Phylogeny of the Genus Masdevallia Ruiz et Pav.

Based on Morphological and Molecular Data

Analisa Daniela Abele

Phylogeny of the Genus Masdevallia Ruiz \&
 Pav. (Orchidaceae) Based on Morphological and Molecular Data

DISSERTATION

zur Erlangung des akademischen Grades
doctor rerum naturalium
(Dr. rer. nat.)
im Department Biologie
der Fakultät für Mathematik, Informatik und Naturwissenschaften
der Universität Hamburg
vorgelegt von
Analisa Daniela Abele
aus Caracas, Venezuela

Genehmigt vom Department Biologie der Fakultät für Mathematik, Informatik und Naturwissenschaften an der Universität Hamburg
auf Antrag von Professor Dr. J. G. ROHWER
Weiterer Gutachterin der Dissertation:
Frau Priv.-Doz. Dr. P. PAROLIN
Tag der Disputation: 07. Dezember 2007

Hamburg, den 20. November 2007

Professor Dr. Reinhard Liebere Leiter des Departments Biologie

Masdevallia veitchiana Rchb. f.

CONTENTS

Summary 1
Abbreviations 1
Introduction 5
1.1 Subtribe Pleurothallidinae Lindl. ex G. Don (Epidendreae: Orchidaceae) 7
1.2 The genus Masdevallia Ruiz \& Pav 10
1.2.1 Distribution of species of Masdevallia 10
1.2.2 Habitats and growth habit of species of Masdevallia 10
1.2.3 Morphology of species of Masdevallia 12
1.2.4 Infrageneric relationships of Masdevallia based on molecular data 20
1.2.5 Classification history of Masdevallia and nomenclatural implications 21
1.2.6 Natural hybrids of Masdevallia 53
1.2.7 Intergeneric hybrids of Masdevallia 53
Aims 54
Material and Methods 56
2.1 Morphological analysis 56
2.1.1 Sampling 56
2.1.2 Outgroups 58
2.1.3 Characters and character states 58
2.1.5 Macro-morphological characters included 59
2.1.4 Micro-morphological characters 59
2.2 Molecular analysis 62
2.2.1 Material 62
2.2.1.1 Chemicals 62
2.2.1.2 Taxon sampling 62
2.2.2 Molecular methods 65
2.2.2.1 DNA isolation 65
2.2.2.2 Gel electrophoresis 65
2.2.2.3 Selection of molecular markers 66
2.2.2.4 Amplification 67
2.2.2.5 Sequencing 68
2.3 Phylogenetic analysis 69
2.3.1 Morphological data set 69
2.3.2 Molecular data set 69
2.3.3 Combined data set 70
2.4 Biogeographical analysis 71
Results 72
3.1 Morphological analysis 72
3.1.1 Description of the analyzed morphological characters 72
3.1.2 Phylogenetic relationships 91
3.2 Molecular analysis 94
3.2.1 Alignment and ITS characteristics 94
3.2.2 Phylogeny of Masdevallia. 96
3.2.3 Molecular synapomorphies of the major clades/subclades 101
3.3 Combined analysis 127
3.3.1 Incongruence between the morphological and molecular data 127
3.3.2 Characteristics of the combined data matrix 127
3.3.3 Phylogenetic relationships 127
3.4 Biogeography 130
3.4.1 General biogeographical patterns 130
3.4.2 Biogeographical patterns of the major clades 130
Discussion 138
4.1 Morphological analysis 138
4.1.1 Outgroups relationships of Masdevallia based on morphological data 139
4.1.2 Infrageneric affinities based on morphological data 140
4.1.3 Phylogenetic implications based on morphological data 141
4.2 Molecular analysis 143
4.2.1 Utility of ITS sequences in Masdevallia 143
4.2.2 Outgroups relationships of Masdevallia based on molecular analysis 143
4.2.3 Monophyly of the infrageneric taxa of Masdevallia based on molecular analysis 144
4.2.4 Phylogenetic implications 145
4.2.5 Bootstrap frequencies vs. Bayesian posterior probabilities. 150
4.3 Combined analysis 151
4.3.1 Monophyly of the infrageneric taxa of Masdevallia based on combined data 152
4.4 Evolutionary significance of some morphological characters used as rapid identifiers 153
4.5 Biogeography and Radiation 158
4.5.1 Distribution patterns of Masdevallia species 158
4.5.2 Biogeographic patterns of the genus Masdevallia based on molecular analysis. 159
4.5.3 Some factors promoting the radiation of the genus Masdevallia 162
4.6 Comparison with traditional classification and possible taxonomical solutions 166
4.6.1 Incongruence between cladograms and taxonomic systems 166
4.6.2 Comparison of Luer's taxonomy and the results obtained from the molecular analysis - Possible taxonomical solutions 167
References 171
Appendix I. 184
Morphological Data Matrix 184
Appendix II 192
Alignment of ITS sequences of Masdevallia and outgroups species 192
Aknowledgements 214

SUMMARY

The genus Masdevallia is one of 28 genera in subtribe Pleurothallidinae, with approximately 500 species. It is distributed from southern Mexico to southern Brazil, with main centers of diversity in the Andes of South America. Most species are epiphytes and occur in primary forests. Masdevallia species are characterized by coriaceous leaves borne on short ramicauls. The inflorescence emerges with an annulus a considerable distance below the abscission layer of the leaf; the sepals are variously connate and commonly have tails, and the lips are more or less ligulate. The taxonomy of Masdevallia is mainly based on floral structures. Although revisions of several sections of Masdevallia have been published during the last century, the delimitation of infrageneric taxa is still problematic, due to the lack of clear morphological synapomorphies. The naturalness and relationships of the subgenera, sections and subsections of Masdevallia was not previously examined in a phylogenetic context. Consequently, the aims of this study are to 1) address the subgeneric and sectional relationships in Masdevalia with molecular data, 2) to correlate molecular with morphological data in order to establish morphological synapomorphies for clades well supported by molecular data and, 3) to correlate molecular with geographical data in order to evaluate the possible speciation histories and processes. Macro-morphological and micro-morphological character (pollinia surface ornamentations) data were collected for 85 species of Masdevallia, chosen to represent the taxonomic, morphological, and geographic diversity within the genus. These data were subjected to a maximum parsimony analysis. Maximum parsimony analyses and Bayesian analyses were also performed with sequences of the non-coding internal transcribed spacer (ITS) of the nuclear ribosomal DNA for 104 species, representing all the subgenera, sections and subsections of the genus Masdevallia. Maximum parsimony analyses of combined data (molecular as well as macro and micro-morphological) were also performed. In the phylogenetic analysis of the genus Masdevallia based on morphological data, most groups are not supported by many characters. The lack of resolution obtained in this analysis suggests that detailed classifications at the infrageneric level are not well supported by morphological evidence. The phylogenetic relationships of the genus Masdevallia and of several groups within the genus are well resolved using ITS sequences. The strict consensus tree obtained from the maximum parsimony analysis and the 50% majority rule consensus of the 3000 trees obtained from the Bayesian analysis recovered essentially the same topology. The strict consensus tree of the combined data was partly congruent with the ITS topology and relationships among species of Masdevallia and outgroups were very similar in each tree.

The resulting phylogenetic tree obtained by maximum parsimony analyses of nuclear rDNA ITS sequences indicates that the genus Masdevallia is a well-supported monophyletic group that is
unambiguously part of Pleurothallidinae. The infrageneric classification of the genus Masdevallia is only in part supported by the analysis of molecular data. Of the 11 subgenera of Masdevallia considered in this study, three forms strongly supported monophyletic groups in the analysis: subgenera Cucullatia, Meleagris and Fissia; the monospecific subgenera Teagueia, Scabripes and Volvula are of course monophyletic as well. Subgenera Masdevallia, Pygmaeia and Polyantha are not monophyletic. Subgenera Nidificia and Amanda form a clade with almost no internal resolution.

Four major clades were resolved within Masdevallia. Clade A included Luerella pelecaniceps, which is endemic to Panama, at an altitude of 800 to 1000 m above the sea level, and M. erinacea, which is found throughout the whole geographical range. It shows no distinct morphological synapomorphy (and maybe due to long branch attraction). Clade B included subgenus Pygmaeia section Zahlbrucknerae, subgenus Masdevallia sections Triotosiphon, Reichenbachianae, Minutae, Coriaceae, and Dentatae, subgenus Polyantha sections Alaticaules and Polyanthae, M. chimboensis and M. mentosa. A synapomorphy of this group is a verrucose (to papillose) epichile. Species of this group are found throughout the whole geographical as well as altitudinal range. Clade C grouped subgenus Pygmaeia sections Amaluzae and Aphanes, subgenus Masdevallia section Masdevallia with all remaining subsections (Caudatae, Coccinea, Masdevallia, Oscillantes and Saltatrices), section Durae, section Racemosae, M. caudivolvula (subgenus Volvula), M. macrura (subgenus Masdevallia section Coriaceae), M. hoeijeri (subgenus Pygmaeia section Aphanes), and M. bicornis (subgenus Scabripes). Lateral sepals connate without the formation of a broad mentum or a secondary mentum with the column-foot are characteristic for most species of clade C. Species of this group are restricted to the southern part of the geographical range, with most species found at higher elevations (above 2000 m above sea level). Clade D grouped subgenera Teagueia, Cucullatia, Nidificia, Amanda, Fissia, Meleagris, and Dracula xenos. Synapomorphies of the species grouped in this clade are the arcuate sepaline tubes and the featureless disc of the lip. Species of clade D grow mainly in the Andes, at an altitude of 450 to 3100 m above sea level.

The characters that have been used as rapid identifiers for diagnosing subgenera, sections and subsections within Masdevallia (key characters) were plotted on one of the most parsimonious trees. The cross section of the peduncle (terete or triquetrous), the anthesis of the flowers (successively or simultaneous), the type of floral bract, the ovary smooth or with some external features such as crests or papillae, the grade of connation between the sepals, and the presence or absence of a division in the lip appear to be good synapomorphies for major clades in Masdevallia. Long tail-like appendages at the apex of the sepals appear to have evolved repeatedly in parallel and appear not to be phylogenetically informative.

ABBREVIATIONS

Alphabetical list of abbreviations used in text and figures.

```
ABI Applied Biosystems®}\mp@subsup{}{}{\circledR
bp base pair
CG-... cytosine and guanosine, e.g. CG-content: amount of cytosine and guanosine in a certain region
cpDNA chloroplast DNA
CT-... cytosine and thymine ( CG-...)
CTAB buffer; appendix
D. Dracula
DNA deoxyribonucleic acid
ETS external transcribed spacer
GA-... guanosine and adenine ( CG-...)
GTR+\tilde{A}+I general substitution model ("general time reversible", substitution rates gamma-distributed,
and proportion of sites are invariant)
HBG Botanischer Garten der Universität Hamburg
HHG Herrenhäuser Gärten Hannover
IGS 25S-18S intergenic spacer
ITS internal transcribed spacer
M. Masdevallia
ML maximum likelihood
MP maximum parsimony
MPR maximum parsimonious reconstruction
MPT most parsimonious tree(s)
mtDNA mitochondrial DNA
N unknown nucleic base (in alignments)
NEXUS data format used by common phylogenetic programs
NJ Neighbour-Joining algorithm
(n)rDNA (nuclear) ribosomal RNA gene
P. Porroglossum
PAUP Phylogenetic Analyses Using Parsimony, analyzing software
PCR polymerase chain reaction
pp posterior probability
RNA ribonucleic acid
rRNA ribosomal RNA
s.l. sensu latu, in a broad sense
s.s. sensu strictu, in a strict sense
sect. section (taxonomic unit)
sects. sections
sp. species (singular, taxonomic unit)
sp. subspecies (taxonomic unit)
spp. species (plural, taxonomic unit)
subg. subgenus (taxonomic unit)
subsect. subsection
subsects. subsections
T. Trisetella
TS Ton Sijm
```

Abbreviations used for nucleotides
Standard nucleotide code
A adenine
B "not A", i.e. C, G, or T
C cytosine (nucleic base)
D "not C", i.e. A, G, or T
G guanosine
H "not G", i.e. A, C, or T
K either G or T
M either A or C
N miscellaneous/unknown nucleotide
R purine (A or G)
S strong bond, i.e. C or G
T thymine
V "not T", i.e. A, C, or G
W weak bond, i.e. A or T
Y pyrimidine (C or T)
Standard colour code for alignments/oligonucleotide motives
Single nucleotides:

$$
\square=\mathrm{A}, \square=\mathrm{C}, \square=\mathrm{G}, \square=\mathrm{T},:=\text { gap }
$$

(site) variability comprising 2 possible nucleotides:

$$
\square=\mathrm{K}, \square=\mathrm{M}, \square=\mathrm{R}, \square=\mathrm{S}, \square=\mathrm{W}, \square=\mathrm{Y}
$$

nucleotide state unknown $=\mathrm{N}$

1

INTRODUCTION

The most recent complete systematic treatment of Orchidaceae is that of Dressler (1993). This system originated 35 years ago (DRESSLER and DodSon, 1960) and has been altered and modified periodically by DRESSLER as the basic knowledge of orchid morphology, anatomy, and genetics has expanded (DressLer, 1979, 1981, 1986, 1993). The Orchidaceae, as defined by this system, comprise 850 genera and 20000 species. These are arranged in five subfamilies, 22 tribes, and 70 subtribes (Table 1) principally based on anther number and position. The subfamilies are: Apostasioideae, containing the two orchid genera with either three fertile anthers or two fertile anthers and a filamentous staminode; Cypripedioideae, composed of the five genera with two fertile anthers (diandrous), a shield-shaped staminode, and a saccate labellum; Orchidoideae, containing the orchids with a single fertile anther (monandrous), which is erect and basifixed; Spiranthoideae, comprising the monandrous orchids with erect, acrotonic anther; and Epidendroideae, including all remaining monandrous orchids with an incumbent to suberect anther. This last subfamily is by far the largest (576 genera and approximately 15000 species), encompassing more genera and species than all the others together, including the object of this study, the genus Masdevallia, which is one of 28 genera in subtribe Pleurothallidinae, subfamily Epidendreae I.

Table 1 Classification of the Orchid according to DressLer (1993)

Subfamily	Tribe	Subtribe
Apostasioideae Rchb. f.		
Cypripedioideae Lindl. Spiranthoideae Dressler	Diceratosteleae Dressler Tropidieae Dressler Cranichideae Endl.	Goodyerinae Klotsch Prescottiinae Dressler Spiranthinae Lindl. Manniellinae Schltr. Pachyplectroninae Schltr. Cranichidinae Lindl.
Orchidoideae	Diurideae Endl.	Chloraeinae Rchb. f. Caladeniinae Pfitzer Drakaeinae Schltr. Acianthinae Schltr. Pterostylidinae Pfitzer Cryptostylidinae Schltr. Thelymitrinae Lindl. Rhizanthellinae Rogers Prasophyllinae Schltr.
	Orchideae	Orchidinae Habenariinae Benth.

Table 1 Cont. Classification of the Orchids according to DressLer (1993)

Cladistic parsimony analyses of $r b c L$ nucleotide sequence data from 171 taxa representing nearly all tribes and subtribes of Orchidaceae (CAMERON et al., 1999), divide the family into five major monophyletic clades: apostasioid, cypripedioid, vanilloid, orchidoid, and epidendroid orchids, arranged in that order (Fig. 1). These clades, with exception of the vanilloids, essentially correspond to currently recognized subfamilies (Dressler, 1993). A distinct subfamily, based upon tribe Triphoreae, a clearly isolated group of monandrous orchids, is supported for Vanilla and its allies. The general tree topology is, for the most part, congruent with previously published hypotheses of intrafamilial relationships. However, there is no evidence supporting the

Fig. 1 Strict consensus summary of 6000 successively weighted rbcL trees for Orchidaceae from CAMERON et al. (1999). Informal subfamily names are indicated, as are tribes sensu Dressler (1993). Solid circles indicate clades with high bootstrap support (75-100\%). Open circles indicate clades with weak bootstrap support (50-75\%). previously recognized subfamilies Spiranthoideae, Neottioideae (now placed in the Orchidoideae), or Vandoideae (now included in Epidendroideae). Subfamily Spiranthoideae is embedded within a clade containing members of Orchidoideae which is sister to tribe Diurideae.

1.1 Subtribe Pleurothallidinae Lindl. ex G. Don (Epidendreae: Orchidaceae)

The subtribe Pleurothallidinae Lindl. ex G. Don is the largest in number of species of the subtribes with approximately 4000 neotropical species in 28 genera (DRESSLER, 1993), accounting for 15 20% of the species in the entire family (Table 2).

Table 2 Genera of subtribe Pleurothallidinae (Dressler, 1993).

Acostaea Schltr.	Dresslerella Luer	Octomeria D. Don	Restrepiopsis Luer
Barbosella Schltr.	Dryadella Luer	Ophidion Luer	Salpistele Dressler
Barbrodria Luer	Frondaria Luer	Platystele Schltr.	Scaphosepalum Pfitzer
Brachionidium Lindl.	Lepanthes Sw.	Pleurothallis R. Br.	Stelis Sw.
Chamelophyton Garay	Lepanthopsis Ames	Porroglossum Schltr.	Teagueia (Luer) Luer
Condylago Luer	Masdevallia Ruiz \& Pav.	Restrepia H. B. \& K.	Trichosalpinx Luer
Dracula Luer	Myoxanthus Poepp. \& Endl.	Restrepiella Garay \& Dunsterv.	Trisetella Luer

The subtribe itself has as many species as major angiosperm families, such as the Cruciferae, Labiatae, Rosaceae or Palmae. However, members of the subtribe have been subjected to disproportionately less scientific scrutiny than these families because of their small size and the inaccessibility in the forest canopy. The subtribe ranges from southern Florida and Mexico to Argentina, but species richness is greatest in the montane cloud forests of Costa Rica, Panama, Colombia, Ecuador, Venezuela, Peru and Brazil.

Species of subtribe Pleurothallidinae are epiphytic or terrestrial; with a sympodial growth habit; leaves are duplicate, mostly coriaceous; ramicauls (secondary stems) are unifoliate, arise directly from the rhizome, and lack pseudobulbs; and the roots are velamenous (PRIDGEON, 1982). Inflorescences are usually terminal (rarely lateral) and flowers are either resupinate or non resupinate, dipteran-deceit-pollinated. One of the morphological features that unite all genera of this subtribe is the presence of an articulation between the ovary and the pedicel of the flowers. So that when flowers fall, the pedicels remain. In all other orchids the articulation occurs at the base of the pedicel (DressLER, 1981). Genera have been circumscribed primarily on the basis of the number of

Fig. 2 Bootstrap consensus tree of ITS sequences of Pleurothallidinae (PRIDGEON et al. 2001). pollinia- eight, six, four, or twoalthough there can be either eight or six in Brachionidium Lindl. (LUER, 1986a) and two or four in Myoxanthus Poepp. \& Endl. and Lepanthes Sw. (Stenzel, 2000). DressLer (1993) suggests that Pleurothallidinae are a diverse but very natural group that parallels the Old World Bulbophyllinae in floral evolution (both are pollinated by flies), and that the presence of the Pleurothallis seed type in the Ponera complex suggests an origin of the Pleurothallidinae from an ancestor similar to Dilomilis Raf. This supposition was confirmed in a first phylogenetic analysis of the Pleurothallidinae based on nuclear and plastid DNA sequences by Pridgeon et al. (2001) (Fig. 2), which clearly showed that Pleurothallidinae is a monophyletic subtribe and that their sister group is Dilomilis, which has eight
pollinia and reed stems with persistent leaf sheaths (ACKERMAN, 1995). It sister genus, Neocogniauxia Schltr., has sheathed stems terminated by a single leaf. The leaf anatomy of both, Dilomilis and Neocogniauxia, is similar in many aspects to that of most Pleurothallidinae: adaxial and abaxial hypodermis, helically thickened mesophyll cells, and absence of extravascular fibers (PRIDGEON, 1982). These two genera offered a stronger support for their inclusion in Pleurothallidinae in the ITS study of Laeliinae (VAN DEN BERG et al., 2000), the four-region study of Epidendreae and Laeliinae (VAN DEN BERG, 2000), and the mitochondrial DNA study by Freudenstein et al. (2000). There is only one morphological synapomorphy uniting the members of Pleurothallidinae as presently understood - an articulation between the ovary and pedicel - that Dilomilis and Neocogniauxia lack.

In a cladistic study of subtribe Pleurothallidinae using 45 morphological and anatomical characters, NEYLAND et al. (1995) also designated Arpophyllum giganteum Hartw. ex Lindl. as outgroup along with Brassavola nodosa (L.) Lindl. and Epidendrum ciliare L. of Laeliinae. Some of their results were similar to those obtained in a first molecular systematic analysis of the Pleurothallidinae (PRIDGEON et al., 2001). The genus Porroglossum Schltr., e.g., was sister to the genus Masdevallia, and Trisetella Luer was sister to both of them. Furthermore, Lepanthes was sister to subg. Specklinia of Pleurothallis R. Br. instead of Lepanthopsis Ames, which

Fig. 3 One of the most parsimonious trees discovered in a cladistic study of subtribe Pleurothallidinae based on morphological and anatomical data (Neyland, 1995). was part of a polytomy with Pleurothallis s.s. and Restrepia Garay \& Dunsterv. Brachionidium Lindl. was sister to Dracula Luer, a relationship based in large part on the absence of a leaf hypodermis. Although the morphological analysis likewise clearly showed the polyphyly of Pleurothallis, the distribution of its various components differed from the highly bootstrap supported topology found by PRIDGEON et al. (2001).

1.2 The genus Masdevallia Ruiz \& Pav.

In the eighteenth century, one major scientific expedition, the renowned travel of Hipolito Ruiz and José Pavón to the Andes of Peru and to Chile (1778-1788), was organized by the government of Spain. During the extensive peregrination, the first Masdevallia known to science, Masdevallia uniflora Ruiz \& Pav.= Typal species, was encountered in Huassahuassi, Peru. The genus Masdevallia was proposed in 1794 by Ruiz et Pav. in the first volume of Florae Peruvianae et Chilensis Prodromus and was named in honor of José Masdevall, physician in the court of Charles III of Spain. No other species of this genus were made known until 1809, when Masdevallia infracta was discovered in Brazil by Descourtilz, a French botanist and traveler. This species, of which living plants were imported to Europe in 1828 , was the first to flower in cultivation.

The genus Masdevallia is currently estimated to include 500 to 600 species (LUER, 1986b to 2003). Prior to 1975 , the genus consisted of 166 species, although 435 epithets had been attributed to the genus. This large number included those species that were subsequently removed to the genera Dracula Luer, Dryadella Luer, Trisetella Luer, Porroglossum Schltr. and Scaphosepalum Pfitzer (LUER, 2000), clearly recognized and distinguished by morphological and molecular data (see Figs. 2 and 3). In the last centuries, more than 400 species were described and the number of species increases quickly due the horticultural and botanical popularity, not only because of the attractive flowers, but also because of the relative ease of cultivation. Masdevallia is one of the largest genera in number of species of the Pleurothallidinae, exceeded by Lepanthes, Pleurothallis and Stelis Sw.

1.2.1 Distribution of species of Masdevallia

Species of Masdevallia are distributed from southern Mexico to southern Brazil with the main center of biodiversity in the high Andes of South America from Venezuela through Colombia, Ecuador, and Peru into Bolivia (Fig. 4). About 50 species occur in Central America, and less than 15 species occur in Brazil, including M. infracta Lindl., that occurs in the Mata Atlantica of Brazil, some 2 500-3 500 kilometers away from the "Masdevallia area".

1.2.2 Habitats and growth habit of species of Masdevallia

Most Masdevallia species are epiphytes, occurring in tropical montane rainforest, in higher altitudes between 1500 and 2500 meters above sea level, in environments subject to daily mist, rain, or fog and a relative air humidity of $80-90 \%$. Some species, such as M. veitchiana Rchb. f., M. coccinea Linden ex Lindl. etc., may also grow as terrestrial or lithophytic plants.

Fig. 4 Distribution of Masdevallia species

1.2.3 Morphology of species of Masdevallia

Species of the genus Masdevallia are perennial plants and very small and weak up to large and robust. They are characterized by short ramicauls (aerial leaf-bearing stems) (Figs. 6 and 8) produced successively from a stout rhizome. The ramicauls have several nodes and internodes (homoblastic), each node bearing a single, tubular sheath or bract (Figs. 6 and 8). The term "ramicaul" was suggested by STERN and Pridgeon (1984) as substitute for "secondary stem" that may be used for any leaf- and inflorescence-bearing stems. The term "secondary stem", found in many taxonomic descriptions, seems to refer to the vegetative shoot above the rhizome, but this use is inaccurate and confusing (DRESSLER, 1993).

The rhizome, or primary stem, is usually short, so that a densely caespitose habit is formed (Fig. 5), even when the rhizome is a little longer and ascending. In a few species the rhizome is significantly elongated (i.e. M. assurgens Luer \& R. Escobar, M. paivaeana Rchb. f., M. racemosa Lindl., and M. scandens Rolfe). Ramicauls of Masdevallia species are unifoliate, erect or suberect (truly pendent in only one species, M. caesia Roezl) and partially or completely enclosed by 2 or 3 thin, imbricating sheaths near the base (Figs. 6 and 8).

Leaves of Masdevallia species are thick and fleshy, and they show a great variation in shape, from elliptical to narrowly elliptical or obovate to narrowly obovate (Figs. 6 and 8). Sizes of Masdevallia leaves can vary considerably; for example, the leaves of the Central American M. hoeijeri Luer \& Hirtz are 5-10 mm long, where those of the Ecuadorian M. ova-avis Luer are 15-20 cm long. Most species are subpetiolate but petiolate leaves are present in a few species. The apices or tips are acute, obtuse to rounded, shallowly notched with a mucro in the sinus. The base is rounded, cuneate or narrowly cuneate, with or without a channeled petiole; the surface is smooth and the venation parallel. Leaves are commonly green or dark green, rarely purplish.

Species of Masdevallia are single flowered (Fig. 6) or the inflorescence is a raceme (Fig. 8) that may be shorter or longer than the leaves, few to many flowered with the flowers produced simultaneously or successively, densely or distantly on the rachis, longer or shorter than the leaves. The peduncle emerges laterally from an ill definite ring, the annulus, usually near or at the base of the ramicaul, or occasionally higher near the middle, but always a considerable distance below the apex, the leaf stem abscission layer. Peduncles are terete in cross-section in most species (Fig. 6); a triquetrous peduncle (Fig. 8) occurs in a large group of interrelated species of subgenus Polyantha, and four species produce both round and triangular peduncles (M. garciae Luer, M. infracta Lindl., M. richarsoniana Luer, and M. sprucei Rchb. f.). The peduncle is smooth in all species except in M. bicornis Luer in
which it is scabrous. The pedicel varies in length. In some instances it is thicker and longer than the peduncle that bears it.

The flowers are borne by a subtending floral bract (Figs. 6 and 8), which is usually tubular, but some species are characterized by inflated (e. g. M. caloptera Rchb. f., M. dimorphotricha Luer \& Hirtz, M. lehmanii Rchb. f.) or cucullate floral bracts (i. e. M. cerastes Luer \& Escobar, M. corniculata Rchb. f., M. cucullata Lindl., M. delhierroi Luer \& Hirtz, M. hercules Luer \& Andreetta, and M. vidua Luer \& Andreetta). In some species there are several imbricate floral bracts (e. g. M. cuprea Lindl., M. deceptrix Luer \& Würstle, M. impostor Luer \& Escobar, M. medusa Luer \& Escobar, M. sanctaefidei Kraenzl.). Masdevallia flowers are zygomorphic, with an articulation between ovary and pedicel (Fig. 8), and variable in size, from 7 mm (M. bangii Schltr.) to 50 mm (M. veitchiana Rchb. f.) including the tail length. The ovaries of all species are trivalvate and each valve is ribbed to some degree. The ovaries can be smooth or verrucose to papillose or pitted, with the ribs smooth, carinate or crested.

The sepals are conspicuous, membranous to thickly fleshy, variously colored, smooth to verrucose or pubescent, broad or narrow, acute to obtuse (Figs. 6 and 8). Sepals are variously connate, from barely connate at the base to form a cup, to deeply connate to form a cylindrical tube; in a few species the dorsal sepal is free from the laterals. The degree of connation between the sepals is used to define some infrageneric taxa. The apices of sepals are commonly contracted into elongated segments (tails) (Fig. 6); tailless sepals characterize some infrageneric taxa (e. g. M. mentosa Luer, M. henniae Luer \& Dalström, M. expers Luer \& Andreetta). Sepals display the greatest diversity in size, shape, texture and color of all the floral parts and are almost always the most important features in specific diagnoses.

The petals are considered the hallmark of the genus (LUER, 1986b). They are usually callous, small and inconspicuous, usually about the length of the column they flank, more or less waxy or cartilaginous in consistency, commonly thickened along the labellar margin, usually forming a carina or a tooth (Fig. 6), often producing a marginal angle or a kind of process or tooth somewhere between the middle and the base. In some species (e.g., M. chaetostoma Luer) a callus is missing. The shape of petals varies from oblong to elliptic and obovate. The apex varies from truncate to acute and rounded. Verrucose petals characterize some infrageneric taxa.

The lip (Figs. 6 and 8), which is usually not much larger than the lateral petals, is more or less ligulate, smooth or verrucose and entire or denticulate at the apex. It is usually sulcate to some degree between a pair of longitudinal calli; the absence of calli is used to define some infrageneric taxa. In some taxa the calli are developed into oblique, marginal folds that divide the lip into an epichile and a hypochile.

The base of the lip is truncate or cordate and attached to a curved extension from the base of the column-foot.

The column is very much the same in all species of Masdevallia (Figs. 6 and 8). It is semiterete, with a ventral anther, the apical margins entire to lightly toothed. The base of the column is prolonged into a thickened foot at the apex of the ovary (Figs. 6 and 8), and from the apex of the foot there is a free incurved extension to which the lip is attached. The rostellum is retrorse and two pollinia are present.

Characters of the anther have been among the most important in orchid systematics since the beginning of the 19th century. This is especially true for the greater than 99% of orchids that have only a single anther (Vanilloideae, Orchidoideae, Epidendroideae), because their anthers exhibit the greatest degree of variation. In spite of this importance, relatively little study has been devoted to understanding the variation encountered in these characters. Some of these characters are related to the orientation of the anther, others to the nature of pollinia themselves or of their associated structures (stalks). Variation in pollinia includes differences in numbers and packaging. Freudenstein and RASMUSSEN (1996) studied pollinium development with particular reference to how different numbers are produced and examined differences among sectile pollinia (FREUDENSTEIN and RaSMUSSEN, 1997). RASMUSSEN (1985, 1986a) has characterized some of the variation observed in pollinium stalks. The surface topology and wall anatomy of the pollinia surface provide a substantial set of data, which appears to have great phylogenetic value in Orchidaceae. Pollinia structure has been described by Williams and Broome (1976), Schill and Pfeiffer (1977), Burns-Balogh (1983), Hesse, Burns-Balogh, and Wolff (1989), Zavada (1990), Schlag and Hesse (1993) and Stenzel (2000). The pollen is aggregated into sectile pollinia, which is typical of the subfamily (LINDLEY, 1830-1840; BURNS-BALOGH \& FUNK, 1986). The pollen tetrads are combined into massulae, and the massulae are united into the pollinium.

Fig. 5 Morphology of Masdevallia glandulosa Königer, painted by Joubert Da Silva.

Fig. 6 Morphology of Masdevallia glandulosa Königer

Fig. 7 Masdevallia melanoxantha Linden \& Rchb. f. painted by Joubert Da Silva.

Fig. 8 Morphology of Masdevallia melanoxantha Linden \& Rchb. f.

Masdevallia fruits (Fig. 9) are capsules that consist of three carpels, as are all Orchidaceae fruits.

Fig. 9 Masdevallia capsules: a) Capsules of Masdevallia herradurae F. Lehm. \& Kraenzl., b) Capsules of Masdevallia infracta Lindl. Scale bars=1 cm (A, B).

Masdevallia seeds are exceedingly small, almost dustlike, consisting of a tiny embryo suspended inside a reticulate or netlike testa and surrounded by a large volume of air space. In Masdevallia, they can range in weight from 3 to $14 \mu \mathrm{~g}$ and may be $0.4-1.25 \mathrm{~mm}$ long and $0.08-0.27$ wide.

Their shapes can be very variable. The seed coat may be hard and coriaceous or papery. Observations through a scanning electron microscope (Fig. 10) have shown that the seed coats may have transverse, longitudinal, and netlike reticulations.

Fig 10 Masdevallia seeds: a) Seed of Masdevallia herradurae F. Lehm. \& Kraenzl. b) Seed of Masdevallia infracta Lindl. Scale bars $=20 \mu \mathrm{~m}$ (A, B).

1.2.4 Infrageneric relationships of Masdevallia based on molecular data

Masdevallia is a distinctive genus in the subtribe Pleurothallidinae and its delimitation has never been a problem, although in the last 20 years, four genera (Dracula Luer, Dryadella Luer, Trisetella Luer, and Porroglossum Schltr.) have been segregated from Masdevallia. In a cladistic analysis of the subtribe Pleurothallidinae based on morphological and anatomical data (NeyLand et al., 1995), the genus Masdevallia appears as sister to Porroglossum (see Fig. 3, p. 5). In a first molecular systematic analysis of the subtribe Pleurothallidinae by PRIDGEON et al. (2001) based on nuclear and plastid DNA sequences, the genus

Fig. 11 A portion of one of the 100001 most parsimonious trees of the complete ITS nrDNA of Pleurothallidinae from Pridgeon et al. (2001). Subgenera are represented by different colours.

Masdevallia was not monophyletic, however most of the species grouped together in a clade. The phylogenetic relationship of the genus Masdevallia relative to outgroup taxa is well resolved using ITS sequences (PRIDGEON et al., 2001); species of Masdevallia appears as sister to Dracula, Trisetella and Porroglossum (see Fig. 2 p. 4 and 11). Dracula xenos Luer \& R. Escobar came out as sister to Masdevallia picturata Rchb. f., and Masdevallia erinacea Rchb. f. resulted sister to the genera Dracula Luer, Masdevallia, and Porroglossum Schltr. (Fig. 11). The naturalness and relationships of the subgenera, sections and subsections of Masdevallia were not previously examined in a phylogenetic context. A glance at Fig. 11 has shown that that most of the proposed subgenera are not monophyletic and that the infrageneric classification of the genus Masdevallia should be reconsidered.

1.2.5 Classification history of Masdevallia and nomenclatural implications

Although revisions of several sections of Masdevallia were published in the last century, a comprehensive treatment of all species is still lacking. This is partly caused by the problematic delimitation of groups within the genus due to the absence of diagnostic morphological characters, and the great number of species. The proposed infrageneric classifications for the genus Masdevallia are shown in Table 3.

Infrageneric classification of Masdevallia proposed by Heinrich Gustav Reichenbach (1873-1878)

The earliest attempt to indicate subdivisions of the genus was made by Reichenbach. Usually he did not mention the rank of the subdivisions, but in a few instances he indicated groups or "sections". In the whole 14 groups/sections were recognized by Reichenbach:

Section Amandae Rchb. f., Gard. Chron. 2: 290. 1874.

Type: Masdevallia amanda Rchb. f. \& Warsc. Bonplandia 2: 115.
Characterized by stems producing several small flowers, by the serrate wings or ridges on the ovary, the inflated floral bracts and the petals that are toothed on both margins.

Section Clausae-porrectae Rchb. f., Gard. Chron. 2: 338.1875.
Type: Masdevallia ionocharis Rchb. f., Gard. Chron., 4: 388. 1875.
Characterized by single-flowered peduncles, tubular floral bracts, and cartilaginous petals with a welldeveloped, retrorse tooth from the callus near the base on the labellar margin.

Section Coriaceae Rchb. f., Gard. Chron. 1: 240.1874.

Type: Masdevallia coriacea Lindl., Ann. Mag. Nat. Hist. 15: 257. 1845.
Syn.: Section Leontoglossae Rchb. f., Otia Bot. Hamburg. 1: 15. 1878.
Type: Masdevallia leontoglossa Rchb. f., Bonplandia 3: 69. 1855.
Characterized by rigid (coriaceous) leaves and thick succulent flowers.

Section Cucullatae Rchb. f., Gard. Chron. 1: 72. 1878.
Type: Masdevallia cucullata Rchb. f., Orchid. Linden. 4. 1846.
Characterized by the extreme shortness of the pedicel, which causes the large cucullate bract to conceal the ovary and the base of the flower.

Table 3 Infrageneric classification of Masdevallia Ruiz \& Pav. from Reichenbach (1873) to Luer (2003).

$\begin{gathered} \hline \text { Reichenbach } \\ (1873-1878) \end{gathered}$	$\begin{aligned} & \hline \text { Pfitzer } \\ & \text { (1888) } \end{aligned}$	H. J. Veitch (1889)	$\begin{gathered} \hline \text { Woolward } \\ (1896) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Kraenzlin } \\ (1925) \end{gathered}$	$\begin{gathered} \text { Luer } \\ (1986) \\ \hline \end{gathered}$	$\begin{gathered} \text { Luer } \\ (2000-2003) \end{gathered}$
Sect. Amandae Sect. Clausae-porrectae Sect. Coriaceae Sect. Cucullatae Sect. Echidnae Sect. Fissae Sect. Minutae Sect. Polyanthae Sect. Saccilabiatae Sect. Saltatrices Sect. Triangulares Sect. Triaristellae Sect. Tubulosae Sect. Verrucosae	Sect. Cupulatae Sect. Polyanthae Sect. Saccilabiatae Sect. Triaristellae Sect. Tubulosae	Sect. Eumasdevalia Subsect. Coriaceae Subsect. Cucullatae Subsect. Polyanthae Subsect. Coccineae Subsect. Caudatae Subsect. A mandae Sect. Saccolabiatae Sect. Triaristellae	Sect. Amandae Sect. Coccineae Sect. Coriaceae Sect. Cucullatae Sect. Fissae Sect. Minutae Sect. Muscosae Sect. Polyanthae Sect. Racemosae Sect. Reichenbachianae Sect. Saccolabiatae Sect. Saltatrices Sect. Triangulares Sect. Triaristellae Sect. Tubulosae	Sect. Alaticaules Sect. Chimaeroideae Sect. Coccineae Sect. Echidna Sect. Fissae Sect. Floribundae Sect. Leontoglossae Sect. Polystictae Sect. Reichenbachianae Sect. Rhombopetalae Sect. Triangulares Sect. Triaristellae Sect. Tubulosae Sect. Urceolares	Subg. Amanda Sect. Fissae Sect. Nidificae Sect. Ophioglossae Sect. Pygmaeae Subg. Masdevallia Sect. Amaluzae Sect. Aphanes Sect. Caudivolvulae Sect. Coriacea Subsect. Coriaceae Subsect. Durae Sect. Cucullatae Sect. Ligiae Sect. Masdevallia Subsect. Caudatae Subsect. Coccinea Subsect. Masdevallia Subsect. Oscillantes Subsect. Saltatrices Subsect. Tubulosae Sect. Mentosae Sect. Minutae Sect. Polyantha Subsect. Alaticaules Subsect. Polyanthae Sect. Racemosae Sect. Reichenbachianae Subsect. Dentatae Subsect. Reichenbachianae Subg. Meleagris Subg. Pelecaniceps Subg. Teagueia	Subg. Amanda Subg. Cucullatia Subg. Fissia Subg. Masdevallia Sect. Amaluzae. Subsect. Amaluzae Subsect. Zahlbrucknerae Sect. Coriaceae Sect. Dentatae Sect. Durae Sect. Masdevallia Subsect. Caudatae Subsect. Coccinea Subsect. Masdevallia Subsect. Oscillantes Subsect. Saltatrices Sect. Minutae Sect. Racemosae Sect. Reichenbachianae Sect. Triotosiphon Subg. Meleagris Subg. Nidificia Subg. Polyantha Sect. Alaticaules Subsect. Alaticaules Subsect. Coaetaneae Sect. Polyanthae Subsect. Polyanthae Subsect. Successiviflorae Subg. Pygmaeia Sect. Aphanes Subsect. Aphanes Subsect. Pterigophorae Sect. Pygmaeae Subg. Scabripes Subg. Teagueia Subg. Volvula

Section Echidna Rchb. f., Linnaea 41: 11.1877.

Type: Masdevallia echidna Rchb. f., Bonplandia 3: 69. 1855.
Characterized by pubescent sepals, bivalvate petals, and by a three-nerved lip.

Section Fissae Rchb. f., Otia Bot. Hamburg. 1: 16. 1878.

Type: Masdevallia picturata Rchb. f., Otia Bot. Hamburg. 1: 16. 1878.
In the unique species included in this section, M. picturata Rchb. f., the dorsal sepal is not united to the lateral sepals. Reichenbach's name for this group, Fissae $=$ the cleft, is based on this peculiarity.

Section Minutae Rchb. f., ex Woolward. Gen. Masdevallia. 1896.

Type: Masdevallia minuta Lindl., Ann. Mag. Nat. Hist. 12:396. 1842.
Reichenbach simply indicated the subgeneric category Minutae for Masdevallia minuta.

Section Polyanthae Rchb. f., Gard. Chron. 1: 372. 1874.

Type: Masdevallia polyantha Lindl., Orchid. Linden. 6. 1846.
Species of this section produce more than one flower upon each peduncle, the flowers of some species expand at the same time and others in succession. With the exception of M. schlimii, all species have triquetrous or three angled stems.

Section Saccilabiatae Rchb. f., Gard. Chron. 37: 1238. 1873.
Type: Masdevallia chimaera Rchb. f., Gard. Chron. 463. 1872.
Lectotype designated by Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 15: 23. (1986b).
Characterized by a saccate or cochleate lip; the club-shaped petals, which are keeled and papillose near the apex, and the short and open perianth tube, which is generally more or less hairy.

Section Saltatrices Rchb. f., Linnaea 41: 10.1877.

Type: Masdevallia saltatrix Rchb. f., Linnaea 41: 10. 1877.
Characterized by species with the sepals deeply connate into a long sepaline tube that is more or less constricted above the middle or below the free segments, and more or less ventricose below the constriction.

Section Triangulares Rchb. f., Gard. Chron. 1: 372. 1874.

Type: Masdevallia triangularis Lindl., Orchid. Linden. 5. 1846.
Characterized by the widely spreading, more or less similar, long-tailed sepals that are basally connate into a shallow sepaline cup which exposes the petals, and column and lip standing more or less erect in the centre.

Section Triaristellae Rchb. f., Gard. Chron. 6 (138): 226. 1876.

Type: Masdevallia triaristella Rchb. f., Gard. Chron. 6 (138): 226. 1876.
Characterized by their inflorescence, a succession of single flowers borne in a congested raceme; the petals small and membranous; and the simple, longitudinally callous lip which is sagittate or cordate at the base, the retrorse basal lobes projecting behind to either side of the central hinge to the wedgeshaped column-foot. The column is elongate with a hooded ventral anther with two pollinia, and a large ventral stigma.

Section Tubulosae Rchb. f., Otia Bot. Hamburg. 1: 14. 1878.

Type: Masdevallia tubulosa Lindl., Orchid. Linden. 4. 1846.
Composed of very small species characterized by solitary, white to yellowish or greenish tubular flowers often with more or less similar free parts of the sepals. The callus of the petals is usually poorly developed. The lip is ligulate, usually with a pair of calli.

Section Verrucosae Rchb. f., Gard. Chron. 1: 8. 1876.

Type: Masdevallia verrucosa Rchb. f., Linnaea 22: 819. 1849.
Characterized by their inflorescence, a raceme that produces a succession of non-resupinate flowers, usually with caudate sepals. A usually prominent, more or less flat callus occupies the inner surface of the lateral sepals toward the apex. The petals are fleshy, broad and multiangular. The lip is deflexed and crested near the middle. The elongated, thick-footed column is winged with a toothed apex partially covering the ventral anther.

Infrageneric classification of Masdevallia proposed by Ernst Hugo Heinrich Pfitzer (1888)

The second proposed infrageneric classification was those of Pfitzer published in "Die natürlichen Pflanzenfamilien". It included five sections, of which four sections: Tubulosae, Polyanthae, Saccilabiatae, and Triaristellae; were previously recognized by Reichenbach (1873-1878). One new section was described and species of section Verrucosae were placed into a higher rank.

Section II. Cupulatae Pfitzer, Nat. Pflanzenfam. 2(6): 136.1888.

Type: Masdevallia shuttleworthii Rchb. f., Gard. Chron. 1: 170. 1875.
Species of this section are characterized by one flowered peduncles, and flat flowers with the sepals connate into a cup and the flat labellum.

Genus Scaphosepalum Pfitzer, Nat. Pflanzenfam. 2(6): 136. 1888.

Lectotype: Masdevallia ochthodes Rchb. f., Bonplandia 3: 70. 1855. Lectotype designated by Garay. Orquideología 9: 124 (1974).

Syn.: Pleurothallis section Racemosae. Rchb., Bonplandia 2: 24. 1854.
= sect. Verrucosae Rchb. f., Gard. Chron. 1: 8. 1876.
Type: Masdevallia verrucosa Rchb. f., Linnaea 22: 819. 1849. = Scaphosepalum verrucosum (Rchb. f.) Pfitzer, Nat. Pflanzenfam. 2(6): 139. 1888.

Reichenbach attributed the earliest species of this genus to Masdevallia, probably because of the vegetative similarity and the sepaline tails.

Infrageneric classification of Masdevallia proposed by Harry James Veitch (1889)

In the "Manual of Orchidaceous plants cultivated under glass in Great Britain", H. J. Veitch described the principal genera, species and varieties cultivated under glass to supply amateurs and cultivators of exotic orchids. H. J. Veitch proposed for the genus Masdevallia an infrageneric classification based on Reichenbach's classification. The infrageneric classification comprises 3 sections and 6 subsections, these last ones demoted from the rank of section in Reichenbach's classification to subsections of Eumasdevallia.

Section I. Eumasdevallia H. J. Veitch, Man. Orchid. PI. 5: 17. 1889.

According with Article 11 of the International Code of Botanical Nomenclature (IBCN; GREUTER et al., 2000), Veitch's name for section Eumasdevallia is illegitimate.

The very large section Eumasdevallia comprised the great bulk of the genus and was not easily differentiated from with the remaining sections. The section comprised species with the lip generally ligulate or linear-oblong, usually nearly flat, more or less fleshy; petals flat, often somewhat oblique; sepals united below into a tube which is generally but not always longer than broad, the sepaline tails variable in length, breadth, and colour. It included subsections Amandae, Caudatae, Coccineae, Coriaceae, Cucullatae, and Polyanthae.

Section II. Saccolabiatae Rchb.f., Gard. Chron. 37: 1238.1873.
Type: Masdevallia chimaera Rchb. f., Gard. Chron. 463. 1872.
It was not clear if the section name was Saccolabiatae or Saccilabiatae, because Reichenbach used in most places Saccilabiatae, but in one or two instances Saccolabiatae. H. J. Veitch retained the name Saccolabiatae because it is formed more in accordance with classical usage. H. J. Veitch described the section as "a most distinct section, including the species that are sometimes called by horticulturists the Chimaeroid group". It includes the following:
M. astuta Rchb. f.
M. bella Rchb. f.
M. carderi Rchb. f.
M. chestertonii Rchb. f.
M. chimaera Rchb. f.
M. erythrochaete Rchb. f.
M. gaskelliana Rchb. f.
M. houtteana Rchb. f.
M. nycterina Rchb. f. M. radiosa Rchb. f.
M. troglodytes E. Morren
M. vespertilio Rchb.

Section III Triaristellae Rchb. f., Gard. Chron. 6 (138): 226. 1876.
Type: Masdevallia triaristella Rchb. f., Gard. Chron. 6 (138): 226. 1876.
The species included in this section are characterized by extremely short perianth tube, the lateral sepals, that are united almost to the apex, the lateral tails, i.e., not a prolongation of the sepals, but inserted below their apex on the lateral margin. The peduncles of the species included in this section are slender and the leaves small and narrow. H. J. Veitch described this section as a "very natural group of exceptional interest, consisting of dwarf-tufted plants, bearing minute gem-like flowers". It includes M. gemmata Rchb. f., M. triaristella Rchb. f. and M. tridactylites Rchb. f.

Infrageneric classification of Masdevallia proposed by Florence Helen Woolward (1896)

In her monograph of the genus Masdevallia, Florence Woolward in 1896 assembled a collection of her paintings, numbered the sections, and placed them as well as the species contained in them in alphabetical order. Woolward (1896) used the classification of Reichenbach with minor changes. The species were grouped into 15 sections, of which three sections, Muscosae, Racemosae and Reichenbachianae; were newly proposed by Woolward. The remaining sections were Amandae, Coccineae, Coriaceae, Cucullatae, Fissae, Minutae, Polyanthae, Saccolabiatae, Saltatrices, Triangulares, Triaristellae, and Tubulosae.

Section VII Muscosae Woolward, Gen. Masdevallia. 1896.

Type: Masdevallia muscosa Rchb. f., Gardener's Chronicle \& Agricultural Gazette 1: 460. 1875.
The species included in this section were segregated into a new genus, Scaphosepalum Pfitzer, but in the absence of a final decision, Woolward omitted this genus and placed the unique species, M. muscosa Rchb. f., into Section Muscosae.

Section IX Racemosae Woolward, Gen. Masdevallia. 1896.

Type: Masdevallia racemosa Lindl., Ann. Mag. Nat. Hist. 15: 256. 1845.
This section was proposed by Woolward because M. racemosa Lindl. was impossible to classify with any other species. Masdevallia racemosa Lindl. is characterized by the creeping rhizomes, producing leaves at intervals and bearing two or three flowers upon one peduncle.

Fig 12 Florence Woolward's painting of Masdevallia coccinea (Section II Coccineae). Source: J. Stewart. 1992. HMSO, London.

Fig 13 Florence Woolward’s painting of Masdevallia macrura (Section IV Cucullatae). Source: J. Stewart. 1992. HMSO, London.

Section X Reichenbachianae Woolward, Gen. Masdevallia. 1896.

Type: Masdevallia reichenbachiana Endres ex Rchb. f., Gard. Chron. 4(87): 257. 1875.
This section included all the species allied with M. reichenbachiana Endres, a plant which Reichenbach temporally included among the Coriaceae. The species included in section Reichenbachianae are distinguished from the Coriaceae by the fleshy texture of their flowers and leaves, by the deep narrow tube and by the carinate veins upon the inner surface of the lateral sepals. This section comprised seven species:

M. calura Rchb. f.	M. marginella Rchb. f.	M. schroederiana hort. Sander.
M. demissa Rchb. f.	M. reichenbachiana Endres	
M. fulvescens Rolfe	M. rolfeana Kraenzl.	

The genus Porroglossum Schltr.

In 1920 Schlechter proposed to segregate Masdevallia echidna Rchb. f. into a new genus, Porroglossum (from the Greek porro, "far, far off", and glossa, "tongue") referring either to the position of the lip in relation to the column or elongated column-foot, or to the fact that the lip was far from the usual. The peculiar sensitive lip was noted by Oliver in 1888, who described the mechanism of movement and its influence on the pollination.

Porroglossum Schltr., Repert. Spec. Nov. Regni Veg. Beih. 7: 82. 1920.

Type: Porroglossum colombianum Schltr., Repert. Spec. Nov. Regni Veg. Beih. 7: 83. 1920.
Syn.: sect. Echidnae Rchb. f., Linnaea 41: 11. 1876.
Type: Masdevallia echidna Rchb. f., Bonplandia 3: 69. 1855. (Porroglossum echidnum (Rchb. f.) Garay, Svensk. Bot. Tidskr. 47: 201. 1953.
= Masdevallia section Muscosae Woolward, Gen. Masdevallia. 1896.
Type: Masdevallia muscosa Rchb. f., Gardener's Chronicle \& Agricultural Gazette 1: 460. 1875.
= Lothania Kraenzl., Gard. Chron. ser. 3, 75: 173. 1924.
Type: Lothania mordax Rchb. f., Gard. Chron. ser. 3, 75: 173. 1924.

Infrageneric classification of Masdevallia proposed by Friedrich Wilhelm Ludwig Kraenzlin (1925)

The next treatment of the genus was assembled in 1925 by Kraenzlin. The infrageneric classification proposed by Kraenzlin included 14 sections, two of them, Urceolares and Floribundae, were new sections proposed by Kraenzlin. Five sections, Polystictae, Leontoglossae, Alaticaules, Chimaeroideae, and Rhombopetalae, were renamed, and two sections; Racemosae and Minutae, were merged into other sections. Some species were merged into different sections:

Section Tubulosae Rchb. f., Otia Bot. Hamburg. 1: 14. 1878.

Type: Masdevallia tubulosa Lindl., Orchid. Linden.4. 1846.
Seven species were included by Kraenzlin in this section. Masdevallia saltatrix Rchb. f. (prior sect. Saltatrices Rchb. f.) was placed in this section:
M. angulifera Rchb. f.
M. constricta Poepp. et Endl.
M. saltatrix Rchb. f.
M. olivacea Kraenzl.
M. tubulosa Lindl
M. ventricularia Rchb. f.
M. tridentata Lindl

Section Coccineae (H. J. Veitch) Woolward, Gen. Masdevallia. 1896.

Type: Masdevallia coccinea Linden ex Lindl., Orchid. Linden. 5 (26). 1846.
12 species were placed by Kraenzlin in this section, including M. racemosa (Section Racemosae Woolward). The other species were:

M. amabilis Rchb. f.	M. deformis Kraenzl.	M. rosea Lindl. (prior
M. barleana Rchb. f.	M. eduardii Rchb. f.	section Tubulosae sensu
M. coccinea Lind. ex Lindl.	M. militaris Rchb. f.	Woolward)
M. crescenticola Kraenzl.	M. racemosa Lindl.	M. tuerckheimii O. Ames
M. davisii Rchb. f.		M. veitchiana Rchb. f.

Section Polystictae Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 32. 1925.

Type: Masdevallia polysticta Rchb. f., Gard. Chron. 1:338. 1874.
Syn.: sect. Eumasdevallia subsect. Amandae (Rchb. f.) H. J. Veitch, Man. Orchid. Pl. 5: 18. 1889.
Type: Masdevallia amanda Rchb. f. \& Warsc., Bonplandia 2: 115
In accordance with Article 11 of the International Code of Botanical Nomenclature (IBCN; GREUTER et al., 2000), Kraenzlin's name for section Polystictae is illegitimate.
The section was renamed because the most representative species for this section, according to Kraenzlin, was M. polysticta Rchb. f. The "new" name for this section described the characteristic colour. Eleven species and six putative hybrids were included in this section:

M. abbreviata Rchb. f.	M. polysticta Rchb. f.	M. melanopus Rchb. f.
M. amanda Rchb. f.	M. sodiroi Schltr.	M. sphenopetala Kraenzl.
M. caloptera Rchb. f.	M. spathulifolia Kraenzl.	M. huebschiana Kraenzl.
M. densiflora Schltr.	M. tridens Rchb. f.	M. bulbophyllopsis Kraenzl.
M. gustavi Rchb. f.	Hybrids according to Kraenzlin:	M. corazonica Schltr.
M. lehmanni Rchb. f.	M. calopterocarpa Rchb. f.	
M. pachyura Rchb. f.		

Section Urceolares Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 32. 1925.

Type: Masdevallia urceolaris Kraenzl., Notizbl. Bot. Gart. Berlin-Dahlem 8: 132. 1922.
Section Urceolares included mainly newly described species or species "section indeterminate or confused" that were characterized by the connation of sepals very similar as in section Polysticta, the tails of sepals very short, and single flowers or inflorescences with 2 or 3 flowers produced successively. Thirteen species in two informal groups were placed in this section:

Caudatae	M. urceolaris Kraenzl.	M. molossus Rchb. f. (prior
M. erinacea Rchb. f.	Ecaudatae	section Saltatrices)
M. molossoides Kraenzl.	M. antioquensis Lehm.	M. yauaperyensis Barb. Rodr.
M. ophioglossa Rchb. f.	M. ecaudata Schltr.	M. chloracra Rchb. f. (prior
(prior section Minutae)	M. anura Kraenzl.	section Coriaceae).
M. rhopalura Schlechter	M. schmidtchenii Kraenzl.	
M. stenantha Lehm.		

Section Reichenbachianae Woolward, Gen. Masdevallia. 1896.

Type: Masdevallia reichenbachiana Endres ex Rchb. f., Gard. Chron. 4(87): 257. 1875.
Seven species were included in this section by Kraenzlin:
M. demissa Rchb. f.
M. rolfeana Kraenzl.
M. calura Rchb. f.
M. aspera Rchb. f.
M. schroederiana hort.
M. reichenbachiana Endres
M. marginella Rchb. f

Section Leontoglossae (Rchb. f.) Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 32. 1925.

Type: Masdevallia leontoglossa Rchb. f., Otia Bot. Hamburg. 1: 15. 1878.
Syn.: sect. Coriaceae Rchb. f., Gard. Chron. 1: 240. 1874.
= sect. Eumasdevallia subsect. Coriaceae (Rchb. f.) H. J. Veitch, Man. Orchid. Pl. 5: 18. 1889.
Type: Masdevallia coriacea Lindl., Ann. Mag. Nat. Hist. 15: 257. 1845.
In accordance with Article 11 of the International Code of Botanical Nomenclature (IBCN; GREUTER et al., 2000), Kraenzlin's name for section Leontoglossae is illegitimate.

This section was renamed because the name "Coriaceae" applied, according to Kraenzlin, to most Masdevallia species. The name Leontoglossae was considered more descriptive for the labellum with a verrucose apex, characteristic for members of this section. Some species of section Cucullatae were transferred to this section. The section included seven informal groups: Gargantuae, Cupulares, Peristeriiformes, Civiles, Cucullatae, Microleontoglossae, and Lepidae. The section comprised 42 species, the great majority in culture:

Gargantuae

M. angulata Rchb. f.
M. deorsum Rolfe
M. elephanticeps Rchb. f.
M. gargantua Rchb. f.
M. mooreana Rchb. f.
M. stenorhynchos Kraenzl.
M. velifera Rchb. f.

Cupulares
M. chimboensis Kraenzl.
M. coriacea Lindl
M. cupularis Rchb. f.
M. sulphurea F. Lehm. \& Kraenzl.

Peristeriiformes
M. peristeria Rchb. f.
M. macroglossa Rchb. f.
M. pachyantha Rchb. f
M. corderoana Lehm
M. haematosticta Rchb. f.
M. fragans Woolward

Species imperfecte nota:
M. inaequalis Rchb. f.
M. fractiflexa Lehm. \& Kraenzl.

Civiles
M. aequatorialis Kraenzl. M. civilis Rchb. f.
M. dermatantha Kraenzl.
M. leontoglossa Rchb. f.

Rchb. f.
M. rechingeriana Kraenzl. (=
M. sceptrum Rchb. f.)
M. torta Rchb. f.

Cucullatae
M. macrura (prior section

Cucullatae according to H. J.
Veitch and Woolward)
M. metallica Lehm.
M. corniculata Rchb. f. (section Cucullatae)
M. cucullata Lindl. (section Cucullatae)

Microleontoglossae
M. laevis Lindl.
M. ortgiesiana Rchb. f.
M. pardina Rchb. f.
M. platyglossa Rchb. f.
M. porcelliceps Rchb. f.
M. trionyx Kraenzl.

