
Subdivision based
Finite Elements for
Lipid Membranes

Dissertation

zur Erlangung des Doktorgrades

des Fachbereichs Physik

der Universität Hamburg

vorgelegt von

Bastian Robert Angermann

ausHamburg

Hamburg

2007



Gutachter der Dissertation: Prof. Dr. Gerhard Mack
Dr. Martin Meier-Schellersheim

Gutachter der Disputation: Prof. Dr. Gerhard Mack
Prof. Dr. Jan Louis

Datum der Disputation: 10. April 2006

Vorsitzender des Prüfungsausschusses: Prof. Dr. Jochen Bartels

Vorsitzender des Promotionsausschusses: Prof. Dr. Günter Huber

Dekan der Fakultät Mathematik,
Informatik und Naturwissenschaften: Prof. Dr. Arno Frühwald



Abstract

In this thesis we study numerical methods for simulating mechanical defor-
mations of cell membranes. Such models are given in terms of fourth order
partial di�erential equations. In order to enable comparisons of the models
predictions to experimental results, the equations must be solved on arbitrary
cell geometries. A Finite Element Method based on subdivision surfaces, which
is capable of discretizing the partial di�erential equations, is implemented in a
C++ computer program.

An integral part of cell membranes models are constraints, enforcing the
conservation of the cells surface, volume and integrated mean curvature. The
discretized equations can not exactly ful�ll these constraints. Instead one intro-
duces harmonic potentials of the quantities to be conserved. This allows for an
approximate conservation. Several Rosenbrock methods for the solution of the
resulting sti� ordinary di�erential equations are tested. Virtual experiments in
which cells are aspirated into micropipettes are carried out as a benchmark for
the performance of the simulation.

Zusammenfassung

Diese Arbeit beschäftigt sich mit numerischen Methoden zur Simulation von
mechanischen Deformationen von Zellmembranen. Solche Modelle werden durch
Systeme von partiellen Di�erentialgleichungen vierter Ordnung beschrieben. Um
die Vorhersagen solcher Modelle mit biologischen Experimenten vergleichen zu
können ist es notwendig, die beschreibenden Di�erentialgleichungen für beliebige
Zellgeometrien lösen zu können. Eine Finite Elemente Methode, die auf Subdi-
vision Surfaces beruht und in der Lage ist, die partiellen Di�erentialgleichungen
zu diskretisieren, wurde in einem C++ Computer Programm implementiert.

Ein wesentlicher Bestandteil von Modellen von Zellmembranen sind Zwangs-
bedingungen, welche die Erhaltung der Zellober�äche, des Zellvolumens und der
integrierten mittleren Krümmung der Zellober�äche erzwingen. Die diskretisier-
ten Gleichungen können die Zwangsbedingungen nicht exakt erfüllen. Statt des-
sen werden harmonische Potentiale von den zu erhaltenden Grössen eingeführt,
die eine näherungsweise Erhaltung erlauben. Verschiedene Rosenbrock Metho-
den zur Lösung der resultierenden steifen gewöhnlichen Di�erentialgleichungen
werden getestet. Als Test für die Leistungsfähigkeit der Simulation werden vir-
tuelle Experimente ausgeführt, in denen eine Zelle in eine Mikropipette aspiriert
wird.
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Chapter 1

Introduction

At the beginning of the 21st century cell biology is in a situation which is quite
opposite to the state of high energy physics. With the depelopment of high
throughput experiments, larger and larger amounts of data on new poorly un-
derstood phenomena are available, and there is a lack of a predictive quantitative
framework that integrates what is accepted as fact into a concise picture.

At the same time theorists percieve a lack of data allowing them to �x
free parameters in their models. The experimental data is often not collected
with the intend to be used as input for quantitative methods, and thus lacks
reproducible calibration.

The reason for this situation is neither a de�ciency of funding nor a failing
interest. The potential bene�ts of a predictive theory of cellular processes to
human health and the related �nancial bene�ts provide ample motivation to
allocate resources to the investigation of quantitative theories. Most attempts
failed in developing models which would quantitatively predict the behavior of
systems under physiological conditions. This is mostly due to an overabstraction
of the biological processes into models which are not faithful images of the
biology. The reason for the creation of these overly simply�ed models is the
complexity of the studied systems and the desire to create models which are
analytically solvable or at least numerically tractable. Furthermore, the experts
on quantitative modeling do not share the same expertise as the experimentalists
working on the same subject. Thus insights on a system tend to get lost in
translation. These failings of abstract models have lead to a weariness among
some experimentally working investigators towards quantitative approaches.

The problem is that the behaviour of biological entities depends strongly on
their environment. This is manifest both on the experimental and conceptual
level. Cells sense their chemical environment trough a variety of transmem-
brane receptors, and adapt their internal biochemistry in response to changes in
the environment. Thus experiments utilizing cells in living tissues or organisms
su�er from the lack of control of the external parameters. On the other hand,
removing cells from their natural environment will a�ect the internal biochem-
istry in an unknown but possibly highly nonlinear manner. On a conceptual
level the abstraction of detail in biological systems does not advance biomedi-
cal research towards it's ultimate goal. It is the change in biochemical details,
which determines the di�erence between health and disease. Knowing the ab-
stract input output behavior of the system alone does not enable the control of

1



2 CHAPTER 1. INTRODUCTION

the system. In the same way, as we need a key to a topographic map to make
sense of it, we need to know how the abstract input and output maps to the
biological entities, in order to assign meaning to a model and design drugs with
a speci�c e�ect.

Typical biological models contain several dozens or hundreds of interacting
components. Thus it is impossible to analyze the system solely by analytical
means. Numerical techniques are required to gain information on the behavior
of the model. The emerging �eld of Computational Biology applies techniques
from physics, mathematics, engineering and computer science to tackle these
problems and bride the gap between experimental biology and biological mod-
eling.

This is the reference frame of this thesis. It's goal is to develop numeri-
cal tools to analyze the dynamics of deformations of cell membranes. These
membranes do not only serve as barriers to maintain the integrity of the cells
biochemistry, but they also serve as an interface through which cells communi-
cate � both chemically and physically � with their environment. The outcome
of these communication events a�ects vital processes such as the triggering of
immune responses [14]. For more details on some of the mechanisms involved
see Chapter 2.

The mechanical properties of cell membranes are governed by a bilayer of
amphiphilic molecules. This bilayer can be viewed as a two dimensional in-
compressible �uid, which resists bending. Since it is impermeable to water the
volume enclosed by the lipid bilayer is constant. A constraint on the di�erence
of the areas of the two sheets of the bilayer stems from the attraction between
them. This is the system which is modeled in this thesis. The fourth order
partial di�erential equations describing the lipid membrane are discretized by
a Finite Element Method based on Subdivision Surfaces. The global nonlinear
constraints are approximately enforced by harmonic potentials of the conserved
variables. We need this weakening of the constraints because the discretized
equations can not ful�ll all constraints simultaneously. We are lead to a sti� sys-
tem of ordinary di�erential equations, which are best solved by implicit methods.
Our system of equations is nonlinear. Thus we employ a Rosenbrock method for
solving the ordinary di�erential equations to avoid the solution of a nonlinear
equations for each time step. This is done by incorporating the Jacobian of the
system into the update scheme, such that for each stage in the update proce-
dure the equivalent of one Newton iteration is done [49]. Di�erent Rosenbrock
schemes are tested, and virtual experiments using an adaptive mesh are carried
out.

The Simulation was implemented in the C++ programming language [101].
The need to keep track of the neighborship relations in the triangle mesh approx-
imating the manifold, and the natural identi�cation of points, vertices, triangles,
and meshes as objects made it desirable to have language constructs, supporting
complex data structures and the concept of objects. Furthermore the simulation
is aimed to be executed on a variety of Unix platforms as well as on Microsoft
Windows. Thus the widespread availability of reliable development tools was
required. Since the simulations are on the boundary of what is computationally
feasible, the overhead for supporting advanced language constructs should be
small, and low level access to the data should be possible. An other require-
ment is the ability to access available libraries for e�cient linear algebra, such
as BLAS [33, 34], LAPACK [6] and PETSc [9, 8, 10] and the requirement to
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make the implementation accessible from SIMMUNE [69, 71, 70].
This work should be seen in the context of the development of tools to inves-

tigate the detailed biochemical behavior of cells [71] the goal of the development
of these tools is to enable biologists to develop quantitative models of biological
processes on multiple scales by hiding the underlying mathematics as much as
possible and thus allowing the experts on the qualitative behavior of a process
to develop quantitative models.

1.1 Outline of this thesis

In chapter 2 the signi�cance of the biophysical behavior of the plasma membrane
of cells is illustrated by highlighting recent results on the interplay between a
cells biochemistry and its physics. The accepted models of lipid bilayers are
discussed. We introduce constraints on the surface area, volume and integrated
mean curvature of a model cell as harmonic potentials in these quantities. We
�nd the equations of motion as the functional derivative of the free energy of the
bilayer. In the end of the Chapter we discuss the in�uence of the surrounding
liquid.

Chapter 3 gives an overview on alternative numerical solution strategies for
partial di�erential equations (PDE). The pros and cons of �nite di�erences, level
set methods and discrete di�erential geometry are examined.

Chapter 4 serves as an introduction to the �nite element method for solving
partial di�erential equations. A simple one dimensional example discretizing
the spatial variables of the heat equation is given to acquaint the reader with
the basics of �nite elements. This is followed by a discussion of the choice
of the proper function space on which a solution to the PDE is sought. The
in�uence of the element shapes on the accuracy of the solution is discussed, and
a method for maintaining favorable element shapes is introduced. The chapter
is concluded by a discussion of local error estimates.

In Chapter 5 the concept of splines is introduced, and generalized to sub-
division surfaces. Both concepts originate from the �eld of computer aided
geometric design [42], but with the discovery of algorithms for the evaluation of
subdivision surfaces at arbitrary parameter values [96, 97] they could be used
as basis functions to span �nite element spaces. After discussing the use of sub-
division surfaces as basis functions, we discuss how to apply the �nite element
method to the equations of motion derived in chapter 2. A numerical quadrature
scheme for the evaluation of the integrals arising in the discretization process is
given.

The solution of the ordinary di�erential equation resulting from the �nite
element discretization is discussed in chapter 6. We will discuss the need for
implicit solution methods, and introduce Rosenbrock methods, which avoid the
solution of nonlinear equations. In the of the Chapter we apply Rosenbrock
methods to the equations arising from the �nite element discretization. Special
care has to be taken, because the matrix multiplying the time derivative is so-
lution dependent. The equations are transformed by interpreting the derivative
of the independent variables as additional independent variables. This leads to
an di�erential algebraic equation that can be solved with available Rosenbrock
methods.

We discuss numerical experiments, which use the methods developed here, in
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Chapter 7. The performance of several di�erent Rosenbrock methods is evalu-
ated. When a simulated membrane is close to its equilibrium shape, we observe
that the relation between the allowed numerical tolerance and the largest time
step compatible with these tolerances displays unexpected jumps. These jumps
are artifacts of the spatial discretization. Oscillations of the constrained quan-
tities are such artifacts. We asses the in�uence of the resolution of the mesh
on the behavior of simulations subject to di�erent constraints. We simulate the
aspiration of cells into a micro pipette, to test the performance of the simulation
in the presence of external forces and geometric constraints.

Open questions and future directions are discussed in Chapter 8. Parameters
of numerical algorithms and the �nite element basis functions are listed in the
appendices.



Chapter 2

The Lipid Bilayer

Lipid bilayers are the fundamental component of cell membranes. They do not
only maintain the biochemical integrity of cells by forming a barrier impermeable
to ions and proteins, but they furthermore form the interface through which cells
sense their environment and communicate. Recent research sheds light on the
in�uence of the biophysical properties of a cell's environment on the fundamental
behavior of it. In the following we give a few examples illustrating interactions
between external signals, cellular biochemistry and membrane behavior.

Yeung et al. [111] showed that �broblasts1 and endothelial cells2 upregulate3

α5 integrin in response to changes in the sti�ness of the substrate to which the
cells adhere. α5 integrin is a protein that regulates the attachment of a cell
to the extracellular matrix4 and is involoved in signal transduction processes
related to the adhesion of cells [4]. More recent �ndings of Weaver et. al [109]
indicate similar behavior in human mammary epithelial cells5, which change
their expression pro�les towards pro�les similar to those of carcinoma, if the
are embedded in an extracellular matrix, which is sti�er than in healthy tis-
sues. This clearly illustrates the deep interconnection between the biophysical
environment and the expression of genes in a cell. Even if we lack a detailed
understanding of the mechanisms involved in the aforementioned regulation of
gene expression, we can expect to see an in�uence of the cell membrane on this
regulatory system. The cell membrane will not nessecarily be a part in the
mechanism sensing the sti�ness of the environment, but it will give rise to back-
ground forces and therefore indirectly a�ect the forces sensed by other parts of
the cell.

The protein domain BAR is the key component of a known mechanism of
biochemical sensing and regulation of membrane curvature. BAR is a banana
shaped dimer which binds electrostaticly to the cytosolic lea�et of the bilayer
[113]. Depending on the spontaneous curvature and bending rigidity of the
membrane it can either bend the membrane into a cylindrical shape with a radius

1Fibroblasts are cells in the connective tissues, which secrete an extracellular matrix rich
in collagen. They have a major role in wound healing as they migrate into the injured tissue
and secrete collageneous matrix, helping to repair the tissue[4]

2Endothelial cells form a single cell layer lining the interior surface of blood vessels [4].
3Regulatory process in which cells increase the expression of a protein.
4A extracellular matrix is a meshwork of macromolecules in the extracellular space. It is

the major component of connetive tissues[4].
5Epithelial cells line the surfaces of an organism[4].

5



6 CHAPTER 2. THE LIPID BILAYER

of ≈10 nm, or, if the a�nity is too low for e�ective binding and deformation,
sense the curvature of the membrane because of its curvature dependent a�nity.

The curvature elasticity of the plasma membrane a�ects the communication
of cells. Antigen Presenting Cells (APC) take up proteins from their environ-
ment and break them into peptides. These are presented on the surface of the
APC, where they are bound to proteins that are encoded in the major histo-
compatibility complex (MHC). Encountering a T-Cell6, the two cells make close
contact. Now the MHC and the presented peptide can bind to the T-cell re-
ceptor (TCR), which can lead to the activation of the T-Cell and a subsequent
adaptive immune response [55]. Furthermore, the APC also possess adhesion
molecules ICAM-1, which bind to the LFA-1 protein on the T-cell. The resulting
protein complexes di�er in size. Complexes formed by ICAM-1 and LFA-1 have
a size of 42 nm whereas the size of the TCR-pMHC complex is only 15 nm (Fig.
2.1) [81, 14]. This di�erence in complex sizes makes it energetically unfavor-

Membrane

LFA−1

pMHC

ICAM−1

TCR

Figure 2.1: Detailed view of a T-Cell APC contact

able to bring TCR-pMHC and LFA-1-ICAM-1 complexes into close proximity,
since the membrane resists bending [14]. This can lead to a self assembly of
a central cluster of TCR-pMHC complexes and a surrounding ring of adhesion
complexes. The degree of clustering of the TCR-pMHC complexes is known to
be indicative for whether the T-Cell will be activated as a result of this signaling
process [14]. This is an example of the fundamental importance of membrane
physics for the understanding of signal transduction processes, but so far only
qualitative insight has been gained. Even though attempts have been made to
model the T-Cell APC contact mathematically [81, 64, 65, 63], current models
of this process lack constraints on the mean curvature and enclosed volume of
the cell membrane which are crucial features of the accepted models [77, 92] of
lipid membranes.

