Photocycloadditionen von Cyclohex-2-en-1-onen an α , β -ungesättigten Nitrilen und Dinitrilen

Dissertation

zur Erlangung des Doktorgrades am Department Chemie der Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität Hamburg

vorgelegt von

BRITTA LOHMEYER

aus Hamburg

Hamburg 2006

- 1. Gutachter: Prof. Dr. P. Margaretha
- 2. Gutachter: Prof. Dr. Dr. W. Francke

Datum der Disputation: 08. Dezember 2006

Die vorliegende Arbeit wurde in der Zeit von Oktober 2002 bis Dezember 2006 unter der Anleitung von Herrn Prof. Dr. P. Margaretha im Institut für organische Chemie der Universität Hamburg angefertigt.

Herrn Prof. Dr. Margaretha danke ich für die Überlassung des Themas und seine wertvolle Unterstützung und Anregung bei der Durchführung dieser Arbeit.

Meinen Kindern gewidmet.

Inhaltsverzeichnis

A. Allgemeiner Teil	1
1. Einleitung	1
1.1. Historischer Abriss der Photochemie	1
1.2. Photocycloadditionsreaktionen von Ketonen	2
2. Photochemische Untersuchungen	6
2.1. Grundlagen	6
2.2. [2+2]-Photocycloadditionen von Cyclohexenonen an Alkene	10
2.2.1. Stereochemie der Ringverknüpfung	10
2.2.2. Stereochemie der Alkenkomponente	10
2.2.3. Regiochemie der [2+2]-Cycloaddition	11
2.2.3.1. Corey-de Mayo-Mechanismus	11
2.2.3.2. Bauslaugh-Schuster-Weedon- Mechanismus	13
2.3. [3+2]-Photocycloadditionen	17
2.4. [4+2]-Photocycloadditionen	
3. Aufgabenstellung	20
3. Aufgabenstellung B. Hauptteil	20 21
 3. Aufgabenstellung B. Hauptteil 1. Darstellung der Photoedukte 	20 21 21
 3. Aufgabenstellung B. Hauptteil 1. Darstellung der Photoedukte 1.1. Syntheseweg 	20 21 21
 3. Aufgabenstellung. B. Hauptteil. 1. Darstellung der Photoedukte. 1.1. Syntheseweg. 1.2. Synthese von 5,5-Dimethylcyclohex-2-en-1-on (27) und 2,5,5-Trimethyl- 	20 21 21 21
 3. Aufgabenstellung. B. Hauptteil. 1. Darstellung der Photoedukte. 1.1. Syntheseweg. 1.2. Synthese von 5,5-Dimethylcyclohex-2-en-1-on (27) und 2,5,5-Trimethyl-cyclohex-2-en-1-on (28). 	20 21 21 21
 3. Aufgabenstellung. B. Hauptteil. 1. Darstellung der Photoedukte. 1.1. Syntheseweg. 1.2. Synthese von 5,5-Dimethylcyclohex-2-en-1-on (27) und 2,5,5-Trimethyl-cyclohex-2-en-1-on (28). 1.2.1. Darstellung von 2,5,5-Trimethylcyclohexan-1,3-dion (36). 	20 21 21 21 22 22
 3. Aufgabenstellung. B. Hauptteil. 1. Darstellung der Photoedukte. 1.1. Syntheseweg. 1.2. Synthese von 5,5-Dimethylcyclohex-2-en-1-on (27) und 2,5,5-Trimethyl-cyclohex-2-en-1-on (28). 1.2.1. Darstellung von 2,5,5-Trimethylcyclohexan-1,3-dion (36). 1.2.2. Darstellung der Enolether 37 und 38. 	20 21 21 21 22 22 22
 3. Aufgabenstellung. B. Hauptteil. 1. Darstellung der Photoedukte. 1.1. Syntheseweg. 1.2. Synthese von 5,5-Dimethylcyclohex-2-en-1-on (27) und 2,5,5-Trimethyl-cyclohex-2-en-1-on (28). 1.2.1. Darstellung von 2,5,5-Trimethylcyclohexan-1,3-dion (36). 1.2.2. Darstellung der Enolether 37 und 38. 1.2.3. Reduktion der Enolether 37 und 38. 	20 21 21 21 22 22 22 22 23
 3. Aufgabenstellung B. Hauptteil 1. Darstellung der Photoedukte 1.1. Syntheseweg 1.2. Synthese von 5,5-Dimethylcyclohex-2-en-1-on (27) und 2,5,5-Trimethyl-cyclohex-2-en-1-on (28) 1.2.1. Darstellung von 2,5,5-Trimethylcyclohexan-1,3-dion (36) 1.2.2. Darstellung der Enolether 37 und 38 1.2.3. Reduktion der Enolether 37 und 38 1.3. Synthese von 5,5-Dimethyl-2-(3',3'-dimethylbut-1'-inyl)-cyclohex-2-en- 	20 21 21 21 21 22 22 22 23
 3. Aufgabenstellung	20 21 21 21 22 22 22 23 25
 3. Aufgabenstellung	20 21 21 21 22 22 22 23 25 25

Inhaltsverzeichnis

1.3.3. Kupplung	26
1.4. Synthese der α,β -ungesättigten Dinitrile 32 und 33 und des Vinylallens 34	27
2. Reaktionen von angeregten Cyclohexen-2-en-1-onen in Gegenwart von	
mehrfach funktionalisierten Alkenen	28
2.1. Untersuchung des photochemischen Verhaltens von 5.5-Dimethylcyclohex-	
2-en-1-on (27)	28
2.1.1. In Gegenwart von Chloracrylonitril (30)	29
2.1.2. In Gegenwart von 3-Methyl-2-butennitril (31)	30
2.1.3. In Gegenwart von Isopropylidenmalonsäuredinitril (32)	34
2.1.4. In Gegenwart von Ethylidenmalonsäuredinitril (33)	37
2.2. Untersuchung des photochemischen Verhaltens von 2,3-Dihydro-2,2-di-	
methyl-4 <i>H</i> -thiopyran-4-on (79)	42
2.3. Untersuchung des photochemischen Verhaltens von 2,5,5-Trimethylcyclo-	
hexen-1-on (28)	43
2.3.1. Umsetzung von 28 in Gegenwart von Chloracrylonitril (30)	44
2.4. Untersuchung des photochemischen Verhaltens von 5,5-Dimethyl-2-(3',3'-di-	
methylbut-1'-inyl)-cyclohex-2-en-1-on (29)	48
2.4.1. In Gegenwart von Chloracrylonitril (30)	48
2.4.2. In Gegenwart von Isopropylidenmalonsäuredinitril (32)	50
2.4.3. In Gegenwart von Ethylidenmalonsäuredinitril (33)	53
2.4.4. In Gegenwart von 2-Methylbut-2-en (105)	54
2.5. Untersuchung des photochemischen Verhaltens von 5,5-Dimethylcyclohex-2-	
en-1-on (27) in Gegenwart des Vinylallens (34)	56
3. Spektroskopische Eigenschaften der [2+2]-Photocycloaddukte	60
3.1. Röntgenstrukturanalysen	60
3.2. ¹ H-Kernresonanz-Spektroskopie	63
3.3. ¹³ C-Kernresonanz-Spektroskopie	65
3.4. Massenspektrometrie	67
C. Zusammenfassung	68

D. Abstract	.78
E. Experimenteller Teil	82
1. Allgemeine Methoden	82
2. Beschreibung der durchgeführten Versuche	85
2.1. Synthesen	85
2.1.1. Synthese von 5,5-Dimethylcyclohex-2-en-1-on (27) und 2,5,5-Tri-	
methylcyclohexen-1-on (28)	85
2.1.1.1. Darstellung von 2,5,5-Trimethylcyclohexan-1,3-dion (36)	85
2.1.1.2. Darstellung der Enolether (AAV)	86
2.1.1.2.1. Darstellung von 3-Ethoxy-5,5-dimethylcyclohex-2-en-1-on (38)	86
2.1.1.2.2. Darstellung von 3-Ethoxy-2,5,5-trimethylcyclohex-2-en-1-on (37).	. 87
2.1.1.3. Reduktion der Enolether (AAV)	88
2.1.1.3.1. Darstellung von 5,5-Dimethylcyclohex-2-en-1-on (27)	89
2.1.1.3.2. Darstellung von 2,5,5-Trimethylcyclohex-2-en-1-on (28)	90
2.1.2. Synthese von 5,5-Dimethyl-2-(3',3'-dimethylbut-1'-inyl)-cyclohex-2-	
en-1-on (29)	91
2.1.2.1. Darstellung von 1,2-Dibrom-3,3-dimethylbutan (42)	91
2.1.2.2. Darstellung von 3,3-Dimethylbut-1-in (40)	92
2.1.2.3. Darstellung von 2-Iod-5,5-dimethylcyclohex-2-en-1-on (39)	92
2.1.2.4. Darstellung von 5,5-Dimethyl-2-(3',3'-dimethylbut-1'-inyl)-cyclohex-2-	
en-1-on (29)	93
2.1.3. Synthese der α,β -ungesättigten Dinitrile 32 und 33 und des Vinylallens 34	94
2.1.3.1. Darstellung von Isopropylidenmalonsäuredinitril (32)	94
2.1.3.2. Darstellung von Ethylidenmalonsäuredinitril (33)	95
2.1.3.3. Synthese von Penta-1,2,4-trien (34)	96
2.1.3.3.1. Darstellung einer 2.1 M 1,2-Dibrom-1-ethoxyethan-Lösung (44)	96
2.1.3.3.2. Darstellung von 5-Brom-4-ethoxypent-1-in (45)	97

2.1.3.3.2.1. Herstellung einer 1 M Propinylmagnesiumbromid	
Lösung	97
2.1.3.3.2.2. Kupplung	97
2.1.3.3.2.3. Darstellung von Pent-1-en-4-in (46)	98
2.1.3.3.2.4. Isomerisierung zu Penta-1,2,4-trien (34)	99
3. Photochemische Untersuchungen (AAV)	100
3.1. Bestrahlung von 5,5-Dimethylcyclohex-2-en-1-on (27) in Gegenwart der	
α,β -ungesättigten Nitrile 30 bis 33	100
3.1.1. In Gegenwart von Chloracrylonitril (30)	100
3.1.1.1. Isomerisierung des Rohgemisches	102
3.1.2. In Gegenwart von 3-Methyl-2-butennitril (31)	102
3.1.2.1. Isomerisierung von 54 zu 55	107
3.1.3. In Gegenwart von Isopropylidenmalonsäuredinitril (32)	108
3.1.3.1. Isomerisierung von 63 zu 64	111
3.1.4. In Gegenwart von Ethylidenmalonsäuredinitril (33)	112
3.2. Bestrahlung von 2,3-Dihydro-2,2-dimethyl-4 <i>H</i> -thiopyran-4-on (79) in Gegen-	
wart von Ethylidenmalonsäuredinitril (33)	123
3.3. Untersuchung des photochemischen Verhaltens von 2,5,5-Trimethylcyclo-	
hex-2-en-1-on (28) in Gegenwart der α,β -ungesättigten Nitrile 30 bis 33	125
3.3.1. In Gegenwart von Ethylidenmalonsäuredinitril (33)	125
3.3.1. In Gegenwart von Chlorarcylonitril (30)	126
3.4. Untersuchung des photochemischen Verhaltens von 5,5-Dimethyl-2-(3',3'-	
dimethylbut-1'-inyl)-cyclohex-2-en-1-on (29) in Gegenwart der α,β -unge-	
sättigten Nitrile 30 bis 33 und der Alkene 13 und 105	133
3.4.1. In Gegenwart von Chloracrylonitril (30)	133
3.4.2. In Gegenwart von Isopropylidenmalonsäuredinitril (32)	135
3.4.3. In Gegenwart von 2,3-Dimethylbut-2-en (13)	139
3.4.3.1. Oxigenierung von 98 zu 99	140
3.4.4. In Gegenwart von Ethylidenmalonsäuredinitril (33)	143
3.4.4.1. Oxigenierung von 102 zu 104	145

Inhaltsverzeichnis

3.4.5. In Gegenwart von 2-Methylbut-2-en (105)	147
3.4.5.1. Oxigenierung von 106 zu 107	148
3.5. Bestrahlung von 5,5-Dimethylcyclohex-2-en-1-on (27) in Gegenwart von	
Penta-1,2,4-trien (34)	150
F. Sicherheitsdaten	152
G. Formelsammlung	159
H. Verzeichnisse	169
I. Literatur	172

AAV	Allgemeine Arbeitsvorschrift
abs.	absolut
CCl ₄	Tetrachlorkohlenstoff
CDCl ₃	Deuterochloroform
DMF	N,N-Dimethylformamid
DMSO	Dimethylsulfoxid
EE	Ethansäuremethylester
Et ₂ O	Diethylether
g	Gramm
GC	Gaschromatographie
h	Stunde
HBr	Bromwasserstoff
Hz	Hertz
J	Kopplungskonstante
LiAlH ₄	Lithiumaluminiumhydrid
MgSO ₄	Magnesiumsulfat
min.	Minute
MS	Massenspektrometrie
Na ₂ CO ₃	Natriumcarbonat
NaCl	Natriumchlorid
NaHCO ₃	Natriumhydrogencarbonat
NaS_2O_3	Natriumthiosufat
NH ₄ Cl	Ammoniumchlorid
NMR	(nuclear magnetic resonance) Kernmagnetische Resonanzspektroskopie
PE	Petrolether
ppm	parts per million = 10^{-6}
$R_{ m f}$	Retention factor
RSA	Röntgenstrukturanalyse
RT	Raumtemperatur
Sdp.	Siedepunkt
Smp.	Schmelzpunkt
THF	Tetrahydrofuran
verd.	verdünnt

Liste der verwendeten Abkürzungen

A. Allgemeiner Teil

1. Einleitung

1.1. Historischer Abriss der Photochemie

Photochemische Reaktionen sind bedeutend älter als das Leben auf der Erde^[1]. In Laborexperimenten konnten unter Verwendung elektrischer Entladungen und Einwirkung von elektromagnetischer Strahlung aus der so genannte "Ursuppe" einfache Moleküle gewonnen werden, die als Grundbausteine des Lebens gelten^[2,3]. Die Bedeutung des Lichts für das Leben war sogar dem Schreiber der Genesis bewusst, denn im Ersten Buch Moses, Vers. 3-4, steht geschrieben: *"Und Gott sprach: Es werde Licht! / Und es ward Licht. / Und Gott sah, dass das Licht gut war."*

Die älteste anthropogene chemolumineszente Substanz ist der weiße Phosphor^[4,5,6,7],die der Hamburger Alchemist BRAND 1669 beobachtete. Etwa zwei Jahrhunderte später beobachtete BEQUEREL, dessen Sohn HENRI 34 Jahre später die Radioaktivität entdeckte, die Phosphoreszenz.

Die erste "echte" Photoreaktion beschrieb PRIESTLEY um 1790, wobei er Salpetersäure in einer Ampulle dem Sonnelicht aussetzte und eine rötliche Verfärbung beobachtete^[8]. Im gleichen Jahr werden von BERTHOLLET *u.a.* die Wirkung des Lichts auf "wägbare Stoffe", wie z.B. die Chlorknallgas-Reaktion und die Schwarzfärbung des Silberchlorides, veröffentlicht^[9]. In die Zeit von 1840 – 1860 fallen Arbeiten zur photolytischen Chlorgas-reaktion^[10], zur chemischen Wirkung des Lichts auf wässrige Eisen(III)oxid-Lösung und Salzsäure und zur Umlagerung von Santonin, als wohl älteste bekannte Licht-Reaktion einer C-haltigen Verbindung^[11]. Am Anfang des 20. Jahrhundert veröffentlichten ClaMICIAN und SILBER^[12] das erste Beispiel einer intramolekularen [2+2]-Photocycloaddition.

1.2. Photocycloadditionreaktionen von Ketonen

Die erste Photocycloaddition von cyclischen α,β -ungesättigten Ketonen mit Alkenen ist die 1908 von CIAMICIAN und SILBER^[12] vorgeschlagene und 1957 von BÜCHI^[13] bestätigte Carvon-Carvoncamphor Isomerisierung (**Schema 1**).

Schema 1: Carvon-Carvoncamphor-Isomerisierung

Als analogen intermolekularen Schritt setzte Corey^[14] 1964 bei seiner Totalsynthese von Caryophyllen die [2+2]-Cycloaddtion von Cyclohex-2-en-1-on in Gegenwart von Isobuten ein (**Schema 2**).

Schema 2: Darstellung von Caryophyllen

Im gleichen Jahr wurden von COREY systematische Untersuchungen zur Umsetzung des angeregten Cyclohex-2-en-1-ons mit unsymmetrisch substituierten Alkenen durchgeführt^[15]. Daraus folgerte er, dass sich bei der Addition an elektronenreiche Alkene überwiegend die so genannten Kopf-Schwanz-Isomere (KS), während bei der Addition an elektronenarme Alkene die so genannten Kopf-Kopf-Isomere (KK) bevorzugt bilden. Die beiden Regioisomere sind in **Schema 3** dargestellt.

KS KK Schema 3: Bildung regioisomerer Bicyclo[4.2.0]octan-2-one

Die Photocycloadditionsreaktionen von Cyclohexenonen wurden unter sehr verschiedenen Gesichtspunkten untersucht. Eine Variante ist die Verwendung eines mehrfach ungesättigten Alkens. Im Jahr 1976 setzte SEREBRYAKOV^[16] 2-Methylbut-1-en-3-in mit Cyclohex-2-en-1-on um und erhielt sechs isomere Cyclobutanderivate (**Schema 4**).

Schema 4: [2+2]-Cycloaddition von Cyclohex-2-en-1-on an 2-Methylbut-1-en-3-in

Aufbauend auf diesen Ergebnissen untersuchte WITTE^[17,18,19] in ihrer Dissertation das photochemische Verhalten von 2-alkinylsubstituierten Cyclohexenon-Systemen in Gegenwart von 2-Methylbut-1-en-3-in und fand als Hauptprodukt eine neuartige Verbindung, die über eine stufenweise [4+2]-Cycloaddition gebildet wird (**Schema 5**).

Schema 5: [4+2]-Cycloaddition 2-alkinylsubstituierter Cyclo hexenone

A. Allgemeiner Teil

Bei der Untersuchung von Alkinonen wurde eine andere Richtung eingeschlagen. Das erste Beispiel dieser Art war die Bestrahlung von Pent-3-in-2-on in Gegenwart von 2,3-Dimethylbut-2-en durch Agosta und Hussain. Neben dem erwarteten Oxetan entstand in einer [3+2]-Photocycloaddition ein neuartiges Dihydrofuran (**Schema 6**).^[20,21,22,23,24]

Schema 6: [3+2]-Photocycloaddition von 3-Pentin-2-on an 2,3-Dimethyl but-2-en

Im Jahr 1991 wurde von RATHJEN^[25,26] die Umsetzung von 3-alkinylsubstituierten Cyclohexenonen mit 2,3-Dimethylbut-2-en untersucht. Dabei spielt die Bildung von Cyclobutanen nur eine untergeordnete Rolle, vorrangig entsteht durch 1,5-Cyclisierung das Carben, dem dann wiederum verschiedene Wege zur Stabilisierung offen stehen (Schema 7).

Schema 7: 1,5-Cyclisierung 3-alkinylsubstituierter Cyclohexenone

Gleichartige [3+2]-Photocycloadditionen beschrieben auch REICHOW und ANDRESEN bei Cyclohexenonen, die an C-2 mit einer C \equiv X-Gruppe substituiert sind. Hier führt eine 1,5-Cyclisierung über die entsprechenden Vinylcarbene bzw. Vinylnitrene zu jeweils einem einzigen Produkt, einem tricyclischen Furan^[27,28,29] bzw. 1,2-Oxazol^[30,31] (Schema 8).

Schema 8: [3+2]-Photocycloadditionen 2-alkinylsubstituierter Cyclohexenone

2. Photochemische Untersuchungen

2.1. Grundlagen

Bei thermischen Reaktionen reagieren die beteiligten Moleküle aus dem elektronischen Grundzustand heraus. Dagegen wird bei photochemischen Reaktionen mindestens ein Molekül durch die Einwirkung von ultravioletten oder sichtbaren Licht in einen elektronisch angeregten Zustand angehoben.

Da die Energieniveaus eines Moleküls quantisiert sind, muss die eingestrahlte Lichtenergie *E* dem Planckschen Gesetz $E = h \cdot v$ entsprechen, um ein Elektron in ein höheres Energieniveau zu promovieren. Dabei ist die Wellenlänge λ über die Gleichung $c = v \cdot \lambda$ mit der Frequenz *v* und der Lichtgeschwindigkeit verknüpft.

Für die Photochemie sind hauptsächlich vier Elektronenübergänge relevant, je nachdem, aus welchem bzw. in welchen Bindungstypus angeregt wird: $\sigma \rightarrow \sigma^*$, $n \rightarrow \sigma^*$, $\pi \rightarrow \pi^*$ und $n \rightarrow \pi^*$. Welcher Übergang durch ein Lichtquant induziert wird, hängt von der Struktur des Moleküls und seinen funktionellen Gruppen, den so genannten chromophoren Gruppen, ab. Bei denen in dieser Arbeit untersuchten Verbindungen handelt es sich um den $n \rightarrow \pi^*$ Übergang^[32] aus einem freien Elektronenpaar des Carbonylsauerstoffs in das antibindene π^* -Molekülorbital des Enons-Systems

Im elektronischen Grundzustand, der üblicherweise im Schwingungsgrundzustand v = 0 vorliegt, befindet sich ein Molekül meist im Singulett-Zustand S₀, d.h. die Spins der Elektronen des HOMO (*highest occupied molecular orbital*) sind gepaart. Durch die Aufnahme der passenden Energie wird ein Elektron in ein höheres MO (*molecular orbital*), meist ein LUMO (*lowest unoccupied molecular orbital*), angehoben. Nach den quantenmechanischen Übergangsregeln ist auch der angeregte Zustand ein Singulett-Zustand S_x, meist S₁.

Für die energetisch höheren Zustände S_2 , S_3 usw. gilt, dass sie in Kaskaden aus Schwingungsrelaxationen und isoenergetischen Übergängen in den Schwingungsgrundstand des tiefsten elektronisch angeregten Zustandes, also S_1 , übergehen. Daraus folgt die Regel von KASHA, wonach die an die Absorption sich anschließenden Folgeprozesse generell vom Schwingungsgrundzustand des S_1 -Zustandes aus starten, unabhängig davon, welcher Elektronen- und Schwingungszustand primär durch die Absorption populiert wurde.

Der Schwingungsgrundzustand des S_1 -Zustandes ist in der Regel der Ausgangszustand für die folgenden miteinander konkurrierenden Reaktionen, die direkt oder auf Umwegen den angeregten Zustand zum Grundzustand S_0 desaktivieren.

• Internal conversion (IC)

Dabei handelt es sich um einen strahlungslosen Übergang vom S₁-Niveau in ein höheres Schwingungsniveau des S₀-Niveau (S₀*). Die Energieabgabe erfolgt durch kleine Übergänge in den Schwingungszuständen und unter Abgabe Wärme an die Umgebung (*vibration relaxation*, vr)

• Fluoreszenz (hv_f)

Durch Abgabe eines Lichtquants verliert das angeregte Molekül seine Energie und desaktiviert vom S_X -Zustand direkt in den S_0 -Zustand.

• Intersystem crossing (ISC)

Strahlungsfreier, isoenergetischer Übergang vom S_1 -Zustand in einen schwingungsangeregten Zustand von T_1 . Da dieser dieser Übergang unter Spinumkehr erfolgt, handelt es sich um einen "verbotenen" Übergang.

• Phosphoreszenz (hv_p)

Das angeregte Molekül verliert seine Energie durch Abgabe eines Lichtquants und desaktiviert vom T₁-Zustand direkt in den S₀*- Zustand. Aufgrund der Spinumkehr handelt es sich auch hier um einen "verbotenen" Übergang.

Photosensibilisierung

Das angeregte Molekül D^* überträgt seine Energie auf einen anderes anderes Molekül A, gemäß $D^* + A \rightarrow A^* + D$. Dieser intermolekulare Energietransfer wird von der Wignerschen Spinerhaltungsregeln erklärt. Für den Regelfall, wonach der Akzeptor im Grundzustand als Singulett vorliegt, sind die beiden Energieübertragungsreaktionen Singulett-Singulett- und der Triplett-Triplett-Transfer möglich.

$$^{1}D^{*} + ^{1}A \rightarrow ^{1}D + ^{1}A^{*}$$

 $^{3}D^{*} + ^{1}A \rightarrow ^{1}D + ^{3}A^{*}$

In einem Jablonsky-Diagramm sind die möglichen photophysikalischen Prozesse bei

Lichtabsorption (hv) eines Moleküls im Singulett-Grundzustand S_0 dargestellt (Abbildung 1).

Strahlungsübergänge in geraden Linien, strahlungslose Übergänge in Wellenlinien. **Abbildung 1:** Jablonsky-Diagramm

Neben diesen rein physikalischen Möglichkeiten der Desaktivierung kann ein ange-

regtes Molekül Energie auch durch eine chemische Reaktion verlieren. Dies geschieht nach der Regel von KASHA, aus dem S₁-oder T₁-Niveau.

Da die strahlungsgekoppelte wie die strahlungslose Desaktivierung des T₁-Zustandes aufgrund der quantenmechanisch "verbotenen" Spinumkehr sehr viel langsamer als die des S₁-Zustandes ist, hat der T₁-Zustand eine längere Lebensdauer als der S₁-Zustand. Diese längere Lebensdauer des T₁-Zustandes ermöglicht zusätzlich zu den monomolekularen auch bimolekulare Reaktionen, für die der S₁-Zustand häufig zu kurzlebig ist.

Zu den monomolekularen Reaktionen gehören Isomerisierungsreaktionen, Extrusionsreaktionen und Radikalpaarbildungs-Reaktionen. Zu den bimolekularen Reaktionen zählen Wasserstoffabstraktionen, Elektronentransfer-Reaktionen, Photodimerisierung und Photocycloaddition. Auf diese Vorgänge, insbesondere auf die [2+2]-, [3+2]- und [4+2]- Photocycloaddition, soll in den folgenden Abschnitten näher eingegangen werden.

2.2. [2+2]-Photocycloadditionen von Cyclohexenonen an Alkene

2.2.1. Stereochemie der Ringverknüpfung

Im Jahr 1964 entdeckte COREY^[15], dass bei Photocycloaddionen von Cyclohex-2-en-1-on an einfache Alkene sowohl *cis*- wie auch *trans*-verknüpfte Cycloaddukte entstehen, wobei das *trans*-Isomer häufig das Hauptprodukt ist. Dies ist in **Schema 9** für die Cycloaddition von Cyclohex-2-en-1-on an 1,1-Dimethoxyethen dargestellt.

Schema 9: trans- und cis-verknüpfte Cycloaddukte

Röntgenstrukturanalysen von *cis*- bzw. *trans*-verbrückten [2+2]-Photocycloaddukten zeigen, dass im Kristalle beim *cis*-verknüpften Addukt der Cyclohexanring in einer verzerrten Sessel-Konformation vorliegt und der Cyclobutanring relativ flach ist^[33], während in der *trans*-verknüpften Struktur der Cyclohexanring eine relativ unverzerrte sesselartige Konformation einnimmt und dafür aber der Cyclobutanring mehrfach verdrillt ist^[34]. Aufgrund der geringeren Torsionsspannungen im *cis*-verknüpften Addukt ist dieses thermodynamisch wesentlich stabiler als das *trans*-verknüpfte. Theoretische Berechnungen^[34] für die Addukte aus Cyclohex-2-en-1-on und 2,3-Dimethylbut-2-en bestätigen diese Beobachtung.

2.2.2. Stereochemie der Alkenkomponente

Des weiteren berichtete COREY^[15], dass bei der Photocycloaddition von Cyclohex-2-en-1on an Z- bzw. E-But-2-en eine identische Mischung von Cycloaddukten erhalten wurde. Dies weist darauf hin, dass das Alken während der Reaktion seine Konfiguration verliert. Rückgewinnung der Alkene ergaben, dass sie teilweise isomerisiert waren. Folglich musste die Stereomutation von einem Zwischenschritt der Reaktion stammen und daher muss die Bildung der beiden neuen sigma-Bindungen nacheinander erfolgen. In einer intramolekularen Photocycloaddition konnte BECKER^[35] 1989 diese These bestätigen. Dabei reagiert das an C-3 mit einer Seitenkette versehene Enon (1) sowohl in einer normalen [2+2]-Cycloaddition zu 2 als auch über eine Umlagerung zu 3 in einen Verhältnis von 45:55. Das intermediär gebildete 1,4-Diradikal 4 kann sowohl zum erwarteten [2+2]-Cycloaddukt reagieren als auch zum 1,7-Diradikal 5 umlagern, welches dann zu 3 cyclisiert (Schema 10).

Schema 10: Nachweis der von Corey postulierten schrittweisen Addition

2.2.3. Regiochemie der [2+2]-Cycloaddition

2.2.3.1. Corey-de Mayo-Mechanismus

Wie schon im Kap. A.1.2. (Schema 3, Seite 2) ausgeführt, wurden von Corey^[15] Photocycloadditionen von Cyclohex-2-en-1-on an unsymmetrisch substituierte Alkene durch-

A. Allgemeiner Teil

geführt. Demzufolge bilden sich bei der Addition an elektronenreiche Alkene überwiegend die so genannten KS-, während bei der Addition an elektronenarme Alkene die so genannten KK-Addukte bevorzugt sind. Diese Ergebnisse wurden von CANTRELL^[36] für die Addition von 3-Methylcyclohex-2-en-1-on mit 1,1-Dimethoxyethen bestätigt. Auf der Basis dieser Regioselektivität postulierte COREY^[15] den ersten Schritt des Mechanismus der [2+2]-Photoaddition von Cyclohexenonen an Alkene. Dabei setzte er den ³(n, π^*)-Zustand voraus und folgerte für das Enon, dass die Elektronendichte am C_β höher als am C_α sei.^[37,38,39] Als ersten Schritt schlägt er eine Wechselwirkung zwischen dem im Grundzustand vorliegenden Alken und dem im Triplett-Zustand vorliegenden polarisierten Enon vor, welche dann den so genannten "orientierten π -Komplex" bilden (Schema 11).

Schema 11: Der orientierte π -Komplex von Corey

In diesem Donor-Akzeptor π -Komplex dient das im Grundzustand vorliegende Alken als Elektronendonor und das angeregte Enon als Akzeptor. Als weiteren Schritt schlägt er die Bildung eines Diradikals vor, welches entweder reversibel zum π -Komplex zurück reagieren kann oder irreversibel cyclisiert.

Kurz danach wurde von DE MAYO^[40] die Bildung eines Exciplexes (*excited complex*) zwischen dem angeregten Enon und dem Alken als mechanistische Sequenz vorgeschlagen. Dabei bildet sich das Exciplex als erstes und zwar irreversibel vom Enon Triplett und dem Alken, das sich im Grundzustand befindet. Anschließend zerfällt das Exciplex in ein 1,4-Diradikal, das entweder cyclisieren oder wieder in die Edukte zerfallen kann (**Schema 12**).^[41]

E = Enon, A = Alken, DIR = 1,4-Diradikal, CA = Cycloaddukt

Schema 12: Corey-de Mayo-Mechanismus

2.2.3.2. Bauslaugh-Schuster-Weedon-Mechanismus

Schon 1970 schlug BAUGSLAUGH^[42] vor, dass die Regio- und Stereochemie von [2+2]-Cycloadditionen von Enonen ohne die Annahme eines Exciplexes erklärt werden könnte. Dabei ist die Produktverteilung abhängig von der Stabilität und der Konformation der entstandenen Diradikale.

WEEDON^[43-48] konnte erfolgreich solche 1,4-Diradikale abfangen. Für die Reaktion von Cyclopent-2-en-1-on und Acrylonitril gelang es WEEDON und KRUG^[45] eine Cyclisierungs-/Fragmentierungsrate festzulegen (Schema 13). Daraus ist zu erkennen, dass das KK-Diradikal zwar bevorzugt gebildet wird, dass es aber auch eine größere Tendenz besitzt wieder in seine Edukte zu zerfallen, so dass insgesamt das KS-Addukt bevorzugt gebildet wird.

A. Allgemeiner Teil

Diese Ergebnisse zeigen deutlich, dass die Verwendung eines Exciplexes oder eines orientierten π -Komplexes für die Erklärung der Regioselektivität in [2+2]-Cycloadditionen von Cyclohex-2-en-1-on an Acrylonitril nicht notwendig ist. Er folgerte, dass die Regioselektivität ausschließlich abhängig vom Verhalten des 1,4-Diradikals ist. Schon 1988 untersuchte Schuster^[49] die Lebensdauer des Triplett-Zustandes von Cyclohexenonen. Seine Ergebnisse waren nicht mit dem Exciplex-Modell vereinbar. Aufbauend auf dem Postulat von BAUSLAUGH^[42] unter Berücksichtigung der Ergebnisse von Weedon^[43-48] formulierte Schuster^[50] 1995 einen neuen Mechanismus für die [2+2]-Photocycloaddition (**Schema 14**).

E = Enon, A = Alken, DIR = 1,4-Diradikal, CA = Cycloaddukt Schema 14: Bauslaugh-Schuster-Weedon-Mechanismus

Danach wird das Enon 6 angeregt und geht durch *intersystem crossing* (ISC) in den Triplett-Zustand 7 über. Aus den Triplett-Zustand 7 kann es entweder durch ISC und *vibrational relaxation* (vr) wieder in den Grundzustand 6 zurückfallen oder es kann irreversibel mit dem Alken unter Ausbildung des jeweiligen 1,4-Diradikals 8 und 9 reagieren. Diese 1,4-Diradikale gehen durch ISC in die Singulett-Zustände 10 und 11 über und können nun entweder in die Edukte zerfallen oder zum Cyclobutan 12 cyclisieren. In Schema 15 ist am Beispiel von Cyclohex-2-en-1-on (6) mit 13 der Mechanismus der [2+2]-Photocycloaddition illustriert.

Schema 15: Mechanismus der [2+2]-Photocycloaddition

Entscheidend für den Reaktionsweg ist die Erkenntnis, dass das Diradikal verdrillt ist^[51-32] und zum *trans*-Cyclobutan führt. Ist dieser Prozess langsam, kann eine Relaxation zum energetisch stabileren 1,4-Diradikal stattfinden, welches zum *cis*-Cyclobutan cyclisiert. In **Schema 16** ist dieser Mechanismus anhand der Reaktion von **6** mit **13** dargestellt. In diesem Fall ist das *trans*-Cyclobutan das Hauptprodukt.

Schema 16: Mechanismus der regioselektiven cis- bzw. trans-Addition

Nach neueren quantenchemischen Berechnungen^[53,54] hängt die Regioselektivität vom ersten Bindungsschritt und von der Konformation des entstandenen 1,4-Diradikals ab. Dabei führen Substituenten an C-2 und C-3 zu unterschiedlichen ersten Bindungsschritten.^[55-57]

2.3. [3+2]-Photocycloaddition

Das erste Beispiel einer [3+2]-Photocycloaddition wurde von Agosta und Hussam^[20] 1981 entdeckt. Nach mehren Veröffentlichungen zu diesem Thema^[21-23] wurde 1995 von Agosta und Margaretha^[24] ein Übersichtsartikel über die 1,5-Cyclisierung von Triplett-Alkylpropargyl 1,4-Diradikalen veröffentlicht. Demzufolge läuft die Reaktion über den in **Schema 17** aufgeführten Mechanismus.

Schema 17: Mechanismus der [3+2]-Photocycloaddition

Auch hier wird das Enon 14 angeregt und kann wie bei der [2+2]-Photocycloaddition in den Grundzustand desaktivieren oder es kann irreversibel mit dem Alken unter Ausbildung eines 1,4-Diradikals 15 reagieren. Das 1,4-Diradikal 15 hat jetzt zwei Möglichkeiten weiter zu reagieren; 1. es kann nach ISC durch eine [2+2]-Photocycloaddition zum Cyclobutan 16 abreagieren bzw. in die Edukte zerfallen oder 2.,die hier wichtigere Möglichkeit, es reagiert in einer 1,5-Cyclisierung zum entsprechenden Carben 17, welches durch ISC in den Singulett-Zustand übergeht, um anschließend elektrocyclisch zum Furan 18 abzureagieren (Schema 17).

2.4. [4+2]-Photocycloaddtion

Erstmals konnte 1999 WITTE^[17,18] über eine [4+2]-Photocycloaddition berichten, die ausgehend von 2-Alkincyclohex-2-en-1-on **19** mit 2-Methylbut-3-in-1-en (**20**) zu den entsprechenden Naphtalenonen (**21**) führt. Spätere Arbeiten zeigen, dass zu sich **21** noch ein konstitutionsisomeres Naphtalenon (**22**) bilden kann.^[58] In **Schema 18** ist der Mechanismus dieser Reaktion wiedergeben.

Schema 18: Mechanismus der [4+2]-Photocycloaddition

Wiederum wird das Enon **19** angeregt und kann wie bei der [2+2]- und bei der [3+2]-Photocycloaddition in den Grundzustand desaktivieren oder es kann irreversibel mit dem Alken unter Ausbildung eines 1,4-Diradikals **23** reagieren. Das 1,4-Diradikal **23** hat wieder die Möglichkeit nach ISC in einer [2+2]- Photocycloaddition zum entsprechenden Cyclobutan **24** zu cyclisieren oder es geht über seine mesomere Grenzstruktur **25** durch eine 1,6-Cyclisierung in das diradikalische 1,2-Cyclohexadien **26** über, welchem nun zwei unterschiedliche 1,3-*H*-Shift-Reaktionen^[58] zur Verfügung stehen, um die Naphalenone **21** bzw. **22** zu bilden (**Schema 18 und 19**).

