Merkmalsbasierte Verfahren zur elastischen Registrierung medizinischer Bilder unter Verwendung von Radialbasisfunktionen

Dissertation zur Erlangung des Doktorgrades am Fachbereich Informatik der Universität Hamburg

vorgelegt von

Mike Fornefett

aus Hamburg

Hamburg 2007

Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften am Department Informatik der Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität Hamburg.

Gutachter:

Prof. Dr.-Ing. H. Siegfried Stiehl Prof. Dr. Karl Rohr Prof. Dr. Heinz Handels

Tag der Disputation:

24. Oktober 2007

Kurzfassung

Die Registrierung von 2D- und 3D-Bildern findet in der Medizin zur Diagnoseunterstützung und zur Therapieplanung ein breites Einsatzgebiet. So werden Bilder verschiedener bildgebender Verfahren registriert, um Strukturen, die in den jeweiligen Bildern komplementär gut dargestellt werden, zu kombinieren. Damit erhält der Untersuchende mehr Detailinformationen als auch einen verbesserten Gesamteindruck. Bilder von Organen eines Patienten, mit einem zeitlichen Abstand aufgenommen, werden zur Therapiekontrolle oder zur Dokumentation des Krankheitsverlaufes registriert und präoperative tomographische Bilder eines Patienten werden zur Operationsplanung mit einem elektronischen Atlas oder mit intraoperativen Bildern registriert, um nur einige Anwendungen zu nennen. Insbesondere bei dem letztgenannten Einsatzgebiet, der Registrierung zwischen einem Atlas und einem Individuum, oder auch bei der Operationsplanung reichen starre Registrierungsverfahren i.A. nicht aus, um die unterschiedlichen Bilder erfolgreich zu registrieren. Hierbei ist man auf den Einsatz sogenannter elastischer Registrierungsverfahren angewiesen. Das Einsatzgebiet und die Anwendungen sind aber so vielfältig, dass zahlreiche unterschiedliche Anforderungen an solche elastischen Registrierungsverfahren gestellt werden. Eine solche Anforderung ist die Bewältigung unterschiedlichster Formunterschiede zwischen Quell- und Zielbild: Zum einen variieren die Bildstrukturen von kleinen zu registrierenden Strukturen, wie man sie beispielsweise im Gehirn findet, im Vergleich zu größeren Strukturen wie Knochen erheblich. Zum anderen können die Unterschiede in den Strukturen der zu registrierenden Bilder insgesamt gering bis umfangreich sein. Des Weiteren werden unterschiedliche Anforderungen an die elastische Registrierung hinsichtlich der Art der verwendeten Transformationsfunktion gestellt, denn diese hat wesentlich Einfluss auf die Art und Weise der Interpolation zwischen den Stützstellen der Registrierung. So kann durch verschiedene Transformationsfunktionen (als auch durch weitere Anpassungen der Registrierungsverfahren) das Interpolationsverhalten bei der Registrierung gesteuert werden. Beispielhaft lässt sich entweder ein naturgetreues, im Sinne von physikalisch-biomechanisch, Verhalten erzielen, oder, im Sinne einer mathematischen Definition, ein möglichst glattes, oder auch ein möglichst nur auf bestimmte Teile der Bilder begrenztes Verhalten.

Unter den elastischen Registrierungsverfahren haben die auf Radialbasisfunktionen basierenden Verfahren den Vorteil, dass ihre Anzahl an freien und damit zu bestimmenden Parametern nicht zu groß ist, so dass sie einerseits noch eine hohe Recheneffizienz erreichen, andererseits aber noch genügend Potenzial aufweisen, verschiedene elastische und genügend komplexe Transformationsfunktionen zu erzeugen. Die auf Radialbasisfunktionen basierenden Verfahren gehören i.A. zu den merkmalsbasierten Verfahren, d.h. lokale Bildmerkmale werden aus den Bildern in einem Vorverarbeitungsschritt extrahiert, wie z.B. Punkt-, Linien- oder Flächenlandmarken.

