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Chapter 1

Introduction

1.1 Introduction

Key frames are the most natural and convenient representation of video con-
tent since they reduce video information to a concise form of a small number
of still images. Key frames are used in many domains of the video content
analysis. They are very useful for human visual perception since one can
easily judge the content of a video by viewing its representation through a
small set of key frames. It is obvious that key frames are used for a video
representation like summaries or for search operations like Content Base Im-
age Retrieval. In all of these cases, a representation of the video by a small
set of frames is required.

1.2 Motivation

Key frame detection is widely used in literature, applications and in practice.
Radke [47] has a reference list with a wide range of different applications
for these classes of video sequences like Video Surveillance [10, 50], Remote
Sensing [7, 9], Medical Diagnosis and Treatment [6, 46], Civil Infrastructure
[33, 43], Underwater Sensing [22, 40] or Driver Assistance Systems [25, 30].

Videos contain a very large amount of data even if they are reduced with
modern compression algorithms like MPEG. It is not always applicable to
view a video directly online or search it’s contents in an appropriate way. A
long download time and bandwidth are necessary to get all of the content
in an acceptable time. It is not obvious, with the availability of only a few
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minutes of the video, whether the contents are desirable or not. This results
in a waste of time, bandwidth and money.

There exist many well-known multimedia content searching techniques, like
skipping of CD tracks or DVD chapters. Playing the first few seconds of music
tracks as an introduction to the song is a normal feature for CD players and
audio applications. Also some online shops make parts of songs (samples)
available for their customers on the internet to give an impression of the
content. We also have the same possibilities for the media video. Playing
the first few seconds of a DVD track is not always representative for the track
and downloading a sample from the internet often requires a lot of time.

The “normal” way to get information about the video content is by viewing
trailers or skipping through the video with a remote control. The user is
searching for important events or shot changes and if such an event is found,
he will view the video at normal speed to get an impression of the content
of the event. This kind of searching through the video content implies the
availability of the content and an abstract of it. An alternate possibility
is to read a review of the video which could be emphasized with images of
the described to get an impression of the content. In both cases, a short
representation of the video is necessary. We distinguish two basic types
of such representations: dynamic — a video trailer, and static — a video
summarization or storyboard composed of a few key frames. The key frames
are the fundamental part of a summarization because a trailer could be based
on shots while are based on the key frames.

All these components of creating an abstract of unknown video content as-
sume that a usable abstraction with key frames of the video exists describing
the desired and expected content. Different purposes of abstract creation
assume different kinds of abstract content. A video trailer should consist of
an abstract with all important parts of the video and it should also often
create an inquisitiveness for the video. These aims are not always identical
or representable by an identical set of key frames. For the creator of an
abstraction, it is important to have the ability to select different abstraction
levels, from which he can select the desired parts of the content to match the
expectations of the abstraction that should be created.

Another example of an application in which video key frames are used is the
representation of a video search result like it is done by the video engine
of altavista [2]1. One of the possibilities for altavista’s search engine is to
search for videos by entering key words. Altavista’s search engine searches

1This page is available at http://www.altavista.com/video/
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internet for videos which are linked to or integrated in websites and which
associate the words of the website to the video. A semantic search engine
searches for these key words and presents the found videos with representing
a frame of the video2. It happens frequently with this kind of video content
presentation that the searcher does not find the correct video because it
is represented by incorrect, ineffective or insufficient video content. Either
someone needs many attempts to get a representable frame or this person
loads every video of the search result. These results are often poor because
the content could be anything.

It would be more effective for the searcher to get a list of key frames of
the video presented to get a better impression of the expected content of
the video3. Figure 1.1 shows the resulting frame for a search on personal
security as shown by altavista. It is not apparent what exactly the content
of the video is. Someone could get the impression that the video has only
ear protection information. Figure 1.2 also shows us that other content like
head protection and appropriate clothes is contained.

Figure 1.1: Original example frame for a short video introducing visitor
protection.

Figure 1.2: Example of three representative frames of the same video.

2This seems to be the center frame of the video.
3The search engine company google has an online news broadcast search engine which

provides a result with different key frames. The website is http://video.google.com/ and is
in a beta test stadium.
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1.3 Classical temporal video segmentation

and indexing algorithms

There exist many techniques for key frame extraction. Most of them seg-
ment videos at first into shots. Shot or video scene-change detection is a
well-studied topic [1, 24, 31]. These algorithms are based on fast changes
between successor frames but gradient transitions between shots are also de-
tectable with additional analysis of the found shots [24, 26]. Such shots are
represented by frames from inside these shots. This could be a simple process
which is implemented into the detection algorithm or which is implemented
by an additional process that analyses single shots and picks more or less in-
telligently a representative frame. The quality of these detection algorithms
depends on the quality of the shot detection algorithm and the merging pro-
cess. Higher abstraction levels are found by merging separate shots together
into groups [53]. This process has a higher processing overhead due to the
shots comparison. This also depends on the quality of the shot detection pro-
cess. A group representation by a few frames also needs an additional frame
selection process to find representative key frames for this group of shots.
Other efforts for key frame extraction are clustering algorithms which join
single frames to frame groups. This results in groups of individual frames
which are representative for the video sequence [21, 48].

The low-level algorithms are based mostly on three steps: the extraction of
image features, the calculation of neighbor image differences and the detec-
tion of shot boundaries. In an abstraction process, these detected shots are
represented by representative images, the key frames. The selection algo-
rithm could vary from easy (select the n-th frame of a shot as key frame) to
complex algorithms (for example, select that image from the shot which is
most similar to the images of the other frames in the shot).

1.3.1 Algorithm of Kumar et. al

Rajeev Kumar and Vijay Devatha describe in their manuscript, “A Statis-
tical Approach to Robust Video Temporal Segmentation”, an algorithm for
video shot boundary detection [31]. They use a key frame detection which
is based on a shot detection algorithm with frame descriptors based on a
subdivided weighted grey color histogram. The histogram values are based
on weighted pixel values. Pixels in the inner areas are higher weighted and
in the outer areas are lower weighted to show the importance of the inner
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parts of the viewable area. The sum of the weighted pixels is normalized. A
Gaussian window filter is applied over the histogram intersections to achieve
a robustness in the histogram-matching algorithm. The likeness between im-
ages is calculated with a matching metric which detects differences in two
images based on the histograms. Kumar and Devatha used the Bhattachar-
rya metric [4], which is a generalized χ2 measure and is defined as the sum
of the dot product of all histogram bins between two frames.

The shot detection algorithm is based on the minima detection of a matching
curve which contains the metric values of successor frames over the time.
The curve-matching algorithm approximates the calculated image distance
curve by a B-Spline curve. Normal polynomial curves are not used because
edge points of an approximated interval should not be approximated by the
polynomial curve. A polynomial curve introduces false minima near these
points which does not happen with B-Spline curves. The real shot detection
is based on the minima of the B-Spline curve. These minima are potential
candidates for a detected new shot. The similarity curve should fall below a
dynamic generated threshold Th which is based on the original data.

1.3.2 Algorithm of Zhu et. al.

Xingquan Zhu, Jianping Fan, Ahmed K. Elmagarmid and Xindong Wu de-
scribed in their article, “Hierarchical video content description and summa-
rization using unified semantic and visual similarity”, algorithms for video
summaries [53]. The base of their algorithms is a shot detection algorithm
which is presented in [24]. The features are DC coefficient-based histograms
from the intra-frame of a MPEG-video stream. With the Gauss distance be-
tween adjacent intra-frames and a dynamic generated threshold, shots are
detected. After a new detected shot, the previous P- and B-frames are
searched to refine the cut. Within a shot, there can be detected with a
statistical algorithm whether a gradual transition exists between shots. This
will then result in a new detected shot boundary. For simplification reasons,
there are key frames for shots represented by the 10th frame of a shot. The
paper deals with the problem of grouping shots together to get a higher layer
of representing video context. Spatial shot clustering algorithm groups vi-
sualize same shots together but context information is lost. Video scenes
are semantic units, so it is very difficult to define boundaries for such video
parts. Video group detection algorithms are based on threshold selection.

They merge temporally and spatially related shots into groups. Four different
kinds of abstraction levels are implemented to let user select different parts
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of the video content based on a single frame. Each part is refined by the next
lower abstraction level thus refining the content. The creation of the different
abstraction levels is based on a merging process, which joins shots together
to groups of shots. Different comparison algorithms are used between single
frames, between a frame and a group of frames and between different frame
groups. An entropy-based threshold technique is used to define a dynamic
(adaptive) threshold in order to detect usable thresholds.

1.4 Subject of this work

Discrete Curve Evolution

Longin Jan Latecki and Rolf Lakämper developed a greedy algorithm (the
Discrete Curve Evolution) to simplify a two-dimensional polygon line of a
contour by removing successive vertices from the polygon [38]. The simplifi-
cation is done in such a way that not too much important contour information
of the original line is lost. Daniel deMenthon et. al. used this algorithm to
segment videos [19, 20, 37]. This work follows the same idea and the same
concept to segment videos and create indices.

The content

The content describes a video as a sequences of polygon trajectories with
frame descriptors. Frames which are nearly equal to their neighborhood are
found and gradually eliminated from the polygon. The algorithm does not
reduce the key frame detection to a shot detection algorithm nor does it
reduce it to a gradual change detection algorithm as it is normally done.
It allows applications to implement their own definition of importance by
implementing the relevance measure for frames depending on the aim of
the key frame detection. The algorithm is tested with different classes of
videos. We tested the implementation of the centroid based frame descriptors
and their temporal order, and we improved and refined the selection of the
features. The improvements include the implementation of a filter which is
applied to the descriptors of a frame and its neighbor frames. The refinement
includes the number of frame descriptors as well as the selection of color space
and the class of features. New in this area is also the usage of dominant colors
in the discrete curve evolution.
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Chapter 2 contains fundamental information about the used algorithms such
as the discrete curve evolution, feature filtering, quality measurement and
video terminology. In Chapter 3, the term video key frames and the require-
ments for a detection algorithm are worked out. The necessary requirements
and implementation of the Discrete Curve Evolution process are also implied.
Chapter 4 contains improvements for the existing frame descriptors as intro-
duced by Daniel DeMenthon. These include the selection, the weigh[-]ting
and filtering of the frame descriptors. New experiments with different color
spaces and different features, based on dominant colors and an optimal color
composition, are done in Chapter 5. Chapter 6 contains an experimental
and algorithm comparison with others who have done research on key frames
extraction. New is the application of the discrete curve evolution on video
streams without a well-defined start and end frame by defining an analysis
window. This is useful for real time key frame detection and is introduced
in Chapter 7. Chapter 8 contains a summary of the presented information
and experiments and a conclusion of the work in this paper. The appen-
dices contain additional information about the used videos and applications.
Appendix A contains an abstract of the videos used in this paper, with back-
ground facts like duration, number of scenes and the expected ground truth
result. Appendix contains a description of the applications I have used and
written to perform the experiments. Appendix B includes the free-available
MPEG1-player of the Berkeley University [8] which was used to create the
frame descriptors and to extract the calculated key frames. We have also
developed a helpful tool which shows the key frames at a specific abstraction
level and controls the video with a remote control. It is easy to to navigate
inside the video and select different abstraction levels with this navigation
tool.

This work is partially based on previous published work [35, 36].
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Chapter 2

Fundamental

The following sections of this chapter will describe the fundamental defini-
tion of the video processing terminology which is used in this paper. Also
described is the mathematics behind the algorithms, the filters and the qual-
ity measurements.

2.1 Discrete Curve Evolution

The advantages of the Discrete Curve Evolution (DCE) is the flexibility, the
speed performance and robustness. The basic work is based on an iterative
polygon simplification algorithm which is called the Discrete Curve Evolu-
tion. In this iterative process, vertices of the polygon are removed which
are mostly constant in comparison to the neighbor vertices. The algorithm
belongs to the class of greedy algorithms which implies that it is a local
optimization algorithm.

The first appliance of the discrete curve evolution was in the context of shape
similarity of planar contour objects [39]. Figure 2.1 shows a few stages of the
evolution applied on an edge of a fish drawing. Notice that the most relevant
vertices of the curve and the general shape of the picture are preserved even
though most of the vertices have been removed. In the geometric language for
the polyline trajectory, these vertices are the most linear ones. Consequently,
the remaining vertices of the simplified polygon line are frames that are more
different than the deleted ones.

In the following subsections, the algorithm and the elimination process of
the discrete curve evolution will be discussed. The applicability of the dis-
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Figure 2.1: Six stages of the discrete curve evolution for a planar object

crete curve evolution as a video segmentation algorithm will be discussed in
Chapter 3.

2.1.1 Evolution Process

Lakämper uses the term nearest abstraction to define the discrete curve evo-
lution which uses a measure named cost function to select the vertex of the
polygon that should be removed [32]. The original definitions are used for
two-dimensional contour in ZZ2. Our implementation of the discrete curve
evolution is used for video segmentation for which we need a higher feature
space IRm and changes in the definition of the cost function. We introduced
a local context to define a subset of IRm in which the cost function is applied
to a vertex of the polygon.

Definition: Local Context
Let P be an endless polygon P = (v0, ..., vn) ⊂ IRm; vi ∈ P .
The Local Context Locc of vi in a given neighborhood c ∈ IN is defined by
Locc : IRm → Ploc ⊂ P

Locc(vi) = {vj | vj ∈ P ∧ ‖i− j‖ < c} (2.1)

In the following sections, Locc(vi) is substituted by Ploc for the sake of sim-
plicity.

Definition: Nearest Abstraction
Let P be an endless polygon P = (v0, ..., vn) ⊂ IRm; I : I(IRm) → IR is a mea-
sure for the information content of the polygon P . The nearest abstraction
of P is P ′ = A(P ), which is a polygon with
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• P ′ ⊂ P

• I(P ′) ≤ I(P )

• ∀P ′′ ⊂ P : I(P ′′) ≤ I(P ′)

The information content measure I is defined as sum of the relevances of all
vertices of the polygon. The relevances are measured by the cost function.

I(P ) =
|P |−1∑

i=0

C(vi, Ploc) (2.2)

The cost function C describes how much content information will be lost if
the vertex v is removed from P . The meaning of C will be described later.
It is defined by

C : IR× Ploc → IR; Ploc ⊂ P ⊂ IRm (2.3)

The definition of I and the requirements of A are as follows:

|P | − |P ′| = 1; P\P ′ = min
vi∈P

C(vi, Ploc) where | . | is the cardinality function

and Ploc is a local context of vi.

Definition: Discrete Curve Evolution
Let P be an endless (not necessary closed) polygon P = (v0, ..., vn) ⊂ IRm

in such a way that ∃v ∈ V ertices(P )∃λ ∈ IR : C(v, Ploc) = λ.
The Discrete Curve Evolution (DCE) is a sequence of polylines
℘ = (P = P 0, ..., Pm), #{v|v ∈ V ertices(Pm)∃λ ∈ IR : C(v, Ploc) = λ} = 1
(where | . | is the cardinality function) and with P i+1 ⊂ P i where
P i+1 = A(P i). A is the nearest abstraction.

The algorithm behind the discrete curve evolution could be defined as follows:

Definition: Discrete Curve Evolution Algorithm
k=0;
while ∃v ∈ V ertices(P k)∃c ∈ IR : C(v, Ploc) = c

Find vi : C(vi, Ploc) = min
j
{C(vj, Ploc), vj ∈ P k}

P k+1 := P k | vi

increase k by one
repeat
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2.1.2 Cost Function

The cost function is a function that measures how much information a vertex
inside the polygon contains and is lost if the vertex is removed from it. The
cost function is performed for every step of the curve evolution process for
the whole new polygon P k. After each step, the values of the cost function
change for every vertex where its neighborhood also containes the removed
vertex.

The cost function used by Lakämper et. al. [39] measures the information
content of a vertex in relation to both neighbor vertices. It is possible that
the information content of a vertex depends on a larger neighborhood and not
only on the direct neighbor vertices. This limitation is avoided by defining
a larger measure context for the cost function C which we called the local
context.

For our case, we defined the cost function on a polygon vertex in relation to
a local context, which contains a subset of the neighbor vertices surrounding
the measured vertex.

2.1.3 Polygon

The polygon used by Lakämper et. al. [39] was defined on ZZ2 as a closed
polygon.

One of our requirements of Chapter 3.1.1 will be a symbolic description of
the video frames. The polygon vertices could be represented by the symbolic
description of the frames descriptors. These vertices are linked to each other
in the order of their appearance in the video. We used an open polygon with
static start and end vertices. The frame descriptors will not be necessary
Euclidean.

2.2 Video processing terminology

In this paper, video technology terms are used. This section contains defini-
tions of the terms which are used in this paper.

• An image is a function of f ⊂ ZZ2 into a color space IRn. Normally a
subset of IRn, like [0, 255] ⊂ ZZ for grey color images or [0, 255]3 ⊂ ZZ3

15



for RGB or YUV colors, is used. Through color space transformations,
other subsets of IRn could also be used for the domain space. f(x, y) →
color(x, y)

• A video is a temporal ordered sequence of images. V ideo = {f1, ..., fn}
• A frame is an image of a video at a specific time step.

ft : ZZ2 ⇒ IR3

ft(x, y) → colort(x, y); t ∈ IR
Time t is application dependent and could be a real existing time with
a time unit like seconds or an abstract time unit like frame number (in
which case t would be a natural number).

• A video stream is a video with an undefined or infinite number of frames.
V ideo = {f1, ..., f∞}

• A closed video is a video with a defined number of frames. V ideo =
{f1, ..., fn}, n ∈ IN

• The frame rate is the rate of played frames in a video per second (mea-
sured frames per second (unit [fps]). This will vary for different kinds
of video recording media and standards (like cinema, DVD, television,
PAL, NTSC, digital photo camera or video camera). Normally frame
rates vary between 25 and 30 fps. Digital photo cameras sometimes
use a lower rate and webcams sometimes use less than 1 fps.

• The frame or video resolution is the resolution of a single frame in
pixel’s width and pixel’s height. The dimensions could vary depending
on the used video standard.

• The resolution ratio is the ratio of the resolution width:height. This
is normally for a television 3:4 (0.75). Cinematic films have normally
ratios higher than 1.5 (like 1.85 or 2.35). The films we have used
have often the same ratio as used for televisions. The most common
resolutions1 are 320× 240 or 160× 120.

• A pan is either a horizontal move of the camera or a rotation around
the vertical axis. For example, the scenery is recorded from left to right
or from right to the left.

• A tilt is a rotation of the camera around the axis in the viewing direc-
tion.

1Expected is, that the size of the pixel’s are squares
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• A shot is the smallest video unit of continuous frames with the same
content. Shots are separated by a cut or a transition.

• A cut is a hard switch between different shots. Ideally a cut happens
between exactly two frames. The first frame before the cut and the
first frame after the cut are normally completely different.

• A transition is a soft switch between different shots. A transition is a
change between two shots with at least one frame showing parts of the
content of both shots. Different kinds of transitions exist. A gradient
transition is a linear change switch between two shots resulting in a
blending between the shots.

2.2.1 Key Frames

The term key frame is in the video signal processing literature not well de-
fined. It is an abstract description of representative frames of a video se-
quence. Sometimes a key frame is defined as a representative frame of a
single shot [24].

The reduction of key frames to a single representative frame of a shot will re-
duce the meaning and the abstraction of those shots. There is no information
about the quality of this abstraction. Different shots could have the same
content; however, a single shot could have a different kind of content. There
exist many various kinds of examples which show that it is not possible to
reduce a single shot to one frame. By the association of key frames to shots,
the abstraction level of the video is automatically predefined, and there is
no way to modify this level even if it is necessary to define different kinds
of abstraction levels. I agree that there are many applications for which a
reduction of shots to a single frame would be correct, but there will exist
even more applications for which this would be wrong.

What are key frames representing?
Key frames will be a representation of the video content by single frames.
This implies a reduction of frames and information, and a representation of
the original source by the remaining frames from the view of an observer.
The expectations of this representation are simple. The approximation must
be good enough and should describe the content of the video. This could be
interpreted as follows:

1. The information reduction should be between an expected minimum
and maximum abstraction level. If the number of frames is below the
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minimum level, then the information reduction is too high, and an
abstraction level which is too low will result in reducible information.
These upper and lower abstraction levels could vary depending on the
observer and his expectation and interpretation of the abstraction.

