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Introduction

Numerical simulation of physical, biological, chemical and even financial pro-
cesses is becoming an increasingly widespread technique and replacing more
time and money consuming experimental techniques like the building of mod-
els. Next to savings in expenditure this is due to the great flexibility of using
a computer that allows rapid adaption of the investigated configuration.

Many natural and technical processes are governed by simple principles,
like minimization of convex functionals or conservation of certain quantities.
This thesis is devoted to the study of numerical methods to simulate the
latter ones. In particular we develop a collocation method for hyperbolic
conservation laws which is capable of adequately resolving strong shocks in
transonic flow fields. The robustness and accuracy of the method is demon-
strated by certain well established test cases for the Euler equations of gas
dynamics.

Given the great success of finite volume methods (besides their formal
elegance) considering collocation methods today perhaps requires some jus-
tification. The finite volume method combines a discrete integral formulation
of the conservation principle with a rich geometric data structure. The state
of the art in two dimensions is marked by adaptive methods using either
cartesian grids or conforming simplex grids with boxes. Simplex grids in
particular allow flexible and automatic discretization of complex geometries
and we focus our considerations on equally unstructured and flexible grids.

One urgent demand arising from practical applications is the extension of
contemporary methods from two to three space dimensions. Unfortunately,
the generation of regular simplex grids in higher dimensions is a hard prob-
lem. For this reason one might look for ways to weaken the geometrical
structure that underpins the finite volume method. A collocation scheme
that operates on sets of smoothly scattered points and only requires some
information about neighbourhood relations between these points would be
easier to implement in higher dimensions than methods that work on tes-
salations.

In the course of developing such a method one is presented with formidable
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6 INTRODUCTION

technical difficulties. One important property of a program for simulating
transonic gas flow, for example, is the capability of handling discontinuities.
Finite volume methods achieve this via the solution of locally one dimen-
sional Riemann problems. We have been able to design a similar mechanism
for the collocation case by considering edges between neighbouring points
and fluxes essentially directed along these edges.

Another motive for considering collocation functionals is the desire to
use arbitrary trial spaces for which cell averaging functionals might be too
expensive to handle. The polynomial recovery techniques widely used today
work quite well, but they are largely based on heuristics. In particular,
there is no rigorous theory of oscillation indicators and reconstruction weights
available. Only very recently have mathematicians begun to look into these
problems systematically. Collecting practical experience with generalizations
of the methods that are so well-established today can perhaps help to pave
a road towards a scheme that is both computationally efficient and founded
on a comprehensive theory.

In chapter one of this thesis we discuss the features of hyperbolic conser-
vation laws in some depth focusing on the topics relevant to schemes with
upwind properties. We analyze the flux across discontinuities and classify
numerical flux functions by the way they differ from the plain average of the
fluxes to the left and right of the discontinuity.

The second chapter is concerned with discretization techniques. It intro-
duces the grids we consider and presents a general framework of discretization
which comprises both finite volume and collocation methods. We demon-
strate uniform stability of the reconstruction process under similarity trans-
formations of the grid for both collocation and cell averaging functionals.

In the third chapter we review the Euler equations of gas dynamics, per-
haps the most important and well-studied hyperbolic system. It is closely
related to the discussion in the first chapter, however, placing it here stresses
that the discretization techniques developed in the second chapter are not
specific to the Euler equations.

The fourth chapter finally contains a few remarks on our early attempts
and numerical examples for some commonly accepted test cases for Euler
computations generated with the current version of our collocation method.



Chapter 1

Conservation Laws

1.1 Fundamental Principles

If a quantity M is conserved within a region Ω, any change of the amount of
M contained in Ω corresponds to transport of M across the boundary of Ω.

Under the assumption that there is a finite upper bound on the velocity
with which either the quantity M or the region Ω may move along, the
conservation principle has a far reaching immediate consequence:

During a short interval in time all changes of the amount of M
contained in Ω depend only on the distribution of M in a layer
about the boundary of Ω. It does not matter how M is distributed
deep inside Ω or far away from it.

In order to express the above principle in the language of mathematics, we
introduce the following abstractions and definitions:

Definition 1.1. A control volume or cell is a fixed (not moving) compact
polyhedron1 Σ ⊂ Rd

Polyhedra allow H1 approximation of smooth geometries, and in order to
improve the geometric approximation, it may sometimes be desirable to relax
the above definition in the following way: given a “reasonably good” Hk

approximation of a sufficiently smooth geometrical object, the surfaces of
the control volumes may be modified to yield an Hk+1 approximation of the
object under consideration.

More general notions of a control volume may be envisaged, like that of
a connected bounded set whose boundary has a piecewise continuous outer

1a non empty connected set with intΣ = Σ whose boundary is formed by a finite
number of subsets of hyperplanes
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8 CHAPTER 1. CONSERVATION LAWS

normal ~n. The key point in any such definition is the availability of some
variant of the divergence theorem, but there would be no substantial benefit
in using those generalizations here.

Let M take values in R
s and M(t, Σ) denote the amount of M in the

control volume Σ at time t. Finally assume that the movement of M at time
t and point ~x is described by a flux j(t, ~x) ∈ Rs×d. Now the conservation
principle can be stated in integral formulation:

M(t, Σ) = M(t0, Σ) −
∫ t

t0

∫
∂Σ

j~n do.

Transport out of Σ decreases the components of M(t, Σ), but for such trans-
port the integrand on the right hand side is positive, as ~n is the outer normal.

Definition 1.2. A function u : R × R
d → S is called density of M at the

point ~x ∈ R
d at time t, if for any control volume Σ ⊂ Rd

M(t, Σ) =

∫
Σ

u(t, ~x) dV.

S ⊂ Rs is called state space and Rd physical space or just space.

Throughout this thesis we will only consider quantities which have densities
and speak of the conservation of the abstract quantities and their densities
synonymously.

The conservation principle may now be restated in terms of the density:∫
Σ

u(t, ~x) dV =

∫
Σ

u(t0, ~x) dV −
∫ t

t0

∫
∂Σ

j~n do (1.1a)

or after differentiation with respect to time

d

dt

∫
Σ

u(t, ~x) dV = −
∫

∂Σ

j~n do. (1.1b)

If the functions in equations (1.1) are sufficiently smooth, we may swap
differentiation with respect to time and spatial integration on the left hand
side and use the divergence theorem on the right hand side to obtain2∫

Σ

∂

∂t
u(t, ~x) dV = −

∫
Σ

divj dV.

2All vector operations are carried out on each state component separately.
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For the class of Σ’s we are considering this implies that the integrands must
match pointwise, hence

∂

∂t
u + div j = 0. (1.2)

Equation (1.2) is called the differential form of the conservation principle.
For physical phenomena the flux should not explicitly depend on the time
and space coordinates, since the forms of the laws of nature should not hinge
on any particular frame of reference imposed by an observer [Ein05]. If the
flux thus depends on u alone and is C1, then j = F ◦ u with a (smooth
case) flux function F := (F 1, . . . , F d) : S → Rs×d with F k : Rs → Rs, and
equation (1.2) can be stated in quasi-linear form:

∂

∂t
u +

d∑
k=1

∂F k

∂u

∂u

∂xk
= 0. (1.3)

We will assume throughout this thesis that F ∈ C2(S → Rs×d).
The problems we will study in this thesis consist of a conservation law in

either of the above forms, a prescribed domain Ω, an initial density distribu-
tion u0(~x) = u(t0, ~x) on Ω and boundary conditions on the fluxes across the
boundary of Ω: for ~x ∈ ∂Ω

F (u(t, ~x))~n = B(u, t, ~x). (1.4)

Restricting F to be dependent on u alone precludes modeling inhomogenities
in space, source terms, certain kinds of boundary conditions and diffusive ef-
fects. In many applications, however, the flux function is simply a sum of a
convective term (depending on u alone), a diffusive term that depends essen-
tially on ∇u alone and source terms which mainly depend on space and time
coordinates. Furthermore, these additional terms satisfy certain regularity
conditions, cf. [Maj84] for a detailed discussion, and may consequently be
regarded as small corrections to the convective term. A flux with a diffusive
component has the form

F (u) − A∇u

where A = A(u, t, ~x) is always a diagonalizable positive semi-definite ma-
trix. Roughly speaking the term −A∇ contributes downhill transport, lo-
cally levelling u. If A had negative eigenvalues, then there would occur uphill
transport, causing small differences to blow up, similar to the behaviour of a
“backward heat transport equation”. The solution to such a problem expo-
nentially blows up in time, and a numerical scheme simulating it cannot be
stable.
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Modeling just the convective flux entails a number of interesting diffi-
culties – the spontaneous generation of discontinuities is perhaps the most
notable of these – that translate into certain strategies for implementing
numerical schemes for conservation laws. In this thesis we shall almost ex-
clusively contemplate convective phenomena.

1.2 Scalar Equations

Linear Advection

Consider an initial scalar density distribution u0 : Rd → R at time t0 being
shifted by multiples of a constant vector ~ν ∈ R

d:

u(t, ~x) := u0(~x − ~ν(t − t0)). (1.5)

Obviously u is conserved. Furthermore, if u0 is a smooth function, u(t, ·)
will always be smooth, as it is simply a shifted version of u0. We may thus
differentiate with respect to time and space:

∂

∂t

∣∣∣∣
t,~x

u = −~ν · ∇|~x−~ν(t−t0)u0

∇|t,~xu = ∇|~x−~ν(t−t0)u0

Taking into account that div ~νu0 = ~ν ·∇u0 we infer that the differential form
(1.2) of the conservation law is satisfied, if and only if we define the flux by

j := F (u) := u~ν t.

We now apply the integral formulation of equations (1.1) of the conservation
principle to a certain class of discontinuous functions u0 in order to derive
a definition of the flux which will satisfy (1.5) at discontinuities. While
there is no hope of managing a completely random function u0, the conserva-
tion principle may be successfully applied to an initial distribution u0 whose
discontinuities are aligned with the interfaces of suitably chosen control vol-
umes. It turns out that the flux across such a discontinuity is a function of
the states at both sides of the discontinuity and the direction normal to it.
This function is called the Riemann solver for the flux F . Later we will
develop approximate Riemann solvers for non-linear systems of hyperbolic
conservation laws.
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Proposition 1.3. Let Σ be a cell. Assume that u0 : Rd → R is a bounded
piecewise continuous function which is continuous inside Σ and can be con-
tinuously extended to Σ from the inside and piecewise continuously to R

d \
(int Σ) from the outside. On the boundary of Σ define almost everywhere

ui(~x) := lim
~y→~x

u0(~y) (~y ∈ int Σ)

uo(~x) := lim
~y→~x

u0(~y) (~y 6∈ Σ).
(1.6)

Then the integral formulation (1.1) of the conservation principle is satisfied,
if and only if we define the Riemann solver

F (ui, uo, ~n) := j~n :=

{
~ν · ~nui if ~ν · ~n > 0

~ν · ~nuo if ~ν · ~n < 0
(1.7)

almost everywhere on ∂Σ.

Before presenting the proof we observe that the definition of ui and uo in
(1.6) depends on the particular Σ under consideration, but the Riemann
solver F (ui, uo, ~n) in (1.7) does not. On a common interface between any
two control volumes Σ and Σ′ with outer normals ~n and ~n′ respectively one
has almost everywhere: ~n = −~n′, ui = u′

o, uo = u′
i – the inner limit as seen

from Σ is the outer limit as seen from Σ′ and vice versa – and consequently
F (ui, uo, ~n) = j~n = −j~n′ = −F (u′

i, u
′
o, ~n

′).

Proof of proposition 1.3. We first establish by indirect proof that the defini-
tion in equation (1.7) is necessary. Let us assume that the Riemann solver
could be defined otherwise.

There are then a unit vector ~q ∈ R
d and two numbers ul, ur ∈ R for which

a flux different from that of equation (1.7) will satisfy the integral form of
the conservation law. Now let

u0(~x) :=

{
ul if ~x · ~q 6 0

ur if ~x · ~q > 0
.

Since the density distribution is known, we may compute the content of an
oblique cylinder or prism Θ of height h and cross section – parallel to the
hyperplane – A (Volume V = Ah) with one end initially on the hyperplane
~x · ~q = 0 and outer normal ~q for this end (i.e. Θ lies initially to the left of the
hyperplane, see figure 1.1). For t ∈ [t0, t0 + h/ |~ν · ~q|) one has

M(t, Θ) =

{
ulAh if ~ν · ~q > 0

[(ul − ur)(t − t0) ~ν · ~q + ulh]A if ~ν · ~q < 0
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h

q

A

Figure 1.1: The cylinder Θ and the unit vector ~q on the hyperplane
separating the states ul and ur. If ~ν · ~q < 0, the hyperplane moves
left and ur “enters” Θ, otherwise Θ will always contain only ul.

which implies

d

dt

∣∣∣∣
t0+

M(t, Θ) =

{
0 if ~ν · ~q > 0

(ul − ur) ~ν · ~q A if ~ν · ~q < 0
.

On the other hand all fluxes across the jacket cancel out∫
∂Θ

j~n do = (F (ul, ur, ~q) − F (ul)~q)A

and by virtue of the conservation principle in equations (1.1) we obtain a
contradiction to our assumption:

F (ul, ur, ~q), q) = F (ul)~q − 1

A

d

dt

∣∣∣∣
t0+

M(t, Θ) =

{
~ν · ~q ul if ~ν · ~q > 0

~ν · ~q ur if ~ν · ~q < 0
.

The proof of sufficiency is straightforward, but technical. By assumption u0

can be continuously extended to Σ which is compact. Hence u0 is uniformly
continuous on any subset of Σ. Similarly, for a compact set Ξ with Σ ⊂ int Ξ,
u0 is uniformly continuous on the intersection of any continuity component
adjacent to Σ with Ξ \Σ. Subdivide Σ into a finite number of closed convex
polyhedra Σ1, . . . , ΣN and each Σk into subsets Θ such that

• each Θ is the intersection of Σk and a prism or cylinder with axis
parallel to ~ν and

• any intersections of edges of Σk with Θ are aligned with edges of Θ.
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Θ is convex and the flux across its jacket – the part of its boundary formed
by the jacket of a cylinder – is pointwise zero, because ~ν · ~n = 0 for any
normal ~n on the jacket.

Denote by Θ1 the surface part of Θ for which ~ν · ~n < 0, and by Θ2

the opposite end. Now by a reasoning similar to that above and the Fubini
theorem on integration on product spaces

M(t, Θ) = M(t0, Θ) +

∫
Θ1

∫ t

t0

u(τ, ~x) dτ do −
∫

Θ2

∫ t

t0

u(τ, ~x) dτ do

= M(t0, Θ) +

∫
Θ1

∫ t

t0

u0(~x − τ~ν) dτ do −
∫

Θ2

∫ t

t0

u0(~x − τ~ν) dτ do

and uniform continuity permits swapping integration over Θ1,2 and the limes
of the difference quotient

d

dt

∣∣∣∣
t0+

M(t, Θ) =

∫
Θ1

‖~ν‖ lim
τ↘t0

u0(~x − τ~ν) do −
∫

Θ2

‖~ν‖ lim
τ↘t0

u0(~x − τ~ν) do

=

∫
Θ1

‖~ν‖ lim
τ↘0

u(t0, ~x − τ~ν) do −
∫

Θ2

‖~ν‖ lim
τ↘0

u(t0, ~x − τ~ν) do

= −
∫

∂Θ

F (ui, uo, ~n) do.

Summation over all Θ completes the proof.

We conclude this paragraph by summarizing (without proof) some algebraic
properties of the Riemann solver:

Lemma 1.4. Let ~n ∈ Rd be an arbitrary unit vector. The Riemann solver
of equation (1.7)

1. is consistent with the flux function in the following way:∣∣∣∣F (ui, uo, ~n) − F (ui) + F (uo)

2
~n

∣∣∣∣ ≤ ‖~ν‖
Rd

|ui − uo|
2

,

2. may equivalently be written as

F (ui, uo, ~n) =
F (ui) + F (uo)

2
~n + |~ν · ~n| ui − uo

2

3. and obeys

F (ui, uo, ~n) = −F (uo, ui,−~n).
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Characteristics

Direction and velocity of the density profiles propagation in the linear ad-
vection equation above were those of the vector ~ν ∈ Rd in

∂

∂t
u + ~ν · ∇u = 0.

Let us now consider the case of a scalar conservation law with a non linear
differentiable flux j = F (u) ∈ R1×d depending on u alone. Let C ⊂ R be an
interval of length greater than zero.

Definition 1.5. A continuous function χ : C → Rd is called a characteristic
curve for the quasi-linear equation (1.3), if for t0 ∈ C fixed and any t ∈ C:

u(t, χ(t)) = u(t0, χ(t0)). (1.8)

In the scalar case the characteristics are essentially straight lines in the di-
rection of F ′(u). This implies that F ′ ◦ u plays the rôle of a characteristic
velocity field: in smooth regions of u small local phenomena travel at velocity
F ′(u).

Lemma 1.6. With the same expressions as in the preceding definition as-
sume that χ : C → Rd is differentiable and u is smooth on an open set
containing

{
(t, χ(t)) ∈ C × R

d : t ∈ C
}
. Then the lines defined by

χt(t) := χt(t0) + (t − t0)F
′(u(t0, χ(t0))) (1.9)

are characteristics.

Proof. Differentiate (1.8) with respect to time:

0 =
d

dτ

∣∣∣∣
t

u(τ, χ(τ)) by (1.8)

=
∂

∂τ

∣∣∣∣
t

u +

(
d

dτ

∣∣∣∣
t

χt

)
∇|(t,χ(t))u by the chain rule

=

(
d

dτ

∣∣∣∣
t

χt − F ′
∣∣∣∣
u(t,χ(t))

)
∇|(t,χ(t))u by (1.3)

=

(
d

dτ

∣∣∣∣
t

χt − F ′
∣∣∣∣
u(t0,χ(t0))

)
∇|(t,χ(t))u by (1.8)

which is satisfied by χt(t) = χt(t0) + (t − t0)F
′(u(t0, χ(t0))).
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Remark 1.7. One important consequence of lemma 1.6 is that for a Lip-
schitz continuous flux function F the global Lipschitz constant LF plays the
rôle of a maximal signal velocity. On the other hand side, for a conservation
law modeling physical phenomena with a finite upper bound on signal veloc-
ities, the flux function is Lipschitz continuous. In order to obtain a global
Lipschitz constant for nonlinear equations it will generally be necessary to
restrict the state of valid states such that an upper bound on |F ′(u)| can be
found. Regarding the modeled phenomenon this will hopefully only exclude
extreme states for which the chosen model fails to be valid anyway or that
are unphysical altogether, like particles moving faster than the speed of light.

Discontinuities and Self Similarity

Based on the characteristics we are now in a position to discuss the evolution
of a given density profile u0. It turns out that even for perfectly smooth initial
data the evolving profile may develop discontinuities. Therefore we either
need to consider weak solutions to the differential form of the conservation
law or to abandon the differential form altogether. We define weak solutions
in the next paragraph. Until then we use the term “weak solution” in a very
loose fashion to denote a function pieced together from fragments of classical
smooth solutions.

Compression Waves

By following the characteristics the evolution of the density profile may be
constructed from the initial data, as long as the characteristics do not inter-
sect. When they do cross, the classical concept of the solution is no longer
valid, as a multi-valued solution would emerge at such a point.

Consider the following one dimensional example with a convex flux func-
tion F ∈ C2(R → R), F ′′(u(t0, x0)) > 0 and assume that u0 := u(t0, ·) ∈
C1(R → R) with u′

0(~x0) < 0 and F ′(u(t0, x0)) > 0 and two characteristics χ0

and χh, one passing through (t0, x0) and the other through (t0, x0 + h):

χh(t) = (~x0 + h) + (t − t0)F
′(u0(x0 + h))

= (x0 + h) + (t − t0) [F ′(u0(x0)) + hF ′′(u0(x0))u
′
0(x0) + hRh]

with limh→0 Rh = 0 and χ0(t) = x0 + (t − t0)F
′(u0(x0)). These will cross at

time

t = t0 − 1

u′
0(x0)F

′′(u0(x0)) + Rh

.
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Letting h → 0 we infer that after time

t∗ := t0 − 1

u′
0(x0)F

′′(u0(x0))
> t0

the classical solution breaks down due to the fact that characteristics have
crossed. In the context of weak solutions the multiplicity is removed by
inserting one or more discontinuities (compression waves or shocks) in
such a way that the conservation principle in equations (1.1) is satisfied and
all characteristics go into the discontinuity.3

Once such a discontinuity has formed, it is not possible to tell – based
on the weak solution – how long ago that happened. It is evident from this
constructive process that the weak solution produces no “new” values, but
stays within the range of the initial data. Lax [Lax71] formally shows that
the time evolution of a step function with left and right states ul and ur

respectively takes values between ul and ur and its variation is bounded by
|ul − ur|.

Rarefaction Waves

For the configuration above, but this time with u0 discontinuous at x0,
u0(x0−) < u0(x0+) and F ′ monotonely increasing on [u0(x0−), u0(x0+)],
we choose as a weak solution a rarefaction wave or fan u(t, x) := u∗ where
u∗ is defined by

F ′(u∗) =


x − x0

t − t0
for F ′(u0(x0−)) <

x − x0

t − t0
< F ′(u0(x0+))

F ′(u0(x)) otherwise
.

This choice may be motivated by the observation that a smeared discontinuity
– a large but finite gradient about x0 – in the initial data u0 would evolve
that way, i.e. be spread further and further. In the case of the crossing
characteristics above the smeared part would merely be resharpened.

Contact Discontinuities

If the characteristics are parallel (like in the linear advection case), a disconti-
nuity may still slide along, such a situation is called “contact discontinuity”.
No characteristics go into a contact discontinuity and none come out of it.
This fact is sometimes referred to by the statement that no matter crosses a
contact discontinuity.

