Identifizierung, Genexpressionsanalyse und funktionelle Charakterisierung von Peptidasen von *Entamoeba histolytica* (SCHAUDINN, 1903)

DISSERTATION

zur Erlangung des Doktorgrades des Departments Biologie der MIN Fakultät der Universität Hamburg

> vorgelegt von Manuela Tillack aus Recklinghausen

> > Hamburg, 2008

Genehmigt vom Department Biologie der Fakultät für Mathematik, Informatik und Naturwissenschaften an der Universität Hamburg auf Antrag von Professor Dr. E. TANNICH Weitere Gutachterin der Dissertation: Frau Professor Dr. I. BRUCHHAUS Tag der Disputation: 17. Oktober 2008

Hamburg, den 02. Oktober 2008

Professor Dr. Jörg Ganzhorn Leiter des Departments Biologie

Inhaltsverzeichnis

INHA	LTSVERZEICHNIS	I
ABKÜ	DRZUNGSVERZEICHNIS	V
DANK	XSAGUNG	VIII
ZUSA	MMENFASSUNG	IX
1 EIN	LEITUNG	1
1.1	Entamoeba histolytica	1
1.2	Morphologie und genomische Organisation von E. histolytica	2
1.3	Pathogenitätsfaktoren von E. histolytica	2
1.4	Cysteinpeptidasen von E. histolytica	
1.4	1.1 Charakterisierung der Cysteinpeptidasen von <i>E. histolytica</i>	5
1.4	4.2 Weitere Peptidasen von <i>E. histolytica</i>	7
1.5	Mikroarraystudien	8
1.5	5.1 Anwendungen für Mikroarrayexperimente zur Identifizierung von Pathogenitätsfaktoren	8
1.5	5.2 Mikroarrayexperimente bei <i>E. histolytica</i>	9
1.6	Zielsetzung	
2 MA	FERIAL UND METHODEN	
2.1	Chemikalien	
2.2	Enzyme	
2.3	Marker	
2.4	Kits	
2.5	Immunoreagenzien und Seren	14
2.6	Puffer und Lösungen	14
2.7	Kulturmedien	
2.8	Organismen	
2.9	Plasmide	
2.10	Oligonukleotide	
2.11	Zellkultur von <i>E. histolytica</i>	
2.1	1.1 Anzuchtbedingungen	19
2.1	1.2 Zellernte und Herstellung von Rohextrakt	19
2.1	1.3 Transfektion von <i>E. histolytica</i>	
2.12	Zellkultur der CHO-Zellen	
2.13	Bakterienzellkultur	

2.14	solierung von Nukleinsäuren	. 21
2.14.1	Isolierung genomischer DNA aus E. histolytica	. 21
2.14.2	Isolierung von Gesamt-RNA aus E. histolytica	. 21
2.14.3	RNA-Isolierung mit dem RNeasy [®] -Mini-Kit (Qiagen)	. 22
2.14.4	Plasmidisolierung durch alkalische Lyse	. 22
2.14	.4.1 Plasmid-Mini-Präparation	22
2.14	.4.2 Plasmid-Maxi-Präparation	22
2.15	DNA-Analysen	. 22
2.15.1	Fällung von Nukleinsäuren	. 22
2.15.2	Konzentrationsbestimmung und Reinheitskontrolle	. 23
2.15.3	DNA-Amplifizierung mittels Polymerase-Kettenreaktion (PCR)	. 23
2.15.4	DNA-Sequenzanalyse	. 24
2.15.5	Agarose-Gelelektrophorese	. 24
2.15	.5.1 Extraktion von DNA-Fragmenten aus Agarosegelen	25
2.15.6	Restriktionsanalyse von DNA	. 25
2.15.7	Ligation von DNA-Fragmenten	. 25
2.15.8	Transformation von <i>E. coli</i>	. 25
2 16 1	Herstellung kompetenter Zellen	26
2.17		
2.1/ 1	$\mathbf{X}_{\text{IONIERUNGEN}} = \mathbf{X}_{\text{IONIERUNGEN}} = \mathbf{X}$. 20
2.17.1	Klonierung der Plasmidkonstrukte pJC45-EhCP-A8, -B1, -B3, -B4, -B5, -B/, -B8	. 26
2.17.2	Kionierung des Plasmidkonstruktes pNB_EnCP-A1	. 20
2.17.3	Kionierung des Plasmidkonstruktes pNC_EnCP-A4	. 27
2.18	RNA-Analysen	. 28
2.18.1	Northern-Blot-Analysen	. 28
2.18.2	Reverse Transkription	. 28
2.18.3	Quantitative <i>Real-Time</i> PCR	. 29
2.19 I	Biochemische Analysen	. 30
2.19.1	Rekombinante Expression von Genen in E. coli	. 30
2.19.2	Reinigung von rekombinanten Proteinen durch Metallchelat-	
	Affinitätschromatographie	. 31
2.19.3	Konzentrationsbestimmung von Proteinlösungen	. 32
2.19.4	SDS-Polyacrylamidgelelektrophorese (SDS-PAGE)	. 32
2.19.5	Präparative Gelelektrophorese (Prep-Cell)	. 33
2.19.6	Proteinfärbung	. 34
2.19	.6.1 Dispersionsfärbung mit Coomassie Brilliant Blue G250	34
2.19	.6.2 Silberfärbung	34
2.19.7	Tryptischer Verdau für Matrix Assisted Laser Desorption Ionisation Time of Flight	2.5
2 10 0	Mass Spectrometry-Analysen (MALDI TOF MS)	. 35
2.19.8	Western-Blot-Analyse und Immunodetektion	. 35
2.19.9	0 1 Bestimmung von Enzymaktivitäten	. 36
2.19	9.1 Proteolytische CP-Aktivität gegenüber Z-Arg-Arg-pNA	30 27
2.19	0 Nachwais zur Paptidasagussahlausung aus Trophozoitan	
2.19.1 2 10 1	1 Restimmung der zutonathischen Aktivität von Amähan	. 57 20
2.19.1		. 59
2.20 1	Bildung von Leberabszessen in Wüstenrennmäusen	. 39
2.21	Enzyme-linked Immunosorbent Assay (ELISA)	. 40
2.22	Mikroarraystudien	. 41

2.22.1 Das Prinzip der Mikroarray-Technik	41
2.22.2 Mikroarraydesign	42
2.22.3 cDNA-Synthese	43
2.22.4 Indirekte Fluoreszenzmarkierung der Proben	44
2.22.5 Prähybridisierung der Mikroarrays	44
2.22.6 Hybridisierung	45
2.22.7 Waschen der hybridisierten Mikroarrays	45
2.22.8 Auswertung und Normalisierung	46
2.22.9 Kokultivierungen	47
2.22.9.1 Kokultivierung von Trophozoiten mit Leberzellen	47
2.22.9.2 Kokultivierung von Trophozoiten mit Erythrozyten	47
2.22.9.3 Kokultivierungen mit Bakterienstämmen	47
2.22.9.4 Kokultivierung mit CHO-Zellen	47
2.23 Hard- und Software	48
3 ERGEBNISSE	49
3.1 Charakterisjerung der Cysteinnentidasen von <i>E. histolytica</i>	<u>4</u> 9
2.1.1 Vlonierung von <i>akan al</i> in Tronhozoiton von <i>E</i> , <i>histolytica</i>	
3.1.1 Kiomerung von <i>encp-a1</i> in Trophozoiten von <i>E. histolytica</i>	49
2.1.2 Charalterisianung dar nND EhCD A1 Transfeltenten von E. histolytica	
3.1.5 Charakteristerung der pNB_EIICF-AT-Transfektanten von <i>E. mistotytica</i>	JI 51
3.1.3.2 Aktivitätstests der nNR EhCP-A1-Transfektanten	51
3.1.4 Untersuchungen zur Pathogenität der EhCP-A1-Transfektanten von <i>E. histolytica</i>	53
3.1.4 1 Zytonathische Aktivität von EhCP-A1-Transfektanten	55
3.1.4.2 Induktion von Leberabszessen durch EhCP-A1-Transfektanten von <i>E histolytica</i>	55
3 1 5 Nachweis der Peptidaseausschleusung aus Trophozoiten	55
316 EhCP-A5-Transfektion in <i>amoebanore a</i> -defizienten Trophozoiten von	
<i>E</i> , histolytica	56
3 1 7 Klonierung von <i>ehcn-a4</i> in Tronhozoiten von <i>E</i> histolytica	56
3.1.8 Überexpression von <i>ehen-a4</i> in Trophozoiten	57
3.1.9 Charakterisierung der FhCP-A4-Transfektanten von <i>F. histolytica</i>	57
3 1 9 1 Bestimmung der Proteaseaktivität von EhCP-A4–überexprimierenden Tronhozoiten	57
3 1 10 <i>In vitro</i> Untersuchungen zum Einfluss von EhCP-A4 auf die Pathogenität von	
<i>E histolytica</i>	58
3.2 Peptidasegene von <i>E. histolytica</i>	59
3.2.1 Aspartatpeptidasen (EhAsPs)	59
3.2.2 Metallopeptidasen (EhMPs)	59
3.2.3 Serinpeptidasen (EhSPs)	61
3.3 Mikroarraystudien	62
3.3.1 Genexpression bei <i>E. histolytica</i> Kulturisolaten	63
3.3.1.1 Peptidasegenexpression im <i>E. histolytica</i> Referenzstamm HM-1:IMSS	63
3.3.1.2 Expression weiterer Gene im <i>E. histolytica</i> Referenzstamm HM-1:IMSS	65
3.3.1.3 Peptidasegenexpression in verschiedenen <i>E. histolytica</i> Langzeitkulturisolaten	66
3.3.2 Peptidasegenexpression bei transgenen <i>E. histolytica</i> Trophozoiten	67
3.3.3 Peptidasegenexpression von <i>E. histolytica</i> unter <i>in vitro</i> -Kokultivierungen	68
3.3.3.1 Kokultivierung der Trophozoiten mit Bakterien (<i>E. coli</i> bzw. <i>E. faecalis</i>)	69
3.3.3.2 Kokultivierung der Trophozoiten mit <i>Crithidia fasciculata</i>	69
3.3.3.3 Kokultivierung der Trophozoiten mit Erythrozyten	70

3.3.3.4 Kokultivierung der Trophozoiten mit Leberzellen	70
3.3.3.5 Kokultivierung der Trophozoiten mit CHO-Zellen	70
3.3.4 Kultivierung der Trophozoiten unter Hitzestress	
3.3.5 Proteinmuster während der Infektion des Menschen mit E. histolytica	
3.3.5.1 Klonierung und rekombinante Expression ausgewählter Cysteinpeptidasen aus	
E. histolytica	73
3.3.5.2 Messung der Antiköperreaktion von Patienten auf EhCPs	75
4 DISKUSSION	77
4.1 Klonierung und funktionale Charakterisierung von EhCP-A1 und EhCP-A4	
4.2 Einfluss von EhCP-A1 und EhCP-A4 auf die Pathogenität von <i>E. histolytica</i>	79
4.3 Identifikation von Peptidasegenen	82
4.4 Expressionsprofil von Peptidasegenen in <i>E. histolytica</i> (Mikroarraystudien)	84
4.4.1 Peptidasegenexpression unter Kulturbedingungen	
4.4.1.1 Genexpression anderer Proteingruppen in <i>E. histolytica</i>	
4.4.2 Vergleich der <i>ehcp</i> -Genexpression unterschiedlicher Isolate	88
4.4.3 Genexpression unter verschiedenen Kulturbedingungen	90
4.5 Proteinsynthese während der Infektion des Menschen mit <i>E. histolytica</i>	
LITERATURVERZEICHNIS	94
ANHANG	102

Abkürzungsverzeichnis

А	Ampere
ad.	auffüllen bis
A. dest	Aqua destillata
Abb.	Abbildung
AET	asymptomatische E. histolytica Träger
AK	Antikörper
ALA	Amöbenleberabszess
AP	alkalische Phosphatase
APS	Ammonium-Persulfat
As	Antisense
ATCC	American Type Culture Collection
ATP	Adenosintriphosphat
BCA	Bicinchoninsäure
BCIP	5-Brom-4-chlor-3-indoxylphosphat
BLAST	Basic Local Alignment Search Tool
Вр	Basenpaare
BSA	Rinderserumalbumin
ca.	circa
cDNA	komplementäre DNA
CIAP	Calf Intestinal Alcaline Phosphatase
Cy3	Carbocyanin 3
Cy5	Carbocyanin 5
Da	Dalton
DMF	Dimethylformamid
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
DNase	Desoxyribonuklease
dNTP	Desoxyribonukleosid-5-triphosphat
DTT	Dithiothreitol
E-64	L-transpoxysuccinyl-1-leucylamido-4-(guanidino)-butane
ECM	Extrazelluläre Matrix
EDTA	Ethylendiamintetraessigsäure
EGTA	Ethylenglycoltetraessigsäure
et al.	et alii (und andere)
EtOH	Ethanol
F	Farad
FCS	fötales Kälberserum
g	Erdbeschleunigung
G418	Geniticin

GPI	Glykosylphosphatidylinositol			
h	Stunde			
HEPES	N-2-Hydroxyethylpiperazin-N'-2-ethansulfonsäure			
IgG	Immunglobulin G			
IPTG	Isopropyl-b-D-thiogalaktopyranosid			
k	Kilo			
1	Liter			
LB	Luria-Bertani			
М	Molar			
m	milli			
MALDI TOF MS	Matrix Assisted Laser Desorption Ionisation Time of Flight Mass			
	Spectrometry			
min	Minute			
MOPS	3-(N-Morpholino)-Propansulfonsäure			
NaAcetat	Natrium-Acetat			
NADPH	Nikotinamidadenindinukleotidphosphat			
NBT	Nitroblautetrazoliumchlorid			
neo	Neomycinphosphotransferase			
OD	optische Dichte			
ORF	Open Reading Frame			
PAGE	Polyacrylamidgelelektrophorese			
PBS	Phosphat Buffered Saline			
PCR	Polymerase-Kettenreaktion			
PEG	Polyethylenglykol			
RNA	Ribonukleinsäure			
RNase	Ribonuklease			
RNS	Reactive Nitrogen Species			
ROS	Reactive Oxygene Species			
RT	Raumtemperatur			
S	Sekunden			
S	Sense			
SDS	Sodiumdodecylsulfat			
SSC	Saline Sodium Citrate (salziges Natriumzitrat)			
Taq	Thermus aquaticus			
TBE	Trisboratessigpuffer			
TBS	Tris Buffered Saline			
TCA	Trichloressigsäure			
TEMED	N,N,N',N'-Tetramethylethylendiamin			
TFA	Trifluoressigsäure			
TIGR	The Institute for Genomic Research (Datenbank)			
TMD	Transmembrandomäne			

Tris	Tris-Hydroxymethyl-Aminoethan
u.a.	unter anderem
U	Unit (Enzymeinheit)
UE	Untereinheit
üN	über Nacht
UV	Ultraviolett
v/v	Volumen pro Volumen
Vol.	Volumen
w/v	Gewicht pro Volumen
x-Gal	5-Brom-4-Chlor-3-indolyl-b-D-Galaktopyranosid
z.B.	zum Beispiel

Danksagung

Mein erster Dank gilt Prof. Dr. Egbert Tannich für die Vergabe des vielfältigen und interessanten Themas. Er war jederzeit Ideengeber des Projekts und trug damit maßgeblich zum Gelingen dieser Arbeit bei.

Prof. Dr. Iris Bruchhaus möchte ich von ganzem Herzen für alles, was sie für mich getan hat, danken. Mit ihrer motivierenden und persönlichen Art sowie mit ihrer Arbeit ist und bleibt sie für mich ein Vorbild.

Ein weiteres Dankeschön gilt PD Dr. Hannelore Lotter und Claudia Marggraf für die Durchführung der Gerbilversuche und für ihre Bereitschaft, die ELISA-Studien zu übernehmen.

Bei Dr. Christoph Gelhaus von der Universität Kiel möchte ich mich für die von ihm durchgeführten MALDI-TOF-Analysen bedanken.

Für die Einarbeitung in die Mikroarraytechnik möchte ich Anja Distler vom Institut für Hygiene und Mikrobiologie, Würzburg, sowie Prof. Dr. Nancy Guillen und Christian Weber vom Pasteur-Institut in Paris danken. Sie haben den Aufbau des Systems erst ermöglicht und standen mir jederzeit als Ansprechpartner zur Verfügung.

Weiterer Ansprechpartner für Mikroarrayprobleme war Prof. Dr. Thomas Röder, den ich jederzeit alles fragen durfte und dem ich hiermit dafür danken möchte.

Von großer Hilfe waren meine Kollegen aus den Laboren 4 und 6. Insbesondere die Unterstüzung und die Ratschläge von Dr. Henriette Irmer und Ina Hennings brachten die Arbeit vorwärts.

Ein großes Danke für die Zusammenarbeit sowie für die tolle Zeit innerhalb und außerhalb des Labors geht an alle ehemaligen und aktuellen Kollegen aus der Kommune 5, vor allem an Laura Biller, Anna Bachmann, Martin Helmkampf, Sabine Predehl, Dr. Simone Harder-Plog und Dr. Meike Bente.

Bedanken möchte ich mich bei Mirela Saric und Dr. Sabine Riekenberg für ihre vielen wertvollen Tipps.

Dem evangelischen Studienwerk e.V. Villigst gebührt ein wichtiger Dank für die finanzielle Unterstützung nicht nur für das Stipendium, sondern auch für die Reisekostenzuschüsse zu Kongressen.

Ein besonderer Dank gilt meinem Mann, meiner Familie und meinen Freunden, die jederzeit für mich da waren und sind.

Zusammenfassung

Die Amöbiasis wird durch die Infektion mit dem humanpathogenen Protozoon *E. histolytica* hervorgerufen und ist neben Malaria und Schistosomiasis eine der häufigsten Parasitosen in tropischen und subtropischen Gebieten. Während der Infektion besiedelt der Parasit über einen längeren Zeitraum asymptomatisch den Darm. In Einzelfällen kommt es zu einem invasiven Verlauf mit klinischen Manifestationen (Amöbenkolitis, Amöbenleberabszess (ALA)). Bislang konnten nur wenige Moleküle beschrieben werden, die mit der Invasion des Erregers assoziiert sind. Im Besonderen wurden einem Adhärenzlektin, porenbildenden Peptiden (*Amoebapores*) sowie einigen Peptidasen eine Funktion bei der Pathogenese zugeschrieben.

Im ersten Teil der Arbeit wurde die Beteiligung ausgewählter Cysteinpeptidasen (CPs) an pathologischen Prozessen untersucht. Dabei wurde erstmalig die unter Kulturbedingungen stark synthetisierte Peptidase EhCP-A1 berücksichtigt. Für EhCP-A1 konnte weder eine Beteiligung an der Zytopathogenität *in vitro* noch an der ALA-Bildung im Mausmodell nachgewiesen werden. Darüber hinaus wurde für EhCP-A5 gezeigt, dass diese Peptidase neben seinen bereits bekannten pathogenen Eigenschaften zusätzlich das Fehlen weiterer Pathogenitätsfaktoren kompensieren kann. In *amoebapore a*-defizienten Amöben, die *in vivo* keine ALAs induzierten, führte die Überexpression von EhCP-A5 zur Bildung von Abszessen, die erneut die Größe von Wildtyp-induzierten ALAs erreichten. Die Überexpression des unter Kulturbedingungen schwach exprimierten Gens *ehcp-a4* war ebenfalls erfolgreich, allerdings wurde keine Beteiligung des entsprechenden Proteins an *in vitro*-Invasionsprozessen nachgewiesen.

Im zweiten Teil der Arbeit wurde aufgrund von Datenbankanalysen gezeigt, dass im Genom von E. histolytica insgesamt 86 Peptidasegene vorliegen, weit mehr als bislang angenommen wurde. Diese Daten dienten als Grundlage für die Erstellung eines Mikroarrays zur umfassenden Untersuchung der Transkription von Peptidasegenen. Es wird vermutet, dass sowohl bei der Pathogenität von E. histolytica als auch bei dem Überleben des Parasiten im menschlichen Wirt neben Peptidasen Amoebapores und enzymatische Antioxidantien eine wichtige Rolle spielen. Aus diesem Grund wurde eine Auswahl entsprechender Gene in die Mikroarraystudien integriert. In einem ersten Schritt wurde das Expressionsprofil des Referenzisolates HM-1:IMSS unter Standardkulturbedingungen ermittelt. Die bekannte starke Expression von ehcp-a1, -a2 und -a5 konnte bestätigt werden. Eine moderate Expression wurde für 17 weitere

Peptidasegene gemessen, die Mehrheit der untersuchten Gene wurden schwach exprimiert. Auch die Mehrheit der Antioxidantien- und *amoebapore*-Gene war moderat oder schwach exprimiert. Lediglich 11 der insgesamt 70 Gene, darunter Gene für *amoebapore a*, *peroxiredoxin* und *superoxid-dismutase* wiesen eine starke Expression auf.

Somit sind lediglich 10 % der untersuchten Gene im Trophozoitenstadium stark exprimiert. Für die unter Kulturbedingungen moderat oder schwach exprimierten Gene ist vorstellbar, dass die entsprechenden Proteine eine Funktion während En- bzw. Excystierungsprozessen oder der Wirtsbesiedlung übernehmen.

Bei dem Vergleich von Expressionsprofilen pathogener und apathogener Kulturisolate wurden nur geringe Expressionsunterschiede einzelner Gene gemessen. Kokultivierungen von Trophozoiten mit verschiedenen Zellen (Bakterien, Erythrozyten etc.) veränderten das Standardexpressionsprofil nicht. Hingegen zeigten Trophozoiten, die einem oxidativen Stress (Modell für den Kontakt mit aktivierten Makrophagen) bzw. einem Hitzestress (Modell für die Temperaturerhöhung während der Leberinvasion) ausgesetzt waren, im Vergleich zu den Kontrollen eine stärkere Expression von verschiedenen Antioxidantiengenen und von zwei normalerweise schwach exprimierten Peptidasegenen (*ehcp-a4* und *-a6*).

Im dritten Teil der Arbeit sollten mittels ELISA-Studien Hinweise auf die Peptidasesynthese während der Infektion im Menschen gewonnen werden. Zu diesem Zweck wurden die Antikörperreaktionen gegen 10 EhCPs, die größtenteils unter Kulturbedingungen nicht oder schwach exprimiert sind, in Seren von ALA-Patienten, asymptomatischen E. histolytica-Trägern und E. dispar-Trägern in ELISA-Studien miteinander verglichen. In den Seren der meisten ALA-Patienten konnten spezifische Peptidasen nachgewiesen Antikörper gegen die ausgewählten werden. Da Kreuzreaktionen mit den stark synthetisierten CPs ausgeschlossen werden könnten, deutet dies darauf hin, dass sich das Expressionsprofil während der Leberabszessbildung verändert.

Somit scheinen unter Kulturbedingungen normalerweise schwach exprimierte *cp*-Gene unter anderen Lebensbedingungen, wie z.B. bei der Wirtsinvasion, Hitze- und oxidativem Stress, stärker exprimiert zu werden.

1 Einleitung

1.1 Entamoeba histolytica

Der einzellige humanpathogene Parasit *Entamoeba histolytica* (SCHAUDINN, 1903) ist der Erreger der Amöbiasis. Neben Malaria und Schistosomiasis zählt die Amöbiasis zu den häufigsten Parasitosen, wobei sie aufgrund mangelnder Hygiene hauptsächlich in tropischen und subtropischen Regionen vorkommt. Weltweit sind ca. 50 Millionen Menschen mit *E. histolytica* infiziert, und die Zahl der Todesfälle wird auf ca. 70.000 pro Jahr geschätzt (Clark *et al.*, 2007).

E. histolytica durchläuft einen einfachen Lebenszyklus ohne Zwischenwirte, bestehend aus einer säureresistenten Zyste (10-15 µm) und einem beweglichen, vegetativen Trophozoiten (10-50 µm) (Marshall et al., 1997). Durch die orale Aufnahme gelangen vierkernige Zysten in den Wirtsorganismus. Im Dünndarm erfolgt die Exzystierung und Umwandlung in achtkernige Trophozoiten, aus denen durch Plasmateilung einkernige, bewegliche Trophozoiten hervorgehen. Die Trophozoiten besiedeln den oberen Dickdarm, wo sie sich von Bakterien und Nahrungsresten ernähren. Im unteren Dickdarm erfolgt nach asexueller Teilung die Enzystierung, bevor der Parasit als Zyste wieder über den Stuhl ausgeschieden wird und neue Wirte befallen kann. Die Infektion verläuft für den Menschen in den meisten Fällen asymptomatisch (nicht-invasive Amöbiasis). In 4-10 % der Fälle wird der Trophozoit invasiv und dringt unter massiver Gewebszerstörung in die Mukosa und Darmwand ein (invasive, intestinale Amöbiasis) (Stanley, 2003). Als typische Symptome können Fieber, Kolitis und blutige Durchfälle auftreten. Zusätzlich können die Trophozoiten nach der Darmperforation über den Blutstrom in andere Organe verschleppt werden und dort Abszesse bilden. Das am häufigsten betroffene Organ ist die Leber (extraintestinale Amöbiasis) (Joyce und Ravdin, 1988).

Eine weitere Spezies der Gattung *Entamoeba* ist *Entamoeba dispar*. Im Gegensatz zu *E. histolytica* lebt *E. dispar* als apathogener Kommensale im menschlichen Darm. Beide Arten sind morphologisch nicht voneinander zu unterscheiden. Daher wurde lange Zeit angenommen, dass *E. dispar* ein apathogenes Isolat von *E. histolytica* darstellt. Isoenzym-Analysen, der Nachweis von Antigenvariationen und molekularbiologische Untersuchungen konnten zeigen, dass es sich bei *E. dispar* um eine eigenständige Art handelt (Clark und Diamond, 1991; Strachan *et al.*, 1988; Tannich *et al.*, 1989).

1.2 Morphologie und genomische Organisation von *E. histolytica*

E. histolytica wird in der Taxonomie zum Stamm Amoebozoa, Klasse Entamoebidea, Ordnung Entamoebida und Familie Entamoebidae, Gattung *Entamoeba* gezählt (Lucius und Loos-Frank, 2008). Die Trophozoiten besitzen eine einfache Zellmembran, die ein flüssiges Endoplasma mit zahlreichen Nahrungsvakuolen und Zellorganellen umgibt. Etwa 40 % des Endoplasmas besteht aus Vakuolen und Vesikeln, die äquivalent zu Lysosomen und zytotoxischen Vesikeln höherer eukaryotischer Zellen sind (Scholze und Tannich, 1994). Durch Ausstülpungen des Plasmas, auch Pseudopodien genannt, sind die Trophozoiten beweglich. Zusätzlich werden die Pseudopodien zur Nahrungsaufnahme benutzt. Das Genom von *E. histolytica* hat eine Länge von ca. 24 MB und weist einen hohen AT-Gehalt von 78 % auf (Loftus *et al.*, 2005; Willhoeft und Tannich, 1999). Die 9938 vorhergesagten Gene mit einer Durchschnittslänge von 1,17 KB stellen die Hälfte des Genoms dar (Clark *et al.*, 2007). Lediglich ein Viertel der Gene besitzt Intronsequenzen, 6% enthalten mehr als eine Intronsequenz (Loftus *et al.*, 2005).

1.3 Pathogenitätsfaktoren von *E. histolytica*

Namensgebend für den anaeroben bzw. mikroaerophilen Parasiten ist seine Fähigkeit, Gewebe mit hoher Effizienz zu lysieren und Zellverbände aufzulösen. Für die Pathogenität von *E. histolytica* ist das Zusammenspiel verschiedener Faktoren notwendig. Zunächst erfolgt die Anheftung der Trophozoiten an die Epithelzellen des Darms durch ein Galaktose/N-Acetyl-D-Galaktosamin (Gal/GalNAc-) spezifisches Lektin (Petri, 1996). Nach Anheftung erfolgt eine kontaktabhängige Lyse der Wirtszellen durch die Ausschleusung von porenbildenden und antibakteriell wirkenden Proteinen. Diese werden *Amoebapores* genannt (Leippe *et al.*, 1991; Leippe *et al.*, 1994b). Trophozoiten, bei denen ein bestimmtes *amoebapore*-Gen durch *antisense*-Technik oder durch transkriptionelle Inaktivierung ausgeschaltet ist, verlieren ihre Virulenz (Bracha *et al.*, 1999; Bracha *et al.*, 2003). Weitere wichtige Virulenzfaktoren sind Cysteinpeptidasen, die u.a. die Extrazelluläre Matrix (ECM) des Wirtes zerstören und Gewebsverbände auflösen (Bruchhaus *et al.*, 2003; Keene *et al.*, 1986; Olivos-Garcia *et al.*, 2004; Que *et al.*, 2002; Scholze und Tannich, 1994; Stanley *et al.*, 1995).

1.4 Cysteinpeptidasen von *E. histolytica*

Cysteinpeptidasen (CPs) sind proteolytische Enzyme, die zur Hydrolyse von Peptidbindungen befähigt sind. CPs werden aufgrund ihrer Aminosäuresequenz in Familien und Clans eingeteilt (http://merops.sanger.ac.uk). Namensgebend ist ein im aktiven Zentrum vorkommender Cysteinrest. Die enzymatische Aktivität beruht auf der katalytischen Dyade dieses Cysteinrestes mit einem Histidinrest, welche durch Beteiligung weiterer Aminosäuren, hauptsächlich einem Asparagin und/oder Glutamin, verstärkt werden kann. Die Analyse der dreidimensionalen Struktur verschiedener CPs zeigt, dass die Polypeptidkette zwei Domänen bildet, eine R- und eine L-Domäne, die durch einen Spalt voneinander getrennt sind. In diesem Spalt kann das Substrat binden. Die katalytisch wichtigen Cystein- und Histidinreste befinden sich jeweils auf einer der beiden Domänen (Rawlings und Barrett, 1994). CPs werden klassischerweise als sogenannte Prä-Pro-Enzyme, d.h. als inaktive Vorläuferproteine, synthetisiert. Die Präsequenz sorgt für die Zielsteuerung in spezifische zelluläre Kompartimente oder zur Plasmamembran, wohingegen die Prodomäne das Enzym im inaktiven Zustand hält (Que et al., 2002). Anhand der Sequenzdaten aus dem Genomprojekt von E. histolytica konnten durch Homologiestudien insgesamt 50 Cysteinpeptidasegene (ehcps) identifiziert werden (Loftus et al., 2005; Clark et al., 2007). Von diesen ehcps gehören 47 in den Peptidase-Clan CA und drei zu dem Clan CE (siehe Tab.1).

Peptidase-Clan (2)	Peptidasefamilie (6)	Peptidasetyp
	C1 (37)	Papain-ähnliche Peptidasen
	C2 (2)	Calpain-ähnliche Peptidasen
CA (47)	C19 (3)	Ubiquitinylhydrolasen
	C54 (4)	Autophagine
	C65 (1)	Otubaine
CE (3)	C48 (3)	Ulp1 Peptidasen

Tabelle 1: Einteilung der Cysteinpeptidasen aus *E. histolytica* nach Clan- und Familienzugehörigkeit sowie deren Peptidasetyp (MEROPS-Peptidasedatenbank). In Klammern steht die Anzahl der jeweiligen Vertreter (Clark *et al.*, 2007).

Die Mehrheit der 50 EhCPs gehört in die Papain-ähnliche Peptidasenfamilie C1. Phylogenetische Studien an den EhCPs dieser Familie führten zu einer weiteren Unterteilung in die Unterfamilien EhCP-A mit 13 Mitgliedern, EhCP-B mit elf Mitgliedern und EhCP-C mit 13 Mitgliedern (siehe Abb. 1) (Clark *et al.*, 2007). EhCP-A und EhCP-B sind klassische Prä-Pro-Enzyme mit einer Cathepsin L-ähnlichen Struktur, wobei die bisher biochemisch charakterisierten Mitglieder aus der Unterfamilie EhCP-A (EhCP-A1, EhCP-A2, EhCP-A5) eine Cathepsin B-ähnliche Substratspezifität aufweisen (Jacobs et al., 1998). Beiden Unterfamilien gemeinsam ist ein charakteristisches Motiv unbekannter Funktion in der Proregion, das die folgende konservierte Sequenz aufweist: $E-(X)_3-R-(X)_2-I/V-F-(X)_2-N-(X)_3-I-(X)_3-N$ (ERFNIN-Motiv). Die Mitglieder der Unterfamilie EhCP-A weisen eine kürzere Proregion als die Mitglieder der Unterfamilie EhCP-B auf. Ferner besitzen die Vertreter beider Unterfamilien in der N-terminalen Region des maturen Enzyms unterschiedliche konservierte Sequenzmotive. Bei EhCP-A handelt es sich dabei um die Sequenzabfolge P-(X)₃-D-W-R-(X)₂-G-K (DWR-Motiv) und bei EhCP-B um die Sequenzabfolge P-(X)₅-C-(X)₆-N-(X)₁₋₈-C (PCNC-Motiv). Aufgrund von Sequenzanalysen wurden putative Transmembrandomänen (TMD) oder GPI-Anker-Regionen bei zehn der elf EhCPs der Unterfamilie EhCP-B, aber bei keinem der Unterfamilie EhCP-A gefunden (Bruchhaus et al., 2003; Clark et al., 2007).

Die 13 Mitglieder der Unterfamilie EhCP-C weichen in ihrer vorhergesagten Aminosäurestruktur in vielfacher Hinsicht von denen für EhCP-A und EhCP-B beschriebenen Strukturen ab. Sie besitzen statt einer klassischen Prä-Pro-Organisation am N-terminalen Bereich eine hydrophobe Region, die als Signalanker fungieren könnte. C-terminal ist ein konserviertes HSYSIC-Motiv zu finden. Bisher wurde in anderen Organismen keine Cysteinpeptidase identifiziert, die strukturell mit den EhCP-C Mitgliedern verwandt ist. So kann keine Aussage über die Funktion dieser Molekülgruppe getroffen werden (Clark *et al.*, 2007).

Abbildung 1: Strukturelle Organisation der C1-Unterfamilien EhCP-A, EhCP-B und EhCP-C. Grün: ERFNIN-Motiv; blau: DWR-Motiv; hellblau: PCNC-Motiv; ockerfarben: hydrophobe Region der EhCP-C-Unterfamilie; violett: HSYSIC-Motiv; grünes Oval: Signalankermotiv; hellgrün: GPI-Ankersequenzmotiv/hydrophobe Domäne: gelb: katakytisches Zentrum; Q (Glutamin), C (Cystein), H (Histidin), N (Asparagin): katalytisch wirksamen Aminosäuren

Bei den weiteren in Tabelle 1 aufgelisteten EhCPs, die in die Peptidasefamilien C2, C19, C54, C65 und C48 fallen, handelt es sich ausschließlich um putative Peptidasen von *E. histolytica*, denen potenzielle Eigenschaften und Aktivitäten lediglich über Homologievergleiche mit den Sequenzen bekannter Peptidasen anderer Organismen zugeschrieben werden können. Im Genom von *E. histolytica* wurden zwei Gene für putative Calpain-ähnliche CPs (EhCALP1 und EhCALP2) gefunden (Familie C2). Bei anderen Organismen sind Vertreter dieser Peptidasen an zahlreichen zellulären Prozessen beteiligt, wie z.B. an verschiedenen Signalwegen, bei der Rekonstruktion des Zytoskeletts und der Membranen sowie bei der Apoptose (Goll *et al.*, 2003).

Die C19-Familie (Ubiquitinylpeptidasen), zu der bei *E. histolytica* drei putative Peptidasen (EhUBHY, EhUBP, EhUCH) gehören, umfasst Enzyme, die bei anderen Organismen am Ubiquitinabbau beteiligt sind (Balakirev *et al.*, 2003). Dies gilt auch für den einzigen Vertreter der Otubain-Familie C65 (EhOTU).

Autophagine (Familie C54) sind in *E. histolytica* mit vier Proteinen (EhAUTO1 - 4) vertreten. Bekannte Moleküle dieser Familie spielen bei der Autophagie eine wichtige Rolle, einem Prozess, bei dem zelleigene Bestandteile von einer Membran umschlossen und degradiert werden (Marino *et al.*, 2003; Marino und Lopez-Otin, 2004). Die drei putativen EhCPs der Familie C48 (EhUlp1-1, EhUlp1-2 und EhUlp1-3) gehören als einzige nicht dem Clan CA, sondern dem Clan CE an. Ulp1 Proteine sind Peptidasen, die die Funktion des sogenannten SUMO-Proteins (*small ubiquitin-like modifier protein*) kontrollieren. (siehe Tab. 1; Anhang: Tab. 22).

1.4.1 Charakterisierung der Cysteinpeptidasen von *E. histolytica*

Mit Hilfe von Northern-Blot-Analysen wurden bislang 20 *ehcp*-Gene in Trophozoiten des Stammes HM-1:IMSS untersucht (Bruchhaus *et al.*, 2003) (siehe Tab. 2). Diese 20 Cysteinpeptidasen gehören ausschließlich in die Unterfamilien EhCP-A und EhCP-B der Peptidasefamilie C1 (siehe Abb. 1).

Tabelle 2: Expression von 20 untersuchten Cysteinpeptidasegenen aus *E. histolytica* **HM-1:IMSS unter Kulturbedingungen (Northern-Blot-Analysen).** Angegeben sind die Expressionsstärken der jeweiligen Gene, deren alter und neuer Name sowie die Familienzugehörigkeit der entsprechenden Enzyme (Bruchhaus *et al.*, 2003). *Definition der Expressionsstärken: starke Expression (positives Hybridisierungssignal nach 2 h Sondenexposition); moderate Expression (positives Hybridisierungs-signal innerhalb von 24 h Expositionszeit); keine Expression: kein Hybridisierungssignal innerhalb von 5 Tagen Expositionszeit

Expressionsstärke*	alter Name	neuer Name	Familie
starke Expression	ehcp1	ehcp-a1	EhCP-A
	ehcp2	ehcp-a2	EhCP-A
	ehcp5	ehcp-a5	EhCP-A
moderate Expression	ehcp3	ehcp-a3	EhCP-A
	ehcp8	ehcp-a7	EhCP-A
	ehcp9	ehcp-a8	EhCP-A
	ehcp16	ehcp-b7	EhCP-B
	ehcp17	ehcp-a10	EhCP-A
keine Expression	ehcp4	ehcp-a4	EhCP-A
	ehcp6	ehcp-a6	EhCP-A
	ehcp7	ehcp-b1	EhCP-B
	ehcp10	ehcp-a9	EhCP-A
	ehcp11	ehcp-b2	EhCP-B
	ehcp12	ehcp-b3	EhCP-B
	ehcp13	ehcp-b4	EhCP-B
	ehcp14	ehcp-b5	EhCP-B
	ehcp15	ehcp-b6	EhCP-B
	ehcp18	ehcp-b8	EhCP-B
	ehcp19	ehcp-a11	EhCP-A
	ehcp112	ehcp-b9	EhCP-B

Die Proteine EhCP-A1, EhCPA-2 und EhCP-A5 sind bereits gereinigt und näher charakterisiert worden (Jacobs *et al.*, 1998; Luaces und Barrett, 1988; Scholze und Schulte, 1988). Alle drei Proteine sind innerhalb der Amöben in Vesikeln lokalisiert (Jacobs *et al.*, 1998; Okada *et al.*, 2005; Que *et al.*, 2002), wobei EhCP-A5 zusätzlich eine Oberflächenlokalisation zugeschrieben wird, die auf einen hydrophoben N-terminalen Bereich des Protein zurückzuführen sein könnte (Jacobs *et al.*, 1998). Unter Kulturbedingungen sind EhCP-A1, EhCP-A2 und EhCP-A5 für mehr als 90 % der Gesamtpeptidaseaktivität von *E. histolytica* verantwortlich (Bruchhaus *et al.*, 2003).

Um die Rolle dieser EhCPs für die Pathogenität von *E. histolytica* näher zu analysieren, wurden verschiedene Versuche durchgeführt. Im Fall der EhCP-A2 führte die

Überexpression des Gens durch episomale Transfektion zu einem Anstieg der zytopathischen Aktivität der transgenen Trophozoiten in vitro, d.h. zu einer gesteigerten Fähigkeit Säugetierzellen zu zerstören (Hellberg et al., 2001). Im Tiermodell führte die Überexpression der EhCP-A2 aber keiner verstärkten zu Bildung von Amöbenleberabszessen (ALA) (Hellberg et al., 2001). Die Überexpression von ehcp-a5 führte zu einer gesteigerten Zytopathogenität sowie zu einer signifikanten Erhöhung der Amöbenleberabszessbildung (Nowak 2005; Tillack et al., 2006). Des Weiteren konnte gezeigt werden, dass in EhCP-A5-überexprimierenden Trophozoiten auch die Menge an maturem EhCP-A1- und EhCP-A2-Protein erhöht war. Es wird spekuliert, dass EhCP-A5 für eine Prozessierung dieser beiden Peptidasen verantwortlich sein könnte (Nowak 2005; Tillack et al., 2006). Die Bedeutung der EhCP-A5 für die Pathogenität der Amöben wurde durch antisense-Inhibierung des ehcp-a5-Transkripts untermauert. EhCP-A5-defiziente Amöben sind nicht mehr in der Lage ALAs zu induzieren (Ankri et al., 1999a). Außerdem zeichnen sich diese Trophozoiten durch eine verminderte Fähigkeit, Mukusschichten abzubauen und Darmentzündungsreaktionen hervorzurufen, aus (Zhang et al., 2000). Jedoch scheint die zytopathische Aktivität der EhCP-A5-defizienten Amöben gegenüber BHK-Zellen (baby hamster kidney-Zellen) nicht beeinflusst zu sein (Ankri et al., 1998).

1.4.2 Weitere Peptidasen von *E. histolytica*

Bei *E. histolytica* handelt es sich um einen Organismus mit hoher proteolytischer Aktivität, die anscheinend überwiegend auf dem Vorhandensein von CPs basiert. Erste Hinweise auf die Existenz zusätzlicher enzymatisch aktiver Proteine anderer Peptidasefamilien lieferte die Arbeit von Munoz und Kollegen (Munoz *et al.*, 1982; Munoz *et al.*, 1984). Die Autoren konnten beobachten, dass Trophozoiten Kollagen *in vitro* verdauen. Die Kollagenaseaktivität wurde durch biochemische Aktivitäts- und Inhibierungsversuche eingehender charakterisiert. Untersuchungen zur Lokalisation der Kollagenase, einer Metallopeptidase, sprachen für eine Oberflächenassoziation. Außerdem wurde durch die Inkubation von Trophozoiten mit Kollagen die Bildung elektronendichter Granula, die eine Kollagenase sezernieren, gezeigt (Munoz *et al.*, 1990). Schließlich wurde der kollagenolytischen Aktivität der Trophozoiten eine Rolle bei der Pathogenität zugeschrieben (Munoz *et al.*, 1984; Serrano *et al.*, 1994).

In einer weiteren Studie wurde gezeigt, dass Lysate von *E. histolytica* ebenfalls Serinpeptidaseaktivitäten aufweisen, die auf dem Vorhandensein einer spezifischen Ca^{2+} abhängigen Serinpeptidase und einer thermostabilen Serinmetallopeptidase beruhen (Padilla-Vaca et al., 2000). Barrios-Ceballos et al. konnten 2005 ein Protein aus Amöbenextrakten mittels Ionenaustausch-Chromatographie, Elektroelution und 2D-SDS-Polyacrylamidgelelektrophorese-Analysen isolieren, welches als membranständige Serinpeptidase klassifiziert wurde. Durch Sequenzierung interner Peptide und anschließende BLAST-Analysen konnten im Genom von E. histolytica für das gereinigte Protein zwei offene Leserahmen (ORF) gefunden werden. Diese ORFs sind homolog zu Serinpeptidasesequenzen der Serinpeptidasefamilie S28. Zusätzlich wurde eine zu den Serinpeptidasen zählende Tripeptidylpeptidase I (EhTPPI) aus löslichem Amöbenextrakt gereinigt und funktionell charakterisiert (Flockenhaus et al., 2000). Fluoreszenzmikroskopie an intakten Zellen zeigten eine mögliche Verteilung der EhTPPI in den Vakuolen der Trophozoiten.

1.5 Mikroarraystudien

1.5.1 Anwendungen für Mikroarrayexperimente zur Identifizierung von Pathogenitätsfaktoren

Die Anwendung von Mikroarrayexperimenten ist universell. Beim Menschen wird sie in der biomedizinischen (präklinischen) Forschung zur Erkennung von krankheitsspezifischen Gensignaturen eingesetzt. Dabei konnten u.a. tumorassoziierte Gene für Nieren-, Prostata-, Brust- und Lungenkrebs beschrieben werden (zur Übersicht: (Bertucci *et al.*, 2006; Macgregor, 2003; Virtanen und Woodgett, 2008).

Bei der Untersuchung humanpathogener Organismen kommen Mikroarraystudien ebenfalls zum Einsatz. So wurden beispielsweise bei dem Pilz *Candida albicans*, dem Erreger verschiedener (Organ-)Kandidosen, Mikroarrayversuche durchgeführt, um Transkriptionsprofile invasiver und nicht-invasiver Stämme miteinander zu vergleichen (Thewes *et al.*, 2007). Dank dieser Studien konnte u.a. das Gen *cadfg16* identifiziert werden, das an dem Prozess der Leberinvasion beteiligt ist. Darauf aufbauende Studien zeigten, dass DFG16 an der Membranoberfläche des Pilzes lokalisiert ist. *Dfg16*-defiziente Zellen verloren dagegen ihre Virulenz.