Lepidae
M. affinis Lindl.
M. cayenensis Rchb. f.
M. ellipes Rchb. f.
M. endotrachys Kraenzl.
M. ensata Rchb. f.
M. lepida Rchb. f.
M. xiphium Rchb. f.

Section Floribundae Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 84. 1925.

Type: Masdevallia floribunda Lindl., Edward’s Bot. Reg. 29: 72. 1843.
This section also comprised 31 species, including part of the species from sections Triangulares Rchb. f., Minutae Rchb. f. and Clausae-porrectae Rchb. f. The section was divided into three informal groups: Longicaudae, Brevicaudae and Ecaudatae. Species included in this section were:
Longicaudae
M. copiosa Kraenzl.
M. flaveola Rchb. f.
M. hians Lindl. \& Rchb. f.
M. nidifica Rchb. f.
M. pteroglossa Schltr.
M. strumifera Rchb. f.
M. tenuipes Schltr.
Brevicaudae
M. anachaete Rchb. f.
M. chontalensis Rchb. f.
M. cyathogastra Schltr.
M. diantha Schltr.
M. floribunda Lindl.
M. guianensis Lindl.
M. heterotepala Rchb. f.
M. muriculata Kraenzl.
M. pygmaea Kraenzl.
M. schizopetala Kraenzl.
M. sprucei Rchb. f.
M. striatella Rchb. f.
M. trigonopetala Kraenzl.
M. ulei Schltr.
M. wendlandiana Rchb. f.

Ecaudatae
M. campyloglossa Rchb. f.
M. fertilis Kraenzl.
M. lansbergii Rchb. f.
M. liliputana Cogn.
M. minuta Lindl.
M. paulensis Barb. Rodr.
M. sanctae-rosae Kraenzl.
M. sarcophylla Kraenzl.
M. tubuliflora Ames
M. cyathogastra Schltr.

Section Alaticaules Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 84. 1925.

Type: Masdevallia melanoxantha Linden \& Rchb. f., Bonplandia 2: 283.1854.
Syn.: sect. Polyanthae Rchb. f., Gard. Chron. 1: 372. 1874.
= sect. Eumasdevallia subsection Polyanthae H. J. Veitch, Man. Orchid. Pl. 5: 18. 1889.
Type: Masdevallia polyantha Lindl., Orchid. Linden. 6. 1846.
According with Article 11 of the International Code of Botanical Nomenclature (IBCN; GREUTER et al., 2000), Kraenzlin's name for section Alaticaules is illegitimate.
Most species of section Alaticaules were members of the section Polyanthae. The section was renamed. Species of section Alaticaules are characterized by the peduncles that are triangular in cross section. The section is divided into four informal groups, Longiscapae, Succedaneae, Breviscapae and Brevicaudae: Members of section Alaticaules were:

Longiscapae	M. jalapensis Kraenzl.	
M. buccinator Rchb. f. \& Warsz.	M. lawrenci Kraenzl.	Kraenzl.
M. cinnamomea Rchb. f.	M. melanoxantha Linden \& Rchb. f.	M. cuprea Lindl.
M. schlimii Linden ex Lindl.	M. remotiflora Kraenzl.	M. lata Rchb. f.
M. subumbellata Kraenzl.	M. sanctae-fidei Kraenzl.	M. mastodon Rchb. f.
M. xylina Rchb. f.	M. weberbaueri Schltr.	M. parvula Schltr.
Succedaneae	Breviscapae	M. peruviana Rolfe
M. carruthersiana F. Lehm. \&	M. bicolor Poepp. \& Endl.	M. platyrhachis Rchb. f.
Kraenzl.	M. maculata Klotzsch \& H. Karst.	M. tovarensis Rchb. f.
M. ephippium Rchb. f.	Brevicaudae	M. aurantica Lindl.
M. guttulata Rchb. f.	M. auropurpurea Rchb. f. \& Warsz.	
M. infracta Lindl.		

Section Chimaeroideae Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 125.1925.

Syn.: sect. Saccilabiatae Rchb. f., Gard. Chron. 37: 1238. 1873.
Type: Masdevallia chimaera Rchb. f., Gard. Chron. 463. 1872.
According with Article 11 of the International Code of Botanical Nomenclature (IBCN; GREUTER et al., 2000), Kraenzlin's name for section Chimaeroideae is illegitimate.

This section was renamed because the old name characterized, according to Kraenzlin, only five of the 32 species. This section is characterized by the commonly pendent racemes, which originate from the ramicaul with an annulus a considerable distance below the abscission layer. The petals are small and usually verrucose between a pair of valvelike laminae. The lip is divided into a cleft hypochile and a more or less rounded, concave epichile often with lamellate, radiating veins. The section was divided into five informal groups. To this section belong:

Saccatae	M. radiosa Rchb. f.	M. tubeana Rchb. f.
M. chimaera Rchb. f.	M. velutina Rchb. f.	M. venosa Rolfe
Erythrochaetae	Carderianae	M. vespertilio Rchb. f.
M. astuta Rchb. f.	M. carderi Rchb. f.	Chimaeroideae spuriae
M. erythrochaete Rchb. f.	M. carderiopsis F. Lehm. \&	M. alismifolia Kraenzl.
M. gaskelliana Rchb. f.	Kraenzl.	M. johannis Schltr.
M. microglochin Rchb. f.	M. platycrater Rchb. f.	
Radiosae	M. trinema Rchb. f.	Kraenzl.
M. benedicti Rchb. f.	M. trinemoides Kraenzl.	M. pachygne Kraenzl.
M. callifera Schltr.	M. woolwardiae F. Lehm. ex. Kraenzl.	
M. gorgo Rchb. f. ex Kraenzl.	Nycterinae	Kraenzl.
M. houtteana Rchb. f.	M. bella Rchb. f.	M. quilichaoensis F. Lehm.
M. lactea Kraenzl.	M. chestertonii Rchb. f.	\& Kraenzl.
M. pusilla Rolfe	M. medellinensis Kraenzl.	

Section Triangulares Rchb. f., Gard. Chron. 1: 372. 1874.

Type: Masdevallia triangularis Lindl., Orchid. Linden. 5. 1846.
Section Triangulares was divided into three informal groups. To this section belong:

Tridentatae

M. caudata Lindl.
M. caudivolvula Kraenzl.
M. chlorotica Kraenzl.
M. chrysochaete F. Lehm.
M. chrysoneura F. Lehm. \& Kraenzl.
M. confusa Kraenzl.
M. cucutillensis Kraenzl.
M. estradae Rchb. f.
M. expansa Rchb.f.
M. klabochorum Rchb. f.
M. macropus F. Lehm. \& Kraenzl.
M. tonduzii Woolward
M. triangularis Lindl.

Jonocharides

M. arminii Linden \& Rchb. f.
M. casta Kraenzl.
M. chiquindensis Kraenzl.
M. filamentosa Kraenzl.
M. herradurae F. Lehm. \&

Kraenzl.
M. ionocharis Rchb. f.
M. laucheana Kraenzl. ex

Woolward
M. leucantha F. Lehm. \& Kraenzl.
M. pastensis Kraenzl.
M. tricolor Rchb. f.

Campanulatae
M. bonplandi Rchb. f. M. hymenantha Rchb. f. M. kalbreyeri Rchb. f. ex Kraenzl.
M. paiveana Rchb. f.
M. scandens Rolfe
M. uniflora Ruiz \& Pav. M. xerophila F. Lehm. \& Kraenzl.
M. zahlbruckneri Kraenzl.

Section Fissae Rchb. f., Otia Bot. Hamburg. 1: 16. 1878.

Type: Masdevallia picturata Rchb. f., Otia Bot. Hamburg. 1: 16. 1878.
In the section Fissae, Kraenzlin included 22 species, some species prior members of the section Clausae-porrectae sensu Reichenbach:

M. bathychista Schltr.	M. heteroptera Rchb. f.	M. restrepioidea Kraenzl.
M. cryptocopis Rchb. f. ex Kraenzl.	M. hieroglyphica Rchb. f.	M. schizantha Kraenzl.
M. diversifolia Kraenzl.	M. iricolor Rchb. f. ex Kraenzl.	M. wageneriana Linden ex
M. falcago Rchb. f.	M. longiflora Kraenzl.	Lindl.
M. fasciata Rchb. f.	M. ocanensis Kraenzl.	M. xanthina Rchb. f.
M. fissa Kraenzl.	M. paisbambae F. Lehm. \& Kraenzl.	M. meleagris Lindl. ex
M. flaccida Kraenzl.	M. palmensis Kraenzl.	Rchb. f.
M. frontinoensis Kraenzl.	M. picturata Rchb. f.	M. uncifera Rchb. f.

Section Echidna Rchb. f., Linnaea 41: 11. 1877.

Type: Masdevallia echidna Rchb. f., Bonplandia 3: 69. 1855.
Syn.: sect. Muscosae Woolward, Gen. Masdevallia. 1896.
Type: Masdevallia muscosa Rchb. f., Gard. Chron. 1: 460. 1875.
According with Article 11 of the International Code of Botanical Nomenclature (IBCN; GREUTER et al., 2000), Kraenzlin's name for section Echidna is illegitimate.

Echidna is a small section with two species, M. echidna Rchb. f. and M. xipheres Rchb. f., characterized by the sensitive lip.

Section Rhombopetalae Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 188. 1925.

Type: Masdevallia simula Rchb. f., Gard. Chron. 3: 8. 1875.
Syn.: sect. Saltatrices Woolward, Gen. Masdevallia. 1896.
Type: Masdevallia simula Rchb. f., Gard. Chron. 3: 8. 1875.
According with Article 11 of the International Code of Botanical Nomenclature (IBCN; GREUTER et al., 2000), Kraenzlin's name for section Rhombopetalae is illegitimate.

To this section belong:
M. amethystina Rchb. f.
M. aviceps Rchb. f.
M. auriculigera Rchb. f.
M. pumila Poepp. \& Endl.
M. simula Rchb. f.
M. sessilis Rchb. f.
M. edwallii Cogn.
M. perpusilla Kraenzl.
M. pusiola Rchb. f.
M. meiracyllium Rchb. f.
M. simulatrix Kraenzl.
M. popayanensis F. Lehm. \& Kraenzl. M. zebrina Porsch. M. plantaginea (Poepp. \& Endl.) Cogn.

Section Triaristellae Rchb. f., Gard. Chron. 6 (138): 226. 1876.

Type: Masdevallia triaristella Rchb. f., Gard. Chron. 6 (138): 226. 1876.
To this section belong:
M. anaristella Kraenzl.
M. gemmata Rchb. f.
M. triaristella Rchb. f.
M. trichaete Rchb. f.
M. tridactylites Rchb. f.
M. triglochin Rchb. f.
M. triseta Rchb. f. ex Kraenzl.

The genus Dracula Luer

Dracula Luer, Selbyana 2: 190. 1978.

Syn.: sect. Saccilabiatae Rchb. f., Chron. 37: 1238. 1873.
Type: Masdevallia chimaera Rchb. f., Gard. Chron. 463. 1872.
Lectotype designated by Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 15: 23. 1986.
$=$ sect. Chimaeroideae Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 125. 1925. (nom. illeg.).
Type: Masdevallia chimaera Rchb. f., Gard. Chron. 463. 1872.
The genus Dracula Luer was proposed in 1978. Species of the genus Dracula had been attributed to Masdevallia because of the sepaline tails. Recently molecular analysis (PRIDGEON et al., 2001) confirms that Dracula constitutes a well-defined taxon. Over 80 species are known from Central America and the northwestern Andes.

Infrageneric classification of Masdevallia proposed by Luer (1986b)

In his first monograph of the genus Masdevallia (LUER, 1986b), LUER proposed a new infrageneric classification for the genus Masdevallia. At this time, more than 350 species were attributed to the genus, most of them described by LUER. The infrageneric classification proposed by LUER included 5 subgenera, 17 sections, and 12 subsections.

Subgenus Amanda (Rchb. f.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 10.1986.

Bas.: sect. Amandae Rchb. f., Gard. Chron. 2: 290. 1874.
Type: Masdevallia amanda Rchb. f. \& Warsc., Bonplandia 2: 115.
This subgenus corresponds to Reichenbach's section Amandae. The subgenus comprises five sections characterized by the single-flowered or simultaneously two- to many flowered inflorescence; the peduncle round in cross section; the ovaries carinate or crested; the sepals more or less membranous; the petals relatively thin, often denticulate or serrate; and a lip more or less divided into a hypochile and an epichile by marginal folds.

Section Amandae Rchb. f., Gard. Chron. 2: 290.1874.

Syn.: sect. Eumasdevallia subsect. Amandae (Rchb. f.) H. J. Veitch, Man. Orchid. Pl. 5: 18. 1889.
Type: Masdevallia amanda Rchb. f. \& Warsc., Bonplandia 2: 115
= sect. Polystictae Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 32. 1925 (nom. illeg.).
Type: Masdevallia polysticta Rchb. f., Gard. Chron. 1: 338. 1874.
This section included 27 species and has been clearly delimited since Reichenbach

M. abbreviata Rchb.f	M. bulbophyllopsis	M. chaetostoma Luer
M. alvaroi Luer \& Escobar	Kraenzl.	M. corazonica Schltr.
M. amanda Rchb. f. \& Warsc.	M. caloptera Rchb. f.	M. dalstroemii: Luer

M. delphina Luer
M. graminea Luer
M. huebschiana Kraenzl.
M. hydrae Luer
M. invenusta Luer
M. lehmanii Rchb. f.
M. leptoura Luer

M. melanopus Rchb. f. M. microsiphon Luer M. ova-avis Luer M. pachyura Rchb. f.
M. polysticta Rchb. f.
M. porphyrea Luer \& Malo

M. pulcherrima Luer \& Andreetta M. rafaeliana Luer
M. spathulifolia Kraenzl.
M. tentaculata Luer
M. tridens Rchb. f.
M. zygia Luer \& Malo

Section Fissae Rchb. f. Rchb. f., Otia Bot. Hamburg. 1: 16. 1878.
Type: Masdevallia picturata Rchb. f., Otia Bot. Hamburg. 1: 16. 1878.
This section, clearly delimited since Reichenbach, included three species. Two of these species, M. mutica Luer \& R. Escobar and M. pleurothalloides Luer, have been described in 1977 and 1978.

Section Nidificae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 12. 1986.

Type: Masdevallia nidifica Rchb. f., Otia Bot. Hamburg. 1: 18. 1878.
The species of section Nidificae are characterized by single flowers; more or less inflated floral bracts; carinate or crested ovaries; sepals connate into a short or cylindrical sepaline tube with a bulbous or broad base; and a lip divided into a hypochile and an epichile. The section included five species, of which three, M. molossus and M. molossoides (prior section Saltatrices according to Woolward and section Urceolares according to Kraenzlin) and M. nidifica (prior section Minutae according to Woolward and Floribundae according to Kraenzlin), have been transferred to this section.

M. dynastes Luer
 M. molossoides Kraenzl.

M. molossus Rchb. f.
M. nidifica Rchb. f.
M. ventricosa Schltr.

Section Ophioglossae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 15. 1986.

Type: Masdevallia ophioglossa Rchb. f., Otia Bot. Hamburg. 1: 17. 1878.
Masdevallia ophioglossa (prior section Minutae according to Woolward and Urceolares according to Kraenzlin) was segregated as a section of its own based on morphological characters that present a unique combination according to Luer (1986b).

Section Pygmaeae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 15. 1986.

Type: Masdevallia pygmaea Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 92. 1925.
This section is distinguished by the carinate ovaries, more or less echinate or papillose; the sepals are connate into a short tube or cup; the callus of the petals is usually produced into a basal tooth; and the lip is entire or indistinctly divided by marginal folds. According to Luer, this section could be separated as a new subgenus on the basis of the lips, but in spite of this difference, appears to be more or less allied to subgenus Amanda. The section included five small species:
M. anachaeta Rchb. f.
M. hoeijeri Luer \& Hirtz
M. pterigophora Luer \&

Escobar
M. erinacea Rchb. f.
M. pygmaea Kraenzl. (prior section Floribundae Kraenzlin)

Subgenus Masdevallia

Syn.: sect. Eumasdevallia H. J. Veitch, Man. Orchid. Pl. 5: 18. 1889.
Type: Masdevallia uniflora Ruiz \& Pav., Fl. Peruv. 1: 122, pl. 27. 1794.
The subgenus Masdevallia consists of the majority of the species of the genus. Luer divided this subgenus into twelve sections. According to Luer all species of subgenus Masdevallia seem to be related whereas the boundaries of some species are not well defined. The subgenus includes some forms with peculiar combinations of features that represent a problem for the delimitation of infrageneric taxa.

Section Amaluzae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 18. 1986.

Type: Masdevallia amaluzae Luer \& Malo, Phytologia 39(4): 185. 1978.
Species of this section are characterized by a horizontal or descending raceme of successive flowers with slender sepaline tails; the petals are usually callous; the lip is entire with a pair of low calli. The section includes four closely allied species found in south-eastern Ecuador, one in west-central Ecuador, and one widely distributed from Central America to Bolivia:

M. amaluzae Luer \& Malo	M. zahlbruckneri Kraenzl.	M. patula Luer \& Malo
M. naranjapatae Luer	M. carmenesis Luer \& Malo	M. sanchezii Luer \& Andreetta

Section Aphanes Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 18. 1986.

Type: Masdevallia aphanes Königer, Die Orchidee 30: 196. 1979.
Section Aphanes comprises three very small species, M. aphanes Königer, M. capillaris Luer, and M. scopaea Luer \& Vasquez, found in Ecuador, Peru and Bolivia. The species of this section are characterized by a raceme of successively, tailless flowers with more or less papillose or verrucose ovaries and ligulate lips.

Section Caudivolvulae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 19. 1986.

Type: Masdevallia caudivolvula Kraenzl., Notizbl. Bot. Gart. Berlin-Dahlem 8: 128. 1922.
This section includes only M. caudivolvula Kraenzl., a species that could not be accomodated into another section because of its sepals, markedly thickened along the veins on the inner surface, and the apices that are continued into thick and twisted tails.

Section Coriaceae Rchb. f., Gard. Chron. 1: 240.1874.

Syn.: sect. Masdevallia subsect. Coriaceae (Rchb. f.) H. J. Veitch, Man. Orchid. Pl. 5: 18. 1889.
Type: Masdevallia coriacea Lindl., Ann. Mag. Nat. Hist. 15: 257. 1845.
= sect. Leontoglossae Rchb. f., Otia Bot. Hamburg. 1: 15. 1878. (nom. illeg.).
Type: Masdevallia leontoglossa Rchb. f., Bonplandia 3: 69. 1855.
The section Coriaceae is divided into two subsections:

Subsection Coriaceae (Rchb. f.) H. J. Veitch, Man. Orchid. Pl. 5: 18.1889.

Type: Masdevallia coriacea Lindl., Ann. Mag. Nat. Hist. 15: 257. 1845.
Subsection Coriaceae included 35 species and one variety, all Andean in origin except for one species (M. cupularis Rchb. f.) occurring in Costa Rica:

M. angulata Rchb. f.	M. fragans Woolward	M. picea Luer
M. atahualpa Luer	M. hylodes Luer \& Escobar	M. platyglossa Rchb. f.
M. cacodes Luer \& Escobar	M. hystrix Luer \& Hirtz	M. pyxis Luer
M. caesia Roezl.	M. leontoglossa Rchb. f.	M. rigens Luer
M. campyloglossa Rchb. f.	M. macroglossa Rchb. f.	M. sanctae-rosae Kraenzl.
M. civilis Rchb. f.	M. maloi Luer	
M. colossus Luer	M. misasii Braas	Escobar
M. coriacea Lindl.	M. mooreana Rchb. f.	M. sorocula Rchb. f.
M. coriacea var. bonplandii	M. murex Luer	M. sumapazensis Ortiz
M. cupularis Rchb. f.	M. oscarii Luer \& Escobar	M. torta Rchb. f.
M. elephanticeps Rchb. f.	M. pachyantha Rchb. f.	M. velifera Rchb. f
M. foetens Luer \& Escobar	M. pardina Rchb. f.	
M. fractiflexa Lehm. \& Kraenzl.	M. peristeria Rchb. f.	

Subsection Durae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 23. 1986.

Type: Masdevallia dura Luer, Phytologia 39: 197. 1978.
This subsection is composed of the M. ayabacana Luer, M. dura Luer, M. utriculata Luer, and M. panguiensis Luer \& Andreetta, that flower successively.

Section Cucullatae Rchb. f., Gard. Chron. 1: 72. 1878.

Syn.: subsect. Cucullatae (Rchb. f.) H. J. Veitch, Man. Orchid. Pl. 5: 18. 1889.
Type: Masdevallia cucullata Rchb. f., Orchid. Linden. 4. 1846.
This small section is clearly delimited since Reichenbach. It includes four species:
M. cerastes Luer \& Escobar M. cucullata Rchb. f. M. macrura Rchb. f. M. corniculata Rchb. f.

Section Ligiae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 26. 1986.

Type: Masdevallia ligiae Luer \& Escobar, Orquideologia 15: 131. 1982.
This section comprises a unique Colombian species, M. ligiae Luer \& Escobar, that is, according to Luer, probably a hybrid between a species of Masdevallia subsect. Saltatrices and a species of sect. Polyanthae.

Section Masdevallia

Type: Masdevallia uniflora Ruiz \& Pav., Fl. Peruv. 1: 122, pl. 27. 1794.
This section consists of a large number of closely interrelated species, characterized by singleflowered peduncles; the petals are cartilaginous with a well-developed, retrorse tooth from the callus near the base on the labellar margin; the disc of the lip is smooth or with a low pair of parallel calli.

Subsection Caudatae H. J. Veitch, Man. Orchid. Pl. 5: 18. 1889.

Type: Masdevallia caudata Lindl., Gen. Sp. Orch. 193. 1833.
Syn.: sect. Cupulatae Pfitzer, Nat. Pflanzenfam. 2(6): 136. 1888.
Type: Masdevallia shuttleworthii Rchb. f., Gard. Chron. 1: 170. 1875.
$=$ sect. Triangulares Rchb. f., Gard. Chron. 1: 372. 1874.
Type: Masdevallia triangularis Lindl., Orchid. Linden. 5. 1846.
The section comprises 28 species, widespread in the Andes but absent from Central America:

M. apparitio Luer \& Escobar	M. instar Luer \& Andreetta	M. sanctae-inesae Luer \& Malo
M. boliviensis Schltr.	M. iris Luer \& Escobar	M. setacea Luer
M. bottae Luer \& Andreetta	M. klabochorum Rchb. f.	M. triangularis Lindl.
M. caudata Lindl.	M. leucophaea Luer \& Vasquez	M. tricolor Rchb. f.
M. cyclotega Königer	M. ludibunda Rchb. f.	M. valenciae Luer \& Escobar
M. decumana Königer	M. lynchniphora Königer	M. venatoria Luer \& Malo
M. discolor Luer \& Escobar	M. pileata Luer \& Würstle	M. wurdackii C. Schweinf.
M. estradae Rchb. f.	M. prodigiosa Königer	M. xanthina Rchb. f.
M. expansa Rchb. f.	M. purpurella Luer \& Escobar	
M. hubeinii Luer \& Würstle	M. replicata Königer	

Subsection Coccineae H. J. Veitch, Man. Orchid. Pl. 5: 18.1889.

Syn.: sect. Coccineae (H. J. Veitch) Woolward, Gen. Masdevallia. 1896.
Type: Masdevallia coccinea Linden ex Lindl., Orchid. Linden. 5 (26). 1846.
Twelve species distributed in the Andes of Colombia, Ecuador and Peru are included in this section:

```
M. amabilis Rchb. f. & Warsc.
M. barleana Rchb.f.
M. coccinea Lind. ex Lindl.
M. davisii Rchb. f.
```

M. deformis Kraenzl.
M. echinata Luer
M. rosea Lindl.
M. stumpflei Braas
M. veitchiana Rchb. f.
M. venusta Schltr.
M. welischii Luer

Subsection Masdevallia

Type: Masdevallia uniflora Ruiz \& Pav., Fl. Peruv. 1: 122, pl. 27. 1794.
Syn.: sect. Clausae-porrectae Rchb. f., Gard. Chron. 2: 338. 1875.
Type: Masdevallia ionocharis Rchb. f., Gard. Chron., 4: 388. 1875.
= sect. Urceolares Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 32. 1925. (nom. illeg.)
Type: Masdevallia urceolaris Kraenzl., Notizbl. Bot. Gart. Berlin-Dahlem 8: 132. 1922.
This large group of species contains those with a colorful sepaline cup more deeply connate than that of subsect. Caudatae. To this subsection belong:
M. affinis Lindl.
M. agaster Luer
M. arminii Rchb. f.
M. assurgens Luer \& Escobar
M. calocodon Luer \& Vasquez
M. chaparensis Hashimoto
M. cinnamomea Rchb. f. (prior
sect. Polyanthae Woolward and
Alaticaules Kraenzl.)
M. clandestina Luer \& Escobar
M. condorensis Luer \& Hirtz
M. corderoana Lehm. \& Kraenzl.
M. datura Luer \& Vasquez
M. elachys Luer
M. elegans Luer \& Escobar
M. encephala Luer \& Escobar
M. ensata Rchb. f.
M. falcago Rchb.f.
M. figueroae Luer
M. gilbertoi Luer \& Escobar
M. glandulosa Königer
M. helenae Luer
M. hians Rchb. f.
M. hieroglyphica Rchb. f.
M. hymenanthe Rchb. f.
M. ionocharis Rchb. f.
M. laevis Lindl.
M. lamprotyria Königer
M. lepida Rchb. f.
M. leucantha Lehm. \&

Kraenzl.
M. lineolata Königer
M. lucernula Königer
M. macropus Lehm. \&

Kraenzl.
M. mastodon Rchb. f.

M. mejiana Garay	M. patriciana Luer	M. trigonopetala Kraenzl.
M. midas Luer	M. picta Luer	M. uncifera Rchb. f.
M. nebulina Luer	M. pumila Poepp. \& Endl.	M. uniflora Ruiz \& Pav.
M. nitens Luer	M. rimarima-alba Luer	M. urceolaris Kraenzl.
M. norops Luer \& Andreetta	M. roseola Luer	M. ustulata Luer
M. notosibrica Maekawa	M. scandens Rolfe	M. vasquezii Luer
\& Hashimoto	M. schmidt-mummii Luer \&	M. verecunda Luer
M. odontocera Luer \& Escobar	Escobar	M. yungasensis Hashimoto
M. paivaeana Rchb. f.	M. selenites Königer	
M. pandurilabia C. Schweinf.	M. strumifera Rchb. f.	

Subsection Oscillantes Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 32. 1986.

Type: Masdevallia wageneriana Lindl. ex Lindl, Paxton's Fl. Gard. 3: 74. 1852.
This section was created on the basis of the oscillating lip. The lip is held more or less horizontally and loosely, seemingly balanced by a very fine extension from the column-foot to within the cavity beneath the convex base of the more or less pandurate lip. The subsection includes twelve species:

M. andreettana Luer	M. dalessandroi Luer	M. pteroglossa Schltr.
M. ariasii Luer	M. pernix Königer	M. rodolfoi (Braas) Luer
M. catapheres Königer	M. persicina Luer	M. rubiginosa Königer
M. citrinella Luer \& Malo	M. phasmatodes Königer	M. wageneriana Lind. ex Lindl.

Subsection Saltatrices (Rchb. f.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 36. 1986.

Bas.: sect. Saltatrices Rchb. f., Linnaea 41: 10. 1877.
Type: Masdevallia saltatrix Rchb. f., Linnaea 41: 10. 1877.
This subsection, closely related to section Masdevallia according to Luer (1986b), includes 14 species and one subspecies:

M. ampullacea Luer \& Andreetta	M. limax Luer	M. urosalpinx Luer
M. anemone Luer	M. marthae Luer \& Escobar	M. ventricularia Rchb. f.
M. angulifera Rchb. f. (prior	M. mendozae Luer	(prior sect. Tubulosae)
sect. Tubulosae)	M. os-draconis Luer \&	M. vetricularia subsp. filaria
M. aurea Luer	Escobar	(Luer \& Escobar) Luer
M. constricta Poepp. \& Endl.	M. saltatrix Rchb. f. (prior	
(prior sect. Tubulosae)	sect. Tubulosae)	
M. fuchsii Luer	M. strobelii Sweet \& Garay	

Subsection Tubulosae (Rchb. f.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 38. 1986.

Bas.: sect. Tubulosae Rchb. f., Otia Bot. Hamburg. 1: 14. 1878.
Type: Masdevallia tubulosa Lindl., Orch. Lind. 4. 1846.
$=$ subg. Triotosiphon Schltr., Repert Spec. Nov. Regni Veg. Beih. 10: 42. 1922.
$=$ sect. Triotosiphon (Schltr.) Sweet., Bot. Mus. Leafl. 26: 40. 1978.
Type: Masdevallia bangii Schltr., Repert. Spec. Nov. Regni Veg. Beih. 10: 41. 1922.
A subsection composed of very small to medium-sized species characterized by solitary, white to yellowish or greenish tubular flowers. The most widely distributed species is the variable M. tubulosa Lindl. known from Venezuela to Peru. From Ecuador is a form with short, thick tails, segregated as M. syringodes by Luer \& Andreetta. This subsection includes seven species and one subspecies:
M. bangii Schltr.
M. irapana Sweet.
M. kyphonantha Sweet.
M. lansbergii Rchb. f.
M. pseudominuta Sweet. M. tubulosa Lindl.
M. tubulosa subsp. syringodes
(Luer \& Andreetta) Luer
M. venezuelana Sweet

Section Mentosae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 38. 1986.

Type: Masdevallia mentosa Luer, Phytologia 39: 212. 1978.
A section consisting of a single, unusual, little Ecuadorian species characterized by a slender, successively flowering peduncle, triquetrous in cross section, which would place it in Masdevallia sect. Polyanthae if it didn't have an entire and smooth lip.

Section Minutae Rchb. f. ex Woolward, Gen. Masdevallia. 1896.

Type: Masdevallia minuta Lindl., Ann. Mag. Nat. Hist. 12: 396. 1842.
Syn.: sect. Floribundae Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 84. 1925.
Type: Masdevallia floribunda Lindl., Edward's Bot. Reg. 29: 72. 1843.
A section with 21 species distributed from Mexico to Bolivia, related to subsect. Masdevallia according to Luer but the flowers are distinguished by the small, short, usually pointed tooth arising between the middle and the lower third of the petal from a longitudinal callus above the labellar margin. It includes:
M. arangoi Luer \& Escobar
M. attenuata Rchb. f.
M. chontalensis Rchb. f.
M. crescenticola Lehm. \& Kraenzl.
M. flaveola Rchb. f.
M. floribunda Lindl.
M. geminiflora Ortiz
M. guayanensis Lindl. ex Benth.
M. gutierrezii Luer
M. herradurae Lehm. \& Kraenzl.
M. laucheana Kraenzl.
M. livingstoneana Roezl. \& Rchb. f.
M. minuta Lindl.
M. nicaraguae Luer
M. pescadoensis Luer \& Escobar
M.plantaginea Poepp. \& Endl.
M. scabrilinguis Luer M. schizopetala Kraenzl.
M. tonduzii Woolward
M. tubuliflora Ames
M. wendlandiana Rchb. f.
M. guayanensis Lindl. ex Benth.

Section Polyanthae Rchb. f., Gard. Chron. 1: 372. 1874.

Syn.: Masdevallia sect. Polyanthae (Rchb. f.) H. J. Veitch, Man. Orchid. Pl. 5: 18. 1889.
Type: Masdevallia polyantha Lind. ex Lindl., Orchid. Lind. 6. 1846.
Species of section Polyanthae are characterized by successive or simultaneous racemes of flowers, with smooth petals and lips divided near the middle by marginal folds into an epichile and a hypochile. This section was divided into two subsections.

Subsection Alaticaules (Kraenzl.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 43. 1986.

Lectotype designated by Luer: Masdevallia melanoxantha Lindl. \& Rchb. f., Bonplandia 2: 283. 1854.
Bas.: sect. Alaticaules Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 84. 1925. (nom. illeg.)
(Kraenzlin designated both M. melanoxantha Lindl. \& Rchb. f., and M. polyantha Lind. ex Lindl., as the type of the section Alaticaules. Masdevallia polyantha is the type of section Polyanthae)

This large subsection comprises species with peduncles triangular in cross section:

M. aenigma Luer \& Escobar	M. guttulata Rchb. f.	M. rechingeriana Kraenzl.
M. auropurpurea Rchb. f.	M. hepatica Luer	M. sanguinea Luer
M. bicolor Poepp. \& Endl.	M. impostor Luer \& Escobar	\& Andreetta
M. brachyura Lehm. \& Kraenzl.	M. infracta Lindl.	M. sceptrum Rchb. f. (prior
M. brenneri Luer	M. isos Luer	sect. Leontoglossae Rchb. f.)
M. buccinator Rchb. f.	M. kuhniorum Luer	M. scitula Königer
M. calagrasalis Luer	M. maculata Kl. \& Karst.	M. scobina Luer \& Escobar
M. cardiantha Königer	M. medusa Luer \& Escobar	M. sernae Luer \& Escobar
M. carolloi Luer \& Andreetta	M. megaloglossa Luer \& Escobar	M. sprucei Rchb. f.
M. carruthersiana Lehm. \&	M. melanoxantha Rchb. f.	M. stenorhynchos Kraenzl.
Kraenzl.	M. mezae Luer	M. theleüra Luer
M. cinnamomea Rchb. f. (prior	M. monogona Königer	M. tovarensis Rchb. f.
section Masdevallia)	M. navicularis Garay \& Dunster.	M. trochilus Lind. \& André
M. cuprea Lindl.	M. odontopetala Luer	M. vargasii C. Schweinf.
M. don-quijote Luer \& Andreetta	M. phoenix Luer	M. virens Luer \& Andreetta
M. dunstervillei Luer	M. pinocchio Luer \& Andreetta	M. virgo-cuencae Luer
M. echo Luer	M. portillae Luer \& Andreetta	\& Andreetta
M. empusa Luer	M. posadae Luer \& Escobar	M. weberbaueri Schltr.
M. excelsior Luer \& Andreetta	M. prosartema Königer	M. whiteana Luer
M. guerrieroi Luer \& Andreetta	M. receptrix Luer \& Vasquez	

Subsection Polyanthae (Rchb. f.) H. J. Veitch, Man. Orchid. Pl. 5: 18. 1889.

Type: Masdevallia polyantha Lind. ex Lindl., Orchid. Linden. 6. 1846.
This small subsection contains those species with the peduncles round in cross section:

M. curtipes Barb. Rodr.	M. menatoi Luer \& Vasquez	M. thienii Dodson
M. dioscoidea Luer \& Würstle	M. oreas Luer \& Vasquez	
M. lata Rchb. f.	M. schlimii Lind. ex Lindl.	

Section Racemosae Woolward, Gen. Masdevallia. 1896.

Type: Masdevallia racemosa Lindl., Ann. Mag. Nat. Hist. 15: 256. 1845.

Section Reichenbachianae Woolward, Gen. Masdevallia. 1896.

Type: Masdevallia reichenbachiana Endres ex Rchb. f., Gard. Chron. 4(87): 257. 1875.
Section Reichenbachianae includes two subsections. The petals of the species includes in this section are callous along the lower margin without forming a tooth except in two species (M. collina L. O. Williams and M. macrogenia (Arango) Luer \& Escobar), the basis for creating the two subsections.

Subsection Dentatae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 48. 1986.

Type: Masdevallia collina L. O. Williams., Amer. Orchid Soc. Bull. 11: 93. 1942.
Subsection Dentatae include two species, M. collina L. O. Williams and M. macrogenia (Arango) Luer \& Escobar. According to Luer (1986b), the species included in this subsection are not closely allied to section Reichenbachianae but it shown very similar floral and vegetative characters.

Subsection Reichenbachianae (Woolward) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 48. 1986.

Bas.: sect. Reichenbachianae Woolward, Gen. Masdevallia. 1896.
Type: Masdevallia reichenbachiana Endres ex Rchb. f., Gard. Chron. 4(87): 257. 1875.
Subsection Reichenbachianae includes eleven species, all distributed in Central America:

M. calura Rchb. f.	M. garciae Luer	M. rolfeana Kraenzl.
M. chasei Luer	M. marginella Rchb. f.	M. schroederiana Veitch
M. demissa Rchb. f.	M. reichenbachiana Endres	M. striatella Rchb. f.
M. fulvescens Rolfe	ex Rchb. f.	M. walteri Luer

chasel Luer
M. fulvescens Rolfe
M. garciae Luer M. reichenbachiana Endres ex Rchb. f.
M.
M. striatella Rchb. f.
M. walteri Luer

Subgenus Meleagris Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 51. 1986.

Syn.: Rodrigoa Braas, Die Orchidee 30: 203. 1979.
Type: Masdevallia meleagris Lindl., Ann. Mag. Nat. Hist. ser. 1 15: 257.1845.
This subgenus consists of seven closely related species characterized by the successively flowering raceme of attractive, colorful flowers with widely spreading sepals; the ovaries of most species are crested, and the sepals are free near their bases, similar to many species in subgen. Amanda. Braas proposed the genus Rodrigoa for this subgenus in 1979. To this subgenus belong:

M. alexandri Luer	M. hortensis Luer \& Escobar	M. segurae Luer \& Escobar
M. anisomorpha Garay	M. meleagris Lindl.	
M. heteroptera Rchb. f.	M. parvula Schltr.	

Subgenus Pelecaniceps Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 53. 1986.

Syn.: Luerella Braas, Die Orchidee 30: 108. 1979.
Type: Masdevallia pelecaniceps Luer, Selbyana 3: 22. 1976.
The monotypic subgenus Pelecaniceps is characterized by the single-flowered peduncle, the thick rugose sepals without tails, callous petals that are subcarinate externally, and a lip with acute, erect lateral lobes and an excavate base. In his monograph of the genus Masdevallia, Luer (1986b) indicated that this species is probably not closely related to the genus Masdevallia, as shown by Braas in 1979. This supposition was confirmed in a first molecular analysis of the subtribe Pleurothallidinae (PRIDGEON et al., 2001), and the name proposed by Braas was accepted.

Subgenus Teagueia Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 53. 1986.

Type: Masdevallia teaguei Luer, Selbyana 2: 381. 1978.
Masdevallia teaguei Luer, the unique species of subgenus Teagueia, is characterized by flowers produced successively in congested racemes; the sepals are connate into a gibbous cup; the callus of the thick petals is produced into a tooth above the base; the lip is divided into a cleft hypochile forming a pair of prostrate lamellae, and a decurved, tricarinate epichile. The column is typical for Masdevallia.

Infrageneric classification of Masdevallia proposed by Luer (2000-2003)

Subgenus Amanda (Rchb. f.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 10. 1986.
Bas.: sect. Amandae Rchb. f., Gard. Chron. 2: 290. 1874.
Syn.: subsect. Amandae (Rchb. f.) Veitch, Man. Orchid. Pl. 5: 18, 1889.
Type: Masdevallia amanda Rchb. f. \& Warsc., Bonplandia 2: 115. 1854.
$=$ sect. Polystictae Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 32. 1925. (nom. illeg.)

Type: Masdevallia polysticta Rchb. f., Gard. Chron. 1: 338. 1874.
Subgenus Amanda is a clearly delimited group since Reichenbach. This subgenus previously contained the sections Fissia, Nidificae and Pygmaeae, which have been raised to the rank of subgenera here. Since the latest infrageneric classification of Luer (1986b) eight new species have been described, and one M. Xalvaroi, previously recognized as a species, is, according to Luer, a natural hybrid between M. picturata and a M. amanda:

M. anceps Luer \& Hirtz	M. segrex Luer \& Hirtz	M. vittatula Luer \& Escobar
M. dimorphotricha Luer \& Hirtz	M. sertula Luer \& Andreetta	M. xanthodactyla Rchb. f.
M. pozoi Königer	M. staaliana Luer \& Hirtz	

Subgenus Cucullatia Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 77: 10. 2000.

Syn.: sect. Cucullatae Rchb. f., Gard. Chron. 1: 72. 1878.
$=$ sect. Eumasdevallia subsect. Cucullatae (Rchb. f.) H. J. Veitch, Man. Orchid. Pl. 5: 18. 1889.
Type: Masdevallia cucullata Rchb. f., Orchid. Linden. 4. 1846.
Species included in this subgenus were previously treated as members of subgenus Masdevallia. The section was raised to a higher category, due to the large cucullate floral bract, a character not present into any other group. Since the latest infrageneric classification of Luer (1986b) three new species were described: M. delhierroi Luer \& Hirtz, M. hercules Luer \& Andreetta and M. vidua Luer \& Andreetta. One species, M. macrura Rchb. f., was transferred to sect. Coriaceae.

Subgenus Fissia Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 77: 10. 2000.

Syn.: sect. Fissae Rchb. f., Otia Bot. Hamburg. 1: 16. 1878.
Type: Masdevallia picturata Rchb. f., Otia Bot. Hamburg. 1: 16. 1878.
The subgenus Fissia was previously recognized as section of subgenus Amanda. It included species that according to Luer display a unique combination of characters: a single-flowered inflorescence, free sepals and a divided lip showing. This combination of characters is not present in any other subgenera of Masdevallia, therefore the group has been raised to a higher rank. Since the latest monograph of Masdevallia (LUER, 1986), no new species have been described.

Subgenus Masdevallia Ruiz \& Pav., Ann. Mag. Nat. Hist. 12: 396.1842.

Syn.: sect. Eumasdevallia H. J. Veitch, Man. Orchid. Pl. 5: 18. 1889.
Type: Masdevallia uniflora Ruiz \& Pav., Fl. Peruv. 1: 122, pl. 27. 1794.
The subgenus Masdevallia comprises the majority of species of the genus. It is divided into eight sections and five subsections:

Section Coriaceae Rchb. f., Gard. Chron. 1: 240.1874.

Syn.: subsect. Coriaceae (Rchb. f.) H. J. Veitch, Man. Orchid. Pl. 5: 18. 1889.
Type: Masdevallia coriacea Lindl., Ann. Mag. Nat. Hist. 15: 257. 1845.
$=$ sect. Leontoglossae Rchb. f., Otia Bot. Hamburg. 1: 15. 1878. (nom. illeg.)

Type: Masdevallia leontoglossa Rchb. f., Bonplandia 3: 69. 1855.
A clearly delimited group related to subgenus Masdevallia since Reichenbach. Two species, M. pyxis Luer and M. cupularis Rchb. f., were transferred to subgenus Polyantha. Masdevallia gargantua Rchb. f. was not included in the first monograph of the genus Masdevallia from Luer (1986b) and is now included into section Coriaceae. The following new species were described since 1986:
M. belua Königer \&

D’Alessandro
M. bourdetteana Luer
M. Lilianae Luer
M. pachysepala (Rchb. f.)
Luer

Luer

M. rigens Luer M. spilantha Königer

Section Dentatae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 77: 10. 2000.

Bas.: subg. Masdevallia sect. Reichenbachianae subsect. Dentatae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 48. 1986.

Type: Masdevallia collina L. O. Williams, Amer. Orchid Soc. Bull. 11: 93. 1942.
Species of section Dentatae were previously recognized to be closely related with species of section Reichenbachianae. Two new species for this section were described since 1986: M. dryada Luer \& Escobar and M. zapatae Luer \& Escobar.

Section Durae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 23.1986.

Bas.: subg. Masdevallia sect. Coriaceae subsect. Durae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 23. 1986.

Type: Masdevallia dura Luer, Phytologia 39: 197. 1978.
Section Durae was previously recognized as subsection of section Coriaceae. Since the latest monograph of Masdevallia (LUER, 1986) six new species were described:

M. goliath Luer	M. princeps Luer	M. robusta Luer
M. newmaniana Luer	M. regina Luer	M. titan Luer

Section Masdevallia

Type: Masdevallia uniflora Ruiz \& Pav., Fl. Peruv. 1: 122, pl. 27. 1794.
Section Masdevallia is divided into five subsections. Most species of the previously recognized subsection Tubulosae were segregated into section Triotosiphon. The type species of that subsection, M. tubulosa Lindl., is included into subsection Masdevallia now.

Subsection Caudatae H. J. Veitch, Man. Orchid. Pl. 5: 18.1889.

Type: Masdevallia caudata Lindl., Gen. Sp. Orchid. Pl. 193. 1833.
$=$ sect. Cupulatae Pfitzer, Nat. Pflanzenfam. 2(6): 136. 1888.
Type: Masdevallia shuttleworthii Rchb. f., Gard. Chron. 1: 170. 1875.
= sect. Triangulares Rchb. f., Gard. Chron. 1:372. 1874.
Type: Masdevallia triangularis Lindl., Orchid. Linden. 5. 1846.
Since 1986 more than 30 species were described or transferred to subsection Caudatae:
M. alismifolia Kraenzl. (prior
section Chimaeroidea sensu
Kraenzl.)
M. antonii Königer
M. arminii Linden \& Rchb. f.
(prior subsect. Masdevallia sensu
Luer)
M. asterotricha Königer
M. brockmuelleri Luer
M. cloesii Luer
M. cordeliana Luer
M. cyclix Luer \& Malo
M. ephelota Luer \& Cloes
M. eucharis Luer
M. eumeliaea Luer
M. harlequina Luer
M. icterina Königer
M. immensa Luer
M. leonii D. E. Benn \&
Christenson
M. ludibundella Luer
M. mandarina (Luer \& Escobar)
Luer
M. marizae Luer
M. nivea Luer \& Escobar
M. pandurilabia C. Schweinf.
(prior subsect. Masdevallia
sensu Luer)
M. papillosa Luer
M. pernix Königer
M. phlogina Luer
M. polychroma Luer
M. renzii Luer
M. rhinophora Luer \& Escobar
M. rufescens Königer
M. schmidt mummii Luer \&

Escobar
M. schizantha Kraenzl.
M. tricallosa Königer
M. venatoria Luer \& Malo M. vexillifera Luer
M. wuelfinghoffiana Luer \& J. Portilla
M. zamorensis Luer \& J. Portilla

Subsection Coccineae H. J. Veitch, Man. Orchid. Pl. 5: 18. 1889.

Syn.: sect. Coccineae (H. J. Veitch) Woolward, Gen. Masdevallia. 1896.
Type: Masdevallia coccinea Linden ex Lindl., Orchid. Linden. 5(26). 1846.
Since 1986 (LUER) two new species, M. idae Luer \& Arias and M. niesseniae Luer were described.

Subsection Masdevallia

Syn.: sect. Clausae-porrectae Rchb. f., Gard. Chron. 2: 338. 1875.
Type: Masdevallia ionocharis Rchb. f., Gard. Chron., 4: 388. 1875.
Syn.: sect. Urceolares Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 32. 1925.
Type: Masdevallia urceolaris Kraenzl., Notizbl. Bot. Gart. Berlin-Dahlem 8: 132. 1922.
Since 1986, more than 30 species were newly described or transferred to this subsection:
M. burianii Luer \& Dalström
M. carpishica Luer \& Cloes
M. cleistogama Luer
M. cranion Luer
M. crassicaulis Luer \&
J. Portilla
M. deniseana Luer \& J. Portilla
M. dreisei Luer
M. dudleyi Luer
M. exquisita Luer \&Hirtz
M. glomerosa Luer \& Andreetta
M. guayanensis Lindl. ex Benth
(prior sect. Minutae sensu Luer)
M. hartmanii Luer
M. heideri Königer
M. ishikoi Luer
M. juan-albertoi Luer \& Arias
M. karinae Nauray ex Luer
M. leonardoi Luer
M. lilacina Königer
M. lewisii Luer \& Vasquez
M. lilacina Königer
M. manoloi Luer \& Arias
M. medinae Luer \& J. Portilla
M. melanoglossa Luer
M. os-viperae Luer \& Andreetta
M. patriciana Luer \& Malo
M. phacopsis Luer \& Dalström
M. popowiana Königer \&
J. G. Weinm.
M. quasimodo Luer \& Teague
M. schoonenii Luer
M. soennemarkii Luer \& Dalström
M. solomonii Luer \&

Vasquez
M. suinii Luer \& Hirtz
M. terborchii Luer
M. tinekeae Luer \&

Vasquez
M. trautmanniana Luer \&
J. Portilla
M. truncata Luer
M. tubulosa Lindl.
M. zebracea Luer

Subsection Oscillantes Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 32. 1986.

Type: Masdevallia wageneriana Lindl. ex Lindl., Paxton’s Fl. Gard. 3: 74. 1852.
Subsection Oscillantes is currently estimated to contain 29 species, of which 18 were described between 1986 and 2004, including a natural hybrid, M. Xwubbenii Luer, probably between M. wageneriana Lind. ex Lindl.and M. triangularis Lindl.:

M. albella Luer \& Teague	M. manta Königer	M. sulphurella Königer
M. amoena Luer	M. microptera Luer \& Würstle	M. tricycla Luer
M. castor Luer \& Cloes	M. nikoleana Luer \& J. Portilla	M. zongoënsis Luer \& Hirtz
M. cretata Luer	M. ortalis Luer	Natural hybrids
M. ejiriana Luer \& J. Portilla	M. pollux Luer \& Cloes	M. Xwubbenii
M. formosa Luer \& Cloes	M. rhodehameliana Luer	
M. josei Luer	M. rubeola Luer \& Vasquez	

Subsection Saltatrices (Rchb. f.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 36. 1986.

Bas.: sect. Saltatrices Rchb. f., Linnaea 41: 10. 1877.
Type: Masdevallia saltatrix Rchb. f., Linnaea 41: 10. 1877.
For this subsection 13 new species and one natural hybrid (M. Xmystica) were described in the last two decades. One species, M. notosibrica Mekawa \& Hashimoto (prior subsection Masdevallia) and one recognized natural hybrid, M. Xligiae (prior the type of the monotypic section Ligiae), were transferred to this subsection:

M. agaster Luer	M. hirtzii Luer \& Andreetta	M. siphonantha Luer
M. calosiphon Luer	M. maxilimax (Luer) Luer	M. tubata Schltr.
M. chuspipatae Luer \& Teague	M. morochoi Luer \& Andreetta	Natural hybrids
M. erynogaster Luer \& Andreetta	M. rex Luer \& Vasquez	M. Xmystica
M. filaria Luer \& Escobar	M. ricii Luer \& Vasquez	M. Xlygiae

Section Minutae Rchb. f. ex Woolward, Gen. Masdevallia. 1896.

Type: Masdevallia minuta Lindl., Ann. Mag. Nat. Hist. 12: 396. 1842.
Syn.: sect. Floribundae Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 84. 1925.
Type: Masdevallia floribunda Lindl., Edward's Bot. Reg. 29: 72. 1843.
Two new species, described in 1994 and 1991, are now included in this section: M. adamsii Luer and M. tokachiorum Luer.

Section Racemosae Woolward, Gen. Masdevallia. 1896.

Type: Masdevallia racemosa Lindl., Ann. Mag. Nat. Hist. 15: 256. 1845.

Section Reichenbachianae Woolward, Gen. Masdevallia. 1896.

Type: Masdevallia reichenbachiana Endres ex Rchb. f., Gard. Chron. 4(87): 257. 1875.
This section was previously divided into two subsections: Reichenbachianae and Dentatae. This last one was excluded from Reichenbachianae and now is forming a separate section in subgenus Masdevallia. Four new species were described for this section: M. enallax Königer, M. lankesteriana Luer, M. mejiana Garay, and M. polita Luer \& Sijm. Masdevallia garciae Luer and M. striatella were transferred to subgenus Polyantha.

Section Triotosiphon (Schltr.) Sweet, Bot. Mus. Leafl. 26: 40. 1978.

Type: Masdevallia bangii Schltr., Repert. Spec. Nov. Regni Veg. Beih. 10: 41. 1922.
Syn.: subg. Triotosiphon Schltr., Repert. Spec. Nov. Regni Veg. Beih. 10: 42. 1922.
This taxon was suggested by Schlechter as subgenus Triotosiphon. According to Luer (2003), however it meets the criteria for subgenus Masdevallia. The species included in this section were previously members of section Tubulosae. However, the type of section Tubulosae, M. tubulosa Lindl., was transferred to subsection Masdevallia. Section Triotosiphon includes six species. Vegetatively, the small to very small, caespitose plants bear single, more or less tubular flowers; the free portion of the sepals is short and the lips are simple and channeled between longitudinal calli:

```
M. bangii Schltr.
M. gnoma Sweet
```

M. irapana Sweet
M. kyphonantha Sweet
M. lansbergii Rchb. f.
M. venezuelana Sweet

Subgenus Meleagris Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 51. 1986.

Syn.: Rodrigoa Braas, Die Orchidee 30: 203. 1979.
Type: Masdevallia meleagris Lindl., Ann. Mag. Nat. Hist. ser. 1 15: 257.1845.
Five new species were described for this subgenus since 1986 and one species, M. fasciata, were reclassified:

M. fasciata Rchb. f. (prior	M. pantomima Luer \& Hirtz	
sect. Fissae sensu Kraenzl.)	M. planadensis Luer \&	Hirtz
M. milagroi Luer \& Hirtz	Escobar	

Subgenus Nidificia Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 77: 10. 2000.

Syn.: sect. Nidificae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 12. 1986.
Type: Masdevallia nidifica Rchb. f., Otia Bot. Hamburg. 1: 18. 1878.
Syn.: sect. Ophioglossae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 15. 1986.
Type: Masdevallia ophioglossa Rchb. f., Otia Bot. Hamburg. 1: 17. 1878.
Reichenbach described M. molossus Rchb. f., the first species attributable to this subgenus in 1877, and included it in the unranked, infrageneric category Saltatrices. The second described species attributable to this subgenus, M. nidifica Rchb. f., was included into section Clausae-porrectae. The section Nidificae was proposed in 1986 as section of the subgenus Amanda. According to Luer (2000), this section can be raised to a higher rank, because its members are not closely related to subgenus Amanda. Three new species of this subgenus were described during the past 20 years: M. bucculenta Luer \& Hirtz, M. lamia Luer \& Hirtz, and M. strigosa Königer. Masdevallia ophioglossa Rchb. f. (prior section Ophioglossae) is now included in this subgenus.

Subgenus Polyantha Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 77: 10. 2000.
Bas.: sect. Polyanthae Rchb. f., Gard. Chron. 1: 372. 1874.
Type: Masdevallia polyantha Lind. ex Lindl., Orch. Lind. 6. 1846.
Subgenus Polyantha was previously recognized as section of subgenus Masdevallia. It includes now 2
sections and 4 subsections.

Section Alaticaules Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 105. 1925.

Lectotype: Masdevallia melanoxantha Linden \& Rchb. f., Bonplandia 2: 283. 1854.
Syn.: subsect. Alaticaules (Kraenzl.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 43. 1986.
Section Alaticaules was proposed by Kraenzlin (1925, see page 30) and was divided in two subsections based on the length of the raceme. Presently it is divided according to the mode of flowering, simultaneously or successively.

Subsection Alaticaules (Kraenzl.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 43. 1986.

Lectotype: Masdevallia melanoxantha Linden \& Rchb. f., Bonplandia 2: 283. 1854.
Syn.: subsect. Longiscapae Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 105. 1925.
Lectotype: Masdevallia melanoxantha Linden \& Rchb. f., Bonplandia 2: 283. 1854.
Syn.: subsect. Breviscapae Kraenzl., Repert. Spec. Nov. Regni Veg. Beih. 34: 106. 1925.
Lectotype: Masdevallia maculata Klotsch \& H. Karsten, Allg. Gartenzeitung 15: 330. 1847.
Syn.: subsect. Alaticaules (Kraenzl.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 43. 1986.
This subsection comprises the majority of species of this section. They are characterized by a successively flowering raceme with a triquetrous peduncle. Species that produce partially terete peduncles are included in both sections, Alaticaules and Polyanthae. For this subsection 43 new species have been described. Several species that had been placed here earlier have now been segregated as subsect. Coaetanae.
M. isos Luer
M. adrianae Luer
M. aguirrei Luer \& Escobar
M. amplexa Luer
M. anfracta Königer \& J.J. Portilla
M. benettii Luer
M. bicolor Poepp. \& Endl.
M. brachyura Lehm. \& Kraenzl
M. brenneri Luer
M. bryophila Luer
M. buccinator Rchb. f.
M. calagrasalis Luer
M. cardiantha Königer
M. carruthersiana Lehm. \& Kraenzl.
M. cocapatae Luer, Teague
\& Vásquez
M. cuprea Lindl.
M. deceptrix Luer \& Würstle
M. descendens Luer \& Andreetta
M. don-quijote Luer \& Andreetta
M. dorisae Luer
M. draconis Luer \& Andreetta
M. echo Luer
M. empusa Luer
M. excelsior Luer \& Andreetta
M. fosterae Luer
M. garciae Luer (prior section
Reichenbachianae)

M. guerrieroi Luer \& Andreetta	M. richardsoniana Luer
M. guttulata Rchb. f.	M. sanctae-fidei Kraenzl.
M. helgae Königer \& J. Portilla	M. schudelii Luer
M. impostor Luer \& Escobar	M. scitula Königer
M. infracta Lindl.	M. scobina Luer \& Escobar
M. kuhniorum Luer	
M. lenae Luer \& Hirtz	Teague
M. lintricula Königer	M. sernae Luer \& Escobar
M. maculata Kl. \& Karst.	M. sprucei Rchb. f.
M. martineae Luer	M. stenorhynchos Kraenzl.
M. martiniana Luer	M. stirpes Luer
M. mascarata Luer \& R. Vásquez	M. synthesis Luer
M. melanoxantha Rchb. f.	M. theleüra Luer
M. monogona Königer	M. trochilus Lind. \& André
M. navicularis Garay \& Dunster.	M. tsubotae Luer
M. recurvata Luer \& Dalström	M. vargasii C. Schweinf.
M. obscurans (Luer) Luer	M. vargasii C. Schweinf.
M. odontopetala Luer	M. virens Luer \& Andreetta
M. omorenoi Luer \& R. Vásquez	
M. oscitans (Luer) Luer	Andreetta
M. patchicutzae Luer \& Hirtz	M. vomeris Luer
M. phoenix Luer	M. weberbaueri Schltr.
M. pinochio Luer \& Andreetta	M. whiteana Luer
M. portillae Luer \& Andreetta	M. xylina Rchb. f.
M. posadae Luer \& Escobar	M. norae Luer
M. sanguinea Luer \& Andreetta	M. pastinata Luer
M. revoluta Königer \& J.J. Portilla	M. zumbae Luer
M. receptrix Luer \& Vasquez	M. prosartema Königer

Subsection Coaetaneae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 77: 10. 2000.

Type: Masdevallia sceptrum Rchb. f., Gard. Chron. n. s. 7: 653. 1877.
A small subsection characterized by the simultaneously flowering raceme. It includes:
M. aenigma Luer \& Escobar
M. bicolor Poepp. \& Endl
M. buccinator Rchb. f.
M. cinnamomea Rchb. f.
M. concinna Königer
M. dunstervillei Luer
M. empusa Luer
M. infracta Lindl. (species included in the two sections of Polyantha)
M. isos Luer
M. medusa Luer \& Escobar
M. mezae Luer
M. sceptrum Rchb. f.
M. sernae Luer \& Escobar
M. tovarensis Rchb. f.

