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Preface

Motivation

Modeling insurance claim sizes often requires to consider small and medium
sized claims on the one hand, and large claims on the other hand separately.
The essential reason is that usually (parametric) models that fit the bulk of
the data well do not accurately describe the behavior of the very large claims.
Here extreme value theory offers models and estimators for the upper tail of
the claim size distribution.

If a risk manager has to assess the joint exposure to extreme risks in two
different lines of business, then it is not sufficient to model just the upper
tails of the marginal d.f.s of claim sizes in these business lines, since a possible
dependence between claim sizes of a policyholder in these lines of business must
be taken into account. Indeed, to neglect the impact of such a dependence
on the probability of a jointly (i.e. occurring in both lines of business) large
claim may lead to a substantial underestimation of the real risk, see e.g. the
results in Chapter 5. Again, it is not advisable to use parametric models of the
dependence structure, since extreme losses often exhibit a different dependence
than small claim sizes. Unfortunately, the classical multivariate extreme value
theory does also not allow the accurate estimation of the probability of jointly
large claims if the claim sizes are asymptotically independent (see Section
1.2.3), i.e., loosely speaking, if the probability that a large claim in one line of
business causes a large claim in the other line of business vanishes for increasing
claim sizes.

To analyze the full dependence structure separately from the marginal
distributions, one often considers the so-called copula, i.e., the bivariate dis-
tribution function of the claim sizes after standardization of the marginals to

VII



VIII Preface

uniform random variables. Recently, a large variety of parametric families of
copulas (like t-copulas, Gumbel-copulas or Clayton-copulas) have been pro-
posed as models for the dependence structure between different financial risks,
see e.g. Chapter 5 of McNeil et al. (2005). However, as mentioned above, small
and medium claims often show a different stochastic behavior than the extreme
claims. This difference is not restricted to the marginal distributions, but may
also become manifest in the dependence structure. Since, in most instances,
no parametric copula can be selected on the basis of physical reasons, it seems
advisable to use more flexible models for the dependence structure between
extreme claims in different lines of business. (For a detailed discussion of the
drawbacks of parametric copula modeling in extreme value theory see Mikosch
(2005).)

The present work is mainly devoted to the development of such a flexible
model, the model fitting and the validation of its central assumptions. Ledford
and Tawn (1996, 1997, 1998) proposed a model for the joint tail distribution of
bivariate claim sizes which both overcomes the obstacles of the classical multi-
variate extreme value theory and offers far greater flexibility than a parametric
copula approach. We somewhat relax the assumptions of the models of Led-
ford and Tawn and establish an estimation procedure that allows to prove
useful asymptotic properties of estimators of the model parameters, in par-
ticular of the estimator of the probability of jointly large claims. This allows
to accurately estimate the quantities of interest and to construct confidence
intervals for them. As we have indicated above, it is a crucial point to validate
the assumptions when modeling the stochastic behavior of jointly large claims.
The development of a validation tool for our model is one of the main results
of this thesis.

The applicability of our results is not restricted to issues of insurance or
financial mathematics. For example, similar structured problems are to be
found in hydrology, meteorology or teletraffic problems (such as on/off times
of computers or transfer times of files), see e.g. Section 6.1.1 of de Haan and
Ferreira (2006), Examples 1.9 – 1.11 of Coles (2001) or Section 8.1 of Beirlant
et al. (2004).

Outline

The main intention of Chapter 1 is to introduce notions, concepts and results
of univariate extreme value theory and classical multivariate extreme value
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theory that will be necessary or useful in this work. Section 1.2.3 exhibits the
abovementioned limited value of classical multivariate extreme value theory in
the case of asymptotic independence. In this view, it serves as motivation for
the development of models which are more appropriate in this situation.

In Chapter 2, we present the original and the Extended Ledford and Tawn
Model(s). We indicate similarities and differences of these models, where our
particular interest lies in the Extended Ledford and Tawn Model, which will
be introduced in detail. The central assumption, a bivariate second order
condition, and its immediate implications are examined. We conclude that for
the bivariate tail of the claim size distribution a scaling law, which plays a
crucial role in this thesis, holds.

Chapter 3 is devoted to the fitting of the Extended Ledford and Tawn
Model. We establish the asymptotic behavior of the estimators of the model
parameters. We explain how the scaling law can be used to construct an esti-
mator for the probability of jointly large claims, prove asymptotic normality
of this estimator and investigate the influence of the interplay of the errors
when estimating the model parameters.

In Chapter 4 we develop a method to validate the scaling law for given
data. We prove that under some regularity conditions an empirical process
which measures random deviations from this scaling law converges weakly to
a centered Gaussian process. An immediate consequence of this result is used
to construct a test statistic to discriminate between presence and absence of
the scaling law. We suggest a method to validate the scaling law by a simple
three-dimensional plot.

The applicability of our results is demonstrated in Chapter 5. Data of
Danish fire insurance claims and of medical claims from US health insurances
are investigated. After briefly discussing two ways of an appropriate choice of
the data used for the analysis when a certain (and common) type of censorship
exists, we analyze the resulting data in these ways. We estimate the model
parameters and the probability of jointly large claims, validate the scaling
law and compare the results among themselves, with empirical estimates and
estimates when independence is assumed.

In the final Chapter 6, we investigate a copula model that is related to the
Extended Ledford and Tawn Model. We show that although the presented ap-
proach requires similar conditions as the Extended Ledford and Tawn Model,
useful information, which the Extended Ledford and Tawn Model exploits, is
lost. We see that due to this fact the approach does not overcome the main
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problems and drawbacks of the widely-used copula approaches and of classical
multivariate extreme value theory.

In each chapter, the proofs of the results are deferred to the respective
final section.
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Chapter 1

Preliminaries

In this introductory chapter, we briefly present some concepts and results
of univariate extreme value theory (EVT) and classical multivariate EVT
(CMEVT). Of course, we discuss a small selection of issues only, so that the
reader should not expect a closed presentation of (CM)EVT. This selection
has been made according to two criteria. We only present concepts and re-
sults which are (i) required in theory and applications in this work or (ii) useful
for the purpose of comparison.

Section 1.1 is devoted to univariate EVT. We state the well-known main
results on the limiting distribution of sample maxima (Section 1.1.1) and of
peaks over a certain threshold (Section 1.1.2). In Section 1.1.3, we touch on
regular variation which plays an essential role in EVT. In addition to stating
the basic definition and one of many important links to EVT, we discuss
some aspects of so-called second-order regular variation conditions. Section
1.1.4 is devoted to two popular estimators of the most important parameter
in univariate EVT – the extreme value index.

In Section 1.2, we briefly discuss the necessity of multivariate EVT to
assess the joint exposure to extreme risks in two different lines of business.
Similar as in Section 1.1 for the univariate theory, we state the closely related
basic results on the limiting distribution of componentwise maxima (Section
1.2.1) and of claims that exceed a certain threshold (Section 1.2.2). The final
Section 1.2.3 shows that CMEVT is not the appropriate framework for all
issues when modeling multivariate extremes. We see that in the common case
of asymptotic independence of risks in two different lines of business, CMEVT
is of little help for estimating the upper tail of the joint claim size distribution.

Most of the material treated in this chapter can be found in any recent book

1



2 Chapter 1. Preliminaries

on EVT. We mainly borrow from Beirlant et al. (2004) and in particular from
de Haan and Ferreira (2006). Further references are given when appropriate.

1.1 Some Elements of Univariate Extreme

Value Theory

Throughout this section, denote by F1 the distribution function (d.f.) of the
claim size X or of Xi belonging to an i.i.d. sample X1, X2, . . . , Xn of claim
sizes.

1.1.1 Sample Maxima

In this section, we focus on the statistical behavior of max{X1, X2, . . . , Xn}.
It can be shown that the only possible limits of the d.f. of the suitably stan-
dardized sample maximum, i.e.

P

{
maxi=1,...,n Xi − bn

an
≤ x

}
n→∞

−−−−→ G(x) (1.1)

for every continuity point x of G, are the so-called generalized extreme value
(GEV) distributions with d.f.

G(x) = exp
(
− (1 + γx)−1/γ) if 1 + γx > 0. (1.2)

Here, an > 0 and bn ∈ R are normalizing constants and the shape parameter
γ ∈ R of G denotes the so-called extreme value index, a key quantity in EVT.
If γ = 0, then the right-hand side of (1.2) is interpreted as exp(−e−x). We say
that F1 belongs to the domain of attraction of G, if (1.1) is satisfied. There
is an equivalent formulation in terms of the generalized inverse function of
1/(1−F1). For any non-decreasing function f denote by f← its left-continuous
generalized inverse, i.e.

f←(x) := inf
{
y : f(y) ≥ x

}
,

where, as usual, inf ∅ = ∞, and let

U :=

(
1

1 − F1

)←

.
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The d.f. F1 belongs to the domain of attraction of G, if and only if

lim
r→∞

U(rx) − U(r)

ã(r)
=
xγ − 1

γ
, x > 0, (1.3)

with a positive function ã, where for γ = 0 the right-hand side is interpreted
as log x. For the case γ > 0, there is another useful equivalent statement in
terms of regular variation. We give it in Section 1.1.3.

1.1.2 Peaks Over Threshold

In order to assess the risk associated with a policy, insurers are often interested
in the probability that a certain threshold is exceeded rather than in the
distribution of the maximum of claim sizes. In this situation, the so-called
peaks-over-threshold (POT) models of EVT offer the appropriate framework.
The relation of the EVT conditions (1.1) for sample maxima and for peaks over
a certain threshold is close. Condition (1.1) holds if and only if the conditional
distribution function of the suitably standardized claim size X given that it
exceeds a very large threshold converges, i.e.

P

(
X − r

a(r)
≤ x

∣
∣
∣X > r

)
P{X>r}→0

−−−−−−−−→ H(x) (1.4)

with a positive normalizing constant a(r) depending on the threshold r. It
can be shown that the only possible limits in (1.4) are the generalized Pareto
distributions (GPD) with d.f.

H(x) = 1 − (1 + γx)−1/γ if 1 + γx > 0, (1.5)

where the right-hand side of (1.5) is interpreted as 1 − exp(−x) if the shape
parameter γ of H equals 0.

Most critical for an insurance company is the case of a heavy-tailed claim
size d.f. F1. As usual, we identify this situation with the case γ > 0, since then
the right endpoint of H is infinity and because 1−H(x) ∼ (γx)−1/γ as x→ ∞,
the GPD essentially decreases like a power function. Here, f(x) ∼ g(x) stands
for asymptotic equivalence of f and g, i.e. limx f(x)/g(x) = 1. Furthermore, if
γ > 0, all moments of X of order larger than 1/γ do not exist. As mentioned,
we give a further statement equivalent to (1.4) if γ > 0 in terms of regular
variation in Section 1.1.3.



4 Chapter 1. Preliminaries

Due to (1.4), the upper tail of the claim size distribution may be approxi-
mated by the GPD with additional location and scale parameters. Suggested
by the POT-convergence (1.4), we base the estimation of the tail of the claim
size distribution P{X > x} = 1 − F1(x) on the approximation

P (X > x | X > r) ≈ 1 −H

(
x− r

a(r)

)

=

(

1 + γ
x− r

a(r)

)−1/γ

(1.6)

for sufficiently large r > 0. Hence, with pr := P{X > r},

1 − F1(x) ≈ pr

(

1 + γ
x− r

a(r)

)−1/γ

. (1.7)

If we continue (1.7) to

1 − F1(x) ≈
((

1 + γ
x− r

a(r)

)

p−γ
r

)−1/γ

=

(

1 + γ
x− r

a(r)pγ
r

+ p−γ
r − 1

)−1/γ

=



1 + γ
x− r +

a(r)pγ
r

γ
(p−γ

r − 1)

a(r)pγ
r





−1/γ

,

we obtain the parameterization we use in the following, namely

1 − F1(x) ≈
(

1 + γ
x− µ

ς

)−1/γ

(1.8)

for sufficiently large x > 0, where location parameter µ ∈ R and scale param-
eter ς > 0 are defined as

µ :=
a(r)

γ

(
pγ

r − 1
)

+ r and ς := a(r)pγ
r . (1.9)

Motivated by (1.8), we define the generalized Pareto estimator of the tail
of the survival function 1 − F1 by

1 − F̂1,n(x) :=

(

1 + γ̂n
x− µ̂n

ς̂n

)−1/γ̂n

if 1 + γ̂n
x− µ̂n

ς̂n
> 0, (1.10)

where γ̂n, µ̂n and ς̂n are suitable estimators for γ, µ and ς. We discuss the
estimation of γ, µ and ς in such a location-scale setting in Section 1.1.4.
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1.1.3 Univariate Extreme Value Theory and Regular

Variation

The theory of regular variation is extensive and its links to EVT are numer-
ous. In this section, we only give the basic definition of regular variation and
one these links; both is necessary for further developments. However, we fre-
quently refer to results on regular variation throughout this work. Further, we
briefly discuss so-called second-order regular variation conditions, since such
conditions are important for various aspects addressed in this work. We refer
to the book of Bingham et al. (1987) as the standard reference on regular
variation and to (Appendix B of) de Haan and Ferreira (2006) for the aspects
which are most important for EVT including second-order conditions.

A positive, Lebesgue measurable function f : R+ → R+ is called regularly
varying (in a ∈ [0,∞]) with index α ∈ R, if

lim
r→a

f(rx)

f(r)
= xα.

If α = 0, then f is said to be slowly varying. Clearly, the simplest examples of
functions which vary regularly (in all a ∈ [0,∞]) with index α are the power
functions f(x) = xα, x > 0.

One of the many links between regular variation and EVT is that if γ > 0,
then condition (1.4) holds if and only if the survival function 1−F1 is regularly
varying (at ∞) with index −1/γ, i.e.

lim
r→∞

1 − F1(rx)

1 − F1(r)
= x−1/γ , x > 0. (1.11)

Note that for x > 0

P

(
X − r

a(r)
≤ x

∣
∣
∣X > r

)

=
P{X ≤ r + a(r)x} − P{X ≤ r}

P{X > r}

= 1 − 1 − F1(r + a(r)x)

1 − F1(r)
,

so that (1.11) is the same as (1.4) with a(r) = γr and 1 + γx replaced with x.
Typical examples of such survival functions behave (asymptotically for large
claim sizes X) as x−1/γ or x−1/γ logρ x for some ρ ∈ R. (See Beirlant et al.
(2004), Table 2.1, for explicit examples.)
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Many statistical results, including the asymptotic normality of the esti-
mators considered in Section 1.1.4, require a more sophisticated asymptotic
condition on U than the domain of attraction condition (1.3). For the Hill
estimator of γ > 0, considered in Section 1.1.4, we assume

lim
r→∞

U(rx)
U(r)

− xγ

A1(r)
= xγ x

ρ1 − 1

ρ1
, x > 0, (1.12)

where ρ1 ≤ 0 (if ρ1 = 0, then (xρ1 − 1)/ρ1 is interpreted as log x), A1 and
A2 (below) are some positive or negative functions with A1(r), A2(r) → 0 as
r → ∞. For the maximum likelihood estimator of γ > −1/2 (the maximum
likelihood estimator behaves irregular if γ ≤ −1/2), also considered in Section
1.1.4, the less restrictive condition

lim
r→∞

U(rx)−U(r)
ã(r)

− xγ−1
γ

A2(r)
= K(x), x > 0, (1.13)

suffices, where K 6≡ 0 is not a multiple of (xγ − 1)/γ. Note that each of these
second-order conditions implies the domain of attraction condition (1.3). The
conditions (1.12) and (1.13) are still quite general, e.g. they are satisfied by all
usual distributions that satisfy (1.3). Besides the possibility to prove asymp-
totic normality of estimators of the extreme value index, second-order condi-
tions are useful for further purposes. For example, analyses of the parameter
ρ1 allow conclusions on the speed of convergence to asymptotic normality of
the estimators presented in Section 1.1.4. Thereby, it is possible to prove opti-
mality results for adaptive parameter choices. For a more thorough discussion
of (1.12), (1.13), related conditions and their implications for estimators of γ,
some of which are summarized in the following Section 1.1.4, see Chapter 3 of
de Haan and Ferreira (2006).

We conclude this section with the remark that it is a second-order condition
in the bivariate case that enables us to prove the main results of Chapters 3
and 4 of this work.

1.1.4 The Hill Estimator and the Maximum Likeli-

hood Estimator of the Extreme Value Index

The extreme value index γ is a key quantity in EVT. We have already seen
that γ is the shape parameter of the limiting distributions (1.2) and (1.5). The
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particular importance of γ, however, is due to its crucial role when analyzing
the limiting behavior of tail quantile and tail probability estimators, see e.g.
Chapter 4 of de Haan and Ferreira (2006). This section is devoted to two
of the many estimators of γ. We summarize some of the properties of these
estimators, in particular if (1.12) and (1.13), respectively, are assumed. The
according results can be found in Sections 3.2 and 3.4 of de Haan and Ferreira
(2006).

The Hill estimator of γ > 0 may be motivated through various different
methods. We give a brief derivation by a regular variation argument. Further
possibilities to construct the Hill estimator can be found in Section 4.2.1 of
Beirlant et al. (2004). They show that this estimator is a natural and self-
evident choice.

The regular variation of the quantile function F←1 at 1 with index −γ < 0,
i.e.

lim
t↓0

F←1 (1 − tx)

F←1 (1 − t)
= x−γ , x > 0, (1.14)

is equivalent to (1.11). Hence, for j ∈ N such that j/n is sufficiently small,

γ =

∫ 1

0

log t−γ dt ≈ 1

j

j
∑

i=1

log(i/j)−γ ≈ 1

j

j
∑

i=1

log
F←1 (1 − i/n)

F←1 (1 − j/n)

≈ 1

j

j
∑

i=1

log
Xn−i+1:n

Xn−j:n
=: γ̂H

n ,

where Xi:n, i = 1, . . . , n, denote the order statistics pertaining to Xi, i =
1, . . . , n. More precisely, j = jn is an intermediate sequence, i.e. j → ∞ and
j/n→ 0, which indeed depends on the sample size n. Observe that for reasons
of convenience, our notation of the Hill estimator γ̂H

n does not allow for its
dependence on j.

An important property of γ̂H
n is its asymptotic normality. If the second or-

der condition (1.12) holds for γ > 0, a function A1 regularly varying with index
ρ1 ≤ 0 and j satisfying

√
jA1(n/j) → 0, then

√
j
(
γ̂H

n − γ
)

is asymptotically
centered normal with variance

σ2
γ̂H

n
= γ2. (1.15)

If
√
jA1(n/j) converges to some positive number, a bias enters, see Theorem

3.2.5 of de Haan and Ferreira (2006).
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In Chapter 5, in order to choose a suitable number of order statistics j
used for γ̂H

n , we consider a so-called Hill plot, which displays the estimates γ̂H
n

versus j. A small value j results in a high variance of γ̂H
n , while too large a j

may cause a large bias. (Here, under second-order regular variation conditions
an asymptotically optimal choice of j is possible.) This issue is sometimes
referred to as bias-variance trade-off. A typical (nice) Hill plot exhibits heavy
fluctuations for small values of j (due to large variance), followed by a rather
stable region where both variance and bias are moderate, before the bias causes
a clear upward or downward trend of the curve. Thus, j ought to be chosen in
the region where the plot is rather stable. See also the applications in Chapter
5. For a more detailed discussion on this matter see e.g. Sections 6.4 and 6.5
of Embrechts et al. (1997) or Drees et al. (2000).

We now specify our choice of the estimators of µ and ς of (1.9) when we use
γ̂H

n for the estimation of γ. Recall that we obtained (1.11) (and therefore the
motivation for the Hill estimator (1.14)) from (1.4) with assigning a(r) = γr.
Further, since for the Hill estimator γ̂H

n we use those Xi with Xi ≥ Xn−j:n,
a reasonable choice for r is Xn−j:n. Therefore, pr = P{X > r} ≈ P{X >
Xn−j:n} ≈ n−1∑n

i=1 1l{Xi ≥ Xn−j:n} is estimated by (j+1)/n. Hence, when
we use the Hill estimator γ̂H

n , the parameters µ and ς of (1.9) are estimated
as

µ̂H
n := Xn−j:n

(
(j + 1)/n

)γ̂H
n and ς̂H

n := µ̂H
n γ̂

H
n . (1.16)

In this case, the resulting estimator (1.10) of the tail probability 1 − F1(x)
reads as

1 − F̂H
1,n(x) =

j + 1

n

(
x

Xn−j:n

)−1/γ̂H
n

.

Since the class of d.f.s that belong to the domain of attraction of G cannot
be parameterized by a finite number of parameters, a straightforward maxi-
mum likelihood estimator does not exist. However, relation (1.4) suggests that
the tail of X follows a GPD (1.5), which is used as an approximate model.
Applying the maximum likelihood procedure to the largest observations using
the GPD, cf. Section 3.4 of de Haan and Ferreira (2006), leads to what is gen-
erally called the maximum likelihood estimator of γ in EVT. The maximum
likelihood estimators

(
γ̂ML

n , α̂ML
n

)
of 0 6= γ > −1/2 and the scale parameter

α := a(r), where for the same reasons as above we again use r = Xn−j:n, are
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then obtained by the solution of the equations

1

j

j
∑

i=1

log
(

1 +
γ

α

(
Xn−i+1:n −Xn−j:n

))

= γ,

(1.17)

1

j

j
∑

i=1

1

1 + γ
α

(
Xn−i+1:n −Xn−j:n

) =
1

γ + 1
.

As for the Hill estimator, j = jn is an intermediate sequence and for the choice
of an appropriate j the same remarks as made for γ̂H

n apply.
The maximum likelihood estimator γ̂ML

n has larger asymptotic variance
than the Hill estimator γ̂H

n . If the second order condition (1.13) holds for
γ > −1/2, a function A2 regularly varying with index ρ2 ≤ 0 and j satisfies√
jA2(n/j) → 0, then

√
j
(
γ̂ML

n − γ
)

is asymptotically centered normal with
variance

σ2
γ̂ML

n
= (1 + γ)2. (1.18)

If
√
jA2(n/j) converges to some positive number, a bias enters, see Theorem

3.4.2 of de Haan and Ferreira (2006).
As above, we estimate pr by (j + 1)/n so that our estimators of the pa-

rameters µ and ς appear as

µ̂ML
n :=

α̂ML
n

γ̂ML
n

((
j + 1

n

)γ̂ML
n

− 1

)

+Xn−j:n and

(1.19)

ς̂ML
n := α̂ML

n

(
j + 1

n

)γ̂ML
n

,

when we use the maximum likelihood estimator γ̂ML
n . In this case, the resulting

estimator (1.10) of the tail probability 1 − F1(x) reads as

1 − F̂ML
1,n (x) =

j + 1

n

(
γ̂ML

n

α̂ML
n

(
x+Xn−j:n

)
+ 1

)−1/γ̂ML
n

.

Henceforth we denote by γ̂n either the Hill estimator γ̂H
n or the maxi-

mum likelihood estimator γ̂ML
n , by σ2

γ̂n
the pertaining asymptotic variance
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and by 1 − F̂1,n(x) the pertaining estimator of 1 − F1(x). This estimator is
asymptotically centered normal if the second order condition (1.12) holds with√
jA1(n/j) converging to some real value, and x = xn → ∞ such that

n(1 − F1(xn)) = o(j) and log
(
n(1 − F1(xn))

)
= o

(
j1/2). (1.20)

More precisely, from Theorem 4.4.7 of de Haan and Ferreira (2006) we obtain
that

γj1/2

log j
n(1−F1(xn))

(
1 − F̂1,n(xn)

1 − F1(xn)
− 1

)

D−→ N
(
0, σ2

γ̂n

)
, (1.21)

where
D−→ denotes convergence in distribution as n→ ∞. This implies that

1 − F̂1,n(xn)

1 − F1(xn)
− 1 = OP

(

j−1/2 log
j

n(1 − F1(xn))

)

. (1.22)

The conditions (1.20) require the (sequence of) thresholds for which an event
is considered “extreme” not to converge too fast or too slow to infinity. The
assumption n(1−F1(xn)) = o(j) also ensures that 1−F1(x) = 1−F1(xn) → 0,
which is necessary (and reasonable) when applying asymptotic methods to
extrapolate outside the range of available data. In their Section 4.3, p. 134,
de Haan and Ferreira (2006) briefly discuss this issue.

1.2 Some Elements of Classical Multivari-

ate Extreme Value Theory

Univariate EVT and tail models do not suffice if a risk manager has to assess
the joint exposure to extreme risks in two different lines of business. Suppose
that the claim sizes of one policyholder in these lines of business are described
by a bivariate random vector (X,Y ). Then it is not sufficient to model just
the upper tails of the marginal d.f.s of X and Y , because there might be a non-
negligible dependence between the two insured risks. Indeed, if one assumes
independence and therefore calculates the probability of a jointly extreme event
like

p := P{X > u1, Y > u2} (1.23)
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as P{X > u1}P{Y > u2}, then one underestimates the risk if the two claim
sizes are actually positively dependent; see e.g. the results in Chapter 5. In
particular, this is to be expected when the insured risks in the different lines
of business are exposed to the same physical cause of damage like storms
in motor insurance and residential building insurance, or fire in residential
building insurance and household insurance. However, it is worth mentioning
that a non-negligible dependence between the claim sizes may also occur when
there is no obvious physical mechanism causing the damages in both lines of
business.

A very simple measure of the dependence between the claim sizes is the
correlation between X and Y . However, the correlation does not help to deter-
mine probabilities of type (1.23). Moreover, a single figure (like the correlation)
cannot capture all essential features of a usually quite complex dependence
structure. Indeed, it often leads to quite misleading interpretations; see e.g.
Embrechts et al. (2002) for examples.

Quite flexible dependence models for extremes are offered by the classical
multivariate EVT (CMEVT). This section is mainly devoted to summarize
some of the results of CMEVT as far as it is necessary to display problems when
estimating probabilities like (1.23) and to compare CMEVT to the original and
the Extended Ledford and Tawn Model developed in Chapter 2. In particular,
we see that in the common case of asymptotic independence of X and Y ,
CMEVT is of little help for estimating p. Section 1.2.3 is devoted to this case.

1.2.1 Componentwise Maxima

Henceforth, let {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} be an i.i.d. sample of claim
sizes, and denote by F1 and F2 the marginal d.f.s of Xi and Yi, i = 1, . . . , n,
respectively.

By the term “classical” MEVT, we mean the material presented e.g. in
Chapter 5 of Resnick (1987) or Chapter 8 of Beirlant et al. (2004), where
it is supposed that the distribution of suitable standardized componentwise
maxima converges to a d.f. with non-degenerate marginals. More precisely, in
CMEVT it is assumed that

P

{
maxi=1,...,n Xi − bn

an
≤ x,

maxi=1,...,n Yi − dn

cn
≤ y

}
n→∞

−−−−→ G(x, y),

(1.24)
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for some normalizing constants an, cn > 0, bn, dn ∈ R, where the multivariate
extreme value d.f. G has non-degenerate marginals G1(x) := G(x,∞) and
G2(y) := G(∞, y). Usually, modeling the joint tail distribution of X and
Y by means of (1.24) is separated into two parts describing the tails of the
marginal d.f.s on the one hand and the tail dependence structure between
them on the other hand. The former part is a matter of univariate EVT,
since for suitably chosen normalizing constants, the marginals of G are GEV
distributions according to (1.2). The second part, estimating the multivariate
extreme value dependence structure, is the crucial point here. Section 9.3 of
Beirlant et al. (2004) presents some methods which allow inference for this
issue.

As in univariate EVT, threshold models are closely related. We establish
the connection in the following section. Thereby, we extend the univariate the-
ory briefly presented in Section 1.1.2. We give conditions that are equivalent to
(1.24). They display the abovementioned possibility to separate the modeling
of the joint tail distribution of X and Y into specifying the marginal d.f.s and
the dependence structure. The convergence of the latter is thereby obtained
by the convergence of the so-called tail dependence function. Further, we infer
a representation for threshold probabilities like p.

1.2.2 Threshold Models

We will see that condition (1.4) for each of the marginals and a certain regu-
larity condition on the probability that at least one standardized claim size is
large, are jointly equivalent to (1.24). To this end, let F denote the bivariate
d.f. of (X,Y ) and F1(x) := F (x,∞) and F2(y) := F (∞, y) the marginal d.f.s
of X and Y , respectively, which, for simplicity, are assumed continuous for the
rest of this chapter. Define the tail dependence function D by

D(u, v) := P{U < u or V < v}, u, v ∈ [0, 1].

where U := 1 − F1(X) and V := 1 − F2(Y ) are uniform random variables.
Further, for any non-increasing function f denote by f← its left-continuous
generalized inverse, i.e.

f←(x) := sup{y : f(y) ≥ x}.

The following result is a consequence of Proposition 5.10 of Resnick (1987),
where the marginals are standardized to standard Fréchet distribution. See
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also Beirlant et al. (2004), Section 8.3.2 and keep in mind that (1.1) is equiv-
alent to (1.4).

1.2.1 Proposition. The following statements are equivalent:

(i) (1.24) holds.

(ii) The conditions

P

(
X − r

a1(r)
≤ x

∣
∣
∣ X > r

)
P{X>r}→0

−−−−−−−−→ 1 − (1 + γ1x)
−1/γ1 ,

P

(
Y − r

a2(r)
≤ y

∣
∣
∣ Y > r

)
P{Y >r}→0

−−−−−−−−→ 1 − (1 + γ2y)
−1/γ2 ,

t−1D(tx, ty)
t↓0

−−−→ ℓ(x, y) (1.25)

with positive normalizing constants a1 and a2, are jointly satisfied for all
x, y ≥ 0, where ℓ is the stable tail dependence function defined by

ℓ(x, y) := − logG
(
(− logG1)

←(x), (− logG2)
←(y)

)
.

△

We now summarize some properties of ℓ which will be useful later. Note
that due to Proposition 1.2.1 and the equivalence of (1.1) and (1.4), the
marginals Gi, i = 1, 2, of G take for suitably chosen normalizing constants
the form

Gi(x) = exp
(
− (1 + γix)

−1/γi
)

if 1 + γix > 0, i = 1, 2,

so that ℓ may be represented as

ℓ(x, y) = − logG

(
x−γ1 − 1

γ1
,
y−γ2 − 1

γ2

)

.

Due to the standardization of the marginals of the tail dependence function
D, the “marginals” of ℓ are standardized:

ℓ(x, 0) = lim
t↓0

D(tx, 0)

t
= lim

t↓0

P{U < tx}
t

= x.
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By

ℓ(sx, sy) = lim
t↓0

D(tsx, tsy)

t
= s lim

t↓0

D(tsx, tsy)

ts

= s lim
r↓0

D(rx, ry)

r
= sℓ(x, y),

s > 0, we see that ℓ is homogeneous of order 1. Thus, according to (1.25),
i.e. D(tx, ty) ∼ tℓ(x, y) = ℓ(tx, ty), we may approximate D(u, v) by ℓ(u, v)
for small u, v. Therefore, one may construct an estimator for the probability
(1.23) from estimators of the marginal d.f.s and an estimator of ℓ using the
approximation

p = P{X > u1} + P{Y > u2} − P{X > u1 or Y > u2}
≈ 1 − F1(u1) + 1 − F2(u2) − ℓ(1 − F1(u1), 1 − F2(u2)). (1.26)

We will see in the following section that (1.26) is of little help for estimating
probabilities like p if X and Y are asymptotically independent.

1.2.3 Asymptotic Independence

Suppose that the random variables X and Y are standardized to uniform
random variables U = 1 − F1(X) and V = 1 − F2(Y ). Then, X and Y (or U
and V ) are called asymptotically independent if

lim
t↓0

P (U < t | V < t) = lim
t↓0

t−1P{U < t and V < t} = 0. (1.27)

Loosely speaking, this means that the probability of a joint occurrence of large
values of X (i.e., small values of U) and large values of Y (i.e., small values of
V ) vanishes asymptotically.

Asymptotic independence is a rather common and therefore important
situation, since real world data often exhibit this property, see e.g. Chapter
5. However, within the class of multivariate extreme value distributions, the
only possible type of asymptotic independence is perfect independence. In the
case of asymptotic independence, observed data are likely to exhibit reasonably
strong dependence. Then, the class of multivariate extreme value distributions
is not the appropriate model in this case. The aim of this section is to briefly
illustrate this. Thereby, we indicate the necessity of models which overcome
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this drawback and in turn motivate the investigations starting with Chapter 2
of this work. For further discussion of this issue see e.g. Section 9.5 of Beirlant
et al. (2004), Section 5 of Draisma et al. (2004), Section 4.4 of Coles et al.
(1999) or the results in Chapter 5.

The approach (1.26) fails in the situation of asymptotic independence of
U and V , since from (1.27) we obtain for the stable tail dependence function

ℓ(x, y) = lim
t↓0

t−1P{U < tx or V < ty}

= lim
t↓0

t−1(P{U < tx} + P{V < ty} − P{U < tx, V < ty}
)

= lim
t↓0

t−1(tx+ ty − P{U < tx, V < ty}
)

= lim
t↓0

x+ y − t−1P{U < tx, V < ty} = x+ y. (1.28)

This means for the probability of a jointly large claim

p = P{X > u1} + P{Y > u2} − P{X > u1 or Y > u2}
≈ 1 − F1(u1) + 1 − F2(u2) − ℓ(1 − F1(u1), 1 − F2(u2)) = 0,

which is of little help for estimating p. In other words, from (1.28) we obtain
that t−1P{U < tx, V < ty} has a degenerate limit 0, i.e. we only know that
P{U < tx, V < ty} = o(t). What we need is a different standardization in
order to obtain a non-degenerate limit.

The approach to solving this problem presented in the following chapter is
to specify the speed of convergence in (1.27). To this end, we impose a bivariate
second-order condition (cf. Section 1.1.3) on the joint survivor function P{U <
x, V < y}.





Chapter 2

Ledford’s and Tawn’s

Approach and a Related

Model

In Section 1.2.3, we have indicated problems which arise in CMEVT in the
case of asymptotic independence. We will see that the models discussed in this
chapter overcome these problems. We are concerned with the original and the
Extended Ledford and Tawn Model(s), where the latter is the object of all
further investigations.

In Section 2.1, we start with a brief presentation of the relation between
the simpler model of Ledford and Tawn (1996) and the later model of Ledford
and Tawn (1997, 1998). Although the theory and applications from Section 2.2
until Chapter 5 hardly ever refer to the original Ledford and Tawn Model(s)
(OLTM), Section 2.1 presents the OLTM in some detail. This is mainly done
to ease the comparison to the Extended Ledford and Tawn Model (ELTM),
which is considered from Section 2.2 on. For example, we specify the assump-
tions of the OLTM which are not necessary in the ELTM, indicate why these
assumptions are made and why they are not required in the ELTM. Thereby,
we set the stage to clarify in Section 2.2 in which sense the term “Extended”
is to be understood. However, details on e.g. statistical aspects of the OLTM
are almost completely omitted. The ELTM is introduced in Section 2.2. Its
central condition and the immediate implications, established in Section 2.2.1,
play a crucial role in the rest of this work. The scaling law deduced in Section
2.2.2 will also accompany us throughout. The chapter is concluded with the

17
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proof of a corollary of Section 2.2.1.

2.1 The Ledford and Tawn Approach

Instead of referring to results that are based on (1.24), Ledford and Tawn
(1996, 1997, 1998) model the asymptotic form of the joint survivor function
directly. This allows to specify the speed of convergence in (1.27) and hence
to overcome the problem illustrated in Section 1.2.3.

In Ledford and Tawn (1996), it is assumed that the joint survivor function
varies regularly with index −1/η ∈ [−2,−1] along the diagonal. More precisely,
the main assumption is that for standard Fréchet variables Z1 and Z2, i.e.
P{Zj ≤ z} = exp(−1/z), j = 1, 2,

P{Z1 > r,Z2 > r} ∼ L(r)r−1/η (2.1)

as r → ∞, where L is a slowly varying function. Since the boundary cases
η = 1/2 and η = 1 correspond to exact independence and perfect dependence,
respectively, Ledford and Tawn (1996) named η coefficient of tail dependence.
(A more thorough interpretation of η in the extended model is given in Section
2.2.1.) In order to ease comparison with the ELTM, we rephrase (2.1) in terms
of the joint distribution of U = 1 − exp(−1/Z1) and V = 1 − exp(−1/Z2).
Essentially, (2.1) means the same for the distribution tail of (U, V ), since (2.1)
is equivalent to

P
{
U < 1 − exp(−1/r), V < 1 − exp(−1/r)

}
∼ L(r)r−1/η

and by t = 1 − exp(−1/r) and − log(1 − t) = t+O(t2) as t ↓ 0 to

P{U < t, V < t} ∼ L
(

1

− log(1 − t)

)
(
− log(1 − t)

)1/η

∼ L∗(t)t1/η (2.2)

as t ↓ 0, where the function L∗ is slowly varying at 0.
Ledford and Tawn (1996) solely model the joint survivor function along

the diagonal and η ∈ [1/2, 1] only allows for positive dependence. These
drawbacks are resolved in the models of Ledford and Tawn (1997, 1998). The
basic condition as stated in (2.3) of Ledford and Tawn (1998) is that there
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exist some positive normalizing function d and some non-vanishing function ψ
such that

lim
r→∞

P{Z1 > rx, Z2 > ry}
d(r)

= ψ(x, y) (2.3)

for all x, y > 0. Relation (2.3) may be regarded as a bivariate regularity
condition (see e.g. the Appendices in de Haan and Resnick (1993) and Draisma
et al. (2003)) for the joint survivor function P{Z1 > x,Z2 > y}. If η > 1/2,
it is equivalent to the condition used by de Haan and Resnick (1993). It is
shown in Theorem 1 of Ledford and Tawn (1998) that (2.3) implies

P{Z1 > x,Z2 > y} =
L(x, y)

xc1yc2
, (2.4)

where c1, c2 > 0, c1 + c2 = 1/η ∈ [1,∞) and L(x, y) denotes a bivariate slowly
varying function with limit g, i.e.

lim
r→∞

L(rx, ry)

L(r, r)
=: g(x, y)

with a function g that is homogeneous of order 0, i.e. g(sx, sy) = g(x, y) for
all s > 0. We see that g(x, y)x−c1y−c2 is homogeneous of order −1/η and
from (2.4) that P{Z1 > x,Z2 > x} is regularly varying with index −1/η.
(In fact, we obtain an even stronger result. The homogeneity property of
g(x, y)x−c1y−c2 together with (2.4) implies the multivariate regular variation
of P{Z1 > x,Z2 > y}, cf. Appendix 1.4 of Bingham et al. (1987) or Resnick
(1987), (5.32).) Note that the structural form (2.4) of the joint survivor func-
tion is rather arbitrary, since Lκ(x, y) := (x/y)κL(x, y) is bivariate slowly
varying and L(x, y)x−c1y−c2 = Lκ(x, y)x−c1−κy−c2+κ, so that c1 and c2 are
only subject to the condition c1 + c2 = 1/η. Therefore, in order to develop a
method for statistical inference, Ledford and Tawn (1997, 1998) impose fur-
ther structure on L which allows the separate identification of c1 and c2. We
consider the further assumptions made by Ledford and Tawn (1997, 1998)
before we rephrase (2.3) in terms of U and V .

Let w = x/(x+ y) ∈ (0, 1). Observe that from (2.3)

lim
r→∞

P{Z1 > rw,Z2 > r(1 − w)}
d(r)

= ψ(w, 1 − w)
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and

lim
r→∞

P{Z1 > r(1 − w), Z2 > rw}
d(r)

= ψ(1 − w,w),

such that

ψ(w, 1 − w)

ψ(1 − w,w)
= lim

r→∞

P{Z1 > rw,Z2 > r(1 − w)}
P{Z1 > r(1 − w), Z2 > rw} .

Ledford and Tawn (1997, 1998) assume that ψ(w, 1 − w)/ψ(1 − w,w) is reg-
ularly varying at w = 0. (This implies regular variation at w = 1, which
becomes obvious when considering what the regular variation at w = 0 means
for the reciprocal function.) It follows that L is what Ledford and Tawn (1997,
1998) call quasi-symmetric, i.e. g∗(w)/g∗(1 − w) is slowly varying at w = 0
(and w = 1), where g∗(w) := g∗(x/(x+y)) := g(x, y). By means of this condi-
tion, c1 and c2 are separately identifiable beyond the condition c1 + c2 = 1/η.
This is necessary for the statistical inference proposed by Ledford and Tawn
(1997), see Section 4 of that paper. Since we develop a different statistical
methodology, this regular variation condition on ψ is one of the assumption
which are not needed in the ELTM.

Furthermore, Ledford and Tawn (1998) assume that L has an asymptotic
expansion of the form

L(x, y) = L1(x, y) +
L2(x, y)

xd1yd2
+O

(
γ(x, y)

)
(2.5)

with quasi-symmetric bivariate slowly varying functions Lj 6≡ 0, d1, d2 ≥ 0,
L2(rx, ry) = o

(
L1(rx, ry)

)
if d1 = d2 = 0 and with a function γ such that

γ(rx, ry) = o
(
L2(rx, ry)(rx)

−d1(ry)−d2
)

as r → ∞. Hence, the asymptotic
expansion used as the model for the joint survivor function reads as

P{Z1 > x,Z2 > y} =
L1(x, y)

xc1yc2
+

L2(x, y)

xc1+d1yc2+d2
+ . . . , (2.6)

which is explicitly assumed in Ledford and Tawn (1997). The statistical
methodology developed in Ledford and Tawn (1997) is based on approximat-
ing P{Z1 > x,Z2 > y} by the leading term on the right hand side of (2.6),
while the second term allows to assess the quality of this approximation and to
identify the rates of convergence. The latter, however, turns out to be difficult
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in most cases, see Section 8 of Ledford and Tawn (1997). The assumption
of the existence of an asymptotic expansion (2.5) for L is the second condi-
tion which is not needed in the ELTM. For a more thorough treatment of the
OLTM see also Ledford (1996).

