Strukturvariationen von Glykolohydrazonoestern mit potentieller antiplasmodialer Aktivität

Dissertation

Zur Erlangung des Doktorgrades der Universität Hamburg Department Chemie

vorgelegt von

Ronald Meurer

aus Eschwege

Hamburg 2008

Gutachter:Prof. Dr. Detlef Geffken
Prof. Dr. Claudia LeopoldTag der Abgabe:05.November 2008

Für meine Eltern und Mareike

Die vorliegende Arbeit entstand in der Zeit von November 2004 bis Februar 2008 am Institut für Pharmazie der Universität Hamburg unter der Leitung von **Herrn Prof. Dr. Detlef Geffken**, dem ich für die Aufnahme in seinen Arbeitskreis, für die Überlassung des Themas sowie die vorbildliche Betreuung und die stete Hilfsbereitschaft herzlich danke.

Mein besonderer Dank gilt **Frau Prof. Dr. Claudia Leopold** für die freundliche Übernahme des Korreferats.

Herrn Prof. Thomas Kurz danke ich für seine ständige Gesprächsbereitschaft und kreativen Ideen, die für mich eine unverzichtbare Motivation waren.

Dem Arbeitskreis von **Herrn Prof. Dr. Rolf D. Walter** am Bernhard-Nocht-Institut, insbesondere **Frau Bärbel Bergmann**, gilt mein Dank für die Durchführung der biologischen Untersuchungen.

Mein ganz besonderer Dank gilt meiner **Frau Mareike** für ihre stete Unterstützung und ihrer Hilfe während der Fertigstellung dieser Arbeit.

Des Weiteren danke ich meinen Kollegen **Frau Barbara Freund, Herrn Finn Hansen und Herrn Mehdi Khankischpur** für ihre wertvolle Hilfe beim Lesen der Korrekturen.

Ferner möchte ich auch **Herrn Dr. Wolfgang Thimann** für seine große fachliche Unterstützung und seine ständige Hilfsbereitschaft danken.

Darüber hinaus möchte ich mich bei all denjenigen bedanken, die in welcher Form auch immer zum Gelingen dieser Arbeit und für das angenehme Arbeitsklima beigetragen haben.

Zu großem Dank bin ich **meinen Eltern** verpflichtet, die mich fortwährend unterstüzt und motiviert haben und durch deren Rückhalt all dies erst möglich wurde.

Abkürzungsverzeichnis

Allgemeine Arbeitsvorschrift
Abbildung
absolut
Aryl
aromatisch
berechnet
Benzyl
beziehungsweise
zirka
chemische Verschiebung
Dublett
Dünnschichtchromatographie
das heißt
Dimethylaminopyridin
Dimethylsulfoxid, deuteriert
Ethanol
Triethylamin
Gefunden
gegebenenfalls
heteronuclear multiple bond correlation
heteronuclear single quantum coherence
in der Regel
im Vakuum
Infrarot
Kopplungskonstante
konzentriert
Literatur
Multiplett
Methanol
Natriumethanolat
nuclear magnetic resonance
Phenyl
parts per Million
Quartett

quart.	quartär
resp.	respektive
RT	Raumtemperatur
S	Singulett
S.	siehe
Sdp	Siedpunkt
Smp.	Schmelzpunkt
sogen.	sogenannten
t	Triplett
Tab.	Tabelle
tert.	tertiär
TMS	Trimethylsilyl
sogen. t Tab. tert. TMS	sogenannten Triplett Tabelle tertiär Trimethylsilyl

Inhaltsverzeichnis

1.	ENTS	STEHUNG UND BEHANDLUNG VON MALARIA TROPICA	14
1.1	ALLC	GEMEINES	14
1.2	ENTV	VICKLUNGSZYKLUS VON PLASMODIUM FALCIPARUM	15
1.3	CHEN	MOTHERAPEUTIKA ZUR BEHANDLUNG VON MALARIA TROPICA	16
	1.3.1	Antimalaria-Chemotherapeutika	16
	1.3.1.1	Blutschizontoide Wirkstoffe	16
	1.3.1.2	Gewebsschizontoide Wirkstoffe	19
	1.3.2	Entwicklung neuer Chemotherapeutika	21
2.	PLAN	NUNG ZUR STRUKTURABWANDLUNG EINER LEITSUBSTANZ	32
3.	(<i>E</i> /Z)-	-N`-(ALKOXY-2-HYDROXY-ALK-1-YLIDEN)-	
	HYDI	RAZINCARBONSÄUREESTER	33
3.1	LITEF	RATURÜBERSICHT	35
3.2	HERS	STELLUNG VON GLYKOLOHYDRAZONOESTERN AUS CARBAZAT	ΈN
	MIT o	x-HYDROXYIMIDOESTER-HYDROCHLORIDEN	39
	3.2.1	Darstellung von α-Hydroxycarbonitrilen	40
	3.2.2	Herstellung von α-Hydroxyimidoesterhydrochloriden	41
	3.2.3	Carbazatolyse der hergestellten α-Hydroxyimidoesterhydrochloride	42
	3.2.4	Eigenschaften von 2-[1-Amino-2-hydroxyalkyliden]-	
		hydrazin-carbonsäureestern	45
3.3	HERS	STELLUNG VON (E/Z)-N`-(1-ALKOXY-2-HYDROXY-ALK-1-YLIDEN))-
	HYDI	RAZIN-CARBONSÄUREESTERN DURCH CARBAZATOLYSE VON	
	α-HY	DROXYTHIOCARBONSÄURE-O-ESTER	48
	3.3.1	Darstellung der α-Hydroxythiocarbonsäure-O-ester	49
	3.3.2	Herstellung der N`-(1-Alkoxy-2-hydroxy-alk-1-yliden)-	
		hydrazin-carbonsäureester	50
	3.3.2.1	Eigenschaften der (E/Z)-N-(1-Alkoxy-2-hydroxy-alk-1-yliden)	
		hydrazin-carbonsäureester	52
3.4	VERS	SUCHE ZUR PHOTOISOMERISIERUNG DER N`-(1-ALKOXY-	
	2-HY	DROXY-ALK-1-YLIDEN)-HYDRAZIN-CARBONSÄUREESTER	59
3.5	CYCI	LISIERUNG VON (E/Z)-N`-(1-ALK-/ARALOXY-2-HYDROXY-ALK-1-	
	YLID	EN)-HYDRAZIN-CARBONSÄUREESTER	60
	3.5.1	Synthese von 5-Alkoxy-6-alkyl-6-phenyl-3,6-dihydro-	
		[1,3,4]-oxadiazin-2-onen	60
	3.5.2	Eigenschaften von 5-Alkoxy-6-alkyl-6-phenyl-3,6-dihydro-	
		[1,3,4]-oxadiazin-2-onen	62

3.6		DARSTELLUNG VON (E/Z)-N`-(ETHOXY-ETH-1-YLIDEN)-
		HYDRAZIN-CARBONSÄUREESTER66
	3.6.1	Eigenschaften von
		$(E/Z)-N^{-}(Ethoxy-eth-1-yliden)-hydrazin-carbonsäureestern$
4.	VAF	RIATION DER HYDRAZINKOMPONENTE DER LEITSUBSTANZ68
11	FINI	FITLING
4.1 4.2	(F/7)	LETTONO
7.2	PRO	PANHYDRAZONATE 69
	4.2.1	Herstellung von (E/Z) -ethyl-2-hydroxy-N ⁽⁻ (alk-/aralkylcarbamoyl)-2-aryl-
		propanhydrazonaten
	4.2.2	Eigenschaften der hergestellten (E/Z) -ethvl-2-hvdroxv-N`-(alk-
		/aralkylcarbamoyl)-2-aryl-propanhydrazonate
4.3	3 (<i>E</i> /Z)-ETHYL-N'-ACYL-2-HYDROXY-2-ARYL-PROPANHYDRAZONATE74
	4.3.1	Herstellung von (E/Z)-Ethyl-N´-acyl-2-hydroxy-2-aryl-
		propanhydrazonaten74
	4.3.2	Eigenschaften der hergestellten (E/Z)-Ethyl-N'-acyl-2-hydroxy-2-aryl-
		propanhydrazonate75
	4.3.3	Intramolekulare Cyclisierung von (E/Z)-Ethyl-N´-acyl-2-hydroxy-2-aryl-
		propanhydrazonaten zu 2-(1-Hydroxy-1-aryl-ethyl)-1,3,4-oxadiazolen77
	4.3.4	Eigenschaften der hergestellten 2-(1-Hydroxy-1-aryl-ethyl)-
		1,3,4-oxadiazole78
4.4	HER	STELLUNG VON ALK-/ARALKYL-0-2-HYDROXY-2-ALK-/ARYL)
	PRO	PANHYDROXIMATE80
	4.4.1	Einleitung und Literaturübersicht80
	4.4.2	Eigenschaften der hergestellten Alkyl-/aralkyl-O-2-hydroxy-2-alklyl-/aryl)
45	(F/Z))-ALKYL-/ARYL-N'-ALK-/ARAKYLCARBAMOYLOXY-2-HYDROXY-2-
1.5	(ALI	X-/ARYL)PROPANIMIDATE.
	4.5.1	Darstellung von (E/Z) - Alkyl-/Aryl-N'-alkyl/arylcarbamoyl-oxy-2-hydroxy-2-
		(alkyl/aryl)propanimidaten
	4.5.2	Eigenschaften der hergestellten (E/Z)-Alkyl-/aryl- N' -
		alkyl/aralkylcarbamoyloxy-2-hydroxy-2-
		(alkyl/aryl)propanimidate
5.	MO	DIFIKATION DER HYDRAZONATGRUPPE
	IN D	ER LEITSUBSTANZ 188
5.1	2-H	YDROXY-N-ALKYL-2-ARYL-PROPIONAMIDINE
	5.1.1	Darstellung von 2-Hydroxy-N-alkyl-2-aryl-propionamidinen
	5.1.2	Eigenschaften von 2-Hydroxy-N-alkyl-2-aryl-propionamidinen90
5.2	2 - H	YDROXY-N-ALKOXY-2-ARYL-PROPANAMIDINE91

	5.2.1	Darstellung von 2-Hydroxy-N-alkoxy-2-aryl-propanamidinen
	5.2.2	Eigenschaften der hergestellten 2-Hydroxy-N-alkoxy-2-aryl-propanamidine.92
5.	3. <i>N</i> -A	LKYL-/ARYLIDEN-2-HYDROXY-2-ARYL-PROPANAMIDRAZONE96
	5.3.1	Allgemeines
	5.3.2	Herstellung von N-Alkyl-/aryliden-2-hydroxy-2-aryl-
		propanamidrazonen97
	5.3.3	Eigenschaften der hergestellten N-Alkyl-/aryliden-2-hydroxy-2-aryl-
		propanamidrazone
6.	UNTE	RSUCHUNGEN ZUR BIOLOGISCHEN AKTIVITÄT DER
	HERG	ESTELLTEN SUBSTANZEN101
6.	1 TEST	ΓUNGSSYSTEM101
	6.1.1	Grundlage des Testungsverfahren101
	6.1.2	Praktische Durchführung der Testung102
6.	2 TES	TUNGSERGEBNISSE103
	6.2.1	Diskussion der Testungsergebnisse110
7.	EXP	ERIMENTELLER TEIL111
7	1 VER	ZEICHNIS DER GERÄTE UND ANALVSENMETHODEN 111
7. 7	2 SYN	THESEVORSCHRIETEN UND ANALYTISCHE DATEN ZU KAPITEL 3 113
/ • /	721	Darstellung der α -Hydroxycarbonitrile 19 (Abschnitt 3.2.1) 113
	7.2.1	Darstellung der α -Hydroxyimidoester-hydrochloride 20 (Abschnitt 3.2.2) 119
	7221	Darstellung von 2-(3 4-Dichlornhenvl)acetimidat-hydrochlorid 30
	1.2.2.1	(Abschnitt 3.7) 133
	723	Darstellung der α -Hydroxythio- Ω -carbonsäureester 23 (Abschnitt 3 3 1) 134
	724	Darstellung der $(F/Z)-N^{-}(1-A koxy-2-hydroxy-a k-1-y iden)-hydrazin-$
	7.2.1	carbonsäureester 23 (Abschnitt 3.2.3 und 3.3.3) 151
	7.2.4.1	Darstellung von (E/Z) -N ⁻ -(2-(3.4-Dichlorphenyl)-1-ethoxy-ethyliden)-
	,	hydrazin-carbonsäureester 31 (Abschnitt 3.7)
	7.2.5	Isolierung der 2-[1-Amino-2-hydroxyalk-1-yliden]-hydrazin-carbonsäureester
		22 (Abschnitt 3.2.4)
	7.2.6	Darstellung von 5-Alk-/aralkoxy-3,6-dihydro-2 <i>H</i> -1,3,4-oxadiazin-2-onen 29
		(Abschnitt 3.6.2)
7.	3 SYN	THESEVORSCHRIFTEN UND ANALYTISCHE DATEN ZU KAPITEL 4.235
	7.3.1	Darstellung von (E/Z)-Ethyl-2-hydroxy-N`-(Alk-/Aralkylcarbamoyl)-
		2-(aryl)-propanhydrazonaten 33 (Abschnitt 4.2.2)235
	7.3.2	Darstellung von (E/Z)-Ethyl-N´-acyl-2-hydroxy-2-aryl-propan-hydrazonaten
		34 (Abschnitt 4.3.2)
	7.3.3	Darstellung von 2-(1-Hydroxy-1-arylethyl)-5-aryl-1,3,4-oxadiazolen 35
		(Abschnitt 4.4.3)

	7.3.4	Darstellung von Alkyl-/aralkyl-O-2-hydroxy-2-alklyl-/aryl)
		propanhydroximaten 47 (Abschnitt 4.4.3)253
	7.3.5	Darstellung von Alkyl-/Aryl-N-alkyl/arylcarbamoyloxy-2-hydroxy-2-alkyl-
		/arylpropanimidaten 48 (Abschnitt 4.5.1)258
7.4	4 SYN	THESEVORSCHRIFTEN UND ANALYTISCHE DATEN ZU KAPITEL 5.262
	7.4.1	Darstellung der 2-Aryl-2-hydroxy-N´-alkyl-propionamidine 49 (Abschnitt
		5.1.1)
	7.4.2	Darstellung der N-Alkyloxy-2-hydroxy-2-phenyl-2-yl-propanamidine 50
		(Abschnitt 5.2.1)
	7.4.3	Darstellung der 2-Hydroxy-2-aryl-propanamidrazone 51 (Abschnitt 5.3.1)272
	7.4.4	Darstellung von N-Alkyl-/aryliden-2-aryl-2-hydroxy-propanamidrazonen 52
		(Abschnitt 5.3.2)
8.	ZUS	SAMMENFASSUNG280
9.	SUN	/IMARY
10.	LIT	ERATURVERZEICHNIS288
	ANI SIC	IANG: GEFAHRENMERKMALE UND HERHEITSRATSSCHLÄGE291

1 Entstehung und Behandlung von Malaria tropica

1.1 Allgemeines

Malaria (malo aria, ital.: schlechte Luft), auch als Sumpf- oder Wechselfieber bezeichnet, stellt mit einer Inzidenz von bis zu 660 Millionen klinischer Fälle (jährlich erkranken bis zu 10 Prozent der Weltbevölkerung an Malaria), und einer Mortalitätsrate von 1-3 Millionen, meist Kinder unter fünf Jahren oder schwangere Frauen, die bedeutsamste parasitäre Tropenkrankheit dar.^[1, 2]

Sie wird hervorgerufen durch Protozoen der Gattung Plasmodium, die über den Speichel der weiblichen Anopheles-Mücke, welche als Vektor fungiert, beim Stechakt auf den Menschen übertragen werden.^[3]

Es sind bislang vier humanpathogene Spezies der Malariaparasiten bekannt, welche Infektionen mit unterschiedlichem Krankheitsverlauf verursachen.

Die bedrohlichste Form der Malaria stellt die durch Plasmodium falciparum ausgelöste Malaria tropica dar. Sie ist gekennzeichnet durch schwankende Fieberintervalle und kann in bis zu 30 % der Infektionen zum Tode führen.

Die durch Plasmodium vivax und Plasmodium ovale kausalisierte Malaria tertiana unterscheidet sich von der Malaria quartana, welche durch Plasmodium malariae verursacht wird, in der Länge des Fieberintervalls (M. tert. 48 h, M. quart. 72 h), welcher mit dem Lebenszyklus der jeweiligen Plasmodiumspezies verknüpft ist.^[4]

Obschon die Malaria in vielen Teilen der Welt als ausgerottet schien, erlangt sie in jüngster Zeit infolge steigender Resistenzentwicklungen gegen bislang eingesetzte Chemotherapeutika sowie infolge weiterer Faktoren wie das stetig ansteigende Bevölkerungswachstum in den betroffenen Gebieten, verstärkte Mobilität der Menschen und die Gefahr der Ausbreitung der Malaria auf Länder in gemäßigten Klimazonen infolge des Klimawandels immer mehr an Bedeutung.

Angesichts dieser bedrohlichen Entwicklung beschloss die WHO zusammen mit weiteren Organisationen im Jahr 2001 die "roll back Malaria" - Kampagne mit dem Ziel, die Malaria und deren Folgen bis zum Jahr 2010 zu halbieren und neue Strategien zu ihrer Bekämpfung zu entwickeln.^[5]

1.2 Entwicklungszyklus von Plasmodium falciparum

Der Entwicklungszyklus der Parasiten unterteilt sich in einen ungeschlechtlichen Zyklus (Schizogonie) mit dem Menschen als Zwischenwirt, und einen geschlechtlichen Zyklus (Gametogonie) in der Anopheles-Mücke.

Durch den Stich einer weiblichen Mücke, welche sich zuvor an einem Plasmodiumträger infiziert hat, werden infektiöse Parasitenstadien, Sporozoiten, in die menschliche Blutbahn inokuliert. Diese entwickeln sich in den Hepatozyten zu Schizonten (= Gewebsschizonten), welche nach starker Kernvermehrung Merozoiten bilden, die nach dem Zerplatzen der Hepatozyten Erythrozyten befallen. Aus jenen Merozoiten bilden sich erneut Schizonten (= Blutschizonten), welche nach mehreren Kernteilungen erneut zu Merozoiten zerfallen, die nach Zerstörung der Erythrozyten in das Blutplasma gelangen. Zerfall Durch den der roten Blutkörperchen werden pyrogene Stoffwechselprodukte der Parasiten freigesetzt, welche Fieberschübe auslösen. Ein Teil der Parasiten entwickelt sich zu den geschlechtlichen Gametozyten, welche bei einer weiteren Blutmahlzeit von der Mücke aufgenommen werden und sich geschlechtlich vermehren. ^[4+6]

Weitere Details können der Abbildung 1-1 entnommen werden.

Abb.1-1 Entwicklungszyklus von Plasmodium falciparum^{*}

Quelle: http://www.dpd.cdc.gov/dpdx/HTML/MALARIA.htm

1.3 Chemotherapeutika zur Behandlung von Malaria tropica

1.3.1 Antimalaria-Chemotherapeutika

Die Chemotherapie mit den derzeit auf dem Markt befindlichen Arzneistoffen zur Behandlung der Malaria tropica beinhaltet Eingriffe in den Vermehrungszyklus der Plasmodien: man unterscheidet blutschizontoide und gewebsschizontoide Wirkstoffe, wobei einige Wirkstoffe (*Primaquin* und *Pyrimethamin*) ebenfalls wirksam gegen Gametozyten sind und somit das Spektrum der Wirkstoffe vorteilhaft ergänzen.^[7]

1.3.1.1 Blutschizontoide Wirkstoffe

Abb.1-2 Blutschizontoide Arzneistoffe

Atovaquon (VII)

Artemisinin (VIII)

Chinin (I), ein Chinarindenalkaloid, ist der älteste derzeit auf dem Markt befindliche Antimalaria-Wirkstoff. Es wurde bereits Anfang des 17. Jahrhunderts zur Behandlung von Fieber eingesetzt und fand bis in die 50er Jahre des 20. Jahrhunderts eine weitreichende Anwendung.^[8]

Infolge der weitreichenden Resistenzentwicklung gegenüber Chloroquin sowie der möglichen stereoselektiven Totalsynthese von Chinin gewinnt es in jüngster Zeit wieder zunehmende Bedeutung.^[9]

1933 synthetisierten Chemiker der Firma Bayer AG, ausgehend vom antiseptisch wirkenden Methylenblau, das Mepacrin^{*} und ein Jahr später Chloroquin (**II**), welches anstatt des Acridin- einen Chinolinkörper besitzt.^[10]

Obwohl erst 1946 wegen anfänglicher Bedenken hinsichtlich der Toxizität spielte es alsbald eine wichtige Rolle eingeführt, in verschiedenen Eradikationsprogrammen der Malaria. Infolge der verbreiteten Verwendung sowie der prophylaktischen Zugabe zum Speisesalz traten aber verstärkt Chloroquin-Resistenzen auf.

Basierend auf der guten Wirksamkeit des Chloroquins wurde der Grundkörper für zahlreiche Weiterentwicklungen wie z.B. das Cycloquin oder das Amodiaquin (III) verwendet. Letztgenanntes findet nach einem Rückgang in den 80er Jahren infolge von Agranulozytose-Fällen in heutiger Zeit wieder einen verstärkten Einsatz gegen Chloroquin-resistenten Stämme.^[11]

Aufgrund der rasch voranschreitenden Resistenzentwicklung wurde der Chinolingrundkörper weiter modifiziert, wobei *Mefloquin* (IV) resultierte, ^[12] zahlreicher Kontraindikationen sowie das jedoch wegen schlechter Verträglichkeit nur begrenzt Verwendung findet. Der Austausch des Chinolinkörpers gegen ein Phenanthrengerüst erbrachte Halofantrin (V) mit einer Aminoalkohol-Seitenkette, das wegen kardiotoxischer Nebenwirkungen eingeschränkte Anwendung findet.

Lumefantrin (VI) ist ebenfalls ein Arylaminoalkohol-Derivat und ähnelt in seiner Struktur dem Halofantrin, weist jedoch eine schwächere Antimalaria-Aktivität auf. Es entfaltet keine Kardiotoxizität und wird nur in Kombination mit Artemether angeboten (*Riamet*®/ *Co-Artemether*®). ^[13]

18

Der Wirkungsmechanismus der o.g. Arzneistoffe ist noch immer nicht vollständig geklärt. Es wird vermutet, dass sie mit dem Abbau von Hämoglobin im Parasiten interferieren, in Folge dessen eine Anreicherung des für die Plasmodien zytotoxischen Produktes, dem Ferriprotoporphyrin IX, auftritt und die Zerstörung der Erreger verursacht.

Eine gesicherte Aussage über den Wirkungsmechanismus der Arylaminoalkohole konnte bislang nicht getroffen werden.

Für *Mefloquin* und *Chinin* wird eine mögliche Aufnahmehemmung von Hämoglobin aus der Wirtszelle angenommen.^[7]

(VII) ist ein Hydroxynaphthochinon-Derivat, Atovaquon das als Ubichinonanalogon die Atmungskette in den Mitochondrien durch Blockade des Elektronentransportes hemmt. Als Monotherapeutikum angewandt, führt es sehr schnell zu Resistenzen, weshalb Atovaquon nur in synergistischen Kombinationen wie z. B. in *Malarone*® (kombiniert mit *Proguanil*) verabfolgt wird. [14]

Artemisinin (**VIII**) ist ein Sesquiterpen des einjährigen Beifuss (Artemisia annua), welches bereits seit 1596 in der chinesischen Volksmedizin bei der Behandlung von Fieber angewendet wird. Als Wirkungsmechanismus von *Artemisinin* wird die Spaltung der Endoperoxidgruppe durch Häm postuliert, welches beim Abbau von Hämoglobin freigesetzt wird. Die daraus resultierenden freien Radikale alkylieren einen Teil des Häms und verhindern somit seine Detoxikation.^[15]

Eine vergleichbar stärkere antimalariale Wirkung weisen Artemether (**IXa**), Arteether (**IXb**) sowie Artesunat (**IXc**) auf, welche Pro-drugs der eigentlichen Wirkform (**IXd**) darstellen. Limitierend wirkt sich leider ihre kurze Halbwertszeit für die Therapie aus, weshalb sie mit Antimalariawirkstoffen, welche eine längere Halbwertszeit aufweisen (z.B. Lumefantrin und Artemether), kombiniert werden müssen.

Abb.1-3 Artemisinin-Derivate IXa-c

 $\mathbf{R}^1 =$ CH_3 CH₂CH₃ COCH₂CH₂COOH Η

Artemether (IXa) Arteether (IXb) Artesunat (**IXc**) Dihydroarteminsinin (IXd)

Gewebsschizontoide Wirkstoffe 1.3.1.2

Gewebsschizotoide Arzneistoffe **Abb.1-4**

Pyrimethamin (XI)

CI

Chlorproguanil (XIV)

Primaquin (\mathbf{X}) ist das einzige auf dem Markt befindliche 8-Aminochinolin-Derivat. Es interkaliert an doppelsträngige Plasmodien-DNA und verursacht somit eine Hemmung der Proteinbiosynthese, was ein Absterben der Plasmodien zur Folge hat. *Primaquin* findet vor allem bei der vollständigen Ausheilung von Malaria tertiana und Malaria quartana Anwendung. Es ist zu beachten, dass *Primaquin* eine lebensbedrohliche intravasale Hämolyse bei Menschen mit einem Glucose-6-phosphat-Dehydrogenase-Mangel^{*} herbeiführen kann.

Pyrimethamin (**XI**) ist ein Diaminopyrimidin-Derivat und greift als Hemmstoff der Dihydrofolat-Reduktase in den C_1 -Stoffwechsel der Plasmodien ein.

Es weist aufgrund der Wirkung sowohl gegen Blut- und Gewebsschizonten als auch auf Gametozyten ein sehr breites Wirkungsspektrum auf und kann daher bei allen drei Malariaformen - auch zur Prophylaxe - eingesetzt werden.

Pyrimethamin wird oft in Kombination mit *Sulfadoxin* (**XII**), einem Sulfonamid, zur Malariabehandlung eingesetzt (*Fansidar*®). *Sulfadoxin* greift ebenfalls in den Folat-Stoffwechselweg ein, indem es die Dihydropteroat-Synthase hemmt.

Weitere Hemmstoffe der Dihydrofolat-Reduktase stellen die Pro-drugs *Proguanil* (**XIII**) und *Chlorproguanil* (**XIV**) dar, welche in einer Cytochrom-P450-abhängigen Reaktion in die eigentlichen Wirkformen *Cycloguanil* resp. *Chlorcycloguanil* umgewandelt werden. Ihre Einsatzmöglichkeiten sind jedoch durch zunehmende Resistenzen von Plasmodium falciparum erheblich eingeschränkt, so dass sie meist in Kombinationen (z.B. mit *Chloroquin*) angewendet werden.^[16]

Neben den bereits erwähnten Wirkstoffen finden eine Vielzahl von Antibiotika, welche die bakterielle Proteinbiosynthese inhibieren, Verwendung in der Therapie der Malaria.

Die Plasmodien verfügen über zwei Organelle, dem Mitochondrium und dem Apicoplasten, welche sich aufgrund eines rudimentären Genoms selbst replizieren können. Entsprechende Antibiotika inhibieren die Prokaryontenähnliche RNA- bzw. Protein-Synthese und führen infolge des Ausbleibens der Selbstreplikation der Organelle zum Absterben der Parasiten.

Glucose-6-phosphat-Dehydrogenase-Mangel ist ein genetischer Polymorphismus, welcher vor allem in Afrika und Asien weit verbreitet ist.

Von praktischer Bedeutung sind Gyrase-Hemmstoffe (Ciprofloxacin), Tetracycline (Doxycyclin), Makrolide (Azithromycin), Lincosamide (Clindamycin) sowie Rifampicin.

Infolge ihres langsamen Wirkungseintritts werden die Antibiotika nur prophylaktisch bzw. in Kombination mit anderen Antimalariawirkstoffen verwendet (z.B. Doxycyclin und Chinin).

1.3.2 Entwicklung neuer Chemotherapeutika

Im Zuge der bereits eingangs genannten "roll-back"-Kampagne wurden intensive Anstrengungen unternommen, neue Wirkstoffe mit neuen Wirkmechanismen für die Malaria-Therapie zu entwickeln.

Strukturmodifikationen von *Chloroquin* erbrachten den Befund, dass eine Verkürzung der Diaminoalkylseitenkette, die Einführung eines lipophilen aromatischen Restes oder die Dimerisierung zweier 4-Aminochinoline die Aktivität gegenüber Chloroquin-resistenten Stämmen deutlich steigerten.

Derzeit befinden sich mit *AQ-13* (**XV**), *tert-Butylisoquin* (**XVI**), *Ferroquin* (**XVII**), und *Piperaquin* (**XVIII**) Vertreter dieser Variationen in der klinischen Entwicklung.^[17]

Tafenoquin (**XIX**) stellt eine lipohilere Weiterentwicklung des 8-Aminochinolins *Primaquin* dar. Die Trifluormethylgruppe trägt entscheidend zur höheren Wirkstärke bei. Als Wirkmechanismus von *Tafenoquin* wird eine Schädigung der Mitochondrien vermutet.^[18]

Eine weitere Strukturvariation ergab das *Pyronaridin* (**XX**), welches an Stelle eines Chinolin- den Azaacridinkörper enthält.

Infolge der Einführung einer zweiten basischen Seitenkette, unterliegt es einer geringeren Metabolisierung in Vergleich zu den 4-Aminochinolin-Derivaten und weist daher eine höhere Aktivität auf.^[19]

Abb.1-5 *Modifikationen von Chloroquin*

Weitere Studien beschäftigen sich mit Strukturabwandlungen von Artemisinin (**VIII**).^[20, 21]

Durch die Einfuhr polarer Gruppen zur Verbesserung der Wasserlöslichkeit bzw. den Austausch des exocyclischen Sauerstoffatoms der leicht für Metabolisierungsvorgänge zugänglichen Acetalgruppe durch ein Kohlenstoffatom, konnte eine schnelle Metabolisierung verhindert und die Bildung neurotoxischer Stoffe unterbunden werden.

Abbildung 1-6 veranschaulicht im Ausschnitt einen Teil der 2. Generation halbsynthetischer *Artemisinin*-Derivate (**XXI, XXII, XXIII**).

Abb. 1-6 Artemisinin-Derivate der 2. Generation

Durch Strukturuntersuchungen an Artemisinin-Derivaten konnte gezeigt werden, das sich die Endoperoxidstruktur essentiell für die Antimalaria-Aktivität erwies.

Klinische Studien an *OZ-277* (**XXIV**) zeigten jedoch eine schlechte Bioverfügbarkeit, weshalb weitere Forschungen an diesem Strukturtyp unterblieben.^[16]

Abb.1-7 *Synthetische Endoperoxide als Malaria-Wirkstoffe*

Intensiv untersucht wird derzeit die Herstellung chimärer Moleküle (**XXIX**, **XXX**), welche eine 4-Aminochinolin- und einen 1,2,4-Trioxankörper vereinen. Sie zeigten in den bislang vorgenommenen Studien eine hohe Aktivität gegen Plasmodien, befinden sich aber noch in der präklinischen Phase.^[22]

Abb. 1-8 Chimäre Moleküle mit Antimalaria-Aktivität

Die Verwendung der auf dem Markt befindlichen Antifolatwirkstoffe ist durch eine rasche Resistenzentwicklung stark limitiert, wodurch sich für die Arzneimittelforschung neue Gebiete eröffnen.

Mehrere klinische Studien belegen einen synergistischen Effekt zwischen *Chlorguanil* und *Dapson*, das bei der Behandlung der Lepra Bedeutung erlangte (*LapDap*®).

Die zusätzliche Kombination mit *Artesunat* (*LapDap*+®) zeigte in klinischen Studien eine signifikant kürzere Therapiedauer, als die alleinige Gabe von *Chlorguanil* und *Dapson*.

Weitere Forschungen beschäftigen sich mit Strukturabwandlungen von *Cycloguanil*, welche einen Dihydrotriazin-Körper (**XXXII**) aufweisen bzw. die entsprechenden pro-drug-Formen darstellen.

Die Kernstruktur dieser neuartigen Wirkstoffe ist eine Dioxypropylenkette, welche zwei Aromaten miteinander verknüpft und dadurch eine hohe Affinität zum Zielenzym aufweist. ^[23] Mit *JPC-2056* (**XXXIII**) befindet sich eine vielsprechende Verbindung in der präklinischen Entwicklung. ^[24]

Abb.1-9 Dihydrofolatreduktase-Inhibitoren als Antimalaria-Wirkstoffe

JPC-2056 (XXXIII)

Eine neue Wirkstoffklasse in der Therapie der Malaria stellen die Diamidine (Typ **XXXIV-XXXVI**) dar, welche bereits seit mehr als 60 Jahren Anwendung in der Therapie gegen Trypanosoma und Leishmania finden.

Infolge sehr guter IC₅₀-Werte (Verbindung **XXXVI** IC₅₀= 0.5 nm) sind die Diamidine eine sehr vielversprechende Klasse für die Malariatherapie.

Derzeit befindet sich mit dem leider schlecht bioverfügbaren *Furamidin* (**XXXIV**) bereits ein Vertreter dieser Klasse in der Klinischen Phase II.

Durch die Darstellung des *O*-Methylamidoxims *Parfuramidin* (**XXXV**) konnte ein Pro-Drug gewonnen werden, welches eine deutlich verbesserte Bioverfügbarkeit besitzt.^[27]

Der genaue Wirkungsmechanismus ist bislang nicht bekannt.

Mögliche intrazelluläre Ziele stellen die DNA-Replikation bzw. das Porphyrinringsystem dar.^[25+26]

Abb. 1-10 *Diamidine mit Antimalaria-Wirkung*

Vielversprechende Perspektiven der Wirkstoffforschung eröffnen selektive Enzym-Hemmstoffe, welche in den Stoffwechsel der Parasiten eingreifen. Abbildung 1-9 zeigt eine schematische Darstellung eines mit Plasmodium falciparum infizierten Erythrozyten sowie die Lokalisation neuer Wirkstoffziele.

Abb. 1-11 Angriffspunkte neuer Antimalariawirkstoffe

Wie aus der Abbildung 1-9 zu entnehmen ist, bietet der Eingriff in den Hämoglobinabbau der Wirtserythrozyten eine Möglichkeit, neue Wirkstoffe zu entwickeln. Die daran beteiligten Enzyme, die sogen. Proteasen, kommen jedoch ebenfalls bei Säugern vor, so dass eine hohe Selektivität der Inhibitoren erforderlich ist.

Die peptidischen Inhibitoren (**XXXVI**) und (**XXXVII**) zeigten in in-vitro-Untersuchungen sehr gute Ergebnisse, ihre Verwendung wird allerdings durch eine große Hydrolyseempfindlichkeit, geringe Selektivität sowie einer irreversiblen Veränderung der Zielenzyme deutlich eingeschränkt.^[28]

Weitere sogenannte "Nicht-peptidische Protease-Inhibitoren" (**XXXVIII**, **XXXIX**) zeigten ebenfalls eine gute Aktivität gegen die entsprechenden Zielenzyme, ^[29] der genauere Wirkungsmechanismus ist allerdings noch nicht geklärt. ^[30]

Eine Potenzierung der Antimalaria-Aktivität bei der Kombination verschiedener Protease-Inhibitoren, welche sich gegen unterschiedliche Zielenzyme richten, konnte in mehreren Studien verifiziert werden.^[31]

Abb. 1-12 Protease-Inhibitoren als potenzielle Antimalaria-Wirkstoffe

Im Apicoplasten sind die Enzyme der Fettsäuresynthese lokalisiert, welche sich erheblich von denen der Säuger differenzieren. Infolge einer Hemmung dieser Enzyme unterbleibt der Aufbau verschiedener Fettsäurederivate und bedingt ein Absterben der Plasmodien.

Triclosan (**XL**) inhibiert die trans-2-Enoyl-Acyl-Carrier-Protein-Reduktase, jedoch ist die Verwendung von (**XL**) aufgrund schlechter Bioverfügbarkeit limitiert. Durch strukturelle Abwandlung des Triclosans gelangte man zu (**XLI**) und (**XLII**), allerdings ist die wachstumshemmende Wirkung geringer als bei (**XL**).^[32]

Abb.1-13 Inhibitoren der Fettsäuresynthese als potenzielle Antimalaria-Wirkstoffe

Während der intraerythrozytären Entwicklung benötigen die Parasiten zur Synthese biologischer Membranen Cholin, welches aus dem Blutplasma aufgenommen wird. Verschiedene Cholinanloga zeigten signifikante Antimalaria-Aktivität, welche durch die Synthese von Verbindungen, in denen zwei quartäre Ammoniumsalze durch eine lange Alkylbrücke verknüpft sind (**XLIII**), noch gesteigert werden konnte, sich aber durch schlechte orale Bioverfügbarkeit auszeichnete. Diese konnte in Disulfid- bzw. Thioester-Vorstufen (**XLIV**) signifikant verbessert werden, allerdings besteht in der Wechselwirkung mit dem cholinergen System ein erhebliches toxisches Risiko.^[33]

Der postulierte Wirkungsmechanismus beruht auf der Hemmung der Cholinaufnahme über einen Transporter in der Membran der infizierten Erythrozyten bzw. der Plasmamembran der Parasiten.^[34]

Abb.1-14 Inhibitoren der Cholinaufnahme

Weitere Zielstrukturen stellen Enzyme des Isoprenoidbiosyntheseweges dar.

Die 1-Desoxy-D-Xylulose-5-Phosphat (DOXP)-Reduktoisomerase ist ein Enzym des Mevalonat-unabhängigen Biosyntheseweges, welches bei den Malariaerregern im Apicoplast lokalisiert ist. Für den Menschen hat eine Hemmung jenes Enzyms keine Bedeutung, da die Isoprenoidsynthese nur über den Mevalonatweg erfolgt. Als potenter Hemmstoff befindet sich *Fosmidomycin* (**XLV**) in klinischer Entwicklung. Probelematisch ist bei diesem Wirkstoff jedoch die hohe Rekrudenzrate, die eine Verwendung als Monontherapeutikum ausschließt.^[35]

Als günstig erwies sich allerdings die synergistische Kombination mit dem Antibiotikum *Clindamycin*, welches die Replikation des Apicoplasten inhibiert.

Diese Kombination zeigte deutlich höherer Heilungsraten bei gleichzeitiger kürzerer Therapiedauer und fördern das Bestreben der Entwicklung einer fixen Kombination beider Wirkstoffe.^[36]

FR900098 (**XLVI**), welches ebenfalls ein Naturstoff ist, weist eine zweifach höhere Aktivität als *Fosmidomycin* auf. Die ungenügende Bioverfügbarkeit kann durch die Synthese biolabiler Arylester (**XLVII**) resp. Doppelester (**XLVIII**) als Prodrug-Derivate behoben werden.^[37, 38]

Die Farnesyltransferase, welche die Übertragung einer Farnesylgruppe von Farnesylphosphat auf eine Cysteinseitenkette katalysiert, eignet sich ebenfalls als Zielenzym für die Erforschung neuer Wirkstoffe zur Behandlung der Malaria.

Beispielsweise wurden für das Biphenyl-Derivat *FTI-2153* (**IL**) und das Benzophenonderivate *Schl-4116* (**L**) vielversprechende antimalariale Aktivitäten ermittelt.^[39]

Abb. 1-16 Inhibitoren der Farnesyl-Transferase mit Antimalaria-Aktivität

Interessanterweise zeigt das aus Baumwollsamen isolierte Disesquiterpen Gossypol (LI) ausgeprägte inhibitorische Wirkung gegen die plasmodiale

Lactat-Dehydrogenase,^[40] kommt jedoch wegen starker toxischer Eigenschaften als Arzneistoff nicht in Betracht. Ob durch intensive Struktur-Aktivitäts-Untersuchungen von Gossypol Vertreter mit einem geringeren toxischen Profil dargestellt werden können, ist nach dem jetztigen Forschungsstand nicht absehbar.

Abb. 1-17 Gossypol

2 Strukturabwandlungen von (*E*/*Z*)-*N*-[2-(3-Brom-4-fluorphenyl)-1-ethoxy-2-hydroxy-2-propyliden]hydrazincarbonsäureethylester (1) als antimalarial wirksame Substanz

Aus der von Mauz ^[41] erschlossenen Stoffklasse der (*E/Z*)-*N*-(1-Alkoxy-2hydroxy-prop-1-yliden)-hydrazincarbonsäureester erwiesen sich einige Vertreter als stark wirksam gegenüber Plasmodium falciparum-Stämme.

In in-vitro-Untersuchungen konnte bei Verbindung 1 eine inhibitorische Wirkung von 98 % bei einer Konzentration von 10 μ M gemessenen werden. Sie zeigte somit die größte Aktivität aller von Mauz getesteten Substanzen und wird im Folgenden als Leitstruktur^{*} angesehen. Aufgrund einer Struktur-Aktivitätsbestimmung bzw. zur Optimierung der antiplasmodialen Aktivität sollte die Leitstruktur 1 einem gründlichen Strukturdesign unterzogen werden.

Abb. 2- Leitstruktur

Im Mittelpunkt der avisierten Strukturabwandlungen der Substanz 1 sollten die in Schema 1-2 skizzierten Molekülveränderungen A-E stehen, wobei in der Region A durch den Einsatz unterschiedlich substituierter Aromaten bzw. aliphatischer Seitenketten den Einfluss derer auf die antiplasmodiale Aktivität getestet werden soll. Vereint mit der Variation der Alkoxygruppierung in

^{*} Die Suche nach neuen Wirkstoffen orientiert sich an so genannten Leitstrukturen. Dies sind chemische Stoffe, welche zwar die erwünschte biologische Wirkung zeigen, aber in weiteren Faktoren wie Wirkstärke, Selektivität oder pharmakokinetischen Eigenschaften noch nicht die für einen Arzneistoff erforderlichen Qualitäten erbringen.

Region C sowie die Verwendung von unterschiedlich substituierter Carbazaten (Region D), können eine Vielzahl von potentiellen

(*E*/*Z*)-*N*⁻(1-Alkoxy-2-hydroxy-alk-1-yliden)-hydrazincarbonsäureestern erschlossen werden.

Ferner sollte der Einfluß der Hydroxylgruppe (Region E) und der Seitenkette in der Region B hinsichtlich einer Wirkungssteigerung bzw. eines –verlustes untersucht werden.

Durch Variation des Substituenten in der Region D sollte darüber hinaus der Einfluss der (E/Z)-N'-(1-Alkoxy-2-hydroxy-alk-1-yliden)-hydrazin-carbonsäureester-Gruppe auf die antimalariale Aktivität ermittelt werden.

Schema 2-1 Geplante Strukturmodifikationen der Leitsubstanz 1

Darüber hinaus interessierte im Rahmen der vorliegenden Dissertation, ob die zum Typ 1 isosteren Amidrazon-Derivate 2^* ebenfalls eine antiplasmodiale Aktivität zeigen würden. Ferner wurden weitere Amidrazone bzw. Amidoxime synthetisiert, welche die Frage nach einer Struktur-Aktivitäts-Beziehung beantworten sollten.

Abb. 2-2 Isostere Amidrazon-Derivate von Typ 2

Außerdem sollte geklärt werden, ob 5-Alkoxy-3,6-dihydro-2H-1,3,4-Oxadiazin2-one **3** als formal rigidisierte Glykolohydrazonoester ebenfalls eine antiplasmodiale Aktivität aufweisen, oder ob eine Aktivitätsminderung mit der Cyclisierung einhergeht.

Abb. 2-3 *5-Alkoxy-3,6-dihydro-2H-1,3,4-Oxadiazin2-one* (**3**)

^{*} Die ringgeschlossenen Vertreter der Amidrazonderivate (2), die 4-Hydrazono-1,3-oxazolidin-20ne 4, zeigten in in-vitro- Untersuchungen ebenfalls eine signifikante antiplasmodiale Aktivität.

3 Herstellung von (*E*/*Z*)-*N*'-(Alkoxy-2-hydroxy-alk-1-yliden)hydrazincarbonsäureestern (31)

3.1 Literaturübersicht

Carbohydrazinsäureester^{*}, zu denen die funktionalisierten (E/Z)-N'-(1-Alkoxy-2-hydroxy-alk-1-yliden)-hydrazincarbonsäureester **1** zählen, sind einerseits vielseitige Bausteine für verschiedenartige Heterozyklen ^[42-47] und weisen andererseits vielfältige biologische Eigenschaften auf:

So konnte bespielsweise für die Verbindung **5** eine antihelmintische ^[48] sowie für die Verbindung **6** eine antifungale ^[49] Wirkung nachgewiesen werden.

Ferner zeigten Hydrazonate vom Typ 7 eine bakterizide Wirkung.^[50]

Daneben findet man in der Literatur Einträge über antiinflammatorisch ^[51] wirksame Hydrazonate **8**, sowie über herbizide Eigenschaften der Verbindungen **9**.^[52]

^{*} Carbohydrazinsäureester werden auch als Hydrazonate bezeichnet und weisen folgende allgemeine Struktur auf. Aus Gründen der besseren Übersichtlichkeit wird im Rahmen dieser Arbeit der Begriff Hydrazonat verwendet.

Abb. 3-1 Biologisch wirksame Hydrazonate

Über bifunktionelle Hydrazonate des Typs **1a** findet man in der Literatur keinen Eintrag. Hingegen wurden monofunktionelle Hydrazonate seit den grundlegenden Arbeiten von Schmidt umfassend untersucht. ^[53] Schmidt konnte aus der Umsetzung von Imidaten mit *Phenylhydrazinhydrochlorid* unter Eiskühlung verschiedenartige *Phenylhydrazidoether* (**11**) isolieren, welche sich jedoch als umbeständig gegenüber Sauerstoff sowie verdünnten Säuren erwiesen^{**}.

Abb. 3-2 Bifunktionelle Hydrazonate von Typ 1a

^{**} Pinner ^[54] berichtete bereits 1884 über die Umsetzung von Imidathydrochloriden mit Hydrazinderivaten, bei denen nur die entsprechenden Amidrazonderivate isoliert werden konnte.

Pesson 1961 gelang es erstmalig, Hydrazonate **13** aus der Reaktion von Imidathydrochloriden mit Carbazaten zu isolieren.^[55-60]

Weitere Arbeiten zur Synthese von Hydrazonaten beinhalten die Umsetzung von Imidathydrochloriden mit andersartig funktionalisierten Hydrazinderivaten wie Acylhydrazinen^[61-64] oder Semicarbaziden^[65+66].

Spätere Untersuchungen zeigten, dass konkurrierend zur Hydrazonatbildung auch die entsprechenden Amidrazone entstehen.^[67-69]

Baiocchi konnte diese Untersuchungen bestätigen und zeigte, dass die Verwendung einer Base wie Triethylamin zur selektiven Amidrazonbildung (**16**) beiträgt und bei der Reaktion ohne Zusatz einer Base bevorzugt die Bildung der Hydrazonate (**15**) erfolgt.

Ein ergiebiges Syntheseverfahren für Hydrazonate aus Thioxocarbonsäureestern mit Hydrazinen stellten Müller und Hartke 1988 vor: Die Reaktion von *Thiocyanessig-O-ethylester* (**17**) mit einer äquimolaren Menge *Phenylhydrazin* in Diethylether lieferte den *Cyanessigsäure*(2-phenylhydrazonid)-ethylester (**18**) in 73 % Ausbeute.^[78]

3.2 Herstellung von Glykolohydrazonoestern aus Carbazaten und Imidoester-Hydrochloriden

Im Rahmen meiner Untersuchungen sollte zunächst ein allgemein anwendbares und ergiebiges Herstellungsverfahren für die Verbindungen **21** entwickelt werden, wobei die Umsetzung von α -Hydroxy-imidoesterhydrochloriden mit unterschiedlich substituierten Carbazaten besonders im Hinblick auf die Variationsbreite der Substituenten ($\mathbb{R}^1/\mathbb{R}^2$) aussichtsreich erschien (Schema 3-1).

Schema 3-1 Herstellung von Glykolohydrazonoester (21)

Durch die Verwendung unterschiedlich substituierter Aldehyde bzw. Ketone ließen sich die in Schema 2-1 angestrebten Modifikationen der Regionen A und B vornehmen, während sich durch den Einsatz unterschiedlicher Alkohole die Molekülregion C der Zielverbindungen weitreichend variieren lassen sollte.

3.2.1 Darstellung von α-Hydroxycarbonitrilen (19)

Die im Rahmen dieser Arbeit verwendeten α -Hydroxycarbonitrile wurden in einer modifizierten Synthese nach Gassmann und Talley^[79] hergestellt. Dazu Carbonylkomponente die entsprechende mit käuflichem wurde Trimethylsilylcyanid und katalytischen Mengen Zinkiodid versetzt und anschließend der betreffende Trimethylsilyl-Ether **19-Ü** der α-Hydroxycarbonitrile hydrolysiert.

Die auf diesem Wege in 73-88 % Ausbeute resultierenden α -Hydroxycarbonitrile **19** sind gelbliche Öle oder weiße kristalline Pulver. Wegen ihrer ausgeprägten Instabilität gegenüber Luftsauerstoff und –feuchtigkeit wurden die α -Hydroxycarbonitrile nach Isolierung zügig weiterverarbeitet.

Schema 3-2 Darstellung der α -Hydroxycarbonitrile 19

19	\mathbb{R}^1	\mathbf{R}^2	Ausbeute [%]
1	Phenyl	Methyl	83
2	4-Methylphenyl	Methyl	73
3	4-Chlorphenyl	Methyl	88
4	4-Bromphenyl	Methyl	84
5	4-Nitrophenyl	Methyl	81
6	3,4-Dimethylphenyl	Methyl	79
7	3,4-Dichlorphenyl	Methyl	87
8	3-Brom-4-fluorphenyl	Methyl	81
9	3-Methyl-4-chlorphenyl	Methyl	73
10	3-Chlor-4-fluorphenyl	Methyl	81
11	Cyclopropyl	Methyl	78
12	2-Naphthyl	Methyl	85
13	1-Napthyl	Н	77

Tabelle 3-1 *α-Hydroxycarbonitrile* (19.1-19.16)

14	3,4-Dichlorphenyl	Н	80
15	Phenyl	Ethyl	73
16	3,4-Dichlorphenyl	Ethyl	75

3.2.2 Herstellung von α-Hydroxyimidoester-hydrochloriden (20)

In Anlehnung an eine Literaturvorschrift ^[80] wurden die α -Hydroxyimidoesterhydrochloride **20** in einer Pinner-Reaktion aus den betreffenden α -Hydroxycarbonitrilen **19** und Alkoholen in 63-91 % Ausbeute gewonnen. Die Verbindungen **20** stellen farblose, kristalline Verbindungen mit definierten Schmelzpunkten dar und sind überwiegend hygroskopisch, weshalb sie unter Luftausschluss und im Kühlschrank zu lagern sind.

Schema 3-3 Darstellung der α -Hydroxyimidoester-hydrochloride 20

Tabelle 3-2 α -Hydroxyimidoester-hydrochloride (20.1-20.28)

20	\mathbb{R}^1	\mathbf{R}^2	\mathbf{R}^3	Ausbeute [%]
1	Phenyl	Methyl	Ethyl	68
2	4-Methylphenyl	Methyl	Ethyl	88
3	4-Chlorphenyl	Methyl	Ethyl	79
4	4-Chlorphenyl	Methyl	4-Chlorbenzyl	84
5	4-Bromphenyl	Methyl	Ethyl	88
6	4-Nitrophenyl	Methyl	Ethyl	83
7	3,4-Dimethylphenyl	Methyl	Ethyl	77
8	3,4-Dichlorphenyl	Methyl	Ethyl	83
9	3,4-Dichlorphenyl	Methyl	Methyl	91
10	3,4-Dichlorphenyl	Methyl	Propyl	74

r	-			
11	3,4-Dichlorphenyl	Methyl	Benzyl	81
12	3,4-Dichlorphenyl	Methyl	Phenethyl	79
13	3-Brom-4-Fluorphenyl	Methyl	Ethyl	81
14	3-Methyl-4-Chlorphenyl	Methyl	Ethyl	85
15	3-Chlor-4-Fluorphenyl	Methyl	Ethyl	68
16	Cyclopropyl	Methyl	Ethyl	71
17	2-Naphthyl	Methyl	Ethyl	88
18	2-Naphthyl	Methyl	Methyl	85
19	2-Naphthyl	Methyl	Propyl	77
20	2-Naphthyl	Methyl	Benzyl	86
21	2-Naphthyl	Methyl	Phenethyl	83
22	1-Naphthyl	Н	Ethyl	86
23	3,4-Dichlorphenyl	Н	Ethyl	63
24	Phenyl	Ethyl	Ethyl	75
25	3,4-Dichlorphenyl	Ethyl	Ethyl	67
26	Methyl	Methyl	Ethyl	74
27	Methyl	Methyl	Benzyl	66
28	Phenyl	Н	Ethyl	87

3.2.3 Carbazatolyse der hergestellten α-Hydroxyimidoester-hydrochloride 20

Die Darstellung von (E/Z)-N'-(1-Alkoxy-2-hydroxy-alkyl-1-yliden)-hydrazincarbonsäureestern (**21**) erfolgte in Anlehnung an Pesson, ^[55] indem die betreffenden Imidoesterhydrochloride **20** in absol. Alkohol gelöst, die Mischung auf 0°C gekühlt und tropfenweise mit einer ethanolischen Lösung des betreffenden Carbazats (1.1 Äquivalente) in absolutem Alkohol versetzt wurde. Abweichend von den in der Literatur geschilderten Befunden ^[55] wurden aus den Reaktionsansätzen als Konkurrenzprodukte auch – in vergleichbaren Ausbeuten - die 2-[1-Amino-2-hydroxyalklyliden]-hydrazin-carbonsäureester (**22**) erhalten.

Schema 3-4 Reaktion von α -Hydroxyimidoester-hydrochloride (20) mit Carbazaten^{*}

Tabelle 3-3 (E/Z)-N`-(1-Alkoxy-2-hydroxy-alk-1-yliden)-hydrazin-carbonsäure-
ester (21.1-21.24)

21	\mathbb{R}^1	\mathbf{R}^2	\mathbf{R}^3	R ⁴	Ausbeute [%]
1	4-Bromphenyl	Methyl	Ethyl	Methyl	42
2	4-Bromphenyl	Methyl	Ethyl	Ethyl	43
3	4-Bromphenyl	Methyl	Ethyl	<i>t</i> -Butyl	41
4	4-Bromphenyl	Methyl	Ethyl	Benzyl	40
5	4-Nitrophenyl	Methyl	Ethyl	Methyl	37
6	4-Nitrophenyl	Methyl	Ethyl	Ethyl	36
7	3,4-Dichlorphenyl	Methyl	Ethyl	Ethyl	34
8	3,4-Dichlorphenyl	Methyl	Ethyl	<i>t</i> -Butyl	38
9	3-Methyl-4-chlorphenyl	Methyl	Ethyl	Methyl	37
10	3-Chlor-4-fluorphenyl	Methyl	Ethyl	Methyl	35
11	Cyclopropyl	Methyl	Ethyl	Ethyl	41
12	2-Naphthyl	Methyl	Ethyl	Methyl	36

^{*} Es konnte durchweg die Entstehung der 2-[1-Amino-2-hydroxyalklyliden]-hydrazincarbonsäureester beobachtet werden. Die Modifikation des Lösungsmittels (trockenes Dichlormethan, Methanol, Diethylether, THF) sowie der Temperatur (ca. 100°C) erbrachten keine Verbesserung der Ausbeute der Verbindungen **21**.

13	2-Naphthyl	Methyl	Ethyl	Ethyl	37
14	2-Naphthyl	Methyl	Ethyl	<i>t</i> -Butyl	36
15	2-Naphthyl	Methyl	Ethyl	Benzyl	37
16	1-Naphthyl	Н	Ethyl	Methyl	37
17	1-Naphthyl	Н	Ethyl	Ethyl	32
18	1-Naphthyl	Н	Ethyl	<i>t</i> -Butyl	34
19	1-Naphthyl	Н	Ethyl	Benzyl	36
20	3,4-Dichlorphenyl	Н	Ethyl	<i>t</i> -Butyl	37
21	Phenyl	Ethyl	Ethyl	Ethyl	38
22	3,4-Dichlorphenyl	Ethyl	Ethyl	Ethyl	37
23	Methyl	Methyl	Ethyl	Ethyl	32
24	Phenyl	H	Ethyl	Ethyl	39

Die Isolierung der 2-[1-Amino-2-hydroxyalklyliden]-hydrazin-carbonsäureester, welche als Hydrochloride vorlagen, erfolgte nach Abtrennung des Alkohols. Das resultierende Öl wurde in Ethylacetat aufgenommen und mit Wasser exthrahiert. Die wässrigen Auszüge wurden vereint und mittels Natriumhydrogencarbonat alkalisiert.

Durch anschließende Extraktion mit Ethylacetat konnten die freien Basen der 2-[1-Amino-2-hydroxyalklyliden]-hydrazin-carbonsäureester in die organische Phase überführt werden.

22	\mathbf{R}^1	\mathbf{R}^2	\mathbf{R}^3	Ausbeute [%]
1	4-Bromphenyl	Methyl	Ethyl	34
2	4-Bromphenyl	Methyl	<i>t</i> -Butyl	35
3	4-Bromphenyl	Methyl	Benzyl	35
4	4-Nitrophenyl	Methyl	Ethyl	33
5	3,4-Dichlorphenyl	Methyl	Ethyl	32
6	3,4-Dichlorphenyl	Methyl	<i>t</i> -Butyl	33
7	2-Naphthyl	Methyl	Methyl	39
8	2-Naphthyl	Methyl	Ethyl	36
9	2-Naphthyl	Methyl	<i>t</i> -Butyl	34
10	3,4-Dichlorphenyl	Ethyl	Ethyl	35

Tabelle 3-4 Hergestellte 2-[1-Amino-2-hydroxyalkyliden]-hydrazin-
carbonsäureester (22.1-22.10)

3.2.4 Eigenschaften der hergestellten 2-[1-Amino-2hydroxyalkyliden]-hydrazin-carbonsäureester 22

Die als amorphe Pulver anfallenden 2-[1-Amino-2-hydroxyalkyliden]-hydrazincarbonsäureester stellen stabile Verbindungen dar, welche bei Lagerung über einen Zeitraum von zwei Jahren keine Anzeichen von Zersetzung erkennen ließen und weder in tautomeren bzw. isomeren Formen auftraten.

Im Infrarot-Spektrum dieser Verbindungsklasse befinden sich im Bereich von 3500 bis 3200 cm⁻¹ vier Banden, welche den (NH)-, (NH)₂- und (OH)-Valenzschwingungen zuzuordnen sind. Des Weiteren sind eine (C=O)-Valenzschwingung bei 1700 cm⁻¹ sowie eine (C=N)-Valenzschwingung bei 1655 cm⁻¹ zu beobachten.