Schema 19: exo-(H_n) und endo -(H_x)-1,3-H-Shift-Reaktionen

3. Aufgabenstellung

Im Rahmen dieser Arbeit soll das photochemische Verhalten von unterschiedlichen Cyclohexenonen (27 bis 29) in Gegenwart von α,β -ungesättigten Nitrilen bzw. Dinitrilen (30 bis 33) und dem Vinylallen (34) untersucht werden (Schema 20).

Schema 20: Umsetzung von Cyclohexenonen mit α,β -ungesättigten Nitrilen bzw. Dinitrilen **30** bis **33** und dem Vinylallen **34**

Hierbei sollen die Cycloaddukte in Abhängigkeit des Substituenten an C-2 und der unterschiedlich funktionalisierten Alkene verglichen werden. Besonders ist dabei auf eine Veränderung in der Effizienz und der Selektivität der Photocycloaddition zu achten.

B. Hauptteil

1. Darstellung der Photoedukte

1.1. Syntheseweg

Zur Darstellung der verwendeten Photoedukte konnten Synthesen verwendet werden, die sich aus bekannten Reaktionen aufbauen. Als Edukt diente 5,5-Dimethylcyclohexan-1,3-dion (Dimedon) **35**; dessen Symmetrie und CH-Acidität ermöglichen die Umsetzung mit Alkylierungsreagenzien, sowie Reduktionsmitteln. Eine Übersicht dieser Synthesen ist in **Schema 21** abgebildet. Die umrandeten Verbindungen stellen die Photoedukte dar.

Schema 21: Synthese der Photoedukte

1.2. Synthese von 5,5-Dimethylcyclohex-2-en-1-on (27) und 2,5,5-Trimethylcyclohex-2-en-1-on (28)

1.2.1. Darstellung von 2,5,5-Trimethylcylohexan-1,3-dion (36)

Seit längeren ist die Synthese von **36** bekannt.^[59] Problematisch blieb die Trennung des Produktgemisches, da aufgrund der hohen CH-Acidität von **36** in Gegenwart überschüssiger Base teilweise eine weitere Methylierung stattfindet. MEYER^[60] fand 2003 einen Weg zur Trennung des Produktgemisches, in dem er das Rohprodukt nicht weiter aufarbeitete und die Trennung nach der Umsetzung zum Enolether **37** erfolgte (**Schema 22**).

Schema 22: Darstellung von 2,5,5-Trimethylcylohexan-1,3-dion (36)

1.2.2. Darstellung der Enolether 37 und 38

Die Enolether werden aus den den Cyclohexandionen **35** und **36** dargestellt. Dabei werden über die Enol-Form der β -Dicarbonylverbindungen durch Umsetzung mit Ethanol und katalytischen Mengen p-Toluolsulfonsäure die entsprechenden Enolether **37**^[60] und **38**^[61] erhalten. Damit wird nicht nur eine Doppelbindung in das Cyclohexangerüst eingeführt, sondern die so entstandene Ethoxygruppe dient bei der folgenden Reduktion der Enolether als Schutzgruppe, aus der sich die Carbonylgruppe zurückerhalten lässt (**Schema 23**).

Schema 23: Darstellung der Enolether 37 und 38

1.2.3. Reduktion der Enolether 37 und 38

Die ungeschützte Carbonylgruppe der Enolether lässt sich mit Lithiumaluminiumhydrid zu den entsprechenden Alkoholen reduzieren. Dabei wird zunächst ein Hydrid-Ion auf den Carbonylkohlenstoff übertragen und es entsteht ein Alkoxyaluminiumhydrid, welches drei weitere Hydrid-Ion übertragt. Durch die wässrige Aufarbeitung hydrolysiert das Tetraalkoxyaluminat zum entsprechenden Alkohol^[60,62] (Schema 24).

Schema 24: Reduktion der Enolether 37 und 38

Die so entstandenen Allylalkohole lassen sich mit Oxalsäure in Methanol bei RT zu den jeweils entsprechenden Cyclohex-2-enonen umsetzen (**Schema 25**).

Schema 25: Saure Hydrolyse zu den entsprechenden Cyclohex-2-en-1-onen 27 und 28

1.3. Synthese von 5,5-Dimethyl-2-(3',3'-dimethylbut-1'-inyl)cyclohex-2-en-1-on (29)

1.3.1. Darstellung der Seitenkette

Über den in **Schema 26** dargestellten Syntheseweg wird 3,3-Dimethylbut-1-in (**40**) aus 3,3-Dimethylbut-1-en (**41**) über die Dibromierung zu 1,2-Dibrom-3,3-dimethylbutan (**42**) und Eliminierung von zwei Äquivalenten Bromwasserstoff mit Kalium-*tert*.-Buta-nolat hergestellt.^[63]

1.3.2. Aktivierung des Cyclohexenon-Systems

Um ein Cyclohexenon am C-2-Atom alkylieren zu können, bedarf es einer Aktivierung. Dafür eignet sich die von JOHNSON^[64] beschriebene α -Iodierung des Enonsystems. JOHNSON postulierte einen Reaktionsmechanismus, der über eine Basen-Addition – Iodierung – Basen-Eliminierung verläuft. Dieser wurde später von McNells^[65] bestätigt (Schema 27).

Schema 27: Mechanismus der Johnson-Iodierung

1.3.3. Kupplung

Mit Hilfe der Sonogashira-Hagihara-Kupplung^[66,67], die von MILLER und JOHNSON^[68] für die Kupplung von α-Iodenonen erweitert wurde, lassen sich terminale Alkine in Gegenwart katalytischer Mengen eines in situ gebildeten Palladium(0)-Komplexes und Kupfer(I)iodid mit Iodalkenen unter C-C-Verknüpfung umsetzen. Zusätzlich bedarf es eines erheblichen Überschusses an Amin, damit sich zumindest zu einem kleinem Anteil das entsprechende Ammoniumacetylid bildet. Dieses reagiert wiederum mit dem Kupferiodid zum Kupferacetylid, welches ein wesentlich besseres Nukleophil darstellt als das freie Acetylen.

Der Pd(II)-Komplex wird sowohl vom Amin als auch vom Alkin zu einem katalytisch wirksamen Pd(0)-Komplex reduziert. Dieser Komplex kann in einer oxidativen Addition in die C-I-Bindung insertieren; gefolgt von einer Ummetallierung und einer abschließenden reduktiven Eliminierung wird das gewünschten Produkt **29** erhalten und zusätzlich kommt es zur Rückbildung des Katalysators (**Schema 28**).

Schema 28: Katalysecyclus der Sonogashira-Hagihara-Kupplung

1.4. Synthese der α,β-ungesättigten Dinitrile 32 und 33 und des Vinylallens 34

Die beiden Dinitrile **32**^[69,70] und **33**^[71] lassen sich über eine Knoevenagel-Kondensation aus der jeweiligen Carbonylkomponente mit Malonsäuredinitril als Methylenkomponente herstellen (**Schema 29**)

33: R = H

Die Synthese von Penta-1,2,4-trien (**34**) ist seit längeren bekannt^[72,73] und verläuft ausgehend vom Ethylvinylether (**43**) über eine Bromierung zum 1,2-Dibrom-1ethoxyethan (**44**), gefolgt von einer Grignard-Reaktion zum 5-Brom-4-ethoxypent-1-in (**45**), mit anschließender Eliminierung zum Pent-1-en-4-in (**46**) und abschließender Isomerisierung zu **34** (Schema **30**)

Schema 30: Syntheseweg zur Darstellung von 34

Aufgrund der Flüchtigkeit von **34** und **46** und der extrem reizenden Eigenschaften von **44** musste diese Synthese so verändert werden, dass sowohl die Literaturausbeuten erreicht werden konnten, als auch eine praktikable Variante zur Darstellung von **34** zur Verfügung stand.

2. Reaktionen von angeregten Cyclohexen-2-en-1-on in Gegenwart von mehrfach funktionalisierten Alkenen

Bekannt sind Untersuchungen von elektronenarmen Cyclohexenonsystemen mit Fumarsäuredinitril (*E*-But-2-endinitril)^[79], einfachen Allenen^[15,18], Acrylonitril (47) ^[15,22,60,74], Methacrylonitril (48)^[60,74] und *tert*.-Butylacrylonitril (49)^[60,74]. Mit Ausnahme des Fumarsäuredinitrils kommt es dabei zur Bildung zahlreicher Produkte, wobei sich überwiegend die jeweiligen KK-Additionsprodukte bilden.

Zwei Faktoren sind für die preparative Anwendung von Photocycloadditionen von cyclischen Enonen mit (unsymmetrischen) Alkenen von Bedeutung, und zwar die Effizienz der Addition und die Regio- und Stereoselektivität.

Daher liegt der Schwerpunkt dieses Abschnittes in der Untersuchung des photochemischen Verhaltens der Cyclohex-2-en-1-one 27, 28 und 29 in Gegenwart der α,β ungesättigten Nitrile bzw. Dinitrile 30 bis 33 und des α,β -ungesättigten Vinylallens 34. Dabei soll besonders auf die oben genannten Punkte geachtet werden.

2.1. Untersuchung des photochemischen Verhaltens von 5,5-Dimethylcyclohex-2-en-1-on (27)

In der Literatur sind Bestrahlungen von **27** in Gegenwart von **47, 48** und **49** bekannt, in denen es zu einer KK-Bevorzugung kommt.^[60,74]

Sind C-2 und C-3 unsubstituiert, so erfolgt der Angriff nach SCHUSTER^[52] vermehrt an C-3. Daraus folgt unter Berücksichtigung der Ergebnisse aus den Abfangexperimenten von WEEDON^[43-48], dass sich hauptsächlich das 1,4-Diradikal **50** bildet (**Schema 31**).

Schema 31: Bevorzugter Angriff nach Schuster

2.1.1. In Gegenwart von Chloracrylonitril (30)

Ausgehend von diesen Ergebnissen wird mit der Bestrahlung von 27 in Gegenwart von 30 begonnen. Es stellt sich nun die Frage, ob sich durch die Einführung einer elektronegativen Gruppe eine Veränderung in der Regioselektivität ergeben wird.

Mit einem Umsatz von 72 % werden laut GC vier Produkte im Verhältnis von 22(A):37(52):22(C):19(D) erhalten. GC-/MS-Untersuchungen zeigen für alle vier Produkte die gleiche Molmasse, die auf 1+1-Addukte hinweist.

Schema 32: Bestrahlung von 27 in Gegenwart von 30

Die chromatographische Trennung erwies sich als nicht sehr erfolgreich, so dass lediglich das Produkt 52 aus Fraktion 3 charakterisiert werden konnte. Die restlichen Produkte bilden Mischfraktionen, deren NMR-Spektrum sich auch in unterschiedlichen deuterierten Lösungsmittel als nicht auflösbar erwiesen.

Hilfreich für die Strukturaufklärung von 52 ist die ⁴J_{3ea/5ea}-und ⁴J_{6/8}- Kopplung, die so

genannte "W-Kopplung", die für alle starr fixierten Sechs- und Vierringe charakteristisch zu sein scheint.

Die Werte der ${}^{3}J_{1/6}$ -Kopplung von 8.8 Hz und der ${}^{2}J_{3/3}$ -Kopplung von 16.7 Hz weisen für Produkt **52** auf ein *cis*-KS-Isomer hin.

2.1.2. In Gegenwart von 3-Methyl-2-butennitril (31)

Um das intermediär entstehende 1,4-Diradikal durch zwei Methylgruppen in β -Stellung zur Nitrilgruppe besser zu stabilisieren, wird im nächsten Schritt **27** in Gegenwart von **31** bestrahlt. Diese Reaktion wird mit einem Umsatz von 90 % beendet und führt zu sechs Produkten, die laut GC in einem Produktverhältnis von 16(**53**):12(**54**):41(**55**):11 (**56**):12(**57**):8(**58**) vorliegen (**Schema 33**).

Schema 33: Bestrahlung von 27 in Gegenwart von 31

Massenspektrometrische Untersuchungen des Rohgemisches zeigen gleiche Molmassen für alle sechs Produkte, dem entsprechend handelt es sich bei allen um 1+1-Addukte.

Die chromatographische Trennung gestaltet sich schwierig, da die R_F -Werte für das Eluens Petrolether/Essigester (5:1) zwischen 0.38 und 0.32 liegen. Das Rohgemisch wird in drei Fraktionen getrennt, die laut GC folgende Produktverteilungen aufweisen: In Fraktion 1 ist nur das Produkt **53**, in Fraktion 2 ist ein Produktgemisch im Verhältnis **53**(26):**55**(54):**58**(20) und in Fraktion 3 ist ein Produktgemisch im Verhältnis **54**(23):**55**(34):**56**(25):**57**(16) enthalten.

Das Produktbild in Fraktion 3 kann mit Hilfe eines basischen Katalysators vereinfacht werden, wobei durch Isomerisierung aus dem *trans*-verknüpften Cycloaddukt **54** das *cis*-verknüpfte **55** gebildet wird. Voraussetzung ist, dass an C-1 ein Wasserstoff-Atom gebunden ist. Der Mechanismus verläuft über eine einfache Deprotonierung an C-1 und eine anschließende Reprotonierung. Da es sich bei beiden Reaktionsschritten um Gleichgewichte handelt, bildet sich schließlich das thermodynamisch stabilere *cis*-Produkt (**Schema 34**).

Aufgrund der NMR-Spektren lassen sich die Produkte in drei Gruppen einteilen. Zur ersten Gruppe gehören **53** und **54**, die wegen ihres chemischen Verhaltens gegenüber Basen, ihrer großen ${}^{3}J_{1/6}$ -Kopplung mit 13.8 Hz bzw. 14.2 Hz, ihrer ${}^{2}J_{3/3}$ -Kopplung mit 13.7 Hz bzw. 13.6 Hz und der hohen 13 C-Verschiebungen im Vergleich zu den anderen Produkten als *trans*-verknüpfte Addukte zu identifizieren sind. Das einfache Kopplungsmusters von C-1 im Vergleich zu C-6 weist auf KS-Addukte hin, wobei die ${}^{3}J_{6/7}$ -Kopplung für die *exo-/endo-*Zuordnung Verwendung findet. Laut Schuster^[34] ist in *trans*-verknüpften Cyclobutanen die ${}^{3}J_{trans}$ -Kopplung größer als die ${}^{3}J_{cis}$ -Kopplung (${}^{3}J_{trans}$ > ${}^{3}J_{cis}$). Entsprechend ist **53** mit einer ${}^{3}J_{6/7}$ -Kopplung von 7.6 Hz das *endo-trans*-KS-

Cyclobutanaddukt und 54 mit 9.4 Hz das exo-trans-KS- Cyclobutanaddukt.

Zur zweiten Gruppe gehören die Produkte **55** und **56**, deren Kopplungsmuster ebenfalls auf KS-Addukte weist. Die ${}^{3}J_{1/6}$ -Kopplung mit 10.1 Hz bzw. 8.8 Hz für **55** und **56** und die ${}^{2}J_{3/3}$ -Kopplung 17.1 Hz für **55** unter Berücksichtigung der niedrigeren ${}^{13}C$ -Verschiebungen weisen auf *cis*-verknüpfte Addukte. Laut SCHUSTER^[34] gilt für die vicinale Kopplung von *cis*-verknüpfen Cyclobutanen, dass die ${}^{3}J_{trans}$ -Kopplung kleiner ist als die ${}^{3}J_{cis}$ -Kopplung (${}^{3}J_{trans} < {}^{2}J_{cis}$).^[34] Folglich ist **55** mit einer ${}^{3}J_{6/7}$ -Kopplung von 5.7 Hz das *exo-cis*-KS-Cyclobutanaddukt und **56** eine von 9.6 Hz das *endo-cis*-KS-Cyclobutanaddukt.

Bei den Produkten **57** und **58** handelt es sich um die KK-Addukte. Die Kopplungskonstanten für die ${}^{3}J_{1/6}$ - und ${}^{2}J_{4/4}$ -Kopplung sind für beide Produkte 9.2 Hz und 17.6 Hz, in Verbindung mit den 13 C-Verschiebungen weisen sie auf eine *cis*-Verknüpfung. Bei der *exo-/endo*-Zuordnung ist zusätzlich zur ${}^{3}J_{6/7}$ -Kopplung mit 10.1 Hz für **57** und 9.1 Hz für **58**, die ${}^{4}J_{1/7}$ -Kopplung hilfreich. Die ${}^{4}J_{1/7}$ -Kopplung ist für **57** 2.2 Hz und für **58** 0.6 Hz, demzufolge ist **57** das *endo-cis*-KK-Cyclobutanaddukt und **58** das *exo-cis*-KK-Cyclobutanaddukt. Die Strukturzuordnungen der sechs Produkte ist in **Tabelle 1** wiedergeben.

Tabelle 1: endo-/exo-Zuordnung der Produkte 53 bis 58

Die Einführung der beiden Methylgruppen in β -Stellung zur Nitrilgruppe verändert die Bevorzugung für eine bestimmte Konstitution, d.h. hier liegt entgegen älterer Ergebnisse^[15,18,22,60,74] eine KS-Bevorzugung im Verhältnis 4:1 vor.

Diesen Wandel zur KS-Orientierung kann in der Stabilität der unterschiedlichen 1,4-Diradikale **59** bis **62** liegen; da zwei Methylgruppen ein Radikalzentrum besser stabilisieren als eine Nitrilgruppe, werden die Diradikale **59** und **62** vermehrt gebildet. Unter Berücksichtigung der von SCHUSTER^[52] gemachten Beobachtung wird deutlich, warum hier eine KS-Bevorzugung vorliegt (**Schema 35**).

Schema 35: Die möglichen 1,4-Diradikale bei der Darstellung von 53 bis 58

Zusätzlich ist noch eine Bevorzugung der *exo*-Formation der Nitrilgruppe im Verhältnis 3:2 erkennbar, welche durch sterische Abstoßungskräfte erklärt werden kann.

2.1.3. In Gegenwart von Isopropylidenmalonsäuredinitril (32)

Ein Wechsel im Additionspartner von den ungesättigten (Mono)nitrilen zu ungesättigten Dinitrilen führte für die Umsetzung von 27 in Gegenwart von 32 zu zwei Produkten im Verhältnis 64(63):36(64) (Schema 36).

Der Umsatz dieser Reaktion konnte aufgrund gleicher Retentionszeiten im GC und des hohen Siedepunktes von **32** nicht bestimmt werden. Auf eine Abtrennung von **32**, indem es basisch verseift wird, wurde wegen der schnellen Isomerisierung des *trans*-Adduktes

verzichtet.

GC/MS-Untersuchungen des Rohgemisches zeigen gleiche Molmassen für beide Produkte, dem entsprechend handelt es sich bei beiden um 1+1-Addukte.

Die chromatographische Trennung der beiden Produkte zeigte sich schwierig, so dass die Produkte aus dem Fraktionsgemisch bestimmt werden.

Aufgrund der ${}^{3}J_{1/6}$ -Kopplung von 9.8 Hz, der ${}^{2}J_{3/3}$ -Kopplung von 18.2 Hz und den niedrigen 13 C-Verschiebungen ist **64** das *cis*-KS-Cycloaddukt. Entsprechend ist **63** unter Berücksichtigung seines chemischen Verhaltens gegenüber Basen mit einer ${}^{3}J_{1/6}$ -Kopplung von 14.1 Hz, der ${}^{2}J_{3/3}$ -Kopplung von 14.2 Hz und den höheren 13 C-Verschiebungen das *trans*-KS-Cycloaddukt.

Mit Hilfe eines basischen Katalysators isomerisiert **63** zu **64**. Eine anschließende Umkristallisation aus Diethylether ergibt Einkristalle. Röntgenstrukturanalytische Untersuchungen ergeben die Struktur von **64** (**Abbildung 2**), welche mit der Struktur, die basierend auf den spektroskopischen Daten angenommen wurde, übereinstimmt.

Abbildung 2: ORTEP-Diagramm der Struktur des *cis*-[2+2]-Cycloaddukts 64 im Kristall

Hier kommt es zu einer spezifische Bildung der KS-Regioisomere **63** und **64**. Diese Regioselektivität muss auf einer kinetischen Kontrolle beruhen, welche sich ebenfalls in der Diastereoselektivität (3:2) des *trans*-verknüpften Bicyclooctans **63** ausdrückt. Die Bildung von *trans*-verknüpften Cyclobutanen erfordert eine Sequenz von schnellen ISC des Triplett- zum Singulett-Diradikals gefolgt von einer schnellen 1,4-Cyclisierung, wobei das 1,4-Diradikal verdrillt ist.^[32] Daraus folgt, dass die Diradikale **65** und **66** wesentlich besser geeignet sind als die Diradikale **67** und **68**. Unter Berücksichtigung der C-3 Bevorzugung für den ersten Angriff^[52] und der destabilisierenden Wirkung der zweiten (geminalen) Nitrilgruppe aufgrund ihrer dipolaren Abstoßungskräfte für das C-zentrierte Radikal^[75] erscheint das Diradikal **65** bevorzugter gebildet bzw. stabiler gegenüber **66** zu sein. (**Schema 37**).

Schema 37: Die möglichen 1,4-Diradikale bei der Darstellung von 63 und 64

Bei einer Addition von unsymmetrischen Alkenen an cyclische Enone können sich Gemische von regioisomeren Produkten bilden. In diesem Fall bietet diese Sequenz eine regioselektive Darstellung des mehrfach funktionalisierten Bicyclooctans 63 (Schema 38).

Schema 38: Regioselektive Darstellung von 64

2.1.4. In Gegenwart von Ethylidenmalonsäuredinitril (33)

Die Bestrahlung von 27 in Gegenwart von 33 ergibt Oxobicylo[4.2.0]octan-7,7dicarbonitrile mit einer leichten Bevorzugung der KK-Formation im Verhältnis 3:2, die analog zu den bereits beschriebenen Resultaten für die lichtinduzierten Reaktionen zwischen Cyclohexenonen und den ungesättigten (Mono)nitrilen 47 und 48^[15,60,74] liegt. Dabei bilden sich mit einem Umsatz von 84 % laut NMR sechs Produkte in einem Verhältnis von 7(69):20(70):9(71):6(72):28(73):30(74). Eine Angabe der GC-Verhältnisse ist wegen ähnlicher Retentionszeiten nicht möglich.(Schema 39)

Schema 39: Bestrahlung von 27 in Gegenwart von 33

Massenspektrometrische Untersuchungen des Rohgemisches zeigen für alle sechs Produkte die gleiche Molmasse, folglich handelt es sich bei allen um 1+1-Addukte. Aufgrund der großen Unterschiede in den $R_{\rm F}$ -Werten gestaltete sich die chromatographische Trennung als nicht besonders schwierig. Das Rohgemisch wird in sechs

Fraktionen getrennt, die folgende Produktverteilung aufweisen: Fraktion 1 enthält ein Produktgemisch im Verhältnis 23(69):49(70):28(71) und in den Fraktion 2 bis 5 ist jeweils nur ein Produkt enthalten und zwar 70, 72, 74 und 73.

Basierend auf den NMR-Spektren lassen sich die Produkte in drei Gruppen einteilen. Zur ersten Gruppe gehören **69** und **71**. Beruhend auf der ${}^{3}J_{1/6}$ -Kopplung von 13.4 Hz und 13.5 Hz, der ${}^{2}J_{3/3}$ -Kopplung von 13.4 Hz und 14.3 Hz und der höheren ${}^{13}C$ -Verschiebungen sind beide Produkte als *trans*-KS-Cyclobutane zu identifizieren. Für eine weitere Charakterisierung ist die ${}^{3}J_{1/8}$ -Kopplung von 10.8 Hz und 6.6 Hz hilfreich, so dass **69** als das *exo*- und **71** als das *endo-trans*-KS-Cycloaddukt gedeutet wird.

Zur zweiten Gruppe gehören 70 und 72, wobei in diesem Fall die Charakterisierung beider Produkte durch die RSA von 72 erleichtert wird. In Abbildung 3 ist das ORTEP-Diagramm von 72 dargestellt.

Abbildung 3: ORTEP-Diagramm der Struktur des Cycloaddukts 72 im Kristall

Die Daten der RSA identifizieren 72 in Übereinstimmung mit den NMR-Spektren als das *endo-cis*-KS-Isomer. Die NMR-Spektren von 70 zeigen eine ${}^{3}J_{1/6}$ -Kopplung von 7.9 Hz, eine ${}^{2}J_{3/3}$ -Kopplung von 16.7 Hz und gegenüber den *trans*-verknüpften Cyclo-

addukten **69** und **71** niedrigere ¹³C-Verschiebungen, daher ist **70** ebenso wie **72** ein *cis*-KS-Isomere. Da in diesem Fall beide Isomere die gleiche ³J_{1/8}-Kopplung haben, kann sie nicht hilfreich bei der Festlegung der *exo-/endo*-Konfiguration ist. Hilfreich ist hier die ⁴J_{6/8}-Kopplung, die für **70** 0.6 Hz und für **72** 2.2 Hz ist. Folglich ist in Übereinstimmung mit der RSA **72** das *endo-cis*-KS-Isomer und **70** das *exo-cis*-KS-Isomer.

Die letzten Gruppe besteht aus 73 und 74. Auch hier liegt eine RSA vor, die 73 als das *endo-cis*-KK-Addukt ausweist (Abbildung 4).

Abbildung 4: ORTEP-Diagramm der Struktur des Cycloaddukts 73 im Kristall

Die Spektren von **73** und **74** zeigen eine ${}^{3}J_{1/6}$ -Kopplung von 8.9 Hz und 9.8 Hz, eine ${}^{2}J_{4/4}$ -Kopplung von 17.7 Hz und 17.1 Hz und mit **70** und **72** vergleichbare niedrigere 13 C-Verschiebungen, daher sind sie die *cis*-KK-Isomere. Aufgrund der ${}^{3}J_{1/8}$ -Kopplung von 8.8 Hz und 6.6 Hz ist **73** in Übereinstimmung mit der RSA das *endo-cis*-KK-Addukt und **74** das *exo-cis*-KK-Addukt. In **Tabelle 2** ist eine Übersicht der einzelnen Produkte mit ihrer jeweiligen ${}^{3}J_{1/8}$ -Kopplungskonstante wiedergeben.

Tabelle 2: endo-/exo-Zuordnung der Produkte 69 bis 74

Die Entfernung einer Methylgruppe in β -Stellung zu den Nitrilgruppen verschlechtert deutlich das Produktbild und führt wieder zu einer Bevorzugung der KK- und *exo*-Formation. Diese KK-Bevorzugung ist durch die unterschiedliche Stabilität der möglichen 1,4-Diradikale **75** bis **78** und über die bevorzugte Angriffsrichtung zu erklären.^[52] (Schema 40).

Schema 40: Die möglichen 1,4-Diradikale bei der Umsetzung von 27 in Gegenwart von 33

2.2. Untersuchung des photochemischen Verhaltens von 2,3-Dihydro-2,2-dimethyl-4*H*-thiopyran-4-on (79)

Aufgrund der vorliegenden Ergebnisse wird **79** in Gegenwart von **33** bestrahlt. Es stellte sich die Frage, ob sich durch die stabilisierende Wirkung des Schwefels im Triplett-Zustand auf das Radikalzentrum eine Änderung in der Orientierung ergibt.

Nach einer Bestrahlungszeit von 20 Stunden mit einem Umsatz von 71 % werden vier Produkte im Verhältnis 75(80):11(B):7(C):7(D) gebildet. Die GC-/MS-Spektren weisen auf auf vier 1+1-Addukte (Schema 41).

Durch chromatographische Trennung wird das Hauptprodukt isoliert. In den übrigen Fraktionen sind nur noch Spaltprodukte in Form von niedermolekularen Kohlenwasserstoffen auffindbar.

Die NMR-Daten des Hauptproduktes weisen mit einer ${}^{2}J_{4/4}$ -Kopplung von 16.0 Hz, einer ${}^{3}J_{1/6}$ -Kopplung von 7.5 Hz und einer ${}^{4}J_{1/7}$ -Kopplung von 0.6 Hz auf ein *exo-cis*-KS-Addukt.

Wie zu erwarten war, kommt es hier zu einer Orientierungsänderung, wobei sich regiound stereoselektiv das Cyclobutan **80** über das Diradikal **81** bildet (**Schema 42**).

81 Schema 42: Selektive Bildung von 80 über das Diradikal 81

2.3. Untersuchung des photochemischen Verhaltens von 2,5,5-Trimethylcyclohex-2-en-1-on (28)

Bei der photochemischen Umsetzung von **28** in Gegenwart von **30** werden komplexere Produktverteilungen und sehr viel längere Reakionszeiten beobachtet als bei **27**. Bei den Reaktion mit den Nitrilen **31** und **32** zeigen sich trotz hoher Bestrahlungszeiten keine Produktbildung und bei dem Dinitril **33** bilden sich nach 81 h Bestrahlung mit einem Umsatz von 48 % drei Produkte im Verhältnis 50(**82**):36(**B**):14(**C**) (**Schema 43**).

Schema 43: Umsetzung von 28 in Gegenwart von 33

Bei der chromatographische Trennung zeigt sich, dass durch die lange Reaktionszeit Nebenprodukte entstehen, die die Aufarbeitung erheblich erschweren und letztendlich eine Isolierung verhindern. Die Charakterisierung des Hauptproduktes konnte aus den Rohgemisch erfolgen. Die NMR-Daten weisen mit einer ²J_{4/4}-Kopplung von 18.0 Hz und einer ³J_{1/8}-Kopplung von 2.5 Hz auf ein *exo-cis*-KK-Addukt.

Hier liegt eine KK-Bevorzugung, die über die Richtung des ersten Angriffs und über die Stabilität der unterschiedlichen 1,4-Diradikale erklärbar ist. Dabei erscheint die stabilisierende Wirkung von zwei geminalen Nitrilgruppen größer zu sein als der einer Methylgruppe, so dass das 1,4-Diradikale **83** bevorzugt gebildet wird (**Schema 44**).

83 Schema 44: Das mögliche Diradikal zu Bildung von 82

2.3.1. Umsetzung von 28 in Gegenwart von Chlorarcylonitril (30)

Bei der Bestrahlung von **28** in Gegenwart von **30** werden bei einem Umsatz von 70 % fünf Produkte im Verhältnis 2(**84**):14(**85**):14(**86**):58(**87**):12(**88**) erhalten. Die MS-Untersuchungen weisen auf 1+1-Addukte. (**Schema 45**)

Schema 45: Bestrahlung von 28 in Gegenwart von 30

Die chromatographische Trennung ergab fünf Fraktionen. In der ersten konnte **87** isoliert werden und die anderen enthielten Gemische mit unterschiedlichen Zusammensetzungen.

Die fünf Produkte lassen sich aufgrund der NMR-Daten in drei Gruppen einteilen. Da die C-1 bzw. C-6 Position substituiert ist, stehen für die Einteilung in *cis*- und *trans*-Isomere nur die ²J_{4/4}- bzw. ²J_{3/3}-Kopplungskonstante zur Verfügung. Die Zuordnungen in KS- und KK-Isomere können in Bezug auf das Kopplungsmuster des Brückenprotons und des HMBC-Spektrums eingeteilt werden.

Beruhend auf der großen Elektronegativität des Chlors verringert sich die Abschir-

mungen der H-8 Protonen und diese erhalten daher einen Tieffeld-Shift. Dieser Effekt ist bezüglich zum Chlor für das H-8_{cis}- größer als für das H-8_{trans}-Proton, demzufolge unter Berücksichtigung der ${}^{3}J_{1/8}$ - bzw. der ${}^{4}J_{6/8}$ -Kopplung, ist eine Zuordnung in *exo*-bzw. *endo*-Konfiguration möglich.

Zur ersten Gruppe gehören **87** und **88**, deren Charakterisierung durch die RSA von **87** erleichtert wird (**Abbildung 5**). Entsprechend der Daten der RSA ist **87** mit einer ${}^{2}J_{4/4}$ -Kopplungskonstanten von 18.0 Hz das *endo-cis*-KK-Addukt. Folglich kann **88** mit einer Kopplungskonstanten von ebenfalls 18.0 Hz nur das *exo-cis*-KK-Addukt sein.

Abbildung 5: ORTEP-Diagramm der Struktur des Cycloaddukts 87 im Kristall

Zur zweiten Gruppe gehören **85** und **86**, die mit einer ${}^{2}J_{3/3}$ -Kopplungskonstante von 17.3 bzw. 17.0 Hz als das *exo-cis*-KS-Addukt bzw. *endo-cis*-KS-Addukt einzuteilen sind. Als letztes Produkt verbleibt **84**, das mit einer ${}^{2}J_{4/4}$ -Kopplungskonstanten von 12.0 Hz und den im Vergleich zu den anderen Produkten höheren 13 C-Verschiebungen auf ein *trans*-KS-Isomer hinweist. In **Tabelle 3** sind die Strukturen und die chemischen Verschiebungen gemessen in Deuterochloroform zusammen mit der jeweiligen ${}^{3}J_{1/8}$ -Kopplungskonstante für die Produkte **85** bis **88** wiedergegeben.

Tabelle 3: exo-/endo-Zuordnung der Produkte 85 bis 88

Entsprechend ähnlicher, literaturbekannten Beispielen^[15,22,60,74] liegt hier eine KK-Bevorzugung im Verhältnis 7:3 vor. Diese Orientierung lässt sich über eine Vorzugsrichtung erklären, aus der der erste Angriff erfolgt, der laut GARCÍA-Expósito^[57] bevorzugt am Kohlenstoff C-3 stattfindet, wenn das Cyclohexenon an C-2 substituiert ist.

Die lange Reaktionszeit ist begründet durch die Einführung eines Substituenten an C-2; dadurch kommt es zu einer erhöhten sterischen Hinderung, die den Ringschluss zunehmend erschwert. Letztendlich gewinnt dadurch der Zerfall der Diradikale in die Edukte an Bedeutung und damit wird die Stabilität der einzelnen Diradikale zum entscheidenden Faktor für die Orientierung der Produkte. Dies kommt auch durch den geringen Anteil an *trans*-Produkten zum Ausdruck. In **Schema 46** sind die möglichen Diradikale **89** und **90** abgebildet.

Schema 46: Die möglichen 1,4-Diradikale bei der Umsetzung von **28** in Gegenwart von **30**

2.4. Untersuchung des photochemischen Verhaltens von 5,5-Dimethyl-2-(3',3'-dimethylbut-1'-inyl)-cyclohex-2-en-1-on (29)

Bei der Umsetzung von **29** in Gegenwart von **30** bis **33** vereinfacht sich das Produktbild bei teilweise längeren Reaktionszeiten und geringeren Umsätzen, wobei sich bei der Reaktion mit dem Nitrilen **31** trotz hoher Bestrahlungszeiten keine Produktbildung zeigt.

Zusätzlich zu den bisher beobachten [2+2]-Photocycloaddtionsprodukten können hier auch [3+2]-Photocycloaddukte isoliert werden. Diese Reaktion wurde erstmal 1981 von HUSSAIN und Agosta^[20] beschrieben. Im Jahr 92 untersuchte REICHOW unterschiedlich substituierte Cyclohexenone, die er mit 2-Methylpropen (**91**) und **13** umsetzte, und erhielt erstmals tricyclische Furane.^[27,28,29] In **Schema 47** ist diese Reaktion dargestellt.

Die Instabilität dieser Tricyclen gegenüber Licht (350 nm) und deren Tendenz zur Bildung von Sekundärprodukten könnten ein Grund für die geringen Ausbeuten darstellen.

2.4.1. In Gegenwart von Chloracylonitril (30)

Bei dieser Reaktion entstanden mit einem Umsatz von 49 % zwei Produkte im Verhältnis von 67(92):33(93) laut NMR, deren MS auf 1+1-Addukte weisen (Schema 48).

R = C - C-t-Bu.Schema 48: Bestrahlung von 29 in Gegenwart von 30

Chromatographisch ließen sich die beiden Produkte nicht trennen, daher werden sie aus der Mischfraktion charakterisiert. Mit einer ³J_{4/4}-Kopplung von 17.0 Hz und 17.8 Hz unter Berücksichtigung des durch die Elektonegativität des Chlors induzierten Tieffeld-Shifts ist **92** das *exo-cis*-KK- und **93** das *endo-cis*-KK-Cyclobutanaddukt. In **Tabelle 4** sind die Strukturen und die chemischen Verschiebungen gemessen in Deuterochloroform zusammen mit der jeweiligen ³J_{1/8}-Kopplungskonstante wiedergegeben.

Tabelle 4: exo-/endo-Zuordnung der Produkte 92 und 93

Ebenso wie in den literaturbekannten^[60,74] Umsetzungen kommt es zu einer KK-Bevorzugung. Dies ist erklärlich über den bevorzugten ersten Angriff, da am Kohlenstoffatom C-3 die sterische Hinderung geringer ist als an C-2. Außerdem ist im Diradikal **94** eine Resonanzstabilisierung über die Dreifachbindung möglich und das Diradikal wird durch die hohe Elektronegativität des Chlors das 1,4-Diradikal **94** zusätzlich stabilisiert (**Schema 49**).

Schema 49: Das mögliche Diradikal bei der Umsetzung von 29 in Gegenwart von 30

2.4.2. In Gegenwart von Isopropylidenmalonsäuredinitril (32)

Bei der Bestrahlung von **29** in Gegenwart von **32** bilden sich mit einem Umsatz von 50 % laut NMR drei Produkte im Verhältnis 62(95):25(96):13(97). Neben den bisher beobachteten [2+2]-Cycloadditionsprodukten **95** und **96** wird auch ein tricyclisches [3+2]-Cycloaddukt **97** isoliert (**Schema 50**).

