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Kurzfassung

Das Phänomen der Supraleitung, die Entdeckung der Hochtemperatursupraleitung in den
Kupraten und die Eigenschaften dieser Materialien werden in dem einführenden Kapitel
beschrieben. Dieses beinhaltet auch eine Diskussion der Pseudolücke, welche bis heute
Rätsel aufgibt, ebenso wie die hohen Übergangstemperaturen. Es wird ein Überblick über
mögliche Anwendungen der Hochtemperatursupraleitung gegeben, bevor die Theorien von
Bardeen, Cooper, Schrieffer (BCS) und von Ginzburg und Landau in aller Kürze vorgestellt
werden. Der letzte Abschnitt enthält Auszüge aus der inzwischen fast unübersehbaren
Literatur zu diesem Thema, wobei die Bedeutung von Störstellen für die Eigenschaften von
Hochtemperatursupraleitern im Mittelpunkt steht.

Im zweiten Kapitel werden die mathematischen Hilfsmittel und der theoretische Hintergrund
für die Beschreibung von Vielteilchensystemen entwickelt. Verschiedene Green’s Funktionen
werden eingeführt, welche dann zur Beschreibung der Streuung von Quasiteilchen an Defek-
ten beliebiger Stärke benutzt werden. Sie werden auch zur Berechnung der Wechselstrom-
leitfähigkeit, für welche mit Hilfe der linearen Antworttheorie ein mikroskopischer Ausdruck
hergeleitet wird, benötigt. Die Konvergenzprobleme, denen man bei der Berechnung der
Leitfähigkeit begegnet, werden kurz erörtert. Detaillierte Berechnungen der Leitfähigkeit
im Normalzustand werden im dritten Kapitel und im Anhang dargestellt.

Das dritte Kapitel beginnt mit einer ausführlichen Darstellung des tight binding Modells
für die Energiedispersion, da dieses Modell die elektronischen Eigenschaften der Hochtem-
peratursupraleiter anscheinend sehr viel zutreffender beschreibt als das Modell nahezu
freier Electronen. Die Gestalt der zweidimensionalen Fermifläche wird als Funktion der
Bandfüllung und des Hüpfmatrixelements B zwischen übernächsten Nachbarn berechnet
und dargestellt. B spielt eine wichtige Rolle bei der Ausbildung sogenannter hot-spots.
Die Quasiteilchenzustandsdichte und deren Hilbertransformierte F (ω) werden durch voll-
ständige elliptische Integrale Formalismus gelöst . Diese Ergebnisse werden benutzt, um die
an Störstellen gebundenen Zustände zu erhalten.

Auf der Basis von hot spots und Pseudolücke wird ein einfaches Modell für die Supraleitung
in den Kupraten entwickelt, welches insbesondere für die elektrondotierten Materialien rel-
evant sein sollte, weil, abhängig von der Dotierung, dort Elektronen und Löcher koexistieren
könnten.
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Abstract

The phenomenon of superconductivity, the discovery of high temperature superconductivity
in the Cuprates and the properties of these materials is described in the introductory chapter.
It also includes a discussion of the pseudogap, which has remained a mystery as has the
high transition temperature. Possible applications of high temperature superconductivity are
reviewed before the theories by Bardeen, Cooper, and Schrieffer (BCS) and Ginzburg and
Landau are briefly sketched. The last section gives excerpts of the by now vast literature on
this subject, focussing on the role impurities play in this context.

The second chapter develops the mathematical tools and the theoretical background for the
description of many-body systems. Various Green’s functions are introduced which are then
used to describe scattering of quasiparticles off defects of arbitrary strength. They are also
required to calculate the a.c. conductivity, for which an expression is derived using linear
response theory. The convergence problems one encounters when actually calculating the
conductivity are briefly discussed. Detailed calculations for the normal state are presented in
the third chapter and in the appendix.

The third Chapter begins with a detailed presentation of the tight binding model for the
energy dispersion because this model appears to give a more accurate description of the
electronic properties of high temperature superconductors than the nearly free electron
model. The shape of the two-dimensional Fermi surface is calculated and displayed as
function of band filling and the next-nearest neighbor hopping integral B, assuming a rigid
band. B plays an important role in the formation of so-called hot spots. The quasiparticle
density of states and its Hilbert transform F (ω) are solved by means of complete elliptic
integrals formalism. These results are used to obtain impurity bound states.

A simple model for the superconductivity in the cuprate materials is developed on the basis
of hot spots and the pseudogap, particularly relevant for the electron doped materials, where
electrons and holes might coexist, depending on the degree of doping.
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Chapter 1
Introduction

Superconductivity, see Fig.(1.1), is a fascinating and challenging field of physics. Scientists
and engineers throughout the world have been striving to develop an understanding of this
remarkable phenomenon for many years. For nearly 75 years superconductivity has been a
relatively obscure subject, see Fig.(1.4).

Figure 1.1: Characteristic lengths in superconductors,taken from ref.[1]

Nowadays however, superconductivity is being applied to many diverse areas such
as: medicine, theoretical and experimental science, the military, transportation, power
production, electronics, as well as many other areas [2; 3].

1



2 INTRODUCTION 1

1.1 Historical Background

Major advances in low-temperature refrigeration were made during the late 19th century.
Superconductivity was first discovered in 1911 by the Dutch physicist, Heike Kammerlingh
Onnes ∗. He dedicated his scientific career to exploring extremely cold refrigeration. On 1908,
he successfully liquified helium by cooling it to (4K).

Onnes produced only a few milliliters of liquid helium that time, but this was to be the
new beginnings of his explorations in temperature regions previously unreachable. Liquid
helium enabled him to cool other materials closer to absolute zero (0 K).

In 1911, Onnes began to investigate the electrical properties of metals in extremely cold
temperatures. It had been known for many years that the resistance of metals fell when
cooled below room temperature, but it was not known what limiting value the resistance
would approach, if the temperature were reduced to very close to 0K. Some scientists,
such as William Kelvin, believed that electrons flowing through a conductor would come to
a complete halt as the temperature approached absolute zero. Other scientists, including
Onnes, thought that a cold wire’s resistance would dissipate. This suggested that there would
be a steady decrease in electrical resistance, allowing for better conduction of electricity. At
some very low temperature point, scientists expected that there would be a leveling off as the
resistance reached some ill-defined minimum value allowing the current to flow with little
or no resistance. Onnes passed a current through a very pure mercury wire and measured
its resistance as he steadily lowered the temperature. Much to his surprise there was no
leveling off of resistance, let alone the stopping of electrons as suggested by Kelvin. At
4.2 K the resistance suddenly vanished. Current was flowing through the mercury wire
and nothing was stopping it, the resistance was zero. Fig. (1.2) shows resistance versus
temperature in mercury wire as measured by Onnes . According to Onnes, "Mercury has
passed into a new state, which on account of its extraordinary electrical properties may be
called the "superconductive state". The experiment left no doubt about the disappearance of
the resistance of a mercury wire. Onnes called this newly discovered state, Superconductivity.
Onnes recognized the importance of his discovery to the scientific community as well as its
commercial potential. An electrical conductor with no resistance could carry current any
distance with no losses. In one of Onnes experiments he started a current flowing through a
loop of lead wire cooled to 4 K. A year later the current was still flowing without significant
current loss. Onnes found that the superconductor exhibited what he called persistent
currents, electric currents that continued to flow without an electric potential driving them.
Onnes was anounced the Nobel Prize in 1913, for his discovery of superconductivity.

By 1933 Walther Meissner and R. Ochsenfeld discovered that superconductors are more
than a perfect conductor of electricity, they also have an interesting magnetic property of
excluding a magnetic field. A superconductor will not allow a magnetic field to penetrate its
interior. It causes currents to flow that generate a magnetic field inside the superconductor
that just balances the field that would have otherwise penetrated the material.

This effect, called the Meissner Effect, causes a phenomenon that is a very popular
demonstration of superconductivity. Fig.(1.3) is a sketch of magnetic field lines from a magnet

∗Original paper: The Discovery of Superconductivity, Comm. Phys. Lab. Univ. Leiden, volume 12, Number
120,1911



1 WHAT IS A SUPERCONDUCTOR? 3

Figure 1.2: Data from Onnes’ pioneering
works. The plot shows the electric resistance
of the mercury vs. temperature, taken from
ref.[4]

Figure 1.3: The phenomena of diamagnetism
in SC, taken from ref.[3; 5]

levitating above a superconductor. The Meissner Effect will occur only if the magnetic field
is relatively small. If the magnetic field becomes too great, it penetrates the interior of the
metal and the metal loses its superconductivity.

In 1957 scientists began to unlock the mysteries of superconductors. Three American
physicists at the University of Illinois, John Bardeen, Leon Cooper, and Robert Schrieffer,
developed a model that has since stood as a good mental picture of why superconductors
behave as they do. The model is expressed in terms of advanced ideas of the science
of quantum mechanics, but the main idea of the model suggests that electrons in a
superconductor condense into a quantum ground state and travel together collectively and
coherently. In 1972, Bardeen, Cooper, and Schrieffer received the Nobel Prize in Physics for
their theory of superconductivity, which is now known as the BCS theory, after the initials of
their last names [2].

1.2 What is a superconductor?

Superconducting materials have two fundamental properties:

• No dc-resistivity (ρ = 0 for all T < Tc): Zero resistivity, i.e., infinite conductivity, is
observed in a superconductor at all temperatures below the critical temperature Tc , as
depicted in Fig.(1.5). However, if the passing current is higher than the critical current
jc , superconductivity disappears.Why is the resistivity of a superconductor zero? If a
superconducting metal like Al or Hg is cooled below the critical temperature Tc , the
gas of repulsive individual electrons that characterizes the normal state transform itself
into a different type of fluid, a quantum fluid of highly correlated pairs of electrons. A
conduction electron of a given momentum and spin gets weakly coupled with another
electron of the opposite momentum and spin. These pairs are called Cooper pairs. The



4 INTRODUCTION 1

Figure 1.4: The following figure summarizes the history of superconductivity in terms of the discovery
or synthesis of materials of increasingly higher transition temperatures, taken from ref. [6]

coupling energy is provided by lattice elastic waves, called phonons. The behavior of such
a fluid of correlated Cooper pairs is different from the normal electron gas. They all move
in a single coherent motion. A local perturbation, like an impurity, which in the normal
state would scatter conduction electrons (and cause resistivity), cannot do so in the
superconducting state without immediately affecting the Cooper pairs that participate
in the collective superconducting state. Once this collective, highly coordinated, state of
coherent super-electrons (Cooper pairs) is set into motion (like the supercurrent induced
around the loop), its flow is without any dissipation. There is no scattering of individual
pairs of the coherent fluid, and therefore no resistivity.

• No magnetic induction (B = 0 inside the superconductor ): In magnetic
fields lower the critical field Bc the magnetic inductance becomes zero inside the
superconductor when it is cooled below Tc. The magnetic flux is expelled from the
interior of the superconductor ( see Fig.(1.6)). This effect is called the Meissner-
Ochsenfeld effect after its discoverers. To test whatever a material is superconducting
both properties ρ = 0 and B = 0 must be present simultaneously [7].

1.2.1 Normal metal vs. superconductor

In this section a discussion is presented about the origin of electrical resistivity in the normal
metal and contrast it with the absence of resistivity in the superconductor.
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Figure 1.5: Temperature dependence of the resistivity of a thin film of the high-Tc superconductor
YBa2Cu3O7−δ.

1.2.1.1 Description of the normal state

A normal metal consists of a regular crystalline lattice of positively charged ions and a
gas of free, non-interacting conduction electrons that fill the space between the ions. If
there is typically one electron per ion, this means 1023 electrons/cm3. As the electrons are
of opposite charge as the ions, the total charge is balanced and at equilibrium, the model
metal is electrically neutral. If we apply an electric field as an external perturbation to
the gas of free electrons within the metal, the external force will accelerate the electrons
and create a current flow of free electrons. As the ions are arranged in perfectly regular
array, they do not scatter conduction electrons at T = 0 †. The scattering of electrons
at T = 0 is actually caused by deviations from the ideal periodic potential of the lattice,
i.e., by impurities, imperfections in periodicity like dislocations. Since every real metal
contains some imperfections and impurities, one observes some finite resistivity at very low
temperatures. This resistivity, extrapolated to T = 0, is called residual resistivity, ρi. As
we increase the temperature, the electrons also get scattered by thermal vibrations of the
lattice (called phonons) so the resistivity rises with temperature. This contribution is called
phonon resistivity, ρph. Therefore the temperature dependance of resistivity of a good metal
can be described as : ρ(T ) = ρi + ρph. This is empirical Matthiessens rule and provides a basis
for understanding the resistivity of metal at low temperature. In order to derive a simple
expression for the residual resistivity of the metal, first some characteristic quantities of the
normal state should be considered. At T = 0 the maximum kinetic energy of an electron inside
the metal is called Fermi energy (EF ). It is related to the number of carriers per unit volume,

†If the crystal was perfect, at T = 0, the electron waves would propagate without scattering and there would
be no resistivity, i.e., conductivity of an ideal crystal at T = 0 should be infinite.
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Figure 1.6: Expulsion of a weak external magnetic field from the interior of the superconducting
material.

n, by the simple relation: EF = ~
2m(2π2n) , where ~ is the Planck constant and m is the mass

of the electron. The Fermi energy of a typical metal is of the order of electron volts (see Table
(1.1)). Conduction electrons of maximum energy, EF , propagate with the Fermi velocity vF

Material n vF l ρ(100K)
[1023cm−3] [106ms−1] [nm] [µΩcm]

Al 180 2 130 0.3
Nb 56 1.4 29 3
La1.85Sr0.15CuO4 5 0.1 ∼ 5 ∼ 100
Y Ba2Cu3O7−δ 7 0.1 ∼ 10 ∼ 60

Table 1.1: Some characteristic quantities of the normal state of classical and high-Tc superconductor
materials.

related to the Fermi momentum PF by PF = mvF . We have EF = 1
2PF vF . We also define the

Fermi wave vector, kF ; as in quantum mechanics a wave is always associated with a particle
by de-Broglie relation PF = ~kF . The conduction electrons that propagate through the crystal
with a characteristic Fermi velocity vF are scattered by impurities or lattice imperfections.
This gives rise to resistivity. Between two scattering events an electron covers on average a
characteristic distance le, called the electron mean free path. The resistivity ρi of a metal,
according to the Drude model, is given by

ρi =
mvF

ne2le
(1.2.1)

where e and m represent the charge and mass of the electron. In isotropic metals, the
conductivity is equal to the inverse of the resistivity; both quantities are tensors in the
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anisotropic case. Eq.(1.2.1) shows that in the normal state of a given metal the resistivity
is inversely proportional to the electron mean free path. The shorter the average distance
between the scattering events the higher is the resistivity. The introduction of impurities into
a metal obviously reduces le and increases ρi. This can be clearly seen in Table (1.1), in which
typical values for ρ and le for several superconducting materials are presented.

1.2.1.2 The superconducting state

The electrical dc-resistivity in superconductors is zero for temperatures below the critical
temperature Tc . So, one can apply a dc electrical current (supercurrent) without energy
dissipation. Let us see what happens in a supercondcting state and what are its char-
acteristic properties compared with the normal state taken Al as an example for classical
superconductor material. In the normal state above the critical temperature (Tc = 1.1K)
Al is a good conductor and behaves just like an ideal metal or like copper which exhibits no
superconducting behavior down to the lowest temperature. Its conduction electrons behave
like a gas of nearly free electrons that are scattered by lattice vibrations, lattice imperfections,
etc. which contributes to the resistivity. However, when Al is cooled below Tc , its dc-resistance
abruptly vanishes, the resistivity is zero. One natural question is, what happens to the
scattering of conduction electrons which contributed to the resistivity in the normal state?
Why does it disappear? A satisfactory explanation to these questions can be given only
within the rather involved quantum mechanical description of the microscopic BCS-theory,
which shall be briefly discussed in the present chapter. When Al is cooled below the critical
temperature Tc , the gas of the repulsive individual electrons that characterizes the normal
state transforms itself into a different type of fluid. A quantum fluid of highly correlated pairs
of electrons (in the reciprocal, momentum space, not in a real space). Below Tc a conduction
electron of a given momentum and spin gets weakly coupled with another electron of exactly
the opposite momentum and spin. These pairs are called Cooper pairs. The glue is provided
by the elastic waves of the lattice, called phonons. One can visualize this attraction by a
real-space picture. As the lattice consists of positive ions, the moving electron creates a
lattice distortion. Due to the heavy mass of lattice ions, this positively charged distortion
relaxes slowly and is therefore able to attract another electron. The distance between the two
electrons of the Cooper pair, called the coherence length, ξ, is large in classical superconductor
materials. It has a value ξ = 1600 nm in pure Al, = 38 nm in pure Nb, for example. The
coherence length ξ is very small in high-Tc superconductors, it has a value of ξab ≈ 16 nm, and
ξc ≈ 0.3 nm in La1.85Sr0.15CuO4 and YBa2Cu3O7−δ. So while the partners in the Cooper pair
are far apart, the other nearest electrons (belonging to other Cooper pairs of the collective
state) are only a few nanometer away. The behavior of such a fluid of correlated Cooper pairs
is different from the normal electron gas. The electrons which form the pair have opposite
momenta (and opposite spins), so the net momentum of the pair is zero.

1.2.1.3 Superconducting state and wave function

The Cooper pair has twice the charge of a free electron, q = 2e. The electrons are fermions
and obey the Fermi-Dirac statistics and the Pauli exclusion principle which allows only one
electron in a given quantum state. Cooper pairs are quasi-bosons, obey the Bose-Einstein
statistics and are allowed to be all in the same state. In contrast to the normal metal in which
each electron has its own wave function, in a superconductor, all Cooper pairs are described
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by the single wavefunction
ψ(r) =

√
ns(r)eiϕ(r) (1.2.2)

where ns(r) can be considered as the number of superconducting electrons (Cooper pairs),
ψ(r)ψ∗(r) = ns(r) and ϕ(r) is a spatially varying phase. In optics, a beam of photons, being
all in the same state, i.e., traveling with the same velocity, can be described by a plane wave,
exp(ikr − iwt) and the gradient of the phase is related to the momentum of the particle by
the de-Broglie relation, P = ~k, or v = ~

m∇ϕ. As all Cooper pairs are in the same state, we
have an analogous situation and the gradient of the phase becomes a macroscopic quantity, a
quantity proportional to the current flowing in the superconductor [7].

1.3 High-temperature superconductor

The term high-temperature superconductor was initially employed to designate the new
family of cuprate-perovskite ceramic materials (Most prominent materials in the high-Tc

range are the so-called cuprates, i.e., YBCO (Yttrium-Barium-Copper-Oxide) and related
substances [8]) discovered by J.G. Bednorz and K.A. Müller in 1986. These materials are
characterized by presenting superconductivity at a higher temperature than conventional
superconductors (which require temperatures a few degrees above absolute zero), and by
other unconventional features [8], Comparison of conventional superconductors with HTS [9]
is given in table (1.2). So-called high-temperature superconductors are generally considered
to be those that demonstrate superconductivity at or above the temperature of liquid nitrogen,
or -196 degrees C ‡.

Recently, other unconventional superconductors have been discovered. Some of them also
have unusually high values of the critical temperature Tc see table (1.3), and hence they are
sometimes also called high-temperature superconductors, although the record is still held by
a cuprate perovskite material (Tc = 138K, that is −135C). Nevertheless it is widely believed
that if room temperature superconductivity is ever achieved it will be in a different family of
materials [10].
The story is as the following: In 1986 two scientists working for IBM in Switzerland,
Georg Bednorz and Alex Müller, found that certain ceramic materials that normally are
electrical insulators become superconducting at low temperatures. The materials they first
experimented with were made from copper oxide, lanthanum, and barium. The greatest
surprise of all was the temperature at which these materials became superconducting, 30
K (-2430C), which was higher than for any metallic superconductor. The importance of this
discovery can be judged by the fact that Bednorz and Müller were awarded the Nobel Prize in
physics just a year later [11].

Müller had decided to study oxide ceramics to see if they could become superconductive.
The idea that ceramics could become superconductive was rather strange considering that
ceramics are usually not very good conductors of electricity. Müller was interested in a group
of ceramics called pervoskites. This group of ceramics were a compound of oxygen and other
metals. Many scientist believed that oxides could not be superconductors. The reason he

‡Despite its name, high-temperature superconductivity still occurs at cryogenic temperatures. The main
difference from low-temperature superconductivity is usually that ’high-Tc’ superconductors can use liquid
nitrogen (at 77 K) as a coolant while low-temperature superconductors always need liquid helium (4.2 K)
temperatures and below [8]
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Conventional High Tc

Resistivity ρ ∼ T 2 ρ ∼ T

Quasiparticle lifetime,1/τ(T, ω) aT 2 + bω2 aT + bω

Spin excitation spectrum Flat Peaked at Qi ∼ (π/a, π/a)

Maximum strength of spin excitations ∼1 state/eV 20− 300 states/eV

Characteristic spin excitation energy ∼ Ef ωef ∼ T << Ef

AF correlations None strong, with ξAF ≥ 2a

Uniform susceptibility, χ0(T ) Flat varies with temperature,
possesses a maximum at
T0 > Tc for magnetic
underdoped systems

Table 1.2: Comparison of conventional superconductors with HTS [9].

researched oxide ceramics was because the lab he worked in had researched oxides for quite
a while, and scientists at the University of Caen in France had found traces that a ceramic
compound of copper, oxygen, lanthanum, and barium had electrical conduction.

It took many years of work and experiments for Bednorz and Mller to find a metallic oxide
superconductor. This ceramic superconductor was so odd that they kept their discovery a
secret for a while. They published their finding in the September 1986 issue of the German
journal Zeitschrift fr Physik§. It took some time for people to pay attention to the news.

The University of Tokyo in Japan was the first to take Bednorz and Müllers discovery
seriously; they repeated and confirmed the results. Other groups, such as AT&T and Bell
Labs, were soon doing the same. They were all in a race to produce a higher temperature
superconductor.

The 1-2-3 Superconductor: At the University of Houston in Texas Paul C. W. Chu lead a
group to find a higher temperature superconductor than Bednorz and Müllers superconductor.
On February 16, 1987 Paul Chu, supported by the National Science Foundation, created a
superconductor with a record high critical temperature of 93K. The compound was made up
of oxygen, barium, copper, and yttrium. This was named the 1-2-3 superconductor for its
relative atomic proportions of yttrium, barium, and copper.

§original paper: . G. Bednorz and K. A. Müller (1986). "Possible highTc superconductivity in the Ba-La-Cu-O
system". Z. Physik, B 64: 189-193.
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Chu was curious of what would happen if an oxide superconductor was put under high
pressure. He discovered that the higher the pressure, the higher the critical temperature.

In 1988 Paul Chu made a compound of bismuth, strontium, calcium, oxygen, and
aluminum which had a critical temperature of 120K [12].

In 2001 Jun Akimitsu of Aoyama Gakuin University in Tokyo and coworkers discovered
that the common, simple compound magnesium diboride is a superconductor at temperatures
as high as 39 K (-2340C), which is considerably higher than the ordinary BCS superconduc-
tors, but not quite as high as the ceramic high-temperature superconductors. So far, the record
critical temperature is from mercury-thallium-barium-calcium-copper-oxygen that becomes
superconducting at 138 K (-135oC) [11].

Many scientist believe that an entire periodic table will have to be put together to make a
room temperature superconductor [12], see also [13].

1.3.1 YBa2Cu3O7−δ

In this section first the most important properties of the YBa2Cu3O7−δ superconductor will be
discussed, initially from a materials and subsequently from a physics point of view.

i High-Tc oxides are highly anisotropic, layered structures: Except for some mate-
rials (like Ba1−xKxBiO3), most high-Tc superconducting oxides are cuprate compounds.
One of their characteristics is the presence of CuO2 layers which dominate most of the
properties. A look at the schematic structure of YBa2Cu3O7−δ presented in Fig. 1.7,
shows that it is highly anisotropic. The unit cell is developed from that of a tetragonal
perovskite tripled along the c-axis and it consists of a sequence of copper-oxygen layers.
The dimensions of the unit cell are approximately 1.2 nm and 0.4 nm in the c and a
or b-axis directions respectively. The fact that the unit cell consists of layers of copper
oxides will be one of great importance for understanding the physical properties.

ii Metallic oxides: The second important characteristic of these oxides is their metallic
behavior, as shown in Fig.(1.5). While most oxides are insulating materials, HTSC oxides
exhibit a metal-like conductivity. The room temperature conductivities in a- or b-axis
direction of the cuprate crystal are of the same order of magnitude as the conductivities
of some disordered metallic alloys. Only the conductivity perpendicular to CuO2-planes
is much smaller.

iii Ceramic materials: The original materials, La1.85Sr0.15CuO4 and YBa2Cu3O7−δ , were
synthesized as ceramic pellets. One mixes the correct ratio of constituent oxides, grinds
and sinters them, makes a pellet, and following a calcining procedure at annealing
temperature of Ta ≈ 9500C and cools it down in oxygen. As typical ceramics, high-
Tc superconducting oxides also contain grains, grain boundaries, twins, and other
imperfections. Even some of the best thin films may consist of grains a few microns
in diameter; all these are mostly detrimental to high critical current densities that are
required for applications. It is important to emphasize that even the best single crystals
of HTSC oxides often contain various defects and imperfections like oxygen vacancies,
twins and impurities. These imperfections are not only very relevant to their physical
properties but possibly even essential for their basic thermodynamic stability. It may



1 HIGH-TEMPERATURE SUPERCONDUCTOR 11

Figure 1.7: Schematic diagrams of YBa2Cu3O6 (left) an insulator and YBa2Cu3O7 (right) a
superconducting oxide.

well turn out that various imperfections found in HTSC crystals are intrinsic to these
materials. In general, it is important to understand that the materials science of HTSC
oxides is a non-trivial pursuit and that the understanding of phase diagrams (especially
around the pseudogap temperature T∗), crystal chemistry, preparation and stability of
these oxides is still not completely understood [7].

1.3.1.1 The phase diagram of YBa2Cu3O7−δ

The schematic structure of YBa2Cu3O6, given in Fig.(1.7), represents an insulator. It has to
be doped to gradually become a hole-doped metallic conductor and a superconductor below
some critical temperature, as shown in Fig.(1.5). The doping is achieved by adding additional
oxygen which forms CuO chains. These oxygen ions attract electrons from the CuO2-planes
which therefore become metallic (see Fig.(1.8)). Note, that the correct formula for YBCO
material is YBa2Cu3O6+x, where x corresponds to partial oxygen content:

* for 0.0 < x < 0.4, YBa2Cu3O6+x is an insulator.

* for 0.4 < x < 1.0, YBa2Cu3O6+x is a superconductor.

The schematic phase diagram of a cuprate high-Tc superconductor is given in Fig.(1.8), as
a function of temperature and x the density of doped holes per CuO2-plane. The solid
lines represent phase transitions into the antiferromagnetic (AFM) and superconducting (SC)
states. The dashed line marks the opening of a pseudogap (PG) around the temperature T∗.
The latter crossover is not sharply defined and there is still a debate on its position and the
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Figure 1.8: Schematic phase diagram of YBCO as a function of temperature and x the density of doped
holes per CuO2-plane. The solid lines represent phase transitions into the antiferromagnetic (AFM)
and superconducting (SC) states. The dashed line marks the opening of a pseudogap (PG) around the
temperature T∗.

physics behind.

