the

spin-down copy of the Haldane model. The Haldane model belongs to class A in the

Altland-Zirnbauer classification [31] and since it is a two-dimensional model, a point-

defect is of codimension two (codimension = bulk dimension - defect dimension) [20].

According to the ten-fold way which relates bulk topology to gapless modes localized

at topological defects [32], a model of class A in two spatial dimensions is topologically

classified trivial for a defect of codimension two. Consequently, referring to the bulk-

boundary correspondence, there is no reason to expect a topologically protected zero

mode localized at i0 for the topologically nontrivial host (C1 = ±1).

For ’soft defects’, i.e., finite impurity strengths, is it known that bound states around a

defect can serve as a local signature of a topologically nontrivial bulk, even though the

ten-fold way classifies a defect of the considered codimension as trivial for the respective

system under consideration [146, 149]. Hence, one might also expect a close relation

between the bulk Chern number and the occurrence of topological edge modes for the

presented setup of a magnetic point impurity in a spinful Haldane model. In fact, the

existence of edge states in the Haldane model subject to various nonmagnetic local

impurity potentials was found to be associated with the bulk band topology [153].

In the subsequent proceedings, we provide a comprehensible understanding why a

localized spin-up and spin-down mode must exist in the strong J-limit for a host of

nontrivial bulk topology. Such an ingap mode is predominately localized at the nearest

neighbor sites of i0 and is absent in the topologically nontrivial host phase.

We start the discussion by noting that in the limit of J → ∞ the low-energy structure

around the bulk band gap is determined solely by the spinful Haldane model with a hole

at i0. If one assumes a macroscopically large hole, the bulk-boundary correspondence

demands a topologically protected zero mode at the one-dimensional boundary of that

hole if the k-space topology of the Haldane model is nontrivial, i.e., C1 = ±1. In that

case, there is a dispersive chiral edge mode bridging the bulk band gap for both spin

projections. As this in-gap mode inevitably crosses the chemical potential µ within

the bulk band gap, it is also referred to as a gapless zero mode. Due to its dispersion,

the number of in-gap states forming this gap-bridging edge mode is determined by a

fraction of the number of unit cells Nedge along the edge, as any finite number of unit

cells along the open boundary results in a finite k-grid. For a Haldane model in a
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cylinder like geomertry, i.e., with two edges, figure 4.4a displays the two topologically

protected zero modes that bridge the bulk band gap. This figure also illustrates that

the in-gap modes occur in a finite k-range only. The number of unit cells along the

edge of the hole is proportional to the hole’s radius r, i.e., Nedge ∝ 2πr. Reducing the

radius of the hole essentially means increasing the discretization of the edge in real

space. Consequently, the coarser k-grid leads to fewer in-gap states forming the edge

mode. Ultimately, when shrinking the hole to a single site, the finite-size thinning of

the edge mode leads to just a single in-gap state per spin projection. Generically, this

single in-gap state is not located at µ, i.e., the system is not gapless.

In the limit of infinite J , the spin-up and spin-down edge states degenerate, as the

impurity site i0 decouples energetically from the Haldane model. Thus, the lattice

without i0 is unaffected by the impurity. At large but finite J , however, the spin-up

and the spin-down in-gap states are non-degenerate, as the classical spin feeds back

to the edge-state due to finite hopping between i0 and its adjacent lattice sites. We

observe exactly these Zeeman-split edge modes for sufficiently large J in the left and

central panel of figure 5.1, where k-space topology of the spinful Haldane model is

nontrivial.

Moreover, we investigate the characteristics of finite holes in the lattice of the Haldane

model. In figure 5.2, finite clusters of lattice sites centered around i0 are (energetically)

removed from the Haldane model. Each cluster includes site i0 and all sites linked

to i0 by r or less nearest neighbor hoppings on the honeycomb lattice. We refer to

this specification of distance, framed in terms of nearest-neighbor hoppings, as the

’honeycomb metric.’ Hence, we may think of r as the radius of the hole with respect

the honeycomb metric.

As previously argued for a single-site hole, the hole sites are dynamically decoupled

from the low-energy electronic structure when classical spins couple to all sites of a

hole by infinite J . Hence, in the limit of infinitely strong exchange coupling (J → ∞),

the low-energy sector of a Haldane-impurity model is the same as for a Haldane model

where the hole-sites are removed from the lattice. Here, the eigenenergy spectra in

figure 5.2 are numerically evaluated for J = 103 and impurities at all the hole-site are

co-aligned (SSSq = eeez ∀q), which effectively removes the hole sites from the electronic

structure in and around the bulk band gap.

The left panels of figure 5.2 display the low-energy electronic structure of the Haldane

model with a hole of the respective radius r. A honeycomb lattice is displayed in the

right panels, where green sites mark the holes, violet sites indicate the edge and gray

illustrates further sites of the Haldane model. All sites at the edge of the Haldane

model belong to the same sublattice. A-sites are indicated by full colored circles and

B-sites by pale colors. For the largest displayed hole with r = 9, a number of 136 sites

(green) are removed from the lattice and the outer shell, i.e., the edge of the Haldane
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Figure 5.2: Single particle eigenenergies ϵk of the Haldane model with a ’hole’ as a
function of the on-site potential M (left panels). Holes are centered around site i0 with
radii r = 0, 1, 2, 9 (from top to bottom) in the honeycomb metric, which is specified
in the text. Blue and red lines indicate the bulk band gap in the right panels and the
orange background the topologically nontrivial Haldane phase. Right panels display the
hole sites (green) and the first shell, i.e., the boundary of the Haldane model to the hole
(violet). Further sites of the Haldane model are gray. Full colored circles in the right
panels indicate A-sites and pale circles B-sites. Hopping between the Haldane model
(violet and gray sites) and the hole (green sites) is effectively prevented by exchange
coupling impurities with J = 103 to all hole-sites. Computations are performed on a
39 × 39 unit cell lattice with periodic boundary conditions, τ2 = 0.1 and ξ = π/2.
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model at r + 1 = 10 from i0 (violet), is formed by 3(r + 1) = 30 A-sites.

In the lowest left panel of figure 5.2, in-gap states between the red and the blue bold

lines are found for nearly all −Mcrit < M < Mcrit, which corresponds to the topolog-

ically nontrivial phase indicated by an orange background color. In the limit r → ∞,

these in-gap states would densely fill the entire bulk band gap in the M -range that

corresponds to nontrivial k-space topology. Besides a decrease in the number of in-gap

states, the spectral flow with M remains qualitatively unchanged for holes of smaller

radii r. Based on the aforementioned arguments, we relate this reduction in the number

of in-gap states to the diminishing number of edge sites, which implies an increasing

discretization of the edge for smaller r.

In-gap states are predominately localized at the edge sites at r+1 (violet). Their weight

reduces significantly and ultimately declines exponentially further away from the hole.

Even though the honeycomb lattice is bipartite, the edge sites of any hole constructed

via the honeycomb metric are assigned to the same sublattice. Due to their exponential

localization at the edge, the in-gap states’ energies increase (decrease) about linearly

with increasing M for holes of odd (even) radius, where the edge is formed solely by

A (B) sites. Figure 5.2 displays a neat numerical verification of this pattern.

When shrinking the hole to a single site, a single spin-degenerate edge mode is primarily

localized on the three nearest neighbor sites of i0 (violet sites in the upper right panel of

fig. 5.2). It is exactly this edge mode that we observe as in-gap states (a), (b) and (c),

(d) in figure 5.1, albeit slightly spin split due to finite J . Such in-gap states are observed

as a remnant of the topologically protected chiral edge mode of a hypothetical one-

dimensional defect within the two-dimensional Chern insulator belonging to Altland-

Zirnbauer class A. Its existence is rooted in the nontrivial topology of the bulk system

and the bulk-boundary correspondence, i.e., a defect of codimension-1. Consequently,

these in-gap states can be interpreted as remnants of the topologically protected gapless

zero mode that is bound to exist for an infinitely large hole (r → ∞).

The single in-gap mode (r = 0), however, must not be understood as a ’real’ topolog-

ically protected zero mode of a point defect at i0. If it was a topologically protected

edge mode of a zero-dimensional defect, that mode would have to reside at the chemical

potential µ within the bulk band gap. But the top left panel of figure 5.2 shows, that

the energy of the in-gap mode of a point defect changes depending on M . A topo-

logically protected zero mode, however, has to exist throughout the entire phase of

nontrivial bulk topology. The dispersion of such a topologically protected edge mode

may be deformed by model parameters, but when remaining in the same topologi-

cal phase, it must always coincide with µ. The energy of an individual in-gap state,

however, depends on M about linearly. Consequently, it cannot coincide with any

fixed µ throughout the entire topological phase. Hence, our reasoning is consistent

with the necessary absence of a topologically protected zero mode for a point-defect
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(codimension 2) in the Haldane model, as established by the tenfold-way [32].

Next, the situation in the topologically trivial Haldane phase (C1 = 0) is discussed.

In this scenario, no edge state forms around i0 at strong J and no states are observed

within the bulk band gap for M < −Mcrit or M > Mcrit (see fig. 5.2). Such charac-

teristics corresponds to the absence of a dispersive topologically protected zero mode

at the one-dimensional boundary of a Chern insulator that is in a topologically trivial

phase, i.e., when C1 = 0 in the Haldane model. The spin Chern number, however,

needs to change from C
(S)
1 = 0 at J = 0 to C

(S)
1 = 1 at J = ∞, which enforces an

in-gap mode at some intermediate J-range. Indeed, we observe a mode bridging the

bulk band gap as a function of J , labeled by (e) in the right panel of figure 5.1. The

state associated with that in-gap mode is localized at i0 and its vicinity. However, its

weight at i0 is less than that of the high-energy bound states. The in-gap state in the

topologically trivial Haldane phase features weight at impurity site i0 itself, unlike the

in-gap states in the topologically nontrivial Haldane phase at large J . The latter, as

remnants of a topological edge mode, are predominantly localized at the boundary of

i0, i.e., its nearest neighbor sites.

We argued earlier, that the Haldane-impurity model has to undergo a topological phase

transition as a function of J , since the spin Chern number C
(S)
1 changes from the trivial

weak coupling limit (C
(S)
1 = 0) to the nontrivial strong coupling limit (C

(S)
1 = 1). The

critical exchange coupling Jcrit, where the spin Chern number jumps from C
(S)
1 = 0

to C
(S)
1 = 1, is determined by the J-dependence of the in-gap states, hence, the bulk

electronic structure of the spinful Haldane mode. Figure 5.3 displays the numerical

computation of Jcrit, on a finite grid in the ξ-M -parameter space with fixed next-

nearest neighbor hopping τ2 = 0.1. The critical coupling strength Jcrit at which the

transition of the first spin Chern number takes place is color-coded.

In general, the spin Chern transition from C
(S)
1 = 0 to C

(S)
1 ̸= 0 demands strong

local exchange interaction between the host and the impurity. We find that Jcrit is

typically of the order of the band width or stronger. One would expect from the

preceding discussion, that, in consideration of the spin-split in-gap state in the strong

coupling picture, the typical critical exchange coupling is stronger if the Haldane host

is in a topologically nontrivial phase (C1 = ±1). In the topologically trivial Haldane

phase (C1 = 0), on the other hand, there is not particular mechanism at hand, that

demands further features in the strong-J limit. Hence, we argue that due to the strong-

J signature when bulk band topology is nontrivial, Jcrit typically takes larger values

when C1 = ±1. In fact, the numerical results displayed in figure 5.3 support this

expectation. The gray lines depicted in this figure serve to separate parameter regimes

of distinct bulk band topology. Within the C1 = ±1 parameter regimes, indicated by

the regions enclosed by the gray lines, Jcrit is typically about an order of magnitude

larger, than in the phase of trivial k-space topology (C1 = 0).
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Figure 5.3: Critical coupling strength Jcrit in the plane of parameters of the Haldane
model. At Jcrit a single particle eigenenergy ϵk intersects with the Fermi energy µ.
A single impurity is coupled to a bulk site of the A-sublattice of a 39 × 39 unit cell
Haldane lattice with periodic boundary conditions and τ2 = 0.1. Topological phase
boundaries of the Haldane model are indicated by gray lines.

The lines of white pixels in figure 5.3 indicate, that for specific parameters in the ξ-M -

plane, the spin Chern transition takes place at infinite Jcrit. For these parameters, the

Zeeman-pair of spin-up and spin-down in-gap states in the band-topologically nontrivial

phase converge symmetrically around the chemical potential µ as J → ∞. Hence, no

in-gap state crosses µ at any finite J . Such characteristics are, for instance, observed at

ξ = π/2 and M = 0. The model is particle-hole symmetric at these parameter values,

i.e., µ = 0 and large but finite J results in symmetric spin-splitting of the in-gap states

around µ. Similarly, for ξ ̸= π/2 a unique M (|M | < |Mcrit|) is found such that in-gap

states do not cross µ at finite J .

5.2.3 – Multiple Impurities

The upcoming section concerns the spin Chern transition when multiple impurities

couple to the bulk of the Haldane host. In figure 5.2, the J → ∞ limit is already

displayed, but for finite J the relative angle between impurities has to be taken into

account. All impurities are of unit magnitude, but each impurity can take any orien-

tation, i.e., the parameter space of each impurity is a two-sphere S2. Accordingly, the

parameter manifold of classical spins is S =
∏

q S2
q with S2

q
∼= {SSSq ∈ R3 | |SSSq| = 1}.

We parameterize each two-sphere by a polar angle ϑq and an azimuthal angle φq.

Analogously to the single-impurity discussion, the manifold S of impurity configura-

tions decouples from the electron system when the exchange coupling is zero. Hence,
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for any number of impurities NS, the spin Chern number C
(S)
NS

must vanish for J = 0.

