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Abstract

A data assimilation procedure is developed and applied to a 5 minutes resolution
non-linear tidal model of the Irish and Celtic Seas making use of an efficient
iterative method for the solution of the minimization problem. M, and S, tidal
constituents are used for defining the external forcing at the open boundary nodes.
As a rule periodicity does not apply to tidal signals due to two or more
astronomical partial tides because of the incommensurability of tidal frequencies.
So M; and S, have a beat period of 14.7 days, but according to
incommensurability their superposition is not periodic. Therefore a certain time
interval must be used for data assimilation purposes, where initial conditions
(continuation conditions) must be introduced.

Firstly, the method is applied to a canal model scenario with a dynamic model
yielding results defined as real and a dynamical model made deficient and
producing results that are to be corrected making use of values taken from the
field regarded as real. The canal with constant depth has a closed end and an open
end, at which the tidal wave being determined by two astronomical constituents
enters the canal. The experiments show that by applying the assimilation
procedure, the deviation of the “to be corrected” solution from the “reference”
solution can be reduced significantly, from 35.68% to less than 5%. The first and
second order differences of the dynamical residuals are also introduced in the
minimization functional. From the investigation of the dynamical residuals it
follows that using this method of data assimilation, information on the
deficiencies of the classical model can be taken from the resulting dynamic
residuals.

After successfully applying this method to a fictive data assimilation scenario, a
non-linear depth averaged assimilation model is developed and applied to the Irish
and Celtic Seas. Observations from 24 positions are assimilated, and the solution
is then compared with that one of the classical model, with those of other
available models as well as with data from independent stations. The evaluations
suggest that the data assimilation procedure is working well and yields a very
significant improvement of the solution. Results for M5, S,, 2SM,, M,, MS4, Mg,
2MSe, and 2SMg are obtained which agree well with observations as well as with
reliable results of high resolution models and other data assimilation models. First
order differences of the dynamical residuals are introduced into the minimization
functional and by it evidently an adequate spatial smoothing of the residuals is
reached. The length scale of the residuals then corresponds to the decorrelation
lengths assumed for the dynamical errors and hopefully to the scale of the
compensated deficiencies, as applying to the fictive data assimilation scenario.
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The data assimilation procedure, thus having successfully been tried out for a
specific adjacent sea area comprising marked shallow water areas, is ready for
directly being applied to arbitrary adjacent sea and shelf regions, taking into
account as many astronomical tidal constituents as regarded necessary. The
incorporation of this type of model into global ocean models guarantees proper
consideration of shallow water effects, at the same time effectively assimilating
data also from near coastal areas.

vii



Chapter 1
Introduction

1.1. Introduction

Data assimilation is an analysis technique in which the observed information is
accumulated into the model state by taking advantage of consistency constraints
with laws of time evolution and physical properties (Bouttier and Courtier, 2002).
Data assimilation techniques, to optimally combine observations and models, are
mostly derived from meteorology. These techniques are geared towards
determining a great number of variables from a relatively sparse and irregular set
of observations (Fukumori, 2001). The assimilation of observation data into the
ocean models have become most popular in the last decade, particularly after the
availability of data records from ships, moorings, and the satellite missions. The
availability of impressively accurate data from altimetry satellites, such as
TOPEX/POSEIDON and JASON, is known to considerably improve the results of
numerical ocean models using assimilation techniques.

Many assimilation techniques have been developed for meteorology and
oceanography such as variational methods in three and four dimensions (3D-Var
and 4D-Var), Kalman filtering, optimal interpolation, and successive correction
(Thacker, 1988; Anderson et al., 1996; Courtier, 1997; Kalnay, 2003; Bennett,
2002). They differ in their numerical cost, their optimality, and in their suitability
for real-time data assimilation. In oceanography, data assimilation, with different
techniques and for different purposes, has been applied for global and regional
scale.

The data assimilation problem consists in using the available observations
together with the model to provide an accurate description of the state variables.
There are mainly two different forms of performing data assimilation, sequential
and variational assimilations (Anderson et al., 1996; Talagrand, 1997; Robinson
and Lermusiaux, 2000). In sequential assimilation, the observations are used in
small batches in time as they become available, whereas in variational
assimilation, all of the observations are used together over a time window.
Variational assimilation solves the analysis problem through the optimisation of a
given criterion. An objective of the variational method is to minimize a cost
function (or objective function), which is determined by data and dynamics, by
varying control variables. The control variables are often defined by initial
conditions, boundary conditions, external forcing or model parameters. A global
minimum is iteratively searched for the cost function until the data-model misfit is
reduced below a certain threshold. This method is equivalent to the minimization
of the likelihood function.



In oceanography, the first assimilation technique was imported from solid earth
geophysics by introducing a formal least squares inverse methodology
(Malanotte-Rizzoli and Tziperman, 1996; Wunsch, 1996). According to
Malanotte-Rizzoli and Tziperman (1996), generally there are three main
categories of efforts combining ocean numerical model and oceanographic data:
model improvement, study of dynamical processes through state estimation, and
ocean/climate forecast. With the availability of tidal data in the open ocean,
Bennett and Mclntosh (1982) and Mclntosh and Bennett (1984) (mentioned in
Egbert et al.,, 1994 and Egbert and Bennett, 1996), pursued a more formal
approach which used inverse methods to construct a regional scale solution for the
tides in Bass Strait.

Zahel (1991) applied the inverse method to a 4° Atlantic Ocean tide model,
introducing harmonic constants from 16 pelagic and island positions and solving
the minimisation problem iteratively by using the conjugate gradient least squares
(CGLS) method (Paige and Saunders, 1982). This method is an extremely
effective and flexible assimilation procedure and requires comparatively small
computer memory to solve the problem. Combining data and model information is
performed by searching for the least squares solution to the discretized model and
data equations, where the weighting of the equations is determined by the
knowledge about data and model errors. Due to the lack of more information, the
data errors are assumed to be uncorrelated.

1.2. Motivation

Zahel (1991) applied the assimilation procedure, utilizing tidal elevation and tidal
current data and being based on the minimization of a least squares functional
defined by the residuals of dynamics and data, to different open ocean tide
scenarios. By applying the assimilation procedure to a 4° Atlantic Ocean model
and introducing harmonic constants from 16 pelagic and island positions, the
overestimation of tidal amplitudes appearing in the free tidal model is reduced,
and the rms deviation of tidal elevation at positions of assimilated data is reduced
from 41.5% to 3%. The rms deviation relative to those harmonic constants which
were solely selected for comparison is simultaneously reduced from 49.8% to
27.4%. The application of the assimilation procedure to a 4° global tide model,
including the North Polar Sea, with data from 35 positions selected for
assimilation, yielded significant changes, where the overestimation of tidal
amplitude disappears in the whole ocean area in the mean. At the data positions
the relative rms deviation from measured tidal elevations amounts to 0.9%, while
at the 49 positions of data solely used for comparison, the corresponding deviation
is reduced by a factor of more than 2.5 in magnitude. Later this model was
generalized by the consideration of tidal loading gravity data in the data
assimilation procedure and has applied successfully to a 1° global tide model
(Zahel, 1995).



Gekeler (1995) applied the method of Zahel (1991, 1995) to the shelf sea area of
the Irish and Celtic Seas by assimilating 14 offshore tidal elevation data of M,
tide. This model uses a grid resolution of 5 minutes in latitude and longitude.
Along the open boundary, tidal elevations from a global ¥2° model of Grawunder
(1995) are used, and a successive correction procedure based on the method of
Optimal Interpolation (OI) by Miller (1986) is applied to correcting the open
boundary values also. Comparing the results to independent observation data, a
relative error of 28.9% is obtained.

Ray (2001) applied a method similar to that of Zahel (1991) to a global tidal
model with 0.5° spatial resolution limiting the model domain to between the
latitudes 66°S and 66°N (the TOPEX/POSEIDON orbital inclination) and
adopting a full sea surface elevation grid as constraint. Barotropic tidal currents
are deduced from an altimetric tide solution by solving the two-dimensional
momentum equations and the continuity equation in a least squares fashion. Good
agreement is obtained with measurements, suggesting that the method will prove
as a useful tool for investigating various aspects of tidal dynamics.

Due to the non-linearity taking effect on the continental shelves, the over- and the
compound tides play an important role there, other than in the open ocean. Now,
the altimetry applications are being developed over the coastal regions and precise
tidal assessments are now needed. It is a well known fact that obtaining tidal
elevation from barotropic tidal model is rather adequately possible if sufficient
resolution is provided and tuning of the bottom friction coefficient () is allowed.
Sinha and Pingree (1997) simulated the frictional dissipation of the M, constituent
replacing the quadratic friction term by a linearised form using a friction tensor
derived from the M, currents, and they obtained M4 and Mg overtides to high
grade of accuracy. Lefevre et al. (2000) used a finite element method with 5 km
resolution at the coast and chose r=0.0015 to assess 9 constituents, 1 overtide
(My) and 1 compound tide (MS4). The accuracy of the latter 2 tidal components is
however not satisfactory.

Andersen (1999) showed that non-linear shallow water tides (M4, Mg, MS4, MNy,
2SM;, Mg) can be empirically derived from TOPEX/POSEIDON altimetry. The
altimetric observations are analyzed using the “response method” (Munk and
Cartwright, 1966), and the tidal estimates are interpolated onto regular points.
This empirical model has problems, however, within the nearest kilometre of the
coast (My4) and in the most complex parts of the shelf (Mg).

Taguchi (2002) made direct use of the full non-linear shallow water equations
without introducing any linearization and applied data assimilation models to the
M, constituent and relevant overtides My and Mg for the same area as used by
Gekeler (1995). The cost function was defined by the dynamical equation, the
data equations and by the first and second order differences of the dynamical
residuals. Minimizing this cost function globally yields among others things a
field of dynamical residuals the smoothness of which corresponds to that of the



assumed dynamical error covariances. The direct method of Zahel (1991, 1995,
and 2000) and moreover the adjoint method (Sirkes et al., 1996) were applied. By
assimilating elevation data from 69 stations, the results are in very good
agreement with independent data from observations.

Andersen et al. (2006) obtained the overtide My over the north-west European
shelf by hybrid altimetry data assimilation, first using the non-linear model to
generate the prior solution, and then using the linearised shallow-water equations
to define the data assimilation functional penalty for the representer method
(Egbert et al. 1994; Bennett, 2002). By this method the equation of continuity is
not fulfilled.

In ocean tide dynamics, non-linearity appears due to interaction between partial
tides and proves important in shallow waters areas (Sinha and Pingree, 1997). So
far, works in data assimilation models having been done and mentioned above are
limited only to one partial tide. It gives motivation to treat the case of more than
one partial tide, where as a rule periodicity no more exists due to
incommensurability of tidal frequencies.

1.3. Objectives and outline of this study

Based on the successful works of Taguchi (2002) for M, and its overtides My and
Mg, the assimilation procedure developed by Zahel (1991, 1995, and 2000) is to
be generalized in this present study to the Irish and Celtic Seas for M, and S, tidal
constituents and their over- and compound tides. The model area has been
selected in view of the availability of advanced classical solutions on the one
hand, and of data assimilation experiments related to the present one on the other
hand, but having been restricted either on linear tides or on non-linear single
constituent astronomical tides.

In the case of one partial tide, the model field is strictly periodic while in the case
of more than one partial tide, as a rule periodicity no more exists due to
incommensurability of tidal frequencies. It means that the assimilation procedure
which has been applied by Taguchi (2002) can not be applied in this case. The M,
and S, have a beat period of 14.7 days, but their superposition because of the
incommensurability is not periodic. Therefore a certain time interval must be used
for data assimilation purposes, where initial conditions (continuation conditions)
must be introduced. Due to limitations by computer memory and CPU time, this
time period has to be chosen amounting to even considerably less than the beat
period. With successfully applying the data assimilation to the restricted time
interval and producing the continuation conditions for the next interval, at least a
total time period of 14.7 days in the case of M, and S, should be reached. Using
the technique for more than two astronomical tidal constituents is straightforward,
of course. Dependent upon the constituents used, a longer total time interval must
be reached by the continuation procedure.



The discussions in this thesis are divided into 5 chapters. Chapter 1 as an
introduction gives a brief description of data assimilation in ocean numerical
models and also the motivation and objectives of this study. Chapter 2 describes
variational data assimilation and the algorithm of conjugate gradient least squares
(CGLS) method. An experiment with applying the assimilation procedure on a
hydrodynamic model of a canal then is discussed in detail in Chapter 3. Chapter 4
describes the implementation of the assimilation procedure into a 2D non-linear
tidal model of the Irish and Celtic Seas. The evaluation of both models and their
results is performed in detail in Chapter 5. The presentation of models and results
is closed in Chapter 6 by conclusions drawn from the findings.






Chapter 2
Variational Data Assimilation

2.1. Background

According to Robinson and Lermusiaux (2000), a data assimilation system
consists of three components: (1) a set of observations; (2) a dynamical model;
and (3) a data assimilation scheme or melding scheme. As has already been
mentioned in the previous chapter, there are mainly two different forms of
performing data assimilation, sequential and variational assimilations. Regarding
to the variational assimilations, in the recent years much effort has been made
developing variational data assimilation systems to replace previously used
schemes e.g. the Cressman, Newtonian nudging, optimum interpolation (OI) and
analysis correction algorithms (Barker et al., 2004). Variational data assimilation
was firstly proposed in principle by Sasaki (1970) and was given a large practical
boost by the works of Lewis and Derber (1985), Le Dimet and Talagrand (1986)
and Thacker and Long (1987) (mentioned in Anderson et al., 1996).

Sasaki (1970) has classified variational assimilation into three formalisms: (1)
“timewise localized” formalism; (2) formalism with strong constraint; and (3)
formalism with weak constraint. In the first two formalisms, exact satisfaction of
selected prognostic equations is formulated as constraint in the functional.
However, only the second formalism contains explicitly the time variation terms
in the Euler equations. The third formalism is characterized by the subsidiary
condition which requires that the prognostic or diagnostic equations must be
approximately satisfied. In other words, Robinson and Lermusiaux (2000) wrote
that in strong constraint the model dynamics and boundary conditions are
assumed to be free of error while in the weak constraint, the model dynamics,
boundary conditions and initial conditions need to be corrected.