3Some authors refer to the multivalued function – before or without the insertion of
any discontinuities – as the compression wave.
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Self Similarity

In each of the above cases the weak solution we constructed could be repre-
sented by a function depending solely on the quotient of x − x0 and t − t0.
The construction of the rarefaction wave followed the characteristics and
explicitly ensured that

ξ :=
x − x0

t − t0
= F ′(u(t, x)), (1.10)

but also for the shocks and contact discontinuities one has

u(t, x) = w

(
x − x0

t − t0

)
with w(ξ) = ul or w(ξ) = ur depending on ξ such that the integral form
of the conservation principle in equations (1.1) is satisfied. Whenever w is
differentiable, equation (1.10) implies(

− x − x0

(t − t0)2
+

1

t − t0
F ′(w(ξ))

)
w′(ξ) = 0

and hence equation (1.3) holds.

Weak Solutions

A numerical method operating on the integral formulation (1.1) of the con-
servation principle approximates the solution based on values from a finite
number of given control volumes. While for each of the chosen control vol-
umes the integral form (1.1) is satisfied exactly, the “weakness” of the for-
mulation originates from the fact that we only consider a finite number of
data functionals: the average of the function on each control volume.

Setting out from the differential form (1.2) of the conservation principle
we multiply equation (1.2) by suitable smooth test functions and formally
integrate by parts to shift differentiation from u to the test function. For any
compactly supported φ ∈ C1

0(R
d → R) we have

d

dt

∫
Ω

uφ dV +

∫
∂Ω

(F ◦ u)φ~ndo −
∫

Ω

(F ◦ φ)∇φ dV = 0

and after scaling Ω until supp φ ⊂ int Ω the boundary integral vanishes:

d

dt

∫
Rd

uφ dV −
∫
Rd

(F ◦ φ)∇φ dV = 0. (1.11)
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Equation (1.11) is called the weak form of the differential equation and its
solutions are weak solutions to equation (1.2). Weak solutions are by no
means unique. In particular the velocities at which discontinuities propa-
gate are not necessarily uniquely determined. Therefore one has to look for
additional criteria to single out the unique weak solution

• that is piecewise a classical smooth solution

• whose discontinuities are aligned with fragments of differentiable man-
ifolds of codimension one in R

d and move at the desired propagation
speeds.

Diffusion and Entropy

As long as the classic smooth solution of the differential form (1.2) of the
conservation principle exists, it is invariant under PT -transformations, i.e.
changing the signs of time and all space coordinates (parity). In fact, if
u(t, ~x) satisfies the differential form of the conservation principle (1.2), so does
u(αt, α~x) for any fixed α ∈ R. Shocks, however, violate PT -invariance. After
a PT -transformation a shock immediately dissolves into a rarefaction fan
(and possibly a whole sequence of rarefaction fans and compression waves),
irrespective of how long it existed before. One is therefore interested in
additional conditions to break the PT -invariance immanent in (1.2), see for
instance [AS97].

Contemplate the following – somewhat crude – mechanical analogue: We
have seen that in smooth regions the characteristics are straight lines that
converge and break at shocks. In the absence of friction a particle moving
along with the flow field would follow a straight path at constant velocity, a
characteristic. On passing a shock, however, the particle gets slowed down,
so it is reasonable to look for a mechanism providing some kind of friction
to dissipate part of the particles kinetic energy into heat, thus increasing the
entropy.

One common way of doing this is the diffusion-entropy approach: treat
(1.2) as the one-sided limit for ε ↘ 0 of

∂

∂t
uε + div jε = ε ∆uε (1.12)

with jε = F (uε). The solutions uε of (1.12) are known to be smooth, fur-
thermore this equation is not invariant under PT -transformations. Now let
E ∈ C2(R → R) be an arbitrary strictly convex function and g := E′F ′ with
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antiderivative G, the entropy flux. If u is differentiable twice, we have by
the chain rule

∆(E ◦ u) = (E′ ◦ u) ∆u + (E′′ ◦ u) ‖∇u‖2

and

∂

∂t
(E ◦ uε) + div(G ◦ uε) = (E′ ◦ uε)

∂

∂t
uε + (G′ ◦ uε)∇uε

= (E′ ◦ uε)
∂

∂t
uε + (E′ ◦ uε)(F ′ ◦ uε)∇uε

= ε(E′ ◦ uε) ∆uε

= ε
[
∆(E ◦ uε) − (E′′ ◦ uε) ‖∇uε‖2]

Existence and uniqueness of the limit function for ε ↘ 0 are guaranteed by
the following theorem due to Kružkov of which its author claims that it also
extends to systems [Kru70]:

Theorem 1.8. Assume that the initial density function u0 ∈ L∞(Rd → R)
and the flux F ∈ C1(R → R) is Lipschitz continuous. Then the solutions
uε of (1.12) converge almost everywhere in [t0; T ] × R

d to a function u ∈
L∞(Rd → R) as ε ↘ 0 and this limit function u is a solution of equations
(1.1).

In regions where limε↘0 ‖uε − u‖ = 0 in a sufficiently strong norm u is dif-
ferentiable twice, and

∂

∂t
(E ◦ u) + div(G ◦ u) = 0.

Particularly at discontinuities of u such strong convergence will be unattain-
able, therefore we multiply (1.12) with a test function φ ∈ C2

0 (Rd+1 → R>0)
and integrate by parts to shift differentiation from uε to φ. Formally using
the product rule

φ ∆E = div[φ∇E] − (∇φ)(∇E) = E ∆ φ + div[∇(φE) − 2E∇φ]

we obtain

φ
∂

∂t
uε + φ div jε = εφ ∆uε =

ε(E ◦ uε) ∆φ︸ ︷︷ ︸
=:R1

+ ε div[∇(φ(E ◦ uε)) − 2(E ◦ uε)∇φ]︸ ︷︷ ︸
=:R2

− ε(E′′ ◦ uε)φ ‖∇uε‖2︸ ︷︷ ︸
=:R3

.
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The second term on the right hand side, R2, permits using the divergence
theorem. The ensuing boundary integral is zero, if the compact support of
φ lies inside the domain of integration. In the course of his proof Kružkov
shows that for any compact K ⊂ R

d the set {uε|K : ε > 0} ⊂ L1(K → R) is
compact. Hence limε↘0 R1 = 0, but R3 resists further simplification and we
only know R3 > 0, as E is convex and φ > 0. Therefore

lim sup
ε↘0

∫
R

∫
Rd

(
φ

∂

∂t
(E ◦ uε) + φ div(G ◦ uε)

)
dV dt 6 0.

For this reason we demand that the weak solutions of (1.2) should satisfy
the following entropy condition: For any convex function E ∈ C2(R → R)
and G as constructed above

∂

∂t
(E ◦ u) + div(G ◦ u) 6 0 (1.13)

in a distributional sense. This may be generalized to arbitrary convex func-
tions E : R → R, such functions are differentiable twice almost everywhere.

Upwinding and the Equal Area Rule

Suppose we knew in advance the velocity at which a discontinuity separating
two constant states travels along. We fix a unit vector ~n ∈ R

d, a number α ∈
R and assume that the discontinuity is initially aligned with the hyperplane
~x · ~n = α and travels at velocity ~ν ∈ Rd maintaining constant height.

Denoting as “left” the region
{
~x ∈ R

d : ~x · ~n < α
}
, as “right” the rest and

by ul and ur the constant states left and right of the discontinuity respectively,
u may be expressed as

u(t, ~x) :=

{
ul if (~x − (t − t0)~ν) · ~n < α

ur if (~x − (t − t0)~ν) · ~n > α
,

and we conclude by considering a control volume to the left of the disconti-
nuity (the reasoning is quite similar to that in the indirect “necessity” part
of the proof of proposition 1.3)

F (ul, ur, ~n) =

{
F (ul)~n if ~ν · ~n > 0

F (ul)~n − (ul − ur) ~ν · ~n if ~ν · ~n 6 0
(1.14a)

or equivalently for a control volume to the right

F (ul, ur, ~n) =

{
F (ur)~n + (ul − ur) ~ν · ~n if ~ν · ~n > 0

F (ur)~n if ~ν · ~n 6 0
. (1.14b)
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The vector ~n above points from left to right which is in keeping with our use
of ui, uo and the outer normal ~n pointing from the inside to the outside of a
control volume. Putting equations (1.14) together we arrive at

Lemma 1.9 (Rankine-Hugoniot jump condition). The velocity ~ν ·~n at
which a discontinuity of constant height may travel in the direction ~n normal
to it is subject to the following Rankine-Hugoniot jump condition:

(F (ul) − F (ur))~n = (ul − ur) ~ν · ~n. (1.15)

The Rankine-Hugoniot jump condition is also a direct consequence of the
conservation principle stated in equations (1.1), if we consider a cylinder Σ
with axis parallel to ~n centered about the discontinuity and moving along
with it. All fluxes across the jacket cancel out and M(t, Σ) is constant – we
may even let the height of Σ tend to zero. Therefore (F (ul) − ~ν ul) · ~n =
(F (ur) − ~ν ur) · ~n.

Using equation (1.15) the flux across the discontinuity (1.14) may be more
compactly expressed as

F (ul, ur, ~n) =

{
F (ul)~n if ~ν · ~n > 0

F (ur)~n if ~ν · ~n 6 0
. (1.16)

Equation (1.16) is the mathematical expression of the upwinding principle:
if the local transport (“wind”) is from left to right, evaluate the flux function
for the left state, otherwise for the right state, i.e. look against (“up”) the
wind. We stress the following features of equation (1.16):

1. Only the sign of ~ν · ~n matters and

2. the Riemann solver does not jump at ~ν · ~n = 0, since the Rankine-
Hugoniot condition (1.15) then implies F (ul)~n = F (ur)~n.

Let us investigate the situation a little closer. The problem is essentially one
dimensional along ~n and we may think of the discontinuity as a step with
lower level at ub (bottom) and upper level at ut (top). Now imagine that
each point at height u of the step – including those in the vertical part – is
advected with its characteristic speed F ′(u). The propagation of the step
then depends on the behaviour of F ′ on [ub, ut].

If the step function and F ′ are correspondingly monotone, then the char-
acteristics diverge and we choose a rarefaction fan as weak solution. If
they have opposite monotone behaviour, the characteristics converge and we
choose a compression wave4 whose velocity is determined by (1.15). Follow-
ing the characteristics in this case leads to a multi-valued solution, and the

4In this case a single discontinuity is sufficient.
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t

Figure 1.2: Equal area rule and the condition E. In the left part the
flux function F is convex on [ub, ut], the right part illustrates the
desired behaviour of the weak solution for a more general F . The
shaded areas in each part have equal sizes.

insertion of the discontinuity must remove the multiplicity without violat-
ing the conservation principle. An equivalent expression for the conservation
principle in terms of this geometric construction is the equal area rule:

(t − t0)

∫ ul

ur

F ′(u)~n du = (t − t0)(ul − ur) ~ν · ~n (1.17)

which obviously implies (1.15).
However, for a nonconvex flux F with F ′~n having several zeros (sonic

points) the actual geometric construction of a suitable weak solution involves
several different waves and can be quite complicated (cf. the right part of
figure 1.2 for a simple example). Regarding the conservation principle we
demand that for each sub-discontinuity whose left and right states are again
denoted by ul and ur respectively ~ν · ~n should satisfy equation (1.17) and
hence the Rankine-Hugoniot jump condition of equation (1.15). An explicit
expression for the desired weak solution in the scalar case is known, we
present it in the next paragraph.

Construction Criteria for Weak Solutions

Above all the weak solutions we construct should satisfy the entropy condi-
tion (1.13). In this paragraph we present some more explicit consequences
of equation (1.13). As noted before, all characteristics should go into a
compression wave, and none come out of it, as time advances. This is cru-
cial to the compression waves stability under small perturbations, as the
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resharpening effect of the converging characteristics has to restore the dis-
continuity completely after any mollification. An obvious condition therefore
is F ′(ul)~n > ~ν ·~n > F ′(ur)~n. Furthermore, after smearing the original discon-
tinuity, it should be recovered without decaying into two (or more) smaller
ones. This is expressed by Oleinik’s condition E:

F (u) − F (ul)

u − ul
~n > ~ν · ~n > F (u) − F (ur)

u − ur
~n for u ∈ (ub; ut). (1.18)

Take as an example the right part of figure 1.2: propagation of the disconti-
nuity at its full initial height would, by the equal area rule, be slower than the
smaller discontinuity with a rarefaction fan at the top end. We reject the first
variant on the grounds that it violates (1.18). For a rigorous investigation of
shock front stability we refer to Majda [Maj84].

Geometrically speaking, the areas we exchange in such a construction
should not only be of equal size, but also as small as possible, because a weak
solution constructed this way will not change dramatically, if we mollify the
initial data. We demand that Oleinik’s condition E (1.18) be satisfied across
each discontinuity. Osher [Osh84] proves the following

Proposition 1.10. The (exact) solution u(t, ~x) = w(ξ) with

ξ := (~x − ~x0) · ~n/(t − t0)

and initial data

u0(~x) = u(t0, ~x) =

{
ul if ~x · ~n 6 ~x0 · ~n
ur if ~x · ~n > ~x0 · ~n

satisfies

F (w(ξ))~n − ξw(ξ) = min
u∈[ul,ur]

(F (u)~n − ξu) if ul < ur (1.19a)

F (w(ξ))~n − ξw(ξ) = max
u∈[ur ,ul]

(F (u)~n − ξu) if ul > ur. (1.19b)

With this proposition the flux across the discontinuity at ~x = ~x0 may be
expressed by the Riemann solver

F (ul, ur, ~n) = F (w(0)) =

 min
u∈[ul,ur]

F (u)~n if ul < ur

max
u∈[ur ,ul]

F (u)~n if ul > ur

. (1.20)
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Furthermore, whenever w is differentiable, we infer

d

dξ
[F (w(ξ))~n − ξw(ξ)] = [F ′(w(ξ))~n − ξ]︸ ︷︷ ︸

=0 by equation (1.10)

w′(ξ) − w(ξ)

and hence

w = − d

dξ

(
min

u∈[ul,ur]
(F (u)~n − ξu)

)
if ul < ur

w = − d

dξ

(
max

u∈[ur,ul]
(F (u)~n − ξu)

)
if ul > ur.

Conversely, the minimum or maximum in the preceeding equations are con-
tinuous with respect to ξ and differentiable almost everywhere. The jumps
in the derivative of the minimum or the maximum are precisely the jumps
of w.

Proposition 1.10 completely and explicitly describes the evolution of the
desired weak solution to a scalar conservation law, but

• it does not generalize to systems,

• the Riemann solver of equation (1.20) is not continuously differentiable
and

• even if we can, the desired weak solution in the case of systems may be
expensive to compute.

In the following paragraph we consider approximations to the Riemann solver
of equation (1.20) which have these features and discuss some of their prop-
erties.

Numerical Flux Functions

For a linear flux function each approximate Riemann solver in this paragraph
is equivalent to the Riemann solver considered in lemma 1.4. Harten and
Hyman [HH83] give a general survey of construction criteria for numerical
flux functions, a compact discussion can also be found in Hirsch [Hir90]. We
shall focus our presentation on the systematic addition of “upwinding” to the
average of F (ul) and F (ur). A straightforward generalization of equation
(1.16) estimates the propagation velocity of a discontinuity in the direction
normal to it from the Rankine-Hugoniot jump condition. This leads to the
numerical flux function of Roe [Roe81a, Roe81b]:

HRoe(ul, ur, ~n) :=
F (ul) + F (ur)

2
~n + |A(ul, ur)| ul − ur

2
(1.21a)
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where

A(u, u) := F ′(u)~n and (1.21b)

A(ul, ur) :=
F (ul) − F (ur)

ul − ur
~n if ul 6= ur. (1.21c)

If F~n is not monotone on [ub, ut] := [min {ul, ur}, max {ul, ur}], then the
numerical flux function of Roe admits unphysical weak solutions that violate
the entropy conditions, if the sonic point contained in [ub, ut] is critical. This
is mainly due to the fact that the Roe flux might stay too close – compared
to equation (1.20) – to the average of left and right flux:∣∣∣∣ ext

u∈[ub,ut]
F (u)~n − F (ul) + F (ur)

2
~n

∣∣∣∣ > ∣∣∣∣ ext
u∈{ul;ur}

F (u)~n − F (ul) + F (ur)

2
~n

∣∣∣∣
>
∣∣∣∣F (ul) − F (ur)

2
~n

∣∣∣∣
>
∣∣∣∣HRoe(ul, ur, ~n) − F (ul) + F (ur)

2
~n

∣∣∣∣ ,
where ‘ext’ is either ‘max’ or ‘min’. One common remedy to protect against
unwanted weak solutions is the conspicuous addition of diffusion (“entropy
fix”) [RP84] (see also [SO89]), as the regularization introduced by smearing
the initial discontinuity will force it to decay into several smaller ones, if it
fails to be stable under such perturbation. Instead of explicitly detecting the
sonic points and adding the necessary entropy fixes we consider a different
and slightly more sophisticated generalization of the upwinding principle us-
ing the derivative of F~n. In the case of hyperbolic systems it is precisely the
diagonalizability of the Jacobi matrix of F~n which enables us to generalize
the upwinding principle to systems. In equation (1.16) we let σ := sign(~ν ·~n)
and rewrite it in the following way:

F (ul, ur, ~n) =
F (ul) + F (ur)

2
~n +

(
σ

ul − ur

∫ ul

ur

F ′(u)~n du

)
︸ ︷︷ ︸

upwinding term

ul − ur

2
(1.22)

Because of the equal area rule (1.17) the upwinding term is nonnegative. In
a way, equation (1.16) represents the minimal upwinding necessary to barely
advect the discontinuity. If the upwinding term were made smaller, the re-
sulting flux would not even suffice to advect the discontinuity at the velocity
determined by the Rankine-Hugoniot jump condition (1.15), this would lead
to a pile-up behind the discontinuity, causing its height to rise. Such up-
winding deficit is a source of numerical instability. Making the upwinding
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Figure 1.3: Negative part x− (left) and positive part function x+

(right).

term larger, on the other hand, increases downhill transport, which is very
similar to the effects of diffusion.

In fact, equation (1.20) represents the Riemann solver we seek to approxi-
mate and, compared to (1.16), it corresponds to a probably larger upwinding
term. Several practically relevant numerical flux functions to approximate
the flux across a discontinuity are constructed by slightly increasing the up-
winding term of equation (1.22):

0 6 1

ul − ur

∫ ul

ur

σF ′(u)~n du 6 1

ul − ur

∫ ul

ur

|F ′(u)~n| du︸ ︷︷ ︸
Enquist-Osher term

6 Llocal
F

6 Lglobal
F

.

Substituting the Enquist-Osher term for the upwinding term eliminates the
dependence of σ and yields the flux function HEO of Engquist and Osher
[EO80, EO81]. It can be stated in three equivalent ways, the third (1.23c)
of these is perhaps the most suggestive in terms of implementing upwinding.
For ease of presentation we define the positive and negative part functions:
for ‘+’ and ‘−’ in ‘±’ separately let ± : R → R>0, x± := (|x| ± x)/2.

HEO(ul, ur, ~n) :=
F (ul) + F (ur)

2
~n +

1

2

∫ ul

ur

|F ′(u)~n| du (1.23a)

= F (ul)~n +

∫ ul

ur

(F ′(u)~n)
−

du (1.23b)

= F (ur)~n +

∫ ul

ur

(F ′(u)~n)
+

du. (1.23c)

HEO(·, ur, ~n) and HEO(ul, ·, ~n) are both in C1(R → R):

∂

∂ul
HEO(ul, ur, ~n) = (F ′(ul)~n)+

∂

∂ur
HEO(ul, ur, ~n) = −(F ′(ur)~n)−,
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and they have the same smoothness as the flux F away from zeros of F ′~n.
The flux function of Engquist and Osher involves at least as much upwinding
as (1.20) – like on page 22 ub and ut are the minimum and maximum of ul

and ur respectively:

1

2

(
max

u∈[ub,ut]
F (u)~n − min

u∈[ub,ut]
F (u)~n

)
6
∣∣∣∣HEO(ul, ur, ~n) − F (ul) + F (ur)

2
~n

∣∣∣∣ ,
since the term on the right hand side is obviously just half the total variation
of F~n on [ub, ut].

Going even further we might replace the upwinding term with a Lipschitz
constant LF of the flux function. This leads to the Lax-Friedrichs approx-
imative Riemann solver HLF. Depending on whether LF is chosen to be a
local (about ul and ur) or the global Lipschitz constant – provided the latter
exists – the resulting approximate Riemann solver is called local or global
Lax-Friedrichs flux function:

HLF(ul, ur, ~n) :=
F (ul) + F (ur)

2
~n + LF

ul − ur

2
. (1.24)

The global Lax-Friedrichs flux function has maximal smoothness: the same
as that of the original flux function. If we base an estimate of the upwinding
term on equations (1.23b) or (1.23c), we obtain expressions like F (ul)~n +
LF (ul − ur) and F (ur)~n + LF (ul − ur). These are not equivalent to the
Lax-Friedrichs flux function and not used.