Abb.3-3 Infrarotspektrum von Verbindung 22.2

Im ¹H-NMR-Spektrum von **22.2** (vgl. Ausschnitt in Abb. 3-2) befindet sich das Signal der NH₂-Protonen bei 5.71 ppm, während das (OH)-Signal bei 5.87 ppm erscheint. Das Proton der (NH)-Gruppe weist eine chemische Verschiebung von 8.70 ppm auf. Als Singulett erscheinen die Protonen des *tert*.-Butylsubstituenten bei 1.42 ppm und der Methylgruppe an C2 bei 1.56 ppm. Die aromatischen Protonen verursachen ein AB-System bei 7.42 bis 7.48 ppm.

Das ¹³C-NMR-Spektrum liefert Signale für die primären C-Atome der Methylgruppen der tert.-Butylgruppe bei 28.6 und der Propylkette bei 28.7 ppm. Für die vier tertiären aromatischen Kohlenstoffatome sind zwei Signale bei 127.8 und 130.8 ppm zu finden, da jeweils zwei C-Atome des Aromaten magnetisch äquivalent sind. Die Signale des iminischen Kohlenstoffatoms und des Carbonylkohlenstoffs liegen bei 146.7 und 153.1 ppm.

Die eindeutige Zuordnung der Signale konnte durch die Auswertung von HMBC-Spektren bestätigt werden.

Abb.3-5 ¹³C-NMR-Spektrum von Verbindung 22.2

3.3 Herstellung von (E/Z)-N'-(1-Alkoxy-2-hydroxy-alk-1-yliden) hydrazin-carbonsäureester (21) durch Carbazatolyse von α Hydroxythiocarbonsäure-O-ester (23)

Da die (E/Z)-N'-(1-Alkoxy-2-hydroxy-alk-1-yliden)-hydrazin-carbonsäureester **21** durch die Umsetzung von α -Hydroxyimidoester-hydrochloriden mit Carbazaten wegen der geschilderten Konkurrenzreaktion nur in unbefriedigenden Ausbeuten erhältlich waren, erschien es sinnvoll, nach einem ergiebigeren Herstellungsverfahren für den Verbindungstyp **21** zu suchen. Als eine günstige Option erschien mir die Hydrazinolyse von α -Hydroxythiocarbonsäure-*O*-estern (**23**) gemäß Schema 3-6.

3.3.1 Darstellung der α-Hydroxythiocarbonsäure-*O*-ester 23

Zur Darstellung von α -Hydroxythiocarbonsäure-*O*-estern erschien nach Sichtung der Literatur ^[81-85] die Sulfhydrolyse der α -Hydroxyimidoesterhydrochloride am erfolgversprechensten^{*}.

Durch anschließende säulenchromatographische Trennung^{**} an Kiesegel konnten die α -Hydroxythiocarbonsäure-*O*-ester in sehr guten Ausbeuten von 78 bis 88 %, welche als gelbe Öle oder als farblose Kristalle anfallen, gewonnen werden. Als charakteristisch für diese Stoffklasse erweist sich im Infrarotspektrum die (C=S)-Absorptionsbande bei 1280 cm⁻¹ sowie in den ¹³C-NMR-Spektren das (C=S)-Signal bei einer chemischen Verschiebung von ca. 226.0 ppm.

Schema 3-6 Sulfhydrolyse der α -Hydroxyimidoester-hydrochloride 20

Tabelle 3-5 Hergestellte α -Hydroxythiocarbonsäure-O-ester (23.1-23.17)

23	\mathbb{R}^1	\mathbf{R}^2	R ³	Ausbeute [%]
1	Phenyl	Methyl	Ethyl	85
2	4-Methylphenyl	Methyl	Ethyl	87
3	4-Chlorphenyl	Methyl	Ethyl	87
4	4-Chlorphenyl	Methyl	4-Chlorbenzyl	78
5	3,4-Dimethylphenyl	Methyl	Ethyl	82
6	3,4-Dichlorphenyl	Methyl	Ethyl	86
7	3,4-Dichlorphenyl	Methyl	Methyl	85
8	3,4-Dichlorphenyl	Methyl	Propyl	84
9	3,4-Dichlorphenyl	Methyl	Benzyl	79
10	3,4-Dichlorphenyl	Methyl	2-Phenethyl	81

^{*} Die in der Literatur beschriebene Bildung von Thioamiden und Carbonsäureestern konnte durch die Verwendung von absolutem Pyridin und Eiskühlung unterdrückt werden.

^{**} Elutionsmittel: Dichlormethan/ Petrolether (7/3)

11	3-Brom-4-Fluorphenyl	Methyl	Ethyl	84
12	2-Naphthyl	Methyl	Ethyl	88
13	2-Naphthyl	Methyl	Methyl	82
14	2-Naphthyl	Methyl	Propyl	83
15	2-Naphthyl	Methyl	Benzyl	80
16	2-Naphthyl	Methyl	2-Phenethyl	83
17	Methyl	Methyl	Benzyl	88

3.3.2 Herstellung der *N*⁻(1-Alkoxy-2-hydroxy-alk-1-yliden)hydrazin-carbonsäureester 21

Zur Gewinnung der $N^-(1-Alkoxy-2-hydroxy-alk-1-yliden)-hydrazin$ carbonsäureester**21** $wurden die <math>\alpha$ -Hydroxythiocarbonsäure-O-ester **23** mit den Carbazaten in Ethylacetat bei Raumtemperatur für 24 bis 48 h zur Reaktion gebracht. Das Reaktionsende ließ sich IR-spektroskopisch anhand des Verschwindens der (C=S)-Bande bei 1280 cm⁻¹ zugunsten der (C=N)-Bande bei ca. 1650 cm⁻¹ nachweisen.

Die gewünschten N-(1-Alkoxy-2-hydroxy-alk-1-yliden)-hydrazin-carbonsäureester **21** waren auf diesem Wege in 67- 87% Ausbeute zugänglich.

21	\mathbf{R}^1	\mathbf{R}^2	\mathbf{R}^3	\mathbf{R}^4	Ausbeute
					[%]
25	Phenyl	Methyl	Ethyl	Methyl	78
26	Phenyl	Methyl	Ethyl	Ethyl	81
27	Phenyl	Methyl	Ethyl	<i>t</i> -Butyl	85
28	Phenyl	Methyl	Ethyl	Benzyl	79
29	4-Methylphenyl	Methyl	Ethyl	Methyl	74
30	4-Methylphenyl	Methyl	Ethyl	Ethyl	81
31	4-Methylphenyl	Methyl	Ethyl	<i>t</i> -Butyl	79
32	4-Methylphenyl	Methyl	Ethyl	Benzyl	82
33	4-Chlorphenyl	Methyl	Ethyl	Methyl	72
34	4-Chlorphenyl	Methyl	Ethyl	Ethyl	76
35	4-Chlorphenyl	Methyl	Ethyl	Benzyl	84
36	4-Chlorphenyl	Methyl	4-Chlorbenzyl	Ethyl	75
37	3,4-Dimethylphenyl	Methyl	Ethyl	Methyl	83
38	3,4-Dimethylphenyl	Methyl	Ethyl	Ethyl	81
39	3,4-Dimethylphenyl	Methyl	Ethyl	<i>t</i> -Butyl	78
40	3,4-Dimethylphenyl	Methyl	Ethyl	Benzyl	83
41	3,4-Dichlorphenyl	Methyl	Ethyl	Methyl	83
42	3,4-Dichlorphenyl	Methyl	Ethyl	Benzyl	81
43	3,4-Dichlorphenyl	Methyl	Methyl	Ethyl	73
44	3,4-Dichlorphenyl	Methyl	Methyl	<i>t</i> -Butyl	76
45	3,4-Dichlorphenyl	Methyl	Propyl	<i>t</i> -Butyl	67
46	3,4-Dichlorphenyl	Methyl	Benzyl	<i>t</i> -Butyl	81
47	3,4-Dichlorphenyl	Methyl	2-Phenethyl	<i>t</i> -Butyl	75
48	3-Brom-4-fluorphenyl	Methyl	Ethyl	Methyl	82
49	3-Brom-4-fluorphenyl	Methyl	Ethyl	Ethyl	82
50	3-Brom-4-fluorphenyl	Methyl	Ethyl	<i>t</i> -Butyl	76
51	3-Brom-4-fluorphenyl	Methyl	Ethyl	Benzyl	80
52	2-Naphthyl	Methyl	Methyl	Ethyl	80
53	2-Naphthyl	Methyl	Propyl	Ethyl	81
54	2-Naphthyl	Methyl	Benzyl	Ethyl	87
55	2-Naphthyl	Methyl	2-Phenethyl	Ethyl	77
56	Methyl	Methyl	Benzyl	Ethyl	78

Tabelle 3-6 N`-(1-Alkoxy-2-hydroxy-alk-1-yliden)-hydrazin-carbonsäureester(21.25-21.56)

3.3.2.1 Eigenschaften der (*E*/Z)-*N*'-(1-Alkoxy-2-hydroxy-alk-1-yliden)hydrazincarbonsäureester 21

Die in Tab.3-6 aufgeführten Verbindungen **21** sind farblose amorphe kristalline Verbindungen, welche in einem Isomerengemisch^{*} anfallen, wobei in der Regel bevorzugt das (*E*)-Isomer gebildet wird.

Schema 3-8 (E/Z)-Isomere der Hydrazonate 21

Die IR-Spektren zeigen im Bereich von 3400 bis 3300 cm⁻¹ vier Banden, welche der (OH)- sowie der (NH)-Gruppe der beiden (E/Z)-Isomere zuzuordnen sind. Die Banden des (*E*)-Isomers sind vergleichsweise zum (*Z*)-Isomer hypsochrom verschoben. Ähnlich verhält es sich mit der Valenzschwingung der Carbonylgruppe. Das (*Z*)-Isomer weist eine intensive Bande bei 1729 cm⁻¹ auf, während die (C=O)-Bande des (*E*)-Isomers bei 1700 cm⁻¹ erscheint. Mit schwächerer Intensität ist die (C=N)-Valenzschwingung bei 1654 cm⁻¹ zu beobachten (s. Abb.3-6 und Abb.3-7).

^{*} Die Ermittlung des Diastereomerenverhältnisses erfolgte über die Integrale der Protonen der endständigen Methylgruppe (C^3) der Propylkette bzw. derer der entsprechenden Alkoxygruppe.

Abb. 3-6 IR-Spektrum (KBr) von Verbindung (E/Z)-21.3

Abb. 3-7 IR-Spektrum (KBr) von Verbindung (E)-21.3

Beispielhaft sollen im Folgenden die Kernresonanzspektren von (E/Z)- 21.3 und (E)-21.3 erläutert werden.

Der Signalsatz des (E)-Isomers erscheint, bedingt durch die intramolekulare Wasserstoffbrückenbindung zwischen der (OH)- sowie der (NH)-Gruppe, tieffeldverschoben im Vergleich zu jenem des (Z)-Isomers.

Des Weiteren zeigt das Spektrum die Aufspaltung der Methylenprotonen der Ethoxygruppe eines Isomers in zwei Multipletts in Form eines ABX₃-Systems. Dieser Effekt, welcher auch als enantiotoper Effekt beschrieben wird, tritt ausschließlich bei dem (*Z*)-Isomer auf und konnte anhand des Ausschnittes des HSQC-Spektrums verifiziert werden konnte. Hierbei wird ersichtlich, dass die beiden Multipletts jeweils mit dem gleichen Kohlenstoffatom koppeln (vgl. Abb.3-12).

Auch die Signale für die (OH)- und (NH)-Gruppe erfahren bei dem (E)-Isomer (OH: 7.17, NH: 9.98 ppm) eine größere Entschirmung infolge intramolekularer Wasserstoffbrückenbindungen als bei dem (Z)-Isomer (OH: 6.25, NH: 9.00 ppm) und sind folglich im tieferen Feld wiederzufinden.

Die Röntgenstrukturanalyse sowie kernresonanzspektroskopischen Untersuchungen belegen unzweifelhaft die Konstitution von **21.3** als (*E*)-Isomer (Abb.3-10).

Abb.3-10 Kristallstruktur von Verbindung (E)-21.3 (Diamond-Visual Crystal Structure)

Das ¹³C-NMR-Spektrum (Abb.3-11) der Verbindung **21.3** liefert ebenfalls eine Aufspaltung der Signale aufgrund der (*E-/Z*)-Isomerie. Die Zuordnung der Signale zu den entsprechenden Isomeren erfolgte anhand der Intensität dieser zueinander sowie unter Zuhilfenahme des HMBC- und des HSQC-Spektrums^{*}. Weder eine größere scan-Anzahl noch eine größere Konzentration führte zu einer Beobachtung der Signale des Imino- sowie des Carbonylkohlenstoffatoms. Anhand des HMBC-Spektrums (Abb. 3-13) konnte exemplarisch die Lage der Signale ausfindig gemacht werden. Die Kopplungen der (OH)-Gruppe des (*Z*)-Isomers (6.26 ppm) und des (*E*)-Isomers (7.18 ppm) mit einem Signal im ¹³C-NMR-Spektrum bei 152.1 resp. 154.4 ppm zeigen die Lage des Signals des Iminokohlenstoffatoms, während die (NH)-Gruppe des (*Z*)-Isomers (9.15 ppm) mit dem Carbonylkohlenstoffatom bei 153.6 ppm koppelt.

^{*} Mit Hilfe des HMQC-Experimentes kann durch die Untersuchung der direkten Kopplung von Protonen an Kohlenstoffatomen eine Zuordnung von ¹H- bzw. ¹³C-NMR-Signalen erfolgen.

Abb. 3-11 ¹³C-NMR-Spektrum von Verbindung (E/Z)-21.3

Abb.3-12 HSQC-Spektrum von (E/Z)-21.3

Abb.3-13 HMBC-Spektrum von (E/Z)-21.3

3.4 Versuche zur Photoisomerisierung der *N*`-(1-Alkoxy-2hydroxy-alk-1-yliden)-hydrazincarbonsäure-ester 21

Durch Belichtung mittels UV-Strahlung sollte überprüft werden, ob sich eine $(Z) \rightarrow (E)$ -Isomerisierung bei den N-(1-Alkoxy-2-hydroxy-alk-1-yliden)hydrazin-carbonsäureestern - wie in der Literatur für Hydroximsäurederivate ^[86] beschrieben – erzwingen ließe.

Dazu wurde das Isomerengemisch **21** in Dimethylsulfoxid gelöst und 8 h mit UV-Licht der Wellenlänge 254 nm bestrahlt. Die anschließend aufgenommenen ¹H-NMR-Spekten der belichteten Lösungen boten jedoch in keinem Fall einen Hinweis auf die gewünschte Isomerisierung.

Schema 3-9 Denkbare (Z)→(E)-Isomerisierung der N`-(1-Alkoxy-2-hydroxyalk-1-yliden)-hydrazin-carbonsäure-ester 21

3.5 Cyclisierung von (*E*/*Z*)-*N*`-(1-Alk-/Aralkoxy-2-hydroxy-alk-1yliden)-hydrazincarbonsäureestern (21)

3.5.1 Synthese von 5-Alkoxy-6-alkyl-6-phenyl-3,6-dihydro-1,3,4oxadiazin-2-onen (29)

Hydrazonate sind vielseitige Bausteine für verschiedenartige Heterocyclen. ^[42-47] Ringschlussreaktionen von $N^{-}(1-Alkoxy-2-hydroxy-alk-1-yliden)-hydrazin$ carbonsäure-estern**21**wurden indessen bislang noch nicht beschrieben. $Holst konnte <math>N^{l}$ -unsubstituierte α -Hydroxyhydrazonate (**24**) bzw. N^{l} phenylsubstituierte α -Hydroxyhydrazonate erfolgreich mit 1,1' Carbonyldiimidazol zu 5-Alkoxy-6-alkyl-6-phenyl-3,6-dihydro-[1,3,4]oxadiazin-2-onen (**25**) cyclisieren. ^[88+89]

In Anlehnung an Literatur [90] erhielt ich aus den entsprechenden N-(1-Alkoxy-2-hydroxy-alk-1-yliden)-hydrazin-carbonsäureestern **21** in trockenem Ethanol nach 2-8 h Erhitzen der Reaktionsmischung mit Natriumethanolat als Base die gewünschten Heterocyclen **29** in 78-80% Ausbeute.

Der Reaktionsverlauf von **21** zu **29** konnte infrarotspektroskopisch gut verfolgt werden. Mit fortschreitender Reaktion verringerte sich allmählich die (OH)-Bande bei ca. 3400 cm⁻¹, deren vollständiges Verschwinden schließlich das Reaktionsende anzeigte.

Schema 3-10 Ringschluss von (E/Z)-N`-(1-Alkoxy-2-hydroxy-alk-1-yliden)hydrazin-carbonsäure-estern (21) zu 5-Alkoxy-6-alkyl-6-phenyl-3,6-dihydro-1,3,4-oxadiazin-2-onen (29)

Einen alternativen Weg zur Darstellung des angestrebten Heterozyklus **29** ist die mikrowellenunterstützte Umsetzung der (E/Z)-N'-(1-Alk-/aralkoxy-2-hydroxy-alk-1-yliden)-hydrazincarbonsäureester (**21**).

Dieses weitaus ergiebigere^{*} Verfahren lieferte, unter sonst identischen Reaktionsbedingungen, die gewünschten 5-Alkoxy-6-alkyl-6-phenyl-3,6-dihydro-1,3,4-oxadiazin-2-one **29** bereits nach 5-10 minütiger Bestrahlung von Mikrowellenenergie in Ausbeuten von 84-87%.

3.5.2 Eigenschaften der hergestellten 5-Alkoxy-6-alkyl-6-phenyl-3,6dihydro-[1,3,4]-oxadiazin-2-one 29

Bei den hergestellten Verbindungen des Typs **29** handelt es sich um farblose, kristalline Feststoffe mit einem definierten Schmelzpunkt.

In den Infrarotspektren ist eine – vergleichsweise zu den Edukten **21** - schwach bathochrome Verschiebung der Carbonylbande zu 1720 cm⁻¹ und eine stärker ausgeprägte Verschiebung der (C=N)-Valenzschwingung zu 1665 cm⁻¹ zu beobachten.

29	\mathbf{R}^1	\mathbf{R}^2	\mathbb{R}^3	Ausbeute [%]
1	Cyclopropyl	Methyl	Ethyl	80
2	2-Naphthyl	Methyl	Ethyl	87
3	Phenyl	Ethyl	Ethyl	86
4	Phenyl	Н	Ethyl	84
5	4-Methylphenyl	Methyl	Ethyl	86
6	4-Chlorphenyl	Methyl	Ethyl	81
7	3,4-Dimethylphenyl	Methyl	Ethyl	80
8	3,4-Dichlorphenyl	Methyl	Methyl	84
9	2-Naphthyl	Methyl	Methyl	85
10	Methyl	Methyl	Benzyl	78

Tabelle 3-7 Hergestellte 5-Alkoxy-6-alkyl-6-phenyl-3,6-dihydro-[1,3,4]-oxadiazin-2-one (29.1-29.10)

Weitere Vorzüge einer Reaktion unter Mikrowellenenergieeinstrahlung sind neben wesentlich kürzeren Reaktionszeiten sowie die deutlich höheren Ausbeuten ein geringerer Verbrauch an Lösungsmitteln. Des Weiteren kann die Mikrowelleneinstrahlung eine Reaktion, welche unter konventionellen Bedingungen nicht durchführbar ist, ermöglichen. Ein weiterer Vorteil ist die erreichbare Reaktionstemperatur, welche unter Verwendung druckversiegelter Reaktionsgefäße die unter konventionellen Bedingungen lösungsmittelabhängige Siedetemperatur deutlich übertrifft.^[91]

Abb.3-14 IR-Spektrum (KBr) von Verbindung 29.5

Die Konstitution von **29** wird zweifelsfrei belegt durch die am Beispiel von **29.5** vorgenommene Röntgenkristallstrukturanalyse (s. Abb. 3-17) sowie die IR-, ¹H-NMR- und ¹³C-NMR-Spektren und durch die Elementaranalysen.

Durch den Ringschluß wird die Konfiguration zum (E)-Isomer fixiert, was wiederum die Lage der Signale in den ¹H- und ¹³C-NMR-Spektren beeinflußt.

Exemplarisch sei an dieser Stelle das Proton der (NH)-Gruppe genannt, welches ein Singulett bei 10.18 ppm liefert und somit stärker entschirmt ist als bei den entsprechenden Edukten **21**.

In den 13 C-NMR-Spektren findet man die Resonanzsignale für die (C=N)-Gruppe bei 150.1 ppm sowie für die (C=O)-Gruppe bei 155.8 ppm.

Abb.3-16 ¹³C-NMR-Spektrum von Verbindung 29.5

Abb.3-17 Molekülstruktur von 29.5 (Diamond-Visual Crystal Structure)

3.6 Herstellung von (*E*/*Z*)-*N*`-(Ethoxy-eth-1-yliden)-hydrazincarbonsäureestern (31)

Zur Beantwortung der Frage, inwieweit die α -ständige Hydroxylgruppe in **21** zur antiplasmodialen Aktivität beiträgt, wurde als Modellsubstanz Verbindung **31** aus Dichlorphenylacetonitril dargestellt. Jenes Nitril wurde zunächst nach Pinner mit trockenem Chlorwasserstoffgas und absolutem Ethanol zum entsprechenden Imidathydrochlorid (**30**) umgesetzt.

Interessanterweise resultierten bei der nachfolgenden Carbazatolyse von **30** ausschließlich die entsprechenden Hydrazonate **31** in Ausbeuten von 79-84%.

Die denkbare konkurrierende Bildung von N-(1-Amino-2-aryl-ethyliden)hydrazincarbonsäureester (**32**) konnte nicht beobachtet werden (siehe Schema 3-18).

Schema 3-18 Synthese von (E/Z)-N`-(Ethoxy-eth1yliden)-hydrazin-carbonsäureestern (31.1-3)

Tabelle 3-8 (E/Z)-N`-(Ethoxy-eth-1-yliden)-hydrazin-carbonsäureester(31.1-31.3)

31	R	Ausbeute [%]
1	Methyl	82
2	Ethyl	79
3	tert-Butyl	84

3.6.1. Eigenschaften der hergestellten (*E*/*Z*)-*N*`-(Ethoxy-eth-1-yliden)-hydrazin-carbonsäureester 31

Die (E/Z)-N'-(Ethoxy-eth-1-yliden)-hydrazincarbonsäureester **31** liegen als farblose, amorphe Substanzen vor, die bei Raumtemperatur über einen längeren Zeitraum unzersetzt gelagert werden konnten, und in Form von (E/Z)-Isomeren anfielen.

In den entsprechenden Infrarotspektren zeigte sich eine Carbonylbande bei 1710 cm^{-1} , während die Valenzschwingung der (C=N)-Gruppe bei 1655 cm⁻¹ zu finden war. Die (NH)-Valenzschwingung der Carbazonstruktur erschien bei 3220 cm⁻¹.

In den ¹H-NMR-Spektren konnte wiederum ein doppelter Signalsatz für die Diastereomere beobachtet werden, die jedoch teilweise überlagerten. (siehe Abschnitt 3.4).

4 Variation der Hydrazinkomponente der Leitstruktur 1

4.1 Einleitung

Nach den geschilderten, umfänglichen Strukturvariation der Leitsubstanz (s. Abb. 2-1) sollten anschließende Molekülvariationen klären, welchen Einfluss die Verwendung andersartig funktionalisierter Hydrazinderivate auf die antiplasmodiale Aktivität ausüben.

Unter Berücksichtigung von Literaturbefunden zur antiplasmodialen Aktivität von Thiosemicarbazonen ^[92+93] sowie von Hydraziden, welche eine ausgeprägte Aktivität gegen die Erreger der Leishmaniose^{*} ^[94] zeigten, interessierten mich die Verbindungen vom Typ **33** mit einer Semicarbazonstruktur sowie **34** mit einer acylierten Hydrazonstruktur.

Schema 4-1 liefert einen Überblick über die angestrebten Strukturvariationen.

Schema 4-1 Geplante Modifikationen der Hydrazonatgruppe der Leitsubstruktur (1)

^{*} Die Leishmaniose wird hervorgerufen durch verschiedene Leishmania-Arten, welche wie die Plasmodien zu der Gattung der Protozoen gehören.

4.2 (*E*/*Z*)-Ethyl-*N*`-(alkyl-/aralkycarbamoyl)-2-hydroxy-2-arylpropanhydrazonate (33)

4.2.1 Herstellung von (*E*/*Z*)-Ethyl-*N*'-(alkyl-/aralkylcarbamoyl)- 2hydroxy-2-aryl-propanhydrazonaten (33)

Die Synthese der Glykolohydrazonate des Typs **33** (Schema 4-2) erfolgte durch Reaktion der α -Hydroxy-thiocarbonsäure-O-ester **23** mit den entsprechenden Semicarbaziden bzw Thiosemicarbaziden^{*} in Methanol bei Raumtemperatur, wobei die (*E/Z*)-Ethyl-*N*´-(alkyl-/aralkylcarbamoyl)-2-hydroxy-2-aryl-propanhydrazonate in Ausbeuten zwischen 78 und 83 % erhalten wurden.

Die verwendeten Semicarbazide bzw. Thiosemicarbazide wurden analog Literatur^[95, 96] erschlossen.

Schema 4-2 Synthese von (E/Z)-Ethyl-N´-(alkyl-/aralkylcarbamoyl)-2hydroxy-2-aryl-propanhydrazonaten (33)

Tabelle 4-1 Hergestellte Ethyl-N´-(alkyl-/aralkylcarbamoyl)-2-hydroxy-2-
aryl-propanhydrazonate (33.1-33.8)

33	R ¹	\mathbf{R}^2	X	Ausbeute [%]
1	2-Naphthyl	Methyl	0	84
2	2-Naphthyl	Ethyl	S	84
3	2-Naphthyl	Benzyl	0	82
4	2-Naphthyl	O-Benzyl	0	78
5	3,4-Dichlorphenyl	Methyl	0	81
6	3,4-Dichlorphenyl	Benzyl	0	83
7	3,4-Dichlorphenyl	4-Methylbenzyl	0	79
8	3,4-Dichlorphenyl	4-Chlorbenzyl	0	80

4.2.2 Eigenschaften der hergestellten (*E*/*Z*)-Ethyl-*N*´-(alkyl-/aralkylcarbamoyl)-2-hydroxy-2-aryl-propanhydrazonate 33

Die *N*-carbamoylierten Glykolohydrazonate **33** fielen als amorphe Substanzen an, welche eine geringe Löslichkeit in organischen Lösungsmittel aufwiesen und sich durch definierte Schmelzpunkte > 150 °C auszeichneten. Alle hergestellten Substanzen erwiesen sich bei Raumtemperatur über einen Zeitraum von einem Jahr als lagerstabil. Die IR-Spektren der gewonnenen Verbindungen **33** zeigen im Vergleich zu den Edukten **23** bei 1650 cm⁻¹ die neu entstandene (C=N)-Valenzschwingung, welche mit der für Semicarbazid-Derivate typischen Carbonylabsorption bei ca. 1650 cm⁻¹ überlagerte.

Charakteristisch für diese Stoffklasse sind die Valenzschwingungen der beiden (NH)-Gruppen sowie der (OH)-Gruppe, welche im Bereich von 3400-3100 cm⁻¹ zu finden sind (s. Abb.4-1).

Die Zuordnung der Signale in den ¹H-NMR- sowie ¹³C-NMR-Spektren soll hier exemplarisch anhand Verbindung **33.2** erläutert werden.

Abb. 4-2 veranschaulicht das Vorkommen geometrischer Isomere, wie dies bereits für die α -Hydroxyhydrazonate des Typs **21** unter Abschnitt 3.3.2.1 beschrieben worden ist.

Im Ausschnitt a (Abb.4-2) sind zwischen 1.00 und 1.30 ppm vier Tripletts mit einer Kopplungskonstanten von 7.1 Hz zu erkennen, welche den Methylprotonen der beiden Ethylgruppen zuzuordnen sind.

Interessanterweise zeigt, wie bereits unter 3.3.2.1 erläutert, auch bei dieser Stoffklasse die Methylengruppe der Ethoxygruppe des Z-Isomers eine
Signalaufspaltung in zwei Multipletts bei einer chemische Verschiebung von 3.55-3.60 und 4.20 ppm, während die Methylengruppe des *E*-Isomers ein Quartett bei 4.10 ppm liefert (Ausschnitt B).

Die (NH)-Gruppe tritt in Resonanz mit der ihr benachbarten Methylengruppe der Ethyl-Seitenkette und erscheint bei 9.18 ppm (*Z*-Isomer) sowie bei 10.54 ppm (*E*-Isomer) als Triplett mit Kopplungskonstanten von 6.0 Hz (Ausschnitt C).

In den ¹³C-NMR-Spektren von **33** ist die Resonanz der (C=N)-Gruppe bei 152 ppm zu beobachten und das Signal der Thiocarbonylgruppe erscheint bei 176.9 ppm. (vgl. Abb 4-3).

Abb.4-2 ^{*1}</sup><i>H-NMR-Spektrum von (E/Z)-33.2*</sup>

Abb. 4-3 ¹³*C*-*NMR*-*Spektrum von (E/Z)-* **33.2** (*DMSO-d*₆, 101 *MHz*)

4.3 (*E/Z*)-Ethyl-*N*´-acyl-2-hydroxy-2-aryl-propanhydrazonate (34)

4.3.1 Herstellung von (*E*/Z)-Ethyl-*N*´-acyl-2-hydroxy-2-arylpropanhydrazonaten (34)

Eine weitere Diversität der Leitsubstanz besteht in der Verwendung von Hydrazidderivaten als Stickstoffkomponente, welche entweder käuflich erworben oder in Anlehnung an Khan^{94*} dargestellt wurden.

Ließ man die Thiocarbonsäure-*O*-ethylester mit Hydraziden in Methanol bei Raumtemperatur reagieren, so resultierten nach vier bis fünf Tagen die Zielverbindungen **34** in Ausbeuten von 68-73 % an.

Schema 4-3 Synthese von (E/Z)-Ethyl-N´-acyl-2-hydroxy-2-arylpropanhydrazonaten (34)

Tabelle 4-2 Hergestellte (E/Z)-Ethyl-N´-acyl-2-hydroxy-2-aryl-
propanhydrazonate (34.1-34.3)

34	R ¹	\mathbf{R}^2	Ausbeute [%]
1	2-Naphthyl	Methyl	71
2	2-Naphthyl	Propyl	73
3	3,4-Dichlorphenyl	Propyl	68

Khan synthetisierte Butanhydrazid ausgehend von Methylbutyrat, indem er dieses für acht Stunden mit Hydrazinhydrat ohne Lösungsmittel rückfließend erhitzte.

4.3.2 Eigenschaften der hergestellten (*E*/*Z*)-Ethyl-*N*´-acyl-2hydroxy-2-aryl-propanhydrazonate 34

Die Verbindungen des Typs **34** stellen farblose, amorphe Verbindungen dar, die über einen Zeitraum von sechs Monaten unverändert blieben.

Ihre IR-Spektren sind durch zwei intensive Banden bei 3320 und 3280 cm⁻¹ (NH, OH) gekennzeichnet, während die ¹H-NMR- und ¹³C-NMR-Spektren durch doppelte Signalsätze und Multipletts charakterisiert sind, welche das Vorliegen sowohl von (E/Z)-Isomeren als auch von Rotameren (eigeschränkte Drehbarkeit der Hydrazidgruppierung) belegen.

Abb.4-4 IR-Spektrum (KBr) von Verbindung (E/Z)-34.2

Die (NH)-Gruppe des (Z)-Isomers liefert Resonanzsignale bei 9.57 und 9.97 ppm, während bei 10.20 und 10.59 ppm die entsprechenden (NH)-Resonanzsignale für das (E)-Isomer erscheinen.

Abb. 4-6 ¹³*C*-*NMR*-*Spektrum von (E/Z)*-**34.2**

4.3.3 Intramolekulare Cyclisierung von (*E*/*Z*)-Ethyl-*N*´-acyl-2hydroxy-2-aryl-propanhydrazonaten (34) zu 2-(1-Hydroxy-1-aryl-ethyl)-1,3,4-oxadiazolen (35)

Wurden die Reaktionsansätze zur Darstellung von **34** einer säulenchromatographischen Aufarbeitung^{*} unterzogen, so resultierten statt den gewünschten acylierten Glykolohydrazonaten **34** die korrespondierenden 1,3,4-Oxadiazole des Typs **35**, deren Entstehung entsprechend Schema 4-5 plausibel über eine interne Cyclisierung aus der tautomeren Form **34b** gedeutet werden kann.^{**}

Schema 4-4 Intramolekulare Cyclisierung der α-Hydroxyhydrazonate 34

Tatsächlich lieferte die exemplarisch vorgenommene Behandlung von **34** mit p-Toluolsulfonsäure als Katalysator binnen 10 min. nahezu quantitativ die 2-(1-Hydroxy-1-aryl-ethyl)-1,3,4-oxadiazole **35**.

 Tabelle 4-3 Hergestellte 2-(1-Hydroxy-1-aryl-ethyl)-1,3,4-oxadiazole (35)

35	\mathbf{R}^1	\mathbf{R}^2	Ausbeute [%]***
1	2-Naphthyl	Phenyl	80
2	3,4-Dichlorphenyl	Phenyl	82

* Elutionsgemisch Ethylacetat/ Hexan 1:1

In der Literatur wurde eine vergleichbare Synthese von 2-(1-Hydroxy-1-aryl-ethyl-1,3,4-oxadiazolen) 42 bislang noch nicht beschrieben.
 Eine verwandte Synthese beschreibt Kudelko und Mitarbeiter, indem α-

Hydroxysäurehydrazine mit Hydrazidorthoestern umgesetzt wurden.^[97]

*** bezogen auf die verwendeten α -Hydroxy-thio-O-carbonsäureester 23

4.3.4 Eigenschaften der hergestellten 2-(1-Hydroxy-1-aryl-ethyl)-1,3,4-oxadiazole 35

Die Verbindungen **35** fielen als weiße amorphe Pulver mit einem definierten Schmelzpunkt an.

Ihre IR-Spektren zeigen bei 3382 cm⁻¹ die (OH)-Valenzschwingung und bei 1606 und 1561 cm⁻¹ sind die (C=N)-Banden zu erkennen.

Das ¹H-NMR-Spektrum von Verbindung **35.1** (Abb. 4-7) liefert neben den Signalen der aromatischen Protonen im Bereich zwischen 7.50 und 8.06 ppm ein Singulett für die Hydroxylgruppe bei 6.85 ppm sowie ein Singulett bei 2.10 ppm (CH₃).

In den ¹³C-NMR-Spektren findet man die Signale der beiden (C=N)-Gruppen bei 166.2 sowie 171.2 ppm.

Abb.4-7 ¹H-NMR-Spektrum von Verbindung 35.1

4.4 Herstellung von Alkyl-/aralkyl-*O*-2-hydroxy-2-alklyl-/aryl) propanhydroximate 47

4.4.1 Einleitung und Literaturübersicht

Im Zuge weiterer Struktur-Aktivitätsuntersuchungen wurden im Rahmen dieser Arbeit auch α -Hydroxy-hydroximsäureester^{*} synthetisiert.

Eiseler ^[100] berichtete 1875 erstmalig über Hydroximsäureester, indem das Silbersalz der *O-Benzoyl-benzohydroxamsäure* **36** mit Ethyliodid versetzt und anschließend alkalisch hydrolysiert wurde.

Pinner ^[101] konnte neun Jahre später die gleiche Verbindung durch die Umsetzung von Hydroxylamin mit Benzimidsäurethylester gewinnen.

Einen anderen Weg wählten Beart und Ward, ^[102] indem sie von Osubstituierten Hydroxamsäuren (**40**) ausgingen und diese gezielt mit *Triethyloxonium-tetrafluoroborat* oder *Fluorsulfonsäure-methylester* alkylierten.

Durch die Reaktion von O-substituierten Hydroxamsäurederivaten (**42**) mit Thionylchlorid konnte Johnson ^[103] die entsprechenden *O*-substituierten Hydroximoyl-chloride (**43**) gewinnen, welche durch anschließende Umsetzung mit Natriumethanolat die gewünschten Hydroximsäureester (**44**) lieferten.

^{*} α -Hydroxy-hydroximsäureester (47) wurden erstmals von Schwarz^[98] beschrieben, indem wässrige Hydroxylaminlösung mit α -Hydroxythio-*O*-carbonsäureester umgesetzt wurde.

Schema 4-5 liefert eine Übersicht über verschiedene Darstellungsmethoden von Hydroximsäureestern. **

** Schema 4-5 Methoden zur Darstellung von Hydroximsäureestern

Johnson, J. E., Ghafouripour, A., Haug, Y. K., J. Org. Chem. (1985), 50, 993

Die Darstellung der α -Hydroxy-hydroximsäureester **47** erfolgte in Anlehnung an Brion und Mitarbeiter⁹⁹, indem Thiocarbonsäure-*O*-ester **23** mit den entsprechenden Alkoxyaminen^{*} bzw. wässriger Hydroxylaminlösung in Ethylacetat zur Reaktion gebracht wurden.

Nach säulenchromatographischer Aufarbeitung der Kolbenrückstände bzw. nach Umkristallisation aus Ethanol konnten die angestrebten α -Hydroxyhydroximsäureester (**47**) in analysenreiner Form isoliert werden.

Schema 4-6 Herstellung von α -Hydroxy-hydroximsäureester (47)

^{*} Die verwendeten Alkoxyamine wurden gemäß Froböse ^[104] durch Alkylierung ausgehend von *N*-Hydroxyphthalimid und anschließende Methylhydrazinolyse des betreffenden *N*-Alkoxyphthalimids erhalten.

47	\mathbf{R}^1	\mathbf{R}^2	\mathbf{R}^3	Ausbeute [%]
1	2-Naphthyl	Methyl	Benzyl	79
2	2-Naphthyl	Methyl	Methylen-1-Naphthyl	83
3	2-Naphthyl	Phenyl	4-Brombenzyl	77
4	2-Naphthyl	Methyl	Н	74
5	Methyl	Phenyl	Н	78

Tabelle 4-4 *Dargestellte* α *-Hydroxy-hydroximsäureester* (47.1-47.5)

4.4.2 Eigenschaften der hergestellten Alkyl-/aralkyl-O-2-hydroxy-2-alklyl-/aryl) propanhydroximate 47

Die α -Hydroxyhydroximsäureester **47** stellen farblose, amorphe Verbindungen dar, welche über einen Lagerungszeitraum von einem Jahr bei Raumtemperatur unzersetzt blieben.

Die IR-Spektren von Verbindungen **47** zeigen die Valenzschwingung der Hydroxylgruppe bei 3420 cm^{-1*} und die der Iminogruppe bei 1620 cm^{-1} .

Im ¹H-NMR-Spektrum von **47** ist das Resonanzsignal der (OH)-Gruppe bei 5.90 ppm zu beobachten, während die Verbindungen **47.4** und **47.5** ein zusätzliches Singulett bei 10.05 ppm liefern, welches der (OH)-Gruppe der Hydroximatfunktion zuzuordnen ist.

Die ¹³C-NMR-Spektren liefern das Resonanzsignal der neu entstandenen Iminogruppe bei 158.4 ppm, während das Resonanzsignal der (C=S)-Gruppe der Edukte **23** bei 226.0 ppm erscheint.

Bei den Verbindungen **47.4** sowie **47.5** ist die Absorptionsbande bei 3420 cm⁻¹ infolge der unsubstituierten Hydroxylgruppe der Hydroximatfunktion stark verbreitert.

4.5 (*E/Z*)-Alkyl-/aryl-*N*´-alkyl/aralkylcarbamoyloxy-2-hydroxy-2-(alkyl/aryl)propanimidate (48)

4.5.1 Darstellung von (*E*/*Z*)-Alkyl-/aryl-*N*´-alkyl/arylcarbamoyloxy-2-hydroxy-2-(alkyl/aryl)propanimidaten (48)

Durch Einwirken von Isocyanaten gemäß Literatur^{*} [105] auf die *O*-unsubstituierten Hydroximsäureester **47.4** und **47.5** konnten die (E/Z)-Alkyl-/aryl-*N*-alkyl-/arylcarbamoyloxy-2-hydroxy-2-(alkyl/aryl)propanimidate **48.1-4** gewonnen werden.

Schema 4-7 Reaktion von 47.4/5 mit Isocyansäure-estern zu (E/Z)-Alkyl-/Aryl-N´-alkyl-/arylcarbamoyloxy-2-hydroxy-2-(alkyl/aryl)propanimidaten 48.1-4

Tabelle 4.5 (E/Z)-Alkyl-/Aryl-N-alkyl/arylcarbamoyloxy-2-hydroxy-2-
(alkyl/aryl)ropanimidate (48.1-48.4)

48	\mathbf{R}^1	\mathbf{R}^2	\mathbf{R}^3	Ausbeute [%]
1	Methyl	Phenyl	4-Chlorphenyl	69
2	2-Naphthyl	Methyl	2-Chlorbenzyl	72
3	2-Naphthyl	Methyl	tertButyl	75
4	2-Naphthyl	Methyl	4-Chlorphenyl	74

^{*} Entsprechend Lit. [106] wurde dem Reaktionsansatz zur Reduktion der Reaktionsdauer katalytische Mengen DMAP hinzugefügt.

4.5.2 Eigenschaften der hergestellten (*E*/*Z*)-Alkyl-/aryl-*N*´alkyl/aralkylcarbamoyloxy-2-hydroxy-2-(alkyl/aryl)propanimidate 48

Die Substanzen **48** sind kristalline oder pastöse Verbindungen, welche über einen Lagerungszeitsraum von sechs Monaten keine Zersetzungserscheinungen zeigten.

Ihre IR-Spektren zeigen im Bereich von 3200 bis 3400 cm⁻¹ die Absorptionsbanden der (NH)- und (OH)- Gruppe sowie eine ausgeprägte Absorptionsbande der Iminogruppe bei 1635 cm⁻¹. In schwächerer Intensität ist bei 1698 cm⁻¹ die Valenzschwingung der Carbonylgruppe zu beobachten.

Das ¹H-NMR-Spektrum von **48.1** zeigt die Protonen der Methylgruppen bei 1.45 ppm, während die Protonen der Methylengruppe in Form eines Singuletts bei 5.12 ppm in Resonanz treten.

Die an Heteroatome gebundenen Protonen liefern Resonanzsignale bei 5.24 ppm für die Hydroxylgruppe sowie bei 9.73 ppm für die (NH)-Gruppe.

Im ¹³C-NMR-Spektrum von **48.1** liefert das Kohlenstoffatom der (C=N)-Gruppe ein Resonanzsignal bei 151.2 ppm, welches im Vergleich zu dem entsprechenden Signal des α -Hydroxyhydroximsäureester **47.4** hochfeldverschoben vorliegt. Das (C=O)-Signal der Carbamoyloxygruppe ist bei einer chemischen Verschiebung von 170.3 ppm zu finden.

Abb.4-9 ¹H-NMR-Spektrum von Verbindung 48.1 (DMSO-d₆, 400 MHz)

Abb.4-10 ¹³C-NMR-Spektrum von Verbindung 48.1 (DMSO-d₆, 101 MHz)

Abb.4-11 HMBC-Spektrum von Verbindung 48.1 (DMSO-d₆, 500 MHz)

5 Modifkation der Hydrazonatgruppe in der Leitsubstanz 1

Wie bereits zuvor in Abschnitt 2.1 erörtert, interessierte mich auch die Frage, ob die zum Typ **1** isosteren Amidrazon-Derivate **2** ebenfalls eine antiplasmodiale Aktivität zeigen würden bzw. die Aktivität an das Vorhandensein der Alkoxygruppe gebunden ist, weshalb auch die analogen Hydrazin- bzw. Hydroxylaminderivate **49**, **50**, **52** in die Untersuchungen mit einbezogen wurden (s. Schema 5-1).

Schema 5-1 Funktionelle Abwandlungen der Leitstrukturen 1 bzw. 2

5.1 *N*-Alkyl-2-aryl-2-hydroxy-propanamidine (49)

5.1.1 Darstellung von *N*-Alkyl-2-aryl-2-hydroxy-propanamidinen (49)

Für die Darstellung von Amidrazonen sind in der Literatur ^[107-115] eine Vielzahl von Synthesewegen beschrieben, eine gezielte Synthese von α -Hydroxyamidrazonen ist hingegen bislang nicht bekannt.

Entsprechend Abschnitt 3.2.3 wurden α -Hydroxyimidoester-hydrochloride in trockenem Dichlormethan bei Raumtemperatur mit der Hydrazinkomponente umgesetzt. Nach Beendigung der Reaktion wurden die Reaktionsansätze in Ethylacetat mit einer 30%igen Kaliumcarbonatlösung alkalisch exthrahiert, wobei die *N*-Alkyl-2-aryl-2-hydroxy-propanamidinen **49** in Ausbeuten von 72-81 % resultierten.

Schema 5-2 Herstellung von N-Alkyl-2-aryl-2-hydroxy-propanamidinen (49)

49	R ¹	\mathbf{R}^2	X	Ausbeute [%]
1	4-Bromphenyl	Methyl	0	79
2	3,4-Dichlorphenyl	Methyl	N-Methyl	77
3	3,4-Dichlorphenyl	Methyl	0	81
4	2-Naphthyl	Methyl	Methylen	72
5	Phenyl	Н	0	72

Tabelle 5-1 Hergestellte N-Alkyl-2-aryl-2-hydroxy-propanamidine (49.1-49.5)

5.1.2 Eigenschaften von *N*-Alkyl-2-aryl-2-hydroxypropanamidinen (49)

Die farblos, amorphen und lagerstabilen Substanzen **49** zeigen im IR-Spektrum die (C=N)-Bande bei ca. 1630 cm⁻¹ sowie im Bereich von 3500 bis 3150 cm^{-1} die Valenzschwingungen der Amino- und der Hydroxylgruppe.

Die ¹H-NMR-Spektren liefern das Singulett der unsubstituierten Aminogruppe bei ca. 5.75 ppm mit einer Intensität von 2H, wodurch die Lage der Doppelbindung zum Hydrazinbaustein charakterisiert ist.

Das Resonanzsignal der (C=N)-Gruppe im ¹³C-NMR-Spektrum erscheint bei einer chemischen Verschiebung von 162.2 ppm.

5.2 *N*-Alkoxy-2-aryl-2-hydroxy-propanamidine (50)

5.2.1 Darstellung von *N*-Alkoxy-2-aryl-2-hydroxypropanamidinen (50)

Als weitere Molekülvariation kam gemäß Schema 5-1 die Darstellung von 2-Hydroxy-*N*-alkoxy-2-aryl-propanamidinen (**50**) in Betracht, wobei α -Hydroxyimidoester-hydrochloride des Typs **20** analog der unter 5.1.1 beschriebenen Reaktion mit *O*-substituierten Hydroxylaminen umgesetzt wurden.

Schema 5-3 Synthese von N-Alkoxy-2-aryl-2-hydroxy-propanamidinen (50)

Tabelle 5-2 Hergestellte N-Alkoxy-2-aryl-2-hydroxy-propanamidine (50.1-50.5)

50	\mathbf{R}^{1}	\mathbf{R}^2	Ausbeute [%]
1	p-Tolyl	Ethoxycarbonylmethyl	68
2	4-Chlorphenyl	Ethoxycarbonylmethyl	69
3	4-Bromphenyl	Ethoxycarbonylmethyl	67
4	2-Naphthyl	Ethoxycarbonylmethyl	64
5	2-Naphthyl	Benzyl	82

5.2.2 Eigenschaften der hergestellten *N*-Alkoxy-2-aryl-2-hydroxypropanamidine (50)

Die Verbindungen dieser Stoffklasse fallen als farblose, kristalline Substanzen an und zeigten bei Lagerung unter Raumtemperatur über einen Zeitraum von einem Jahr keine Anzeichen auf Zersetzung.

Die Infrarotspektren der Verbindungen **50** liefern im Bereich von 3500 bis 3300 cm⁻¹ drei Banden für die Valenzschwingungen der Amino- sowie der Hydroxylgruppe, ferner ist bei 1640 cm⁻¹ die Absorptionsbande der Iminogruppe zu beobachten.

Bei den Verbindungen **50.1-4** ist zusätzlich eine Carbonylabsorptionsbande bei 1738 cm⁻¹ zu finden.

Abb.5-1 IR-Spektrum von Verbindung 50.3

Die ¹H-NMR-Spektren liefern das Resonanzsignal der Aminogruppe bei 5.46 ppm. Die Methylgruppe der Esterfunktion zeigt bei 1.19 ppm ein Triplett, während die Methylengruppe bei 4.08 ppm in Form eines Multipletts auftritt. Die vier aromatischen Protonen zeigen sich als AB-System im Bereich von 7.42 bis 7.50 ppm.

In den Kohlenstoffkernresonanzspektren zeigt sich das Kohlenstoffatom der neu entstandenen Iminogruppe bei einer chemischen Verschiebung von 158.2 ppm.

Die ¹³C-NMR-Spektren der Verbindungen **50.1-4** liefern zusätzlich ein Resonazsignal der Carbonylgruppe bei 170.6 ppm.

Abb.5-2 ¹*H*-*NMR*-Spektrum von Verbindung 50.3 (DMSO-d₆, 400 MHz)

Abb.5-3 ¹³C-NMR-Spektrum von Verbindung 50.3 (DMSO-d₆, 101 MHz)

Eindeutig gesichert wird die Struktur durch die exemplarisch vorgenommene röntgenkristallographische Untersuchung von **50.3** (s. Abb. **6-3**), deren Ergebnis die postulierte Struktur belegt.

Abb.5-4Molekülstruktur von Verbindung 50.3 (Diamond-Visual Crystal
Structure)

5.3 *N*-Alkyl-/arylmethyliden-2-aryl-2-hydroxypropanamidrazone (52)

5.3.1 Allgemeines

N-Alkyl-/arylmethyliden-2-aryl-2-hydroxypropanamidrazone sind als ringoffene, flexible Derivate von 4-(Alkylidenhydrazono)-1,3-oxazolidin-2-onen anzusehen, welche erstmals von Holst ^[88] dargestellt und bislang nicht auf eine antimalariale Wirkung untersucht wurden.

Cyclisierte Vertreter, wie Verbindung **ML-2**, zeigten in vorangegangenen Testungen eine ausgeprägte antiplasmodiale Aktivität.

Im Rahmen der vorliegenden Arbeit sollte nun geklärt werden, ob die antiplasmodiale Aktivität an die Azinpartialstruktur gebunden ist bzw. nur die entsprechenden cyclisierten Vertreter eine Hemmung gegenüber den Plasmodien aufweisen.

Schema 5-4 *Struktur der rigidisierten und ringgeöffneten der N-Alkylidenalkanamidrazone*

Basierend auf der von Holst entwickelten Verfahrensweise wurden die α -Hydroxyimidoester aus den entsprechenden Hydrochloriden durch alkalische Extraktion mit eisgekühlter 30% iger Kaliumcarbonatlösung freigesetzt. Durch fünfstündiges Einwirken von Hydrazinhydrat auf die freien Basen in trockenem Dichlormethan konnten die N-unsubstituierten Amidrazone **51** isoliert werden. Infolge ihrer ausgeprägten Instabilität, welche optisch anhand einer zunehmenden Rotfärbung des Pulvers zu beobachten ist, wurden die Verbindungen **51** zügig weiterverarbeitet.

Schema 5-5 Synthese der α -Hydroxy-2-aryl-propanamidrazone 51

Tabelle 5-3 Dargestellte α -Hydroxy-2-aryl-propanamidrazone (51.1-51.3)

51	\mathbf{R}^{1}	Ausbeute [%]
1	4-Chlorphenyl	86
2	4-Bromphenyl	79
3	3,4-Dichlorphenyl	88

5.3.2 Herstellung von *N*-Alkyl-/arylmethyliden-2-aryl-2hydroxypropanamidrazonen (52)

Die Darstellung der Verbindungen **52** erfolgte in Anlehnung an Literatur [115] durch Reaktion der Amidrazone **51** mit einem 10% igen Überschuß der entsprechenden Carbonylkomponente in trockenem Dichlormethan unter fünfstündigem Rühren bei Raumtemperatur. Nachdem anschließend das Lösungsmittel im Vakuum entfernt wurde, konnten die *N*-Alkyliden-alkanamidrazone durch Zugabe von Diethylether/ Petrolether zum öligen Rückstand zur Kristallisation gebracht werden.

 Tabelle 5-4 N-Alkyl-/arylmethyliden-2-aryl-2-hydroxypropanamidrazone

 (52.1-52.5)

52	R ¹	$\mathbf{R}^2/\mathbf{R}^3$	Ausbeute [%]
1	4-Chlorphenyl	Cyclohexyl	72
2	4-Bromphenyl	Methyl	81
3	4-Bromphenyl	Cyclohexyl	79
4	3,4-Dichlorphenyl	Cyclohexyl	77
5	3,4-Dichlorphenyl	Benzyl	72

5.3.3 Eigenschaften der hergestellten *N*-Alkyl-/arylmethyliden-2aryl-2-hydroxypropanamidrazone 52

Die Verbindungen des Typ **52** stellen farblose amorphe und lagerbeständige Substanzen dar.

In den Infrarotspektren ist eine deutlich bathochrome Verschiebung der Iminogruppe (1620 cm⁻¹) im Vergleich zu den entsprechenden Edukten **51** (1660-1640 cm⁻¹) zu beobachten. Die Valenzschwingungen der Aminogruppe sind im Bereich von 3500-3300 cm⁻¹ zu finden, während die Hydroxylgruppe eine breite Absorptionsbande bei 3200 cm⁻¹ zeigt.

Die Interpretation der ¹H-NMR-Spektren soll hier anhand Verbindung **52.4** veranschaulicht werden.

Die Methylengruppen des Cyclohexanringes liefern Signale im Bereich von 1.53- 2.67 ppm.

Ferner ist bei 5.82 ppm das Resonanzsignal der (NH₂)-Gruppe und bei 6.21 ppm der (OH)-Gruppe zu beobachten.

Die ¹³C-NMR-Spektren von **52.1-5** zeigen die Signale der beiden Iminogruppen bei 161.8 bzw. 165.4 ppm, wobei das tieffeldverschobenere Signal dem Azomethin-Kohlenstoffatom zuzuordnen ist.

Abb.5-5 ¹H-NMR-Spektrum von Verbindung 52.4 (DMSO-d₆, 400 MHz)

6 Untersuchungen zur biologischen Aktivität der hergestellten Substanzen

6.1 Testungssystem

6.1.1 Grundlage des Testungsverfahrens

Die in vitro-Untersuchungen der antiplasmodialen Aktivität basieren auf der von Desjardins^[117] entwickelten Methode. Man macht sich zum Nutzen, dass die Plasmodien Hypoxanthin zur Vermehrung benötigen. Eben jenes Hypoxanthin kann die Membranen der Plasmodien passieren^[118] und wird nach vorangegangener Umwandlung zu Adenosin bzw. Guanosin in Ribonucleoeinsäuren und Desoxyribonucleinsäuren eingebaut.

Die Menge des umgewandelten Hypoxanthins kann somit als Maßstab für die Anzahl der vorhandenenen Parasiten herangezogen werden.

Bei dieser Bestimmungsmethode nach Desjardins werden die Parasiten in einer aus radioaktivem Hypoxanthin bestehenden Nährlösung unter bestimmten Bedingungen gelagert. Nach dem Abfiltrieren dieser Lösung verbleiben die Plasmodien auf dem Filter zurück. Infolge der Messung der Radioaktivität kann anschließend eine Aussage über die Anzahl lebensfähiger Parasiten getroffen werden.

Befinden sich die Plasmodien vor der Zugabe zur Hypoxanthin-Nährlösung in einer mit einer antimalariaaktiven Substanz versetzten Lösung, so werden je nach Aktivität jener Substanz eine gewisse Anzahl an Parasiten abgetötet, in Folge dessen eine Abnahme der Radioaktivität festzustellen ist.

Durch Vergleich der verminderten Radioaktivität mit einer Kontrolle ohne einer antimalariaaktiven Verbindung lassen sich Rückschlüsse auf das Ausmaß der Aktivität ziehen.

6.1.2 Praktische Durchführung der Testung

Von jeder Testsubstanz wurde durch entsprechende Verdünnungsreihen mit einem Ethanol/ DMSO-Lösungsmittelgemisch (1:1) eine 5 bzw 10 μ M Lösung angefertigt und unter aseptischen Bedingungen mit 250 μ l einer mit Plasmodium falciparum infizierten Erythrozyten-Suspension ^[119] (1.5% Hämatokrit, 1.5% Parasitämie) in jeweils eine Kavität der Microtiterplatten versetzt. Nach einer Inkubationszeit von 24 h bei 37 °C unter definierten atmosphärischen Bedingungen (90% N₂, 5% O₂, 5% CO₂) wird in jede Kavität 10 μ l eine 8-[³H]-Hypoxanthin-Lösung zugegeben und für weitere 24 Stunden unter den oben genannten Bedingungen gelagert.

Im Anschluss an diese zweite Inkubationszeit wird der Inhalt jener einzelnen Kavität durch ein Glasfaserfilterpapier abgesaugt und mehrmals mit demineralisiertem Wasser gespült. Nach 30minütiger Trocknung bei 70 °C wird das Filterpapier mit einer Scintillationsflüssigkeit luftfrei eingeschweißt und eine Minute lang an einem Flüssig-Scintillations-Spektrometer vermessen.

Das auf diese Weise resultierende Signal entspricht der Radioaktivität des Filterrückstandes und ist der Anzahl der lebensfähiger Plasmodien gleichzusetzen.

Um etwaige Einflussnahme des Lösungsmittels hinsichtlich der Aktivität auszuschließen, wurde ein entsprechender Testlauf desselbigen durchgeführt. Hierbei konnte gezeigt werden, dass das Lösungsmittel keinen Einfluss auf das Absterben bzw. Wachstum der Plasmodien aufweist.

Jeder Testlauf erfolgte in einer Vierfachbestimmung, von denen anschließend der Mittelwert gebildet wurde. Die prozentualen Hemmwerte der einzelnen Substanzen in Abschnitt 6.2 zeigen den Mittelwert dreier Testläufe, sprich 12 Messungen.

Zur Bestimmung der IC_{50} -Werte wurden weitere Verdünnungsreihen durchgeführt und entsprechend der oben beschriebenen Parameter vermessen. Durch graphische Auswertung der prozentualen Hemmung gegen die Konzentration konnte der IC_{50} -Wert direkt abgelesen werden.

In den durchgeführten Testreihen wurde auf den chloroquin-sensitiven Plasmodien-Stamm 3D7 getestet.