Section Polyanthae Rchb. f., Gard. Chron. n.s. 1: 372. 1874.
Bas: sect. Polyanthae Rchb. f., Gard. Chron. n.s. 1: 372. 1874.
Type: Masdevallia schlimii Lind. ex Lindl., Orchid. Lind. 5. 1846.
This section is characterized by a simultaneously or successively flowering inflorescence with a terete peduncle. It includes two subsections.

Subsection Polyanthae (Rchb. f.) Veitch, Man. Orchid. Pl. 5: 18.1889.

Type: Masdevallia polyantha Linden ex Lindl., Orchid. Linden. 6. 1846.
This subsection includes only few species, characterized by the simultaneously flowered inflorescence. To this section belong:
M. wuerstlei Luer
M. oreas Luer \& R. Vásquez
M. menatoi Luer \& R. Vásquez M. striatella (prior Sect.
M. schlimii Linden ex Lindl. Reichenabachianae)

Subsection Successiviflorae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 77: 10. 2000.

Type: Masdevallia lata Rchb. f., Gard. Chron. n. s. 7(178): 653. 1877.
Species of subsection Succesiviflorae are characterized by the successively flowering, or occasionally a single flowered inflorescence. To this subsection belong:
M. cosmia Königer
M. curtipes Barb. Rodr.
M. dioscoidea Luer \& Würstle
M. eumeces Luer
M. garciae Luer
M. infracta Rchb. f.
M. jarae Luer
M. lata Rchb. f.
M. maduroi Luer

M. mayaycu Luer \&	M. striatella Rchb. f. (included
Andreetta	into Polyanthae too)
M. menatoi Luer \& Vásquez	M. richardsoniana Luer
M. oreas Luer \& Vásquez	(included into Alaticaules too)
(included into Polyanthae	M. schlimii Lind. ex Lindl.
too)	(included into Polyanthae too)
M. pyxis Luer	M. sprucei Rchb. f. (included into
	Alaticaules too)
	M. thienii Dodson

Subgenus Pygmaeia Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 77: 10. 2000.

Type: Masdevallia pygmaea Kraenzl., Rep. Spec. Nov. Regni Veg. Beih. 34: 92. 1925.
Bas.: sect. Pygmaeae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 12. 1986.
Type: Masdevallia pygmaea Kraenzl., Rep. Spec. Nov. Regni Veg. Beih. 34: 92. 1925.
Syn.: sect. Amaluzae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 18. 1986.
Type: Masdevallia amaluzae Luer \& Malo, Phytologia 39(4): 185. 1978.
$=$ sect. Aphanes Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 18. 1986.

Type: Masdevallia aphanes Königer, Die Orchidee 30: 196. 1979.
Subgenus Masdevallia sections Amaluzae and Aphanes, and subgenus Amanda section Pygmaeae (Luer, 1986) were united to form subgenus Pygmaeia. Luer indicated that all the species of this proposed subgenus probably are not closely related, but treating these three sections in a single, loosely related, more easily recognized taxon, seems preferable to maintainig several small subgenera. All the species included in this subgenus are united by their small, caespitose habit. Subgenus Pygmaeia is divided into four sections.

Section Amaluzae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 18. 1986.

Bas.: subgen. Masdevallia sect. Amaluzae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 18. 1986.
Type: Masdevallia amaluzae Luer \& Malo, Phytologia 39(4): 185. 1978.
Section Amaluzae is distinguished by a small to very small, caespitose habit with a successively flowered raceme, borne by a slender, ascending, and horizontal to descending peduncle; the ovaries are smooth with low ribs; the lips are more or less oblong with variations of a pair of longitudinal calli. To this section belong:

> M. amaluzae Luer \& Malo
> M. audax Königer
> M. aurorae Luer \& M. W. Chase
> M. carmenensis Luer \& Malo
> M. chimboensis Kraenzl.
M. manchinazae Luer \& Andreetta M. mataxa Königer \& H. Mend. M. merinoi Luer \& J. J. Portilla
M. paquishae Luer \& Hirtz
M. sanchezii Luer \& Andreetta
M. patula Luer \& Malo
M. schizostigma Luer

Section Aphanes Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 18.1986.

Bas.: subgen. Masdevallia sect. Aphanes Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 18. 1986.
Type: Masdevallia aphanes Königer, Die Orchidee 30: 196. 1979.
Syn.: subg. Masdevallia subsect. Pterigophorae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 77: 10. 2000.
Type: Pleurothallis pterygiophora Luer \& Escobar, Lindleyana 4: 50. 1988.
Species of section Aphanes show the same habit as those of section Amaluzae, but the ovaries are costate, crested or verrucose. The section includes:

M. aphanes Königer	M. hoeijeri Luer \& Hirtz	M. pyknosepala Luer
M. berthae Luer \& Andreetta	M. indecora Luer \& R. Escobar	M. scalpellifera Luer
M. collantesii D.E. Benn. \&	M. scopaea Luer \& R. Vásquez	M. mentosa Luer
Christenson	M. plantaginea (Poepp. \& Endl.) Cogn.	M. setipes Schltr
M. expers Luer \& Andreetta	(prior sect. Minutae sensu Luer)	M. trifurcata Luer
M. henniae Luer \& Dalström	M. pterygophora Luer \& R. Escobar	

Section Pygmaeae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 12. 1986.

Bas.: subgen. Masdevallia sect. Pygmaeae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 12. 1986.
Type: Masdevallia pygmaea Kraenzl., Rep. Spec. Nov. Regni Veg. Beih. 34: 92. 1925.
The species included in this section are characterized by papillose or spiculate ovaries. It includes:
M. erinacea Rchb. f.
M. anachaeta Rchb. f.
M. pygmaea Kraenzl.

Section Zahlbrucknerae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 82: 432. 2000.

Bas.: subsect. Zahlbrucknerae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 77: 10. 2000.
Type: Masdevallia zahlbruckneri Kraenzl., Rep. Spec. Nov. Regni Veg. Beih. 17: 413. 1921.
Species of this section are characterized by smooth or slightly costate ovaries and callous petals with a distinct, retrorse process at the base. This section includes four species:

M. schizopetala Kraenzl.	M. zahlbruckneri Kraenzl.	M. naranjapatae Luer
(prior section Minutae	M. vieirana Luer \& R.	
sensu Luer)	Escobar	

Subgenus Scabripes Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 77: 10. 2000.

Type: Masdevallia bicornis Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 64: 128. 1997.
This monotypic subgenus is characterized by a successively flowering inflorescence with a scabrous peduncle, and a minute hornlike process on either side of the lip above the base.

Subgenus Teagueia Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 16: 53. 1986.

Type: Masdevallia teaguei Luer, Selbyana 2: 381. 1978.
Syn.: Jostia Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 79: 2. 2000.
Masdevallia teaguei was segregated into a new genus (Jostia) in 2000. A first molecular analysis of the subtribe Pleurothallidinae (PRIDGEON et al, 2001), indicate a relationship with Masdevallia. For this reason M. teagueia was reincluded into the genus Masdevallia.

Subgenus Volvula Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 77: 10. 2000.

Type: Masdevallia caudivolvula Kraenzl., Notizbl. Bot. Gart. Berlin-Dahlem 8: 128. 1922.
This monotypic subgenus is characterized by single flowers, a lip divided by marginal folds, and thick sepals that are carinate internally with thick-twisted tails.

Reclassification of Masdevallia proposed by Luer (2006)

Sensu Luer (2006), on the basis of "marked morphological differences among some of the subgenera," the genus Masdevallia was divided 19 smaller genera, 16 of which are validated as new. "Recent DNA analyses" are barely mentioned, and no cladogram is reproduced. In an attempt to pacify horticulturists and others who might be upset by these sweeping name changes, the author indicates that "the majority of species remain in the sections of Masdevallia." While this may well be true over the entire geographic range of the group, it does not hold for Costa Rica. Indeed, according to this new system, not a single one of the 31 spp . treated under the name Masdevallia in the Manual will remain in Masdevallia s. str.; instead, they will be apportioned among eight of the splinter genera, as follows: Acinopetala Luer, with Masdevallia attenuata Rchb. f., M. chontalensis Rchb. f., M. flaveola Rchb. f., M. floribunda Lindl., M. laucheana J. Fraser, M. livingstoneana Roezl ex Rchb. f., M. scabrilinguis

Luer, M. schizopetala Kraenzl., and M. tubuliflora Ames; Alaticaulia Luer, with M. lata Rchb. f.; Buccella Luer, with M. molossoides Kraenzl. and M. nidifica Rchb. f.; Diodonopsis Pridgeon \& M. W. Chase, with M. erinacea Rchb. f. and M. pygmaea Kraenzl.; Fissia (Luer) Luer, with M. picturata Rchb. f.; Spilotantha Luer, with M. rafaeliana Luer; Zahleria Luer, with M. zahlbruckneri Kraenzl.; and Reichantha Luer, with all the rest.

1.2.6 Natural hybrids of Masdevallia

Orchidaceae are well known as a family in which wide crosses are possible; interspecific and intergeneric hybrids are the basis for a thriving commercial market. This reputation is based on the great ease and frequency of artificial crosses, but, because of mechanical barriers and pollinator specificity, no parallel exists in nature. If one examines orchid floras, such as that of North America (Luer, 1975), documented hybrids at either the generic or specific level are not particularly frequent. No data exist to substantiate the claim that natural hybrids are more frequent in Orchidaceae than in other families.The occurrence of natural hybridization in Masdevallia has been commented on for many years, beginning with ReIChEnBACH (1879), H. J. VEitch (1902) and KraEnzlin (1925), although the frequency with which putative hybrids are recognized depends greatly on how finely the species delimitations are drawn. Few hybrids have ever been reported from South America, primarily because of the lack of material and field examination. REICHENBACH (1879) proposed Masdevallia X splendida as a possible hybrid between Masdevallia veitchiana and Masdevallia barleana, and his supposition was proven correct by artificial recreation of the hybrid (LUER, 2003). LUER (2002) reported Masdevallia X ligiae as a possible hybrid between a species of subsection Saltatrices and a species of section Polyanthae, as a product of random pollination of various species by tiny fruit-flies. The majority of natural hybrids have a morphology intermediate between the two parents and are often characterized by reduced pollen stainability and seed set. Seven combinations are supposed to form possible natural hybrids: M. X alvaroi, M. X ligiae, M. X mystica, M. X parlatoreana, M. X splendida, M. X strumella, and M. X wubbenii.

1.2.7 Intergeneric hybrids of Masdevallia

The first Dracuvallia hybrid was made in 1902 by H. J. Veitch when he crossed Dracula chimaera with Masdevallia tovarensis. At this time only about twelve Dracuvallia hybrids have been registered. Another large stumbling block appears to be that the resultant hybrids are sterile. The Draculas will breed with Masdevallia hybrids, put the Dracuvallia hybrids will not breed back to the parental species. Most of these hybrids exhibit rippling or pleating on the surface of the lip and some severe reflexing.

1.3

Abstract

AIMS

Although revisions of several sections of Masdevallia were published in the last century, a comprehensive treatment of all species is still lacking. The delimitation of infrageneric taxa is problematical and complex. These difficulties result not only from the large species number, but in addition, the identification of morphological and anatomical synapomorphies in the subtribe Pleurothallidinae is complicated by the homoplasy rife in vegetative and floral features (PRIDGEON, 1982), as shown in the cladistic study by NeYLAND et al. (1995). Morphological features such as fleshy or terete leaves, variously connate sepals, and ornamented ovaries occur in clearly unrelated species (LUER, 1986b). The same is true for anatomical features such as thickenings in the foliar hypodermis, differentiation of a foliar collenchyma, and presence of spirally thickened idioblasts (PRIDGEON, 1982; NeYLAND et al. 1995). Most of these features are either xeromorphic adaptations or adaptative responses to selection pressures imposed by pollinators with similar behaviors. Thus, in the absence of reliable homologous morphological and anatomical characters to be interpreted as synapomorphies, no satisfactory phylogenetic treatment of this large genus has been published to date. A first molecular systematic analysis of subtribe Pleurothallidinae revealed that Masdevallia is not monophyletic (PRIDGEON et al., 2001), however most species grouped together in a large clade which is sister, in descending order, to the genera Porroglossum, Dracula, and Trisetella. The naturalness and relationships of the subgenera, sections and subsections of Masdevallia were not previously examined in a phylogenetic context.

Consequently, the aims of this study are to use molecular data to

1) address the subgeneric and sectional relationships in Masdevallia with molecular data
 2) to correlate molecular with morphological data in order to establish morphological synapomorphies for clades well supported by molecular data and
 3) to correlate molecular with geographical data in order to evaluate the possible speciation histories and processes.

For these analyses, the non-coding internal transcribed spacer (ITS) of nuclear ribosomal DNA was sequenced. Internal transcribed spacer sequence variation has been previously used in phylogenetic studies of orchids to identify monophyletic groups at genus level and below and to provide a
molecular basis for taxonomic restructuring, particularly in Cypripedioideae (Cox et al., 1997), Orchidinae (Pridgeon et al., 1997; BATEMAN, PRIDGEON and CHASE, 1997), Catasetinae (PRIDGEON and ChASE, 1998), Diseae (DOUZERY et al., 1999), Pogoniinae (CAMERON and ChASE, 1999), Lycastinae (RYAN et al., 2000), Laeliinae (VAN DEN BERG et al., 2000), Maxillarieae (Whitten, Williams, and Chase, 2000), Coelogyninae (Gravendeel et al., 2001), Pleurothallidinae (PRIDGEON, SOLANO and CHASE, 2001), and Cranichideae (SALAZAR et al, 2003).

2

MATERIAL AND METHODS

2.1 Morphological analysis

2.1.1 Sampling

This analysis includes 85 species of Masdevallia, chosen to represent the taxonomic, morphological, and geographic diversity within the genus. Living material was obtained from the botanical garden of the University of Hamburg (Germany) (HBG), the "Herrenhäuser Gärten" in Hannover (Germany) (HHG) and the private collection from Ton Sijm in Hem-Venhuizen (Netherlands) (TS). Plant material was herbarized and deposited at the Herbarium Hamburgense (HBG). Reproductive structures were preserved in 70% alcohol. Herbaria specimens as well as literature were used to confirm the correct determination of the species. All of the segregate subgenera/sections/subsections recognized by Luer (2000-2003) are represented with multiple species (Table 4). From among the subgenera of Masdevallia recently established new genera (Luer, 2006) were not considered in this study. Because no single taxonomy of Masdevallia includes an exhaustive enumeration of species, information from the available taxonomic treatments was combined and the latest sectional circumscriptions (LUER 2000-2003) were adopted to dictate sampling. As a result: (1) assignment of many of the listed species to subgenus, sections and subsections required inference based on sectional descriptions; and (2) the listing of sections sampled should not be taken as endorsement of their validity, as these were adopted simply to ensure the broadest possible representation from within segregate subgeneric groups.

Table 4 Reference of source information for the analyzed taxa. The infrageneric classification follows LUER (2000-2003).

Subgenus	Section	Subsection	Taxon	Source
Amanda			M. abbreviata Rchb. f.	HBG A3-G-236
			M. caloptera Rchb. f.	HBG A3-G-113
			M. chaetostoma Luer	HBG 98-G-21
			M. pachyura Rchb. f.	HBG A3-G-112
			M. ophioglossa Rchb. f.	HBG A3-G-248
			M. ova-avis Luer	HBG A3-G-402
Cucullatia			M. delhierroi Luer \& Hirtz	TS s.n.
			M. cerastes Luer \& R. Escobar	TS s.n.
			M. corniculata Rchb. f.	HBG A3-G-296
Fissia			M. picturata Rchb. f.	HBG 98-G-9
			M. pleurothalloides Luer	TS s.n.
Masdevalia	Coriaceae		M. campyloglossa Rchb. f.	HBG A3-G-326
			M. civilis Rchb. f.	HBG A3-G-408
			M. macrura Rchb. f.	HBG A3-G-243
			M. peristeria Rchb .f.	HBG A3-G-125
			M. picea Luer	HBG A3-G-353

Table 4 Cont. Reference of source information for the analyzed taxa. The tribal classification follows Luer (2000-2003).

Subgenus	Section	Subsection	Taxon	Source
Masdevallia	Dentatae		M. collina L.O. Williams	HHG s.n.
	Durae		M. goliath Luer \& Andreetta	HBG 00-G-258
			M. panguiensis Luer \& Andreetta	HHG s.n.
			M. princeps Luer	HBG 98-G-326
	Masdevallia	Caudatae	M. antonii Königer	TS s.n.
			M. decumana Königer	HBG 98-G-11
			M. estradae Rchb. f.	HBG A3-G-85
		Coccineae	M. coccinea Linden ex Lindl.	HBG A3-G-107
			M. davisii Rchb. f.	HBG A3-G-332
			M. deformis Kraenzl.	HBG 97-G-71
			M. veitchiana Rchb. f.	HBG A3-G-100
		Masdevallia	M. glandulosa Königer	HBG A3-G-339
			M. lamprotyria Königer	HBG 96-G-146
			M. patriciana Luer	HBG 98-G-10
			M. uniflora Ruiz \& Pav.	HBG 98-G-26
			M. paivaeana Rchb. f.	HBG 97-G-230
		Oscillantes	M. persicina Luer	HBG 98-G-22
			M. rubiginosa Königer	HBG 98-G-323
		Saltatrices	M. ampullacea Luer \& Andreetta	HBG 98-G-321
			M. hirtzii Luer \& Andreetta	HBG 98-G-12
			M. notosibrica Maekawa \& Hashimoto	HBG 00-G-313
			M. X mystica Luer	HBG 02-G-077
	Minutae		M. floribunda Lindl.	HBG A3-G-368
			M. gutierrezii Luer	HBG 97-G-65
			M. herradurae Lehm. \& Kraenzl.	HHG s.n.
			M. pescadoensis Luer \& R. Escobar	HBG A3-G-314
			M. scabrilinguis Luer	HBG A3-G-334
			M. wendlandiana Rchb. f.	HBG 97-G-64
	Racemosae Reichenbachiana		M. racemosa Lindl.	TS s.n.
			M. reichenbachiana Endres ex Rchb. f.	HBG A3-G-282
			M. fulvescens Rolfe	HBG A3-G-105
			M. walteri Luer	HBG A3-G-386
	Triotosiphon		M. bangii Schltr.	HHG
			M. lansbergii Rchb. f.	TS s.n.
			M. kyphonantha H.R. Sweet	TS s.n.
			M. venezuelana H.R. Sweet	HBG
Meleagris			M. alexandri Luer	HHG s.n.
			M. meleagris Lindl. ex Rchb. f.	TS s.n.
			M. parvula Schltr.	TS s.n.
Nidificia			M. molossus Rchb. f.	HHG s.n.
			M. nidifica Rchb. f.	HBG A3-G-400
Polyantha	Alaticaules	Alaticaules	M. cardiantha Königer	HBG A3-G-352
			M. echo Luer	HBG A3-G-26
			M. garciae Luer	HBG 00-G-158
			M. guttulata Rchb. f.	HBG A3-G-185
			M. infracta Lindl.	HBG A3-G-24
			M. melanoxantha Linden \& Rchb. f.	HBG A3-G-65
			M. pinocchio Luer \& Andreetta	HBG 97-G-66
	Polyanthae	Polyanthae	M. schlimii Linden ex Lindl.	HBG A3-G-241
			M. striatella Rchb. f.	HHG s.n.
			M. oreas Luer \& Vásquez	HHG s.n.
		Successiviflorae	M. lata Rchb. f.	HBG 02-G-80
			M. pyxis Luer	HBG 99-G-47
			M. cupularis Rchb. f.	HHG s.n.
	Amaluzae		M. carmenesis Luer \& Malo	HBG 99-G-80
			M. chimboensis Kraenzl.	TS s.n.
			M. patula Luer \& Malo	HBG 99-G-78
			M. sanchezii Luer \& Andreetta	HBG 00-G-280
	Aphanes		M. hoeijeri Luer \& Hirtz	HBG 98-G-16
			M. aphanes Königer	TS s.n.
			M. mentosa Luer	J \& L Orchids s.n.
	Pygmaeae		M. erinacea Rchb. f.	HBG 98-G-17
	Zahlbrucknerae		M. zahlbruckneri Kraenzl.	HHG s.n.
			M. vieirana Luer \& R. Escobar	TS s.n.

Table 4 Cont. Reference of source information for the analyzed taxa. The tribal classification follows Luer (2000-2003).

Subgenus	Section	Subsection	Taxon	Source
Pygmaeia	Zahlbrucknerae		M. naranjapatae Luer	TS s.n.
Scabripes			M. bicornis Luer	TS s.n.
Teagueia			M. teaguei Luer	TS s.n.
Volvula			M. caudivolvula Kraenzl.	TS s.n.

2.1.2 Outgroups

Eight species of the genera Dracula and Porroglossum were chosen as outgroups (Table 5) because these genera are the traditional candidates for a sister group relationship with Masdevallia (PRIDGEON et al., 1982), and molecular analysis (sequences from nuclear ribosomal ITS and matK) confirm this supposition (PRIDGEON et al., 2001) (Fig. 2, p. 4). A cladistic study with morphological and anatomical data showed that Dracula, Porroglossum, and Trisetella, are closely related with the genus Masdevallia (NeYLAND et al., 1995).

Table 5 List of outgroup species analyzed, arranged by (sub) genera and (sub) sections according to Luer (2000-2003).

Genus	Subgen.	Sect.	Subsect.	Series	Taxon	Source
Dracula	Dracula	Dracula	Dracula	Parviflorae	D. astuta (Rchb.f.) Luer	HBG
					D. houtteana (Rchb. f.) Luer	HBG
				Dracula	D. chimaera (Rchb. f.) Luer	HBG
		Cochliopsia			D. cochliops Luer \& R.Escobar	HBG
	Sodiroa				D. sodiroi (Schltr.) Luer	HBG
	Xenosia				D. xenos Luer \& R.Escobar	TS
Porroglossum	Porroglossum	Porroglossum			P. amethystinum (Rchb. f.) Garay	HBG
		Tortae			P. uxorium Luer	HBG

2.1.3 Characters and character states

Whenever possible, morphological data were derived from observations of living material from the botanical garden of the University of Hamburg (Germany), the "Herrenhäuser Gärten" in Hannover (Germany) and the private collection from Ton Sijm in Hem-Venhuizen (Netherlands). Herbarium specimens were used to supplement living material and to confirm characters that were initially scored from fresh material. A few character states were extracted from the literature, as noted below in the discussion of individual characters. The criteria for character inclusion were:

- The states were mutually exclusive, with a fixed order of evolution so that each state is derived directly from just one other state, and there is a unique state from which every other state is eventually derived (FARRIS et al., 1970).
- The character states did not vary within terminals.

STEVENS (1991) and GIFT and STEVENS (1997) have shown that the assignment of character states to continuously varying characters are arbitrary and artificial, such characters were ignored. Characters used to construct the morphological data matrix were discrete and did not show continuous variation. Variation for each quantitative character under consideration was graphed and only characters with non-overlapping variation (those with distinct morphological gaps) were included in the phylogenetic data matrix (GIFT and STEVENS, 1997). The morphological data matrix was constructed and edited using DELTA 1.04 (2000).

2.1.5 Macro-morphological characters included

In total, 49 multi-state and 48 binary characters were scored. Of these 97 characters, ten (1-10) relate to vegetative and $85(11-85)$ to reproductive features. The morphological characters included are listed below. All multistate characters were treated as unordered (Table 6). Plesiomorphic characters are listed first, followed by apomorphic ones (polarity decisions based on trees rooted with Dracula). Unknown characters were coded as ?, and not applicable characters were coded as -.

2.1.4 Micro-morphological characters

The pollinia surface ornamentations were scored using SEM. Pollinia were broken apart and mounted on aluminums stubs using a colloidal-graphite glue (Witcomb, 1985). Stubs were sputter coated with gold, examined using a Cambridge S200 scanning electron microscope at an accelerating voltage of 5 KV and photographed at magnifications of 1000 and 3000 times. The descriptive terminology for surface sculpturing is adapted from that of PUNT et al. (1994). The observed variation in exine sculpture was coded as characters and character states (Table 6).

Table 6 Characters and character states used in the cladistic analysis of the genus Masdevallia. Plesiomorphic characters are listed first, followed by apomorphic ones.

Character \mathbf{n}°	Character states
1	Growth habit: $1=$ terrestrial, $2=$ epiphyte
2	Habit: $1=$ caespitose, $2=$ repent or scandent
3	Ramicaul, length: $1=\leq 15 \mathrm{~mm}, 2=$ between 16 and $25 \mathrm{~mm}, 3=\geq 35 \mathrm{~mm}$
4	Leaf, shape: $1=$ oblong, $2=$ elliptic $3=$ obovate
5	Leaf, apex: $1=$ acute, $2=$ obtuse
6	Leaf, base: $1=$ =ase cuneate into the petiole, $2=$ base decurrent into the petiole
7	Leaf, petiole: $1=$ petiolate, $2=$ subpetiolate (petiole not defined)
8	Leaf, texture: $1=$ coriaceous, $2=$ chartaceous, $3=$ thinly coriaceous
9	Leaf, including the petiole: $1=\leq 5 \mathrm{~cm}, 2=$ between 5.1 and $15 \mathrm{~cm}, 3=\geq 20 \mathrm{~cm}$
10	Leaf, wide: $1=\leq 8$ mm, 2=between 8.1 and $29 \mathrm{~mm} 3=\geq 35 \mathrm{~mm}$
11	Inflorescence: $1=$ a solitary flower, 2=racemose
12	Inflorescence, emergence: $1=$ basal (from low on the ramicaul), $2=$ suprabasal (from near the middle
13	of the ramicaul)
14	Raceme: $1=$ congested, $2=$ distantly flowered
Raceme: $1=$ few-flowered, $2=4$ to many flowered	

Table 6 Cont. Characters and character states used in the cladistic analysis of the genus Masdevallia. Plesiomorphic characters are listed first, followed by apomorphic ones.

Character \mathbf{n}°	\quad Character states

Table 6 Cont. Characters and character states used in the cladistic analysis of the genus Masdevallia. Plesiomorphic characters are listed first, followed by apomorphic ones.

Character ${ }^{\circ}$	Character states
62	Petals, base: $1=$ truncate, $2=$ cordate
63	Petals, indument: $1=$ smooth, $2=$ verrucose, $3=$ papillose
64	Petals, consistency: 1=membranous, $2=$ cartilaginous
65	Petals, margin: $1=$ callous at the margins, $2=$ ecallous at the margins
66	Petals, margin: $1=$ both margins (anterior or labellar and upper) with a longitudinal callus, $2=$ only the labellar margin with a longitudinal callus
67	Petals, margin: $1=$ both margins callous and shallowly sulcate centrally, $2=$ both margins callous but not sulcate centrally
68	Longitudinal callus from the labellar margin: $1=$ ending in a broad, rounded thick process, $2=$ ending in an acute-uncinate process, $3=$ ending in an obtuse angle, $4=$ not ending in a process or angle
69	Process: 1=retrorse, $2=$ not retrorse
70	Callus ending: $1=$ at or below the base, $2=$ above the base, $3=$ between the middle and the lower third
71	Lip, shape: $1=$ oblong, $2=$ elliptic, $3=$ ovate, $4=$ obovate, $5=$ spathulate, $6=$ trapeziform
72	Lip, margin: $1=$ entire, $2=$ serrate to dentate, $3=$ crenate, $4=$ erose
73	Lip, apex: 1=recurved, 2=not recurved, 3=involute
74	Lip, base: $1=$ truncate, $2=$ cordate-semicordate, $3=$ retuse, $4=$ concave
75	Lip, base: $1=$ with elevated margins, $2=$ not as above
76	Lip, indument: $1=$ smooth, $2=$ verrucose, $3=$ papillose, $4=$ glandulose, $5=$ pubescent
77	Lip, callus at the apex: $1=$ present, $2=$ ecallous at the apex
78	Lip: 1=oscillating, 2=not oscillating
79	Lip: $1=$ divided by marginal folds into an epichile and a hypochile, $2=$ not divided
80	Disc: $1=$ with a central, flat callus below the middle, $2=$ with a pair of calli near the middle, $3=$ featureless, $4=$ longitudinally thickened, $5=$ with 3 lamellae and several, radiating, elevated veins
81	Disc: 1=sulcate, $2=$ not sulcate,
82	Epichile, shape: $1=$ oblong, $2=$ elliptic, $3=$ ovate, $4=$ obovate
83	Epichile, margin: $1=$ entire, 2=dentate to serrate, 3=crenate, $4=$ erose, $5=$ decurved
84	Epichile, indument: 1 =glabrous, $2=$ verrucose, $3=$ papillose, $4=$ cellular-glandular
85	Hypochile, shape: $1=$ oblong, $2=$ elliptic, $3=$ ovate, $4=$ obovate
86	Hypochile, margin: $1=$ entire, $2=$ dentate to serrate, $3=$ crenate, $4=$ erose
87	Hypochile: $1=$ with a pair of acute, uncinate processes, $2=$ not as above, $3=$ with erect, rounded, marginal angles
88	Lip: $1=$ sensitive, $2=$ not as above
89	Column: 1=longer than the labellum, $2=$ similar or shorter
90	Column-foot: $1=$ much longer than the column, $2=$ shorter or similar than the column
91	Rostellum: 1=apical, $2=$ retrorse
92	Pollinia, shape: $1=$ drop-like, $2=$ lentiform, $3=$ clavate
93	Exine, sculpture: $1=$ psilate, $2=$ fossulate, $3=$ verrucate to scabrate-gemmate, $4=$ rugulate
94	Exine, margin: $1=$ normal, $2=$ prominent
95	Pollinia: $1=$ shorter than $500 \mu \mathrm{~m}, 2=$ between 550 and $800 \mu \mathrm{~m}$ long, $3=$ more than $900 \mu \mathrm{~m}$ long
96	Pollinia, wide: $1=$ shorter than $300 \mu \mathrm{~m}, 2=$ between 300 and $600 \mu \mathrm{~m}$ wide, $3=$ more than $700 \mu \mathrm{~m}$ wide
97	Caudicles: $1=$ present, $2=$ absent

2.2 Molecular analysis

2.2.1 Material

2.2.1.1 Chemicals

Chemicals were purchased from the companies VWR International GmbH (Darmstadt, Germany), AppliChem (Darmstadt, Germany), Carl Roth GmbH + Co. KG. (Karlsruhe, Germany), Life Technology (Paisley, Scotland), Sigma-Aldrich Chemie GmbH (Taufkirchen, Germany), Gene Craft (Münster, Germany), Applied Biosystems (Foster City, USA), Aldrich Chemical Company (Milwaukee, USA) and Eurogentec (Searing, Belgium).

Deionized water (Milli Q Water System, Millipore, Bedford, USA) was used for preparation of all solutions. According to different requirements, solutions were sterilized ($20 \mathrm{~min}, 120^{\circ} \mathrm{C}, 2 \times 105 \mathrm{~Pa}$) or filter sterilized with $0.2 \mu \mathrm{~m}$ filters (Nalgene, Rochester, USA).

2.2.1.2 Taxon sampling

In this study 104 species were included, representing all the subgenera, sections and subsections of the genus Masdevallia according to LUER (2000-2003). Eleven species of the genera Dracula, Luerella, Trisetella and Porroglossum were used as outgroups based on the results of PRIDGEON et al. (2001), NEYLAND et al. (1995) and PRIDGEON et al. (1982). For species such as M. macrura, M. corniculata, M. racemosa, M. caudivolvula and Dracula xenos, which presented an unresolved position in the phylogenetic analysis, more than two specimens from different collections were analyzed. About 10% of the sequences were obtained from the Gen Bank (PRIDGEON et al., 2001) and the remaining 90\% were produced for this study. Voucher specimens are listed in Table 7 and 8.

Table 7 Reference of source information for the sequenced taxa. The infrageneric classification follows LUER (20002003). Accession numbers for sequences of the GenBank data base are listed in the last column (Pridgeon et al, 2001).

| Subgenus | Section | Subsection | Taxon |
| :--- | :--- | :--- | :--- | Source | Database |
| :---: |
| Acces. \mathbf{n}° |

Table 7 Cont. Reference of source information for the sequenced taxa. The infrageneric classification follows LUER (2000-2003). Accession numbers for sequences of the GenBank data base are listed in the last column (Pridgeon et al, 2001).

Table 7 Cont. Reference of source information for the sequenced taxa and for out groups. The infrageneric classification follows LUER (2000-2003). Accession numbers for sequences of the GenBank data base are listed in the last column (PRIDGEON et al, 2001).

Table 8 Reference of source information for the sequenced outgroups taxa. The infrageneric classification follows LUER (1989-1993). Accession numbers for sequences of the GenBank data base are listed in the last column (Pridgeon et al, 2001).

2.2.2 Molecular methods

2.2.2.1 DNA isolation

Total DNA was extracted using the CTAB (hexadecyltrimethylammonium bromide) method of DUMOLIN et al. (1995), with slight modifications according to ROHWER \& RUDOLPH (2005).

Leaf tissue ($0.5-1.0 \mathrm{~g}$ fresh leaf tissue, approx. 0.3 g silica gel dried leaf material) was ground in liquid nitrogen in a mortar and a pestle to a fine powder. Leaf tissue was transferred into a 2 ml reaction tube containing 1 ml of the extraction buffer and $50 \mu \mathrm{l} 1 \mathrm{M}$ DTT and swirled to suspend the slurry. The suspension was incubated at $65^{\circ} \mathrm{C}$ for 10 minutes with occasional swirling (every two minutes). The suspension was cooled at room temperature for $10 \mathrm{~min}, 400 \mu \mathrm{l}$ of dichloromethane were added and the suspension mixed gently but thoroughly to form an emulsion and centrifuged at 13000 rpm (Biofuge Fresco, Heraeus $n^{\circ} 3325 B$, Sanyo, Bad Neuendorf, Germany) for 10 minutes at $4^{\circ} \mathrm{C}$ to separate the phases. The aqueous (top) phase containing DNA was transferred into a 1.5 ml reaction tube, and $2 / 3$ volume of $-20^{\circ} \mathrm{C}$ cold isopropanol was added. Tubes were spun for 10 minutes at 13000 rpm (Heraeus $\mathrm{n}^{\circ} 3325 \mathrm{~B}$) at $4{ }^{\circ} \mathrm{C}$ and the liquid poured off and drained upside down for 5 minutes or longer to evaporate the alcohol. To wash the precipitated DNA, 1 ml of 70% ethanol was added and mixed gently to remove the pellet from the bottom. Tubes were again spun for 10 minutes at $13000 \mathrm{rpm}\left(H e r a e u s n^{\circ} 3325 \mathrm{~B}\right.$) at $4^{\circ} \mathrm{C}$ and the liquid poured off. The pellet was dried for approx. 60 minutes or longer on air, resuspended in $50 \mu \mathrm{IE}$ puffer and stored at $4^{\circ} \mathrm{C}$.

1x Extraction Buffer (pH 7.5)

- ATMAB (Alkyltrimethylammoniumbromide) 20 g
- PVP 40000 MW 10 g
- EDTA (pH 8.0) 0.5 M 40 ml
- Tris $\mathrm{HCl}(\mathrm{pH} 8.0) 1 \mathrm{M}$
- NaCl 5 M
- $\mathrm{H}_{2} \mathrm{O}$ dest.

$$
100 \mathrm{ml}
$$

$$
280 \mathrm{ml}
$$

add. to 11

1x TE Buffer (pH 8.0)

- Tris $\mathrm{HCl}(\mathrm{pH} 8.0) 10 \mathrm{mM} 2 \mathrm{ml}$
- 1 mM EDTA
- $\mathrm{H}_{2} \mathrm{O}$ dest. add 200 ml
- Adjust to pH 8.0 (with concentrated HCl or NaOH) and sterilize.

2.2.2.2 Gel electrophoresis

The quality and quantity of DNA was checked on a 0.8% agarose gel (Gibco, Life Technology, Paisley, Scotland). For this, $2 \mu \mathrm{l}$ DNA and $2 \mu \mathrm{l}$ bromophenol loading buffer were mixed before
loading the agarose gel. Gels were run in 0.5 x TBE for $\sim 30 \mathrm{~min}$ at 70 V in a mini sub cell (Bio-Rad, Germany) until the bromophenol blue marker dye migrated to the end of the 10 cm gel. Smart DNA ladder (Eurogentec, Searing, Belgium) was used as marker. Gels were stained with $0.5 \mathrm{mg} / \mathrm{L}$ ethidium bromide for approx. 15 min and photographed under UV light with a digital camera (Camedia C5050, Olympus Optical, Tokyo, Japan).

Bromophenol loading buffer:

- bromophenol $0,25 \mathrm{~g}$
- $\mathrm{H}_{2} \mathrm{O}$ 100 ml
- Mix $700 \mu \mathrm{l}$ bromophenol with $300 \mu \mathrm{l}$ glycerol.

10x TBE (pH 8.4)

- 890 mM Tris $\mathrm{HCl} \quad 108 \mathrm{~g}$
- 890 mM boric acid 55 g
- 20 mM EDTA
- $\mathrm{H}_{2} \mathrm{O}$

$$
40 \mathrm{ml}
$$

- Adjust to pH 8.4

2.2.2.3 Selection of molecular markers

The ITS region including the 5.8 S nrDNA gene and partial sequences of the 18 S and 26 S nrDNA genes were chosen as molecular marker. This marker is part of an operon being highly and tandemly repeated in the plant genome. This operon is composed of three ribosomal DNAs described above, an external transcribed spacer (ETS) and an intergenic region (IGS, see Fig. 14). The ITS region itself is flanking the 5.8 S rDNA and consists of ITS I lying between the 18 S and the 5.8 S DNA and ITS II between the 5.8 S gene and the 26 S gene. In angiosperms, the whole internal transcribed spacer is less than 700 bp in length (Baldwin et al. 1995) exhibiting approx. $187-305 \mathrm{bp}$ within the ITS I region, $163-164 \mathrm{bp}$ in the 5.8 S rDNA and approx. $187-252 \mathrm{bp}$ in the ITS II region.

Fig. 14 Schematic diagram of rDNA repeat in plants. $18 \mathrm{~S}, 5.8 \mathrm{~S}$, and 26 S refer to the ribosomal rRNA genes. ITS1 and ITS2 are the two internal transcribed spacer regions. IGS is the intergenic spacer; ETS is the external transcribed spacer (according to Soltis and Soltis, 2000).

Several factors make the ITS region valuable for use in phylogenetic analyses on genus and species level (BALDWIN et al., 1995): 1) The high copy number of this gene family simplifies the amplification and sequencing of this region. 2) Whereas the ITS itself is highly variable, the flanking ribosomal genes are strongly conserved, which allows the use of universal primers designed by BALDWIN et al. (1995) or SUN et al. (1994) to investigate this highly variable region. 3) This nuclear multigene family undergoes concerted evolution described by BALDWIN et al. (1995) unifying the individual repeats. These properties turn the ITS region to one of the most important molecular markers for phylogenetic analysis promoting an accurate reconstruction of species relationships from sequencing. So far 66% of published molecular phylogenies are based on ITS sequences (ALVAREZ and WENDEL, 2002). However, non-homologous copies are occasionally present with point mutations and/ or insertion/ deletion events, causing small variation among the copies within a species (ALVAREZ and WENDEL, 2002). Nevertheless, this region is the most important marker used so far and was chosen in this study.

The internal transcribed spacer sequence variation has been previously used in phylogenetics studies of orchids to identify monophyletic groups at the genus level and below to provide a molecular basis for taxonomic reconstruction, particularly in Cypripedioideae (Cox et al., 1997), Orchidinae (PRIDGEON et al., 1997; BATEMAN, PRIDGEON and CHASE, 1997), Catasetinae (PRIDGEON and CHASE, 1998), Diseae (DoUZERY et al., 1999), Pogoniinae (CAMERON and CHASE, 1999), Lycastinae (RYAN et al., 2000), Laeliinae (VAN DEN BERG et al., 2000), Maxillarieae (WhitTEN, WILLIAMS, and ChASE, 2000), Coelogyninae (Gravendel et al., 2001), and Pleurothallidinae (PRIDGEON, SOLANO and CHASE, 2001).

2.2.2.4 Amplification

ITS amplification: The ITS1-5.8 S - ITS2 rDNA region was amplified using the following primer pairs described by SUN et al. (1994):

- ITS 18 ($5^{\prime}-\mathrm{GTC}$ CAC TGA ACC TTA TCA TTT AGA GG -3')
- ITS 26 ($5^{\prime}-\mathrm{GCC}$ GTT ACT AAG GGA ATC CTT GTT AG -3')

Amplifications were carried out in a $10 \mu 1$ reaction volume containing $\approx 50 \mathrm{ng}$ template DNA, 1 x Taqbuffer, $20 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 20 \mu \mathrm{M} \mathrm{dNTPs}$ and $2 \mu \mathrm{M}$ of each primer, 0.25 u of Taq DNA polymerase (Genecraft, Germany), and in addition 10% DMSO to dissolve secondary structures.

A BIOMETRA Tgradient DNA thermal cycler (Germany) was used with the following PCR profile: an initial denaturation step for 4 min at $95^{\circ} \mathrm{C}$ followed by 38 thermal cycles of $95^{\circ} \mathrm{C}$ for 30 sec denaturation, $50^{\circ} \mathrm{C}$ for 30 sec annealing and $72^{\circ} \mathrm{C}$ for 4 min elongation (THIEDE, J. submitted). As
closing extension step a final incubation for 6 min at $72^{\circ} \mathrm{C}$ was carried out. The quality and quantity of PCR samples was checked on a 0.8% agarose gel following the method described in Gel electrophoresis (pp. 60-61). The amplified DNA was purified by differential filtration using Millipore columns (Ultrafree-MC Filter Unit, 30000 NMWL, Millipore, Bedford, Massachusetts) following manufacturer's instructions.

2.2.2.5 Sequencing

Cycle sequencing was carried out directly with the purified PCR product using the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction kit (Applied Biosystems, Foster City, California, USA). A reaction volume of $20 \mu \mathrm{l}$ included 0.6 mM primer, $5.7 \mu \mathrm{l}$ of sequence dilution buffer, $2.3 \mu \mathrm{l}$ reaction mix and $1-6 \mu \mathrm{l}$ PCR product. Cycle sequencing conditions were as follows: 30 cycles of 50 sec . denaturation $\left(96^{\circ} \mathrm{C}\right), 15 \mathrm{sec}$. annealing $\left(50^{\circ} \mathrm{C}\right)$, and 4 min. elongation $\left(60^{\circ} \mathrm{C}\right)$ using a Tgradient thermal cycler (BIOMETRA, Germany).

Sequencing reactions were purified by ethanol precipitation. For each reaction a 1.5 ml centrifuge tube was prepared by adding $80 \mu \mathrm{l} 0.3 \mathrm{M} \mathrm{Na}$ acetate (pH 5.2) and $300 \mu \mathrm{l} 96 \%$ ethanol. The entire $20 \mu \mathrm{l}$ contents of reaction tubes were transferred to the microcentrifuge tubes containing ethanol solutions. The solution was mixed and incubated at room temperature for 20 min . After incubation, the solution was centrifuged in a microcentrifuge (Biofuge Fresco, Heraeus $n^{\circ} 3325 B$, Sanyo, Bad Neuendorf, Germany) at 13000 rpm and $4^{\circ} \mathrm{C}$ for 60 min . All liquid was carefully removed. The pellet was washed by adding $100 \mu \mathrm{l} 70 \%$ ethanol and spinned again under the same conditions (13000 rpm and $4^{\circ} \mathrm{C}$ for 60 min). The liquid was removed and the pellet was dried in a heat block at $65^{\circ} \mathrm{C}$ for 10 min .

The purified sequence reaction was run on an ABI Prism 377 automated sequencer (PE-Applied Biosystems) in the Universitäts Klinikum Eppendorf (UKE) "Institut für Zellbiochemie und klinische Neurobiologie", Hamburg, Germany.

Sequence alignment: Electropherograms were assembled and edited with Sequencher 3.1 software (GeneCodes, Ann Arbor, Michigan, USA). The ITS sequences were aligned with subsequent manual editing using the sequence editing program Sequencher.

2.3 Phylogenetic analysis

2.3.1 Morphological data set

Parsimony analysis was performed using PAUP* 4.0b10 (SWOFFORD, 2002). All morphological characters were assessed as independent, unordered, and equally weighted (Fitch parsimony; FITCH, 1971). Unknown characters were coded as ?, and not applicable characters were coded as -. A heuristic search was conducted with 100 random addition replicates, rearrangements limited to 100000 per replicate, tree bisection-reconnection swapping (TBR) with MULPARS on (i.e., saving all shortest trees). Five hundred bootstrap replicates were performed with TBR and MulTrees on, MaxTrees set to 1000 , simple addition and up to 1000000 rearrangements per replicate.

2.3.2 Molecular data set

2.3.2.1 Parsimony

Parsimony analysis was performed using PAUP* 4.0 b 10 (SWOFFORD, 2002). All molecular characters were assessed as independent, unordered, and equally weighted (Fitch parsimony; FITCH, 1971). Indels were coded as missing data. A heuristic search was conducted with 1000 random addition replicates, rearrangements limited to 10000 per replicate, tree bisection-reconnection swapping (TBR) with MULPARS on (i.e., saving all shortest trees). Because of an inadequate number of informative characters and the high number of taxa, heuristic searches could not be completed. A first alternative strategy was employed to explore tree space. One thousand random addition sequence replicates were conducted using tree bisection-reconnection (TBR) branch swapping, with MULTREEs in effect, but holding only one tree per step and saving no more than 10 trees per replicate to minimize swapping time on suboptimal trees. A second round of TBR branch swapping was performed on trees collected in the first analysis saving up to 10000 trees. Once this limit was reached, these trees were swapped to completion. Successive weighting (SW) (FARRIS, 1969) of resulting trees was carried out according to the rescaled consistency index using the maximum value (best fit) criterion and a base weight of 1.0. The SW strategy is a useful tool employed to reduce the global effect of highly homoplasious base positions on the resulting topologies (WENZEL, 1997; LLEDÓ et al., 1998). SW was followed by a heuristic search with 1000 random sequence addition replicates, TBR branch swapping, and again saving no more than 10 trees per replicate. All trees from these 1000 replicates were then swapped to completion, after which another round of weighting was implemented. This process was repeated until the same tree length/rescaled consistency index was obtained twice in succession. Internal clade support was evaluated both with and without weighting with 100 bootstrap replicates (FELSENSTEIN,
1985), using simple sequence addition and TBR branch swapping. No more than 15 trees were saved in each replicate and only groups that appeared in $>50 \%$ of the trees were retained (bootstrap procedure).

2.3.2.2 Bayesian inference

Bayesian analyses (BAYES, 1763) were performed using MrBayes 3.0b4 (RONQUIST and HUELSENBECK, 2003). Calculations of likelihood were based on a general time reversible nucleotide substitution model (GTR; LanAVE et al., 1984; TAVARÉ, 1986; Rodríguez et al., 1990). The ML parameters in MrBayes were set as follows: "Iset nst=6", and "rates=invigamma" (site specific rate variation such that some sites are invariant and the rates of others are drawn from the gamma distribution). The Markov chain Monte Carlo process was set so that four chains ran simultaneously for 1000000 generations, with tress being sampled every 100 generations for a total of 10000 trees in the initial sample. The `burn - in' time was estimated from the plot of likelihoods generated using the 'sump' command in MrBayes. Majority rule consensus trees were generated by importing the sets of individual trees into PAUP* 4.0 b 10 (SWOFFORD, 2002), excluding trees generated during the burn-in time. Each analysis was repeated five times to check that runs converged on the same topology and 95\% confidence interval of likelihood scores. HILLIS and BULL (1993) and SUZUKI et al. (2002) showed that bootstrap analyses are generally conservative, while SUZUKI et al. (2002) found that the posterior probabilities in Bayesian analysis can be excessively bounteous. For the purpose of our discussion in the case of Bayesian, clade credibility values for good support was estimated as $\geq 90 \%$ clade credibility value and poor support below 70% clade credibility value. Trees were edited using the program Treeview 1.6.6. All trees were rooted with Porroglossum amethystinum as outgroup taxon.

2.3.3 Combined data set

Congruence between taxonomically equivalent ITS and morphological data sets was evaluated by comparing tree topologies. This approach enabled clades in strongly supported agreement or disagreement to be identified before data sets were combined. An incongruence length difference (ILD) test (FARRIS et al., 1995) was also conducted to investigate character congruence between taxonomically equivalent ITS and morphologial partitions. This was implemented as the "partitionhomogeneity test" in PAUP* 4.0b10 (SWOFFORD, 2002). All parsimony-uninformative characters were removed from each data set prior to conducting the partition-homogeneity test (WIENS and Hollingsworth, 2000). A thousand replicates were analyzed, with each repartitioned data set subject to a heuristic search of one hundred random stepwise addition replicates and TBR branch swapping.

2.3.3.1 Parsimony

The data were arranged in two major partitions, ITS sequences and morphology. A heuristic search was conducted on the data in combination with 100 random addition replicates, rearrangements limited to 100000 per replicate, tree bisection-reconnection swapping (TBR) with MULPARS on (i.e., saving all shortest trees). Five hundred bootstrap replicates were performed with TBR and MulTrees on, MaxTrees set to 1000 , simple addition and up to 1000000 rearrangements per replicate.

2.3.3.2 Character-state reconstruction

The distribution of each morphological character state on several randomly selected most parsimonious trees was investigated by unambiguous character state changes using MacClade version 4.0 (MADDISON and MADDISON, 2000).

2.4 Biogeographical analysis

Geographical distributions of species of Masdevallia were obtained from the monograph of the genus Masdevallia by Luer (2000-2004). Distribution maps were created using ArcView GIS, version 3.0 (ESRI, 1992-1997). Analysis of ITS sequences was then used to frame a phylogenetic hypothesis for comparasion with species distribution. The altitudinal range of each species was investigated by unambiguous character state changes using MacClade version 4.0 (MADDISON and MADDISON, 2000).

3

RESULTS

3.1 Morphological analysis

3.1.1 Description of the analyzed morphological characters

The morphological characters included or excluded from the phylogenetical analyses are described below. Enclosed in parenthesis is the character number (indicated in Table 6, chapter 2.1.5, p. 58-59).

1) Growth habit

Most species are epiphytes [1(2)], some species may also grow as terrestrial plants [1(1)] (e.g. M. veitchiana, M. coccinea) and a few may also grow terrestrial as well as epiphytic (e.g. M. persiteria).

2) Rhizome

The rhizome, or primary stem, is usually short so that a densely caespitose habit is formed [2(1)], even when the rhizome is a little longer and ascending. In a few species, the rhizome is significantly elongated (e.g. M. paivaeana, and M. scandens) [2(2)].

3) Ramicaul

All the species of Masdevallia are characterized by aerial leaf-bearing stems produced successively from a stout rhizome. The stems have several nodes and internodes (homoblastic); each node bears a single, tubular sheath or bract. Ramicauls are unifoliate. A diagram of all taxa examined in this study is shown in Fig. 15. The gap present in ramicaul length is not considered to be distinct enough to recognize the proposed character states and was therefore omitted.

4-10) Leaves

Leaf shape (character 4) varies considerably within the genus Masdevallia. Most species show elliptical leaves [4(2)], while obovate [4(3)] and oblong [4(1)] leaves are present in a few species. The apices or tips (character 5) are acute [5(1)] or obtuse to rounded [5(2)] and shallowly notched with a mucro in the sinus. The base of leaves [6(1-2)] is mostly cuneate into the (sub)petiole [7(1-2)]. Leaves of Masdevallia are dorsiventral, the petiole is merely the constricted base of the lamina.

Fig. 15 Vegetative morphology: ramicaul length (character 3).

The leaf consistency is coriaceous [8(1)], from relatively thin [8(2)] to very thick and fleshy, or extremely rigid [8(3)]. The texture of dried leaves varies considerably within subtribe Pleurothallidinae and the genus Masdevallia from thin papery to decidedly leathery; this character could not be divided unambiguously into discrete, non-overlapping states as recommended by PIMENTEL \& RIGGINS (1987) and was therefore omitted. Leaf size (characters 9-10) varies considerably within the genus Masdevallia. A diagram of the length of leaves for all taxa examined in this study is shown in Fig. 16A. The gap presented in the leaves length is considered to be not distinct enough to recognize states in this character; the same occurs with the leaf width (Fig. 16B) and both were therefore omitted.

Fig. 16 Vegetative morphology: leaf length (a)and leaf width (b) (characters 9 and 10).

11-15) Inflorescence

Single-flowers [11(1)] characterize subgenera Cucullatia, Fissia, Nidificia, Volvula, and Masdevallia sections Masdevallia, Coriaceae and Triotosiphon (LuER, 2001). Subgenera Masdevallia sections Minutae and Reichenbachianae, Polyantha section Polyanthae and Pygmaeia sections Aphanes and Pygmaeae exhibit both: solitary flowers and/or racemose inflorescences. The inflorescences of all species emerge laterally with an annulus usually near or at the base of the ramicauls [12(1)], or occasionally higher, near the middle [12(2)]. Distantly flowered racemes [13(2)] characterize subgenus Amanda (LuER, 2001). Congested racemes are present in most subgenera/sections [13(1)]. The following character states were recognized for the number of flowers in the inflorescence: few flowered raceme (flower number <4) [14(1)] and many - flowered raceme (flower number ≥ 4) [14(2)]. Flowers opening either successively [15(1)] or simultaneously [15(2)] have been used to characterize some infrageneric taxa. In inflorescences with more than 4 flowers, flowers are considered to be opening simultaneously when all flowers are expanded before the first starts to wither. Erect peduncles [16(1)] characterize most species of Masdevallia. Ascending or horizontal to descending peduncles [16(2)] characterize subgenus Pygmaeia sections Pygmaeae and Zahlbrucknerae (LUER, 2000).

Peduncles with more than two internodes [17(1)] can be considered as a reduction of a raceme. For the purpose of this work, peduncles with more than two internodes are considered only when there is not an emergence of a pedicel. Peduncles shorter than [18(2)] or of similar length as the leaves [18(1)], have not been used for infrageneric diagnosis. The gap present in Fig. 17 is considered to be distinct enough to recognize two character states: peduncle longer than the leaves [18(1)] and peduncle shorter than or as long as the leaves [18(2)].

Fig. 17 Correlation between leaf length and peduncle length (character 18)

Peduncles triquetrous in cross section characterize subgenus Polyantha section Alaticaules (LUER, 2000). However, individuals of some species (e.g. M. garciae, M. infracta, M. sprucei) occasionally produce terete peduncles (character 19). Scabrous peduncles (character 20) are present in M. bicornis (subgenus Scabripes).

The floral bract (character 21) is an important character for the delimitation of some infrageneric taxa (REICHENBACH, 1888; LUER, 1986-2003). Cucullate floral bracts [21(3)] characterize subgenus Cucullatia, inflated floral bracts [21(2)] are commonly present in species of subgenus Amanda, and tubular floral bracts [21(1)] characterize the remaining subgenera/sections. The types of floral bracts are shown in Fig. 18.

Fig. 18 Types of floral bracts: (A, E) tubular in M. coccinea Lind. ex Lindl, (B-F) inflated in M. caloptera Rchb. f., (C, G) cucullate in M. delhierroi Luer \& Hirtz, (D, H) imbricate in M. melanoxantha Lind. \& Rchb. f. Scale bars= 1 cm (A, C, D); $5 \mathrm{~mm}(\mathrm{~B}) ; 2 \mathrm{~mm}(\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H})$.

Pedicels thicker and longer than the peduncles (character 23) characterize species of the subgenus Masdevallia section Coriaceae according to LUER (1986b-2003).

24-25) Ovary

In many species the ovary is smooth, the ribs being only barely visible externally, or as shallow grooves between valves. Species with the ribs manifested by crests or some other external features such as papillae are characteristic for subgenera Amanda, Fissia and Pygmaeia, (characters 24 and 25) (Fig. 19) LUER (2000).

Fig. 19 Ovary: (A) ovary carinate in M. echo Luer, (B-C) ovary with undulating crest in M. ventricosa Schltr. and M. caloptera Rchb. f., (D) ovary scabrous in M. erinacea Rchb. f. Scale bars= 1.5 mm (A); 1 mm (B, C, D).

26-40) Sepals

The dorsal sepal free from the laterals [26(1)] characterizes subgenera Fissia and Meleagris. The lateral sepals free at the basis, only connate to the column foot (character 27), characterizes subgenus Meleagris (e.g. M. alexandri). The grade of connation between the sepals is variable among species of Masdevallia, although two character states are clearly delimited: connation between dorsal and lateral sepals similar to the connation between lateral sepals [28(1)], and connation between dorsal and lateral sepals different from the connation between lateral sepals [28(2)]. Sepals barely connate at the base to form a shallow cup characterize subgenus Amanda (LUER, 2003); sepals deeply connate forming a
cylindrical tube the subsection Coccinea of section Masdevallia. The shape of connation has not been discussed previously in a phylogenetic context; however this feature could be related to the pollinator. In the absence of morphometrical analysis, the following character states were designed: sepals connate forming a tube [29(1)], sepals connate forming a cup [29(2)], and sepals connate forming a flat, widely spread flower [29(3)] (Fig. 20). Sepals connate forming a tube constricted above the middle characterizes subgenus Masdevallia section Saltatrices (LUER, 1986b-2003) (Fig. 20D); two states were designed: sepals connate forming a tube constricted above the middle [30(1)] and sepals connate forming a tube not constricted above the middle [30(2)].

Fig. 20 Connation of sepals: (A) connate into a tube in M. hirtzii Luer \& Andreetta, (B) connate into a cup in M. echo Luer, (C) connate to form a flat, widely spreading flower in M. picturata Rchb. f., (D) connate into a tube constricted above the middle in M. saltatrix Rchb. f. Scale bars= 4 mm (A, C); 5 mm (D); (B) 1.5 cm .

Sepaline arcuate tubes (character 31) are present in a few species (e.g. M. coccinea, M. veitchiana, M. ophioglossa).

The gap present in the degree of connation between dorsal and lateral sepals (character 32) is considered to be distinct enough to recognize three character states: dorsal sepal connate with the lateral sepals above the middle [32(1)], dorsal sepal connate with the lateral sepals below or at the middle [32(2)], and dorsal sepal connate with the lateral sepals for the total length [32(3)] (Fig. 21A). For the connation among lateral sepals (character 33), three character states were assigned: connate
into a synsepal or lamina (above the middle), connate at the middle, and connate below the middle. The gap shown in Fig. 21b is considered to be distinct enough to recognize the previously mentioned character states.

Fig. 21 Connation of sepals: (A) connation of the dorsal sepal with lateral sepals, (B) connation of lateral sepals (characters 32 and 33).

The lateral sepals connate to form a broad mentum (character 34) characterize some species such as M. patriciana and M. abbreviata, etc. (Fig. 22).