In dieser Arbeit werden durch drei Eigenbeiträge Erweiterungen bestehender Verfahren und neue Verfahren, basierend auf Radialbasisfunktionen, vorgestellt und bezüglich ihrer Eigenschaften theoretisch und experimentell untersucht. Ein Schwerpunkt dabei ist ihre Herleitung mit Hilfe mathematischer Eigenschaften und Verfahren, um auf diese Weise ihre theoretischen Eigenschaften beschreiben zu können.

Im ersten Beitrag wird ein bestehender Ansatz, basierend auf Punktlandmarken und "thinplate splines" (TPS), um Richtungsmerkmale an Punktlandmarken ergänzt. Die Richtungsinformationen werden in die zu minimierende Kostenfunktion eingebunden und die Lösungsfunktion kann in geschlossener Form berechnet werden. Die Vorteile gegenüber bestehenden Verfahren sind die Einbindung von Richtungen als Tangenten als auch die Skalierungsunabhängigkeit bei der Registrierung. Als mögliche Anwendungen werden elastische Registrierungen von starren Strukturen, welche von Weichteilgeweben umgeben sind, vorgestellt, wobei die starren Strukturen als starr erhalten bleiben. Auch kann gezeigt werden, dass die Verwendung von Richtungen das Registrierungsergebnis gegenüber dem Verfahren mit nur Punktlandmarken verbessert.

Im zweiten Beitrag werden lokale Radialbasisfunktionen mit kompaktem Träger (Wendland-Funktionen) für elastische Registrierung vorgeschlagen. Die Eigenschaften dieser Funktionen sind hinsichtlich der Lösbarkeit ihrer bestimmenden Gleichungen, der Recheneffizienz und der Lokalität in ihrer Summe besser als bisher vorgestellte lokale Radialbasisfunktionen wie beispielsweise die abgeschnittene Gaußfunktion. Für ein Landmarkenpaar wird beispielhaft die Bedingung an Parameter der Funktion hergeleitet, so dass die Registrierung noch topologieerhaltend bleibt. Experimentelle Ergebnisse für synthetische Bilddaten zeigen die Eigenschaften des Ansatzes. Für eine gegebene Registrierungsaufgabe wird ein optimaler Skalierungsparameter der Wendland-Funktion bestimmt. Als eine mögliche medizinische Anwendung wird für einen 3D MRT-Datensatz die Registrierung eines Tumorgebietes im Gehirn auf das Resektionsgebiet nach der Operation gezeigt.

Im dritten Beitrag wird ein Registrierungsverfahren, basierend auf Radialbasisfunktionen mit Linien- und Flächenlandmarken und mit automatischer Bestimmung von Korrespondenzen, vorgestellt. Während die Quelllandmarken durch Koordinaten von Abtastpunkten dargestellt werden, werden von den Ziellandmarken digitale Distanzfunktionen berechnet. Mit Hilfe des TPS-Verfahrens kann eine Kostenfunktion für die Krümmung in geschlossener Form berechnet werden. Diese Krümmungsfunktion wird mit einem Faktor gewichtet und zu der Distanzfunktion addiert. Während des iterativen Registrierungsprozesses wird der Gewichtungsfaktor verändert, so dass sich ein starres, dann ein leicht elastisches bis hin zu einem sehr elastischen Verhalten ergibt. Dies führt zu einer automatischen Anpassung der Korrespondenzen mit minimaler Krümmungseigenschaft der Transformationsfunktion. Das Verfahren wurde um die Einbeziehung der inversen Transformation ergänzt, damit größere Strukturunterschiede zwischen den Landmarken erfolgreich registriert werden können. Neben der automatischen Korrespondenzfindung können zusätzliche - beispielsweise manuell festgelegte - Korrespondenzen vorgegeben werden. Experimente mit synthetischen Bilddaten zeigen, dass man durch eine lokal adaptive Verdichtung der Abtastpunkte ein besseres Registrierungsergebnis erhält. Auch konnten Ausbuchtungen in Linienlandmarken erfolgreich durch Einbeziehung der inversen Transformation registriert werden. Beispielhaft wurde das Verfahren auf 3D-tomographischen Bilddaten von menschlichen Wirbelkörpern angewendet. Dabei konnten erfolgreich Wirbel verschiedener Individuen registriert werden.