The parent state of each family of HTSC is an antiferromagnetic Mott-insulator with one
hole (and spin 1/2) per CuO2-plane. These insulators are transformed into superconductors
by introducing a concentration, x, of doped holes into the CuO2-planes. As a function of
increasing x, the antiferromagnetic transition temperature is rapidly suppressed to zero,
then the superconducting transition temperature rises from zero to a maximum and then
drops down again (see Fig.(1.8)). Where Tc is an increasing function of x, the materials are
underdoped (U.D.). They are optimally doped where Tc reaches its maximum, and they are
overdoped (O.D.) for larger x. In the underdoped regime there are a variety of crossover
phenomena observed at temperatures above Tc . These phenomena are associated with the
opening of a pseudogap. There are various families of high temperature superconductors, all
of them have the same nearly square shaped copper-oxide planes, but different structures
in the regions between the planes. One characteristic that seems to have a fairly direct
connection with Tc is the number of copper-oxide planes that are close enough to each other
that interplane coupling may be significant; Tc seems generally to increase with the number
of planes within a homologous series, at least as one progresses from single layer to bilayers,
to trilayers materials, see Table (1.3). The following comments concerning the phase diagram
of YBCO hold in a similar way also for the all HTSC families listed in Table (1.3):

• Oxygen content: The oxygen content can be changed reversibly from 6.0 to 7.0 simply
by pumping oxygen in/out of the parallel chains of CuO running along the b-axis of
Fig.(1.7). YBa2Cu3O6 is an insulating antiferromagnet (I-AFM). Increasing the oxygen
from YBCO6:4 makes the crystal metallic, nonmagnetic and superconducting, Tc = 0+
for YBCO6.64.
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Compound Tc(K)
La2−xMxCuO4−y 38

M=Ba, Sr, Ca
x ∼ 0.15, y small

Nd2−xCexCuO4−y (electron doped) 30
Ba1−xKxBiO3 (isotropic, cubic) 30

Pb2Sr2Y1−xCaxCu3O8 70
R1Ba2Cu−2 +mO6+m

R: Y, La, Nd, Sm, Eu, Ho, Er, Tm, Lu
m = 1(123) 93
m = 1.5(247) 95
m = 2(124) 82

Bi2Sr2Can−1CunO2n+4

n = 1(2201) 10
n = 2(2212) 85
n = 3(2223) 110

Tl2Ba2Can−1CunO2n+4

n = 1(2201) 85
n = 2(2212) 105
n = 3(2223) 125

HgBa2Can−1CunO2n+2+δ

n = 1(1201) 95
n = 2(1212) 125
n = 3(1223) 133
n = 4(1234) 127
n = 5(1245) 110
n = 6(1256) 91
n = 7(1267) 85

Table 1.3: Critical temperatures of some HTSC compound.

• Higher Tc : The order of magnitude of Tc of YBCO or all HTSC oxides [listed in Table
(1.3)] are much higher compared to Tc of the classical superconductor materials Tc for
Nb3Ge is only 23 K, the critical temperature corresponds to the binding energy kBTc

needed to hold Cooper pairs together in the superconducting state. The fact that Tc �
100K, i.e., 2∆ = 60meV , as compared with < 1meV in conventional superconductors,
surprise theorists interested in the microscopic mechanism of high-Tc superconductivity.
The critical temperatures of the most extensively studied high-Tc oxide superconductors
(HTSC) are shown in Table (1.3).

• Short coherence length ξ: Very short coherence length,ξ = 1.0nm. If we recall
the BCS-derived formula, ξ ∼ vFkBTc, we can immediately expect somewhat shorter
coherence lengths in HTSC oxides due to their higher Tcs. However, due to the low
density of carriers in HTSC oxides? The Fermi velocity in these ionic metals is also lower
than in normal metals. This results in a very short coherence length, ξ = 1.0nm, which is
comparable to the size of the unit cell, and it has profound consequences for the physics
of HTSC oxides. Actually, the coherence length is different for different crystallographic
directions and it was experimentally found in YBa2Cu3O7−δ that ξab and ξc are 1.5 nm
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and 0.4 nm, respectively. The ξc is roughly equal to the interlayer distance and shorter
than the corresponding unit cell length, which clearly poses some conceptual problems.
As we shall see, these remarkably short coherence lengths dominate all material-related
properties and cause a rather complex mixed state. Short coherence length also implies
that HTSC oxides are type-II superconductors with very high upper critical fields Bc2[7].

1.4 The pseudogap temperature T ∗

The pseudogap is one of the most prominent, and most discussed features of the cuprate super-
conductors. It is widely observed in underdoped cuprates and, to various extents, in optimally
and even slightly overdoped materials or below Tc in case of electron doped cuprates. Among
the experimental probes which are used to locate the pseudogap temperature in different
materials are:

1) Angle-resolved photoelectron spectroscopy (ARPES) and c-axis tunneling:
There is a suppression of the low energy single particle spectral weight at temperatures
above Tc as detected, primarily, in c-axis tunneling and ARPES experiments. The scale of
energies and the momentum dependence of this suppression are very reminiscent of the d-
wave superconducting gap observed in the same materials at temperatures well below Tc.
This is highly suggestive of an identification between the pseudogap and some form of local
superconducting pairing.

2) Cu-NMR: There is a suppression of low energy spin fluctuations as detected primarily
in Cu-NMR. In some cases, two rather different temperature scales are deduced from these
experiments. An upper crossover temperature, at which a peak occurs in the real part of the
uniform spin susceptibility (i.e. the Knight shift), and a lower crossover temperature.

3) Resistivity: There is a significant deviation of the resistivity in the ab-plane from
the linear temperature dependence which is universally observed at high temperatures.
A pseudogap temperature is then identified as the point below which dρ/dT deviates
significantly from its high temperature value. In some cases, a similar temperature scale
can be inferred from a scaling analysis of the Hall resistance, as well. The pseudogap also
appears in c-axis resistivity, although in a somewhat different manner. In this direction, the
pseudogap results in a strong increase in resistivity, reminiscent of the behavior of a narrow
gap semiconductor. If we imagine that the c-axis transport is dominated by tunneling events
between neighboring planes, it is reasonable that a bulk measurement of ρc will identify the
pseudogap in the same way as the c-axis tunneling does.

4) Specific heat: There is a suppression of the expected electronic specific heat. Above the
pseudogap scale, the specific heat is generally found to be linear in temperature, CV = γT , but
below the pseudogap temperature, CV = T begins to decrease with decreasing temperature.
Interestingly, since the value of above the pseudogap temperature appears to be roughly
doping independent.

5) Infrared conductivity: There is an anomalous motion of infrared spectral weight to
low energies. The pseudogap is most clearly identified by plotting the frequency dependent
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scattering rate, defined either as
1

τ(ω)
=
ω2

p

4π
Re

1
σ(ω)

(1.4.1)

where ωP is the plasma frequency; the pseudogap is rather harder to pick out from the in-
plane conductivity σab itself. At large ωP , one generally sees 1

τ(ω) where A ≥ 1 in underdoped
materials and ≈ 1 in optimally doped ones. And it then drops to much smaller values,
1
τ � ω below a characteristic pseudogap frequency. While in optimally doped materials, this
manifestation of a pseudogap is only observed at temperatures less than Tc , in underdoped
materials persist well above Tc , and indeed to be not strongly temperature dependent [7].

1.4.1 Theories of the pseudogap

The experimental evidence of the pseudogap does not yet provide a single view, neither do
the available theoretical models. A few selected models are described below. Several of
the models described below involve preformed pairs at T∗ without phase coherence. The
theoretical models seem to explain the pseudogap are summarized in the following:

Spincharge separation: One scenario which has received considerable attention in-
volves spincharge separation. This idea was first proposed by Anderson in his as the
resonating valence bond (RVB) theory. Nagaosa and Lee produced a GinzburgLandau theory
of the spincharge separated system calculating various transport properties in the pseudogap
state. Spincharge separation creates holons with zero spin and spinons which are zero charge,
spin1/2 fermions. The spinons pair to form a gap in the spin excitations, identified as the
pseudogap. The holons Bosecondense at Tc to form the superconducting state. At present it is
believed that even though it is the holons which Bosecondense, gauge field fluctuations lead
to a strong coupling between the spinons and holons. A gauge theory of the normal state,
including the pseudogap, has been developed by Lee and Nagaosa. Experimental results
suggest that T ∗ is related to the occurrence of a spingap in the high-Tc materials.

Phase fluctuations: It is proposed that superconductors with a low carrier density are
characterized by a relatively small phase stiffness and thus, the poor screening implies a
significant role of phasefluctuations. Emery and Kivelson have developed a preformed pair
model of the pseudogap based on microstripes. Phase separation takes place on a microscopic
scale generating dynamical charged stripes separated by insulating antiferromagnetic (AFM)
stripes. These microstripes form at the upper crossover temperature T � T ∗. Above this
temperature the charge is uniformly distributed. Below T ∗ charge is confined to the metallic
stripes forming a 1D electron gas (1DEG). Spin and charge are separated as spin resides in
the AFM stripes. As the temperature is lowered, AFM correlations build up. At the lower
crossover temperature T ∗ pairing behavior emerges. Pairing is a result of a spin gap in the
AFM stripes. This is manifested in the 1DEG via pair hopping between the 1DEG and AFM
stripes. Emery and Kivelson describe this as a magnetic proximity effect. At this point there
are only 1D superconducting correlations. The pseudogap is associated with this spin gap.
At Tc Josephson coupling between the metallic stripes becomes large enough to yield global
phase coherence. Note that the pairing correlations below T ∗ are not giving rise to real space
pairing; the pairing correlations are dynamical. The phasefluctuation scenario explains quite
natural the strongly enhanced Nernst signal above the critical transition temperature Tc in
the underdoped HTSC materials.
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Interlayer exchange coupling: Millis and Monien proposed that the pseudogap in
bilayer compounds was due to interlayer exchange coupling. Further work have produced
a model with interlayer pairing of holons producing a spin pseudogap. The authors
claim that the pseudogap crossover temperature T∗ for single layer materials, namely
La1:85Sr0:15CuO4 , is just slightly above Tc. Interlayer coupling enhances T ∗ to tempera-
tures well above Tc . Recent data on other single layer compounds throws this scenario into to
be uncertain. The single layer mercury compound shows a crossover temperature well above
Tc. Spin-polarized quasiparticle injection (SPQI) is a sensitive tool for detecting the opening
of a spin-gap, as proposed by Si. A major point of this thesis is the influence of SPQI on
the normal state resistivity of YBCO around the pseudogap temperature T ∗. It is proposed
that the experimental data allow to distinguish between the suggested models of spin-charge
separation and phase fluctuations[7], see ref. [14; 15] for great details about pseudogap.

1.5 Superconductors that work at room temperature:

TINY tubes of carbon may conduct electricity without any resistance, at temperatures
stretching up past the boiling point of water. The tubes would be the first superconductors
to work at room temperature. Guo-meng Zhao and Yong Sheng Wang of the University of
Houston in Texas found subtle signs of superconductivity. It wasn’t zero resistance, but it’s
the closest anyone’s got so far. "I think all the experimental results are consistent with
superconductivity," Zhao says. "But I cannot rule out other explanations." At the moment
no superconductor will work above about 130 kelvin (-143 C). But if a material could carry
current with no resistance at room temperature, no energy would be lost as heat, meaning
faster, lower-power electronics. And electricity could be carried long distances with 100 per
cent efficiency.

Zhao and Wang studied the effects of magnetic fields on hollow fibres of carbon known
as "multiwall carbon nanotubes". Each nanotube is typically a millionth of a metre long,
several billionths of a metre in diameter and with walls a few atoms thick. The nanotubes
cling together in oblong bundles about a millimetre in length. The researchers did not see
zero resistance in their bundles. They think this is because the connections between the tiny
tubes never become superconducting. But they did see more subtle signs of superconductivity
within the tubes themselves. For example, when the researchers put a magnetic field across a
bundle at temperatures up to 400 kelvin (127 C), the bundle generated its own weak, opposing
magnetic field. Such a reaction can be a sign of superconductivity. And when the team cooled
the bundles from even higher temperatures then turned the external field off, they stayed
magnetised. A current running around within the tubes could generate this lingering field if
there wasn’t any resistance to make it fade away.

While each effect could have a more prosaic explanation, they varied in similar ways as
the temperature of the bundles changed. The correlation suggests superconductivity was
responsible, Zhao and Wang argue in a paper to be published in Philosophical Magazine
B. However, their argument doesn’t convince Paul Grant, a physicist with the Electric
Power Research Institute in Palo Alto, California. "Generally, superconductivity is such a
dominating effect that when it occurs it just shouts out at you," Grant says. "It doesn’t appear
in these indirect ways." Superconductivity theories do not forbid the phenomenon at very
high temperatures, says Sasha Alexandrov, a theoretical physicist at Britain’s Loughborough



1 APPLICATIONS OF SUPERCONDUCTORS 17

University. A material becomes superconducting when its electrons pair up. Normally
such negatively charged particles would repel each other, but in a positively charged crystal
structure, vibrations called phonons help them get together. In carbon nanotubes, the
frequency of these vibrations is very high, which, in theory at least, means superconductivity
at higher temperatures. "The results on the magnetic response are very intriguing, and favour
the explanation they present," Alexandrov says "It’s certainly possible," agrees David Caplin,
head of the Center for High Temperature Superconductivity at Imperial College, London.

To decide whether or not the nanotubes really are superconductors, you need to measure
the resistance through a single tube, Alexandrov says. "To be convinced, I’d like to see zero
resistance" [16].

1.6 Applications of Superconductors

Soon after Kamerlingh Onnes discovered superconductivity, scientists began dreaming up
practical applications for this strange new phenomenon [2; 3]. Applications of superconduc-
tivity can be divided into two categories: large-scale and small-scale.
The large-scale applications generally exploit the loss of electrical resistance.

The small-scale applications are generally electronic applications that often depend upon
properties of the material that can only be explained by quantum mechanics. The small-scale
applications are primarily in electronic sensors and circuit components. Superconductive
integrated circuits would be extremely fast and permit very dense packaging because there
is no resistive heating. Instrumentation of unparalleled sensitivity can be made from
superconductors using properties that can only be explained by quantum physics.

When powerful electromagnets are constructed from normal electrical conductors, large
amounts of electrical power are required to continuously make up for heat losses. Super-
conducting magnets have no such losses and require no power at all once they have been
energized [6].

Powerful new superconducting magnets could be made much smaller than a resistive
magnet,because the windings could carry large currents with no energy loss. Generators
wound with superconductors could generate the same amount of electricity with smaller
equipment and less energy. Once the electricity was generated it could be distributed through
superconducting wires. Energy could be stored in superconducting coils for long periods of
time without significant loss.
The recent discovery of high temperature superconductors brings us a giant step closer to
the dream of early scientists. Applications currently being explored are mostly extensions of
current technology used with the low temperature superconductors.

Current applications of high temperature superconductors include (Fig.(1.11)); magnetic
shielding devices, medical imaging systems, superconducting quantum interference devices
(SQUIDS), infrared sensors, analog signal processing devices, and microwave devices. As our
understanding of the properties of superconducting material increases, applications such as;
power transmission, superconducting magnets in generators, energy storage devices, particle
accelerators, levitated vehicle transportation, rotating machinery, and magnetic separators
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Figure 1.9: A magnet levitating above a
"high-temperature" superconductor (100.37
K) with boiling liquid nitrogen underneath
demonstrates the Meissner effect, taken from
ref. [17]

Figure 1.10: The superconducting Maglev
high-speed vehicles have been fitted with
aerodynamic brake panels, taken from ref.
[18]

will become more practical. The ability of superconductors to conduct electricity with zero
resistance can be exploited in the use of electrical transmission lines. Currently, a substantial
fraction of electricity is lost as heat through resistance associated with traditional conductors
such as copper or aluminum. A large scale shift to superconductivity technology depends on
whether wires can be prepared from the brittle ceramics that retain their superconductivity
at 77 K while supporting large current densities.

The field of electronics holds great promise for practical applications of superconductors.
The miniaturization and increased speed of computer chips are limited by the generation of
heat and the charging time of capacitors due to the resistance of the interconnecting metal
films. The use of new superconductive films may result in more densely packed chips which
could transmit information more rapidly by several orders of magnitude. Superconducting
electronics have achieved impressive accomplishments in the field of digital electronics. Logic
delays of 13 picoseconds and switching times of 9 picoseconds have been experimentally
demonstrated. Through the use of basic Josephson junctions scientists are able to make very
sensitive microwave detectors, magnetometers, SQUIDs and very stable voltage sources.

The use of superconductors for transportation has already been established using liquid
helium as a refrigerant. Prototype levitated trains have been constructed in Japan by using
superconducting magnets, see Figs.(1.9 and 1.10).
Superconducting magnets are already crucial components of several technologies. Magnetic
resonance imaging (MRI) is playing an ever increasing role in diagnostic medicine. The
intense magnetic fields that are needed for these instruments are a perfect application of
superconductors. Similarly, particle accelerators used in high-energy physics studies are
very dependant on high-field superconducting magnets. The recent controversy surrounding
the continued funding for the Superconducting Super Collider (SSC) illustrates the political
ramifications of the applications of new technologies.
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Figure 1.11: taken from ref.[19]

New applications of superconductors will increase with critical temperature. Liquid nitro-
gen based superconductors has provided industry more flexibility to utilize superconductivity
as compared to liquid helium superconductors. The possible discovery of room temperature
superconductors has the potential to bring superconducting devices into our every-day lives.

High-temperature superconductors are recent innovations from scientific research lab-
oratories. New commercial innovations begin with the existing technological knowledge
generated by the research scientist. The work of commercialization centers on the de-
velopment of new products and the engineering needed to implement the new technology.
Superconductivity has had a long history as a specialized field of physics. Through the
collaborative efforts of government funded research, independent research groups and
commercial industries, applications of new high-temperature superconductors will be in the
not so distant future. Time lags however, between new discoveries and practical applications
are often great. The discovery of the laser in the early 60’s has only recently been appreciated
today through applications such as laser surgery, laser optical communication, and compact
disc players. The rapid progress in the field of superconductivity leads one to believe that
applications of superconductors is limited only by one’s imagination and time [2; 3].

1.7 BCS Theory of Superconductivity

The properties of Type I superconductors were modeled successfully by the efforts of John
Bardeen, Leon Cooper, and Robert Schrieffer in what is commonly called the BCS theory. A
key conceptual element in this theory is the pairing of electrons close to the Fermi level into
Cooper pairs through interaction with the crystal lattice (see section 1.2). The electron pairs
have a slightly lower energy and leave an energy gap above them on the order of .001 eV which
inhibits the kind of collision interactions which lead to ordinary resistivity. For temperatures
such that the thermal energy is less than the band gap, the material exhibits zero resistivity
[21].
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Figure 1.12: Cooper pairs of electrons, taken from ref.[20]

In more detail: BCS theory starts from the assumption that there is some attraction between
electrons, which can overcome the Coulomb repulsion. In most materials (in low temperature
superconductors), this attraction is brought about indirectly by the coupling of electrons to
the crystal lattice (as explained above). However, the results of BCS theory do not depend on
the origin of the attractive interaction. Note that the original results of BCS (discussed below)
were describing an "s-wave" superconducting state, which is the rule among low-temperature
superconductors but is not realized in many "unconventional superconductors", such as the "d-
wave" high-temperature superconductors. Extensions of BCS theory exist to describe these
other cases, although they are insufficient to completely describe the observed features of
high-temperature superconductivity.

BCS were able to give an approximation for the quantum-mechanical state of the system
of (attractively interacting) electrons inside the metal. This state is now known as the "BCS
state". Whereas in the normal metal electrons move independently, in the BCS state they are
bound into "Cooper pairs" by the attractive interaction, fig.(1.7).

BCS have derived several important theoretical predictions that are independent of the
details of the interaction (note that the quantitative predictions mentioned below hold only
for sufficiently weak attraction between the electrons, which is however fulfilled for many
low temperature superconductors - the so-called "weak-coupling case"). These have been
confirmed in numerous experiments:

- Since the electrons are bound into Cooper pairs, a finite amount of energy is needed to
break these apart into two independent electrons. This means there is an "energy gap" for
"single-particle excitation", unlike in the normal metal (where the state of an electron can be
changed by adding an arbitrarily small amount of energy). This energy gap is highest at low
temperatures but vanishes at the transition temperature when superconductivity ceases to
exist. BCS theory correctly predicts the variation of this gap with temperature. It also gives
an expression that shows how the gap grows with the strength of the attractive interaction
and the (normal phase) "density of states" at the Fermi energy. Furthermore, it describes how
the "density of states" is changed on entering the superconducting state, where there are no
electronic states any more at the Fermi energy. The energy gap is most directly observed in
tunneling experiments and in reflection of microwaves from the superconductor.

- The ratio between the value of the energy gap at zero temperature and the value of the
superconducting transition temperature (expressed in energy units) takes the universal value
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of 3.5, independent of material.

- Due to the energy gap, the specific heat of the superconductor is suppressed strongly
(exponentially) at low temperatures, there being no thermal excitations left. However, before
reaching the transition temperature, the specific heat of the superconductor becomes even
higher than that of the normal conductor (measured immediately above the transition) and
the ratio of these two values is found to be universally given by 2.5.

BCS theory correctly predicts the Meissner effect, i.e. the expulsion of a magnetic
field from the superconductor and the variation of the penetration depth (the extent of the
screening currents flowing below the metal’s surface) with temperature. It also describes the
variation of the critical magnetic field (above which the superconductor can no longer expel
the field but becomes normalconducting) with temperature.

BCS theory relates the value of the critical field at zero temperature to the value of the
transition temperature and the density of states at the Fermi energy [20]¶.

1.8 Ginzburg-Landau (GL)Theory
‖ In physics, Ginzburg-Landau theory is a mathematical theory used to model superconductiv-
ity. It does not purport to explain the microscopic mechanisms giving rise to superconductivity.
Instead, it examines the macroscopic properties of a superconductor with the aid of general
thermodynamic arguments[22].

In 1959, Gor’kov was able to show that the GL theory was, in fact, a limiting form of the
microscopic theory of BCS (suitably generalized to deal with spatially varying situations),
valid near Tc, in which ψ is directly proportional to the gap parameter ∆. More physically, ψ
can be thought of as the wavefunction of the center-of-mass motion of the Cooper pairs. The
GL theory is now universally accepted as a masterstroke of physical intuition which embodies
in a simple way the macroscopic quantum-mechanical nature of the superconducting state
that is crucial for understanding its unique electrodynamic[23].

Based on Landau’s previously-established theory of second-order phase transitions, Lan-
dau and Ginzburg argued that the free energy F of a superconductor near the superconducting
transition can be expressed in terms of a complex order parameter ψ, which describes how
deep into the superconducting phase the system is. The free energy has the form

F = Fn + α|ψ|2 +
β

2
|ψ|4 +

1
2m

|(−i~∇− 2eA)ψ|2 +
|H|2

2µ0

where Fn is the free energy in the normal phase, α and β are phenomenological parameters,
A is the electromagnetic vector potential, and H is the magnetic field. By minimizing the
free energy with respect to fluctuations in the order parameter and the vector potential, one

¶Original reference: J. Bardeen, L. N. Cooper, and J. R. Schrieffer, "Theory of Superconductivity", Phys. Rev.
108 (5), 1175 (1957).

‖Original reference: V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950)
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arrives at the Ginzburg-Landau equations

αψ + β|ψ|2ψ +
1

2m
(−i~∇− 2eA)2ψ = 0

J =
2e
m

(ψ?(−i~∇− 2eA)ψ)

where J denotes the electrical current. The first equation, which bears interesting similarities
to the time-independent Schrdinger equation, determines the order parameter ψ based on the
applied magnetic field. The second equation then provides the superconducting current.

The Ginzburg-Landau equations produce many interesting and valid results. Perhaps the
most important of these is its prediction of the existence of two characteristic lengths in a
superconductor. The first is a coherence length ξ, given by

ξ =

√
~2

2m|α|

which describes the size of thermodynamic fluctuations in the superconducting phase. The
second is the penetration depth λ, given by

λ =
√

m

4µ0e2ψ2
0

where ψ0 is the equilibrium value of the order parameter in the absence of an electromagnetic
field. The penetration depth describes the depth to which an external magnetic field can
penetrate the superconductor.

The ratio κ = λ/ξ is known as the Ginzburg-Landau Parameter. It has been shown that
Type I superconductors are those with κ < 1/

√
2, and Type II superconductors those with

κ > 1/
√

2. For Type II superconductors, the phase transition from the normal state is of
second order, for Type I superconductors it is of first order. This is proved by deriving a dual
Ginzburg-Landau theory for the superconductor.

The most important finding from Ginzburg-Landau theory was made by Alexei Abrikosov
in 1957. In a type-II superconductor in a high magnetic field - the field penetrates in quantized
tubes of flux, which are most commonly arranged in a hexagonal arrangement[22], see also
[23].



1 LITERATURE REVIEW 23

1.9 Literature Review

Takashi Yanagisawa and Hajime Shibata [24] wrote that the optical conductivity
measurements give a powerful tool to investigate the nature of the superconducting gap
for conventional and unconventional superconductors. They shown that the behavior
of optical conductivity is consistent with an anisotropic gap and is well explained by
the formula for d-wave pairing in the far-infrared region. The optical properties of the
multiband superconductor MgB2, in which the existence of superconductivity with relatively
high-Tc (39K) was recently announced, is also examined to determine the symmetry of
superconducting gaps.

Philip B. Allen [25] reported that Gtze and Wlfle (GW) wrote the conductivity in terms
of a memory function M(ω) as σ(ω) = (ine2/m)(ω +M(ω))−1, where M(ω) = i/τ in the Drude
limit. The analytic properties of −M(ω) are the same as those of the self-energy of a retarded
Green’s function.

The results of a systematic study of the optical properties of the YBa2Cu3O6+x-based
insulators and superconductors are reported.J. Orenstein et al. [26] have presented mea-
surements and analysis of the optical reflectivity R of a series of YBa2Cu3O6+x crystals in the
frequency range from 30 to 20 000 cm−1 (4 meV to 2.5 eV), and temperature range from 10
to 270 K. From R they obtained the real part of the frequency-dependent optical conductivity
σ(ω) by Kramers-Kronig analysis. In their discussion, they emphasized the development of
structure and spectral weight in σ(ω) as the compounds change from insulators to high-Tc

superconductors with varying O content or Al doping.

A.V. Balatsky [27] pointed out that impurity scattering in the unitary limit produces low
energy quasiparticles with anisotropic spectrum in a two-dimensional d-wave superconductor.
A. V. Balatsky described a new quasi-one-dimensional limit of the quasiparticle scattering,
which might occur in a superconductor with short coherence length and with finite impurity
potential range. The dc conductivity in a d-wave superconductor is predicted to be propor-
tional to the normal state scattering rate and is impurity-dependent. Balatsky showed that
quasi-one-dimensional regime might occur in high-Tc superconductors with Zn impurities at
low temperatures T ≤ 10K.