A number of authors have studied the variational assimilation of meteorological
and oceanographical observations and, according to Courtier and Talagrand
(1990), the various numerical experiments which have been performed show that
variational assimilation does numerically converge to a solution and the results
are physically quite reasonable.

2.2. General description of variational data assimilation
The variational data assimilation method provides an analysis x via the

minimization of a prescribed cost function J(x). This technique allows to solve the
global problem in one go, and it is now widely used in the meteorological and



oceanographic community (Rabier and Liu, 2004).

The set of observations can be written in the general standard form,
d=Dx + ¢,

and the dynamic model
b=Ax +¢,

with appropriate initial and/or boundary conditions.

The least squares method for obtaining the estimation consists in minimizing the
cost function:

J(x)=(Ax-b) C'(Ax-b)+(Dx—-d) S~/ (Dx—d) (2.1.1)

where C and S denote dynamical and data error covariance matrices, respectively.
A is a matrix containing coefficients used in the dynamic equations and D is
called the data operator. Usually assuming the data errors as uncorrelated, S takes
diagonal form. With the lower triangular matrix R resulting from the Cholesky
decomposition C=RR’, the least squares solution to the system of equations made

up by

R7Ax=R"b 2.12)
S px=8"4d (2.1.3)

is searched for. Applying the method of conjugate gradient least squares (CGLS)
for obtaining this solution only requires performing matrix multiplications and
solving linear algebraic equations with square lower and upper triangular
matrices, respectively.

Instead of performing a Cholesky decomposition of C and solving triangular
systems of non-linear equations at each CGLS-iteration step, as described above
and achieved in Zahel (1997), here a principally equivalent, but computationally
advantageous procedure has been applied. This procedure is defined by a least
squares minimization functional which is made up by the squares of the
dynamical residuals, those of their first, second and possibly higher order
differences and of the data residuals. The relationship to explicitly introducing an
error covariance matrix C be illustrated in the following briefly.

As is obvious a tridiagonal inverse with bandwidth one corresponds in one space
dimension to an error covariance matrix C;(a) being determined by a simple

exponential dependence of errors €€, =5" exp(— a|i— J|Ax) The inverse of this



covariance matrix periodically continues in the first and in the last row when a
periodic interval is considered. The non-zero entries
a=6"(I1+exp(-2a))/(I-—exp(~2a)) in  the main  diagonal  and
b=—6"exp(—a)/(I—exp(—2a)) in the first super diagonal lead to the model

determined  constituent of the functional r“C”'r  merging into
> o+ e, = e, —r ) with g,=a+2b, ,=—b and pg,=a+b at a
closed boundary. More general covariance matrices can readily be obtained by
multiplying basic matrices C, (a””) with each other. To such a matrix product
with n factors does belong an inverse based matrix with width n and a

minimization functional including squares of residual differences up to order n.
The coefficients of these contributions depend on those belonging to the basic

matrices (,uo“” , /11””) and can be obtained by evaluating the power series
Hk (#0”” +u," dx) in terms of the x-differences and collecting the contributions

to the differences of equal order.

Generalization to two space dimensions is straightforward, where the basic matrix
C>(a) now results from the multiplication of two exponential matrices of the
above type, one referring to the x-direction, the other to the y-direction, together

yielding factors g, , g, 1t,, M M, and i; for the squares of the residuals, of their x-,

y-, and xy-differences, respectively. Again more general dependencies expressed
by exponential functions can be obtained by multiplying matrices C,(a) with each
other, where the differences and the accompanying coefficients appearing can be
taken from the evaluation of the respective two dimensional power series in terms
of the x- and y-differences dx, dy.

Actually, first and second order differences of the dynamical residuals have been
considered in the minimization functional with choosing weighting coefficients
such that the assigned covariance between the dynamical errors shows a spatial
dependence close to that of the normal curve with a specific decorrelation length
scale.

2.3. The conjugate gradient method

The conjugate gradient (CG) method was developed in the early fifties by
Hestenes and Stiefel. This method came into wide use first in the mid-seventies
when it was realized that it should be regarded as an iterative method. It has now
become a standard tool for solving large sparse linear systems and linear least
square problems (Shewchuk, 1994; Bjorck, 1996).

The CG method is a special case of Krylov space methods. Given a matrix
B e R"™ and a vector ¢ € R" the Krylov subspace Kx(B,c) is



7(k(B,c)=span{c,Bc,...,Bk']c}

The k™ iterate in the CG method is uniquely determined by the following property.
Let ¥ =A’b be the pseudo inverse solution and #=b — A X the corresponding
residual. Then x*’ minimize the error functional

E,(x*)=(2-x*)(a"a) (- x*)
over all vectors x'* in the affine subspace
x*e x4+ K, (ATA,S(O’), s =A" (b - Ax(o’)

Only the values ¢ = 0, 1, 2 are practical interest, and they correspond to the cases

(k)

A =0 minimizes ch -X ,

2
2
2

A

2
L

-
2

2

=1 minimizes Hf -r Hr

. . 2 2
A =2 minimizes HAT ( —r”‘)l‘z = Hs”””z

and for u = 1 the method is denoted CGLS in Paige and Saunders (1982).

Algorithm CGLS: Let x be an initial approximation, set:
r=p-Ax", s =p V' =ATr", H© :HS(O)H

fork =1,2,... while y(k) > tol compute

2

2

g'"' = Ap™/
w_ 7Y
e
Jo 1,
x(k+1) :x(k)+a(k)p(k)
r(k+1):r(k)_a(k)q(k)
G(H1) = ATp( k1)
y ) :Hs(ku)r
2
o) = Y kH)
y(k)

(k+1) _ (k+1) (k) _(k)
p ="+ B p
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Chapter 3
Schematic Canal Model

3.1. The governing equations

In the first step, the application of assimilation procedure for two or possibly more
partial tides is done in a one dimensional canal model, based on the system of
equations shown below:

’u du du ’u
¥+R§+r*|u|§+cu—r—gh$=0 (3.1.1)
?)_I::W (3.1.2)

Substituting (3.1.2) into (3.1.1) yields:

aa—w+Rw+r*|u|w+cu—r—gh
t

2
‘37‘2‘:0 (3.1.3)

where:

R and r*: friction coefficients
c: damping coefficient

r: external force

h: water depth

g: acceleration due to gravity
u: velocity in x-direction

Equations (3.1.2) and (3.1.3) are solved numerically by applying the explicit
scheme:

(] - 0.5At(R +r* )W”_I —cu"At +r" At + ghuxxAt)
1+0.540(R + 1))

un

(3.1.4)

u'=u"" +w'At (3.1.5)

To perform the assimilation procedure, equation (3.1.1) is discretized as:
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n
u;

n+l n n—1 n+l n—1

u. ' —2u +u u™ —u’

: ——+R|— L |+ r*
At 24t

n+l n—1I
l/li - ui
( 24 ]

u, , —2u' +u;
+Cu"n_}/}n_gh( i+1 Axtz i—1 :0

After regrouping the terms, the equation above can be written as:

Ju."”+(— 2 +c+2ghju."— LIV

n

Uu.

l

1 R ¥
>+ +
A 2At 24t

! A Ax?
] R r* ui —1
+ == - w- =r"
At° 24t 24t

3.2. Data assimilation procedure

Equation (3.1.6) can be written, in the form of linear algebraic system, as:

Ax=b (3.2.1)
The vector x of unknown is made up by the u!, while vector b is made up by

external force (and initial values at the very beginning first and second time
steps):

rE %)
e[ Ees 2o [ LR R
At Ax At° 24t 24t

(3.2.2)

r* "
—b,~”=[ IRl ‘]u,(“—r;” (32.3)

by = —r" (3.2.4)

where u” and u” are the initial values obtained from the forward model at the
very beginning of assimilation process and from two last time steps within a time
block at the continuation.

Matrix A is sparse and made up by dynamic equations and consists of linear and

12



non-linear parts. In the matrix form, equation (3.1.6) by using linear algebraic
system in equation (3.2.1) can be written in the following general form

A, A, A, 0 0O 0 0 x

0 A, A, A, 0O 0 0 ||x!

0 0 A, A, 0O 0 0 ||x"2

0O 0 0 A, 0O 0 0 ||x"°

+

0 0 0 A, A, A, 3

0 0 0 A, A, 2

0O 0 0 0 0 0 A, !

AV 0 AV, 0 0 0 0 x" r
0o Al 0 ALY 0 0 0 || x"! r!
0 o AUY 0 0 0 0 || x"? r?
0 0 0 ALY o 0 0 |[[x7|_|r (32.5)
0 0 0 0 .. A, 0 AU || X’ b,
0 0 0 0o .. 0 A 0 x? b,
0 0 0 0o .. 0 0 A{, )\ x' b,

In this connection A;; and A;; obviously denote diagonal matrices, while A is a
tridiagonal matrix. The matrices A, and A"/, are diagonal and depend on x".

The vectors x* and r* are composed of the corresponding values u! andr at the
positions i=1,...,L. The boundary condition at the closed end is realized by
prescribing x, =0 ; in the actual application r* =0 with the exception of r, which

ko ok
is defined by the conditionh(u#%) = f*, f'being determined by tidal

elevations at the open boundary.

The data equation is given by:
Dx=d (3.2.6)
With observations taken from m positions, only m*n rows of the matrix D and the

corresponding component of the vector d contain non-zero entries, where n here is
the total number of time steps within a time block. Only m rows of the D* have

13



non-zero entries, if u, is directly prescribed at position i. For example, if m=1 at
cells number i, the matrix form of equation (3.2.6) can be written as:

D" 0 0 0 0O 0 0)f x" d"
0 D" 0 0 o 0 0 |l x"! d"’
0 0 D2 0 0 0 0 ||lx? d"?
0 0 0 D"’ 0O 0 0 n-3 d"’?
oz (3.2.7)
0 0 0 o .. D 0 o] x d’
0 0 0 0O .. 0 D° 0] x? d’?
0 0 0 o .. 0 o0 D) x d’

The minimization functional used is defined by equation (2.1.1) as has already
mentioned in the previous chapter.

The dynamic equation (2.1.2) with the lower triangular matrix R, together with
the data equation (2.1.3) can then be replaced by the following system:

WAx =Wb
wl(z,»—z')=0

J
wz(zi+zj—2zk)=0

S"’Dx=8"d

where W is a diagonal matrix, w; and w, are weighting factors and z is row vector
of A. The subscripts i, j, k in z variable indicate neighbouring space positions in x-
direction.

3.3. Model setup

The model domain for testing the assimilation procedure is defined by 24 grid-
points and assumed open at one end and closed at the other one. The total
simulation time interval (LAE) of 420 steps is divided into several time blocks
(KAE) and a continuation procedure is used until convergence for each block is
obtained (see Figure 3.3.1). The total time interval necessary for this purpose has
a length of approximately 3*LAE time steps. Firstly, equations (3.1.4) and (3.1.5)
are used to calculate the “reference” solution and then by reducing the values of g
(acceleration due to gravity) to 0.95g, solution to the ‘“deficient” system (“to be
corrected”) is calculated and used as first guess in the assimilation procedure.
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Figure 3.3.1 One dimensional canal model domain and setup.

With this setting, the relative rms deviation between “reference” and “to be
corrected” solutions is 35.68%. Data (obtained from ‘“reference” solution) are
assimilated at grid number 8 and 15. Two partial tides with angular frequencies
0:=1.2x10” rad/s and 0,=1.4x10" rad/s and amplitudes A;=0.1 and A,=0.075
meters, respectively, are used for defining external forcing (r) in the model
domain. The depth of the canal (k) is 200 meter, time step (A4¢) is set equal to
21/(02- 0;) divided by total number of time steps, and space step (4x) is set equal

to 24t/ gh . The damping coefficient (c) is set equal to 3.0 x 107'% s, while R is

set equal to 1.5 x 10”7 s and r* to 5.0 x 10° m™. Weighting for data equation is
set to 1 x 10™* and weighting w; for first difference of the residuals is set to 0.5 and
w; for second difference to 1.0. For this numerical canal experiment, with two
astronomical constituents determining the open boundary forcing, a beat period
corresponding to 420 time steps is used. Computations have been performed using
time block lengths of 84, 105, 140, 210, and 420 time steps. Additionally, further
computations with time block length 105+20, 105+40, and 210+50 have been
performed. Here, continuation to the following time block does not start at the end
of the previous block, but 20, 40 or 50 steps earlier, by this way introducing an
overlapping interval of 20, 40 or 50 time steps.

In this canal experiment the total tidal signal, defined by ¢; and o, has been
chosen without loss of generality as strictly periodic in order to more easily
studying the performance of the method. The restriction to two instead of more
astronomical tidal constituents is motivated by a greater clearness when analyzing
the numerical results.
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Chapter 4
Two Dimensional Non-Linear Model of Irish and Celtic Seas

4.1. The shallow water equations

After success application of this method into a schematic canal model experiment,
the non-linear 2-D depth averaged model is developed. The system of equations
from Mihardja (1991) is used as the basis in this study:

W, U U VU gH A
ot HRcos¢p 04 HR 9¢ Rcos¢ oA

(4.1.1)
At )
a_V+La_V+La—V+ﬂ]+ﬁa—;

dt  HRcos¢ 8:1 HR aj’ R o¢ (4.12)
_Ah(chis2¢g¥ +ég¢zj+%ﬂm:0

o, 1 oVcosg), 1 oU (4.1.3)

ot Rcos¢ 0@ Rcos¢ dA -

where U = j udz, and V= J-v dz denote the volume transport in x- and y-
—h —h

directions, respectively, while ¢ denotes the water elevation, 4 and @denote the
geographic longitude and latitude, H = h + { is the actual water depth (where & is
the undisturbed depth), R is the Earth radius (6378200.0 meters), f = 2@sin @ is
Coriolis parameter with w=7.2911 x 107 rad/sec denoting the mean angular
velocity of the Earth, g = 9.806 m/s” is acceleration due to gravity, A, is horizontal
turbulent exchange coefficient, and r is the bottom friction coefficient. The
choosing of A;, and r values will be discussed separately in Section 4.5.