Burgers Equation

The simplest non-linear scalar conservation law is the Burgers equation. Its
flux is defined by

F (u) := u2~ν t (1.25)

with a fixed ~ν ∈ R
d. The Burgers equation may develop discontinuities dur-

ing the evolution of an initially smooth profile. The numerical flux function
HEO of Engquist and Osher for the Burgers equation reads

HEO(ul, ur, ~n) = ul(ul~ν · ~n)+ − ur(ur~ν · ~n)− (1.26)

and the (local) Lax-Friedrichs flux function

HLF(ul, ur, ~n) =
u2

l + u2
r

2
~ν · ~n + (ul − ur) ‖~ν‖max {|ul| , |ur|}. (1.27)

In the examples we always use a simple boundary treatment and (approxi-
mately) solve a Riemann problem with a prescribed outer state u = 0 for the
Burgers equation.
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1.3 Hyperbolic Systems

The Covariant Formulation

For systems of conservation laws each component is in itself essentially a
conserved scalar quantity, and the flux function is typically of a very specific
form – it is hyperbolic. Our aim in this section is to introduce and motivate
the notion of hyperbolicity. The underlying physical principle – symmetry
– fits into the general framework of a covariant theory with space and time
being treated on equal footing.5 With a control volume Σ ⊂ Rd+1 in space-
time and a flux j : R

d+1 → Rs×(d+1) the covariant conservation principle in
integral formulation reads ∫

∂Σ

j~n do = 0

and in differential form Div j = 0. If the flux j = F ◦ u depends on u alone,
we have with the flux function F = (F 0, . . . , F d) ∈ C1(Rs → Rs×(d+1)):

d∑
k=0

∂F k

∂u

∂u

∂xk
= 0. (1.28)

All definitions and statements in this section apply to both covariant and
non covariant formulations, in the latter case we take F 0 := idRs and choose
vectors from space-time to be space-like, i.e. the time-like component x0 is
zero.

Symmetry and Hyperbolicity

The covariant formulation is homogeneous, this gives us considerable freedom
in choosing a specific representation of the density function. A “good” choice
may be characterized by demanding that all density components are treated
on equal footing.

Definition 1.11. The flux function F in (1.28) is called symmetric, if
there exists a set of independent variables u1, . . . , us such that the Jacobi
matrices (∂F k

i /∂uj)ij are symmetric.

Assume that A(u) := ∂F 0/∂u is always positive definite and define v :=
F 0 ◦ u and Gk := F k ◦ (F 0)−1. If the components F k take values in S̃, then

5We shall not go into the details of relativity – the Schwarzschild metric of space-time
and such – but merely remove the formal bias between differentiation with respect to time
and space immanent in (1.3).
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the components of the flux function G are mappings Gk : S̃ → S̃. By the
chain rule we have

∂Gk

∂v

∂F 0

∂u
=

∂Gk

∂v
A(u) =

∂F k

∂u

and upon identifying x0 with time (1.28) takes the following form:

∂

∂t
v +

d∑
k=1

∂Gk

∂v

∂v

∂xk
= 0

which is just the non covariant quasi linear form of the conservation principle.
Although we have not yet generalized the upwinding principle to systems,
it should be noted that positive definiteness of A(u) implies that such up-
winding involves only “past” values of u. Now given a particular system of
conservation laws we inquire whether it is – at least formally – derived from
a covariant formulation with a symmetric flux function.

Definition 1.12. The system (1.28) of conservation laws is called sym-
metrizable, if there exists for all u a symmetric and positive definite matrix
A(u) ∈ R

s×s such that for any fixed vector ~n the matrix

∂F~n

∂u
A(u)

is symmetric. In other words, the Jacobi matrices of the flux components are
simultaneously symmetrizable.

There is a strong formal relation between symmetrizability and the abstract
entropy discussed on page 18: The Hesse matrix of a strictly convex function
E : Rs → R is clearly symmetric and positive definite. Conversely the
Godunov-Mock theorem states that E is an entropy function, if and only if
its Hesse matrix symmetrizes the system, see [GR96] for a proof.

Definition 1.13. A system of conservation laws is called hyperbolic, if for
any fixed vector ~n from space-time the Jacobi matrix ∂F~n/∂u is diagonaliz-
able, i.e. there exist numbers

λ1(u, ~n), λ2(u, ~n), . . . , λs(u, ~n) ∈ R

and a regular matrix R(u, ~n) ∈ Rs×s such that

∂F~n

∂u
= R(u, ~n) D(u, ~n) R−1(u, ~n)

with D(u, ~n) := diag(λ1(u, ~n), . . . , λs(u, ~n)). The system is called strictly
hyperbolic, if no two eigenvalues are equal. We shall denote by rk(u, ~n) the
right eigenvector corresponding to λk(u, ~n).
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When we speak of a hyperbolic system we implicitly assume that the flux
function F is C1. Keeping ~n fixed we may thus assume that the eigenvalues
λk(·, ~n) and the (suitably normalized) eigenvectors rk(·, ~n) are continuous.
We want to assume that they are also continuously differentiable and con-
sequently that, as stated on page 9, the flux function is C2. Sometimes we
also rely on an ordering of the eigenvalues in either increasing or decreasing
order. While pointwise such an ordering can always be enforced, it might
destroy the smoothness of the eigenvalue functions, if some of them change
positions relative to the ordering.

Hyperbolicity enables us to generalize many of the results obtained for
the scalar case to systems, as we may diagonalize the Jacobi matrix of the
flux function in the direction normal to a discontinuity and then operate
on each state component separately. The following lemma establishes that
hyperbolicity is not just a fortunate technical convenience. In fact, for all
practical problems arising from physics an entropy function with a physical
meaning can be found. Those systems are consequently symmetrizable.

Lemma 1.14. A symmetrizable system is hyperbolic.

Before proving lemma 1.14 we state as a separate lemma an important prop-
erty of the symmetrizing matrix A:

Lemma 1.15. Let X ∈ R
s×s be an arbitrary matrix and A ∈ R

s×s be
symmetric and positive definite. Obviously A has a Cholesky decomposition
A = CCt with a (triangular) matrix C ∈ Rs×s. Then

S := XA is symmetric ⇐⇒ U := C−1XC is symmetric.

Proof.

S = St ⇐⇒ XA = AtX t ⇐⇒ XA = AX t

⇐⇒ XCCt = CCtX t ⇐⇒ C−1XC = CtX tC−t

⇐⇒ U = U t

Proof of lemma 1.14. Let Jk := ∂F k/∂u ∈ Rs×s (k ∈ {0, . . . , d}), ~n =
(n0, . . . , nd) ∈ Rd+1 be a fixed vector and

X :=

d∑
k=0

nkJk.
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We need to diagonalize X. By assumption there exists a positive definite
symmetric matrix A = CCt ∈ R

s×s such that all products JkA are symmetric
and so is S := XA.

By lemma 1.15 U := C−1XC is symmetric, too. We can therefore find a
diagonal matrix D and an orthogonal matrix Q = Q−t such that U = QDQt.
Now

X = CUC−1 = (CQ)D(CQ)−1.

The equivalence in lemma 1.15 represents two different flavors of variable
transformation: We may either multiply the Jk’s from the right with a sym-
metric positive definite matrix and thus transform just the independent state
variables or multiply them from both right and left with a matrix and its
inverse in which case we also transform the dependent variables.

For a hyperbolic system in the form of equation (1.3) we will tacitly
assume that the flux components are mappings F k : S → S and prefer the
simultaneous variable transformation in both domain and range.

The Riemann Problem and Riemann Invariants

The Riemann Problem is an initial value problem with two constant states
separated by a hyperplane as initial data. We have so far encountered it
several times and turn it now into a formal definition:

Definition 1.16. The Riemann problem for a hyperbolic system (1.3)

∂

∂t
u +

d∑
k=1

∂F k

∂u

∂u

∂xk
= 0

has initial data

u0(~x) = u(t0, ~x) =

{
ul if ~x · ~n 6 ~x0 · ~n
ur if ~x · ~n > ~x0 · ~n

with a fixed unit vector ~n ∈ Rd.

It is possible to show that for small discontinuities a solution of the Rie-
mann problem always exists, see [Lax73]. In the scalar case the jump could
be of arbitrary size and an explicit formula for the desired weak solution
was available. In the case of hyperbolic systems the idea is to define s − 1
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intermediate states um1 , . . . , ums−1 ∈ S and a path Γ : R → S joining
um0 := ul, um1, . . . , ums−1 , ums := ur such that two subsequent states umk−1

and umk
joined by a subpath Γk are separated by either a rarefaction wave,

a compression wave or a contact discontinuity. Since the right eigenvectors
r1, . . . , rs are by the assumption of hyperbolicity linearly independent, the
paths whose tangents are these eigenvectors should locally parameterize S,
see figure 1.4. The intermediate states are furthermore chosen to be joined by
paths whose tangents correspond to subsequently larger eigenvalues, because
passing from left to right after a short amount of time has elapsed, one sees
first the phenomena corresponding to the smaller eigenvalues. Functions that
are constant along those paths (Riemann invariants) may be introduced to
compute the intermediate states. For details of the proof we refer to [Lax73].

ul

ur

λmiddle

λmin

λmin

λmiddle

λmin

λmin

λmiddle

λmax

λmax

λmax

λmiddle

λmax

Figure 1.4: Paths in the state space for s = 3. The tangents to
the subpaths are right eigenvectors of ∂F~n/∂u corresponding to the
eigenvalues λmin 6 λmiddle 6 λmax respectively. The heavy solid line
corresponds to an increasing (physical) ordering of the eigenvalues
along the path, the heavy dashed line to a decreasing one.

The simple equation (1.8) on page 14 does not generalize to systems, as F~n
will in general depend on all state components simultaneously, hence the iso-
lines of any state component uj will not be straight lines. This is a principal
difference between the scalar and the vector-valued regime. In just one space
dimension or along a prescribed direction ~n one might look for a definition
of a k-characteristic in terms of an ordinary differential equation:

d

dt
χk(t) = λk(u(t, χk(t)~n), ~n)
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where χk : R → R and λk(u, ~n) is the k-th eigenvalue of ∂F~n/∂u. If we ask
for the second derivative d2χk(t)/dt2 to be approximately zero, we are led to
consider paths in the state space along which λk(u, ~n) changes slowly. The
question whether λk(u, ~n) changes slowly along a path whose tangent is the
corresponding k-th right eigenvector rk(u, ~n) leads to a useful classification of
the eigenvalues and eigenvectors into linearly degenerate, genuinely nonlinear
and other ones.

For a single linear scalar equation the derivative of F~n with respect to u
is a constant in R and its second derivative is zero. If the latter fails to be
identically zero, the equation is not linear. For systems (along the direction
~n) the gradient with respect to u of an eigenvalue λ of the Jacobi matrix of
F~n may be orthogonal to the corresponding eigenvector without being zero.

Definition 1.17. Let ~n be a fixed unit vector and rk(u) := rk(u, ~n) (k ∈
{1, . . . , s}) a right eigenvector of the Jacobi matrix ∂F~n/∂u of F~n. A func-
tion Ψ ∈ C1(S → R) is called a k-Riemann invariant, if on all S the
function

〈Ψ; rk〉S := rk · ∇uΨ = 0. (1.29)

The index u to the nabla operator indicates that differentiation is per-
formed with respect to the state variables, not with respect to time or space
variables. The scalar product in the tangent space for ∇uΨ and rk is inde-
pendent of the particular choice of variables. Let us briefly contemplate why
this is so. Introducing the (bijective) coordinate mappings K : Rs ⊃ G → S
and K̃ : R

s ⊃ G̃ → S we have the Jacobi matrices

Â := J(K−1 ◦ F~n ◦ K) : G → R
s×s

Ã := J(K̃−1 ◦ F~n ◦ K̃) : G̃ → R
s×s.

These satisfy

Ã = [J(K−1 ◦ K̃)]−1Â [J(K−1 ◦ K̃)],

they have thus the same eigenvalues λ and corresponding eigenvectors r̂ and
r̃ respectively:

λr̃ = Ãr̃ = [J(K−1 ◦ K̃)]−1λr̂.

Therefore

r̃ = [J(K−1 ◦ K̃)]−1r̂.



34 CHAPTER 1. CONSERVATION LAWS

With Ψ̂ := Ψ ◦ K and Ψ̃ := Ψ ◦ K̃ we now conclude

r̂ · ∇Ψ̂ = r̃ · ∇Ψ̃ = 〈Ψ; r〉S
independent of the coordinate mapping.

For any fixed k ∈ {1, . . . , s} we may expect to find s − 1 k-Riemann
invariants, as there are s − 1 directions orthogonal to that of rk available.
Altogether there are s(s − 1) Riemann invariants which may be used to
compute the (s − 1)s unknown components of the s − 1 intermediate states
mentioned above.

Next we construct a path whose tangents are k-th right eigenvectors and
verify that indeed the k-Riemann invariants are constant along it: define
on an open interval I ⊂ R about zero Γk ∈ C1(I → S) by the ordinary
differential equation

d

dξ
Γk = rk ◦ Γk (1.30)

Γk(0) = û

for an arbitrary û ∈ S. We have still considerable freedom in scaling the
eigenvector rk on the right hand side. Such scaling corresponds to trans-
forming the parameter ξ. For now we normalize rk to have Euclidean norm
one – thinking of the tangent space as the ordinary Rs – by replacing it with
rk/ ‖rk‖Rs. By the Picard-Lindelöf theorem there exists for this normaliza-
tion a unique solution to (1.30) on an open interval I ⊂ R which contains
ξ = 0. For a k-Riemann invariant Ψ one has:

d

dξ
(Ψ ◦ Γk) = 〈Ψ; rk〉S ◦ Γk = 0

and therefore

Ψ(Γk(ξ)) = Ψ(Γk(0)) = Ψ(û).

This proves

Lemma 1.18. A k-Riemann invariant is constant along the path defined by
(1.30).

Definition 1.19. Let ~n be a fixed unit vector and λk(u) := λk(u, ~n) (k ∈
{1, . . . , s}) be an eigenvalue of ∂F~n/∂u with corresponding right eigenvector
rk(u) := rk(u, ~n). If λk is a k-Riemann invariant (here we ultimately require
F ∈ C2), then rk and λk are called linearly degenerate. If always

〈λk; rk〉S 6= 0,

then rk and λk are called genuinely nonlinear.
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The structure of solutions to the Riemann problem is quite simple, if the
eigenvalues (and eigenvectors) fall into either of these categories: a genuinely
nonlinear eigenvector corresponds to a rarefaction fan or a compression wave,
a linearly degenerate eigenvector to a contact discontinuity.

Linearly degenerate case

If rk is linearly degenerate, then λk is by lemma 1.18 constant along Γk.
Furthermore,

(F ◦ Γk)~n − λk(û)Γk = const (1.31)

is a constant, too:

d

dξ
[(F ◦ Γk)~n − λk(û)Γk] =

(
∂F~n

∂u

∣∣∣∣
Γk

− λk(û)

)
d

dξ
Γk

=

(
∂F~n

∂u

∣∣∣∣
Γk

− λk(û)

)
rk ◦ Γk

= 0.

Therefore for û := ul and an arbitrary state ur ∈ Γk(I)

u(t, ~x) :=


ul if

~x − ~x0

t − t0
· ~n < λk(ul, ~n)

ur if
~x − ~x0

t − t0
· ~n > λk(ul, ~n)

(1.32)

satisfies the conservation principle, if and only if it satisfies the Rankine-
Hugoniot jump condition (1.15) in all state components simultaneously

[F (ul) − F (ur)]~n = (ul − ur)~ν · ~n.

This is by equation (1.31) clearly the case for ~ν · ~n = λk(ul, ~n) = λk(ur, ~n).

Genuinely nonlinear case

If rk is genuinely nonlinear, then we normalize it in a different way by re-
placing rk with rk/〈λk; rk〉S:

〈λk; rk〉S = 1.
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The Picard-Lindelöf theorem again ensures existence and uniqueness of a
solution to equation (1.30) on an open interval I ⊂ R containing ξ = 0.

d

dξ
(λk ◦ Γk) = 〈λk; rk〉S ◦ Γk = 1

and consequently

λk(Γk(ξ)) = λk(Γk(0)) + ξ = λk(û) + ξ (1.33)

We let û := ul in equation (1.30),

ζ :=
~x − ~x0

t − t0
· ~n − λk(ul, ~n), (1.34a)

and define for an arbitrary state ur ∈ Γk(I ∩ R>0)

u(t, ~x) :=


ul if ζ < 0

Γk (ζ) if 0 6 ζ 6 λk(ur, ~n) − λk(ul, ~n)

ur if ζ > λk(ur, ~n) − λk(ul, ~n)

. (1.34b)

Claim: This u satisfies equation (1.3).

Proof. We have for the middle line of equation (1.34b)

∂

∂t

∣∣∣∣
t,~x

u = − ~x − ~x0

(t − t0)2
· ~n d

dξ

∣∣∣∣
ζ

Γk.

On the other hand

∇|t,~xu =
~n

t − t0

d

dξ

∣∣∣∣
ζ

Γk

implies

∂F~n

∂u

∣∣∣∣
Γ(ζ)

∇|t,~xu =
∂F~n

∂u

∣∣∣∣
Γ(ζ)

~n

t − t0

d

dξ

∣∣∣∣
ζ

Γk

=
~n

t − t0

∂F~n

∂u

∣∣∣∣
Γ(ζ)

rk(Γk(ζ))

and since rk is an eigenvector

=
~n

t − t0
λk(Γk(ζ)) rk(Γk(ζ))

=
~n

t − t0
λk(Γk(ζ))

d

dξ

∣∣∣∣
ζ

Γk.
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One has by equations (1.33) and (1.34a)

=
~n

t − t0

(
λk(ul) +

~x − ~x0

t − t0
· ~n − λk(ul)

)
d

dξ

∣∣∣∣
ζ

Γk.

Hence

div |t,~x(F ◦ u) =
~x − ~x0

(t − t0)2
· ~n d

dξ

∣∣∣∣
ζ

Γk = − ∂

∂t

∣∣∣∣
t,~x

u.

The top and bottom line of equation (1.34b) represent constant states which
trivially satisfy equation (1.3) and fit together continuously with the defini-
tion in the middle line.

For ur ∈ Γk(I∩R<0) a construction similar to that above will not fit together
continuously, but can be interpreted as a multi-valued solution. We need to
insert a discontinuity moving at velocity ~ν instead such that the conservation
principle is satisfied, but in contrast to the scalar regime we have to observe
the other eigenvalues as well. We now assume that the eigenvalue functions
are sorted in either increasing or decreasing order.

Definition 1.20. Define σλ ∈ {−1, 1} by

σλ :=

{
+1 if λk 6 λk+1

−1 if λk > λk+1

for all k ∈ {1, . . . , s − 1}.
This is equivalent to

λk 6 λk+σλ
for all k ∈ {2 − (1 + σλ)/2, . . . , s − (1 + σλ)/2}.

Lax [Lax73] demands not only that the k-characteristics all go into the dis-
continuity

· · · > λk+σλ
(ul) > λk(ul) > ~ν · ~n > λk(ur) > λk−σλ

(ur) > · · · , (1.35a)

but also that these are the only characteristics entering the discontinuity, i.e.
the (k−σλ)-characteristics do not go into the discontinuity from the left and
the (k + σλ)-characteristics not from the right

· · · 6 λk−σλ
(ul) < ~ν · ~n < λk+σλ

(ur) 6 · · · . (1.35b)

These requirements now imply that there is a total of s + 1 characteristic
fields entering the discontinuity.
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Definition 1.21. Under the assumption that the eigenvalues λ1, . . . , λs can
be sorted without destroying their smoothness as functions and that λk is
genuinely nonlinear we define a k-shock as a discontinuity satisfying the
Rankine-Hugoniot jump condition (1.15) in all state components simultane-
ously

[F (ul) − F (ur)]~n = (ul − ur)~ν · ~n.

and for which equations (1.35) hold.

After eliminating ~ν ·~n from the Rankine-Hugoniot conditions we obtain s−1
compatibility relations. Together with the information from the s + 1 char-
acteristic fields going into the discontinuity we have 2s genuinely nonlinear
equations in the 2s components of ul and ur. Equation (1.35b) thus prevents
the generation of an (a priori) overdetermined system.

If we fix just ul in the Rankine-Hugoniot jump condition, then we obtain
s equations in s + 1 unknowns (ur and ~ν · ~n). We may hence expect a one
parameter family of possible states ur to which ul can be connected via a
k-shock. A detailed proof of existence of such a family may be found in
[GR96].

Numerical Flux Functions

Any function having properties similar to those stated in lemma 1.4 on page
13 for scalar equations is acceptable as an approximate Riemann solver for
systems. We restate said properties for the sake of clarity:

Definition 1.22. A numerical flux function is a function H : S×S ×R
d →

R
s which is consistent with the flux function F :∥∥∥∥H(ul, ur, ~n) − F (ul) + F (ur)

2
~n

∥∥∥∥
S

≤ α
‖ul − ur‖S

2

with ‖~n‖ = 1 and a fixed constant6 α ∈ R which also obeys

H(ul, ur, ~n) = −H(ur, ul,−~n).

Let us first consider the case of a linear hyperbolic system with s equations
in just one space dimension:

∂

∂t
u + A

∂

∂x
u = 0 (1.36)

6We may have to restrict S such that a global Lipschitz constant LF for the flux
function exists, cf. the discussion in remark 1.7 on page 15.
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with initial condition u(t0, x) = u0(x). By the assumption of hyperbolicity
the matrix A ∈ R

s×s is diagonalizable:

A = RDR−1 (1.37)

with a diagonal matrix D = diag(λ1, . . . , λs) ∈ R
s×s and a regular matrix R ∈

Rs×s. Multiplying equation (1.36) from the left with R−1 and introducing
new variables by

v := R−1u and v0 := R−1u0

we obtain the following decoupled system of s scalar equations:

∂

∂t
v + D

∂

∂x
v = 0.

The solution of this decoupled system may be stated as

v(t, x) =

v1
0(x − λ1(t − t0))

...
vs
0(x − λs(t − t0))


and denoting the k-th row of R−1 by ltk (this is just the k-th left eigenvector
of A) the solution of equation (1.36) as

u(t, x) = R

lt1u0(x − λ1(t − t0))
...

ltsu0(x − λs(t − t0))

 .

A Riemann solver for the decoupled system is easily defined by upwinding
each state component separately. Transforming back to the form of equation
(1.36) we obtain the following definition of positive and negative part and
absolute value for diagonalizable matrices.