Mit Hilfe der Transkriptiomanalyse könnten Kandidatengene identifiziert werden, die mit der Pathogenität assoziiert sind und als potenzielle Vakzinkandidaten eingesetzt werden könnten. In dem ersten genomweiten Mikroarrayprojekt des Malariaerregers *Plasmodium falciparum* wurde gezeigt, dass diese Technik dazu geeignet ist, unbekannten Genen anhand ihrer stadienspezifischen Expressionsprofile putative Funktionen bei zellulären Prozessen zuzuordnen (Le Roch *et al.*, 2003). So konnten Gene identifiziert werden, die mit einer bestimmten Krankheitsausprägung assoziiert sind und zu der Pathogenese der Malaria beitragen.

Bei der schwangerschaftsassoziierten Malaria (PAM) konnte bislang erst ein Gen (*var2csa*) eindeutig mit der Krankheit assoziiert werden (Ralph *et al.*, 2005). Tuikue Ndam und Mitarbeiter konnten mit Hilfe einer Mikroarraystudie ein weiteres Gen als potenziellen Pathogentitätsfaktor bei PAM definieren. Dabei handelt es sich um ein PHIST-Gen (*Plasmodium Helical Interspersed Subtelomeric Familiy Gene*), das in plazentalen Parasiten im Vergleich zu Parasiten aus nicht schwangeren Frauen stark überexprimiert vorliegt (Tuikue Ndam *et al.*, 2008).

1.5.2 Mikroarrayexperimente bei *E. histolytica*

In der *Entamoeba*-Forschung wurden bereits von verschiedenen Arbeitsgruppen Mikroarrayversuche durchgeführt, die im Folgenden kurz dargestellt werden. Debnath *et al.* entwickelten 2004 einen sogenannten *shotgun*-DNA-Array, der aus 9600 nicht sequenzierten Klonen einer genomischen *shotgun* DNA Bibliothek von *E. histolytica* besteht (TIGR; www.tigr.org). Ein weiterer DNA-Mikroarray wurde auf der Basis von 11.328 sequenzierten Klonen der genomischen TIGR-Datenbank von *E. histolytica* HM-1:IMSS hergestellt. Ca. 2000 dieser Klone besitzen einen einzigen ORF. Diese Klone wurden in die Analysen einbezogen (MacFarlane *et al.*, 2005a).

Neben den DNA-Arrays fanden auch Oligonukleotidmikroarrays Anwendung. Ein 1300 Amöbengene umfassender Oligonukleotidarray, der auf cDNA Sequenzen basiert, wurde in der Arbeitsgruppe von Nancy Guillen am Pasteur Institut in Paris entwickelt (Weber *et al.*, 2006). Daneben existieren unterschiedlich umfangreiche Oligonukleotidarrays, deren Oligonukleotide aus den Sequenzen der genomischen Datenbank (TIGR) abgeleitet wurden (Beck *et al.*, 2005; Davis *et al.*, 2007). Gilchrist und Mitarbeiter veröffentlichten eine nahezu genomweite, auf der Affymetrix-Technik beruhenden Analyse des Transkriptoms mit 9435 ORFs von *E. histolytica* (Gilchrist *et al.*, 2006)

Wie in dem vorangegangenen Kapitel dargelegt, unterstützt die Mikroarraytechnik die Suche nach Kandidatengenen, deren Expression mit dem Phänotyp (z.B. Virulenz) des untersuchten Organismus korreliert. Bei *E. histolytica* wurde die Technik zum Erstellen von Transkriptomprofilen verschiedener virulenter (HM-1:IMSS, NIH:200, HK-9) und avirulenter (Rahman) *E. histolytica*-Isolate sowie *E.dispar*-Isolate (SAW760, *SAW*1734) angewandt. So konnten den jeweiligen Isolaten und Arten spezifische genetische

fingerprints zugeordnet werden (MacFarlane *et al.*, 2005b; MacFarlane und Singh, 2006) (Davis *et al.*, 2007). Bei dem Vergleich der Expressionsprofile von HM-1:IMSS und Rahman wurde eine differenziell höhere Transkription der Gene für *ehcp-a4*, *-a6* und *-b1* in dem HM-1:IMSS Isolat gemessen. Die Gene *ehcp-a3*, *-a7* und *-b9* waren hingegen in dem Rahman-Isolat stärker exprimiert. Neben den avirulenten Isolaten existiert eine in ihrer Virulenz eingeschränkte Mutante von HM-1:IMSS. Dabei handelt es sich um den Klon L6. Der Vergleich des Expressionsprofils mit dem Expressionsprofil von HM-1:IMSS zeigte bei Klon L6 u. a. eine signifikant geringere Transkriptionsrate des Gens *ehcp-a1* (Hirata *et al.*, 2007).

Durch Anwendung ausgewählter *vitro*-Modelle wurde versucht, in pathogenitätsspezifische Schlüsselgene identifizieren. So wurde u.a die zu transkriptionelle Antwort der Trophozoiten auf Anwesenheit von Kollagen und Ca²⁺, Muzin, eukaryotische Zellen, GalNAc-Lektin und Bakterien untersucht (Beck et al., 2005; Debnath et al., 2004; Gilchrist et al., 2006; MacFarlane et al., 2005b). Differenzielle Expressionsraten von Cysteinpeptidasegenen konnten nur vereinzelt als Folge der verschiedenen Kokultivierungen detektiert werden. Bei der Interaktion der Trophozoiten mit Muzin steigt das Expressionsniveau der Gene ehcp-al und -a2. Während der Kokultivierung der Trophozoiten mit CHO-Zellen (chinese hamster ovary cells) sinkt das Transkriptionsniveau von ehcp-a3 (Debnath et al., 2007). Nach der Kokultivierung der Trophozoiten mit der Colon-Carcinoma-Zelllinie CaCo-2 konnte kein verändertes Transkriptionsprofil nachgewiesen werden (MacFarlane et al., 2005b). Dagegen induziert ein vierstündiger Hitzestress eine Transkriptionszunahme der Gene ehcp-a4 und ehcp-a6 sowie eine Transkriptionsabnahme der Gene ehcp-a1, ehcp-a2, ehcp-a7 und ehcp-a10 (Weber et al., 2006).

Gilchrist *et al.* lieferten 2006 erste *in vivo*-Untersuchungen zu dem *E. histolytica*-Transkriptom. Es wurde das Expressionsprofil von Trophozoiten, die unter standardisierten Kulturbedingungen wuchsen, mit dem Expressionsprofil von isolierten Trophozoiten aus dem Mauskolon verglichen. Bei den isolierten Amöben fiel eine signifikante Steigerung der Expression der Gene *ehcp-a1*, *-a4*, *-a6* und *-a8* auf.

Zusätzlich wurden Expressionsstudien zu stadienspezifisch exprimierten Genen bei Zysten und Trophozoiten von *E. histolytica* durchgeführt (Ali *et al.*, 2007; Ehrenkaufer *et al.*, 2007).

Tabelle 3 gibt eine Übersicht dieser Mikroarrayversuche. Zusätzlich hebt die Tabelle die differenzielle Expression von Cysteinpeptidasegenen hervor, da diese Gene im Zentrum der vorliegenden Arbeit stehen.

Tabelle 3: Übersicht über Mikroarrayversuche bei *E. histolytica.* Angegeben ist das gewählte Experiment sowie differenzielle Expressionsraten von *ehcp*-Genen. \uparrow : Gen im Vergleich zur Kontrolle differenziell stärker exprimiert; \downarrow : Gen im Vergleich zur Kontrolle differenziell schwächer exprimiert; -: keine differenzielle Expression. Als Kontrolle diente HM-1:IMSS

Experiment		Differenziell exprimierte <i>ehcp</i> -Gene	Referenz
Vergleichende Transkriptom- analysen	Rahman	 ↑ ehcp-a3, -a7, -b9 ↓ ehcp-a4, -a6, -b1 	Davis <i>et al</i> . 2007
		-	MacFarlane und Singh, 2006; Ehrenkaufer <i>et al.</i> , 2007
	HM1-Klon L6	↓ ehcp-a1	Hirata <i>et al.</i> , 2007
Kokultivie- rungen (<i>in vitro</i>)	Kollagen- und Ca ²⁺ , Muzinexposition	↑ ehcp-a1, -a2	Debnath <i>et al.</i> , 2004; Debnath <i>et al.</i> , 2007
	CHO- Zellexposition	↓ ehcp-a3	Debnath <i>et al.</i> , 2007
	Caco2- Zellexposition	-	MacFarlane <i>et al.</i> , 2005b
	GalNAc-Lektin-, Bakterienexposition	-	Debnath <i>et al.</i> , 2007
Stressversuche (<i>in vitro</i>)	Hitzestress	 ↑ ehcp-a4, -a6 ↓ ehcp-a1, -a2, -a3, -a7, -a10, -b4 	Weber <i>et al.</i> , 2006
		-	MacFarlane <i>et al.</i> , 2005b
in vivo	Aus dem Mauskolon re- isolierte Trophozoiten	 <i>chcp-a1, -a8, -a4</i>like, -a6like <i>ehcp-a7</i> 	Gilchrist <i>et al.</i> , 2006
Stadien- entwicklung	Vergleichenden Expressionsanalyse von Trophozoiten und Zysten	 ↑ Trophozoit: <i>ehcp-a1</i>, <i>-a2</i> ↑ Zyste: <i>ehcp-a8</i>, <i>-a4</i>, <i>-b1</i>, <i>-b3</i>, <i>-b8</i>, <i>-b9</i>; <i>-b10</i> 	Ehrenkaufer <i>et al.</i> , 2007

1.6 Zielsetzung

Bis zum heutigen Zeitpunkt sind die pathobiologischen Mechanismen, über die der Humanparasit *E. histolytica* verfügt, nicht vollständig verstanden. Allerdings scheinen Cysteinpeptidasen für die Gewebspenetration und Abszessbildung von entscheidender Bedeutung zu sein. Ziel der vorliegenden Arbeit war die Aufklärung der Funktion der unter Kulturbedingungen stark bzw. schwach synthetisierten Cysteinpeptidasen EhCP-A1 und EhCP-A4 sowie ihrer Beteiligung an pathobiologischen Prozessen. Dafür sollten in einem ersten Schritt die entsprechenden Gene gezielt in Trophozoiten überexprimiert werden. In darauf aufbauenden Versuchen sollten die transgenen Amöben sowohl auf ihre zytopathische Aktivität *in vitro*, als auch auf ihre Fähigkeit, im Tiermodell Amöbenleberabszesse zu induzieren, untersucht werden.

Insgesamt sind im Genom von *E. histolytica* 50 Cysteinpeptidasegene bekannt. Um weitere Peptidasegene zu identifizieren, sollten Homologiesequenzanalysen durchgeführt werden. Auf Grundlage der erlangten Information sollte anschließend ein peptidasespezifischer Mikroarray angefertigt werden, um das Expressionsprofil der ausgewählten Gene in unterschiedlichen Langzeitkulturisolaten zu untersuchen. Da anzunehmen ist, dass einige Peptidasegene erst während der Wirtsbesiedlung und/oder Gewebsinvasion benötigt werden, sollte das Expressionsprofil der Peptidasegene nach Kokultivierungen mit verschiedenen Zellarten zur Simulation unterschiedlicher Lebensbedingungen durchgeführt werden. Zusätzlich sollte das Expressionsprofil der Amöben als Reaktion auf Stressdisposition analysiert werden.

Um die molekularen Grundlagen der Amöbiasis zu verstehen, ist die Untersuchung der Peptidasesynthese des Parasiten während seines Lebens im menschlichen Wirt unerlässlich. Da dies auf direktem Weg nicht möglich ist, sollten mit Hilfe von ELISA-Studien die Antikörperreaktionen gegen rekombinant exprimierte EhCPs in Seren von verschiedenen Patientengruppen untersucht werden.

2 Material und Methoden

2.1 Chemikalien

Falls nicht anders vermerkt, wurden die Chemikalien von der Firma AppliChem (Darmstadt), Amersham Bioscience (Freiburg), Biomol (Hamburg), Bio-Rad (München), Boehringer (Mannheim), Fermentas (St. Leon-Rot), Fluka (Neu-Ulm), Gibco Life Technologies (Eggenheim), Invitrogen (Karlsruhe), Merck (Darmstadt), Otto Nordwald (Hamburg), PAN Biotech (Aidenbach), Pierce (Bonn), Promega (Mannheim), Roche Applied Science (Mannheim), Serva (Heidelberg) und Sigma (Deisenghofen) im Reinheitsgrad "pro analysis" bezogen.

2.2 Enzyme

DNA-Polymerase 1 (Klenow-Fragment)	Promega, USA
E64	Sigma, Deisenhofen
Pwo-Polymerase	Roche Applied Science, Mannheim
Restriktionsenzyme	New England Biolabs, USA
Trypsin rekombinant, Proteomics Grade	Roche Applied Science
Taq-Polymerase FIREpol	Solis BioDyne, Estland
T4-DNA Ligase	USB, USA

2.3 Marker

GeneRuler TM 1kb ladder (0,5 μ g/ μ l)	Fermentas, St. Leon-Rot
PageRuler TM Prestained Protein Ladder	Fermentas, St. Leon-Rot

2.4 Kits

Atlas Superscript Fluorescent Labeling Kit	Clonetech-TAKARA, Frankreich
BCA Protein Assay	Pierce Chemicals, USA
BigDye Terminator v3.1 Sequencing Kit	Applied Biosystems, Weiterstadt
Cy3 mono-reactive Dye Pack	Amersham Bioscience, Freiburg
Cy5 mono-reactive Dye Pack	Amersham Bioscience, Freiburg
Easy-DNA TM Kits	Invitrogen, Karlsruhe
FastPlasmid Mini	Eppendorf, Hamburg

NucleoSpin® PC2000	Macheray-Nagel, Düren
NucleoSpin® Extract II	Macherey-Nagel, Düren
Rapid DNA Ligation Kit	Roche Applied Science, Mannheim
RealMaster Mix	Eppendorf, Hamburg
RNeasy Mini Kit	Qiagen, Hilden
RNase-Free DNase Set	Qiagen, Hilden
SuperScript III, First-Strand Synthesis System	Invitrogen, Karlsruhe
TOPO TA Cloning Kit	Invitrogen, Karlsruhe

2.5 Immunoreagenzien und Seren

RinderserumSigma-Aldrich, TaufkirchenAP-konjugierte Anti-Huhn IgG (Kaninchen)Sigma-Aldrich, TaufkirchenPOD-konjugierte Anti-Human IgG (Kaninchen)Darco A/S, DänemarkAnti-EhCP-A1 (Kaninchen)Anti-EhCP-A2 (Kaninchen)Anti-EhCP-A5 (Huhn)Anti-EhCP-A5 (Huhn)

2.6 Puffer und Lösungen

Im Folgenden sind einige Puffer aufgeführt, die im Verlauf dieser Arbeit verwendet wurden. Zur Einstellung niedrigerer Pufferkonzentrationen wurde mit H₂O_{bidest.} verdünnt.

MOPS-Puffer (10x)	<u>, pH 7,0</u>	<u>NaPBS (10x), pH 7,2</u>	
MOPS	200 mM	Na ₂ HPO ₄	67 mM
Natriumacetat	50 mM	KH ₂ PO ₄	33 mM
EDTA	20 mM	NaCl	1,4 M
<u>SSC (20x), pH 7,0</u>			
NaCl	3 M		
Natriumcitrat	300 mM		
TBE-Puffer (10x)		<u>TBS (10x)</u>	
Tris	890 mM	Tris-HCl, pH 8,0	100 mM
Borsäure	890 mM	NaCl	1,5 M
EDTA	25 mM		

2.7 Kulturmedien

LB-Medium (Sambrook et al., 1989)	<u>LB-Agarplatten</u>
Trypton 1 % (w/v)	LB-Medium
Hefeextrakt 0,5 % (w/v)	Agar 1,5 % (w/v)
NaCl 1 % (w/v)	

TY-I-SS Medium, pH 6,8 (Diamond et al., 1978)

Trypticase	80 g
Hefeextrakt	40 g
Glukose	40 g
NaCl	8 g
K ₂ HPO ₄	4 g
KH ₂ PO ₄	2,4 g
L-Cystein	4 g
Ascorbinsäure	0,8 g
Fe-Ammoniumcitrat	91,2 mg

Die Komponenten wurden in 3480 ml $H_2O_{bidest.}$ gelöst und autoklaviert. Zur Komplettierung wurden vor Gebrauch zu 400 ml inkompletten Medium folgende Substanzen zugefügt: 50 ml inaktiviertes Rinderserum (40 min, 56°C), 15 ml Vitamin-Mix (Diamond Vitamin Tween 80, Amimed, Schweiz), 60 mg Streptomycin und 50 mg Penicillin. Um ein Überwachsen der Kulturen zu verhindern, wurden sie alle 2 - 3 Tage verdünnt.

CHO-Zellmedium - PAA-Ham's F12 (PAA, Pasching)

CHO-Zellen wurden in Ham's F12 Medium kultiviert. Vor Gebrauch wurde das Medium mit L-Glutamin (PAA, Pasching) durch die Zugabe von 100 U/ml Penicillin, 100 μ g/ml Streptomycin und 10 % inaktiviertem, fötalem Kälberserum (FCS, 2 x 30 min, 56°C) komplettiert und steril filtriert.

Tabelle 4: Antibiotika

Mediumzusatz	Stammlösung in A. dest	Arbeitskonzentration	
Ampicillin	100 mg/ml	100 µg/ml	LB-Medium
G418	50 mg/ml	10 - 50 μg/ml	TY-Medium
Kanamycin	50 mg/ml	50 µg/ml	LB-Medium
Streptomycin	200 mg/ml	200 µg/ml	TY-Medium
Penicillin	$2 \ge 10^5 \text{ U/ml}$	200 U/ml	TY-Medium

2.8 Organismen

Entamoeba-Isolate

 Tabelle 5: Entamoeba-Isolate

Entamoeba-Isolate	Anmerkungen
Pathogene Isolate	
HM-1:IMSS	Isoliert aus einem Patienten mit Kolitis im Jahr 1967 (ATCC Nr. 30459). Referenzisolat des Genomsequenzierungsprojekts (Loftus <i>et al.</i> , 2005).
Subtyp HM-1:IMSS_2411	HM-1:IMSS, bezogen über D. Mirelman, Israel; seit 2003 im Labor
NIH:200	Isoliert aus einem Patienten mit Kolitis im Jahr 1949 (ATCC Nr. 30458)
НК-9	Isoliert aus einem Patienten mit Amöbendiarrhöe (ATCC Nr. 30015)
DRP	Isoliert aus einem Patienten mit Amöbom im Jahr 1985
EGG	Isoliert aus einem Patienten mit Kolitis und Amöbenleberabszess im Jahr 1988
Apathogene Isolate	
452	Isoliert im Jahr 1983
32	Herkunft unbekannt

Die Isolate HM-1:IMSS, HM-1:BNI, NIH:200 und HK-9 werden seit mehreren Jahren im Bernhard-Nocht-Institut für Tropenmedizin kultiviert. Bei den Isolaten DRP, EGG, 452 und 32 handelt es sich um Isolate, die dem Institut seit 2005 zur Verfügung stehen.

CHO-Zellen:

Es wurden CHO-K1-Wildtyp-Zellen (*Chinese Hamster Ovary cells*, ATCC Nr.: CCL-61) verwendet.

Bakterienstämme:

Stämme	Relevanter Geno- oder Phänotyp	Referenz
BL21(DE3) pAPlacI ^Q	HsdS, gal (λcIts857 ind1 Sam7 nin5 lacUV5-T7 gene1)[pAPlacI ^Q]	O. Fayet, Toulouse
DH5a	SupE44, ΔlacU169 (φ80 lacZΔM15), hsdR17, recA1, endA1, gyrA96, thi-1, relA1	(Hanahan, 1983)
XL1-Blue	RecA1, endA1, gyrA96, thi-1, hsdR17($r_k m_k^+$), supE44, relA1, F'[proAB, laqI ^Q , lacZ Δ M15, Tn10(Tc ^r)]	Bullock <i>et al.</i> , 1987
One Shot Top 10 TM	F ⁻ mcrA Δ (mrr-hsdRMS-mcrBC) φ80lacZ Δ M15 lac X74 deoR rec A1 araD139 Δ (araleu)7697 gal U gal K rpsL (Str ^R) endA1 nupG	Invitrogen, Karlsruhe

Tabelle 6: Escherichia coli-Stämme

2.9 Plasmide

Tabelle 7: Klonierungsvektoren u	nd rekombinante Plasmide
----------------------------------	--------------------------

Plasmid	Größe (kDa)	Relevante Merkmale	Referenz
ТОРО	3.9	Siehe Produktbeschreibung	Invitrogen, Karlsruhe
pJC45	2.4	Amp ^r , colE1 ori, T7-Polymerase unter λp_L - lac Operator, 10His, Faktor Xa, Terminator	Clos und Brandau, 1994
pJC45-EhCP-A1	24.4	siehe pJC45, ehcp-al	Hellberg, Dissertation
pJC45-EhCP-A5	34.7	siehe pJC45, ehcp-a5	Hellberg et al., 2002
pJC45-EhCP-A7	34.4	siehe pJC45, ehcp-a7	Hellberg, Dissertation
pJC45-EhCP-A8	18.0	siehe pJC45, ehcp-a8	diese Arbeit
pJC45-EhCP-B1	20.1	siehe pJC45, ehcp-b1	diese Arbeit
pJC45-EhCP-B3	18.5	siehe pJC45, ehcp-b3	diese Arbeit
pJC45-EhCP-B4	18.6	siehe pJC45, ehcp-b4	diese Arbeit
pJC45-EhCP-B5	20.0	siehe pJC45, ehcp-b5	diese Arbeit
pJC45-EhCP-B7	18.6	siehe pJC45, ehcp-b7	diese Arbeit
pJC45-EhCP-B8	22.1	siehe pJC45, ehcp-b8	diese Arbeit
PBS(+)	3.2	Amp ^r , colE1 ori, F1 ori, lacZ, T3-und T7-Promotor	Stratagene, La Jolla, USA
pNB	5.0	s.PBS(+), Neo ^r	Hamann et al. 1995
pNB_EhCP-A1	7.0	siehe pNB, <i>ehcp-a1</i>	diese Arbeit
pNB_EhCP-A2	6.9	siehe pNB, <i>ehcp-a2</i>	Hellberg et al., 2001

pNB_EhCP-A5	10.7	siehe pNB, <i>ehcp-a5</i>	Nowak, 2005
pNC	6.0	Neo ^r , 5'/3'-Aktinbereiche und Lektinpromotor aus <i>E.</i> <i>histolytica</i>	Wassmann <i>et al.</i> , 1999
pNC_EhCP-A4	6.9	siehe pNC, <i>ehcp-a4</i>	diese Arbeit

2.10 Oligonukleotide

Die Oligonukleotide wurden von den Firmen MWG-Biotech (Ebersberg) und Operon Biotechnologies GmbH (Köln) synthetisiert. Die Stockkonzentration betrug 100 pmol. Erkennngssequenzen für Restriktionsenzyme sind fett gedruckt. Die Sequenzen sind in 5'-3'-Orientierung aufgeführt. (Abkürzungen: S = sense; As = antisense)

Oliogonukleotide für Klonierung der Überexpressionskonstrukte in E. coli:

EhCP-A8_S	GAGAAAGCTTATACATTTGGATCGATTGC
EhCP-A8_As	GAGAGGATCCGTCAGTAATTTGTCCAGTACAAC
EhCP-B1_S	GAGACATATGTATGCTGTTGGACCAGCACAAC
EhCP-B1_As	GAGAGGATCCGTCAGTAATTTGTCCAGTACAAC
EhCP-B3_S	GAGACATATGTATTGTGTAAGTAATGCTCTTGC
EhCP-B3_As	GAGAGGATCCAGTTGTGACAACTCCTTTTTCAC
EhCP-B4_S	GAGACATATGTATGCTGTTTCTAATGCACATG
EhCP-B4_As	GAGAGGATCCATTAGTGATAACATTTTTTGTACAGC
EhCP-B5_S	GAGAAAGCTTTATGCAGCATCAATAGCTAATTCCC
EhCP-B5_As	GAGA GGATCC GTTAGTGAAAATATTACCATTG
EhCP-B7_S	GAGAAAGCTTTATGCATTTGCAGCAAAAGAAATTGC
EhCP-B7_As	GAGAGGATCCAGAAGCAATAACTGATTC
EhCP-B8_S	GAGAAAGCTTTATGCAGCATCAACAGCAAACC
EhCP-B8_As	GAGAGGATCCATCAATTCCCATTTTATTAATATTAC

Oligonukleotide für Klonierung der Konstrukte in E. histolytica

EhCP-A1_S	GGAAGCTTGATTTTGTTTTGGTGTGTTGATTCAAGTGA
EhCP-A1_As	GGAAGCTTCTATAACGTATCATCATCAATTGTGAATCA
	TAATTAC
EhCP-A4_S	GAGAGGTACCATGTTTAATTTCCTTTTACTTGTAG
EhCP-A4_As	GAGAGGATCCATTAGCATCATGAGCACCAGTTG

Diverse Oligonukleotide:

Oligo(dT)-T7-1	GAGAGAGGATCCAAGTACTAATACGACTCACTAT
	AGGGAGAT ₂₄
M24F	CGACGTTGTAAAACGACGGCCAGT
M24R	ACACAGGAAACAGCTATGACCATG

Oligonukleotide für Mikroarraystudien: Siehe Anhang: Tab. 23 und 24

Oligonukleotide für RT-PCR-Studien:

Siehe Anhang: Tab. 25

2.11 Zellkultur von *E. histolytica*

2.11.1 Anzuchtbedingungen

Die Trophozoiten wurden in dem von (Diamond *et al.*, 1978) für axenische Kulturhaltung entwickeltem Medium TYI-S-33 (siehe 2.7) bei 36°C und $< 5 \% O_2$ in Kulturschalen (75 bzw. 250 ml) kultiviert. Zur Selektion transfizierter Zellen wurde dem Medium der Selektionsmarker G418 (siehe Tab. 4) zugeführt. Die Zellen wurden alle 2 bis 3 Tage umgesetzt.

2.11.2 Zellernte und Herstellung von Rohextrakt

Als Vorbereitung wurden 24 h vor der Ernte 1 x 10^6 Trophozoiten in eine 75 ml Kulturflasche eingesät. Die Ermittlung der Zellzahl erfolgte mit Hilfe einer Neubauer-Zählkammer. Zum Erntezeitpunkt befanden sich die Trophozoiten in der späten logarithmischen Wachstumsphase. Zum Ablösen der adhärenten Zellen wurde die Zellkulturflasche für 5 - 10 min auf Eis gestellt. Anschließend wurden die Amöben bei 4°C und 400 x g sedimentiert und zweimal mit kaltem NaPBS gewaschen.

Für den Aufschluss der Zellen wurde die "*freeze and thaw*"-Methode angewandt. Die sedimentierten und gewaschenen Trophozoiten wurden durch dreimaliges Einfrieren und Auftauen in einem Ethanol-Trockeneis-Gemisch lysiert. Die Zellbruchstücke wurden durch Zentrifugation bei 15000 x g und 4°C für 30 min sedimentiert. Die lösliche Zellfraktion befand sich im Überstand. Nach Bedarf wurde den Extrakten E-64 (10 - 50 μ M) hinzugefügt. Die Lagerung erfolgte bei -70°C.

2.11.3 Transfektion von *E. histolytica*

Die Transfektion von *E. histolytica* durch Elektroporation basiert auf einer von Hamann *et al.* (1995) beschriebenen Methode: die Zellmembran der Trophozoiten wird dabei kurzfristig permeabilisiert und dadurch der Eintritt der DNA in die Zellen erleichtert. Die Trophozoiten (ca. 1 x 10^7) wurden unter sterilen Bedingungen geerntet. Anschließend wurde das Zellsediment mit 5 ml inkomplettem "Cyto-Mix" wie unter 2.11.2 beschrieben gewaschen, bevor es in 3,6 ml kompletten "Cyto-Mix" resuspendiert wurde.

"Cyto-Mix" (inkomplett)

KCl	120 mM
CaCl ₂	0,15 mM
Kaliumphosphatpuffer, pH7,6	10 mM
HEPES, pH7,6	25 mM
EGTA, pH7,6	2 mM
MgCl ₂	5 mM

Durch Zugabe von 2,5 mg/ml ATP und 3 mg/ml reduziertem Glutathion wurde der Puffer komplettiert. Pro Ansatz wurde in einer Elektroporationsküvette (Durchmesser: 0,4 cm; (Peqlab Biotechnologie GmbH, Erlangen) 800 µl der Amöbensuspension mit 100 µg Plasmid-DNA vermischt und bei 1200 V und 25 µF zweimalig elektroporiert (Gene PulserTM; BioRAD, München). Die Zeitkonstante sollte ca. 0,4 ms betragen. Unmittelbar nach dem Elektroschock wurden die Zellen in mit warmen TY-I-S33-Medium (siehe 2.7) gefüllte 75 ml Kulturflaschen überführt.

Nach der Transfektion wurden die Zellen ohne Selektionsdruck für 48 h bei 36°C in TY-I-S33-Medium inkubiert. In Abhängigkeit der plasmidspezifischen Antibiotikaresistenz erfolgte die Selektion mit 10 μ g/ml G418. Der Selektionsdruck wurde, sobald die Trophozoiten wieder einen einschichtigen Zellrasen ausgebildet hatten, schrittweise bis auf 50 μ g/ml G418 gesteigert.

2.12 Zellkultur der CHO-Zellen

Die CHO-K1-Wildtyp-Zellen (*Chinese Hamster Ovary cells*, ATCC Nr.: CCL-61) wurden in 5 ml FCS (hitzeinaktiviert) und Antibiotika enthaltendem Ham's F12 Medium mit L-Glutamin (s. 2.7) bei 37°C unter gesättigter Luftfeuchtigkeit und 5 % CO₂ kultiviert. Das Ablösen der Zellen erfolgte durch eine limitierte Trypsinbehandlung, die durch die Zugabe von 5 ml frischem Medium gestoppt wurde. Um nach 48 h wieder einen einschichtigen Zellrasen zu erhalten, wurde 1/10 der Zelllösung in eine neue Kulturflasche überführt.

2.13 Bakterienzellkultur

Die Anzucht von *Escherichia coli* in LB-Medium (siehe 2.7) erfolgte bei 37°C unter aeroben Bedingungen in Reagenzgläsern oder Erlenmeyerkolben auf einem Rundschüttler (150 - 200 rpm). Für die Stammhaltung von *E. coli* wurden die Zellen bis zum Erreichen der exponentiellen Wachstumsphase in LB-Medium angezogen, mit 1 Vol. 10 % (v/v) sterilem Glycerin versetzt und bei -70° C gelagert.

2.14 Isolierung von Nukleinsäuren

2.14.1 Isolierung genomischer DNA aus *E. histolytica*

Die genomische DNA aus *E. histolytica* wurde mit Hilfe des Easy-DNATM Kits von Invitrogen nach Angaben des Herstellers isoliert. Die daraus gewonnene DNA wurde in 50 μ l H₂O_{bidest.} aufgenommen und mit Isopropanol gefällt. Die Lagerung der isolierten DNA erfolgte bei -20°C. Die DNA wurde für PCR-Reaktionen (siehe 2.15.3) verwendet.

2.14.2 Isolierung von Gesamt-RNA aus *E. histolytica*

Mit Hilfe von TRIzol[®] (GIBCO BRL Life Technologies, Karlsruhe), einer monophasischen Lösung aus Phenol und Guanidin-Isothiocyanat, kann Gesamt-RNA direkt aus Zellen oder Geweben isoliert werden. Nach der Ernte der Trophozoiten (siehe 2.11.2) wurde das Zellsediment mit 1 ml TRIzol[®]-Reagenz resuspendiert und für 5 min bei RT inkubiert. Nach Zugabe von 200 μ l Chloroform und einer erneuten Inkubation von 3 min wurde der Ansatz bei 4°C (15 min, 11500 x *g*) zentrifugiert. Die RNA befand sich daraufhin im Überstand, der mit 500 μ l Isopropanol für 10 min bei RT gefällt wurde (siehe 2.3.6). Nach einem Waschschritt mit 70 % (v/v) Ethanol und dem Trocknen des Sediments bei 56°C wurde die RNA in 100 μ l H₂O_{bidest.} resuspendiert. Die Lagerung erfolgte entweder bei -70°C, oder im gefällten Zustand bei -20°C.

2.14.3 RNA-Isolierung mit dem RNeasy[®]-Mini-Kit (Qiagen)

Folgte im Anschluss der RNA-Isolierung mit Trizol eine Reverse Transkription in cDNA, wurde das RNeasy[®]-Mini-Kit (Qiagen) in Anlehnung an die Herstellerangaben verwendet. Die RNA (100 μ l in H₂O_{bidest}) wurde mit 350 μ l RLT-Puffer ohne Zugabe von Mercapthoethanol gemischt, in 250 μ l EtOH_{abs} aufgenommen und zweimal auf RNeasy Säulen gegeben. Es folgte ein DNase Verdau auf der Säule mit dem RNase-Free DNase Set (Qiagen, Hilden) nach Herstellerangaben.

2.14.4 Plasmidisolierung durch alkalische Lyse

2.14.4.1 Plasmid-Mini-Präparation

Die Isolierung von Plasmid-DNA, welche z.B. für die DNA-Sequenzierung verwendet werden sollte, erfolgte mit Hilfe des Fast Plasmid Mini Kits (Eppendorf, Hamburg) nach Angaben des Herstellers. Die Methode beruht auf dem Prinzip der alkalischen Lyse, bei der die Bakterien durch SDS lysiert werden und die DNA durch Natriumhydroxid denaturiert wird (Birnboim und Doly, 1979). Es wurden 1,5 ml Übernachtkulturen transformierter Bakterien verwendet. Die Reinigung der DNA erfolgte mittels einer Silica-Matrix. Anschließend wurde die Plasmid-DNA in 30 μ l H₂O_{bidest.} resuspendiert und die Konzentration photometrisch bestimmt (siehe 2.15.2).

2.14.4.2 Plasmid-Maxi-Präparation

Für die Transfektion von *E. histolytica* (siehe 2.11.3) wurden größere Mengen reiner Plasmid-DNA benötigt. Hierfür wurde das NucloeBond[®]PC2000 Kit von Macherey und Nagel (Düren) nach Herstellerangaben verwendet. Die gewonnene DNA wurde wie unter 2.14.1 gereinigt, in 800 μ l H₂O_{bidest.} aufgenommen und bei -20°C gelagert.

2.15 DNA-Analysen

2.15.1 Fällung von Nukleinsäuren

Zur Konzentrierung oder zur Entsalzung von DNA- und RNA-Lösungen wurde eine Fällung mit 1/10 Vol. 3 M Natriumacetat, pH 5,2 und 2,5 Vol. 96 %igem (v/v) Ethanol oder mit 0,7 - 0,8 Vol. Isopropanol durchgeführt. Anschließend wurde der Ansatz für 15 min bei 15000 x g und 4°C zentrifugiert und einmal mit 70 %igem (v/v) Ethanol gewaschen. Die bei 56°C getrocknete DNA bzw. RNA wurde in H₂O_{bidest.} resuspendiert.

2.15.2 Konzentrationsbestimmung und Reinheitskontrolle

Die Konzentration gelöster DNA- und RNA-Proben wurde durch die photometrische Messung (Absorption bei 260 nm) im BioPhotometer (Eppendorf) bestimmt. Dabei wurde für eine optische Dichte (OD) von 1 bei doppelsträngiger DNA eine Konzentration von 50 μ g/ml, bei RNA und einzelsträngiger DNA von 40 μ g/ml angenommen. Die Reinheit wurde anhand des Verhältnisses von OD_{260nm} zu OD_{280nm} überprüft (Sambrook und Gething, 1989). Zusätzlich wurde die Qualität der gereinigten Nukleinsäuren durch Agarosegelelektrophorese kontrolliert (siehe 2.15.5).

2.15.3 DNA-Amplifizierung mittels Polymerase-Kettenreaktion (PCR)

Eine spezifische *in vitro*-Amplifizierung gewünschter DNA-Bereiche erfolgte mit Hilfe der PCR-Technik (Higuchi *et al.*, 1988) in dem Thermocycler GeneAmp[®]PCR System 9700 (PE Applied Biosystems). Als Matrize wurde DNA (siehe 2.14.1) aus *E. histolytica* verwendet. Als Polymerasen wurden die Taq-DNA-Polymerase (Invitrogen) und die Pfu-DNA-Polymerase (Roche, Mannheim) mit *proofreading*-Aktivität aus *Pyrococcus furiosus* eingesetzt. Die Reaktion besteht aus drei zyklisch ablaufenden Schritten: Denaturierung der DNA-Moleküle, Hybridisierung der Oligonukleotide (*Annealing*), DNA-Synthese (Elongation).

Folgender 50 µl-Reaktionsansatz wurde verwendet:

DNA	0,1 - 0,5 μg
Taq-Puffer	5 µl
MgCl ₂ (25 mM)	5 µl
dNTPs (je 2,5 mM)	5 µl
Oligonukleotid 1 (1 µM)	2 µl
Oligonukleotid 2 (1 µM)	2 µl
Taq-Polymerase (5 U/µl)	0,9 µl
Pfu-Polymerase (2,5 U/µl)	0,1 µl
HPLC-H ₂ O	ad 50 µl

Programm:

Initiale Denaturierung	94°C	2 min
30 bis 35 Zyklen:		
Denaturierung	94°C	30 s

Annealing	52 - 60°C	1 min 30 s - 3 min
Elongation	72°C	1 min

Die *Annealing*-Temperatur hängt von der Länge und Spezifität der Oligonukleotide ab, darf aber die Schmelztemperatur Tm (Angabe des Herstellers) nicht überschreiten. Die Synthesereaktion (Elongation) ist von der Größe des zu klonierenden Fragments abhängig und beträgt zwischen 1 min 30 s bis zu 3 min bei 72°C.

Für die Klonierung in den TOPO-Vektor muss das PCR-Produkt Adenosinüberhänge enthalten. Dieses wurde durch eine finale 10-minütige Elongation bei 72°C erreicht.

2.15.4 DNA-Sequenzanalyse

Für die Analyse von PCR-Produkten wurde die DNA von der Firma MWG-Biotech (Ebersberg) sequenziert. Als Vorbereitung wurde eine Sequenzierungs-PCR wie folgt durchgeführt: 10 μ l DNA, gewonnen aus der Plasmid-Mini-Präparation (siehe 2.14.4.1) wurden mit 5 μ l H₂O_{bidest.} 4 μ l Ready Mix BigDye und 1 μ l je Primer (M13F bzw. M13R) gemischt. Das PCR Programm bestand aus 25 Zyklen à 10 s 96°C, 5 s 50°C und 4 min 60°C. Der Ansatz wurde durch Präzipitation gefällt. Die Sequenz wurde mit entsprechenden DNA-Programmen (siehe 2.23) auf ihre Richtigkeit überprüft.

2.15.5 Agarose-Gelelektrophorese

Zur analytischen und präparativen Auftrennung negativ geladener DNA- bzw. RNA-Moleküle im elektrischen Feld wurden Agarose-Gelelektrophoresen durchgeführt. In Abhängigkeit von der Größe des Zielfragmentes wurden die Agarosekonzentrationen von 0,7 - 3 % (w/v), in 1x TBE-Puffer, angesetzt. Als Größenmarker diente der GeneRulerTM 1kb Marker (siehe 2.3). Vor der Beladung des Gels wurden die Proben mit Ladepuffer versetzt. Der Gelelektrophoreselauf wurde bei konstanten 120 V durchgeführt. Um die Proben im Gel unter UV-Bestrahlung sichtbar zu machen, wurde dem Gel 5 µl Ethidiumbromid (1 mg/ml) hinzu gegeben. Die Dokumentation erfolgte mit Hilfe der UV-Flächenstrahler der Firma Benda (Wiesbaden). Die gewünschten DNA-Banden wurden mit einem Skalpell ausgeschnitten und konnten bei -20°C gelagert werden.
2.15.5.1 Extraktion von DNA-Fragmenten aus Agarosegelen

Die Isolierung gewünschter DNA-Fragmente aus einem Agarosegel erfolgte mit Hilfe des "QIA quickTMGel Extraction Kit" (Qiagen, Hilden) nach Angabe des Herstellers. Die Reinigung erfolgte nach dem Prinzip der selektiven Adsorption von DNA an Silikat-Partikeln an einer Säulenmatrix in Gegenwart hoher Salzkonzentrationen. Nach Elution wurde die DNA-Konzentration photometrisch bestimmt (siehe 2.15.2).

2.15.6 Restriktionsanalyse von DNA

Die Restriktionsanalyse dient der Identifizierung klonierter DNA-Fragmente und der Analyse von Konstrukten aus Vektor- und Fremd-DNA. Die DNA wird durch spezifische Restriktionsendonukleasen nach Herstellerangaben geschnitten. Für analytische Zwecke wurden 1 - 2 µg DNA mit 3 - 5 U Enzym/µg DNA in einem 20 µl Ansatz verdaut. In einem präparativen 50 µl Ansatz wurden 20 - 40 µg DNA mit ca. 2 - 3 U Enzym/µl DNA verdaut. Die Inkubationszeit betrug 1 h.

2.15.7 Ligation von DNA-Fragmenten

Mittels DNA-Ligation wurden linearisierte, durch PCR (siehe 2.15.3) gewonnene DNA-Fragmente in linearisierte Vektoren (siehe Tab. 7) inseriert. Das Verhältnis betrug 1:3 (Vektor-DNA:DNA-Fragment). Es wurde ein 15 µl Ansatz gewählt. Für die Ligation wurden die T4-DNA-Ligase von Fermentas (St. Leon-Rot) bzw. das Rapid DNA Ligation Kit von Roche (Mannheim) nach Angaben des jeweiligen Herstellers benutzt.

2.15.8 Transformation von *E. coli*

Die Transformation von kompetenten Zellen (siehe 2.16) mit den zu klonierenden DNA-Fragmenten erfolgte weitestgehend nach der Methode von Cohen und Mitarbeiter (Cohen *et al.*, 1972). 50 µl - 100 µl kompetente Zellen wurden mit 2 µl Ligationsansatz (siehe 2.15.7) für 30 min auf Eis inkubiert. Daraufhin folgte ein Hitzeschock bei 42°C für 30 s und eine dreiminütige Inkubation auf Eis. Nach Zugabe von 300 µl LB-Medium wurden die Zellen bei 37°C für 1 h auf einem Schüttelinkubator inkubiert. Der gesamte Ansatz wurde auf LB-Platten mit gewünschten Selektionsmarkern ausplattiert und über Nacht bei 37°C kultiviert.

Sofern das Klonierungsschema eine Blau-Weiß-Selektion ermöglichte, wurden vor dem Ausstrich der Bakteriensuspension 45 μ l 2 % ige (w/v) 5-Brom-4-Chlor-3-indolyl- β -D-

galaktopyranosid (X-Gal-Lösung) zum Reaktionsansatz pipettiert. Diese Selektion beruht darauf, dass durch die Spaltung von X-Gal durch die β -Galaktosidase ein blauer Indigofarbstoff als Reaktionsprodukt entsteht. Da bei erfolgreicher Klonierung das β -Gal Gen unterbrochen wird, wurden nur die weißen Kolonien verwendet.

2.16 Herstellung kompetenter Zellen

Damit Bakterien in der Lage sind, fremde DNA-Moleküle mit großer Effizienz aufzunehmen, werden die Zellen durch hohe Konzentrationen an CaCl₂ behandelt. Für die Herstellung solcher kompetenter Zellen wurden *E. coli* DH5 α oder pAPlacI^Q-Bakterien in 40 ml LB-Medium bei 37°C bis zu einer OD₆₀₀ von 0,4 inkubiert (siehe Tab. 6). Anschließend wurden die Zellen für 5 min bei 350 x g sedimentiert und das Zellsediment in 20 ml (1/2 vol) eiskaltem 50 mM CaCl₂ resuspendiert. Die Bakterien wurden für 20 min auf Eis gekühlt und erneut für 5 min bei 350 x g zentrifugiert. Das Sediment wurde in 4 ml (1/10 Vol) 50 mM CaCl₂ gelöst, in 100 µl Aliquots aufgeteilt und bei -70°C eingefroren.

2.17 Klonierungen

2.17.1 Klonierung der Plasmidkonstrukte pJC45-EhCP-A8, -B1, -B3, -B4, -B5, -B7, -B8

Die Gene *ehcp-a8*, *-b1*, *-b3*, *-b4*, *-b5*, *-b7* und *-b8* wurden mit Hilfe spezifischer Oligonukleotide (siehe 2.10) amplifiziert (siehe 2.15.3) und in den TOPO-TA-Vektor (Invitrogen) (siehe Tab. 7) nach Herstellerangaben kloniert. Es folgte eine Analyse zur Überprüfung der Sequenz (siehe 2.23). Für die Klonierung in den Expressionsvektor pJC45 wurden für die Gene *ehcp-a8*, *-b1*, *-b3* und *-b4* die Restriktionsenzyme *NdeI/BamH*I und für die Gene *ehcp-b5*, *-b7* und *-b8* die Restriktionsenzyme *Hind*III/*BamH*I gewählt. Die entstandenen Plasmidkonstrukte pJC45-EhCP-A8, -B1, -B3, -B4, -B5, -B7, -B8 dienten der Überexpression von Proteinfragmenten, die als Antigene in ELISA-Studien (siehe 2.21) eingesetzt wurden.