2.1 Amphiphilic Molecules

The basic constituent of a cell membrane is a self assembled bilayer of am-
phiphilic molecules. They typically consist of a hydrophilic head group, and two
hydrophobic, possibly partially unsaturated, hydrocarbon chains. The length of

6T-Cells form a part of the adaptive immune system. In an adaptive immune response the
main classes of T-cells kill infected cells (cytotoxic T-Cells) or help activating other immune
cells (helper T-Cells) [4].
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the hydrocarbon chains ranges from fourteen to twenty CH2 groups, yielding a
thickness of the bilayer of 4-5 nm [15]. Most head groups are phosphate groups
−P−OOH−O− R. Under physiological conditions the head group is not only
polar but ionized. The exact chemical composition of lipid membranes in cells
is complex. There are typically hundreds of di�erent constituents, which have
a highly asymmetric transversal distribution, regulated by a number of poorly
characterized proteins [56]. We will absorb the chemical details into the material
constants of the continuum model. A lateral organization has been observed in
arti�cial giant unilamellar vesicles [12]. The existence and physiological rele-
vance of these domains of di�erent lipid composition (lipid rafts) in cells is still
debated [74].

Figure 2.2: Visualization of a lipid bilayer surrounded by water molecules using
PyMOL [29] and molecular dynamics simulation data from Heller et al. [52].
The di�erent colors indicate the type of chemical elements in the molecules.
White indicates hydrogen, red indicates oxygen, green indicates carbon, blue
indicates nitrogen and orange indicates phosphorus. Note that the hydrogen
atoms in the lipid molecules are not displayed to increase the clarity of the
Figure.

2.2 A continuum view of the bilayer

The need of a continuum description stems from the lack of relevance of the
molecular details for most biological applications and the need for a computa-
tionally tractable model.

Several di�erent continuum models for lipid bilayers have been discussed in
the literature [94, 39, 79, 103, 104, 108, 92]. The general consent is that the free
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energy of a lipid bilayer depends on it's extrinsic curvature. The models di�er
in their assumptions on constraints such as the conservation of the integrated
mean curvature. We will introduce a simple universally accepted model without
constraints �rst, and discuss the di�erent constraints later on.

The requirement for a physically meaningful model of the lipid bilayer is
the invariance of the bilayer with respect to euclidian transformations i.e trans-
lations and rotations. Given a transversal extension of 4-5 nm and a lateral
scale on the order of µm we can treat lipid bilayers as two dimensional [92].
Furthermore we note that the bilayer behaves like a �uid, there are no in�plane
stresses in response to locally shearing or stressing the bilayer. Thus we require
the model to be invariant with respect to reparametrizations of the bilayer.

Let Ω be our model membrane, we assume it is a su�ciently di�erentiable
2-Manifold embedded in R3. It is de�ned by

Ω =
{
~r(v, w) : (v, w) ∈ U ⊂ R

2
}

with ~r =

r1(v, w)
r2(v, w)
r3(v, w)

 .

We use the symbol ui to denote either v or w. In the following we will use the
comma notation for derivatives of quantities x

x,i =
∂x

∂ui
.

Multiple indices following the comma indicate higher derivatives w.r.t. these
indices. Setting one parameter ui constant we de�ne tangent vectors at the
point (v0, w0)

~r,v =
∂

∂v
~r(v, w0)

∣∣∣∣
v0

= ~t1

~r,w =
∂

∂w
~r(v0, w)

∣∣∣∣
w0

= ~t2

In our de�nition of the tangent vectors we already made use of the embedding
of Ω in R3, we can go further and de�ne a7 normal vector as

~n =
~t1 × ~t2
|~t1 × ~t2|

The components gij of the metric tensor g are

gij = ~ti · ~tj

The inverse of gij will be gij . We de�ne the second fundamental form l through
its components lij

lij = ~n · ~ti,j = −~ti · ~n,j . (2.1)

Both de�nitions of lij are related by partial integration.
Geometrically the second fundamental form at a point (v0, w0) de�nes a

quadric. It measures the deviation of Ω from the tangent plane at (v0, w0) in a
small neighborhood around the considered point. If we diagonalize the quadric

7We will later choose an orientation such that the mean curvature on a sphere is negative.
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l we can read o� the local behavior, if l is positive or negative de�nite the whole
surface in the neighborhood is on one side of the surface. In the inde�nite case
the local surface lies on both sides of the tangent plane. If l is semide�nite Ω
lies in the plane in one direction, and curves to one side of the tangent plane in
the perpendicular direction, both directions are given by eigenvectors of l.

The second fundamental form measures the curvature kn(s)|s=0 of a curve,
naturally parameterized by s through (v0, w0), which is given by the intersection
of Ω and the plane spanned by the normal and a tangent of Ω at (v0, w0). We
have the curve C = {y|y(s) = ~r(v(s), w(s))}. By the de�nition of the tangent
we have y′(s) = u′i(s)~r,i and thus for the second derivative

y′′(s) = u′′i (s)~r,i +u′i(s)u
′
j(s)~r,ij . (2.2)

Since the parameter s is the arclength of C we have

kn(s) = ||y′′(s)||.

From the theory of curves [99] we know that y′′ is perpendicular to y′ . Since C
lies in the plane spanned by y′ and ~n, y′′ is parallel to ~n. Thus we can evaluate
the curvature (2.2) by multiplying the second derivative (2.2) by ~n

kn(s) = u′i(s)u
′
j(s) (~r,ij ·~n) ,

Here we recovered the second fundamental form.
Now we can ask for which directions the normal curvature becomes extremal.

Thus we want to extremize the expression u′T lu′, which is subject to the con-
straint u′T gu′ = 1 enforcing C to be parameterized by its arclength. Introducing
a Lagrange multiplier λ and di�erentiating for u′ we arrive at the generalized
eigenvalue problem

lu′ − λgu′ = 0

The eigenvalues κ1 and κ2 are called principal curvatures. Using these we de�ne
the surface properties central to this thesis:

De�nition 1. The mean curvature H of a surface is the mean of the principal
curvatures

H =
κ1 + κ2

2
=

gij lij
2det(g)

(2.3)

The Gaussian curvature K is the product of the principal curvatures

K = κ1κ2 =
det(l)
det(g)

(2.4)

Note that some authors de�ne the mean curvature H not as the mean of the
principal curvatures, but instead as the trace of the second fundamental form.
Thus these de�nitions di�er by a factor 2.

Let us express the derivative of the tangent vectors in terms of the threebein
~r,i and ~n

~r,ij = Γk
ij~r,k +Lij~n. (2.5)

Multiplying with ~n we recover equation (2.1), and therefore Lij = lij . We can
derive an expression for the Levi-Civita connection Γ by multiplying equation
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(2.5) by ~r,l. The resulting terms ~r,ij ·~r,l can be written as linear combinations
of derivatives of components of the metric [31]

gij,k = ~r,ik ·~r,j +~r,i ·~r,jk ,

leading to

Γk
ij =

1
2

(gkj,i + gik,j − gij,k) gkl.

Now we have the necessary tools to de�ne the Hamiltonian of a closed vesicle
Ω, which is named after Canham [19] and Helfrich [51].

De�nition 2. The Canham�Helfrich Hamiltonian of a vesicle Ω is

F =
∫

Ω

(
κ(H − C0)2 + κ̄K

)
dA (2.6)

Here κ and κ̄ are material constants measuring the rigidity of the lipid bilayer
towards bending. The constant C0 is a spontaneous curvature, to allow for
membranes with a non �at relaxed shape.

The integral of the Gaussian curvatureK is a topological invariant [31]. Since
we are only interested in closed vesicles, which do not change their topology,
we drop the term involving K. Note that models taking account of domains of
di�erent lipid composition leading to di�erent κ̄ would have to take into account
boundary terms arising from the Gaussian curvature integral.

The electrostatic forces between the amphiphilic molecules lead to a strong
resistance of the bilayer towards stretching; an increase of the average distance
between the hydrophilic head groups would expose the hydrophobic tails to
water. Shrinking of the membrane is resisted by the repulsive forces between
the head groups [56]. Thus we have to add the constraint∫

Ω

dA = A0 (2.7)

of conserved area A0 to the Canham�Helfrich Hamiltonian. The volume of a
cell does not change on the timescales covered in our simulations. We can use
Stoke's theorem to express the conserved volume in terms of a surface integral∫

Ω

1
3
~r · ~ndA = V0. (2.8)

The Canham�Helfrich Hamiltonian, together with the two constraints (2.7) and
(2.8) gives us the simplest models of a lipid bilayer. With the constraints en-
forced by Lagrange multipliers we have

F =
∫

Ω

(
κ(H − C0)2 + λ+ ∆p

1
3
~r · ~n

)
dA

The Lagrange multiplier λ has the interpretation of a tensile stress, whereas ∆p
is a pressure di�erence [112].
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2.2.1 The Bilayer Couple Hypothesis

On a microscopic level a lipid bilayer is composed of two sheets. The �nite
distance between these sheets causes the areas of the two sheets to di�er. Early
on it was realized that interactions between the two sheets of the lipid bilayer
could a�ect its behavior [94, 39]. The distribution of phospholipids and mem-
brane proteins [94, 7] may be changed asymmetrically across the bilayer, causing
the areas of the two lea�ets change relative to each other. Since both halves
are coupled by van der Waales interactions, changes of the ratio of the areas
will induce deformations of the membrane. Di�erent shapes of a membrane will
have di�erent ratios of areas because the �nite thickness of the membrane will
translate its mean curvature into di�erent areas of the bilayers sheets.

A mathematical model of the bilayer couple hypothesis [103] has been built
upon the Canham�Helfrich Hamiltonian. An additional nonlocal term is intro-
duced which enforces a constant area di�erence ∆A0 between the two layers of
the membrane

d

∫
Ω

HdA = ∆A0.

Here d measures the distance between the sheets of the bilayer. Experiments
inducing a change of area and volume of vesicles by heating, thus inducing shape
transformation, showed behavior which was either consistent with a constrained
or with an unconstrained area di�erence. This motivated the investigation of
a model interpolating between both existing models. The constraint is relaxed
and replaced with a harmonic potential penalizing an area di�erence, which
deviates from the relaxed area di�erence [72]

FA =
κ′π

2Ad2
(∆A−∆A0)

2
.

In this thesis we will make use of this so called area di�erence elasticity (ADE)
model. Furthermore we will relax the area and volume constraints. This has
the technical reason that in the numerical treatment of the equations of motion
the terms de�ning the Lagrange multipliers will result in poorly conditioned
matrices8, which deteriorate the convergence of the numerical solution.

2.3 The Equations of Motion

Given the Canham�Helfrich Hamiltonian we will derive the normal stresses f
acting on the lipid bilayer. Since we consider the bilayer as a �uid, and con-
structed a Hamiltonian which is invariant under reparametrizations, we can
ignore in�plane stresses. Of course, as soon as we would allow membranes that
are not closed, in plane stresses would add nontrivially to the boundary condi-
tions [21]. The normal stresses are given by the variation of Ω in the direction

8in most cases the matrices were singular up to machine precision



12 CHAPTER 2. THE LIPID BILAYER

of the surface normals

f = δ

(∫
Ω

(
κ(H − C0)2dA

)
+

κ′π

2Ad2
(∆A−∆A0)

2

+ a (A−A0)
2

+ v (V − V0)
2

)
.

(2.9)

The following derivations are based on [112, 31]. Other approaches to derive
the stresses acting on a lipid bilayer can be found in [22, 21, 20, 5, 105, 106].
The variation of ~r in the direction of the surface normal ~n is given by

~rn(v, w) := ~r(v, w) + δ~r(v, w) = ~r + ψ(v, w)~n(v, w)

with a su�ciently small smooth function ψ. We �nd the variation of the tangents
as

δ~r,i = (~rn − ~r),i
= ~r,i +(δ~r),i−~r,i
= (δ~r),i
= ψ,i ~n+ ψ~n,i

We proceed with the variation of the components of the metric

δgij = gij(~rn)− gij(~r)
= ~rn,i ·~rn,i−~r,i ·~r,j
= δ~r,i ·~r,j +~r,i ·δ~r,j +δ~r,i ·δ~r,j

Since we choose ψ to be small and to have small derivatives, we drop all terms
not linear in ψ and it's derivatives

δgij = (ψ,i ~n+ ψ~n,i ) · ~r,j +~r,i ·(ψ,j ~n+ ψ~n,j ).

Recalling the de�nition of the second fundamental form, we are led to

δgij = −2ψlij .

The variations of other quantities are found in a similar manner [112, 31]

δ det(gij) = δ det(g) = −4ψHg
δ
√
g = −2ψH

√
g

δlij = ψ,ij +ψ(Kgij − 2Hlij)− Γk
ijψ,k

δH = ψ(2H2 −K) +
1
2
gij∇iψ,j

δV =
∫

Ω

ψdA,
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The �rst term in equation (2.9) becomes

δ

∫
Ω

(
κ(H − C0)2dA

)
= κ

∫
Ω

(
2(H − C0)δHdA+ (H − C0)2δdA

)
= κ

∫
Ω

(
2(H − C0)[ψ(2H2 −K) +

1
2
gij∇iψ,j ]

− 2(H − C0)2ψH

)
dA

After rearranging, partially integrating, and making use of the de�nition of the
Laplacian as the trace of the covariant derivative[31]

∆ = gij∇i∇j , (2.10)

we have

δ

∫
Ω

(
κ(H − C0)2dA

)
= κ

∫
Ω

(
2(H − C0)(H2 −K − C0) + ∆Hψ

)
dA. (2.11)

Note that the expressions reported in [112, 92] di�er due to di�erences of a
factor 2 in the de�nition of the mean curvature (2.11), which can be absorbed
into the bending rigidity κ.

We proceed with the derivative of the potential of the mean curvature dif-
ferences

δ

(
κ′π

2Ad2
(∆A−∆A0)

2

)
=

κ′π

2Ad
(∆A−∆A0)

∫
Ω

δ(HdA).

In the variation of the integral over the mean curvature all terms proportional
H cancel. Since the Laplacian of ψ only contributes a boundary term we �nd

δ

(
κ′π

2Ad2
(∆A−∆A0)

2

)
= − κ′π

2Ad
(∆A−∆A0)

∫
Ω

KdA

The variation of the term penalizing area changes evaluates to

aδ (A−A0)
2 = 2a (A−A0)

∫
Ω

−2HψdA,

For the volume term we obtain

vδ (V − V0)
2 = 2v (V − V0)

∫
Ω

ψdA.

Putting everything together the normal stress of a lipid bilayer is given by

f =
∫

Ω

(
κ(2(H − C0)(H2 −K − C0)ψ +H∆ψ)

− κ′π

2Ad
(∆A−∆A0)Kψ

− 4a (A−A0)Hψ

+ 2v (V − V0)ψ
)
dA.
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Note that the terms ∆A, A and V are integrals over the whole surface Ω, and
thus render the stresses non-local.

When we formulate the equations of motion, we have to consider the water
surrounding the membrane. At the typical dimension of a cell of some micron,
and typical velocities of microns per minute, the Reynolds number of the �uid
is so small that inertial forces can be neglected [50]. In principle this would lead
to a an incompressible Stokes equation [92]

∇p(x)− η∇2v(x) = K(x),
∇ · v = 0

with pressure p, velocity �eld v(x) and viscosity η. Forces external to the liquid
are given by K(x). In a realistic model these would not only be those that stem
from the moving boundary, which is formed by the cell membrane, but also
contain unknown viscoelastic terms from the cytoskeleton. Here we will take a
di�erent approach and simply assume that the lipid bilayer moves freely, but all
motion is strongly dampened. Thus we drop the inertial term in the equations
of motion.

To estimate the damping λ we solve the Stokes equation formally by Fourier
transformation [92]. The velocity �eld can then be expressed as

v(x) =
∫
d3x′O(x, x′)K(x′) (2.12)

Where the entries of the Oseen Tensor are given by

Oij(x, x′) =
1

8πη|x− x′|

(
δij +

(xi − x′i)(xj − x′j)
|x− x′|2

)
.

Since the lipid bilayer in impermeable to the surrounding �uid, we can identify
the normal velocity of the �uid at the membrane with its deformation. For a
sphere with uniform normal forces the integral (2.12) evaluates to π

8η . Neglecting
the 1/x coupling introduced by the �uid we use this as our damping term, and
arrive at∫

Ω

∂~r

∂t
ψ =

π

8η
~n

∫
Ω

(
κ(2(H − C0)(H2 −K − C0)ψ +H∆ψ)

− κ′π

2Ad
(∆A−∆A0)Kψ

− 4a (A−A0)Hψ

+ 2v (V − V0)ψ
)
dA

(2.13)

This is the equation of motion that we will solve in this thesis.