Schema 50: Bestrahlung von 29 in Gegenwart von 32

Die NMR-Spektren weisen für **95** und **96** mit einer ${}^{2}J_{3/3}$ -Kopplung von 18.3 und 17.4 auf das *cis*-KS- und *cis*-KK-Isomer hin.

Erste Hinweise auf die Struktur 97 sind die niedrigen ¹³C-Verschiebungen der Methylengruppen im Cyclohexenring, deren niedrigere geminale Kopplung und die zwei homoallylischen Kopplungen im Vergleich zu entsprechenden Cyclobutanaddukten.

Die NMR-Daten von 97 erweisen sich als komplex. Da REICHOW^[27,28,29] 1992 eine ähnliche Struktur 98 untersucht hatte, aber seine Datensätze aus heutiger Sicht lückenhaft sind, wird nochmals 29 mit 13 umgesetzt und 98 vollständig charakterisiert (Schema 51).

Schema 51: Umsetzung von 29 mit 13

Eine anschließende Oxigenierung von **98** liefert **99**, dessen RSA bestätigt die aufgrund der spektroskopischen Daten vorgeschlagene Struktur von **98** und folglich auch die von **97**. In **Abbildung 6** ist das ORTEP-Diagramm der Struktur von **99** abgebildet.

Abbildung 6: ORTEP-Diagramm der Struktur des Indenons 99 im Kristall

Ebenso wie bei 27 kommt es hier zu einer KS-Bevorzugung, die durch die destabilisierende Wirkung der beiden Nitrilgruppen hervorgerufen wird, so dass sich 95 über das Diradikal 100 bildet, während 96 und 97 vom Diradikal 101 stammen (Schema 52).

2.4.3. In Gegenwart von Ethylidenmalonsäuredinitril (33)

Bei der photochemischen Umsetzung von 29 in Gegenwart von 33 bilden sich mit einem Umsatz von 61 % laut GC 2 Produkte im Verhältnis 95(102):5(103) (Schema 53).

Schema 53: Photochemische Umsetzung von 29 in Gegenwart von 33

Produkt **102** wird isoliert und charakterisiert. Die Stellung der Methylgruppe an C-4 mit einer ${}^{3}J_{3/3a}$ -Kopplung von 9.1 Hz kann nicht eindeutig geklärt werden. Daher wird **102** zu **104** oxigeniert.

Die RSA von **104** zeigt ein Indenderivat in dem die Methylgruppe an C-3 *exo*-ständig ist. Folglich muss die Methylgruppe an C-4 im tricyclischen Furan **102** auch *exo*-ständig sein. In **Abbildung 7** ist das ORTEP-Diagramm des Indenderivats **104** wiedergeben.

Abbildung 7: ORTEP-Diagramm der Struktur des Indenons 104 im Kristall

Das Produkt **103** konnte leider nicht isoliert werden. In den GC/MS-Spektren des Rohgemisches weist ein Peak auf ein Molekül mit der gleichen Molmasse und einem ähnlichen Frakmentierungsmuster wie **102** hin. Daher liegt der Schluss nahe, dass es sich hierbei ebenfalls um ein tricyclisches Furan mit der Methylgruppe in *endo*-Stellung an C-4 handelt.

Entgegen den bisherigen Ergebnisse entstehen hier selektiv tricyclische [3+2]-Cycloaddukte. Die Tatsache, dass kein Cyclobutan gebildet wird, zeigt, dass die 1,5-Cyclisierung viel schneller abläuft als das konkurrierende ISC des Triplett- zum Singulett-Diradikal.

2.4.4. In Gegenwart von 2-Methylbut-2-en (105)

Um Vergleichsdaten zu sammeln, wird **29** mit **105** umgesetzt. Nach einer Bestrahlungszeit von 51.5 h mit einem Umsatz von 50 % konnte laut GC selektiv ein Produkt **106** erhalten werden (Schema 54).

Schema 54: Darstellung von 107

Auch hier wird **106** zu **107** oxigeniert. Da weder **106** noch **107** kristallisierte, wird aufgrund der ähnlichen Kopplungskonstanten zu **102** bzw. **104** auf eine *exo*-Stellung der Methylgruppe geschlossen.

Auch hier weist die lange Bestrahlungszeit darauf hin, dass der Zerfall der Diradikale in die Edukte an Bedeutung gewinnt und damit die Stabilität der einzelnen Diradikale zum entscheidenden Faktor für die Orientierung wird.

2.5. Untersuchung des photochemischen Verhaltens von 5,5-Dimethylcyclohex-2-en-1-on (27) in Gegenwart des Vinylallens (34)

HopF berichtet 1981 über ein Cyclisisierungsprodukt, das sich bei der Dimerisierung von **34** bildet.^[76] Dabei entsteht über das S-*cis*-Isomer von **34** ein 1,5-Diradikal, welches sich letztendlich zum *cis*-1,6-Diradikal dimerisiert und schließlich zu dem Cycloocten **108** cyclisiert. In **Schema 55** ist der Mechanismus dieser Reaktion wiedergeben.

Schema 55: Dimerisierung von 34

Es stellt sich die Frage, ob diese Reaktion auf einfache Cyclohexenone wie 40 übertragbar ist, um auf diesem Wege über das 1,4-Diradikal 109 das Naphthalenonderivat 110 darzustellen (Schema 56).

Schema 56: Ein theoretisch möglicher Mechanismus der [4+2]-Cyclisierung von 27 mit 34

Diese Umsetzung ergab entgegen den Erwartungen eine komplexe Mischung von Bicyclo[4.2.0]octanonen. ¹H-NMR-Untersuchungen des Rohgemisches zeigen die charakteristischen olefinischen Signale für Buta-1,3-dienyl-, Ethenyl- und Buta-1,2dienyl-Strukturen, d.h. das die Addition an allen drei C-C-Doppelbindungen stattfand. Bei der säulenchromatographischen Trennung wird nur in einer Fraktion Spuren von **111** gefunden, die anderen Produkte zerfallen unter saurer Katalyse. Daher erfolgt die Produktverteilung in Bezug zu Vergleichsdaten^[77] direkt aus dem Rohgemisch. Unter dieser Annahme entstehen 6 Produkte im Verhältnis **112**(19):**113**(7):**114**(7):**115**(28):**116** (15):**117**(7):**111a**(8):**111b**(8). In **Schema 57** sind die vermuteten Strukturen der Produkte **112** bis **117** sowie die auf den spektroskopischen Daten begründete Struktur von **111** abgebildet.

Schema 57: Photochemische Umsetzung von 27 in Gegenwart von 34

Als Vorstufe aller Produkte gibt es viele theoretisch mögliche 1,4-Diradikale. Von Bedeutung ist hierbei die vorrangige Bildung der Bicyclooctanone 111, 115 und 116, welche intermediär wahrscheinlich von den 1,4-Diradikalen 109 und 118 stammen (Schema 58).

Es stellt sich die Frage, warum es hier nicht zu einer 1,6-Cyclisierung kommt, während diese bei der Dimerisierung von **34** auftritt. Eine Erklärung bietet sich in den berechneten Stabilitäten^[78] des 1,2-Butadien-4-yl-Radikals **119** gegenüber dem 1,3-Butadien-2-yl-Radikal **120**, wobei **119** um 9 – 10 kcal/mol stabiler ist als **120** (Schema **59**).

Folglich ist die Spin-Dichte bei **109** und **118** an C-4 des Diradikals höher als an C-6, was die 1,6-Cyclisierung ausschließt. Bei der Dimerisierung von **34** wird verglichen mit diesen Bicyclen ein wesentlich flexibleres System untersucht, so dass die Energiebarriere entsprechend niedriger sein sollte.

B. Hauptteil

3. Spektroskopische Eigenschaften der [2+2]-Photocycloaddukte

3.1. Röntgenstrukturanalysen

Die Recherche "Bicyclo[4.2.0]octan-2-on" im Cambridge Crystallographic Data Centre (CCDC) ergab drei vergleichbare Strukturen, die auf die in dieser Arbeit untersuchten Systeme übertragbar sind.^[33,57,79]

Seit längeren sind die Strukturen der *cis*- und *trans*-verknüpften [2+2]-Photocycloaddukten bekannt.^[33,34,55,79-81] Dabei handelt es sich beim *cis*-Addukt um einen aeverbrückten Bicyclus, in dem der Cyclohexanring in einer stark verzerrten Sessel-Konformation vorliegt, wobei der Cyclobutanring relativ flach bleibt.^[33] Dagegen ist im *trans*-Addukt der Bicyclus ee-verbrückt, so dass der Cyclohexanring eine fast sesselartige Konformation einnimmt, dafür ist der Cyclobutanring stark verzerrt.^[34]

Bei den hier untersuchten Kristallen handelt es sich um in der Literatur unbekannte Strukturen der cis-[2+2]-Photocycloaddukte 63, 72, 73 und 87 (Abbildung 8).

Abbildung 8: Strukturen der [2+2]-Photocycloaddukten 63, 72, 73 und 87

Galatsis^[33] berichtet, dass bei der von ihm gemessenen Struktur des *cis*-verknüpfen 1 β -Acetoxy-3,3,8,8-tetramethyl-7 β -(3-oxobutyl)bicyclo[4.2.0]octan-5-ons im Cyclohexanring die Brücken-C-Atome mit den gegenüberliegenden zwei C-Atomen eine Ebene bilden (**Abbildung 9**).

Abbildung 9: Galatsis-Struktur

Dagegen liegen in den hier untersuchten Strukturen die Brücken-C-Atome, das Carbonyl-C-Atom und das zur Carbonylgruppe α -ständige C-Atom in einer Ebene, während die beiden verbleibenden C-Atome unter- bzw. oberhalb dieser Ebene liegen, so dass die Konformation eher einem verzerrten Halbsessel ähnelt (**Abbildung 10**). Dieser Unterschied in den Strukturen könnte an der sterischen Hinderung, bedingt durch die lange Seitenketten, in Galatsis-Struktur liegen.

Abbildung 10: ORTEP-Diagramm der Struktur des *cis*-[2+2]-Cycloaddukts 87 im Kristall

Außerdem konnten zwei bisher literaturunbekannte Kristallstrukturen der Indenone **104** und **99** untersucht werden, die durch die Oxigenierung der [2+3]-Photocycloprodukte **102** und **98** dargestellt werden (**Schema 60**). Schon 1995 schlug REICHOW^[27] aufgrund der spektroskopischen Daten für das Indenon **99** diese Struktur vor.

B. Hauptteil

Schema 60: Oxigenierung der Furane 98 und 102 zu den Indenonen 99 und 104

Aufgrund der Röntgenstrukturanalyse von 104 ist auch die räumliche Orientierung der Methylgruppe von 102 eindeutig geklärt (Abbildung 11).

Abbildung 11: ORTEP-Diagramm der Struktur des Indenons 104 im Kristall

3.2. ¹H-Kernresonanz-Spektroskopie

Es gibt drei Kriterien, um im ¹H-NMR-Spektrum *cis*- von *trans*-Addukten zu unterscheiden:

- 1. Die Kopplung der Brückenprotonen (³J_{1/6}) ist im *trans-* größer als im *cis*-Addukt.^[80]
- 2. Die geminale Kopplung (²J_{3/3} bzw. ²J_{4/4}) der Methylengruppe α-ständig zur Carbonylgruppe ist im *trans*-Addukt (kleiner als im *cis*-). Da alle geminale Kopplungen meist negativ sind, wird diese Kopplung durch den Einfluss der π-Bindung in der Carbonylgruppe positiviert. Dieser Effekt ist am stärksten, wenn eine der beiden CH-Bindung parallel zu den p-Orbitalen der π-Bindung steht. Da im *trans*-verknüpften Addukt der Cyclohexanonring in einer fast sesselartigen Konformation vorliegt, ist diese Kopplung positiver als im *cis*-.^[82]
- Die Kopplung im Cyclobutanring zwischen zwei pseudoaxialen Protonen (³J_{aa}) ist im *trans*-verknüpften größer als die *trans*-Kopplung zwischen zwei pseudoequatorialen Protonen (³J_{ee}) im *cis*. Umgekehrtes gilt für Kopplung von *cis*ständigen Protonen.^[34]

In **Tabelle 5** sind *trans*- und *cis*-verknüpfte Addukte mit ihren jeweiligen Kopplungskonstanten schematisch dargestellt.

B. Hauptteil

Tabelle 5: Kopplungskonstanten in *trans*-und *cis*-verknüpften [2+2]-Photocyclobutanen

3.3. ¹³C-Kernresonanz-Spektroskopie

Im Vergleich zu den ¹H-NMR-Spektren der [2+2]-Photocycloaddukte **72 - 87** sind die ¹³C-NMR-Spektren sehr aufschlussreich in Bezug auf die Verknüpfung. Aufgrund der sterischen Behinderung und der Überlappung der van der Waals-Radien bei den *cis*-verknüpften Addukten kommt es im Vergleich zu den *trans*-verknüpften zu einer stärken Abschirmung und demzufolge zu einem Hochfeld-Shift.^[34,80,83] In **Tabelle 6** ist ein Beispiel für so ein Hochfeld-Shift wiedergeben.

	$ \begin{array}{c} O \\ H \\ 3 \\ 4 \\ 5 \\ H \\ CN \end{array} $	O H CN H CN
	64	63
C-1	48	56
C-2	206	201
C-3	54	54
C-4	30	38
C-5	37	40
C-6	40	45
C-7	46	52
C-8	39	42
Me-4a	31	19
Me-4b	25	26
Me-8a	29	32
Me-8b	24	28

Tabelle 6: ¹³C-Verschiebungen in *cis*-bzw. *trans*-
verknüpften [2+2]-Photocycloaddukten

Laut **Tabelle 6** ist dieser Effekt für C 1, C 4 und C 6 am stärksten. Augenfällig sind die Wirkungen der magnetischen Anisotropiekegel der Carbonyl- und Nitrilgruppe. Beide Gruppen schwächen die Abschirmung und bewirken einen Tieffeld-Shift für

B. Hauptteil

angrenzende C-Atome.^[84] Die Struktur von **64** ist im Kristall in **Abbildung 2** (Seite 35) wiedergeben.

Wie schon in Kapitel **B.3.5.1.** (Seite 60) erläutert, bilden die C-Atome 6-1-2-3 annähernd eine Ebene, C-4 liegt oberhalb und C-5 unterhalb dieser Ebene.

Wenn also sterische Hinderung und die Überlappung von van der Waals-Radien für diese Hochfeld-Shifts verantwortlich sind, dann befindet sich trotz der größeren Beweglichkeit des Cyclohexanringes in Lösung im arithmetischen Mittel C-4 wie in der Kristallstruktur oberhalb dieser Ebene.

Außerdem ist die Verschiebung der Methylgruppen innerhalb eines Moleküls trotz gleicher chemischer Umgebung deutlich unterschiedlich. Laut NOESY ist im *cis*- und *trans*-verknüpften Cyclobutanen die Methylgruppe mit der niedrigeren ¹³C-Verschiebung, d.h. hier Me-4b, mit H-1 und H-6 auf der gleichen Seite, demzufolge ist dies auf den selben Effekt zurückzuführen (**Abbildung 12**).

Abbildung 12: Ausschnitt aus dem NOESY-Spektrum eines Gemisches aus 63 und 64

3.4. Massenspektrometrie

Alle untersuchten Verbindungen zeigen den für sie charakteristischen M^{+*}-Radikalionen-Peak. Ganz typische Fragmentierungsarten sind das Abspalten einer Methylgruppe (m/z: 15) und die in **Abbildung 13** dargestellten Spaltungen.

Durch die unterschiedliche Orientierung im Raum, wie z.B. KK- bzw. KS-Isomere, haben diese ähnliche Fragmentierungsmuster, so dass man an Hand der Roh-Massenspektren erste Aussagen über ähnliche Orientierungen machen kann.

C. Zusammenfassung

Schwerpunkt dieser Arbeit ist die Untersuchung des photochemischen Verhaltens der Cyclohex-2-en-1-one 27 bis 29 in der Umsetzung mit den unterschiedlich mehrfach substituierten Alkenen 30 bis 33. Dabei wird im besonderen auf die Effizienz der Addition sowie auf die Regio- und Stereoselektivität geachtet, da diese Faktoren

für die aktuelle präparative Anwendung von Photocycloadditionen von cyclischen Enonen mit (unsymmetrischen) Alkenen von besonderer Bedeutung sind.

Bekannt waren Untersuchungen von elektronenarmen Cyclohexenonsystemen mit Fumarsäuredinitril (*E*-But-2-endinitril)^[79], einfachen Allenen^[15,18], Acrylonitril (**47**) ^[15,22,60,74], Methacrylonitril (**48**)^[60,74] und *tert*.-Butylacrylonitril (**49**)^[60,74]. Mit Ausnahme des Fumarsäuredinitrils wird dabei von der Bildung zahlreicher Produkte berichtet, wobei sich überwiegend die jeweiligen KK-Additionsprodukte bilden.

Als wichtigste Ergebnisse im Sinne der Aufgabenstellung sind zu nennen:

Die regioselektive Synthese von 64, wobei 27 in Gegenwart von 32 umgesetzt wird. Hierbei bilden sich die beiden diastereomeren Bicyclo[4.2.0]octanone 63 und 64, bei denen es sich um KS-Isomere handelt. Durch die Isomerisierung des *trans*-verknüpften Isomers 63 zum *cis*-verknüpften Isomer 64 bietet sich hier die Möglichkeit ein mehrfach funktionalisiertes Bicyclooctan zu erhalten.

Das Hauptprodukt **63** (64 %) ist das kinetisch begünstigte *trans*-verknüpfte Isomer. Die Bildung solcher *trans*-verknüpften Cyclobutane erfordert eine Sequenz von schnellem ISC des Triplett- zum Singulett-Diradikals gefolgt von einer schnellen 1,4-Cyclisierung, wobei das Diradikal verdrillt bleibt.^[32]

Wie aus der Literatur^[52] vorgeschlagen erfolgt der primäre Additionsschritt an C-3 des Triplett-angeregten Cyclohexenons. Daraus ergibt sich, dass die Stabilität der unterschiedlichen Diradikale letztendlich zum entscheidenden Faktor für die Orientierung der Addition wird. Durch die destabilisierende Wirkung der zweiten (geminalen) Nitrilgruppe aufgrund ihrer dipolaren Abstoßungskräfte für das C-zentrierte Radikalzentrum^[75] wird das Diradikal **65** bevorzugt gebildet, so dass hier eine KS-Bevorzugung entsteht.

Des weiteren ist die selektive Bildung der tricyclischen Furane 98, 102 und 106 zu

nennen, die sich bei den Umsetzungen des Enons **29** mit den Alkenen **13** und **105** sowie mit dem α,β -ungesättigten Dinitril **33** entstehen. Bei diesen Umsetzungen bilden sich in einer [3+2]-Photocycloaddtion über ein intermediäres Carben die entsprechenden tricyclischen Furane.

Bei Umsetzung von 29 mit 33 bildet sich neben dem Hauptprodukt 102 zu 5 % auch das Diastereomer 103. Die Tatsache, dass sich kein Cyclobutan bildet, zeigt dass die 1,5-Cyclisierung viel schneller ist als das konkurrierende ISC des Triplett- zum Singulett-Diradikal.

Die Furane **98**, **102** und **106** konnten in einer anschließenden Oxigenierung quantitativ in die entsprechenden Indenone **99**, **104** und **107** überführt werden. Letztendlich bietet sich hier die Möglichkeit, auf einen einfachen Syntheseweg regioselektiv mehrfach funktionalisierte tricyclische Furan bzw. Indenone darzustellen.

Hervorzuheben ist weiterhin, dass es gelang, Röntgenstrukturanalysen der *cis*-[2+2]-Photocycloaddukte **64**, **72**, **73** und **87** und der Indenone **99** und **104**, die auf dem oben beschriebenen Syntheseweg dargestellt wurden, zu erhalten. Diese Röntgenstrukturanalysen erleichtern erheblich die Interpretation aller übriger NMR-Spektren.

In den übrigen Umsetzungen entstehen wesentlich komplexere Produktgemische, die sich jedoch in fast allen Fällen komplett charakterisieren ließen.

Bei der Umsetzung von 27 mit 30 entstehen vier Bicyclo[4.2.0]octanone, von denen wird das Hauptprodukt 52 als *cis*-KS-Isomer identifiziert.

In den Reaktionen 28 bzw. 29 mit 30 bilden sich fünf bzw. zwei Cyclobutanaddukte (84 - 88 bzw. 92 - 93), wobei im ersten Fall diese teilweise isoliert wurden. Bei beiden Umsetzungen liegt eine KK-Bevorzugung vor, wobei bei der Reaktion von 29 mit 30 ausschließlich die KK-Addukte entsteht.

Die erforderlichen langen Reaktionszeiten, begründet durch die Einführung eines Substituenten am C-2-Atom des Enons, weisen auf eine sterische Hinderung des Reaktionszentrums hin, die den ersten Angriff an C-2 und den Ringschluss zunehmend erschweren. Letztendlich gewinnt der Zerfall der Diradikale in die Edukte an Bedeutung, womit wiederum die Stabilität der einzelnen Diradikale zum entscheidenden Faktor für die Orientierung der Produkte wird. Durch den +I-Effekt der Methylgruppe bzw. die Resonanzstabilisierung durch die Dreifachbindung, in Verbindung mit der

C. Zusammenfassung

Elektronegativität des Chlors, sind die jeweiligen Diradikale **89** bzw. **94** bevorzugt, so dass eine KK-Orientierung resultiert.

Bei der Bestrahlung von 27 in Gegenwart von 31 erhält man ein komplexes Gemisch aus sechs Cyclobutanen (53 - 58). Der geringe Anteil an *trans*-Produkten (25 %) lässt auf eine hohe Stabilität des intermediären Diradikals schließen, so dass sich bevorzugt die thermodynamisch günstigeren *cis*-Produkte bilden. Unter Berücksichtigung der bereits diskutierten bevorzugten Orientierung des ersten Angriffs sowie der Stabilität der unterschiedlichen Diradikale wird hauptsächlich das Diradikal 59 gebildet, da zwei Methylgruppen ein Radikalzentrum besser stabilisieren als eine Nitrilgruppe, d.h. es kommt hier entgegen der literaturbekannten KK-Orientierung zu einer KS-Bevorzugung im Verhältnis von 4:1.

Bei der Bestrahlung von **29** in Gegenwart von **32** kommt es neben der Bildung von zwei Bicyclo[4.2.0]octanonen (**95** und **96**) auch zur Bildung eines tricyclischen Furans (**97**, 13 %). Ebenso wie bei **27** liegt hier eine KS-Bevorzugung vor, die durch die destabilisierende Wirkung der beiden Nitrilgruppen und durch die sterische Hinderung für den ersten Angriff hervorgerufen wird, so dass sich bevorzugt das 1,4-Diradikal **100** bildet.

Bei den photochemischen Umsetzungen von 27, 28, 29 und 79 mit 33 kommt es zu unterschiedlichen Produktgemischen.

Ebenso wie bei der selektiven Umsetzung von **29** mit **33** liegt bei Reaktion von **27** mit **33** eine KK-Bevorzugung vor. Es kommt hier zur Bildung von sechs Cyclobutanaddukten (**69** - **74**), die teilweise isoliert wurden. Der Anteil der *trans*-Produkte ist hier noch geringer, so dass die oben beschriebenen Stabilität des Diradikals noch stärker zu sein scheint.

Bei der Reaktion von **28** mit **33** konnte das Hauptprodukt **82** (50 %) charakterisiert werden. Die NMR-Daten weisen auf das *exo-cis*-KK-Addukt hin. Aufgrund der hohen Reaktionszeiten bilden sich jedoch Nebenprodukte, die die Aufarbeitung erheblich erschweren und letztendlich eine Isolierung verhindern. Daher erfolgte die Charakterisierung aus dem Rohgemisch.

Bei der Umsetzung **79** mit **33** konnte das Hauptprodukt (75 %) **80** isoliert und charakterisiert werden. Die NMR-Spektren weisen dabei auf das *exo-cis*-KS-Isomer hin.

Diese Änderung in der Orientierung wird durch die stabilisierende Wirkung des Schwefels im Triplett-Zustand auf das benachbarte Radikalzentrum hervorgerufen, so dass hier bevorzugt das C-6 Atom angegriffen wird.

Bei allen anderen Umsetzung mit **33** liegt eine KK-Bevorzugung bzw. bei der Umsetzung mit **79** eine KS-Orientierung vor, welche nur über die Richtung des ersten Angriffs und über die Stabilität der unterschiedlichen 1,4-Diradikale erklärbar ist. Dabei scheint die stabilisierende Wirkung von zwei geminalen Nitrilgruppen größer zu sein als die einer Methylgruppe, so dass sich die jeweiligen 1,4-Diradikale **75**, **81** und **83** bevorzugt bilden.

Die Umsetzung von 27 mit 34 kann als Versuch gewertet werden, über das 1,4-Diradikal 109 in einer [4+2]-Photocycloaddition zu den entsprechen Naphthalenonen zu kommen. Entgegen den Erwartungen entstand eine komplexe Mischung von Bicyclo[4.2.0.]octanen (111 - 117). Diese Produkte zerfallen unter saurer Katalyse, und deshalb erfolgte die Charakterisierung aus dem Rohgemisch. ¹H-NMR-Untersuchungen zeigen die charakteristischen olefinischen Signale für Buta-1,3-dienyl-, Ethenyl- und Buta-1,2-dienyl-Strukturen, d.h. dass die Addition an allen drei C-C-Doppelbindungen stattfand. Warum es hier nicht zur 1,6-Cyclisierung kommt, ist über berechneten Stabilitäten der 1,2-Butadien-4-yl-Radikals 119 und des 1,3-Butadien-2-yl-Radikals 120 erklärbar. Das Radikal 119 ist stabiler als 120, d.h. die Spindichte bei den Diradikalen 109 und 118 ist an C-4 höher als an C-6, was eine 1,6-Cyclisierung ausschließt.

||

||

CN //CN

0

81

82

H

83

105

106

109

. 11-

116

=C=

111a,b

0

Η

H

115

117

D. Abstract

D. Abstract

This thesis is related to research on the photochemical behaviour of cyclohex-2-en-1ones 27 - 29 in the presence of the multiply and differentially substituted alkenes 30 -33. Special attention was paid to both the regio- and stereoselectivity, as well as to the overall efficiencies of addition, as these factors are of primary importance in the preparative application of photoaddition of cyclic enones to (asymmetric) alkenes.

Results on the photocycloaddition of cyclohexenones to fumaric acid dinitrile (*E*-but-2endinitrile)^[78], to simple allenes^[15,18], to acrylonitrile (47)^[15,22,60,74], to methacrylonitrile (48)^[60,74] and to *tert*.-butylacrylonitrile (49)^[60,74], respectively, have been reported in the literature. Except for the reaction with fumaric acid dinitrile, complex product mixtures arise from these cycloadditions, head-to-head adducts being formed preferentially.

The most important results are summarized as follows:

The regioselective synthesis of **64** from (excited) **27** and **32**. This reaction first affords a mixture of the diastereomeric bicyclo[4.2.0]octanones **63** and **64**, both being head-to-tail isomers, but the primary main product (64 %), the *trans*-fused isomer **63**, is readily converted to the *cis*-fused isomer **64** in the presence of base. The formation of such trans-fused cyclobutanes requires a sequence of rapid ISC of the triplet- to singulet-biradical, followed by a fast 1,4-cyclisation of this still twisted intermediate.^[32] As suggested in the literature^[52], primary addition will occur at C-3 of the triplet-excited cyclohexenone and therefore the stabilities of the addition. Due to the destabilizing effect of the second (geminal) cyanogroup, owing to dipolar repulsion forces at the C-centered radical moiety^[75], the formation of biradical **65** is favoured thus, resulting in a head-to-tail preference.

<u>The selective formation tricyclic furans 98, 102 and 106.</u> They are formed in the reactions of (excited) enone 29 with alkenes 13, 105, and with the α,β -unsaturated dinitrile 33, respectively. In these conversions, the respective tricyclic furans are formed. by a stepwise [3+2]-photocycloaddition via an intermediary carbene. In the reaction of 29 with 33, 5% of diastereomer 103 is formed besides the main product 102. The fact

that no cyclobutane being formed shows that 1,5-cyclisation is much faster than competing ISC of the triplet- to the corresponding singlet biradical. Subsequent oxygenation of furans **98**, **102** and **106** leads to the corresponding indenones **99**, **104** and **107**, respectively.

<u>Crystal structure data.</u> In the course of this work, x-ray structures of the cis-[2+2]-photocycloadducts **64**, **72**, **73**, and **87** as well as of the indenones **99** and **104** have been measured. This x-ray data facilitated the interpretation of almost all further NMR spectra.

The following conversions led to more complex product mixtures, which, however, could be elucidated completely in almost all cases by chromatographic separation, isolation and spectroscopic characterisation of the products.

Photocycloaddition of **27** to **30** affords four isomeric bicyclo[4.2.0]octanones, of which the main product **52** was successfully identified as being a *cis*-head-to-tail isomer.

Reaction of 28 resp. 29 with 30 resulted in five resp. two cyclobutaneadducts (84 - 88 resp. 92 - 93), with some of them being isolated in the first case. Both conversions show head-to-head preference, the reaction of 29 with 30 resulting in head-to-head adducts exclusively.

Required long reaction times, caused by introduction of a substituent at C-2 of the enone, point towards a sterical hindrance of the center of reaction, thus aggravating the first attack on C-2 and the cyclisation increasingly. In the end, the decay of biradicals to their respective educts gains importance, the stability of them very diradicals becoming the decisive factor for the orientation of the products hence. By the +I-effect of the methyl group resp. the resonance stabilization from the triple bond in combination with the electronegativity of chlorine, the corresponding biradicals **89** and **94**, respectively, are favoured, head-to-head orientation resulting thereof.

Irradiation of **27** in the presence of **31** leads to a complex product mixture of six cyclobutanes (**53** - **58**). The low content of *trans*-oriented products (25%) indicates a high stability of the intermediary biradical, the thermodynamically favoured *cis*-products dominating hence. Taking into account the favoured orientation of the first attack discussed above as as the stability of them different biradicals, mostly the biradical **59** is being formed, as two methyl groups will stabilize a center of a radical better than one

D. Abstract

cyano group, i.e. opposed to the head-to-head orientation known from literature, head-to-tail orientation is favoured by a ratio of 4:1.

Aside from the formation of two bicyclo[4.2.0]octanones (95 und 96), the irradiation of 29 in the presence of 32 results in the formation of a tricyclic furan (97, 13%). As with 27, head-to-tail preference occurs, caused by destabilizing effects of them two cyano groups and by the sterical hindrance of the first attack, thus the 1,4-biradical 100 is being formed preferably.

Photochemical reactions of 27, 28, 29 and 79, respectively, with 33 result in different product mixtures.

As with the conversion of **29** with **33**, the reaction of **27** with **33** shows a preference for head-to-head orientation. Here, formation of six cyclobutaneadducts (**69** - **74**) occurs, some of them being isolated. Percentage of *trans*-products is even lower here, indicating an even higher stability of the biradical discussed above.

In the reaction of **28** with **33**, the main product **82** (50%) could be characterized. NMRdata indicate the *exo-cis*-head-to-head adduct. However, due to long reaction time byproducts were formed, complicating the work-up and preventing the isolation in the end. Hence, characterization was done from the raw mixture.

In the conversion of **79** with **33** the main product (75%) **80** could be isolated and characterized. NMR-spectra indicate the *exo-cis*-head-to-tail adduct. This change in orientation is being caused by the stabilizing effect of the sulfur in triplet state towards the neighbouring radical center, hence favouring the attack on C-6 here.

All other conversions regarding **33** show preferred head-to-head orientation (resp. head-to-tail orientation in the case of **79**), which can only be explained by the orientation of the first attack and the stabilities of the different 1,4-biradicals. Hence, the stabilizing effect of two geminal cyano groups seems to be larger than that of one methyl group, the respective 1,4 biradicals **75**, **81** and **83** forming preferably thus.

The reaction of (excited) 27 with vinylallene 34 was run in order to synthesize naphthalenones as [4+2]-cycloadducts *via* biradical 109 as intermediate. Instead, a complex mixture of bicyclo[4.2.0]octanones 111 – 117 was obtained. Most of these products decompose in the presence of traces of acid, i.a. SiO₂, and therefore their characterization stems from the original product mixture. In the ¹H NMR spectrum

typical signals for buta-1,2-dienyl-, buta-1,3-dienyl- and ethenyl moieties indictae that the photoaddition occurs at all three double bonds of **34**. The fact that no 1,6-cyclization occurs can be explained by both relative stablities of biradicals (**119** vs **120**) and by relative spin densities on the different C-atoms of these intedrmediates (**109** vs **118**).

E. Experimenteller Teil

1. Allgemeine Methoden

¹ H-NMR- Spektren:	400 MHz, WM 400 (Bruker)
	500 MHz, WM 500 (Bruker)
¹³ C-NMR-Spektren :	100.61 MHz, WM 400 (Bruker)
	125.77 MHz, WM 500 (Bruker)

Für NMR-Spektren verwendete Abkürzungen und Bezugspunkte:

Die chemischen Verschiebungen der ¹H- und ¹³C-Spektren sind in δ -Einheiten angeben und beziehen sich auf $\delta = 0.00$ ppm für Tetramethylsilan, das als interner Standard allen Proben zugesetzt wurde. Für Multiplizität der NMR-Signale werden folgende Abkürzungen verwendet:

S (Singulett), d (Dublett), t (Triplett), q (Quartett), m (Multiplett),

Prim. (primär), sek. (sekundär), tert. oder t (tertiär), quart. (quartär).

Die Angaben aller Kopplungskonstanten J erfolgt in Hertz (Hz), die Indizes kennzeichnen die jeweils miteinander koppelnden Kerne.

Alle ¹³C-Spektren sind Protonen-Breitband entkoppelt. Die Multiplizität der ¹³C-Signale wurde mit Hilfe von DEPT- bzw. PENDANT-Spektren ermittelt. Die Zuordnung der Signale erfolgte gebenenfalls über ¹H¹H- bzw. ¹H¹³C-Korrelationen [*Correlation Spektroscopy* (COSY) bzw. *Heteronuclear Multiple Quantum Coherence* (HMQC)] sowie über *Nuclear Overhauser Effect Spectroscopy* (NOESY)- und *Heteronuclear Multiple Bond Correlation* (HMBC)-Spektren.

Röntgenstrukturanalyse:	Die Substanzen 63,99 und 104 wurden auf einem	
	Hilger & Watts Y 290 Diffractometer bei 293 K mit	
	einer Mo K α Strahlung ($\lambda = 0.71073$) vermessen. Die	
	restlichen Strukturuntersuchungen wurden auf einem	
	SMART (Bruker 2000) Diffraktometer bei 153 K	
	vorgenommen. Gerechnet wurden alle Strukturen mit	
	der SHELXL-97 Software und die Kristallstruktur	
	Abbildungen wurden mit ORTEP-3 (Oak Ridge	
	Thermal Ellipsoid Plot) Version 1.07 erzeugt.	
Massenspektrometrie:	Varian MAT 311A-Massenspektrometer (70 eV)	
	gekoppelt mit Fratovap 2400 T-Gaschromatographen	
	(Carlo Erba) 25 m Quarzkapillare mit SE-54.	
Gaschromatograph:	8420 Capillary Gas-Chromatograph (Perkin Elmer)	
	mit Integrator C-R6A Chromatopac.	
	30 m Fused-Silica Kapillarsäule belegt mit SE-30.	
	Trägergas Helium, Detektion FID.	
	Temperaturprogramm: 100 °C, Aufheizen auf 220 °C	
	mit 10 °C/min, dann 28 min isotherm bei 200 °C.	
Dünnschichtchromatographie:	Analytisch: Kieselgel 60F ₂₅₆ , auf Aluminium (Merk)	
	Aluminiumoxid Polygram® Alox N/UV254, auf	
	Polyester (Macherey-Nagel)	
	Präparativ: PSC-Platten 20 x 20 cm, Kieselgel 60 F_{254} ,	
	2 mm Schichtdicke (Merk)	
Säulenchromatographie:	Kieselgel 60, 0.040-0.063 mm Korngröße (Merk)	
	neutrales Aluminiumoxid (Typ W 200), Alumina	
	Woelm [®] , N-Super I (Woelm Pharma)	

E. Experimenteller Teil

Die Lösungsmittel für die präparative Dünnschicht- und Säulenchromatographie wurden vor dem Gebrauch destilliert.

Schmelzpunkte:	Elektron Melting Point Apparatus oder
	Olympus BH-Polarisationsmikroskop
	mit Mettler FP 82-Heiztisch
Bestrahlungen:	Rayonet Photoeraktor RPR-100 (The Southern N.E.
	Ultraviolett Co.) mit (16) 350 nm Lampen

2. Beschreibung der durchgeführten Versuche

2.1. Synthesen

2.1.1. Synthese von 5,5-Dimethylcyclohex-2-en-1-on (27) und 2,5,5-Trimethylcyclohex-2-en-1-on (28)

2.1.1.1. Darstellung von 2,5,5-Trimethylcyclohexan-1,3-dion (36)

Unter Schutzgas werden zu einer Lösung aus 5.1 g (222 mmol) Natrium in 200 ml frisch abs. Ethanol 30.0 g (214 mmol) 5,5-Dimethylhexan-1,3-dion (Dimedon, **36**) gegeben und 10 min bei RT gerührt. Das Lösungsmittel wird am Rotationsverdampfer unter vermindertem Druck abdestilliert und der verbleibende Rückstand in 80 ml abs. DMF gelöst.