2.17.2 Klonierung des Plasmidkonstruktes pNB_EhCP-A1

Die Herstellung des Plasmidkonstruktes pNB_EhCP-A1 diente der Überexpression von *ehcp-a1* in *E. histolytica* Trophozoiten und der anschließenden funktionellen

Charakterisierung des EhCP-A1-Proteins. Basierend auf der Sequenzinformation aus der NCBI-Datenbank, Accessionnummer XM 645064 wurden Oligonukleotide (siehe 2.10) synthetisiert, mit denen durch PCR (siehe 2.15.3) ein spezifisches DNA-Produkt amplifiziert werden konnte. Das Produkt umfasste die kodierende, 900 Bp lange Sequenz von ehcp-al mit der flankierenden ehcp-al 5'-Region (1987 Bp) und der ehcp-al 3'-Region (687 Bp). Das PCR-Produkt wurde in den TOPO-TA Vektor (Invitrogen) (siehe Tab. 7) nach Herstellerangaben kloniert. In diesen Vektor wurde zusätzlich die NeoBox, ein Teilbereich des Plasmids pA5'A3'NEO (Hamann et al., 1995), über die HindIII-Erkennungssequenz ligiert. Die NeoBox beinhaltet ein Resistenzgen (Neomycin-Phosphotransferase), das eine Resistenz gegenüber G418 vermittelt. Die kodierende Sequenz des Neomycin-Phosphotransferasegens wird von einer 480 Bp langen 5'untranslatierten und einer 600 Bp langen 3'-untranslatierten Sequenz eines E. histolytica Aktingens flankiert. Zur Vermehrung wurde dieses Plasmidkonstrukt in One Shot Top 10TM Zellen (Invitrogen) (siehe Tab. 6) transformiert und anschließend isoliert (siehe 2.3.16.2). Eine schematische Darstellung der Plasmidvektoren befindet sich unter Punkt 3.1.1, Abb. 4).

2.17.3 Klonierung des Plasmidkonstruktes pNC_EhCP-A4

Zur Klonierung des Gens *ehcp-a4* in einen geeigneten Expressionsvektor wurde pEhNEO/CAT (Hamann *et al.*, 1995) verwendet. Der Vektor pEhNEO/CAT ist ebenfalls wie pA5'A3'NEO (siehe 2.3.19) ein Derivat von pBluescribe (pBS(+)) mit einer Neomycin-Phosphotransferase kodierenden Sequenz, flankiert von 480 Bp des 5'untranslatierten und 600 Bp des 3'-untranslatierten Bereichs eines Aktingens aus *E. histolytica*. Das für die Chloramphenicol-Acetyltransferase (*cat*) kodierende Gen des Vektors pEhNEO/CAT wurde mit Hilfe der Restriktionsenzyme *Kpn*I und *BahmH*I entfernt und durch die *ehcp-a4*-Sequenz ersetzt. Dieses Gen ist damit durch 485 Bp des 5'-untranslatierten Bereichs eines Lektingens und 600 Bp des 3'-untranslatierten Bereichs eines Aktingens von *E. histolytica* flankiert. *Ehcp-a4* wurde mit entsprechenden Oligonukleotiden (siehe 2.10), die die Restriktionsschnittstellen *KpnI* und *BamHI* enthielten, aus genomischer DNA des HM-1:IMSS-Isolats PCR amplifiziert (siehe 2.15.3). Nach einer Subklonierung in den TOPO-TA-Vektor (siehe Tab. 7) und der DNA-Sequenzierung zur Überprüfung der Sequenz (siehe 2.23) erfolgte die Klonierung in den Vektor pNC (siehe 3.1.7; Abb. 10).

2.18 RNA-Analysen

2.18.1 Northern-Blot-Analysen

Unter einem Northern-Blot versteht man den Transfer von RNA auf eine Nylonmembran. Hierzu wurde RNA zunächst in einem denaturierenden 1 %igem Agarosegel (SEAKEM GTG Agarose) aufgetrennt. Durch Zusatz von 6,7 % (v/v) Formaldehyd wurde die Ausbildung von Sekundärstrukturen weitestgehend verhindert. Das Agarosegel wurde in MOPS-Puffer angesetzt, der ebenfalls als Laufpuffer diente. Es wurden 20 μ g RNA in einem Endvolumen von 28 μ l mit 28 μ l RNA-Probenpuffer versetzt und für 15 min bei 65°C inkubiert. Nach Zugabe von 4 μ l RNA-Dye und 1 μ l Ethidiumbromid (1 mg/ml) wurden die Proben über Nacht bei 1 V/cm getrennt.

<u>RNA-Dye</u>		RNA-Probenpuffer		
Glycin	50 % (v/v)	MOPS-Puffer (1x)	72 µl	
EDTA pH 8,0	1 mM	Formaldehyd 37 % (v/v)	128 µl	
Bromphenolblau	0,25 % (w/v)	Formamid	360 µl	
Xylene Cyanol FF	0,25 % (w/v)			

Anschließend erfolgte die Dokumentation unter UV-Licht. Geblottet wurde indem mehrere Lagen Papiertücher, 2 Lagen Whatmanpapier, eine Nylonmembran, das Gel und wiederum 2 Lagen Whatmanpapier übereinander gelegt wurden. Die Whatmanpapiere und die Membran wurden vorher in 20x SSC getränkt. Als Pufferreservoir diente ein in 20x SSC getränkter Schwamm. Der Transfer erfolgte bei Raumtemperatur über Nacht. Die RNA wurde anschließend im Stratalinker[™] 1800 (Stratagene) kovalent an die Membran gebunden.

2.18.2 Reverse Transkription

Bei der Herstellung von cDNA mit der SuperScriptIII Reversen Transkriptase von Invitrogen diente isolierte Gesamt-RNA als Matrize. Die RNA wurde zuvor mit dem RNase-free DNase-Set von Qiagen nach Angaben des Herstellers behandelt (siehe 2.14.3).

RNA	1 µg
Puffer (5x)	4 µl
DTT (0,1 mM9	2 µl
dNTPs (10 mM)	2 µl
Oligo (dT7-I)-Primer	1 µl
SuperScript III	1 µl
RNase out	0,5 µl
MgCl ₂ (25 mM)	0,4 µl
H ₂ O	ad 20 µl

Folgender 20 µl-Reaktionsansatz wurde verwendet:

Der Ansatz wurde bei 42°C für 1 h inkubiert und bei -20°C gelagert. Die gewonnene cDNA wurde für RT-PCR-Analysen verwendet (siehe 2.18.3).

2.18.3 Quantitative *Real-Time* PCR

Die quantitative *Real-Time* PCR (RT-PCR) ist eine Vervielfertigungsmethode für Nukleinsäuren, die die Möglichkeit der Quantifizierung bietet. Für die Quantifizierung wird der Fluoreszenzfarbstoffe SYBR[®] Green I (Absorption bei 498 nm) eingesetzt, der bei einer DNA-Doppelstrang-Interkalation ein Signal bei 522 nm emittiert. Die Fluoreszenz nimmt proportional mit der Menge der PCR-Produkte zu. Eine Messung an jedem Zyklusende ermöglicht eine Verfolgung des PCR-Verlaufs sowie der Produktzunahme in Echtzeit (*Real-Time*). Der Zyklus, bei dem das Fluoreszenzsignal die Hintergrundfluoreszenz signifikant übersteigt, wird als Schwellenwert (C_T) manuell festgelegt. Der C_T-Wert der Probe wird ins Verhältnis zu dem C_T-Wert einer Kontrollgruppe gesetzt. Zur Auswertung mit der 2^{-ΔACT}-Methode wurde das spezifische Amplifikat über ein Referenzmolekül β-Aktin normalisiert. *Sense-* und *Antisense*-Primer wurden so gewählt, dass ca. 100 Bp lange Amplifikate entstanden. Hier wurde mit dem RealMasterMix SYBR Green Kit von Eppendorf nach Angaben des Herstellers gearbeitet. Die Reaktionen wurden im Rotor Gene 3000 (Corbett Life Science) durchgeführt und mit der dazugehörigen Software ausgewertet (Livak und Schmittgen, 2001).

Folgender 20	ul-Reaktionsansatz wurde verwendet:	

cDNA	1 µl	
SYBR-Green RealMasterMix	9 µl	
(= 0,05 U/ μ l Hot Master Taq [®] DNA F	olymerase, 10 ml	M Magnesiumacetat, 1 mM dNTPs mit dUTP)
sense-Primer (5 pmol/µl)	2 µl	
antisense-Primer (5 pmol/µl)	2 µl	
RNase freies H ₂ O	6 µl	
Programm:		
Initiale Denaturierung	9°C	2 min 30 s
35 Zyklen:		
Denaturierung	95°C	15 s
Annealing	58°C	20 s
Elongation	68°C	20 s

Zur Verifizierung der Amplifikatspezifität wurde im Anschluss eine Schmelzkurve erstellt. Der Temperaturanstieg von 42°C auf 95°C erfolgte in 1°C-Schritten, wobei der erste Schritt 60 s andauerte, die weiteren nur 8 s.

2.19 Biochemische Analysen

2.19.1 Rekombinante Expression von Genen in *E. coli*

Die Anwendung bakterieller T7-RNA-Polymerase-abhängiger Expressionssysteme zur Produktion rekombinanter Proteine in *E. coli* ist weit verbreitet (Studier *et al.*, 1990). Für die rekombinante Expression von Genen aus *E. histolytica* in dem *E. coli*-Stamm BL21(DE3)pAPlacI^Q (siehe Tab. 6) wurde der Expressionsvektor pJC45 eingesetzt, ein Derivat des Plasmids pJC40 (Clos und Brandau, 1994). Dieser Vektor vermittelt eine Ampicillinresistenz und erlaubt eine Reinigung der Proteine mit Hilfe eines N-terminalen His*-tags*, bestehend aus 10 Histidinen.

Die Plasmide pJC45-EhCP-A1, -A5, -A7, -A8, -B1, -B3, -B4, -B5, -B7, und -B8 wurden in den *E. coli* Stamm BL21(DE3)pAPlacI^Q transformiert, wobei pJC45-EhCP-A1, -A5 und -A7 von Iris Bruchhaus zur Verfügung gestellt wurden. Diese Zellen verfügen zusätzlich über ein Plasmid (pAPlac I^Q), das eine Kanamycinresistenz vermittelt. Die mit dem jeweiligen Plasmid transformierten Bakterien (siehe 2.15.8) wurden in 500 ml LB-Medium mit 2 % (v/v) Glukose, 200 µg/ml Ampicillin und 50 µg/ml Kanamycin unter aeroben Bedingungen bei 37°C bis zu einer OD₆₀₀ = 0,4 angezogen. Durch Zugabe von IPTG (1 mM Endkonzentration) wurden die Zellen induziert. Die Zellernte erfolgte 3 h nach Induktion durch Zentrifugation (20 min) bei 5000 x g und 4°C. Die rekombinant exprimierten Proteine wurden für ELISA-Studien (siehe 2.21) eingesetzt.

2.19.2 Reinigung von rekombinanten Proteinen durch Metallchelat-Affinitätschromatographie

Bei dieser Methode binden die rekombinanten Proteine über ihren N-terminalen Histidin*tag* an eine mit Nickelionen beladene Säulenmatrix (Hochuli, 1988). Die Metallionen sind über Nitrilotriessigsäure an Agarose als Trägermaterial gebunden. Die an die Säule gebundenen Proteine können bei der Ni²⁺-NTA-Affinitätschromatographie durch unterschiedliche Konzentrationen des Kompetitors Imidazol eluiert werden.

Das Bakteriensediment wurde in 15 ml Guanidinhydrochlorid-haltigem Puffer A gelöst. Die Zellen wurden durch Ultraschall auf Eis aufgeschlossen und anschließend zentrifugiert (15.000 x g, 40 min, 18°C). Der Überstand wurde mit niedriger Flussrate auf eine Ni²⁺-NTA-Superflow-Säule (Qiagen) aufgetragen, die zuvor mit 2 ml Säulenmaterial (Ni-NTA-SuperflowTM) beladen und mit 5 Vol Puffer A äquilibriert wurde. 100 μ l des Überstandes wurden für weitere Tests zurückgehalten. Es folgten Waschschritte mit 10 Vol. Puffer A, Puffer B und Puffer C. Anschließend wurden die Zielproteine mit 10 Vol Puffer C inklusive 20 mM, 100 mM, 500 mM und 1 M Imidazol eluiert. Aliquots von jedem Waschschritt und von jeder Elution wurden mit Hilfe der SDS-PAGE (siehe 2.19.4) analysiert.

Um die Ni-NTA-SuperflowTM-Matrix erneut verwenden zu können, wurde sie zuerst mit 5 Vol. 100 mM EDTA, pH 8 und anschließend mit H₂O_{bidest.} gewaschen. Die Regeneration erfolgte durch 2 Vol. 100 mM NiCl₂ oder NiSOP₄.

<u>Puffer A, pH 8,0</u>		<u>Puffer B, pH 8,0</u>	
Guanidinhydrochlorid	6 M	Harnstoff	8 M
NaH ₂ PO ₄	100 mM	NaH ₂ PO ₄	100 mM
Tris	10 mM	Tris	10 mM
Puffer C, pH 6,3		Elutionspuffer	
Harnstoff	8 M	Puffer C mit 20 mM,	100mM, 500mM,
NaH ₂ PO ₄	100 mM	bzw. 1 M Imidazol	
Tris	10 mM		

2.19.3 Konzentrationsbestimmung von Proteinlösungen

Zur Bestimmung von Proteinkonzentrationen wurde der BCA-Test (Pierce, Bonn) angewandt. Der Nachweis kann in Gegenwart von Detergenzien durchgeführt werden und beruht auf der Biuret-Reaktion, bei der Cu²⁺-Ionen in alkalischer Lösung einen Komplex mit Proteinen bilden. Die dabei entstehenden Cu²⁺-Ionen bilden mit Bicinchinon (BCA) einen violetten Farbstoff. Die Proteinbestimmung wurde nach Angaben des Herstellers durchgeführt.

2.19.4 SDS-Polyacrylamidgelelektrophorese (SDS-PAGE)

Zur Trennung von Proteingemischen und isolierten Proteinen sowie der damit verbundenen Molekulargewichtsbestimmung wurde unter denaturierenden Bedingungen eine diskontinuierliche Natriumdodecylsulfat-Polyacrylamidgelelektrophorese (SDS-PAGE) nach Laemmli durchgeführt (Laemmli, 1970). Die Elektrophorese erfolgte in vertikalen Flachgelen.

Acrylamidkonzentration (%)	Trenngel %		Sammelgel
	10	12	4
3x Gelpuffer (ml)	1,88	1,88	1,25
Acrylamid/Bisacrylamidlösung			
(Mischung 37,5:1) (ml)	2,5	3,0	0,65
H ₂ 0 _{bidest.} .(ml)	3,1	2,6	3,05
APS (25 % w/v) (µl)	25	25	25
TEMED (µl)	5	5	5

Tabelle 8: Zusammensetzung	der SDS-PAGE-I	Lösungen.
----------------------------	----------------	-----------

Die Proben wurden, falls nicht anders angegeben, mit SDS-Probenpuffer versetzt und 5 min bei 95°C denaturiert. Die Auftrennung der Proteine erfolgte mit SDS-Elektrophoresepuffer bei 20-25 mA/Gel und 120 V.

Trenngelpuffer (4x)		Sammelgelpuffer (4x)	Sammelgelpuffer (4x)	
Tris-HCl, pH 8,8	1,5 M	Tris-HCl, pH6,8	0,5 M	
SDS	0,4 % (w/v)	SDS	0,4 % (w/v)	

SDS-Probenpuffer (2x)		SDS-Elektrophor	SDS-Elektrophoresepuffer (10x)	
Tris-HCl, pH6,8	125 mM	Tris	0,25 M	
Glycerin	20 % (w/v)	Glycin	0,5 M	
SDS	2 % (w/v)	SDS	1 % (w/v)	
DTT	20 mM			
Bromphenolblau	0,001 % (w/v)			

2.19.5 Präparative Gelelektrophorese (Prep-Cell)

Diese Methode dient der Reinigung von rekombinanten Proteinen durch kontinuierliche Gelelektrophorese mit anschließender Elution und fraktioniertem Sammeln der Proben. Es wurde die Prep-Cell 491-Apparatur von Biorad verwendet. Die Proben wurden mit SDS-Probenpuffer versetzt und 5 min bei 95°C denaturiert. Die zu trennenden Proteine wanderten im elektrischen Feld entsprechend ihrer Größe durch das in einem Glaszylinder befindliche Gel. Im Glaszylinder befindet sich ein zentraler Kühlstab, um den das Gel gegossen wurde. Nach dem Austritt aus dem Gel gelangten die Proteine in die Elutionskammer, die nach unten hin durch eine semipermeable Membran geschlossen ist. Dies verhinderte den Austritt der Proteine, ermöglichte aber die Passage des aus dem oberen Puffertank angesaugten Elutionspuffers, der die Proteine kontinuierlich aufnahm und durch eine zentrale Bohrung im Kühlstab ableitete. Die Lösung wurde in Röhrchen des Fraktionssammlers zu je 4 ml aufgefangen. Die Auftrennung der Proteine erfolgte mit SDS-Elektrophoresepuffer bei 40 mA/Gel über Nacht. Die Fraktionen wurden im Anschluss an den Lauf durch Analyse in einem SDS-Polyacrylamidgel auf das Vorhandensein des rekombinanten Proteins untersucht.

Acrylamidkonzentration (%)	Trenngel		Sammelgel	l
	10	12	4	
3x Gelpuffer (ml)	18,7	18,7	6	
Acrylamid/Bisacrylamidlösung				
(Mischung 37,5:1) (ml)	25	30	4	
H_20_{bidest} (ml)	30,8	25,8	14,4	
APS (25 % w/v) (µl)	375	375	125	
TEMED (µl)	60	60	20	

Tabelle 9: Zusammensetzung der SDS-PAGE-Lösungen.für die Prep-Cell

2.19.6 Proteinfärbung

2.19.6.1 Dispersionsfärbung mit Coomassie Brilliant Blue G250

Zur Färbung der elektrophoretisch getrennten Proteinbanden wurde eine Dispersionsfärbung mit Coomassie Brilliant Blue G250 durchgeführt (Neuhoff *et al.*, 1988). Die Entfärbung erfolgte mit Coomassie-Entfärbelösung.

Coomassie Färbelösung		Coomassie-Entfärbelösung		
Coomassie Brilliant		Methanol	30 % (v/v)	
Blue R-250	0,4 % (w/v)	Essigsäure	10 % (v/v)	
Methanol	50 % (v/v)			
Essigsäure	10 % (v/v)			

2.19.6.2 Silberfärbung

Die Silberfärbung ist eine sensitive Färbemethode für Polyacrylamidgele und eignet sich besonders dann, wenn sehr geringe Proteinkonzentrationen nachgewiesen, oder die Reinheit eines Proteins überprüft werden soll. Nach der Elektrophorese wurden die Gele jeweils für 10 min nacheinander einmal in Lösung 1, Lösung 2, dreimal in H₂O_{bidest.} und einmal in Lösung 3 unter leichtem Schwenken für ebenfalls 10 min inkubiert. Die Entwicklung erfolgte in Lösung 4 und das Abstoppen der Reaktion in Lösung 5.

<u>Lösung 1</u>		Lösung 2	
Ethanol	30 % (v/v)	Ethanol	30 % (v/v)
Essigsäure	10 % (v/v)	Natriumacetat	0,5 M
		Glutardialdehyd 25 % (v/	0,5 %
		$Na_2S_2O_3$	0,2 % (w/v)
Lösung 3		Lösung 4	
AgNO ₃	0,1 % (w/v)	Na ₂ CO ₃	2,5 % (w/v)
Formaldehyd 37% (v/v)	0,2 %	Formaldehyd 37% (v/v)	0,02 %
<u>Lösung 5</u>			
EDTA	0,05 M		

2.19.7 Tryptischer Verdau für Matrix Assisted Laser Desorption Ionisation Time of Flight Mass Spectrometry-Analysen (MALDI TOF MS)

Mit Hilfe der MALDI-Massenspektrometrie wurden die rekombinanten EhCPs (siehe Tab. 7, siehe 2.19.1) auf ihre Identität überprüft. Dazu wurden die mit Coomassie-Brilliant-Blau gefärbten Proteine mit einem Skalpell aus dem Gel ausgeschnitten, zerkleinert, in 50 % (v/v) Acetonitril in 25 mM Ammoniumbikarbonat gewaschen und in 100 % Acetonitril dehydriert. Eine erneute Rehydrierung wurde in 10 µl 5 mM Ammoniumbikarbonat durchgeführt. Danach wurden die Proteine einem tryptischen Verdau unterzogen. Die Proteine wurden mit 10 µl 5 mM Ammoniumbikarbonat gemischt, in denen 300 ng Trypsin enthalten waren. Der Verdau erfolgte über Nacht bei 37°C. Zur Extraktion der Proteine aus den Gelen wurden 20 µl 0,3 % (v/v) TFA in Acetonitril zu dem Ansatz gegeben und die Lösung für 10 min in einem Ultraschallbad beschallt. Zur Volumenverringerung der Flüssigkeit wurde der Ansatz in einer Vakuumzentrifuge zentrifugiert. Die Peptide wurden daraufhin in 8 µl 0,1 % (v/v); 5 % (v/v) Acetonitril in aufgenommen. Reinigung H₂O Die der Peptide für die anschließende Massenspektrometrie erfolgte nach Angaben des Herstellers (Millipore, Schwalbach) über eine C18 Revers-Phasen-Minisäulenchromatographie in einer Mikropipettenspitze (ZipTip C18). Die massenspektrometrischen Messungen wurden freundlicherweise von Christoph Gelhaus an der Universität Kiel durchgeführt.

2.19.8 Western-Blot-Analyse und Immunodetektion

Als Western-Blot bezeichnet man den Transfer von Proteinen aus einem SDS-Gel auf eine Nitrozellulosemembran. Es wurde eine "Semi-Dry-Blotting" Technik verwendet. Als Transferpuffer diente 1 x SDS-Elektophoresepuffer (siehe 2.19.4). Der Transfer erfolgte für 75 min bei einer konstanten Stromdichte von 1 mA/cm².

Auf Western-Blot-Membranen transferierte Proteine wurden mit spezifischen Antikörpern detektiert. Zur Sättigung freier Proteinbindungsstellen wurde die Membran für 30 min mit einer Blockierlösung (5 % Milchpulver in TBS/0,05 % Tween 20) inkubiert. Darauf folgte die Inkubation mit einem primären Antikörper auf einem Schüttelinkubator über Nacht bei 4°C. Nach fünfmaligem Waschen der Membran in TBS/0,05 % Tween 20 für jeweils 5 min, folgte die Inkubation mit dem alkalische Phosphatase (AP-) konjugierten Sekundärantikörper für 1 h bei RT (siehe Tab. 10). Die Membran wurde erneut fünfmal gewaschen und mit AP-Puffer äquilibriert. Die Antikörperbindung wurde durch die Inkubation in der AP-Entwicklerlösung sichtbar gemacht und durch H₂O_{bidest.} gestoppt.

 Tabelle 10: Antikörpereinsatz. Die Antikörper Anti-EhCP-A1, -A2 und -A5 wurden freundlicherweise von Iris Bruchhaus zur Verfügung gestellt.

Antikörper	Verdünnung in Blockierlösung
Primärer Antikörper Anti-EhCP-A1 Peptidantikörper (Kaninchen)	1:200
Primärer Antikörper Anti-EhCP-A2 Peptidantikörper (Kaninchen)	1:200
Primärer Antikörper Anti-EhCP-A5 polyklonal (Huhn)	1:500
Sekundärer Antikörper Anti-Huhn, AP-konjugiert	1:1000
Sekundärer Antikörper Anti-Kaninchen, AP- konjugiert	1:2000

<u>AP-Puffer</u>

Tris-HCl, pH 9,5	100 mM	NBT (5 % [w/v] in 70 % DM	MF) 66 µl
NaCl	100 mM	BCIP (5 % [w/v] in DMF)	33 µl
MgCl ₂	10 mM	AP-Puffer	ad 10 ml
		Die Entwicklerlösung wur	de stets frisch

angesetzt.

AP-Entwicklerlösung

2.19.9 Bestimmung von Enzymaktivitäten

2.19.9.1 Proteolytische CP-Aktivität gegenüber Z-Arg-Arg-pNA

Zur Bestimmung der proteolytischen Aktivität gegenüber dem synthetischen Peptid Z-Arg-Arg-pNA (Benzyloxycarbomyl-L-arginyl-L-arginin-p-nitroanilid) wurden bis zu 10 μ l einer Probe mit 990 - Probenvolumen CP-Puffer, dem 1 mM DTT zugesetzt wurde, gemischt. Durch Zugabe von 10 μ l (10 mM in MeOH) des Substrats wurde die Reaktion gestartet. Die Absorption der Probe, verursacht durch die Abspaltung des p-Nitroanilins, wurde bei 405 nm im Photometer gemessen. Die Berechnung der Volumenaktivität (mU/ml) erfolgte nach folgender Formel: $\begin{array}{ll} \mbox{Volumenaktivität} = (\Delta E \ x \ V_{Messlösung} \ x \ 1000) / (t \ x \ \epsilon_{\mu mol} \ x \ d \ x \ V_{Probe}) \\ \mbox{mit:} \\ \mbox{1U} &= 1 \ \mu mol \ Substratumsatz/min} \\ \mbox{\Delta E} &= zeitabhängige \ Differenz \ der \ Absorptionswerte} \\ t &= Zeit \ (min) \\ \mbox{$\epsilon_{\mu mol}$} &= 8,8 \ cm^2/\mu mol \ (Extinktionskoeffizient \ für \ Substanz-Stoffkonstante) \\ \mbox{d} &= Durchmesser \ der \ Küvette \ (cm) \\ \mbox{V_{Probe}} &= Volumen \ der \ eingesetzten \ Probe \ (ml) \\ \end{array}$

CP-Puffer, pH 7,0

KH ₂ PO ₄	100 mM
EDTA	2 mM

2.19.9.2 Substrat-SDS-PAGE zum Nachweis von Peptidasen

Zum Nachweis enzymatischer Aktivität SDS-stabiler Peptidasen wird ein geeignetes Substrat wie Gelatine in einem SDS-Polyacrylamidgel (siehe 2.19.4) kopolymerisiert. Nach einer Coomassie-Färbung des Gels (siehe 2.19.6.1) repräsentieren nicht gefärbte Zonen die Lokalisation der Peptidasen. Es wurden 10 %ige SDS-Gele, in die 0,1 % Gelatine eingegossen wurden, verwendet. Die Proben wurden mit Probenpuffer versetzt und 10 min bei 37°C inkubiert. Die elektrophoretische Auftrennung erfolgte bei 4°C, 120 V und 20 mA/Gel. Zum Umpuffern des SDS wurde das Gel bei Raumtemperatur für 1 h in 2,5 % (v/v) Triton X-100 inkubiert, bevor es für weitere 3 h bei 37°C im Aktivierungspuffer geschwenkt und abschließend in Coomassie gefärbt wurde.

Aktivierungspuffer

Natriumacetat, pH 5,2	100 mM
Triton X-100	1 % (v/v)
DTT	20 mM

2.19.10 Nachweis zur Peptidaseausschleusung aus Trophozoiten

Trophpozoiten wurden wie unter 2.11.2 beschrieben geerntet, gewaschen und ausgezählt. Pro Ansatz wurden in 1 ml TY-Spezial ohne Serum 2 x 10^6 Amöben in ein Reaktionsgefäß eingesetzt und bei 37°C inkubiert. Zur Bestimmung der maximalen Peptidaseaktivität wurde diesem Ansatz 400 μ l Zellsuspension entnommen, 3x eingefroren und aufgetaut und bei 13.000 x *g* sedimentiert (siehe 2.11.2). Der gewonnene Rohextrakt stellte 100 % der NADP abhängigen Alkoholdehydrogenase (ADH) bzw. der Cysteinpeptidaseaktivität dar. Je 100 μ l Zellsuspension wurden aus den Ansätzen entnommen, um die Aktivitäten beim Zeitpunkt t = 0 h, t = 1 h, t = 2 h und t = 3 h zu bestimmen. Die Proben wurden bei 390 x *g* für 5 min zentrifugiert. Ausschließlich der Überstand wurde bei -70°C für Aktivitätsmessungen gelagert.

<u>11-Speziai (Allas-Negi</u>	<u>ele el ul., 1991)</u> . aŭ 346
Trypticase	80g
Hefeextrakt	40g
Glukose	40g
NaCl	8g
L-Cystein	4g
Ascorbinsäure	0,8g
Fe-Ammoniumcitrat	91,2 mg
HEPES	10 mM
CaCl ₂	0,15 mM
MgCl ₂	0,5 mM

TY-Spezial (Arias-Negrete et al., 1991): ad 3480 ml H₂Obidest

Messung der NADP-abhängigen ADH-Aktivität:

Für die Messung der NADP-abhängigen ADH-Aktivität wurde 990 μ l ADH-Puffer mit 10 μ l Probe gemischt und für 30 min bei RT inkubiert. Danach folgte die photometrische Messung bei 340 nm. Die Berechnung der Volumenaktivität erfolgte nach der unter 2.19.9.1 beschriebenen Formel. Der Extinktionskoeffizient für NADP beträgt 6,22 cm²/µmol.

ADH-Puffer, pH 9,5

Glycin	50 mM
NADP	0,2 mM
Isopropanol	20 mM

Messung der proteolytischen CP-Aktivität gegenüber Z-Arg-Arg-pNA: siehe 2.19.9.1

2.19.11 Bestimmung der zytopathischen Aktivität von Amöben

Die zytopathische Aktivität von Amöben spiegelt sich in der Fähigkeit, CHO-Zellrasen zu zerstören, wider. Hierfür wurden Trophozoiten von E. histolytica bzw. deren Extrakte mit CHO-Monolayern nach einer modifizierten Methode von Bracha und Mirelman (1984) kokultiviert. 5 x 10⁵ CHO-Zellen wurden in Zellkultur-Testplatten (24 well) ausgesät und für 24 h inkubiert (siehe 2.12). Anschließend wurden die CHO-Monolayer mit warmen NaPBS, pH 6,8 gewaschen und in 500 µl warmen, serumfreien Ham's F12 aufgenommen. Die Trophozoiten von E. histolytica wurden geerntet und 2 x in inkomplettem TY-S-33-Medium gewaschen. Pro *well* wurden 1 x 10^5 Trophozoiten in einem Volumen von 500 µl auf die CHO-Zellen gegeben. Bei der Verwendung von frischen Zellextrakten wurden konstante Mengen an Protein, ebenfalls in einem Volumen von 500 ml inkomplettem TY-S-33-Medium eingesetzt. Die Inkubation der Trophozoiten bzw. des Amöbenzellextraktes mit den CHO-Zellen erfolgte unter einer 5 % igen CO₂-Atmosphäre bei 37°C. Die Inkubationszeit wurde je nach Testart angepasst und konnte zwischen 15 min und 1 h betragen. Nach Inkubation wurden die Testplatten für 15 min auf Eis gelegt, damit sich die Trophozoiten ablösen. Wurden Zellextrakte getestet, entfiel dieser Schritt. Anschließend wurden die CHO-Zellen vorsichtig mit kaltem NaPBS zweimal gewaschen. Die verbliebenen Zellen wurden für 10 min mit 1 ml frisch angesetztem 4 %-igem Formaldehyd in NaPBS fixiert. Es folgten ein erneuter Waschschritt und eine Färbung der Zellen mit 0,5 ml 0,1 % (w/v) Methylenblau. Anschließend wurde einmal mit 1:10 verdünntem 0,1 % Methylenblau und einmal mit NaPBS gewaschen. Die fixierten und gefärbten CHO-Zellen wurden durch Zugabe von 0,1 M HCl für 30 min bei 37°C lysiert. Das freigesetzte Methylenblau wurde durch die Absorption bei 660 nm photometrisch gemessen.

Die Methylenblaufärbung ist proportional zum Anteil der adhärent verbliebenen CHO-Zellen. Als Kontrolle dienten CHO-Zellen, die ohne Trophozoiten bzw. Zellextrakte inkubiert wurden. Als Positivkontrolle wurden trypsinisierte CHO-Zellen eingesetzt.

2.20 Bildung von Leberabszessen in Wüstenrennmäusen

Die Fähigkeit von Trophozoiten, Leberabszesse zu verursachen wurde mit Hilfe eines Tiermodells ermittelt. Die Injektion der Amöben in die Leber weiblicher Wüstenrennmäuse (*Meriones unguiculatus*) erfolgte nach einem Protokoll von Lotter und Mitarbeitern (Lotter *et al.*, 1997). Dazu wurden in der späten logarithmischen Wachstumsphase geerntete Amöben zweimal in TYI-S-33-Medium gewaschen. 10⁶ Zellen wurden in einem Volumen von 100 μ l in den rechten Leberlappen der Tiere injiziert. Nach 3 bis 7 Tagen wurden die Tiere getötet und das Gewicht des Abszesses bestimmt. Die Versuche wurden unter tierärztlicher Aufsicht von PD Dr. med. vet. H. Lotter durchgeführt.

2.21 Enzyme-linked Immunosorbent Assay (ELISA)

Bei dieser Methode handelt es sich um einen Enzymimmunoassay, mit dessen Hilfe geringste Mengen an Antigen oder Antikörper nachgewiesen werden können. Dabei wird Antigen bzw. Antikörper an eine feste Phase (z.B. Polystyrol) gebunden und mit der Probe inkubiert. Die Wechselwirkung zwischen Antigen und Antikörper wird durch eine Enzym-katalysierte Chromogenumwandlung sichtbar gemacht. Das lösliche und farblose Chromogen wird zu einem gefärbten Farbstoff umgesetzt, dessen Intensität photometrisch zu quantifizieren ist.

Die ELISA-Studien dienten in dieser Arbeit dem Nachweis von Antikörpern in Humanseren gegen die rekombinant hergestellten Peptidasen EhCP-A1, -A5, -A7, -A8, -B1, -B3, -B4, -B5, -B7 und -B8 (siehe 2.19.1). Nach der Reinigung der Proteine durch die Prep-Cell (siehe 2.19.5) wurden die Proteinlösungen im Dialyseschlauch mit PEG20.000 eingeengt. Anschließend wurden sie in einem Carbonatpuffer auf 5 µg/ml verdünnt und über Nacht bei 4°C an Testplatten (NUNC, Dänemark, 96 *well*) gebunden (*,,coating*"). Danach wurden die Testplatten mit NaPBS, 0,05 % Tween gewaschen. Die Serumverdünnungen betrugen 1:50, 1:100 und 1:400 in 3 % Milchpulver in NaPBS, 0,05 % Tween. Es wurden pro *well* 100 µl eingesetzt. Nach einer zweistündigen Inkubation bei RT erfolgte ein Waschschritt. Als sekundärer Antikörper diente Anti-human IgG PODkonjugiert (Kaninchen) (Darko) in einer Verdünnung von 1:100 (in 3 % Milchpulver in NaPBS, 0,05 % Tween). Die Entwicklung erfolgte mit Hilfe des TMB-Entwicklers BD OptEIA von BD Biosciences nach Herstellerangaben. Die Reaktion wurde mit 100 µl 1M H₂SO₄ pro *,,well*" gestoppt. Die Auswertung erfolgte im Photometer bei 450 nm.Die ELISA-Studien wurden von Hannelore Lotter und Claudia Marggraf durchgeführt.

<u>Carbonatpuffer</u>

Stammlösung A Na ₂ CO ₃	0,1 M
Stammlösung B NaHCO3	0,1 M
Stammlösung B wird mit Stammlös	ung A auf pH 9,5 eingestellt.

2.22 Mikroarraystudien

Zur Analyse des Expressionsprofils von *E. histolytica*-Genen wurde in dieser Arbeit die Mikroarraytechnik angewandt, mit deren Hilfe die Expression in Kontrollzellen und in experimentellen Zellen verglichen wurde. Zur Datensicherung wurden zwei biologische Replika analysiert. Zusätzlich wurden Dye-Swap Experimente angesetzt (Austausch der Fluoreszenzfarbstoffe). Abbildung 2 zeigt den schematischen Versuchsaufbau, Abbildung 3 den hier angewendeten Versuchsablauf.

2.22.1 Das Prinzip der Mikroarray-Technik

Mikroarrays werden in Oligonukleotid- und DNA-Mikroarrays unterteilt. Während auf dem Oligonukleotidmikroarray (Oligo-Array) kurze, einzelsträngige DNA-Fragmente (20-70 Bp) gebunden sind, bestehen die DNA-Arrays aus viel längeren DNA-Fragmenten (etwa 1000 Bp). Im Folgenden wird die Mikroarraytechnik für die Oligo-Arrays näher beschrieben, die in der vorliegenden Arbeit Anwendung fand und die weitestgehend mit für Ein der **DNA-Arrays** identisch ist. Oligo-Array trägt spezifische Oligonukleotidsequenzen, die die komplementäre Sequenz der zu untersuchenden Gene aufweisen. Die Oligonukleotide werden auf Glasobjekträgern über kovalente Bindungen an definierten Positionen (spots) eines Rasters (array) immobilisiert (Kontaktspotting) (Maskos und Southern, 1992). Daneben können Oligonukleotide durch ein photolithographisches Verfahren direkt auf dem Glasobjektträger Nukleotid für Nukleotid synthetisiert werden (Fodor et al., 1993). Diese Methode wurde von der Firma Affymetrix entwickelt (Affymetrix, Santa Clara, USA).

Zur Messung der relativen Expressionsunterschiede zwischen einer Probe und einer Referenz wird RNA isoliert und in cDNA umgeschrieben, die daraufhin mit Fluoreszenzfarbstoffen markiert (Kallioniemi *et al.*, 1992) und mit den Oligonukleotiden auf dem Array hybridisiert wird (kompetitiver Hybridisierung). Nach der Hybridisierung der markierten cDNA mit den Oligonukleotiden werden die Hybridisierungssignale mit Hilfe eines Scanners gemessen. Die Stärke des Hybridisierungssignals ist ein Parameter für die relative Transkriptionsmenge.

Die Mikroarraytechnik unterliegt einer Vielzahl von experimentellen Schwankungen. Deshalb ist es notwendig, die Daten durch Wiederholungen und Normalisierung vergleichbar zu machen. Weit verbreitet ist die globale Mittelwert-Normalisierung, der die Annahme zugrunde liegt, dass die Mehrzahl der auf dem Array dargestellten Gene unter den experimentellen Bedingungen unverändert bleibt (Quackenbush, 2006). Die Daten, die aus Mikroarrayuntersuchungen gewonnen werden, müssen mit traditionellen Methoden überprüft werden (Northern-Blot-Analysen, RT-PCR).

Abbildung 2: Schematischer Ablauf eines Mikroarrayexperiments. A) Herstellung des Mikroarrays; B) Sondenherstellung und Hybridisierung; C) Scannen und Auswertung des Arrays: Für Zweifarbenexperimente werden am häufigsten die Fluoreszenzfarbstoffe Cyanin 3 und Cyanin 5 eingesetzt. Die Bilder beider Kanäle werden übereinander gelegt und in den Falschfarben grün und rot dargestellt. Das Verhältnis der Signale aus dem Cy3- und dem Cy5-Kanal dient als Parameter für die Beurteilung der differenziellen Genexpression. Quelle: www.transcriptome.ens.fr

2.22.2 Mikroarraydesign

Für die Mikroarrayexperimente wurden zwei Oligonukleotid-Mikroarrays entworfen (Array_BNI-*E.his*_1.0; Array_BNI-*E.his*_2.0, siehe Anhang: Abb. 18). Die verwendeten Oligonukleotide besitzen einen vergleichbaren GC-Gehalt von ca. 35 % und einer durchschnittlichen Schmelztemperatur T_m von 71,6°C mit einer Standardabweichung von 1,17 (66°C - 74°C). Die Oligonukleotide wurden von der Firma Eurogentec (Seraing, Belgien) berechnet und synthetisiert. Array_BNI-*E.his*_1.0 wurde in Kooperation mit der Universität Marburg gespottet. Die entsprechenden Oligonukleotide wurden in vierfacher Ausfertigung auf Advalytic Epoxy AD100 Glasobjektträger über Epoxygruppen immobilisiert. Der Array_BNI-*E.his*_2.0 wurde von der Firma Ocimumbio (Ijsselstein, Niederlande) hergestellt. Alle Oligonukleotide wurden in einer Konzentration von 50 μ M gespottet. Die cDNA-Synthese und die Fluoreszenzmarkierung der Proben waren

identisch, unabhängig von dem verwendeten Array. Allerdings unterschied sich die Behandlung während der Hybridisierung in wenigen Schritten (vgl. 2.22.6).

2.22.3 cDNA-Synthese

Gesamt-RNA aus *E. histolytica* wurde durch Trizol-Isolierung gewonnen (siehe 2.14.2) und per Agarose-Gelelektrophorese ihre Reinheit überprüft (siehe 2.15.5). Pro Probe wurden 5 µg Gesamt-RNA eingesetzt. Die Reverse Transkription der RNA in cDNA erfolgte mit Hilfe des *Atlas Superscript Fluorescent Labeling Kit* (Clontech-TaKaRa, Saint-Germain-en-Laye, Frankreich).

Folgender Reaktionsansatz wurde verwendet:			
RNA	5 µg		
Oligunukleotid Pd(N) ₆ (5 µg/µl)	0,4 µl		
H ₂ O	ad 10 µl		

Die Komponenten wurden gemischt, für 5 min bei 70°C inkubiert und für 3 min auf 42°C gekühlt. Daraufhin wurden folgende Bestandteile hinzugefügt:

cDNA Synthese-Puffer 5x	4 µl
dNTP-Mix (je 1 mM)	2 µl
DTT	2 µl
Nuklease-freies H ₂ O	1 µl
Powerskript RT	1 µl

Die Probe wurde für 1 h bei 42°C inkubiert, zur Inaktivierung der Reversen Transkriptase für 5 min bei 70°C erhitzt und anschließend auf 37°C gekühlt. Es folgte die Zugabe von 0,2 µl RNaseH (10 U/µl) und eine Inkubation von 45 min. Zur Reinigung der Probe wurde 0,5 µl EDTA (0,5 M, pH 8) und 2 µl QuickClean hinzugefügt. Der Ansatz wurde für 1 min gevortext, auf einen *spin filter* (0,22 µ) überführt und abschließend für 1 min bei 13.000 x g zentrifugiert. Die gereinigte Probe wurde durch Zugabe von 2,2 µl NaAcetat (3 M) und 55 µl EtOH bei -20°C zwischen 1 und 24 h gefällt.

2.22.4 Indirekte Fluoreszenzmarkierung der Proben

Eine indirekte Fluoreszenzmarkierung liegt dann vor, wenn die Proben nach der cDNA-Synthese und nicht währenddessen (direkt) markiert werden. Die präzipitierte cDNA wurde gewaschen, in einer Speed-Vac (1 - 2 min) getrocknet und in 10 μ l 2x *Fluorescent Labeling* Puffer vollständig gelöst. Anschließend wurden die Proben für 1 min auf 70°C erwärmt und mit 10 μ l des jeweiligen Fluoreszenzfarbstoffes (Cy3- und Cy5*monoreactive dyes*, Amersham in DMSO gelöst) gemischt. Die Markierung fand in Dunkelheit für 1 h bei RT statt. Danach wurden die Proben wie unter 2.22.3 beschrieben präzipiziert und maximal 24 h bei -20°C gelagert. Die nach der Fällung gewaschenen Sonden wurden in 100 μ l deionisiertem H₂O gelöst und nach Angaben des Herstellers mit dem QIAquick PCR Purification Kit (Qiagen) gereinigt. Die Effizienz der Markierung wurde spektrophotometrisch ermittelt. Zu diesem Zweck wurden die Absorptionen der Cy3 markierten Sonden bei 550 nm (A₅₅₀) und die der Cy5 markierten Sonden bei 650 nm (A₆₅₀) gemessen. Mit Hilfe der folgenden Formeln wurden die Mengen der Sonden für die anschließende Hybridisierung ermittelt. Sie sollte 250 pmol inkorporierten Farbmolekülen entsprechen.

pmol Cy3 = A_{550} x Sondenvolumen (µl) / 0,15

pmol Cy5 = A_{650} x Sondenvolumen (µl) / 0,25

Das errechnete Probenvolumen wurde mit Microcon Zentrifugationsfilter YM-30 (Millipore, Schwalbach) durch Zentrifugation bei 14.000 x g auf ein Endvolumen von 20 μ l konzentriert.

2.22.5 Prähybridisierung der Mikroarrays

Vor Verwendung der Mikroarrays mussten diese prähybridisiert werden, um ungebundene DNA-Moleküle und Spotpufferrückstände zu entfernen. Array_BNI-*E.his*_1.0 wurde in einem Prähybridisierungspuffer (5 x SSC; 0,1 % BSA; 0,1 % SDS) bei 42°C für 30 bis 60 min inkubiert und anschließend fünfmal in H₂O_{bidest.} und einmal in Isopropanol für je 1 min gewaschen. Array_BNI-*E.his*_2.0 wurde für 30 - 60 min in einer 42°C warmen BSA-Lösung (5 % BSA, 40 ml 20X SSC, 10 ml 10 % SDS, 110 ml H₂O) inkubiert und anschließend fünfmal in H₂O_{bidest.}

2.22.6 Hybridisierung

Zur Hybridisierung mit dem Array_BNI-*E.his*_1.0 wurde die Sonde mit 40 μ l Hybridisierungspuffer (5 x SSC, 0,1 mg/ml Lachssperma, 30 % Formamid, 0,1 % SDS) und für den Array_BNI-*E.his*_2.0 mit dem Hybridisierungspuffer der Firma Ocimumbio versetzt, welcher vor Gebrauch bei 42°C inkubiert wurde. Die Sonden wurden in beiden Fällen für 5 min bei 95°C denaturiert und auf die prähybridisierten Arrays (siehe 2.22.5) luftblasenfrei pipettiert. Die Arrays befanden sich zu diesem Zeitpunkt bereits in den Hybridisierungskammern (sciHYBCHAMBER, Amicon). In dem Fall von Array_BNI-*E.his*_2.0 wurden die Sonden mit Hilfe eines *GeneFrames* aufgetragen. (Dieser wurde mit der kurzen Kante 3 cm von der etikettierten Arrayseite entfernt aufgeklebt.) Bei Array_BNI-*E.his*_1.0 wurde die Probe mit einem entsprechend großen *LifterSlip* (Implen, München) geschützt. Um eine Austrocknung zu verhindern, wurden zusätzlich an den Rand des Innenraums der Kammern 10 μ l 5 x SSC oder H₂O pipettiert. Die Hybridisierung fand über Nacht bei 42°C unter leichtem Schwenken der Arrays statt.