Chapter 3

Solution Strategies for PDEs

In most cases numerical solutions to time�dependend PDEs are obtained in two
steps. First the PDE is discretized into a system of ODEs, then the ODEs are
integrated separately. This thesis will make use of the Finite Element Method
(cf. Chapter 4).In this chapter we will review alternative methods of discretizing
a PDE, and give reasons why these methods were rejected for this thesis.

3.1 Finite di�erences

The basic idea of �nite di�erences is to replace derivatives with di�erence quo-
tients

∂f(x, . . . )
∂x

=
f(x+ h, . . . )− f(x, . . . )

h

turning the di�erential equation into a di�erence equation. Since the evaluation
of derivatives requires knowledge of the values of f at neighboring points we
overlay the domain, Ω on which the problem is posed, with a grid with grid
constant h. On the boundary of Ω we change the value of h in order to evaluate
f on the boundary. The evaluation of the di�erence equation on all points of
the grid leads to a system of n algebraic equations, where n is the number of
grid points.

We can apply this approach to (2.13) posed on a patch of membrane, such
that Ω is in a Monge representation , i.e the graph of a function (v, w) 7→ h(v, w).
Now some limitations of the �nite di�erence method become apparent. The �-
nite di�erence operator breaks the symmetries of the original system, by singling
out two directions, and additionally it breakes the parity by the asymmetry of
the �nite di�erence. Moving towards an arbitrarily shaped membrane reveals
further problems. Since one now needs more than one chart. Consider two
overlapping coordinate patches. Since both charts have to be compatible on
their overlap, we have to adjust the grid in at least one of the charts. We are
not totally free in moving points in the image of one chart without a�ecting
the other. A point of our discretization can be in the image of an other chart,
therefore we force our discretization from the domain for our problem onto it's
image. Numerical tests with an early prototype,which was developed for this
thesis, indicated the need for very �ne grained discretizations both in space and
time to ensure stability. The need for a small grid constant h re�ects results by

15
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Stokely and Wu [98], who analyzed the systematic error of curvature estimates
on three dimensional grids. Their conclusion was that in order to correctly mea-
sure the curvature a neighborhood containing up to one hundred surface voxels1

would have to be sampled. With high resolution and small timesteps one can
get a better estimate of the curvatures as a spatio�temporal average without
modifying the Laplacian to sample larger neighborhoods. Still, the computa-
tional cost associated with highly resolved grids and small timesteps make this
method unsuited for the modeling of membranes.

3.2 Level Set Methods

In the previous section we saw that the naive �nite di�erences approach of
discretizing coordinate charts led to serious numerical di�culties. Some of these
can be alleviated if instead of charts in monge representation we use an implicit
function to describe the surface we are interested in

Ω(t) = {~r|φ(~r, t) = 0}.

This idea was initially conceived by Osher and Sethian and became known as
Level Set Methods [76]. The unit normals of Ω(t) are given by the restriction of

~n = −∇ φ(~r, t)
|φ(~r, t)|

to Ω(t) [75]. This has the advantage that by making use of the extension of the
normals into the bulk , we can improve the aforementioned systematic errors
for curvature estimates for �nite di�erence schemes . The motion of Ω(t) can
be analyzed as the convection of φ(~r, t) with a normal velocity �eld vn = ~v · ~n
[75, 93]

∂φ(~r, t)
∂t

+ vn|φ(~r, t)| = 0. (3.1)

In our case the velocity �eld would be a function of the geometry of Ω. The
performance of the level set method depends on di�erent factors. We need a
suitable choice of the implicit function ψ de�ning the level set. Too shallow
or too steep gradients could negatively a�ect numerical precision. An accepted
choice for ψ is setting it to the signed distance d(~r, t) to the initial level set
φ = 0. By convention one de�nes the distance d(~r, t) to be positive if ~r is inside
the volume that is enclosed by the level set. E�cient algorithms for constructing
ψ have been developed [78, 102]. The basic idea is to make use of the fact that
|∇d| = 1 and solve for the steady state of eq. (3.1)

∂ψ(~r, t)
∂t

+ sign(φ)(|∇d| − 1) = 0

with the initial condition

ψ(~r, 0) = φ(~r, t).

We can extend properties p(~r, t) that are only de�ned on the evolving surface
into properties q(~r, t) de�ned in the the bulk in a similar manner. Such an

1A voxel is the n-dimensional generalization of a pixel.
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extension is necessary, if the velocity �eld in (3.1) depends on surface properties.
Again we solve for the steady state of a convection equation for the new bulk
properties [24].

∂q(~r, t)
∂t

+ sign(φ)(−~nφ · ∇q) = 0,

with the initial condition
q(~r, 0) = p(~r, t).

This enforces the gradient of q to be parallel to the surface, therefore the change
of q along ~n will be as small as possible in a neighborhood around the surface.

A major issue for level set methods is the discretization of the whole embed-
ding space. Therefore the storage complexity and time complexity of level set
algorithms with linear extension n samples in each of the d-directions scales as
O(nd). Assuming two double precision values per sample, one for the implicit
function φ and one for an auxiliary property, the memory needed to store a sin-
gle time step with an extension of 512 samples is 2 GB. At the time of writing,
the total amount of random acess memory on commodity hardware is on the
order of 2 GB. Therefore more economical algorithms are required. A number of
data structures have been devised to achieve better storage complexity2 , based
on storing only a narrow band around the level set φ = 0 [2], making use of
hierarchical space partitions [67], or combinations of both [54]. The drawback
of all these schemes is that the random access of values of φ is not of time
complexity3 O(1). E�cient algorithms are still a matter of active research.

An approach to model the behavior of lipid vesicles using a variant of level
set methods has been made by [35] and [18]. Their models are capable of sim-
ulating the dynamics of vesicles including topological changes such as fusion of
membranes. Yet the limitations of the level set methods apply here as well.
Simulations in 3 dimensions with more than 64 samples per direction were not
reported in [35] or [18]. If a level set method is to be coupled to the biochemistry
of a cell, the use of a structured grid leads to stronger restrictions on the resolu-
tion. This is due to the cost for the storage of concentrations of the membrane
bound molecule complexes in the simulated reaction network. For realistic net-
works the number of chemical species tracked in a simulation can be several
hundred or even more. Simulations of the biochemistry could be executed on
a di�erent discretization, but additional e�ort is needed to couple the di�erent
discretization schemes.

3.3 Discrete Di�erential Geometry

Instead of discretizing the derivatives of functions, one could start with a man-
ifold, which is intrinsically discrete and formulate the di�erential equation in
terms of the discrete analogs of di�erential forms [53, 30]. This approach has
the advantage that, by construction, local invariants of the modeled system are

2Storage complexity measures how the amount of memory that is needed to carry out an
algorithm asymptotically scales with the size of its input, or more generally how it scales with
a parameter derived from the input. In this case the relevant parameter is the linear resolution
or the related number of samples n in each direction of the grid that is used to discretize the
level set equations.

3The time complexity of an algorithm is an asymptotic expression for the time it takes to
execute an algorithm, as a function of the length of the input.
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preserved in the discrete setting. A violation of these leads to spurious oscil-
lations and other features of solutions, which are only artifacts of an improper
discretization [16, 30]. The basic ingredient is a triangular or tetrahedral mesh
(in the 2-d resp. 3-d case), i.e. a simplicial complex, serving as a discrete analog
of the di�erential manifold in the continuous setting.

This introduction to the ideas of discrete di�erential geometry follows [30],
most of the concepts introduced here can also be found in [73]. A k-simplex σk

is the nondegenerate convex hull of k geometrically distinct points

σk = {v1, . . . vn} = {x ∈ R
n|x =

k∑
i=0

αivi withαu ≤ 0 and
k∑

i=0

ai = 1}.

The vi are points in Rn, which we call the vertices of σk. The order of the
vertices induces an orientation of a simplex, all even permutations of the set
{vi} give rise to the same orientation. We can form (k − 1)-simplices, called
faces, from a k-simplex by removing one vertex. The formal sum

∂{v1, . . . , vn} =
k∑

j=0

(−1)j{v1, . . . , v̂j , . . . , vn},

where v̂j indicates the omission of vj , de�nes the boundary of a k-simplex. We
now de�ne a simplicial complex as a set K, such that each face of a simplex
in K is in K as well, and the intersection of two simplices is either empty or
a face. We can now de�ne a discrete n-manifold as a simplicial complex, such
that a face of a n-simplex has one or two incident n-simplices. The n-simplex
is considered on the boundary of K in the case of one incident n-simplex.

A k-chain c on a simplicial complex K is a linear combination of all k-
simplices in K

c =
∑
σ∈K

c(σ)σ

Requiring linearity we can extend the boundary operator to chains.
Now we de�ne di�erential forms on the discrete manifold by identifying the

duals of chains (cochains) with di�erential forms. Thus a di�erential k-form is
a map ω taking a k-chain c ∈ Ck to the real numbers

ω : c ∈ Ck → R

c 7→ ω(c)

Thus we integrate a discrete form ω over a chain c as∫
c

w =
∑
σ∈K

c(σ)ω(σ)

Further geometric concepts can be applied to the discrete setting in a similar
spirit [53, 30].

While the notion of discrete di�erential geometry was successfully applied to
di�erent problems [16, 38, 87], discrete di�erential geometry is a �eld of active
research, and the convergence of discrete systems to their continuous analogs is
not yet fully understood [87].
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Because of the drawbacks of the algorithms used here, we employ the Finite
Element method, which we will discuss in the next Chapter. The mathematical
fundamentals are well understood [25] and e�cient algorithms for solving �nite
element problems are known [17].
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Chapter 4

The Finite Element Method

The Finite Element Method (FEM) is tailored to solve PDE's on irregularly
shaped domains. It shares its underlying principles with the Rayleigh-Ritz
method for solving variational problems. The function space on which the prob-
lem is posed, is approximated by a �nite dimensional subspace. This transforms
the initial variational or weak problem into an algebraic one. The approximated
solution will converge to the exact solution in the limit of a countably in�nite
dimensional subspace.

The FEM and Rayleigh-Ritz methods di�er in the way how these series of
subspaces are constructed. For practical considerations it is important to keep
computational time manageable, in addition to ensuring convergence. Good
approximations of the exact solution should be achieved with a relatively low
dimensional subspace. On domains with certain symmetries one can �nd basis
functions, which are orthogonal to any but a few others and respect the bound-
ary conditions. Then a subset of the basis functions is used to span the �nite
dimensional space, on which an approximation of the problem can be easily
solved.

For domains with arbitrary shape this is not possible in practice, but neither
is dealing with hundreds of millions of pairs of functions with non vanishing
scalar product. The way out of this dilemma is to restrict the support of the
basis functions to disjoint subsets that cover the domain. The FEM generally
uses polynomial functions on polygonal or polyhedral domains �the elements �
to yield a numerically tractable system of algebraic equations. Recommendable
introductory texts on the �nite element method are the lecture notes by Giladi
[45] and a textbook by Braess [17].

4.1 A one dimensional example

We now illustrate how to �nd the weak solution of a one dimensional heat
equation for a medium with an arbritrary smooth, position dependent di�usion
constant κ(x). We are searching for a function T (x) such that:

∂

∂t
T (t, x) =

∂

∂x

(
κ(x)

∂

∂x
T (t, x)

)
21
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with the Neumann boundary conditions

∂

∂x
T (t, 0) =

∂

∂x
T (t, 1) = 0.

First we express T (t, x) in terms of basis functions φi(x) with time dependent
coe�cients ai(t). We then construct the weak formulation using φj(x) as test
functions∫ 1

0

dx
∂

∂t

∑
i

ai(t)φi(x)φj(x) =
∫ 1

0

dx
∂

∂x

(
κ(x)

∂

∂x

∑
i

ai(t)φi(x)

)
φj(x).

Integrating the rhs by parts and making use of the boundary conditions we have∑
i

∂ai(t)
∂t

∫ 1

0

dxφi(x)φj(x) = −
∑

i

ai(t)
∫ 1

0

dxκ(x)
∂φi(x)
∂x

∂φj(x)
∂x

.

This is a system of ordinary di�erential equations. We can rewrite the summa-
tion as a multiplication of a vector ~a(t) with components ai(t) and matrices M
and S with

Mij =
∫ 1

0

dxφi(x)φj(x)

and

Sij = −
∫ 1

0

∂φi(x)
∂x

∂φj(x)
∂x

κ(x)dx.

The system of ODEs now reads

∂~a(t)
∂t

M = ~a(t)S.

So far we did not make use of any technique particular to the FEM. The ad-
vantages of �nite elements will become apparent, when we explicitly construct
the mass matrix M and sti�ness1 matrix S. Assume the interval I = [0, 1] is
divided into n intervals ni = (i/n, (i + 1)/n) with i ∈ 0 . . . n− 1. Two linear
functions ψ1

i (x) and ψ2
i (x) are de�ned on each interval ni, such that each equals

1 evaluated on one end of the interval and 0 on the other.

ψ1
i (x) =

{
−nx+ 1 + i if x ∈ ni

0 else

ψ2
i (x) =

{
nx− i if x ∈ ni

0 else

Requiring continuity of the solution across element boundaries we have n + 1
degrees of freedom2. We now construct a set of basis functions φj(x) j ∈
{0 . . . n} which is associated with the element boundaries (nodes) by setting

φ0(x) = ψ1
0(x)

φj(x) = ψ2
j−1(x) + ψ1

j (x) j ∈ {1 . . . n− 1}
φn(x) = ψ2

n−1(x).

1The designations of M and S as mass resp. sti�ness matrix stem from their interpretation
in solid mechanics.

2The coe�cients of the two basis function at an element boundary have to be the same.
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Now we have one basis function for each degree of freedom. Evaluating the
Mass� and Sti�ness� matrices we notice that only basis functions associated
with neighboring nodes have overlapping support. In order to evaluate the
integrals analytically, we now introduce the additional assumption κ(x) = 1.

M =
1
n



1
3

1
6

1
6

2
3

1
6

. . .
. . .

. . .
1
6

2
3

1
6

. . .
. . .

. . .
1
6

2
3

1
6

1
6

1
3



S =
1
n



1 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

. . .
. . .

. . .
−1 2 −1

1 −1


.

The matrices are sparse, which will hold for higher dimensional domains as
well, thus the resulting system of algebraic equations can e�ciently be solved
numerically. Furthermore, we observe that the 1-dimensional �nite di�erence
discretization of the Laplacian being recovered by our discretization, this is of
course only the case for this simple geometry, more complex examples don't
have �nite di�erence equivalents.

4.2 Mathematical Background

This section gives a short outline of the theory of Finite Element Methods. It is
not meant to substitute introductory texts, but it �xes notation and motivates
the choice of the set of basis functions that we use here. The function space
V on which we search our solution can not be arbitrarily chosen. Assume we
were able to formulate our di�erential equation as a variational problem, by
requiring the action of the system in question to be stationary. Thus we search
the minimum of a functional J of functions v on some open set Ω ∈ Rn given
by

J(v) =
∫

Ω

a(v, v)− l(v) v ∈ V, (4.1)

where a is a symmetric positive bilinear form on V and l is a linear functional
on V . One can prove [17] that J(v) attains its minimum at u if and only if

a(u, v) = l(v) for all v ∈ V. (4.2)

We have to ensure two properties, the integral de�ning the functional has to
exist for all functions in V , and we need a meaningful notion of convergence
towards a solution, and thus completeness of the function-space wrt. a suitable
norm.
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Given a contains no derivatives higher than order k, these requirements
are ful�lled by the Sobolev space Hk(Ω) [17], which is the space of all square
integrable functions u ∈ L2(Ω) which possess weak derivatives ∂αu for all |α| ≤
k. The square integrability of u ensures the existence of the integral in eq. (4.1).
One can show that Hk(Ω) is closed with respect to ||u||k = (u, u)k, the norm
induced by the scalar product

(u, v)k =
∑
|α|≤k

∫
Ω

∂αu(x)∂αv(x)dx.