Rephrased in terms of the joint distribution of the uniform random vari-
ables U and V , (2.3) reads as

lim
r→∞

P
{
U < 1 − exp(−1/(rx)), V < 1 − exp(−1/(ry))

}

d(r)
= ψ(x, y)

⇔ lim
t↓0

P{U < 1 − exp(−tx), V < 1 − exp(−ty)}
d(1/t)

= ψ(1/x, 1/y)

for all x, y > 0. If one assumes that this convergence holds locally uniformly in
x and y, i.e. there is a neighborhood of (x, y) where the convergence is uniform,
then a simple Taylor expansion shows that this condition is equivalent to

lim
t↓0

P{U < tx, V < ty}
d(1/t)

= ψ(1/x, 1/y) (2.7)

for all x, y > 0. When we introduce the ELTM in the following section,
we merely assume a rate of (uniform) convergence in (2.7). In particular,
the regular variation of ψ(w, 1 − w)/ψ(1 − w,w) and the more complicated
asymptotic expansion of P{U < 1− exp(−1/(tx)), V < 1− exp(−1/(ty))} (or
L, respectively) are not needed.

2.2 The Extended Ledford and Tawn Model

For the rest of this work, we assume that the marginal d.f.s Fj are tail con-
tinuous, i.e. there exists ξj < F←j (1), such that Fj is continuous on [ξj ,∞),
j = 1, 2. Hence the d.f.s of U = 1 − F1(X) and V = 1 − F2(Y ) are equal to
the uniform d.f. on a small neighborhood of 0.

2.2.1 The Central Condition and its Implications

We weaken the model assumptions of Ledford and Tawn (1998) in that we only
specify a rate of (uniform) convergence in (2.7). (This ELTM was already
considered by Draisma et al. (2004); in particular, see Remark 2.1 of that
paper.)
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2.2.1 Condition. Assume that

P{U < tx, V < ty}
q(t)

− c(x, y) = O
(
q1(t)

)
(2.8)

as t ↓ 0 for all x, y ≥ 0 and uniformly on {(x, y)|max(x, y) = 1}. Here c is
some non-degenerate function and q and q1 are positive functions that tend to
0 as t ↓ 0, where q1 is regularly varying at 0 with some index τ ≥ 0, i.e.

lim
t↓0

q1(tx)

q1(t)
= xτ .

△

As usual, (2.8) means that

lim sup
t↓0

∣
∣
∣
∣

P{U < tx, V < ty}
q(t)

− c(x, y)

∣
∣
∣
∣

/

q1(t) <∞,

for all x, y ≥ 0, i.e. q1(t) is an asymptotic upper bound of (the absolute value
of) the difference on the left hand side of (2.8). The function q1 is sometimes
called the (maximum) rate of convergence of P{U < tx, V < ty}/q(t) to
c(x, y). Note that since q1(t) → 0 as t ↓ 0,

lim sup
t↓0

∣
∣
∣
∣

P{U < tx, V < ty}
q(t)

− c(x, y)

∣
∣
∣
∣
= 0

⇒ lim
t↓0

P{U < tx, V < ty}
q(t)

= c(x, y), (2.9)

i.e. (2.8) implies (2.7), where d(1/t) and ψ(1/x, 1/y) play the roles of q(t) and
c(x, y).

Similar as (2.3), Condition (2.8) is essentially a bivariate second-order
condition for the so-called survival copula

Q(x, y) := P{U < x, V < y}.

We consider a copula approach related to the ELTM in Section 6. For more
information on such conditions, see (the Appendices of) de Haan and Resnick
(1993) and Draisma et al. (2003).
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Observe that we may take c(1, 1) = 1 in Condition 2.2.1 without loss of
generality (w.l.o.g). We obtain from Condition 2.2.1 with x = y = 1 that

Q(tx, ty)

Q(t, t)
− c(x, y) =

(
Q(tx, ty)

q(t)
− c(x, y)

)
q(t)

Q(t, t)
+ c(x, y)

(
q(t)

Q(t, t)
− 1

)

= O
(
q1(t)

) q(t)

Q(t, t)
+O

(
q1(t)

)
= O

(
q1(t)

)
, (2.10)

and that conversely, if Q(tx, ty)/Q(t, t) − c(x, y) = O
(
q1(t)

)
holds, then Con-

dition 2.2.1 is satisfied, so that we may take w.l.o.g.

q(t) = Q(t, t) = P{U < t, V < t}.

Then, for x, y ∈ [0, 1], convergence (2.9) reads as

lim
t↓0

P (U < tx, V < ty | U < t, V < t) = c(x, y),

i.e. the conditional probability P (U < tx, V < ty | U < t, V < t) converges to
the limit c(x, y). In this sense, (2.9) is a natural analog to the univariate EVT
condition (1.4).

For sufficiently small x and y, the link between the survival copula Q and
the tail dependence function D which plays a crucial role in CMEVT (cf.
Section 1.2) is given by

Q(x, y) = x+ y −D(x, y).

Further, if

l := lim
t↓0

q(t)

t
(2.11)

exists (which is always satisfied with l = 0 if U and V are asymptotically in-
dependent, since l is precisely the left hand side of (1.27)), then (2.9) implies
(1.25), i.e. the condition of the Ledford and Tawn model(s) implies the con-
vergence of the dependence structure in terms of the tail dependence function.
To see this, note that (2.9) yields

ℓ(x, y) = lim
t↓0

D(tx, ty)

t
= x+ y − lim

t↓0

Q(tx, ty)

t
= x+ y − lc(x, y) (2.12)

for sufficiently small x and y.
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We summarize further comments on Condition 2.2.1 in the following

2.2.2 Remarks.

(i) Compared to the assumptions of the OLTM, Condition 2.2.1 is a re-
laxation in that we do not require the regular variation of ψ(w, 1 −
w)/ψ(1−w,w) at w = 0 and the more complicated expansion of P{U <
1−exp(−1/(tx)), V < 1−exp(−1/(ty))}. On the other hand, we slightly
strengthen Ledford’s and Tawn’s conditions in that we require uniformity
on {(x, y)|max(x, y) = 1} (cf. the following remark). However, this slight
strengthening is of course less severe than the previously mentioned ad-
ditional assumptions of the OLTM.

(ii) Since we will not make explicit use of the assumed uniformity of (2.8)
on {(x, y)|max(x, y) = 1}, we remark that, nonetheless, it is an essential
element of the developed theory. Many of the results we refer to need
this assumption. In particular, the results associated with the asymptotic
normality of estimators of the coefficient of tail dependence in Sections
2 and 6 of Draisma et al. (2004), which are used several times, require
this uniformity. The results of Section 2 of Draisma et al. (2004) on the
estimation of η in the ELTM are summarized in Section 3.1 of this work.

(iii) Condition 2.2.1 can be described as “hidden regular variation” with rate.
The notion of hidden regular variation is first introduced in Resnick
(2001). Further theory is developed in subsequent papers, see e.g. Maulik
and Resnick (2004). Section 2.4 of Heffernan and Resnick (2005) contains
a brief comparison with the OLTM.

△
The following corollary, proved in Section 2.3, states the most important

implications of Condition 2.2.1.

2.2.3 Corollary. From Condition 2.2.1 we obtain that

(i) the function q is regularly varying at 0 with some index 1/η ∈ [1,∞), i.e.

lim
t↓0

q(tx)

q(t)
= x1/η, (2.13)

(ii) c is homogeneous of order 1/η, i.e.

c(sx, sy) = s1/ηc(x, y), (2.14)
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for all s ≥ 0 and thus continuous on [0,∞)2 \ (0, 0).

△

2.2.4 Remark. Recall that w.l.o.g. q(t) = P{U < t, V < t} to see by (2.2)
that the reciprocal η of the index of the regular variation of q indeed plays the
role of Ledford’s and Tawn’s coefficient of tail dependence. △

We continue with considering the behavior of the model in the case of
asymptotic independence and thereby give a more thorough justification to
name η coefficient of tail dependence. From the regular variation (2.13) of q,
the function

L(t) := t−1/ηq(t)

is slowly varying in 0. Thus, for sufficiently small t,

P (U < t | V < t) = t−1q(t) = t1/η−1L(t), (2.15)

which, by Proposition 1.5.1 of Bingham et al. (1987), converges to 0 if η < 1.
Therefore, η and the function L possess the interpretation

η < 1 or L(t)
t↓0−→ 0 ⇐⇒ asymptotic independence,

η = 1 and L(t)
t↓0

−→/ 0 ⇐⇒ asymptotic dependence.

Further, we see that if the limit of (2.15) as t ↓ 0 exists, η is a measure of the
speed of convergence of P (U < t | V < t). If U and V are exactly independent,
we see from the regular variation (2.13) of q that

x1/η = lim
t↓0

q(tx)

q(t)
= lim

t↓0

P{U < tx, V < tx}
P{U < t, V < t} = lim

t↓0

t2x2

t2
= x2,

so that η = 1/2. Then (2.8) holds with c(x, y) = xy and q1 ≡ 0.
The cases η ∈ (0, 1/2) and η ∈ (1/2, 1) correspond to asymptotically van-

ishing negative dependence and to asymptotically vanishing positive depen-
dence, respectively. As an example, consider the case of (asymptotically van-
ishing) positive dependence with x ∈ (0, 1). Then, the ratio q(tx)/q(t) equals
the conditional probability P (U < tx, V < tx | U < t, V < t). Due to the
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(asymptotically vanishing) positive dependence of U and V , this conditional
probability must be greater than in the case of exact independence of U and
V , i.e. x1/η = limt↓0 q(tx)/q(t) > x2, so that η > 1/2. The other cases can be
treated analogously.

Next we reinterpret the convergence (2.9) as a scaling law. This scaling
law plays an important role for the methods of statistical inference and model
validation developed in Chapters 3 and 4.

2.2.2 Reinterpretation as Scaling Law

Note that (2.9) and the homogeneity of c imply

lim
t↓0

P{U < tsx, V < tsy}
P{U < t, V < t} = c(sx, sy) = s1/ηc(x, y) (2.16)

for s, x, y ≥ 0. Combine (2.9) and (2.16) to obtain

lim
t↓0

P{U < tsx, V < tsy}
P{U < tx, V < ty} = s1/η. (2.17)

We obtain an analogous result for more general sets. The measure µ defined
by

µ
(
[0, x] × [0, y]

)
:= c(x, y) (2.18)

inherits the homogeneity of c, i.e. µ(tM) = t1/ηµ(M) for all bounded measur-
able sets M ⊂ [0,∞)2 and all t > 0. Further, recall that if x, y ∈ [0, 1],
(2.9) may be considered as the convergence of the conditional probability
P (U < tx, V < ty | U < t, V < t) to c(x, y), so that weak convergence
holds for the pertaining measures. Thus, by the Portmanteau theorem (see
e.g. Theorem 2.1 of Billingsley (1968)) and similar arguments as before,

lim
t↓0

P{(U, V ) ∈ tsB}
P{(U, V ) ∈ tB} = s1/η (2.19)

for all s ∈ [0, 1], provided that µ assigns positive mass to B ⊂ [0, 1]2 and has
no mass on the boundary of B.

Thus, the approximate scaling law P{(U, V ) ∈ sA}/P{(U, V ) ∈ A} ≈
s1/η holds for suitable sets A ⊂ [0, 1]2 nearby the origin. This means that
contracting a set A ⊂ [0, 1]2 by a contraction factor s ∈ [0, 1] leads to a
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Figure 2.1: The scaling law assumed by the model. The ratio of the prob-
abilities of the events sA and A is supposed to be approximately equal to
s1/η.

decrease of the pertaining probability by the factor s1/η. Figure 2.1 illustrates
the scaling law at work.

Having introduced this scaling law, we sketch an idea of how to estimate
the probability of a jointly large claim like p = P{X > u1, Y > u2} in the
ELTM. In fact, this idea is used in Section 3.3. Let

Ui := 1 − F1(Xi) and Vi := 1 − F2(Yi), i = 1, . . . , n, (2.20)

respectively. By means of the scaling law (2.17), we see that

p = P
{
U < 1 − F1(u1), V < 1 − F2(u2)

}

≈ r−1/η · P
{
U < r(1 − F1(u1)), V < r(1 − F2(u2))

}

≈ r−1/η · 1

n

n∑

i=1

1l{
Ui < r(1 − F1(u1)), Vi < r(1 − F2(u2))

} (2.21)

for “some appropriate r > 0”. We now consider the idea behind this approxi-
mation to see what “some appropriate r > 0” means. Usually, we are interested
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in the probability of a jointly large claim {U < 1 − F1(u1), V < 1 − F2(u2)}
with u1 and u2 so large that only a few or no observations with both compo-
nents above the pertaining threshold are available. The idea of (2.21) is to
inflate the set {U < 1 − F1(u1), V < 1 − F2(u2)} with factor r to obtain a
reasonable number of observations to base an estimator of p on. Then, by the
scaling law, the (estimated) probability of this inflated set is scaled down by
(an estimate of) the factor r−1/η. Hence, r > 0 must be chosen sufficiently
small to satisfy the approximate scaling law and sufficiently large to obtain
a reasonable number for the sum on the right hand side of (2.21). We have
presented the way we estimate 1−Fi(ui), i = 1, 2, in Sections 1.1.2 and 1.1.4.
Further, in order to obtain a suitable estimator of p based on (2.21), we substi-
tute Ui and Vi by empirical counterparts and present suitable estimators of η
in Section 3.1. The sketched procedure indicates that the analysis of the total
estimation error of an estimator of p is threefold – we must allow for the errors
occurring when estimating η and the marginals as well as for the error when
applying the approximate scaling law. This is done in Section 3.3. Further, in
Chapter 4, we establish a model validation tool that helps to decide whether
the scaling law holds.

Before we conclude this chapter with the proof of Corollary 2.2.3, we make
some remarks on the idea behind (2.21) in view of related models. Repre-
sentation (2.21) emphasizes that the ELTM – like the CMEVT by means of
Proposition 1.2.1 – separates modeling the joint tail distribution of X and
Y into two parts describing the tails of the marginal d.f.s F1 and F2 on the
one hand and the tail dependence structure (by η) on the other hand. The
reader who is familiar with other methods of modeling multivariate distri-
butions may recognize similarities with (parametric) copula approaches which
recently have enjoyed great popularity. (Recall that the OLTM and the ELTM
may also be considered as a (non-parametric) copula approach, since they as-
sume a condition on the copula Q, cf. Sections 2.1 and 2.2.1.) In contrast
to most copula approaches, however, the ELTM focusses on the distribution
tail(s) with respect to the marginal distributions and the dependence structure
and therefore allows a separate modeling of large claims with respect to the
marginal distributions and the dependence structure.

We present a copula approach which is rather closely related to the ELTM
and continue the discussion more thoroughly in Section 6.
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2.3 Proof of Corollary 2.2.3

For (i), choose y = x in (2.9) to obtain

c(tx, tx) = lim
s↓0

q(stx)

q(s)
= lim

s↓0

q(stx)

q(st)

q(st)

q(s)
= c(x, x)c(t, t),

which is Cauchy’s power equation with solution c(x, x) = xα for some α ∈ R.
Hence, by (2.9),

lim
t↓0

q(tx)

q(t)
= lim

t↓0

P{U < tx, V < tx}
q(t)

= c(x, x) = xα.

To see that the index α of the regular variation of q is indeed not less than 1,
note that

q(t) = P{U < t, V < t} ≤ P{U < t} = t

for sufficiently small t > 0.
To prove (ii), note that by the regular variation of q,

c(sx, sy) = lim
t↓0

P{U < tsx, V < tsy}
P{U < t, V < t}

= lim
t↓0

P{U < tsx, V < tsy}
P{U < ts, V < ts}

P{U < ts, V < ts}
P{U < t, V < t}

= c(x, y) lim
t↓0

q(ts)

q(t)
= s1/ηc(x, y)

for all s > 0 and all x, y ≥ 0, which proves the homogeneity of c. Further, for
x, y ∈ [0,∞)2 \ (0, 0), assume that c is not continuous. Then the measure µ,
introduced in (2.18), has positive mass on some point (x, y), i.e. µ{(x, y)} > 0.
Let t = max(x, y) > 0 and denote by E := {(x̄, ȳ) : max(x̄, ȳ) = t} the
boundary of the square (0, t]2 ∪ {(0, t)} ∪ {(t, 0)}. Then, since c(t, t) = t1/η

is continuous for all t > 0, µ(E) = c(t, t) − c(t−, t−) = 0, where f(x−, y−)
denotes the left hand limit of f at (x, y) in the sense of Definition A.1. Hence,
since (x, y) ∈ E, µ{(x, y)} = 0.





Chapter 3

Estimation in the Extended

Ledford and Tawn Model

In this chapter we present methods to estimate the model parameters and
the probability of jointly large claims p, defined by (1.23). From (2.21), it
is immediately clear that we need a suitable estimator for the coefficient of
tail dependence η. We address this issue in Section 3.1. The presentation
of the results on asymptotic normality of the considered estimators of η is
rather brief, since with the exception of one minor correction they are known
from Draisma et al. (2004). Thereafter, we establish asymptotic expansions
for these estimators which are necessary to prove the main results of Section
3.3 and Chapter 4. In Section 3.2 we attend to the estimation of c. We prove
that the suitably standardized process of the difference of c and the proposed
estimator of c converges to a centered Gaussian process. We conclude asymp-
totic normality for the proposed estimator of c(x, y) in both cases, asymptotic
independence and asymptotic dependence. Similar as with the estimation of
γ (and η, as we see in Section 3.1), the estimator of c is based on a fraction
of – in a certain sense – largest order statistics of the joint tail of U and V .
We discuss the important issue of an appropriate choice of the parameter that
fixes this fraction in Section 3.2.2, where we consider a random variable which
is suggested by the estimation method of η as a natural candidate for this
parameter and show that asymptotic normality still holds for this choice. In
Section 3.3 we establish asymptotic normality of an estimator of p if we use
the estimator (1.10) for the marginal tails and the estimators for η considered
in Section 3.1. As before, the number of observations used for the estimation
of p has to be suitably chosen. We discuss this issue in Section 3.3.2 and devise

31



32 Chapter 3. Estimation in the Extended Ledford and Tawn Model

a graphical tool to treat this problem appropriately. The proofs of all results
of this chapter are deferred to the final Section 3.4.

3.1 Estimation of the Coefficient of Tail De-

pendence η

As before, let {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} be a sample of i.i.d. claim sizes
and denote by F1 and F2 the marginal d.f.s of Xi and Yi, i = 1, . . . , n, respec-
tively. Further, recall from Section 2.2 the definitions (2.20) of Ui and Vi,
respectively, that we assumed Fj , j = 1, 2, to be tail continuous and that we
may take w.l.o.g. q(t) = Q(t, t) = P{U < t, V < t} in Condition 2.2.1.

3.1.1 The Hill Estimator and the Maximum Likeli-

hood Estimator

In (2.21) we gave an idea of how to obtain estimators of p. This equation
reveals that the estimation of η is a crucial step if we want to estimate p, see
also Section 3.3. We relate this problem to the estimation of the extreme value
index in a (generalized) Pareto model.

As in Draisma et al. (2004), we consider the random variables

Ti := min

(
1

Ui
,

1

Vi

)

,

i = 1, . . . , n. Denote by FT the d.f. of Ti, i = 1, . . . , n. We obtain the following
simple

3.1.1 Corollary. The function 1−FT (t) equals q (1/t) and is regularly vary-
ing at ∞ with index −1/η. △

Since Corollary 3.1.1 shows that the survival function 1 − FT satisfies the
condition (1.11) with index −1/η, we consider estimators of η of the same
type as those in Section 1.1.4. Recall that in this setting, the Hill estima-
tor m−1∑m

i=1 log
(
Tn−i+1:n/Tn−m:n

)
, where Ti:n, i = 1, . . . , n, are the order

statistics pertaining to Ti, and the maximum likelihood estimator as the first
component of the solution of (1.17) with Xi:n replaced with Ti:n are popular
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estimators for the extreme value index η with good asymptotic properties, cf.
Section 1.1.4. However, observe that these direct analogs to γ̂H

n and γ̂ML
n are

of little use, since the marginal d.f.s F1 and F2, which are necessary to cal-
culate Tn−i:n, i = 0, . . . ,m, are unknown. Therefore, we replace Ui and Vi,
i = 1, . . . , n, by empirical counterparts. Let

Ûi := 1 − RX
i

n+ 1
and V̂i := 1 − RY

i

n+ 1
, (3.1)

where RX
i and RY

i denote the ranks of Xi and Yi among (X1, X2, . . . , Xn) and
(Y1, Y2, . . . , Yn), respectively. Further, let

T
(n)
i := min

(
1

Ûi

,
1

V̂i

)

= min

(
n+ 1

n+ 1 −RX
i

,
n+ 1

n+ 1 −RY
i

)

and denote by T
(n)
i:n , i = 1, . . . , n, the pertaining order statistics. Hence, we

define the Hill estimator of η by

η̂H
n :=

1

m

m∑

i=1

log
T

(n)
n−i+1:n

T
(n)
n−m:n

, (3.2)

which also has good asymptotic properties, see Section 3.1.2. Here, m := mn

is (as j in the univariate case) an intermediate sequence (that is, m→ ∞ and
m/n→ 0 as n→ ∞) of the number of order statistics used to estimate η and
indeed depends on the sample size n. We have discussed an appropriate choice
of j in Section 1.1.4. Although the situation is slightly different for m, since
the random variables T

(n)
i are not i.i.d., the heuristic is the same.

Similarly, we replace the order statistics Xi:n with T
(n)
i:n , i = 1, . . . , n, (j

with m and γ with η, if you like) in (1.17) to obtain the maximum likeli-
hood estimator (MLE) η̂ML

n of η as the first component of the solution of the
resulting system of equations.

Observe that η̂H
n and η̂ML

n are based on the m + 1 largest order statis-
tics T

(n)
i ≥ T

(n)
n−m:n. Since T

(n)
i = 1/max

(
Ûi, V̂i

)
, it follows that we use

those data points
(
Ûi, V̂i

)
which lie within the square

(
0, 1/T

(n)
n−m:n

]2
to ob-

tain η̂H
n and η̂ML

n . (This is also clear from the simple equality m + 1 =
∑n

i=1 1l
{
Ûi ≤ 1/T

(n)
n−m:n, V̂i ≤ 1/T

(n)
n−m:n

}
, which holds if there is exactly one

i0 with T
(n)
i0

= T
(n)
n−m:n, see also Footnote 1 in Section 3.2.2.) Figure 3.1 indi-

cates such a square for an example which is examined in detail in Chapter 5.
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Figure 3.1: The points within the square
(
0, 1/T

(n)
n−m:n

]2
are used by the Hill

estimator η̂H
n and the MLE η̂ML

n .

3.1.2 Asymptotic Results on the Hill Estimator and

the Maximum Likelihood Estimator

In this section, we summarize results on the asymptotic normality of η̂H
n and

η̂ML
n and give confidence intervals for η and a test of the hypothesis η = 1.

With the exception of one minor correction, these results are known from
Draisma et al. (2004), in particular, see Theorems 2.1 and 2.2 and Section 4
of that paper. Therefore, the summary of these results is rather brief. Fur-
thermore, we establish asymptotic representations of η̂H

n and η̂ML
n which are

useful to prove the main results of Chapter 4.

Henceforth, by η̂n we mean either the Hill estimator η̂H
n or the MLE η̂ML

n .

Asymptotic Normality and Confidence Intervals

Suppose that

l = lim
t↓0

q(t)

t
= lim

t↓0
t1/η−1L(t),



3.1. Estimation of the Coefficient of Tail Dependence η 35

defined in (2.11), exists. Recall that l is precisely the left hand side of (1.27).
Therefore, this condition is always satisfied with l = 0 if U and V are asymp-
totically independent.

3.1.2 Theorem. (Theorem 2.1 of Draisma et al. (2004)) Assume that
Condition 2.2.1 holds and that the function c has first-order partial derivatives
cx := ∂c/∂x and cy := ∂c/∂y if U and V are asymptotically dependent. Assume
further that m is an intermediate sequence such that

√
mq1

(
q←(m/n)

)
→0 as

n→∞. Then
√
m
(
η̂n−η

)
converges to a normal distribution N

(
0, σ2

η̂n

)
, where

σ2
η̂n

:=







σ2
η̂H

n
:= η2

(
1 − l

)(
1 − 2lcx(1, 1)cy(1, 1)

)
if η̂n = η̂H

n ,

σ2
η̂ML

n
:= (1 + η)2

(
1 − l

)(
1 − 2lcx(1, 1)cy(1, 1)

)
if η̂n = η̂ML

n .

(3.3)

△
3.1.3 Remarks.

(i) The convergence

√
mq1

(
q←(m/n)

)
→ 0 (3.4)

requires that m may not converge too fast to ∞. It plays a similar role
as the condition

√
jAi(n/j) → 0, i = 1, 2, for γ̂H

n and γ̂ML
n (cf. Section

(1.1.4)), respectively, and is a rather weak assumption, see Remark 2.1(i)
of Draisma et al. (2004).

(ii) Observe that σ2
η̂H

n
= η2 and σ2

η̂ML
n

= (1 + η)2 if l = 0, i.e. iff U and

V are asymptotically independent (which is always satisfied if η < 1).
Moreover, σ2

η̂H
n

≤ η2 ≤ 1 and σ2
η̂ML

n
≤ (1 + η)2 ≤ 4 is always true, since

l ∈ [0, 1]. Observe further that σ2
η̂H

n
≤ σ2

η̂ML
n

so that, as a rule, we prefer

to work with η̂H
n in the applications in Chapter 5.

(iii) Note the similarity to the variance of the Hill estimator and the maximum
likelihood estimator of γ: from (1.15) and (1.18) we know that σ2

γ̂H
n

= γ2

and σ2
γ̂ML

n
= (1+γ)2, which coincides with σ2

η̂H
n

= η2 and σ2
η̂ML

n
= (1+η)2

in the case of asymptotic independence.

△
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The following theorem provides consistent estimators for the unknown
quantities in the asymptotic variance σ2

η̂n
.

3.1.4 Theorem. (slight correction of Theorem 2.2 of Draisma et al.
(2004)) Let

l̂ :=
m

n
T

(n)
n−m:n,

ĉx(1, 1) :=
k̂5/4

n

(

T
(n,k̂−1/4)
n−m:n − T

(n)
n−m:n

)

with k̂ := m/l̂ and T
(n,u)
i:n , i = 1, . . . , n, denoting the order statistics of

T
(n,u)
i := min

(
1 + u

Ûi

,
1

V̂i

)

.

Define ĉy(1, 1) analogously to ĉx(1, 1) with the roles of Ûi and V̂i interchanged.
If the conditions of Theorem 3.1.2 hold then

l̂→l

in probability. If, in addition, U and V are asymptotically dependent, then

ĉx(1, 1)→cx(1, 1) and ĉy(1, 1)→cy(1, 1)

in probability. Moreover, the estimator

σ̂2
η̂n

:=







σ̂2
η̂H

n
:=
(
η̂H

n

)2
(

1 − l̂
)(

1 − 2l̂ĉx(1, 1)ĉy(1, 1)
)

if η̂n = η̂H
n ,

σ̂2
η̂ML

n
:=
(
1 + η̂ML

n

)2
(

1 − l̂
) (

1 − 2l̂ĉx(1, 1)ĉy(1, 1)
)

if η̂n = η̂ML
n

is consistent for σ2
η̂n

for all η ∈ (0, 1]. △

3.1.5 Remarks.

(i) The “slight correction” is that U and V must be asymptotically dependent
to prove consistency of ĉx(1, 1) and ĉy(1, 1). We show in Section 3.4.1
that η = 1 is not sufficient in the reasoning of the proof of Theorem 2.2
of Draisma et al. (2004).
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(ii) Note that if c is (totally) differentiable (which is satisfied if cx and cy are
continuous), differentiating c(tx, ty) = t1/ηc(x, y) with respect to t yields

xcx(tx, ty) + ycy(tx, ty) = t1/η−1c(x, y)/η. (3.5)

In particular, cx(1, 1) + cy(1, 1) = 1/η, so that 1 − ĉx(1, 1) is consistent
for cy(1, 1) if l > 0, but in general ĉx(1, 1) + ĉy(1, 1) 6= 1.

△

From the Theorems 3.1.2 and 3.1.4 we conclude that
[

η̂n −m−1/2σ̂η̂nΦ←(1 − α/2), η̂n +m−1/2σ̂η̂nΦ←(1 − α/2)
]

, (3.6)

where Φ← is the quantile function of a standard normal distribution, is a two-
sided confidence interval for η with asymptotic confidence level 1 − α. An
analogous one-sided statistical test rejects the null hypothesis η = 1, if

√
m (1 − η̂n)

σ̂η̂n

> Φ←(1 − α). (3.7)

Asymptotic Representation of η̂n

Denote by Qn the tail empirical quantile function pertaining to T
(n)
i , i =

1, . . . , n, that is,

Qn(t) := T
(n)

n−⌊mt⌋:n, 0 < t ≤ 1, (3.8)

where we denote by ⌊a⌋ the largest integer less than or equal to a ∈ R.
Further, we define a Gaussian process which possesses a somewhat different

(covariance) structure in the case of asymptotic independence than in the case
of asymptotic dependence of U and V . As in Section 6 of Draisma et al.
(2004), let W1 and W2 be Gaussian processes with mean zero and covariance
structure given by

E
[
W1(x1, y1)W1(x2, y2)

]
= c(x1 ∧ x2, y1 ∧ y2) (3.9)

and

E
[
W2(x1, y1)W2(x2, y2)

]
= x1 ∧ x2 + y1 ∧ y2 − lc(x1, y1)

−lc(x2, y2) + lc(x1 ∨ x2, y1 ∨ y2), (3.10)
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respectively. Define the Gaussian process W by

W = W1 (3.11)

if l = 0 (i.e. iff U and V are asymptotically independent) and by

W (x, y) =
1√
l

[
W2(x, 0) +W2(0, y) −W2(x, y)

]

−
√
lcx(x, y)W2(x, 0) −

√
lcy(x, y)W2(0, y), (3.12)

if l > 0 (i.e. iff U and V are asymptotically dependent). This definition of
W suggests that there are always two parts to prove a result in which W
is involved, where the part for asymptotically dependent U and V might be
substantially more complicated. In the proofs of the main results of Section 3.2
and Chapter 4 we see that this is true. In the proof of the following Lemma,
however, we can refer to an existing result to overcome this obstacle. As usual,
we call a process Z̃ a version of Z, if Z̃ and Z have the same finite dimensional
distributions.

3.1.6 Lemma. Assume that the conditions of Theorem 3.1.2 hold. Then
there are versions of η̂n and W such that

η̂n = η +m−1/2

∫ 1

0

ηt−(η+1)W (tη, tη)νη(dt) + oP (m−1/2), (3.13)

where the measure νη is defined by

νη(dt) :=







νH
η (dt) := tηdt− ε1(dt) if η̂n = η̂H

n ,

νML
η (dt) :=

(
η + 1

η

)2
(
tη − (2η + 1)t2η

)
dt+

η + 1

η
ε1(dt) if η̂n = η̂ML

n

(3.14)

with ε1 denoting the Dirac measure concentrated in 1. △
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3.1.7 Corollary. Under the conditions of Lemma 3.1.6,

1

η̂n
=

1

η
− m−1/2

η

∫ 1

0

t−(η+1)W (tη, tη)νη(dt) + oP (m−1/2). (3.15)

△

3.1.8 Remarks.

(i) Observe (from the proof of Lemma 3.1.6 and Corollary 3.1.7) that the
existence of a suitable version of η̂n follows from the existence of a suitable
version of Qn.

(ii) Further, note the important role of Lemma 6.2 of Draisma et al. (2004)
in the proof of Lemma 3.1.6 and Corollary 3.1.7. First, the versions of
Qn and W are exactly those mentioned in Lemma 6.2 of Draisma et al.
(2004). Second, Lemma 6.2 of Draisma et al. (2004) is the abovemen-
tioned result that holds for both cases, asymptotic independence and
asymptotic dependence of U and V .

△

3.2 Estimation of the Limiting Function c

From (2.9) for some sufficiently small r,

c(x, y) ≈ P {U < rx, V < ry}
P {U < r, V < r} ≈

n∑

i=1

1l{
Ui < rx, Vi < ry

}

n∑

i=1

1l{
Ui < r, Vi < r

}

.

Similar as when estimating η, we replace Ui = 1−F1(Xi) and Vi = 1−F2(Yi)
with the rank standardized approximations Ûi = 1 − RX

i /(n + 1) and V̂i =
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1 −RY
i /(n+ 1) when estimating c. Hence, define

čn(x, y) :=

n∑

i=1

1l{
Ûi < rx, V̂i < ry

}

n∑

i=1

1l{
Ûi < r, V̂i < r

}

for x, y > 0 and r > 1/T
(n)
n:n = mini

(
1/T

(n)
i

)
= mini

(
max

(
Ûi, V̂i

))
. In this

section we establish the convergence of the suitably standardized process čn −
c. Section 3.2.1 contains the according theorem, a corollary that establishes
the asymptotic normality of čn(x, y) and a result on estimators required to
estimate the asymptotic variance of čn(x, y) if U and V are asymptotically
dependent. In Section 3.2.2, we see that this result remains true if we choose
the random variable 1/T

(n)
n−m:n for r. This is a natural choice, since then,

similar as when estimating η by η̂H
n and η̂ML

n , respectively, the m largest order
statistics of Ti, i = 1, . . . , n, are used to estimate c. Further, this choice
proves useful and natural for estimating p (Section 3.3) and when validating
the scaling law with the method proposed in Chapter 4.

3.2.1 Uniform and Pointwise Limits

Recall the definitions (2.11) and (3.9) – (3.12) of l and W , respectively. The
following theorem establishes the convergence of the suitably standardized pro-
cess čn −c to a centered Gaussian process in D∗

(
[0,∞)2

)
, which is a modifica-

tion of the bivariate Skorohod space D
(
[0,∞)2

)
, both are defined in Appendix

A.

3.2.1 Theorem. Assume that Condition 2.2.1 holds with a function c that
has first order partial derivatives cx and cy. Suppose that r → 0 such that
m̃ := nq(r) satisfies

√
m̃ q1(r) → 0 as n→ ∞. Then,

√
m̃
(
čn − c

)
→W − cW (1, 1)

weakly in D∗
(
[0,∞)2

)
. △
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3.2.2 Remark. Observe that since r = q←(m̃/n), the condition
√
m̃ q1(r) →

0 as n→ ∞ is an analog to (3.4). △

It follows that
√
m̃
(
čn(x, y) − c(x, y)

)
is an asymptotically centered normal

random variable for all x, y > 0.

3.2.3 Corollary. Under the conditions of Theorem 3.2.1,

√
m̃
(
čn(x, y) − c(x, y)

) D−→ N
(
0, σ2

x,y

)

for all x, y ∈ (0, 1], where

σ2
x,y = c(x, y) − 2lcx(x, y)c(x, y) − 2lcy(x, y)c(x, y)

+lxc2x(x, y) + lyc2y(x, y) + 2l2cx(x, y)cy(x, y)c(x, y)

+2c(x, y)
(

lcx(x, y)
[
c(x, 1) − xcx(1, 1) − lcyc(x, 1)

]

−c(x, y)(1 − l) + lcy(x, y)
[
c(1, y) − ycy(1, 1) − lcxc(1, y)

])

+c2(x, y)
(

1 − 2l
(
cx(1, 1) + cy(1, 1)

)
+ l
(
cx(1, 1) + cy(1, 1)

)2

−2lcx(1, 1)cy(1, 1)(1 − l)
)

. (3.16)

△

3.2.4 Remarks.

(i) Observe that

σ2
x,y = c(x, y)

(
1 − c(x, y)

)
(3.17)

if l = 0, i.e. iff U and V are asymptotically independent. Further, if
cx(1, 1) + cy(1, 1) = 1 when l > 0 (cf. Remark 3.1.5 (ii)), then the last
two lines of (3.16) simplify to c2(x, y)

(
1 − 2lcx(1, 1)cy(1, 1)

)
(1 − l).
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(ii) For arbitrary x, y > 0, Corollary 3.2.3 holds with a more complicated
asymptotic variance, see (3.49) and (3.51).

△

From Corollary 3.2.3 and (3.17) we conclude that if l = 0,

[

čn(x, y) −m−1/2
√

čn(x, y)
(
1 − čn(x, y)

)
Φ←(1 − α/2),

čn(x, y) +m−1/2
√

čn(x, y)
(
1 − čn(x, y)

)
Φ←(1 − α/2)

]

(3.18)

is a two-sided confidence interval for c(x, y) with asymptotic confidence level
1 − α.

In order to construct confidence intervals for c if l > 0, we need consistent
estimators for cx(x, y) and cy(x, y), respectively. Recall the homogeneity (2.14)
of c and observe that

cx(tx, ty) = lim
ε↓0

c(tx+ tε, ty) − c(tx, ty)

tε
= t1/η−1cx(x, y) (3.19)

to see that the derivatives cx and cy are homogeneous of order 1/η−1. Hence,
it is sufficient to obtain consistent estimators for cx(x, 1) and cy(x, 1). (Recall
further that η = 1 if U and V are asymptotically dependent, so that c is
homogeneous of order 1 and cx and cy are homogeneous of order 0.) In the
following Theorem we present such estimators which are readily obtained by a
generalization of ĉx(1, 1) and ĉy(1, 1), respectively, which were established in

Theorem 3.1.4. Recall the definitions of l̂, k̂ and T
(n,u)
i:n of Theorem 3.1.4.

3.2.5 Theorem. Define

ĉx(x, 1) :=
k̂5/4

n

(

T
(n,x−1+k̂−1/4)
n−m:n − T

(n,x−1)
n−m:n

)

and ĉy(x, 1) analogously with the roles of Ûi and V̂i interchanged. If U and V
are asymptotically dependent and the conditions of Theorem 3.2.1 hold, then

ĉx(x, 1) → cx(x, 1) and ĉy(x, 1) → cy(x, 1)

in probability. Moreover, let
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ĉx(x, y) := y1/η̂n−1ĉx(x/y, 1), ĉy(x, y) := y1/η̂n−1ĉy(x/y, 1),
ĉx := ĉx(1, 1), ĉy := ĉy(1, 1).

Further, let

σ̂2
x,y := čn(x, y)(1 − čn(x, y))

if U and V are asymptotically independent and

σ̂2
x,y := čn(x, y) − 2l̂ĉx(x, y)čn(x, y) − 2l̂ĉy(x, y)čn(x, y)

+l̂xĉ2x(x, y) + l̂yĉ2y(x, y) + 2l̂2ĉx(x, y)ĉy(x, y)čn(x, y)

−2čn(x, y)

[

čn(x, y)(1 − l̂) − l̂ĉx(x, y)
[
čn(x, 1) − xĉx − l̂ĉy čn(x, 1)

]

−l̂ĉy(x, y)
[
čn(1, y) − yĉy − l̂ĉxčn(1, y)

]
]

+č2n(x, y)(1 − 2l̂ĉxĉy)(1 − l̂)

if U and V are asymptotically dependent. Then σ̂2
x,y is a consistent estimator

for σ2
x,y. △

3.2.6 Remark. We see in the following Section 3.2.2 that Theorem 3.2.1
and Corollary 3.2.3 still hold when čn is substituted with ĉn, defined in (3.21).
Thus, Theorem 3.2.5 also holds when čn is replaced with ĉn. △

From Corollary 3.2.3 and Theorem 3.2.5 we conclude that

[

čn(x, y) −m−1/2σ̂x,yΦ←(1 − α/2), čn(x, y) +m−1/2σ̂x,yΦ←(1 − α/2)
]

.

(3.20)

is a two-sided confidence interval for c(x, y) with asymptotic confidence level
1 − α.
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3.2.2 Choice of the Tail-Observations Used

To estimate c, we have to choose an appropriate r. We now motivate such
a choice by reconsidering the estimators of η presented in Section 3.1. In
particular, this choice will prove useful when validating the scaling law with
the method proposed in Chapter 4. Recall that both the Hill estimator η̂H

n

and the MLE η̂ML
n are based on the m + 1 largest order statistics T

(n)
n−j+1:n,

j = 1, . . . ,m + 1, of the T
(n)
i . This means that we use those (Ûi, V̂i) for

the estimation of η which lie within the square
(
0, 1/T

(n)
n−m:n

]2
. Hence, from

this point of view, a natural choice is the random variable r = 1/T
(n)
n−m:n.

Therefore, we define

ĉn(x, y) :=

n∑

i=1

1l{
Ûi < x/T

(n)
n−m:n, V̂i < y/T

(n)
n−m:n

}

n∑

i=1

1l{
Ûi < 1/T

(n)
n−m:n, V̂i < 1/T

(n)
n−m:n

}

(3.21)

for all x, y > 0. Theorem 3.2.1 suggests that one can prove that
√
m̃
(
ĉn −

c
)

converges to a centered Gaussian process. We show that this also holds
when m̃ is replaced with m. First, however, we give some comments on the
relation of the particular choice m̃ = nq

(
1/T

(n)
n−m:n

)
and m, which reveal that

the similarity of the notations of these quantities is not by accident. By the
previously introduced choice of r,

m̃ = nq
(
1/T

(n)
n−m:n

)
= nP {U < r, V < r}

∣
∣
r=1/T

(n)
n−m:n

also becomes a random variable. If we assume that there is exactly one i0 with1

T
(n)
i0

= T
(n)
n−m:n, we have for the non-random value m the simple equality

m =
n∑

i=1

1l{
Ûi < 1/T

(n)
n−m:n, V̂i < 1/T

(n)
n−m:n

}.