2. The remaining frames must match the content of the original frames as
well as possible. This could also vary depending on the observer and
his interpretation of “matching the content”.

Which are the key frames?
If someone asks this question, then the answer will vary such as “The content
must be described by the key frames” or “The key frames should be a sum-
mary of the video”. If someone asks whether a set of key frames will match
their expectation or not, the answer will also vary from “Yes, but that frame
is missing” or “No, that information is not important for me”.

For the same content, different people will expect different key frame sets
as a result of how they have defined for themselves the similarity of the key
frames and the associated content. It is possible that depending on the mood,
the time, the situation and the reason for the key frame creation, the same
person will describe the same video by different key frames.

Consequence:
The consequence is that we have a reduction and abstraction level of the
video (which is reflected by the key frames) that depends on the view of an
observer and his expectation which will also depend on the application for
which the reduction is needed.

A given set of key frames from an observer will identify the application and
the role in which the observer acts. The quality and range of acceptable
key frames will be more or less vague in this situation. Only the observer
himself can define the expected abstraction level wether results are suitable
for his application or not. The quality of key frames rises and falls with the
correct numerical definition of key frames and abstraction level as used by
the observer.

This consideration results in the fact that there will be no suitable definition
of key frames and abstraction level for each application (in which an observer
acts). Key frames will only be clearly available if this unknown information
of the application and user is given.

We need answers to the following two questions before we can give the key
frames for a given video.
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1. What kind of information of the video is the observer interested in?

2. How far or to which abstraction level should this information be re-
duced?

These kinds of problems also exist for example in other parts of the video
signal processing like Content Based Image Retrieval. The search for spe-
cific images is based on the expected information of the images. Projects
like Viper [28] use learning algorithms to detect the requirements for frames
as required by user. Frames are compared on base of image descriptors.
The learning process increases or decreases the weighting of the descriptors
by user-interaction in order to find the best match for the expected results.
This results in a description in which the image descriptors user is interested.
These kinds of algorithms should lead to good results if the image descriptors
are suitable for the class of information that is expected by the users applica-
tion. A similarity value gives information about the quality of an image and
the trained images. This makes it possible to differentiate between a good
and a bad content similarity.

These two open questions make great demands on the key frame detection
algorithm. It should be flexible to fulfill the definition of important informa-
tion and the possibility of defining an abstraction level.

Due to the fact that we could not define a suitable general definition of key
frames, we tried to define a specific but general description of key frames, in
order to reach a wide class of applications in which this description could be
used. It is not our intent to find a suitable algorithm to fulfill all expected
results for any situation and application.

It is more intuitive that key frames should contain important information
about a local part of a video sequence that is representative for it and not
only for shots. Different sequences should also contain different key frames.
Such a local sequence (or part of a video) should contain nearly the same
frames with the same content of information (entropy) or significance. This
definition of key frames is very depending on the context in which this frame
appears. Changes in this local context will reflect in changes of the key
frames. These changes are possible due to one of the former reasons which
could be interpreted as a request to the definition of key frames.

These different criteria for key frames come from the different applications in
which key frames are used or should be detected. For simple video summaries,
a representation of shot key frames could be enough [31]. More complex
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summaries use grouping algorithms or other algorithms, which need more
information about the context [53].

The definition behind the term key frame will be discussed in the next chap-
ter.

2.3 Quality Measurement

A single key frame algorithm with results could be useful but there is no
information whether these results are good, representative, complete or even
suitable. Several [5] measurements exist that try to describe the quality of
the results which are returned from the key frame detection algorithm.

To test the quality of the experimental results, there must be suitable ex-
periments with predefined representative results. These ground truth results
should exactly match the key frames as expected by the key frame definition.
This includes either an ordered list of key frames in order of their importance
or a fix set of key frames with the number of frames that is expected. This is
expected in accordance to the answer for question 2 in section 2.2.1. We need
either an abstraction level (which directly or indirectly includes the number
of key frames) or the list of all key frames, in order of their importance, in
order to select an abstraction level at another time.

The experimental results are compared to the ground truth results. The
statistical information from those comparisons is a quality measure of the
experimental result.

1. recall
The recall describes the completeness of the responding functional-
ity/algorithm.

Recall := |{expected response}∩{response}|
|{expected response}|

The recall is a measure of how many correct answers we have. A zero
means that we have no correct answer and a “one” means that all of
our answers are correct.

2. precision
The precision describes the accuracy of the responding functionality/

algorithm. Precision := |{expected response}∩{response}|
|{response}|

The precision is a measure of how many of our answers are wrong. A
zero means that all of our answers are wrong and a “one” means that
all of our answers are correct.
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3. precision versus recall graph
The precision-recall graph shows the relation between the number of
correct and false detected key frames.

The expected response is the expected result of an algorithm or function. The
response is the effective response of an algorithm or function.

Besides these objective quality measures, we also have subjective quality
measures. We compared our algorithm directly with the results of other key
frames detection algorithms and analysed the resulting key frames. Due to
the nature of those key frame definitions and algorithm implementations, it
is difficult to make a direct conclusion of these results.

The ground truth results are self-recorded videos, based on simple scenarios
with predefined changes in the environment. The advantage of a real camera
recording is the non-artificial move of the camera (pan) and the objects (these
are noises in the object motion during the time). Also we have a background
noise in the frame colors themselves.

The comparison experiments are created by other people and it is not always
obvious which key frames are expected. Sometimes a trailer or a mixture of
cuts is used for comparison results. A small set of the videos contains one set
of ground truth results because they are selective defined by a larger group
of people [21]. A description of the videos can be found in Appendix A.2 and
are available at the homepage [12].
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Chapter 3

Key Frame Detection

We have seen in the previous chapter that the definition and therefore the
detection of key frames is not trivial. In this chapter we will discuss the
requirements for a reasonable key frames detection algorithm and how this
could be implemented in the Discrete Curve Evolution.

3.1 Key frames requirements

Our definition of key frames should fulfill several criteria, which range from
the classical shot representation further to the detection of different but im-
portant information inside a shot. Other criteria are also non-linear changes
such as motion changes of objects, camera pan or other unpredictable events
because this kind of information could also be important for an observer, and
thus should be detected.

In summary, our requirements of a key frame detection algorithm are as
follows:

1. Shot detection
A change in the local information content is possible by a cut or a
blending like gradient transition between shots. Such a shot and cut
detection is a well-studied topic [3, 24]. There is also no problem in
finding key frames for different shots with and without blendings.

2. Change in content
It is possible for one shot to contain different kinds of information
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because of background or foreground object changes. This is possi-
ble through objects which enter the area of view or through objects
which hide or do not hide another object. For example, a 360-degree
panorama view of a beach will first show a beach and then a few seconds
later, the beach or something else in the background such as a city or
mountains. The content of this panorama view cannot be representable
by a single key frame.

3. Event detection
A change in the “action” of a scene could also reflect a change in the
local context. A moving car contains other information as a parking
car. The events “start” or “stop” could be important for our (imagine)
application and should also be represented by key frames. This also
implies that linear changes should not be detected.

Points 1 and 2 reflect changes between frames that should be detected. In
terms of shot detection, a key frame should represent the detected shot and
the changes of the shot to a neighbor shot. However, due to the concept of
the algorithm and the fact that a shot has two boundary shots, these changes
are relative and not always practicable. (It makes, for example, no sense to
represent two very similar shots by two very similar key frames.) Point 3
reflects a non-linear change in the local context.

3.1.1 Requirements of a frame comparison algorithm

The requirements above have influence on the comparison between the frames
in a video. A direct frame-to-frame comparison (such as is done in [24,
31]) is not possible for this will not fulfill the requirement 3 because more
information of the context is needed in which the frame appears. Either
we need frame descriptors, which reflect this local content, or we need a
frame similarity measure which considers this. It makes sense to define frame
descriptors for the frame itself without considering the information about the
neighbor frames. This is done to make the algorithm as general as possible
for existing frame descriptors, which exist for single frames only.

1. Symbolic Description
We need a symbolic description of frames to represent these frames.
These frame descriptors (short FD) should be able to represent the
different information content of frames. The selection of these FD has
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directly influence on our application for which we need the key frames.
The better the FD matches our expectation, the better the results will
be.

2. Frame Comparison
We need the possibility to compare frames based on the symbolic de-
scription in relation to each other. The better we are be able to compare
frames, the better our results will be.

3. Context Dependency
The comparison between single frames does not consider the context,
so we do not need a frame-to-frame similarity but a similarity of a
frame to its local context. This comparison will be defined later and it
will be based on a frame-to-frame comparison. Therefore, the first two
requirements are the most important because a comparison of frames
is based on these frame descriptors, and the quality of the key frame
algorithm will depend on the frame comparison.

3.2 Image and Video Descriptors

The classification of images and video sequences is based on descriptors that
are extracted from the video frames. All detection algorithms for video
streams only are based on the video content. Other ideas are to develop
algorithms using other kinds of information like audio to extend the avail-
able information in order to get better results in the video processing. This
will not be a part of this work. A video processing algorithm based only on
the video content should be able to fulfill our requirements for a key frame
detection algorithm because we only used the video content in our consider-
ations.

However, this shows us how important the selection of frame descriptors is.
The quality of these frame descriptors has a direct influence on the quality
of the algorithm which is based on these descriptors. It is important to
know, based on the defined expectations, which kind of information should
be stored in the descriptors. For example,

1. If the position of objects has an influence on the ability to detect this
frame as a key frame, then it is logical that some of the position infor-
mation must be included in our frame descriptors. Such information
could be represented by different kinds of data. This could be directly
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accessed by the coordinates of the objects but also indirectly accessed
by weighting (non-position) depending descriptors based on the area in
which they appear; therefore, these frame descriptors have got position
information. For example will a histogram based on colors which are
weighted by a factor depending on the pixels appearance, will contain
other information as a straight-forward built histogram.

2. Speed changes are reflected by an acceleration or deceleration which
in turn reflect a non-linear position change of an object over time.
Time and position depending information must be included in the frame
descriptors in order to be able to detect such kinds of events. The time
factor could be directly represented by the time of the frame in the
video or by its frame number. The time factor could also be indirectly
stored in terms like speed factor or motion vectors such as used in
MPEG video stream B- and P-frames.

As we can see, the available amount of information could be represented
by a wide range of frame and video descriptors. It is assumed that frame
descriptors are descriptors which are available within a frame but which did
not have information about the context of the frame in the video. Video
descriptors are descriptors which contain information about the frame inside
the video. This could be the mentioned time information but it also could be
information about the other frames in the video. An idea is to detect whether
the importance of frame descriptors should be increased, and whether if they
are non-constant in the context. With this amount of information and also
the amount of possibilities of getting the information, the storing and the
processing of the information will be increased. This will cause a confused
result and thus will lead to a reduction of the information into an easily
comprehensive number of descriptors without an important loss of necessary
information. There exist many more kinds of information inside frames, such
as the following:

• Texture information which could be represented by the relationship be-
tween the lightest and darkest pixels inside different-sized areas around
a single point [53]. Several kinds of texture information descriptors are
described in [23].

• Different color spaces such as {R,G, B}, {Y, U, V }, {L, a∗, b∗}
• Color moments like the centroid coordinates.

• Motion vectors of frame components as used in MPEG video streams.
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• Hidden Markov Model

• Training based feature weighting

Our expectation of the events requirement assumes that we can detect at least
moving objects and changes in their speed. This assumes the availability of
object position and time.

3.2.1 Buckets

Features based on histograms are widely used in the literature [18, 52]. Daniel
DeMenthon et. al. developed histogram-based features called buckets [18]
which are not directly based on the histogram but based on centroids, that
are based on the histogram. The histogram of each Y-, U- and V-color
component, with a range from 0 to 255 is subdivided into four bins with a
linear range of 64 colors. The pixels with the color from a single bin represent
a centroid.

The coordinates x, y and area of the centroid are used as the features for a
bin. This feature selection is done for every color component and every his-
togram bin. A single bucket contains the features of a single centroid. The
only necessary missing feature is the time which is added as an additional
feature component and is represented by the frame number. Together with
the time factor, we will have
3[colors]× 4[ intervals

color
]× 3[features

interval
] + 1[(time)feature] = 37[features]. These

features are represented by a 37 dimensional vector which reflects the infor-
mation content in our frame: ft → IR37

3.2.2 Dominant Colors

Another and a more intuitive feature is dominant colors. Hu et. al. has de-
scribed a model and comparison algorithm for Content Based Image Retrieval
[29]. The advantage is that the descriptors and the comparison algorithm are
more based on the human vision model, so the results for a frame-to-frame
comparison will match our expected results easier if we compare two frames.
(The easiest way to understand this is with a cut detection algorithm which
is based only on a frame-to-frame comparison algorithm. If the human vi-
sion detects a large difference then the algorithm should also detect a large
difference.)
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This algorithm detects the most important colors from a code book by as-
sociating the smaller-sized color areas to the larger-sized color areas. Lesser
important colors are displaced by more important colors. The descriptors
contain the code book color number and the percentage of its area. The
matching algorithm searches the optimal color matching such that the differ-
ence is minimal. The disadvantage is that neither area information nor time
information is stored in frame descriptors.

3.3 Relevance Measure

As we have seen, the cost function describes how much information of the
content of the neighbor vertices is contained in a specific vertex. For example,
a car drives from Point A over Point B to Point C, and Point B lies exactly
between A and C. Then it could be expected that if the movement of the
car is linear, without loss of information, then the car will drive from A to
C and it will pass point B. The information that the car will pass Point
B is redundant. The cost function at Point B should be zero because no
additional information is contained in it.

The consequence is that more important frames will contain a higher value
for the cost function. In terms of key frame importance, the cost function
measures how important a frame is in relation to the neighbor frames.

The considerations of the previous chapters lead to the following conse-
quences. A video is mapped into IRm through presentation of the frames
by their frame descriptors. The frame descriptors are linked to each other
resulting in a polygon. Neighbor frames represent neighbor vertices.

Definition: Relevance Measure
Let P = (f0, ..., fn) by a polygon. A cost function Mrel(fi, Locc(fi)) is a
relevance measure for a given key frame definition if it satifies the following:

1. If fi is more similar to Locc(fi), then fj is similar to Locc(fj), then
Mrel(fi, Locc(fi)) < Mrel(fj, Locc(fj))

2. The “similarity” term above should match our expectation of the key
frame definition.

Mrel is not necessarily positive definite. So there could exist some fj, such
that Mrel(fi, Locc(fi)) < 0.
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The requirement to detect shots implies that abrupt changes to at least one
neighbor frame should be detected, and that slow changes or nearly equal
frames should not be detected. For example, if frame ft is nearly equal to
ft+1, and ft+1 is very different from ft+2, then

Mrel(ft+1, {ft, ft+1}) < Mrel(ft+1, {ft+1, ft+2}) (3.1)

The requirement to detect non-linear events is described in the following
example. It is assumed that if an object moves linear from frame ft over
frame ft+1 to frame ft+2 then in frame ft+2 appears an event: The object
travels with another speed, then it moves slower over frame ft+3 to frame
ft+4. It is expected that there is a linear movement in ft+1 and there-
fore its relevance Mrel(ft+1, {ft, ft+1, ft+2}) should be low. In ft+1 there
is a change in the speed, and therefore it’s expected that the relevance
Mrel(ft+2, {ft+1, ft+2, ft+3}) should be higher.

Mrel(ft+1, {ft, ft+1, ft+2}) < Mrel(ft+2, {ft+1, ft+2, ft+3}) (3.2)

In ft+3, the movement is again linear and therefore Mrel(ft+3, {ft+2, ft+3, ft+4})
should be low again.

Mrel(ft+2, {ft+1, ft+2, ft+3}) > Mrel(ft+3, {ft+2, ft+3, ft+4}) (3.3)

The frame ft+2 in which the event occurs, is expected to be more relevant
than the other frames.

3.3.1 Image comparison

Point 2 in our relevance measure definition could be the most important
requirement because it defines how close our results would be to the expected
key frame definition; however it also could be the most difficult requirement
to be satisfied.

Normally [31, 53] a distance measure d( . , . ) would be the easiest way to
compare images with each other in order to get a similarity measure between
two images.

1. Identity: d(x, x) = 0
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2. Positive definition: d(x, y) > 0, ∀x 6= y

3. Symmetry: d(x, y) = d(y, x)

4. not the triangle inequality d(x, y)+d(y, z) ≥ d(x, z) i.e., there can exist
some y’s such that d(x, z) > d(x, y) + d(y, z)

Number 1 means that two identical frames should have no differences and
should also have a distance from 0. Number 2 means that the distance
between two different frames is positive definite. Number 3 means that it
makes no difference in which order we compare two images.

If the local context is only one neighbor frame, then we could use this metric
for a relevance measure. Unfortunately this will not fulfill our requirements in
detecting non-linear changes; therefore, we need another measure. A previous
and a successor frame are at least necessary to detect non-linear changes. So
Mrel should be defined on at least three frames. The easiest way to define such
a measure is to use the metric in order to define such a relevance measure.

Some examples for “potential” relevance measures based on frame-to-frame
comparison metric are as follows:

1. Mrel(f1, {f0, f1, f2}) := d(f0, f1) + d(f1, f2)

2. Mrel(f1, {f0, f1, f2}) := |d(f0, f1)− d(f1, f2)|
3. Mrel(f1, {f0, f1, f2}) := d(f0, f1) + d(f1, f2)− d(f0, f2)

3.4 Conclusion

The frame descriptor selection based on histogram centroids is very suitable
for our expected key frames. It contains all the necessary information that
is used in our key frame definition. The discrete curve evolution is useful
because the relevance measurement rates those frames with a higher value
which match our key frame definition.

Only information descriptions by frame descriptors and information analyses
by the relevance measure are not guarantees for a good key frame extraction.
Every kind of information which is included in all videos and video frames1

1If a frame contains x × y pixels in a 3 dimensional color space, then we will have
information in IR3xy+1, this means for a frame resolution of 320 × 240 a dimension of
230401
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is compressed into IR37. Everyone will see that such a compression also leads
to a reduction of information. An important question however is how stable
the features are. Will they be easily disturbed by small changes in the frame
like a little bit more or less brightness? What happens if the frames are
scaled? Whether the different kinds of information which occur in the “real”
is distinguished well enough in this 37 dimensional space, and whether the
contained information can also be interpreted by the detection algorithm will
be tested and verified by experiments in the next chapters.
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Chapter 4

Closed Videos

In this chapter, we will analyse the applicability of the Discrete Curve Evo-
lution with closed videos. As we have seen in the previous chapter, Daniel
DeMenthon has used a 37 dimensional feature vector based on video frames
to describe the content of a closed video. The key frame detection is split
into different steps which are performed by individual applications. The first
step is the creation of the frame descriptors, which implies the extraction
of frames, the associated histogram bins and time information. The second
step is the Discrete Curve Evolution as described in chapter 2.1. The third
step is the extraction of the key frames from the video.

In this chapter we will see how these frame descriptors can be optimized. We
will show the flexible extensibility of our algorithm by changing the frame
descriptors.

4.1 Abstract review of existing applications

The applications used by Daniel DeMenthon were written and developed by
the LAMP division at the Maryland University [34]. The application Merit
was used to analyze the DCT (Discrete Cosinus Transformation) in MPEG
video streams. This application is used for the DCE key frame algorithm
to extract the color information of each frame. An MPEG-1 video stream
stores data in DCT blocks of 8x8 values (which are the macro blocks). The
most upper left values of such a DC block contain the average color intensity
of the block that is available for each the YUV color components. This
(average) color information is used to calculate the centroids which gives us
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the necessary information. This data is stored in a DCT-File1 used by the
next application.

The bucket application, together with the frame number and the DCT-data
creates the frame descriptor vector. Its data is stored in a BFT-file. This file
is used by the discrete curve evolution to perform the key frame detection.