Thus Hk is a Hilbert space. We also de�ne the semi-norm

|u|m =

√√√√∑
|α|=k

∫
Ω

∂αu(x)∂αu(x)dx.

We have to discuss how to implement the boundary conditions. Given a
Dirichlet boundary condition u(x) = g on ∂Ω, and a function u0, which ful�lls
the boundary condition and for which a(u,u) exists, we can translate the problem
by −u0 to yield a homogeneous problem with a translated variable w = u− u0

and l1(v) = v − a(u0, v) [17]. A homogeneous Dirichlet problem is solved by
considering the subspace Hk

0 (Ω) ⊂ Hk(Ω), where Hk
0 (Ω) is the completion of

C∞0 (Ω) ∩ Hk(Ω) with respect to the norm || · ||k. An more intuitve way of
looking at this construction is that we dispose of all functions that will violate
our boundary conditions, and make sure that the resulting function space is a
Hilbert space. C∞0 (Ω) is the space of smooth functions with compact support in
Ω. In other words we choose our function space, on which we seek the solution,
such that the Dirichlet boundary conditions are enforced. In contrast Neumann
boundary conditions

∂u

∂n
= n · ∇u = g on ∂Ω

are implicitly enforced, and thus called natural boundary conditions. We make
use of Greens theorem, and amend the rhs. of the variational problem by an
integral over the boundary term g

(g, v) =
∫

∂Ω

gv.

Do not have to take care of Neumann boundary terms, therefore we do not give
any more details here, and refer for a proof to Chapter II., �3 in the book by
Braess [17] instead.

In the nonlinear case the requirement of an existing L2-norm is not su�cient
anymore. The functional J(v) can now contain �xed but arbitrary powers p of
v or its derivatives thus we need to generalize the de�nition of Hk to Lp-norms.
These Sobolev spaces are denoted W k,p, but they are not Hilbert spaces, which
renders most of the theory developed for linear problems useless in the nonlinear
case.

In our case one can show that the principal curvatures are in Lp, where p > 2
depends on the number of elements incident on a node [91]. Furthermore we can
linearize the equations of motion at the latest time of the solution. Assume the
second variation δ2H of the Canham�Helfrich Hamiltonian (cf. equation (2.6))
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is positive. Then the problem of �nding the solution of the equations of motion
at later times can be viewed as solving an elliptic problem with the state of the
membrane at the current time entering as a boundary condition [110]. Given we
started with a positive second variation, we can make use of the continuity of the
functional derivative, and infer that there is a small neighborhood around the
current shape of the membrane, on which the second variation of H is positive
as well. Of course, if the simulation is approaching an unstable point, we will
experience Zenos Paradox of Achilles and the tortoise. We are forced to take
smaller and smaller time steps to ensure the linearized problem is elliptic.

Since the second variation of H involves second derivatives of the functions
v it is acting on, we have to require v ∈ H2. Generally the construction of
�nite elements whose basis functions lie in H2 involves the prescription of not
only function values as coe�cients, but also �rst and second derivatives as well
as compatibility constraints on the element boundaries [17, 25]. A Method
which only relies on function values is bene�cial, since the coe�cients have a
direct interpretation. This makes techniques modifying and adapting the �nite
element mesh more e�cient, since a mesh with new vertex positions naturally
translates into H2 basis functions without the need to solve constraint equations
to determine derivatives. Such a method, based on subdivision surfaces, was
recently suggested by Cirak et al. [26].

So far we did not explicitly discuss the discretization of H2. in the numerical
implementation we can only use a �nite number of basis functions; thus we
operate on a subspace Sh ⊂ H2, where h is a parameter of the discretization,
such as the largest radius of any element used. Now two questions arise: The
�rst one is whether the discrete solutions converge towards the exact solution
in the limit h → 0. The second question is about an estimate of the error of a
discrete solution.

In answering the the �rst question we follow [17]. First we need to specify
the discretization of the domain Ω. We call a partition T = {T1, . . . , Tj} of Ω
admissible if the elements exactly cover the closure of the domain Ω̄ =

⋃j
i=1 Ti,

and the intersection of two elements is either one vertex of both elements, or one
edge of both elements. Furthermore we de�ne the following regularity criterion

De�nition 3. A family of triangulations Th of a domain Ω is called shape
regular, if for all h there exists a shape parameter κ > 0 such that for the radius
of the in�circle ρT of each triangle T of radius hT

ρT ≤ hT /κ

holds. This forbids triangles which have angles approaching 0, and would become
in�nitely thin.

Given a family of shape regular triangulations Th of the domain of the prob-
lem, we can now discuss the convergence of a �nite element scheme. Assume
we have polynomial basis functions of degree t − 1, with t > 2. We de�ne a
interpolation operator Ih : H2 → Sh. The error of the interpolation Ihu of a
function u can now be estimated as√∑

Ti∈T
||u− Ihu||m ≤ c(Ω, κ, t)ht−m|u|t for u ∈ H2(Ω) (4.3)



26 CHAPTER 4. THE FINITE ELEMENT METHOD

The parameter c(Ω, κ, t) > 0 can be regarded as meassuring the suitability of
a triangulation to discretize a given function space. We can relate the interpo-
lation error to the approximation error of the �nite element method with the
help of Cea's lemma [17].

Lemma 1. Let uh be the solution to the variational problem (4.2) with V-
elliptic, continuous bilinear form a

a(v, v) ≥ α||v||,m and |a(u, v)| ≤ C||u||m||v||m for all u, v ∈ V .

Then the error of the discrete solution is bounded by

||u− uh|| ≤
C

α
inf

vh∈Sh

||u− vh||m.

For an optimal interpolation operator this bound is just the error of the
interpolation. An important observation is the dependence of the constant c in
(4.3) on the shape parameter κ. Assume κ is given for a reference triangle Tr.
Then we can �nd a bound cI on κ for a�ne images TI of Tr. This bound can
be stated in term of the ratio of the circum radii rI,r and in�radii ρI,r of TI and
Tr

cI ≤
rrrI
ρrρI

.

Now it becomes apparent, why we required the triangulation to be shape regular,
the r.h.s. of (4.2) is large for very thin triangles. This is not only a weakness
of our estimate, but also a feature in actual calculations [17]. Thus it makes
sense to adapt the geometry of a mesh to avoid thin triangles [27]. A similar
idea is the adaptation of the mesh to the shape of the solution. Regions of
the solution displaying high gradients should be covered by smaller elements
to adequately resolve the gradient in the solution [60]. Based on this notion
many algorithms for the adaptation of the mesh geometry do not use the mesh
geometry itself to determine how to change the discretization, but use local error
estimates of the discretized solution. The gradient of these local error estimates
with respect to the geometry of the mesh is used to adapt the mesh by moving
along a �ow de�ned by that gradient [60, 11]. We have to adapt our mesh, since
simulations performed without iteratively improving the mesh quality, typically
leads to very thin triangles and numerical instabilities (cf. Section 7.3). Cristini
et al. [27] discussed the use of an approach solely based on the mesh geometry,
which is independent of the di�erential equations describing the dynamics the
the model under consideration. The basic idea is to treat the mesh as a network
of springs and let the restoring forces drive the mesh into a better shape. We
de�ne a mesh energy as

E =
1
2

∑
e∈edges

(l(e)− l0)
2
, (4.4)

Where l0 is resting length of the springs, while their actual length is given by
l(e). Minimizing the energy (4.4) obviously minimizes the root mean square
deviation from the resting length l0. In order to preserve the shape of the mesh
we use an iterative scheme and project the resulting force on each vertex v to
the tangent plane at the vertex

ẋ = P

order(v)∑
i=1

(l(ei)− l0)~ei, (4.5)
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~ei is a unit vector pointing away form the vertex in direction of the edge ei; the
projection to the tangent plane is given by P = 1 − ~n~nT where ~n, is the unit
normal vector of the tangent plane. We now solve the equations of motion of the
vertices (4.5) and take �ve steps to relax the mesh after each time integration
step. Since long wave perturbations of the node density relax slowly Cristini
suggests to circumvent this by changing the mesh topology. Given that in our
case the approximation error depends on the order of the vertices (cf. Section
5.2) we want to avoid those changes.

In an implementation of a �nite element scheme we will not always be able to
ensure that the basis functions used are in Hk(Ω). Consider numerical quadra-
ture schemes, which will generally not be exact. The map from a reference
triangle to a curvilinear element will have a Jacobian that is not constant, thus
the function we are integrating is not a polynomial. But we can still ensure
convergence. To achive that, the order of a complete polynomial, to which the
quadrature is exact, has to be high enough, furthermore the map does not yield
elements with angles of 0 or π and the deviation of the edges from straight lines
is of order O(h2) or less [100]. The last condition is ful�lled by our choice of
subdivision surfaces as �nite elements, since the subdivision process is linear in
the positions of vertices (cf. Section 5.2). The occurrence of degenerate ele-
ments with angles 0 or π can be avoided by moving vertices within the tangent
plane and was discussed in the previous paragraph. We saw that we only need
to ensure convergence in the semi norm | · |m. This will hold if the di�erence
of the exact bilinear form and its numerical approximation is of order h [100].
Thus, given polynomials of order t − 1, we need a quadrature scheme which is
accurate to order t−m.
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Chapter 5

Subdivision Surfaces and

FEM

This chapter serves as an introduction into subdivision surfaces, �rst we will
discuss a one dimensional analog and motivate the use of subdivision surfaces.
Then we will discuss loop subdivision surfaces and the connection between the
vertices of a triangular mesh and the basis functions associated with a subdivi-
sion surface. We will use these functions to construct basis functions for a �nite
element method.

5.1 The Basics

The underlying principle of all subdivision schemes is an algorithm for repeat-
edly subdividing a piecewise linear curve (surface) which will converge to a
smooth1 limit surface. The following �gures illustrate this notion. A smooth

Figure 5.1: Subdividing a Bezier curve [42]

limit surface alone does not make subdivision schemes a worthy �eld of study,
but it has been shown that these schemes have properties which make them
valuable tools in Computer Aided Geometric Design (CAGD). The most note-
worthy property is the possibility to de�ne subdivision schemes on meshes of
almost arbitrary topology with the only restriction, that the mesh gives rise to a
surface which is a manifold. Other methods to de�ne smooth surfaces in CAGD
su�er from the additional restriction to regular meshes, in which every vertex
is restricted to have a certain numbers of neighbors. In the common cases this
leads to the restriction to the Euler characteristic χ = 0 for closed orientable

1The limit curve (surface) is generally not C∞ but su�ciently smooth for the application
in question.

29
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Figure 5.2: Subdividing a surface using the scheme of Catmull and Clark[23]

surfaces. The ability to de�ne a subdivision scheme on arbitrary meshes fur-
thermore allows for localized changes in the connectivity of the mesh in order
to add detail to a surface. An other important property of common subdivision
schemes is that they allow for a local de�nition of the rules for the generation of
re�ned surfaces. This results in e�cient calculation of surface attributes. Fur-
thermore, the rules are invariant under a�ne transformations. In recent years
much attention was paid to the wavelet properties of subdivision surfaces. A
wavelet is an L2 function which can be decomposed into translated and dilated
copies of itself [107]. This allows for an e�cient decomposition of a subdivi-
sion surface in terms of surfaces with increasingly �ne detail and thus spurred
the development of a host of multiresolution algorithms for subdivision surfaces
[37, 114, 13].

5.1.1 Splines

As we have seen in Chapter 4, where we introduced the FEM, the smoothness
properties at the element boundaries are not only crucial for the convergence of
the solution but also for an acceptably small discretization error. Maintaining
the required C2 continuity on the element boundaries poses a di�cult problem
in schemes in which polynomial functions of the elements are de�ned as sums
of monomial basis functions. In the following we will discuss this di�culty for
the case of curves and construct a basis which enforces arbitrary smoothness at
element boundaries.

For now we will leave the notion of subdivision schemes and focus on curves
approximating or interpolating a set of control-points. Consider a curve given
by C(t) =

∑
i PiB(t − i) with control�points Pi ∈ Rn, i = 0 . . .m > 0 and a

choice of the function B : R → R in such a way that the curve has arbitrary
but �xed smoothness and control-points have a local in�uence. Note that we
do not specify any tangents or higher derivatives to de�ne the curve. To ensure
smoothness the function B has to be continuously di�erentiable up the required
order. The local in�uence of the control-points requires a compact support of
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B. For practical reasons we want the curve to approximate the control-points,
so we require 0 ∈ supp(B) which ensures the control-point closest to a segment
determines the shape of that segment. This is of course just a matter of notation.
Changing the parametrization of the curve can be undone by changing the
index set of the control-points, which we will use in the next paragraph. A last
property we require is that the B(t− i) form a partition of unity, to insure a�ne
invariance of the curve. Consider a translation b of the curve C(t) → C(t) + b.
Thus we have

C(t) + b = (
∑

i

PiB(t− i)) + b.

But with
∑

iB(t− i) = 1 we have

C(t) + b = (
∑

i

PiB(t− i)) + b
∑

i

B(t− i)

and thus
C(t) + b =

∑
i

(Pi + b)B(t− i).

Given these requirements we will now construct the spline basis functions
by repeated convolution and use some properties of convolutions to reintroduce
to notion of subdivision schemes. Let us start with a piecewise constant curve,
which is obviously given by a piecewise constant basis function

B0(t) =

{
1 if 0 ≤ t < 1
0 otherwise.

Convoluting B0 with itself de�nes a new basis function

B1(t) = (B0 ⊗B0)(t) =
∫
B0(s)B0(t− s)ds =


t if 0 ≤ t < 1
2− t if 1 ≤ t < 2
0 otherwise.

This is (up to a reparametrization of the curve) equivalent to the piecewise
linear basis function we used at the beginning of this section. We now de�ne
splines of degree l by

Bl(t) = (B0 ⊗Bl−1)(t) (5.1)

The basis function Bl(t) is Cl−1 continuous [114].

5.1.2 Re�nement

An important property of the spline basis functions is that they obey a re-
�nement equation i.e. a function Bl(t) can be written as a sum of translated
and dilated copies of itself. This draws the connection to subdivision schemes.
Figure 5.3 illustrates this for the case B1(t).

To derive a general re�nement equation for Bl(t) we note that we can write

B0(t) = B0(2t) +B0(2t− 1) (5.2)

recalling the de�nition of Bl (5.1) we substitute (5.2)

Bl(t) = (B0(2t) +B0(2t− 1))⊗Bl−1(t) =
l⊗

i=0

(B0(2t) +B0(2t− 1)).
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1
2

1

B1(t)

t
1 2

Figure 5.3: The re�nement equation for B1(t), which is illustrated by the dashed
line. Three copies of B1(t), as shown by the dotted lines, add up to B1(t) =
1/2B1(2t) +B1(2t− 1) + 1/2B1(2t− 2).

Making use of the linearity, shift and scaling properties of convolutions we arrive
at the re�nement equation

Bl(t) =
1
2l

l+1∑
i=0

(
l + 1
i

)
Bl(2t− i). (5.3)

Since we require exactly one basis function for every control point, the re�ne-
ment equation gives rise to new control-points on the level of spline curves.
Recall that a spline curve of degree l is de�ned as

C(t) =
∑

i

PiB
i
l (t) with Bi

l (t) = Bl(t− i)

Now consider Pi and Bi
l (t) as components of column or row vectors P and Bl(t),

respectively. The curve C(t) is now denoted as Bl(t)P. Applying the re�nement
equation (5.3) to

Bl(t) = [. . . Bl(t+ 1) Bl(t) Bl(t− 1) . . . ]

yields a vector

Bl(2t) = [. . . Bl(2t+ 2) Bl(2t+ 1) Bl(2t) Bl(2t− 1) Bl(2t− 2) . . . ] .

We can interpret the application of the re�nement equation as the multiplication
with a subdivision matrix S whose columns are given by the weights of the
re�nement equation

B(t) = B(2t)S with S2i+k,i =
1
2l

(
l + 1
k

)
.