1Under the assumption that F1 and F2 are tail continuous, the probability that there are

no ties between T
(n)
i:n , i = n − m, . . . , n, (and hence exactly one such i0) converges to 1;

see also the comments made in the proof of Theorem 3.2.1.
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and thus

m̃

m
=

nP {U < r, V < r}
n∑

i=1

1l{
Ûi < r, V̂i < r

}

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
r=1/T

(n)
n−m:n

.

After these considerations, it is not surprising that a by-product of the proof
of the following Theorem 3.2.7 is that m̃/m→1 in probability as n→ ∞.

Before we state the announced main result of this section, recall Remark
3.1.5 (ii), where we obtained that

xcx(x, y) + ycy(x, y) = c(x, y)/η (3.22)

if c is (totally) differentiable.

3.2.7 Theorem. Assume that Condition 2.2.1 holds with a function c that
has first order partial derivatives cx and cy which satisfy (3.22). Suppose, as
in Theorem 3.1.2, that

√
mq1

(
q←(m/n)

)
→ 0 as n→ ∞. Then,

√
m
(
ĉn − c

)
→W − cW (1, 1)

weakly in D∗
(
[0,∞)2

)
. △

Of course, the analog to Corollary 3.2.3 holds.

3.2.8 Corollary. Under the conditions of Theorem 3.2.7,

√
m
(
ĉn(x, y) − c(x, y)

) D−→ N
(
0, σ2

x,y

)

for all x, y ∈ (0, 1] with the variance σ2
x,y defined by (3.16). △

3.2.9 Remark. Remark 3.2.4 (ii) applies analogously. △

The consistency of ĉn(x, y) is important for the construction of the graph-
ical tool for model validation in Chapter 4 and is used in the applications of
Chapter 5.

Finally, we conclude from Theorem 3.2.7 that when we substitute č with
ĉ in (3.18) and (3.20), the resulting intervals are still two-sided confidence
intervals for c(x, y) with asymptotic confidence level 1 − α.
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3.3 Estimation of the Probability of Jointly

Large Claims p

By (2.21), namely

p ≈ r−1/η · 1

n

n∑

i=1

1l{
Ui < r(1 − F1(u1)), Vi < r(1 − F2(u2))

} (3.23)

for all r sufficiently small to satisfy the approximate scaling law and sufficiently
large to obtain a reasonable number for the sum on the right hand side of
(3.23), we have started to motivate an estimator for p. If we accept (3.23)
as the starting point for constructing estimators for p, we have to substitute
Ui and Vi as well as F1 and F2 by suitable estimators. Recall from Sections
3.1 and 3.2, when estimating η and c, we have replaced Ui and Vi by their
empirical counterparts Ûi = 1−RX

i /(n+1) and V̂i = 1−RY
i /(n+1). In Section

1.1.2, we briefly discussed the generalized Pareto model in the univariate EVT.
As there, we assume that F1 and F2 belong to the domain of attraction of a
univariate extreme value distribution. Denote by F̂1,n and F̂2,n the generalized
Pareto estimators (1.10) of the tails of the marginal d.f.s F1 and F2. Then,
continuing (3.23),

p ≈ r−1/η̂n

n

n∑

i=1

1l{
Ûi < r

(
1 − F̂1,n(u1)

)
, V̂i < r

(
1 − F̂2,n(u2)

)} =: p̂n (3.24)

which motivates p̂n as an estimator for p. The procedure to obtain p̂n may thus
be summarized as follows. First, estimate the distribution of the marginals
by an appropriate choice of ji, i = 1, 2, where ji denotes the number of order
statistics used for the estimators F̂i,n(ui), i = 1, 2, cf. Sections 1.1.2 and 1.1.4.
Second, calculate (Ûi, V̂i) and estimate η by an appropriate choice of m, cf.
Section 3.1. Third, choose an appropriate r and calculate p̂n. When estimating
1 − F1(u1) and η, estimation errors occur. In Section 3.3.1, we establish the
asymptotic normality of p̂n if the one or the other of these estimation errors
dominates. The appropriate choice of r is discussed in Section 3.3.2, where we
devise a graphical tool to select r. First, however, we look at a generalization
of p̂n and an estimator of p which is based on a different standardization of
the observations Xi and Yi when approximating Ui and Vi in (3.23).

The concept of the construction of p̂n is readily extended to estimators
for the probability of more general jointly large events like P{(X,Y ) ∈ C}
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for tail events C that satisfy2 (x, y) ∈ C ⇒ [x,∞] × [y,∞] ⊂ C. Define the
transformed failure set D :=

{(
1 − F1(x), 1 − F2(y)

)
| (x, y) ∈ C

}
which is

estimated by D̂n :=
{(

1 − F̂1,n(x), 1 − F̂2,n(y)
)
| (x, y) ∈ C

}
. Then, one may

motivate an estimator for P{(X,Y ) ∈ C} with tail event C by

P{(X,Y ) ∈ C} = P{(U, V ) ∈ D} ≈ r−1/ηP{(U, V ) ∈ rD}

≈ r−1/η̂n

n

n∑

i=1

1l{(
Ûi, V̂i

)
∈ rD̂n

}.

Besides p̂n, there is another estimator worth considering. Instead of using
the approximations Ûi and V̂i to Ui and Vi that are based on ranks, one can
use estimators Ũi := 1 − F̂1,n(Xi) and Ṽi := 1 − F̂2,n(Yi), which are based on
the GPD approximations of the marginal tails. The resulting estimator of p is

p̃n :=
r−1/η̂n

n

n∑

i=1

1l{
Ũi < r

(
1 − F̂1,n(u1)

)
, Ṽi < r

(
1 − F̂2,n(u2)

)}.

For the generalization of p̃n to an estimator of P{(X,Y ) ∈ C} with C as
defined above, consistency is proved in Section 3 of Draisma et al. (2004).

3.3.1 Asymptotic Normality and Confidence Inter-

vals

Under weak assumptions on F1 and F2, we prove asymptotic normality of
p̂n and construct confidence intervals for p. Denote by σ2

γ̂i,n
the asymptotic

variances of estimators γ̂i,n of the extreme value indices γi, i = 1, 2, of X and
Y , respectively.

3.3.1 Theorem. Assume that the conditions of Theorem 3.1.2 hold with
a function q1 that is regularly varying with an index τ > 0 and that (1.21)
when xn, j and σ2

γ̂n
are replaced with ui = ui,n, ji and σ2

γ̂i,n
, i = 1, 2, holds.

Assume further that as n→ ∞, the asymptotic properties

2This property is rather a technical condition than a restriction. It merely means that we
only allow events C, which possess the property that if a claim (x, y) pertains to C then
a claim with both components larger must pertain to C, too.
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(i) ui = ui,n → F←i (1), i = 1, 2,

(ii)
1 − F2(u2)

1 − F1(u1)
→ λ ∈ (0,∞),

(iii) r = rn → ∞,

(iv) nq
(
r(1 − F1(u1))

)
→ ∞ and

(v) q1
(
r(1 − F1(u1))

)
= o

((
n q(r(1 − F1(u1))

)−1/2)

are satisfied. Moreover, suppose that either

m log−2 r = O
(
n q(r(1 − F1(u1))

)
(3.25)

or

ji log−2
( ji
n(1 − Fi(ui))

)

= O
((
n q(r(1 − Fi(ui))

)1/2)
, i = 1 or 2, (3.26)

holds. Then,

η2m1/2

log r
log

p̂n

p
∼ m1/2(η̂n − η)

D−→ N
(
0, σ2

η̂n

)
(3.27)

if

j−1
i log2

( ji
n(1 − Fi(ui))

)

= O(m−1 log2 r), i = 1, 2, (3.28)

whereas

c(1, λ)

cx(1, λ)
· γ1j

1/2
1

log j1
n(1−F1(u1))

log
p̂n

p

∼ γ1j
1/2
1

log j1
n(1−F1(u1))

(
1 − F̂1,n(u1)

1 − F1(u1)
− 1

)

D−→ N
(
0, σ2

γ̂1,n

)
(3.29)

if

j1 = o(j2) and j1 log−2
( j1
n(1 − F1(u1))

)

= o(m log−2 r) (3.30)
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and

λ
c(1, λ)

cy(1, λ)
· γ2j

1/2
2

log j2
n(1−F2(u2))

log
p̂n

p

∼ γ2j
1/2
2

log j2
n(1−F2(u2))

(
1 − F̂2,n(u2)

1 − F2(u2)
− 1

)

D−→ N
(
0, σ2

γ̂2,n

)
(3.31)

if

j2 = o(j1) and j2 log−2
( j2
n(1 − F2(u2))

)

= o(m log−2 r). (3.32)

△

We shed light on this seemingly messy bunch of conditions in the following
Remarks 3.3.2, where we start with noting that the assumptions (i) – (v) are
natural. Further, we comment on the conditions (3.25), (3.26), (3.28), (3.30)
and (3.32) which are concerned with the interplay of the estimation (and to
some extent approximation) errors occurring when using p̂n to estimate p.

3.3.2 Remarks.

(i) Assumption (i) ensures that 1 − Fi(ui) → 0 and p = pn → 0, which
is necessary (and reasonable) when applying asymptotic methods to ex-
trapolate outside the range of available data. In their Section 4.3, p. 134,
de Haan and Ferreira (2006) briefly discuss this issue in a univariate set-
ting (where n(1 − Fi(ui)) = o(ji), i = 1, 2, is the appropriate condition,
see also Section 1.1.4, in particular (1.20)).

(ii) While assumption (i) relates ui,n and n, assumption (ii) claims that the
speed of convergence of u1,n and u2,n to infinity may not be too different
with respect to the pertaining marginal exceedance probabilities. In
other words, as Draisma et al. (2004) have formulated in a more general
setting, assumption (ii) “essentially means that the convergence of the
failure set in the x- and the y-direction is balanced”.

(iii) In view of the motivation (2.21) for p̂n, the convergence r = rn → ∞
is a natural consequence. Loosely speaking, the larger ui,n, the fewer
observations of a jointly large claim we have and the larger r must be
to obtain a reasonable number of observations used for p̂n. (See also the
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following Section 3.3.2 and the applications in Chapter 5.) Therefore, the
convergence r → ∞ is a consequence of ui,n → ∞ and thus a reasonable
and necessary condition in an asymptotic setting.

(iv) Recall that q(t) = P{U < t, V < t} to see that assumption (iv) is
also a natural consequence of the motivation (2.21) for p̂n. Roughly
speaking, it means that the number of observations used to estimate
P{U < r(1−F1(u1)), V < r(1−F2(u2))} converges to ∞, which is again
reasonable and necessary in an asymptotic setting.

(v) Assumption (v) requires the sequence r not to converge too fast to ∞
in relation to the marginal exceedance probability (and thus to u1). In
particular, together with assumption (iv), assumption (v) implies r(1 −
F1(u1)) → 0.

(vi) Theorem 3.3.1 further requires that (3.25) or (3.26) holds. In (3.25)
(and analogously in (3.26)), the intermediate sequence of the number m
of order statistics on which η̂n is based, may be at most of the order
of the intermediate sequence n q(r(1 − F1(u1)). This sequence may be
considered as pertaining to the error that is specific to p̂n, i.e. the error
that is not caused by the estimation of η or the marginal distributions.
For the role of this sequence, see also the proof of Theorem 3.3.1.

(vii) Assumptions (3.28) and (3.30) then determine (the variance of) the lim-
iting distribution. If the error when estimating η dominates the errors
when estimating the marginal distributions, i.e. if (3.28) holds, then this
is reflected in the according asymptotic variance of the limiting distribu-
tion. The analogous (converse) interpretation is valid for (3.30), where
j1 = o(j2) of (3.30) requires that when estimating the marginal dis-
tributions, the error when estimating F1(u1) dominates the error when
estimating F2(u2). In j2 = o(j1) of (3.32), it is the other way around.

△

Depending on the choice of the estimator for η and whether U and V
are asymptotically (in)dependent, we obtain more or less complicated looking
confidence intervals. In general, it follows from Theorem 3.3.1 that if (3.27)
applies,
[

p̂n exp

(

− log r

m1/2
· ση̂n

η̂2
n

Φ←(1 − α/2)

)

, p̂n exp

(
log r

m1/2
· ση̂n

η̂2
n

Φ←(1 − α/2)

)]

,

(3.33)
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and if (3.29) applies,

[

p̂n exp

(

− ĉx(1, λ̂n)

ĉn(1, λ̂n)
·
log j1

n(1−F̂1,n(u1))

j
1/2
1

· σγ̂1,n

γ̂1,n
Φ←(1 − α/2)

)

,

p̂n exp

(
ĉx(1, λ̂n)

ĉn(1, λ̂n)
·
log j1

n(1−F̂1,n(u1))

j
1/2
1

· σγ̂1,n

γ̂1,n
Φ←(1 − α/2)

)]

, (3.34)

where λ̂n := (1 − F̂2,n(u2))/(1 − F̂1,n(u1)), is a confidence interval for p with
asymptotic confidence level 1−α. (An analogous confidence interval is valid if
(3.31) applies.) Recall that under the conditions of Theorem 3.3.1, σγ̂H

1,n
= γ1,

σγ̂H
2,n

= γ2 and that if U and V are asymptotically independent, ση̂H
n

= η.

Hence, in this case, (3.33) and (3.34) read as

[

p̂n exp

(

− log r

m1/2
· Φ←(1 − α/2)

η̂H
n

)

, p̂n exp

(
log r

m1/2
· Φ←(1 − α/2)

η̂H
n

)]

(3.35)

and

[

p̂n exp

(

− ĉx(1, λ̂n)

ĉn(1, λ̂n)
·
log j1

n(1−F̂1,n(u1))

j
1/2
1

· Φ←(1 − α/2)

)

,

p̂n exp

(
ĉx(1, λ̂n)

ĉn(1, λ̂n)
·
log j1

n(1−F̂1,n(u1))

j
1/2
1

· Φ←(1 − α/2)

)]

. (3.36)

If (3.31) applies,

[

p̂n exp

(

− λ̂n
ĉy(1, λ̂n)

ĉn(1, λ̂n)
·
log j2

n(1−F̂2,n(u2))

j
1/2
2

· Φ←(1 − α/2)

)

,

p̂n exp

(

λ̂n
ĉy(1, λ̂n)

ĉn(1, λ̂n)
·
log j2

n(1−F̂2,n(u2))

j
1/2
2

· Φ←(1 − α/2)

)]

. (3.37)

is a confidence intervals for p with asymptotic confidence level 1 − α in this
case.
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3.3.2 Choice of the Tail-Observations Used

We have discussed how to choose suitable parameters ji for the estimators
F̂i(ui), i = 1, 2, and m for the estimators η̂H

n and η̂ML
n to calculate p̂n and the

above confidence intervals. In this section we discuss an appropriate choice
of r. We have indicated in Section 2.2.2 how estimators like p̂n and p̃n, i.e.
based on (3.23), work. In the following, this is described more thoroughly and
a graphical tool to choose an appropriate r is devised.

Usually, we are interested in the probability of a jointly large claim {U <
1 − F1(u1), V < 1 − F2(u2)} where u1 and u2 are so large that only few or no
observations at all are available, i.e. the sum

∑n
i=1 1l{Ûi < 1 − F̂1,n(u1), V̂i <

1−F̂2,n(u2)} is a very small number or even equals 0. Then, r should be chosen
such that sufficiently many observations lie within the inflated set {Ûi < r(1−
F̂1,n(u1)), V̂i < r(1−F̂2,n(u2))} (see Figure 3.2), which is used by p̂n, cf. (3.24).
Hence, because of assumption (i) of Theorem 3.3.1, the expected number of

0  0.2 0.4 0.6 0.8 1  
0  

0.2

0.4

0.6

0.8

1  

Ûi

V̂
i

×r

Figure 3.2: The inflation of the set {Ûi < 1 − F1(u1), V̂i < 1 − F2(u2)}
with factor r. According to the scaling law assumed by the model (cf. Section
2.2.2, in particular Figure 2.1), the probability of the event associated with
this set is then estimated by multiplying the empirical probability of the event
associated with the inflated set with r−1/η̂n .



3.3. Estimation of the Probability of Jointly Large Claims p 53

observations within the inflated set {Ûi < r(1−F̂1,n(u1)), V̂i < r(1−F̂2,n(u2))}
must converge to infinity, which in turn is reflected in assumption (iv) of that
theorem. As a simplified rule, the larger ui, the larger r has to be chosen.
Then, by means of the scaling law assumed by the model (cf. Section 2.2.2), we
scale down the “empirical probability” n−1∑n

i=1 1l{Ûi < r(1− F̂1,n(u1)), V̂i <

r(1 − F̂2,n(u2))} with factor r−1/η̂n . Hence, on the other hand, we must note
that r may not be too large, since then the scaling law does not hold. In the
following Chapter 4, we establish a model validation tool that helps to decide
whether the scaling law holds. This tool checks the presence of the scaling law
in an arbitrary (rectangular) region.

We devise the following graphical tool to find an appropriate r. For ι =
1, . . . , n, we choose r = r(ι) as

r(ι) := inf

{

r > 0

∣
∣
∣
∣

n∑

i=1

1l{
Ûi < r

(
1 − F̂1,n(u1)

)
, V̂i < r

(
1 − F̂2,n(u2)

)} ≥ ι

}

and plot

(

ι,
(r(ι))−1/η̂n

n
· ι
)

. (3.38)

Here, the parameter r is reduced to an auxiliary value: plot (3.38) yields p̂n

depending on ι, the number of observations used for the estimation. For an
extreme value statistician, this is a familiar situation. For the according plots
when estimating the extreme value index γ (Section 1.1.4) and the coefficient
of tail dependence η (Section 3.1), we know that a typical (nice) plot exhibits
heavy fluctuations for a small number of observations used (due to large vari-
ance), followed by a rather stable region where both variance and bias are
moderate, before the bias causes a clear upward or downward trend of the
curve. We apply this heuristic to plot (3.38), too. Thus, ι ought to be chosen
in the region where the plot is rather stable. This graphical tool is applied in
Chapter 5.
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3.4 Proofs

3.4.1 Proofs for Section 3.1

Proof of Corollary 3.1.1

The first part of the assertion is simply obtained by

1 − FT (t) = P{Ti > t} = P {min (1/Ui, 1/Vi) > t}

= P {1/Ui > t, 1/Vi > t} = P {U < 1/t, V < 1/t} = q (1/t) .

Further, the regular variation of q at 0 with index 1/η means that

lim
r→∞

q(t/r)

q(1/r)
= t1/η for all t > 0

⇔ lim
r→∞

q(1/(tr))

q(1/r)
= t−1/η for all t > 0

⇔ lim
r→∞

1 − FT (tr)

1 − FT (r)
= t−1/η for all t > 0.

Proof of Theorem 3.1.4

Observe that we only need to show that the reasoning in the proof of The-
orem 2.2 of Draisma et al. (2004) requires that U and V are asymptotically
dependent. Therefore, we give some details of the important steps of this
proof.

We adopt the first lines from the proof of Theorem 2.2 of Draisma et al.
(2004), p. 272 until

k

n
T

(n,u)

n−⌊mt⌋:n =

(
t

c(1 + u, 1)

)−η

+OP (m−1/2). (3.39)

Here, as in Draisma et al. (2004), k is defined by k := ⌈nq←(m/n)⌉ and for
a ∈ R we denote by ⌊a⌋ the largest integer less than or equal to a and by ⌈a⌉
the smallest integer greater than or equal to a. From

ĉx(1, 1) =
k̂5/4

n

(

T
(n,k̂−1/4)
n−m:n − T

(n)
n−m:n

)
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follows for η = 1

ĉx(1, 1) =
k̂5/4

n
· n
k

(

c(1 + k̂−1/4, 1) − c(1, 1) +OP (m−1/2)
)

=
k̂

k

(

c(1 + k̂−1/4, 1) − c(1, 1)

k̂−1/4
+OP (k1/4m−1/2)

)

(3.40)

since k/k̂ → 1 in probability. Now note that in the case of asymptotic de-
pendence, i.e. q(t)/t → l > 0, we obtain by Theorem 1.5.12 of Bingham et al.
(1987) that

q←(lt)

t
→ 1

so that

q←(t)

t
→ 1

l
> 0 (3.41)

as t ↓ 0. Hence, with m/n → 0 as n → ∞ in mind, we can conclude from
k = ⌈n/m q←(m/n)m⌉ that k/m → 1/l, so k1/4/m1/2 → 0 and therefore
ĉx(1, 1) → cx(1, 1) in probability. The consistency of ĉy(1, 1) can be proved
along the same lines.

Proof of Remark 3.1.5(i)

The condition η = 1 is not sufficient to prove the consistency of ĉx(1, 1)
(and ĉy(1, 1)) as the following example reveals. Let q←(t) = tη| log t| and
m = log log n. (Note that q← is regularly varying at 0 with index η. The
existence of a generalized inverse q that varies regularly with index 1/η fol-
lows from Theorem 1.5.12 of Bingham et al. (1987).) Assume η = 1 and note
that q←(t)/t → ∞, so that due to (3.41), U and V must be asymptotically
independent. Then

k ∼ nq←(m/n)

∼ m
∣
∣ log |(log log n)/n|

∣
∣ = (log log n) | log log log n− log n|

∼ (log log n) logn,

so that k1/4/m1/2 → ∞, so that we cannot conclude consistency of ĉx(1, 1)
from (3.40).
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Proof of Lemma 3.1.6 and Corollary 3.1.7 for the Hill Estimator
η̂H

The proof is based on results of Drees (1998b), in particular Example 3.1, p.
103.

We may write

η̂H
n =

∫ 1

0

log
Qn(t)

Qn(1)
dt

and define functions yn : (0, 1] → R by

yn(t) :=
√
m
(
q←(m/n)Qn(t) − t−η) . (3.42)

Further, let the function y : (0, 1] → R be defined by

y(t) := ηt−(η+1)W (tη, tη). (3.43)

Hence,

η̂H
n − η =

∫ 1

0

log
t−η +m−1/2yn(t)

1 +m−1/2yn(1)
dt− η

=

∫ 1

0

log tη
t−η +m−1/2yn(t)

1 +m−1/2yn(1)
dt

=

∫ 1

0

log
1 +m−1/2yn(1) +m−1/2tηyn(t) −m−1/2yn(1)

1 +m−1/2yn(1)
dt

=

∫ 1

0

log

(

1 +m−1/2 t
ηyn(t) − yn(1)

1 +m−1/2yn(1)

)

dt.

In order to be able to proceed with analogous arguments as in Example
3.1 of Drees (1998b), we need the following Lemma. As usual, let C(0, 1]
and D(0, 1] denote the continuous functions on (0, 1] and the right continuous
functions with left limits existing at each point of (0, 1], respectively.

3.4.1 Lemma. For each ε > 0, the functions yn and y satisfy

yn ∈ Dη,h :=
{

z : (0, 1] → R

∣
∣
∣

lim
t↓0

tηh(t)z(t) = 0,
(
tηh(t)z(t)

)

t∈(0,1]
∈ D(0, 1]

}

,
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y ∈ Cη,h :=
{
z ∈ Dη,h | z|(0,1] ∈ C(0, 1]

}

and

t−η +m−1/2yn ∈ D̄η,h := {z ∈ Dη,h | z positive and non-increasing} ,

where h(t) := tε+1/2. △

Proof. Clearly, yn(t) =
√
m
(
q←(m/n)Qn(t) − t−η

)
∈ D(0, 1] and, for suf-

ficiently large n, t−η + m−1/2yn(t) = q←(m/n)Qn(t) is positive and non-
increasing. By (3.9) – (3.12) and the homogeneity (2.14) of c, we obtain that
(
W (tη, tη)

)

t>0
is a Brownian motion for l = 0 and can be represented as sum

of Brownian motions if l > 0. For the latter, note that
(
W2(t, 0)

)

t>0
and

(
W2(0, t)

)

t>0
are Brownian motions in t and that this is also true for the

process
(
W2(t, t)

)

t>0
, since E[W2(t1, t1)W2(t2, t2)] = (2 − l)(t1 ∧ t2). Hence,

(
W (tη, tη)

)

t>0
has almost surely continuous sample paths, so that y(t) =

ηt−(η+1)W (tη, tη) ∈ C(0, 1] and thus it only remains to show that tηh(t)yn(t),
tηh(t)y(t) and tηh(t)

(
t−η +m−1/2yn(t)

)
converge to 0 as t ↓ 0. Observe that

Qn(t) → Tn:n as t ↓ 0 so that

lim
t↓0

tηh(t)yn(t) = lim
t↓0

tε+1/2√m
(
q←(m/n)Qn(t)tη − 1

)
= 0.

Further, the law of the iterated logarithm for Brownian motion yields

lim
t↓0

tηh(t)y(t) = lim
t↓0

tε−1/2ηW (tη, tη) = 0

and finally

lim
t↓0

tηh(t)
(
t−η +m−1/2yn(t)

)
= lim

t↓0
tη+1/2+ε q←(m/n)Qn(t) = 0.

�

Moreover, according to Lemma 6.2 of Draisma et al. (2004), there exist
suitable versions of Qn and W such that

sup
0<t≤1

tη+1/2+ε|yn(t) − y(t)| = oP (1) (3.44)
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as n→ ∞ for all ε > 0. Thus,

∣
∣
∣
∣

∫ 1

0

tηyn(t)dt−
∫ 1

0

tηy(t)dt

∣
∣
∣
∣
≤
∫ 1

0

tη|yn(t) − y(t)|dt = oP (1). (3.45)

By Lemma 3.4.1 and (3.44) we may proceed as follows. Exactly as in Drees
(1998b), Example 3.1, p. 103, where z, β and λn play the roles of Qn, η and
m−1/2, we conclude that3

η̂H
n − η =

∫ 1

0

m−1/2 t
ηyn(t) − yn(1)

1 +m−1/2yn(1)
dt+ oP (m−1/2)

=
m−1/2

1 +m−1/2yn(1)

∫ 1

0

(tηyn(t) − yn(1))dt+ oP (m−1/2)

= m−1/2

∫ 1

0

(tηyn(t) − yn(1))dt+ oP (m−1/2),

such that (3.45) yields

η̂H
n − η = m−1/2

∫ 1

0

(tηy(t) − y(1))dt+ oP (m−1/2)

= m−1/2

∫ 1

0

y(t)νH
η (dt) + oP (m−1/2),

which proves Lemma 3.1.6. The Taylor expansion of the reciprocal of (3.13)
gives

1

η̂H
n

=
1

η
(
1 +m−1/2

∫ 1

0
t−(η+1)W (tη, tη)νH

η (dt)
)

+ oP (m−1/2)

=
1

η

(

1 −m−1/2

∫ 1

0

t−(η+1)W (tη, tη)νH
η (dt)

)

+ oP (m−1/2),

as asserted in Corollary 3.1.7.

3 When referring to Drees (1998b), note that zβ(t) = t−β , if β > 0 (p.99 of Drees (1998b)),

such that TH(zη + m−1/2yn) = η̂H
n .



3.4. Proofs 59

Proof of Lemma 3.1.6 and Corollary 3.1.7 for the Maximum
Likelihood Estimator η̂ML

n

The proof is based on results of Drees (1998a), Example 4.1, p. 197. The
properties of the functional TML, which is considered subsequently, are shown
there.

Since the MLE η̂ML
n has no explicit representation, we need to consider

the ML-functional TML : D̄η,h → R (denoted as T in Example 4.1 of Drees
(1998a)), which, applied to the tail empirical quantile function Qn, yields the
MLE η̂ML

n . With the scale invariance of TML and the definition (3.42) of yn,
we may write

η̂ML
n = TML(Qn) = TML

((
t−η

η
+
q←(m/n) Qn(t)

η
− t−η

η

)

t∈(0,1]

)

= TML

((
t−η

η
+
m−1/2yn(t)

η

)

t∈(0,1]

)

. (3.46)

Similar as in the proof of the Hill case, consider yn and y as defined in (3.43)
with the versions ofQn andW of Lemma 6.2 of Draisma et al. (2004), such that
(3.44) holds. Further, we know from Drees (1998a) that TML

(
(t−η/η)t∈(0,1]

)
=

η. Then it is shown in Example 4.1 of Drees (1998a) that we may continue
(3.46) to

η̂ML
n = TML

((
t−η

η

)

t∈(0,1]

)

+
m−1/2

η
T ′ML,(t−η/η)t∈(0,1]

(y) + oP (m−1/2)

= η +
m−1/2

η

(η + 1)2

η

∫ 1

0

(
tη − (2η + 1)t2η)(y(t) − y(1)

)
dt+ oP (m−1/2),

where T ′ML,(t−η/η)t∈(0,1]
is the Hadamard derivative of TML tangentially to

Cη,h at (t−η/η)t∈(0,1]. (Note that we proved in Lemma 3.4.1, that yn, y and

t−η/η +m−1/2yn(t)/η are in the spaces required in Drees (1998a).)

Now observe that

∫ 1

0

(
tη − (2η + 1)t2η)dt = − η

η + 1
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so that

η̂ML
n = η +m−1/2

∫ 1

0

y(t)νML
η (dt) + oP (m−1/2).

3.4.2 Proofs for Section 3.2

We first recapitulate Lemma 6.1 of Draisma et al. (2004), since we need this
result several times in this section. Define S(x, y) :=

∑n
i=1 1l{Ui ≤ x, Vi ≤ y}.

3.4.2 Lemma. (Lemma 6.1 of Draisma et al. (2004)) Under the condi-
tions of Theorem 3.2.1,

√
m̃

(
S(U⌊nq←(m̃/n)x⌋:n, V⌊nq←(m̃/n)y⌋:n)

m̃
− c(x, y)

)

(x,y)∈[0,∞)2
−→ W (3.47)

weakly in the bivariate Skorohod space D
(
[0,∞)2

)
. △

Proof of Theorem 3.2.1

Recall that for a ∈ R we denote by ⌊a⌋ the largest integer less than or equal to
a and by ⌈a⌉ the smallest integer greater than or equal to a. LetXi:n, Yi:n, Ui:n

and Vi:n, i = 1, . . . , n, denote the order statistics pertaining to Xi, Yi, Ui and
Vi, i = 1, . . . , n, with the conventions X0:n := Y0:n := −∞, U0:n := V0:n := 0,
Xj:n := Yj:n := ∞ and Uj:n := Vj:n := 1 for j > n. The first aim is to apply
Lemma 3.4.2 to the numerator

∑n
i=1 1l{Ûi < rx, V̂i < ry} and the denominator

∑n
i=1 1l{Ûi < r, V̂i < r} of čn(x, y).
Recall that Fi is assumed continuous on [ξi,∞) for some ξi < F←i (1),

i = 1, 2. If Xn−k:n ≥ ξ1, then Xn−k:n < Xn−k+1:n < . . . < Xn:n almost
surely (a.s.). Since r → 0, and thus X⌊n−(n+1)rξ0+1⌋:n → F←1 (1), it follows
that the probability that there are no ties between these order statistics tends
to 1, i.e. P{X⌊n−(n+1)rξ0+1⌋:n < X⌊n−(n+1)rξ0+1⌋+1:n < . . . < Xn:n} → 1 as

n → ∞ for all ξ0 > 0. Furthermore, the condition Ûi < rx is equivalent to
RX

i > n− (n+ 1)rx+ 1. If there are no ties, then this in turn is equivalent to
Xi > X⌊n−(n+1)rx+1⌋:n and thus to Ui < U⌈(n+1)rx⌉:n. Hence, together with
analogous arguments for Vi and Yi we see that čn(x, y) equals

c̃n(x, y) :=
S(U⌈(n+1)rx⌉−1:n, V⌈(n+1)ry⌉−1:n)

S(U⌈(n+1)r⌉−1:n, V⌈(n+1)r⌉−1:n)



3.4. Proofs 61

for all x, y ∈ (0, ξ0] with probability tending to 1 as n→ ∞ for all ξ0 > 0, i.e.

P
{
c̃n(x, y) = čn(x, y), ∀ x, y ∈ (0, ξ0]

} n→∞
−−−−→ 1.

It is therefore sufficient to prove the assertion of Theorem 3.2.1 for c̃n, i.e.√
m̃
(
c̃n − c

)
→ W − cW (1, 1) weakly in D∗

(
[0,∞)2

)
uniformly on compact

subsets of [0,∞)2.
In the proof of Theorem 2.3 of Drees and Huang (1998), it is shown that

(a version of) W2 has a.s. continuous sample paths.4 The continuity of the
sample paths of (a version of) W1 follows with similar arguments as in this
proof. (In Section 4.6.4 we also show that if l = 0, there are versions of W
which are transformed Brownian sheets.) Hence, since (a version of) W has
a.s. continuous sample paths, by the Skorohod-Dudley-Wichura representation
theorem (see e.g. Shorack and Wellner (1986), p. 47, and cf. Appendix A),
(3.47) holds a.s. uniformly on compact subsets of [0,∞)2 for suitable versions
of the processes

(
S(U⌊nrx⌋:n, V⌊nry⌋:n)

)

(x,y)∈[0,∞)2
and W . Hence, for these

versions,

c̃n(x, y) =
S(U⌈(n+1)rx⌉−1:n, V⌈(n+1)ry⌉−1:n)

S(U⌈(n+1)r⌉−1:n, V⌈(n+1)r⌉−1:n)

=
c(x, y) + m̃−1/2W (x, y) + o(m̃−1/2)

c(1, 1) + m̃−1/2W (1, 1) + o(m̃−1/2)

=
(

c(x, y) + m̃−1/2W (x, y) + o(m̃−1/2)
)

(

1 − m̃−1/2W (1, 1) + o(m̃−1/2)
)

a.s.,

i.e.
√
m̃
(
c̃n(x, y) − c(x, y)

)
= W (x, y) − c(x, y)W (1, 1) + o(1) a.s. (3.48)

uniformly on compact subsets of [0,∞)2.

Proof of Corollary 3.2.3

We start with the case l = 0, i.e. with asymptotically independent random
variables U and V . Then, (3.48) and the covariance structure (3.9) of W = W1

4To see that the process W of Drees and Huang (1998) is a version of our W2, note that
Drees and Huang (1998) denote the stable tail dependence function ℓ by l and recall (2.12).
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yield

σ2
x,y = var

[
W (x, y) − c(x, y)W (1, 1)

]

= E
[(
W (x, y) − c(x, y)W (1, 1)

)2
]

= c(x, y) − 2c(x, y)c(x ∧ 1, y ∧ 1) + c2(x, y), (3.49)

which is the asymptotic variance mentioned in Remark 3.2.4 (ii). The assump-
tion x, y ∈ (0, 1] yields the assertion.

It is convenient to first calculate E[W (x1, y1)W (x2, y2)] in the case of
asymptotic dependence. Recall from (3.19) that the derivatives cx and cy
are homogeneous of order 1/η − 1 and that η = 1 if U and V are asymp-
totically dependent, so that c is homogeneous of order 1 and cx and cy are
homogeneous of order 0.

E[W (x1, y1)W (x2, y2)]

= E
[

l−1[W2(x1, 0)W2(x2, 0) +W2(x1, 0)W2(0, y2) −W2(x1, 0)W2(x2, y2)

+W2(0, y1)W2(x2, 0) +W2(0, y1)W2(0, y2) −W2(0, y1)W2(x2, y2)

−W2(x1, y1)W2(x2, 0) −W2(x1, y1)W2(0, y2) +W2(x1, y1)W2(x2, y2)
]

−cx(x2, y2)
[
W2(x1, 0)W2(x2, 0) +W2(0, y1)W2(x2, 0) −W2(x1, y1)W2(x2, 0)

]

−cy(x2, y2)
[
W2(x1, 0)W2(0, y2) +W2(0, y1)W2(0, y2) −W2(x1, y1)W2(0, y2)

]

−cx(x1, y1)
[
W2(x1, 0)W2(x2, 0) +W2(x1, 0)W2(0, y2) −W2(x1, 0)W2(x2, y2)

]

+lcx(x1, y1)cx(x2, y2)W2(x1, 0)W2(x2, 0)

+lcx(x1, y1)cy(x2, y2)W2(x1, 0)W2(0, y2)

−cy(x1, y1)
[
W2(0, y1)W2(x2, 0) +W2(0, y1)W2(0, y2) −W2(0, y1)W2(x2, y2)

]

+lcy(x1, y1)cx(x2, y2)W2(0, y1)W2(x2, 0)

+lcy(x1, y1)cy(x2, y2)W2(0, y1)W2(0, y2)
]
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= l−1[x1 ∧ x2 + lc(x1, y2) −
(
x1 ∧ x2 − lc(x2, y2) + lc(x1 ∨ x2, y2)

)

+lc(x2, y1) + y1 ∧ y2 −
(
y1 ∧ y2 − lc(x2, y2) + lc(x2, y1 ∨ y2)

)

−
(
x1 ∧ x2 − lc(x1, y1) + lc(x1 ∨ x2, y1)

)

−
(
y1 ∧ y2 − lc(x1, y1) + lc(x1, y1 ∨ y2)

)

+x1 ∧ x2 + y1 ∧ y2 − lc(x1, y1) − lc(x2, y2) + lc(x1 ∨ x2, y1 ∨ y2)
]

−cx(x2, y2)
[
x1 ∧ x2 + lc(x2, y1) − (x1 ∧ x2 − lc(x1, y1) + lc(x1 ∨ x2, y1))

]

−cy(x2, y2)
[
lc(x1, y2) + y1 ∧ y2 − (y1 ∧ y2 − lc(x1, y1) + lc(x1, y1 ∨ y2))

]

−cx(x1, y1)
[
x1 ∧ x2 + lc(x1, y2) − (x1 ∧ x2 − lc(x2, y2) + lc(x1 ∨ x2, y2))

]

+lcx(x1, y1)cx(x2, y2)(x1 ∧ x2) + l2cx(x1, y1)cy(x2, y2)c(x1, y2)

−cy(x1, y1)
[
lc(x2, y1) + y1 ∧ y2 − (y1 ∧ y2 − lc(x2, y2) + lc(x2, y1 ∨ y2))

]

+l2cy(x1, y1)cx(x2, y2)c(x2, y1) + lcy(x1, y1)cy(x2, y2)(y1 ∧ y2)

= l−1[lc(x1, y2) − lc(x1 ∨ x2, y2) + lc(x2, y1) + lc(x2, y2) − lc(x2, y1 ∨ y2)
+lc(x1, y1) − lc(x1 ∨ x2, y1) − lc(x1, y1 ∨ y2)) + lc(x1 ∨ x2, y1 ∨ y2)

]

−cx(x2, y2)
[
lc(x2, y1) + lc(x1, y1) − lc(x1 ∨ x2, y1)

]

−cy(x2, y2)
[
lc(x1, y2) + lc(x1, y1) − lc(x1, y1 ∨ y2)

]

−cx(x1, y1)
[
lc(x1, y2) + lc(x2, y2) − lc(x1 ∨ x2, y2)

]

+lcx(x1, y1)cx(x2, y2)(x1 ∧ x2) + l2cx(x1, y1)cy(x2, y2)c(x1, y2)

−cy(x1, y1)
[
lc(x2, y1) + lc(x2, y2) − lc(x2, y1 ∨ y2)

]

+l2cy(x1, y1)cx(x2, y2)c(x2, y1) + lcy(x1, y1)cy(x2, y2)(y1 ∧ y2)

= c(x1, y2) − c(x1 ∨ x2, y2) + c(x2, y1) + c(x2, y2) − c(x2, y1 ∨ y2)
+c(x1, y1) − c(x1 ∨ x2, y1) − c(x1, y1 ∨ y2) + c(x1 ∨ x2, y1 ∨ y2)
−lcx(x2, y2)

[
c(x2, y1) + c(x1, y1) − c(x1 ∨ x2, y1)

]

−lcy(x2, y2)
[
c(x1, y2) + c(x1, y1) − c(x1, y1 ∨ y2)

]

−lcx(x1, y1)
[
c(x1, y2) + c(x2, y2) − c(x1 ∨ x2, y2) (3.50)

−cx(x2, y2)(x1 ∧ x2) − lcy(x2, y2)c(x1, y2)
]

−lcy(x1, y1)
[
c(x2, y1) + c(x2, y2) − c(x2, y1 ∨ y2)

−cy(x2, y2)(y1 ∧ y2) − lcx(x2, y2)c(x2, y1)
]
.
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For the remainder of this proof, let cx := cx(1, 1) and cy := cy(1, 1). From
(3.48) we obtain

σ2
x,y = E

[
W 2(x, y)

]
− 2c(x, y)E [W (x, y)W (1, 1)] + c2(x, y)E

[
W 2(1, 1)

]

= c(x, y) − lcx(x, y)c(x, y) − lcy(x, y)c(x, y)

−lcx(x, y)[c(x, y) − xcx(x, y) − lcy(x, y)c(x, y)]

−lcy(x, y)[c(x, y) − ycy(x, y) − lcx(x, y)c(x, y)]

−2c(x, y)

[

c(x, 1) − c(x ∨ 1, 1) + c(1, y) + 1 − c(1, y ∨ 1) + c(x, y)

−c(x ∨ 1, y) − c(x, y ∨ 1) + c(x ∨ 1, y ∨ 1)

−lcx
[
c(1, y) + c(x, y) − c(x ∨ 1, y)

]

−lcy
[
c(x, 1) + c(x, y) − c(x, y ∨ 1)

]

−lcx(x, y)
[
c(x, 1) + 1 − c(x ∨ 1, 1) − cx(x ∧ 1) − lcyc(x, 1)

]

−lcy(x, y)
[
c(1, y) + 1 − c(1, y ∨ 1) − cy(y ∧ 1) − lcxc(1, y)

]
]

+c2(x, y)[1 − lcx − lcy − lcx(1 − cx − lcy) − lcy(1 − cy − lcx)]

= c(x, y) − 2lcx(x, y)c(x, y) − 2lcy(x, y)c(x, y)

+lxc2x(x, y) + lyc2y(x, y) + 2l2cx(x, y)cy(x, y)c(x, y)

−2c(x, y)

[

c(x, 1) − c(x ∨ 1, 1) + c(1, y) + 1 − c(1, y ∨ 1) + c(x, y)

−c(x ∨ 1, y) − c(x, y ∨ 1) + c(x ∨ 1, y ∨ 1)

−lcx
[
c(1, y) + c(x, y) − c(x ∨ 1, y)

]
(3.51)

−lcy
[
c(x, 1) + c(x, y) − c(x, y ∨ 1)

]

−lcx(x, y)
[
c(x, 1) + 1 − c(x ∨ 1, 1) − cx(x ∧ 1) − lcyc(x, 1)

]

−lcy(x, y)
[
c(1, y) + 1 − c(1, y ∨ 1) − cy(y ∧ 1) − lcxc(1, y)

]
]

+c2(x, y)[1 − 2l(cx + cy) + l(cx + cy)2 − 2lcxcy(1 − l)]

which is the asymptotic variance mentioned in Remark 3.2.4 (ii). In the case
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x, y ∈ (0, 1], the second summand can be considerably simplified to obtain

σ2
x,y = c(x, y) − 2lcx(x, y)c(x, y) − 2lcy(x, y)c(x, y)

+lxc2x(x, y) + lyc2y(x, y) + 2l2cx(x, y)cy(x, y)c(x, y)

−2c(x, y)

[

c(x, y)(1 − l) − lcx(x, y)
[
c(x, 1) − xcx − lcyc(x, 1)

]

−lcy(x, y)
[
c(1, y) − ycy − lcxc(1, y)

]
]

+c2(x, y)[1 − 2l(cx + cy) + l(cx + cy)2 − 2lcxcy(1 − l)].