2.22.7 Waschen der hybridisierten Mikroarrays

Array_BNI-*E.his*_1.0 wurde dreimal in 2 x SSC, 0,1 % SDS bei 42°C für 5 min und zweimal in 0,1 x SSC, 0,1 % SDS bei RT für 10 min auf einem Rotationsmixer gewaschen. Zum Schluss wurde er viermal in 0,1 x SSC in einer Glaswanne durch Aufund-ab-Bewegungen geschwenkt. Array_BNI-*E.his*_2.0 wurde je einmal in den folgenden Waschpuffern gewaschen: Waschpuffer 1: 2 x SSC, 0,1 % SDS; Waschpuffer 2: 1 x SSC; Waschpuffer 3: 0,5 x SSC.

Getrocknet wurden sämtliche Arrays durch Zentrifugation in 50 ml Plastikgefäßen bei 400 $x \ g$ für 5 min und RT. Es wird empfohlen, die Mikroarrays direkt im Anschluss zu scannen.

Abbildung 3: Schematischer Versuchsaufbau eines Mikroarrayexperiments. Abkürzungen: K: Kontrollzellen; E: experimentelle Zellen; Bio1: biologische Probe ; Bio2: biologische Probe

2.22.8 Auswertung und Normalisierung

Jeder Mikroarray wurde mit dem ScanArray Express (PerkinElmer) bei 550 nm (Cy3) und bei 650 nm (Cy5) bei einer Auflösung von 5 µm gescannt. Die Erfassung und Berechnung der Daten wurde von der Software ScanArray, 3.0 durchgeführt. Für die Analysen wurde die mittlere Signalintensität (Pixel) abzüglich des mittleren lokalen Hintergrunds (Pixel) für jeden nicht als fehlerhaft markierten Spot herangezogen. Zur Auswertung wurde die globale Mittelwert-Normalisierung verwendet. Diese Methode geht von der Annahme aus, dass die Mehrzahl der auf dem Array repräsentierten Gene unter den verschiedenen Bedingungen gleich exprimiert wurden. Die Berechnung des Normalisierungsfaktors erfolgte mit der folgenden Formel:

Normalisierungsfaktor = \sum Spotintensitäten Experiment / \sum Spotintensitäten Kontrolle

Die Werte für die Spotintensitäten aller Spots der Kontrolle wurden mit dem individuell ermittelten Normalisierungsfaktor multipliziert Gene, die nach der Normalisierung eine Ratio ≥ 2 bzw. ≤ 0.5 wurden als differenziell exprimiert definiert.

2.22.9 Kokultivierungen

Die Ernte adhärent wachsender Trophozoiten nach den jeweiligen Kokultivierungen erfolgte wie unter 2.11.2 beschrieben. Für RNA-Isolierung und cDNA-Synthese wurden die Protokolle 2.14.2; 2.14.3; 2.22.3 verwendet. Als Kontrolle dienten Trophozoiten, die nicht kokultiviert wurden.

2.22.9.1 Kokultivierung von Trophozoiten mit Leberzellen

Trophozoiten wurden mit 1 g homogenisierter und zuvor in NaPBS gewaschener Leber in TY-Medium (siehe 2.7) üN kokultiviert. Nach der Inkubation wurde das Medium abgegossen und der adhärente Zellrasen mit NaPBS gewaschen, um Leberreste zu entfernen.

2.22.9.2 Kokultivierung von Trophozoiten mit Erythrozyten

Hierbei wurden 2 x 10⁶ Trophozoiten des Isolats HM-1:IMSS mit Erythrozyten in einem Verhältnis von 1:100 kokultiviert. Die Auszählung erfolgte mit Hilfe der Neubauer-Kammer. Die Kokultivierung erfolgte üN.

2.22.9.3 Kokultivierungen mit Bakterienstämmen

Zum einen wurde das gram-negative Bakterium *E. coli* (ATCC25922) und zum anderen das gram-positive Bakterium *E. faecalis* (Hausstamm Nr.22) ausgewählt. Beide Bakterienarten wurden auf Blutagarplatten angezogen. Je ein Klon wurde daraufhin gepickt und in LB-Medium bis zu einer OD von 0,01 kultiviert. Pro Kokultivierungsansatz wurde 1 μ l einer vorher 1:1000 verdünnten Bakteriensuspension zu den Trophozoiten pipettiert. Die Kokultivierung erfolgte üN.

2.22.9.4 Kokultivierung mit CHO-Zellen

Um einen gemeinsamen Versuchsansatz für die Kokultivierung von Trophozoiten und CHO-Zellen zu finden, wurden die Versuche in einem Mischmedium, das zu gleichen Teilen aus HAMs- und TY-Medium (siehe 2.7) bestand sowie unter aeroben Bedingungen in Gegenwart von 5 % CO₂ über einen Zeitraum von 2 h durchgeführt.

Die CHO-Zellen wurden wie unter 2.12 beschrieben in die *well*-Platten eingesät. Pro *well* wurden auf den adhärenten CHO-Zellrasen 1×10^5 Amöben gegeben. Nach der Inkubation wurden die Amöben geerntet und für die RNA-Isolierung vereint.

In einem darauf folgenden Versuch dienten solche Amöben als Kontrolle, die im Mischmedium in Gegenwart von 5 % CO₂, aber ohne CHO-Zellen wuchsen.

2.23 Hard- und Software

Mit Hilfe der Programme DNASIS, DNA Strider 1.3 und SeqMan (Version 3.51) wurde die sequenzierte DNA als Basenfolge dargestellt sowie in die Aminosäuresequenz übersetzt und auf deren Korrektheit überprüft.

Zur Beantwortung der Frage nach posttranslationalen Modifikationen der jeweiligen Peptidasesequenzen wurden unterschiedliche Programme herangezogen. Die Vorhersage von Signalpeptiden wurde mit dem Programm SignalP (http:/ /www.cbs.dtu.dk/services/SignalP) erreicht. Zur Ermittlung von spezifischen Sequenzen, die auf Transmembrandomänen hinweisen, wurde das Programm TMHMM benutzt (http://www.cbs.dtu.dk/services/TMHMM-2.0). Des Weiteren wurden Signalpeptide, Signalankermotive bzw. GPI-Anker-Domänen mit dem Programm DGPI (http://129.194.185.165/dgpiu/index eu.html) ermittelt. Die Klassifizierung der identifizierten putativen Gene erfolgte später mit Hilfe der Peptidasedatenbank MEROPS, Version 7.80 (http://merops.sanger.ac.uk/).

3 Ergebnisse

3.1 Charakterisierung der Cysteinpeptidasen von *E. histolytica*

Es ist bekannt, dass Cysteinpeptidasen bei der Pathogenität von *E. histolytica* eine wichtige Rolle spielen (Que und Reed, 2000). Von diesen sind drei Peptidasen (EhCP-A1, EhCP-A2 und EhCP-A5) für ca. 90 % der Gesamtcysteinpeptidaseaktivität verantwortlich, und ihre entsprechenden Gene sind unter Kulturbedingungen am stärksten exprimiert (Bruchhaus *et al.*, 1996). Bisher wurden lediglich EhCP-A2 und EhCP-A5 intensiv untersucht (Hellberg *et al.*, 2001; Tillack *et al.*, 2006). Für ein unter Kulturbedingungen schwach exprimiertes Gen (*ehcp-a4*) wurde in verschiedenen Arbeiten eine unterschiedlich starke Expression beobachtet (Davis *et al.*, 2007; Gilchrist *et al.*, 2006). Ferner verursacht Hitzestress bei Trophozoiten eine Induktion der Transkription von *ehcp-a4* (Weber *et al.*, 2006).

Im Rahmen der vorliegenden Arbeit wurden EhCP-A1 und EhCP-A4 biochemisch näher charakterisiert, und deren Einfluss auf die Pathogenität von *E. histolytica* untersucht.

3.1.1 Klonierung von *ehcp-a1* in Trophozoiten von *E. histolytica*

Für die Expression von *ehcp-a1* wurde ein Expressionsvektor (pNB) verwendet, der auf dem Plasmid pA5'A3'NEO, einem Derivat von pBlueScribe (pBS(+)) beruht (Hamann *et al.*, 1995). Der Vektor enthält einen offenen Leserahmen für die Neomycin-Phosphotransferase, flankiert von 480 Bp des 5'-untranslatierten Bereiches und 530 Bp des 3'-untranslatierten Bereichs eines Aktingens aus *E. histolytica*. Dieser Vektor wird als pNB bezeichnet und in folgenden Experimenten als Kontrolle verwendet. Zur Herstellung des Plasmids pNB_EhCP-A1 wurden ergänzend zur *ehcp-a1*-kodierenden Sequenz 1987 Bp des 5'-untranslatierten und 687 Bp des 3'-untranslatierten flankierenden Bereich des Gens in das Plasmid pNB kloniert (siehe Abb. 4). Trophozoiten des *E. histolytica* Isolats HM-1:IMSS wurden mit den beschriebenen Vektoren transfiziert und mit 50 µg/ml G418 selektioniert (siehe 2.11.3).

Abbildung 4: Schematische Darstellung der Vektoren pNB und pNB_EhCP-A1, die für stabile episomale Transfektionen von *E. histolytica* Trophozoiten eingesetzt wurden. pNB diente als Kontrollvektor. Der Vektor pNB_EhCP-A1 entstand durch Einfügung der genomischen Sequenz für *ehcp-a1*. Pfeile verweisen auf die Transkriptorientierung. Restriktionsenzyme: H, *Hind*III; K, *Kpn*I; B, *BamH*I; E, *EcoR*I

3.1.2 Überexpression von *ehcp-a1* in Trophozoiten von *E. histolytica*

Die Überexpression von *ehcp-a1* wurde mit RT-PCR (siehe 2.18.3) und Northern-Blot-Analysen (siehe 2.18.1) überprüft. Durch RT-PCR konnte in den pNB_EhCP-A1-Transfektanten ein 3-facher Anstieg der Transkriptionsrate von *ehcp-a1* gegenüber der Kontrolle (pNB) nachgewiesen werden. Northern-Blot-Analysen bestätigten die Überexpression von *ehcp-a1* und zeigten zusätzlich, dass die Überexpression von *ehcp-a1* keinen Einfluss auf das Transkriptionsniveau von *ehcp-a2* und *ehcp-a5* hatte (siehe Abb. 5).

Abbildung 5: Northern-Blot-Analyse der EhCP-A1-Transfektanten. Isolierte RNA wurde im Agarosegel aufgetrennt, auf eine Nylonmembran geblottet und mit Sonden für *ehcp-a1*, *ehcp-a2* und *ehcp-a5* hybridisiert (siehe 2.15.5 und 2.18.1). Als Kontrolle diente ein Aktingen aus *E. histolytica*. Je Spur wurden 20 µg RNA aufgetragen.

3.1.3 Charakterisierung der pNB_EhCP-A1-Transfektanten von *E. histolytica*

3.1.3.1 Western-Blot-Analysen mit EhCP-A1-Transfektanten

Western-Blot-Analysen mit spezifischen Antikörpern für EhCP-A1, EhCP-A2 und EhCP-A5 bestätigten die aus den Enzymtests ermittelten Ergebnisse. Wie in Abbildung 6 zu sehen ist, führte eine Transfektion mit dem Plasmid pNB_EhCP-A1 ausschließlich zu einem quantitativen Anstieg des EhCP-A1-Proteins.

Abbildung 6: Western-Blot-Analysen mit pNB_EhCP-A1 Transfektanten. Die mit dem Vektor pNB und pNB_EhCP-A1 transfizierten Trophozoiten von *E. histolytica* wurden mit 50 µg/ml G418 selektioniert. Pro Spur wurden 50 µg Proteinextrakt auf ein 10 %iges SDS-Polyacrylamidgel aufgetragen und auf eine Nitrozellulosemembran transferiert. Die Blots wurden mit spezifischen Antikörpern gegen EhCP-A1 (1:200), EhCP-A2 (1:200) und gegen EhCP-A5 (1:500) inkubiert.

3.1.3.2 Aktivitätstests der pNB_EhCP-A1-Transfektanten

In den löslichen Proteinextrakten der pNB_EhCP-A1-Transfektanten und der pNB transfizierten Amöben wurde die Gesamtcysteinpeptidaseaktivität gemessen. Dazu wurde ein Enzymtest mit dem spezifischen Substrat Z-Arg-Arg-pNA verwendet. Wie in Tabelle 11 dargestellt, führte die Überexpression von *ehcp-a1* zu einem 3,9-fachen Anstieg der Gesamtaktivität im Vergleich zu den Kontrollen.

Expressionsvektor	Spezifische Aktivität (mU/mg)	Anstieg der Aktivität
pNB	51 ± 31	
pNB_EhCP-A1	197 ± 82	3,9-fach

Tabelle 11: Gesamtcysteinpeptidaseaktivität von *E. histolytica***:** Die spezifische Cysteinpeptidaseaktivität gegenüber Z-Arg-Arg-pNA ist in mU/mg angegeben. Extrakte transfizierter Trophozoiten wurden durch mehrmaliges Einfrieren und Auftauen gewonnen (siehe 2.11.2).

Zur weiteren biochemischen Untersuchung der proteolytischen Aktivität von pNB EhCP-A1-Transfektanten wurden Substrat-SDS-Gelelektrophoresen durchgeführt (siehe 2.19.9.2). Mit deren Hilfe sollte geklärt werden, ob die erhöhte proteolytische pNB EhCP-A1-Transfektanten Cysteinpeptidaseaktivität der (siehe Tab. 11) ausschließlich auf das erhöhte Proteinlevel von EhCP-A1 oder auch auf Aktivitätsänderungen weiterer EhCPs zurückzuführen ist. Extrakte aus Trophozoiten von histolytica, die mit dem Kontrollvektor pNB transfiziert wurden, weisen Ε. Aktivitätsbanden in den Größenbereichen 27, 29, 35 und 48 kDa auf. Die proteolytischen Aktivitäten konnten bestimmten EhCPs zugeordnet werden und sind in Abbildung 7 dargestellt (Hellberg et al., 2000; Tillack et al., 2006). Die Überexpression des ehcp-al-Gens führt ausschließlich zu einem deutlichen Intensitätsanstieg der CP-A1-spezifischen Aktivitätsbande. Die restlichen Proteinmengen bleiben unverändert (siehe Abb. 7, Spur 2), wie dies auch für die EhCP-A2-überexprimierenden Trophozoiten (Spur 2) bekannt ist (Hellberg et al., 2001). Eine EhCP-A5-Überexpression dagegen führt zu einer Zunahme aller vier bekannten EhCPs (Spur 4) (Nowak, 2005).

Abbildung 7: Substrat-SDS-Gelelektrophorese der pNB_EhCP-A1-, pNB_EhCP-A2- und pNB_EhCP-A5-Transfektanten. Dargestellt sind mit Coomassie gefärbte 10 %ige SDS-Polyacrylamidgele, in denen 0,1 % (w/v) Gelatine als Substrat kopolymerisiert wurde. Je Spur wurden 1,5 µg Gesamtprotein transfizierter Trophozoiten aufgetragen. Als Kontrolle dienten Amöben, die mit dem Plasmid pNB transfiziert wurden.

3.1.4 Untersuchungen zur Pathogenität der EhCP-A1-Transfektanten von *E. histolytica*

Um die Rolle von EhCP-A1 für die Pathogenität des Parasiten zu untersuchen, wurde zum einen die Fähigkeit EhCP-A1-überexprimierender Trophozoiten bestimmt, Zellrasen zu lysieren (zytopathische Aktivität), wobei das Ausmaß der zytopathischen Aktivität ein Maß für die Pathogenität der Amöben *in vitro* darstellt.

Zum anderen wurde untersucht, inwieweit EhCP-A1-überexprimierende Trophozoiten die Bildung von Amöbenleberabszessen (ALA) im Tierversuch beeinflussen.

3.1.4.1 Zytopathische Aktivität von EhCP-A1-Transfektanten

Sowohl viable Trophozoiten von *E. histolytica* als auch deren Extrakte sind in der Lage, Säugetierzellmonolayer, wie z.B. CHO-Zellen, zu lysieren. In Abbildung 8A ist das Ausmaß der Zerstörung durch Extrakte von EhCP-A1- und EhCP-A5-überexprimierender Trophozoiten dargestellt. Für die Extrakte beider Zelllinien wurden im Vergleich zu Kontrollextrakten signifikante Anstiege der zytopathischen Aktivität gemessen (3,2-fach bzw 6,3-fach). Wie unter 3.1.3.1 beschrieben, führte die Überexpression von *ehcp-a1* zu einer 3,9-fachen Steigerung der Gesamtcysteinpeptidaseaktivität. Eine Überexpression von *ehcp-a5* führte zu einer 5,7-fachen Steigerung der Gesamtcysteinpeptidaseaktivität (Nowak, 2005; Tillack *et al.*, 2006). Dies weist auf eine Korrelation zwischen dem Ausmaß der Steigerung der Gesamtcysteinpeptidaseaktivität und der zytopathischen Aktivität von Trophozoitenextrakten hin.

Für pNB_EhCP-A5-Transfektanten konnte eine erhöhte zytopathische Aktivität (5,6-fach) nachgewiesen werden, nicht aber für pNB_EhCP-A1-Transfektanten (siehe Abb. 8B). Der 1,6-fache Aktivitätsanstieg war nicht signifikant. Bei den Untersuchungen mit EhCP-A5 transfizierten Amöben handelte es sich um Wiederholungsversuche der Arbeiten von Nowak (2005), jedoch wurden in der vorliegenden Arbeit abweichende Proteinmengen und Inkubationszeiten gewählt. Ein Vergleich der Arbeiten bestätigte die Ergebnisse.

Abbildung 8: CHO-Zellrasenzerstörung durch Trophozoitenextrakte (A) und durch viable Trophozoiten (B), die mit den Expressionsvektoren pNB_EhCP-A1 oder pNB_EhCP-A5 transfiziert wurden. Transfizierte Trophozoiten wurden mit 50 μ g/ml G418 selektioniert. A: Zellrasenzerstörung durch 50, 100 und 200 μ g Protein aus frischem Amöbenextrakt (siehe 2.11.2), Inkubation für 1 h bei 37°C und 5 % CO₂. B: Zellrasenzerstörung durch 1 x 10⁵ Trophozoiten, Inkubation für 30, 45 bzw. 60 min bei 37°C und 5 % CO₂. Bezugsgröße für die Zellrasenzerstörung ist der intakte CHO-Zellrasen. Weiße Balken: pNB-Transfektanten, blaue Balken: pNB_EhCP-A1-Transfektanten, graue Balken: pNB_EhCP-A5-Transfektanten. n.s. (nicht signifikant); * (P<0,05); ** (P<0,01).

3.1.4.2 Induktion von Leberabszessen durch EhCP-A1-Transfektanten von *E. histolytica*

Um die Pathogenität der EhCP-A1-Transfektanten von *E. histolytica* im Tiermodell zu untersuchen, wurden männliche Wüstenrennmäuse (*Meriones unguiculatus*) verwendet. Sämtliche Tierversuche in dieser Arbeit wurden von Hannelore Lotter durchgeführt. Pro Tier wurden 1×10^6 transgene Trophozoiten direkt in die Leber injiziert. Nach sieben Tagen konnte kein signifikanter Unterschied zwischen der Größe und Anzahl der durch die EhCP-A1-Transfektanten verursachten Abszesse im Vergleich zu den Kontrollen beobachtet werden.

Expressionsvektor	Tiere mit Abszessen/ Anzahl infizierter Tiere	Abszessgröße (% / Leber)
pNB	21/23	$4,8 \pm 2,9$
pNB_EhCP-A1	7/7	$6,9 \pm 2,2*$

Tabelle 12: Amöbenleberabszessbildung durch pNB_EhCP-A1-Transfektanten

*kein signifikanter Unterschied zu pNB (P = 0,07)

3.1.5 Nachweis der Peptidaseausschleusung aus Trophozoiten

Es konnte bereits gezeigt werden, dass die invasive Eigenschaft von *E. histolytica* vor allem auf die Sekretion von Cysteinpeptidasen zurückzuführen ist (Leippe *et al.*, 1995). In dieser Arbeit sollte geklärt werden, ob EhCP-A1 und EhCP-A2 aktiv von den Zellen sezerniert werden. Dazu wurde die CP-Aktivität in Kulturüberständen von EhCP-A1bzw. -A2-überexprimierendern Amöben, wie in 2.19.10 beschrieben, mittels Enzymtest bestimmt. Als Kontrolle für die Zellviabilität wurde zusätzlich die im Zytosol vorkommende NADP-abhängige Alkoholdehydrogenase-Aktivität (ADH) gemessen. Ein Anstieg dieser Aktivität im Kulturmedium wäre auf lysierte Amöben zurückzuführen. Wie in Abbildung 9 zu sehen, werden Cysteinpeptidasen in den Zellüberstand abgegeben, die ADH-Aktivität bei allen Transfektanten dagegen bleibt auf gleichem Niveau. Die Aktivität der mit dem Kontrollvektor transfizierten Amöben steigt innerhalb der drei Stunden um 60 %, die Aktivität der mit pNB_EhCP-A2-transfizierten Amöben jedoch um 81 %, und die Aktivität der pNB EhCP-A1-Transfektanten um 160 %.

Abbildung 9: Aktivitäten der Cysteinpeptidasen EhCP-A1 und EhCP-A2, sowie der NADPabhängigen ADH im Kulturüberstand von Trophozoiten. Die Proben wurden stündlich über einen Zeitraum von 3 h entnommen (gestrichelte Längslinien markieren die zeitlichen Probenentnahmen) und mittels Enzymtest die Aktivität bestimmt. Die Inkubation erfolgte bei 37 °C.

3.1.6 EhCP-A5-Transfektion in *amoebapore a*-defizienten Trophozoiten von *E. histolytica*

Eine transkriptionelle Inaktivierung des Pathogenitätsfaktors Amoebapore A (ApA) führt dazu, dass entsprechende Amöben (HM-1:IMSS_2411_ApA-) nicht mehr in der Lage sind, in SCID-Mäusen ALAs zu induzieren (Zhang, 2004). In der vorliegenden Arbeit wurde untersucht, ob eine EhCP-A5-Überexpression in den ApA-defizienten Zellen die Pathogenität wieder erhöhen kann. Die Transfektion von pNB_EhCP-A5 in ApA-defiziente Amöben resultierte in einem Anstieg der Gesamtcysteinpeptidaseaktivität. Dieser Anstieg ist vergleichbar mit dem bei pNB_CP-A5-Überexpression in Wildtypamöben (HM-1:IMSS).

Außerdem führte die Überexpression von EhCP-A5 in ApA-defizienten Amöben zu einem signifikanten Anstieg der ALA-Größe im Tiermodell. Die ALA-Größe ist mit der zu vergleichen, die durch HM-1:IMSS induziert wird. Die Überexpression von EhCP-A5 in Wildtypamöben erreicht nach wie vor den höchsten Anstieg der ALA-Größe (siehe Tab. 13).

Isolat/ Expressionsvektor	Tiere mit Abszessen/ Anzahl infizierter Tiere	Abszessgröße (% / Leber)
HM-1:IMSS/pNB	21/23	$4,8 \pm 2,9$
HM-1:IMSS/pNB_CP-A5	13/13	$12,5 \pm 8,7^{a}$
HM-1:IMSS_2411_ApA ⁻ /pNB	8/10	$1,7 \pm 1,8^{b}$
HM-1:IMSS_2411_ApA ⁻ /pNB_CP-A5	9/9	$5,7 \pm 2,6^{c, d}$

 Tabelle
 13:
 Einfluss
 von
 pNB_EhCP-A5-Transfektanten
 in
 ApA-defizienten
 Amöben
 (HM-1:IMSS_2411_ApA⁻)

 für die Pathogenität der Amöben.
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

^asignifikanter Unterschied zu HM-1:IMSS/pNB; ^bsignifikanter Unterschied zu HM-1:IMSS/pNB (P<0,005); ^csignifikanter Unterschied zu HM-1:IMSS_2411_ApA⁻/pNB (P<0,001); ^dkein signifikanter Unterschied zu HM-1:IMSS/pNB (P = 0,7)

3.1.7 Klonierung von *ehcp-a4* in Trophozoiten von *E. histolytica*

Zur Funktionsanalyse von EhCP-A4 wurde das entsprechende Gen in Trophozoiten des Isolates HM-1:IMSS überexprimiert. Dafür wurde der Vektor pNC verwendet, der auf dem Plasmid pEhNEO/CAT beruht (Hamann *et al.*, 1995) (siehe Abb. 10). Dieses Derivat besitzt eine Neomycin-Phosphotransferase kodierende Sequenz, flankiert von 480 Bp des 5'-untranslatierten und 600 Bp des 3'-untranslatierten Bereichs eines Aktingens aus *E. histolytica* (vgl. auch 3.1.1). In die *BamHI/Kpn*I-Schnittstellen wurde die *ehcp-a4-*

kodierende Sequenz von 933 Bp kloniert, so dass das Gen durch 485 Bp des 5'untranslatierten Bereichs eines Lektingens und 600 Bp des 3'-untranslatierten Bereichs eines Aktingens von *E. histolytica* flankiert wird. Der Vektor pNC diente bei allen Versuchen als Kontrolle. Der Expressionsvektor wurde pNC_EhCP-A4 genannt.

Abbildung 10: Schematische Darstellung der Vektoren pNC und pNC_EhCP-A4. Der Vektor pNC_EhCP-A4 wurde durch Einfügung der Sequenz des Gens *ehcp-a4* von pNC abgeleitet. Pfeile verweisen auf die Transkriptorientierung. Restriktionsenzyme: K, *Kpn*I; B, *BamH*I;

3.1.8 Überexpression von *ehcp-a4* in Trophozoiten

Trophozoiten von *E. histolytica* HM-1:IMSS wurden mit dem beschriebenen Vektor transfiziert und mit 50 µg/ml G418 selektioniert. Mit Hilfe von RT-PCR-Analysen wurde in pNC_EhCP-A4-Transfektanten ein 130-facher Anstieg der Transkriptionsrate von *ehcp-a4* gegenüber der Kontrolle (pNC) gemessen. Als Normalisator diente Aktin (siehe 2.18.3).

3.1.9 Charakterisierung der EhCP-A4-Transfektanten von *E. histolytica*

3.1.9.1 Bestimmung der Proteaseaktivität von EhCP-A4–überexprimierenden Trophozoiten

Analog zu dem Enzymtest mit Extrakten von EhCP-A1-Transfektanten (siehe 3.1.3.2) wurde der Anstieg der Gesamtcysteinpeptidaseaktivität von EhCP-A4-Transfektanten gemessen. Die Überexpression von *ehcp-a4* führte zu einem 1,4-fachen Anstieg der spezifischen Aktivität gegenüber den Kontrollamöben (siehe Tab. 14).

Expressionsvektor	Spezifische Aktivität (mU/mg)	Veränderung der Aktivität
pNC	111 ± 9	
pNC_EhCP-A4	152 ± 18	1,4-facher Anstieg

Tabelle 14: Cysteinpeptidaseaktivität von *E. histolytica***-Transfektanten:** Mittels Enzymtest wurde die Cysteinpeptidaseaktivität in *E. histolytica*-Transfektanten gemessen. Die spezifische Aktivität gegenüber Z-Arg-Arg-pNA ist in mU/mg angegeben. Es wurden mindestens drei unabhängige Experimente in Doppelansätzen durchgeführt.

Zusätzlich wurden Substrat-SDS-Gelelektrophoresen mit Extrakten von EhCP-A4überexprimierenden Trophozoiten durchgeführt. Das typische Bandenmuster bleibt bei allen Transfektanten unverändert (siehe Abb. 7). Durch eine Überexpression von *ehcp-a4* wurde eine neue Bande im Größenbereich von 30 kDa sichtbar, die restlichen Banden blieben unverändert (siehe Abb. 11).

Abbildung 11: Substratgelelektrophorese der Extrakte pNC_CP-A4-Transfektanten von *E. histolytica.* Dargestellt sind mit Coomassie gefärbte 10 %ige SDS-Polyacrylamidgele, in denen 0,1 % Gelatine (w/v) kopolymerisiert wurden. Je Spur wurde 1 µg Gesamtprotein von Extrakten transfizierter Trophozoiten aufgetragen. Als Kontrolle dienten pNC-Transfektanten.

3.1.10 *In vitro* Untersuchungen zum Einfluss von EhCP-A4 auf die Pathogenität von *E. histolytica*

Zur Untersuchung der Rolle von EhCP-A4 für die Pathogenität von *E. histolytica* wurde in dieser Arbeit der Einfluss von Extrakten aus Transfektanten bzw. von viablen Transfektanten auf die Zerstörung eines CHO-Zellmonolayers getestet (zytopathische Aktivität) (siehe 2.19.11; vgl. 3.1.4.1). Es wurde kein signifikanter Anstieg der Zellrasenzerstörung im Vergleich zu den entsprechenden Kontrollen gemessen. Daher wurde auf anschließende Tierversuche verzichtet.

3.2 Peptidasegene von *E. histolytica*

Im Rahmen der vorliegenden Arbeit sollte untersucht werden, ob *E. histolytica* neben den bekannten 50 Cysteinpeptidasegenen (siehe 1.4) über weitere Peptidasegene verfügt. Anhand von Sequenzanalysen, die auf dem Genomprojekt (Loftus, 2005) beruhen, konnten zusätzlich vier Aspartatpeptidase-, 22 Metallopeptidase- und zehn Serinpeptidasegene identifiziert werden. Größtenteils kodieren diese 86 Gene für putative Proteasen, deren Expression bzw. biochemische Funktionalität noch nicht nachgewiesen werden konnte. Erkenntnisse über posttranslationale Modifikationen der jeweiligen Peptidasesequenzen wurden durch die Anwendung unterschiedlicher Programme gewonnen (vgl. 2.9). Im Folgenden werden die neu identifizierten Gene entsprechend ihren Klassen zusammengestellt.

3.2.1 Aspartatpeptidasen (EhAsPs)

Im Genom von *E. histolytica* wurden erstmalig vier Gene für putative Aspartatpeptidasen (EhAsPs) identifiziert (EhAsP22-1 bis -4). Sie weisen untereinander 30-40 % Sequenzhomologie auf und sind homolog zu *"intramembrane cleaving"* Peptidasen (Clan AD, Familie A22). Allen gemein ist das spezifische katalytische Zentrum, bestehend aus den Aminosäuremotiven Tyr-Asp und Gly-Leu-Gly-Asp, sowie das Vorhandensein von sieben oder acht Transmembrandomänen (TMD). Für EhAsP22-1 und -2 können Signalpeptide vorhergesagt werden, und die Sequenz von EhAsP22-3 weist eine putative Signalankerdomäne auf. Zusätzlich besitzen EhAsP22-2 und -3 das Signalpeptid-Peptidase spezifische konservierte Motiv Gln-Pro-Ala-Leu-Leu-Tyr (Ponting *et al.*, 2002; Weihofen *et al.*, 2002).

3.2.2 Metallopeptidasen (EhMPs)

Im Genom von *E. histolytica* wurden 22 Gene gefunden, die für putative Metallopeptidasen (EhMPs) kodieren. Sie können in sieben Clans und elf Familien eingeteilt werden. Sechs von ihnen werden dem Clan MA zugeordnet. Peptidasen dieses Clans zeichnen sich durch eine spezifische Zinkbindungsstelle bestehend aus zwei Histidin-Resten, die ein Glu-X-X Motiv einklammern, aus. Die zwei Histidinreste dienen als Zinkliganden und bilden mit dem Glycin das katalytische Zentrum. Eine der EhMPs dieses Clans, EhMP1-1, ist ein Vertreter der Familie M1, welche zu den Aminopeptidasen zählt.

Mitglieder der Familie M3 (EhMP3-1, EhMP3-2) sind im Vergleich zu anderen Peptidasen große (über 80 kDA) Zinkmetalloendopeptidasen mit einem Glutamatrest als dritte Zink-Bindungsstelle.

Die zwei Vertreter der Familie M8 sind homolog zu Metzincin-Metallopeptidasen, Subclan MA(M), für die ein C-terminaler Histidinrest als dritte Zink-Bindungsstelle charakteristisch ist. EhMP8-1 und -2 besitzen eine 34 %ige Sequenzübereinstimmung und eine vorhergesagte C-terminale Transmembranregion.

EhMP48-1 besitzt eine putative Signalankersequenz sowie zusätzliche sechs Transmembrandomänen. Die eukaryotischen Peptidasen der Mitglieder dieser M48-Familie benötigen Substrate, die prenyliert sind und ein Cys-Ala-Ala-X-Motiv aufweisen.

Eine putative EhMP (EhMP16-1) mit dem charakteristischen Zinkbindungsmotiv His-Glu-His-Glu-Glu gehört in die Familie M16C, Clan ME.

Eine Gruppe aus sechs putativen Metallopeptidasen (EhMP24-1 bis EhMP24-6) gehört in den Clan MG, Familie 24. Diese Familie umfasst zytosolische Exopeptidasen, die als Kofaktoren Kobalt oder Mangan benötigen.

Weitere sechs EhMPs werden dem Clan MH zugeordnet. Peptidasen dieses Clans sind Zink-abhängige Exopeptidasen. Die zwei Vertreter der Familie M18 (EhMP18-1, EhMP18-2) besitzen untereinander eine 40 %ige Sequenzübereinstimmung und sind zu 34 % homolog zu Familienmitgliedern anderer Organismen.

Weitere vier EhMPs (EhMP20-1 bis EhMP20-4) gehören zu der Familie M20. Diese Enzyme hydrolysieren Produkte des Proteinabbaus. Die dadurch freigewordenen Aminosäuren können wieder dem Stoffwechselkreislauf zugänglich gemacht werden.

Eine putative EhMP (EhMP22-1) gehört zu dem Clan MK und der Familie 22. EhMP22-1 besitzt kein Signalpeptid, das katalytische Zentrum ist unbekannt. Bisher wurde dieser Familie ein Enzym, die O-Sialoglykoprotein-Endopeptidase aus *Pasteurella haemolytica* zugeordnet (Jiang *et al.*, 2004).

Über EhMP49-1 (Clan M-, Familie M49) ist ebenfalls sehr wenig bekannt. Homologe Enzyme aus Säugetieren sind zytosolische Dipeptidylpeptidasen, die vom Substrat N-terminal Dipeptide abspalten (Chen und Barrett, 2004).

Schließlich wurde in *E. histolytica* eine Gensequenz gefunden, die für eine putative Peptidase aus dem Clan U, Familie U48, kodiert. EhU48-1 ähnelt durch das Vorhandensein einer Signalankersequenz und sechs TMDs der EhMP48-1.

(siehe Tab. 15; Anhang: Tab. 22).
3.2.3 Serinpeptidasen (EhSPs)

Im Genom von *E. histolytica* wurden zehn für putative Serinpeptidasen kodierende Gene gefunden. Von diesen gehören fünf in den Clan SC, Familie S9 (EhSP9-1 bis -5). Für die Vertreter dieser Familie ist ein aktives Zentrum, bestehend aus den Aminosäuren Ser-Asp-His, charakteristisch. Das aktive Zentrum für EhSP9-4 ist allerdings nicht konserviert. Die Sequenz von EhSP9-2 ist bis auf einen Teilbereich von zusätzlichen zwölf Aminosäuren mit der Sequenz von EhSP9-1 identisch. EhSP9-3, -4 und -5 weisen eine 20 %ige Sequenzhomologie zu -1 und -2 auf. Signalpeptide werden für EhSP9-1, -3 und -4 vorhergesagt. Für EhSP9-5 konnte lediglich eine Teilsequenz von 102 Aminosäuren gefunden werden.

Mitglieder der Familie 28 (Clan SC) gehören zu den lysosomalen Pro-Xaa Carboxypeptidasen. EhSP28-1, -2 und -3 sind ungefähr gleich groß (457 - 480 Aminosäuren) und besitzen ein vorhergesagtes Signalpeptid. EhSP28-1 und -2 sind untereinander zu 89 % und mit EhCP28-3 zu 35 % homolog. Die Peptidasen EhSP28-1 und -2 konnten bereits ansatzweise charakterisiert werden (Barrios-Ceballos *et al.*, 2005).

Die putativen Serinpeptidasen EhSP26-1 und -2 gehören zu den Signalpeptidasen der Familie S26B (Clan SF). Die katalytische Dyade besteht aus den Aminosäuren Ser-His. EhSP26-1 mit einer Größe von ca. 20 kDa weist eine hydrophobe Region nahe dem Nund eine hydrophobe Region nahe dem C-Terminus auf. Sequenzähnlichkeiten mit weiteren Familienmitgliedern betragen 45 %, die von EhSP26-2 lediglich 20 % (siehe Tab. 15).

Tabelle 15: Einteilung der Aspartat-, Metallo- und Serinpeptidasen aus *E. histolytica* nach Clan- und Familienzugehörigkeit. In Klammern steht die Anzahl der jeweiligen Mitglieder.

3.3 Mikroarraystudien

Im Genom von E. histolytica wurden 50 Gene identifiziert, die mehrheitlich für putative EhCPs kodieren (siehe 1.4). Diese und weitere Arbeiten konnten zeigen, dass einige Cysteinpeptidasen bei der Pathogenität von E. histolytica eine Rolle spielen (vgl. Ergebnisse Kapitel 3.1). Zusätzlich wurden 36 Gene, die für weitere putative Peptidasen (EhAsP, EhMPs und EhSPs) kodieren, gefunden (siehe 3.2). Um einen Hinweis auf die Bedeutung der einzelnen identifizierten Peptidasegene für die Biologie und Pathogenität von E. histolytica zu erhalten, ist es sinnvoll, Stärke und zeitlichen Ablauf ihrer Expression mit Hilfe von in vitro- und in vivo-Versuchen zu analysieren. Da die große Anzahl der Peptidasegene eine individuelle Analyse erschwert, wurde ein Oligonukleotid-"Array BNI-*E.his* 1.0" Mikroarray entworfen. Der Mikroarray umfasst 86 Oligonukleotide. Diese spezifischen Oligonukleotide repräsentieren 79 der 86 identifizierten Peptidasegene (siehe Anhang Tab. 23). Es fehlen spezifische Oligonukleotide für die Peptidasegene ehubp, ehuch, ehulp-1, ehulp-2, ehulp-3 und ehsp94, die erst nach der Produktion des Mikroarrays identifiziert wurden. Ferner ist das Gen *ehcp-a7* nicht auf dem Mikroarray repräsentiert.

Neben Peptidasen sollten weitere Molekülgruppen für die Pathogenität oder für das Überleben von E. histolytica im Wirt wichtig sein. So sind drei amoebapore-Gene (ehapa, -b und -c) von E. histolytica für ihre antibakterielle sowie zytotoxische Aktivität gegenüber humanen Zelllinien bekannt (Leippe et al., 1994a; Leippe et al., 1994b). EhAP-A, -B und -C gehören strukturell zu den saposinähnlichen Proteinen (SAPLIPs), die stark unterschiedliche zelluläre Funktionen in anderen Organismen besitzen (Munford et al., 1995). Im Genom von E. histolytica konnten Sequenzen für 16 SAPLIP-Gene gefunden werden. Darüber hinaus wurden im Genom 29 Antioxidantiengene identifiziert. Antioxidantien sind in der Lage, reaktive Sauerstoffspezies, die z.B durch aktivierte Makrophagen freigesetzt werden, zu entgiften. Insgesamt wurde hier eine Auswahl von 70 zusätzlichen Genen getroffen, deren Expressionsprofil zusammen mit dem Expressionsprofil der Gene des Arrays BNI-E.his 1.0 mit Hilfe eines erweiterten Arrays (Array BNI-E.his 2.0) untersucht wurde (Anhang: Tab. 24). (Eine Übersicht der Gene befindet sich im Anhang Tab. 24, Nr. 98-126; 128-170, eine schematische Darstellung beider Mikroarray-Designs befindet sich im Anhang, Abb. 18).

3.3.1 Genexpression bei *E. histolytica* Kulturisolaten

3.3.1.1 Peptidasegenexpression im *E. histolytica* Referenzstamm HM-1:IMSS

Zuerst sollte herausgefunden werden, ob und in welcher Stärke die identifizierten Peptidasegene im Referenzstamm HM-1:IMSS unter axenischen Kulturbedingungen exprimiert sind. Die Expressionsstärke der einzelnen Gene wurde in drei Kategorien eingeteilt und in der Einheit Pixel angegeben. Eine starke Expression lag vor, wenn die mittlere, normalisierte Spotintensität den Wert von 8000 Pixel überstieg. Bei einer ermittelten Spotintensität von 801 bis 8000 Pixel galt das entsprechende Gen als moderat exprimiert. Wurden Spotintensitäten unter 800 Pixel gemessen, wurde dies als schwache Genexpression definiert. Wie Abbildung 15 zu entnehmen ist, wurden nur drei Peptidasegene auf hohem Niveau exprimiert (> 8000 Pixel). Dabei handelte es sich um *ehcp-a1, ehcp-a2* und *ehcp-a5*. Die Analyse ergab, dass 17 Peptidasegene moderat exprimiert wurden. Diese Gruppe bestand aus den Genen *ehcp-a6, ehcp-a10, ehcp-a11, ehcp-b2, ehcp-c4, ehcalp-1, ehasp22-1, ehsp9-2, ehmp1-1, ehmp16-1, ehmp18-1, ehmp20-3, ehmp20-4, ehmp24-2, ehmp4-6* und *ehmp48-1*. Die Expression der übrigen Gene galt als schwach.

Abbildung 12: Expressionsprofil der Peptidasen im *E. histolytica*-Referenzstamm HM-1:IMSS. Die Daten wurden aus neun unabhängigen Versuchen ermittelt. Rote Balken repräsentieren eine starke (> 8000 Pixel), blaue Balken eine moderate (801 - 8000) und graue Balken eine schwache Expressionsrate (< 800) der Peptidasegene. Die Einheit der Spotintensität wird in Pixel angegeben.

Zur Verifizierung der Mikroarrayergebnisse wurde die RT-PCR verwendet und stichprobenartig 22 Gene zur Überprüfung ausgewählt (Anhang: Tab. 25). Darunter befanden sich Oligonukleotide für die drei stark exprimierten Gene *ehcp-a1*, *ehcp-a2* und *ehcp-a5*. Ferner wurden fünf moderat exprimierte Gene (*ehasp22-1*, *ehcp-a6*, *ehsp9-2*, *ehmp20-3*, *ehmp48-1*) sowie 14 schwach exprimierte Gene (*ehasp22-2*, *ehasp22-3*. *ehasp22-4*, *ehcp-a3*, *ehcp-a4*, *ehcp-a8*, *ehcp-b9*, *ehsp28-1*, *ehsp28-2*, *ehsp28-3*, *ehmp8-1*, *ehmp8-2*, *ehmp49-1*) überprüft. Dem Gen *ehcp-a7* konnte für die Mikroarraystudien kein spezifisches Oligonukleotid zugeordnet werden, wohl aber Primer für die RT-PCR-Analysen. Um die Ergebnisse der RT-PCR-Analysen mit den Ergebnissen der Mikroarraystudien vergleichen zu können, wurden jeweils die Expressionsstärken der einzelnen Peptidasegene zu der Expression von Aktin ins Verhältnis gesetzt. Die RT-PCR-Daten bestätigten die Mikroarrayergebnisse. Eine Ausnahme trat bei dem Gen *ehmp20-3 auf*, das bei den RT-PCR-Daten im Vergleich zum Mikroarrayergebnis verhältnismäßig stark exprimiert wurde. Das Gen *ehcp-a7*, welches nicht auf dem Array vorliegt, wurde stark exprimiert.

3.3.1.2 Expression weiterer Gene im *E. histolytica* Referenzstamm HM-1:IMSS

Neben dem Expressionsprofil der Peptidasen wurde das Expressionsprofil 70 weiterer Gene (siehe 3.2) dem Referenzstamm HM-1:IMSS in unter axenischen Kulturbedingungen untersucht. Eine Liste dieser Gene befindet sich im Anhang (Tab. 24, Nr. 98-126; 128-170). Die Versuche wurden mit dem Array BNI-E.his 2.0 durchgeführt. Die Einteilung der Expressionsstärke der einzelnen Gene wurde wie unter 3.3.1.1 beschrieben in drei Kategorien eingeteilt und in der Einheit Pixel angegeben. Das Expressionsschema zeigt, dass elf Gene stark, 31 moderat und 28 schwach exprimiert wurden (siehe Abb. 13).