Thus we are able to rewrite the curve C(t) as

C(t) = B(2t)SP, (5.4)

which is the same curve as before, but we replaced the basis functions with a
new basis of dilated, twice as dense functions. Instead of considering the new
basis as a decomposition of the old one, we can turn this argument around, and
just consider the new basis, forgetting how we found it. Now looking at the
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action of the subdivision matrix on the control-points we realize that we end up
with twice the number of control-points. This is our subdivision scheme. All
what remains to be done now is to actually show that a linear interpolation of
the control�points generated by repeated application of the subdivision matrix
converges to the curve C, which can be found in [114].

5.2 Loop Subdivision Surfaces

Let's turn back to subdivision surfaces. We will focus on the scheme developed
by Loop [66]. This scheme subdivides triangles by quadrisection (see Fig. 5.4).
Each subdivision step assigns new positions to existing vertices by calculating a
weighted mean of it's position and the average position of it's neighbors. Edges
are subdivided by generating new vertices based on the positions of the vertices
of the two triangles sharing the edge. The weights of the vertices entering the
calculation of the new vertex positions are given in Figure 5.4. The choice of
the weights β(N) for the new positions of existing vertices with N neighbors is
constrained by the requirements of convergence of the subdivision surface to a
limit surface with well de�ned normals, see [66] for details. Loop's choice of

β(N) =
5
8
−
(

3
8

+
1
4

cos
2π
N

)2

not only ensures a limit surface with well de�ned normals, but well de�ned
curvatures on almost every point of the limit surface [66]. Schröder and Reif
[91] proved the principal curvatures to be in Lp where p > 2 depends on the
order (number of neighbors) of the vertex. For increasing order of a vertex the
limit surface shows an increasing number of radial ripples and an increasingly
sharp crease over the triangles incident on the vertex [114]. We want to avoid
these artifacts and limit the order of vertices to �ve and six.

β

β

1−Nβ

1
8

3
8

3
8

1
8

Figure 5.4: Subdivision stencil. Left & middle: weights for the calculation of
new vertex positions. Right: illustration of the quadrisection of two triangles

The splitting of edges ensures the new vertices will have six neighbors: two
vertices given by the edge which was subdivided, and two in each of the trian-
gles being subdivided, stemming from connecting the new vertices (cf. Figure
5.4(Right)). Only vertices that are irregular will give rise to irregular vertices
in the subdivided mesh.

De�nition 4. A vertex is regular, i� it has six neighbors, otherwise it is irregu-
lar. A triangle is regular, i� it has only regular vertices,otherwise it is irregular.
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Let us stress the importance of Loop subdivision only adding regular vertices.
For parts of meshes consisting only of regular triangles, a polynomial description
of the limit surface can be given. Which allows for the e�cient evaluation of
the limit surfaces.

Figure 5.5: Repeated subdivision of an icosahedron. The irregular triangles are
shown in red.

On regular triangles polynomial expressions for the basis functions are known
as the three directional box spline [42, 114, 66], but for triangles with at least
one irregular vertex there is no closed expression for all points of the triangle.
We evaluate irregular triangles by repeated subdivision. The subdivision rules
generate no new irregular triangles, after one subdivision any triangle has either
one or zero irregular vertices. A subdivision will always split a triangle with k
irregular vertices into k triangles with one irregular vertex and 4 − k triangles
with regular vertices (cf. Figure 5.5). Therefore we do not have to treat triangles
with more than one irregular vertex in a special manner.Hence we will follow
[96], and only discus the case of one irregular vertex per triangle.

Subdividing an irregular triangle will give rise to four new triangles, three
of which will be regular (cf. Figure 5.6). Thus each subdivision step will allow
to evaluate three quarters of the domain for which no closed expression can be
found. The part of the domain which cannot be evaluated is the new triangle
containing the irregular vertex. Applying the subdivision rules repeatedly will
thus allow to evaluate points arbitrarily close to the irregular vertex.

5.2.1 Evaluation

Loop subdivision surfaces in the neighborhood of regular vertices are equivalent
to [42, 114, 66] tridirectional box splines. The box spline over a triangle is
determined by the twelve vertices in the one�ring around it.

De�nition 5. An one-ring around a triangle t2 is the union of t and all triangles
sharing at least one vertex with t. A n-ring around t is the union the one-ring
of all triangles in the (n-1)-ring around t (cf. Figure 5.9 and 5.10).

A one�neighborhood of a vertex v is the set of all triangles that contain the
vertex v. An n-neighborhood of a vertex v is the union of all one�neighborhoods
of all vertices in the (n− 1)�neighborhood of the vertex v.

2From now on t can also refer to a triangle, the meaning should be obvious from the context
in which the symbol occurs.
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Figure 5.6: Repeated subdivision of an irregular triangle, the irregular vertex is
at the origin of the parameterization.

The basis functions on a triangle are given by Stam [96] in terms of barycen-
tric coordinates, since the FEM solver will make use of the canonical coordinates
v, w in R2 restricted to (v > 0) ∧ (w > 0) ∧ (v + w ≤ 1) we rewrite them in
canonical coordinates (see Appendix A)

We will now formalize the repeated subdivision procedure as described by
Stam [96]. Given a vector P of vertices in the one�ring of an irregular triangle,
we can generate a new vector P ′ as P ′ = SP with S being a (N + 6)× (N + 6)
subdivision matrix of the loop scheme, where N is the order of the irregular
vertex. The subdivision matrix is chosen such that the re�nement is centered
around the irregular vertex. Thus repeated multiplication of the resulting vector
P ′ will generate new control-points closer to the irregular vertex. We repeat the
multiplication until the point, at which we want to evaluate the basis function,
is in a regular triangle. The last subdivision step has to be modi�ed. Since S
only generates vertices centered around the irregular vertex, but the evaluation
of points in the newly created regular triangles requires six additional control-
points which are not generated by S. Thus the �nal subdivision is carried out by
multiplying with an amended (N +6)× (N +12) matrix S′ (see Fig. 5.7 ). The
matrices S and S′ are constructed by applying the subdivision stencil. Each
row contains one stencil. The columns in which the stencil appears depend on
the ordering of vertices in P , whereas the rows of S and S′ are sorted such that
the local ordering scheme of vertices around the irregular vertex is conserved in
the subdivision step.

After multiplication with S′, the resulting vector P ′′ contains (N + 12) ver-
tices, only (N + 6) of which are needed to evaluate the box spline. The correct
subset of vertices is chosen by mapping the indices of the (N + 12) vertices to
the 12 vertices in the one�ring around a regular triangle (cf. Fig. 5.9). Thus
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Figure 5.7: Numbering of the vertices generated by applying the subdivision
matrix to a triangle with one vertex of order �ve. The coarser Triangles are
indicated by the dotted lines. Vertices marked with a red dot are only generated
by the amended subdivision matrix. Triangles shaded grey are the parts of the
coarse triangle which can be evaluated (cf. Fig. 5.6).
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Figure 5.8: Numbering of the regular sub triangles, assuming the numbering of
the vertices as in Fig. 5.7

the vertices needed to evaluate a point (v, w) over the regular sub-triangle l (cf.
Fig. 5.8) with (1/2)n < v + w < (1/2)n−1 are given by

Pn,l
eval = ClS

′SnP.

The matrix Cl, picking the proper vertices is given by

Clij =

{
1 if index j ∈ P ′′ is mapped to i ∈ Peval

0 otherwise

In contrast to Stam [96] we choose to store pre-calculated matrices ClS
′Sn

instead of diagonalizing S in order to speed up numerical calculations of the
powers of S, which saves 12 �oating point multiplications at each evaluation of
a point. Since the points at which triangles are evaluated and the order of the
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Figure 5.9: Numbering of the vertices (black) and association with basis func-
tions in the one ring around a regular triangle (shaded grey). The white numbers
indicate the enumeration of the triangles vertices.
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Figure 5.10: Numbering of the vertices and association with basis functions in
the one�ring around an irregular triangle with one vertex of order �ve. Note that
the numbering scheme di�ers signi�cantly from the scheme for regular triangles.
This scheme was chosen for consistency with the existing literature.

irregular vertex are a priori known, the number of matrices which need to be
stored is small.

The entries in Pn,l
eval are the weights of the basis�functions ~b(v, w) of the box

spline, thus a surface patch s(v, w) can be written as

s(v, w) = Pn,l
eval

T~b(v′, w′)

As discussed earlier, each subdivision step amounts to a reparametrization of
the surface patch. In order to evaluate irregular patches in the same coordinates
as regular patches, we have to de�ne the correct transformation tn,l from the
unit patch Ω to the subdivided patch Ωn,l

tn,0(v, w) = (2nv′ − 1, 2nw′)

tn,1(v, w) = (1− 2nv′, 1− 2nw′)

tn,2(v, w) = (2nv′, 2nw′ − 1)



38 CHAPTER 5. SUBDIVISION SURFACES AND FEM

The surface patch is now given as

s(v, w) = Pn,l
eval

T~b(tn,l(v, w)).

The �rst and second derivatives are

s(v, w),· = (−1)l2nPn,l
eval

T~b,· (tn,l(v, w))

s(v, w),·· = 4nPn,l
eval

T~b,·· (tn,l(v, w)).

5.2.2 Nodal Basis Functions

Analogous to the one dimensional example, elements share degrees of freedom
(DOF). In the case of regular subdivision surfaces each DOF is shared not only
by the adjacent 6 elements, but by 24 elements in a two�neighborhood around
the DOF. To construct the nodal basis functions we sum basis functions over
all elements3 which have the vertex associated with the DOF in their one-ring
(cf. Figure 5.9 and 5.10). Each term in this sum is the basis function � over
the element we are looking at � which is associated with the DOF at the vertex.
For subdivision surfaces with irregular vertices the procedure for this change of
reference is essentially the same. Only now we don't have an analytic expression
for the basis functions over irregular elements.

Figure 5.11: A nodal basis function on a regular mesh.
This is the tri�directional box spline assembled from basis functions over indi-
vidual elements. The numbers of the triangles are the numbers of the central
vertex with respect to the local numbering of vertices in the neighborhood of
each triangle, cf. Figure 5.9.

3An element is the domain, on which we de�ne our basis functions. Here an element is a
triangle.
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5.3 Assembling the FEM-System using Subdivi-

sion Surfaces

This section will discuss how to apply the FEM discretization using subdivision
surfaces to the equation of motion of the lipid bilayer (2.13). Analogous to the
example in section 4.1, carrying out all spatial integrations will lead to a system
of ordinary di�erential equations

Mu, t = f(u). (5.5)

Note that every vertex is associated with three degrees of freedom, one for each
spatial coordinate.

In order to carry out the integrations to assemble the FEM-system using
subdivision surfaces, we need a map M from elements e and global indices i of
the nodal basis functions to the local index l of the vertices. Given the local
vertex indices, we know which basis functions of an element contribute to the
integrand:

M(e, i) 7→ l ∈ {1, . . . , n},

where n = 11 if e is irregular, otherwise n = 12. For a regular mesh the
construction of Mcan be illustrated with the help of Fig. 5.11. The vertex in
the center has the global index i, �nding the element e we choose the local index
l such that we reproduce the box spline around e.

There is no analytic expression for the basis functions on irregular triangles,
thus we need to evaluate the integrals arising from the FEM numerically. The
numeric integration is called quadrature � sometimes cubature in the multivari-
ate case � in the FEM literature. We will use a Gaussian quadrature rule to
integrate a function f(α, β, γ) over a triangle t with barycentric coordinates and
area A ∫

A

f(α, β, γ)dA = A

n∑
i=1

wif(αi, βi, γi) (5.6)

The weights wi and quadrature points (αi, βi, γi) are given by [36]. Assuming
a complete polynomial function f of degree p and

n =
(p+ 1)(p+ 2)

6

quadrature points, the numerical integration is exact as indicated in (5.6)4.
Since we are using isoparametic elements, we always map a reference triangle to
the actual element. In our case the reference triangle is given by t = {(u,w) ∈
R‖(u > 0) ∧ (v > 0) ∧ (u + v ≤ 1)} thus we can express f and the quadrature
points in canonical coordinates (cf. B).

Integrating the l.h.s. of the equation of motion (2.13) ~r,t formally yields the
same result as in the one dimensional example. Mu,t with 3× 3 block matrices:

Mij = 13

∫
Ω

φiφj .

4Of course, there will be round o� errors on real world computer architectures such as
implementations of IEEE 754-1985 [1]
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In order to evaluate this integral for the nodal basis function φi we only need
to integrate over elements e in the intersection of the two�rings �i around the
vertices i and j. Thus

Mij =
∑

e∈(�i∩�j)

∫
e

ψM(e,i)ψM(e,j).

The integration is carried out by numerically integrating over the reference
triangle in the canonical coordinates discussed in equation (5.6)

Mij =
1
2

∑
e∈(�i∩�j)

n∑
k=1

wkψM(e,i)(αk, βk)ψM(e,j)(αk, βk)dA(αk, βk). (5.7)

We can evaluate the r.h.s. of the equation of motion (2.13) in a similar manner.
We integrate the test function ψ over each two�ring �i around vertex i to
evaluate the components f(u)i. Note that the Laplacian of ψ is expressed in
terms of partial derivatives of nodal basis functions. Each component f(u)i is
a 3 vector of the three components of the force at the vertex i.

f(u)i =
1
2
~ni

∑
e∈�i

n∑
k=1

wk

(
ψM(e,i)A+ κH(αk, βk)B

)
(αk, βk)dA(αk, βk) (5.8)

with

A = κ(2(H(αk, βk)− C0)(H(αk, βk)2 −K(αk, βk)− C0)

− κ′π

2Ad
(∆A−∆A0)K(αk, βk)

− 4a (A−A0)H(αk, βk)
+ 2v (V − V0)

and

B = glm
,l (αk, βk)(det g(αk, βk))

1
2ψM(e,i),m

+ glm(αk, βk)(det g(αk, βk))
1
2
,lψM(e,i),m

+ glm(αk, βk)ψM(e,i),lm(αk, βk)(det g(αk, βk))
1
2

The summation over the two neighborhood of each vertex is done by sum-
ming over all elements which have the vertex in their one neighborhood. This
leads to the same result since the union of all elements which have a vertex in
their one neighborhood, is exactly the two neighborhood of the vertex. The
reason for this change of reference is that we need to keep track of ordered one
neighborhoods of elements in order to evaluate the limit surface over the ele-
ment, which is a sum over the basis functions weighted with the positions of
the associated vertices. The ordering of the vertices encodes the association of
vertices and basis functions (cf. Chapter 5.2 and Figures 5.11, 5.9 and 5.10).
Figure 5.12 illustrates the integration process.
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Loop  ov er  a ll ve rt ice s  

as in d ica ted  b y th e  d o t s .

Inte g ra te  ove r e a ch  

tria n g le  (ye llow),

wh ich  h a s  th e  

ver te x (re d  d o t ) in  it ’s

one  n e ig h b orh ood  (b lu e ). 

On  a  re g u la r g rid  2 4  t ria n g le s

co n t rib u te  to  th e  in te g ra l o f th e  s t re s s e s

Figure 5.12: Illustration of the integration process.
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Chapter 6

Timestepping

In this chapter we will discuss di�erent strategies for the integration of systems
of ordinary di�erential equations. There is not a single algorithm which performs
strictly better than all others [49], and not only the di�erential equations, but
also the initial conditions in�uence the performance to a degree which can render
an algorithm useless for the problem at hand.