Proof of Theorem 3.2.5

It is sufficient to prove the consistency of ĉx(x, 1). From the proof of Theorem
3.1.4, recall (3.39), k̂/k → 1 in probability and k1/4m−1/2 → 0. We obtain

ĉx(x, 1) =
k̂5/4

n
· n
k

(
k

n
T

(n,x−1+k̂−1/4)
n−m:n − k

n
T

(n,x−1)
n−m:n

)

=
(
1 + oP (1)

)

(

c(x+ k̂−1/4, 1) − c(x, 1)

k̂−1/4
+OP

(
k1/4m−1/2)

)

→ cx(x, 1)

in probability. Since cx and cy are homogeneous of order 0 and because the
consistency of l̂, ĉx(1, 1), ĉy(1, 1) and č(x, y) has been established in Theorem
3.1.4 and Corollary 3.2.3, the consistency of σ̂2

x,y follows.
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Proof of Theorem 3.2.7 and Corollary 3.2.8

Similar as in the proof of Theorem 3.2.1, we argue that

ĉn(x, y) =

n∑

i=1

1l{
Ûi < x/T

(n)
n−m:n, V̂i < y/T

(n)
n−m:n

}

n∑

i=1

1l{
Ûi < 1/T

(n)
n−m:n, V̂i < 1/T

(n)
n−m:n

}

=

S

(

U
⌈x(n+1)/T

(n)
n−m:n⌉−1:n

, V
⌈y(n+1)/T

(n)
n−m:n⌉−1:n

)

S

(

U
⌈(n+1)/T

(n)
n−m:n⌉−1:n

, V
⌈(n+1)/T

(n)
n−m:n⌉−1:n

) (3.52)

for all x, y ∈ (0, ξ0] with probability tending to 1 as n→ ∞ for all ξ0 > 0.

Further, again similar as in the proof of Theorem 3.2.1 we argue that
according to Lemma 3.4.2 and the Skorohod-Dudley-Wichura representation
theorem, there is a version

(
S∗n(x, y)

)

(x,y)∈[0,∞)2
of the stochastic process

(
S(U⌊nq←(m/n)x⌋:n, V⌊nq←(m/n)y⌋:n)

)

(x,y)∈[0,∞)2
and a version of W such that

√
m

(
S∗n(x, y)

m
− c(x, y)

)

(x,y)∈[0,∞)2
−→

(
W (x, y)

)

(x,y)∈[0,∞)2
(3.53)

holds a.s. uniformly on compact subsets of [0,∞)2. Note that by the exis-
tence of such versions it is not ensured that (3.53) holds a.s. with the pro-
cess S∗n(x, y) replaced with S

(
U⌊nq←(m/n)x⌋:n, V⌊nq←(m/n)y⌋:n

)
or even with

S
(
U
⌊nx/T

(n)
n−m:n⌋:n

, V
⌊ny/T

(n)
n−m:n⌋:n

)
as it would be useful to determine the dis-

tribution of the right hand side of (3.52). It is not even ensured that S∗n(x, y)
can be represented in one of these forms. However, we next show that the
version of T

(n)
n−m:n which is defined via the process S∗n can be used to obtain a

version of the right hand side of (3.52).
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First note that

T
(n)
i ≥ x ⇔ min

(
n+ 1

n+ 1 −RX
i

,
n+ 1

n+ 1 −RY
i

)

≥ x

⇔ n+ 1 −RX
i

n+ 1
≤ 1

x
,
n+ 1 −RY

i

n+ 1
≤ 1

x

⇔ RX
i ≥ ⌈(n+ 1)(1 − 1/x)⌉, RY

i ≥ ⌈(n+ 1)(1 − 1/x)⌉.

If there are no ties, then RX
i ≥ ⌈(n + 1)(1 − 1/x)⌉ is equivalent to Xi ≥

X⌈n+1−(n+1)/x⌉:n and thus to Ui ≤ U⌊(n+1)/x⌋:n. Hence, with similar argu-
ments for Vi and Yi, we see that for the (discrete and non-increasing) process

T
(n)
n−j:n = sup

{

x ∈ (0,∞)

∣
∣
∣
∣

n∑

i=1

1l{
T

(n)
i ≥ x

} ≥ j + 1

}

= sup
{
x ∈ (0,∞) | S(U⌊(n+1)/x⌋:n, V⌊(n+1)/x⌋:n) ≥ j + 1

}
,

j = 0, . . . , n− 1.

Define the (non-decreasing) process S̄∗n by S̄∗n(x) := S∗n(x, x), where we assume
that S∗n(x, x) (and thus S̄∗n) is right-continuous. It follows that the (right-
continuous non-increasing) process5

Q∗n(t) := sup
{

x ∈ (0,∞) | S̄∗n
(

n+1
nq←(m/n)x

)

≥ ⌊mt⌋ + 1
}

, t ∈ [0, 1],

possesses the same distribution as the tail empirical quantile process Qn =
(
T

(n)

n−⌊mt⌋:n

)

t∈[0,1]
. In particular, note that Q∗n(1) has the same distribution as

T
(n)
n−m:n. Thus,

(

S∗n

(
(n+ 1)x

nq←(m/n)Q∗n(1)
−, (n+ 1)y

nq←(m/n)Q∗n(1)
−
))

(x,y)∈(0,∞)2
(3.54)

is a version of the process given in the numerator of the right hand side of
(3.52), where f(x−, y−) denotes the left hand limit of f at (x, y) in the sense

5Here and below it is useful to note that S̄∗n
(
(n + 1)/(nq←(m/n)x)

)
is left-continuous and

non-increasing in x.
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of Definition A.1. In order to determine the distribution of (3.54), we now
establish an asymptotic expansion of 1/Q∗n(1).

Note that for the (left-continuous non-increasing) process

(Q∗n)←(x)

:= sup
{
t ∈ [0, 1] | Q∗n(t) ≥ x

}

= sup

{

t ∈ [0, 1]

∣
∣
∣
∣

sup
{

u ∈ (0,∞)
∣
∣
∣ S̄
∗
n

(
n+1

nq←(m/n)u

)

≥ ⌊mt⌋ + 1
}

≥ x

}

= sup

{

t ∈ [0, 1]

∣
∣
∣
∣
S̄∗n

(
n+1

nq←(m/n)x

)

≥ ⌊mt⌋ + 1

}

=
1

m
S̄∗n

(
n+1

nq←(m/n)x

)

,

so that

(Q∗n)←
(

1

q←(m/n)x

)

=
1

m
S̄∗n

(
n+ 1

n
x

)

and thus by (3.53)

√
m
(

(Q∗n)←
(

1
q←(m/n)x

)

− x1/η
)

x∈(0,∞)
→
(
W (x, x)

)

x∈(0,∞)
a.s.

Now one can proceed as in the proof of Lemma 6.2 of Draisma et al. (2004),
i.e.

√
m
(

(Q∗n)←
(

x−η

q←(m/n)

)

− x
)

x∈(0,∞)
→
(
W (xη, xη)

)

x∈(0,∞)
a.s.

√
m
((
q←(m/n)Q∗n(t)

)−1/η − t
)

t∈(0,∞)
→
(
−W (tη, tη)

)

t∈(0,∞)
a.s.

in the Skorohod space consisting of all functions on (0,∞) which are left-
continuous with right limits existing at each point of (0,∞). In the last step
we used the obvious modification of the Lemma of Vervaat (1972) for this
space. Hence, still as in the proof of Lemma 6.2 of Draisma et al. (2004),

q←(m/n)Q∗n(t) =
(

t−m−1/2W (tη, tη) + o(m−1/2)
)−η

= t−η
(

1 +m−1/2ηt−1W (tη, tη) + o(m−1/2)
)

= t−η +m−1/2ηt−(η+1)W (tη, tη) + o(m−1/2) a.s. (3.55)
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uniformly for t belonging to some compact interval bounded away from 0.
Since 1/(1 + z) = 1 − z + o(z) as z → 0, this yields

1

q←(m/n)Q∗n(1)
= 1 −m−1/2ηW (1, 1) + o(m−1/2) a.s. (3.56)

for t = 1, which is the desired asymptotic expansion of 1/Q∗n(1).
Hence, by (3.53) with x and y replaced with x

(
1 − m−1/2ηW (1, 1) +

o(m−1/2)
)

and y
(
1 − m−1/2ηW (1, 1) + o(m−1/2)

)
, and the homogeneity of

c of order 1/η and of cx and cy of order 1/η − 1,

m−1S∗n

(
(n+ 1)x

nq←(m/n)Q∗n(1)
−, (n+ 1)y

nq←(m/n)Q∗n(1)
−
)

= c
(

x
(
1−m−1/2ηW (1, 1)+o(m−1/2)

)
, y
(
1−m−1/2ηW (1, 1)+o(m−1/2)

))

+m−1/2W (x, y) + o(m−1/2) a.s.

= c(x, y) −m−1/2ηW (1, 1)xcx(x, y) −m−1/2ηW (1, 1)ycy(x, y)

+m−1/2W (x, y) + o(m−1/2) a.s.

uniformly on compact subsets of [0,∞)2. By (3.22), we continue this to

m−1S∗n

(
(n+ 1)x

nq←(m/n)Q∗n(1)
−, (n+ 1)y

nq←(m/n)Q∗n(1)
−
)

= c(x, y) −m−1/2W (1, 1)c(x, y) +m−1/2W (x, y) + o(m−1/2)

= c(x, y) +m−1/2(W (x, y) −W (1, 1)c(x, y)
)

+ o(m−1/2) a.s. (3.57)

and thus

m/S∗n

(
(n+ 1)

nq←(m/n)Q∗n(1)
−, (n+ 1)

nq←(m/n)Q∗n(1)
−
)

= 1 + o(m−1/2) a.s. (3.58)

Now combine (3.57) and (3.58) and recall that (3.54) is a version of the nu-
merator of the right-hand side of (3.52) to see that

√
m
(
ĉn(x, y) − c(x, y)

)
= W (x, y) − c(x, y)W (1, 1) + o(1)

holds a.s. uniformly on compact subsets of [0,∞)2 for versions of Qn and W .
If we compare this with (3.48), the assertion follows.
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3.4.3 Proofs for Section 3.3

Proof of Theorem 3.3.1.

We argue as at the beginning of the proof of Theorem 3.2.1 to obtain that

p̂n =
r−1/η̂n

n
· S
(

U⌈(n+1)r(1−F̂1,n(u1))⌉−1:n, V⌈(n+1)r(1−F̂2,n(u2))⌉−1:n

)

=
r−1/η̂n

n
· S
(
U⌈kx⌉−1:n, V⌈ky⌉−1:n

)∣
∣

x=(n+1)r(1−F̂1,n(u1))/k

y=(n+1)r(1−F̂2,n(u2))/k

for any k > 0 with probability tending to 1 as n→ ∞. Thus,

log
p̂n

p

=

(
1

η
− 1

η̂n

)

log r + log
n−1S

(
U⌈kx⌉−1:n, V⌈ky⌉−1:n

)

q(k/n)c(x, y)

∣
∣
∣
∣
∣ x=(n+1)r(1−F̂1,n(u1))/k

y=(n+1)r(1−F̂2,n(u2))/k

+ log
c
(

(n+ 1)r(1 − F̂1,n(u1))/k, (n+ 1)r(1 − F̂2,n(u2))/k
)

c
(

(n+ 1)r(1 − F1(u1))/k, (n+ 1)r(1 − F2(u2))/k
)

+ log

[

r−1/η
c
(

(n+ 1)r(1 − F1(u1))/k, (n+ 1)r(1 − F2(u2))/k
)

q(k/n)

p

]

=: T1 + T2 + T3 + T4.

First, note that

T1 = oP

(

j
−1/2
1 log2

( j1
n(1 − F1(u1))

))

and

T1 = oP

(

j
−1/2
2 log2

( j2
n(1 − F2(u2))

))

if assumptions (3.30) and (3.32), respectively, hold.
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While for the treatment of T1 and T3, k may indeed be any positive value,
we need to define k := ⌊nr(1 − F1(u1))⌋ when looking at T2 and T4. Observe
that according to assumption (iv), nq(k/n) ∼ nq

(
r(1−F1(u1))

)
→ ∞ and that

assumption (v) implies r(1−F1(u1)) → 0, so that q(k/n) ∼ q
(
r(1−F1(u1))

)
→

0 as n → ∞; i.e. nq(k/n) is an intermediate sequence. Hence, it is again
Lemma 3.4.2 with (the non-integer) nq(k/n) playing the role of (the integer)
m̃, that yields

√

nq(k/n)

(
n−1S

(
U⌈kx⌉−1:n, V⌈ky⌉−1:n

)

q(k/n)c(x, y)
− 1

)

→ W (x, y)

c(x, y)

weakly in the bivariate Skorohod space D∗
(
(0,∞)2

)
. With the same argu-

ments as in the proof of Theorem 3.2.1, i.e. according to the Skorohod-Dudley-
Wichura representation theorem, this convergence holds a.s. for suitable ver-
sions of

(
S
(
U⌈kx⌉−1:n, V⌈ky⌉−1:n

))

(x,y)∈[0,∞)2
andW . Hence, for these versions,

T2 = log

[

1 + (nq(k/n))−1/2W (x, y)

c(x, y)

∣
∣
∣
∣ x=(n+1)r(1−F̂1,n(u1))/k

y=(n+1)r(1−F̂2,n(u2))/k

+ o
(
(nq(k/n))−1/2)

]

= (nq(k/n))−1/2W (x, y)

c(x, y)

∣
∣
∣
∣ x=(n+1)r(1−F̂1,n(u1))/k

y=(n+1)r(1−F̂2,n(u2))/k

+ o
(
(nq(k/n))−1/2),

since here x and y are a.s. bounded and bounded away from 0.

For T3, first observe that

T3 = log






(
1 − F̂2,n(u2)

1 − F2(u2)

)1/η

·
c
(

1−F̂1,n(u1)

1−F̂2,n(u2)
, 1
)

c
(

1−F1(u1)
1−F2(u2)

, 1
)






=
1

η
log

1 − F̂2,n(u2)

1 − F2(u2)
+ log

c
(

1−F̂1,n(u1)

1−F̂2,n(u2)
, 1
)

c
(

1−F1(u1)
1−F2(u2)

, 1
) =: T31 + T32.

For T31, by (1.21),

T31 =
1

η
log
(
1 +OP (m−1/2)

)
= OP

(
m−1/2)
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if assumption (3.28) holds and for suitable versions

T31 =
1

η

(
1 − F̂2,n(u2)

1 − F2(u2)
− 1

)

= oP

(
1 − F̂1,n(u1)

1 − F1(u1)
− 1

)

if assumptions (3.30) hold. For T32, with assumption (ii),

c

(
1 − F̂1,n(u1)

1 − F̂2,n(u2)
, 1

)

= c

(
1 − F1(u1)

1 − F2(u2)
, 1

)

+ cx

(
1 − F1(u1)

1 − F2(u2)
, 1

)

×
(

1 − F̂1,n(u1)

1 − F̂2,n(u2)
− 1 − F1(u1)

1 − F2(u2)

)
(
1 + oP (1)

)
.

and by (1.21),

1 − F̂1,n(u1)

1 − F̂2,n(u2)
− 1 − F1(u1)

1 − F2(u2)

=

(
1 − F̂1,n(u1)

1 − F1(u1)
· 1 − F2(u2)

1 − F̂2,n(u2)
− 1

)
1 − F1(u1)

1 − F2(u2)
.

This equals
((

1 +OP (m−1/2)
)(

1 +OP (m−1/2)
)
− 1
)1 − F1(u1)

1 − F2(u2)
= OP

(
m−1/2)

if assumption (3.28) holds, so that

T3 = OP

(
m−1/2) + log

c
(

1−F1(u1)
1−F2(u2)

, 1
)

+OP

(
m−1/2

)

c
(

1−F1(u1)
1−F2(u2)

, 1
) = OP

(
m−1/2)

in this case. Moreover, for suitable versions, by assumption (ii) and the ho-
mogeneity properties (2.14) and (3.19) of c of order 1/η and of cx of order
1/η − 1,

T32 = log

[

1 +
cx(1/λ, 1)

c(1/λ, 1)

(
1 − F̂1,n(u1)

1 − F1(u1)

(

1 + oP

(
1 − F̂1,n(u1)

1 − F1(u1)
− 1

))

− 1

)

· 1
λ

(
1 + oP (1)

)
]

=
cx(1, λ)

c(1, λ)

(
1 − F̂1,n(u1)

1 − F1(u1)
− 1

)
(
1 + oP (1)

)
= T3

(
1 + oP (1)

)
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if assumptions (3.30) hold. Further, note that one may also write

T3 = log






(
1 − F̂1,n(u1)

1 − F1(u1)

)1/η

·
c
(

1,
1−F̂2,n(u2)

1−F̂1,n(u1)

)

c
(

1, 1−F2(u2)
1−F1(u1)

)






which leads with analogous arguments as before to

T3 = λ
cy(1, λ)

c(1, λ)

(
1 − F̂2,n(u2)

1 − F2(u2)
− 1

)
(
1 + oP (1)

)

if assumptions (3.32) hold.
For T4,

T4 = log

[
q(k/n)

p
· r−1/η · c

(

(n+ 1)r(1 − F1(u1))/k, (n+ 1)r(1 − F2(u2))/k

)]

= log

[
q(k/n)

p

(
n+ 1

k

(
1 − F1(u1)

)
)1/η

c

(

1,
1 − F2(u2)

1 − F1(u1)

)]

.

Our basic equation (2.8) with x = 1, y =
(
1 − F2(u2)

)
/
(
1 − F1(u1)

)
→ λ and

t = 1 − F1(u1), and assumptions (i) and (ii) yield

p

q
(
1 − F1(u1)

) − c

(

1,
1 − F2(u2)

1 − F1(u1)

)

= O
(
q1(1 − F1(u1))

)

as n→ ∞, so that

T4 = log

[

q(k/n)
(
k/(n+ 1)

)1/η
·
(
1 − F1(u1)

)1/η

q
(
1 − F1(u1)

)
(
1 +O(q1(1 − F1(u1)))

)

]

.

(Here, the idea to apply (2.8) once more with x = y = n(1 − F1(u1))/k and
t = k/n does not work, since then x = y ∼ 1/r → 0, such that x and y are
not bounded away from 0.) Next, recall that q(tx)/q(t) = x1/η + O(q1(t)) to
see that Corollary 3.12.3 of Bingham et al. (1987) yields6

q(t) = Ct1/η(1 +O(q1(t))
)

(3.59)

6To see that q1 has positive decrease as required by Corollary 3.12.3 of Bingham et al.
(1987), note that a τ -regularly varying function has upper Matuszewska index τ , cf. Sec-
tions 2.0 and 2.1 (in particular the definitions on p. 68 and 71 and (2.1.10)) of Bingham
et al. (1987).
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for some constant C > 0. From representation (3.59) we obtain

q(k/n)
(
n(1 − F1(u1))/k

)1/η

q(1 − F1(u1))
=

1 +O
(
q1(k/n))

)

1 +O
(
q1(1 − F1(u1))

) ,

so that by assumption (v),

T4 = log
[

1 +O
(
q1(k/n) + q1(1 − F1(u1)) + 1/n

)]

= O
(
q1(k/n) + q1(1 − F1(u1)) + 1/n

)
= o

(
(nq(k/n))−1/2).

Note that by the assumption that either (3.25) or (3.26) holds, we have
shown so far that

log
p̂n

p
=

(
1

η
− 1

η̂n

)

log r +OP

(
m−1/2)

if assumption (3.28) holds, that

log
p̂n

p
=
cx(1, λ)

c(1, λ)

(
1 − F̂1,n(u1)

1 − F1(u1)
− 1

)
(
1 + oP (1)

)

if assumptions (3.30) hold and that

log
p̂n

p
= λ

cy(1, λ)

c(1, λ)

(
1 − F̂2,n(u2)

1 − F2(u2)
− 1

)
(
1 + oP (1)

)

if assumptions (3.32) hold. In the first case, we obtain by Theorem 3.1.2 that
η̂nη → η2 in probability and hence

η2m1/2

log r
log

p̂n

p
∼ m1/2(η̂n − η)

D−→ N
(
0, σ2

η̂n

)

as asserted. In the second case, we obtain by (1.21) that

c(1, λ)

cx(1, λ)
· γj

1/2
1

log j1
n(1−F1(u1))

log
p̂n

p

∼ γj
1/2
1

log j1
n(1−F1(u1))

(
1 − F̂1,n(u1)

1 − F1(u1)
− 1

)

D−→ N
(
0, σ2

γ̂1,n

)
.

The conclusion in the third case is analogous.



Chapter 4

Model Validation

In this chapter we develop a method to validate the scaling law (2.17) for given
data. In Section 4.1 we start with a motivation of our construction. We prove
that under some regularity conditions an empirical process which measures
random deviations from this scaling law converges weakly to a centered Gaus-
sian process if s, x and y (cf. (2.17)) are bounded away from 0. We conclude
that these random deviations from the scaling law are asymptotically normal
for all s, x and y in both cases – asymptotic independence (Section 4.2) and
asymptotic dependence (Section 4.3). In Section 4.4 we address the issue of an
appropriate choice of s, x and y when validating the scaling law, construct a
test statistic to discriminate between presence and absence of the scaling law
and suggest a method to validate the scaling law by a simple three-dimensional
plot. Section 4.5 presents some further results which are useful to obtain a
uniform test statistic for the entirety of the pseudo-(tail-)observations rather
than considering m tests for each of these observations as it is done in Section
4.4. In particular, in Section 4.5.1 it is proven that the weighted limiting pro-
cess converges uniformly in the required sense. In Section 4.5.2, we establish a
similar result for the empirical process, where a stronger uniformity condition
than in Section 4.5.1 is required. As before, the proofs of the results of this
chapter are deferred to the final Section 4.6.

75
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4.1 A Uniform Result

Let us recall the scaling law (2.17) with a contraction factor s ∈ (0, 1], i.e.

lim
t↓0

P{U < tsx, V < tsy}
P{U < tx, V < ty} = s1/η. (4.1)

If we switch from this asymptotic equality to an approximate equality for
sufficiently small u = tx, v = ty and take logarithms, we obtain

log
P{U < su, V < sv}
P{U < u, V < v} ≈ 1

η
log s.

Now suppose that we choose s such that pseudo-observations (Ûi, V̂i) exist
with Ûi < su, V̂i < sv and estimate P{U < su, V < sv} by the empirical
probability n−1∑n

i=1 1l{Ûi < su, V̂i < sv}. Then, in analogy to the concept of
pp-plots, the points









log s, log

n∑

i=1

1l{Ûi < su, V̂i < sv}
n∑

i=1

1l{Ûi < u, V̂i < v}









(4.2)

must approximately lie on the line through origin with slope 1/η if the scaling
law (4.1) is satisfied. This should be true for arbitrary, sufficiently small
u, v > 0 and all s ∈ (0, 1].

In order to construct a test statistic to discriminate between presence and
absence of the scaling law using this basic fact, we must first replace the un-
known slope of the line with a suitable estimator, e.g. the reciprocal 1/η̂n of
the Hill estimator η̂H

n or the MLE η̂ML
n . Next we must specify what “suffi-

ciently small” precisely means, i.e. in an asymptotic setting, we must spec-
ify the rate at which u and v tend to 0. To this end, recall that η̂H

n and
η̂ML

n are based on those T
(n)
j that satisfy T

(n)
j = 1/max

(
Ûj , V̂j

)
≥ T

(n)
n−m:n,

and thus on those pseudo-observations
(
Ûj , V̂j

)
which fall into the square

(
0, 1/T

(n)
n−m:n

]2
. They are reasonable estimators of η if and only if the points

(4.2) with u, v ≤ 1/T
(n)
n−m:n lie approximately on the line through the origin

with slope 1/η. Therefore, it is natural to consider values u = x/T
(n)
n−m:n and

v = y/T
(n)
n−m:n that converge with rate 1/T

(n)
n−m:n to 0.
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Finally, to discriminate between random and systematic deviations of the
points (4.2) from the line, the size of the estimated deviation

log

n∑

i=1

1l{Ûi < sx/T
(n)
n−m:n, V̂i < sy/T

(n)
n−m:n}

n∑

i=1

1l{Ûi < x/T
(n)
n−m:n, V̂i < y/T

(n)
n−m:n}

− 1

η̂n
log s (4.3)

must be examined in the case that the model assumptions are satisfied, i.e.
the scaling law holds. Theorem 4.1.1 establishes the asymptotic behavior of
the empirical process of this estimated deviation.

4.1.1 Theorem. Assume that Condition 2.2.1 holds with a function c
that has first order partial derivatives cx and cy which satisfy (3.22). Sup-
pose, as in Theorem 3.1.2, that m is an intermediate sequence such that√
mq1

(
q←(m/n)

)
→ 0 as n → ∞. Then, there are versions of the estimated

deviation (4.3) such that

√
m









log

n∑

i=1

1l{Ûi < sx/T
(n)
n−m:n, V̂i < sy/T

(n)
n−m:n}

n∑

i=1

1l{Ûi < x/T
(n)
n−m:n, V̂i < y/T

(n)
n−m:n}

− 1

η̂n
log s









(4.4)

=
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)
+

log s

η

(∫ 1

0

t−(η+1)W (tη, tη)νη(dt)

)

+ oP (1)

uniformly for (s, x, y) on compact subsets of (0, 1] × (0,∞)2. △

4.1.2 Remark. Likewise one can establish an analogous result if another
estimator for η based on a certain fraction of largest order statistics of T

(n)
i is

used instead of η̂H
n or η̂ML

n . △
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4.2 The Case of Asymptotic Independence

4.2.1 Corollary. Assume that the conditions of Theorem 4.1.1 hold for
asymptotically independent random variables U and V . Then,

√
m









log

n∑

i=1

1l{Ûi<sx/T
(n)
n−m:n, V̂i<sy/T

(n)
n−m:n}

n∑

i=1

1l{Ûi<x/T
(n)
n−m:n, V̂i<y/T

(n)
n−m:n}

− 1

η̂n
log s









D−→N
(
0, σ2

x,y,s

)

(4.5)

for all s, x, y ∈ (0, 1], where

σ2
x,y,s :=







s−1/η − 1

c(x, y)
− log2 s

η2
if η̂n = η̂H

n ,

s−1/η − 1

c(x, y)
− (η + 1)2 log2 s

η4

[

1 +
2(2η + 1)(s− 1)

c(x, y) log s

if η̂n = η̂ML
n .

×
(

η

∫ 1

0

tη−1c(x ∧ tη, y ∧ tη)dt− c(x, y)

) ]

(4.6)

△
4.2.2 Remarks.

(i) If η̂n = η̂ML
n , one obtains a simpler expression for σ2

x,y,s in the special case

x = y, since then η
∫ 1

0
tη−1c(x∧tη, x∧tη)dt−c(x, x) = −x(η+1)/η/(η+1).

Here, as expected when considering the results of Sections 3.1 and 3.3,
we see that σ2

x,y,s is larger if η̂n = η̂ML
n than if η̂n = η̂H

n .

(ii) For arbitrary x, y > 0, Corollary 4.2.1 holds with a more complicated
asymptotic variance, see (4.31) and (4.36).

△
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In order to apply this result in a model check, we discuss the appropriate
choice of u, v (or x, y) and s in Section 4.4, where we also give the according
confidence intervals for (log s)/η.

4.3 The Case of Asymptotic Dependence

Henceforth, we abbreviate

cx := cx(1, 1) and cy := cy(1, 1).

Further, define functions χ1 : R3
+ → R and χ2 : (0, 1]2 → R by

χ1(x, y, r) := c(x, r) − c(r ∨ x, r) + c(r, y) + r − c(r, r ∨ y)
−c(r ∨ x, y) − c(x, r ∨ y) + c(r ∨ x, r ∨ y)
−lcx

[
c(r, y) − c(r ∨ x, y)

]
− lcy

[
c(x, r) − c(x, r ∨ y)

]

−lcx(x, y)
[
c(x, r) + r − c(r ∨ x, r) − cx(r ∧ x) − lcyc(x, r)

]

−lcy(x, y)
[
c(r, y) + r − c(r, r ∨ y) − cy(r ∧ y) − lcxc(r, y)

]
and

χ2(x, y) := l
(

(lcy − 1)cx(x, y)c(x, 1) + (lcx − 1)cy(x, y)c(1, y)
)

. (4.7)

4.3.1 Corollary. Assume that the conditions of Theorem 4.1.1 hold for
asymptotically dependent random variables U and V . Then,

√
m









log

n∑

i=1

1l{Ûi<sx/T
(n)
n−m:n, V̂i<sy/T

(n)
n−m:n}

n∑

i=1

1l{Ûi<x/T
(n)
n−m:n, V̂i<y/T

(n)
n−m:n}

− 1

η̂n
log s









D−→N
(
0, σ2

x,y,s

)

(4.8)

for all s, x, y ∈ (0, 1], where
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σ2
x,y,s

= (log2 s)(1 − 2lcxcy)(1 − l)

+
2 log s

c(x, y)

(∫ s−1

1

χ2(x/r, y/r) dr − l(log s)[xcxcx(x, y) + ycycy(x, y)]

+χ2(x, y) − s−1χ2(sx, sy)

)

+
1

c2(x, y)

(

(s−1 − 1)c(x, y) (4.9)

+lcx(x, y)
[
(s−1 − 1)xcx(x, y) + 2s−1[c(sx, y) − c(x, y)]

]

+lcy(x, y)
[
(s−1 − 1)ycy(x, y) + 2s−1[c(x, sy) − c(x, y)]

]

+2l2cx(x, y)cy(x, y)
[
(s−1 + 1)c(x, y) − s−1[c(sx, y) + c(x, sy)]

]
)

if η̂n = η̂H
n and

σ2
x,y,s

= 4(log2 s)(1 − 2lcxcy)(1 − l)

+
8 log s

c(x, y)

(∫ s−1

1

χ2(x/r, y/r) dr − l(log s)[xcxcx(x, y) + ycycy(x, y)]

+3

∫ 1

0

χ1(x, y, r)dr − 3s

∫ s−1

0

χ1(x, y, r)dr +
s−1χ2(sx, sy) − χ2(x, y)

2

)

+
1

c2(x, y)

(

(s−1 − 1)c(x, y) (4.10)

+lcx(x, y)
[
(s−1 − 1)xcx(x, y) + 2s−1[c(sx, y) − c(x, y)]

]

+lcy(x, y)
[
(s−1 − 1)ycy(x, y) + 2s−1[c(x, sy) − c(x, y)]

]

+2l2cx(x, y)cy(x, y)
[
(s−1 + 1)c(x, y) − s−1[c(sx, y) + c(x, sy)]

]
)

if η̂n = η̂ML
n . △
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4.3.2 Remark. For arbitrary x, y > 0, Corollary 4.3.1 holds with a more
complicated asymptotic variance, see (4.48) and (4.59). △

4.4 Construction of Tests

In order to apply the Corollaries 4.2.1 and 4.3.1 in a model check, one has
to choose appropriate values for u and v (or x and y) and for s. Here we
propose to imitate the approach of pp- and qq-plots in that we consider (4.2)
only for points (su, sv) equal to a (pseudo-)observation. More precisely, we
consider those points (sjuj , sjvj) = (Ûj , V̂j) which belong to the open square
(
0, 1/T

(n)
n−m:n

)2
. Recall that (if no ties occur7) these pseudo-observations

correspond to the order statistics T
(n)
n−i+1:n, i = 1, . . . ,m, that are used for

the estimation of η. Here, for simplicity, we assume that the standardized
observations (Ûj , V̂j) have been re-indexed such that (Ûj , V̂j) ∈

(
0, 1/T

(n)
n−m:n

)2

for j = 1, . . . ,m.

Moreover, we take (uj , vj) to be the projection of (Ûj , V̂j) onto the (upper

or right) boundary of the square
(
0, 1/T

(n)
n−m:n

]2
, which results in the choice

sj :=
max(Ûj , V̂j)

1/T
(n)
n−m:n

, (uj , vj) :=
(Ûj , V̂j)

sj
=

1

T
(n)
n−m:n

· (Ûj , V̂j)

max(Ûj , V̂j)
;

see Figure 4.1 below. This way, we ensure that sj is indeed a contraction
factor (i.e., less than 1) as it was assumed above, and that all reference points
(uj , vj) used in the graphical check of the scaling law can be parameterized by
a single real parameter

zj :=

{

uj ∈
(
0, 1/T

(n)
n−m:n

]
, if uj ≤ vj = 1/T

(n)
n−m:n

(
2/T

(n)
n−m:n − vj

)
∈
(
1/T

(n)
n−m:n, 2/T

(n)
n−m:n

]
if vj < uj = 1/T

(n)
n−m:n.

(The parameter zj equals the distance between the points (0, 1/T
(n)
n−m:n) and

(uj , vj) measured along the boundary of the square (0, 1/T
(n)
n−m:n]2.) Note that

if we plot (4.2) for all points (uj , vj) and contraction factors sj , j = 1, . . . ,m,

7See Footnote 1. If ties occur in applications, we simply exclude all (Ûi, V̂i) with

max(Ûi, V̂i) = 1/T
(n)
n−m:n (and reduce the number of points (4.2) is plotted for).
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we lose the information which point of the plot corresponds to which pseudo-
observation. To avoid that, we instead use the three-dimensional plot









zj , log sj , log

n∑

i=1

1l{Ûi < sjuj , V̂i < sjvj}
n∑

i=1

1l{Ûi < uj , V̂i < vj}









j=1,...,m

, (4.11)

where the additional argument zj determines the reference point (uj , vj). Fig-
ure 4.1 illustrates our construction for an example that will be examined in
detail in Chapter 5. The points of the plot (4.11) should then approximately
lie on the reference plane (z, u) 7→ (z, u, u/η) if the scaling law holds. The
following statistical tests formalize this requirement, where we consider the
case that U and V are asymptotically independent and that η̂n = η̂H

n . The
other cases can be treated analogously.

0  0.2 0.4 0.6 0.8 1  
0  

0.2

0.4

0.6

0.8

1  

Ûi

V̂
i

zj = length of

(uj , vj)

(Ûj , V̂j) = (sjuj , sjvj)

Figure 4.1: The square with side length 1/Tn−m:n contains the m points used
for the estimation of η. The scaling law (2.17) is checked within this square.
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Let

∆j := log

n∑

i=1

1l{Ûi < sjuj , V̂i < sjvj}
n∑

i=1

1l{Ûi < uj , V̂i < vj}

− 1

η̂H
n

log sj (4.12)

denote the estimated difference between the third coordinate of the jth point of
(4.11) and the third coordinate of the corresponding point (with the same first
and second coordinates) on the reference plane. Then, according to Corollary
4.2.1,

√
m∆j/σ̂j is approximately N (0, 1)-distributed, where

σ̂2
j :=

s
−1/η̂H

n
j − 1

ĉn(uj , vj)
− log2 sj
(
η̂H

n

)2 .

Hence, we reject the scaling law on the approximate confidence level 1 − α, if
∣
∣
∣
∣

√
m∆j

σ̂j

∣
∣
∣
∣
> Φ←(1 − α/2) (4.13)

or, equivalently, if the last coordinate of the jth point of the plot (4.11) does
not belong to the confidence interval

[
log sj

η̂H
n

−m−1/2σ̂j Φ←(1 − α/2),
log sj

η̂H
n

+m−1/2σ̂j Φ←(1 − α/2)

]

. (4.14)

To get an overall picture from all m tests, a percentage of points whose last
component does not belong to the pertaining confidence interval much greater
than α can be interpreted as an indicator that the scaling law is not fulfilled
in the square

(
0, 1/T

(n)
n−m:n

]2
.

One can also incorporate the information provided by the statistical test
into the plot (4.11) by indicating for each point either (i) whether its last
coordinate belongs to the corresponding confidence interval or (ii) the (1− p)-
value

2

∣
∣
∣
∣
Φ

(√
m∆j

σ̂j

)

− 0.5

∣
∣
∣
∣

(4.15)



84 Chapter 4. Model Validation

0  
0.2

0.4
0.6

0.8
1  −3 −2.5 −2 −1.5 −1 −0.5 0 

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0 

logsjzj
−3 −2.5 −2 −1.5 −1 −0.5 0 
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−0.5

0 

logsj

Figure 4.2: Plot (4.11) with m = 200 for the Danish fire insurance (see
Section 5.1) from two perspectives. The right hand perspective also displays
the reference plane. Here, only 5 (orange, cf. Figure 5.7) of 200 points lie
outside the approximate 95 % confidence interval (4.14).

of the pertaining test. We give an example in Figure 4.2, which implements
(ii) and shows plot (4.11) from two perspectives for data that will be examined
in detail in Chapter 5.

We now comment on two issues of our method that were omitted so far and
thereby motivate the investigations of Section 4.5. First, the quantities sj and
(Ûj , V̂j)/max(Ûj , V̂j), which play the roles of s and (x, y) of the Corollaries
4.2.1 and 4.3.1, are, in contrast to s and (x, y), random variables in our tests.
Second, since the tests for each of the observations are (partly) based on the
same data, they are not independent. Hence, our method is a heuristic based
on the Corollaries 4.2.1 and 4.3.1 rather than a direct application of these
results. The statement that

√
m∆j/σ̂j is approximately N (0, 1)-distributed

is not only to be understood in the sense of using an asymptotic equality as
an approximation, but also under consideration of these issues. The second
issue can be resolved if one considers a test for the entirety of the pseudo-
observations rather than m tests for each individual of them. We now restate
some results from the proof of Theorem 4.1.1, before we establish a corollary of
that theorem which is useful in order to develop such a uniform test. From the
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proof of Theorem 4.1.1 we know that for the versions of Q∗n, S∗n, W and η̂n as
considered there and for s, x, y such that Ûi and V̂i exist with Ûi < sx/T

(n)
n−m:n

and V̂i < sy/T
(n)
n−m:n, cf. (4.28),

log
S∗n

(
(n+1)sx

nq←(m/n)Q∗n(1)
−, (n+1)sy

nq←(m/n)Q∗n(1)
−
)

S∗n

(
(n+1)x

nq←(m/n)Q∗n(1)
−, (n+1)y

nq←(m/n)Q∗n(1)
−
)

︸ ︷︷ ︸

=:S̃∗n(x,y)

− 1

η̂n
log s

(4.16)

= m−1/2

[
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)
+

log s

η

∫ 1

0

t−(η+1)W (tη, tη)νη(dt)

]

+oP (m−1/2)

uniformly for all (s, x, y) on compact subsets of (0, 1] × (0,∞)2, where (cf.
(3.54) and (4.27))

(
S̃∗n(sx, sy)

S̃∗n(x, y)

)

s,x,y∈(0,1]×(0,∞)2

(4.17)

D
=







S

(

U
⌈sx(n+1)/T

(n)
n−m:n⌉−1:n

, V
⌈sy(n+1)/T

(n)
n−m:n⌉−1:n

)

S

(

U
⌈x(n+1)/T

(n)
n−m:n⌉−1:n

, V
⌈y(n+1)/T

(n)
n−m:n⌉−1:n

)







s,x,y∈(0,1]×(0,∞)2

and (cf. (3.52) and (4.26))

S
(

U
⌈sx(n+1)/T

(n)
n−m:n⌉−1:n

, V
⌈sy(n+1)/T

(n)
n−m:n⌉−1:n

)

S
(

U
⌈x(n+1)/T

(n)
n−m:n⌉−1:n

, V
⌈y(n+1)/T

(n)
n−m:n⌉−1:n

)

=

n∑

i=1

1l{Ûi < sx/T
(n)
n−m:n, V̂i < sy/T

(n)
n−m:n}

n∑

i=1

1l{Ûi < x/T
(n)
n−m:n, V̂i < y/T

(n)
n−m:n}
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for all x, y ∈ (0, ξ0] with probability tending to 1 for all ξ0 > 0. Denote by

L(s, x, y) :=
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)
+

log s

η

(∫ 1

0

t−(η+1)W (tη, tη)νη(dt)

)

(4.18)

the limiting process of
√
m
(
log
(
S̃∗n(sx, sy)/S̃∗n(x, y)

)
− (log s)/η̂n

)
.