4.2. Discretization of the equations
The system of equations above is solved numerically by an explicit scheme with

central difference for diffusive and convective terms and forward difference for
the rest of the terms:
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U:;z = rumUlnj - qmnuxUn (U::J it U, j) qconuyv(Ut/ ;T U,nj+1)
+ G (Ul 1j +U}, j 2Ui,j)+ D ahuy (Ul/ T Ul,+1 2Ui’,1j) 4.2.1)

+ %‘7 - 2qgu (§i+1,j - gn;)

Vi =1,V = Qe Vi Vi )= Gy ViV + Vi)

ij vm" i, j
4 @V + V2 =2V )+ 0, Vi 4V, = 20)) (4.22)

i+1,j

_‘]fylj_zqgv(;;,j - ;;,nju)

i,j+1

=40 - W(Viﬁ cos@,, ,—V,"" cos ¢v,j)—A—x(Ui,f1 —Uifz,]j) (4.2.3)
u,j

where:
1 1

Tum = rAt — > = rAt —

1+ NU? +V? 1+ NU? +V?
0.5(H,, +H,,, 0.5(H,, +H,,,
. = At At

m b QCUVH{ = r;lWl
Ax(Hi,j + Hi+],j) ’ Ay(Hi,j + Hi+1,f)

. At . At
convx Fom Ax (H +Hl j+]) convy vm Ay(H + HU+1)
U= 0'25(Ui,j tU+U t Ui—],j+]) V=0 25(V Vit Vi + ‘/H-],j—])
At t At At
CIahux = Ahr;tm E ’ Qahuy = Ahr;,tm y2 4 Qahvx = Ahrvm E ’ Qahvy = Ahrvm A_yz

w=Af s gy =Afn,, , f,=20sing, , f, =20sing,
Ax=AARcos¢ , Ay =APR

An Arakawa C-grid is used for all dynamical calculations (Kantha and Clayson
(2000; see Figure 4.2.1 for the convention). The model domain is divided into n
columns and m rows, for a total of nm grid cells. The longitude and latitude limits
correspond to the edges of the model domain, not the centres of the edge grid
cells. Elevations ¢ are taken to be averages over each cell. Similarly, grid
bathymetry is given for each cell, and should correspond to average water depth in
each cell. Volume transports U and V are specified on grid cell edges, and are
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interpreted to be the average volume transport over the cell edge. Boundary
conditions at the coast are specified on the U and V nodes. Open boundary
conditions are given by specifying the elevation ¢ for open boundary edge cells.

Along closed land boundaries the normal component of volume transport is set to
zZero.

—_ | |—¢mi.u
| Co-11 Un11 61 Ut
Vi .1 \é 1 | \5 1 i ] \; 1,1 i \;1 1
. Vi1 Vi1
5 N R
) Ui G Uy &Gy Uiy
g . .
B S - P N v
| | | | |
Sn Unma Soms Uogus $sm1 Usma CatmiUntm1 Ql,m-lr_.-Tn,m—lT
— Vi AV Vi - Vit \-"n,m-l‘l 5
':/l,m -[--Tl,m gg,m -[—-T2,m gB,m -[,.TB,m o gn—],m-[—-'ﬂ-l,m gn,m I—Tn,m
4 |_ Vi @ | \'2m | \—Bm | : Vo m l \'nmJl—gﬁ max
)-_.mjn }7_1 .\‘4{ 2 max
I n giid cells |

1
Figure 4.2.1 Grid convention used in 2D model.

4.3. Data assimilation procedure

An inverse direct method of the global ocean model applied by Zahel (1991) is
used in this work and extended to the 2D non-linear shallow water equations on
the basis of the schematic canal model. The method minimizes the dynamics and
data residues in the sense of the least squares problem and at the same time looks
for the most likely residuals, which are assumed statistically as normally
distributed.

The system of equations (4.2.1), (4.2.2), and (4.2.3) can be written in the form of
a linear algebraic system as has already mentioned in equation (3.2.1). The
unknowns x are made up by elevation ¢ and horizontal volume transport
components U and V. The vector b consists of b, by, and by. In the interior, at the
first time step, vector b is defined by:
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Ut((;) (Ut(f)]/ + Ut(g)]/ )_ qmnuy,pv(o ) (Ui(,i)—l + Ui(,(;‘)+] )
— 20" )+, U, +U,, —2U") (4.32)

ij—1 ij+1

b, ,=r,, U

N7 um,p = i, - qmnux,p

(0) (0)
+ qahux,p (Ui—],j + Ui+1,j

7(0) ) )
+4q5,V _quu,p( il i,j)

— (0) 77(0)(Yy/(0) (0) 0)[ys(0) (0)
bV,p - r;/mp‘/l] - qconvx,pU (‘/H—I,j + ‘/i—l,j )_ qconvy,p‘/i,j (‘/i,j—l + ‘/i,j+1)
(0) (0) (0) (0) (0) (0)
*+ Gapn (Vi—1,j + Vi+1,j - ZVi,j )+ 9 ahvy (Vi,j—z + Vi,j+1 - ZVi,j ) (4.3.3)

77(0) (0) (0)
_nyU _2qgv( i i,j+1)

e (4.3.4)

b

b,

&P

Superscript (0) in U, V, U, V , and { indicating that the values of these variables
are taken from the first guess. In the equations above, a subscript p has also
introduced as a vector row index, converted from the space and time indexes

(iy.n).

The values of vector b on the next time steps within a time block are zero except
for by and by close to the open boundaries where the pressure gradient term needs
prescribed elevation values from the open boundaries:

by, =245 08 (4.3.5)
by, = 2qgv,p§03i,j (4.3.6)

And at the open boundaries, b are defined by the tidal elevation {pg:
b., = ;OBi,j (4.3.7)

The matrix A consists of coefficients appearing in dynamics equations. A is a
sparse matrix due to the fact that loading and self-attraction effects, as far as it is
generated in adjacent sea areas, can be neglected (Gekeler, 1995). A special
treatment is needed to manage the large sparse matrix generated within a time
block to reduce the need of computer memory and also to speed up the matrix-
vector multiplication (see Section 4.5 for detail description).

The data equation is given by equation (3.2.6) with x defined by sea surface
elevation and the right hand side of equation (3.2.6) being generated by:

NC
d.,= Zal cos(o, k At — @) (4.3.8)

=1

where NC is the number of tidal constituents (in this case NC=8: M,, S,, 2SM,,
M., Mg, MS4, 2MS¢, and 2SMp); A;, 01, and ¢ are amplitude, angular frequency,
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and phase of the [-th tidal constituent, respectively, A¢ denotes the time step, and k
indicates the number of time level.

Observations used in data equation are taken from m positions, and only m*n rows
of the matrix D and the vector d contain non-zero entries (n indicates the total
number of time level within a time block). The cost function is given by (2.1.1).

Two cases of assimilation procedure are applied in this study, with and without
residual smoothing processes. In the case of applying the residual smoothing
process, the dynamic equation (2.1.2) with the lower triangular matrix R, together
with the data equation (2.1.3) can then be replaced by the following system:

WAx =Wb
wl(z,» —z<)=0

J

S"’Dx=8"d

Where W is a diagonal matrix, w; is weighting factor and z is row vector of A.
The subscripts i, j in z variable indicate neighbouring space positions in x- and y-
directions.

4.4. Model domain

The area of this study is the region of the Irish and Celtic Seas, 50°N-57°N and
2°W-8°W (Figure 4.4.1). The Irish Sea separates the islands of Ireland and Great
Britain. It is connected to the Atlantic Ocean by the North Channel and Saint
George’s Channel. The Celtic Sea is the area of the Atlantic Ocean off the south
coast of Ireland. It is bounded to the east by Saint George’s Channel and the
Bristol Channel. The northern portion of this sea had previously been considered
part of Saint George's Channel and the southern part had no common name.

This study uses bathymetry data from ETOPOS5 (National Geophysical Data
Centre, 1988) with spatial resolution (4¢ and 41) of 5 minutes or equal to 9 km.
This adjacent sea area has varying water depths from more than 150 m in the
vicinity of northern and southern boundary to a mean depth of 55 m in the eastern
Irish Sea, where areas of very shallow water exist (Figure 4.4.1). The
comparatively coarse spatial resolution used in this study is not suitable to
produce a realistic solution in the small scale areas, such as the Bristol Channel
and Severn estuary. Only by applying a high resolution classical model, including
a complex adjustment of friction parameters and open boundary values, the
specific effects in these small areas can be reproduced directly, i.e. without data
assimilated.

The Celtic Sea has strong depth gradients at its west side towards the open sea.

The tidal waves appearing on the European shelf, to which the area of
investigations belongs to, are produced in the open Atlantic Ocean and are
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deformed by the islands of Ireland, Scotland, and Great Britain. The waves
arriving from the deep ocean essentially spread on the shelf as Kelvin waves.
They propagate across the Celtic Sea to the Irish Sea and across the English
Channel northward into the North Sea. In the shallow water areas, mainly in the
west and south parts of the North Sea and the English and Saint George’s
Channels, the tidal energy is dissipated, where the semi-diurnal tidal flow rates are
largest.
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Figure 4.4.1 Bathymetric map of Irish and Celtic Seas.

The incoming Kelvin waves are grown due to their high flow rates by the constant
effect of the bottom friction and reflected at the end of the basin with smaller
amplitude. A consequence of it is the misalignment of the amphidromic for the
side of the energy maximum of the reflected wave, as with the M»-tide in the Irish
Sea and in English Channel is observed (Simpson, 1998).

In the south part, part of the tidal energy flux from the Celtic Sea goes northward
to the Irish Sea through the Saint George’s Channel. In the north part of European
continental shelf, part of tidal energy flux off the west coast of Scotland goes
southward through the North Channel and into the Irish Sea (Davies and Kwong,
2000).
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In the Irish Sea, the tidal currents are strong generally (in the order of 1.5 m/s)
except in a small area to the west of the Isle of Man where the tidal currents are
weak (in the order of 0.2 m/s) (Lee and Davies, 2001).

4.5. Model setup

Based on the Courant-Friedricks-Lewy (CFL) condition, the time step (4f) equal
to 120 seconds is used in the forward as well as data assimilation models. With
that value, 1 day simulation time is equal to 720 time steps. The elevation of M,
and S, tidal constituents used at the open boundaries defining the northern,
western, and southern transition to the open ocean are taken from the regional
tidal solution for the North Sea from Oregon State University Tidal Inversion
Software (OTIS, Egbert and Erofeeva, 2002).

Davies and Jones (1992) have chosen two different values of bottom friction
coefficient (r) in their 3D model, namely 0.0025 and 0.0050, respectively. By
using r = 0.0025, the values of sea surface elevation were found to be in the order
of 10 to 20% higher than the observed elevations, while using » = 0.0050 the
values are in good agreement with observations. Further, they report that an
analysis of computed and observed results showed that in general M, amplitudes
and phases obtained by applying the 2D model (r = 0.0025) and the 3D model (r =
0.0050) differ little. Based on these finding, the value of » = 0.0025 is used in this
study.

Some experiments have been done in this study to choose the value of coefficient
of horizontal diffusion (A;) appropriately, and it is found that A, =5 x 10° m?/s
yields best results with respect to numerical stability and the agreement to the
observation and other model results. Weis (2006) has done some experiments in
tuning the values of A;, and mentioned that for 5 minutes resolution simulation, the
range of values guaranteeing numerical stability lies between 5 x 10° and 45 x 10°
m?/s. Therefore, A, =5 x 10° m?/s is used in this study.

The first guess of U, V, and { fields used in beginning the assimilation procedure
are taken from the forward model results. The tidal data for assimilation and data
only used for comparison (at so called independent stations) are taken from
Alcock and Howarth (1978), Alcock et al. (1980), Alcock (1982a, b), Alcock and
Pugh (1982), Davies and Jones (1992), Davies and Hall (2000), and Taguchi
(2002). These data are already given in amplitude and phase of elevation
(harmonic constants).

The number of stations used in the assimilation procedure in this study are less
than have been used by Taguchi (2002) because when including more than one
partial tide and their over- and compound tides, corresponding data are not always
available in the reports and papers mentioned above. The positions of available
data from 24 stations used in assimilation are given in Table 4.5.1 and Figure
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4.5.1, those of data only used for comparison are listed in Table 4.5.2 and
depicted in Figure 4.5.2.

The assimilation model is run in 2 different ways, with and without applying
residual smoothing process. The residual smoothing process, which has already
been mentioned in Section 3.2, is applied to smooth the dynamical residuals.
Assimilations with time block of 1 day and 4 days are performed where for each
time block the minimization is iteratively achieved for taking into consideration
the non-linear contributions. First guess fields for the solution dependent
coefficients are taken from the forward solution. These fields are also used for
defining the initial condition for the first time block. Subsequent time blocks are
started making use of fields from the previous block.

In general, the assimilation procedure developed in this study is immediately
suitable to include more than 2 partial tides as forcing at the open boundaries (as
has been mentioned in Section 1.3). In this study the model calculations are
limited to M, and S,. The reason for this restriction is to make the interpretaion of
results easier, also in view of the very different number of observation being
available for the individual tidal constituents.

Table 4.5.1 Positions of data used in assimilation.