Diese Lösung wird langsam zu 35.5 g (250 mmol) Iodmethan getropft und 40 min unter Rückfluss erhitzt. Die Reaktionslösung wird mit 200 ml Et₂O verdünnt und mit 10%iger Na₂CO₃-Lösung extrahiert. Die wässrige Phase wird mit verd. Salzsäure angesäuert und der Niederschlag abfiltriert. ^[60]

Ausbeute: 3.1 g (20 mmol, 9.3 %); (Lit.: 9.5 %).

Weißer Feststoff.

*R*_F-Wert: 0.60 (PE:EE 1:2).

Smp.: 51-52 °C; (Lit.: 52 °C).

¹**H-NMR** (400 MHz, CDCl₃): $\delta =$

3.40 (q, 1 H, H-2, J = 6.6 Hz); 2.69 (d, 2 H, H-4a, H-6a, J = 13.7 Hz); 2.49 (d, 2 H, H-4b, H-6b, J = 13.7 Hz), 1.21 (d, 3 H, Me-2, J = 6.6 Hz); 0.95 (s, 3 H, Me-5) ppm.

¹³C-NMR (100.61, CDCl₃): $\delta =$

204.50 (2 C, C-1, C-3); 94.53 (C-2); 51.88 (2 C, C-4,C-6); 30.55 (Me-2); 26.23 (2 C, Me-5) ppm.

Kopplungskonstanten:

 ${}^{3}J_{2/Me-2} = 6.6$; ${}^{2}J_{4a/4b} = {}^{2}J_{6a/6b} = 13.7$ Hz.

GC-MS (70eV): *m/z* = 154 (M⁺, 25 %); 83 (100 %).

2.1.1.2. Darstellung der Enolether (AAV)

Zu einer Lösung aus 200 ml Ethanol und 400 ml Chloroform werden 280 mmol des jeweiligen Cyclohexan-1,3-dions und 1 g (6 mmol) p-Toloulsulfonsäure gegeben und 8 Stunden am Wasserabscheider unter Rückfluss zum Sieden erhitzt. Die erkaltete Lösung wird viermal mit gesättigter NaHCO₃-Lösung, Wasser und NaCl-Lösung gewaschen, über MgSO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer unter vermindertem Druck abdestilliert.^[60,61]

2.1.1.2.1. Darstellung von 3-Ethoxy-5,5-dimethylcyclohex-2-en-1-on (38)

Edukt: 40 g (285 mmol) 5,5-Dimethylcyclohexan-1,3-dion (35). [61]

Reinigung: Destillation im Vakuum.

Ausbeute: 35.5 g (211 mmol, 74 %); (Lit.: 70 - 75).

Weißer Feststoff.

Smp.: 61 °C; (Lit: 62 °C).

¹**H-NMR** (400 MHz, CDCl₃): $\delta =$

5.34 (s, 1 H, H-2); 3.90 (q, 2 H, H-1', J = 7.1 Hz); 2.28 (s, 2 H, H-6); 2.21 (s, 2 H, H-4); 1.36 (t, 3 H, H-2', J = 7.1 Hz); 1.07 (s, 6 H, Me-5)

¹³**C-NMR** (100.61, CDCl₃): δ =

199.98 (C-1); 176.57 (C-3); 101.99 (C-2); 64.63 (C-1'); 51.21 (C-6); 43.39 (C-4); 32.88 (C-5); 28.70 (2C, Me-5); 14.53 (C-2') ppm.

Kopplungskonstanten:

 $^{3}J_{1'/2'} = 7.1$ Hz.

2.1.1.2.2. Darstellung von 3-Ethoxy-2,5,5-trimethylcyclohex-2-en-1-on (37)

Edukt:	3.1 g (20 mmol) 2,5,5-Trimethylcyclohexan-1,3-dion (36). ^[60]

Reinigung: Säulenchromatographisch.

Ausbeute: 2.52 g (15 mmol, 75 %); (Lit.: 76 %).

Gelbes Öl.

 $R_{\rm F}$ -Wert: 0.10 (PE:Et₂O 3:2).

Smp.: 52 °C; (Lit.: 52 °C).

¹**H-NMR** (400 MHz, CDCl₃): $\delta =$

4.05 (q, 2 H, H-1', J = 7.1Hz); 2.35 (d, 2 H, H-4, J = 1.5 Hz); 2.24 (s, 2 H, H-6); 1.71 (t, 3 H, Me-2, J = 1.5 Hz); 1.35 (t, 3H, H-2', J = 7.1 Hz); 1.08 (s, 6 H, Me-5) ppm. ¹³C-NMR (100.61, CDCl₃): δ =

198.60 (C-1); 169.50 (C-3); 113.80 (C-2); 63.45 (C-1'); 50.25 (C-4); 39.38 (C-6); 31.95 (C-5); 28.42 (2C, Me-5); 15.40 (C-2'); 7.25 (Me-2) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1'/2'} = 7.2$; ${}^{4}J_{4/Me-2} = 1.5$ Hz.

GC-MS (70eV): m/z =182 (M⁺, 50 %); 98 (100 %).

2.1.1.3. Reduktion der Enolether (AAV)

Zu einer Suspension von 0.3 g (8 mmol) LiAlH₄ in 17 ml abs. Et₂O wird unter Schutzgas 18 mmol des entsprechenden Enolethers getropft und anschließend 30 min unter Rückfluss zum Sieden erhitzt.

Nach Abkühlung auf RT wird die Reaktion durch vorsichtige Zugabe von Wasser beendet, der entstehende Feststoff wird abfiltriert und das Lösungsmittel unter vermindertem Druck am Rotationsverdampfer entfernt. Das Rohprodukt wird in Methanol aufgenommen, mit 3 ml gesättigter Oxalsäure-Lösung versetzt, 12 Stunden bei RT gerührt und das Lösungsmittel erneut unter vermindertem Druck am Rotationsverdampfer entfernt. Der Rückstand wird in PE/Wasser im Verhältnis 1:1 aufgenommen, die wässrige Phase zweimal mit PE extrahiert, die vereinigten organischen Phasen zweimal mit NaHCO₃-Lösung gewaschen, über MgSO₄ getrocknet und unter vermindertem Druck das Lösungsmittel am Rotationsverdampfer entfernt.^[60,62] 2.1.1.3.1. Darstellung von 5,5-Dimethylcyclohex-2-en-1-on (27)

Edukt: 4.6 g (30 mmol) 3-Ethoxy-5,5-dimethylcyclohexan-1,3-dion (38).^[62]

Reinigung: Destillation im Vakuum.

Ausbeute: 2.7 g (22 mmol, 73 %); (Lit.: 62 - 75 %).

Farblose Flüssigkeit.

Sdp.: 84 °C_{39 hPa}; (Lit.: 66 - 68.5 °C_{0.53 hPa}).

¹**H-NMR** (400 MHz, CDCl₃): $\delta =$

6.86 (dt, 1 H, H-3, J = 4.1, 10.1 Hz); 6.03 (dt, 1 H, H-2, J = 2.0, 10.1 Hz); 2.28 (s, 2 H, H-6); 2.25 (dd, 2 H, H-4, J = 2.0, 4.1 Hz); 1.06 (s, 6 H, Me-5) ppm.

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

6.16 (dt, 1 H, H-3, J = 4.1, 10.1 Hz); 5.95 (dt, 1 H, H-2, J = 2.0, 10.1 Hz); 2.02 (s, 2 H, H-6); 1.58 (dd, 2 H, H-4, J = 2.0, 4.1 Hz); 0.69 (s, 6 H, Me-5) ppm.

¹³**C-NMR** (100.61 MHz, CDCl₃): δ = 199.97 (C-1); 148.39 (C-3); 128.99 (C-2); 51.77 (C-6); 39.90 (C-4); 33.88 (C-5); 28.32 (2C, Me-5) ppm.

Kopplungskonstanten:

 ${}^{3}J_{2/3} = 10.1$, ${}^{4}J_{2/4} = 2.0$; ${}^{3}J_{3/4} = 4.4$ Hz.

2.1.1.3.2. Darstellung von 2,5,5-Trimethylcyclohex-2-en-1-on (28)

Edukt: 2.52 g (15 mmol) 3-Ethoxy-2,5,5-trimethylcyclohex-2-en-1-on (36).^[60]

Ausbeute: 1.52 g (11 mmol, 73 %); (Lit.: 79 %).

Gelbes Öl.

¹**H-NMR** (400 MHz, CDCl₃): δ = 6.60 (qt, 1 H, H-3, J = 3.1, 4.1 Hz); 2.28 (s, 2 H, H-6); 2.22 (dq, 2 H, H-4, J = 1.9, 4.1 Hz); 1.78 (dt, 3 H, Me-2, J = 1.9, 3.1 Hz); 1.03 (s, 6 H, Me-5) ppm.

¹³**C-NMR** (100.61, CDCl₃): δ = 200.13 (C-1); 143.38 (C-3); 134.71 (C-2); 51.89 (C-6); 40.17 (C-4); 34.26 (C-5); 28.32 (2C, Me-5) ppm.

Kopplungskonstanten:

 ${}^{4}J_{3/Me-2} = 3.1; {}^{5}J_{4/Me-2} = 1.9; {}^{3}J_{3/4} = 4.1 \text{ Hz}.$

GC-MS (70eV): m/z =138 (M⁺, 30 %); 82 (100 %).

2.1.2. Synthese von 5,5-Dimethyl-2-(3',3'-dimethylbut-1'-inyl)-cyclohex-2-en-1-on (29)

2.1.2.1. Darstellung von 1,2-Dibrom-3,3-dimethylbutan (42)

Zu einer auf -78 °C gekühlte Lösung aus 12.3 g (150 mmol) 3,3-Dimethylbut-1-en (**41**) in 30 ml abs. Et₂O werden 24 g (150 mmol) Brom zu getropft, so dass die Temperatur nicht über - 60 °C steigt.

Anschließend wird langsam auf RT erwärmt, 40 ml Wasser zugeben und 2 Minuten gerührt. Die organische Phase wird abgetrennt und die wässrige Phase dreimal mit Et₂O extrahiert. Die vereinigten organischen Phasen werden mit NaHCO₃- und NaCl- Lösung gewaschen, über MgSO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer unter vermindertem Druck entfernt.^[63]

Ausbeute: 32.57 g (134 mmol, 89 %); (Lit.: 72 %).

Farblose Flüssigkeit.

Sdp.: 90 °C_{20 hPa}; (Lit.: 81 - 83 °C_{12 hPa}).

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

4.05 (dd, 1 H, H-1a, J = 2.7, 9.7 Hz); 3.97 (dd, 1 H, H-1b, J = 2.7, 11.4 Hz); 3.57 (dd, 1 H, H-2, J = 9.7, 11.4 Hz); 1.12 (s, 9 H, *t*-Bu) ppm.

¹³**C-NMR** (125 MHz, CDCl₃): δ = 69.46 (C-2); 37.44 (C-3); 27.95 (Me) ppm.

Kopplungskonstanten:

 ${}^{2}J_{1a/1b} = 2.7; \; {}^{3}J_{1a/2} = 9.7; \; {}^{3}J_{1b/2} = 11.4 \text{ Hz}.$

2.1.2.2. Darstellung von 3,3-Dimethylbut-1-in (40)

Zu einer Suspension aus 30 g (267 mmol) Kalium-*tert*-butanolat in 50 abs. DMSO werden 25.1 g (103 mmol) **42** getropft und das Produkt in situ abdestilliert. Anschließend wird die Reaktionsmischung auf 95 °C erhitzt und das restliche Produkt abdestilliert.^[63]

Ausbeute: 6.51 g (79 mmol, 77 %); (Lit.: 91 %).

Farblose Flüssigkeit.

Sdp.: 38 - 40 °C; (Lit.: 36 - 38 °C).

¹**H-NMR** (400 MHz, CDCl₃): δ = 2.10 (s, 1 H, H-1); 120 (s, 9 H, *t*-Bu) ppm.

2.1.2.3. Darstellung von 2-Iod-5,5-dimethylcyclohex-2-en-1-on (39)

Unter Stickstoff werden bei 0 °C zu einer Lösung aus 5 g (40.3 mmol) **27** in 200 ml abs. CCl₄/Pyridin (1:1) eine Lösung aus 22.2 g (87 mmol) Iod in 200 ml CCl₄/Pyridin (1:1) zu getropft und anschließend 20 Stunden bei RT gerührt. Die Reaktionsmischung wird mit ca. der vierfachen Menge Et₂O verdünnt, mit NaS₂O₃-Lösung , Wasser, 10 %iger HCl-, NaHCO₃-Lösung und NaCl-Lösung gewaschen, über MgSO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer unter vermindertem Druck abdestilliert. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch.^[64]

Ausbeute: 7.54 g (30.2 mmol, 75 %); (Lit.: 81 %).

Braunes Öl.

*R***F-Wert**: 0.63 (PE:EE 4:1).

¹**H-NMR** (400 MHz, CDCl₃): $\delta =$

7.61 (t, 1 H, H-3, J = 4.4 Hz); 2.50 (s, 2 H, H-6); 2.32 (d, 2H, H-4, J = 4.4 Hz); 1.07 (s, 6 H, Me-5) ppm.

¹³C-NMR (125 MHz, CDCl₃): $\delta =$

192.90(C-1); 157.44 (C-3); 102.95 (C-2); 51.10 (C-6); 44.29 (C-4); 34.90 (c-5); 28.41 (2 C, Me) ppm.

Kopplungskonstanten:

 $^{3}J_{3/4} = 4.4$ Hz.

2.1.2.4. Darstellung von 5,5-Dimethyl-2-(3',3'-dimethylbut-1'-inyl)-cyclohex-2-en-1-on (29)

Zu einer Lösung aus 6.3 (25 mmol) **39** in 30 ml abs. THF werden unter Schutzgas bei 0 °C 10.8 ml (76.5 mmol) Diisopropylamin, 6.3 g (76.5 mmol) **40**, 510 mg (2.7 mmol) Kupfer(I)iodid und 701 mg (100 mmol) Bis-(triphenylphosphin)palladium(II)chlorid gegeben und die Lösung 2.5 h bei RT gerührt.

Anschließend wird das Reaktionsgemisch auf 50 ml Wasser gegossen, die Phasen getrennt und die wässrige Phase mit Et₂O extrahiert. Die vereinigten organischen Phasen werden mit NaCl-Lösung gewaschen, über MgSO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer unter vermindertem Druck abdestilliert. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch.^[68]

Ausbeute: 2.86 g (30.2 mmol, 56 %); (Lit.: 60 %).

Gelber Feststoff.

*R*_F-Wert: 0.41 (PE:EE 6:1).

Smp.: 77 - 78 °C; (Lit.: 77°C).

¹**H-NMR** (400 MHz, CDCl₃): $\delta =$

7.03 (t, 1 H, H-3, J = 4.6 Hz); 2.32 (s, 2 H, H-6); 2.30 (d, 2 H, H-4, J = 4.6 Hz); 1.28 (s, 9 H, *t*-Bu); 1.05 (s, 6 H, Me-5) ppm.

¹³C-NMR (125 MHz, CDCl₃): $\delta =$

196.05 (C-1); 150.57 (C-3); 124.68 (C-2); 110.52 (C-1'); 73.00 (C-2'); 51.73 (C-6); 40.30 (C-4); 33.92 (C-5); 30.95 (Me-*t*-Bu); 28.29 (2 C, Me); 27.96 (C-*t*-Bu) ppm.

Kopplungskonstanten:

 $^{3}J_{3/4} = 4.6$ Hz.

2.1.3. Synthese der α,β-ungesättigten Nitrile 32 und 33 und des Vinylallens 34

2.1.3.1. Darstellung von Isopropylidenmalonsäuredinitril (32)

In eine Lösung aus 75 ml Toluol und 14 ml (310 mmol) Aceton werden 16.5 g (250 mmol) Malonsäuredinitril, 3.2 ml (50 mmol) Eisessig und 2 g (25 mmol) Ammoniumacetat gelöst und 8 Stunden am Wasserabscheider unter Rückfluss zum Sieden erhitzt. Die erkaltete Lösung wird gesättigter NaCl-Lösung gewaschen, über MgSO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer unter vermindertem Druck abdestilliert. Das Produkt wird durch Destillation gereinigt.^[69,70]

Ausbeute: 13.71 g (130 mmol, 52 %); (Lit.: 90 %).

Farblose Flüssigkeit.

Sdp.: 106 - 107 °C_{28 hPa}; (Lit.: 100 - 102 °C_{16 hPa}).

¹**H-NMR** (400 MHz, CDCl₃): δ = 2.32 (s, 6 H, Me) ppm.

¹³**C-NMR** (100.61 MHz, CDCl₃): δ = 178.26 (C-2); 111.72 (CN); 86.40 (C-1); 24.48 (2 C, Me) ppm.

2.1.3.2. Darstellung von Ethylidenmalonsäuredinitril (33)

Zu einer heißen Lösung aus 0.73 g (4.4 mmol) Kaliumiodid in 10 ml dest. Wasser gibt man 1.13 g (4.4 mmol) Iod, kühlt die Lösung auf RT ab und gibt 5 ml (88 mmol) Acetaldehyd und 5.85 g (88 mmol) Malonsäuredinitril hinzu. Das Reaktionsgemisch wird 2 min bei RT gerührt und 20 min auf 70 °C erhitzt. Nach dem Abkühlen wird Natriumthiosulfat zugegeben und mit Chloroform extrahiert. Die vereinigten organischen Phasen werden mit dest. Wasser gewaschen, über MgSO₄ und getrocknet das Lösungsmittel am Rotationsverdampfer unter vermindertem Druck abdestilliert. Das Produkt wird durch Destillation gereinigt.^[71]

Ausbeute: 4.8 g (52 mmol, 59 %); (Lit.: 80 %).

Farblose Flüssigkeit.

Sdp.: 80 °C_{40 hP}.

¹**H-NMR** (400 MHz, CDCl₃): δ = 7.41 (q, 1 H, H-3, J = 7.3 Hz), 2.29 (d, 3 H, Me, J = 7.3 Hz) ppm.

¹³**C-NMR** (100.61 MHz, CDCl₃): δ = 165.35 (C-3); 112.41 (CN); 98.88 (CN); 91.69 (C-2); 19.15 (C-4) ppm.

Kopplungskonstanten:

 $^{3}J_{3/4} = 7.3$ Hz.

2.1.3.3. Synthese von Penta-1,2,4-trien (34)

2.1.3.3.1. Darstellung einer 2.1 M 1,2-Dibrom-1-ethoxyethan-Lösung (44)

Zu einer auf - 78 °C gekühlten Lösung aus 48 ml (0.5 mol) Ethylvinylether (**43**) in 200 ml abs. Diethylether werden 25 ml (0.51 mol) Brom unter Wasserausschluss getropft. Die Zugabe von Brom wird beendet, wenn die Lösung sich nicht mehr entfärbt. Durch Zugabe von 2.5 ml (26 mmol) **43** wird die Lösung wieder entfärbt. (Lit.: Ausbeute: 80 %)^[72].

Sdp.: 37 °C_{30hPa} (Lit.: 36.5 °C_{30hPa}).

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

5.46 (dd, 1 H, H-1, J = 2.5, 9.3 Hz); 3.58 (dd, 1 H, H-2a, J = 9.3, 10.7 Br Hz); 3.48 (dq, 1 H, H-1a', J = 7.2, 9.6 Hz); 3.37 (dd, 1 H, H-2b, J = 2.5, 10.7 Hz); 2.98 (dq, 1 H, H-1b', J = 6.9, 9.6 Hz); 0.85 (dd, 3 H, H-2', J = Br 6.9, 7.2 Hz) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

6.02 (dd, 1 H, H-1, J = 2.5, 9.3 Hz); 3.95 (dq, 1 H, H-1a', J = 7.2, 9.6 Hz); 3.94 (dd, 1 H, H-2a, J = 9.3, 10.7 Hz); 3.89 (dd, 1 H, H-2b, J = 2.5, 10.7 Hz); 3.64 (dq, 1 H, H-1b', J = 6.9, 9.6 Hz); 0.85 (dd, 3 H, H-2', J = 6.9, 7.2 Hz) ppm.

¹³**C-NMR** (125.77 MHz, CDCl₃): δ = 90.78 (C-1); 68.22 (C-2); 34.36 (C-1'); 13.85 (C-2') ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/2a} = 9.3; \; {}^{3}J_{1/2b} = 2.5; \; {}^{2}J_{2/2} = 10.7; \; {}^{2}J_{1'/1'} = 9.6; \; {}^{3}J_{1a'/2'} = 7.2; \; {}^{3}J_{1b'/2'} = 6.9 \; Hz.$

2.1.3.3.2. Darstellung von 5-Brom-4-ethoxypent-1-in (45)

2.1.3.3.2.1. Herstellung einer 1 M Propinylmagnesiumbromid-Lösung

Zu einer Suspension aus 5.34 g (220 mmol) Magnesium in 200 ml abs. Et₂O gibt man 0.5 g (2mmol) Iod. Dann startet man die Reaktion durch Zugabe einer kleinen Menge Bromalkins. Nach Anspringen der Reaktion tropft man der Rest der 20 ml (220 mmol) 3-Bromprop-1-in zu, so dass die Temperatur des Reaktionsgemisches bei 35 °C bleibt.^[73]

2.1.3.3.2.2. Kupplung

Zu der Grinard-Lösung wird bei – 15 °C unter Stickstoff 100 ml der 2.1 molaren Lösung von 44 zugetropft. Anschließend wird 16 h bei Raumtemperatur gerührt.

Die Reaktionslösung wird auf Eis gegeben, die organische Phase abgetrennt und die wässrige Phase mit Et₂O extrahiert. Die vereinigten organischen Phasen mit gesättigter NaCl-Lösung gewaschen, über MgSO₄ getrocknet, das Lösungsmittel entfernt und im Vakuum destilliert.^[73]

Ausbeute: 24.31 g (130 mmol, 62 %); (Lit.: 70 %).

Farblose Flüssigkeit.

Sdp.: 69 °C_{16 hPa}; (Lit.: 70 °C_{16 hPa}).

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$ 2.97 (m, 5 H, H-1', H-4,H-5); 2.06 (dd, 2 H, H-3, J = 2.5, 6.9 Hz); 1.54 (t, 1 H, H-1, J = 2.5 Hz); 0.76 (t, 3 H, H-2', J = 6.9 Hz) ppm.

¹**H-NMR** (500 MHz, CDCl₃): δ = 3.59 (m, 5 H, H-1', H-4, H-5); 2.57 (dd, 2 H, H-3, J = 2.5, 6.9 Hz); 2.03 (t, 1 H, H-1, J = 2.5 Hz); 1.24 (t, 3 H, H-2', J = 6.9 Hz) ppm. ¹³**C-NMR** (400 MHz, CDCl₃): δ = (* abgeschätzt aus dem HMQC und HMBC) 80.05 (C-2); 77.0* (C-4); 70.72 (C-1); 65.22 (C-2'); 33.99 (C-5); 23.10 (C-3); 15.39 (C-1') ppm.

Kopplungskonstanten:

 ${}^{4}J_{1/3} = 2.5; {}^{3}J_{3/4} = 6.9; {}^{3}J_{1'/2'} = 6.9 \text{ Hz}.$

2.1.3.3.3. Darstellung von Penta 1-en-4-in-(46)

Eine Suspension aus 5.72 g (85 mmol) Zink in 30 ml n-Butanol wird zum Sieden erhitzt. Zu dieser Suspension werden 7 g (37 mmol) **45** zugetropft. Dann wird das Azetrop aus Kohlenwasserstoff/Alkohol abdestillert.

Eine Trennung des Produktes vom Alkohol erfolgte nach dem nächsten Schritt.^[73]

Ausbeute: 2 g (30 mmol, 80 %); (Lit.: 80 %).

Sdp.: 42 °C; (Lit.: 42.5 °C).

¹**H-NMR** (500 MHz, CDCl₃): δ = 5.82 (ddd, 1 H, H-4, J = 5.0, 10.0, 17.0 Hz); 5.36 (ddd, 1 H, H-5a, J = 1.9, 3.5, 17.0 Hz); 5.14 (ddd, 1 H, H-5b, J = 1.6, 3.5, 10.0 Hz); 2.98 (dddd, 1 H, H-3, J = 1.6, 1.9, 2.7, 5.0 Hz); 2.12 (t, 1 H, H-1, J = 2.7 Hz) ppm.

¹³**C-NMR** (125.77 MHz, CDCl₃): δ = (* abgeschätzt aus dem HMQC und HMBC) 116.7* (C-5); 94.1* (C-4); 81.4* (C-2); 71.8* (C-1); 23.2* (C-3) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/3} = 2.7; \; {}^{3}J_{3/4} = 5.0; \; {}^{3}J_{3/5a} = 1.9; \; {}^{3}J_{3/5b} = 1.6; \; {}^{3}J_{4/5a} = 17.0; \; {}^{3}J_{4/5b} = 10.0 \; Hz.$

2.1.3.3.4. Isomerisierung zu Penta-1,2,4-trien (34)

2 g (30 mmol) **46** in 25 ml einer 5 % NaOH in Methanol und 100 mg (11 mmol) Hydrochinon werden 4 h zum Sieden erhitzt.

Die Reaktionslösung wird auf 100 ml gesättigtes NH₄Cl-Eiswasser gegossen und die organische Phase mit 20 ml Benzol aufgenommen.^[73]

Ausbeute: 1.5 g (24 mmol, 80 %); (Lit.: 80 %).

Sdp.: 42.5 °C; (Lit.: 42.5 °C).

¹**H-NMR** (400 MHz, CDCl₃): $\delta =$

6.18 (dddt, 1 H, H-4, J = 1.0, 10.2, 10.4, 17.0 Hz); 5.81 (dt, 1 H, H-3, J = 6.6, 10.4 Hz); 5.17 (ddt, 1 H, H-5a, J = 1.5, 2.2, 17.0 Hz); 4.97 (ddt, 1 H, H-5b, J = 1.7, 2.2, 10.2 Hz); 4.90 (dddd, 2 H, H-1, J = 1.0, 1.5, 1.7, 6.6 Hz) ppm.

¹³**C-NMR** (125.77 MHz, CDCl₃): $\delta = (* \text{ abgeschätzt aus dem HMQC und HMBC})$ 212.1* (C-2); 132.3* (C-4); 115.8* (C-5); 94.1* (C-3); 76.6* (C-1) ppm.

Kopplungskonstanten:

 ${}^{4}J_{1/3} = 6.6$; ${}^{6}J_{1/4} = 1.0$; ${}^{8}J_{1/5a} = 1.5$; ${}^{8}J_{8/5b} = 1.7$; ${}^{3}J_{3/4} = 10.4$; ${}^{3}J_{3/5a} = 17.0$; ${}^{3}J_{3/5b} = 10.0$; ${}^{2}J_{5/5} = 2.2$ Hz.

3. Photochemische Untersuchungen (AAV)

Eine Lösung des jeweiligen Cyclohex-2-en-1-on in Benzen (0.1 M) wird 10 Minuten im Argonstrom entgast und anschließend für die jeweils angebene Zeit mit Licht einer mittleren Wellenlänge von 350 nm bestrahlt. Der Reaktionsverlauf wird gaschromatographisch verfolgt, bis kein weiterer Umsatz mehr beobachtet wird, das Lösungsmittel wird am Rotationsverdampfer unter vermindertem Druck abdestilliert und das Rohproduktgemisch wie angeben aufgearbeitet.

Die Produktanalyse nach GC/MS bezieht sich auf Produktpeaks (Flächenprozente), die die gleiche Masse aufweisen wie die Summe der Massen der jeweiligen Edukte. Die Produktverteilung im Roh-¹H-NMR-Spektrum ergibt sich aus der Integration geeigneter Methylsignale.

3.1. Bestrahlungen von 5,5-Dimethylcyclohex-2-en-1-on (27) in Gegenwart der α,β-ungesättigten Nitrile 30 bis 33

3.1.1. In Gegenwart von Chloracrylonitril (30)

Ansatz:	100 mg (0.82 mmol) 27 , 1.41 (16.1 mmol) 30 und 100 µ
	Dodekan in 8.2 ml Benzen.
Bestrahlungszeit:	390 min (Umsatz 70 %).
GC-Produktverteilung:	4 Produkte im Verhältnis: 22(A):37(52):22(C):19(D).
DC (CH ₂ Cl ₂ :PE 15:1):	11 Spots, $R_{\rm F}$ -Werte: 0.38 (A + 52 + C + D)
Reinigung und Isolierung:	1. Destillative Abtrennung der Edukte imVakuum.
	2. Säulenchromatographie, Eluens CH ₂ Cl ₂ :PE 15:1.

*Fraktion 1:R*_F*-Wert 0.38; 4.4 mg (A* + **52**+ *C* + *D*, *1:*57:29:13); gelbliches Öl.

*Fraktion 2: R*_F*-Wert 0.36; 4.2 mg (A* + **52**+ *C* + *D*, *1:59:39:1); gelbliches Öl.*

*Fraktion 3: R*_F*-Wert 0.34; 6.3 mg (***52** + *C, 56:44); gelbliches Öl.*

1a,6a-7-Chlor-4,4-dimethyl-2-oxobicyclo[4.2.0]octan-7-carbonitril (52)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.82 (dddd, 1H, H-1, J = 0.9, 8.8, 8.8, 8.5 Hz); 2.42 (m, 1 H, H-8_a); 2.41 (m, H-6, 1 H); 2.11 (ddd, 1 H, H-8_b, J = 3.8, 9.8, 13.3 Hz); 1.74 (ddd, 1 H, H-3_{eq}, J = 0.9, 2.5, 16.7 Hz); 1.63 (d, 1 H, H-3_{ax}, J = 16.7 Hz); 1.19 (m, 1 H, H-5_{ax}); 0.99 (m, 1 H, H-5_{eq}); 0.53 (s, 3 H, Me-4_a); 0.25 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

3.43 (ddd, 1 H, H-1, J = 0.9, 8.8, 8.8, 8.5 Hz); 3.20 (m, 1 H, H-6); 3.11 (ddd, 1 H, H-8_a, J = 1.0, 9.4, 13.3 Hz); 2.87 (ddd, 1 H, H-8_b, J = 3.8, 9.8, 13.3 Hz); 2.32 (m, 1 H, H- 3_{eq}); 2.23 (m, 1 H, H- 3_{eq}); 2.08 (ddd, 1H, H- 5_{eq} , J = 2.5, 8.5, 13.8 Hz); 1.82 (dd, 1 H, H- 5_{ax} , J = 11.6, 13.8 Hz); 1.14 (s, 3 H, Me- 4_a); 0.92 (s, 3 H, Me- 4_b) ppm.

¹**H-NMR** (500 MHz, Aceton-D6): $\delta =$

3.42 (dddd, 1 H, H-1, J = 0.9, 8.8, 8.8, 8.5 Hz); 3.37 (ddd, 1 H, H-8_a, J = 1.0, 9.4, 13.3 Hz); 3.29 (dddd, 1H, H-6, J = 0.9, 3.8, 8.5, 11.2 Hz); 2.83 (ddd, 1 H, H-8_b, J = 3.8, 9.8, 13.3 Hz); 2.51 (d, 1 H, H-3_{ax}, J = 16.7 Hz); 2.15 (ddd, 1 H, H-3_{eq}, J = 0.9, 2.5, 16.7 Hz); 2.10 (m, 1 H, H-5_{eq}); 1.92 (dd, 1 H, H-5_{ax}, J = 11.6, 13.8 Hz); 1.13 (s, 3 H, Me-4_a); 0.94 (s, 3 H, Me-4_b) ppm.

¹³C-NMR (125.77 MHz, CDCl₃): δ = (abgeschätzt aus dem HMQC) 52 (C-3); 48 (C-6); 39 (C-8); 38 (C-1); 37 (C-5); 32 (Me-4_a); 25 (Me-4_b) ppm.

Kopplungskonstanten:

 ${}^{4}J_{1/3eq} = 0.9; \ {}^{3}J_{1/6} = 8.8; \ {}^{3}J_{1/8a} = 9.4; \ {}^{3}J_{1/8b} = 9.8; \ {}^{2}J_{3/3} = 16.7; \ {}^{3}J_{3eq/5eq} = 2.5; \ {}^{2}J_{5/5} = 13.8; \ {}^{3}J_{5ax/6} = 11.6; \ {}^{3}J_{5eq/6} = 8.5; \ {}^{4}J_{6/8a} = 1.0; \ {}^{4}J_{6/8b} = 3.8; \ {}^{2}J_{8/8} = 13.3 \text{ Hz}.$

3.1.1.1. Isomerisierung des Rohgemisches

Ansatz:	100 mg (A:52:C:D; 16:15:52:12) in 10 ml EE	
	aufnehmen, 1 g basischen Aluminiumoxid und	
	100 µl Tridecan zugeben. 4 Tage bei 80 °C rühren.	
Reinigung und Isolierung:	Abfiltrieren; entfernen des Lösungsmittels unter	
	vermindertem Druck.	
Ausbeute:	80 mg (A:52:C:D; 15:15:51:13)	

3.1.2. In Gegenwart von 3-Methyl-2-butennitril (31)

Ansatz:	117 mg (0.94 mmol) 27, 1.47 (18.1 mmol) 31 und 100	
	Dodekan in 9.4 ml Benzen.	
Bestrahlungszeit:	330 min (Umsatz 90 %).	
GC-Produktverteilung:	6 Produkte im Verhältnis:	
	16(53):12(54):41(55):11(56):12(57):8(58).	
NMR-Produktverteilung:	6 Produkte im Verhältnis:	
	19(53):13(54):43(55):9(56):7(57):8(58).	
DC (PE:EE 5:1):	3 Spots, <i>R</i> _F -Werte: 0.38, 0.36, 0.32.	
Reinigung und Isolierung:	1. Destillative Abtrennung der Edukte imVakuum.	
	2. Säulenchromatographie, Eluens PE:EE 5:1.	

*Fraktion 1:R*_F*-Wert 0.38; 16 mg (0.08 mmol, 9 %) 53; gelbliches Öl.*

endo-1α,6β-4,4,8,8-Tetramethyl-2-oxobicyclo[4.2.0]octan-7-carbonitril (53)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$ 2.25 (d, 1 H, H-1, J = 13.8 Hz); 2.11 (dddd, 1 H, H-6, J = 3.4, 7.4, 11.9, 13.8 Hz); 1.91 (d, 1 H, H-7, J = 7.4 Hz); 1.65 (d, 1 H, H-3_a, J = 13.7 Hz); 1.56 (d, 1 H, H-3_b, J = 13.7 Hz); 1.46 (dd, 1 H, H-5_{ax}, J = 11.9, 12.0 Hz); 1.09 (s, 3 H, Me-8_a); 1.07 (s, 3 H, Me-8_b); 1.07 (m, 1 H, H-5_{eq}); 0.68 (s, 3 H, Me-4_a); 0.65 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

2.82 (d, 1 H, H-7, J = 7.6 Hz); 2.77 (dddd, 1 H, H-6, J = 3.1, 7.6, 11.9, 13.8 Hz); 2.69 (d, 1 H, H-1, J = 13.8 Hz); 2.22 (d, 1 H, H-3_a, J = 13.7 Hz); 1.95 (d, 1 H, H-3_b, J = 13.7 Hz); 1.84 (dd, 1 H, H-5_{ax}, J = 11.9, 12.0 Hz); 1.66 (dd, 1 H, H-5_{eq}, J = 3.3, 12.0 Hz); 1.44 (s, 3 H, Me-8_a); 1.33 (s, 3 H, Me-8_b); 1.15 (s, 3 H, Me-4_a); 1.04 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, Aceton-D6): $\delta =$

3.01 (d, 1 H, H-7, J = 7.9 Hz); 2.88 (dddd, 1 H, H-6, J = 3.5, 7.9, 11.9, 13.8 Hz); 2.78 (d, 1 H, H-1, J = 13.8 Hz); 2.39 (d, 1 H, H-3_a, J = 13.7 Hz); 1.83 (d, 1 H, H-3_b, J = 13.7 Hz); 1.80 (dd, 1 H, H-5_{ax}, J = 11.9, 12.0 Hz); 1.66 (ddd, 1 H, H-5_{eq}, J = 1.0, 3.3, 12.0 Hz); 1.41 (s, 3 H, Me-8_a); 1.25 (s, 3 H, Me-8_b); 1.14 (s, 3 H, Me-4_a); 1.03 (s, 3 H, Me-4_b) ppm.

¹³**C-NMR** (100.61 MHz, CDCl₃): δ =

205.45 (C-2); 119.07 (CN); 58.49 (C-1); 55.18 (C-3); 44.67 (C-8); 41.52 (C-5); 40.40 (C-7); 40.00 (C-4); 38.80 (C-6); 32.70 (Me-4_a); 28.68 (Me-4_b); 27.20 (Me-8_b); 21.63 (Me-8_a) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/6} = 13.8$; ${}^{2}J_{3/3} = 13.7$; ${}^{2}J_{5/5} = 12.0$; ${}^{3}J_{5eq/6} = 3.3$; ${}^{3}J_{5ax/6} = 11.9$; ${}^{2}J_{6/7} = 7.6$ Hz.

GC-MS (70 eV): *m/z* = 205 (M⁺, 3 %); 190 (4 %); 123 (21 %); 109 (9 %); 98 (32 %); 83 (100 %); 80 (24 %); 68 (12 %); 55 (15 %); 41 (19 %).