Inhaltsverzeichnis

	Kur	zfassung	i
	Abb	ildungsverzeichnis	ix
	Tab	ellenverzeichnis	xiii
1	Einl	eitung	1
	1.1	Registrierung medizinischer Bilder	1
	1.2	Hauptbeiträge dieser Arbeit	3
	1.3	Gliederung der Arbeit	7
2	Lite	raturübersicht	9
	2.1	Stückweise Transformationen	12
	2.2	Starre und affine Transformationen	13
	2.3	Nicht-starre und nicht-affine Transformationen	14
		2.3.1 Transformationen mit Funktionsparametern	14
		2.3.2 Transformationen mit regulären Gitterpunkten	16
		2.3.3 Biomechanische Modellierung	17
	2.4	Motivation für die Weiterentwicklung der Registrierung basierend auf RBF	18
3	Elas	tische Registrierung mit Punktlandmarken und Richtungen	19
	3.1	Motivation	19
	3.2	Einbindung von Richtungen in ein Minimierungsfunktional	22
		3.2.1 Richtungsbedingungen formuliert als Skalarprodukt	22
		3.2.2 Splinebasierte Interpolation durch Anwendung beschränkter linearer Funk-	-
		tionale im Hilbertraum	23
	3.3	Experimentelle Ergebnisse	27
		3.3.1 Erhalt von starren Bereichen in einem elastischen Registrierungsverfahren	27
		3.3.2 Hinzunahme von Richtungen bei einer reduzierten Punktlandmarken-	
		anzahl	30
	3.4	Zusammenfassung	34

4	Lok	ale elast	tische Registrierung mit Punktlandmarken	35
	4.1	Motiva	ation	35
	4.2	Ansatz	8	38
		4.2.1	Elastische Registrierung mit Radialbasisfunktionen	38
		4.2.2	Bisher verwendete Funktionen zur lokalen Registrierung	41
		4.2.3	Positiv definite Polynome minimalen Grades mit kompaktem Träger	
			(Wendland Funktionen)	43
	4.3	Eigens	chaften des Ansatzes	46
		4.3.1	Lösbarkeit	46
		4.3.2	Vergleich mit der Gaußfunktion	46
		4.3.3	Topologieerhaltung	50
	4.4	Experi	mentelle Ergebnisse	54
		4.4.1	Experimente mit synthetischen Bilddaten	55
		4.4.2	Experiment mit tomographischen Bilddaten	69
	4.5	Zusam	menfassung	77
5	Elas	tische F	Registrierung mit Linien- und Flächenlandmarken	79
	5.1	Motiva	ation	79
	5.2	Iterativ	ve Registrierung mit Korrespondenzbestimmung	86
		5.2.1	Korrespondenzbestimmung bei Linien- und Flächenlandmarken	86
		5.2.2	Korrespondenzbestimmung durch ein iteratives Verfahren	88
		5.2.3	Der <i>thin-plate spline</i> -Elastizitätsterm	91
		5.2.4	Formulierung der Zielfunktion	95
		5.2.5	Verfahren zur Minimierung der Zielfunktion	103
		5.2.6	Einbeziehung der inversen Transformation	106
	5.3	Eigens	chaften des Verfahrens	110
		5.3.1	Formunterschiede zwischen Quell- und Ziellandmarken	110
	5.4	Experi	mentelle Ergebnisse mit Landmarken maximaler Dimension	114
		5.4.1	Experimente mit synthetischen Bilddaten	114
		5.4.2	Experimente mit tomographischen Bilddaten	127
	5.5	Experi	mentelle Ergebnisse mit Linienlandmarken in 3D Bildern	161
		5.5.1	Experimente mit tomographischen Bilddaten	161
	5.6	Zusam	menfassung	169
6	Schl	ussfolge	erungen	171
	6.1	Ausbli	ck	173
	Lite	raturve	rzeichnis	175