6.2 Testungsergebnisse

Tab.6-1Getestete α-Hydroxy-hydrazonate vom Typ 21

	Prozentuale
Verbindung	Hemmung bei
(E:Z)	10µM
21.2 (60:40)	62
21.3 (50:50)	93
21.4 (92:08)	98
21.5 (96:04)	6
21.6 (92:08)	46
21.7 (56:44)	61
21.8 (48:52)	94
21.9 (68:32)	78
21.10 (67:33)	70
21.12 (49:51)	89
21.12 (100:0)	88
21.13 (50:50)	84
21.14 (37:66)	94
21.15 (66:34)	95
21.17 (100:0)	33
21.23 (0:100)	0
21.24 (40:60)	0
21.25 (54:46)	5

	Prozentuale
Verbindung	Hemmung bei
(E:Z)	10µM
21.27 (97:03)	35
21.29 (46:54)	9
21.30 (72:28)	42
21.31 (98:02)	7
21.32 (70:30)	93
21.33 (43:57)	44
21.34 (50:50)	75
21.35 (70:30)	77
21.37 (37:63)	68
21.38 (52:48)	85
21.39 (55:45)	88
21.40 (73:27)	87
21.41 (37:63)	91
21.42 (53:47)	84
21.48 (70:30)	64
21.49 (94:06)	91
21.50 (96:04)	89
21.51 (80:20)	93

Verbindung	Prozentuale
(E:Z)	Hemmung bei
	5μΜ
21.8 (48:52)	75
21.9 (68:32)	72
21.13 (100:0)	83
21.14 (37:63)	56
21.18 (100:0)	7
21.20 (60:40)	12
21.22 (93:07)	66
21.32 (70:30)	19
21.37 (37:63)	19
21.34 (50:50)	75

Verbindung	Prozentuale
(E:Z)	Hemmung bei
	5μΜ
21.36 (100:0)	4
21.44 (94:06)	66
21.45 (77:23)	43
21.46 (75:25)	0
21.47 (57:43)	0
21.49 (100:0)	70
21.52 (100:0)	76
21.53 (57:43)	85
21.54 (70:30)	0
21.55 (90:10)	0

Hemmung bei 5µM: 5%

Tab.6-2

Getestete 1,3,4-Oxadiazin-2-one vom Typ 29

	Prozentuale
Verbindung	Hemmung bei 10µM
29.1	0
29.2	0
29.3	0

Tab.6-3Getestete α-Hydroxy-hydrazonate vom Typ 33

Verbindung	Prozentuale
(E:Z)	Hemmung bei 5µM
33.1 (62:38)	40
33.2 (85:15)	7
33.3 (60:40)	5
33.4 (05:95)	14
33.5 (60:40)	75
33.6 (58:42)	19
33.7 (08:92)	15
33.8 (92:08)	0

Tab.6-4 Getestete α -Hydroxy-hydrazonate vom Typ 34

Verbindung	Prozentuale	
	Hemmung bei 5µM	
34.2	0	
34.3	42	

Tab.6-5Getestete 1,3,4-Oxadiazole vom Typ 35

Verbindung	Prozentuale	
	Hemmung bei 5µM	
35.1	0	
35.2	0	

Verbindung	Prozentuale	
	Hemmung bei 5µM	
47.1	11	
47.2	49 (10 µM)	
47.3	0	

Tab.6-7Getestete α-Hydroxy-hydroximate vom Typ 48

Verbindung	Prozentuale
	Hemmung bei 5µM
48.1	0
48.2	0
48.3	0

Tab.6-8	Getestete	α -Hydroxy	-amidrazone	vom Typ	22/49
---------	-----------	-------------------	-------------	---------	-------

Verbindung	Prozentuale
	Hemmung bei 5µM
22.3	11
22.6	15
22.8	33 (10µM)
22.9	8
49.2	0
49.3	10
49.4	0
49.5	0
Tab.6-9Getestete α -Hydroxy-amidoxime vom Typ 50

Verbindung	Prozentuale
	Hemmung bei 5µM
50.1	2
50.2	11
50.3	4

Tab.6-10Getestete α-Hydroxy-amidrazone vom Typ 52

Verbindung	Prozentuale
	Hemmung bei 5µM
52.1	5
52.3	4
52.4	0
52.5	12

Verbindung	IC ₅₀ -Wert [µm]
ML2	7.4
21.8	4.9
21.9	5.1
21.13	2.0
21.14	4.4
21.22	2.9
21.34	5.0
21.44	2.5
21.49	1.5
21.52	1.1
21.53	0.6
33.1	6.2
33.5	0.85

Tab.6-11*IC*₅₀-Werte ausgewählter Verbindungen

Tab.6-12Prozentuale Hemmung und IC50-Wert von Pyrimethamin im
Rahmen dieser Untersuchungen

Prozentuale Hemmung bei 5µM	IC ₅₀ -Wert
80	0.07

6.2.1 Diskussion der Testungsergebnisse

Die Testergebnisse zeigen, dass ein dichlor-substituierter Aromat bzw. ein Naphthylsubstituent in der Region A der Leitstruktur eine Steigerung der Aktivität erreichen ließ.

Bei der Variation der Methylgruppe wird deutlich, dass eine Seitenkettenverkürzung durch ein Wasserstoffatom einen Wirkungsverlust verursacht. Die Verlängerung der Seitenkette, durch eine Ethylgruppe, erbrachte eine geringfügige Aktivitätssteigerung.

Ferner konnte gezeigt werden, dass die Abwesenheit der (OH)-Gruppe zu einen erheblichen Wirkungsverlust führt; sie ist somit als essentieller Bestandteil für eine antplasmodiale Aktivität anzusehen.

Eine Verlängerung der Ethoxygruppe durch eine Propoxygruppe führte zu keiner nennenswerten Wirkungssteigerung. Hingegen zeigte eine Vergrößerung des Substituenten durch eine Benzyl- bzw. Phenethylgruppe einen vollständigen Wirkungsverlust. Der formelle Austausch der Alkoxygruppe durch eine Aminogruppe zeigte eine deutliche Wirkungsminderung bis zum Aktivitätsverlust.

Die Cyclisierung der α -Hydroxyhydrazonate **21** zu den entsprechenden 5-Alk-/ aralkoxy-3,6-dihydro-2H-1,3,4-oxadiazin-2-onen **29** führte zu einem kompletten Wirkungsverlust, wodurch die wichtige Rolle der Hydroxygruppe hinsichtlich der antiplasmodialen Wirkung bestätigt wird.

Modifikationen der Verbindungen 21 durch Umsetzung mit weiteren Hydrazinbausteinen (33/34) bzw. Hydroxylaminderivaten (47/48) erbrachten eine deutliche Wirkungsminderung.

Die 2-(1-Hydroxy-1-arylethyl)-5-alkyl-/aryl-1,3,4-oxadiazole **35** zeigten keine Aktivität gegenüber den Plasmodienstämmen.

Die im zweiten Teil dieser Arbeit konzipierten offenkettigen Vertreter (**52**) der 4-(Alkylidenhydrazono)-1,3-oxazolidin-2-one zeigten im Vergleich zu den rigidisierten Vertretern eine deutliche Abschwächung der Aktivität. Auch die weiteren Alkoxymodifikationen (**49/50**) zeigten keine nennenswerte antiplasmodiale Aktivität.

Hierbei ist anzumerken, dass β -Hydroxy-amidrazone, welche sich formal durch eine Insertion eines CH₂-Bausteines von den Verbindungen des Typs **52** unterscheiden, in den durchgeführten Testreihen sehr hohe Aktivitäten aufwiesen.^[120]

7 Experimenteller Teil

7.1 Verzeichnis der Geräte und Analysenmethoden

Schmelzpunkte

Schmelzpunktapparatur nach Linström, (unkorrigiert)

IR-Spektren

Perkin Elmer 1600 Series FTIR Shimadzu FTRI 8300 Vermessen als KBr-Preßling oder als Film auf NaCl-Fenster

Brechungsindices

Abbé-Refraktometer, Firma Carl Zeiss

¹H-NMR-Spektren

Bruker AMX 400 (400 MHz) Chemische Verschiebung mit δ -Werten in ppm Innerer Standard: Tetramethylsilan (TMS) Ermittlung der Protonenverhältnisse aus den Integralhöhen der Integration Nachweis von NH₂-, NH- / OH-Protonen durch Austausch mit D₂O Abkürzungen der durch Spin-Kopplung auftretenden Signalmultiplizitäten: s = Singulett, d = Dublett, t = Triplett, q = Quartett, m = MultiplettAngabe der Kopplungskonstanten *J* in Hz, für Spin-Spin-Systeme höherer Ordnung nur für vollständig aufgelöste Signalsätze

¹³C-NMR-Spektren

Bruker AMX 400 (100.6 MHz) Chemische Verschiebung mit δ-Werten in ppm Innerer Standard: Tetramethylsilan (TMS) Es wurden breitbandentkoppelte und DEPT-Spektren aufgenommen

Massenspektren

HRFAB-/FAB-Massenspektren: Massenspektrometer VG 70-250S

Röntgenstrukturanalysen

Diffraktometer: Hilger & Watts (Y290)

Elementaranalyse

C, H, N: Heraeus CHN-O-Rapid

S: Bestimmung durch Titration mit 0.005 M Ba(ClO_4)₂-Lösung gegen Sulfonazo III nach Verbrennung in der "Mikroverbrennungsapparatur nach Schöniger" und anschließender Oxidation mit H₂O₂

Mikrowelle

Cem Discover Software: Chemdriver Version 3.6.0 Discover Applications Software

Dünnschichtchromatographie (DC)

DC-Mikrokarten Polygram SIL G/UV $_{254}$, Firma Macherey-Nagel, Düren Schichtdicke 0.25 mm Die Chromatographie wurde über eine Laufstrecke von 4 – 6 cm mit Kammersättigung durchgeführt

Säulenchromatographie (SC)

Kieselgel ICN Silica 100 – 200, aktiv 60 Å

Trockenmittel für organische Phasen

Wasserfreies Natriumsulfat

7.2 Synthesevorschriften und analytische Daten zu Kapitel 3

7.2.1 Darstellung der α-Hydroxycarbonitrile **19** (Abschnitt 3.2.1)

Allgemeine Arbeitsvorschrift AAV 1

Es werden 1 Äquivalent des entsprechenden Ketons beziehungsweise des entsprechenden Aldehyds in Dichlormethan gelöst und katalytische Mengen Zinkiodid hinzugefügt. Anschließend werden tropfenweise unter Eiskühlung 1.1 Äquivalente Trimethylsilylcyanid zugefügt.

Der Beginn der Reaktion ist am Einsetzen der Wärmeentwicklung zu erkennen. Unter fortlaufendem Rühren ist die Vollständigkeit der Reaktion mittels der Infrarotspektroskopie am Verschwinden der Carbonylbande um 1680 cm⁻¹ und dem Erscheinen einer Silyletherbande bei 846 cm⁻¹ zu detektieren.

Nach Beendignug der Reaktion werden dem Ansatz 30ml 3N Salzsäure zugesetzt. Die Silyletherbande verschwindet im IR-Spektrum zugunsten einer breiten Hydroxylbande bei 3400 cm⁻¹.

Die organische Phase wird von der wäßrigen Phase abgetrennt, mit Diethylether gewaschen, über Natriumsulfat getrocknet und der Reaktionsansatz unter vermindertem Druck eingeengt. Die α -Hydroxycarbonitrile fallen als gelbliche Öle an oder kristallisieren aus einem Diethylether/ Petrolether-Gemisch bei 5-7 °C aus.

2-Hydroxy-2-phenyl-propionitril 19.1

 Aus 6.00 g (50 mmol) 1-Phenylethanon nach AAV 1

 Ausbeute:
 83 % (6.10 g), hellgelbes Öl

 IR:
 $3411 cm^{-1}$ (OH), 2243 cm⁻¹ (C=N)

2-Hydroxy-2-(4-methylphenyl)propionitril 19.2

Aus 6.71 g (50 mmol) 1-(4-Methylphenyl)ethanon nach AAV 1Schmp.:78.7 °C (Diethylether/Petrolether)Ausbeute:73 % (5.88 g), farblose KristalleIR:3400cm⁻¹ (OH), 2241 cm⁻¹ (C=N)

2-(4-Chlorphenyl)-2-hydroxy-propionitril 19.3

Aus 7.73 g (50 mmol) 1-(4-Chlorphenyl)ethanon nach AAV 1Schmp.: $87.5 \,^{\circ}C$ (Diethylether/Petrolether)Ausbeute: $88 \,\% (7.99 \, g)$, farblose KristalleIR: $3386 \, \mathrm{cm}^{-1}$ (OH), 2240 cm $^{-1}$ (C=N)

2-(4-Bromphenyl)-2-hydroxy-propionitril 19.4

Aus 9.95 g (50 mmol) 1-(4-Bromphenyl)ethanon nach AAV 1Schmp.: $80.1 \,^{\circ}C$ (Diethylether/Petrolether)Ausbeute: $84 \,\% (9.53 \, g)$, farblose KristalleIR: $3376 \, \mathrm{cm}^{-1}$ (OH), 2244 cm $^{-1}$ (C=N)

2-Hydroxy-2-(4-nitrophenyl)propionitril **19.5**

Aus 4.96 g (30 mmol) 1-(4-Nitrophenyl)ethanon nach AAV 1Smp.: $112.7 \,^{\circ}C$ (Diethylether/Petrolether)Ausbeute: $81 \,\%$ (4.69 g), farblose KristalleIR: $3363 \,\mathrm{cm}^{-1}$ (OH), 2233 cm $^{-1}$ (C=N)

2-(3,4-Dimethylphenyl)-2-hydroxy-propionitril 19.6

Aus 5.92 g (40 mmol) 1-(3,4-Dimethylphenyl)ethanon nach **AAV 1** Ausbeute: 79 % (5.51 g), hellgelbes Öl IR: 3416cm⁻¹ (OH), 2241 cm⁻¹ (C=N)

2-(3,4-Dichlorphenyl)-2-hydroxy-propionitril 19.7

 Aus 9.45 g (50 mmol) 1-(3,4-Dichlorphenyl)ethanon nach AAV 1

 Ausbeute:
 87 % (9.42 g), hellgelbes Öl

 IR:
 3411 cm^{-1} (OH), 2244 cm⁻¹ (C=N)

2-(3-Brom-4-fluorphenyl)-2-hydroxy-propionitril 19.8

Aus 10.85 g (50 mmol) 1-(3-Brom-4-fluorphenyl)ethanon nach **AAV 1** Ausbeute: 81 % (9.95 g), hellgelbes Öl IR: 3376 cm^{-1} (OH), 2238 cm⁻¹ (C=N)

2-(4-Chlor-3-methylphenyl)-2-hydroxy-propionitril 19.9

Aus 3.37 g (20 mmol) 1-(4-Chlor-3-methylphenyl)ethanon nach **AAV 1** Ausbeute: 73 % (4.06 g), hellgelbes Öl IR: 3415cm⁻¹ (OH), 2243 cm⁻¹ (C=N)

2-(3-Chlor-4-fluorphenyl)-2-hydroxy-propionitril 19.10

Aus 3.45 g (20 mmol) 1-(3-Chlor-4-fluorphenyl)ethanon nach AAV 1Smp.: $81.7 \,^{\circ}C$ (Diethylether/Petrolether)Ausbeute: $81 \,\%$ (3.23 g), farblose KristalleIR: $3366 \,\mathrm{cm}^{-1}$ (OH), 2247 cm $^{-1}$ (C=N)

2-Cyclopropyl-2-hydroxy-propionitril 19.11

Aus 3.36 g (40 mmol) 1-(Cyclopropyl)ethanon nach **AAV 1** Ausbeute: 78 % (3.48 g), hellgelbes Öl IR: 3417 cm^{-1} (OH), 2223 cm⁻¹ (C=N)

2-Hydroxy-2-(naphthalen-2-yl)propionitril 19.12

- Aus 8.51 g (50 mmol) 1-(Naphthalen-2-yl)ethanon nach AAV 1
- Schmp.: 91.9 °C (Diethylether/Petrolether)
- Ausbeute: 85 % (8.37 g), farblose Kristalle
- IR: 3411 cm^{-1} (OH), 2244 cm⁻¹ (C=N)

2-Hydroxy-2-(naphthalen-1-yl)acetonitril 19.13

Aus 5.46 g	(35 mmol) Naphthalen-1-carbaldehyd nach AAV 1
Schmp.:	66.7 °C
Ausbeute:	77 % (4.94 g), farblose Kristalle
IR:	3389 cm^{-1} (OH), 2239 cm ⁻¹ (C=N)

2-(3,4-Dichlorphenyl)-2-hydroxy-acetonitril 19.14

Aus 2.62 g (15 mmol) 3,4-Dichlorbenzaldehyd nach AAV 1Schmp.: $51.0 \,^{\circ}C$ Ausbeute: $80 \,\% (2.42 \,\text{g})$, farblose KristalleIR: $3400 \, \text{cm}^{-1}$ (OH), 2249 cm $^{-1}$ (C=N)

2-Hydroxy-2-phenyl-butyronitril 19.15

 Aus 2.68 g (20 mmol) Propiophenon nach AAV 1

 Ausbeute:
 73 % (2.34 g), hellgelbes $\ddot{O}l$

 IR:
 3383 cm⁻¹ (OH), 2245 cm⁻¹ (C=N)

2-(3,4-Dichlorphenyl)-2-hydroxy-butyronitril 19.16

Aus 4.06 g (20 mmol) 3,4-Dichlorpropiophenon nach **AAV 1** Ausbeute: 75 % (3.46 g), hellgelbes Öl IR: 3401 cm^{-1} (OH), 2238 cm⁻¹ (C=N) 7.2.2 Darstellung der α-Hydroxyimidoester-hydrochloride 20 (Abschnitt 3.2.2)

Allgemeine Arbeitsvorschrift AAV2:

1 Äquivalent des entsprechenden Cyanhydrins werden in 50 ml trockenem Diethylether gelöst und mit 1.2 Äquivalenten absolutem Alkohol versetzt. Unter Ausschluß von Luftfeuchtigkeit wird trockener Chlorwasserstoff bei fortlaufender Eiskühlung bis Sättigung eingeleitet. Die zur α-Hydroxyimidoester-hydrochloride kristallisieren bei 0-5°C aus und werden mit Diethylether gewaschen.

Ethyl-2-hydroxy-2-phenyl-propanimidat-hydrochlorid 20.1

Aus 5.89 g (40 mmol) 2-Hydroxy-2-phenyl-propionitril (**19.1**) und 2.16 g (48 mmol) Ethanol nach **AAV 2** Schmp.: 101.5 °C (Diethylether) Ausbeute: 68 % (6.25 g), farblose Kristalle IR: 1657 cm⁻¹ (C=N)

Ethyl-2-hydroxy-2-(4-methylphenyl)propanimidat-hydrochlorid 20.2

Aus 5.64 g (35 mmol) 2-Hydroxy-2-(4-methylphenyl)propionitril (**19.2**) und 1.89 g (42 mmol) Ethanol nach **AAV 2** Schmp.: 89.7 °C (Diethylether) Ausbeute: 88 % (7.48 g), farblose Kristalle IR: 1638 cm^{-1} (C=N)

Ethyl-2-(4-chlorphenyl)-2-hydroxy-propanimidat-hydrochlorid 20.3

Aus 7.26 g (40 mmol) 2-(4-Chlorphenyl)-2-hydroxy-propionitril (**19.3**) und 2.16 g (48 mmol) Ethanol nach **AAV 2** Schmp.: 103.8 °C (Diethylether) Ausbeute: 79 % (8.34 g), farblose Kristalle IR: 1638 cm⁻¹ (C=N)

4-Chlorbenzyl-2-(4-chlorphenyl)-2-hydroxy-propanimidat-hydrochlorid 20.4

Aus 1.82 g (10 mmol) 2-(4-Chlorphenyl)-2-hydroxy-propionitril (**19.3**) und 1.71 g (12 mmol) 4-Chlorbenzylalkohol nach **AAV 2**

Schmp.: 85.7 °C (Diethylether)

Ausbeute: 84 % (3.42 g), farblose Kristalle

IR: 1643 cm^{-1} (C=N)

Aus 9.04 g (40 mmol) 2-(4-Bromphenyl)-2-hydroxypropionitril (19.4) und 2.16g (48 mmol) Ethanol nach AAV 2Schmp.: $105.1 \,^{\circ}C$ (Diethylether)Ausbeute:88 % (10.84 g), farblose KristalleIR: $1653 \, \mathrm{cm}^{-1}$ (C=N)

Ethyl-2-hydroxy-2-(4-nitrophenyl)propanimidat-hydrochlorid 20.6

Aus 4.80 g (25 mmol) 2-Hydroxy-2-(4-nitrophenyl)propionitril (**19.5**) und 1.35 g (30 mmol) Ethanol nach **AAV 2** Schmp.: 117.8 °C (Diethylether) Ausbeute: 83 % (5.68 g), farblose Kristalle IR: 1651 cm⁻¹ (C=N) Ethyl-2-(3,4-dimethylphenyl)-2-hydroxy-propanimidat-hydrochlorid 20.7

Aus 5.26 g (30 mmol) 2-(3,4-Dimethylphenyl)-2-hydroxy-propionitril (**19.6**) und 1.62 g (36 mmol) Ethanol nach **AAV 1** Schmp.: 82.5 °C (Diethylether) Ausbeute: 77 % (5.96 g), farblose Kristalle IR: 1650 cm⁻¹ (C=N)

Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidat-hydrochlorid 20.8

Aus 8.64 g (40 mmol) 2-(3,4-Dichlorphenyl)-2-hydroxy-propionitril (**19.7**) und 2.16g (48 mmol) Ethanol nach **AAV 2** Schmp.: 106.7 °C (Diethylether) Ausbeute: 83 % (9.92 g), farblose Kristalle IR: 1654 cm⁻¹ (C=N) Methyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidat-hydrochlorid 20.9

Aus 2.16 g (10 mmol) 2-(3,4-Dichlorphenyl)-2-hydroxy-propionitril (19.7)und 0.38g (12 mmol) Methanol nach AAV 2Schmp.: $98.1 \,^{\circ}$ C (Diethylether)Ausbeute: $91 \,\%$ (2.60 g), farblose KristalleIR: $1651 \, \mathrm{cm}^{-1}$ (C=N)

Propyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidat-hydrochlorid 20.10

Aus 2.16 g (10 mmol) 2-(3,4-Dichlorphenyl)-2-hydroxy-propionitril (**19.7**) und 0.72 g (12 mmol) *n*-Propanol nach **AAV 2** Schmp.: 93.8 °C (Diethylether) Ausbeute: 74 % (2.31 g), farblose Kristalle IR: 1653 cm⁻¹ (C=N) Benzyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidat-hydrochlorid 20.11

Aus 2.16 g (10 mmol) 2-(3,4-Dichlorphenyl)-2-hydroxy-propionitril (**19.7**) und 1.30 g (12 mmol) Benzylalkohol nach **AAV 2** Schmp.: 82.7 °C (Diethylether) Ausbeute: 81 % (2.93 g), farblose Kristalle IR: 1653 cm⁻¹ (C=N)

Phenethyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidat-hydrochlorid 20.12

Aus 2.16 g (10 mmol) 2-(3,4-Dichlorphenyl)-2-hydroxy-propionitril (**19.7**) und 1.47 g (12 mmol) Phenethylalkohol nach **AAV 2** Schmp.: 111.8 °C (Diethylether) Ausbeute: 79 % (2.97 g), farblose Kristalle IR: 1653 cm⁻¹ (C=N) Ethyl-2-(3-brom-4-fluorphenyl)-2-hydroxy-propanimidat-hydrochlorid 20.13

Aus 9.76 g (40 mmol) 2-(3-Brom-4-fluorphenyl)-2-hydroxy-propionitril (**19.8**) und 2.16 g (48 mmol) Ethanol nach **AAV 2** Schmp.: 99.4 °C (Diethylether) Ausbeute: 81 % (10.64 g), farblose Kristalle IR: 1647 cm⁻¹ (C=N)

Ethyl-2-(4-chlor-3-methylphenyl)-2-hydroxy-propanimidat-hydrochlorid 20.14

Aus 2.78 g (10 mmol) 2-(4-Chlor-3-methylphenyl)-2-hydroxy-propionitril (**19.9**) und 0.54g (12 mmol) Ethanol nach **AAV 2** Schmp.: 101.3 °C (Diethylether) Ausbeute: 85 % (2.37g), farblose Kristalle IR: 1651 cm⁻¹ (C=N) Ethyl-2-(3-chlor-4-fluorphenyl)-2-hydroxy-propanimidat-hydrochlorid 20.15

Aus 2.99 g (15 mmol) 2-(3-Chlor-4-fluorphenyl)-2-hydroxy-propionitril (**19.10**) und 0.81 g (18 mmol) Ethanol nach **AAV 2** Schmp.: 102.8 °C (Diethylether) Ausbeute: 68 % (2.88 g), farblose Kristalle IR: 1648 cm⁻¹ (C=N)

Ethyl-2-cyclopropyl-2-hydroxy-propanimidat-hydrochlorid 20.16

Aus 3.33 g (30 mmol) 2-Cyclopropyl-2-hydroxy-propionitril (**19.11**) und 1.62 g (36 mmol) Ethanol nach **AAV 2** Schmp.: 96.2 °C (Diethylether) Ausbeute: 71 % (4.12 g), farblose Kristalle IR: 1650 cm⁻¹ (C=N) Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanimidat-hydrochlorid 20.17

Aus 7.88 g (40 mmol) 2-Hydroxy-2-(naphthalen-2-yl)propionitril (**19.12**) und 2.16 g (48 mmol) Ethanol nach **AAV 2** Schmp.: 119.2 °C (Diethylether) Ausbeute: 88 % (9.83 g), farblose Kristalle IR: 1652 cm⁻¹ (C=N)

Methyl-2-hydroxy-2-(naphthalen-2-yl)propanimidat-hydrochlorid 20.18

Aus 1.97 g (10 mmol) 2-Hydroxy-2-(naphthalen-2-yl)propionitril (**19.12**) und 0.38 g (12 mmol) Methanol nach **AAV 2** Schmp.: 109.5 °C (Diethylether) Ausbeute: 85 % (2.26 g), farblose Kristalle IR: 1651 cm⁻¹ (C=N) Propyl-2-hydroxy-2-(naphthalen-2-yl)propanimidat-hydrochlorid 20.19

Aus 1.97 g (10 mmol) 2-Hydroxy-2-(naphthalen-2-yl)propionitril (19.12)und 0.72 g (12 mmol) 1-Propanol nach AAV 2Schmp.: $93.5 \ ^{\circ}C$ (Diethylether)Ausbeute: $77 \ \% (2.27 \ g)$, farblose KristalleIR: $1652 \ \mathrm{cm}^{-1} \ (C=N)$

Benzyl-2-hydroxy-2-(naphthalen-2-yl)propanimidat-hydrochlorid 20.20

Aus 1.97 g (10 mmol) 2-Hydroxy-2-(naphthalen-2-yl)propionitril (19.12)

und 1.30 g (12 mmol) Benzylalkohol nach AAV 2

Schmp.: 85.7 °C (Diethylether)

Ausbeute: 86 % (2.94 g), farblose Kristalle

IR: $1654 \text{ cm}^{-1} (\text{C}=\text{N})$

Phenethyl-2-hydroxy-2-(naphthalen-2-yl)propanimidat-hydrochlorid 20.21

Aus 1.97 g (10 mmol) 2-Hydroxy-2-(naphthalen-2-yl)propionitril (**19.12**) und 1.47 g (12 mmol) Phenethylalkohol nach **AAV 2** Schmp.: 119.3 °C (Diethylether) Ausbeute: 83 % (2.97 g), farblose Kristalle IR: 1659 cm⁻¹ (C=N)

Ethyl-2-hydroxy-2-(naphthalen-1-yl)acetimidat-hydrochlorid 20.22

Aus 4.58 g (25 mmol) 2-Hydroxy-2-(naphthalen-1-yl)acetonitril (19.13)und 1.35 g (30 mmol) Ethanol nach AAV 2Schmp.: $125.2 \,^{\circ}C$ (Diethylether)Ausbeute:86 % (5.72 g), farblose KristalleIR: $1647 \, \mathrm{cm}^{-1}$ (C=N)

Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-acetimidat-hydrochlorid 20.23

Aus 2.02 g (10 mmol) 2-(3,4-Dichlorphenyl)-2-hydroxy-acetonitril (19.14)und 0.54 g (12 mmol) Ethanol nach AAV 2Schmp.: $114.4 \,^{\circ}C$ (Diethylether)Ausbeute: $63 \,^{\circ}\%$ (1.80 g), farblose KristalleIR: $1652 \, \mathrm{cm}^{-1}$ (C=N)

Ethyl-2-hydroxy-2-phenyl-butanimidat-hydrochlorid 20.24

Aus 1.93 g (12 mmol) 2-Hydroxy-2-phenyl-butyronitril (**19.15**) und 0.65g (14.4 mmol) Ethanol nach **AAV 2** Schmp.: 105.6 °C (Diethylether) Ausbeute: 75 % (2.47 g), farblose Kristalle IR: 1652m⁻¹ (C=N) Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-butanimidat-hydrochlorid 20.25

Aus 3.22 g (14 mmol) 2-(3,4-Dichlorphenyl)-2-hydroxy-butyronitril (**19.16**) und 0.76 g (16.8 mmol) Ethanol nach **AAV 2** Schmp.: 103.1 °C (Diethylether) Ausbeute: 67 % (2.94 g), farblose Kristalle IR: 1654 cm⁻¹ (C=N)

Ethyl-2-hydroxy-2-methyl-propanimidat-hydrochlorid 20.26

Aus 2.13 g (25 mmol) 2-Hydroxy-2-methyl-propionitril und 1.35 g (30 mmol) Ethanol nach **AAV 2**

Schmp.: 97.3 °C (Diethylether), Lit.¹²⁴: 100 °C, Lit.¹²⁵: 94 °C

Ausbeute: 74 % (3.10 g), farblose Kristalle

IR: $1651 \text{ cm}^{-1} (\text{C}=\text{N})$

Benzyl-2-hydroxy-2-methyl-propanimidat-hydrochlorid 20.27

Aus 1.70 g (20 mmol) 2-Hydroxy-2-methyl-propionitril und 2.60 g (24 mmol) Ethanol nach **AAV 2** Schmp.: 66.7 °C (Diethylether), Lit.¹²⁵: 67 °C, Lit.¹²⁶: 68 °C Ausbeute: 66 % (3.03 g), farblose Kristalle IR: 1651 cm⁻¹ (C=N)

Ethyl-2-hydroxy-2-phenyl-acetimidat-hydrochlorid 20.28

Aus 2.66 g (20 mmol) 2-Hydroxy-2-phenyl-acetonitril und 1.08 g (24 mmol) Ethanol nach **AAV 2**

Schmp.: 121.6 °C (Diethylether)

Ausbeute: 87 % (3.73 g), farblose Kristalle

IR: 1651 cm^{-1} (C=N)

7.2.2.1 Darstellung von 2-(3,4-Dichlorphenyl)acetimidat-hydrochlorid **30** (Abschnitt 3.7)

Allgemeine Arbeitsvorschrift : entsprechend AAV2

2-(3,4-Dichlorphenyl)acetimidat-hydrochlorid 30

Aus 3.72 g (20 mmol) 3,4-Dichlorphenylacetonitril und 1.08 g (24 mmol) Ethanol nach **AAV 2** Schmp.: 103.8 °C (Diethylether) Ausbeute: 83 % (4.44 g), farblose Kristalle IR: 1647 cm⁻¹ (C=N)

7.2.3 Darstellung der α-Hydroxythiocarbonsäure-O-ester 23 (Abschnitt 3.3.1)

Allgemeine Arbeitsvorschrift AAV 3:

20 mmol der nach AAV 2 gewonnenen Imidoesterhydrochloride, in 10 ml absolutem Dichlormethan gelöst, werden unter intensivem Rühren bei -20°C in 200 ml wasserfreies Pyridin eingetragen. Unter fortwährender Kühlung wird über einen Zeitraum von 30 Minuten trockener Schwefelwasserstoff eingeleitet. Man belässt den Ansatz für eine Stunde unter fortwährendem Rühren bei Raumtemperatur. Anschließend wird der Reaktionsansatz mit eisgekühlter 20% iger Salzsäure zweimal extrahiert. Die vereinigten Etherauszüge werden getrocknet und im Vakuum eingeengt. Die analysenreinen Thiocarbonsäurecarbonsäure-O-ester werden anschließende durch säulenchromatographische Reinigung an Kieselgel (Dichlormethan/ Petrolether 7:3) gewonnen.

O-Ethyl-2-hydroxy-2-phenylpropanthioat 23.1

Aus 4.59 g (20 mmol) Ethyl-2-hydroxy-2-phenyl-propanimidat-hydrochlorid (**20.1**) nach AAV **3**

Ausbeute: 85 % (3.58 g), gelbes Öl

n ²⁰_D: 1.5433, Lit.⁹⁸: 1.5432

IR: 3389 cm^{-1} (OH), 1281 cm⁻¹ (C=S)

¹H-NMR (DMSO- d_6): δ (ppm):

1.36 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=S), 1.82 (s, 3H, PhCC*H*₃), 4.43-4.63 (m, 2H, *CH*₂OC=S), 4.81 (s, 1H, OH), 7.24-7.33, 7.56-7.58 (m, 5H, aromat.)

```
<sup>13</sup>C-NMR (DMSO-d<sub>6</sub>): δ(ppm):
13.6 (CH<sub>3</sub>CH<sub>2</sub>OC=S), 29.1 (PhCCH<sub>3</sub>), 69.6 (CH<sub>3</sub>CH<sub>2</sub>OC=S), 81.3 (PhCCH<sub>3</sub>), 125.6, 127.3, 127.6, 128.1, 128.3 (5C tert., aromat.), 145.0 (C<sup>1</sup> quart., aromat.), 226.6 (C=S)
C<sub>11</sub>H<sub>14</sub>O<sub>2</sub>S [210.29]
```

O-Ethyl-2-hydroxy-2-(4-methylphenyl)propanthioat 23.2


```
Aus 4.88 g (20 mmol) Ethyl-2-hydroxy-2-(4-methylphenyl)propanimidat-
hydrochlorid (20.2) nach AAV 3
                87 % (3.90 g), gelbes Öl
Ausbeute:
n <sup>20</sup><sub>D</sub>:
                1.5463
                3387 \text{ cm}^{-1} (OH), 1279 \text{ cm}^{-1} (C=S)
IR:
<sup>1</sup>H-NMR (CDCl<sub>3</sub>): \delta(ppm):
                1.37 (t, J= 7.0 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>OC=S), 1.80 (s, 3H, PhCCH<sub>3</sub>), 2.32
                (s, 3H, PhCH<sub>3</sub>), 4.43-4.63 (m, 2H, CH<sub>3</sub>CH<sub>2</sub>OC=S), 4.80 (s, 1H,
                OH), 7.16-7.46 (m, 4H, AB-System, aromat.)
<sup>13</sup>C-NMR (CDCl<sub>3</sub>): δ(ppm):
                13.4 (CH<sub>3</sub>CH<sub>2</sub>OC=S), 21.0 (PhCH<sub>3</sub>), 27.2 (PhCCH<sub>3</sub>), 70.6
                (CH<sub>3</sub>CH<sub>2</sub>OC=S), 80.2 (PhCCH<sub>3</sub>), 125.5, 128.8 (4C tert., aromat.),
                137.2 (C<sup>4</sup> quart., aromat.), 141.1 (C<sup>1</sup> quart., aromat), 222.2 (C=S)
HRFAB-MS
                        C_{12}H_{16}O_2S
                Mr 224.32
                [M+H]^+ ber. 225.0949
                [M+H]^+ gef. 225.0959
```

O-Ethyl-2-(4-chlorphenyl)-2-hydroxypropanthioat 23.3


```
Aus 5.28 g (20 mmol) Ethyl-2-(4-chlorphenyl)-2-hydroxy-propanimidat-
hydrochlorid (20.3) nach AAV 3
                87 % (4.26 g), gelbes Öl
Ausbeute:
n <sup>20</sup><sub>D</sub>:
                1.5109
                3377 cm<sup>-1</sup> (OH), 1285 cm<sup>-1</sup> (C=S)
IR:
<sup>1</sup>H-NMR (CDCl<sub>3</sub>): \delta(ppm):
                1.37 (t, J= 7.0 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>OC=S), 1.80 (s, 3H, PhCCH<sub>3</sub>), 4.44-
                4.64 (m, 2H, CH<sub>3</sub>CH<sub>2</sub>OC=S), 4.81 (s, 1H, OH), 7.26-7.52 (m, 4H,
                AB-System, aromat.)
<sup>13</sup>C-NMR (CDCl<sub>3</sub>): \delta(ppm)
                13.4 (CH<sub>3</sub>CH<sub>2</sub>OC=S), 27.4 (PhCCH<sub>3</sub>), 70.9 (CH<sub>3</sub>CH<sub>2</sub>OC=S), 79.9
                (PhCCH<sub>3</sub>), 127.2, 128.2 (4C,tert., aromat.), 133.6 (C<sup>4</sup> quart.,
                aromat.), 142.5 (C<sup>1</sup> quart., aromat.), 225.5 (C=S)
                        C_{11}H_{13}ClO_2S
 HRFAB-MS
                Mr 244.74
                [M+H]^+ ber. 245.0403
                [M+H]^+ gef. 245.0400
```


Aus 2.16 g (6 mmol) 4-Chlorbenzyl-2-(4-chlorphenyl)-2-hydroxy-propanimidathydrochlorid(20.4) nach AAV 3 Ausbeute: 78 % (1.61 g), farblose Kristalle 48.7 °C (Diethylether/ Petrolether) Schmp.: 3400 cm⁻¹ (OH), 1278 cm⁻¹ (C=S) IR: ¹H-NMR (CDCl₃): δ(ppm): 1.81 (s, 3H, PhCCH₃), 4,72 (s, 1H, OH), 5.39-5.50 (q, 2H, PhCH₂OC=S), 7.12-7.14, 7.26-7.34, 7.45.7.48 (m, 8H, aromat.) ¹³C-NMR (CDCl₃): δ(ppm): 27.6 (PhCCH₃), 75.5 (PhCH₂OC=S), 80.5 (PhCCH₃), 127.6, 128.7, 129.4, 129.9 (8C tert., aromat.), 132.8, 134.1, 135.3, 142.5 (4C quart., aromat.), 226.3 (C=S) HRFAB-MS $C_{16}H_{14}Cl_2O_2S$ Mr 341.25 $[M+H]^+$ ber. 341.0170 $[M+H]^+$ gef. 341.0213

O-Ethyl-2-(3,4-dimethylphenyl)-2-hydroxypropanthioat 23.5


```
Aus 5.15 g (20 mmol) Ethyl-2-(3,4-dimethylphenyl)-2-hydroxy-propanimidat-
hydrochlorid (20.7) nach AAV 3
Ausbeute: 82 % (3.93 g), farblose Kristalle
               43.1 °C (Diethylether/ Petrolether)
Schmp.:
               3379 \text{ cm}^{-1} (OH), 1275 \text{ cm}^{-1} (C=S)
IR:
<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ(ppm):
               1.39 (t, J= 7.1 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>OC=S), 1.79 (s, 3H, PhCCH<sub>3</sub>), 2.23,
               2.26 (s, 6H, PhCH<sub>3</sub>), 4.44-4.65 (m, 2H, CH<sub>3</sub>CH<sub>2</sub>OC=S), 4.73 (s,
               1H, OH), 7.07-7.33 (m, 3H, aromat.)
<sup>13</sup>C-NMR (CDCl<sub>3</sub>): δ(ppm):
               13.6 (CH<sub>3</sub>CH<sub>2</sub>OC=S), 19.3, 20.0 (PhCH<sub>3</sub>), 29.0 (PhCCH<sub>3</sub>), 69.5
               (CH<sub>3</sub>CH<sub>2</sub>OC=S), 81.1 (PhCCH<sub>3</sub>), 122.9, 126.6, 129.2 (3C tert.,
               aromat.), 135.3, 135.8 (C^3 + C^4 quart., aromat.), 142.5 (C^1 quart.,
               aromat.), 227.0 (C=S)
HRFAB-MS
                      C_{13}H_{18}O_2S
               Mr 238.35
               [M+H]^+ ber. 239.1106
               [M+H]^+ gef. 239.1093
```



```
Aus 8.96 g (30 mmol) Ethyl-2-(3,4-dichlorphenyl) 2-hydroxy-propanimidat-
hydrochlorid (20.8) nach AAV 3
Ausbeute: 86 % (7.18 g), farblose Kristalle
               36.1 °C (Diethylether/ Petrolether)
Schmp.:
               3364 cm<sup>-1</sup> (OH), 1281 cm<sup>-1</sup> (C=S)
IR:
<sup>1</sup>H-NMR (CDCl<sub>3</sub>): \delta(ppm):
               1.39 (t, J =7.0 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>OC=S), 1.79 (s, 3H, PhCCH<sub>3</sub>), 4.46-
               4.54, 4.57-4.65 (m, 2H, CH<sub>3</sub>CH<sub>2</sub>OC=S), 4.84 (s, 1H, OH), 7.39-
               7.43, 7.67 (m, 3H, aromat.)
<sup>13</sup>C-NMR (CDCl<sub>3</sub>): δ(ppm):
               13.4 (CH<sub>3</sub>CH<sub>2</sub>OC=S), 27.5 (PhCCH<sub>3</sub>), 71.1 (CH<sub>3</sub>CH<sub>2</sub>OC=S), 79.5
               (PhCCH<sub>3</sub>), 125.3, 128.0, 130.0 (3C tert., aromat.), 131.8, 132.3 (C<sup>3</sup>)
               + C^4 quart., aromat.), 144.1 (C<sup>1</sup> quart., aromat.), 226.7 (C=S)
                       C_{11}H_{12}Cl_2O_2S
HRFAB-MS
               Mr 279.18
               [M+H]^+ ber. 279.0013
               [M+H]^+ gef. 279.0008
```

O-Methyl-2-(3,4-dichlorphenyl)-2-hydroxypropanthioat 23.7


```
Aus 2.28 g (8 mmol) Methyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidat-
hydrochlorid (20.9) nach AAV 3
Ausbeute: 85 % (1.79 g), gelbes Öl
              1.5814
n 20:
IR:
              3383 cm<sup>-1</sup> (OH), 1276 cm<sup>-1</sup> (C=S)
<sup>1</sup>H-NMR (CDCl<sub>3</sub>): \delta(ppm):
              1.80 (s, 3H, PhCCH<sub>3</sub>), 4.15 (s, 3H, CH<sub>3</sub>OC=S), 4.77 (s, 1H, OH),
              7.37-7.42, 7.66-7.67 (m, 3H, aromat.)
<sup>13</sup>C-NMR (CDCl<sub>3</sub>): δ(ppm):
              27.4 (PhCCH<sub>3</sub>), 61.4 (CH<sub>3</sub>OC=S), 79.6 (PhCCH<sub>3</sub>), 125.39, 128.0,
              130.1 (3C tert., aromat.), 131.8, 132.3 (C^3 + C^4 quart., aromat.),
              143.9 (C<sup>1</sup> quart., aromat.), 226.4 (C=S)
                     C_{14}H_{14}Cl_2O_2S
HRFAB-MS
              Mr 265.16
              [M+H]^+ber. 264.9857
              [M+H]^+gef. 264.9842
```

O-Propyl-2-(3,4-dichlorphenyl)-2-hydroxypropanthioat 23.8


```
Aus 1.88 g (6 mmol) Propyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidat-
hydrochlorid (20.10) nach AAV 3
Ausbeute: 84 % (1.47 g), gelbes Öl
n <sup>20</sup><sub>D</sub>:
               1.5621
               3373 \text{ cm}^{-1} (OH), 1284 \text{ cm}^{-1} (C=S)
IR:
<sup>1</sup>H-NMR (DMSO-d_6): \delta(ppm):
               0.95 (t, J= 7.0 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>O), 1.75-1.82 (m, 2H,
               CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>O), 1.79 (s, 3H, PhCCH<sub>3</sub>), 4.36-4.42, 4.47-4.53 (m,
               2H, OCH<sub>2</sub>), 4.86 (s, 1H, OH), 7.37-7.42, 7,68 (m, 3H, aromat.)
<sup>13</sup>C-NMR (DMSO-d<sub>6</sub>): \delta(ppm):
                        (CH_3CH_2CH_2OC=S),
                                                      21.8
                10.8
                                                                (CH_3CH_2CH_2OC=S),
                                                                                              27.3
               (PhCCH<sub>3</sub>), 77.2 (CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OC=S), 79.9 (PhCCH<sub>3</sub>), 125.7, 128.5,
               130.4 (3C tert., aromat.), 132.2, 132.6 (C^3 + C^4 quart., aromat.),
               144.5 (C<sup>1</sup> quart., aromat.), 225.9 (C=S)
                       C_{12}H_{14}Cl_2O_2S
HRFAB-MS
               Mr 293.21
               [M+H]^+ ber. 293.0170
               [M+H]<sup>+</sup> gef. 293.0150
```



```
Aus 2.16 g (6 mmol) Benzyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidat-
hydrochlorid (20.11) nach AAV 3
Ausbeute: 79 % (1.61 g), gelbes Öl
              1.6000
n 20:
IR:
              3382 cm<sup>-1</sup> (OH), 1278 cm<sup>-1</sup> (C=S)
<sup>1</sup>H-NMR (CDCl<sub>3</sub>): \delta(ppm):
              1.79 (s, 3H, PhCCH<sub>3</sub>), 4.78 (s, 1H, OH), 5.44-5.54 (q, 2H,
              PhCH<sub>2</sub>OC=S), 7.22-7.25, 7.36-7.39, 7.66 (m, 8H, aromat.)
<sup>13</sup>C-NMR (CDCl<sub>3</sub>): δ(ppm):
              27.8 (PhCCH<sub>3</sub>), 76.9 (PhCH<sub>2</sub>OC=S), 80.2 (PhCCH<sub>3</sub>), 125.7, 128.6,
              128.7, 129.2, 129.4, 130.4 (8C tert., aromat.), 132.3, 132.7 (C^3 + C^4
              quart., aromat.), 134.2 (C<sup>1</sup> quart., aromat., Benzyl), 142.5 (C<sup>1</sup>
              quart., aromat.), 225.4 (C=S)
                     C_{16}H_{14}Cl_2O_2S
HRFAB-MS
              Mr 341.25
              [M+H]<sup>+</sup> ber. 341.0170
```

[M+H]⁺ gef. 341.0178


```
Aus 2.25 g (6 mmol) Phenethyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidat-
hydrochlorid (20.12) nach AAV 3
               81 % (1.73 g), gelbes Öl
Ausbeute:
               1.5955
n 20 :
IR:
               3378 cm<sup>-1</sup> (OH), 1285 cm<sup>-1</sup> (C=S)
<sup>1</sup>H-NMR (CDCl<sub>3</sub>): \delta(ppm):
               1.69 (s, 3H, PhCCH<sub>3</sub>), 3.06 (t, 2H, J= 6.5 Hz, PhCH<sub>2</sub>CH<sub>2</sub>O), 4.63-
               4.77 (m, 2H, PhCH<sub>2</sub>CH<sub>2</sub>O), 4.74 (s, 1H, OH), 7.11-7.31, 7.57-7.58
               (m, 8H, aromat.)
<sup>13</sup>C-NMR (CDCl<sub>3</sub>): δ(ppm):
               27.4 (PhCCH<sub>3</sub>), 34.3 (PhCH<sub>2</sub>CH<sub>2</sub>O), 75.1 (PhCH<sub>2</sub>CH<sub>2</sub>O), 79.5
               (PhCCH<sub>3</sub>), 125.2, 126.9, 128.0, 128.7, 128.8, 130.0 (8C tert.,
               aromat.), 131.7, 132.2 (C^3 + C^4 quart., aromat.), 136.8 (C^1 quart.,
               Phenethyl, aromat.), 143.8 (C<sup>1</sup> quart., aromat.), 225.4 (C=S)
HRFAB-MS
                      C_{17}H_{16}Cl_2O_2S
Mr 355.29
               [M+H]^+ ber. 355.0326
               [M+H]^+ gef. 355.0280
```


Aus 6.53 g (20 mmol) Ethyl-2-(3-brom-4-fluorphenyl)-2-hydroxy-propanimidathydrochlorid (20.13) nach AAV 3 84 % (5.13 g), gelbes Öl Ausbeute: n_{D}^{20} : 1.5580 3375 cm^{-1} (OH), 1285 cm $^{-1}$ (C=S) IR: ¹H-NMR (CDCl₃): δ(ppm): 1.38 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=S), 1.79 (s, 3H, PhCCH₃), 4.46-4.62 (m, 2H, CH₃CH₂OC=S), 4.84 (s, 1H, OH), 7.03-7.81 (m, 3H, aromat.) ¹³C-NMR (CDCl₃): δ (ppm): 13.9 (CH₃CH₂OC=S), 27.6 (PhCCH₃), 71.0 (CH₃CH₂OC=S), 79.3 (PhCCH₃), 108.6 (d, ${}^{2}J_{C,F} = 21.4$ Hz, C³ quart., aromat.), 115.7 (d, ${}^{2}J_{C,F} = 22.1$ Hz, C⁵ tert., aromat.), 126.6 (d, ${}^{3}J_{C,F} = 7.6$ Hz, tert., aromat.), 131.1 (d, ${}^{3}J_{CF} = 13.0$ Hz, tert., aromat.), 141.3 (d, ${}^{4}J_{CF} =$ 3.8 Hz, C^1 quart., aromat.), 158.4 (d, ${}^1J_{C,F} = 244.9$ Hz, C^4 quart., aromat.), 225.3 (C=S) $C_{11}H_{12}BrFO_2S$ **HRFAB-MS** Mr 307.18 $[M+H]^+$ ber. 306.9804 $[M+H]^+$ gef. 306.9826


```
Aus 4.59 g (20 mmol) Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanimidat-
hydrochlorid (20.17) nach AAV 3
               88% (3.69 g), gelbes Öl
Ausbeute:
n_{D}^{20} :
               1.6095
               3383 cm<sup>-1</sup> (OH), 1283 cm<sup>-1</sup> (C=S)
IR:
<sup>1</sup>H-NMR (CDCl<sub>3</sub>): \delta(ppm):
               1.35 (t, J= 7.1 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>OC=S), 1.93 (s, 3H, PhCCH<sub>3</sub>), 4.42-
               4.64 (m, 2H, CH<sub>3</sub>CH<sub>2</sub>OC=S), 4.93 (s, 1H, OH), 7.43-8.06 (m, 7H,
               aromat.)
<sup>13</sup>C-NMR (CDCl<sub>3</sub>): \delta(ppm):
               13.4 (CH<sub>3</sub>CH<sub>2</sub>OC=S), 27.6 (PhCCH<sub>3</sub>), 70.8 (CH<sub>3</sub>CH<sub>2</sub>OC=S), 80.4
               (PhCCH<sub>3</sub>), 123.8, 124.5, 126.1, 127.5, 127.7, 127.7, 128.4 (7C tert.,
               aromat.), 132.7, 133.0 (C^5 + C^{10} quart., aromat.), 141.2 (C^2 quart.,
               aromat.), 226.8 (C=S)
HRFAB-MS
                       C_{15}H_{16}O_2S
               Mr 260.35
               [M+H]^+ ber. 261.0949
               [M+H]^+ gef. 261.0905
```



```
Aus 1.59 g (6 mmol) Methyl-2-hydroxy-2-(naphthalen-2-yl)propanimidat-
hydrochlorid (20.18) nach AAV 3
              82 % (1.22 g), farblose Kristalle
Ausbeute:
              73.1 °C (Diethylether/ Petrolether)
Smp.:
              3372 \text{ cm}^{-1} (OH), 1273 \text{ cm}^{-1} (C=S)
IR:
<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ(ppm):
              1.94 (s, 3H, PhCCH<sub>3</sub>), 4.13 (s, 3H, CH<sub>3</sub>OC=S), 4.86 (s, 1H, OH),
              7.37-7.42, 7.45-7.48, 7.63-7.66, 7.78-7.86, 8.04 (m, 7H, aromat.)
<sup>13</sup>C-NMR (CDCl<sub>3</sub>): δ(ppm):
              27.2 (PhCCH<sub>3</sub>), 61.2 (CH<sub>3</sub>OC=S), 80.5 (PhCCH<sub>3</sub>), 123.8, 124.6,
              126.1, 126.2, 127.5, 127.9, 128.3 (7C tert., aromat.), 132.7, 133.0
              (C^{5} + C^{10} quart., aromat.), 141.1 (C<sup>2</sup> quart., aromat.), 227.9 (C=S)
                     C_{14}H_{14}O_2S
HRFAB-MS
              Mr 246.33
              [M+H]^+ ber. 247.0793
              [M+H]^+ gef. 247.0772
```


Aus 1.76 g (6 mmol) Propyl-2-hydroxy-2-(naphthalen-2-yl)propanimidat-

hydrochlorid (20.19) nach AAV 3

Ausbeute: 83 % (1.37 g), gelbes Öl

 n_{D}^{20} : 1.6055

IR: 3384 cm^{-1} (OH), 1282 cm⁻¹ (C=S)

¹H-NMR (CDCl₃): δ(ppm):

0.92 (t, J= 7.1 Hz, 3H, $CH_3CH_2CH_2O$), 1.73-1.83 (q, 2H, $CH_3CH_2CH_2O$), 1.94 (s, 3H, PhCCH₃), 4.33-4.39, 4.48-4.54 (m, 2H, OCH_2), 4.95 (s, 1H, OH), 7.37-7.42, 7.44-7.49, 7.65-7.67, 7.78-7.86, 8.06 (m, 7H, aromat.)

¹³C-NMR (CDCl₃): δ(ppm):

10.4 (*C*H₃CH₂CH₂OC=S), 21.4 (CH₃CH₂CH₂OC=S), 27.3 (PhC*C*H₃), 76.5 (CH₃CH₂CH₂OC=S), 80.4 (PhC*C*H₃), 123.9, 124.6, 126.1, 126.1, 127.4, 127.8, 128.4 (7C tert., aromat.), 132.7, 133.0 ($C^5 + C^{10}$ quart., aromat.), 141.2 (C^2 quart., aromat.), 227.0 (C=S)

HRFAB-MS C₁₆H₁₈O₂S

Mr 274.38

[M+H]⁺ ber. 275.1106

 $[M+H]^+$ gef. 275.1090

Aug 2.05 g	(6 mmal) Banzul 2 hudrouu 2 (nanhthalan 2 ul)mananimidat
Aus 2.05 g	(6 mmol) Benzyi-2-nydroxy-2-(naphthalen-2-yi)propanimuat-
hydrochlori	d (20.20) nach AAV 3
Ausbeute:	80 % (1.54 g), gelbes Öl
$n_{\rm D}^{20}$:	1.6340
IR:	3388 cm^{-1} (OH), 1275 cm ⁻¹ (C=S)
¹ H-NMR (C	$CDCl_3$): $\delta(ppm)$:
	1.75 (s, 3H, PhCCH ₃), 4.87 (s, 1H, OH), 5.42-5.45, 5.52-5.54 (dd,
	2H, PhCH ₂ OC=S), 7.19-7.22, 7.28-7.34, 7.45-7.49, 7.63-7.66, 7.76-
	7.82, 8.04 (m, 12H, aromat.)
¹³ C-NMR (0	$CDCl_3$): $\delta(ppm)$:
	27.6 (PhCCH ₃), 76.5 (PhCH ₂ OC=S), 81.1 (PhCCH ₃), 124.2, 125.1,
	126.5, 126.6, 127.9, 128.2, 128.5, 128.8, 129.1, 129.1 (12C tert.,
	aromat.), 133.2, 133.4 ($C^5 + C^{10}$ quart., aromat.), 134.5 (C^1 quart.,
	Benzyl, aromat.), 141.5 (C ² quart., Naphthyl, aromat.), 227.4 (C=S)
HRFAB-MS	$S = C_{20}H_{18}O_2S$
	Mr 322.42
	$[M+H]^+$ ber. 323.1106
	$[M+H]^+$ gef. 323.1113

Aus 2.14g (6 mmol) Phenethyl-2-hydroxy-2-(naphthalen-2-yl)propanimidathydrochlorid (20.21) nach AAV 3 83 % (1.68 g), farblose Kristalle Ausbeute: 65.5 °C (Diethylether/ Petrolether) Schmp.: 3386 cm^{-1} (OH), 1263 cm⁻¹ (C=S) IR: ¹H-NMR (CDCl₃): δ (ppm): 1.85 (s, 3H, PhCCH₃), 3.04-3.05 (m, 2H, PhCH₂CH₂O), 4.60-4.66, 4.71-4.77 (m, 2H, PhCH₂CH₂O), 4.84 (s, 1H, OH), 7.06-7.08, 7.14-7.20, 7.45-7.51, 7.70-7.72, 7.79-7.81, 7.96 (m, 12H, aromat.) ¹³C-NMR (CDCl₃): δ(ppm): 27.6 (PhCCH₃), 34.8 (PhCH₂CH₂O), 75.3 (PhCH₂CH₂O), 80.9 (PhCCH₃), 124.2, 125.0, 126.5, 126.5, 127.2, 127.8, 128.2, 128.8, 128.0, 129.2 (12C tert., aromat.), 133.1, 133.4 ($C^5 + C^{10}$ quart., aromat.), 137.4 (C¹ quart., Phenethyl, aromat.), 141.4 (C² quart., Naphthyl, aromat.), 223.8 (C=S) HRFAB-MS $C_{21}H_{20}O_2S$ Mr 336.45 $[M+H]^+$ ber. 337.1262 [M+H]⁺ gef. 337.1245

```
O-Benzyl-2-hydroxy-2-methylpropanthioat 23.17
```


Aus 2.30 g (10 mmol) Benzyl-2-hydroxy-2-methyl-propanimidat-hydrochlorid (20.27) nach AAV 3

Ausbeute: 88 % (1.86 g), gelbes Öl

n ²⁰: 1.5423, Lit.⁹⁸:1.5430

IR: 3405 cm^{-1} (OH), 1270 cm⁻¹ (C=S)

¹H-NMR (CDCl₃): δ(ppm):

1.47 (s, 6H, HOC(C*H*₃)₂), 3.96 (s, 1H, OH), 5.55 (s, 2H, PhC*H*₂OC=S), 7.32-7.43 (m, 5H, aromat.)

¹³C-NMR (CDCl₃): δ(ppm):

29.1 (2 CH₃), 46.1 (PhCH₂OC=S), 76.0 (HOC(CH₃)₂), 128.6, 129.0, 129.1 (5C tert., aromat), 134.9 (C¹ quart., aromat.), 229.8 (C=S) $C_{11}H_{14}O_2S$ [210.30] 7.2.4 Darstellung der (*E/Z*)-*N*`-(1-Alkoxy-2-hydroxy-alk-1-yliden)-hydrazincarbonsäureester **31** (Abschnitt 3.2.3 und 3.3.3)

Allgemeine Arbeitsvorschrift AAV 4, (Methode1):

Es werden 1 Äquivalent des entsprechenden α -Hydroxyimidoesterhydrochlorides in 10 ml wasserfreiem Ethanol gelöst und die Lösung auf 0-10 °C gekühlt. 1.1 Äquivalente des Carbazates werden gleichfalls in wasserfreiem Ethanol gelöst und langsam zur gekühlten Lösung zugetropft. Es bildet sich innerhalb von 30 Minuten ein kräftiger, weißer Niederschlag von Ammoniumchlorid. Es wird für weitere 24 Stunden bei Raumtemperatur gerührt und der Niederschlag abfiltriert. Anschließend wird der Reaktionsansatz dreimal mit je 15 ml Wasser versetzt und mit Ether ausgeschüttelt.

Die organische Phase wird getrocknet, vollständig eingeengt und gegebenenfalls an Kieselgel mit Ethylacetat/ Hexan (1:1) säulenchromatographisch gereinigt. Die α -Hydroxyhydrazin-carbonsäureester (**21.1-21.24**) kristallisieren aus Ethylacetat/Hexan in der Kälte aus.