In the strong coupling limit J → ∞, on the other hand, physics related to the classical

parameter manifold becomes local to the impurity sites iq. Impurity sites decouple

from the rest of the Haldane model and the local electron states at iq become inde-

pendent from one another. Hence, the host-impurity exchange becomes a sum of local

magnetic monopole models

ĤNS−mono = J
∑
q

SSSqŝssiq . (5.22)

As demonstrated in equation 5.15, higher spin Chern numbers factorize into a prod-

uct of first spin Chern numbers, which can be associated with the isolated magnetic

monopoles at infinite J . The spin Chern number of the rest, i.e., the host model

without {iq}, is trivially zero since the base manifold fully decouples from these sites.

Hence, C
(S)
NS ,rest

= 0 and the total spin Chern number of such a multi-impurity model

with local interaction in the strong coupling limit is C
(S)
NS

=
(
C

(S)
1 (Sq)

)NS = 1. Conse-

quently, since the weak coupling limit is spin Chern trivial (C
(S)
NS

= 0) and the strong

coupling limit is not (C
(S)
NS

= 1), a phase transition between the topologically distinct

phases has to take place as a function of J .

5.2.3.1 Two Impurities in the Topologically Trivial Haldane phase

Next, we consider two impurities (NS = 2) coupled to the host at sites i0 and i1. To

begin with, the Haldane model is considered to be in a topologically trivial (C1 = 0)

phase. Aside from the influential factors discussed in the weak coupling limit (sections

4.3.1 and 4.3.2), now the relative angle ϑ between impurities affects the single particle

eigenenergies as well. Accordingly, also ΩΩΩ depends on ϑ in the J-regime between weak

and strong coupling. Due to the SO(3) symmetry, only one angle 0 ≤ ϑ ≤ π is

required to describe genuinely distinct impurity configurations. This symmetry leads

to ϵk(SSS0,SSS1) = ϵk(ϑ) and can also be exploited in the numerical calculation of the spin

Chern number (eq. 5.11).

Figure 5.4 displays single-particle eigenenergies for two impurities at i0 and i1 at nearest

neighbor sites on the A-sublattice, i.e., next-nearest neighbor sites of the honeycomb

lattice. Model parameters are the same as in the single-impurity case (see fig. 5.1) and

all panels display energies around µ ≈ 0.21 as functions of J . In the top panels of figure

5.4 we set M = 1.5Mcrit and the bulk band topology of the host is trivial (C1 = 0).

The lower panels with M = 0.5Mcrit, however, depict a scenario of nontrivial bulk band

topology of the host (C1 = 1). The case of nontrivial k-space topology is subsequently

discussed in section 5.2.3.2.

For a topologically trivial Haldane host, we find two in-gap states (a) and (b) fully
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Figure 5.4: Single particle eigenenergies ϵk of the hybrid model when two impurities
interact via exchange coupling J with the bulk of a Haldane model. The two impurities
enclose angle an ϑ and couple to next-nearest neighbor sites. Onsite potential M is
positive on the impurity A-sites. Red color marks occupied single particle energies
(diamond markers) and the bulk valence band (background color), while blue refers
to empty energy levels and the bulk conductance band. The chemical potential µ
is indicated by the gray line centered in the bulk band gap (uncolored background).
Computations are performed on a 39 × 39 unit cell lattice with periodic boundary
conditions, τ2 = 0.1 and ξ = π/4.

bridging the bulk band gap as a function of J in the upper left (ϑ = 0) as well as the

upper right (ϑ = 3π/4) panel of figure 5.4. When impurities are aligned, these in-gap

states cross the chemical potential at J1(ϑ = 0) ≈ 6.0 and J2(ϑ = 0) ≈ 12.3. As ϑ

increases, J1(ϑ) increases and J2(ϑ) decreases, until they coincide at ϑ = π.

We can explain J1(π) = J2(π) for ϑ = π through separation of the Hamiltonian in a

spin-up and a spin-down sector (H = H↑ + H↓). Without loss of generality, one can

assume that the electron spins at i0 and i1 are polarized in ±z direction for ϑ = π.

Hence, the two impurity bound states have well-defined and opposite spin-projection

quantum numbers. Accordingly, hybridization of the bound states is prevented, since

the opposing spin-projections do not mix. By the combination of a spin flip ↑↔↓
and a reflection at a mirror axis perpendicular to and in the middle of the connection

line between the impurities, the states can be mapped onto each other. Trivially,

symmetric setups cannot lead to distinct energies. Consequently, the eigenenergies

must be degenerate for any J , which implies crossing µ at the same critical J . Any

ϑ ̸= π leads to non-zero hybridization at finite J . For ϑ = 0 hybridization is the

strongest since localized eigenstates are in the same spin sector. In this scenario with

parallel aligned impurities, the difference between J1 and J2 is the largest.

The critical exchange couplings J1 and J2 in dependence of ϑ when C1 = 0 are displayed

in figure 5.5a. The system becomes gapless whenever the color in the plot changes.
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Hence, we see coupling strengths Jcrit,1 = J1(ϑ = 0) ≈ 6.0 and Jcrit,2 = J2(ϑ = 0) ≈
12.3 defining a transition regime. For all Jcrit,1 < J < Jcrit,2 some ϑ leads to a gapless

system. As the system is not gapped on the entire base manifold, i.e., the gap closes

for certain ϑ, the second spin Chern number remains undefined in that J-range. The

spin Chern trivial phase with C
(S)
2 = 0 for J < Jcrit,1 is separated from the phase of

nontrivial spin Chern number C
(S)
2 = 1 for J > Jcrit,2 by the gapless transition phase

Jcrit,1 < J < Jcrit,2.

Moreover, the gapless transition phase is located around Jcrit for a single impurity

(NS = 1), which can be seen by comparing the right panel of figure 5.1 with the upper

panels of figure 5.4. This similarity becomes apparent in the limit of an infinite distance

between the impurities. The electronic structure of the host is locally affected by the

impurities, i.e., in a vicinity around iq. As the distance between i0 and i1 increases,

the electronic structure around the impurity sites disentangles. Hence, the gap-closure

becomes independent of ϑ and the two in-gap states degenerate. Effectively, single-

impurity spin Chern transitions take place at each impurity site, thus, Jcrit,1 = Jcrit,2 =

J2 and the gapless transition regime vanishes.

(a) M = 1.5Mcrit resulting in a host of triv-
ial k-space topology (C1 = 0).

(b) M = 0.5Mcrit resulting in a host of non-
trivial k-space topology (C1 = 1).

Figure 5.5: Transition of the second spin Chern number C
(S)
2 as a function of the ex-

change coupling J . Two impurities are coupled to the host, thus the base manifold
is S2

1 × S2
2 . Due to SO(3) symmetry all distinct impurity configurations can be pa-

rameterized by the angle 0 ≤ ϑ ≤ π enclosed by the impurities. Whenever the color
changes, the system becomes gapless. The host is a spinful Haldane model of 27 × 27
unit cells with periodic boundaries and τ2 = 0.1, ξ = 45. Impurities are positioned
on the A-sublattice as next-nearest neighbors of the honeycomb lattice. Both panels
feature the same bulk band gap ∆E ≈ 0.37. The green line indicates Jcrit,1 and the
red line Jcrit,2.
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5.2.3.2 Two Impurities in the Topologically Nontrivial Haldane Phase

Let us now discuss the spin Chern transition with two impurities in a setup where

k-space topology is nontrivial (C1 = 1). In the limit of infinite distance between the

impurities, the strong-J limit features four in-gap states. These are two slightly spin-

split modes localized around each impurity, i.e., around i0 and i1. As discussed in

section 5.2.2, each Zeeman pair is the remnant of a topologically protected boundary

mode for a discretized hole, i.e., a one-dimensional boundary shrunk to a single site.

The boundaries of both macroscopic holes are assumed to be equivalent and so are the

remnant in-gap states. Hence, when i0 and i1 are of the same sublattice, the energies of

in-gap states located around different impurities are degenerate in the infinite-distance

limit.

Bringing the impurities closer to each other increases the overlap of the bound in-

gap states around i0 and i1 which lifts the aforementioned degeneracy. Bonding and

antibonding linear combinations of the in-gap states result in two Zeeman pairs of

in-gap states at different energies. However, these Zeeman pairs remain in the bulk

band gap for strong J . Bringing i0 and i1 closer together and ultimately to nearest

neighbor sites results in a single two-site hole. Depending on the parameters of the

Haldane model, however, Zeeman pairs can energetically merge with the continuum of

delocalized bulk states. An example thereof can be seen in figure 5.2, where for r = 1

and M = 0.5Mcrit we find a single in-gap Zeeman pair for a four-site hole.

We consider two impurities on next-nearest neighbor sites, which is on the brink of

a merged single two-site hole and two separated holes. Since the edge modes are

predominantly localized on boundary sites of each hole and i0 and i1 share one common

nearest neighbor, there is considerable overlap of the respective edge modes in the two

single-site hole picture. In the lower panels of figure 5.4 we identify three in-gap states

for large but finite J in both cases, for ϑ = 0 (lower left panel) and for ϑ = π/4 (lower

right panel). States (c) and (d) form a Zeeman pair and their energies, which remain in

the bulk band gap, become degenerate for J → ∞. On the other hand, states (e) and

(f), which form a Zeeman pair of their own, approach each other in the bulk continuum

from J → ∞, even though (e) is an in-gap state for finite J-range. In the range of

roughly 7 ≲ J ≲ 30, only the eigenenergies of the spin-↑ state (d) of the first Zeeman

pair and the spin-↓ state (e) of the second Zeeman pair take values within the bulk

band gap. For parallel impurity alignment (ϑ = 0, lower left panel of fig. 5.4), we

observe a crossing of these states at J ≈ 16. For non-collinear impurity orientations,

however, these states form an avoided crossing, which is illustrated for ϑ = π/4 in the

lower right panel of figure 5.4. This avoided crossing is associated with the mixing of

spin-polarizations. When the first impurity at site i0 sets the polarization axis, that

defines the spin-↑ and spin-↓ projection, the second impurity polarizes electron spin
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(a) Critical coupling strength J1,crit up to
which the system is in a trivial spin Chern

state with C
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Figure 5.6: Parametric dependence of the critical coupling strength in the ξ − M/τ2
plane. Thick gray lines mark the topological phase boundaries of the hosting Haldane
model (see fig. 4.3). Impurities are positioned on next-nearest neighbor sites in the
bulk of a 9 × 9 unit cell lattice with periodic boundary conditions and τ2 = 0.1.

of both spin-polarizations at site i1 and its surrounding. Therefore, the increases or

decreases in single-particle energies are no longer solely related to pure spin-↑ or spin-↓
states. Instead, they are associated with states that comprise a mixture of both spin

projections.

To realize the spin Chern transition from C
(S)
2 = 1 at J → ∞ to C

(S)
2 = 0 at J = 0,

there must be a gap closure on S = S2
0 × S2

1 when J decreases from the strong to

the weak coupling limit. In the lower left panel of figure 5.4, we find a gap-closure at

J = Jcrit,2 = J(ϑ = 0) ≈ 20.3. Decreasing J further, we find a second gap-closure

at J = Jcrit,1 = J(ϑ = 0) ≈ 14.2. Unlike the scenario of trivial k-space topology,

gap-closures are not observed at any ϑ when bulk band topology is non-trivial. An

example thereof is displayed in the lower right panel of figure 5.4.

A comprehensive picture of the spin Chern transition when k-space topology is non-

trivial is shown in figure 5.5b. We see that up to ϑ ≈ 0.11π one generically finds a

gap-closure at J1(ϑ) and J2(ϑ). It is worth mentioning that due to the SO(3) symme-

try figure 5.5 captures the full information on the transition of the second spin Chern

number. Accordingly, aforementioned gap closures take place on three-dimensional

submanifolds of the four-dimensional manifold S of classical spin configurations.

All in all, we find a transition regime for all Jcrit,1 < J < Jcrit,2, where the system is

not gapped on the entire base manifold, i.e., the top spin Chern number C
(S)
2 is not

defined. For J < Jcrit,1 we find C
(S)
2 = 0 and C

(S)
2 = 0 for J > Jcrit,2, which is also

validated by numerical evaluation of the second spin Chern number via equation 5.11.

Furthermore, critical coupling strengths Jcrit,1 and Jcrit,2 depend on parameters of the

Haldane model. Figure 5.6 shows the critical coupling strengths in the M/τ2-ξ plane.

These numerical calculations are done for a small lattice of 9 × 9 unit cells. Finite
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Figure 5.7: Elements of the spin Berry curvature ΩΩΩ from the weak towards the strong
coupling limit. Upper panels depict elements of the diagonal blocks with q = r ∈ {0, 1}
and lower panels elements of the off-diagonal block (q, r) = (0, 1). Computations are
performed for two impurities on next-nearest neighbor A-sites in the bulk emulated by
a 39 × 39 unit cell lattice with periodic boundary conditions. Further parameters of
the Haldane host are τ2 = 0.1 and ξ = π/4. Impurity orientations are SSS1 = (0, 1, 0)T

and SSS2 = (−1/
√

2, 1/
√

2, 0)T , i.e., ϑ = π/4.

size effects affect the absolute values of Jcrit,1 and Jcrit,2, but characteristic features

of the transition of the second spin Chern number are consistent with computations

performed for larger lattices. As discussed previously, a crossing of in-gap states is

observed for ϑ = 0. When in-gap states cross right at the chemical potential, one finds

Jcrit,1 = Jcrit,2. For a chemical potential located in the middle of the bulk band-gap, a

degeneracy of in-gap states at finite J occurs at µ for M = 0 and ξ = ±π/2. Similar to

the discussion of the white pixels in figure 5.3, Jcrit,2 becomes infinite when a Zeeman

pair converges symmetrically around µ in the limit of J → ∞ (see white pixels in figure

5.6b). Typically, the topological transition to a nontrivial second spin Chern number

requires stronger J in phases of nontrivial k-space topology (C1 = ±1) as compared to

the phase of trivial bulk band topology (C1 = 0).