*Fraktion 2: R*_F*-Wert 0.36; 26 mg (***53** + **55** + **58***, 26:54:20); gelbliches Öl.*

exo-1a,6a-4,4,8,8-Tetramethyl-2-oxobicyclo[4.2.0]octan-7-carbonitril (55)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.35 (m, 1 H, H-6); 2.22 (d, 1 H, H-1, J = 10.1 Hz); 1.90 (d, 1 H, H- 3_{ax} , J = 17.4 Hz); 1.86 (m, 1 H, H-7); 1.55 (d, 1 H, H- 3_{eq} , J = 17.4 Hz); 1.21 (s, 3 H, Me- 8_a); 1.18 (m, 1 H, H- 5_{ax}); 0.77 (s, 3 H, Me- 8_b); 0.65 (m, 1 H, H- 5_{eq}); 0.56 (s, 3 H, Me- 4_a); 0.38 (s, 3 H, Me- 4_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

3.03 (dddd, 1 H, H-6, J = 5.7, 8.7, 9.5, 10.1 Hz); 2.79 (d, 1 H, H-1, J = 10.1 Hz); 2.60 (d, 1 H, H-7, J = 5.7 Hz); 2.25 (dd, 1 H, H-3_{eq}, J = 2.7, 17.1 Hz); 2.05 (ddd, 1 H, H-5_{eq}, J = 2.7, 8.7, 13.8 Hz); 2.05 (d, 1 H, H-3_{ax}, J = 17.1 Hz); 1.47 (dd, 1 H, H-5_{ax}, J = 9.5, 13.8 Hz); 1.44 (s, 3 H, Me-8_a); 1.18 (s, 3 H, Me-8_b); 1.06 (s, 3 H, Me-4_a); 0.87 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, Aceton-D6): $\delta =$

3.04 (dddd, 1 H, H-6, J = 5.7, 8.7, 9.5, 10.1 Hz); 2.85 (d, 1 H, H-7, J = 5.7 Hz); 2.81 (d, 1 H, H-1, J = 10.1 Hz); 2.15 (m, 2 H, H- 3_{eq} + H- 3_{ax}); 2.05 (m, 1 H, H- 5_{eq}); 1.66 (dd, 1 H, H- 5_{ax} , J = 9.5, 13.8 Hz); 1.35 (s, 3 H, Me- 8_a); 1.15 (s, 3 H, Me- 8_b); 1.04 (s, 3 H, Me- 4_a); 0.88 (s, 3 H, Me- 4_b) ppm.

¹³C-NMR (100.61 MHz, CDCl₃): $\delta =$

211.19 (C-2); 120.30 (CN); 54.77 (C-3); 50.53 (C-1); 42.08 (C-5); 41.52 (C-8); 40.00 (C-7); 33.41 (C-4); 32.22 (C-6); 31.21(Me-4_a); 27.16 (2 C, Me-4_b + Me-8_b); 26.70 (Me-8_a) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/6} = 10.1; {}^{2}J_{3/3} = 17.1; {}^{4}J_{3eq/5eq} = 2.7; {}^{2}J_{5/5} = 13.8; {}^{3}J_{5eq/6} = 8.7; {}^{3}J_{5ax/6} = 9.5; {}^{2}J_{6/7} = 5.7 \text{ Hz}.$

GC-MS (70 eV): m/z =

205 (M⁺, 3 %); 190 (4 %); 123 (22 %); 108 (6 %); 98 (35 %); 83 (100 %); 81 (16 %); 68 (50 %); 55 (21 %); 41 (26 %).

exo-1a,6a-3,3,8,8-Tetramethyl-5-oxobicyclo[4.2.0]octan-7-carbonitril (58)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.66 (dd, 1 H, H-6, J = 9.1, 9.5 Hz); 2.39 (dd, 1 H, H-7, J = 0.6, 9.1 Hz); 1.84 (d, 1 H, H-4_{ax}, J = 16.4 Hz); 1.72 (m, 1 H, H-1); 1.72 (dd, 1 H, H-4_{eq}, J = 2.5, 16.4 Hz); 1.04 (s, 3 H, Me-8_a); 0.81 (m, 2 H, H-2_{ax} + H-2_{eq}); 0.65 (s, 3 H, Me-8_b); 0.50 (s, 3 H, Me-3_a); 0.46 (s, 3 H, Me-3_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

3.16 (dd, 1 H, H-6, J = 9.1, 9.5 Hz); 2.96 (dd, 1 H, H-7, J = 0.6, 9.1 Hz); 2.53 (dddd, 1 H; H-1, J = 0.6, 7.0, 9.5, 12.3 Hz); 2.20 (m, 2 H, H-4_{ax} + H-4_{eq}); 1.57 (ddd, 1 H, H-2_{eq}, J = 2.5, 7.0, 13.5 Hz); 1.47 (m, 1 H, H-2_{ax}); 1.09 (s, 3 H, Me-8_b); 1.07 (s, 3 H, Me-3_a); 1.41 (s, 3 H, Me-8_a); 0.95 (s, 3 H, Me-3_b) ppm.

¹**H-NMR** (500 MHz, Aceton-D6): $\delta =$

3.29 (dd, 1 H, H-7, J = 0.6, 9.1 Hz); 3.17 (dd, 1 H, H-6, J =9.1, 9.5 Hz); 2.50 (dddd, 1 H; H-1, J = 0.6, 7.0, 9.5, 12.3 Hz); 2.33 (d, 1 H, H-4_{ax}, J = 16.4 Hz); 2.11 (ddd, 1 H, H-4_{eq}, J = 2.5, 16.4 Hz); 1.75 (dd, 1 H, H-2_{ax}, J = 12.3, 13.5 Hz); 1.62 (ddd, 1 H, H-2_{eq}, J = 2.5, 7.0, 13.5 Hz); 1.36 (s, 3 H, Me-8_a); 1.13 (s, 3 H, Me-8_b); 1.06 (s, 3 H, Me-3_a); 0.90 (s, 3 H, Me-3_b) ppm.

¹³**C-NMR** (100.61 MHz, CDCl₃): δ =

210.67 (C-5); 118.99 (CN); 52.70 (C-4); 42.53 (C-6); 42.23 (C-1); 37.97 (C-8); 36.00 (C-2); 35.00(C-7); 34.79 (C-3); 32.22 (Me-3_a); 27.05 (Me-3_b); 26.89 (Me-8_a); 23.72 (Me-8_b) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/2ax} = 12.3 \text{ Hz}; {}^{3}J_{1/2eq} = 7.0; {}^{3}J_{1/6} = 9.5; {}^{4}J_{1/7} = 0.6; {}^{2}J_{2/2} = 13.5; {}^{4}J_{2eq/4eq} = 2.5; {}^{2}J_{4/4} = 16.4;$ ${}^{3}J_{6/7} = 9.1 \text{ Hz}.$

GC-MS (70 eV): m/z =

205 (M⁺, 1 %); 190 (1 %); 163 (15 %); 148 (10 %); 136 (6 %); 110 (100 %); 95 (31 %); 80 (28 %); 68 (41 %); 55 (13 %); 40 (56 %).

Fraktion 3: $R_{\rm F}$ -Wert 0.36; 52 mg (54 + 55 + 56 + 57, 23:34:25:16); gelbliches Öl.

exo-1α,6β-4,4,8,8-Tetramethyl-2-oxobicyclo[4.2.0]octan-7-carbonitril (54)

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$ 2.66 (dddd, 1 H, H-6, J = 3.2, 9.6, 12.2, 14.2 Hz); 2.54 (d, 1 H, H-7, J = 9.6 Hz); 2.33 (d, 1 H, H-1, J = 14.2 Hz); 2.16 (d, 1 H, H-3_a, J = 13.6 Hz); 1.96 (d, 1 H, H-3_b, J = 13.6 Hz); 1.82 (dd, 1 H, H-5_{eq}, J = 3.2, 13.3 Hz); 1.62 (dd, 1 H, H-5_{ax}, J = 12.2, 13.3 Hz); 1.47 (s, 3 H, Me-

1); 1.26 (s, 3 H, Me-2); 1.12 (s, 3 H, Me-3); 1.05 (s, 3 H, Me-4) ppm.

¹³C-NMR (125.77 MHz, CDCl₃): δ = (abgeschätzt aus dem HMQC) 54.8 (C-1); 55.6 (C-3); 43.8 (C-5); 42.3 (C-6); 39.3 (C-7); 33.1 (Me-3); 30.0 (Me-2); 28.7 (Me-4); 19.2 (Me-1) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/6} = 14.2; {}^{2}J_{3/3} = 13.6; {}^{2}J_{5/5} = 13.3; {}^{3}J_{5eq/6} = 3.2; {}^{3}J_{5ax/6} = 12.2; {}^{2}J_{6/7} = 9.6 \text{ Hz}.$

GC-MS (70 eV): *m/z* = 205 (M⁺, 1 %); 190 (4 %); 123 (37 %); 106 (9 %); 98 (34 %); 83 (100 %); 80 (21 %); 68 (15 %); 55 (18 %); 41 (22 %).

3.1.2.1. Isomerisierung von 54 zu 55

Ansatz:	52 mg (54 + 55 + 56 + 57 , 23:34:25:16) in 1 ml	
	Dichlormethan aufnehmen, 0.5 g basischen	
	Aluminiumoxid 5 Stunden bei RT rühren.	
Reinigung und Isolierung:	Abfiltrieren; entfernen des Lösungsmittels unter	
	vermindertem Druck.	
Ausbeute:	39 mg (55 + 56 + 57 , 56:25:16); gelbliches Öl.	

endo-1a,6a-4,4,8,8-Tetramethyl-2-oxobicyclo[4.2.0]octan-7-carbonitril (56)

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

3.17 (d, 1 H, H-7, J = 9.4 Hz); 2.97 (dddd, 1 H, H-6, J = 6.6, 8.8, 9.2, 11.4 Hz); 2.75 (d, 1 H, H-1, J = 8.8 Hz); 2.25 (m, 1 H, H-5_a); 2.05 (m, 1 H, H-5_b); 1.85 (m, 2 H, H-3_{eq} + H-3_{ax}); 1.34 (s, 3 H, Me-4_a); 1.26 (s, 3 H, Me-4_b); 1.10 (s, 3 H, Me-8_a); 0.87 (s, 3 H, Me-8_b) ppm.

¹³**C-NMR** (125.77 MHz, CDCl₃): δ = (abgeschätzt aus dem HMQC und HMBC) 211.1 (C-2); 118.3 (CN); 55.6 (C-3); 50.4 (C-1); 38.4 (C-5); 42.8 (C-8); 36.3 (C-7); 33.1 (C-4); 32.6 (Me-8_a); 31.4 (Me-4_a); 28.8 (C-6); 23.8 (Me-8_b); 26.9 (Me-4_b) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/6} = 8.8$; ${}^{3}J_{5eq/6} = 6.6$; ${}^{3}J_{5ax/6} = 11.4$; ${}^{2}J_{6/7} = 9.6$ Hz.

endo-1a,6a-3,3,8,8-Tetramethyl-5-oxobicyclo[4.2.0]octan-7-endo-carbonitril (57)

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$ 3.24 (dd, 1 H, H-6, J = 9.2, 10.1 Hz); 3.06 (dd, 1 H, H-7, J = 2.2, 10.1 Hz); 2.43 (dddd, 1 H; H-1, J = 2.2, 7.9, 9.2, 11.7 Hz); 2.37 (d, 1 H, H- 4_{ax} , J = 17.6 Hz); 2.29 (dd, 1 H, H-4_{eq}, J = 1.2, 17.6 Hz); 1.87 (dd, 1 H, H-2_{ax}, J = 11.7, 13.9 Hz); 1.64 (ddd, 1 H, H-2_{eq}, J = 1.2, 7.9, 13.9 Hz); 1.36 (s, 3 H, Me-8_a); 1.24 (s, 3 H, Me-8_b); 1.10 (s, 3 H, Me-3_a); 0.88 (s, 3 H, Me-3_b) ppm.

¹³**C-NMR** (125.77 MHz, CDCl₃): δ = (abgeschätzt aus dem HMQC und HMBC) 210.6 (C-5); 119.3 (CN); 54.8 (C-4); 42.6 (C-1); 39.7 (C-6); 38.2 (C-8); 36.7 (C-7); 36.6 (C-2); 33.3 (C-3); 31.8 (Me-3_a); 30.1 (Me-8_a); 27.2 (Me-3_b); 21.3 (Me-8_b) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/2ax} = 11.7$ Hz; ${}^{3}J_{1/2eq} = 7.9$; ${}^{3}J_{1/6} = 9.2$; ${}^{4}J_{1/7} = 2.2$; ${}^{2}J_{2/2} = 13.9$; ${}^{4}J_{2eq/4eq} = 1.2$; ${}^{2}J_{4/4} = 17.6$; ${}^{3}J_{6/7} = 10.1$ Hz.

GC-MS (70 eV): *m/z* = 205 (M⁺, 1 %); 190 (1 %); 163 (22 %); 148 (15 %); 136 (9 %); 110 (100 %); 95 (29 %); 80 (29 %); 68 (50 %); 55 (16 %); 40 (52 %).

3.1.3. In Gegenwart von 2 Methylethylidenmalonsäuredinitril (32)

Ansatz:	123 mg (1.0 mmol) 27 ; 2.12 g (20 mmol) 32 ; 10 m	
	Benzen.	
Bestrahlungszeit:	240 min (Umsatz nicht bestimmbar).	
GC-Produktverteilung:	2 Produkte im Verhältnis: 64(63):36(64).	
NMR-Produktverteilung:	2 Produkte im Verhältnis: 57(63):43(64).	
DC (DE:PE 8:1):	1 Spots; $R_{\rm F}$ -Werte: 0.71.	
Reinigung und Isolierung:	Waschen mit 1 M NaOH-Lösung;	
	destillative Abtrennung von 27 im Vakuum;	
	Säulenchromatographisch; Eluens DE:PE 8:1.	

Fraktion 1: $R_{\rm F}$ *-Wert 0.71; 152 mg (63 + 64; 60:40); farbloses Öl.*

 $1\alpha, 6\beta$ -4,4,8,8-Tetramethyl-2-oxobicyclo[4.2.0]octan-7,7-dicarbonitril (63)

¹**H-NMR** (400 MHz, Benzen-D6): $\delta =$

2.52 (ddd, 1 H, H-6, J = 3.3, 12.2, 14.1 Hz); 2.12 (d, 1 H, H-1, J = 14.2 Hz); 1.54 (dd, 1 H, H-3_{eq}, J = 0.9, 14.1 Hz); 1.37 (d, 1 H, H-3_{ax}, J = 14.1 Hz); 1.33 (s, 3 H, Me-8_a); 1.22 (dd, 1 H, H-5_{ax}, J = 12.2, 12.5 Hz); 0.93 (s, 3 H, Me-8_b); 0.94 (ddd, 1 H, H-5_{eq}, J = 0.9, 3.3, 12.5 Hz); 0.54 (s, 3 H, Me-4_a); 0.44 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

2.95 (m, 1 H, H-6); 2.75 (d, 1 H, H-1, J = 14.2 Hz); 2.23 (d, 1 H, H-3_{ax}, J = 14.2 Hz); 2.03 (d, 1 H, H-3_{eq}, J = 14.2 Hz); 1.86 (m, 1 H, H-5_{eq}); 1.86 (m, 1 H, H-5_{ax}), 1.61 (s, 3 H, Me-8_a); 1.45 (s, 3 H, Me-8_b); 1.18 (s, 3 H, Me-4_a); 1.08 (s, 3 H, Me-4_b) ppm.

¹³**C-NMR** (125.77 MHz, Benzen-D6): δ =

201.36 (C-2); 113.46 (CN); 56.17 (C-1); 54.32 (C-3); 52.08 (C-7); 45.21 (C-6); 41.61 (C-8); 39.73 (C-5); 38.27 (C-4); 31.75 (Me-4_a); 27.68 (Me-4_b); 26.01 (Me-8_b), 19.13 (Me-8_a) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/6} = 14.1; {}^{2}J_{3ax/3eq} = 14.2; {}^{4}J_{3eq/5eq} = 0.9; {}^{2}J_{5ax/5eq} = 12.5; {}^{3}J_{5ax/6} = 12.2; {}^{3}J_{5eq/6} = 3.3 \text{ Hz}.$

GC-MS (70 eV): m/z =

310 (M⁺, 4 %); 215 (5%); 139 (11 %); 132 (20 %); 123 (17 %); 105 (27 %); 98 (40 %); 83 (100 %); 68 (13 %); 56 (43 %); 42 (40 %); 39 (29 %). *1α,6α*-4,4,8,8-Tetramethyl-2-oxobicyclo[4.2.0]octan-7,7-dicarbonitril (64)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.39 (ddd, 1 H, H-6, J = 8.8, 9.8, 11.5 Hz); 2.16 (dd, 1 H, H-1, J = 1.0, 9.8 Hz); 1.82 (ddd, 1 H, H-3_{eq}, J = 1.0, 2.7, 18.2 Hz); 1.47 (d, 1 H, H-3_{ax}, J = 18.2 Hz); 1.27 (dd, 1 H, H-5_{ax}, J = 11.5, 13.6 Hz); 1.05 (ddd, 1 H, H-5_{eq}, J = 2.7, 8.8, 13.6 Hz); 1.05 (s, 3H, Me-8_a); 0.90 (s, 3 H, Me-8_b); 0.47 (s, 3 H; Me-4_a); 0.42 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

3.31 (ddd, 1 H, H-6, J = 8.8, 9.8, 11.5 Hz); 2.98 (dd, 1 H, H-1, J = 0.9, 9.8 Hz); 2.32 (ddd, 1 H, H-3_{eq}, J = 1.0, 2.7, 18.2 Hz); 2.08 (d, 1 H; H-3_{ax}, J = 18.2 Hz); 2.06 (ddd, 1 H, H-5_{eq}, J = 2.7, 8.8, 13.6 Hz), 1.86 (m, 1 H, H-5_{ax}); 1.56 (s, 3 H, Me-8_a); 1.37 (s, 3 H, Me-8_b); 1.13 (s, 3 H, Me-4_a); 0.90 (s, 3 H, Me-4_b) ppm.

¹³C-NMR (125.77 MHz, CDCl₃): δ =

206.63 (C-2); 115.69 (CN); 113.35 (CN); 53.68 (C-3); 48.41 (C-1); 45.67 (C-7); 39.22 (C-8); 37.10 (C-5); 36.99 (C-6), 30.66 (Me-4_a); 30.45 (C-4); 29.07 (Me-8_a); 25.47 (Me-4_b); 23.87 (Me-8_b) ppm.

Kopplungskonstanten:

 ${}^{4}J_{3eq/1} = 1.0; \; {}^{3}J_{1/6} = 9.8; \; {}^{2}J_{3/3} = 18.2; \; {}^{4}J_{3eq/5eq} = 2.7; \; {}^{2}J_{5/5} = 13.6; \; {}^{3}J_{5eq/6} = 8.8; \; {}^{3}J_{5ax/6} = 11.5 \; Hz.$

GC-MS (70 eV): m/z =

310 (M⁺,2 %); 197 (16 %); 144 (14 %); 98 (25 %); 83 (100 %); 68 (38 %); 56 (31 %); 55 (22 %); 41 (45 %); 39 (43 %).

3.1.3.1. Isomerisierung von 63 zu 64

Ansatz:	152 mg (63 + 64 ; 60:40) in 5 ml Dichlormethan	
	aufnehmen, 2 g basischen Aluminiumoxid und	
	100 µl Tridecan zugeben. 5 Stunden bei RT rühren.	
Reinigung und Isolierung :	Abfiltrieren; entfernen des Lösungsmittels unter vermindertem Druck. Umkristallisieren aus Diethylether.	
Ausbeute:	110 mg (0.5 mmol) 63; farblose Kristalle; Smp. 127 °C.	

Röntgenstrukturanalyse von 64:

Daten der Messung	
CCDC Rferenznummer	266745
Formel	$C_{14}H_{18}N_2O$
Molekulargewicht	230.30 g/mol
Kristallgröße	0.70 x 0.50 x 0.12 mm
Raumgruppe	P2 ₁ /c
Kristallsystem	monoklin

E. Experimenteller Teil

Daten der Messung	
Dichte	$1.1314(1) \text{ g/cm}^3$
Zelllänge	a = 18.7448(14) A
	b = 6.7681(5) A
	c = 22.9068(17) A
Zellwinkel	$\alpha = 90^{\circ}$
	β=111.4830(10) °
	$\gamma = 90$ °
Volumen	2704.2(3) A ³
Moleküle/Elementarzelle	Z = 8
F(000)	992.0 [992.36]
Temperatur	293 K
linearer Absorptionskoeffzient	$\mu = 0.072 \text{ mm}^{-1}$
Wellenlänge	$\lambda = 0.71 \text{ A}$
Messbereich	$\Theta = 2.3-25^{\circ}$
Anzahl gemessener Reflexe $\Theta_{max} =$	26375
Anzahl unabhängiger Reflexe	4752
R Indices mit [I>2.0 sigma(I)]	R1 = 0.0474
	$\omega R2 = 0.1317$

3.1.4. In Gegenwart von Ethylidenmalonsäuredinitril (33)

Ansatz:	100 mg (0.82 mmol) 27 , 1.48 (16.1 mmol) 33 und 100 μl	
	Dodekan in 8.2 ml Benzen.	
Bestrahlungszeit:	420 min (Umsatz 76 %).	
NMR-Produktverteilung:	6 Produkte im Verhältnis:	
	7(69):20(70):9(71):6(72):28(73):30(74).	
DC (PE:EE 4:1):	6 Spots, $R_{\rm F}$ -Werte:	
	0.50(69), 0.44(71), 0.38(70), 0.33(72), 0.29(74), 0.24(73).	
Reinigung und Isolierung:	1. Destillative Abtrennung der Edukte imVakuum.	
	2. Säulenchromatographie, Eluens PE:EE 4:1.	

*Fraktion 1: R*_F*-Wert 0.44; 6.9 mg (***69** + 7**0** + 7**1***; 23:49:28); farbloses Öl.*

exo-1a,6β-4,4,8-Trimethyl-2-oxobicyclo[4.2.0]octan-7,7-dicarbonitril (69)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.53 (dq, 1 H, H-8; J = 6.6, 10.8 Hz); 2.06 (ddd, 1 H, H-6, J = 3.5, 12.4, 13.4 Hz); 1.95 (dd, 1 H, H-1; J = 10.8, 13.4 Hz); 1.54 (d, 1 H, H-3_a, J = 13.4 Hz); 1.40 (d, 1 H, H-3_b, J = 13.4 Hz); 1.15 (dd, 1 H, H- 5_{ax} , J = 12.4, 13.4 Hz); 0.83 (m, 1 H, H-5_{eq}); 0.81 (d, 3 H, Me-8, J = 6.6 Hz); 0.51 (s, 3 H, Me-4_a); 0.42 (s, 3 H, Me-4_b) ppm.

¹³C-NMR (100.61 MHz, Benzen-D₆): δ = (* abgeschätzt aus dem HMQC)
200.6* (C-2); 114.2* (CN); 112.5* (CN); 54.1 (C-3); 54.0 (C-1); 48.0 (C-6); 45.9 (C-8);
39.5 (C-5); 38.6* (C-4); 37.0* (C-7); 31.5 (Me-4_a); 27.4 (Me-4_b); 15.3 (Me-8) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/6} = 13.4; \; {}^{3}J_{1/8} = 10.8; \; {}^{3}J_{3/3} = 13.4; \; {}^{2}J_{5/5} = 13.4; \; {}^{3}J_{5eq/6} = 3.5; \; {}^{3}J_{5ax/6} = 12.4; \; {}^{3}J_{8/Me-8} = 6.6 \; Hz.$

GC-MS (70 eV): *m/z* = 217 (M⁺, 5 %); 159 (10 %); 133 (10 %); 84 (34 %); 69 (40 %); 68 (14 %); 56 (100 %); 55 (22 %); 46 (49 %); 44 (31 %).

endo-1a,6β-4,4,8-Trimethyl-2-oxobicyclo[4.2.0]octan-7,7-dicarbonitril (71)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.59 (ddd, 1 H, H-6, J = 3.5, 12.6, 13.8 Hz); 2.27 (dd, 1 H, H-1 J = 6.6, 14.2 Hz); 2.26 (m, 1 H, H-8); 1.53 (d, 1 H, H-3_a, J = 14.3 Hz); 1.39 (d, 1 H, H-3_b, J = 14.3 Hz); 1.20 (dd, 1 H, H-5_{ax}, J = 12.6, 14.4 Hz); 1.16 (d, 3 H, Me-8, J = 7.3 Hz); 0.81 (m, 1 H, H-5_{eq}); 0.50 (s, 3 H, Me-4_a); 0.41 (s, 3 H, Me-4_b) ppm. ¹³**C-NMR** (100.61 MHz, Benzen-D6): δ = (* abgeschätzt aus dem HMQC) 200.9* (C-2); 114.2* (CN); 112.9* (CN); 53.7 (C-3); 49.3 (C-1); 47.6 (C-6); 45.6 (C-8); 39.3 (C-5); 38.1* (C-4); 35.8* (C-7); 31.5 (Me-4_a); 27.4 (Me-4_b); 11.4 (Me-8) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/6} = 13.5; \; {}^{3}J_{1/8} = 6.6; \; {}^{3}J_{3/3} = 14.3; \; {}^{2}J_{5/5} = 14.4; \; {}^{3}J_{5eq/6} = 3.5; \; {}^{3}J_{5ax/6} = 12.6; \; {}^{3}J_{8/Me-8} = 7.3 \text{ Hz}.$

*Fraktion 2: R*_F*-Wert 0.38; 2,9 mg (0.01 mmol, 1 %)* **70***; Smp. 98 °C; weiße Kristalle.*

exo-1a,6a-4,4,8-Trimethyl-2-oxobicyclo[4.2.0]octan-7,7-dicarbonitril (70)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.21 (m, 3 H, H-1, H-6, H-8); 1.71 (ddd, 1 H, H-3_{eq}, J = 1.3, 2.3, 16.7 Hz); 1.53 (d, 1 H, H-3_{ax}, J = 16.7 Hz); 1.14 (dd, 1 H, H-5_{ax}, J = 11.6, 13.5 Hz); 1.08 (ddd, 1 H, H-5_{eq}, J = 2.3, 8.2, 13.5 Hz); 0.88 (d, 3 H, Me-8, J = 6.6 Hz); 0.54 (s, 3 H, Me-4_a); 0.20 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

3.23 (ddd, 1 H, H-6, J = 0.6, 7.9, 8.2, 11.6 Hz); 3.19 (ddq, 1 H, H-8, J = 0.6, 6.6, 10.7 Hz); 2.92 (ddd, 1 H, H-1, J = 1.3, 7.9, 10,7 Hz); 2.31 (d, 1 H, H-3_{ax}, J = 16.7 Hz); 2.24 (ddd, 1 H, H-3_{eq}, J = 1.3, 2.3, 16.7 Hz); 2.06 (ddd, 1 H, H-5_{eq}, J = 2.3, 8.2, 13.5 Hz); 1.86 (dd, 1 H, H-5_{ax}, J = 11.6, 13.5 Hz); 1.45 (d, 3 H, Me-8, J = 6.6 Hz); 1.16 (s, 3 H, Me-4_a); 0.90 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, Aceton-D6): $\delta =$

3.59 (ddq, 1 H, H-8, J = 0.6, 6.6, 10.7 Hz); 3.42 (dddd, 1 H, H-6, J = 0.6, 7.9, 8.2, 11.6 Hz); 2.96 (ddd, 1 H, H-1, J = 1.3, 7.9, 10,7 Hz); 2.60 (d, 1 H, H-3_{ax}, J = 16.7 Hz); 2.14 (ddd, 1 H, H-3_{eq}, J = 1.3, 2.3, 16.7 Hz); 2.11 (ddd, 1 H, H-5_{eq}, J = 2.3, 8.2, 13.5 Hz); 2.02 (dd, 1 H, H-5_{ax}, J = 11.6, 13.5 Hz); 1.39 (d, 3 H, Me-8, J = 6.6 Hz); 1.15 (s, 3 H, Me-4_a); 0.93 (s, 3 H, Me-4_b) ppm.

¹³C-NMR (100.61 MHz, CDCl₃): $\delta =$

207.28 (C-2); 113.87 (CN); 113.17 (CN); 51.52 (C-3); 46.46 (C-6); 42.63 (C-8); 39.84 (C-1); 36.84 (C-5); 34.43 (C-7); 33.57 (C-4); 30.96 (Me-4_a); 25.14 (Me-4_b); 16.72 (Me-8) ppm.

¹³**C-NMR** (100.61 MHz, Aceton-D6): δ =

206.22 (C-2); 115.41 (CN); 114.62 (CN); 51.79 (C-3); 47.45 (C-6); 42.51 (C-8); 40.69 (C-1); 36.93 (C-5); 35.48 (C-7); 34.07 (C-4); 31.03 (Me-4_a); 25.14 (Me-4_b); 16.73 (Me-8) ppm.

Kopplungskonstanten:

 ${}^{4}J_{1/3eq} = 1.3; {}^{3}J_{1/6} = 7.9; {}^{3}J_{1/8} = 10.7; {}^{3}J_{3/3} = 16.7; {}^{4}J_{3eq/5eq} = 2.3; {}^{2}J_{5/5} = 13.5; {}^{3}J_{5eq/6} = 8.2;$ ${}^{3}J_{5ax/6} = 11.6; {}^{4}J_{6/8} = 0.6; {}^{3}J_{8/Me-8} = 6.6 \text{ Hz}.$

GC-MS (70 eV): *m/z* = 217 (M⁺, 7 %); 159 (10 %); 133 (13 %); 109 (17 %); 85 (22 %); 84 (24 %); 69 (35 %); 68 (44 %); 56 (100 %); 41 (46 %); 39 (30 %).

Fraktion 3: R_F-*Wert 0.33; 8.3 mg (0.04 mmol, 5 %) 72; Smp. 99.6 °C; farblose Kristalle.*

endo-1a,6a-4,4,8-Trimethyl-2-oxobicyclo[4.2.0]octan-7,7-dicarbonitril (72)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$ 2.46 (m, 3 H, H-1, H-6, H-8); 1.84 (ddd, 1 H, H-3_{eq}, J = 0.6, 2.2, 18.3 Hz); 1.52 (d, 1 H, H-3_{ax}, J = 18.3 Hz); 1.24 (dd, 1 H, H-5_{ax}, J = 10.7, 13.9 Hz); 1.03 (ddd, 1 H, H-5_{eq}, J = 2.5, 8.5, 13.9 Hz); 0.82 (d, 3 H, Me-8, J = 7.2 Hz); 0.46 (s, 3 H, Me-4_a); 0.20 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$ 3.46 (m, 3 H, H-1, H-6, H-8); 2.36 (ddd, 1 H, H-3_{eq}, J = 0.6, 2.2, 18.3 Hz); 2.12 (d, 1 H, H-3_{ax}, J = 18.3 Hz); 2.04 (ddd, 1 H, H-5_{eq}, J = 2.5, 8.5, 13.9 Hz); 1.84 (dd, 1 H, H-5_{ax}, J = 10.7, 13.9 Hz); 1.36 (d, 3 H, Me-8, J = 7.2 Hz); 1.14 (s, 3 H, Me-4_a); 0.93 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, Aceton-D6): $\delta =$

3.63 (dddd, 1 H, H-6, J = 2.2, 8.5, 9.1, 10.7 Hz); 3.56 (ddd, 1 H, H-1, J = 0.6, 9.2, 10.7 Hz); 3.51 (ddq, 1 H, H-8, J = 2.2, 7.2, 10.7 Hz); 2.30 (ddd, 1 H, H-3_{eq}, J = 0.6, 2.5, 18.3 Hz); 2.24 (d, 1 H, H-3_{ax}, J = 18.3 Hz); 2.17 (ddd, 1 H, H-5_{eq}, J = 2.5, 8.5, 13.9 Hz); 1.88 (dd, 1 H, H-5_{ax}, J = 10.7, 13.9 Hz); 1.35 (d, 3 H, Me-8, J = 7.2 Hz); 1.15 (s, 3 H, Me-4_a); 1.00 (s, 3 H, Me-4_b) ppm.

¹³**C-NMR** (100.61 MHz, CDCl₃): $\delta =$

208.20 (C-2); 116.21 (CN); 111.89 (CN); 54.33 (C-3); 41.26 (C-1); 41.11 (C-8); 39.65 (C-6); 37.80 (C-5); 34.14 (C-7); 32.28 (C-4); 30.97 (Me-4_a); 25.97 (Me-4_b); 15.58 (Me-8) ppm.

¹³**C-NMR** (100.61 MHz, Aceton-D6): δ = (*abgeschätzt aus dem HMBC) 208.87 (C-2); 118.99 (CN); 113.82 (CN); 54.64 (C-3); 41.88 (C-1); 41.59 (C-8); 40.39 (C-6); 38.24 (C-5); 34.9* (C-7); 32.4* (C-4); 31.06 (Me-4_a); 25.97 (Me-4_b); 15.65 (Me-8) ppm.

Kopplungskonstanten:

 ${}^{4}J_{1/3eq} = 0.6; \; {}^{3}J_{1/6} = 9.2; \; {}^{3}J_{1/8} = 10.7; \; {}^{3}J_{3/3} = 18.3; \; {}^{4}J_{3eq/5eq} = 2.5; \; {}^{2}J_{5/5} = 13.9; \; {}^{3}J_{5eq/6} = 8.5; \; {}^{3}J_{5ax/6} = 10.7; \; {}^{4}J_{6/8} = 2.2; \; {}^{3}J_{8/Me-8} = 7.2 \; Hz.$

GC-MS (70 eV): m/z =

217 (M⁺, 7 %); 201 (38 %); 159 (10 %); 133 (11 %); 125 (53 %); 109 (21 %); 69 (64 %); 68 (70 %); 56 (100 %), 55 (29 %); 41 (58 %); 39 (37 %).

Röntgenstrukturanalyse von 72:

Daten der Messung	aus Diethylether
CCDC Referenznummer	622303
Formel	$C_{13}H_{16}N_2O$
Molekulargewicht	216.28g/mol
Kristallgröße	0.2 x 0.3 x 0.3 mm
Raumgruppe	P-1
Kristallsystem	triklin
Dichte	1.193(3) g/cm ³
Zelllänge	a = 6.3505(8) A
	b = 8.8084(11) A
	c = 11.2998(14) A
Zellwinkel	$\alpha = 77.104(2)^{\circ}$
	$\beta = 80.832(2)^{\circ}$
	$\gamma = 80.209(2)^{\circ}$
Volumen	602.30(13) A ³
Moleküle/Elementarzelle	Z = 2
F(000)	232 [232.9]
Temperatur	153 K

E. Experimenteller Teil

Daten der Messung	aus Diethylether
linearer Apsorptionskoeffzient	$\mu = 0.077 \text{ mm}^{-1}$
Wellenlänge	$\lambda = 0.71073 \text{ A}$
Messbereich	$\Theta = 1.9-27.0^{\circ}$
Anzahl gemessener Reflexe $\Theta_{max} =$	7075
Anzahl unabhängiger Reflexe mit	2597
R Indices[I>2.0 sigma(I)]	R1 = 0.0423
	$\omega R2 = 0.0888$

Fraktion 4: R_F-*Wert 0.29; 13.9 mg (0.06 mmol, 7 %) 74; Smp. 91.7 °C; farblose Kristalle.*

exo-1a,6a-3,3,8-Trimethyl-5-oxobicyclo[4.2.0]octan-7,7-dicarbonitril (74)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.61 (d, 1 H, H-6, J = 9.8 Hz); 2.01 (dq, 1 H, H-8, J = 6.6, 6.9 Hz); 1.97 (d, 1 H, H-4_{ax}, J = 17.1 Hz); 1.81 (dd, 1 H, H-4_{eq}, J = 1.3, 17.1 Hz); 1.69 (dddd, 1 H, H-1, J = 6.3, 7.7, 8.8, 9.8 Hz); 0.98 (ddd, 1 H, H-2_{eq}, J = 1.3, 7.7, 14.2 Hz); 0.89 (dd, 1 H, H-2_{ax}, J = 8.8, 14.2 Hz); 0.79 (d, 3 H, Me-8, J = 6.9 Hz); 0.56 (s, 3 H, Me-3_a); 0.36 (s, 3H, Me-3_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): δ =

3.47 (d, 1 H, H-6, J = 9.8 Hz); 2.83 (dq, 1 H, H-8, J = 6.6, 6.9 Hz); 2.71 (dddd, 1 H, H-1, J = 6.3, 7.7, 8.8, 9.8 Hz); 2.37 (m, 2 H, H-4); 1.94 (ddd, 1 H, H- 2_{eq} , J = 1.3, 7.7, 14.2 Hz); 1.64 (dd, 1 H, H- 2_{ax} , J = 8.8, 14.2 Hz); 1.47 (d, 3 H, Me-8, J = 6.9 Hz); 1.10 (s, 3 H, Me- 3_a); 0.97 (s, 3H, Me- 3_b) ppm.

¹**H-NMR** (500 MHz, Aceton-D6): $\delta =$

3.83 (d, 1 H, H-6, J = 9.8 Hz); 2.95 (dq, 1 H, H-8, J = 6.6, 6.9 Hz); 2.82 (dddd, 1 H, H-1, J = 6.3, 7.7, 8.8, 9.8 Hz); 2.38 (dd, 1 H, H-4_{eq}, J = 1.3, 17.1 Hz); 2.28 (d, 1 H, H-4_{ax}, J = 17.1 Hz); 2.10 (ddd, 1 H, H-2_{eq}, J = 1.3, 7.7, 14.2 Hz); 1.67 (dd, 1 H, H-2_{ax}, J = 8.8, 14.2 Hz); 1.47 (d, 3 H, Me-8, J = 6.9 Hz); 1.08 (s, 3 H, Me-3_a); 1.00 (s, 3H, Me-3_b) ppm.

¹³**C-NMR** (100.61 MHz, Aceton-D6): δ = (*abgeschätzt aus dem HMBC) 205.8* (C-5); 116.05 (CN); 114.61 (CN); 53.50 (C-4); 47.21 (C-6); 45.82 (C-8); 40.25 (C-2); 38.97 (C-1); 34.57 (C-3); 32.99 (C-7); 30.78 (Me-3_a); 27.89 (Me-3_b); 17.52 (Me-8) ppm.