Abbildung 13: Expressionsprofil weiterer Gene im E. histolytica-Referenzstamm HM-1:IMSS. Die Daten wurden aus fünf unabhängigen Versuchen ermittelt. Rote Balken repräsentieren eine starke Expressionsrate (> 8000 Pixel), blaue Balken eine moderate Expressionsrate (801 - 8000) und graue Balken eine schwache Expressionsrate (< 800) der Peptidasegene. Die Einheit der Spotintensität wird in Pixel angegeben. Abkürzungen: ap (amoebapore); apl (sphingolysin-1-Phosphat-lyase); acap (adenylylcyclase assoziiertes Protein); G-prot. α (G-Protein alpha Untereinheit); G-Prot β (G-Protein beta Untereinheit); (acid sphingomyelinase); fpr (flavoprotein); ft (farnesyltransferase beta Untereinheit); ggtp (geranylgeranyltransferase beta *Untereinheit);* NADH-O (NADH-Oxidase); рсст (prenvlcvsteincarboxylmethyl-transferase); prx (peroxiredoxin); rabggt (Rab-geranylgeranyltransferase); sod (superoxid-dismutase); spl (sphingosin-1-phosphat lyase); rbr (rubrerythrin); trxred. (thioredoxin reduktase); trx (thioredoxin); trx-rel. (thioredoxin-related); p34 (NADPH:Flavin-oxidoreduktase)

3.3.1.3 Peptidasegenexpression in verschiedenen *E. histolytica* Langzeitkulturisolaten

Durch den Vergleich der Expressionsprofile verschiedener Langzeitkulturisolate von *E. histolytica* sollte untersucht werden, ob zwischen den verschiedenen Isolaten Variationen in der Genexpression von Peptidasen zu beobachten sind. Zu diesem Zweck wurde das Expressionsprofil von sechs unterschiedlichen Isolaten mit der Expression des Referenzstamm HM-1:IMSS verglichen. Bei den Isolaten NIH:200, HK-9, EGG und DRP handelt es sich um pathogene Isolate, die aus Patienten mit unterschiedlichen klinischen Verläufen der Amöbiasis isoliert wurden (siehe Tab. 5). Die Isolate 452 und 32 stammen aus asymptomatischen *E. histolytica* Trägern. Sämtliche Isolate wurden bereits seit vielen Jahren im Labor kultiviert (siehe 2.11). Die Versuche wurden mit dem Array BNI *E.his* 1.0 durchgeführt.

Wie Tabelle 16 zeigt, konnten bei dem Isolat EGG vier differenziell exprimierte Gene detektiert werden. Die Gene *ehmp20-1* und *ehsp9-2* wurden in diesem Isolat 8,6-fach bzw. 2,8-fach stärker, die Gene *ehcp-a1* und *ehmp20-3* 2,0-fach bzw. 2,3-fach schwächer als im Referenzstamm HM-1:IMSS exprimiert. Bei HK-9 war *ehcp-a5* 2,3-fach 1 schwächer und DRP *ehmp48-1* 5.2-fach stärker exprimiert. Die drei Isolate NIH:200, 452 und 32 zeigten dagegen keine Expressionsunterschiede zum Referenzstamm. Die Expressionsstärken der aufgelisteten, differenziell exprimierten Gene liegen unter der 8000 Pixel-Marke und sind somit moderat exprimiert

Experiment	Genname	Accession- nummer	Änderung der HM-1:IMSS	Signalstärke Isolat	Änderun Expressi	ng der ion
НК-9	ehcp-a5	XM_645845	5.860	2.500	2,3	Ļ
NIH:200	-	-	-	-	-	
EGG	ehmp20-1	XM_651336	570	4.900	8,6**	1
EGG	ehsp9-2	XM_650130	1.700	4.700	2,8**	1
EGG	ehcp-a1	XM_645064	7.300	3.700	2,0**	Ļ
EGG	ehpm20-3	XM_651453	1.600	700	2,3**	Ļ
DRP	ehmp48-1	XM_643678	850	4.400	5,2**	1
452	-	-	-	-	-	
32	-	-	-	-	-	

Tabelle 16: Differenzielle Genexpression verschiedener *E. histolytica* Isolate. Als Referenz diente HM-1:IMSS. Angegeben sind Accessionnummer, Genname, Spotintensitäten, Änderung der Expressionsrate. DieSignalstärke ist in der Einheit Pixel angegeben. ** signifikant (p < 0,001).

3.3.2 Peptidasegenexpression bei transgenen *E. histolytica* Trophozoiten

Mit Hilfe der Mikroarraytechnik können Hinweise darüber gewonnen werden, in wie weit die Überexpression bzw. transkriptionelle Gen-Inaktivierung eine Auswirkung auf die Transkription anderer Gene ausübt.

Das Expressionsprofil von EhCP-A5-überexprimierenden Trophozoiten (pNB_EhCP-A5) wurde dem Expressionsprofil der Kontrollzellen gegenüber gestellt. Es konnte eine 2,6fach erhöhte Transkriptionsrate des *ehcp-a5*-Gens von 2900 auf 7500 Pixel ermittelt werden. Andere Gene wurden in ihrer Transkription durch die Überexpression von *ehcp-a5* nicht beeinflusst.

In weiteren Versuchen wurden Amöben verwendet, bei denen die Gene *ehcp-a1* und *ehcp-a5* transkriptionell inaktiviert waren. Diese Amöbenstämme wiesen dabei eine Besonderheit auf, da sie nur in Zellen generiert werden konnten, die für Amoebapore A und B transkriptionell inaktiv sind (pSAP) (Mirelman *et al.*, 2006). Dementsprechend wurde keine Transkription für *amoebapore a* und *amoebapore b* gemessen. Die Gründe dafür, warum nur in den pSAP Zellen eine Inaktivierung der Transkription weiterer Gene stattfinden kann, sind bis zum jetzigen Zeitpunkt noch nicht geklärt.

Eine transkriptionelle Inaktivierung von *ehcp-a5* konnte in den entsprechend transfizierten Trophozoiten durch den Mikroarray nachgewiesen werden. Die Spotintensität sank um das 130-fache von 9040 Pixel in den Kontrollzellen (pSAP) auf 70 Pixel in den *ehcp-a5* inaktiven Zellen. Daneben wurde eine Abnahme der Transkriptionsstärke der Gene *ehcpa4* (45-fach, von 3400 Pixel auf 76 Pixel) und *ehcp-a6* (32-fach, von 1300 Pixel auf 40 Pixel) beobachtet. Darüber hinaus wurde für das Gen *thioredoxin-related* 7 (*trx-rel.7*) eine 3,5-fache Zunahme der Expressionsstärke in den Kontrollzellen von 1300 Pixel auf 4500 Pixel in den Zellen für beide biologische Replika beobachtet (siehe Tab. 17). Trophozoiten, die das Konstrukt zur Inaktivierung von *ehcp-a1* trugen, reduzierten die Transkription des Zielgens um das 10-fache von 49000 Pixel auf 5000 Pixel. Zusätzlich wurde für das Gen *lysozym 1* eine 2-fache Zunahme von 770 auf 1500 Pixel beobachtet (siehe Tab. 17). Die Geninaktivierung konnte durch RT-PCR-Analysen bestätigt werden.

Experiment	Genname	Accession- nummer	Änderung der S HM-1:IMSS	Signalstärke Inaktiv	Änderun Expressi	ng der on
<i>ehcp-a5</i> inaktiv	ehcp-a4	XM_651510	3.400	76	45**	-
<i>ehcp-a5</i> inaktiv	ehcp-a5	XM_645845	9.040	70	130*	-
<i>ehcp-a5</i> inaktiv	ehcp-a6	XM_652272	1.300	40	32*	Ļ
<i>ehcp-a5</i> inaktiv	trx-rel.7	201.m00100	1.300	4.500	3,5**	1
<i>ehcp-a1</i> inaktiv	ehcp-a1	XM_645064	49.000	5.000	10**	-
<i>ehcp-a1</i> inaktiv	lysozym1	XM_645284	770	1.500	2*	1

Tabelle 17: Differenzielle Genexpression von *ehcp-a5* **versus** *ehcp-a1* **transkriptionell inaktiven Trophozoiten von** *E. histolytica.* Die Versuche wurden mit dem Array_BNI_*E.his_2.0* durchgeführt. Die Signalstärke ist in der Einheit Pixel angegeben. Die Ergebnisse waren signifikant * (p-Wert von <0.05), ** die Ergebnisse waren signifikant (p-Wert von <0.001).

3.3.3 Peptidasegenexpression von *E. histolytica* unter *in vitro*-Kokultivierungen

Die Analyse des Genoms von E. histolytica hat eine große Anzahl von putativen Peptidasegenen hervorgebracht. Bisher konnte die Bedeutung von drei Cysteinpeptidasen (EhCP-A1, EhCP-A2 und EhCP-A5) für die Pathogenität des Parasiten sowohl durch in vivo- als auch durch in vitro-Versuche in Ansätzen geklärt werden (siehe 1.4.1). Wie diese Arbeit zeigen konnte (siehe 3.3.1.1.), werden lediglich 20 der 79 untersuchten Peptidasegene unter optimalen Kulturbedingungen im Referenzstamm HM-1:IMSS moderat bis stark transkribiert. Es ist anzunehmen, dass gewisse Gene erst unter speziellen Lebensbedingungen verstärkt transkribiert und translatiert werden, wie z.B. während der Phagozytose sowie der Wirtsbesiedlung oder Gewebsinvasion. Dies trifft ebenfalls für die Amoebapores, Saplips oder Antioxidantien zu. Deshalb sollte das Transkriptionsprofil der Amöben während der Kokultivierung mit anderen Zellen oder unter dem Einfluss verschiedener Stressoren mit dem Mikroarray Array BNI-E.his 2.0 untersucht wurden. Bei den Kokultivierungen, die im Rahmen dieser Arbeit durchgeführt wurden, handelte es sich um monoxenische Kulturen von HM-1: IMSS mit den Bakterien Escherichia coli oder Enterococcus faecalis, dem Protozoon Crithidia fasciculata sowie mit humanen Erythrozyten. Darüber hinaus wurden die Amöben mit einer Säugetierzelllinie (CHO) oder mit den Zellen einer homogenisierten Mäuseleber inkubiert. Im Falle der Stressoren wurden die Amöben sowohl oxidativem Stress als auch Hitze ausgesetzt.

3.3.3.1 Kokultivierung der Trophozoiten mit Bakterien (E. coli bzw. E. faecalis)

E. histolytica besitzt die Fähigkeit, selektiv und kontinuierlich verschiedene Wirtsbakterien aufzunehmen, effizient abzutöten, zu degradieren und als Nahrungsquelle zu nutzen (Bracha *et al.*, 1982). Darüber hinaus gibt es Hinweise, dass Bakterien die Virulenz von *E. histolytica* beeinflussen können (Mirelman, 1987). In dieser Arbeit wurden Trophozoiten des Isolats HM-1:IMSS mit *E. coli* oder *E. faecalis* über einen Zeitraum von 24 h kokultiviert. In dem Kokultivierungsversuch mit *E. coli* wurden zwei *E. histolytica* Gene identifiziert, die differenziell exprimiert wurden. *Flavoproteinc3* (*fprc3*) wurde 2,6-fach stärker exprimiert, *thioredoxin1* (*trx1*) hingegen 2-fach differenziell schwächer (siehe Tab. 18).

Nach der Kultivierung von Trophozoiten mit *E. faecalis* fanden sich auf Transkriptionsebene drei Gene schwächer exprimiert (siehe Tab. 18). Dabei handelte es sich um *ehcp-a6* (2,7-fach), *saplip9* (2,9-fach) und *thioredoxin1 (trx1)* (2,6-fach).

Tabelle 18: Differenzielle Genexpression nach 24 h Kokultivierung mit *E. coli* oder *E. faecalis*. Als Kontrolle dienten axenisch kultivierte Trophozoiten. Die Versuche wurden mit dem Array_BNI_*E.his_2.0* durchgeführt. *Die Ergebnisse waren signifikant (p-Wert <0.05). Die Signalstärke ist in der Einheit Pixel angegeben. ** Die Ergebnisse waren signifikant (p-Wert <0.001)

Experiment	Genname	Accession- nummer	Änderung de HM-1:IMSS	er Signalstärke Kokultivierung	Änderur Expressi	ng der ion
mit E.coli	fprc3	XM_647345	920	2.350	2,6*	1
mit <i>E.coli</i>	trx1	XM_651634	20.700	9.600	2,2**	Ļ
mit E. faecalis	ehcp-a6	XM_652272	920	340	2,7**	Ļ
mit E. faecalis	saplip9	XM_645284	1.000	350	2,9**	Ļ
mit E. faecalis	trx1	XM_651634	7.500	2.300	2,6**	Ļ

3.3.3.2 Kokultivierung der Trophozoiten mit Crithidia fasciculata

Das Protozoon *Crithidia fasciculata* gehört in die Familie der Trypanosomatidae und ist als Insekten-Pathogen bekannt. Dieser Organismus wird für die monoxenische Kultivierung von *E. dispar* verwendet, da diese Amöbenspezies unter axenischen Bedingungen nicht zu kultivieren ist. Eine monoxenische Dauerkultivierung mit Bakterien würde zu einem Absterben von *E. dispar* führen, weil Bakterien aufgrund ihrer höheren Teilungsrate die Amöben überwachsen würden. Dies ist bei *C. fasciculata* mit einem Temperaturoptimum von 27° C nicht der Fall. Während der Kultivierung von HM-1:IMSS mit *C. fasciculata* fand sich lediglich das Flavoproteingen *fprc1* differenziell um das 2,4fache stärker exprimiert (1930 Pixel auf 4510 Pixel).

3.3.3.3 Kokultivierung der Trophozoiten mit Erythrozyten

Erythrophagozytose gilt als ein Charakteristikum der invasiven Amoebiasis und somit als ein Pathogenitätskriterium für *E. histolytica* (Tsutsumi *et al.*, 1992). Wie sich herausstellte, war keines der analysierten Gene von *E. histolytica* während der Kultivierung mit humanen Erythrozyten differenziell exprimiert.

3.3.3.4 Kokultivierung der Trophozoiten mit Leberzellen

Trophozoiten von *E. histolytica* besitzen die Fähigkeit in die Wirtsleber einzudringen, zu überleben und Abszesse zu bilden. Verschiedene Arbeiten weisen darauf hin, dass sich die Virulenz von Amöben durch Tierleberpassagen (Hamster, Wüstenrennmaus) steigern lässt (Lushbaugh *et al.*, 1978). Die Kokultivierung mit homogenisierten Lebern nichtinfizierter Mäuse zeigte lediglich eine 2,8-fach höhere Expression des Aktingens. Alle übrigen Gene blieben unbeeinflusst.

3.3.3.5 Kokultivierung der Trophozoiten mit CHO-Zellen

Die Mikroarrayanalysen sollten klären, welche der auf dem Array_BNI_*E.his*_2.0 repräsentierten Gene als Reaktion auf die Anwesenheit eines CHO-Zellrasens exprimiert werden. CHO-Zellen und *E. histolytica* Trophozoiten benötigen unterschiedliche Kulturbedingungen. CHO-Zellen werden in Gegenwart von 5 % CO₂ im HAMs-Medium kultiviert, Trophozoiten hingegen bei anaeroben Bedingungen in TY-Medium (siehe 2.11; 2.12). Die optimale Wachstumstemperatur beträgt für beide Zellarten 37°C.

Um einen gemeinsamen Versuchsansatz für die Kokultivierung zu finden, wurden die Versuche in einem Mischmedium (MM), das zu gleichen Teilen aus HAMs- und TY-Medium bestand, sowie unter aeroben Bedingungen durchgeführt. Es konnte jedoch kein Unterschied in der Genexpression zwischen Amöben mit und ohne CHO-Zellen gemessen werden.

Um den Einfluss der veränderten Kulturbedingungen auf die Genexpression der Trophozoiten zu untersuchen, wurde die Genexpression von Amöben, die als Kontrolle anaerob im TY-Medium kultiviert wurden, mit der Genexpression von Amöben, die im Mischmedium aerob kultiviert wurden, gegenübergestellt. Bei Amöben, die im Mischmedium kultiviert wurden, wurden im Vergleich zur Kontrolle sieben Gene differenziell stärker exprimiert. Dabei handelte es sich um folgende Gene: *flavoprotein b2 (fprb2), flavoprotein d1 (fprd1), flavoprotein 3 (fprd3), superoxid-dismutase (sod), thioredoxin* (*trx4), thioredoxin*5 (*trx5*) und *thioredoxin-related6 (trx-rel.6)*. Weitere vier Gene, nämlich *grainin1, grainin2, saplip4* und *saplip5* wurden differenziell schwächer exprimiert (siehe Abb. 14; Tab. 19).

Abbildung 14: Streudiagramm des Experiments zur differenziellen Genexpression bei Amöben, die unter aeroben und anaeroben Bedingungen in unterschiedlichen Medien kultiviert wurden. Als Kontrolle dienten Amöben, die in TY unter Standardkulturbedingungen kultiviert wurden. Amöben wurden im Mischmedium (MM: 50 % TY, 50 % HAMs, 5 % CO₂, 37°C) kultiviert. Die roten Linien markieren die Grenzen einer zweifach differenziellen Expression eines Gens

Tabelle 19: Differenzielle Genexpression bei Kultivierung im Mischmedium. Die Versuche wurden mit dem Array_BNI_*E.his_2.0* durchgeführt. Die Signalstärke ist in der Einheit Pixel angegeben. *Die Ergebnisse waren signifikant (p-Wert <0.05). Es wurde nur eine biologische Probe untersucht.

Experiment	Genname	Accession- nummer	Änderung der HM-1:IMSS	Signalstärke Mischmedium	Änderu Express	ng der
Mischmedium	fprb2	XM_650038	630	4.840	7,7*	1
Mischmedium	fprd1	XM_649789	250	530	2*	1
Mischmedium	fprd3	XM_644279	250	780	3*	1
Mischmedium	sod	XM_643735	9.570	25.060	2,6*	1
Mischmedium	trx4	XM_644472	430	1.090	2,6*	1
Mischmedium	trx5	XM_646791	1.670	5.650	3,4*	1
Mischmedium	trx-rel.6	XM_645940	5.020	2.050	2,4*	1
Mischmedium	grainin1	XM_645280	26.830	10.600	2,5*	Ļ
Mischmedium	grainin2	XM_645265	20.800	6.000	3,5*	Ļ

Mischmedium	saplip4	XM_647067	700	300	2,5*	Ļ
Mischmedium	saplip5	EAL50403	810	380	2,1*	Ļ

3.3.4 Kultivierung der Trophozoiten unter Hitzestress

Bei einer invasiven Amoebiasis kann *E. histolytica* über das Blut in die Leber gelangen und dort Abszesse bilden. Dieser Milieuwechsel verlangt nach einer ausgereiften Adaptation des Parasiten, z. B. an die veränderte Temperatur von 42°C. Mit Hilfe des Array_BNI_*E.his*_1.0 sollte geklärt werden, welche Gene als Reaktion auf einen 4stündigen Hitzestress differenziell exprimiert werden. Es wurde beobachtet, dass die Gene *ehcp-a5*, *ehcp-a6* und *ehmp8-2* ca. 2-fach stärker exprimiert wurden, und die Gene *ehcpa1* und *ehcp-a2* um das 6,3-fache bzw. 4,1-fache differenziell schwächer (siehe Tab. 20). Die Mikroarrayergebisse konnten für die Gene *ehcp-a1*, *ehcp-a2*, *ehcp-a5* und *ehcp-a6* durch RT-PCR-Analysen verifiziert werden. Für *ehmp8-2* hingegen wurde keine differenzielle Expression nachgewiesen (Daten nicht gezeigt).

Tabelle 20: Differenzielle Genexpression bei Hitzestress. Die Trophozoiten wurden 4 h Hitzestress (42°C) ausgesetzt. Als Kontrolle dienten Amöben, die bei 36°C kultiviert wurden. Die Signalstärke ist in der Einheit Pixel angegeben. **Die Ergebnisse waren signifikant (p-Wert von <0.001).

Experiment	Genname	Accession- nummer	Änderung der 37°C	Signalstärke 42°C	Änderun Expressi	g der on
Hitzestress	ehcp-a5	XM_645845	14.000	32.000	2,3**	+
Hitzestress	ehcp-a6	XM_652272	1.050	2.200	2,1**	+
Hitzestress	ehmp8-2	XM_647540	680	1.500	2,2**	+
Hitzestress	ehcp-al	XM_645064	25.000	4.000	6,3**	Ļ
Hitzestress	ehcp-a2	XM_645550	45.000	11.000	4,1**	Ļ

3.3.5 Proteinmuster während der Infektion des Menschen mit E. histolytica

Es wird angenommen, dass während der asymptomatischen Besiedlung des Darms oder während der Gewebsinvasion im natürlichen Wirt, dem Menschen, andere EhCPs als während der Laborkultivierung exprimiert werden Um Hinweise auf die spezifische Peptidasesyntherse von *E. histolytica* während der Infektion zu untersuchen, wurde das Antikörperprofil verschiedener Patientenseren mit Hilfe der ELISA-Technik (*Enzymelinked Immunosorbent Assay*) untersucht. Als Antigene wurden 10 rekombinant exprimierte EhCPs eingesetzt.

3.3.5.1 Klonierung und rekombinante Expression ausgewählter Cysteinpeptidasen aus *E. histolytica*

Für ELISA-Studien zur Untersuchung des Antikörperprofils während der E. histolytica Infektion des Menschen wurden folgende EhCPs als Antigene ausgewählt: EhCP-A1, EhCP-A5, EhCP-A7, EhCP-A8, EhCP-B1, EhCP-B3, EhCP-B4, EhCP-B5, EhCP-B7 und EhCP-B8. Die Auswahl dieser EhCPs erfolgte nach unterschiedlichen Kriterien (siehe Tab. 21). Die Gene ehcp-al und ehcp-a5 werden neben ehcp-a2 am stärksten in der in vitro-Kultur von E. histolytica exprimiert. Für das Protein EhCP-A5 konnte außerdem eine Beteiligung an der Pathogenität der Trophozoiten im Tiermodell gezeigt werden 2005). Die Expression von *ehcp-a7* und *ehcp-a8* wurden (Nowak, unter Kulturbedingungen ebenfalls nachgewiesen (Bruchhaus et al., 2003). Die weiteren Peptidasen sind aufgrund ihrer Primärstruktur möglicherweise an der Zelloberfläche der Amöben lokalisiert und können somit dem Immunsystem des Wirts präsentiert werden (Bruchhaus et al., 2003).

Tabelle 21: Die für ELISA-Studien ausgewählten Peptidasen aus HM-1:IMSS. Die Tabelle zeigt Namen, Auswahlkriterien, putative C-terminale Modifikationen und Größe des jeweiligen rekombinanten Proteins (kDa). Die Einteilung der Expressionsstärken von EhCPs während der Standardkultivierung des Referenzstammes HM-1:IMSS bezieht sich auf die Signalstärken in Northern-Blot-Analysen (Bruchhaus *et al.*, 2003).

Peptidasen	Auswahlkriterien	Größe des rekombinanten Protein (kDa)
EhCP-A1	Starke Expression	24.4 (matures Enzym)
EhCP-A5	Starke Expression; Beteiligung an ALA-Bildung im Tiermodell	34.8 (matures Enzym)
EhCP-A7	Moderate Expression	34.4 (matures Enzym)
EhCP-A8	Moderate Expression	18.0 (kurzes Fragment)
EhCP-B1	Schwache Expression; Hydrophobe Domäne	20.1 (kurzes Fragment)

EhCP-B3	Schwache Expression; Transmembrandomäne	18.5 (kurzes Fragment)
EhCP-B4	Schwache Expression; Hydrophobe Domäne, GPI-Anker	18.6 (kurzes Fragment)
EhCP-B5	Schwache Expression; Hydrophobe Domäne, GPI-Anker	20.0 (kurzes Fragment)
EhCP-B7	Schwache Expression; Hydrophobe Domäne	18.6 (kurzes Fragment)
EhCP-B8	Schwache Expression; Hydrophobe Domäne, GPI-Anker	22.1 (kurzes Fragment)

Für die Klonierung der Peptidasegene wurde der Expressionsvektor pJC45 (siehe 2.9) verwendet. Die Konstrukte pJC45_EhCP-A1, pJC45_EhCP-A5 und pJC45_EhCP-A7 standen bereits zur Verfügung. Die Proteine wurden rekombinant in dem *E. coli*-Stamm BL21(DE3)pAPlacI^Q als Polyhistidin-Fusionsproteine exprimiert (siehe 2.17.1). Da die Bakterien rekombinante Enzyme in Form unlöslicher Aggregate (*"inclusion bodies"*) produzierten, wurden die sedimentierten Bakterienzellen durch Ultraschall aufgeschlossen und in einem Guanidinhydrochlorid-Puffer solubilisiert. Anschließend wurden die Proteine mit Hilfe der Metallchelat-Affinitätschromatographie über eine Nickel-Säule und der Prep-Cell Technik gereinigt (siehe 2.19.2; 2.19.5). Zur Anreicherung wurden die Proteine mit PEG 20.000 eingeengt. Die Identität der EhCPs konnte durch MALDI-Analysen bestätigt werden (Christoph Gelhaus, Universität Kiel). Abbildung 15 zeigt ein Silbergel der gereinigten rekombinanten Enzyme.

Abbildung 15: Expression gereinigter rekombinanter EhCPs nach Silberfärbung. Zur Auftrennung der Proteine wurde ein 12 %iges SDS-Gel verwendet Die Reinigung erfolgte mittels Metall-Chelat-Affinitätschromatographie und Prep-Cell. Aufgetragen wurden 10 - 20 µg Protein. Bei der niedermolekularen Bande bei EhCP-A7 handelt es sich möglicherweise um ein spezifisches Abbauprodukt.

3.3.5.2 Messung der Antiköperreaktion von Patienten auf EhCPs

Um einen Hinweis auf eine differenzielle Expression von EhCPs bei unterschiedlichen klinischen Manifestationen der Amöbiasis zu erhalten, sollten durch ELISA-Studien die Bildung peptidasespezifischer Antikörper in verschiedenen humanen Serumproben untersucht werden. Die Serumproben stammten von 42 Patienten mit Amöbenleberabszess (ALA), von 46 asymptomatischen E. histolytica Trägern (AET) und von 22 E. dispar Trägern als Negativkontrolle. Als positive Antigenkontrolle wurde das rekombinante Eh-P1-Protein verwendet. Eh-P1 repräsentiert einen Teil eines immunodominanten Oberflächenantigens pathogener Amöben. Es wird von 80 % aller Seren von ALA-Patienten detektiert (Edman et al., 1990; Lotter et al., 1992). Die ELISA-Studien wurden von Hannelore Lotter und Claudia Marggraff durchgeführt. Die Ergebnisse sind in Abbildung 16 dargestellt. In den Seren von ALA-Patienten konnten insgesamt Antikörper (IgG) gegen alle eingesetzten rEhCPs gemessen werden. Dabei wurden Antikörper gegen rEhCP-A1 am häufigsten gemessen, nämlich in 50 % der ALA-Patientenseren. In Seren von asymptomatischen E. histolytica Trägern fiel die Reaktivität gegen rEhCPs bis auf eine Ausnahme (rEhCP-B8) geringer aus. Die Seren von E. dispar Trägern wiesen keine signifikante Reaktivität gegen die untersuchten rEhCPs auf (Daten nicht gezeigt).

Abbildung 16: IgG-Reaktivität in Seren von 42 ALA-Patienten (ALA), 46 asymptomatischen *E. histolytica* Trägern (AET) und 22 E. dispar Trägern (*E. dispar*) gegen ausgewählte EhCPs. *: die Werte waren für signifikant.

EhCPs weisen untereinander hohe Sequenzänlichkeiten auf (Bruchhaus *et al.*, 2003). In Abbildung 17 sind exemplarisch die jeweils fünf stärksten Antikörperreaktionen gegen alle eingesetzten Antigene in Seren von 29 ALA-Patienten dargestellt. Je dunkler ein Feld gefärbt ist, desto stärker ist das Signal im ELISA-Test ausgefallen. Es ist deutlich zu erkennen, dass Kreuzreaktionen, selbst bei EhCPs mit hoher Sequenzähnlichkeit wie EhCP-A1 und EhCP-A7, ausgeschlossen werden können.

Abbildung 17: Intensitäten der Antikörperreaktion in Seren von ALA-Patienten auf alle als Antigene eingesetzten EhCPs. Je dunkler ein Feld ist, desto stärker war das Signal im ELISA-Test.

4 Diskussion

Cysteinpeptidasen sind als Virulenzfaktoren vieler infektiöser Erreger und als wichtige proteolytische Enzyme zahlreicher parasitischer Protozoen anerkannt (McKerrow, 1989; Sajid und McKerrow, 2002). Bei *E. histolytica* ist über die Expression und Funktionsweise der 50 CPs bisher wenig bekannt (Clark *et al.*, 2007). Die drei Cysteinpeptidasen EhCP-A1, -A2 und -A5, die unter standardisierten Kulturbedingungen am stärksten exprimiert werden, standen bisher im Mittelpunkt des wissenschaftlichen Interesses. Die Peptidasen EhCP-A2 und -A5 wurden bereits näher charakterisiert (Hellberg *et al.*, 2001; Tillack *et al.*, 2006). In der vorliegenden Arbeit konnte durch die Charakterisierung von EhCP-A1 die Analyse dieser drei Cysteinpeptidasen vervollständigt werden. Außerdem wurde die unter Kulturbedingungen schwach synthetisierte Cysteinpeptidase EhCP-A4 näher analysiert, da es in der Literatur Hinweise auf eine differenzielle Expression des entsprechenden Gens gibt (Davis *et al.*, 2007; Gilchrist *et al.*, 2006).

Neben der biochemischen Charakterisierung von Peptidasen wurde ihre Transkription mit Hilfe eines Mikroarrays in der vorliegenden Arbeit analysiert. Außerdem wurde das Expressionsprofil weiterer Molekülgruppen, die für die Pathogenität oder für das Überleben von *E. histolytica* im Wirt sind, mittels eines erweiterten Arrays untersucht. Dazu gehört die Gruppe der Antioxidantien und der *Amoebpore*-Familie (Bruchhaus *et al.*, 1992; Mehlotra, 1996; Leippe und Müller-Eberhard, 1994). Zum einen wurde die Expression der ausgewählten Gene in verschiedenen *E. histolytica* Isolaten und zum anderen deren differenzielle Expression während unterschiedlicher Kulturbedingungen des Parasiten *in vitro* untersucht.

Ein weiterer Schwerpunkt dieser Arbeit bestand in der Untersuchung der Peptidasesynthese der Amöben im menschlichen Wirt. Dafür wurden mit Hilfe von ELISA-Studien das Antikörperprofil auf ausgewählte, rekombinant hergestellte EhCPs in Seren von ALA-Patienten und asymptomatischen *E. histolytica*-Trägern ermittelt. Das gemessene Antikörperprofil könnte einen Hinweis auf die Expression der EhCPs während verschiedener klinischen Manifestationen *in vivo* geben.

4.1 Klonierung und funktionale Charakterisierung von EhCP-A1 und EhCP-A4

Ehcp-al ist neben ehcp-a2 und ehcp-a5 unter Standardkulturbedingungen das am stärksten exprimierte Peptidasegen. Alle drei entsprechenden Proteine sind zusammen für ca. 90 % der Gesamtcysteinpeptidaseaktivität verantwortlich (Bruchhaus et al., 1996). Für das unter Kulturbedingungen schwach exprimierte Gen ehcp-a4 ist bekannt, dass es in verschiedenen Entamoeba-Arten und -Isolaten sowie unter verschiedenen Lebensbedingungen des sequenzierten Laborstammes HM-1:IMSS differenziell exprimiert wird.

Zur Funktionsanalyse einzelner Proteine kann in *E. histolytica* die molekularbiologische Technik der Überexpression des entsprechenden Gens angewendet werden. Dabei werden die erzielten phänotypischen Auswirkungen auf den Organismus untersucht. Hier wurde *ehcp-a1* und *-a4* in Trophozoiten des Isolats HM-1:IMSS (siehe 3.1.2; 3.1.8) erfolgreich überexprimiert. Durch Northern-Blot-Analysen und RT-PCR konnte gezeigt werden, dass in beiden Fällen die Überexpressionen ausschließlich zu einem Anstieg des spezifischen Transkripts führten, und andere Peptidasegenen nicht beeinträchtigt waren (siehe 3.1.2; 3.1.8).

Neben der Überexpression von Genen besteht die Möglichkeit, die Transkription von Genen zu hemmen. Diese transkriptionelle Inaktivierung findet bei E. histolytica allerdings ausschließlich in Amoebapore A-defizienten Amöben statt. Die Gründe dafür sind weitestgehend unklar und Gegenstand aktueller Forschung (persönliche Mitteilung: Henriette Irmer). Es muss beachtet werden, dass die amoebapore a-defizienten Trophozoiten in ihrer Pathogenität eingeschränkt sind und nicht vorbehaltlos für weitere Pathogenitätsstudien eingesetzt werden können (Bracha et al., 2003). In Kooperation mit David Mirelman, Israel, war es möglich, ehcp-al transkriptionell zu inaktivieren (Irmer et al., in Vorbereitung). In der vorliegenden Arbeit wurde daraufhin das Transkriptionsprofil ehcp-al-inaktiver Amöben mittels Mirkoarray analysiert. Erwartungsgemäß war die Transkription von amoebapore a vollständig gehemmt. Für ehcp-al wurde nur eine Reduzierung, nicht eine vollständige Inaktivierung des Transkriptes gemessen (siehe 3.3.2; Tab. 17). Im Gegensatz dazu zeigten später durchgeführte RT-PCR-Analysen, dass die Transkription von ehcp-al in ehcp-al-inaktiven Amöben nahezu vollständig gehemmt war (Irmer *et al.*, in Vorbereitung). Die transkriptionelle Inaktivierung ist ein langsamer Prozess, der mehrere Wochen dauert, bis das Gen vollständig gehemmt ist. Da die Mikroarrayversuche zu einem frühen Zeitpunkt stattfanden, ist zu vermuten, dass die transkriptionelle Inaktivierung noch nicht in allen Amöben vollständig ablief. Sowohl mit Mikroarray als auch mit RT-PCR Analyse wurde gezeigt, dass eine Inaktivierung des *ehcp-a1*-Transkriptes Tranksriptionsraten von weiteren untersuchten Peptidasegenen nicht beeinflusste.

Die Überexpression von *ehcp-a1* bzw. *ehcp-a4* führte auf Proteinebene zu einem 3,9- bzw. 1,4-fachen Anstieg der Gesamtcysteinpeptidaseaktivität (siehe 3.1.3.2; und 3.1.9.1). Aus vorangegangenen Untersuchungen ist bekannt, dass die Steigerung von EhCP-A2 durch Überexpression in Trophozoiten keinen Effekt auf die Mengen von EhCP-A1 oder -A5 ausübte (Hellberg *et al.*, 2001). Im Gegensatz dazu zeigte Nowak, dass eine Steigerung von EhCP-A5 ebenfalls einen Anstieg der EhCP-A1- und -A2-Proteinmengen induzierte (Nowak, 2005).

In der vorliegenden Arbeit konnte gezeigt werden, dass die EhCP-A1-induzierte Aktivitätssteigerung ausschließlich zu einer Zunahme der Intensität der EhCP-A1-spezifischen 48 kDa Bande führte und somit weder EhCP-A2 noch -A5 prozessiert (siehe Abb. 7).

Durch die Überexpression von *ehcp-a4* blieben die charakteristischen Peptidasebanden unverändert. Zusätzlich wurde eine neue Aktivitätsbande in der Größe von 30 kDa sichtbar, die der Aktivität von EhCP-A4 zugeordnet wird (Abb. 11). Aufgrund des Fehlens eines EhCP-A4-spezifischen Antikörpers konnte die Zunahme der Proteinmenge nicht eindeutig EhCP-A4 zugewiesen werden.

4.2 Einfluss von EhCP-A1 und EhCP-A4 auf die Pathogenität von *E. histolytica*

Um den Einfluss von EhCP-A1 und EhCP-A4 auf die Pathogenität von *E. histolytica* zu überprüfen, wurde zunächst die zytopathische *in vitro*-Aktivität der Transfektanten untersucht (siehe 3.1.4.1; 3.1.10). Dabei wurde festgestellt, dass viable Amöben, die EhCP-A1 überexprimierten, keine signifikant erhöhte zytopathische Aktivität besaßen. Im Gegensatz dazu zerstörten Extrakte, die aus EhCP-A1-überexprimierenden Trophozoiten gewonnen wurden, einen CHO-Zellrasen durchschnittlich 3,2-fach stärker als Extrakte aus Kontrollzellen. Diese Diskrepanz zwischen der zytopathischen Aktivität von viablen Amöben und ihren Extrakten wurde bereits früher für EhCP-A2-überexprimierende Amöben festgestellt (Hellberg *et al.*, 2001). Die höhere zytopathische Aktivität von Extrakten lässt sich damit erklären, dass durch den Zellaufschluss die EhCPs aus den

Amöben freigesetzt werden und damit an der CHO-Zellrasenzerstörung mitwirken können. Bei viablen Amöben hingegen müssen EhCPs sezerniert werden oder an der Zelloberfläche lokalisiert sein, um an ihrer Zerstörung mitzuwirken. EhCP-A5 ist an der Zelloberfläche lokalisiert, und EhCP-A5-überexprimierende viable Trophozoiten sind zytopathisch aktiver als die entsprechenden Kontrollen (Jacobs *et al.*, 1998; Tillack *et al.*, 2006).

Ausschleusungsversuche mit EhCP-A1- und -A2-überexprimierenden Trophozoiten zeigten, dass EhCP-A1 und -A2 von den Amöben sezerniert werden können (siehe 3.1.5; Abb. 9). Die Tatsache, dass EhCP-A1- und A2-überexprimierende Amöben trotz der Ausschleusung der entsprechenden Peptidasen keine erhöhte zytopathische Aktivität gegenüber den Kontrollen aufweisen, könnte damit zusammenhängen, dass die Peptidasekonzentration im Medium bei den Versuchsansätzen verdünnt wird. Darüberhinaus kann die Aktivität von EhCP-A1 und -A2 gegenüber den CHO-Zellen durch die Anwesenheit zahlreicher Proteine im Kulturmedium, die für die Peptidasen ebenfalls als Substrate fungieren können, beeinträchtigt sein. EhCP-A5 hingegen ist mit der Amöbenmembran assoziiert und kann somit einen direkten Kontakt mit den Zielzellen eingehen. Zum Zeitpunkt des Experiments war es aufgrund technischer Probleme nicht möglich, EhCP-A5-überexprimierende Amöben zu generieren, und somit direkt einen Vergleich zwischen Menge der Sezernierung und Zytopathogenität herzustellen.

Für EhCP-A4-überexprimierende Trophozoiten wurde weder bei viablen Amöben noch bei entsprechenden Rohextrakten eine gesteigerte zytopathische Aktivität gemessen (siehe 3.1.10). EhCP-A4 ist vermutlich nicht an der Zerstörung von Säugetierzellrasen beteiligt. Möglicherweise ist das Protein an einem anderen Ort aktiv oder es könnte andere Bedingungen (z.B. pH-Wert) für die Aktivität benötigen. Es ist auch möglich, dass EhCP-A4 spezifisch für die Prozessierung anderer Peptidasen innerhalb des Lebenszyklus von Amöben wichtig ist. Ein weiterer Grund für die Beobachtung könnte sein, dass die Gesamtpeptidaseaktivität in EhCP-A4-überexprimierenden Amöben nicht für eine signifikante Steigerung der zytopathischen Aktivität ausreicht. Dabei ist zu beachten, dass die Gesamtpeptidaseaktivität weitestgehend auf die Aktivitäten von EhCP-A1, -A2 und -A5 beruhen. Hier ist es gelungen, die spezifische *ehcp-a4*-Transkriptionsrate durch Überexpression um das 130-fache zu steigern. Auf Proteinebene resultierte dies in einer 1,4-fachen Steigerung der Gesamtpeptidaseaktivität (siehe 3.18; 3.1.9.1;). Da *ehcp-a4* unter Kulturbedingungen nicht exprimiert ist (Bruchhaus *et al.*, 2003), fällt die Steigerung

der Gesamtpeptidaseaktivität in EhCP-A4-überexprimierenden Amöben relativ gering aus, obwohl die spezifische Steigerung bezogen auf die Ausgangsmengen beachtlich ist.

Die Zytopathogenität ist ein mögliches Experiment, um einen Anhaltspunkt für die *in vivo* Pathogenität eines Organismus zu erhalten. Es muss einschränkend erwähnt werden, dass nicht zwangsläufig eine Korrelation zwischen beiden bestehen muss. Wie Espinosa-Cantellano und Kollegen zeigen konnten, besitzt auch die apathogene Art *E. dispar* eine gewisse zytopathische Aktivität (Espinosa-Cantellano *et al.*, 1998).

Zudem sind für eine Zerstörung von Zellverbänden neben den EhCPs weitere Faktoren nötig. Die Grundlage für eine Zerstörung liefert die Anheftung der Amöben an das Wirtsgewebe, die durch ein β -D-Galaktose/N-Acetylgalaktosamin-spezifisches Lektin vermittelt wird (Petri *et al.*, 1987; Tannich *et al.*, 1992). Daneben scheinen *Amoebapores* nach der Adhärenz der Amöben an die Zielzellen für die Epithelzerstörung wichtig zu sein (Leippe, 1997; Young *et al.*, 1982). Zum Beispiel führte die Hemmung der *Amoebapore*-und Lektinexpression zu einer Reduktion der zytopathischen Aktivität von Trophozoiten (Ankri *et al.*, 1999b; Bracha *et al.*, 1999).

Ein weiteres wichtiges Experiment zur Beurteilung der Pathogenität ist das Tiermodell des Amöbenleberabszesses (ALA). Für EhCP-A5 wurde bereits eine Beteiligung an der ALA-Induktion im Tiermodell nachgewiesen (Ankri *et al.*, 1999a; Tillack *et al.*, 2006). In der vorliegenden Arbeit wurde diese Funktion durch die Transfektion von *ehcp-a5* in ApAinaktiven Amöben bestätigt. Diese ApA-defizienten Amöben erzeugen kleinere Abszesse als Wildtypamöben und sind somit weniger pathogen (Zhang *et al.*, 2004). Durch die Überexpression von EhCP-A5 konnten wieder ALA-Größen induziert werden, die denen von Wildtypamöben gleichkamen (siehe 3.1.6). Somit konnte die EhCP-A5-Überexpression das Fehlen von *amoebapore a* kompensieren. Dieses Ergebnis zeigt, dass große Mengen an EhCP-A5 möglicherweise dank der Oberflächenassoziation direkt zytotoxisch wirken können.

Für EhCP-A1 konnte im Tiermodell gezeigt werden, dass dieses Protein wie auch EhCP-A2 (Hellberg *et al.*, 2001) keine Rolle bei der ALA-Bildung spielt (siehe 3.1.4.2).

Der ALA ist jedoch nur ein Krankheitsbild, das die Amöben im Menschen auslösen können. Für das andere Krankheitsbild, die Kolitis, besteht ein weiteres Tiermodell (Gilchrist *et al.*, 2006). Dabei handelt es sich um eine luminale Injektion von 2 x 10^6

Trophozoiten in den Caecum anästhesierter Mäuse. Die Infektion in den Mäusen verläuft chronisch und ähnelt dem Verlauf der Kolitis im Menschen (Houpt *et al.*, 2002). Dieses Modell ist in unsererm Labor nicht etabliert. Somit konnte der Einfluss von EhCP-A1überexprimierenden Trophozoiten auf die Epithelzellzerstörung nicht *in vivo* gemessen werden. Es ist daher nicht auszuschließen, dass EhCP-A1 eine Rolle bei der Virulenz von *E. histolytica* spielt, die mit den hier angewandten Methoden nicht ausreichend zu messen ist. Wahrscheinlich spielt EhCP-A1 vor allem eine Rolle bei dem Verdau von phagozytierten Proteinbestandteilen.

4.3 Identifikation von Peptidasegenen

Im Rahmen der vorliegenden Arbeit wurden mittels Sequenzanalysen im Genom von E. histolytica neben den bekannten 50 ehcp-Genen (siehe 1.4) weitere Peptidasegene identifiziert. Dabei handelt es sich um vier Gene der Aspartat-, zehn der Serin- und 22 der Metallopeptidasegenfamilie. Somit verfügt der Parasit über insgesamt 86 Peptidasegene. Diese hohe Anzahl ist für Protozoen nicht ungewöhnlich. Im Genom von Plasmodium falciparum sind 110 Peptidasegene und in dem von Giardia lamblia 70 Peptidasegene annotiert (www.merops.sanger.ac.uk). Aufgrund der Vielzahl konnte bei den Organismen wie auch bei E. histolytica jeweils nur ein Bruchteil der Peptidasen biochemisch und funktionell untersucht werden. Aussagen über die Funktion und Lokalisation der putativen *E*. histolytica Proteine können lediglich über Homologievergleiche (Primärstrukturanalysen) mit bekannten Peptidasen anderer Organismen abgeleitet werden (Kapitel 3).