A final remark on the transition from weak to strong J when NS = 2 is to be made on

the spin Berry curvature itself. The spin Berry curvature may contain large elements

and takes an intricate form in the J-range where single particle eigenenergies intersect

or come close to EF . Generically, non-zero Ωqα,rβ are discontinuous whenever some ϵk

crosses the Fermi energy, but ΩΩΩ cannot be evaluated right where the single particle gap
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vanishes (ϵk = µ). Exemplary ΩΩΩ are displayed in figure 5.7, where we vary the exchange

coupling from the weak coupling limit (see section 4.1.3) to the strong coupling limit

(see section 4.1.4). Due to the anti-symmetry of ΩΩΩ, the off-diagonal blocks are related

via ΩΩΩ01 = −ΩΩΩ10. Hence, all non-redundant elements of ΩΩΩ are expressed in figure 5.7.

Large Ωqα,rβ can be achieved through the spin Chern transition, which result in large

geometric spin-torque in the impurity dynamics (eq. 4.18). Contrary to the topological

phase transition of the k-space Chern number, where ΩΩΩ is found to be smooth across

the closure of the bulk band gap (see section 4.3.1.5), Ωqα,rβ is discontinuous at gap-

closures associated with a spin Chern transition. In fact, elements of ΩΩΩ can even

diverge at the spin Chern transition when k-space topology of the Haldane host is

nontrivial. Linking figure 5.5 and 5.7, we notice, that a nontrivial spin Chern number

C
(S)
2 = 1 can be obtained, even though ΩΩΩ is not strictly of its strong coupling form (eq.

5.12). Exemplary ΩΩΩ can be read off from figure 5.7 at J just slightly stronger than

J topocrit,2 ≈ 20 and J trivcrit,2 ≈ 12. As discussed previously, there is more to the transition of

the second spin Chern number than the mere superposition of two magnetic monopoles.

Considering the ΩΩΩ-elements of large magnitude in the spin Chern transition regime,

the impurity dynamics is expected to exhibit pronounced non-Hamiltonian behavior

within a suitably fine-tuned parameter regime.

5.2.3.3 Three Classical Impurity Spins

Next, we address the spin Chern transition for three impurities, with the central argu-

ments being analogous to the analysis of the two-impurity setup. In the strong coupling

limit C
(S)
3 = (C

(S)
1 )3 = 1, since C

(S)
1 = 1 results from the magnetic monopole picture

that applies for J → ∞ (see section 5.2.1.2). On the other hand, C
(S)
3 = 0 for J = 0,

so there must be a spin Chern transition when J increases from the weak to the strong

coupling limit.

The base manifold of the Haldane-impurity model when NS = 3 is the six-dimensional

manifold S = S2
0 × S2

1 × S2
2 with S2

q
∼= {SSSq ∈ R3 | |SSSq| = 1}. Again, the model obeys

SO(3) symmetry, hence single particle eigenenergies ϵk(SSS0,SSS1,SSS2) are degenerate on a

three dimensional submanifold of S since global SO(3) rotations form a class of ’SO(3)-

equivalent’ spin configurations. In fact, this SO(3)-equivalence applies not only to the

spin Berry curvature two-form ωωω, but also to ωωω3. Within a class of equivalent spin

configurations, one might choose SSS0 pointing in +z direction and SSS1 lying in the y-z

plane as a representative of this class. This way, the minimal set of three variables to

describe representative spin configurations of different classes is given by ϑ enclosed by

SSS0 and SSS1 together with polar angle ϑ′ and azimuthal angle φ′ of SSS2 relative to SSS0 and

the y-z plan.

In our numerical studies, impurities are coupled to next-nearest neighbor A-sites within

one hexagon of the honeycomb lattice. Similar to the two-impurity setup studied
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previously (see sections 5.2.3.1 and 5.2.3.2), the regime with a trivial spin Chern number

C
(S)
3 = 0 is separated from the nontrivial C

(S)
3 = 1 regime by a transition phase. In

that intermediate J-regime, the model is never gapped on the entire base manifold, so

C
(S)
3 is ill-defined.

(a) M = 1.5Mcrit resulting in a host of triv-
ial k-space topology (C1 = 0).

(b) M = 0.5Mcrit resulting in a host of non-
trivial k-space topology (C1 = 1).

Figure 5.8: Transition of the spin Chern number C
(S)
3 as a function of the exchange cou-

pling J . Three impurities couple to next-nearest neighbor A-sites within one hexagon of
the honeycomb lattice. The base manifold is S2

1 ×S2
2 ×S2

3 . Due to SO(3) symmetry all
distinct impurity configurations can be parameterized by an angle 0 ≤ ϑ ≤ π enclosed
by SSS0 and SSS1 together with polar angle ϑ′ and azimuthal angle φ′ of SSS2. Whenever
the color changes the system becomes gapless. The host is a spinful Haldane model of
27 × 27 unit cells with periodic boundaries and τ2 = 0.1, ξ = 45. The bulk band gap
is the same for M = 0.5Mcrit and M = 1.5Mcrit, i.e., in both panels. The green line
indicates Jcrit,1 and the red line Jcrit,2.

Figure 5.8 shows these three regimes and visualizes gap-closures on the parameter

manifold in the transition regime of C
(S)
3 . Angle ϑ runs from zero in the leftmost

column to π in the rightmost column and each small frame is spanned by 0 ≤ ϑ′ ≤ π

on the y-axis and 0 ≤ φ′ ≤ 2π on the x-axis. In figure 5.8a, the Haldane host is

in the k-space topological trivial phase (C1 = 0, M = 1.5Mcrit). We find C
(S)
3 = 0

for J < Jcrit,1 ≈ 5.5 and C
(S)
3 = 0 for J > Jcrit,2 ≈ 24.5. In the transition regime

Jcrit,1 < J < Jcrit,2, the model is not gapped everywhere on the base manifold, thus,

the spin Chern number of top degree, here C
(S)
3 , is ill-defined. Fixing J corresponds

to a line of small ϑ′-φ′ frames. For any fixed Jcrit,1 < J < Jcrit,2 one finds at least

one small frame in each line, where a change in color can be observed. Note, that

for J = 12, one finds a hardly visible gap closure in the small frame corresponding to

ϑ = 2π/3.

Further more, we find exactly three gap closures as a function of J for any fixed

impurity configuration, i.e., to any fixed set of (ϑ, ϑ′, φ′). This can be seen by focusing

on a single column, which fixes ϑ. Focusing on any fixed pixel within a small frame

furthermore fixes ϑ′ and φ′. Along any column, this chosen pixel changes its color three
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times. This finding is again in line with previous discussions on the NS = 1, where a

single mode crosses µ as a function of J (see right panel in fig. 5.1) and the NS = 2

setup (see upper panels in fig. 5.4), where two modes were found to cross the chemical

potential as J increases from the weak to the strong coupling limit. Such regularity

can be understood from the infinite distance limit, where one mode is localized at

each impurity and C
(S)
3 (S) = C

(S)
1 (S2

1 ) · C(S)
1 (S2

2 ) · C(S)
1 (S2

3 ). Decreasing the distance

between the impurities increases the overlap between the in-gap states, which lifts their

degeneracy. Hence we find a ’continuous transformation’ of the impurity geometry

might change the J-dependent characteristics of in-gap states, but their number is a

topological invariant and remains unchanged.

Figure 5.8b illustrates the spin Chern transition of C
(S)
3 when the bulk band topology

of the host is nontrivial. Again similar to the two-impurity setup, the transition of

C
(S)
3 does not feature a three-fold gap closure on the entire base manifold when k-space

topology is nontrivial (C1 = 1). We do not find a threefold change in color for any

fixed pixel within a ϑ′-φ′ frame along all columns of constant ϑ. Furthermore, the

intermediate regime seems to expand over larger J-range with an increasing number

of impurities.

A final remark is to be made on ’lower’ spin Chern numbers, i.e., C
(S)
N with 2N <

dim(S). When the model is gapped on a closed orientable submanifold of S, say a two

sphere S2 ⊂ S = S2
1 ×S2

2 ××S3
2 , one could evaluate a spin Chern number C

(S)
1 (S2) on

this submanifold. By these lower spin Chern numbers one classifies a sub-bundle of the

full fiber bundle. Such sub-bundles can transition somewhere within Jcrit,1 < J < Jcrit,2

of the full system, since the model is fully gapped, i.e., does not change any topological

invariant, for J < Jcrit,1 and J > Jcrit,2.

As an example, we computed C
(S)
1 (S2) over the two-sphere parameterized by ϑ′ and

φ′ for a host of trivial k-space topology (M = 1.5Mcrit). This first spin Chern number

is well defined within any single-colored small frame of figure 5.8. For ϑ = 5π/6 (fifth

column from the right in figure 5.8a), we obtained C
(S)
1 (J = 5) = C

(S)
1 (J = 7) = 0.

While the C
(S)
1 (J = 5) = 0 is a trivial statement (J < Jcrit,1), C

(S)
1 (J = 7) = 0

is not obvious, since there has been a gap-closure on S2(ϑ′, φ′) when increasing the

exchange coupling from J = 5 (dark blue frame color) to J = 7 (gray-blue frame

color). Increasing J further, we find C
(S)
1 (J = 12) = 1 and the color of the frame

has again changes and the ϑ′-φ′ frame becomes ocher. For even stronger J the gap

closes on S2(ϑ′, φ′) again. Finally, after another regime where C
(S)
1 is ill-defined, we

find C
(S)
1 (J > 18) = 1 (yellow frames), which is consistent to the strong-coupling limit.

This example illustrates, that multiple J regimes of well defined lower spin Chern

numbers, can be separated by various gap-closures and not every gap-closure necessarily

changes the spin Chern number. In principle, this could also be the case for the spin

Chern number of top degree, but only two regimes of well defined C
(S)
N separated by a
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single transition regime are found in our setups of the Haldane-impurity model.

The preceding example highlights, that knowledge of C
(S)
1 (S2) alone is not sufficient

to classify the full model, even though C
(S)
3 =

(
C

(S)
1

)3
factorizes into a product of first

spin Chern numbers C
(S)
1 (S2) in the limit of J → ∞. This mathematically trivial

statement is supported by an physical example, which emphasizes the necessity to

evaluate higher spin Chern numbers to characterize a multi-impurity setup. Whenever

quantum states of non-zero spectral weight at multiple impurity sites exist, a spin

Chern number taking the combined manifold of impurity configurations into account

is required. Moreover, one could define an infinite number of S2 ⊂ S and other two

dimensional submanifolds of S that offer the possibility to evaluate different C
(S)
1 (S2).

However, only the unique top spin Chern number, i.e., C
(S)
N (S) with 2N = dim(S),

takes the entire base manifold into account. For that reason, only the top spin Chern

number is sufficient to generically classify the entire system by the means of its spin

Chern topology.

5.2.4 – Summary of the Topology of Localized Magnetic Moments on a

Chern Insulator

The configuration space of a single impurity with fixed magnitude is a two-sphere S2.

This closed orientable parameter manifold serves as a base manifold to a fiber bundle

formed by S2 and the ground state of the quantum system. The first spin Chern number

C
(S)
1 ∈ Z is exploited to classify topologically distinct bundles of this kind. The first

k-space Chern number C1, on the other hand, is defined as a fiber bundle of electron

system’s ground state over the two-torus T 2 associated with the first Brillouin zone

of a translation invariant lattice. Here, the bulk band Chern number C1 is utilized to

identify topologically distinct phases of the Haldane model. Unlike C1, which addresses

global bulk topology, C
(S)
1 is related to spatially local topological properties.

We emphasized that there must be a spin Chern transition as a function of the exchange

coupling strength J , with which local magnetic impurities are coupled to the spinful

Haldane model. This is evident since the analytically accessible limiting cases C
(S)
1 (J =

0) = 0 and C
(S)
1 (J → ∞) = 1 are distinct. A similar argument holds for any number NS

of impurities, when considering the NS-th spin Chern number C
(S)
NS

. A Chern number

is obtained by a suiting integral over the base manifold of a fiber bundle (eq. 5.1). To

obtain top Chern number C
(S)
NS

for a number of NS impurities, this is a 2NS-dimensional

integral over the NS-fold direct product of two-spheres S = S2 × ...× S2.

At first, we discussed the spin Chern transition with a single impurity (NS = 1).

Since a gap closure is necessary for a topological invariant to change its value, a single

electron state ϵk crosses the chemical potential µ when C
(S)
1 transitions from its weak

to its strong coupling value. This implies a degeneracy of the (N and N ± 1) multi-

electron state at a critical coupling strength Jcrit. The Hamiltonian that describes
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our system is symmetric under SO(3) rotations of the classical impurity SSS and the

quantum-spin degrees of freedom. Consequently, the ’magnetic charge’ inducing the

spin Berry curvature is uniformly distributed over the two-sphere JcritSSS ⊂ R3.

The necessity of an in-gap state with ϵk = µ at some critical coupling strength Jcrit

is unrelated to the bulk band topology in k-space, as Jcrit characterizes the spin

Chern transition. In fact, the requirement of ϵk = µ holds for any choice of the

chemical potential within the bulk band gap irrespective of C1. The critical cou-

pling strength, however, typically depends on the choice of the chemical potential, i.e.,

Jcrit = Jcrit(µ). Hence, J 7→ µcrit(J) maps to the full range of in-gap energies be-

tween the J-independent valence band maximum and the conduction band minimum.

Consequently, in-gap states must fully bridge the bulk band gap ∆E between J = 0

and J = ∞. Yet, in-gap states do not have to span ∆E on the entire base manifold

S, since a gap closure on a submanifold of the base manifold is sufficient for a topo-

logical phase transition. For a single impurity, in-gap states are displayed in figure

5.1. The right panel shows a single in-gap state crossing ∆E when k-space topology

is trivial (C1 = 0). The left and the centered panels, on the other hand, display a

setup with C1 = 1. When k-space topology is nontrivial two in-gap states of opposing

spin-projection converge in the bulk band gap for J → ∞, thus ∆E is fully bridged by

{ϵk} as well.

In the strong coupling limit, the distinct characteristics of the in-gap states associated

with trivial and nontrivial k-space topology are most evident. An intuitive yet not

mathematically rigorous thought to explain in-gap state characteristics based on k-

space topology is deduced from the idea of a one-dimensional boundary in the Haldane

model. Such a topological defect can be generated by a macroscopic circular hole

of radius r, where an infinitely strong impurity potential (J → ∞) couples to all

sites within the hole. For a one-dimensional defect the bulk-boundary correspondence

enforces a topologically protected zero mode when C1 = ±1 for the Haldane model.