Danksagungen

Diese Dissertation entstand im Rahmen des IMAGINE-Projektes (IMage- and Atlas-Guided Interventions in NEurosurgery) am ehemaligen Fachbereich Informatik (jetzt: Department Informatik der Fakultät für Mathematik, Informatik und Naturwissenschaften) der Universität Hamburg.

Insbesondere danke ich meinen Betreuern, Herrn Prof. Dr.-Ing. H. Siegfried Stiehl und Herrn Prof. Dr. Karl Rohr, für ihre intensive Unterstützung bei diesem Dissertationsvorhaben. Sie haben mir durch zahlreiche Diskussionen und Anregungen viele wertvolle Hinweise gegeben und mich stets angehalten, meine wissenschaftlichen Ergebnisse durch Publikationen und Konferenzen einer breiten Öffentlichkeit zugänglich zu machen. Ihre tiefe Einsicht in die Themen des Projektes als auch ihre guten Kontakte zu in diesem Gebiet führenden Kollegen haben eine wissenschaftlich anregende Umgebung geschaffen. Ich danke ihnen auch für wertvolle Hinweise bei der Durchsicht dieser Arbeit.

Herrn Prof. Dr. Bernd Neumann, Ph.D., sei besonderer Dank gesagt für seine großzügige Unterstützung zur Weiterführung dieser Arbeit über die Projektlaufzeit hinaus, den Kollegen des Arbeitsbereiches Kognitive Systeme (KOGS) Dank für ihre Anregungen und Diskussionen und einfach dafür, dass sie so eine tolle Gruppe waren: Herrn Dr. Sönke Frantz und Herrn Dr. Alexander Hagemann, insbesondere für ihre stets kollegiale Unterstützung, Herrn Dr. Vladimir Pekar, Herrn Dr. Ulrich Köthe, Herrn Prof. Dr. Christoph Schnörr, Herrn Josef Heers, Herrn Dr. Rainer Sprengel, Frau Dr. Ji-Young Lim sowie vielen weiteren Kollegen. Herrn Jörg Tellkamp und Herrn Dieter Jessen sowie Herrn Dr. Sven Utcke danke ich für ihre technische Unterstützung.

Auch möchte ich Philips Research Laboratories, Hamburg für die finanzielle Unterstützung im Rahmen des Projektes IMAGINE und für die Bereitstellung der tomographischen CT-Bilder danken, insbesondere Herrn Dr. Jürgen Weese, Herrn Dr. Thomas Zängel, Herrn Dr. Thorsten M. Buzug und Herrn Dr. Michael H. Kuhn sowie Herrn Dr. Cristian Lorenz für die freundliche Bereitstellung eines 3D-Triangulierers. Ebenso danke ich Herrn Prof. Dr. Joachim Gilsbach, Neurochirurgische Klinik, RWTH Aachen und Herrn Prof. Dr. Uwe Spetzger, Direktor der Neurochirurgischen Klinik, Städt. Klinikum Karlsruhe für die MRT-Bilder.

Nicht zuletzt danke ich meiner Familie, die mich immer unterstützte, insbesondere meiner lieben Frau, die so viel Geduld aufgebracht hat und mich häufig durch diese Arbeit entbehren musste.