In most cases the ODEs are not solved directly over the whole domain of
interest. Instead an approximate solution is found by a stepwise extrapolation
of the known part of the solution starting from the initial condition. Besides the
obvious limit for the step size, which is given by the required accuracy of the so-
lution, there is a second � in many cases much smaller � limit stemming from the
fact that all but the �rst values of the dependent variables are only approximate.
Discretization errors can grow without bound, the solution method is deemed
unstable. Based on [49] we introduce a simple example of this phenomenon.
Consider the system of ODEs

y′(x) = f(x, y) (6.1)

which is solved by φ(x). We can expand f(x, y) around φ and rewrite (6.1) as

y′(x) = f(x, φ(x)) +
∂f(x, y)
∂y

∣∣∣∣
φ(x)

(y(x)− φ(x)) + . . .

now set p(x) = y(x)−φ(x). Recalling φ(x) is a solution of (6.1) we can express
perturbations p(x) up to �rst order as

p′(x) =
∂f(x, y)
∂y

∣∣∣∣
φ(x)

p(x)

= J(x)p(x).

Now we apply the explicit Euler's method and approximate the derivative by
�nite di�erences. Furthermore we assume f(x, y) to be linear, i.e. J(x) to be
constant

pm+1 − pm

h
= Jpm. (6.2)

Thus the perturbation at timestep m+ 1 can be expressed as

pm+1 = R(hJ)pm

43
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with the stability function
R(z) = 1 + z.

in order to study the behavior of a perturbation for m→∞ we need to evaluate
powers of R(z). For z ∈ C it is obvious that R(z)m remains bounded for
|R(z)| ≤ 1 or if z lies in a circle with unit radius around (−1, 0i). To apply
this to the matrix valued argument J , we assume J to be diagonizable with
eigenvalues λi and eigenvectors vi. Expressing p0 in terms of the eigenvectors
as

p0 =
∑

i

aivi

we arrive at
pm+1 =

∑
i

R(hλi)maivi.

Now we can see the connection between the eigenvalues of the Jacobian of the
ODE and the step size h necessary for a bounded error (stability)

|hλi + 1| ≤ 1

Let's turn back to the discretization of the derivative. Replacing the rhs. of
(6.2) with Jpm+1, we employ the implicit Euler method. Now we have to solve
a linear equation to �nd the next step

pm = (1− hJ)pm+1. (6.3)

Given the formal solution pm+1 = (1 − hJ)−1pm we can follow the previous
analysis. The stability criterion now reads

|(1− hλi)−1| ≤ 1

Thus the stability domain is the complex plane except a unit circle around
(1, 0i). Therefore the problem is stable for a much larger range of products of
eigenvalues and step sizes. This improvement of the stability comes at the price
of solving the linear equation (6.3).

Here we see that the step size needed to obtain a stable method depend
on the eigenvalues of the Jacobian. If the dynamics of a linear system span
multiple scales, the ratio of the largest and the smallest eigenvalue is large.
High frequency components, i.e the modes of the largest eigenvalues, will often
be dampened quickly and thus will not a�ect the accuracy of the solution, even
if the step size is too small to sample highest frequency modes. But if an explicit
method such as the explicit Euler method is used, those modes still determine
the step size due to the stability requirement. Such systems are called sti�.

For nonlinear systems the notion of sti�ness can not be reduced to the ratio
of eigenvalues of a Jacobian. Several de�nitions of sti�ness have been developed
[3, 28, 49]. The general notion is for sti� problems implicit solvers tend to have
better stability properties. Or in other words, the step size of an explicit solver
would be limited by stability and not by accuracy.

Our case lends itself to the use of implicit schemes. First of all the FEM
discretization of the PDE results in an implicit ODE with a solution dependent
matrix on the lhs. Thus an explicit scheme would have to perform exceedingly
better than an implicit method in order to justify the numerical cost and di�-
culties involved in the repeated inversion of the matrix on the lhs. Furthermore
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we anticipate a sti� system because of the penalty terms enforcing the global
constrains.

Consider a membrane which is a slightly perturbed sphere and set the spon-
taneous curvature C0 close to the inverse of the sphere's radius. The stresses
stemming from the deformation of the membrane out of it's resting shape are
vanishingly small. In contrast, any deformation will change the area and vol-
ume, thus the stresses due to the constraints can be large, even though only
slight deformations will occur. In this situation a given accuracy would allow
for a large step size because the membrane does not signi�cantly alter its shape,
but the large stresses will introduce faster timescales and the step size will be
governed by stability requirements.

Another classi�cation of solution methods of ODEs is the distinction be-
tween single� and multi�step methods. Single�step methods only use one step
to calculate a new point of the solution, whereas multi�step methods use mul-
tiple known steps to advance the solution. In many cases multi�step methods
like BDF [49] perform better than single�step methods, especially for stringent
tolerances [68]. On the other hand, the multi�step character can be a disad-
vantage if the system of ODEs stems from a discretization of some PDE. In
this case adapting the discretization to the changing solution can increase the
accuracy or decrease the number of DOF. But previous steps of the solution
become unusable to the multi�step algorithm, which enforces smaller time steps
and abates bene�ts from an adaptive discretization [60].

In our case the term f(x, y) is nonlinear, thus in principle each new step
is the solution of a system of nonlinear equations. Numerical algorithms solv-
ing nonlinear equations generally require iterative approaches. Furthermore the
convergence of the iterative process can not be guaranteed [80]. Rosenbrock
Methods avoid this di�culty by linearizing the nonlinear map around the cur-
rent step of the solution [49]. Thereby, for each stage of the update scheme,
one Newton iteration of the solution of the nonlinear equation is included into
the integration scheme of the ODE. Because of these advantages we will use
Rosenbrock methods in our simulation.

6.1 Basic Concepts

In the previous section we introduced the notion of stability to motivate the
use of Rosenbrock schemes, but we made a number of simplifying assumptions,
which are not valid for the problem at hand. Now we will have a more thorough
look at the properties of solution methods for di�erential equations following
[48, 49].

We introduced the stability function R(z) to asses the long term behavior
of perturbations of the solution of an ODE. We formally de�ne it as follows:

De�nition 6. The stability function R(z) of an integration method for ODEs
is the result of one step of the numerical solution of the Dahlquist test equation
y′ = λy with the initial condition y0 = 1 and z = hλ. The set

S = z ∈ C; |R(z)| ≤ 1

is the stability domain of the method [49].
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Since the stability domain of the exact solution of the Dahlquist test equation
coincides with the negative half plane C− = {s ∈ C; Re(s) ≤ 0}, methods which
have the negative half plane as their stability domain, and thus preserve the
stability properties of the exact solution seem to be optimal.

If the stability domain of a method was a subset of the negative half plane,
modes that decay in the exact solution would grow exponentially. Acknowledg-
ing this as unwanted we de�ne

De�nition 7. A method is A-stable i� the negative half plane is a subset of its
stability domain S ⊃ C−.

Yet in certain situations an exact coincidence of the stability domain with
C− is not desirable. For sti� problems the product of the integration step h
and λ has a large absolute value. Thus we have to consider the behavior for
R(z) in the limit z → ∞. We have limz=iy,y→∞R(z) = limz→−∞R(z) and if
S = C− holds, |R(z)| = 1 for Re(z) = 0. Thus for large hλ the stability function
R(z) is close to one, high frequency transient perturbations are dampened very
slowly. In contrast methods, which dampen transient perturbations quickly can
be desirable thus we de�ne

De�nition 8. A method is called L-stable, if it is A-stable and if

lim
z→∞

R(z) = 0

On the other hand, if the stability domain extends into the positive half plane
we experience a damping of modes which grow in the exact solution. We end
our discussion of the stability observing that there can not be a single method
that performs well in all situations.

Leaving the long term behavior of perturbations, we turn our attention to
the local behavior of the error. We introduce the concept of the order of a
method:

De�nition 9. A method is of order p, if for an approximate solution y1 at
x0 + h

‖y(x0 + h)− y1‖ < Khp+1

for some K>0 holds.

To derive conditions for the order of a method we expand the exact solution
and the expression for the next step in a Taylor series around x0

y(x0 + h) = y(x0) + hy′(x0) + h2y′′(x0) + . . . .

Every occurrence of y′ is replaced by f

y(x0 + h) = y(x0) + hf(y0) + h2f,y(y0)f(y0) + . . . .

As an example, compare this to the expansion of y1 assuming an explicit Euler
scheme

y1 = y0 + hf(y0).

Since the explicit Euler scheme uses exactly the �rst term of a Taylor expansion,
we note that the explicit Euler scheme is of �rst order. Using the same strategy
of comparing the terms in the Taylor expansions, we can determine the order
of other schemes.
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6.2 Rosenbrock Methods

In this section we will lay out the construction and implementation of Rosen-
brock Methods following [49]. We want to solve a di�erential equation y′(x) =
f(y). A diagonally implicit Runge-Kutta method [49] with s stages would cal-
culate the next y1 step from the current step y0 by

ki = hf(y0 +
i−1∑
j=1

aijkj + aiiki)

y1 = y0 +
s∑

i=1

biki

(6.4)

Thus the next step is a weighted sum over estimates ki of the derivative of
y(x) at points found using the previous estimates. Since each estimate is given
implicitly, each of the s stages of the step requires the computationally expensive
solution of a nonlinear equation. Linearizing (6.4) around y0 + ki−1 results in

ki = hf(gi) + hf ′(gi)aiiki

gi = y0 +
i−1∑
j=1

aijkj .

Now each stage only requires the solution of a linear equation and the evaluation
of the Jacobian. Even more computations could be saved if the Jacobian would
only be evaluated once. Also, if the matrix de�ning the linear equation would
be the same for all stages only one LU-decomposition would be needed per
step. Pushing even further in this direction leads us to W-Methods, in which
approximations to the Jacobian are used. In particular reusing the Jacobian
from previous steps saves further LU-decompositions [49]:

De�nition 10. Given a system of ordinary di�erential equations y′(x) = f(y),
an s-stage Rosenbrock-Method is given by:

ki = hf

y0 +
i−1∑
j=1

aijkj

+ hJ

i∑
j=1

γijkj (6.5)

y1 = y0 +
s∑

j=1

bjkj (6.6)

with y0 = y(x0), y1 ≈ y(x0 + h), γ11 = · · · = γii = γ 6= 0 and J = f ′(y0). The
coe�cients aij,γ,γij and bi determine the method.

The stability function of a Rosenbrock method is

R(z) = 1 + zbT (1− zB)−1(1, . . . , 1)T , (6.7)

with bT = (b1, . . . , bs)T and Bij = αij + γij . For a suitable choice of coe�cients
a Rosenbrock method can be A or L�stable.

Coe�cients for several di�erent methods have been published [61, 85, 49,
68, 88, 86, 32] and benchmarked for certain problems [90, 85, 49].
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This de�nition is still insu�cient for the problem at hand. We seek a method
to solve

M(y)y′(x) = f(y). (6.8)

If M(y) was constant we could formally multiply with M−1 and arrive at a
method which does not require matrix inversions [49]. Instead we introduce a
new variable z = y′ and rewrite (6.8)

y′ = z (6.9)

0 = f(y)−M(y)z, (6.10)

in this new system the matrix M̃ = diag(1,0) is constant, but singular [68].
Such systems are known as di�erential algebraic systems since eqn. (6.10) is
formally an algebraic equation.

6.2.1 Di�erential Algebraic Equations

Di�erential algebraic equations (DAE) are di�erential equations with an alge-
braic constraint. They can also be considered as sti� di�erential equations in
the limit of in�nite sti�ness [49]. Consider the system of equations

y′(x) = f(y, z) (6.11)

εz′(x) = g(y, z) (6.12)

in the limit ε → 0 eq. 6.12 turns into an algebraic equation. Let us now apply
a Rosenbrock Method to (6.12):(

ki

εli

)
= h

(
f(vi, wi)
g(vi, wi)

)
+ hJ

i∑
j=1

γij

(
kj

lj

)
. (6.13)

With (
vi

wi

)
=
(
y0
z0

)
+

i−1∑
j=1

aij

(
kj

lj

)
, J =

(
f,y f,z
g,y g,z

)∣∣∣∣
y0,z0

(6.14)

we have(
y1
z1

)
=
(
y0
z0

)
+

s∑
j=1

bj

(
kj

lj

)
. (6.15)

In the limit ε→∞ we have to solve a linear equation with matrix(
1 0
0 0

)
− hγ

(
f,y f,z
g,y g,z

)
.

Assuming an invertible g,z the inverse exists for small h and the Rosenbrock
method can be applied. The requirement of an invertible g,z can also be inter-
preted as a regularity requirement on the function 0 = g(y, z), which by virtue of
the implicit function theorem leads to the di�erential equation y′ = f(y,G(y)),
with a local solution of the algebraic equation z = G(y). The importance of



6.3. IMPLEMENTATION 49

the regularity of g(y, z) gives rise to the de�nition of the index of a DAE [49].
Several de�nitions of the index can be found in the literature [62, 44, 49], we will
de�ne the index of a DAE F (y(t), y′(t)) = 0 as the number of di�erentiations
with respect to t, needed to yield an ODE. By construction the index of (6.10)
is 1 [68]. Most algorithms fail on problems with higher index.

A Rosenbrock method de�nes the next solution step as a function of the
previous step and the step size h . We can calculate a Taylor expansion in h of
the Method around the previous stepx0 to derive conditions for the desired order.
These conditions will be algebraic equations in the coe�cients of the method.
This will not be demonstrated here instead we refer to [48, 49, 88, 61, 85].
Since we are operating in the limit of in�nite sti�ness, the question of the
behavior of the stability function R(z) in the limit z → ∞ becomes even more
important. We have to require R(∞) < 1 to retain a convergent scheme [49].
This requirement introduces additional constraints on the coe�cients of the
method.

6.3 Implementation

In the previous section we learned how to integrate an implicit system of ODEs
with solution dependent matrix multiplying the r.h.s.

M(y)y′ = f(y).

We will now transform this system into a form suitable for an e�cient implemen-
tation following ideas from [68, 49]. Applying a Rosenbrock scheme for DAEs
(6.13) to the transformed system of ODEs with constant M (6.10) we get(

ki

0

)
= h

(
wi

f(vi)−M(vi)wi

)
+ hJ

i∑
j=1

γij

(
kj

lj

)
(6.16)

with (
vi

wi

)
=
(
y0
z0

)
+

i−1∑
j=1

aij

(
kj

lj

)
, (6.17)

J =
(

0 1
(f(y)−M(y)z),y −M(y)

)∣∣∣∣
y0,z0

. (6.18)

We still have (
y1
z1

)
=
(
y0
z0

)
+

s∑
j=1

bj

(
kj

lj

)
(6.19)

If we carry out the matrix multiplication in (6.16), we can eliminate li,

0 = f(vi)−M(vi)wi + (f(y)−M(y)z),y |y0,z0

i∑
j=1

γijkj

− 1
h
M(y0)(ki − hwi). (6.20)
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Let us now transform (6.20). The goal of this transformation is twofold. First
we want to collect the terms ki to be able to use available solvers which gener-
ally expect linear equations of the form Ax = b. Secondl we avoid the vector
matrix multiplications Jkj . Recall that we assumed γii = γ 6= 0 to avoid LU-
decompositions and evaluations of the Jacobian. Since the ki do not depend on
future stages, the matrix Γ = (γij) is of lower triangular form, and is therefore
invertible. We set

ui =
i∑

j=1

γijkj with i=1. . . s

and

ki =
ui

γ
−

i−1∑
j=1

cijuj with C = (cij) = diag(γ−1)− Γ−1

and arrive at(
M(y0)
hγ

− (f(y)−M(y)z),y |y0,z0

)
ui (6.21)

= f(vi)−M(vi)wi −M(y0)

wi −
i−1∑
j=1

cijuj

 . (6.22)

This form of the Rosenbrock method is suitable for an implementation on com-
puters.

So far we only mentioned the dependence of the accuracy and stability of
the solution on the step size h. What is lacking is a way to choose h as large
as possible and as small as needed to ful�ll given a accuracy requirement [48].
Since the exact solution is not known, we can only estimate the error. Given a
method of order p and a second method of order q > p, we can compute solutions
y1 and ŷ1. An estimate of the local error is given by |y1 − ŷ1|. Now we require
the components of the local error estimate to be smaller than a threshold sci,
which is given in terms of two tolerances. One tolerance is relative to the scale
of the variable Rtol, the other sets an absolute scale of the allowable error Atol

sci = Atol +Rtolmax(|y0i|, |y1i
|).