A. J. Berlinsky et al. [28] have used the self-consistent T-matrix approximation for
impurity scattering in unconventional superconductors to interpret recent measurements of
the temperature and frequency dependence of the microwave conductivity of YBa2Cu3O6.993

crystals below 20 K. In the theory, the conductivity is expressed in terms of a frequency
dependent single particle self-energy, determined by the impurity scattering phase shift which
is small for weak (Born) scattering and approaches π/2 for unitary scattering. They reported
that by inverting this process, microwave conductivity data are used to extract an effective
single-particle self energy and obtain insight into the nature of the operative scattering
processes. It is found that the effective self energy is well approximated by a constant plus a
linear term in frequency with a small positive slope for thermal quasiparticle energies below
20 K. Possible physical origins of this form of self energy are discussed.

Durst and Lee [29] have showed that recent microwave conductivity measurements of
detwinned, high-purity, slightly overdoped YBa2Cu3O6.993 crystals reveal a linear temper-
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ature dependence and a near-Drude lineshape for temperatures between 1 and 20 K and
frequencies ranging from 1 to 75 GHz. Prior theoretical work has shown that simple models
of scattering by point defects (impurities) in d-wave superconductors are inconsistent with
these results. It has therefore been suggested that scattering by extended defects such as
twin boundary remnants, left over from the detwinning process, may also be important.
They calculate the self-energy and microwave conductivity in the self-consistent Born
approximation (including vertex corrections) for a d-wave superconductor in the presence of
scattering from extended linear defects. We find that in the experimentally relevant limit ( Ω,
1/τ � T � ∆0), the resulting microwave conductivity has a linear temperature dependence
and a near-Drude frequency dependence that agrees well with experiment.

Durst and Lee [30] have reported that due to the node structure of the gap in a d-
wave superconductor, the presence of impurities generates a finite density of quasiparticle
excitations at zero temperature. Since these impurity-induced quasiparticles are both
generated and scattered by impurities, prior calculations indicate a universal limit(Ω →
0,T → 0) where the transport coefficients obtain scattering-independent values, depending
only on the velocity anisotropy vf/v2. They improved upon prior results, including the
contributions of vertex corrections and Fermi liquid corrections in their calculations of
universal limit electrical, thermal, and spin conductivity. They found that while vertex
corrections modify electrical conductivity and Fermi liquid corrections renormalize both
electrical and spin conductivity, only thermal conductivity maintains its universal value,
independent of impurity scattering or Fermi liquid interactions. Hence, low temperature
thermal conductivity measurements provide the most direct means of obtaining the velocity
anisotropy for high Tc cuprate superconductors.

Y. H. Yang et al. [31] reported that based on the self-consistent T-matrix approximation,
the quantum interference (QI) effect is studied with the diagrammatic technique in weakly-
disordered two-dimensional crystals with nearly half-filled bands. In addition to the usual
0-mode cooperon and diffusion, there exist π-mode cooperon and diffusion in the unitary
limit due to the particle-hole symmetry. The diffusive π-modes are gapped by the deviation
from the exactly-nested Fermi surface. The conductivity diagrams with the gapped π-mode
cooperon or diffusion are found to give rise to unconventional features of the QI effect. Besides
the inelastic scattering, the thermal fluctuation is shown to be also an important dephasing
mechanism in the QI processes related with the diffusive π-modes. In the proximity of the
nesting case, a power-law anti-localization effect appears due to the π-mode diffusion. For
large deviation from the nested Fermi surface, this anti-localization effect is suppressed,
and the conductivity remains to have the usual logarithmic weak-localization correction
contributed by the 0-mode cooperon. As a result, the dc conductivity in the unitary limit
becomes a non-monotonic function of the temperature or the sample size, which is quite
different from the prediction of the usual weak-localization theory.

Byers et al. [32] have examined the effect of an impurity on the nearby tunneling
conductance in an anisotropically gapped superconductor. They reported that the variation
of the conductance has pronounced spatial dependence which depends strongly on the Fermi
surface location of gap extrema. In particular, different gap symmetries produce profoundly
different spatial features in the conductance. These effects may be detectable with a scanning-
tunneling- microscope study of the surface of a high-temperature superconductor.
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R. J. Radtke and M. R. Norman [33] pointed out that recent angle-resolved photoe-
mission (ARPES) experiments have indicated that the electronic dispersion in some of the
cuprates possesses an extended saddle point near the Fermi level which gives rise to a density
of states that diverges like a power law instead of the weaker logarithmic divergence usually
considered. Using band structures extracted from ARPES measurements, they demonstrate
that, while the weak-coupling solutions suggest a strong influence of the strength of the
Van Hove singularity on Tc, strong-coupling solutions show less sensitivity to the singularity
strength and do not support the hypothesis that band-structure effects alone can account for
either the large Tc’s or the different Tc’s within the copper oxide family. This conclusion is
supported when the results are plotted as a function of the physically relevant self-consistent
coupling constant, which shows universal behavior at very strong coupling.

Qiang-Hua Wang and Dung-Hai Lee [34] have proposed that the energy-dependent
spatial modulation of the local density of states seen by Hoffman et al. [Science 297,
1148(2002)] is due to the scattering interference of quasiparticles. They presented the
general theoretical basis for such an interpretation and lay out the underlying assumptions.
As an example, they performed an exact T -matrix calculation for the scattering due to a
single impurity. The results of the calculation was used to check the assumptions, and to
demonstrate that quasiparticle scattering interference can indeed produce patterns similar
to those observed by Hoffman et al..

L. Zhu et al. [35] have investigated the effect of elastic forward scattering on the ARPES
spectrum of the cuprate superconductors. In the normal state, small angle scattering from
out-of-plane impurities is thought to broaden the ARPES spectral response with minimal
effect on the resistivity or the superconducting transition temperature Tc. Here they explore
how such forward scattering affects the ARPES spectrum in the d-wave superconducting
state. Away from the nodal direction, the one-electron impurity scattering rate is found
to be suppressed as ω approaches the gap edge by a cancellation between normal and
anomalous scattering processes, leading to a square-root-like feature in the spectral weight as
ω approaches ∆k from below. For momenta away from the Fermi surface, the analysis suggests
that a dirty optimally or overdoped system will still display a sharp but nondisspersive peak
which could be confused with a quasiparticle spectral feature. Only in cleaner samples
should the true dispersing quasiparticle peak become visible. At the nodal point on the
Fermi surface, the contribution of the anomalous scattering vanishes and the spectral weight
exhibits a Lorentzian quasiparticle peak in both energy and momentum. Their analysis,
including a treatment of unitary scatterers and inelastic spin fluctuation scattering, suggests
explanations for the some- times mysterious lineshapes and temperature dependences of the
peak structures observed in the Bi2Sr2CaCu2O8 system.

Y. H. Yang et al. [36] has mentioned that the quantum interference effect on the
quasiparticle density of states (DOS) is studied with the diagrammatic technique in two-
dimensional d-wave superconductors with dilute nonmagnetic impurities both near the Born
and near the unitary limits. They derive in details the expressions of the Goldstone modes
(cooperon and diffusion) for quasiparticle diffusion. They mentioned also that the DOS
for generic Fermi surfaces is shown to be subject to a quantum interference correction of
logarithmic suppression, but with various renormalization factors for the Born and unitary
limits. Upon approaching the combined limit of unitarity and nested Fermi surface, the DOS
correction is found to become a δ-function of the energy, which can be used to account for the
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resonant peak found by the numerical studies.

S. Haas and K. Maki [37] have reported that Zn and Ni impurities in the hole-doped
high-temperature superconductors are known to have strong effects on thermodynamic and
transport properties. A recent scanning tunneling microscope study of Zn-doped Bi2212 (Pan
et al.., Nature 403, 746 (2000)) has provided high-resolution images of the local density
of states around non-magnetic impurities in dx2−y2-wave superconductors. These pictures
contain detailed information about the spinor wave functions u(r) and v(r) of bound states with
energy E0 ∼ ∆/30, centered at the from the solutions of the Bogoliubov-de Gennes equations
for dx2−y2-wave superconductors.

A. Ghosal et al. [38], have studied a short coherence length d-wave superconductor with
finite density of unitary scatterers using the Bogoliubov-deGennes technique. They found
that the low-energy density of states is reduced, the superfluid stiffness is significantly larger
and off-diagonal long range order is more robust than the self-consistent T- matrix prediction.
They concluded that these results are a consequence of the inhomogeneous pairing amplitude
in the ground state and of the low-lying excitations formed by hybridized impurity resonances.
These features, with their nontrivial spatial structure, cannot be adequately described within
the conventional T-matrix approach.

Jian-Xin Zhu et al. [39] have written that an extensive numerical study is reported on
disorder effect in two-dimensional d-wave superconductors with random impurities in the
unitary limit. It is found that a sharp resonant peak shows up in the density of states at
zero energy and correspondingly the finite-size spin conductance is strongly enhanced which
results in a non-universal feature in one-parameter scaling. However, all quasiparticle states
remain localized, indicating that the resonant density peak alone is not sufficient to induce
delocalization. In the weak disorder limit, the localization length is so long that the spin
conductance at small sample size is close to the universal value predicted by Lee.

W. A. Atkinson et al. [40] demonstrated that discrepancies between predicted low-
energy quasiparticle properties in disordered 2D d-wave superconductors occur because of the
unanticipated importance of disorder model details and normal-state particle-hole symmetry.
This conclusion follows from numerically exact evaluations of the quasiparticle density-of-
states predicted by the Bogoliubov-de Gennes (BdG) mean field equations for both binary
alloy and random site energy disorder models. For the realistic case, which is best described
by a binary alloy model without particle-hole symmetry, they predicted density of states
suppression below an energy scale which appears to be correlated with the corresponding
single-impurity resonance.

U. Michelucci et al. [41] investigated, employing an impurity position averaging scheme
for the DOS that does not neglect these interference effects, as the commonly used T-matrix
approaches do, the mutual influence of impurities in two-dimensional d-wave superconductors
involving self-consistent solutions of the Bogoliubov-de Gennes equations. The local order
parameter suppression, the local density of states (LDOS) as well as the interference of
impurity-induced structures were analyzed.

The low-energy quasiparticle states of a disordered d-wave superconductor were investi-
gated theoretically. A class of such states, formed via tunneling between the Andreev bound
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states that are localized around extended impurities (and result from scattering between
pair-potential lobes that differ in sign) was identified. Adagideli et al. [42] determined its
(divergent) contribution to the total density of states by taking advantage of connections with
certain one-dimensional random tight-binding models. The states under discussion should be
distinguished from those associated with nodes in the pair potential.

W. A. Atkinson et al. [43] studied the local density of states around potential scatterers in
d-wave superconductors, and showed that quantum interference between impurity states is
not negligible for experimentally relevant impurity concentrations. The two impurity model
was used as a paradigm to understand these effects analytically and in interpreting numerical
solutions of the Bogoliubov-de Gennes equations on fully disordered systems. They said that
they focused primarily on the globally particle-hole symmetric model which has been the
subject of considerable controversy, and give evidence that a zero-energy delta function exists
in the DOS. They concluded the anomalous spectral weight at zero energy is seen to arise from
resonant impurity states belonging to a particular sublattice, exactly as in the 2-impurity
version of this model.

The quasiparticle resonant states around a single nonmagnetic impurity with unitary
scattering in a d-wave superconductor was studied by Jian-Xin Zhu et al. [44] by solving the
Bogoliubov-de Gennes equations based on a t-J model. Both the spatial variation of the order
parameter and the local density of states (LDOS) around the impurity have been investigated.
they found:

i A particle-hole symmetric system has a single symmetric zero-energy peak in the LDOS
regardless of the size of the superconducting coherence length ξ0;

ii For the particle-hole asymmetric case, an asymmetric splitting of the zero- energy peak
is intrinsic to a system with a small value of kF ξ0.

L. Zhu et al. [45] studied the problem of two local potential scatterers in a d-wave
superconductor, and showed how quasiparticle bound state wave functions interfere. Each
single-impurity electron and hole resonance energy is in general split in the presence of a
second impurity into two, corresponding to one even parity and one odd parity state. They
calculated the local density of states (LDOS), and argued that scanning tunneling microscopy
(STM) measurements of 2-impurity configurations should provide more robust information
about the superconducting state than 1-impurity LDOS patterns, and question whether truly
isolated impurities can ever be observed. In some configurations highly localized, long-lived
states were predicted. They discussed the effects of realistic band structures, and how 2-
impurity STM measurements could help distinguish between current explanations of LDOS
impurity spectra in the BSCCO-2212 system.

G. G. N. Angilella et al. [46] reported that imaging the effects of an impurity like Zn
in high-Tc superconductors [see, e.g., S. H. Pan et al., Nature 61 (2000) 746] has rekindled
interest in defect problems in the superconducting phase. They told that this has prompted
them to re-examine the early work of March and Murray [Phys. Rev. 120 (1960) 830] on
the linear response function in an initially translationally invariant Fermi gas. In particular,
they present corresponding results for a superconductor at zero temperature, both in the s-
and in the d-wave case, and mention their direct physical relevance in the case when the
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impurpotential is highly localized.

E. Z. Kuchinskii and M. V. Sadovskii [47] presented the results of theoretical analysis
of normal impurities effects in superconductors with the gap being an odd function of k− kF .
This model proposed by Mila and Abrahams leads to the possibility of pairing in the presence
of an arbitrarily strong short-range repulsion between electrons and may be applied to high-Tc

oxides. However, they demonstrated that normal impurities lead to rather strong suppression
of this type of pairing, which is actually stronger than in the case of magnetic impurities in
traditional superconductors. Relative stability of high-Tc cuprates to disordering makes this
model a rather unlikely candidate for the pairing mechanism in these systems.

T. V. Ramakrishnan [48] reported that the interaction between planar quasiparticles in a
dx2−y2 superconductor and quantized vortices associated with a magnetic field perpendicular
to the plane is shown to induce a pair potential with dxy symmetry, out a phase with
dx2−y2 order. A microscopic calculation of a process involving quasiparticle scattering by
the supercurrent around a vortex and Andreev reflection from its core is presented. Other
processes also leading to an idxy pair potential are discussed. They argued that such a fully
gapped state may be the high field low temperature phase observed by Krishana, Ong et al.in
magnetothermal conductivity measurements of superconducting single crystal Bi-2212.

H. Ghosh [49] derived a pair potential from tight binding further neighbours attraction
that leads to superconducting gap symmetry similar to that of the phenomenological spin
fluctuation theory of high temperature superconductors (Monthoux, Balatsky, Pines, Phys.
Rev. Lett. 67, 3448). They showed that higher anisotropic d-wave than the simpliest d-wave
symmetry is one of the important ingredients responsible for higher BCS characteristic ratio.

H.V. Kruis et al. [50] predicted a resonance impurity state generated by the substitution
of one Cu atom with a nonmagnetic atom, such as Zn, in the pseudogap state of a high-
Tc superconductor. They said that the precise microscopic origin of the pseudogap is not
important for this state to be formed, in particular this resonance will be present even
in the absence of superconducting fluctuations in the normal state. In the presence of
superconducting fluctuations, Kruis et al. predict the existence of a counterpart impurity peak
on a symmetric bias. The nature of impurity resonance is similar to the previously studied
resonance in the d-wave superconducting state.

S. Haas and K. Maki [51] studied the evolution with temperature of quasiparticle bound
states around non-magnetic impurities in dx2−y2-wave superconductors. The associated local
density of states has a fourfold symmetry which has recently been observed in Zn-doped
Bi2212 using scanning tunneling microscopy (STM). From the corresponding Bogoliubov-
de Gennes equation they found that with increasing temperature the magnitude of the bound
state energy increases and the amplitude of the fourfold contribution to the spinor wave
functions decreases. In the pseudogap regime above Tc the fourfold angular dependence
of the local tunneling conductance persists as long as the superconducting fluctuations are
sufficiently strong to support a finite local order parameter. Once the gap function vanishes
completely, the angular structure of the bound state wave function becomes featureless. they
concluded that these effects should be observable in STM studies of impurity doped high-
temperature superconductors.
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Jian-Xin Zhu et al. [52] studied, in accordance with the work of Chakravarty et al.
that proposed an ordered d-density wave (DDW) state as an explanation of the pseudogap
phase in underdoped high-temperature cuprates, the competition between the DDW and
superconducting ordering based on an effective mean-field Hamiltonian. They were mainly
concerned with the effect of the DDW ordering on the electronic state around a single
nonmagnetic impurity. They found that a single subgap resonance peak appears in the local
density of state around the impurity. In the unitary limit, the position of this resonance peak
is always located at Er = − with respect to the Fermi energy. This result is dramatically
different from the case of the pure superconducting state for which the impurity resonant
energy is approximately pinned at the Fermi level. So they proposed that this can be used to
probe the existence of the DDW ordering in cuprates.

D. K. Morr [53] studied the electronic structure near impurities in the d-density-wave
(DDW) state, a possible candidate phase for the pseudo-gap region of the high-temperature
superconductors. He showed that the local DOS near a non-magnetic impurity in the DDW
state is qualitatively different from that in a superconductor with dx2−y2-symmetry. He
proposed since this result is a robust feature of the DDW phase, it can help to identify
the nature of the two different phases recently observed by scanning tunneling microscopy
experiments in the superconducting state of underdoped Bi-2212 compounds.

C. Ṕepin and P. A. Lee [54] presented a method to compute the exact density of states
induced by N nonmagnetic impurities in a system of two dimensional Dirac fermions in the
unitarity limit. they reviewed the case of the y-flux phase of the Heisenberg model and also
treat the disordered d-wave superconductor. In both case they found additional states in the
gap with δρ(ω) ' ni/|ω(ln2 |ω/∆0|+ (π2/2)2)|.

Using scanning tunneling spectroscopy,M. Kugler et al. [55] have investigated the
temperature dependence of the quasiparticle density of states of overdoped Bi2Sr2CuO6+d

between 275 mK and 82 K. Below Tc = 10K, the spectra show a gap with well-defined
coherence peaks at ±∆ρ = 12 meV, which disappear at Tc. Above Tc, the spectra display
a clear pseudogap of the same magnitude, gradually filling up and vanishing at T∗ = 68K.
By the comparison with Bi2Sr2CaCu2O8+d they concluded that the pseudogap and the
superconducting gap scale with each other, providing strong evidence that they have a
common origin.

Using cluster perturbation theory, it is shown that the spectral weight and pseudogap
observed at the Fermi energy in recent angle resolved photoemission spectroscopy of both
electron- and hole-doped high-temperature superconductors find their natural explanation
within the t-t’-t”-U Hubbard model in two dimensions.David Sénéchal and A. M. S.
Tremblay [56] have reported that the value of the interaction U needed to explain the
experiments for electron-doped systems at optimal doping is in the weak to intermediate
coupling regime where the t-J model is inappropriate. At strong coupling, short-range
correlations suffice to create a pseudogap, but at weak coupling long correlation lengths
associated with the antiferromagnetic wave vector are necessary.

Je Huan Koo and Guangsup Cho [57] have investigated the spin-gap in high Tc

superconductivity. They obtained the effective exchange integral in the presence of conduction
in the ab-plane from the interaction Usd, where the electron-electron interaction is mediated
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by the localized spin flips. They choose the exchange interaction along the c-axis from the
superexchange-type interaction, Uc

sd. They found the spin-gap from the conducting spin- 12
ladder corresponding to the structure of high Tc superconductors.

E. Z. Kuchinskii et al. [58] have analyzed the anomalies of superconducting state in
the model of pseudogap state induced by fluctuations of short range order of dielectric (AFM
(SDW) or CDW) type, and based on the scenario of hot spots formation on the Fermi surface,
with the account of all Feynman graphs for electron interaction with pseudogap fluctuations,
leading to strong scattering around the hot spots. They determined the dependence of
superconducting critical temperature Tc on the effective width of the pseudogap, correlation
length of shortrange order and concentration of nonmagnetic impurities.

We hope to take part in such efforts to solve the mystery of High Tc superconductors.



Chapter 2
Main Tools For Our Work

According to their importance in the field of theoretical physics, we are going to mention-
either in brief or in some detail- some of the useful tools, the Fourier transform, Hilbert
transform, and the more important one - at least for us- the Green’s functions, etc. We will do
modifications only when needed, and try to keep the main source as it is.

2.1 Fourier Transform Tools

These are some of the most important and powerful tools not only in physics but in science as
a whole.

2.1.1 Fourier Series

A Fourier series is an expansion of a periodic function∗ f(x) in terms of an infinite sum of
sines and cosines.

Fourier series of a function f(x) is given by

f(x) =
1
2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx) (2.1.1)

where

a0 =
1
π

∫ π

−π
f(x)dx (2.1.2)

an =
1
π

∫ π

−π
f(x) cos(nx)dx (2.1.3)

bn =
1
π

∫ π

−π
f(x)sin(nx)dx (2.1.4)

and n == 1, 2, 3, . . .. Note that the coefficient of the constant term a0 has been written in a
special form in order to preserve symmetry with the definitions of an and bn.
Fourier series with complex coefficients:

∗A function f(x) is said to be periodic with period p if f(x) = f(x + np) for n = 1, 2, . . .. For example, the sine
function sinx, is periodic with the period 2π (as well as with period −2π, 4π, 6π, etc.).

31
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The notion of a Fourier series can also be extended to complex coefficients. Consider a real-
valued function f(x). Write

f(x) =
∞∑

n=−∞
Ane

inx, (2.1.5)

with

An =
1
2π

∫ π

−π
f(x)e−inxdx.

For a function periodic in [−L/2,L/2], these relations are generalized to [59]

f(x) =
∞∑

n=−∞
Ane

i(2πnx/L) (2.1.6)

An =1/L
∫ L/2

−L/2
f(x)e−i(2πnx/L)dx. (2.1.7)

2.1.2 Fourier Transform

The Fourier transform is a generalization of the complex Fourier series in the limit as L→∞.
Replace the discrete An with the continuous F (ν)dν while letting n/L → ν. Then change the
sum to an integral, and the equations become [60]

F (ν) =
∫ ∞

−∞
f(t)e−2πiνtdt (2.1.8)

f(t) =
∫ ∞

−∞
F (ν)e2πiνtdν (2.1.9)

Fourier Transform Conventions

The conventions in physics, electrical engineering, and statistics are often different and vary
from country to country.

Fourier Transform in Physics

As the fundamental unit of angle is the radian and of frequency radians/second, the Fourier
transform used in physics uses the minus omega convention, −ω, given by

F (ω) =
∫ ∞

−∞
f(t)e−iωt dt (2.1.10)

The inverse transform used here is given by

f(t) =
1
2π

∫ ∞

−∞
F (ω)e+iωt dω (2.1.11)

The 1/2π in (2.1.11) is the result of the fact that dν = dω/2π [61].
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To restore the symmetry of the transforms, the convention

F (ω) =
1√
(2π)

∫ ∞

−∞
f(t)e−iωtdt (2.1.12)

f(t) =
1√
(2π)

∫ ∞

−∞
F (ω)eiωtdω (2.1.13)

is sometimes used [60].

Fourier transform for 2v function

For a given two variable function f(r, t) which is continuous and integrable, and F (k, ω) is
integrable. The Fourier transform is [62; 63]:

F (k, ω) =
∫∫ ∞

−∞
f(r, t)e−i(k·r+ωt)dr dt, (2.1.14)

f(r, t) =
1

(2π)2

∫∫ ∞

−∞
F (k, ω)ei(k·r+ωt)dk dω (2.1.15)

or, as discussed above

F (k, ω) =
1
2π

∫∫ ∞

−∞
f(r, t)e−i(k·r+ωt)dr dt, (2.1.16)

f(r, t) =
1
2π

∫∫ ∞

−∞
F (k, ω)ei(k·r+ωt)dk dω (2.1.17)

2.1.3 Convolution Theorem

A convolution is an integral that expresses the amount of overlap of one function g as it is
shifted over another function f. It therefore "blends" one function with another.
Convolution over an infinite range is given by,

F (τ) = f1 ∗ f2 ≡
1√
2π

∫ ∞

−∞
f1(t)f2(τ − t)dt =

∫ ∞

−∞
f2(t)f1(τ − t)dτ (2.1.18)

The convolution theorem states that

F (τ) = f1 ∗ f2 ≡
1√
2π

∫ ∞

−∞
g1(ω)g2(ω)eiωτdω, (2.1.19)

where g1(ω) and g2(ω) are the Fourier transform of f1(τ) and f2(τ).

By taking the Fourier transform of this last equation, and thus solving for the product
g1(ω)g2(ω), we see that the convolution theorem may also be expressed as follows: The Fourier
transform of the convolution of two functions is the product of the Fourier transforms of these
two functions. Denoting the Fourier transform of F (τ) by G(ω)[64] this may be written

G(ω) = g1(ω)g2(ω).
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2.2 Hilbert Transforms

It is often the case that in the study of some physical system one has to deal with complex-
valued functions (indices of refraction, susceptibilities, scattering amplitudes, impedances,
etc.) which have a physical meaning only when the argument of the function (which might,
for example, be a frequency or an energy) takes on real values. In many cases it is possible to
obtain, from the laws governing the system, information about the general properties of such
functions when the argument is complex; for example, it may be that the function is analytic
in some region of the complex plane. Since experimental data can only be obtained for real
values of the argument. It is of interest to see whether we can use general properties such
as analyticity to deduce relations between real quantities of direct physical significance. The
key to such a program can be found in the study of Hilbert transform pairs.

Here we go, consider a function f(z), which is analytic in the upper half of the complex
plane, and which is such that |f(z)| → 0 as |z| → ∞ in the upper half-plane (Note that the
only function which can satisfy these conditions in the entire plane is f ≡ 0). We have

P

∫ ∞

−∞

f(x)
x− α

dx = iπf(α), (2.2.1)

where f(x) is a complex-valued function of a real variable. We may write it as

f(x) ≡ fR(α) + ifI(α).

Equating real and imaginary parts in Eq.(2.2.1), we get

fR(α) =
1
π

P

∫ ∞

−∞

fI(x)
x− α

dx, (2.2.2a)

fI(α) =− 1
π

P

∫ ∞

−∞

fR(x)
x− α

dx, (2.2.2b)

any pair of functions which satisfy Eqs.(2.2.2a) and (2.2.2b) is called a Hilbert transform pair.
Note that these equations tell us that if fI(x) ≡ 0, then fR(x) ≡ 0 [65; 66].

2.3 Kramers-Krönig Analysis for Conductivity

We wish to establish formal relations between real and imaginary parts of certain physical
quantities; these are termed “Kramers-Krönig relations”. We shall describe the analysis
for the electrical conductivity, because it appears for this quantity in its simplest form,
and because this particular application of the Kramers-Krönig relations is of considerable
importance.