This zero mode bridges the bulk band gap and is spin-degenerate in the spinful Haldane

model. Shrinking the hole to a single site corresponds to thinning of the dispersive

spectrum of the boundary mode, which leads to a decreasing number of in-gap states in

the infinite J limit until only a single spin-degenerate in-gap state remains for a single-

site hole. The remnant in-gap model of the topologically protected edge-mode of a

hypothetical one-dimensional boundary is absent when k-space topology is trivial. This

intuitive argument based on the bulk-boundary correspondence of k-space topology is

numerically verified. Furthermore, the absence of an in-gap mode for J → ∞ when

C1 = 0 supports this argument. Rather, a single in-gap mode fully bridges ∆E in a

finite J-range when C1 = 0.

Next, we increased the number of independent impurities. Qualitatively similar results

were obtained for NS = 2 and NS = 3, where the strong coupling limit is found to
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feature one or more Zeeman pairs of in-gap states when k-space topology is nontrivial

(C1 = ±1). When C1 = 0, however, in-gap states are absent for J → ∞. At finite J ,

the Zeeman pairs are spin-split, and the details of the in-gap states generally depend

on model parameters. Furthermore, when the sites to which the impurities couple are

close to each other, the geometry of the impurity configuration becomes relevant, since

in-gap modes hybridize. Only at infinite distance between the impurities, exactly NS

pairs of degenerate in-gap modes form for C1 = ±1 when J increases from the weak to

the strong coupling limit. In the phase of trivial k-space topology, NS in-gap modes

are found to fully bridge the gap in a finite J-range. The necessity of in-gap states

to fully bridge the gap is again enforced by spin Chern transition, since C
(S)
NS

= 0 for

J = 0 and C
(S)
NS

=
(
C

(S)
1

)NS = 1 at infinite J . In fact, one can deduce that the number

of gap closures (ϵk = µ) and with that the number of gap bridging modes when C1 = 0

corresponds to the number of impurities. The following argument supports this fact:

The exchange coupling of the q-th impurity is labeled by Jq. Starting from Jq = 0

we successively increase the local exchange couplings. First we increase J0 → ∞ of

one impurity while any other Jq with q ∈ {1, ..., NS − 1} remains zero. The first spin

Chern number associated with the 0-th impurity (C
(S)
1 (S2

0 )) changes from zero to one

and a single in-gap energy crosses µ, since a magnetic monopole at i0 is created in the

process. Subsequently increasing Jq → ∞ one after the other creates NS monopoles.

The corresponding C
(S)
1 (S2

q ) all transition from zero to one. Consequently, the full

process generates exactly NS gap closures when carried out adiabatically.

For NS = 1 and NS = 2 we numerically evaluated the local topological spin Chern

transitions on a M -ξ parameter manifold spanning the Haldane phase diagram (τ2 =

0.1). With uniform Jq = J , the topological spin Chern transition is found to take place

at coupling strengths roughly of the order of the band width when k-space topology

is trivial. In phases of nontrivial k-space topology, the spin Chern transition typically

requires stronger J , since the additional requirement of in-gap states in the strong

coupling limit applies. When fine tuning the Haldane parameters, e.g. M = 0, ξ =

±π/2, the spin-split in-gap states present in the C1 = ±1 phases can converge right at

µ. In these particular scenarios, no ϵk crosses µ at finite J .

For NS ≥ 2, the topological transition in S-space generically takes place in a finite

range of coupling strength Jcrit,1 < J < Jcrit,2, unlike the spin Chern transition for

a single impurity, which takes place at a distinct critical coupling strength J = Jcrit.

In the entire range of Jcrit,1 < J < Jcrit,2, the system is gapless on a J-dependent

submanifold of S = S2
0 × ...× S2

NS−1. In this transition regime the top Chern number

C
(S)
NS

is undefined. We note, that the gap closures at Jcrit,1 and Jcrit,2 take place at

high-symmetry impurity spin configurations, i.e., ferro- or antiferromagentic impurity

alignment.
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The theme of this thesis is a study of unconventional properties of localized magnetic

moments modeled by classical spins. The first of three major subjects is the idea of

investigating adiabatic dynamics, i.e., dynamics under the ’adiabatic constraint’, when

slow degrees of freedom are coupled to a fast host system. At first, a model of fast and

slow classical Heisenberg spins was investigated in chapter 3. Secondly, in chapter 4

we studied classical impurities exchange coupled to a lattice model of non-interacting

itinerant electrons. In the numerical studies of this chapter, Haldane’s model of a

Chern insulator serves as the quantum host and we find a correlation between the

dynamics of the impurities and the topological phase of the host. Finally, the spin

Chern topology arising from the classical magnetic moments coupled to an electron

system was analyzed and related to the bulk band topology of the Haldane host, which

is the subject of chapter 5. Remarkably, the low-energy electronic structure surrounding

the impurities proofs to be sensitive to the bulk band topology of the Chern insulator,

which is argued to originate from an interplay of the global k-space and the local

SSS-space topology.

A central role in our studies is taken by the spin Berry curvature ΩΩΩ (eq. 4.16), re-

spectively its classical counterpart in chapter 3. In its dual role, ΩΩΩ influences the

dynamics of the impurities (chapters 3 and 4) on one hand, and serves the definition

of a topological invariant, the spin Chern number, on the other hand (chapter 5).

First, we analyze the dynamics of classical impurities. When studying atomistic spin

dynamics in condensed matter or molecular systems, it is common to opt for classi-

cal Heisenberg spins. The classical approximation enables computation of long-time

dynamics for a large number of spins and is well-justified in the context of large local

magnetic moments [42]. As expected for nonlinear ergodic systems, microscopic spin

trajectories obtained for generic model parameters are generically chaotic and cover the

entire accessible phase space in the long-time limit. For systems with a clear separation

of intrinsic time scales, however, more regular dynamics is to be expected, which calls

for an effective low-energy theory.

An effective low-energy theory for the dynamics was initially derived in a purely clas-

sical system of slow and fast classical spins. This simple model fulfills our theoretical

objectives without aiming to describe any real materials. Nonetheless, the main con-
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clusions drawn from our studies carry over in a consistent and qualitative manner to

more realistic setups. Primary finding of this initial study is, that the dynamics of the

slow impurity degrees of freedom cannot be derived from an effective Hamiltonian rely-

ing exclusively on the slow impurity degrees of freedom. This is due to the emergence

of a geometric spin torque, which can affect the impurity dynamics profoundly, such

as influencing the typical timescale. This non-Hamiltonian adiabatic spin dynamics is

derived via the Lagrange formalism, where the ’adiabatic’ constraint is imposed. We

exploited the constraint of the fast subsystem remaining in its ground state to the

momentary configuration of the slow subsystem. For the adiabatic spin dynamics to

apply, the validity of the imposed constraint is, however, vital. We find that even for

well-separated time scales, the adiabatic constraint is not generically satisfied through-

out the system’s dynamics. Unlike quantum mechanics, there is no direct classical

equivalent to the adiabatic theorem that provides certainty for dynamics to be adia-

batic under specific conditions. We have therefore relaxed the constraint by assuming

that the fast host spin system always remains in its ground state, i.e., it is tightly

bound, but this ground state’s orientation is not required to correspond to the ground

state of the momentary impurity configuration at all times. Rather, the tightly bound

ground state of the host system has an inherent dynamical axis. The tight-binding dy-

namics adequately describes the dynamics when the slow and the fast timescale differ

significantly. The adequacy of the tight-binding dynamics is, however, not generically

guaranteed for nonmagnetic host models. A potential ground state ambiguity can lead

to an inadmissible singular effective Lagrangian.

The classical low energy theory could be refined by further relaxation of the constraint,

e.g. by allowing controlled tilting between the host spins. Incorporating additional dy-

namical degrees of freedom that facilitate spin-wave-like excitations in the host system

can lead to an improved effective description for a wider range of timescales. Such

inherent collective modes within the host can be seen as a classical magnon mode,

similar to the the quantum-classical concepts discussed in [156].

Subsequent to the initial study of a purely classical model, we focused on quantum-

classical models, where local magnetic moments are still described by classical spins,

but these impurities are coupled to a gapped quantum system of (non-interacting)

itinerant electrons. Typically, the exchange coupling between an electron system and

local magnetic impurities is significantly weaker than the characteristic inherent energy

scales of the electron system, often by several orders of magnitude. This causes the

local magnetic moments to be slow as compared to the characteristic timescale of the

electron system. Hence, the adiabatic theorem typically applies, particularly when the

exchange coupling is weak in comparison to the energy gap of the insulating electron

system. Consequently, when initially prepared in its ground state, the electron system

remains in its ground state corresponding to the momentary impurity configuration
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during slow variations of the impurity configuration SSS. This ground-state constraint

|ψ(t)⟩ → |ψ0(SSS(t))⟩ is refer to as the adiabatic constraint.

Utilizing the adiabatic constraint, we derived an effective semi-classical low-energy

theory for the dynamics of the classical impurities for a quantum-classical Lagrangian.

The adiabatic equation of motion relies solely on the electron system’s ground state

properties, and thus eliminates any intrinsic host dynamics. Accordingly, the number

of dynamic degrees of freedom is substantially reduced compared to the dynamics of

the full semi-classical model. This adiabatic equation of motion contains a adiabatic

spin torque in addition to the indirect RKKY -like interaction between local magnetic

impurities. The adiabatic spin torque arises from the spin Berry curvature ΩΩΩ, so it

is typically non-zero when time-reversal symmetry is broken. We explicitly discussed

anomalous dynamics in the minimal setup of two impurities and worked out differences

between the effective adiabatic dynamics and an effective Hamiltonian dynamics, par-

ticularly in the weak and the strong coupling limit. In general, the spin Berry curvature

causes a renormalization of the indirect magnetic exchange and facilitates additional

coupling between impurities. Such a geometric torque is similarly encountered in molec-

ular dynamics, where a geometric force can occur when coordinates of the nuclei are

treated as classical parameters and electrons are assumed to adapt to the position of

the nuclei adiabatically [43–45].

The primary model studied numerically is the spinful Haldane-impurity model. This

prototypical setup benefits from the inherently broken time-reversal symmetry of the

electron system and enables the exploration of spin Berry curvature effects concerning

the bulk band topology of a Chern insulator. In the Haldane model, bulk band topology

is described by the k-space Berry curvature.

We systematically analyzed the spin Berry curavture ΩΩΩ for impurities in the bulk and

at the edge of a Haldane host in phases of trivial and nontrivial k-space topology. In the

weak coupling limit, the spin Berry curvature is found to equal the frequency derivative

of the magnetic susceptibility at zero frequency. For impurities that are coupled to the

bulk and when the exchange coupling J is weak obtaining sizable ΩΩΩ values is not easily

achievable. This issue stems from the host model’s weak magnetic response along with

virtual second-order-in-J processes that are suppressed by the bulk’s band gap ∆E.

Hence, large ΩΩΩ values are to be expected when the model is parametrically close to

a topological phase transition, where the bulk band gap closes. Analytical studies

supported by numerical results revealed, that the spin Berry curvature remains finite

and in fact is continuous at a topological phase transition when impurities couple to an

infinitely extended bulk. For edge-coupled impurities, a significant ΩΩΩ can be attained

in the thermodynamic and weak J limit due to a gapless edge mode when k-space

topology is nontrivial.

For distant impurities along the edge, the weak coupling ΩΩΩ exhibits values that are
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several orders of magnitude larger when bulk band topology is nontrivial in comparison

to a trivial k-space topology. Moreover, the RKKY -like exchange is amplified in the

presence of gapless edge modes. These characteristics are expected to be generic,

since the bulk boundary correspondence enforces boundary zero modes at interfaces

between systems of different bulk band topology. It is the dispersion related to theses

gapless edge modes that boosts the weak coupling spin Berry curvature and the indirect

RKKY -like impurity coupling. Thus, the dynamics of local magnetic moments can in

general serve as a signature of bulk band topology.

Boundary zero modes, however, prevent strict application of the adiabatic theorem,

which relies on a fully gapped host model. To evaluate the quality of the adiabatic

approximation, we compared it to dynamics obtained from the full set of equations

of motion. We find an overall good agreement for a large range of exchange cou-

pling strengths. Moreover, already for rather small spin Berry curvatures the adia-

batic equations of motion are significantly better of an approximation for the impurity

dynamics than an effective Hamiltonian approach that neglects the geometric spin

torque. Dynamics of local magnetic moments can be measured by scanning tunneling

microscopy methods, which may provide picosecond temporal and nanometer spatial

resolution [157].

For a single impurity driven by an external magnetic field, anomalous quantum-classical

dynamics resulting from a geometrical torque has also been observed in a correlated

quantum host model [158] and for a single quantum impurity coupled to a non-

interacting host [47]. Non-Hamiltonian dynamics due to a geometric spin torque is

a generic concept and the framework of adiabatic dynamics derived in chapter 4 could

easily be applied to other systems where classical control parameter adiabatically steer

a gapped quantum system. Similar concepts apply analogously to systems with de-

generate ground states, thermal excitations or dynamics that is not strictly adiabatic.

To this end, the presented approach has been be extended to a non-Abelian adiabatic

dynamics outlined in publication [69].

The presented studies provide a basis for future research and the gained insight raises

appealing questions. Future studies could address adiabatic dynamics of local magnetic

moments that couple to spin-polarized helical edge modes, for instance in the Kane-

Mele model [67, 108]. Here, the impact of the host’s topological phase on impurity

dynamics may vary with the geometry of the impurity setup. Furthermore, adiabatic

impurity dynamics in systems with spontaneous magnetic order could result in a spin

Berry curvature of large magnitude, and thus lead to highly non-Hamiltonian dynamics.