Allgemeine Arbeitsvorschrift AAV 5, (Methode2):

Zu einer rührenden Lösung von 1 Äquivalent des entsprechenden α -Hydroxythiocarbonsäure-O-esters in 10 ml Ethylacetat wird eine Lösung aus 1.1 Äquivalenten des entsprechenden Carbazats in 10 ml Ethylacetat zugeführt. Zur Vertreibung des entstehenden Schwefelwasserstoffs wird über einen Zeitraum von 30 Minuten Stickstoff durch den Reaktionsansatz geleitet.

Anschließend wird solange gerührt bis die C=S-Bande in Infrarotspektrum zwischen 1250-1300 cm⁻¹ zugunsten einer C=N-Bande bei 1650 cm⁻¹ verschwindet bzw dünnschichtchromatographisch kein α -Hydroxythio-O-carbonsäureester mehr nachweisbar ist.

Der Ansatz wird dreimal mit je 20 ml Wasser gewaschen und anschließend unter vermindertem Druck eingeengt.

Die α -Hydroxyhydrazin-carbonsäureester (**21.25-21.56**) kristallisieren aus Ethylacetat/ Hexan in der Kälte aus.

(*E/Z*)-*N*`-(2-(4-Bromphenyl)-1-ethoxy-2-hydroxy-propyliden)-hydrazincarbonsäure-methylester **21.1**

Aus 1.54 g	(5 mmol) Ethyl-2-(4-bromphenyl)-2-hydroxy-propanimidat-		
hydrochlori	d (20.5) und 0.50 g (5.5 mmol) Methylcarbazat nach AAV 4		
Ausbeute:	42 % (725 mg), amorphes Pulver		
Schmp.:	126.8 °C (Ethylacetat/ Hexan)		
Verhältnis (E : Z): 50: 50		
IR:	3407 cm ⁻¹ (NH), 3352 cm ⁻¹ (OH), 1718 cm ⁻¹ (C=O), 1638 cm ⁻¹		
	(C=N)		
¹ H-NMR (E	DMSO- d_6): δ (ppm):		
E-Isomer:	1.25 (t, $J = 7.1$ Hz, 3H, $CH_3CH_2OC=N$), 1.60 (s, 3H, PhCCH ₃),		
	3.54 (s, 3H, CH ₃ OC=O), 3.98-4.07 (m, 2H, CH ₃ CH ₂ OC=N), 7.28		
	(s, 1H, OH), 7.32-7.37, 7.54-7.58 (m, 4H, AB-System, aromat.),		
	9.95 (s, 1H, NH)		
Z-Isomer:	0.98 (t, $J = 7.1$ Hz, 3H, $CH_3CH_2OC=N$), 1.55 (s, 3H, PhCCH ₃),		
	3.65 (s, 3H, CH ₃ OC=O), 3.58-3.63, 4.12-4.19 (m, ABX ₃ -System,		
	2H, CH ₃ CH ₂ OC=N), 6.27 (s, 1H, OH), 7.32-7.37, 7.54-7.58 (m,		
	4H, AB-System, aromat.), 9.48 (s, 1H, NH)		
¹³ C-NMR (DMSO- d_6): δ (ppm):			
E-Isomer:	14.4 (CH ₃ CH ₂ OC=N), 28.9 (PhCCH ₃), 52.1 (CH ₃ OC=O), 62.6		
	(CH ₂ OC=N), 77.2 (PhCCH ₃), 121.0 (C ⁴ quart., aromat.), 127.1,		
	131.6 (4C tert., aromat.), 143.7 (C^1 quart., aromat.)		
Z-Isomer:	15.4 (CH ₃ CH ₂ OC=N), 32.2 (PhCCH ₃), 51.8 (CH ₃ OC=O), 65.9		
	(CH ₂ OC=N), 75.1 (PhCCH ₃), 120.4 (C ⁴ quart., aromat.), 127.0,		
	131.6 (4C tert., aromat.), 145.3 (C^1 quart., aromat.)		
$C_{13}H_{17}BrN_2$	O ₄ [345.20]		

Ber. [%]	C 45.23	H 4.96	N 8.12
Gef. [%]	C 45.45	H 5.26	N 8.77

(*E/Z*)-*N*`-(2-(4-Bromphenyl)-1-ethoxy-2-hydroxy-2-propyliden)-hydrazincarbonsäure-ethylester **21.2**

- Aus 1.54 g (8 mmol) Ethyl-2-(4-bromphenyl)-2-hydroxy-propanimidat-
- hydrochlorid (20.5) und 0.57 g (5.5 mmol) Ethylcarbazat nach AAV 4

Ausbeute: 43 % (1.23 g), amorphes Pulver

Schmp.: 102.5 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 60 : 40

- IR: 3394 cm⁻¹ (NH), 3332 cm⁻¹ (OH), 1716 cm⁻¹ (C=O), 1648 cm⁻¹ (C=N)
- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.13 (t, J= 7.1 Hz, 3H, $CH_3CH_2OC=O$), 1.25 (t, J= 7.1 Hz, 3H, $CH_3CH_2OC=N$), 1.60 (s, 3H, PhCCH₃), 3.98-4.06 (m, 4H, OCH_2CH_3), 7.26 (s, 1H, OH), 7.32-7.37, 7.54-7.59 (m, 4H, AB-System, aromat.), 9.93 (s, 1H, NH)
- Z-Isomer: 0.98 (t, J= 7.1 Hz, 3H, $CH_3CH_2OC=O$), 1.22 (t, J= 7.1 Hz, 3H, $CH_3CH_2OC=N$), 1.55 (s, 3H, PhCCH₃), 3.56-3.64, 4.08-4.19 (m, 4H, ABX₃-System, OCH₂CH₃), 6.27 (s, 1H, OH), 7.32-7.37, 7.54-7.59 (m, 4H, AB-System, aromat.), 9.41 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 14.9 ($CH_3CH_2OC=O$), 15.4 ($CH_3CH_2OC=N$), 28.9 (PhC CH_3), 60.6 ($CH_2OC=O$), 62.6 ($CH_2OC=N$), 77.2 (PhC CH_3), 121.0 (C⁴ quart., aromat.), 127.0, 131.6 (4C tert., aromat.), 145.3 (C¹ quart., aromat.)
- Z-Isomer: 14.4 ($CH_3CH_2OC=O$), 15.0 ($CH_3CH_2OC=N$), 32.2 (PhC CH_3), 60.6 ($CH_2OC=O$), 65.9 ($CH_2OC=N$), 75.1 (PhC CH_3), 120.4 (C⁴ quart., aromat.), 127.1, 131.6 (4C tert., aromat.), 143.7 (C¹ quart., aromat.)

$C_{14}H_{19}BrN_2O_4$ [359.22]					
Ber. [%]	C 46.81	H 5.33	N 7.80		
Gef. [%]	C 46.38	H 5.31	N 7.67		

(*E/Z*)-*N*`-(2-(4-Bromphenyl)-1-ethoxy-2-hydroxy-propyliden)-hydrazincarbonsäure-*tert*.-butylester **21.3**

Aus 1.54 g (5 mmol) Ethyl-2-(4-bromphenyl)-2-hydroxy-propanimidat-

hydrochlorid (20.5) und 0.73 g (5.5 mmol) tert.-Butylcarbazat nach AAV 4

Ausbeute: 41 % (787 mg), amorphes Pulver

Schmp.: 152.4 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 50 : 50

IR: 3396 cm⁻¹ (NH), 3350 cm⁻¹ (OH), 1729 cm⁻¹ (C=O), 1654 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.24 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.44 (s, 9H, *CH*₃COC=O), 1.59 (s, 3H, PhCC*H*₃), 3.98-4.04 (m, 2H, *CH*₂OC=N), 7.17 (s, 1H, OH), 7.32-7.36, 7.54-7.58 (m, 4H, AB-System, aromat.), 9.98 (s, 1H, NH)
- Z-Isomer: 0.98 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.35 (s, 9H, CH₃COC=O), 1.55 (s, 3H, PhCCH₃), 3.56-3.63, 4.11- 4.18 (m, 2H, ABX₃-System, CH₂OC=N), 6.25 (s, 1H, OH), 7.32-7.36, 7.54-7.58 (m, 4H, AB-System, aromat.), 9.00 (s, 1H, NH)
- ¹³C-NMR (DMSO-*d*₆): δ(ppm):
- E-Isomer: 14.4 ($CH_3CH_2OC=N$), 28.5 ($CH_3COC=O$), 28.9 (PhCCH₃), 62.4 ($CH_3CH_2OC=N$), 77.2 (PhCCH₃), 79.4 ($CH_3COC=O$), 120.4 (C^4 quart., aromat.), 127.1, 131.5 (4C tert., aromat.), 143.8 (C^1 quart., aromat.)

Z-Isomer:	15.4 (CH ₃ CH ₂ OC=N), 28.4 (CH ₃ COC=O), 31.2 (PhCCH ₃), 65.8
	(CH ₃ CH ₂ OC=N), 75.2 (PhCCH ₃), 79.4 (CH ₃ COC=O), 121.0
	(C ⁴ quart., aromat.), 127.1, 131.6 (4C tert., aromat.), 145.3 (C ¹
	quart., aromat.)
$C_{16}H_{23}BrN_2$	₂ O ₄ [387.28]

Ber. [%]	C 49.62	H 5.99	N 7.23
Gef. [%]	C 49.16	H 6.26	N 7.26

(*E/Z*)-*N*`-(2-(4-Bromphenyl)-1-ethoxy-2-hydroxy-propyliden)-hydrazincarbonsäure-benzylester **21.4**

Aus 1.54 g (5 mmol) Ethyl-2-(4-bromphenyl)-2-hydroxy-propanimidathydrochlorid (**20.5**) und 0.91 g (5.5 mmol) Benzylcarbazat nach AAV **4** Ausbeute: 40 % (848 mg), farblose Kristalle Schmp.: 110.0 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 92 : 08

IR: 3398 cm⁻¹ (NH), 3320 cm⁻¹ (OH), 1711 cm⁻¹ (C=O), 1653 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.25 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.59 (s, 3H, PhCC*H*₃), 3.97-4.09 (m, 2H, *CH*₂OC=N), 5.03 (s, 2H, PhC*H*₂OC=O), 7.26 (s, 1H, OH), 7.28-7.58 (m, 9H, aromat.), 10.04 (s, 1H, NH)
- Z-Isomer: 0.98 (t, *J* = 7.1 Hz, 3H, CH₃CH₂OC=N), 1.55 (s, 3H, PhCCH₃), 3.57-3.64, 4.12-4.20 (m, 2H, ABX₃-System, CH₂OC=N), 5.14 (s, 2H, PhCH₂OC=O), 6.28 (s, 1H, OH), 7.28-7.58 (m, 9H, aromat.), 9.64 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 14.9 (*C*H₃CH₂OC=N), 28.9 (PhC*C*H₃), 62.7 (CH₃*C*H₂OC=N), 65.9 (Ph*C*H₂OC=O), 77.2 (Ph*C*CH₃), 121.0 (C⁴ quart., aromat.), 127.0, 128.0, 128.3, 128.8, 131.7 (9C tert., aromat.), 137.1 (C⁴ quart., Benzyl, aromat.), 143.7 (C¹ quart., aromat.)
- Z-Isomer: 15.3 (*C*H₃CH₂OC=N), 32.1 (PhC*C*H₃), 65.7 (CH₃*C*H₂OC=N), 65.9 (Ph*C*H₂OC=O), 75.8 (Ph*C*CH₃), 117.0 (C⁴ quart., aromat.), 127.0, 127.7, 128.1, 128.8, 133.3 (9C tert., aromat.), 138.3 (C⁴ quart., Benzyl, aromat.), 146.1 (C¹ quart., aromat.)

C₁₉H₂₁BrN₂O₄ [421.29]

Ber. [%]	C 54.17	H 5.02	N 6.65
Gef. [%]	C 54.22	H 5.14	N 6.63

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-(4-nitrophenyl)-propyliden)-hydrazincarbonsäure-methylester **21.5**

Aus 1.19 g (5 mmol) Ethyl-2-hydroxy-2-(4-nitrophenyl)propanimidathydrochlorid (**20.6**) und 0.50 g (5.5 mmol) Methylcarbazat nach AAV **4** Ausbeute: 37 % (578 mg), kristallines Pulver Schmp.: 157.9 °C (Ethylacetat/ Hexan) Verhältnis (E : Z): 96 : 04 IR: 3349 cm⁻¹ (NH), 3329 cm⁻¹ (OH), 1715 cm⁻¹ (C=O), 1649 cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm): E-Isomer: 1.27 (t, *J*= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.65 (s, 3H, PhCCH₃), 3.54 (s, 3H, CH₃OC=O), 4.01-4.09 (m, 2H, CH₃CH₂OC=N), 7.54 (s, 1H,

OH), 7.68-7.71, 8.24-8.26 (m, 4H, AB-System, aromat.), 9.90 (s, 1H, NH)

Z-Isomer: 0.99 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.60 (s, 3H, PhCC*H*₃), 3.66 (s, 3H, *CH*₃OC=O), 3.58-3.62, 4.11-4.18 (m, 2H, ABX₃-System, CH₃C*H*₂OC=N), 6.52 (s, 1H, OH), 7.65-7.67, 8.18-8.21 (m, 4H, AB-System, aromat.), 9.59 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

- E-Isomer: 14.4 ($CH_3CH_2OC=N$), 28.7 (PhC CH_3), 52.2 ($CH_3OC=O$), 62.8 ($CH_2OC=N$), 77.3 (PhC CH_3), 124.0, 126.2 (4C tert., aromat.), 147.2 (C^1 quart., aromat.), 151.5 (C^4 quart., aromat.)
- Z-Isomer: 15.3 ($CH_3CH_2OC=N$), 31.8 (PhC CH_3), 52.2 ($CH_3OC=O$), 66.1 ($CH_2OC=N$), 75.5 (Ph CCH_3), 124.0, 126.3 (4C tert., aromat.), 146.9 (C^1 quart., aromat.) 153.4 (C^4 quart., aromat.)

C₁₃H₁₇N₃O₆ [311.30]

Ber. [%]	C 50.16	H 5.50	N 13.50
Gef. [%]	C 50.01	H 5.57	N 13.52

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-(4-nitrophenyl)-propyliden)-hydrazincarbonsäure-ethylester **21.6**

Aus 1.19 g (5 mmol) Ethyl-2-hydroxy-2-(4-nitrophenyl)propanimidathydrochlorid (**20.6**) und 0.57 g (5.5 mmol) Ethylcarbazat nach AAV **4** Ausbeute: 36 % (583 mg), kristallines Pulver Schmp.: 148.6 °C (Ethylacetat/ Hexan) Verhältnis (E : Z): 92 : 08 IR: 3346 cm⁻¹ (NH), 3329 cm⁻¹ (OH), 1715 cm⁻¹ (C=O), 1645 cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm): E-Isomer: 1.12 (t, *J*= 7.1 Hz, 3H, CH₃CH₂OC=O), 1.26 (t, *J*= 7,1 Hz, 3H,

CH₃CH₂OC=N), 1.65 (s, 3H, PhCCH₃), 3.94-4.09 (m, 4H,

OCH₂CH₃), 7.52 (s, 1H, OH), 7.68-7.70, 8.24-8.26 (m, 4H, AB-System, aromat.), 9.88 (s, 1H, NH)

Z-Isomer: 0.99 (t, *J*= 7,1 Hz, 3H, *CH*₃CH₂OC=O), 1.22 (t, *J*= 7,1 Hz, 3H, *CH*₃CH₂OC=N), 1.60 (s, 3H, PhCC*H*₃), 3.55-3.60, 4.11-4.16 (m, 4H, ABX₃-System, OC*H*₂CH₃), 6.52 (s, 1H, OH), 7.64-7.66, 8.18-8.20 (m, 4H, AB-System, aromat.), 9.54 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

E-Isomer:	13.9 (CH ₃ CH ₂ OC=O), 14.4 (CH ₃ CH ₂ OC=N), 28.3 (PhCCH ₃), 60.2
	(CH ₂ OC=O), 62.3 (CH ₂ OC=N), 76.9 (PhCCH ₃), 123.6, 125.7 (4C
	tert., aromat.), 146.8 (C^4 quart., aromat.), 151.0 (C^1 quart., aromat.)

Z-Isomer: 14.5 (CH₃CH₂OC=O), 14.9 (CH₃CH₂OC=N), 31.4 (PhCCH₃), 65.6 (CH₂OC=O), 62.3 (CH₂OC=N), 76.0 (PhCCH₃), 123.6, 125.8 (4C tert., aromat.), 146.5 (C¹ quart., aromat.), 152.9 (C⁴ quart., aromat.)

C ₁₄ H ₁₉ N ₃ O ₆ [[325.32]
---	----------

Ber. [%]	C 51.69	H 5.89	N 12.92
Gef. [%]	C 51.67	H 5.96	N 13.07

(*E/Z*)-*N*`-(2-(3,4-Dichlorphenyl)-1-ethoxy-2-hydroxy-2-propyliden)-hydrazincarbonsäure-ethylester **21.7**

Aus 1.79 g (6 mmol) Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidathydrochlorid (**20.8**) und 0.69 g (6.6 mmol) Ethylcarbazat nach AAV **4** Ausbeute: 34 % (721 mg), amorphes Pulver Schmp.: 119.1 °C (Ethylacetat/ Hexan) Verhältnis (E : Z): 56 : 44 IR: 3317 cm⁻¹ (NH), 3281 cm⁻¹ (OH), 1710 cm⁻¹ (C=O), 1637 cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.13 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=O), 1.24 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.62 (s, 3H, PhCC*H*₃), 3.98-4.06 (m, 4H, OC*H*₂CH₃), 7.42 (s, 1H, OH), 7.57-7.66 (m, 3H, aromat.), 9.74 (s, 1H, NH)
- Z-Isomer: 1.02 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=O), 1.22 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.57 (s, 3H, PhCC*H*₃), 3.59-3.67, 4.07-4.19 (m, 4H, ABX₃-System, OC*H*₂CH₃), 6.40 (s, 1H, OH), 7.30-7.37 (m, 3H, aromat.), 8.91 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

- E-Isomer: 14.4 ($CH_3CH_2OC=O$), 15.0 ($CH_3CH_2OC=N$), 28.7 ($PhCCH_3$), 60.6 ($CH_2OC=O$), 62.7 ($CH_2OC=N$), 77.0 ($PhCCH_3$), 125.3, 126.8, 131.0 (3C tert., aromat.), 130.6, 131.4 ($C^3 + C^4$ quart., aromat.), 147.1 (C^1 quart., aromat.)
- Z-Isomer: 14.9 ($CH_3CH_2OC=O$), 15.4 ($CH_3CH_2OC=N$), 31.8 (PhC CH_3), 60.6 ($CH_2OC=O$), 66.1 ($CH_2OC=N$), 74.9 (PhC CH_3), 125.4, 127.4, 131.1 (3C tert., aromat.), 130.6, 131.4 ($C^3 + C^4$ quart., aromat.), 145.4 (C^1 quart., aromat.)

 $C_{14}H_{18}Cl_2N_2O_4$ [349.22]

Ber. [%]	C 48.11	H 5.20	N 8.02
Gef. [%]	C 47.81	H 5.36	N 8.14

(*E/Z*)-*N*`-(2-(3,4-Dichlorphenyl)-1-ethoxy-2-hydroxy-propyliden)-hydrazincarbonsäure-*tert*.-butylylester **21.8**

Aus 1.79 g (6 mmol) Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidathydrochlorid (**20.8**) und 0.69 g (6.6 mmol) Ethylcarbazat nach AAV **4** Ausbeute: 38 % (862 mg), amorphes Pulver

- Schmp.: 147.3 °C (Ethylacetat/ Hexan)
- Verhältnis (E : Z): 48 : 52
- IR: 3392, 3366 cm⁻¹ (NH), 3279 cm⁻¹ (OH), 1709 cm⁻¹ (C=O), 1646 cm⁻¹ (C=N)
- ¹H-NMR (CDCl₃): δ(ppm):
- E-Isomer: 1.23 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N), 1.35 (s, 9H, *CH*₃COC=O), 1.62 (s, 3H, PhCC*H*₃), 4.00-4.06 (m, 2H, *CH*₂OC=N), 7.33 (s, 1H, OH), 7.15-7.26 (m, 3H, aromat.), 9.75 (s, 1H, NH)
- Z-Isomer: 1.01 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N), 1.44 (s, 9H, *CH*₃COC=O), 1.57 (s, 3H, PhCC*H*₃), 3.59-3.67, 4.11-4.19 (m, 2H, ABX₃-System, *CH*₂OC=N), 6.40 (s, 1H, OH), 7.15-7.26 (m, 3H, aromat.), 9.10 (s, 1H, NH)

¹³C-NMR (CDCl₃): δ(ppm):

- E-Isomer: 14.4 ($CH_3CH_2OC=N$), 28.5 ($CH_3COC=O$), 28.6 ($PhCCH_3$), 62.5 ($CH_3CH_2OC=N$), 77.0 ($PhCCH_3$), 79.4 ($CH_3COC=O$), 125.6, 126.8, 131.0 (3C tert., aromat.), 129.9, 131.4 ($C^3 + C^4$ quart., aromat.), 145,3 (C^1 quart., aromat.)
- Z-Isomer: 15.5 ($CH_3CH_2OC=N$), 28.6 ($CH_3COC=O$), 31.8 (PhCCH₃), 66.0 ($CH_3CH_2OC=N$), 75.0 ($CH_3COC=O$), 79.4 (PhCCH₃), 125.4, 126.9, 131.1 (3C tert., aromat), 129.9, 131.4 ($C^3 + C^4$ quart., aromat.), 143.7 (C^1 quart., aromat.)

 $C_{16}H_{22}Cl_2N_2O_4$ [377.27]

Ber. [%]	C 50.94	H 5.88	N 7.43
Gef. [%]	C 50.76	H 5.93	N 7.33

(*E/Z*)-*N*`-(2-(4-Chlor-3-methylphenyl)-1-ethoxy-2-hydroxy-propyliden)hydrazin-carbonsäure-methylester **21.9**

Aus 1.44 g (6 mmol) Ethyl-2-(4-chlor-3-methylphenyl)-2-hydroxy-

propanimidat-hydrochlorid (20.14) und 0.60 g (6.6 mmol) Methylcarbazat nach AAV 4

```
Ausbeute: 37 % (696 mg)
```

Schmp.: 137.4 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 68 : 32

IR: 3372 cm^{-1} (NH), 3319 cm^{-1} (OH), 1720 cm^{-1} (C=O), 1642 cm^{-1} (C=N)

- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.25 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.59 (s, 3H, PhCC*H*₃), 2.33 (s, 3H, PhCH₃), 3.54 (s, 3H, CH₃OC=O), 4.01-4.06 (m, 2H, CH₃C*H*₂O), 7.22 (s, 1H, OH), 7.32-7.42 (m, 3H, aromat.), 9.95 (s, 1H, NH)
- Z-Isomer: 0.99 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.55 (s, 3H, PhCCH₃),
 2.34 (s, 3H, PhCH₃), 3.65 (s, 3H, CH₃OC=O), 3.59-3.63, 4.13-4.21 (m, 2H, ABX₃-System, CH₃CH₂O), 6.22 (s, 1H, OH), 7.19-7.26 (m, 3H, aromat.), 9.44 (s, 1H, NH)
- ¹³C-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 14.4 (CH₃CH₂OC=N), 20.2 (PhCH₃), 29.1 (PhCCH₃), 52.1 (CH₃OC=O), 62.5 (CH₃CH₂O), 77.1 (PhCCH₃), 123.8, 127.6, 129.2 (3C tert., aromat.), 132.7, 133.5 ($C^3 + C^4$ quart., aromat.), 135.7 (C^1 quart., aromat.), 143.3 (C=N), 144.9 (C=O)
- Z-Isomer: 15.4 (CH₃CH₂OC=N), 19.5 (PhCH₃), 32.3 (PhCCH₃), 52.1 (CH₃OC=O), 65.9 (CH₃CH₂O), 75.0 (PhCCH₃), 124.1, 127.4, 129.0 (3C tert., aromat.), 132.1, 135.0 ($C^3 + C^4$ quart., aromat.), 135.5 (C^1 quart., aromat.), 143.3 (C=N), 144.9 (C=O)

 $C_{14}H_{19}ClN_2O_4\ [314.77]$

Ber. [%]	C 53.42	H 6.08	N 8.90

Gef. [%] C 53.29 H 6.25 N 8.81

(*E/Z*)-*N*`-(2-(3-Chlor-4-fluorphenyl)-1-ethoxy-2-hydroxy-2-propyliden)hydrazin-carbonsäure-ethylester **21.10**

Aus 1.69 g (6 mmol) Ethyl-2-(3-chlor-4-fluorphenyl)-2-hydroxy-propanimidathydrochlorid (**20.15**) und 0.60 g (6.6 mmol) Methylcarbazat nach AAV **4**

Ausbeute: 35 % (677mg), farblose Kristalle

Schmp.: 139.3 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 67 : 33

- IR: 3406 cm^{-1} (NH), 3333 cm^{-1} (OH), 1718 cm^{-1} (C=O), 1638 cm^{-1} (C=N)
- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.24 (t, *J*= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.62 (s, 3H, PhCCH₃), 3.55 (s, 3H, CH₃OC=O), 4.00-4.06 (m, 2H, CH₃CH₂OC=N), 7.40 (s, 1H, OH), 7.38-7.43, 7.55-7.57 (m, 3H, aromat.), 9.96 (s, 1H, NH)
- Z-Isomer: 1.01 (t, *J*= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.57 (s, 3H, PhCCH₃), 3.65 (s, 3H, CH₃OC=O), 4.11-4.19 (m, 2H, CH₃CH₂OC=N), 6.38 (s, 1H, OH), 7.32-7.45, 7.51-7.53 (m, 3H, aromat.), 9.55 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

- E-Isomer: 14.4 (CH₃CH₂OC=N), 28.9 (PhCCH₃), 52.1 (CH₃OC=O), 62.7 (CH₂OC=N), 77.0 (PhCCH₃), 117.3 (d, ${}^{2}J_{C,F} = 21.4$ Hz, C⁵ tert., aromat.), 119.7 (d, ${}^{2}J_{C,F} = 18.3$ Hz, C³ quart., aromat.), 125.7 (d, ${}^{3}J_{C,F} = 7.4$ Hz, tert., aromat.), 126.9 (d, ${}^{3}J_{C,F} = 6.1$ Hz, tert., aromat.), 142.2 (d, ${}^{4}J_{C,F} = 3.1$ Hz, C¹ quart., aromat.), 156.8 (d, ${}^{1}J_{C,F} = 246.4$ Hz, C⁴ quart., aromat.)
- Z-Isomer: 15.4 (CH₃CH₂OC=N), 32.0 (PhCCH₃), 52.1 (CH₃OC=O), 66.1 (CH₂OC=N), 74.9 (PhCCH₃), 117.2 (d, ${}^{2}J_{C,F} = 21.4$ Hz, C⁵ tert., aromat.), 119.6 (d, ${}^{2}J_{C,F} = 18.3$ Hz, C³ quart., aromat.), 125.7 (d, ${}^{3}J_{C,F} = 7.4$ Hz, tert., aromat.), 126.9 (d, ${}^{3}J_{C,F} = 6.1$ Hz, tert., aromat.), 143.7 (d, ${}^{4}J_{C,F} = 3.1$ Hz, C¹ quart., aromat.), 156.5 (d, ${}^{1}J_{C,F} = 245.7$ Hz, C⁴ quart., aromat.)

C₁₃H₁₆ClFN₂O₄ [318.73] Ber. [%] C 48.99 H 5.06 N 8.79 Gef. [%] C 48.86 H 5.09 N 8.72

(Z)-N`-(2-Cyclopropyl-1-ethoxy-2-hydroxy-propyliden)-hydrazin-carbonsäureethylester **21.11**

Aus 0.84 g (5 mmol) Ethyl-2-cyclopropyl-2-hydroxy-propanimidat-hydrochlorid (**20.16**) und 0.57 g (5.5 mmol) Ethylcarbazat nach AAV **4**

Ausbeute: 41 % (503 mg), kristallines Pulver

Schmp.: 77.6 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 0 : 100

IR: 3417 cm^{-1} (NH), 3306 cm^{-1} (OH), 1718 cm^{-1} (C=O), 1649 cm^{-1} (C=N) ¹H-NMR (DMSO- d_6): δ (ppm):

0.30-0.41 (m, 4H, CH_2 , Cyclopropan), 1.11-1.16 (m, 1H, CH, Cyclopropan), 1.17 (t, J=7.1 Hz, 3H, $CH_3CH_2OC=O$), 1.20 (t, J=7.1 Hz, 3H, $CH_3CH_2OC=N$), 1.32 (s, 3H, PhCCH₃), 3.92-3.97, 4.01-4.08 (m, 4H, ABX₃-System, OCH₂CH₃), 6.18 (s, 1H, OH), 10.44 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

1.7 (*C*H₂, Cyclopropan), 13.6 (*C*H₃CH₂OC=O), 14.1 (*C*H₃CH₂OC=N), 19.0 (*C*H, Cyclopropan), 24.9 (PhCCH₃), 59.6 (*C*H₂OC=O), 61.0 (*C*H₂OC=N), 75.4 (PhCCH₃)

 $C_{11}H_{20}N_2O_4$ [244.29]

Ber. [%]	C 54.08	H 8.25	N 11.47
Gef. [%]	C 54.15	H 8.28	N 11.44

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-(naphthalen-2-yl)-propyliden)–hydrazincarbonsäure-methylester **21.12**

Aus 1.40 g (5 mmol) Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanimidathydrochlorid (20.17) und 0.50 g (5.5 mmol) Methylcarbazat nach AAV 4 Ausbeute: 36 % (567 mg), amorphes Pulver 153.5 °C (Ethylacetat/Hexan) Schmp.: Verhältnis (E : Z): 49 : 51 3366 cm⁻¹ (NH), 3317 cm⁻¹ (OH), 1722 cm⁻¹ (C=O), 1637 cm⁻¹ IR: (C=N) ¹H-NMR (DMSO- d_6): δ (ppm): E-Isomer: 1.29 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.71 (s, 3H, PhCCH₃), 3.51 (s, 3H, CH₃OC=O), 4.06-4.11 (m, 2H, CH₃CH₂OC=N), 7.31 (s, 1H, OH), 7.47-7.55, 7.88-7.97 (m, 7H, aromat.), 10.08 (s, 1H, NH) Z-Isomer: 0.93 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.66 (s, 3H, PhCCH₃), 3.68 (s, 3H, CH₃OC=O), 3.56-3.64, 4.18-4.27 (m, 2H, CH₃CH₂OC=N), 6.33 (s, 1H, OH), 7.47-7.55, 7.88-7.97 (m, 7H, aromat.), 9.49 (s, 1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): 14.0 (CH₃CH₂OC=N), 28.6 (PhCCH₃), 51.7 (CH₃OC=O), 62.1 E-Isomer: (CH₂OC=N), 77.1 (PhCCH₃), 122.4, 123.0, 125.8, 126.3, 127.3, 127.8, 128.0 (7C tert., aromat), 132.2, 132.7 ($C^5 + C^{10}$ quart., aromat.), 141.3 (C² quart., aromat.), 154.1 (C=N) 14.9 (CH₃CH₂OC=N), 31.9 (PhCCH₃), 51.6 (CH₃OC=O), 65.4 Z-Isomer:

 $(CH_2OC=N)$, 75.1 (PhCCH3), 122.5, 122.8, 126.1, 126.1, 127.4, 127.9, 128.0 (7C tert., aromat.), 132.0, 132.5 (C⁵ + C¹⁰ quart., aromat.), 142.9 (C² quart., aromat.), 154.1 (C=N)

 $C_{17}H_{20}N_2O_4$ [316.36]

Ber. [%]	C 64.54	H 6.37	N 8.85
Gef. [%]	C 64.49	H 6.52	N 8.78

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-(naphthalen-2-yl)-propyliden)–hydrazincarbonsäure-ethylester **21.13**

Aus 1.40 g (5 mmol) Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanimidathydrochlorid (20.17) und 0.57 g (5.5 mmol) Ethylcarbazat nach AAV 4 Ausbeute: 37 % (616 mg) 122.7 °C (Ethylacetat/ Hexan) Schmp.: Verhältnis (E : Z): 50 : 50 3372 cm^{-1} (NH, OH), 1717 cm $^{-1}$ (C=O), 1637 cm $^{-1}$ (C=N) IR: ¹H-NMR (DMSO- d_6): δ (ppm): 1.09 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=O), 1.29 (t, J= 7.1 Hz, 3H, E-Isomer: CH₃CH₂OC=N), 1.72 (s, 3H, PhCCH₃), 4.07-4.17 (m, 4H, OCH₂CH₃), 7.29 (s, 1H, OH), 7.47-7.53, 7.86-7.97 (m, 7H, aromat.), 10.05 (s, 1H, NH) Z-Isomer: 0.93 (t, J=7.1 Hz, 3H, $CH_3CH_2OC=O$), 1.24 (t, J=7.1 Hz, 3H, CH₃CH₂OC=N), 1.68 (s, 3H, PhCCH₃), 3.57-3.65, 4.19-4.27 (m, 4H, ABX₃-System, OCH₂CH₃), 6.33 (s, 1H, OH), 7.47-7.53, 7.86-7.97 (m, 7H, aromat.), 9.41 (s, 1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): 14.0 (CH₃CH₂OC=O), 14.6 (CH₃CH₂OC=N), 28.6 (PhCCH₃), 60.1 E-Isomer: (CH₂OC=O), 62.1 (CH₂OC=N), 75.1 (PhCCH₃), 122.5, 123.0, 125.8, 126.1, 127.4, 127.9, 128.1 (7C tert., aromat.), 132.2, 132.5 $(C^5 + C^{10}$ quart., aromat.), 141.3 (C^2 quart., aromat.) 14.4 (CH₃CH₂OC=O), 14.9 (CH₃CH₂OC=N), 32.0 (PhCCH₃), 60.2 Z-Isomer: (CH₂OC=O), 65.4 (CH₂OC=N), 77.2 (PhCCH₃), 122.5, 123.0, 126.1, 126.3, 127.3, 127.8, 128.0 (7C tert., aromat.), 132.0, 132.7

C₁₈H₂₂N₂O₄ [330.39]

Ber. [%]	C 65.44	H 6.71	N 8.48
Gef. [%]	C 65.60	H 6.72	N 8.30

 $(C^5 + C^{10}$ quart., aromat), 143.0 (C^2 quart., aromat.)

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-(naphthalen-2-yl)-propyliden)–hydrazincarbonsäure-*tert*.-butylester **21.14**

Aus 1.40 g (5 mmol) Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanimidathydrochlorid (20.17) und 0.73 g (5.5 mmol) tert.-Butylcarbazat nach AAV 4 Ausbeute: 36 % (641 mg), kristallines Pulver 160.2 °C (Ethylacetat/Hexan) Schmp.: Verhältnis (E : Z): 37 : 63 3383 cm⁻¹ (NH), 3294 cm⁻¹ (OH), 1713 cm⁻¹ (C=O), 1643 cm⁻¹ IR: (C=N) ¹H-NMR (DMSO- d_6): δ (ppm): E-Isomer: 1.27 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.30 (s, 9H, CH₃COC=O), 1.71 (s, 3H, PhCCH₃), 4.00-4.11 (m, 2H, CH₂OC=N), 7.20 (s, 1H, OH), 7.47-7.55, 7.88-7.97 (m, 7H, aromat.), 9.90 (s, 1H, NH) Z-Isomer: 0.92 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.47 (s, 9H, CH₃COC=O), 1.71 (s, 3H, PhCCH₃), 3.56-3.63, 4.17-4.25 (m, 2H, ABX₃-System, CH₂OC=N), 6.30 (s, 1H, OH), 7.47-7.55, 7.88-7.97 (m, 7H, aromat.), 9.00 (s, 1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): E-Isomer: 14.5 (CH₃CH₂OC=N), 28.3 (CH₃COC=O), 29.0 (PhCCH₃), 62.3 (CH₃CH₂OC=N), 77.5 (PhCCH₃), 79.3 (CH₃COC=O), 123.0, 123.4, 126.5, 126.7, 127.8, 128.4, 128.5 (7C tert., aromat.), 132.6, 132.9 $(C^5 + C^{10}$ quart., aromat.), 141.8 (C^2 quart., aromat.) 15.4 (CH₃CH₂OC=N), 28.5 (CH₃COC=O), 32.4 (PhCH₃), 65.8 Z-Isomer:

(CH₃CH₂OC=N), 75.6 (PhCCH₃), 79.4 (CH₃COC=O), 123.0, 123.4, 126.2, 126.8, 127.8, 128.2, 128.3 (7C tert., aromat.), 132.4, 133.2 (C⁵ + C¹⁰ quart., aromat.), 143.4 (C² quart., aromat.)

 $C_{20}H_{26}N_2O_4$ [358.44]

Ber. [%]	C 67.02	H 7.31	N 7.82
Gef. [%]	C 67.12	H 7.63	N 7.79

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-(naphthalen-2-yl)-propyliden)-hydrazincarbonsäure-benzylester **21.15**

Aus 1.40 g (5 mmol) Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanimidathydrochlorid (**20.17**) und 0.91 g (5.5 mmol) Benzylcarbazat nach AAV **4** Ausbeute: 37 % (728 mg), amorphes Pulver Schmp.: 127.5 °C (Ethylacetat/ Hexan) Verhältnis (E : Z): 66 : 34

IR: 3408 cm^{-1} (NH), 3311 cm^{-1} (OH), 1722 cm^{-1} (C=O), 1654 cm^{-1} (C=N)

¹H-NMR (DMSO-*d*₆): δ(ppm):

- E-Isomer: 1.28 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.71 (s, 3H, PhCC*H*₃), 4.06-4.11 (m, 2H, *CH*₂OC=N), 4.95 (s, 2H, PhC*H*₂OC=O), 7.33 (s, 1H, OH), 7.21-7.26, 7.35-7.45, 7.90-7.98 (m, 12H, aromat.), 10.16 (s, 1H, NH)
- Z-Isomer: 0.92 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.66 (s, 3H, PhCC*H*₃), 3.56-3.64, 4.16-4.25 (m, 2H, ABX₃-System, *CH*₂OC=N), 5.12 (s, 2H, PhC*H*₂OC=O), 6,33 (s, 1H, OH), 7.21-7.26, 7.35-7.45, 7.90-7.98 (m, 12H, aromat.), 9.65 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

- E-Isomer: 14.5 (CH₃CH₂OC=N), 29.0 (PhCCH₃), 62.1 (CH₃CH₂OC=N), 65.9 (PhCH₂OC=O), 77.6 (PhCCH₃), 122.9, 123.3, 126.6, 126.8, 127.8, 128.2, 128.3, 128.5, 128.7 (12C tert., aromat), 132.6, 132.9 ($C^5 + C^{10}$ quart., aromat.), 137.1 (C^1 quart., aromat.), 141.6 (C^2 quart., aromat.)
- Z-Isomer: 15.4 ($CH_3CH_2OC=N$), 32.4 (PhC CH_3), 65.8 ($CH_3CH_2OC=N$), 66.0 (Ph $CH_2OC=O$), 75.6 (Ph CCH_3), 122.9, 123.4, 126.2, 126.6, 127.8, 128.2, 128.3, 128.5, 128.8 (12C tert., aromat), 132.4, 133.1 (C^5 +

 $\begin{array}{c} C^{10} \mbox{ quart., aromat.), } 137.1 \ (C^1 \ \mbox{quart., aromat.), } 143.4 \ (C^2 \ \mbox{quart., aromat.)} \\ C_{23}H_{24}N_2O_4 \ [392.46] \\ Ber. \ [\%] \ C \ 70.39 \ H \ 6.16 \ N \ 7.14 \\ Gef. \ [\%] \ C \ 70.39 \ H \ 6.31 \ N \ 7.03 \end{array}$

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-(naphthalen-1-yl)-ethyliden)–hydrazincarbonsäure-methylester **21.16**

Aus 1.33 g (5 mmol) Ethyl-2-hydroxy-2-(naphthalen-1-yl)acetimidat-

hydrochlorid (20.22) und 0.50 g (5.5 mmol) Methylcarbazat nach AAV 4

Ausbeute: 37 % (554 mg), amorphes Pulver

Schmp.: 134.1 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 90 : 10

IR: 3390 cm⁻¹ (NH), 3326 cm⁻¹ (OH), 1734 cm⁻¹ (C=O), 1649 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.08 (t, *J*= 7.1 Hz, 3H, C*H*₃CH₂OC=N), 3.62 (s, 3H, C*H*₃OC=O), 3.94-4.03 (m, 2H, CH₃C*H*₂OC=N), 6.24 (d, 1H, PhCH), 6.82 (d, 1H, OH), 7.51-7.56, 7.89-7.97, 8.06-8.08 (m, 7H, aromat.), 10.07 (s, 1H, NH)
- Z-Isomer: 1.02 (t, *J*= 7.1 Hz, 3H, CH₃CH₂OC=N), 3.64 (s, 3H, CH₃OC=O), 4.05-4.12 (m, 2H, CH₃CH₂OC=N), 6.38 (d, 1H, PhCH), 6,78 (d, 1H, OH), 7.51-7.56, 8.00-8.02, 8.16-8.18 (m, 7H, aromat.), 9.50 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 13.8 (*C*H₃CH₂OC=N), 51.7 (*C*H₃OC=O), 61.8 (*C*H₂OC=N), 68,6 (Ph*C*H), 123.7, 124.2, 125.2, 125.7, 126.1, 128.4 (7C tert., aromat.), 130.4, 133.3 ($C^5 + C^{10}$ quart., aromat.), 134.6 (C^1 quart., aromat.)
- Z-Isomer: 15.0 ($CH_3CH_2OC=N$), 53.7 ($CH_3OC=O$), 64.7 ($CH_2OC=N$), 68.8 (PhCH), 123.4, 124.3, 125.2, 125.5, 126.1, 128.0 (7C tert., aromat.), 130.9, 134.5 ($C^5 + C^{10}$ quart., aromat.), 137.0 (C^1 quart., aromat.)

 $C_{16}H_{18}N_2O_4\ [302.33]$

Ber. [%]	C 63.57	H 6.00	N 9.27
Gef. [%]	C 63.39	H 6.05	N 9.26

(E)-N`-(1-Ethoxy-2-hydroxy-2-(naphthalen-1-yl)-ethyliden)-hydrazincarbonsäure-ethylester **21.17**

Aus 1.33 g (5 mmol) Ethyl-2-hydroxy-2-(naphthalen-1-yl)acetimidat-

hydrochlorid (20.22) und 0.57 g (5.5 mmol) Ethylcarbazat nach AAV 4

Ausbeute: 32 % (510 mg), amorphes Pulver

Schmp.: 124.3 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 100 : 0

IR: 3361 cm⁻¹ (NH), 3283 cm⁻¹ (OH), 1717 cm⁻¹ (C=O), 1655 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

1.17 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=O), 1.18 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 3.98-4.09 (m, 4H, OC*H*₂CH₃), 5.72 (d, 1H, Ph*CH*), 6.91 (d, 1H, OH), 7.48-7.55, 7.90-7.99 (m, 7H, aromat.), 9.99 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

14.4 (CH₃CH₂OC=O), 15.0 (CH₃CH₂OC=N), 60.6 (CH₂OC=O), 62.3 (CH₂OC=N), 71.0 (PhCH), 124.3, 124.7, 125.0, 126.5, 126.7,

(*E*)-*N*`-(1-Ethoxy-2-hydroxy-2-(naphthalen-1-yl)-ethyliden)–hydrazincarbonsäure-*tert*.-butylester **21.18**


```
Aus 1.33 g (5 mmol) Ethyl-2-hydroxy-2-(naphthalen-1-yl)acetimidat-
hydrochlorid (20.22) und 0.73 g (5.5 mmol) tert.-Butylcarbazat nach AAV 4
Ausbeute:
              34 % (579 mg), farblose Kristalle
              164.1 °C (Ethylacetat/Hexan)
Schmp.:
Verhältnis (E : Z): 100 : 0
              3359 cm<sup>-1</sup> (NH), 3292 cm<sup>-1</sup> (OH), 1707 cm<sup>-1</sup> (C=O), 1654 cm<sup>-1</sup>
IR:
              (C=N)
<sup>1</sup>H-NMR (DMSO-d_6): \delta(ppm):
              1.07 (t, J= 7.1 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>OC=N), 1.41 (s, 9H, CH<sub>3</sub>COC=O),
              3.93-4.05 (m, 2H, CH<sub>2</sub>OC=N), 6.28 (d, 1H, PhCH), 6.83 (d, 1H,
              OH), 7.49-7.56, 7.89-7.91, 7.94-8.08 (m, 7H, aromat.), 9.85 (s, 1H,
              NH)
<sup>13</sup>C-NMR (DMSO-d_6): \delta(ppm):
              14.3 (CH<sub>3</sub>CH<sub>2</sub>OC=N), 28.5 (CH<sub>3</sub>COC=O), 62.1 (CH<sub>3</sub>CH<sub>2</sub>OC=N),
              69.4 (PhCH), 79.3 (CH<sub>3</sub>COC=O), 124.2, 124.7, 125.7, 126.2, 126.5,
              128.9, 128.9 (7C tert., aromat.), 130.9, 133.8 (C^5 + C^{10} quart.,
              aromat.), 135.0 (C<sup>1</sup> quart., aromat.), 152.8 (C=N), 156.6 (C=O)
C_{19}H_{24}N_2O_4 [344.41]
Ber. [%]
              C 66.26
                             H 7.02
                                           N 8.13
Gef. [%]
              C 66.59
                            H 7.06
                                           N 8.04
```

```
(E)-N`-(1-Ethoxy-2-hydroxy-2-(naphthalen-1-yl)-ethyliden)–hydrazin-
carbonsäure-benzylester 21.19
```



```
Aus 1.33 g (5 mmol) Ethyl-2-hydroxy-2-(naphthalen-1-yl)acetimidat-
hydrochlorid (20.22) und 0.91 g (5.5 mmol) Benzylcarbazat nach AAV 4
              36 % (669 mg), amorphes Pulver
Ausbeute:
              96.8 °C (Ethylacetat/ Hexan)
Schmp.:
Verhältnis (E : Z): 100 : 0
              3254 cm<sup>-1</sup> (NH,OH), 1708 cm<sup>-1</sup> (C=O), 1654 cm<sup>-1</sup> (C=N)
IR:
<sup>1</sup>H-NMR (DMSO-d_6): \delta(ppm):
              1.08 (t, J= 7.1 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>OC=N), 3.94-4.06 (m, 2H,
              CH<sub>2</sub>OC=N), 5.11 (s, 2H, PhCH<sub>2</sub>OC=O), 6.24 (d, 1H, PhCH), 6.78
              (d, 1H, OH), 7.30-7.37, 7.50-7.55, 7.89-8.07 (m, 12H, aromat.),
              10.16 (s, 1H, NH)
<sup>13</sup>C-NMR (DMSO-d<sub>6</sub>): δ(ppm):
              13.8 (CH<sub>3</sub>CH<sub>2</sub>OC=N), 61.9 (PhCH<sub>2</sub>OC=O), 65.6 (CH<sub>3</sub>CH<sub>2</sub>OC=N),
              68.4 (PhCH), 123.6, 124.2, 125.2, 125.6, 126.0, 127.7, 127.8, 128.3,
              128.4 (12C tert., aromat.), 133.3, 134.6 (C^5 + C^{10} quart., aromat.),
              130.4, 136.7 (C^1 quart., aromat.)
```

 $C_{22}H_{22}N_2O_4\ [378.43]$

Ber. [%]	C 69.83	H 5.86	N 7.40
Gef. [%]	C 69.55	H 5.39	N 7.41

(*E/Z*)-*N*`-(2-(3,4-Dichlorphenyl)-1-ethoxy-2-hydroxy-ethyliden)-hydrazincarbonsäure-*tert*.-butylester **21.20**

Aus 1.42 g (5 mmol) Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-acetimidat-

hydrochlorid (20.23) und 0.73 g (5.5 mmol) tert.-Butylcarbazat nach AAV 4

- Ausbeute: 37 % (671 mg), farblose Kristalle
- Schmp.: 108.9 °C (Ethylacetat/ Hexan)
- Verhältnis (E : Z) : 60 : 40
- IR: 3387 cm⁻¹ (NH), 3310 cm⁻¹ (OH), 1711 cm⁻¹ (C=O), 1655 cm⁻¹ (C=N)
- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.15 (t, J = 7.1 Hz, 3H, $CH_3CH_2OC=N$), 1.41 (s, 9H, $CH_3COC=O$), 3.94-4.01 (m, 2H, $CH_2OC=N$), 5.63 (d, 1H, PhCH), 6.76 (d, 1H, OH), 7.58-7.65 (m, 3H, aromat.), 9,63 (s, 1H, NH)
- Z-Isomer: 1.15 (t, J = 7.1 Hz, 3H, $CH_3CH_2OC=N$), 1.41 (s, 9H, $CH_3COC=O$), 4.19-4.26 (m, 2H, $CH_2OC=N$), 5.62 (d, 1H, PhCH), 6.56 (d, 1H, OH), 7.32-7.35 (m, 3H, aromat.), 9.01 (s, 1H, NH)
- ¹³C-NMR (DMSO-*d*₆): δ(ppm):
- E-Isomer: 15.4 ($CH_3CH_2OC=N$), 28.4 ($CH_3COC=O$), 62.3 ($CH_3CH_2OC=N$), 68.5 (PhCH), 75.4 ($CH_3COC=O$), 126.9, 128.5, 130.6 (3C tert., aromat.), 130.5, 131.2 ($C^3 + C^4$ quart., aromat.), 142.2 (C^1 quart., aromat.)
- Z-Isomer: 14.3 ($CH_3CH_2OC=N$), 28.4 ($CH_3COC=O$), 64.9 ($CH_3CH_2OC=N$), 70.24 (PhCH), 79.4 ($CH_3COC=O$), 127.3, 128.3, 130.7 (3C tert., aromat.), 130.1, 131.1 ($C^3 + C^4$ quart., aromat.), 141.3 (C^1 quart., aromat.)

 $C_{15}H_{20}Cl_2N_2O_4\ [363.24]$

Ber. [%]	C 49.60	H 5.55	N 7.71
Gef. [%]	C 49.28	H 5.66	N 7.64

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-phenyl-butylyliden)-hydrazin-carbonsäureethylester **21.21**

Aus 1.95 g (8 mmol) Ethyl-2-hydroxy-2-phenylbutanimidat-hydrochlorid

(20.24) und 0.92 g (8.8 mmol) Ethylcarbazat nach AAV 4

Ausbeute: 38 % (896 mg), amorphes Pulver

Schmp.: 94.8 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 88 : 12

IR: 3350 cm^{-1} (NH, OH), 1717 cm⁻¹ (C=O), 1654 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 0.80 (t, *J*= 7.1 Hz, 3H, PhCCH₂CH₃), 1.13 (t, *J*= 7.1 Hz, 3H, CH₃CH₂OC=O), 1.23 (t, *J*= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.78-1.87, 2.12-2.21 (m, 2H, PhCCH₂CH₃), 3.93-4.06 (m, 4H, OCH₂CH₃), 6.83 (s, 1H, OH), 7.35-7.44 (m, 5H, aromat.), 10.24 (s, 1H, NH)
- Z-Isomer: 0.61 (t, J=7.1 Hz, 3H, PhCH₂CH₃), 0.93 (t, J=7.1 Hz, 3H, CH₃CH₂OC=O), 1.22 (t, J=7.1 Hz, 3H, CH₃CH₂OC=N), 1.89-1.95, 2.03-2.10 (m, 2H, PhCCH₂CH₃), 3.54-3.62, 4.10-4.19 (m, 4H, ABX₃-System, OCH₂CH₃), 5.81 (s, 1H, OH), 7.22-7.32 (m, 5H, aromat.), 9.35 (s, 1H, NH)
- ¹³C-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 8.1 (PhCCH₂CH₃), 14.4 (CH₃CH₂OC=O), 14.9 (CH₃CH₂OC=N), 33.0 (PhCCH₂CH₃), 60.6 (CH₂OC=O), 62.3 (CH₂OC=N), 80.8 (PhCCH₂CH₃), 125.0, 125.4, 127.1, 127.7, 128.6 (5C tert., aromat.), 143.2 (C¹ quart., aromat.)
- Z-Isomer: 7.8 (PhCCH₂CH₃), 15.0 (CH₃CH₂OC=O), 15.3 (CH₃CH₂OC=N), 35.0 (PhCCH₂CH₃), 60.5 (CH₂OC=O), 65.6 (CH₂OC=N), 77.5 (PhCCH₂CH₃), 125.1, 125.8, 124.0, 127.9, 128.3 (5C tert., aromat.), 143.4 (C¹ quart., aromat.)

 $C_{15}H_{22}N_2O_4$ [294.35]

Ber. [%]	C 61.21	H 7.53	N 9.52
Gef. [%]	C 61.08	H 7.60	N 9.59

(*E/Z*)-*N*`-(2-(3,4-Dichlorphenyl)-1-ethoxy-2-hydroxy-2-butyliden)-hydrazincarbonsäure-ethylester **21.22**

- Aus 1.25 g (4 mmol) Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-butanimidat-
- hydrochlorid (20.25) und 0.46 g (4.4 mmol) Ethylcarbazat nach AAV 4

Ausbeute: 37 % (538 mg), kristallines Pulver

Schmp.: 107.8 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 93 : 07

IR: 3364 cm⁻¹ (NH), 3310 cm⁻¹ (OH), 1723cm⁻¹ (C=O), 1648cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 0.82 (t, *J*= 7.1 Hz, 3H, PhCCH₂CH₃), 1.15 (t, *J*= 7.1 Hz, 3H, CH₃CH₂OC=O), 1.23 (t, *J*= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.79-1.88, 2.13-2.22 (m, 2H, PhCCH₂CH₃), 3.96-4.06 (m, 4H, OCH₂CH₃), 7.12 (s, 1H, OH), 7.38-7.41, 7.61-7.66 (m, 3H, aromat.), 10.16 (s, 1H, NH)
- Z-Isomer: 0.63 (t, J= 7.1 Hz, 3H, PhCCH₂CH₃), 1.01 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=O), 1.10 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.90-1.95, 2.04-2.11 (m, 2H, PhCCH₂CH₃), 3.59-3.67, 4.08-4.19 (m, 4H, ABX₃-System, OCH₂CH₃), 6.08 (s, 1H, OH), 7.29-7.31, 7.50-7.59 (m, 3H, aromat.), 9.50 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

- E-Isomer: 8.0 (PhCCH₂CH₃), 14.3 (CH₃CH₂OC=O), 14.9 (CH₃CH₂OC=N), 32.7 (PhCCH₂CH₃), 60.6 (CH₂OC=O), 62.5 (CH₂OC=N), 80.4 (PhCCH₂CH₃), 125.8, 127.3, 130.9 (3C tert., aromat.), 130.6, 131.3 (2C quart.,aromat.), 144.4 (C¹ quart., aromat.), 152.2 (C=N), 154.0 (C=O)
- Z-Isomer: 7.8 (PhCCH₂CH₃), 15.0 (CH₃CH₂OC=O), 15.3 (CH₃CH₂OC=N), 34.6 (PhCCH₂CH₃), 60.6 (CH₂OC=O), 65.8 (CH₂OC=N), 77.1 (PhCCH₂CH₃), 126.1, 127.6, 130.7 (3C tert., aromat.), 129.9, 131.2

 $\begin{array}{c} (2C \; quart., aromat.), \; 144.9 \; (C^1 \; quart., \; aromat.), \; 152.2 \; (C=N), \; 154.0 \\ (C=O) \\ C_{14}H_{19}CIN_2O_4 \; [363.24] \\ Ber. \; [\%] \quad C \; 49.60 \quad H \; 5.55 \quad N \; 7.71 \\ Gef. \; [\%] \quad C \; 49.51 \quad H \; 5.72 \quad N \; \textbf{7.63} \end{array}$

(Z)-N`-(1-Ethoxy-2-hydroxy-2-methyl-propyliden)-hydrazin-carbonsäureethylester **21.23**


```
Aus 1.01 g (6 mmol) Ethyl-2-hydroxy-2-methylpropanimidat-hydrochlorid
(20.26) und 0.69 g (6.6 mmol) Ethylcarbazat nach AAV 4
               32 % (424 mg), amorphes Pulver
Ausbeute:
               109.3 °C (Ethylacetat/ Hexan)
Schmp.:
Verhältnis (E:Z): 0: 100
               3388 cm<sup>-1</sup> (NH), 3257 cm<sup>-1</sup> (OH), 1714 cm<sup>-1</sup> (C=O), 1642 cm<sup>-1</sup>
IR:
               (C=N)
<sup>1</sup>H-NMR (DMSO-d_6): \delta(ppm):
               1.18 (t, J= 7.1 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>OC=O), 1.20 (t, J= 7.1 Hz, 3H,
               CH<sub>3</sub>CH<sub>2</sub>OC=N), 1.33 (s, 6H, HOC(CH<sub>3</sub>)<sub>2</sub>), 3.92-3.97, 4.03-4,08 (m,
               4H, ABX<sub>3</sub>-System, OCH<sub>2</sub>CH<sub>3</sub>), 6.36 (s, 1H, OH), 10.39 (s, 1H, NH)
<sup>13</sup>C-NMR (DMSO-d_6): \delta(ppm):
               14.4 (CH<sub>3</sub>CH<sub>2</sub>OC=O), 14.9 (CH<sub>3</sub>CH<sub>2</sub>OC=N), 27.5 (2 CH<sub>3</sub>), 60.5
               (CH<sub>2</sub>OC=O), 61.9 (CH<sub>2</sub>OC=N), 74.3 (HOC(CH<sub>3</sub>)<sub>2</sub>)
C_9H_{18}N_2O_4 [218.25]
Ber. [%] C 49.53
                               H 8.31
                                              N 12.84
Gef. [%] C 49.41
                               H 8.25
                                              N 12.96
```

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-phenyl-ethyliden)-hydrazin-carbonsäureethylester **21.24**

- Aus 1.73 g (8 mmol) Ethyl-2-hydroxy-2-phenylacetimidat-hydrochlorid (**20.28**) und 0.92 g (8.8 mmol) Ethylcarbazat nach AAV **4**
- Ausbeute: 39 % (830 mg), amorphes Pulver

Schmp.: 88.7 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 40 : 60

IR: 3290 cm⁻¹ (NH), 3238 cm⁻¹ (OH), 1718 cm⁻¹ (C=O), 1655 cm⁻¹ (C=N)

- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.19 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=O), 1.21 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 3.95-4.12 (m, 4H, OC*H*₂CH₃), 5.53 (d, 1H, Ph*CH*), 6.81 (d, 1H, OH), 7.26-7.36 (m, 5H, aromat.), 9.92 (s, 1H, NH)
- Z-Isomer: 1.03 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=O), 1.17 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 3.73-3.85, 4.16-4.24 (m, 4H, ABX₃-System, OCH₂CH₃), 5.39 (d, 1H, PhC*H*), 6.41 (d, 1H, OH), 7.37-7.40 (m, 5H, aromat.), 9.36 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

- E-Isomer: 14.4 (CH₃CH₂OC=O), 14.9 (CH₃CH₂OC=N), 60,6 (CH₂OC=O), 62.3 (CH₂OC=N), 71.3 (PhCH), 127.6, 128.1, 128.7 (5C tert., aromat.), 139.8 (C¹ quart., aromat.), 151.5 (C=N), 153.9 (C=O)
- Z-Isomer: 15.0 (*C*H₃CH₂OC=O), 15.3 (*C*H₃CH₂OC=N), 60,6 (*C*H₂OC=O), 64.9 (*C*H₂OC=N), 71.8 (Ph*C*H), 125.8, 126.4, 128.6 (5C tert., aromat.), 140.6 (C¹ quart., aromat.), 151.5 (C=N), 154.0 (C=O)

 $C_{13}H_{18}N_2O_4$ [266.30]

Ber. [%]	C 58.64	H 6.81	N 10.52
Gef. [%]	C 58.52	H 6.84	N 10.66

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-phenyl-propyliden)-hydrazin-carbonsäuremethylester **21.25**

- Aus 0.63 g (3 mmol) *O*-Ethyl-2-hydroxy-2-phenylpropanthioat (**23.1**) und 0.32
- g (3.6 mmol) Methylcarbazat nach AAV 5
- Ausbeute: 78 % (626 mg), amorphes Pulver
- Schmp.: 135.3 °C (Ethylacetat/ Hexan)
- Verhältnis (E : Z): 54 : 46
- IR: 3373 cm^{-1} (NH), 3350 cm^{-1} (OH), 1722 cm^{-1} (C=O), 1638 cm^{-1} (C=N)
- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.26 (t, *J*= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.60 (s, 3H, PhCCH₃), 3.53 (s, 3H, CH₃OC=O), 3.99-4.07 (m, 2H, CH₃CH₂OC=N), 7.17 (s, 1H, OH), 7.23-7.37 (m, 5H, aromat.), 10.00 (s, 1H, NH)
- Z-Isomer: 0.94 (t, *J*= 7.1 Hz, 3H, C*H*₃CH₂OC=N), 1.56 (s, 3H, PhCC*H*₃), 3.65 (s, 3H, CH₃OC=O), 3.57-3.61, 4.12-4.20 (m, 2H, ABX₃-System, CH₃C*H*₂OC=N), 6.17 (s, 1H, OH), 7.37-7.42 (m, 5H, aromat.), 9.43 (s, 1H, NH)
- ¹³C-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 14.4 ($CH_3CH_2OC=N$), 29.2 (PhC CH_3), 52.3 ($CH_3OC=O$), 62.6 ($CH_2OC=N$), 77.4 (Ph CCH_3), 124.4, 127.9, 128.8 (5C tert., aromat.), 144.1 (C^1 quart., aromat.)
- Z-Isomer: 15.0 ($CH_3CH_2OC=N$), 32.3 (PhC CH_3), 52.3 ($CH_3OC=O$), 65.9 ($CH_2OC=N$), 75.4 (Ph CCH_3), 124.6, 127.4, 128.7 (5C tert., aromat.), 145.5 (C^1 quart., aromat.)