Definition 1.23. For a diagonal matrix D := diag(λ1, . . . , λs) ∈ Rs×s define
for ‘+’ and ‘−’ in ‘±’ separately

D± := diag(λ±
1 , . . . , λ±

s ) and |D| := diag(|λ1| , . . . , |λs|).
The functions ± : R → R>0 are as on page 26 defined by x± := (|x| ± x)/2.
For a diagonalizable matrix X := RDR−1 ∈ Rs×s (D is of course diagonal)
define

X± := RD±R−1 and |X| := R |D|R−1.
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Obviously X± = (|X| ± X)/2 holds. Positive or negative part and abso-
lute value for matrices are well-defined, since diagonalization is unique up to
rearranging eigenvalues and eigenvectors. The definition, however, does not
hinge on any particular arrangement of these. The flux function of lemma
1.4 on page 13 for linear scalar equations may now be generalized to linear
systems (F (u)~n = A~nu for any vector ~n ∈ R

d):

F (ul, ur, ~n) :=
F (ul) + F (ur)

2
~n + |A~n| ul − ur

2
.

The flux function HOS of Osher and Solomon [OS82] generalizes the Eng-
quist and Osher flux function for scalar equations to hyperbolic systems by
choosing a particular path Γ : R → S in the state space for which the
integrals in equations (1.23) can be easily evaluated. Its principal idea is
closely related to the solution of the Riemann problem sketched on page 32.

By convention the path Γ is oriented from ul towards ur, we therefore
have to swap the integration bounds and the signs in front of the integrals in
equations (1.23). Basing our presentation of the flux function of Osher and
Solomon on equation (1.23c)

HEO(ul, ur, ~n) = F (ur)~n −
∫ ur

ul

(F ′(u)~n)
+

du,

we suppose that we have already determined appropriate intermediate states
and that along the path between any two subsequent states the eigenvectors
forming the tangents of the path are either linearly degenerate or genuinely
nonlinear. Osher and Solomon now avoid constructing the compression wave,
if the eigenvalue at the start of the path is greater than that at the end, but
reverse the parameterization of that path component to make the genuinely
nonlinear eigenvalue a strictly decreasing function along the path in this case.
This simplification avoids the most expensive part of a complete solution of
the Riemann problem: the numerical approximation of the one parameter
family of states that can be joined via a compression wave.

HOS(ul, ur, ~n) := F (ur)~n −
s∑

k=1

∫
Γk

(
∂F~n

∂u

∣∣∣∣
ũ

)+

dũ. (1.38)

If λk is genuinely nonlinear, then it is a strictly monotone function on the
path Γk : I → S defined by equation (1.30) and possibly reparameterized as
explained above. There are four cases: λk may change sign from positive to
negative or from negative to positive or it may be either non-positive or non-
negative throughout. The last two cases are also the only alternatives for a
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linearly degenerate eigenvalue which is by lemma 1.18 constant along Γk. If
λk does change sign on Γk, then there is exactly one sonic point nk ∈ Γk(I)
such that λk(nk) = 0. All in all, the value of the integral along each path
component hinges on the four possible combinations of the sign of λk at start
and end of the path component (table 1.1).

We denote by [ak, bk] ⊂ I (ak < bk) a suitable interval in I and by
sk = Γk(ak) (“start”) and ek = Γk(bk) (“end”) two states joined by the path
Γk. Obviously ek = sk+1 = umk

is the k-th intermediate state, s1 = ul and
es = ur. Let us first consider the case that λk does not change sign on Γk:∫

Γk

(
∂F~n

∂u

∣∣∣∣
ũ

)+

dũ =

∫ bk

ak

(
∂F~n

∂u

∣∣∣∣
Γk(ξ)

)+

rk(Γk(ξ)) dξ

=

∫ bk

ak

λ+
k (Γk(ξ)) rk(Γk(ξ)) dξ

=


∫ bk

ak

λk(Γk(ξ)) rk(Γk(ξ)) dξ if λk > 0 on Γk

0 if λk 6 0 on Γk.

The case λk > 0 on Γk can be further simplified:∫
Γk

(
∂F~n

∂u

∣∣∣∣
ũ

)+

dũ =

∫ bk

ak

∂F~n

∂u

∣∣∣∣
Γk(ξ)

rk(Γk(ξ)) dξ

=

∫
Γk

∂F~n

∂u

∣∣∣∣
ũ

dũ

= F (ek)~n − F (sk)~n.

Now we turn to the case that λk changes sign at nk = Γk(ck) with ck ∈ (ak, bk):∫
Γk

(
∂F~n

∂u

∣∣∣∣
ũ

)+

dũ =

∫ bk

ak

(
∂F~n

∂u

∣∣∣∣
Γk(ξ)

)+

rk(Γk(ξ)) dξ

=

∫ bk

ak

λ+
k (Γk(ξ)) rk(Γk(ξ)) dξ

=



∫ bk

ck

λk(Γk(ξ)) rk(Γk(ξ)) dξ if λk(Γk(bk)) > 0

∫ ck

ak

λk(Γk(ξ)) rk(Γk(ξ)) dξ if λk(Γk(ak)) > 0
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λk(ek) > 0 λk(ek) < 0
λk(sk) > 0 F (ek)~n − F (sk)~n F (nk)~n − F (sk)~n
λk(sk) < 0 F (ek)~n − F (nk)~n 0

Table 1.1: The integral

∫
Γk

(
∂F~n

∂u

∣∣∣∣
ũ

)+

dũ.

and each of these integrals can be evaluated similar to the case λk > 0 above:

∫
Γk

(
∂F~n

∂u

∣∣∣∣
ũ

)+

dũ =


F (ek)~n − F (nk)~n if λk(ek) > 0

F (nk)~n − F (sk)~n if λk(sk) > 0.

The expressions for the integral are summarized in table 1.1. The original
version of the flux function of Osher and Solomon chooses the reverse ordering
(σλ = −1) of the paths joining the intermediate states compared to the
“physical” (σλ = 1) solution strategy of the Riemann problem: the tangents
along the path components joining two intermediate states correspond to
subsequently smaller eigenvalues. While Osher and Solomon claim that their
ordering improves the numerical behaviour of the flux function, Spekreijse
[Spe87] bases his multigrid solver of the Euler equations on the increasing
ordering.



Chapter 2

Discretization

2.1 Data Functionals

In order to treat problems from infinite dimensional spaces (like differen-
tial equations on Banach spaces) with the aid of a computer, they have to
be discretized, i.e. transformed into an algebraic relation in finite dimen-
sional vector spaces like Rn. In fact, even the real numbers themselves are
represented by a finite set of machine numbers. The truncation error in-
troduced by replacing a real number with its machine representation has to
be observed when designing numerical algorithms such as solvers for linear
equations, iteration schemes for nonlinear equations, etc. Let us review in
this section the main strategy for discretizing a partial differential equation
and its associated boundary conditions. In the absence of a closed formula
for the solution one has almost no alternative to choosing a suitable finite
set of data functionals and to approximate the solution of the original
problem based on the finitely many values of the data functionals. There is a
very strong interplay between the choice of the data functionals and the data
structure representing the geometry of the problem under consideration.

The question whether the partial differential equation has a (unique)
solution at all is outside the discretization procedure, but it has to be taken
into account when discussing convergence of the numerical method:

1. Do the approximations obtained from the finitely many values of the
data functionals converge to a limit function as more and more data
functionals from a prescribed sequence are considered and

2. is this limit function a meaningful solution of the original problem
modeled by the partial differential equation?

43
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For general hyperbolic systems these are, unfortunately, open questions. Reg-
ularizing the system with a Laplace term on the right hand side one may ap-
ply the Kružkov existence and uniqueness theorem (generalized to systems)
[Kru70]. For certain classes of numerical schemes and particular systems the
theory of measure valued solutions and the existence and uniqueness theo-
rem of DiPerna [DiP85] may be used to obtain convergence results within an
integral norm for the numerical solutions, too.

We restrict ourselves to the following notion of a computational domain:

Definition 2.1. The computational domain is a compact subset Ω ⊂ R
d

with Ω = int Ω and a piecewise smooth boundary ∂Ω.

For hyperbolic conservation laws (1.1) a natural approach consists in sub-
dividing the computational domain Ω into finitely many cells such that the
cells completely1 cover the computational domain and their interiors are mu-
tually disjoint. Starting from the values of the data functionals the density
distribution within each control volume is locally approximated by a polyno-
mial. The integral of the flux across the boundary of each control volume is
approximated by a quadrature rule with positive weights from the values of a
numerical flux function evaluated at the quadrature points. For control vol-
ume interfaces on the boundary of the computational domain some prescribed
boundary conditions are required. The approximations of the integrals are
then used to update the values of the data functionals and the procedure
can be iterated. In a very straightforward way this can be turned into an
explicit time stepping scheme which is the path we shall follow. Using
an implicit method typically leads to a sparse large system of (linearized)
equations which has to be solved iteratively for each time step, see [Mei96]
for a compact survey of the iterative solvers applied to the Navier-Stokes
equations.

The control volumes are the core of finite volume methods which we will
very briefly describe below, but they are not well suited for developing a
collocation method. While we like to think of the integral formulation (1.1)
of the conservation principle as the more “genuine” expression of the laws
of nature, the differential form (1.2) provides a more convenient starting
point for mathematical manipulation. In either case we will discretize the
equation in space and time separately and consider only data functionals δ
which commute with the time derivative, i.e. they operate only on the space

1We allow exceptions near the boundary.
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variables of a function u = u(t, ~x):2

δ
∂

∂t
u =

d

dt
δu. (2.1)

In the case of systems we apply the data functionals to each component
separately. The data functionals we will consider are either cell averaging
functionals

δΣu :=
1

|Σ|
∫

Σ

u dV

where necessarily |Σ| > 0, collocation functionals

δ{~x}u := u(·, ~x)

or convex combinations of collocation functionals

δ{~x1,...,~xn}u :=
n∑

k=1

wk u(·, ~xk).

We choose not to include the weights wk in the notation of the data func-
tional, since we will mostly use the simple average wk := 1/n.

For the support Σ of the functional δ we introduce the term data loca-
tion. This is either a cell Σ ⊂ Rd which has |Σ| > 0 or a finite subset of Rd

for convex combinations of collocation functionals. The barycentre of a data
location Σ is obtained by applying the data functional to the components of
the identity function idRd on Rd. It is suggestive to denote the identity on
Rd by the vector ~x itself:

barycentre Σ = δΣ~x.

These types of data functionals have norm ‖δ‖ = 1, if the underlying function
space is equipped with the supremum3 norm: Obviously

|δu| 6 ‖u‖∞
and equality holds, if u is constant. We denote by BL∞(Ω → R) the space
of bounded measurable functions with the supremum norm from Ω to R.
Formally one may obtain a collocation functional as the limit of cell averaging
functionals. If (Σk)k∈N is a sequence of cells in Rd with

Σk+1 ⊂ Σk and lim
k→∞

diam Σk = 0,

2Strictly speaking, δ is a mapping which assigns to a time t a linear functional δ(t).
3In the case of cell averaging the essential supremum would be sufficient.
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then by the Cantor intersection theorem4⋂
k∈N

Σk = {~x}

for some ~x ∈ Rd. If the function f is continuous at ~x, then

lim
k→∞

δΣk
f = δ{~x}f.

Conversely the cell averaging functionals may be obtained as convolutions of
characteristic functions with collocation functionals:

δΣf =
1

|Σ|
∫

Σ

f dV =
1

|Σ|χΣ ∗ δ~xf.

Applying these data functionals to the differential form of the conservation
law gives:

d

dt
δu = −δ div(F ◦ u). (2.2a)

Assembling the finitely many data functionals δ into a vector Λ (we will
subsequently write δ ∈ Λ to refer to a particular component of that vector)
we obtain

d

dt
Λu = −Λ div(F ◦ u). (2.2b)

The general structure of the flow solver can now be sketched in the following
way:

1. Based on the values of the data vector Λu compute an approximation
to the exact solution via a suitable reconstruction procedure. We
denote the reconstruction process by R.

2. Supply a numerical approximation ∇̃· to the divergence operator.

3. Approximate the flow field by a (numerical flux) function H based on
the reconstruction RΛu. This includes using the prescribed boundary
flux where appropriate.

4. Approximate the right hand side of (2.2b) by

−Λ ∇̃·(H ◦ RΛu).

4Cells are by definition closed and not empty.
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5. Use a numerical solver for systems of ordinary differential equations to
integrate

d

dt
Λu = −Λ ∇̃·(H ◦ RΛu) (2.2c)

in time.

We summarize the result of the above approximations as numerical time
stepping operator:

u(t + ∆t, ·) = TS(u, t, ∆t). (2.2d)

Regarding the numerical scheme equation (2.2c) defines the way updates
in time to the data functionals are computed. As a formal consequence
of equation (2.2b) it is certainly only an approximation. Bearing in mind
that we are dealing with numerical approximations anyway, we follow the
common practice in literature and stick to the ‘=’ sign throughout. We
shall subsequently use the symbol u to denote the density function as well as
an approximation to it obtained via a recovery procedure from the discrete
values of data functionals: u ≈ RΛu.

2.2 Unstructured Grids

A fairly general data structure for discretizing the computational domain Ω
is a conforming subdivision into simplices. A set of simplices is called con-
forming, if the intersection of any two simplices is a common sub-simplex
of the two. To avoid ambiguities we give the following

Definition 2.2. A simplex Σ is the closed convex hull of d+1 points V :=
{~v0, . . . , ~vd} ⊂ Rd, where V is not subset of a hyperplane of Rd. Any closed
convex hull of a subset of V is called a sub-simplex of Σ (this includes
the empty set). The elements of V are the extreme points of Σ and called
vertices, sub-simplices formed by two vertices are called edges and sub-
simplices formed by d vertices are called faces of Σ.

Simplices having precisely one common face are called neighbours. Faces
which belong to precisely one simplex are called boundary faces. Ver-
tices of these are boundary vertices and the corresponding simplices are
boundary simplices.

Definition 2.3. A conforming collection G of simplices Σ ⊂ R
d is called a

primary unstructured grid for the computational domain Ω ⊂ R
d, if the
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Figure 2.1: Nonconforming triangles in two dimensions.

boundary faces of the simplices constitute a proper polyhedral approximation
to the boundary of Ω, i.e. all boundary vertices of the grid lie on the boundary
of Ω and no vertices lie outside Ω.

The following information is required to perform computations on a primary
unstructured grid:

1. An array for the d coordinates of each vertex,

2. an array for the d+1 indices of the vertices of each simplex (the bound-
ary simplices should be the first ones in the array),

3. an array for the d+1 indices of the neighbours of each simplex (bound-
ary simplices have less neighbours which may be indicated by filling
the unused space with negative entries, furthermore, minus one minus
such a negative value could point to an entry in an array of boundary
faces5) and

4. an array for the d indices of the vertices ~v1, . . . ~vd of each boundary
face. These should be ordered such that the vector defined by the
formal determinant∣∣∣∣∣∣∣

~e1 (~v2 − ~v1) · ~e1 . . . (~vd − ~v1) · ~e1
...

...
...

~ed (~v2 − ~v1) · ~ed . . . (~vd − ~v1) · ~ed

∣∣∣∣∣∣∣
points out of Ω.

For computational purposes the grids should satisfy certain regularity con-
ditions: the density of the vertices should vary smoothly over the compu-
tational domain and the simplices should not be degenerate. As a measure
of degeneracy we introduce the following function which is invariant under
similarity transformations

min
Σ∈G

|Σ|
|∂Σ| diam Σ

.

5We use the C-convention: the first element in an array has index zero.
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It should be uniformly bounded away from zero for all grids under con-
sideration. For a single equilateral simplex (G = {Σ}) in d dimensions this
fraction takes the value6

1

d(d + 1)

√
d

2(d + 1)
.

Construction of Boxes

One is often interested in control volumes which are more ball-shaped than
simplices (and still tessalate the computational domain, of course). Boxes
are polyhedra constructed on top of a given primary unstructured grid G.
Each simplex is first barycentrically subdivided into smaller simplices. The
(conforming) union of all smaller simplices containing a fixed vertex of the
unstructured grid is called the box for that vertex. The grid composed of
the boxes is sometimes referred to as the secondary grid.

Definition 2.4. A barycentric subdivision of a simplex Σ ⊂ R
d is a con-

forming subdivision of Σ into (d+1)! smaller simplices by uniquely assigning
a smaller simplex to each of the (d + 1)! possible permutations π of the inte-
gers 0, . . . , d in the following way: Letting {~vΣ,0, . . . , ~vΣ,d} denote the vertices
of Σ define

Σπ := co

{
1

k + 1

k∑
j=0

~vΣ,π(j) : k = 0, . . . , d

}

(see figure 2.2). The box B~v for the vertex ~v is then defined as

B~v :=
⋃{

Σπ : Σ ∈ G and ~vΣ,π(0) = ~v
}
.

A box grid is the set of all boxes.

Two boxes B~v and B~v′ are neighbours, if and only if ~v and ~v′ are vertices
of a common simplex, i.e. joined by an edge. Hence the intersection of the
neighbours B~v and B~v′ contains faces of some Σπ and thus has codimension
one.

Collocation Grids

Collocation schemes basically operate on a set of points smoothly distributed
over the computational domain. Neighbourhood relations between the points

6A proof may be found in the appendix.
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A

B

C

Figure 2.2: Barycentric subdivision of a triangle with vertex indices
{A, B, C} = {0, 1, 2}. The shaded triangle corresponds to the per-
mutation π(A) = 0, π(B) = 1 and π(C) = 2.

are established via edges connecting points. In order to compute the outer
normal on the boundary it is convenient to store the same boundary infor-
mation as for the primary grids, i.e. boundary faces. Edges of boundary
faces are boundary edges. We obtain the following data structure for edge
grids:

1. An array for the d coordinates of each point,

2. an array for the two indices of the endpoints of each edge (boundary
edges should be the first ones in the array)

3. an array for the d indices of vertices that form a boundary face.

Similar to the construction of boxes for primary unstructured grids one may
specify an alternate set of data locations for the collocation functionals based
on the edge grid. We will always observe the following conditions when
choosing such alternate data locations:

• There is a one to one correspondence between the data locations and
the points in the edge grid (like there is between boxes and vertices in
a primary grid) and

• the neighbourhood relations of the edge grid remain meaningful for the
alternate data locations.

Definition 2.5. A collocation grid is the set of all data locations. The
plain term grid refers to either primary unstructured grids, box grids or
collocation grids. These are all sets of their respective data locations.
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2.3 Boundary Conditions

We demand that the computational domain has to accurately approximate
the geometry of the modeled phenomenon. Physical boundaries, such as
surfaces of solid bodies, have to be reproduced by the polyhedral boundary
of the grid. If such surfaces happen to have corners, the grid, too, should have
corners accordingly. Smooth curved surfaces can only be approximated up to
a certain degree. We allow the computational grid to cover less (or more) than
the actual domain, but insist that the boundary of the grid approximates the
smooth parts of the computational domain with high order of accuracy. We
shall use the symbol Ω to denote both the computational domain and the
union of the data locations in the grid:

Ω ≈
⋃
Σ∈G

Σ.

Figure 2.3: Triangulation of a computational domain.

There are now two kinds of boundary conditions:

• Physical boundary conditions which arise from the modeled phenome-
non, like external forces and surfaces of solid bodies and

• numerical boundary conditions that have no correspondence in the
modeled problem, but originate from restricting the computational do-
main to a compact set.

The physical boundary conditions have to be applied on the boundary of
the grid instead of the computational domain. The error introduced by this
geometrical discretization is of order O(h2) (h is a characteristic local length
of the grid) for a polygonal approximation of a smooth curved surface. While
the treatment of the physical boundary conditions models the laws of nature,
the numerical boundary conditions have to define a flux across the boundary
based on the inner state near the boundary and possibly some prescribed
information about the outer state. One may employ the information available
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from the eigenvalues of (∂F~n/∂u)(ui) to decide how many characteristics (in
the direction of the outer normal ~n) enter into the computational domain
and use as little of a prescribed outer state as possible.

2.4 Time Integration

Having completed the approximations mentioned above, equation (2.2c) fi-
nally implies (we drop the u’s) the following system of ordinary differential
equations:

d

dt
Λ = L(t,Λ) (2.3)

For purely convective phenomena F depends on u alone, so inside the com-
putational domain Ω the right hand side of (1.2) does not explicitly depend
on the time t, yet this may be the case for the boundary conditions. We use
the explicit TVB Runge-Kutta time stepping schemes as developed by Shu
and Osher [SO88, SO89] to integrate

Λ(t + ∆t) = Λ(t) +

∫ t+∆t

t

L(τ,Λ(τ)) dτ.

These schemes have favorable numerical properties, since the involved inte-
gration weights are non-negative. For ease of presentation we let n denote
the approximation order of the scheme and

Λ(0) := Λ(t),

Λ(t + ∆t) := Λ(n) and

L(s) := L(t + τ (s)∆t,Λ(s)).

For all schemes up to third order the τ ’s are defined by τ (0) := 0, τ (1) := 1,
τ (2) := 1/2 and the initial stage is simply first order forward Euler:

Λ(1) := Λ(0) + ∆tL(0). (2.4)

The second order scheme reads:

Λ(2) :=
1

2
Λ(0) +

1

2
Λ(1) +

1

2
∆tL(1) (2.5)

and the third order scheme:

Λ(2) :=
3

4
Λ(0) +

1

4
Λ(1) +

1

4
∆tL(1) (2.6)

Λ(3) :=
1

3
Λ(0) +

2

3
Λ(2) +

2

3
∆tL(2). (2.7)
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Shu and Osher also present an explicit fourth order scheme, which fails to
have only non-negative weights, and suggest an (expensive) dual problem
strategy to avoid the numerical instability related to the use of negative
weights. We do not use this fourth order scheme.