Station ID Busition Location
Lat Long

AO01 53°46.000° N 3°43.000° W Irish Sea
A02 53°46.000° N 4°08.000° W Irish Sea
A03 52°04.000° N 5°47.000° W Irish Sea
A04 54°09.000° N 3°40.000° W Irish Sea
A05 54°39.000° N 3°55.000° W Solway Firth
A06 53°30.000° N 3°11.900° W Queens Channel
A07 51°45.200° N 6°35.700° W Celtic Sea
A08 51°20.000° N 6°30.000° W Celtic Sea
A09 50°35.000° N 6°10.000° W Celtic Sea
Al10 51°27.000° N 7°51.000° W Celtic Sea
All 50°33.000° N 7°32.000° W Celtic Sea
Al2 51°24.600° N 5°00.600° W Bristol Channel
Al3 50°55.100° N 4°59.900° W Bristol Channel
Al4 51°20.300° N 3°06.200° W Severn Estuary
Al5 51°12.900° N 3°28.300° W Severn Estuary
Al6 54°57.000° N 5°35.700° W North Channel
Al7 55°27.800° N 6°09.800° W North Channel
Al8 51°30.618’ N 2°42.846° W Avonmouth
A19 51°13.002° N 3°07.998° W Hinkley Point
A20 51°34.002° N 3°58.002° W Mumbles
A21 50°06.144° N 5°32.502’ W Newlyn
A22 53°18.822° N 4°37.158° W Holyhead
A23 53°19.914° N 3°49.500° W Llandudno
A24 54°39.900° N 5°40.140° W Northern Ireland
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In the positions where data are assimilated, both partial tides (M, and S,) and their
over- and compound tides (M4, M, 2SM,, MS4, 2MSe, and 2SMg) are used to
generate elevation as has already been mentioned in equation (4.3.7). The angular
frequencies of these tidal constituents are given in Table 4.5.3.
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Figure 4.5.1 Positions of data used in assimilation.

The continuation is done after a sufficient number of CGLS and non-linear
iteration steps are performed, and the computations are finished after the complete
time period reached more than 14.7 days, the beat period of M, and S,. With this
length of time series, two predominant partial tides M, and S; can be
distinguished unambiguously from the solution.
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Figure 4.5.2 Positions of independent stations.

As has already been mentioned in Section 4.3, the matrix A which consists of
coefficients appearing in dynamics equations is a sparse matrix. Based on the
CGLS algorithm given in Section 2.2, there are two matrix-vector multiplications
exist inside the CGLS loop. Beside that, the size of matrix A used in the
calculation is rather large, therefore a special treatment is needed to manage the
large sparse matrix created and used within a time block and matrix-vector
multiplications to reduce the need of computer memory. To do this, a subroutine
called APROD is created performing (y + Ax) in direct mode and (x +A" y) in
transpose mode for a given n element vector x and m element vector y and A is
not created explicitly (adopted from Paige and Saunders, 1982). An OpenMP
parallelization (Chandra et al., 2001) is also applied to share the the matrix-vector
multiplication processes into some processors to increase the calculation speed.
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Table 4.5.2 Positions of independent stations.

Station ID Position Location
Lat Long

101 53°45.800° N 4°07.000° W Irish Sea
102 50°31.700° N 7°36.700° W Celtic Sea
103 51°24.400° N 3°09.700° W Severn Estuary
104 51°22.800° N 3°07.100° W Severn Estuary
105 50°37.500° N 4°54.000° W Bristol Channel
106 50°35.300° N 4°50.000° W Bristol Channel
107 51°21.500° N 3°00.000° W Severn Estuary
108 55°51.600° N 5°44.500° W North Channel
109 51°12.468°' N 4°06.606° W Ilfracombe
110 51°42.354’ N 5°03.030° W Milford Haven
111 51°33.000° N 2°58.998° W Newport (Gwent)
112 51°37.000° N 3°55.0000 W Swansea
113 52°00.768° N 4°58.956° W Fishguard
114 53°27.000° N 3°01.002” W Gladstone Dock
I15 55°44.970° N 4°54.294° W Millport
116 55°37.662° N 6°11.328° W Port Ellen
117 54°50.544° N 5°07.134° W Portpatrick
118 56°37.386° N 6°03.768° W Tobermory
119 54°01.884’ N 2°55.236° W Heysham
120 54°39.000° N 3°34.086° W Workington
121 52°43.140° N 4°02.628° W Barmouth
122 55°12.000° N 6°39.000° W Portrush
TO1 52°57.000° N 4°34.000° W Llanbedrog
T02 51°27.000° N 3°09.000° W Fishguard
TO3 51°35.000° N 3°49.000° W Swansea
T04 54°03.000° N 3°09.000° W Heysham

T05/D03 54°46.000° N 5°25.0000 W North Channel
DO1 55°25.000° N 5°45.0000 W North Channel
D02 55°11.000° N 6°04.000° W North Channel

Table 4.5.3 List of analysed tidal constituents.

Tidal Constituent | Frequency (o, rad/s) Origin
M, 1.4053 x 107 Lunar
S, 1.4544 x 107 Solar
M, 2.8105 x 10™ 2x M,
Ms 42158 x 10™ 3x M,
2SM, 1.5036 x 107 2xS,-M,
MS, 2.8597 x 10™ M, + S,
2MS; 4.2650 x 10™ 2xM,+ S,
2SMg 43141 x 10™* 2xS,+ M,

4.6. Harmonic analysis

In order to analyse the result from the assimilation model, an harmonic analysis is
performed to obtain the amplitude and phase of both partial tides and their over-
and compound tides. The harmonic constants obtained from this harmonic
analysis then compare to the data from independent stations (see Table 4.5.2 and

27



Figure 4.5.2 for their detailed positions) to study the performance of the data
assimilation procedure and the influence of the assimilated data.

Harmonic analysis is a method for determining the amplitude and phase of certain
harmonic or wave components in a set of data. The time series of data set to be
analysed can be regarded as having the form:

NC

()= A, + (A, coslo 1, )+ B, sinlo 1,)) (4.6.1)

j=1

with j=1,...,NC is the number of tidal constituents to be analysed, A is mean water
level, o 1s the angular frequency of j-th tidal constituent, and ¢, indicates time.
The values of amplitude (h;) and phase (g;) of respective tidal constituents
searched for, then can be calculated by:

_ 2 2
h; = A +B;

A; and B; can be obtained by computing the least squares solution to the
overdetermined linear algebraic system of equation Ax = b with A as a matrix
containing NC selected frequencies with size (N+1) x (NC+1), where N indicating
the number of time levels. Vector b with size (N+1) is defined by the data set.

28



Chapter 5
Model Evaluation

5.1. Schematic canal model

In general, the experiment shows that by applying the assimilation procedure
described the deviation of “to be corrected” solution from the “reference” solution
can be reduced significantly. As already mentioned above, the original relative
root mean square (rms) deviation between the “reference” and “to be corrected”
solutions is 35.68%, and after applying the assimilation procedure, the relative
rms deviations becomes less than 5% (see Table 5.1.1).

Table 5.1.1 Deviations of the “to be corrected”
from the “reference” solution dependent upon time
block characteristics of data assimilation.

Solution Deviation (%)

“to be corrected” solution 35.68
KAE=84 4.30
KAE=105 4.05
KAE=140 3.94
KAE=210 3.24
KAE=420 1.38
KAE=105+20 overlap 2.79
KAE=105+40 overlap 1.49
KAE=210+50 overlap 1.19

The experiments with different time block lengths show that the deviation
monotonously decreases with increasing block length. An interesting result is
obtained when applying an overlapping interval of continuation in the assimilation
procedure. In that case the deviation is significantly smaller as compared to the
assimilation using the same time block length but without an overlapping interval.

When inspecting the amplitudes (Figure 5.1.1) of both partial tides (o;, 02) and
some of their dominant over- and compound tides (o3=20;+02, 04= 20;- 02, and
07=307), in general the “to be corrected” solution can be improved significantly
except for a4 where the amplitude of the assimilation solution is overestimated for
KAE=105 and even more for KAE=210. Only for KAE=420 one obtains
satisfactory results. However the overestimation of the o4,-amplitude is reduced
significantly when the overlapping interval of continuation is applied, especially
in the case of KAE=105+40 (see Table 5.1.2), showing a good agreement with o,-
amplitude of the “reference” solution.

Table 5.1.2 gives the rms errors of the amplitudes and phases of the constituents
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mentioned above. This table shows the rms errors of amplitudes and phases of the
various assimilation results. In general the rms errors are significantly smaller
than these of the “to be corrected” solution, except for o4 where the rms errors are
even larger for time block lengths equal to 105 and 210 time steps than for the “to
be corrected” solution.

The amplitude overestimation of ¢4 occurs perhaps because the o4-signal is very
small as compared to the strong astronomical partial tides o; with neighbouring
frequency. This phenomenon is obviously sensitive to the length of the time
block, because when choosing time block length equal to 420 time steps
(complete beat period), the assimilation solution is sufficiently close to the
“reference” solution, also with respect to oy.

Significant improvement of phases due to data assimilation can also be seen in the
solutions (Figure 5.1.2), especially for o; where the deviation between the
“reference” and “to be corrected” solutions is very large. From this figure we can
take that also for o4 the assimilation solutions for all time block selections are
improved and are sufficiently close to the “reference” solution, except at cells
number 15 up to 19 (for length of time block equal to 105 time steps) and at 16 up
to 21 (for length time block equal to 210 time steps). On the other hand, the
assimilation procedure with an overlapping interval of continuation can reduce the
phases overestimation and underestimation, respectively, occurring in cells
number 15 up to 19 (for length of time block equal to 105 time steps) and in 16 up
to 21 (for length of time block equal to 210 time steps) decisively.

Table 5.1.2  The root mean square (rms) errors of amplitude and phase of the
“to be corrected” and of assimilation solutions.
Amplitude (m)

Constituents To be KAE= KAE= KAE= KAE= KAE=
corrected 105 210 420 105+20 105+40
0 0.04642 0.00217 0.00169 0.00119 0.00168 0.00101
03 0.02498 0.00078 0.00080 0.00081 0.00098 0.00099

g5=20+0; | 0.00236 0.00015 0.00010 0.00008 0.00010 0.00004
2=20,-0; 0.00060 0.00096 0.00143 0.00023 0.00047 0.00009
07=30; 0.00096 0.00021 0.00009 0.00006 0.00004 0.00003

Phase (°)
0 10.02 2.74 1.88 1.05 1.90 1.07
0, 9.48 1.39 1.04 0.38 0.83 0.43
035=20,+0; 112.44 4.97 3.43 1.39 1.44 1.18
2=20;-0; 23.30 46.94 40.44 10.64 25.65 2.93
07=30; 35.50 25.53 18.55 22.94 16.16 17.07

For o7, the phase at cell numbers 1 up to 5 is overestimated by the assimilation
solutions with time block lengths equal to 105 and 210 time steps, while for time
block length equal to 420 time steps, the phase is underestimated and close to the
“to be corrected” solution. On the other hand, the assimilation procedure with an
overlapping interval of continuation can reduce these phase overestimations by
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about 50%. The same situation is found at cells number 7 up to 10, but as
compared to the “to be corrected” solution, the results from the assimilation
experiments yield better agreement with the “reference” solution at these cells.
Again, the assimilation procedure with an overlapping interval of continuation can
reduce this deviation significantly.

Amplitude (m)
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Figure 5.1.1 Comparison of amplitudes as given by the solutions

“reference”, “to be corrected”, and “assimilation with time block equal to
105, 210, 420, 105420, and 105+40 time steps” for o;, 02, 03, 04, and o7.
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Figure 5.1.2 Comparison of phases as given by the solutions “reference”,
“to be corrected”, and “assimilation with time block length equal to 105,
210, 420, 105+20, and 105+40 time steps” for a;, 02, 03, 4, and o7.

Apart from generating realistic results by making use of reliable data information,
as mentioned above, it is aimed at also finding out what kind of model deficiency
has been compensated by the data used for assimilation. As has been shown,
instead of partial differential equation problem with unique solution a
minimization problem is treated when assimilating data into a model. The
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resulting data and dynamical residuals give information on the reliability of the
magnitude of the corresponding assumed errors. The dynamical residuals,
moreover, should allow drawing conclusions about the model deficiencies (Zahel
et al., 2000). In this schematic model investigation the model deficiency is
prescribed and fictive data have been produced by the reference model, having
been defined as true. This procedure not only allows to compare the data induced
improvement of the solution of the deficient model to the true solution, but also
enables inspecting in how far the dynamical residual reflects important features of
the true residual, i.e. the model defect.

From the equation system of the classical model and that of the data assimilation
model, both in discretized form,

A x —b=0 and Aaxa—r—b=0

is taken by some rewriting and comparison of individual terms
r= Aa(xa - xw)+ (Aa - Aw)xw + (Aw - Aw)xw (511)

A,, denotes the matrix defining the true model, where the index indicates that the
non-linear constituents are determined by the true solution x,. The matrix Aa
defines the deficient model with the non-linear constituents determined the
solution x,. The meaning of the matrix AW is obvious. The third term on the right

hand side represents the true residual, the other terms on the right hand side are
correction terms tending to zero with x, tending to x,,. These terms have been
evaluated for the experiment KAE=105+40 being regarded as feasible under the
conditions of a realistic adjacent sea scenario. In brackets the corresponding
values are given for the experiment KAE=210+50 yielding the smallest rms
deviation of x, from x,, of all experiments made (see Table 5.1.1), namely 1.19%.

The rms deviation of the dynamical residual from the true residual amounts to
28.7% (24.0%). The most important correction term is the first one, whereas the
second one solely depends upon the non-linear constituents. As the non-linearity
is weak in this model the second term is small. Considering the first term, the
deviation from the true residual amounts to 1.7% (1.4%) in this experiment. Only
grid points have been considered in the evaluation, for which the equation is not
directly influenced by the initial condition and the open boundary condition.

Figures 5.1.3 and 5.1.4 show the residuals mentioned above at the beginning and
at the end of each time block. The red line indicates the dynamical residual, while
the blue one indicates the true residual. The black dashed line denotes the
dynamical residual — correction term which comes close to the true residual, as the
non-linearity is weak and the equation (5.1.1) must be fulfilled.
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Figure 5.1.3 Plot of the residual for the experiment KAE=105+40 at the

beginning of each time blocks. The rms deviation of the dynamical residual from

the true residual amounts to 28.7% (dyn. res), and 1.7% when considering the

correction term (dyn. res — corr. term).