In der Gruppe der EhCPs wurden homologe Enzyme der Familien C1, C2, C19, C48, C54 und C65 gefunden. Von den 50 *ehcp*-Gene gehören 37 in die Familie C1 der Papainähnlichen Peptidasen (siehe 1.4; Tab. 1). Es gibt Hinweise darauf, dass C1-Peptidasen von *Entamoeba* u.a. an En- oder Exzystierungsprozessen beteiligt sind. Da die Enzystierung von *E. histolytica*-Trophozoiten bislang *in vitro* nicht möglich ist, werden die Prozesse an *E. invadens* untersucht. Bei diesem Reptilienparasiten wurde durch Inhibitionsstudien gezeigt, dass CPs eine Rolle bei der Exzystierung spielen (Makioka *et al.*, 2005). Darüberhinaus konnte eine zeitabhängige erhöhte Transkription des *E. invadens*-Gens *eicp-bp9* nachweisen. Das Gen war spezifisch 18 bis 28 Stunden nach der Initiation der Enzystierung exprimiert (Ebert *et al.*; im Druck). Ein entsprechendes Trankskript konnte weder in Trophozoiten noch während der Exzystierung gemessen werden. Das homologe Gen in *E. histolytica, ehcp-b9*, ist in Trophozoiten ebenfalls nicht exprimiert (siehe 3.3.1.1; Abb. 12). Daher ist denkbar, dass *ehcp-b9* eine Rolle bei der Enzystierung dieses Parasiten übernimmt. Kürzlich gelangen (Barron-Gonzalez *et al.*, 2008) die Induktion von zystenähnlichen Strukturen *in vitro*. Möglicherweise sind damit zukünftig Studien zu Enzystierung bei *E. histolytica* durchführbar.

Mitglieder der anderen CP-Familien übernehmen in vielen Organismen Rollen bei unterschiedlichsten zellulären Prozessen. Peptidasen der C2-Familie sind an der Rekonstruktion des Zytoskeletts und der Membranen oder an der Apoptose beteiligt (Goll *et al.*, 2003). Autophagine (Familie C54) sind bei *E. histolytica* mit vier Proteinen vertreten (EhAUTO-1 bis -4). Entsprechende Proteine sind bei *Plasmodium* und *Giardia* nicht vorhanden (www.merops.sanger.ac.uk). Bekannte Autophagine von Mensch und Hefe sind an der Degradation intrazellulärere Proteine beteiligt (Marino *et al.*, 2003).

In der vorliegenden Arbeit wurden zum ersten Mal Gene für putative Aspartatpeptidasen in dem *E. histolytica*-Genom nachgewiesen. Die vier EhAsP (*ehasp22-1* bis -4) gehören strukturell in die Familie A22 der Presinillin-ähnlichen AsPs (siehe 3.2.1; Tab. 15). Auch bei *P. falciparum* wurden AsPs der Familie A22 gefunden. Dabei handelt es sich um eine Signalpeptitpeptidase (PfSPP). Eine funktionelle Charakterisierung konnte zeigen, dass PfSPP an der Invasion der Erytrozyten beteiligt ist (Li *et al.*, 2008). Eine in Säugetierzellen rekombinant exprimierte Form der PfSPP zeigt intramembrane proteolytische Aktivität (Nyborg *et al.*, 2006). Im Gegensatz zu Plasmodien handelt es sich bei E. histolytica nicht um einen intrazellulären Erreger, daher können Funktionen der putativen EhAsPs können hier nicht direkt abgeleitet werden.

Die 22 EhMPs gehören in sieben verschiedene Familien. Interessanterweise wurden zwei putative Metallopeptidasen (EhMP8-1 und EhMP8-2) gefunden, die homolog zu dem Leishmanolysin von *Leishmania* sind. Leishmanolysin übernimmt bei der rezeptorvermittelten Aufnahme des Parasiten durch phagozytierende Wirtszellen sowie bei der Resistenz von Promastigoten gegenüber komplementvermittelter Lyse und bei dem Schutz gegenüber antimikrobieller Peptide eine Rolle (Kulkarni *et al.*, 2006; Yao *et al.*, 2003).

Da sich *E. histolytica* ebenfalls gegen das Immunsystem des Wirtes zur Wehr setzen muss, wäre es denkbar, dass die Leishmanolysin-ähnlichen Peptidasen von *E. histolytica*

die komplementvermittelten Lyse inhibieren. Das gleiche gilt für eine Schutzfunktion der EhMPs gegenüber antimikrobell wirkenden Molekülen.

Daneben wurden in *E. histolytica* Vertreter der Familien M48 und U48 CAAX-Prenylpeptidasen gefunden. Diese besitzen wie M8-Peptidasen putative TMD-Sequenzen. Über solche hydrophoben Strukturen könnten die Proteine an der Oberfläche von Zellen lokalisiert sein, was die Anheftung an Zielzellen erleichtern und die Effizienz bei der Wirtsinvasion erhöhen kann.

Eine weitere putative Metallopeptidase von *E. histolytica* (EhMP16-1) ist homolog zu Falcilysin (PfFLN) aus *P. falciparum*. PfFLN kommt in den Nahrungsvakuolen vor und ist an der Degradation des Haemoglobins beteiligt (Goldberg, 2005). Auch in anderen Parasiten wurden homologe Proteine zu den übrigen EhMPs gefunden, die allerdings noch nicht funktionell untersucht wurden.

Als letzte Peptidasegruppe wurden bei *E. histolytica* 11 putative Serinpeptidasen identifiziert, die in drei Familien, S9, S26 und S28, einzuordnen sind (siehe 3.2.3; Tab. 15). Es konnten bereits Serinpeptidaseaktivitäten in *E. histolytica* nachgewiesen werden (Barrios-Ceballos *et al.*, 2005). Dabei handelt es sich um Vertreter der Familie S28.

Wie EhCPs sind auch EhSPs möglicherweise an En- und Exzystierungsprozesse des Parasiten beteiligt. Durch eine Inhibierung der Serinpeptidaseaktivität bei *E. invadens* wurde die Bildung des Chitinmikrofibrilskelett beeinträchtigt, so dass weniger mature Zysten entstehen konnten (Riahi und Ankri, 2000).

Über die physiologischen Funktionen der restlichen EhSPs lässt sich erneut nur spekulieren. Peptidasen der Familie S26 sind in anderen Organismen zum Beispiel an der Prozessierung neu synthetisierter sekretorischer Proteine beteiligt (Carlos *et al.*, 2000). Diese Beteiligung ist auch für EhSPs vorstellbar.

4.4 Expressionsprofil von Peptidasegenen in *E. histolytica* (Mikroarraystudien)

4.4.1 Peptidasegenexpression unter Kulturbedingungen

Nachdem die Sequenzanalysen zeigten, dass E. histolytica über mehr Peptidasegene verfügt als bislang angenommen wurde, bot sich die Untersuchung des Peptidaseexpressionsprofils sequenzierten Laborstamms des HM-1:IMSS unter Standardkulturbedingungen mit Hilfe der Mikroarraytechnik an (siehe 3.3). Mit dieser Technik können im Gegensatz zu Northern-Blot-Analysen die Transkription der ausgewählten Gene parallel in einem Ansatz untersucht werden. Dies bedeutet eine große Kosten- und Zeitersparnis. Aufgrund einer Vielzahl von experimentellen Schritten unterliegen Mikroarrayexperimente allerdings zahlreichen Schwankungen. Daher ist es wichtig die Validität der ermittelten Daten durch Wiederholungen auf unterschiedlichen Ebenen zu überprüfen. In dieser Arbeit wurden die Ergebnisse wie folgt abgesichert: zum einen wurden Mikroarrayexperimente mit biologischen Replika, also mit unabhängig isolierten RNA-Proben durchgeführt, um die Variabilität des biologischen Materials zu beachten. Zum anderen wurden zur Vermeidung von Messungenauigkeiten Wiederholungen der reversen Transkription durchgeführt (technische Replika). Darüberhinaus stellt der Markierungsprozess ein Schlüsselproblem der Mikroarraytechnik dar. Eine zu geringe oder quantitativ unterschiedliche Fluoreszenzmarkierung der Proben verhindert die Generierung von hochwertigen Daten. Daher wurde hier die Inkorporation der Farbstoffe photometrisch quantifiziert und sogenannte DyeSwap-Experimente durchgeführt (siehe Abb. 3). Die letzte Form der Absicherung erfolgte auf Ebene der Mikroarrays selbst. Die Oligonukleotide wurden in mehreren Replika auf dem Array gespottet, um den Einfluss örtlicher Hybridisierungsschwankungen zu vermeiden (siehe 2.22).

An dieser Stelle sei auch auf die Problematik der Interpretation von Mikroarrayanalysen hingewiesen, sowie auf die Schwierigkeit des Vergleichs von Mikroarraydaten unterschiedlicher Laborgruppen. Das fängt bei den verschieden verwendeten Mikroarrays, Isolaten und den Kulturbedingungen an und reicht über die Verwendung von Scannern unterschiedlicher Hersteller bis hin zu einer fehlenden einheitlichen Definition der Expressionsstärken.

Die hier durchgeführten Mikroarrayergebnisse zeigen, dass während der Standardkultivierung von HM-1:IMSS drei Gene stark, 17 moderat und 59 schwach exprimiert sind. Bei den drei am stärksten exprimierten Genen handelt es sich wie erwartet um *ehcp-a1*, *-a2* und *-a5* (siehe 3.3.1.1; Abb. 12.). Das Ergebnis bestätigt die Northern-Blot-Analysen von Bruchhaus und Mitarbeitern und spricht für die Verlässlichkeit des hier angewendeten Mikroarrays (Bruchhaus *et al.*, 2003).

Die stark exprimierten Gene erfüllen aller Wahrscheinlichkeit nach wichtige Aufgaben im Zellmetabolismus und gehören zum Grundrepertoire der Amöben. Knapp 75 % der Peptidasegene werden unter Kulturbedingungen schwach exprimiert. Somit scheinen sie

bei der axenischen Kultivierung nicht benötigt zu werden. Da es sich bei den schwach exprimierten Genen allem Anschein nach um funktional komplette Gene handelt, die nicht degeneriert sind, liegt die Vermutung nahe, dass ihre Expression erst während der Wirtsbesiedlung oder bei Stadiendifferenzierungsprozessen erforderlich ist (siehe 4.3). Als Beispiel sei hier auf das Gen *ehcp-a4* hingewiesen, das unter Hitzestress bzw. nach Isolierung der Amöben aus dem Mauskolon im Vergleich zur Laborkultivierung differenziell stärker exprimiert wird (Gilchrist *et al.*, 2006; Weber *et al.*, 2006).

Neben den bereits beschriebenen Bemühungen die Mikroarraydaten abzusichern, wurden in der vorliegenden Arbeit die Expressionsraten von stichprobenartig ausgewählten Peptidasegene zusätzlich mit Hilfe der RT-PCR, einer unabhängigen Methode, überprüft. Bei den ausgewählten Peptidasegenen handelte es sich um drei stark, fünf moderat und 14 schwach exprimierte Gene (siehe 3.3.1.1). Es stellte sich heraus, dass die Mikroarraydaten für die verschieden stark exprimierten Gene verlässlich sind, da für 20 der 21 untersuchten Transkripte übereinstimmende Ergebnisse gemessen wurden. Lediglich für ein Gen, *ehmp20-3*, wird bei der RT-PCR eine starke, bei den Mikroarrayanalyse eine moderate Expression gemessen. Dies kann daran liegen, dass bei der RT-PCR ein unspezifisches Amplifikat gemessen wurde. Da die Abweichungen zwischen den ermittelten RT-PCRund Mikroarraydaten derart gering sind, wurde auf die Sequenzierung des *ehmp20-3*-Amplifikats verzichtet.

4.4.1.1 Genexpression anderer Proteingruppen in *E. histolytica*

Neben Peptidasen sind weitere Proteingruppen von *E. histolytica* Gegenstand aktueller Forschung. Dazu gehört zum Beispiel die *Amoebapore*-Familie, die für ihre antimikrobielle und porenbildende Wirkung bekannt und als Pathogenitätsfaktoren anerkannt sind (Leippe *et al.*, 1994a; Winkelmann *et al.*, 2006). Daneben sind Antioxidantien wichtig, mit deren Hilfe sich der Parasit vor toxischen Sauerstoff- und Stickstoffspezies, die beispielsweise von aktivierten Makrophagen abgegeben werden, schützen kann. Außerdem können Antioxidantien solchen Amöben ein Überleben sichern, die in das Wirtsgewebe invadieren. Hier wurde das Expressionsprofil einer Auswahl dieser Gene unter Kulturbedingungen mit Hilfe eines erweiterten Mikroarrays ermittelt (siehe 3.3).

Das Ergebnis zeigt, dass erneut eine Minderheit der untersuchten Gene stark exprimiert wird. Die Anzahl der moderat und schwach exprimierten Gene hält sich die Waage (siehe 3.3.1.2; Abb. 13).

Die Gene amoebapore a, -b und -c werden konstitutiv stark in den Zellen exprimiert (siehe 3.3.1.2; Abb. 13) (Andra et al., 2003). Wie bei EhCP-A5 ist auch hier anzunehmen, dass die amoebapore-Gene in erster Linie nicht wegen ihrer pathogenen Eigenschaften exprimiert werden, sondern weil sie der Nährstoffbeschaffung, also dem Verdau von Bakterien, dienen. Die Involvierung in die Pathogenität und muss daher wieder als Nebenprodukt ihrer Aktivität angesehen werden. Sequenzanalysen zeigten, dass E. histolytica über eine Eisen-abhängige Superoxiddismutase (EhSOD) verfügt, die unter Standardbedingungen stark exprimiert ist (siehe 3.3.1.2; Abb. 13) und folglich zur Grundausstattung für das Überleben der Amöben gehört. Bereits 1991 konnten Tannich et al. eine SOD-Aktivität in Zelllysaten von axenisch kultivierten Trophozoiten nachweisen und das entsprechende Gen klonieren. In vivo bedeutet eine erhöhte FeSOD-Synthese einen Überlebensvorteil für solche Amöben, die in das Wirtsgewebe invadieren. ELISA-Studien, die mit rekombinanter EhFeSOD als Antigen durchgeführt wurden, zeigten, dass 96 % der Seren von Patienten mit invasiver Amöbiasis Antikörper gegen FeSOD aufwiesen, aber keines der Seren von asymptomatischen E. histolytica-Trägern (Bruchhaus et al., 1992).

Ein weiteres Antioxidants, das Peroxiredoxin, ist ebenfalls unter Kulturbedingungen exprimiert stark (siehe 3.3.1.2; Abb. 13). Dies kann dadurch erklärt werden, dass das Protein an der Entgiftung von endogen produzierten toxischen H₂O₂ beteiligt ist (Cheng *et al.*, 2004). Außerdem spielt Peroxiredoxin in anderen Organismen bei Signal- oder Differenzierungsprozessen eine Rolle (Poole *et al.*, 1997; Hofmann *et al.*, 2002; Rhee *et al.*, 2005, Wood *et al.*, 2003a; Wood *et al.*, 2003b). Bei *E. histolytica* konnten zwar solche Funktionen nicht nachgewiesen werden, sind aber denkbar. Die starken Expressionen von EhPrx und EhSOD könnten allerdings auch ein Artefakt der Laborkultivierung sein. In den Kulturschalen ist die Zelldichte sehr hoch, was zu Stress führt. Dieser Stress kann u. a. durch die Produktion toxischer Abfallprodukte absterbender Amöben erzeugt werden, die wiederum durch Antioxidantien entgiftet werden können.

Die Analyse des Transkriptionsprofils zeigt, dass die sogenannten Pathogenitätsfaktoren wie EhCP-A5 und Amoebapore A konstitutiv in Kulturamöben exprimiert werden. Daher scheinen die pathogenen Eigenschaften dieser Proteine vielmehr ein Nebenbrodukt ihrer Aktivität zu sein. Für das Überleben und die Vermehrung im Wirt sind die Parasiten nicht auf eine Schädigung des menschlichen Gewebes angewiesen. Im Gegenteil bedeutet die

Expressionsprofil unter Standardbedingungen wurde bereits von weiteren Das Arbeitsgruppen untersucht (siehe Tab. 3). MacFarlane und Mitarbeiter analysierten die Expression von 1971 Genen, von denen bis zu 47 % als exprimiert definiert wurden (MacFarlane et al., 2005a). Durch eine andere Gruppe wurden mittels Affymetrixstudien für 80 % der auf dem Array liegenden 9435 ORFs eine Expression ermittelt (Gilchrist et al., 2006). Diese Arbeitsgruppen haben sich folglich auf umfangreichere Mikroarraydesigns konzentriert, was eine große, nicht leicht zu handhabende Datenflut nur mit sich bringt. Diese Datenmengen snd noch mit entsprechenden Computerprogrammen zu bewältigen, die im Allgemeinen nur noch von speziell geschulten Biostatistikern bewältigt werden können. Diese Berufsgruppe verfügt aber in den meisten Fällen nicht über das für die Auswertung erforderliche funktionale Verständnis biologischer Prozesse. Der Vorteil der hier vorgestellten Mikroarrayuntersuchungen liegt hingegen darin, dass die Expression von zahlenmäßig überschaubaren Gengruppen untersucht wurde. Ein direkter Vergleich der unterschiedlichen Mikroarrayergebnisse bleibt aufgrund der bereits beschriebenen Probleme kritisch zu betrachten.

4.4.2 Vergleich der *ehcp*-Genexpression unterschiedlicher Isolate

Das vorangegangene Kapitel zeigt, dass im Referenzisolat HM-1:IMSS unter Kulturbedingungen die Mehrheit der untersuchten Gene schwach oder moderat exprimiert ist. Um herauszufinden, ob dieses Ergebnis für *E. histolytica* repräsentativ ist, wurden die Expressionsprofile verschiedener *E. histolytica*-Isolate analysiert. (siehe 3.3.1.3). Für das pathogene Isolat NIH:200, das aus einem Patienten mit Kolitis isoliert wurde, wurde in der vorliegenden Arbeit kein Unterschied in der Peptidaseexpression im Vergleich zu HM-1:IMSS gemessen. Für das ebenfalls pathogene Isolat HK-9 von einem Patienten mit Diarrhö wurde eine differenziell 2-fach schwächere Expression des Gens *ehcp-a5* gemessen, welches die Virulenz der Amöben in *in vitro*- und in *in vivo*-Modellen positiv beeinflusst.

In der vorliegenden Arbeit wurde erstmalig das Peptidase-spezifische Transkriptionsprofil von neuen pathogenen Isolaten untersucht. Das Isolat EGG stammt von einem Patienten mit Kolitis und einem ALA. Für die Gene *ehmp20-1* und *ehsp9-2* wurde ein signifikanter Anstieg gemessen, und für *ehcp-a1* und *ehmp20-3* ein signifikanter Abfall der Expression. Das Isolat DRP aus einem Patienten mit Amöbom zeigte nur einen Anstieg der Genexpression von *ehmp48-1*. Interessanterweise sind keine Unterschiede zwischen HM-1:IMSS und den apathogenen Isolaten 32 und 452 zu messen. Vermutlich handelt es sich bei den gemessenen Unterschieden um biologische Divergenzen verschiedener Isolate, die nicht unbedingt mit dem Phänotyp korrelieren.

Mehrere Studien haben sich bisher mit dem Expressionsprofil des apathogenen Rahman-Isolates befasst. Davis und Mitarbeiter konnten zwischen Rahman und HM-1:IMSS differenzielle Unterschiede für Peptidasegene nachweisen (Davis *et al.*, 2006). Die Autoren haben für *ehcp-a4* und *-a6* eine differenziell schwächere Expression und für *ehcp-a3* eine differenziell stärkere Expression im Rahman-Isolat gemessen. Dies war in einer anderen Arbeit nicht der Fall (MacFarlane und Singh, 2005). Diese widersprüchlichen Ergebnisse weisen auf die Problematik der Mikroarrayversuche hin, da in den Arbeiten unterschiedliche Mikroarraydesigns verwendet wurden.

Im Gegensatz zu den im Rahmen der vorliegenden Arbeit erzielten Ergebnisse, detektierten Ehrenkaufer und Kollegen eine größere Anzahl an differenziell exprimierten Peptidasegenen bei dem Vergleich verschiedener klinischer Isolate mit HM-1:IMSS (Ehrenkaufer et al., 2007). Die Diskrepanz der Ergebnisse könnte auf das unterschiedliche Kulturmedium zurück zu führen sein, das in beiden Studien verwendet wurde. In der vorliegenden Arbeit wurden sämtliche Isolate unter axenischen Kulturbedingungen kultiviert. Ehrenkaufer und Mitarbeiter hingegen kultivierten für ihre Studie die klinischen Isolate xenisch im Robinson-Medium und verglichen deren Expression mit HM-1:IMSS Trophozoiten, die unter axenischen Bedingungen im TY-Medium kultiviert wurden. Das Robinson-Medium basiert auf Reisstärke (Clark und Diamond, 2002). Es ist nicht auszuschließen, dass die Zusammensetzung der Medien zu Genexpressionsunterschieden führten. Die detektierte differenzielle Expression könnte somit lediglich ein Artefakt der Kultivierung sein. Da proteolytische Enzyme bei Nahrungsaufnahme und -verdau beteiligt sind, konnten die Unterschiede in der Komposition der Kulturmedien und die Anwesenheit von Bakterien einen signifikanten Einfluss auf das Expressionsprofil der Peptidasegene von E. histolytica ausüben.

Es ist wichtig zu beachten, dass alle Isolate über einen langen Zeitraum in Kultur gezüchtet wurden, und Adaptationen an die Kulturbedingungen denkbar sind. Transkriptionelle Unterschiede, die mit dem Krankheitsbild korrelieren, sind vermutlich nicht mehr zu messen. Frisch isolierte Amöben aus ALAs zu erhalten ist schwierig, da die Abszesse heute im Allgemeinen nicht mehr punktiert werden. Als Alternative kann auf das Tiermodell zurückgegriffen werde, aber auch bei einer direkten Isolierung der Amöben aus der Leber von Wüstenrennmäusen ergeben sich Probleme. Zum einen ist es schwierig, die Amöben von den anderen Zellen zu isolieren und zum anderen ist die Menge der gewonnenen Amöben limitiert und die RNA nicht ausreichend für Mikroarrayexperimente. Gilchrist und Mitarbeitern gelang eine Transkriptomanalyse von aus dem Mausmodell für humane Kolitis gewonnenen Amöben. Die transkriptionelle Antwort der Amöben wurde am Tag 1 und am Tag 29 nach der Injektion von Trophozoiten in den Kolon untersucht. Unter den Peptidasegenen wurde für *ehcp-a4* der größte differenzielle Unterschied zu den Kontrollamöben gemessen (Gilchrist *et al.*, 2007). Wird das Gen tatsächlich translatiert, könnte EhCP-A4 für den Prozess der Kolonbesiedlung eine wichtige Komponente sein.

Zur Identifizierung möglicher Pathogenitätsfakoren von *E. histolytica* wurde die Transkriptome von *E. histolytica* und *E. dispar* verglichen (MacFarlane und Singh, 2006). Da ein ausschließlich für *E. histolytica* spezifischer Mikroarray für die Messung der Transkriptionsunterschiede verwendet wurde, sind die Ergebnisse trotz der hohen Sequenzähnlichkeit kritisch zu betrachten. Vergleiche zwischen verschiedenen *E. histolytica* Isolaten sind daher vorzuziehen.

4.4.3 Genexpression unter verschiedenen Kulturbedingungen

Die bisherigen Mikroarrayversuche wurden mit Amöben durchgeführt, die unter optimalen Kulturbedingungen gezüchtet wurden und keinem Stress ausgesetzt waren. Unter diesen künstlichen Lebensbedingungen war nur ein Bruchteil der untersuchten Peptidasegene stark exprimiert. Folglich bestand ein weiterer Schwerpunkt dieser Arbeit darin, Gene zu identifizieren, die spezifisch unter sich ändernden Lebensbedingungen exprimiert sind.

Wie die axenische Kultivierung zeigt, kann *E. histolytica* auf Bakterien und Erythrozyten als Nahrungsquelle verzichten. Um die Lebensbedingungen im Darm ansatzweise nachzustellen, wurden Trophozoiten 24 Stunden mit *E. coli* bzw. *E. faecalis* kokultiviert. Es wurden nur zwei bzw. drei der untersuchten Gene differenziell exprimiert (siehe 3.3.3.1).

Als einzige Übereinstimmung wurde *ehtrx1* in beiden Experimenten differenziell schwächer exprimiert. Thioredoxine fungieren als Cofaktoren der Thioredoxin-Reduktase

bei *E. histolytica* (Clark *et al.*, 2007). Die Bedeutung einer differenziell schwächeren Expression in Anwesenheit von Bakterien ist unklar. Bei der Erythrophagozytose wurde keines der ausgesuchten Gene differenziell exprimiert (siehe 3.3.3.3).

Auch andere Studien haben gezeigt, dass die bereits konstitutiv starke Expression antimikrobieller Enzyme wie *Amoebapores* nach Amöbenkokultivierung mit Bakterien nicht weiter ansteigt (Andra *et al.*, 2003). Neben *Amoebapores* sind Lyoszyme in der Lage, Bakterienzellwände zu lysieren. Bei Amöben wurden zwei Lysozymgene gefunden, von denen unter Kulturbedingungen eines stark (*ehlysozym1*) und ein anderes schwach (*ehlysozym2*) exprimiert ist. Bei *ehlysozym1* handelt es sich um das Gen, das bereits von Jacobs und Leippe kloniert, und die Aktivität des entsprechenden Proteins in Trophozoitenextrakten nachgewiesen werden konnte. Es ist möglich, dass Lysozym in Synergie mit *Amoebapores* wirkt (Jacobs und Leippe, 1995). Mikroskopisch konnte eine Aufnahme der Bakterien durch die Amöben verfolgt werden. Für die Aufnahme und den Verdau scheinen die im Kulturmedium exprimierten Gene bzw. die entsprechenden Proteine weitestgehend ausreichend zu sein.

Bei der Kokultivierung von Trophozoiten und CHO-Zellen besteht die Schwierigkeit darin, dass beide Zellarten unterschiedliche Wachstumsbedingungen und -medien brauchen (siehe 3.3.3.5). Um für beide Zelllinien einen Kompromiss zu finden, wurde der vierstündige Versuch mit gemischtem Kulturmedium und unter aeroben Bedingungen durchgeführt. Es wurden keine differenziellen Unterschiede zwischen den Ansätzen gemessen. Eine Erklärung hierfür könnte sein, dass als Kontrolle Amöben ohne CHO-Zellen ebenfalls im Mischmedium und in Anwesenheit von Sauerstoff kultiviert wurden. Das bedeutet für die Kontrollamöben oxidativen Stress. Möglicherweise überwiegt die transkriptionelle Antwort auf den oxidativen Stress die Antwort auf die Bindung an CHO-Zellen.

In der Literatur sind Kokultivierungen von Trophozoiten mit verschiedenen Zelllinien durchgeführt worden. Dabei wurden nur geringe transkriptionelle Änderungen gemessen. Debnath und Mitarbeiter haben einen differenziell schwächeren Transkriptionswert für *ehcp-a3* gemessen (Debnath *et al.*, 2007). Dies konnte in der vorliegenden Arbeit nicht bestätigt werden. Da *ehcp-a3* unter Kulturbedingungen sehr schwach exprimiert ist, ist fraglich, ob eine zweifach schwächere Expression verlässlich zu messen ist. Um den Einfluss der veränderten Kulturbedingungen zu detektieren, wurde das Expressionsprofil von Amöben, die im CHO-Kokultivierungsversuch als Kontrolle dienten, mit solchen

Amöben verglichen, die unter standardisierten amöbenspezifischen Kulturbedingungen wuchsen. Dies zeigte eine differenzielle Expression von zahlreichen Antioxidantien. So wurden drei Flavoproteingene differenziell stärker exprimiert, ebenso EhFeSOD. Im Gegensatz wurde u.a. für die Grainin-Gene ein Rückgang der Transkriptionsstärke verzeichnet. Bei den Proteinen Grainin1 und -2 handelt es sich um zwei Moleküle, die in Granula anzutreffen sind (Nickel *et al.*, 2000). Es wurde postuliert, dass diese Proteine für die Kontrolle endozytotischer Signalwege mitverantwortlich sind. Eine differenziell schwächere Expression bei oxidativem Stress kann allerdings nicht erklärt werden.

Um den Einfluss weiterer Stressoren auf das Transkriptionsprofil zu untersuchen, wurden Amöben einem vierstündigen Hitzestress ausgesetzt. Dies entspricht den Bedingungen bei der Leberinvasion. Hitzegestresste Trophozoiten exprimierten *ehcp-a1* und *-a2* schwächer und *ehmp8-2, ehcp-a5* und *-a6* differenziell stärker als die Amöben, die bei normaler Temperatur wuchsen. Ähnliche Ergebnisse fanden Weber und Mitarbeiter, die ebenfalls einen vierstündigen Hitzestress durchführten (Weber *et al.*, 2006). MacFarlane und Mitarbeiter untersuchten den Einfluss eines einstündigen Hitzestresses auf das Transkriptionsprofil (MacFarlane *et al.*, 2005a). Die Autoren konnten keine differenziell exprimierten Gene messen. Vermutlich war die Expositionszeit für eine transkriptionelle Antwort zu kurz gewählt. Da *ehcp-a6* und *ehmp8-2* unter Standardbedingungen nur schwach exprimiert sind, scheinen sie keine essentielle Rolle für den Metbolismus des Parasiten zu spielen. Ihre stärkere Expression durch einen Hitzestress kann auf eine hypothetische Rolle bei dem Abbau beschädigter Proteine hindeuten (Weber *et al.*, 2006).

Die vorgestellten Ergebnisse zeigen deutlich, dass für die Interaktion der Amöben mit anderen Zelltypen ihr Standardexpressionsprofil ausreicht. Im Gegensatz dazu führt induzierter Stress zu einer differenziellen Expression einiger Gene. Dies ist wichtig, da im Gegensatz zu Kokultivierungen Stress eine Gefahr für die Amöben darstellt, die im ungünstigsten Fall zum Absterben führt. Somit sind die Amöben gezwungen, passende transkriptionelle Antworten zu finden.

4.5 Proteinsynthese während der Infektion des Menschen mit *E. histolytica*

Unter Kulturbedingungen sowie bei verschiedenen in vitro-Versuchen ist in E. histolytica nur ein geringer Teil der bekannten Peptidasegene exprimiert (siehe 3.3.1; 3.3.3). Dies legt die Vermutung nahe, dass zahlreiche Peptidasegene erst während der Wirtsbesiedlung exprimiert werden. In vivo-Versuche zur ALA- und Kolitisinduktion beschränken sich auf die Injektion kultivierter Trophozoiten in die entsprechenden Organe von Kleinnagern, da ein natürliches Tiermodell der Amoebiasis nicht existiert (Lotter et al 1997; Houpt et al., 2002). Um die molekularen Grundlagen für die Erkrankung zu verstehen, ist die Untersuchung der Genexpression im Menschen wichtig. Da dies auf direktem Weg nicht möglich ist, wurden hier als indirekter Nachweis ELISA-Studien verwendet. Mit Hilfe der ELISA-Studien wurde das Antikörperprofil gegen zehn ausgewählte Peptidasen ermittelt. Dabei handelte es sich um EhCPs, deren Gene unter Kulturbedingungen stark (EhCP-A1, -A5), moderat (EhCP-A7, -A8), aber größtenteils nicht exprimiert (EhCP-B1, -B3, -B4, -B5, -B7 und -B8) sind (vgl. 3.3.1). Die sechs unter Kulturbedingungen nicht exprimierten EhCPs besitzen putative hydrophobe C-terminale Regionen, TMD oder GPI-Anker-Sequenzen. Aufgrund ihrer Primärstruktur könnten sie eventuell an der Oberfläche der Amöbenmembran lokalisiert und dem Immunsystem des Wirts präsentiert sein. Um experimentell als Antigene eingesetzt zu werden, wurden die Proteine rekombinant exprimiert. Die Ergebnisse zeigen, dass die EhCPs immunogen sind, und dass die Antikörperreaktionen gegen EhCPs bis auf eine Ausnahme in Seren von ALA-Patienten höher als in Seren von asymptomatischen E. histolytica-Trägern bzw. E. dispar-Ausscheidern ausfallen (siehe 3.3.5.2). Dies weist darauf hin, dass unter Kulturbedingungen nicht exprimierte Peptidasegene im menschlichen Wirt, speziell in ALA-Patienten, exprimiert sind. Damit könnte ihnen eine Rolle bei Prozessen, die zu einer ALA-Bildung führen, zugeschrieben werden. Die Antikörperreaktion auf ein Protein korreliert allerdings nicht zwangsläufig mit seiner Translationsstärke. Wurde wie im Fall von EhCP-A5 oder EhCP-B7 nur eine geringe Antikörperreaktion gemessen, so kann es sich um ein ineffizienteres Immunogen handeln, das dennoch im Serum vorhanden ist und lediglich nicht erfasst werden kann. Zusätzlich ist nicht auszuschließen, dass die Antikörperreaktion auf rekombinant hergestellte Antigene von der Antikörperreaktion auf native Proteine abweicht.

Literaturverzeichnis

- Ali, I.K., Ehrenkaufer, G.M., Hackney, J.A., and Singh, U. (2007) Growth of the protozoan parasite *Entamoeba histolytica* in 5-azacytidine has limited effects on parasite gene expression. *BMC Genomics* 8: 7.
- Andra, J., Herbst, R., and Leippe, M. (2003) Amoebapores, archaic effector peptides of protozoan origin, are discharged into phagosomes and kill bacteria by permeabilizing their membranes. *Dev Comp Immunol* 27: 291-304.
- Ankri, S., Stolarsky, T., and Mirelman, D. (1998) Antisense inhibition of expression of cysteine proteinases does not affect *Entamoeba histolytica* cytopathic or haemolytic activity but inhibits phagocytosis. *Mol Microbiol* 28: 777-785.
- Ankri, S., Bracha, R., Padilla-Vaca, F., and Mirelman, D. (1999a) Applying antisense technology to the study of *Entamoeba histolytica* pathogenesis: response. *Trends Microbiol* 7: 473-474.
- Ankri, S., Padilla-Vaca, F., Stolarsky, T., Koole, L., Katz, U., and Mirelman, D. (1999b) Antisense inhibition of expression of the light subunit (35 kDa) of the Gal/GalNac lectin complex inhibits *Entamoeba histolytica* virulence. *Mol Microbiol* 33: 327-337.
- Arias-Negrete, S., Villagomez-Castro, J.C., Anaya-Velazquez, F., and Lira-Ortiz, R. (1991) Entamoeba histolytica: a simplified method to quantify its cytotoxicity. Int J Parasitol 21: 373-375.
- Balakirev, M.Y., Tcherniuk, S.O., Jaquinod, M., and Chroboczek, J. (2003) Otubains: a new family of cysteine proteases in the ubiquitin pathway. *EMBO Rep* **4**: 517-522.
- Barrios-Ceballos, M.P., Martinez-Gallardo, N.A., Anaya-Velazquez, F., Mirelman, D., and Padilla-Vaca, F. (2005) A novel protease from *Entamoeba histolytica* homologous to members of the family S28 of serine proteases. *Exp Parasitol* 110: 270-275.
- Barron-Gonzalez, M.P., Villarreal-Trevino, L., Resendez-Perez, D., Mata-Cardenas, B.D., and Morales-Vallarta, M.R. (2008) *Entamoeba histolytica*: cyst-like structures in vitro induction. *Exp Parasitol* **118**: 600-603.
- Beck, D.L., Boettner, D.R., Dragulev, B., Ready, K., Nozaki, T., and Petri, W.A., Jr. (2005) Identification and gene expression analysis of a large family of transmembrane kinases related to the Gal/GalNAc lectin in *Entamoeba histolytica*. *Eukaryot Cell* 4: 722-732.
- Bertucci, F., Finetti, P., Cervera, N., Maraninchi, D., Viens, P., and Birnbaum, D. (2006) Gene expression profiling and clinical outcome in breast cancer. *Omics* 10: 429-443.
- Birnboim, H.C., and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Res* 7: 1513-1523.
- Bracha, R., Kobiler, D., and Mirelman, D. (1982) Attachment and ingestion of bacteria by trophozoites of *Entamoeba histolytica*. *Infect Immun* **36**: 396-406.
- Bracha, R., Nuchamowitz, Y., Leippe, M., and Mirelman, D. (1999) Antisense inhibition of amoebapore expression in *Entamoeba histolytica* causes a decrease in amoebic virulence. *Mol Microbiol* 34: 463-472.
- Bracha, R., Nuchamowitz, Y., and Mirelman, D. (2003) Transcriptional silencing of an amoebapore gene in *Entamoeba histolytica*: molecular analysis and effect on pathogenicity. *Eukaryot Cell* 2: 295-305.

- Bruchhaus, I., Brattig, N.W., and Tannich, E. (1992) Recombinant expression, purification and biochemical characterization of a superoxide dismutase from *Entamoeba histolytica*. *Arch Med Res* **23**: 27-29.
- Bruchhaus, I., Jacobs, T., Leippe, M., and Tannich, E. (1996) *Entamoeba histolytica* and Entamoeba dispar: differences in numbers and expression of cysteine proteinase genes. *Mol Microbiol* 22: 255-263.
- Bruchhaus, I., Loftus, B.J., Hall, N., and Tannich, E. (2003) The intestinal protozoan parasite *Entamoeba histolytica* contains 20 cysteine protease genes, of which only a small subset is expressed during in vitro cultivation. *Eukaryot Cell* **2**: 501-509.
- Carlos, J.L., Paetzel, M., Brubaker, G., Karla, A., Ashwell, C.M., Lively, M.O., Cao, G., Bullinger, P., and Dalbey, R.E. (2000) The role of the membrane-spanning domain of type I signal peptidases in substrate cleavage site selection. *J Biol Chem* 275: 38813-38822.
- Clark, C.G., and Diamond, L.S. (1991) Ribosomal RNA genes of 'pathogenic' and 'nonpathogenic' *Entamoeba histolytica* are distinct. *Mol Biochem Parasitol* **49**: 297-302.
- Clark, C.G., Alsmark, U.C., Tazreiter, M., Saito-Nakano, Y., Ali, V., Marion, S., Weber, C., Mukherjee, C., Bruchhaus, I., Tannich, E., Leippe, M., Sicheritz-Ponten, T., Foster, P.G., Samuelson, J., Noel, C.J., Hirt, R.P., Embley, T.M., Gilchrist, C.A., Mann, B.J., Singh, U., Ackers, J.P., Bhattacharya, S., Bhattacharya, A., Lohia, A., Guillen, N., Duchene, M., Nozaki, T., and Hall, N. (2007) Structure and content of the *Entamoeba histolytica* genome. *Adv Parasitol* 65: 51-190.
- Clos, J., and Brandau, S. (1994) pJC20 and pJC40--two high-copy-number vectors for T7 RNA polymerase-dependent expression of recombinant genes in Escherichia coli. *Protein Expr Purif* **5**: 133-137.
- Cohen, S.N., Chang, A.C., and Hsu, L. (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. *Proc Natl Acad Sci U S A* **69**: 2110-2114.
- Davis, P.H., Schulze, J., and Stanley, S.L., Jr. (2007) Transcriptomic comparison of two *Entamoeba histolytica* strains with defined virulence phenotypes identifies new virulence factor candidates and key differences in the expression patterns of cysteine proteases, lectin light chains, and calmodulin. *Mol Biochem Parasitol* 151: 118-128.
- Debnath, A., Das, P., Sajid, M., and McKerrow, J.H. (2004) Identification of genomic responses to collagen binding by trophozoites of *Entamoeba histolytica*. *J Infect Dis* **190**: 448-457.
- Debnath, A., Tashker, J.S., Sajid, M., and McKerrow, J.H. (2007) Transcriptional and secretory responses of *Entamoeba histolytica* to mucins, epithelial cells and bacteria. *Int J Parasitol* **37**: 897-906.
- Diamond, L.S., Harlow, D.R., and Cunnick, C.C. (1978) A new medium for the axenic cultivation of *Entamoeba histolytica* and other *Entamoeba*. *Trans R Soc Trop Med Hyg* **72**: 431-432.
- Ebert, F., Bachmann, A., Nakada-Tsukui, K., Hennings, I., Drescher, B., Nozaki, T., Tannich, E., Bruchhuas, I. An *Entamoeba* cysteine peptidase specifically expressed during encystation. Parasitology Internationa (article in press)
- Edman, U., Meraz, M.A., Rausser, S., Agabian, N., and Meza, I. (1990) Characterization of an immuno-dominant variable surface antigen from pathogenic and nonpathogenic *Entamoeba histolytica*. *J Exp Med* **172**: 879-888.
- Ehrenkaufer, G.M., Haque, R., Hackney, J.A., Eichinger, D.J., and Singh, U. (2007) Identification of developmentally regulated genes in *Entamoeba histolytica*:

insights into mechanisms of stage conversion in a protozoan parasite. *Cell Microbiol* **9**: 1426-1444.