¹³**C-NMR** (100.61 MHz, CDCl₃): δ =

205.14 (C-5); 114.14 (CN); 113.35 (CN); 53.14 (C-4); 46.47 (C-6); 45.55 (C-8); 39.64 (C-2); 38.41 (C-1); 34.10 (C-3); 32.16 (C-7); 30.41 (Me-3_a); 27.95 (Me-3_b); 17.42 (Me-8) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/2ax} = 8.8; \; {}^{3}J_{1/2eq} = 7.7; \; {}^{3}J_{1/6} = 9.8; \; {}^{3}J_{1/8} = 6.6; \; {}^{2}J_{2/2} = 14.2; \; {}^{4}J_{2eq/4eq} = 1.3; \; {}^{2}J_{4/4} = 17.1; \; {}^{3}J_{8/Me-8} = 6.9 \text{ Hz}.$

GC-MS (70 eV): *m/z* = 216 (M⁺, 14 %); 159 (36 %); 146 (30 %); 145 (35 %); 105 (39 %); 96 (61 %); 83 (68 %); 69 (32 %); 68 (52 %); 57 (47 %); 56 (100 %); 55 (83 %); 41 (92 %); 39 (72 %).

*Fraktion 5: R*_F*-Wert 0.24; 5.4 mg (0.02 mmol, 2 %) 73; Smp. 113.1 °C; farblose Kristalle.*

endo-1a,6a-3,3,8-Trimethyl-5-oxobicyclo[4.2.0]octan-7,7-dicarbonitril (73)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.54 (d, 1 H, H-6, J = 8.9 Hz); 2.31 (dq, 1 H, H-8, J = 7.2, 8.8 Hz); 2.08 (d, 1 H, H-4_{ax}, J = 17.7 Hz); 1.91 (ddd, 1 H, H-4_{eq}, J = 1.0, 1.9, 17.7 Hz); 1.75 (dddd, 1 H, H-1, J = 7.6, 8.8, 8.9, 13.2 Hz); 1.36 (dd, 1 H, H-2_{ax}, J = 13.2, 13.6 Hz); 0.72 (ddd, 1 H, H-2_{eq}, J = 1.9, 7.6, 13.6 Hz); 0.66 (d, 3 H, Me-8, J = 7.2 Hz); 0.57 (s, 3 H, Me-3_a); 0.30 (s, 3H, Me-3_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): δ =

3.45 (d, 1 H, H-6, J = 8.9 Hz); 3.33 (dq, 1 H, H-8, J = 7.2, 8.8 Hz); 2.99 (dddd, 1 H, H-1, J = 7.6, 8.8, 8.9, 13.2 Hz); 2.37 (m, 2 H, H-4); 1.86 (dd, 1 H, H-2_{ax}, J = 13.2, 13.6 Hz); 1.63 (ddd, 1 H, H-2_{eq}, J = 1.9, 7.6, 13.6 Hz); 1.37 (d, 3 H, Me-8, J = 7.2 Hz); 1.12 (s, 3 H, Me-3_a); 0.91 (s, 3H, Me-3_b) ppm.

¹**H-NMR** (500 MHz, Aceton-D6): $\delta =$

3.79 (d, 1 H, H-6, J = 8.9 Hz); 3.54 (dq, 1 H, H-8, J = 7.2, 8.8 Hz); 3.18 (dddd, 1 H, H-1, J = 7.6, 8.8, 8.9, 13.2 Hz); 2.37 (dd, 1 H, H-4_{eq}, J = 1.9, 17.7 Hz); 2.24 (d, 1 H, H-4_{ax}, J = 17.7 Hz); 1.79 (dd, 1 H, H-2_{ax}, J = 13.2, 13.6 Hz); 1.71 (ddd, 1 H, H-2_{eq}, J = 1.9, 7.6, 13.6 Hz); 1.35 (d, 3 H, Me-8, J = 7.2 Hz); 1.12 (s, 3 H, Me-3_a); 0.98 (s, 3 H, Me-3_b) ppm.

¹³C-NMR (100.61 MHz, Aceton-D6): $\delta =$

206.75 (C-5); 116.05 (CN); 53.72 (C-4); 47.46 (C-6); 40.08 (C-8); 38.24 (C-7); 35.15 (C-1); 34.76 (C-2); 33.54 (C-3); 31.64 (Me-3_a); 26.46 (Me-3_b); 11.82 (Me-8) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/2ax} = 13.2; \; {}^{3}J_{1/2eq} = 7.6; \; {}^{3}J_{1/6} = 8.9; \; {}^{3}J_{1/8} = 8.8; \; {}^{2}J_{2/2} = 13.6; \; {}^{4}J_{2eq/4eq} = 1.9; \; {}^{2}J_{4/4} = 17.7; \; {}^{4}J_{6/4eq} = 1.0; \; {}^{3}J_{8/Me-8} = 7.2 \text{ Hz}.$

GC-MS (70 eV): m/z =

216 (M⁺, 35 %); 159 (68 %); 146 (48 %); 145 (69 %); 105 (45 %); 96 (62 %); 83 (61 %); 68 (51 %); 56 (90 %); 55 (67 %); 41 (100 %); 39 (80 %).

Röntgenstruktur von 73:

Daten der Messung	aus Diethylether
CCDC Referenznummer	622304
Formel	$C_{13}H_{16}N_2O$
Molekulargewicht	216.28g/mol
Kristallgröße	0.2 x 0.3 x 0.5 mm
Raumgruppe	$P2_1/c$
Kristallsystem	monoklin
Dichte	$1.180(3) \text{ g/cm}^3$

E. Experimenteller Teil

Daten der Messung	aus Diethylether
Zelllänge	a = 6.4369(9) A
	b = 11.1940(16) A
	c = 16.915(3) A
Zellwinkel	$\alpha = 90^{\circ}$
	$\beta = 93.152(2)^{\circ}$
	$\gamma = 90$ °
Volumen	1217.0(3) A ³
Moleküle/Elementarzelle	Z = 4
F(000)	464.0 [464.17]
Temperatur	153 K
linearer Apsorptionskoeffzient	$\mu = 0.076 \text{ mm}^{-1}$
Wellenlänge	$\lambda = 0.71073 \text{ A}$
Messbereich	$\Theta = 2.2-25.0^{\circ}$
Anzahl gemessener Reflexe $\Theta_{max} =$	11831
Anzahl unabhängiger Reflexe mit	2149
R Indices[I>2.0 sigma(I)]	R1 = 0.0438
	$\omega R2 = 0.0994$

3.2. Bestrahlungen von 2,3-Dihydro-2,2-dimethyl-4*H*-thiopyran-4on (79) in Gegenwart von Ethylidenmalonsäuredinitril (33)

Ansatz:	138 mg (0.96 mmol) 79 , 1.77 (19.2 mmol) 33 und 100 μl	
	Dodekan in 9.6 ml Benzen.	
Bestrahlungszeit:	20 h (Umsatz 71 %).	
GC-Produktverteilung:	4 Produkte im Verhältnis: 75(80):11(B):7(C):7(D).	
DC (PE: Et ₂ O 1:4):	11 Spots, <i>R</i> _F -Werte: 0.73 (80), 0.70, 0.64.	
Reinigung und Isolierung:	1. Destillative Abtrennung der Edukte imVakuum.	
	2. Säulenchromatographie, Eluens PE: Et ₂ O 1:4.	

*Fraktion 1:R*_F-*Wert 0.73; 131.7 mg (0.56 mol, 58 %)* **80**; gelbliches Öl.

exo-1a,6a-3,3,7-Trimethyl-5-oxo-2-thiabicyclo[4.2.0]octan-8,8-dicarbonitril (80)

¹**H-NMR** (500 MHz, CDCl₃): δ =

4.43 (dd, 1 H, H-1 , J = 0.6, 7.5 Hz); 3.55 (ddq, 1 H, H-7, J = 0.6, 7.0, 9.7 Hz); 3.08 (dd, 1 H, H-6 , J = 7.5, 9.7 Hz); 2.76 (d, 1 H, H-4a, J = 16.0 Hz); 2.55 (d, 1 H, H-4b, J = 16.0 Hz); 1.50 (d, 3 H, Me-7, J = 7.0 Hz) ;1.47 (s, 3 H, Me-3a); 1.36 (s, 3 H, Me-3b) ppm.

¹³**C-NMR** (100.61 MHz, CDCl₃): δ =

206.16 (C-5); 113.07 (CN); 112.30 (CN); 53.36 (C-4); 46.72 (C-6); 46.43 (C-3); 43.71 (C-7); 43.38 (C-1); 35.78 (C-8); 30.25 (Me-3a); 30.20 (Me-3b); 16.55 (Me-7) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/6} = 7.5$; ${}^{4}J_{1/7} = 0.6$; ${}^{2}J_{4/4} = 16.0$; ${}^{3}J_{6/7} = 9.7$; ${}^{3}J_{7/Me-7} = 7.0$ Hz.

GC-MS (70 eV): m/z =

234 (M⁺, 8 %); 142 (78 %); 127 (30 %); 109 (35 %); 87 (47 %); 86 (100 %); 69 (19 %); 59 (19 %); 58 (19 %); 55 (16 %); 41 (37 %); 39 (24%).

E. Experimenteller Teil

Aus dem Rohgemisch die GC/MS-Daten von B, C und D.

GC-MS (70 eV): m/z =

234 (M⁺, 20 %); 169 (96 %);135 (20 %); 113 (110 %); 85 (58 %); 83 (40 %); 45 (30 %).

GC-MS (70 eV): m/z =

234 (M⁺, 9 %); 142 (73 %); 127 (20 %); 109 (34 %); 85 (36 %); 86 (100 %); 59 (18 %); 56 (24 %); 45 (22 %); 41 (29 %); 39 (19 %).

GC-MS (70 eV): m/z =

234 (M⁺, 11 %); 142 (70 %); 127 (28 %); 109 (37 %); 87 (38 %); 86 (100 %); 59 (18 %); 56 (22 %); 45 (20 %); 41 (30 %); 39 (19 %).

3.3. Bestrahlungen von 2,5,5-Trimethylcyclohex-2-en-1-on (28) in Gegenwart der α,β-ungesättigten Nitrile 30 bis 33

3.3.1. In Gegenwart von Ethylidenmalonsäuredinitril (33)

Ansatz:	125 mg (0.9 mmol) 28 , 1.66 g (18 mmol) 33 , 100 μl	
	Dodekan und 9 ml Benzen.	
Bestrahlungszeit:	81 h (Umsatz 42 %).	
GC-Produktverteilung:	3 Produkte im Verhältnis: 50(82):36(B):14(C).	
Reinigung :	Destillative Abtrennung des Lösungsmittel und 8 im	
	Vakuum.	

Aus dem Rohgemisch.

exo-3,3,6,8-Tetramethyl-5-oxobicyclo[4.2.0]octan-7,7-dicarbonitril (82)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.35(ddd, 1 H, H-1, J = 2.5, 8.6, 11.2 Hz); 2.18 (dq, 1 H, H-8, J = 2.5, 7.6 Hz); 1.92 (dd, 1 H, H-4_{eq}, J = 2.8, 18.0 Hz); 1.55 (d, 1 H, H-4_{ax}, J = 18.0 Hz); 1.33 (dd, 1 H, H-2_{ax}, J = 11.2, 13.8 Hz); 1.21 (ddd, 1 H, H-2_{eq}, J = 2.8, 7.6, 13.8 Hz); 0.81 (d, 3 H, Me-8, J = 7.6 Hz); 0.5 (3 H, Me-6), 0.29 (s, 6 H, Me-3) ppm.

¹³**C-NMR** (125.77 MHz, CDCl₃): δ = (abgeschätzt aus dem HMQC) 54 (C-4); 48 (C-8); 46 (C-1); 39 (C-2); 26 (Me-3); 16 (Me-8) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/2ax} = 11.2; \; {}^{3}J_{1/2eq} = 8.6; \; {}^{3}J_{1/8} = 2.5; \; {}^{2}J_{2/2} = 13.8; \; {}^{4}J_{2eq/4eq} = 2.8; \; {}^{2}J_{4/4} = 18.0; \; {}^{3}J_{8/Me-8} = 7.6$ Hz.

3.3.2. In Gegenwart von Chloracrylonitril (30)

Ansatz:	100 mg (0.72 mmol) 28 , 1.32 (15.1 mmol) 30 und 100 μl	
	Dodekan in 7.2 ml Benzen.	
Bestrahlungszeit:	690 min (Umsatz 70 %).	
NMR-Produktverteilung:	5 Produkte im Verhältnis:	
	2(84):13(85):15(86):54(87):16(88).	
GC-Verteilung:	5 Produkte im Verhältnis:	
	2(84):14(85):14(86):58(87):12(88).	
DC (CH ₂ Cl ₂ :PE 15:1):	5 Spots, $R_{\rm F}$ -Werte:	
	0.50(87), 0.46(88), 0.44(86). 0.41(84), 0.41(85).	
Reinigung und Isolierung:	1. Destillative Abtrennung der Edukte im Vakuum.	
	2. Säulenchromatographie, Eluens CH ₂ Cl ₂ :PE 15:1.	

Fraktion 1: R_F-Wert 0.50; 21.6 mg (0.1 mmol, 14 %) 87; Smp. 54 °C; farblose Kristalle.

endo-1a,6a-7-Chlor-3,3,6-trimethyl-5-oxobicyclo[4.2.0]octan-7-carbonitril (87)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.41 (d, 1 H, H-4_{ax}, J = 18.0 Hz); 2.11 (dd, 1 H, H-8_a, J = 9.8, 12.9 Hz); 2.07 (dd, 1 H, H-4_{eq}, J = 2.7, 18.0 Hz); 1.95 (dd, 1 H, H-8_b, J = 2.8, 12.9 Hz); 1.65 (dddd, 1 H; H-1, J = 2.8, 7.9, 9.8, 11.8 Hz); 1.46 (dd, 1 H, H-2_{ax}, J = 11.8, 13.9 Hz); 1.17 (s, 3 H, Me-6); 1.14 (ddd, 1 H, H-2_{eq}, J = 2.7, 7.9, 13.9 Hz); 0.61 (s, 3 H, Me-3_a); 0.38 (s, 3 H, Me-3_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

 $\begin{aligned} &2.85 \text{ (dd, 1 H, H-8}_{a}, \text{J} = 9.8, 12.9 \text{ Hz}); 2.68 \text{ (dd, 1 H, H-8}_{b}, \text{J} = 2.8, 12.9 \text{ Hz}); 2.55 \text{ (dddd,} \\ &1 \text{ H}; \text{H-1}, \text{J} = 2.8, 7.9, 9.8, 11.8 \text{ Hz}); 2.52 \text{ (d, 1 H, H-4}_{ax}, \text{J} = 18.0 \text{ Hz}); 2.37 \text{ (dd, 1 H, H-4}_{eq}, \text{J} = 2.7, 18.0 \text{ Hz}); 1.93 \text{ (ddd, 1 H, H-2}_{eq}, \text{J} = 2.7, 8.0, 13.9 \text{ Hz}); 1.86 \text{ (dd, 1 H, H-2}_{ax}, \\ &J = 11.8, 13.9 \text{ Hz}); 1.50 \text{ (s, 3 H, Me-6}); 1.09 \text{ (s, 3 H, Me-3}_{a}); 0.91 \text{ (s, 3 H, Me-3}_{b}) \text{ ppm.} \end{aligned}$

¹³**C-NMR** (100.61 MHz, Benzen-D6): $\delta =$

207.84 (C-5); 119.88 (CN); 55.41 (C-6); 53.44 (C-7); 52.64 (C-4); 40.64 (C-2); 40.53 (C-8); 35.49 (C-1); 32.19 (C-3); 30.69 (Me-3_a); 25.80 (Me-3_b); 21.60 (Me-6) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/2ax} = 11.8; \ {}^{3}J_{1/2eq} = 7.9; \ {}^{3}J_{1/8a} = 9.8; \ {}^{3}J_{1/8b} = 2.8; \ {}^{2}J_{2/2} = 13.9; \ {}^{4}J_{2eq/4eq} = 2.7; \ {}^{2}J_{4/4} = 18.0; \ {}^{2}J_{8/8} = 12.9 \text{ Hz}.$

GC-MS (70 eV): m/z =

225 (M⁺, 2 %); 138 (56 %); 106 (41 %); 95 (23 %); 83 (79 %); 82 (100 %); 56 (22 %); 54 (20 %); 41 (47 %); 39 (36 %).

Röntgenstrukturanalyse von 87:

Daten der Messung	aus Diethylether
CCDC Referenznummer	622302
Formel	C ₁₂ H ₁₆ ClNO

E. Experimenteller Teil

Daten der Messung	aus Diethylether
Molekulargewicht	225.71g/mol
Kristallgröße	0.5 x 0.2 x 0.2 mm
Raumgruppe	$P2_1/c$
Kristallsystem	monoklin
Dichte	1.2684(2) g/cm ³
Zelllänge	a = 6.6315(5) A
	b = 22.8217(17) A
	c = 9.6043(6) A
Zellwinkel	$\alpha = 90^{\circ}$
	β=125.594(4) °
	$\gamma = 90$ °
Volumen	1181.96(16) A ³
Moleküle/Elementarzelle	Z = 4(2)
F(000)	480.0 [480.76]
Temperatur	153 K
linearer Apsorptionskoeffzient	$\mu = 0.297 \text{ mm}^{-1}$
Wellenlänge	$\lambda = 0.71 \text{ A}$
Messbereich	$\Theta = 2.8-30^{\circ}$
Anzahl gemessener Reflexe $\Theta_{max} =$	29354
Anzahl unabhängiger Reflexe mit	3431
R Indices[I>2.0 sigma(I)]	R1 = 0.0406
	$\omega R2 = 0.1044$

*Fraktion 2: R*_F*-Wert 0.48; 10.6 mg (***87** + **88***; 76:24).*

exo-1a,6a-7-Chlor-3,3,6-trimethyl-5-oxobicyclo[4.2.0]octan-7-carbonitril (88)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$ 2.44 (dd, 1 H, H-8_a, J = 8.9, 13.9 Hz); 2.06 (dd, 1 H, H-4_{eq}, J = 2.5, 18.0 Hz); 1.99 (d, 1 H, H-4_{ax}, J = 18.0 Hz); 1.65 (dd, 1 H, H-8_b, J = 2.9, 13.9 Hz); 1.57 (dddd, 1 H, H-1, J = 2.9, 8.6, 8.9, 11.4 Hz); 1.34 (m, 1 H, H-2_{ax}); 1.34 (s, 3 H, Me-6); 1.16 (ddd, 1 H, H-2_{eq}, J = 2.5, 8.6, 13.9 Hz); 0.60 (s, 3 H, Me-3_a); 0.37 (s, 3 H, Me-3_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

3.25 (dd, 1 H, H-8_a, J = 8.9, 13.9 Hz); 2.48 (m, 1 H, H-1); 2.41 (dd, 1 H, H-8_b, J = 2.9, 13.9 Hz); 2.35 (m, 2 H, H-4); 1.97 (ddd, 1 H, H-2_{eq}, J = 2.5, 8.6, 13.9 Hz); 1.93 (m, 1 H, H-2_{ax}); 1.63 (s, 3 H, Me-6); 1.07 (s, 3 H, Me-3_a); 0.89 (s, 3 H, Me-3_b) ppm.

¹³**C-NMR** (100.61 MHz, CDCl₃): δ =

208.87 (C-5); 116.25 (CN); 55.48 (C-6); 54.83 (C-4); 53.25 (C-7); 41.81 (C-2); 40.07 (C-8); 36.08 (C-1); 32.41 (C-3); 26.32 (Me-3_a); 31.19 (Me-3_b); 23.80 (Me-6) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/2ax} = 11.4 \text{ Hz}; {}^{3}J_{1/2eq} = 8.6; {}^{3}J_{1/8a} = 8.9; {}^{3}J_{1/8b} = 2.9; {}^{2}J_{2/2} = 13.9; {}^{4}J_{2eq/4eq} = 2.5; {}^{2}J_{4/4} = 18.0;$ ${}^{2}J_{8/8} = 13.9 \text{ Hz}.$

GC-MS (70 eV): *m/z* = 226 (M⁺, 1 %); 138 (30 %); 132 (18 %); 106 (26 %); 95 (18 %); 83 (37 %); 82 (100 %); 55 (19 %); 41 (27 %); 40 (24 %).

*Fraktion 3: R*_F*-Wert 0.47; 11.4 mg (***85 + 86 + 87 + 88***; 15:43:28:14).*

*Fraktion 4: R*_F*-Wert 0.45; 12.5 mg (***85** + **86***; 24:76).*

exo-1a,6a-7-Chlor-4,4,8-trimethyl-2-oxobicyclo[4.2.0]octan-7-carbonitril (85)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.66 (dd, 1 H, H-8_a, J = 1.1, 14.3 Hz); 2.44 (dddd, 1 H, H-6, J = 1.1, 3.4, 8.2, 11.7 Hz); 2.04 (dd, 1 H, H-8_b, J = 3.4, 14.3 Hz); 1.83 (d, 1 H, H-3_{ax}, J = 17.3 Hz); 1.70 (d, 1 H, H-3_{eq}, J = 17.3 Hz); 1.35 (m, 1 H, H-5_{ax}); 1.27 (s, 3 H, Me-1); 1.12 (ddd, 1 H, H-5_{eq}, J = 2.5, 8.2, 13.8 Hz); 0.57 (s, 3 H, Me-4_a); 0.37 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

3.19 (dd, 1 H, H-8_a, J = 1.1, 14.3 Hz); 3.04 (dddd, 1 H, H-6, J = 1.1, 3.4, 8.2, 11.7 Hz); 2.61 (dd, 1 H, H-8_b, J = 3.4, 14.3 Hz); 2.34 (d, 1 H, H-3_{eq}, J = 17.3 Hz); 2.25 (d, 1 H, H- 3_{ax} , J = 17.3 Hz); 2.09 (ddd, 1 H, H- 5_{eq} , J = 2.5, 8.2, 13.8 Hz); 1.74 (dd, 1 H, H- 5_{ax} , J = 11.7, 14.3 Hz); 1.66 (s, 3 H, Me-1);1.03 (s, 3 H, Me- 4_a); 1.01 (s, 3 H, Me- 4_b) ppm.

¹**H-NMR** (500 MHz, Aceton-D6): $\delta =$

3.36 (dd, 1 H, H-8_a, J = 1.1, 14.3 Hz); 3.12 (dddd, 1 H, H-6, J = 1.1, 3.4, 8.2, 11.7 Hz); 2.59 (dd, 1 H, H-8_b, J = 3.4, 14.3 Hz); 2.42 (d, 1 H, H-3_{ax}, J = 17.3 Hz); 2.29 (d, 1 H, H- 3_{eq} , J = 17.3 Hz); 2.14 (ddd, 1 H, H- 5_{eq} , J = 2.5, 8.2, 13.8 Hz); 1.84 (dd, 1 H, H- 5_{ax} , J = 11.7, 14.3 Hz); 1.63 (s, 3 H, Me-1); 1.12 (s, 3 H, Me- 4_a); 1.00 (s, 3 H, Me- 4_b) ppm.

¹³**C-NMR** (100.61 MHz, Aceton-D6): δ =

213.23 (C-2); 118.50 (CN); 51.70 (C-3); 54.65 (C-6); 53.55 (C-7); 45.99 (C-8); 39.69 (C-5); 42.78 (C-1); 34.05 (C-4); 32.12 (Me-4_a); 27.21 (Me-4_b); 25.20 (Me-1) ppm.

Kopplungskonstanten:

 ${}^{3}J_{3/3} = 17.3; \ {}^{4}J_{3eq/5eq} = 2.5; \ {}^{2}J_{5/5} = 13.8; \ {}^{3}J_{5eq/6} = 8.2; \ {}^{3}J_{5ax/6} = 11.7; \ {}^{2}J_{8/8} = 14.3; \ {}^{4}J_{6/8a} = 1.1; \ {}^{4}J_{6/8b} = 3.4 \text{ Hz}.$

GC-MS (70 eV): m/z =

225 (M⁺, 1 %); 190 (42 %); 148 (15 %); 141 (16 %); 138 (20 %); 134 (15 %); 133 (16 %); 132 (14 %); 123 (19 %); 109 (38 %); 106 (52 %); 105 (25 %); 96 (19 %); 83 (100 %); 82 (97 %); 79 (27 %); 77 (20 %); 69 (54 %); 56 (49 %); 55 (35 %); 54 (18 %); 53 (17 %); 43 (17 %); 42 (71 %); 41 (34 %).
endo-1a,6a-7-Chlor-4,4,8-trimethyl-2-oxobicyclo[4.2.0]octan-7-carbonitril (86)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.52 (ddd, 1 H, H-6, J = 3.6, 8.3, 11.2 Hz); 2.37 (d, 1 H, H-8_a, J = 013.2 Hz); 2.22 (dd, 1 H, H-8_b, J = 3.5, 13.2 Hz); 1.84 (m, 1 H, H-3_b); 1.67 (m, 1 H, H-3_a); 1.35 (m, 2 H, H-5); 1.30 (s, 3 H, Me-1); 0.52 (s, H Cl 3 H, Me-4_a); 0.35 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

3.17 (m, 1 H, H-6); 2.86 (dd, 1 H, H-8_b, J = 3.5, 13.2 Hz); 2.82 (d, 1 H, H-8_a, J = 13.2 Hz); 2.29 (m, 2 H, H-3); 1.83 (m, 2 H, H-5); 1.63 (s, 3 H, Me-1); 1.03 (s, 3 H, Me-4_a); 0.98 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, Aceton-D6): $\delta =$

3.27 (dddd, 1 H, H-6, J = 0.9, 3.5, 8.2, 11.3 Hz); 3.01 (dd, 1 H, H-8_a, J = 0.9, 13.3 Hz); 2.86 (dd, 1 H, H-8_b, J = 3.5, 13.3 Hz); 2.47 (d, 1 H, H-3_{ax}, J = 17.0 Hz); 2.25 (dd, 1 H, H-3_{eq}, J = 2.7, 17.0 Hz); 1.97 (dd, 1 H, H-5_{ax}, J = 11.3, 13.9 Hz); 1.88 (ddd, 1 H, H-5_{eq}, J = 2.7, 8.2, 13.9 Hz); 1.58 (s, 3 H, Me-1); 1.12 (s, 3 H, Me-4_a); 0.97 (s, 3 H, Me-4_b) ppm.

¹³**C-NMR** (100.61 MHz, Aceton-D6): δ =

211.96 (C-2); 122.52 (CN); 53.53 (C-7); 52.34 (C-6); 51.72 (C-3); 46.84 (C-8); 42.66 (C-1); 37.80 (C-5); 33.61 (C-4); 32.05 (Me-4_a); 26.74 (Me-4_b); 23.31 (Me-1) ppm.

Kopplungskonstanten:

 ${}^{3}J_{3/3} = 17.0$; ${}^{4}J_{3eq/5eq} = 2.7$; ${}^{2}J_{5/5} = 13.9$; ${}^{3}J_{5eq/6} = 8.2$; ${}^{3}J_{5ax/6} = 11.3$; ${}^{4}J_{8/8} = 13.3$; ${}^{4}J_{6/8a} = 0.9$; ${}^{4}J_{6/8b} = 3.5$ Hz.

GC-MS (70 eV): m/z =

225 (M⁺, 1 %); 190 (45 %); 148 (18 %); 146 (16 %); 141 (19 %); 133 (17 %); 132 (16 %); 109 (48 %); 106 (61 %); 105 (28 %); 96 (22 %); 83 (84 %); 82 (100 %); 79 (30 %); 77 (21 %); 69 (53 %); 67 (21 %); 65 (16 %); 57 (16 %); 56 (48 %); 55 (33 %); 54 (18 %); 53 (17 %); 43 (18 %); 42 (69 %); 10 (34 %). *Fraktion 5: R*_F*-Wert 0.42; 2.5 mg (***84 + 85 + 86***; 5:60:35).*

1α,6β-7-Chlor-4,4,8-trimethyl-2-oxobicyclo[4.2.0]octan-7-carbonitril (84)

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

3.84 (d, 1 H, H-8_a, J = 12.6 Hz); 3.41 (d, 1 H, H-8_b, J = 12.6 Hz); 2.98 (d, 1 H, H-3_b, J = 12.0 Hz); 2.76 (d, 1 H, H-3_a, J = 12.0 Hz); 2.71 (dd, 1 H, H-6, J = 2.7, 10.7 Hz); 1.97 (dd, 1 H, H-5_{eq}, J = 2.7, 13.6 Hz); 1.68 (dd, 1 H, H-5_{ax}, J = 10.7, 13.6 Hz); 1.66 (s, 3 H, Me-1); 1.21 (s, 3 H, Me-4_a); 1.05 (s, 3 H, Me-4_b) ppm.

¹³C-NMR (125.77 MHz, CDCl₃): δ = (* abgeschätzt aus dem HMQC)
48.0 (C-6); 48 (C-3); 41 (C-8); 35 (C-5); 34 (Me-4_a); 32 (Me-4_b); 25 (Me-1) ppm.

Kopplungskonstanten:

 ${}^{2}J_{3/3} = 12.0; \; {}^{2}J_{5/5} = 13.6; \; {}^{3}J_{5eq/6} = 2.7; \; {}^{3}J_{5ax/6} = 10.7; \; {}^{2}J_{8/8} = 12.6 \; Hz.$

GC-MS (70 eV): m/z =

225 (M⁺, 1 %); 190 (27 %); 148 (16 %); 146 (18 %); 140 (16 %); 132 (17 %); 133 (23 %); 131 (15 %); 109 (24 %); 107 (17 %), 106 (66 %); 105 (30 %); 96 (18 %); 95 (16 %); 91 (17 %); 83 (100 %), 82 (39 %); 81 (19 %); 79 (43 %); 77 (29 %); 69 (47 %); 67 (17 %); 65 (16 %); 57 (22 %); 56 (54 %); 55 (36 %); 53 (17 %); 43 (17 %); 41 (75 %); 40 (77 %); 39 (35 %).

3.4. Bestrahlungen von 2-(3',3'-Dimethylbut-1'-inyl)-5,5-dimethylcyclohex-2-en-1-on (29) in Gegenwart der α,β-ungesättigten Nitrile 30 bis 33 und der Alkene 13 und 105

3.4.1. In Gegenwart von Chloracylonitril (30)

Ansatz:	100 mg (0.52 mmol 29 ; 0.88 g (10.06 mmol) 30 , 5 ml
	Benzen und 100 µl Dodekan.
Bestrahlungszeit:	50 min (Umsatz 49 %).
NMR-Produktverteilung:	2 Produkte im Verhältnis: 67(92):33(93).
DC (CH ₂ Cl ₂ :PE l 5:1):	2 Spots; $R_{\rm F}$ -Werte: 0.61 (92+93), 0.41(29).
Reinigung und Isolierung :	Destillative Abtrennung der Edukte im Vakuum,
	Präparative DC (Kieselgel 2 mm); Eluens CH ₂ Cl ₂ :PE 15:1.

*Fraktion 1: R*_F*-Wert 0.61; 5.6 mg (***92** + **93***; 67:33); gelbliches Öl.*

exo-1a,6a-7-Chlor-3,3-dimethyl-6-(3',3'-dimethylbut-1'-inyl)-5-oxobicyclo-[4.2.0]octan-7-carbonitril (92)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.52 (dddd, 1 H, H-1, J = 4.5, 7.6, 9.8, 10.4 Hz); 2.42 (dd, 1 H, H-8_a, J = 9.8, 12.9 Hz); 2.24 (m, 1 H, H-4_{ax}); 2.24 (m, 1 H, H-4_{eq}); 2.02 (dd, 1 H, H-8_b, J = 4.5, 12.9 Hz); 1.28-1.15 (m, 2 H, H-2); 1.13 (s, 9 H, *t*-Bu); 0.65 (s, 3 H, Me-3_a); 0.58 (s, 3 H, Me-3_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

3.05 (dddd, 1 H, H-1, J = 4.5, 7.6, 9.8, 10.4 Hz); 2.89 (dd, 1 H, H-8_a, J = 9.8, 12.9 Hz); 2.67 (dd, 1 H, H-8_b, J = 4.5, 12.9 Hz); 2.53 (dd, 1 H, H-4_{eq}, J = 1.9, 17.0 Hz); 2.38 (d, 1 H, H-4_{ax}, J = 17.0 Hz); 1.90 (ddd, 1 H, H-2_{eq}, J = 1.9, 7.6, 14.2 Hz); 1.69 (dd, 1 H, H-2_{ax}, J = 10.4, 14.2 Hz); 1.24 (s, 9 H, *t*-Bu); 1.09 (s, 3 H, Me-3_a); 1.06 (s, 3 H, Me-3_b) ppm.

¹³C-NMR (100.61 MHz, CDCl₃): $\delta =$

202.11 (C-5); 119.18 (CN); 98.80 (C-2'); 75.95 (C-1'); 56.32 (C-7); 55.70 (C-6); 51.93 (C-4); 41.79 (C-8); 39.80 (C-2); 38.86 (C-1); 33.31 (C-3); 31.02 (Me-*t*-Bu); 30.65 (Me-3_b); 28.13 (*t*-Bu); 27.41 (Me-3_a) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/2ax} = 10.4; \; {}^{3}J_{1/2eq} = 7.6; \; {}^{3}J_{1/8a} = 9.8; \; {}^{3}J_{1/8b} = 4.5; \; {}^{2}J_{2ax/2eq} = 14.2; \; {}^{4}J_{2eq/4eq} = 1.9; \; {}^{2}J_{4ax/4eq} = 17.0; \; {}^{2}J_{8ax/8eq} = 12.9 \text{ Hz}.$

GC-MS (70 eV): *m/z* = 276 (M⁺-CH₃, 7 %); 256 (16 %); 204 (23 %); 189 (43 %); 148 (100 %); 133 (19 %); 120 (17 %); 105 (38 %); 91 (23 %); 77 (18 %); 55 (15 %); 41 (30 %).

endo-1a,6a-7-Chlor-3,3-dimethyl-6-(3',3'-dimethylbut-1'-inyl)-5-oxobicyclo-[4.2.0]octan-7-carbonitril (93)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.81 (dd, 1 H, H-8_a, J = 9.4, 13.6 Hz); 2.45 (dddd, 1 H, H-1, J = 4.0, 8.2, 9.4, 10.8 Hz); 2.16 (dd, 1 H, H-4_{eq}, J = 2.4, 17.8 Hz); 1.93 (dd, 1 H, H-4_{ax}, J = 0.8, 17.0 Hz); 1.71 (dd, 1 H, H-8_b, J = 4.0, 13.6 Hz); 1.28-1.15 (m, 2 H, H-2); 1.22 (s, 9 H, *t*-Bu); 0.70 (s, 3 H, Me-3_a); 0.55 (s, 3 H, Me-3_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

3.41 (dd, 1 H, H-8_a, J = 9.4, 13.6 Hz); 2.92 (dddd, 1 H, H-1, J = 4.0, 8.2, 9.4, 10.8 Hz); 2.45 (dd, 1H, H-4_{eq}, J = 2.4, 17.8 Hz); 2.40 (dd, 1 H, H-8_b, J = 4.0, 13.6 Hz); 2.30 (m, 1 H, H-4_{ax}); 1.97 (ddd, 1 H, H-2_{eq}, J = 2.4, 8.2, 13.8 Hz); 1.77 (dd, 1 H, H-2_{ax}, J = 10.8, 13.8 Hz); 1.26 (s, 9 H, *t*-Bu); 1.07 (s, 3 H, Me-3_a); 1.01 (s, 3 H, Me-3_b) ppm.

¹³**C-NMR** (100.61 MHz, CDCl₃): δ =

200.92 (C-5); 117.29 (CN); 98.64 (C-2'); 77.58 (C-1'); 55.60 (C-6); 54.62 (C-7); 53.51 (C-4); 41.39 (C-8); 40.97 (C-2); 38.36 (C-1); 32.54 (C-3); 31.02 (Me-*t*-Bu); 28.13 (*t*-Bu); 30.84 (Me-3_b); 26.59 (Me-3_b) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/2ax} = 10.8$; ${}^{3}J_{1/2eq} = 8.2$; ${}^{3}J_{1/8ax} = 9.4$; ${}^{3}J_{1/8eq} = 4.0$; ${}^{2}J_{2ax/2eq} = 13.8$; ${}^{4}J_{2eq/4eq} = 2.4$; ${}^{2}J_{4ax/4eq} = 17.8$; ${}^{2}J_{8ax/8eq} = 13.6$ Hz.

GC-MS (70 eV): *m/z* = 276 (M⁺-CH₃, 7 %); 256 (11 %); 204 (21 %); 189 (37 %); 148 (100 %); 133 (17 %); 120 (15 %); 105 (34 %); 91 (23 %); 77 (18 %); 55 (17 %); 41 (32 %).

3.4.2. In Gegenwart von Isopropylidenmalonsäuredinitril (32)

Ansatz:	107 mg (0.52 mmol) 29 ; 1.32 g (10.64 mmol) 32 , 7 ml
	Benzen und100 µl Dodekan.
Bestrahlungszeit:	450 min (Umsatz 50 %).
NMR-Produktverteilung:	3 Produkte im Verhältnis: 62(95):25(96):13(97).
DC (PE:EE:Toluol 7:2:4):	3 Spots; <i>R</i> _F -Werte: 0.66(97), 0.52(29), 0.46(95+96).
Reinigung und Isolierung:	Waschen mit 1 M NaOH-Lösung;
	Säulenchromatographisch; Eluens PE:EE:Toluol 7:2:4.