Fig. 22 Connation of lateral sepals: (A) lateral sepals connate forming a mentum with the column-foot in M. abbreviata Rchb. f., (B) lateral sepals connate without the formation of a mentum in M. reichenbachiana Endres ex Rchb. f. Scale bars $=5.5 \mathrm{~mm}(\mathrm{~A}) ; 7.5 \mathrm{~mm}(\mathrm{~B})$.

Four character states were assigned for the shape of dorsal and lateral sepals (characters 35 and 45). About a 45\% of the analyzed species displayed obovate dorsal and lateral sepals, followed of ovate sepals ($\sim 30 \%$), oblong sepals ($\sim 20 \%$) and elliptical sepals ($\sim 3 \%$). Few species showed more than one character state for the shape of dorsal and lateral sepals (e.g. M. infracta, M. hirtzii, M. herradurae).

The surface of the dorsal and lateral sepals (characters 36 and 46) is mainly smooth, some species showed pubescent (e. g. M. ampullacea), verrucose (e.g. M. peristeria), echinate (e.g. M erinacea), glandulous (e.g. M. glandulosa), and papillose sepals (e.g. M. veitchiana) (Fig. 23).

Fig. 23 Vestiture of sepals: (A) glandulous in M. glandulosa Königer, (B) pubescent in M. echo Luer. Scale bars= 0.5 mm (A, B).

Coriaceous (characters 37 and 47), very thick and fleshy sepals characterize species of sections Coriaceae, Polyanthae, and some species of the subgenus Pygmaeia; membranous sepals characterize most species of the subgenera Amanda, Nidificia, and Meleagris. Two character states were recognized: dorsal or lateral sepal membranous and dorsal or lateral sepal coriaceous.

The margin of the sepals (characters 38 and 48) is mostly entire; species of subgenera Amanda and Nidificia presented sepals with erose or dentate to serrate margins. Masdevallia carmenensis showed sepals with ciliate margin. The sepal apex (characters 39 and 49) varies from acute to obtuse, rounded and attenuate. The free portion of the apex produced into tails (characters 40 and 50) has been used to define some groups, e.g. tailless flowers characterize subgenus Pygmaeia section Aphanes (LUER, 2000) (Fig. 24).

Fig. 24 Apex of sepals: (A) sepals tailless in M. aphanes Königer (photo courtesy of T. Sijm), (B) sepals with tails in M. patriciana Luer. Scale bars $=5 \mathrm{~mm}(\mathrm{~A}, \mathrm{~B})$.

The exposure of sepaline tails (characters 41 and 51) has not been used to define infrageneric groups. In order to evaluate this character, three character states were designed: sepaline tails antrorse, sepaline tails retrorse, and sepaline tails erect. The sepaline tails of lateral sepals (character 52) are in some species approximate (with the angle between them acute), but in other instances they are divergent (with the angle between them obtuse). Sepaline tails are clavate (characters 42 and 53) in a few species (e.g. M. erinacea). Two states were designed: sepaline tails clavate and sepaline tails not clavate. The length of sepaline tails (characters 43 and 54) was not previously discussed in a phylogenetic context, however, species of e.g. subgenus Polyantha show short to very short sepaline tails, and species of e.g. subgenus Masdevallia section Durae show very long sepaline tails. The gap present in the lengths of dorsal (Fig. 25a) and lateral sepaline tails (Fig. 25b) is considered to be distinct enough to define three character states: (1) less than half as long as the lamina, (2) more than half as long to as long as the lamina, and (3) longer than lamina.

Fig. 25 Tails of sepals: (A) comparison between the length of the dorsal sepals and the length of the tails from the dorsal sepals, (B) comparison between the length of the lateral sepals and the length of the tails of lateral dorsal sepals (characters 43 and 54).

Sepaline tails of the dorsal sepal (character 44) (Fig. 26) can be longer, shorter or of similar length as the sepaline tails of the lateral sepals. In order to evaluate this character, three character states were postulated: longer than the tails of the lateral sepals, similar to the tails of the lateral sepals, and shorter than the tails of the lateral sepals.

Fig. 26 Comparison between the tails of the dorsal and lateral sepals (character 44).

55-70) Petals

Petals and lip completely hidden within the sepaline tube (character 55) have been used to define subgenus Masdevallia section Masdevallia subsection Caudatae (LuER, 1986b-2000). The shape of the petals (character 56) varies considerably. Four discrete, non overlapping character states are recognizable: oblong, elliptic, ovate, and obovate. Petals (character 57) with denticulate to serrate margin characterize species of subgenus Amanda (LUER, 2000), while erose margins are present in M. sanchezii, M. molossus, and M. ampullacea. Three character states were designed: entire, dentate to serrate, and erose. Some species show arcuate petals (character 58). Two character states were designed: petals arcuate [58(1)], and petals not arcuate [58(2)] (Fig. 27).

Fig. 27 Petals: (A) arcuate in M. bicornis Luer, (B) not arcuate in M. cardiantha Königer. Scale bars= $1 \mathrm{~mm}(\mathrm{~A}, \mathrm{~B})$.

The apex of petals (character 59) varies from truncate to acute and rounded. Bivalvate petals with an inner and an outer lamina (character 60) characterize the genus Dracula (Fig. 28).

Fig. 28 Petals: (A) a typical Masdevallia petal in M. ventricosa Schltr., (B) petal bivalvate in Dracula velutina Luer. Scale bars $=1 \mathrm{~mm}$.

For the margin of the petal apex five states were designed: entire [61(1)], bilobed [61(2)], dentate to denticulate [61(3)], apiculate [61(4)], and longitudinally channeled, twisted and curved up [61(5)]. The base of petals (character 62) is mostly truncate and in few species, such as M. coccinea, cordate. The
vestiture of petals could be used to define some infrageneric groups; e.g. verrucose petals characterize most analyzed species of subgenus Masdevallia section Durae. Three states were designed: smooth [63(1)], verrucose [63(2)], and papillose [63(3)], (the last one is mostly present in the genus Dracula). The consistency of petals (character 64) has been used to define some infrageneric groups; e.g. membranous petals characterize subgenus Amanda. Two character states were designed: petals membranous and petals cartilaginous.

Most Masdevallia species show a marginal callus; in some species (e.g., M. chaetostoma) a callus is missing (character 65). Both margins callous (character 66) and sulcate centrally (character 67), characterize subgenus Masdevallia section Durae (LUER, 2000). Both margins callous but not sulcate centrally are present in a few species of subgenus Polyantha and subgenus Masdevallia section Coriaceae (e.g. M. echo, M. melanoxantha, M. civilis). The callus from the labellar margin (characters 68-70) ending in an acute and retrose (uncinate) process near the base characterizes subgenus Masdevallia section Masdevallia (LUER, 1986-2001); the callus ending in an obtuse angle between the middle and the lower third characterizes subgenus Masdevallia section Coriaceae (LUER, 1986b2000); and a callus ending in a broad and rounded process, some species of subgenus Polyantha sections Alaticaules and Coaetanae (Fig. 29).

Fig. 29 The callus of petals: (A) ending in a broad rounded, thick process in M. hirtzii Luer \& Andreetta, (B) ending in an acute, uncinate process in M. deformis Kraenzl., (C) ending in an obtuse angle in M. reichenbachiana Endres ex Rchb. f., (D) the callus not ending in a process or angle in M. peristeria Rchb. f. Scale bars: 5 mm (A, C); 2 mm (D); 1.5 mm (B).

71-90) Lip

The lip, which is usually not much larger than the petals, is more or less ligulate, from oblong to ovate or obovate (character 71), and entire or denticulate to crenate at the margin (character 72), with the apex recurved or not (character 73). The base is truncate or cordate and attached to a curved extension from the base of the column-foot. A base of the lip with elevated margins (character 75) is characteristic for some species of Dracula. Verrucose lips characterize species of subgenus Polyanthae and subgenus Masdevallia sections Coriaceae and Durae (LUER, 1986b-2000); smooth lips are present in most species, M. ophioglossa shows glandulose lips, and a few species such as M. mezae and M. macrura show lips that are papillose at the apex (character 76). A lip that is callous at the apex, characterizes most species of subgenus Masdevallia sections Masdevallia and Durae (character 77).

An oscillating lip (character 78) characterizes subgenus Masdevallia section Masdevallia subsection Oscillantes. The significant difference in subsection Oscillantes is the lip with wing-like, lateral margins often modified into lobes, and a base that is delicately hinged or balanced by a thin straplike extension from the column foot; the slightest motion or a breeze causes the lip to oscillate. In some species the flowers are nutant, or face downward, so that the lip dangles loosely from the column-foot. In some species of subsection Caudatae and Alauticaules (e.g., M. pinocchio) the lip may also oscillate.

A lip that is divided by marginal folds into an epichile an a hypochile (character 79) characterizes subgenera Amanda, Cucullatia, Fissia, Nidificia, Polyantha, and Volvula; species of subgenera Masdevallia and Pygmaeia are characterized by entire lips (not divided into an epichile and a hypochile) (LUER, 2000) (Fig. 30).

Fig. 30 Lip: (A) divided by marginal folds into an epichile and hypochile in M. cardiantha Königer, (B) simple in M. fulvescens Rolfe. Scale bars=1mm (A, B).

The disc is usually sulcate to some degree between a pair of longitudinal calli (characters 80-81); the presence of a pair of longitudinal calli near the middle (Fig. 31) characterizes species of subgenus Masdevallia section Reichenbachianae as well as some species of subgenera Masdevallia, Volvula, Polyanthae and Pygmaeia. Four states were assigned: the disc with a central, flat callus below the middle [80(1)], the disc with a pair of calli near the middle [80(2)], the disc featureless [80(3)], the disc longitudinally thickened [80(4)], and the disc with three lamellae and several, radiating, elevated veins $[80(5)]$. The last character state $[80(5)]$ refers to species of the genus Dracula characterized by lips with lamellae (Fig. 31D).

Fig. 31 (A-B) The lip of M. patula Luer \& Malo with a pair of longitudinal calli near the middle, (C) the lip, featureless, in M. decumana Königer, (D) the lip of Dracula bella (Rchb. f.) Luer with lamellae and radiated veins. Scale bars: 1 mm (A, B); $0.6 \mathrm{~mm}(\mathrm{C}, \mathrm{D})$.

The lip, divided by marginal folds into an epichile and hypochile, characterizes many species of Masdevallia. The shape of the epichile (character 82) varies from elliptic to ovate and obovate, the same is shown for the shape of the hypochile (character 85). The margin of the epichile (character 83) is mostly entire, some species such as M. echo and M. ophioglossa show an epichile with microscopically dentate to serrate margins. Most species show a smooth epichile (character 84) but in a few species, the vestiture of the epichile varies from verrucose to papillose and cellular-glandulous. The margin of the hypochile is entire in most species, but in a few species the margin of the hypochile
can be erose (e.g. M. mezae), serrate (e.g. M. chaetostoma) or crenate (e.g. M. rubiginosa). A hypochile with a pair of acute, uncinate processes (character 87), emerging from the lateral surface on the basal fourth is shown in M. bicornis of subgenus Masdevallia section Racemosae (Fig. 32).

Fig. 32 M. bicornis Luer: (A) flower (B) labellum (note the pair of acute, uncinate processes). Scale bars= 5 mm (A); 0.7 mm (B).

A sensitive lip (character 88) is present in species of the genus Porroglossum. According to OLIVER (1888) 'a tactile stimulus received by the callus of the lip in the 'open' or pollinator-receptive position causes a sudden loss of turgor in the outer layer of cells of the under surface of the claw in contact with the apex of the column-foot leaving the tension of the outer layer of cells of the under surface of the claw unopposed. This releasing of the pressure of the claw against the apex of the column-foot causes the lip to snap suddenly inwards to the 'closed' position, thereby thrusting the pollinator against the stigma and under surface of the column" (see Figs. 33a and 33b).

Fig. 33 Porroglossum echidna (Rchb. f.) Garay: (A) `open' position, (B) `closed' position. Scale bars= 1.4 mm .

The column, longer or similar in length to the labellum [89(1)] characterizes some species such as M. decumana, M. schroederiana, and M. bicornis; a column that is shorter than the labellum [89(2)], is present in most of the species. The column-foot shorter than the column [90(1)] characterizes most species; the column-foot longer than the column [90(2)] characterizes species of subgenus Nidificia; (Fig. 34).

Fig. 34 Column-foot: (A) column-foot similar in length to the column in M. decumana Königer, (B) column-foot longer than the column in M. nidifica Rchb. f., (C-D) column-foot shorter than the column in M. melanoxantha Linden \& Rchb. f. and M. fulvescens Rolfe. Scale bars=1mm (A, B, C, D).

The position of the rostellum (character 91) is in all species of Masdevallia retrorse; an apical rostellum characterizes species of the genus Porroglossum (Fig. 35).

Fig. 35 Position of the column: (A) retrose column and rostellum in M. bicornis Luer, (B) apical column and rostellum in P. echidna. Scale bars=1mm (A, B).

94-99) Pollinia

Rather than focusing on details of the tectal structure, which has not been studied in a sufficient number of genera, in this work the external appearance of the pollen grains and their sculpture was studied. Three types of shape of pollinia are present in Masdevallia: drop-like [92(1)], lentiform [92(2)] and clavate [92(3)].

Four types of exine-sculpture are present on the pollinia surface: psilate [93(1)], fossulate [93(2)], verrucate to scabrate-gemmate [93(3)] and rugulate [93(4)] (Fig. 36).

Fig. 36 Exine sculpture: (A) psilate in M. civilis Rchb. f. \& Warsz., (B) fossulate in M. caloptera Rchb. f., (C) verrucate to scabrate-gemmate in M. chaetostoma Luer, (D) rugulate in M. macrura Rchb. f. Scale bars: $2 \mu \mathrm{~m}$ (A, B, C, D).

The margin of tetrads (character 94) is prominent in most species of subgenus Masdevallia section Masdevallia (Fig.38).

Fig. 37 Margin of tetrads: (A) normal in M. coccinea Linden ex Lindl., (B) prominent in M. lamprotyria Linden ex Lindl. Scale bars $=2 \mu \mathrm{~m}$ (A, B).

The size of the pollinia varies within species of Masdevallia; however, three character states are clearly distinguished in the length of the pollinia: pollinia shorter than $500 \mu \mathrm{~m}$ [95(1)], between 550 and $800 \mu \mathrm{~m}$ [95(2)], and more than $900 \mu \mathrm{~m}$ [95(3)]; the same is shown for the wide of the pollinia, of which three character states are clearly distinguished: $<300 \mu \mathrm{~m}$ [96(1)], between 350 and $600 \mu \mathrm{~m}$ [96(2)], and $>700 \mu \mathrm{~m}$ [96(3)]. In a few species of Masdevallia the caudicles (character 97) are very primitive and can be hardly distinguished. In most species the caudicles are very well developed and mostly elaborate.

3.1.2 Phylogenetic relationships

3.1.2.3 Data matrix characteristics

The final morphological data matrix included 94 characters (see appendix II). Three characters were excluded because they could not be unambiguously divided into discrete states as recommended by Pimentel \& Riggins (1987) (see chapter 3.1.1). Of these 94 characters, 91 (96%) were found to be phylogenetically informative (Table 9).

Table 9 Characteristics and variation of the morphological data in Masdevallia.

	Vegetative characters	Floral characters	Pollinia characters	All characters
All	7	81	6	94
Constant	-	2	-	2
Variable, but parsimony uninformative= autapomorphies	-	1	-	1
Parsimony informative	7	78	6	91

3.1.2 4 Topology of the most parsimonious trees

The parsimony analysis of the morphological data set resulted in 6718 most parsimonious trees with a length of 1411 steps $(\mathrm{CI}=0.29, \mathrm{RI}=0.47, \mathrm{RC}=0.108, \mathrm{HI}=0.860)$. A strict consensus tree is presented in Fig. 38.

Fig. 38 Strict consensus tree of the analyzed species of Masdevallia and outgroups (OG) based on morphological data, computed from the 6718 most parsimonious trees (tree length $=1411$, consistency index= 0.29 , retention index= 0.47). The numbers above the branches are bootstrap percentages. Percentages $\geq 50 \%$ are not shown. A0 to A8, B= groups discussed in the text.

Analysis of the morphological data does not support the monophyly of the genus Masdevallia. Furthermore, one of the genera designated as outgroups, Porroglossum, was found nested within Masdevallia, albeit without significant bootstrap support. Within the most parsimonious tree, two larger clades, designated as A and B, were found (Fig. 38).

Subgenus Masdevallia section Racemosae occupies the most basal position in this study and appears as sister to the remaining Masdevallia species including Porroglossum.

The clade designated as A is composed of a basal grade designated as A0 and six subclades designed as A1 to A6 (Fig. 38). Of the six subclades founded within clade A, three received good bootstrap values: subclade A1 (100%), A2 (90%), and A3 (100%). Species grouped in clade A are members of subgenera Cucullatia, Masdevallia, Meleagris, Nidificia, Pygmaeia, and the monospecific Scabripes, Teagueia, and Volvula. Porroglossum taxa are nested within the subclade designated as A6.

Clade B (Fig. 38) constitutes a small clade without bootstrap support. It includes species of subgenera Amanda, Fissia, Masdevallia sections Minutae and Triotosiphon, as well as M. notosibrica (subgenus Masdevallia section Masdevallia), M. molossus (subgenus Nidificia) and M. zahlbrucknerii (subgenus Pygmaeia section Zahlbrucknerae).

3.2 Molecular analysis

3.2.1 Alignment and ITS characteristics

3.2.1.1 ITS Structure, Size, and Composition

Aligned DNA sequences of ITS1, the 5,8S subunit, and ITS2 from the studied species are presented in Appendix III. The length of the entire ITS region varied among Masdevallia DNAs from 624 to 634 bp. Length ranges of ITS1 - 5.8S - ITS2 sequences were $214-220$, 166, and $244-249 \mathrm{bp}$, respectively. Boundaries of the ITS1, 5.8S gene, and ITS2 were taken from HERSHKOvITZ and Lewis (1996). The ITS1 and ITS2 regions exhibited the following base composition: $19-23 \%$ A, $24-35 \%$ GC, and $18-22 \%$ T. The 5.8 S region showed a lower T content (17%) and a higher G content (29%). The overall $\mathrm{G}+\mathrm{C}$ content (58\%) was rather low for Masdevallia in comparison to other angiosperms (reviewed in BALDWIN et al., 1995) (Table 10).

Table 10 Base composition of the ITS nrDNA region in Masdevallia

Mean length	ITS1	5,8S	ITS2	Entire ITS Region
Masdevallia length variation	$\begin{gathered} \emptyset \text { ITS 1= } 214,9 \text { bp } \\ (214-220 \mathrm{bp}) \end{gathered}$	$\begin{gathered} \emptyset 5,8 S=166,0 \mathrm{bp} \\ (166 \mathrm{bp}) \end{gathered}$	$\begin{gathered} \text { Ø ITS2= }=246,0 \text { bp } \\ (244-249 \mathrm{bp}) \end{gathered}$	$\begin{gathered} \text { Ø ITS region= } \\ 626,9 \mathrm{bp} \\ (624-634 \mathrm{bp}) \\ \hline \end{gathered}$
A content	0,2361	0,2527	0,1923	0,2233
GC content	0,5846	0,5766	0,5911	0,591
T content	0,1791	0,1705	0,2164	0,1915

The final alignment matrix (see appendix III) has a length of 663 bp (233,165 , and 263 bp for ITS1, 5.8S, and ITS2, respectively), of which 98 (37,11 , and 50 , respectively) were variable but parsimonyuninformative and 167 (80,5 , and 82 , respectively) were phylogenetically informative (Table 11).

Table 11 Characteristics and variation of the ITS nrDNA region in Masdevallia.

	ITS 1 $\mathbf{1 - 2 3 3} \mathbf{b p}$	$\mathbf{5 , 8 S}$ $\mathbf{2 3 4 - 3 9 9} \mathbf{~ b p}$	ITS 2 $\mathbf{4 0 0 - 6 6 3} \mathbf{~ b p}$	ITS region $\mathbf{1 - 6 6 3} \mathbf{~ b p ~}$
All	233	165	263	663
Constant	116	150	132	398
Variable, but variable and parsimony uninformative $=$ autapomorphies	37	11	50	98
Parsimony informative	80	5	82	167

Length range of ITS1-5.8S - ITS2 sequences for outgroup taxa (species of Dracula, Luerella, Porroglossum, and Trisetella) were 213-219, 166, and $244-246$ bp, respectively. The entire ITS region varied from 623 to 631 bp . The ITS1 and ITS2 regions exhibited the following base
composition: 19-25\% A, 24-35\% GC, and 18-22\% T. The 5.8S region shows a higher C content (28\%) (Table 12). The A, T, and C content were similar to Masdevallia.

Table 12 Base composition of the ITS nrDNA region in outgroup taxa.

Mean length	ITS1	5,8S	ITS2	Entire ITS Region
Outgroups length variation	$\begin{gathered} \emptyset \text { ITS } 1=214,8 \text { bp } \\ (213-219 \mathrm{bp}) \end{gathered}$	$\begin{gathered} \emptyset 5,8 S=166,0 \mathrm{bp} \\ (166 \mathrm{bp}) \end{gathered}$	$\underset{(244-246 \mathrm{bp})}{\text { Ø ITS2 }}=245,4 \mathrm{bp}$	Ø ITS region= 626,0 bp (623-631 bp)
A content	0,2492	0,2530	0,1887	0,2266
GC content	0,5717	0,5782	0,5954	0,5827
T content	0,1790	0,1686	0,2158	0,1906

3.2.1.2 Divergence between ITS sequences

Within Masdevallia, the ITS1 sequence divergence between pairs of species ranged from 0% to 14%; highest values occur between M. bicornis and M. mentosa (14\%) followed by M. bicornis and M. civilis (13\%). The ITS1 sequence divergence between Masdevallia and outgroup species strongly overlapped with those from comparisons within Masdevallia and ranged from 0.9% between Dracula xenos and M. abbreviata to 19\% between Trisetella scobina and M. bicornis.

Pairwise ITS2 sequence divergences of Masdevallia DNAs were generally lower (0% to 11%) than the values from the corresponding ITS1 sequences. The highest sequence divergence occurred between M. corniculata and M. erinacea (11%). In contrast, ITS2 sequence divergence between Masdevallia and outgroup species (3.2% between M. picturata and D. xenos to 16% between T. scobina and M. cupularis) were higher than values from corresponding ITS1 sequences.

Comparison of both ITS1 and ITS2 sequences within Masdevallia gave divergence values ranging from 0% to 7.2%; the latter is found between M. erinacea and M. scabrilinguis. Divergence values from ITS1 and ITS2 between Masdevallia and outgroup species spanned from 2\% in T. scobina to 13\% in M. aphanes.

3.2.1.3 ITS Length Mutations

Alignment of ITS1 sequences of all Masdevallia DNAs required one or more gaps at 5.1% of sites; the value increases to 7% with the addition of outgroup species. The aligned Masdevallia ITS 2 sequences necessitated one or more gaps at 6% of nucleotide positions; this value remained the same when outgroup species are added. No gaps were needed to align all $5,8 \mathrm{~S}$ sequences.

There are eight phylogenetically informative gaps in ITS1: a one-base insertion (position 14) as
synapomorphy for M. picturata and M. pleurothalloides, a two-base insertion (positions 47-48) as synapomorphy for subgenus Pygmaeia section Zahlbrucknerae; subgenus Masdevallia sections Coriaceae, Dentatae, Minutae and Reichenbachianae and subgenus Polyantha, sections Polyanthae and Alaticaules, a two-base insertion (positions 62-63) as synapomorphy for M. caudivolvula, M. echo, M. infracta, and M. racemosa, a one-base insertion (position 105), synapomorphic for species of the genus Dracula, and a two-base insertion (positions 171-172) as synapomorphy for M. echo and M. infracta. In ITS 2, eight gaps are phylogenetically informative: a one-base insertion (position 424) as synapomorphy for subgenus Meleagris, a two-base insertion (positions 449-450) as synapomorphy for M. cardiantha and M. lamprotyria, a two-base insertion as synapomorphy for M. citrinella and M. persicina; and a one-base deletion, occurs near the 5' end (position 645).

3.2.2 Phylogeny of Masdevallia

3.2.2.1 Topology of the most parsimonious trees

The >10000 equally parsimonious trees obtained prior to the weighting procedure had 460 steps with a consistency index $(\mathrm{CI})=0.60$, retention index $(\mathrm{RI})=0.75$, and rescaled consistency index $(R C)=0.58$. After successive weighting, the >10000 equally parsimonious trees had 518105 steps (2058 Fitch steps) before computer memory was exhausted. These trees are characterized by a CI of 0.54 , a RI of 0.83 , and a RC of 0.503 . There were 488 characters with a weighting of 1 , while 175 characters had a weighting other than 1 . The strict consensus tree of >10000 equally parsimonious trees resolved four major clades: clade A with a bootstrap support of 73 , clade B with a bootstrap support of 91 , clade C with a bootstrap support of <50, and clade D with a bootstrap support of 60 (Fig. 39).

The clade designated as A grouped Masdevallia erinacea (subgenus Pygmaeia section Pygmaeae), sister to Luerella pelecaniceps, and occupies the most basal position in this study, appearing as sister to the remaining Masdevallia species (Fig. 39).

The clade designated as B is composed of three subclades (Fig. 39). Subclade B1, with a bootstrap support of 92 , is composed of species of subgenus Masdevallia sections Minutae and Triotosiphon. Subclade B2 with a bootstrap support of 66, grouped species of subgenus Masdevallia sections Dentatae and Reichenbachianae, M. herradurae, M. floribunda, and M. scabrilinguis (section Minutae); subgenus Polyantha; M. mentosa and M. chimboensis (subgenus Pygmaeia sections Aphanes, Amaluzae, and Zahlbrucknerae). Subclade B3, with a bootstrap support of 99, consists of species of subgenus Masdevallia section Coriaceae.

Clade C is divided into three subclades (Fig. 39): subclade C1, with a bootstrap support of 84, grouped M. hoeijeri (subgenus Pygmaeia section Aphanes) sister to M. bicornis (subgenus Scabripes); subclade C2, with a bootstrap support of 58 , grouping species of subgenus Volvula, Masdevallia sections Racemosae and Masdevallia, and M. macrura (section Coriaceae); subclade C3, with a bootstrap support of 94, grouped species of subgenus Masdevallia section Durae, and subgenus Pygmaeia section Amaluzae (except M. chimboensis).

Clade D is divided into three subclades (Fig. 39). Subclade D1, with a bootstrap support of 93 , included species of subgenera Cucullatae and Teagueia. Subclade D2, with a bootstrap support of 64, is composed of species of subgenus Meleagris. Subclade D3, with a bootstrap support of 95 , grouping species of subgenus Fissia as well as Dracula xenos; and subclade D4, with a bootstrap support of 81, is composed of species of subgenus Amanda and Nidificia.

Fig 39 Strict consensus tree of the analyzed species of Masdevallia and outgroups based on ITS sequences data, computed from the >10000 most parsimonious trees (tree length $=460$, consistency index $=0.60$, retention index $=0.75$). The numbers above the branches are bootstrap percentages. Percentages $\geq 50 \%$ are not shown. Nodes not supported in the Bayesian analysis (Fig. 40) are indicated with a solid circle.

3.2.2.2 Bayesian analysis: comparison of two phylogenetic methods

The strict consensus tree obtained from the maximum parsimony analysis (Fig. 39) and the 50\% majority rule consensus of the 3000 trees obtained from the Bayesian analysis (Fig. 40) recovered essentially the same topology. The Bayesian analysis data resolved a more structured tree (fewer polytomies). Furthermore, nodes with posterior clade probabilities of less than approximately 70% support were not supported in the maximum parsimony strict consensus tree (represented by solid dots in Fig. 39).

Five major clades were identified from the Bayesian analyses. Masdevallia erinacea (clade A) occupies the most basal position appearing as sister to the remaining Masdevallia species with 100% support. Clade B corresponds to clade C in the strict consensus, however with higher support (64% pp). Clade C ($100 \% \mathrm{pp}$) corresponds to clade B in the strict consensus. Clade D1 in the strict consensus is resolved in the Bayesian analysis as a separate clade designed as clade D with $100 \% \mathrm{pp}$. Clade $\mathrm{E}(98 \% \mathrm{pp})$ is divided into three subclades: subclade $\mathrm{E} 1(76 \% \mathrm{pp})$, which corresponds to subclade D2 in the strict consensus; subclade E2 (100\%), which corresponds to subclade D3 in the strict consensus; and subclade E3 (100\%), which corresponds to subclade D4 in the strict consensus.

3.2.2.3 Bayesian posterior probabilities vs. bootstrap support

In general, posterior probabilities were higher than bootstrap values.The reverse was found for only a single node. Bootstrap support was 100% for 3 nodes and posterior probabilities was 100% for 28 nodes. Bootstrap values ranged from 51 to 100%, while the corresponding posterior probabilities ranged from 52 to 100%.

Fig. 40 Phylogenetic tree for 104 Masdevallia and outgroups species based on ITS sequences data using Bayesian analysis (majority rule consensus of 5 runs @ 10001 trees, excluding 3000 burn-in trees). The numbers above the branches are posterior probabilities.

3.2.3 Molecular synapomorphies of the major clades/subclades

Table 13 lists a summary of the specific indels/mutations supporting single in the maximum parsimony analysis clades in the genus Masdevallia. Twenty three indels were recognized in the ITS region. Twelve were found in the ITS1 and eleven in the ITS2 region.

Clade A: These two species forms the sister group to all other ingroup taxa, as well as of Dracula xenos. All Masdevallia species as well as Dracula xenos are united on the basis of an A or C to T change (char. 13, position 65) and a C or T to G change (char. 66 , position 582), with a reversal in M. infracta and M. erinacea (Table 13, Fig. 42).

Clade B: Members of this clade share a GA insertion (char. 6, position 47 and 48), a T to C change (char. 8, position 56), a C to T change (char. 10, position 61), and a T to A change (char. 12a, position 64) in ITS1 (Table 13, Fig. 42). In ITS2 (Table 13, Fig. 59), they share a C to T change (char. 36, position 225), a G to A change (char. 60, position 501), and a T to C or G change (char. 68, position 601).

Clade C: Members of this clade share a C to A change (char. 19, position 82) in ITS1. A T to C change (char. 58, position 492), C to T change (char 59, position 499), and a C deletion (char 77, position 645) was present in ITS2 (this last deletion was not present in species of the subclade C1). Some synapomorphic features were encountered for species of section Masdevallia: in ITS1 a G to A change (char. 14, position 69); in ITS2 a G to A change (char. 56, position 476) and a T to A change (char. 61, position 508). Members of subclade D1 share some synapomorphic features: a G to A change (char. 7, position 49), a T to C change (char. 15, position 70), and a G to A change (char. 16, position 72) in ITS1. ITS2 showed a A to C change (char. 69, position 605) and a G to T change (char. 78a, position 646) (Table 13, Fig. 41).

Clade D: The following synapomorphic features are shared for the members of this clade: a G or T to A change in ITS1 (char. 7, position 49), a C to A change (char. 23, position 126) and a G to A change (char. 60, position 501) (Table 13, Fig. 41).

The distribution of the most unambiguous character transformations is summarized in Table 13 and on the strict consensus tree together with the infrageneric classification (Figs. 41 and 42).

Table 13 Distribution of 81 possibly informative unambiguous character transformations.

Char. \#	From pos.	$\begin{gathered} \text { To } \\ \text { Pos. } \end{gathered}$	Most likely event, or sequence indel	Taxa (and remarks)
1	29	29	$\mathrm{T} \rightarrow \mathrm{C}$	Subgenera Polyantha, Masdevallia sections Reichenbachianae, Triotosiphon, Minutae and Dentatae; Pygmaeia sections Zahlbrucknerae, M. chimboensis (section Amaluzae), and M. mentosa (section Aphanes); L. pelecaniceps.
2	33	33	$\mathrm{G} \rightarrow \mathrm{T}$	Subgenera Volvula and Masdevallia sections Coriaceae and Racemosae.
3	37	37	$\mathrm{C} \rightarrow \mathrm{T}$	Subgenus Masdevallia sections Durae and Cucullatae.
4	38	38	$\mathrm{T} \rightarrow \mathrm{C}$	Subgenus Masdevallia section Reichenbachianae, Minutae (except M. gutierrezii and M. wendlandiana), Dentatae; Polyantha and Pygmaeia section Zahlbrucknerae, M. chimboensis (section Amaluzae), and M. mentosa (section Aphanes).
5	43	43	$\mathrm{C} \rightarrow \mathrm{T}$	Subgenera Amanda and Nidificia, M. bicornis, M. hoeijeri, M. cupularis, M. infracta, M. melanoxantha, M. echo, M. garciae, M. deformis. Genera Trisetella and Luerella.
6	47	48	GA duplication	Subgenus Polyantha; Masdevallia sections Coriaceae, Dentatae, Reichenbachianae, Triotosiphon and Minutae; Pygmaeia sections Aphanes, Amaluzae, Pygmaeae and Zahlbrucknerae.
7	49	49	G or $\mathrm{T} \rightarrow \mathrm{A}$	Subgenus Amanda, Fissia, Meleagris, Nidificia, Cucullatae, Masdevallia sections Durae, M. antonii, M. cyclotega, M. uniflora, M. davisii, M. veitchiana, and M. chaparensis.
8	56	56	$\mathrm{T} \rightarrow \mathrm{C}$	Subgenus Masdevallia sections Coriaceae, Dentatae, Reichenbachianae, Minutae, and Triotosiphon; Polyantha; Pygmaeia section Zahlbrucknerae, M. chimboensis (section Amaluzae), and M. mentosa (section Aphanes), M. deformis.
9	60	60	$\mathrm{A} \rightarrow \mathrm{G}$	Subgenus Pygmaeia section Amaluzae and M. aphanes; M. pinocchio and M. guttulata.
10	61	61	$\mathrm{C} \rightarrow \mathrm{T}$	Subgenera Masdevallia sections Coriaceae, Dentatae, Reichenbachianae, Minutae, and Triotosiphon; Polyantha; Pygmaeia sections Zahlbrucknerae, M. chimboensis (section Amaluzae), and M. mentosa (section Aphanes).
11	62	63	T duplication	Subgenus Masdevallia section Racemosae; subgenus Volvula; Masdevallia infracta, M. echo.
$\begin{aligned} & 12 \mathrm{a} \\ & 12 \mathrm{~b} \end{aligned}$	64 64	64 64	$\begin{aligned} & \mathrm{T} \rightarrow \mathrm{~A} \\ & \mathrm{~T} \rightarrow \mathrm{G} \end{aligned}$	Subgenus Masdevallia sections Dentatae, Reichenbachianae, Minutae, and Triotosiphon; Polyantha; Pygmaeia section Pygmaeae, Zahlbrucknerae, Amaluzae and Aphanes. Subgenus Volvula; subgenus Masdevallia section Racemosae.
13	65	65	Aor $\mathrm{C} \rightarrow \mathrm{T}$	Genus Masdevallia, Dracula xenos, Luerella pelecaniceps.
14	69	69	$\mathrm{G} \rightarrow \mathrm{A}$	Masdevallia pachyura, section Masdevallia, section Racemosae; subgenus Volvula.
15	70	70	$\mathrm{T} \rightarrow \mathrm{C}$	Subgenera Scabripes, Masdevallia section Durae and Pygmaeia section Amaluzae and M. aphanes.
16	72	72	$\mathrm{G} \rightarrow \mathrm{A}$	Subgenera Masdevallia section Durae and Pygmaeia section Amaluzae and M. aphanes.
$\begin{aligned} & 17 \mathrm{a} \\ & 17 \mathrm{~b} \end{aligned}$	74	74	$\begin{aligned} & \mathrm{G} \rightarrow \mathrm{C} \\ & \mathrm{G} \rightarrow \mathrm{~T} \end{aligned}$	Subgenus Masdevallia sections Dentatae, and Minutae (except M. gutierrezii and M. wendlandiana; subgenus Polyantha; subgenus Pygmaeia sections Zahlbrucknerae. Subgenus Masdevallia section Triotosiphon.
18	79	79	$\mathrm{A} \rightarrow \mathrm{G}$	Subgenus Masdevallia section Coriaceae.
19	82	82	$\mathrm{C} \rightarrow \mathrm{A}$	Subgenus Masdevallia sections Durae, Masdevallia, and Racemosae; M. macrura (section Coriaceae); subgenus Pygmaeia sections Amaluzae and Aphanes; subgenus Scabripes.
20	94	94	$\mathrm{T} \rightarrow \mathrm{C}$	Trisetella, Luerella pelecaniceps, subgenera Cucullatia and Masdevallia section Coriaceae, M. erinacea, M. mentosa, M. striatella, M. guttulata, M. scabrilinguis.
21	106	106	$\mathrm{G} \rightarrow \mathrm{A}$	Dracula, Masdevallia subgenera Amanda and Nidificia
22	113	113	$\mathrm{C} \rightarrow \mathrm{T}$	Subgenus Meleagris (except M. heteroptera), M. macrura, M. mystica, M. paivaeana, and Trisetella gemmata.
23	126	126	$\mathrm{C} \rightarrow \mathrm{A}$	Subgenera Amanda, Nidificia, Fissia, Meleagris and Dracula xenos.

Table 13 Cont. Distribution of 81 possibly informative unambiguous character transformations.

Char. \#	From pos.	$\begin{gathered} \text { To } \\ \text { pos. } \end{gathered}$	Most likely event, or sequence indel	Taxa (and remarks)
24	127	127	$\mathrm{A} \rightarrow \mathrm{G}$	Subgenus Masdevallia sections Coriaceae, Dentatae, Minutae (except M. gutierrezii and M. wendlandiana), and Reichenbachianae; subgenus Polyantha; subgenus Pygmaeia section Zahlbrucknerae, M. chimboensis (section Amaluzae), and M. mentosa (section Aphanes).
25	136	136	$\mathrm{T} \rightarrow \mathrm{A}$	Trisetella, Masdevallia subgenus Pygmaeia section Zahlbrucknerae.
26	158	158	$\mathrm{C} \rightarrow \mathrm{T}$	Subgenus Masdevallia section Durae and M. erinacea
27	164	164	$\mathrm{G} \rightarrow \mathrm{T}$	Subgenus Masdevallia section Masdevallia (except M. rubiginosa), subgenus Scabripes, and M. hoeijeri.
28	168	168	$\mathrm{A} \rightarrow \mathrm{G}$	Subgenus Pygmaeia section Amaluzae (except M. chimboensis), M. aphanes, M. hoeijeri, M. infracta, and M. echo.
$\begin{aligned} & 29 a \\ & 29 b \end{aligned}$	169	169	$\begin{aligned} & \mathrm{C} \rightarrow \mathrm{~A} \\ & \mathrm{C} \rightarrow \mathrm{~T} \end{aligned}$	Subgenus Meleagris (except M. meleagris), Luerella pelecaniceps, and Porroglossum amethystinum. Subgenus Masdevallia section Reichenbachianae, M. cupularis and M. floribunda.
30	177	177	$\mathrm{A} \rightarrow \mathrm{G}$	L. pelecaniceps, Masdevallia subgenus Pygmaeia section Zahlbrucknerae
31	188	188	$\mathrm{G} \rightarrow \mathrm{T}$	Subgenus Meleagris (except M. heteroptera) and M. ophioglossa.
32	191	191	$\mathrm{T} \rightarrow \mathrm{C}$	Subgenera Cucullatia and Teagueia.
$\begin{aligned} & 33 a \\ & 33 b \end{aligned}$	192	192	$\begin{gathered} \mathrm{A} \rightarrow \mathrm{C} \text { or } \mathrm{T} \\ \mathrm{~A} \rightarrow \mathrm{G} \end{gathered}$	Genera Luerella, Trisetella, Dracula, and Masdevallia, except those below. Subgenus Meleagris (except M. heteroptera).
34	217	217	$\mathrm{T} \rightarrow \mathrm{A}$ or G	Genus Masdevallia
35	220	220	$\mathrm{T} \rightarrow \mathrm{G}$	Genera Luerella, Trisetella, Dracula, and Masdevallia.
36	225	225	$\mathrm{C} \rightarrow \mathrm{T}$	Subgenus Masdevallia sections Coriaceae, Dentatae, Minutae, and Triotosiphon; subgenus Polyantha, subgenus Pygmaeia section Zahlbrucknerae, M. chimboensis (section Amaluzae), and M. mentosa (section Aphanes). All this are members of clade C, species of section Reichenbachianae present a reversion at this position.
37	366	366	$\mathrm{G} \rightarrow \mathrm{T}$	Subgenus Pygmaeia section Zahlbrucknerae and Amaluzae (except M. chimboensis), section Triotosiphon, M. aphanes, M. saltatrix, M. X mystica, M. hirtzii, M. patriciana, M. lamprotyria, M. deformis, M. coccinea, M. estradae, M. decumana, M campyloglossa, M. picturata, and Dracula xenos.
38	372	372	$\mathrm{C} \rightarrow \mathrm{T}$	Subgenus Pygmaeia section Amaluzae (except M. chimboensis), M. aphanes, and M. scabrilinguis.
39	403	403	$\mathrm{A} \rightarrow \mathrm{G}$	Masdevallia section Coriaceae; M. caudivolvula, M. erinacea and M. racemosa.
40	424	425	CA or CC duplication	Subgenus Meleagris, except M. heteroptera
41	429	429	$\mathrm{T} \rightarrow \mathrm{A}$	Subgenus Fissia, D. xenos.
42	432	432	$\mathrm{C} \rightarrow \mathrm{T}$	Subgenus Cucullatia
43	434	434	$\mathrm{C} \rightarrow \mathrm{A}$	Subgenus Masdevallia section Triotosiphon.
44	435	435	$\mathrm{A} \rightarrow \mathrm{G}$	Subgenus Fissia and D. xenos
$\begin{aligned} & 45 \mathrm{a} \\ & 45 \mathrm{~b} \end{aligned}$	438	438	$\begin{aligned} & \mathrm{C} \rightarrow \mathrm{~T} \\ & \mathrm{C} \rightarrow \mathrm{~A} \end{aligned}$	Subgenus Amanda and M. molossus. Subgenus Pygmaeia section Amaluzae (except M. chimboensis).
46	445	445	$\mathrm{T} \rightarrow \mathrm{C}$	Subgenus Fissia and D. xenos
47	447	447	$\mathrm{T} \rightarrow \mathrm{C}$	Subgenus Cucullatia, M. schlimii, M. herradurae, M. collina and M. campyloglossa
48	451	451	$\mathrm{C} \rightarrow \mathrm{G}$	Subgenus Pygmaeia section Amaluzae (except M. chimboensis) and M. aphanes
49	452	452	$\mathrm{A} \rightarrow \mathrm{G}$	Subgenus Cucullatia and M. pleurothalloides.
50	456	456	$\mathrm{G} \rightarrow \mathrm{A}$	Subgenus Cucullatia
51	457	457	$\mathrm{G} \rightarrow \mathrm{A}$	Subgenus Fissia and D. xenos
52	459	459	$\mathrm{A} \rightarrow \mathrm{G}$	Subgenus Masdevallia section Reichenbachianae and M. floribunda
53	460	460	$\mathrm{G} \rightarrow \mathrm{T}$	Subgenus Cucullatia and Meleagris.
54	470	470	$\mathrm{T} \rightarrow \mathrm{C}$	Subgenus Pygmaeia section Amaluzae, M. peristeria, and M. pyxis.

Table 13 Cont. Distribution of 81 possibly informative unambiguous character transformations.

Char. \#	From pos.	To pos.	Most likely event, or sequence indel	Taxa (and remarks)
55	472	472	$\mathrm{T} \rightarrow \mathrm{C}$ or G	Genera Luerella and Trisetella; Dracula houtteana, D. sodiroi and D. chimera; Masdevallia subgenus Masdevallia section Coriaceae; subgenus Pygmaeia section Zahlbrucknerae; M. erinacea, M. oreas, M. pyxis, M. schlimii, M. melanoxantha, M. uniflora, M. estradae, and M. cyclotega
56	476	476	$\mathrm{G} \rightarrow \mathrm{A}$	Subgenus Masdevallia section Masdevallia and D. xenos
57	483	483	$\mathrm{G} \rightarrow \mathrm{A}$ or C	Subgenus Meleagris
$\begin{gathered} 58 \\ 58 \mathrm{~b} \end{gathered}$	492	492	$\begin{aligned} & \mathrm{T} \rightarrow \mathrm{C} \\ & \mathrm{~T} \rightarrow \mathrm{G} \end{aligned}$	Subgenera Volvula and Masdevallia sections Masdevallia (except M. lamprotyria and M. hieroglyphica), and Racemosae; M. collina, M. hoeijeri and M. erinacea. Genera Luerella, Trisetella and Dracula (except D. xenos)
59	499	499	$\mathrm{C} \rightarrow \mathrm{T}$	Subgenera Volvula and Masdevallia sections Masdevallia and Racemosae, Pygmaeia section Amaluzae, M. aphanes, M. macrura.
60	501	501	$\mathrm{G} \rightarrow \mathrm{A}$	Subgenera Amanda, Nidificia, Fissia, Meleagris, Scabripes, Cucullatia, Teagueia, Masdevallia sections Coriaceae, Dentatae, Minutae, Reichenbachianae and Triotosiphon; Polyantha; Pygmaeia section Zahlbrucknerae, M. chimboensis (section Amaluzae), M. mentosa; M. hoeijeri (section Aphanes), and Dracula xenos.
61	508	508	$\begin{gathered} \mathrm{T} \rightarrow \mathrm{~A} \\ \mathrm{~T} \rightarrow \mathrm{C} \text { or } \mathrm{G} \end{gathered}$	Subgenus Masdevallia section Masdevallia, D. astuta. Subgenus Pygmaeia section Zahlbrucknerae, M. campyloglossa, M. coriacea, M. heteroptera and Luerella pelecaniceps
62	517	517	$\mathrm{G} \rightarrow \mathrm{C}$	Subgenus Masdevallia section Reichenbachianae, M. cupularis, and M. lata.
63	531	531	$\mathrm{T} \rightarrow \mathrm{C}$	Subgenus Masdevallia section Reichenbachianae, M. erinacea and Luerella pelecaniceps
64	532	532	$\mathrm{G} \rightarrow \mathrm{T}$	Subgenera Cucullatia, Teagueia, and Masdevallia veitchiana.
65	575	575	$\mathrm{C} \rightarrow \mathrm{T}$	Genera Dracula, Trisetella, and Masdevallia
66	582	582	C or $\mathrm{T} \rightarrow \mathrm{G}$	Genus Masdevallia (except M. erinacea) and D. xenos
67	592	592	$\mathrm{A} \rightarrow \mathrm{G}$	Subgenus Pygmaeia section Zahlbruckneraeand M. erinacea.
68	601	601	$\mathrm{T} \rightarrow \mathrm{C}$ or G	Subgenus Masdevallia sections Coriaceae, Dentatae, Reichenbachianae, Minutae, and Triotosiphon; Polyantha; Pygmaeia section Zahlbrucknerae, M. chimboensis and M. mentosa.
69	605	605	$\mathrm{A} \rightarrow \mathrm{C}$	Subgenus Masdevallia section Durae; Pygmaeia section Amaluzae (except M. chimboensis) and M. aphanes.
70	606	606	$\mathrm{T} \rightarrow \mathrm{C}$	Subgenera Cucullatia and Teagueia, M. mentosa, and M. scabrilinguis
71	607	607	$\mathrm{A} \rightarrow \mathrm{G}$	Subgenus Masdevallia section Triotosiphon, M. garciae, M. wendlandiana and M. gutierrezii
72	610	610	$\mathrm{A} \rightarrow \mathrm{G}$	Subgenus Pygmaeia section Zahlbrucknerae, M. mentosa, M. melanoxantha, M. guttulata.
73	614	614	$\mathrm{A} \rightarrow \mathrm{G}$	Subgenera Polyantha, Masdevallia sections Dentatae and Reichenbachianae; Pygmaeia section Zahlbrucknerae; M. herradurae, M. chimboensis, M. floribunda, M. mentosa, M. scabrilinguis, and M. pescadoensis.
74	629	629	$\mathrm{C} \rightarrow \mathrm{G}$	Subgenus Masdevallia section Reichenbachianae, M. cupularis, M. erinacea, and M. pescadoensis
75	632	632	$\mathrm{A} \rightarrow \mathrm{G}$	Subgenera Amanda and Nidificia, M. naranjapatae, M. bicornis, M. zahlbruckneri, M. hoeijeri, M. lata, and M. striatella.
76	638	638	$\mathrm{C} \rightarrow \mathrm{T}$	Subgenus Masdevallia section Masdevallia subsections Caudatae (except M. antonii and M. cyclotega), Coccinea, Masdevallia (except M. uniflora), and Saltatrices. Genus Dracula except D. cochliops and D. xenos.
77	645	645	C deletion or $\mathrm{C} \rightarrow \mathrm{A}$	Subgenera Scabripes, Volvula, Masdevallia sections Masdevallia and Racemosae, M. macrura and M. hoeijeri
$\begin{aligned} & 78 \mathrm{a} \\ & 78 \mathrm{~b} \end{aligned}$	646	646	$\begin{aligned} & \mathrm{G} \rightarrow \mathrm{~T} \\ & \mathrm{G} \rightarrow \mathrm{~A} \end{aligned}$	Subgenus Masdevallia section Durae, and Pygmaeia section Amaluzae Subgenera Amanda and Nidificia
79	648	648	$\mathrm{A} \rightarrow \mathrm{T}$	Subgenus Polyantha (except M. striatella, M. cupularis, and M. lata), M. herradurae, and M. mentosa.

Table 13 Cont. Distribution of 81 possibly informative unambiguous character transformations.

Char. \#	From pos.	$\begin{gathered} \text { To } \\ \text { pos. } \end{gathered}$	Most likely event, or sequence indel	Taxa (and remarks)
80	649	649	$\mathrm{T} \rightarrow \mathrm{C}$	Subgenus Masdevallia section Coriaceae, M. herradurae, M. cardiantha, M. naranjapatae, and Luerella pelecaniceps
81	651	651	$\mathrm{G} \rightarrow \mathrm{A}$	Subgenera Meleagris and Masdevallia section Triotosiphon, M. gutierrezi, and M. wendlandiana

Fig. 41 Strict consensus tree of the analyzed species of Masdevallia and outgroups based on ITS sequences data and maximum parsimony analysis together with the infrageneric classification. The numbers above the branches are possibly informative unambiguous character transformations. A a solid circle indicate a possibly informative unambiguous character transformations with a single origin and one or two rows indicate a possibly informative unambiguous character transformations requiring parallel or reversal events

Fig. 42 Cont.

3.2.2.4 Morphological synapomorphies of the major clades/subclades

All Masdevallia species as well as Dracula xenos share an oblong (to obovate lip) char. \# [71(1,2,3,4,6)] (never spathulate), with a reversal in M. aphanes (Fig. 43), and callous petals, with a reversal in M. chaetostoma [65(1)] (Fig. 44).

Fig. 43 Reconstruction of character state evolution of the shape of the lip optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 44 Reconstruction of character state evolution of the shape of the prescence of a callus at the margin of the petals optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Clade A: Masdevallia erinacea (subgenus Pygmaeia section Pygmaeae) and Luerella pelecaniceps

The first clade encountered grouped M. erinacea and L. pelecaniceps. Although these two species are united on the basis of many characters, none of them could be considered unambiguous.

Clade B: subgenus Pygmaeia section Zahlbrucknerae, subgenus Masdevallia sections Triotosiphon, Reichenbachianae, Minutae, Coriaceae and Dentatae, and subgenus Polyantha sections Alaticaules and Polyanthae.

Species grouped in this clade are characterized by a verrucose (to papillose) epichile [65(1)], despite the reversal in 2 clades, one comprising M. pinnochio and M. guttulata, the other comprising M. herradurae, M. schlimii, and M. collina (Fig. 45).

Fig. 45 Reconstruction of character state evolution of the indument of the lip optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

The first subclade within clade B, designed as B1, grouped species of subgenus Masdevallia section Triotosiphon as well as M. wendlandiana and M. gutierrezii (subgenus Masdevallia section Minutae). This group is characterized by a) dorsal and lateral sepals connate for similar lengths [28(1)] (Fig. 46),
b) an oblong dorsal sepal [35(1)] (Fig. 47), c) oblong lateral sepals [45(1)], with a reversal in M. lansbergii (Fig. 48), and c) possibly by a not sulcate disc of the lip [81(1)] (Fig. 49).

Fig. 46 Reconstruction of character state evolution of the indument of the grade of connation between dorsal and lateral sepals optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 47 Reconstruction of character state evolution of the indument of the shape of the dorsal sepal optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 48 Reconstruction of character state evolution of the indument of the shape of the lateral sepals optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 49 Reconstruction of character state evolution of the disc of the lip (sulcate or not) optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Subclade B2 grouped species of subgenera Polyantha, Masdevallia sections Dentatae and Reichenbachianae; M. herradurae, M. floribunda, M. scabrilinguis, and M. pescadoensis (section Minutae); Pygmaeia section Zahlbrucknerae and M. mentosa (section Aphanes). This grouping is supported by the following characters: a) the peduncle shorter than the leaves or as long as the leaves [18(2)] (synapomorphy with subclade B3) with a reversal in M. lata, and M. reichenbachiana and a large subclade within which there are 5 parallel origins of short peduncles (Fig. 50); b) obovate to oblong dorsal sepal [35(4)], with 2 reversal, one in a subclade comprising M. chimboensis, M. melanoxantha, and M. mentosa and one in M. pinocchio (see Fig. 47); c) approximate apices of the lateral sepals [50(2)] with a reversal in M. vierana, M. fulvescens, M. cupularis, M. garciae, M. pyxis,
M. mezae and M. herradurae (Fig. 51); d) denticulate or apiculate apices of the petals (bilobed to entire in M. naranjapatae, M. infracta, M. pyxis, M. pinocchio, and M. collina) [61(4-5)], with a reversal in M. vieriana, a subclade comprising M. fulvescens and M. reichenbachiana, and once or twice in a subclade comprising M. chimboensis and M. mentosa (Fig. 52); e) and the lip divided into an epichile and a hypochile [79(1)], with 5 reversal, one in a subclade comprising M. vieriana, M. zahlbrucknerii, and M.naranjapatae, one in a subclade comprising M. fulvescens, and M. reichenbachiana, and in M. scabrilinguis, M. chimboensis, M. mentosa, and M. collina (Fig. 53).

Fig. 50 Reconstruction of character state evolution of the margin of the the peduncles length optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 51 Reconstruction of character state evolution of the apices of lateral sepals optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 52 Reconstruction of character state evolution of the margin of the apices of the dorsal sepal optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 53 Reconstruction of character state evolution of marginal folds dividing the lip optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Subclade B3 comprised species of subgenera Masdevallia section Coriaceae, which are characterized by a peduncle that is shorter than the leaves or as long as the leaves [18(2)] (synapomorphy with subclade B3) (see Fig. 50), and by pedicels that are thicker and longer than their peduncle [23(1)], with a reversal in M. campyloglossa (Fig. 54).

Fig. 54 Reconstruction of character state evolution of the margin of the length of pedicels optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Clade C: subgenera Pygmaeia sections Amaluzae and Aphanes, Masdevallia sections Durae, Racemosae and Masdevallia, Volvula, Scabripes, M. macrura (subgenus Masdevallia section Coriaceae), and M. hoeijeri (subgenus Pygmaeia section Aphanes).

Lateral sepals connate without the formation of a broad mentum or a secondary mentum with the column-foot [34(1)] are present in most species of clade C, despite a reversal in M. patriciana, and (at least) two cases of parallelisms or reversals, one in M. hoeijeri, one, and the other in a subclade comprising M. carmenensis and M. aphanes (Fig. 55).

Fig. 55 Reconstruction of character state evolution of the lateral sepals connate to form a mentum optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

The first subclade encountered designated as C 1 grouped M. hoeijeri and M. bicornis. Although these two species are united on the basis of many characters, none of them could be considered unambiguous.

The second subclade within clade C , designated as C 2 , is for the larger part characterized by the callus of the petals ending in a retrorse (or descending) process [69(1,2)] except a reversal in M. notosibrica. However, a few of the dorsal species of clade C 2, M. racemosa, M. caudivolvula, and M. macrura retained the plesiomorphic state (Fig. 56).Character [74(1)], base of the lip truncate, shows a similar distribution (Fig. 57). It characterizes most of subclade C 2 , with reversals in M. notosibrica, M. X mystica, M. coccinea, M. deformis and M. veitchiana. Masdevallia macrura again retained the plesiomorphic state, while it is uncertain whether there is a reversal in M. racemosa or a parallelism in M. caudivolvula. Masdevallia macrura, M. caudivolvula and M. racemosa also retained the plesiomorphic state (not callous) in character 77 apex of the lip not callous. In most of the other species of subclade C2, the lip is callous at the apex [77(1)] except in M. notosibrica, M. ampullacea, M. X mystica, M. hirtzii, and M. deformis (Fig. 58). An even smaller subclade of subclade C2 is characterized by a prominent margin of the exine [94(2)]. Besides the afore mentioned species (M. racemosa, M. caudivolvula, and M. macrura), also M. rubiginosa, retained the plesiomorphic state (Fig. 59).

Fig. 56 Reconstruction of character state evolution of the of the ending of the callus of the petals optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 57 Reconstruction of character state evolution of the base of the lip optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 58 Reconstruction of character state evolution of the prescence of a callus at the base of the lip optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 59 Reconstruction of character state evolution of the margin of the exine optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

The species grouped in the subclade designated as C3 all share approximated tails of the lateral sepals [52(2)]. This, however, is plesiomorphic for clade C (see Fig. 51). A synapomorphy for this clade seems to be a verrucose lip [65(1)] (Fig. 45).

Clade D: subgenera Teagueia, Cucullatia, Nidificia, Amanda, Fissia, Meleagris, and Dracula xenos.

Synapomorphies of the species grouped in this clade are the arcuate sepaline tubes [31(1)] (Fig. 60), and the featureless disc of the lip [80(3)] (with three lamellae in M. teaguei), with two reversals, one in M. molossus, and the other in M. chaetostoma (Fig. 61).

Fig. 60 Reconstruction of character state evolution of the shape of sepaline tubes optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 61 Reconstruction of character state evolution of the surface of the disc of the lip optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Two morphological synapomorphies characterize the species of subclade D1, the tail of the dorsal sepal longer than the tail of lateral sepals [44(3)] (Fig. 62), and a verrucose (to papillose) epichile [65(1)] (see Fig. 45).

Fig. 62 Reconstruction of character state evolution of the tail length of the dorsal sepal optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

The next subclade, D2, is characterized by the following synapomorphies: a) papillose ovaries [25(2)] (Fig. 63), b) ovaries with undulating crests [24(2)] (synapomorphy with subclades D3 and D4) (Fig. 64), c) the dorsal sepal free from the lateral sepals (probable synapomorphy with subclade D3) [26(1)] (Fig. 65), d) the lateral sepals connate below the middle [33(3)] (synapomorphy with subclades D3 and D4) (Fig. 66), e) a ciliate margin of dorsal sepal [38(4)] and f) of the lateral sepals [48(4)]
(Fig. 67 and 68), g) tail of the dorsal sepal half as long to as long as its lamina [43(2)] (Fig. 69), h) pubescent lateral sepals [46(2)] (Fig. 70), i) tail of the lateral sepal half as long to as long as its lamina [54(2)] (Fig. 71), j) the petals and lip out of sight deep within the sepaline tube [55(1)] (Fig. 72), k) the longitudinal callus of the petals ending in an acute process [68(2)] (Fig. 73), and l) the prominent margin of the exine [94(2)] (see Fig. 59).