- Flockenhaus, B., Pietersma, M., Bakker-Grunwald, T., and Scholze, H. (2000) The occurrence of a tripeptidyl peptidase I in trophozoites of *Entamoeba histolytica*. *Arch Med Res* **31**: S67-68.
- Fodor, S.P., Rava, R.P., Huang, X.C., Pease, A.C., Holmes, C.P., and Adams, C.L. (1993) Multiplexed biochemical assays with biological chips. *Nature* **364**: 555-556.
- Gilchrist, C.A., Houpt, E., Trapaidze, N., Fei, Z., Crasta, O., Asgharpour, A., Evans, C., Martino-Catt, S., Baba, D.J., Stroup, S., Hamano, S., Ehrenkaufer, G., Okada, M., Singh, U., Nozaki, T., Mann, B.J., and Petri, W.A., Jr. (2006) Impact of intestinal colonization and invasion on the *Entamoeba histolytica* transcriptome. *Mol Biochem Parasitol* 147: 163-176.
- Goldberg, D.E. (2005) Hemoglobin degradation. *Curr Top Microbiol Immunol* **295**: 275-291.
- Goll, D.E., Thompson, V.F., Li, H., Wei, W., and Cong, J. (2003) The calpain system. *Physiol Rev* 83: 731-801.
- Hamann, L., Nickel, R., and Tannich, E. (1995) Transfection and continuous expression of heterologous genes in the protozoan parasite *Entamoeba histolytica*. *Proc Natl Acad Sci U S A* **92**: 8975-8979.
- Hanahan, D. (1983) Studies on transformation of *Escherichia coli* with plasmids. *J Mol Biol* **166**: 557-580.
- Hellberg, A., Leippe, M., and Bruchhaus, I. (2000) Two major 'higher molecular mass proteinases' of *Entamoeba histolytica* are identified as cysteine proteinases 1 and 2. *Mol Biochem Parasitol* **105**: 305-309.
- Hellberg, A., Nickel, R., Lotter, H., Tannich, E., and Bruchhaus, I. (2001) Overexpression of cysteine proteinase 2 in *Entamoeba histolytica* or Entamoeba dispar increases amoeba-induced monolayer destruction in vitro but does not augment amoebic liver abscess formation in gerbils. *Cell Microbiol* **3**: 13-20.
- Higuchi, R., Krummel, B., and Saiki, R.K. (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. *Nucleic Acids Res* 16: 7351-7367.
- Hirata, K.K., Que, X., Melendez-Lopez, S.G., Debnath, A., Myers, S., Herdman, D.S., Orozco, E., Bhattacharya, A., McKerrow, J.H., and Reed, S.L. (2007) A phagocytosis mutant of *Entamoeba histolytica* is less virulent due to deficient proteinase expression and release. *Exp Parasitol* 115: 192-199.
- Hochuli, E. (1988) Large-scale chromatography of recombinant proteins. *J Chromatogr* **444**: 293-302.
- Houpt, E.R., Glembocki, D.J., Obrig, T.G., Moskaluk, C.A., Lockhart, L.A., Wright, R.L., Seaner, R.M., Keepers, T.R., Wilkins T.D., Petri, W.A.Jr. (2002) The mouse model of amebic colitis reveals mouse strain susceptibility to infection and exacerbation of disease by CD4+ T cell. J Immunol 169(8):4496-503
- Jacobs, T., and Leippe, M. (1995) Purification and molecular cloning of a major antibacterial protein of the protozoan parasite *Entamoeba histolytica* with lysozyme-like properties. *Eur J Biochem* **231**: 831-838.
- Jacobs, T., Bruchhaus, I., Dandekar, T., Tannich, E., and Leippe, M. (1998) Isolation and molecular characterization of a surface-bound proteinase of *Entamoeba histolytica*. *Mol Microbiol* 27: 269-276.
- Jiang, W., Jiang, H.F., Pan, C.S., Cai, D.Y., Qi, Y.F., Pang, Y.Z., and Tang, C.S. (2004) Relationship between the contents of adrenomedullin and distributions of neutral endopeptidase in blood and tissues of spontaneously hypertensive rats. *Hypertens Res* 27: 109-117.
- Joyce, M.P., and Ravdin, J.I. (1988) Antigens of *Entamoeba histolytica* recognized by immune sera from liver abscess patients. *Am J Trop Med Hyg* **38**: 74-80.
- Keene, W.E., Petitt, M.G., Allen, S., and McKerrow, J.H. (1986) The major neutral proteinase of *Entamoeba histolytica*. *J Exp Med* **163**: 536-549.
- Kulkarni, M.M., McMaster, W.R., Kamysz, E., Kamysz, W., Engman, D.M., and McGwire, B.S. (2006) The major surface-metalloprotease of the parasitic protozoan, *Leishmania*, protects against antimicrobial peptide-induced apoptotic killing. *Mol Microbiol* 62: 1484-1497.
- Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* **227**: 680-685.
- Le Roch, K.G., Zhou, Y., Blair, P.L., Grainger, M., Moch, J.K., Haynes, J.D., De La Vega, P., Holder, A.A., Batalov, S., Carucci, D.J., and Winzeler, E.A. (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. *Science* **301**: 1503-1508.
- Leippe, M., Ebel, S., Schoenberger, O.L., Horstmann, R.D., and Muller-Eberhard, H.J. (1991) Pore-forming peptide of pathogenic *Entamoeba histolytica*. *Proc Natl Acad Sci U S A* **88**: 7659-7663.
- Leippe, M., Andra, J., and Muller-Eberhard, H.J. (1994a) Cytolytic and antibacterial activity of synthetic peptides derived from amoebapore, the pore-forming peptide of *Entamoeba histolytica*. *Proc Natl Acad Sci U S A* **91**: 2602-2606.
- Leippe, M., Andra, J., Nickel, R., Tannich, E., and Muller-Eberhard, H.J. (1994b) Amoebapores, a family of membranolytic peptides from cytoplasmic granules of *Entamoeba histolytica*: isolation, primary structure, and pore formation in bacterial cytoplasmic membranes. *Mol Microbiol* 14: 895-904.
- Leippe, M. (1997) Amoebapores. Parasitol Today 13: 178-183.
- Li, X., Chen, H., Oh, S.S., and Chishti, A.H. (2008) A Presenilin-like protease associated with *Plasmodium falciparum* micronemes is involved in erythrocyte invasion. *Mol Biochem Parasitol* **158**: 22-31.
- Livak, K.J., and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **25**: 402-408.
- Loftus, B., Anderson, I., Davies, R., Alsmark, U.C., Samuelson, J., Amedeo, P., Roncaglia, P., Berriman, M., Hirt, R.P., Mann, B.J., Nozaki, T., Suh, B., Pop, M., Duchene, M., Ackers, J., Tannich, E., Leippe, M., Hofer, M., Bruchhaus, I., Willhoeft, U., Bhattacharya, A., Chillingworth, T., Churcher, C., Hance, Z., Harris, B., Harris, D., Jagels, K., Moule, S., Mungall, K., Ormond, D., Squares, R., Whitehead, S., Quail, M.A., Rabbinowitsch, E., Norbertczak, H., Price, C., Wang, Z., Guillen, N., Gilchrist, C., Stroup, S.E., Bhattacharya, S., Lohia, A., Foster, P.G., Sicheritz-Ponten, T., Weber, C., Singh, U., Mukherjee, C., El-Sayed, N.M., Petri, W.A., Jr., Clark, C.G., Embley, T.M., Barrell, B., Fraser, C.M., and Hall, N. (2005) The genome of the protist parasite *Entamoeba histolytica*. *Nature* 433: 865-868.
- Lotter, H., Mannweiler, E., Schreiber, M., and Tannich, E. (1992) Sensitive and specific serodiagnosis of invasive amebiasis by using a recombinant surface protein of pathogenic *Entamoeba histolytica*. *J Clin Microbiol* **30**: 3163-3167.
- Luaces, A.L., and Barrett, A.J. (1988) Affinity purification and biochemical characterization of histolysin, the major cysteine proteinase of *Entamoeba histolytica*. *Biochem J* **250**: 903-909.
- Lucius, R. und Loos-Frank, B., (2008) Biologie von Parasiten. Springer-Verlag, 2. Auflage

- Lushbaugh, W.B., Kairalla, A.B., Loadholt, C.B., and Pittman, F.E. (1978) Effect of hamster liver passage on the virulence of axenically cultivated *Entamoeba histolytica*. *Am J Trop Med Hyg* **27**: 248-254.
- MacFarlane, R., Bhattacharya, D., and Singh, U. (2005a) Genomic DNA microarrays for *Entamoeba histolytica*: applications for use in expression profiling and strain genotyping. *Exp Parasitol* 110: 196-202.
- MacFarlane, R.C., Shah, P.H., and Singh, U. (2005b) Transcriptional profiling of *Entamoeba histolytica* trophozoites. *Int J Parasitol* **35**: 533-542.
- MacFarlane, R.C., and Singh, U. (2006) Identification of differentially expressed genes in virulent and nonvirulent *Entamoeba* species: potential implications for amebic pathogenesis. *Infect Immun* **74**: 340-351.
- Macgregor, P.F. (2003) Gene expression in cancer: the application of microarrays. *Expert Rev Mol Diagn* **3**: 185-200.
- Makioka, A., Kumagai, M., Kobayashi, S., and Takeuchi, T. (2005) Entamoeba invadens: cysteine protease inhibitors block excystation and metacystic development. *Exp Parasitol* **109**: 27-32.
- Marino, G., Uria, J.A., Puente, X.S., Quesada, V., Bordallo, J., and Lopez-Otin, C. (2003) Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. *J Biol Chem* 278: 3671-3678.
- Marino, G., and Lopez-Otin, C. (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. *Cell Mol Life Sci* **61**: 1439-1454.
- Marshall, M.M., Naumovitz, D., Ortega, Y., and Sterling, C.R. (1997) Waterborne protozoan pathogens. *Clin Microbiol Rev* **10**: 67-85.
- Maskos, U., and Southern, E.M. (1992) Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. *Nucleic Acids Res* **20**: 1679-1684.
- McKerrow, J.H. (1989) Parasite proteases. Exp Parasitol 68: 111-115.
- Mirelman, D. (1987) Ameba-bacterium relationship in amebiasis. *Microbiol Rev* **51**: 272-284.
- Mirelman, D., Anbar, M., Nuchamowitz, Y., and Bracha, R. (2006) Epigenetic silencing of gene expression in *Entamoeba histolytica*. *Arch Med Res* **37**: 226-233.
- Munford, R.S., Sheppard, P.O., and O'Hara, P.J. (1995) Saposin-like proteins (SAPLIP) carry out diverse functions on a common backbone structure. *J Lipid Res* **36**: 1653-1663.
- Munoz, M.L., Calderon, J., and Rojkind, M. (1982) The collagenase of *Entamoeba histolytica*. *J Exp Med* **155**: 42-51.
- Munoz, M.L., Rojkind, M., Calderon, J., Tanimoto, M., Arias-Negrete, S., and Martinez-Palomo, A. (1984) *Entamoeba histolytica*: collagenolytic activity and virulence. *J Protozool* **31**: 468-470.
- Munoz, M.L., Lamoyi, E., Leon, G., Tovar, R., Perez-Garcia, J., De La Torre, M., Murueta, E., and Bernal, R.M. (1990) Antigens in electron-dense granules from *Entamoeba histolytica* as possible markers for pathogenicity. *J Clin Microbiol* 28: 2418-2424.
- Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. *Electrophoresis* **9**: 255-262.
- Nickel, R., Jacobs, T., Urban, B., Scholze, H., Bruhn, H., and Leippe, M. (2000) Two novel calcium-binding proteins from cytoplasmic granules of the protozoan parasite *Entamoeba histolytica*. *FEBS Lett* **486**: 112-116.

- Nowak, N. (2005) Einfluss der Cysteinpeptidasenauf die Pathogenität von *Entamoeba histolytica* (SCHAUDINN 1903)
- Nyborg, A.C., Ladd, T.B., Jansen, K., Kukar, T., and Golde, T.E. (2006) Intramembrane proteolytic cleavage by human signal peptide peptidase like 3 and malaria signal peptide peptidase. *Faseb J* **20**: 1671-1679.
- Okada, M., Huston, C.D., Mann, B.J., Petri, W.A., Jr., Kita, K., and Nozaki, T. (2005) Proteomic analysis of phagocytosis in the enteric protozoan parasite *Entamoeba histolytica*. *Eukaryot Cell* **4**: 827-831.
- Olivos-Garcia, A., Tello, E., Nequiz-Avendano, M., Gonzalez-Canto, A., Lopez-Vancell, R., Garcia de Leon, M.C., Montfort, I., and Perez-Tamayo, R. (2004) Cysteine proteinase activity is required for survival of the parasite in experimental acute amoebic liver abscesses in hamsters. *Parasitology* 129: 19-25.
- Padilla-Vaca, F., Martinez-Gallardo, N., Blanco-Labra, A., Shmuely, H., and Mirelman, D. (2000) Novel thermo-stable serine-metallo proteinase of *Entamoeba histolytica*. *Arch Med Res* **31**: S221-223.
- Petri, W., Jr. (1996) Amebiasis and the *Entamoeba histolytica* Gal/GalNAc lectin: from lab bench to bedside. *J Investig Med* **44**: 24-36.
- Petri, W.A., Jr., Joyce, M.P., Broman, J., Smith, R.D., Murphy, C.F., and Ravdin, J.I. (1987) Recognition of the galactose- or N-acetylgalactosamine-binding lectin of *Entamoeba histolytica* by human immune sera. *Infect Immun* 55: 2327-2331.
- Ponting, C.P., Hutton, M., Nyborg, A., Baker, M., Jansen, K., and Golde, T.E. (2002) Identification of a novel family of presenilin homologues. *Hum Mol Genet* 11: 1037-1044.
- Quackenbush, J. (2006) Standardizing the standards. Mol Syst Biol 2: 2006 0010.
- Que, X., Brinen, L.S., Perkins, P., Herdman, S., Hirata, K., Torian, B.E., Rubin, H., McKerrow, J.H., and Reed, S.L. (2002) Cysteine proteinases from distinct cellular compartments are recruited to phagocytic vesicles by *Entamoeba histolytica*. *Mol Biochem Parasitol* 119: 23-32.
- Ralph, S.A., Bischoff, E., Mattei, D., Sismeiro, O., Dillies, M.A., Guigon, G., Coppee, J.Y., David, P.H., and Scherf, A. (2005) Transcriptome analysis of antigenic variation in *Plasmodium falciparum*--var silencing is not dependent on antisense RNA. *Genome Biol* 6: R93.
- Rawlings, N.D., and Barrett, A.J. (1994) Families of cysteine peptidases. *Methods Enzymol* **244**: 461-486.
- Riahi, Y., and Ankri, S. (2000) Involvement of serine proteinases during encystation of *Entamoeba invadens*. *Arch Med Res* **31**: S187-189.
- Sajid, M., and McKerrow, J.H. (2002) Cysteine proteases of parasitic organisms. *Mol Biochem Parasitol* **120**: 1-21.
- Sambrook, J., and Gething, M.J. (1989) Protein structure. Chaperones, paperones. *Nature* **342**: 224-225.
- Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory Press, New York
- Scholze, H., and Schulte, W. (1988) On the specificity of a cysteine proteinase from *Entamoeba histolytica. Biomed Biochim Acta* **47**: 115-123.
- Scholze, H., and Tannich, E. (1994) Cysteine endopeptidases of *Entamoeba histolytica*. *Methods Enzymol* **244**: 512-523.
- Serrano, J.J., de la Garza, M., Moreno, M.A., Tovar, R., Leon, G., Tsutsumi, V., and Munoz, M.L. (1994) *Entamoeba histolytica*: electron-dense granule secretion, collagenase activity and virulence are altered in the cytoskeleton mutant BG-3. *Mol Microbiol* 11: 787-792.

- Stanley, S.L., Jr., Zhang, T., Rubin, D., and Li, E. (1995) Role of the *Entamoeba histolytica* cysteine proteinase in amebic liver abscess formation in severe combined immunodeficient mice. *Infect Immun* 63: 1587-1590.
- Stanley, S.L., Jr. (2003) Amoebiasis. Lancet 361: 1025-1034.
- Strachan, W.D., Chiodini, P.L., Spice, W.M., Moody, A.H., and Ackers, J.P. (1988) Immunological differentiation of pathogenic and non-pathogenic isolates of *Entamoeba histolytica*. *Lancet* 1: 561-563.
- Studier, F.W., Rosenberg, A.H., Dunn, J.J., and Dubendorff, J.W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes. *Methods Enzymol* **185**: 60-89.
- Tannich, E., Horstmann, R.D., Knobloch, J., and Arnold, H.H. (1989) Genomic DNA differences between pathogenic and nonpathogenic *Entamoeba histolytica*. Proc Natl Acad Sci U S A 86: 5118-5122.
- Tannich, E., Ebert, F., and Horstmann, R.D. (1992) Molecular cloning of cDNA and genomic sequences coding for the 35-kilodalton subunit of the galactoseinhibitable lectin of pathogenic *Entamoeba histolytica*. *Mol Biochem Parasitol* 55: 225-227.
- Thewes, S., Kretschmar, M., Park, H., Schaller, M., Filler, S.G., and Hube, B. (2007) In vivo and ex vivo comparative transcriptional profiling of invasive and noninvasive *Candida albicans* isolates identifies genes associated with tissue invasion. *Mol Microbiol* 63: 1606-1628.
- Tillack, M., Nowak, N., Lotter, H., Bracha, R., Mirelman, D., Tannich, E., and Bruchhaus, I. (2006) Increased expression of the major cysteine proteinases by stable episomal transfection underlines the important role of EhCP5 for the pathogenicity of *Entamoeba histolytica. Mol Biochem Parasitol* 149: 58-64.
- Tsutsumi, V., Ramirez-Rosales, A., Lanz-Mendoza, H., Shibayama, M., Chavez, B., Rangel-Lopez, E., and Martinez-Palomo, A. (1992) *Entamoeba histolytica*: erythrophagocytosis, collagenolysis, and liver abscess production as virulence markers. *Trans R Soc Trop Med Hyg* 86: 170-172.
- Tuikue Ndam, N., Bischoff, E., Proux, C., Lavstsen, T., Salanti, A., Guitard, J., Nielsen, M.A., Coppee, J.Y., Gaye, A., Theander, T., David, P.H., and Deloron, P. (2008) *Plasmodium falciparum* transcriptome analysis reveals pregnancy malaria associated gene expression. *PLoS ONE* 3: e1855.
- Virtanen, C., and Woodgett, J. (2008) Clinical uses of microarrays in cancer research. *Methods Mol Med* 141: 87-113.
- Weber, C., Guigon, G., Bouchier, C., Frangeul, L., Moreira, S., Sismeiro, O., Gouyette, C., Mirelman, D., Coppee, J.Y., and Guillen, N. (2006) Stress by heat shock induces massive down regulation of genes and allows differential allelic expression of the Gal/GalNAc lectin in *Entamoeba histolytica*. *Eukaryot Cell* 5: 871-875.
- Weihofen, A., Binns, K., Lemberg, M.K., Ashman, K., and Martoglio, B. (2002) Identification of signal peptide peptidase, a presenilin-type aspartic protease. *Science* 296: 2215-2218.
- Willhoeft, U., and Tannich, E. (1999) The electrophoretic karyotype of *Entamoeba histolytica*. *Mol Biochem Parasitol* **99**: 41-53.
- Winkelmann, J., Leippe, M., and Bruhn, H. (2006) A novel saposin-like protein of *Entamoeba histolytica* with membrane-fusogenic activity. *Mol Biochem Parasitol* 147: 85-94.
- Yao, C., Donelson, J.E., and Wilson, M.E. (2003) The major surface protease (MSP or GP63) of *Leishmania* sp. Biosynthesis, regulation of expression, and function. *Mol Biochem Parasitol* 132: 1-16.

- Young, J.D., Young, T.M., Lu, L.P., Unkeless, J.C., and Cohn, Z.A. (1982) Characterization of a membrane pore-forming protein from *Entamoeba histolytica*. *J Exp Med* **156**: 1677-1690.
- Zhang, Z., Wang, L., Seydel, K.B., Li, E., Ankri, S., Mirelman, D., and Stanley, S.L., Jr. (2000) *Entamoeba histolytica* cysteine proteinases with interleukin-1 beta converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiasis. *Mol Microbiol* **37**: 542-548.

Anhang

Tabelle 22: Peptidasen von *Entamoeba histolytica.* Aufgeführt sind die aktuellen Namen der Peptidasen, deren Einteilung in Clans, Familien, Unterfamilien nach MEROPS, die Länge, sowie die aktiven Zentren und die entsprechenden Namen in der NCBI Datenbank. Unter der Rubrik "Sonstiges" finden sich Hinweise auf vorhergesagte und zum Teil bestätigte Tertiärstrukturen der Proteine; SP: Signalpeptid; Pro: Proform; TM: Transmembrandomäne; GPI: GPI-Domäne; SA: Signalanker

	Name des Proteins	Clan Familie Unterfamilie	Accessionnr.	Länge des Proteins	Aminosäuren des aktiven Zentrums	Sonstiges	Name NCBI
Су	steinpeptidase	n					
1	EhCP-A1	CA, C1, A	XP_650156 XM_645064	315	$Q_{112}C_{118}H_{259}N_{279}$	SP: 13, Pro: 80, TM: -	cysteine protease 1
2	EhCP-A2	CA, C1, A	XP_650642 XM_645550	315	$Q_{112}C_{118}H_{259}N_{279}$	SP: 13, Pro; 80, TM: -	cysteine proteinase 2
3	EhCP-A3	CA, C1, A	XP_653254 XM_648162	308	Q ₁₁₁ C ₁₁₅ H ₂₅₁ N ₂₇₁	SP: 13, Pro: 79, TM: -	cysteine proteinase acp1
4	EhCP-A4	CA, C1, A	XP_656602 XM_651510	311	$Q_{112}C_{118}H_{253}N_{273}$	SP: 20, Pro: 73, TM: -	cysteine proteinase
5	EhCP-A5	CA, C1, A	XP_650937 XM_645845	318	$Q_{113}C_{119}H_{261}N_{271}$	SP: 20, Pro: 72, TM: -	cysteine proteinase
6	EhCP-A6	CA, C1, A	XP_657364 XM_652272	320	Q ₁₁₅ C ₁₂₂ H ₂₆₁ N ₂₈₁	SP: 17, Pro: 79, TM: -	cysteine proteinase
7	EhCP-A7	CA, C1, A	XP_648996 XM_643904	315	$Q_{112}C_{118}H_{259}N_{279}$	SP: 13, Pro: 80, TM: -	cysteine protease 8
8	EhCP-A8	CA, C1, A	XP_657446 XM_652354	317	$Q_{116}C_{122}H_{260}N_{280}$	SP: 15, Pro: 82, TM: -	cysteine protease 9
9	EhCP-A9	CA, C1, A	XP_655675 XM_650583	297	$Q_{126}C_{132}H_{269}N_{290}$	SP: 17, Pro: 90, TM: -	cysteine protease 10
10	EhCP-A10	CA, C1, A	XP_651147 XM_646598	420	$Q_{185}C_{191}H_{336}N_{357}$	SP: 18, Pro: 148, TM: -	cysteine protease 17
11	EhCP-A11	CA, C1, A	XP_651690 XM_646598	324	Q ₁₁₈ C ₁₂₄ H.N ₂₈₇	SP: 17, Pro: 79, TM: -	cysteine protease 19
12	EhCP-A12	CA, C1, A	XP_653823 XM_648731	317	nicht identifiziert, N281	SP: 14, Pro: 83, TM: -	cysteine proteinase
13	EhCP-A13	CA, C1, A	nicht annotiert	250	Q ₁₂₅ C ₁₃₀	SP: 18, Pro: 108	
14	EhCP-B1	CA, C1, A	XP_651581 XM_646489	426	$Q_{105}C_{101}H_{308}N_{328}$	SP: 15, Pro: 106, hydroph, C-term,	cysteine proteinase 7
15	EhCP-B2	CA, C1, A	AAO03568	431	$Q_{145}C_{151}H_{308}S_{328}$	SP: 15, Pro: 106, GPI	cysteine protease 11
16	EhCP-B3	CA, C1, A	XP_656747 XM 651655	474	$Q_{155}C_{161}H_{304}N_{324}$	SP: 16, Pro: 107, TM: 444-466	cysteine protease 12- related
17	EhCP-B4	CA, C1, A	XP_648501 XM_643409	379	$Q_{153}C_{159}H_{302}N_{322}$	SP: 16, Pro: 105, TM: 355-377 oder GPI	cysteine protease 13
18	EhCP-B5	CA, C1, A	XP_652671 XM_647579	434	Q ₁₅₁ C ₁₅₇ H ₃₁₁ N ₃₂₆	SP: 12, Pro: 108, GPI	cysteine protease 14- related
19	EhCP-B6	CA, C1, A	XP_652465 XM_647373	300	$Q_{84}C_{90}H_{232}N_{252}$	SP: 14, Pro: 55, hydroph. C-term.	cysteine protease 15
20	EhCP-B7	CA, C1, A	XP_650400 XM 645308	650	Q-C ₁₇₁ H ₃₁₂ N ₃₃₂	SP: 18, Pro: 144, hydroph. C-term.	cysteine protease 16
21	EhCP-B8	CA, C1, A	XP_651049 XM_645957	473	Q ₁₁₀ C ₁₅₆ H ₃₂₉ N ₂₄₉	SP: 15, Pro: 105, GPI	cysteine protease 18
22	EhCP-B9	CA, C1, A	XP_652993 XM_647901	446	$Q_{161}C_{167}H_{328}N_{348}$	SP: 19, Pro: 112, hydroph. C-term	cysteine protease
23	EhCP-B10	CA, C1, A	XP_648306 XM_643214	372	Q ₆₇ C ₇₆ H ₂₄₄ N ₂₆₄	hydroph. C-term.	cysteine protease
24	EhCP-B11	CA, C1, A	XP_648013 XM_642921	133			cysteine protease 11- related
25	EhCP-C1	CA, C1, A	XP_654453 XM_649361	586	Q ₇₀ C ₇₆ H-N ₃₄₅	SA: 12-34	hypothetical protein
26	EhCP-C2	CA, C1, A	XP_656632 XM_651540	567	$Q_{87}C_{93}H_{306}N_{326}$	SA: 27-49	hypothetical protein
27	EhCP-C3	CA, C1, A	XP_655128 XM_650036	572	$Q_{94}C_{100}H_{322}N_{337}$	SA: 17-39	hypothetical protein
28	EhCP-C4	CA, C1, A	XP_655800 XM_650708	502	Q ₃₂ C ₃₈ H ₂₄₆ N ₂₇₁	SP: 15	hypothetical protein
29	EhCP-C5	CA, C1, A	XP_654800 XM_649708	557	$Q_{90}C_{96}H_{302}N_{327}$	SA: 20-42	hypothetical protein
30	EhCP-C6	CA, C1, A	XP 651553	557	Q ₉₃ C ₉₉ H ₂₉₃ N-	SA: 14-36	hypothetical protein

			XM 646461				
31	EhCP-C7	CA, C1, A	XP_657273 XM_652181	595	Q89C95H297N322	SA: 19-41	hypothetical protein
32	EhCP-C8	CA, C1, A	XP_655479 XM_652181	627	Q ₉₁ C ₉₆ H ₃₁₇ N ₃₆₆	SA: 29-51	hypothetical protein
33	EhCP-C9	CA, C1, A	XP_655011 XM_649919	518	nicht identifiziert	SA: 12-34	hypothetical protein
34	EhCP-C10	CA, C1, A	XP_654829 XM_649737	530	Q ₈₇ C ₉₃ H ₂₉₉ N ₃₂₄	SA: 15-37	hypothetical protein
35	EhCP-C11	CA, C1, A	XP_648083 XM_642991	526	nicht identifiziert	SA: 20-42	hypothetical protein
36	EhCP-C12	CA, C1, A	XP_650829 XM_645737	473	nicht identifiziert	SA: 26-48, TM: 449- 471	hypothetical protein
37	EhCP-C13	CA, C1, A	XP_656556 XM_651464	564	$Q_{89}C_{95}H_{266}N_{290}$	SA: 21-43	hypothetical protein
38	EhCALP1	CA, C2	XP_649922 XM_644830	591	nicht identifiziert	SP: -, TM: -	calpain-like cysteine protease
39	EhCALP2	CA, C2	XP_657312 XM_652220	473	$Q_{51}C_{57}H_{206}N_{227}$	SP: -, TM: -	calpain family cysteine protease
40	EhUBHY	CA, C19	XP_657356 XM_652264	444	nicht identifiziert	SP: -, TM: -	peptidase
41	EhUBP	CA, C19	XP_654028 XM_648936	352	$N_{30}C_{35}H_{330}D_{348}$	SP: -, TM: -	ubiquitin-specific protease
42	EhUCH	CA, C19	XP_655880 XM_650788	386	$N_{37}C_{42}H_{345}D_{360}$	SP: -, TM: -	ubiquitin carboxyl- terminal hydrolase
43	EhUlp1-1	CA, C48	XP_650529 XM_645437	197	$H_{95}D_{112}Q_{146}C_{152}$	SP: -, TM: -	Ulp1 protease
44	EhUlp1-2	CA, C48	XP_651052 XM_645960	538	$H_{399}D_{435}Q_{482}C_{488}$	SP: -, TM: -	Ulp1 protease
45	EhUlp1-3	CA, C48	XP_657158 XM_652066	285	$H_{174}D_{191}Q_{234}C_{240}$	SP: -, TM: -	Ulp1 protease
46	EhAUTO1	CA, C54	XP_651386 XM_646294	325	$Y_{71}C_{100}D_{251}H_{253}$	SP: -, TM: -	peptidase
47	EhAUTO2	CA, C54	XP_653798 XM_648706	364	$Y_{93}C_{103}D_{278}H_{280}$	SP: -, TM: -	peptidase
48	EhAUTO3	CA, C54	XP_652043 XM_646951	364	Y ₉₂ C ₁₀₃ D ₂₇₉ H ₂₈₁	SP: -, TM: -	hypothetical protein
49	EhAUTO4	CA, C54	XP_656724 XM_651632	348	$Y_{92}C_{112}D_{265}H_{267}$	SP: -, TM: -	hypothetical protein
50	EhOTU	CA, C65	XP_654013 XM_648921	259	$D_{105}C_{108}H_{212}$	SP: -, TM: -	OTU-like cysteine protease
Aspa	artatpeptidase	1		•	l		T F
n 51	EhAsP22-1	AD, A22, A	XP 654079	340	D178D223	SP:24 or TM: 7-26 +	Intramembrane
52	EhAsP22-2	AD. A22. A	XM_648987 XP_652820	316	D ₁₅₇ ,D ₂₀₉	7x TM SP: 19 or TM: 2-19 +	protease Signal peptide
	2		XM_647728	510	2 137,2 209	8xTM	peptidase
53	EhAsP22-3	AD, A22, A	XP_657563 XM_652471	320	D ₁₅₇ D ₂₀₅	SA:7-29 + 8 xTM	Signal peptide peptidase
54	EhAsP22-4	AD, A22, A	XP_653696 XM_648604	396	D ₂₄₅ D ₃₁₈	SP: -, 7x TM	Presenilin 1-related peptidase
Serii	npeptidasen						
55	EhSP9-1	SC, S9, C	XP_655265 XM_650173	653	S ₅₁₄ D ₅₉₅ H ₆₂₇	SP: 15, TM: -	dipeptidyl-peptidase
56	EhSP9-2	SC, S9, C	XP_655222 XM_650130	665	S ₅₂₆ D ₆₀₇ H ₆₃₉	SP: 15, TM: -	dipeptidyl-peptidase
57	EhSP9-3	SC, S9, C	XP_656380 XM_651288	656	$S_{516}D_{599}H_{632}$	SP: -, TM: -	prolyl oligopeptidase
58	EhSP9-4	SC, S9, C	XP_649111 XM_644019 XP_648413 XM_643321 XP_655473 XM_650381	669	nicht identifiziert	SP: 16, TM: -	dipeptidyl-peptidase
59	EhSP9-5	SC, S9	XP_655676 XM_650584	102 (IS)		SP: -, TM: -	prolyl oligopeptidase family
60	EhSP26-1	SF, S26, B	XP_653142 XM_648050	189	S ₆₅ H ₁₀₆	SP: - , TM: 34-56, 163- 185	signal peptidase (signalase)
61	EhSP26-2	SF, S26	XP_651791 XM_646699	121	nicht identifiziert	SP: -, TM: -	microsomal signal peptidase
62	EhSP28-1	SC, S28	XP_656762 XM_651670	457	$S_{165}D_{395}H_{421}$	SP: 15, TM: -	serine peptidase
63	EhSP28-2	SC, S28	XP_648991 XM_643899	480	S ₁₆₅ D ₄₁₈ H ₄₄₄	SP: 15, TM: -	serine peptidase

64	EhSP28-3	SC, S28	XP_652089 XM 646997	466	$S_{155}D_{404}H_{431}$	SP: -, TM: -	serine peptidase
Met	allopeptidasen	•					
65	EhMP1-1	MA, M1	XP_652558 XM_647466	827	H ₂₉₅ E ₂₉₆ H ₂₉₉ E ₃₁₈ Y ₄₈₁	SP: -, TM: -	aminopeptidase
66	EhMP3-1	MA, M3	XP_649877 XM_644785	675	$H_{463}E_{464}H_{467}E_{493}$	SP: -, TM: -	oligopeptidase A
67	EhMP3-2	MA, M3	XP_649600 XM 644508	710	$H_{498}E4_{99}H_{502}E_{527}$	SP: -, TM: -	oligopeptidase A
68	EhMP8-1	MA, M8	XP_655394 XM_650302	643	$\begin{array}{c} H_{206}E_{207}H_{210}H_{270}\\ M_{281} \end{array}$	SP: 18, TM: 605-627	leishmaniolysin- related peptidase
69	EhMP8-2	MA, M8	XP_652632 XM_647540	662	$\begin{array}{c} H_{207}E_{208}H_{211}H_{267} \\ M_{278} \end{array}$	SP: -, TM: 598-620	leishmaniolysin- related peptidase
70	EhMP48-1	MA, M48, A	XP_648770 XM_643678	416	H ₂₇₄ E ₂₇₅ H ₂₇₈ E ₃₅₃	SA: 4-21 + 6xTM	CAAX prenyl protease
71	EhMP16-1	ME, M16, C	XP_654849 XM_649757	970	$H_{59}E_{62}H_{63}E_{137}E_{158}$	SP: -, TM: -	Zn-dependent peptidase, eupitrilysin
72	EhMP24-1	MG, M24, A	XP_651539 XM 646447	409	$H_{165}D_{186}D_{197}$ $H_{26}E_{299}E_{394}$	SP: -, TM: -	methionine aminopeptidase
73	EhMP24-2	MG, M24, B	XP_657085 XM_651993	471	$\begin{array}{c} H_{244}D_{265}D_{276}H_{354} \\ H_{358}H_{365}E_{401}E_{441} \end{array}$	SP: -, TM: -	Xaa-Pro dipeptidase
74	EhMP24-3	MG, M24, B	XP_654211 XM_649119	563	$\begin{array}{c} H_{364}D_{384}D_{396}H_{461} \\ H_{465}H_{470}E_{491}E_{505} \end{array}$	SP: -, TM: -	aminopeptidase
75	EhMP24-4	MG, M24, B	XP_650646 XM_645554	559	H ₃₄₆ D ₃₆₆ D ₃₇₈ H ₄₄₃ H ₄₄₇ H ₄₅₂ E ₄₇₃ E ₄₈₇	SP: -, TM: -	aminopeptidase
76	EhMP24-5	MG, M24, B	XP_649980 XM_644888	589	H ₃₆₉ D ₃₈₉ D ₄₀₁ H ₄₆₆ H ₄₇₅ E ₄₉₆ E ₅₁₀	SP: -, TM: -	Aminopeptidase
77	EhMP24-6	MG,M24, B	XP_653331 XM_648239 XM_649891 XM_644799	371	nicht identifiziert	SP: -, TM: -	peptidase
78	EhMP18-1	MH,M18	XP_656618 XM_651526	435	$H_{79}D_{81}D_{222}E_{258}E_{259}$ $D_{307}H_{402}$	SP: -, TM: -	aminopeptidase
79	EhMP18-2	MH,M18	XP_650466 XM 645374	431	$\frac{H_{81}D_{82}D_{228}E_{262}E_{263}}{D_{311}H_{401}}$	SP: -, TM: -	aspartyl aminopeptidase
80	EhMP20-1	MH, M20, B	XP_656428 XM 651336	379	$\begin{array}{c} H_{75}D_{133}E_{163}E_{164}D_{186} \\ H_{353}\end{array}$	SP: -, TM: -	peptidase T
81	EhMP20-2	MH, M20, B	XP_650152 XM_645060	401	H ₇₉ D ₁₃₉ E ₁₇₂ E ₁₇₃ D ₁₉₅ H ₃₇₆	SP: -, TM: -	peptidase T
82	EhMP20-3	MH, M20, C	XP_656545 XM_651453 XP_655596 XM_650504 XP_652163 XM_647071	516	$\frac{H_{95}D_{97}D_{134}E_{165}E_{166}}{D_{192}H_{490}}$	SP: -, TM: -	aminoacyl-histidine dipeptidase
83	EhMP20-4	MH, M20, C	XP_655616 XM_650524	505	H95D97D. E154E155D181H477	SP: -, TM: -	aminoacyl-histidine dipeptidase
84	EhMP22-1	MK,M22	XP_652292 XM_647200	335	unbekannt	SP: -, TM: -	glycoprotein endopeptidase
85	EhMP49-1	M, M49	XP_654273 XM_649181	645	$H_{412}E_{413}H_{417}E_{467}$	SP: -, TM: -	dipeptidyl-peptidase III
86	EhU48-1	U, U48	XP_656466 XM_651374	216	$H_{274}E_{275}H_{278}E_{353}$	SA: 4-26 + 6x TM	CAAX prenyl protease

Tabelle 23	Liste der (Oligonukleot	idsequenzen, di	e im Mikro	array	Array_E.his_l	BNI_1.0	verwen	det
wurden. D	er Liste sind	die Namen	der untersuchten	Peptidasen,	deren	Spotpositionen	auf den	n Array,	die
Accessionn	ummern und	die Oligonul	cleotidsequenzen	zu entnehme	en.				

Nr.	Name des Proteins	Position	Accessionnr.	Oligonucleotidsequenz (5' - 3')
		des		
		Spots		
1	AsP22-1	A2	XM_648987	GAAGTTATGTTGACAGTAGCAACTCATGTTGACGGACCAATCAAATTTATCTTCCCTAAA
2	AsP22-2	A4	XM_647728	ATATTATTGATATGGAATTATCAAATAGGCATACCTGTGTTACTGTGCATAGTTCCAGCA
3	AsP22-3	A5	XM_652471	ACAAATTCTCTTCCTGAACTTAGTCTACCTTCTGACTTCTCACATGAATCTCCTGTCTTT
4	AsP22-4	A3	XM_648604	ATGTTGATTCAAACCCATTCACTCTATCATCTACACATGGAAAAGGAGTAAAGTTAGGAC
5	EhCP-A1	A6	XM_645064	TCACTGTCATTTTGATGTTTTATATTGGATATGGGATTGATT
6	EhCP-A2	A7	XM_645550	ATGTTTGCTTTTATTTGTTTACTTGCTATTGCAAGTGCTATTGATTTCAATACATGGGCT
7	EhCP-A3	A8	XM_648162	CAACAACATGTGTGGTATTGGAAGAGATTCTAACTATCCAACCGGAGTCAAGTTAATTTA
8	EhCP-A4	A9	XM_651510	TTCACTCCAAAAGTTCAAACTACTGGTTTAACTCATGTTACTCCAACTGAAGAAGCTTTA
9	EhCP-A5	A10	XM_645845	TGCTGTTAAAATTACTGGACAAAAATTAGTTAGACCAGGAAGTGAAAAAGCACTTATGCG
10	EhCP-A6	A11	XM_652272	ATGTTTGGTTTACTCTTGTTACTCTCATTTCATTGAGCAATGCTATTAGCTTTGATAAA

11	FhCP-A8	B2	XM 652354	AATGTCCAGAAATAAGAATAATCAATGTGGTATTTGCACAGGAATTTCATTCCCAGTTGG
12	ELCD AO	D2	XM_052554	ATCA ACCTGT AGC AGT ATCT ATTG ATTCCTC ACA ACT A AGTTTTCA ATTTT ATG A AGGGG
12	EnCP-A9	B3	XM_650583	
13	EhCP-A10	B10	XM_646598	GTAATAGTTGGGGTGATTGGAAATGGGGGAGAAGATGGATATATGAGACTTTATAGAGGAG
14	EhCP-A11	C1	XM 646598	CTTACTCGTGAAGAAAGTGTGGCTATTGCACAAGGAATTCATATAGACAAATCTGATCTT
15	EbCP A12	C5	VM 648731	CCAATTAAATCAAGTGGAACAAGATATTTTGAAGCAACAATTGATGGTATTGAAGCAGCA
15	Elici -Al2	0.5	AWI_040731	
16	EhCP-A13	D2	not	
			annotated	
17	EhCP-B1	B1	XM 646489	ACTGTTGATGGTTATGGAGAATGTGATGGACATAAATTCCTTTGGGTAAGAAATTCATGG
18	EhCP B2	B/	AV156060	GTGGATGTGGAGGAGGATTTGCTGAAGATGTTCTTGATTCTGTAGATGGAATTTATTATG
10	Elici -B2	D4	A1150009	
19	EhCP-B3	B5	XM_651655	CITGIGGGICAIGITAIIGIGIAAGIAAIGCICIIGCICIICAAIIAAAAIGGGCIAAIC
20	EhCP-B4	B6	XM 643409	AGAATAGTTATTATTGTGAGGGAGGTACTTCAGATGAACCGTTAATGTCTTCTCATTACG
21	FhCP-B5	B7	XM 647579	CTGCTAAGTTATCTGCTGACAGTTTATGTGGAATAGGAAATTGTGATGGTGAGAATGTTC
21	El CP D(D/	XIM_047373	
22	EnCP-B6	B8	XM_64/3/3	AAACATCAAGCATTCAGCACACAACAAATCATTGATTGTTCAAACAATAATGGGTGTAGT
23	EhCP-B7	B9	XM_645308	AGAGAATCACAACGATGTTATTCATGTAAAAGGTTCTATCGACTAAATCAATATTCTTGT
24	EhCP-B8	B11	XM_645957	ACCATGGATAGTCGTGGTATGTGTTTAGATAATTCTTATCCTTCAATTCCAGAAGATGCT
25	EhCP P0	E5	XM 647001	
23	EIICF-B9	EJ	AWI_04/901	
26	EhCP-B10	C3	XM_643214	ACATTAAAATGTTCTGCTTGTAAAGCAAATACTACTCTTGATGCAAGAGGAATGTGTGT
27	EhCP-B11	D7	XM 642921	AAAGAGTATTTGACTATGATGAGAGAGCACAATGCAAAAGGAAGTTCTTATAGAATGGGA
28	FhCP-C1	C2	XM 649361	ACTTTTAAACGTGGGGTATGCAAAACTAGAGAGATGGGAGATGGACTTATTGTTTATCTA
20	El CD CO	C2	XM_049501	
29	EnCP-C2	C4	XM_651540	
30	EhCP-C3	C6	XM_650036	CGTTCAACTTGTTGGTCTTTTGTTACTTCTGGTTTCTTAGAGTCTGCCTATAATTCTGAG
31	EhCP-C4	C7	XM 650708	TATCCTCAATAAACATTTACCATTCTGGGGAGGGTATGTTGGAAGTCATTTTGAAATTGA*
22	ELCP C5	68	XM 640700	TGCACCATTTATCAAAGAGAATGAAATAGTATCGACGTTTGAAAAGTCTGTAGGAAATGT
32		0	ANI_049/08	
33	EnCP-C6	69	XM_646461	
34	EhCP-C7	C10	XM_652181	AATGGTATTAGAAAAGGATTTCTTAAAGAAAATGAATATCTTAGACTATCACCTCAAGCA
35	FhCP-C8	C11	XM_652181	AGAAAGTTCATATAGAGCTTATGGTCTTCGACATAATCTTCTTAACTCAACAGAGTATGT
25	ELCD CO	D1	VM (40010	GTACCATGTCCATCATCTTTAGGAGGGGATTGTGTGTACTTACT
36	EnCP-C9	חח	AM_649919	
37	EhCP-C10	D3	XM_649737	IGUAUUATITATUAAAGAGAATGAAATAGTATCGACGTTTGAAAAGTCTGTAGGAAATGT
38	EhCP-C11	D4	XM 642991	TGGGTGTCGAGATTTAGAAACGATAAATAAGTCATTTGATCCAGATTTTGCTCCTTCATT
20	EhCD C12	DS	VM 645727	
39	EIICP-C12	D3	AIVI_043/3/	
40	EhCP-C13	D6	XM_651464	GCTACCATTGGTCTTTTGGAACAATCATATAGAGATAATGACTATCACCTCAAGCATATG
41	EhCALP1	E2	XM 644830	ATGTCTAAAACACCGAGAGAAAGAGAGAGAGAGAGAACCTAAAATGGGAAAAGTAGGAAT
			-	G
42	EhCALP2	E3	XM 652220	AGCTTTAAGTGATTTAACAGGAATGCCAGTAAAACGTATATCTACCAGAGAAACAGACGT
43	EhUBHY	D10	XM_652264	CAGTCTTTAAAAAAGTGGTTTGAAATTAATAACGAAGAGGTGAAAGAAGCATTTTTCCCA
44	ELAUTO1	D10	XM_032204	
44	ENAUIUI	D8	AM_040294	
45	EhAUTO2	D9	XM_648706	TTCATGGAAATTATGTCCTATTAGATGTGTTATGTGTTCAAATGTTTCAATACCAACTCA
46	EhAUTO3	D11	XM 646951	ACACCTTTCAACTTTGTTTCGAATCACTTATAGAAATGGCTTTACTTAC
17	EhAUTO4	F1	XM 651632	TTTCTTTGGGATACATCACAATCAATTACTTTTTCTTGACCCTCATTTTGTACGTCCATG
40	FLOTU		XM_051052	TA A A TEGETTOCCATTACA A CAAAA A TEGCTCCTCATA A TTCCTCTTATTCATTCCT
48	EnOIU	E4	AM_048921	
49	EhSP9-1	H2	XM_650173	AGGATATGATAATCAACCATTATTTAATAATGATGGAAATAAAAGTGATCAATCA
50	EhSP9-2	H3	XM 650130	TGGAAGTCTTTTATATTATCTTTCAATGTCAGCACCTAAAGATGAAAGTGATAAATCAGT
51	EhSP9-3	H4	XM 651288	GGTCTTACAGATGGAATTTCTTATTAATGGCATCAGAAGGGTACATTATTATTGCACCGA
52	EhSD0 5	115	VM 650594	GTTATTATATTTTCCCGACGAAAACCACTGGGTTGTTAAAGCACAAAATGGGATGTTATG
32	Elisr 9-3	115	ANI_030384	
53	EhSP26-1	H7	XM_648050	TATICAAAATGTTACTCAGTTIGGATTAATTGTIGCATCTGCTGTAATATTGTGGAAAGC
54	EhSP26-2	G3	XM 646699	GGTCTGGTGCTACTACTGTTGAACATGGAAATTCTACTAAATTCGTACTTCCTACTGAAT
55	FhSP28-1	H9	XM_651670	CAGTTACGCAAAACTCTCACTCAACCAACAAGTAATGCAACAAATATCTCAATCATTCAT
50	ELED20 2	110	XM_(42800	TATCAATGTTAGATATGGAGGAAAGAAACCATGTGTAACCAATGTTGCATTTACAAATGG
30	Ellor 20-2	ПО	AIVI_043899	
57	EhSP28-2	H6	XM_651706	IUIGATATAUUAAAUGITAAAAUATIGAUTTATAUTGTTCCATTGGATUATTTCAACGCT
58	EhSP28-3	H10	XM 646997	GCATGGCAAATCTGTAGTGAATACAGTTATTTCCAACCAGTTAATGAAAGTCTTCCATTT
59	EhMP1-1	F4	XM 647466	TTTGGTGATTTAGTTACAATGAAATGGTGGAATGATCTTTGGCTTAATGAAGGATTTGCT
60	ELMD2 1	67	VM 644705	
00	Empiro-1	U/	AIVI_044/85	
61	EhMP3-2	G8	XM_644508	AGATUAGAUATTGAAGAATATUGAAAAGUATATGATGAAAATTUTUUUTAAAGTAACAGAA
62	EhMP8-1	F1	XM 650302	TTTTGAAGACCTAGGAACTTATTCAGTTAATTATAGTGCTGCTGAACCATTAACATGGGG
63	FhMP8-2	F2	XM 647540	CTGGTGTAAGGAGGTGTACTAATGACCGTTCTGCTATTGGTATATGTGATGGAAATTCAT
0.5	ELMD40 1	1 <u>2</u>	VM (42/70	
64	EUMIA49-1	64	AM_643678	
65	EhMP16-1	F3	XM_649757	ATAAGGITAGAGTTGAAGGTGGTGCTTATGGAAGTTGGATGTCTTATTCATATAGTGGAA
66	EhMP24-1	G2	XM 646447	CAATTCATAAAAGTGTTAGACAATGGGCTCAACAATGGATTAAACCAGGAATGTCAGATC
67	EhMP2/ 2	H1	XM 651002	AGACTCAATTATTTTCTTAGAAGGTGGTCTTGAACTTCCATTTTATGATACTGATGGTGA
07	EIN (D24-2	111	ANI_031993	TATTA ACTO ATOTTO CTO ATOTTA ATTOCOCOTTTO A ATATTA CACOA CATO AT ATTOTTO
68	EnMP24-3	F8	XM_649119	
69	EhMP24-4	F6	XM_645554	AGAACCATTATTATTCCACGTATAAAAGATAGTTATGTAATTCAGTGGGTTGAATCTAAT
70	EhMP24-5	F5	XM 644888	TGGTTCCCAATATAAAGAAGGATGTACTACTGATGTAACAAGAACTGTTCATTATGGAGA
71	EhMD24.6	G0	XM 649220	TTGGAGAAGAAGCAACAGGAGATAAAGCAACTATTATTGAAGCAGGATATACTGCACTTC
/1	Emvir 24-0	50	AIVI_048239	
72	EhMP18-1	F7	XM_651526	AAUTAGGAGAGGTTGGAGTAAAGTTTCAAAGAACTGTTAAACGACAAGAAAAAGGAG
73	EhMP18-2	F11	XM 645374	GTACAGAAAAGACTTGAGTCTGCTGGTTATGTCCGTCTTAAAGAAAATGAGGTTTGGAAC
74	EhMP20-1	G10	XM 651336	AAATAATAACTTCTAGTGGTGATACATTACTTGGTGCAGACGATAAATGTGCTGTTGCTA
75	ELMD20 2	C10	VM (45000	
/3	ENVIP20-2	G22	AIVI_045060	
76	EhMP20-3	F9	XM_651453	UGAGA IGA IGGAACI GGAG I IGCATGI GGACI IGCATATATGGAACI TAGAGATAAATTC
77	EhMP20-4	F10	XM 650524	TTTATCAGCACAAGGAACTACTCTTGGAGGAGATGATGGAACTGGAAGATAAATTCCAAC
78	FhMP22-1	G6	XM 647200	ATCTAATGTCTAAGAGTGGTCAGTTTACGCCTATAGAAGATGCAACAGTACATCAAAGAT
70	ELMD40 1	C1	XXX (40101	
/9	EnMP49-1	GI	XM_649181	
80	EhU48-1	G5	XM_651374	AGAGGAGTGTTTATACCATACCTGTTGACAAACGGATGCACATCAATATTTACATTTATC
81	EhCPI-1	E6	XM 648163	TGTTTTAGTATACAGAAGACCTTGGGCACCAAATGCTAATGACCGTACTTTTACTTTAAA
82	FhCPL-2	F3	XM 644271	TCAACTTAGAACAAATCCATCAACAGGATATGCTTGGAATATTGAATACCCAACTGACAC
			· · · · · · · · · · · · · · · · · · ·	

_				
83	SP-Inhibitor1	H11	XM 645170	ATTTGATGAACGTGCAGATTTTAGTAAAATGGCAAAAGGACATTTTTGTGTTTCAGAAGC
84	Actin	A1	XM_651518	CTACATTCCAAAACATGTGGATTACCAAGGAAGAATATGATGAATCTGGACCAGCTATTG
85	Hexokinase	E8	XM_650873	GGGTATTGATGTTGGTGGAACTAATCTTAGAGTCTTATTATTAGAAATCCCTGAACCTGG
86	Phosphofructokinase	E9	XM_648631	AAAGGTCTTGATCTTGGTAGTGATAAATCAGGAAATATTGTTCATTGGGATGCTGTTACA
87	Enolase	E10	XM_644069	TGAAACTGAAGATAC-TTTCATTGCTGATCTTGTTGTTGGACTTAACTGCAAACAAA
88	Histon H2A	E11	XM_647378	AGATGTTACTATTTCTTATGGTGGAGTATTCCCTAATGTTCC-TACTGCCGTTAATTCAAA

Tabelle	24: List	e der (Oligonu	ukleotio	lsequenzen	, die i	m Mikroa	arrays	Array_	E.his	BNI_	2.0 v	erwen	det
wurden	. Der Lis	ste sind	l die Na	amen d	er untersucl	hten Pe	eptidasen,	deren	Spotpos	sitionen	auf	dem	Array,	die
Accessio	onnumm	ern und	die Ol	igonukl	eotidsequer	nzen zu	entnehme	en.						