Moreover, magnetic frustration in the host systems may feed back to the adiabatic

dynamics of local impurities. The identification of topological bulk states via the

dynamics of local magnetic impurities is foreseen to be generic, so it may also be used to

identify topological phases in topological insulators of various spatial dimension, higher
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order topological insulators [159], Chern insulators with C1 > 1 and Z2 topological

insulators. These proposals, however, highlight only a fraction of the vast range of

potential applications involving adiabatic spin dynamics.

In the final chapter of the presented research, the spectral flow pertaining the host-

impurity exchange coupling J is investigated. We studied the interrelation between the

J-spectral flow and the k-space topology of the electron system. The main inferences of

previous research [144–146,149,151,153,160] on a singular impurity in spinless models

are confirmed by our studies. We find, that the spectral response to a local impurity and

the associated in-gap states can indicate bulk topology as proposed in [144,149,153]. In

accordance with their research, it has been observed that a sufficiently strong impurity

potential induces in-gap states. When bulk topology is nontrivial, these in-gap states

persist up to infinite impurity strength, which is explained by the descriptive argument

of a rigged one-dimensional defect [144]. When k-space topology is, however, trivial, in-

gap states induced by an impurity bridge the bulk band gap in a finite range of impurity-

potential strength. Consequently, we find a correspondence between the existence of in-

gap states in the strong coupling limit and bulk band topology. Moreover, in-gap states

at a single impurity are spin-split when k-space topology is nontrivial, while trivial k-

space topology entails an in-gap states of only one spin projection for sufficiently strong

but finite J . Furthermore, chiral currents associated with the in-gap states induced by

an impurity are sensitive bulk band topology [151].

Experimental control of an impurity potential is for instance attained by locally ap-

plying a tuneable gate voltage as proposed in [149]. The presence or absence of in-gap

states, which can be probed using scanning tunneling spectroscopy, then serves as

an indicator for bulk band topology. Spin-split in-gap states, which have been pro-

posed in our study [155], can be detected by spin-sensitive scanning tunneling spec-

troscopy [161]. The Zeeman-like characteristic of in-gap states induced by a magnetic

impurity at any sufficient but finite exchange coupling strength relates to nontrivial

bulk topology. Single-atom precision in the deposition of magnetic adatoms [162, 163]

enables spatial impurity engineering. A sufficient density of magnetic impurities [154] in

a two-dimensional topological insulator is expected to induce in-gap states detectable

via photo emission spectroscopy [164]. It has, however, been pointed out that for

fundamental reasons local probes cannot serve to detect global topological properties

unambiguously [153]. The proposed diagnostics has been demonstrated to yield false

results for bulk Hamiltonians which break lattice symmetries via anisotropic or modu-

lated hopping terms. Nonetheless, local indicators for topological phases of matter are

of great practical interest.

Furthermore, we studied the spin Berry curvature in a second facet, which concerns

the N -th spin Chern number C
(S)
N defined through ΩΩΩ. As the local interaction J is

increased from the weak to strong coupling limit, a spin Chern transition from C
(S)
N = 0
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to C
(S)
N = 1 takes place. The topological phase transition specified via the spin Chern

number necessitates the J-spectral flow of eigenenergies ϵk to fully bridge the bulk band

gap. Since we considered an SO(3) invariant model, eigenergies for a single magnetic

impurity are independent of SSS. Consequently, at Jcrit the spectrum becomes gapless

for an arbitrary orientation of the single impurity SSS, since ϵk(Jcrit) = µ for a particular

k. With SSS oriented along the z-direction, the spin Chern transition requires the J-

spectral flow associated with the eigenstates of the spin-↑ copy of the Haldane model

to fully bridge the bulk band gap in the full range of coupling strength −∞ < J <∞.

This necessity carries over to the spectral flow of eigenstates of the spinless Haldane

model under the influence of a non-magnetic impurity potential. Hence, by utilizing

the symmetry of the spinful model, the gap closure for a critical impurity potential in

the spinless model may be interpreted as being topologically enforced by a transition

of the spin Chern number associated with a virtual S2 base manifold. A demonstration

of this remarkable transfer to non-magnetic impurity potentials is depicted in figure

A.9 for a local on-site potential.

Our study of the spin Chern transition and the J-spectral flow provides valuable insight

to the local indication of topological phases of matter, which is highly desirable for

experimental applications. Furthermore, we propose the topological charge distribution

over the base manifold of the fiber bundle as a subject of further studies. In particular

in the gapless regime of a multi impurity model, it provides insight to the details of the

spin Chern transition. Such insight can be fruitful for forthcoming studies of correlated

impurities in topological insulators [165–167], for instance realized by a quantum spin-

1/2 coupled to a spinful topological insulator. However, the construction of a fiber

bundle lacks the classical parameter manifold when a quantum impurity is locally

coupled to a host model. Hence, is is unclear how to define a spin Chern number in the

quantum impurity model. Yet, the discussed characteristics of in-gap states related to

k-space topology are anticipated to translate qualitatively to correlated local impurities.

A variety of aspects in the considered quantum classical model are also worth further

research. For instance higher values of the spin Chern number C
(S)
N > 1, which can be

achieved by non-local short-range host-impurity exchange. Furthermore, unequal host-

impurity exchange coupling among different impurities might yield a path to a spin

Chern bulk-boundary correspondence. Moreover, anisotropic host-impurity exchange

breaks SO(3)-symmetry, since JJJ = (Jx, Jy, Jz) can be interpreted as a deformation of

the classical parameter manifold. In fact, an XY -like interaction JJJ = (J, J, 0) implies

that each impurity contributes a configuration subspace S1 to the base manifold for the

fiber bundle that defines the spin Chern number. Hence, tuning the exchange coupling

can alter the dimensionality of the base manifold.

Studying in-gap states in a range of topologically nontrivial materials with various lo-

cal defects can provide insights to the local detection of topological phases of matter.
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Moreover, impurities, vacancies, or disorder are unavoidable in real materials and can

impact topological-insulator devices. Thus, comprehension of vacancy effects is neces-

sary for practical applications. The robustness of topological phases against a finite

vacancy density, i.e., bulk defect density, has been studied in [154]. Similar studies

of a magnetic impurity density bridge the path to Kondo-lattice type models. Vice

versa, a topologically nontrivial phase, i.e., quantum spin Hall phase, could be induced

by vacancies in a topologically trivial insulator [168]. Applications of topological in-

sulators for potential future devices, for instance exploiting an intriguing interplay of

magnetic and electric properties, are explored in [169]. Control over impurities is a

path to control localized and possibly gapless in-gap modes, which could serve a wide

range of applications. By adiabatically controlling local magnetic impurities, it could

even be possible to tune the phase of the localized states through the Berry phase,

which holds potential value for the engineering of quantum bits.
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A.1 – Classical Systems

A.1.1 – Derivation of the Classical Adiabatic Equation of Motion

A detailed derivation of the classical adiabatic equation 3.10 of motion is presented by

applying the stationary-action principle which results in the Euler-Lagrange equations

∂L

∂mrµ

− d

dt

∂L

∂ṁrµ

= 0 (A.1)

to the effective Lagrangian

Leff
(
mmm,ṁmm;nnn0(mmm)

)
=
∑
qα

SqAα(mmmq)ṁqα +
∑
iβ

FiAβ
(
nnn0
i (mmm)

)∑
qα

∂n0
iβ

∂mqα

ṁqα (A.2)

−Heff(mmm;nnn0(mmm)) −
∑
q

λq(mmm
2
q − 1). (A.3)

The holonomic constraint of the fast spinsFFF = Fnnn adiabatically following the dynamics

of the slow spins SSS = Smmm is indicated by nnn0(mmm). Note that only the directionality

mmm = mmm(t) and the velocity ṁmm = d
dt
mmm of the slow spins are dynamical variables in this

context. Even though, since their magnitudes are fixed, unit vectors mmmq are defined by

only two independent quantities each, the Lagrange multipliers {λq} explicitly ensure

that variation of all three mqα for any fixed q does not change the modulus of the

unit vectors. The conservation of the length of the classical impurities could also be

formulated via
∑

q λ̃q(SSS
2
q − S2

q ) which is equivalent to the re-scaling of the Lagrange

multipliers in equation 3.2 (λq = λ̃qS
2
q ). Hereinafter arguments will be omitted for the

sake of clarity, Aqα := Aα(mmmq) and A0
iβ := Aβ

(
nnn0
i (mmm)

)
are going to be used since the

detailed dependencies are unambiguous from the effective Lagrangian.

∂Leff
∂mrµ

=Sr
∑
α

∂Arα
∂mrµ

ṁrα +
∑
iα,qβ,γ

Fi
∂A0

iβ

∂n0
iγ

∂n0
iγ

∂mrµ

∂n0
iβ

∂mqα

ṁqα

+
∑
iα,qβ

FiA
0
iβ

∂2n0
iβ

∂mrµ∂mqα

ṁqα −
∂Heff

∂mrµ

− 2λrmrµ
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d

dt

∂Leff
∂ṁrµ

=
d

dt

(
SrArµ +

∑
iβ

FiA
0
iβ

∂n0
iβ

∂mrµ

)

=Sr
∑
α

∂Arµ
∂mrα

ṁrα +
∑
qα,iβ,γ

Fi
∂A0

iβ

∂n0
iγ

∂n0
iγ

∂mqα

ṁqα

∂n0
iβ

∂mrµ

+
∑
qα,iβ

FiA
0
iβ

∂2n0
iβ

∂mqα∂mrµ

ṁqα

When recombining the previous two auxiliary equations according to the Euler-Lagrange

equation the
∑

qα,iβ F
2
i Aβ

∂2n0
iβ

∂mqα∂mrµ
ṁqα terms cancel each other. Furthermore terms

with equivalent ṁ dependencies are merged.

0 =Sr
∑
α

(
∂Arα
∂mrµ

− ∂Arµ
∂mrα

)
ṁrα +

∑
iα,qβ,γ

Fi
∂A0

iβ

∂n0
iγ

(
∂n0

iγ

∂mrµ

∂n0
iβ

∂mqα

−
∂n0

iγ

∂mqα

∂n0
iβ

∂mrµ

)
ṁqα

− ∂Heff

∂mrµ

The first summand is simplified by explicitly utalizing AAA as the vector potential of a

Dirac monopole [15, 16, 47] and hence satisfies ∇∇∇mq ×AAA(mmmq) = − mmmq

|mmmq |3 . Note that by

construction the directional vectors are of unit length, hence |mmmq|3 = |nnni|3 = 1 can be

omitted.

∂Arα
∂mrµ

− ∂Arµ
∂mrα

=
∑
βγ

∂Arβ
∂mrγ

(δαβδµγ − δαγδµβ) =
∑
βγν

∂Arβ
∂mrγ

εαµνεβγν

= −
∑
ν

εαµν
∑
βγ

∂Arβ
∂mrγ

εγβν = −
∑
ν

εαµν
(
∇∇∇mr ×AAAr

)
ν

=
∑
ν

mrν εαµν

The second summand can be simplified in a similar fashion, to expose the curl of the

vector potential indices β and γ are interchanged in the latter term.

∑
i,q
αβγ

Fi
∂A0

iβ

∂n0
iγ

∂n0
iγ

∂mrµ

∂n0
iβ

∂mqα

ṁqα −
∑
i,q
αβγ

Fi
∂A0

iβ

∂n0
iγ

∂n0
iγ

∂mqα

∂n0
iβ

∂mrµ

ṁqα

︸ ︷︷ ︸
β↔γ

=
∑
i,q
αβγ

Fi

(
∂A0

iβ

∂n0
iγ

−
∂A0

iγ

∂n0
iβ

)
∂n0

iγ

∂mrµ

∂n0
iβ

∂mqα

ṁqα =
∑
i,q
αβγν

Fin
0
iνεβγν

∂n0
iγ

∂mrµ

∂n0
iβ

∂mqα

ṁqα
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Summing up the previous considerations the Euler-Lagrange equations now take the

form

0 =Sr
∑
αν

mrνṁrαεαµν +
∑
i,q
αβγν

Fin
0
iν

∂n0
iγ

∂mrµ

∂n0
iβ

∂mqα

ṁqαεβγν −
∂Heff

∂mrµ

− 2λrmrµ. (A.4)

Here the definition

Ωrµ,qα :=
∑
i

βγν

Fi
∂n0

iβ

∂mqα

∂n0
iγ

∂mrµ

n0
iνεβγν

is made. In a next step contributions of this equation that are parallel and perpendicu-

lar to mmmr are evaluated individually. On one hand the parallel contribution is obtained

by the scalar product of the Euler-Lagrange equation and its variational quantity. En-

sured by the Lagrange parameter |mmmr| = 1∀t can be used.

0 =
∑
µ

mrµ

(
Sr
∑
αν

mrνṁrαεαµν +
∑
q
α

Ωrµ,qαṁqα −
∂Heff

∂mrµ

− 2λrmrµ

)

=
∑
q
αµ

Ωrµ,qαmrµṁqα −
∑
µ

∂Heff

∂mrµ

mrµ − 2λr

This determines the Lagrange parameters to be λr =
∑

µ
mrµ

2

(∑
qα Ωrµ,qαṁqα−

∑
µ
∂Heff

∂mrµ

)
,

which is a consequence of the fact that each mmmr actually depends on only two indepen-

dent variables, since |mmmrµ| = 1 is fixed, but the Euler Lagrange equations yield three

components per impurity spin. On the other hand the perpendicular contribution is

obtained by the vector product of A.4 and mmmr . The sums over µ as well as α and ν

are executed in the first term and subsequently simplified by again using that mmmr is of

constant unit magnitude.