Fig. 63 Reconstruction of character state evolution of the surface of the ovary optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 64 Reconstruction of character state evolution of the surface of the ovary optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 65 Reconstruction of character state evolution of the dorsal and lateral sepals connation optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 66 Reconstruction of character state evolution of the grade of connation between the lateral sepals optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 67 Reconstruction of character state evolution of the margin of the dorsal sepal optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 68 Reconstruction of character state evolution of the margin of the lateral sepals optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 69 Reconstruction of character state evolution of the tail of the dorsal sepal optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 70 Reconstruction of character state evolution of the indument of the lateral sepals optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 71 Reconstruction of character state evolution of the tail of the lateral sepals optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 72 Reconstruction of character state evolution of the exposure of petals and lip optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 73 Reconstruction of character state evolution of the callus of the petals optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

The next subclade D3 grouped species of subgenus Fissia and Dracula xenos and is characterized by a) ovaries with undulating crests [24(2)] (synapomorphy with subclades D2 and D4) (see Fig. 64), b) the lateral sepals connate below the middle [33(3)] (synapomorphy with subclades D2 and D4) (see Fig. 66), c) the dorsal sepal free from laterals [26(1)] (possible synapomorphy with subclade D2) (see Fig. 65), and d) a divided lip (possible synapomorphy with subclade D4) [79(1)] (see Fig. 53).

Subclade D4 grouped species of subgenera Amanda and Nidificia. Characteristic for the species grouped in this clade are a) the flowers mostly grouped into racemose inflorescences with the flowers opening in succession over a long periode of time [15(1)] (except in M. nidifica, which is single flowered) (Fig. 74), b) the inflated floral bract [21(2)] with a reversal in M. molossus and M. ophioglossa (Fig. 75), c) the ovary with undulating crests [24(2)] (synapomorphy with subclades D2 and D3) (see Fig. 64), d) the apiculate or denticulate apices of the petals [61(3-5)], with M. nidifica retaining the plesiomorphic state (Fig. 76), and e) a divided lip [79(1)] (possible synapomorphy with subclade D3, or possibly for the entire clade D) (see Fig. 53).

Fig. 74 Reconstruction of character state evolution of the anthesis optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 75 Reconstruction of character state evolution of the type of floral bract optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 76 Reconstruction of character state evolution of the margin of the petals optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

3.3 Combined analysis

3.3.1 Incongruence between the morphological and molecular data

3.3.1.1 Incongruence length difference test

An ILD test on the taxonomically equivalent ITS and morphological data sets detected a significant difference ($\mathrm{P}<0.01$) between these partitions. Comparison of the poorly resolved morphological strict consensus with the ITS tree showed strongly supported topological incongruence. Although each data set showed strongly supported conflicting groups, ITS and morphological data sets were analyzed simultaneously.

3.3.2 Characteristics of the combined data matrix

The combined morphological and ITS matrix has a total length of 759 sites (663 and 96 sites for ITS sequences and morphological data, respectively), of which 327 (232 and 95, respectively) are variable and 224 (131 and 93, respectively) phylogenetically informative (Table 15).

Table 14 Characteristics and variation of the combined data in Masdevallia.

	Morphological characters	Molecular Characters	Combined
All	96	663	759
Constant	1	431	432
Variables Parsimony uninformative $=$ autapomorphies	2	101	103
Parsimony informative	93	131	224

3.3.3 Phylogenetic relationships

3.3.3.1 Topology of the most parsimonious trees

Simultaneous analysis of ITS and morphological data resulted in 254 trees of 2134 steps, $\mathrm{CI}=0.36$, and $\mathrm{RI}=0.54$. The strict consensus of all 254 trees is shown in Fig. 95. The topology of the combined strict consensus tree was partly congruent with the ITS topology and relationships among species of Masdevallia and outgroups were very similar in each tree (see Fig. 39, and Fig. 77).

Six major clades were identified from the parsimony analyses of the combined data (Fig. 77): clade A, with a bootstrap support of 100%, including species of subgenus Meleagris; clade B, with a bootstrap

Fig. 77 Strict consensus tree of the analyzed species of Masdevallia and outgroups based on non molecular and ITS sequences data, computed from the 254 most parsimonious trees (tree length $=460$, consistency index $=0.36$, retention index $=0.54$). The numbers above the branches are bootstrap percentages. Percentages $<50 \%$ are not shown.
support of 93%, composed of species of subgenus Fissia; clade C, with a bootstrap support of 76%, grouping species of subgenera Scabripes, Masdevallia and Volvula; clade D, without bootstrap support (but designed as a separate clade for comparison with the analysis of molecular data), including species of subgenera Pygmaeia, Masdevallia, and Polyantha; clade E, with a bootstrap support of 60%, grouping species of subgenus Teagueia and Cucullatia; and clade F, with a bootstrap support of 100%, grouping species of subgenera Amanda and Nidificia.

Clade D is composed of four subclades: subclade D1 ($80 \% \mathrm{BS}$) grouping M. princeps (subgenus Masdevallia section Durae) and species of subgenus Pygmaeia sections Amaluzae and Aphanes; subclade D2 (65% BS) composed of M. hoeijeri (subgenus Pygmaeia section Aphanes) and M. erinacea (subgenus Pygmaeia section Pygmaeae); subclade D3 composed of species of subgenus Masdevallia sections Dentatae, Minutae, Reichenbachianae, and Triotosiphon; subgenus Polyantha sections Alaticaules and Polyanthae, and subgenus Pygmaeia section Zahlbrucknerae, M. chimboensis (section Amaluzae), and M. mentosa (section Aphanes).

3.4 Biogeography

3.4.1 General biogeographical patterns

Geographic distribution of the analyzed species indicates that there are six main geographic areas of diversification: the Andes, Central America, the Coastal Cordillera of Venezuela, the Guayana region, and the coastal Atlantic forest of southeastern Brazil (Fig. 78).

Of the 92 analyzed species of Masdevallia, only M. wendlandiana and M. picturata are found throughout the whole geographical range; four species are distributed in Central and South America from southern Mexico to Bolivia; nine species (10\%) are restricted to Central America; 72 species (78\%) are restricted to the northern Andes from Colombia to Ecuador (excluding Venezuela); three species are endemic to Venezuela; two species are distributed in Colombia and Venezuela; M. lansbergii is distributed in Venezuela and French Guiana; and M. infracta is distributed in Brazil and Bolivia (Figs. 81 to 84). The geographical distribution of the outgroup taxa ranges from Costa Rica to Bolivia (Fig. 80). About 35% of all species analyzed occur above 2000 m above sea level, more than 50% occur between 1000 and 2000 m above sea level and only 15% are found below 1000 m above sea level (Fig. 79).

3.4.2 Biogeographical patterns of the major clades

Masdevallia erinacea (clade A) is one of the most widespread species of the genus, ranging from Panama to Ecuador. The second species within clade A, Luerella pelecaniceps, is endemic to Panama (Fig. 81).

Members of clade B are found throughout the whole geographical as well as altitudinal range, extending from southern Mexico and Belize to Bolivia, Venezuela to French Guiana and Brazil (Fig. 82); and from 2 to 3900 m above sea level (Fig. 79).

The species in clade C are restricted to the southern part of the geographical range of the group, Colombia to Bolivia (Fig. 83). The altitudinal range varies from to 600 to 3250 m above sea level (Fig. 79), but most species (at least in subclade C2) are from higher elevations (above 2000 m above sea level).

Members of clade D have a wide range of geographical distribution, with the main center of radiation in Ecuador and Colombia. Masdevallia nidifica and M. picturata are the most widespread species of the clade (Fig. 84). The altitudinal range varies from 450 to 3100 m above sea level (Fig.79).

Fig. 78 Geographical areas of diversification of the genus Masdevallia based on phylogeny of ITS sequences data and maximum parsimony analysis. $\mathrm{A}=$ Andes, $\mathrm{CA}=$ Central America, $\mathrm{B}=$ coastal Atlantic forest of southeastern Brazil, $\mathrm{CCV}=$ Coastal Cordillera of Venezuela, G= Guayana.

Fig. 79 Reconstruction of the altitudinal range optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Fig. 80 Geographical distribution of outgroup taxa based on phylogeny of ITS sequences data.

Fig. 81 Geographical distribution of members of clade A based on phylogeny of ITS sequences data.

Fig. 82 Geographical distribution of members of clade B based on phylogeny of ITS sequences data.

Fig. 83 Geographical distribution of members of clade C based on phylogeny of ITS sequences data.

Fig. 84 Geographical distribution of members of clade D based on phylogeny of ITS sequences data.

4

DISCUSSION

4.1 Morphological analysis

The traditional classification systems of the genus Masdevallia are, as most of the classification systems of Orchidaceae and genera of Orchidaceae, based on relatively few characters, which have not been subjected to an explicit character analysis. Therefore, it is often not clear which characters really support the recognition of a particular group. The principal problem of all these classification systems, as suggested by Freudenstein and Rasmussen (1999), is that intuitive classifications usually focus on different key characters in different parts of the family or genera, meaning that it is often difficult to asses how characters are distributed over the family and genera as a whole.

The subtribe Pleurothallidinae is one of the best known orchidaceous groups compared to many other orchids. The morphological base of the subtribes was described by Luer in his comprehensive "Icones Pleurothallidinarum" (LUER 1986a). Cladistical analyses of the subtribes based on morphological and anatomical characters were performed first by Pridgeon (1982), and complemented by Neyland et al. (1995). Finally, PRIDGEON et al. (2001) published a phylogenetic analysis based on a three-gene data set, with more than 500 transfers and nomina nova (PRIDGEON \& CHASE 2001). Unfortunately, morphological issues were discussed almost exclusively if they were in concordance with molecular data. Direct morphological inconsistencies within DNA based clades were usually ignored.

Even if the anatomy and morphology of subtribe Pleurothallidinae are well studied, up to day there has not been any explicit phylogenetic analysis, neither morphological nor molecular, of allied genera in the subtribe. Although revisions of several sections of Masdevallia have been published during the last century, the delimitation of infrageneric taxa is still problematic, due to the lack of clear morphological synapomorphies.

In the phylogenetic analysis of the genus Masdevallia based on morphological data, most groups are not supported by many characters, as in many cladistic analyses of large groups based on morphological data (Freudenstein and Rasmussen, 1999; Neyland et al., 1995; PRIDGEON, 1982). In the cladistic analysis of the subtribe Pleurothallidinae based on morphological and anatomical data by NEYLAND et al. (1995), one of the most parsimonious trees obtained revealed nodes with one to six characters supporting them, with many of these being homoplastic changes. The examination of one of the most parsimonious trees obtained from the analysis of morphological data of the genus

Masdevallia reveals nodes with one to four characters supporting them, with many homoplastic changes. Hence there are few enough character changes per branch that they can be shown. Support indices such as bootstrapping (FELSENSTEIN, 1985) are less important for a morphological analysis than for most molecular analyses. However, they give a more quantitative assessment of relative branch support. The consistency index of 0.29 revealed a high level of homoplasy and may be a consequence of the rapid rates of evolution believed to have occurred in Orchidaceae (DressLer, 1993). However, the use of characters with polymorphic states used in this study, as well as some missing data, may also have contributed to this high level of homoplasy. The lack of resolution obtained in this study suggests that detailed classifications at the infrageneric level are not well supported by morphological evidence in most cases, and that, at this level, intuitive approaches may have reached conclusions beyond the ability of the data.

One of the purposes of this study was to test the current hypotheses of infrageneric classification of the genus Masdevallia based on the morphological data that have been recognized as diagnostic characters for infrageneric taxa within the genus Masdevallia, as well as some new characters produced for this study, such as pollinia micro-morphology. Comparison of the proposed infrageneric systems for Masdevallia and conclusions drawn from the cladistic analysis of the morphological data are presented below.

4.1.1 Outgroups relationships of Masdevallia based on morphological data

Analysis of the morphological data does not support the monophyly of the genus Masdevallia. Furthermore, one of the genera designated as outgroup, Porroglossum, was found nested within Masdevallia, albeit without significant bootstrap support (Fig. 38). Although the genus Masdevallia is now a well defined genus, it was not surprising that Porroglossum was found nested within Masdevallia. The genus Porroglossum was included within Masdevallia prior 1920. SCHLECHTER (1920) proposed to segregate Masdevallia echidna Rchb. f. into the new genus, Porroglossum, referring either to the position of the lip in relation to the column or elongated column-foot, or to the fact that the lip was far from the usual. The peculiar sensitive lip was noted by Oliver in 1888, who described the mechanism of movement and its influence on the pollination. LUER (1986a) stated that Porroglossum resembles Masdevallia by having short ramicauls and sepals with long tails; however, its sensitive labellum sufficiently distinguishes it from Masdevallia. In the phylogenetic analysis of the subtribe Pleurothallidinae based on morphological data by NEYLAND R. et al. (1995), Masdevallia and Porroglossum resulted sister taxa.

The results from the analysis of morphological data obtained in this study reveal a sister relationship between the Masdevallia-Porroglossum complex, and species of the genus Dracula, with considerable bootstrap support (98\%).

In the analysis of molecular data (ITS nrDNA sequences), the genus Masdevallia appears to be more related to the genus Dracula (Fig. 39) than to genus Porroglossum. According to Patterson et al. (1993), incongruence between different data sets is the result mainly of procedural processes such as inadequate sampling either of taxa or data, different methods of analysis of the different data sets, etc. According to SYTSMA (1990) incongruence could be the result of a) unequal rates of morphological evolution, b) convergence of morphological characters, c) hybridization and/or introgression, and d) polyploidy. If substitution rates are concordant with changes in morphological characters, i.e. if molecular evolution reflects morphological evolution and vice versa is a frequently discussed question. Imbalances between the evolution of morphological, physiological and genetic characters seems to be a common trait in orchids (Cox \& al. 1997; Borba \& SEMIR 2001; BORBA \& al. 2000, 2001a, 2001b, 2001c, 2002). There are most obvious in those instances, where at low taxonomic ranks doubtlessly similar morphology is contradicted by differences in sequences, and consecutively by topology. This can be observed in morphologically similar taxon pairs; however, it is most striking when comparing different samples from one and the same morphologically well defined species.

4.1.2 Infrageneric affinities based on morphological data

Analysis of the morphological data does not support the current infrageneric classification of the genus Masdevallia (LUER, 2000-2003) (Fig. 38). Of 11 subgenera proposed by LUER (2000-2003) only two appear to be monophyletic. These are subgenera Meleagris, represented by three out of twelve species here, and Cucullatia, represented by three out of six species here. Subgenera Amanda, Fissia, Masdevallia, Nidificia, Polyantha, and Pygmaeia are not monophyletic. Among eight sections proposed for subgenus Masdevallia five are monophyletic; these are sections Triotosiphon, Durae, Reichenbachianae, and the monospecific sections Racemosae and Dentatae. Sections Masdevallia, Coriaceae, and Minutae are not monophyletic. Both sections proposed for subgenus Polyantha, Alaticaules and Polyanthae (LUER, 2000), are not monophyletic. Of the four sections proposed for subgenus Pygmaeia (LUER, 2000), only two sections, Amaluzae and Pygmaeae, appear to be monophyletic. Sections Zahlbrucknerae and Aphanes are not monophyletic.

4.1.3 Phylogenetic implications based on morphological data

This study represents the first attempt to bring cladistic resolution to the genus Masdevallia. Despite the poorly resolved morphological strict consensus (Fig. 38), the discussions and conclusions drawn from the analysis of morphological data are presented below.
Two principal clades were obtained from the analysis of morphological data. Masdevallia racemosa occupies the most basal position in this study and appears as sister to the remaining Masdevallia species, with two Porroglossum species nested among them. The position of Masdevallia racemosa was not congruent with the molecular analysis. However, this controversial species shows some characters such as creeping rhizomes, which could not be compared with any other species.

Clade A - Ascending the cladogram, M. erinacea and M. naranjapatae, (subgenus Pygmaeia sections Zahlbrucknerae and Pygmaeae), occupied the most basal position in a basal grade (Fig. 38). The position of Masdevallia erinacea is congruent with the results obtained in the molecular analysis and will be discussed later. The next clade is formed by members of subgenus Masdevallia section Masdevallia subsections Coccinea (except M. deformis), Masdevallia (except M. patriciana), Oscillantes, and Saltatrices (except M. notosibrica). Species exhibiting a solitary flower and a retrorse callus along the labellar margin are grouped sensu LUER (1986b) into subgenus Masdevallia section Masdevallia. Except subsection Caudatae, all the subsections proposed by LUER for section Masdevallia resolved as sistergroup to each other. Subsection Caudatae appears more closely related to species of subgenus Meleagris, Nidificia and the two analyzed species of the genus Porroglossum; nevertheless, an explanation of a possible relationship between these taxa was not previously discussed. The unique synapomorphy that unites these taxa is a longitudinal callus along the labellar margin ending in an acute-uncinate process.

Species of subgenus Pygmaeia sections Amaluzae, Aphanes, and M. vierana (subgenus Pygmaeia section Zahlbrucknerae), subgenus Masdevallia sections Reichenbachianae, Dentatae, Coriaceae, and Durae, subgenus Polyantha, subgenus Cucullatia, and M. teaguei (subgenus Teagueia) are grouped into a large clade, which is in part congruent with the results obtained from the molecular analysis. Species of subgenus Pygmaeia section Amaluzae plus M. vierana form a strongly supported group, with several characters supporting them. Ascending the cladogram, species of subgenus Masdevallia section Reichenbachianae form a strongly supported group and are related to species of subgenus Polyantha. This grouping was also found in the analysis of molecular data. A relationship between species of subgenus Masdevallia sections Reichenbachianae and Minutae, as suggested by LUER (1986b), was not present in the analysis of morphological data, but it was obtained in the analysis of molecular data and will be discussed later.

Clade B - Subgenus Amanda has been a recognized group since Reichenbach (1880). Of the six species analyzed, four grouped together in a subclade which is sister to the species of subgenus Fissia. A strong relationship between species of subgenus Amanda and Fissia was first suggested by LUER (1986b), who recognized Fissia as a section of subgenus Amanda. Section Fissia has been raised recently to a higher rank (LUER 2000), based, according to LUER (2003), on a combination of characters that is not present in any other subgenera of Masdevallia. Nevertheless, LuER (2003) suggested a not-too-distant relationship within Amanda and Fissia based on the similarities of the flowers of some species of subgenus Fissia (e. g. Masdevallia dynastes). Although subgenus Amanda has been a recognized group since Reichenbach, the synapomorphies of this group are not clearly defined. According to Luer (1986b), subgenus Amanda is characterized by racemes (loose or congested) that flower nearly simultaneously, peduncles that are round in cross section; more or less inflated floral bracts; carinate or crested ovaries; caudate sepals that are variously connate into a shallow cup or arcuate cylindrical tubes, the petals callous on the labellar half, the margins entire to denticulate; and the lip more or less divided by marginal folds into a hypochile and a smaller hypochile. The results obtained in this study indicate that most of the morphological characters that have been used to delimit subgenus Amanda occur in unrelated species. The unique character that appears as a synapomorphy for species of subgenus Amanda is simultaneously flowering racemes. A relationship between subgenera Amanda, Fissia and Masdevallia subsections Minutae and Triotosiphon was not previously discussed. Section Minutae was created to accommodate small species which cannot easily be placed in any other group; from the twelve species included by Woolward in this section, seven are now dispersed in other sections. SCHLECHTER (1925) proposed to raise subgenus Triotosiphon to a higher rank. However, according to Luer (2003), this taxon meets the criteria for subgenus Masdevallia. An explanation of the incongruent position of these two sections, Minutae and Triotosiphon, could be the absence of reliable characters which define these groups, which have probably been grouped intuitively.

The results obtained from the morphological analysis showed that most of the current morphological characters that have been used to characterize the infrageneric groups are relatively homogenous, leaving the distinct impression that even a still more detailed study of nonmolecular characters is unlikely to reveal a vastly greater numbers of characters. These would be required for a more accurate assessment of infrageneric relationships. In addition, all previously sampled species would need to be sampled again for an accurate assessment of the distribution of any newly found potentially useful character. This is, of course, why we turned to DNA sequence analyses to identify additional characters for a better resolution of phylogenetic relationships.

4.2 Molecular analysis

4.2.1 Utility of ITS sequences in Masdevallia

ITS sequences provided insights into the relationship within Masdevallia due to moderate levels of interspecific sequence variation and low levels of intraspecific heterogeneity. Polymorphisms reported for ITS in some plant species (cf. Wendel et al., 1995; CAmpbell et al., 1997) were not detected in Masdevallia, although divergent ITS paralogues appear to be common in lineages having a history of hybridization and polyploidisation (BUCKLER et al., 1997). Especially natural hybridizations are common in Orchidaceae even between genera and have been observed in Masdevallia as well (LUER, 1986b-2003).

Although ITS sequences were phylogenetically informative, the ability to resolve relationships within some morphologically related taxa of Masdevallia was limited. Low levels of sequence variability among very closely related species also limited the utility of ITS sequences for resolving phylogenetic relationships within some sections. For example, nearly identical ITS sequences were obtained from closely related taxa, such as M. caloptera and M. pachyura (subgenus Amanda) or M. princeps and M. goliath (subgenus Masdevallia section Durae). Differences between the molecular (ITS) and morphological pace of evolution therefore should be a priori no surprise. Moreover, even within the ITS region mutations do not occur randomly. Pairs of species exhibiting little genetic distance have been reported from other orchidaceous groups, too (Cox \& al. 1997, BORBA \& al. 2002). Despite their popularity at the species level, the ITS sequences failed to reflect putatively recent phenotypic differentiation. This has been observed also in other orchidaceous (BORBA \& al. 2002, VAN DEN BERG \& al. 2000) and other angiospermous taxa (PANERO \& al. 1999). If we assume a clock-like rate in ITS evolution among lower taxonomic ranks at least, these results contradict the assumption (Sото ARENAS 1996) that orchidaceous speciation processes are long-time events, although this may be the case in certain orchids (ACKERMAN \& WARD 1999).

4.2.2 Outgroups relationships of Masdevallia based on molecular analysis

The phylogenetic relationship of the genus Masdevallia relative to outgroup taxa is well resolved using ITS sequences and parsimony analyses. The genus Masdevallia is a well-supported monophyletic group that is unambiguously part of Pleurothallidinae, as previously obtained by PRIDGEON et al. (2001) in a study of the subtribe Pleurothallidinae based on sequences of ITS, the plastid gene matK and the trnL intron with the $\operatorname{trnL} L$-F intergenic spacer (hereafter simply trnL-F). Species of Masdevallia appear sister to Dracula and Trisetella, but not to Porroglossum, as was previously obtained by PRIDGEON et al. (2001).

4.2.3 Monophyly of the infrageneric taxa of Masdevallia based on molecular analysis

Although Pridgeon et al. (2001) did not propose further changes in the subgeneric classifications of Masdevallia, it was evident that the current subgeneric classification needed reconsideration. The results obtained in this study confirm this supposition (Fig. 39).

Of the 11 subgenera of Masdevallia considered in this study, six form strongly supported monophyletic groups in the analysis: these are the monospecific subgenera Teagueia, Scabripes and Volvula as well as the subgenera Cucullatia, Meleagris and Fissia. This is consistent with the morphological synapomorphies that characterize these subgenera. Subgenera Masdevallia, Pygmaeia and Polyantha are clearly polyphyletic, which is in accordance with the heterogeneity obvious in inflorescence type, flower size, and morphology of the petals and lip of these subgenera. Subgenera Nidificia and Amanda form a clade without any internal resolution.

Seven of the eight sections of subgenus Masdevallia are monophyletic: sections Coriaceae, Durae, Masdevallia, Reichenbachianae, Triotosiphon, and two monotypic sections, Dentatae and Racemosae. Section Minutae is not monophyletic. Its species are distributed among a clade which in addition contains species of subgenus Polyantha, subgenus Masdevallia sections Dentatae, Reichenbachianae, and Triotosiphon, subgenus Pygmaeia section Zahlbrucknerae, M. chimboensis (subgenus Pygmaeia section Amaluzae) and M. mentosa (subgenus Pygmaeia section Aphanes). According to LUER (20002003), section Masdevallia is divided into five subsections. None of these was retrieved in the present analyses of molecular as well as morphological data.

The two sections proposed for the subgenus Polyantha, Alaticaules and Polyanthae (LUER, 2000), are intermingled among species of subgenus Masdevallia sections Dentatae, Minutae and Reichenbachianae, M. chimboensis and M. mentosa. These sections can not be considered monophyletic.

Subgenus Pygmaeia was created to accommodate species of subgenera Masdevallia sections Amaluzae and Aphanes, and subgenus Amanda section Pygmaeae (LUER, 1986b), characterized by their small and caespitose habit. Luer (2000) suggested that treating these three sections in a single, loosely related, more easily recognized taxon, seemed preferable to maintaining several small subgenera ("Although all the species included in this proposed subgenus probably are not closely related"- LuER, 2000). At present subgenus Pygmaeia is divided into four sections: Amaluzae, Aphanes, Pygmaeae, and Zahlbrucknerae (LuER, 2000). Three of these sections resulted not
monophyletic in the analysis of molecular and morphological data. Section Zahlbrucknerae appear to be monophyletic.

4.2.4 Phylogenetic implications

Despite poor resolution among some taxa, the analysis of molecular data yielded significant information about the phylogenetic position of several clades or individual taxa within the genus Masdevallia. Four principal clades were distinguished (Fig. 39):

- Clade A included M. erinacea and Luerella pelecaniceps.
- Clade B included subgenus Pygmaeia section Zahlbrucknerae, subgenus Masdevallia sections Triotosiphon, Reichenbachianae, Minutae, Coriaceae, and Dentatae, and subgenus Polyantha sections Alaticaules and Polyanthae, M. chimboensis (subgenus Pygmaeia section Amaluzae) and M. mentosa (subgenus Pygmaeia section Aphanes).
- Clade C grouped subgenus Pygmaeia sections Amaluzae and Aphanes, subgenus Masdevallia section Masdevallia with all subsections described by LUER (1986b-2002) for this section (Caudatae, Coccinea, Masdevallia, Oscillantes and Saltatrices), section Durae, section Racemosae, M. caudivolvula (subgenus Volvula), M. macrura (subgenus Masdevallia section Coriaceae), M. hoeijeri (subgenus Pygmaeia section Aphanes), and M. bicornis (subgenus Scabripes).
- Clade D grouped subgenera Teagueia, Cucullatia, Nidificia, Amanda, Fissia, Meleagris, and Dracula xenos.

These groups and their phylogenetic implications will be discussed in the following.

Clade A - The most basal position is occupied by Masdevallia erinacea (subgenus Pygmaeia section Pygmaeae) and Luerella pelecaniceps. The position of Masdevallia erinacea was consistent with the results obtained in the morphological analysis. The results obtained in a first molecular systematic analysis of subtribe Pleurothallidinae (PRIDGEON et al., 2001) revealed that M. erinacea occupied a rather isolated position. For this reason this species and all species of subgenus Pygmaeia section Pygmaeae (LuER, 1986b) were placed in a new genus, Diodonopsis (PRIDGEON \& Chase, 2001). According to LUER (2002), this new genus should be invalidated, because it was not represented by their type taxon, M. pygmaea. Masdevallia hoeijeri (clade C1) was initially included within subgenus Pygmaeia section Pygmaeae and consequently segregated to Diodonopsis. However, the results obtained in this study indicated that there is no justification to segregate M. hoeijeri from the genus Masdevallia as member of the genus Diodonopsis as proposed by Pridgeon \& Chase (2001). Even though the position of this species could be considered aberrant and cannot be defined by the
morphological data which characterize species grouped in this clade (C1). In this analysis, M. erinacea as well as M. hoeijeri, appear to be part of Masdevallia.

A relationship between M. erinacea and Luerella pelecaniceps was not expected. In the first molecular systematic analysis of subtribe Pleurothallidinae (PRIDGEON et al., 2001), the Luerella-OphidionPleurothallis peperomiodes group is sister to a clade comprising the genera Trisetella, Masdevallia and Porroglossum, as well as Masdevallia erinacea, albeit without bootstrap support ($\leq 50 \%$). Despite the lack of morphological evidence supporting them, the appearance of Luerella pelecaniceps as sister to Masdevallia could be explained. The monotypic genus Luerella was created to accommodate the atypical species M. pelecaniceps. Until 1979 this species was part of Masdevallia. Although LUER indicates that this species has no close relatives within Masdevallia, the morphological features indicated the contrary: The column is typical for Masdevallia, the excavate base between incurved marginal angles, as in many species of Masdevallia section Coriaceae, and the single-flowered peduncle borne from an annulus as in M. macropus and M. macrura. Some characters such as the boxlike, rigid and semiclosed flowers are also found in M. navicularis.

Clade B - Species of section Triotosiphon are grouped into a well supported clade that is sister to M. gutierrezii and M. wendlandiana (subgenus Masdevallia section Minutae). This taxon was suggested by SCHLECHTER (1925) as subgenus Triotosiphon. However, according to LUER (2003) and corroborated in this study, this taxon meets the criteria for subgenus Masdevallia. The remaining analyzed species of the non-monophyletic section Minutae are distributed among species of subgenera Polyantha, Masdevallia sections Reichenbachianae and Dentatae, M. chimboensis and M. mentosa. Possible morphological support for the sister relationship of species of section Triotosiphon and the two species of section Minutae, M. gutierrezii and M. wendlandiana, is provided by the fact that all species grouped in this subclade show dorsal and lateral sepals connate to a similar degree and a non sulcate disc of the lip. In the remaining species of section Minutae the dorsal and lateral sepals are connate to a different degree.

Species of subgenus Pygmaeia section Zahlbrucknerae are grouped into a well supported subclade (B2), which is sister to species of subgenus Polyanthae, and subgenus Masdevallia sections Reichenbachianae, Minutae, and Dentatae, M. chimboensis and M. mentosa. Species of section Zahlbrucknerae were previously included as members of section Amaluzae. However, according to LUER (2000), the section seems sufficiently distinct from section Amaluzae to be retained as a subsection. This suggestion is confirmed in this study. Of the four members included within section Zahlbrucknerae three were analyzed. The results indicate a close relationship among these species.

As previously discussed based on the analysis of morphological data, subgenus Polyantha is not correctly delimited. This is confirmed by the molecular data. Species of this subgenus appear distributed among species of subgenus Masdevallia sections Reichenbachianae and Minutae (excluding M. wendlandiana and M. gutierrezii), and two species of subgenus Pygmaeia sections Amaluzae and Aphanes. A sister relationship between species of subgenus Masdevallia sections Minutae and Reichenbachianae was previously discussed (LUER, 2000). These two Central American sections are separated only because of the absence of a protruding callus on the petals in species of section Reichenbachianae. Considering this weak differentiation, it is not surprising that some species of subgenus Polyantha, such as M. striatella and M. garciae, group among species of sections Minutae and Reichenbachianae. These two species were transferred from subgenus Masdevallia section Reichenbachianae to subgenus Polyantha by LuER (2000). The monotypic section Dentatae (M. collina) was initially recognized as a subsection of Reichenbachianae. The results obtained in this study show that a close relationship is present between species of section Reichenbachianae and species of section Minutae, subgenus Polyantha, M. chimboensis and M. mentosa. A relationship between M. collina and subgenus Masdevallia section Durae, as recently proposed by LuER (2000), on the basis of the cartilaginous petals with thick-descending processes below the middle and the disc shallowly channeled between callous margins can be discarded.

Sister to this large group is the monophyletic and well supported subclade containing the species of section Coriaceae (subclade B3). Species of this group are well characterized morphologically: single flowers, often malodorous and pollinated by carrion flies, sepals thick and fleshy, often verrucose on adaxial side, petals cartilaginous, without a process but with an angled labellar margin, lip undivided by marginal folds. Section Coriaceae was initially thought to be allied with section Durae (LUER, 1986b), which was considered as a subsection of Coriaceae. Although the morphological data corroborated this supposition (Fig. 38), the molecular data indicated that there is no close relationship among these taxa. Section Coriaceae was considered as Andean counterpart of the Central American section Reichenbachianae (LUER, 2000). A relationship between species of section Coriaceae, subgenus Pygmaeia section Zahlbrucknerae, subgenus Masdevallia sections Triotosiphon, Reichenbachianae, Minutae, and Dentatae, and subgenus Polyantha sections Alaticaules and Polyanthae, M. chimboensis and M. mentosa can be characterized molecular even as well as morphologically. Masdevallia macrura, member of the section Coriaceae, was the only species whose position (here in clade C) could not be explained. This species appears as member of a clade which grouped together subgenus Masdevallia sections Durae, Masdevallia, and Racemosae, subgenus Pygmaeia sections Amaluzae and Aphanes, and subgenera Volvula and Scabripes. Because of the incongruent position of M. macrura, two different specimens were analyzed, without any variation. This species was treated initially as member of section Cucullatae (RCHB. f., 1874), but its position in
this analysis is inconsistent with a relationship with subgenus Cucullatia. Masdevallia macrura show morphological characters such as sepals fleshy and verrucose on adaxial side; petals cartilaginous with the labellar margin angled, and a lip undivided by marginal folds, which characterize section Coriaceae.

Clade C - A well supported relationship of M. hoeijeri and M. bicornis (subclade C1) was not expected and cannot be defined in morphological terms. The same is attributable to M. racemosa and M. caudivolvula (within C2). However a relationship between M. racemosa and species of section Masdevallia was suggested by LUER (1986b), on the basis of the similarities between their flowers. A relationship between M. racemosa and species of section Coriaceae was suggested as well (LUER, 1986), because of the callous petals without a tooth and thick ligulate lips. Masdevallia caudivolvula (subgenus Volvula) presents a combination of characters similar to species of subgenus Masdevallia. According to LUER (2003), the combination of characters present in this species is not present in any other taxa of Masdevallia: single flowers, lip divided by marginal folds, and thick sepals that are carinate internally with thick-twisted tails. The results obtained in this study show that M. caudivolvula cannot be separated as a subgenus based on sepals with thick-twisted tails alone.

Subgenus Masdevallia section Masdevallia (subclade C2) is reasonably supported by molecular data as well as by morphological analysis. Several morphological synapomorphies such as the singleflowered peduncles, the cartilaginous petals, usually with a well-developed retrorse process from the callus near the base on the labellar margin, and the undivided lip, characterize this section. However, there is no support for segregating the section Masdevallia into subsections Caudatae, Coccinea, Masdevallia, Oscillantes and Saltatrices. Once again, the low level of sequence divergence indicates that many of the current infrageneric concepts of Masdevallia are trivial, and all taxa in this subclade could be accommodated in the section Masdevallia (lectotype Masdevallia uniflora, included here).

Subgenus Masdevallia section Durae, two species from subgenus Pygmaeia section Amaluzae, and M. aphanes form a strongly supported subclade (C3). Species of section Durae show low levels of sequence variability. A relationship between species of section Durae and subgenus Pygmaeia sections Amaluzae and Aphanes was not previously discussed, however, these groups of species are morphologically well characterized by callous petals, with the callus ending in an obtuse process above the base, and by a lip divided into a hypochile and an epichile.

Clade D - All species of subgenus Cucullatia and the monospecific subgenus Teagueia (subclade D1) share a rachis with long internodes, the petals that are callous along the labellar margin producing a small uncinate process, and their lateral sepals are connate above the middle into a lamina (LUER,

1986b-2003). LUER (2003) maintained that on the basis of the actively mobile lip (with a pair of plates covering the disc), Teagueia should be maintained as a monospecific subgenus.

Sister to this small subclade are subgenera Amanda, Nidificia, Fissia, and Meleagris, grouped into a large subclade without significant support. In the first infrageneric classification by LUER (1986b), subgenera Amanda, Fissia, Nidificia, and Meleagris were treated as sections of subgenus Amanda, distinguished by single-flowered or simultaneously two- to many- flowered inflorescence, crested ovaries, more or less membranous relatively thin petals, and a lip more or less divided by marginal folds into a hypochile and an epichile. In the most recent classification by LUER (2003), these four sections were raised to the rank of subgenera. Subgenera Amanda and Nidificia are, however, not resolved in the data.

Subgenus Meleagris (subclade D2) contains 12 species distributed throughout Colombia, Ecuador, Peru and Bolivia, in wet forest at high or relatively high altitudes. BraAS (1979) proposed the genus Rodrigoa for them. However, all the species meet critical criteria for the genus Masdevallia, including the most specific: callous petals and a lip hinged to a free extension of the column-foot (LUER, 2003) and the molecular results confirm their inclusion in Masdevallia.

Dracula xenos is found between the two species of subgenus Fissia examined here (subclade D3). There are three possible explanations for this position: 1) a hybrid origin of D. xenos, which is not unlikely, considering the many natural hybrids occurring in Masdevallia and between Masdevallia and Dracula. 2) Parallel development of a Dracula-type lip in Masdevallia. These two possibilities have already been discussed by PRIDGEON et al. (2001). 3) Introgression of nuclear genes of M. picturata or a related species into the genome of D. xenos, without formation of a stabilized hybrid. Gene flow is highly probable between closely related taxa that share a recent common ancestor (OLSEN \& SCHAAL, 1999). The low levels of divergence in DNA sequences found in Masdevallia suggest a recent diversification, which is further supported by the interfertility between morphologically divergent species in artificial crosses and the relatively recent geological origin of their current distribution area. According to Gregory-Wodzicki (2000) the uplifting of the Andean Cordillera took place in the late Miocene.

Subgenera Amanda and Nidificia (subclade D4) form a nearly unresolved branch in a polytomy. Floral similarities between species of these subgenera are taken as indications of a closer relationship to each other than to subgenera Meleagris and Fissia.

4.2.5 Bootstrap frequencies vs. Bayesian posterior probabilities

Although nonparametric bootstrap frequencies and posterior probabilities are not equivalent analyses, both analyses were performed and the results compared. One of the reasons, why both analyses were performed, is that the analysis of large data sets presents special problems for heuristic search strategies, especially when homoplasious characters form a large proportion of the variable sites. In most cases, the large number of most parsimonious trees exceeded the memory available to the computer used in the studies.

The strict consensus tree obtained from the maximum parsimony analysis (Fig. 39) and the 50\% majority rule consensus of the 3000 trees obtained from the Bayesian analysis (Fig. 40) recovered essentially the same topology. Two major topological differences resulted from the two analyses: (i) a sister relationship between M. erinacea and Luerella pelecaniceps, which was not present in the parsimony analysis but in the Bayesian analysis, would support the exclusion of M. erinacea from the genus Masdevallia, as proposed by BraAs (1979); (ii) a sister relationship of species of subgenera Cucullatia and Teagueia and species of subgenera Amanda, Nidificia, Fissia and Meleagris, which was not obtained in the Bayesian analysis. This relationship was neither expected, nor can it be explained.

Comparing the different levels of support for particular nodes of the Bayesian analysis and the parsimony analysis highlights differences between measures of support provided by bootstrap values (Fig. 39) and posterior clade probabilities (Fig. 40). Bayesian posterior probabilities for the clades in the phylogenetic tree were found to be considerably higher than corresponding nonparametric bootstrap frequencies. Discussion of these two measures of node support is a burning issue in the systematics literature (e.g., HuELSENBECK et al., 2002; SUZUKI et al., 2002; WilCOX et al., 2002; Cummings et al., 2003; Douady et al., 2003; Holder and Lewis, 2003). Simulation studies generally support the accuracy of posterior probabilities (Wilcox et al., 2002), although tendencies toward over-credibility of posterior clade probabilities have been identified (SUZUKI et al., 2002; Cummings et al., 2003; Douady et al., 2003). It is important to recognize that bootstrap values and Bayesian posterior probabilities of node support measure two different processes. Bayesian posterior probabilities determine the strength of the data in supporting particular nodes, whereas bootstrap values indicate areas where additional data is needed to resolve relationships.

4.3 Combined analysis

Combining independent character matrices, whether both molecular or molecular and morphological, very often increases the resolution of the ingroup and the bootstrap support of the internal nodes of the phylogenetic trees (Olmstead and Sweere, 1994; Chase et al., 1995; Yukawa et al., 1996; Rudall et al., 1998; Soltis et al., 1998; Meerow et al., 1999). Important arguments against combining data in a total evidence approach are that gene trees can deviate from species trees because of paralogy, lineage sorting, ancestral polymorphisms, long branch attraction or lateral gene transfer (HUELSENBECK et al., 1996), and morphological data can be swamped by DNA sequence data because of the much lower number of characters (BULL et al., 1993). Nonetheless, there is controversy about whether different data sets should be analyzed separately or together (de Queiroz et al., 1995; Huelsenbeck, et al., 1996).

On of the principal problems combining different data sets is the incongruence obtained by the analysis of each data set separately. Numerous tree-based and character-based tests to identify incongruence have been developed, and each has strengths and weaknesses (CUNNINGHAM 1997a; Johnson and Soltis 1998). Currently, one of the most widely used methods for evaluating incongruence within a parsimony framework is the homogeneity test of FARRIS et al. (1995), usually termed the incongruence length difference (ILD) test (CunNingham 1997a; Johnson and Soltis 1998) or the partition homogeneity Test (SWOFFORD, 2002). The test has been argued to produce more accurate results than other tests (Cunningham, 1997a) and is also easy to implement using PAUP* (SWOFFORD, 2002). Congruence of the independent matrices has generally been demonstrated before they are combined, but it has also been argued that incongruence should not be a predetermined factor against doing so (Seelanan et al., 1997; Dubuisson et al., 1998). MiYamoto and Fitch (1995) argue that data sets should always be analyzed independently, as underlying assumptions, constraints, or weighting strategies will vary from data set to data set. Kluge (1989) and Nixon and CARPENTER (1996) argue that simultaneous analysis of multiple data sets better maximizes parsimony and allows secondary signals to appear from the combined data. BuLL et al. (1993), Rodrigo et al. (1993), and de QUEIROZ (1993) advocated combining data only after a statistical test of congruence, what Huelsenbeck et al. (1996) call "conditional combination."

An ILD test on the taxonomically equivalent ITS and morphological data sets performed in this study detected a significant difference ($\mathrm{P}<0.01$) between these partitions, indicating substantial incongruence between the morphological and ITS matrices. Comparison of the poorly resolved morphological strict consensus with the ITS tree showed strongly supported topological incongruence.

Lack of resolution is interpreted by some authors to be lack of evidence for combining data (CUNNINGHAM, 1997); however, it may simply be evidence of insufficient information and signal (PEnNInGTON, 1996). The latter may be the case in the morphological data set, in which there is an obvious deficit of discrete characters suitable for parsimony analysis. Much of the apparent incongruence can be attributed to the weak resolution of the morphologically based topologies, and we felt that it would still be informative to combine the two matrices in a single analysis. This seems especially useful given the degree of difficulty that has been encountered with cladistic analysis of purely morphological data in Pleurothallidinae (PRIDGEON, 1982; NEYLAND et al., 1995).

4.3.1 Monophyly of the infrageneric taxa of Masdevallia based on combined data

The strict consensus tree of the combined data was partly congruent with the ITS topology, and relationships among species of Masdevallia and outgroups were very similar in each tree. As in the analysis of molecular data alone, the genus Masdevallia appears monophyletic. The genus Dracula appears as sister to Masdevallia. Dracula xenos is not resolved in the strict consensus tree of the combined data. As in the analysis of molecular data alone, the subgenera Cucullatia, Meleagris, and Fissia (and the monospecific Scabripes, Teagueia and Volvula) form strongly supported monophyletic groups; subgenera Masdevallia, Polyantha, and Pygmaeia do not appear monophyletic; and subgenera Amanda and Nidificia are not resolved in the data (Fig. 77).

In disagreement with the analysis of the molecular data alone, section Masdevallia does not appear monophyletic. Section Racemosae and subgenus Volvula appear nested within section Masdevallia, albeit without bootstrap support. The two sections proposed for the subgenus Polyantha, Polyanthae and Alaticaules (LUER, 2000) do not form monophyletic groups, as in the molecular data alone. Of the four sections proposed for subgenus Pygmaeia, only section Zahlbrucknerae forms a monophyletic group, the remaining three sections, Amaluzae, Aphanes and Pygmaeae, do not appear monophyletic.

We interpret the topology of the strict consensus tree based on ITS sequences and parsimony analyses (Fig. 39) as representing our best estimate of phylogenetic relationships within Masdevallia and its outgroups. Most of the discussion in the next chapters will be focused on this topology. The lack of resolution obtained by the analysis of morphological data, and the substantial incongruence between the morphological and ITS matrices are taken here as arguments against using these analyses as the basis of further discussion.

4.4 Evolutionary significance of some morphological characters used as rapid identifiers

LUER (2000) used the following characters as rapid identifiers for diagnosing subgenera, sections and subsections within Masdevallia (Table 15): peduncle terete or triquetrous, anthesis of the flowers (whether the flowers are opening either successively or simultaneously), type of floral bract, the ovary smooth or with some external features such as crests or papillae, the grade of connation between the sepals, the free portion of the apex of the sepals produced into tails, the callus from the labellar margin ending in a process, and the lip divided into an epichile and a hypochile.

Table 15 Rapid identifier for subgenera and sections according to Luer (2000)

Subgenera/Section	Peduncle	Raceme	Floral bract	Ovary	Connation of sepals	Sepaline tails	Process of petals	Lip divided
Subgen. Amanda	Terete	Simul.	Infl.	+	+	+	0 , mostly serrate	+
Subgen. Cucullatia	Terete	1-fl.	Infl.	+	+	+	$0 \text {, tip }$ verrucose	+
Subgen. Fissia	Terete	1-fl.	-	+	Free	+0	+	+
Subgen. Masdevallia								
Sect. Amaluzae	Terete	Succ.	-	+ 0	+	+	0	0
Sect. Coriaceae	Terete	1-fl.	-	-	+	+ 0	+	0
Sect. Durae	Terete	Succ.	-	-	+	+	0	0
Sect. Dentatae	Terete	Succ.	-	-	+	+	+	0
Sect. Masdevallia	Terete	1-fl.	-	-	+	+	+	0
Sect. Minutae	Terete	1, simul, Succ.	-	-	+	+	+ pointed	0
Sect. Racemosae	Terete	Simul.	-	-	+	0	0	0
Sect. Reichenbachianae	Terete	1, succ.	-	-	+	+	0	0
Sect. Triotosiphon	Terete	1-fl.	-	-	+	+	0	0
Subgen. Meleagris	Terete	Succ.	-	+	Free	+	0	0
Subgen. Nidificia	Terete	1-fl.	-	+	+	+	+	+
Subgen. Polyantha								
Sect. Alaticaules	Triquetrous	Succ.	-	-	+	+	+ 0	+
Sect. Polyanthae	Terete	1, simul, Succ.	-	-	+	+	0	+
Subgen. Pygmaeia								
Sect. Aphanes	Terete	1, succ.	-	+	+	+ 0	0	0
Sect. Pygmaeae	Terete	1, succ.	-	+	+	+	+	0
Subgen. Scabripes	Scabrous	Succ.	-	-	+	+	+	0
Subgen. Volvula	Terete	1-fl.	-	-	+	+	0	+

Key: terete $=$ round in cross section; triquetrous= triangular in cross section; 1-fl. $=$ peduncle single-flowered; simul. $=$ raceme simultaneously flowered; succ. $=$ raceme successively flowered; infl. = inflated; - = not remarkable; for ovaries, + $=$ carinate, lamellate, or verrucose; for sepals and petals,$+=$ tail or tooth present, $0=$ absent; for lip,$+=$ lip divided by marginal folds into an epichile and hypochile, $0=$ lip not divided by marginal folds in two parts.

The polarity or probable direction of the evolution of the rapid identifier characters was not discussed. To evaluate their phylogenetic significance, we reconstructed their distribution on the strict consensus from the analysis of the molecular data.

Peduncle - Fig. 85 shows the most parsimonious derivation of the character 'peduncle triquetrous in cross section'. Peduncles triquetrous in cross section have been used as one of the most important characters for diagnosing all interrelated species of subgenus Polyantha. According to LUER (2000), four species of this large subgenus produce both, terete and triangular peduncles (M. garciae Luer, M. infracta Lindl., M. richarsoniana Luer, and M. sprucei Rchb. f.). The results of the molecular analysis suggest a non-monophyletic subgenus Polyantha. Its species are found in a clade mixed with species of subgenus Masdevallia sections Minutae, Reichenbachianae, and Dentatae and species of subgenus Pygmaeia sections Amaluzae and Aphanes. The reconstruction of the peduncle in cross section in one of the most parsimonious trees obtained from the analysis of molecular data shows a triquetrous peduncle in some members of subclade B2 derived from a terete peduncle. The data do not allow to decide with certainty whether this character had a single origin or not.

Fig. 85 Reconstruction of character state evolution of the peduncle in cross section optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Raceme - Flowers opening either successively or simultaneously have been used to characterize some infrageneric taxa (Table 15). Flowers opening successively in periodic clusters has evolved 3-4 times within the genus (Fig. 86): once in subgenus Amanda and M. nidifica (clade D), once in M. schlimii (clade B), and once or twice in clade C3.

Fig. 86 Reconstruction of character state evolution of the peduncle in cross section optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Floral bract - Fig. 75 shows the most parsimonious derivation of the type of floral bract. An inflated floral bract has evolved at least twice, once in subclade D4, with a reversal in M. molossus and M. ophioglossa, and once in M. picturata (subclade D3). A cucullate floral bract has evolved twice within the genus, once in subclade D1, with a reversal in M. teaguei, and once in M. macrura. This latter species was previously included within subgenus Cucullatia based on this character and later transferred to section Coriaceae. The molecular analysis does not support the inclusion of this species neither in subgenus Cucullatia, nor in section Coriaceae.

Ovary - Species with the ovaries with ribs manifested by crests or some other external features such as papillae or lamella are characteristic for subgenera Amanda, Cucullatia, Fissia, Nidificia, Meleagris, and Pygmaeia (Table 15). An ovary with undulating crests is reconstructed as having been derived four times within the genus Masdevallia, once in M. hoeijeri, once in M. caudivolvula, once in M. corniculata, and once in subclades D2, D3, and D4 (Fig. 64).

Connation of the sepals - According to LUER (2000) the subgenera Fissia and Meleagris can be characterized by a dorsal sepal that is free from the lateral (Table 15). This character has evolved at least once within the genus Masdevallia, in subgenus Meleagris (subclade D2) and subgenus Fissia (subclade D3) (Fig. 65). These subgenera form an unresolved trichotomy with subgenus Meleagris.

Sepaline tails - The free portion of the apex produced into tails has been used as rapid identifier for subgenera and sections of Masdevallia (Table 15). Tailless flowers characterize subgenus Pygmaeia
section Aphanes. Some species of subgenus Fissia and subgenus Masdevallia section Coriaceae are characterized by tailless sepals. The sepaline tails apparently have been lost several times within Masdevallia (Fig. 87).

Fig. 87 Reconstruction of character state evolution of the apices of the sepals optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Petal tails - According to LUER (2000) a callus from the labellar margin ending in a process is characteristic for the subgenera Fissia, and Nidificia, subgenus Masdevallia sections Masdevallia and Dentatae, subgenus Polyantha section Alaticaules, subgenus Pygmaeia section Pygmaeae, and subgenus Scabripes. A callus ending in an acute and retrorse (uncinate) process near the base characterizes subgenus Masdevallia section Masdevallia (LUER 2000). Figure 88 shows that this character originated repeatedly and revested at least occasionally. Therefore, it appears not to be phylogenetically useful at the infrageneric level. A callus ending in an obtuse angle between the middle and the lower third characterizes subgenus Masdevallia section Coriaceae (LUER, 2000). Figure 88 shows this character as synapomorphy for subclades B2 and B3. However it shows many reversals and cannot be considered phylogenetically useful and the infrageneric level. A callus ending in a broad and rounded process characterizes some species of subgenus Polyantha sections Alaticaules and Coaetanae (LUER 2000). Figure 88 shows that this character is very homoplasious and not useful at the infrageneric level.

Fig. 88 Reconstruction of character state evolution of the callus of the petals optimized on one of the MPTs derived from the ITS sequences data analysis for Masdevallia.

Lip - Subgenera Amanda, Cucullatia, Fissia, Nidificia, Polyantha, and Volvula are characterized by a lip that is divided by marginal folds into an epichile and hypochile (LUER, 2000). Entire lips (not divided into an epichile and a hypochile) characterize species of subgenera Masdevallia and Pygmaeia. A lip that is divided by marginal folds into an epichile an a hypochile has evolved at least five times in the genus Masdevallia, once in subclade B2, with a reversal in a subclade comprising M. vieirana, M. zahlbrucknerii, and M. naranjapatae, in the subclade of M. fulvescens and M. reichenbachiana, as well as in M. scabrilinguis, M. chimboensis, M. mentosa, and M. collina. In addition, it originated in M. gutierrezii and M. bicornis, and (equivocally) in subclade C 2 and clade D (Fig 53).

4.5 Biogeography and Radiation

4.5.1 Distribution patterns of Masdevallia species

The distribution patterns of Masdevallia species are not surprising, considering that this pattern represents the second major Neotropical phytogeographical pattern, according to GENTRY (1982), referred as Andean-centered. Genera with this pattern have their distributional centers in the northern Andes, where over a fourth of their species occur. Andean centered taxa are very well represented in Central America, especially in Costa Rica and Panama, where 22% of their species occur; well represented in the coastal Brazil region, and poorly represented in northern Venezuela and the West Indies. They are poorly represented in those regions where Amazonian centered taxa are well represented GENTRY (1982).

There are several factors that favored this phytogeographical pattern according to BENZING (1990):

1) Topography: the Andes is by far the most extensive mountain range at low latitudes and its recent orogeny has created an immense land archipelago, extending from Mexico to temperate South America, that has favored epiphytic speciation and dense packing of resulting taxa. The central Andes had a major uplift during the Oligocene (30 my BP) and emerged in their current form about 15 my BP between northern Chile and southern Peru, reaching their current structure within Pliocene and Pleistocene (JAMES, 1973; JORDAN et al., 1983). The northern Andes are the youngest, and most of their uplifting occurred in the last 5 million years (VAN DER HAMMEN, 1974; GENTRY, 1982), still enough time for orchids and several other lineages to generate an exuberant speciation which continues to this day. GENTRY and DODSON (1987) cite colliding offshore Pacific cold and warm currents at low latitudes as a major cause of the microclimatic variety that has helped to foster the unparalleled development of Andean epiphytism. The resulting niche partitioning supposedly favors high alpha diversity, whereas the dissected topography promotes evolution of ecologically similar allopatric species.
2) Ethology: Pleurothallidinae is perhaps the best Neotropical candidate for a taxon that supports the widely held view that specialized pollinators are the most important reason why there are so many species of Orchidaceae and, by extension, why epiphytes are so numerous. Fetid rather than pleasant odors characterize many species' blossoms, and bizarre shapes are common. Most flowers are too small to attract strong fliers. However, there is no evidence that dipterans suspected of servicing pleurothallids are as constant or as effective, as male euglossines in producing either isolation among co-occurring populations or fruit set by widely dispersed conspecifics.
3) Refuge theory: The theory of refuges in the Pleistocene has been often used as a major explanation for the present day patterns of diversity and endemism of biota in the Neotropical region (HafFer, 1969; VANZOLINI \& Wiliams, 1970; Vanzolini, 1973; Ab Saber, 1977; Simpson \& HafFer, 1978; Dixon, 1979; AbSY, 1982; GENTRY, 1982; Prance, 1973, 1982; Van der hammen, 2000). Even though it has been shown that the theory has serious limitations at the theoretical level (Amorin \& Pires, 1996; Lynch, 1982; Amorin, 2001), several authors still insist in a major role for the climatic changes in shaping actual patterns (i.e. Haffer, 1974, 1977; Prance, 1982; Van der Hammen, 2000) and increasing speciation rates in the region. Disjunctions such as those observed between the Atlantic Forest and the Amazonian region are sometimes explained within the framework of the theory of Pleistocene refuges, but especially in orchids, long-distance dispersal appears to be a more likely option. However, according to BENZING (1990), refugia were less developed in premontane and low montane humid forests which are the characteristic epiphyte habits of most Masdevallia species. The continuity of forests throughout the Pleistocene must account in part for the unparalleled botanical variety of epiphytes and terrestrials in regions such as the currently pluvial Colombian Chocó.

4.5.2 Biogeographic patterns of the genus Masdevallia based on molecular analysis

Some species of the major clades in the molecular tree occur widespread across, overlapping regions in the Andes and Central America. Most of the species are distributed in Colombia and Ecuador, suggesting that the northern Andes may have been the most influential biogeographic arena for the diversification of lineages within the genus Masdevallia. The northern Andes are the youngest, and most of their uplifting occurred in the last 5 million years (VAN DER HAMMEN, 1974; GENTRY, 1982). The central Andes had a major uplift during the Oligocene (30 my BP) and emerged in their current form about 15 my BP between northern Chile and southern Peru, reaching their current structure by the Pliocene and Pleistocene (James, 1973; Jordan et al., 1983). Vicariance events and biogeographic patterns along the Andes are difficult to determine due to complex formation events and a long history. Two main areas of volcanic activities have been recognized: a northern zone in southern Colombia and northern Ecuador and a central zone in Peru, western Bolivia, and northern Chile and Argentina (Windley, 1984).

Southern Central America is the second center of speciation for Masdevallia. In the Guyana Shield, Masdevallia species are very uncommon. It is likely that the extreme habitats often found in such areas, including rocky outcrops, dry forests, savannas, etc, are unsuitable for most species of

Masdevallia, which in general display a preference for humid and shady places. The Atlantic forest of Brazil, a belt of tropical rain forests along the coast of Brazil, exhibits a low species number of Masdevallia, comparable to that of the Antilles or the Guyana shield. This is somewhat surprising for the genus, if one considers the type of vegetation in that area. The tropical rainforests in this region are at present reduced to nearly 10% of their original cover (AMORIM, 2001), and the impact of deforestation should not be underestimated as a process distorting the values for species number in the area. Deforestation in the area dates back to about 1500 (HOEHNE, 1942) whereas the available herbarium records start about 1840. Some biogeographic studies stated that the history of the Atlantic Brazilian Forest was driven mainly by vicariance events that have produced a hierarchical pattern (MoritZ et al., 2000; Ron, 2000; Amorim, 2001; Bates, 2001; Hall \& Harvey, 2002).

Four well supported clades can be recognized within Masdevallia, the first two corresponding to the northern Andes and Central America (Clades A and B), and two roughly corresponding to the northern and central Andes (Clades C and D) with an approximate distribution break in the volcanic area of southern Colombia and northern Ecuador (Fig. 78).