*Fraktion 1: R*_F*-Wert 0.66; 10 mg (0.03 mmol, 6 %)* **97***; gelbliches Öl.*

2-*tert*-Butyl-4,4,6,6-tetramethyl-4a,5,6,7-tetrahydroindeno[7,1-bc]furan-3,3(3H)dicarbonitril (97)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.63 (dddd, 1 H, H-4a, J = 2.4, 2.9, 5.7, 11.0 Hz); 2.02 (dd, 1 H, H-7_a, J = 2.4, 16.4 Hz); 1.84 (dd, 1 H, H-7_b, J = 2.9, 16.4 Hz); 1.35 (s, 9 H, *t*-Bu); 1.26 (s, 3 H, Me-3_a); 0.88 (dd, 1 H, H-5_{eq}, J = 5.7, 12.0 Hz); 0.73 (s, 3 H, Me-6_a); 0.72 (s, 3 H, Me-6_b); 0.69 (s, 3 H, Me-3_b); 0.54 (dd, 1 H, H-5_{ax}, J = 11.0, 12.0 Hz) ppm.

¹³**C-NMR** (100.61 MHz, Benzen-D6): $\delta =$

159.54 (C-2); 146.94 (C-7a); 146.40 (C-2a); 131.05 (C-7b); 115.26 (CN); 114.41 (CN); 67.49 (C-4); 47.01 (C-3); 39.18 (C-4a); 37.84 (C-5); 37.48 (C-6); 36.39 (C-7); 34.27 (*t*-Bu); 31.53 (Me-3a); 29.71 (Me-*t*-Bu); 26.24 (Me-3_b); 23.81 (Me-6_a); 20.71 (Me-6_b) ppm.

Kopplungskonstanten:

 ${}^{3}J_{4a/5ax} = 11.0; \ {}^{3}J_{4/5eq} = 5.7; \ {}^{5}J_{4a/7a} = 2.4; \ {}^{5}J_{4a/7b} = 2.9; \ {}^{2}J_{5eq/5ax} = 12.0; \ {}^{2}J_{7/7} = 16.4 \text{ Hz}.$

GC-MS (70 eV): *m/z* = 310 (M⁺, 31 %); 295 (100%); 267 (17 %); 255 (20 %); 239 (31 %), 57 (18 %).

Fraktion 2: R_F-Wert 0.52; 30 mg 29; gelbes Öl.

*Fraktion 3: R*_F*-Wert 0.46; 40 mg (***95** + **96***, 80:20); gelbliches Öl.*

1α,6α-1-(3',3'-Dimethylbut-1'-inyl)-4,4,8,8-tetramethyl-2-oxobicyclo-[4.2.0]octan-7,7-dicarbonitril (95)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.26 (dd, 1 H, H-6, J = 7.3, 13.2 Hz); 2.21 (dd, 1 H, H-3_{eq}, J = 2.4, 18.3 Hz); 2.06 (d, 1 H, H-3_{ax}, J = 18.3 Hz); 1.42 (s, 3 H, Me-8_a); 1.32 (m, 1 H, H-5_{ax}); 1.14 (s, 9 H, *t*-Bu); 0.95 (ddd, 1 H, H-5_{eq}, J = 2.4, 7.3, 13.8 Hz); 0.83 (s, 3 H, Me-8_b); 0.71 (s, 3 H, Me-4_a); 0.54 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

2.68 (dd, 1 H, H-6, J = 7.3, 13.2 Hz); 2.56 (dd, 1 H, H- 3_{eq} , J = 1.9, 18.0 Hz); 2.28 (d, 1 H, H- 3_{ax} , J = 18.3 Hz); 1.70 (s, 3 H, Me- 8_a); 1.63 (m, 2H, H-5); 1.33 (s, 3 H, Me- 8_b); 1.26 (s, 9 H, *t*-Bu-Me); 1.14 (s, 3 H, Me- 4_a); 1.10 (s, 3 H, Me- 4_b) ppm.

¹³**C-NMR** (100.61 MHz, Benzen-D6): δ =

199.57 (C-2); 114.15 (CN); 99.37 (C-2'); 76.58 (C-1'); 51.62 (C-3); 49.71 (C-6); 45.70 (C-1); 44.88 (C-8); 44.61 (C-7); 36.40 (C-5); 32.10 (C-4); 31.47 (Me-4b); 30.60 (*t*-Bu); 30.34 (Me-*t*-Bu); 28.55 (Me-8_a); 26.89 (Me-4_a); 21.21 (Me-8_b) ppm.

Kopplungskonstanten:

 ${}^{2}J_{3ax/3eq} = 18.3$; ${}^{4}J_{3eq/5eq} = 2.4$; ${}^{2}J_{5ax/5eq} = 13.8$; ${}^{3}J_{5ax/6} = 13.2$; ${}^{3}J_{5eq/6} = 7.3$ Hz.

GC-MS (70 eV): m/z = (aus Mischfraktion)

310 (M⁺, 2 %); 295 (32 %); 204 (30 %); 189 (42 %); 148 (100 %), 110 (73 %); 105 (43 %); 40 (59 %).

E. Experimenteller Teil

1α,6α-6-(3',3'-Dimethylbut-1'-inyl)-3,3,8,8-tetramethyl-5-oxobicyclo-[4.2.0]octan-7,7-dicarbonitril (96)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.58 (d, 1 H, H-4_{ax}, J = 17.4 Hz); 2.40 (m, 1 H, H-1); 2.40 (m, 1 H, H-4_{eq}); 2.00 (dd, 1 H, H-2_{ax}, J = 11.7, 13.2 Hz); 1.71 (ddd, 1 H, H-2_{eq}, J = 2.8, 8.1, 13.2 Hz); 1.43 (s, 3 H, Me-8_a); 1.09 (s, 9 H, *t*-Bu); 0.84 (s, 9 H, Me-3_a, Me-3_b, Me-8_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): δ =

2.44 (dd, 1 H, H-1, J = 8.8, 11.5 Hz); 2.39 (m, 1 H, H-4_{ax}); 2.39 (m, 1 H, H-4_{eq}); 1.97 (m, 1 H, H-2_{ax}); 1.97 (m, 1 H, H-2_{eq}); 1.30 (s, 3 H, Me-8_a); 1.18 (s, 9 H, *t*-Bu); 1.04 (s, 3 H, Me-3_a); 1.04 (s, 3 H, Me-3_b); 0.93 (s, 3 H, Me-8_b) ppm.

¹³**C-NMR** (100.61 MHz, Benzen-D6): $\delta =$

201.90 (C-5); 112.40 (CN); 95.50 (C-2'); 80.60 (C-1'); 54.58 (C-4); 49.10 (C-6); 46.03 (C-1); 43.89 (C-7); 41.85 (C-2); 32.67(C-8); 31.33 (Me-3_b); 31.33 (Me-3_a); 31.08 (Me-8_a); 31.06 (t-Bu); 29.76 (Me-*t*-Bu); 28.03 (C-3); 25.90 (Me-8_b) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/2ax} = 11.7$; ${}^{3}J_{1/2eq} = 8.1$; ${}^{2}J_{2ax/2eq} = 13.2$; ${}^{4}J_{2eq/4eq} = 2.8$; ${}^{2}J_{4ax/4eq} = 17.4$ Hz.

GC-MS (70 eV): *m/z* = (*aus Mischfraktion*) 310 (M⁺, 2 %); 295 (32 %); 204 (30 %); 189 (42 %); 148 (100 %), 110 (73 %); 105 (43 %); 40 (59 %).

3.4.3. In Gegenwart von 2,3-Dimethylbut-2-en (13)

Ansatz:	103.6 mg (0.51 mmol) 29 ; 0.8 g (10 mmol) 13 und 100 μl
	Dodekan in 5.1 ml Benzen.
Bestrahlungszeit:	36 h (Umsatz 47 %).
GC-Produktverteilung:	1 Produkt.
NMR-Produktverteilung:	1 Produkt.
DC (PE:EE 4:1):	2 Spots; $R_{\rm F}$ -Werte: 0.92 (98), 0.35(29).
Reinigung und Isolierung:	Säulenchromatographisch; Eluens PE:EE 4:1.

Fraktion 1: R_F-Wert 0.97; 40 mg (0.14 mmol, 27 %) 98; farbloses Öl.

2-(*tert*-Butyl)-3,3,4,4,6,6-hexamethyl-3,4,4a,5,6,7-hexahydroindeno[7,1-bc]furan (98)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.62 (ddd, 1 H, H-4a, J = 2.4, 3.1, 5.4, 10.8 Hz); 2.29 (dd, 1 H, H-7_A, J = 2.4, 16.1 Hz); 2.16 (dd, 1 H, H-7_B, J = 3.1, 16.1 Hz); 1.38 (s, 9 H, *t*-Bu); 1.25 (s, 3 H, Me-3_a); 1.20 (dd, 1 H, H-5_{eq}, J = 5.4, 12.3 Hz); 1.16 (s, 3 H, Me-3_b); 1.02 (s, 3 H, Me-6_a); 0.96 (m, 1 H, H-5_{ax}); 0.96 (s, 3 H, Me-4_a); 0.91 (s, 3 H, Me-6_b); 0.62 (s, 3 H, \checkmark Me-4_b) ppm.

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

2.57 (dddd, 1 H, H-4a, J = 2.4, 3.1, 5.4, 10.8 Hz); 2.29 (dd, 1 H, H-7_A, J = 2.4, 16.1 Hz); 2.19 (dd,1 H, H-7_B, J = 3.1, 16.1 Hz); 1.32 (dd, 1 H, H-5_{eq}, J = 5.4, 12.3 Hz); 1.27 (s, 9 H, *t*-Bu); 1.19 (s, 3 H, Me-3_a); 1.15 (s, 3 H, Me-3_b); 1.10 (s, 3 H, Me-6_a); 1.08 (s, 3 H, Me-6_b); 0.98 (s, 3 H, Me-4_a); 0.97 (dd, 1 H, H-5_{ax}, J = 10.8, 12.3 Hz); 0.57 (s, 3 H, Me-4_b) ppm.

¹**H-NMR** (500 MHz, Aceton-D6): $\delta =$

2.62 (dddd, 1 H, H-4a, J = 2.4, 3.1, 5.4, 10.8 Hz); 2.27 (dd, 1 H, H-7_A, J = 2.4, 16.1 Hz); 2.15 (dd,1 H, H-7_B, J = 3.1, 16.1 Hz); 1.35 (dd, 1 H, H-5_{eq}, J = 5.4, 12.3 Hz); 1.27 (s, 9 H, *t*-Bu); 1.21 (s, 3 H, Me-3_a); 1.17 (s, 3 H, Me-3_b); 1.10 (s, 3 H, Me-6_a); 1.09 (s, 3 H, Me-6_b); 1.02 (s, 3 H, Me-4_a); 1.00 (m, 1 H, H-5_{ax}); 0.58 (s, 3 H, Me-4_b) ppm.

¹³C-NMR (100.61 MHz, CDCl₃): $\delta =$

154.80 (C-2); 143.06 (C-7a); 131.68 (C-7b) 128.33 (C-2a); 56.08 (C-3); 48.38 (C-4); 38.89 (C-4a); 38.03 (C-5); 37.71 (C-7); 35.78 (C-6); 33.79 (*t*-Bu); 32.01 (Me-6_b); 30.35 (Me-*t*-Bu); 26.55 (Me-6_a); 25.76 (Me-3_a); 22.93 (Me-3_b); 21.44 (Me-4_a); 20.61 (Me-4_b) ppm.

Kopplungskonstanten:

 ${}^{3}J_{4a/5ax} = 10.8; \ {}^{3}J_{4/5eq} = 5.4; \ {}^{5}J_{4a/7a} = 2.4; \ {}^{5}J_{4a/7b} = 3.1; \ {}^{2}J_{5eq/5ax} = 12.3; \ {}^{2}J_{7/7} = 16.1 \text{ Hz}.$

GC-MS (70 eV): *m/z* = 289 (M⁺, 1 %); 249 (16 %); 248 (100 %); 233 (5 %); 205 (8 %); 177 (6 %); 91 (7 %); 69 (6 %); 57 (35 %); 55 (9 %); 43 (12 %); 41 (40 %).

Fraktion 2: R_F-Wert 0,35; 16 mg 29; gelbliches Öl.

3.4.3.1. Oxigenierung von 98 zu 99

Ansatz:	40 mg (0.14 mmol) 98, in 3 ml Benzen aufnehmen und
	10 h unter Rückfluss erhitzen.
Reinigung und Isolierung:	Entfernen des Lösungsmittels unter vermindertem Druck.
	Umkristallisieren aus Diethylether.
Ausbeute:	38 mg (0,13 mmol) 99, farblose Kristalle, Smp. 96.5 °C.

3-(2',2'-Dimethylpropan-1'-on)-1,1,2,2,6,6-hexamethyl-1,2,5,6,7,7ahexahydroinden-4-on (99)

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

2.85 (dd, 1 H, H-7a, J = 5.8, 12.6 Hz); 2.15 (dd, 1 H, H-5_{eq}, J = 2.3, 17.0 Hz); 1.98 (d, 1H, H-5_{ax}, J = 17.0 Hz); 1.42 (ddd, 1 H, H-7_{eq}, J = 2.3, 5.8, 12.9 Hz); 1.35 (dd, 1 H, H-7_{ax}, J = 12.6, 12.9 Hz); 1.12 (s, 9 H, *t*-Bu); 1.10 (s, 3 H, Me-2_a); 1.02 (s, 3 H, Me-6_a); 0.90 (s, 6 H, Me-1_a + Me-6_b); 0.84 (s, 3 H, Me-2_b); 0.81 (s, 3 H, Me-1_b) ppm.

¹³**C-NMR** (100.61 MHz, CDCl₃): δ = (abgeschätzt aus *HMBC und **HMBC/HMQC) 215.72 (C-1'); 198.99 (C-4); 159.2* (C-3); 135.3* (C-3a); 53.89 (C-5); 51.67 (C-2); 49.9** (C-7a); 48.26 (C-1), 44.03 (*t*-Bu); 36.18 (C-7); 33.21 (C-6); 31.90 (Me-6_a); 27.45 (Me-*t*-Bu); 25.93 (Me-6_b); 22.65 (Me-2_a); 20.67 (Me-1_a) 19.68 (Me-2_b); 19.48 (Me-1_b) ppm.

Kopplungskonstanten:

 ${}^{2}J_{5/5} = 17.0$; ${}^{4}J_{5eq/7eq} = 2.3$; ${}^{2}J_{7/7} = 12.9$; ${}^{3}J_{7eq/7a} = 5.8$; ${}^{3}J_{7ax/7a} = 12.6$ Hz.

GC-MS (70 eV): m/z =

304 (M⁺, 15 %); 289 (66 %); 250 (16 %); 248 (100 %); 247 (16 %); 205 (18 %); 57 (39 %); 41 (40 %).

Röntgenstrukturanalyse von 99:

Daten der Messung	aus Diethylether
CCDC Referenznummer	622305
Formel	$C_{20}H_{22}O_2$
Molekulargewicht	304.46 g/mol
Kristallgröße	0.4 x 0.5 x 0.7 mm
Raumgruppe	P1
Kristallsystem	triklin
Dichte	10.0879(19) g/cm ³
Zelllänge	a = 8.630(7) A
	b = 10.074(8) A
	c = 12.061(13) A
Zellwinkel	$\alpha = 99.37(7)^{\circ}$
	$\beta = 93.74(8)^{\circ}$
	$\gamma = 114.71(6)^{\circ}$
Volumen	929.4(16) A ³
Moleküle/Elementarzelle	Z = 2
F(000)	336 [336.14]
linearer Apsorptionskoeffzient	$\mu = 0.068 \text{ mm}^{-1}$
Temperatur	293 K

Daten der Messung	aus Diethylether
Wellenlänge	$\lambda = 0.71 \text{ A}$
Messbereich	$\Theta = 2.3-27.5^{\circ}$
Anzahl gemessener Reflexe Θ_{max} =	4695
Anzahl unabhängiger Reflexe mit	4269
R Indices[I>2.0 sigma(I)]	R1 = 0.0541
	$\omega R2 = 0.1620$

3.4.4. In Gegenwart von Ethylidenmalonsäuredinitril (33)

Ansatz:	103.6 mg (0.51 mmol) 29 , 0.95 mg (10.3 mmol) 33 ,
	5.1 ml Benzen und 100 μl Dodekan.
Bestrahlungszeit:	720 min (Umsatz 61 %).
GC-Produktverteilung:	2 Produkte im Verhältnis 95(102):5(103).
DC (PE:DE 1:1):	2 Spots; $R_{\rm F}$ -Werte: 0.64(102 +103), 0.43(29).
Reinigung und Isolierung:	Destillative Abtrennung des Lösungsmittel und 33 im
	Vakuum, Säulenchromatographisch ; Eluens PE:DE 1:1

Fraktion 1: R_F-Wert 0.64; 42 mg (0.14 mmol, 51 %) 102.

exo-4,6,6-Trimethyl-2-(2,2-dimethylethyl)-3,4,4a,5,6,7-hexahydroindeno[7,1bc]furan-3,3-dicarbonitril (102)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$ 2.48 (dq, 1 H, H-4, J = 7.0, 9.1 Hz); 2.28 (ddddd, 1 H, H-4a, J = 2.4, 2.9, 5.4 9.1, 10.1 Hz); 2.07 (dd, 1 H, H-7_a, J = 2.4, 16.7 Hz); 1.90 (dd, 1 H, H-7_b, J = 2.9, 16.7 Hz); 1.37 (s, 9 H, *t*-Bu); 1.16 (d, 3 H, Me-4, J = 7.0 Hz); 1.06 (dd, 1 H, H-5_{eq}, J = 5.4, 12.3 Hz); 0.71 (s, 3 H, Me-6_a); 0.68 (s, 3 H, Me-6_b); 0.15 (dd, 1 H, H-5_{ax}, J = 10.1, 12.3 Hz) ppm.

CN CN

¹³**C-NMR** (100.61 MHz, Benzen-D6): $\delta =$

159.15 (C-2); 146.78 (C-7a); 132.90 (C-7b); 116.80 (C-2a); 113.32 (CN); 62.29 (C-4); 42.29 (C-5); 41.27 (C-3); 39.76 (C-6); 37.83 (C-7); 36.43 (C-4a); 34.31 (*t*-Bu); 31.32 (Me-6_a); 29.56 (Me-*t*-Bu); 26.53 (Me-6_b); 14.45 (Me-4) ppm.

¹³C-NMR (100.61 MHz, Aceton-D6): $\delta =$

158.94 (C-2); 147.72 (C-7a); 133.35 (C-7b); 116.81 (C-2a); 113.55 (CN); 68.13 (C-4); 42.80 (C-5); 41.35 (C-3); 38.10 (C-7); 37.50 (C-6); 37.03 (C-4a); 34.46 (*t*-Bu); 31.54 (Me-6_a); 29.49 (Me-*t*-Bu); 26.69 (Me-6_b); 14.75 (Me-4) ppm.

Kopplungskonstanten:

 ${}^{3}J_{4/4a} = 9.1; \; {}^{3}J_{4/Me4} = 7.0; \; {}^{3}J_{4a/5ax} = 10.1; \; {}^{3}J_{4/5eq} = 5.4; \; {}^{5}J_{4a/7a} = 2.4; \; {}^{5}J_{4a/7b} = 2.9; \; {}^{2}J_{5/5} = 12.3;$ ${}^{2}J_{7/7} = 16.7 \text{ Hz}.$

GC-MS (70 eV): *m/z* = 296 (M⁺, 30 %); 281 (62 %); 241 (19 %); 240 (100 %); 225 (47 %); 198 (21 %); 172 (18 %); 41 (45 %).

Fraktion 2: R_F-Wert 0.43; 17 mg 29; gelbes Öl.

Aus dem Rohgemisch.

endo-2-(*tert*-Butyl)-4,6,6-trimethyl-4a,5,6,7-tetrahydroindeno[7,1-bc]furan-3,3dicarbonitril (103)

3.4.4.1. Oxigenierung von 102 zu 104

Ansatz:	42 mg (0.14 mmol) 102 2 ml Benzen aufnehmen und
	12 h unter Rückfluss erhitzen.
Reinigung und Isolierung:	Entfernen des Lösungsmittels unter vermindertem Druck.
	Umkristallisieren aus Diethylether.
	Säulenchromatographisch; Eluens PE:DE 1:1.
Ausbeute:	36 mg (0.12 mmol) 104; Smp. 160 °C; farblose Kristalle.

exo-3,5,5-Trimethyl-1-(2,2-dimethylpropanoyl)-7-oxo-3,3a,4,5,6,7-hexahydro-2*H*inden-2,2-dicarbonitril (104)

¹**H-NMR** (500 MHz, Benzen-D6): $\delta =$

2.41 (ddd, 1 H, H-3a, J = 6.3 ,10.1, 12.3 Hz); 2.11 (dq, 1 H, H-3, J = 6.6, 10.1 Hz); 1.90 (dd, 1 H, H-6_{eq}, J = 2.5, 16.7 Hz); 1.51 (dd, 1 H, H-6_{ax}, J = 0.7, 16.7 Hz); 1.35 (s, 9 H, *t*-Bu); 0.96 (ddd, 1 H, H- 4_{eq} , J = 2.5, 6.3, 13.0 Hz); 0.91 (d, 3 H, Me-3, J = 6.6 Hz); 0.49 (s, 3 H, Me-5_a); 0.34 (dd, 1 H, H- 4_{ax} , J = 12.6, 13.0 Hz); 0.30 (s, 3 H, Me-5_b) ppm.

¹³**C-NMR** (125.77 MHz, Benzen-D6): δ = (*abgeschätzt aus HMBC) 207.8* (C-1'); 196.3* (C-7); 144.1* (C-7a); 140.4 (C-1); 114.7* (CN); 56.53 (C-3); 53.47 (C-6); 46.44 (C-3a); 46.2* (C-2); 44.36 (C-2'); 40.34 (C-4); 33.44 (C-5); 30.61 (Me-5_a); 26.59 (Me-*t*-Bu); 25.26 (Me-5_b); 12.44 (Me-3) ppm.

Kopplungskonstanten:

 ${}^{3}J_{3/Me-3} = 6.6; \; {}^{3}J_{3/3a} = 10.1; \; {}^{2}J_{6/6} = 16.7; \; {}^{4}J_{4eq/6eq} = 2.5; \; {}^{2}J_{4/4} = 13.0; \; {}^{3}J_{4eq/3a} = 6.3; \; {}^{3}J_{4ax/3a} = 12.3$ Hz.

GC-MS (70 eV): *m/z* = 313 (M⁺, 2 %); 297 (16%); 285 (21 %); 256 (34 %); 200 (15 %); 57 (100 %); 41 (36 %).

Röntgenstrukturanalyse von 104:

Daten der Messung	aus Diethylether
CCDC Referenznummer	266744
Formel	$C_{19}H_{24}N_2O_2$
Molekulargewicht	312.40 g/mol
Kristallgröße	0.35 x 0.40 x 0.60 mm
Raumgruppe	$P2_1/c$
Kristallsystem	monoklin
Dichte	1.130(9) g/cm ³
Zelllänge	a = 17.287(7) A
	b = 12.249(7) A
	c = 17.804 (10) A
Zellwinkel	$\alpha = 90^{\circ}$
	$\beta = 103.09(4)^{\circ}$
	$\gamma = 90^{\circ}$
Volumen	3672(3) A ³
Moleküle/Elementarzelle	Z = 8
F(000)	1344 [133.54]
Temperatur	293 К

Daten der Messung	aus Diethylether
linearer Apsorptionskoeffzient	$\mu = 0.074 \text{ mm}^{-1}$
Wellenlänge	$\lambda = 0.71 \text{ A}$
Messbereich	$\Theta = 2.3 - 22.5^{\circ}$
Anzahl gemessener Reflexe $\Theta_{max} =$	6223
Anzahl unabhängiger Reflexe mit	4804
R Indices[I>2.0 sigma(I)]	R1 = 0.0575
	$\omega R2 = 0.1542$

3.4.5. In Gegenwart von 2-Methylbut-2-en (105)

Ansatz:	200 mg (0.98 mmol) 29; 1.1 g (19.6 mmol) 105, 9.8 ml
	Benzen und 100 µl Dodekan.
Bestrahlungszeit:	51.5 h (Umsatz 50 %).
GC-Produktverteilung:	1 Produkt.
NMR-Produktverteilung:	1 Produkt.
DC (PE:DE 3:1):	2 Spots; <i>R</i> _F -Werte: 0.8 (106), 0.4(29).
Reinigung und Isolierung:	Säulenchromatographisch; Eluens PE:DE 3:1.

*Fraktion 1: R*_F*-Wert 0.8; 16.1 mg (0.06 mmol, 6 %)* **106***; farbloses Öl.*

2-(*tert*-Butyl)-3,3,4,6,6-pentamethyl-3,4,4a,5,6,7-hexahydroindeno[7,1-bc]furan (106)

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

2.34 (dd, 1 H, H-7a, J = 1.8, 16.4 Hz); 2.30 (ddddd, 1H, H-4a, J = 1.8, 3.1, 5.4, 8.7, 10.7 Hz); 2.18 (dd, 1 H, H-7b, J = 3.1, 16.4 Hz); 1.74 (dq, 1H, H-4, J = 6.6, 8.7 Hz); 1.65 (dd, 1 H, H-5_{eq}, J = 5.4, 12.3 Hz); 1.29 (s, 9 H, *t*-Bu); 1.25 (s, 3 H, Me-3_a); 1.13 (s, 3 H, Me-3_b); 1.10 (s, 3 H, Me-6_a); 1.07 (s, 3 H, Me-6_b); 0.99 (d, 3 H, > Me-4, J = 6.3 Hz); 0.84 (dd, 1 H, H-5_{ax}, J = 10.7, 12.0 Hz) ppm.

¹³C-NMR (100.61 MHz, CDCl₃): $\delta =$

154.67 (C-2); 142.96 (C-7a); 133.88 (C-7b) 129.86 (C-2a); 61.43 (C-4); 45.43 (C-3); 43.68 (C-5); 38.06 (C-7); 36.48 (C-4a); 36.31 (C-6); 34.87 (*t*-Bu); 31.80 (Me-6_b); 30.35 (Me-*t*-Bu); 27.34 (Me-6_a); 27.23(Me-3_a); 22.50 (Me-3_b); 12.59 (Me-4) ppm.

Kopplungskonstanten:

 ${}^{3}J_{4/4a} = 8.7 \text{ Hz}; \; {}^{3}J_{4a/5ax} = 10.7; \; {}^{3}J_{4/5eq} = 5.4; \; {}^{5}J_{4a/7a} = 1.8; \; {}^{5}J_{4a/7b} = 3.1; \; {}^{2}J_{5/5} = 12.3; \; {}^{2}J_{7/7} = 16.4 \text{ Hz}.$

Fraktion 1: R_F-Wert 0.4; 40 mg 29; gelbliches Öl.

3.4.5.1. Oxigenierung von 106 zu 107

Ansatz:	16.1 mg (0.14 mmol) 106 in 2 ml Benzen aufnehmen und
	12 h unter Rückfluss erhitzen.
Reinigung und Isolierung:	Entfernen des Lösungsmittels unter vermindertem Druck.
Ausbeute:	14 mg (0.13 mmol) 107 , farbloses Öl.

3-(2',2'-Dimethylpropan-1'-on)-1,2,2,6,6-pentamethyl-1,2,5,6,7,7a-hexahydroinden-4-on (107)

0

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$

2.66 (ddd, 1 H, H-7a, J = 5.6, 10.0, 12.6 Hz); 2.24 (dd, 1 H, H-5_{eq}, J = 2.5, 16.7 Hz); 2.10 (d, 1 H, H-5_{ax}, J = 16.7 Hz); 1.85 (ddd, 1 H, H-7_{eq}, J = 2.5, 5.6, 12.6 Hz); 1.76 (dq, 1 H, H-1, J = 6.9, 10.0 Hz); 1.24 (dd, 1 H, H-7_{ax}, J = 11.4, 12.6 Hz); 1.18 (s, 9 H, *t*-Bu); 1.09 < (s, 3 H, Me-2_a); 1.06 (s, 3 H, Me-6_a), 1.04 (s, 3 H, Me-2_b); 0.98 (s, 3 H, Me-6_b), 0.96 (d, 3 H, Me-1, J = 6.9 Hz) ppm. ¹³**C-NMR** (125.78 MHz, CDCl₃): δ = (abgeschätzt aus HMBC und HMQC) 216.5 (C-1'); 200 (C-4); 160 (C-3); 136.9 (C-3a); 55 (C-1); 54 (C-5); 51.7 (C-2); 46.8 (C-7a); 44.5 (C-2'); 43.2 (C-7); 32.1 (C-Me-6_a); 31.8 (C-6); 27.9 (C-3'); 26.8 (C-Me-6_b); 25.3 (C-Me-2_b); 21.8 (C-Me-2_a); 12.1 (C-Me-1) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/7} = 10.0; \; {}^{3}J_{1/Me-1} = 6.9; \; {}^{2}J_{5/5} = 16.7; \; {}^{4}J_{5eq/7eq} = 2.5; \; {}^{2}J_{7/7} = 12.6; \; {}^{3}J_{7eq/7a} = 5.6; \; {}^{3}J_{7ax/7a} = 11.4$ Hz.

3.5. Bestrahlung von 5,5-Dimethylcyclohex-2-en-1-on (27) in Gegenwart von Penta-1,2,4-trien (34)

Ansatz:	248 mg (2 mmol) 27; 1.1 g (19.6 mmol) 34 und 100 μl		
	Dodekan in 10 ml Benzen.		
Bestrahlungszeit:	12 h (Umsatz 80 %).		
NMR-Produktverteilung:	8 Produkte im Verhältnis:111a(8):111b(8):112(19):		
	113 (7): 114 (7): 115 (28): 116 (15): 117 (7).		
DC (PE/Et ₂ O 3:1):	6 Spots; <i>R</i> _F -Werte: 0.80 (111), 0.73, 0.67, 0.62, 0.56,		
	0.51.		
Reinigung und Isolierung:	Säulenchromatographisch; Eluens		

Fraktion 1: R_F-Wert 0.8; 16.1 mg (0.06 mmol, 6 %) 111; farbloses Öl.

1a,6a-4,4-Dimethyl-8-(prop-1',2'-dienyl)bicyclo[4.2.0]octan-2-on (111)

¹**H-NMR** (500 MHz, CDCl₃): $\delta =$ 5.24 (ddd, 1 H, H-1', J = 6.6, 6.6, 6.9 Hz); 4.79 (ddd, 1 H, H-3'a, J = 2.2, 6.6, 10.7 Hz); 4.76 (ddd, 1 H, H-3'b, J = 2.5, 6.7, 10.7 Hz); 3.14 (dddddd, 1 H, H-6, J = 1.0, 2.3, 6.6, 8.5, 8.6, 11.2 Hz); 2.76 (dd, 1 H, H-1, J = 8.2, 8.5 Hz); 2.57 (m, 1 H, H-8); 2.32 (d, 1 H, H-3ax, J = 16.1 Hz), 2.12 (m, 1 H, H-7a), 2.10 (dd, 1 H, H-3eq, J = 2.5, 16.1 Hz); 1.82 (ddd, 1 H, H-5eq, J = 2.5, 8.6, 13.8 Hz); 1.80 (m, 1 H, H-7b); 1.60 (dd, 1 H, H-5ax, J = 11.2, 13.8 Hz); 1.06 (s, 3 H, M-4a); 0.83 (s, 3 H, M-4b) ppm.

¹³**C-NMR** (100.61 MHz, CDCl₃): δ = (*abgeschätzt aus dem HMBC) 209.34 (C-2'); 213.43 (C 2); 93.18 (C-1'); 76.1* (C-3'); 52.51 (C 3); 50.24 (C 1); 41.63 (C 5); 36.58 (C 8); 35.13 (C 4); 31.99 (C 7); 31.21 (Me 4a); 29.65 (C 6); 25.12 (Me 4b) ppm.

Kopplungskonstanten:

 ${}^{3}J_{1/6} = 8.5; \; {}^{3}J_{1/8} = 8.2; \; {}^{3}J_{3/3} = 16.1; \; {}^{4}J_{3eq/5eq} = 2.5; \; {}^{2}J_{5/5} = 13.8; \; {}^{3}J_{5eq/6} = 8.6; \; {}^{3}J_{5ax/6} = 11.2; \; {}^{3}J_{6/7a} = 6.6; \; {}^{3}J_{6/7b} = 2.3; \; {}^{4}J_{6/8} = 1.0; \; {}^{4}J_{1'/3'a} = 6.6; \; {}^{4}J_{1'/3'b} = 6.7; \; {}^{3}J_{1'/8} = 6.9; \; {}^{2}J_{3'/3'} = 10.7; \; {}^{5}J_{3'a/8} = 2.2; \; {}^{5}J_{3'b/8} = 2.5 \; \mathrm{Hz}$

GC-MS (70 eV) *m/z:* 190 (M⁺, 5 %); 125 (100); 66 (98).

Aus dem Rohgemisch.

GC-MS (70 eV) *m/z:* **112:** 190 (M⁺, 12 %), 91 (100).

113: 190 (M⁺, 40 %), 91 (100).

114: 190 (M⁺, 12 %), 91 (100).

115: 190 (M⁺, 20 %), 125 (100); 66 (95).

116: 190 (M⁺, 20 %), 125 (95); 66 (100).

117: 190 (M⁺, 40 %), 91 (100).

F. Sicherheitsdaten

Die Sicherheit von einzelner Chemikalien und Lösungsmittel sind im folgenden exemplarisch für die einzelnen Stoffklassen wiedergegeben. Es sei darauf hingewiesen, das die Daten einer stetigen Aktualisierung unterliegen und deshalb vor Gebrauch der Substanzen einzuholen sind.

1. Alkane

Stellvertretend für die verwendeten Alkane sollen hier die Sicherheitsdaten von Petrolether aufgeführt werden.^[85] Es gelten die Gefahrenhinweise: Leichtentzündlich; Reizt die Haut; Giftig für Wasserorganismen, kann in Gewässern längerfristig schädliche Wirkungen haben, Gesundheitsschädlich: Kann beim Verschlucken Lungenschäden verursachen; Dämpfe können Schläfrigkeit und Benommenheit verursachen. Als Sicherheitsratschläge werden angegeben: Behälter an gut gelüftetem Ort aufbewahren; Von Zündquelle fern halten, Nicht rauchen; Nicht in die Kanalisation gelangen lassen; Maßnahmen gegen elektrostatische Aufladung treffen; Freisetzung in die Umwelt vermeiden. Besondere Anweisungen einholen / Sicherheitsdatenblatt zu Rate ziehen.

2. Alkene

Stellvertretend für die verwendeten Alkene sollen hier die Sicherheitsdaten von 3,3-Dimethylbut-1-en aufgeführt werden.^[85] Es gelten die Gefahrenhinweise: Leichtentzündlich.

Als Sicherheitsratschläge werden angegeben: Behälter an gut gelüftetem Ort aufbewahren; Von Zündquelle fern halten, Nicht rauchen.

3. Alkine

Stellvertretend für die verwendeten Alkine sollen hier die Sicherheitsdaten von 3,3-Dimethylbut-1-in aufgeführt werden.^[85] Es gelten die Gefahrenhinweise: Hochentzündlich; Reizt die Augen, Atmungsorgane und die Haut; Gesundheitsschädlich: Kann beim Verschlucken Lungenschäden verursachen.

4. Ether

Stellvertretend für die verwendeten Ether sollen hier die Sicherheitsdaten von Diethylether aufgeführt werden.^[85] Es gelten die Gefahrenhinweise: Hochentzündlich; Kann explosionsfähige Peroxide bilden; Gesundheitsschädlich beim Verschlucken; wiederholter Kontakt kann zu spröder oder rissiger Haut führen; Dämpfe können Schläfrigkeit und Benommenheit verursachen.

Als Sicherheitsratschläge werden angegeben: Behälter an gut gelüftetem Ort aufbewahren; Von Zündquelle fern halten, Nicht rauchen; Behälter mit Vorsicht öffnen und handhaben; Nicht in die Kanalisation gelangen lassen; Maßnahmen gegen elektrostatische Aufladung treffen.

5. Alkohole

Stellvertretend für die verwendeten Alkohole sollen hier die Sicherheitsdaten von Ethanol aufgeführt werden.^[85] Es gelten die Gefahrenhinweise: Leichtentzündlich. Als Sicherheitsratschläge werden angegeben: Kann Brand verursachen; Explosions-gefährlich in Mischung mit brandfördernden Stoffen.

6. Aldehyde

Stellvertretend für die verwendeten Aldehyde sollen hier die Sicherheitsdaten von Acetaldeyd (Ethanal) aufgeführt werden.^[85] Es gelten die Gefahrenhinweise: Hochentzündlich; Reizt die Augen und Atmungsorgane; Verdacht auf krebserzeugende Wirkung.

Als Sicherheitsratschläge werden angegeben: Von Zündquellen fernhalten- Nicht rauchen; Maßnahmen gegen elektrostatische Aufladung treffen; Bei der Arbeit geeignete Schutzhandschuhe und Schutzkleidung tragen.

7. Ketone

Stellvertretend für die verwendeten Ketone sollen hier die Sicherheitsdaten von Aceton (Propan-2-on) aufgeführt werden.^[85] Es gelten die Gefahrenhinweise: Leichtentzündlich; Reizt die Augen; Kann die Fortpflanzungsfähigheit beeinflussen; Wiederholter Kontakt kann zu spröder oder rissiger Haut führen; Dämpfe können

F. Sicherheitsdaten

Schläfrigkeit und Benommenheit verursachen.

