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Abstract

Reflection seismic is one of the most commonly used geophysical method for the oil and gas
exploration. In this thesis I show the application of the Common Reflection Surface (CRS) stack
technique to improve the quality of reflection seismic images. Conventional seismic imaging
method based on the CMP stacking does not use the full potential of the dataset due to reflection
point dispersal in the presence of dipping reflectors or laterally inhomogeneous media. Applica-
tion of the CRS stack technique is advantageous in complex areas, since it involves information
about the shape of seismic reflectors, i.e., dip and curvature, into processing. Moreover, a mul-
tiparameter formula allows to sum up more traces during the stack. All together, this leads to
better imaging results, especially to an improvement of thesignal-to-noise (S/N) ratio. Reflection
events in the CRS stack sections appear clearer and more continuous compared to conventional
CMP stack sections.

In two case studies I demonstrate the strength of the CRS stack technique applied to seismic
reflection data of different quality. First, I apply the CRS stack method to a high-quality marine
seismic data from the North Sea. This part of the thesis givesthe overview of the typical CRS
processing flow and shows the results of time and depth imaging.
Then, I perform the CRS stack processing on low-quality land data from Northern Germany. The
potential of this dataset was not fully exploited by the conventional CMP stacking method. The
CRS stack section shows new details, especially in the internal structural of the salt plugs that
were not identified using conventional processing. Moreover, the CRS stack parameters obtained
during the automatic search form the foundation for a robustreflection tomography for velocity
model building. The obtained depth velocity model allows the prestack and poststack depth
migration in the areas of the salt plugs. Resulting depth sections were previously not available for
this dataset. They provide supplementary information for the geological interpretation. However,
the CRS stack improves only the quality of the stacked sections. To provide a reliable control of
migration velocities, and to generate an improved prestackdepth migrated section, the S/N ratio
and the regularity of input seismograms should be enhanced before prestack depth migration.

In this thesis I present the newpartial CRS stack method, which allows to improve the quality
of prestack seismic reflection data. The method is based on the multiparameter CRS traveltime
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formula, and uses the results of the automatic CRS stack. I introduce a method of effectively
searching the partial CRS stacking operator. The algorithm isrobust and easy to implement. The
partial CRS stack uses the information about local dip and curvature of each reflector element,
and sums up the amplitudes of all traces contributing to thatelement. The true reflector is locally
approximated by the reflection surface. Depending on the chosen size of the surface, the number
of traces used during the partial stacking may vary. Due to the constructive summation of co-
herent events, the partial CRS stack enhances the signal and attenuates random noise. Moreover,
missing traces (e.g., acquisition gaps) can be generated and the acquisition can be regularised,
if the approximating surface contains useful events from neighbouring traces. The latter can be
considered as an improved interpolation technique using a simple and robust summation algo-
rithm. This also allows generating regular traces with equidistant intervals, which may be helpful
for further processing of the data, e.g., by wavefield methods. Partially-stacked CRS supergath-
ers are superior to conventional CMP gathers in areas of complex geological behaviour. They
are regularised and have a higher S/N ratio compared to the original seismograms. Reflections
in CRS supergathers appear clearer and continuous, which is preferable for the velocity analysis
and quality control of depth migration.

To test the potential of the partial CRS stack, I show two examples using synthetic data. Then, I
apply the method on the real land dataset from Northern Germany. The results demonstrate the
improvement of seismic images and provide the quality control of the depth migration, which
was hardly possible using the conventional image gathers.
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Introduction

The aim of this thesis is to provide a method for improvement of seismic reflection images
in complex geological environments. Reflection seismic is one of the most commonly used
geophysical method for the oil and gas exploration. It allows to image subsurface structures using
indirect measurements carried out at the Earth’s surface. Adetailed image of the Earth’s interior
is the goal of investigations for academic research and for the oil and gas industry. Consistent
images provided by the reflection seismic method help geologists to position exploration and
production oil wells.

During reflection seismic measurements, energy in form of elastic waves generated by a source
propagates into the subsurface. When a wave reaches a seismicboundary, characterised by a
change of elastic parameters, it is partly transmitted and partly reflected. The reflected waves can
be measured at the surface. Seismic data is usually acquiredby receivers at the free surface (or
by streamer in marine seismic), and is recorded in form of seismograms.

A main objective of seismic data processing is to transform the acquired data into the best pos-
sible image of the subsurface. Since the information about the elastic waves is recorded as
amplitudes of seismic signal as a function of recording time, the first view on the subsurface
structures can be performed by the interpretation of time sections. In a two-dimensional (2D)
seismic survey the sources and receivers are placed along a profile line. In a horizontally-layered
medium each subsurface point is repeatedly illuminated by anumber of rays travelling from
sources to receivers under varying angles. This so-called multi-coverage seismic recording pro-
vides redundant information about the illuminated subsurface points. During the processing this
redundancy is used to produce the stacked sections, where each trace is the result of summation
of many traces illuminating the same reflection points. As a result of constructive summation
the amplitudes of signals in stacked traces are enhanced andthe random (or incoherent) noise
present in the data is attenuated.