 $C_{14}H_{20}N_2O_4$ [266.30]

Ber. [%]	C 58.64	H 6.81	N 10.52
Gef. [%]	C 58.54	H 6.82	N 10.57

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-phenyl-propyliden)-hydrazin-carbonsäureethylester **21.26**

- Aus 0.63 g (3 mmol) O-Ethyl-2-hydroxy-2-phenylpropanthioat (23.1) und 0.37
- g (3.6 mmol) Ethylcarbazat nach AAV $\mathbf{5}$
- Ausbeute: 81 % (678 mg), amorphes Pulver
- Schmp.: 128.7 °C (Ethylacetat/ Hexan)
- Verhältnis (E : Z): 72 : 28
- IR: 3380 cm⁻¹ (NH), 3323 cm⁻¹ (OH), 1718 cm⁻¹ (C=O), 1639 cm⁻¹ (C=N)
- ¹H-NMR (CDCl₃): δ(ppm):
- E-Isomer: 1.20 (t, J= 7.1 Hz, 3H, $CH_3CH_2OC=O$), 1.30 (t, J= 7.1 Hz, 3H, $CH_3CH_2OC=N$), 1.83 (s, 3H, PhCCH₃), 4.09-4.17 (m, 4H, OCH_2CH_3), 7.15 (s, 1H, OH), 7.26-7.36, 7.50-7.55 (m, 5H, aromat.), 9.63 (s, 1H, NH)
- Z-Isomer: 1.04 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=O), 1.30 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.76 (s, 3H, PhCCH₃), 3.58-3.65, 4.18-4.30 (m, 4H, ABX₃-System, OCH₂CH₃), 6.30 (s, 1H, OH), 7.26-7.36, 7.50-7.55 (m, 5H, aromat.), 8.15 (s, 1H, NH)

¹³C-NMR (CDCl₃): δ (ppm):

- E-Isomer: 14.2 ($CH_3CH_2OC=O$), 14.6 ($CH_3CH_2OC=N$), 29.3 ($PhCCH_3$), 61.7 ($CH_2OC=O$), 62.8 ($CH_2OC=N$), 78.4 ($PhCCH_3$), 124.8, 127.6, 128.4 (5C tert., aromat.), 143.1 (C^1 quart., aromat.)
- Z-Isomer: 14.7 (*C*H₃CH₂OC=O), 15.3 (*C*H₃CH₂OC=N), 31.0 (PhC*C*H₃), 61.2 (*C*H₂OC=O), 66.5 (*C*H₂OC=N), 75.8 (PhC*C*H₃), 124.6, 127.9, 128.6 (5C tert., aromat.), 143.6 (C¹ quart., aromat.)

 $C_{14}H_{20}N_2O_4$ [280.33]

Ber. [%]	C 58.64	H 6.81	N 10.52
Gef. [%]	C 58.52	H 6.84	N 10.66

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-phenyl-propyliden)-hydrazin-carbonsäure*tert*.-butylester **21.27**

- Aus 0.63 g (3 mmol) *O*-Ethyl-2-hydroxy-2-phenylpropanthioat (**23.1**) und 0.48 g (3.6 mmol) *tert*.-Butylcarbazat nach AAV **5**
- g (3.6 minor) *tert*.-Butyrcarbazat nach AAV 5
- Ausbeute: 85 % (786 mg), farblose Kristalle
- Schmp.: 126.0 °C (Ethylacetat/ Hexan)
- Verhältnis (E : Z): 97 : 3
- IR: 3318 cm⁻¹ (NH), 3285 cm⁻¹ (OH), 1692 cm⁻¹ (C=O), 1638 cm⁻¹ (C=N)
- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.24 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.34 (s, 9H, *CH*₃COC=O), 1.60 (s, 3H, PhCC*H*₃), 3.98-4.06 (m, 2H, *CH*₂OC=N), 7.03 (s, 1H, OH), 7.27-7.30, 7.35-7.41 (m, 5H, aromat.), 9.82 (s, 1H, NH)
- Z-Isomer: 0.94 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.56 (s, 9H, *CH*₃COC=O), 1.56 (s, 3H, PhCC*H*₃), 3.56-3.60, 4.08-4.13 (m, 2H, ABX₃-System, *CH*₂OC=N), 6.13 (s, 1H, OH), 7.27-7.30, 7.35-7.41 (m, 5H, aromat.), 8.91 (s, 1H, NH)
- ¹³C-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 14.0 (*C*H₃CH₂OC=N), 27.9 (*C*H₃COC=O), 28.0 (PHC*C*H₃), 61.8 (CH₃CH₂OC=N), 77.1 (Ph*C*CH₃), 78.0 (CH₃COC=O), 124.2, 126.8, 127.3, 128.1, 128.2 (5C tert., aromat.), 143.9 (C¹ quart., aromat.)
- Z-Isomer: 15.0 (*C*H₃CH₂OC=N), 28.8 (*C*H₃COC=O), 31.1 (PHC*C*H₃), 65.2 (CH₃CH₂OC=N), 75.1 (Ph*C*CH₃), 78.0 (CH₃COC=O), 124.2, 126.8, 127.3, 128.1, 128.2 (5C tert., aromat.), 143.9 (C¹ quart., aromat.)

 $C_{16}H_{24}N_2O_4\ [308.38]$

Ber. [%]	C 62.32	H 7.84	N 9.08

Gef. [%] C 62.07 H 7.75 N 8.77
(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-phenyl-propyliden)-hydrazin-carbonsäurebenzylester **21.28**

- Aus 0.63 g (3 mmol) O-Ethyl-2-hydroxy-2-phenylpropanthioat (23.1) und 0.60
- g (3.6 mmol) Benzylcarbazat nach AAV 5
- Ausbeute: 79 % (818 mg), farblose Kristalle
- Schmp.: 109.1 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 93 : 07

IR: 3283 cm⁻¹ (NH), 3190 cm⁻¹ (OH), 1668 cm⁻¹ (C=O), 1640 cm⁻¹ (C=N)

- ¹H-NMR (DMSO-*d*₆): δ(ppm):
- E-Isomer: 1.25 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.61 (s, 3H, PhCC*H*₃), 3.98-4.10 (m, 2H, *CH*₂OC=N), 5.02 (s, 2H, PhC*H*₂OC=O), 7.17 (s, 1H, OH), 7.26-7.43 (m, 10H, aromat.), 10.10 (s, 1H, NH)
- Z-Isomer: 0.94 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.57 (s, 3H, PhCC*H*₃), 3.56-3.62, 4.12-4.20 (m, 2H, ABX₃-System, *CH*₂OC=N), 5.14 (s, 2H, PhC*H*₂OC=O), 6.16 (s, 1H, OH), 7.26-7.43 (m, 10H, aromat.), 9.57 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 14.0 (*C*H₃CH₂OC=N), 28.7 (PHC*C*H₃), 62.0 (CH₃*C*H₂OC=N), 65.4 (Ph*C*H₂OC=O), 77.1 (Ph*C*CH₃), 124.1, 127.4, 127.5 127.8, 128.2, 128.3 (10C tert., aromat.), 136.7, 143.8 (C¹ quart., aromat.), 145.3 (C=N)
- Z-Isomer: 14.9 (*C*H₃CH₂OC=N), 32.0 (PHC*C*H₃), 65.3 (CH₃*C*H₂OC=N), 65.5 (Ph*C*H₂OC=O), 74.9 (Ph*C*CH₃), 124.2, 126.8, 127.4, 127.5, 128.1, 128.3 (9C tert., aromat.), 136.46, 143.68 (C¹ quart., aromat.)

 $C_{19}H_{22}N_2O_4$ [342.40]

Ber. [%]	C 66.65	H 6.48	N 8.18
Gef. [%]	C 66.63	H 6.45	N 8.20

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-(4-methylphenyl)-propyliden)-hydrazincarbonsäure-methylester **21.29**

- Aus 0.67g (3 mmol) O-Ethyl-2-hydroxy-2-(4-methylphenyl)propanthioat (23.2)
- und 0.32 g (3.6 mmol) Methylcarbazat nach AAV 5
- Ausbeute: 74 % (620 mg), amorphes Pulver
- Schmp.: 136.4 °C (Ethylacetat/ Hexan)
- Verhältnis (E : Z): 40 : 60
- IR: 3408 cm^{-1} (NH), 3279 cm⁻¹ (OH), 1709 cm⁻¹ (C=O), 1638 cm⁻¹ (C=N)
- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.25 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.57 (s, 3H, PhCC*H*₃), 2.28 (s, 3H, PhC*H*₃), 3.53 (s, 3H, CH₃OC=O), 3.96-4.03 (m, 2H, CH₃C*H*₂OC=N), 7.09 (s, 1H, OH), 7.25-7.29 (m, 4H, AB-System, aromat.), 10.01 (s, 1H, NH)
- Z-Isomer: 0.96 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.53 (s, 3H, PhCCH₃), 2.28 (s, 3H, PhCH₃), 3.65 (s, 3H, CH₃OC=O), 3.57-3.61, 4.13-4.21 (m, 2H, ABX₃-System, CH₃CH₂OC=N), 6.09 (s, 1H, OH), 7.14-7.18 (m, 4H, AB-System, aromat.), 9.38 (s, 1H, NH)
- ¹³C-NMR (DMSO-*d*₆): δ(ppm):
- E-Isomer: 14.4 ($CH_3CH_2OC=N$), 21.0 (Ph CH_3), 29.2 (Ph CCH_3), 52.1 ($CH_3OC=O$), 62.4 ($CH_2OC=N$), 77.3 (Ph CCH_3), 124.5, 129.2 (4C tert., aromat.), 137.0 (C^4 quart., aromat.), 141.3 (C^1 quart., aromat.)
- Z-Isomer: 15.4 ($CH_3CH_2OC=N$), 21.0 (Ph CH_3), 32.6 (Ph CCH_3), 52.1 ($CH_3OC=O$), 65.8 ($CH_2OC=N$), 75.2 (Ph CCH_3), 124.5, 129.2 (4C tert., aromat.), 136.2 (C^4 quart., aromat.), 142.8 (C^1 quart., aromat.)

 $C_{14}H_{20}N_2O_4\ [280.33]$

Ber. [%]	C 59.99	H 7.19	N 9.99
Gef. [%]	C 59.29	Н 7.23	N 10.28

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-(4-methylphenyl)-propyliden)-hydrazincarbonsäure-ethylester **21.30**

- Aus 1.34 g (6 mmol) *O*-Ethyl-2-hydroxy-2-(4-methylphenyl)propanthioat (**23.2**)
- und 0.74 g (7.2 mmol) Ethylcarbazat nach AAV ${\bf 5}$
- Ausbeute: 81 % (1.37 g), amorphes Pulver
- Schmp.: 84.7 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 30 : 70

IR: 3380 cm⁻¹ (NH), 3369 cm⁻¹ (OH), 1719 cm⁻¹ (C=O), 1642 cm⁻¹ (C=N)

- ¹H-NMR (CDCl₃): δ (ppm):
- E-Isomer: 1.21 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=O), 1.32 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.76 (s, 3H, PhCC*H*₃), 2.33 (s, 3H, PhCH₃), 4.05-4.17 (m, 4H, OC*H*₂CH₃), 7.04 (s, 1H, OH), 7.14-7.16, 7.34-7.36 (m, 4H, AB-System, aromat.), 9.68 (s, 1H, NH)
- Z-Isomer: 1.05 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=O), 1.28 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.81 (s, 3H, PhCCH₃), 2.34 (s, 3H, PhCH₃), 3.60-3.67, 4.23-4.31 (m, 4H, ABX₃-System, OCH₂CH₃), 6.05 (s, 1H, OH), 7.13-7.15, 7.34-7.36 (m, 4H, AB-System, aromat.), 8.14 (s, 1H, NH)

¹³C-NMR (CDCl₃): δ(ppm):

- E-Isomer: 14.2 (*C*H₃CH₂OC=O), 14.6 (*C*H₃CH₂OC=N), 21.1 (Ph*C*H₃), 29.2 (PhC*C*H₃), 61.2 (*C*H₂OC=O), 62.7 (*C*H₂OC=N), 78.4 (PhC*C*H₃), 124.5, 129.2 (4C tert., aromat.), 137.2 (C⁴ quart., aromat.), 140.7 (C¹ quart., aromat.)
- Z-Isomer: 14.6 (*C*H₃CH₂OC=O), 15.4 (*C*H₃CH₂OC=N), 21.1 (Ph*C*H₃), 30.9 (PhC*C*H₃), 61.6 (*C*H₂OC=O), 66.6 (*C*H₂OC=N), 75.6 (Ph*C*CH₃), 124.8, 129.2 (4C tert., aromat.), 137.5 (C⁴ quart., aromat.), 140.1 (C¹ quart., aromat.)

$C_{15}H_{22}N_2O_4$ [294.35]					
Ber. [%]	C 61.21	H 7.53	N 9.52		
Gef. [%]	C 61.18	H 7.45	N 9.33		

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-(4-methylphenyl)-propyliden)-hydrazincarbonsäure-*tert*.-butylester **21.31**

Aus 0.67 g (3 mmol) O-Ethyl-2-hydroxy-2-(4-methylphenyl)propanthioat (23.2)

und 0.48 g (3.6 mmol) tert.-Butylcarbazat nach AAV 5

Ausbeute: 79 % (761 mg), farblose Kristalle

Schmp.: 161.2 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 96 : 04

IR: 3316 cm^{-1} (NH, OH), 1699 cm $^{-1}$ (C=O), 1653 cm $^{-1}$ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.23 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.34 (s, 9H, *CH*₃COC=O), 1.58 (s, 3H, PhCC*H*₃), 2.28 (s, 3H, PhCH₃), 3.95-4.07 (m, 2H, *CH*₂OC=N), 6.96 (s, 1H, OH), 7.16-7.18, 7.26-7.28 (m, 4H, AB-System, aromat.), 9.85 (s, 1H, NH)
- Z-Isomer: 0.95 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.44 (s, 9H, CH₃COC=O),
 1.50 (s, 3H, PhCCH₃), 2.28 (s, 3H, PhCH₃), 3.57-3.61, 4.13-4.20 (m, 2H, ABX₃-System, CH₂OC=N), 6.06 (s, 1H, OH), 7.16-7.18,
 7.26-7.28 (m, 4H, AB-System, aromat.), 8.89 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 14.5 ($CH_3CH_2OC=N$), 21.0 (Ph CH_3), 28.4 ($CH_3COC=O$), 29.3 (Ph CCH_3), 62.2 ($CH_3CH_2OC=N$), 77.4 (Ph CCH_3), 79.2 ($CH_3COC=O$), 124.6, 129.2 (4C tert., aromat.), 136.9 (C⁴ quart., aromat.), 141.4 (C¹ quart., aromat.)
- Z-Isomer: 15.3 (*C*H₃CH₂OC=N), 21.0 (PhC*C*H₃), 28.4 (*C*H₃COC=O), 32.5 (PhC*C*H₃), 65.5 (CH₃*C*H₂OC=N), 74.8 (Ph*C*CH₃), 75.2

 $\begin{array}{c} (CH_3COC=O), \ 124.2, \ 129.7 \ (4C \ tert., \ aromat.), \ 136.4 \ (C^4 \ quart., \\ aromat.), \ 143.0 \ (C^1 \ quart., \ aromat.) \\ C_{17}H_{26}N_2O_4 \ [322.41] \\ Ber. \ [\%] \qquad C \ 63.33 \qquad H \ 8.13 \qquad N \ 8.69 \\ Gef. \ [\%] \qquad C \ 63.00 \qquad H \ 8.10 \qquad N \ 8.63 \end{array}$

(*E/Z*)-*N*`-(1-Ethoxy-2-hydroxy-2-(4-methylphenyl)-propyliden)-hydrazincarbonsäure-benzylester **21.32**

- Aus 0.67 g (3 mmol) O-Ethyl-2-hydroxy-2-(methylphenyl)propanthioat (23.2)
- und 0.60 g (3.6 mmol) Benzylcarbazat nach AAV 5
- Ausbeute: 82 % (879 mg), amorphes Pulver
- Schmp.: 101.7 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 70 : 30

IR: 3445 cm^{-1} (NH), 3324 cm⁻¹ (OH), 1718, 1683 cm⁻¹ (C=O), 1653, 1637 cm⁻¹ (C=N)

- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.27 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.80 (s, 3H, PhC*H*₃), 2.33 (s, 3H, PhCH₃), 4.06-4.16 (m, 2H, *CH*₂OC=N), 5.09 (s, 2H, PhC*H*₂OC=O), 7.10 (s, 1H, OH), 7.25-7.42 (m, 9H, aromat.), 9.76 (s, 1H, NH)
- Z-Isomer: 1.01 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.74 (s, 3H, PhCC*H*₃), 2.33 (s, 3H, PhCH₃), 3.58-3.66, 4.13-4.20 (m, 2H, ABX₃-System, *CH*₂OC=N), 5.22 (s, 2H, PhC*H*₂OC=O), 6.06 (s, 1H, OH), 7.25-7.42 (m, 9H, aromat.), 8.23 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 14.2 ($CH_3CH_2OC=N$), 21.1 (Ph CH_3), 29.2 (Ph CCH_3), 66.6 ($CH_3CH_2OC=N$), 66.7 (Ph $CH_2OC=O$), 78.5 (Ph CCH_3), 124.5, 128.4, 128.6, 129.2 (9C tert., aromat.), 137.7 (C⁴ quart., aromat.), 140.5 (C¹ quart., aromat.)
- Z-Isomer: 15.3 ($CH_3CH_2OC=N$), 21.1 (Ph CH_3), 31.0 (Ph CCH_3), 62.8 ($CH_3CH_2OC=N$), 67.3 (Ph $CH_2OC=O$), 76.7 (Ph CCH_3), 124.8, 128.0, 128.4, 128.4, 129.2 (9C tert., aromat.), 137.2 (C⁴ quart., aromat.), 140.2 (C¹ quart., aromat.)

 $C_{20}H_{24}N_2O_4$ [356.43]

Ber. [%]	C 67.40	H 6.79	N 7.86
Gef. [%]	C 67.36	H 6.80	N 7.88

(*E/Z*)-*N*`-(2-(4-Chlorphenyl)-1-ethoxy-2-hydroxy-propyliden)-hydrazincarbonsäure-methylester **21.33**

- Aus 0.49 g (2 mmol) *O*-Ethyl-2-(4-chlorphenyl)-2-hydroxypropanthioat (**23.3**)
- und 0.22 g (2.4 mmol) Methylcarbazat nach AAV $\mathbf{5}$
- Ausbeute: 72 % (433 mg), amorphes Pulver
- Schmp: 129.6 °C (Ethylacetat/ Hexan)
- Verhältnis (E : Z): 43 : 57
- IR: $3406,3362 \text{ cm}^{-1}$ (NH), 3324, 3275 cm⁻¹ (OH), 1719, 1687 cm⁻¹ (C=O), 1654, 1637 cm⁻¹ (C=N)
- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.25 (t, *J*= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.60 (s, 3H, PhCCH₃), 3.54 (s, 3H, CH₃OC=O), 3.97-4.06 (m, 2H, CH₃CH₂OC=N), 7.16 (s, 1H, OH), 7.37-7.45 (m, 4H, AB-System, aromat.), 9.95 (s, 1H, NH)
- Z-Isomer: 0.98 (t, *J*= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.55 (s, 3H, PhCCH₃), 3.65 (s, 3H, CH₃OC=O), 3.58-3.65, 4.11-4.19 (m, 2H, ABX₃-System,

CH₃CH₂OC=N), 6.26 (s, 1H, OH), 7.37-7.45 (m, 4H, AB-System, aromat.), 9.46 (s, 1H, NH)

- ¹³C-NMR (DMSO-*d*₆): δ(ppm):
- E-Isomer: 14.4 (CH₃CH₂OC=N), 29.0 (PhCCH₃), 52.1 (CH₃OC=O), 62.6 (CH₂OC=N), 77.1 (PhCCH₃), 126.6, 128.6 (4C tert., aromat.), 132.5 (C⁴ quart., aromat.), 143.3 (C¹ quart., aromat.)
- Z-Isomer: 15.4 (CH₃CH₂OC=N), 32.2 (PhCCH₃), 52.1 (CH₃OC=O), 65.9 (CH₂OC=N), 75.1 (PhCCH₃), 126.7, 128.7 (4C tert., aromat.), 131.9 (C⁴ quart., aromat.) 144.8 (C¹ quart., aromat.)
- $C_{13}H_{17}ClN_2O_4$ [300.74]

Ber. [%]	C 51.92	H 5.70	N 9.31
Gef. [%]	C 51.93	H 5.73	N 9.34

(*E/Z*)-*N*`-(2-(4-Chlorphenyl)-1-ethoxy-2-hydroxy-propyliden)-hydrazincarbonsäure-ethylester **21.34**

- Aus 1.23 g (5 mmol) *O*-Ethyl-2-(4-chlorphenyl)-2-hydroxypropanthioat (23.3)
- und 0.62 g (6 mmol) Ethylcarbazat nach AAV 5

Ausbeute: 76 % (1.44 g), amorphes Pulver

Schmp.: 108.9 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 50 : 50

IR: 3423, 3379, 3336 cm⁻¹ (NH/ OH), 1734, 1718 cm⁻¹ (C=O), 1654, 1638 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

E-Isomer: 1.13 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=O), 1.24 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.60 (s, 3H, PhCC*H*₃), 3.93-4.07 (m, 4H, OC*H*₂CH₃), 7.23 (s, 1H, OH), 7.18-7.45 (m, 4H, AB-System, aromat.), 9.87 (s, 1H, NH)

Z-Isomer: 0.98 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=O), 1.22 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.56 (s, 3H, PhCC*H*₃), 3.57-3.63, 4.08-4.17 (m, 4H, ABX₃-System, OC*H*₂CH₃), 6.24 (s, 1H, OH), 7.18-7.45 (m, 4H, AB-System, aromat.), 8.36 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 13.9 (*C*H₃CH₂OC=O), 14.5 (*C*H₃CH₂OC=N), 28.6 (PhC*C*H₃), 60.1 (*C*H₂OC=O), 62.1 (*C*H₂OC=N), 76.9 (PhC*C*H₃), 126.2, 128.3 (4C tert., aromat.), 132.2 (C⁴ quart., aromat.), 142.9 (C¹ quart., aromat.)
- Z-Isomer: 14.6 ($CH_3CH_2OC=O$), 16.0 ($CH_3CH_2OC=N$), 31.8 ($PhCCH_3$), 60.2 ($CH_2OC=O$), 65.4 ($CH_2OC=N$), 74.8 ($PhCCH_3$), 126.3, 128.2 (4C tert., aromat.), 131.4 (C^4 quart., aromat.), 144.5 (C^1 quart., aromat.)

C₁₄H₁₉ClN₂O₄ [314.77]

Ber. [%]	C 53.42	H 6.08	N 8.90
Gef. [%]	C 53.31	H 6.20	N 8.83

(*E/Z*)-*N*`-(2-(4-Chlorphenyl)-1-ethoxy-2-hydroxy-propyliden)-hydrazincarbonsäure-benzylester **21.35**

Aus 0.49 g (2 mmol) O-Ethyl-2-(4-chlorphenyl)-2-hydroxypropanthioat (23.3)

und 0.40 g (2.4 mmol) Benzylcarbazat nach AAV 5

Ausbeute: 84 % (627 mg), amorphes Pulver

Schmp.: 99.4 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z) : 70 : 30

IR: 3352 cm^{-1} (NH), 3316 cm^{-1} (OH), 1709 cm^{-1} (C=O), 1638 cm^{-1} (C=N)

¹H-NMR (CDCl₃): δ(ppm):

- E-Isomer: 1.27 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.73 (s, 3H, PhCC*H*₃), 4.13-4.20 (m, 2H, *CH*₂OC=N), 5.09 (s, 2H, PhC*H*₂OC=O), 7.30 (s, 1H, OH), 7.26-7.42 (m, 9H, aromat.), 9.69 (s, 1H, NH)
- Z-Isomer: 1.04 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.79 (s, 3H, PhCC*H*₃), 3.57-3.64, 4.06-4.12 (m, 2H, ABX₃-System, *CH*₂OC=N), 5.20 (s, 2H, PhC*H*₂OC=O), 6.23 (s, 1H, OH), 7.26-7.42 (m, 9H, aromat.), 8.22 (s, 1H, NH)

¹³C-NMR (CDCl₃): δ(ppm):

- E-Isomer: 14.2 ($CH_3CH_2OC=N$), 29.1 (PhC CH_3), 63.0 ($CH_3CH_2OC=N$), 66.8 (Ph $CH_2OC=O$), 78.1 (Ph CCH_3), 126.1, 128.3, 128.4, 128.6, 128.7 (9C tert., aromat.), 133.4 (C⁴ quart., aromat.), 136.3, 142.3 (C¹ quart., aromat.)
- Z-Isomer: 15.3 ($CH_3CH_2OC=N$), 31.2 (PhC CH_3), 66.7 ($CH_3CH_2OC=N$), 67.4 (Ph $CH_2OC=O$), 75.5 (Ph CCH_3), 126.4, 128.1, 128.4, 128.6, 128.8 (9C tert., aromat.), 133.6 (C⁴ quart., aromat.), 136.3, 142.3 (C¹ quart., aromat.)

 $C_{19}H_{21}ClN_2O_4$ [376.84]

Ber. [%]	C 60.56	H 5.62	N 7.43
Gef. [%]	C 60.89	H 5.50	N 7.61

(*E*)-*N*`-(1-(4-Chlorbenzyloxy)-2-(4-chlorphenyl)-2-hydroxy-propyliden)hydrazin-carbonsäure-ethylester **21.36**

Aus 1.02 g (3 mmol) *O*-4-Chlorbenzyl-2-(4-chlorphenyl)-2hydroxypropanthioat (**23.4**) und 0.79 g (8.8 mmol) Methylcarbazat nach AAV **5**

```
Ausbeute: 75 % (0.92 g), farblose Kristalle
Schmp.:
               151.7 °C (Ethylacetat/Hexan)
Verhältnis (E : Z): 100 : 0
               3348 cm<sup>-1</sup> (NH), 3326 cm<sup>-1</sup> (OH), 1709 cm<sup>-1</sup> (C=O), 1638 cm<sup>-1</sup>
IR:
               (C=N)
<sup>1</sup>H-NMR (DMSO-d_6): \delta(ppm):
               1.15 (t, J=7.1 Hz, 3H, CH_3CH_2OC=O), 1.64 (s, 3H, PhCCH<sub>3</sub>),
               3.98-4.10 (m, 2H, CH<sub>3</sub>CH<sub>2</sub>OC=O), 5.00-5.08 (m, 2H, CH<sub>2</sub>OC=N),
               7.32 (s, 1H, OH), 7.42-7.46 (m, 8H, aromat.), 9.99 (s, 1H, NH)
<sup>13</sup>C-NMR (DMSO-d_6): \delta(ppm):
               14.4 (CH<sub>3</sub>CH<sub>2</sub>OC=O), 28.3 (PhCCH<sub>3</sub>), 60.3 (CH<sub>2</sub>OC=N), 67.0
               (CH<sub>2</sub>OC=O), 77.0 (PhCCH<sub>3</sub>), 126.3, 126.4, 127.5, 127.9, 128.2,
               128.3, 129.2, 129.8 (8C tert., aromat), 132.1, 132.4, 135.5, 142.6
               (4C quart., aromat), 144.1 (C=N)
C_{19}H_{20}Cl_2N_2O_4 [411.29]
```

Ber. [%]	C 55.49	H 4.90	N 6.81
Gef. [%]	C 55.32	H 5.06	N 6.60

(*E/Z*)-*N*`-(2-(3,4-Dimethylphenyl)-1-ethoxy-2-hydroxy-propyliden)-hydrazincarbonsäure-methylester **21.37**

Aus 0.72 g (3 mmol) O-Ethyl-2-(3,4-dimethylphenyl)-2-hydroxypropanthioat

(23.5) und 0.32g (3.6 mmol) Methylcarbazat nach AAV 5

Ausbeute: 83 % (728 mg), farblose Kristalle

Schmp.: 142.3 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z) : 37 : 63

IR: 3394 cm^{-1} (NH), 3343 cm^{-1} (OH), 1716, 1686 cm^{-1} (C=O), 1637 cm^{-1} (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.26 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.56 (s, 3H, PhCC*H*₃), 2.19, 2.21 (s, 6H, PhC*H*₃), 3.53 (s, 3H, CH₃OC=O), 3.99-4.06 (m, 2H, CH₃C*H*₂OC=N), 7.04 (s, 1H, OH), 7.06-7.15 (m, 3H, Aromat), 10,00 (s, 1H, NH)
- Z-Isomer: 0.97 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.52 (s, 3H, PhCCH₃),
 2.19, 2.20 (s, 6H, PhCH₃), 3.65 (s, 3H, CH₃OC=O), 3.56-3.62,
 4.14-4.22 (m, 2H, ABX₃-System, CH₃CH₂OC=N), 6.05 (s, 1H, OH), 7.06-7.15 (m, 3H, Aromat), 9.38 (s, 1H, NH)
- ¹³C-NMR (DMSO-*d*₆): δ(ppm):
- E-Isomer: 14.2 (CH₃CH₂OC=N), 19.4, 20.1 (PhCH₃), 29,4 (PhCCH₃), 52.1 (CH₃OC=O), 62.4 (CH₂OC=N), 77.2 (PhCCH₃), 122.0, 125.6, 129.7 (3C tert., aromat.), 135.0, 136.2 ($C^3 + C^4$, quart., aromat.), 143.2 (C^1 quart., aromat.), 171.6 (C=N), 174.9 (C=O)
- Z-Isomer: 14.5 (CH₃CH₂OC=N), 19.4, 20.1 (PhCH₃), 32.6 (PhCCH₃), 52.1 (CH₃OC=O), 65.7 (CH₂OC=N), 72.8 (PhCCH₃), 121.9, 125.6, 129.7 (3C tert., aromat.), 135.7, 136.4 ($C^3 + C^4$, quart., aromat.), 141.7 (C^1 quart., aromat.), 171.6 (C=N), 174.9 (C=O)
- $C_{15}H_{22}N_2O_4$ [294.35]

Ber. [%]	C 61.21	H 7.53	N 9.52
Gef. [%]	C 60.91	H 7.50	N 9.32

(*E/Z*)-*N*`-(2-(3,4-Dimethylphenyl)-1-ethoxy-2-hydroxy-propyliden)-hydrazincarbonsäure-ethylester **21.38**

Aus 1.20 g (5 mmol) *O*-Ethyl-2-(3,4-dimethylphenyl)-2-hydroxypropanthioat (**23.5**) und 0.62 g (6 mmol) Ethylcarbazat nach AAV **5** Ausbeute: 81% (1.25g), farblose Kristalle Schmp.: 99.7 °C (Ethylacetat/Hexan) Verhältnis (E : Z): 52 : 48

IR: 3397 cm⁻¹ (NH), 3310 cm⁻¹ (OH), 1724 cm⁻¹ (C=O), 1640 cm⁻¹ (C=N)

¹H-NMR (CDCl₃): δ(ppm):

- E-Isomer: 1.29 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=O), 1.31 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N), 1.75 (s, 3H, PhCCH₃), 2.25 (s, 6H, PhCH₃), 4.06-4.17 (m, 4H, OCH₂CH₃), 7.10 (s, 1H, OH), 7.15-7.26 (m, 3H, aromat.), 9.60 (s, 1H, NH)
- Z-Isomer: 1.06 (t, J= 7.0 Hz, 3H, CH₃CH₂OC=O), 1.22 (t, J= 7.0 Hz, 3H, CH₃CH₂OC=N), 1.80 (s, 3H, PhCCH₃), 2.24 (s, 6H, PhCH₃), 3.60-3.68, 4.19-4.31 (m, 4H, ABX₃-System, OCH₂CH₃), 6.13 (s, 1H, OH), 7.15-7.26 (m, 3H, aromat.), 8.15 (s, 1H, NH)

¹³C-NMR (CDCl₃): δ(ppm):

- E-Isomer: 14.2 ($CH_3CH_2OC=O$), 14.6 ($CH_3CH_2OC=N$), 19.4, 20.0 (Ph CH_3), 29.4 (Ph CCH_3), 60.6 ($CH_2OC=O$), 62.3 ($CH_2OC=N$), 77.3 (Ph CCH_3), 121.9, 125.6, 129.7 (3C tert., aromat.), 135.7, 136.3 (C^3 + C^4 quart., aromat.), 141.7 (C^1 quart., aromat.)
- Z-Isomer: 14.6 ($CH_3CH_2OC=O$), 15.4 ($CH_3CH_2OC=N$), 19.4, 19.9 (Ph CH_3), 32.6 (Ph CCH_3), 60.6 ($CH_2OC=O$), 65.7 ($CH_2OC=N$), 75.2 (Ph CCH_3), 122.0, 125.6, 129.1 (3C tert., aromat.), 135.0, 136.2 ($C^3 + C^4$ quart., aromat.), 143.2 (C^1 quart., aromat.)

 $C_{16}H_{24}N_2O_4$ [308.38]

Ber. [%]	C 62.32	H 7.84	N 9.08
C_{of} [0]	C (2 10)	II 7 01	N 0 05

Gef. [%] C 62.19 H 7.81 N 9.05

(*E/Z*)-*N*`-(2-(3,4-Dimethylphenyl)-1-ethoxy-2-hydroxy-propyliden)-hydrazincarbonsäure-*tert*.-butylester **21.39**

- Aus 0.72 g (3 mmol) O-Ethyl-2-(3,4-dimethylphenyl)-2-hydroxypropanthioat
- (23.5) und 0.48 g (3.6 mmol) tert.-Butylcarbazat nach AAV 5

Ausbeute: 78% (0.78 g), farblose Kristalle

Schmp.: 134.5 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 55 : 45

- IR: 3378 cm⁻¹ (NH), 3297 cm⁻¹ (OH), 1701 cm⁻¹ (C=O), 1656 cm⁻¹ (C=N)
- ¹H-NMR (CDCl₃): δ (ppm):
- E-Isomer: 1.27 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N), 1.52 (s, 9H, *CH*₃COC=O), 1.80 (s, 3H, PhCC*H*₃), 2.25 (s, 6H, PhCH₃), 4.05-4.13 (m, 2H, *CH*₂OC=N), 7.10 (s, 1H, OH), 7.15-7.26 (m, 3H, aromat.), 9.43 (s, 1H, NH)
- Z-Isomer: 1.07 (t, J= 7.0 Hz, 3H, CH₃CH₂OC=N), 1.41 (s, 9H, CH₃COC=O),
 1.75 (s, 3H, PhCCH₃), 2.24 (s, 6H, PhCH₃), 3.60-3,67, 4.15-4.22 (m, 2H, ABX₃-System, CH₂OC=N), 6.08 (s, 1H, OH), 7.16-7.25 (m, 3H, aromat.), 8.03 (s, 1H, NH)

¹³C-NMR (CDCl₃): δ(ppm):

- E-Isomer: 14.2 ($CH_3CH_2OC=N$), 19.4, 19.9 (Ph CH_3), 28.4 ($CH_3COC=O$), 29.1 (Ph CCH_3), 62.5 ($CH_3CH_2OC=N$), 78.4 (Ph CCH_3), 80.8 ($CH_3COC=O$), 122.2, 126.0, 129.7 (3C tert., aromat.), 135.8, 136.7 ($C^3 + C^4$ quart., aromat.), 141.1 (C^1 quart., aromat.)
- Z-Isomer: 15.4 ($CH_3CH_2OC=N$), 19.4, 19.9 (Ph CH_3), 28.4 ($CH_3COC=O$), 30.9 (Ph CCH_3), 66.4 ($CH_3CH_2OC=N$), 75.6 (Ph CCH_3), 79.9 ($CH_3COC=O$), 122.1, 126.0, 129.7 (3C tert., aromat.), 136.2, 136.6 ($C^3 + C^4$ quart., aromat.), 140.6 (C^1 quart., aromat.)

$C_{18}H_{28}N_2O_4$ [336.43]					
Ber. [%]	C 64.26	H 8.39	N 8.33		
Gef. [%]	C 64.13	H 8.12	N 8.16		

(*E/Z*)-*N*`-(2-(3,4-Dimethylphenyl)-1-ethoxy-2-hydroxy-propyliden)-hydrazincarbonsäure-benzylester **21.40**

Aus 0.72 g (3 mmol) O-Ethyl-2-(3,4-dimethylphenyl)-2-hydroxypropanthioat

(23.5) und 0.50g (3.6 mmol) Benzylcarbazat nach AAV 5

Ausbeute: 83 % (923 mg), farblose Kristalle

Schmp.: 106.1 °C (Ethylacetat/ Hexan)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.28 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N), 1.74 (s, 3H, PhCC*H*₃), 2.25 (s, 6H, PhCH₃), 4.21-4.14 (m, 2H, *CH*₂CH₃), 5.07-5.14 (m, 2H, OCH₂Ph), 7.05 (s, 1H, OH), 7.15-7.50 (m, 8H, aromat.), 9.66 (s, 1H, NH)
- Z-Isomer: 1.03 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N), 1.80 (s, 3H, PhCC*H*₃), 2.24 (s, 6H, PhCH₃), 3.59-3.67, 4.04-4.11 (m, 2H, ABX₃-System, *CH*₂CH₃), 5.19-5.26 (m, 2H, OCH₂Ph), 6.05 (s, 1H, OH), 7.15-7.50 (m, 8H, aromat.), 8.24 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 14.0 ($CH_3CH_2OC=N$), 18.9, 19.6 (PhCCH₃), 28.8 (PhCCH₃), 62.0 (CH₃CH₂OC=N), 65.5 (PhCH₂OC=O), 76.8 (PhCCH₃), 121.5, 125.0, 127.7, 128.3, 128.8, 129.2 (8C tert., aromat.), 135.3, 135.9 ($C^3 + C^4$, quart., aromat.), 136.7 (C¹ Benzyl, quart., aromat.), 141.2 (C¹ quart., aromat.), 152.9 (C=N)
- Z-Isomer: 14.9 (*C*H₃CH₂OC=N), 18.9, 19.6 (Ph*C*H₃), 32.2 (Ph*C*CH₃), 65.3 (CH₃CH₂OC=N), 65.5 (Ph*C*H₂OC=O), 74.7 (Ph*C*CH₃), 121.6,

	125.2, 127	.8, 128.3, 12	28.8, 129.2 (8	C tert., arom	nat.), 134.5,	135.8
	$(C^3 + C^4, q)$	uart., aromat	.), 136.8 (C ¹ I	Benzyl, quar	t., aromat.),	142.8
	$(C^1 quart., s)$	aromat.), 153	3.5 (C=N)			
$C_{21}H_{26}N_2O_2$	4 [370.45]					
Ber. [%]	C 68.09	H 7.07	N 7.56			
Gef. [%]	C 67.69	H 7.07	N 7.45			

(*E/Z*)-*N*`-(2-(3,4-Dichlorphenyl)-1-ethoxy-2-hydroxy-propyliden)-hydrazincarbonsäure-methylester **21.41**

Aus 0.84 g (3 mmol) O-Ethyl-2-(3,4-dichlorphenyl)-2-hydroxypropanthioat

(23.6) und 0.32 g (3.6 mmol) Methylcarbazat nach AAV 5

Ausbeute: 83 % (840 mg), amorphes Pulver

Schmp.: 133.3 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 37 : 63

IR: 3389 cm⁻¹ (NH), 3273 cm⁻¹ (OH), 1685 cm⁻¹ (C=O), 1637 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.24 (t, *J*= 7.1 Hz, 3H, C*H*₃CH₂OC=N), 1.62 (s, 3H, PhCC*H*₃), 3.55 (s, 3H, CH₃OC=O), 4.01-4.07 (m, 2H, CH₃C*H*₂OC=N), 7.04 (s, 1H, OH), 7.30-7.37, 7.57-7.66 (m, 3H, aromat.), 9.95 (s, 1H, NH)
- Z-Isomer: 1.02 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.57 (s, 3H, PhCC*H*₃), 3.65 (s, 3H, CH₃OC=O), 3.55-3.64, 4.11-4.19 (m, 2H, ABX₃-System, CH₃C*H*₂OC=N), 6.40 (s, 1H, OH), 7.30-7.37, 7.57-7.66 (m, 3H, aromat.), 9.55 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

E-Isomer: 14.3 (*C*H₃CH₂OC=N), 28.7 (PhC*C*H₃), 52.1 (*C*H₃OC=O), 62.7 (*C*H₂OC=N), 76.9 (PhCCH₃), 125.3, 126.8, 131.1 (3C tert.,

	aromat.), 1	30.6, 131.4	4 ($C^3 + C^4$ quart., aromat.), 145.4 (C^1 quart.,
	aromat.), 1	52.8 (C=N)), 154.5 (C=O)
Z-Isomer:	15.4 (<i>C</i> H ₃	CH ₂ OC=N), 31.8 (PhCCH ₃), 52.2 (CH ₃ OC=O), 66.1
	$(CH_2OC=N)$	N), 74.9 ((PhCCH ₃), 125.4, 126.8, 131.0 (3C tert.,
	aromat.), 1	30.0, 131.4	4 ($C^3 + C^4$ quart., aromat.), 147.0 (C^1 quart.,
	aromat.), 1	52.8 (C=N)), 154.5 (C=O)
$C_{13}H_{16}Cl_2N$	V ₂ O ₄ [335.19]	
Ber. [%]	C 46.58	H 4.81	N 8.36

Gef. [%] C 46.41 H 4.97 N 8.27

(*E/Z*)-*N*`-(2-(3,4-Dichlorphenyl)-1-ethoxy-2-hydroxy-2-propyliden)hydrazin-carbonsäure-benzylester **21.42**

Aus 0.84 g (3 mmol) O-Ethyl-2-(3,4-dichlorphenyl)-2-hydroxypropanthioat

(23.6) und 0.60 g (3.6 mmol) Benzylcarbazat nach AAV 5

Ausbeute: 81 % (1.00 g), amorphes Pulver

Schmp.: 148.9 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z):53 : 47

IR: 3401 cm^{-1} (NH), 3315 cm⁻¹ (OH), 1713, 1687 cm⁻¹ (C=O), 1649 cm⁻¹ (C=N)

¹H-NMR (CDCl₃): δ (ppm):

- E-Isomer: 1.29 (t, J= 7.1 Hz, 3H, $CH_3CH_2OC=N$), 1.78 (s, 3H, PhCC H_3), 4.11-4.15 (m, 2H, $CH_2OC=N$), 5.13 (s, 2H, PhC $H_2OC=O$), 7.30 (s, 1H, OH), 7.27-7.61 (m, 8H, aromat.), 9.71 (s, 1H, NH)
- Z-Isomer: 1.07 (t, J = 7.1 Hz, 3H, $CH_3CH_2OC=N$), 1.73 (s, 3H, PhCC H_3), 3.59-3.66, 4.16-4.20 (m, 2H, ABX₃-System, $CH_2OC=N$), 5.14 (s, 2H, PhC $H_2OC=O$), 6.28 (s, 1H, OH), 7.27-7.61 (m, 8H, aromat.), 8.24 (s, 1H, NH)

¹³C-NMR (CDCl₃): δ(ppm):

- E-Isomer: 14.2 (CH₃CH₂OC=N), 29.2 (PhCCH₃), 66.9 (CH₂OC=N), 67.0 (OCH₂Ph) 77.9 (PhCCH₃), 124.6, 127.4, 128.7 (3C tert., aromat.), 130.8, 131.5 (C^3+C^4 , quart., aromat.), 145.9 (C^1 quart., aromat.)
- Z-Isomer: 14.4 (CH₃CH₂OC=N), 29.7 (PHCH₃), 63.1 (CH₂OC=N), 67.5 (OCH₂Ph) 75.4 (PhCCH₃), 124.4, 127.9, 128.8 (3C tert., aromat), 130.1, 131.2 (C³+C⁴, quart., aromat.), 145.1 (C¹ quart., aromat.)

 $C_{19}H_{20}Cl_2N_2O_4\ [411.29]$

Ber. [%]	C 55.49	H 4.91	N 6.81
Gef. [%]	C 55.81	H 4.74	N 7.01

(*E/Z*)-*N*⁻(2-(3,4-Dichlorphenyl)-2-hydroxy-1-methoxy-2-propyliden)hydrazin-carbonsäure-ethylester **21.43**

- Aus 0.80 g (3 mmol) *O*-Methyl-2-(3,4-dichlorphenyl)-2-hydroxypropanthioat
- $(\mathbf{23.7})$ und 0.37 g (3.6 mmol) Ethylcarbazat nach AAV $\mathbf{5}$
- Ausbeute: 73 % (737 mg), farblose Kristalle
- Schmp.: 141.9 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 93 : 7

IR: 3370 cm^{-1} (NH), 3320 cm^{-1} (OH), 1717 cm^{-1} (C=O), 1651 cm^{-1} (C=N)

¹H-NMR (CDCl₃): δ (ppm):

- E-Isomer: 1.22 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N), 1.63 (s, 3H, PhCC*H*₃), 3.65 (s, 3H, *CH*₃OC=N), 3.99-4.06 (m, 2H, CH₃C*H*₂OC=O), 7.42 (s, 1H, OH), 7.34-7.37, 7.60-7.66 (m, 3H, aromat.), 9.92 (s, 1H, NH)
- Z-Isomer: 1.14 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N), 1.58 (s, 3H, PhCC*H*₃), 3.55 (s, 3H, *CH*₃OC=N), 4.08-4.16 (m, 2H, CH₃C*H*₂OC=O), 6.41 (s, 1H, OH), 7.31-7.33, 7.60-7.66 (m, 3H, aromat.), 9.61 (s, 1H, NH)

¹³C-NMR (CDCl₃): δ(ppm):

- E-Isomer: 14.8 (CH₃CH₂OC=N), 28.6 (PhCCH₃), 54.6 (CH₃OC=O), 60.7 (CH₃OC=N), 77.1 (PhCCH₃), 125.4, 126.9, 131.1 (3C tert., aromat.), 130.7, 131.5 (C³+C⁴, quart., aromat.), 145.3 (C¹ quart., aromat.)
- Z-Isomer: 15.0 (CH₃CH₂OC=N), 31.7 (PhCCH₃), 58.1 (CH₃OC=O), 60.6 (CH₂OC=N), 74.9 (PhCCH₃), 125.3, 126.8, 131.0 (3C tert., aromat.), 130.0, 131.6 (C³+C⁴, quart., aromat.), 146.9 (C¹ quart., aromat.)

 $C_{13}H_{16}Cl_2N_2O_4$ [335.19]

Ber. [%]	C 46.58	H 4.81	N 8.36
Gef. [%]	C 46.33	H 4.94	N 8.22

(*E/Z*)-*N*`-(2-(3,4-Dichlorphenyl)-2-hydroxy-1-methoxy-2-propyliden)hydrazin-carbonsäure-*tert*.-butylester **21.44**

- Aus 0.80 g (3 mmol) O-Methyl-2-(3,4-dichlorphenyl)-2-hydroxypropanthioat
- (23.7) und 0.48 g (3.6 mmol) *tert*.-Butylcarbazat nach AAV 5

Ausbeute: 76 % (833 mg), farblose Kristalle

Schmp.: 155.3 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 94 : 6

IR: 3360 cm⁻¹ (NH), 3317 cm⁻¹ (OH), 1710 cm⁻¹ (C=O), 1643 cm⁻¹ (C=N)

¹H-NMR (CDCl₃): δ(ppm):

- E-Isomer: 1.36 (s, 9H, OC(CH₃)₃), 1.63 (s, 3H, PhCCH₃), 3.63 (s, 3H, CH₃OC=N), 7.35 (s, 1H, OH), 7.33-7.36, 7.59-7.64 (m, 3H, aromat.), 9.77 (s, 1H, NH)
- Z-Isomer: 1.44 (s, 9H, OC(CH₃)₃), 1.57 (s, 3H, PhCCH₃), 3.54 (s, 3H, CH₃OC=N), 6.40 (s, 1H, OH), 7.33-7.36, 7.59-7.64 (m, 3H, aromat.), 9.24 (s, 1H, NH)

¹³C-NMR (CDCl₃): δ(ppm):

- E-Isomer: 28.3 (OC(CH_3)₃), 28.5 (PhC CH_3), 54.4 (CH₃OC=O), 77.1 (Ph CCH_3), 79.5 (O $C(CH_3)_3$), 125.5, 127.0, 131.0 (3C tert., aromat.), 130.6, 131.4 (C³+C⁴, quart., aromat.), 145.4 (C¹ quart., aromat.)
- Z-Isomer: 28,4 (OC(CH_3)₃), 31.7 (PhC CH_3), 58.0 (CH₃OC=O), 74.9 (Ph CCH_3), 79.4 (O $C(CH_3)_3$), 125.5, 126.9, 131.0 (3C tert., aromat.), 130.0, 131.4 (C³+C⁴, quart., aromat.), 147.0 (C¹ quart., aromat.)

 $C_{15}H_{20}N_2O_4\ [363.24]$

Ber. [%]	C 49.60	H 5.55	N 7.71
Gef. [%]	C 49.38	H 5.69	N 7.60

(*E/Z*)-*N*`-(2-(3,4-Dichlorphenyl)-2-hydroxy-1-propoxy-propyliden)-hydrazincarbonsäure-*tert*.-butylester **21.45**

Aus 0.88 g (3 mmol) O-Propyl-2-(3,4-dichlorphenyl)-2-hydroxypropanthioat

(23.8) und 0.48 g (3.6 mmol) *tert*.-Butylcarbazat nach AAV 5

Ausbeute: 67 % (785 mg), amorphes Pulver

Schmp.: 55.9 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 77 : 23

IR: 3354 cm⁻¹ (NH), 3314 cm⁻¹ (OH), 1708 cm⁻¹ (C=O), 1647 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 0.90 (t, J= 7.1 Hz, 3H, CH₂CH₂CH₃), 1.36 (s, 9H, OC(CH₃)₃), 1.63 (s, 3H, PhCCH₃), 1.61-1.66 (m, 2H, CH₂CH₂CH₃), 3.86-3.96 (m, 2H, CH₂CH₃), 7.34 (s, 1H, OH), 7.30-7.37, 7.57-7.70 (m, 3H, aromat.), 9.77 (s, 1H, NH)
- Z-Isomer: 0.66 (t, *J*= 7.1 Hz, 3H, CH₂CH₂CH₃), 1.44 (s, 9H, OC(CH₃)₃), 1.57 (s, 3H, PhCCH₃), 1.34-1.39 (m, 2H, CH₂CH₂CH₃), 3.53-3.59, 4.02-

4.07 (m, 2H, CH₂CH₃), 6.39 (s, 1H, OH), 7.30-7.37, 7.57-7.70 (m, 3H, aromat.), 9.02 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 10.8 (CH₂CH₂CH₃), 21.8 (CH₂CH₂CH₃), 28.3 (OC(CH₃)₃), 28.5 (PhCCH₃), 68.2 (CH₂CH₂CH₃), 77.1 (PhCCH₃), 79.4 (OC(CH₃)₃), 125.4, 127.0, 131.0 (3C tert., aromat), 130.5, 131.4 (C³ + C⁴ quart., aromat.), 145.5 (C¹ quart., aromat.)
- Z-Isomer: 10.3 (CH₂CH₂CH₃), 22.7 (CH₂CH₂CH₃), 28.4 (OC(CH₃)₃), 31.8 (PhCCH₃), 71.5 (CH₂CH₂CH₃), 75.0 (PhCCH₃), 79.5 (OC(CH₃)₃), 125.5, 126.9, 130.9 (3C tert., aromat), 130.5, 131.4 (C³ + C⁴ quart., aromat.), 147.1 (C¹ quart., aromat.)

 $C_{17}H_{24}Cl_2N_2O_4$ [391.30]

Ber. [%]	C 52.18	H 6.18	N 7.16
Gef. [%]	C 52.25	H 6.49	N 7.03

(*E/Z*)-*N*`-(1-Benzyloxy-2-(3,4-dichlorphenyl)-2-hydroxy-propyliden)-hydrazincarbonsäure-*tert*.-butylester **21.46**

Aus 1.02 g (3 mmol) O-Benzyl-2-(3,4-dichlorphenyl)-2-hydroxypropanthioat

(23.9) und 0.48 g (3.6 mmol) *tert*.-Butylcarbazat nach AAV 5

Ausbeute: 81% (1.07 g), amorphes Pulver

Schmp.: 131.8 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 75 : 25

IR: 3380 cm^{-1} (NH, OH), 1701 cm $^{-1}$ (C=O), 1637 cm $^{-1}$ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.38 (s, 9H, OC(CH₃)₃), 1.66 (s, 3H, PhCCH₃), 5.05 (s, 2H, PhCH₂OC=N), 7.40 (s, 1H, OH), 7.12-7.41, 7.56-7.64 (m, 8H, aromat.), 9.81 (s, 1H, NH)
- Z-Isomer: 1.43 (s, 9H, OC(CH₃)₃), 1.61 (s, 3H, PhCCH₃), 4.80-4.83, 5.12-5.15 (dd, 2H, PhCH₂OC=N), 6.56 (s, 1H, OH), 7.12-7.41, 7.56-7.64 (m, 8H, aromat.), 9.11 (s, 1H, NH)

¹³C-NMR (DMSO-*d*_{*6*}): δ(ppm):

- E-Isomer: 27.9 (OC(CH₃)₃), 28.0 (PhCCH₃), 67.7 (PhCH₂OC=N), 76.7 (PhCCH₃), 79.1 (OC(CH₃)₃), 125.0, 126.6, 127.3, 127.8, 127.9, 128.2, 130.6 (8C tert., aromat.), 130.2, 130.9 ($C^3 + C^4$ quart., aromat.), 136.50 (C^1 quart., aromat., Benzyl), 144.82 (C^1 quart., aromat.)
- Z-Isomer: 28.0 (OC(CH₃)₃), 31.4 (PhCCH₃), 70.8 (PhCH₂OC=N), 74.7 (PhCCH₃), 79.2 (OC(CH₃)₃), 124.6, 126.5, 127.3, 127.7, 127.9, 128.2, 130.5 (8C tert., aromat.), 129.5, 130.1 (C³ + C⁴ quart., aromat.), 136.7 (C¹ quart., aromat., Benzyl), 143.4 (C¹ quart., aromat.)

 $C_{21}H_{24}Cl_2N_2O_4$ [439.34]

Ber. [%]	C 57.41	H 5.51	N 6.38
Gef. [%]	C 56.81	H 5.63	N 6.26

(*E/Z*)-*N*`-(2-(3,4-Dichlorphenyl)-2-hydroxy-1-phenethyloxy-propyliden)hydrazin-carbonsäure-*tert*.-butylester **21.47**

Aus 1.07 g (3 mmol) *O*-Phenethyl-2-(3,4-dichlorphenyl)-2-hydroxypropanthioat (**23.10**) und 0.48 g (3.6 mmol) *tert*.-Butylcarbazat nach AAV **5** Ausbeute: 75 % (1.02 g), amorphes Pulver

- Schmp.: 147.9 °C (Ethylacetat/ Hexan)
- Verhältnis (E : Z): 57 : 43
- IR: 3393 cm⁻¹ (NH), 3336 cm⁻¹ (OH), 1704 cm⁻¹ (C=O), 1654 cm⁻¹ (C=N)
- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.35 (s, 9H, CH₃COC=O), 1.55 (s, 3H, PhCCH₃), 2.90-2.97 (m, 2H, PhCH₂CH₂O), 4.09-4.19 (m, 2H, PhCH₂CH₂O), 7.32 (s, 1H, OH), 7.02-7.29, 7.46-7.60 (m, 8H, aromat.), 9.76 (s, 1H, NH)
- E-Isomer: 1.44 (s, 9H, CH₃COC=O), 1.55 (s, 3H, PhCCH₃), 2.65-2.80 (m, 2H, PhCH₂CH₂O), 3.84-3.90, 4.24-4.29 (m, 2H, PhCH₂CH₂O), 6.45 (s, 1H, OH), 7.02-7.09, 7.46-7.60 (m, 8H, aromat.), 8.76 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 27.9 (OC(CH_3)₃), 28.0 (PhC CH_3), 34.2 (Ph CH_2CH_2O), 70.1 (Ph CH_2CH_2O), 76.5 (Ph CCH_3), 79.1 (O $C(CH_3)_3$), 124.9, 126.1, 126.4, 128.2, 128.8, 130.4 (8C tert., aromat.), 130.1, 130.9 (C³+C⁴, quart., aromat.), 138.6 (C¹ quart., Phenethyl, aromat.), 144.8 (C¹ quart., aromat.)
- Z-Isomer: 27.9 (OC(CH_3)₃), 31.2 (PhC CH_3), 35.1 (Ph CH_2CH_2O), 67.2 (Ph CH_2CH_2O), 74.5 (Ph CCH_3), 79.0 (O $C(CH_3)_3$), 125.0, 126.1, 126.4, 128.2, 128.5, 130.5 (8C tert., aromat.), 123.0, 131.0 (C³+C⁴, quart., aromat.), 137.8 (C¹ quart., Phenethyl, aromat.), 146.4 (C¹ quart., aromat.)