We de�ne the error measure as

erry =

√√√√ 1
n

n∑
i=1

(
y1i − ŷ1i

sci

)2

.

Since we treat the derivatives y′ = z as independent variables, we have to control
the errors of z as well. Following [68] we scale the error of z with the step size.

errz =

√√√√ 1
n

n∑
i=1

(
hz1i − hẑ1i

sci

)2

.

The total error err is err = erry + errz. For an optimally chosen step size ho,
the error err is equal to one. Given the order p of the method, we know the
error scales as err ∼ Chp+1 with unknown C, but our de�nition of err gives us
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1 ∼ Chp+1
o . Thus we estimate the optimal step size to be ho = h(1/err)1/(p+1).

If the error estimate for a step is larger than one the step is rejected, and the
step is attempted again with the new estimate for the optimal step size. We
multiply our estimate of the optimal step size by a safety factor 0.9 to avoid
costly step rejections in case the estimate is slightly to large. Furthermore we
want to limit changes of the step size, enlarging the step size much too fast
will lead to costly rejections whereas a too small step size leads to unnecessary
computational work. Thus we set

hnew = min(5., 0.9max(0.2, err−1/p+1))

How do we calculate two solutions to our system without creating too much
overhead? The answer lies in what is called an embedded method. We use a
second method, which evaluates the same stages, but we choose the coe�cients
b̂i such that the order of the of the new method is smaller than the order of the
original method. This way most of the calculations can be reused. Instead of
using the lower order result of the next step, we will leave the concept of error
estimates and continue integrating with the higher order result and consider the
error estiamte only for the choice of the timestep. The accepted notation for
the order of a Rosenbrock method is p(q), where p is the order of the method,
and q is the order of the embedded error estimator.
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Chapter 7

Numerical Experiments

Here we will discuss some numerical experiments using the algorithms developed
in this thesis.

7.1 Performance of Rosenbrock schemes

Here we analyze the performance of di�erent Rosenbrock schemes solving equa-
tion (5.5), (5.7) and, (5.8). The �rst scheme, which we will study in more detail,
is called ROWDAIND2 [68]. The method is of order 3(2), has four stages, and
order conditions that are valid of index two problems.

We choose the initial conditions for all tests, such that the typical scale of
the DOF is 1. A sphere is perturbed randomly such that the largest curvature
radii are of the order 10. It takes about 1 time unit to relax to a stable shape.
Our model membrane consists of 320 elements with 162 vertices, giving rise to
486 DOF. All simulations were done on a single core of an Intel CoreDuo U2500
CPU running at a clock speed of 1.2 GHz.

In Fig 7.1(a) we see that the time needed to integrate the model depends
only weakly on the chosen initial conditions, as long as the scale of the problem
does not change signi�cantly. Each model was integrated for 0.001 time units,
thus these simulations only represent the period in which the model is far from
its relaxed state and the geometries di�er.

Figure 7.1(b) shows the time it took to integrate a model for 0.005 time
units with varying tolerances. The starting time step was chosen such that the
error estimate is close to 1. In all simulations we set Atol = Rtol. Looking
at tolerances of 3 · 10−3 and smaller, we note that the run time of the simula-
tion increases inversely proportional to the required tolerance. This is not the
behavior we would expect from an algorithm of order 3(2) (cf. Figure (d)).

Figure 7.1(c) gives us a detailed view of the progress of the simulations used
for the timings in (b). We see that for tolerances 10−2 and larger the simulations
need only a few steps. This means the timings are not reliable because the last
step towards t = 0.005 is much smaller than the step size which would have
been chosen if the end of the integration interval was not encountered. For
tolerances of 0.0032 and smaller we note a growing step size over the course of
the simulation. This is an expected behavior if the step size is dominated by
accuracy requirements, since the system is relaxing and thus the forces on the
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membrane are decreasing.
The last �gure shows the optimal step size depending on the required tol-

erance Rtol = Atol (solid line) and the expected behaviors of the step size for
methods of order 3 and order 1. The step size does not scale as expected, for
small tolerances the order of the method is reduced to 1. This phenomenon
of order reduction is well known [59]. Its reason lies in the fact that the un-
derlying equation describing the dynamics is a PDE. Powers of the functional
derivative of the right hand side of a equation of the form u,t = F (t, u) will be
present in the local truncation error, and thus the order as derived from the
Taylor expansion of the ODE and the Rosenbrock scheme are not valid without
modi�cation.

Figure 7.1: Performance of the ROWDAIND2 scheme. (a) Comparison of the
total time needed to integrate test problems with di�erent initial conditions.
(b)Time needed to integrate test problem with di�erent tolerances. (c) Progress
of the integration for di�erent tolerances. (d) Optimal step size for di�erent
tolerances.

We now compare the performance of di�erent Rosenbrock schemes. The
same initial conditions as in the test of the ROWDAIND2 scheme are used.
The results are displayed in Figure 7.2. Part (a) shows the optimal step size for
di�erent tolerances of the Rosenbrock schemes as indicated in the �gure legend.
The step sizes were found at the beginning of a simulation; thus the dominant
stresses stem from the bending rigidity of the membrane. In part (b) the optimal
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step size is shown at a time at which the membrane is close to its relaxed shape.
The stresses stemming from bending rigidity are balanced against those form the
constraints on area, volume and area di�erence. To get an idea to the relative
weights of the di�erent contributions we take weighted averages over the 2-
norms of the forces acting on the vertices at the di�erent stages of the ROSI2P1
(cf. Appendix C) scheme, while setting either the bending rigidity or the forces
from the constraints to zero. The step size was set to 0.001. The weights for the
average are taken from the weights bi of the stages of the Rosenbrock scheme
(cf. Equation(6.13)). At the beginning of the simulation we have ||f ||κ=0 =
0.00011815 and ||f ||Constraints=0 = 4.0003 thus the forces acting on the vertices
are dominated by the bending rigidity. For the membrane con�guration used in
�gure 7.2(b), we have ||f ||κ=0 = 0.43104 and ||f ||Constraints=0 = 0.38842. Here
the forces are approximately balanced against each other.

All methods use 4 stages, with one evaluation of the Jacobian. Given that
the major cost of an integration step is the evaluation of the Jacobian and
subsequent matrix factorization, all methods have comparable cost per step.
Formally the methods are of order 3(2). In the bending rigidity dominated
regime (part (a)) we note that all methods su�er from order reduction. The
method ROWDAIND2 performs best, the other methods have step sizes of up to
a factor 10 less. The fast decrease of step sizes at tolerances around a tolerance
of 0.01 becomes much more prominent in part (b). Here we see two sharp
decreases in step size around tolerances of 0.03 and 0.005. These stem from
the coupling of the spatial and temporal discretization error. The solution of
the continuous equation of motion would relax towards a shape which balances
stresses from bending rigidity and constraints. The discretized membrane is
only an approximation of the continuous solution. Therefore residual forces will
occur. These residual forces lead to a motion of the membrane around a small
neighborhood of the relaxed state of the continuous model. For small tolerances
we trace this trajectory around the relaxed state. If we accept larger tolerances,
we don't have to follow the model circling around the minimum and can take
much larger step in the time integration.

7.2 The number of degrees of freedom and global

constraints

To get a better idea of the behavior of simulations near the relaxed state of a
membrane, we compare simulations with the same initial conditions and vary
the number of degrees of freedom and the strength of the penalty term enforcing
the conservation of the total mean curvature. We use the same initial conditions
as in the previous experiments. Each simulation is run with 80, 320 and 1280
elements, which correspond to 42, 162 and 642 vertices. All simulations were
run for two di�erent values for the penalty against mean curvature di�erences,
the penalties di�er by a factor of 100.

To assess the change in volume V and total mean curvatureM , we introduce
the reduced quantities

v0 =
V

4
3πr

3
0
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Figure 7.2: Comparison of the performance of di�erent Rosenbrock schemes.
Both plots show the optimal step size for di�erent tolerances: (a) the dynamics
of the system is governed by the bending rigidity of the membrane, (b) bending
rigidity and constraints are balanced.

and

m0 =
M

4πr0
with

r0 =

√
A

4π
,

which measure the volume and total mean curvature relative to a sphere with
the same surface area A [72, 77].

If we compare the range of reduced mean curvatures in the simulations (cf.
Figure 7.3) we see that � as expected � increasing the penalty term for mean
curvature di�erences decreases the mean curvature di�erences occurring during
the simulation. In the previous section we discussed that the exact solution
of the equation of motion can not be expressed by the discretized model and
we saw the e�ect on the step size. Here we can see a more direct evidence for
these oscillations: the reduced volume and curvature oscillate between di�erent
values. One would expect that the amplitude of the oscillations decreases with
a better approximation of the exact solution. We can observe this behavior
in Figure 7.3(b), and less pronounced in (a) as well. The amplitude of the
oscillations in (a) is smaller because of the smaller penalty on di�erences in the
mean curvature, and therefore smaller residual forces.

7.3 Adaptive Mesh Geometry

Now we discuss the in�uence of the moving mesh algorithm for improving the
mesh quality. Two simulations with the same initial conditions are compared.
A randomly deformed surface relaxes to its resting shape. All time integration
was done using the ROWDAIND2 scheme. In the �rst simulation no attempts
are made to improve the shapes of the elements. After 400 steps some triangles
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Figure 7.3: Reduced mean curvature and volume over the course of simulations
with di�erent numbers of DOF. The penalty on mean curvature di�erences
in (a) is 100 times smaller than in (b). The curvature and volume values at
the beginning of the simulation are those in the upper left of (a) and in the
center and upper left of (b). The di�erences of the starting values between the
simulations with di�erent numbers of DOF are a result of the inexact numerical
integration (cf. Section 5.3). The initial conditions are the same.

become very thin, the step size of the time integration decreases (cf. Fig. 7.4).
After 500 steps the elements invert, the surface intersects with itself and the
simulation becomes unstable. The step size starts to oscillate and decreases by
2 orders of magnitude.

Figure 7.4: Step size during test simulations with and without mesh adaption
techniques. (a) shows the step size as a function of the number of steps taken,
(b) shows the step size as a function of the integrated time.

In contrast the second simulation improves the mesh quality by �ve steps
of downhill minimization of the energy functional (discussed in Chapter 4.2)
following each time step. During the �rst 55 steps both simulations display
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similar step sizes, from then on the simulation improving the mesh quality per-
forms better. Its step size displays oscillations with a period of 12 steps and an
amplitude of approximately 10% of the step size. These oscillations stem from
the coupling of the integration error and the step size with the element quality.
Improving the element quality will allow larger step sizes, but if each step lowers
the mesh quality, the quality improvement cannot keep up and the error grows
again. Over time the surface relaxes, and its movement becomes slower, thus
the change in the mesh quality per step decreases and so the amplitude of the
oscillations in the step size1. The integration continues to larger times without
showing the behavior of the �rst simulation.

Figure 7.5: Mesh quality during test simulations with and without mesh adap-
tion techniques. (a) shows the quality of the mesh measured by the smallest
ratio of im�radius and circum�radius of all triangles, (b) shows the value of the
energy functional used for the mesh adaption algorithm.

Figure 7.5 shows measures of the quality of a mesh, which is de�ned as the
smallest ratio of im�radius and circum�radius of all elements with side lengths
li,

q = min
all elements

(
(l2 + l3 − l1)(l1 + l3 − l2)(l1 + l2 − l3)

2l1l2l3

)
. (7.1)

In Fig. 7.5(a) we see the quality q of the mesh, as a function of the number of
steps taken. For the simulation without mesh improvement we see a steep decay
of the mesh quality around 400 steps into the simulation, which corresponds
to the occurrence of thin triangles and decreasing step size. The following
improvement of the quality is due to the inversion of the triangles (cf. Fig 7.6).
The quality of the mesh in the simulation with mesh adaption is almost constant.
Sub-�gure (b) shows the value of the energy functional for both simulations, in
the adaptive case the energy drops in an initial relaxation and then remains
nearly constant. The value of the energy functional for the non adaptive case
rises in the �rst 1000 steps. The high slope in the �rst steps is due to the large
time steps taken. We see a second steep rise in the value of the energy functional
after 1000 steps, which is caused by the unphysical buckling of the membrane,
but there is no indication of the deterioration of the mesh quality at 400 steps,

1The step size does not increase because the global constraints keep the system frustrated.
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ergo the energy functional itself is not a good measure of the mesh quality. The
simulations are visualized in Fig. 7.6 and 7.7.

7.4 Micropipette Aspiration

A common method for experimental tests of the behavior of lipid membranes
and in particular Red Blood Cells (RBC) is their aspiration into micropipettes
[40, 7, 82, 83]. In these experiments pressure di�erences are used to aspirate a
RBC into a pipette with an inner diameter of a few micron, while its deformation
is monitored by microscopy.

Our goal here is not to provide new insights into the aspiration of RBCs.
Instead, the virtual experiments serve as a testbed for simulations with external
forces and geometric constraints. We are using a biconcave membrane as our
initial condition. This shape is the result of simulating the relaxation of a
membrane to its equilibrium shape. Therefore without the load applied by the
pipette, the is bending rigidity almost balanced by the constraints.

The virtual pipette is aligned with the z-axis. The position of the center of
the opening is (0, 0, oz). The the pressure di�erence ∆p between the interior
of the pipette and the surrounding medium is modeled as a constant stress sp

in the positive z�direction , which acts on the membrane surface ~r(v, w) facing
the pipette, if the surface point is under the opening of the pipette. Its inner
Radius is Ri and its outer radius Ra. We de�ne the stress sp as

sp =

{
∆p ~r · (1, 1, 0)T < Ri

0 otherwise
.

The rim of the pipette is modeled as a z�dependent stress (0, 0, srim). The
functional form of

srim(~r) =

{
−100(exp(9000(r3 − oz)3)− 1) if Ri < ~r · (1, 1, 0)T < Ra

0 else

was chosen to provide a continuous stress that grows fast as the membrane
enters the volume that is occupied by the rim of the pipette. We integrate the
new stresses in the same manner as in section 2.3

fasp = ~n

∫
Ω

~n · (0, 0, srim + sp)TψdA (7.2)

First we compare the aspiration of model membranes at di�erent applied
pressure di�erences (loads). We run two simulations with the same initial con-
ditions and the same penalty on changes of the total mean curvature. The load
applied by the pipette is varied by a factor of 10. The radius of the opening
of the pipette is 58% of the cell radius. The outer rim of the pipette is 71%
of the cells radius As expected from experimental experience, for smaller loads
the length of the aspirated "tongue" decreases (cf. Figures 7.8 and 7.9) [82].
The invagination at the bottom of the cells is a result of the mean curvature
constraint, it balances the curvature changes induced by the pipette at the top
of the cell. Evans encountered these invaginations in his aspiration experiments
with RBCs [40]. He reports a collapse of the cells at high loads. We cannot
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t=0.2t=0.1t=0

t=0.4t=0.3 t=0.5

t=0.65t=0.6 t=0.69

−10.54 7.99−1.28

Figure 7.6: Visualization of a simulation without mesh quality improvement.
The coloring indicates the mean curvature of the limit surface, the color lookup
table is scaled to the range of mean curvature occurring in the simulation. Note
the thin triangles at t = 0.5 (step 324). The red outline delineates �ve triangles
around a vertex. At t = 0.6 (step 428) the two of the �ve triangles are nearly
vanishingly thin. At t = 0.65 (step 503) we can see overlapping elements. The
simulation then develops unrealistic buckling behavior at t = 0.69 (step 1683).
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t=0 t=0.1 t=0.2

t=0.3 t=0.4 t=0.5

t=0.6 t=0.65 t=0.7

−5.77 6.050.14

Figure 7.7: Visualization of a simulation with mesh quality improvement. The
coloring indicates the mean curvature of the limit surface, the color lookup table
is scaled to the range of mean curvature occurring in the simulation. We can see
that the simulation proceeds to later times without the occurrence of distorted
triangles.
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reproduce this collapse. At high loads the simulated cell membranes intersect
themselves and the simulation becomes unreliable. The self intersection in this
situation is expected, for performance reasons we do not avoid self intersections
by adding the appropriate force for cell�cell adhesion2 and repulsion.

t=0 t=0.01 t=0.02

t=0.03 t=0.04 t=0.05

−9.12 9.500.19

Figure 7.8: Simulation of the aspiration of a relaxed biconcave membrane into
a micropipette.