Since log
(
S̃∗n(sx, sy)/S̃∗n(x, y)

)
equals −∞ for sufficiently small s > 0,√

m
(
log
(
S̃∗n(sx, sy)/S̃∗n(x, y)

)
−(log s)/η̂n

)
cannot converge uniformly to L for

all (s, x, y) ∈ (0, 1] × (0,∞)2. However, we immediately obtain the following
corollary from Theorem 4.1.1.

4.4.1 Corollary. Under the conditions of Theorem 4.1.1,

lim
n→∞

P

{

sup
(s,x,y)∈K

g1(s, x, y)

∣
∣
∣
∣
∣
m1/2

(

log
S̃∗n(sx, sy0)

S̃∗n(x, y0)
− log s

η̂n

)

− L(s, x, y)

∣
∣
∣
∣
∣
>ε

}

=0

(4.19)

for all compact subsets K of (0, 1] × (0,∞)2 and all bounded functions g1. △

According to Corollary 4.4.1, a uniform test might be constructed as fol-
lows. Denote by L̄ := sup(s,x,y)∈K |g1(s, x, y)L(s, x, y)| the supremum of the

weighted limiting process L over some compact subset K of (0, 1] × (0,∞)2,
where g1 is some appropriate weight function. Then, supj |g1(sj , ũj , ṽj)

√
m∆j |

with ũj = ujT
(n)
n−m:n, ṽj = vjT

(n)
n−m:n and j such that

(
sj , ũj , ṽj

)
∈ K is approx-

imately distributed as L̄. Hence, we reject the scaling law on the approximate
confidence level 1−α, if supj |g1(sj , ũj , ṽj)

√
m∆j | is larger than the (1−α/2)-

quantile of the d.f. of L̄, which we calculate by simulation of L. However, the
choice of K, i.e. in particular “how far” s, x and y must be bounded away
from 0, is rather arbitrary. Hence, in order to construct a uniform test, we
would like to generalize (4.19) to hold without the restriction that s, x and y
must be bounded away from 0. We address this issue and discuss the necessity
to include a weight function like g1 (which here might be chosen as g1 ≡ 1) in
the following Section 4.5.

In Section 2.2.2 we have indicated that Condition 2.2.1 implies that the
scaling law holds not only for rectangular sets, but also for more general sets,
cf. (2.19). We conclude this section with the remark that an appropriate
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generalization of the results of this chapter may yield a similar tool to validate
the scaling law for these more general sets.

4.5 Further Uniform Results

In the previous sections, we have proven the asymptotic normality of differ-
ences between empirical probabilities and model based estimates of the same
probabilities, cf. Corollaries 4.2.1 and 4.3.1. This asymptotic normality al-
lows the construction of a statistical test for the scaling law for each pseudo-
observation (Ûi, V̂i), see Section 4.4. If the percentage of the tests that fail is
much greater than the nominal size, this is interpreted as an indicator that
the scaling law is not fulfilled. Note, however, that the statistical test is con-
structed for a single observation rather than for the entirety of the observations
and that the tests for each of the observations are not independent, since they
are (partly) based upon the same data. In Section 4.4 we have also indicated
that a uniform test based on Theorem 4.1.1 is not entirely satisfying, since
due to the assumptions of that theorem, s, x and y must be bounded away
from 0. In this section, we search for a possibility to validate the scaling law
on a “global” level, i.e. we aim to develop a statistical test for the entirety of
the pseudo-observations rather than for each individual of them. Therefore, a
uniform version of the test constructed in Section 4.4 without the restriction
that s, x and y must be bounded away from 0 is desired.

Since we desire a uniform version of the method of validating the scaling
law as constructed in Section 4.4, we still use the pseudo-observations within
the square

(
0, 1/T

(n)
n−m:n

]2
. Recall from Section 4.4 that for the construction

of the tests, we take (uj , vj) in the definition (4.12) of ∆j to be the projection
onto the (upper or right) boundary of this square, see also Figure 4.1. Hence,
we divide this square by the line y = x, start with considering the upper of
the two triangles and conclude for the lower. According to this construction,
it is then sufficient to fix y = y0 ≤ 1 and to assume that x ≤ y0. Further, for
the reasons given before Corollary 4.4.1, i.e. since individually every summand
of log

(
S̃∗n(sx, sy)/S̃∗n(x, y)

)
− (log s)/η̂n and L diverges for s ↓ 0 or x ↓ 0,

we cannot expect that (4.19) holds for all bounded functions g1 when giving
up that s and x must be bounded away from 0. Thus, g1 must converge
“appropriately” to 0 as s ↓ 0 or x ↓ 0. Considering the definition (4.18) of
L and recalling from (3.9) that W = W1 is a Gaussian process with variance
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EW 2(x, y) = c(x, y) if U and V are asymptotically independent, g1(s, x, y0) =
(
c(sx, sy0)

)1/2+δ
with 0 < δ < 1/2 might be a reasonable choice. Hence, in

order to construct such a uniform test, we would ideally like to prove that for
all t0 > 0 and all ε > 0,

lim
n→∞

P

{

sup
0<s∧x≤t0
0<s∨x≤y0

(
c(sx, sy0)

)1/2+δ
1l(0,∞)(S̃

∗
n(sx, sy0))

(4.20)
∣
∣
∣
∣
∣
m1/2

(

log
S̃∗n(sx, sy0)

S̃∗n(x, y0)
− log s

η̂n

)

− L(s, x, y0)

∣
∣
∣
∣
∣
> ε

}

=0.

Recall that Corollary 4.4.1 yields (4.20) if s and x are bounded away from 0,
so that we obtain (4.20) without this restriction if

lim
ϑ↓0

P






sup

0<s∧x≤ϑ
0<s∨x≤y0

(
c(sx, sy0)

)1/2+δ∣∣L(s, x, y0)
∣
∣ > ε






= 0 (4.21)

and

lim
ϑ↓0

lim sup
n→∞

P

{

sup
0<s∧x≤ϑ
0<s∨x≤y0

m1/2(c(sx, sy0)
)1/2+δ

1l(0,∞)(S̃
∗
n(sx, sy0))

(4.22)
∣
∣
∣
∣
log

S̃∗n(sx, sy0)

S̃∗n(x, y0)
− log s

η̂n

∣
∣
∣
∣
>ε

}

=0

jointly hold. We establish (4.21) if W = W1 is centered Gaussian with covari-
ance structure (3.9), i.e. if U and V are asymptotically independent, in Section
4.5.1 and discuss (4.22) in Section 4.5.2.

4.5.1 Uniform Convergence of the Weighted Limit-

ing Process

4.5.1 Theorem. Assume that U and V are asymptotically independent and
Condition 2.2.1 holds. Then, for the centered Gaussian process W = W1 with
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covariance structure (3.9) and all 0 < y0 ≤ 1, 0 < δ < 1/2 and ε > 0,

lim
ϑ↓0

P






sup

0<s∧x≤ϑ
0<s∨x≤y0

(
c(sx, sy0)

)1/2+δ

∣
∣
∣
∣

W (sx, sy0)

c(sx, sy0)

∣
∣
∣
∣
> ε






= 0. (4.23)

△

4.5.2 Remark. Observe by the definition (4.18) of L that (4.23) implies
(4.21). △

Recall that we considered the upper triangle of the square
(
0, 1/T

(n)
n−m:n

]2
,

which enabled us to fix y = y0. When considering the lower triangle of
(
0, 1/T

(n)
n−m:n

]2
we may fix x = x0 instead of y. The analogous result of

Theorem 4.5.1 holds.

4.5.3 Theorem. Assume that U and V are asymptotically independent and
Condition 2.2.1 holds. Then, for the centered Gaussian process W = W1 with
covariance structure (3.9) and all 0 < x0 ≤ 1, 0 < δ < 1/2 and ε > 0,

lim
ϑ↓0

P






sup

0<s∧y≤ϑ
0<s∨y≤x0

(
c(sx0, sy)

)1/2+δ

∣
∣
∣
∣

W (sx0, sy)

c(sx0, sy)

∣
∣
∣
∣
> ε






= 0.

△

4.5.2 The Empirical Process

In view of Corollary 4.4.1 and after proving (4.21), it is plausible that one may
also obtain (4.22) (and hence (4.20)). In this section we show that (4.22) holds
with (c(sx, sy0))

1/2+δ replaced with a smaller weight function. (In order to
avoid redundancy, we restrict ourselves to fixed y = y0 in this section. Similar
as in the previous section, the analogous results with fixed x = x0 instead of
y also hold.) Since the new weight function converges faster to 0 as s ↓ 0 or
x ↓ 0 than (c(sx, sy0))

1/2+δ, this is a weaker result than (4.22). In addition,
we require a stronger uniformity condition than assumed previously.
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First, however, the following lemma shows that no additional conditions
are necessary to substitute the term (log s)/η̂n on the left hand side of (4.22)
with a handier expression.

4.5.4 Lemma. Assume that the conditions of Theorem 3.1.2 hold. Then,
for all 0 < y0 ≤ 1, 0 < δ < 1/2 and ε > 0,

lim
ϑ↓0

lim
n→∞

P

{

sup
0<s∧x≤ϑ
0<s∨x≤y0

m1/2(c(sx, sy0))
1/2+δ

∣
∣
∣
∣
∣

log s

η̂n
− log s

η

∣
∣
∣
∣
∣
> ε

}

= 0.

△

After this lemma, we would like to prove a similar result for the term
log
(
S̃∗n(sx, sy0)/S̃

∗
n(x, y0)

)
on the left hand side of (4.22). We obtain the fol-

lowing theorem, where, as mentioned above, we assume a stronger uniformity
condition and a smaller weight function than previously. We briefly comment
on these conditions in Remarks 4.5.6.

4.5.5 Theorem. Assume that the conditions of Theorem 3.1.2 hold with
Condition 2.2.1 satisfied uniformly for all x, y ∈ [0, 1]. Further, suppose
log6 n = o(m) and that for all y0 > 0 there exist some constant C ≥ 0 such
that

lim sup
t↓0

sup
0<x,y≤y0

q(t)c(x, y)

Q(tx, ty)
= C (4.24)

and define ℓ2(t) := log(max(2, | log t|)). Then, for all ε, δ > 0,

lim
ϑ↓0

lim sup
n→∞

P

{

sup
0<s∧x≤ϑ
0<s∨x≤y0

m1/2 min
(
c(sx, sy0), (sx ∧ sy0)1/2(ℓ2(sx ∧ sy0))−1/2−δ)

(4.25)

×1l(0,∞)(S̃
∗
n(sx, sy0))

∣
∣
∣
∣
log

S̃∗n(sx, sy0)

S̃∗n(x, y0)
− log s

η̂n

∣
∣
∣
∣
>ε

}

=0,

i.e. Equation (4.22) holds with weight function (c(sx, sy0))
1/2+δ replaced with

min
(
c(sx, sy0), (sx ∧ sy0)1/2(ℓ2(sx ∧ sy0))−1/2−δ

)
. △
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4.5.6 Remarks.

(i) In view of the similarity to our central Condition 2.2.1, assumption
(4.24) does not seem unnatural. However, neither Condition 2.2.1 implies
(4.24), nor it is obvious that (4.24) holds for a wide range of bivariate
distributions.

(ii) For large parts of the proof of Theorem 4.5.5 the weight function c(sx, sy0)
suffices. However, in general one may expect (4.22) to hold with weight
function c(sx, sy0) only if one assumes that m1/2c(sx, sy0) → 0 as n →
∞, see Remark 4.6.2 in the proof of Theorem 4.5.5.

△

4.6 Proofs

4.6.1 Proof of Theorem 4.1.1

First, we argue as in the proof of Theorem 3.2.1 to see that

log

n∑

i=1

1l{Ûi < sx/T
(n)
n−m:n, V̂i < sy/T

(n)
n−m:n}

n∑

i=1

1l{Ûi < x/T
(n)
n−m:n, V̂i < y/T

(n)
n−m:n}

(4.26)

= log

S

(

U
⌈sx(n+1)/T

(n)
n−m:n⌉−1:n

, V
⌈sy(n+1)/T

(n)
n−m:n⌉−1:n

)

S

(

U
⌈x(n+1)/T

(n)
n−m:n⌉−1:n

, V
⌈y(n+1)/T

(n)
n−m:n⌉−1:n

)

for all x, y ∈ (0, ξ0] with probability tending to 1 as n→ ∞ for all ξ0 > 0.

Observe that the denominator of the right hand side of (4.26) equals the
numerator of the right hand side of (3.52), and that in the numerator of the
right hand side of (4.26) we merely have factor s in addition. Hence, it is along
the same lines as we obtained (3.57) that we can conclude that a version of
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the right hand side of (4.26) is

log
S∗n

(
(n+1)sx

nq←(m/n)Q∗n(1)
−, (n+1)sy

nq←(m/n)Q∗n(1)
−
)

S∗n

(
(n+1)x

nq←(m/n)Q∗n(1)
−, (n+1)y

nq←(m/n)Q∗n(1)
−
)

= log
c(sx, sy) +m−1/2

(
W (sx, sy) −W (1, 1)c(sx, sy)

)
+ o(m−1/2)

c(x, y) +m−1/2
(
W (x, y) −W (1, 1)c(x, y)

)
+ o(m−1/2)

=
1

η
log s+ log

(

1 +m−1/2

(
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

)

+ o(m−1/2)

)

=
1

η
log s+m−1/2

(
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

)

+ o(m−1/2) a.s. (4.27)

uniformly for (s, x, y) on compact subsets of (0, 1] × (0,∞)2 for the versions
Q∗n, S∗n and W as considered in the proof of Theorem 3.2.7.

The next step is to substitute 1/η by (versions of) 1/η̂n in (4.27). To this
end, note from the proof of Theorem 3.2.7 and from Remarks 3.1.8 that the
versions Q∗n, S∗n and W of (4.27) are exactly those of Corollary 3.1.7.

Thus, by (4.27) and Corollary 3.1.7 we obtain

log
S∗n

(
(n+1)sx

nq←(m/n)Q∗n(1)
−, (n+1)sy

nq←(m/n)Q∗n(1)
−
)

S∗n

(
(n+1)x

nq←(m/n)Q∗n(1)
−, (n+1)y

nq←(m/n)Q∗n(1)
−
) − 1

η̂n
log s

(4.28)

= m−1/2

[
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)
+

log s

η

(∫ 1

0

t−(η+1)W (tη, tη)νη(dt)

) ]

+oP (m−1/2)

uniformly for (s, x, y) on compact subsets of (0, 1] × (0,∞)2.

4.6.2 Proof of Corollary 4.2.1

We have to establish the distribution of the right hand side of (4.28) for s, x, y ∈
(0, 1]. We start with the Hill case.
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The Case η̂n = η̂H
n

Here, according to (3.14), νη(dt) = νH
η (dt) = tηdt− ε1(dt). We abbreviate

ZH(t) :=
log s

η

(
t−1W (tη, tη) −W (1, 1)

)
+
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)
,

so that it remains to show that
∫ 1

0
ZH(t)dt is N

(
0, σ2

x,y,s

)
-distributed.

A special case of Proposition 2.2.1 of Shorack and Wellner (1986) states
that

∫ 1

0

ZH(t)dt
D
= N

(
0, σ2∫

ZH

)
, (4.29)

where
D
= stands for equality in distribution and

σ2∫
ZH =

∫ 1

0

∫ 1

0

cov
[
ZH(r), ZH(t)

]
drdt. (4.30)

By means of the covariance structure (3.9) of W = W1, we obtain

cov
[
ZH(r), ZH(t)

]
= E

[
ZH(r)ZH(t)

]

=
log2 s

η2

[
(rt)−1c(rη ∧ tη, rη ∧ tη)

−r−1c(rη ∧ 1, rη ∧ 1) − t−1c(tη ∧ 1, tη ∧ 1) + 1
]

+
log s

ηc(x, y)

[

r−1
(

s−1/ηc(sx ∧ rη, sy ∧ rη) − c(x ∧ rη, y ∧ rη)
)

−2s−1/ηc(sx ∧ 1, sy ∧ 1) + 2c(x ∧ 1, y ∧ 1)

+t−1
(

s−1/ηc(sx ∧ tη, sy ∧ tη) − c(x ∧ tη, y ∧ tη)
) ]

+
s−2/ηc(sx, sy) − 2s−1/ηc(sx, sy) + c(x, y)

c2(x, y)
.

To calculate σ2∫
ZH , we consider the double integrals of these three summands
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separately, use the homogeneity (2.14) of c in the third summand and define

I :=
log2 s

η2

∫ 1

0

∫ 1

0

[
(rt)−1c(rη ∧ tη, rη ∧ tη)

−r−1c(rη ∧ 1, rη ∧ 1) − t−1c(tη ∧ 1, tη ∧ 1) + 1
]
drdt,

J(x, y) :=
log s

ηc(x, y)

∫ 1

0

∫ 1

0

[

r−1(s−1/ηc(sx ∧ rη, sy ∧ rη) − c(x ∧ rη, y ∧ rη)
)

−2s−1/ηc(sx ∧ 1, sy ∧ 1) + 2c(x ∧ 1, y ∧ 1)

+t−1
(

s−1/ηc(sx ∧ tη, sy ∧ tη) − c(x ∧ tη, y ∧ tη)
)]

drdt,

K(x, y) :=

∫ 1

0

∫ 1

0

s−1/η − 1

c(x, y)
drdt =

s−1/η − 1

c(x, y)
,

which means that

σ2∫
ZH = I + J(x, y) +K(x, y).

The integrals I and J simplify to

I =
2 log2 s

η2

∫ 1

0

∫ t

0

[
(rt)−1c(rη, rη)

−r−1c(rη, rη) − t−1c(tη, tη) + 1
]
drdt

=
2 log2 s

η2

∫ 1

0

∫ t

0

(t−1 − 1 − 1 + 1)drdt

=
2 log2 s

η2

∫ 1

0

(1 − t)dt =
log2 s

η2

and

J(x, y) =
2 log s

ηc(x, y)

∫ 1

0

[

t−1
(

s−1/ηc(sx ∧ tη, sy ∧ tη) − c(x ∧ tη, y ∧ tη)
)

−s−1/ηc(sx ∧ 1, sy ∧ 1) + c(x ∧ 1, y ∧ 1)
]

dt.
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Then, substituting t = s1/ηu in the first summand yields

J(x, y)

=
2 log s

ηc(x, y)

(∫ s−1/η

0

s−1/ηu−1c(x ∧ uη, y ∧ uη)s1/ηdu−
∫ 1

0

t−1c(x ∧ tη, y ∧ tη)dt

−s−1/ηc(sx ∧ 1, sy ∧ 1) + c(x ∧ 1, y ∧ 1)

)

=
2 log s

ηc(x, y)

(∫ s−1/η

1

t−1c(x ∧ tη, y ∧ tη)dt

−s−1/ηc(sx ∧ 1, sy ∧ 1) + c(x ∧ 1, y ∧ 1)

)

and thus

σ2∫
Z =

log2 s

η2
+
s−1/η − 1

c(x, y)
+

2 log s

ηc(x, y)

(∫ s−1/η

1

t−1c(x ∧ tη, y ∧ tη)dt (4.31)

−s−1/ηc(sx ∧ 1, sy ∧ 1) + c(x ∧ 1, y ∧ 1)

)

,

which is the asymptotic variance mentioned in Remark 4.2.2 (ii). The assump-
tion x, y ∈ (0, 1] together with the homogeneity (2.14) of c yields

J(x, y) =
2 log s

η

∫ s−1/η

1

t−1dt = −2 log2 s

η2

so that

σ2∫
ZH =

s−1/η − 1

c(x, y)
− log2 s

η2
.

It remains to show that σ2
x,y,s possesses the form (4.6) if η̂n is the MLE.
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The Case η̂n = η̂ML
n

Here, due to (3.14), νη(dt) = νML
η (dt) =

(
(η + 1)/η

)2 (
tη − (2η + 1)t2η

)
dt +

(
(η + 1)/η

)
ε1(dt), so that the integral of (4.28) reads as

∫ 1

0

t−(η+1)W (tη, tη)νML
η (dt)

=

(
η + 1

η

)2 ∫ 1

0

(
tη − (2η + 1)t2η)t−(η+1)W (tη, tη)dt+

η + 1

η
W (1, 1).

Hence, we may continue (4.28) to

log
S∗n

(
(n+1)sx

nq←(m/n)Q∗n(1)
−, (n+1)sy

nq←(m/n)Q∗n(1)
−
)

S∗n

(
(n+1)x

nq←(m/n)Q∗n(1)
−, (n+1)y

nq←(m/n)Q∗n(1)
−
) − 1

η̂ML
n

log s

= m−1/2

[
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

+
(η + 1)2 log s

η3

∫ 1

0

(
t−1 − (2η + 1)tη−1)W (tη, tη)dt

+
(η + 1) log s

η2
W (1, 1)

]

+ oP (m−1/2)

= m−1/2 (η + 1)2 log s

η3

∫ 1

0

[
η3

(η + 1)2 log s

(
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

)

+
(
t−1 − (2η + 1)tη−1)W (tη, tη) +

η

η + 1
W (1, 1)

]

dt

+oP (m−1/2). (4.32)

Similar to the Hill case we now define

ZML(t) :=
(
t−1 − (2η + 1)tη−1)W (tη, tη) +

η

η + 1
W (1, 1)

+
η3

(η + 1)2 log s

(
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

)

,
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so that it remains to show that

σ2
x,y,s =

(η + 1)4 log2 s

η6
σ2∫

ZML , (4.33)

where σ2∫
ZML is the variance of

∫ 1

0
ZML(t)dt. Note that (4.29) and (4.30) hold

for ZH replaced with ZML. We start calculating

cov
[
ZML(r), ZML(t)

]
= E

[
ZML(r)ZML(t)

]

= E
[(
r−1 − (2η + 1)rη−1)W (rη, rη)

(
t−1 − (2η + 1)tη−1)W (tη, tη)

]

+E

[
(
r−1 − (2η + 1)rη−1)W (rη, rη)

η

η + 1
W (1, 1)

]

+E

[

η3
(
r−1 − (2η + 1)rη−1

)

(η + 1)2 log s
W (rη, rη)

(
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

)]

+E

[
η

η + 1
W (1, 1)

(
t−1 − (2η + 1)tη−1)W (tη, tη)

]

+E

[

η3
(
t−1 − (2η + 1)tη−1

)

(η + 1)2 log s

(
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

)

W (tη, tη)

]

(4.34)

+E

[(
η

η + 1
W (1, 1) +

η3

(η + 1)2 log s

(
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

))2
]

,
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so that by the homogeneity (2.14) of c,

σ2∫
ZML

=

∫ 1

0

∫ 1

0

(
r−1 − (2η + 1)rη−1)(t−1 − (2η + 1)tη−1)c(rη ∧ tη, rη ∧ tη)drdt

+2

∫ 1

0

(
t−1 − (2η + 1)tη−1) η

η + 1
c(tη ∧ 1, tη ∧ 1) dt

+2

∫ 1

0

η3
(
t−1 − (2η + 1)tη−1

)

(η + 1)2c(x, y) log s

(
c(sx ∧ tη, sy ∧ tη)

s1/η
− c(x ∧ tη, y ∧ tη)

)

dt

+

(
η

η + 1

)2

+
η6

(η + 1)4c(x, y) log2 s

(

s−1/η − 2 + 1
)

+2
η4

(η + 1)3c(x, y) log s

(

s−1/ηc(sx ∧ 1, sy ∧ 1) − c(x ∧ 1, y ∧ 1)
)

. (4.35)

We continue in merely considering the first two summands, since the others
are not simplifiable any more for arbitrary x, y > 0. Similar to the procedure
in the Hill case and once more by the homogeneity (2.14) of c, we split the
remaining double integral into

∫ 1

0

(
t−1 − (2η + 1)tη−1)

∫ t

0

(
r−1 − (2η + 1)rη−1)r drdt

+

∫ 1

0

(
t−1 − (2η + 1)tη−1)

∫ 1

t

(
r−1 − (2η + 1)rη−1)t drdt

For symmetry reasons, these two double integrals are identical and therefore
their sum equals

2

∫ 1

0

[

1 − tη(2η + 1) − 2η + 1

η + 1
tη +

(2η + 1)2

η + 1
t2η

]

dt = 2

(

1 − 2η + 1

(η + 1)2

)

.

Since the second summand 2
∫ 1

0

(
t−1 − (2η+1)tη−1

)
η/(η + 1)c(tη ∧1, tη ∧1)dt

of (4.35) equals 2
∫ 1

0
η/(η + 1)

(
1− (2η+ 1)tη

)
dt = −2

(
1− (2η + 1)/(η + 1)2

)
,

summands number 3-6 of that formula remain for σ2∫
ZML . Recall from (4.33)



4.6. Proofs 99

that this must be multiplied with (η + 1)4(log2 s)/η6 to obtain σ2
x,y,s in the

general case x, y > 0, i.e.

σ2
x,y,s

=
s−1/η − 1

c(x, y)
+

(η + 1)2 log2 s

η4

[

1 +
2η

c(x, y) log s

×
∫ 1

0

(
t−1 − (2η + 1)tη−1) (s−1/ηc(sx ∧ tη, sy ∧ tη) − c(x ∧ tη, y ∧ tη)

)
dt

]

+
2(η + 1)(log s)

(
s−1/ηc(sx ∧ 1, sy ∧ 1) − c(x ∧ 1, y ∧ 1)

)

η2c(x, y)
, (4.36)

cf. Remark 4.2.2 (ii).
The expression slightly simplifies in the case x, y ∈ (0, 1]. Note that then

the last summand of (4.36) equals 0 and for the integral we have seen in the
Hill case when calculating (the Lebesgue integral over [0, 1]2 of) J that

∫ 1

0

t−1
(

s−1/ηc(sx ∧ tη, sy ∧ tη) − c(x ∧ tη, y ∧ tη)
)

dt

=

∫ s−1/η

1

t−1c(x ∧ tη, y ∧ tη)dt = −c(x, y) log s

η
.

Further, in a similar manner, i.e. with substitution t = s1/ηu (and renaming
u), one obtains that

∫ 1

0

tη−1
(

s−1/ηc(sx ∧ tη, sy ∧ tη) − c(x ∧ tη, y ∧ tη)
)

dt

= s

∫ s−1/η

0

tη−1c(x ∧ tη, y ∧ tη)dt−
∫ 1

0

tη−1c(x ∧ tη, y ∧ tη)dt

= (s− 1)

∫ 1

0

tη−1c(x ∧ tη, y ∧ tη)dt+ s

∫ s−1/η

1

tη−1c(x ∧ tη, y ∧ tη)dt

= (s− 1)

(∫ 1

0

tη−1c(x ∧ tη, y ∧ tη)dt− c(x, y)

η

)

Hence, the second summand of (4.36) reads as

(η + 1)2 log2 s

η4

[

− 1− 2(2η + 1)(s− 1)

c(x, y) log s

(

η

∫ 1

0

tη−1c(x ∧ tη, y ∧ tη)dt− c(x, y)

)]
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which completes the proof.

4.6.3 Proof of Corollary 4.3.1

Similar as in the proof of Corollary 4.2.1, we distiguish the cases that η̂n is
the Hill estimator and the MLE, respectively, in separate subsections.

Note that we can copy the proof(s) of the case of asymptotic independence
until the calculation of

cov
[
ZH(r), ZH(t)

]
= E

[
ZH(r)ZH(t)

]
and

cov
[
ZML(r), ZML(t)

]
= E

[
ZML(r)ZML(t)

]
,

respectively. Recall from (3.12) and (3.10) that the particular difficulty in
the case of asymptotic dependence is that the (covariance) structure of the
Gaussian process W is substantially more complicated. Recall further that we
must show that σ2

x,y,s = σ2∫
ZH if η̂n = η̂H

n and σ2
x,y,s =

(
16 log2 s

)
σ2∫

ZML (since

here η = 1) if η̂n = η̂ML
n , where σ2∫

ZH and σ2∫
ZML are the Lebesgue integrals of

cov
[
ZH(r), ZH(t)

]
and cov

[
ZML(r), ZML(t)

]
over [0, 1]2, respectively.

The case η̂n = η̂H
n

cov
[
ZH(r), ZH(t)

]
= E

[
ZH(r)ZH(t)

]

= (log2 s)E

[

(rt)−1W (r, r)W (t, t)

−W (1, 1)
[
r−1W (r, r) + t−1W (t, t)

]
+W 2(1, 1)

]

+(log s)E

[(
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

)(
W (r, r)

r
− 2W (1, 1) +

W (t, t)

t

)]

+E

[
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

]2

(4.37)

=: A(r, t) +B(r, t, x, y) + C(x, y).
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Define

A1(r, t) := E
[
(rt)−1W (r, r)W (t, t)

]

A2(r, t) := E
[
W (1, 1)

(
r−1W (r, r) + t−1W (t, t)

)]

A3 := E
[
W 2(1, 1)

]
(4.38)

which means that

A(r, t) = (log2 s)
(
A1(r, t) −A2(r, t) +A3

)
.

Calculating A1, A2 and A3, it is convenient to first specify E[W (r, r)W (t, t)]
for r ≤ t which is easily done with the help of (3.50). Recall (3.22) and from
(3.19) that cx and cy are homogeneous of order 0, so that cx(r, r) = cx(t, t) = cx
and cy(r, r) = cy(t, t) = cy. We obtain

E[W (r, r)W (t, t)]

= r − lrcx − lrcy− lcx
[
c(r, t) − rcx − lcyc(r, t)

]
− lcy

[
c(t, r) − rcy − lcxc(t, r)

]

= r
(
1 + l(c2x + c2y − 1)

)
− l
[
c(r, t)cx(1 − lcy) + c(t, r)cy(1 − lcx)

]
. (4.39)

Hence, A1(r, t) equals

t−1(1 + l(c2x + c2y − 1)
)
− (rt)−1l

[
c(r, t)cx(1 − lcy) + c(t, r)cy(1 − lcx)

]

for r ≤ t and therefore
∫ 1

0

∫ 1

0

A1(r, t)drdt = 2

∫ 1

0

∫ t

0

A1(r, t)drdt

=2
(
1+l(c2x+c2y−1)

)
−2l

∫ 1

0

∫ t

0

(rt)−1[c(r, t)cx(1−lcy)+c(t, r)cy(1−lcx)
]
drdt

=2
(
1+l(c2x+c2y−1)

)
− 2l

∫ 1

0

u−1 [c(u, 1)cx(1 − lcy) + c(1, u)cy(1 − lcx)] du,

where in the last step we substituted r = tu in the double integral and exploited
the homogeneity (2.14) of c. Further, note that
∫ 1

0

∫ 1

0

A2(r, t)drdt

= 2

∫ 1

0

(

1 + l(c2x + c2y − 1) − r−1l
[
c(r, 1)cx(1 − lcy) + c(1, r)cy(1 − lcx)

])

dr
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so that
∫ 1

0

∫ 1

0

(
A1(r, t) −A2(r, t)

)
drdt = 0. Moreover,

A3 = 1 + l(c2x + c2y − 1) − l(cx + cy − 2lcxcy), (4.40)

so that we obtain by (3.22) with x = y = 1

∫ 1

0

∫ 1

0

A(r, t) drdt = (log2 s)(1 − 2lcxcy)(1 − l) (4.41)

for the Lebesgue integral over [0, 1]2 of the first summand A of (4.37).

In order to treat the second of the three summands B of (4.37), we first
calculate E

[
W (x, y)W (r, r)

]
by means of (3.50), which yields

E[W (x, y)W (r, r)]

= c(x, r) − c(r ∨ x, r) + c(r, y) + r − c(r, r ∨ y) + c(x, y)(1 − l)

−c(r ∨ x, y) − c(x, r ∨ y) + c(r ∨ x, r ∨ y)
−lcx

[
c(r, y) − c(r ∨ x, y)

]
− lcy

[
c(x, r) − c(x, r ∨ y)

]

−lcx(x, y)
[
c(x, r) + r − c(r ∨ x, r) − cx(r ∧ x) − lcyc(x, r)

]

−lcy(x, y)
[
c(r, y) + r − c(r, r ∨ y) − cy(r ∧ y) − lcxc(r, y)

]

= χ1(x, y, r) + c(x, y)(1 − l). (4.42)

Thus,

B(r, t, x, y)

=
log s

c(x, y)

(

(sr)−1χ1(sx, sy, r) − 2s−1χ1(sx, sy, 1) + (st)−1χ1(sx, sy, t)

−r−1χ1(x, y, r) + 2χ1(x, y, 1) − t−1χ1(x, y, t)
)

and

∫ 1

0

∫ 1

0

B(r, t, x, y) drdt =
2 log s

c(x, y)

(

χ1(x, y, 1) − s−1χ1(sx, sy, 1)

+

∫ 1

0

[
(sr)−1χ1(sx, sy, r) − r−1χ1(x, y, r)

]
dr
)

.
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Substitute r = su (and rename u) in the first of the integral’s summands and
observe that χ1 is homogeneous of order 1 to obtain

∫ 1

0

∫ 1

0

B(r, t, x, y) drdt =
2 log s

c(x, y)

(

χ1(x, y, 1) − s−1χ1(sx, sy, 1)

(4.43)

+

∫ s−1

1

r−1χ1(x, y, r)dr
)

.

Recall the definition (4.7) of χ2 to see that if x, y ∈ (0, 1],

χ1(x, y, 1) − s−1χ1(sx, sy, 1) = χ2(x, y) − s−1χ2(sx, sy) (4.44)

and

∫ s−1

1

r−1χ1(x, y, r)dr

=

∫ s−1

1

lr−1
(

cx(x, y)[c(x, r)(lcy − 1) + xcx]

+cy(x, y)[c(r, y)(lcx − 1) + ycy]
)

dr

= −l(log s)[xcxcx(x, y) + ycycy(x, y)]

+

∫ s−1

1

l
[
(lcy − 1)cx(x, y)c(x/r, 1) + (lcx − 1)cy(x, y)c(1, y/r)

]
dr, (4.45)

so that
∫ 1

0

∫ 1

0

B(r, t, x, y) drdt

=
2 log s

c(x, y)

(

χ2(x, y) − s−1χ2(sx, sy) − l(log s)[xcxcx(x, y) + ycycy(x, y)]

+

∫ s−1

1

χ2(x/r, y/r) dr

)

(4.46)

if x, y ∈ (0, 1].
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Turning to the third summand C of (4.37), we first see from (3.50) that

E[W (sx, sy)W (x, y)]

= sc(x, y) − lcx(x, y)
[
sc(x, y) + c(sx, y) − sxcx(x, y) − lcy(x, y)c(sx, y)

]

−lcy(x, y)
[
sc(x, y) + c(x, sy) − sycy(x, y) − lcx(x, y)c(x, sy)

]
.

(Note that then E
[
W 2(sx, sy)

]
can be easily calculated by substituting s by

1, x by sx and y by sy.) Hence,

∫ 1

0

∫ 1

0

C(x, y)drdt = C(x, y)

=
1

c2(x, y)

(

s−2E[W 2(sx, sy)] − 2s−1E[W (sx, sy)W (x, y)] + E[W 2(x, y)]
)

=
1

c2(x, y)

(

s−1c(x, y) − ls−1cx(x, y)[2c(x, y) − xcx(x, y) − lcy(x, y)c(x, y)]

−2c(x, y) − ls−1cy(x, y)[2c(x, y) − ycy(x, y) − lcx(x, y)c(x, y)]

+2ls−1cx(x, y)[sc(x, y) + c(sx, y) − sxcx(x, y) − lcy(x, y)c(sx, y)]

+2ls−1cy(x, y)[sc(x, y) + c(x, sy) − sycy(x, y) − lcx(x, y)c(x, sy)]

+c(x, y) − lcx(x, y)[2c(x, y) − xcx(x, y) − lcy(x, y)c(x, y)]

−lcy(x, y)[2c(x, y) − ycy(x, y) − lcx(x, y)c(x, y)]

)

=
1

c2(x, y)

(

s−1c(x, y) − c(x, y)

−lcx(x, y)[2s−1c(x, y) − s−1xcx(x, y) − 2s−1c(sx, y) + xcx(x, y)]

−lcy(x, y)[2s−1c(x, y) − s−1ycy(x, y) − 2s−1c(x, sy) + ycy(x, y)]

+2l2cx(x, y)cy(x, y)
[
s−1c(x, y) − s−1[c(sx, y) + c(x, sy)] + c(x, y)

]
)
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=
1

c2(x, y)

(

(s−1 − 1)c(x, y)

+lcx(x, y)
[
(s−1 − 1)xcx(x, y) + 2s−1(c(sx, y) − c(x, y)

)]

+lcy(x, y)
[
(s−1 − 1)ycy(x, y) + 2s−1(c(x, sy) − c(x, y)

)]
(4.47)

+2l2cx(x, y)cy(x, y)
[
(s−1 + 1)c(x, y) − s−1(c(sx, y) + c(x, sy)

)]
)

.

Hence, adding up (4.41), (4.43) and (4.47), which is
∫ 1

0

∫ 1

0

(
A(r, t)+B(r, t, x, y)+

C(x, y)
)
drdt = σ2∫

ZH for arbitrary x, y > 0, yields the asymptotic variance
mentioned in Remark 4.3.2, namely

σ2∫
ZH = (log2 s)(1 − 2lcxcy)(1 − l)

+
2 log s

c(x, y)

(

χ1(x, y, 1) − s−1χ1(sx, sy, 1) +

∫ s−1

1

r−1χ1(x, y, r)dr
)

+
1

c2(x, y)

(

(s−1 − 1)c(x, y) (4.48)

+lcx(x, y)
[
(s−1 − 1)xcx(x, y) + 2s−1(c(sx, y) − c(x, y)

)]

+lcy(x, y)
[
(s−1 − 1)ycy(x, y) + 2s−1(c(x, sy) − c(x, y)

)]

+2l2cx(x, y)cy(x, y)
[
(s−1 + 1)c(x, y) − s−1(c(sx, y) + c(x, sy)

)]
)

.

Adding up (4.41), (4.46) and (4.47), which is
∫ 1

0

∫ 1

0

(
A(r, t) + B(r, t, x, y) +

C(x, y)
)
drdt = σ2∫

ZH if x, y ∈ (0, 1], yields the required result.

The Case η̂n = η̂ML
n

Similar as in the Hill case, we merely need to calculate (4.34) for η = 1 and
W with covariance structure according to (3.12) and (3.10) and integrate the
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result over [0, 1]2 to obtain σ2∫
ZML .

cov
[
ZML(r), ZML(t)

]
= E

[
ZML(r) ZML(t)

]

= E
[
(r−1 − 3)W (r, r)(t−1 − 3)W (t, t)

]

+E

[

(r−1 − 3)W (r, r)
1

2
W (1, 1)

]

+E

[
1

2
W (1, 1)(t−1 − 3)W (t, t)

]

+E

[

(r−1 − 3)W (r, r)
1

4 log s

(
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

)]

+E

[
1

4 log s

(
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

)

(t−1 − 3)W (t, t)

]

+E

[(
1

2
W (1, 1) +

1

4 log s

(
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

))2
]

=: T1(r, t) + T2(r) + T3(t) + T4(r, x, y) + T5(t, x, y) + T6(x, y).

We add T1, T2 and T3 to obtain

T1(r, t) + T2(r) + T3(t) = A1(r, t) − 3tA1(r, t) − 3rA1(r, t) + 9rtA1(r, t)

(4.49)

+
1

2
A2(r, t) − 3

2
E
[
W (1, 1)

(
W (r, r) +W (t, t)

)]
.

In the Hill case, we have seen that

∫ 1

0

∫ 1

0

(

A1(r, t) +
1

2
A2(r, t)

)

drdt

= 3
(
1 + l(c2x + c2y − 1)

)
− 3l

∫ 1

0

r−1[cxc(r, 1)(1 − lcy) + cyc(1, r)(1 − lcx)]dr.

(4.50)
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Further, by (4.39) we readily see that

∫ 1

0

∫ 1

0

3

2
E
[
W (1, 1)

(
W (r, r) +W (t, t)

)]
drdt

= 3

∫ 1

0

(

r
(
1 + l(c2x + c2y − 1)

)
− l
[
cxc(r, 1)(1 − lcy) + cyc(1, r)(1 − lcx)

])

dr

=
3

2

(
1+l(c2x+c2y−1)

)
−3l

∫ 1

0

[
cxc(r, 1)(1−lcy)+cyc(1, r)(1−lcx)

]
dr. (4.51)

With the techniques that we have already seen in the proof of the Hill case
(symmetry, substitution)

∫ 1

0

∫ 1

0

9rtA1(r, t)drdt

= 9

∫ 1

0

∫ 1

0

E
[
W (r, r)W (t, t)

]
drdt

= 3
(
1+l(c2x+c2y−1)

)
− 18l

∫ 1

0

∫ t

0

[
cxc(r, t)(1 − lcy) + cyc(t, r)(1 − lcx)

]
drdt

= 3
(
1+l(c2x+c2y−1)

)
−6l

∫ 1

0

[
cxc(r, 1)(1 − lcy) + cyc(1, r)(1 − lcx)

]
dr (4.52)

and
∫ 1

0

∫ 1

0

3tA1(r, t) + 3rA1(r, t)drdt

= 6

∫ 1

0

∫ t

0

(

r−1E
[
W (r, r)W (t, t)

]
+ t−1E

[
W (r, r)W (t, t)

])

drdt

= 6

∫ 1

0

∫ t

0

(

1 + l(c2x + c2y − 1) + rt−1(1 + l(c2x + c2y − 1)
))

drdt

−6l

∫ 1

0

∫ 1

0

(

tr−1[cxc(r, 1)(1 − lcy) + cyc(1, r)(1 − lcx)
]

+t
[
cxc(r, 1)(1 − lcy) + cyc(1, r)(1 − lcx)

])

drdt

= 3
(
1 + l(c2x + c2y − 1)

)
+

3

2

(
1 + l(c2x + c2y − 1)

)

−3l

∫ 1

0

(
r−1 + 1

)[
cxc(r, 1)(1 − lcy) + cyc(1, r)(1 − lcx)

]
dr. (4.53)



108 Chapter 4. Model Validation

Hence, the sum of the double integrals of T1, T2 and T3 is (4.50) minus (4.51)
plus (4.52) minus (4.53), such that

∫ 1

0

∫ 1

0

(

T1(r, t) + T2(r) + T3(t)
)

drdt = 0.