It is important to note that the dynamical residual reflects the main features, e.g.

maxima, minima, position of zero values of the true residual, although data are
assimilated only from two positions (cell numbers 8 and 15). This result is also in

34



case of x, tending to x, in the mean not self-evident, because it is the first (and
second) term which must become small everywhere. Hence, using this method of
data assimilation suggests that in realistic scenario, information on the unknown
deficiencies of the classical model can be taken from the resulting dynamic
residual.

x 10712 time=105
tl " [— dyn.res
— trueres
1k — — corr.term |
— - dyn.res—corr.term
©
3
e or R
3 —
1+ -
_2 | | | | I 1 | | | | | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
X 10'12 time=210
T T T T T T T T T T
1 i
©
3
e or R
o
1t i
_2 | | | | | | | | | | | | | | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
X 10’12 time=315
T T T T T T T T T T
051 R
© or R
>
S
(%2}
L _05F b
1+ -
_15 | | | | | | | | | | | | | | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
X 10'12 time=420
T T T T T T
051 i
©
3
o or R
o
-0.51 R
1 ! !

0 11 12 13 14 15 16 17 18 19 20 21 22 23
grid no.
Figure 5.1.4 Plot of the residual for the experiment KAE=105+40 at the end of

each time blocks.

R S TR RO RO N N
1 2 3 45 6 7 8 91

35



5.2. Two dimensional non-linear model of Irish and Celtic Seas
5.2.1. The forward model

The forward model is run with the same parameter values as already mentioned in
Section 4.5. The amplitudes and phases obtained from this model are used for
generating first guess and initial value fields in the very beginning of performing
the data assimilation procedure. At the next step of the assimilation process, the
amplitudes and phases from the forward model results are used to determine the
initial values, while the first guess fields needed in this step of the assimilation
process are taken from the previous assimilation results.

The result of the forward model is compared to observations as listed in Tables
4.5.1 and 4.5.2 for M,, S,, 2SM,, My, MS4, Mg, 2MSe, and 2SMg, to the model
result of Davies and Jones (1992) for M, and S,, and to the result of Andersen
(1999) for My, Mg, and MS,. This comparison is done in order to learn about the
performance of the model and in particular to detect weaknesses. Furthermore,
this comparison will also be used as the basis when deciding on the positions of
data to be assimilated and when evaluating the data assimilation model result.

Figure 5.2.1 shows the scatter diagram of M, (top panel) and S, (bottom panel)
comparing model results to observation. By using this diagram we can see easily
how well the forward model result compares to the observations. For M,, in
general the amplitudes (left top panel) are fairly good, except in the area of Bristol
Channel (square) and of the eastern Irish Sea (circle), where the amplitudes are
underestimated. The phases (right top panel) are also satisfactorily reproduced
except in the area of Bristol Channel (square), Sound of Jura (down triangle) and
North Channel (diamond), where the phases are overestimated. For S,, the
underestimation of amplitudes (left bottom panel) are also found in the Bristol
Channel (square), eastern Irish Sea (circle), Cardigan Bay (left triangle), and
North Channel (diamond). Similar phase overestimations as for M, are also found
for S, in the Bristol Channel (square), Sound of Jura (down triangle) and North
Channel (diamond).

When comparing the results of the forward model to the observations in more
detail, it is found that the amplitude of M, in the eastern Irish Sea (stations AOI,
A02, AO4, A0S, A06, A23, 101, 114, 119, 120, T4) and in the Bristol Channel
(stations Al4, Al5, A18, A19, A20, 103, 104, 107, I11, 112, TO2, TO3) is
underestimated by up to more than 30 cm (Figure 5.2.2 top panel).
Underestimations of tidal amplitude by more than 20 cm are also found for S, in
the eastern Irish Sea and Bristol Channel, and additionally also at station TO1 in
Cardigan Bay and at stations TOS5, DO1, D02, and DO3 in the North Channel
(Figure 5.2.2 top panel). Overestimations of M,- and S, phases reaching more
than 45° are found in the Bristol Channel (stations Al14, A18, A19, 103, 104, 107,
I11, TO2), North Channel (stations A17 and DO1), and at stations I08 and 116 in
the Sound of Jura (Figures 5.2.1 and 5.2.2 bottom panels).
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Figure 5.2.1 Scatter diagram of M, (top panel) and S, (bottom panel) amplitudes
and phases obtained by the forward model results and observations.

These systematic amplitude underestimations and phase overestimations around
the eastern Irish Sea and Bristol Channel are understandable. The forward model
used in this study has a coarse grid resolution, and therefore the phenomena in the
shallow water areas, where the non-linearity is rather strong, can not be
reproduced sufficiently.

The cotidal charts of M, and S, from the forward model are compared to the
model result of Davies and Jones (1992). For M, (Figure 5.2.3 left panel), the
oscillation patterns in general are very similar, but the amplitudes at some places
are lower than those obtained by them. Significant differences are found in the
eastern Irish Sea (about 60 cm) and in the Bristol Channel (more than 100 cm). In
general, the positions of amphidromic points are close to each other. Also for S,
(Figure 5.2.3 right panel), the corange and cophase patterns of both solutions
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appear being rather similar. The amplitudes, especially in the eastern Irish Sea and
inwards in the Bristol Channel, differ only by 10 cm. The positions of
amphidromic points are also generally close to each other.
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Figure 5.2.2 Comparison of (a) M, and (b) S, amplitudes and phases between
forward model elevations and data.

The elevations of over- and compound tides obtained by the forward model are
also tried to be evaluated. From Figure 5.2.4 it can be seen clearly that elevation
underestimations as well as overestimations are found almost everywhere. Table
5.2.1 gives the rms errors of the forward model elevations compared to the
observations. They suggest that the forward model can not produce tidal
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elevations of shallow water tidal constituents adequately.

Sinha and Pingree (1997) have mentioned that accurate simulation of the higher
tidal harmonics (the My and Mg constituents) poses a number of problems, which
also have been addressed by others. Beside the model resolution, the simulation of
higher harmonics is complicated due to the fact that they can be generated as well
as be dissipated by friction. For My, advection and continuity effects are the
important source terms, whereas Mg is generated by bottom friction. Furthermore,
any errors in the M, phase will be amplified twofold in the M4, while increasing
the diffusion coefficient, which can be chosen as a possibility to improve the My
result, will tend to reduce the M, tide.

Table 5.2.1 Amplitudes (h, cm) and phases (g, °) of rms errors of over- and
compound tides obtained by the forward model.

2SM, MS, 2MS; 2SM M, M,

hy g hy g hy g hy g hy g hy &

rmserror | 3.1 | 663 | 44 | 738 | 2.7 | 111.1 | 0.7 | 86.1 | 83 |61.1 | 24 | 111.6

5.2.2. The data assimilation model

Data assimilation experiments using the continuation procedure with time block
lengths of 1 day and 4 days, respectively, are carried out until a total simulation
time of more than 14.7 days is reached in each case. The weighting factors are
chosen to take the values 1.0 m™'s for the dynamical U- and V equations, 1.0 m™
for the dynamical ¢ equation, and 1.0 m™ for the data equation. Data from 24
positions are assimilated (see Figure 4.5.1). The assimilation experiment with 1
day time block is performed twice, firstly with and secondly without residual
smoothing process. For the experiment with 4 days time block, the assimilation is
performed without residual smoothing process only.

5.2.2.1. Data assimilation without smoothing of residual
5.2.2.1.1. One day time block length

In general, when comparing the results of the forward model with the solution
obtained by the model with data assimilation, a significant improvement can be
seen clearly (Figures 5.2.5 — 5.2.12). The model with data assimilation procedure
yields results that are almost as realistic as those obtained by using a high
resolution tidal model, which agree rather well with the observations.

By applying the model with assimilation procedure, the positions of amphidromic
points of M, and S, are improved and agree very well with the observations and
the high resolution tidal model results of Lee and Davies (2001) for M; in the
Irish Sea, with those of Davies and Hall (2000) for M, and S, tides in the North
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Figure 5.2.3 Tidal elevations of M, (left panel) and S, (right panel) from the forward model.
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Figure 5.2.4 (continued).

Channel of the Irish Sea, with those of Jones and Davies (1996) for M,, M4, Mg
and S, tides in the eastern Irish Sea, as well as with the data assimilation results
from Taguchi (2002) for M,, My and Me. The patterns of My and Mg clearly
resemble those given by Andersen (1999) who calculates shallow water tides on
the European shelf based on the TOPEX/POSEIDON altimetry data. The pattern
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of My also clearly resembles that given by Andersen et al. (2006) who calculate
shallow water tides on the European shelf based on hybrid altimetry data
assimilation model. Unfortunately, the MSy-tide obtained by Andersen (1999) is
not as accurate as the hydrodynamic shelf model of Flather (1976, 1981), and
therefore can not be used for comparison. There are also no corresponding fields
for 2MS¢, 2SMg and 2SM; which can be used for comparison. Hence the
comparison can only be based on some data from independent stations inside the
model domain.

The comparison of observed and computed (forward and assimilation models) M,
and S, tidal elevation amplitudes and phases at independent stations (Figures
5.2.13.a and 5.2.13.b) shows that usually the amplitudes and phases, which are
under- or overestimated by the forward model, can adequately be reproduced
when applying the model with data assimilation.

From Figures 5.2.13.a and Table 5.2.2 we can take that larger absolute errors (the
difference between assimilation results and data) of M, almost always appear at
the stations located close to the coastline. The maximum difference of M,
amplitude is found at station 117 in the eastern part of the North Channel where
the amplitude of the assimilation result is 45.6 cm larger than the observed one
amounting to 133.7 cm. At this station, the difference between the forward model
and the observation is 17.3 cm (underestimated). At station 119 in the eastern Irish
Sea the observed amplitude of 315.7 cm is underestimated by 20.4 cm, but
compared to the forward model result a significant improvement is found at this
station. The amplitude from the forward model at this station is underestimated by
100.8 cm. A similar case also can be found at station I05 in the Celtic Sea. Here,
an original underestimation by the forward model of 103.0 cm is reduced by data
assimilation to only 17.4 cm. Very significant improvements also can be found at
stations 101, 103, 104, 107, 111, 112, 114, 120 where the underestimation appearing
in the forward model can be minimized by assimilating data. When comparing the
M, phase, usually it is found that the data assimilation model produces results
which are close to the observations except at station I08 in the Sound of Jura
where the phase is underestimated by more than 60°, and also at station 105 in the
Celtic Sea close to the mouth of Bristol Channel, where the phase is
underestimated by about 30°. Station I05 is located close to 106, but at station 106
it is found that the phase almost agrees with the observation. Phase overestimation
is found at station I18 in the Sea of Hebrides, close to the northern open boundary.

Figure 5.2.13.b and Table 5.2.2 show the comparison between data, assimilation
and forward model results for S, at the same independent stations mentioned
above. It is found that the elevations obtained by the data assimilation model are
also as a rule close to the observations. The underestimations obtained by the
forward model can be reduced significantly when assimilating data from 24
positions. Although the result is satisfactory, some over- and underestimations
worth mentioning are still found. At station 105, the amplitude and phase from the
assimilation model are underestimated and almost agree with the forward model
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result. At station I08 in the Sound of Jura the amplitude is also underestimated
and smaller than the forward model result. Overestimations of amplitude are
found at station 117 in the North Channel of the Irish Sea and at station 121 in the
Cardigan Bay, while phase overestimation is found at station 118 in the Sea of
Hebrides.

For 2SM,, as shown in Figure 5.2.13.c and Table 5.2.2, data assimilation can
reduce the underestimation obtained by the forward model significantly. The rms
error is reduced significantly, from 2.8 cm obtained by the forward model to 1.3
cm (amplitude) and from 72.2° to 31.9° (phase). Although data assimilation
reduces the rms error significantly, the results from the data assimilation model
are still overestimated as compared to the observations. This phenomenon is
similar to that one having been obtained by the schematic canal model experiment
where the overestimation arises for the oy constituent, a corresponding compound
tide.

For My, as shown in Figure 5.2.13.d and Table 5.2.2, some overestimations
yielded by the forward model also can be reduced clearly. The rms error is
reduced by more than 70% for the amplitude, from 8.6 cm to 2.3 cm, while for the
phase the rms error is reduced from 69.0° to 47.4°. Inspecting the cotidal chart
(Figure 5.2.8) and comparing the forward model (left panel) with the data
assimilation model (right panel) results, an improvement of corange and cophase
patterns can be seen clearly. The cotidal chart also agrees very well with Taguchi
(2002). An amphidromic point in the St. George’s Channel, which appears further
southeast applying the forward model, can be significantly improved. The
elevation pattern clearly resembles that given by Andersen et al. (2006) who
calculates shallow water tide constituent My on the European Shelf applying
generalized inverse methods assimilating data from TOPEX/POSEIDON as well
as from tide gauges. Jones and Davies (1996) have calculated also My tide in the
eastern Irish Sea using 3-D high resolution model (0.9 km by 1.0 km grid
spacing). The pattern of elevation obtained by the data assimilation model in the
eastern Irish Sea is also compared to their result, and it is found that essentially
the pattern is rather similar, regarded to agree adequately with the pattern
computed by Jones and Davies (1996). Improvements are also obtained for MSy,
Ms, 2MS¢, 2SMp tides (Figures 5.2.13.e — 5.2.13.h and Table 5.2.2). The cotidal
chart of Mg agrees very well with Taguchi (2002), and the elevation in the eastern
Irish Sea compares well with Jones and Davies (1996). The large amplitude in the
Morecambe Bay which can not be produced by the forward model, is generated
by the data assimilation model however.

Table 5.2.3 gives the comparison of elevations obtained by the data assimilation
model in this study with those from Taguchi (2002) at independent stations. For
M,, the rms error is nearly equal while for My, the rms error obtained in this study
is larger than in Taguchi (2002). This significant difference is due to the fact that
fewer data are assimilated in this study than in Taguchi (2002), as has already
been mentioned in Section 4.5. Furthermore, only at two independent positions
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inside the Bristol Channel the model results for My have been compared.
Although some improvements are obtained for this area applying the data
assimilation model the computed elevation amplitudes still prove as
underestimated for My.