0 =
∑
µλ

εµλκmrλ

(
Sr
∑
αν

mrνṁrαεαµν +
∑
q
α

Ωrµ,qαṁqα −
∂Heff

∂mrµ

− 2λrmrµ

)

=Srṁrκ +
∑
q

αµλ

Ωrµ,qαmrλṁqαεµλκ −
∑
µλ

∂Heff

∂mrµ

mrλεµλκ

=Srṁrκ +
∑
q
α

SqTrκ,qαṁqα −
∑
µλ

∂Heff

∂mrµ

mrλεµλκ
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Here the definition

Trκ,qα :=
1

Sq

∑
µλ

Ωrµ,qαmrλϵµλκ

is applied in the last line. It is to mention that the Lagrange parameter vanish in

the equation of motion and thus do not impact the dynamics since they are of no

physical meaning but just imposed for technical reasons. As a final step this implicit

differential equation is brought to an explicit form, which can formally be obtained

straight forwardly when a matrix and vector notion is used. To that end the final term

is written as
(
∂Heff

∂mmm
×mmm

)
r

=
∑

µλ
∂Heff

∂mrµ
mrλεµλκ where the vector product is meant to

be taken for each impurity site r.

000 =ṠSS + TTT · ṠSS − ∂Heff

∂mmm
×mmm

⇒ ṠSS =
(
111 + TTT

)−1 ·
(
∂Heff

∂mmm
×mmm

)
=

∂Heff

∂SSS
×SSS

111 + TTT

Note that bold letters indicate matrices of dimension 3NS x 3NS where NS is the total

number of impurities.

A.1.2 – Auxiliary Calculations for the Analytical Collinear Hostsystem’s

Ground State

An analytical expression of a collinear host spins groundstate is given by equation 3.20.

Eventually the impurity quantitymmm0 =
∑

q,i J
K
qi zimmmq is used to express the groundstate

of the host system. In various considerations it is useful to have an analytical expression

for
∂m0β

∂mqα
, ∂m0

∂mqα
and

∂m−1
0

∂mqα
at hand. These straight forward calculations are shown in

some detail below, note that zq =
∑

i J
K
qi zi is used for a more compact notion.

∂m0β

∂mqα

=
∂

∂mqα

∑
r,i

JKri zimrβ = zqδαβ

∂m0

∂mqα

=
∂

∂mqα

√∑
β

(∑
r,i

JKri zimrβ

)2
=

1

2m0

∑
β

∂

∂mqα

(∑
r,i

JKri zimrβ

)2
=

1

m0

∑
β

(∑
r,i

JKri zimrβ

)(∑
r,i

JKri zi
∂mrβ

∂mqα

)
=zq

m0α

m0
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∂m−1
0

∂mqα

=
∂

∂mqα

1√∑
βm

2
0β

= − 1

m3
0

∑
β

m0β
∂m0β

∂mqα

= − zq
m0α

m3
0

A.1.3 – Analytical Solution to Coupled Ordinary Differential Equations

The dynamics of mmm0 (eq. 3.33) and mmmT (eq. 3.34) is defined by a set of coupled

differential equations. An analytical solution to such a set of dynamical variables is

easily obtained as demonstrated within this subsection by following the thoughts we

published in [88]. Let xxx1 and xxx2 be two classical three component vectors, which evolve

according to the coupled differential equations

ẋxx1 =c1xxx2 × xxx1

ẋxx2 =c2xxx1 × xxx2

with c1, c2 ∈ R. These equations of motion imply that x1 = |xxx1|, x2 = |xxx2|, and x1x1x1xxx2

are constants throughout the dynamics. A simple scaling transformation

yyy1 =α1xxx1

yyy2 =α2xxx2

is imposed with real coefficients α1, α2 which leads to

ẏyy1 =
c1
α2

yyy2 × yyy1

ẏyy2 =
c2
α1

yyy1 × yyy2.

For our purposes the choice of α1 =
√∣∣ c2

c1

∣∣ and α2 =
√∣∣ c1

c2

∣∣ = 1
α1

comes in handy for

these coefficients, so one obtains

ẏyy1 =s1
√
|c1c2|yyy2 × yyy1

ẏyy2 =s2
√
|c1c2|yyy1 × yyy2.
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The sign coefficients s1 = c1
|c1| and s2 = c2

|c2| take values of ±1. Depending on s1 = ±s2
or vector

yyy := yyy1 ± yyy2 =

√∣∣∣∣c2c1
∣∣∣∣xxx1 ±

√∣∣∣∣c1c2
∣∣∣∣xxx2

is a constant of motion. As we distinguish these two cases the set of differential equa-

tions can be expressed via

ẏyy1 = ± s1
√
|c1c2|yyy × y1y1y1

ẏyy2 =s2
√
|c1c2|yyy × y2y2y2

and one can read off that y1y1y1 and y1y1y1 precess unidirectional around yyy with ωp =
√
|c1c2||yyy|.

Using α1α2 = 1 the length of y = |yyy| is set by

|yyy|2 =|yyy1|2 + |yyy2|2 ± 2yyy1yyy2

=

∣∣∣∣c2c1
∣∣∣∣x21 +

∣∣∣∣c1c2
∣∣∣∣x22 ± 2xxx1xxx2

and as function of conserved quantities only a constants of motion itself. Finally the

precession frequency takes the from of

ωp =
√
c22x

2
1 + c21x

2
2 ± 2|c1c2|xxx1xxx2. (A.5)

With an analytical expression for the precession frequency of coupled differential equa-

tions of this kind at hand, we can now substitute xxx1 = mmm0 and xxx2 = mmmT by choosing

the coefficients

c1 =cm0 =
1

m0

F (JK)2
+ F∆

Sm2
0
mmm0mmmT

c2 =cmT
=

F∆
Sm0

m0

F (JK)2
+ F∆

Sm2
0
mmm0mmmT

accordingly. Noting that
cmT

cm0
= F∆

Sm0
the precession takes place around axis

yyy =

√
F∆

Sm0

mmm0 ±
√
Sm0

F∆
mmmT = const

which might be rescaled to

±F∆

m0

mmm0 + SmmmT = const.
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The latter expression of the rotational axis is recognized as total spin FFF T +SSST when the

”− ”-sign applies to ∆ < 0 and the ” + ”-sign to ∆ > 0, since FFF T = F
∑

i ziηηη = F∆
m0
mmm0.

A rather simple analytical expression for the precession frequency is obtained when

specifying to a case of just two impurities with local and homogeneous interaction. To

ensure ∆ ̸= 0 the sign factors then have to fulfill zi1 = −zi2 which implies mmm0mmmT = 0.

Without loss of generality one can parameterize the impurity unit vectors within the

plane they span by

mmm1 =

1

0

0

 , mmm2 =

cos(θ)

sin(θ)

0


when choosing the coordinate system accordingly and with θ as the enclosed angle of

the impurities. This parameterization leads to in mT = |mmm1 + mmm2| =
√

2 + 2 cos(θ)

and m0 = JK | ±mmm1 ∓mmm2| = JK
√

2 − 2 cos(θ). Using those terms we obtain

ωp =
√
c2mT

m2
0 + c2m0

m2
T

=
F (JK)2

m0

√
∆2F 2

S2
+m2

T

=FJK

√
∆2F 2

2S2(1 − cos(θ))
+ cot2

(
θ

2

)

A.1.4 – Derivation of the Classical Tight Binding Equations of Motion

To the spin Lagrangian L(mmm,ṁmm,nnn, ṅnn) (eq. 3.2) the tight binding constraint nnn(t) →
nnn0(ηηη(t)) is applied. The host spin system is enforced to be in it’s ground state at all

times, with some axis ηηη(t) defining the orientation of the SO(3) degenerate ground

state manifold. That axis, however, is a dynamical quantity itself and not a function

of the impurities as it was in the adiabatic case. The effective Lagrangian

Leff
(
mmm,ṁmm,ηηη, η̇ηη;nnn0(ηηη)

)
=
∑
qα

SqAα(mmmq)ṁqα +
∑
iαβ

FiAβ
(
nnn0
i (ηηη)

)∂n0
iβ

∂ηα
η̇α

−Heff
(
mmm,ηηη;nnn0(ηηη)

)
−
∑
q

λq(mmm
2
q − 1) − λ(ηηη2 − 1)

leads to the tight binding equations of motion for the impurities ṁmm = {ṁmmq} as well as

η̇ηη by using the Euler Lagrange equations (∂L
∂x

− d
dt
∂L
∂ẋ

= 0 with x ∈ {mqα, ηα}). First the

contributions are calculated individually, similar to A.1.1 the notion of Arµ := Aµ(mmmr)
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and Aηiµ := Aµ(nnn0
i (ηηη)) is exploit.

∂Leff
∂mrµ

=
∑
α

Sr
∂Arα
∂mrµ

ṁrα −
∂Heff

∂mrµ

− 2λrmrµ

∂Leff
∂ηµ

=
∑
iαβγ

Fi
∂Aηiβ
∂n0

iγ

∂n0
iγ

∂ηµ

∂n0
iβ

∂ηα
η̇α +

∑
iαβ

FiA
η
iβ

∂2n0
iβ

∂ηµ∂ηα
η̇α −

∂Heff

∂ηµ
− 2ληµ

∂Leff
∂ṁrµ

= SrArµ,
d

dt

∂Leff
∂ṁrµ

= Sr
∑
α

∂Arµ
∂mrα

ṁrα

∂Leff
∂η̇µ

=
∑
iβ

FiA
η
iβ

∂n0
iβ

∂ηµ
,

d

dt

∂Leff
∂η̇µ

=
∑
iαβγ

Fi
∂Aηiβ
∂n0

iα

∂n0
iα

∂ηγ
η̇γ
∂n0

iβ

∂ηµ
+
∑
iαβ

FiA
η
iβ

∂2n0
iβ

∂ηα∂ηµ
η̇α

Combining these terms and simplifying the expressions, the Euler Lagrange equations

are obtained in an explicit form.

0 =
∂Leff
∂mrµ

− d

dt

∂Leff
∂ṁrµ

=
∑
α

Sr

(
∂Arα
∂mrµ

− ∂Arµ
∂mrα

)
ṁrα −

∂Heff

∂mrµ

− 2λrmrµ (A.6)

0 =
∂Leff
∂ηµ

− d

dt

∂Leff
∂η̇µ

=
∑
iαβγ

Fi

(
∂Aηiβ
∂n0

iγ

−
∂Aηiγ
∂n0

iβ

)
∂n0

iγ

∂ηµ

∂n0
iβ

∂ηα
η̇α −

∂Heff

∂ηµ
− 2ληµ (A.7)

To compensate for the independently treated mrµ of which only two are independent

due to |mmmr| = 1, equation A.7 is projected into contributions unidirectional (scalar

product) as well as perpendicular (cross product) to mmmr. Furthermore the defining

property of the vector potential ∇∇∇mr ×AAA(mmmr) = −mmmr

m3
r
→ ∂Arα

∂mrµ
− ∂Arµ

∂mrα
=
∑

νmrν εαµν

is used.

0 =
∑
µ

(
∂Leff
∂mrµ

− d

dt

∂Leff
∂ṁrµ

)
mrµ

→ λr = − 1

2

∑
µ

∂Heff

∂mrµ

mrµ (A.8)

0 =
∑
µκ

(
∂Leff
∂mrµ

− d

dt

∂Leff
∂ṁrµ

)
mrκεµκξ

→ ṁrξ =
1

Sr

∑
µκ

∂Heff

∂mrµ

mrκεµκξ (A.9)

We obtain a condition for the Lagrange multipliers λr (eq. A.8)and recover the Hamil-

tonian equation of motion for the impurities (eq. A.9).

151



A – Appendix

To proceed in a similar fashion with eq. A.7 again ∇∇∇η ×AAA(ηηη) = − ηηη
η3

as well as |ηηη| = 1

are exploited and the tensor

Ωµα :=
∑
iβγν

Fi
∂n0

iβ

∂ηα

∂n0
iγ

∂ηµ
n0
iν εβγν (A.10)

is defined. Note that this is a purely host-dependent quantity in the tight binding

framework, whereas Ωrµ,qα (eq. 3.8) from the adiabatic approach is contingent on the

impurities.

0 =
∑
µ

(
∂Leff
∂ηµ

− d

dt

∂Leff
∂η̇µ

)
ηµ

→ λ =
1

2

∑
αµ

Ωµαηµη̇α −
1

2

∑
µ

∂Heff

∂ηµ
ηµ (A.11)

0 =
∑
µκ

(
∂Leff
∂ηµ

− d

dt

∂Leff
∂η̇µ

)
ηκεµκξ

=
∑
αµκ

Ωµαη̇αηκεµκξ −
∑
µκ

∂Heff

∂ηµ
ηκεµκξ (A.12)

The equation of motion derived for ηηη (eq. A.12) is rather unconventional, since the

only dependency on η̇ηη comes with Ω. The definition of some tensor

T̃ξα :=
∑
µκ

Ωµαηκεµκξ

allows for an explicit formulation of η̇ηη, given T̃̃T̃T is invertible.

η̇ηη = T̃̃T̃T−1

(
∂Heff

∂ηηη
× ηηη

)
(A.13)
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A.1.5 – Further Numerical Results for the Classical Spin System

10 1 100 101

/ K

10 3

10 2

10 1

FT
(S

0,
x)

F
TB
ASD

Figure A.1: Fourier transformed of the x-component of SSS0 = Smmm0 obtained from the
dynamics of two slow impurity spins coupled to a linear chain of l = 5 host spins at
site i1 = 0, i2 = 3. The time-evolution is performed for an initial configuration where
ϑ = 0.95π is close to the overall ground state and K/J = 10−5.
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Figure A.2: Difference of the precession frequency ωA obtained via the adiabatic equa-
tion of motion and ωF obtained from the full set of equation of motion as a function of
ϑ enclosed by two impurities. Slow impurity spins couple at sites i1 = 1 and i2 = L−1
for various system sizes of L = 5, 15, 105 with K/J = 10−3.
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Figure A.3: Color-coded relative difference of the precession frequency ωTB of the
real time dynamics of mmm0 obtained via tight-binding spin dynamics and dynamics ωF
obtained via the full set of equations of motion. Precession frequencies are determined
via the main peak in the Fourier spectrum for model parameters in the θ-K/J plane.