We begin our discussion by noting that the Fourier components of electric field and current
are related by

JJJ(ω) = σ(ω)EEE(ω)

In this equation we allow all three functions to be complex-in particular

σ = σ1 + iσ2 (2.3.1)
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where σ1 and σ2 are real. On the other hand, this complex nature is purely formal and the
actual current

J(t) = (1/2π)
∫ ∞

−∞
σ(ω)e−iωtE(ω)dω (2.3.2)

must be real on the application of a real electric field; thus in the conduction of this expression

J(t) =
∫ ∞

−∞
σ(t− t′)E(t′)dt′ (2.3.3)

the quantity

σ(t) = (1/2π)
∫ ∞

−∞
σ(ω)e−iωtdω (2.3.4)

must be real. This implies that
σ(−ω) = σ∗(ω) (2.3.5)

ı.e
σ1(−ω) = σ1(ω), σ2(−ω) = −σ2(ω). (2.3.6)

We come now to the crucial point in obtaining the Kramers-Krönig relations: by
the“causality principle” (section2.6.4) J(t) can not depend on E(t′) if t < t′. This implies

σ(t) = 0 if t < 0 (2.3.7)

and so we can write the inverse Fourier transform of σ(t) as

σ(ω) =
∫ ∞

0
σ(t)eiωtdt. (2.3.8)

we may note from Eq.(2.3.3) that if E(t) is a delta-function impulse, J(t) = σ(t), ı.e, σ(t) is
the current produced by a“unit impulse” of electric field at t=0. This establishes, on physical
grounds, that σ(t)is “well behaved”. We shall also use the result that

lim
ω→∞

σ(ω) = 0. (2.3.9)

The good behaviour of σ(t) has the consequence that, admitting complex values of ω
σ(ω)has no zeros or singularities in the upper half of the complex-plane, and since Eq.(2.3.9)
holds, σ(ω) vanishes over the semi-circle at infinity in this plane. Consider therefore the
contour C shown in Fig.(2.1) and the integral∫

c

σ(ω0)
ω0 − ω

dω0 = 0. (2.3.10)

The integral is zero since the contour contains no poles and, since the integrand vanishes
over the semi-circle at infinity, can also be written (Eq.(2.2.1))

P

∫
σ(ω0)
ω0 − ω

dω0 − iπσ(ω) = 0, (2.3.11)

the second term on the left-hand side being the contribution to the integral over the
infinitesimal semi-circle about the simple pole at ω0 = ω, and P is the Cauchy principle value



36 MAIN TOOLS FOR OUR WORK 2
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Figure 2.1: Form of contour in integral 2.3.10

(sections 2.1.2 & 2.1.3). Taking real and imaginary parts of equation (2.3.11) we immediately
find

σ1(ω) =
P

π

∫ ∞

−∞

σ2(ω0)
ω0 − ω

dω0, (2.3.12)

σ2(ω) =− P

π

∫ ∞

−∞

σ1(ω0)
ω0 − ω

dω0 (2.3.13)

these are the Kramers-Krönig relation, often rewritten as

σ1(ω) =
2P

π

∫ ∞

0

ω0σ2(ω0)
ω2

0 − ω2
dω0, (2.3.14)

σ2(ω) =− 2ωP

π

∫ ∞

0

σ1(ω0)
ω2

0 − ω2
dω0 (2.3.15)

which forms are easily obtained from (2.3.12) by using the fact that σ1(ω) is even and σ2(ω) is
odd [67].

2.4 Residue Theorem

The coefficient a−1 in Laurent’s expansion of

f(z) =
∞∑

n=−∞
an(z − z0)n, (2.4.1)

= · · ·+ a−2(z − z0)−2 + a−1(z − z0)−1 + a0 + a1(z − z0) + · · · (2.4.2)

is called the residue of f(z) at z = z0; it is denoted as follows

a−1 = Resf(z)z=z0 .

From the integral of (z − z0)n we have∮
f(z)dz = 2πia−1 = 2πiResf(z)z=z0 , (2.4.3)

for any contour enclosing z = z0 but no other singularity of f(z) [68].

If the closed contour C encloses several singularities, we can let it shrink to enclose each
singularity separately, as shown in Fig.(2.4). Cauchy’s integral theorem leads to∮

c
f(z)dz +

∮
c0

f(z)dz +
∮

c1

f(z)dz+∮
c2

f(z)dz + · · · = 0. (2.4.4)
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Figure 2.2: Contour of integration

but the circular integral around any given singular point is given by∮
ci

f(z)dz = −2πia−1 zi = −2πiResf(z)z=z0i (2.4.5)

assuming a Laurent expansion about the singular point, z = zi.
Combining the last two Eqs., we have∮

c
f(z)dz =− 2πi(a−1z00 + (a−1z01 + (a−1z02 + · · · )

=2πi
∑

Resf(z). (2.4.6)

This is the residue theorem [69].

2.4.1 Evaluation of definite integrals

Consider an integral of the form

I =
∫ 2π

0
f(cos θ, sin θ)dθ (2.4.7)

where f is finite and also single-valued for all values of θ.

Let z = eiθ, dz = ieiθdθ. From this

dθ = −idz
z
, sin θ =

z − z−1

2i
, cos θ =

z + z−1

2

then

I = −i
∮

unit circle
f(
z − z−1

2i
,

z + z−1

2
)

dz

z
(2.4.8)

By residue theorem [69]

I = (−i)2πi
∑

residues within the unit circle (2.4.9)
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2.5 Second Quantization

In many-body theories, the method of second quantization is a powerful tool. Second
quantization was originally introduced in order to deal with relativistic quantum mechanics,
realizing that a consistent way of formulating a relativistic field theory had to go beyond first
quantization. In our case, we stay in the realms of nonrelativistic quantum mechanics, but
second quantization will allow us to describe a many-body system in a transparent way, on
the basis of the occupation-number states [70; 71].

2.5.1 Occupation Number Space

Occupation number, or Fock space, is an abstract mathematical space in which complete sets
of basis states are enumerated by indicating the number of particles in single particle states
with (sets of) quantum numbers λ. A basis vector in occupation number space has the form

|Ψ >= |n1, n2, . . . , nλ, . . . > (2.5.1)

where nλ is the number of particles in each single particle state [72].

For bosons, nλ must be a non-negative integer; for fermions, the Pauli exclusion principle
restricts nλ to be either 0 or 1. A feature of the Fock space is that the total number of particles
is not a fixed parameter, but rather is a dynamical variable associated with a total number
operator

N =
∞∑

λ=0

nλ (2.5.2)

This state vector |Ψ > has the following properties.

- For given N , it corresponds to the fully symmetrized or antisymmetrized product of N
single particle wave function in the Schrdinger picture.

- It is a complete description of the N-body system.

- It is not a function of any particular set of coordinates.

- It is part of a set that forms a complete orthogonal basis, that is,

< Ψ|Ψ′ >= < n1, n2, . . . , nλ, . . . |n′1, n′2, . . . , n′λ, . . . >

=
∞∏

λ=1

δnλ n′λ

(2.5.3)

The vacuum state |0 > is the state that has zero particles in every slot:

|0 >= |0, 0, . . . , 0, . . . >

A single particle states is [72; 73]:

|λ >= |0, 0, . . . , nλ = 1, 0, . . . >≡ |01, 02, . . . , 0λ−1, 1λ, 0λ+1, . . . >
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2.5.2 Construction of States

The basic building element in Fock space the destruction or annihilation operator cλ that
removes one particle from state λ. Its adjoint c†λ is a creation operator that places one
additional particle into the state λ [72].

Fermionic operators. We define the two operators, cλ and c†λ, by

c†λ|ψ > = c†λ| · · · , nλ, · · · >= (±1)(
∑λ′<λ

λ′ nλ′ )(1− nλ)
1
2 | · · · , nλ+1, · · · >, (2.5.4)

cλ|ψ > = cλ| · · · , nλ, · · · >= (±1)(
∑λ′<λ

λ′ nλ′ )(nλ)
1
2 | · · · , nλ−1, · · · >, (2.5.5)

where the (+) corresponds to Bosons and the (-) corresponds to Fermions†. To fully specify the
operators we must also specify their commutation relations.

The Fermions commutation relations are:

cλc
†
λ′ + c†λ′cλ = δλλ′ (2.5.6)

c†λ′c
†
λ + c†λc

†
λ′ = 0 (2.5.7)

cλ′cλ + cλcλ′ = 0 (2.5.8)

The field operators: We now define the field operators, ψ†σ(r) and ψσ(r), by

ψ†σ(r) =
∑

λ

c†λφ
∗
λ(r) (2.5.9)

ψσ(r) =
∑

λ

cλφλ(r) (2.5.10)

where φλ(r) is the wave function of a particle in the state λ at the position r. ψ†σ(r) creates a
particle with spin σ at position r and ψσ(r) annihilates a particle with spin σ at position r.

We can use the field operators to define composite operators. For example the density
operator:

ρσ(r) = mψ†σ(r)ψσ(r) (2.5.11)

the expectation value of which is the density in the state |Ψ0 >:

ρσ(r) = m < ψ0|ψ†σ(r)ψσ(r)|ψ0 > (2.5.12)

or the (particle) current operator:

jσ(r) = ψ†σ(r)
∇
im

ψσ(r) + h.c., (2.5.13)

where h.c. indicates the Hermitian conjugate, the expectation value of which is the (particle)
current :

jσ(r) =< ψ0|ψ†σ(r)
∇
im

ψσ(r) + h.c.|ψ0 > . (2.5.14)

†we shall consider throughout the thesis the fermions only.
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In terms of the field operators, the single particle Hamiltonian, H0, is given by

H0 =
∑

σ

∫
drψ†σ(r)

(
−∇

2

2m
+ V ext(r)

)
ψσ(r) (2.5.15)

For two body interactions the Hamiltonian [74], H ′, is

H ′ =
1
2

∑
σσ′

∫
dr

∫
dr′ψ†σ(r)ψ†σ′(r

′)V (|r− r′|)ψσ′(r′)ψσ(r). (2.5.16)

2.5.3 The tight binding Hamiltonian

We will now derive the tight binding Hamiltonian from Eq.(2.5.15). We begin by substituting
Eq.(2.5.9) and Eq.(2.5.10) into the single particle Hamiltonian. This gives

H0 =
∑
kσ

∫
drc†kσφ

∗
kσ(r)

(
−∇

2

2m
+ V ext(r)

)
φkσ(r)ckσ. (2.5.17)

where we have identified k and σ as the state labels λ, and φkσ(r) is the solution of the single
particle TISE so (

−∇
2

2m
+ V ext(r)

)
φkσ(r) = εkσφkσ(r) (2.5.18)

Substituting this into Eq.(2.5.17) we find that

H0 =
∑
kσ

εkσc
†
kσckσ. (2.5.19)

The number operator simply counts the number of particles in the state |kσ >. The single
particle Hamiltonian then becomes

H0 =
∑
kσ

εkσNkσ. (2.5.20)

Thus the energy of the non-interacting system is given by the product of the energy of a single
particle state and the number of particles in the that state summed over all states.

We now introduce the (lattice) Fourier transformations of the second quantization opera-
tors.

cnσ =
1√
N

∑
k

eik·Rnckσ (2.5.21)

c†nσ =
1√
N

∑
k

e−ik·Rnc†kσ (2.5.22)

where the sum is over the states of the system at the wave vector k in the first Brillouin zone.
c†nσ annihilates (creates) a particle in an orbital centered on the lattice site n. Substituting
the inverse Fourier transforms into Eq.(2.5.19) we find that

H0 =
∑
nmσ

tnmc
†
nσcmσ. (2.5.23)
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where the hopping integral, tnm , S3.1, is the Fourier transform of the state energy, εkσ. Thus

εkσ =
∑
m

tnme
ik·(Rn−Rm) (2.5.24)

If we assume a simple cubic lattice with on site and nearest neighbour hopping only [74],
we find that

εkσ = t0 + at′
(
cos(kxa) + cos(kya) + cos(kza)

)
(2.5.25)
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2.6 Green’s Function

2.6.1 Introduction and Definition of Green’s Functions

Due to their great importance in our field of interest, we will discuss Green’s function in some
detail. Green’s function (GF) is a basic solution to a linear differential equation, a building
block that can be used to construct many useful solutions. The exact form of the GF depends
on the differential equation, the body shape, and the type of boundary conditions present.
Green functions are named in honor of English mathematician and physicist George Green
(1793-1841) [75]. In its basic definition it is much more complex function than the “simple”
Green’s function, familiar from the theory of partial differential equations, but many of its
properties do bear a very close relationship to the simple function.

Suppose we start with the ground state of an N particle system(|N>), then add a particle
of spin σ to the system at rrr, t by applying a creation operator ψ†σ(rrr, t) in the Heisenberg picture
(Appendix A.2). The new state will be ψ†σ(rrr, t)|N >. We can construct a type of Green’s function
by considering the propagation of the extra particle. If we remove a particle of spin σ′ at rrr′, t′

from the new state, then the overlap with the ground state should tell us something about the
probability that the system is left undisturb, or alternatively, the probability that the particle
propagated from rrr, t to rrr′, t′ with a change of spin from σ to σ′ on the way, see Fig.(2.3). That
is, we envisage the following train of events.

1. |N >: ground state of system,

2. ψ†σ(rrr, t)|N >, system with particle added at rrr, t with spin σ,

3. ψσ′(rrr′, t′)ψ
†
σ(rrr, t)|N >: particle removed at rrr′, t′ with spin σ′ from N + 1 state, and

4. < N |ψσ′(rrr′, t′)ψ
†
σ(rrr, t)|N >: overlap of system after perturbation with the original ground

state.

Alternatively, we consider the propagation of a hole, described by the following train of
events:

1. |N >,

2. ψσ(rrr, t)|N >,

3. ψ†σ′(rrr
′, t′)ψσ(rrr, t)|N >, and

4. < N |ψ†σ′(rrr
′, t′)ψσ(rrr, t)|N >.

Now we define a time-ordering operator T such that

T [ψσ(rrr, t)ψ†σ′(rrr
′, t′)] =

{
ψσ(rrr, t)ψ†σ′(rrr

′, t′), t > t′

−ψ†σ′(rrr
′, t′)ψσ(rrr, t), t < t′

(2.6.1)

The -ve sign means fermions and is designed to take care of the anti-commutators. Now both
of the above sequence can be combined in a single expression for our definition of Green’s
function [77].

Gσσ′ = −i < N |T [ψσ(rrr, t)ψ†σ′(rrr
′, t′)]|N > (2.6.2)
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Figure 2.3: Classical analogue machine to illustrate the single-particle propagator and the vacuum
amplitude [76].

Since we are interested in temperature effects. We therefor define the Green’s function,
as an average over all possible configurations of the system. Taking the average with
respect to the grand canonical ensemble, which is particularly useful for a description of the
superconducting state, the Green’s function for an electron system reads‡

G(rt, r′t′) = −i < T [ψ(rrr, t)ψ†(rrr′, t′)] > (2.6.3)

=
−i T re−βK

[
T{ψ(r, t)ψ†(r′, t′)}

]
Tr e−βK

(2.6.4)

Where β = 1/kBT , and K = H − µN and K is the grand canonical Hamiltonian.

According to Mahan[78] and Economu[79] one can define six different Green’s functions.
The six functions are advanced GA, retarded GR, time-ordered Gt, anti-time-ordered Gt̄, and

‡From here to the end we shall omit the spin symbol, unless it is required.
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G<, G> which have no name :

G>(rt; r′t′) = − i < ψ(r, t)ψ†(r′, t′) >

G<(rt; r′t′) = i < ψ†(r′, t′)ψ(r, t) >
Gt(rt; r′t′) = Θ(t− t′) G>(rt; r′t′) + Θ(t′ − t)G<(rt; r′t′)
Gt̄(rt; r

′t′) = Θ(t′ − t) G>(rt; r′t′) + Θ(t− t′)G<(rt; r′t′)
GR(rt; r′t′) = Gt −G< = G> −Gt̄

GA(rt; r′t′) = Gt −G> = G< −Gt̄

(2.6.5)

The Green’s functions can be written in terms of the eigenfunctions φλ(r) by expanding the
field operators in terms of these eigenfunctions and creation C†

λ and destruction (annihilation)
Cλ operators [cf section 2.5, and Appx.A.2.1]:

ψ(r, t) =
∑

λ

cλφλ(r) e−iελt

ψ†(r′, t′) =
∑

λ

c†λφ
∗
λ(r′) eiελt′

(2.6.6)

The Green’s functions in (2.6.5) are evaluated with the occupation factor nλ =< c†λcλ >. At
zero temperature§ nλ = Θ(−ξλ) is a step function that is zero or one depending upon whether
ξλ = ελ − µ is positive or negative:

G>(rt, r′t′) = − i
∑

λ

(1− nλ)φλ(r)φ∗λ(r′)e−iελ(t−t′)

G<(rt, r′t′) = i
∑

λ

nλφλ(r)φ∗λ(r′)e−iελ(t−t′)

Gt(rt, r′t′) = − i
∑

λ

[Θ(t− t′)− nλ]φλ(r)φ∗λ(r′)e−iελ(t−t′)

Gt̄(rt, r
′t′) = − i

∑
λ

[Θ(t′ − t)− nλ]φλ(r)φ∗λ(r′)e−iελ(t−t′)

GR(rt, r′t′) = − iΘ(t− t′)
∑

λ

φλ(r)φ∗λ(r′)e−iελ(t−t′)

GA(rt, r′t′) = iΘ(t′ − t)
∑

λ

φλ(r)φ∗λ(r′)e−iελ(t−t′).

(2.6.7)

The starting point for any calculation, at least conceptually, is the behaviour of the Green’s
functions for systems without interactions. Then the wave functions are those for plane wave
or noninteracting Bloch states, if such can be defined. The quantum number λ becomes
the wave vector k, and a spin index σ, which is usually not written as we mentioned. The
eigenvalue combination is φk(r1)φ

†
k(r2) = exp[ik · (r1 − r2)]/ν. Fourier-transforming the r-

variable to k (section 2.1.2) gives the free particle Green’s functions G(0)(k, t)¶. For Fermions

§They are also valid in equilibrium at finite temperatures if nλ = 1/[exp(βξλ)+1] is the thermodynamic average
of the occupation number.

¶The superscript"0" or the subscript "0" on the Green’s functions means to use those for a noninteracting system
in equilibrium.
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of band energy εk and occupation number nk = nF (εk) they are

G0
t (k, t) = − i [Θ(t− t′)− nk]e−iεk(t−t′)

G0
t̄ (k, t) = − i [Θ(t′ − t)− nk]e−iεk(t−t′)

G<
0 (k, t) = i nk e

−iεk(t−t′)

G>
0 (k, t) = − i (1− nk) e−iεk(t−t′)

G0
R(k, t) = − iΘ(t− t′) e−iεk(t−t′)

G0
A(k, t) = iΘ(t′ − t) e−iεk(t−t′)

(2.6.8)

The t variable can be Fourier transformed, which gives the noninteracting Green’s function of
frequency; the quantity δ (the convergence parameter) is infinitesimal:

G0
R(k, ω) =

1
ω − εk + iδ

G0
A(k, ω) =

1
ω − εk − iδ

G<
0 (k, ω) = 2π i nk δ(ω − εk)

G>
0 (k, ω) = − 2π i (1− nk) δ(ω − εk)

G0
t (k, ω) = GR +G<

0 =
1

ω − εk + iδk

G0
t̄ (k, ω) = −GA +G<

0 =
−1

ω − εk − iδk

(2.6.9)

N.B:
-the two kinds of δ is always positive, while δk is positive for k > kF and negative for k < kF .
-the retarded functions always have a positive δ,
-the retarded and advanced Green’s functions could differ as soon as interactions are
introduced, since they have different self-energy functions in degenerate Fermi systems.
-Also the expressions such GR = Gt − G< are obeyed for interacting and noninteracting
functions. They are obeyed for both cases of arguments (k, t) and (k, ω).

2.6.2 Imaginary Time Green’s Functions

Imaginary time is a concept derived from quantum mechanics and is essential in connecting
quantum mechanics with statistical mechanics. Imaginary time τ is obtained from real time
via a Wick rotation by π/2: τ = it [80].

Just for orientation, assume t > t′ and let us use the cyclic property of a trace (that it is
unchanged by a cyclic permutation of the operators). Recalling Eq.(2.6.4) we find that

Ḡ(rt, r′t′) =− i T r[ e(−βK)T{ψ(r, t)ψ†(r′, t′)}]
Tr e(−βK)

=− i T r e−(β−it)K ψ(r) e−i(t−t′)Kψ(r′) e−it′K

Tr e(−βK)

=− i T r e−βK [e(β+it′)Kψ†(r′) e−(β+it′)K ] [eitKψ(r)e−itK ]
Tr e(−βK)

=− G(rt, r′t′ − i β) (2.6.10)

if in some sense we could say that t− i β > t. This suggests one of two possible procedures:



46 MAIN TOOLS FOR OUR WORK 2

1. We could let β → iγ(1− iη), γ real, consider Green functions for imaginary temperature,
and having calculated them, continue analytically to real temperature. This is
essentially the procedure followed by Martin and Schwinger.

2. Alternatively, we could let it = τ and it′ = τ ′ understanding the T product to be ordered
acording to the relative sizes of τ and τ ′. Then eventually we would have to continue
analytically to real times (or real time differences). This is the procedure of Abrikosov et
al. and the one we shall follow.

To be systematic, we introduce still another Green function defined most conveniently
directly in terms of imaginary times‖:

G(r τ, r′τ ′) = −Tr [e(−βK)T{ψ(rτ)ψ†(r′τ ′)}]
tr e(−βK)

(2.6.11)

Consider homogeneous time-independent systems (this is not necessary but simplifies the
discussion). Then just as for (2.6.10), it is show

G(r− r′, τ − τ ′) =

{
−G(r− r′, τ − τ ′ − β) if τ − τ ′ > 0 and τ − τ ′ − β < 0,
−G(r− r′, τ − τ ′ + β) if τ − τ ′ < 0 and τ − τ ′ + β > 0.

(2.6.12)

Letting r− r′ → r and τ − τ ′ → τ these are rewritten

G(r, τ) =

{
−G(r, τ − β) if τ > 0 and τ − β < 0,
−G(r, τ + β) if τ < 0 and τ + β > 0.

(2.6.13)

Given G for −β < τ < 0, we thus define G for 0 < τ < β. It is convenient to define G

outside the interval (−β, β) by requiring it to be periodic with period 2β. Expanding G(r, τ) in
a Fourier series

G(r, τ) =
1
β

∞∑
n=−∞

e(−iωnτ)G(r, ωn), (2.6.14)

we must require for Matsubara frequencies ωn that

ωn =
(2n+ 1)π

β
, (2.6.15)

so that G(r, τ) is periodic in τ with period 2β and therefore it satisfies (2.6.13).

The expansion coefficients G(r, ωn) are the analogue of the function G(r, ω) at absolute
zero. Inverting (2.6.14), we have

G(r, ωn) =
1
2

∫ β

−β
G(r, τ) e(iωnτ) dτ. (2.6.16)

If we divide the integral (2.6.16) into its negative and positive regions,

G(ωn) =
1
2

[∫ β

0
G(τ) eiωnτ dτ +

∫ 0

−β
G(τ) eiωnτ dτ

]
(2.6.17)

‖To describe the Green’s function at finite temperature we must introduce two new concepts. The first of these
is imaginary time, τ = it. Secondly we introduce the ‘Heisenberg’ field operators[74]
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and change the variables in the second term from τ to τ + β this gives

G(ωn) =
1
2

(1− eiωnβ)
∫ β

0
G(τ) eiωnτ dτ. (2.6.18)

We get for Fermions[78]

G(ωn) =
∫ β

0
G(τ) eiωnτ dτ (2.6.19)

The momentum Green functions for noninteracting particles are[81] readily calculated
(Eq.(2.6.8)) and they are

G0(k, τ) =
e−ε0(k)τ

1 + e−βε0(k)
, β > τ > 0

=− e−ε0(k)τ

1 + eβε0(k)
, −β < τ < 0 (2.6.20)

and

G0(k, ωn) =
1

iωn − {ε0(k)}
. (2.6.21)

The connection between the functions G0(ωn) and G
(0)
R (ω):

Comparing Eq.(2.6.21) and Eq.(2.6.9), we see that iωn in G0(ωn) is equivalent to ω + iδ in
G

(0)
R (ω), so we can obtain the retarded Green’s function from G0(ωn) just by replacing iωn

everywhere by ω + iδ. This called analytical continuation.

2.6.3 Spectral Function

Another quantity of great importance is the spectral function A(k, ω), which is also called the
spectral density function. The retarded G0

R and advanced Green’s functions G0
A are given by

Eq.(2.6.9) and they are

G0
R
A

=
1(

ω − εk ± iδ
) (2.6.22)

By subtracting, we obtain

[G0
R −G0

A] = lim
δ→0

[ 1
ω − εk + iδ

− 1
ω − εk − iδ

]
(2.6.23)

Now recall the Dirac relation

lim
δ→0

1
r ± iδ

= P
(1
r

)
∓ iπδ(r) (2.6.24)

where P denotes principle part. Employing this relation in Eq.(2.6.23) gives

A(k, ω) ≡ i[G0
R −G0

A] = 2πδ
(
ω − εk

)
≡ −2ImG0

R (2.6.25)

This form is generally known as the spectral function as it displays the dispersion relation of
ω and k [78; 82].
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Features of the Spectral function:

1. A(k, ω) ≥ 0
This positiveness is an important feature, since we shall interpret A(k, ω) as a
probability function.

2. Another important feature of the electron spectral function is obtained by integrating
overall frequencies [78]:

1 =
∫ ∞

−∞

dω

2π
A(k, ω)

2.6.4 Causal Green’s Functions

Causality in general is that the effect cannot precede the cause. A scattered wave cannot be
emitted by the scattering center before the incident wave has arrived. For linear systems the
most general relation between an input function D (the cause) and an output function Y (the
effect) may be written as

Y (t) =
∫ ∞

−∞
I(t− t′)D(t′) (2.6.26)

Causality is imposed by requiring that [69]

I(t− t′) = 0 for t− t′ < 0. (2.6.27)

A causal Greens function is zero when t− t′ ≤ 0. From (2.6.7) we see that the retarded Green’s
function GR(rt, r′t′) is the causal Green’s function. Causality also shows up as a property in
the complex plane. If the Fourier transform with respect to time is denoted by GR(ω), then
we have

GR(t− t′) =
1
2π

∫ ∞

−∞
e−iω(t−t′)GR(ω)dω. (2.6.28)

For t − t′ > 0 we can perform the Fourier transform by closing the contour in the upper half
plane (Fig.(2.1)),

GR(t− t′) = i
∑

residues in upper half plane.. (2.6.29)

Thus we see that Green’s functions that are analytic in the upper half plane are causal. In
contrast to causal, or retarded Greens functions, there are advanced Greens functions which
are zero for t− t′ > 0 and non-zero for t− t′ < 0. These functions are analytic on the lower half
plane [66].