The histogram is subdivided into four equidistant parts and for each part
there is a bucket with centroid data calculated. (From these buckets is cal-
culated the frame descriptor for each frame ft.) The vector elements are
ordered by the colors Y, U, V (in this order). Inside each color component
is stored the data from the lightest color intensity to the darkest color in-
tensity. The data is (in this order) the “x” and “y” value of the centroid in
DCT block coordinates and the area in number of DCT blocks.

ft → FD(ft) = ( t,

bx
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, by
Y1

, b#
Y1

, ..., bx
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Y4
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, by
V4

, b#
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)T

The Discrete Curve Evolution is performed by the curve evolution application
which is a C++ program. This application reads the BFT-file and produces
three output files, although only the EVO-file and the TOL-file are mentioned
here. The relevance measure is as follows:

Mrel(ft, {ft−1, ft, ft+1}) := d(FD(ft−1) , FD(ft))
+ d(FD(ft) , FD(ft+1))
− d(FD(ft−1) , FD(ft+1))

(4.1)

Where the metric is the Euclidean metric as defined by:

d(FD1, FD2) := ‖FD1 − FD2‖2 (4.2)

The EVO-file contains frames in the order when they were removed from
the polygon line. Additional information stored with the frame is both the
relevance number and the relevance value of the frame as it was removed.
The TOL-file contains a (hypothetic) number of relevant frames which are
representative for the video. The algorithm behind this value is discussed in
section 4.2.6.

1See appendix B.3 for a description of the file formats.
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The extraction of the key frames is done with a modified MPEG player from
the Berkeley University [8], written in C. This MPEG-player is freely avail-
able in several Linux distributions and could also be downloaded from the
internet. The modifications include an option for reading a list with frame
numbers from a file. These numbers are extracted and stored in the PPM-
format which is a well-known file format for UNIX based computer operating
systems. This frame list was created from the EVO- and the TOL-file.

The list of applications was finished with a JAVA-applet which joins all files
to the video viewer. The viewer could be used as a standalone application or
as client application in a browser like Firefox [44] or Internet Explorer. The
application has a slider from which it’s possible to easily define the needed
abstraction level. The default abstraction level is the number of frames as
defined in the TOL-file. The order of the frames in the different abstraction
levels is defined by the EVO-file. The available frames in the abstraction
level are shown in a time-line which represents the video. With the mouse,
each key frame is selected and is then shown in the viewer.

4.2 Algorithm and software analysis

We tested the functions on our test videos [13, 14, 15]. These results were
not bad but some improvement was necessary. Our improvements included
changes in the data source on which the frame descriptors were based, the
content of the frame descriptors and additional filtering functionality of the
frame descriptors. We tested the algorithms and programs on other videos
and scenes in order to test the applicability for different kinds of videos.

4.2.1 Feature Extraction

The existing features are based on the average color intensity of a macro
block. It automatically implements a filter because the average color doesn’t
necessarily have anything to do with the existing pixels, and precise analysis
of a frame is not possible due to the loss of information. For example, if
the macro block contains 32 black and 32 white pixels, then the average
color would be grey. These three colors exist in three different parts of
the histogram. It is possible that our results will be disturbed. Also an
eventuality analysis based on the texture is not possible because these fine
contours do not exist in this part of the macro blocks.
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It is possible that the dimensions of a frame not always be a multiple of 8,
due to the nature of macro blocks which always have a size of 8 pixels. In
that case, parts of the frame are either removed or either add or stretched
and in both cases the processed information is not correct.

The third problem is that small position changes of objects inside a macro
block are not detectable. In the worst case, those images could be identically
identified if the average color value is not changed.

Also the time factor (frame number) is not scaling invariant. When we have
another frame rate, this could lead to other results.

Feature normalization

The idea behind these features is good because it could contain much impor-
tant information about objects in the scenario and even the whole scenario
itself. It is possible to detect or identify objects if information is stored in
other buckets than the background. Also it is easy and fast to extract these
features from the video sequence.

The problem we have is that these features are not directly usable for differ-
ent kind of frames and videos because the weighting and importance of the
different features depends on the frame format. This will make it difficult
to compare and analyze the results for our videos. For example, this will
directly affect different scaled videos which can not give the same results for
different sizes. The features are frame size and rate dependent.

It was necessary to scale the features into a well-defined domain before we
could make tests. As we have seen in chapter 4.2.1, information could be
lost due to the fact that features depend on MPEG1-macro blocks instead of
on the pixels of the image. It would be an improvement if we would not use
the macro blocks as a base for the features but instead the pixels themselves.
This would reduce the amount of lost information. Other video sources and
sizes which have no average color information stored in macro blocks could
also be used. The disadvantage is that we have 64 times higher data content
which must be processed because instead of one feature for each 8x8-sized
macro block we will then have 64 features (one for each pixel). The time
used by the bucket-filling process is linear to the amount of pixels, and the
computer speed is increased rapidly in the past. Due to simplicity of the
filling process, it is not expected that the processing time for this amount
of data will increase significantly. If we have timing problems, then we will
decode the MPEG data to frame data, but this is no problem for modern
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computers and video cards which directly support MPEG decoding in real
time.

Our idea is to scale closed intervals of the centroid data to a static-defined
interval, independently of the source value interval in the buckets. We will
scale our values to the interval [0, 1]. These intervals are selected because they
could be represented by a linear normalization of the origin intervals. Differ-
ent importance of frame descriptors could be realized by different weighting
of these frame descriptors in the image comparison functionality; therefore,
it is not necessary to implement a weighting of the different frame descriptors
at this stage.

Our proposal is to scale centroid coordinate x from x ∈ [0, xmax] to xscaled ∈
[0, 1]. This is done by dividing x through xmax. The centroid coordinate y is
scaled from y ∈ [0, ymax] to yscaled ∈ [0, 1]. This is done by dividing y through
ymax. And the area is scaled from Area ∈ [0, xmaxymax] to Areascaled ∈ [0, 1].
This is done by dividing Area through xmaxymax.

bx
centroid → bx

centroid/b
xmax
centroid

by
centroid → by

centroid/b
ymax

centroid

b#
centroid → b#

centroid/b
xmax
centroidb

ymax

centroid

The problem is the time factor. Same video intervals in different video se-
quences should always have the same importance. One frame with the same
pixel neighborhood should always give us the same relevance value, indepen-
dent of how long the video sequence is and at which position these frames
occur. If we make the decision to scale the time to a fix interval, we will have
problems with cuts for the same frames of the video. If we have videos with
different frame rates, we will also have problems if we do not scale the time
to a clearly defined interval. We scaled the number of frames of one second
to the interval [0, 1].

Another problem with the time value is its weighting. What importance has
the time factor in relation to the other relevance factors of the video content?
The relative importance of the time factor in relation to total number of the
other relevance values should also be constant. If we double the number of
buckets to refine their content, then this bucket doubling should have no
influence on the importance of the time. We did many experiments with
a histogram subdivision of 4, 8 and 16 parts. Through the increase of the
number of centroids, the importance of a single centroid is also decreased
just as is the importance of the time factor. If the importance of the time is
constant by increasing the number of features, then the time factor should
be weighted by the same multiple of the number of increased features. So it
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makes sense to multiply the time factor with a factor C which depends on
the number of the frame descriptors and is defined as C(x) = x/Constant.
For example, C will be equal to one if we have four buckets and a value of
13 for Constant2.

tframenumber → tframenumber · C(1 + 3 ·#centroids)/framerate

Our frame descriptors FD for the frame Ft, as used by the curve evolution,
are defined by

ft → FD(ft) = ( t·C(1+3·#centroids)
framerate
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(4.3)

The algorithms are more correct because the whole image is analyzed and
not only the macro blocks. The application accesses the pixel colors directly
from the output frame buffer of the MPEG-player.

4.2.2 Loss of information

It was not so clear and easy to detect the problems in the ground truth results,
so we tried other improvements. As we mentioned before, the amount of
information and the measurability of the changes inside this information are
important. An increase in the amount of information could also increase the
quality of the features and therefore the quality of the results. The amount
of information which is used in the frame comparison algorithm has a direct
influence on its quality. If in this process, too much information is lost, then
this will result in a bad comparison result. This could result in frames that are

2Opposite to the derived frame rate, we has to use the frame number divided by 1000
because the correct frame rate in some of our videos was missing and a down-scaling of
the frame number was necessary. In the case of 4 buckets and a frame rate of 25 fps the
Constant will be 520.
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bin X Y Area
bin 1 20 173 13
bin 2 64 78 9
... ... ... ...
bin 16 0 0 0

Table 4.1: Table Y buckets of “Mov1” with 16 bins

bin X Y Area
bin 1 20 155 8
bin 2 20 209 4
bin 3 58 120 3
bin 4 67 56 6
... ... ... ...
bin 32 0 0 0

Table 4.2: Table Y buckets of “Mov1” with 32 bins

too easily detected as equal but in reality they are unequal; therefore resulting
in removed frames that are more different than the remaining frames. The
idea is to add more histogram subsets in order to increase the amount of
information but without getting too much redundant information.

The idea is to increase the subdivision of the color histograms on which the
centroids are based. We will double the histogram subdivision. The amount
of possible colors in each of the resulting histogram parts will be equal due
to the fact that the number of colors is a power of two. The original number
of buckets used by Daniel DeMenthon was 4 [18]. As we have seen, this
leads to a total amount of 37 frame descriptors which includes a very large
reduction of information. The idea is that a larger amount of buckets could
lead to a better improvement of the results because the information reduction
is reduced. We tried a histogram subdivision of 16 bins, which results in a
feature vector with 145 frame descriptors (including the time feature) and a
subdivision of 32 bins resulting in 289 frame descriptors.

Table 4.1 contains the frame descriptors for the Y buckets. The values are
multiplied by 1000 and rounded to integer, so some rounding errors are pos-
sible. For a comparison table 4.2 contains the same frame descriptors for 32
buckets. In the second table, bin 1 and 2 represent the same content as in
table one. Bin 1, and bin 3 and 4 of the second table represent the same
content as bin 2 of the first table.
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Figure 4.1: Expected five key frames of the ground truth video “Mov1”.

Figure 4.2: The best five key frames with 145 features for “MOV1”

One of our ground truth experiments is “Mov1”3. The video shows a table
with three different colored papers. The camera starts at the first paper,
moves to the second paper, to the third paper and back to the second and
first paper. We expected those frames as the key frame result, in which a
single paper is shown. This should be the five frames with the first paper, the
second paper, the third paper, the second paper and the first paper. Figure
4.1 shows the expected key frames of video “Mov1”.

We tested the different bucket sizes with this video without filters to get
comparable results. We saw in image 4.2 that the real results of the best
five images did not match the best five images of the expected ground truth
results4. Key frame number two was missing (it was leafed blank in the
image set). In image 4.3, we saw that the missing image was inserted as the
sixth best image. The frame descriptors use 8 bins (subdivisions) for each
histogram color component to fill the buckets. For the results of figure 4.2,
we used 16 bins for each color component. The results matched the expected

3Information about the used videos is available in appendix A.
4The small colored squares inside the images reflect the position and color of the buck-

ets.
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Figure 4.3: The best six key frames with 145 features for “MOV1”

Figure 4.4: The best five key frames with 289 features for “MOV1”

ground truth results. The increase of the number of buckets will increase the
quality of our key frame result.

Results are available for video sequences “House Tour”, “Kylie”, “Mov1” and
“mrbeantu”. More information about these videos can be found in appendix
A and on the homepage [12].

4.2.3 Nearly empty centroids

Another problem is video sequences where “nothing” important is happen-
ing, but key frames are detected. For example “Mov1”. We tested our
applications in the default configurations on “Mov1”.

We have drawn the frame descriptors in the frames to get a visual idea of
which frame descriptors exist and where they are located. The frame de-
scriptor representation is done by drawing squares and rectangles for the
represented centroids in the frames. The Luminance (Y) colors are repre-
sented by grey-colored squares. The inner part of the square shows the color
intensity and a black or white border in order to get an acceptable contrast

39



Figure 4.5: Resulting five key frames of video “Mov1” with normalized fea-
tures. Frames 1, 197, 263, 313 and 378.

Figure 4.6: Best six key frames of video “Mov1”.
Frames 1, 197, 263, 313, 319 and 378

to improve the visibility. The position of the squares represents the posi-
tion of the centroids. The size of the centroid is not represented. The red
chrominance (U or Cr) colors are represented by vertical red-colored rectan-
gles. The Luminance shows brightness of the inner part for the intensity of
the representing bucket. The border is also black or white in order to create
a contrast. The same is done for the blue chrominance (V or Cb) for which
centroids are represented by horizontal blue colored rectangles. The only
features not shown are the time and centroid sizes. 65 % of the information
content is represented by these squares and rectangles.

The result of our applications for five key frames is in figure 4.5.

As can be seen, some of the correct key frames are missing; therefore we
looked at the smallest detected key frame set in which the ground truth key
frame set is included. With six frames we got the result set of figure 4.6 and
with seven frame we got the result set of figure 4.7.

It is possible that the sixth frame is equal to one of the other five frames
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Figure 4.7: Best seven key frames of video “Mov1”.
Frames 1, 197, 263, 313, 319, 320 and 378

Figure 4.8: Best eight key frames of video “Mov1”.
Frames 1, 55, 197, 263, 313, 319, 320 and 378

because the seventh frame lies between those two frames and is different.
We had not expected that the seventh frame nearly equal is to two of the
neighbor frames.

The problem that we got here is: “Why is the seventh frame nearly equal
to two other frames?” We also observed this behavior in some parts of our
ground truth results. The best 7 images of Mov1 are frames 1, 197, 263, 313,
319, 320 and 378. Frames 313, 319 and 320 are nearly the same as can be
seen in figure 4.8. As we can see in the middle frame, on the right side is
a centroid missing that exists in the two frames. The frame descriptors for
these frames 312, 318 and 319 are listed below. The frame descriptor values
are natural values in the range [0, 1000] and approximate the real values in
the range [0, 1].

frame 313:
288995 312 1 832 00001212

313
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0 0 0 317 517 517 689 471 482 0 0 0

0 0 0 890 540 0 496 495 999 0 0 0

0 0 0 489 498 979 835 366 20 0 0 0

frame 319:
290626 318 1 808 00001218

319

0 0 0 349 501 533 665 488 466 0 0 0

0 0 0 0 0 0 496 495 1000 0 0 0

0 0 0 488 497 982 943 370 17 0 0 0

frame 320:
290626 319 2 792 00001218

320

0 0 0 351 490 535 663 501 464 0 0 0

0 0 0 903 558 0 496 495 999 0 0 0

0 0 0 492 496 989 968 375 10 0 0 0

The data comes directly from the EFT file, with the described format in
appendix B.3. The data is the same as for the BFT file with some additional
parameters which are represented by the first lines. This first line of each
data block contains additional video stream information such as frame offset,
MPEG frame type, time code etc., which is used by one of our tools5. The
second line is the time feature which is represented by the frame number. The
third line contains the luminance (Y) color information. The most bright and
dark buckets are empty which is reflected by (0 0 0). The fourth line contains
the chrominance (U) buckets and the fifth line contains the chrominance (V)
buckets.

Figure 4.9: Frames 313, 318 and 319 of video “Mov1” showing the centroid
problem.

The most significant difference for these (nearly) equal frames is the second
chrominance (U) bucket.

5This is the Smart Fast Forward viewer which is described in chapter B.1.5.
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frame 313: 890 540 0
frame 318: 0 0 0
frame 319: 903 558 0

The third bucket contains for frames 312 and 319 an area size of 999 (0.999%).
Then it could be expected that the second bucket of frames 312 and 319 is
not exact (nearly zero); however, the area size of the second bucket of frame
318 is exactly zero. The problem is either in the frame descriptors, in the
frame comparison algorithm or in both.

The problem here is that the coordinates for not-existent centroids are un-
defined but they are handled as if they are zero, which is wrong. The first
idea is either not to use this part of the centroid data, if one of the involved
centroids does not exist, or to set it equal to the compared centroid. But
what happens if every frame always has set one pixel nearly at the lower
left coordinate (0,0)? Depending on the frame scale this will normally not
have much effect on the other frame descriptors but this chrominance bucket
is well-defined for every frame. The values for frame 318 are still (nearly)
the same. The only thing that could happen (in the worst case), is that the
coordinates of frame 312 and frame 319 will be half so large.

frame 313: 445 270 0
frame 318: 0 0 0
frame 319: 451 278 0

In this case, the frames are nearly identical but still very different in this
feature component. The real problem is that the importance of the coordi-
nates is always constant, independent of the amount of information on which
it depends. The real amount of information, which is represented by the
coordinates, is based on the number of pixels that build the centroid. A
better idea is to multiply the coordinates by the size of the centroid. The
difference between two less important centroids will always be small. It is
only possible for these values to be large when at least one centroid is large
enough. We called this coordinate multiplication dynamic weighting because
the importance and thus the weighting of the coordinates are dynamically
modified. The maximum possible X- and Y-range are halved, so the X- and
Y-values should be doubled when they are multiplied by the area.

ĉx = 2× cx × c#

ĉy = 2× cy × c#

In our example are features which will be used for frame comparison some-
thing like:
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frame 313: 0 0 0
frame 318: 0 0 0
frame 319: 0 0 0

So these differences will only have less importance in the frame comparison.

Figure 4.10 shows a comparison of the frame descriptor component of the X-
component of the second U-centroid with the dynamic weighting (dynamic)
and without the dynamic weighting (static). As can be seen, we have some
important improvements as follows:

1. Fast “jumps” in the feature are completely eliminated. This multipli-
cation acts as a kind of filter flattening abrupt changes in pixels that
switch between different centroids.

2. The importance of this feature is extremely reduced due to the small
size of the centroid.

3. “Pixel noise”, which is shown as the randomly added and removed
pixels in the centroids, is also removed as a result of the previous two
points.

In addition figure 4.11 shows the X-component of the third centroid of the U-
color. As a result the importance of this centroid is raised because it contains
nearly all pixels in this color component. The quality of the feature seems
to be better for use.

We have not implemented the coordinates and size scaling in the feature
extraction algorithm. The coordinates are multiplied when they are imported
into the discrete curve evolution algorithm. This is done in order to be
compatible with older extracted features.

The dynamic weighted feature vector used in the Discrete Curve Evolution
is defined by the following:
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Figure 4.10: Comparison of the X-component of the second U-centroid of the
video “Mov1”.

ft → FD(ft) = ( t·C(1+3·#centroids)
framerate
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(4.4)

With this change the result for five frames are shown in figure 4.12.

The result is not too bad but the fourth key frame is also missing and the
last key frame is missing twice. We can see in the last key frame that the
table edge appears on the upper left in the black background. Therefore we
will have new buckets as can be seen on the drawn rectangles in the upper
left. The argument that the area is small and therefore they should not be
important in the difference weighting is not correct. That part of the frame
is not very large but there are more then only a few pixels as shown in the
examples above. The features are as follows:
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Figure 4.11: Comparison of the X-component of the third U-centroid of the
video “Mov1”.

frame 328:
298968 327 1 908 00001302

328

6 16 0 359 493 547 665 498 451 0 0 0

0 0 0 0 0 0 496 495 1000 0 0 0

0 0 0 497 495 999 7 10 0 0 0 0

frame 378:
340340 377 2 4 00001500

378

30 57 8 260 516 400 663 487 591 0 0 0

0 0 0 23 50 4 499 497 995 0 0 0

0 0 0 500 499 992 30 54 7 0 0 0

As we can see, the differences are more than only a few pixels. What happens
with six frames can be seen in image 4.13.

This time the second key frame is doubled. The difference is also the disap-
pearing edge of the table and background.

frame 100:
93483 99 1 940 00000324

100

86 16 8 208 549 293 623 478 697 0 0 0
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Figure 4.12: Best five frames 1, 100, 200, 328 and 378 of video “Mov1” with
the weighting modification for the centroid coordinates.

Figure 4.13: Best six frames 1, 100, 127, 200, 328 and 378 of video “Mov1”
after the weighting modification.

0 0 0 0 0 0 496 495 1000 0 0 0

0 0 0 499 502 972 401 246 27 0 0 0

frame 127:
118005 126 1 992 00000501

127

0 0 0 284 622 359 616 424 640 0 0 0

0 0 0 0 0 0 496 495 1000 0 0 0

0 0 0 498 501 974 417 247 25 0 0 0

Figure 4.14 shows the result with seven frames and figure 4.15 with 8 frames.