A.2 – Quantum-Classical Systems

A.2.1 – Unconstrained Dynamics of Classical and Quantum Degrees of

Freedom

Applying the stationary action principle or respectively the Euler Lagrange equations

∂L

∂mrµ

− d

dt

∂L

∂ṁrµ

=0

δL

δ⟨ψ|
− d

dt

δL

δ( d
dt
⟨ψ|)

=0

to the quantum-classical Lagrangian (eq. 4.7) leads to a set of coupled differential

equations that governs the dynamics of quantum as well as classical degrees of freedom.

L(⟨ψ|, |ψ⟩, d
dt
⟨ψ|, d

dt
|ψ⟩,SSS, d

dt
SSS) =⟨ψ|i d

dt
|ψ⟩ +

∑
q

AAA(mmmq)
d

dt
SSSq

− ⟨ψ|Ĥ(SSS)|ψ⟩ −
∑
q

λq(mmm
2
q − 1)
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The short notion of Aqα = Aα(mmmq) as well as ⟨Ĥ⟩ = ⟨ψ|Ĥ|ψ⟩ is used, so for the classical

degrees of freedom we get

∂L

∂mrµ

=
∑
α

∂Arα
∂mrµ

Srṁrα −
∂⟨Ĥ⟩
∂mrµ

− 2λrmrµ

d

dt

∂L

∂ṁrµ

=Sr
d

dt
Arµ = Sr

∑
α

∂Arµ
∂mrα

ṁrα

Explicitly using ∇∇∇r ×AAAr = −mmmr and ∂Arα

∂mrµ
− ∂Arµ

∂mrα
=
∑

νmrν εαµν leads to

0 =Sr
∑
αν

ṁrαmrν εαµν −
∂⟨Ĥ⟩
∂mrµ

− 2λrmrµ.

By taking the cross product of the previous expression and mmmr the classical equations

of motion, equivalent to the once obtained by exploiting the Hamiltonian formalism,

are obtained.

0 =Srṁrκ −
∑
µλ

∂⟨Ĥ⟩
∂mrµ

mrλϵµλκ

Similarly varying the Lagrangian with respect to ⟨ψ| results in the equation of motion

for |ψ⟩

0 =i
d

dt
|ψ⟩ − Ĥ(SSS)|ψ⟩

which is nothing but the well known Schrödinger equation and vice versa variation of

the Lagrangian with respect to |ψ⟩ leads to the Schrödinger equation of ⟨ψ|.

A.2.2 – Constrained Dynamics of the Classical Impurities

In some detail the application of the stationary action principle or respectively the

Euler Lagrange equations to the effective spin-only quantum-classical Lagrangian (eq.

4.17) is presented within this subsection. The resulting equations of motion are a set of

coupled differential equations of the classical impurity degrees of freedom, containing

the spin Berry curvature of the map SSS → |ψ0(SSS)⟩. The explicit time dependence

SSS = SSS(t) is omitted as it is obvious from the context.

Leff (SSS, ṠSS) =
∑
qα

⟨ψ0(SSS)|i ∂

∂Sqα
|ψ0(SSS)⟩Ṡqα +

∑
q

AAA(mmmq)ṠSSq

− ⟨ψ0(SSS)|Ĥ(SSS)|ψ0(SSS)⟩ −
∑
q

λq(mmm
2
q − 1).
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In a first auxiliary step the derivatives

∂Leff
∂mrµ

=
∑
qα

i
∂⟨ψ0|
∂mrµ

∂|ψ0⟩
∂mqα

ṁqα +
∑
qα

i⟨ψ0|
∂2|ψ0⟩
∂mrµmqα

ṁqα +
∑
α

Sr
∂Arα
∂mrµ

ṁrα

− ∂⟨ψ0|
∂mrµ

Ĥ|ψ0⟩ − ⟨ψ0|
∂Ĥ

∂mrµ

|ψ0⟩ − ⟨ψ0|Ĥ
∂|ψ0⟩
∂mrµ

− 2λrmrµ

d

dt

∂Leff
∂ṁrµ

=
d

dt

(∑
rµ

⟨ψ0|i
∂

∂mrµ

|ψ0⟩ + SrArµ

)

=
∑
qα

i
∂⟨ψ0|
∂mqα

∂|ψ0⟩
∂mrµ

ṁqα +
∑
qα

i⟨ψ0|
∂2|ψ0⟩
∂mqαmrµ

ṁqα +
∑
α

Sr
∂Arµ
∂mrα

ṁrα

are evaluated, the lucid dependence of the ground state on the impurity spins is omitted

for the sake of clarity. We recombine these derivatives to the Euler Lagrange equations

and explicitly use ⟨ψ0|ψ0⟩ = 1, Sr = 1 as well as ∇∇∇r ×AAAr = −mmmr so ∂Arα

∂mrµ
− ∂Arµ

∂mrα
=∑

νmrν εαµν .

0 =i
∑
qα

(
∂⟨ψ0|
∂mrµ

∂|ψ0⟩
∂mqα

− ∂⟨ψ0|
∂mqα

∂|ψ0⟩
∂mrµ

)
ṁqα +

∑
α

(
∂Arα
∂mrµ

− ∂Arµ
∂mrα

)
ṁrα

− ⟨ψ0|
∂Ĥ

∂mrµ

|ψ0⟩ − E0
∂

∂mrµ

⟨ψ0|ψ0⟩ − 2λrmrµ

=
∑
qα

Ωrµ,qαṁqα +
∑
αν

mrνṁrα εαµν − ⟨ψ0|
∂Ĥ

∂mrµ

|ψ0⟩ − 2λrmrµ

Furthermore the spin Berry curvature, defined by

Ωrµ,qα := i
∂⟨ψ0|
∂mrµ

∂|ψ0⟩
∂mqα

− i
∂⟨ψ0|
∂mqα

∂|ψ0⟩
∂mrµ

,

is substituted in the last step. Next the projection collinear and perpendicular to mmmr

are taken. The former yields the condition that determines the Lagrange parameter λr

while the latter leads to the quantum classical adiabatic equation of motion.

λr =
∑
µ

mrµ

2

(∑
qα

Ωrµ,qαṁqα − ⟨ψ0|
∂Ĥ

∂mrµ

|ψ0⟩

)

0 =
∑
µλ

εµλκmrλ

(∑
qα

Ωrµ,qαṁqα +
∑
αν

mrνṁrα εαµν − ⟨ψ0|
∂Ĥ

∂mrµ

|ψ0⟩ − 2λrmrµ

)

=
∑
qαµλ

Ωrµ,qαmrλṁqαεµλκ + ṁrκ −
∑
µλ

⟨ψ0|
∂Ĥ

∂mrµ

|ψ0⟩mrλεµλκ
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Finally the implicit adiabatic equation of motion can be noted in a more convenient

form, using ∂⟨Ĥ⟩0
∂mrµ

= ∂
∂mrµ

⟨ψ0|Ĥ|ψ0⟩ = ⟨ψ0| ∂Ĥ
∂mrµ

|ψ0⟩.

ṁmmr =
∂⟨Ĥ⟩0
∂mmmr

×mmmr −
∑
qαµλκ

Ωrµ,qαmrλṁqαεµλκeeeκ

A.2.2.1 Rewriting Eigenstate-Derivatives in Terms of Derivatives of the

Hamiltonian

The classical spins act as parameters for the quantum-system in our hybrid theory.

One might therefore interpret the Hamiltonian Ĥ(SSS) as well as it’s eigenstates |n(SSS)⟩
as parametrically dependent on the impurities SSS, however that explicit dependency is

omitted in the notation below. The eigenstates |n⟩ form a full set of orthonormal basis

(⟨m|n⟩ = δmn) of the Hamiltonian Ĥ with eigenvalues En (Ĥ|n⟩ = En|n⟩). The ground

state is denoted by |0⟩. For m ̸= n the derivative of the matrix element ⟨m|Ĥ|n⟩ with

respect so some parameter can be evaluated in terms of

∇⟨m|Ĥ|n⟩ = En∇⟨m|n⟩ = 0

on the one hand. On the other hand, using 0 = ∇⟨m|n⟩ = ⟨∇m|n⟩+ ⟨m|∇n⟩ ∀m ̸= n,

one can reckon it as

∇⟨m|Ĥ|n⟩ =⟨∇m|Ĥ|n⟩ + ⟨m|∇Ĥ|n⟩ + ⟨m|Ĥ|∇n⟩

=En ⟨∇m|n⟩︸ ︷︷ ︸
=−⟨m|∇n⟩

+⟨m|∇Ĥ|n⟩ + Em⟨m|∇n⟩

Combining these two results in

0 = (Em − En)⟨m|∇n⟩ + ⟨m|∇Ĥ|n⟩

⇒ ⟨m|∇n⟩ =
⟨m|∇Ĥ|n⟩
Em − En

∀m ̸= n.

The previously obtained relation can be used to formulate the spin Berry curvature in

terms of derivatives of the Hamiltonian. To this end we first consider

|∇qα0⟩ =
∑
n

|n⟩⟨n|∇qα⟩ =
∑
n ̸=0

|n⟩⟨n|∇qα⟩ + |0⟩ ⟨0|∇qα⟩︸ ︷︷ ︸
=0, ⟨0|0⟩=1

=
∑
n̸=0

|n⟩⟨n|∇qαĤ|0⟩
En − E0
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where derivatives with respect to Sqα are denoted by ∇qα. Now the matrix elements

⟨∇qα0|∇rβ0⟩ of the spin Berry curvature (eq. 4.16) can be re-formulated to

⟨∇qα0|∇rβ0⟩ =
∑
n̸=0

∑
m ̸=0

⟨0|∇qαĤ|m⟩
Em − E0

⟨m|n⟩⟨n|∇rβĤ|0⟩
En − E0

=
∑
n̸=0

⟨0|∇qαĤ|n⟩⟨n|∇rβĤ|0⟩
(En − E0)2

.

A.2.2.2 Spin-diagonal Blocks in ΩΩΩ(0) for Spin-Rotation Invariant Hosts

In section 4.1.3.1 we argued that eigenstates of a spin-rotation invariant host can

simultaneously be chosen as eigenstates of the unitary operator Û(nnn, φ) that causes

spin-rotations in Fock-space. In the limit of weak coupling between impurities and the

quantum host, these common eigenstates lead to [ΩΩΩ
(0)
ij ,RRR] = 0, where ΩΩΩ

(0)
ij is the i, j-

impurity block of the weak coupling spin Berry curvature and R the defining matrix

representation of SO(3).

Rotation matricesRRR(nnn, φ) = eRRRnnnφ can be written in terms of the generators RRR, the axis

nnn and an angle φ of the rotation. The idea is that any rotation can be constructed as a

consecutive application of infinitesimal rotations by dφ and RRRnnn = RRRnnn = nxRRRx+nyRRRy+

nzRRRz generate these infinitesimal rotations in R3 around an axis nnn = (nx, ny, nz)
T . We

expand RRR(nnn, dφ) =
∑

k
(RnRnRndφ)k

k!
≈ RnRnRndφ and terminate the expansion after the first

order (linear in dφ) because higher orders would contribute by higher powers of the

infinitesimal (dφ)k with k ≥ 2 only. The commutator of Ω
(0)
ij and RRR, however, has

to vanish independent of the axis of rotation and as commuting is a linear operation,

scalars can be extracted.

[ΩΩΩ
(0)
ij ,RRRα] = 0, ∀α ∈ {x, y, z} (A.14)

RRRx =

0 0 0

0 0 −1

0 1 0

 , RRRy =

 0 0 1

0 0 0

−1 0 0

 , RRRz =

0 −1 0

1 0 0

0 0 0

 (A.15)

Exemplary the commutator

0 = [ΩΩΩ
(0)
ij ,RRRx] =

 0 Ω
(0)
ix,jz −Ω

(0)
ix,jy

Ω
(0)
iz,jx Ω

(0)
iy,jz + Ω

(0)
iz,jy −Ω

(0)
iy,jy + Ω

(0)
iz,jz

−Ω
(0)
iy,jz −Ω

(0)
iy,jy + Ω

(0)
iz,jz −Ω

(0)
iy,jz − Ω

(0)
iz,jy


is evaluated explicitly. From the matrix equation [ΩΩΩ

(0)
ij ,RRRx] = 0 we easily read off

that the elements {Ω
(0)
ix,jz,Ω

(0)
ix,jy,Ω

(0)
iy,jx,Ω

(0)
iz,jx} have to vanish as well as Ω

(0)
iy,jy = Ω

(0)
iz,jz.

Combined with [ΩΩΩ
(0)
ij ,RRRy] = 0 and [ΩΩΩ

(0)
ij ,RRRz] = 0 we derive that all diagonal elements
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of ΩΩΩ
(0)
ij equal each and all the off-diagonal elements have to be zero, thus, ΩΩΩ

(0)
ij = Ω1113

where 1113 is the identity matrix in three dimensions.

A.2.2.3 Conserved Quantities of the Two Impurity Dynamics

For cases where two classical impurity spins are weakly coupled to a host system that

is symmetric under spin rotations in Fock space the adiabatic equations of motion take

the form of eq. 4.47. Those can be rewritten in terms of

ṁmm1 =
JRKKY

1 − Ω2mmm1mmm2

[
mmm2 − Ωmmm1 ×mmm2

]
×mmm1

=
JRKKYΣΣΣ ×mmm1

1 − Ω2mmm1mmm2

ṁmm2 =
JRKKY

1 − Ω2mmm1mmm2

[
mmm1 − Ωmmm1 ×mmm2

]
×mmm2

=
JRKKYΣΣΣ ×mmm2

1 − Ω2mmm1mmm2

with

ΣΣΣ = mmm1 +mmm2 − Ωmmm1 ×mmm2.

Subsequent gathering of brief auxiliary calculations shows the preservation of various

quantities, which we claim to be conserved in section 4.1.3.3.

Firstly the magnitude of mmmq where q ∈ {1, 2} is conserved by eq. 4.47, since ṁmmq is

perpendicular to mmmq, thus d
dt
mmm2
q = 2mmmqṁmmq = 0. Secondly, as the adiabatic equations of

motion are written in the from of eq. A.2.2.3, we can define some vector ΣΣΣ (eq. 4.48).