It should be noted that the third order scheme, like the second order
scheme, requires only one additional temporary copy of the data vector.

2.5 The Finite Volume Method

The finite volume method discretizes the integral form of the conservation
principle. It is most frequently used on box grids, but success has as well
been reported for primary grid variants. We let ui and uo denote the inner
and outer limit of u. It is taken separately for each component as in equation
(1.6) on page 11. Having tessalated the computational domain into cells, the
data functionals are the corresponding averaging functionals:

d

dt
δΣu = − 1

|Σ|
∫

∂Σ

F (ui, uo, ~n) do. (2.8)

Historically this discretization was perhaps first proposed by Godunov in
[God59] where exact solutions of the Riemann problems at the cell interfaces
were attempted. Such exact solutions are time consuming and the numerical
properties of the exact Riemann flux are not very favourable, it is for instance
not necessarily a smooth function. Furthermore, the integration process is
effectively a projection onto a piecewise constant function and discards all
information about the behaviour of u inside the cell Σ (except the average
value, of course). While use of a recovery procedure may give a higher order
approximation to u, replacing the integrand on the right hand side of equation
(2.8) with a numerical flux function H (denoting the prescribed boundary
flux B for faces on the boundary) does not increase the discretization error:

d

dt
δΣu = − 1

|Σ|
∫

∂Σ

H(ui, uo, ~n) do. (2.9)

Finite volume schemes enjoy a geometric conservation property: Since
the control volumes tessalate the domain, the fluxes across interfaces inside
Ω cancel out and we have∑

Σ∈G

∫
∂Σ

H(ui, uo, ~n) do =

∫
∂Ω

B(u, t, ~x) do. (2.10a)
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This implies

d

dt
δΩu =

1

|Ω|
∑
Σ∈G

|Σ| d

dt
δΣu = − 1

|Ω|
∫

∂Ω

B(u, t, ~x) do. (2.10b)

In one space dimension the integral on the right hand side of equation (2.8)
reduces to a difference of two fluxes:

d

dt
δΣu = −H(u

(r)
i , u

(r)
o , 1) − H(u

(l)
i , u

(l)
o ,−1)

|Σ|
with a superscript (r) referring to the right endpoint of Σ and (l) to the left.
For equations in more than one space dimension the integration in equation
(2.8) has to be carried out numerically via a suitable (typically Gaussian)
quadrature rule Q∂Σ with positive weights. In this setting the requirement
of positive weights has an evident physical interpretation, since a negative
weight would reverse the local transport obtained as the approximate solution
of a physically relevant Riemann problem. The finite volume method is now
obtained by defining the time derivative of the data functionals in terms of
the unstructured grid

d

dt
δΣu := − 1

|Σ| Q∂Σ H(ui, uo, ~n) (2.11)

for each Σ ∈ G with the prescribed boundary flux B being used instead of H
where appropriate. Since the boundaries of the control volumes are composed
of fragments of hyperplanes, the numerical integration should be carried out
on each such fragment separately. The quadrature rule for each fragment
which is not on the boundary of Ω is then used for both adjacent control
volumes. The numerical integrations inside Ω now cancel out in exactly the
same way as did the integrations in equation (2.10a):

d

dt
δΩu = − 1

|Ω|
∑
Σ∈G

Q∂Σ H(ui, uo, ~n)

= − 1

|Ω| Q∂Ω B(u, t, ~x).

(2.12)

In two space dimensions the cell boundaries are polygons. The points and
weights of the gaussian quadrature rule for up to five points can be computed
exactly and are given in table 2.1 on page 55 for the unit interval.
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n points weights

2 γ1,2 =
1

2
± 1

6

√
3 w1,2 =

1

2

γ1,3 =
1

2
± 1

2

√
3

5
w1,3 =

5

18
3

γ2 =
1

2
w2 =

4

9

γ1,4 =
1

2
± 1

2

√
3

7
+

2

7

√
6

5
w1,4 =

1

4
− 1

12

√
5

6
4

γ2,3 =
1

2
± 1

2

√
3

7
− 2

7

√
6

5
w2,3 =

1

4
+

1

12

√
5

6

γ1,5 =
1

2
± 1

6

√
5 + 2

√
10

7
w1,5 =

7

900

(
23 − 13

14

√
70

)

5 γ2,4 =
1

2
± 1

6

√
5 − 2

√
10

7
w2,4 =

7

900

(
23 +

13

14

√
70

)

γ3 =
1

2
w3 =

64

225

Table 2.1: Gaussian quadrature on [0, 1]
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2.6 Reconstruction

The data functionals representing u are commonly visualized as a piecewise
constant function

(Rtrivial Λu)|Σ := δΣu. (2.13)

If we are dealing with a cell based scheme, this defines the reconstruction
inside all cells in G, but the reconstructions obtained for two adjacent cells
may not coincide on the intersection of the two cells. For a collocation
scheme we extend each point value of u locally to a neighbourhood, such
that these neighbourhoods again tessalate the domain, but we do not specify
the neighbourhoods exactly. Even if the underlying function u is smooth, its
approximation by a piecewise constant function obviously is not. The fact
that the reconstruction is well defined only inside the cells or neighbourhoods,
not on their boundaries, is not a problem when using supremum norms, since
the reconstructed function will be a piecewise polynomial.

The discontinuities that are not present in the underlying function, but
only introduced in the course of the discretization are of magnitude O(h)
(h denotes a characteristic local length, for instance the maximal diameter
of nearby cells) and decrease – slowly – when the grid is refined. For these
discontinuities it would be perfectly acceptable to use the smooth case flux
function at a suitably chosen intermediate state instead of the numerical Rie-
mann solver for inner and outer state. The problem is to decide, based on
the values of the data functionals, whether the unknown underlying function
is locally or one sided smooth. In the spirit of van Leer [vL74, vL77, vL79]
we treat the higher order approximation of each component of the density
distribution from its data functional values as a purely approximation the-
oretical problem which is decoupled completely from the physical stage of
computing the fluxes. A suitable recovery procedure7

R : R
G → (

Πq(Rd → R)
)G

has to

• interpolate the values of the data functionals on each data location:

δΣ(RΛu) = δΣu, (2.14)

• approximate any smooth function with high order of accuracy,

7We only consider polynomial recovery up to a fixed degree.
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• locally take values within the range of those of the data functionals and
in particular

• avoid the Gibbs phenomenon (i.e. not oscillate near discontinuities).

Consequently it will not operate on arbitrary input in always exactly the same
way, but operation will be modified depending on the data: recovery is a
non-linear process. As a general rule we demand that these modifications
depend smoothly on the input data, no digital switching should occur.

For each Σ ∈ G the interpolation requirement (2.14) defines a hyperplane
in Πq(Rd → R). Typical recovery strategies

• choose a compact convex subset of that hyperplane in a data indepen-
dent (i.e. linear) fashion and then

• pick one element of that set such that variation or oscillation is small.
(Recently even schemes choosing several elements and using a different
one for each part of the numerical boundary integration have been
proposed [HS99].)

The following methods represent extreme cases within this framework: One
may either choose the convex hull of

1. (WENO) a large number of high order interpolants or

2. (limiting) just one high order and the locally constant interpolant.

At the time of this writing WENO (“weighted essentially non oscillatory”)
schemes are the more commonly used and a live topic of research. They
trace their origins back to Harten et al. [HO87] and [HEOC87]. The idea of
weighting instead of digital candidate selection was introduced in [LOC94].
Friedrich [Fri98] has constructed a scheme with quadratic polynomials on box
grids, much of the analytic background can be found in [Son97b]. In his thesis
Hempel [Hem99] proposes an interesting limiting strategy and successfully
applies this strategy to the Euler equations using a dynamically adapted
unstructured grid with boxes. Sonar [Son97a, Son98] investigates the general
structure from the viewpoint of optimal recovery.

As WENO schemes always form a convex combination of higher order
approximations, they never loose formal order of accuracy. This may turn
into a drawback, if there is no stencil available for which the data vector per-
mits a reasonable high order approximation. Ollivier-Gooch [OG97] suggests
a very promising strategy for switching the reconstruction degree according
to the quality of the local data.
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Approximation

In order to compute a polynomial interpolant for the data location Σ ∈ G
we need to consider the values of other data functionals as well. The space
Πq(Rd → R) of polynomials in d variables up to degree q has dimension

dim Πq(Rd → R) =

(
d + q

q

)
.

Let us denote the kernel in Πq(Rd → R) of δ by

δ⊥ :=
{
π ∈ Πq(Rd → R) : δπ = 0

}
. (2.15)

It is a hyperplane of Πq(Rd → R) and one has

dim δ⊥ =

(
d + q

q

)
− 1.

We want to establish a stability result for the interpolation or least-squares
approximation problem of functions from the values of certain data func-
tionals. The stability should be uniform under (isotropic) scaling of the grid
(reflection, translation and rotation present no difficulty). We need to show
that the operation of the data functionals can, in a way, be reversed and that
this reversal is uniformly stable, if the grid is refined.

For any bounded linear operator L : V → W between the Banach spaces
V and W the operator norm of L is defined as

‖L‖ := sup
x∈V \{0}

‖Lx‖W

‖x‖V

.

The norm of the inverse of L can be defined, even if that inverse does not
exist, in which case the norm will be infinite:

∥∥L−1
∥∥ := sup

x∈V \{0}

‖x‖V

‖Lx‖W

.

To estimate the worst case error propagation in the solution of the linear
problem Lx = y one estimates the worst case error in ỹ := LL−1y which
leads to the usual definition of the condition of L:

cond L :=
∥∥L∥∥ ∥∥L−1

∥∥.
The following definition follows the pattern of the definition of ‖L−1‖ above:



2.6. RECONSTRUCTION 59

Definition 2.6. A stencil S for Σ is a subset of G which contains Σ. It is
convenient to define the symbol SΣ := S \ {Σ}. For the region covered by
the cells in S we use the symbol

ΣS :=
⋃
Θ∈S

Θ ⊂ Ω.

We define the condition of S as

condS := sup
π∈δ⊥Σ \{0}

‖π‖∞,ΣS

‖(δΘπ)Θ∈SΣ
‖∞

.

If the denominator happens to reach zero, the condition is infinite. More
formally – and less intuitively – the definition could be written down as

condS := sup
{
α ∈ R>0 : α ‖(δΘπ)Θ∈SΣ

‖∞ 6 ‖π‖∞,ΣS for all π ∈ δ⊥Σ
}

.

The stencil S is called admissible, if its condition stays below a prescribed
constant Mcond ∈ R>1.

A large condition number indicates that a stencil is not well-suited for inter-
polation or least-squares approximation. We reject any computational grid
which fails to provide sufficiently many admissible stencils.

Lemma 2.7. The condition of S is invariant under regular affine transfor-
mations of Rd.

Proof. Let A : Rd → Rd be a regular affine transformation with inverse A−1.
We have δΣ(π ◦ A) = δA(Σ)π and hence π ∈ δ⊥Σ ⇐⇒ π̃ := π ◦ A−1 ∈ δ⊥A(Σ).
Therefore

sup
π∈δ⊥Σ \{0}

‖π‖∞,ΣS

‖(δΘπ)Θ∈SΣ
‖∞

= sup
π̃∈δ⊥

A(Σ)
\{0}

‖π̃‖∞,A(ΣS)∥∥(δA(Θ)π̃)Θ∈SΣ

∥∥
∞

,

since ‖π‖∞,ΣS = ‖π̃‖∞,A(ΣS) and δΘπ = δA(Θ)π̃ for all Θ ∈ SΣ.

The previous lemma is the key to the stability of polynomial approximation.
It applies to general regular affine transformations and essentially establishes
uniform stability of polynomial approximation, even under anisotropic grid
refinement. The proof relies on the fact that tranformed versions of poly-
nomials are again polynomials of the same degree, i.e. polynomial spaces
are invariant under regular affine transformations. In other trial spaces one
would probably have to transform the trial space along with the grid in order
to obtain condition numbers independent of the grids meshsize.
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x

y

Figure 2.4: Best approximation from a linear subspace with respect
to the maximum norm. The norm of the proximum may be greater
than the norm of the element being approximated.

On an admissible stencil S we now have as an immediate consequence of
definition 2.6 for any π ∈ δ⊥Σ

‖π‖∞,ΣS 6 Mcond ‖(δΘπ)Θ∈SΣ
‖∞ (2.16)

and for any u ∈ BL∞(Ω → R) by the triangle inequality

‖π‖∞,ΣS 6 Mcond (‖(δΘu − δΣu)Θ∈SΣ
‖∞ + ‖(δΘ(π − u) + δΣu)Θ∈SΣ

‖∞) .

If we can find a polynomial π ∈ δ⊥ which interpolates (δΘu − δΣu)Θ∈SΣ
ex-

actly, the last term vanishes. Otherwise π is chosen to minimize the residual
‖(δΘ(π − u) + δΣu)Θ∈SΣ

‖∞. Since the maximum norm is not strictly convex,
this kind of best approximation may admit infinitely many solutions, fur-
thermore these solutions are hard to find. An upper bound for the minimal
value of

‖(δΘ(π − u) + δΣu)Θ∈SΣ
‖∞

can be computed by considering the residual obtained for the particular
choice π := 0. That value is ‖(δΘu − δΣu)Θ∈SΣ

‖∞ and gives us the following
estimate for a best approximation with respect to the maximum norm:

‖π‖∞,ΣS 6 2Mcond ‖(δΘu − δΣu)Θ∈SΣ
‖∞ .

For any stencil S on which we wish to compute a high order interpolant
SΣ must have at least dim δ⊥Σ elements, since otherwise by the well known
kernel-image theorem some nonzero polynomials will have all zero functional
values on SΣ. Such a stencil has therefore an inifinite condition number and
fails to be admissible.

We attempt to solve a suitable least-squares approximation problem in-
stead of the difficult maximum norm approximation. Introducing a scalar
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product on RSΣ by

〈α; β〉
R
SΣ := αtGβ

with a symmetric and positive definite Gram matrix G ∈ RSΣ×SΣ and the
Euclidean G-norm

‖α‖G :=
√
〈α; α〉

R
SΣ

we consider the following least-squares approximation problem: Find π ∈ δ⊥Σ
such that ∥∥(δΘπ − (δΘ − δΣ)u)Θ∈SΣ

∥∥2

G
→ min .

In order to estimate the maximum norm in terms of the G-norm we need

G∞ := sup
α∈RSΣ\{0}

‖α‖∞
‖α‖G

and G∞ := sup
α∈RSΣ\{0}

‖α‖G

‖α‖∞
.

These suprema are always finite, since R
SΣ is finite dimensional.

Lemma 2.8. The polynomial least-squares approximation problem on an
admissible stencil S is well posed.

Proof. Let π ∈ δ⊥Σ denote the polynomial obtained as the solution of the least-
squares approximation problem. The data vector (δΘπ)Θ∈SΣ

of the least-
squares solution and the residual are G-orthogonal. Hence

‖(δΘπ)Θ∈SΣ
‖2

G + ‖(δΘ(π − u) + δΣu)Θ∈SΣ
‖2

G = ‖(δΘu − δΣu)Θ∈SΣ
‖2

G

which implies

‖(δΘπ)Θ∈SΣ
‖G 6 ‖(δΘu − δΣu)Θ∈SΣ

‖G .

From equation (2.16) and the definition of G∞ we infer

‖π‖∞,ΣS 6 McondG∞ ‖(δΘπ)Θ∈SΣ
‖G

6 McondG∞ ‖(δΘu − δΣu)Θ∈SΣ
‖G .

(2.17)

On the other hand

1

G∞ ‖(δΘπ)Θ∈SΣ
)‖G 6 ‖(δΘπ)Θ∈SΣ

)‖∞ 6 ‖π‖∞,ΣS ,

since ‖δΘ‖ 6 1. Now

‖(δΘπ)Θ∈SΣ
)‖G 6 G∞ ‖π‖∞,ΣS 6 McondG∞G∞ ‖(δΘu − δΣu)Θ∈SΣ

‖G .

The approximation problem thus has the condition bound McondG∞G∞.
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Lemma 2.9. The projection P : BL∞(ΣS → R) → Πq(ΣS → R) obtained
by polynomial least-squares approximation of the values of the data func-
tionals (δΘ)Θ∈S on an admissible stencil S has the norm

‖P‖ 6 1 + 2McondG∞G∞. (2.18)

Proof. From equation (2.17) follows

‖Pu − δΣu‖∞,ΣS 6 McondG∞G∞ ‖(δΘu − δΣu)Θ∈SΣ
‖∞

6 McondG∞G∞ ‖u − δΣu‖∞,ΣS ,

since ‖δΘ‖ 6 1. Furthermore

‖u − δΣu‖∞,ΣS 6 ‖u‖∞,ΣS + |δΣu| 6 2 ‖u‖∞,ΣS (2.19)

and

‖Pu‖∞,ΣS 6 ‖Pu − δΣu‖∞,ΣS + |δΣu|
6 McondG∞G∞ ‖u − δΣu‖∞,ΣS + ‖u‖∞,ΣS

6 (1 + 2McondG∞G∞) ‖u‖∞,ΣS .

In practice, the Gram matrix G is always diagonal and merely provides geo-
metric weighting of the value of a particular δΘ (Θ ∈ SΣ) in terms of powers
of

‖(δΘ − δΣ)~x‖
Rd

diam ΣS
.

This kind of matrix is invariant under translations, (isotropic) scaling, reflec-
tion and rotations. Under these transformations G∞ and G∞ are therefore
uniformly bounded for all stencils in all grids under consideration and we
have

Theorem 2.10. Polynomial least-squares approximation on admissible sten-
cils is uniformly stable under similarity transformations of the grid.

The following simple lemma is crucial for proving local convergence of the
approximating polynomial to smooth functions.

Lemma 2.11. Let P : BL∞(ΣS → R) → Πq(ΣS → R) be a bounded pro-
jection with norm ‖P‖. Then we have for any polynomial π ∈ Πq(ΣS → R):

‖u − Pu‖∞,ΣS 6 (1 + ‖P‖) ‖u − π‖∞,ΣS .
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Proof. By the triangle inequality

‖u − Pu‖∞,ΣS 6 ‖u − π‖∞,ΣS + ‖π − Pu‖∞,ΣS

6 ‖u − π‖∞,ΣS + ‖Pπ − Pu‖∞,ΣS

6 ‖u − π‖∞,ΣS + ‖P‖ ‖u − π‖∞,ΣS .

We like to think of differentiability in terms of an approximation property:

Definition 2.12. A function u ∈ L∞(Ω → R) is said to be differentiable q
times at ~x0 ∈ int Ω = Ω, if and only if there are a polynomial π ∈ Πq(Ω → R)
and residual functions Rh such that

u(~x) = π(~x) + hqRh(~x)

for all ~x ∈ Bh(~x0) ∩ Ω and limh→0 sup {|Rh(~x)| : ~x ∈ Bh(~x0) ∩ Ω} = 0. If u
is differentiable q times at ~x0, then the polynomial π is determined uniquely
and called the Taylor polynomial T~x0u of degree q for u at ~x0. The space
of all functions u differentiable q times for which the Taylor mapping T•u :
Ω → Πq(Ω → R) is continuous is denoted by Cq(Ω → R).

This definition includes the boundary of the compact set Ω. Therefore for
u ∈ Cq(Ω → R) boundedness of the Taylor mapping does not have to be
assumed separately, but follows from the compactness of Ω. For a function
u ∈ Cq+1(Ω → R) one may write u as the sum of its Taylor polynomial of
degree q at ~x0 and a residual bounded above by Cu,Ωhq+1 where Cu,Ω ∈ R

depends on u and Ω alone, not on ~x0.
Choosing ~x0 as the barycentre of Σ and scaling the grid until ΣS ⊂ Bh(~x0)

we may use the Taylor polynomial of degree q of u ∈ Cq+1(Ω → R) in lemma
2.11 to obtain the following convergence estimate:

‖u − Pu‖∞,ΣS 6 (1 + ‖P‖) ‖u − T~x0u‖∞,ΣS 6 Cu,Ω(1 + ‖P‖)hq+1.

We now turn to the actual computation. Restricting ourselves to a particu-
lar choice of basis functions we obtain an algebraic expression for the least
squares approximation problem. The condition of this algebraic problem
cannot be better than that of the original problem. The proof of lemma 2.7
suggests making the basis functions invariant under affine transformations of
R

d. This could be achieved by using barycentric coordinates. We are, how-
ever, not concerned with anisotropic grid refinement and restrict our theory
to similarity transformations by choosing the basis as functions of

(1 − δΣ)~x

diam ΣS
,
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that is: we shift the barycentre of Σ to the origin and scale by the diameter
of the stencil. This transformation makes the basis functions invariant under
translation, rotation and scaling of the grid. Letting

B := (π1, . . . , πdim δ⊥Σ
)

denote a basis of δ⊥Σ the problem can be stated in matrix form:

A := (δΘπ)Θ∈SΣ,π∈B ∈ R
SΣ×B

θ := ((δΘ − δΣ)u)Θ∈SΣ
∈ R

SΣ.

This gives us the algebraic least-squares problem ‖Aξ − θ‖2
G → min. It

can be solved uniquely, since for an admissible stencil S the matrix A has
maximum (column) rank dim δ⊥Σ . The approximating polynomial then is

Bξ + δΣu,

i.e. with ξ := (ξ1, . . . , ξdim δ⊥Σ
)t we have δΣu +

∑dim δ⊥Σ
k=1 ξkπk as solution. Using

either the normal equations

AtGAξ = AtGθ ⇐⇒ ξ = (AtGA)−1AtGθ

or the Cholesky decomposition G = CtC and the QU -decomposition of CA

CA = Q

(
U
0

)
with an orthogonal matrix Q = Q−t ∈ RSΣ×SΣ and a regular upper triangular
matrix U ∈ RB×B we obtain

ξ =
(
U−1|0)QtCθ.