A special comparison is done for the computed M,- and S, elevations in the North
Channel of the Irish Sea with high resolution (of order 1 km) classical model
results of Davies and Hall (2000). This comparison is presented in Table 5.2.4.
From this table it can be taken that the rms error of the M, amplitude resulting
from the data assimilation model is by 5.5 cm smaller while the phase is by 10°
larger than the corresponding values from Davies and Hall (2000). For the S,
elevation the rms errors resulting from the data assimilation model are smaller
than those yielded by the model of Davies and Hall (2000), i.e. they are smaller by
1.9 cm and by 41.6° smaller, respectively.

In this data assimilation model, tidal elevation and east-west and south-north
volume transports are generated simultaneously. Besides examining the elevation
fields, it is necessary to consider also the distribution of currents since changes in
the gradient of elevation field produced by data assimilation can lead to
disturbances in the current fields. The tidal current ellipses at every second grid
point obtained by the data assimilation model are given in Figures 5.2.14 — 5.2.17.
From those figures and other descriptions of the current field, it is evident that
assimilating elevation data does not introduce physically unrealistic properties of
this field, neither in the vicinity of positions from which data are assimilated.
Although the current fields can scarcely be compared with reliable data, it is
possible to realize that the computed patterns in general agree with those which
are available from classical models (Davies and Jones, 1992; Lee and Davies,
2001) and from data assimilation model result of Gekeler (1995). Furthermore,
the computed patterns are as smooth as is typical of real fields.

In the Celtic Sea region and in the area close to the northern open boundary the
tidal current ellipses are well developed. Strong currents are found in the North
Channel, St. George’s Channel, eastern Irish Sea, and in the Bristol Channel. In
the St. George’s Channel the current ellipses of M, and S, are rectilinear, have
south-north orientation and the speed exceeding 1.0 ms'. The 2SM, and My
currents in this region are also strong (exceeding 0.2 ms™") and have a south-north
orientation but with non-degenerated ellipses. In the Bristol Channel the current
ellipses are also rectilinear and have an east-west orientation. In the northern and
southern parts of eastern Irish Sea strong flow with current ellipses aligned in an
east-west direction occurs being separated by near circular tidal ellipses to the east
of Isle of Man. The 2SM,, My, and MS, currents in the southern part of eastern
Irish Sea exceed 0.2 ms™'.
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5.2.2.1.2. Four days time block length

In the schematic canal model experiments, data assimilation experiments with
different time block lengths are performed showing that the choice of time block
length affects the rms deviation. However, already using moderate block length
leads to good results. But some of the smaller over- and compound tides, which in
these experiments are generally small as compared to the astronomical tides,
prove as particularly sensitive to the block length.

In order to estimate precisely the effect of time block length on the results of two
dimensional non-linear data assimilation model of Irish and Celtic Seas, apart
from the experiment with one day time block length, an experiment with time
block length of 4 days is performed in this work also. Results of this experiment
are given in Figures 5.2.18 — 5.2.21.

In general, the cotidal charts of M, and S, are almost equal to those obtained by
the assimilation with 1 day block length. The rms errors of amplitude and phase
obtained by this experiment as compared with 1 day block length gives
insignificant differences. For M,, the amplitude and phase obtained by 4 days
block length are larger by 0.9 cm and by 1.1°, respectively, while for S, the
amplitude is by 0.1 cm smaller and the phase by 0.8° larger (see Table 5.2.5).

On the other hand, when comparing the results of 4 days time block assimilation
model with those obtained by 1 day time block, a very different pattern of cotidal
chart is found for 2SM, elevation (Figure 5.2.19 left panel), while for other over-
and compound tides the differences are not little significant. Table 5.2.6 gives the
comparison of rms errors between the data assimilation model with 1 day and 4
days time blocks. This comparison suggests that the solution for 2SM, constituent
is clearly sensitive to the time block length as compared to observations at
independent stations, the data assimilation model solution for 2SM, with 1 day
time block length gives better results than with 4 days time block length.

This phenomenon is quite similar to that obtained in the canal model experiments,
as has already been mentioned in Section 5.1. In the canal model experiment, the
elevation of o,=20;- 02, which is corresponding to 2SM, in the 2D assimilation
model of Irish and Celtic Sea, is overestimated when the length of time block is
increased to 105 and 210 instead of 84. In Section 5.1 it has already been
mentioned that the amplitude overestimation of o4 occurs perhaps because the oy
signal is very small as compared to the strong astronomical partial tides o; with
neighbouring frequency. This phenomenon is obviously sensitive to the length of
the time block, because when choosing time block length equal to 420 time steps
(complete beat period), the assimilation solution is sufficiently close to the
“reference” solution, also with respect to o,. In the case of 2SM,, the frequency is
close to the S, and furthermore the amplitude is also very small compare to that of
Ss.

47



Forward Model Assimilation Model
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Figure 5.2.5 M, tidal elevation obtained by forward model (left) and data assimilation model with time block length of one day without
smoothing of residual (right)
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Forward Model Assimilation Model
z — Amplitude (m) and Phase (°, Greenwich) z — Amplitude (m) and Phase (°, Greenwich)
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Figure 5.2.6 S, tidal elevation obtained by forward model (left) and data assimilation model with time block length of one day without
smoothing of residual (right)
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Forward Model Assimilation Model
z — Amplitude (m) and Phase (°, Greenwich) z — Amplitude (m) and Phase (°, Greenwich)
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Figure 5.2.7 2SM, tidal elevation obtained by forward model (left) and data assimilation model with time block length of one day without
smoothing of residual (right)
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Forward Model Assimilation Model
z — Amplitude (m) and Phase (°, Greenwich) z — Amplitude (m) and Phase (°, Greenwich)
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Figure 5.2.8 M, tidal elevation obtained by forward model (left) and data assimilation model with time block length of one day without
smoothing of residual (right)
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Forward Model Assimilation Model
z — Amplitude (m) and Phase (°, Greenwich) z — Amplitude (m) and Phase (°, Greenwich)
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Figure 5.2.9 MS, tidal elevation obtained by forward model (left) and data assimilation model with time block length of one day without
smoothing of residual (right)
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Forward Model Assimilation Model
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Figure 5.2.10 Mg tidal elevation obtained by forward model (left) and data assimilation model with time block length of one day without
smoothing of residual (right)

53



Forward Model Assimilation Model
z — Amplitude (m) and Phase (°, Greenwich) z — Amplitude (m) and Phase (°, Greenwich)

F Hoo3 F Hoo03
E E
(o) (o)
- o028 - oo g
s s
£ £
<< <<
o002 o002

352 353 354 355 356 357 358 352 353 354 355 356 357 358

Figure 5.2.11 2MSg tidal elevation obtained by forward model (left) and data assimilation model with time block length of one day without
smoothing of residual (right)

54



Forward Model Assimilation Model
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Figure 5.2.12 2SMg tidal elevation obtained by forward model (left) and data assimilation model with time block length of one day without
smoothing of residual (right)
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forward model and data.
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Figure 5.2.13 (continued)



Table 5.2.2 Comparison of observed (h,,g,), assimilation (f,g,) and forward model
) amplitudes (cm) and phases (°) at independent stations.

(hf’g

. M,

Station No. I S I 5 Iy %
101 237.4 317.2 240.4 315.1 202.5 315.4
102 152.9 136.1 158.7 135.3 159.4 135.9
103 393.1 189.5 389.6 190.0 274.6 253.9
104 389.3 188.8 392.3 191.3 279.9 255.9
105 248.0 167.5 230.6 145.0 243.6 147.5
106 244 .4 143.0 236.8 146.6 251.4 149.8
107 390.1 180.7 395.1 187.7 281.7 249.8
108 26.5 87.0 15.9 13.1 11.1 235.6
109 303.8 162.7 307.1 164.5 295.2 180.5
110 221.0 172.7 220.9 170.0 213.5 173.3
111 412.9 194.8 399.2 195.7 290.5 261.5
112 315.0 173.2 313.3 171.8 276.2 191.0
113 134.7 207.4 143.4 199.8 153.1 194.8
114 303.1 320.7 294.7 316.4 258.1 324.6
115 111.7 342.7 101.9 356.6 73.8 344.5
116 16.0 89.8 11.3 99.9 19.6 180.7
117 133.7 332.3 179.3 340.1 134.9 340.5
118 130.4 168.5 127.2 192.6 127.2 192.5
119 315.7 325.5 295.3 324.3 252.3 329.7
120 272.9 332.1 264.1 332.7 228.8 341.0
121 145.1 238.8 164.3 245.8 165.5 230.8
122 53.7 197.3 58.1 200.2 72.9 201.6

rms error 13.5 18.0 55.0 47.8
. S,

Station No. I 2 I 2 Iy p”
101 74.5 356.0 80.1 354.6 62.9 358.5
102 52.0 176.8 54.9 174.6 52.8 176.6
103 138.8 243.8 140.7 243.3 73.4 306.9
104 137.2 243.1 140.8 245.3 74.5 309.8
105 94.0 212.2 84.6 185.9 81.7 191.6
106 86.3 180.8 87.7 187.7 84.3 194.0
107 147.6 234.0 142.9 241.0 75.6 303.1
108 17.6 150.5 8.4 138.6 12.3 215.6
109 109.4 209.9 115.5 210.7 96.2 2259
110 80.1 216.9 82.0 212.2 72.6 217.3
111 145.8 252.7 142.3 251.2 77.1 316.8
112 113.0 220.0 115.5 218.3 90.3 236.2
113 52.6 248.2 56.4 239.9 54.1 239.0
114 97.2 4.3 99.5 356.7 80.7 12.6
115 29.3 34.6 30.6 48.5 14.2 28.8
116 14.2 154.7 12.8 164.3 16.3 206.7
117 37.3 16.2 56.8 20.7 37.9 21.8
118 53.0 204.9 51.3 230.5 49.5 231.7
119 102.2 8.1 99.8 5.7 78.6 17.1
120 86.8 15.2 89.2 14.7 69.8 27.8
121 54.2 277.0 65.7 281.6 60.5 275.0
122 23.6 210.9 25.7 217.2 32.2 225.3

rms error 6.8 10.2 30.6 34.9
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Table 5.2.2 (continued).

. 2SM,

Station No. I S I 5 Iy %
101 2.4 219.2 3.2 231.1 1.3 224.3
102 1.3 16.3 0.2 10.4 0.1 313.7
103 6.7 56.3 7.6 62.5 3.2 150.2
104 6.4 60.8 8.2 67.1 34 152.3
105 2.3 24.5 2.3 358.3 0.4 331.4
106 4.4 99.3 2.6 3.5 0.5 335.9
107 5.6 81.4 8.4 60.2 3.3 144.7
108 2.0 300.7 2.1 295.9 0.7 325.3
109 4.2 40.1 5.8 31.7 1.1 38.6
110 2.4 59.0 2.1 48.9 0.3 307.3
111 13.1 70.4 9.5 77.0 3.8 158.1
113 1.0 71.0 1.7 72.6 0.4 307.6
114 34 211.1 2.7 228.2 2.5 199.5
115 2.5 263.7 3.0 295.4 1.0 327.3
116 1.3 273.9 1.8 301.9 0.6 332.3
117 2.2 258.5 3.2 272.4 1.2 298.1
118 0.7 293.4 0.8 19.3 0.7 18.8
119 34 233.7 4.3 228.2 2.2 210.6
120 3.0 242.4 3.9 248.3 1.7 237.8
121 2.1 112.6 2.9 94.6 0.6 4.4
122 1.2 243.4 1.1 264.9 0.2 282.1

rms error 1.3 31.9 2.8 72.2
. M,

Station No. I 2 I 2 Iy p”
101 6.3 200.9 8.5 198.0 6.3 250.4
102 4.4 218.1 0.6 212.6 0.1 200.0
103 12.3 13.1 10.8 26.9 20.4 93.9
104 12.7 32.1 11.9 12.9 26.5 95.2
105 5.5 314.5 5.7 239.5 3.3 221.0
106 6.6 239.1 6.0 248.0 4.1 223.9
107 12.3 344.7 10.4 17.6 22.4 73.3
108 2.8 89.6 4.1 87.9 3.2 115.5
109 10.5 350.4 9.0 347.9 16.2 262.8
110 6.3 305.9 6.5 262.9 6.3 291.5
111 16.2 355.9 16.6 358.9 394 104.2
112 6.0 29.2 7.0 10.9 25.9 274.3
113 11.3 19.6 6.0 1.5 3.8 43.7
114 23.4 202.6 16.7 197.8 23.5 233.6
115 8.6 90.3 8.6 103.5 9.8 125.0
116 2.1 65.8 04 283.8 1.6 198.5
118 4.5 180.4 5.0 297.9 5.0 304.6
119 19.6 244.6 21.8 208.2 21.0 245.8
120 13.3 251.1 12.1 244.0 9.4 274.6
121 23.9 62.8 25.0 52.5 13.2 74.9
122 1.8 93.5 1.5 54.1 04 86.4

rms error 2.3 47.4 8.6 69.0
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Table 5.2.2 (continued).