As can be seen, our ground truth video is not as perfect as we had hoped.
At first (see images 4.8 and 4.15) is seems that our improvement with area
weighted centroid coordinates is not much better than before. But on the
second look, we see improvements in the changes of the “wrong” images -
a kind of “quality” improvement. With a numerical analysis of the features
and a visual analysis of the frames, it looks like the key frame detection of
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Figure 4.14: Best seven frames 1, 100, 127, 200, 236, 328 and 378 of video
“Mov1” after the weighting modification.

Figure 4.15: Best eight frames 1, 100, 127, 200, 236, 259, 328 and 378 of
video “Mov1” after the weighting modification.

the improved algorithm is reasonable. The wrongly detected key frames have
some features that could increase their importance.

Results are available for video sequences “Mov1”, “Mov3”, “Mov00085”, “se-
curity1”, “security7”, “mrbeantu”, “House Tour” and “Kylie”. More infor-
mation about these videos can be found in appendix A and on the homepage
[12].

The frame descriptors contain 37 features which is a histogram subdivision
into 4 bins.

Problem:
Our reflections for the dynamic area weighting only have an influence on
temporal changes between frames but our reflections have no influence if
larger homogeneous areas move are change bins inside a single frame or be-
tween frames. Such areas will still abruptly change the centroid data, thus
reflecting abrupt changes in the features without a necessary visible change.

A solution could be the introduction of bucket weighting for each color value of
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a pixel and bucket. The sum of all weights for each possible pixel color should
be equal to one. At this moment, the weighting for only one predefined
bucket is one and for each other bucket is zero.

Figure 4.16 shows the weighting of the color values for each bucket. Our
problem could be avoided by creating more linear changes between the buck-
ets when the color is changing. Figure 4.17 shows a suggested weighting for
the colors and the associated buckets.

Figure 4.16: Weighting of pixels for associated centroids as implemented.

Figure 4.17: Proposal weighting of pixels for associated centroids bins.
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Conclusion:
Dynamic weighting of the X- and Y-coordinates of centroids could be useful
and an alternative to static filters. Objects moving (slowly) into or from a
centroid are well-scaled to their importance depending on their size, so that
abrupt bucket changes haven’t such an important influence on the features
as before and without the dynamic weighting. however, it is not a mean
solution for every color transition between different centroids.

4.2.4 Fast frame changes

Events in Mov1

As we have seen in the previous section, our results are not as good as
expected. The reason for this problem is features of new or moved centroids
which depend on variations in image thus resulting in (too) large variations
of the frame descriptors. This seems to be correct because we see that these
changes exist in the frames. The problem is our definition of “event”. An
event is an event if the state of the video is stable. (eg. no important changes
to the previous state happen). As we have described in chapter 3.1, the
features and the relevance measure depend on the application.

In our case, a filter would eliminate the features with a short endurance. Our
mentioned feature descriptor FD depends on an area of the frames directly
around the frame. The result is the filtered features. The window width will
depend on our definition (or expectation) of event.

Events in halloween

Another kind of problem with videos that we sometimes had was with fast
and very short frame switching. This is used for example in the video “hal-
loween”, as a kind of video teaser6. In the introduction sequence of the video,
there is a short sequence of 12 different images with 2 frames each, resulting
in 12 image changes in approximately 1 second. These images are a kind of
abstract of the video content. The algorithm correctly detects these frames
(at a high level of the evolution process) as key frames due to the fact that
these frames contain different kinds of information and act as a new shot
each; therefore, they should be detected as such.

6See appendix A.1.3 for a description of the video properties.
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The videos also contains a scene with fast light flashes in which a person
on a stretcher is pushed along a hospital floor. Due to the frame descriptor
concept7, each flash is detected as a key frame8. Figure 4.18 shows these 9
frames.

Figure 4.18: Key frames (out of 20) from the hospital floor scene at approx.
19”, from the video “Halloween”.

Figure 4.19 shows the intensity of some colors over the time. The diagram
was created with a color code book of 99 colors. It is used here to visualize
the changes in the video. The frames 950 to 1550 are underlined in bold.

Figure 4.19: Diagram with color intensity over the time of the video “Hal-
loween” with 6182 frames.

Either we defined the requirements or we implemented the key frame imple-
mentation incorrectly. A dark/bright switch in the video could be interpreted
as an event that occurs or as separate cuts which should be detected such

7The buckets subdivided the different colors in different parts with different luminance.
This is an argument to use YUV colors because this color space is more like human
perception. In such scenes, the luminance only make the most changes. In the RGB color
space, all color components should change the buckets.

8Note: 9 of the 20 best frames are from this scene (Frames 977, 1044, 1106, 1247, 1294,
1357, 1420, 1454, 1537).
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as in the case of the “halloween abstract” in the start sequence of the video.
In both cases, our definition of the expected key frame was wrong. What
seems to be wrong with our expectation of the key frames? In both cases,
the changes are too fast or the context in which the key frames occur is too
short.

There seems to be two possible solutions:

1. We could change the importance of the time. Frames which are tem-
porally too near to each other are too difficult.

2. An increase in the local context makes it possible to measure the state
of a frame according to the neighbor frames and to detect changes
which are too fast in the frame descriptors.

Proposal 1 will get us in trouble if we implement this. Therefore, proposal 2
seems to be more preferable.

It is important that these events be very short in the time and that they
not result in a permanent (stable) situation of the scenery. We could add a
limitation to the event requirement 3 in chapter 3.1 by defining the shortest
durability of the situation before it is detected as an event.

The easiest way to fulfill this limitation is by filtering features that do not
match this. We have decided to remove such features completely by imple-
menting a morphological filter, which results in a new question: “How long
should it take for a situation to be detected as a stable event?” In terms of
the filter the question is, “How width should the filter be implemented?”.

Also necessary to consider is how important was the information that we
lost.

In some video scenes, we had speckles, noise and very fast image changes
without any information (to confuse the watcher). It makes sense to re-
move/filter such features/frames from the video sequence. This is imple-
mented by creating a morphological filter. We have also implemented a
Gaussian filter for comparison purposes.

Grey-Level morphological filter

Morphological filters are widely used in the image processing to filter sin-
gle pixels in an image depending on the neighborhood pixels. There exist
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different and wide-varying kinds of pixels, some of which are only used as
horizontal or vertical pixels, or as a combination of both of these as the
neighborhood. Some pixels have a local area completely surrounding the fil-
tered pixel, and sometimes in a video sequence, there are also the pixels of
neighbor frames used to filter a single pixel.

Morphological filters were introduced by J. Serra [49] and are implemented
by an erosion and a dilation function. Out intent is not to use the filter for
pixels but to filter each frame descriptor FDn of the frame ft in the time
domain t. We used grey-scale version of the erosion and dilation functions.

Definition:

f(z) = −∞ if z is outside the definition domain of f (4.5)

Domain:D(f) = {z|f(z) > −∞} (4.6)

Translation of f by x:fx(z) = f(z − x) (4.7)

Domain translation of f by y:(f + y)(z) = f(z − x) + y (4.8)

Erosion:
The erosion of f by a structuring element g at point x is defined as

(fΘg)(x) = min{f(z)−gx(z)}; z ∈ D(f)∩D(gx), x such that D(gx) ⊆ D(f)
(4.9)

In our case,

f(t) := FDn(frame(t)) (4.10)

g : {−i, ..., i} → 0 (4.11)

The total definition domain of g and also the resulting filter width is 2i + 1.

Dilation:
The dilation of f by structuring element g at point x is defined as

(f ⊕ g)(x) = max{f(z) + g−x(−z)}; z ∈ D(f) ∩D(g−x(−z)) (4.12)

The operation used by us is the opening operation, which is defined as a
dilation followed by an erosion. The opening of an input signal A by a
structuring element B is defined by

A ◦B = (AΘB)⊕B (4.13)
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The second used operation is the closing operation, which is defined as an
erosion followed by a dilation.

A •B = (A⊕B)ΘB (4.14)

The filter width should be free definable to get asmuch flexibility as possible.

Our application implements the erode and dilate operations as basic func-
tions. The opening and closing operations are implemented by applying these
basic functions in the correct order.

• erode function with filter width 2i + 1:
erode(FD(tn)) = min(FD(tn − i), ..., FD(tn), ..., FD(tn + i))

• dilate function with filter width 2i + 1:
dilate(FD(tn)) = max(FD(tn − i), ..., FD(tn), ..., FD(tn + i))

With these implementations, the morphological filters perform opening and
closing operations. The opening operation reduces all local maxima inside
the filter based on the width of the filter function g and its values. The closing
operation reduces all remaining9 local minima. Minima and maxima outside
the definition width of g still exists. A full morphological filter performs
an opening operation followed by a closing operation. (The inverted order
closing followed by an opening operation would also be possible.)

Figure 4.20 shows an example of the intensity values of a filtered and an
unfiltered feature over the time. The frame descriptors are from the video
“Mov3” and contain 73 features. The parts where Rustam is weaving are
represented by a clear change in the feature. The four marked areas show
some changes in the feature which are a result of the filter.

The light gray curve is the unfiltered original feature and the dark grey curve
is the filtered feature with i = 2 which results in a window width of 5. The
black curve is the filtered feature with i = 5 and a window with of 11 frames.

In area one, in the upper left part of the image, we can see that peaks in the
curve are flattened. This can also be observed in the unmarked middle peak
of the curve.

In areas two and three, in the upper right part of the image, we can see that
smaller peaks (area 3) were completely removed with a smaller filter window

9It is possible that after the opening operation no values are left for which local minima
exists.
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and that wider peaks are remained (area 2). These peaks are removed by
the wider filters.

In area four, in the lower left part of the image, we can see that some noise
was removed by the filter. A value of i = 2 seems to be enough for this effect.

Figure 4.20: Diagram of a morphologically (un)filtered dynamic weighted
feature from video “Mov3”.

How wide should the filters be?
In imitation of our efforts in section 4.2.1 to make a framerate independent
algorithm, we should avoid any kind of frame numbers in the filter expression.
Our key frame expectation is based on our impression of the time context
in which they appear and it seems to be logical to define a suitable filter in
time even if it is based on frames. In that case, the frame width should be
broken down to frames (based on the expected filter width in seconds and
the frame rate in frames per second).

Due to the problem that in our scripts, at the time that the filter was applied,
the frame rate was not available, therefore we could not implement this
requirement.

The newest versions of the experiments are all made with different versions
of the morphological feature filter. “Morphn” stands for a filter width of
2n + 1 pixel’s (n pixel left and n pixel to the right of the origin pixel). The
used filter width and frame rate are shown in table 4.2.4.
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naming filter width 10 fps 15 fps 25 fps 30 fps
Morph1 3 frames 0.30” 0.20” 0.12” 0.10”
Morph2 5 frames 0.50” 0.33” 0.20” 0.17”
Morph3 7 frames 0.70” 0.47” 0.28” 0.23”
Morph5 11 frames 1.10” 0.73” 0.44” 0.37”
Morph11 23 frames 2.30” 1.53” 0.92” 0.76”

Table 4.3: Table of effective temporal filters with different frame widths and
different frame rates.

Normally “None”, “Morph3” and “Morph5” are used. Sometimes “Morph1”
and “Morph2” are also used but seldom “Morph11”.

Other filters

There are several possible filters that could be used to detect key frames
with the discrete curve evolution. The usability of these filters depends on
the application and environment in which they are used. We have for example
also implemented a flexible gaussian filter.

For a Gaussian filter width 2i + 1, the constants Cgauss
−i till Cgauss

i are calcu-
lated and normalized so that the sum of the constants is equal to one.

Cgaussi
x := 1

σ
√

2π
e−

1
2(

x−µ
σ )

2

with x ∈ {−i, ..., i}
and appropriated σ and µ

(4.15)

FDgaussi(tn) := Cgaussi
−i · FD(tn−i)

+ ...
+ Cgaussi

0 · FD(tn)
+ ...
+ Cgaussi

−i · FD(tn+i)

(4.16)

Other filters not implemented could be for example the meridian filter.

Conclusion

Filters can be used at various abstraction levels of the feature creation pro-
cess. Not implemented and not tested are filters at the lower levels. This
could be for example pixel filters, which filter the data directly inside the
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images depending on the surrounding content. Possible filters are 2D-filters
which only use the content of that frame, and also 3D-filters which use the
pixels of previous and successor frames. Also accommodated at this level
are filters which intervene directly in the MPEG-datastream by filtering for
example the DC components which is done in [18]. The proposed weighting
of the pixels assigned to centroids could be distinguished with a filter at a
higher level.

As we can see, it is possible to eliminate short “jumps” of larger areas between
different buckets with morphological filtering. The width of the window
should depend on the duration of the event definition of the application.

Not tested and not implemented are filters defined for a single frame or for
the histograms. Image filters can be used to eliminate noise which will have
an effect on the histogram and thus the centroids which are based on these.
Histogram filters could be implemented by moving a filter window over the
histogram values [31]. This could be, for example a window filter or an image
filter.

4.2.5 Selecting key frames from the frame list

Another kind of question not yet answered is not only the abstraction level
(how many frames do we need) but also the frames which are needed. The
last question is somewhat strange because our evolution process defines the
order of the frames. With the abstraction level it is possible to define the
frames which are needed from the list.

The problem is that we didn’t define before-hand what we understood under
the abstraction level. This is also a definition depending on the observer
who selects the abstraction levels. The easiest way to define the abstraction
level is to say how many (either absolute or relative) number of frames are
expected or needed. For other applications and users like [53] it makes sense
to define different abstraction level and expectations. Selecting a different
abstraction level will result in a different amount of frames belonging to the
abstraction level.

Our Curve Evolution process gives us some information to create and define
some different abstraction levels. The main information is the frame number
in the video sequence, the relevance level at the frames removal time and the
position number when it was removed.

The “Rustam” experiments from section A.1.1 shows that it is also important
to know the relevance of the key frames in the evolved frame list.
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Sometimes an important key frame is also removed during the discrete curve
evolution and the resulting key frame is not important, e.g. it’s like the other
neighbor of the removed key frame.

Not every frame at the end of the evolved frame list is sometimes a key frame.
We could see that not every frame was a key frame. If a key frame exists
between two identical frames, then one of these surrounding frames should
be a key frame, only if this inner frame is removed from the key frame list.

For this important problem there is more work necessary. It seems to be
possible to create with the relevance values and the available number of
frames a logic to join frames to groups and to define the application depending
on useful and suitable boundary for the number of key frames.

For example: A decrease in the relevance value, in relation to the previous
key frame, is for example interpreted as a less important frame in the new
context. This removed frame makes more sense in the context of the key
frames removed before-hand. A solution is to merge these two frames to-
gether. Abstraction levels could then be defined on merged key frame groups
instead of on single key frames.

4.2.6 Number of key frames

As we have seen in chapter 2.2.1 the number of a key frames or an lower
boundary for the relevance value is needed to make it possible to define the
result frame set. It is not possible to define the size of the expected result
set without these information.

Nevertheless for some of the comparison videos a full set of key frames are
needed to make comparison possible. So we tried some algorithms to find a
usable number of key frames. This number should not be a perfect value, but
a more rough approximation of the expected result sets. Maybe it is possible
to find usable algorithm that will match with this background information
the number of frames in the result set.

As we have described, the number of key frames will depend greatly on the
expectation of the kind of frame differences that are important enough to be
marked as such. Our goal here is to find such an importance level.

For example, someone could define in “Mov3” (appendix A.1.1) only the
frames, where Rustam is weaving, as key frames but the frames between
these frames are no key frames for the observer. When we take a look in
the key frame list, we will find these frames, if we define the number of key
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frames as the best five frames. On the other hand, an observer could also
define the frames between the waves, where Rustam does nothing, also as
key frames (we however see a lesser relevance). We will get this result if we
raise the number of key frames to seven. So our evolved frame list will give
different key frame lists for the different importance definitions of different
observers.

Figure 4.21: The best three key frames of “MOV3”

Figure 4.22: The best six key frames of “MOV3”

The evolved list contains all frames of the video sequence in the order of their
relevance. Only the frames with the highest order in the evolved list are key
frames. The problem is to define the number of frames which are key frames.
We have various information such as the number of the frames in the evolved
frame list, the relevance when they are removed and the frame number of the
frame self in the video. We did not find a useful or calculable value for the
maximum number of frames which could be used to define the key frames.
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4.3 Dominant Colors and Optimal Color

Composition

The histogram based frame descriptors are easily implemented and the in-
formation content seems to be good for key frame extraction. The results
also make sense on the base of the information content. The idea is to use
features which are more intuitive for the human understanding of the used
frame information.

4.3.1 Dominant Colors as Frame Descriptor

Hu et. al [29] has used Dominant Colors of frames as a frame descriptor. It
has been shown that, in the early perception stage, the human visual system
performs identification of dominant colors by eliminating fine details and
averaging colors within small areas [41]. Consequently, on the global level,
humans perceive images only as a combination of the few most prominent
colors, even though the color histogram of the observed image might be very
busy. Based on these findings, we performed extraction of perceived colors
through the following steps. First a color image was transformed from the
RGB space into the perceptually more uniform Lab color space. This color
space was designed in such a way that the color distances computed with
|| . ||2 matches the subjective impression of color likeness [51]. The set of
all possible colors was then reduced to a subset, defined by a compact color
codebook with a size of 16 to 512 colors [41]. This code book has, in our
case, 99 colors. Finally, a statistical method was applied to identify colors of
speckle noise and remap them to the surrounding dominant color (see [29] for
details). A color component with index i was considered to be dominant if Pi

exceeds a threshold (typically 2− 3%). The result was a rough segmentation
of an image with just a few colors.

The comparison contains the following steps. The dominant colors of the
images are lined up into a vector. Each value represents a fixed area size of the
image. (3 when using a vector with 33 components) (a1, ..., an)and(b1, ..., bn)

Once the perceptually dominant colors are extracted, we represent a color
composition of an image I by vector of areas occupied with dominant colors
(CoCo(I) =< P I

1 , P I
2 , ..., P I

99 >, where Pi is the area percentage occupied by
the color with index i).

A 2D representation of a video sequence V = {It} is the sequence CoCo(V ) =
{CoCo(It)

T}, where t is the frame index. CoCo(V ) is a 2D array with
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Figure 4.23: Intensity composition representation of Mov1 video clip.

Figure 4.24: Color composition representation of Mov1 video clip.

each column being the color composition of a single image (CoCo(It) =<
P It

1 , P It
2 , ..., P It

99 >). Consequently, row i (for i = 1, ..., 99) represents the area
distribution of color, with index i, over the whole video sequence.

Figures 4.23 and 4.24 show a visual interpretation of the frame descriptors
CoCo(V ) for the “Mr. Bean” clip. The vertical dimension of the images
is 99 and the horizontal is the number of the frames in pixels. Figure 4.23
shows the intensity of the different color components - the brighter the color
of the pixel (t, i), the higher the area percentage of the color with index i in
the frame t. Figure 4.24 shows the available colors with intensity unequal to
zero. Black means that the color is not available in the frame. Not available
black colors are represented by the color blue. (This is the first line and line
93 nearly at the bottom.)

4.3.2 Optimal Color Composition distance

Based on human perception, two images are considered similar in terms of
color composition if the perceived colors in the two images are similar, and
if similar colors also occupy a similar area percentage [41]. To compare the
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Figure 4.25: Key frame result of video “Mov1” with 5 frames. We used Dom-
inant Colors as frame descriptors, without filtering, and relevance measure
of formulae 4.1.

two images A and B, we use the optimal mapping function from [29] that
minimizes the overall mapping distance between representations CoCo(A)
and CoCo(B). It is called Optimal Color Composition Distance (OCCD)
and is denoted d(A,B).

A semi-metric called Optimal Color Composition Distance (OCCD) was de-
veloped to capture both criteria [41]. To compute the OCCD, the set of color
components of each image was first quantized into a set of n (typically 20−50)
color units, each with the same area percentage p, where n × p ≈ 100. We
call this set, the quantized color component (QCC) set. Suppose we have two
images A and B, with QCC sets {CA | U1

A, U2
A, ...Un

A} and {CB|U1
B, U2

B, ...Un
B}.