By the homogeneity (2.14) of c and with (4.42) we obtain that

T4(r, x, y)

=
1

4c(x, y) log s

(

(sr)−1(χ1(sx, sy, r) + c(sx, sy)(1 − l)
)

−r−1(χ1(x, y, r) + c(x, y)(1 − l)
)

−3s−1(χ1(sx, sy, r) + c(sx, sy)(1 − l)
)

+3
(
χ1(x, y, r) + c(x, y)(1 − l)

))

=
(sr)−1χ1(sx, sy, r) − r−1χ1(x, y, r) − 3s−1χ1(sx, sy, r) + 3χ1(x, y, r)

4c(x, y) log s

which yields

∫ 1

0

∫ 1

0

T4(r, x, y)drdt

=
1

4c(x, y) log s

∫ 1

0

(

(sr)−1χ1(sx, sy, r) − r−1χ1(x, y, r)

+3χ1(x, y, r) − 3s−1χ1(sx, sy, r)
)

dr

=
1

4c(x, y) log s

(∫ s−1

1

r−1χ1(x, y, r)dr (4.54)

+

∫ 1

0

3χ1(x, y, r)dr −
∫ s−1

0

3sχ1(x, y, r)dr

)

,

where in the last step we substituted r = su and renamed u in the first and
the last integral summand. Observe that T4 = T5 and recall (4.45) to see that
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if x, y ∈ [0, 1],

∫ 1

0

∫ 1

0

(

T4(r, x, y) + T5(t, x, y)
)

drdt

=
1

2c(x, y) log s

(∫ s−1

1

χ2(x/r, y/r) dr − l(log s)[xcxcx(x, y) + ycycy(x, y)]

+3

∫ 1

0

χ1(x, y, r)dr − 3s

∫ s−1

0

χ1(x, y, r)dr

)

. (4.55)

We expand T6 to

T6(x, y) = E

[
W 2(1, 1)

4

]

+ E

[
1

4 log s

(
W (sx, sy)

c(sx, sy)
− W (x, y)

c(x, y)

)

W (1, 1)

]

(4.56)

+E

[
1

16 log2 s

(
W 2(sx, sy)

c2(sx, sy)
− 2

W (sx, sy)W (x, y)

c(sx, sy)c(x, y)
+
W 2(x, y)

c2(x, y)

)]

.

Recall (4.38) and (4.40) for the first summand of (4.56), exploit the homogene-
ity (2.14) of c, consider (4.42) with r = 1 for the second summand of (4.56)
and recall (4.47) for the third summand of that formula to see that

∫ 1

0

∫ 1

0

T6(x, y)drdt = T6(x, y)

=
1+l(c2x+c2y−1)−l(cx+cy−2lcxcy)

4
+
s−1χ1(sx, sy, 1) − χ1(x, y, 1)

4c(x, y) log s

+
C(x, y)

16 log2 s
(4.57)

which due to (4.44) simplifies to

∫ 1

0

∫ 1

0

T6(x, y)drdt = T6(x, y)

=
1+l(c2x+c2y−1)−l(cx+cy−2lcxcy)

4
+
s−1χ2(sx, sy) − χ2(x, y)

4c(x, y) log s
+

C(x, y)

16 log2 s

(4.58)
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if x, y ∈ [0, 1].
Recall from the beginning of Section 4.6.3 that the sum of (4.57) and twice

(4.54) equals σ2∫
ZML for arbitrary x, y > 0, and that this sum must be multiplied

with 16 log2 s to obtain the asymptotic variance mentioned in Remark 4.3.2,
namely

16σ2∫
ZML log2 s

= 4(log2 s)(1 − 2lcxcy)(1 − l)

+
8 log s

c(x, y)

(∫ s−1

1

r−1χ1(x, y, r)dr +

∫ 1

0

3χ1(x, y, r)dr −
∫ s−1

0

3sχ1(x, y, r)dr

+
s−1χ1(sx, sy, 1) − χ1(x, y, 1)

2

)

(4.59)

+
1

c2(x, y)

(

(s−1 − 1)c(x, y)

+lcx(x, y)
[
(s−1 − 1)xcx(x, y) + 2s−1(c(sx, y) − c(x, y)

)]

+lcy(x, y)
[
(s−1 − 1)ycy(x, y) + 2s−1(c(x, sy) − c(x, y)

)]

+2l2cx(x, y)cy(x, y)
[
(s−1 + 1)c(x, y) − s−1(c(sx, y) + c(x, sy)

)]
)

.

Add (4.55) and (4.58) and multiply this sum with 16 log2 s to obtain σ2
x,y,s.

4.6.4 Proofs for Section 4.5

Before we can prove Theorem 4.5.1, we have to make some preparations. Let
(W̃ (B))B∈B̄[0,∞)2 be a (set indexed) centered Gaussian process defined for all

bounded Borel sets B ∈ B̄[0,∞)2 and with covariance structure

cov(W̃ (A), W̃ (B)) = µ(A ∩B),

where the measure µ, defined by µ
(
[0, x] × [0, y]

)
= c(x, y) for all x, y ≥ 0,

cf. (2.18), inherits the homogeneity (2.14) of c, i.e. µ(tB) = t1/ηµ(B) for all
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t > 0 and all bounded Borel sets B ∈ B̄[0,∞)2. Let the random variable
Wl(x, y) be the process W̃ with the lower triangle of the rectangle [0, x]× [0, y]
as argument, i.e.

Wl(x, y) := W̃
({

(w, z) ∈ [0,∞)2 | w ≤ x, z ≤ y

x
w
})

.

Analogously, let

Wu(x, y) := W̃

({

(w, z) ∈ [0,∞)2 | z ≤ y, w <
x

y
z

})

be W̃ with the the upper triangle of the rectangle [0, x] × [0, y] (without the
diagonal) as argument. See the left hand plot of Figure 4.3. Next we show

that in fact W
D
= Wl +Wu.

4.6.1 Lemma. The process Wl +Wu is a version of W , i.e.

E
[(

(Wl +Wu)(x1, y1)
)(

(Wl +Wu)(x2, y2)
)]

= c(x1 ∧ x2, y1 ∧ y2) (4.60)

for all x1, x2, y1, y2 ≥ 0. △

Proof. Observe that

(Wl +Wu)(x, y) = W̃
(
[0, x] × [0, y]

)

so that the left hand side of (4.60) equals

E
[(
W̃ ([0, x1] × [0, y1])

)(
W̃ ([0, x2] × [0, y2])

)]

= µ
(
[0, x1 ∧ x2] × [0, y1 ∧ y2]

)

= c(x1 ∧ x2, y1 ∧ y2).

�

Proof of Theorem 4.5.1

From Lemma 4.6.1 we see that (4.23) follows from

lim
ϑ↓0

P






sup

0<s∧x≤ϑ
0<s∨x≤y0

∣
∣
∣
∣

Wl(sx, sy0)

(c(sx, sy0))1/2−δ

∣
∣
∣
∣
> ε






= 0 (4.61)
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and

lim
ϑ↓0

P






sup

0<s∧x≤ϑ
0<s∨x≤y0

∣
∣
∣
∣

Wu(sx, sy0)

(c(sx, sy0))1/2−δ

∣
∣
∣
∣
> ε






= 0 (4.62)

to hold jointly. By suitable decompositions of {(s, x) | 0 < s ∧ x ≤ ϑ, 0 <
s ∨ x ≤ y0} we show that the processes Wl and Wu are equal in distribution
to transformed Brownian sheets.

We first prove (4.62), which is less complicated than to prove (4.61). Let

cu(x, y) := µ

({

(w, z) ∈ [0,∞)2 | z ≤ y, w <
x

y
z

})

,

i.e. cu(x, y) is the µ-measure of the upper triangle of the rectangle [0, x]× [0, y].
The reason that (4.62) is less complicated to prove is that the covariance of
Wu substantially simplifies in the case of y = y0 fixed. This is due to the
fact that the intersection of two upper triangles equals the smaller of these
upper triangle if y = y0, whereas the intersection of two lower triangles is
none of the two if y = y0, see also Figure 4.3. We can write the covariance of
(Wu(x, y0))x≥0 in the simple form

E
[
Wu(x1, y0)Wu(x2, y0)

]
= cu(x1 ∧ x2, y0).

Define cu,y0(x) := cu(x, y0) and let c←u,y0
(t) := inf{x | cu,y0(x) ≥ t} be the left-

continuous generalized inverse of cu,y0 . Then, Wu(c←u,y0
(t), y0) is a Brownian

motion for sufficiently small t ≥ 0, since due to the continuity of cu,

E
[
Wu(c←u,y0

(t1), y0)Wu(c←u,y0
(t2), y0)

]
= cu(c←u,y0

(t1) ∧ c←u,y0
(t2), y0)

= t1 ∧ t2. (4.63)

(Note that since c←u,y0
(t) equals ∞ for some t ≥ 0 if cu,y0 is bounded, we indeed

obtain this result only for sufficiently small t ≥ 0. Note further that this is
sufficient for our purposes, since we prove an asymptotic result as ϑ ↓ 0.)
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(x, y)

Wu(x, y)

Wl(x, y)

(x1, y1)
(x2, y2)

(

x1 ∧ x2, (x1 ∧ x2)

(

y1

x1
∧

y2

x2

))

Figure 4.3: Left: the random variables Wu(x, y) and Wl(x, y) are the set

indexed process W̃ with the upper and the lower triangle of the rectangle
[0, x]× [0, y] as argument. Right: the covariance of Wl is the µ-measure of the
lower triangle of the rectangle [0, x1 ∧ x2] × [0, (x1 ∧ x2)

(
y1/x1 ∧ y2/x2

)
].

Further, observe that

E
[
Wu(s1x1, s1y0)Wu(s2x2, s2y0)

]

= E
[

W̃
({

(w, z) | z ≤ s1y0, w <
x1

y0
z
})

W̃
({

(w, z) | z ≤ s2y0, w <
x2

y0
z
})]

= µ
({

(w, z) | z ≤ (s1 ∧ s2)y0, w <
x1 ∧ x2

y0
z
})

= (s1 ∧ s2)1/ηE
[
Wu(x1, y0)Wu(x2, y0)

]
, (4.64)

where we used the homogeneity of µ in the last step. We consider the supre-
mum of |Wu(sx, sy0)(c(sx, sy0))

δ−1/2| over the set {(s, x) | 0 < x ≤ ϑ, 0 <
s ≤ y0} in detail and merely comment on the supremum of that process over
{(s, x) | 0 < s ≤ ϑ, 0 < x ≤ y0}. Let ϑ̃ := cu,y0(ϑ). We use the symmetry of
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Wu and that cu ≤ c to obtain

P

{

sup
0<x≤ϑ
0<s≤y0

∣
∣
∣
∣

Wu(sx, sy0)

(c(sx, sy0))1/2−δ

∣
∣
∣
∣
> ε

}

≤ 2
∞∑

i=0

∞∑

j=0

P

{

sup
x∈(c←u,y0

(e−(i+1)ϑ̃),c←u,y0
(e−iϑ̃)]

s∈(e−(j+1),e−j ]

Wu(sηx, sηy0)

(sc(x, y0))1/2−δ
> ε

}

= 2

∞∑

i=0

∞∑

j=0

P

{

sup
u∈(e−1,1]

s∈(e−(j+1),e−j ]

Wu(sηc←u,y0
(e−iϑ̃u), sηy0)

(scu,y0(c
←
u,y0

(e−iϑ̃u)))1/2−δ
> ε

}

. (4.65)

We combine (4.63) and (4.64) to see that for sufficiently small ϑ̃ the process
(
Wu(sηc←u,y0

(e−iϑ̃u), sηy0)
)

s≥0,u∈(e−1,1]
has covariance function

E
[
Wu

(
sη
1c
←
u,y0

(e−iϑ̃u1), s
η
1y0
)
Wu

(
sη
2c
←
u,y0

(e−iϑ̃u2), s
η
2y0
)]

= ϑ̃e−i(s1 ∧ s2)(u1 ∧ u2).

This means that
(
Wu(sηc←u,y0

(ϑ̃e−iu), sηy0)
)

s≥0,u∈(e−1,1]
is a scaled Brownian

sheet. More precisely,

(
Wu(sηc←u,y0

(ϑ̃e−iu), sηy0)
)

s≥0,u∈(e−1,1]

D
=
(
ϑ̃e−i)1/2B1

with B1 denoting a standard Brownian sheet. We use this fact, the continuity
of cu and that 0 < δ < 1/2 to obtain from (4.65)

P






sup

0<x≤ϑ
0<s≤y0

∣
∣
∣
∣

Wu(sx, sy0)

(c(sx, sy0))1/2−δ

∣
∣
∣
∣
> ε







≤ 2
∞∑

i=0

∞∑

j=0

P







sup
u∈(e−1,1]

s∈(e−(j+1),e−j ]

(
ϑ̃e−i)1/2B1(s, u) > ε inf

u∈(e−1,1]

s∈(e−(j+1),e−j ]

(
se−iϑ̃u

)1/2−δ







≤ 2

∞∑

i=0

∞∑

j=0

P







sup
u∈(e−1,1]

s∈(e−(j+1),e−j ]

B1(s, u) > Kϑ̃−δe−j(1/2−δ)eiδ







,
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where K (and K1 below) is a generic constant (i.e. it may vary from line to
line), which may depend on δ (or η), but not on i, j or ϑ. The analogue of the
reflection principle which is valid for Brownian sheet, (see e.g. Proposition 3.7
of Walsh (1986)) leads to

P

{

sup
0<x≤ϑ
0<s≤y0

∣
∣
∣
∣

Wu(sx, sy0)

(c(sx, sy0))1/2−δ

∣
∣
∣
∣
> ε

}

≤ K1

∞∑

i=0

∞∑

j=0

P

{

G
(

[e−(j+1), e−j ] × [e−1, 1]
)

> Kϑ̃−δe−j(1/2−δ)eiδ

}

,

where G is Gaussian white noise on R
2, i.e. G is a random set function defined

on the Borel sets A,B ∈ B
2 which have finite Lebesgue measure such that

(i) W (A) is a centered normal random variable with variance equal to the
Lebesgue measure of A and (ii) from A∩B = ∅ follows that W (A) and W (B)
are independent. Hence, the random variable G

(
[e−(j+1), e−j ] × [e−1, 1]

)
is

centered normal with variance (e−j − e−(j+1))(1 − e−1), i.e.

P

{

sup
0<x≤ϑ
0<s≤y0

∣
∣
∣
∣

Wu(sx, sy0)

(c(sx, sy0))1/2−δ

∣
∣
∣
∣
> ε

}

≤ K1

∞∑

i=0

∞∑

j=0

(

1 − Φ

(

Kϑ̃−δ e−j(1/2−δ)

(e−j − e−(j+1))1/2
eiδ

))

≤ K1

∞∑

i=0

∞∑

j=0

(

1 − Φ

(

Kϑ̃−δejδeiδ

))

.

Mill’s ratio (or rather the pertaining inequality, see e.g. Resnick (1992), p. 487)
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yields

P

{

sup
0<x≤ϑ
0<s≤y0

∣
∣
∣
∣

Wu(sx, sy0)

(c(sx, sy0))1/2−δ

∣
∣
∣
∣
> ε

}

≤ K1

∞∑

i=0

∞∑

j=0

ϑ̃δe−jδe−iδ exp
(

−Kϑ̃−2δe2jδe2iδ
)

≤ K1ϑ̃
δ
∞∑

i=0

e−iδ
∞∑

j=0

e−jδ

≤ K1ϑ̃
δ

(1 − e−δ)2
,

so that ϑ ↓ 0 gives the required result.

When considering the supremum of |Wu(sx, sy0)(c(sx, sy0))
δ−1/2| over the

set {(s, x) | 0 < s ≤ ϑ, 0 < x ≤ y0}, the decomposition

{(s, x) | 0 < s ≤ ϑ, 0 < x ≤ y0}

=
∞⋃

i=0

∞⋃

j=0

{

(s, x) | s ∈ ϑ
(
e−(j+1), e−j],

x ∈ y0
(
c←u,y0

(e−(i+1)cu,y0(1)), c←u,y0
(e−icu,y0(1))

]}

leads with analogous arguments to the same result.

We now prove (4.61). The structure of the proof is very similar to the one
of (4.62). However, we need a more sophisticated decomposition of

{
(s, x) |

0 < s∧x ≤ ϑ, 0 < s∨x ≤ y0
}
, since the covariance of Wl does not substantially

simplify (as the covariance of Wu does) in the case of y = y0 fixed. Let

cl(x, y) := µ
({

(w, z) ∈ [0,∞)2 | w ≤ x, z ≤ y

x
w
})

,

i.e. cl(x, y) is the µ-measure of the lower triangle of the rectangle [0, x]× [0, y].
Define cl,1(·) = cl(1, ·). The covariance of Wl is the µ-measure of the lower
triangle of the rectangle [0, x1 ∧x2]× [0, (x1 ∧x2)

(
y1/x1 ∧ y2/x2

)
] as indicated
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in the right hand plot of Figure 4.3, i.e. with the homogeneity of µ,

E
[
Wl(x1, y1)Wl(x2, y2)

]
= cl

(

x1 ∧ x2, (x1 ∧ x2)

(
y1
x1

∧ y2
x2

))

= (x1 ∧ x2)
1/ηcl,1

(
y1
x1

∧ y2
x2

)

. (4.66)

In view of this formula, we are interested in a decomposition that gives an easy
expression for the first argument sx of Wl in (4.61). Foremost, however, the
ratio y0/x of the first and the second argument should be handy when used
as an argument of cl,1. Over the set

{
(s, x) | 0 < s ∧ x ≤ ϑ, 0 < s ∨ x ≤ y0

}

we have that sx ∈ (0, ϑ] and y0/x ≥ 1, so that

{
(s, x) | 0 < s ∧ x ≤ ϑ, 0 < s ∨ x ≤ y0

}

⊂
∞⋃

i=0

{

(s, x) | sx ∈ ϑ
(
e−(i+1), e−i],

y0
x

≥ 1
}

.

Hence, first assuming that cl,1(∞) = ∞ and observing that c←l,1(1) ≥ 1 for the
left-continuous generalized inverse c←l,1(t) := inf{y | cl,1(y) ≥ t}, we have that

{
(s, x) | 0 < s ∧ x ≤ ϑ, 0 < s ∨ x ≤ y0

}

⊂
∞⋃

i=0

{

(s, x) | sx ∈ ϑ
(
e−(i+1), e−i],

y0
x

∈
[
1, c←l,1(1)

)}

(4.67)

⋃ ∞⋃

i=0

∞⋃

j=1

{

(s, x) | sx ∈ ϑ
(
e−(i+1), e−i],

y0
x

∈
[
c←l,1(j), c

←
l,1(j + 1)

)}

.
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Thus,

P

{

sup
0<s∧x≤ϑ
0<s∨x≤y0

|Wl(sx, sy0)|
(c(sx, sy0))1/2−δ

> ε

}

≤ 2

∞∑

i=0

P

{

sup
sx∈ϑ(e−(i+1),e−i]

y0/x∈[1,c←
l,1

(1))

Wl(sx, sy0)

(c(sx, sy0))1/2−δ
> ε

}

+2

∞∑

i=0

∞∑

j=1

P

{

sup
sx∈ϑ(e−(i+1),e−i]

y0/x∈[c←
l,1

(j),c←
l,1

(j+1))

Wl(sx, sy0)

(c(sx, sy0))1/2−δ
> ε

}

≤ 2
∞∑

i=0

P

{

sup
λ∈(e−1,1]

τ∈[cl,1(1),1)

Wl

(
ϑe−iλ, ϑe−iλc←l,1(τ)

)

> ε inf
λ∈(e−1,1]

τ∈[cl,1(1),1)

(
(ϑe−iλ)1/ηc(1, c←l,1(τ))

)1/2−δ

}

(4.68)

+2
∞∑

i=0

∞∑

j=1

P

{

sup
λ∈(e−1,1]
τ∈[j,j+1)

Wl

(
ϑe−iλ, ϑe−iλc←l,1(τ)

)

> ε inf
λ∈(e−1,1]
τ∈[j,j+1)

(
(ϑe−iλ)1/ηc(1, c←l,1(τ))

)1/2−δ

}

.

We continue similar as in the proof of (4.62). According to (4.66) and the
continuity of cl, the process Wl

(
ϑe−iλ, ϑe−iλc←l,1(τ)

)

λ,τ≥0
=:
(
Zi(λ, τ)

)

λ,τ≥0

has covariance function

E
[
Zi(λ1, τ1)Zi(λ2, τ2)

]
= (ϑe−i)1/η(λ1 ∧ λ2)

1/η(τ1 ∧ τ2).

This means that Zi is a version of a transformed Brownian sheet. More pre-
cisely,

(
Zi(λ, τ)

)

λ,τ≥0

D
=
(
ϑe−i)1/2η(B1(λ

1/η, τ)
)

λ,τ≥0
.
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We use this fact, the relation cl,1(·) ≤ c(1, ·) and that 0 < δ < 1/2 to continue
(4.68) to

P

{

sup
0<s∧x≤ϑ
0<s∨x≤y0

|Wl(sx, sy0)|
(c(sx, sy0))1/2−δ

> ε

}

≤ 2
∞∑

i=0

P

{

sup
λ∈(e−1,1]

τ∈[cl,1(1),1)

B1(λ
1/η, τ) > K(ϑe−i)−1/2η(ϑe−(i+1))

1/2−δ
η

}

+2
∞∑

i=0

∞∑

j=1

P

{

sup
λ∈(e−1,1]
τ∈[j,j+1)

B1(λ
1/η, τ)

> K(ϑe−i)−1/2η(ϑe−(i+1))
1/2−δ

η (c(1, c←l,1(j))
1/2−δ

}

= 2
∞∑

i=0

P

{

sup
t∈(e−1/η,1]
τ∈[cl,1(1),1)

B1(t, τ) > Keiδ/ηϑ−δ/η

}

+2
∞∑

i=0

∞∑

j=1

P

{

sup
t∈(e−1/η,1]

τ∈[j,j+1)

B1(t, τ) > Keiδ/ηϑ−δ/η(c(1, c←l,1(j))
1/2−δ

}

≤ K1

∞∑

i=0

P

{

G
(

(e−1/η, 1] × [cl,1(1), 1)
)

> Keiδ/ηϑ−δ/η

}

+K1

∞∑

i=0

∞∑

j=1

P

{

G
(

(e−1/η, 1] × [j, j + 1)
)

> Keiδ/ηϑ−δ/ηj1/2−δ

}

.

Similar as in the proof of (4.62), we argue that since the random variables
G
(
(e−1/η, 1] × [cl,1(1), 1)

)
and G

(
(e−1/η, 1] × [j, j + 1)

)
are centered normal

with variance (1− e−1/η)(1− cl,1(1)) and 1− e−1/η, respectively, we obtain by
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Mill’s inequality and for sufficiently small ϑ (e.g. such that Kϑ−2δ/η > 1),

P

{

sup
0<s∧x≤ϑ
0<s∨x≤y0

|Wl(sx, sy0)|
(c(sx, sy0))1/2−δ

> ε

}

= K1

∞∑

i=0

(

1 − Φ
(

Keiδ/ηϑ−δ/η
))

+K1

∞∑

i=0

∞∑

j=1

(

1 − Φ
(

Keiδ/ηϑ−δ/ηj1/2−δ
))

≤ K1

∞∑

i=0

ϑδ/ηe−iδ/η exp
(

−Kϑ−2δ/ηe2iδ/η
)

+K1

∞∑

i=0

∞∑

j=1

ϑδ/ηe−iδ/ηj−(1/2−δ) exp
(

−Kϑ−2δ/ηe2iδ/ηj1−2δ
)

≤ K1ϑ
δ/η

∞∑

i=0

e−iδ/η

+K1ϑ
δ/η

∞∑

i=0

e−iδ/η
∞∑

j=1

j−(1/2−δ) exp
(

−Kϑ−2δ/ηe2iδ/ηj1−2δ
)

≤ K1ϑ
δ/η

∞∑

i=0

e−iδ/η

(

1 +

∞∑

j=1

j−(1/2−δ) exp
(

− j1−2δ
))

≤ K1ϑ
δ/η

∞∑

i=0

e−iδ/η

≤ ϑδ/η K1

1 − e−δ/η
,

so that ϑ ↓ 0 gives the required result. To complete the proof of (4.61), it
remains to treat the (easier) case cl,1(∞) <∞. Here, a rougher decomposition
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is sufficient. By above arguments,

P

{

sup
0<s∧x≤ϑ
0<s∨x≤y0

|Wl(sx, sy0)|
(c(sx, sy0))1/2−δ

> ε

}

≤ 2
∞∑

i=0

P

{

sup
sx∈ϑ(e−(i+1),e−i]

y0/x≥y0

Wl(sx, sy0)

> ε inf
sx∈(e−(i+1)ϑ,e−iϑ]

y0/x≥y0

((sx)1/ηc(1, y0/x))
1/2−δ

}

= 2

∞∑

i=0

P

{

sup
λ∈(e−1,1]

τ≥y0

Wl(ϑe
−iλ, ϑe−iλτ) (4.69)

> ε(e−(i+1)ϑ)(1/2−δ)/η(c(1, y0))
1/2−δ

}

The remaining part is as before, i.e. we can conclude

(
Wl(ϑe

−iλ, ϑe−iλτ)
)

λ,τ>0

D
=
(
ϑe−i)1/2η(B1(λ

1/η, cu,1(τ))
)

λ,τ>0
,

so that (4.69) is continued to

P

{

sup
0<s∧x≤ϑ
0<s∨x≤1

|Wl(sx, sy0)|
(c(sx, sy0))1/2−δ

> ε

}

≤ K1

∞∑

i=0

P

{

G
(

(e−1/η, 1] × [cl,1(y0), cl,1(∞)]
)

> εe−(1/2−δ)/ηeiδ/ηϑ−δ/η(c(1, y0))
1/2−δ

}

.

Mill’s inequality shows that this converges to 0 as ϑ ↓ 0.
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Proof of Lemma 4.5.4

Note that

P

{

sup
0<s∧x≤ϑ
0<s∨x≤1

m1/2(c(sx, sy0))
1/2+δ

∣
∣
∣
∣

log s

η̂n
− log s

η

∣
∣
∣
∣
> ε

}

(4.70)

= P

{

m1/2

∣
∣
∣
∣

η̂n − η

η̂nη

∣
∣
∣
∣

sup
0<s∧x≤ϑ
0<s∨x≤1

s(1/2+δ)/η(c(x, y0))
1/2+δ(− log s) > ε

}

.

The function h(s) := −s(1/2+δ)/η log s is strictly increasing on (0, e−η/(1/2+δ))
and strictly decreasing on (e−η/(1/2+δ), 1]. Hence, h is maximal on (0, ϑ] at
sϑ = e−η/(1/2+δ) ∧ ϑ. Thus,

sup
0<s≤ϑ
0<x≤1

−s(1/2+δ)/η(log s)(c(x, y0))
1/2+δ = h(sϑ)(c(1, y0)

1/2+δ =: H1(ϑ)

and

sup
0<x≤ϑ
0<s≤1

−s(1/2+δ)/η(log s)(c(x, y0))
1/2+δ=h

(
e−η/(1/2+δ))(c(ϑ, y0))

1/2+δ=: H2(ϑ).

Now define the function H := max
(
H1, H2

)
and observe that H(ϑ) → 0, as

ϑ ↓ 0. (Note that h(s)→0 as s ↓ 0.) Hence, the right hand side of (4.70) equals

P

{∣
∣
∣
∣

m1/2(η̂n − η)

η̂nη

∣
∣
∣
∣
>

ε

H(ϑ)

}

. (4.71)

According to Theorem 3.1.2, m1/2(η̂n − η) is asymptotically centered nor-
mal with variance σ2

η̂n
. Hence, η̂nη → η2 in probability and Slutsky’s the-

orem yields that m1/2(η̂n − η)/(η̂nη) converges to a centered normal ran-
dom variable with variance σ2

η̂n
/η4. This means that (4.71) converges to

2
(
1 − Φ(εη2/(ση̂nH(ϑ))

)
as n→ ∞ and the assertion follows.

Proof of Theorem 4.5.5

We start with some steps that simplify the assertion to prove. Note that
∣
∣
∣
∣
log

S̃∗n(sx, sy0)

S̃∗n(x, y0)
− log s

η̂n

∣
∣
∣
∣
≤
∣
∣
∣
∣
log

S̃∗n(sx, sy0)

S̃∗n(x, y0)
− log s

η

∣
∣
∣
∣
+

∣
∣
∣
∣

log s

η̂n
− log s

η

∣
∣
∣
∣
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and that

lim
ϑ↓0

lim sup
n→∞

P

{

sup
0<s∧x≤ϑ
0<s∨x≤y0

m1/2c(sx, sy0)

∣
∣
∣
∣

log s

η̂n
− log s

η

∣
∣
∣
∣
>ε

}

= 0

follows from Lemma 4.5.4. Hence, it is sufficient to prove

lim
ϑ↓0

lim sup
n→∞

P

{

sup
0<s∧x≤ϑ
0<s∨x≤y0

m1/2min
(
c(sx, sy0), (sx ∧ sy0)1/2(ℓ2(sx ∧ sy0))−1/2−δ)

(4.72)

×1l(0,∞)(S̃
∗
n(sx, sy0))

∣
∣
∣
∣
log

S̃∗n(sx, sy0)

S̃∗n(x, y0)
− log s

η

∣
∣
∣
∣
>ε

}

=0.

Next recall from (4.17) that

(
S̃∗n(sx, sy0)

S̃∗n(x, y0)

)

s,x∈(0,1]×(0,∞)

D
=







S

(

U
⌈sx(n+1)/T

(n)
n−m:n⌉−1:n

, V
⌈sy0(n+1)/T

(n)
n−m:n⌉−1:n

)

S

(

U
⌈x(n+1)/T

(n)
n−m:n⌉−1:n

, V
⌈y0(n+1)/T

(n)
n−m:n⌉−1:n

)







s,x∈(0,1]×(0,∞)

.

As an empirical counterpart of Q(u, v) = P{U < u, V < v} we define8

Qn(u, v) :=
1

n
S(u, v) =

1

n

n∑

i=1

1l{Ui ≤ u, Vi ≤ v}.

Further, recall from the proof of Theorem 3.2.7 and Corollary 3.2.8 that

T
(n)
n−m:n

D
= Q∗n(1), where Q∗n is a version of the tail empirical quantile pro-

cess Qn, cf. (3.8). Hence, by (3.56) and Corollary 3.1.1, we have Q∗n(1) =

8To avoid confusion, note that the function Qn(·, ·) (and versions Q∗n(·, ·), respectively) is
different from the tail empirical quantile function Qn(·) (and versions Q∗n(·), respectively),
defined in (3.8). Further, the notation Qn (and versions Q∗n, respectively) always refers to
the tail empirical quantile process

(
Qn(t)

)

0<t≤1
.
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F←T (1 −m/n)
(
1 + m−1/2ηW (1, 1) + o(m−1/2)

)
, so that for all ε > 0 and all

0 ≤ x ≤ y0,

x̃ := x
F←T (1 −m/n)

Q∗n(1)
∈ [x(1 − ε), x(1 + ε)]

ỹ := y0
F←T (1 −m/n)

Q∗n(1)
∈ [y0(1 − ε), y0(1 + ε)]

with probability tending to 1. Moreover, note that c(sx̃, sỹ) =
(
F←T (1 −

m/n)/Q∗n(1)
)1/η

c(sx, sy0) → c(sx, sy0) as n→ ∞. Hence, to obtain (4.72), it
suffices to prove

lim
ϑ↓0

lim sup
n→∞

P

{

sup
(s,x̃,ỹ)∈I

m1/2 min
(
c(sx̃, sỹ), (sx̃ ∧ sỹ)1/2(ℓ2(sx̃ ∧ sỹ))−1/2−δ)

(4.73)

×1l(0,∞)

(
Q∗n
(
Uhn(sx̃):n,Vhn(sỹ):n

))
∣
∣
∣
∣
log

Q∗n
(
Uhn(sx̃):n,Vhn(sỹ):n

)

Q∗n
(
Uhn(x̃):n, Vhn(ỹ):n

) −log s

η

∣
∣
∣
∣
>ε

}

=0,

where, in order to ease notation, I := {(s, x̃, ỹ) | (s ∧ x̃, s ∨ x̃, ỹ) ∈ (0, ϑ] ×
(0, y0] × [y0/2, 2y0]}, say, and

hn(τ) := ⌈τ(n+ 1)/F←T (1 −m/n)⌉ − 1.

Finally, to prove (4.73), it is sufficient to show that

lim
ϑ↓0

lim sup
n→∞

P

{

sup
(s,x̃,ỹ)∈I

m1/2c(sx̃, sỹ)1l(0,∞)

(
Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

))

(4.74)

×
∣
∣
∣
∣
log

Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

)

Q∗n
(
Uhn(x̃):n, Vhn(ỹ):n

) − log
Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)

Q
(
Uhn(x̃):n, Vhn(ỹ):n

)

∣
∣
∣
∣
>ε

}

=0

and

lim
ϑ↓0

lim sup
n→∞

P

{

sup
(s,x̃,ỹ)∈I

m1/2 min
(
c(sx̃, sỹ), (sx̃ ∧ sỹ)1/2(ℓ2(sx̃ ∧ sỹ))−1/2−δ)

(4.75)

×1l(0,∞)

(
Q∗n
(
Uhn(sx̃):n,Vhn(sỹ):n

))
∣
∣
∣
∣
log

Q
(
Uhn(sx̃):n,Vhn(sỹ):n

)

Q
(
Uhn(x̃):n,Vhn(ỹ):n

) −log s

η

∣
∣
∣
∣
>ε

}

=0
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jointly hold. This, starting with (4.74), will be done subsequently.
With b = 1/n, Inequality 10.3.2 (8) of Shorack and Wellner (1986) yields

that for all λ ≥ 1,

P

{

min
1≤hn(sx̃)≤n

nUhn(sx̃):n/hn(sx̃) ≤ 1/λ

}

≤ exp(−h̃(1/λ))

with h̃(τ) = τ − log τ − 1 → ∞ as τ → ∞ or τ → 0. Further, again with
b = 1/n, Inequality 10.3.2 (7) of the same reference yields

P

{

max
1≤hn(sx̃)≤n

nUhn(sx̃):n/hn(sx̃) ≥ λ

}

≤ exp(−h̃(λ)).

Hence, for every δ1 > 0 there exists λ ≥ 1 such that

P

{
1

λ
≤ min

1≤hn(sx̃)≤n

nUhn(sx̃):n

hn(sx̃)
≤ max

1≤hn(sx̃)≤n

nUhn(sx̃):n

hn(sx̃)
≤ λ

}

> 1 − δ1. (4.76)

Of course, an analogous relation is valid for Vhn(sỹ):n.
Further, note that

hn(sx̃) < 1 or hn(sỹ) < 1 ⇒ Q∗n(Uhn(sx̃):n, Vhn(sỹ):n) = 0

hn(sx̃) ≥ 1 ⇒ hn(sx̃)

n
F←T (1 −m/n)
︸ ︷︷ ︸

=:F←
T

≥ sx̃

2

so that if hn(sx̃) ≥ 1 and nUhn(sx̃):n/hn(sx̃) ≥ 1/λ (and the analogous in-
equalities for hn(sỹ) and Vhn(sỹ):n),

c(sx̃, sỹ) = (2λ)1/η c
(
sx̃/(2λ), sỹ/(2λ)

)

≤ (2λ)1/η c

(
1

λ

hn(sx̃)

n
F←T ,

1

λ

hn(sỹ)

n
F←T

)

≤ (2λ)1/η c
(
F←T Uhn(sx̃):n, F

←
T Vhn(sỹ):n

)

≤ 2C(2λ)1/η n

m
Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)
(4.77)
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for sufficiently large n, where the last inequality follows from (4.24) with t =
1/F←T .

Hence, by (4.76) and (4.77) we obtain that for all δ1 > 0 there exists λ ≥ 1
such that

lim sup
n→∞

P

{

sup
(s,x̃,ỹ)∈I

√
mc(sx̃, sỹ)1l(0,∞)

(
Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

))

×
∣
∣
∣
∣
logQ∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)
− logQ

(
Uhn(sx̃):n, Vhn(sỹ):n

)
∣
∣
∣
∣
> ε

}

≤ δ1 + lim sup
n→∞

P

{

sup
(s,x̃,ỹ)∈I

2C (2λ)1/η n√
m
Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)

×1l(0,∞)

(
Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

))

×
∣
∣
∣
∣
logQ∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)
− logQ

(
Uhn(sx̃):n, Vhn(sỹ):n

)
∣
∣
∣
∣
> ε

}

.

(4.78)

We first consider the case Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

)
≤ Q

(
Uhn(sx̃):n, Vhn(sỹ):n

)

and define the sets

I1,n :=

{

(s, x̃, ỹ) ∈ I
∣
∣
∣Q
∗
n

(
Uhn(sx̃):n, Vhn(sỹ):n

)

≤ Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)
≤ ε

√
m

2Cn log n

}

I2,n :=

{

(s, x̃, ỹ) ∈ I
∣
∣
∣max

(

Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

)
, ε

√
m

Cn

)

≤ Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)
}

I3,n :=

{

(s, x̃, ỹ) ∈ I
∣
∣
∣ max

(

Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

)
, ε

√
m

2Cn log n

)

<Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)
≤ ε

√
m

Cn

}

.

We consider the supremum over these three sets separately.
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For (s, x̃, ỹ) ∈ I1,n, the rough bounds Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)
≤ 1 and

Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

)
≥ 1/n if Q∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)
> 0 suffice to see

that

√
m 2C

n

m
Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)
1l(0,∞)

(
Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

))

×
∣
∣
∣
∣
logQ∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)
− logQ

(
Uhn(sx̃):n, Vhn(sỹ):n

)
∣
∣
∣
∣

≤ 2Cn√
m

Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)
log n ≤ ε.

For (s, x̃, ỹ) ∈ I2,n, note that ε
√
m/
(
2CnQ

(
Uhn(sx̃):n, Vhn(sỹ):n

))
≤ 1/2,

so that by the mean value theorem,

P

{

sup
(s,x̃,ỹ)∈I2,n

√
m 2C

n

m
Q
(
Uhn(sx̃):n,Vhn(sỹ):n

)
1l(0,∞)

(
Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

))

×
∣
∣
∣
∣
logQ∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)
− logQ

(
Uhn(sx̃):n, Vhn(sỹ):n

)
∣
∣
∣
∣
> ε

}

≤ P

{

Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)
exp

(

− ε
√
m

2CnQ
(
Uhn(sx̃):n, Vhn(sỹ):n

)

)

≥ Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

)
> 0 for some (s, x̃, ỹ) ∈ I2,n

}

= P

{

Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)
−Q∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)

≥ Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)
(

1 − exp

(

− ε
√
m

2CnQ
(
Uhn(sx̃):n, Vhn(sỹ):n

)

))

for some (s, x̃, ỹ) ∈ I2,n

}
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≤ P

{

Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)
−Q∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)

> Q
(
Uhn(sx̃):n, Vhn(sỹ):n

) e−1/2ε
√
m

2CnQ
(
Uhn(sx̃):n, Vhn(sỹ):n

)

for some (s, x̃, ỹ) ∈ I2,n

}

≤P
{

sup
(s,x̃,ỹ)∈I

2Cn√
m

(
Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)
−Q∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

))
>

ε

e1/2

}

.

(4.79)

Similarly as in Lemma 3.4.2 (i.e. Lemma 6.1 of Draisma et al. (2004)) one
can show the convergence of the process nm−1/2

(
Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)
−

Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

))

(s,x̃,ỹ)∈I
to the process (−W (sx̃, sỹ))(s,x̃,ỹ)∈I =

(−W1(sx̃, sỹ))(s,x̃,ỹ)∈I as n → ∞. Hence, due to Theorem 4.5.1, (4.79) con-
verges to 0 as n→ ∞ and ϑ ↓ 0.

For (s, x̃, ỹ) ∈ I3,n, with the same reasoning as we have obtained (4.79),

P

{

sup
(s,x̃,ỹ)∈I3,n

√
m 2C

n

m
Q
(
Uhn(sx̃):n,Vhn(sỹ):n

)
1l(0,∞)

(
Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

))

×
∣
∣
∣
∣
logQ∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)
− logQ

(
Uhn(sx̃):n, Vhn(sỹ):n

)
∣
∣
∣
∣
> ε

}

≤ P

{

Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)
−Q∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)

≥ Q
(
Uhn(sx̃):n, Vhn(sỹ:n

)(
1 − e−1/2) for some (x̃, ỹ) ∈ I3,n

}

.