 $C_{22}H_{26}Cl_2N_2O_4$ [453.37]

Ber. [%]	C 58.28	H 5.78	N 6.18
Gef. [%]	C 58.16	H 5.91	N 6.09

(*E/Z*)-*N*`-(2-(3-Brom-4-fluorphenyl)-1-ethoxy-2-hydroxy-2-propyliden)hydrazin-carbonsäure-methylester **21.48**

- Aus 0.92 g (3 mmol) O-Ethyl-2-(3-brom-4-fluorphenyl)-2-hydroxypropanthioat
- (23.11) und 0.32 g (3.6 mmol) Methylcarbazat nach AAV 5
- Ausbeute: 82 % (895 mg), amorphes Pulver
- Schmp.: 150.6 °C (Ethylacetat/ Hexan)
- Verhältnis (E : Z): 70 : 30
- IR: 3353 cm⁻¹ (NH), 3324 cm⁻¹ (OH), 1718 cm⁻¹ (C=O), 1637 cm⁻¹ (C=N)
- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.24 (t, *J*= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.62 (s, 3H, PhCCH₃), 3.56 (s, 3H, CH₃OC=O), 4.01-4.06 (q, 2H, CH₃CH₂OC=N), 7.39 (s, 1H, OH), 7.36-7.44, 7.67-7.69 (m, 3H, aromat.), 9.97 (s, 1H, NH)
- Z-Isomer: 1.01 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.56 (s, 3H, PhCC*H*₃), 3.65 (s, 3H, CH₃OC=O), 3.61-3.68, 4.12-4.20 (m, 2H, ABX₃-System, CH₃C*H*₂OC=N), 6.38 (s, 1H, OH), 7.36-7.44, 7.67-7.69 (m, 3H, aromat.), 9.56 (s, 1H, NH)
- ¹³C-NMR (DMSO-*d*₆): δ(ppm):
- E-Isomer: 14.3 (CH₃CH₂OC=N), 28.9 (PhCCH₃), 52.2 (CH₃OC=O), 62.6 (CH₂OC=N), 76.9 (PhCCH₃), 108.2 (d, ${}^{2}J_{C,F} = 21.1$ Hz, C³ quart., aromat.), 117.0 (d, ${}^{2}J_{C,F} = 22.1$ Hz, C³ quart., aromat.), 126.4 (d, ${}^{2}J_{C,F} = 7.4$ Hz, C⁵ tert., aromat.), 128.2 (d, ${}^{3}J_{C,F} = 6.1$ Hz, tert., aromat.), 142.4 (d, ${}^{4}J_{C,F} = 3.1$ Hz, C¹ quart., aromat.), 157.9 (d, ${}^{1}J_{C,F} = 244.9$ Hz, C⁴ quart., aromat.)
- Z-Isomer: 15.4 (CH₃CH₂OC=N), 32.0 (PhCCH₃), 52.2 (CH₃OC=O), 66.1 (CH₂OC=N), 74.8 (PhCCH₃), 108.2 (d, ${}^{2}J_{C,F} = 21.1$ Hz, C³ quart., aromat.), 117.0 (d, ${}^{2}J_{C,F} = 22.1$ Hz, C³ quart., aromat.), 126.4 (d, ${}^{2}J_{C,F} = 7.4$ Hz, C⁵ tert., aromat.), 128.2 (d, ${}^{3}J_{C,F} = 6.1$ Hz, tert.,

aromat.), 144.0 (d, ${}^{4}J_{C,F} = 3.1$ Hz, C¹ quart., aromat.), 157.6 (d, ${}^{1}J_{C,F} = 244.2$ Hz, C⁴ quart., aromat.) C₁₃H₁₆BrFN₂O₄ [363.19] Ber. [%] C 42.99 H 4.44 N 7.71 Gef. [%] C 42.98 H 4.57 N 7.66

(*E/Z*)-*N*`-(2-(3-Brom-4-fluorphenyl)-1-ethoxy-2-hydroxy-2-propyliden)hydrazin-carbonsäure-ethylester **21.49**

Aus 0.92 g (3 mmol) O-Ethyl-2-(3-brom-4-fluorphenyl)-2-hydroxypropanthioat

 $(\mathbf{23.11})$ und 0.37 g (3.6 mmol) Ethylcarbazat nach AAV 5

Ausbeute: 82 % (930 mg), farblose Kristalle

Schmp.: 102.3 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 94 : 6

IR: 3358 cm⁻¹ (NH), 3334 cm⁻¹ (OH), 1720 cm⁻¹ (C=O), 1637 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.13 (t, *J*= 7.1 Hz, 3H, CH₂CH₃), 1.24 (t, *J*= 7.1 Hz, 3H, CH₂CH₃), 1.62 (s, 3H, PhCCH₃), 3.95-4.06 (m, 4H, CH₂CH₃), 7.37 (s, 1H, OH), 7.39-7.41, 7.67-7.69 (m, 3H, aromat.), 9.94 (s, 1H, NH)
- Z-Isomer: 1.01 (t, *J*= 7.1 Hz, 3H, CH₂CH₃), 1.22 (t, *J*= 7.1 Hz, 3H, CH₂CH₃), 1.57 (s, 3H, PhCCH₃), 3.61-3.66, 4.10-4.16 (m, 4H, ABX₃-System, CH₂CH₃), 6.36 (s, 1H, OH), 7.42-7.44 (m, 3H, aromat.), 9.47 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

E-Isomer: 14.4 (*C*H₃CH₂OC=O), 14.9 (*C*H₃CH₂OC=N), 28.9 (PhC*C*H₃), 60.6 (*C*H₂OC=O), 62.6 (*C*H₂OC=N), 77.1 (PhC*C*H₃), 107.8 (d, ${}^{2}J_{C,F} = 21.4$ Hz, C³ quart., aromat.), 117.0 (d, ${}^{2}J_{C,F} = 22.1$ Hz, C⁵ tert., aromat.), 126.3 (d, ${}^{3}J_{C,F} = 7.6$ Hz, tert., aromat.), 128.6 (d, ${}^{3}J_{C,F} = 22.1$ Hz, C⁵ tert., 21.4 Hz, C³ quart.

7.6 Hz, tert., aromat.), 142.2 (d, ${}^{4}J_{C,F} = 3.1$ Hz, C¹ quart., aromat.), 157.8 (d, ${}^{1}J_{C,F} = 244.9$ Hz, C⁴ quart., aromat.)

Z-Isomer: 14.9 (CH₃CH₂OC=O), 15.4 (CH₃CH₂OC=N), 32.2 (PhCCH₃), 60.6 (CH₂OC=O), 66.0 (CH₂OC=N), 75.0 (PhCCH₃), 107.8 (d, ${}^{2}J_{C,F}$ = 21.4 Hz, C³ quart., aromat.), 117.0 (d, ${}^{2}J_{C,F}$ = 22.1 Hz, C⁵ tert., aromat.), 126.3 (d, ${}^{3}J_{C,F}$ = 7.6 Hz, tert., aromat.), 128.6 (d, ${}^{3}J_{C,F}$ = 7.6 Hz, tert., aromat.), 128.6 (d, ${}^{3}J_{C,F}$ = 7.6 Hz, tert., aromat.), 157.8 (d, ${}^{1}J_{C,F}$ = 244.9 Hz, C⁴ quart., aromat.)

 $C_{14}H_{18}BrFN_2O_4\ [377.21]$

Ber. [%]	C 44.58	H 4.81	N 7.43
Gef. [%]	C 44.40	H 4.95	N 7.45

(*E/Z*)-*N*`-(2-(3-Brom-4-fluorphenyl)-1-ethoxy-2-hydroxy-2-propyliden)hydrazin-carbonsäure-*tert*.-butylester **21.50**

- Aus 0.92 g (3 mmol) O-Ethyl-2-(3-brom-4-fluorphenyl)-2-hydroxypropanthioat
- (23.11) und 0.48 g (3 mmol) *tert*.-Butylcarbazat nach AAV 5
- Ausbeute: 76 % (926 mg), amorphes Pulver
- Schmp.: 135.3 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 96 : 4

- IR: 3342 cm⁻¹ (NH), 3289 cm⁻¹ (OH), 1709 cm⁻¹ (C=O), 1649 cm⁻¹ (C=N)
- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.23 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.35 (s, 9H, *CH*₃COC=O), 1.62 (s, 3H, PhCC*H*₃), 3.99-4.05 (m, 2H, *CH*₂OC=N), 7.29 (s, 1H, OH), 7.36-7.40, 7.66-7.68 (m, 3H, aromat.), 9.78 (s, 1H, NH)
- Z-Isomer: 0.86 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.39 (s, 9H, *CH*₃COC=O), 1.57 (s, 3H, PhCC*H*₃), 4.06-4.14 (m, 2H, ABX₃-System,

CH₂OC=N), 6.35 (s, 1H, OH), 7.33-7.36, 7.62-7.65 (m, 3H, aromat.), 9.08 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

- E-Isomer: 13.9 (CH₃CH₂OC=N), 27.9 (CH₃COC=O), 28.4 (PhCCH₃), 65.5 (CH₃CH₂OC=N), 76.5 (PhCCH₃), 78.9 (CH₃COC=O), 107.7 (d, ${}^{2}J_{C,F} = 21.4$ Hz, C³ quart., aromat.), 116.6 (d, ${}^{2}J_{C,F} = 22.1$ Hz, C⁵ tert., aromat.), 126.0 (d, ${}^{3}J_{C,F} = 7.6$ Hz, tert., aromat.), 129.3 (d, ${}^{3}J_{C,F} = 7.6$ Hz, tert., aromat.), 142.1 (d, ${}^{4}J_{C,F} = 3.1$ Hz, C¹ quart., aromat.), 157.5 (d, ${}^{1}J_{C,F} = 244.9$ Hz, C⁴ quart., aromat.)
- Z-Isomer: 15.0 ($CH_3CH_2OC=N$), 28.0 ($CH_3COC=O$), 31.6 ($PhCCH_3$), 61.8 ($CH_3CH_2OC=N$), 74.4 ($PhCCH_3$), 78.9 ($CH_3COC=O$), 107.7 (d, ${}^2J_{C,F} = 21.4$ Hz, C³ quart., aromat.), 116.6 (d, ${}^2J_{C,F} = 22.1$ Hz, C⁵ tert., aromat.), 126.0 (d, ${}^3J_{C,F} = 7.6$ Hz, tert., aromat.), 129.3 (d, ${}^3J_{C,F} = 7.6$ Hz, tert., aromat.), 142.1 (d, ${}^4J_{C,F} = 3.1$ Hz, C¹ quart., aromat.), 157.5 (d, ${}^1J_{C,F} = 244.9$ Hz, C⁴ quart., aromat.)

C₁₆H₂₂BrFN₂O₄ [405.27]

Ber. [%]	C 47.42	H 5.47	N 6.91
Gef. [%]	C 47.07	H 5.48	N 6.85

(*E/Z*)-*N*`-(2-(3-Brom-4-fluorphenyl)-1-ethoxy-2-hydroxy-2-propyliden)hydrazin-carbonsäure-benzylester **21.51**

Aus 0.92 g (3 mmol) *O*-Ethyl-2-(3-brom-4-fluorphenyl)-2-hydroxypropanthioat (**23.11**) und 0.60 g (3.6 mmol) Benzylcarbazat nach AAV **5** Ausbeute: 80 % (1.05 g), amorphes Pulver Schmp.: 104.7 °C (Ethylacetat/ Hexan) Verhältnis (E : Z): 80 : 20 IR: 3404 cm⁻¹ (NH), 3329 cm⁻¹ (OH), 1718 cm⁻¹ (C=O), 1638 cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.24 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.62 (s, 3H, PhCC*H*₃), 4.01-4.06 (m, 2H, *CH*₂OC=N), 5.04 (s, 2H PhC*H*₂OC=O), 7.39 (s, 1H, OH), 7.27-7.43, 7.64-7.70 (m, 3H, aromat.), 10.05 (s, 1H, NH)
- Z-Isomer: 1.01 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.58 (s, 3H, PhCC*H*₃), 3.59-3.69, 4.12-4.19 (m, 2H, ABX₃-System, *CH*₂OC=N), 5.14 (s, 2H PhC*H*₂OC=O), 6.37 (s, 1H, OH), 7.27-7.43, 7.64-7.70 (m, 3H, aromat.), 9.68 (s, 1H, NH)
- ¹³C-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 14.3 (*C*H₃CH₂OC=N), 28.8 (PhC*C*H₃), 62.7 (CH₃*C*H₂OC=N), 66.0 (Ph*C*H₂OC=O), 76.9 (Ph*C*CH₃), 108.2 (d, ${}^{2}J_{C,F} = 21.4$ Hz, C³ quart., aromat.), 117.1 (d, ${}^{2}J_{C,F} = 22.1$ Hz, C³ quart., aromat.), 126.4 (d, ${}^{2}J_{C,F} = 7.6$ Hz, C⁵ tert., aromat.), 128.2 (d, ${}^{3}J_{C,F} = 6.1$ Hz, tert., aromat.), 127.9, 128.7, 129.7 (5C tert.,aromat.), 137.1 (C¹ Benzyl, quart., aromat.), 142.4 (d, ${}^{4}J_{C,F} = 3.8$ Hz, C¹ quart., aromat.), 157.9 (d, ${}^{1}J_{C,F} = 244.9$ Hz, C⁴ quart., aromat.)
- Z-Isomer: 15.4 (*C*H₃CH₂OC=N), 32.0 (PhC*C*H₃), 66.0 (CH₃*C*H₂OC=N), 66.1 (Ph*C*H₂OC=O), 74.9 (Ph*C*CH₃), 108.2 (d, ${}^{2}J_{C,F} = 21.4$ Hz, C³ quart., aromat.), 117.1 (d, ${}^{2}J_{C,F} = 22.1$ Hz, C⁵ tert., aromat.), 126.4 (d, ${}^{3}J_{C,F} = 7.6$ Hz, tert., aromat.), 128.2 (d, ${}^{3}J_{C,F} = 6.1$ Hz, tert., aromat.), 127.9, 128.7, 129.7 (5C tert.,aromat.), 137.1 (C¹ Benzyl, quart., aromat.), 142.4 (d, ${}^{4}J_{C,F} = 3.8$ Hz, C¹ quart., aromat.), 157.9 (d, ${}^{1}J_{C,F} = 244.9$ Hz, C⁴ quart., aromat.)

C₁₉H₂₀BrFN₂O₄ [439.28]

Ber. [%]	C 51.95	H 4.59	N 6.38
Gef. [%]	C 51.94	H 4.72	N 6.29

(*E*)-*N*⁻(2-Hydroxy-1-methoxy 2-(naphthalen-2-yl)-propyliden)-hydrazincarbonsäure-ethylester **21.52**

Aus 1.23 g (5 mmol) O-Methyl-2-hydroxy-2-(naphthalen-2-yl)propanthioat (23.13) und 0.62 g (6 mmol) Ethylcarbazat nach AAV 5 80 % (1.27 g), farblose Kristalle Ausbeute: 138.3 °C (Ethylacetat/Hexan) Smp.: Verhältnis (E : Z): 100: 0 3349 cm⁻¹ (NH, OH), 1718 cm⁻¹ (C=O), 1641 cm⁻¹ (C=N) IR: ¹H-NMR (DMSO- d_6): δ (ppm): 1.10 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=N), 1.72 (s, 3H, PhCCH₃), 3.69 (s, 3H, CH₃OC=N), 3.93-4.04 (m, 2H, CH₃CH₂OC=O), 7.31 (s, 1H, OH), 7.50-7.55, 7.89-7.98 (m, 7H, aromat.), 10.07 (s, 1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): 14.8 (CH₃CH₂OC=N), 29.0 (PhCCH₃), 54.9 (CH₃OC=O), 60.6 (CH₂OC=N), 77.8 (PhCCH₃), 123.0, 123.4, 126.6, 126.8, 127.8, 128.5, 128.5 (7C tert., aromat.), 132.6, 132.9 ($C^5 + C^{10}$ quart., aromat.), 141.7 (C^2 quart., aromat.) $C_{17}H_{20}N_2O_4$ [316.36]

Ber. [%]	C 64.54	H 6.37	N 8.85
Gef. [%]	C 64.42	H 6.45	N 8.70

(*E/Z*)-*N*`-(2-Hydroxy-2-(naphthalen-2-yl)-1-propyloxy-propyliden)-hydrazincarbonsäure-ethylester **21.53**

- Aus 0.82 g (3 mmol) O-Propyl-2-hydroxy-2-(naphthalen-2-yl)propanthioat
- (23.14) und 0.37 g (3.6 mmol) Ethylcarbazat nach AAV 5
- Ausbeute: 81 % (832 mg), amorphes Pulver
- Schmp.: 122.8 °C (Ethylacetat/ Hexan)
- Verhältnis (E : Z): 57 : 43

IR: 3369 cm⁻¹ (NH), 3326 cm⁻¹ (OH), 1718, 1686 cm⁻¹ (C=O), 1637, 1622 cm⁻¹ (C=N)

¹H-NMR (DMSO-*d*₆): δ(ppm):

- E-Isomer: 0.94 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂CH₂O), 1.09 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=O), 1.64-1.71 (m, 2H, CH₃CH₂CH₂O), 1.74 (s, 3H, PhCCH₃), 3.92-4.03 (m, 4H, OCH₂), 7.31 (s, 1H, OH), 7.47-7.55, 7.89-7.96 (m, 7H, aromat.), 10.07 (s, 1H, NH)
- Z-Isomer: 0.56 (t, J= 7.1 Hz, 3H, CH₃CH₂CH₂O), 1.24 (t, J= 7.1 Hz, 3H, CH₃CH₂OC=O), 1.29-1.41 (m, 2H, CH₃CH₂CH₂O), 1.67 (s, 3H, PhCCH₃), 3.51-3.56, 4.10-4.18 (m, 4H, ABX₃-System, OCH₂), 6.33 (s, 1H, OH), 7.47-7.55, 7.89-7.96 (m, 7H, aromat.), 9.32 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 10.5 ($CH_3CH_2CH_2OC=N$), 14.4 ($CH_3CH_2OC=O$), 21.4 ($CH_3CH_2CH_2OC=N$), 28.5 (PhCCH₃), 60.2 ($CH_2OC=O$), 67.8 ($CH_3CH_2CH_2OC=N$), 77.4 (PhCCH₃), 122.5, 122.9, 126.1, 126.3, 127.3, 127.9, 128.0 (7C tert., aromat.), 132.2, 132.7 ($C^5 + C^{10}$ quart., aromat.), 141.3 (C^2 quart., aromat.), 153.5 (C=N)
- Z-Isomer: 9.8 ($CH_3CH_2CH_2OC=N$), 14.6 ($CH_3CH_2OC=O$), 22.2 ($CH_3CH_2CH_2OC=N$), 32.0 (PhCCH₃), 60.1 ($CH_2OC=O$), 71.0 ($CH_3CH_2CH_2OC=N$), 75.1 (PhCCH₃), 122.6, 123.0, 125.8, 126.1,

 $\begin{array}{c} 127.4,\,127.8,\,128.0\ (7C\ tert.,\,aromat.),\,132.0,\,132.5\ (C^5+C^{10}\ quart.,\\ aromat.),\,142.9\ (C^2\ quart.,\,aromat.),\,152.4\ (C=N)\\ C_{19}H_{24}N_2O_4\ [344.41]\\ Ber.\ [\%] \qquad C\ 66.26\qquad H\ 7.02\qquad N\ 8.13\\ Gef.\ [\%] \qquad C\ 66.14\qquad H\ 6.98\qquad N\ 8.20\\ \end{array}$

(*E/Z*)-*N*`-(1-Benzyloxy-2-hydroxy-2-(naphthalen-2-yl)-propyliden)-hydrazincarbonsäure-ethylester **21.54**

Aus 0.64 g (2 mmol) *O*-Benzyl-2-hydroxy-2-(naphthalen-2-yl)propanthioat

 $(\mathbf{23.15})$ und 0.25 g (2.4 mmol) Ethylcarbazat nach AAV $\mathbf{5}$

Ausbeute: 87 % (0.68 g)

Schmp.: 133.9 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 70 : 30

IR: 3356 cm⁻¹ (NH), 3326 cm⁻¹ (OH), 1715, 1709 cm⁻¹ (C=O), 1655, 1637 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.12 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=O), 1.76 (s, 3H, PhCC*H*₃), 3.95-4.05 (m, 2H, OC*H*₂CH₃), 5.13 (s, 2H, PhC*H*₂OC=N), 7.36 (s, 1H, OH), 7.06-7.18, 7.30-7.40, 7.45-7.57, 7.90-8.02 (m, 7H, aromat.), 10.11 (s, 1H, NH)
- Z-Isomer: 1.23 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=O), 1.72 (s, 3H, PhCC*H*₃), 4.10-4.15 (m, 2H, OC*H*₂CH₃), 4.70-4.73, 5.21-5.24 (dd, 2H, PhC*H*₂OC=N), 6.50 (s, 1H, OH), 7.06-7.18, 7.30-7.40, 7.45-7.57, 7.90-8.02 (m, 7H, aromat.), 9.39 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 14.8 ($CH_3CH_2OC=O$), 29.0 (PhC CH_3), 60.7 ($CH_3CH_2OC=O$), 68.2 (Ph $CH_2OC=N$), 77.8 (Ph CCH_3), 123.1, 123.4, 126.6, 126.7, 127.8, 128.2, 128.3, 128.5, 128.7 (12C tert., aromat.), 132.6, 132.9 (C⁵ + C¹⁰ quart., aromat), 137.1 (C² quart., aromat, Benzyl), 141.6 (C¹ quart., Naphthyl, aromat.)
- Z-Isomer: 15.0 ($CH_3CH_2OC=O$), 32.4 (PhC CH_3), 60.7 ($CH_3CH_2OC=O$), 71.2 (Ph $CH_2OC=N$), 75.7 (Ph CCH_3), 123.2, 123.4, 126.3, 126.7, 127.8, 128.0, 128.1, 128.4, 128.5 (12C tert., aromat), 132.5, 133.2 ($C^5 + C^{10}$ quart., aromat), 137.1 (C^2 quart., aromat, Benzyl), 143.3 (C^1 quart., Naphthyl, aromat.)

 $C_{23}H_{24}N_2O_4$ [392.46]

Ber. [%]	C 70.39	H 6.16	N 7.14
Gef. [%]	C 69.69	H 6.24	N 6.94

(*E/Z*)-*N*`-(2-Hydroxy-2-(naphthalen-2-yl)-1-phenethyloxy-propyliden)hydrazin-carbonsäure-ethylester **21.55**

Aus 0.67 g (2 mmol) *O*-Phenethyl-2-hydroxy-2-(naphthalen-2-yl)propanthioat (**23.16**) und 0.25 g (2.4 mmol) Ethylcarbazat nach AAV **5** Ausbeute: 77 % (624 mg), amorphes Pulver Schmp.: 150.1 °C (Ethylacetat/ Hexan) Verhältnis (E : Z): 90 : 10 IR: 3373 cm⁻¹ (NH), 3326 cm⁻¹ (OH), 1710 cm⁻¹ (C=O), 1654 cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.09 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.65 (s, 3H, PhCC*H*₃), 2.97-3.01 (t, *J*= 5.9 Hz, 2H, PhC*H*₂CH₂O), 3.90-4.04 (m, 2H, *CH*₂OC=O), 4.18-4.24 (m, 2H, PhCH₂C*H*₂O), 7.29 (s, 1H, OH), 7.23-7.30, 7.49-7.54, 7.78-7.89 (m, 12H, aromat.), 10.04 (s, 1H, NH)
- Z-Isomer: 1.24 (t, J= 7.1 Hz, 3H, $CH_3CH_2OC=N$), 1.67 (s, 3H, PhCC H_3), 2.53-2.59, 2.67-2.76 (m, 2H, ABX₃-System, PhC H_2CH_2O), 4.10-4.16 (m, 2H, $CH_2OC=O$), 4.27-4.37 (m, 2H, PhCH₂ CH_2O), 6.39 (s, 1H, OH), 6.84-6.86, 7.08-7.09, 7.49-7.54, 7.78-7.89 (m, 12H, aromat.), 9.17 (s, 1H, NH)
- ¹³C-NMR (DMSO-*d*_{*6*}): δ(ppm):
- E-Isomer: 14.4 ($CH_3CH_2OC=O$), 28.5 (PhC CH_3), 34.3 (Ph CH_2CH_2O), 60.1 (CH₃ $CH_2OC=O$), 67.3 (Ph CH_2CH_2O), 77.2 (Ph CCH_3), 122.4, 122.8, 126.1, 126.2, 126.2, 127.3, 127.9, 128.0, 128.2, 128.9 (12C tert., aromat.), 132.1, 132.4 (C⁵ + C¹⁰ quart., aromat.), 138.8 (C¹ quart., aromat.), 141.1 (C² quart., Naphthyl, aromat.)
- Z-Isomer: 14.5 ($CH_3CH_2OC=O$), 31.8 (PhC CH_3), 35.1 (Ph CH_2CH_2O), 60.2 (CH₃ $CH_2OC=O$), 69.8 (PhCH₂ CH_2O), 75.1 (Ph CCH_3), 122.7, 123.0, 125.8, 126.0, 126.2, 127.4, 127.9, 128.1, 128.4, 128.9 (12C tert., aromat.), 132.0, 132.7 (C⁵ + C¹⁰ quart., aromat.), 137.7 (C¹ quart., aromat.), 142.7 (C² quart., Naphthyl, aromat.)

 $C_{24}H_{26}N_2O_4$ [406.49]

Ber. [%]	C 70.92	H 6.45	N 6.89
Gef. [%]	C 70.27	H 6.60	N 6.33

<u>N`-(1-Benzyloxy-2-hydroxy-2-methyl-propyliden)-hydrazin-carbonsäure-</u> ethylester **21.56**

Aus 1.05 g	(5 mmol) <i>O</i> -	Benzyl-2-hy	droxy-2-methylprop	panthioat (23.17) und
0.62g (6 mr	nol) Ethylcar	rbazat nach A	AAV 5	
Ausbeute:	78 % (1.09	g), amorphes	s Pulver	
Schmp.:	135.1 °C (E	Ethylacetat/ H	lexan)	
IR:	3384 cm^{-1} (1	NH), 3277 cm	m^{-1} (OH), 1719 cm ⁻¹	$(C=O), 1654 \text{ cm}^{-1}$
	(C=N)			
¹ H-NMR (E	DMSO- d_6): δ	(ppm):		
	1.20 (t, <i>J</i> =	7.1 Hz, 3H,	CH ₃ CH ₂ OC=O), 1.	36 (s, 6H, $HOC(CH_3)_2$),
4.02-4.14 (q, 2H, OCH ₂ CH ₃), 4.98 (s, 2H, PhCH ₂ OC=O), 6.46 (s,				
	1H, OH), 7.	29-7.42 (m,	5H, aromat.), 10.43	(s, 1H, NH)
¹³ C-NMR (1	DMSO- d_6): δ	S(ppm):		
	14.9 (CH ₃ C	CH ₂ OC=O),	27.5 (C(<i>C</i> H ₃) ₂), 6	50,6 (<i>C</i> H ₂ OC=O), 67.7
(PhCH ₂ OC=N), 74.5 (C(CH ₃) ₂), 128.1, 128.1, 128.7 (5C tert.,				
	aromat.), 13	$37.3 (C^1, quat)$	rt., aromat.)	
$C_{14}H_{20}N_2O_4$	[280.33]			
Ber. [%]	C 59.99	H 7.19	N 9.99	
Gef. [%]	C 59.15	H 7.22	N 10.25	

7.2.4.1 Darstellung von (*E/Z*)-*N*`-(2-(3,4-Dichlorphenyl)-1-ethoxy-ethyliden)hydrazin-carbonsäure-ester **31** (Abschnitt 3.7)

Allgemeine Arbeitsvorschrift : entsprechend AAV 4

(*E/Z*)-*N*`-(2-(3,4-Dichlorphenyl)-1-ethoxy-2-ethyliden)-hydrazin-carbonsäuremethylester **31.1**

- Aus 0.81 g (3 mmol) 2-(3,4-Dichlorphenyl)acetimidat-hydrochlorid (30.1) und
- 0.30 g (3.3 mmol) Methylcarbazat nach AAV 4
- Ausbeute: 82 % (746 mg), amorphes Pulver
- Schmp.: 107.3 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 81 : 19

IR: 3244 cm^{-1} (NH), 1696 cm⁻¹ (C=O), 1660 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.16 (t, *J*= 7.0 Hz, 3H, CH₃CH₂OC=N), 3.61 (s, 3H, OCH₃), 3.77 (s, 2H, Ph-CH₂), 3.95-4.01 (m, 2H, CH₃CH₂OC=N), 7.18-7.28, 7.47-7.62 (m, 3H, aromat.), 9,68 (s, 1H, NH)
- Z-Isomer: 1.17 (t, J = 7.0 Hz, 3H, $CH_3CH_2OC=N$), 3.33 (s, 3H, OCH_3), 3.75 (s, 2H, Ph- CH_2), 4.00-4.05 (m, 2H, $CH_3CH_2OC=N$), 7.18-7.28, 7.47-7.62 (m, 3H, aromat.), 9,46 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 14.4 (CH₂CH₃), 33.2 (PhCH₂), 52.0 (OCH₃), 64.5 (CH₂CH₃), 129.5, 130.9, 131.1 (3C tert., aromat.), 129.6, 131.2 (C³+C⁴ quart., aromat.), 136.8 (C¹ quart., aromat.)
- Z-Isomer: 15.2 (CH₂CH₃), 34.5 (PhCH₂), 52.0 (OCH₃), 62.0 (CH₂CH₃), 129.2, 130.7, 130.8 (3C tert., aromat.), 129.8, 131.2 (C³+C⁴ quart., aromat.), 137.6 (C¹ quart., aromat.)

$C_{12}H_{14}Cl_2N_2O_3$ [305.16]				
Ber. [%]	C 47.23	H 4.62	N 9.18	
Gef. [%]	C 46.54	H 4.64	N 9.38	

<u>N`-(2-(3,4-Dichlorphenyl)-1-ethoxy-ethyliden)-hydrazin-carbonsäure-ethylester</u> <u>31.2</u>

Aus 0.81 g (3 mmol) 2-(3,4-Dichlorphenyl)acetimidat-hydrochlorid (30.1) und

0.34 g (3.3 mmol) Ethylcarbazat nach AAV ${\bf 4}$

Ausbeute: 79 % (761 mg), farblose Kristalle

Schmp.: 110.9 °C (Ethylacetat/ Hexan)

IR: 3228 cm^{-1} (NH), 1719 cm⁻¹ (C=O), 1655 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

1.16 (t, J= 7.1 Hz, 3H, $CH_3CH_2OC=O$), 1.19 (t, J= 7.1 Hz, 3H, $CH_3CH_2OC=N$), 3.75 (s, 2H, PhC H_2), 4.00-4.09 (m, 4H, OCH_2CH_3), 7.18-7.58 (m, 3H, aromat.), 9.64 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

14.4 (CH₃CH₂OC=O), 15.0 (CH₃CH₂OC=N), 33.2 (PHCH₂), 60.5 (CH₂OC=O), 62.3 (CH₂OC=N), 129.5, 130.9, 131.1 (3C tert., aromat.), 129.6, 131.2 ($C^3 + C^4$ quart., aromat.), 136.8 (C¹ quart., aromat.), 154.7 (C=N), 159,6 (C=O)

 $C_{13}H_{16}Cl_2N_2O_3$ [319.19]

Ber. [%]	C 48.92	H 5.05	N 8.78
Gef. [%]	C 48.57	H 5.16	N 8.81

(*E/Z*)-*N*⁻(2-(3,4-Dichlorphenyl)-1-ethoxy-2-ethyliden)-hydrazin-carbonsäure*tert*.-butylester **31.3**

- Aus 1.07 g (4 mmol) 2-(3,4-Dichlorphenyl)acetimidat-hydrochlorid (30.1) und
- 0.58 g (4.4 mmol) tert.-Butylcarbazat nach AAV 4

Ausbeute: 84 % (1.16 g), farblose Kristalle

Schmp.: 128.1 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 56 : 44

IR: $3221, 3192 \text{ cm}^{-1}$ (NH) 1717, 1694 cm⁻¹ (C=O), 1655 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.16 (t, *J*= 7.1 Hz, 3H, CH₂CH₃), 1.42 (s, 9H, CCH₃), 3.73 (s, 2H, PhCH₂), 3.96-4.05 (m, 2H, CH₂CH₃), 7.18-7.26, 7.46-7.61 (m, 3H, aromat.), 9.39 (s, 1H, NH)
- Z-Isomer: 1.18 (t, *J*= 7.1 Hz, 3H, CH₂CH₃), 1.41 (s, 9H, CCH₃), 3.76 (s, 2H, PhCH₂), 3.96-4.05 (m, 2H, CH₂CH₃), 7.18-7.26, 7.46-7.61 (m, 3H, aromat.), 8.95 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

- E-Isomer: 15.6 (CH₂CH₃), 28.7 (CH₂CH₃), 36.1 (PhCH₂), 64.9 (CH₂CH₃), 81.3 (OCCH₃), 128.0, 130.5, 131.2 (3C tert., aromat.), 131.7, 133.3 ($C^3 + C^4$ quart., aromat.), 136.0 (C¹ quart., aromat.)
- Z-Isomer: 14.5 (CH₂CH₃), 28.7 (CH₂CH₃), 34.5 (PhCH₂), 63.3 (CH₂CH₃), 81.1 (OCCH₃), 128.58, 130.5, 131.0 (3C tert., aromat.), 131.5, 133.1 ($C^3 + C^4$ quart., aromat.), 135.0 (C^1 quart., aromat.)

 $C_{15}H_{20}Cl_2N_2O_3$ [347.24]

Ber. [%]	C 51.88	H 5.81	N 8.07
Gef. [%]	C 51.49	H 5.88	N 8.31
7.2.5 Isolierung der 2-[1-Amino-2-hydroxyalk-1-yliden]-hydrazincarbonsäureester **22** (Abschnitt 3.2.4)

Allgemeine Arbeitsvorschrift AAV 6:

Die vereinigten wässrigen Phasen, welche bei der Darstellung der Hydrazincarbonsäureester nach AAV **4** anfallen, werden mit gesättigter NaHCO3-Lösung bis zur alkalischen Reaktion versetzt und dreimal mit Diethylether extrahiert. Nach dem Trocknen der vereinigten etherischen Phasen mit MgSO4 wird das Lösungsmittel unter vermindertem Druck entfernt. Das resultierende Öl wird in Diethylether aufgenommen, mit Petrolether versetzt und bei 5-7 °C gelagert. Es entsteht ein amorpher Niederschlag. Dieser wird abgetrennt, getrocknet und mit Petrolether gewaschen.

<u>N`-[1-Amino-2-(4-bromphenyl)- 2-hydroxy-propyliden]-hydrazin-carbonsäure-</u> ethylester **22.1**

Aus 1.54 g (8 mmol) Ethyl-2-(4-bromphenyl)-2-hydroxy-propanimidathydrochlorid (**20.5**) und 0.57 g (5.5 mmol) Ethylcarbazat nach AAV **6** Ausbeute: 34% (891 mg), amorphes Pulver Schmp.: 134.8 °C (Diethylether/ Petrolether) IR: 3481, 3407, 3360, 3247 cm⁻¹ (NH, OH), 1715 cm⁻¹ (C=O), 1632 cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm):

1.19 (t,3H, J = 7.0 Hz, OCH₂CH₃), 1.57 (s, 3H, PhCCH₃), 4.02-4.07 (m,2H, OCH₂CH₃), 5.75 (s, 2H, NH₂), 5.89 (s, 1H, OH), 7.42-7.49 (m, 4H, AB-System, aromat.), 8.93 (s,1H, NH)

(OCH₂CH₃), 28.8 (PhCCH₃), 60.1 (OCH₂CH₃), 74.2 15.1 (PhCCH₃), 120.1 (C⁴ quart., aromat.), 127.7, 128.0, 130.8 (4C tert., aromat.), 146.7 (C^1 quart., aromat.), 157.9 (C=N)

 $C_{12}H_{16}BrN_3O_3$ [330.18]

Ber. [%]	C 43.65	H 4.88	N 12.73
Gef. [%]	C 43.66	H 4.97	N 12.79

N`-[1-Amino-2-(4-bromphenyl)-2-hydroxy-propyliden]-hydrazin-carbonsäure*tert*.-butylester **22.2**

Aus 1.54 g (5 mmol) Ethyl-2-(4-bromphenyl)-2-hydroxy-propanimidathydrochlorid (20.5) und 0.73 g (5.5 mmol) tert.-Butylcarbazat nach AAV 6 35 % (630 mg), amorphes Pulver Ausbeute: 151.8°C (Diethylether/ Petrolether) Schmp.: 3495, 3391, 3354, 3233 cm⁻¹ (NH,OH), 1698 cm⁻¹ (C=O), IR: 1655 cm^{-1} (C=N) ¹H-NMR (DMSO- d_6): δ (ppm): 1.42 (s, 9H, OCCH₃), 1.56 (s, 3H, PhCCH₃), 5.71 (s, 2H, NH₂), 5.87 (s, 1H, OH), 7.42-7.48 (m, 4H, AB-System, aromat.), 8.70 (s, 1H, NH) ¹³C-NMR (DMSO-*d*₆): δ(ppm): 28.6 (OCCH₃), 28.7 (PhCCH₃), 74.1 (OCCH₃), 78.4 (PhCCH₃), 120.1 (C⁴ quart., aromat.), 127.8, 130.8 (4C tert., aromat.), 146.7 (C¹ quart., aromat), 153.3 (C=N) C₁₄H₂₀BrN₃O₃ [358.24]

Ber. [%]	C 46.94	H 5.63	N 11.73
Gef. [%]	C 46.85	H 5.83	N 11.52

<u>N`-[1-Amino-2-(4-bromphenyl)-2-hydroxy-propyliden]-hydrazin-carbonsäure-</u> benzylester **22.3**

Aus 1.54 g (5 mmol) Ethyl-2-(4-bromphenyl)-2-hydroxy-propanimidathydrochlorid (20.5) und 0.91 g (5.5 mmol) Benzylcarbazat nach AAV 6 Ausbeute: 35 % (679 mg), amorphes Pulver 148.5 °C (Diethylether/ Petrolether) Schmp.: 3477, 3427, 3349, 3225 cm⁻¹ (NH, OH), 1695 cm⁻¹ (C=O), IR: 1654 cm^{-1} (C=N) ¹H-NMR (DMSO- d_6): δ (ppm): 1.57 (s, 3H, PhCCH₃), 5.03 (s, 2H, OCH₂Ph), 5.78 (s, 2H, NH₂), 5.91 (s, 1H, OH), 7.30-7.38 (m, 5H, aromat.), 7.43-7.49 (m, 4H, AB-System, aromat.), 9.11 (s, 1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): 29.8 (PhCCH₃), 65.6 (OCH₂Ph), 74.1 (PhCCH₃), 120.2 (C⁴ quart., aromat.), 127.7, 128.2, 128.7, 130.8 (4C tert., aromat.), 146.7 (C¹ quart., aromat), 154.2 (C=N) C₁₇H₁₈BrN₃O₃ [392.26] N 10.71 Ber. [%] C 52.06 H 4.63 C 51.99 Gef. [%] H 4.91 N 10.68

<u>N`-[1-Amino-2-hydroxy-2-(4-nitrophenyl)-propyliden]-hydrazin-carbonsäure-</u> ethylester **22.4**

Aus 1.19 g (5 mmol) Ethyl-2-hydroxy-2-(4-nitrophenyl)propanimidathydrochlorid (20.6) und 0.57 g (5.5 mmol) Ethylcarbazat nach AAV 6 Ausbeute: 33 % (482 mg), amorphes Pulver 147.5 °C (Diethylether/ Petrolether) Schmp.: 3495, 3416, 3388, 3244 cm⁻¹ (NH, OH), 1713 cm⁻¹ (C=O), IR: 1638 cm^{-1} (C=N) ¹H-NMR (DMSO- d_6): δ (ppm): 1.20 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 1.63 (s, 3H, PhCCH₃), 4.03-4.08 (m, 2H, OCH₂CH₃), 5.83 (s, 2H, NH₂), 6.16 (s, 1H, OH), 7.75-7.77, 8.17-8.19 (m, 4H, AB-System, aromat.), 8.98 (s, 1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): (OCH₂CH₃), 28.7 (PhCCH₃), 60.1 (OCH₂CH₃), 74.4 15.1 (PhCCH₃), 123.3, 126.7 (4C, tert., aromat), 126.7 (C⁴, quart., aromat), 146.7 (C¹ quart., aromat), 153.3 (C=N), 154.8 (C=O) $C_{12}H_{16}N_4O_5$ [296.29] Ber. [%] C 48.65 H 5.44 N 18.91 Gef. [%] C 48.40 H 5.63 N 18.52

<u>N`-[1-Amino-2-(3,4-dichlorphenyl)-2-hydroxy-propyliden]-hydrazin-</u> carbonsäure-ethylester **22.5**

Aus 1.79 g (6 mmol) Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidathydrochlorid (20.8) und 0.69 g (6.6 mmol) Ethylcarbazat nach AAV 6 Ausbeute: 32 % (619 mg), amorphes Pulver 140.3 °C (Diethylether/ Petrolether) Schmp.: 3487, 3443, 3371, 3226 cm⁻¹ (NH,OH), 1692 cm⁻¹ (C=O), IR: 1628 cm^{-1} (C=N) ¹H-NMR (DMSO-*d*₆): δ(ppm): 1.19 (t, J = 7.1 Hz, 3H, CH₂CH₃), 1.59 (s, 3H, PhCCH₃), 4.03-4.08 (m, 2H, CH₂CH₃), 5.83 (s, 2H, NH₂), 6.07 (s, 1H, OH), 7.43-7.70 (m, 3H, aromat.), 8.95 (s, 1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): 15.1 (CH₂CH₃), 28.7 (PhCCH₃), 60.1 (CH₂CH₃), 73.9 (PhCCH₃), 126.0, 127.5, 130.3 (3C, tert., aromat.), 129.6, 130.7 (2C, quart., aromat.), 148.4 (C¹ quart., aromat.), 151.8 (C=N), 153.7 (C=O) $C_{12}H_{15}Cl_2N_3O_3$ [320.18] Ber. [%] C 45.02 H 4.72 N 13.12 Gef. [%] C 44.99 H 4.99 N 12.95

221

<u>N`-[1-Amino-2-(3,4-dichlorphenyl)-2-hydroxy-propyliden]-hydrazin-</u> carbonsäure-*tert*.-butylester **22.6**

Aus 1.79 g (6 mmol) Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidathydrochlorid (20.8) und 0.88 g (6.6 mmol) tert.-Butylcarbazat nach AAV 6 33 % (694 mg), amorphes Pulver Ausbeute: 145.2 °C (Diethylether/ Petrolether) Schmp.: 3594, 3487, 3357, 3244 cm⁻¹ (NH, OH), 1698 cm⁻¹ (C=O), IR: 1655 cm^{-1} (C=N) ¹H-NMR (CDCl₃): δ(ppm): 1.42 (s, 9H, CCH₃), 1.58 (s, 3H, PhCCH₃), 5.78 (s, 2H, NH₂), 6.04 (s, 1H, OH), 7.42-7.69 (m, 3H, aromat.), 8.72 (s, 1H, NH) ¹³C-NMR (CDCl₃): δ(ppm): 28.0 (PhCCH₃), 28.2 (OCCH₃), 73.4 (OCCH₃), 78.0 (PhCCH₃), 125.6, 127.0, 129.8 (3C tert., aromat.), 129.1, 130.2 (2C quart., aromat.), 148.0 (C¹ quart., aromat.), 152.4 (C=N) $C_{14}H_{19}Cl_2N_3O_3$ [348.23] Ber. [%] C 48.29 H 5.50 N 12.07 Gef. [%] C 48.44 H 5.80 N 12.00

<u>N`-[1-Amino-2-hydroxy-2-(naphthalen-2-yl)-propyliden]-hydrazin-carbonsäure-</u> methylester **22.7**

Aus 1.40 g (5 mmol) Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanimidathydrochlorid (20.17) und 0.50 g (5.5 mmol) Methylcarbazat nach AAV 6 Ausbeute: 39 % (562 mg), amorphes Pulver 157.3 °C (Diethylether/ Petrolether) Schmp.: 3446, 3419, 3344, 3244 cm⁻¹ (NH, OH), 1698 cm⁻¹ (C=O), IR: 1639 cm^{-1} (C=N) ¹H-NMR (DMSO- d_6): δ (ppm): 1.69 (s, 3H, PhCCH₃), 3.60 (s, 3H, OCH₃), 5.77 (s, 2H, NH₂), 5.93 (s, 1H, OH), 7.45-7.51, 7.61-7.63, 7.81-7.90, 8.01 (m, 7H, aromat.), 8.95 (s,1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): 28.2 (PhCCH₃), 51.2 (OCH₃), 74.0 (PhCCH₃), 122.9, 124.0, 125.5, 125.8, 127.0, 127.2, 127.9 (7C tert., aromat.), 131.9, 132.4 (C^5 + C^{10} quart., aromat), 144.2 (C^2 quart., aromat.) C₁₅H₁₇N₃O₃ [287.32] Ber. [%] C 62.71 H 5.96 N 14.62 Gef. [%] C 62.67 H 6.14 N 14.55

<u>N`-[1-Amino-2-hydroxy-2-(naphthalen-2-yl)-propyliden]-hydrazin-carbonsäure-</u> ethylester **22.8**

Aus 1.40 g (5 mmol) Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanimidathydrochlorid (20.17) und 0.57 g (5.5 mmol) Ethylcarbazat nach AAV 6 Ausbeute: 36 % (537 mg), amorphes Pulver 130.8 °C (Diethylether/ Petrolether) Schmp.: 3484, 3429, 3374, 3233 cm⁻¹ (NH, OH), 1687 cm⁻¹ (C=O), IR: 1626 cm^{-1} (C=N) ¹H-NMR (DMSO- d_6): δ (ppm): 1.20 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 1.70 (s, 3H, PhCCH₃), 4.01-4.11 (m, 2H, OCH₂CH₃), 5.75 (s, 2H, NH₂), 5.95 (s, 1H, OH), 7.44-7.51, 7.61-7.64, 7.81-7.90, 8.02 (m, 7H, aromat.), 8.96 (s,1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): 15.1 (OCH₂CH₃), 28.7 (PhCCH₃), 60.1 (OCH₂CH₃), 74.5 (PhCCH₃), 123.4, 124.5, 126.0, 126.3, 127.5, 127.7, 128.3 (7C tert., aromat), 132.4, 132.9 ($C^5 + C^{10}$ quart., aromat), 144.7 (C^2 quart., aromat), 154.2 (C=N) $C_{16}H_{19}N_{3}O[301.35]$ Ber. [%] H 6.36 C 63.77 N 13.94 Gef. [%] C 63.70 H 6.49 N 13.80

<u>N`-[1-Amino-2-hydroxy-2-(naphthalen-2-yl)-propyliden]-hydrazincarbonsäure-</u> <u>*tert*.-butylester **22.9**</u>

Aus 1.40 g (5 mmol) Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanimidathydrochlorid (20.17) und 0.73 g (5.5 mmol) tert.-Butylcarbazat nach AAV 6 Ausbeute: 34 % (556 mg), amorphes Pulver 150.7 °C (Diethylether/ Petrolether) Schmp.: 3478, 3413, 3308, 3244 cm⁻¹ (NH, OH), 1717 cm⁻¹ (C=O), IR: 1669 cm^{-1} (C=N) ¹H-NMR (DMSO- d_6): δ (ppm): 1.43 (s, 9H, OCCH₃), 1.69 (s, 3H, PhCCH₃), 5.74 (s, 2H, NH₂), 5.92 (s, 1H, OH), 7.44-7.51, 7.60-7.63, 7.81-7.90, 8.01 (m, 7H, aromat.), 8.73 (s,1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): 28.7 (s, 9H, OCCH₃), 28.7 (PhCCH₃), 74.5 (OCCH₃), 78.4 (PhCCH₃), 123.4, 124.6, 126.0, 126.3, 127.4, 127.6, 128.3 (7C tert., aromat.), 132.3, 132.9 ($C^5 + C^{10}$ quart., aromat.), 144.7 (C^2 quart., aromat), 153.4 (C=N) C₁₈H₂₃N₃O₃ [329.40] Ber. [%] C 65.63 H 7.04 N 12.76

Gef. [%] C 65.22 H 7.06 N 12.66

<u>N`-[1-Amino-2-(3,4-dichlorphenyl)-2-hydroxy-butyliden]-hydrazin-</u> carbonsäure-ethylester **22.10**

Aus 1.25 g (4 mmol) Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-butanimidathydrochlorid (20.25) und 0.46 g (4.4 mmol) Ethylcarbazat nach AAV 6 Ausbeute: 35 % (474 mg), amorphes Pulver 149.6 °C (Diethylether/ Petrolether) Schmp.: 3479, 3427, 3365, 3237 cm⁻¹ (NH, OH), 1691 cm⁻¹ (C=O), IR: 1626 cm^{-1} (C=N) ¹H-NMR (DMSO-*d*₆): δ(ppm): 0.71 (t, J = 7.1 Hz, 3H, PhCH₂CH₃), 1.19 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 1.95-2.10 (m, 2H, PhCH₂CH₃), 4.03-4.08 (q, 2H, OCH₂CH₃), 5.79 (s, 1H, OH), 5.86 (s, 2H, NH₂), 7.45-7.72 (m, 3H, aromat.), 8.95 (s, 1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): 8.1 (PhCCH₂CH₃), 15.1 (OCH₂CH₃), 32.3 (PhCCH₂CH₃), 60.1 (OCH₂CH₃), 76.2 (PhCCH₂CH₃), 126.3, 127.9, 130.2 (3C tert., aromat.), 129.5, 130.7 (2C quart., aromat.) 147.0 (C¹ quart., aromat.), 150.8 (C=N), 153.2 (C=O) $C_{13}H_{17}Cl_2N_3O_3$ [334.20] Ber. [%] C 46.72 H 5.13 N 12.57

Gef. [%] C 46.62 H 5.29 N 12.45

7.2.6 Darstellung von 5-Alk-/ Aralkoxy-3,6-dihydro-2*H*-1,3,4-oxadiazin-2-onen **29** (Abschnitt 3.6.2)

Allgemeine Arbeitsvorschrift: AAV 7

1 mmol α -Hydroxyhydrazin-carbonsäureester und 1 mmol Natriumethylat werden in ein Mikrowellentube abgewogen und anschließend mit 2 ml absoluten Ethanol versetzt.

Das Mikrowellentube wird in die Mikrowelle eingesetzt und unter folgenden Parametern, 200W, 100°C, 10 bar, für 5 bis 10 Minuten erhitzt .

Nach Beendigung der Reaktion wird der Reaktionsansatz in einen Kolben überführt und das Lösungsmittel unter verminderten Druck entfernt.

In Anschluß fügt man dem resultierenden Öl Diethylether hinzu und extrahiert dreimal mit je 5 ml Wasser, trocknet die organische Phase über Magnesiumsulfat und entfernt das Lösungsmittel im Vakuum.

Die Oxadiazin-2-one kristallisieren durch Zugabe von Diethylether/ Petrolether in der Kälte aus.