Luerella pelecaniceps (Clade A) is endemic to Panama, being found at 800 to 1000 m above the sea level. In contrast, Masdevallia erinacea is found throughout the whole geographical range. Their current distribution might be explained by long-distance dispersal.

Clade B has the highest level of ecological diversification within the Masdevallia lineages across all four clades. In terms of geographical distribution and diversity of microhabitats, this group represents the most successful clade. Most species analyzed are endemic to Venezuela, Colombia, and Ecuador. The species at the furthest geographical extremes of the genus (southeastern Brazil, Guayana, and the Coastal Cordillera of Venezuela) appear to be the most basal in this clade, and the Andean species appear to be derived. High dispersability appears to be characteristic of certain lineages in clade B. Within subclade B1, M. venezuelana and M. kyphonantha are restricted to the coastal cordillera of Venezuela. Masdevallia lansbergi is found in the coastal cordillera of Venezuela and in the Guayana region, growing at lower elevations, always associated with vegetation along bank roads or along forest edges. Masdevallia wendlandiana is one of the most widespread species, growing in exposed environments, at very low elevations. The current distribution of this species might be explained by long-distance dispersal events. Species in subclade B1, M. gutierrezii, is endemic to Bolivia, growing at low elevations

Subclade B2 corresponds to Central America and/or the northern Andes, and extends south into Bolivia. The current distribution of its species might be explained by long-distance dispersal. Masdevallia lata, M. cupularis, M. fulvescens, M. reichenbachiana, M. striatella and M. scabrilinguis
are endemic to Costa Rica and Panama, growing at high elevations. Masdevallia floribunda has a wide and scattered geographical distribution from Belize and Mexico to Colombia over a broad elevational range from 75 to 1500 m above sea level. Most of the remaining species of this subclade are from the central Andes, growing at high elevations. Masdevallia infracta, from Sierra do Itatiaia in Brazil, is nested within subclade B2, suggesting a long-distance dispersal event and supporting the pattern of shared flora between the Eastern Cordillera of Colombia and the Brazilian highlands (SAFFORD, 1999). Numerous other genera of plants and animals also share a disjunct distribution between the Andes and the coastal region of Brazil and/or the Brazilian highlands (RAMBO, 1951; LyNCH, 1979; Brown, 1987; Haffer, 1987; Clark, 1992; Safford, 1999). For example, about one-third of the plant genera found in the Sierra do Itatiaia in Brazil are shared with the Páramos of the Eastern Cordillera of Colombia (SAFFORD, 1999). Masdevallia garciae is endemic to the Coastal Cordillera of Venezuela and M. collina is endemic to Panama.

Subclade B3 corresponds to the central Andes with most species found in the Western and the Central Cordillera of Colombia, ranging southward through the department of Nariño and into northwestern Ecuador, with M. civilis and M. picea apparently endemic in Northern Peru. Masdevallia coriacea and M. campyloglossa are frequent in the Páramos of the Eastern Cordillera of Colombia, and both become infrequent in the other two Cordilleras of Colombia, as well as in Ecuador and Peru. Most species of this subclade grow terrestrically on semi-arid, rocky slopes, fully exposed to the extremes of heat in the midday tropical sun, and chilly nights at an altitude over 2000 m above sea level.

All species grouped into Clade C are from the Andes, most of them growing epiphytically at very high altitudes. Within subclade C1, Masdevallia bicornis is endemic in lowland eastern Ecuador, and M. hoeijeri is distributed in southeastern Ecuador and in the Cordillera del Condor in Colombia. Species grouped in subclade C2 are widely distributed in the Andes. The basal species, Masdevallia macrura, M. caudivolvula and M. racemosa, are distributed in Colombia, at elevations of 2000 to 3400 m above sea level. Ascending the cladogram, M. rubiginosa occurs in southeastern Ecuador and neighboring Peru, and M. rubeola occurs uncommonly in the Andes of central Peru and northern Bolivia. The other species found within subclade C 2 are principally distributed in the forests of Ecuador, with most of them being endemic. The extremely low genetic divergence between these taxa could be an indication that their speciation occurred rather recently. The remaining species within Clade C, treated as subclade C3, are restricted to the cloud forest of southeastern Ecuador and northern Peru, being found at high altitude from 2000 to 3400 m above the sea level.

Clade D is composed mainly of Andean species, with M. pleurothalloides apparently endemic in the wet forested hills east of Panama City, and M. picturata and M. nidifica widely distributed through Central America and the Andes of South America. Within subclade D1, M. teaguei is found
infrequently in southern Ecuador, at high altitude from 2000 to 3400 m above sea level. Masdevallia corniculata occurs in all three cordilleras of Colombia and on the eastern slopes of the Andes of Ecuador, from 1500 to 2500 m above sea level. Masdevallia delhierroi is endemic to east-central Ecuador at 2600 m above sea level. All species within subclade D2 grow epiphytically in wet forests at high or relatively high altitudes in the Andes of Colombia, Ecuador, Peru and Bolivia. Masdevallia heteroptera is endemic in the mountains around Medellín in the central and western cordilleras of Colombia, M. alexandri is endemic to the western declivity of central Ecuador, M. meleagris is endemic to the Western Cordillera of Colombia, and M. ximenae is endemic in southern Ecuador. The widely distributed M. parvula grows on mossy branches of stunted trees in cool, wet cloud forests from Colombia through Ecuador and Peru, into Bolivia, usually at altitudes about 3000 m above sea level. In subclade D3, M. pleurothalloides is endemic to a small area east of Panama City, whereas M. picturata is one of the most common and widely distributed species of the genus, through Central America and the Andes of South America into Guayana, at an elevation of more than 1500 m above sea level. Long-distance dispersal may have played a role in the current distribution of M. picturata. Dracula xenos, apparently endemic in the Valle del Cauca in Colombia, has not been recollected since its original discovery. Masdevallia nidifica (subclade D4), sister to the remaining members of subgenera Amanda and Nidificia, has a wide and scattered geographical distribution from Central America to the Eastern Cordillera of Colombia and to southwestern Ecuador, over a broad elevational range from 250 to 2500 m above sea level. The remaining species included in this subclade are principally found in the Andes of Ecuador, and one species, M. molossus, is widely distributed in the western and central Cordilleras of Colombia.

4.5.3 Some factors promoting the radiation of the genus Masdevallia

The family Orchidaceae is one of the two largest families of flowering plants; the other one, Asteraceae, is sometimes stated to be larger. Within the family Orchidaceae, Pleurothallidinae is the largest subtribe, and within this subtribe, the genus Masdevallia is one of the largest genera in number of species, exceeded by Lepanthes, Pleurothallis and Stelis.

Several hypotheses for the enormous species richness of orchids, and especially of Masdevallia are described below:

1) Habit

The first hypothesis given by BENZING (1990) describes the highly fragmented nature of the epiphytic substratum, especially in mid-montane rainforest, as an ideal speciation condition since it should promote allopatric speciation. According to BENZING (1990), this would explain why not only orchids,
but also epiphytic aroids and bromeliads are so species-rich despite their different morphological adaptations to the arboreal habitat. This argument is contradicted by IBISCH et al. (1996), who mentioned that, in plant families that have evolved epiphytism other than the Orchidaceae, the terrestrial species have higher rates of speciation.

Of the 25000 orchid species so far described, ca. 18000 are epiphytes (Royal Botanic Gardens, Kew 2003). The montane epiphyte flora is not only characterized by high species richness, but also by pronounced endemism. So the mid-elevation bulge in species richness of GENTRY and Dodson (1987) is in part a result of a strong presence of endemic (orchid) species, which cannot be comprehensively explained by favourable climate conditions. The epiphyte habitat is discontinous everywhere, even in primary forests, but not to the same degree. In montane regions, the forest and therefore of the epiphytes substratum, is fragmented, a condition conducive to speciation (TEMPLETON, 1981). Where climate, elevation, and type of vegetation are more monotonous (e.g., Amazonia), epiphyte species tend to be wide-ranging but not very numerous.

Epiphyte species richness in montane habitats is made possible by high air humidity. This is confirmed by numerous local studies (INGRAM et al., 1996, Schmit-NeuErBurg, 2002, Kreft et al., 2004). One main difference between lowland and montane forests is that regular dry periods but also periodically occurring events such as El Niño reduce the abundance and diversity of epiphytes in Amazonian lowland forests drastically, e.g. at the Surumoni site (Schmit-Neuerburg, 2002). In contrast, in montane rain forests, the impact of dry periods is mitigated by the 'horizontal precipitation' (Vogelmann, 1973), which in cloud forests frequently contributes 20% or more to the total water input (Juvik \& Ekern, 1978, StadtmÜlLer, 1987).

2) Niche partitioning

GENTRY \& DODSON (1987) proposed that the high species diversity of orchids might be correlated with their exceptionally fine niche partitioning. Floristic inventories by Pittendrigh (1948), Johansson (1974), Ter Steege \& Cornelissen (1989), Ek et al. (1997), and Wolf \& Flamenco (2003) indeed demonstrated microhabitat specialization in the tropical epiphytic environment and showed that the total bark and branch surface area available for occupation by epiphytic species greatly exceeds that of the ground area. These studies also show that many more orchid species and individuals are crowded in the tree crown and on the branches compared to a similar ground area. Four main epiphytic microhabitats exist. The first consists of the shaded and humid tree base, where species growing directly on the bark survive. The second microhabitat encompasses the upper trunk, where epiphytes grow only when suitable germination sites are present. The third microhabitat comprises the inner canopy, which is a heterogeneous assemblage of the environments of the upper tree trunk and
the outer canopy. Here, shade-adapted species can survive in the inner forks and branches next to hemi-epiphytes growing in packages of moss and humus, and to species that can endure sites in direct sun. The largest diversity of epiphytic species and crown-foraging pollinators is usually found here. The fourth microhabitat is the outer canopy, with high levels of disturbance, prolonged periods of drought and large fluctuations in temperature, where largely xeromorphic species are present, rooting directly on the outer well-illuminated twigs. Speciation may be increased since specialized morphological adaptations allow a survival advantage in each of these four microhabitats. In addition, the high diversity in tropical tree species might stimulate further niche differentiation owing to host specificity.

3) Pollinators

A third hypothesis explaining the species richness of orchids is pollinator specialization. The orchids are well known for certain pollination strategies that often involve highly specialized relationships between plant and pollinator. For example, flowers of species of Ophrys in Europe and the Meditteranean as well as several Australian genera produce highly specific suites of olfactory and visual stimuli that attract a unique species of pollinator, usually a male bee or wasp (DAFNI \& BERNHARDT 1990) to each species of orchid. The insect confuses these stimuli with the conspecific female and pollinates through repeated pseudo-copulations. High speciation rates within these genera are suggested to be due to the fact that because different species of bees use slightly different olfactory stimuli to attract mates.Therefore, even a slight mutation in the floral scent of the orchid may be sufficient to cause adaptation to a new species of pollinator and thus reproductive isolation (SCHIESTL \& AYASSE 2002). Even in moderately specialized 'pollinator syndromes'- such as those associated with bumble-bee and hummingbird pollination, where a plant species is pollinated by a small number of bumblebee or hummingbird species - one major gene mutation may be all that is required to cause an adaptive switch between the two syndromes (Bradshaw \& Schemske 2003). Thus chance mutations within plant species that are only moderately specialized in their pollination could also potentially drive speciation. GENTRY \& DODSON (1987) consider bee, fly, hummingbird, hawkmoth, bat and small mammal pollination syndromes all to be moderately specialized in terms of the number of pollinator species attracted.

Orchids generally are less pollinator specialized than is generally assumed - most species have more than one pollinator. Within subtribe Pleurothallidinae, the pollinator specialization was studied only in a few species. Within the genus Masdevallia, little is know about the pollination. Pollination in Masdevallia has been only rarely observed, and on the other side, the systematics of the tropical Drosophilidae and related families is poorly understood.

Some species are characterized by foul odors, a dark or dull color of the perianth, sepaline tails, and hinged lip. All these characters certainly indicate myophily or sapromyophily. Flies tend to be important pollinators in high-altitude and high-latitude systems, where they are numerous and other insect groups may be lacking (LARSON et al., 2001).

DODSON (1962) reported pollination of M. fractiflexa by blowflies (Calliphoridae). The osmophores of M. caudata, M. nidifica, and M. calura were described in detail by VogeL (1962, 1990). Some species with brightly coloured, odourless flowers and sepaline tube such as M. rosea, and M. coccinea are reported to be pollinated by hummingbirds (DODSON 1962, VAN DER PJIL and DODSON, 1966), and it is probable that related species, such as M. veitchiana, M. barleana, and M. davisii, are also bird pollinated. However, in the absence of enough data, we can neither confirm nor rule out the hypothesis that pollinator specialization has been important for the speciation in Masdevallia.

4.6 Comparison with traditional classification and possible taxonomical solutions

4.6.1 Incongruence between cladograms and taxonomic systems

Incongruence between cladograms and taxonomic systems of the same group is widely discussed by many authors (Anderberg A. A. C. et al., 2002; Cronn R. C. et al., 2002; CronQuist A., 1981, 1987; Day A. G., 1993b, Diggs G. M. And B. L. Lipscomb, 2002; Ferguson C. J. and R. K. JANSEN, 2002). As explained by GRANT (2002), incongruence is to be expected, especially in groups of large size. This is a result of the differences between cladistics and taxonomy in goals and methods.

The taxonomy of Masdevallia is mainly based on floral structures. REICHENBACH (1880) recognized 15 sections, Pfitzer (1888) 5 sections, Woolward (1896) 15 sections and KraEnzlin (1925) 14 sections. LUER (1986b) grouped the species into 5 subgenera, 17 sections and 12 subsections.Later (LUER, 2000-2003) he recognized into 11 subgenera, 13 sections and 13 subsections, and recently (LUER 2006), he established 19 smaller genera from among the infrageneric taxa of Masdevallia.

The differences observed in the delimitation of infrageneric taxa results not only from the large species number. In addition, the identification of morphological and anatomical synapomorphies in the subtribe is complicated by the homoplasy rife in vegetative and floral features (PRIDGEON, 1982), as shown in the cladistic study by NEYLAND et al. (1995). Morphological features such as fleshy or terete leaves, variously connate sepals, and ornamented ovaries occur in clearly unrelated species (LUER, 1986b). The same is true for anatomical features such as thickenings in the foliar hypodermis, differentiation of foliar chlorenchyma, and spirally thickened idioblasts (PRIDGEON, 1982; NEYLAND et al. 1995). Most of these features are either xeromorphic adaptations or phenotypic responses to selection pressures imposed by pollinators with similar behaviors.

An overview of the most important classification systems of Masdevallia is briefly discussed below.

Reichenbach (1873-1878) - The earliest attempt to indicate subdivisions of the genus Masdevallia was made by Reichenbach. Usually he did not mention the rank of the subdivisions, but in a few instances he indicated groups or "sections". In the whole 14 groups/sections were recognized by Reichenbach.

Pfitzer (1888) - The second proposed infrageneric classification was that of Pfitzer. It included five sections, of which four (Tubulosae, Polyanthae, Saccilabiatae, and Triaristellae) had been previously recognized by Reichenbach (1873-1878). One new section was described, and section Verrucosae was raised to generic rank (genus Scaphosepalum).
H. J. Veitch (1889) - H. J. Veitch proposed for the genus Masdevallia an infrageneric classification based on Reichenbach's classification. The infrageneric classification comprises 3 sections and 6 subsections, these last ones demoted from the rank of section in Reichenbach's classification to subsections of Eumasdevallia.

Woolward (1889) - Woolward used the classification of Reichenbach with minor changes. The species were grouped into 15 sections, of which three (Muscosae, Racemosae and Reichenbachianae), were newly proposed by Woolward. The remaining sections were Amandae, Coccineae, Coriaceae, Cucullatae, Fissae, Minutae, Polyanthae, Saccolabiatae, Saltatrices, Triangulares, Triaristellae, and Tubulosae.
Schlechter (1920) - Schlechter proposed to segregate Masdevallia echidna Rchb. f. into a new genus, Porroglossum.
Kraenzlin (1925) - The infrageneric classification proposed by Kraenzlin included 14 sections, of which two (Urceolares and Floribundae), were new sections proposed by Kraenzlin. Five sections (Polystictae, Leontoglossae, Alaticaules, Chimaeroideae, and Rhombopetalae), were renamed, and two sections (Racemosae and Minutae) were merged into other sections. Some species were transferred to different sections.

Luer (1986b) - The first infrageneric classification for the genus Masdevallia proposed by Luer was in part based on Reichenbach's classification. It included 5 subgenera, 17 sections, and 12 subsections. Luer placed Reichenbach's sections Amanda, Cucullatae, Fissae, and Polyantha on a higher level. Four new subgenera and nine new sections were described.
Luer (2000-2003) - The second infrageneric classification for the genus Masdevallia proposed by Luer divided the genus into 11 subgenera, 13 sections and 13 subsections. Sections Fissae, Cucullatae, Nidificae, Polyanthae, and Pygmaeae were placed on a higher level. Two new subgenera were described.

Luer (2006) - From among the subgenera of Masdevallia and on the basis of "marked morphological differences among some of the subgenera" Luer established the new genera Acinopetala, Alaticaulia, Buccella, Byrcella, Fissia, Luzana, Megema, Petalodon, Pteroon, Regalia, Reichantha, Spectaculum, Spilotantha, Streptoura, Triotosiphon, and Zahleria. Recent DNA analyses are barely mentioned, and no cladogram is reproduced.

4.6.2 Comparison of Luer's taxonomy and the results obtained from the molecular analysis - Possible taxonomical solutions

Possible taxonomic solutions based on the analysis of the molecular results obtained in this study (in which only monophyletic groups are recognized) are discussed below:

Subgenus Amanda - Subgenus Amanda was first recognized as section by REICHENBACH. KRAENZLIN (1925) renamed the section "Polystictae" because the most representative species of this section, according to KrAENZLIN, was M. polysticta Rchb. The new name is therefore illegimate. LUER (1986b) raised the section to the rank of subgenus and included four sections: Amanda, Fissia, Nidificia, Ophioglossae and Pygmaeae. LUER (2000) raised these sections, previously contained in subgenus Amanda, to the rank of subgenera. Masdevallia ophioglossa (previously section Ophioglossae) was included within subgenus Amanda (LUER 2000-2003). The results obtained in this study indicate that there is a strong relationship (in the Bayesian analysis) between subgenera Amanda, Fissia, Nidificia, and Meleagris. Subgenera Fissia and Meleagris are well delimited, whereas subgenera Amanda and Nidificia are not resolved in our data. A possible taxonomic solution for a new phylogenetic classification of this group would be to include all sampled species of subgenera Amanda, Fissia, Nidificia, and Meleagris within a single subgenus. According to the rules of priority, this subgenus should be called Amanda.

Subgenus Cucullatia - Subgenus Cucullatia has been a well delimited group since REICHENBACH. LUER (1986b) included it as section within subgenus Masdevallia, and in 2000 he raised the section to the rank of subgenus. The results obtained from the molecular analysis indicate that subgenus Cucullatia is a well delimited group and no further changes are proposed.

Subgenus Masdevallia - According to LUER, all species of subgenus Masdevallia seem to be related whereas the boundaries of some species are not well defined. 1986, Luer divided the subgenus into twelve sections and twelve subsections; and 2000 divided the subgenus into nine sections and seven subsections (Table 3). The subgenus grouped six of the sections proposed by REICHENBACH.

The results obtained in this study show a polyphyletic subgenus Masdevallia, with its representatives separated into two major groups designated clade B and clade C in Fig. 39. Clade B includes section Minutae (not monophyletic), Reichenbachianae, Triotosiphon, and Coriaceae, excluding one species, M. macrura, which was previously included within section Durae, and the monospecific section Dentatae, mixed with species of the subgenera Pygmaeia and Polyantha. Clade C includes a monophyletic section Masdevallia, a monophyletic section Durae, and the monospecific section Racemosae. In addition, clade C includes a few species of subgenera Pygmaeia, and the monospecific subgenera Scabripes and Volvula.

A possible taxonomic solution for a new phylogenetic classification of subgenus Masdevallia could be reached by the following steps. (i) Transfer of sections Minutae, Reichenbachianae, and Dentatae to subgenus Polyantha. (ii) Section Triotosiphon would be raised to a higher taxonomic rank, subgenus Triotosiphon. (iii) Section Coriaceae would be raised to a higher taxonomic rank, subgenus

Coriaceae. (iii) Section Durae would be raised to a higher taxonomic rank, subgenus Durae. (iii) Subgenus Masdevallia would include only members of section Masdevallia with all remaining subsections. The results obtained from the molecular analysis do not support the fine subsectional classification of section Masdevallia. Not one of the subsections included by Luer within section Masdevallia seems to be monophyletic - but of course the data are also insufficient to reject his classification completely. For the time being, a section Masdevallia without any further subdivision appear to be the best solution.

Subgenus Polyantha - The members of subgenus Polyantha are all found in one large clade (B2), but with all members of subgenus Masdevallia sections Minutae, Reichenbachianae, and Dentatae scattered among them. The results obtained in this study indicate that sections Minutae, Reichenbachianae, and Dentatae are more closely related to subgenus Polyantha than to subgenus Masdevallia, as previously suggested by LUER (1986b).

A possible taxonomic solution for a new phylogenetic classification of this group would be to reinclude all representatives of sections Minutae, Reichenbachianae, and Dentatae within a large subgenus Polyantha. This group would also include species currently refered to subgenus Pygmaeia: Masdevallia mentosa, M. chimboensis, and section Zahlbrucknerae.

Masdevallia mentosa is a smal Ecuadorian species currently included within subgenus Pygmaeia section Aphanes and previously considered as a monospecific section of subgenus Masdevallia. According to Luer, this species is characterized by a slender, successively flowering peduncle, triquetrous in cross section, which would place it in Masdevallia section Polyanthae if it didn't have an entire and smooth lip. The results obtained in this study confirm that M. mentosa is more closely related to subgenus Polyantha than to subgenus Pygmaeia.

Section Zahlbrucknerae includes four species previously included within subgenus Masdevallia section Amaluzae. Masdevallia schizopetala, previously treated as member of section Minutae, is now included within section Zahlbrucknerae. This illustrates a considerable resemblance between section Zahlbrucknerae and section Minutae.

Subgenus Pygmaeia - Species currently attributed to subgenus Pygmaeia appear scattered all over the cladogram in the results obtained from the molecular analysis. Since 2003, Luer's treatment of subgenus Pygmaeia includes four sections. Sections Amaluzae and Aphanes had been previously considered as section of subgenus Masdevallia, whereas the type section Pygmaeae had been previously considered as section of subgenus Amanda. Section Zahlbrucknerae has already been discussed above.

REFERENCES

Ab'SABER, A. 1977. Espaços ocupados pela expansão dos climas secos na América do Sul, por ocasião dos períodos glaciais quaternários. Paleoclimas. 3: 1-19.

ABSY, M. L. 1982. Quaternary palinological studies in the Amazon basin. In: Prance, G. T. (Ed.), Biological Diversification, Columbia University Press, New York, pp. 67-73.

Ackerman, J. D. 1995. An orchid flora of Puerto Rico and the Virgin Islands. New York Botanical Garden, Bronx, New York, USA.

Ackerman, J. D., \& WARD, S. 1999. Genetic Variation in a Widespread, Epiphytic Orchid: Where is the Evolutionary Potential? Syst. Bot. 24(2): 282-291.

Alvarez, I. \& Wendel, J. F. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molec. Phylogen. Evol. 29: 417-434.

AMORIM, D. \& Pires, M.R. 1996. Neotropical biogeographic and method for maximum biodiversity estimation. (ed. by C.M. Bicudo and N.A. Meneses) pp. 183-219. Biodiversity in Brasil: a first approach. CNPq, Sao Pablo.

Amorin, D. 2001. Dos Amazonias. (ed. by J. Llorente and J.J. Morrone), pp. 245-255. Introducción a la biogeografía en Latinoamérica: teorías, conceptos, métodos y aplicaciones. Universidad Nacional Autónoma de México, México.

Anderberg, A., Rydin, A. C. \& Kallersjo, M. 2002. Phylogenetic relationships in the order Ericales s.l.: analyses of molecular data from five genes from the plastid and mitochondria genomes. Am. J. Bot. 89: 677-687.

Baldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S., \& Donoghue, M. J. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 82: 247-277.

Bateman, R. M., Pridgeon, A. M. \& Chase, M. W. 1997. Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences. 2. Infrageneric relationships and reclassification to achieve monophyly of Orchis sensu stricto. Lindleyana 12: 113-141.

Bates, J.M. 2001. Avian diversification in Amazonia: Evidence for historical complexity and a vicariance model for a basic diversification pattern. in Diversidade Biológica e Cultural da Amazônia (Viera I., D'Incao, M.A., Cardoso, J.M., da Silva, \& Oren D., eds.). 119-138. Museu Paraense Emilio Goeldi, Belém, Pará, Brazil.

BAYES, T. 1763. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London 53:370-418. Reprinted, E. S. Pearson and M. G. Kendall (eds.). 1970. Pages 131-153 in Studies in the History of Statistics and Probability. Charles Griffin, London.

Benzing, D. H. 1990. Vascular epiphytes. Cambridge University Press. Cambridge. 354 pp.

Borba, E. L. \& Semir, J. 2001. Pollinator specificity and convergence in fly pollinated Pleurothallis (Orchidaceae) species: a multiple population approach. Ann. Bot. (Oxford). 88: 75-88.

Borba, E. L., Felix, J. M., Semir, J. \& Solferini, V. N. 2000. Pleurothallis fabiobarrosii, a new Brazilian species: morphological and genetic data, and notes on the taxonomy of Brazilian rupicolous Pleurothallis. Lindleyana 15: 2-9.

Borba, E. L., Felix, J. M., Solferini, V. N. \& Semir, J. 2001b. Fly-pollinated Pleurothallis (Orchidaceae) species have high phenetic variability: evidence from isozyme markers. Am. J. Bot. 88: 419-428.

Borba, E. L., Semir, J. \& Shepherd, G. J. 2001a. Self-incompatibility, inbreeding depression and crossing potential in five Brazilian Pleurothallis (Orchidaceae) species. Ann. Bot. 88: 89-99.

Borba, E. L., Shepherd, G. J., van den Berg, C. \& Semir, J. 2002. Floral and vegetative morphometrics of five Pleurothallis (Orchidaceae) species: correlation with taxonomy, phylogeny, genetic variability and pollination systems. Ann. Bot. (Oxford). 90: 219-230.

Borba, E. L., Trigo, J. R. \& Semir, J. 2001. Variation of diastereoisomeric pyrrolizidine alkaloids in Pleurothallis (Orchidaceae). Biochem. Syst. Ecol. 29: 45-52.

BraAs, L. A. 1979. Einige Anmerkungen zur Revision der Gattung Masdevallia RUíZ et PAVÓN, sowie über notwendige Ergänzungen der Gattungsreihe Masdevalliae (Subtr. Pleurothallidinae). Die Orchidee 30(3): 108.

Bradshaw, H.D., \& SCHEMSKE, D.W. 2003. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426: 176-178.

Buckler, E. S., IPPOLITO, A., \& Holtsford, T. P. 1997. The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145: 821-832.

Bull, J. J., Huelsenbeck, J. P., Cunningham, C. W., Swofford, D. L. \& Waddell, P. J. 1993. Partitioning and combining data in phylogenetic analysis. Syst. Biol. 42: 384-497.

Burns-Balogh, P. 1983. A theory on the evolution of the exine in Orchidaceae. Amer. J. Bot. 70: 1304-1312.

Burns-Balogh, P., \& Funk, V. 1986. A phylogenetic analysis of the Orchidaceae. Smithsonian Contr. Bot. 61: 1-79.

CAMERON, K. M. \& Chase, M. W. 1999. Phylogenetic relationships of Pogoniinae (Vanilloideae, Orchidaceae): an herbaceous example of the eastern North America-eastern Asia phytogeographic disjunction. J. Pl. Res. 112: 317-329.

Cameron, K. M., Chase, M. W., Whitten, W. M., Kores, P. J. , Jarrell, D. C., Albert, V. A., Yukawa, T., Hills, H. G. \& Goldman, D. H. 1999. A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Amer. J. Bot. 86: 208-224.

Campbell, C. S., Wojciechowski, M. F., Baldwin, B. G., Alice, L. A. \& Donoghue, M. J. 1997. Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae). Mol. Biol. Evol. 14: 81-90.

Chase, M. W., Stevenson, D. W., Wilkin, P. \& Rudall, P. J. 1995. Monocot systematics: A combined analysis. Pp. 685-730 in: Rudall, P. J., Cribb, P. J., Cutler, D. F. \& Humphries, C. J. (editors), Monocotyledons: Systematics and Evolution. Royal Botanic Gardens, Kew.

CLARK, L. G. 1992. Chusquea sect. Swallenochloa (Poaceae: Bambosoideae) and allies in Brazil. Brittonia 44: 387-422.

Cox, A. V., Pridgeon, A. M., Albert, V. A. \& Chase, M. W. 1997. Phylogenetics of the slipper orchids (Cypripedioideae, Orchidaceae): nuclear rDNA ITS sequences. Pl. Syst. Evol. 208: 197223.

Cronn, R. C., Small, R. L., Haselkorn, T. \& Wendel, J. F. 2002. Rapid diversification of the cotton genus (Gossypium, Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am. J. Bot. 89: 707-725.

CronQuist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York, New York, USA.

CRONQUIST, A. 1987. A botanical critique of cladism. Bot. Rev. 53: 1-50.
Cummings, M. P., Nugent, J. M., Olmstead, R. G., \& Palmer, J. D. 2003. Phylogenetic analysis reveals five independent transfers of the chloroplast gene rbcL to the mitochondrial genome in angiosperms. Curr. Genet. 43: 131-138.

Cunningham, C. W. 1997a. Can three incongruence tests predict when data should be combined? Molec. Biol. Evol. 14: 733-740.

Dafni, A, Bernhardt, P., Shmida, A., Ivri, Y. \& Greenbaum, S. 1990. Red bowl-shaped flowersConvergence for beetle pollination in the Mediterranean region. Isr J Bot. 39: 81-92.

DAY, A. G. 1993b. New taxa and nomenclatural changes in Allophyllum, Gilia, and Navarretia (Polemoniaceae). Novon 3: 331-340.

De Queiroz, A. 1993. For consensus (sometimes). Syst. Biol. 42: 368-372.
De Queiroz, A., Donoghue, M. J. \& Kim, J. 1995. Separate versus combined analysis of phylogenetic evidence. Annu. Rev. Ecol. Syst. 26: 657-681.

DIGGS, G. M. \& LIPSCOMB, B. L. 2002. What is the writer of a flora to do? Evolutionary taxonomy or phylogenetic systematics? Sida 20: 647-674.

DIXON, J.R. 1979. Origin and distribution of reptiles in lowland tropical rainforests of South America. In: W.E. Duellman (Editor), The South American Herpetofauna: Its Origin, Evolution, and Dispersal. Monograph 7.

Dodson, C. H. 1962. The importance of pollination in the evolution of the orchids of tropical America. Am. Orch. Soc. Bull. 31: 525-534, 641-649, 731-735.

Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F. \& Douzery, E. J. P. 2003. Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol. Biol. Evol. 20: 248-254.

Douzery, E. J. P., Pridgeon, A. M., Kores, P., Linder, H. P., Kurzweil, H., \& Chase, M. W. 1999. Molecular phylogenetics of Diseae (Orchidaceae): a contribution from nuclear ribosomal ITS sequences. Amer. J. Bot. 86: 887-899.

Dressler, R. L. \& Dodson, C. H. 1960. Classification and phylogeny in the Orchidaceae. Ann. Missouri Bot. Gard. 47: 25-68.

Dressher, R. L. 1979. The subfamilies of Orchidaceae. Selbyana 5: 197-206.

Dressler, R. L. 1981. The orchids: natural history and classification. Harvard University Press, Cambridge, MA. 332 pp.

Dressler, R. L. 1986b. Recent advances in orchid phylogeny. Lindleyana 1: 5-20.

Dressler, R. L. 1993. Phylogeny and classification of the orchid family. Timber Press, Portland, OR. 312 pp.

Dubuisson, J. Y., Hébant-Mauri, R. \& Galtier, J. 1998. Molecules and morphology: conflicts and congruence within the fern genus Trichomanes (Hymenophyllaceae). Molec. Phylogen. Evol. 9: 390-397.

Dumolin, S., Demesure, B. \& Petit, R. J. 1995. Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor. Appl. Genet. 91: 1253-1256.

Ek, C, ter Steege, R. H. \& Biesmeijer, K. 1997. Vertical distribution and associations of vascular epiphytes in four different forest types in the Guianas. In: Ek, C.R. Botanical diversity in the tropical rain forest of Guyana. Series 4. Tropenbos Guyana Programme - Georgetown, Guyana and Universite it Utrecht, Holand.

ESRI. 1997. ArcView GIS, version 3.0a. Environmental Systems Research Institute, Redlands, CA.
FARRIS, J. S. 1969. A successive approximations approach to character weighting. Syst. Zool. 18: 374385.

Farris, J. S., Källersjö, M., Kluge, A. G. \& Bult, C. 1995. Testing significance of incongruence. Cladistics 10: 315-319.

Farris, J. S., Kluge, A. \& Eckhardt, M. 1970. A numerical approach to phylogenetic systematics. Syst. Zool. 19, 172-189.

Farris, J. S., Kluge, M. A. G. \& Bult, C. 1994. Testing significance of incongruence. Cladistics 10: 315-319.

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-793.

Ferguson, C. J. \& JANSEn, R. K. 2002. A chloroplast DNA phylogeny of eastern Phlox (Polemoniaceae): implications of congruence and incongruence with the ITS phylogeny. Amer. J. Bot. 89: 1324-1335.

FITCH, W. M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20: 406-416.

Freudenstein, J. V. \& Rasmussen, F. N. 1997. Sectile pollinia and relationships in the Orchidaceae. Pl. Syst. Evolution 205: 125-146.

Freudenstein, J. V. \& Rasmussen, F. N. 1999. What does morphology tell us about orchid relationships? A cladistic analysis. Amer. J. Bot. 86: 225-248.

Freudenstein, J. V., Senyo, D. M., \& Chase, M. W. 2000. Mitochondrial DNA and relationships in the Orchidaceae. In: Wilson, K. L. \& Morrison, D. A. [eds.], Monocots: systematics and evolution, 421-429. CSIRO Publishing, Collingwood, Victoria, Australia.

Gentry, A. H. \& Dodson, C. H. 1987. Diversity and biogeography of neotropical vascular epiphytes. Ann. Missouri Bot. Gard. 74: 205-233.

Gentry, A. H. 1982. Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny?. Ann. Missouri Bot. Gard. 69: 557-593.

Gift, N. P. \& Stevens, F. 1997. Vagaries in the delimitation of character states in quantitative variation-an experimental study. Syst. Biol. 46: 112-125.

Grant, T. 2002. Testing methods: the evaluation of discovery operations in evolutionary biology. Cladistics 18: 94-111.

Gravendeel, B., Chase, M. W., de Vogel, E. F., Roos, M. C., Mes, T. H. M. \& Bachmann, K. 2001. Molecular phylogeny of Coelogyne (Epidendroideae; Orchidaceae) based on plastid RFLPs, matK, and nuclear ribosomal ITS sequences: evidence for polyphyly. Amer. J. Bot. 88: 1915-1927.

Gregory-Wodzicki, K. M. 2000. Uplift history of the Central and Northern Andes: A review. GSA Bull. 112(7): 1091-1105.

Greuter, W., McNeill, J., Barrie, R., Burdet, H.-M., Demoulin, V., Filguerias, T. S., Nicolson, D. H. , Silva, P. C., Skog, E., Trehane, P., Turland, N. J., Hawksworth, D. L. 2000. International Code of Botanical Nomenclature. Koenigstein, Germany: Koeltz Scientific Books.

HAFFER, J. 1969. Speciation in Amazonian forest birds. Science 165: 131-137.
HAFFER, J. 1974. Avian speciation in tropical South America, with a systematic survey of the toucans (Ramphastidae) and Jacamars (Galbulidae). Publications of the Nuttall Ornithological Club, 14: 1-390.

HAFFER, J. 1977. Pleistocene speciation in Amazonian birds. Amazoniana, 6: 161-192.
HAFFER, J. 1987. Quaternary history of tropical America. In Whitaker, T.C., \& Prance, G.T. (Eds.), Biogeography and Quaternary History in Tropical America: Oxford (Oxford Univ. Press). Pp- 118.

Hall, J. P. \& Harvey, D. J. 2002. The phylogeography of Amazonia revisited: new evidence from Riodinid butterflies. Evolution 56: 1489-1497.

Hershkovitz, M. A. \& Lewis, L. A. 1996. Deep-level diagnostic value of the rDNA-ITS region. Molec. Biol. Evol. 13: 1276-1295.

Hesse, M., Burns-Balogh, P. \& Wolff, M. 1989. Pollen morphology of the "primitive" epidendroid orchids. Grana 28: 261-278.

Hillis, D. M. \& Bull, J. J. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42: 182-192.

Hoehne, F. C. 1942. Flora Brasílica: Orchidaceae. São Paulo: Departamento de Botânica do Estado de São Paulo. 12 (6): 97-114.

Holder, M., \& Lewis, P. O. 2003. Phylogeny estimation: Traditional and Bayesian approaches. Nat. Rev. Genet. 4: 275-284.

Huelsenbeck, J. P., Bull, J. P., \& Cunningham, C. W. 1996. Combining data in phylogenetic analysis. Trends Ecol. Evol. 11: 152-158.

Huelsenbeck, J. P., Larget, B., Miller, R.E. \& Ronquist, F. 2002. Potential applications and pitfalls of Bayesian inference of phylogeny. Syst. Biol. 51: 673-688.

Huelsenbeck, J. P., Rannala, B. \& Yang, Z. 1997. Statistical tests of host-parasite cospeciation. Evolution 51: 410-419.

Ibisch, P. L., Boegner, A., Nieder, J. \& Barthlott, W. 1996. How diverse are neotropical epiphytes? An analysis based on the catalogue of the flowering plants and gymnosperms of Peru. Ecotropica 2: 13-28.

Ingram, S. W., Ferrell-Ingram, K. \& NadKarni, N. M. 1996. Floristic composition of vascular epiphytes in a neotropical cloud forest, Monteverde, Costa Rica. Selbyana 17: 88-103.

JAMES, D. E. 1973. The evolution of the Andes. Sci. Amer. 229: 60-69.
JOhANSSON, D. R. 1974. Ecology of vascular Epiphytes in west African rain forests. Acta Phytogeogr. Suec. 59: 1-136.

Johnson, L. A. \& Soltis, D. E. 1998. Assessing congruence: empirical examples from molecular data. In: Soltis, D. E., Soltis, P. S., \& Doyle, J. J. [eds.], Molecular systematics of plants II: DNA sequencing, 297-348. Kluwer Academic, Boston, Massachusetts, USA.

Jordan, T. E., Isacks, B. L., Allmendiger, R. W., Brewer, J. A., Ramos, V. A. \& Ando, C. J.. 1983. Andean tectonics related to geometry of subducted Nazca Plate. Bull. Geol. Soc. Amer. 94: 341-361.

Juvik, J.O. \& EKERN, P.C. 1978. A climatology of mountain fog on Mauna Lona, Hawaii Island. Water Resources Research Center, University of Hawaii, Hawaii, Technical report No. 118.

Karol, K. G., McCourt, R. M., Cimino, M. T \& Delwiche, C. F. 2001. The closest living relatives of land plants. Science 294: 2351-2353.

Kluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis for relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38: 1-25.

KräNZlin, F. 1925. Monographie der Gattungen Masdevallia, Lothiania, Scaphosepalum, Cryptophoranthus \& Pseudooctomeria. Repert. Spec. Nov. Regni Veg. Beih. 34: 1-240.

Kreft, H., Köster, N., Küper, W., Nieder, J. \& Barthlott, W. 2004. Diversity and biogeography of vascular epiphytes in western Amazonia, Yasuní, Ecuador. J. Biogeogr. 31: 1463-1476.

Lanave, C., Preparata, G., Saccone, C. \& Serio, G. 1984. A new method for calculating evolutionary substitution rates. J. Molec. Evol. 20: 86-93.

Larson, B. M. H., Kevan, P. G. \& Inouye D. W. 2001. Flies and flowers: taxonomic diversity of anthophiles and pollinators. Canad. Entomol. 133 (4): 439-465.

Leach'e, A. D. \& Reeder, T. W. 2002. Molecular systematics of tue eastern fence lizard Sceloporus undulatus: Acomparison of parsimony, likelihood, and Bayesian approaches. Syst. Biol. 51: 4468.

LindLey, J. 1840. The genera and species of orchidaceous plants. Ridgways, London.
Lledó, M. D., Crespo, M. B., Cameron, K. M., Fay, M. F., \& Chase, M. W. 1998. Systematics of Plumbaginaceae based upon cladistic analysis of rbcL sequence data. Syst. Bot. 23: 21-29.

Luer, C. A. 1978b. Dracula, a New Genus in the Pleurothallidinae. Selbyana 2: 190-198.
Luer, C. A. 1986a. Icones Pleurothallidinarum I: Systematics of the Pleurothallidinae (Orchidaceae). Monogr. Syst. Bot. Missouri Bot. Gard.15: 1-81.

LUER, C. A. 1986b. Icones Pleurothallidinarum II: Systematics of Masdevallia (Orchidaceae). Monogr. Syst. Bot. Missouri Bot. Gard. 16: 1-63.

LuER, C. A. 2000. Icones Pleurothallidinarum XIX: Systematics of Masdevallia Part One. M. subgenus Polyantha, section Alaticaules section Polyanthae. Monogr. Syst. Bot. Missouri Bot. Gard. 77: 1-264.

LuEr, C. A. 2000. Icones Pleurothallidinarum XXI: Systematics of Masdevallia Part Two. M. subgenus Masdevallia, section Coriaceae, section Dentatae, section Durae, section Reichenbachianae, M. subgenus Pygmaeia. Monogr. Syst. Bot. Missouri Bot. Gard. 82: 1-263.

LuEr, C. A. 2001. Icones Pleurothallidinarum XXII: Systematics of Masdevalia Part Three. M. subgenus Masdevallia, section Masdevallia, subsection Masdevallia, M. subgenus Masdevallia, section Minutae. Monogr. Syst. Bot. Missouri Bot. Gard. 86 : 1-260.

LUER, C. A. 2002. Icones Pleurothallidinarum XXIII: Systematics of Masdevallia Part Four. M. subgenus Masdevallia, section Masdevallia, subsection Caudatae, subsection Oscilantes, subsection Saltatrices. Monogr. Syst. Bot. Missouri Bot. Gard. 87 : 1-289.

LUER, C. A. 2003. Icones Pleurothallidinarum XXV: Systematics of Masdevallia Part Five. M. subgenus Masdevallia, section Masdevallia, subsection Coccineae, section Racemosae, section Triotosiphon, M. subgenus Amanda, M. subgenus Cucullatia, M. subgenus Fissia, M.
subgenus Meleagris, M. subgenus Nidificia, M. subgenus Scabripes, M. subgenus Teagueia and M. subgenus Volvula. Monogr. Syst. Bot. Missouri Bot. Gard. 91 : 1-282.

LuEr, C. A. 2006. Icones Pleurothallidinarum XXVIII. A reconsideration of Masdevallia, and the systematics of Specklinia and vegetatively similar taxa (Orchidaceae). Miscellaneous new taxa in the Pleurothallid genera Acianthera, Acronia, Arthrosia, Colombiana, Crocodeilanthe, Dracula, Dryadella, Loddigesia, Masdevallia, Myoxanthus, Ogygia, Platystele, Porroglossum, Restrepia and Trichosalpinx. Monogr. Syst. Bot. Missouri Bot. Gard. 105: 1-274.

LYNCH, J. 1979. The amphibians of the lowland tropical rainforests. In Duellman W. (ed.). The South American herpetofauna: its origin, evolution, and dispersal. Univ. Kansas Mus. Nat. Hist. Monograph. 7: 189-215.

Lynch, J. 1982. Relationships of the frogs of the genus Ceratophrys (Leptodactylidae) and their bearing on hypotheses of Pleistocene forest refugia in South America and punctuated equilibria. Syst. Zool. 31: 166-179.

MADDISON, W. P. AND D. R. 2000. MacClade 4: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Massachusetts, USA.

Meerow, A. W., Fay, M. F., Guy, C. L., Li, Q-B., Zaman, F. Q. \& Chase, M. W. 1999. Systematics of Amaryllidaceae based on cladistic analysis of plastid rbcL and trnL-F sequence data. Amer. J. Bot. 86: 1325-1345.

Miyamoto, M. M. \& Fitch, W. M. 1995. Testing the covarion hypothesis of molecular evolution. Mol. Biol. Evol. 12: 503-513.

Moritz, C., Patton, J. L., Schneider, C. J., Smith, T. B. 2000. Diversification of rainforest faunas: an integrated molecular approach. Annual Rev. Ecol. Syst. 31: 533-563.

Murphy, W. J., Eizirik, E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., de Jong, W. W. \& Springer, M. S. 2001. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348-2351.

Neyland, R., Urbatsch, L. E. \& Pridgeon, A. M. 1995. A phylogenetic analysis of subtribe Pleurothallidinae (Orchidaceae). Bot. J. Linn. Soc. 117: 13-28.

NIXON, K. C. \& CARPENTER, J. M. 1996. On simultaneous analysis. Cladistics 12: 221-241.
Oliver, F. W. 1888. On the sensitive labellum of Masdevallia muscosa Rchb. F. Ann. Bot. London 1: 237-253.

Olmstead, R. G., \& Sweere, J. A. 1994. Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst. Biol. 43: 467-481.

Olsen, K. \& Schaal, B. 1999. Evidence of the origin of cassava: Phylogeography of Manihot esculenta. Proc. Natl. Acad. U.S.A. 96: 5586-5591.

Panero, J. L., Francisco-Ortega, J., Jansen, R. K. \& Santos-Guerra, A. 1999. Molecular evidence for multiple origins of woodiness and a New World biogegraphic connection of the Macronesian Island endemic Pericallis (Asteraceae: Senecioneae). Proc. Natl. Acad. U.S.A. 96: 13886-13891.

Patterson, C., Williams, D. M., and Humphries, C. J. 1993. Congruence between molecular and morphological phylogenies. Annual Rev. Ecol. Syst. 24: 153-188.

Pennington, R. T. 1996. Molecular and morphological data provide phylogenetic resolution at different hierarchical levels in Andira. Syst. Biol. 45: 456-515.

Pfitzer, E. 1888. Orchidaceae, in Engler, A. \& Prantl, K., Die natiirlichen Pflanzenfamilien 2(6): 52224.

PIJL, VAN DER L. \& Dodson, C.H. 1966. Orchid Flowers: Their Pollination and Evolution. University of Miami Press, Miami, Florida.

Pimentel, R. \& Riggins, R. 1987. The nature of cladistic data. Cladistics 3: 201-209.
Pittendrigh, C. S. 1948. The bromeliad-anopheles-malaria complex in Trinidad I - the bromeliad flora. Evolution 2: 58-89.

Prance, G. T. 1973. Phytogeographic support for the theory of Pleistocene forest refuges in the Amazon Basin. Acta Amazonica 3: 5-28.

Prance, G. T. 1982. A review of the phytogeographic evidences of Pleistocene climate changes in the Neotropics. Ann. Missouri Bot. Gard. 69: 594-624.

Pridgeon, A. M. \& Chase, M. W. 1998. Phylogenetics of subtribe Catasetinae (Orchidaceae) from nuclear and chloroplast DNA sequences. In C. E. B. Pereira [ed.], Proceedings of the 15th World Orchid Conference. Naturalia Publications, Turriers, France. Pp: 275-281.

Pridgeon, A. M. 1982. Diagnostic anatomical characters in the Pleurothallidinae (Orchidaceae). Amer. J. Bot. 69: 921-938.

Pridgeon, A. M., Bateman, R. M., Cox, A. V., Hapeman, J. R. \& Chase, M. W. 1997. Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences. 1. Intergeneric relationships and polyphyly of Orchis sensu lato. Lindleyana 12: 89109.

Pridgeon, A. M., Solano, R., \& Chase, M. W. 2001. Phylogenetic relationships in Pleurothallidinae (Orchidaceae): combined evidence from nuclear and plastid DNA sequences. Amer. J. Bot. 88(12): 2286-2308.

Punt, W., Blackmore, S., Nilsson, S. \& Le Thomas, A. 1994. Glossary of pollen and spore terminology. LPP Contributions Series No. 1. LPP Foundation, Utrecht, Netherlands.

Rambo, B. 1951. O elemento Andino no Pinhal Riograndense. Anais Botânicos do Herbário Barbosa Rodrigues. 3: 3-36.

Rasmussen, F. N. 1985. Orchids. In R. M. T. Dahlgren, H. T. Clifford, and P. F. Yeo [eds.], The families of the monocotyledons, 249-274. Springer-Verlag, Berlin.

RASMUSSEN, F. N. 1986a. On the various contrivances by which pollinia are attached to viscidia. Lindleyana 1: 21-32.

Reichenbach, H. G., F. 1854-1900. Xenia Orchidaceae, vols. I-III.

Rodrigo, A.G., Kelly-Borges, M., Bergquist, P. R., and Bergquist, P. L. 1993. A randomisation test of the null hypothesis that two cladograms are sample estimates of a parametric phylogenetic tree. New Zealand J. Bot. 31: 257-268.

Rodriguez F., Oliver, J. L., Marin, A. \& Medina, J. R. 1990. The general stochastic model of nucleotide substitution. J. Theor. Biol. 142: 485-501.

Rohwer, J. G. \& Rudolph, B. 2005. Jumping Genera: The phylogenetic position of Cassytha, Hypodaphnis, and Neocinnamomum (Lauraceae) based on different analyses of trnK intro sequences. Ann. Missouri Bot. Gard. 92: 153-178.

Ron, S. R. 2000. Biogeographic area relationships of lowland Neotropical rainforest based on raw distributions of vertebrate groups. Biol. J. Linn. Soc. 71: 379-402.

RonQuist, F. \& HUELSENBECK, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.

Rudall, P. J., Chase, M. W., Cutler, D. F., Rusby, J. R. \& De Bruijn, A. Y. 1998. Anatomical and molecular systematics of Asteliaceae and Hypoxidaceae. Bot. J. Linn. Soc. 127: 1-42.

Ryan A., Whitten, W. M., Johnson, M. A. T., Chase, M. W. 2000. A phylogenetic assessment of Lycaste and Anguloa (Orchidaceae: Maxillarieae). Lindleyana 15: 33-45.

SAFFORD, H. D. 1999 Brazilian Paramos II. Macro and mesoclimate of the campos de altitude and affinities with high mountain climates of the tropical Andes and Costa Rica. J. Biogeogr. 26: 713-737.

Salazar, G. A., Chase, M. W., Soto Arenas, M. A. \& Ingrouille, M. 2003. Phylogenetics of Cranichideae with emphasis on Spiranthinae (Orchidaceae, Orchidoideae): evidence from plastid and nuclear DNA sequences. Amer. J. Bot. 90: 777-795.

Schiestl, F. P., Ayasse, M., Paulus, H. F., Löfstedt, C., Hansson, B., Ibarra, F. \& Francke, W. 2000. Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception. J. Comp. Physiol. 186: 567-574.

SChill, R. \& PFEIFFER, W. 1977. Untersuchungen an Orchideenpollinien unter besonderer Berücksichtigung ihrer Feinskulpturen. Pollen \& Spores 19: 5-118.

Schlag, M., \& Hesse, M. 1993 Morphogenesis of the sporoderm in Polystachia [sic] pubescens (Orchidaceae). Grana 32: 22-28.

Schmit-NeUERburg, V. M. 2002. Dynamics of vascular epiphyte vegetation in the Venezuelan lowland rain forest of the Surumoni Crane Project, PhD dissertation. University of Bonn, Bonn.

Seelanan, T., Schnabel, A. \& Wendel, J. F. 1997. Congruence and consensus in the cotton tribe. Syst. Bot. 22: 259-290.

SIMPSON, B. B. \& HAFER, J. 1978. Speciation patterns in the Amazonian forest biota. Annu. Rev. Ecol. Syst. 9: 497-518.

Soltis D. E., Soltis, P. S., Chase, M. W., Mort, M. E., Albach, D. C., Zanis, M., Savolainen, V., Hahn, W. H., Hoot, S. B., Fay, M. F., Axtell, M., Swensen, S. M., Prince, L. M., Kress, W. J., NIXON, K. C. \& FARriS, J. S. 2000. Angiosperm phylogeny inferred from a combined data set of 18 S rDNA, rbcL and atpB sequences. Bot. J. Linn. Soc. 133: 381-461.

Soltis D. E., Soltis, P. S., Mort, M. E., Chase, M W., Savolainen, V., Hoot, S. B. \& Morton, C. M. 1998. Inferring complex phylogenies using parsimony: an empirical approach using three large DNA datasets for angiosperms. Syst. Biol. 47: 32-42.

Soto Arenas, M. 1996. The importance of research. IUCN / SSC Orchid Specialist Group. Orchids status survey and conservation action plan. Pp. 33-38. Gland and Cambridge: IUCN.

Stadtmüller, T. 1987. Cloud forests in the humid tropics. A bibliographic Review. Japan. The United Nations University. 82 p.

Stenzel, H. 2000. Pollen morphology of the subtribe Pleurothallidinae Lindl. (Orchidaceae). Grana 39(2-3): 108-125.

Stern, W. L. \& Pridgeon, A. M. 1984. Ramicaul, a better term for the pleurothallid `secondary stem'. Amer. Orchid Soc. Bull. 53(4): 397-401.

Stevens, P. F. 1991. Character states, morphological variation and phylogenetic analysis: a review. Syst. Bot. 16: 555-583.

Sun, Y., Skinner, D. Z., LiAng, G. H. \& Hulbert, S. H. 1994. Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor. Appl. Genet. 89: 26-32.

SuZUki, Y., GlaZko, G. V. \& Nei, M. 2002. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proceedings of the National Academy of Sciences, USA 99: 1613816143.

SWOFFORD, D. L. \& MADDISON, W. P. 1987. Reconstructing ancestral character states under Wagner parsimony. Math. Biosc. 87: 199-229.

SWOFFORD, D. L. 2002. PAUP: phylogenetic analysis using parsimony, version 4.0b10. Sinauer Associates, Sunderland, Massachusetts, USA.

SYtsma, K. J. 1990. DNA and morphology: inference of plant phylogeny. Trends Ecol. Evol. 5: 104110.

TAVARE, S. 1986. Some probabilistic and statistical problems on the analysis of DNA sequences. Lect. Math. Life Sci. 17: 57-86.

TEMPLETON, A. R. 1981. Mechanisms of speciation-a population genetic approach. Annu. Rev. Ecol. Syst. 12: 23-48.
ter Steege, H. J. \& Cornelissen, H. C. 1989. Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21: 331-339.
van den Berg, C., Higgins, W. E., Dressler, R. L., Whitten, W. M., Soto Arenas, M. A., Culham, A. \& Chase, M. W. 2000 A phylogenetic analysis of Laeliinae (Orchidaceae) based
on sequence data from nuclear transcribed spacers (ITS) of ribosomal DNA. Lindleyana 15: 96114.

Van der Hammen, T. 1974. The Pleistocene changes in vegetation and climate in tropical South America. J. Biogeogr. 1: 3-26.

VANZOLINI, P. E. 1973. Distribution and diferentation of animals along the coast and in continental islands of the state of São Paulo, Brasil. 1. Introduction to the area and problems. Pap. Avulsos Zool. 26 (24): 281-294.

Vanzolini, P.E. \& Williams, E. E. 1970. South American anoles: Geographic differentiation and evolution of the Anolis chrysolepis species group (Sauria, Iguanidae). Arq. Zool. 19: 1-298.

VEITCH, J. \& Sons. 1889. Manual of Orchidaceous plants, Vol. 1, Epidendreae, Part 5: 14-76.

Vogel, S. 1962. Duftdrüsen im Dienste der Bestäubung. Über Bau und Funktion der Osmophoren. Akad. Wiss. Lit. Abh-Math.-Naturwiss-Kl. 10: 603-763.

Vogel, S. 1990. The scent gland in pollination, on structure ad function of osmophores. Smithsonian Institute libraries \& The National Science Foundation. Washington D.C., 202 pp.

Vogelmann, H. W. 1973. Fog precipitation in the cloud forests of eastern Mexico. Bioscience 23(2): 96-100.

Wendel, J. F., Schnabel, A. \& Seelanan, T. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy of Sciences of the USA 92: 280-284.

Wenzel, J. W. 1997 When is a phylogenetic test good enough?. Mem. Mus. Nat. Hist. Nat. 173: 3145.

Whitten, W. M., Williams, N. H. \& Chase, M. W. 2000. Subtribal and generic relationships of Maxillarieae (Orchidaceae) with emphasis on Stanhopeinae: combined molecular evidence. Amer. J. Bot. 87: 1842-1856.

WiEns, J. J. \& HollingSworth, B. D. 2000. War of the iguanas: conflicting molecular and morphological phylogenies and long-branch attraction in iguanid lizards. Syst. Biol. 49: 143159.

Wilcox, T. P., Zwickl, D. J., Heath, T. A. \& Hillis, D. M. 2002. Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Mol. Phylogenet. Evol. 25: 361-371.

Williams, N. H. \& Broome C. R. 1976. Scanning electron microscope studies of orchid pollen. American Orchid Society Bulletin 45: 699-707.

WindLEy, B. 1984. The evolving continents (2a edit.). John Wiley \& Sons, 399 p. Chichester.

Wolf, J. H. D. \& Flamenco, A. 2003. Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. J. Biogeogr. 30: 1689-1707.

Woolward, F. H. 1896. The genus Masdevallia. Issued by the Marquess of Lothian, K.T., chiefly from plants in his collection of orchids

Yukawa, T., Ohba, H., Cameron, K. \& Chase, M. W. 1996. Chloroplast DNA phylogeny of subtribe Dendrobiinae (Orchidaceae): insights from a combined analysis based on rbcL sequences and restriction site variation. J. Pl. Res. 109: 169-176.

ZAVADA, M. S. 1990. A contribution to the study of pollen wall ultrastructure of orchid pollinia. Ann. Missouri Bot. Gard. 77: 785-801.