Note that by (4.76) (and the analogous inequality for hn(sỹ) and Vhn(sỹ):n),

P

{
Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)

Q
(
λhn(sx̃)/n, λhn(sỹ)/n

) ≤ 1

}

≥ 1 − 2δ1 and

P

{

1 ≤ Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)

Q
(
hn(sx̃)/(λn), hn(sỹ)/(λn)

)

}

≥ 1 − 2δ1.
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Further, Theorem 5.3.14 of Meerschaert and Scheffler (2001) yields that for all
δ2 > 0 there exists t0 > 0, 0 < a < 1, and A > 1 such that

at1/η−δ2 ≤ Q(tx̃, tỹ)

Q(x̃, ỹ)
≤ At1/η+δ2

for all t ≥ 1, x̃ and ỹ with tx̃, tỹ ≤ t0. If we combine these results, we may
conclude that for sufficiently large n,

α := sup
(s,x̃,ỹ)∈I3,n

Q
(
λhn(sx̃)/n, λhn(sỹ)/n

)

≤ K sup
(s,x̃,ỹ)∈I3,n

Q
(
hn(sx̃)/(λn), hn(sỹ)/(λn)

)

≤ K

√
m

n

and

M := inf
(s,x̃,ỹ)∈I3,n

√
n Q

(
hn(sx̃)/(λn), hn(sỹ)/(λn)

)(
1 − e−1/2)

≥ K
√
n inf

(s,x̃,ỹ)∈I3,n

Q
(
λhn(sx̃)/n, λhn(sỹ)/n

)

≥ K

√
m√

n log n
,

where K, as in the proof of Theorem 4.5.1, is some generic constant. This
yields that M = o

(
αn1/2

)
and

√

α| logα| = O
(
(n−1m1/2 log n)1/2

)
= o(M),

where the last equality follows from the assumption log6 n = o(m). Further,
recall that the family of all cubes which belong to (0, ϑ] × (0, y0] × [y0/2, 2y0]
is a Vapnik-Chervonenkis class, see e.g. Section 26.1 of Shorack and Wellner
(1986) or Section 1 of Alexander (1984). Then, Corollary 2.9 of the latter
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paper yields that for sufficiently large n,

P

{

sup
(s,x̃,ỹ)∈I3,n

√
m 2C

n

m
Q
(
Uhn(sx̃):n,Vhn(sỹ):n

)
1l(0,∞)

(
Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

))

×
∣
∣
∣
∣
logQ∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)
− logQ

(
Uhn(sx̃):n, Vhn(sỹ):n

)
∣
∣
∣
∣
> ε

}

≤P
{

sup
(s,x̃,ỹ)∈I3,n

√
n |Q∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)
−Q

(
Uhn(sx̃):n, Vhn(sỹ):n

)
|>M

}

+4δ1

≤ 16 exp

(

− M2

4α

)

+ 4δ1

≤ 16 exp

(

−K
m

n log2 n
· n√

m

)

+ 4δ1

where the first summand, by our assumption log6 n = o(m), converges to 0 as
n→ ∞.

We now turn to the case Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

)
> Q

(
Uhn(sx̃):n, Vhn(sỹ):n

)

which is easier to treat. Observe that by the mean value theorem,
∣
∣
∣ logQ∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)
− logQ

(
Uhn(sx̃):n, Vhn(sỹ):n

)
∣
∣
∣

≤
∣
∣Q∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)
−Q

(
Uhn(sx̃):n, Vhn(sỹ):n

)∣
∣

Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

)
∧Q

(
Uhn(sx̃):n, Vhn(sỹ):n

)

so that the event considered on the right hand side of (4.78) intersected with
event Q∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)
> Q

(
Uhn(sx̃):n, Vhn(sỹ):n

)
has probability less

than or equal to

P

{

sup
(s,x̃,ỹ)∈I

2C (2λ)1/η n√
m

1l(0,∞)

(
Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

))

×
∣
∣Q∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)
−Q

(
Uhn(sx̃):n, Vhn(sỹ):n

)∣
∣ > ε,

Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

)
> Q

(
Uhn(sx̃):n, Vhn(sỹ):n

)

}

.
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It again follows by Lemma 3.4.2 that this converges to 0 as n→ ∞ and ϑ ↓ 0.

Hence, we have proven so far that

lim
ϑ↓0

lim sup
n→∞

P

{

sup
(s,x̃,ỹ)∈I

m1/2c(sx̃, sỹ)1l(0,∞)

(
Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

))

×
∣
∣
∣
∣
logQ∗n

(
Uhn(sx̃):n, Vhn(sỹ):n

)
− logQ

(
Uhn(sx̃):n, Vhn(sỹ):n

)
∣
∣
∣
∣
>ε

}

=0.

Of course, this also holds for s = 1 so that we may conclude to (4.74). It
remains to show (4.75).

Define dn := dn(x̃, ỹ) := Uhn(x̃):n ∨ Vhn(ỹ):n and observe that due to
(4.24) and s ≤ 1, the quotient of Q

(
Uhn(sx̃):n, Vhn(sỹ):n

)
and q

(
dn(x̃, ỹ)

)

c
(
Uhn(sx̃):n/dn, Vhn(sỹ):n/dn

)
is stochastically bounded away from 0. Since

for all 1 + x > ǫ, the mean value theorem yields | log(1 + x)| ≤ x/(1 + θx),
0 < θ < 1, 1 + θx > ǫ, we obtain that

m1/2c(sx̃, sỹ)

∣
∣
∣
∣
log

Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)

q
(
dn(x̃, ỹ)

)
c
(
Uhn(sx̃):n/dn, Vhn(sỹ):n/dn

)

∣
∣
∣
∣

≤ m1/2c(sx̃, sỹ)

C

∣
∣
∣
∣

Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)

q
(
dn(x̃, ỹ)

)
c
(
Uhn(sx̃):n/dn, Vhn(sỹ):n/dn

) − 1

∣
∣
∣
∣

= OP

(

m1/2q1(dn)
c(sx̃, sỹ)

c
(
Uhn(sx̃):n/dn, Vhn(sỹ):n/dn

)

)

with probability tending to 1, uniformly for all (s, x̃, ỹ) ∈ I that satisfy
Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

)
> 0, where the last equality follows from the assump-

tion that Condition 2.2.1 holds uniformly for all x, y ∈ [0, 1]. Note that al-
though sx̃ and sỹ are not multiples of Uhn(sx̃):n and Vhn(sỹ):n, respectively,
we may find 0 < a < b < ∞ such that ac

(
Uhn(sx̃):n/dn, Vhn(sỹ):n/dn

)
≤

c(sx̃, sỹ) ≤ bc
(
Uhn(sx̃):n/dn, Vhn(sỹ):n/dn

)
, so that the regular variation of q1,
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the homogeneity (2.14) of c and (4.76) lead to

m1/2c(sx̃, sỹ)

∣
∣
∣
∣
log

Q
(
Uhn(sx̃):n, Vhn(sỹ):n

)

q
(
dn(x̃, ỹ)

)
c
(
Uhn(sx̃):n/dn, Vhn(sỹ):n/dn

)

∣
∣
∣
∣

≤ OP

(

m1/2q1((x̃ ∨ ỹ)/F←T )
(
dnF

←
T

)1/η
)

= oP

(
q1((x̃ ∨ ỹ)/F←T )

q1(1/F←T )
(x̃ ∨ ỹ)1/η

)

= oP

(

(x̃ ∨ ỹ)1/η+τ−δ3

)

for all δ3 > 0

= oP (1)

uniformly for all (s, x̃, ỹ) ∈ I with Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

)
> 0, where the last

but one equality is obtained by the Potter bounds. This inequality and the
homogeneity (2.14) of c leads us to

lim sup
n→∞

P

{

sup
(s,x̃,ỹ)∈I

m1/2c(sx̃, sỹ)1l(0,∞)

(
Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

))

(4.80)

×
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Q
(
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)

Q
(
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) − log
c
(
Uhn(sx̃):n, Vhn(sỹ):n

)

c
(
Uhn(x̃):n, Vhn(ỹ):n

)

∣
∣
∣
∣
>ε

}

= 0,

so that it suffices to show that

lim
ϑ↓0

lim sup
n→∞

P

{

sup
(s,x̃,ỹ)∈I

m1/2(sx̃ ∧ sỹ)1/2(ℓ2(sx̃ ∧ sỹ))−1/2−δ

(4.81)

×1l(0,∞)

(
Q∗n
(
Uhn(sx̃):n, Vhn(sỹ):n

))
∣
∣
∣
∣
log

c
(
Uhn(sx̃):n, Vhn(sỹ):n

)

c
(
sUhn(x̃):n, sVhn(ỹ):n

)

∣
∣
∣
∣
>ε

}

= 0.

From the convergence of the uniform tail quantile process to a Brownian
motion under a suitable weighted supremum norm, see e.g. Theorem 5.2.5
of Csörgő and Horváth (1993), we know that for any intermediate sequence
k = kn and all δ4 > 0 that

n

k
U⌈kx⌉:n − x = oP

(

k−1/2x1/2(ℓ2(x))
(1+δ4)/2

)
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uniformly for x from a compact set. Hence, due to (4.76), we may conclude
that

n

hn(1)

Uhn(sx̃):n

sx̃
= 1 +OP

(

min

(

1,

(
F←T
nsx̃

)1/2(

(ℓ2(sx̃))
(1+δ4)/2 +

F←T
nsx̃

)))

uniformly for 0 < sx̃ ≤ 2y0. By the analogous equation for Vhn(ỹ):n and ỹ, the
homogeneity (2.14) of c, (4.76) and log(1 + x) = O(x) if x is bounded away
from -1 we obtain

log
c
(
Uhn(sx̃):n, Vhn(sỹ):n

)

c
(
sUhn(x̃):n, sVhn(ỹ):n

)

= OP

(
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1,

(
F←T
nsx̃

)1/2(

(ℓ2(sx̃))
(1+δ4)/2 +

F←T
nsx̃

)

+ min

(

1,

(
F←T
nsỹ

)1/2(

(ℓ2(sỹ))
(1+δ4)/2 +

F←T
nsỹ

)

.

Finally, observe that
(
mF←T /n

)1/2
=
(
m/(q←(m/n)n)

)1/2 ≤ 1 and that

limϑ↓0 sup0<sx̃≤ϑ(ℓ2(sx̃))
−δ4/2 = 0, so that (4.81) holds.

4.6.2 Remark. After the proof of (4.80), in order to show that (4.22) holds
with weight function c(sx, sy0) (cf. Remark 4.5.6 (ii)), it would suffice to show
that

lim
ϑ↓0

lim sup
n→∞

P

{

sup
(s,x̃,ỹ)∈I

m1/2c(sx̃, sỹ)1l(0,∞)
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∣
∣
∣
>ε

}

= 0.

However, e.g. choosing s = 1/2, x̃ = 2F←T /n and ỹ = y0 yields

log
c
(
U1:n, V⌈y0(n+1)/(2F←

T
)⌉−1:n

)

c
(
U2:n/2, V⌈y0(n+1)/(F←

T
)⌉−1:n/2

)

for the logarithm in (4.82), where the quotient of V⌈y0(n+1)/(2F←
T

)⌉−1:n and
V⌈y0(n+1)/F←

T
⌉−1:n/2 converges to 1 as n→ ∞, but in general 2U1:n/U2:n con-

verges to a non-degenerated limiting distribution. Hence, in general one may
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expect (4.22) to hold with weight function c(sx, sy0) only if one assumes that
m1/2c(sx, sy0) → 0 as n→ ∞, cf. Remark 4.5.6 (ii). △



Chapter 5

Applications

As before, let {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} be a sample of i.i.d. claim sizes.
Analyzing real data, we often face the problem that, for example, a claim is
recorded only if it exceeds a threshold or if the sum Xi + Yi pertaining to one
pair (Xi, Yi) of claims of two different lines of business exceeds a certain value,
see e.g. the data sets of the Danish fire insurance claims and the US medical
claims in the following Sections 5.1 and 5.2. This censorship is a very common
problem in actuarial practice, especially in reinsurance. In probabilistic terms,
such data sets represent samples of some kind of conditional distributions of
(X,Y ), e.g. of P (X,Y )|X>x0,Y >y0 or of P (X,Y )|X+Y >z0 . We must be aware that
the way of recording claims may influence the dependence structure of the data.
This is not the case if the data set represents a sample of P (X,Y )|X>x0,Y >y0 –
it solely implies that we are estimating P (X > u1, Y > u2 | X > x0, Y > y0)
rather than P{X > u1, Y > u2} when investigating such a data set. We
must be more careful in the latter case P (X,Y )|X+Y >z0 , however, since this
way of recording data causes an artificial negative dependence between the
claims in the different business lines. If one of the components is smaller
than z0, the other one must be accordingly larger (to be recorded). There
are two different natural ways to correct this artificial dependence: we consult
a claim (Xi, Yi) only if either both components Xi and Yi separately exceed
z0 (i.e. if min(Xi, Yi) > z0) or if at least one component exceeds z0 (i.e. if
max(Xi, Yi) > z0).

We discuss the choice of the appropriate method within the following sec-
tions, in particular at the end of Section 5.1.

135
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5.1 Danish Fire Insurance

Our first application deals with a well-known data set of Danish fire insurance
claims. These data have first been considered by Rytgaard (1996) and since
then they have been studied several times in extreme value analysis. The data
set contains losses to building(s) Xi, losses to contents Yi and losses to profits
caused by the same fire. We suppose, as an example, that we are interested
in a bivariate analysis of Xi and Yi. The claims are recorded only if the sum
of all components attains or exceeds 1 million Danish Kroner (DKK). For the
period 01/1980 – 12/1990 and 01/1980 – 12/1993, respectively, these data were
considered for a univariate extreme value analysis e.g. by McNeil (1997) and
Embrechts et al. (1997) (starting with Example 6.2.9). For the latter period,
Blum et al. (2002) investigate dependencies between Yi and losses to profits
by fitting various parametric copulas to the data. (For a discussion of using
parametric copulas for fitting multivariate extremes see the Preface, Chapter
6 and Mikosch (2005).)

The extended data set we consider contains 6,870 recorded claims of the
period 01/1980 – 12/2002. We discounted the claim sizes to 7/1985 prices ac-
cording to the Danish Consumer Price Index (DCPI)9 on a monthly basis. We
have discussed above that due to the recording method, there is an artificial
negative dependence between the components. We correct this artificial de-
pendence by consulting a claim (Xi, Yi) only if either both components Xi and
Yi separately attain or exceed 1,000,000 DKK (i.e. min(Xi, Yi) ≥ 1, 000, 000
DKK) or if at least one component attains or exceeds 1, 000, 000 DKK (i.e.
max(Xi, Yi) ≥ 1, 000, 000 DKK). We analyze the resulting data sets in separate
sections.

5.1.1 Both Components Exceed 1,000,000 DKK

In this section, we analyze the conditional distribution of (X,Y ) given {X ≥
1, Y ≥ 1}, where here and henceforth in Section 5.1 we refer to claims in
millions of DKK. The sample size of the remaining data is n = 588. Figure 5.1
displays the scatterplot of the data on a linear and on a logarithmic scale. In
particular in the plot on the logarithmic scale we see that the observations tend
to cluster around the diagonal. This suggests a moderate positive dependence.

9http://www.dst.dk/Statistik/seneste/Indkomst/Priser/Forbrugerprisindeks.aspx
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Figure 5.1: Scatterplot Yi vs. Xi on a linear and on a logarithmic scale.

Fitting of the Marginals

As described in Section 1.1.4, in order to choose a suitable number of order
statistics ji used for the (Hill or ML) estimator γ̂i,n, we consider a so-called
Hill plot, which displays the estimates γ̂i,n versus ji, i = 1, 2. We briefly
recapitulate the aspects discussed in Section 1.1.4. Recall that a small value
ji results in a high variance of γ̂i,n, while too large a ji, i = 1, 2, may cause
a large bias. A typical (nice) Hill plot exhibits heavy fluctuations for small
values of ji, i = 1, 2, (due to a large variance), followed by a rather stable
region where both variance and bias are moderate, before the bias causes a
clear trend of the curve. Thus, ji, i = 1, 2, ought to be chosen in the region
where the plot is rather stable. For a more detailed discussion on this matter
see e.g. Sections 6.4 and 6.5 of Embrechts et al. (1997) or Drees et al. (2000).
We agree that in plots γ̂i,n versus ji in this chapter, the Hill estimator γ̂H

i,n is
displayed in a solid black line, while the maximum likelihood estimator γ̂ML

i,n ,
i = 1, 2, is displayed in a dotted red line. According to (1.15) and (1.18), the
asymptotic variance of γ̂H

i,n is smaller than the asymptotic variance of γ̂ML
i,n ,

so that we prefer to work with γ̂H
i,n, i = 1, 2, in this chapter. Further, in this

section, denote by ĜH
i,n, i = 1, 2, the estimates (1.10), where µ̂n and ς̂n are
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estimated according to (1.16), for the conditional marginal d.f.s of X and Y
given {X ≥ 1, Y ≥ 1}, respectively.

For the present data set, the (heuristic) analysis of the Hill plots (Figures
5.2 and 5.3) suggests j1 = 350 and j2 = 380, which yields

1 − ĜH
1,n(x) ≈

(

1 + 0.47
x− 0.96

1.85

)−2.14

and

1 − ĜH
2,n(y) ≈

(

1 + 0.52
y − 0.72

2.45

)−1.93

.
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Figure 5.2: Hill plot: γ̂1,n as a function of j1.

In Figure 5.4, the estimates are validated by exponential qq-plots for
(
1 −

ĜH
i,n

)←
, i = 1, 2, i.e. by plots

(

− log
k − 1/2

j1
, logXn−k+1:n

)

1≤k≤j1

and

(

− log
k − 1/2

j2
, log Yn−k+1:n

)

1≤k≤j2

(5.1)
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with the lines logXn−j1:n + γ̂1,n log(2j1) and log Yn−j2:n + γ̂2,n log(2j2), re-
spectively, for comparison.
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Figure 5.3: Hill plot: γ̂2,n as a function of j2.
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Figure 5.4: Exponential qq-plots for
(
1 − ĜH
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Estimation of η

As we have indicated in Section 3.1, the heuristic when choosing a suitable
number m of largest order statistics T

(n)
i:n used for the estimator η̂n is the same

as when choosing a suitable number j of order statistics Xi:n used for the
estimator γ̂n. Therefore, we consider a Hill plot which displays the estimates
η̂n versus m. Similar as for the Hill plot γ̂i,n versus ji, i = 1, 2, we agree that
the Hill estimator η̂H

n is displayed in a solid black line, while the maximum
likelihood estimator η̂ML

n is displayed in a dotted red line. As mentioned in
Remark 3.1.3 (ii), we prefer to work with η̂H

n in this chapter.

For the present data set, the (heuristic) analysis of the Hill plot (Figure

5.5) suggests m = 200, which yields 1/T
(n)
n−m:n = 0.53 and η̂H

n = 0.76. The
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Figure 5.5: Hill plot: η̂n as a function of m.

approximate 95% confidence interval (3.6) for η is [0.66, 0.87]. The pertaining
test (3.7) clearly rejects the null hypothesis η = 1 on an approximate 95%
confidence level with (1 − p)-value > 0.9999, so that we assume asymptotic
independence. Hence, the moderate positive dependence that was suggested
by the scatterplots of Figure 5.1 is confirmed and vanishes asymptotically.

Figure 5.6 displays the scatterplot of the pseudo-observations (Ûi, V̂i),
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where here and in other scatterplots V̂i vs. Ûi in this chapter, we use mid-
dle ranks if ties occur. This means that if there are k observations Xi with
Xi < Xi1 , further n−k− l observations with Xi > Xi1 and Xi1 = Xi2 = . . . =
Xil , then we assign RX

i1 = RX
i2 = . . . = RX

il
= k + (l + 1)/2. In the left hand

plot of Figure 5.6 the square with side length 1/T
(n)
n−m:n = 0.53 is indicated.

0  0.2 0.4 0.6 0.8 1  
0  

0.2

0.4

0.6

0.8

1  

Ûi
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Figure 5.6: Scatterplot V̂i vs. Ûi. The square with side length 1/T
(n)
n−m:n =

0.53 contains the m = 200 points used for the estimation of η. The scaling
law (2.17) is checked within this square.

Model Validation

Only 5 of the points (4.11), i.e. 2.5%, lie outside their approximate 95% con-
fidence interval (4.14), so that our method accepts the presence of the scaling
law (2.17). The pertaining plots (4.11) are shown in Figure 5.8, where the ap-
proximate (1 − p)-values (4.15) of the tests (4.13) are divided into 8 intervals
and displayed in the plot (4.11) in color according to the colorbar of Figure
5.7. Note that a point fails the test on an approximate 95% confidence level
iff it has a reddish color, i.e. iff it is orange, light red, dark red or pink.10

10For files with a three-dimensional presentation, see http://www.math.uni-
hamburg.de/home/drees/extrdep/mdilc.html. There you find avi files which display a
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Figure 5.7: The colorbar used to divide the approximate (1−p)-values (4.15)
of the tests (4.13) into 8 intervals.
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Figure 5.8: Plot (4.11) with m = 200, 1/T
(n)
n−m:n = 0.53, η̂H

n = 0.76 from two
perspectives. The right hand perspective also displays the reference plane. 5
(reddish) points lie outside their approximate 95% confidence interval.

For the purpose of comparison, Figure 5.9 displays the plot (4.11) for
m = 500, that is, about 85% of all data points are used for the model fitting.
Since essentially more data is used for the model fitting than suggested by the
Hill plot η̂n versus m, it seems quite likely that the scaling law (2.17), that was
motivated by asymptotic arguments for extreme observations, does not hold
on the much larger square with side length 1/T

(n)
n−m:n = 0.92. Indeed, we ob-

plot rotation in a film. An m and a mat file additionally allow to rotate the plots in any
manner (MatLab required).
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serve that 82 points, about 16%, lie outside their approximate 95% confidence
interval. Thus, in this case, our method clearly detects the deviations from
the scaling law. (Note that although also the Hill plot for η indicates that
m = 500 is too large, the resulting point estimate η̂H

n = 0.66, cf. Figure 5.5,
belongs to the confidence interval for η obtained with the choice m = 200, i.e.
the difference is not statistically significant.) Files with the plot are provided
on the website mentioned in Footnote 10.
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Figure 5.9: Plot (4.11) with m = 500, 1/T
(n)
n−m:n = 0.92, η̂H

n = 0.66 from two
perspectives. The right hand perspective also displays the reference plane. 82
(reddish) points lie outside their approximate 95% confidence interval.

This example (and the corresponding example considered in Section 5.2.1)
demonstrates that our method cannot only be used to decide whether the
ELTM is appropriate or not in some tail region, but also, loosely speaking, to
determine the maximum tail region for which the application of the ELTM is
still reasonable.

Probability of Jointly Large Claims

As we have discussed in Section 3.3.2, the heuristic when choosing a suitable
number ι of largest order statistics T

(n)
i:n used for the estimator p̂n is the same as

when choosing a suitable number m of largest order statistics T
(n)
i:n used for the

estimator η̂n or as when choosing a suitable number j of order statistics Xi:n
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used for the estimator γ̂n. Therefore, we consider a similar plot, namely (3.38),
which displays p̂n versus ι. Further, we include the confidence intervals (3.35),
(3.36) and (3.37). We agree that the estimator p̂n is plotted in a solid black line,
the confidence intervals (3.35) (valid if the error when estimating η dominates)
in a dotted black line, the confidence interval (3.36) (valid if the error when
estimating γ1 dominates) in a dotted red line and the confidence interval (3.37)
(valid if the error when estimating γ2 dominates) in a dotted green line. Recall
that under the conditions of Theorem 3.3.1, the confidence intervals (3.35),
(3.36) and (3.37) apply asymptotically if (3.28), (3.30) and (3.32), respectively,
hold. Loosely speaking, this means that the confidence interval (3.35) applies
asymptotically if the sequences ji = ji,n, i = 1, 2, converge faster to ∞ than
m = mn as n→ ∞, see also (1.22) and Remark 3.3.2 (vii). If j1 (j2) converges
slower to ∞ than m and j2 (j1), then (3.36) ((3.37)) applies asymptotically.
Hence, as a heuristic rule, one might use (3.35) if m is the minimum of m,
j1 and j2 and use (3.36) ((3.37)) if j1 (j2) is the minimum of m, j1 and j2.
However, the confidence intervals correspond to the cases that the pertaining
statistical error dominates, cf. Theorem 3.3.1 and Remarks 3.3.2 (vi) and (vii).
Thus, also to ensure maximum prudence, we will use the widest confidence
interval of the three.

For the present data set, plots for estimates p̂n and approximate 95%
confidence intervals for the conditional probability P (X > u1, Y > u2 | X ≥
1, Y ≥ 1) with u1 = u2 = 10 and u1 = 20, u2 = 30 are given in Figure 5.10,
where we used ĜH

1,n and ĜH
2,n as marginal Pareto estimates.

Table 5.1 compares estimates and (approximate) 95% confidence intervals
for the conditional probability P (X > u1, Y > u2 | X ≥ 1, Y ≥ 1) for further
values of u1 and u2, where we also give our choices of ι. The confidence
intervals (3.35) are the widest in this example. The confidence intervals for
the empirical probability p̂e := n−1∑n

i=1 1l{Xi > u1, Yi > u2} are computed
according to Clopper and Pearson (1934), see also e.g. Santner and Duffy
(1989), p. 35. Further, estimates p̂i := (1− ĜH

1,n(u1))(1− ĜH
2,n(u2)) assuming

independence of X and Y (given that {X ≥ 1, Y ≥ 1}) are displayed.

A typical interpretation of an estimate p̂n may be as follows. The estimate
of 0.549% for the probability that X exceeds 20 and Y exceeds 30 given that
both exceed 1 means that on average such a claim occurs approximately once
every 200 years. However, observe that the upper bound of the approximate
95% confidence interval is almost twice the estimate, so that there is still a risk
of approximately 5% that on average such a claim occurs approximately once
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Figure 5.10: Estimation of P (X > u1, Y > u2 | X ≥ 1, Y ≥ 1). Plot
(3.38) and approximate 95% confidence intervals (3.35), (3.36) and (3.37) with
u1 = u2 = 10 (left) and u1 = 20, u2 = 30 (right).

u1 u2 ι p̂n (%) p̂e (%) p̂i (%)

5 5 120 12.49 [11.25, 13.69] 12.59 [10.01, 15.54] 6.377

10 10 120 3.492 [2.80, 4.34] 3.401 [2.09, 5.20] 0.962

20 20 120 0.751 [0.49, 1.15] 0.340 [0.04, 1.22] 0.100

20 30 120 0.549 [0.32, 0.89] 0.170 [0.00, 0.94] 0.051

25 25 120 0.442 [0.26, 0.70] 0.170 [0.00, 0.94] 0.046

100 10 120 0.180 [0.10, 0.45] 0 [0, 0.63] 0.012

Table 5.1. Comparison of the estimates p̂n, the empirical probability p̂e and
the estimated probability p̂i assuming conditional independence of X and Y .

every 100 years or even more often. We observe that the empirical probability
is close to the estimates obtained in the ELTM if the event under consider-
ation has been observed sufficiently often. However, the confidence intervals
calculated from the empirical probabilities are typically considerably wider.
(The latter fact is demonstrated even more impressively in Table 5.4.) The
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empirical probability is (substantially) smaller than the estimates p̂n if only a
few observations have been made. For the considered example, the estimate
of 0.170% means that the risk that such a claim occurs is three times smaller
than the estimate p̂n suggests, meaning that on average such a claim occurs
approximately once every 600 years. Of course, the empirical probability is
of very limited value if the event under consideration has not yet occurred.
As expected, the assumption of conditional independence of X and Y yields
systematically smaller estimates than the empirical probability (if the latter
is positive) and those obtained in the ELTM. For the considered example, the
risk is estimated as less dangerous by factor 10, meaning that on average such
a claim occurs approximately once every 2,000 years.

5.1.2 At Least One Component Exceeds 1,000,000

DKK

In this section, we analyze the conditional distribution of (X,Y ) given {X ≥
1 or Y ≥ 1}. From the 6,870 pairs of claims of the original data set, there are
2,894 pairs with both components smaller than 1. Hence, the sample size of
the data investigated in this section is n = 3, 976. Figure 5.11 displays the
scatterplot of the data on a linear and on a logarithmic scale. Note that claims
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Figure 5.11: Scatterplot Yi vs. Xi on a linear and on a logarithmic scale.
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with a component equal to 0 are not representable on a logarithmic scale, so
that 378 pairs (Xi, Yi) with Xi = 0 and 1,016 pairs (Xi, Yi) with Yi = 0 are
not displayed in the right hand plot of Figure 5.11.

Fitting of the Marginals

Here, the (heuristic) analysis of the Hill plots (Figures 5.12 and 5.13) suggests
j1 = 900 and j2 = 600 which yields

1 − ĜH
1,n(x) ≈

(

1 + 0.57
x− 0.91

0.54

)−1.75

and

1 − ĜH
2,n(y) ≈

(

1 + 0.72
y − 0.15

0.47

)−1.40

,

with 1 − ĜH
1,n and 1 − ĜH

2,n denoting the estimates (1.10), where µ̂n and ς̂n
are estimated according to (1.16), for the conditional d.f.s of X and Y given
{X ≥ 1 or Y ≥ 1}. However, the choice of j1 and j2 is not easy in this case,
since the Hill plots are not “nice” in the sense as described in Section 5.1.1.
Further, the exponential qq-plots (5.1) for

(
1−ĜH

i,n

)←
, i = 1, 2, in Figure 5.14

exhibit a rather moderately good fit of the data, in particular for i = 2.
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Figure 5.12: Hill plot: γ̂1,n as a function of j1.
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Figure 5.13: Hill plot: γ̂2 as a function of j2.
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Estimation of η

The (heuristic) analysis of the Hill plot (Figure 5.15) leads to m = 200, which

yields 1/T
(n)
n−m:n = 0.15 and η̂H

n = 0.97, where the Hill estimates for η ≤ 1 that
are larger than 1 (for, approximately, 220 < m < 400) are meaningless. The
approximate 95% confidence interval (3.6) for η is [0.84, 1]. The pertaining test
(3.7) does not reject the hypothesis η = 1 on an approximate 95% confidence
level.
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Figure 5.15: Hill plot: η̂n as a function of m.

Figure 5.16 displays the scatterplot of the pseudo-observations (Ûi, V̂i) in-

cluding the square with side length 1/T
(n)
n−m:n = 0.15. At first glance, the left

hand plot of that figure exhibits some unexpected particularities. To under-
stand these specials, recall that we used ranks RX

i and RY
i to define the pseudo-

observations Ûi = 1 − RX
i /(n + 1) and V̂i = 1 − RY

i /(n + 1). Recall further
that we use middle ranks if ties occur, so that we assign rank 189.5 to the 378
claims Xi = 0, such that the corresponding Ûi equal 1 − 189.5/3, 977 ≈ 0.95.
Analogously, we treat the 1,016 claims Yi = 0, so that the points closest to
Ûi = 1 and V̂i = 1 lie on lines Ûi ≈ 0.95 and V̂i ≈ 0.87. Further, the structural
interruptions (“breaks”) at Ûi ≈ 0.83 and V̂i ≈ 0.32 are due to both our stan-
dardization method and that we consider claims that attain or exceed 1 in at
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Figure 5.16: Scatterplot V̂i vs. Ûi. The square with side length 1/T
(n)
n−m:n =

0.15 contains the m = 200 points used for the estimation of η. The scaling
law (2.17) is checked within this square.

least one component. First, we have that
∑n

i=1 1l{Xi < 1} = 679, i.e. the num-
ber of claims Xi < 1 equals 679, and

∑n
i=1 1l{Yi < 1} = 2, 709. Hence, due to

our standardization using ranks, the 679-378=301 pseudo-observations (Ûi, V̂i)
that correspond to the pairs (Xi, Yi) with 0 < Xi < 1 fit into the rectangle
[1 − 679/3, 977; 1 − 379/3, 977] × [0; 1 − 2, 709/3, 977] ≈ [0.83; 0.90] × [0; 0.32].
Analogously, 2,709-1,016=1,693 pseudo-observations fit into the rectangle ≈
[0; 0.83]×[0.32; 0.74]. Compared with the rectangle ≈ [0; 0.83]×[0; 0.32], which
contains the 588 pseudo-observations (Ûi, V̂i) that correspond to those (Xi, Yi)
with both components larger than 1, these rectangles contain, relative to their
size, a rather large number of pseudo-observations (Ûi, V̂i), so that abovemen-
tioned “breaks” occur. It is clear that an analysis of the bivariate tail of
(X,Y ) cannot be performed beyond one of these “breaks”. Further, one may

not believe that the m = 200 points within the square (0, 1/T
(n)
n−m:n]2 in Figure

5.16 must correspond to the m = 200 points within the square (0, 1/T
(n)
n−m:n]2

in Figure 5.6 and therefore lead to identical results. This would only be the
case if the number of pairs (Xi, Yi) with Xi < 1 is identical (or very close) to
the number of pairs (Xi, Yi) with Yi < 1. Geometrically speaking, the rather
large difference of these numbers in these data causes a contraction of the
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square [0; 1] × [0; 1] containing the 588 pseudo-observations when considering
the data with both components larger than 1 to a rectangle with sides length
that exhibit a rather large difference when considering the data with at least
one component larger than 1.

Model Validation

In the rest of this section, we assume that X and Y are asymptotically inde-
pendent. However, it must be emphasized that this assumption, due to the
results obtained when estimating η, might not apply. This means that the
results in the rest of this section must be considered with care.

We obtain that 8 of the points (4.11), i.e. 4%, lie outside their approximate
95% confidence interval (4.14), so that our method accepts the presence of the
scaling law (2.17). The pertaining plot (4.11) is shown in Figure 5.17, where
the colors of the points are according to Figure 5.7, i.e. reddish (orange, red,
pink) points lie outside their confidence interval.
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Figure 5.17: Plot (4.11) with m = 200, 1/T
(n)
n−m:n = 0.15, η̂H

n = 0.97 from
two perspectives. The right hand perspective also displays the reference plane.
8 (reddish) points lie outside their approximate 95% confidence interval.
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Probability of Jointly Large Claims

The plots for estimates p̂n and approximate 95% confidence intervals for the
conditional probability P (X > u1, Y > u2 | X ≥ 1 or Y ≥ 1) with u1 = u2 =
10 and u1 = 20, u2 = 30 are given in Figure 5.18, where we used ĜH

1,n and

ĜH
2,n as marginal Pareto estimates.
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Figure 5.18: Estimation of P (X > u1, Y > u2 | X ≥ 1 or Y ≥ 1). Plot
(3.38) and confidence intervals (3.35), (3.36) and (3.37) with u1 = u2 = 10
(left) and u1 = 20, u2 = 30 (right).

Table 5.2 compares probability estimates p̂n and (approximate) 95% con-
fidence intervals for the conditional probability P (X > u1, Y > u2 | X ≥
1 or Y ≥ 1) with (confidence intervals for) p̂e and p̂i = (1 − ĜH

1,n(u1))(1 −
ĜH

2,n(u2)) for further values of u1 and u2. For the reasons given in Section
5.1.1, the confidence intervals (3.35) are again given.

The observations made in Table 5.1 are confirmed.

The p̂n-estimates of P (X > u1, Y > u2 | X ≥ 1, Y ≥ 1) in Table 5.1 and
of P (X > u1, Y > u2 | X ≥ 1 or Y ≥ 1) in Table 5.2 are reasonable when
compared with each other (and might therefore be considered as confirmation
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u1 u2 ι p̂n (%) p̂e (%) p̂i (%)

5 5 150 1.697 [1.57,2.09] 1.861 [1.46,2.33] 0.277

10 10 150 0.567 [0.43,0.74] 0.503 [0.31,0.78] 0.035

20 20 150 0.168 [0.11,0.28] 0.503 [0.31,0.78] 0.004

20 30 150 0.127 [0.08,0.21] 0.025 [0.00,0.14] 0.002

25 25 150 0.102 [0.06,0.19] 0.025 [0.00,0.14] 0.002

100 10 150 0.027 [0.01,0.05] 0 [0.00,0.09] 6.7e-4

Table 5.2. Comparison of the estimates p̂n, the empirical probability p̂e and
the estimated probability p̂i assuming conditional independence of X and Y .

of our calculations). To see this, note that

P{X > 1, Y > 1}
P{X > 1 or Y > 1} ≈

n∑

i=1

1l{Xi > 1, Yi > 1}
n∑

i=1

1l{Xi > 1 or Yi > 1}

,

so that for u1, u2 ≥ 1, a reasonable estimate of P (X > u1, Y > u2 | X ≥
1, Y ≥ 1) from an estimate of P (X > u1, Y > u2 | X ≥ 1 or Y ≥ 1) can be
motivated by

P (X > u1, Y > u2 | X ≥ 1, Y ≥ 1) =
P{X > u1, Y > u2}
P{X > 1, Y > 1}

≈

n∑

i=1

1l{Xi > 1 or Yi > 1}
n∑

i=1

1l{Xi > 1, Yi > 1}

P{X > u1, Y > u2}
P{X > 1 or Y > 1}
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=

n∑

i=1

1l{Xi > 1 or Yi > 1}
n∑

i=1

1l{Xi > 1, Yi > 1}

P (X > u1, Y > u2 | X > 1 or Y > 1).

Hence, by multiplying the p̂n-estimates and the pertaining confidence intervals
of Table 5.2 with the ratio 3,976/588 of the sample sizes of the data considered
here and in Section 5.1.1 we obtain a reasonable estimate p̂o,n and a pertaining
confidence interval of P (X > u1, Y > u2 | X ≥ 1, Y ≥ 1) (although the latter
can only be considered as a very rough heuristic). The results are shown in
Table 5.3, where we copied the estimates p̂b,n (renamed to avoid confusion)
and the pertaining confidence intervals of P (X > u1, Y > u2 | X ≥ 1, Y ≥
1) obtained in Section 5.1.1 from Table 5.1. Indeed, the estimates p̂b,n and
p̂o,n are quite close and may therefore be considered as confirmation of our
calculations. Note that although some of the estimates p̂b,n and p̂o,n differ by
factor 1.6, these differences are not statistically significant, since the estimates
always belong to the confidence interval of the respective other estimate.

u1 u2 p̂b,n (%) p̂o,n (%)

5 5 12.49 [11.25,13.69] 11.47 [10.62,14.13]

10 10 3.492 [2.80,4.34] 3.834 [2.91,5.00]

20 20 0.751 [0.49,1.15] 1.141 [0.74,1.89]

20 30 0.549 [0.32,0.89] 0.859 [0.54,1.42]

25 25 0.442 [0.26,0.70] 0.690 [0.41,1.29]

100 10 0.180 [0.10,0.45] 0.183 [0.07,0.34]

Table 5.3. Comparison of the estimates of P (X > u1, Y > u2 | X ≥ 1, Y ≥
1) when considering the data with both components larger than 1 (p̂b,n, cf.
Table 5.1) and when considering the data with at least component larger than
1 (p̂o,n).

We conclude this section with some remarks on the choice of the data for
the statistical analysis. For the Danish fire insurance data, either method –
analyzing the pairs (Xi, Yi) of claims with both components larger than 1 and
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analyzing the pairs (Xi, Yi) of claims with at least one component larger than
1 – leads to very similar estimates for the probability of jointly large claims
p. However, there might be situations (i.e. data) in which these estimates
differ (statistically) significantly, such that a choice between the two methods
has to be made. As things stand now, one should then choose the method
which yields the better fit of the data in terms of the according tools used in
the model, i.e. Hill plots, qq-plots, model validation and confidence intervals.
(For the Danish fire insurance data, the method to choose would rather be the
analysis of the pairs (Xi, Yi) of claims with both components larger than 1.)
For future research, it might be interesting to theoretically study the impact of
choosing one of these methods on the model parameters, in particular on the
coefficient of tail dependence η. (Note that the difference of the estimates of η
using the different methods is statistically significant.) Further, the influence
of thresholds for the sum of the components of a pair of claims which must be
exceeded to record the pair is not entirely clear and is therefore an issue to be
investigated more thoroughly.

5.2 Medical Claims

In our second application we analyze a data set given in the Society of Actuar-
ies Group Medical Insurance Large Claims Database11. The data set contains
annual hospital charges Xi and annual other charges Yi of a risk and refer
to the years 1991 and 1992. The claims are recorded only if the sum of both
components attains or exceeds at least 25,000 US-Dollar (USD). For a detailed
description of the project see Grazier and G’Sell Associates (1997). A sum-
marized description of the data and a univariate extreme value analysis of the
total charges (Xi + Yi) can be found in Cebriàn et al. (2003).

Here, we merely consider the data of the year 1991, for which 92,750 claims
with separate information about hospital and other charges are available. For
the same reason as with the Danish fire insurance claims we eliminate the
artificial negative dependence between the components by consulting a claim
(Xi, Yi) only if either both components Xi and Yi separately attain or exceed
25,000 USD (i.e. min(Xi, Yi) ≥ 25, 000 USD) or if at least one component
attains or exceeds 25,000 USD (i.e. max(Xi, Yi) ≥ 25, 000 USD). Again, we
analyze the resulting data sets in separate sections.

11http://www.soa.org
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5.2.1 Both Components Exceed 25,000 USD

In this section, we analyze the conditional distribution of (X,Y ) given {X ≥
25, Y ≥ 25}, where here and henceforth in Section 5.2 we refer to claims in
thousands of USD. The sample size of the remaining data is n = 7, 675. Figure
5.19 displays the scatterplot of the data on a linear and on a logarithmic scale.
We do not observe a clear cluster around the diagonal. In the plot on the
logarithmic scale the claims seem to exhibit the minor tendency that if one
component is large, then the other is rather large than small which suggests a
weak positive dependence.
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Figure 5.19: Scatterplot Yi vs. Xi on a linear and on a logarithmic scale.