2.6.5 Equation of Motion for Green’s Functions

Suppose we measure the one-particle energies from the energy µ [81], then the Hamiltonian
will be

K =
∫
d3r ψ†(r)

(
−∇

2

2m
− µ+ u(r)

)
ψ(r)+

1
2

∫
d3r d3r′ψ†(r′)ψ†(r)V (|r′ − r|)ψ(r)ψ(r′) (2.6.30)

=(H0 − µN) +H ′ (2.6.31)

Where u(r) is the one-particle potential ( external potential).
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Using the equations of motion for the Heisenberg operator, as seen in Appendix A.2, one
can derive the equations of motion for the Green’s functions. We start with the equation of
motion for the Heisenberg operator ψ∗∗:

∂

∂τ
ψ(rrr, τ) +

(∇2

2m
+ µ− u(r)

)
ψ(rrr, τ) = [ψ(rrr, τ),H ′], (2.6.32)

If the interaction H ′ is independent of the spin variable and is given by

H ′ =
1
2

∫
d3r d3r′ψ†(r′)ψ†(r)V (|r′ − r|)ψ(r)ψ(r′), (2.5.16)

then
[ψ,H ′] =

∫
d3r′ V (|r′ − r|)ψ†(r′)ψ(r′)ψ(r) (2.6.33)

Therefore

∂

∂τ
ψ(rrr, τ) +

(∇2

2m
+ µ

)
ψ(rrr, τ) =

∫
d3r′ V (|r′ − r|)ψ†(r′)ψ(r′)ψ(r). (2.6.34)

Rewriting the term < · · · > in Eq.(2.6.4) in an explicit form, we have

< Tψ(rrr, τ)ψ†(rrr′, 0) >= < ψ(rrr, τ)ψ†(rrr′, 0) > Θ(τ)

− < ψ†(rrr′, 0)ψ(rrr, τ) > Θ(−τ), (2.6.35)

where Θ(τ) = 1 for τ > 0 and Θ(τ) = 0 for τ < 0. Differentiating Eq.(2.6.35) w.r.to
time [70], we find

∂

∂τ
G(rrr,rrr′, τ) =

∂

∂τ
[− < ψ(rrr, τ)ψ†(rrr′, 0) > Θ(τ)+ < ψ†(rrr′, 0)ψ(rrr, τ) > Θ(−τ)]

=−
〈 ∂
∂τ
ψ(rrr, τ)ψ†(rrr′, 0)

〉
Θ(τ) +

〈
ψ†(rrr′, 0)

∂

∂τ
ψ(rrr, τ)

〉
Θ(−τ)

− < ψ(rrr, τ)ψ†(rrr′, 0) > δ(τ)− < ψ†(rrr′, 0)ψ(rrr, τ)] > δ(τ)

=−
〈
T

( ∂
∂τ
ψ(rrr, τ)ψ†(rrr′, 0)

)〉
−< {ψ(rrr), ψ(rrr′)} >︸ ︷︷ ︸

δ(rrr−rrr′)

δ(τ) (2.6.36)

Thus

[
∂

∂τ
+
∇2

2m
+ µ− u(r)]G(rrr,rrr′, τ)] = δ(rrr − rrr′)δ(τ)− i < T [ψ(rrr, τ),H ′]ψ†(rrr′, 0) > (2.6.37)

A statistical average over 4-field operators appears [83].

G(1234) =< T (ψ(1)ψ(2)ψ†(3)ψ†(4)) >,

where 1,2 etc. represent (r, t), (r′, t′), etc. Eq.(2.6.37) becomes

[
∂

∂τ
+
∇2

2m
+ µ− u(r)]G(rrr,rrr′, τ)] =δ(rrr − rrr′)δ(τ)

− i

∫
dr′′V (|r − r′|)K(r′′τ, rτ, r′τ, r′′τ+) (2.6.38)

∗∗ψ will be written in Heisenberg picture
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Thus, as we see the Green’s functions form a hierarchy of equations: In order to determine
the one-particle Green’s function, one needs the two-particle Green’s function, and so on [70;
83]. Omit the two-particle interaction, we find

[
∂

∂τ
+
∇2

2m
+ µ− u(r)]G(rrr,rrr′, τ) = δ(rrr − rrr′)δ(τ) (2.6.39)

Fourier transform the last equation with respect to τ , we get

[iωn +
∇2

2m
+ µ− u(rrr)]G(rrr − rrr′) = δ(rrr − rrr′) (2.6.40)

Consider the simpler case where u(r) = 0

[iωn +
∇2

2m
+ µ]G0(rrr − rrr′) = δ(rrr − rrr′) (2.6.41)

G0 can be used to rewrite the equation for G in the form of an integral equation [83]:

G(rrr,rrr′′, ωn) = G0(rrr − rrr′′, ωn) +
∫
dr′G0(rrr − rrr′, ωn)V (rrr′)G(rrr′, rrr′′, ωn). (2.6.42)

As will be shown in section (2.7) on scattering.
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2.7 Scattering Theory In Language Of Bloch Function And
Green’s Function

The time-independent Schrödinger equation

[H0(r) + V (r)]ψn,k(r) = εn,kψn,k(r)

for a particle scattered by some random defect potential V (r) can be transformed to an integral
equation

ψn,k(r) = φn,k(r) +
∫

dDr′G0
n,k(r, r′)V (r′)ψn,k(r′) (2.7.1)

with the help of the Green function for the clean system

[εn,k −H0(r)]G0
n,k(r, r′) = δ(r− r′). (2.7.2)

We have allowed for the possibility that a periodic lattice potential is incorporated in H0.
The eigenfunctions of H0 are Bloch functions φn,k(r) n is the band index and k the quasi-
momentum from the 1st Brillouin zone.
Eq. (2.7.2) is solved by

G0
n,k(r, r′) =

∑
m

∫
dDp

(2π)D
φm,p(r)φ∗m,p(r′)G0

n,k(m,p) (2.7.3a)

with

G0
n,k(m,p) =

1
εn,k − εm,p

(2.7.3b)

When this representation of the Green’s function is inserted in (2.7.1) we obtain

ψn,k(r) = φn,k(r) +
∑
m

∫
dDp

(2π)D
φm,p(r)G0

n,k(m,p)T (m,p;n,k). (2.7.4)

Here we have defined the T -matrix

Tm,n(p,k) =
∫

dDr′ φ∗m,pV (r′)ψn,k(r′). (2.7.5)

The Lippmann-Schwinger equation, from which the T -matrix can be calculated, is
obtained by multiplying (2.7.4) by φn′,k′(r)V (r) and then integrating with respect to dDr:

Tn′,n(k′,k) = Vn′,n(k′,k) +
∑
m

∫
dDp

(2π)D
Vn′,m(k′,p)G0

n,k(m,p)Tm,n(p,k). (2.7.6)

Vn′,n(k′,k) is the matrix element

Vn′,n(k′,k) =
∫

dDr′ φ∗n′,k′V (r′)φn,k(r′). (2.7.7)

of the scattering potential with respect to Bloch functions.
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The set of equations ((2.7.4),(2.7.6)) gives the exact solution for the wave function of a
particle propagating in a crystal lattice which contains random defects. In analogy to (2.7.3)
these wave functions can be used to construct the Green function for the system containing
defects:

Gε(r, r′) =
∑
m

∫
dDp

(2π)D

ψm,p(r′)ψm,p(r′)
ε+ iδ − εm,p

(2.7.8)

Taking the imaginary part essentially gives the local density of states.
Alternatively, the equation of motion for Green function leads to

Gε(r, r′) = G0
ε(r, r

′) +
∫

dDρG0
ε(r, ρρρ)V (ρρρ)Gε(ρρρ, r′) (2.7.9a)

which we rewrite as

Gε(r, r′) = G0
ε(r, r

′) +
∫

dDρ

∫
dDρ′G0

ε(r, ρ)T
ε(ρ, ρ′)Gε(ρ, r′), (2.7.9b)

defining a generalized T -matrix. An equation for this quantity can be derived by operating
with ε−H0(r)− V (r) on both sides of (2.7.9b) and using (2.7.2):

T ε(r, r′) = V (r)δ(r− r′) + V (r)
∫

dDρG0
ε(r, ρ)T

ε(ρ, r′) (2.7.10)

Defining

T ε
n′,n(k′,k) =

∫
dD r

∫
dD r′ φ∗n′,k′(r)T (r, r′)φn,k(r′) (2.7.11)

we arrive at

T ε
n′,n(k′,k) = Vn′,n(k′,k) +

∑
m

∫
dDp

(2π)D
Vn′,m(k′,p)G0

ε(m,p)T ε
m,n(p,k). (2.7.12)

Comparison with (2.7.6) shows that this generalized T -matrix reduces to the T -matrix
used in scattering theory when ε = εn,k.
With (2.7.3) and the definition (2.7.11) we can rewrite the equation (2.7.9b) for the Green
function as

Gε(r, r′) = G0
ε(r, r

′)+∑
m,n

∫
dDk

(2π)D

∫
dDk′

(2π)D
φm,k(r)G0

ε(m,k)T ε
m,n(k,k′)G0

ε(n,k
′)φ∗m,k′(r

′). (2.7.13)

From this, the LDOS near a single impurity could also be obtained [83].

SCTMA
Empty lattice

We shall restrict our discussion to the empty lattice so that the undisturbed wave functions
are plane waves and the energy εk of the elastically scattered particle is

εk =
k2

2µ
(2.7.14)
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independent of the direction of k. The range of momenta is unrestricted and the band index
is redundant. The solution for the Green’s function thus reads

G0
k(r, r

′) =
∫

dDp

(2π)D

eip·(r−r′)

k2

2µ −
p2

2µ

(2.7.15)

The wave function of the scattered particle is given by

ψk(r) = eik·r +
∫

dDr′G0
k(r, r′)V (r′)ψk(r′) (2.7.16a)

= eik·r +
∫

dD p

(2π)D
eip·rG0

k(p)T (p,k) (2.7.16b)

and the Lippmann-Schwinger equation reduces to

T (k′,k) = V (k′ − k) +
∫

dDp

(2π)D
V (k′ − p)G0

k(p)T (p,k) (2.7.17)

The only difference to the previous form of this equation is that the matrix element of the
scattering potential is a function of k′ − k.

Solving (2.7.17) can be simplified if only a single defect, described by a spherically
symmetric potential v(r) is considered. Then the T -matrix can only depend on the moduli
of p and k and the angle between them, even when these vectors belong to different energies.
In the case of two dimensions, which is of primary interest here, (2.7.17) can thus be rewritten
as

T (k′, k, cosϕ) = v(k′, k, cosϕ)+∫ ∞

0

dp p

2π

∫ 2π

0

dθ

(2π)
v(k′, p, cos(ϕ− θ))G0

k(p)T (p, k, cos θ) (2.7.18)

Expanding T and v into Fourier series

T (k′, k, cosϕ) = T0(k′, k) + 2
∞∑

m=1

Tm(k′, k) cosmϕ (2.7.19)

leads to a set of decoupled one-dimensional integral equations for the Fourier coefficients [83]

Tm(k′, k) = vm(k′, k) +
∫ ∞

0

dp p

2π
vm(k′, p)G0

k(p)Tm(p, k). (2.7.20)

Solution of the T-matrix equation: δδδ-function potential

The most widely used model for a single, spherically symmetric defect is v(r) = v̄δ(r). Note
that v̄ is the maximum of the potential times some effective area. The Fourier transform v̄ of
v(r) is constant and, in particular, independent of the scattering angle. Hence, only the zeroth
Fourier coefficient T0 is different from zero which corresponds to pure s-wave scattering, as
expected. However, the assumption v0(k′, k) = v̄ also renders T0(k′, k) independent of the first
variable so that (2.7.20) is no longer an integral equation. One immediately arrives at the
solution

T0(k) =
1

1
v̄ −

∫ ∞
0

dp p
2π G

0
k(p)

(2.7.21)
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The remaining k-dependence of T0, usually written in terms of an energy ω = k2

2m − εF
relative to the chemical potential, is absolutely essential in the theory of superconductivity.
The remaining integral in Eq.(2.7.21) is divided into real and imaginary parts [83]:∫ ∞

0

dp p

2π
G0

k(p) = P

∫ ∞

0

dp p

2π
ReG0

k(p)− iπN(ε(k)) (2.7.22)

Eq.(2.7.22) will be being used in chapter3 to get both the density of states (N(ω)) and its
Hilbert transform F (ω)(= ReG0

k(p)).
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2.8 Dynamics correlation and response functions

Much of what we observe in nature is either time- or frequency-dependent. We will introduce a
language to describe time- and frequency-dependent phenomena in condensed matter systems
near thermal equilibrium. We will focus on linear response to time-dependent external fields.
These functions (dynamics correlation and response functions) contain information about the
nature of dynamical modes, e.g., the imaginary part of the response function is a measure of
the rate of dissipation of energy of external forces. The possibility of this linear expansion
implies, of course, an inherent stability in the system being tested [84]

A knowledge of the equations of motion in the presence of external forces is sufficient to
determine dynamical response functions[85].

2.8.1 Linear Response Theory

As mentioned above we drive the system with an external field and measures the response of
the system. The external field couples to the system via some operator B and we measure the
average value of some other operator A of the system, as schematically illustrated in Fig.2.4.

system �� F (t)B< A >

Figure 2.4: The driven response of a system

Typical examples are the application of a frequency-dependent electric field and mea-
suring the induced electric moment, which gives the polarisability, or when we determine
the frequency-dependent magnetic susceptibility by measuring the induced moment when
applying an external magnetic field.

We wish to calculate the forced motion of some dynamical variable A. The total
Hamiltonian of the system is

H(t) = H0 +H ′(t), (2.8.1)

we shall consider the case where the perturbation has the form[86]

H ′(t) = −
∫
d3rB(rrr′)F (rrr′, t) (2.8.2)

where F (rrr′, t) is a real or complex function, e.g, a component of the vector potential A(r′, t).

We consider the average
< A >= Tr(ρA). (2.8.3)

over a statistical distribution given by a density matrix

ρ =
∑

n

Pn|n >< n|. (2.8.4)
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The statistical weights Pn are assumed to be time-independent while the state vectors |n >
evolve according to the Schrödinger equation. This leads to (see AppendixA.4)

i
∂ρ(t)
∂t

= [H, ρ(t)] (2.8.5)

Transforming into the interaction picture, according to Appendix A.3, we get

i
∂ρI(t)
∂t

= [H ′
I(t), ρI(t)] (2.8.6)

We shall assume that the external field has been switched on adiabatically at t = −∞, and
this can be taken care of by multiplying F by a factor eδt , δ being a positive infinitesimal.
Then H ′(t) at t = −∞ is zero so ρ = ρ(H0). So that

ρI(t)|t→−∞ = ρ0.

Upon integration we thus have

ρI(t) = ρ0 − i

∫ t

−∞
dt′[H ′

I(t
′), ρI(t)] (2.8.7)

Since we are only interested in terms linear in H ′
I(t) [87], we may write

ρI(t) = ρ0 + ∆ρI(t) (2.8.8)

and drop terms like [H ′(t′),∆ρ], so that the equation for ρI(t) becomes

ρI(t) = ρ0 − i

∫ t

−∞
dt′[H ′

I(t
′), ρ0]. (2.8.9)

The average < A > in linear response is then given by:

< A >=Tr[ρA] = Tr[ρI(t)AI(t)]

=Tr(ρ0A)− Tr
(
i

∫ t

−∞
dt′[H ′

I(t
′), ρ0]AI(t)

)
upon cyclic invariance of the trace

< A >=Tr(ρ0A)− Tr
(
i

∫ t

−∞
dt′[AI(t),H ′

I(t
′)]ρ0

)
= < A >0 −Tr

(
i

∫ t

−∞
dt′[AI(t),H ′

I(t
′)]ρ0

)
. (2.8.10)

The first term in this equation is merely the equilibrium expectation value 〈A〉0 in the absence
of the external field, and the second term reflects the effects of the external potential to lowest
(i.e., linear) order in F (r′, t).

< A >= < A >0 +i T r
∫ t

−∞
dt′

∫
d3r′ρ0[AI(r, t), BI(r′, t′)]F (r′, t′)

= < A >0 +i
∫ t

−∞
dt′

∫
d3r′ < [AI(r, t), BI(r′, t′)] >0 F (r′, t′)
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upon cyclic invariance of the trace

= < A >0 +i
∫ t

−∞
dt′

∫
d3r′ < [AI(r, t− t′), BI(r′, 0)] >0 F (r′, t′) (2.8.11)

< A >= < A >0 +
∫ t

−∞
dt′

∫
d3r′φAB(r, r′, t− t′)F (r′, t′) (2.8.12)

where, φAB(rrr, r′, t− t′) = i < [AI(rrr, t− t′), BI(rrr′, 0)] >0.

In case of a uniform system, i.e. translational invariant system,

φAB(r, r′, t− t′) = i < [AI(rrr, t− t′), BI(rrr′, 0)] > (2.8.13)
= φAB(r− r′, t− t′)

then

∆ < A > (rrr, t) =
∫ t

−∞
dt′

∫
d3r′φAB(r− r′, t− t′)F (rrr′, t′) (2.8.14)

The integral in (2.8.14) is simply a four-dimensional convolution. Thus its Fourier transform,
see section 2.1.2, is

∆ < A > (k, ω) = χAB(k, ω) F (k, ω) (2.8.15)

The function χAB is called the generalized susceptibility [83; 88], and it is defined by

χAB(k, ω) =
∫ t

−∞
dt′

∫
d3r′ φAB(r− r′, t− t′) e−ik·(r−r′)eiω(t−t′), (2.8.16)

using Eq.(2.8.13) into Eq.(2.8.16) χAB(k, ω) becomes

χAB(k, ω) =i
∫ t

−∞
dt′

∫
d3r′ < [AI(rrr, t− t′), BI(rrr′, 0)] > e−ik·(r−r′)eiω(t−t′). (2.8.17)

Substituting t− t′ = t1 and omit the subscript I, χAB(k, ω) becomes

χAB(k, ω) =i
∫ ∞

0
dt1

∫
d3r′ < [A(rrr, t1), B(rrr′, 0)] > e−ik·(r−r′)eiωt1 , (2.8.18)

Because of the analyticity of the function φAB(t1) in the complex time plane. χAB(k, ω)
becomes very simple when we choose for ω the complex frequency νm = 2πm/β = 2πmT ,
m ∈ Z

χAB(k, iνm) =
∫ 1

T

0
dτ

∫
d3r′ < A(rrr, τ)B(rrr′, 0) > e−ik·(r−r′)eiνmτ (2.8.19)
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2.8.2 Kubo Formula for Conductivity

Kubo formulas are the name applied to the correlation function which describes the linear
response. There are many of them, since there are many possible perturbations and
many linear responses for each perturbation. Formulas of this type were first proposed by
Green(1952,1954) for transport in liquids. Kubo(1959) first derived the equations for electrical
conductivity in solids [78].

The Kubo formula for the transverse conductivity is obtained from linear response theory,
when the perturbation is an electric field which can be expressed in terms of a vector potential
alone:

E = − ∂

∂t
A(r, t) (2.8.20)

2.8.2.1 Transverse Electrical Conductivity

The classical electric current density of a set of point charges −e moving with velocities vi is
given by

J(r) = −e
∑

i

vi δ(r− ri) (2.8.21)

vi =
1
m

(pi + eA(ri, t)) (2.8.22)

vi is replaced by the operator 1
m(pi + eA(ri, t)) . To ensure that J(r) is a hermitian operator,

Eq.(2.8.21) has to be symmetrized. J(r) in the second quantization language is

J(r) =
−e
2m

∫
dr′

∑
σ

ψ†σ(r′)
[
(p + eA(r′, t)) δ(r− r′) + δ(r− r′)(p + eA(r′, t))

]
ψσ(r′) (2.8.23)

= −e
[
j(r) +

e

m
A(r, t)n(r)

]
(2.8.24)

with the current density operator j(r) given by

j(r) =
1

2mi

∑
σ

[ψ†σ(r)(∇ψσ(r))− (∇ψ†σ(r))ψσ(r)] (2.8.25)

or

j(r) =
1

2mi

∑
σ

(∇∇∇−∇′∇′∇′)ψ†σ(r′)ψσ(r)|r′=r. (2.8.26)

The second form is useful when expressing the expectation value of the current density in
terms of Green’s functions. The Hamiltonian of the system in the presence of the vector
potential is given by

H =
1

2m

∑
i

(pi + eA(ri, t))2 =
∑

i

[ 1
2m

p2
i +

e

2m
(pi ·A + A · pi) +

e2

2m
A ·A

]
= H0 +H ′(t)

In addition to the kinetic energy H0 must, at least, contain a random potential responsibile
for a finite resistance and the superconducting pairing interaction. Because we are interested
in linear response we neglect the term (A ·A), so that

H ′ =
e

2m

∑
i

(pi ·A + A · pi)
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In the second quantization form H ′(t) reads

H ′(t) = e

∫
dr′j(r′) ·A(r′, t) (2.8.27)

This is of the form 2.8.2 when we identify B(r′) with the negative of a cartesion coordinate of
the current operator j(r) (2.8.25) or (2.8.26). Inserting J(r) from Eq.(2.8.23) into the equation
(2.8.11) of linear response theory gives

< Jα > (r, t) = −e
2

m
n0Aα(r, t) + e2 i

∫ t

−∞
dt′

∫
dr′ < [jα(r, t− t′), jβ(r′, 0)] > Aβ(r′, t′). (2.8.28)

When the system is homogeneous, Fourier transformation reduces this to

< Jα > (k, ω) =
∑
β

σαβ(k, ω)Eβ(k, ω) (2.8.29)

Eq.(2.8.29) is Ohm’s law with the conductivity tensor given by

σαβ(k, ω) =
e2

iω

(
χjαjβ

(k, ω)− n

m
δαβ

)
(2.8.30)

If the electromagnetic response of the system is local, the current-current correlation function
is proportional to δ(r − r′). Then there is no need to take the Fourier transform with respect
to spatial variables and we obtain

< Jα > (r, ω) =
∑
β

σαβ(r, ω)Eβ(r, ω). (2.8.31)

Usually, the position dependence of the conductivity merely reflects the geometrical shape of
the conductor. The conductivity itself is calculated as if the conductor filled all space and the
local limit is obtained by setting the wave vector k in (2.8.29) equal to zero at some early stage
in the calculations.
The response function (generalized susceptibility), defined and transformed to imaginary
times in Eqs.(2.8.16) and (2.8.19) reads for this special case

χjαjβ
(k, iνm) =

∫
dr eik·(r−r′′)

∫ 1
T

0
dτ < jα(r, τ)jβ(r′′, 0) > eiνmτ (2.8.32)

From Eq.(2.8.26)

< jα(r, τ)jβ(r′′, 0) > =
∑
σσ′

∇α −∇
′
α

2mi
∇′′

β −∇
′′′
β

2mi
< ψ†σ(r′τ)ψσ(rτ)ψ†σ′(r

′′′
, 0)ψσ′(r′′, 0) > | r′′′→r

′′
r′→r

(2.8.33)

We do not consider particle-particle interactions as source of the resistivity and the
superconductor pairing interaction is reduced to a single particle problem by treating it in
a mean field approximation i.e., we neglect quantum fluctuation of the order parameter. Then
the expectation value of four field operators can be factorized:

< ψ†σ(r′τ)ψσ(rτ)ψ†σ′(r
′′′
, 0)ψσ′(r′′, 0) > =< ψ†σ(r′τ)ψσ(rτ) >< ψ†σ′(r

′′′
, 0)ψσ′(r′′, 0) >

+ < ψ†σ(r′τ)ψσ′(r′′, 0) >< ψσ(rτ)ψ†σ′(r
′′′, 0) >

− < ψ†σ(r′τ)ψ†σ′(r
′′′
, 0) >< ψσ(rτ)ψσ′(r′′, 0) >
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The first term is independent of τ and contributes only for νm = 0. This term is omitted. The
remaining terms can be expressed through normal and anomalous Green’s functions

< jα(r, τ)jβ(r′′, 0) >=
∇α −∇

′
α

2mi
∇′′

β −∇
′′′
β

2mi
Sp

[
−G(r′′, r′,−τ)G(r, r′′, τ) + F (r′, r′′′, τ)F (r′′, r,−τ)

]
.

(2.8.34)
The spur takes care of the spin summation. Expanding the imaginary time Green’s function
in Fourier series according to (2.6.14) and taking the Fourier transform with respect to spatial
variables, assuming translational invariance, gives

χjα jβ
(q, νm) =Sp

∫
dDp

(2π)D

((2pα + qα)(2pβ + qβ)
(2m)2

)
× 2TΣωm [Gωn(p)Gωn−νm(p + q) + Fωn(p)Fωn−νm(p + q)]

≡χG
jα jβ

(q, νm) + χF
jα jβ

(q, νm) (2.8.35)

The first term on the right hand side of Eq.2.8.35 will be used in Chapter 3 to calculate the
conductivity in the local limit (q = 0).
The Green’s functions themselves are, of course, modified through the onset of superconduct-
ing order:

Gωn(p) =
iωn + ε(p)

(iωn)2 − ε2(p)−∆2(p)
(2.8.36)

Fωn(p) =
∆(p)

(iωn)2 − ε2(p)−∆2(p)
(2.8.37)

∆(p) is the order parameter in this weak coupling approximation. The fact that ∆(p)
depends on momentum is a generalization of the original BCS theory and suffices to describe
unconventional pairing, like (spin-singlet) d-wave pairing. ε(p) is the quasiparticle dispersion,
which could be modeled by a parabolic band, or a tight-binding band.

The order in which the sum over Matsubara frequencies and the momentum integration
is performed matters. This is particularly clear for the parabolic band, where the real part
of the response function diverges even for 2D systems when the momentum integration is
performed first while the response function vanishes in the clean limit when the frequency
sum is performed first. According to (2.8.30) this leads to

σ(ω) = − e
2

iω

n

m
(2.8.38)

which is the correct result for an ideal conductor or a superconductor. It embodies the
Meissner effect with the London penetration depth.

λL =
√
m

ne
(2.8.39)

In the presence of a random impurity potential the Green’s functions are modified by self-
energy corrections. Then the Green’s functions no longer have isolated poles but cuts. The
frequency sums can be converted into integrals along these cuts, by noting that the Fermi
function has poles of the first order at every Matsubara frequency iωn = i(2n+ 1)πT :

f
( iωn

T

)
=

1
1 + ei(2n+1)πe

ε
T

=
1

1− e
ε
T

→ −T
ε

for
ε

T
� 1. (2.8.40)
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The sum over Matsubara frequencies can thus be transformed into contour integral where
the contour consists of small circles around each iωn. This contour is then deformed into one
that encloses the cut of Gω(p), i.e., the real axis, and Gω−iνm(p), which is parallel to the real
axis but shifted by iνm. At this stage the analytic continuation iνm → ω+ iδ can be performed.
Noting that∫ −∞

+∞
dω0G(ω0 + iδ) +

∫ +∞

−∞
dω0G(ω0 − iδ) = −2i

∫ +∞

−∞
dω0 ImG(ω0 + iδ) (2.8.41)

We arrive at the final result

χjα jβ
(q, ω0 + iδ) =

∫
d3p

(2π)3
(2pα + qα)(2pβ + qβ)

(2m)2

∫ +∞

−∞
dω f(

ω

T
)

× Sp
{
GA(p + q, ω − ω0) ImGR(p, ω) +GR(p, ω + ω0) ImGR(p + q, ω)

}
(2.8.42)

The integral with respect to frequency should be done first, but this is usually impossible
analytically. The only progress in the calculation of the conductivity that can be made is
evaluation of the momentum integral. When only the real part of the conductivity is of
interest, the calculation is straightforward because the integrals converge. For a calculation of
the imaginary part of the conductivity one has to improve the convergence by subtracting and
adding the clean limit which can be calculated exactly because ImGR reduces to a δ-function
[83].