An important part of seismic processing is the estimation ofpropagation velocities of seismic
waves from the acquired data. Stacking velocities derived from the seismograms are used to
simulate a seismic section, where source and receiver positions are coincident, which is called
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the zero-offset (ZO) section. The generation of the ZO section is usually one of the early steps
in the seismic processing routine. It provides a first image of the subsurface structures.

A conventionally applied method for simulating the ZO sections is the common midpoint (CMP)
stack, formerly known as the Common Reflection Point stack (Mayne, 1962). This approach
sums up the amplitudes of reflection events corresponding tomidpoints between source and re-
ceivers. If the subsurface consists of the horizontally-layered boundaries, the CMP stack assigns
the results of summation to common reflection points on a reflector, thus increasing the signal
and attenuating the random noise. However, for dipping layers a summation of the CMP gath-
ers would involve reflection energy originating from different subsurface points due toreflection
point dispersalalong a reflector interface (e.g.,Yilmaz, 2001). This effect is conventionally
corrected by using the dip moveout (DMO) process. Stacking of DMO-corrected CMP gathers
yields a section that is a closer approximation to a ZO section than a conventional CMP-stacked
section (Yilmaz, 2001).

Modern methods of stacking have been developed in the last decades to overcome the problem
of dipping layers and to produce better imaging results. TheCommon Reflection Surface (CRS)
stack (e.g.,Müller, 1999; Jäger et al., 2001; Mann, 2002) and Multifocusing (e.g.,Landa et al.,
1999; Gurevich and Landa, 2002; Berkovitch et al., 2008) are superior to the conventional CMP
stack since they include information about the reflector shape during the stacking. Instead of one
unknown parameter, which is the stacking velocity in the CMP method, these new approaches
operate with three parameters in the two-dimensional (2D) case, describing position, dip and
curvature of reflector elements. Additionally, more tracesare involved in the stacking process
compared to the CMP stack, thus increasing the signal-to-noise (S/N) ratio of the stacked sec-
tions. Müller (1999) has shown, that in complex media the CRS stack approximates traveltimes
of seismic reflection data more precisely than the NMO/DMO stack, thus improving the stacking
results. Only when the shape of the true subsurface reflectoris identical to the shape of the spe-
cific ZO isochrone, the NMO/DMO stack operates identical to the CRS stack (e.g.,Müller, 1999;
Jäger et al., 2001). The estimation of the CRS stacking parameters is carried outin an automatic
mode with moderate human interaction; only the range of tested values and thresholds must be
specified. The CRS stack method is particularly suited for improvement of quality of time stacks
of irregular and noisy data. Successful application of the CRSstack method on real data has been
demonstrated, e.g., byPruessmann et al.(2004), Eisenberg-Klein et al.(2008), Pruessmann et al.
(2008), Yoon et al.(2008a,b) andBaykulov et al.(2009).

Stacking parameters obtained during the automatic CRS stack provide a basis for the estimation
of a depth velocity model consistent with the acquired data.Duveneck(2004) implemented
theNIP-wave tomographic inversionto estimate a depth velocity model using the results of the
automatic CRS stack. This inversion algorithm provides a smooth depth velocity model of the
subsurface suitable for a conversion of data from the recorded (time) into the depth domain (depth
migration).
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Depth migration using a consistent velocity model correctsthe effect of wave propagation through
the medium and provides depth images, where reflectors are attheir true positions (e.g.,Yilmaz,
2001; Stolt, 2002). Among the different existing migration classifications,one of the most im-
portant is the division into migration after stack and migration before stack. Depth migration
after stack (poststack depth migration,PostSDM) operates on a simulated time-stacked section.
This approach is quite fast and easy to implement, but provides errors in positioning of reflec-
tors in case of strong lateral velocity variations in the media. On the contrary, prestack depth
migration (PreSDM) operates on the seismograms before the simulation of a stacked section.
Stacking of traces by the PreSDM is performed after the migration of seismograms. Lateral ve-
locity variations are taken into account by migration, and reflectors are moved to their original
position. Moreover, prestack depth migrated gathers, alsoreferred to as Common Image Gathers
(CIG), provide a quality control for a depth velocity model used by migration. If the velocities
used by migration are consistent with the data, reflectors appear at the same depth flat and hor-
izontal in the considered CIGs. If the velocities used by migration are too high or too low, the
corresponding reflectors in the CIGs are not flat.