Fitting of the Marginals

Here, the (heuristic) analysis of the Hill plots (Figures 5.20 and 5.21) suggests
j1 = j2 = 800 which yields

1 − ĜH
1,n(x) ≈

(

1 + 0.26
x− 22.00

58.65

)−3.78
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and

1 − ĜH
2,n(y) ≈

(

1 + 0.43
y − 2.43

26.75

)−2.33

,

with 1 − ĜH
1,n and 1 − ĜH

2,n denoting the estimates (1.10), where µ̂n and ς̂n
are estimated according to (1.16), for the conditional d.f.s of X and Y given
{X ≥ 25, Y ≥ 25}. Here, it is again rather difficult to choose appropriate ji,
in particular for i = 1, since a “clear trend” for j1 greater than some j0 is not
observable. Further, the exponential qq-plot (5.1) for

(
1 − ĜH

1,n

)←
in Figure

5.22 exhibits a rather moderately good fit of the data.
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Figure 5.20: Hill plot: γ̂1,n as a function of j1.
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Figure 5.21: Hill plot: γ̂2,n as a function of j2.
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Estimation of η

The (heuristic) analysis of the Hill plot (Figure 5.23) leads to m = 1, 000,

which yields 1/T
(n)
n−m:n = 0.34 (indicated in Figure 5.24, which displays the

scatterplot of the pseudo-observations (Ûi, V̂i)) and η̂H
n = 0.59. The approx-

imate 95% confidence interval (3.6) for η is [0.55, 0.62]. The pertaining test
(3.7) clearly rejects the hypothesis η = 1 on an approximate 95% confidence
level with (1 − p)-value > 0.9999, so that we assume asymptotic indepen-
dence. Hence, we indeed identify a weak positive dependence that vanishes
asymptotically.
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Figure 5.23: Hill plot: η̂n as a function of m.
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Figure 5.24: Scatterplot V̂i vs. Ûi. The square with side length 1/T
(n)
n−m:n =

0.34 contains the m = 1, 000 points used for the estimation of η. The scaling
law (2.17) is checked within this square.

Model Validation

We obtain that 49 of the points (4.11), i.e. 4.9%, lie outside their approximate
95% confidence interval (4.14), so that our method accepts the presence of the
scaling law (2.17). The pertaining plot (4.11) is shown in Figure 5.25, where
the colors of the points are according to Figure 5.7, i.e. reddish (orange, red,
pink) points lie outside their confidence interval.

For the purpose of comparison, Figure 5.26 displays the plot (4.11) for
m = 3, 800, that is, about half of all data points are used for the model
fitting. We make similar observations as in the corresponding example for the
Danish fire insurance data in Section 5.1.1. A percentage considerably larger
than 5%, namely about 46% (1,729 points), lie outside their approximate 95%
confidence interval – evidence that, as expected, the scaling law fails when
essentially more data is used for the model fitting than suggested by the Hill
plot η̂n versus m. Thus, our method clearly detects the deviations from the
scaling law and again demonstrates that it can also be used to determine the
maximum tail region for which the application of the ELTM is still reasonable.
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Figure 5.25: Plot (4.11) with m = 1, 000, 1/T
(n)
n−m:n = 0.34, η̂H

n = 0.59 from
two perspectives. The right hand perspective also displays the reference plane.
49 (reddish) points lie outside their approximate 95% confidence interval.
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Figure 5.26: Plot (4.11) with m = 3, 800, 1/T
(n)
n−m:n = 0.70, η̂H

n = 0.55 from
two perspectives. The right hand perspective also displays the reference plane.
1,729 (reddish) points lie outside their approximate 95% confidence interval.
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(Moreover, note that although also the Hill plot for η, cf. Figure 5.23,
indicates that m = 3, 800 is too large, the resulting point estimate η̂H

n = 0.55
belongs to the confidence interval for η obtained with the choice m = 1, 000,
i.e. the difference is not statistically significant.) Files with the plots of the
Figures 5.25 and 5.26 are provided on the website mentioned in Footnote 10.

Probability of Jointly Large Claims

The plots for estimates p̂n and approximate 95% confidence intervals for the
conditional probability P (X > u1, Y > u2 | X ≥ 25, Y ≥ 25) with u1 = u2 =
250 and u1 = 600, u2 = 400 are given in Figure 5.27, where we used ĜH

1,n and

ĜH
2,n as marginal Pareto estimates.
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Figure 5.27: Estimation of P (X > u1, Y > u2 | X ≥ 25, Y ≥ 25). Plot
(3.38) and confidence intervals (3.35), (3.36) and (3.37) with u1 = u2 = 250
(left) and u1 = 600, u2 = 400 (right).

Table 5.4 compares probability estimates p̂n and (approximate) 95% con-
fidence intervals for the conditional probability P (X > u1, Y > u2 | X ≥
25, Y ≥ 25) with (confidence intervals for) p̂e and p̂i = (1 − ĜH

1,n(u1))(1 −
Ĝ2,n(u2)) for further values of u1 and u2. For the reasons given in Section
5.1.1, we give (3.35) as confidence intervals pertaining to p̂n.
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u1 u2 ι p̂n (%) p̂e (%) p̂i (%)

200 200 300 0.581 [0.50,0.66] 0.612 [0.45,0.81] 0.388

250 250 300 0.279 [0.23,0.33] 0.326 [0.21,0.48] 0.164

400 400 300 0.052 [0.04,0.06] 0.065 [0.02,0.15] 0.022

600 400 300 0.027 [0.02,0.03] 0.052 [0.01,0.13] 0.007

800 1, 000 300 0.002 [1e-3,3e-3] 0 [0,0.05] 4.5e-4

Table 5.4. Comparison of the estimates p̂n, the empirical probability p̂e and
the estimated probability p̂i assuming conditional independence of X and Y .

The observations made in Tables 5.1 and 5.2 are confirmed. In fact, the
results in Table 5.4 demonstrate even more impressively that the confidence
intervals for p̂e can be considerably wider than those for p̂n, i.e. the empirical
estimates are less accurate. Observe that in contrast to what we have seen
for the fire insurance data, in the present example, for large thresholds u1 and
u2, the empirical probabilities are larger than the estimates p̂n. Of course,
for sufficiently large thresholds, the empirical probabilities will be 0 and hence
underestimate the real risk, but in general this need not be true for extreme
events which have occurred in the past.

5.2.2 At Least One Component Exceeds 25,000 USD

In this section, we analyze the conditional distribution of (X,Y ) given {X ≥
25 or Y ≥ 25}. From the 92,750 pairs of claims of the original data set, there
are 30,010 pairs with both components smaller than 25. Hence, the sample
size of the data investigated in this section is n = 62, 740. Figure 5.28 displays
the scatterplot of the data on a linear and on a logarithmic scale. Here, there
are 1,972 pairs (Xi, Yi) with Xi = 0 and 1,388 pairs (Xi, Yi) with Yi = 0,
which cannot not be represented in the plot on the logarithmic scale.
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Figure 5.28: Scatterplot Yi vs. Xi on a linear and on a logarithmic scale.

Fitting of the Marginals

The (heuristic) analysis of the Hill plots (Figures 5.29 and 5.30) suggests j1 =
j2 = 1, 500, which yields

1 − ĜH
1,n(x) ≈

(

1 + 0.27
x+ 30.54

32.06

)−3.74

and

1 − ĜH
2,n(y) ≈

(

1 + 0.35
y + 15.75

18.77

)−2.89

,

with 1 − ĜH
1,n and 1 − ĜH

2,n denoting the estimates (1.10), where µ̂n and
ς̂n are estimated according to (1.16), for the conditional d.f.s of X and Y
given {X ≥ 25 or Y ≥ 25}. In Figure 5.31, the estimates are validated by
exponential qq-plots (5.1) for

(
1 − ĜH

i,n

)←
, i = 1, 2.
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Figure 5.29: Hill plot: γ̂1,n as a function of j1.
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Figure 5.31: Exponential qq-plots for
(
1 − ĜH

1,n

)←
and

(
1 − ĜH

2,n

)←
.

Estimation of η

The (heuristic) analysis of the Hill plot (Figure 5.32) leads to m = 4, 000
(where in fact any choice between m = 2, 000 and m = 6, 000 is reasonable),

which yields 1/T
(n)
n−m:n = 0.31 and η̂H

n = 0.71. The approximate 95% confi-
dence interval (3.6) for η is [0.69, 0.73]. The pertaining test (3.7) clearly rejects
the hypothesis η = 1 on an approximate 95% confidence level with (1 − p)-
value > 0.9999, so that we assume moderate asymptotic independence that
vanishes asymptotically.

Figure 5.33 displays the scatterplot of the pseudo-observations (Ûi, V̂i) in-

cluding the square with side length 1/T
(n)
n−m:n = 0.31, where the same partic-

ularities as in Figure 5.16, examined in Section 5.1.2, occur.
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Figure 5.32: Hill plot: η̂n as a function of m.
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Figure 5.33: Scatterplot V̂i vs. Ûi. The square with side length 1/T
(n)
n−m:n =

0.31 contains the m = 4, 000 points used for the estimation of η. The scaling
law (2.17) is checked within this square.
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Model Validation

We obtain that 173 of the points (4.11), i.e. 4.3%, lie outside their approximate
95% confidence interval (4.14), so that our method accepts the presence of the
scaling law (2.17). The pertaining plot (4.11) is shown in Figure 5.34, where
the colors of the points are according to Figure 5.7, i.e. reddish (orange, red,
pink) points lie outside their confidence interval.

0
0.2

0.4
0.6 −6

−4
−2

0
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

logsjzj

−7 −6 −5 −4 −3 −2 −1 0
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

logsj

Figure 5.34: Plot (4.11) with m = 4, 000, 1/T
(n)
n−m:n = 0.31, η̂H

n = 0.71 from
two perspectives. The right hand perspective also displays the reference plane.
173 (reddish) points lie outside their approximate 95% confidence interval.

Probability of Jointly Large Claims

The plots for estimates p̂n and approximate 95% confidence intervals for the
conditional probability P (X > u1, Y > u2 | X ≥ 25 or Y ≥ 25) with u1 =
u2 = 250 and u1 = 600, u2 = 400 are given in Figure 5.35, where we used ĜH

1,n

and ĜH
2,n as marginal Pareto estimates.

Table 5.5 compares probability estimates p̂n and (approximate) 95% con-
fidence intervals for the conditional probability P (X > u1, Y > u2 | X ≥
25 or Y ≥ 25) with (confidence intervals for) p̂e and p̂i = (1 − ĜH

1,n(u1))(1 −
ĜH

2,n(u2)) for further values of u1 and u2. For the reasons given in Section
5.1.1, we give (3.35) as confidence intervals pertaining to p̂n.
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Figure 5.35: Estimation of P (X > u1, Y > u2 | X ≥ 25 or Y ≥ 25). Plot
(3.38) and confidence intervals (3.35), (3.36) and (3.37) with u1 = u2 = 250
(left) and u1 = 600, u2 = 400 (right).

u1 u2 ι p̂n (%) p̂e (%) p̂i (%)

200 200 4,000 0.064 [0.05,0.08] 0.075 [0.06,0.10] 0.020

250 250 4,000 0.032 [0.03,0.04] 0.040 [0.03,0.06] 0.007

400 400 4,000 0.006 [5e-3,7e-3] 0.008 [0.00,0.02] 6.5e-4

600 400 4,000 0.004 [3e-3,5e-3] 0.006 [0.00,0.02] 2.0e-4

800 1, 000 4,000 3e-4 [2e-4,4e-4] 0 [0,0.01] 7.7e-8

Table 5.5. Comparison of the estimates p̂n, the empirical probability p̂e and
the estimated probability p̂i assuming conditional independence of X and Y .

The observations made in the Tables 5.1, 5.2 and 5.4 are confirmed.
Like with the Danish fire insurance claims, we obtain that the p̂n-estimates

of P (X > u1, Y > u2 | X ≥ 25, Y ≥ 25) and of P (X > u1, Y > u2 | X ≥
25 or Y ≥ 25) are reasonable when compared with each other. Analogous to
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what is discussed in Section 5.1.2, when multiplying an estimate of P (X >
u1, Y > u2 | X ≥ 25 or Y ≥ 25) with the ratio 62,740/7,675 to calculate a
reasonable estimate of P (X > u1, Y > u2 | X ≥ 25, Y ≥ 25), we obtain values
which are very close to those of p̂n in Table 5.4. For example, if u1 = u2 = 250,
we have 0.032 · 62, 740/7, 675 = 0.262 as an estimate for P (X > u1, Y > u2 |
X ≥ 25, Y ≥ 25), which is very close to 0.279 in Table 5.4.

Estimation of the Limiting Function c

In this final subsection of the chapter we apply the estimator ĉ to estimate
c(x, 1) and c(1, y) for x, y ∈ [0, 1] and briefly interpret the results. In order
to obtain a plot with easily interpretable curves, we include both estimates in
one plot. To this end, define the univariate function c : [0, 2] → [0, 1] and its
estimator ĉn (cf. (3.21)) by

c(z) =

{

c(z, 1) if z ∈ [0, 1],

c(1, 2 − z) if z ∈ (1, 2]
and ĉn(z) =

{

ĉn(z, 1) if z ∈ [0, 1],

ĉn(1, 2 − z) if z ∈ (1, 2].

Figure 5.36 illustrates the meaning of the argument z of function c. Fig-
ure 5.37 displays ĉn(z) versus z ∈ [0, 2] and therefore provides estimates for
(c(x, 1))x∈[0,1] = (c(z))z∈[0,1] and (c(1, y))y∈[0,1] = (c(z))z∈[1,2]. The confi-
dence intervalls are computed according to (3.18) with čn(x, y) replaced with
ĉn(x, 1) and ĉn(1, y), respectively, see also Section 3.2.2. Note that if U and
V (and hence X and Y ) were independent, c(z) = c(z, 1) = limt↓0 P{U <
tz, V < t}/P{U < t, V < t} = z for z ∈ [0, 1]. Hence, together with an anal-
ogous argument for z ∈ (1, 2], one would expect an approximate triangle with
vertices (0, 0), (1, 1) and (2, 0) in the plot of Figure 5.37 in this case. While
the right half of the plot, i.e. the estimates of c(1, y), satisfies this expectation,
the left half, i.e. the estimates of c(x, 1), exhibits a clear deviation from the
line c(z) = z. Loosely speaking, this means that small values of V may be
expected to cause small values of U rather than the other way round. In other
words, we may conclude that large other charges cause large hospital charges
rather than vice versa.
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Chapter 6

A Related Copula Approach

In this final chapter we investigate a copula model that is related to the ELTM.
We show that although the approach introduced by Juri and Wüthrich (2002,
2003) and extended by Charpentier and Juri (2006) requires similar condi-
tions as the ELTM, useful information, which the ELTM exploits, is lost. We
see that due to this fact, Juri’s and Wüthrich’s approach does not overcome
the main problems and drawbacks of the widely-used copula approaches (cf.
Preface) and CMEVT (see Section 1.2.3). We state the main result of Juri
and Wüthrich (2003) in Section 6.1, indicate difficulties with statistical infer-
ence and that the selection of the model is similarly arbitrary as described
for these widely-used copula models. In Section 6.2, we present the relation of
Juri’s and Wüthrich’s approach to the ELTM and demonstrate that Juri’s and
Wüthrich’s approach exhibits similar problems as the CMEVT in the case of
asymptotic independence.

Unless otherwise stated, we refer to the latest paper Charpentier and Juri
(2006).

6.1 Juri’s and Wüthrich’s Approach

The random variables U and V are assumed to be standard uniform with
joint d.f. (copula) Q that is strictly increasing in each argument. The results
obtained by the approach discussed in this section refer to what Juri and

173
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Wüthrich (2003) call lower tail dependence copula relative to Q, defined by

Qlo
u,v(x, y) := P

(
U ≤ F←u,v,1(x), V ≤ F←u,v,2(y) | U ≤ u, V ≤ v

)

=
Q
(
F←u,v,1(x), F

←
u,v,2(y)

)

Q(u, v)
,

where F←u,v,1 and F←u,v,2 are the generalized left-continuous inverses of

Fu,v,1(x) := P (U ≤ x | U ≤ u, V ≤ v) =
Q(x, v)

Q(u, v)
0 ≤ x ≤ u

and

Fu,v,2(y) := P (V ≤ y | U ≤ u, V ≤ v) =
Q(u, y)

Q(u, v)
0 ≤ y ≤ v.

We remark on the choice of Qlo
u,v as the matter of interest in the following

Section 6.2.
In essence, Theorem 3.1 of Charpentier and Juri (2006) states that if there

is a measurable function g : (0,∞)2 → (0,∞) such that

lim
t↓0

Q
(
u(t)x, v(t)y

)

Q
(
u(t), v(t)

) = g(x, y) (6.1)

for all x, y > 0 with some strictly increasing, continuous, regularly varying
auxiliary functions u, v : (0,∞) → (0,∞) that tend to 0 as t ↓ 0, then, for all
(x, y) ∈ [0, 1]2,

lim
t↓0

Qlo
u(t),v(t)(x, y) = g

(
g←1 (x), g←2 (y)

)
, (6.2)

where g1(·) = g(·, 1) and g2(·) = g(1, ·) and g satisfies a homogeneity property.
In particular, g(x, x) = xθ for some θ > 0 if both u and v are regularly varying
with index 1.

Except for the case that Q belongs to the class of strict Archimedean cop-
ula, i.e. there is a strictly decreasing, convex function ψ : [0, 1] → [0,∞] with
ψ(0) = ∞ and ψ(1) = 0 such that Q(x, y) = ψ←

(
ψ(x) + ψ(y)

)
, it is not spec-

ified how to estimate the function g or the parameter θ. If one assumes that
Q is strictly Archimedean and satisfies further regularity conditions, then the
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right hand side of (6.2) is the Clayton copula QCl(x, y) = (x−α +y−α−1)−1/α

with α > 0 (cf. Theorem 3.4 of Juri and Wüthrich (2003)). In this case, an
estimate of the limiting d.f. might be obtained by an estimate of the parameter
α. Essentially, Juri and Wüthrich (2003) give a justification to use the Clayton
copula to fit bivariate pseudo-observations, if Q is strictly Archimedean. How-
ever, in real world problems, it is not clear how to check whether Q is strictly
Archimedean, so that the use of the Clayton copula is as arbitrary as to use
any copula. Further, since the estimation of tail probabilities in this approach
must be based on the limiting distribution g

(
g←1 (x), g←2 (y)

)
of the lower tail

dependence copula Qlo
u,v, the important case of asymptotic independence can

only be treated as perfect independence as we demonstrate by examples in
the following section. In this sense, Juri’s and Wüthrich’s approach exhibits
similar problems as the CMEVT, see Section 1.2.3.

6.2 Comparison with the Model of Ledford

and Tawn

In order to ease comparison, we rewrite (2.9) with q(t) = P{U < t, V < t} of
the ELTM in terms of Q, that is

lim
t↓0

Q(tx, ty)

Q(t, t)
= c(x, y). (6.3)

Here, it becomes obvious that both models assume a similar type of conditions:
Condition (6.1) with u = v = id gives (6.3), where c and 1/η play the roles of
g and θ.

However, by the ELTM we are able to describe the behavior of (X,Y ) for
“large” values by the (GPD-approximations of) the marginal distributions and
an approximation c of the copula Q nearby the origin; whereas, as we have
indicated in Section 6.1, when working with the limit g

(
g←1 (x), g←2 (y)

)
of the

lower tail dependence copula Qlo
u,v (with or without (GPD-approximations of)

the marginal distributions), it is not clear how probabilities of jointly large
claims are to be estimated. We see in the following Examples 6.2.1 and
6.2.2 that g

(
g←1 (x), g←2 (y)

)
is not sufficient to model the tail of the bivari-

ate distribution of (X,Y ) (or (U, V )). In this sense, the choice of Qlo
u,v and

g
(
g←1 (x), g←2 (y)

)
as the matter of interest seems to be at least questionable.

The ELTM is able to exploit more (essential) information than the limiting
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function g
(
g←1 (x), g←2 (y)

)
of Qlo

u,v. This is in particular due to the information
provided by η – the speed of convergence to asymptotic independence. The
following definitions will be convenient. Let

c1(·) := c(·, 1) and c2(·) := c(1, ·).

6.2.1 Examples.

(1) Example 2.1 of Draisma et al. (2004) states that the bivariate normal
distribution with mean 0, variance 1 and correlation coefficient ρ satisfies
Condition 2.2.1 with

η =
1 + ρ

2
and c(x, y) = (xy)1/(1+ρ).

Hence,

c1(x) = c2(x) = x1/(1+ρ) and c←1 (x) = c←2 (x) = x1+ρ.

We obtain

g
(
g←1 (x), g←2 (y)

)
=
(
x1+ρy1+ρ)1/(1+ρ)

= xy.

Comparing c and g
(
g←1 (x), g←2 (y)

)
, we see that it is exactly the informa-

tion contained in η, i.e. the speed of convergence to asymptotic indepen-
dence, which is lost when employing Juri’s and Wüthrich’s approach. It is
clear that g

(
g←1 (x), g←2 (y)

)
= xy is not an appropriate model for the tail of

the bivariate distribution of (X,Y ) (or (U, V )). An approximation based
on g

(
g←1 (x), g←2 (y)

)
= xy implies perfect independence, so that this ap-

proach exhibits similar problems as the CMEVT in the case of asymptotic
independence, see Section 1.2.3.

(2) We consider the so-called logistic model, a popular paramatric approach
within the class of bivariate extreme value distributions, see e.g. Section 8.2
of Coles (2001), in particular (8.10), where the marginals are standardized
to standard Frechét distribution, i.e. Fj(x) = e−1/x, x > 0, j = 1, 2. The
logistic copula is

Q(u, v) = exp

{

−
[(

log u−1)r +
(
log v−1)r

]1/r
}

.
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Since as t ↓ 0

Q(tx, ty) = exp
{

− [(− log t− log x)r + (− log t− log y)r]1/r
}

= exp

{

log t

[(

1 +
log x

log t

)r

+

(

1 +
log y

log t

)r]1/r }

= exp

{

log t

[

1 + r
log x

log t
+O(1/ log2 t)

+1 + r
log y

log t
+O(1/ log2 t)

]1/r}

= exp

{

log t

[

2 + r
log xy

log t
+O(1/ log2 t)

]1/r }

= exp

{

21/r log t

[

1 + r
log xy

2 log t
+O(1/ log2 t)

]1/r}

= exp

{

log t2
1/r
[

1 +
log xy

2 log t
+O(1/ log2 t)

]}

= exp

{

log t2
1/r

+ 21/r−1 log xy +O(1/ log t)

}

= t2
1/r

(xy)2
1/r−1

(1 +O(1/ log t)),

we obtain

c(x, y) = (xy)2
1/r−1

and hence η = 2−1/r, whereas again

g
(
g←1 (x), g←2 (y)

)
=
(

x21−1/r

y21−1/r
)21/r−1

= xy.

△

The previous examples exhibit that the information provided by η, i.e. the
information about the speed of the convergence to asymptotic independence is
lost when applying Juri’s and Wüthrich’s approach. This is not by accident,
since we can calculate c = g, if symmetric (i.e. g1 = g2), from g

(
g←1 (x), g←1 (y)

)

and η. To see this, observe that g
(
g←1 (x), g←1 (x)

)
=
(
g←1 (x)

)θ
so that g←1 (x) =
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(
g
(
g←1 (x), g←1 (x)

))1/θ
and hence g1 and c(x, y) = g

(
g←1 (g1(x)), g

←
1 (g1(y))

)
can

be calculated. The knowledge (estimation, respectively) of θ = 1/η provides
the missing information if c = g is symmetric. However, even more information
is lost if this symmetry cannot be assumed as the following example shows.

6.2.2 Example. (Asymmetric Example of Tawn (1988)) Tawn (1988),
Section 5 specifies the joint survival function F̄ (x, y) = P{X > x, Y > y} of
the asymmetric logistic model if the marginals X and Y are unit exponential,
i.e. if Fj(x) = 1 − e−x, x > 0, j = 1, 2, by

F̄ (x, y) = exp
{

−(1 − θ)x− (1 − φ)y − (xrθr + yrφr)1/r
}

,

where 0 ≤ θ, φ ≤ 1, r ≥ 1. This leads to the copula

Q(u, v) = F̄ (− log u,− log v)

= exp

{

log u1−θ + log v1−φ −
[(

log u−θ
)r

+
(

log v−φ
)r]1/r

}

= u1−θv1−φ exp

{

−
[(

log u−θ
)r

+
(

log v−φ
)r]1/r

}

.

We slightly compress the calculation of Q(tx, ty), since it is very similar to the
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case of the (symmetric) logistic model. Since as t ↓ 0

Q(tx, ty)(tx)−(1−θ)(ty)−(1−φ)

= exp

{

−
[(

− log tθ − log xθ
)r

+
(

− log tφ − log yφ
)r]1/r

}

= exp

{

log t

[

θr

(

1 +
log x

log t

)r

+ φr

(

1 +
log y

log t

)r]1/r
}

= exp

{

log t

[

θr + φr + r
θr log x+ φr log y

log t
+O

(
1/ log2 t

)
]1/r

}

= exp

{

(θr + φr)1/r log t

[

1 + r(θr + φr)−1 log xθr

+ log yφr

log t

+O
(
1/ log2 t

)
]1/r}

= exp

{

log t(θ
r+φr)1/r

[

1 +
log xθr(θr+φr)−1

+ log yφr(θr+φr)−1

log t

+O
(
1/ log2 t

)
]}

= t(θ
r+φr)1/r

xθr(θr+φr)1/r−1

yφr(θr+φr)1/r−1(
1 +O(1/ log t)

)
,

we obtain

c(x, y) = x1−θ+θr(θr+φr)1/r−1

y1−φ+φr(θr+φr)1/r−1

and thus 1/η = 2 − θ − φ+ (θr + φr)1/r, whereas once more

g
(
g←1 (x), g←2 (y)

)
= xy.

△

This example demonstrates that even more than the information provided by
η can be lost if only the limit of Qlo

u,v is considered. The function c does not
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only provide the information of η, but also that there is asymmetry in the tails
of the bivariate distribution of (X,Y ). Neither this, nor the fact that we do
not face perfect independence is reflected in g

(
g←1 (x), g←2 (y)

)
= xy.



Appendix A

The Spaces C
(

[0,∞)2
)

,

D
(

[0,∞)2
)

and D∗
(

[0,∞)2
)

We give appropriate definitions of the spaces C
(
[0,∞)2

)
, D
(
[0,∞)2

)
and of

a simple modification of the latter. We establish some properties of these
spaces which are used in some proofs of this thesis. In particular, we prove the
separability of C

(
[0,∞)2

)
when it is endowed with an appropriate metric. This

separability is a necessary condition to apply the Skorohod-Dudley-Wichura
theorem.

We start with a generalization of the notion of one-sided limits for functions
defined on [0,∞) in order to define the space D

(
[0,∞)2

)
appropriately. We

use the ideas of Neuhaus (1971). For (x, y) ∈ [0,∞)2 we define quadrants
Qδ1δ2(x, y), where δ1, δ2 ∈ {0, 1}, by

Qδ1δ2(x, y) := Iδ1(x) × Iδ2(y),

where the intervals Iδ(z) are given by

Iδ(z) :=

{

[0, z) if δ = 0

[z,∞) if δ = 1.

A.1 Definition. Let f be a real-valued function defined on [0,∞)2. If for
every sequence (xn, yn) ⊂ Qδ1δ2(x, y) with (xn, yn) → (x, y) ∈ [0,∞)2 the
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(

[0,∞)2
)

, D
(

[0,∞)2
)

and D∗
(

[0,∞)2
)

sequence f(xn, yn) converges, then we denote the limit by

f(x−, y−) if δ1 = δ2 = 0,

f(x+, y−) if δ1 = 1, δ2 = 0,

f(x−, y+) if δ1 = 0, δ2 = 1 and

f(x+, y+) if δ1 = δ2 = 1.

We call f(x−, y−) and f(x+, y+) the left hand limit and the right hand limit
of f at (x, y), respectively. △

By this definition, we are now ready to define D
(
[0,∞)2

)
.

A.2 Definition. The space D
(
[0,∞)2

)
is the set of all functions f :

[0,∞)2 → R for which f(x−, y−), f(x+, y−) and f(x−, y+) exist and which
are right continuous in the sense that f(x, y) = f(x+, y+) for every (x, y) ∈
[0,∞)2. The function f belongs to the space C

(
[0,∞)2

)
, iff in addition

f(x, y) = f(x−, y−) = f(x+, y−) = f(x−, y+) holds for every (x, y) ∈
[0,∞)2. The space D∗

(
[0,∞)2

)
is defined analogously to D

(
[0,∞)2

)
with the

roles of f(x−, y−) and f(x+, y+) interchanged, where we call f ∈ D∗
(
[0,∞)2

)

left continuous. △

Note that C
(
[0,∞)2

)
⊂ D

(
[0,∞)2

)
as well as C

(
[0,∞)2

)
⊂ D∗

(
[0,∞)2

)
.

The following considerations refer to D
(
[0,∞)2

)
. However, they also apply if

D
(
[0,∞)2

)
is substituted with D∗

(
[0,∞)2

)
.

Let f and g be elements of D
(
[0,∞)2

)
. It is easily checked that

dC(f, g) :=
∞∑

k=1

2−k min

(

1, sup
(x,y)∈[0,k]2

|f(x, y) − g(x, y)|
)

defines a metric on D
(
[0,∞)2

)
. The metric dC is a generalization of the metric

of uniform convergence on compacta, see Definition 1 of Chapter VI of Pollard
(1984). Recall that a subset A of a metric space M is called dense in M , if
for any element m ∈M , a neighborhood of m contains at least one element of
A. A metric space is called separable if it contains a countable, dense subset.

A.3 Lemma. The space C
(
[0,∞)2

)
endowed with the metric dC is separa-

ble. △
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Proof. We show that the polynoms with rational coefficients are dense in
C
(
[0,∞)2

)
with respect to dC , i.e. for f ∈ C

(
[0,∞)2

)
and every ε > 0 there

exists such a polynom p with dC(p, f) < ε.
First, let k0 > 0 such that 2−k0 < ε/2 and hence

∞∑

k=k0+1

2−k = 2−(k0+1)
∞∑

j=0

2−j < ε/2.

The polynoms with rational coefficients are dense in C
(
[0, k0)

2
)

endowed with
the uniform metric, i.e. there exists such a polynom p with

sup
(x,y)∈[0,k0]2

∣
∣p(x, y) − f(x, y)

∣
∣ < ε/2.

Further, observe that
∑k0

k=1 2−k ε/2 < ε/2 and hence

dC(p, f) ≤
k0∑

k=1

2−k ε

2
+

∞∑

k=k0+1

2−k < ε.

�





Summary and Outlook

We summarize this work and its results and suggest possible extensions.

In the Preface, we start to discuss the two main motivations of this work
– first, the failing of the classical multivariate extreme value theory when
estimating the probability of jointly large claims p in the case of asymptotic
independence of the claim sizes, and second, the lack of flexibility (and to some
extent the arbitrariness) of many popular copula approaches. These issues are
discussed several times in the work, in particular in Section 1.2.3 and Chapter
6, respectively. We extend a model of Ledford and Tawn (1996, 1997, 1998)
for the joint tail distribution of bivariate claim sizes which overcomes these
obstacles. We already see in Section 2.2.2 that the scaling law which holds in
the Extended Ledford and Tawn Model offers an access to the case of asymp-
totic independence which overcomes the problems of the classical multivariate
extreme value theory and preserves flexibility. Essentially, the procedure of
estimating p may be summarized as follows. Estimate the distribution of the
marginals, standardize the observations to the unit square, estimate the coef-
ficient of tail dependence η, choose an appropriate scaling factor r to estimate
the probability of a jointly large claim which has been observed sufficiently
often and scale down this probability with the pertaining factor.

In Chapter 3 we establish asymptotic representations for estimators of η.
This enables us to prove asymptotic normality of an estimator of p which makes
use of the scaling law in the described way. We show that this asymptotic
normality holds if either the error when estimating η or when estimating the
marginals dominates. We devise a graphical tool to choose an appropriate
scaling factor r and an appropriate number of tail-observations used for the
estimation of p, respectively. Further, we prove that the suitably standardized
process of the difference of the model-relevant limiting function c and the
proposed estimator of c converges to a centered Gaussian process. This result
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also holds if the parameter r to select is a random variable, which is natural
and important for applications.

A method to validate the scaling law is developed in Chapter 4. We prove
asymptotic normality of random deviations from the scaling law and construct
a test that is applied to the standardized observations. In order to obtain
a uniform test for the entirety of the (standardized) observations, we prove
results on the empirical process and on the Gaussian limiting process of the
random deviations from the scaling law.

We demonstrate the usefulness of the developed theory by real-life claims
data in Chapter 5. We see that the assumption of independence of the claim
sizes may underestimate the real risk, that the empirical probability is useful
only if the considered jointly large claim is observed sufficiently often, that the
tool for validating the scaling law is able to check the appropriateness of the
model and that the latter is the case for the insurance data under investigation.

In Chapter 6 we compare the Extended Ledford and Tawn Model with
another model for multivariate tail dependence. We show that this copula
approach exploits less relevant information and does not overcome the main
problems and drawbacks of many popular copula approaches and the classical
multivariate extreme value theory.

We conclude this summary with some remarks on possible model exten-
sions and objectives for future research. As indicated e.g. in Sections 2.2.2 and
3.3, the basic model Condition 2.2.1 implies that the scaling law, and hence
the idea of the estimation of p, also holds for more general sets than rectangles,
cf. also Figure 2.1. For these more general sets, appropriate generalizations of
the results of this work shall be found. Further, as remarked in Section 4.5,
since the convergence of the weighted limiting process L works with the weight
function (c(sx, sy0))

1/2+δ and without the stronger uniform condition (4.24),
one may assume that an analogous result holds for the empirical process. To
find a proof of such a result is another task for future research. Finally, a
more thorough investigation of the impact of the data choice when we face
some censoring as in Chapter 5 is desirable. We see in the examples in Chap-
ter 5 that if claims are recorded only if their sum exceeds some threshold, the
decision whether to use the data when both components exceed this threshold
or when at least one component exceeds this threshold influences the estimates
of model parameter(s) (statistically) significantly (although the impact on the
estimates of p is not significant). It has to be analyzed more thoroughly which
data should be used in which situation.



Zusammenfassung

Motivation für diese Arbeit ist insbesondere das Versagen der klassischen
multivariaten Extremwerttheorie bei der Schätzung von Wahrscheinlichkeiten
p des gleichzeitigen Auftretens von Versicherungsgroßschäden in verschiede-
nen Risikobeständen, wenn die Schadenhöhen asymptotisch unabhängig sind,
sowie die (Willkür und) mangelnde Flexibilität vieler für solche Schätzungen
verwendeten Copula-Modelle. Diese Probleme werden mehrfach thematisiert,
insbesondere im Vorwort und in den Kapiteln 1.2.3 und 6. Es wird ein Modell
von Ledford und Tawn (1996, 1997, 1998) für das gemeinsame Verteilungsende
der bivariaten Schadenhöhenverteilung erweitert, das diese Probleme überwin-
det. Die Grundidee dieses Modells besteht darin, die zu p gehörende Ereignis-
menge mit Hilfe eines Skalierungsfaktors r so zu vergrößern, dass in der entste-
henden Ereignismenge hinreichend viele Beobachtungen für eine stabile Schät-
zung mit Hilfe empirischer Wahrscheinlichkeiten vorhanden sind. Das Ska-
lierungsgesetz, das im Erweiterten Modell von Ledford und Tawn gilt, be-
sagt, dass mit Hilfe des zentralen Modellparameters, dem Koeffizienten η der
Abhängigkeit im gemeinsamen Verteilungsende, die Wahrscheinlichkeit p aus
der (empirischen) Wahrscheinlichkeit der vergrößerten Ereignismenge durch
Multiplikation mit (einer Schätzung von) r−1/η erhalten wird. Schon in Kapi-
tel 2.2.2 wird deutlich, dass im Erweiterten Modell von Ledford und Tawn die
Probleme der klassischen multivariaten Extremwerttheorie nicht auftreten und
dennoch hohe Flexibilität gewährleistet ist. Das Vorgehen zur Schätzung einer
Wahrscheinlichkeit wie p kann im Wesentlichen wie folgt zusammengefasst
werden. Schätze die Marginalverteilungen, standardisiere die Beobachtungen
auf das Einheitsquadrat, schätze η, wähle einen geeigneten Skalierungsfaktor
r um die Wahrscheinlichkeit eines gemeinsamen (Großschaden-) Ereignisses,
das hinreichend oft beobachtet werden konnte, zu schätzen und skaliere diese
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Wahrscheinlichkeit mit einer Schätzung von r−1/η.
In Kapitel 3 werden asymptotische Darstellungen für Schätzer von η ent-

wickelt. Mit Hilfe dieser Darstellungen wird dann asymptotische Normalität
eines Schätzers von p gezeigt, der auf dem Skalierungsgesetz beruht. Es
wird bewiesen, dass diese asymptotische Normalität gilt wenn der statistische
Fehler zur Schätzung von η oder der statistische Fehler zur Schätzung der
Marginalverteilungen dominiert. Ein grafisches Analysewerkzeug zur Wahl
eines geeigneten Skalierungsfaktors r beziehungsweise zur Wahl der Anzahl
der zur Schätzung von p verwendeten Daten wird entwickelt. In Kapitel 3
wird außerdem bewiesen, dass der geeignet standardisierte Prozess der Dif-
ferenz der für das Modell relevanten Grenzfunktion c und eines Schätzers von
c gegen einen zentrierten Gauß-Prozess konvergiert. Dieses Resultat wird dann
auf den Fall eines zufälligen Skalierungsfaktors r erweitert, was ein natürlicher
und für Anwendungen wichtiger Fall ist.

Eine Methode zur Validierung des für das Modell zentralen Skalierungs-
gesetzes wird in Kapitel 4 entwickelt. Es wird bewiesen, dass die zufälligen
Abweichungen vom Skalierungsgesetz asymptotisch normalverteilt sind. Ein
auf diesem Resultat basierender statistischer Test wird konstruiert. Um einen
gleichmäßigen Test für die Gesamtheit der standardisierten Beobachtungen
zu erhalten, werden außerdem Resultate zum empirischen Prozess und zum
Gauß’schen Grenzprozess der zufälligen Abweichungen vom Skalierungsgesetz
bewiesen.

Die Nützlichkeit der entwickelten Theorie wird in Kapitel 5 an Hand von
Schadendatensätzen aus der Versicherungspraxis demonstriert. Es wird gezeigt,
dass die Annahme der Unabhängigkeit der Schadenhöhen in verschiedenen
Risikobeständen das tatsächliche Risiko unterschätzen kann, dass die em-
pirische Wahrscheinlichkeit meist nur dann nützlich ist, wenn das betrachtete
(Großschaden-) Ereignis hinreichend oft beobachtet wurde, dass das vorgeschla-
gene Verfahren zur Validierung des Skalierungsgesetzes die Eignung des Mo-
dells überprüfen kann und dass das Skalierungsgesetz für die betrachteten
Schadendaten erfüllt ist.

In Kapitel 6 wird das Erweiterte Modell von Ledford und Tawn mit einem
anderen Modell für Abhängigkeiten im multivariaten Verteilungsende vergli-
chen. Es wird gezeigt, dass dieser Copula-Ansatz viele für die Schätzung von
p wesentliche Informationen nicht nutzt und damit die Schwierigkeiten und
Nachteile der vieler anderer Copula-Modelle und der klassischen mulitvariaten
Extremwerttheorie nicht überwinden kann.
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Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997): Modelling Extremal
Events for Insurance and Finance. Springer, Berlin.

Embrechts, P., McNeil, A.J. and Straumann, D. (2002): Correlation and de-
pendence in risk management: properties and pitfalls. In Dempster, M.A.H.
(Ed.): Risk Management: Value at Risk and Beyond. Cambridge University
Press, Cambridge.

Grazier, K.L. and G’Sell Associates (1997): Group Medical Insurance Large
Claims Data Base Collection and Analysis. Society of Actuaries, Monograph
M-HB97-1, Schaumburg, Illinois.

de Haan, L. and Ferreira, A. (2006): Extreme Value Theory, An Introduction.
Springer, New York.



Bibliography 191

de Haan, L. and Resnick S. (1993): Estimating the limit distribution of mul-
tivariate extremes. Communications in Statistics – Stochastic Models 9 (2),
275-309.

de Haan, L. and Stadtmüller, U. (1996): Generalized regular variation of
second order. Journal of Australian Mathematical Society 61, 381-395.

Heffernan, J.E. and Resnick S.I. (2005): Hidden regular variation and the rank
transform. Advances in Applied Probability 37 (2), 393-414.
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Credit Risk with Markov Chains, Gesamtnote sehr gut

Schulbildung, Wehrdienst

Bis 08/1997 Abitur am Konrad-Zuse-Gymnasium Hoyerswerda; an-
schließend Wehrdienst

Weitere Berufliche Tätigkeiten

Seit 04/2008 Banken-, Versicherungs-, und Wertpapieraufsicht in der
Querschnittsabteilung Risikomodellierung der Bundes-
anstalt für Finanzdienstleistungsaufsicht (BaFin)

11/2005 – 02/2006 Aktuarielles Trainee-Programm bei einem internationalen
Risk-Consulting-Unternehmen (IRMG Luxemburg und
IRMG London, Aon Corp.)

10/2004 – 01/2005 Aktuarielle Projektarbeit für IRMG Switzerland

04/2000 – 09/2000 Praktikum bei der Investmentbank Concord Effekten AG,
Frankfurt am Main
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