6-Cyclopropyl-5-ethoxy-6-methyl-3,6-dihydro-2H-1,3,4-oxadiazin-2-on 29.1

Aus 0.24g (Z)-N`-(2-Cyclopropyl-1-ethoxy-2-hydroxy-propyliden)-hydrazincarbonsäure-ethylester (**21.11**) nach AAV **7** Ausbeute: 80 % (159 mg), farblose Kristalle Schmp.: 74.4 °C (Diethylether/ Petrolether) IR: 3227 cm⁻¹ (NH), 1714 cm⁻¹ (C=O), 1655 cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm):

0.30-0.58 (m, 4H, C*H*₂, Cyclopropan), 1.21-1.27 (m, 1H, C*H*, Cyclopropan), 1.24 (t, *J*= 7.1 Hz, 3H, C*H*₃CH₂OC=N), 1.40 (s, 3H, *C*C*H*₃), 4.03-4.08 (q, 2H, OC*H*₂CH₃), 10.09 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

0.9 (*C*H₂, Cyclopropan), 13.5 (*C*H₃CH₂OC=N), 16.5 (*C*H, Cyclopropan), 21.3 (*CC*H₃), 62.3 (*C*H₂OC=N), 78.9 (*C*CH₃), 145.7 (C=N), 153.8 (C=O)

 $C_9H_{14}N_2O_3$ [198.22]

Ber. [%]	C 54.53	H 7.12	N 14.13
Gef. [%]	C 54.48	H 7.13	N 14.15

<u>5-Ethoxy-6-methyl-6-(naphthalen-2-yl)-3,6-dihydro-2H-1,3,4-oxadiazin-2-on</u> <u>29.2</u>

Aus 033 g (*E*/*Z*)-*N*[`]-(1-Ethoxy-2-hydroxy-2-(naphthalen-2-yl)-propyliden)– hydrazin-carbonsäure-ethylester (**21.13**) nach AAV **7** Ausbeute: 87 % (244 mg), farblose Kristalle Schmp.: 142.1 °C (Diethylether/ Petrolether) IR: 3256 cm⁻¹ (NH), 1707 cm⁻¹ (C=O), 1656 cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm): 1.44 (t, *J*= 7.0 Hz, 3H, CH₃CH₂OC=N), 1.87 (s, 3H, PhCCH₃), 4.26-4.31 (q, 2H, CH₃CH₂OC=N), 7.46-7.53, 7.67-7.70, 7.81-7.87 (m, 7H, aromat.), 10.42 (s, 1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): 9.3 (CH₃CH₂OC=N), 20.9 (PhCCH₃), 59.2 (CH₂OC=N), 76.3 (PhCCH₃), 117.1, 118.6, 121.8, 121.9, 122.7, 123.6, 124.1 (7C tert., aromat.), 128.0, 128.4 ($C^5 + C^{10}$ quart., aromat.), 131.6 (C^2 quart., aromat.), 146.1 (C=N), 151.4 (C=O) C₁₆H₁₆N₂O₃ [284.32] Ber. [%] C 67.59 H 5.67 N 9.85 Gef. [%] C 67.40 H 5.69 N 9.97

5-Ethoxy-6-ethyl-6-phenyl-3,6-dihydro-2H-1,3,4-oxadiazin-2-on 29.3

Aus 0.29 g (E/Z)-N`-(1-Ethoxy-2-hydroxy-2-phenyl-butylyliden)-hydrazincarbonsäure-ethylester (21.21) nach AAV 7 Ausbeute: 86 % (212 mg), farblose Kristalle 118.2 °C (Diethylether/ Petrolether) Schmp.: 3254 cm⁻¹ (NH), 1713 cm⁻¹ (C=O), 1658 cm⁻¹ (C=N) IR: ¹H-NMR (DMSO- d_6): δ (ppm): 0.92 (t, J = 7.1 Hz, 3H, PhCCH₂CH₃), 1.33 (t, J = 7.1 Hz, 3H, CH₂CH₃), 1.89-1.98, 2.06-2.15 (q, 2H, PhCCH₂CH₃), 4.16-4.26 (m, 2H, CH₂CH₃), 7.34-7.46 (m, 5H, aromat.), 10.19 (s, 1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): 8.4 (PhCCH₂CH₃), 14.4 (CH₂CH₃), 31.7 (PhCCH₂CH₃), 63.7 (CH₂CH₃), 83.1 (PhCCH₂CH₃), 124.6, 124.7, 129.0, 129.2 (5C tert., aromat.), 139.4 (C¹ quart., aromat.), 150.0 (C=N), 154.8 (C=O) $C_{13}H_{16}N_2O_3$ [248.28] Ber. [%] C 62.89 H 6.50 N 11.28

Gef. [%] C 62.93 H 6.55 N 11.14

5-Ethoxy-6-phenyl-3,6-dihydro-2H-1,3,4-oxadiazin-2-on 29.4


```
Aus 0.27 g (E/Z)-N`-(1-Ethoxy-2-hydroxy-2-phenyl-ethyliden)-hydrazin-
carbonsäure-ethylester (21.24) nach AAV 7
Ausbeute:
              84% (185 mg), farblose Kristalle
              139.1 °C (Diethylether/Petrolether)
Schmp.:
              3245 cm<sup>-1</sup> (NH), 1703 cm<sup>-1</sup> (C=O), 1656 cm<sup>-1</sup> (C=N)
IR:
<sup>1</sup>H-NMR (DMSO-d_6): \delta(ppm):
              1.22 (t, J=7.1 Hz, 3H, CH_3CH_2OC=N), 4.07-4.20 (m, 2H,
              CH<sub>3</sub>CH<sub>2</sub>OC=N), 6.01 (d, 1H, PhCH), 7.35-7.49 (m, 5H, aromat.),
              10.29 (s, 1H, NH)
<sup>13</sup>C-NMR (DMSO-d<sub>6</sub>): δ(ppm):
              14.3 (CH<sub>3</sub>CH<sub>2</sub>OC=N), 63.6 (CH<sub>2</sub>OC=N), 75.3 (PhCH), 127.3,
              129.4, 129.9 (5C tert., aromat.), 134.8 (C<sup>1</sup> quart., aromat.), 149.2
             (C=N), 153.7 (C=O)
C_{11}H_{12}N_2O_3 [220.23]
Ber. [%]
             C 59.99
                            H 5.49
                                          N 12.72
```

Gef. [%] C 59.41 H 5.58 N 12.37

```
<u>6-(4-Methylphenyl)-5-ethoxy-6-methyl-3,6-dihydro-2H-1,3,4-oxadiazin-2-on</u>
29.5
```



```
Aus 0.29 g (E/Z)-N`-(1-Ethoxy-2-hydroxy-2-(4-methylphenyl)-propyliden]-
hydrazin-carbonsäure-ethylester (21.30) nach AAV 7
               86% (214 mg), farblose Kristalle
Ausbeute:
Schmp.:
               123.1 °C (Diethylether/Petrolether)
               3254 cm<sup>-1</sup> (NH), 1714 cm<sup>-1</sup> (C=O), 1659 cm<sup>-1</sup> (C=N)
IR:
<sup>1</sup>H-NMR (DMSO-d_6): \delta(ppm):
               1.32 (t, J=7.1 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 1.68 (s, 3H, PhCCH<sub>3</sub>), 2.30 (s,
               3H, PhCCH<sub>3</sub>), 4.16-4.22 (m, 2H, CH<sub>2</sub>CH<sub>3</sub>), 7.18-7.26 (s, 4H,
               aromat.), 10.18 (s, 1H, NH)
<sup>13</sup>C-NMR (DMSO-d_6): \delta(ppm):
               14.4 (CH<sub>2</sub>CH<sub>3</sub>), 21.0 (PhCH<sub>3</sub>), 25.5 (PhCCH<sub>3</sub>), 63.7 (CH<sub>2</sub>CH<sub>3</sub>),
               80.0 (PhCCH<sub>3</sub>), 124.4, 124.7, 129.6, 129.9 (4C tert., aromat), 136.9
               (C^{4}-CH_{3}), 138.6 (C<sup>1</sup> quart., aromat), 150.1 (C=N), 155.8 (C=O)
C_{13}H_{16}N_2O_3 [248.28]
Ber. [%]
               C 62.89
                              H 6.50
                                              N 11.28
Gef. [%]
               C 62.45
                              H 6.52
                                              N 11.14
```

```
<u>6-(4-Chlorphenyl)-5-ethoxy-6-methyl-3,6-dihydro-2H-1,3,4-oxadiazin-2-on</u>
29.6
```


Aus 0.31 g (*E/Z*)-*N*⁻(2-(4-Chlorphenyl)-1-ethoxy-2-hydroxy-propyliden)hydrazin-carbonsäure-ethylester (21.34) nach AAV 7 81 % (218 mg), farblose Kristalle Ausbeute: Schmp.: 123.1°C (Diethylether/ Petrolether) 3267 cm⁻¹ (NH), 1707 cm⁻¹ (C=O), 1655 cm⁻¹ (C=N) IR: ¹H-NMR (CDCl₃): δ(ppm): 1.40 (t, J= 7.1 Hz, 3H, OCH₂CH₃), 1.77 (s, 3H, PhCCH₃), 4.21-4.26 (m, 2H, CH₂CH₃), 7.33-7.37 (m, 4H, AB-System, aromat.), 7.66 (s, 1H. NH) ¹³C-NMR (CDCl₃): δ(ppm): 14.1 (CH₂CH₃), 25.7 (PhCCH₃), 64.1 (CH₂CH₃), 80.5 (PhCCH₃), 125.7, 125.8, 129.0, 129.2 (4C tert., aromat), 134.8 (C⁴ quart., aromat), 137.9 (C¹ quart., aromat), 150.7 (C=N), 155.9 (C=O) C₁₂H₁₃ClN₂O₃ [268.70] Ber. [%] C 53.64 H 4.88 N 10.43 Gef. [%] C 53.20 H 4.95 N 10.25

<u>6-(3,4-Dimethylphenyl)-5-ethoxy-6-methyl-3,6-dihydro-2*H*-1,3,4-oxadiazin-2on **29.7**</u>

Aus 0.31g ((1 mmol) (<i>E</i> /	Z)-N`-(2-(3,4	4-Dimethylphenyl)-1-ethoxy-2-hydroxy-
propyliden)	-hydrazin-ca	arbonsäure-e	thylester (21.38) nach AAV 7
Ausbeute:	80 % (212	mg), farblose	e Nadeln
Schmp.:	127.8 °C (I	Diethylether/	Petrolether)
IR:	3254 cm^{-1} (NH), 1726 c	m^{-1} (C=O), 1662 cm ⁻¹ (C=N)
¹ H-NMR (I	DMSO- d_6): δ	(ppm):	
	1.40 (t, <i>J</i> =	7.1 Hz, 3H,	CH ₂ CH ₃), 1.76 (s, 3H, PhCCH ₃), 2.24, 2.26
	(jeweils s,	3H, PhCH ₃),	4.21-4.24 (m, 2H, CH ₂ CH ₃), 7.09-7.26 (m,
	3H, aromat	.), 7.70 (s, 11	H, NH)
¹³ C-NMR (DMSO- d_6):	δ(ppm):	
	14.2 (CH ₂	₂ CH ₃), 19.5	, 20.0 (Ph <i>CH</i> ₃), 25.8 (PhC <i>C</i> H ₃), 63.8
	(<i>C</i> H ₂ CH ₃),	81.0 (PhCC	H ₃), 121.7, 125.4, 130.0 (3C tert., aromat.),
	136.8, 137.	$2 (C^3 - CH_3 +$	- C^4 -CH ₃), 137.4 (C ¹ quart., aromat.), 151.2
	(C=N), 156	0.5 (C=O)	
$C_{14}H_{20}N_2O_3$	3 [264.33]		
Ber. [%]	C 64.11	H 6.92	N 10.68

Gef. [%] C 63.81 H 6.94 N 10.58

Aus 0.34 g (E/Z)-N⁻-(2-(3,4-Dichlorphenyl)-2-hydroxy-1-methoxy-2propyliden)-hydrazin-carbonsäure-ethylester (21.43) nach AAV 7 84 % (243 mg), farblose Kristalle Ausbeute: 163.7 °C (Diethylether/ Petrolether) Smp.: 3246 cm⁻¹ (NH), 1721 cm⁻¹ (C=O), 1661 cm⁻¹ (C=N) IR: ¹H-NMR (DMSO- d_6): δ (ppm): 1.74 (s, 3H, PhCCH₃), 3.82 (s, 3H, CH₃OC=N), 7.32-7.74 (m, 3H, aromat.), 10.42 (s, 1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): 24.9 (PhCCH₃), 55.5 (CH₃OC=N), 79.4 (PhCCH₃), 125.3, 127.0, 131.6 (3C tert., aromat.), 132.1, 132.2 ($C^3 + C^4$ quart., aromat.), 140.6 (C¹ quart., aromat.), 149.5 (C=N), 155.5 (C=O) $C_{11}H_{10}Cl_2N_2O_3$ [289.12] Ber. [%] C 45.70 H 3.49 N 9.69 Gef. [%] C 45.80 H 3.74 N 9.72

<u>5-Methoxy-6-methyl-6-(naphthalen-2-yl)-3,6-dihydro-2H-1,3,4-oxadiazin-2-on</u> <u>29.9</u>


```
Aus 0.32 g N<sup>-</sup>(2-Hydroxy-1-methoxy 2-(naphthalen-2-yl)-propyliden)-
hydrazin-carbonsäure-ethylester (21.52) nach AAV 7
              85 % (231 mg), farblose Kristalle
Ausbeute:
Schmp.:
              163.7 °C (Diethylether/ Petrolether)
              3250 cm<sup>-1</sup> (NH), 1707 cm<sup>-1</sup> (C=O), 1663 cm<sup>-1</sup> (C=N)
IR:
<sup>1</sup>H-NMR (DMSO-d_6): \delta(ppm):
               1.82 (s, 3H, PhCCH<sub>3</sub>), 3.88 (s, 3H, CH<sub>3</sub>OC=N), 7.51-7.59, 7.84-
              8.02 (m, 7H, aromat.), 10.32 (s, 1H, NH)
<sup>13</sup>C-NMR (DMSO-d_6): \delta(ppm):
              25.3 (PhCCH<sub>3</sub>), 55.4 (CH<sub>3</sub>OC=N), 80.4 (PhCCH<sub>3</sub>), 122.6, 123.6,
              127.2, 127.3, 127.9, 128.6, 129.3 (7C tert., aromat.), 132.7, 133.1
              (C^{5} + C^{10} quart., aromat.), 137.0 (C^{2} quart., aromat.), 150.0 (C=N),
              156.3 (C=O)
C_{15}H_{14}N_2O_3 [270.29]
```

Ber. [%]	C 66.66	Н 5.22	N 10.36
Gef. [%]	C 66.41	H 5.25	N 10.47

5-Benzyloxy-6,6-dimethyl-3,6-dihydro-2H-1,3,4-oxadiazin-2-on 29.10

Aus 0.28 g N⁻(1-Benzyloxy-2-hydroxy-2-methyl-propyliden)-hydrazincarbonsäure-ethylester (21.56) nach AAV 7 Ausbeute: 78 % (182 mg), farblose Kristalle 122.6 °C (Diethylether/ Petrolether) Schmp.: 3247 cm⁻¹ (NH), 1714 cm⁻¹ (C=O), 1667 cm⁻¹ (C=N) IR: ¹H-NMR (DMSO-*d*₆): δ(ppm): 1.56 (s, 6H, C(CH₃)₂), 5.09 (s, 2H, PhCH₂OC=N), 7.32-7.41 (m, 5H, aromat.), 7.70 (s, 1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): 24.2 (C(CH₃)₂), 69.6 (CH₂OC=N), 78.5 (C(CH₃)₂), 127.9, 128.3, 128.8, 129,0 (5C tert., aromat.), 135.9 (C¹ quart., aromat.), 151.0 (C=N), 157.0 (C=O) $C_{12}H_{14}N_2O_3$ [234.26] Ber. [%] C 61.53 H 6.02 N 11.96

Gef. [%] C 61.30 H 6.07 N 12.11

7.3 Synthesevorschriften und analytische Daten zu Kapitel 4

7.3.1 Darstellung von (*E/Z*)-Ethyl-2-hydroxy-*N*`-(Alk-/Aralkylcarbamoyl)-2-(aryl)-propanhydrazonaten **33** (Abschnitt 4.2.2)

Allgemeine Arbeitsvorschrift AAV 8:

Zu einer rührenden Lösung von 1 Äquivalent des entsprechenden Thiocarbonsäure-O-esters in 10 ml Methanol wird eine Lösung aus 1.2 Äquivalenten des entsprechenden Semicarbazides in 10 ml Methanol zugeführt. Anschließend wird solange gerührt bis die C=S-Bande in Infrarotspektrum zwischen 1250-1300 cm⁻¹ zugunsten einer C=N-Bande bei 1650 cm⁻¹ verschwindet.

Der Ansatz wird dreimal mit je 20 ml Wasser gewaschen und anschließend unter vermindertem Druck eingeengt.

Die Verbindungen **33** kristallisieren aus Ethylacetat/ Hexan in der Kälte aus.

(*E/Z*)-Ethyl-2-hydroxy-*N*`-(methylcarbamoyl)-2-(naphthalen-2yl)propanhydrazonat **33.1**

Aus 0.52 g (2 mmol) *O*-Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanthioat (**23.12**) und 0.21 g (2.4 mmol) 4-Methylsemicarbazid nach AAV **8** Ausbeute: 84 % (531 mg), amorphes Pulver Schmp.: 173.6 °C (Ethylacetat/ Hexan) Verhältnis (E : Z): 62 : 38 IR: 3432, 3302, 3177 cm⁻¹ (NH, OH), 1654 (C=O), 1644 cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.28 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N), 1.69 (s, 3H, PhCC*H*₃), 2.58 (d, 3H, NHC*H*₃), 4.09-4.14 (m, 2H, *CH*₂OC=N), 6.70 (d, 1H, NHCH₃), 7.08 (s, 1H, OH), 7.48-7.55, 7.88-7.97 (m, 7H, aromat.), 9.13 (s, 1H, NH)
- Z-Isomer: 0.93 (t, J= 7.0 Hz, 3H, CH₃CH₂OC=N), 1.71 (s, 3H, PhCCH₃), 2.71 (d, 3H, NHCH₃), 3.55-3.63, 4.16-4.22 (m, 2H, ABX₃-System, CH₂OC=N), 6.22 (s, 1H, OH), 6,35 (d, 1H, NHCH₃), 7.48-7.55, 7.88-7.97 (m, 7H, aromat.), 8.54 (s, 1H, NH)
- ¹³C-NMR (DMSO-*d*₆): δ(ppm):
- E-Isomer: 14.5 ($CH_3CH_2OC=N$), 26.4 (NHCH₃), 29.2 (PhCCH₃), 62.4 (CH₃CH₂OC=N), 77.2 (PhCCH₃), 122.9, 123.4, 126.5, 126.7, 127.8, 128.4, 128.5 (7C tert., aromat.), 132.6, 132.9 (C⁵ +C¹⁰ quart., aromat.), 141.9 (C² quart., aromat.), 152.4 (C=N), 156.1 (C=O)
- Z-Isomer: 15.4 ($CH_3CH_2OC=N$), 26.6 (NHCH₃), 31.9 (PhCCH₃), 65.7 (CH₃CH₂OC=N), 75.4 (PhCCH₃), 123.1, 123.7, 126.2 126.6, 127.8, 128.1, 128.3 (7C tert., aromat.), 132.4, 133.1 (C⁵ +C¹⁰ quart., aromat.), 143.5 (C² quart., aromat.), 156.1 (C=N), 156.6 (C=O)

 $C_{17}H_{21}N_3O_3$ [315.38]

Ber. [%]	C 64.74	H 6.71	N 13.32
Gef. [%]	C 64.89	H 6.86	N 13.11

(*E/Z*)-Ethyl-*N*`-ethylcarbamothioyl-2-hydroxy-2-(naphthalen-2yl)propanhydrazonat **33.2**

Aus 0.52 g (2 mmol) *O*-Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanthioat (**23.12**) und 0.29 g (2.4 mmol) 4-Ethylthiosemicarbazid nach AAV **8** Ausbeute: 84 % (578 mg), amorphes Pulver Schmp.: 118.3 °C (Ethylacetat/ Hexan) Verhältnis (E : Z): 85 : 15

IR: 3358, 3325, 3140, 3123 cm⁻¹ (NH, OH), 1637 (C=N), 1128 cm⁻¹ (C=S)

¹H-NMR (DMSO-*d*₆): δ(ppm):

- E-Isomer: 1.04 (t, J= 7.1 Hz, 3H, $CH_3CH_2NHC=S$), 1.28 (t, J= 7.0 Hz, 3H, $CH_3CH_2OC=N$), 1.74 (s, 3H, PhCCH₃), 3.39-3.51 (m, 2H, $CH_2NHC=S$), 4.15-4.21 (q, 2H, $CH_2OC=N$), 7.33 (s, 1H, OH), 7.50-7.55, 7.89-7.98 (m, 7H, aromat.), 7.79 (t, J= 6.0 Hz, 1H, $NHCH_2CH_3$), 10.54 (s, 1H, NH)
- Z-Isomer: 0.94 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂NHC=S), 1.17 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N), 1.75 (s, 3H, PhCC*H*₃), 3.55-3.71 (m, 2H, *CH*₂NHC=S), 4.27-4.35 (q, 2H, *CH*₂OC=N), 6.43 (s, 1H, OH), 7.50-7.55, 7.89-7.98 (m, 7H, aromat.), 8.24 (t, *J*= 6.0 Hz, 1H, *NH*CH₂CH₃), 9.18 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

- E-Isomer: 14.4 (CH₂CH₃), 15.1 (CH₂CH₃), 28.9 (PhCCH₃), 38.1 (NHCH₂CH₃), 63.1 (CH₂CH₃), 77.6 (PhCCH₃), 123.0, 123.3, 126.6, 126.8, 127.8, 128.5, 128.6 (7C tert., aromat.), 132.6, 132.9 (C⁵ +C¹⁰ quart aromat.), 141.5 (C¹ quart., aromat.), 154.6 (C=N), 175.4 (C=S)
- Z-Isomer: 15.0 (CH₂CH₃), 15.4 (CH₂CH₃), 32.1 (PhCCH₃), 38.9 (NHCH₂CH₃), 66.5 (CH₂CH₃), 75.6 (PhCCH₃), 123.2, 123.4, 126.3, 126.6, 127.9, 128.4, 128.5 (7C tert., aromat.), 132.5, 133.1 (C⁵ +C¹⁰ quart., aromat.), 142.9 (C² quart., aromat.), 151.9 (C=N), 176.9 (C=S)

 $C_{18}H_{23}N_3O_2S$ [345.47]

Ber. [%]	C 62.58	H 6.71	N 12.16	S 9.28
Gef. [%]	C 62.41	H 6.73	N 12.15	S 9.28

(*E/Z*)-Ethyl-*N*`-benzylcarbamoyl-2-hydroxy-2-(naphthalen-2-yl)propanhydrazonat **33.3**

- Aus 0.52 g (2 mmol) O-Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanthioat (23.12) und 0.40 g (2.4 mmol) 4-Benzylsemicarbazid nach AAV 8 82 % (638 mg), amorphes Pulver Ausbeute: 158.8 °C (Ethylacetat/ Hexan) Schmp.: Verhältnis (E : Z): 60 : 40 3424, 3318, 3254 cm⁻¹ (NH, OH), 1649 (C=O), 1632 cm⁻¹ (C=N) IR: ¹H-NMR (DMSO- d_6): δ (ppm): E-Isomer: 1.28 (t, J= 7.0 Hz, 3H, CH₃CH₂OC=N),1.71 (s, 3H, PhCCH₃), 4.11-4.16 (m, 2H, CH₂OC=N), 4.20-4.26 (m, 2H, HNCH₂Ph), 7.17 (s, 1H, OH), 7.13-8.00 (m, 12H, aromat.), 7.03 (t, J= 6.6 Hz, 1H, NH-Bn), 9.27 (s, 1H, NH) Z-Isomer: 0.94 (t, J=7.0 Hz, 3H, $CH_3CH_2OC=N$), 1.73 (s, 3H, PhCCH₃), 3.57-3.65, 4.28-4.45 (m, 4H, CH₂OC=N), 6.25 (s, 1H, OH), 7.13-8.00 (m, 12H, aromat.), 7.16 (t, überlagert, 1H, NH-Bn), 8.72 (s, 1H, NH) ¹³C-NMR (DMSO- d_6): δ (ppm): 14.0 (CH₃CH₂OC=N), 28.7 (PhCCH₃), 42.3 (NHCH₂Ph), 62.0 **E-Isomer**:
- Z-Isomer: 15.0 ($CH_3CH_2OC=N$), 31.5 (PhC CH_3), 42,5 (NH CH_2Ph), 65.4 ($CH_3CH_2OC=N$), 75.0 (Ph CCH_3), 122.5, 122.9, 126.0, 126.2, 126.3, 126.8, 126.9, 127.3, 127.8, 127.9, 128.0, 128.1 (12C tert., aromat.), 132.1, 132.5 ($C^5 + C^{10}$ quart., aromat.), 141.4, 143.0 (C^2 quart., aromat.), 152.2 (C=N), 155.3 (C=O)

C ₂₃ H ₂₅ N ₃ O	₃ [391.47]		
Ber. [%]	C 70.57	H 6.44	N 10.73
Gef. [%]	C 70.51	H 6.44	N 10.21

(E/Z)-Ethyl-N`-benzyloxycarbamoyl-2-hydroxy-2-(naphthalen-2-yl)– propanhydrazonat **33.4**

Aus 0.52 g (2 mmol) *O*-Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanthioat (**23.12**) und 0.43 g (2.4 mmol) 4-Benzyloxysemicarbazid nach AAV **8**

Ausbeute: 78 % (637 mg), amorphes Pulver

Schmp.: 129.6 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 05 : 95

IR: 3365, 3223 cm⁻¹ (NH, OH), 1678 (C=O), 1647 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.31 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.72 (s, 3H, PhCC*H*₃), 4.07-4.13 (m, 2H, *CH*₂OC=N), 4.81 (s, 2H, PhC*H*₂O), 7.26 (s, 1H, OH), 7.33-7.53, 7.89-7.95 (m, 12H, aromat.), 9.39 (s, 1H, NH), 10.40 (s, 1H, NHOBn)
- Z-Isomer: 0.91 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1,67 (s, 3H, PhCC*H*₃), 3.55-3.63, 4.21-4.29 (m, 2H, ABX₃-System, *CH*₂OC=N), 4.84 (s, 2H, PhC*H*₂O), 6.33 (s, 1H, OH), 7.33-7.53, 7.89-7.95 (m, 12H, aromat.), 9.02 (s, 1H, NH), 9.79 (s, 1H, NHOBn)

¹³C-NMR (DMSO- d_6): δ (ppm):

E-Isomer: 14.5 (CH₃CH₂OC=N), 29.2 (PhCCH₃), 62.5 (CH₃CH₂OC=N), 75.2 (OCH₂Ph), 77.8 (PhCCH₃), 122.9, 123.3, 126.5, 126.7, 127.8, 128.4, 128.5, 128.7, 128.9, 129.2 (12C tert., aromat.), 132.5, 133.1

	$(C^5 + C^{10} c$	quart., aroma	at.), 136.4 (C ² , Naphthyl ,quart., aromat.),
	143.3 (C ¹ , E	3n ,quart., ar	omat.), 152.3 (C=N), 156.2 (C=O)
Z-Isomer:	15.5 (<i>C</i> H ₃ C	$H_2OC=N$), 3	32.2 (PhCCH ₃), 66.0 (CH ₃ CH ₂ OC=N), 75.2
	$(OCH_2Ph),$	77.9 (PhCC	CH_3), 123,0, 123.5, 126.3, 126.6, 127.9,
	128.3, 128.4	4, 128.6, 128	8.7, 129.2 (12C tert., aromat.), 132.5, 133.1
	$(C^5 + C^{10})$	quart., aroma	at.), 136.4 (C ² , Naphthyl, quart., aromat.),
	143.3 (C^1 , E	3n, quart., ar	omat.), 152.3 (C=N), 156.2 (C=O)
$C_{23}H_{25}N_3O_4$	[407.47]		
Ber. [%]	C 67.80	H 6.18	N 10.31
Gef. [%]	C 67.37	H 6.08	N 10.38

(*E*/Z)-Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-*N*`-(methylcarbamoyl)propanhydrazonat **33.5**

- Aus 0.56 g (2 mmol) O-Ethyl-2-(3,4-dichlorphenyl)-2-hydroxypropanthioat
- (23.6) und 0.21 g (2.4 mmol) 4-Methylsemicarbazid nach AAV 8
- Ausbeute: 81 % (538 mg), amorphes Pulver
- Smp.: 173.8 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 60 : 40

IR: 3430, 3369, 3318, 3298, 3219 cm⁻¹ (NH, OH), 1654 (C=O), 1648 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 1.25 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N), 1.60 (s, 3H, PhCC*H*₃), 2.58 (d, 3H, NHCH₃), 4.05-4.10 (m, 2H, *CH*₂OC=N), 6.40-6.43 (q, 1H, NHCH₃), 7.22 (s, 1H, OH), 7.60-7.65 (m, 3H, aromat.), 9.02 (s, 1H, NH)
- Z-Isomer: 1.02 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N), 1.63 (s, 3H, PhCC*H*₃), 2.68 (d, 3H, NHCH₃), 3.59-3.67, 4.11-4.16 (m, 2H, *CH*₂OC=N), 6.30 (s,

1H, OH), 6,67-6,71 (q, 1H, NHCH₃), 7.34-7.37 (m, 3H, aromat.), 8.61 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 14.4 ($CH_3CH_2OC=N$), 26.4 (NHCH₃), 28.6 (PhCCH₃), 62.5 (CH₃CH₂OC=N), 76.5 (PhCCH₃), 125.3, 126.8, 131.0 (3C tert., aromat), 130.4, 131.3 (C³ +C⁴ quart aromat.), 145.6 (C¹ quart., aromat.), 151.4 (C=N), 156.1 (C=O)
- Z-Isomer: 15.4 ($CH_3CH_2OC=N$), 26.5 (NHCH₃), 31.4 (PhCCH₃), 66.0 (CH₃CH₂OC=N), 74.8 (PhCCH₃), 125.6, 127.0, 130.9 (3C tert., aromat.), 129.9, 131.3 (C³ +C⁴ quart aromat.), 147.2 (C¹ quart., aromat.), 149.3 (C=N), 156.5 (C=O)

C₁₃H₁₇N₃O [334.20]

Ber. [%]	C 46.72	H 5.13	N 12.57
Gef. [%]	C 46.43	H 5.18	N 12.59

(*E/Z*)-Ethyl-*N*`-benzylcarbamoyl-2-(3,4-dichlorphenyl)-2-hydroxypropanhydrazonat **33.6**

Aus 0.56 g (2 mmol) *O*-Ethyl-2-(3,4-dichlorphenyl)-2-hydroxypropanthioat

(23.6) und 0.40 g (2.4 mmol) 4-Benzylsemicarbazid nach AAV 8

Ausbeute: 83 % (684 mg), amorphes Pulver

Schmp.: 158.4 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 58 : 42

IR: 3424, 3408, 3301 cm⁻¹ (NH, OH), 1656 (C=O), 1647 cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm):

E-Isomer: 1.24 (t, J= 7.0 Hz, 3H, $CH_3CH_2OC=N$), 1.64 (s, 3H, PhCC H_3), 4.07-4.12 (m, 2H, $CH_2OC=N$), 4.23-4.30 (m, 2H, HNC H_2Ph), 7.26 (s, 1H, OH), 7.06-7.22, 7.27-7.39, 7.62-7.66 (m, 8H, aromat.), 7.26 (s, 1H, NHBn), 9.16 (s, 1H, NH)

Z-Isomer: 1.03 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N),1.62 (s, 3H, PhCC*H*₃), 3.62-3.69, 4.14-4.21 (m, 2H, *CH*₂OC=N), 4.30-4.41 (m, 2H, HNC*H*₂Ph), 6.33 (s, 1H, OH), 7.06-7.22, 7.27-7.39, 7.62-7.66 (m, 8H, aromat.), 7.08 (s, 1H, NHBn), 8.79 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

- E-Isomer: 14.4 ($CH_3CH_2OC=N$), 28.8 (PhC CH_3), 42.8 (NH CH_2Ph), 62.6 (CH₃ $CH_2OC=N$), 76,6 (Ph CCH_3), 125.4, 126.8, 131.0 (3C tert., aromat.), 127.1, 127.2, 128.5 (5C tert., Benzyl, aromat.), 130.5, 131.4 (C³ +C⁴ quart., aromat.), 141.1 (C¹ quart., Benzyl, aromat.), 145.5 (C¹ quart., aromat.), 149.7 (C=N), 155.8 (C=O)
- Z-Isomer: 15.4 ($CH_3CH_2OC=N$), 31.3 (PhC CH_3), 42,9 (NH CH_2Ph), 66.0 (CH₃ $CH_2OC=N$), 74.8 (Ph CCH_3), 125.6, 126.9, 130.9 (3C tert., aromat.), 127.1, 127.3, 128.6 (5C tert., Benzyl, aromat.), 129.9, 131.3 (C³ +C⁴ quart., aromat.), 141.1 (C¹ quart., Benzyl, aromat.), 147.2 (C¹ quart., aromat.), 149.6 (C=N), 156.0 (C=O)
- $C_{19}H_{21}N_3O_3$ [410.30]

Ber. [%]	C 55.62	H 5.16	N 10.24
Gef. [%]	C 56.07	H 5.58	N 10.51

(*E/Z*)-Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-*N*`-(4-methylbenzylcarbamoyl)propanhydrazonat **33.7**

Aus 0.56 g (2 mmol) *O*-Ethyl-2-(3,4-dichlorphenyl)-2-hydroxypropanthioat (**23.6**) und 0.43 g (2.4 mmol) 4-(4-Methylbenzyl)semicarbazid nach AAV **8** Ausbeute: 79 % (674 mg), amorphes Pulver Smp.: 157.4 °C (Ethylacetat/ Hexan) Verhältnis (E : Z): 08 : 92 IR: 3487, 3354, 3246 cm⁻¹ (NH, OH), 1655 (C=O), 1646 cm⁻¹ (C=N)

- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.24 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N),1.60 (s, 3H, PhCC*H*₃), 2.25 (s, 3H, PhCH₃), 4.08-4.18 (m, 2H, *CH*₂OC=N), 4.23-4.36 (m, 2H, NC*H*₂), **7**.09 (s, 1H, OH), 7.12-7.25, 7.35-7.38, 7.61-7.63 (m, 7H, aromat.), 7.14 (s, 1H, NHBn), 9.14 (s, 1H, NH)
- Z-Isomer: 1.03 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N),1.63 (s, 3H, PhCC*H*₃), 2.28 (s, 3H, PhCH₃), 3.61-3.69, 4.08-4.18 (m, 2H, *CH*₂OC=N), 4.23-4.36 (m, 2H, NC*H*₂Ph), 6.32 (s, 1H, OH), 7.12-7.25, 7.35-7.38, 7.61-7.63 (m, 7H, aromat.), 7.01 (s, 1H, NHBn), 8.77 (s, 1H, NH)
- ¹³C-NMR (DMSO-*d*₆): δ(ppm):
- E-Isomer: 14.4 ($CH_3CH_2OC=N$), 21.0 (PhCH₃), 28.8 (PhCCH₃), 42.7 (NHCH₂Ph), 62.6 (CH₃CH₂OC=N), 76.6 (PhCCH₃), 125.3, 126.8, 131.0 (3C tert., aromat.), 127.2, 129.0 (4C tert., Benzyl, aromat.), 130.5, 131.4 (C³ +C⁴ quart., aromat.), 135.8 (C⁴ quart., Benzyl, aromat.), 138.1 (C¹ quart., Benzyl, aromat.), 145.5 (C¹ quart., aromat.), 151.6 (C=N), 155.7 (C=O)
- Z-Isomer: 15.5 ($CH_3CH_2OC=N$), 21.0 (PhCH₃), 31.3 (PhCCH₃), 42.5 (NHCH₂Ph), 66.0 (CH₃CH₂OC=N), 74.8 (PhCCH₃), 125.6, 127.1, 130.9 (3C tert., aromat.), 127.4, 129.1 (4C tert., Benzyl, aromat.), 129.9, 131.3 (C³ +C⁴ quart., aromat.), 135.9 (C⁴ quart., Benzyl, aromat.), 138.0 (C¹ quart., Benzyl, aromat.), 147.2 (C¹ quart., aromat.), 149.6 (C=N), 156.0 (C=O)

 $C_{20}H_{23}N_3O_3$ [424.33]

Ber. [%]	C 56.61	H 5.46	N 9.90
----------	---------	--------	--------

Gef. [%] C 56.20 H 5.60 N 9.82

(*E/Z*)-Ethyl-*N*`-4-chlorbenzylcarbamoyl-2-(3,4-dichlorphenyl)-2-hydroxypropanhydrazonat **33.8**

Aus 0.56 g (2 mmol) *O*-Ethyl-2-(3,4-dichlorphenyl)-2-hydroxypropanthioat (**23.6**) und 0.48 g (2.4 mmol) 4-(4-Chlorbenzyl)semicarbazid nach AAV **8** Ausbeute: 80 % (711 mg), amorphes Pulver

Smp.: 180.6 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 92 : 08

IR: $3423, 3400, 3300 \text{ cm}^{-1}$ (NH, OH), 1647 cm⁻¹ (C=O, C=N)

- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.25 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N), 1.62 (s, 3H, PhCC*H*₃), 4.07-4.13 (m, 2H, *CH*₂OC=N), 4.14-4.40 (m, 2H, NC*H*₂), **7**.33 (s, 1H, OH), 7.23-7.40, 7.63-7.66 (m, 8H, aromat.), 7.33 (t, 1H, NH-Bn), 9.18 (s, 1H, NH)
- Z-Isomer: 1.03 (t, *J*= 7.0 Hz, 3H, *CH*₃CH₂OC=N), 1.64 (s, 3H, PhCC*H*₃), 3.61-3.69, 4.00-4.06 (m, 2H, *CH*₂OC=N), 4.14-4.40 (m, 2H, NC*H*₂Ph), 6.33 (s, 1H, OH), 7.23-7.40, 7.63-7.66 (m, 8H, aromat.), 7.14 (t, 1H, NHBn), 8.81 (s, 1H, NH)
- ¹³C-NMR (DMSO-*d*₆): δ(ppm):
- E-Isomer: 14.4 ($CH_3CH_2OC=N$), 28.8 (PhC CH_3), 42.2 (NH CH_2Ph), 62.7 (CH₃ $CH_2OC=N$), 76.6 (Ph CCH_3), 125.3, 126.6, 131.0 (3C tert., aromat.), 128.4, 129.1 (4C tert., Benzyl, aromat.), 130.5, 131.4 (C³ +C⁴ quart., aromat.), 131.3 (C⁴ quart., Benzyl, aromat.), 140.3 (C¹ quart., Benzyl, aromat.), 145.5 (C¹ quart., aromat.), 151.8 (C=N), 155.7 (C=O)
- Z-Isomer: 15.4 (CH₃CH₂OC=N), 31.4 (PhCCH₃), 42.3 (NHCH₂Ph), 66.0 (CH₃CH₂OC=N), 74.8 (PhCCH₃), 125.6, 127.0, 130.9 (3C tert., aromat.), 128.5, 129.2 (4C tert., Benzyl, aromat.), 129.9, 131.4 (C³ +C⁴ quart., aromat.), 131.3 (C⁴ quart., Benzyl, aromat.), 140.2 (C¹

 $\begin{array}{c} \mbox{quart., Benzyl, aromat.), $147.2 (C^1 \mbox{ quart., aromat.), $149.7 (C=N), $156.1 (C=O)$ \\ C_{19}H_{20}Cl_3N_3O_3 \mbox{[}444.75\mbox{]} \\ \mbox{Ber. [\%]} \quad C \mbox{ 51.31 } H \mbox{ 4.53 } N \mbox{ 9.45 } \\ \mbox{Gef. [\%]} \quad C \mbox{ 51.13 } H \mbox{ 4.70 } N \mbox{ 9.30 } \end{array}$

7.3.2 Darstellung von (E/Z)-Ethyl-N´-acyl-2-hydroxy-2-aryl-propanhydrazonaten **34** (Abschnitt 4.3.2)

Allgemeine Arbeitsvorschrift AAV 9:

Zu einer rührenden Lösung von 1 Äquivalent des entsprechenden Thiocarbonsäure-*O*-esters in 10 ml Methanol wird eine Lösung aus 1.2 Äquivalenten des entsprechenden Hydrazids in 10 ml Methanol zugeführt.

Anschließend wird solange gerührt bis die C=S-Bande in Infrarotspektrum zwischen 1250-1300 cm⁻¹ zugunsten einer C=N-Bande bei 1650 cm⁻¹ verschwindet.

Der Ansatz wird dreimal mit je 20 ml einer 10% igen Citronensäurelösung gewaschen und anschließend unter vermindertem Druck eingeengt.

Die Verbindungen 34 kristallisieren aus Ethylacetat/ Hexan in der Kälte aus.

(E/Z)-Ethyl-N'-acetyl-2-hydroxy-2-(naphthalen-2-yl)propanhydrazonat 34.1


```
Aus 0.52 g (2 mmol) O-Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanthioat
(23.12) und 0.18 g (2.4 mmol) Acethydrazid nach AAV 9
Ausbeute: 71 % (427 mg), amorphes Pulver
Smp.: 128.7 °C (Ethylacetat/ Hexan)
IR: 3364 cm<sup>-1</sup> (NH/ OH), 1650 cm<sup>-1</sup> (C=O/ C=N)
<sup>1</sup>H-NMR (DMSO-d_6): \delta(ppm)*:
0.91-1.31 (t, 3H, CH<sub>2</sub>CH<sub>3</sub>), 1.67-1.73 (s, 3H, PhCCH<sub>3</sub>), 3.57-3.71,
4.00-4.11, 4.20-4.23 (m, 2H, CH<sub>2</sub>CH<sub>3</sub>), 6.35-6.37, 7.27-7.29 (s, 1H,
OH), 7.49-8.03 (m, 7H, aromat.), 9.63, 10.04, 10.24, 10.66 (s, 1H,
NH)
```

¹³C-NMR (DMSO-*d*₆): δ(ppm)*:

15.3, 15.5 (CH₂CH₃), 20.8, 22.1 (O=CCH₃), 32.2, 32.5 (PhCCH₃); 66.0 (CH₂CH₃), 75.5, 75.7 PhCCH₃), 122.9, 123.0, 123.4, 126.3, 126.6, 127.8, 128.3, 128.4, 128.5 (7C tert., aromat.), 132.4, 133.1 (C⁵ + C¹⁰ quart., aromat.)

 $C_{17}H_{20}N_2O_3 \ \ [300.36]$

Die Verbindung konnte nicht analysenrein gewonnen werden.

*Die angebenen Signale repräsentieren die beiden Isomere sowie deren Rotamere.

(E/Z)-Ethyl-N´-butyryl-2-hydroxy-2-(naphthalen-2-yl)propanhydrazonat 34.2

Aus 0.52 g (2 mmol) O-Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanthioat (23.12) und 0.25 g (2.4 mmol) Buttersäurehydrazid nach AAV 9 Ausbeute: 73 % (461 mg), amorphes Pulver Smp.: 132.4 °C (Ethylacetat/ Hexan) 3282 cm⁻¹ (NH/ OH), 1638 cm⁻¹ (C=O/ C=N) IR: ¹H-NMR (DMSO- d_6): δ (ppm)*: 0.59-0.63, 0.78-0.81, 0.89-0.97 (t, 3H, O=CCH₂CH₂CH₃), 0.89-1.28-1.31 3H, $CH_2CH_3),$ 1.55-1.62 0.97. (t, (m, 2H. O=CCH₂CH₂CH₃), 1.66-1.73 (s, 3H, PhCCH₃), 2.23-2.27, 2.57-2.60 (m, 2H, O=CCH₂CH₂CH₃), 3.58-3.71, 4.06-4.11, 4.22-4.29 (m, 2H, CH₂CH₃), 6.35-6.37, 7.26-7.32 (s, 1H, OH), 7.49-7.98 (m, 7H, aromat.), 9.57, 9.97, 10.20, 10.59 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm)*:

13.6, 14.1, 14.3 ($CH_3CH_2CH_2C=O$), 14.4, 14.5, 15.3, 15.5 ($CH_3CH_2OC=N$), 17.8, 18.2, 18.8, 19.1 ($CH_3CH_2CH_2C=O$), 28.9, 32.2, 32.4 (PhCCH₃), 33.3, 34.6, 36.2, 37.0 ($CH_3CH_2CH_2C=O$), 62.5, 62.6, 66.0 ($CH_3CH_2OC=N$), 75.5, 75.8, 77.4 (PhCCH₃), 126.3, 126.4, 126.5, 126.6, 126.7, 126.8, 127.8, 128.3, 128.4, 128.5 (7C tert., aromat.), 132.4, 132.6, 132.9, 133.1 ($C^5 + C^{10}$ quart., aromat.), 141.7, 141.8, 143.2, 143.4 (C^2 quart., aromat.), 153.9, 154.0, 157.8 (C=N), 166.1, 168.6, 172.6, 173.8 (C=O)

 $C_{18}H_{22}N_2O_3$ [314.39]

Ber. [%] C 68.77 H 7.05 N 8.91

Gef. [%] C 68.28 H 7.36 N 8.50

*Die angebenen Signale repräsentieren die beiden Isomere sowie deren Rotamere.

(E/Z)-Ethyl-N´-butyryl-2-(3,4-dichlorphenyl)-2-hydroxypropanhydrazonat 34.3

Aus 0.56 g (2 mmol) O-Ethyl-2-(3,4-dichlorphenyl)-2-hydroxypropanthioat

(23.6) und 0.25 g (2.4 mmol) Buttersäurehydrazid nach AAV 9

Ausbeute: 68 % (456 mg), amorphes Pulver

Smp.: 132.6°C (Ethylacetat/ Hexan)

IR: 3314 cm^{-1} (NH/ OH), 1650 cm⁻¹ (C=O/ C=N)

¹H-NMR (DMSO- d_6): δ (ppm)*:

0.70-1.28 (t, 3H, O=CCH₂CH₂CH₃ + t, 3H, CH₂CH₃), 1.37-1.55 (m, 2H, O=CCH₂CH₂CH₃), 1.59-1.64 (s, 3H, PhCCH₃), 1.88-2.02, 2.20-2.24, 2.31-2.35 (m, 2H, O=CCH₂CH₂CH₂CH₃), 3.63-3.75, 4.02-4.10, 4.15-4.23 (m, 2H, CH₂CH₃), 6.45-6.46, 7.40-7.42 (s, 1H, OH),

7.32-7.37, 7.59-7.66 (m, 3H, aromat.), 9.65, 10.00, 10.10, 10.41 (s, 1H, NH)

¹³C-NMR (DMSO-*d*₆): δ(ppm)*:

13.6. 14.1. 14.3 $(CH_{3}CH_{2}CH_{2}C=O),$ 14.4. 15.4. 15.5 (CH₃CH₂OC=N), 17.9, 18.1, 18.9, 19.0 (CH₃CH₂CH₂C=O), 28.6, (PhC*C*H₃), 31.9 28.7 31.6, 33.3, 34.6, 36.2, 36.9 (CH₃CH₂CH₂C=O), 62.6, 62.8, 66.3 (CH₃CH₂OC=N), 74.9, 75.1, 76.7, 76.9 (PhCCH₃), 125.3, 125.4, 125.4, 126.8, 126.9, 131.0, 131.1 (3C tert., aromat.), 130.5, 130.6, 131.4, 131.5 ($C^3 + C^4$ quart., aromat.), 145.4, 145.5, 146.9, 147.0 (C¹ quart., aromat.), 150.2, 152.8, 153.4 (C=N), 166.4, 168.7, 172.7 (C=O)

 $C_{14}H_{18}N_2O_3$ [333.22]

Ber. [%] C 51.88 H 5.81 N 8.07

Gef. [%] C 51.65 H 5.84 N 7.93

*Die angebenen Signale repräsentieren die beiden Isomere sowie deren Rotamere.

7.3.3 Darstellung von 2-(1-Hydroxy-1-arylethyl)-5-aryl-1,3,4-oxadiazolen **35** (Abschnitt 4.4.3)

(1-Hydroxy-1-naphth-2-ylethyl)-5-phenyl-1,3,4-oxadiazol 35.1

Schmp.: 123.1 °C

IR: 3382 cm^{-1} (OH), 1606, 1560 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

2.06 (s, 3H, PhCC*H*₃), 6.89 (s, 1H, OH), 7.50-7.63, 7.90-8.07 (m, 12H, aromat.)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

29.5 (PhCCH₃), 71.4 (PhCCH₃), 123.8, 123.9, 126.6, 126.7, 126.9, 127.8, 128.3, 128.6, 129.8, 132.4 (12C tert., aromat.), 123.5, 132.6, 133.0, 141.8 (4C quart., aromat.), 164.7, 170.2 (C=N)

 $C_{20}H_{16}N_2O_2\ [316.36]$

Ber. [%]	C 75.18	H 5.10	N 8.85
Gef. [%]	C 75.32	H 5.21	N 8.66
(1-Hydroxy-(3,4-dichlorphenyl)ethyl)-5-phenyl-1,3,4-oxadiazol 35.2

Schmp.: 122.4 °C 3270 cm⁻¹ (OH), 1607, 1561 cm⁻¹ (C=N) IR: ¹H-NMR (DMSO- d_6): δ (ppm): 1.97 (s, 3H, PhCCH₃), 7.00 (s, 1H, OH), 7.45-7.48, 7.57-7.66, 7.77-7.79, 7.96-7.98 (m, 8H, aromat.) ¹³C-NMR (DMSO-*d*₆): δ(ppm): 29.2 (PhCCH₃), 70.7 (PhCCH₃), 126.2, 126.9, 127.7, 129.8, 130.9, 132.5 (8C tert., aromat.), 123.5, 130.7, 131.4, 145.2 (4C quart., aromat.), 164.8, 169.4 (C=N) $C_{16}H_{12}Cl_2N_2O_2$ [335.19] Ber. [%] C 57.33 H 3.61 N 8.36

Gef. [%] C 57.54 H 4.04 N 8.01

7.3.4DarstellungvonAlkyl-/aralkyl-O-2-hydroxy-2-alklyl-/aryl)propanhydroximaten47 (Abschnitt 4.4.3)

Allgemeine Arbeitsvorschrift AAV 10:

1.2 Äquivalente des entsprechenden Hydroxylamin werden zu einer rührenden Lösung von 1 Äquivalent des Thiocarbonsäure-*O*-esters in 10 ml Ethylacetat hinzugefügt. Bei Raumtemperatur wird solange gerührt, bis im Infrarotspektrum die C=S-Bande bei 1280 cm⁻¹ zugunsten einer Iminobande bei 1650 cm⁻¹ verschwunden ist und ein mit Wasser angefeuchtetes Bleiacetatpapier keine Schwarzverfärbung mehr ergibt.

Der Reaktionsansatz wird eingeengt, in Ethylacetat aufgenommen und dreimal mit je 10 ml Wasser exthrahiert. Nach einer säulenchromatographischen Filtration unter Verwendung von Ethylacetat und Hexan (1:1) als Elutionsmittel kristallisieren die α -Hydroximsäureester in Ethylacetat/ Hexan in der Kälte aus.

Ethyl-O-Benzyl-2-hydroxy-2-(naphthalen-2-yl)-propanhydroximat 47.1


```
Aus 0.52 g (2 mmol) O-Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanthioat

(23.12) und 0.30 g (2.4 mmol) O-Benzylhydroxylamin nach AAV 10

Ausbeute: 79 % (553 mg), farblose Kristalle

Schmp.: 64.4 °C (Ethylacetat/ Hexan)

IR: 3422 cm<sup>-1</sup> (OH), 1617 cm<sup>-1</sup> (C=N)

<sup>1</sup>H-NMR (DMSO-d_6): \delta(ppm):

0.92 (t, J= 7.1 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>OC=N), 1.61 (s, 3H, PhCCH<sub>3</sub>),

3.99-4.16 (m, 2H, CH<sub>3</sub>CH<sub>2</sub>OC=N), 5.01 (s, 2H, OCH<sub>2</sub>Ph), 5.90 (s,

1H, OH), 7.33-7.52, 7.82-7.91 (m, 12H, aromat.)

<sup>13</sup>C-NMR (DMSO-d_6): \delta(ppm):

15.6 (CH<sub>3</sub>CH<sub>2</sub>OC=N), 29.5 (PhCCH<sub>3</sub>), 67.9 (CH<sub>3</sub>CH<sub>2</sub>OC=N), 75.0
```

(PhCH₂OC=O), 75.8 (PhCCH₃), 123.5, 124.1, 126.1, 126.4, 127.7,

	127.8, 128	8.1, 128.3, 1	28.6, 128.7 (12C tert., aromat.), 132.4, 134.0
	$(C^5 + C^{10})$	quart., arom	at.), 138.2 (C ¹ quart., Benzyl, aromat.), 143.4
	$(C^2 quart.,$	Naphthyl, a	aromat.), 158.4 (C=N)
$C_{22}H_{23}NO_{3}$	3 [349.43]		
Ber. [%]	C 75.62	H 6.63	N 4.01
Gef. [%]	C 74.86	H 6.72	N 4.04

<u>Ethyl-O-(naphthalen-1ylmethyl)-2-hydroxy-2-(naphthalen-2-yl)-</u> propanhydroximat **47.2**

Aus 0.52 g (2 mmol) *O*-Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanthioat

(23.12) und 0.42 g (2.4 mmol) *O*-Naphthalen-1-ylmethyl-hydroxylamin nach AAV 10

Ausbeute: 83 % (664 mg), farblose Kristalle

Schmp.: 86.2 °C (Ethylacetat/ Hexan)

```
IR: 3489 \text{ cm}^{-1} (OH), 1619 cm<sup>-1</sup> (C=N)
```

¹H-NMR (DMSO- d_6): δ (ppm):

0.83 (t, J = 7.1 Hz, 3H, $CH_3CH_2OC=N$), 1.62 (s, 3H, PhCC H_3), 3.92-4.08 (m, 2H, $CH_3CH_2OC=N$), 5.49 (s, 2H, OCH_2Ph), 5.89 (s, 1H, OH), 7.41-8.20 (m, 14H, aromat.)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

15.5 (*C*H₃CH₂OC=N), 29.5 (PhC*C*H₃), 68.0 (CH₃*C*H₂OC=N), 74.3 (Ph*C*H₂OC=O), 75.0 (Ph*C*CH₃), 123.5, 124.0, 124.5, 125.7, 126.1, 126.2, 126.4, 126.6, 127.6, 127.7, 128.3, 128.8, 129.0 (14C tert., aromat.), 131.8, 132.3, 132.9, 133.7, 133.7, 143.4 (6C, quart., aromat.), 158.4 (C=N)

C₂₆H₂₅NO₃ [399.49]

Ber. [%]	C 78.17	H 6.31	N 3.51
Gef. [%]	C 77.85	H 6.35	N 3.33

Benzyl-*O*-(4-brombenzyl)-2-hydroxy-2-(naphthalen-2-yl)-propanhydroximat **47.3**

Aus 0.52 g (2 mmol) O-Benzyl-2-hydroxy-2-(naphthalen-2-yl)propanthioat (23.15) und 0.48 g (2.4 mmol) O-(4-Brombenzyl)hydroxylamin nach AAV 10 77 % (753 mg), farblose Kristalle Ausbeute: 71.6 °C (Ethylacetat/ Hexan) Schmp.: 3482 cm⁻¹ (OH), 1620 cm⁻¹ (C=N) IR: ¹H-NMR (DMSO- d_6): δ (ppm): 1.62 (s, 3H, PhCCH₃), 5.00-5.14 (q, 2H, PhCH₂OC=N), 5.02 (s, 2H, OCH₂Ph), 6.08 (s, 1H, OH), 7.04-7.20, 7.37-7.52, 7.59-7.61, 7.81-7.88 (m, 16H, aromat.) ¹³C-NMR (DMSO- d_6): δ (ppm): 29.7 (PhCCH₃), 73.3 (PhCH₂OC=N), 75.0 (NOCH₂), 75.2 (PhCCH₃), 121.4, 132.4, 133.0, 137.3, 137.7, 143.1 (6C quart., aromat.), 123.6, 123.9, 126.2, 126.5, 127.7, 127.8, 127.9, 128.1, 128.3, 130.9, 131.6 (16C tert., aromat.), 158.6 (C¹ quart., aromat.) $C_{27}H_{24}BrNO_{3}$ [490.40] Ber. [%] C 66.13 H 4.93 N 2.86 Gef. [%] C 66.52 H 5.04 N 2.70

(E/Z)-Benzyl-2-hydroxy-2-methylpropanhydroximat 47.4

- Aus 1.05 g (5 mmol) O-Benzyl-2-hydroxy-2-methylpropanthioat (23.17) und
- 0.21g (6.5 mmol) Hydroxylamin-Base nach AAV 10
- Ausbeute: 74 % (0.78 g), amorphes Pulver
- Schmp.: 60.8 °C (Ethylacetat/ Hexan)

Verhältnis (E : Z): 90 : 10

- IR: 3354 cm^{-1} (OH), 1643 cm⁻¹ (C=N),
- ¹H-NMR (DMSO- d_6): δ (ppm):
- E-Isomer: 1.25 (s, 6H, HOC(CH₃)₂), 4.87 (s, 1H, OH), 5.26 (s, 2H, PhCH₂OC=O), 7.21-7.47 (m, 5H, aromat.), 10.06 (s, 1H, NH)
- Z-Isomer: 1.13 (s, 6H, HOC(CH₃)₂), 5.00 (s, 1H, OH), 4.28 (s, 2H, PhCH₂OC=O), 7.21-7.47 (m, 5H, aromat.), 11.32 (s, 1H, NH)
- ¹³C-NMR (DMSO-*d*₆): δ(ppm):
- E-Isomer 28.0 (C(CH_3)₂), 70.7 (Ph $CH_2OC=O$), 73.2 ($C(CH_3)_2$), 128.1, 128.5, 128.6 (5C tert., aromat.), 138.3 (C¹, quart., aromat.), 158.9 (C=N)
- Z-Isomer 28.9 (C(*C*H₃)₂), 70.7 (Ph*C*H₂OC=O), 72.9 (*C*(CH₃)₂), 127.2, 128.6, 129.3 (5C tert., aromat.), 138.3 (C¹, quart., aromat.), 158.9 (C=N)

 $C_{11}H_{15}NO_3$ [209.25]

Ethyl-2-hydroxy-2-(naphthalen-2yl)propanhydroximat 47.5

Aus 2.60 g (10 mmol) O-Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanthioat (23.12) und 0.43 g (13 mmol) Hydroxylamin-Base nach AAV 10 78 % (2.02 g), amorphes Pulver Ausbeute: 114.4 °C (Ethylacetat/ Hexan) Schmp.: 3414 cm⁻¹ (OH), 1668 cm⁻¹ (C=N), IR: ¹H-NMR (DMSO- d_6): δ (ppm): 0.95 (t, J=7.0 Hz, 3H, $CH_3CH_2OC=N$), 1.62 (s, 3H, PhCCH₃), 4.08-4.13 (q, 2H, CH₃CH₂OC=N), 5.72 (d, 1H,OH), 7.45-7.55, 7.80-8.00 (m, 7H, Aromat), 10.05 (s, 1H, NOH) ¹³C-NMR (DMSO- d_6): δ (ppm): 15.8 (CH₃CH₂OC=N), 67.3 (CH₂OC=N), 75.0 (PhCCH₃), 123.6, 124.4, 126.0, 126.4, 127.5, 127.7, 128.3 (7C tert., aromat), 132.3, 133.0 ($C^5 + C^{10}$ quart., aromat), 143.9 (C^1 quart., aromat.) 157.9 (C=N)C₁₅H₁₇NO₃ [259.31] Ber. [%] C 69.48 H 6.61 N 5.40

Gef. [%] C 69.19 H 6.65 N 5.11

7.3.5 Darstellung von Alkyl-/Aryl-*N*-alkyl/arylcarbamoyloxy-2-hydroxy-2alkyl-/arylpropanimidaten **48** (Abschnitt 4.5.1)

Allgemeine Arbeitsvorschrift AAV 11:

3 mmol der nach Vorschrift AAV **10** hergestellten Hydroximsäureester **47.4** und **47.5** werden in 5 ml trockenem Dichlormethan gelöst und tropfenweise mit einer Lösung betsehend aus 3.3 mmol des entsprechenden Isocyanat in 5 ml trockenem Dichlormethan versetzt. Anschließend fügt man dem Reaktionsansatz 20 mg 4-Dimethylaminopyridin bei und belässt diesen für acht Stunden bei Raumtemperatur unter fortwährendem Rühren.

Nachfolgend wird der Reaktionsansatz eingeengt, in Ethylacetat aufgenommen und dreimal mit je 10 ml Wasser exthrahiert. Nach Entfernung des Lösungsmittels oder säulenchromatographischer Reinigung an Kieselgel (Ethylacetat/ Hexan 1:1) kristallisieren die Verbindungen **48** in der Kälte aus einem Gemisch aus Diethylether/ Petrolether aus.

Benzyl-*N*-4-chlorphenylcarbamoyloxy-2-hydroxy-2-methylpropanimidat **48.1**

Aus 0.63 g (3 mmol) (*E*/*Z*)-Benzyl-2-hydroxy-2-methylpropanhydroximat (**47.4**) und 0.51 g (3.3 mmol) 4-Chlorphenylisocyanat nach AAV **11** Ausbeute: 69 % (754 mg), amorphes Pulver Schmp.: 146.2 °C (Diethylether/ Petrolether) IR: 3547 cm⁻¹ (NH), 3246 cm⁻¹ (OH), 1715 cm⁻¹ (C=O), 1610 cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm):

1.45 (s, 6H, PhCC*H*₃), 5.12 (s, 2H, PhC*H*₂O), 5.24 (s, 1H, OH), 7.31-7.42, 7.47-7.54 (m, 9H, aromat.), 9.73 (s, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

27.2 (PhCCH₃), 68.9 (PhCH₂O), 71.3 (PhCCH₃), 119.7, 120.2, 127.8, 127.9, 128.3, 128.5, 128.7 (9C tert., aromat.), 126.5, 136.13, 137.4 (3C, quart., aromat.), 151.2 (C=N), 170.3 (C=O)

 $C_{18}H_{19}ClN_2O_4$ [362.82]

Ber. [%]	C 59.59	H 5.28	N 7.72
Gef. [%]	C 59.04	H 5.28	N 7 .83

Ethyl-*N*-2-chlorbenzylcarbamoyloxy-2-hydroxy-2-(naphthalen-2-yl)propanimidat **48.2**


```
Aus 0.52 g (2 mmol) Ethyl-2-hydroxy-2-(naphthalen-2yl)propanhydroximat (47.5) und 0.37 g (2.2 mmol) 2-Chlorbenzylisocyanat nach AAV 11
Ausbeute: 72 % (614 mg), gelartige Flüssigkeit
```

IR: 3395 cm⁻¹ (NH), 3326 cm⁻¹ (OH), 1736 cm⁻¹ (C=O), 1638 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

0.98 (t, *J*= 7.1 Hz, 3H, *CH*₃CH₂OC=N), 1.76 (s, 3H, PhCC*H*₃), 4.01-4.10, 4.33-4.41 (m, 2H, CH₃C*H*₂OC=N), 4.42 (d, 2H, NH-*CH*₂-Ph), 6.32 (s, 1H, OH), 7.31-7.63, 7.90-8.04 (m, 9H, aromat.), 8.07 (t, 1H, NH)

¹³C-NMR (DMSO- d_6): δ (ppm):

15.5 (*C*H₃CH₂OC=N), 29.6 (PhC*C*H₃), 42.3 (Ph*C*H₂NHC=O), 68.8 (CH₃*C*H₂OC=N), 75.4 (Ph*C*CH₃), 123.6, 123.8, 126.4, 126.6, 127.6, 127.8, 128.1, 128.4, 128.8, 129.1, 129.6 (11C tert., aromat.), 132.6, 132.5 ($C^5 + C^{10}$ quart., aromat), 133.0 (C^2 quart., Benzyl, aromat.),

Ethyl *N-tert*.-butylcarbamoyloxy-2-hydroxy-2-(naphthalen-2-yl)-propanimidat **48.3**

Aus 0.52 g (2 mmol) Ethyl-2-hydroxy-2-(naphthalen-2yl)propanhydroximat (47.5) und 0.22 g (2.2 mmol) tert.-Butylisocyanat nach AAV 11 75 % (609 mg), gelartige Flüssigkeit Ausbeute: 3394 cm⁻¹ (NH), 3317 cm⁻¹ (OH), 1720 cm⁻¹ (C=O), IR: 1638 cm^{-1} (C=N) ¹H-NMR (DMSO- d_6): δ (ppm): 0.97 (t, J=7.1 Hz, 3H, $CH_3CH_2OC=N$), 1.28 (s, 9H, $CH_3COC=O$), 1.69 (s, 3H, PhCCH₃), 4.00-4.09, 4.26-4.34 (m, 2H, CH₂OC=N), 6.26 (s, 1H, OH), 6.90 (s, 1H, NH), 7.48-7.59, 7.89-7.99 (m, 7H, aromat.), ¹³C-NMR (DMSO- d_6): δ (ppm): 15.1 (CH₃CH₂OC=N), 28.4 (OC(CH₃)₃), 28.9 (PhCCH₃), 49.9 (OC(CH₃)₃), 68.2 (OCH₂Ph), 74.9 (PhCCH₃), 123.2, 123.5, 125.9, 126.1, 127.3, 127.5, 127.9 (7C tert., aromat.), 132.0, 132.5 (C^5 + C¹⁰ quart., aromat.), 142.1 (C² quart., aromat.), 152.4 (C=N), 161.0 (C=O) $C_{20}H_{26}N_2O_4$ [358.44] Ber. [%] C 67.02 H 7.31 N 7.82 Gef. [%] C 66.94 H 7.31 N 7.65

(*E/Z*)-Ethyl-*N*-4-chlorphenylcarbamoyloxy-2-hydroxy-2-(naphthalen-2-yl)propanimidat **48.4**

Aus 0.52 g (2 mmol) Ethyl-2-hydroxy-2-(naphthalen-2yl)propanhydroximat

 $(\mathbf{47.5})$ und 0.34 g (2.2 mmol) 4-Chlorphenylisocyanat nach AAV $\mathbf{11}$

- Ausbeute: 74 % (614 mg), amorphes Pulver
- Smp.: 103.7°C (Diethylether/ Petrolether)

Verhältnis (E : Z): 92: 08

IR: 3296 cm^{-1} (NH), 3256 cm^{-1} (OH), 1737, 1719 cm^{-1} (C=O), 1637 cm^{-1} (C=N)

- ¹H-NMR (DMSO-*d*₆): δ(ppm):
- E-Isomer: 1.39 (t, J= 7.0 Hz, 3H, $CH_3CH_2OC=N$), 1.74 (s, 3H, PhCC H_3), 4.23-4.30 (m, 2H, $CH_3CH_2OC=N$), 6.44 (s, 1H, OH), 7.18-7.23, 7.32-7.63, 7.81-8.04 (m, 11H, aromat.), 9.92 (s, 1H, NH)
- Z-Isomer: 0.98 (t, J= 7.0 Hz, 3H, $CH_3CH_2OC=N$), 1.74 (s, 3H, PhCC H_3), 3.99-4.07, 4.34-4.42 (m, 2H, $CH_3CH_2OC=N$), 5.90 (s, 1H, OH), 7.18-7.23, 7.32-7.63, 7.81-8.04 (m, 11H, aromat.), 9.34 (s, 1H, NH)
- ¹³C-NMR (DMSO-*d*₆): δ(ppm):
- E-Isomer: 14.4 (*C*H₃CH₂OC=N), 28.5 (PhC*C*H₃), 64.5 (CH₃*C*H₂OC=N), 75.9 (Ph*C*CH₃), 120.5, 122.2, 123.5, 126.4, 127.7, 127.9, 128.4, 128.9, 129.1 (11C tert., aromat), 127.0 (C⁴ quart., aromat.), 132.5, 132.9 ($C^5 + C^{10}$ quart., aromat.), 137.6 (C¹ quart., aromat.), 142.4 (C² quart., aromat.)
- Z-Isomer: 15.6 ($CH_3CH_2OC=N$), 30.1 (PhC CH_3), 68.5 ($CH_3CH_2OC=N$), 75.5 (Ph CCH_3), 120.5, 120.8, 123.6, 126.1, 127.8, 128.2, 128.3, 128.9, 129.0 (11C tert., aromat), 126.7 (C⁴ quart., aromat.), 132.4, 133.0 ($C^5 + C^{10}$ quart., aromat.), 138.0 (C¹ quart., aromat.), 142.6 (C² quart., aromat.)