Abbildungsverzeichnis

2.1	Klassifikation merkmalsbasierter Registrierungsansätze	11
3.1	Elastische Registrierung mit Punktlandmarken unter Einbeziehung von Kanten	21
3.2	Elastische Registherung imt Punktiandmarken unter Einbezienung von Rich-	23
3.3	Elastische Registrierung mit Punktlandmarken unter Einbeziehung von Rich-	23
	tungen mittels einer Skalarproduktbedingung	24
3.4	Registrierung eines verschobenen Würfels	28
3.5	Registrierungsergebnisse bei der Simulation einer gebogenen Wirbelsäule	31
3.6	Registrierung zweier tomographischer Datensätze	32
3.7	Registrierung zweier tomographischer Datensätze unter zur Hilfenahme von	
	Richtungen	33
4.1	Verschiedene lokale und strikt lokale Radialbasisfunktionen	42
4.2	Darstellung von Wendland-Funktionen in 1D	45
4.3	Darstellung von Wendland-Funktionen in 2D	46
4.4	Vergleich von $\psi_{3,1}$ mit der Gaußfunktion	48
4.5	Vergleich von $\psi_{3,2}$ mit der Gaußfunktion	49
4.6	Vergleich von $\psi_{a,3,0}$ und $\psi_{a,3,1}$ mit der Gaußfunktion $\ldots \ldots \ldots \ldots \ldots$	50
4.7	Topologieerhaltung und Topologieverletzung am Beispiel einer Landmarke	54
4.8	Synthetische Bilddaten: Verschiebung eines Quadrates	56
4.9	Registrierungsergebnisse: Verschiebung eines Quadrates	57
4.10	Registrierungsergebnisse: Verschiebung eines Quadrates in einer Komponente .	58
4.11	Verschiebung eines Quadrates: Registrierungsfehlerberechnung in Abhängigkeit	
	von dem Parameterwert a	59
4.12	Verschiebung eines Quadrates: 2D-Schnitte durch die Registrierungsfunktion .	61
4.13	Verschiebung eines Quadrates: optimierte Registrierungsergebnisse	62
4.14	Verschiebung eines Quadrates: Vergleich von $\psi_{3,1}$ und TPS	63
4.15	Verschiebung eines Quadrates: Differenz der Transformationsfunktionen von	<i>с</i> 1
110	$\psi_{3,1}$ und TPS	64
4.16	Verschiedung eines Quadrates: Lokalität der Registrierung	64
4.1/	Skallerung eines Quadrates: Quell- und Zielbild	65
4.18	Skallerung eines Quadrates: Kegistrierungsergebnisse mit 4 Landmarkenpaaren	00
4.19	Skallerung eines Quadrates: Registrierungsergebnisse mit 8 Landmarkenpaaren	6/