Next we compare the e�ect of di�erent penalty terms for changes of the
integrated mean curvature. We use the same pressure di�erence as in the ex-
periments shown in Figure 7.8, but we decrease the penalty by a factor of ten.
No invagination forms at the bottom of the cell. The stresses arising form the
bending rigidity of the membrane, exceed the forces from the bilayer coupling.

2At short distances two membranes experience repulsive forces, but thermal �uctuations
can induce adhesive terms at longer distances [92].
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t=0 t=0.01 t=0.02

t=0.03 t=0.04 t=0.05

−8.40 10.110.85

Figure 7.9: Simulation of the aspiration of a relaxed biconcave membrane into
a micropipette.
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t=0 t=0.01 t=0.02

t=0.03 t=0.04 t=0.05

−8.40 8.540.07

Figure 7.10: Simulation of the aspiration of a relaxed biconcave membrane into
a micropipette.



Chapter 8

Summary and Outlook

Mathematical models of deformations of lipid bilayers have been developed over
the past three decades. Until recently no attempts have been made to solve
these models for arbitrary geometries. Currently there are three approaches.

Qiang Du et al. [35] and Campelo and Hernández-Machado [18] developed a
simulation of lipid bilayers based on a variant of the level set method, which has
the advantage of naturally handling topological changes. This comes at the price
of an implicit discretization of the membrane, which has a storage complexity
worse than O(h2), h being the linear resolution. This can be traded of for a
time complexity worse than O(1) for the random access of the membrane data,
thus the achievable resolution is limited. This becomes a problem if we want
to simulate migrating cells. Fibroblasts move their leading edge by forming
�lopodia, which are long and thin protrusions driven by polarization of actin
[4]. If we want to model this process using a level set method, we have to
ensure that the distance between the �lopodia is large compared to the size of
a grid cell. Due to the large number of �lopodia formed at the leading edge of
migrating �broblasts [4] much higher resolutions than the 643 voxels reported
by [35] would be needed.

A second approach was attempted by Seth Green [46]. A �nite element
scheme was employed to solve an elastic thin shell model of red blood cells
as developed by Evans and Skalak [41]. This approach combines e�ects from
the membrane skeleton and the cell membrane into an e�ective model of red
blood cells. Local area conservation and resistance to shear are included in the
model as features of the spectrin network. Important terms coupling the two
sheets of the lipid bilayer are absent. A simple linear elasticity model yielded
stable results when simulating the aspiration of cells. The implementation of a
more realistic model in terms of nonlinear thin shells, which is taking account
of membrane curvature is unable to deal with the sti�ness of the system and
shows an unrealistic buckling behavior for simulations of micropipette aspiration
experiments [46].

This thesis is the third approach towards solving a model of deformation of
lipid bilayers. The goal was to develop a faithful computational model of the
behavior of the lipid bilayer. The �uid character of the lipid bilayer is manifest
in the model equations and used to maintain a high quality discretization of the
model. The fourth order partial di�erential equations were solved by the same
�nite element scheme as used by Green. A global nonlinear constraint on the
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integrated mean curvature has been discussed in the literature [72, 77, 92] as an
important contribution to the dynamics. We enforced this constraint, and we
saw in our the aspiration experiments, that the bilayer coupling has a signi�cant
in�uence on the dynamics of cell membranes. Our aspiration experiments do
not show any unexpected behavior. The development of methods for handling
constraints without introducing unphysical behavior into the simulations is the
major result of this thesis.

We carried out additional numerical experiments using Lagrange multipliers
to enforce constraints. The time step used by the Rosenbrock method collapsed
to 0 at the �rst integration step. Recall the results on the relation of the number
of degrees of freedom and enforcement of the global constraints (cf. section 7.2).
There we saw that the exact solution at any time can not be expressed by a
limited number of basis functions. Therefore we cannot expect that a solution of
the algebraic equation that enforces the constraints on the discretized manifold
exists. This explains the failure of algorithms, which enforce the constraints
exactly. Therefore our use of terms penalizing changes in the quantities, which
we want to conserve, is the method of choice. One might argue, that the cost for
having to operate with a dense Jacobian is too high, but studies on vesicle shapes
indicate that the constraint on the total mean curvature are of the form used
here [72]. Therefore we are led to a dense Jacobian anyway, and the additional
cost of enforcing a constant area and volume of the cell is small.

Many theoretical works on lipid vesicles and red blood cells discuss ther-
mal �uctuations of vesicles [77, 92, 43, 89]. We disregard thermal �uctuations.
There is no data on the importance of �uctuations for many cell types. Simson
et al. [95] reported bending rigidities of 70kbT and larger for Dictyostelium
Discoideum, a model organism of assays of cell motility and chemotaxis1. For
bending rigidities that are large compared to kbT , thermal �uctuations are small
and can therefore be neglected. Apart from the unclear relevance for many cell
types, the simulation of thermal �uctuations is beyond what is feasible on cur-
rent commodity hardware.

An open problem is the scaling of the simulation with an increased number
of degrees of freedom. Comparing simulations at di�erent resolutions we can
see that the time step scales as n−1. Furthermore, the global constraints force
us to deal with a dense Jacobian, because any change of a variable will in�uence
all others through the constraints. The time to assemble the dense Jacobian
scales with n2. The cost for solving the dense linear system (6.21) in each step
scales even worse with n3 [80]. This makes it obvious that for more complex
geometries we need an algorithm that adapts the resolution only locally to keep
the discretization error below a user de�ned threshold, thereby only adding the
DOF we need. Traditional re�nement algorithms adapt the mesh by subdividing
triangles [59]. A drawback of this method is that we would change the topology
of the mesh. This raises the problem that we cannot subdivide an edge of a
triangle without changing the adjacent triangle as well. Otherwise we would
introduce discontinuities in our function space (cf. Chapter 4). This propagates
the re�nement of one triangle into its neighbors. A solution to this problem was
suggested in a series of papers [47, 57, 58]. Their idea is to rely on the re�nement
equation of subdivision surfaces and use this to re�ne the basis functions instead
of the triangles themselves. We would rewrite nodal basis functions in terms

1Migration of cells along gradients of a chemo�attractant.
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of translated and dilated copies of themselves. By construction, an old basis
function is a linear combination of the functions introduced using the re�nement
equations. To construct a new basis of linear independent functions we would
have to remove one of the basis functions on the �ner mesh. Krysl et. al [57]
suggest to remove the nodal basis function at the vertex that is already present in
the coarse mesh. This re�nement of basis functions associated with the vertices
naturally enforces the continuity of the functions in the Sobolev space [57]. In
addition to avoiding unnecessary DOF, this method is a natural setting for a
multi-grid. The re�nement equation de�nes an interpolation and restriction
operator, and by removing the linear dependent functions, we constructed a
hierarchical basis such that our degrees of freedom only a�ect their characteristic
length scale.

An important step towards biological applications will be the integration of
the algorithms developed here with Simmune [70, 69, 71], a tool that simulates
biochemical processes in cells and their interactions. The mesh used in this
work can be coupled to a �nite volume discretization of the interior of the cell,
and Simmune can be used to solve the reaction�di�usion equations on the cell
membrane and in the cytosol. Besides the biochemistry of the cytosol, one will
want to simulate the biophysical properties of the interior of the cell. It acts
not only as a passive viscoelastic medium, but the cytoskeleton can also actively
generate forces [4].
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Appendix A

Basis Functions

Here we list the �nite element basis functions that we use on regular triangles.
The generation of basis functions on irregular triangles is explained in Chapter
5.

b0 = −1/3w + 1/2w2 + 1/2wv − 1/2w2v + 1/6w3v − 1/6wv3 − 1/6v

+ 1/12− 1/3w3 + 1/6v3 + 1/12w4 − 1/12v4

b1 = −1/6w + 1/2wv + 1/2v2 − 1/2wv2 − 1/6w3v + 1/6wv3

− 1/3v + 1/12 + 1/6w3 − 1/3v3 − 1/12w4 + 1/12v4

b2 = −1/6w − 1/2wv + 1/2w2v − 1/6w3v + 1/3wv3 + 1/6v

+ 1/12 + 1/6w3 − 1/3v3 − 1/12w4 + 1/6v4

b3 = 1/2− w2 − wv − v2 + w2v + wv2 − 1/6w3v − 1/6wv3

+ 2/3w3 + 2/3v3 − 1/12w4 − 1/12v4

b4 = 1/6w − 1/2wv + 1/2wv2 + 1/3w3v − 1/6wv3

− 1/6v + 1/12− 1/3w3 + 1/6v3 + 1/6w4 − 1/12v4

b5 = 1/6v3 − 1/6wv3 − 1/12v4

b6 = 1/6w + 1/2wv + 1/2v2 − w2v − 1/2wv2 + 1/3w3v

− 1/6wv3 + 1/3v + 1/12− 1/3w3 − 1/3v3 + 1/6w4 − 1/12v4

b7 = 1/3w + 1/2w2 + 1/2wv − 1/2w2v − wv2 − 1/6w3v

+ 1/3wv3 + 1/6v + 1/12− 1/3w3 − 1/3v3 − 1/12w4 + 1/6v4

b8 = 1/6w3 − 1/12w4 − 1/6w3v

b9 = 1/6wv3 + 1/12v4

b10 = 1/6w3 − 1/12w4 − 1/6w3v + 1/2w2v

+ 1/2wv2 − 1/6wv3 + 1/6v3 − 1/12v4

b11 = 1/12w4 + 1/6w3v.
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Appendix B

Quadrature

These are the Gaussian quadrature points and weights given in canonical coor-
dinates (u,v). Which were derived from [36] using α+β+γ = 1 i.e choosing the
right permutations of the points. All quadrature points up to n = 13 are given.
All simulations in this thesis were done using 6 quadrature points. With less
quadrature points the error of the numerical integration was undesireably large,
or the simulation would even become unstable. Higher numbers of quadrature
points are not used as the cost for the integration is proportional to the number
of quadrature points.

n wi ui vi

1 1.000000000000000 0.333333333333333 0.333333333333333
3 0.333333333333333 0.666666666666667 0.166666666666667

0.333333333333333 0.166666666666667 0.666666666666667
0.333333333333333 0.166666666666667 0.166666666666667

4 -0.562500000000000 0.333333333333333 0.333333333333333
0.520833333333333 0.600000000000000 0.200000000000000
0.520833333333333 0.200000000000000 0.600000000000000
0.520833333333333 0.200000000000000 0.200000000000000

6 0.223381589678011 0.108103018168070 0.445948490915965
0.223381589678011 0.445948490915965 0.108103018168070
0.223381589678011 0.445948490915965 0.445948490915965
0.109951743655322 0.816847572980459 0.091576213509771
0.109951743655322 0.091576213509771 0.816847572980459
0.109951743655322 0.091576213509771 0.091576213509771
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n wi ui vi

7 0.225000000000000 0.333333333333333 0.333333333333333
0.132394152788506 0.059715871789770 0.470142064105115
0.132394152788506 0.470142064105115 0.059715871789770
0.132394152788506 0.470142064105115 0.470142064105115
0.125939180544827 0.797426985353087 0.101286507323456
0.125939180544827 0.101286507323456 0.797426985353087
0.125939180544827 0.101286507323456 0.101286507323456

12 0.116786275726379 0.501426509658179 0.249286745170910
0.116786275726379 0.249286745170910 0.501426509658179
0.116786275726379 0.249286745170910 0.249286745170910
0.050844906370207 0.872821971016996 0.063089014491502
0.050844906370207 0.063089014491502 0.872821971016996
0.050844906370207 0.063089014491502 0.063089014491502
0.082851075618374 0.053145049844817 0.310352451033784
0.082851075618374 0.053145049844817 0.636502499121399
0.082851075618374 0.310352451033784 0.053145049844817
0.082851075618374 0.310352451033784 0.636502499121399
0.082851075618374 0.636502499121399 0.053145049844817
0.082851075618374 0.636502499121399 0.310352451033784

13 -0.149570044467682 0.333333333333333 0.333333333333333
0.175615257433208 0.479308067841920 0.260345966079040
0.175615257433208 0.260345966079040 0.479308067841920
0.175615257433208 0.260345966079040 0.260345966079040
0.053347235608838 0.869739794195568 0.065130102902216
0.053347235608838 0.065130102902216 0.869739794195568
0.053347235608838 0.065130102902216 0.065130102902216
0.077113760890257 0.048690315425316 0.312865496004874
0.077113760890257 0.048690315425316 0.638444188569810
0.077113760890257 0.312865496004874 0.048690315425316
0.077113760890257 0.312865496004874 0.638444188569810
0.077113760890257 0.638444188569810 0.312865496004874
0.077113760890257 0.638444188569810 0.048690315425316



Appendix C

Coe�cients of the Rosenbrock

Methods

The coe�cients of all Rosenbrock methods used in this thesis are given here.
All coe�cients not listed are set to 0.

γ = 0.3
α21 = 0.5 γ21 = −0.1121794871794876
α31 = 0.28 γ31 = 2.54
α32 = 0.72 γ32 = −3.84
α41 = 0.28 γ41 = 29/75
α42 = 0.72 γ42 = −0.72
α43 = 0 γ43 = 1/30
b1 = 2/3 b̂1 = 0.4799002800355166
b2 = 0 b̂2 = 0.5176203811215082
b3 = 1/30 b̂3 = 0.002479338842975209
b4 = 0.3 b̂4 = 0

Table C.1: Coe�cients for the ROWDAIND2 scheme [68].
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γ = 0.435866521508459
α21 = 0.87173304301691801 γ21 = −α21

α31 = 0.84457060015369423 γ31 = −0.90338057013044082
α32 = −0.11299064236484185 γ32 = 0.054180672388095326
α41 = 0 γ41 = 0.24212380706095346
α42 = 0 γ42 = −1.2232505839045147
α43 = 1 γ43 = 0.54526025533510214
b1 = 0.24212380706095346 b̂1 = 0.37810903145819369
b2 = −1.2232505839045147 b̂2 = −0.096042292212423178
b3 = 1.5452602553351020 b̂3 = 0.5
b4 = 0.435866521508459 b̂4 = 0.2179332607542295

Table C.2: Coe�cients for the ROS34PW2 scheme [85].

� γ = 1.0685790213016289
α21 = 2.5155456020628817 γ21 = −α21

α31 = 0.50777280103144085 γ31 = −0.87991339317106512
α32 = 0.75 γ32 = −0.96014187766190695
α41 = 0.13959081404277204 γ41 = −0.41731389379448741
α42 = −0.33111001065419338 γ42 = 0.41091047035857703
α43 = 0.82040559712714178 γ43 = −1.3558873204765276
� b1 = 0.22047681286931747 b̂1 = 0.31300297285209688
b2 = 0.0027828278331185935 b̂2 = −0.28946895245112692
b3 = 0.0071844787635140066 b̂3 = 0.97646597959903003
b4 = 0.76955588053404989 b̂4 = 0

Table C.3: Coe�cients for the ROS34PW3 scheme [85].

γ = 0.43586652150845900
α21 = 0.5 γ21 = −0.5
α31 = 0.55729261836499822 γ31 = −0.64492162993321323
α32 = 0.19270738163500176 γ32 = 0.063491801247597734
α41 = −0.30084516445435860 γ41 = 0.0093606009252719842
α42 = 1.8995581939026787 γ42 = −0.25462058718013519
α43 = −0.59871302944832006 γ43 = −0.32645441930944352
b1 = 0.052900072579103834 b̂1 = 0.14974465479289098
b2 = 1.3492662311920438 b̂2 = 0.70051069041421810
b3 = −0.91013275270050265 b̂3 = 0
b4 = 0.50796644892935516 b̂4 = 0.14974465479289098

Table C.4: Coe�cients for the ROSI2P1 scheme [84].
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