One verifies immediately that the solutions of both the normal equations and
the QU -process agree:

(AtGA)−1AtG = [(CA)t(CA)]−1(CA)tC

=

[(
U t|0)QtQ

(
U
0

)]−1(
U t|0)QtC

= U−1U−t
(
U t|0)QtC =

(
U−1|0)QtC.

If the basis B consists of homogeneous polynomials, then the QU -decompo-
sition via Householder transformations is uniformly stable even without scal-
ing the basis functions by diam ΣS .



2.6. RECONSTRUCTION 65

Stencil Selection

Let us now describe the actual strategy for selecting reconstruction stencils
S for a data location Σ. In addition to the algebraic admissibility condition
discussed in the previous section there are a few more or less heuristic con-
ditions. The general idea is most conveniently described for box grids in two
space dimensions.

The stencils should be local and not contain holes. In order to perform
linear recovery for a cell Σ we need to include at least two additional cells.
These should both be neighbours of Σ and of themselves, see the left part
of figure 2.5. Stencil sets of this kind contain candidates which avoid inter-
polating across a possible discontinuity near Σ. It appears reasonable that
the region ΣS covered by the stencil and the cell is not spread unnecessarily.
Furthermore, cells whose barycentres lie almost on a straight line would form
an ill-conditioned stencil, since linear interpolation in two variables cannot be
performed on a line. In the example in figure 2.5 left there are six one sided
stencils for linear interpolation and a central stencil for linear approximation
available.

Figure 2.5: Different kinds of stencils for regular box grids in two
space dimensions. Left: stencil for linear interpolation. Middle: cen-
tral stencil for linear or quadratic approximation. Right: One sided
stencil for quadratic interpolation. The reconstruction is performed
for the dark shaded box, other boxes in the stencil are shaded more
lightly, depending on the neighbourhood level. Boxes outside the
stencil are left white.

For quadratic recovery we need five additional cells. The central stencil in
the middle part of figure 2.5 allows a quadratic least-squares approximation
to be computed. In order to avoid interpolation or approximation based on
data from both sides of a discontinuity we need to consider one sided stencils
as well. These will involve less direct neighbours of Σ, and more remote
neighbours instead. We might consider the six alternatives of omitting one
light shaded direct neighbour from the middle part of figure 2.5 and further
variants using subsequently less direct neighbours. Numerical experience
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Figure 2.6: Different kinds of reconstruction stencils for collocation
grids in two space dimensions. Left: central stencil for linear approx-
imation. Right: one sided stencil for linear approximation. Recon-
struction is performed for the dark shaded vertex, other vertices in
the stencil are shaded more lightly and points outside the stencil are
left white.

indicates that it is necessary to consider stencils involving only two direct
neighbours, similar to the right part of figure 2.5, in order to stay clear of
discontinuities and obtain non-oscillating interpolants. The convex hull of
the barycentres of boxes in a stencil should not contain barycentres of boxes
outside the stencil. Using the primary triangulation data structure these
types of stencils can be computed very efficiently.

Figure 2.7: One sided stencil consisting of direct and second neigh-
bours for quadratic interpolation on a collocation grid. The points in
the stencil should lie within a sufficiently narrow cone.

In the case of a collocation grid stencils similar to the left part of figure 2.5
should be precomputed and stored. The geometric principles for constructing
recovery stencils on collocation grids are quite close to those for stencils on
box grids, however, collocation stencils cannot be said to be free of holes.
Their construction requires some effort, as there is no underlying simplex
structure available. Fortunately, it turns out that linear recovery can be
performed using just precomputed central stencils. Figure 2.6 shows the
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central stencil for the dark shaded vertex in its left part. This stencil is also
used as a one sided stencil for the dark vertex in the right part of figure 2.6.

Quadratic recovery, however, requires more one sided stencils which con-
tain fewer direct neighbours than the right part of figure 2.6. To collect
sufficiently many points we have to consider second and possibly third level
neighbours inside a cone about the dark shaded vertex. Different stencils
would be obtained by rotating the cone about its apex.

Oscillation Indicators

WENO schemes form a convex combination of the approximations computed
on the various stencils for any given data location. Each candidate is assigned
a weight according to its “oscillation” via an oscillation indicator. Choice of
an oscillation indicator is largely heuristic: the variation of the reconstructed
function should be small. While the gradient is the only degree of freedom
one has when reconstructing linearly, it is not clear how second derivatives of
quadratic approximations should be treated. It appears that second deriva-
tives are too sensitive to changes in the input data to be of practical value for
determining reconstruction weights. Ignoring a candidates local curvature is
certainly not very satisfactory, but seems to work in practice. We shall make
use of the following simple oscillation indicator:

ωΣ(u) :=
√

δΣ

(‖∇u‖2). (2.20a)

Letting MΣ denote the set of all stencils considered for the data location
Σ and πS the polynomial obtained for the particular stencil S ∈ MΣ we
compute the weight wS as

wS :=
1

ε + (ωΣ(πS))α
> 0 (2.20b)

where α is typically 4 or 8 and ε ≈ 10−15 a small number to avoid division
by zero. The reconstruction function is then computed as∑

S∈MΣ

wS πS∑
S∈MΣ

wS
. (2.20c)

Numerical experience indicates that the quality of the solutions improves,
if approximations on central stencils are preferred over those on one sided
stencils. This can be achieved via additional stencil type weights gS which
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are about 10 to 50 for central stencils and about one for one sided stencils.
Equation (2.20b) would thus be modified:

wS :=
gS

ε + (ωΣ(πS))α
.

An oscillation indicator like that of equation (2.20a) is not well suited for
quadratic recovery from collocation functionals for single points, since ac-
cidental measurement of oscillation near the zero of a candidates gradient
would give this candidate an extremely large weight (about 1/ε) and produce
a reconstruction function almost identical to this candidate. For quadratic
recovery from collocation values it is therefore mandatory to use convex com-
binations of several collocation functionals as input data.

For the local approximation order of the reconstruction function of a
smooth function in Cq+1(Ω → R) we obtain∥∥∥∥∥∥∥∥u −

∑
S∈MΣ

wS πS∑
S∈MΣ

wS

∥∥∥∥∥∥∥∥
∞,ΣS

=

∥∥∥∥∥∥∥∥
∑

S∈MΣ

wS (u − πS)∑
S∈MΣ

wS

∥∥∥∥∥∥∥∥
∞,ΣS

6 max
S∈MΣ

‖u − πS‖∞,ΣS

6 Cu,Ω

(
1 + max

S∈MΣ

‖PS‖
)

hq+1

where PS denotes the projection mapping obtained for the data location Σ
on the stencil S and Cu,Ω ∈ R is a constant depending on u and Ω alone. By
lemma 2.9 and theorem 2.10 ‖PS‖ is uniformly bounded for all stencils in all
grids under consideration.

2.7 Numerical Divergence Operator

For cell based schemes the numerical divergence approximation consists in
the application of a quadrature rule to the flux across cell interfaces. The
normal directions on the cell interfaces are dictated by the computational
grid, the choice of quadrature points is defined by a quadrature rule, see
figure 2.8.

In order to generalize this concept to collocation methods as well we assign
to each data location Σ a set of evaluation points ~x ∈ R

d and evaluation
directions ~n ∈ R

d with ‖~n‖ = 1, see figure 2.10. These evaluation points
and directions now define a set F of new data functionals

δ~g = ~g(~x) · ~n.
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Figure 2.8: Quadrature points and outer normal directions for the
boundary integral of the flux across cell interfaces.

from which we seek to approximate a feature functional Φ (the divergence)
of an unknown vector valued function.

This problem can be solved by first computing an interpolant or approx-
imation for the given input data and then evaluating the divergence of that
function. Uniform stability of this approximation process under translation,
rotation and scaling of the grid is basically established by the general theory
that led to theorem 2.10, but there are few technical catches.

Approximation of Linear Functionals

Even if the data functionals do not contain enough information to compute
a polynomial approximation, it may still be possible to evaluate the feature
functional. This happens, if the feature functional does not depend on what
is missing. We denote by

Φ⊥ :=
{
~π ∈ Πf (Rd → R

d) : Φ~π = 0
}

the kernel of the feature functional, by

δ⊥ :=
{
~π ∈ Πf (Rd → R

d) : δ~π = 0
}

again the kernel of a data functional and by

kerF :=
⋂
δ∈F

δ⊥

the intersection of the kernels of the data functionals in F . The feature
functional Φ can be approximated from the values of the data functionals, if

kerF ⊂ Φ⊥.
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An optimal choice of data functionals has maximal kerF , since we then
accumulate exactly the information required for approximating the feature
functional, like the construction of Gaussian quadrature formulae does for
integration. In this respect the finite volume method represents an example
of an almost optimal choice. By the divergence theorem the cell average of a
functions divergence can be computed from the outer normal component of
the function values on the cell boundary and the Gauss quadrature ensures
maximum order of accuracy for each boundary part.

The proper polynomial trial space for the approximation of Φ from the
functionals in F is

F⊥ := Πf(Rd → R
d)/ kerF .

We let Υ denote the closed convex hull of the evaluation points for the func-
tionals in F and introduce the following norm on Π(Υ → R

d):

‖~π‖Υ,∞ := sup
~x∈Υ

‖~π(~x)‖
Rd

and the norm relative to F⊥:

‖~π‖F⊥ := inf
~ω∈kerF

‖~π − ~ω‖Υ,∞ .

The functionals in F now have norm one, since

δ~π 6 ‖~π(~x)‖
Rd 6 ‖~π‖Υ,∞

and equality holds, if ~π = ~n on all Υ. It should be noted that these constant
functions are not in kerF , due to the form of the (new) data functionals.
The condition of F can be defined as

condF := sup
~π∈Πf (Rd→Rd)\kerF

‖~π‖F⊥

‖(δ~π)δ∈F‖∞
.

Next we need to specify a reasonably large class of transformations of Rd

under which the condition of F is invariant. We do not attempt to cover
general affine transformations, since stretching leads to a number of problems
connected to the treatment of the evaluation directions: If we stretch figure
2.8 horizontally, the hexagon would (seen from a distance) approximate a
rectangle and all outer normal vectors would tend to a horizental position.
They would thus not approximate the outer normals of the rectangle.

For this reason we shall only consider similarity transformations of the
grid. The evaluation directions remain invariant under translations and scal-
ing of the grid, but are rotated along with it. Invariance of the condition of
F under these transformations can now be established similar to lemma 2.7
by considering the following transformations of ~π:
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Figure 2.9: Stencil for approximating the feature functional at a cer-
tain data location. It consists of evaluation points (white circles)
and evaluation directions (arrows). Evaluation points with up to d
evaluation directions may coincide.

• ~π ◦ A−1 for translations and isotropic scaling operations A and

• A ◦ ~π ◦ A−1 for orthogonal transformations A of the grid.

If ~π is in kerF , then the transformation of ~π is in the kernel of the accordingly
transformed data functionals. The norm of the data functionals does not
change under the transformation. We may hence expect that the condition
of the vector valued approximation problem is uniformly bounded under these
kinds of transformations.

Next we consider again a least-squares approximation problem. We in-
troduce on RF a scalar product

〈α; β〉
RF := αtGβ

with a symmetric and positive definite Gram matrix G, the Euclidean G-
norm

‖α‖G :=
√

〈α; α〉
RF

and solve the following problem: Find ~π ∈ F⊥ such that∥∥(δ~π − δ~g)δ∈F
∥∥2

G
→ min .

The Gram matrix G is again simply a diagonal matrix which provides geo-
metric weighting in terms of powers of

‖~x − barycentre Υ‖
Rd

diam Υ
.
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Choosing a basis

B = (~π1, . . . , ~πdimF⊥)

of F⊥ we obtain the matrix form ‖Aξ − θ‖2
G → min of the least-squares

problem with

A := (δ~π)δ∈F ,~π∈B ∈ R
F×B

θ := (δ~g)δ∈F ∈ R
F .

The approximating vector valued polynomial is

Bξ =
dimF⊥∑

k=1

ξk~πk

and the feature functional can be evaluated as

ΦBξ =
dimF⊥∑

k=1

ξkΦ~πk.

We are ultimately interested in evaluating the feature functional, and not
in the approximating polynomial as such. This now suggests computing a
vector of feature weights φ ∈ R

F which gives

ΦBξ = 〈φ; θ〉
RF

by simply forming the scalar product of the vector of the feature weights
with the input data vector. Since we have

Aξ ≈ θ,

we would expect

ΦBξ ≈ 〈φ; Aξ〉
RF .

This leads us to looking for φ as a solution of

ΦB ≈ φtGA.

The last relation is not overdetermined and can be solved exactly (A has
maximal rank), but not necessarily uniquely. In fact, we have obtained the
dual problem of the originial least-squares approximation problem: Find
φ ∈ RF such that

φtGA = ΦB and ‖φ‖G → min . (2.21)
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We observe that the dual problem is independent of the particular choice
of basis polynomials. Changing the basis amounts to multiplying the last
equation from the right with a regular R

B×B matrix and does not alter φ.
The dual problem is most conveniently solved using the QU -decomposition
of CA (as usual we denote the Cholesky decomposition of the Gram matrix
by G = CtC)

CA = Q

(
U
0

)
with an orthogonal matrix Q = Q−t ∈ RF×F and a regular upper triangular
matrix U ∈ R

B×B. We obtain

φt := ΦB (U−1|0)QtC−t. (2.22)

Lemma 2.13. The least-squares approximation to the feature functional Φ
obtained by evaluating the feature functional for a least-squares approxima-
tion of the input data values is equivalent to taking the scalar product of the
vector of feature weights obtained from the dual problem and the input data
vector.

Proof. We need to show that

〈φ; θ〉
RF = ΦBξ

for all θ ∈ RF . As ξ depends on θ via a least-squares problem, this is
equivalent to

〈φ; θ〉
RF = ΦB (U−1|0)QtCθ.

The latter is indeed the case, since we have by the definition (2.22) of φt

〈φ; θ〉
RF = φtGθ = ΦB (U−1|0)QtC−tCtCθ.

Based on lemma 2.13 we can precompute the required vectors of feature
weights during the preprocessing stage. They only have to be recomputed,
if the grid is changed. Furthermore, the tasks of generating a divergence for-
mula and the actual divergence computation are now completely separated.
It is convenient to store φtG = ΦB (U−1|0)QtC.
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Figure 2.10: Two kinds of divergence stencils. The evaluation direc-
tions are parallel to the edges joining the dark vertices (barycentres of
data locations). In the right part two evaluation points (white circles)
per edge are considered. They are chosen on the mid-perpendicular
of each edge, at a fixed portion (one fifth) of the edges length from
the midpoint. Each evaluation point is affiliated to two dark vertices
and the evaluation directions for both dark vertices are collinear.

The Divergence Functional

Choosing the basis B of F⊥ as functions of

~x − barycentre Υ

diam Υ

we obtain for the divergence of the basis functions:

divB =
1

diam Υ

(
div ~π

(
~x − barycentre Υ

diam Υ

))
~π∈B

.

While the condition of the interpolation matrix A := (δ~π)δ∈F ,~π∈B can be
arranged to be invariant under scaling of the grid, we loose one order of
accuracy via the right hand side of the dual problem (2.21), as should be ex-
pected for first derivatives. For a first order approximation to the divergence
operator we choose as in [AHS99]

Π1(Υ → R
d)

as trial space. It has dim Π1(Υ → Rd) = d(d+1). If all evaluation directions
all lead radially away from the barycentre of the data location for which the
divergence is to be computed (see figure 2.10 left), then the “eddy” functions
(taking the barycentre as the origin)

~x 7→ (~x · ~ej)~ek − (~x · ~ek)~ej for j 6= k ∈ {1, . . . , d}
are in kerF . For this kind of stencil we can (and indeed have to) reduce
the dimension of the trial space by d− 1, the number of independent “eddy”
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functions. The reduced trial space has dimension d2 + 1. If there are not
enough neighbours available in the collocation grid for interpolation, one has
two options:

• One might insert extra edges to increase the number of neighbours or

• increase the number of evaluation points (figure 2.10 right) or evalua-
tion directions without changing the number of neighbours.

It should be noted that this problem is not present for the finite volume
method, as the boundary integral can be formally approximated with even
one evaluation point.

One extreme case of divergence stencil selection would be the choice of
d (linearly independent) evaluation directions per d coinciding evaluation
points. The vector of feature weights will then contain d weights for such
an evaluation point: one per direction. These weights depend linearly on
the evaluation directions for a point. Consequently there exists a basis of
evaluation directions for which d− 1 of the weights vanish. For the direction
of the non vanishing weight a numerical flux function should be computed
and used as input datum for the divergence formula.

It is, however, not clear, whether a global choice of evaluation points
and evaluation directions for collocation schemes is possible, such that there
is for each evaluation point only one non-zero weight and the evaluation
directions for the non-zero weights for the adjacent data locations are linearly
dependent. In order to keep the cost of geometric preprocessing in reasonable
bounds, we simply choose evaluation points and directions according to the
edges, as in figure 2.10.

Figure 2.11: Part of divergence stencils for boundary edges. No eval-
uation point outside the computational domain is chosen. Instead
we choose further points (white circles) on the boundary edge itself
and outer normals as evaluation directions. The left two evaluation
points on the boundary are affiliated to the left dark vertex, the right
ones to the right dark vertex. The upper evaluation point is affiliated
to both dark vertices.
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Higher Order Divergence

A higher order polynomial approximation requires substantially more data,

dim Πf(Rd → R
d) = d

(
d + f

f

)
.

Using many levels of neighbours for this computation gave unsatisfactory re-
sults and does not seem plausible in terms of the underlying physical trans-
port mechanism. We therefore suggest a higher order divergence formula
based on the quasi linear form of the conservation law

div(F ◦ u) =
∂F

∂u
∇u

in smooth regions of the flow. The two divergence formulae for first and
higher order approximation can be blended by a simple limiting strategy.

If u is locally C1 about a data location, then the two values of u considered
for an evaluation point differ aboutO(h) and so do the values of ∇u computed
from the reconstruction on the cell itself and its neighbours. The following
smoothness indicator

w :=
∑

(ui − uo)
2 + ‖∇ui −∇uo‖2

where the sum is taken over all evaluation points will thus be of order O(h2)
for smooth parts of the flow and large for regions where u fails to be C1.
Thus (

1 − w2

h2

)
∇̃·(F ◦ u) +

w2

h2

∂F

∂u
∇u

where ∇̃· represents a stable first order approximation could be used as an
asymptotically high order divergence formula. In our numerical experiments,
however, this switching strategy did not alter the solutions noticably.

2.8 The CFL Condition

For a one dimensional scheme of Godunov type the waves entering a cell of
length h from one end should not be allowed to travel across the whole cell
and leave it at the opposite end within a single time step. This leads to a
time step constraint of

∆t <
h

LF
.
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In several space dimensions waves entering a cell near a corner across different
faces would start interacting very early, but numerical experience indicates
that this is not a principal source of trouble. Let us therefore focus on
the issue of information propagation in the scheme. For a scalar equation
information clearly travels along characteristics at speed LF . If the physically
relevant part of the numerical scheme, this is the discrete divergence operator
for the time step, does not process all of the physically relevant information,
then arbitrarily changing the initial values outside the numerical domain
of dependence changes the behaviour of the exact solution, but leaves the
approximation produced by the scheme unchanged. The scheme can therefore
not converge to the correct solution. In fact, a time step chosen too large
often manifests itself in numerical instability. Let us clarify the point for the
classical Lax-Friedrichs scheme on a grid of uniform mesh size h in one space
dimension:

TS(u, t, ∆t)(xk) =

u(t, xk+1) + u(t, xk−1)

2
− ∆t

2h
[F (u(t, xk+1)) − F (u(t, xk−1))]

Here the numerical signal velocity is h/∆t, as information from neighbours to
both sides having distance h enters the numerical divergence approximation,
whereas the physical signal velocity is the Lipschitz constant LF of the flux.
We demand that the numerical signal velocity be greater than the physical
signal velocity:

h

∆t
> LF .

This reasoning, originally presented by Courant, Friedrichs and Levy in
[CFL28], leads us to the following procedure for computing a legal time step
size ∆t:

Estimate for each data functional δ a local Lipschitz constant LF of the
flux function supplying δu as the argument and a local characteristic length
h as half the diameter of the divergence stencil. Define with an arbitrary
positive constant CFL ∈ R>0:

∆t := CFLmin
δ∈Λ

h

LF
.

The constant CFL is called the CFL number. Constraints of the time step
size may be expressed as restrictions on CFL. For the Lax-Friedrichs scheme,
for instance, we demand CFL < 1.
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x

t
numerical domain of dependence

physical domain of dependence

data involved in time step

Figure 2.12: The CFL condition: Numerical and physical signal ve-
locity.

For an implicit scheme the numerical signal velocity is infinite, as the
implicit time step will link events throughout the grid together. Implicit
schemes have much less severe time step constraints in terms of stability and
allow considerably larger time steps. These are, however still restricted by
the necessity to compute accurate approximations.

One might object that a scheme including substantially more than the
physically relevant information to compute the updates in a time step would
for reasons similar to those above fail to converge to the correct solution:
changing the data outside the physical but within the numerical domain
of dependence will change the numerical solution, while the exact solution
at a certain point remains unchanged. The major deception about this ar-
gumentation is that it postulates propagation along characteristics for the
numerical scheme, too. However, the way the “extra” information is used by
the scheme is certainly subject to a consistency condition. It will probably
slow down the rate of convergence, but as long as the scheme remains stable
and consistent not destroy it.