4.20	Skalierung eines Quadrates: Registrierungsergebnisse mit 8 und 24 Landmar-	
	kenpaaren	68
4.21	Skalierung eines Quadrates: Vergleich von $\psi_{3,1}$ und TPS $\ldots \ldots \ldots \ldots$	68
4.22	Tomographische Bilddaten: 2D-MRT-Schnitt eines menschlichen Gehirns mit	
	Tumor	70
4.23	Tomographische Bilddaten: Quell- und Zielbild	71
4.24	Tomographische Bilddaten: Vergleich von $\psi_{3,1}$ und TPS	72
4.25	Tomographische Bilddaten: Vergleich von $\psi_{3,1}$ und TPS mittels Differenzbilder	74
4.26	Tomographische Bilddaten: Vergleich von $\psi_{3,1}$ und TPS mittels Differenzbilder	
	und durch Deformation eines regelmäßigen Gitters	75
4.27	3D-Registrierungsergebnisse des MRT-Datensatzes des menschlichen Gehirns .	76
		0.1
5.1	2D-Skizze für Spline-basierte Registrierungsverfahren	81
5.2	Zuordnungen von Abtastpunkten zwischen Quell- und Ziellinie	87
5.3	Zuordnungen von Abtastpunkten bei verschieden geformten Quell- und Ziellinien	88
5.4	Beispiel für eine 2D-Registrierungsaufgabe: Eingaben für das iterative Verfahren	90
5.5	Beispiel für eine 2D-Registrierungsaufgabe: Berechnung der nächsten Nachbarn	91
5.6	Beispiel für eine 2D-Registrierungsaufgabe: Negative Gradienten des Biege-	
	energieterms E_{TPS}	94
5.7	Beispiel für eine 2D-Registrierungsaufgabe: Intensitätsplots der Matrix $(L^{-1})_{15}$	98
5.8	Beispiel für eine 2D-Registrierungsaufgabe: Darstellung des Betrages der Ma-	
	$\operatorname{trix} \left(\mathbf{L}^{-1} \right)_{15} \ldots \ldots$	99
5.9	Beispiel für eine 2D-Registrierungsaufgabe: Demonstration der lokalen struk-	
- 10	turbewahrenden Registrierung	100
5.10	Berechnung der Auslenkungen nach verschiedenen Iterationsschritten. (a) Gra-	
	dienten des Biegeenergieterms nach dem ersten Iterationsschritt, (b) Ergebnis	
	nach 34 Iterationsschritten mit einem Gradientenabstiegsverfahren	102
5.11	Berechnung der Gradienten für einen Iterationsschritt mit Einbeziehung der in-	
	versen Transformation	108
5.12	Skelettlinien als 2D Beispiel für ein Konvergenzkriterium	111
5.13	Skelettlinien des 2D Beispiels mit ausgeprägter Ausbuchtungen	113
5.14	Experimente mit Flächenlandmarken: erste 6 Iterationsschritte einer Registrie-	
	rung eines verschobenen Quadrates	116
5.15	Wie Abb. 5.14, aber $\phi = 10^{\circ}$	116
5.16	Wie Abb. 5.14, aber $\phi = 25^{\circ}$; $\lambda = 100$	117
5.17	Wie Abb. 5.16, aber $\phi = 30^{\circ}$	117
5.18	Wie Abb. 5.14, aber $\phi = 35^{\circ}$; $\lambda = 1000$	118
5.19	Wie Abb. 5.18, aber $\phi = 40^{\circ}$	118
5.20	Wie Abb. 5.14, aber $\phi = 40^{\circ}$; $\lambda = 10000 \dots \dots$	119
5.21	Registrierung einer Ellipse mit einem Gehirnumriss eines menschlichen MRT-	
	Gehirnschnittes	122
5.22	Ergebnisse der Registrierung einer Ellipse mit einem Gehirnumriss	124
5.23	Ergebnisse wie in Abb. 5.22, aber mit einer Abtast dichte $d=2$ Bildelemente $\ $.	125