Chapter 3
High Temperature Superconductor From Our
Viewpoint

3.1 Tight Binding Approximation:

3.1.1 Introduction

The tight-binding method is perhaps the simplest approach conceptually for describing energy
bands. This approach has been used in chemistry for some time under the name of linear
combination of atomic orbitals, LCAO method for band structure calculations [89]. Depending
on doping, the high temperature superconductors, which are of interest here, can be treated
using this approach.

3.1.2 Assumptions

In the tight binding approximation a number of assumptions are made, and these assump-
tions are:

1. The energy eigenvalues and eigenfunctions are known for an electron in an isolated
atom.

2. When the atoms are brought together to form a solid they remain sufficiently far apart
so that each electron can be assigned to a particular atomic site.

3. The periodic potential is approximated by a superposition of atomic potentials.

4. Perturbation theory can be used to treat the difference between the actual potential and
the atomic potential.

3.1.3 Formalism

For the tight binding approximation the unperturbed state is the atomic state, and the
perturbation is the difference between the periodic potential and the atomic potential around
which the electron is localized.

63
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We construct the wave functions for the unperturbed problem as a linear combination of
atomic functions φj(rrr −RRRn) labeled by quantum number j

ψj(rrr) =
N∑

n=1

Cj,nφj(rrr −RRRn) (3.1.1)

and so that ψj(rrr) is an eigenstate of a Hamiltonian satisfying the periodic potential of the
lattice. In this treatment we assume that the tight binding wavefunctions ψj(rrr) can be

Figure 3.1: Definition of the vectors used in the tight binding approximation

identified with a single atomic state φj ; this approximation must be relaxed in dealing with
degenerate levels. According to Bloch’s theorem ψj(rrr) must satisfy the relation:

ψj(rrr +RRRm) = eikkk·RRRmψj(rrr) (3.1.2)

where Rm is an arbitrary lattice vector. This restriction imposes a special form on the
coefficients Cj,n.
Substitution of the expansion in atomic functions ψj(r) from Eq.(3.1.1) into the left side of
Eq.(3.1.2) yields:

ψj(rrr +RRRm) =
∑

n

Cj,n φj(r−Rn + Rm)

=
∑
Q

Cj,Q+m φj(r−RQ)

=
∑

n

Cj,n+m φ(r−Rn)

(3.1.3)

where we have utilized the substitution RQ = Rn−Rm and the fact that Q is a dummy index.
Now for the right side of the Bloch theorem (Eq.(3.1.2)) we have

eik·Rm ψj(r) =
∑

n

Cj,n e
ik·Rm φj(r−Rn). (3.1.4)

The coefficients Cj,n which relate the actual wave function ψj(r) to the atomic functions φj(r−
Rn) are therefore not arbitrary but must thus satisfy:

Cj,n+m = eik·Rm Cj,n (3.1.5)

which can be accomplished by setting:

Cj,n = ξj e
ik·Rn (3.1.6)
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where the new coefficient ξj is independent of n. We therefore obtain:

ψj,k(r) = ξj
∑

n

eik·Rnφj(r−Rn) (3.1.7)

one may write

ψj,k(r) =
1√
N

∑
n

eik·Rnφj(r−Rn) (3.1.8)

where j is an index labeling the particular atomic state of degeneracy N and k is the quantum
number for the translation operator and labels the Bloch state ψj,k(r). Note that the atomic
wavefunctions did not overlap each other, this wavefunction would be normalized. Because
they do overlap, the wavefunction as written is not accurately normalized [90].

3.1.3.1 The Dispersion Relation

Having assumed this wavefunction we may now directly compute the expectation value of the
energy

< ε(kkk) >=
< kkk|H|kkk >
< kkk|kkk >

(3.1.9)

We write the potential as a superposition of potentials centered on the individual atoms,
V (r) =

∑
j U(r−Rn), which in this case is quite consistent with our assumed wavefunctions.

Furthermore we may write[
−∇

2

2m
+ U(r−Rn)

]
φj(r−Rn) = ε0φj(r−Rn)

where ε0 is the energy eigenvalue for the corresponding state in the free atom. Then(
−∇

2

2m
+ V

)
ψj,k(r) =

1√
N

∑
n

[
ε0 +

∑
m6=n

U(r−Rn)
]
φj(r−Rn)e−ik·Rn

and the expectation value of the energy becomes

< ε(k) >=ε0

+
1/N

∑
n,l e

−ik·(Rn−Rl)
∫
φ?

j (r−Rl)
∑

m6=n U(r−Rm)φj(r−Rn)d3r∫
φ?

j,kφj,kd3r
(3.1.10)

Notice that the corrections to the free-atom values will be small if the neighboring
wavefunctions and potentials do not overlap greatly. In the tight-binding method we treat
the overlap of the wavefunctions as a small correction. To lowest order in this overlap, then,
we may set the denominator in Eq.(3.1.10) equal to 1. Furthermore it is reasonable to expect
that three-center integrals will be small compared to two-center integrals and to drop them
from the summation. Then we will have terms only for l = m or l = n. This may not always
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be a very good approximation but it is one customarily made in the tight-binding method.
Let us consider first the terms for which l = n.

1
N

∑
n

∫
φ?

j (r−Rn)
∑
m6=n

U(r−Rm)φj(r−Rn)d3r (3.1.11)

This is simply the expectation value (based upon our atomic wavefunctions) at each ion of the
potential arising from all of the neighbors. For a perfect crystal this value will be independent
of n so that the sum over n divided by N is equal to the value taken by one term∫

φ?
j (r−Rn)φj(r−Rn)

∑
m6=n

U(r−Rm)d3r (3.1.12)

The potential due to each atom is attractive and therefore this is a negative term which is
independent of the wavenumber of the state being considered. This term contributes to the
binding of the crystal and is important in that regard but has little bearing on the energy-
band structure itself.

We consider next the terms for which l = m.

1
N

∑
m6=n

e−ik·(Rn−Rm)

∫
φ?

j (r−Rm)U(r−Rm)φt(r−Rn)d3r (3.1.13)

Again these terms are independent of n so we can replace the sum over n by a factor of N and
take our origin at a given rn.∑

Rm 6=0

e−ik·Rm

∫
φ?

j (r−Rm)U(r−Rm)φj(r)d3r (3.1.14)

These are the k-dependent terms that give rise to interesting band-structure effects. In the
tight-binding approximation it is frequently assumed that the nearest-neighbor contributes
dominate and only these are included.

Let us consider now the simplest case, that of an energy band arising from atomic s states.
Furthermore we will simplify the problem by letting the atoms lie in a simple cubic structure.
We look in particular at the wavenumber-dependent terms arising from nearest-neighbor
overlaps. The integral in each term is given by

t =
∫
φ?

j (r−Rm)U(r−Rm)φj(r)d3r (3.1.15)

and for s states takes on the same value for all neighbors. The value of t may be obtained
from atomic wavefunctions, the atomic potential, and the near-neighbor distance. Then the
wavenumber-dependent correction takes the form

t
∑

nearest
neighbors

e−ik·Rm = 2t(cos kxa+ cos kya+ cos kza) (3.1.16)
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Note that if we included contributions for more distant neighbors this would give us
additional corrections to the energy bands which would also be sums of cosines. The
important part of the integral will ordinarily occur beyond the last node in both of the atomic
wavefunctions. Thus, since the potential is attractive, t will ordinarily be negative [89].
This dispersion relation ε(kkk) clearly satisfies three properties which characterize energy
eigenvalues in typical periodic structures:

1. Periodicity in kkk space under translation by a reciprocal lattice vector kkk → kkk +GGG,

2. ε(kkk) is an even function of kkk(i.e., ε(k) = ε(−k)),

3. ∂ε
∂k = 0 at the Brillouin zone boundary [90].

3.1.4 D-wave Superconductor and The Tight Binding Approximation

We start the investigation of disorder d-wave supperconductor on a two-dimensional square
lattice with a Hubbard model Hamiltonian:

H =
∑

<i,j>
σ

ti,j (c†iσcjσ +H.c.) + U
∑

i

ni↑ni↓ − µ
∑

i

(ni↑ + ni↓). (3.1.17)

It describes a single s band in a tight-binding basis, with a local electron-electron repulsion U
for electrons of opposite site spin at the atomic orbital. The model is thought to be appropriate
to describe the main features of electron correlations in narrow energy bands, leading to
collective effects such as itinerant magnetism and metal-insulator transition, and has been
often used to describe real materials exhibiting these phenomena. A detailed justification for
Eq.(3.1.18) as a model for narrow-band systems has been given by Hubbard [91; 92].

In two dimensions, the Hubbard Hamiltonian with only nearest-neighbor hopping[93; 94]
is given by

H = −t
∑

<i,j>
σ

(c†iσcjσ +H.c.) + U
∑

i

niσni−σ − µ
∑
iσ

(niσ). (3.1.18)

where the sum over i and j is done over the nearest-neighbour sites on a square lattice. The
one electron hopping matrix element is t, the onsite Coulomb repulsion is U and the chemical
potential µ (which is determined by the electron filling factor n) is used for controlling the
electron occupation in the grand canonical ensemble. Here, c†iσ(ciσ) creates (annihilates) an
electron of spin σ at site i and niσ = c†iσciσ is the occupation number of electrons with spin
σ at site i (section 2.5 on second quantization). High-temperature superconducting cuprates
are known to be highly anisotropic, and the electronic band structures may be approximated
by that of a two-dimensional square lattice. In the tight-binding approximation, assuming
that the only relevant orbitals are dx2−y2 and dxy, and that the relevant interactions are the
attractive nearest-neighbor and repulsive next-nearest-neighbor interactions, the dispersion
relation (Eq.(3.1.16)) has the following form [95]:

ε(k) = −2t(cos kxa+ cos kya) + 4t′(cos kxa cos kya)− µ; (3.1.19)

where t and t′ are nearest and next-nearest hopping integrals, and a (a = 1) is the lattice
constant. In dimensionless units (see Appendix C).

ε(kx, ky) = ε(k) = −(cos kx + cos ky) + 2B(cos kx cos ky)− µ, (3.1.20)
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(a) The Fermi surface of a tight binding
model with nearest neighbour hopping only
for various fillings.

(b) The Fermi surface at van Hove
filling:B = 0.27 and µ = 1.46

(c) The Fermi surface at van Hove
filling:B = 0.27 and µ = 1.46

(d) B = 0.45 and µ = 1.46

Figure 3.2: Fermi Surface at different values of B

where B is next-neighbor hopping integral in units of t. In the tight-binding approximation,
the normal-state dispersion of square lattice, with nearest-neighbors hopping only, is given by

ε(kkk) = −(cos kx + cos ky)− µ, (3.1.21)

For the half-filled nearest-neighbor tight-binding band, the Fermi surface is perfectly
nested, which is composed of four straight lines (kx ± ky = π and kx ± ky = −π), as
seen in Fig.3.2(a). But with the next-nearest-neighbor hopping the Fermi surface is never
perfectly nested, the Van Hove singularity is at the Fermi level for an electron doping blow
one half. Another important feature of this relation is that in contrast to the nearest-neighbor
tight-binding form, (3.1.21), there are pieces of the Fermi surface that are connected by the
antiferromagnetic wave vector Q below half filling [96].

Fig.(3.3(e)) is the Fermi line for a tight-binding band given in equation (3.1.20) with B=0.45
and a chemical potential µ = 1.46. It is similar but not identical to the Fermi surfaces found for
both YBCO-123 and BSCCO-2212 by ARPES[45]. Fig.(3.3(f)) is the Fermi surface (for LSCO)
at half filling calculated only with the nearest-neighbour hopping, and also Fermi surface
including the next-nearest-neighbour hopping [97].
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The above electronic dispersion is quite general for 2D transport in strongly correlated
systems and its also suitable to describe the conduction band associated with the Cu O2 planes
in high-Tc superconductors[98]. The value n = 0.75 appropriate to [YBa2Cu3O7], this value
of n corresponds, with the band structure in (Eq 3.1.20), to a value |µ| ∼ 1.46t, these values
from the ref.[99], as in see Fig 3.2(b), a finite electron hopping 0 < B < 1/2 between next
nearest neighbors has been included and the chemical potential is fine-tuned such that the
Fermi surface contains the saddle points at (±π, 0) and (0,±π).

3.1.4.1 The effect of the hopping integral B:

From Figs.(3.2(b)) and (3.3), we see that with increasing the value of B Fermi surface begins
to change until B reaches the value 0.27 at that value of B the saddle points (sp) appear, and
by increasing B further we notice the appearance of what is called hot spot beside the Fermi
surface changes slightly.

Conclusion:

From we mentioned above we conclude that B is responsible for the presence of hot spots,
while the additives concentration (x), or the chemical potential µ, see section 3.2.1 and
also [cf ref.[100]], influences the Fermi surface and in turn the hot spots and naturally
superconductivity of the materials, as we shall discuss later.
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(a) B = 0.1 (b) B = 0.2

(c) B = 0.3 (d) B = 0.4

(e) B = 0.45 (f) the appearance of the hot spot

Figure 3.3: Fermi Surface at different values of B
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3.1.5 Tight Binding Density of States

The equilibrium thermodynamics of a disordered system can be expressed entirely as a
functional of the density of states or spectral density [88].

The total density of states or simply the density of states (DOS) of a system is defined as:

N(ε) =
∑

n

δ(ε− εn); (3.1.22)

where the sum runs over all energy states εn of the system.

A more sophisticated and far more accurate approximation is the coherent potential
approximation. The essential idea is to replace each atom by an “effective” atom so that
on the average no scattering takes place on each site. To be more precise, consider a single
impurity of type B at site i in an otherwise type A crystal. The Hamiltonian then is

H = HA + (EB − EA) c†i ci = HA + U (3.1.23)

We now define the resolvent operator (or Green’s function) G(z):

G(z) =(z −H)−1 = (z −HA − U)−1

=(z −HA)−1 + (z −HA)−1U(z −H)−1 (3.1.24)

The last equation can easily be shown to be correct by premultiplying by (z − HA) and
postmultiplying by (z −H). Taking matrix elements in the atomic basis and defining

Gmj(z) =< m|(z −H)−1|j > G0
mj(z) =< m|(z −HA)−1|j >

we obtain, on iterating (3.1.24),

Gmj(z) = G0
mj(z) +G0

mi(z)UiiGij(z)

= G0
mj(z) +G0

mi(z)UiiG
0
ij(z) +G0

mi(z)UiiG
0
ii(z)UiiG

0
ij(z) + · · ·

= G0
mj(z) +G0

miUii(1−G0
iiUii)−1G0

ij

(3.1.25)

The operator T = U(1 − G0U)−1 is known as the T -matrix of the potential U and has,
in the particular case of a single impurity (3.1.23), only diagonal matrix elements. The
generalization of (3.1.24) and (3.1.25) for an arbitrary perturbation U is, in operator form,

G(z) = G0(z) +G0(z) U G(z) = G0(z) +G0(z) T (z) G0(z) (3.1.26)

The Green’s function G(z) yields the density of states, as we now show. Suppose that the
eigenstates of H are |φm > with energies εm and consider

Tr G(ε+ i η) =
∑
m

< φm|(ε−H − i η)−1|φm >

=
∑
m

(ε− εm + i η)−1
(3.1.27)

Using

lim
η→0

1
ε− εm + i η

= P
1

ε− εm
− iπδ(ε− εm) (3.1.28)
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we see that
N(ε) =

∑
m

δ(ε− εm) = − 1
π
Im Tr G(ε+ i0+) (3.1.29)

Since the trace (3.1.29) can be evaluated in any basis, we are free to use our Warnnier
states or the Bloch states to calculate the density of states. It is only necessary to find the
diagonal matrix elements of the operator G(z) [88].

DOS is just the number of energy levels between ε and ε+ dε divided by the infinitesimal
energy interval dε

N(ε) =
1
dε

ε+dε∑
ε

1. (3.1.30)

It is clear that the integral of N(ε) over ε is the total number of states in the system. This
concept is applicable to both finite systems, such as molecules or clusters, and infinite crystals.
In the former case the energy interval dε should be chosen to be reasonably small but finite.
We can even drop out the denominator in Eq.(3.1.30). Recall that the integral of N(ε) over
energy should always be the total number of states, so that we must introduce in this case a
normalization constant. For crystals with perfectly periodic atom arrangements, (i.e., without
defects) the sum in eq.(3.1.22) can be taken over wave vector k: DOS for periodic

N(ε) =
∑

k

δ(ε− ε(k)); (3.1.31)

The sum runs over all possible values of k, but in actual calculations we restrict k to the first
Brillouin zone [101]. Our focus will be on the density of states N(ω)∗, its Hilbert transform
F (ω), and virtual states:

3.1.5.1 The Density of States N(ω) and Its Hilbert Transform F (ω):

The concept of density of states is extremely useful in electronic structure calculations, espe-
cially given that DOS is an experimentally measurable quantity by a variety of techniques,
e.g., scanning tunneling microscopy.

DOS cannot be calculated analytically (obtained as an analytic function of energy) for
two and three-dimensional systems. However, we can always integrate numerically over the
Brillouin zone, although it is computationally not efficient [101]. For practical purposes, we
often only require that the DOS is correct near the Fermi level.

We have numerically calculated the DOS, N(ω), for our tight binding models by direct
evaluation, using the elliptical integral formalism, for the formula [cf. refs [102–104]]

N(ω) =
∑

k

δ(ω − ε(kkk)) ((3.1.31))

∗for convenience, from here on, we shall use N(ω) instead of N(ε)
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or [105]

N(ω) =
∫

d2k

(2π)2
δ(ω − ε(kkk)) (3.1.32)

the solution of this integral, we have discussed the solution in great detail in Appendix C, is
given by

N(ω) =
1

2π2
√

1 + 2BE
K

(
k2 =

1− (E
2 −B)2

1 + 2BE

)
E > 0 (3.1.33)

N(ω) = Sign[E]
1
π2

1
(E

2 +B)
K

((E
2 −B)2 − 1
(E

2 +B)2

)
E < 0. (3.1.34)

Where K(k) is the Complete Elliptic Integral of the First Kind[106].

The well known DOS for a nearest-neighbor[104] and next-nearest-neighbors tight binding
model is shown in Fig.3.4(b). Particular feature to notice is that there is a van Hove
singularity at half filling (one electron per site, E = 0)[74], also with B = 0.27, 0.45 and
µ = 1.46 there is a van Hove singularities with a peak in the total density of states at−0.6,−0.8
respectively, as shown in Fig.(3.4(b)). In the same manner, see Appendix C, we solved F (ω)

F (ω) = Sign(E)
1

(π)
1√

(2BE + 1)
K

( (2B + E)2

4(1 + 2BE)

)
E < 2 + 2B (3.1.35)

F (ω) =
1

(π)
2√

(2B + E)
K

(4(1 + 2BE)
(2B + E)2

)
E > 2 + 2B (3.1.36)

Fig.3.5(a) shows the response of the function F (ω) to the energy E, the DOS and F (ω)
functions are plotted in Figs. (3.4(b),3.5(a)). Note that the DOS exhibits, at both band edges
a discontinuity which produces the logarithmic singularities of the Re(G) at the band edges.
As was mentioned before, this behavior is characteristic of the 2-dimensionality of the system
( in our case YBa2Cu3O7). Note also that the singularity at the interior of the band (E = 0);
the F (ω) is discontinuous there and the N(ω) has a logarithmic singularity. The singularities
of G0(k) within the band are associated with sadle points in the function E(k)[79], where k
is a wave vector of charge carrier, electron or hole [see section (3.2.1) on charge carriers], as
shown in Fig.3.2(b).

3.1.5.2 The Impurity-Induced Virtual States:

Scattering of quasiparticle from impurity is described by a T-matrix, T (ω), which is inde-
pendent of wave vector[107]. The scattering matrix can be written, [see section3.4(b) and
refs.[108; 109]], as

T = U(1−G0U)−1 = [(1/U) + F (ω)− iπN(ω)]−1 (3.1.37)

Since the Green’s functions in the presence of impurity scattering isG = G0+G0TG0, poles
of the T-matrix are the new poles of G that are not poles of G0, signifying the appearance of
new states[110]. By plotting the ImT (ω) against the impurity potential 1/U supposing U is
attractive, we got a virtual states as shown in Fig.3.5(b).

Now let us compare our work with other work, Clogston [111], also see Doniach [84]
and Fistul [112], in his work used a model DOS that is an inverted parabola, F (ω) has
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E

NHΩL

(a) The DOS for a tight binding model
with nearest-neighbor hopping only in two
dimensions,calculated by direct evaluation of
Eq.((3.1.31)).

E

NHΩL

B=0.27

B=0.45

(b) The DOS for a tight binding model with
nearest- and next-nearest- neighbor hopping in
two dimensions,calculated by direct evaluation of
Eq.((3.1.31)).

Figure 3.4: The Density of states DOS at various value of B

E

NHΩLFHΩ

(a) the response of the functionsN(ω)&F (ω) to the
energy E

E

ImTHΩL

(b) the figure shows the virtual states

Figure 3.5: The figure shows N(ω), F(ω), and Im T vs. E

no singularity at the band edges, because there is no discontinuity in the DOS, and no
discontinuity at E = 0, because there is no singularity in DOS at E = 0 in the band, he
pointed out that if U is negative (an attractive potential) and is large enough so that 1/U cuts
F (ω) in two points, a virtual state has been created in the vicinity of the first intersection
point, E0, it means that approximately one whole state has been brought below this energy
by perturbation. The width of the virtual state is of interest. This is clearly controlled by the
value of N(ω) at the point of intersection. If N(ω) is small, the state is very narrow, and vice
versa.



3 TIGHT BINDING APPROXIMATION: 75

Balatsky et al.[108] used another different DOS model, F (ω) has no discontinuity
anywhere, they pointed out that under the condition |2UN | > 1 one gets a resonance states
inside the band, referring that to the presence of pseudogap(PG), they also argued that by
using a DOS with a quadratic dependent gap, one can obtain a similar results.

Conclusion:

From the previous one deduces that there are four quantities or parameters that control
the position and the type of the additional states i mean bound, virtual, or resonance (anti-
resonance) states, these quantities are ε(k), N(ω), and F (ω) beside the impurity potential U,
one can say by controlling U and choosing a suitable dispersion relation ε(k), and suitable
DOS model one can control the type and the position of the additional states.

3.1.5.3 Density of States of The Virtual States

We can also introduce the local density of states (LDOS): LDOS definition

N(r, ω) =
∑

n

|ψn(r)|2δ(ω − εn). (3.1.38)

where ψn(r)) is the eigenfunction of the Hamiltonian with label n. LDOS can be interpreted
as the charge density resulting exclusively from states in the energy interval from ε to ε+ dε.
For the tight-binding approximation, LDOS on atom j is

N(j, ω) =
∑

n

|cnj (r)|2δ(ω − εn); (3.1.39)

It is obvious that if we sum LDOS over all atom in the system, we will get the total DOS
because of the normalization condition on the wave function. DOS of a finite system is a
discrete function of energy and, in general, it is continuous for an infinite system (except for
a regions where it is zero- so called energy gaps).

We now seek to study the corrections to the local density of states due to virtual state. In
the presence of impurity, the Green’s function is given by

G(r, r′;ω) = G0(r− r′;ω) +G0(r, 0;ω)T (ω)G0(0, r′;ω) (3.1.40)

the second term describing the local distortion due to the impurity.
By using Lehmann representation for Green’s function, we get

G(r, r′;ω) =
∑

n

(ψ∗n(r)ψn(r))/(ω − εn) (3.1.41)

from Eqs. (3.1.40) and (3.1.41), and taking the imaginary part, see Appendix E.3

N(r, ω) = N(ω) +Nimp,n(r, ω)(orδN(r, ω)) (3.1.42)

the 1st term is the DOS of a clean superconductor, and the second is the change induced by
impurity

Nimp =
∑

n

(ψ∗imp,n(r)ψimp,n(r))δ(ω − εn) (3.1.43)

= − 1
π
Im[G0(r;ω)T (ω)G0(−r′;ω))] (3.1.44)
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BecauseG0(r, ω = 0) G0(−r′, ω = 0) as εimp → 0 is real only the imaginary part of the T-matrix,
i.e., Im[T (ω)], contributes to Nimp, as shown in Fig.(3.5) [107].
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3.2 What HTc Superconductor Is!

3.2.1 Charge Carriers and Pairing Symmetry of the Order Parameter

In its paper and the references therein Daniela Lindner[113] has shown that for many
different reasons the charge carriers in electron-doped superconductors cuprates are both
electrons and holes.

Now, another important point is the pairing symmetry of the order parameter, while in
hole-doped superconductors the dx2−y2 type is the acceptable one. The situation is enough
different in electron-doped superconductors, in one hand and in accordance with experiments
some talk about s-wave type, on the other hand Khodel et al.[100] proposed the p-wave type,
on the third hand D. Manske et al.[114] have shown the presence of d-wave type.

Conclusion:

We propose the presence of all mentioned types of pairing symmetry, d-wave, s-wave, and
may be p-wave, of the order parameter in electron doped superconductor cuprates. The point
is that the percentage of each type does depend upon the hot spots (next section) which in
turn depends upon the percentage of the additives.

3.2.2 The Role of Hot Spots:

From the dispersion relation

εk = −(cos kx + cos ky) + 2B cos kx cos ky − µ (3.1.19)

the presence of B (see section 3.1.4.1) allows "hot spots" on the Fermi surface Fig.3.6(a) which
can be connected by Q [99]. These points (hot spots) are labeled in Fig.3.6(b) by the consective
numbers from 1 to 8, the superconductivity pairing potential ∆(P ) has opposite signs at the

(a) Fermi surface in the first Brillouin
zone. Taken from ref. [99]

(b) Fermi surfaces of Eq.(3.1.19) for
hole doping (dashed line) and electron
doping (solid line). The hot spots are
shown by openand solid circles. Taken
from ref. [100]

Figure 3.6: hot spots
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two hot spots connected by the vector Q:

∆(P +Q) = −∆(P ) (3.2.1)

Thus, the eight hot spots can be divided into four groups (1,6), (2,5), (3,8), and (4,7), with the
signs of ∆(P ) being opposite within each group. In Fig.(3.2.1). the dashed (encloses a large
area) and solid lines show the Fermi surfaces corresponding to the hole- and electron-doped
cuprates. Because the Γ point (0,0) is located at the corner of Fig.(3.2.1), the area inside the
Fermi surface is occupied by holes and outside by electrons [100].

Hole-doped case:

The pairs of hot spots shown by the open circles in Fig.(3.2.1) are located close to the Van Hove
points (0,π), (π,0), (2π,π), and (π,2π). Assuming that ∆(P ) has the same sign within each pair
of the neighbouring hot spots. This assumption, in combination with Eq.(3.2.1), immediately
results in the familiar symmetry (d-wave) of the pairing potential.