Chapter 3

The Euler Equations of Gas
Dynamics

3.1 The Euler Flux Function

The Euler Equations represent the conservation of mass, momentum and
energy respectively. They describe the motion of a compressible liquid in the
absence of inner friction. In this respect they form a limit case of the system
of Navier-Stokes equations. We denote by ρ the density, ~v the transport
velocity, E the specific energy, i.e. energy per mass and by p the pressure.
The flux function for the Euler equations reads

F = ρ

1
~v
E

~vt + p

 0
I
~vt

 (3.1)

(the middle line of equation (3.1) is a shorthand notation for d lines) with
an equation of state which for an ideal gas takes the form

p = (κ − 1)ρ
(
E − 1

2
‖~v‖2) . (3.2)

For an ideal diatomic gas the constant κ takes the value κ = 7/5 = 1.4. We
also introduce the constant κ̃ := κ − 1. The set S ⊂ R

s of valid physical
states with s = d + 2 is restricted to ρ > 0 and p > 0. The system of the
Euler equations now reads:

∂

∂t

 ρ
ρ~v
ρE

+ div

ρ

1
~v
E

~vt + p

 0
I
~vt

 = 0. (3.3)

79
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The quantities differentiated with respect to time

u :=

 ρ
ρ~v
ρE


are called conservative variables: density (of mass), density of momentum
and density of energy. We define the enthalpy H, the (unscaled) thermody-
namic entropy Z and the speed of sound a as

H := E +
p

ρ

Z := ln
p

ρκ

a :=

√
κp

ρ
.

(3.4a)

The term “unscaled” indicates that we have omitted the specific heat capacity
at constant volume from the definition of the thermodynamic entropy. The
thermodynamic entropy is a concave function. Compared to the discussion
of the abstract entropy on page 18 this corresponds to a different sign con-
vention, i.e. the thermodynamic entropy will increase across a discontinuity.
The following relations are useful:

H = κE − 1
2
κ̃ ‖~v‖2

κ̃H = a2 + 1
2
κ̃ ‖~v‖2

∇up = κ̃
(

1
2
‖~v‖2 , −~vt, 1

)
∇uZ =

1

p

(
1
2
κ̃ ‖~v‖2 − a2, −κ̃~vt, κ̃

)
∇ua =

1

2ρa

(
1
2
κκ̃ ‖~v‖2 − a2, −κκ̃~vt, κκ̃

)
.

(3.4b)

The index u to the nabla operator indicates that differentiation is performed
with respect to the conservative variables Along a fixed unit vector ~n ∈ R

d

we define

v~n := ~v · ~n.

After multiplication with this vector ~n equation (3.1) takes the form

F~n =

 ρv~n

ρv~n~v + p~n
ρHv~n

 (3.5)
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Obviously F~n is invariant under rotations of the physical space, i.e. for a
rotational matrix A ∈ R

d×d and B ∈ R
s×s with B := diag(1, A, 1) one has

B−1F (Bu)A~n = F (u)~n.

The Jacobi matrix of F~n with respect to the conservative variables is:

∂F~n

∂(ρ, ρ~v, ρE)
=

 0 ~nt 0
1
2
κ̃ ‖~v‖2 ~n − v~n~v v~nI +~v ⊗ ~n − κ̃~n ⊗~v κ̃~n(
κ̃ ‖~v‖2 − κE

)
v~n

(
κE − 1

2
κ̃ ‖~v‖2)~nt − κ̃v~n~v

t κv~n

 .

It has the eigenvalues (σλ ∈ {−1, 1} as in definition 1.20 on page 37)

λ1(u, ~n) = v~n − σλa

λ2(u, ~n) = · · · = λs−1(u, ~n) = v~n

λs(u, ~n) = v~n + σλa

(3.6a)

and corresponding right eigenvectors

r1(u, ~n) =

 1
~v − σλa~n
H − σλav~n


r2(u, ~n) =

 1
~v

1
2
‖~v‖2


r2+j(u, ~n) =

 0
~ej

~v · ~ej

 for j ∈ {1, . . . , d − 1}

rs(u, ~n) =

 1
~v + σλa~n
H + σλav~n



(3.6b)

Here ~e0 := ~n,~e1, . . . , ~ed−1 denotes an orthonormal basis of Rd. We define the
matrix

R(u, ~n) := (r1(u, ~n), . . . , rs(u, ~n)).

The inverse of this matrix is given by

R−1(u, ~n) =
1

2a2



1
2
κ̃ ‖~v‖2 + σλav~n −σλa~nt − κ̃~vt κ̃

2a2 − κ̃ ‖~v‖2 2κ̃~vt −2κ̃
−2a2~v · ~e1 2a2~e t

1 0
...

...
...

−2a2~v · ~ed−1 2a2~e t
d−1 0

1
2
κ̃ ‖~v‖2 − σλav~n σλa~n

t − κ̃~vt κ̃


.
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Linear independence of the right eigenvectors is therefore assured and we
have the following

Lemma 3.1. The Euler equations (3.3) are hyperbolic. In one space dimen-
sion they are even strictly hyperbolic.

3.2 Riemann Invariants

The eigenvalues and eigenvectors originating from the Euler equations (3.3)
are either genuinely nonlinear or linearly degenerate. Specifically:

Lemma 3.2. The eigenvalues λ1 and λs are genuinely nonlinear, λ2, . . . , λs−1

are linearly degenerate.

Proof. We consider first λ2 = · · · = λs−1 = v~n:

∇uv~n = ∇uλ2 = · · · = ∇uλs−1 =
1

ρ

(−v~n, ~nt, 0
)

(3.7)

is clearly orthogonal on r2, . . . , rs−1. For λs we have:

∇u(v~n + σλa) =
1

ρ

(−v~n, ~nt, 0
)

+ σλ
κκ̃

2ρa

(
1

2
‖~v‖2 − a2

κκ̃
, −~vt, 1

)
and

σλ
κκ̃

2ρa

(
1

2
‖~v‖2 − a2

κκ̃
, −~vt, 1

) 1
~v + σλa~n
H + σλav~n


+

1

ρ

(−v~n, ~nt, 0
) 1

~v + σλa~n
H + σλav~n

 = σλ
a

2ρ
(κ + 1) 6= 0.

The eigenvalue λ1 takes the rôle of λs, if we reverse the ordering by changing
the sign of σλ.

The Riemann invariants corresponding to the eigenvalues are summarized in
table 3.1 on page 83. Using the relations from equation (3.4b) they are easily
verified.
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Ψ
(1)
1 = v~n + σλ

2

κ̃
a

λ1 = v~n − σλa Ψ
(1+j)
1 = ~v · ~ej for j ∈ {1, . . . , d − 1}

Ψ
(s−1)
1 = Z

Ψ
(1)
2 = v~n

λ2 = v~n Ψ
(1+j)
2 = ~v · ~ej for j ∈ {1, . . . , d − 1}

Ψ
(s−1)
2 = p

Ψ
(1)
k = v~n

λk = v~n Ψ
(1+j)
k = ~v · ~ej for j ∈ {1, . . . , d − 1} \ {k − 2}

for k ∈ {3, . . . , s − 1} Ψ
(k−1)
k = ρ

Ψ
(s−1)
k = p

Ψ
(1)
s = v~n − σλ

2

κ̃
a

λs = v~n + σλa Ψ
(1+j)
s = ~v · ~ej for j ∈ {1, . . . , d − 1}

Ψ
(s−1)
s = Z

Table 3.1: Riemann invariants for the Euler equations
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3.3 Jump Relations

Certain properties of the solution to the Riemann problem for the Euler
equations can be deduced directly from the directed flux of equation (3.5).
Since each of the conservative variables is conserved in its own right, we
gather from the Rankine-Hugoniot jump condition (1.15) for a discontinuity
aligned with a hyperplane orthogonal to a fixed unit vector ~n ∈ Rd and
moving at velocity ~ν = ‖~ν‖~n and ~e1, . . . , ~ed−1 orthogonal to ~n:

ρ(l)
(
v

(l)
~n − ‖~ν‖ ) = ρ(r)

(
v

(r)
~n − ‖~ν‖ ) (3.8a)

ρ(l)
(
v

(l)
~n − ‖~ν‖ )2 + p(l) = ρ(r)

(
v

(r)
~n − ‖~ν‖ )2 + p(r) (3.8b)

ρ(l)
(
v

(l)
~n − ‖~ν‖ )~v(l) · ~ej = ρ(r)

(
v

(r)
~n − ‖~ν‖ )~v(r) · ~ej (3.8c)

ρ(l)
(
v

(l)
~n − ‖~ν‖ )H(l) = ρ(r)

(
v

(r)
~n − ‖~ν‖ )H(r). (3.8d)

If v
(l)
~n = ‖~ν‖, then by equation (3.8a) v

(r)
~n = ‖~ν‖ and by (3.8b) p(l) = p(r).

This situation is a contact discontinuity. Since the velocity components or-
thogonal to the hyperplane equal the speed of the discontinuity, no fluid
particle can pass.

If v
(l)
~n 6= ‖~ν‖, then by equation (3.8a) v

(r)
~n 6= ‖~ν‖ and by equation (3.8c)

~v(l) · ~ej = ~v(r) · ~ej . Similarly by equation (3.8d) H(l) = H(r). Let us now
assume that v

(l)
~n 6= v

(r)
~n , since otherwise there is really no discontinuity at all.

H(l) − 1

2

(
~v(l) · ~ej

)2
= H(r) − 1

2
(~v(r) · ~ej)

2

gives the following definition of a∗ in terms of either left or right state:

(a(l))2

κ − 1
+

1

2

(
v

(l)
~n − ‖~ν‖ )2 =

(a(r))2

κ − 1
+

1

2

(
v

(r)
~n − ‖~ν‖ )2 =:

1

2

κ + 1

κ − 1
(a∗)2. (3.9)

Dividing equation (3.8b) by equation (3.8a)

v
(l)
~n − ‖~ν‖ +

p(l)

ρ(l)
(
v

(l)
~n − ‖~ν‖ ) = v

(r)
~n − ‖~ν‖ +

p(r)

ρ(r)
(
v

(r)
~n − ‖~ν‖ )

and therefore

v
(l)
~n − v

(r)
~n =

(
a(r)
)2

κ
(
v

(r)
~n − ‖~ν‖ ) −

(
a(l)
)2

κ
(
v

(l)
~n − ‖~ν‖ ) .

Use of equation (3.9) to eliminate
(
a(l)
)2

and
(
a(r)
)2

finally yields(
v

(l)
~n − ‖~ν‖ )(v(r)

~n − ‖~ν‖ ) = (a∗)2.
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Introducing the Mach numbers (relative to ‖~ν‖)

Mal :=
v

(l)
~n − ‖~ν‖

a(l)
Mar :=

v
(r)
~n − ‖~ν‖

a(r)

Ma∗l :=
v

(l)
~n − ‖~ν‖

a∗
Ma∗

r :=
v

(r)
~n − ‖~ν‖

a∗

we conclude

Ma∗l Ma∗r = 1 (3.10a)

and from equation (3.9) (Ma refers to either Mal or Mar, Ma∗ to Ma∗l or Ma∗r)(
Ma∗

)2
=

(κ + 1)Ma2

(κ − 1)Ma2 + 2
. (3.10b)

From equation (3.8a) we now infer the jump relation for the density

ρ(l)

ρ(r)
=

Ma∗r
Ma∗l

=
(
Ma∗r

)2
=

(κ + 1)
(
Mar

)2
(κ − 1)

(
Mar

)2
+ 2

, (3.11a)

for the pressure from equation (3.8b)

p(l) − p(r) = ρ(l)
(
v

(l)
~n − ‖~ν‖ )2 − ρ(r)

(
v

(r)
~n − ‖~ν‖ )2

= ρ(r)
(
v

(r)
~n − ‖~ν‖ )(v(l)

~n − v
(r)
~n

)
by equation (3.8a)

= (a∗)2ρ(r)
(
1 − (Ma∗r

)2)
and

p(l)

p(r)
= 1 +

2κ

κ + 1

(
1 − (Mar

)2)
. (3.11b)

3.4 Numerical Flux Functions

For the numerical flux function HOS of Osher and Solomon the integration
in equation (1.38) is simplified considerably by the fact that s−2 eigenvalues
of the Jacobi matrix of the directed Euler flux in equation (3.5) are linearly
degenerate. Furthermore, these s − 2 eigenvalues are equal. The remaining
two eigenvalues are genuinely nonlinear, one of them is greater and the other
smaller than the degenerate ones.

The path components whose tangents are the linearly degenerate eigen-
vectors do not contain any sonic points, and the sum over the flux integrals
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along these components reduces to the difference of the fluxes for just two
intermediate states (equation (3.12d) contains the definition of v

(m)
~n ):

s−1∑
k=2

∫
Γk

(
∂F~n

∂u

∣∣∣∣
ũ

)+

dũ =

{
F (es−1)~n − F (s2)~n if v

(m)
~n > 0

0 if v
(m)
~n 6 0.

Therefore we need to determine two intermediate states u(1) = s2 and u(2) =
es−1. Using superscripts (l), (1), (2) and (r) to indicate affiliation to ul, u(1),
u(2) and ur respectively, we infer for Γ1 from the Riemann invariants listed
in table 3.1 on page 83

v
(1)
~n + σλ

2

κ̃
a(1) = v

(l)
~n + σλ

2

κ̃
a(l) =: Ψ(l) (3.12a)

~v(1) · ~ej = ~v(l) · ~ej for j ∈ {1, . . . , d − 1} (3.12b)

Z(1) = Z(l), (3.12c)

for the middle paths Γ2, . . . , Γs−1 (ρ and ~v · ~ej are not needed)

v
(1)
~n = v

(2)
~n =: v

(m)
~n (3.12d)

p(1) = p(2) (3.12e)

and for the final path component Γs

v
(2)
~n − σλ

2

κ̃
a(2) = v

(r)
~n − σλ

2

κ̃
a(r) =: Ψ(r) (3.12f)

~v(2) · ~ej = ~v(r) · ~ej for j ∈ {1, . . . , d − 1} (3.12g)

Z(2) = Z(r). (3.12h)

From the definition of Z we infer

κκ exp(Z) = p−κ̃a2κ and a =
√

κpκ̃/κ exp

(
Z

2κ

)
.

Equations (3.12e), (3.12c) and (3.12h) now imply

a(2)

a(1)
= exp

(
Z(2) − Z(1)

2κ

)
= exp

(
Z(r) − Z(l)

2κ

)
=: α. (3.12i)

Together with equation (3.12a), its counterpart (3.12f) and equation (3.12d)
we obtain from equation (3.12i) a system of three linear equations

v
(m)
~n + σλ

2

κ̃
a(1) = Ψ(l)

v
(m)
~n − σλ

2

κ̃
a(2) = Ψ(r)

a(2) = αa(1)
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which gives us

a(1) = σλ
κ̃

2

Ψ(l) − Ψ(r)

1 + α

a(2) = σλα
κ̃

2

Ψ(l) − Ψ(r)

1 + α

v
(m)
~n =

αΨ(l) + Ψ(r)

1 + α
.

This solution is physically meaningful, only if σλ(Ψ
(l) − Ψ(r)) > 0. Having

thus computed the velocity component parallel to ~n and the speeds of sound
for the intermediate states, we need to decide whether Γ1 and Γs contain
sonic points. That is the case for Γ1, if and only if(

v
(l)
~n − σλa

(l)
)(

v
(m)
~n − σλa

(1)
)

< 0

and for Γs, if and only if(
v

(r)
~n + σλa

(r)
)(

v
(m)
~n + σλa

(2)
)

< 0.

A sonic point nk is in either case characterized by λk(nk) = 0 (k ∈ {1, s}).
We denote by v∗ the velocity component parallel to ~n and by a∗ the speed of
sound for the sonic point. A superscript (l) refers to Γ1, (r) to Γs. Together
with equations (3.12a) and (3.12f) we obtain the following linear equations:

0 = v(l)
∗ − σλa

(l)
∗ 0 = v(r)

∗ + σλa
(r)
∗

Ψ(l) = v(l)
∗ + σλ

2

κ̃
a(l)
∗ Ψ(r) = v(r)

∗ − σλ
2

κ̃
a(r)
∗ .

They admit the solutions (σλ
2 = 1)

v(l)
∗ =

κ − 1

κ + 1
Ψ(l) v(r)

∗ =
κ − 1

κ + 1
Ψ(r)

a(l)
∗ = σλ

κ − 1

κ + 1
Ψ(l) a(r)

∗ = −σλ
κ − 1

κ + 1
Ψ(r).

By equation (3.12c) the entropy is constant on Γ1, by its companion (3.12h)
on Γs. The velocity components orthogonal to ~n are similarly constant on
Γ1 by equation (3.12b) and by equation (3.12g) on Γs. At this stage we have
thus at our disposal speed of sound, transport velocity and entropy for any
intermediate or sonic state. These variables (a,~v, Z) are called character-
istic variables. In order to evaluate equation (3.5) for a certain state we
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compute density, pressure and enthalpy as follows:

ρ = exp

(
ln(a2/κ) − Z

κ̃

)
p =

a2ρ

κ

H =
a2

κ̃
+

1

2
‖~v‖2 .

We may optimize the computation of ‖~v‖2, if we observe that for two vectors
~ν and ~ν ′ differing only in their components parallel to ~n

‖~ν ′‖2
= ‖~ν‖2 − (~ν~n)2 + (~ν ′

~n)2.

Evaluation of the integral in equation (1.38) is now straightforward. The
thesis of Spekreijse [Spe87] and the book by Toro [Tor97] contain tables
listing the explicit expressions for the flux function of Osher and Solomon in
the case of the Euler equations. We do not reproduce those tables here.

3.5 Boundary Conditions

We use the following two kinds of boundary conditions:

• fixed wall and

• moving shock.

The fixed wall boundary condition is characterized by the fact that no par-
ticle can leave or enter across this part of the boundary. Consequently the
velocity component orthogonal to the boundary vanishes. Enforcing v~n = 0
in equation (3.5) gives:

B =

 0
p~n
0

 . (3.13)

The moving shock boundary condition simulates the movement of a super-
sonic shock along the boundary. The shock is represented by a hyperplane
with normal ~n separating two states ul and ur, such that ~n points from the
region of ul to that of ur. One has to specify the normal ~n to the hyperplane,
the velocity ~ν = (~ν · ~n)~n at which the hyperplane shall move and the state
to the right of the hyperplane ur. The state ul to the left of the hyperplane
can then be computed in terms of the primitive variables (ρ,~v, p) using
equations (3.11). The outer state is either ul or ur depending on t and ~x,
and an approximate Riemann problem can be solved in the usual fashion.



Chapter 4

Collocation Schemes

In this chapter we sketch some of our early attempts at developing a colloca-
tion method for unstructured grids. These were based on the classical Lax-
Friedrichs scheme and isotropic regularization of the solution with a Laplace
term. We found these too dissipative and considered anisotropic regular-
ization instead. One such method that works quite well on Cartesian grids
uses a digital filtering strategy at local extrema. In the unstructured case
using a recovery procedure as a means of analyzing the local data and the
downhill transport mechanism immanent in numerical flux functions proved
a cheap and superior alternative. We furnish some numerical examples to
demonstrate the capabilities of such a scheme.

4.1 The Lax-Friedrichs Scheme

Cartesian Grids

The second order central finite difference scheme on a grid of constant mesh
size h in one space dimension

TS(u, t, ∆t)(xk) = u(t, xk) − ∆t

2h
[F (u(t, xk+1)) − F (u(t, xk−1))] (4.1)

is known to be unstable. This is easily seen by a von Neumann error analysis
considering a linear flux function.

The von Neumann error analysis considers the evolution of a spatially
periodic disturbation of the data for a linear equation, by looking at each
term of its Fourier expansion separately. If u has the spatial period L, then

89
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its Fourier expansion can at least formally be written as

u(j∆t, kh) =
∑
J∈Z

∑
K∈Z

αJ,Kξj
J exp

(
2πiKkh

L

)
where αJ,K are the Fourier coefficients and ξJ ∈ C is the expansion in time.
Suppressing the indices a single Fourier term now has the form

ξj exp(iαk) with α ∈ R. (4.2)

With the linear flux F (u) = au (a ∈ R fixed) we infer

ξj+1 exp(iαk) = ξj exp(iαk) − a∆t

2h

[
ξj exp(iα(k + 1)) − ξj exp(iα(k − 1))

]
and hence

ξ = 1 − a∆t

2h
[exp(iα) − exp(−iα)]

= 1 − ia∆t

h
sin(α)

|ξ|2 = 1 +

(
a∆t

h
sin(α)

)2

> 1.

The amplitude of each error mode therefore increases exponentially in time
which is precisely the alleged instability. The classic Lax-Friedrichs scheme
removes this instability by replacing the term u(t, xk) on the right hand side
of equation (4.1) with the average of u(t, xk+1) and u(t, xk−1):

TS(u, t, ∆t)(xk)

=
u(t, xk+1) + u(t, xk−1)

2
− ∆t

2h

[
F (u(t, xk+1)) − F (u(t, xk−1))

]
= u(t, xk) − ∆t

2h

[(
F (u(t, xk+1)) +

h

∆t
(u(t, xk) − u(t, xk+1))

)
−
(

F (u(t, xk−1)) +
h

∆t
(u(t, xk−1) − u(t, xk))

)]
. (4.3)

A von Neumann error analysis for the linearized version of equation (4.3)
yields

ξj+1 exp(iαk) = ξj exp(iα(k + 1)) + exp(iα(k − 1))

2

− a∆t

2h

[
ξj exp(iα(k + 1)) − ξj exp(iα(k − 1))

]
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and thus

ξ = cos(α) − ia∆t

h
sin(α)

|ξ|2 = cos2(α) +

[
a∆t

h
sin(α)

]2

= 1 +

[(
a∆t

h

)2

− 1

]
sin2(α)

which is less than one, if and only if

∆t <
h

|a| .