Let I(Uk
x ), x = A or B, k = 1..n, denote the color index of unit Uk

x , and
{MAB | mAB : CA → CB} be the set of one-to-one mapping functions from
set CA to set CB. Each mapping function defines a mapping distance between
the two sets: MD(CA, CB) =

∑n
i=1 W (I(U i

A), I(mAB(U i
A))), where W (i, j) is

the distance between color i and color j in a given color code book. Our goal
is to find the optimal mapping function that minimizes the overall mapping
distance. The distance d(A,B), between the images A and B, is then defined
to be this minimal mapping distance.

This optimization problem can be described as the problem of minimum cost
graph matching, for which there exist well-known solutions with O(n3) com-
plexity [27]. Note here that n is the number of quantized color components,
which roughly corresponds to the maximum number of dominant colors a
human being can distinguish within one image. n usually much smaller than
the color code book size.

Figure 4.25 shows the best five frames of the sequence Mov1. The bad results
of the last two images can be explained by the fact that the camera moves
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Figure 4.26: Key frame result of video “Mov3” with 7 frames. We used
Dominant Colors as frame descriptors, without the filtering, and relevance
measure of formulae 4.1.

from right to left, and then the upper left part of the video becomes black.
The part at the right that is removed from the camera sight is very bright.
These area changes and the very intense difference in the brightness seem to
be important enough to become a significant difference between those frames.

Figure 4.26 shows that results for the video Mov3 are acceptable. We got a
slight difference in the expected key frames when we increased the number
of frames, as we can be seen in figure 4.26.

4.3.3 Filtering

We filtered the dominant colors of the time for each of the colors in the code
book.

We have used here the same idea and algorithms as for the centroid fea-
tures. Due to this fact, we also discovered some of these problems with the
dominant colors. We hoped that these problems could also be removed by
morphological filters. We used the same idea here to apply the morphological
filter on the dominant colors. Each of the possible 99 code book colors was
handled as a separate feature with a given intensity.

The representation CoCo(V ) of a video sequence V can contain eventual in-
stabilities due to instabilities of the color segmentation in single frames. We
used time (frame number) dependencies of the frames to filter the instabili-
ties. We applied morphological opening and closing to each row of CoCo(V )
with the support size of 11 frames. This allowed us not only to filter out the
instabilities but also to eliminate the extraordinary images like completely
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Figure 4.27: Intensity Mov1 without any filter

Figure 4.28: Color Mov1 without any filter

white (e.g., due to blinding light) or black images (e.g., lack of light) that
last just a few frames. Such images belong to the common effects of movie
productions. It does not make sense to consider such images as candidates
for key frames, since they do not contain any information about video se-
quences. After applying the morphological opening and closing to CoCo(V ),
we obtained a filtered representation of the video sequence, which we will
denote by CoCo′(V ) = {CoCo′(It)

T}. We applied the distance function d to
the filtered representations of images, i.e., in the following, d(A,B) denotes
the optimal mapping function applied to CoCo′(A) and CoCo′(B).

The set of vectors CoCo′(V ) = {CoCo′(It)
T}, together with the distance

function d, form a metric space. In this space, the sequence {CoCo′(It)
T} is

the trajectory of video V that can be viewed as a polyline. We obtained key
frames of video V by simplifying the polyline {CoCo′(It)

T}.
These intensities are filtered over time for each color code. The total per-
centual area for each frame is scaled to 100%. Figure 4.27 shows the un-
filtered color intensities and figure 4.28 shows the available colors of video
Mov1. Figure 4.29 shows the morphological filtered color intensities, with a
filter width of 7 frames, and figure 4.30 shows the available colors of video
Mov1. Figure 4.31 shows the morphological filtered color intensities, with a
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Figure 4.29: Intensity Mov1 - Morph3

Figure 4.30: Color Mov1 - Morph3

filter width of 11 frames, and figure 4.32 shows the available colors of video
Mov1.

4.3.4 Coordinates of the dominant colors

With this definition use of the dominant colors (DC), we got a lot more
additional information than we had in the bucket definition. There is no
position information about the colors available. Mirrored images with this
definition are identical. Even completely different images with the same
color usage are identified as identical. Slow movements of an object behind
a homogene background are also not well-detected.

We hoped that adding the centroid coordinates of the dominant colors would
improve our results. The probability of having different images with the same
dominant colors and the same centroid coordinates would be definitely lesser
than without the centroid coordinates.

We changed the algorithm in such a way that the coordinates of the domi-
nant colors centroid are also stored. (See appendix B for a detailed format
description).
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Figure 4.31: Intensity Mov1 - Morph5

Figure 4.32: Color Mov1 - Morph5

The euclidian distance between these coordinates was calculated and added
as a second component. These components were added with different weights
as shown in formulae 4.3.4.

f ∈ [0, 1]; dcombined(I1, I2) = fdOCCD(I1, I2) + (1− f)dcoordinates(I1, I2)

Problem:

1. The shading of a color change. The OCCD supports this correctly by
matching the colors. The coordinates don’t reflect this color likeness.

2. New parts of objects move into the image. The OCCD supports this
correctly by matching the area of the colors. Smaller objects are less
important than bigger objects. The coordinates do not reflect this area
factor.

Unfortunately we could not find a usable value for f. The best values would
be very small values. The conclusion is that either the second part (coordi-
nate distance)of the formulae is very large (which could be possible by the
suggested problem above) or it is not well-scaled in relation to the first part
(color distance).
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Chapter 5

Experiments on closed videos

In this chapter are the discussed improvements tested with our experimental
videos. The experiments we have done contain a variable and wide spectrum
of tested components. These contain various number of buckets (as defined by
Daniel DeMenthon). This chapter contains experiments with the two weights
of the centroid coordinates and different versions of the cost function. It also
contains different feature color spaces and different morphological feature
filters.

We also tested cost functions that contain a larger local context,
Loc2(ft) = {ft−2, ..., ft+2}. Our experiments are made with several video sets
and different application configurations. An exact content description and
statistical summarization of the videos is in Appendix A. The experiments
are often based on different application configurations. These applications
and configurations are described in Appendix B. The experiments in the
following subsections contain only subsets of these videos and applications.

5.1 YUV vs. RGB

These experiments show the flexibility in the selection of different color space
for the experiments. Figure 5.1 shows the best five key frames of the video
sequence Mov1. It is made with the frame descriptors based on a YUV
histogram subdivided into 16 bins, which result in 145 features. As we can
see, the last key frame appears twice and the frame before the last key frame
is missing. Figure 5.1 shows the best five key frames of the same video
sequence created with a RGB histogram subdivision of also 16 parts. As we
can see, the resulting frame set contains the expected key frames.
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As is shown in this experiment, the RGB color space, depending on the
situation in which it is used, could be better than the YUV color space. The
results of the RGB colors match our expected key frames exactly. Other
experiments have shown that the decision to use RGB colors is not always
the better choice. This shows us that not only the kind of selected features
is important but also the color space on which they are based.

Figure 5.1: Figure with the best five YUV frames of “Mov1” without filtering

Figure 5.2: Figure with the best five RGB frames of “Mov1” without filtering

5.2 Different Cost Functions for the centroid

feature

Our algorithm has the possibility to define different kinds of similarity func-
tions. So could, for example,

Mrel(ft, Loc2(ft)) = d(ft−2, ft−1)
+ d(ft−1, ft)
+ d(ft, ft+1)
+ d(ft+1, ft+2)
− d(ft−2, ft+2)
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define a relevance measure with a larger local context. Thus so it could first
detect changes which are either very slow or which occur over a longer frame
period.

Another idea is, for example,

Mrel(ft, context(ft)) = d(ft−1, ft+1, ft)

= 〈ft,ft+1−ft−1〉
||ft||

.

5.3 Comparison of YUV centroids vs. OCCD

Our experiments are made with centroid based features including 37 compo-
nents, YUV buckets and dominant colors. The cost function is in both cases
the same as in formulae 4.1. We will present here the ground truth video
sequence “Mov1”, “Mov3” and “Mov00085”.

Video sequence “Mov1”

Figure 5.3: Result for “Mov1”
with centroid based buckets with 37
frame descriptors, without filter.

Figure 5.4: Result for “Mov1” with
Dominant Colors, without filter.

Figure 5.3 shows the well-known best five images of the video sequence Mov1
with unfiltered features based on the centroids with YUV colors. The number
of 37 frame descriptors is low. In this result set, key frame four is missing and
frame number five is available twice. This is a result of the upper left table
border and the black background. The image quality of the resulting frames
in comparison to the expected frames is good. The papers are well-placed
and they are completely visible.

Figure 5.4 is the counter-part of this video for the dominant colors. In this
result set, frames two and three are mismatched twice to one single frame.
Frame two could be associated more to key frame three and frame number
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order Expected Resulting frames
(range) YUV OCCD

1 0- 22 0 0
2 82- 141 99
3 192- 231 199
none 237
none 249
4 267- 309
5 340- 377 327 348

377 377

Table 5.1: Key frame number and the resulting frame numbers of the different
features for the video Mov1.

three to the expected key frame number four. Key frame number two is
completely missing. The last key frame appears twice, despite the appearance
of the table edge and black background, which appear in the upper left-hand
corners.

Comparison experiments with enabled filters shows that the results are no
better than without filters. In some cases, only the quality of the selected
key frame is improved. For the dominant color, one mismatched frame is for
example replaced with a frame with exactly one paper.

Table 5.1 shows an overview of the exact results of both features for the
sequence “Mov1”. The results for both kinds of frame descriptors are not
acceptable. It could be that either not enough information or the wrong
information was available. For the buckets, it could have been too few buckets
or too small color space range. For the dominant colors, it could have been
a wrong code book or the size of the dominant colors was too large, so that
small parts of other pieces of paper were not detected.

Video sequence “Mov3”

Figure 5.5 shows the ground truth result of the video “Mov3”. Figure 5.6
shows the key frame result of the video segmentation based on buckets with 37
frame descriptors including dynamic area weighting without filtering. Figure
5.7 shows the result for the dominant colors.

As can be seen, the results based on dominant color have a better quality
than the centroid based features. Table 5.2 shows the exact results for the
comparison experiment. Both kinds of frame descriptors give good results. It
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Figure 5.5: Ground truth result for “Mov3”

Figure 5.6: Result for “Mov3” with centroid based buckets with 37 frame
descriptors, without filter.

Figure 5.7: Result for “Mov3” with Dominant Colors, without filter.

seems that, in contrast to the “Mov1” experiment, the amount of information
in the frame descriptors is enough to detect the key frames.
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order Expected Resulting frames
(range) YUV OCCD

1 0- 0 0
2 34- 58 46 36
3 63- 127 72 63
4 142- 163 159 144
5 163- 222 167 181
6 238- 274 238 240
7 322- 377 377 377

Table 5.2: Key frame number and the resulting frame numbers of the different
features for the video Mov3.

Figure 5.8: Ground truth result for “Mov00085”

Figure 5.9: Result for “Mov00085”
with centroid based buckets with 37
frame descriptors, without filter.

Figure 5.10: Result for “Mov00085”
with Dominant Colors, without fil-
ter.

Video sequence “Mov00085”

Figure 5.8 shows the ground truth result of the video “Mov00085”. Figure
5.9 shows the key frame result of the video segmentation based on buckets
with 37 frame descriptors including dynamic area weighting without filtering.
Figure 5.10 shows the result for the dominant colors.
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Figure 5.11: Centroid based buckets
with 37 frame descriptors, with filter
morph5.

Figure 5.12: Dominant Colors, with
filter Morph5.

order Expected Resulting frames
(range) YUV OCCD

1 0- 51 0 0
none 70 72
2 78- 150 109
3 214- 273 246
4 279- 298 279 297
5 310- 386 386 386

Table 5.3: Key frame number and the resulting frame numbers of the different
features for the video Mov00085.

order Expected Resulting frames
(range) YUV OCCD

1 0- 51 0 0
none 64
2 78- 150 109 136
3 214- 273 273 247
4 279- 298 295
5 310- 386 386 386

Table 5.4: Key frame number and the resulting frame numbers of the different
features for the video Mov00085.

As can be seen, the results of both kinds of frame descriptors are very bad
and not acceptable. Table 5.2 shows the exact results for the comparison
experiment. As we can see, the quality of the dominant color frames version
is a little bit better than the centroid based features. Only the frame with two
dots is not completely visible. In the centroid based key frames, the frame
with three dots is available twice and the frame with two dots is completely
missing. The sixth frame for the YUV features is frame number 214, which
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is the missing key frame number three. The missing key frame number two
of the OCCD frames appears as key frame number eight.

Figure 5.11 shows the same experiment, but this time the features are fil-
tered with Morph5 for the centroid based frame descriptors. Figure 5.12
shows the key frames of the dominant colors also filtered with Morph5. The
performance quality of the centroid based features is not better. The perfor-
mance of the dominant colors is optimal. Table 5.4 shows the exact results
for the Morph5 filtered “Mov00085” comparison experiments. It seems that
the dominant color based frame descriptors are very good for this kind of
experiment.

5.4 Different image scalings

We developed histogram and centroid based frame descriptors in 4.2.1, which
are invariant to image scaling. The Dominant Color frame descriptor from
4.3.1 is also scaling invariant.

The video we used for the scaling invariance test is a video from Mr. Bean,
known as “Mr. Bean’s Christmas”. The original full-size version of the video
is named “MrBeanTurkey”. From this video, a smaller down-scaled version
named “mrbeantu” was created. Information about both videos are available
in Chapter A.

We had a loss of information due to the scaling of the video frames because
pixels were changed or completely removed. This loss of information was
reflected in different content and different information, even though our frame
descriptors are scaling invariance. Therefore is that we could not expect
identical results for a video and its down-scaled version. However for a robust
key frame algorithm we expect that we got nearly the same results visually
for (nearly) the same content.

Dynamic buckets

This experiment was made with a previous version of the correct scaling
of the dynamic weighted X- and Y-color component. The scaling of these
coordinates is [0, 1

2
] instead of the developed [0, 1]. Nevertheless, the quality

of the results was very good and nearly identical. The frame descriptors are
histogram based centroids and time with 37 components. The cost function
is from formulae 4.1.
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Figure 5.13: Result with the best nine frames of the full-sized version of the
video “Mr. Bean’s Christmas”, with unfiltered frame descriptors.

Figure 5.14: Result with the best nine frames of the down-scaled version of
the video “Mr. Bean’s Christmas”, with unfiltered frame descriptors.

Figure 5.13 shows the result of the best nine key frames of the large-sized
version of “Mr. Bean’s Christmas” and figure 5.14 shows the results of the
smaller version. They contain the best 9 key frames for the dynamic weighted
and unfiltered frame descriptors.

As we can see, the results are nearly the same. A detailed frame comparison
is in Table 5.5. We also did the same experiments with filtered features.
Figure 5.15 also shows the result of the best nine key frames of the full-sized
version of “Mr. Bean’s Christmas” but this time the features were filtered
with a morphological filter with a width of 11 (Morph5). Figure 5.16 shows
the results of the down-scaled version of Mr. Bean, with Morph5 filtered.

These experiments also have nearly identical results. Frame number four is
a little blurred in the fill-sized version. This frame is in the transition of
two shots and the frame contains content from both shots, but we see that it
also contains information as shown in the fourth key frame of the down-scaled
version of the video. Table 5.5 shows detailed information about the detected
key frames, the frame range in which we expected the key frames and the
resulting frame numbers for the different videos and filters. The total quality
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Figure 5.15: Result with the best nine frames of the full-sized version of the
video “Mr. Bean’s Christmas”, with filtered frame descriptors.

Figure 5.16: Result with the best nine frames of the down-scaled version of
the video “Mr. Bean’s Christmas”, with filtered frame descriptors.

of the video segmentation in relation to the expected key frames1 is not
optimal when viewed subjectively because frames of shot four are completely
missing and shot seven has two key frames. However the results in relation
to the scaling invariance are very good, both filtered and unfiltered. For each
detected key frame in the full-sized version, there exists a counterpart in the
down-scaled version and vice versa.

Dominant Colors

The frame descriptors for the following experiments are dominant colors as
described in the previous chapter. The cost function is that of formulae 4.1.

Before viewing the results of the same experiments as done for the centroid
based features, we will take a look at the feature vector components of the
dominant colors for the different videos. Figure 5.17 shows the available
dominant colors of the 99 possible code colors of the full-sized version of the
Mr. Bean video. The X-component of the figure represents the time line
of the video. The column of pixels most to the left is frame number 0 and

1These key frames are available in Appendix A
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Frame range Frame numbers
Features: dynamic weighted centroids
Filter: None Morph5
Version: Large Small Large Small

Shot 1: 0- 992 0 0 0 0
Shot 2: 997- 1165 1162 1157
Shot 3: 1166- 1291 1179 1223 1207 1186
Shot 4: 1291- 1357 1346 1312
Shot 5: 1357- 2009 1357 2008 2009 2008
Shot 6: 2009- 2079 2072 2015 2043 2073
Shot 7: 2080- 2182 2102 2101 2107 2106

2180 2177 2179 2179
Shot 8: 2183- 2363 2184 2200 2205 2196
Shot 9: 2364- 2379 2379 2379 2379 2379

Table 5.5: Table with the frame range of the shots and the frame numbers
of the resulting key frames. Created with dynamic weighted centroids.

the column most to the right is frame number 2379. The Y-component of
the figure represents the different available colors. The top row of pixels is
the first code book color and the bottom row of pixels of the last code book
color (99). Black pixels indicate that the representing code book color in
that frame was not available. As we can see, both figures nearly identical.

In some frames, some colors are available in only one of the video frames
but not in the other. This is not very long, as the area of the frame is not
very large or not as long as a similar other code book color available (maybe
in another intensity of the color). Figure 5.17 shows the area information of
used dominant colors in the same way as the available dominant colors. Black
pixels indicates that the color is either not available or the representing area
is very small. Brighter pixels indicate a larger availability of that color in
that frame. Figure 5.18 shows the same area information for the down-scaled
version of the video.

As can be seen, the areas in the different frame parts are (nearly) black, so
that the misgivings are arbitrary. Figure 5.21 shows the result of the best
nine key frames of the full-sized version of ”Mr. Bean’s Christmas” and figure
5.22 shows the results of the down-scaled version of the video. They contain
the best 9 key frames for the unfiltered dominant colors frame descriptors.

Just like the results for the centroid features, these results are also similar to
the expected key frames, and the results of the scaled videos are also nearly
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Figure 5.17: Dominant Color Availability image for the large version “Mr.
Bean’s Christmas”.

Figure 5.18: Dominant Color Availability image for the small version “Mr.
Bean’s Christmas”.

the same. Figure 5.23 shows the result of the Morph5 filtered features. Figure
5.24 also shows the results of the down-scaled version with Morph5 filter.

Table 5.6 shows a direct comparison between the expected key frames for the
shots and the results key frame numbers. In this case, the results are also
nearly the same with an exception of the key frames for shots 7 and 8. A
comparison between the centroid based features and dominant colors results
shows that the results of the dominant colors are a little better in relation to
the expected key frames, as shown in the appendix.
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Figure 5.19: Dominant Color Intensity image for the large version “Mr.
Bean’s Christmas”.

Figure 5.20: Dominant Color Intensity image for the small version “Mr.
Bean’s Christmas”.

Frame range Frame numbers
Features: Dominant Colors
Filter: None Morph5
Version: Large Small Large Small

Shot 1: 0- 992 0 0 0 0
613 614

Shot 2: 997- 1165 1109 1162 1154 1154
Shot 3: 1166- 1291 1225 1221 1212 1226
Shot 4: 1291- 1357 1304 1304 1302 1297
Shot 5: 1357- 2009 1785 1788 1806 1802
Shot 6: 2009- 2079 2042 2045 2041 2025
Shot 7: 2080- 2182 2105 2095 2105
Shot 8: 2183- 2363 2183 2183 2206
Shot 9: 2364- 2379 2379 2379 2379 2379

Table 5.6: Table with the frame range of the shots and the frame numbers
of resulting key frames. Created with dynamic weighted centroids and Dom-
inant Color features.
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Figure 5.21: Result with the best nine frames of the full-sized version of the
video “Mr. Bean’s Christmas” with unfiltered dominant colors.