5.24	Ergebnisse wie in Abb. 5.22, aber mit variierenden Abtastdichten	126
5.25	2D-Schnitte aus den Datensätzen A4 und B4	127
5.26	Startwertkonstellationen für das Registrierungsverfahren	128
5.27	Registrierungsergebnisse der Abb. 5.25 und Abb. 5.26(a)-(d)	129
5.28	Iterationsergebnisse bei der Registrierung zweier segmentierter CT-Wirbelschnitte	131
5.29	Registrierungsergebnisse mit den in Abb. 5.28(c) und (d) dargestellten Korre-	
	spondenzen	132
5.30	Datensatz A4 mit 102 Abtastpunkten auf der Oberfläche	135
5.31	Datensatz A4 mit 708 Abtastpunkten auf der Oberfläche	136
5.32	Datensatz B4 mit 105 Abtastpunkten auf der Oberfläche	137
5.33	Datensatz B4 mit 673 Abtastpunkten auf der Oberfläche	138
5.34	Datensatz B2 mit 104 Abtastpunkten auf der Oberfläche	139
5.35	Datensatz B2 mit 689 Abtastpunkten auf der Oberfläche	140
5.36	Original Datensätze A4 und B4 überlagert dargestellt	142
5.37	Registrierung von B4 und A4 durch Momente (Translation, Rotation und Ska-	
	lierung)	143
5.38	Ergebnis der elastischen Registrierung bei Verwendung der kleinen Abtastpunkt-	
	menge	144
5.39	Wie Abb. 5.38, aber bei Verwendung der großen Abtastpunktmenge	146
5.40	Ergebnis der elastischen Registrierung unter Einbeziehung der inversen Trans-	
	formation	148
5.41	Wie Abb. 5.40, aber bei Verwendung der großen Abtastpunktmenge	150
5.42	Wie Abb. 5.41, aber bei Verwendung der sehr großen Abtastpunktmenge	151
5.43	Datensatz A4 mit 1563 Abtastpunkten	153
5.44	Wie Abb. 5.42, aber bei Verwendung der verdichteten Abtastpunktmenge	155
5.45	Wie Abb. 5.44, aber nach Fortsetzung der Iteration	156
5.46	Registrierung von B2 und A4 durch Momente (Translation, Rotation und Ska-	
	lierung)	158
5.47	Ergebnis der elastischen Registrierung unter Einbeziehung der inversen Trans-	
	formation bei Verwendung der verdichteten Abtastpunktmenge	159
5.48	Wie Abb. 5.47, aber nach Fortsetzung der Iteration	160
5.49	Kammlinien von A4 bestehend aus 1950 Punkten	162
5.50	Kammlinien von B4 bestehend aus 2110 Punkten	163
5.51	Ergebnis der elastischen Registrierung ohne Einbeziehung der inversen Trans-	
	formation	165
5.52	Wie Abb. 5.51, aber mit einer Abtastrate von 5	166
5.53	Wie Abb. 5.51, aber mit Einbeziehung der inversen Transformation	167
5.54	Wie Abb. 5.51, aber mit Einbeziehung der inversen Transformation und einer	
	Abtastrate von 5	168

Tabellenverzeichnis

4.1	Vergleich der Parameter von der Gaußfunktion und von $\psi_{3,1}$	47
4.2	Vergleich der Parameter von der Gaußfunktion und von $\psi_{3,2}$	47
4.3	Maxima von $\left \frac{\partial \psi}{\partial r}\right $ für verschiedene lokale Basisfunktionen	53
4.4	Topologieerhaltung: minimale Werte a und σ für gegebene Verschiebung Δ	53
4.5	Verschiebung eines Quadrates: Mittlerer Registrierungsfehler für verschiedene	
	Basisfunktionen	60
5.1	Konvergenz in das globale Minimum bei Verwendung des numerischen Mini- mierungsverfahrens und des Verfahrens basierend auf approximierenden <i>thin</i> -	
	nlate splines	120
5.2	Konvergenz wie in Tab. 5.1. aber bei einem kleinen Ouadrates vom Umfang 332	120
0.2	Bildelementen	120
5.3	Quantitative Auswertung des Registrierungsfehlers bei unterschiedlichen Start-	
	werten	129
5.4	Bildgrößen der Datensätze nach Interpolation und Vergrößerung	133
5.5	Triangulierungsparameter für drei verschiedene Abtastpunktmengen	134
5.6	Parameter und Ergebnisse der elastischen Registrierung von B4 ' nach A4	145
5.7	Parameter und Ergebnisse der elastischen Registrierung von B4 ' nach A4	145
5.8	Parameter und Ergebnisse der elastischen Registrierung unter Einbeziehung der	
	inversen Transformation	147
5.9	Wie Tab. 5.8, aber bei Verwendung der großen Abtastpunktmenge	149
5.10	Wie Tab. 5.8, aber bei Verwendung der sehr großen Abtastpunktmenge	149
5.11	Wie Tab. 5.8, aber bei Verwendung der verdichteten Abtastpunktmenge	154
5.12	Wie Tab. 5.8, aber unter Einbeziehung der inversen Transformation und bei	
	Verwendung der verdichteten Abtastpunktmenge	157