. MS,

Station No. I S I 5 Iy %
101 3.7 235.3 5.1 238.6 34 299.8
102 2.5 272.5 0.2 255.1 0.0 252.4
103 6.5 16.2 4.4 29.8 12.1 144.8
104 4.9 314 7.1 19.8 15.7 148.4
105 2.7 6.6 2.2 295.1 1.6 281.8
106 1.9 280.3 2.3 305.8 1.9 284.1
107 8.4 349.7 4.9 13.3 13.8 125.3
108 0.9 97.8 2.7 114.0 1.6 159.5
109 5.8 51.0 5.0 54.2 9.4 321.6
110 3.1 355.7 2.8 295.0 3.6 341.5
111 14.5 14.1 13.2 21.0 234 160.0
113 5.3 63.2 0.6 129.4 1.6 97.2
114 14.2 245.4 7.9 247.6 14.5 280.3
115 8.5 118.4 6.9 141.4 5.5 166.8
116 1.2 69.2 0.8 17.0 1.1 252.3
117 0.9 85.5 2.1 350.3 1.8 58.2
118 3.5 289.5 4.1 340.8 4.2 346.3
119 11.3 295.1 14.0 248.6 12.8 291.8
120 6.7 298.6 6.9 286.8 5.2 317.9
121 12.8 115.2 7.4 112.5 6.2 115.5
122 0.7 63.7 1.4 238.6 0.2 338.2

rms error 2.6 394 4.1 82.7
. M,

Station No. I 2 I 2 Iy p”
101 0.6 354.0 1.4 310.9 2.1 316.7
102 04 45.8 0.2 107.3 0.3 36.1
103 6.4 231.7 5.9 229.2 7.7 70.1
104 4.1 225.4 6.9 232.8 7.7 74.5
105 1.1 50.8 1.2 90.3 1.8 53.7
106 0.6 60.4 1.0 92.5 1.7 61.7
107 4.7 201.5 7.4 222.3 9.5 69.7
108 4.0 88.3 2.5 121.9 1.0 205.3
109 1.9 344.1 2.4 357.3 5.5 230.5
110 1.4 150.3 1.6 160.3 0.9 342.1
111 8.2 270.3 7.7 248.6 6.5 86.7
114 55 346.9 2.6 10.2 1.2 7.1
115 2.5 304.2 1.1 136.5 2.8 182.2
116 2.6 115.0 2.0 92.3 0.3 30.1
118 1.3 8.3 1.4 190.9 1.3 205.5
120 1.4 281.8 1.1 240.3 1.5 343.5
122 1.8 124.1 1.3 101.4 0.5 327.1

rms error 1.3 65.7 2.3 116.6
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Table 5.2.2 (continued).

. 2MS;

Station No. I S I 5 Iy %
101 0.6 27.0 0.9 357.1 2.0 1.1
102 0.6 89.5 0.2 154.6 0.2 77.1
103 6.4 270.3 6.0 272.5 6.3 123.5
104 5.2 266.6 7.2 281.2 6.2 127.2
105 1.2 73.8 1.0 109.2 1.8 89.0
106 0.7 96.5 1.0 107.3 1.7 94.4
107 6.0 252.8 8.2 268.4 7.6 126.0
108 4.7 142.0 3.0 164.8 0.9 228.9
109 2.3 49.7 2.4 50.5 4.5 278.9
110 1.4 202.5 1.7 207.9 0.7 27.5
111 11.0 319.1 8.4 305.5 4.6 133.1
114 5.3 28.6 1.9 68.6 1.1 61.0
115 2.7 350.1 0.6 42.6 2.6 234.7
116 2.8 159.8 2.4 144.8 0.5 89.1
118 1.2 42.1 1.5 233.9 1.5 247.2
120 1.8 324.9 1.3 282.4 1.5 19.5
121 1.9 137.5 1.9 271.5 8.2 314.6
122 2.0 166.1 1.8 157.4 0.5 32.3

rms error 1.4 58.7 2.7 115.3
. 2SM,

Station No. I 2 I 2 Iy p”
101 0.3 15.9 0.1 51.1 0.5 394
102 0.2 172.6 0.0 176.4 0.0 107.0
103 1.4 3274 1.2 3324 1.1 192.0
104 1.2 306.4 1.2 350.0 0.9 193.1
105 0.4 120.0 0.5 129.5 0.5 123.2
106 0.2 163.2 0.5 129.8 0.5 127.8
107 1.4 320.3 1.7 348.4 1.2 205.9
108 1.2 188.0 0.9 211.8 0.2 2354
111 3.7 59.2 0.7 20.3 0.5 152.6
121 1.3 230.0 1.5 271.6 1.3 341.6

rms error 1.0 30.0 1.1 85.9

Table 5.2.3 Comparison of observed (h,,g,), assimilation model (%,g,) and Taguchi
(2002; hr,g7) amplitudes (cm) and phases (°) of M, and M, at independent stations.

Station No. M,
ho 8o h, 8a hr 8r

TO1 140.4 269.5 131.9 270.2 136.2 267.6
T02 392.0 192.0 389.6 190.0 393.0 189.5
T03 315.0 173.0 314.7 171.6 315.6 174.1
T04 292.0 327.0 295.3 324.3 300.2 326.5
TO5 125.0 324.0 125.1 325.6 126.4 322.6

rms error 4.2 1.8 4.2 1.6
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Table 5.2.3 (continued).

Station No. M,
ho 8o ha 8a hT 8r
TO02 13.0 19.0 10.8 26.9 12.3 13.1
T03 5.0 26.0 7.1 11.1 5.5 27.1
rms error 2.1 11.9 0.6 4.2

Table 5.2.4 Comparison of observed (h,,g,), assimilation model (h,,g,) and Davies and

Hall (2000; hpy,gpy) amplitudes (cm) and phases (°) of M, and S, at independent stations.
Station No. M,
ho 8o ha 8a hDH 8DH
DO1 20.4 31.0 19.8 335.9 12.1 6.0
D02 43.3 309.0 45.6 308.0 45.5 284.0
D03 125.5 324.0 125.1 325.6 117.1 324.0
rms error 1.4 31.8 6.9 20.4
Station No. S;
ho 8o ha 8a hDH 8DH
DO1 10.6 134.0 4.3 131.1 2.9 114.0
D02 4.6 355.0 5.4 352.6 10.6 286.0
D03 33.1 7.0 33.5 9.3 33.3 341.0
rms error 3.7 2.5 5.6 44.1

Table 5.2.5 The rms errors of M,- and S, elevations
obtained by the assimilation model with 1 day (4;p (cm),
g (°)) and 4 days (hsyp (cm), gsp (°)) time blocks as
compared to observation in independent stations.
M, S,

hip 81D hup 84D hip 81D hap 84D

|rmserror 1351180 | 144 |19.1 | 68 | 102 | 6.7 | 11.0

An experiment in the canal model with overlapping interval of 105+40 is
appropriate for reducing the overestimation of o4 elevation significantly. Based on
that experiment, an overlapping interval of 4*%720+180 is also applied here (1 day
simulation time is equal to 720 time steps), but this overlapping still fails to
improve the elevation of 2SM,. Further experiments are probably needed to know
the appropriate time block should be chosen to obtain the best estimation of this
tidal constituent. So far, in view of the evaluations having been done to the
assimilation model results, the assimilation model is recognized to have produced
an adequate estimation as compared to observations. Furthermore, from the
computation point of view (i.e. the need of CPU time and computer memory), this
experiment is not too expensive.
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Figure 5.2.14 Current ellipses of M, (left panel) and S, (right panel) from data assimilation model at every second grid point; black ellipse

denotes clockwise rotation and red ellipse denotes anticlockwise rotation.
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Figure 5.2.15 Current ellipses of 2SM, (left panel) and My (right panel) from data assimilation model at every second grid point; black
ellipse denotes clockwise rotation and red ellipse denotes anticlockwise rotation.
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Figure 5.2.16 Current ellipses of MS, (left panel) and Mg (right panel) from data assimilation model at every second grid point; black
ellipse denotes clockwise rotation and red ellipse denotes anticlockwise rotation.

67



57

Q 0.1 ms™

50
352

|
353

|
354

|
355

|
356

|
357

358

57

Q 0.1 ms™

oooooooooooo

50
352

|
353

|
354

|
355

|
356

|
357

358

Figure 5.2.17 Current ellipses of 2MSg (left panel) and 2SMg (right panel) from data assimilation model at every second grid point; black

ellipse denotes clockwise rotation and red ellipse denotes anticlockwise rotation.
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Figure 5.2.18 Tidal elevations of M, (left panel) and S, (right panel) from the assimilation model with 4 days time block length.
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Figure 5.2.19 Tidal elevations of 2SM, (left panel) and My (right panel) from the assimilation model with 4 days time block length.
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Figure 5.2.20 Tidal elevations of MS, (left panel) and Mg (right panel) from the assimilation model with 4 days time block length.
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Figure 5.2.21 Tidal elevations of 2MS¢ (left panel) and 2SMs (right panel) from the assimilation model with 4 days time block length.
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Table 5.2.6 The rms errors of over- and compound tides elevations obtained by
the assimilation model with 1 day (h;p (cm), g;p (°)) and 4 days (hyp (cm), g4p (°))
time blocks as compared to observations at independent stations.

2SM, M, MS,

hip 81D hap 84D hip 81D hap 84D hip 81D hap 84D

rmserror | 1.3 | 319 ] 3.7 [ 1292 | 23 | 474 | 35 | 489 ] 2.6 | 394 | 2.6 | 55.1

M6 2MS6 2SM6

hip | &o | Hyp | 8 | hup | & | hap | 8w | hip | & | hap | 8w

rmserror | 1.3 | 66.6 | 14 | 590 | 14 | 62.6 | 1.3 | 582 | 1.0 |30.0| 1.0 | 53.2

5.2.2.2. Data assimilation with smoothing of residual

The dynamical residuals obtained by the data assimilation model properly applied
(see canal model) reflects the main features of the true residuals, and using this
method of data assimilation promises that information on the unknown
deficiencies of the classical model can be taken from the dynamical residuals
arising. In this experiment, first order differences of the dynamical residuals have
been considered in the minimization functional with choosing weighting
coefficients such that an appropriate decorrelation length scale of the dynamical
errors is introduced.

It is found that considering the first order differences of the dynamical residuals in
the model leads to an adequate smoothing of the residuals, primarily. It is evident
that without minimizing the differences of the dynamical residuals, highly
unrealistic spikes of the dynamical residuals occur at the positions where data are
assimilated (see Figures 5.2.22 — 5.2.24 left panels).

Figures 5.2.22 — 5.2.24 (right panels) show the dynamical residuals of M, after
introducing the first order differences of the dynamical residuals into the
minimization functional. From these figures it can clearly be taken that the
dynamical residuals become smoother, in particular, in the neighbourhood of the
cells where data are assimilated. Interpreting the residuals with respect to which
model deficiencies they compensate, is a difficult task, which requires additional
investigations and also the use of higher order differences, in particular.

Figures 5.2.25 — 5.2.28 show the elevation cotidal charts of this experiment.
Comparing these charts with those obtained by the data assimilation model
without smoothing of residual (Figures 5.2.5 — 5.2.12 right panels), it is found that
in general the pattern of both results are almost equal. Table 5.2.7 gives the
comparison of both results at the independent stations and can be seen clearly that
the rms error differences are insignificant. A significant difference is found only
for 2SMg phase, where the rms error obtained by the assimilation model with
smoothing of residual is larger by 32.6° than without smoothing of residual. This
significant difference is mainly caused by the phase underestimation by 145° at
station 102 in the Celtic Sea. It means that, in general, introducing the first order
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differences of the dynamical residuals into the minimization functional will not
affect significantly the solution but mainly will reduce the unrealistic spikes of the
dynamical residuals occurring at the positions where data are assimilated,
altogether leading to an adequate spatial smoothing of the residuals. The length
scale of the residuals then corresponds to the decorrelation lengths assumed for
the dynamical errors and hopefully to the scale of the compensated deficiencies,
as applying to the canal model results.
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Figure 5.2.22 Dynamical residual of M, elevation without smoothing of residual (left panel) and with smoothing of residual (right panel).

75
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Figure 5.2.23 Dynamical residual of M, east-west volume transport without smoothing of residual (left panel) and with smoothing of

residual (right panel).
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Figure 5.2.24 Dynamical residual of M, south-north volume transport without smoothing of residual (left panel) and with smoothing of
residual (right panel).
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Figure 5.2.25 Tidal elevations of M, (left panel) and S, (right panel) obtained by the assimilation model with time block length of 1 day
where the smoothing of residual is introduced.
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Figure 5.2.26 Tidal elevations of 2SM, (left panel) and My (right panel) obtained by the assimilation model with time block length of 1 day
where the smoothing of residual is introduced.
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Figure 5.2.27 Tidal elevations of MSy (left panel) and Mg (right panel) obtained by the assimilation model with time block length of 1 day
where the smoothing of residual is introduced.
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Figure 5.2.28 Tidal elevations of 2MSg (left panel) and 2SMs (right panel) obtained by the assimilation model with time block length of 1

day where the smoothing of residual is introduced.
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Table 5.2.7 Comparison of amplitudes 4 (cm) and phases g (°) of elevations which are
observed (4,,g,), obtained by assimilation without (4,,,8,,) and with (%.,g,;) smoothing
of residuals, respectively, at independent stations.