Figure 5.22: Result with the best nine frames of the down-scaled version of
the video “Mr. Bean’s Christmas” with unfiltered dominant colors.

Figure 5.23: Result with the best nine frames of the full-sized version of the
video “Mr. Bean’s Christmas” with filtered dominant colors.

Figure 5.24: Result with the best nine frames of the full-sized version of the
video “Mr. Bean’s Christmas” with filtered dominant colors.
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Chapter 6

Comparison

We have seen in Chapter 1.3 that the function of the two algorithms [31, 53]
was to create a temporal segmentation of video sequences. In this chapter,
we will make a comparison between the basics of the discrete curve evolution
algorithm and the other two algorithms.

6.1 Algorithm comparison with Kumar et. al

The segmentation algorithm developed by Rajeev Kumar and Vijay Devatha
[31] is a shot detection algorithm based on a neighbor frame to frame compar-
ison algorithm. The used frame descriptors are based on flexible histogram
bins. They assume that important content areas are in the centre of the
frame. This is reflected by weighting of the pixels depending on the pixels
position inside the frame. These histogram bins are filtered by a Gaussian
filter to achieve a robustness of the frame descriptors. A window is moved
over all the bins and inside the window the Gauss filter is applied.

The frame comparison is based on the Bhattacharrya metric, which is a
generalized χ2 measure and is defined as the sum of the dot product of all
histogram bins.

An interesting idea in this manuscript is the possibility to create a ”Field
of Interest View” (which should depend on the application). Single moving
objects on the screen will be detected due to the weighted histogram (as
long as objects are not moving in the same weighted area). Unimportant
information on the frame border will be filtered. Missing is the loss of regional
information.
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This algorithm is probably only useful to detect hard cuts as shown in figures
1 and 2 on page 10 of their manuscript. Due to the missing of a comparison
in a local context, slow movements will not be detected (or poorly detected)
because the frame differences could be too small to be detectable. If changes
are so slow that the histogram differences are near zero, then it could be
possible that these changes are not detected or are lost in the background
noise. Maybe these kinds of frames are not directly the kind of (key) frames
that should be detected because shot boundaries normally happen with faster
transition between shots. However, this is relative and should be invariant to
the frame rate. The only probability to detect such slow and small differences
is the dynamic shot detection level. The variation in the algorithm is flexible
enough to fulfill the expected shot detection. In addition to the previous
comments, if a video frame rate is stretched by identical interframes, then
these frames have an influence on the approximation curve, which also have
an influence on the minima and the detected shot boundaries.

Error propagation to eliminate noise in the histogram is a good idea but
the image equality algorithm is based on images at different times. The
implemented filter however does not consider this.

As with every error propagation, the filter will reduce the amount of infor-
mation. This could result in undetected shot boundaries without clear tran-
sitions. The only useful feature is the possibility to define different frame
width for the filter window.

Comparison with the DCE

As already mentioned, an interesting idea is to define a field of interest, which
could result (depending on the application) in better features and in better
key frames. It is possible that the “MOV1” video could give better results
with the usage of a “field of interest”.

We also filtered our features only in the time and not in the frame. (It may
be a good idea to test filtering our features also inside of the frame.) Such
kinds of filters could be implemented for the buckets by filtering the content
between the neighbor buckets. I think that the starting-point for the filter
in the time domain is a better choice.

We considered the local context by the definition of the relevance measure.
The area of the local context was raised by each removed frame. Due to this
increase in the comparing area, we can also detect slow movements, which is
not possible with the shown algorithm in this manuscript.
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The discrete curve evolution is not designed for special features or frame
comparison metrics. We have the flexibility to be able to define different
kinds of frame descriptors. It would be possible to implement the features as
proposed by Kumar et. al in the discrete curve evolution. What we need in
that situation is an algorithm to detect the expected abstraction level. This
is solved better in the manuscript by performing a dynamic analyses of the
relevance curve in order to find the minimum relevance value.

The shot detection algorithm of Kumar et. al is based on a single frame to
frame comparison. The discrete curve evolution has the ability to define more
complex comparison functions and it would also be possible to implement the
comparison metric of Kumar in the discrete curve evolution.

The discrete curve evolution seems to be more flexible than the proposed
algorithm. We have the flexibility to be able to define different frame de-
scriptors and frame comparison functions. Our implemented frame descrip-
tors are also based on the histogram but we extract on the other hand more
information than the proposed frame descriptors. However, any other kind
of information is not used.

6.2 Algorithm comparison with Zhu et. al.

Xingquan Zhu, Jianping Fan, Ahmed K. Elmagarmid and Xindong Wu de-
scribed in their article, “Hierarchical video content description and summa-
rization using unified semantic and visual similarity”, algorithms for video
summaries [53].

The idea to predefine different abstraction layers is a good idea and it’s
easier to work towards developing algorithms that will implement these ab-
stractions. The disadvantage is that it may not be flexible enough for some
kinds of videos. All work is based on shots depending fundamentally on its
detection algorithm. The distance metric will only detect fast frame changes.
The gradual transition algorithm also only detects one transition between two
cuts.

The detected shots are merged into the different kinds of abstraction levels.
The merging process uses different kinds of comparison algorithms between
the different groups of shots in the different abstraction levels. Finally they
are based on frame comparison and dynamic generated thresholds. The frame
comparison is based on other frame descriptors as used for the shot detection
itself.
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Another problem, but also an advantage too, is the user interaction to define
keywords for shot groups. An user interaction is not always possible and in
those cases only the non-supervised part of the group algorithm is suitable
(and comparable).

It is a good idea to use different algorithms for different abstraction levels
which are based on the next lower abstraction level.

Comparison with the DCE

A direct one to one comparison is not possible due to the specialized func-
tionality of the proposed algorithm. In the DCE we do not have predefined,
only non-specific abstraction levels. Due to our algorithm, it could also be
possible to implement shot grouping algorithms based on our detected key
frames, the location and the relevance.

Comparison of the algorithm features:

Frame descriptors
The used frame comparison algorithm is based on two kinds of features. It
has a histogram-based part of features and a texture-based part. I think our
histogram-based features are better for us because we are then able to detect
the position of the objects. The advantage of the proposed algorithm is the
ability to use a more content-based descriptor with coarseness texture.

Low-level key frame detection
The used shot detection algorithm is not the simplest algorithm because it
also detects gradual transitions. However this algorithm could fail if too many
gradual transitions are used or if the transitions are either too slow or non-
existent. (Like a long camera move across the horizon with different content.)
Also the selected key frame (which is important for the later analysis) is more
a random than a content dependent selection. I think that our algorithm will
detect such shots better and the key frames will be safer because the temporal
distance of the shots has no influence on our key frame selection process, and
this selection is based on the conspicuity of a key frame in relation to the
neighbor key frames. (This ”conspicuity” feature between frames is used for
the higher detection algorithms.) The problem of the DCE is that we have
no usable (static or dynamic) threshold to detect key frames (or shots).

High level key frame detection
The advantage of the DCE is that it builds a hierarchical tree of the frames
in the order of the abstraction levels. Due to this fact, the DCE could
group shots (key frames) to a higher abstraction like shot groups. Therefore,
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different strategies1 exist which are not further pursued, so a comparison at
this level with these algorithms is not possible. This was not our intention
anyway because more information about the content and the application
of the resulted information is necessary. Nevertheless, the DCE sometimes
produces a result which looks like the grouping algorithm2. Even if the DCE
is not directly suitable for higher detection algorithms, it contains much more
potential than only for detecting (shots) key frames.

6.3 Experimental comparison with David

Rossiter et. al.

David Rossiter has (on his Homepage [48]) three videos with his own key
frame creation perl scripts. The used videos are a short sequence from the
movie, “The blade runner”, a tour through a house and a presentation of
Kylie Minogue. The videos can be found on his homepage.

In Appendix A, the videos and ground truth results are presented.

6.4 Experimental comparison with Drew

Drew et. al have developed an efficient clustering method [21] to create key
frames for video segmentation. They created several ground truth experi-
ments. A group of people created representative key frames for these videos
as a ground truth result set. As discussed in Chapter 3, such result sets are
not always comparable with other result sets created by other methods, due
to the background information that is expected as a key frame.

These ground truth key frames are compared with the results created by their
clustering algorithm. These videos are very useful to test the performance
of the discrete curve evolution with a ground truth result set. This was
artificially created by humans and is the result set of another segmentation
algorithm.

1It could be possible to join lower abstracted key frames to higher key frames by
analyzing the key frame intervals, the neighbor key frames and the relevance values.

2At a specific but lower abstraction level in the DCE, shots in a “shot group” are
successively removed until one or two frames are left. These remaining frames of this
“group” could be interpreted as key frames for this group.
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Figure 6.1 shows the expected ground truth key frame result set. The four
frames are from the video beachmov which is a short video clip of approx.
30 seconds with four shots. Shot one is a larger shot taken with a left-right-
left pan over a beach with water, a city in the background and a forrest.
This shot blends over into shot two showing a beach volleyball game. With
another blending, this shot is transformed into shot showing a few people in
a swimming pool. This shot then moves with a blending into shot four which
shows the edge of a swimming pool. Figure 6.2 shows the result of Drew’s
clustering algorithm for this video. The frames two and three are the same as
in the expected result and frame four is missing but the first frame seems to
be completely different. Both frames are from the first shot which is alright.
However, as we described before, different people expect different results for
the same video (or shot) if the shot contains different content. Figure 6.3
shows our result which also includes both frames of the first shot.

Figure 6.1: Expected ground truth results for video “beachmov”

Figure 6.2: Drew’s key frame result for video “beachmov”

Figure 6.3: Our result with the DCE for video “beachmov”

This example shows not only the general problem of defining which frames
are key frames but also the problem of how many frames should be left in
a resulting key frame set. Despite these problems, our results show that the
algorithm gives good results for a temporal video segmentation algorithm
that not only detect shots. It seems logical, at this abstraction stage, that
the great content difference between those first frames is reason enough to
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present two frames for a video abstract.

The complete video set contains 14 videos which can be found on the original
website of Drew [21]. All comparison between Drew’s clustering algorithm
and the discrete curve evolution is available on
http://www.videokeyframes.de/Information/Doc/GlobalResults.pdf [11].

Figure 6.4 shows an overall comparison of Drew’s and our results for the
videos used by Drew. The precision is used to measure the quantity of
correct detected key frames, and the recall measures the quantity of false
detected key frames.

Figure 6.4: Precision and recall for Drew’s and our results
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Chapter 7

Video stream

In this chapter we will discuss the applicability of the discrete curve evolution
on video streams. Video streams are presented for example by video cameras
and are used for video monitoring or in video surveillance applications. In
comparison with closed videos, the difference from a data technical point
of view is the open characteristic of the video material. The video stream
doesn’t have normally a fix defined start or end frame. An analysis like we
have done for closed videos is not possible. The second difference is the aim
of the application for which the video was analyzed.

The target is to detect any unpredictable changes in the scenario like the
appearance or disappearance of persons and objects [45] or any other change
in the scenario.

This kind of detection is not trivial because there are many non-static parts
in a video stream, thus making it difficult to clearly detect a change. In
outdoor applications, many environmental features exist which are an im-
portant influence on the appearance of the video content. The wind moves
trees, sun and clouds create light and shadow etc. The camera itself has also
an important influence on the content. Where is the camera mounted? Is
it statically or dynamically motor driven? Which direction is recorded? Is
a zoom being used? All changes in these features will change the content of
the same scenario.

It is nearly impossible to create a detection algorithm that is flexible enough
to detect events in a scenario for any possible environmental situation. Nor-
mally a frame-to-frame based algorithm is used for the detection events but
this depends on the environmental noise and due to the great amount of
external influence, is this not trivial.

88



Our aim is to use the discrete curve evolution as a flexible detection algorithm
for unpredictable events in data streams.

Open video streams are found for example in real time video streams, which
do not have a well-defined start and end frame. An example for the use of
such kinds of video streams could be in surveillance videos in order to observe
areas, entrances and to detect access to these. Security personnel could be
automatically alarmed if something or someone enters a restricted area.

Video streams are also used in quality assurance and in manufacturing pro-
cesses to observe the texture of a product. Video stream data analysis is also
used in the quality control of surfaces like rails and streets.

We have seen that our algorithm is applicable in closed videos with a prede-
fined start and end frame. Video streams from live cameras have no prede-
fined (start and) end frame. Our algorithm would be very useful in finding
key frames in the motivation examples above. The problem we had at this
point was that those videos did not have a well-defined start and end frame.

How can we use the algorithm to analyze such (infinite) video streams?

7.1 Window analysis

The solution is to make a local analysis of a video stream on a connected
subset of frames. The best key frame of this subset is stored and it’s relevance
value is drawn over the time in which the key frame appears. The video
stream is fragmented in consecutive windows with a frame subset and each
of these subsets is analysed for potential key frames.

The relevance curve of the potential key frames is analysed and important
changes inside the curve are detected as key frames.

Figure 7.1 shows such a relevance curve for the video “Mov3”. In figure 7.2,
the three frames at the local maxima of figure 7.1 are shown.

The analysis of video on a subset is done with the same algorithm that we
used for the analysis of closed videos with a fixed start and end frame. The
fragmentation is done at the higher feature level instead of the lower video
level. This may be done because the frame descriptor creation and filtering
applications are local operations on the video stream which don’t need global
information about the whole video. The advantage is a minimum amount of
changes in the existing applications, so that the frame descriptor extraction
and also the filter applications can be reused without any limitations. With
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Figure 7.1: A relevance Curve of “Mov3”

Figure 7.2: Frames at the local maxima of figure 7.1

the (un)filtered frame descriptors, a new fragmentation application creates
from the requested subset a new subset to which the discrete curve evolution
is applied. With the result of the DCE, a relevance value for the window is
calculated and associated to the most important key frame of the window.
This pair of window/frame values and the relevance values are merged with
the previous results into a two dimensional polygon line. A local analysis of
the polygon line gives us the ability to detect events inside the video stream.

Why not define the window relevance to the relevance value of the most im-
portant key frame inside the window? The window relevance was introduced
because it has the ability to adapt the importance of the whole video content
in a window to our requirements. A window in which more than one event
happens could be more important than a window in which only one event
appears. The usage of a single frame relevance value will show the availabil-
ity of at least a single event. More than one important key fwhich is based
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Figure 7.3: Example with relevance values as produced by our local curve
evolution process. The video used is “security1”

on a single frame.

The application was modified in such a way that it wass possible to define a
start and end frame. We used scripts to split the features into small parts.
These same scripts also joined the results of the different curve evolution
application running into a single file, which could be analyzed or visually
represented like it is done in figure 7.3.

The easiest way to find the optimal key frame inside a window would be to
simply search each frame for the frame with the best relevance value for the
given cost function.

Our intent is not only to find the best key frame over the time but also
to detect events. It is necessary to measure the quality of windows and in
order to fulfill this requirement, it is useful to detect important windows
rather than only a single frame inside the window. This frame becomes an
important indicator of the event. Also a list of best key frames from inside
the window or neighbor windows is possible.

A window relevance is a relevance value which depends on the frames inside
the window.

91



7.2 Window position

The analyzed subsets of the video stream are called “windows”. The first
question here is how we should define the width and the location of the
window.

Let us take a look at what kind of results we could expect if we change the
width of the window.

New window starts after previous window

The first window was started with the first available frame of the video
stream. The best key frame of this window was selected and the relevance of
this key frame was stored. The next windows were started with the second-
last frame of the previous window. So each frame of the video stream could
be a key frame. The first and last frame of an analyzed sequence are not key
frames of the analysis but they are defined as key frames for the global video
key frame extraction. For the local analysis this is not desired because we
only want real calculated key frames. Table 7.2 shows this window positioning
algorithm.

0 1

123456789012

window 1 sfffffe.....

window 2 .....sfffffe

Table 7.1: New window starts after previous window.

“s” means the start frame of the window (which is excluded from the possible
key frames in the window).
“e” means the end frame of the window (which is excluded from the possible
key frames in the window).
“f” means the detectable frames in the window.
“k” means the best key frame in the window.
“.” are all other frames outside the window.

Advantage:
We have a key frame in each window.

Disadvantage:
There is exactly one key frame in each window, even if there is more than one
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good key frame in that window. Table 7.2 shows the problem. If in the first
window, frame 3 is detected as the best key frame, then the next possible
key frame starts in window 2 at frame 7, even if one or more of the frame
numbers 4, 5 or 6 are better frames (in the sense of their relevance values).

0 1

123456789012

window 1 sfkfffe.....
window 2 .....skffffe

Table 7.2: Not all potential key frames could be detected.

New window starts inside the previous window

The first window was started with the first available frame of the video
stream. The best key frame of this window was selected and the relevance
of this key frame was stored. The next windows were started in the middle
the previous window. So each frame of the video stream has two possibilities
at being a key frame. This is only an example of each new window position
which starts at a static position inside the previous window. Table 7.2 shows
this window positioning algorithm.

0 1

123456789012

window 1 sfffffe.....

window 2 ...sfffffe..

Table 7.3: New window starts inside the previous window.

Advantage:
We have a key frame in each window. There could be more than one good
key frame in each window, which is detected by the next window.

Disadvantage:
The following key frames from different windows are not necessarily ordered
in the time. More time is spent to perform an analysis of the same number
of frames. Table 7.2 shows this window positioning problem.
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0 1

1234567890

window 1 sffffke...
window 2 ...skffffe

Table 7.4: Wrong order of the key frames.

New window starts at the previous key frame

The first window was started with the first available frame of the video
stream. The best key frame of this window was selected and the relevance
of this key frame was stored. The next windows were started with the key
frame of the window before. So it is guaranteed that after a key frame the
next best possible frame becomes a key frame. Table 7.2 shows this window
positioning algorithm.

0 1

1234567890

window 1 sfkfffe...
window 2 ..skffffe.
window 3 ...sffkffe

Table 7.5: New window starts after the key frame of the previous window.

Advantage:
We have a key frame in each window. There could be more than one good
key frame in each window. Subsequent key frames are in the order of their
appearance.

If an important event happens that is distributed over more than one window,
the key frames then occur in a short time period. Frames that are near to
(or even closed into) this event are more often analysed and also become key
frames. For example, in table 7.2, the key frame in window 3 was used in the
analysis of 3 windows and had 3 changes in order to become a key frame.

This selection of the window position is the most useful.

Table 7.6 shows which experiments are made with dynamic and static window
positioning for a window width of 25 frames. The increase in the step width
from 1 to “n” frames will decrease the analysing data volume to 1

n
because

we only take every n-th value. Window curve diagrams also have the same
value domain.
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Step width Window width
10 25 30 45 60 90

1 +
5 +
10 +
15
30
45
dyn +

Table 7.6: The “+” shows which step width/window width were made with
“security1” and “security7” for the step width tests.

7.3 Window width

The width of the window reflects the area in which an important event is
expected. If an event occurs over a few windows, then it is expected that the
maximum relevance value of these window key frames is lower than that of
a key frame where the event occurs in one window.

If a window is too wide, then it’s possible that more than one event could
be in the frame but only one could be detected. It is possible to lower
this risk by setting the window more intelligently. The step width should
be less than or equal to the window width, otherwise some frames are not
in the window; therefore, resulting in a not-detected key frame. A step
width which is too small could lead to double-detected key frames and/or
key frames directly before an already detected key frame. A “too small” step
width could decrease the performance of the algorithm. This is discussed in
the next sub-sections.

The best window width would be a variable width that depends on the max-
imum relevance of the previous key frames.

Table 7.7 shows which combinations between static window step width and
window width we used for our experiments. The width of the window for the
dynamic step width is also given.

Window width based on a time window

It is not possible to define a fixed width that will match all scenarios. We
uses a width of approximately 2 seconds. Most of the sequences use a frame
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Step width Window width
10 25 30 45 60 90

1 +
5 + + + +
10 + + + +
15 + + + +
30 + +
45 +
dyn +

Table 7.7: The “+” shows which step width/window width experiments we
made.

rate of approx. 25 fps resulting in a window of 50 frames.