From this point of view the CFL time step constraint [CFL28] appears as
a condition ensuring exponential decay in time of spatially periodic error
modes. If we substitute h/∆t = LF /CFL in equation (4.3) and then drop
this occurence of CFL, we get back to the numerical Lax-Friedrichs flux
function:

HLF(u(t, xk), u(t, xk+1), +1) + HLF(u(t, xk), u(t, xk−1),−1)

≈ 1

2

(
F (u(t, xk)) + F (u(t, xk+1)) +

h

∆t
(u(t, xk) − u(t, xk+1))

)
− 1

2

(
F (u(t, xk−1)) + F (u(t, xk)) +

h

∆t
(u(t, xk−1) − u(t, xk))

)
This allows us to interprete the Lax-Friedrichs scheme as a finite volume
scheme with piecewise constant reconstruction on cells of length h centered
about each grid point xk. The Lax-Friedrichs scheme of equation (4.3) has a
local truncation error

L∆t(t, x) :=
1

∆t
[TS(u, t, ∆t)(x) − u(t + ∆t, x)]

that is linear, i.e. assuming smoothness and replacing u with its Taylor ex-
pansion we obtain for the Lax-Friedrichs scheme L∆t = O(∆t). However, for
the modified equation

∂

∂t
u + a

∂

∂x
u = b

∂2

∂x2
u (4.4a)

with

b :=
∆t

2

(
h2

(∆t)2
− a2

)
(4.4b)
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the local truncation error is quadratic and the CFL restriction ∆t < h/ |a|
implies that we are not simulating an ill-posed backward heat transport equa-
tion. In smooth regions of the flow we obtain from equations (4.4)

∂2

∂t2
u − a2 ∂2

∂x2
u = b

(
∂3

∂x2∂t
u − a

∂3

∂x3
u

)
and

L∆t(t, x) =

(
h2

2∆t
− a2∆t

2
− b

)
∂2

∂x2
u

+
b∆t

2

(
∂3

∂x2∂t
u − a

∂3

∂x3
u

)
+ O((∆t)2)

With the choice of b of (4.4b) we have indeed L∆t = O((∆t)2). We now
seek to stabilize a central scheme on smoothly, but otherwise arbitrarily
scattered collocation points by adding diffusion in the spirit of the classical
Lax-Friedrich scheme.

Unstructured Grids

We noted in [AFHS] that the amount of artificial diffusion in equations (4.4)
depends nonlinearly on the local scale h. The time step size is determined
essentially by the smallest h in the grid and leads to unacceptable high dif-
fusion in regions where the grid is coarse. Furthermore, if the CFL number
is halved, the diffusion per time step approximately doubles:

b =
∆t

2

(
1

CFL2 − 1

)
a2.

To render diffusion independent of the CFL number we use a discrete dissi-
pative model proportional to the chosen CFL number (and drop the −1):

CFL
∆t

2

h2

(∆t)2
.

We still need to define a “typical” scale h for each stencil. To this end we
introduce the local scale

hSΣ
:=

diam ΣS
2

and the global scale

hG := min
Σ∈G

hΣ.
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The dissipative model can now be stated as

b̃ := CFL
∆t

2

hSΣ
hG

(∆t)2
.

In our calculations we also replaced the division by two with a division by
four. Thus the modified diffusive equation we simulated was

∂

∂t
u + div

(
F ◦ u − CFL

∆t

4

hSΣ
hG

(∆t)2
∇u

)
= 0.

The evaluation points were chosen to be all collocation points in a central
stencil and two evaluation directions per evaluation point were used, i.e. we
incorporated the full vector valued flux as obtained by computing the flux
function for the collocation point value of u, no reconstruction procedure was
applied.

Figure 4.1: Solutions to the Burgers equation generated with the
artificial diffusion model on the unit square [0, 1]2 ⊂ R2. Left ini-
tial condition, middle 2013 points and right 7889 points. The simu-
lated equation is in either case F (u) = u2(1, 1)t and the final time is
T = 0.4. The initial condition consists in a Gauss bell shaped func-
tion on a circle of radius 0.25 centered about (0.3, 0.3) with height 1.
Riemann problems with outer state u = 0 are solved on the bound-
ary. The upper parts of the bell are advected faster than the lower
parts and start to overtake at some point. At this stage a disconti-
nuity is formed. On finer grids the dissipative effect decreases, but
the artificial diffusion necessary for stabilizing the scheme makes the
solutions too dissipative.

As an alternative we investigated a filtering strategy in the spirit of
[ELS89]. Since numerical instability manifests itself in the generation of
noise, i.e. extrema, we checked for local extrema after each time step and ap-
plied a local smoothing procedure. If a local extremum had been generated
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at a data location Σ, we computed the average of the data functional values
on a stencil consisting of Σ and its neighbours

avgS u :=
1

cardS
∑
Θ∈S

δΣu

and then scaled the data functional values towards their average by replacing
the stored value of δΘu with

αδΘu + (1 − α) avgS u

for each Θ ∈ S. Choosing α ≈ 0.9 proved sufficient to stabilize the scheme,
but gave a rather noisy solution, smaller values would diminish the noise,
but increase diffusive smearing.

4.2 Upwinding Schemes

Anisotropic data dependent diffusion can also very efficiently be incorpo-
rated into the scheme via numerical flux functions. It proved superior to
our attempts of isotropic regularization without explicit reconstruction step.
It should be noted that anisotropic regularization necessarily involves some
kind of data analysis and that linear or higher order reconstruction can be
regarded as a means of analyzing the local data. Let us illustrate this idea
very loosely: The integral formulation of a conservation law with a diffusive
term reads

d

dt

∫
Σ

u dV = −
∫

∂Σ

(F ◦ u − b∇u)~n do. (4.5)

If we replace ∇u~n with a suitable difference quotient

∇u~n ≈ u(~xΣ) − u(~x′
Σ)

‖~xΣ − ~x′
Σ‖

where ~xΣ and ~x′
Σ represent two points inside and outside the cell Σ respec-

tively on a line orthogonal to ∂Σ with

‖~xΣ − ~x′
Σ‖ ≈ h,

we can interprete a numerical flux function H as an approximation to the
diffusive flux of equation (4.5) with b suitably chosen. The numerical flux
(ui and uo are again the inner and outer limit at the cell boundary)

H(ui, uo, ~n) =
F (ui) + F (uo)

2
~n + A

ui − uo

2
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with a suitable upwinding term A ∈ [0, LF ] approximates the integrand in
(4.5), if we identify (F ◦ u)~n with (F (ui) + F (uo))~n/2 and observe

A
ui − uo

2
= A

‖~xΣ − ~x′
Σ‖

2

ui − uo

u(~xΣ) − u(~x′
Σ)

u(~xΣ) − u(~x′
Σ)

‖~xΣ − ~x′
Σ‖

≈ A
‖~xΣ − ~x′

Σ‖
2

ui − uo

u(~xΣ) − u(~x′
Σ)︸ ︷︷ ︸

=:b

∇u~n.

The reconstruction process of degree q will generally ensure that

ui − uo

u(~xΣ) − u(~x′
Σ)

=

{
1 + O(h) > 0 at discontinuities

O(hq) in smooth regions of the flow.

The artificial diffusion contributed by approximating the integrand in equa-
tion (4.5) with a numerical flux function therefore decreases very rapidly in
smooth regions of the flow. Near discontinuities it constitutes the required
downhill transport necessary to ensure proper physical transport. The argu-
mentation is of course flawed, if u(~xΣ) = u(~x′

Σ).
The results of the numerical flux computation are used as input data for

approximating the divergence functional. In this context we use only one
evaluation direction per evaluation point.

Figure 4.2: Solutions to the Burgers equation generated with the
upwinding method. Middle 2013 points and right 7889 points. The
setup is identical to figure 4.1.

Choice of Data Locations

Because of the diffusive effect immanent in the solution to local Riemann
problems, too, positive divergence formulae have to be used: the numerical
fluxes directed away from a data location should have a positive weight in the
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formula for approximating the flux divergence at that point. Otherwise one
would locally simulate the behaviour of a “backward heat transport equation”
and suffer numerical instability. We have still some freedom in the exact
choice of the collocation functionals which we now use to obtain such positive
formulae:

As collocation functionals we choose the average of the pointwise
collocation at each evaluation point in the divergence stencil.

The positivity of a weight w is checked in the following way: Letting ~x denote
an evaluation point in the divergence stencil, ~n the evaluation direction for
this point and ~x0 the average of the evaluation points we demand

~n · (~x − ~x0) sign(w) > 0. (4.6)

Up to linear reconstruction this choice of the collocation functionals is equiv-
alent to collocation about the barycentre of the divergence stencil.

4.3 Numerical Experiments

Finally we present numerical results for the Euler equations obtained with
the upwind collocation method.

2D Shock Tube for the Euler Equations

In this section we present results for the two dimensional shock tube problem
with parameters suggested by Lax and Sod. The shock tube has length one
and initially a diaphragm at x = 0.5 separating gas in different states to its
left and right. At time t0 = 0 the diaphragm is removed and the gas starts
to mix.

Lax (T = 0.1445) Sod (T = 0.18)
left right left right

ρ 0.445 0.5 1 0.125
~v 0.698~e0 0 0 0
p 3.528 0.571 1 0.1

Table 4.1: Initial configuration at t0 = 0 for Lax and Sod shock tube
problems.
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Figure 4.3: Solutions to the shock tube problem plotted along the
x-axis. Left part Lax configuration, right part Sod configuration.
From top to bottom: density ρ, density of momentum ρ~v · ~e0 and
density of energy ρE. The average time step for the Lax problem was
∆t = 0.0013 and for the Sod problem ∆t = 0.003 resulting from a
CFL number of 0.7 in both cases. The solid line indicates the exact
solution.
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The computational grid we used covered the region [0, 1]× [−0.05, 0.05] ⊂
R

2. It consisted of 1309 points which corresponds to roughly 100 points
spread along the x-axis. We show the results in figure 4.3. The jump of the
density for the contact disontinuity in the Lax case is smeared over some
ten cells, in the Sod case over six cells. This is comparable to the results
presented by Botta [Bot95] for the van Leer limiter.

On the top and bottom part of the grids margin we applied the fixed
wall boundary condition and supplied the constant states from the initial
condition on the left and right part of the boundary. No particular measures
were taken to keep the flow inside the tube one dimensional. We show the
iso-lines of the density in figures 4.4 and 4.5.

Figure 4.4: Iso-lines of the density for the Lax shock tube problem.

Figure 4.5: Iso-lines of the density for the Sod shock tube problem.

Double Mach Reflection

The double Mach reflection of a strong shock can be realized experimentally
by driving a shock down a tube that contains a wedge. Our configuration
follows the one presented in [WC84]: a fast planar shock making an angle of
60◦ with the x-axis meets a fixed wall. This setup is commonly regarded as
a challenging test case.

The computational domain we used was trapezoidal with corners at (0, 0),
(3, 0), (3, 3/4) and (

√
3/4, 3/4). The fixed wall lies at the bottom of the com-

putational domain and stretches from x = 1/6 to the right. The undisturbed
resting gas to the right of the shock has density ρ = 1.4 and pressure p = 1.
Its speed of sound therefore is a = 1. The shock moves at Mach 10, its veloc-
ity vector is (5

√
3,−5). Initially (t = 0) the shock front touches the leftmost

point of the wall.
All parts of the domains boundary that are not formed by the wall are

treated with the moving shock boundary condition. Based on the prescribed
values for the shocks propagation speed and the state of the gas ahead of the
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shock the state of the gas behind the shock can be computed using the jump
relations for the Euler equations. On the boundary the appropriate one of
the two states is used as outer state and a Riemann problem can be solved
in the usual way. In figure 4.6 we show the iso-lines of the computed solution
for three subsequently refined grids.

Figure 4.6: Iso-lines of density for the double Mach reflection at T =
0.2. Top 25831 points, middle 102629 points and bottom 409037
points. The bottom line of each picture indicates the position of the
wall.
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Appendix A

Measure of an equilateral
d-dimensional simplex

Lemma A.1. The Jordan measure (volume) of an equilateral simplex Σ of
diameter a in d dimensions is

|Σ| =
1

d!
√

d + 1

(
a√
2

)d

.

Proof. The simplex Fd(l) :=
{

(x1, . . . , xd) ∈ Rd : xk > 0 and
∑d

k=1 xk 6 l
}

has volume

|Fd(l)| =
ld

d!

as is easily seen by induction: For d = 1 one has |F1(l)| = l and for d > 2
|Fd(l)| = |Fd−1(l)| l/d by the “base times height divided by d” rule. All edges
of the sub-simplex Σd−1(l) of Fd(l) formed by all vertices save ~v = 0 have
length a = l

√
2 and this is also the diameter of Σd−1(l). The height of Fd(l)

on this sub simplex is formed by the vector (1, . . . , 1)l/d ∈ Rd which has
length l/

√
d. Now

|Σd−1(l)| =
d |Fd(l)|
l/
√

d
=

ld−1

(d − 1)!
√

d

and

|Σd(l)| =
ld

d!
√

d + 1
=

ad

d!
√

2d(d + 1)
.
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Lemma A.2. For the simplex Σ of the preceding lemma we have

|Σ|
|∂Σ| diam(Σ)

=
1

d(d + 1)

√
d

2(d + 1)
.

Proof. Σ = Σd(l) has d + 1 faces Σd−1(l) and therefore

|Σ|
|∂Σ| diam(Σ)

=

1
d!
√

d+1

(
a√
2

)d

d+1
(d−1)!

√
d

(
a√
2

)d−1

a
=

1

d(d + 1)

√
d

2(d + 1)
.



Appendix B

List of Symbols

A closure of the set A
co A closed convex hull of A
|x| absolute value of x ∈ R

|X| absolute value of the diagonalizable matrix X ∈ Rn×n

|Σ| Jordan measure (volume) of Σ ⊂ Rd

(A → B), BA mappings from A to B
‖·‖ Euclidean norm in Rd

‖·‖G Euclidean G-norm in Rn

‖·‖∞ maximum norm in Rn

‖·‖∞ supremum norm in BL∞

‖·‖∞,Ω supremum norm in BL∞(Ω → R)

‖·‖∞ supremum norm in Π
‖·‖∞,Ω supremum norm in Π(Ω → R)

〈·; ·〉S Riemann form in the tangent space of S

⊗ tensor product in Rd, ~a ⊗~b = ~a~bt

∇̃· numerical divergence operator

∇̃ numerical gradient operator
∇u gradient with respect to conserved quantities
a speed of sound
B basis of polynomial functions
BL∞ space of bounded Lebesgue measurable functions

with the supremum norm
barycentre barycentre of a set in R

d

CFL CFL number
Cq space of q times continuously differentiable functions
∆ Laplace operator
∆t time step size
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δ linear data functional
δΣ linear functional for the data location Σ
δΣ~x barycentre of the data location Σ
δ⊥ kernel of δ
Div divergence operator for the space and time variables
d space dimension
diag(· · · ) diagonal matrix of the arguments
diam diameter of a set
div divergence operator for the space variables
do measure for integration over a surface
dV measure for integration over a volume
ε small positive number, typically 10−15

E specific energy
ek intermediate state
~e0, . . . , ~ed−1 orthonormal basis of R

d, frequently ~e0 = ~n
ext extremum, either maximum or minimum
Φ linear feature functional
φ vector of feature weights
φ test function
F set of linear functionals
F⊥ quotient space with respect to kerF
F (·) flux function
F (·, ·, ·) Riemann solver
Γ path in the state space S
G computational grid
G Gram matrix (symmetric and positive definite)
H approximate Riemann solver aka. numerical flux function
h local scale
H specific enthalpy
I identity matrix
id identity mapping
int open interior of a set
J Jacobi matrix
κ adiabatic constant
κ̃ adiabatic constant minus one
ker kernel of linear functionals
kerF intersection of kernels of the functionals in F
Λ vector of datafunctionals for a scheme
λ eigenvalue
Lp space of Lebesgue measurable functions

with finite p-norm
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L∞ space of essentially bounded Lebesgue measurable
functions with the essential supremum norm

L• Lipschitz constant of a function
lt left eigenvector in Rs

~n unit vector in Rd

~n do measure for integration over a surface
with respect to the outer normal

nk sonic state
Ω a compact set in R

d with int Ω = Ω
Ω union of data locations in a grid
ωΣ oscillation indicator for the data location Σ
O asymptotic order: f = O(g) means that

lim supx→x0
|f(x)/g(x)| is finite

Π polynomial function space
Πq polynomial function space up to degree q
π permutation of the numbers {0, . . . , d}
π polynomial taking real values
~π vector valued polynomial
Ψ Riemann invariant
P linear projection
p pressure
ρ density of gas
Q orthogonal matrix, Q = Q−t

Q numerical integration
R reconstruction operator (typically nonlinear)
r right eigenvector in Rs

Σ data location
ΣS union of data locations in a stencil
σλ arrangement of eigenvalues, +1 for increasing order,

−1 for decreasing order
S stencil
SΣ stencil without the data location Σ
S state space
s state space dimension
sign +1 for nonnegative numbers, −1 for negative numbers
sk intermediate state
supp closed hull of the set where a function does not vanish
T~x0u Taylor polynomial at ~x0 of u (typically of degree q)
T final time in numerical experiments
TS numerical time stepping operator
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t transposition, formal swapping of rows and columns
u conserved quantities, components are referred to

with superscripts
u0 initial state density distribution
Θ data location
~v velocity vector for gas flow
v~n salar product ~v · ~n
Z thermodynamic entropy
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verdanke ich viele nützliche Anregungen (oft spät abends bei gemeinsamen
Arbeitssitzungen in etlichen Pizzerien) und eine sehr erfrischende Zeit.

Die von mir verwendeten Gitter sind mit Programmen von Oliver Friedrich
erzeugt, und bei der Darstellung der Ergebnisse war sein Programm

”
vis2d“

von unschätzbarem Wert.

Diese Arbeit wurde in den verschiedensten Stadien ihrer Entstehung von
Daniel Hempel und Oliver Friedrich gelesen und kommentiert. Ihre Kritik
hat viel zur Lesbarkeit des Textes beigetragen. Für sämtliche verbleibenden
Mängel bin ich selbstverständlich alleine verantwortlich.

Freundlicherweise hat Professor Dr. Rainer Ansorge das Korreferat für meine
Dissertation übernommen.

Meiner Mutter Barbara Ahrend und Frau Christine Färber möchte ich für
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Abstract

We present a collocation method which can easily be generalized to higher
dimensions for solving hyperbolic conservation laws on unstructured grids in
two space dimensions. In particular, our method does not require a tessala-
tion of the computational domain, but only a cloud of smoothly distributed
points and neighbourhood relations between points.

Point-based schemes are normally implemented as finite difference schemes
on Cartesian grids, and the approximate solution given by point values is
generally regularized in a way similar to the classical Lax-Friedrichs scheme.
Those grids are not very well-suited for modeling complex geometries.

For the collocation scheme presented in this thesis numerical flux functions
can be employed for the approximate solution of Riemann problems in suit-
ably chosen directions. The weights for computing the divergence for the
collocation functionals can be obtained efficiently as solutions of dual prob-
lems during the preprocessing stage. Choosing the collocation functionals
as convex combinations of the point evaluations also used for divergence ap-
proximation proves crucial to stabilizing the scheme.

Combined with WENO reconstruction known from finite volume methods,
it is possible to obtain numerical solutions and computing times comparable
to finite volume methods. We demonstrate uniform stability of this kind of
reconstruction under similarity transformations of the computational domain
and classify our method within a general theory comprising also the finite
volume methods.

The thesis closes with numerical test cases. These demonstrate that the
presented method is stable and capable of resolving discontinuities with high
accuracy.





Zusammenfassung

In dieser Arbeit wird ein Kollokationsverfahren zur Lösung hyperbolischer
Erhaltungsgleichungen auf unstrukturierten Gittern in zwei Raumdimensio-
nen entwickelt, welches sich leicht auf höhere Dimensionen übertragen lässt.
Insbesondere setzt unsere Methode keine Tessalation des Rechengebietes vor-
aus, sondern verwendet lediglich eine gleichmäßig verteilte Punktwolke und
Nachbarschaftsrelationen zwischen Punkten.

Punktbasierte Verfahren werden typischerweise als Finite-Differenzen-Ver-
fahren auf kartesischen Gittern implementiert, wobei in der Regel eine an das
klassische Lax-Friedrichs-Verfahren angelehnte Regularisierung der punkt-
weise gegebenen Näherungslösung vorgenommen wird. Derartige Gitter eig-
nen sich nur bedingt zur Modellierung komplexer Geometrien.

Für das in dieser Arbeit vorgestellte Kollokationsverfahren konnten numeri-
sche Flussfunktionen zur näherungsweisen Lösung von Riemann-Problemen
in geeignet gewählten Raumrichtungen eingesetzt werden. Die zur Berech-
nung der Divergenzen für die einzelnen Kollokationsfunktionale erforderlichen
Gewichte lassen sich als Lösungen dualer Probleme effizient in der Vorberei-
tungsphase des Programmes bestimmen. Als entscheidend zur Stabilisierung
des Verfahrens erweist sich die Wahl der Kollokationsfunktionale als Konvex-
kombination der auch für die Divergenzapproximation verwendeten Punkt-
auswertungen.

Zusammen mit einer aus dem Bereich der Finite-Volumen-Verfahren be-
kannten WENO-Rekonstruktion lassen sich in zweidimensionalen Testf̈allen
Lösungen und Rechenzeiten, die denjenigen etablierter Finite-Volumen-Me-
thoden vergleichbar sind, erreichen. Wir zeigen, dass diese Art der Re-
konstruktion sowohl für Kollokations- als auch für Zellmittelungsfunktiona-
le gleichmäßig stabil unter Ähnlichkeitstransformationen des Rechengebietes
ist und ordnen unser Verfahren in eine allgemeine Theorie, welche auch die
Finite-Volumen-Verfahren umfasst, ein.

Den Abschluss der Arbeit bilden numerische Testfälle. Diese demonstrieren,
dass die vorgestellte Methode stabil und geeignet ist, Unstetigkeiten mit
hoher Genauigkeit aufzulösen.
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