Its conservation is straight forwardly demonstrated by

Σ̇ΣΣ = ṁmm1 + ṁmm1 − Ωṁmm1 ×mmm2 − Ωmmm1 × ṁmm2

=
JRKKY

1 − Ω2mmm1mmm2

[
mmm2 ×mmm1 − Ω(mmm1 ×mmm2) ×mmm1

]
+

JRKKY

1 − Ω2mmm1mmm2

[
mmm1 ×mmm2 − Ω(mmm1 ×mmm2) ×mmm2

]
− ΩJRKKY

1 − Ω2mmm1mmm2

[
mmm2 ×mmm1 − Ω(mmm1 ×mmm2) ×mmm1

]
×mmm2

+
ΩJRKKY

1 − Ω2mmm1mmm2

[
mmm1 ×mmm2 − Ω(mmm1 ×mmm2) ×mmm2

]
×mmm1

=
Ω2JRKKY

1 − Ω2mmm1mmm2

[
mmm1(mmm1mmm2) −mmm2mmm

2
1

]
×mmm2

− Ω2JRKKY

1 − Ω2mmm1mmm2

[
mmm1mmm

2
2 −mmm2(mmm1mmm2)

]
×mmm1

= 0.
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Next we show the conservation of the scalar product mmm1mmm2 which implies the conser-

vation of the relative angle φ between the impurities.

d

dt
(mmm1mmm2) =ṁmm1mmm2 +mmm1ṁmm2

=(ΣΣΣ ×mmm1)mmm2 +mmm1(ΣΣΣ ×mmm2)

=(ΣΣΣ ×mmm1)mmm2 −mmm1(mmm2 ×ΣΣΣ)

=(ΣΣΣ ×mmm1)mmm2 −mmm2(ΣΣΣ ×mmm2) = 0

Here we used the invariance of the triple product under cyclic permutations in the last

step. Furthermore, since ΣΣΣ in conserved, the precession of mmm1, mmm2 and mmmT = mmm1 +mmm2

takes place with a constant frequency of

ωprec =
√

ΣΣΣ2 =
√

2 + Ω2(mmm1 ×mmm2)2 + 2mmm1mmm2 − 2Ωmmm1(mmm1 ×mmm2) − 2Ωmmm2(mmm1 ×mmm2)

=
√

2 + Ω2 sin2(φ) + 2 cos(φ) =
√

4 cos2(φ/2) + Ω2 sin2(φ).

A.2.3 – Expansion of the Haldane Model at KKK and KKK ′

In the band theory of topological insulators a topological phase transition requires a

gap closure in the band structure. Concerning the Haldane model that gap closure

occurs in form of a Dirac cone, where the bulk valence and conduction bands touch

at exactly one point in the first Brillouin zone. Due to the C3 symmetry of the bulk

Hamiltonian of the Haldane model (eq. 4.75) that band closure takes place at the KKK or

the KKK ′ point. The bulk band gap vanishes exactly at the topological phase transition,

thus analyzing the band closure condition is an indicator for the topological phase

transition. Various topological phases are in general characterized by a change in a

topological index, in case of the Haldane model the bulk band Chern number (eq.

4.79), resulting from the integral of the Berry Connection over the first Brillouin zone.

Evaluation of the Chern number for an exemplary parameter set between gap closures

results in the topological phase diagram.

First we expand the translational invariant Haldane Hamiltonian atKKK ′+κκκ = 2π
3

( 2√
3
, 0)T+

(κx, κy)
T with |κκκ| << 1.

H(KKK ′ + κκκ) =3τ2 cos(ξ)111 +
(
M − 3

√
(3)τ2 sin(ξ)

)
σσσz +

3

2
τ1 (κxσσσ

x − κyσσσ
y) (A.16)

In proximity of KKK ′ the eigenenergies of the Haldane model are thus given by

ϵ±(KKK ′ + κκκ) = 3τ2 cos(ξ) ±
√(

M − 3
√

3τ2 sin(ξ)
)2

+
9

4
τ 21κκκ

2. (A.17)

The bulk gap closes as the root becomes zero at κ = 0 which yields the condition
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M = 3
√

3τ2 sin(ξ) for a gap closure at KKK ′.

Second, a gap closure can also take place at KKK = 2π
3

( 1√
3
, 1)T , thus expanding equation

4.75 at KKK + κκκ hints towards another criterion for a topological phase transition. The

Hamiltonian expanded around KKK is given by

H(KKK + κκκ) =3τ2 cos(ξ)111 + (M + 3
√

(3)τ2 sin(ξ))σσσz +
3

4
τ1
(
(κx +

√
3κy)σσσx − (

√
3κx − κy)σσσy

)
,

(A.18)

which yields the two bands

ϵ±(KKK + κκκ) = 3τ2 cos(ξ) ±
√(

M + 3
√

3τ2 sin(ξ)
)2

+
9

4
τ1κκκ2, (A.19)

so the bulk gap vanishes at kkk = KKK as M = −3
√

3τ2 sin(ξ).

A.2.4 – Integrating Ibulk

The following integral arises from considerations on whether the spin Berry curvature

in the weak coupling limit diverges at the topological phase transition of the Haldane

model as discussed in 4.3.1.5. Ω is continuous at the topological phase transition if the

limit m→ 0 of Ibulk exists or rather is finite. We consider

Ibulk ∼
∫
A

d2κ

∫
A

d2κ′
1

(
√
m+ κκκ2 +

√
m+ κκκ′2)2

, (A.20)

and parameterize the two dimensional κκκ in polar coordinates (κ, ϕ) to express the

integral
∫
d2κ as

∫
dϕ
∫
dκκ. The κ-independent part is of the form eiϕ and therefore

cannot lead to divergences (analog for κ′), so we are left with

Ibulk =

∫ Λ

0

dκ

∫ Λ

0

dκ′
κκ′

(
√
m+ κ2 +

√
m+ κ′2)2

(A.21)

which is straight forwardly calculated analytically. We approach the analytical inte-

gration by substitution u = k + k′ and v = k − k′ in a first step. Furthermore we set

m = 0 so we are parametrically right at the topological phase transition. Initially k

and k′ are independent but u and v are not, so one has to be cautious when it comes

to the limits of the defined integral. In fact, when the outer u-integration runs from

0 < u ≤ Λ the inner v-integral runs form −u < v ≤ u, while in the remaining interval

of Λ < u ≤ 2Λ the inner v-integration is limited to u − 2Λ < v ≤ 2Λ − u. Jacobi
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determinant of the applied substitution is
∣∣∂(k,k′)
∂(u,v)

∣∣ = −1
2
.

Ibulk =

∫ Λ

0

dκ

∫ Λ

0

dκ′
κκ′

(κ+ κ′)2

=

∫ Λ

0

du

∫ u

−u
dv

∣∣∣∣∣∂(k, k′)

∂(u, v)

∣∣∣∣∣
(

1 − v2

u2

)
+

∫ 2Λ

Λ

du

∫ 2Λ−u

u−2Λ

dv

∣∣∣∣∣∂(k, k′)

∂(u, v)

∣∣∣∣∣
(

1 − v2

u2

)
=

1 − ln(4)

2
Λ2 (A.22)

A.2.5 – Finite Size Effects of Ω

Finite system sizes and small overall energy gaps, here causes by weak next nearest

neighbor hopping τ2 ≪ τ1, can result in large spin Berry curvatures ΩΩΩ. In the limit

of weakly coupling the impurities to a spin rotation invariant host, such as the spinful

Haldane model, the spin Berry curvature is determined by a single real number Ω ∼ J2

(eq. 4.37). The gap if the topological insulating phase (left) and the topologically

C = 1 C = 0 / J2

10 3

10 4

10 5

10 6

10 7

10 8

10 3

10 4

10 5

10 6

10 7

Figure A.4: Same setup as in figure 4.5, but with a smaller τ2 = 0.001τ1. In the phase
of nontrivial bulk band topology (C = 1) the on-site potential is M = 0.8Mcrit and in
the trivial phase (C = 0) M = 1.2Mcrit. Accordingly, ∆E is the same in both panels
with constant ξ = π/4.

trivial insulator (right) equal each other, but orders of magnitude smaller than in fig.

4.5 with τ2 = 0.1. In contrast results presented in section 4.3.1.1, the close range

region reaches over the whole lattice when the host is in a topologically nontrivial
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state (left panel), no significant decay with distance in that case. Super lattice of

sites where Ω is large and alters sign on super-lattice-A to super-lattice-B sites. in

the trivial phase (right), the close rage region spreads over a few unit cells only and Ω

decreases significantly with increasing distance on the scale of this finite lattice. It is

not unexpected, that effects related to the finite extension of this model become more

pronounced with smaller gaps [48].

A.2.6 – Parametric Dependencies of Ω for Various Distances

In the weak coupling limit, the bulk band gap closes at the topological phase boundaries

of the Haldane model, which is illustated in figure A.5.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
/

6

4

2

0

2

4

6

M
/

2

10 3

10 2

10 1

100

E

Figure A.5: Energy gap ∆E between the highest occupied and the lowest unoccupied
single-particle eigenenergy ϵk in the weak coupling limit with two impurities coupled
to the host at d =

√
3. The host-impurity exchange coupling is J = 0.01 and τ2 = 0.1.

The following examples illustrate the intricate structure of the weak coupling spin-

Berry curvature in the M/τ2-ξ plane. For all plots of Ω/J2, we maintain consistent

coloring, indicated by the same norm of the color bar. Impurity distances d range from

the close to far regime.
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Figure A.6: Dependence of Ω/J2 on ξ and M/τ2 in the Haldane phase diagram for vari-
ous distances between the impurities. Gray lines mark the topological phase boundaries
(see fig. 4.3). The underlying lattice with periodic boundary conditions extends 27×27
unit cells , τ2 = 0.1 and distances are taken in the vvv1 direction.
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A.2.7 – Chemical Potential in Insulators at Zero Temperature

The chemical potential determines the the energy up to which energy levels of a model

are occupied at zero temperature. In non-interacting fermionic systems (ideal Fermi

gas) the Fermi-Dirac statistic [170,171]

f =
1

1 + eβ(ϵ(ω)−µ)
(A.23)

describes the probability of energy levels ϵ(ω) = ℏω being occupied at finite tempera-

ture T , thus finite β = 1/(kBT ). We set ℏ = 1 and kB = 1 as absolute values of ϵ and

β are of minor relevance for now. The following argument validates, that the chemical

potential µ of an insulator is in the center of the band gap at zero temperature. This

statement holds even when the density of states ρv(ω) at the valence band differs from

the density of states ρc(ω) at the conduction band, which shifts the chemical potential

out of the center at non-zero temperature. For the sake of simplicity we imagine a band

structure as depicted in figure A.7 with a gap ∆, the valence band has constant density

of states ρv in its entire bandwidth of 1/ρv and the conduction band is constructed in

an analogue fashion but with ρc ̸= ρv. The expectation value of the number of particles

in this description is determined by integrating the density of states weighted by the

Fermi-Dirac distribution as a partition function over the entire energy spectrum.

⟨N⟩ =

∫ ∞

−∞
dω

ρ(ω)

1 + eβ(ω−µ)

=ρv

∫ ∆/2

−∆/2−1/ρv

dω

1 + eβ(ω−µ)
+ ρc

∫ ∆/2+1/ρc

∆/2

dω

1 + eβ(ω−µ)

=ρv

[−1

β
ln(1 + e−β(ω−µ))

]∆/2
−∆/2−1/ρv

+ ρc

[−1

β
ln(1 + e−β(ω−µ))

]∆/2+1/ρc

∆/2
(A.24)

Per design, ⟨N⟩ = 1 is required to fully occupy the valence band. To find the chemical

potential that meets this requirement best, we vary µ in equation A.24 and evaluate

numerically when the ⟨N⟩ is closes to unity.

From figure A.8 we read off, that as β increases the chemical potential approaches zero.

Consequently lowering the temperature to zero results in a chemical potential at zero

which is right in the center of the band gap for the model under investigation here. Even

thought we designed a case where
∫ 0

−∞ dω ρv
1+eβ(ω−µ) =

∫∞
0
dω ρc

1+eβ(ω−µ) , the full partition

of the valence band does not have to match the full partition of the conduction band

and the gap ∆ does not have to be symmetric around zero for the previous statement

to remain valid. The point we make is that although the the density of states below

the gap differs from the one above it, the chemical potential approaches the center of

the gap at zero temperature. Accordingly, we define the Fermi energy the be midway

through the band gap. At finite temperatures, however, different densities of states in
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Figure A.7: Exemplary model with un-
equal densities of states in the valence
and conduction band and gap ∆.
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Figure A.8: Convergence of the chemical
potential µ in the limit of zero tempera-
ture respectively β = 1/T → ∞.

the valence and the conduction band generically lead to a less symmetric situations

and naturally µ is not longer midway through the gap.
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A.2.8 – Local Onsite Potential Analogue to Spin Chern Transition

Similar to the local magnetic impurities SSSq, one can add a local potential Ĥloc =

Mloc

∑
q,σ ĉ

†
iqσ
ĉiqσ to the the Haldane model (eq. 4.73) to generate non-magnetic local

bound states around impurity sites. Characteristics of in-gap states when varying Mloc

(base manifold is S1 as compactification of R) local to an island of radius R (fig. A.9

displays R = 1) can be explained by a virtual topological phase transition in analogy

to the J-spectral flow (fig. 5.1) of single-electron eigenvalues which leas to a transition

of the spin Chern number C
(S)
1 .
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(a) Topologically nontrivial bulk with global
M = 0.
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(b) Topologically trivial bulk with global
M = 2Mcrit.

Figure A.9: One impurities site with an additional on-site potential Mloc at an A-site in
the bulk of the host. The gray line indicates the chemical potential at µ = 0. Further
model parameters are τ2 = 0.1 and ξ = π/2, hence the bulk band structure is particle
hole symmetric. M = 0 and M = 2Mcrit with Mcrit ≈ 0.52 feature the same bulk band
gap, i.e. ∆E is identical in both panels. The bulk is modeled by a lattice of 39 × 39
unit cells with periodic boundary conditions.
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