Window width depends on the position of the previous key frame

We could define the width of a window as the 2+n multiple of the distance of
the previous key frame to its window boundary (with n > 0). It’s expected
that if nothing important happens, the best key frame is somewhere in the
middle of a window. In that case, we expect that also in the next window
nothing important will happen, so we could increase the window width (n is
the increasing factor). If something important happens, the key frame will
be near the edge of a window. The next window width will be smaller. A
starting, a minimal and a maximal window width should be defined too.

Window width depends on the relevance of the previous key frame

If the relevance value of the key frame is increasing (relative to the previous
key frame), then it is possible that an important event will happen. It makes
sense to decrease the window width in such cases. On the other hand, it
makes sense to increase the window width if the relevance value is decreasing
(or is nearly constant). A starting, a minimal and a maximal window width
should be defined too.
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Experiments

Table 7.8 shows the available experiments with a given window step width
(this is discussed later) and with a different static window width.

Step width Window width
10 25 30 45 60 90

1
5 + + +
10
15
30
45
dyn

Table 7.8: The “+” shows which step width/window width were made with
“security1” and “security7” for the window width tests.

Due to a larger window width, the focus will be longer on really important
key frames and these will be detected “earlier”. Less important key frames
between two important key frames will also be skipped.

7.4 Window relevance

The next analysis is not based on a single frame of a window but on the whole
window. The resulting window-relevance curve is the important feature that
will be analysed. The idea is to assign the window not the relevance value
of the last frame but a value which is based on a couple of frames of the
window.

We call this the window relevance measure Mwin. The window relevance is
defined at time t for a window width w and depends on the frame relevances

Definition: polygon window
Let P = (v0, ..., vn), a (not necessary endless) polygon. A polygon window of
width w ∈ IN at time t ∈ IN0 is a polygon Pwin(w,t) ⊂ P , defined by

Pwin(w,t) = (vt+0, ..., vt+w−1) (7.1)
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Definition: window relevance
Let P = (v0, ..., vn), a (not necessary endless) polygon, and Pwin(w,t), a poly-
gon window. The window relevanceW : Pwin(w,t) → IR of the polygon window
Pwin(w,t) depends on the results of the discrete curve evolution
℘ = (P 0

win(w,t), ..., P
m
win(w,t)) applied to the window polygon, where

W(Pwin(w,t2)) < W(Pwin(w,t1) if the events in polygon window Pwin(w,t2) are
less important than the events in polygon window Pwin(w,t1).

The concequence is that either a specific implementation W matches a spe-
cific definition of important events, or the implementation itself implies the
definition of important events.

We have for example used (for our following experiments) the sum of the
most relevant C vertices of the polygon window. These vertices are the last
C vertices removed in the discrete curve evolution process.

W(Pwin(w,t)) :=
m∑

i=m−C
C(vj, Ploc)

where vj = P i|P i+1 ∈ P i

and Ploc = Locc(vj) ⊂ P i

(7.2)

The advantage of this window relevance is that information about more than
one event could be contained in the value of the window relevance. It can be
expected that each (by the DCE) detectable event in a window will contain
a vertex with a high relevance value at the time that the vertex is removed.
The value of C should be selected in such a way that there is at least the
number of expected events in the window.

C ≥ maximum number of expected events in a window (7.3)

7.5 Event detection threshold

Key frames in the “local context” of open scenes are defined by maxima in
the window relevance curve. Not every maxima should automatically be a
key frame. It makes sense to define a tolerance or detection level that must be
reached by a relevance before it is accepted as a key frame. Such a level could
be predefined and static. It also could be dynamically calculated depending
on the previous level.

The detection depends on the application as also on the video source and
the window step width and size itself. As we have seen, a filter will result in
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Figure 7.4: Video “security1”. Dynamic weighted centroids with 37 frame
descriptors, no filtering. Window position starts at the best key frame of
the previous window. The window relevance is the relevance of the best key
frame in the window.

smaller relevance values but also in a lower noise level, so that a static level
of the relevance value could make sense, but a dynamic solution would be
preferred. A video with a higher background noise will make too many false
positive detections.

Much local maxima could appear, but which of these are really important?

Figure 7.4 shows the window relevance features for the data of video security1
with 37 features, no filtering. The window relevance is that of the best key
frame in the window. The local maxima, which is interesting to us, are the
frames 97 (relevance of 0.33) and 135 (relevance of 0.28). All other extrema
is noise, with a relevance between 0.01 (frame 241) and 0.14 (frame 199).
This results in a worse ratio of 2.01 between good and bad frames.

Table 7.9 shows the raw data of the curve evolution. The data is described
in Appendix B.3. Column one contains the window number, column two is
the window relevance and column three is the best key frame number of the
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video which is inside the window of column one.

0 0.063478 34 13 0.057065 220
1 0.030814 40 14 0.068978 223
2 0.038028 63 15 0.011096 241
3 0.055547 87 16 0.096287 247
4 0.333187 97 17 0.019384 259
5 0.098694 106 18 0.053408 273
6 0.184939 115 19 0.091015 291
7 0.283159 135 20 0.084368 304
8 0.108204 148 21 0.080704 319
9 0.068149 168 22 0.084167 331
10 0.074726 169 23 0.062894 342
11 0.038537 184 24 0.007884 352
12 0.141034 199

Table 7.9: Data created by the discrete curve evolution

Figure 7.5 shows the window relevance features for the data of video “secu-
rity1” with 37 features, no filtering. The window relevance is the sum of the
relevances of the three best key frames. This curve evolution assigns the sum
of the relevances of the last three frames to the last frame. The peaks are
frames 97 (relevance of 0.52) and 135 (relevance of 0.46). All other extrema
isre noise with a relevance between 0.08 (frame 184) and 0.20 (frame 304).
This results in a worse ratio of 2.31 between good and bad frames.

Figure 7.6 shows the window relevance features for the data of video “secu-
rity1” with 37 features, no filtering. The window relevance is defined as the
maximum of all frames in the window. The maxima is frames 97 (relevance of
0.33) and 135 (relevance of 0.28). All other extrema is noise with a relevance
between 0.04 (frame 259) and 0.14 (frame 199). This results in a worse ratio
of 2.01 between good and bad frames.

The following result is that of the same experiment before with the exception,
that the best key frame of the window is defined as the key frame at which
the maximum relevance appears. This is not necessarily the last key frame.
Figure 7.7 shows the window relevance features for the data of video security1
with 37 features, no filtering and Curve Evolution 2.28. The peaks are frames
97 (relevance of 0.33) and 135 (relevance of 0.28). All other extrema is noise
with a relevance between 0.04 (frame 258) and 0.14 (frame 199). This results
in a worse ratio of 2.01 between good and bad frames.

It is not trivial to define a detection algorithm for depending on the win-
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Figure 7.5: Video “security1”. Dynamic weighted centroids with 37 frame
descriptors, no filtering. Window position starts at the best key frame of the
previous window. Window relevance is the sum of the relevances of the three
best key frames.

dow relevance levels to detect important windows. The following algorithms
are examples of how such a detection algorithm could be implemented for
different kinds of situations.

First algorithm

The idea is to define local maxima in the window relevance curve as a window
with important events. If the previous relevance was higher and the relevance
before that was lower, then we have a local maximum.

Algorithm:

W(Pwin(w,t−2)) < W(Pwin(w,t−1)) ∧W(Pwin(w,t−1)) ≥ W(Pwin(w,t))
⇒ Pwin(w,t−1) has at least one important event
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Figure 7.6: Video “security1”. Dynamic weighted centroids with 37 frame
descriptors, no filtering. Window position starts at the best key frame of the
previous window. Window relevance is the maximum of the key relevances.

Second algorithm

This algorithm is a refinement of the previous event detection algorithm.
This algorithm could used when it is expected that the window relevance
level should have a minimum value. The idea is to define a static threshold
Tconst, thus determining that a window is important.

Algorithm:

W(Pwin(w,t−2)) < W(Pwin(w,t−1)) ∧
W(Pwin(w,t−1)) ≥ W(Pwin(w,t)) ∧
W(Pwin(w,t−1)) ≥ Tconst

⇒ Pwin(w,t−1) has at least one important event

Third algorithm

This detection algorithm is the same as the previous algorithm, however
the thresholds Tdyn are dynamically calculated for each window, depending
on the previous windows. This could be useful in cases for which it is not
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Figure 7.7: Video “security1”. Dynamic weighted centroids with 37 frame
descriptors, no filtering. Window position starts at the key frame with the
best relevance value of the previous window. Window relevance is the maxi-
mum of the key relevances.

possible to define a static threshold. This is for example useful in situations
when the filter width is changed, which could result in lower relevance values
of the cost function, thus influencing the window relevance values.

W(Pwin(w,t−2)) < W(Pwin(w,t−1)) ∧
W(Pwin(w,t−1)) ≥ W(Pwin(w,t)) ∧
W(Pwin(w,t−1)) ≥ Tdyn

⇒ Pwin(w,t−1) has at least one important event

Fourth algorithm

Another idea is to define the window relevance in such a way that each value
above a dynamic or static threshold T is defined as important.

W(Pwin(w,t−1)) ≥ T
⇒ Pwin(w,t−1) has important events
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7.6 Filtering

The following figures show the usage of different morphological filters applied
to the video security1. As can be seen there is no difference between the non-
filtered and the Morph1 filtered features. The source and the filtered features
of the digital camera are identical. It seems that the digital camera triples
the recorded frame to get the necessary video frame rate. Figures 7.9, 7.10,
7.11, 7.12, 7.13 and 7.14 show the influence of morphological filters with
different filter window widths. The range of the relevance is reduced to lower
levels. Different details of the curve disappear, but as we can see in figures
7.10 and 7.11, some details are also not reduced, which results in a raise of
the importance at these places (around window number 199).

Figure 7.8 shows the influence of different morphological filter widths on the
relevance level of the windows. The used video is “security1” (Appendix
A.1.2), with a window width of 25 frames and a static repositioned window.
The repositioning step width of the window is 10 frames.

The missing differences in figures 7.9 and 7.10 are the result of the tripled
frame1. The video consists of blocks with three successive identical frames.
A morphological filter with the same width (or less) as the width of these
frame blocks will not change anything.

Figure 7.8: Relevance curve with different morphological filter width.

1As described in the appendix, a new frame is followed by two identical frames. This
is a recording feature of the used hand-held camera.
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Figure 7.9: Non-filtered video “security1” with 73 features, and window rel-
evance defined as the sum of the relevances of the three best key frames.

Figure 7.10: Morph1 filtered video “security1” with 73 features, and window
relevance defined as the sum of the relevances of the three best key frames.
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Figure 7.11: Morph2 filtered video “security1” with 73 features, and window
relevance defined as the sum of the relevances of the three best key frames.

Figure 7.12: Morph3 filtered video “security1” with 73 features, and window
relevance defined as the sum of the relevances of the three best key frames.

106



Figure 7.13: Morph5 filtered video “security1” with 73 features, and window
relevance defined as the sum of the relevances of the three best key frames.

Figure 7.14: Morph11 filtered video “security1” with 73 features, and window
relevance defined as the sum of the relevances of the three best key frames.
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Chapter 8

Results

8.1 Comparison

A complete experimental comparison with results can be found on the home-
page [12]. The results contain a comparison with our algorithms for all
available videos as used by [21, 48].

8.2 Summary

The discrete curve evolution is a flexible greedy algorithm for video seg-
mentation and indexing, in order to extract key frames and create video
summaries.

The flexibility is integrated into the ability to define frame descriptors for
the appropriate purpose. The key frame measure functionality is not simply
reduced to a metric; therefore resulting in more flexibility in order to adapt
the key frame relevance measure to the definition of expected key frames.
The strength of the algorithm is not the detection of potential key frame
candidates but the detection of non-key frames. This makes it possible to
detect a key frame on a variable context of the video and not only inside a
static environment.

The existing centroid based frame descriptors are optimized by changing the
size of histogram bins behind the centroids. We changed the centroid features
in such a way that they scale invariance. We added a dynamic weighting of
some components of these frame descriptors, depending on their importance
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in the frame. This will avoid an incorrect detection of key frames. A filter
gives use the latitude to define a time frame in which key frames are expected.
We have shown that the algorithm is not only based on feature spaces with
a defined metric, but the non-euclidean spaces are possibly also, as shown
with the Dominant Colors and Optimal Color Composition Distance.

We have also shown that the Discrete Curve Evolution, with optimized frame
descriptors based on centroids, is comparable with other video segmentation
algorithms and results.

The flexibility to analyse frames in bigger context, as is necessary in video
streams, is also a disadvantage for this video segmentation algorithm, thus
making it unusable for the analysis of video streams. We bypassed this disad-
vantage by using the Discrete Curve Evolution for a window analysis of the
video stream. This allowed us to detect important events inside the video
stream. The window positioning algorithm is optimized to detect impor-
tant events only once, however without leaving other less important events
undetected.

8.3 Conclusion

In this paper, we have seen that the Discrete Curve Evolution is a suitable
and flexible algorithm for video segmentation and indexing.

We developed applications to extract different video frame feature descriptors
and we optimized them for best results. These optimizations were improved
by optimizing the frame descriptors with the implementation of a filter.

The Discrete Curve Evolution gives us the ability to define frame descriptors,
depending on the application in which a video segmentation algorithm is
used. It also gives us the ability to implement a measure that meets the
requirements of the video segmentation algorithm.

8.4 Future

The discrete curve evolution contains more potential for video segmentation
than is shown in this paper. Some disadvantages of the used features are not
discussed, such as slight changes in the brightness with a large impact on
the frame descriptors. A suggestion of how this could be solved was already
made.
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More research is needed for usable frame descriptors, frame comparison met-
rics and for the cost measures for predefined key frame requirements. Trained
frame descriptors and comparison metrics as used in CBIR, for example [28],
are also interesting ideas.

Other research required is for upper and lower boundaries of useful abstrac-
tion levels. Merging differences between abstraction levels to groups could
be also interesting in order to define application depending abstraction levels
like it is done in [53].

For the video stream analysis, research is necessary for more intelligent win-
dow width and positioning, and for the implementation of an automatic
detection algorithm.
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Appendix A

Video sets

This appendix contains an overview of the videos I used for experiments as
described in this paper. A complete list of videos is available at homepage
[12].

A.1 Self-made video sets

A.1.1 Ground Truth

It is important for the ground truth videos that they are simple and the
results must be identical for all tests (even persons and experiments).

Papers

We created ground truth experiments to verify the results. The first experi-
ment shows 3 different colored papers on a white board. The camera moved
slowly over all papers, ending with the first. The movie is known as “MOV1”.

Facts of video Mov1
video size 160 x 112 pixels
ratio 0.7
number of frames 378 frames
frame rate 25 fps
video length 15.1 seconds
number of shots 1 shot
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Video and shot summary of Mov1
Shot start end Description

1 1 378 Table with 3 different colored pieces of paper.

The expected key frame results are the images of the different colored papers
as shown in Image A.1.

Figure A.1: Collation of the sequence “MOV1” with the expected ground
truth results.

Dots

Movie “MOV00085” [13] is also known as “Dots”. A hand-held camera shows
3 groups of magnetic dots on a white board. The camera moves slowly over
a single black dot, to a group with 2 red dots, over to a group with 3 dots
and back to the single black dot.

Facts of video Mov00085
video size 160 x 112 pixels
ratio 0.7:1
number of frames 387 frames
frame rate 25 fps
video length 15.5 seconds
number of shots 1 shot

Shot summary
Shot start end Description

1 1 387 Whiteboard with different groups of magnetic dots.

The expected key frame results are images of the magnetic dots. The result-
ing key frame set contains images showing the cleared board between the dot
groups or frames which included more than one group. Figure A.2 shows the
expected key frames.
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Figure A.2: Collation of the sequence “MOV00085” with the expected ground
truth results.

Rustam

Movie “MOV3” [15] is also known as “Rustam”. A hand-held camera shows
the upper part of a man sitting. First he sits “still” making only small body
movements. Then he waves his left hand (approx. frame 36), then he sits
still, and then again he waves with his left hand (approx. frame 159). After
a few seconds he waves his right hand (approx. frame 241).

Facts of video Mov3
video size 320 x 240 pixels
ratio 3:4
number of frames 386 frames
frame rate 25 fps
video length 15.4 seconds
number of shots 1 shot

Shot summary
Shot start end Description

1 1 387 Waving Rustam.

Shot description:

1. Rustam waves (from the observers point of view) 2 times with his left
hand and 2 times with his right hand. Rustam’s hand did not disappear
between the last two waves.

Figure A.3 shows the expected key frames.
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Figure A.3: Collation of the sequence “MOV3” with the expected ground
truth results.

A.1.2 Camera recordings

These videos were recorded with two different hand-held cameras. The first
camera recorded small videos with 25 fps. These videos were in reality
recorded with approx. 8 fps but every frame was tripled. The second camera
recorded larger videos with 25 fps. These videos were in reality recorded with
approx. 12 fps but every second frame was doubled.

Security 1

Movie “security1” [16] is a low resolution video of 160x112 pixels and has
386 frames. With a frame rate of 25 fps, it lasts for 15 seconds.

The video was taken with a fixed hand-held camera pointing at a closed door.
It shows a room with white walls. A person dressed in white enters the room
from the right. The person turns to the camera sits down, then stands up
and leaves the view of the camera at the right border. Image A.4 shows the
expected key frames.

The camera records the video at a lower rate of aprox. 8 fps. These frames
are tripled which results in a frame rate of 25 fps. The first frame is always
an I-frame and the next two frames are always B-frames, which are identical
to the I-frame.

Facts of video “security1”
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video size 160x112 pixels
ratio 0.7
number of frames 386 frames
frame rate 25 fps
video length 15 seconds
number of shots 1 shot

Shot summary
Shot start end Description

1 Longin Jan Squatting.

Shot description

1. Longin Jan appears in the camera view from the right side. He squats
and disappears from the view to right side.

Figure A.4: Collation of the sequence “security1” with the ground truth
results

Security 7

Movie “security7” [17] is a low resolution video of 160x112 pixels and has
386 frames. With a frame rate of 25 fps, it lasts for 15 seconds.

This video was taken with a fixed hand-held camera pointing at a closed
door. It shows a room with a white wall and a door. At about frame 160,
the door opens and the person enters the room. The person closes the door
and walks towards the camera, passing it to the right and disappearing at
about frame 255. Figure A.5 shows the expected key frames of this sequence.

Facts of video “security7”
video size 160x112 pixels
ratio 0.7
number of frames 386 frames
frame rate 25 fps
video length 15 seconds
number of shots 1 shot
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Shot summary
Shot start end Description

1 Guest entering the room.

Shot description:

1. This video recorded a door through which a guest appeared. The guest
disappeared from the camera view to the right side.

Figure A.5: Collation of the sequence “security7” with the expected ground
truth results

A.1.3 Television and existing videos

Halloween

This is one of the first videos not self-made. It shows the first minutes of a
Video CD named “Halloween”. This video was used only for performance
tests and not for comparison purposes because there was no shot description
nor ground truth available.

Facts of video “Halloween”
video size 352 x 288 pixels
ratio 9:11
number of frames 6182 frames
frame rate 29.7 fps
video length 206.3 seconds
number of shots unspecified

Mr. Bean’s Christmas (full-sized)

This video is the full-sized version of “Mr. Bean’s Christmas”.
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Facts of video “Mr. Bean’s Christmas”
video size 352 x 240 pixels
ratio 11:16
number of frames 2379 frames
frame rate 30 fps
video length 80 seconds
number of shots 9 shots

Shot summary
Shot start end Description

1 0 994 Kitchen with Mr. Bean and a turkey
2 995 1165 Close-up of Mr. Bean
3 1166 1291 Kitchen with Mr. Bean and a turkey
4 1291 1357 Close-up of Mr. Bean
5 1357 2009 Kitchen with Mr. Bean and a turkey
6 2009 2079 Woman at the door
7 2080 2182 Kitchen with Mr. Bean and a turkey
8 2183 2363 Living room with Mr. Bean and a turkey
9 2364 2379 Woman at the door

We detected:
Frame 0 (per definition), which is representative for shot 1.
Frame 613 is also contained in shot 1 (Approx. 20.4”).
Frame 1021 is contained in shot 2 (Approx. 34.0”).
Frame 1154 is also contained in shot 2 (Approx. 38.5”).
Frame 1212 is contained in shot 3 (Approx. 40.4”).
Frame 1302 is contained in shot 4 (Approx. 43.4”).
Frame 1806 is contained in shot 5 (Approx. 60.2”).
Frame 2041 is contained in shot 7 (Approx. 68.0”).
Frame 2206 is contained in shot 8 (Approx. 73.5”).
Frame 2379 (per definition), which is representative for shot 9.