. M,

Station No. ho 8o han 8an has 8as
101 237.4 317.2 240.4 315.1 242.2 315.5
102 152.9 136.1 158.7 135.3 159.8 135.6
103 393.1 189.5 389.6 190.0 391.6 190.3
104 389.3 188.8 392.3 191.3 394.7 191.6
105 248.0 167.5 230.6 145.0 232.4 145.3
106 244.4 143.0 236.8 146.6 238.7 146.9
107 390.1 180.7 395.1 187.7 397.8 188.1
108 26.5 87.0 15.9 13.1 15.2 13.9
109 303.8 162.7 307.1 164.5 309.2 164.8
110 221.0 172.7 220.9 170.0 222.0 170.3
111 4129 194.8 399.2 195.7 401.9 196.0
112 315.0 173.2 313.3 171.8 315.3 172.1
113 134.7 207.4 143.4 199.8 143.1 200.7
114 303.1 320.7 294.7 316.4 296.9 316.5
115 111.7 342.7 101.9 356.6 100.9 356.9
116 16.0 89.8 11.3 99.9 114 103.8
117 133.7 332.3 179.3 340.1 180.9 340.4
118 130.4 168.5 127.2 192.6 128.4 192.8
119 315.7 325.5 295.3 324.3 297.3 324.3
120 272.9 332.1 264.1 332.7 265.5 332.8
121 145.1 238.8 164.3 245.8 164.4 247.6
122 53.7 197.3 58.1 200.2 58.9 200.3

rms error 13.5 18.0 13.5 18.0
. S,

Station No. ho 8o han 8an has 8as
101 74.5 356.0 80.1 354.6 80.1 354.7
102 52.0 176.8 54.9 174.6 54.9 174.6
103 138.8 243.8 140.7 2433 141.1 242.9
104 137.2 243.1 140.8 245.3 141.4 244.8
105 94.0 212.2 84.6 185.9 84.8 185.9
106 86.3 180.8 87.7 187.7 87.9 187.7
107 147.6 234.0 1429 241.0 143.4 240.8
108 17.6 150.5 8.4 138.6 8.4 140.9
109 109.4 209.9 115.5 210.7 115.7 210.6
110 80.1 216.9 82.0 212.2 82.1 212.3
111 145.8 252.7 142.3 251.2 1429 250.7
112 113.0 220.0 115.5 218.3 115.6 218.3
113 52.6 248.2 56.4 239.9 55.7 240.2
114 97.2 4.3 99.5 356.7 99.7 356.5
115 293 34.6 30.6 48.5 29.8 48.5
116 14.2 154.7 12.8 164.3 12.8 165.6
117 373 16.2 56.8 20.7 57.0 21.1
118 53.0 204.9 51.3 230.5 51.1 230.3
119 102.2 8.1 99.8 5.7 99.8 52
120 86.8 152 89.2 14.7 89.2 14.5
121 54.2 277.0 65.7 281.6 64.8 284.0
122 23.6 210.9 25.7 217.2 26.0 217.5

rms error 6.8 10.2 6.2 9.8
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Table 5.2.7 (continued).

Station No. h, 8o [ T S s 8as
101 2.4 219.2 3.2 231.1 3.1 227.4
102 1.3 16.3 0.2 10.4 0.3 350.7
103 6.7 56.3 7.6 62.5 7.6 61.3
104 6.4 60.8 8.2 67.1 7.8 66.1
105 2.3 24.5 2.3 358.3 2.4 356.4
106 4.4 99.3 2.6 3.5 2.7 0.9
107 5.6 81.4 8.4 60.2 8.3 59.4
108 2.0 300.7 2.1 295.9 2.2 290.2
109 4.2 40.1 5.8 31.7 6.0 29.3
110 2.4 59.0 2.1 48.9 2.6 46.5
111 13.1 70.4 9.5 77.0 8.8 76.5
113 1.0 71.0 1.7 72.6 1.8 76.9
114 34 211.1 2.7 228.2 2.4 222.5
115 2.5 263.7 3.0 295.4 34 283.0
116 1.3 273.9 1.8 301.9 1.9 302.7
117 2.2 258.5 3.2 272.4 3.1 263.9
118 0.7 293.4 0.8 19.3 1.0 40.9
119 34 233.7 4.3 228.2 3.7 227.1
120 3.0 242.4 3.9 248.3 3.8 245.9
121 2.1 112.6 2.9 94.6 2.8 117.1
122 1.2 243.4 1.1 264.9 1.2 271.6

rms error 1.3 31.9 1.4 35.2
. M,

Station No. ho 8o han 8an has 8as
101 6.3 200.9 8.5 198.0 8.8 197.9
102 4.4 218.1 0.6 212.6 0.5 232.1
103 12.3 13.1 10.8 26.9 11.9 26.0
104 12.7 32.1 11.9 12.9 12.7 13.2
105 5.5 314.5 5.7 239.5 5.6 2449
106 6.6 239.1 6.0 248.0 6.0 253.2
107 12.3 344.7 10.4 17.6 11.1 18.5
108 2.8 89.6 4.1 87.9 4.1 85.5
109 10.5 350.4 9.0 347.9 9.5 3494
110 6.3 305.9 6.5 262.9 6.3 265.4
111 16.2 355.9 16.6 358.9 17.4 358.5
112 6.0 29.2 7.0 10.9 7.6 12.1
113 11.3 19.6 6.0 1.5 5.7 1.4
114 234 202.6 16.7 197.8 16.8 197.6
115 8.6 90.3 8.6 103.5 8.6 101.7
116 2.1 65.8 04 283.8 0.4 299.3
118 4.5 180.4 5.0 297.9 5.0 302.8
119 19.6 244.6 21.8 208.2 21.9 208.6
120 13.3 251.1 12.1 244.0 12.3 244.1
121 23.9 62.8 25.0 52.5 24.5 54.1
122 1.8 93.5 1.5 54.1 1.6 47.1

rms error 2.3 47.4 2.4 45.7
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Table 5.2.7 (continued).

Station No. h, 8o [ T S s 8as
101 3.7 235.3 5.1 238.6 5.3 235.6
102 2.5 272.5 0.2 255.1 0.2 279.7
103 6.5 16.2 4.4 29.8 5.0 29.4
104 4.9 314 7.1 19.8 7.6 19.2
105 2.7 6.6 2.2 295.1 2.3 298.2
106 1.9 280.3 2.3 305.8 2.5 308.0
107 8.4 349.7 4.9 13.3 5.3 15.2
108 0.9 97.8 2.7 114.0 2.6 111.9
109 5.8 51.0 5.0 54.2 4.9 50.0
110 3.1 355.7 2.8 295.0 2.9 295.0
111 14.5 14.1 13.2 21.0 13.8 18.3
113 5.3 63.2 0.6 129.4 0.4 136.5
114 14.2 245.4 7.9 247.6 7.9 245.1
115 8.5 118.4 6.9 141.4 6.3 142.6
116 1.2 69.2 0.8 17.0 0.8 11.7
117 0.9 85.5 2.1 350.3 1.6 338.6
118 3.5 289.5 4.1 340.8 4.2 342.6
119 11.3 295.1 14.0 248.6 14.2 248.1
120 6.7 298.6 6.9 286.8 7.0 284.9
121 12.8 115.2 7.4 112.5 7.7 104.6
122 0.7 63.7 1.4 238.6 1.4 53.2

rms error 2.6 394 2.5 41.7
. M,

Statlon NO. ho g() han gd}’l hdS gas
101 0.6 354.0 1.4 310.9 1.2 305.5
102 0.4 45.8 0.2 107.3 0.2 58.4
103 6.4 231.7 5.9 229.2 5.8 239.8
104 4.1 225.4 6.9 232.8 6.9 242.2
105 1.1 50.8 1.2 90.3 1.2 75.0
106 0.6 60.4 1.0 92.5 1.0 73.8
107 4.7 201.5 7.4 222.3 7.2 228.5
108 4.0 88.3 2.5 121.9 2.5 123.1
109 1.9 344.1 2.4 357.3 2.8 354.4
110 1.4 150.3 1.6 160.3 1.5 152.3
111 8.2 270.3 7.7 248.6 8.3 257.7
114 5.5 346.9 2.6 10.2 2.4 18.4
115 2.5 304.2 1.1 136.5 0.5 128.0
116 2.6 115.0 2.0 92.3 2.0 94.0
118 1.3 8.3 1.4 190.9 1.3 192.1
120 1.4 281.8 1.1 240.3 1.2 229.1
122 1.8 124.1 1.3 101.4 1.3 107.4

rms error 1.3 65.7 1.4 65.3
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Table 5.2.7 (continued).

Station No. h, 8o [ o S s 8as
101 0.6 27.0 0.9 357.1 0.8 356.6
102 0.6 89.5 0.2 154.6 0.1 107.5
103 6.4 270.3 6.0 272.5 6.5 281.2
104 5.2 266.6 7.2 281.2 7.8 288.5
105 1.2 73.8 1.0 109.2 1.0 95.1
106 0.7 96.5 1.0 107.3 0.9 91.7
107 6.0 252.8 8.2 268.4 8.5 273.2
108 4.7 142.0 3.0 164.8 3.1 165.6
109 2.3 49.7 2.4 50.5 2.5 439
110 1.4 202.5 1.7 207.9 1.5 205.3
111 11.0 319.1 8.4 305.5 9.7 310.0
114 5.3 28.6 1.9 68.6 1.9 77.7
115 2.7 350.1 0.6 42.6 0.8 22.7
116 2.8 159.8 2.4 144.8 2.3 146.3
118 1.2 42.1 1.5 233.9 1.5 234.3
120 1.8 324.9 1.3 282.4 1.3 276.6
121 1.9 137.5 1.9 271.5 3.7 271.1
122 2.0 166.1 1.8 157.4 1.8 161.4

rms error 1.4 58.7 1.4 55.5

Station No. ho 8o han ZSMG 8an has 8as
101 0.3 15.9 0.1 51.1 0.0 69.1
102 0.2 172.6 0.0 176.4 0.1 26.7
103 1.4 327.4 1.2 3324 1.9 331.5
104 1.2 306.4 1.2 350.0 2.0 340.6
105 0.4 120.0 0.5 129.5 0.4 112.5
106 0.2 163.2 0.5 129.8 0.4 112.1
107 1.4 320.3 1.7 348.4 2.2 337.3
108 1.2 188.0 0.9 211.8 1.0 205.8
111 3.7 59.2 0.7 20.3 1.9 347.3
121 1.3 230.0 1.5 271.6 1.3 303.8

rms error 1.0 30.0 0.7 62.6
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Chapter 6
Conclusion

To make possible improving also the non-linear tides determined by different
astronomical constituents by assimilating data in a variational sense, this
investigation aims at adequately generalizing the method having successfully been
applied by Zahel et al. (2000) to open ocean tides and by Taguchi (2002) to the
M, and its overtides in an adjacent sea area. This step in modelling tides is
required by the need for a tidal model system producing highly reliable tidal fields
of the global ocean including the near coastal areas properly.

Preparing the generalization referred to above, a schematic ocean scenario is
defined, with a dynamic model yielding results declared as real, and a deficient
dynamical model producing results that are to be corrected making use of values
taken from the field regarded as real. As schematic sea area a canal of constant
depth is chosen. This canal has a closed end and an open end, at which the tidal
wave being determined by two astronomical constituents enters the canal.
Realistic tidal dynamics define the model. The non-linearity is due to quadratic
bottom friction and it is rather weak.

A continuation technique is designed based on the previously applied method.
Having performed the minimization of the least squares functional for a specific
time block, the continuation is started within the time block towards its end; thus
an overlapping area is arising. Assimilating data from only 8% of the canal area, a
decisive improvement of the solution to be corrected is obtained. This even
applies separately for the strongest non-linear constituents, i.e. overtides as well as
compound tides, although they are very small as compared to the two
astronomical partial tides. Finally, a satisfactory reproduction of the main features
of the well known true dynamical residual is achieved in spite of the few data
assimilated.

Extending the data assimilation method, having been tried out and optimized in
the fictive data assimilation scenario, is straightforward, in principle. However,
the demand for computer facilities is considerable in the case of an extended
adjacent sea area. Restricting on two incommensurable astronomical partial tides
and on minimizing only first instead of also higher order differences of the
dynamical residuals does not impede estimating the potential of the new approach,
but clearly reduces the computational expense.

Using a time block length of only one day already yields a significant

improvement of the computed tidal elevation field as compared with that one
obtained from the classical forward model. The change of the tidal oscillation
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system brought about by assimilating a rather small number of irregularly
distributed data, leads to eliminating former systematic errors, e.g., the
underestimation of tidal elevation amplitudes in shallow water areas in the eastern
Irish Sea and in the Bristol Channel, and the positions of M, and S, amphidromic
points not being compatible with observations. A detailed comparison to observed
elevations at independent positions and to the elevation fields generated by
classical high resolution models (Jones and Davies, 1996; Davies and Hall, 2000)
and by the data assimilation model of Taguchi (2002) shows good agreement with
realistic elevations. So, also the elevation patterns of the non-linear constituents
My, Mg clearly resemble those given by Andersen (1999) who calculates shallow
water tides on the European shelf using TOPEX/POSEIDON altimetry data. The
elevation patterns of the non-linear constituents My also clearly resembles that
given by Andersen et al. (2006) who calculates shallow water tides on the
European shelf using hybrid altimetry data assimilation methods.

It is characteristic of the developed method that tidal elevation and current
velocity fields are computed simultaneously. Although the latter fields can
scarcely be compared with reliable data, it was possible to realize that the
computed patterns in general agree with those which are available from classical
high resolution models and that the computed patterns are as smooth as is typical
of real fields. In view of the experience with the relevant previous models and
with the canal model in this work, the appearance of the dynamical residual fields,
obtained when including the smoothing process suggests that specific experiments
will enable taking information on compensated model deficiencies from the
residual fields. So, increasing spatial resolution of the model will also make it
worth evaluating energy and angular momentum balances and energy transitions
in the tidal spectrum with studying the role of the dynamical residuals in this
context. This promises giving valuable information on characteristic properties of
the dynamical residuals.

Although first order differences of the dynamical residuals have already
successfully been introduced and contribute to obtaining more realistic dynamical
residual fields, a special treatment and technique should be implemented in the
future studies to make this method more economical and computationally
efficient, allowing to also consider higher order differences. Considering
differences of dynamical residuals, leads to a multiplication of the original
number of equations depending on the orders taken into account. As a
consequence, more computer resources (memory and CPU time) are needed to
perform the calculation. The need of computer memory is increased as a
consequence of more equation being involved, while the CPU time, required for
performing the minimization iteratively, becomes longer due to the greater
number of iteration steps necessary. In this study, a shared-memory parallelization
has been introduced to the matrix-vector multiplications which can be further
developed for reducing CPU time significantly.
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The model approach having been developed, tested and applied in this work also
proves as adequate for being included in a data assimilation model system
allowing to compute highly reliable tidal fields in the global ocean, in particular
considering near coastal shallow water areas.

There are many possibilities left allowing to considerably increasing the potential
of the approach, apart from better making use of computer facilities and
introducing higher spatial resolution. To these belong optimizing the assimilation
parameters, including the inhomogeneous boundary values in the correction
mechanism (Gekeler, 1995) and implementing well known techniques for
improving the classical model taken as a basis.
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