Nr.	Name des Proteins	Position des	Accessionnr.	Oligonucleotidsequenz (5'3')
1		Spots		
2		A1 A2		
2	Actin	A2	Val. Taballa 2	Val Taballa 2
3	Actin AcD22 1	A3 A4	vgi. rabelle 2	vgi. Tabelle 2
5	AsP22-1	Δ5		"
6	Asi 22-4 Asp22_2	A5 A6	"	"
7	AsP22-3	A7		"
8	EhCP-A1	A8	"	"
9	EhCP-A2	Δ9	"	"
10	EhCP-A3	A10	"	"
11	EhCP-A4	R1	"	"
12	EhCP-A5	B2	"	"
12	EhCP-A6	B3	"	"
14	EhCP B1	B3 B4	"	"
14	EIICF-DI EbCP A8	D4 B5	"	"
16	EhCD A10	D5 D6	"	
17	ELCP P2	D0	"	"
1/	EIICP-D2	D/	"	"
18	EIICP-B3	Dð D0		
19	EhCP-B4	B9		
20	EhCP-B5	BI0		
21	EhCP-B6	CI		
22	EhCP-B/	C2	"	
23	EhCP-A10	C3	"	
24	EhCP-B8	C4		"
25	EhCP-A11	C5	"	"
26	EhCP-C1	C6	"	"
27	EhCP-B10	C7	"	"
28	EhCP-C2	C8	"	"
29	EhCP-A12	C9	"	"
30	EhCP-C3	C10	"	"
31	EhCP-C4	D1	"	"
32	EhCP-C5	D2	"	"
33	EhCP-C6	D3	"	"
34	EhCP-C7	D4	"	"
35	EhCP-C8	D5	"	"
36	EhCP-C9	D6	"	"
37	EhCP-A13	D7	"	"
38	EhCP-C10	D8	"	"
39	EhCP-C11	D9	"	"
40	EhCP-C12	D19	"	"
41	EhCP-C13	E1	"	"
42	EHCP-B11	E2	"	"
43	AUTO1	E3	دد	"
44	AUTO2	E4	دد	"
15	LIBHY	E5	"	"
46	AUTO3	E6		"
40	AUTOA	E0 E7	"	"
4/	CALPI	E7 E8		
40	CALPI	EO	"	"
49	OTU	E7 E10	"	
50	ELCD D0	E10 E1		
51	CD 11	F1 F2		"
52	CP 12	F2 F2		"
55	Ur-12	F3 E4		"
54	Hexokinase	F4		
55	Phosphotruktokinase	F5		
56	Enolase	F6		**
57	Histin H2A	F7		
58	MP8-1	F8	"	"

59	MP8-2	F9	"	"
60	MP16-1	F10	"	"
61	MP1-1	G1	"	"
62	MP24-5	G2	"	"
63	MD24 3	G2 G3	"	"
64	MD10 1	C4	"	"
64	MP16-1	04	"	"
65	MP24-3	GS		
66	MP20-3	G6		"
67	MP20-4	G7	~~	"
68	MP18-2	G8	"	"
69	MP49-1	G9	"	"
70	MP24-1	G10	"	"
71	SP26-2	H1	"	"
72	MP48-1	H2	"	"
73	U48-1	H3	"	"
74	MP22-1	H/	"	"
75	MD2 1	114	"	"
75	MD2 2	115	"	"
70	MP3-2	<u>П0</u>	"	"
//	MP24-6	H/		
78	MP20-1	H8		u
79	MP20-2	H9	~~	
80	MP24-2	H10	"	66
81	SP9-1	I1	"	и
82	SP9-2	I2		"
83	SP9-3	13		"
84	SP9-5	I4	"	"
85	SP28-3	15	"	"
86	5120 5	16		
87		10		
07		1/		
88		18		
89		19		
90		I10		
91		J1		
92		J2		
93	SP26-1	J3		
94	359.m00058	J4		
95	SP28-1	J5		
96	SP28-4	J6		
97	SP-I	J7		
98	Superoxide	18	XM 643735	TTTGGGAACATGCTTATTACATTGACACTAGAAACAACAGAGCTGCTTACTTA
20	dismutase	50		
99	Rubrerythrin	19	XM 647039	AAAGTATGTCCACTTTGTGGTGAACCAGGTGACTTCTTCAGAGTTCAAGTTTCTATTTAA
100	Peroviredovin	110	XM_642815	CAAATTGGAAAAGAAGCACCAGAATTTAAAGCACCAGCATATTGTCCATGTGGTTCAATC
100	This as design 1	J10 V1	XM (51(24	TGTAGACCAAGCTGAAGAAATTTGTGTTAAATTATAAAGTTAGATCAATGCCAACATTTGT
101	Thioredoxin1	KI KA	XM_051034	
102	Thioredoxin2	K2	XM_649815	
103	Thioredoxin3	K3	XM_651803	AGCAAGACAATGTAATATTCGTTCAATGCCAACTTTTAGATTTTATAGACAAGGAGGGTT
104	Thioredoxin4	K4	XM_644472	AATGGAGTTTCAACCAAAAGATTTACAGGAGCATATAGAGATGAAGTAGAGAGAATGAT T
105	Thiorodovin5	V5	VM 646701	1 CAAGCACCAACAACAACTTATCTTGACATTGACATTGATAAAGCTCCAGAATTGAAGAAA
105		KJ V(XIVI_040/91	
106	This and	K0 1/7	ANI_045940	
107	Thioredoxin-related /	K/	XM_645650	
108	1 hioredoxin-related8	K8	XM_649760	
109	1 hioredoxin-related9	K9	XM_648410	
110	Thioredoxin-	K10	XM_647543	GTAAAAGTCGATGTTGATCAAGGCACTGACATTGCCCAAAGGTATGGTGTTCGTTC
	related10			
111	Thioredoxin-	L1	XM_643726	TTTCAGGAGAATACAAAGTTGTTCCAGTAGCTGGATTGTTTTATGCTATTGGACATAGTC
	Reduktase			
112	P34 (Disulfidoxido-	L2	X79603	GCAGGAGGACAACTAACTACCACTACTATCATTGAGAATTTCAGGATTTCCAGGATTTCA
	reduktase)			
113	FprA1	L3	XM 646535	GGAATCTTTCAGCAAGACTTCAACAACTAAAAGCAAAACAACCAGTTGAGCCATTGTCTT
114	FprA2	L4	XM 651854	ATTGTAATAGATTTGTTCAATGCTTTGGTTCATTCGGTTGGAGTGGTGAAGGTGTTAAAA
115	FnrA3	1.5	XM 648931	AAATTCTAAAGGATTATTATTAGGAACTCCAACACTTGTTGGTGAAGCACTTCCACCAAT
116	EprA/	16	XM 646722	GATTGTTGGAGACGCAACACCTCCTTTTTATGATTTACTTGGACATCTGAATCCATTTAT
117	NADU Ovidana	17	VM 650610	TCTGTAGGAATTATTGAAGGAGAGTCTATACTAAAAACAAAATGGAAAATGAAGGAGA
11/	NADH-Oxidase	L/	AM_030019	А
118	FprB1	L8	XM_644658	CCCAATTAGAAAGAAAGGTAGGAGTTGCAGTTGTTGTACCATGTAAAGGAGGTTCAGTTT
119	FprB2	L9	XM 650038	AGTACCATTGTCTGTTAAAAGTAGAGCACTGAATAGAAAAGTAGGAGCAGCAGTTGTTAT
120	FprB3	L10	XM 645918	TCAACCAATTTATTACAACAAAGAAACACTTAGAAGAAAAGTTGCAGCGGCAGTTGTTAT
120	FprC1	M1	XM 647032	TGTTGAGTCATATGGAGCTAAGTATCAAGGAGTTTATTTA
121	EprC3	M2	XM 6/72/5	AAATTGTAGAAGAACAACAAAAGAAACTGCTGTGAATGCTGAAAAGCCTATTGAATGTT
125	1 pico	1712	····_0+/3+3	Т
124	FprD1	M3	XM_649789	AAAGACGACTTTTATTGTGTCCAAAAGGACGAGACATTCAAACTAGCGAAGGATATTTTG
125	FprD2	M4	XM_649865	AATGGAAGTTGGAACAATAATGGTAATTCTGCATGGCTTATCAATAAATTTCTTGAAGGA
126	FprD3	M5	XM 644279	GATGATGGATTGGAACACATTTTCAGCTAAACAAGAAGTTCTTGACAAAGGAAAAAAGA
1	· *	i i		C

				-
127	SP7	M6	XM_643899	TTGCAGAGTCTATTGGAACAGCTCTTTCTGGTTATGTTCAATATAATTCTTCAAATTGGA
128	Metalloprotease	M7	XM_647071	ACTCCAGATGAAACTATGGATATTGAATCAGGAAATAAACTATTAGACCTTATTTGCACT
129	AmoebaporeA	M8	XM_648173	TTATTGAAGACAAAGTTGATGCCAATGCTATTTGTGCTAAGATTCATGCTTGCT
130	AmoebaporeB	M9	Q24824	CTGTTAGACAATATATCGACAACCTTTGTGGTAAAGCTAGTGGATTCCTTGGAACTCTTT
131	AmoebaporeC	M10	XM_650937	TACATCACTTGTTGGAAAGTTGATTGATTTAGTCCTTGGTGGAGCAGTTGATAAAGTAAC
132	Saplip1	N1	XM_650744	TTGTTTGCAACCTTTGTATTGGACTTGTTAATACCCTTGATGGCCTTATCGTAAATAAA
133	Saplip2	N2	XM 650945	GAATCTGGGAATAGATCTGATCAATTTTGTGAATGGGCTAAAATGTGTCCTTCTTCAAAT
134	Saplip3	N3	XM 651590	TATGGAATGGATAAAATTGTTGATGCTATTATGGCACATGAATTATCAGACTCTGTTTGT
135	Saplip4	N4	XM 647067	TTGTAAATCTCAAGACTCAGAATCTCCTGCTGGAAAAGTATGTTCAGCTTTACTAGAAAA
136	Saplip5	N5	EAL50403	CTAGATGTATTGATGTTGCTATGAGATTAACTGAAGTTGCTGTTAAAGTGTTTGACCCAG
137	Saplip6	N6	XM 650728	GCACTTGCTGGTTCATGCATCAACTGTTTCCATATAATTGATGATTCAAGATACTATACT
138	Saplip7	N7	XM 651349	CTACAGAACTTTAATAGAACTTGGCTCTCGTGTGTTTGAAGAAGGAGTTACACCAATAAC
139	Saplip8	N8	XM 651821	TTCATACATTTGACCCATCAAAATTCGTTGTTAGTGAAGTGTGCTCTTCTCTTGGAAAAT
140	Saplip9	N9	XM 645284	TTGTGAGTCATTTGTAGGAATAGCACTTGATTATATAACTAAAGGAGAGAGA
141	Saplip10	N10	1101_010201	ACAATGATGTTAGAATGTTGGAAATGGGAATAGAGGAGATTCGTAGATATGTTCAAGAG
	unvollständig	1110		Α
142	Sanlin110hne	01		AGCTGAAAGCCAAAGAGATAAATTAGCAAAAGAAACATTATATACTATTGACAATACAG
1.12	N-Terminus	01		А
143	Sanlin12	02	XM 647629	ATTGCTGAACATGCACTAAAAGTAAGAGATCCTTTAACCTTTAATACTGAACAAACA
145	Saplip12	03	XM 649997	GCACAATGTGTAGAAATCTTGCTGCATTCTTGTTACAAAAGTTAGAAGAGATCGTATGT
1/15	Saplip17	04	479 t00008	TGATCCACAAGAACTTAAAATAAAGAAAATGTGCGTTATGTTAAAGGGATGTGATACTCT
145	Saplip14C-Terminus	04	YM 644284	AACTCATCGACTTATCACATGACTTACCTGCTTCTGGAAATCAACTTTGTACTTCATTAG
140	Saplip16C Terminus	05	210 ±00022	TACTCTGCTGCTATGAGCTTAATGGCTAATTTTGATAGTAAAGTTATTGAAACTACCCCA
147	Grainin1	00	219.00022 VM 645280	ATATCAAGCTGATCCACTTATTCAAAGAGAATGGTGGTATCCACTTGCTACCTCAATTTC
140	Grainin?	07	XM 645265	GGATCTAAGAAAGTTTCAAAGAACCAATTCATTAGTACTGCTGCTTATCTTGGACAATGC
149		08	XM_043203	TATGGTTCTAAATATTATTGGGGGAAATCTCTTTGGATCATCTTACAAATATCGTTATCGA
150	Lysozymi	09	XM_045284	CCTATTCACATCTTCCATCAAATACACCTTCCTCCAACAA
151	Lysozym2	010 D1	XM_651841	
152	Asmi	P1 D2	XM_644619	
153	Asm2	P2	XM_651421	
154	Asm3	P3	XM_646365	
155	Asm4	P4	XM_643770	
156	Asm5	P5	XM_650953	
1.5.5				
157	Asm6	P6	XM_040025	
157 158	Asm6 Asm7	P6 P7	XM_651814	AAACTTTGTTCAATGGAAAATATGGAGAGAGAGAGGCCAGGGTATGCTGAATGCATTAAGAAGTA A
157 158 159	Asm6 Asm7 Adenvlvlcvclase	P6 P7 P8	XM_650148	AAACTTTGTTCAATGGAAAATATGAGAGAGAGCCGGGCATGCGGAATGCATTAAGAAGTA A ATATCTTAAACCACAAGTTGAAGCTGCACAAGGATTTGATGAAATTCTTGGGAAATGTAT
157 158 159	Asm6 Asm7 Adenylylcyclase assoziiertes Protein	P6 P7 P8	XM_640625 XM_651814 XM_650148	AAACTTTGTTCAATGGAAAATATGAGAGAGAGAGAGGGGTATGCTGAATGCATTAAGAAGTA A ATATCTTAAACCACAAGTTGAAGCTGCACAAGGATTTGATGAAATTCTTGGGAAATGTAT
157 158 159 160	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE	P6 P7 P8 P9	XM_646625 XM_651814 XM_650148 XM_646645	AAACTTTGTTCAATGGAAAATATGAGAGAGAGAGAGGGGATGCTGAATGCATTAAGAAGTA A ATATCTTAAACCACAAGTTGAAGCTGCACAAGGATTTGATGAAATTCTTGGGAAATGTAT GGGAGCAGTAAATGAGAAAGTATATACAAACCCAACAAATGCAACTGATGGTTCAAATA
157 158 159 160	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE	P6 P7 P8 P9	XM_646625 XM_651814 XM_650148 XM_646645	AAACTTTGTTCAATGGAAAATATGAGAGAGAGAGAGGGGATGCTGAATGCATGAAGTAAA AAACTTTGTTCAATGGAAAATATGAGAGAGGGGAGGG
157 158 159 160 161	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE	P6 P7 P8 P9 P10	XM_640625 XM_651814 XM_650148 XM_646645 XM_647655	AAACTITGITAATGAATAAAAAATATGAGAGAGAGAGAGGGATGCTGATGITATAACTGATGITATAA AAACTITGTTCAATGGAAAATATGAGAGAGGAGGGAGGGGATGCTGAATGCATTAAGAAGTA ATATCTTAAACCACAAGTTGAAGCTGCACAAGGATTTGATGAAATTCTTGGGGAAATGTAT GGGAGCAGTAAATGAGAAAGTATATACAAACCCAACAAATGCAACTGATGGTTCAAAATA T GATGGTTATGCATTGTGTACTGGTTCATGGGATTCGACATTGAGAATTTGGGCAAATTAA
157 158 159 160 161 162	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1-	P6 P7 P8 P9 P10 Q1	XM_646625 XM_651814 XM_650148 XM_646645 XM_647655 XM_64525	AAACTITGTICAATGGAAAAATATGAGAGAGAGAGGGGGTATGCTGAATGCATGATGTIATAA AAACTITGTICAATGGAAAATATGAGAGAGGAGGGGGGGGTATGCTGAATGCATTAAGAAGTA ATATCTTAAACCACAAGTTGAAGCTGCACAAGGATTTGATGAAAATTCTTGGGGAAAATGTAT GGGAGCAGTAAATGAGAAAGTATATACAAACCCAACAAATGCAACTGATGGTTCAAAATA T GATGGTTATGCATTGTGTACTGGTTCATGGGATTCGACATTGAGAATTTGGGCAAATTAA GACAGGTGGATTATTTGTTCACCATCAATTCCAGGTAGTAGAGCAGGAAATAATATTGC
157 158 159 160 161 162	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1	P6 P7 P8 P9 P10 Q1	XM_646625 XM_651814 XM_650148 XM_646645 XM_647655 XM_645525	AAACTTTGTTCAATGGAAAAATATGAGAGAGAGAGAGGGGGTATGCTGAATGCATGATGTTAAAA AAACTTTGTTCAATGGAAAATATGAGAGAGGAGGGGGGTATGCTGAATGCATTAAGAAGTA ATATCTTAAACCACAAGTTGAAGCTGCACAAGGATTTGATGAAAATTCTTGGGGAAATGTAT GGGAGCAGTAAATGAGAAAGTATATACAAACCCAACAAATGCAACTGATGGTTCAAAATA T GATGGTTATGCATTGTGTACTGGTTCATGGGATTCGACATTGAGAATTTGGGCAAATTAA GACAGGTGGATTATATTGTTCACCATCAATTCCAGGTAGTAGAGCAGGAAATAATATTGC
157 158 159 160 161 162	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene!	P6 P7 P8 P9 P10 Q1	XM_040625 XM_651814 XM_650148 XM_646645 XM_647655 XM_645525	AAACTITIGTICAATGGAAAATATGAGAGAGAGAGAGGGGTATGCTGAATGCATTAAGAAGTA AAACTITIGTICAATGGAAAATATGAGAGAGGAGTCAGGGGTATGCTGAATGCATTAAGAAGTA ATATCTTAAACCACAAGTTGAAGCTGCACAAGGATTTGATGAAATTCTTGGGAAATGTAT GGGAGCAGTAAATGAGAAAGTATATACAAACCCAACAAATGCAACTGATGGTTCAAATA T GATGGTTATGCATTGTGTACTGGGTTCATGGGATTCGACATTGAGAATTTGGGCAAATTAA GACAGGTGGATTATTGTTCACCATCAATTCCAGGTAGTAGAGCAGGAAATAATATTGC
157 158 159 160 161 162 163	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1-	P6 P7 P8 P9 P10 Q1 Q2 Q2	XM_648625 XM_651814 XM_650148 XM_646645 XM_647655 XM_645525 XM_648678	AAACTITGTICAATGGAAAATATGAGAAGAAGAAGAAGAAGCCGGGGATGCTGATGTICAAACTGATGTIAAAATAGAAGTA A ATATCTTAAACCACAAAGTTGAAAGCTGCACAAGGATTTGATGAAATTCTTGGGGAAATGTAT GGGAGCAGTAAATGAGAAAGTATATACAAACCCAACAAATGCAACTGATGGTTCAAATA T GATGGTTATGCATTGTGTACTGGTTCATGGGATTCGACATTGAGAATTGGGCAAATTAA GACAGGTGGATTATATTGTTCACCATCAATTCCAGGTAGTAGAGCAGGAAATAATATTGC GGGGGAGAAGCAGCAGGAGTTTAATGTTCCAATATTTGATTTTAGAAATGAAGGAGTAATGA
157 158 159 160 161 162 163	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2	P6 P7 P8 P9 P10 Q1 Q2	XM_648625 XM_651814 XM_650148 XM_646645 XM_647655 XM_645525 XM_648678	AAACTITIGTICAATGGAAAATATGAGAGAGAGAGAGGAGGGAGGGGAG
157 158 159 160 161 162 163 164	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase	P6 P7 P8 P9 P10 Q1 Q2 Q3	XM_648625 XM_651814 XM_650148 XM_646645 XM_647655 XM_645525 XM_648678 XM_648349	AAACTITIGTIAATGAGAAAATATGAGAGAGAGAGAGAGAGGGGGGAATGCTGAATGCATTAAGAAGTA AAACTITIGTICAATGGAAAATATGAGAGAGGAGGGGGGGGATGCTGAATGCATTAAGAAGTA ATATCTTAAACCACAAGTTGAAGCTGCACAAGGATTTGATGATGATGCATTGGGGAAATGAAATGAAAGGAAATGAAAGTAATATA GGGGGAGCAGTAAATGAGAAAGTATATACAAACCCAACAAATGCAACTGATGGTTCAAATA T GATGGTTATGCATTGTGTACTGGTTCATGGGGATTCGACATTGAGAATTGGGCAAATTAA GACAGGTGGATTATATTGTTCACCATCAATTCCAGGTAGTAGAGCAGGAAATAATATTGC GGGGGAGAAGCAGCAGGAGTTTAATGTTCCAATATTTGATTTTAGAAATGAAGGAGTAATGA AGACGGTGGATATAGAGATAAGCCTTCTAAAAAACCTGATTTGTACCATACTAACTA
157 158 159 160 161 162 163 164	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q4	XM_648625 XM_651814 XM_650148 XM_646645 XM_647655 XM_645525 XM_648678 XM_648349	AAACTITIGTIAATGACHICHAATACAGAAGAAGAAGAAGAAGAAGCEEGHICATGHIGHAAACHGATGHIAHAA AAACTITIGTICAATGGAAAATATGAGAGAGGAGGGGGGGGTATGCTGAATGCATTAAGAAGTA ATATCTTAAACCACAAGTTGAAGCTGCACAAGGATTTGATGATGATGCATTGGGGAAATGTAT GGGGGCAGTAAATGAGAAAGTATATACAAACCCCAACAAATGCAACTGATGGTTCAAATA T GATGGTTATGCATTGTGTACTGGTTCATGGGGATTCGACATTGAGAATTGGGCAAATTAA GACAGGTGGATTATATTGTTCACCATCAATTCCAGGTAGTAGAGCAGGAAATAATATTGC GGGGGAGAAGCAGCAGGAGTTTAATGTTCCAATATTTGATTTTAGAAATGAAGGAGTAATGA AGACGGTGGATATAGAGATAAGCCTTCTAAAAAACCTGATTTGTACCATACTAACTA
157 158 159 160 161 162 163 164 165	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q4	XM_648625 XM_651814 XM_650148 XM_646645 XM_647655 XM_648678 XM_648349 XM_644489	AAACTITGTICAATGGAAAATATGAGAGAGAGAGAGAGGAGGGATGCTGIGTIAAACTGATGTICAAATGAAGAAGTA AAACTITGTICAATGGAAAATATGAGAGAGGAGGAGGGGGGATGGGAATGCATTAAGAAGTA ATATCTTAAACCACAAAGTTGAAGCTGCACAAGGATTTGATGAAATTCTTGGGAAATGTAA GGGGGGCAGTAAATGAGAAAGTATATACAAACCCAACAAATGCAACTGATGGTTCAAATA T GGAGGGTGATTATGTGTGACTGGTTCATGGGGATTCGACATTGAGAATTGGGCAAATTAA GACAGGTGGATTATATTGTTCACCATCAATTCCAGGTAGTAGAGGAGGAAATAATATTGC GGGGGAGAAGCAGCAGGAAGTATATGTTCCAATATTTGGATTTTAGAAATGAAGGAAG
157 158 159 160 161 162 163 164 165	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase alpha UE	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q4	XM_648625 XM_651814 XM_650148 XM_646645 XM_647655 XM_648678 XM_64848349 XM_6444489	AAACTITIGTIAATGACHICHAATACAGAAGAAGAAGAAGAAGAAGAAGCEEGHICATGHIGHAAACHGATGHIAHAA AAACTITIGTICAATGGAAAATATGAGAGAGAGAGGGGGGGATGGCAATGCATTGAGAATGCAATGGAAATGAAAGTAA ATATCTTAAACCACAAAGTTGAAGCTGCACAAGGATTTGATGATGATGATGCATTGGGAAATGAATG
157 158 159 160 161 162 163 164 165 166	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase alpha UE Geranylgeranyltrans	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q5	XM_648625 XM_651814 XM_650148 XM_646645 XM_647655 XM_648678 XM_648849 XM_649844	AAACTITIGTIAATGACATICAAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGCCGGGGAATGCTGAATGCATTAAGAAGTA AAACTITIGTICAATGGAAAATATGAGAGAGGCGCACGGGGTATGCTGAATGCATTAAGAAGTA ATATCTTAAACCACAAAGTGAAAGTATATGAGAAGCGACAGGAAATTGCTGGGAAATGAAATGGAAAGTGATATGAGAAATGGAAAGTAATATAACAAACCCAACAAATGCAACTGATGGGTTCAAAATA GGGGGGGAGAAGCAGCATGGTACTGGGTTCATGGGGATTCGACATTGAGAATTGGGCAAATTAA GACGGTGGATTATATTGTTCACCATCAATTCCAGGTAGTAGAGCAGGAAATAATATTGC GGGGGAGAAGCAGCAGGAAGTATAATGTTCCAATATTTGGATTTTAGAAATGAAGGAAG
157 158 159 160 161 162 163 164 165 166	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase alpha UE Geranylgeranyltrans ferase beta UE	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q5 Q5 Q5	XM_648625 XM_651814 XM_650148 XM_646645 XM_647655 XM_648678 XM_648349 XM_649844	AAACTITIGTIAATGACHICHAATACAGAAGAAGAAGAAGAAGAAGAAGCCCGGHOHATAACHOAHOHATAA AAACTITIGTICAATGGAAAATATGAGAGAGAGGAGGGGGTATGCTGAATGCATTAAGAAGTA ATATCTTAAACCACAAAGTTGAAGCTGCACAAGGATTTGATGATGATGCATTGGGAAATGTAT GGGGGGCAGTAAATGAGAAAGTATATACAAACCCAACAAATGCAACTGATGGTTCAAATA T GATGGTTATGCATTGTGTACTGGTTCATGGGGATTCGACATTGAGAATTGGGCAAATTAA GACAGGTGGATTATATTGTTCACCATCAATTCCAGGTAGTAGGAGCAGGAAATAATATTGC GGGGGAGAAGCAGCAGGAGTTTAATGTTCCAATATTCGAGTAGTAGGAGCAGGAAATAATATTGC GGGGGAGAAGCAGCAGGAGTTTAATGTTCCAATATTTGGATTTTAGAAATGAAGGAGGAAGTAATGA AGACGGTGGATATAGAGATAAGCCTTCTAAAAAACCTGATTTGTACCATACTAACTA
157 158 159 160 161 162 163 164 165 166 167	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase alpha UE Geranylgeranyltrans ferase beta UE Rab-	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q5 Q6 Q6	XM_040625 XM_651814 XM_650148 XM_646645 XM_647655 XM_648678 XM_648849 XM_649844 XM_650563	AAACTITIGTAATGAATGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG
157 158 159 160 161 162 163 164 165 166 167	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase alpha UE Geranylgeranyltrans ferase beta UE Rab- Geranylgeranyltrans	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q5 Q6	XM_648625 XM_651814 XM_650148 XM_646645 XM_646645 XM_647655 XM_645525 XM_648678 XM_648849 XM_648849 XM_649844 XM_650563	AAACTITIGTIAATGAAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGCCGGGGAATGCTGAATGCATTAAGAAGTA AAACTITIGTICAATGGAAAATATGAGAAGCTGCACAAGGATTTGATGAAATGCAATGCATTAAGAAGTA ATATCTTAAACCACAAAGTTGAAGCTGCACAAGGATTTGATGATGATGCATTGGGGAAATGTAT GGGAGCAGTAAATGAGAAAGTATATACAAACCCAACAAATGCAACTGATGGGTTCAAATA T GATGGTTATGCATTGTGTACTGGTTCATGGGATTCGACATTGAGAATTGGGCAAATTAA GACAGGTGGATTATATTGTTCACCATCAATTCCAGGTAGTAGAGCAGGAAATAATATTGC GGGGAGAAGCAGCAGGAGGATTTAATGTTCCAATATTTGGTTTTAGAAATGAAGGAGGAAGAAGCAGGAGGAAGTAAGCCTTCTAAAAAACCTGATTTGTACCATACTAACTA
157 158 159 160 161 162 163 164 165 166 167	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase alpha UE Geranylgeranyltrans ferase beta UE Rab- Geranylgeranyltrans ferase alpha UE	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q5 Q6 Q6	XM_648625 XM_651814 XM_650148 XM_646645 XM_647655 XM_647655 XM_645525 XM_648678 XM_648678 XM_648349 XM_648349 XM_649844 XM_650563	AAACTITIGTICAATGGAAAATATGAGAGAGAGAGAGGGGGTATGCTGAATGCATTAAGAAGTA AAACTITIGTICAATGGAAAATATGAGAGGGCGCACGGGGTATGCTGAATGCATTAAGAAGTA ATATCTTAAACCACAAGTTGAAGCTGCACAAGGATTTGATGATGATGCATTCTTGGGAAATGTAT GGGAGCAGTAAATGAGAAAGTATATACAAACCCAACAAATGCAACTGATGGGTTCAAATA T GATGGTTATGCATTGTGTACTGGTTCATGGGATTCGACATTGAGAATTGGGCAAATTAA GACAGGTGGATTATATTGTTCACCATCAATTCCAGGTAGTAGAGCAGGAAATAATATTGC GGGGGAGAAGCAGCAGGAGTTTAATGTTCCAATATTTGGTTTTAGAAATGAAGGAGGAAATAATATTGC GGGGGAGAAGCAGCAGGAGTATAAGGCCTTCTAAAAAACCTGATTTGTACCATACTAACTA
157 158 159 160 161 162 163 164 165 166 167 168	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase alpha UE Geranylgeranyltrans ferase beta UE Rab- Geranylgeranyltrans ferase alpha UE	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q5 Q6 Q7	XM_648625 XM_651814 XM_650148 XM_646645 XM_647655 XM_648678 XM_6488349 XM_649844 XM_650563 XM_643143	AAACTITIGTIAATGAGAAAATATGAGAGAGAGAGAGGAGGGGTATGCTGAATGCATTAAGAAGTA AAACTITIGTICAATGGAAAATATGAGAGGGCGCACGGGGTATGCTGAATGCATTAAGAAGTA ATATCTTAAACCACAAGTTGAAGCTGCACAAGGATTTGATGATGATGCATTGAGGAATGTAT GGGGAGCAGTAAATGAGAAAGTATATACAAACCCAACAAATGCAACTGATGGGTTCAAATA T GATGGTTATGCATTGTGTACTGGTTCATGGGATTCGACATTGAGAATTGGGCAAATTAA GACAGGTGGATTATATTGTTCACCATCAATTCCAGGTAGTAGAGCAGGAAATAATATTGC GGGGAGAAGCAGCAGGAGTTTAATGTTCCAATATTTGATTTTAGAAATGAAGGAGAAATAATATTGC GGGGGAGAAGCAGCAGGAGTTTAATGTTCCAATATTTGATTTTAGAAATGAAGGAGGAAGTAATGA AGACGGTGGATATAGAGATAAGCCTTCTAAAAAACCTGATTTGTACCATACTAACTA
157 158 159 160 161 162 163 164 165 166 167 168	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase alpha UE Geranylgeranyltrans ferase beta UE Rab- Geranylgeranyltrans ferase alpha UE Rab- Geranylgeranyltrans	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q5 Q6 Q7	XM_648625 XM_651814 XM_650148 XM_646645 XM_647655 XM_645525 XM_648678 XM_648349 XM_649844 XM_650563 XM_643143	AAACTITIGTIAATGAGAAAATATGAGAGAGAGAGAGAGGGGGTATGCTGAATGCATTAAGAAGTA AAACTITIGTICAATGGAAAATATGAGAGGGCGCACGGGGTATGCTGAATGCATTAAGAAGTA ATATCTTAAACCACAAGTTGAAGCTGCACAAGGATTTGATGATGATGCATTGAGGAAATGTAT GGGGAGCAGTAAATGAGAAAGTATATACAAACCCAACAAATGCAACTGATGGGTTCAAATA T GATGGTTATGCATTGTGTACTGGTTCATGGGATTCGACATTGAGAATTGGGCAAATTAA GACAGGTGGATTATATTGTTCACCATCAATTCCAGGTAGTAGAGCAGGAAATAATATTGC GGGGAGAAGCAGCAGGAGGATTTAATGTTCCAATATTTGGTTAGAAATGAAGGAGGAAATAATATTGC GGGGGAGAAGCAGCAGGAGGATTTAATGTTCCAATATTTGGTTACCATAGAGGAAGGA
157 158 159 160 161 162 163 164 165 166 167 168 167	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase alpha UE Geranylgeranyltrans ferase beta UE Rab- Geranylgeranyltrans ferase alpha UE Rab- Geranylgeranyltransf erase beta UE	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q5 Q6 Q7	XM_648625 XM_651814 XM_650148 XM_646645 XM_647655 XM_645525 XM_648678 XM_648349 XM_649844 XM_650563 XM_643143	AAACTITIGTICAATGGAAAATATGAGAGAGAGAGAGGGGGTATGCTGAATGCATTAAGAAGTA AAACTITIGTICAATGGAAAATATGAGAGGGCGCAGGGGTATGCTGAATGCATTAAGAAGTA ATATCTTAAACCACAAGTTGAAGCTGCACAAGGATTTGATGATGATGCAATGCAATGGAAATGAAATGAAAGGAAAGTATATACAAACCCAACAAATGCAACTGATGGGTTCAAAATA GGGGAGCAGTAAATGAGAAAGTATATACAAACCCAACAAATGCAACTGAGAATTTGGGCAAATTAA GATGGTTATGCATTGTGTACTGGTTCATGGGATTCGACATTGAGAATTGGGCAAATTAA GACAGGTGGATTATATTGTTCACCATCAATTCCAGGTAGTAGAGCAGGAAATAATATTGC GGGGAGAAGCAGCAGGAGGATTTAATGTTCCAATATTTGATTTTAGAAATGAAGGAGGAAATAATATTGC GGGGGAGAAGCAGCAGGAGGATTTAATGTTCCAATATTTGATTTTAGAAATGAAGGAGGAGGAAATAATATTGC GGGGGAGAAGCAGCAGGAGGATATAAGGCCTTCTAAAAAACCTGATTTGTACCATACTAACTA
157 158 159 160 161 162 163 164 165 166 167 168 169	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase alpha UE Geranylgeranyltrans ferase beta UE Rab- Geranylgeranyltrans ferase alpha UE Rab- Geranylgeranyltransf erase beta UE Rab- Geranylgeranyltransf erase beta UE	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q8	XM_648625 XM_651814 XM_650148 XM_646645 XM_646645 XM_645525 XM_648678 XM_648349 XM_649844 XM_650563 XM_643143 XM_648341	AAACTITIGTICAATGGAAAATATGAGAGAGAGAGAGGGGGGGGGG
157 158 159 160 161 162 163 164 165 166 167 168 169	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase alpha UE Geranylgeranyltrans ferase beta UE Rab- Geranylgeranyltrans ferase alpha UE Rab- Geranylgeranyltransf erase beta UE Rab- Geranylgeranyltransf erase beta UE	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q8	XM_648625 XM_651814 XM_650148 XM_646645 XM_646645 XM_645525 XM_648678 XM_648349 XM_6448489 XM_649844 XM_643143 XM_648341	AAACTITIGTIAATGAAGAAAATATGAGAGAGAGAGAGGAGGGATGCGGATGCTGAATGCATTAAGAAGTA AAACTITIGTICAATGGAAAATATGAGAAGCTGCACAAGGATTTGATGAAATGCAATGCAATGGAAATGTAT GGGGAGCAGTAAATGAGAAAGTATATACAAACCCAACGAATTGAGAATTCTTGGGGAAATGTAT GGGGGGGGAGAAGCATGTGTGATCGGGTTCATGGGGATTCGACATTGAGAATTGGGCAAATTAA GATGGTTATGCATTGTGTACTGGTTCATGGGGATTCGACATTGAGAATTGGGCAAATTAA GACAGGTGGATTATATTGTTCACCATCAATTCCAGGTAGTAGAGCAGGAAATAATATTGC GGGGGAGAAGCAGCAGGAGGATTTAATGTTCCAATATTTGGATTTTAGAAATGAAGGAGGAAGCAGGAGGAAGTAATGATG AGACGGTGGATATAGAGATAAGCCTTCTAAAAAAACCTGATTTGTACCATACTAACGC GAATTAGTTTTAGAATTACGTGATCGCTTAGACCTTGCTCATCAAAGGTAATGGGATTGG TTATGATTTTGGATTTGGTCAAATGCCAAAAAGAGAAAGTCATGGAGGATCAACATATTG ACTCCAAAGGGTTGATAGTATGAGAAGTGGATATTATAAAGAACTTGAGAAAGATTTGCCT AGTTTAATGAGGAAAATATACAGATATTATTAGGAAAGGAAAGTCATGAGAAAGATTTGCCA TGCAGCAAGTAATTTTAATCATGTTATCGAAACTTCTTCAAGAGACAGTCATAAATTGGT
157 158 159 160 161 162 163 164 165 166 167 168 169	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase alpha UE Geranylgeranyltrans ferase beta UE Rab- Geranylgeranyltrans ferase alpha UE Rab- Geranylgeranyltransf erase beta UE Rab- Geranylgeranyltransf erase beta UE Ohne Namen: prenyl cysteine carboxyl methyltransferase2,	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q8	XM_648625 XM_651814 XM_650148 XM_646645 XM_646645 XM_647655 XM_648678 XM_648349 XM_649844 XM_650563 XM_643143 XM_648341	AAACTITIGTIAATGAAGAAAATATGAGAAGAAGAAGAAGAAGAAGGAGGGATGGGAATGCATGAAAGTAAAATATGAGAAAATATGAGAAAATATGAGAAAATATGAGAAATGAAAAGAAG
157 158 159 160 161 162 163 164 165 166 167 168 169	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase alpha UE Geranylgeranyltrans ferase beta UE Rab- Geranylgeranyltrans ferase alpha UE Rab- Geranylgeranyltransf erase beta UE Ohne Namen: prenyl cysteine carboxyl methyltransferase2, putative	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8	XM_648625 XM_651814 XM_650148 XM_646645 XM_646645 XM_645525 XM_648678 XM_648349 XM_649844 XM_650563 XM_643143 XM_648341	AAACTITGTAATGAATGAAGAAAATATGAGAGAGAGAGGAGGGATGGGGATGGGATGAAGGAATGAATGAAAGAAG
157 158 159 160 161 162 163 164 165 166 167 168 169 170	Asm6 Asm7 Adenylylcyclase assoziiertes Protein G-Protein alpha UE G-Protein beta UE Sphingosin-1- Phosphat Lyase1 deleted gene! Sphingosin-1- Phosphat Lyase2 Farnesyltransferase beta UE Farnesyltransferase alpha UE Geranylgeranyltrans ferase beta UE Rab- Geranylgeranyltransf erase alpha UE Rab- Geranylgeranyltransf erase beta UE Ohne Namen: prenyl cysteine carboxyl methyltransferase2, putative Prenylcysteincarboxy	P6 P7 P8 P9 P10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9	XM_648625 XM_651814 XM_650148 XM_646645 XM_646645 XM_645525 XM_648678 XM_648349 XM_649844 XM_650563 XM_643143 XM_648341 XM_652234	AAACTITIGTIAATGAAGAAAATATGAGAGAGAGAGAGGGGGGGG

Abbildung 18: Schematische Darstellung der Mikroarray-Designs für Array_*E.his*_BNI_1.0 (A) und Array_*E.his*_BNI_2.0 (B). Angegeben sind die Spotkoordinaten (siehe Tab. 22 und 23)

Tabelle	25:	Liste der Olig	gonukleotide	, die fü	r RT-PCR-Analysei	n eing	geset	zt wurden. Der Liste sind	die
Namen	der	untersuchten	Peptidasen,	deren	Accessionnummern	und	die	Oligonukleotidsequenzen	zu
entnehm	nen.								

Nr.	Name des	Accession-	Oligonucleotidsequence (5')	Oligonucleotidsequence (3')
	Proteins	nummer		
1	AsP22-1	XM_648987	AACTCATGTTGACGGACCAA	TGCAATATCACCAAGTCCAAG
2	AsP22-2	XM_647728	TCCAGGAATGTTCATTACAC	AATCATTGCTGGAACTATGC
3	AsP22-3	XM_652471	TTATTGCTATTGGAGTTGCAG	TTGCAGCTTCAACCATTACT
4	AsP22-4	XM_648604	TTGGTGTTCTTGGAGTCATCTC	AAGCCATGAAGACGCTGATA
5	EhCP-A1	XM_645064	TGCATCATCTGTTCAATTCC	CAACACCATATCCAACAGCA
6	EhCP-A2	XM_645550	ATCCAAGCACCAGAATCAGT	TTCCTTCAAGAGCTGCAAGT
7	EhCP-A3	XM_648162	AATGGATGTGAAGGAGGACA	GCAAGTACCAGCAACAGCTT
8	EhCP-A4	XM_651510	CAGAAGGACCAGTTGCTGTT	ATATCCTACAGCGGCAACAC
9	EhCP-A5	XM_645845	CCAGAATCTGTTGATTGGAGA	GCAACCAACAATCTTCCTTC
10	EhCP-A6	XM_652272	TTGCTATTGATGCAGGTCAA	AGATCCATATCCAACAGCACA
11	EhCP-A7	XM_643904	ATTGCAGCACTTGAAGGAAG	AATCCTCCTCCACATCCATT
12	EhCP-A8	XM_652354	TTGCAGCAATTGAATCAAGA	GCCTGAAGAGTTCCTCCATT
13	EhCP-B9	XM_647901	GAATGGCTATTCCTGTCTCTTC	TAATGGCGGTACTTCATTCC
14	EhSP9-2	XM_650130	GACCAGAATCACCATGGACT	TGCATCTCCATAACTTCCTGA
15	EhSP28-1	XM_651670	GAAGGACCTGCCTCTCCTAA	GATGGAGTTGAAGCACCATAA
16	EhSP28-2	XM_643899	CCAGTTATTGTTCTTGGTGGA	TTCTACTGGAGCAGATGATGC
17	EhSP28-3	XM_646997	TGTGCACCATCAAGTTATGC	CCAACTTCTTGTTGATGCAAG
18	EhMP8-1	XM_650302	GTGCTGCTGAACCATTAACA	TCCAATGGCTCCTCTATCAG
19	EhMP8-2	XM_647540	AATGACCGTTCTGCTATTGG	CAGCAATCTCATCACTTCCA
20	EhMP48-1	XM_643678	GGTAATCATCAATTAGCAAG	TTGCTTGTATTCGTTCTACA
21	EhMP20-3	XM_651453	GTTGATGATGCATGTGGATG	TTCAAGACCAGCATGAATTG
22	EhMP49-1	XM_649181	TGGTGCAGTTGAAGTTGTTG	CTGTGTCAGCAGTGGCTCTA
23	Actin		AAGCTGCATCAAGCAGTGAA	GGAATGATGGTTGGAAGAGG