Shot description:

1. Shot one shows the kitchen without the turkey. In these shots, Mr.
Bean brings the turkey into the view of the camera.

2. In shot two there is a zoom and a pan onto Mr. Bean. Due to this
camera action, the turkey disappears from the camera view.

3. Shot three shows the same content as shot one.

4. Shot four shows the same content as shot two.
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5. Shot five shows the same content as shot one.

6. Shot six shows a woman knocking on the front door.

7. Shot seven shows the same kitchen as in shot one. Mr Bean has his
head in a turkey.

8. Shot eight shows the living room as Mr. Bean enters it from the kitchen.

9. Shot nine shows the woman from shot six waiting at the front door.

Figure A.6: Collation of the sequence “Mr. Bean’s Christmas” with the
expected ground truth results

Mr. Bean’s Christmas (down-scaled version)

The down-scaled version of the movie “Mr. Bean’s Christmas” (mrbeantu.mpg)
is the identical version of the full-sized version with an exception in the res-
olution, which has a size of 112x80 pixels.

Facts of video “Mr. Bean’s Christmas”
video size 112 x 80 pixels
ratio 0.7
number of frames 2379 frames
frame rate 30 fps
video length 80 seconds
number of shots 9 shots

118



A.2 Third party video sets

A.2.1 Rossiter et. al.

For our comparison experiments, we used a set of 3 videos which are available
at the hompage of Rossiter [48]. The videos contain a series of clips of the
motion picture “The Blade Runner”, a series of shots through a house and
a series of scenes of the singer, Kylie Minogue. A description of the videos
can be found at [12].

Example information of “Kylie”

The video with information about “Kylie”, as used in chapter 6, was recorded
at a slower frame rate, resulting in a fast playback of the content.

Facts of video “Kylie”
video size 192 x 144 pixels
ratio 3:4
number of frames 205 frames
frame rate 25 fps
video length 8.2 seconds
number of shots 6 shots

Video and shot summary
Shot start end Description

1 1 41 Interview with Kylie Minogue.
2 42 80 Dancing performance.
3 81 101 Other dancing performance.
4 102 105 A dancer.
5 106 189 Another interview with Kylie Minogue.
6 190 205 Lead out of the BBC television.

The expected ground truth result is shown in figure A.7. It contains one
frame of every shot.
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Figure A.7: Collation of the sequence “Kylie” with the expected ground
truth results.

A.2.2 Drew et. al.

The experiment set of Drew contains 12 self-created and two downloaded
videos. The self-created videos are short clips less than one minute in length
and contain one to seven shots. Some shots also have pans and blendings
between them. The two downloaded videos come from the university of
Kansas. The first clip is a scene of a football match and the second clip is a
series of basketball shots.

Example information of “beachmov”

Information about the video “beachmov” as used in chapter 6

Facts of video “beachmov”
video size 321 x 240 pixels
ratio 3:4
number of frames 738 frames
frame rate 25 fps
video length 29.5 seconds
number of shots 4 shots

Video and shot summary
Shot start end Description

1 1 300 A pan over a beach
2 275 535 Beach volleyball
3 510 700 Four people in a swimming pool
4 675 739 People on the edge of a swimming pool
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Special shot characteristics

• Shot one shows a beach, and the camera makes a pan from left to right
showing water, a beach and a forest in the background.

The expected ground truth result is shown in figure A.8. It contains two
frames for the first shot and one frame for each of the following shots.

Figure A.8: Ground truth results of video “beachmov”
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Appendix B

Software

It was necessary to implement these algorithms in our own programs in order
to verify them and get knowledge of them. Tthe programming language made
it possible for me to alter the algorithms. I have implemented the algorithms
in other programs based on C/C++.

The feature extraction was implemented in an software MPEG-player. The
MPEG-player is a C-program in which I implemented the bucket extraction
for each color space (RGB and YUV). The dominant colors were implemented
by a library of Hu. I have created for each kind of modification to the feature
extraction algorithm an own program with a different version. The different
versions of the feature extraction are described in Appendix B.1.1. The
features are directly extracted from the video memory. The MPEG player
also extracts the key frames if this is necessary.

The feature filtering was implemented in a separate program which is written
in C++. For each kind of feature and filter, there is an own program version
written with a different version number. The different versions of the feature
filter are described in Appendix B.1.2.

The discrete curve evolution was also implemented in a separate program
which was written in C/C++. The original version of this program was
written by Daniel de Menthon. For each kind of feature was also an own
program version written with a different version number. The distance mea-
sure for the buckets were directly implemented by a vector implementation.
The distance measure for the dominant colors were implemented by a library
which was supported by Hu. The different versions of the feature filter are
described in Appendix 2.1.
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The player was a developed application and implemented in C++ by Jan
Erik Hoffmann. The player was written in C++. It is a graphical user
interface (GUI) between the discrete curve evolution, the key frames and
an MPEG player. The player is called “Smart Fast Forward Player” (SFF-
player). The player reads the evolved evo file and shows the images from
the MPEG player extracted images at a specific abstraction level. The level
could easily be changed by a slider. The player also controls a commercial
MPEG player with sound support. When selecting an image, it will skip into
the same image in the MPEG video stream. From this point on, the video
can be played normally.

The interaction between the applications is realized by data files and scripts.
The input and output for each program are data files such as:

• MPEG1-video/system Stream

• Feature Files

• Frame List

• Key Frames

The scripts are the “glue” between the separate programs and the data files.
The scripts perform:

• Directory creation

• Extraction of the features

• Filtering

• Discrete Curve Evolution

• Frame Extraction.

Appendix B.2 describes how these programs are interacting with each other
for the different algorithms. In Appendix B.3, the different file formats are
described which are produced by the programs.
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B.1 Applications

B.1.1 Feature Extraction

The features are extracted within the MPEG player. There exist different
versions of the player for different features. These player versions are ex-
plained in the following sub-sections.

B.1.2 Feature Filter

Version 2.x and 3.x of the “Feature Filter Application” is used to filter the
buckets. These applications accept the following parameters:

• -i <FFT filename>
The parameter <FFT filename> specifies the input filename for the
filter.

• -o <FFT filename>
The parameter <FFT filename> specifies the output filename for the
filter.

• -FilterBase <filter width>
The parameter <filter width> specifies the base width of the min/max
filter. The total filter width is “1 + 2∗ < filterwidth >”.

• -FilterType <filter type>
The parameter <filter type> specifies if the minimum or maximum
filter operation is done. 0 implies the minimum filter and 1 implies the
maximum filter.

Version 4.x of the “Feature Filter Application” filters the dominant color
feature file as used by the OCCD routines of Hu. The applications accepts
the following parameters:

• -i <FTR filename>
The parameter <FTR filename> specifies the input filename for the
filter with the dominant color features.

• -ippm
This parameter specifies if a feature image PPM-file should be created
from the input FTR-file.
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• -o <FFT filename>
The parameter <FFT filename> specifies the output filename for the
filter.

• -oppm
This parameter specifies if a feature image PPM-file should be created
from the output FTR-file.

• -FilterBase <filter width>
The parameter <filter width> specifies the base width of the min/max
filter. The total filter width is 1 + 2∗ < filterwidth >.

• -FilterType <filter type>
The parameter <filter type> specifies if the minimum or maximum
filter operation is done. 0 implies the minimum filter and 1 implies the
maximum filter.

B.1.3 Curve evolution

Curve Evolution Application version 3.23 is the most used application for
features based on the Dominant Colors. The application accepts the following
parameters:

• -i <EFT filename>
The parameter <EFT filename > specifies the input file for the ex-
tended centroid features with the video control information. This in-
formation is used to associate the frame number to the MPEG-video.

• -i2 <FFT filename >
The parameter <FFT filename > specifies the input file for the dom-
inant color frame descriptors which are used in the curve evolution
algorithm.

• -o < output filename>
The parameter < output filename > specifies the output filename with
the resulting data of the curve evolution.

• -n <number of I-frames>
The parameter <number of I-frames > contains the number of intra-
frames before this frame. This was used to calculate an offset in the
MPEG-stream on which a MPEG-viewer could start playing, thus mak-
ing it possible to start the MPEG a few seconds before the frame ap-
pears.
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• -f <frame type>
The parameter <frame type> specifies which of the frames of the
MPEG video are used for the curve evolution. It is possible with this
option to perform the curve evolution on only a subset of frames of the
video. A value larger or equal to two will use all intra (I), predictable
(P) and between (B) frames. A value of one will skip the between
frames, and a value of zero will only use the intra frames.

• -start <start frame number>
The parameter <start frame number> specifies which frame the curve
evolution is applied to.

• -end <end frame number>
The parameter <end frame number> specifies until which frame the
curve evolution is applied.

With the parameters <start frame number> and <end frame number>,
an endless video is used to simulate the curve evolution for the local
analysis. Only the subset of the features with these frame boundaries
is used for the curve evolution.

• -mpg <MPEG filename>
The parameter <MPEG filename> is written in the output file as ref-
erence to the original MPEG video. This information is used by our
Smart Fast Forward Viewer to load the appropriate video.

B.1.4 MpegInfo

This application extracts the total number of frames in a video and is used
by the scripts to control the extraction process in which information about
the total number of frames is used.

B.1.5 Smart Fast Forward Viewer

The Smart Fast Forward Viewer was developed by Jan Erich Hoffman as
a Graphical User Interface to join the results of the Key Frame Extraction
Algorithms and the original content of the video together. It acts as:

1. an abstraction level selector
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2. an abstraction viewer with preservation of the temporal information,
and

3. a remote control for an external MPEG-player [42].

B.1.6 MPEG-Player

We used a commercial MPEG player [42] to show the video content from the
Smart Fast Forward viewer. This decision was made because other MPEG-
players didn’t support audio and suitable remote control mechanisms at that
time.

B.1.7 Scripts

The complete creation process of the key frames, starting with the feature
extraction and ending with the key frame extraction, is controlled by shell
scripts to make an autonomous system without any necessary user interac-
tion.

B.2 Application interaction diagram

The different kinds of applications interact with each other and exchange
data. The following two subsections show the interactions between the ap-
plications as described in the previous section for the global analysis of the
videos and for the local analysis inside video streams.

B.2.1 Global key frame extraction

Our experiments for the video scene key frame extraction were made by
several programs. Image B.1 shows the different steps of the key frame
extraction. In the first step, the frame features are extracted from the video
sequence to an intermediate file. The input file only contains the video
sequence. The output file format is described in Chapter B.3.1.

In the second step, the filters applied to the features. The input and the
output file format are identical.
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Figure B.1: Framework of the key frame extraction process.

The third step is the digital curve evolution. The input file is the intermediate
file. The output file contains the relevance order and the relevance of the
filtered frames. The file format is described in Chapter B.3.3.

In the fourth step, the most important images are extracted from the video
sequence. The input files contain the video sequence from step one and the
evolution file from step three. The output files contain the key frames.

In step five, the key frames and video sequence can be viewed with the smart
fast forward viewer (SFF-viewer) or with another application for example in
a server/client environment. Image B.2 shows the framework for the SFF
viewer and also an example of an embedded client/server environment with
a HTTP web server and a browser. An interactive example can be found
on http://www.videokeyframes.de/ [12]. The input files for the SFF-player
contain the video sequence from step one, the key frames from step four and
the evolution file from step three.

B.2.2 Local key frame extraction

Our experiments for the video scene key frame extraction were made by
several programs. Image B.3 shows the different steps of the key frame
extraction in open scenes.

The key frame detection is done with the framed version of the key frame
extraction. Image B.4 shows the key frame.
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B.3 File formats

B.3.1 Bucket Features

The bucket features are stored in a file with the suffix “.eft”. The file contains
a header of 3 lines. All other lines contain the features in space-separated
columns. Line one contains the number of frames. Line two contains the
number of columns which should be skipped. Line three contains the number
of feature columns. The first data column is the time (frame number). The
following columns are in order of the color component (red, green, blue or
Chrominance, Luminancer, Luminanceb). Then the bucket numbers are in
order from the lower to the higher values and then the bucket itself with the
bucket “x” coordinate, the bucket “y” coordinate and the area. The values
are integer promille values in the value range.

Data File:
[no. frames] <new line>

[no. extended columns] <new line>

[no. feature columns] <new line>

<no. frames> * [frame data]

Frame Data:
<no. extended columns> * [extended data]
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<no. feature columns> * [feature data]

<new line>

Example:
6182

5

37

87064 0 1 2064 00000000 1 16 55 997 470 796 2 904 746 0 0 0 ←↩
↪→ 0 0 0 0 173 54 683 58 63 316 0 0 0 0 0 0 527 328 132 75 ←↩
↪→ 11 863 576 934 3

...

This file contains features for 6182 frames. The features start at column 6.
(This is the column after “000000”.) We have 37 features. This implies 4
buckets for each color. The “x” coordinate of the first bucket in the luminance
color is 16. The “y” coordinate of the first bucket in the luminance color is
55. The area of the first bucket in the luminance color is 997. Because this is
the first bucket of the luminance, it contains the darker pixels of the image.
This bucket contains 99,7 percent of all pixels, which means that the image
is very dark.

The “x” coordinate of the second bucket in the luminance color is 470. The
“y” coordinate of the second bucket in the luminance color is 796. The area
of the second bucket in the luminance color is 2.

B.3.2 Dominant color Features

The dominant color features are stored in a file with the suffix “.ftr”. The file
contains a header of 1 line. All other lines contain the features in frame blocks
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and space-separated columns. Line one contains the number of frames. All
other lines are blocks with dominant color information for one frame. Line
one contains 2 values. Value one is the frame number. Value two is the
number of dominant colors in this frame. Each of the following lines in the
block contain information about one dominant color. A line with dominant
color information contains seven values. Values one to three are the values
for “L”*, “a*” and “b*”. Value number four is the color number in the
codebook. Value number five is the area of the color in the image. Value
number six and seven are the x- and y-coordinates of the centroid.

Data File:
[no. frames] <new line>

<no. frames> * [frame data]

Frame Data:
[frame number] [#colors] <new line>

<no. colors> * [color data]

Color Data:
[L*] [a*] [b*] [codebook color no.] [area] [x] [y] <new line>

Example:
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572

0 4

40.939472 35.434769 -76.906685 38 0.414575 0.412636 0.466091

0.000000 0.000000 0.000000 0 0.410669 0.593721 0.483514

40.000000 15.242203 -41.250500 24 0.033440 0.592466 0.793416

40.000000 34.271545 -53.427330 32 0.023773 0.547657 0.631149

1 ...

B.3.3 Evolved frame information

The result of the curve evolution is written in a file with the suffix “.evo”.

Data File:
[Video Filename] <new line>

[Image Path] <new line>

[] <new line>

[] <new line>

[no. frames] <new line>

<no. frames> * [Frame Data]

Data File:
[Entry no.] [relevance] [Frame no.] [Frame no.]

[Video Offset] [Intraframe no.] [Video Offset]

[Intraframe no.] <new line>

Example:
/home/Danny/Promotion/Programme/Data2/BladeRunner.mpg

./

79

2

572

0 0.000000 94 94 291772 93 275200 90

1 ...
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abstract

This work treats the segmentation of videos with pre-defined start and end
frame, as well as video data streams without a firmly defined start and end
frame. The video segmentation consists of the time analysis of the video data
material and the determination of striking segments in this material, as well
as the representation of the segments by single frames.

The video segmentation is used in multiple applications, e.g. in the produc-
tion control, monitoring as well as in the automatic interpretation of videos.

The fundamental concepts of the used image processing are explained. Since
there are no objective and clear criteria for the definition of video segments,
subjective criteria are deduced, which a video segmentation should fulfill.

As foundation for the video segmentation the discrete curve evolution is used,
which turned out as a flexible and versatile applicable algorithm. It was de-
veloped at the University of Hamburg by Mr. Latecki and Mr. Lakaemper
and used by Mr. DeMenthon at the University of Maryland (USA) for video
segmentation. The used frame descriptors are based on the statistical analy-
sis of pixels, whereby a reduction of the picture information in IR37 is reached.
These frame descriptors and algorithms are further analyzed and verified by
experiments. This leads to the normalization of the basic video material con-
cerning playing speed of the video and the dimensions of the display format.
Additionally the selected number of frame descriptors is improved, normal-
ized and weighted. The use of morphological filters on the characteristics
round off the improvement of these characteristics. A further beginning off
the improvement of video segmentation is the use of other frame descriptors,
e.g. the RGB-color space and/or dominating colors, on which will be get into
deeper.

It will be shown, how the video segmentation algorithm can be applied to
video data streams by the use of a window. The problems and possible
proposals for solution arising here are addressed.

The work is rounded off by a description of the accomplished experiments.
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Zusammenfassung

Die Arbeit behandelt die Segmentierung von sowohl Videos mit vordefinierten
Anfangs- und Endbildern als auch Videodatenströme ohne ein fest definiertes
Anfangs- und Endbild. Die Videosegmentierung besteht aus der Zeitanalyse
des Videodatenmaterials und der Bestimmung von markanten Abschnitten in
diesem Material, sowie der Repräsentation der Abschnitte durch Einzelbilder.

Die Videosegmentierung findet vielfache Anwendung z.B. in der Produktions-
kontrolle, der Überwachung sowie in der automatischen Interpretation von
Filmen.

Es werden die Grundbegriffe der verwendeten Bildverarbeitung erklärt. Da es
keine objektive und eindeutige Kriterien für die Definition der Videosegmente
gibt, werden subjective Kriterien hergeleitet, die eine Videosegmentierung
erfüllen sollte.

Als Grundlage für die Videosegmentierung wird die Diskrete Kurvenevo-
lution verwendet, die sich als ein flexibler und vielseitig anwendbarer Al-
gorithmus herausgestellt hat. Sie wurde an der Universität Hamburg von
Herrn Latecki und Herrn Lakämper entwickelt und von Herrn DeMenthon
an der Universität Maryland (USA) für die Videosegmentierung angewandt.
Die benutzten Bilddeskriptoren basieren auf der statistischen Analyse von
Bildpunkten, wodurch eine Reduzierung der Bildinformationen auf IR37 er-
reicht wird. Diese Bilddeskriptoren und Algorithmen werden näher analysiert
und durch Experimente verifiziert. Die daraus gewonnenen Informationen
werden benutzt um die Deskriptoren und Algorithmen zu verbessern. Dies
führt zur Normalisierung des zugrunde liegenden Videomaterials bzgl. Ab-
spielgeschwindigkeit des Videos und der Dimensionen des Bildformates. Zu-
dem wird die gewählte Anzahl der Bilddeskriptoren verbessert, normalisiert
und gewichtet. Die Anwendung von morphologischen Filtern auf den Merk-
malen rundet die Verbesserung dieser Merkmale ab. Ein weiterer Ansatz
für die Verbesserung der Bildsegmentierung ist die Verwendung von anderen
Bilddeskriptoren, wie z.B. der RGB-Farbraum bzw. dominierende Farben,
worauf vertieft eingegangen wird.

Es wird gezeigt, wie der Videosegmentierungsalgorithmus durch die Verwen-
dung eines Fensters auch auf Videodatenströme angewandt werden kann. Die
hier auftretenden Probleme und mögliche Lösungsvorschläge werden ange-
sprochen.

Die Arbeit wird durch eine Beschreibung der durchgeführten Experimente
abgerundet.

149



150



Lebenslauf

Persönliche Angaben
Name: Daniël de Wildt
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Veröffentlichungen
1. L.J. Latecki, D. de Wildt und J. H. Hu. “Extraction of Key Frames

from Videos by Optimal Color Composition Matching and Polygon
Simplification”. Proc Multimedia Signal Processing, pages 245-150
Cannes, France, October 2001.

2. L.J. Latecki, D. de Wildt. “Automatic Recognition of Unpredictable
Events in Videos”. Proc. Int. Conf. On Pattern Recognition (ICPR)
Quebec City, August 2002.

151



152