The electron-doped case:

with the increase of electron doping, the Fermi surface shrinks, and the hot spots move away
from the Van Hove points toward the Brillouin zone diagonals [100], see also [115]. The
following pairs of the hot spots approach each other: (1,2), (3,4), (5,6), and (7,8). The d-
wave pairing potential has opposite sign within each pair and vanishes at the zone diagonals.
Thus, in the electron-overdoped cuprates, when hot spots get close enough, the d-wave pairing
becomes suppressed. Then, a superconducting pairing of another symmetry may emerge.

Conclusion:

In case of hole-doped, and electron (under- and optimally-) doped superconductor cuprates
the holes are the majority carriers, while electrons are minority. Beside the favor pairing
symmetry is the dx2−y2 .

3.2.3 The Role of Pseudogap:

3.2.3.1 The Presence of Pseudogap:

density of states, spectral functions, and ARPES spectra calculated within DMFT+Σk show a
pseudogap formation near the Fermi level of the quasiparticle [102], see also ref. [56].

Short note about ARPES:

Angle-resolved photoelectron spectroscopy (ARPES) probes the electronic structure (en-
ergy and momentum) of materials by measuring the energy and angle of the emitted
electrons. In particular, ARPES can determine in "momentum space" the Fermi surface
which represents the locus of the momenta of the highest energy occupied electron states
(Fermi energy). The Fermi surface is important because electrons near the Fermi surface
are responsible for many physical properties, including superconductivity. From high-
resolution measurements along the Fermi surface in HTSCs, ARPES has revealed several
major departures from the behavior of conventional superconductors [116; 117].



3 WHAT HTC SUPERCONDUCTOR IS! 79

Intensive research has focused on the pseudogap regime, which is observed in high-Tc

cuprates below a characteristic temperature that is higher than the transition temperature
Tc. It occurs in a number of different experiments as a suppression of low-frequency spectral
weight. They also proposed that there may be different pseudogap phenomena operating in
different temperature and doping regimes [118].

3.2.4 Effect of Pseudogap:

It is widely believed that the peculiar normal pseudogap regime in underdoped cuprate
superconductors, holds keys to unraveling the entire problem of cuprate superconductivity.
In this regime, between the superconducting transition temperature Tc, and T ∗, possibly
hundreds of degrees higher, spectral density near the putative Fermi surface is suppressed.
Evidence of this phenomenon is consistently observed most clearly in angle-resolved photoe-
mission (ARPES), but also in c-axis tunneling, magnetic susceptibility, heat capacity, Raman
scattering, neutron scattering, and NMR measurements. The variation of the pseudogap with
momentum, strongest near the (π, 0) directions and weak or nonexistent near (π,π), mirrors
that of the full dx2−y2 superconducting gap. One potential explanation of this behavior, as
suggested by Kivelson and Emery, is that local superconducting correlations (Cooper pairing)
set in at T ∗, but that long-range phase coherence is not established until the temperature
drops below Tc. The notion is analogous to a magnetic material in which local moments form
far above the temperature at which they become ordered. Nevertheless, this is not quite the
same thing as pre-formed pairs [119].

3.2.5 Hot Spots and Pseudogap Together:

For high enough temperatures 2πT � ωsf where ωsf is the frequency of spin fluctuations.
Electron interaction with spin (pseudogap) fluctuations reduces then to elastic scattering. It
can be seen that pseudogap fluctuations lead to significant suppression of superconductivity.
This suppression of Tc is naturally due to partial dielectrization of electronic spectrum in the
vicinity of hot spots. It is seen that in the presence of pseudogap fluctuations Tc suppression
with the growth of disorder is faster than in the absence of the pseudogap. The effect of
pseudogap fluctuations is enhanced by impurity scattering [115].

Conclusion:

We conclude that hot spots and pseudogap give a big chance for holes to be in pairs (hole
pairing), and the electrons to be single electrons and a minority of electrons to be in pairs.

3.2.6 Hole Pairing:

A ’hole’ is the absence of an electron, and hole carriers exist when an electronic energy band is
almost full. Holes are different from electrons , as the Fig.(3.7) clearly shows. A hole in a full
band has difficulty propagating due to the disruption it causes in its environment. The paired
holes can propagate more easily (have a smaller effective mass) than single holes. In contrast,
single electrons can move easily and so they don’t pair. The reason for the increased mobility
of holes upon pairing is that they ’undress’ when they pair, and turn into electrons [120].
The charge distribution in superconductors is inhomogeneous, with higher concentration of
negative charge near the surface. Some of this negative charge will spill out, giving rise to a
negative electron layer, see also [116], right outside the surface of the superconductor, which
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Figure 3.7: Taken from ref. [116]

should be experimentally detectable. Also superconductors should have a tendency to easily
lose negative charge and become positively charged. Macroscopic spin currents are predicted
to exist in superconducting bodies, giving rise to electric fields near the surface of multiply
connected superconductors [121], see Fig.(3.8).

3.2.7 Short Note About Charge Stripes in High-Temperature Superconduc-
tors:

Depending on ARPES some researchers have talked about the self-assembling of charge
carriers into spatially localized, one-dimensional stripes. For their ARPES experiments,
the researchers studied a compound known to have stripes, (La1.28Nd0.6Sr0.12)CuO4, whose
"parent" compound, La2CuO4, is an insulator. Copper and some of the oxygen atoms are
arranged on a square lattice in parallel planes with little interplanar interaction. Replacing
some of the lanthanum in the insulator with strontium (strontium doping), which has one
less electron for bonding, to form (La2−xSrx)CuO4 results in the generation of positively
charged holes (missing electrons) that end up in the copper-oxygen planes. Over a strontium
concentration range (x) from around 6 to 27 percent, the material becomes superconducting,
except at 12 percent where the superconductivity is suppressed.
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Figure 3.8: Schematic picture of a spherical superconductor. Negative charge is expelled from the bulk
to the surface. The surface is denoted by the dotted line. A layer of negative charge exists outside the
surface. Taken from ref. [121]

Stripes, in which holes are confined to parallel lines of copper atoms in the copper-oxygen
planes separated by insulating regions without holes, were first observed at this so-called
one-eighth doping, suggesting a perhaps antagonistic, but in any case intimate, relationship
between superconductivity and stripe formation. The replacement of some lanthanum with
neodymium stabilizes the stripes at low temperature. Stripes were later seen at other dopings
and in other superconductors [116]†.

Figure 3.9: Model showing one orientation of charge stripes in the Cu-O planes. Up and down arrows
represent local magnetic moments in the antiferromagnetic insulator that separates the stripes. Red
circles in stripes represent holes. ,taken from ref. [116]

3.2.8 Conclusion:

From all the preceding items we see ( conclude) that hole-pairing playing the major role for
superconductivity, while electron-pairing play the minor role in HTSCs. One can imagine
the superconductor as "Hole-pairs exist inside the core which in turn consists of stripes that
contain the hole-pairs ( and may be single electrons), and a minority of electron pairs outside
the core".

†original work ref.[122]
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3.3 Electrical Conductivity

3.3.1 Introduction

We shall study one of the major aspects of irreversible statistical mechanics: the transport
coefficients that are obtained from general considerations of the linear response of a system
to external forces. For irreversible statistical mechanics Kirkwood gave correlation function
expression for the transport coefficients of dense fluids. For quantum systems, in 1956,
Nakano developed a linear response theory and derived a correlation function expression
for the electrical conductivity. These and other important aspects of response functions were
summrized by Kubo in 1957 (cf. see Isihara[70]).

3.3.2 Simple Model of Conductivity

The simplest model of conductivity is that in a metal there are certain number, n0, of electron
per unit volume that are free to move under an applied field. These electrons, however, are
subject to a damping force because of collisions. Therefore, we can write down the motion
equation as:

m
dvvv

dt
+mgvvv = eEEE(x, t) (3.3.1)

where g(= 1/τ) is a damping constant that is some sort of average rate of collisions
that involve a significant momentum transfer. Collisions occur between electrons, lattice
vibrations, lattice imperfections, and impurities. Proper calculation of g involves quantum
mechanical considerations. For rapidly oscillating fields, the displacement of electrons is
small compared to a wavelength. Hence:

m
dv
dt

+
m

τ
v = eE0E0E0e

−iωt (3.3.2)

where E0E0E0 is the electric field at the average position of the electron. The conductivity is given
by [123]:

σ =
n0e

2τ

m(1− iωτ)
, (3.3.3)

with

σ1 =
n0e

2τ

m(1− ω2τ2)
(3.3.4)

σ2 =
n0ωe

2τ2

m(1− ω2τ2)
(3.3.5)

The DC conductivity (ω → 0)is then given by

σ0 =
n0e

2τ

m
, (3.3.6)

For all materials, Hagen and Rubens showed that the conductivity is essentially constant up
to near IR frequencies (λ < 2.5× 10−3cm) and the conductivity is essentially real. For IR and
optical frequencies, however, the conductivity is complex and depends on frequency [123].

Insofar as it is possible to describe the perfect conductivity of a superconductor by
postulating that a certain density (ns) of its electrons act as if there were no scattering term (
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by letting their τ go to infinity), Ohm’s law is replaced by an accelerative supercurrent. That
is, we have dvvvs/dt = eEEE/m, so that the total supercurrent JJJs is governed by [23]

dJJJs/dt = (nse
2/m)EEE (3.3.7)

3.3.3 Consequences of Symmetry

we conclude with some comments on the implications of crystal symmetry on σαβ independent
of any approximation to it. However, the presence of symmetry axes enables us to reduce the
number of components. Let the symmetry axis be the x-axis, xxx is taken to be a two-or fourfold
rotation axis or screw axis, as in Fig.(3.10), and EEE is taken parallel to yyy Fig.(3.10(a)). Now if we
reverse the field this reverses Jx. Rotation about xxx through(π) is equivalent to this reversal
Fig.(3.10(b)) but this rotation leaves the physical situation completely unchanged, so that Jx

is not reversed. Hence, Jx = 0 and this is true for a symmetry axis of any kind, implying

- -
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EEE

jx = σyxE

(a)

y

x

EEE

jx = −σyxE

(b)

Figure 3.10: Illustrating effect of twofold rotation axis as screw axis,with electric field normal to axis,
on components of electrical conductivity tensor. In (b) specimen is rotated about x-axis through π.

σxy = σyx = σxz = σzx = 0 (3.3.8)

where xxx is a symmetry axis. Let xxx be a fourfold rotation axis or screw axis, as in Fig.(3.11)
in which xxx is taken perpendicular to the paper, represent identical physical situations and

- -
-

-

6

6 66
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�yz
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EEE
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(b)

j⊥ = σzyE j‖ = σzzE

j‖ = σyyE j⊥ = −σyzE

Figure 3.11: Illustrating effect of fourfold rotation axis or screw axis,with electric field normal to axis,
on components of electrical conductivity tensor. In (b), field EEE, normal to x - direction, is rotated through
π/2 relative to (a).

neither J⊥ nor J‖ changes (except in direction) as EEE, perpendicular to xxx, is rotated through
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(π/2). It follows that J⊥ = 0 and

σzy = σyz = 0, σyy = σzz. (3.3.9)

Ifxxx is a fourfold rotation axis or screw axis, so that there are only two independent components
of the conductivity tensor [67].

3.3.4 Electrical Conductivity of the Normal State

An electronic property much studied experimentally is the complex frequencydependent
conductivity σ(ω). As is well known the Landau Fermi liquid theory (LFLT) predicts that the
real part of the conductivity, σ1(ω)(= σR), follows the Drude law, which yields that for high
(infrared) frequencies, σDrude(ω) ∝ ω−2. The Drude law is obeyed for ordinary metals, both
the non superconductors (e.g., noble metals) as well as conventional superconductors (e.g., Al,
Hg) above the critical temperature Tc. We actually only calculate the real part σ1(ω) of the
conductivity which is given by the imaginary part of the current-current correlation function
Eq.(2.8.35). For the imaginary part the sum over Matsubara frequencies and the momentum
integral converge sufficiently rapidly so that their order can be interchanged. Details of this
calculation can be found in Appendix F. The result for σ1(ω) in this case is sufficiently simple
so that the integral involved in calculating the imaginary part σ2(ω) as Hilbert transform of
σ1(ω) can be performed analytically.

The local electrical conductivity can be calculated by means of the Kubo formula, as
described in section 2.8.2.

σ1(ω) = −e
2 Imχ(ω)

ω
(3.3.10)

where χ(ω) = χ(iνm → ω + iδ) is the complex susceptibility, (see section 2.8.1). It is given by
Eq.(2.8.42)

χαβ(ω) =
1

2πi

∫ ∞

−∞
dω0 f(

ω0

T
)Sp

∫
d3p

(2π)3
2pα

2m
2pβ

2m

×
{
GA(p, ω0 − ω)2iImGR(p, ω0) +GR(p, ω0 + ω)2iImGR(p, ω0)

}
. (3.3.11)

We do not consider magnetic impurities or external magnetic fields, so that Green’s functions
are diagonal and independent of spin. The sum over spin states designated (Sp) in (3.3.11)
thus simply contributes a factor 2. Then

χαβ(ω) =(2/π)
∫ ∞

−∞
dω0 f(

ω0

T
)

∫
d3p

(2π)3
pαpβ

m2

{
GA(p, ω0 − ω)ImGR(p, ω0) +GR(p, ω0 + ω)ImGR(p, ω0)

}
(3.3.12)

=(2/π)
∫ ∞

−∞
dω0 f(

ω0

T
)

∫
d3p

(2π)3
pαpβ

m2

ImGR(p, ω0)
{
GR(p, ω0 + ω) +GA(p, ω0 − ω)

}
From section 2.6.3 on the spectral function and using the Eq.(2.6.25), we have [78]

ImGR(p, ω0) =− (1/2)A(p, ω0), and (3.3.13)

Im
[
GR(p, ω0 + ω) +GA(p, ω0 − ω)

]
=− (1/2)

[
A(p, ω0 + ω)−A(p, ω0 − ω)

]
. (3.3.14)
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Where A(p, ω0) is the electron spectral function [124], then

Imχαβ(ω) =
1
2π

∫ ∞

−∞
dω0 f(ω0/T )

∫
d3p

(2π)3
pαpβ

m2
A(p, ω0)

{
A(p, ω0 + ω)−A(p, ω0 − ω)

}
(3.3.15)

For isotropic systems [see Table (1.3)]: All diagonal components of χ are equal while
nondiagonal components vanish. In Appendix F we show that for a parabolic band (nearly
free electron model) one obtains

σ1 =
e2

ω
Imχαα =

( p3
f

3π2

) e2τ

m(1 + ω2τ2)

=
n0e

2τ

m(1 + ω2τ2)
= σ0

1
(1 + ω2τ2)

where m is an (effective) mass, n0(= p3
f/3π

2) is the density of particles contained in the Fermi
sphere of radius pf , and τ is a relaxation time.

Using the Kramer-Krönig relation for conductivity , the imaginary part of conductivity σ2

is given by

σ2(ω) =− P

π

∫ ∞

−∞

σ1(ω)
(ω0 − ω)

dω0

=− σ0
P

π

∫ ∞

−∞

1
(1 + ω2τ2)

dω0

(ω0 − ω)

=− σ0

τ2

P

π

∫ ∞

−∞

1
(ω2 + 1

τ2 )
dω0

(ω0 − ω)

Using Hilbert transform

π−1P

∫ ∞

−∞
f(x)(x− y)−1 dx = − y

a(y2 + a2)
, (3.3.16)

the imaginary part of conductivity σ2 will be

σ2(ω) =
σ0

τ2

ω
1
τ (ω2 + 1

τ2 )

or

σ2(ω) =
σ0ωτ

(1 + ω2τ2)
=
ne2

m

ωτ2

1 + ω2τ2

As we have seen the real part of electrical conductivity obeys the Drude law in agreement
with the Landau Fermi liquid theory(LFLT). In the clean limit τ → ∞ σ2 will be ( 1

ω
n0e2

m ) as
discussed previously in sections 2.8.2.1 and 3.3.2.





Chapter 4
Summary of Conclusion

- Using the complete elliptic integral we have got a suitable form for DOS N(ω) for E > 0 and
E < 0, and also a suitable form for its Hilbert transform F (ω).

- The Hopping integral B as we have seen affect the behaviour and the position of the DOS,
and also affect the behaviour of Fermi surface resulting in what is called hot spots.

- In the presence of impurity, whatever the model of the DOS, we get a virtual or resonance
states, just the value of U that control the presence and the position of that generated states.

- The model of DOS affect very much the behaviour (we mean the shape) of the DOS
Hilbert transform F (ω) .

- We have seen also the importance of the dispersion relation ε(k), and also the importance
of the presence of the next-nearest hoping integral B.

- Theoretically, if we controlled the parameters ε(k) and U , we can get (construct) a
superconductor with the features that we need.

- Hot spots together with pseudogap are the key to solve the mystery of superconductivity
in HTSCs.

- Holes (hole-pairing) play the major role in superconductivity.

- Because of hot spots and its lower effective mass [than that of electrons], hole pairs
are the accepted [for us at least] regime responsible for superconductivity. Sure we are not
talking about zero electron pairs, we do mean the superconductor materials look like the
semiconductors, the deference between them is that in case of semiconductors we talk about
electrons and holes, in superconductors case we instead talk about electron pairs and hole
pairs.

- D-wave in general is the favor pairing symmetry of the order parameter, for electron-,
hole-doped cuprates, except in the case of overdoped electron regime.

- We have got an expression for generalized susceptibility (in turn electrical conductivity)
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agrees with what we can call Durst and Lee approach. And then have calculated the electrical
conductivity for isotropic systems, we have found that its behaviour obeys Drude law in
accordance with the prediction of Fermi Landau liquid theory.



Appendix A
Schrödinger, Heisenberg, and Interaction
Pictures

In the Schrödinger picture of quantum mechanics, the time evolution of the dynamical system
is described solely by the wave functions, and the dynamical operators (c′λs or ψ′s) are time-
independent. The situation is quite the opposite in the Heisenberg picture. There, the time
dependence is within the operators, and the state vectors are time-independent [125].

A.1 Schrödinger Picture

The state vector satisfies the Schrödinger equation

i
∂ΨS(t)
∂t

= HΨS(t) (A.1.1)

This has the formal solution (if H does not depend explicitly on the time)

ΨS(t) = e−iHtΨS(0) (A.1.2)

A.2 Heisenberg Picture

We define the state vector to agree with the Schrödinger state vector at t = 0:

ΨH = e−iHtΨS(0) (A.2.1)

The operators change with time, in such away that the matrix element of an operator between
two states in the Heisenberg picture is the same as the matrix element of the corresponding
operator between the corresponding two states in the Schrödinger picture[81]:

< ΨS
a (t)|OS |ΨS

b (t) > =< ΨH
a |OH(t)|ΨH

b > (A.2.2)

Using (A.1.2), we have

< ΨS
a (0)|eiHtOSe

−iHt|ΨS
b (0) > =< ΨH

a |OH(t)|ΨH
b >,
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so that

OH(t) = eiHtOSe
−iHt (A.2.3)

or simply
OH(t) = eiHtOe−iHt (A.2.4)

Where e−iHt is a unitary operator and carries out the time evolution from t = 0 to t. Eq.(A.2.4)
represents the Heisenberg picture of operators.
Taking the time derivative of Eq.(A.2.4)

i
∂O

∂t
= i

[
iHeiHtOe−iHt + eiHtO(−iH)e−iHt

]
= [O(t),H] (A.2.5)

Eq.A.2.5 is the Heisenberg equation of motion for operators[72].
For systems where H does not depend explicitly on time HS = HH ,i.e., the Hamiltonian is
a constant of the motion. H may still be expressed with either Schrödinger or Heisenberg
operators, and although the total Hamiltonian is the same in the two pictures, various parts
of it may be quite different in the two pictures[81].

A.2.1 Heisenberg Picture in Fock Space:

As in Eq.(A.2.5) the equation of motion for cλ’s reads[72; 126]

i
∂cλ(t)
∂t

= [cλ,H]

= [cλ,
∑
λ′

ελ′ c
†
λ′cλ′ ]

= ελcλ

⇒ cλ(t) = cλ(0)e−iελt (A.2.6)

A.2.2 Field operators in terms of Heisenberg picture and grand canonical
Hamiltonian in real- and imaginary-time:

In real time:

ψ(r, t) = eiktψ(r)e−ikt, and (A.2.7)

ψ†(r, t) = [ψ(r, t)]† (A.2.8)

In imaginary time [127]:

ψ(r, τ) = ekτψ(r)e−kτ , and (A.2.9)

ψ†(r, τ) = ekτψ(r)e−kτ 6= [ψ(r, τ)]† (A.2.10)
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A.3 Interaction Representation for Operators

This representation is useful when the Hamiltonian is of the form

H(t) = H0 +H ′(t) (2.8.1)

H0 is considered soluble and time-independent and the perturbation part H ′(t) depends
explicitly on time . Then the time development operator is no longer given by e−iHt. When
H ′(t) can be considered as a small perturbation it is useful to transform into the so-called
interaction picture according to

AI(rrr′, t) = eiH0tA(rrr′, t)e−iH0t (A.3.1)

A.4 The Equation of Motion for ρ(t)

We start with the Schrödinger equation

i|ψ̇ > = H|ψ > (|ψ̇ >=
∂

∂t
|ψ >)

so that

−i < ψ̇| =< ψ|H

The density operator is defined as

ρ =
∑

n

Pn|ψn >< ψn|

The time derivative of (ρ) is

i
∂ρ

∂t
= i

∂

∂t

{ ∑
n

Pn

{
|ψn >< ψn|

}
i
∂ρ

∂t
=

∑
n

Pn

{
−|ψn > (−i) < ψ̇n|+ (i)|ψ̇n >< ψn|

}
=

∑
n

Pn

{
−|ψn >< ψn|H +H|ψn >< ψn|

}
=

∑
n

Pn

{
H|ψn >< ψn| − |ψn >< ψn|H

}
=

∑
n

{
HPn|ψn >< ψn| − Pnψn >< ψn|H

}
= [Hρ− ρH]
= [H, ρ]

Or

i
∂ρ

∂t
= [H, ρ]





Appendix B
Elliptic Integrals

An elliptic integral is an integral involving a rational function which contains square roots of
cubic or quartic polynomials. Generally, the elliptic integrals CANNOT be expressed in terms
of elementary functions[128]. We are interested in elliptic integrals of the first kind.

B.1 Elliptic Integral of the First Kind

Let the elliptic modulus k satisfy 0 < k2 < 1, and the Jacobi amplitude be given by φ =am u.
The incomplete elliptic integral of the first kind, see Fig.(B.1), is then defined

F (φ, k) =
∫ φ

0

dθ√
(1− k2 sin2 θ)

. (B.1.1)

The elliptic integral of the first kind is implemented in Mathematica as EllipticF[φ, m] (note
the use of the parameter m = k2 instead of the modulus k).
Letting

t ≡ sin θ (B.1.2)
dt = cos θdθ (B.1.3)

=
√

1− t2dθ, (B.1.4)

Then ((B.1.1)) can be written as

F (φ, k) =
∫ sin φ

0

1√
1− k2t2

dt√
1− t2

(B.1.5)

=
∫ sin φ

0

dt√
(1− k2t2)(1− t2)

. (B.1.6)

Letting

v ≡ tan θ (B.1.7)

dv = sec2 θdθ = (1 + v2)dθ, (B.1.8)

then the integral can also be written as

F (φ, k) =
∫ tan φ

0

dv√
(1 + v2)(1 + k′2v2)

, (B.1.9)
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where k′2 = 1− k2 is the complementary elliptic modulus[129]. The inverse function of F(φ,k)
is given by the Jacobi amplitude

F−1(u, k) = φ = am(u, k). (B.1.10)

Figure B.1: Elliptic Integral of the First Kind, taken from website[128]

B.2 Complete Elliptic Integrals

For the amplitude φ = π/2, the elliptic integrals are said to be complete[128], Fig.(B.2).

K(k) = F (
π

2
, k) =

∫ π/2

0

dθ

(
√

(1− k2 sin2 θ))
=

∫ 1

0

(dt)
(
√

((1− k2t2)(1− t2)))
. (B.2.1)



COMPLETE ELLIPTIC INTEGRALS 95

Figure B.2: Complete Elliptic Integrals of the first kind, taken from website[128]





Appendix C
The Calculation of the Density of States and Its
Hilbert Transform

The density of states N(ω) is obtained from the imaginary part of the one-particle Green’s
function G0(k, ω), and the function F (ω) is its real part ReG0(k, ω)∫

d2k

(2π)2
G0(k) =P

∫
d2k

(2π)2
1

ω − ε(k)
− iπ

∫
d2k

(2π)2
δ(ω − ε(k))

=F (ω)− i π N(ω)

Density of states:

the 1st step is to convert all quantities into dimensionless units. This corresponds to the
following change in notation:

kxa, kya→ kx, ky,

εk/2t, µ/2t, ω/2t, ...→ εk(kx, ky), µ, ω, ...

Next, we define the functions

N(ω) =
1

(2π)2

∫ π

−π
dkx

∫ π

−π
dkyδ(ω − ε(k)) (C.0.1)

ε(k) =− (cos kx + cos ky) + 2B(cos kx cos ky)− µ

and then

ω − ε(k) =ω + [cos kx + cos ky − 2B cos kx cos ky + µ]

or

ω − ε(k) =E + cos kx + cos ky − 2B cos kx cos ky (C.0.2)
(C.0.3)
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where E = ω + µ.
Substituting Eq.(C.0.2) into Eq.(C.0.1), we get

N(ω) =
1

4π2

∫ π

−π
dkx

∫ π

−π
dkyδ(E + (cos kx + cos ky − 2B cos kx cos ky))

=
1

2π2

∫ π

0
dkx

∫ π

0
dkyδ(E + (cos kx + cos ky − 2B cos kx cos ky))

note that the DOS integral is symmetric under the interchanges kx → −kx, ky → ky, hence its
domain of integration can be reduced from [−π, π] × [−π, π] → [0, π] × [0, π]. Subsquently, we
can do the change of variables u = cos kx, v = cos ky and obtain

N(ω) =
1

2π2

∫ 1

−1
d u

∫ 1

−1
d v δ(E + u+ v − 2Buv)

× 1√
1− u2

√
1− v2

where −2 + 2B ≤ E ≤ 2 + 2B.
Performing the v integration first, we find that

N(ω) =
1

2π2

∫ U

L
du

1√
1− u2

√
(1− 2Bu)2 − (E + u)2

(C.0.4)

=
1

2π2

∫ U

L
d u

1√
(1− u)(1 + u)( 1+E

1−2B + u)( 1−E
1+2B +−u)(1− 4B2)

=
1

2π2
√

1− 4B2

∫ U

L
d u

1√
(u− 1)(u− 1−E

1+2B )(u− [−1])(u− [− 1+E
1−2B ])

Putting α1 = 1, α2 = 1−E
1+2B , α3 = −1, and α4 = − 1+E

1−2B the inegration then has the form

N(ω) =
1

2π2

1√
1− 4B2

∫ U

L
d u

1√
(u− α1)(u− α2)(u− α3)(u− α4)

The integral lower(L) and upper(U) limits: the limits of integration correspond to the two
inner roots of the polynomial under the square root in Eq.((C.0.4)) i.e., E + u = v − 2Buv ,
these limits are different for different conditions for E and B.