Als Sicherheitsratschläge werden angegeben: Behälter an gut gelüftetem Ort aufbewahren; Von Zündquelle fern halten, Nicht rauchen; Bei Berührung mit den Augen sofort gründlich mit Wasser abspülen und Arzt konsultieren.

8. Säuren

Stellvertretend für die verwendeten Säuren sollen hier die Sicherheitsdaten von Oxalsäure aufgeführt werden.^[85] Es gelten die Gefahrenhinweise: Gesundheitsschädlich bei Berührung mit der Haut und beim Verschlucken.

Als Sicherheitsratschläge werden angegeben: Berührung mit den Augen und der Haut vermeiden.

9. Ester

Stellvertretend für die verwendeten Ester sollen hier die Sicherheitsdaten von Essigsäureethylester (Ethansäureethylester) aufgeführt werden.^[85] Es gelten die Gefahrenhinweise: Leichtentzündlich; Reizt die Augen; Wiederholter Kontakt kann zu spröder oder rissiger Haut führen; Dämpfe können Schläfrigkeit und Benommenheit verursachen.

Als Sicherheitsratschläge werden angegeben: Von Zündquellen fernhalten- Nicht rauchen; Bei Berührung mit den Augen sofort gründlich mit Wasser abspülen und Arzt konsultieren; Maßnahmen gegen elektrostatische Aufladung treffen.

10. Amine

Stellvertretend für die verwendeten Amine sollen hier die Sicherheitsdaten von Diisopropylamin aufgeführt werden.^[85] Es gelten die Gefahrenhinweise: Leichtentzündlich; Gesundheitsschädlich beim Einatmen und Verschlucken; Verursacht Verätzungen.

Als Sicherheitsratschläge werden angegeben: Von Zündquellen fernhalten- Nicht rauchen; Bei Berührung mit den Augen sofort gründlich mit Wasser abspülen und Arzt konsultieren; Bei der Arbeit geeignete Schutzkleidung , Schutzhandschuhe und Schutzbrille/Gesichtsschutz tragen.

11. Aromaten

Stellvertretend für die verwendeten Aromaten sollen hier die Sicherheitsdaten von Toluol aufgeführt werden.^[85] Es gelten die Gefahrenhinweise: Leichtentzündlich; Gesundheitsschädlich beim Einatmen.

Als Sicherheitsratschläge werden angegeben: Von Zündquellen fernhalten- Nicht rauchen; Berührung mit den Augen vermeiden; Nicht in die Kanalisation gelangen lassen; Maßnahmen gegen elektrostatische Aufladung treffen.

12. Cyclohex-2-en-1-one

Stellvertretend für die verwendeten Cyclohex-2-en-1-one sollen hier die Sicherheitsdaten von Cyclohex-2-en-1-on aufgeführt werden.^[85] Es gelten die Gefahrenhinweise: Entzündlich; Gesundheitsschädlich beim Verschlucken; Giftig beim Einatmen und bei Berührung mit der Haut.

Als Sicherheitsratschläge werden angegeben: Bei der Arbeit geeignete Schutzkleidung und Schutzhandschuhe tragen. Bei Unfall oder Unwohlsein sofort Den Arzt hinzuziehen (wenn möglich, dieses Etikett vorzeigen).

13. Halogenalkane

Stellvertretend für die verwendeten Halogenalkane sollen hier die Sicherheitsdaten von Iodmethan aufgeführt werden.^[85] Es gelten die Gefahrenhinweise: Gesundheitsschädlich bei Berührung mit der Haut; Giftig beim Einatmen und Verschlucken; Reizt die Atmungsorgane und die Haut; Verdacht auf krebserregende Wirkung.

Als Sicherheitsratschläge werden angegeben:Darf nicht in die Hände von Kindern gelangen; Bei der Arbeit geeignete Schutzkleidung und Schutzhandschuhe tragen. Bei unzureichender Belüftung Atemschutzgerät anlegen. Bei Unfall oder Unwohlsein sofort Den Arzt hinzuziehen (wenn möglich, dieses Etikett vorzeigen).

14. *α*,*β*-ungesättigte Nitrile

Stellvertretend für die verwendeten α,β -ungesättigte Nitrile sollen hier die Sicherheitsdaten von Methacrylonitril aufgeführt werden.^[85] Es gelten die Gefahrenhinweise: Leichtentzündlich; Giftig beim Einatmen, Verschlucken und bei Berührung mit der Haut; Sensibilisierung durch Hautkontakt möglich; Giftig für Wasserorga-

F. Sicherheitsdaten

nismen, kann in Gewässern längerfristig schädliche Wirkung haben.

Als Sicherheitsratschläge werden angegeben: Behälter an gut gelüftetem Ort aufbewahren; Von Zündquelle fern halten, Nicht rauchen; Behälter mit Vorsicht öffnen und handhaben; Nicht in die Kanalisation gelangen lassen; Bei Unfall oder Unwohlsein sofort Den Arzt hinzuziehen (wenn möglich, dieses Etikett vorzeigen); Freisetzung in der Umwelt vermeiden, besondere Anweisungen einholen / Sicherheitdatenblatt zu Rate ziehen.

Die Gefahrenhinweise (R-Sätze) und die Sicherheitsratschläge (S-Sätze) sind in **Tabelle** 7 wiedergeben.

Substanz		R-Sätze	S-Sätze
Acetaldehyd	F, Xn	12-36/37-40	16-33-36/37
Aceton	F, Xi	11-36-66-67	9-16-26
Aceton-D6	F, Xi	11-36-66-67	9-16-26
Ammoniumacetat	Xi	36/37/38	
Ammoniumchlorid	Xn	22-36	22
Benzen	F, T	45-11-48/23/24/25	53-45
Benzen-D6	F, T	45-11-48/23/24/25	53-45
Bis-(triphenylphosphin) palladium(II)chlorid	Xi	36/37/38	
Brom	T+, C, N	26-35-50	7/9-26-45-61
n-Butanol	Xn	10-22-37/38-41-67	7/9-13-26-37/39-46
CDCl ₃	Xn	22-38-40-48/20/22	36/37
Chloroform	Xn	22-38-40-48/20/22	36/37
Diethylether	F+, Xn	12-19-22-66-67	9-16-29-33
Diisopropylamin	F, C	11-20/22-34	16-26-36/37/39-45
5,5-Dimethylhexan-1,3- dion	А		
DMF	Т	61-20/21-36	53-45
DMSO	Xi	36/37/38	
EE	Xi, F	11-36-66-67	16-26-33
Eisessig	С	10-35	

Substan7		R-Sätze	S-Sätze
Ethanol	F	11	7-16
Ethyvinylether	F	12	
Hydrochinon	Xn, N	22-40-41-43-50	26-36/37/39-61
Iod	Xn; N	20/21-50	23-25-61
Iodmethan	T	21-23/25-37/38-40	36/37-37-45
Kalium- <i>tert</i> butanolat	F, C	11-14-22-35	8-16-26-36/37/39- 43.3-45
Kalium(I)iodid	Xi	36/37/38	
Lithiumaluminiumhydrid	F	15	7/8-24/25-43
Magnesium	F	15-17	7/8-43
Malonsäure	Ν, Τ	23/24/25-50/53	23-27-45-60-61
Methanol	F, T	11-23/24/25- 39/23/24/25	7-16-36/37-45
Methanol-D4	F, T	11-23/24/25- 39/23/24/25	7-16-36/37-45
MgSO ₄			
Natrium	F, C	14/15-34	5-8-43-45
Na ₂ CO ₃	Xi	36	22-26
NaCl			
NaHCO ₃			
Natriumthiosulfat			
Oxalsäure	Xn	21/22	24/25
PE	F, N, Xn	11-38-51/53-65-67	9-16-29-33-61-62
Pyridin	F, Xn	11-20/21/22	26-28
Salzsäure	Xi	36/37/38	
THF	F, Xi	11-19-36/37	16-29-33
Toluol	F, Xn	11-20	16-25-29-33
p-Toluolsulfonsäure	Xi	36/37/38	26-37

Tabelle 7: Sicherheitsdaten der verwendeten Chemikalien und Lösungsmittel

Bei einem großen Teil der im Rahmen dieser Arbeit dargestellten Verbindungen handelt es sich um neue Stoffe, deren Gefahrenpotential unbekannt ist. Die Gefahrenabschätzung kann durch Heranziehen des Gefahrenpotentials von analogen Substanzen

F. Sicherheitsdaten

erfolgen. Dies ist aufgrund der strukturellen Unterschiede zu bekannten Substanzen schwierig. Es sei daher darauf hingewiesen, dass unbekannte Stoffe grundsätzlich als giftige Gefahrstoffe einzustufen sind und entsprechend gehandhabt werden.

G. Formelsammlung

10

0 ||

11

¥

0 ||

Cl

CN

0 ||

30

Ō

CN nuu Cl

G. Formelsammlung

H. Verzeichnisse:

1. Schemata-Verzeichnis

1	Carvon-Carvoncamphor-Isomerisierung	2
2	Darstellung von Caryophyllen	2
3	Bildung regioisomerer Bicyclo[4.2.0]octan-2-one	2
4	[2+2]-Cycloaddition von Cyclohex-2-en-1-on an 2-Methylbut-1-en-3-in	3
5	[4+2]-Cycloaddition 2-alkinylsubstituierter Cyclohexenone	3
6	[3+2]-Photocycloaddition von 3-Pentin-2-on an 2,3-Dimethylbut-2-en	4
7	1,5-Cyclisierung 3-alkinylsubstituierter Cyclohexenone	5
8	[3+2]-Photocycloadditionen 2-alkinylsubstituierter Cyclohexenone	5
9	trans- und cis-verknüpfte Cycloaddukte	10
10	Nachweis der von Corey postulierten schrittweisen Addition	11
11	Der orientierte π -Komplex von Corey	12
12	Corey-de Mayo-Mechanismus	13
13	Reaktionsschema für die Cyclisierungs-/Fragmentierungsrate	13
14	Bauslaugh-Schuster-Weedon-Mechanismus	. 14
15	Beispiel für den Mechanismus der [2+2]-Photocycloaddition	. 15
16	Mechanismus der regioselektiven cis- bzw. trans-Addition	16
17	Mechanismus der [3+2]-Photocycloaddition	17
18	Mechanismus der [4+2]-Photocycloaddition	18
19	exo-(H _n) und endo-(H _x)-1,3-H-Shift-Reaktionen	19
20	Umsetzung von Cyclohexenonen mit α , β -ungesättigten Nitrilen bzw. Dinitrilen	
	30 bis 33 und dem Vinylallen 34	20
21	Synthese der Photoedukte	21
22	Darstellung von 2,5,5-Trimethylcylohexan-1,3-dion (36)	22
23	Darstellung der Enolether 37 und 38	23
24	Reduktion der Enolether 37 und 38	23
25	Saure Hydrolyse zu den entsprechenden Cyclohex-2-en-1-onen 27 und 28	24
26	Darstellung der Seitenkette	25
27	Mechanismus der Johnson-Iodierung.	. 25

H. Verzeichnisse:

28	Katalysecyclus der Sonogashira-Hagihara-Kupplung	26
29	Knovenagel-Kondensation	27
30	Syntheseweg zur Darstellung von 34	27
31	Bevorzugter Angriff nach SCHUSTER	29
32	Bestrahlung von 27 in Gegenwart von 30	29
33	Bestrahlung von 27 in Gegenwart von 31	30
34	Isomerisierung von 54 zu 55	31
35	Die möglichen 1,4-Diradikale bei der Darstellung von 53 bis 58	33
36	Umsetzung von 27 in Gegenwart von 32	34
37	Die möglichen 1,4-Diradikale bei der Darstellung von 63 und 64	36
38	Regioselektive Darstellung von 64	36
39	Bestrahlung von 27 in Gegenwart von 33	37
40	Die möglichen 1,4-Diradikale bei der Umsetzung von 27 in Gegenwart von 33	41
41	Umsetzung von 79 mit 33	42
42	Selektive Bildung von 80 über das Diradikal 81	49
43	Umsetzung von 28 in Gegenwart von 33	43
44	Das mögliche Diradikal zu Bildung von 82	43
45	Bestrahlung von 28 in Gegenwart von 30	44
46	Die möglichen 1,4-Diradikale bei der Umsetzung von 28 in Gegenwart von 30	47
47	Reichows [3+2]-Cycloadditionsprodukte	48
48	Bestrahlung von 29 in Gegenwart von 30	49
49	Das mögliche Diradikal bei der Umsetzung von 29 in Gegenwart von 30	50
50	Bestrahlung von 29 in Gegenwart von 32	50
51	Umsetzung von 29 mit 13	51
52	Die möglichen 1,4-Diradikale bei der Umsetzung von 29 in Gegenwart von 32	52
53	Photochemische Umsetzung von 29 in Gegenwart von 33	53
54	Darstellung von 107	55
55	Dimerisierung von 34	56
56	Ein theoretisch möglicher Mechanismus der [4+2]-Cyclisierung von 27 mit 34	57
57	Photochemische Umsetzung von 27 in Gegenwart von 34	58
58	Mögliche 1,4-Diradikale bei der Bildung von 111, 115 und 116	59

59	Stabilität der Radikale 119 und 120	. 59
60	Oxigenierung der Furane 98 und 102 zu den Indenonen 99 und 104	62

2. Abbildungsverzeichnis:

1	Jablonsky-Diagramm	8
2	ORTEP-Diagramm der Struktur des cis-[2+2]-Cycloaddukts 64 im Kristall	35
3	ORTEP-Diagramm der Struktur des Cycloaddukts 72 im Kristall	38
4	ORTEP-Diagramm der Struktur des Cycloaddukts 73 im Kristall	39
5	ORTEP-Diagramm der Struktur des Cycloaddukts 87 im Kristall	45
6	ORTEP-Diagramm der Struktur des Indenons 99 im Kristall	52
7	ORTEP-Diagramm der Struktur des Indenons 104 im Kristall	54
8	Strukturen der [2+2]-Photocycloaddukten 63, 72, 73 und 87	60
9	Galatsis-Struktur	60
10	ORTEP-Diagramm der Struktur des cis-[2+2]-Cycloaddukts 87 im Kristall	61
11	ORTEP-Diagramm der Struktur des Indenons 104 im Kristall	62
12	Ausschnitt aus dem NOESY-Spektrum einer Mischlösung von 63 und 64	66
13	Typische Fragmentierungsarten von [2+2]-Photocycloaddukten	67

3. Tabellenverzeichnis:

1	endo-/exo-Zuordnung der Produkte 53 bis 58	33
2	endo-/exo-Zuordnung der Produkte 69 bis 74	40
3	exo-/endo-Zuordnung der Produkte 85 bis 88	46
4	exo-/endo-Zuordnung der Produkte 92 und 93	. 49
5	Kopplungskonstanten in trans- bzw. cis-verknüpften [2+2]-Photocycloaddukten.	. 64
6	¹³ C-Verschiebungen in <i>cis</i> -bzw. <i>trans</i> -verknüpften [2+2]-Photocycloaddukten	65
7	Sicherheitsdaten der verwendeten Chemikalien und Lösungsmittel	155

I. Literatur

- 1 Graham-Smith, F.; Lovell, B.; Pathways to the Universe.; *Cambridge-University Press*; Cambridge; **1988**.
- 2 Miller, S.L.; Orgel, L.E.; The Orgins of Life on the Earth.; *Prentice-Hall*; New Jersey; 1974.
- 3 Ordel, L.E.; The Origins of Life: Molecules and Natural Selection.; Chapman & Hall; London, 1973.
- 4 Brandl, H.; Tausch, M.; Participation of light in chemical reactions.; *Math. Naturwiss. Unter.*; **1997**; *50(4)*, 260ff.
- 5 Krafft, F.; Phosphorus. From elemental light to chemical element.; *Angew. Chem.*; **1969**; *81*; 634.
- 6 Priesner, C.; Spektrum d. Wiss.; 1995; 81; 63.
- 7 Brandl, H.; The ammonia fountain experiment with a chemoluminescence effect.; *Praxis Naturwiss. Chem.*; **1993**; *42*; 38.
- 8 Priestley, J.; Experiments and Observations of Different Kinds of Air.; *T. Pearson;* Birmingham; 1790; Vol. III; Book IX; Part I; 293.
- 9 Gmelin, L.; Handbuch der theoretischen Chemie; Band 1.; Frankfurt a.M.; 1817; Nachdruck Weinheim; 1967.
- 10 Boberlin, U.; Photochemische Untersuchungen von R. Bunsen und H. Roscoe im Vergleich mit den Arbeiten J.W. Drapers und W.C. Wittwers.; Verlag Köster; Berlin; 1993.
- 11 Roth; H.D.; Die Anfänge der organischen Photochemie.; Angew. Chem.; 1989; 111; 1220-34.
- 12 Ciamician, G.; Silber, P.; Chem. Lichteinwirkung XIII. Mitteilung: Hydrolyse cyclischerKetone: Carvon und Dihydrocarvon.; *Ber.*; 1908; *41.2*; 1928-35.
- 13 Büchi, G.; Goldman, I. M.; Photochemical reactions. VII. The Intramolecular Cyclization of Carvone to Carvonecamphor.; J. Am. Chem. Soc.; 1957; 79; 4741-8.
- 14 Corey, E.J.; Mitra, R.B.; Uda, H.; Total Synthesis of *d*,*l*-Carophyllene and Isocarophyllene.; *J. Am. Chem. Soc.*; 1964; *86*; 485-92.

- 15 Corey, E.J; Bass, E.J.; Le Mahieu, R.; Mitra, R.B.; A Study of the Photochemical Reaktions of 2-Cyclohexenones with Substituted Olefins.; J. Am. Chem. Soc.; 1964; 86; 5570-83.
- 16 Margaryan, A. Kh.; Serebryakov, E. P.; Kucherov, V. F.; Photochemistry of acetylene compounds. Communication 8. Cycloaddition of 3-methyl-3-buten-1-yne to 2-cyclohexen-1- one.; *Izv. Akad. Nauk SSSR Ser. Khim.*; 1976; 4; 840-5.
- 17 Witte; B.; Margaretha, P.; Photochemical Formation of 3,4,4a,5,6,8a-Hexahydro-2*H*-naphthalen-1-ones from Cyclohex-2-enones and 2-Methylbut-1en-3-yne.;*Org. Lett.*; 1999; *1*; 173.
- 18 Witte, B.; Dissertation; Universität Hamburg; 1999.
- 19 Witte, B.; Meyer, L.; Margaretha, P.; Photocycloaddition of Cyclohex-2-enones and 2-Methylbut-1-en-3-yne.; *Helv. Chim. Acta.*; 2000; 83; 554-61.
- 20 Hussain, S.; Agosta, W.C.; **Photochemical [3+2] cycloaddition of** *α*,*β*-acetylenic ketones with simple olefins.; *Tetrahedron*; **1981**; *37(19)*; 3301-5.
- 21 Wolff, S.; Agosta, W.C.; Photochemical [3 + 2] cycloaddition reactions of alkynones. Diverse fates of two similar vinylcarbene intermediates and reactions of a cyclopropenol.; J. Am. Chem. Soc.; 1984; 106(8); 2363-67.
- 22 Rao, V.B.; Wolff, S.; Agosta, W.C.; Novel cyclization of type II biradicals from *α*,*β*-acetylenic ketones.; *J. Am. Chem. Soc.*; **1985**; *107(2)*; 521-2.
- 23 Agosta, W.C.; Caldwill, R.A.; Jay, J.; Johnston, L.J.; Venepalli, B.R.; Scaiano, J.C.; Singh, M.; Wolff, S.; Photochemistry of 4,4-dimethyl-1-mesityl-2-pentyn-1-one.; J. Am. Chem. Soc.; 1987; 109(10); 3050-7.
- 24 Agost, W.C.; Margaretha, P.; Exploring the 1,5 cyclization of Alkyl Propargyl 1,4
 Biradicals.; Acc. Chem. Res.; 1996; 29; 179.
- 25 Rathjen, H.-J.; Dissertation; Universität Hamburg; 1991.
- 26 Rathjen, H.-J.; Margaretha, P.; Wolff, S.; Agosta, W.C.; Novel [3+2] photocycloadditions of 3-(1-alkynyl)-2-cycloalken-1-ones with alkenes.; J. Am. Chem. Soc.; 1991; 113(10); 3904-9.
- 27 Reichow, S.; Dissertation; Universität Hamburg; 1992.
- 28 Margaretha, P.; Reichow, S.; Agosta, W.C.; Tetrasubstituted furans from photocycloaddition of alkenes to 2-(1-alkynyl)cyclohexenones.; JCS Chem. Commun.;

1992; 797-98.

- 29 Margaretha, P.; Reichow, S.; Agosta, W.C.; Furans from Novel [3 + 2] Photocycloaddition of Alkenes to 2-(1-Alkynyl)cyclohexenones.; J. Org. Chem.; 1994; 59(18); 5393-6.
- 30 Andresen, S.; Margaretha, P.; Photocycloaddition of 2-Cyanocycloalk-2-enones to 2,3-Dimethylbut-2-ene.; J. Chin. Chem. Soc.; 1995; 42; 991-3.
- 31 Andresen, S.; Dissertation; Universität Hamburg; 1997.
- 32 Schuster, D. I.; Mechanistic issues in [2 + 2]- photocycloadditions of cyclic enones to alkenes.; CRC Handbook of Organic Photochemistry and Photobiology (2nd Edition); 2004; 72/1-72/24.
- 33 Galatsis, P.; Ashbourne, K.J.; Manwell, J.J.; Wendling, P.; Dufault, R.; Hatt, K.L.; Ferguson, G.; Gallagher, J.F.; Synthesis of fused-ring cyclobutenones via a tandem [2 + 2] cycloaddition-β-elimination sequence.; *J. Org. Chem.*; 1993; 58(6); 1491-5.
- 34 Schuster, D.I; Karprinidis, N.A.; Wink, D.J.; Dewan, J.C.; Photochemistry of [2+2] photocycloaddition of cyclic enones: structural and mechanistic considerations in formation of *trans*-fused cycloadducts.; *J. Org. Chem.*; 1991; *56*; 561.
- 35 Becker, D.; Haddad, N.; Sahali, Y.; **Trapping of 1,4-diradical intermediate in** intramolecular [2+2] photocycloaddition.; *Tetrahedron Lett.*; 1989; 30; 2661.
- 36 Cantrell, T.S.; Haller, W.S.; Williams, J.C.; Photocycloaddition reactions of some
 3-substituted cyclohexenones.; J. Org. Chem.; 1969; 34; 509.
- 37 Hoffmann, R.; An extended Hückel theory.; J. Chem. Phys.; 1963; 39; 1397.
- 38 Hoffmann, R.; An extended Hückel theory. IV. Carbonium ions.; J. Chem. Phys.; 1964; 40; 2480.
- 39 Zimmermann, H.E.; Swenton, J.S.; Mechanistic organic photochemistry.VIII.
 Identification of the ³n,π* triplet excited states in the rearrangement of 4,4 diphenyl-cyclohexadienone.; J. Am. Chem. Soc.; 1964; 86; 1436.
- 40 de Mayo, P.; Photochemical syntheses. 37. Enone photoannelation.; Acc. Chem. Res.; 1971; 4, 41.
- 41 Louttfy, R.D., de Mayo, P.; On the mechanism of enone photoannelation: avtivation energies and the role of exciplex.; J. Am. Chem. Soc.; 1973; 95; 2549.

- 42 Bauslaugh, P.G.; Photochemical cycloaddition reactions of enones to alkenes: synthetic applications.; *Synthesis*; **1970**; 287.
- 43 Hastings, D.J.; Weedon, A.C.; Origin of the regioselectivity in the photochemical cycloaddition reactions of cyclic enones with alkenes: chemical trapping evidence for the structures, mechanism or formation and fates of 1,4-biradical intermediates.; J. Am. Chem. Soc.; 1991; 113(22); 8525-7.
- 44 Andrew, D.; Hastings, D.J.; Oldroyd, D.L.; Rudolph, A.; Weedon, A.C.; Wong, D.F.; Zhang, B.; Triplet 1,4-biradical intermediates in the photocycloaddition reactions of enones and N- acylindoles with alkenes.; *Pure and Applied Chemistry*; 1992; *64(9)*; 1327-34.
- 45 Krug, P.; Rudolph, A.; Weedon, A.C.; Independent generation of triplet 1,4biradical intermediates implicated in the photochemical cycloaddition reaction between 2-cyclopentenone and acrylonitrile.; *Tetrahedron Lett.*; 1993; *34(45)*; 7221-4.
- 46 Maradyn, D.J.; Sydnes, L.K.; Weedon, A.C.; Origin of the regiochemistry in the photochemical cycloaddition reaction of 2-cyclopentenone with allene: trapping of triplet 1,4- biradical intermediates with hydrogen selenide.; *Tetrahedron Lett.*; 1993; 34(15); 2413-16.
- 47 Andrew, D.; Hastings, D.J.; Weedon, A.C.; The Mechanism of the Photochemical Cycloaddition Reaction between 2-Cyclopentenone and Polar Alkenes: Trapping of Triplet 1,4-Biradical Intermediates with Hydrogen Selenide.; J. Am. Chem. Soc.; 1994; 116(24); 10870-82.
- 48 Andrew, D.; Weedon, A.C.; Determination of the Relative Rates of Formation, Fates, and Structures of Triplet 1,4-Biradicals Generated in the Photochemical Cycloaddition Reactions of 2-Cyclopentenones with 2-Methylpropene.; J. Am. Chem. Soc.; 1995; 117(21); 5647-63.
- 49 Schuster, D.I.; Heibel, G.E.; Brown, P.B.; Turro, N.J.; Kumar, C.V.; Are triplet exciplexes involved in [2 + 2] photocycloaddition of cyclic enones to alkenes?; *J. Am. Chem. Soc.*; 1988; *110(24)*; 8261-3.
- 50 Schuster, D.I.; Lem, G.; Kaprinidis, N.A.; New insights into an old mechanism:
 [2 + 2]-photocycloaddition of enones to alkenes.; *Chemical Reviews*; 1993; 93(1);

3-22.

- 51 Devaquet, A.; Potential energy sheets for the $n\pi^*$ and $\pi\pi^*$ triplet states of α,β unsaturated ketones.; J. Am. Chem. Soc.; 1972; 94(15); 5160-7.
- 52 Schuster, D.I.; Greenberg, M.M.; Nunez, I.M.; Tucker, P.C.; Photochemistry of ketones in solutions. 70. Identification of the reactive electronic excited state in the photocycloaddition of alkenes to cyclic enones.; J. Org. Chem.; 1983; 48(15); 2615-19.
- 53 Wilsey, S.; Gonzalez, L.; Robb, M.A.; Houk, K.N.; Ground- and Excited-State Surfaces for the [2+2]-Photocycloaddition of α,β-Enones to Alkenes.; J. Am. Chem. Soc.; 2000; 122(24); 5866-5876.
- 54 García-Expósito, E.; Bearpark, M.J.; Ortuno, R.M.; Robb, M.A.; Branchadell, V.;
 Theoretical Study of the Photochemical [2 + 2]-Cycloadditions of Cyclic and
 Acyclic α,β-Unsaturated Carbonyl Compounds to Ethylene.; J. Org. Chem.;
 2002; 67(17); 6070-6077.
- 55 McCulough, J.J; Ramachandran, B.R.; Snyder, F.F.; Taylor, G.N.; Kinetics of Photochemical Addition of 3-Phenyl-2-cyclohexenone to Tetramethylethylene.; J. Am. Chem. Soc.; 1975; 97; 6767-76.
- 56 Cantrell, T.S.; Haller, W.S.; Williams, J.C.; Photocycloaddition reactions of some
 3-substituted cyclohexenones.; J. Org. Chem.; 1969; 34(3); 509-19.
- 57 García-Expósito, E.; Álvarez-Larena, Á.; Branchadell, V.; Ortuña, R.M.; [2+2]Photocycloaddition of 1,1-Diethoxyethylene to Chiral Polyfunctional 2-Cyclohexenones. Regioselectivity and π-Facil Discrimination.; J. Org. Chem.; 2004; 69; 1120-25.
- 58 Meyer, L.; Elsholz, B.; Reulecke, I.; Schmidt, K.; Margaretha, P.; Photocycloaddition of cyclohex-2-enones to 2-alkylprop-2-enenitriles.; *Helv. Chim. Acta*; 2002; 85(7); 2065-2072.
- 59 Desci, R.D.; J. Am. Chem. Soc.; 1932; 54; 1079.
- 60 Meyer, L.; Dissertation; Universität Hamburg; 2003; 74.
- 61 Gannon, W.F.; House, H.O.; Baumgarten, H.E. (Ed.); *Org. Synth. Coll. Vol. V*; John Wiley and Sons; New York London- Sydney-Toronto; **1973**; 539-541.
- 62 Gannon, W.F.; House, H.O.; Baumgarten, H.E. (Ed.); Org. Synth. Coll. Vol. V; John

Wiley and Sons; New York - London- Sydney-Toronto; 1973; 294-296.

- 63 Collier, W. L.; Macomber, R. S.; tert-Butylacetylene revisited. Improved synthesis. Methyl migration during bromination.; J. Org. Chem.; 1973; 38(7); 1367-9.
- 64 Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W.; Direct αiodination of cycloalkenones.; *Tetrahedron Lett.*; **1992**; *33(7)*; 917-18.
- 65 Djuardi, E; Bonvonsombat, P.; McNelis, E.; Formations of α-iodoenones by
 iodine and catalytic amounts of amines.; Synthetic Communications; 1997; 27(14);
 2497-2503.
- 66 Sonogashira, K.; Tohda, Y.; Hagihara, N.; Convenient synthesis of acetylenes.
 Catalytic substitutions of acetylenic hydrogen with bromo alkenes, iodo arenes, and bromopyridines.; *Tetrahedron Lett.*; 1975; 50; 4467-70.
- 67 Brückner, R.; Reaktionsmechanismen; Elsevier GmbH; Spektrum Akademischer Verlag; München; 3. Auflage; 2004.
- 68 Miller, M.W.; Johnson, C.R.; J. Org. Chem.; 1997; 62; 1582-3.
- 69 Cope, A. C.; Hoyle, K. E.; Introduction of substituted vinyl groups. VII.
 Alkylidene- and substituted vinylalkylmalononitriles.; J. Am. Chem. Soc.; 1941;
 63; 733-6.
- 70 Prout, F. S.; Amino acid catalysis of the Knoevenagel reaction.; J. Org. Chem.; 1953; 18; 928-33.
- 71 Thakur, A. J.; Prajapati, D.; Gogoi, B. J.; Sandhu, J. S.; Potassium triiodide. A new and efficient catalyst for carbon-carbon bond formation in aqueous media.; *Chem. Lett.*; 2003; 32(3); 258-259.
- 72 Tutwiler, F.B.; Cook, C.D.; Preparation of 1-alkylated 2 haloethers by Grignard method; 2-Bromo-1,1-dimethylethyl ethylether.; J. Org. Chem.; 1959; 24; 425-6.
- 73 Grimaldi,J.; Bertrand, M.; Synthèse de triènes-1,2,4 par isomérisation de l'allylacétylène et de ses homologues.; *Bulletin de la soiété chimique de france*; 1971,; 3; 947-57.
- 74 Meyer, L.; Alouane, N.; Schmidt, K.; Margaretha, P.; Photocycloaddition of Cyclohex-2-enones to Acrylonitrile.; *Can. J. Chem.*; 2003; 81; 417-22.
- 75 Pakusch, J.; Beckhaus, H.D.; Ruechardt, C.; Effects of substituent on the trenght

of C-C bond.; Chem. Ber.; 1991; 10; 1191-1198.

- 76 Schneider, R.; Siegel, H.; Hopf, H.; Alkynes and cumulenes. XIV. Thermal and photochemical dimerization of 1,2,4-pentatriene (vinylallene).; *Liebigs Annalen der Chemie*; 1981; 10; 1812-25.
- 77 Lohmeyer, B.; Schmidt, K.; Margaretha, P.; Photocycloaddition of Cyclohex-2enones to Penta-1,2,4-triene.; *Helv. Chim. Acta*; 2006; *89*; 854-860.
- 78 Parker, C. L.; Cooksy, A. L.; Ab Initio Study of the 1,3-butadienyl Radical Isomers.; *Journal of Physical Chemistry A*; 1998; *102(30)*; 6186-6190.
- 79 Schuster, D.I.; Heibel, G.E.; Woning, J.; Interaction of triplet 3-methyl-2-cyclohexen-1-one with maleonitrile and fumaronitrile: evidence of the direct formation of triplet 1,4-biradicals in [2+2]-photocycloadditions without an intermediate exciplex.; Angew. Chem.; 1991; 103(10); 1381-3 (Angew. Chem.; Int. Ed. Engl.; 1991; (30)10; 1345-7).
- 80 Caldwell, R.A.; Constien, R.; Kriel, B.G.; Photoannulation of 4,4-Dimethylcyclohex-2-en-1-one to 1,1-Diphenylethylene.; J. Phys. Chem A; 2003; 107(18); 3277-3286.
- 81 Tsutsumi, K.; Nakano, H.; Furutani, A.; Endou, K.; Merpuge, A.; Shintani, T.; Morimoto T.; Kakiuchi, K.; Novel enhancement of diastereoselectivity of [2 + 2] photocycloaddition of chiral cyclohexenones to ethylene by adding naphthalenes.; J. Org. Chem.; 2004; 69(3); 785-9.
- 82 Pretsch, E.; Brühlmann, P.; Affolter, C.; Badertscher, M.; Spektroskopische Daten zur Strukturaufklärung organischer Verbindungen.; Springer-Verlag: Berlin, Heidelberg, New York; 4. Aufl.; 2001; 166.
- 83 Breitmeier, E.; Voelter, W.; Carbon-13 NMR Spectroscopy. High-Resolution Methods and Applications in Organic Chemistry and Biochemistry.; VCH Verlagsgemeinschaft: Weinheim; 1987; 115.
- 84 Stothers, J.B.; Carbon-¹³NMR Spectroscopy.; Academic Press; New York, London; 1972; 157.
- 85 Chemikalien Reagenzien; MERK; 2005-2007.

Danksagungen

Auch ohne namentliche Nennung möchte ich denjenigen Danken die zum Gelingen dieser Arbeit einen mehr oder weniger großen Beitrag geleistet haben.

Herrn Dr. Sinnwell und seinen Mitarbeitern in der NMR-Abteilung des Instituts für Organische Chemie danke ich für die Aufnahme unzähliger NMR-Spektren.

Bei Herrn Prof. Dr. J. Kopf und seiner Mitarbeiterin aus dem Institut für Anorganische Chemie bedanke ich mich für die Vorbereitung, die Aufnahme und die Berechnung der Röntgenstrukturanalysen.

Herrn M. Preuße und Frau A. Meiners aus dem Institut für Organische Chemie gilt meinen Dank für die Anfertigung der Massenspektren.

Herrn Prof. W. Francke danke ich für die Übernahme des Korreferates.

Frau K. Schmidt danke ich für die hilfreiche Unterstützung.

Den weiteren Mitarbeitern des Arbeitskreises von Prof. P. Margaretha danke ich für die gute Zusammenarbeit und das gute Arbeitsklima.

Mein besonderer Dank gilt Herrn M. Soltau und Herrn Dr. I. Pforr für das Korrekturlesen meiner Arbeit.

Schließlich gilt mein Dank meinen Kindern für deren Geduld und Liebe.

Lebenslauf

Persönliche Daten

Name:	Britta Lohmeyer, geb. Krämer
Geburtsdatum:	01. Februar 1966
Geburtsort:	Hamburg
Familienstand:	geschieden, zwei Kinder (August 1995, April 1999)

Schulausbildung

1972 – 1976	Albert-Schweizer-Grundschule in Wedel
1976 – 1982	Ernst-Barlach-Realschule in Wedel
1985 - 1988	Wirtschaftsgymnasium Kieler Straße in Hamburg

Studium

Okt. 1988	Immatrikulation im Diplomstudiengang Chemie an der
	Universität Hamburg
Jan. 1991	Vordiplom
Jul. 1998-Mär. 1999	Diplomarbeit im Institut für Pharmazeutische Biologie
Mär. 1999	Erwerb des Diploms
Okt. 2002 – Juli 2006	Dissertation im Institut für Organische Chemie

Berufliche Tätigkeiten

1982 - 1984	Lehre als Bundesbahnassistentin (allg.) in der
	Bundesbahndirektion Hamburg
1984 – 1985	Bundesbahnassistentin (allg.) in der Bundesbahndirektion
	Hamburg
2002 - 2006	Lehrbeauftragte der Universität Hamburg
2003 - 2006	Wissenschaftliche Mitarbeiterin am Institut für
	Organische Chemie der Universität Hamburg

Hamburg, den 09. Oktober 2006

Publikationen

- Lohmeyer, B.; Magaretha, P.; Photocycloaddition of Cyclohex-2-en-ones to Alkylidenemalononitriles (1,1-Dicycanoalkenes); *Photochem. Photobiol. Sci.*; 2005; 4; 637-640.
- 2. Lohmeyer, B.; Schmidt, K.; Margaretha, P.; Photocycloadditionen of Cyclohex-2enones to Penta-1,2,4-triene.; *Helv. Chim. Acta*; 2006; *89*; 854-860.

Erklärung über frühere Promotionsversuche

Hiermit erkläre ich, Britta Lohmeyer, dass vorher keine weiteren Promotionsversuche unternommen worden sind, oder an einer anderen Stelle vorgelegt wurden.

Hamburg, den 09. Oktober 2006

Eidesstattliche Versicherung

Hiermit erkläre ich an Eides Statt, dass die vorliegende Dissertationsschrift selbstständig und allein von mir unter den angegebenen Hilfsmittel angefertigt wurde.

Hamburg, den 09. Oktober 2006