Appendix I

Morphological Data Matrix

Species	1	2	3	4	5	6	7	8	9	1	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	1	$\begin{aligned} & 1 \\ & 3 \\ & \hline \end{aligned}$	1 4	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 6 \end{aligned}$	1 7	$\begin{aligned} & \hline 1 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 0 \\ & \hline \end{aligned}$	2	$\begin{aligned} & \hline 2 \\ & 2 \\ & \hline \end{aligned}$
D. astuta	2	2	2	1	2	2	3	2	1	2	1	1	1	1	1	1	1	1	1	2	1	1
D. chimaera	1/2	1	2	1	2	2	3	2		2	1	2	1	1	2	1	1	1	1	2	1	4
D. cochliops	2	1	2	1/2	1	1	1	2	1	1	1	1	2	1	1	1	2	1/4	1	2		1
D. houtteana	2	1	2/3	1	2	2	3	2	1	2	2	1	2	1	2	1	1	1	1	2	1	4
D. sodiroi	2	1	2	1	1	1	1	2	1	1	1	1	1	2	1	2	1	1	1	2	1	1
D. xenos	2	1	2	1/2	1	1	1	1	1				1	1	2	1	1	1	1	2	1	1
M. abbreviata	2	1	2	2	1	1	1	1	1				1	1	1	1	1	3	1	2	1	1
M. alexandrii	2	1	3	1	2	2	1	1	1				1	1	2	1	1	1	1	2	1	1
M. ampullacea	2	1	2/3	2	1	1	1	1	1				1	1	2	1	1	1	1	2	1	1
M. antonii	2	1	2	1	1	1	3	2	1	2	1	1	2	1	1	1	1	1	1	2	1	4
M. aphanes	2	1	1/2	1	1	1	1	1	1				2	1	2	1	1	1	1	2	1	1
M. bangii	2	1	3	2	1	2	1	2	1	1	2	1	1	1	1	1	1	1/4	1	2	1	1
M. bicornis	2	1	2	2	2	1	,	1	1				1	1	2	1	1	3	1	2	1	1
M. caloptera	2	1	3	2	2	1	1	2	1	2	2	2	1	1	1	1	1	2	1	2	2	1
M. campyloglossa	2	1	2	1	1	1	1	2	1	1	2	1	1	2	1	2	1	1/4	1	2	1	1
M. cardiantha	2	1	2	1	1	1	1	2	1	1	2	1	1	2	1	2	1	1/4	1	2	1	1
M. carmenensis	2	1	2/3	1	1	1	1	1	1				1	1	2	1	1	1	1	2	1	1
M. caudivolvula	2	1	2/3	1/2	1	1	1	2	1	1	1	,	1	1	1	1	1	1/4	1	2	1	1
M. cerastes	2	1	2	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1/4	1	2	2	2
M. chaetostoma	2	1	3	2	1	2	1	2	1	1	1	1	1	1	1	1	1	1	1	2	1	1
M. chimboensis	2	1	3	1	2	2	1	1	1				1	1	1	1	1	1	1	2	2	1
M. civilis	2	1	1/2	2	1	2	1	1	1				1	2	2	1	1	1	1	1	1	1
M. coccinea	1	1	2/3	2	2	2	1	1	2				1	1	1	1	1	1	1	2	1	1
M. collina	2	1	2	1	1	1	1	2	1	1	1	1	1	2	1	1	1	1/4	1	2	1	1
M. corniculata	1/2	1	1/2	1	1	1	1	2	1	1	2	2	1	1	1	1	1	2	1	2	2	1
M. cupularis	2	1	3	2	2	2	1	2	1	1	2	1	1	1	2	1	1	1	1	2	1	1
M. davisii	2	1	2	1	1	1	1	1	2				1	1	2	1	1	1	1	2	1	1
M. decumana	2	1	2	2	1	1	1	1	2				1	1	2	1	1	1	1	2	1	1
M. deformis	2	1	2/3	2	1	1	1	1	2				1	1	1	1	1	1	1	2	1	1
M. delhierroi	1/2	1	3	1	2	1	1	2	1	1	1	1	1	1	1	1	1	1/4	1	2	1	4
M. echo	2	1	2	1	1	1	1	2	1	1	2	1	1	2	2	2	1	1/4	1	2	1	1
M. erinacea	2	1	2	2	1	1	1	1	2				1	1	2	1	1	3	1	2	2	1
M. estradae	2	1	2	2	1	1	1	1	2				1	1	2	1	1	2	1	2	2	1
M. floribunda	2	1	3	1	2	2	1	1	1				1	1	1	1	1	1	1	2	2	1
M. fulvescens	2	1	2	1	1	1	1	2	1	1	1	1	1	2	2	1	1	1	1	2	1	1
M. garciae	1/2	1	2	1	1	1	1	1	2				1	1	1	1	1	1	1	2	1	1
M. glandulosa	2	1	2	1	1	1	1	1	1				1/2	1	2	1	1	1	1	2	1	1
M. glomerosa	2	1	2	1	1	1	1	2	1	1	1	1	2	1	1	1	1	1	1	2	1	4
M. goliath	2	1	3	2	2	2	1	1	1				1	1	1	1	1	1	1	2	1	1
M. gutierezii	2	1	2	1	1	1	1	1	1				1	1	2	1	1	1	1	2	1	1
M. guttulata	2	1	2	1	2	2	1	2	1	1	2	1	1	2	2	2	1	1/4	1	2	1	1
M. herradurae	2	1	2/3	1	1	1	1	2	1	1	1	1	2	1	2	1	2	1	1	2	1	1/4
M. hirtzii	2	1	2	1	1	2	1	1	2				1	2	2	1	1	1	1	2	1	1
M. hoeijeri	2	1	2	1/2	2	1	1	1	1				1	1	2	1	1	1	1	2	2	1
M. infracta	1/2	1	1/2	2	2	2	1	1	1				1	1	2	1	1	1	1	1	1	1
M. lamprotyria	2	1	2	1	1	1	1	1	2				1	1	2	1	1	1	1	2	1	1
M. lata	2	1	2	2	1	1	1	1	1				1	2	2	1	1	1	1	2	1	1
M. macrura	2	1	2/3	2	2	1	1	2	1	1	1	1	1	2	2	1	1	1	1	2	1	1
M. melanoxantha	2	1	2	2	1	1	1	2	1	1	2	1	1	2	1	2	1	1/4	1	2	1	1
M. meleagris	1	2	2	1	1	2	1	2	1	2	1/2	1	1	1	1	1	1	1	1	2	1	4
M. mentosa	2	1	2	2	2	2	1	1	1				1	1	2	1	1	1	1	2	1	1
M. mezae	2	1	3	1	2	2	1	2	1	1	1	1	1	1	1	1	1	1/4	1	2	1	3
M. molossus	2	1	2	1	1	1	1	1	1				2	1	1	1	1	1	1	2	1	4
M. mystica	2	1	2	1	2	2	1	1	1				2	1	2	1	1	1	1	2	1	1
M. naranjapatae	2	1	2	1/2	1	1	1	2	1	2	1	1	1	1	2	1	1	1	1	2	1	1
M. nidifica	2	1	2	2	1	1	1	1	2				1	1	2	1	1	1	1	2	1	1
M. notosibrica	2	1	2	2	2	1	1	2	1	2	2	2	1	1	1	1	1	1/4	1	2	1	1
M. ophioglossa	2	1	3	2	2	2	1	1	1				1	1	2	1	1	1	1	2	1	2
M. oreas	2	1	2/3	2	2	1	1	1	1				2	2	2	1	1	1	1	2	1	1
M. ova-avis	2	1	2/3	2	1	1	1	1	1				2	1	2	1	1	1	1	2	1	1
M. pachyura	2	1	2	2	2	1	1	2	1	2	2	2	1	1	2	1	1	2	1	2	2	2

Species	1	2	3	4	5	6	7	8	9	1	1	12	1 3	1 4	1 5	1 6	1 7	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 9 \end{aligned}$	2	2	2
M. paivaeana	2	1	2	1	2	1	1	1	2				1	2	2	1	1	1	1	2	1	1
M. panguiensis	2	1	1	2	1	1	1	1	1				1	1	2	1	1	1	1	2	2	1
M. parvula	2	1	2	2	1	1	1	1	1				1	1	1	1	1	1	1	2	1	4
M. patriciana	2	1	2	1	2	1	1	2	1	1	2	1	1	2	1	2	1	$1 / 4$	1	2	1	1
M. patula	2	1	2	1	1	1	1	1	1				1	2	1	1	1	1	1	2	1	1
M. peristeria	2	1	3	2	2	1	1	1	1				1	1	2	1	1	1	1	2	2	1
M. perscicina	1	1	2/3	1/2	2	1	1	2	1	1	1	1	1	2	2	1	1	1	1	2	1	1
M. pescadoensis	1	1	3	1	2	1	1	1	1				1	1	1	1	1	1	1	2	1	1
M. picea	2	1	3	2	1	1	1	2	1	1	1	1	1	1	1	1	1	1/4	1	2	1	1
M. picturata	2	1	1/2	1	2	2	1	2	1	2	2	2	1	1	1	1	1	1	1	2	2	1
M. pinocchio	2	1	2/3	2	1	1	1	1	1				2	2	2	1	1	1	1	2	1	1
M.	2	1	2	1	2	2	3	2	1	2	1	1	1	1	1	1	1	1	1	2	2	4
pleurothalloides																						
M. princeps	1	1	2	2	2	2	1	1	1				1	1	2	1	1	1	1	1	1	1
M. prodigiosa	2	1	2	1	1	1	1	1	1					1	2	1	1	1	1	2	1	1
M. pyxis	2	1	3	2	2	2	1	2	1	1	1	1	1	1	1	1	1	1	1	2	1	1
M. racemosa	2	1	3	1	2	2	1	2	1	1	1	1	2	1	2	1	1	1	1	2	1	1
M.	2	1	2/3	2	2	1	1	2	1	1	1	1	1	2	1	1	1	1	1	2	1	1
reichenbachiana																						
M. rimarima-alba	2	1	3	2	2	2	1	1	2				1	1	1	1	1	I	1	2	1	1
M. rubiginosa	2	1	2	2	1	1	1	1	1				1	1	2	1	1	1	1	2	1	1
M. sanchezii	2	1	2/3	2	2	2	1	1	1				1	1	2	1	1	1	1	2	1	1
M. scabrilinguis	1/2	1	3	2	1	2	1	2	1	2	2	2	1		1	1	1	2	1	2	2	2
M. schlimii	2	1	3	2	2	2	1	1	1				2	1	2	1	1	1	1	2	1	1
M. schroederiana	2	1	3	2	2	2	1	1	2				1	1	2	1	1	1	1	2	1	1
M. striatella	2	1	3	2	2	2	1	1	1				1	1	2	1	1	1	1	2	1	1
M. teaguei	2	1	3	2	2	2	1	1	1				1	1	1	1	1	1	1	2	1	1
M. uniflora	1/2	1	2/3	2	2	2	1	1	1				1	1	2	1	1	2	1	2	2	1
M. veitchiana	1	1	2/3	1	2	2	1	1	1				1	1	1	1	1	1	1	2	1	1
M. venezuelana	2	1	2	2	1	1	1	1	1				1	2	1	2	1	1	1	2	1	1
M. verecunda	2	1	2	1	1	1	1	2	1	2	1	1	2	1	2	1	1	1	1	2	1	1
M. vieirana	2	1	2	1	1	1	1	1	1				1	2	2	1	1	3	1	2	1	1
M. weberbaueri	2	1	1/2	2	2	2	1	2	1	1	2	1	1	2	1	2	1	$1 / 4$	1	2	1	1
M. wendlandiana	2	1	3	2	2	2	1	2	1	2	1	1	2	1	2	1	1	1	1	2	1	1
M. zahlbrucknerii	2	1	2	1	2	1	1	2	1	1	2	1	1	1	1	1	1	1	1	2	1	1
P. amethystinum	2	1	2/3	1	1	2	3	2	1	2	2	1	2	1	2	1	1	1	1	1	2	4
P. uxorium	2	1	2/3	1/2	1	1	1	2	1	1	2	1	1	1	1	1	1	1	1	2	1	1

	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4
Species	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4
D. astuta	2	1	1	2			2	3	1	3	6	2	1	2	1	3	2	3	2	3	5	6
D. chimaera	2	1	1	1	2	2	1	1	2	4	2	2	1	5	1	3	2	3	2	3	4	2
D. cochliops	2	1	1	2			2	3	2	3	1	2	1	2	2					3	4	1
D. houtteana	2	1	2	7			2	1	1	3	2	2	1	2	1	3	2	3		3	3	2
D. sodiroi	2	1	1	1	2	2	2	3	1	3	2	1	1	1	2					3	3	2
D. xenos	2	1	2	2			2	1	2	2	4	2	1	4	1	3	2	3	2	1	1	4
M. abbreviata	2	1	2	2			2	1	2	3	3	1	1	1	1	3	2	3	3	3	1	3
M. alexandrii	2	1	1	1	2	2	1	3	2	1/4	1	2	1	1	1	3	2	3	2	3	1/4	1
M. ampullacea	2	1	1	2			1	1	1	3	1	2	1	2	1	3	2	3	2	1	1	1
M. antonii	2	1	2	7			2	2	1	3	2	2	1	1/2	1	3	2	3	2	3	3	2
M. aphanes	2	1	2	1	2	2	1	1	2	1/4	1	2	1	1	1	1	2	3	1	3	3	1
M. bangii	2	1	1	1	2	1	1	1	1	1	1	1	1	2	1	1	2	2	1	3	3	1
M. bicornis	2	1	1	2			2	1	2	2	3	1	1	2/4	1	1	2	2	1	1	3	3
M. caloptera	2	1	2	2			1	3	2	2	1	2	3	4	1	3	2	2	1	1	2	1
M. campyloglossa	2	1	2	2			2	1	1	3	3	1	$1 / 4$	1	2					3	3	3
M. cardiantha	2	1	2	1	2	2	2	1	1	4	1	1	1	1	1	3	2	3	1	3	3	1
M. carmenensis	2	1	2	1	1	2	1	2	2	1	2	1	1	4	1	1	2	2	3	3	3	2
M. caudivolvula	1	1	2					3	1	4	1	2	3	$2 / 5$	1	1	2	3	2	1	3	1
M. cerastes	1	1	2					3	2	3	1	2	5	1	1	3	2	2	2	1	1	2
M. chaetostoma	2	1	2	1	2	2	2	1	2	3	2	1	1	6	1	1	2	3	2	3	2	2
M. chimboensis	1	1	1					3	2	3	1	2	$3 / 5$	1	2					3	1	1
M. civilis	2	1	1	1	2	2	1	2	1	4	3	1	1	1	1	3	2	2	2	3	3	3
M. coccinea	2	1	2	1	2	1	1	1	2	4	1	2	1	1	1	1	2	3	1	3	3	1
M. collina	1	2	2						1	2	1	2	1	4	1	3	2	3	2	1	$1 / 4$	1
M. corniculata	2	1	2	2			2	3	1	3	1	2	1	4	1	1	2	3	2	1	1	1
M. cupularis	2	1	2	1	2	2	2	1	2	3	3	1	1	3	1	3	2	3	1	3	3	3
M. davisii	2	1	1	1	2	1	1	2	2	4	2	2	1	4	1	3	2	3	2	$1 / 3$	4	2

Species	2	2	2	2	2	2 8	2 9	3 0	3 1	3 2	3 3	3 4	3 5	3 6	3 7	3 8	3 9	4 0	4	4 2	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$
M. decumana	2	1	2	1	2	2	1	2	2	4	2	2	1	4	1	1	2	2	2	3	3	2
M. deformis	2	1	2	2			2	3	2	4	1	2	3	4	1	3	2	3	2	1	1	1
M. delhierroi	2	1	2	2			1	3	1	4	1	2	1	3	1	1	1	2	3	3	1	1
M. echo	2	1	1	3			1	1	1	1/4	2	1	1	2	1	3	2	3	1	1	3	2
M. erinacea	2	1	2	5	2	1	1	2	1	3	1	1	1	2	1	3	2	3	1	2	3	1
M. estradae	2	1	2	4	1	1	1	3	2	3	1	2	3	2	1	3	2	3	2	1	2	1
M. floribunda	2	1	1	1	2	2	1	3	1	4	4	1	1	2	1	3	1	1	3	3	4	4
M. fulvescens	2	1	2	1	1	1	1	1	2	4	1	2	1	1	1	3	2	3	1	3	3	1
M. garciae	2	1	1	3			1	1	2	4	1	2	1	4	1	3	2	1	2	3	3	1
M. glandulosa	2	1	2	1	2	2	2	1	2	1	1	2	1	1	1	3	2	2	1	3	1	1
M. glomerosa	2	1	2	1	2	2	2	2	2	3	1	2	1	6	1	3	2	3	1	3	1	1
M. goliath	2	1	1	1	2	1	1	2	1	1/3	1	2	1	6	1	1	2	3	2	3	1	1
M. gutierezii	2	1	1	1	2	1	3	1	2	1	2	2	1	2	1		2	1	3	1	4	2
M. guttulata	2	1	2	1	2	1	1	2	2	2	3	1	1	1	1	3	2	3	2	1	1	3
M. herradurae	2	1	2	5	2	2	2	1	2	3	1	1	1	1	1	2	2	3	1	3	4	1
M. hirtzii	2	1	1	1	2	2	1	1	2	4	2	2	1	4	1	1	2	3	2	3	3	2
M. hoeijeri	2	1	1	1	1	1	1	1	1	1/4	2	2	3	2	1	3	2	1	3	1	4	2
M. infracta	2	1	2	1	2	2	1	2	1	3	3	1	1	1/2	1	3	2	3	2	3	3	3
M. lamprotyria	2	1	1	1	2	1	1	1	2	1/4	1	2	1	2	1	1	2	2	1	1	1/4	1
M. lata	2	1	2	2			1	1	2	3	1	2	1	4	1	1	2	3	1	3	3	1
M. macrura	2	1	2	3			1	1	1	4	1	1	1	2	1	3	2	3	1	1	3	1
M. melanoxantha	2	1	2	1	2	2	2	1	2	3	1	1	1	1	1	3	2	3	1	3	1/3	3
M. meleagris	2	1	2	1	2	2	1	1	2	1	2	2	1	2/3	2					1	1	2
M. mentosa	2	1	1	1	2	1	1	1	2	1	1	2	1	3	2					1	1	1
M. mezae	2	1	2	2			3	1	1	3	4	2	1	4	1	3	1	3	2	3	3	4
M. molossus	2	1	2	1	2	2	2	3	1	3	1	2	1	1/6	1	2	2	3	2	3	3	1
M. mystica	2	1	2	5	2	2	2	3	1	3	1	1	1	1	2					3	3	1
M. naranjapatae	2	1	2	5	2	2	2	2	1	3	2	2	1	1	1	3	2	2	2	3	3	2
M. nidifica	2	1	2	2			2	3	2	3	2	2	1	4	1	3	2	3	1	1	2	2
M. notosibrica	2	1	2	1	2	2	1	1	1	4	5	1	1	1	1	1/3	2	3	1	3	1	5
M. ophioglossa	2	1	2	1	2	1	1	3	2	4	1	2	1	1	1	3	2	3	2	1	3	1
M. oreas	2	1	2	5	2	2	1	3	2	4	1	1	1	1	1	3	2	2	2	3	4	1
M. ova-avis	2	1	2	3			1	2	1	4	1	1	1	1	1	3	2	3	2	3	1	1
M. pachyura	2	1	2	2			2	3	1	3	1	2	3	2	1	3	1	2	1	1	1	2
M. paivaeana	2	1	1	1	2	2	2	3	2	3	1	2	1	1	1	1	2	3	2	3	2	1
M. panguiensis	2	1	2	5	2	2	1	2	2	4	1	1	1	4	1	3	2	3	2	1	1	2
M. parvula	2	1	2	5	2	2	2	3	1	3	3	1	1	2	2					3	3	3
M. patriciana	2	1	2	1	2	2	1	1	1	4	2	1	1	2	1	3	2	3	1	3	3	1
M. patula	2	1	2	1	2	2	1	1	2	4	2	2	1	4	1	1	2	3	2	3	4	2
M. peristeria	2	1	2	1	2	1	3	1	2	1	1	2	1	2	1	3	2	2	2	1	1	1
M. perscicina	2	1	2	1	2	2	1	1	2	1	1	1	1	3	1	3	2	2	1	3	1	1
M. pescadoensis	2	1	2	1	2	2	1	1	2	4	1	2	1	1	1	3	2	2	1	3	1	1
M. picea	2	1	2	1	2	2	2	1	1	4	1	1	1	1	1	2	2	3	1	3	3	1
M. picturata	2	1	2	5	2	1	1	3	1	4	1	2	2	4	1	3	2	2	2	1	1/3	1
M. pinocchio	2	1	2	2			2	1	2	3	1	2	1	4	1	1	2	3	1	1	2	1
M.	1	1	2					3	1	2	3	2	1	2	1	3	2	3	2	3	3	3
pleurothalloides																						
M. princeps	2	1	1	1	1	2	1	1	1	1	2/3	1	1	1	1	3	2	1	1	3	1	$2 / 3$
M. prodigiosa	2	1	2	1	2	1	1	1	2	4	1	1	1	4	1	3	2	3	2	1	1	1
M. pyxis	2	1	2	6	2	2	2	1	2	3	2	1	1	6	1	3	2	3	1	3	3	2
M. racemosa	2	1	2	1	2	2	2	1	2	4	2	2	1	3	1	1	2	3	2	3	3	2
M.	2	1	2	3			1	1	1	1	1	1	1	1	1	1	2	3	1	3	3	1
reichenbachiana																						
M. rimarima-alba	2	1	1	1	1	2	2	2	2	1	1	1	1	1	2					3	1	1
M. rubiginosa	2	1	2	1	2	2	1	1	2	4	2	2	3	2	1	1	2	3	1	3	4	2
M. sanchezii	2	1	2	1	2	2	1	3	2	4	1	1	1	1	1	3	2	1	2	3	3	1
M. scabrilinguis	2	1	2	1	2	1	1	2	1	1	2	2	1	2	1	1	2	3	2	1	4	2
M. schlimii	2	1	1	1	2	2	1	3	1	1	5	2	1	1	1	3	2	3	1	3	1	5
M. schroederiana	2	1	1	1	2	2	1	1	2	1/4	2	2	1	1	1	3	2	2	2	3	4	2
M. striatella	2	1	1	1	1	1	1	1	2	1/3	1	1	1	1	2					1	1	1
M. teaguei	2	1	1	1	2	2	1	1	2	1	1	2	1	3	2					1	3	1
M. uniflora	1	1	2					3	1	3	1	2	3	1	1	3	2	3	2	3	1	1
M. veitchiana	2	1	2	1	2	1	2	1	1	3	2	2	1	1	1	3	2	2	1	2	3	2
M. venezuelana	2	1	2	1	2	2	1	2	2	1	1	1	1	2	1	3	2	2	2	1	1	1
M. verecunda	2	1	2	1	2	2	1	2	1	4	1	2	3	1	1	2	2	3	2	3	3	5
M. vieirana	2	1	2	3			1	1	2	4	1	1	3	4	1	3	2	3	1	3	3	1
M. weberbaueri	2	1	2	4	2	2	3	1	1	4	2	1	1	2	1	3	2	3	1	1	3	2
M. wendlandiana	2	1	2	1	2	2	1	1	2	4	5	2	1	2	1	3	2	3	1	3	3	2
M. zahlbrucknerii	2	1	1	1	2	2	1	1	1	1	1	1	1	2	1	3	2	3	2	3	4	1
P. amethystinum	2	1	2	2			2	1	1	3	2	2	1	2	1	3	2	3	2	3	3	2

Species	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	4	4 7	4 8	4 9	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	5 1	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	5 6	5 7	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 6 \\ & 0 \end{aligned}$	6 1	$\begin{aligned} & 6 \\ & 2 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	6 4	6 5	6
P. uxorium	2	1	2	3			2	1	1	4	2		1	2	1	1	2	3	1	3	3	2
D. astuta	2	1	2	1	3	1	2	3	1	6	1	1	2	6	1	1	3	2	2			
D. chimaera	2	1	6	1	3	2	2	3	2	4	3	2	1	2	1	1	2	1	2			
D. cochliops	2	1	2	1	3	2	1	1	2	1/3	1	2	2	3	1	1	1	2	1	2		2
D. houtteana	2	1	2	1	3	2	2	3	1	1	2	2	1	3	3	1	3	2	2			
D. sodiroi	1	1	1	2					2	1	1	2	2	1	1	1	1	2	1	2		1
D. xenos	2	1	2	1	1	2	2	3	2	1	1	2	2	4	2	1	1	2	1	2		1
M. abbreviata	1	1	1	1	3	2	2	3	2	1	1	2	2	4	2	1	1	2	1	1	2	3
M. alexandrii	2	1	1	1	3	1	2	3	2	1	1	2	2	2	4	1	1	2	1	2		2
M. ampullacea	2	1	2	1	3	2	2	3	2	1	1	1	2	4	3	1	1	2	1	2		2
M. antonii	2	1	1	1	3	1	2	3	1	1/2	2	2	1	3	2	1	3	2	2			
M. aphanes	2	1	1	1	3	1	2	3	2	1	1	2	2	1	1	1	1	2	1	2		1
M. bangii	1	1	2	1	3	2	2	1	2	1	1	2	2	4	2	1	1	2	1	1	2	2
M. bicornis	1	1	1	1	1	2	2	2	2	2	1	2	2	4	5	1	1	2	1	2		2
M. caloptera	2	2	2	1	3	1	2	2	2	1/2	2	2	2	4	4	1	1	2	1	2		3
M. campyloglossa	1	1	1	2					1	1/3	1	2	2	4	2	1	1	2	1	2		1
M. cardiantha	1	1	1	1	3	2	2	2	2	1/3	1	1	2	1	4	1	1	2	1	2		1
M. carmenensis	2	1	2	1	1	2	2	2	2	1	1	2	2	4	3	1	1	2	1	2		1
M. caudivolvula	2	2	1	1	1	1	2	3	1	1	1	2	2	1	1	1	1	2	1	2		2
M. cerastes	2	4	1	1	3	1	2	2	1	1/2	1	2	2	4	2	1	1	2	1	2		2
M. chaetostoma	1	1	2	1	1	2	2	3	2	1	1	2	2	4	2	1	2	2	1	1	1	3
M. chimboensis	2	2/4	1	2					2	1	1	2	2	4	3	1	1	2	1	2		1
M. civilis	1	1	1	1	3	1	2	2	2	1	1	2	2	2/3	1	1	1	2	1	1	2	3
M. coccinea	2	1/3	1	2					2	1	1	2	2	2	2	2	1	2	1	2		2
M. collina	2	1	2	1	3	1	2	3	1	1	1	2	2	2	4	1	1	2	1	2		1
M. corniculata	2	1	1	1	1	2	2	3	2	1/2	2	2	2	2	4	1	1	2	1	2		4
M. decumana	1	1	1	1	3	1	2	2	2	4	1	2	2	3	2	1	1	2	1	1	1	4
M. deformis	2	1	5	1	3	1	2	3	2	1	1	1	2	2	2	1	1	2	1	2		1
M. delhierroi	2	1	2	1	1	1	2	2	2	1	1	2	2	4	2	1	1	2	1	2		1
M. echo	1	1	5	1	3	1	2	3	1	1	1	2	2	4	3	1	1	2	1	2		1
M. erinacea	1	1	2	1	3	1	2	3	1	3	1	2	2	3	1	1	1	2	2			
M. estradae	2	2	1	1	3	2	2	3	2	1	1	2	2	4	2	1	1	2	1	1	2	4
M. floribunda	1	1	2	1	1	1	2	3	2	1/3	1	2	2	2	5	1	2	2	1	1	2	1
M. fulvescens	2	1	1	1	3	2	2	3	2	1	1	2	2	1	1	1	1	2	1	2		3
M. garciae	2	1	2	1	3	2	1	1	2	1	1	2	2	4	4	1	1	2	1	2		3
M. glandulosa	2	1	5	1	3	1	2	3	2	1	1	2	2	2	1	1	1	2	1	2		3
M. glomerosa	2	1	1	1	3	1	2	2	2	5	1	2	2	3	2	1	1	2	1	2		2
M. goliath	2	1	7	2					2	1	1	1	2	4	2	2	1	2	1	2		2
M. gutierezii	2	1	2	1	3	2	2	2/3	2	2	1	2	2	1	1	1	1	2	1	1	2	3
M. guttulata	1	1	1	1	1	1	2	3	2	1	1	2	2	4	3	1	1	2	1	2		2
M. herradurae	1	3	2	1	4	2	2	1	2	1	1	1	2	2	1	1	1	2	1	2		1
M. hirtzii	2	1	2	1	3	1	2	3	2	1	1	2	2	1	1	1	1	2	1	2		1
M. hoeijeri	2	2	2	1	3	2	2	3	1	1	1	1	2	2	2	1	1	2	1	2		2
M. infracta	1	1	1	1	3	1	2	3	2	1	3	2	2	2	2	1	1	2	1	2		3
M. lamprotyria	2	1	1	1	3	1	2	1	2	1	3	2	2	4	4	1	1	2	1	2		3
M. lata	2	1	6	1	3	1	2	3	2	1	1	2	2	2	1	1	1	2	1	2		3
M. macrura	1	1	1	1	3	1	2	2	2	1	1	2	2	4	4	1	1	2	1	2		1
M. melanoxantha	1	1	1	1	3	1	2	2	1	1	1	2	2	4	2	1	1	2	1	2		2
M. meleagris	2	1	4/5	1	3	2	2	3	2	2	1	1	2	2	1	1	1	2	1	2		3
M. mentosa	2	1	4	2					2	1	1	2	2	4	4	1	1	2	1	1	2	4
M. mezae	2	1	5	2					2	2	1	2	2	1	1	1	1	2	1	2		4
M. molossus	2	1	7	2					2	4	1	2	2	2	$3 / 4$	1	1	1	1	2		1
M. mystica	1	1	1	1	3	1	1	2	2	4	2	2	2	3	4	1	1	2	1	2		1
M. naranjapatae	1	1	1	1	3	2	2	3	2	3	3	2	2	1	1	1	1	2	1	2		4
M. nidifica	2	1	2	2					2	4	1	2	2	$2 / 3$	4	1	1	2	1	2		3
M. notosibrica	1	1	2	1	3	2	2	2	2	3	1	2	2	1	1	1	1	2	1	1	2	4
M. ophioglossa	2	1	1	1	3	1	2	3	1	1	1	2	2	2	2	1	1	2	1	2		2
M. oreas	1	1	1	1	1	2	2	3	2	1	1	2	2	4	4	1	1	2	1	2		2
M. ova-avis	2	1	1	1	3	2	2	3	2	1	1	2	2	4	4	1	1	2	1	2		2
M. pachyura	2	1	1	1	3	1	2	2	2	1/2	1	2	2	2	4	1	1	2	1	1	2	4
M. paivaeana	2	1	1	1	1	1	2	3	2	1	1	2	2	4	3	1	1	2	1	2		1
M. panguiensis	1	1	2	1	3	1	1	2	2	1	2	2	2	4	4	1	1	1	1	1	2	4
M. parvula	1	1	2	1	3	2	2	3	2	1	1	2	2	2	2	1	1	2	1	2		2
M. patriciana	1	1	1	1	4	1	2	3	2	1	1	2	2	4	3	1	1	2	1	2		1
M. patula	2	1	2	2					2	2	1	2	2	3	4	1	1	2	1	2		3
M. peristeria	2	1	1	2					2	1	1	2	2	4	3	1	1	2	1	2		1
M. perscicina	1	1	2	1	3	1	2	3	1	1	1	2	2	4	3	1	1	2	1	2		2
M. pescadoensis	2	1	1	1	3	2	2	2	2	5	2	2	2	1	3	2	1	2	1	2		2
M. picea	1	1	2	1	3	1	2	1	2	1	1	2	2	2	2	1	1	2	1	1	1	4
M. picturata	2	1	1	2					2	1	1	1	2	3	2	1	1	2	1	2		2
M. pinocchio	2	1		1	3	2	2	3	2	1	1	2	2	2	4	1	1	2	1	2		1

Species	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	4 6	$\begin{aligned} & 4 \\ & 7 \end{aligned}$	4 8	4 9	5	5	5	5	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	5	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	5 7	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 5 \\ & 9 \end{aligned}$	6 0	6	6 2	6 3	4	6 5	6 6
M.	2	1	1	1	3	1	2	2	2	4	2	2	2	4	3	1	1	1	1	2		4
pleurothalloides																						
M. princeps	1	1	1	1	1	1	2	3	1	1	1	2	2	4	2	1	1	2	1	2		1
M. prodigiosa	2	1	5	1	3	1	2	3	1	1	1	2	2	1	1	1	2	2	1	2		1
M. pyxis	1	1	7	1	3	1	2	1	2	1/2	1	2	2	2	4	1	1	2	1	1	2	3
M. racemosa	2	1	7	1	3	2	2	3	2	2	1	2	2	4	3	1	1	2	1	2		1
M.	1	1	1	1	3	2	2	3	2	1	1	2	2	4	2	1	2	2	1	1	1	3
reichenbachiana																						
M. rimarima-alba	1	1	1	1	1	2	2	3	2	1	1	2	2	1	2	1	1	2	1	2		2
M. rubiginosa	2	1	5	1	1	2	2	1	2	2	1	2	2	2	1/2	1	1	2	1	2		3
M. sanchezii	1	1	2	2					2	1	1	2	2	2	2	1	1	2	1	2		3
M. scabrilinguis	2	1	1	1	3	2	2	2	2	1/2	1	2	2	4	3	1	1	2	1	2		2
M. schlimii	2	1	1	1	3	2	2	1	2	1/2	1	2	2	2	4	1	1	2	1	1	2	3
M. schroederiana	2	1	2	1	1	1	2	3	2	1	2	2	2	4	3	1	1	2	2			
M. striatella	1	1	1	1	3	2	2	2	2	1	1	2	2	1	1	1	1	2	1	2		2
M. teaguei	2	1	4	1	3	2	2	2	2	1/3	1	2	2	1	4	1	1	2	1	2		3
M. uniflora	2	2	1	2					2	1	1	2	2	1/2	2	1	1	1	1	2		1
														14								
M. veitchiana	2	1	1	2					2	1	1	2	2	4	3	1	1	2	1	2		1
M. venezuelana	1	1	1	1	2	1	2	3	2	2	1	2	2	4	3	1	1	2	1	2		4
M. verecunda	2	1	1/4	1	3	2	2	1	2	1	1	2	2	1	3	1	2	2	1	2		3
M. vieirana	1	2	2	1	3	1	2	2	2	2	1	2	2	4	3	1	1	2	1	2		3
M. weberbaueri	1	1	2	1	1	2	2	2	2	1	1	2	2	1	1	1	1	2	1	2		1
M. wendlandiana	1	1	1	1	3	2	2	2	2	3	1	2	2	1	1	1	2	2	1	2		2
M. zahlbrucknerii	1	1	1	1	3	2	2	3	2	1	1	2	2	4	4	1	1	2	1	1	2	4
P. amethystinum	2	1	2	1	3	2	2	2	2	1/2	1	2	2	2	4	1	1	2	1	2		3
P. uxorium		1	2	1	3	2	2	3	2	1	1	2	2	1	4	1	1	2	1	2		1

	6	6	6	7	7	7	7	7	7	7	7	7	7	8	8	8	8	8	8	8	8	8
Species	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8
D. astuta			4	1	3	4	2	2	2	2	1	5	2	1	1	2	1	1	1	3	2	2
D. chimaera			1	1	2	1	2	1	2	2	1	5			1	1	1	1	1	3	2	2
D. cochliops	3	3	5	1	2	1	1	5	1	2	2	3	2								1	2
D. houtteana			5	2	3	4	1	1	2	2	1	3	2	1	1	1	1	1	1	3	2	2
D. sodiroi	2	3	1	1	1	2	2	1	2	2	2	2	1								2	2
D. xenos	1	1	6	1	1	1	1	1	1	2	2	2	1							2	2	2
M. abbreviata		2	1	1	1	2	1	3	2	2	1	2	1	2	1	3	3	1	1	2	2	2
M. alexandrii	3	3	1/4	1	1	2	2	1	2	2	1	2	1	3	1	1	3	1	1	2	2	2
M. ampullacea	1	2	3	1	1	1	2	1	1	2	2	2	2							2	2	2
M. antonii			5	2	3	4	2	1	2	2	1	5	2	$1 / 3$	2	1	1	1	1	3	2	2
M. aphanes	1	2	1	1	2	1	2	1	2	2	2	2	2							2	2	2
M. bangii	1	3	3	2	2	1	2	1	2	2	2	1	2							2	2	2
M. bicornis	1	1	1	1	1	2	2	2	2	2	1	2	2	3	2	2	3	2	1	2	2	2
M. caloptera		2	1	1	2	1	2	1	2	2	1	3	2	3	1	1	3	1	1	2	2	2
M. campyloglossa	3	2	1	5	1	2	1	1	2	1	1	3	2	1	1	1	3	1	1	2	2	2
M. cardiantha	3	3	1/4	1	1	1	2	2	2	2	1	3	1	3	1	2	3	1	1	2	2	2
M. carmenensis	1	2	1	1	1	2	2	1	2	2	2	3	2							2	2	2
M. caudivolvula	1	3	4	1	2	2	2	1	2	2	2	3	1							2	2	2
M. cerastes	3	3	3	1	1	1	2	1	1	2	2	3	2							2	2	2
M. chaetostoma		2	1	1	1	2	2	2	1	2	2	3	1							2	2	2
M. chimboensis	1	2	1	1	1	2	2	1	1	2	1	3	1	2	1	1	3	1	1	2	2	2
M. civilis		3	1	2	1	2	2	2	2	2	2	2	1							2	2	2
M. coccinea	1	2	1	1	1	2	2	1	1	2	2	2	2							2	2	2
M. collina	3	1	1	1	2	2	1	1	2	2	2	2	2							2	2	2
M. corniculata		2	1	1	2	1	2	1	2	2	1	3	1	1	1	1	3	2	1	2	2	2
M. cupularis		2	1	2	1	2	1	2	2	2	2	3	2							2	2	2
M. davisii	1/2	2	4	5	2	1	2	1	1	2	2	3	2							2	2	2
M. decumana	1/2	1	2	1	2	1	2	1	1	2	2	2	2							2	2	2
M. deformis	1	2	2	1	2	1	1	1	1	2	2	3	2							2	2	2
M. delhierroi			5	1	1	3	1	1	2	2	2	3	2							2	1	2
M. echo		1	1	5	1	2	2	2	2	2	1	3	1	3	1	2	3	1	1	2	2	2
M. erinacea	3	1	1	4	2	2	1	2	2	2	1	3	1	1	4	2	3	1	4	2	2	2
M. estradae		2	3	4	1	1	2	1	2	2	1	3	2	3	4	1	3	1	1	2	2	2
M. floribunda		3	1	2	1	2	2	2	2	2	2	3	1							2	2	2
M. fulvescens		2	1	1	1	2	2	1	2	2	2	2	2							2	2	2
M. garciae	1	2	1	3	1	1	2	2	1	2	2	2	1							2	2	2
M. glandulosa	2	2	1	2	2	2	1	5	2	2	2	2	2							2	2	2
M. glomerosa		3	4	4	2	2	1	1	2	2	2	2	2							2	2	2
M. goliath	3	3	1	1	1	2	2	2	2	2	1	2	2	1	1	2	3	1	1	2	2	2
M. gutierezii	3	1	3	5	1	2	2	1	2	2	2	3	1							2	2	2

Species	6 7	6 8	6 9	$\begin{aligned} & 7 \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	7 2	7 3	7 4	7 5	7 6	7 7	7 8	7 9	8 0	$\begin{aligned} & \hline 8 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 2 \end{aligned}$	8 3	8 4	8 5	8 6	8 7	8 8
M. guttulata	3	2	1	2	2	1	2	3	1	2	1	3	1	3	2	3	3	1	4	2	2	2
M. herradurae	2	2	1	1	2	2	2	1	2	2	1	2	1	1	1	1	3	2	1	1	2	1
M. hirtzii		1	1	5	2	1	2	1	2	2	2	3	2							2	2	2
M. hoeijeri		3	1	1	1	1	2	1	2	2	1	2	1	2	$4 / 5$	1	3	1	1	2	2	2
M. infracta		3	4	1	1	2	1	2	2	2	2	2	1							2	2	2
M. lamprotyria	1	2	2/3	1	2	1	2	1	2	2	2	3	1							2	2	2
M. lata	1	1	1	3	1	1	2	1	1	1	1	2	2	2	3	1	3	3	3	2	2	1
M. macrura		2	1	1	1	1	2	1	2	2	2	2	1							2	2	1
M. melanoxantha		2	1	1	1	1	2	2	1	2	1	2	1	1	1	2	3	3	1	2	2	2
M. meleagris		3	1	4	2	2	2	1	2	2	2	2	1							2	2	2
M. mentosa	3	3	1	1	1	2	2	4	2	2	2	2	2							2	2	2
M. mezae	3	2	1/2	5	1	2	2	2	2	2	2	2	2							2	2	2
M. molossus		3	2	1	2	2	2	1	2	2	2	2	2							2	2	2
M. mystica		2	1/3	4	1	1	2	2	2	2	2	3	1							2	2	2
M. naranjapatae		2	1	1	1	2	2	2	1	2	2	2	1							2	2	2
M. nidifica	2	1	1	1	1	1	1	1	1	2	2	3	2							2	2	1
M. notosibrica	3	2	1	1	1	2	2	1	2	2	1	3	1	3	1	1	3	1	1	2	2	2
M. ophioglossa	2	3	1	4	2	2	2	3	1	2	1	2	1	1	4	3	3	1	1	2	2	2
M. oreas		2	1	2	1	2	2	2/3	2	2	1	2	1	3	2	2/3	3	4	1	2	2	2
M. ova-avis	1	2	1	4	1	1	2	1	1	2	2	2	1							2	2	2
M. pachyura		1	1	1	2	2	2	1	2	2	1	3	1	2	1	1	3	1	1	2	2	2
M. paivaeana	2	2	1	5	1	1	2	1	1	2	2	2	1							2	2	2
M. panguiensis	3	2	1	1	1	1	2	1	2	2	1	2	2	2	2	1	3	2	1	2	2	2
M. parvula		3	5	4	1	3	2	2	1	2	2	2	2							2	2	2
M. patriciana	3	1	1	1	2	1	2	2	2	2	1	3	2	1	1	1	3	1	1	2	2	2
M. patula	1	2	1	1	2	1	2	1	1	1	2	2	2							2	2	2
M. peristeria	1	2	2	1	2	1	2	4	2	2	1	3	2	2	2	4	3	1	1	2	2	2
M. perscicina		2	1/4	1	2	2	2	2	2	2	1	2	1	2	1	2	3	1	1	2	2	2
M. pescadoensis	1	2	1	1	1	1	2	1	1	2	2	2	2							2	2	2
M. picea	3	2	1	5	2	2	2	2	2	2	1	2	2	3	1	2	3	1	1	2	2	2
M. picturata		1	1	1	1	1	2	1	1	2	1	2	1	1	1	1	3	1/2	1	2	2	2
M. pinocchio	1/2	2	3	4	1	1	2	1	1	2	2	3	2							2	2	2
M.	3	3	4	1	2	4	1	1	2	2	1	3	2	2	1	1	1	3	1	3	2	2
pleurothalloides																						
M. princeps		3	1/4	2	2	1	1	2	2	2	2	2	2							2	2	2
M. prodigiosa	1	1	1	1	1	2	2	1	1	2	2	3	1							2	2	2
M. pyxis		3	1	5	1	2	1	2	1	2	1	2	1	2	4	2	3	2	1	2	2	2
M. racemosa	1	2	1	1	2	2	2	1	2	2	2	3	2							2	2	2
M.		2	1	1	1	1	2	1	2	2	2	2	2							2	2	2
reichenbachiana																						
M. rimarima-alba		3	1	4	1	1	1	1	2	2	2	2	2							2	2	2
M. rubiginosa	3	3	1	1	1	1	2	2	2	2	1	2	2	2	1	2	3	1	1	2	2	2
M. sanchezii		3	1	1	2	2	1	2	2	2	1	1	1	2	1	2	3	1	1	2	2	2
M. scabrilinguis			2	1	2	2	2	2	2	2	1	2	2	1	2	2	3	2	2	2	2	2
M. schlimii	3	3	1	1	2	2	2	2	2	2	2	2	2							2	2	2
M. schroederiana		3	1	2	2	2	2	2	2	2	2	2	1							2	2	2
M. striatella	3	3	1	$1 / 4$	2	2	2	1	2	2	2	2	2							2	2	2
M. teaguei	3	3	1	1	2	1	2	4	2	2	2	2	2							2	2	2
M. uniflora		3	3	1	2	2	1	1	1	2	1	3	1	1	1	1	3	1	1	2	2	2
M. veitchiana		2	1	5	1	2	2	2	1	2	2	3	2							2	2	2
M. venezuelana		3	1	1	1	1	2	2	2	2	1	3	2	3	2	2	3	1	1	2	2	2
M. verecunda	3	1	1/4	1	1	1	1	1	2	2	2	2	2							2	2	2
M. vieirana	2	2	1	1	1	2	2	2	2	2	1	3	1	1	1	2	3	1	1	2	2	2
M. weberbaueri		2	1	2	1	1	2	2	2	2	1	2	2	4	2	2	3	1	1	2	2	2
M. wendlandiana		2	1	1	2	2	2	1	2	2	2	2	1							2	2	2
M. zahlbrucknerii	3	1	1	1	1	2	2	2	2	2	1	2	2	3	1	2	3	1	1	2	2	2
P. amethystinum			5	2	2	4	1	2	2	2	1	3	2	3	2	2	2	1	1	3	2	2
P. uxorium	1	2	3	1	1	2	1	6	2	2	2	5	2								2	2

	$\mathbf{8}$	$\mathbf{9}$							
Species	$\mathbf{9}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
D. astuta	1	2							1
D. chimaera	2	2							1
D. cochliops	1	1							1
D. houtteana	1	2							1
D. sodiroi	2	2							2
D. xenos	2	2							1
M. abbreviata	2	2	1	4	1	3	2	1	1
M. alexandrii	2	2	1	4	1	1	1	1	1

Appendix I

Species	8 9	9 0	9 1	$\begin{aligned} & 9 \\ & 2 \end{aligned}$	9 3	$\begin{aligned} & 9 \\ & 4 \end{aligned}$	9 5	9 6	9 7
M. ampullacea	2	2	1	3	2	1	2	1	1
M. antonii	1	2							1
M. aphanes	2	2	1	4	1	2	1	1	1
M. bangii	2	2							1
M. bicornis	2	2	2	4	1	2	2	2	1
M. caloptera	2	2	1	2	1	2	2	1	1
M. campyloglossa	2	2	1	3	1	3	2	1	2
M. cardiantha	2	2	1	3	1	2	2	2	1
M. carmenensis	2	2	1	1	2	2	2	1	1
M. caudivolvula	2	2							1
M. cerastes	2	2	1	2	2	2	2	1	1
M. chaetostoma	2	2	1	3	1	3	2	1	1
M. chimboensis	2	2	1	1	2	3	2	1	2
M. civilis	2	2	2	2	1	3	3	1	1
M. coccinea	2	2	3	3	1	2	2	1	2
M. collina	2	2							1
M. corniculata	2	2	1	4	1	2	2	1	1
M. cupularis	2	2							1
M. davisii	2	2	1	3	2	2	2	1	1
M. decumana	2	2	1	2	1	2	2	1	1
M. deformis	2	2	1	2	1	2	1	1	1
M. delhierroi	1	2	1	2	1	1/2	1	1	1
M. echo	2	2	1	4	1	2	2	1	1
M. erinacea	2	2	1	4	1	2	2	1	1
M. estradae	1	2	2	3	1	3	1	1	1
M. floribunda	2	2	3	1	1	3	2	1	1
M. fulvescens	2	2	1	3	1	2	2	1	1
M. garciae	2	2	1	3	1	2	2	1	1
M. glandulosa	2	2	1	1	1	2	2	1	2
M. glomerosa	2	2	2	3	1	1	2	2	1
M. goliath	2	2							1
M. gutierezii	2	2							1
M. guttulata	2	2	1	3	1	1	2	1	1
M. herradurae	2	2	2	4	1	3	3	1	1
M. hirtzii	2	2	1	2	1	3	2	1	1
M. hoeijeri	1	2							1
M. infracta	2	2	1	2	1	3	3	1	1
M. lamprotyria	2	2	1	2	1	2	2	1	1
M. lata	2	2	1	1	2	2	1	1	1
M. macrura	1	2	3	3	2	2	2	1	1
M. melanoxantha	2	2	1	4	1	3	2	1	2
M. meleagris	2	2							2
M. mentosa	2	2							2
M. mezae	2	2	1	1/4	2	1	2	1	1
M. molossus	2	2	2	3	2	1	1	2	1
M. mystica	2	2	2	1	1	2	2	2	2
M. naranjapatae	2	2	3	3	1	2	1	1	1
M. nidifica	2	2	1	4	1	2	2	1	1
M. notosibrica	2	2							1
M. ophioglossa	2	2	1	3	1	2	1	1	1
M. oreas	2	2							1
M. ova-avis	2	2	1	1	2	2	2	1	1
M. pachyura	2	2	1	2	1	2	2	1	1
M. paivaeana	2	2	1	1	2	2	2	1	1
M. panguiensis	2	2							1
M. parvula	2	2							2
M. patriciana	2	2	1	4	1	2	2	1	2
M. patula	2	2	1	1	2	2	2	1	1
M. peristeria	2	2	1	3	1	1	1	1	1
M. perscicina	2	2	2	3	1	3	2	2	1
M. pescadoensis	2	2	1	3	2	2	2	1	2
M. picea	2	2	1	3	1	2	2	1	1
M. picturata	2	2	1	2	1	1	1	1	1
M. pinocchio	2	2	1	2	1	2	2	1	1
M.	2	2							1
pleurothalloides									
M. princeps	2	2	1	1	1	3	2	1	1
M. prodigiosa	2	2	1	1	2	2	2	1	1
M. pyxis	2	2							1

Species	$\mathbf{8}$	$\mathbf{9}$							
	$\mathbf{9}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
M. racemosa	2	2							1
M.	2	2	1	3	1	2	2	1	1
reichenbachiana									
M. rimarima-alba	1	2	1	1	2	2	1	1	2
M. rubiginosa	2	2	1	4	1	2	2	1	1
M. sanchezii	2	2	1	1	1	3	2	1	1
M. scabrilinguis	2	2	2	3	1	1	1	2	1
M. schlimii	2	2							1
M. schroederiana	2	2	1	3	2	2	2	1	1
M. striatella	2	2	1	3	1	1	1	1	2
M. teaguei	2	2							2
M. uniflora	2	2	1	2	1	2	2	1	1
M. veitchiana	2	2	3	3	1	3	2	1	1
M. venezuelana	2	2	1	2	1	2	2	1	1
M. verecunda	1	2							1
M. vieirana	2	2	2	4	1	2	2	2	1
M. weberbaueri	2	2	1	4	1	2	2	1	1
M. wendlandiana	2	2	1	1	2	2	2	1	1
M. zahlbrucknerii	2	2	2	3	1	1	2	2	1
P. amethystinum	2	2							1
P. uxorium	2	2							1

Appendix II

Alignment of ITS sequences of Masdevallia and outgroups species

Comprising the 3 ' end of the 18 S rDNA, the ITS1, the 5.8 S rDNA, the ITS2, and the 5 ' end of the 26 S rDNA

ITS 1 TCGAG

5	15	25	35	45	55

D. astuta
D. chimaera
D. cochliops
D. houtteana
D. sodiroi.
D. xenos
L. pelecani
M. abbrevia
M. alexandr
M. amaluzae
M. ampullac
M. antonii
M. aphanes
M. aphanes.
M. bangii
M. bicornis
M. caesia
M. caloptera
M. campylog
M. cardiant
M. carmenen
M. caudiovo
M. cerastes
M. chaetost
M. chaparen
M. chimboen
M. citrinel
M. civilis
M. coccinea
M. collina
M. collina.
M. coriacea
M. corniHam
M. corniHan
M. cupulari
M. cycloteg
M. davisii
M. decumana
M. deformis
M. delhierr
M. echo
M. erinacea
M. estradae
M. floribun
M. fulvesce
M. garciae

TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACA: :: :AA GCGA:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT:: :: AA GCGA:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCCGT GACT::: :AA GCGA:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT:: :: AA GCGA:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT:: ::AA GCGA:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT: : : : AA GCGG:TGGCA TCGAG:ACCG AAA:TATATC GAGCGATTCG GAGAACCCGT GAAA: :: :TA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GATT: : : : AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT:: :: AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT:: : : AA GCGG:TGGCG TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT:: : GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT: : : : AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT: : : : AA GCGG:AGGCG TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACTTGT GACT:: ::AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT: :: : GA GCGG:TGGCA NNNNNNACCA AAA:TATATC GAACGATTTG GAGAACATGT GATTTT:: GA GCGG:TGGCA TCGAG:ACCA AAA:: :TATC GAGCGATTTG GATAACCTGT GACT:: GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GATT:: :: AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GATAACCTGT TACT:: GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT:: GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT: : : : AA GCGG:TGGCG TCGAG:ACCA AAA:TATATC GAGCGATTTG GATAACCTGT GACT:: :: GA GCGG:TGGCA TCGAGGACCA AAA:TATATC GAGCGATTTG GAGAACTTGT GACT: :: : AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GATT:: ::AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTT GAGAACCTGT GACT:: :: AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT: : AAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAAAACCTGT GACT:: :: GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GATAACCTGT GACT: :GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT:: :: GA GCGG:TGGCA TCGAG:ACCA AAA:TTTATC GAGCGATTCG GAGAACCCGT GACT: :GAGA GCGG:CGGCA TCGAG:ACCA AAA:TTTATC GAGCGATTCG GAGAACCCGT GACT:: GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GATAACCTGT GACT: : GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACTTGT GACT: :: :AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACTTGT GACT:: :: AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GATT:: GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT:: :: AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT:: :: AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT: :: : GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GATT:: :: GA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACTTGT GACT:: ::AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GATT: : GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCTGT GACT:: : : GA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT: :: : GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT:: GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT:: GAGA GCGG:CGGCA TCGAG:ACCG AAA:CATATC GAGCGATTCG GAGAACCCGT GATT: : GAGA GCGG: CGGCA

Appendix II
 Aligned ITS sequences

ITS 1 TCGAG

M. glandulo
M. goliath
M. gutierre
M. guttulat
M. herradur
M. heteropt
M. hierogly
M. hirtzii
M. hoeijeri
M. infracta
M. kyphonan
M. lamproty
M. lansberg
M. lata
M. limax
M. macruraH
M. macruraH
M. melanoxa
M. meleagri
M. mentosa.
M. mezae
M. molossus
M. mystica
M. naranjap
M. nidifica
M. notosibr
M. ophioglo
M. oreas
M. oreas
M. ova avis
M. pachyura
M. paivaean
M. panguien
M. parvula
M. patricia
M. patula
M. perister
M. persicin
M. pescadoe
M. picea
M. picturat
M. pinocchi
M. pleuroth
M. princeps
M. pyxis
M. racemosa
M. reichenb
M. rubeola.
M. rubigino
M. saltatri
M. sanchezi
M. scabrili
M. schlimii
M. striatel
M. teaguei.
M. titan
M. uniflora
M. veitchia
M. venezuel
M. vieriana M. walteri
M. wendland
M. ximenae.
M. zahlibruc

TCGAG:ACCA AAA:TATATC GAGCGATTTA GAGAACCTGT TACT::::GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACTTGT GACT::::AA GCGG:TGGCA TCGAG:ACCA AAA:CATATC GAGCGATTCG GAGAACCTGT TACT::GATG GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT::GAGA GCGG:CGGCG TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT::GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT::::AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT::::GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT:: :: GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GATT: :: : GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GATT:: GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCTGT GACT: : GATA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT::::GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCTGT GACT:: GATA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT::GCGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT::::GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT:: :: GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT::::GA GCGG:TGGCA TCGAG:ACCA AAA:CATATC GAGCGATTCG GAGAACCCGT GATT: : GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT::::AA GCGG:TGGCA TCGAG:ACCG AAA:TATATC GAGCGATTCG GAGAACCCGT GACT: :GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT::GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGAGATTTG GAGAACCTGT GATT::::AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT::::GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT::GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTA GAGAACCTGT GATT::::AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT::: : GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GATT::::AA CCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT:: GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT:: GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GATT::::AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GATT: :: :AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT::::GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACTTGT GACT::::AA GCGGGTGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACTTGT GACT::::AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT::::GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT::::AA GCGG:TGGCG TCGAG:ACCA AAA:: :TATC GAGCGATTTG GATAACCTGT GACT::GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT:: : : GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT: : GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GATAACCTGT GACT: : GAGA GCGG:CGGCA TCGAG:ACCA AAAATATATC GAGCGATTTG GAGAACCTGT GACT::::AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT: : GAGA GCGG:CGGCG TCGAG:ACCA AAAATATATC GAGCGATTTG GAGAACCTGT GACT::::AA GCGG:TGGCA TCGAG: ACCA AAA:TATATC GAGCGATTTG GAGAACTTGT GACT:: : : AA GCGG:TGGCA TCGAG:ACCA AAA: CATATC GAGCGATTCG GAGAACCCGT GACT:: GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GATAACCTGT GACT: :: :GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT::GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT::::AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT:: : :AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GATT:::: GA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT::::AA GCGG:TGGCG TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT:: GAGG GCGG:AGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT:: GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT:: GAGG GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT::::AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACTTGT GACT::::AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT::::AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT:: : :AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCTGT GACT:: GATA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT:: GAGA GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT::GAGA GCGG:CGGCA TCGAG:ACCA AAA: CATATC GAGCGATTCG GAGAACCTGT TACT:: GATG GCGG:CGGCA TCGAG:ACCA AAA:TATATC GAGCAATTTG GAGAACCTGT GACT::::AA GCGG:TGGCA TCGAG: ACCA AAA:TATATC GAGCGATTCG GAGAACCCGT GACT: : GAGA GCGG:CGGCA

Appendix II Aligned ITS sequences

ITS 1 TCGAG

P. amethyst
P. uxorium. T. gemmata. T. scobina.

TCGAG:ACCA AAA:TATATC GAGCGATTCG GAGAACCTGT GACT::::AA GCGG:TGGCA TCGAG:ACCA AAA:TATATC GAGCGATTTG GAGAACCTGT GACT::::AA GCGG:TGGCA TCGAG:ACCG AAA:TATATC GAGCGATTCG GAGAACATGT GAAT::::AA GTGA:TGGCA TCGAG:ACCG AAA:CATATC GAGCGATTCA GAGAACATGT GAAC::::AA GCGA:TGGCA

$$
\begin{aligned}
& 65 \quad 75 \quad 85 \quad 95 \quad 105
\end{aligned}
$$

D. astuta D. chimaera D. cochliops D. houtteana D. sodiroi. D. xenos L. pelecani M. abbrevia M. alexandr M. amaluzae M. ampullac M. antonii M. aphanes M. aphanes. M. bangii M. bicornis M. Caesia M. caloptera M. campylog M. cardiant M. carmenen M. caudiovo M. cerastes M. chaetost M. chaparen M. chimboen M. citrinel M. civilis M. coccinea M. Collina M. collina. M. coriacea M. corniHam M. corniHan M. cupulari M. cycloteg M. davisii M. decumana M. deformis M. delhierr M. echo M. erinacea M. estradae M. floribun
M. fulvesce
M. garciae
M. glandulo
M. goliath
M. gutierre
M. guttulat
M. herradur
M. heteropt
M. hierogly
M. hirtzii
M. hoeijeri
M. infracta
M. kyphonan

C: :TAGCCAT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTCCTTTCA GGCCGCAATG C::TAGCCAT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTCCTTTCA GGCCGCGATG C::TAGCCAT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTCTTTTGA GGCCGCGATG C::TAGCCAT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTCCTTTCA GGCCGCGATG C::TAGCCAT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTCCTTTCA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:TTTGA GGCCGCGATG C: : CAGCCGT CGCGTGACAG CCGTCCCGAT CGTCGGTTGG CCTC:GTCG: GGCCACGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:TTTGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGTCGCGATG C::TTGCCGC CACGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCAATG C::TTGCCAT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCAT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGC CACGTGACAG CAATCC:: :T GGTTG:TCGG CCTC:GTTGA GGCCGCAATG C::TTGCCGC CACGTGACAG CAATCC:: : T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGG GGCCGCAATG C::TTGCCGC CGCGCAACAG CAATCC:: : T CGTTG:TTGG CCTC:GTTGG GGCCGCGATG T::ATGCCGT CGCGTGACGG CCATCC: : C GGTCG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:TTTGA GGCCGCGATG T::ATGCCGT CGCGTGACGG CCATCC:: :T GGTCG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCCCGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGC CACGTGACAG CAATCC: : : T GGTTG:TTGG CCTC:GTTGA GGCCGCAATG CTTGTGCCAT CGCGTGACAG CAATCC:: : T GGTTG:TTGG CCTC:GTTGA GGCCGCAATG C::TTGCCGT CGCGTGACAG CCATCC:: : T GGTCG:TTGG CCTT:GTTGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:TTTGA GGCCGCGATG C::TTGCCAT CGCGCGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCCTGACAG CCATCC: : C GGTTG:TTGG CCTC: GTTGA GGCCGCAATG C::TTGCCAT CGCGTGACAG CAATCC:: : T GGTTG:TTGG CCTC:GTTGA GGCCACAATT T::ACGCCGT CGCGTGACGG CCATCC:: C GGTCG:TTGG CCTC:GTTGG GGCCGCGATG C::TTGCCAT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCCTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCCTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG T::ACGCCGT CGCGCGACGG CCATCC:: :T GGTCG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTCG:TTGG CCTT: GTTGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTCG:TTGG CCTT:GTTGA GGCCGCGATG T::ATGCCGT CGCCTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCAT CGCGCGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCAT CGCGCGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCAT CGCGTGACAG CAATCC:: : T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCAATC C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTCG:TTGG CCTT: GTTGA GGCCGCGATG TTTATGCCGT CGCCTGACAG CCATCC: : : C GGTTG:TTGG CCTC:GTCGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCGTCC: : : C GATCG:TTGG CCTC:GCCGA GGCCGCGATG C::TTGCCAT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCCTGACAG CTATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCCTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCCTGACAG CCGTCC: : : C GGTTG:TTGG CCTC:GTCGA GGCGGCGATG C::TTGCCAT CGCATGACAG CAATCC:: :T CGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGC CACGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCCCGACAG CCATCC:: :T GGTCG:TCGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCCAGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCAATG G::TTGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCAT CGCGTGACAG CAATCC: : : T GGTTG:TTGG CCTC: GTTGA GGCCGCGATG C::TTGCCAT CGCGTGACAG CAATCC:: : T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGT CGCGTAACAG CGATCC:: :T TGTTG:TTGG CCTC:GTTGA GGCCGCGATG TTTATGCCGT CGCCTGACAG CCATCC:: $:$ C GGTTG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCTTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCAATG

Appendix II
 Aligned ITS sequences

M. lamproty
M. lansberg
M. lata
M. limax
M. macruraH
M. macruraH
M. melanoxa
M. meleagri
M. mentosa.
M. mezae
M. molossus
M. mystica
M. naranjap
M. nidifica
M. notosibr
M. ophioglo
M. oreas
M. oreas
M. ova avis
M. pachyura
M. paivaean
M. panguien
M. parvula
M. patricia
M. patula
M. perister
M. persicin
M. pescadoe
M. picea
M. picturat
M. pinocchi
M. pleuroth
M. princeps
M. pyxis
M. racemosa
M. reichenb
M. rubeola.
M. rubigino
M. saltatri
M. sanchezi
M. scabrili
M. schlimii
M. striatel
M. teaguei.
M. titan
M. uniflora
M. veitchia
M. venezuel
M. vieriana
M. walteri
M. wendland
M. ximenae.
M. zahlbruc
P. amethyst
P. uxorium.
T. gemmata.
T. scobina.