−1 ≤ v =
E + u

1− 2Bu
≤ 1

For 2B < 1:
1− 2Bu > 1 for all u⇒

−(1− 2Bu) ≤ E + u ≤ 1− 2Bu

or
−(1− 2Bu)− E ≤ u ≤ 1− 2Bu− u

at the same time −1 ≤ u ≤ 1
For the case E > 0:

the lower limit is
Max{−1 + 2Bu− E,−1} = −1
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i.e., L = −1 = α3, and
the upper limit is

u = 1− 2Bu− E

⇒ u =
1− E

1 + 2B

i.e., U = 1−E
1+2B = α2

Then the final form of our integral is

N(ω) =
1

2π2

1√
1− 4B2

∫ α2

α3

d u
1√

(u− α1)(u− α2)(u− α3)(u− α4)
(C.0.5)

with α1 > α2 > α3 > α4 andα2 ≥ u ≥ α3.
The solution of the integration (C.0.5), (see Gröbner-Hofreiter, s.84), is given by

N(ω) =
1
π2

1√
1 + 2BE

[ 1√
(α1 − α3)(α2 − α4)

K
(
k2 =

(α1 − α4)(α2 − α3)
(α1 − α3)(α2 − α4)

)]
(C.0.6)

and hence,

N(ω) =
1
π2

1√
1 + 2BE

K
(1− (E

2 −B)2

1 + 2BE

)
(C.0.7)

For the case E < 0:
the upper limit is

Min{1, 1− 2Bu− E} = 1

⇒ u = 1−E
1+2B

so that

k2 =
(α1 − α2)(α3 − α4)
(α1 − α3)(α2 − α4)

(C.0.8)

=
(E

2 +B)2

(E
2 −B)2 − 1

(C.0.9)

i.e.

N(ω) =
1
π2

1√
(E

2 −B)2 − 1
K

( (E
2 +B)2

(E
2 −B)2 − 1

)
(C.0.10)

In this case i.e., when the parameter K2 > 1, we must use the relation[130] Re{K(k2)} =
Re{k−1K(k−2)}

N(ω) = Sign[E]
1
π2

1
(E

2 +B)
K

((E
2 −B)2 − 1
(E

2 +B)2

)
(C.0.11)
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The Function F (ω)

F (ω) =P

∫
dk2

(2π)2
1

ω − ε(k)

=
1

(2π)2
P

∫ π

−π

dkxdky

cos ky + E + [(1− 2B) cos ky] cos kx

=
1

(2π)2

∫ π

−π
dky P

∫ π

−π
dkx

1
a+ b cos kx

=
2

(2π)2

∫ π

−π
dky P

∫ π

0
dkx

1
a+ b cos kx

where, a = E + cos ky, b = (1− 2B) cos ky, and ε&E as before.
The method of evaluating this definite integral is based directly on Cauchy’s theorem. This
integral has the form

I =
∫ π

0

dθ

a− b cos θ
, where θ = Kx

where a and b are real and a > b > 0, see D for the case b > a. The integral is an even function
of θ, and therefore

I =
1
2

∫ 2π

0

dθ

a− b cos θ
=

∫ 2π

0

eiθdθ

2aeiθ − b(e2iθ + 1)
. (C.0.12)

Put eiθ = z.
As θ increases from 0 to 2π, z moves round the circle |z| = 1. Then

I = −1
i

∫
c

dz

bz2 − 2az + b
, (C.0.13)

where the path of integration is around the unit circle. But this is a closed contour and the
integral is therefore equal to 2πi times the sum of the residues at any poles within it. There
are two poles, namely, the zeros of the denominator, and their products is 1; write

bα = a−
√

(a2 − b2), b/α = a+
√

(a2 − b2), (C.0.14)

Then α is within the unit circle and 1/α outside, as shown in Fig.(C). Then

I = − 1
ib

∫
c

dz

(z − α)(z − 1/α)
. (C.0.15)
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Near α the integrand has the form
1

α− 1/α

( 1
z − α

+ terms analytic at z
)
,

and the residues is therefore (α− 1/α)−1[131]. Hence

I = − 2πi
ib(α− 1/α)

=
π√

(a2 − b2)
. (C.0.16)

i.e.,

F (ω) =
1

(2π)

∫ π

−π
dky

1√
(a2 − b2)

(C.0.17)

then, F (ω) is

F (ω) =
1

(2π)

∫ π

−π
dky

1√
[(E + cos kx) + (1− 2B cos ky)][(E + cos kx)− (1− 2B cos ky)]

=
1

(2π)

∫ 1

−1
dky

1√
(1− u2)([E + u] + [1− 2Bu])([E + u]− [1− 2Bu])

=
1

(2π)

∫ 1

−1
dky

1√
(1− u2)(E + 1 + (1− 2B)u)(E − 1 + (1 + 2B)u)

=
1

(2π)

∫ 1

−1
dky

1√
−(u− 1)(u+ 1)(u+ E+1

1−2B )(u− 1−E
1+2B )(1− 4B2)

=
1

(2π)

∫ 1

−1
dky

1√
α0(u− α1)(u− α2)(u− α3)(u− α4)(1− 4B2)

=
1

(2π)
1√

1− 4B2

∫ 1

−1
dky

1√
α0(u− α1)(u− α2)(u− α3)(u− α4)

with α0 < 0 and α1 > α2 > α3 > α4, see Gröbner and Hofreiter.
The solution for the function F (ω) has the form

F (ω) =
1

(π)
1√

1− 4B2

2√
(α1 − α3)(α2 − α4)

K
((α1 − α2)(α3 − α4)

(α1 − α3)(α2 − α4)

)
(C.0.18)

For E we have the next cases, they are:

(1) E > 2 + 2B

(2) −2B < E < 2 + 2B

(3) −2 + 2B < E < −2B

(1) E > 2 + 2B :

α1 = 1,α2 = −1, α3 = 1−E
1+2B , and α4 = − E+1

1−2B

F (ω) =
1
2

1
(π)

1√
(1− 4B2)

∫ 1

−1
du

1√
(u− α1)(u− α2)(u− α3)(u− α4)

=
1

(π)
1√

(1 + 2B − 1 + E)(−1 + 2B + E + 1)
K

( 4(2 + 4BE)
(E + 2B)(E + 2B)

)
=Sign(E)

1
(π)

1√
(2B + E)

K
(4(1 + 2BE)

(2B + E)

)
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(2) −2B < E < 2 + 2B :

α1 = 1,α2 = 1−E
1+2B , α3 = −1, and α4 = − E+1

1−2B

F (ω) =
1
2

1
(π)

1√
(1− 4B2)

2√
(1 + 1)[ 1−E

1+2B + 1+E
1−2B ]

K
(1− ( 1−E

1+2B )(−1 + E+1
1−2B )

(21+1+4BE
1−4B2 ) · 2

)
F (ω) = Sign(E)

1
(π)

1
2
√

(2BE + 1)
K

((2B + E)(2B + E)
4(1 + 2BE)

)

For E + 2B ≥ 0:

F (ω) = Sign(E)
1

(π)
1

2
√

(2BE + 1)
K

( (2B + E)2

4(1 + 2BE)

)
(3) −2 + 2B < E < −2B :

α1 = 1−E
1+2B ,α2 = 1, α3 = − E+1

1−2B , and α4 = −1

F (ω) =
1
2

1
(π)

1
2
√

(1− 4B2)
2√

[ 1−E
1+2B + 1+E

1−2B ] · 2
K

(√√√√( 1−E
1+2B − 1)(1− E+1

1−2B )

( 1−E
1+2B + 1+E

1−2B ) · 2

)

F (ω) =Sign(E)
1

(π)
1

2
√

(2BE + 1)
K

((−2B − E)2

4(1 + 2BE)

)
For E + 2B ≤ 0:

F (ω) = Sign(E)
1

(π)
1

2
√

(2BE + 1)
K

((−2B − E)2

4(1 + 2BE)

)
Note that it is possible to write the function F (ω), E < |2 + 2B|, as

F (ω) =Sign(E)
1

(π)
1√

(2BE + 1)
K

( (2B + E)2

4(1 + 2BE)

)
(C.0.19)

F (ω) =
1

(π)
2√

(2B + E)
K

(4(1 + 2BE)
(2B + E)2

)
(C.0.20)



Appendix D
The Cauchy principle value

The Cauchy principle of an integral may be used to define a less familiar generalized function
as follows. First, we define the principle value of the integral of a function, f :

P (f) ≡ P

∫ ∞

−∞
f(x) dx := lim

ε→0

∫
ε<|x|

f(x) dx = lim
ε→0

(∫ −ε

−∞
f(x) dx+

∫ ∞

ε
f(x) dx

)
. (D.0.1)

This defines one possible method for obtaining a number from the integral of a function, f
which has a singularity at the origin [132].

D.1 Principle value integral

In the previous Appendix we have seen that for a > b > 0, the integral I

I =
∫ π

0

dkx

a+ b cos kx

=
2π√
a2 − b2

(D.1.1)

Let us now do the Principle value integral, to insure that the value of the integral is zero for
b2 > a2

P = lim
ε→0

(∫ x0−ε

0

dkx

a+ b cos kx
+

∫ π

x0+ε

dkx

a+ b cos kx

)
. (D.1.2)
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and the solution is [133]

P = lim
ε→0

(1/
√
b2 − a2)

{[
ln
b+ a cos(kx) +

√
b2 − a2 sin(kx)

a+ b cos(kx)

]x0−ε

0

+
[
ln
b+ a cos(kx) +

√
b2 − a2 sin(kx)

a+ b cos(kx)

]x0+ε

π

}
(D.1.3)

= lim
ε→0

(1/
√
b2 − a2)

{
ln

[b+ a cos(x0 − ε) +
√
b2 − a2 sin(x0 − ε)

a+ b cos(x0 − ε)

]
− ln

[b+ a cos(0) +
√
b2 − a2 sin(0)

a+ b cos(0)

]
+ ln

[b+ a cos(π) +
√
b2 − a2 sin(π)

a+ b cos(π)

]
− ln

[b+ a cos(x0 + ε) +
√
b2 − a2 sin(x0 + ε)

a+ b cos(x0 + ε)

]}
(D.1.4)

= lim
ε→0

(1/
√
b2 − a2)

{
ln

[b+ a cos(x0 − ε) +
√
b2 − a2 sin(x0 − ε)

a+ b cos(x0 − ε)

]
− ln

[b+ a cos(x0 + ε) +
√
b2 − a2 sin(x0 + ε)

a+ b cos(x0 + ε)

]}
(D.1.5)

= lim
ε→0

(1/
√
b2 − a2)

{
ln

[b+ a cos(x0 − ε) +
√
b2 − a2 sin(x0 − ε)

a+ b cos(x0 − ε)

× a+ b cos(x0 + ε)
b+ a cos(x0 + ε) +

√
b2 − a2 sin(x0 + ε)

]}
(D.1.6)

cosx0 = −(a/b), cos2 x0 + sin2 x0 = 1 ⇒ sinx0 = (1/b)
√
b2 − a2 (D.1.7)

cos(x0 ∓ ε) = cosx0 cos ε± sinx0 sin ε

= −(a/b)± (ε/b)
√
b2 − a2 (D.1.8)

a+ b cos(x0 ∓ ε) = a+ b[−(a/b)± (ε/b)
√
b2 − a2]

= ±ε
√
b2 − a2 (D.1.9)

sin(x0 ∓ ε) = sinx0 cos ε∓ cosx0 sin ε

= (1/b)
√
b2 − a2 ± (aε/b) (D.1.10)

b+ a cos(x0 ∓ ε) +
√
b2 − a2 sin(x0 ∓ ε) =

b+ b[−(a/b)± (ε/b)
√
b2 − a2] +

√
b2 − a2

[
(1/b)

√
b2 − a2 ± (aε/b)

]
=

b− (a2/b)± (aε/b)
√
b2 − a2 + b− (a2/b)± (aε/b)

√
b2 − a2 =

(2/b)[(b2 − a2)± (aε)
√
b2 − a2] (D.1.11)
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then

ln
[b+ a cos(x0 − ε) +

√
b2 − a2 sin(x0 − ε)

a+ b cos(x0 − ε)

× a+ b cos(x0 + ε)
b+ a cos(x0 + ε) +

√
b2 − a2 sin(x0 + ε)

]
= ln

[ (2/b)[(b2 − a2) + aε
√
b2 − a2

(ε)
√
b2 − a2

× (ε)
√
b2 − a2

(2/b)[(b2 − a2)− aε
√
b2 − a2

]
= ln

[1 + aε
√

b2−a2

b2−a2

1− aε
√

b2−a2

b2−a2

]
= ln

[1 + x

1− x

]
∼= 2x

=
2aε

√
b2 − a2

b2 − a2
(D.1.12)

Then

P = lim
ε→0

1√
b2 − a2

{2aε
√
b2 − a2

b2 − a2

}
=0 (D.1.13)





Appendix E
Resolvents And Green’s Functions

E.1 Basic Definitions

The resolvent of a Hermitean operator (Hamilton operator) is defined as follows

G(z) = (zI −H)−1, z = ω + iδ, ,G(z∗) = G(z)†, (E.1.1)

where I is the unity operator. Any representation of such a resolvent is called a Green’s
functions, e.g., also the following configuration space representation of G,

< r|G(z)|r′ >= G(r, r′; z). (E.1.2)

The so-called side-limits of G(z) are then defined by

lim
|δ|→0

G(z) =

{
G+(ω) ; δ > 0
G−(ω) ; δ < 0

(E.1.3)

G+(ω) = G−(ω)† (E.1.4)

and therefore lead to the property,

ImG+(ω) =
1
2i

(G+(ω)− G−(ω)), (E.1.5)

or,e.g., by making use of the properties of Dirac delta functions,

ImTrG±(ω) = ∓π−1
∑

k

δ(ω − εk), (E.1.6)

n(ω) = ∓ImTrG±(ω), (E.1.7)

where Tr denotes the trace of an operator and n(ω) is the density of states (of a Hamiltonian
with discrete eigenvalue spectrum, {ε}). A Dirac delta function can therefore be simply viewed
as the Cauchy part of a first order pole in the resolvent G(z)
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E.2 The Dyson Equation

Suppose H is given in termsof an unperturbed Hamiltonian H0 and a (Hermitean) perturba-
tion V ,

H = H0 + V. (E.2.1)

The resolvents of H and Ho

G(z) = (zI −H)−1, G0(z) = (zI −H0)−1, (E.2.2)

are then coupled in terms of a Dyson equation,

G(z) = G0(z) + G(z)V G0(z) = G0(z) + G0(z)V G(z) (E.2.3)

which in turn can be solved iteratively (Born series),

G(z) = G0(z) + G0(z)V G0(z) + G0(z)V G0(z)V G0(z) + . . . . (E.2.4)

By reformulating (E.2.4) as

G(z) = G0(z) + G0(z)(V + V G0(z)V + . . .)G0(z), (E.2.5)

so-called T-operator can be defined,

T (z) = V + V G0(z)V + V G0(z)V G0(z)V + . . . , (E.2.6)

such that
G(z) = G0(z) + G0(z)T (z)G0(z). (E.2.7)

or, alternatively,

T (z) = V + V G(z)V, (E.2.8)
T (z) = V + V G0(z)T (z) = V + T (z)G0(z)V, (E.2.9)

G0(z)T (z) = G(z)V, (E.2.10)
T (z)G0(z) = V G(z). (E.2.11)

Since V is assumed to be Hermitean, similar to the resolvents, G0(z) and G(z), the T-opertor
satisfies the relation,

T (z∗) = T (z)†, (E.2.12)

and, in particular, for the side-limits the property

T+(ω)† = T−(ω) (E.2.13)

applies.

E.3 Integrated Density of States: the Lloyd Formula

Substituting (E.2.7) into (E.1.7) yields

n(ω) = − 1
π
ImTr(G+

0 (ω) + G+
0 (ω)T+(ω)G+

0 (ω))

= n0(ω) + δn(ω)
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where

n0() = − 1
π
ImTr(G+

0 (ω),

δn(ω) = − 1
π
ImTr(G+

0 (ω)T+(ω)G+
0 (ω))

= − 1
π
ImTr

(
G+

0 (ω)2T+(ω)
)

=
1
π
ImTr

(
dG+

0 (ω)dωT+(ω)
)

(E.3.1)

and use was made of the following identity

dG(z)
dz

= −G(z)2 (E.3.2)

Based on (E.2.8), (E.2.10) and (E.2.11) one further can derive that

dT (z)
dz

= V
dG(z)
dz

V (E.3.3)

= −V G(z)2V (E.3.4)

= −T (z)G0(z)2T (z) (E.3.5)

= T (z)
dG0(z)
dz

T (z), (E.3.6)

and therefore
T (z)−1dT (z)

dz
=
dG0(z)
dz

T (z) (E.3.7)

which substituted into (E.3.1) yields

δn(ω) =
1
π
ImTr

(
T+(ω)−1dT

+(ω)
dω

)
(E.3.8)

=
d

dω

( 1
π
ImTr ln T+(ω)

)
(E.3.9)

The integrated DOS,

N(ω) =
∫ ω

−∞
dω′n(ω′), (E.3.10)

can then be directly expressed as

N(ω) = N0(ω) + δN(ω), (E.3.11)

where

N0(ω) =
∫ ω

−∞
dω′n0(ω′), (E.3.12)

and

δN(ω) =
1
π
ImTr lnT+(ω) (E.3.13)

or, in terms of (E.2.6) as
δN(ω) = − 1

π
ImTr ln

(
I − G+

0 (ω)V
)
. (E.3.14)

The above expression is usually referred to as the Lloyd formula[134].





Appendix F
The Calculation of Imχαβ(q, ω)

The normal state Green’s function which includes elastic scattering of quasiparticles is
identical with Eq.(2.6.9) except that the infinitesimal imaginary part iδ is replaced by the
finite quantity i/2τ :

GR(εp) =
1

ω0 − εp + i/2τ
(F.0.1)

The spectral function, defined in (2.6.25), is no longer a δ-function:

A(p, ω0) =− 2ImGR(εp, ω0)

=
1/τ

(ω0 − εp)2 + (1/2τ)2

Because of the isotropy of the system that has been assumed, we only need to consider

Imχαα = (1/2π)
∫

d3p

(2π)3
p2

α

m2

∫ ∞

−∞
dω0 f(

ω0

T
)A(p, ω0)

[
A(p, ω0 + ω)−A(p, ω0 − ω)

]
. (F.0.2)

Because each ω0-integral converges fast enough, we can substitute ω0 − ω for ω0 in the first
term

Imχαα(ω) =(1/2π)
{∫

d3p

(2π)3
p2

α

m2

[ ∫ ∞

−∞
dω0 f(

ω0 − ω

T
)A(p, ω0)A(p, ω0 − ω)

−
∫ ∞

−∞
dω0 f(

ω0

T
)A(p, ω0)A(p, ω0 − ω)

]}
=(1/2π)

∫ ∞

−∞

[∫ d3p

(2π)3
p2

α

m2
A(p, ω0)A(p, ω0 − ω)

[
f(
ω0 − ω

T
)− f(

ω0

T
)
]]
dω0

=
∫ ∞

−∞

[
f(
ω0 − ω

T
)− f(

ω0

T
)
]
K dω0

where

K(ω0, ω) =(1/2π)
∫

d3p

(2π)3
p2

α

m2

[
A(p, ω0)A(p, ω0 − ω)

]
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When the dispersion relation ε(p) is isotropic, the integral K can be simplified through the
conversion to polar coordinates∫

d3p

(2π)3
p2

x =
∫ ∞

0

dp

(2π)3
p4

∫ π

0
dθ sin θ sin2 θ

∫ 2π

0
cos2 φdφ

=
∫ ∞

0

dp

(2π)3
p4 · (4/3) · π

In view of the dependence of the spectral function on momentum we introduce the energy as
new integration variable. In the nearly free electron model, this substitution is particularly
simple. Because of the particular form of the spectral function, the main contribution to the
energy integral is confined to the neighbourhood of the chemical potential. With

ε =
p2

2m
− µ ⇒ dε =

p

m
dp,

this justifies the following approximations

K =(1/2π)(1/6π2)
∫ ∞

0
dp (p4/m2)

[
A(p, ω0)A(ω0 − ω)

]
=s

∫ ∞

−µ
dε

[
A(p, ω0)A(p, ω0 − ω)

]
=s

∫ ∞

−∞
dε

[
A(p, ω0)A(p, ω0 − ω)

]
The ε-integral can then be done with the help of the theorem of residues. Then the following
simplification is possible

A(p, ω0)A(p, ω0 − ω) =−
[
GR(ε, ω0)−GA(ε, ω0)

]
×

[
GR(ε, ω0 − ω)−GA(ε, ω0 − ω)

]
=−

[
GR(ε, ω0)GR(ε, ω0 − ω) +GA(ε, ω0)GA(ε, ω0 − ω)

−GR(ε, ω0)GA(ε, ω0 − ω)−GA(ε, ω0)GR(ε, ω0 − ω)
]

=
[
GR(ε, ω0)GA(ε, ω0 − ω) +GA(ε, ω0)GR(ε, ω0 − ω)

]
because (GRGR), and (GAGA) have poles in one half-plane only and hence do not contribute to
the integral. Then

K =s
∫ ∞

−∞
dε

{
GR(ε, ω0)GA(ε, ω0 − ω) +GA(ε, ω0)GR(ε, ω0 − ω)

}
=s

∫ ∞

−∞
dε

{ 1
ω0 − ε− i

2τ

× 1
ω0 − ω − ε+ i

2τ

+
1

ω0 − ε+ i
2τ

× 1
ω0 − ω − ε− i

2τ

}
=s

∫ ∞

−∞
dε

{ 1
ε− (ω0 − i

2τ )
× 1
ε− (ω0 − ω + i

2τ )
+

1
ε− (ω0 + i

2τ )
× 1
ε− (ω0 − ω − i

2τ )

}
=

p3
f

3π2m
.

τ

1 + ω2τ2
(F.0.3)
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Finally Imχαα becomes

Imχαα =
[ p3

f

3π2m

τ

1 + ω2τ2

]{ ∫ ∞

−∞
f(
ω0 − ω

T
)− f(

ω0

T
)dω0

}
=

[n0

m

τ

1 + ω2τ2

]
ω (F.0.4)

since ∫ ∞

−∞
f(
ω0 − ω

T
)− f(

ω0

T
)dω0 =ω

The Fermi Function Integral

W e know that Fermi function is

f(
ω0

T
) =

1
[e

ω0
T + 1]

= − −e−
ω0
T

[1 + e−
ω0
T ]

Note that apart from a factor T the numerator is the derivative of the denominator with
respect to ω0. We thus write

f(ω0) =− T
d

dω0
ln[1 + e−

ω0
T ]

so that ∫ ∞

−∞
f(
ω0 − ω

T
)− f(

ω0

T
)dω0 =− T

[
ln(1 + e−

ω0
T )− ln(1 + e−

ω0+ω
T )

]∞
−∞

= + T lim
Ω→∞

[
ln

(
1 + e

Ω
T

)
− ln

(
1 + e

Ω+ω
T

)]
= + T lim

Ω→∞

(Ω
T
− Ω + ω

T

)
=− ω.

So that

σ1 =
n0e

2τ

m(1 + ω2τ2)





List of Acronyms and Symbols

List of Acronyms

Abbreviation Details
1DEG 1D Electron Gas
AFM Antiferromagnetic
ARPES Angle-Resolved PhotoEmission Spectroscopy(Studies)
BCS Bardeen, Cooper, Schrieffer
BdG Bogoliubov-deGennes
BSCCO Bi2Sr2Ca2Cu3Oy

DDW D-Density-Wave states
DOS Density Of States
LDOS Local Density Of States
GF Green Function
GL Ginzburg, Landau
HTSC High Temperature Superconductor
INS Inelastic Neutron Scattering
LFLT Landau Fermi Liquid Theory
LSCO La2−xSrxCuO4

MRI Magnetic Resonance Imaging
NMR Nuclear Magnetic Resonance
O.D. Over Doped
PG Pseudogap
QI Quantum Interference
RVB Resonating Valence Bond
SC Superconductor
SPQI Spin-Polarized Quasiparticle Injection
SCTMA Selfconsistant T -Matrix Approximation
SQUIDS Superconducting Quantum Interference Devices
SSC Superconducting Super Collider
STM Scanning Tuneling Microscopy
TISE Time Independent Schrdinger Equation
U.D. Under Doped
YBCO YBa2Cu3O7
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List of Symbols
Abbreviation Details

a Lattice constant
A Operator
A(r, t) Electromagnetic vector potential
A(k,ω) Spectral function
B Next-neighbor hopping integral in units of t, and Operator
Bc Critical magnetic field
c() Annihilation operator
c†() Creation operator
e Electron charge
EEE Electric field
E Energy
EF Fermi energy
F Free energy
Fn Free energy in the normal phase
F (ω)(= ReG0) Hilbert transform of N(ω)
G Green’s function; Reciprocal lattice vector
G Matsubara Green’s function
H Magnetic field
H0 Unperturbed Hamiltonian
H′ Interaction(perturbed) Hamiltonian
H.c. Hermite conjugate
~ Plank’s constant
J Electric current
jc Critical current
k Wave vector
k elliptic modulus
K Grand Hamiltonian (= H + µN)
K Kelvin
kB Boltzmann constant
kF Fermi wavevector
le electron mean free path
m mass
M(ω) Memory function
ns(r) No. of "Superconducting electrons(Cooper Pairs)"
niσ Occupation number of electrons with spin (σ) at site i.
N, n Number of particles
|N > Ground state of system
N(ω), and N(ε) Density of states
P Cauchy principle value
pF Fermi momentum
q(= 2e) Cooper pair charge
R Optical reflectivity
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Abbreviation Details
t time, nearest-neighbour hopping integral
t′ time, next-nearest-neighbour hopping integral
T Temperature, time-ordering parameter
Tc Transition temperature
Ta Annealing temperature
T ∗ Peusdogap
U Potential
v Velocity
vF Fermi velocity
V Potential, Volume
α, β Phenomenological parameters, Spin
∆ Gap parameter
∆k Order parameter
λ Penetration depth
µ Chemical potential
ξ Coherence length
σ Spin, Conductivity
τ Imaginary time (= it), or Relaxation time
φ Fourier transform of susceptibility
ϕ(r) Spatially varying phase
χ Susceptibility
ψ Complex order parameter, Wave function, and Field operator
ψ0 Equilibrium value of order parameter in absence of an electromagnetic

field, Ground state wavefunction
ω Frequency
ωp Plasma frequency
ρ Electric resistivity
ρ(ω) Density of states
ρi Residual resistivity
ρph Phonon resistivity
ρab Resistivity in ab-plane
ρc c-axis resistivity
κ(= λ/ξ) Ginzburg-Landau parameter
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