 $C_{22}H_{21}ClN_2O_4$ [412.88]

Die Verbindung konnte nicht analysenrein gewonnen werden.

7.4 Synthesevorschriften und analytische Daten zu Kapitel 5

7.4.1 Darstellung der *N*-Alkyl-2-aryl-2-hydroxy-propanamidine **49** (Abschnitt <u>5.1.1)</u>

Allgemeine Arbeitsvorschrift AAV 12:

2 mmol des α -Hydroxyimidoester-hydrochlorides werden in 10 ml trockenem Dichlormethan suspendiert. Unter Eiskühlung fügt man tropfenweise eine Lösung von 2.2 mmol der entsprechenden Hydrazinkomponente in 5 ml trockenem Dichlormethan hinzu. Nach Zugabe wird für acht Stunden bei Raumtemperatur gerührt. Anschließend wird das Lösungsmittel im Vakuum abdestilliert und der ölige Rückstand in Ethylacetat aufgenommen. Man wäscht die organische Phase dreimal mit eisgekühlter Kaliumcarbonatlösung und trocknet nachfolgend mit Natriumsulfat. Die resultierenden Verbindungen **49** kristallisieren aus Diethylether/ Petrolether bei 5-7°C aus.

2-(4-Bromphenyl)-2-hydroxy-N-morpholin-4-yl-propionamidin 49.1

Aus 0.62 g (2 mmol) Ethyl-2-(4-bromphenyl)-2-hydroxy-propanimidathydrochlorid (**20.5**) und 0.22 g (2.2 mmol) *N*-Aminomorpholin nach AAV **12** Ausbeute: 80 % (523 mg), kristallines Pulver Schmp.: 132.4 °C (Diethylether/ Petrolether) IR: 3469, 3355, 3299 cm⁻¹ (NH₂, OH), 1624 cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm): 1.55 (s, 3H, PhCC H_3), 2.39-2.59, 3.58-3.72 (s, 8H, C H_2), 5.72 (s, 2H, NH₂), 5.89 (s,1H, OH), 7.45-7.49 (m, 4H, aromat.) ¹³C-NMR (DMSO- d_6): δ (ppm):

28.4 (PhCCH₃), 52.1, 66.1 (4 CH₂), 73.4 (PhCCH₃), 120.1 (C⁴ quart., aromat.), 1267.6, 130.8 (4C tert., aromat.), 146.6 (C¹ quart., aromat.), 162.56 (C=N)

C₁₃H₁₈BrN₃O₂ [328.21]

Ber. [%]	C 47.57	H 5.53	N 12.80
Gef. [%]	C 47.56	H 5.78	N 12.59

2-(3,4-Dichlorphenyl)-2-hydroxy-N`-(4-methylpiperazin-1-yl)-propionamidin 49.2

Aus 0.60 g (2 mmol) Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidathydrochlorid (**20.8**) und 0.25 g (2.2 mmol) 4-Methyl-*N*-Aminopiperazin nach AAV **12**

Ausbeute: 78 % (514 mg), amorphes Pulver

Schmp.: 131.7 °C (Diethylether/ Petrolether)

IR: $3503, 3387, 3132 \text{ cm}^{-1}$ (NH₂, OH), 1626 cm⁻¹ (C=N)

¹H-NMR (DMSO-*d*₆): δ(ppm):

1.56 (s, 3H, CH₃), 2.15 (s, 3H, CH₃), 2.32-2.67, 3.37 (s, 8H, CH₂), 5.74 (s, 2H, NH₂), 6.07 (s, 1H, OH), 7.45-7.49, 7.55-7.58, 7.73 (m, 3H, aromat.)

¹³C-NMR (DMSO- d_6): δ (ppm):

27.8 (PhCCH₃), 45.5 (NCH₃), 53.4, 54.1 (4 CH₂), 72.7 (PhCCH₃), 125.4, 127.0, 129.8 (3C tert., aromat.), 129.1, 130.3 ($C^3 + C^4$ quart., aromat.), 147.9 (C^1 quart., aromat.), 161.9 (C=N)

 $C_{14}H_{20}Cl_2N_4O$ [331.25]

Ber. [%]	C 50.76	H 6.09	N 16.91
Gef. [%]	C 50.27	H 6.15	N 16.52

2-(3,4-Dichlorphenyl)-2-hydroxy-N`-morpholin-4-yl-propionamidin 49.3

Aus 0.60 g (2 mmol) Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidathydrochlorid (20.8) und 0.22 g (2.2 mmol) N-Aminomorpholin nach AAV 12 Ausbeute: 77 % (488 mg), amorphes Pulver 113.3 °C (Diethylether/ Petrolether) Schmp.: 3418, 3315, 3273 cm⁻¹ (NH₂, OH), 1638 cm⁻¹ (C=N) IR: ¹H-NMR (DMSO- d_6): δ (ppm): 1.56 (s, 3H, PhCCH₃), 2.40-2.68, 3.58-3.74 (s, 8H, CH₂), 5.79 (s,2H, NH₂), 6.06 (s, 1H, OH), 7.46-7.48, 7.55-7.73 (m, 3H, aromat.) ¹³C-NMR (DMSO- d_6): δ (ppm): 28.3 (PhCCH₃), 54.7, 66.1 (4 CH₂), 73.2 (PhCCH₃), 125.9, 127.4, 130.3 (3C tert., aromat.), 129.6, 130.7 ($C^3 + C^4$ quart., aromat.), 148.4 (C¹ quart., aromat.), 162.2 (C=N) C₁₃H₁₇Cl₂N₃O₂ [318.21] Ber. [%] C 49.07 H 5.39 N 13.21 Gef. [%] C 49.10 H 5.46 N 13.13

2-Hydroxy-2-(naphthalen-2-yl)-N-(piperidin-1-yl)-propionamidin 49.4

Aus 0.52 g (2 mmol) Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanimidathydrochlorid (20.17) und 0.23 g (2.2 mmol) N-Aminopiperidin nach AAV 12 80 % (478 mg), amorphes Pulver Ausbeute: 147.8 °C (Diethylether/ Petrolether) Schmp.: 3476, 3341, 3282 cm⁻¹ (NH₂, OH), 1619 cm⁻¹ (C=N) IR: ¹H-NMR (DMSO- d_6): δ (ppm): 1.31-1.45, 1.56-1.60, 2.50 (m, 10H, CH₂), 1.66 (s, 3H, CH₃), 5.63 (s,2H, NH₂), 5.93 (s, 1H, OH), 7.46-7.64, 7.80-8.03 (m, 7H, aromat.) ¹³C-NMR (DMSO- d_6): δ (ppm): 23.6, 25.1, 55.0 (5 CH₂), 27.8 (PhCCH₃), 73.3 (PhCCH₃), 122.9, 124.0, 125.5, 125.8, 126.9, 127.2, 127.9 (7C tert., aromat.), 131.9, 132.4 ($C^5 + C^{10}$ quart., aromat.), 144.2 (C^2 quart., aromat.), 161.9 (C=N)C₁₈H₂₃N₃O [297.40] Ber. [%] C 72.70 H 7.80 N 14.13 Gef. [%] C 72.26 H 7.79 N 13.84

2-Hydroxy-N`-morpholin-4-yl-2-phenyl-acetamidin 49.5

Aus 0.43 g (2 mmol) Ethyl-2-hydroxy-2-phenyl-acetimidat-hydrochlorid (20.28) und 0.22 g (2.2 mmol) N-Aminomorpholin nach AAV 12 Ausbeute: 73 % (346 mg), amorphes Pulver 135.3 °C (Diethylether/ Petrolether) Schmp.: 3448, 3381, 3336 cm⁻¹ (NH₂, OH), 1632 cm⁻¹ (C=N) IR: ¹H-NMR (DMSO- d_6): δ (ppm): 2.39-2.59, 3.58-3.72 (s, 8H, CH₂), 4.91 (d, 1H, HOCH), 5.73 (s, 2H, NH₂), 5.86 (d, 1H, OH), 7.22-7.32, 7.44-7.46 (m, 5H, aromat.) ¹³C-NMR (DMSO-*d*₆): δ(ppm): 54.3, 65.7 (4 CH₂), 71.7 (CH), 125.8, 126.9, 127.7 (5C tert., aromat.), 142.3 (C¹ quart., aromat.), 160.2 (C=N) C₁₂H₁₇N₃O₂ [235.29] Ber. [%] C 61.26 H 7.28 N 17.86

Gef. [%] C 61.18 H 7.37 N 17.67

7.4.2 Darstellung der *N*-Alkoxy-2-aryl-2-hydroxy-propanamidine **50** (Abschnitt 5.2.1)

Allgemeine Arbeitsvorschrift AAV 13:

2 mmol des α -Hydroxyimidoesterhydrochlorides werden in 10 ml trockenem Dichlormethan suspendiert. Unter Eiskühlung fügt man tropfenweise eine Lösung von 2.2 mmol des entsprechenden Hydroxylamins in 5 ml trockenem Dichlormethan hinzu. Nach Zugabe wird für zehn Stunden bei Raumtemperatur gerührt. Anschließend wird das Lösungsmittel im Vakuum abdestilliert und der ölige Rückstand in Ethylacetat aufgenommen. Man wäscht die organische Phase dreimal mit eisgekühlter Kaliumcarbonatlösung und trocknet nachfolgend mit Natriumsulfat. Die resultierenden Verbindungen **50** kristallisieren aus Diethylether/Petrolether bei 5-7°C aus.

[(2-Hydroxy-2-p-tolyl-propionimidoyl)-aminooxy]- essigsäureethylester 50.1

Aus 0.73 g (3 mmol) Ethyl-2-hydroxy-2-(4-methylphenyl)propanimidathydrochlorid (**20.2**) und 0.39 g (3.3 mmol) Aminooxy-essigsäureethylester nach AAV **13**

Ausbeute: 68 % (578 mg), farblose Kristalle

Schmp.: 93.6 °C (Diethylether/ Petrolether)

IR: 3480, 3373 cm⁻¹ (NH₂, OH), 1745 cm⁻¹ (C=O), 1632 cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm):

1.20 (t, J= 7.0 Hz, 3H, OCH₂CH₃), 1.44 (s, 3H, PhCCH₃), 2.26 (s,3H PhCH₃), 4.08-4.16 (m, 2H, OCH₂CH₃), 4.43 (s, 2H, NOCH₂), 5.37 (s, 2H, NH₂), 5.77 (s, 1H, OH), 7.08-7.10, 7.35-7.37 (m, 4H, AB-System, aromat.)

14.5 (OCH₂CH₃), 20.9 (₃HCPh), 28.8 (PhCCH₃), 60.3 (OCH₂CH₃), 70.3 (NOCH₂), 73.4 (PhCCH₃), 125.1, 128.5 (4C tert., aromat.), 136.0 (C⁴ quart., aromat.), 144.0 (C¹ quart., aromat.), 158.5 (C=N), 170.6 (C=O)

 $C_{14}H_{20}N_2O_4$ [280.33]

Ber. [%]	C 59.99	H 7.19	N 9.99
Gef. [%]	C 60.09	Н 7.23	N 9.91

{[(2-(4-Chlor-phenyl)-2-hydroxy-propionimidoyl]-aminooxy}essigsäureethylester 50.2

Aus 0.79 g (3 mmol) Ethyl-2-(4-chlorphenyl)-2-hydroxy-propanimidat-

hydrochlorid (**20.3**) und 0.39 g (3.3 mmol) Aminooxy-essigsäureethylester nach AAV **13**

Ausbeute: 69 % (621 mg), farblose Kristalle

Schmp.: 105.6 °C (Diethylether/ Petrolether)

IR: 3486, 3434, 3378 cm⁻¹ (NH₂, OH), 1738 cm⁻¹ (C=O), 1634 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

1.19 (t, *J*= 7.0 Hz, 3H, OCH₂CH₃), 1.46 (s, 3H, PhCCH₃), 4.08-4.16 (m, 2H, OCH₂CH₃), 4.44 (s, 2H, NOCH₂), 5.46 (s, 2H, NH₂), 5.98 (s, 1H, OH), 7.34-7.36, 7.48-7.50 (m, 4H, AB-System aromat.)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

14.5 (OCH₂CH₃), 28.7 (PhCCH₃), 60.4 (OCH₂CH₃), 70.3 (NOCH₂), 73.2 (PhCCH₃), 127.2, 127.9 (4C tert., aromat.) 131.7 (C⁴ quart., aromat.), 145.9 (C¹ quart., aromat.), 158.2 (C=N), 170.6 (C=O)

$C_{13}H_{17}ClN$	₂ O ₄ [300.74]	
Ber. [%]	C 51.92	H 5.70	N 9.31
Gef. [%]	C 51.95	H 5.75	N 9.13

{[(2-(4-Brom-phenyl)-2-hydroxy-propionimidoyl]-aminooxy}essigsäureethylester 50.3

Aus 0.93 g (3 mmol) Ethyl-2-(4-bromphenyl)-2-hydroxy-propanimidat-

hydrochlorid (**20.5**) und 0.39 g (3.3 mmol) Aminooxy-essigsäureethylester nach AAV **13**

Ausbeute: 67 % (699 mg), farblose Kristalle

Schmp.: 107.6 °C (Diethylether/ Petrolether)

IR: 3487, 3422, 3379 cm⁻¹ (NH₂, OH), 1738 cm⁻¹ (C=O), 1634 cm⁻¹ (C=N)

¹H-NMR (DMSO-*d*₆): δ(ppm):

1.19 (t, *J*= 7.0 Hz, 3H, OCH₂CH₃), 1.46 (s, 3H, PhCCH₃), 4.08-4.16 (m, 2H, OCH₂CH₃), 4.44 (s, 2H, NOCH₂), 5.46 (s, 2H, NH₂), 5.98 (s, 1H, OH), 7.42-7.50 (m, 4H, aromat.)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

14.5 (OCH₂CH₃), 28.6 (PhCCH₃), 60.4 (OCH₂CH₃), 70.2 (NOCH₂), 73.3 (PhCCH₃), 120.3 (C⁴ quart., aromat.), 127.6, 130.9 (4C tert., aromat.), 146.3 (C¹ quart., aromat.), 158.1 (C=N), 170.6 (C=O)

 $C_{13}H_{17}BrN_2O_4$ [345.20]

Ber. [%]	C 45.23	H 4.96	N 8.12
Gef. [%]	C 45.24	H 5.00	N 8.24

[(2-Hydroxy-2-naphthalen-2-yl-propionimidoyl)-aminooxy]essigsäureethylester **50.4**

Aus 0.84 g (3 mmol) Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanimidat-

hydrochlorid (**20.17**) und 0.39 g (3.3 mmol) Aminooxy-essigsäureethylester nach AAV **13**

Ausbeute: 64 % (612 mg), farblose Kristalle

Schmp.: 72.4 °C (Diethylether/ Petrolether)

IR: 3483, 3420, 3367 cm⁻¹ (NH₂, OH), 1759 cm⁻¹ (C=O), 1636 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

1.20 (t, *J*= 7.0 Hz, 3H, OCH₂CH₃), 1.57 (s, 3H, PhCCH₃), 4.11-4.19 (m, 2H, OCH₂CH₃), 4.44-4.52 (d, 2H, NOCH₂), 5.47 (s, 2H, NH₂), 6.01 (s, 1H, OH), 7.45-7.52, 7.60-7.62, 7.82-7.90, 8.03 (m, 7H, aromat.)

¹³C-NMR (DMSO- d_6): δ (ppm):

14.1 (OCH₂CH₃), 28.2 (PhCCH₃), 59.9 (OCH₂CH₃), 69.8 (NOCH₂), 73.3 (PhCCH₃), 123.0, 123.8, 125.6, 125.9, 127.0, 127.2, 127.8 (7C tert., aromat.), 132.0, 132.5 ($C^5 + C^{10}$ quart., aromat.), 143.9 (C^2 quart., aromat.), 157.9 (C=N), 170.8 (C=O)

 $C_{17}H_{20}N_2O_4$ [316.36]

Ber. [%]	C 64.54	H 6.37	N 8.85
$C = f [\alpha]$	C(1,1)	$\mathbf{II} \subset \mathbf{A}1$	N 0 (7

Gef. [%] C 64.42 H 6.41 N 8.67

N⁻Benzyloxy-2-hydroxy-2-(naphthalen-2-yl)propanamidin **50.5**

Aus 0.84 g (3 mmol) Ethyl-2-hydroxy-2-(naphthalen-2-yl)propanimidathydrochlorid (**20.17**) und 0.41 g (3.3 mmol) O-Benzylhydroxylamin nach AAV **13**

Ausbeute: 82 % (784 mg), amorphes Pulver

Schmp.: 125.4 °C (Diethylether/ Petrolether)

IR: $3482, 3415, 3366 \text{ cm}^{-1}$ (NH₂, OH), 1638 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

1.60 (s, 3H, PhCC*H*₃), 4.97 (d, 2H, NOCH₂), 5.42 (s, 2H, NH₂), 5.99 (s, 1H, OH), 7.28-7.53, 7.77-7.96 (m, 12H, aromat.)

```
<sup>13</sup>C-NMR (DMSO-d<sub>6</sub>): δ(ppm):
```

28.6 (PhCCH₃), 73.8 (PhCH₂NHC=O), 74.4 (PhCCH₃), 123.3, 124.3, 126.0, 126.3, 127.5, 127.6, 127.7, 128.1, 128.3, 128.4 (12C tert., aromat), 132.4, 132.9 ($C^5 + C^{10}$ quart., aromat.), 139.5 (C^1 quart., Benzyl, aromat.), 143.9 (C^2 quart., Naphthyl, aromat.), 157.7 (C=N)

 $C_{20}H_{20}N_2O2$ [320.39]

Ber. [%]	C 74.98	H 6.29	N 8.74
Gef. [%]	C 74.67	H 6.37	N 8.58

7.4.3 Darstellung der 2-Hydroxy-2-aryl-propanamidrazone **51** (Abschnitt 5.3.1)

Allgemeine Arbeitsvorschrift AAV 14:

10 mmol der zuvor durch Exthraktion mit eisgekühlter 30% iger Kaliumcarbonatlösung gewonnenen Imidatbase werden in 10 ml absoluten Dichlormethan gelöst. Zu dieser Lösung gibt man 10 mmol Hydrazinhydrat und rührt für 4-5 Stunden bei Raumtemperatur.

Das Lösungsmittel wird unter vermindertem Druck entfernt und das daraus resultierende Öl durch Zugabe von Diethlether zur Kristallisation gebracht. Den erhaltenen Rückstand wäscht man anschließend sorgfältig mit Diethylether und Petrolether. Die erhaltenen Verbindungen **51** werden nach spektroskopischer Identifizierung infolge der bekannten Instabilität unverzüglich weiterverarbeitet.

2-(4-Chlorphenyl)-2-hydroxypropanamidrazon 51.1

Aus 1.37 g (6 mmol) Ethyl-2-(4-chlorphenyl)-2-hydroxy-propanimidathydrochlorid (**20.3**) nach AAV **14** Ausbeute: 86 % (1.09 g), amorphes Pulver Schmp.: 104.8 °C (Zersetzung) IR(KBr): 3457, 3349, 3294 cm⁻¹ (NH₂), 3163 cm⁻¹ (OH), 1665, cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm): 1.54 (s, 3H, PhCCH₃), 4.57-5.17 (s, 4H, NH₂), 5.64-5.95 (s, 1H, OH), 7.31-7.34, 7.44-7.47 (m, 4H, AB-System, aromat.) ¹³C-NMR (DMSO- d_6): δ (ppm): 28.7 (PhCCH₃), 73.9 (PhCCH₃), 127.4, 127.8 (4C tert., aromat.),

131.4 (C⁴ quart., aromat.), 146.8 (C¹ quart., aromat.), 152.5 (C=N)

ESI-MS $C_9H_{12}CIN_3O$ Mr 213.67 $[M+H]^+$ ber. 214 $[M+H]^+$ gef. 214

2-(4-Bromphenyl)-2-hydroxypropanamidrazon 51.2

Aus 1.63 g (6 mmol) Ethyl-2-(4-bromphenyl)-2-hydroxy-propanimidat-

hydrochlorid (20.5) nach AAV 14

Ausbeute: 79 % (1.23 g), amorphes Pulver

Schmp.: 103.1 °C (Zersetzung)

IR(KBr): $3456, 3344, 3297 \text{ cm}^{-1}$ (NH₂), 3161 cm⁻¹ (OH), 1661 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

1.53 (s, 3H, PhCCH₃), 4.50-5.02 (s, 4H, NH₂), 5.58-5.92 (s, 1H, OH), 7.39-7.41, 7.47-7.49 (m, 4H, AB-System, aromat.)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

28.2 (PhCCH₃), 73.6 (PhCCH₃), 119.5 (C⁴ quart., aromat.), 127.6, 130.2 (4C tert., aromat.), 146.9 (C¹ quart., aromat.), 152.0 (C=N)

ESI-MS C₉H₁₁BrN₃O Mr 258.12

 $[M+H]^+$ ber. 259

 $[M+H]^+$ gef. 259

2-(3,4-Dichlorphenyl)-2-hydroxypropanamidrazon 51.3

Aus 1.57 g (6 mmol) Ethyl-2-(3,4-dichlorphenyl)-2-hydroxy-propanimidathydrochlorid (**20.8**) nach AAV **14**

Ausbeute: 88 % (1.31 g), amorphes Pulver

Schmp.: 107.3 °C (Zersetzung)

IR(KBr): 3354, 3228 cm⁻¹ (NH₂), 3188 cm⁻¹ (OH), 1654 cm⁻¹, 1630 cm⁻¹ (C=N)

¹H-NMR (DMSO- d_6): δ (ppm):

1.54 (s, 3H, PhCC*H*₃), 4.60-5.28 (s, 4H, NH₂), 5.62-6.04 (s, 1H, OH), 7.39-7.64 (m, 3H, aromat.)

¹³C-NMR (DMSO- d_6): δ (ppm):

28.5 (PhCCH₃), 73.8 (PhCCH₃), 126.0, 127.6, 130.2 (3C tert., aromat.), 129.3, 130.6 ($C^3 + C^4$ quart., aromat.), 149.0 (C^1 quart., aromat.), 152.1 (C=N)

 7.4.4 Darstellung von *N*-Alkyl-/arylmethyliden-2-aryl-2hydroxypropanamidrazonen **52** (Abschnitt 5.3.2)

Allgemeine Arbeitsvorschrift: AAV 15

Man suspendiert 2 mmol des nach AAV **14** hergestellten Amidrazons **51** in 3 ml absolutem Dichlormethan und fügt in einem 10 %igen Überschuß die Carbonylkomponente hinzu. Anschließend wird die Lösung für fünf Stunden bei Raumtemperatur gerührt.

Der entstandene Niederschlag wird abfiltriert und mehrmals mit kaltem Petrolether gewaschen.

Zur Reinigung wird aus Diethylether/ Petrolether umkristallisiert.

2-(4-Chlorphenyl)-N`-cyclohexyliden-2-hydroxypropanamidrazon 52.1

Aus 0.64 g (3 mmol) 2-(4-Chlorphenyl)-2-hydroxypropanamidrazon (51.1) und

0.32 g (3.3 mmol) Cyclohexanon nach AAV 15

Ausbeute: 72 % (734 mg), kristalline Pulver

Schmp.: 146.9 °C (Diethylether/Petrolether)

IR: $3446 \text{ cm}^{-1} \text{ (NH}_2), 3335 \text{ cm}^{-1} \text{ (OH)}, 1624 \text{ cm}^{-1} \text{ (C=N)}$

¹H-NMR (DMSO- d_6): δ (ppm):

1.53-1.63, 2.22-2.25, 2.52-2.65 (m, 10H, CH₂), 1.63 (s, 3H, PhCC*H*₃), 5.82 (s, 2H, NH₂), 5.93 (s, 1H, OH), 7.34-7.36, 7.52-7.54 (m, 4H, aromat.)

¹³C-NMR (DMSO- d_6): δ (ppm):

25.6, 26.0, 27.1, 27.1, 35.3 (5C, CH_2), 28.0 (PhCCH₃), 73.3 (PhCCH₃), 127.0, 127.4 (4C tert., aromat.), 131.1 (C⁴ quart., aromat.), 145.8 (C¹ quart., aromat.), 161.8 (C=N), 164.8 (C=N, Cyclohexyl)

C₁₅H₂₀ClN₃O [293.80]

Ber. [%]	C 61.32	H 6.86	N 14.30
Gef. [%]	C 60.76	H 6.96	N 14.20

2-(4-Bromphenyl)-2-hydroxy-N`-(propan-2-yliden)propanamidrazon 52.2

Aus 0.77 g (3 mmol) 2-(4-Bromphenyl)-2-hydroxypropanamidrazon (51.2) und 0.58 g (10 mmol) Aceton nach AAV 15 Ausbeute: 81 % (724 mg), kristalline Pulver 132.6 °C (Diethylether/ Petrolether) Schmp.: 3462, 3345 cm⁻¹ (NH₂), 3243 cm⁻¹ (OH), 1637, 1620 cm⁻¹ (C=N) IR: ¹H-NMR (DMSO- d_6): δ (ppm): 1.81 (s, 3H, PhCCH₃), 2.03, 2.06 (jeweils s, 3H, CH₃), 4.93 (s, 2H, NH₂), 5.12 (s, 1H, OH), 7.41-7.49 (m, 4H, aromat.) ¹³C-NMR (DMSO-*d*₆): δ(ppm): 15.5, 25.8 (2C, CH₃), 27.7 (PhCCH₃), 73,5 (PhCCH₃), 128.1, 131.9 (4C tert., aromat.), 122.3 (C⁴ quart., aromat.), 143.8 (C¹ quart., aromat.), 161.4 (C=N), 164.5 (C=N, Cyclohexyl) $C_{12}H_{16}BrN_2O_4$ [298.18] Ber. [%] C 48.34 H 5.41 N 14.09 Gef. [%] C 48.09 H 5.48 N 13.91

2-(4-Bromphenyl)-N`-cyclohexyliden-2-hydroxypropanamidrazon 52.3

Aus 0.77 g (3 mmol) 2-(4-Bromphenyl)-2-hydroxypropanamidrazon (51.2) und 0.32 g (3.3 mmol) Cyclohexanon nach AAV 15 79 % (798 mg), kristalline Pulver Ausbeute: Schmp.: 159.9 °C (Diethylether/ Petrolether) 3458, 3345 cm⁻¹ (NH₂), 3213 cm⁻¹ (OH), 1612 cm⁻¹ (C=N) IR: ¹H-NMR (CDCl₃): δ (ppm): 1.65-1.76, 2.32-2.35, 2.66-2.69 (m,10H, CH₂), 1.81 (s, 3H, PhCCH₃), 4.93 (s, 2H, NH₂), 5.13 (s, 1H, OH), 7.41-7.48 (m, 4H, aromat.) ¹³C-NMR (CDCl₃): δ (ppm): 26.5, 26.9, 28.0, 28.5, 36.5 (5C, CH₂), 27.6 (PhCCH₃), 73.5 (PhCCH₃), 128.2, 131.9 (4C tert., aromat.), 122.3 (C⁴ quart., aromat.), 143.8 (C¹ quart., aromat.), 161.7 (C=N), 170.1 (C=N, Cyclohexyl) C₁₅H₂₀BrN₃O [338.25] Ber. [%] C 53.26 H 5.96 N 12.42

Gef. [%] C 52.72 H 5.99 N 12.52

2-(3,4-Dichlorphenyl)-N`-cyclohexyliden-2-hydroxypropanamidrazon 52.4

Aus 0.83 g (3 mmol) 2-(3,4-Dichlorphenyl)-2-hydroxypropanamidrazon (**51.3**)

und 0.32 g (3.3 mmol) Cyclohexanon nach AAV 15

Ausbeute: 77 % (759 mg), farblose Kristalle

Schmp.: 115.3 °C (Diethylether/ Petrolether)

IR: $3476, 3344 \text{ cm}^{-1} \text{ (NH}_2), 3098 \text{ cm}^{-1} \text{ (OH)}, 1633, 1627 \text{ cm}^{-1} \text{ (C=N)}$

¹H-NMR (DMSO- d_6): δ (ppm):

1.53-1.60, 2.22-2.25, 2.54-2.67 (m,10H, CH₂), 1.64 (s, 3H, PhCC*H*₃), 5.88 (s, 2H, NH₂), 6.10 (s, 1H, OH), 7.47-7.49 (m, 3H, aromat.)

¹³C NMR (DMSO-*d*₆): δ(ppm):

26.0, 26.5, 27.5, 27.6, 35.7 (5C, CH_2), 28.4 (PhCCH₃), 73.5 (PhCCH₃), 126.0, 127.7, 130.2 (3C tert., aromat.), 129.6, 130.7 (C³+C⁴ quart., aromat.), 148.5 (C¹ quart., aromat.), 161.8 (C=N), 165.4 (C=N, Cyclohexyl)

 $C_{15}H_{19}Cl_2N_3O$ [328.24]

Ber. [%]	C 54.89	H 5.83	N 12.80
Gef. [%]	C 54.65	H 6.04	N 12.75

<u>N'-Benzyliden-2-(3,4-dichlorphenyl)-2-hydroxypropanamidrazon</u> **52.5**

Aus 0.83 g (3 mmol) 2-(3,4-Dichlorphenyl)-2-hydroxypropanamidrazon (**51.3**)

und 0.35 g (3.3 mmol) Benzaldehyd nach AAV 15

Ausbeute: 72 % (727 mg), farblose Kristalle

Schmp.: 156.3 °C (Diethylether/ Petrolether)

IR: 3452, 3295 cm⁻¹ (NH₂), 3198 cm⁻¹ (OH), 1607, 1587 cm⁻¹ (C=N) ¹H-NMR (DMSO- d_6): δ (ppm):

1.72 (s, 3H, PhCC*H*₃), 6.23 (s, 1H, OH), 6.57 (s, 2H, NH₂), 7.38-7.84 (m, 8H, aromat.), 8.34 (s,1H, CH=N)

¹³C-NMR (DMSO-*d*₆): δ(ppm):

28.3 (PhCCH₃), 73,4 (PhCCH₃), 126.2, 127.6, 128.0, 128.8, 130.0, 130.8 (8C tert., aromat.), 129.8, 130.8 ($C^3 + C^4$ quart., aromat.), 135.8 (C^1 quart., aromat.), 148.2 (C^1 quart., aromat.), 153.7 (C=N quart), 166.1 (CH=N, tert.)

 $C_{16}H_{15}Cl_2N_3O$ [336.22]

Ber. [%]	C 57.16	H 4.50	N 12.50
Gef. [%]	C 57.44	H 4.68	N 12.34

8 Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Darstellung verschiedenartiger α -Hydroxyglykolohydrazonaten (**21**, **33**, **34**) sowie α -Hydroxyglykolohydroximaten (**47**,**48**), welche hinsichtlich einer potenziellen antiplasmodialen Aktivität getestet werden sollten. Die Abwandlungen der antiplasmodialen Leitstruktur **1** zur Erschließung neuer (*E*/*Z*)-*N*'-(1-Alkoxy-2hydroxy-alkyl-1-yliden)-hydrazin-carbonsäureester (**21**) sollten zum Verständnis der Struktur-Aktivitäts-Beziehung beitragen.

Abb. 8-1 Leitstruktur

Im ersten Teil der vorliegenden Arbeit wurde ein ergiebiges Syntheseverfahren zur Gewinnung der (E/Z)-N'-(1-Alkoxy-2-hydroxy-alkyl-1-yliden)-hydrazincarbonsäureestern (**21**) entwickelt. Obschon sich die (E/Z)-N'-(1-Alkoxy-2hydroxy-alkyl-1-yliden)-hydrazin-carbonsäureestern (**21**) durch die Reaktion von α -Hydoxyimidoesterhydrochloriden (**20**) mit Carbazaten darstellen ließen, konnte hierbei die Entstehung des Konkurrenzproduktes **22** beobachtet werden. Einen selektiveren Weg bietet die Umsetzung der Thiocarbonsäure-O-ester (**23**), welche durch die Sulfhydrolyse der α -Hydoxyimidoester-hydrochloride (**20**) erschlossen wurden, mit Carbazaten, wodurch die Verbindungen **21** in Ausbeuten von 67-87% resultierten.

Weitere α -Hydroxyglykolohydrazonate (33, 34) sowie α -Hydroxyglykolohydroximate (47) konnten durch diese Darstellung erschlossen werden.

Die Umsetzung von O-unsubstituierten α -Hydroxyglykolohydroximate (**47d/e**) mit Isocyanaten in Gegenwart von DMAP liefert in Ausbeuten von 69-75% die (*E/Z*)-Alkyl-/Aryl-*N*-alkyl-/arylcarbamoyloxy-2-hydroxy-2-(alkyl/aryl)- propanimidate (**48**).

Schema 8-2

Die basenkatalysierte Umsetzung der (E/Z)-N'-(1-Alkoxy-2-hydroxy-alkyl-1-yliden)-hydrazin-carbonsäureestern (**21**) liefert unter Wärmeeinwirkung infolge einer intramolekularen Cyclisierung die 5-Alkoxy-6-alkyl-6-phenyl-3,6-dihydro-[1,3,4]-oxadiazin-2-one (**29**).

Die mikrowellenunterstützte Cyclisierung ging mit wesentlich kürzeren Reaktionszeiten sowie höheren Ausbeuten einher.

Schema 8-3

Im zweiten Teil dieser Arbeit wurden N-substituierte Amidrazone (49) sowie N-Amidoxime (50) hergestellt. Hierfür wurden substituierte die α-Hydroxyimidoester-hydrochloride (20) mit Hydrazinen bzw. Hydroxylaminen Durch die Verwendung aprotischer Lösungsmittel umgesetzt. wie Dichlormethan konnte die Entstehung von Konkurrenzprodukten auf ein Minimum reduziert werden.

Durch die Reaktion der α -Hydroxyimidoester-hydrochloride mit Hydrazinhydrat konnten unsubstituierte Amidrazone (**51**) gewonnen werden, welche sich mit Carbonylverbindungen zu den *N*-Alkyl-/aryl-2-hydroxy-2-arylpropanamidrazone (**52**) umsetzen ließen.

Schema 8-4

Ausgewählte Vertreter jeder Substanzklasse wurden auf eine potenzielle antiplasmodiale Wirkung untersucht. Einige Vertreter der $(E/Z)-N'-(1-Alkoxy-2-hydroxy-alkyl-1-yliden)-hydrazincarbonsäureestern (21) zeigten eine deutlich größere prozentuale Hemmung als die Leitstruktur. Die aktivsten Vertreter dieser Stoffklasse wiesen IC50-Werte von 0.6 sowie 1.1 <math>\mu$ M auf.

Die Durchführung der Testreihen erfolgte in Kooperation mit dem Bernhard-Nocht- Institut in Hamburg.

9 Summary

The aim of this thesis was to investigate the structure-activity of antiplasmodial active α -hydroxyglycolohydrazonates (21, 33, 34) as well as α -

hydroxyglycolohydroximates (**47**,**48**). For this purpose, a series of novel analogs of the *lead* **1** had to be synthesized.

scheme 9-1 leadstructure

In the first part of this work a high-yielding synthetic method for (E/Z)-N'-(1-alkoxy-2-hydroxy-2-aryl-alkylidene)-hydrazinecarboxylic acid esters (21) by reacting α -hydroxyimidoesterhydrochlorides (20) with carbazates, is described.

More selectively the targeted 21 were obtained by reaction of the thiocarboxylic *O*-esters (23) with carbazates in 67-87 % yield.

By this route also α -hydroxyglycolohydrazonates (33, 34) as well as α -hydroxyglycolohydroximates (47) have been accessible.

The reaction of O-unsubstituited α -hydroxyglycolohydroximates (**47d/e**) with isocyanates in the presence of DMAP furnished (*E/Z*)-alkyl-/aryl-*N*-alkyl-/arylcarbamoyloxy-2-hydroxy-2-(alkyl/aryl)-propanimidates (**48**) in yields between 69-75%.

The base catalyzed cyclization of (E/Z)-N'-(1-alkoxy-2-hydroxy-2-phenyl-alkylidene)-hydrazinecarboxylic acid esters (**21**) provided 5-alkoxy-6-alkyl-6-phenyl-3,6-dihydro-[1,3,4]-oxadiazin-2-ones (**29**).

scheme 9-3

N-Substituted amidrazones (49) and *N*-substituted amidoximes (50) were prepared from α -hydroxyimidoester hydrochlorides (20) with hydrazines and hydroxylamines, respectively.

Furthermore, α -hydroxyimidoester hydrochloride was reacted with hydrazine hydrate to give the amidrazones (**51**), which were subsequently reacted with aldehydes/ ketones to afford *N*-alkyl-/aryl-2-hydroxy-2-aryl-propanamidrazones (**52**).

scheme 9-4

Of the prepared novel compounds, a representative selection was tested, but only the the (E/Z)- α -hydroxycarbazone-esters (21) showed significant antimalarial activity. Some IC 50 values showed a lower value than 2.0 μ M. The biological testing was performed in collaboration with the Bernhard-Nocht-Insitute in Hamburg.
10 Literaturverzeichnis

- 1. Sachs, J., Malaney, P., Nature (2002), **415**, 680
- 2. Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y., Hay, S. I., Nature (2005), **434**, 214
- Miller, L. H., Baruch, D. I., Marsh, K., Doumbo, O. K., Nature (2002),
 415, 673
- 4. Stock, I., Med. Monatsschr. Pharm. (2004), 27, 260
- 5. Richie, T. L., Saul, A., Nature (2002), **415**, 694
- 6. Wenk, P., Renz, A., Parasitologie 2003
- Wiesner, J., Ortmann, R., Jomaa, H., Schlitzer, M., Angew. Chem. (2003), 115, 5432
- 8. Meshnick, S. R., Dobson, M. J., Antimalarial Chemotherapy (2001), 15
- 9. Kaufman, T. S., Ruveda, E. A., Angew. Chem. (2005), **117**, 876
- Vennerstrom, J. L., Makler, M. T., Angerhofer, C. K., Wiliams, J. A., Antimicrob. Agents Chemother. (1995), **39**, 2671
- 11. Ridley, R. G., Nature (2002), 415, 686
- Sanchez, C. P., McLean, J. E., Stein, W. D., Lanzer, M., Biochemistry (2004), 43, 16365
- Omari, A. A., Preston, C., Garner, P., Cochrane Database Syst. Rev. (2002), 3, CD003125
- Atovaquone and Proguanil for Malaria Prophylaxis, Drug. Ther. Bull. (2001), **39**, 73
- Olliaro, P. L., Haynes, R. K., Meunier, B., Yuthavong, Trends Parasitol. (2001), 17, 122
- 16. Schlitzer, M., Arch. Pharm. (Weinheim) (2008), **341**, 149
- 17. Schlitzer, M., Chem. Med. Chem. (2007), 2, 944
- Vennerstrom, J. L., Nuzum, E. O., Miller, R. E., Dorn, A., Antimicrob. Agents Chemother. (1999), 43, 598

- Biagini, G. A., O'Neil, P. M., Bray, P. G., Ward, S. A., Curr. Opin. Pharmacol. (2005), 5, 473
- 20. O'Neill, P. M., Expert Opin. Invest. Drugs (2005), 14, 1117
- 21. Ploypradith, P., Acta Trop. (2004), 89, 329
- 22. O'Neill, P. M., Posner, G. H., J. Med. Chem. (2004), 47, 2945
- Yuvaniyama, J., Chitnumaub, P., Kamchonwongoaisan, S.,
 Vanichtanankul, J., Sirawaraporn, W., Taylor, P., Walkinshaw, M. D.,
 Yuthavong, Y., Nat. Struct. Biol. (2003), 10, 357
- Shearer, T. W., Kozar, M. P., O'Neill, M. T., Smith, P. L., Schiehser, G. A., Jacobus, D. P., Diaz, D. S., Yang, Y., Milhous, W. K., Skillman, D. R., J. Med. Chem. (2005), 48, 2805
- Bell, C. A., Hall, J. E., Kyle, D. E., Grogl, M., Ohemeng, K. A., Allen, M.
 A., Tidwell, R. R., Antimicrob. Agents Chemother. (1990), 34, 1381
- Arafa, R. K., Brun, R., Wenzler, T., Tanious, F. A., Wilson, W. D., Boykin, D. W., J. Med. Chem. (2005), 48, 5480
- Yeramian, P., Meshnick, S. R., Krudsood, S., Chalermrut, K.,
 Silachamroon, U., Tangpukdee, N., J. Infect. Dis. (2005), **192**, 319
- 28. McKerrow, J. H., Int. J. Parasitol. (1999), 29, 833
- Li, R., Kenyon, G. L., Cohen, F. E., Chen, X., Gong, B., Dominguez, J.
 N., Davidson, E., Kurzban, G., Miller, R. E., Nuzum, E. O., Rosenthal, P.
 J., McKerrow, J. H., J. Med. Chem. (1997), 38, 5031
- Dominguez, J. N., Lopez, S., Charris, J., Iarruso, L., Lobo, G., Semenov,
 A., Olson, J. E., Rosenthal, P. J., J. Med. Chem. (1997), 40, 2726
- Semenov, A., Olson, J. E., Rosenthal, P. J., Antimicrob. Agents Chemother. (1998), 42, 2254
- Perozzo, R., Kuo, M., Sidhu, A. S., Valiayaveettil, J. T., Bittman, R., Jacobs, W. R., Fidock, D. A., Sacchettini, J. Biol. Chem. (2002), 277, 13106

- Calas, M., Ancelin, M. L., Cordina, G., Portefaix, P., Piquet, G., Vidal-Sailhan, V., Vial, H., J. Med. Chem. (2000), 43, 505
- 34. Vial, H., Calas, M., Antimalarial Chemotherapy (2001), 295, 1311
- Jomaa, H., Wiesner, J., Sanderbrand, S., Altincicek, B., Weidemeyer, C., Hintz, M., Turbachova, I., Eberl, M., Zeidler, J., Lichtenthaler, H. K., Soldati, D., Beck, E., Science (1999), 285, 1573
- Wiesner, J., Henschker, D., Hutchinson, D. B., Beck, E., Jomaa, H.,
 Antimicrob. Agents Chemther. (2002), 46, 2889
- Reichenberg, A., Wiesner, J., Weidemeyer, C., Dreiseidler, E.,
 Sanderbrand, S., Altincicek, B., Beck, E., Schlitzer, M., Jomaa, H.,
 Bioorg. Med. Chem. Lett. (2001), **11**, 833
- Ortmann, R., Wiesner, J., Reichenberg, A., Henscker, D., Beck, E., Jomaa, H., Schlitzer, M., Bioorg. Med. Chem. Lett. (2003), 13, 2163
- Wiesner, J., Ortmann, R., Mitsch, A., Wißner, P., Sattler, I., Jomaa, H., Schlitzer, M., Pharmazie (2003), 58, 289
- 40. Sherman, I. W., Microbiol. Rev. (1979), 43, 453
- 41. Mauz, T., Dissertation Hamburg 2004
- 42. Brown, D. J., Shinozuka, K., Aust. J. Chem. (1998), 35, 377
- 43. Rigo, B., Fasseur, D., Synth. Commun. (1989), 19, 2321
- 44. Ikizler, A., Demirbas, N., Ikizler, A. A., J. Heterocycl. Chem. (1996), **33**, 1765
- 45. Ayca, E., Ikizler, A. A., Aslan, R., Chim. Acta Turc. (1984), 12, 305
- 46. Hassaneen, H.M., Abdelfattah, H.S., Nehal, E.M., Shawli, A.S., Heterocycles, (1982), 19, 1477
- 47. Shawali, A. S., Sherif, S. M., Curr. Org. Chem. (2007), **11**, 773
- 48. Wing, K. D., EP 361,645 (1990), Chem. Abstr. (1990), **113**, 151998j
- 49. Shuichi, I., Koike, K., Japan, Kokai 73 28,421 (1973), Chem. Abstr. (1973), 79, 65812s

- Nesvadba, H., Ger. Offen. 2,659,528 (1977), Chem. Abstr. (1977), 87, 117863w
- 51. Gy., E., T., Brit. 1382781 (1975), Chem. Abstr. (1975), 83,43386m
- 52. Yoshimoto, T., Hosono, A., Miki, J., Oda, K., Ura, M., Sato, N., Toyama, T, Tachinbana, H., Ger. Offen. 2,944,783 (1980), Chem. Abstr. (1998), 129, 37524g
- 53. Schmidt, E., Chem. Ber. (1914), 47, 2545
- 54. Pinner, A., Chem. Ber. (1884), **17**, 182
- 55. Pesson, M., Dupin, S., Antoine, M., Bull. Soc. Chim. Fr. (1962), 29, 1364
- 56. Ikizler, A., Demirbas, N., Ikizler, A. A., J. Heterocyclic Chem. (1996), 33, 1765
- Omodei-Sale, A., Consonni, P., Galliani, G., J. Med. Chem. (1983), 26, 1187
- Chang, L. L., Ashton, W. T., Flanagan, K. L., Strelitz, R. A., MacCoss, M., Greenlee, W. J., Chang, R. S. L., Lotti, V. J., Faust, K. A., Tsing-Bau, C., Bunting, P., Zingaro, G. J., Kivilighn, S. D., Siegl, P. K. S., J. Med. Chem. (1993), 36, 2558
- 59. Demirbas, N., Demirbas, A., Sancak, K., Tr. J. Chem. (2002), 26, 801
- 60. Kahveci, B., Molecules (2005), 10, 376
- Magedov, I. V., Usorov, M. I., Smushkevich, Y. I., Zh. Org. Khim. (1991), 27, 282
- Ikizler, A., Demirbas, N., Demirbas, A., Ikizler, A. A., Polish J. Chem. (1996), 70, 1114
- 63. Ikizler, A. A., Yildirim, N., J. Heterocyclic Chem. (1998), 35, 377
- Ikizler, A. A., Ikizler, A., Yuhsek, H., Bacheci, S., Sancak, K., Tr. J. Chem. (1994), 18, 51
- 65. Milcent, R., Redeuilh, C., J. Heterocycl. Chem. (1979), 16, 403
- Malbec, F., Milcent, R., Barbier, G., J. Heterocycl. Chem. (1984), 21, 1689

- 67. Pinner, A., Ber. Dtsch. Chem. Ges. (1884), 17, 2002
- 68. Atkinson, M. R., Polya, J. B., J. Chem. Soc. (1954), 3319
- 69. Jerchel, D., Fischer, H., Ann. (1951), 574, 85
- 70. Baiocchi, L., Palazzo, G., Annali di Chimica (1968), 58, 520
- 71. Shawali, A. S., Hassaneen, H. M., Tetrahedron (1972), 28, 5903
- 72. Ainsworth, C., J. Am. Chem. Soc. (1956), 78, 1973
- 73. Asinger, F., Leuchtenberger, W., Gerber, V., Monatsch. Chem. (1974), 105, 38
- 74. Kröger, C. F., Selditz, P., Mutscher, M., Chem. Ber. (1965), 98, 3034
- 75. Milcent, R., Redeuilh, C., J. Heterocycl. Chem. (1977), 14, 53
- 76. Golfier, M., Milcent, R., Synthesis (1979), **12**, 946
- 77. Hassaneen, H. M., Shetta, A. H., Elwan, N. M., Shawali, A. S., Heterocycles (1982), 19, 1477
- 78. Müller, H. G., Hartke, K., Arch. Pharm. (1988), 321, 879
- 79. Gassman, P. G., Talley, J. J., Tetrahedron Letters 1978, 40, 3733
- 80. Pinner, A., Die Imidoether und ihre Derivate, Oppenheim, Berlin 1892
- Mayer, R., Scheithauer, S. in: Methoden der Organischen Chemie (Houben-Weyl-Müller), 4.Aufl., Bd. E5, 785, Georg Thieme Verlag, Stuttgart, 1985
- 82. Jones, B. A., Bradshaw, J. S., Chem. Rev. (1984), 84, 17
- 83. Schmidt, U., Heymann, E., Kabitzke, K.-H., Chem. Ber. (1963), 96, 1478
- 84. Reynaud, P., Moreau, R. C., Bull. Soc. Chim. Fr. (1964), 31, 2999
- 85. Vinkler, P., Thimm, K., Voß, J., Liebigs Ann. Chem. (1976), 11, 2083
- 86. Walter, W., Meese, C. O., Schröder, B., Liebigs Ann. Chem. (1975), 1455
- 87. Gohee, Y., Boucherle, A., Robin, M., Eur. J. Med. Chem. (1986), 21, 403
- 88. Holst, C., Dissertation Hamburg, 1992
- 89. Geffken, D., Holst, C., Z. Naturforsch.(1994), B 49, 970 (1994), 49, 970
- Rosenblum, M., Nayak, V., DasGupta, S. K., Longroy, A., J. Am. Chem. Soc. (1963), 85, 3874

- 91. Lidström, P., Tierney, J., Wathey, B., Westman, J., Tetrahedron (2001),57, 9225
- 92. Klayman, D., L. Bartosevich, J. F., Griffin, T. S., Mason, C. J., Scovill, J.
 P., J. Med. Chem. (1979), 22, 855
- 93. Beraldo, H., Quim. Nova (2004), 27, 461
- 94. Khan, K. M., Rasheed, M., Zia-Ullah, Hayat, S., Kaukab, F., Choudhary,
 M. I., Atta-ur-Rahman, Perveen, S., Bioorg. Med. Chem. Lett. (2003), 11, 1381
- 95. Gröbner, P., Müller, E., Eur. J. Med. Chem. (1974), 9, 341
- Breukers, M. W., Wanner, M. J., Von Frijtag Drabbe Künzel, J. K.,
 Klaasse, E. C., Ijzerman, A. P., Koomen, G.-J., J. Med. Chem. (2003), 46, 1492
- 97. Kudelko, A., Zielinski, W., Heterocycles (2006), 68, 2269
- 98. Geffken, D., Schwarz, G., Arch. Pharm. (Weinheim) (1988), 321, 1, 45
- 99. Brion, J.-D., Reynaud, P., Kirchiacharian, S., Synthesis (1983), 220
- 100. Eiseler, E., Liebigs Ann. Chem. (1875), 175, 326
- 101. Pinner, A., Ber. Dtsch. Chem. Ges. (1884), 17, 184
- 102. Beart, P. M., Ward, A. D., Aust. J. Chem. (1974), 27, 1341
- 103. Johnson, J. E., Ghafouripour, A., Haug, Y. K., J. Org. Chem. 50 (1985), 993
- 104. Froböse, J., Dissertation Hamburg, 1992
- 105. Bel Hadj Amor, A., Baccar, B., J. d. l. Soc. Chim. d. Tunisie (1986), 2, 9
- 106. Geffken, D., Arch. Pharm. (Weinheim) (1988), 321, 235
- 107. Neidlein, R., Kolb, N., Arch. Pharm. (Weinheim) (1979), 312, 397
- 108. Petersen, S., Tietze, E., Chem. Ber. (1957), 90, 909
- 109. Röchling, H., Hörlein, G., Liebigs Ann. Chem. (1974), 504
- 110. Poonian, M., Nowoswiat, E., J. Org. Chem. (1980), 45, 203
- 111. Paul, H., Hilgetag, G., Jähnchen, G., Chem. Ber. (1968), 101, 2033
- 112. Ried, W., Czak, A., Liebigs Ann. Chem. (1964), 121, 676

- 113. Robert, J-M., Rideau, O., Arzneim. Forschung (1997), 47, 635
- 114. Bahececi, S., Yüksek, H., Tr. J. Chem. (1999), 23, 263, Chem. Abstr. (1999), 132, 63940
- 115. Neilson, D. G., Roger, R., Heatlie, J. W. M., Newlands, L. R., Chem. Rev. (1970), 70, 151
- 116. Henecka, H., Kurtz, P. in: Methoden der Organischen Chemie (Houben-Weyl-Müller), Vol. 8, 368, Georg Thieme Verlag, Stuttgart, 1952
- Desjardins, R. E., Canfield, C. J., Haynes, J. D., Chulay, J. D., Antimicrob. Agents Chemother. (1979), 16, 710
- 118. Manandhar, M. S. P., van Dyke, K., Exp. Parasitol. (1975), 37, 138
- 119. Trager, W., Jensen, J. D., Science (1976), 193, 673
- 120. Khankischpur, M., Dissertation in Vorbereitung
- 121. Sen, A. B., Shanker, K., J. Prakt. Chemie (1965), 29, 309
- 122. Willrodt, I., Dissertation Hamburg, 1997
- 123. Schwarz, G., Dissertation Braunschweig, 1987

Anhang: Gefahrenmerkmale und Sicherheitsratschläge

Über die toxikologischen Eigenschaften der meisten im Rahmen dieser Arbeit verwendeten Chemikalien bzw. synthetisierten Verbindungen liegen keine Daten im Sinne des Chemikaliengesetzes vor. Die Substanzen sind mit der für gefährliche Chemikalien üblichen Vorsicht zu handhaben.

Nachfolgend sind die wichtigsten verwendeten Reagenzien sowie Lösungsmittel aufgeführten die nach den Anhängen 2-4 der Richtlinie 67/548/EWG mit Gefahrensymbolen und Sicherheitsratschlägen versehen sind.

Lösungsmittel	Gefahrensymbole	Sicherheitsratschläge
Aceton	F	9-16-23-33
Dichlormethan	Xn	23.2-24/25-36/37
Diethylether	F^+	9-16-29-33
Ethanol	F	7-16
Ethylacetat	F	16-23-29-33
n-Hexan	Xn, F	9-16-24/25-29-51
Methanol	T, F	7-16-24-45
Petrolether	Xn, F	9-16-23.2-24-33-62
Pyridin	Xn, F	16-25-29-33

Reagenzien	Gefahrensymbole	Sicherheitsratschläge
Acethydrazid	Xn	26-36
Acetoncyanhydrin	Т	7/9-27-45
Acetophenon	Xn	-
N-Aminomorpholin	Xi	26-36
N-Aminopiperidin	Xi, F	26-36/37/39
Benzaldehyd	Xn	24
Benzhydrazid	Т	26-45
Benzylalkohol	Xn	26
Benzylamin	С	26
Benzylcarbazat	Xi	26-36
4-Bromacetophenon	Xn	22-26-36/37
3-Brom-4-Fluoracetophenon	Xi	26-37/39
tertButylcarbazat	F	15-16-22-24/25
tertButylisocyanat	F,T^+	16-26-36/37/39-45
4-Chloracetophenon	T^+	26-28-36/37/39-45
Chlorameisensäurephenylester	T^+	26-28.1-36/37/39-45
4-Chlorbenzylamin	Xi	26-36
2-Chlorbenzylisocyanat	Xn	26-36/37/39

3-Chlor-4-fluoracetophenon	Xi	26-36
4-Chlor-3-methylacetophenon	Xi	26-39
4-Chlorphenylisocyanat	T^+	23-26-28-36/37/39-45
Chlorwasserstoff	T, C	9-26-36/37/39-45
Cyclohexanon	Xn	25
Cyclopropylmethylketon	F	9-16-29-33
3,4-Dichloracetophenon	Xi	26-36
3,4-Dichlorbenzaldehyd	С	26-27-28-36/37/39-45
3,4-Dichlorphenylacetonitril	Xn	26-37/39
3,4-Dichlorpropiophenon	Xi	26-36
Dimethylaminopyridin	Т	22-24/25
Ethylbutyrat	Xi	16-26-36
Ethylcarbazat	Т	22-36/37-45
Ethylisothiocyanat	F, T^+	16-26-36/37/39-45
Hydrazinhydrat	Т	53-45
Hydroxylamin-Lösung (50%)	Xn	26-36/37/39-61
Kaliumcarbonat	Xn	22-36/37/38
Mandelsäurenitril	Т	22-26-36/37/39-45
Methylamin-hydrochlorid	Xn	26
4-Methylacetophenon	Xn	23-24/25
4-Methyl-N-Aminopiperazin	Xn	20/21/22-36/37/38
4-Methylbenzylamin	С	26-36/37/39-45
Methylcarbazat	Т	22-26-37/39
Naphthalin-1-carbaldehyd	Xi	26-36
1-(Naphthalen-2-yl)ethanon	Xi	26-36
Natriumethanolat	F, C	8-16-26-43.6-45
4-Nitroacetophenon	Xi	22-24/25
1-Phenethylalkohol	Xn	26-28-36/37
1-Propanol	F, Xi	7-16-24-26-39
Propiophenon	Xi	26-36
Salzsäure	С	26-36/37/39-45
Schwefelwasserstoff	T^+, F^+, N	9-16-28.1-36/37-45-61
para-Toluensulfonsäure	Xi	36/37/38
Triethylamin	C, F	3-16-26-29-36/37-45
Trimethylsilylcyanid	Т	36-45
Zinkiodid	C	26-36/37/39-45