C::TTGCCAT CGCGTGACAG CAATCC:: : T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCTTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCAATG T: :ATGCCGT CGCCTGACAG CCATCC: : : T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCAT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TCGCCGT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGTCACGATG C::TTGCCGT CGCGTGACAG CAATCC: : : T GGTTG:TTGG CCTC: GTTGA GGTCACGATG T::ATGCCGT CGCCTGACAG CCATCC:: C GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGTCGCGATG T::ATGCCGT CGCCTGACAG CCGTCC:: C GGTCG:TTGG CCTC:GTCGA GGCCGCGATG T::ATGCCGT CGCCCGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:TTTGA AGCCGCGATG C::TTGCCAT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGTCGCGATG T::ATGCCGT CGCCTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::ATGCCGT CGCGTGACAG CCATCC:: :T TGTTG:TTGG CCTC:TTTGA GGCCGCGATG C::TTGCCAT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:TTTGA GGCCGCGATG T::ATGCCGT CGCCCGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTAGA GGCCGCGATG T: : ATGCCGT CGCCCGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTAGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:TTTGA GGCCGCGATG C::TTGCCAT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:TTTGA GGCCGCGATG C::TTGCCAT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGTCGCGATG C::TTGCCGC CACGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGTCGCGATG C::TTGCCAT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:ATTGA GGCCGCAATG C::TTGCCGC CACGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCAATG T::ATGCCGT CGCGTGACGG CCATCC:: C GGTCG:TCGG CCTC:GTTGA GGCCGCGATG C::TTGCCAT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCACGATT T::ATGCCGT CGCCTAACAG CCATCC:: :T GGTTG:TTGG CCTC:GTT:A GGCCGCGATG T::ACGCCGT CGCGTGACGG CCATCC: : : C GGTCG:TTGG CCTC:GTTGG GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTAGA GGCCGCGATG T::ATGCCGT CGCCCGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGC CACGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCCCGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG CTTGTGCCAT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCAATG T::ATGCCGT CGCCTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCAT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCAT CGCGTGACAG CAACCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCAT CGCGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCAATG C::TTGCCGC CACGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCAATG T::ATGCCGT CGCCTGACAG CCATCC:: :T GGTCG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCCTGACAG CCATCC:: :T GGTTG:TTGG CCTC:CTTGA GGCCGCGATG T::ATGCCGT CGCCTGACGG CCATCC: : C GGTCG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T TGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGC CACGTGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCAT CGCGCGACAG CAATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCAT CGCACGACAG CAATCC:: :T GGTTG:TTGG CTTC:GTTGA GGCCGCGATG T::ATGCCGT CGCTTGACAG CCATCC: : : T GGTTG:TTGG CCTC:GTTGA GGCCGCAATG T::ATGCCGT CGCCTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCCTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG T::ATGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGCCGCGATG C::TTGCCGT CGCGTGACAG CCATCC:: :T GGTTG:TTGG CCTC:GTTGA GGTCGCAATG T::ATGCCGT CGCCTGACAG CCATCC:: C GGT:G:TTGG CCTC:GTTGA GGCCGCGATG C::TAGCCGT CGCGTGACAG TCATCC:: :T TGTTG:TTGG CCTC:GTTGA GGCCGCAATG C: CAGCCAT CGCGTGACAG CCATCC:: :T TGTTG:TTGG CCTC:GTTGA GGCCGCAATG C::TAGCCAT TGCATGACAG GCGTCC:: :T GGTCG:TTGG CCTC:GTTGA GGTCGCGATG C::TAGCCAT TGCATGACGG GCGTCC:: :T GGTCG:TTGG CCTC:ATTGA GGCCGCGAAG
D. astuta
D. chimaera
D. cochliops
D. houtteana
D. sodiroi.

AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ATGAAACA

Appendix II
 Aligned ITS sequences

D. xenos
L. pelecani
M. abbrevia
M. alexandr
M. amaluzae
M. ampullac
M. antonii
M. aphanes
M. aphanes.
M. bangii
M. bicornis
M. caesia
M. caloptera
M. campylog
M. cardiant
M. carmenen
M. caudiovo
M. cerastes
M. chaetost
M. chaparen
M. chimboen
M. Citrinel
M. civilis
M. coccinea
M. Collina
M. collina.
M. coriacea
M. corniHam
M. corniHan
M. cupulari
M. cycloteg
M. davisii
M. decumana
M. deformis
M. delhierr
M. echo
M. erinacea
M. estradae
M. floribun
M. fulvesce
M. garciae
M. glandulo
M. goliath
M. gutierre
M. guttulat
M. herradur
M. heteropt
M. hierogly
M. hirtzii
M. hoeijeri
M. infracta
M. kyphonan
M. lamproty
M. lansberg
M. lata
M. limax
M. macruraH
M. macruraH
M. melanoxa
M. meleagri
M. mentosa.
M. mezae
M. molossus
M. mystica
M. naranjap
 AGGGGAAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : :ATGAAACA CGGGGCGGAT GAAACTCAAA CCGGCGCAGC TAC: GCGCCA AGGGAATAAG GAAAGAGACA AGGGGAAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : :ATGAAACA AgGGgAagct gaiactcana tcggcgcagc tac: gcgcca agggantana Aantganaca AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATGCA : : ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATGCA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGTCA AGGGAATACA : : ATGAAACA AGGGGTAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGT TAC: GCGCCA AGGTAATACA : :ATGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : :AAGAAACA AGGGGAAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGCGGCC GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATGCA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TACCGCGCCA AGGGAATACA : : ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AgGGGAAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : :ATGAAACA AgGggtagct gainctcana tcggcgcagc TAC: GCGCCA AgGTAATACA ::ATGAAACA AgGGgCGgCT CGAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : :ATGAAACA AGGGGCGGCC GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : : ACGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : : ATGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AgGGgCGgCt GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ATGAAACA AGGGGCGGCC GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ATGAAACA AgGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ATGAAACA AgGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ATGAAACA AgGGgCGgCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATATA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGTAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : : ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGTAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATGCA CGATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGTCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : :ATGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATATA : :ATGAAACA AgGGgCgGct GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATATA : : ATGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGTAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGTCA AGGGAATACA : :ATGAAACA AgGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ACGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ACGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGAAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : :ATGAAACA AgGGgCAgCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA :: ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : :ATGAAACA AGGGGCAGCT GAAACTAAAA TCGGCGCAGC TAC: GCGCCA AGGTAATGCA : :ATGAAACA AgGGgCGgCt GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATGCA CGATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAT: GCGCCA AGGGAATACA : :ATGAAACA AGGGGCCGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : : ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAT: GCGCCA AGGGAATACA : :ATGAAACA AgGGgCGgCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : :ATGAAACA AgGGgCGgCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACG : :ATGAAACA AgGGgAAgCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATAAA : : ATGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : : ACGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ATGAAACA AGGGGAAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : : ATGAAACA AGGGGCGGCT GAAACACAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : :ATGAGACA

Appendix II
 Aligned ITS sequences

M. nidifica
M. notosibr M. ophioglo M. oreas M. oreas M. ova avis M. pachyura M. paivaean M. panguien M. parvula M. patricia M. patula
M. perister
M. persicin
M. pescadoe
M. picea
M. picturat
M. pinocchi
M. pleuroth
M. princeps
M. pyxis
M. racemosa
M. reichenb
M. rubeola.
M. rubigino
M. saltatri
M. sanchezi
M. scabrili
M. schlimii
M. striatel
M. teaguei.
M. titan
M. uniflora
M. veitchia
M. venezuel
M. vieriana
M. walteri
M. wendland
M. ximenae.
M. zahlbruc
P. amethyst
P. uxorium.
T. gemmata.
T. scobina.
 AGGGGAAGTT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : :ATGAAACA AGGGGAAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : :ATGAAACA AGGGTCGGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ACGAAACA AGGGTCGGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ACGAAACA AGGGGAAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGAAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : : ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGTCA AGGGAATACA : :ATGAAACA AGGGGAAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATAAA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATGCA : :ATGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA : :ATGAAACA AGGGGTGGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA :: ATGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ACGAAACA AGGAGAAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA :: ATGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ATGAAACA AGGGGAAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGTCA AGGGAATACA : :ATGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATACA : : ACGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AgGGgCGGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATATA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGA TAC:GCGCCA AGGTAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AgGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA ::ATGAAACA AgGGgCAgCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATGCA : : ATGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGT TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGCGGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AgGGgCGgCT GAAACTCAAA CCGGCGCAGC TAC: GCGCCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA ::ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGTCA AGGGAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGTAATACA :: ATGAAACA AGGGGTAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGTAATACA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAAACA AGGGGCGGCT GAAACACAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ATGAGACA AgGGgCGgCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATATA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ACGAAACA AGGGGAAGCT GAAACTCAAA TCGGCGCAGC TAC: GCGCCA AGGGAATAAA : :ATGAAACA AGGGGCGGCT GAAACACAAA CCGGCGCAGC TAC:GCGCCA AGGGAATACA : : ATGAGACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATAAA : :ATGAAACA AGGGGCAGCT GAAACTCAAA TCGGCGCAGC TAC:GCGCCA AGGGAATACA : :ACGAAACA AgGGgCGACT GAAACACAAA CCGGCGCAGC TAC: GCGCCA AGGGAATACA : :TTGAAACA AgGGGCGACT GAAACACAAA ACGGCGCAGC TAT:GCGCCA AGGGAATACA : : TTGAAACA

CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATT: : G CGCCCCACAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATT::G CGCCCCACAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATT:: G CGCCCCACAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATT: : G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATT:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATT:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA ACGGGTTCGG TGGCGTGGGG CGCTGTT:: G CGCACCGCAC GGATCAAAAC CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA: : G CGCCCCGCAC GGATCAAAAT CGAGCCCTCA TGGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCCATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCTC TGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTGTA:: G CGCCCCGCAT GGATCAAAAT CGAGCCCGCA TTGGGTTCGA TGGCGTGGGG TGCTATATAG TGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG CGCAATG:: G CGCCTCGCAC GGATCAAAAT

Appendix II
 Aligned ITS sequences

M. caloptera
M. campylog M. campylog M. cardiant M. carmenen M. caudiovo M. cerastes M. chaetost M. chaparen M. chimboen M. citrinel M. Civilis M. coccinea M. collina M. collina. M. coriacea M. corniHam M. corniHan M. cupulari M. cycloteg M. davisii M. decumana M. deformis M. delhierr M. echo M. erinacea M. estradae M. floribun M. fulvesce M. garciae M. glandulo M. goliath M. gutierre M. guttulat M. herradur M. heteropt M. hierogly M. hirtzii
M. hoeijeri
M. infracta
M. kyphonan
M. lamproty
M. lansberg
M. lata
M. limax
M. macruraH
M. macruraH
M. melanoxa
M. meleagri
M. mentosa.
M. mezae
M. molossus
M. mystica
M. naranjap
M. nidifica
M. notosibr
M. ophioglo
M. oreas
M. oreas
M. ova avis
M. pachyura
M. paivaean
M. panguien
M. parvula
M. patricia

CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCAGTA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCCATA::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA CCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TTGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGCGGGG CGCTATG:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG CGCAACA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG CGCTATA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG CGCTATA::G CGCCTCACAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTACA::G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA CCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA CCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA: : G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TTGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA CCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTACG::G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTACG::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCTCGCAT GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCNCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CACCTTGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCTCGCAC GGACCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGTA TCGGGTTCGA TGGCGTGGGG TGCTGTA::G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA: : G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGCGGGG TGCTATA:: G CGGCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATG:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCACA TCGGGTTCGA TGGCGTGGGG TGCTGTA::G CGCCCTGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATG::G CGCCTCGCAC GGATCAAAAT CGAGCCCTCA TGGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGAACAAAAT CGAGCCCGCG TCGGGTTCGA TGGCGTGGGG TGCTGTA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTGTA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCTCA TCGGGTTCGA TGGCGTGGGG TGCTACA::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATG:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATG:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCCCGCAC GTATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCCCGCAC GGATCAAAAT CGAGCCCTCA TGGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT

Appendix II
 Aligned ITS sequences

CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTACA::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG CGCAATA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG CGCAACA::G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA: : G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCTCGCAC GGATCAAAAT CGAGCCCCCA TCGGGTTCGA TGGCGTGGGG TGCTATA: : G CGCCCCACAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA: : G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTGTA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TTGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TTGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCCCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTACA::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG CGCTGTA::G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG CGCTGTA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATG:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA CTGGGTTCGA TGGCGTGGGG TGCTATA: : G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TTGGGTTCGA TGGCGTGGGG TGCTATA::G CGCCCCGCAC GAATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGCGGGG TGCTATA::G CGCCTCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTGTA:: G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTATA:: G CGCCTCGCAC GGACCAAAAT CGAGCCCTCA TGGGGTTCGA TGGCGTGGGG TGCTATA: : G CGCCCCGCAC GGATCAAAAT CGAGCCCGCA TCGGGTTCGA TGGCGTGGGG TGCTGTA:: G CGCCTCGCAC GGATCAAAAT CGAGCCTGCA TAGGGTTCGA TGGCGTGGGG TGATATT: :T CGCCCCACAC GGATCAAAAT CGAGCC: GCA TAGGGTTCGA TGGCGTGGGG TGCTATT: :T CGCCCCACAC GGATCAAAAT CGAGCCCGCA ACGGGTTCGA TGGCGTGGGG TGCTATT::G CGCGCCACAA ATATCAAAAT CGAGCCCGCA TCGGGCTCGA TGGCGTGGCG TGCTATT:: G CGCGCCACAC AGATCAAAAT
 GACTCTCGGC AATGGATATC TCGGCTCTCG CATCGATGAA GAGCGCAGCG AAATGCGATA GACTCTCGGC AATGGATATC TCGGCTCTCG CATCGATGAA GAGCGCAGCG AAATGCGATA

Appendix II
 Aligned ITS sequences

M. coccinea
M. collina
M. collina.
M. coriacea M. corniHam M. corniHan M. cupulari M. cycloteg M. davisii
M. decumana
M. deformis
M. delhierr
M. echo
M. erinacea
M. estradae
M. floribun
M. fulvesce
M. garciae
M. glandulo
M. goliath
M. gutierre
M. guttulat
M. herradur
M. heteropt
M. hierogly
M. hirtzii
M. hoeijeri
M. infracta
M. kyphonan
M. lamproty
M. lansberg
M. lata
M. limax
M. macruraH
M. macruraH
M. melanoxa
M. meleagri
M. mentosa.
M. mezae
M. molossus
M. mystica
M. naranjap
M. nidifica
M. notosibr
M. ophioglo
M. oreas
M. oreas
M. ova avis
M. pachyura
M. paivaean
M. panguien
M. parvula
M. patricia
M. patula
M. perister
M. persicin
M. pescadoe
M. picea
M. picturat
M. pinocchi
M. pleuroth
M. princeps
M. pyxis
M. racemosa
M. reichenb

GACTCTCGGC AATGGATATC TCGGCTCTCG CATCGATGAA GAGCGCAGCG AAATGCGATA GACTCTCGGC AATGGATATC TCGGCTCTCG CATCGATGAA GAGCGCAGCG AAATGCGATA

Appendix II
 Aligned ITS sequences

M. rubeola.
M. rubigino
M. saltatri
M. sanchezi
M. scabrili
M. schlimii
M. striatel
M. teaguei.
M. titan
M. uniflora
M. veitchia
M. venezuel
M. vieriana
M. walteri
M. wendland
M. ximenae.
M. zahlbruc
P. amethyst
P. uxorium.
T. gemmata.
T. scobina.

GACTCTCGGC AATGGATATC TCGGCTCTCG CCTCGATGAA GAGCGCAGCG AAATGCGATA GACTCTCGGC AATGGATATC TCGGCTCTCG CATCGATGAA GAGCGCAGCG AAATGCGATA GACTCTCGGC AATGGATATC TCGGCTCTCG CATCGATGAA GAGCGCAGCG AAATGCGATA GACTCTCGGC AATGGATATC TCGGCTCTCG CATCGATGAA GAGCGCAGCG AAATGCGATA GACTCTCGGC AATGGATATC TCGGCTCTCG CATCGATAAA GAGCGCAGCG AAATGCGATA GACTCTCGGC AATGGATATC TCGGCTCTCG CATCGATGAA AAGCGCAGCG AAATGCGATA GACTCTCGGC AATGGATATC TCGGCTCTCG CATCGATGAA GAGCGCAGCG AAATGCGATA GACTCTCGGC AATGGATATC TCGGCTCTCG CATCGATGAA GAGCGCAGCG AAATGCGATA
D. astuta
D. chimaera
D. cochliops
D. houtteana
D. sodiroi.
D. xenos
L. pelecani
M. abbrevia
M. alexandr
M. amaluzae
M. ampullac
M. antonii
M. aphanes
M. aphanes.
M. bangii
M. bicornis
M. caesia
M. caloptera
M. campylog
M. cardiant
M. carmenen
M. caudiovo
M. cerastes
M. chaetost
M. chaparen
M. chimboen
M. citrinel
M. civilis
M. coccinea
M. collina
M. collina.
M. coriacea
M. corniHam
M. corniHan
M. cupulari
M. cycloteg
M. davisii
M. decumana
M. deformis
M. delhierr
M. echo

CGTGGTGCGA ATTGCAGAAT CCCGCGAACC ATCGAGAATT TGAACGCAAG TTGCGCCCGA CGTGGTGCGA ATTGCAGAAT CCCGGGAACC ATCGAGAATT TGAACGCAAG TTGCGCCCGA CGTGGTGCGA ATTGCAGAAT CCCGCGAACC ATCGAGAATT TGAACGCAAG TTGCGCCCGA

Appendix II
 Aligned ITS sequences

M. erinacea
M. estradae
M. floribun
M. fulvesce
M. garciae
M. glandulo
M. goliath
M. gutierre
M. guttulat
M. herradur
M. heteropt
M. hierogly
M. hirtzii
M. hoeijeri
M. infracta
M. kyphonan
M. lamproty
M. lansberg
M. lata
M. limax
M. macruraH
M. macruraH
M. melanoxa
M. meleagri
M. mentosa.
M. mezae
M. molossus
M. mystica
M. naranjap
M. nidifica
M. notosibr
M. ophioglo
M. oreas
M. oreas
M. ova avis
M. pachyura
M. paivaean
M. panguien
M. parvula
M. patricia
M. patula
M. perister
M. persicin
M. pescadoe
M. picea
M. picturat
M. pinocchi
M. pleuroth
M. princeps
M. pyxis
M. racemosa
M. reichenb
M. rubeola.
M. rubigino
M. saltatri
M. sanchezi
M. scabrili
M. schlimii
M. striatel
M. teaguei.
M. titan
M. uniflora
M. veitchia
M. venezuel
M. vieriana

CGTGGTGCGA ATTGCAGAAT CCCGCGAACC ATCGAGAATT TGAACGCAAG TTGCGCCCGA CGTGGTGCGA ATTGCAGAAT CCCGCGAACC ATCGAAAATT TGAACGCAAG TTGCGCCCGA CGTGGTGCGA ATTGCAGAAT CCCGCGAACC ATCGAGAATT TGAACGCAAG TTGCGCCCGA

Appendix II
 Aligned ITS sequences

M. walteri
M. wendland
M. ximenae.
M. zahlbruc
P. amethyst
P. uxorium.
T. gemmata.
T. scobina.

CGTGGTGCGA ATTGCAGAAT CCCGCGAACC ATCGAGAATT TGAACGCAAG TTGCGCCCGA CGTGGTGCGA ATTGCAGAAT CCCGCGAACC ATCGAGAATT TGAACGCAAG TTGCGCCCGA CGTGGTGCGA ATTGCAGAAT CCCGCGAACC ATCGAGAATT TGAACGCAAA TTGCGCCCGA CGTGGTGCGA ATTGCAGAAT CCCGCGAACC ATCGAGAATT TGAACGCAAG TTGCGCCCGA
D. astuta
D. chimaera
D. cochliops
D. houtteana
D. sodiroi.
D. xenos
L. pelecani
M. abbrevia
M. alexandr
M. amaluzae
M. ampullac
M. antonii
M. aphanes
M. aphanes.
M. bangii
M. bicornis
M. caesia
M. caloptera
M. campylog
M. cardiant
M. carmenen
M. caudiovo
M. cerastes
M. chaetost
M. chaparen
M. chimboen
M. citrinel
M. civilis
M. coccinea
M. collina
M. collina.
M. coriacea
M. corniHam
M. corniHan
M. cupulari
M. cycloteg
M. davisii
M. decumana
M. deformis
M. delhierr
M. echo
M. erinacea
M. estradae
M. floribun
M. fulvesce
M. garciae
M. glandulo
M. goliath
M. gutierre
M. guttulat
M. herradur
M. heteropt
M. hierogly

ITS 2 G TTGC

$$
\begin{aligned}
& \begin{array}{lllll}
365 & 375 & 385 & 395 & 405
\end{array}
\end{aligned}
$$

GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTTGCT TCGTGCCAGC GGCCATCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCGAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTCGCT CTGTACCCTC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG CTAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG CTAAGGGCAC GCCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GgCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GgCCAGCCGG CCGAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG CTAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTTGCT CCGTGCCATC GGCCATCCGG TCGAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGCGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGCGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTCGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTACCATC GgCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG CCGAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GgCCATCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTCGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTCGCT CCGTGCCATC GGCCATCCGG CCGAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCGAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GgCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCGAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTCGCT CCGTGCCATC GgCCAgCAGg CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCGAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTTCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GgCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCTTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC

Appendix II Aligned ITS sequences

GGCCATCCGG TCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTCGCT CCGTGCCATC GGCCATCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG TCGAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG TCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GgCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTCGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCCTC GgCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG CTAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GgCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTTGCT CCGTGCCATC GGCCATCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTTCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GgCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GgCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTACCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GgCCATCCGG TCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG CTAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CTAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CTAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GgCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GgCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GgCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCAGCCGG CCGAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GgCCAGCCGG CCAAGGGCAC ATCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCATC GGCCATCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTACGTTGCT CCGTGCCGTC GgCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTTGCT CCGTGCCATC GGCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTCGCT CCGTGCCAGC GgCCAGCCGG CCAAGGGCAC GTCCGCCTGG GCGTCAAGCG TTGCGTCGCT CCGTGCCAGC

Appendix II
 Aligned ITS sequences

D. astuta
D. chimaera
D. cochliops
D. houtteana
D. sodiroi
D. xenos L. pelecani M. abbrevia M. alexandr M. amaluzae M. ampullac M. antonii
M. aphanes
M. aphanes.
M. bangii
M. bicornis
M. caesia
M. caloptera
M. campylog
M. cardiant
M. carmenen
M. caudiovo
M. cerastes
M. chaetost
M. chaparen
M. chimboen
M. citrinel
M. civilis
M. coccinea
M. collina
M. collina.
M. coriacea
M. corniHam
M. corniHan
M. cupulari
M. cycloteg
M. davisii
M. decumana
M. deformis
M. delhierr
M. echo
M. erinacea
M. estradae
M. floribun
M. fulvesce
M. garciae
M. glandulo
M. goliath
M. gutierre
M. guttulat
M. herradur
M. heteropt
M. hierogly
M. hirtzii
M. hoeijeri
M. infracta
M. kyphonan
M. lamproty
M. lansberg
M. lata
M. limax
M. macruraH
M. macruraH
M. melanoxa
M. meleagri

T:C:: CAT: : CCCACCCGA AGGGTGTG: CATGCGGGAG GGCCGGATGT GTAGAGTGGC
T:C:: $\mathrm{CAT}: ~: C C C A C C C G A ~ A G G G T G T G: ~ C A T G C G G G A G ~ G G C C G G A T G T ~ G C A G A G T G G C ~$ T:C:: CAT: :CCCACCCGA AGGGTGTG: : CATGCGGGAG GGCCGGATGT GTAGAGTGGC T:C:: CAT: :CCCACCCGA AGGGTGTG: : CATGCGGGAG GGCCGGATGT GCAGAGTGGC T:C:: CAT: :CCCACCCGA AGGGTGTG: : CATGCGGGAG GGCCGGATGT GCAGAGTGGC T:C:: CAA: :CCCGCCCGA AGGGCGTG: CATGCGAGAA GGTCGGATGT GTAAAATGGC C:C:: CAT: : CCCACCCGG CGGGTGTG: : CATGGGGAAG GGTCGGATGC GGAGAGTGGC T:C:: CAT: CCCCACCTGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC T:CCC:CAT: : CCCACCCGA AGGGTGTG: : CATGCGGGAT GGTCGGATGT GTAGAGTGGC T:C:: CAT: : CCCACCAGA AGGGTGTG: : GATGCGGGAG GGTCGGATGC GTAGAGTGGC T:C:: CAT: : CCCACCCGA AGGGTGTG: : TATGCGGGAG GGTCGGATGT GTAGAATGGC T:C:: CAT: :CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAATGGC T:C:: CAT: :CCCACCCGA AGGGCGTG:: GATGCGGGAG GGTCGGATGC GTAGAGTGGC T:C:: CAT: :CCCACCCGA AGGGTGTG: : CATGCGGAAG GGTCGGATGT GTAGAGTGGC T:C:: CAT: : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGCCGGATGT GTAGAGTGGC T:C:: CAT: : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC T:C:: CAT: :CCCACCCGA AGGGTGTG: CATGCGGGAG GGTCGGATGT GCAGAGTGGC T:C:: CAT: T:C:: CAT: T:C: : CAT: T:C:: CAT: T:C: : CAT: T:C: : CAT: T:C: : CAT: T:C: : CAT: T:C:: CAG: T:C: : CAT: T:C:: CAT: T:C: : CAT: T:C: : CAT: T:C: : CAT: T:C: : CAT: T:C:: CAT: T:C: : CAT: T:C: : CAT: T:C: : CAT: T:C:: CAT: T:C: : CAT: T:C:: CAT: T:C: : CAT: T:C:: CAT: C:CCGTCTT: T:C: : CAT: T:C: : CAT: T:C: : CAT: C:C: : CAT: T:C: : CAT: T:C:: CAT: T:C: : CAT: T:C: : CAT: T:C:: CAT: T:C: : CAT: T:C: : CAT: T:C: : CAT: T:C:: CAT: T:C: : CAT: T:C: : CAT: T:C: : CAT: T:C: : CAT: T:C:: CAT: T:CCC:CAT: : CCCACCCGA AGGGTGTG: CATGCGGGAT GGTCGGATGT GTAGAGTGGC

Appendix II
 Aligned ITS sequences

M. mentosa.
M. mezae
M. molossus
M. mystica
M. naranjap
M. nidifica
M. notosibr
M. ophioglo
M. oreas
M. oreas
M. ova avis
M. pachyura
M. paivaean
M. panguien
M. parvula
M. patricia
M. patula
M. perister
M. persicin
M. pescadoe
M. picea
M. picturat
M. pinocchi
M. pleuroth
M. princeps
M. pyxis
M. racemosa
M. reichenb
M. rubeola.
M. rubigino
M. saltatri
M. sanchezi
M. scabrili
M. schlimii
M. striatel
M. teaguei.
M. titan
M. uniflora
M. veitchia
M. venezuel
M. vieriana
M. walteri
M. wendland
M. ximenae.
M. zahlbruc
P. amethyst
P. uxorium.
T. gemmata.
. scobina.
....|...| . 425
T:C: : CAT: T:C: : CAT: T:C: : CAT: T:C:: CAT: T:C: : CAT: T:C: : CAT: T:C: : CAT: C:C:: CATC T:C: : CAT: T:CCC:CAT: T:C: : CAT: T:C: : CAA: T:C: : CAT: T:C: : CAA: T:C: : CAT: TTC: : © CAT: T:C: : CAT: T:CCA:CAT: T:C: : CAT: T:C: : CAT: T:C: : CAT: T:C:: CAT: T:C: : CAT:
 : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC : CCCACCTGA AAGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAATGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GCAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGTGAG GGTCGGATGT GTAGAGTGGC :CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAATGGC CCCCACCTGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC : CCCGCCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GCAGAGTGGC : CCCGCCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GCAGAGTGGC CCCCACCTGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC CCCCACCTGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAATGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAT GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAATGGC :CCCACCAGA AGGGTGTG: : GATGCGGGAG GGTCGGATGC GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGCCGGATGC GCAGAGTGGC : CCCACCCAA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAATGGC :CCCACTCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GCAGAGTGGC : CCCGCCCGA AGGGCGTG: : CATGCGAGAG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC : CCCGCCCGA AGGGCGTG: : CGTGCGAGAG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC CCCACCCGA AGGGTGTG: : CATGCGG:AG GGCCGGATGC GCAGAGTGGC : CCCACCCAA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGGG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAATGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAATGGC : TCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAATGGC : CCCACCAGA AGGGTGTG:: GATGCGGGAG GGTCGGATGC GTAGAGTGGC : CCCACCCGT AGGGTGAG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGCG: : CATGCGGGAG GGTCGGATGT GCAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGAAG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GCAGAATGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAATGGC : CCAACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GCAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGGG GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGCCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAT GGTCGGATGT GTAGAGTGGC : CCCACCCGA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GCAGAGTGGC : CCCACC: GA AGGGTGTG: : CATGCGGGAG GGTCGGATGT GTAGAGTGGC : CCCACC: GA AGGGTGTG: : AATGCGGGAG GGTCGGATGT GCAGAGTGGC :CCCACCC:A ACGGTGTG: : CATGCGGGAT GGTCGGATGT GCAGATTGGC : CCCACCCGA ACGGTGTG: : CATGGGGGAT GGTCGGATGT GCAGAGTGGC

TCGTCGTGCC TGCGGGCGCG GCGGGCTAAA GAGTTGGTGA TCGTGTCGT: TGGCCACGAG TCGTCGTGCC TGCGGGCGCG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCT CGCGGGCGCG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC TGCGGGCGCG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC TGCGGGCGCG GCGGGCTTAA GAGTTGGTGA TCGTTTCGT: TGGCCACGAG TTGTTGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TTGTCTCGT: TGGCCAAGAG TCGTCGTGCC CGCGGGCGCG GCGGGCTGAA GAGCGGGTGA TCGTCTCGT: CGGCCACGGG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCATCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGTG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGTG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG

Appendix II
 Aligned ITS sequences

M. aphanes.
M. bangii
M. bicornis
M. caesia M. caloptera M. campylog
M. cardiant
M. carmenen
M. caudiovo
M. cerastes
M. chaetost
M. chaparen
M. chimboen
M. citrinel
M. civilis
M. coccinea
M. Collina
M. collina.
M. coriacea
M. corniHam
M. corniHan
M. cupulari
M. cycloteg
M. davisii
M. decumana
M. deformis
M. delhierr
M. echo
M. erinacea
M. estradae
M. floribun
M. fulvesce
M. garciae
M. glandulo
M. goliath
M. gutierre
M. guttulat
M. herradur
M. heteropt
M. hierogly
M. hirtzii
M. hoeijeri
M. infracta
M. kyphonan
M. lamproty
M. lansberg
M. lata
M. limax
M. macruraH
M. macruraH
M. melanoxa
M. meleagri
M. mentosa.
M. mezae
M. molossus
M. mystica
M. naranjap
M. nidifica
M. notosibr
M. ophioglo
M. oreas
M. oreas
M. ova avis
M. pachyura
M. paivaean

TCGTCGTGCC CTCGGGCGCG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCATCGTGCC CCCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAAATGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTIGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTCAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGIGCC CTCGGGCGCG ACGGGCTTAA GAGTIGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGTG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TTGCCACGAG TCGTCGIGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGIGCC CCCGGGCGIG GCGGGCTAAA GAGTIGGTGA TCGTCTCGT: TGGCCACGAG TCGACGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG tCgTCGTGCC CCCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTCAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TTGCCACGAG TCGTCGIGCC CTCGGGCGCG ACGGGCTTAA GAGGTGGTGA TCGTCTCGT: TTGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGCTGCTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTIGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TTGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG tCgCcgtgcc CCCGGGCGCG GCGGGCttAA GAgTtggtga tcgictcgi: CgGccacgag TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGIGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGCTGA TCGTCTCGT: CGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGCGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTIGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG tCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGCTGGTGA TCGTCTCGT: TGGCCACGAG tCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCCTCGTGCC TTCGGGCGCG ACGGGCTGAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG tCgTCGTGCC CTCGGGCGTG GCGGGCTGAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGCG ACGGGCTTAA GAGCTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGIGCC CTCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGIGGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGCTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTIGGTGA TCGTCTCGT: TGGCCACGAG TCATCGTGCC CCCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGCCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTGAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGITICGT: AGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGTC CTCGGGCGCG ATGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTIGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTIGGTGA TCGTCTCGT: TGGCCACGAG

Appendix II
 Aligned ITS sequences

M. panguien
M. parvula
M. patricia
M. patula
M. perister
M. persicin
M. pescadoe
M. picea
M. picturat
M. pinocchi
M. pleuroth
M. princeps
M. pyxis
M. racemosa
M. reichenb
M. rubeola.
M. rubigino
M. saltatri
M. sanchezi
M. scabrili
M. schlimii
M. striatel
M. teaguei.
M. titan
M. uniflora
M. veitchia
M. venezuel
M. vieriana
M. walteri
M. wendland
M. ximenae.
M. zahlbruc
P. amethyst
P. uxorium.
T. gemmata.
T. scobina.

TCGTCGTGCC CTCGGGCGCG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG tCATCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG tCgTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG tCGTCGTGCC CTCGGGCGTG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGIGCC CCCGGGCGIG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG tCGTGGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG tCgTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTIGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCC ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGIGCC CTCGGGCGCG GCGGGCTTAA GAGTIGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGIGCC CCCGGGCGIG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGCTGA TCGTCTCGT: CGGCCACGAG tCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GCGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGTG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGTGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC ATCGTGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTIGGTGA TCGTCTCGT: TTGCCACGAG TCGTCGTGCC CTCGGGCGCG GCGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CCCGGGCGTG GCGGGCTAAA GAGTTGGTGA TCGTCTCGT: TTGCCACGAG tCGTCGTGCC CTCGGGTGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTCAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGCTGA TCGTCTCGT: CGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGCGA TCGTCTCGT: TGGCCACGAG TCATCGIGCC CTCGGGCGCG ACGGGCTTAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG ACGGGCTGAA GAGTTGGTGA TCGTCTCGT: TGGCCACGAG TCGTCGTGCC CTCGGGCGCG GCGGGCTTAA GAGTTGGTGA TCGTCTCGTA TGGCCACGAG TCGTCGTGCC CTCGG:CGCG GCGGGCTTAA GAGTIGGTGA TCGTCTCGT: TGGCCACGAG TCGCCGTGCC CGTGGGCGCG ACGGGCTTAA GAGTGGGTGA TCGTCTCGT: TGGCCACGAC CCTTCGTGCT CGTGGGCGCG ACGGGTTTAA GAGTGGGTGA TCGTCTCGI: TGGCCACGAC
D. astuta
D. chimaera
D. cochliops
D. houtteana
D. sodiroi.
D. xenos
L. pelecani
M. abbrevia
M. alexandr
M. amaluzae
M. ampullac
M. antonii
M. aphanes
M. aphanes.
M. bangii
M. bicornis M. caesia M. caloptera
M. campylog
M. cardiant
M. carmenen
M. caudiovo
M. cerastes
M. chaetost
M. chaparen
M. chimboen

CAGCAAGGG: TGGATGAAAA TTGTGCCTGT GATGTATCGT GCCGGCCAGA GAAG:AGA:T CAGCAAGGG: TGGATGAAAA TTGTGCCTGT GATGTATCGT GCCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GCCGGCCAGA GAAG:AGA:T CAGCAAGGG: TGGATGAAAA TTGTGCCTGT GATGTATCGT GCCGGCCAGA GAAG:AGA:T CAGCAAGGG: TGGATGAAAA TTGTGCCTGT GATGTATCGT GCCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA ITGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GTTGCATCGT GCAGTCCCGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:CGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T

Appendix II
 Aligned ITS sequences

M. citrinel
M. civilis
M. coccinea
M. collina
M. collina.
M. coriacea
M. corniHam
M. corniHan
M. cupulari
M. cycloteg
M. davisii
M. decumana
M. deformis
M. delhierr
M. echo
M. erinacea
M. estradae
M. floribun
M. fulvesce
M. garciae
M. glandulo
M. goliath
M. gutierre
M. guttulat
M. herradur
M. heteropt
M. hierogly
M. hirtzii
M. hoeijeri
M. infracta
M. kyphonan
M. lamproty
M. lansberg
M. lata
M. limax
M. macruraH
M. macruraH
M. melanoxa
M. meleagri
M. mentosa.
M. mezae
M. molossus
M. mystica
M. naranjap
M. nidifica
M. notosibr
M. ophioglo
M. oreas
M. oreas
M. ova avis
M. pachyura
M. paivaean
M. panguien
M. parvula
M. patricia
M. patula
M. perister
M. persicin
M. pescadoe
M. picea
M. picturat
M. pinocchi
M. pleuroth
M. princeps
M. pyxis

CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GCCGGCCAGA GGAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GATG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCTGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCCGCCTGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA ATGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GCCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGACT CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GGAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GGAGAAGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA G:AGAAGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAT:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GATG:CGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:CGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:TGA:T

Appendix II
 Aligned ITS sequences

M. racemosa
M. reichenb M. rubeola. M. rubigino M. saltatri M. sanchezi M. scabrili M. schlimii M. striatel M. teaguei. M. titan M. uniflora M. veitchia M. venezuel M. vieriana M. walteri
M. wendland M. ximenae. M. zahlbruc P. amethyst P. uxorium. T. gemmata. T. scobina.

CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAT:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GGAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGTATCGT GGCGGCCAGA GGAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGCGTCGT GCCTGCCAGA GAAG:AGA:T CAGCAAGGGG TGGATGAAAA TTGTGCCTGT GATGCATCGT GTCGGCCAGA GAAG:AGA:T CAGCAAGAGG TGGATGAAAA ATGTGCCTGT GCTGTATCGT GTCGACCAGA GTAG:AGA:T CAGCAAGAGG TGGATGAAAA ATGTGCCTGT GCTGTATCGT GCCGACCAGA GTAG:AGA:T
D. astuta D. chimaera D. cochliops D. houtteana D. sodiroi. D. xenos L. pelecani M. abbrevia M. alexandr M. amaluzae M. ampullac
M. antonii
M. aphanes
M. aphanes.
M. bangii
M. bicornis
M. caesia
M. caloptera
M. campylog
M. cardiant
M. carmenen
M. caudiovo
M. cerastes
M. chaetost
M. chaparen
M. chimboen
M. citrinel
M. civilis
M. coccinea
M. collina
M. collina.
M. coriacea
M. corniHam
M. corniHan
M. cupulari
M. cycloteg
M. davisii
M. decumana
M. deformis

 T:: :ATACCA TGCG:: :GAT GATCCCAGCC CAAGCGTTGA TCCACGGATG GCGGCTTGG: T:: :ATACCA TGCG:::GAT GATCCCAGCC CAAGCGTTGA TCCACGGATG GCGGCTTGG: T:: :ATACCA TGCG:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG CCGGCTTGG: T:: :ATACCA TGCG:::GAT GATCCCAGCC CAAGCGTTGA TCCACGGATG GCGGCTTGG: T:::ATACCA TGCG:: : GAT GATCCCAGCC CAAGCGTTGA TCCACGGATG GCGGCTTGG: T:: ATACCA TGCG:: :GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG: T:::ATACCC TGCG:::GAT GATCCCGGCC CGAGCGTCGG TCCACGGACG GCGGCTTGG: T:: :ATACCA TGCA:: :GAT GATCCCAGCC CGAGCGTCGA TCCACAGATG GCGGCTTGG: T:::ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG ACGGCTTGG: T:: : CTACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCACTGATG GCGGCTTGG: T:: :ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG: T:: :ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCA:GGATG GCGGCTTGG: T:: CTACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCACTGATG GCGGCTTGG: T:: : CTACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACTGATG GCGGCTTGGG T:: :ATACCA CGCA:::GAT GATCCCGGCC CAAGCGTCGA TCGA:TGACG GCGGCTTGG: T:::ATACCA TGCA:::GAT GATCCCAGCC CGAGCGTCGA TCCA:GGATG GCGGCTTGG: C:::GTACCA TGCA:::GAT GATCCCAGCC CGAGCGTCGA TCCACGGACG CCGGCTTGG: T:::ATACCA TGCA:::GAT GATCCCAGCC CGAGCGTCGA TCCACAGATG GCGGCTTGG: C:: :ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCGCGGACG GCGGCTTGG: CC::ATACCA TGCG:::GAT GATCCCGGCC CAAGCGTCGA TCCACGGTCG GCGGCTTGG: T:: © CTACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACTGATG GCGGCTTGG: T:: :ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCA:GGATG GCGGCTTGG: T:: :ACACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG: T:: :ATACCA TGCAA: :GAT GATCCCAGCC CGAGCGTCGA TCCACAGATG GCGGCTTGG: T:::ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTTGA TCCCAGGATG GCGGCTTGG: C:: : GTACCA TGCG:: :GAT GATCCCAGCC CAAGCGTCGA TCCACGGTTG GCGGCTTGG: T:ATATACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCA:GGATG GCGGCTTGG: C:::GTACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGACG GCGGCTTGG: T:::ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG: C:: :ATACCA TGCG:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG: C:::ATACCA TGCG:: : GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG: C:: :ATACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCGCGGACG GCGGCTTGG: T:: ACACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG: T:: :ACACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG: G:: :ATACCT AGCG:::GAT GATCCCAGGC CAAGCGCCGA TCCACGGATG GCGGCTTGG: T:::ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGT TCCA:GGATG GCGGCTTGG: T:: :ATACCA TGCA:: :GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG: T:::ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG: T:: :ATACCA TGCA:: :GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG:

Appendix II
 Aligned ITS sequences

M. delhierr
M. echo
M. erinacea
M. estradae
M. floribun
M. fulvesce
M. garciae
M. glandulo
M. goliath
M. gutierre
M. guttulat
M. herradur
M. heteropt
M. hierogly
M. hirtzii
M. hoeijeri
M. infracta
M. kyphonan
M. lamproty
M. lansberg
M. lata
M. limax
M. macruraH
M. macruraH
M. melanoxa
M. meleagri
M. mentosa.
M. mezae
M. molossus
M. mystica
M. naranjap
M. nidifica
M. notosibr
M. ophioglo
M. oreas
M. oreas
M. ova avis
M. pachyura
M. paivaean
M. panguien
M. parvula
M. patricia
M. patula
M. perister
M. persicin
M. pescadoe
M. picea
M. picturat
M. pinocchi
M. pleuroth
M. princeps
M. pyxis
M. racemosa
M. reichenb
M. rubeola.
M. rubigino
M. saltatri
M. sanchezi
M. scabrili
M. schlimii
M. striatel
M. teaguei.
M. titan
M. uniflora
M. veitchia

T:: :ACACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG: C:::GTACCA TGCG:CGGAT GATCCCAGCC CAAGCGTCGA TCCACGGTTG GCGGCTTGG: T:: :ATACCA TGCG:::GAT GATCCCGAGC CAGGCGTCGA TCCACGGATG GCGGCTTGG: T:::ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG: C:::GTACCA TGCG:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG: G:: :ATACCA TGCG:: : GAT GATCCCAGGC CAAGCGTCGA TCCACGGATG GCGGCTTGG: C:: :ATGCCA TGCG:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGTTG GCGGCTTGG: T:::ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG: T:: :CTACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACTGATG GCGGCTTGG: C:::ATGCCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCAC:GATG ACGGCTTGG: C:::ATACCG TGCG:::GAT GATCCCGGCC CAAGCGTCGA TCCACGGTTG GCGGCTTGG: C:: ATACGA TGCG:: :GAT GATCCCAGCC CAAGCGTCGA TCCACGGTCG GCGGCTTGG: T:::ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCAGGGATG ACGGCTTGG: T:: ATACCA TGCA:: GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTNNN T:: :ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTTNN NNNNNNNNNN NNNNNNNNN: T:: :ATACCA TGCA:::GAT GATCCCAGCC CGAGCGTCGA TCCA:GGATG GCGGCTTGG: C:::GTACCA TGCG:CGGAT GATCCCAGCC CAAGCGTCGA TCCACGGTTG GCGGCTTGG: C:: :ATGCCA TGCA:::GAT GATCCCAGCG CAAGCGTCGA TCCACGGATG ACGGCTTGG: T:: ATACCA TGCA:: GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG: C:: :ATGCCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG ACGGCTTGG: G:: :ATACCA TGCG:: : GAT GATCCCAGCC CGAGCGTCGA TCCACGGATG GCGGCTTGG: T:::ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG: T:: :ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCA:GGATG GCGGCTTGG: T:: ATACCA TGCA:: $:$ GAT GATCCCAGCC CAAGCGTCGA TCCA:GGATG GCGGCTTGG: C:: :ATACCG TGCG:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGTTG GCGGCTTGG: T:::ATACC: TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG ACGGCTTGG: C:: :ACACCG TGCG:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGTTG GCGGCTTGG: C:: :ATACCA TGCG:::GAT GATCCCGGCC CAAGCGTCGA TCCACGGTTG GCGGCTTGG: T:: :ATACCA TGCG:: $:$ GAT GATCCCAGCC CGAGCGTCGA TCCACAGATG GCGGCTTGG: T:: :ATACCA TGCA:: :GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG: G:: :ATACCG TGCG:::GAT GATCCCAGCC CGAGCGTCGA TCCACGGACG GCGGCTTGG: T:: ATACCA TACA:: GAT GATCCCAGCC CGAGCGTCGA TCCATAGATG GCGGCTTGG: T:::ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG: T:: ATACCA TGGA:: :GAT GATCCCAGCC CGAGCGTCGA TCAATAGATG GCGGCTTGG: C:::ATACCA TGCG:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGTTG GCGGCTTGG: C:::ATACCA TGCG:::GAT GATCCCAGCC CAAGCGTCGA TCCANNNNNN NNNNNNNNNN T:: ATACCA TGCA:: $:$ GAT GATCCCAGCC CGAGCGTCGA TCCACAGATG GCGGCTTGG: T:: :ATACCA TGCA:::GAT GATCCCAGCC CGAGCGTCGA TCCACAGATG GCGGCTTGG: T:: ATACCA TGCA:: $:$ GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG: T:: :CTACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACTGATG GCGGCTTGG: T:: :ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG ACGGCTTGG: T:: :ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG: T:: CTACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCACTGATG GCGGCTTGG: C:: :GTACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCACGGACG GCGGCTTGG: T:ATATACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCCAGGATG GCGGCTTGG: G:: :ATACCA CGCG:: : GAT GATCCCAGGC CAAGCGTCGA TCCACGGATG GCGGCTTGG: C:::GTACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGACG GCGGCTTGG: T:: ATACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG: C:: AAACCA TGCG:: GAT GATCCCGGCC CAAGCGTCGA TCCACGGTTG GCGGCTTGG: T:: :ATACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG: T:: : CTACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACTGATG GCGGCTTGG: C:::GTACCA TGCG:: :GAT GATCCCGGCC CAAGCGTCGA TCCACGGTTG GCGGCTTGG: T:: :ATACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCA:GGATG GCGGCTTGG: G:: :ATACCA TGCG:: $:$ GAT GATCCCAGGC CAAGCGTCGA TCCACGGATG GCGGCTTGG: T:: :ATACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCA:GGATG GCGGCTTGG: T:: :ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCA:GGATG NNNNNNNNNN T:: ATACCA TGCA:: $:$ GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG: T:: : CTACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCACTGATG GCGGCTTGG: C:::GCACCA TGCG:: $:$ GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG: C:: : GTACCA TGCG:: :GAT GATCCCAGCC CAAGCGTCGA TCCACGGTTG GCGGCTTGG: C:::GTACCA CGCG:: : GAT GATCCCAGCC CGAGCGTCGA TCCACGGATG GCGGCTTGG: T:: :ACACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG: T:: : CTACCA TGCA:: :GAT GATCCCAGCC CAAGCGTCGA TCCACTGATG GCGGCTTGGG T:::ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCA:GGATG GCGGCTTGG: T:: :ATACCA TGCA:: :GAT GATCCCAGCC CAAGCGTTGA TCCA:GGATG GCGGCTTGG:
M. venezuel
M. vieriana
M. walteri
M. wendland
M. ximenae.
M. zahlbruc
P. amethyst
P. uxorium.
T. gemmata.
T. scobina.

```
\ldots..| ...| \ldots..| ...| \ldots..|....| ...||....| ....| ....| ....| ....|
    605 615 625 635 645 655
C:::ATGCCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG ACGGCTTGG:
C:::ATACCG TGCG:::GAA GATCCGAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG:
G:::ATACCA TGCG:::GAT GATCCCAGGC CAAGCGTCGA TCCACGGATG GCGGCTTGG:
C:::ATGCCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCAC:GATG ACGGCTTGG:
T:::ATACCA TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG ACGGCTTGG:
C:::ATACCG TGCG:::GAT GATCCCAGCC CGAGCGTCGA TCCACGGATG GCGGCTTGG:
T:::ATACCA TGCG:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG:
T:::ATACCC TGCA:::GAT GATCCCAGCC CAAGCGTCGA TCCACGGATG GCGGCTTGG:
T:::ATACCA TGCG:::GAT GATCCCAACC CAAGCGTCAA TCTACGGATG ACAGCTTGG:
T:::ATACCA TCGG::::AT GATCCCAACC CAAGCGTCAA TCTACGGATG AAAGCTTGT:
```

D. astuta
D. chimaera AAT
D. cochliops AAT
D. houtteana AAT
D. sodiroi. AAT
D. xenos AAN
L. pelecani AAT
M. abbrevia AAT
M. alexandr AAT
M. amaluzae AAT
M. ampullac AAT
M. antonii AAT
M. aphanes AAT
M. aphanes. AAT
M. bangii AAT
M. bicornis AAT
M. caesia AAT
M. caloptera AAT
M. campylog AAT
M. cardiant AAT
M. carmenen AAT
M. caudiovo AAT
M. cerastes AAT
M. chaetost AAT
M. chaparen AAT
M. chimboen AAT
M. citrinel AAT
M. Civilis AAT
M. coccinea AAT
M. collina AAT
M. collina. AAT
M. coriacea AAT
M. corniHam AAT
M. corniHan AAT
M. cupulari AAT
M. cycloteg AAT
M. davisii AAT
M. decumana AAT
M. deformis AAT
M. delhierr AAT
M. echo AAT
M. erinacea AAT
M. estradae AAT
M. floribun AAT
M. fulvesce AAT
M. garciae AAT
M. glandulo AAT
M. goliath AAT
M. gutierre AAT
M. guttulat AAT
M. herradur AAT
M. heteropt AAT

M. hierogly	NNN
M. hirtzii	NNN
M. hoeijeri	AAT
M. infracta	AAT
M. kyphonan	AAT
M. lamproty	AAT
M. lansberg	AAT
M. lata	AAT
M. limax	AAT
M. macruraH	AAT
M. macruraH	AAT
M. melanoxa	AAT
M. meleagri	AAT
M. mentosa.	AAT
M. mezae	AAT
M. molossus	AAT
M. mystica	AAT
M. naranjap	AAT
M. nidifica	AAT
M. notosibr	AAT
M. ophioglo	AAT
M. oreas	AAT
M. oreas	NNN
M. ova avis	AAT
M. pachyura	AAT
M. paivaean	AAT
M. panguien	AAT
M. parvula	AAT
M. patricia	AAT
M. patula	AAT
M. perister	AAT
M. persicin	AAT
M. pescadoe	AAT
M. picea	AAT
M. picturat	AAT
M. pinocchi	AAT
M. pleuroth	AAT
M. princeps	AAT
M. pyxis	AAT
M. racemosa	AAT
M. reichenb	AAT
M. rubeola.	AAT
M. rubigino	NNN
M. saltatri	AAT
M. sanchezi	AAT
M. scabrili	AAT
M. schlimii	AAT
M. striatel	AAT
M. teaguei.	AAT
M. titan	AAT
M. uniflora	AAT
M. veitchia	AAT
M. venezuel	AAT
M. vieriana	AAT
M. walteri	AAT
M. wendland	AAT
M. ximenae.	AAT
M. zahlbruc	AAT
P. amethyst	AAT
P. uxorium.	AAT
T. gemmata.	AAT
T. scobina.	AAT

AKNOWLEDGEMENTS

I would like to acknowledge many people for helping me during my doctoral work.

I would especially like to thank my advisor, Prof. Dr. Jens Rohwer who undertook to act as my supervisor despite his many other academic and professional commitments. His wisdom, knowledge, and commitment to the highest standards inspired and motivated me.

I am grateful to Dr. Schirarend for giving me the opportunity to do this dissertation at the "Biozentrum Klein Flottbek und Botanischer Garten der Universität Hamburg", and helping with all contacts.

I owe a special note of gratitude to Barbara Rudolph for initially teaching me molecular methods and for assisting me with miscellaneous tasks, for helpful discussions, and corrections.

My sincere and warm thanks to Ana Maria Vogt and Andrea Jounais provided valuable technical assistance, and to Karen Dehn for her help with the SEM.

I would like to thank Manfred Klötzl, Ton Sijm, Manfred Müller, Willibald Königer, for helpful comments about orchidaceae and for providing material.

Special thanks goes to Prof. Dr. Klaus Kubitzki and Dr. Pia Parolin, who was willing to participate in my final defense committee at the last moment.

For helpful discussions about Orchidaceae I am thankful to Gerardo Salazar, Alec Pridgeon, and Günter Gerlach. I am grateful to Joachim Thiede, Björn Herber, and Javier Estrada for helpful discussions about phylogeny.

I am grateful to Dr. Loki Schmidt and Dr. Dr. Dedo Hundertmark for financial support.

For their help with the English language I am thankful to Kristina Groth.

Finally, I'd like to thank my family. Richard Mora, my husband. Your love, support and constant patience have taught me much about sacrifice, discipline, and compromise. Lisa, my daughter, who spent many days with relatives to allow me to focus. I am deeply sorry for the time we spent apart. My next baby, who is on the way, for giving me the final motivation and the "last impulse". My father extended his passion for plants and nature to me while my mother was a constant source of support. I'm grateful to my sisters, Marianela, Christian and Camila, for their encouragement and enthusiasm.

Daniela Abele was supported by a Scholarship for doctoral studies at the University of Hamburg, awarded by the University of Hamburg in the framework of Hamburgisches Gesetz zur Förderung des wissenschaftlichen und künstlerischen Nachwuchses (HmbNFG).

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, daß ich die vorliegende Dissertation selbständig verfaßt und nicht schon als Diplomarbeit oder ähnliche Prüfungsarbeit verwendet habe.

Die verwendeten Hilfsmittel sowie die zur Hilfeleistung herangezogenen Institutionen sind vollständig angegeben.

Hamburg, im Oktober 2007

Analisa Daniela Abele, Dipl. Biol.