Migration of seismic data with very low quality, however, produces CIGs where reflector el-
ements can be hardly identified. To overcome this problem, the S/N ratio and the regularity
of traces should be improved before prestack depth migration. I, therefore, present a partial
CRS stack method, which allows to improve the quality of prestack seismic reflection data. The
method is based on the CRS traveltime formula and uses the kinematic wavefield attributes ob-
tained during the automatic CRS stack. So far, the CRS stack was applied to improve the quality
of stacked sections only. My strategy performs a partial stacking of recorded data beyond the
generation of a stacked section. Partial CRS stacks simulate anew dataset where each trace is a
result of the summation of several traces corresponding to one reflection element at an interface.
Due to the summation of coherent energy the signal is enhanced and the random noise is atten-
uated. During the summation, information about the local reflector shape is taken into account,
thus improving the results of partial stacking.

In the partially-stackedCRS supergathersreflections appear more continuous and can be easier
identified compared to the conventional CMP gathers. Moreover, the simple summation algo-
rithm allows to simulate traces at any position between the existing seismograms. Therefore, the
method can regularise irregularly acquired traces, e.g., in areas of complex surface topography,
close to production platforms, rivers, or other areas wheredata can not be acquired. Due to the
simple summation used by the generation of CRS supergathers the partial CRS stack is very ro-
bust in the presence of incoherent noise. The S/N ratio of theprestack seismograms increases
significantly by the partial summation of traces.

Since the partial CRS stack is applied before the generation ofa ZO section, the resulting CRS
supergathers can be used in conventional data processing instead of original CMP gathers. For
example, usage of CRS supergathers instead of low-quality irregular data significantly improves
the results of prestack depth migration. In many cases reflectors that were not visible using the
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conventional CIGs can be identified in depth migrated CRS supergathers. This further improves
the quality control of migration velocities based on the flatness of gathers.

To test the partial CRS stack method, I apply it on a synthetic dataset. I show the application
of this approach on real data case study. The results show thepotential of the new method to
increase the S/N ratio of noisy data and the regularity of traces.

The thesis is structured as follows:

Chapter 1 reviews the conventional and new seismic imaging techniques used in this work. In
particular, it introduces the CMP and CRS stack methods for timeimaging, NIP-wave tomogra-
phy for velocity model building, and depth migration.

Chapter 2 shows the results of the application of the CRS stack for time and depth imaging of
high-quality marine seismic data from the Southern part of the North Sea. The area is charac-
terised by complex salt tectonics. Time and depth stacked sections as well as the depth velocity
model are the results of the processing. This chapter discusses the practical aspects of processing
with the CRS stack.

Chapter 3 demonstrates the results of CRS stack re-processing on old low-fold land data from
salt-rich areas of Northern Germany. Depth migration usingthe estimated NIP-wave tomography
model provides depth images that were not available for the dataset before. The results contribute
to the special project of the German Research Foundation (DFG) within the priority program SPP
1135 "Dynamics of Sedimentary Systems" (Bayer et al., 2008).

Chapter 4 introduces the new partial CRS stack method for the improvement of prestack data
quality and describes the algorithm of stacking. In the firstpart numerical tests show the ap-
plication of the method to synthetic data. The second part describes the application of the new
approach to the real land dataset introduced in Chapter 3.

Chapter 5 summarises the results of the thesis and gives an outlook for promising future work
with the partial CRS stack method.
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Chapter 1

Theoretical background

1.1 General remarks and assumptions

This chapter overviews conventional and modern methods of seismic imaging. In the theoretical
description of the thesis the following assumptions and approximations are made:

- 2D case. Seismic imaging is in general a three-dimensional (3D) problem since the seismic
waves propagate in three spatial dimensions simultaneously. However, the datasets used in this
thesis were recorded using 2D acquisition profiles, i.e., the sources and receivers were placed
along lines. Therefore, the theoretical descriptions of the seismic imaging method in this chapter
is restricted to the 2D case only. This requires the assumption that the deviations of the seismic
profiles from the straight lines are minor and that the elastic properties of the subsurface do
not vary transversely to those lines. Nevertheless, one should always bear in mind that real 2D
data can also contain events coming from outside of profile lines (so-calledout-of-planeevents).
Obviously, neglecting these events may lead to errors during the interpretation of the results. The
interpretation of seismic events was, however, not the maintarget of this thesis. The aim was the
improvement of seismic images, assuming that there are no events generated from the directions
perpendicular to the profile lines.

- P-waves. In the thesis I consider only the propagation of compressional waves; shear-waves
are not taken into account. Anisotropic effects, i.e., the variations of properties of a material in
different directions, are also not considered.

- Hyperbolic approximation . Throughout the thesis the hyperbolic second-order approxima-
tion of reflection traveltime is used since it provides both the simplicity of calculations and suf-
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ficient accuracy for most seismic data. This assumption, however, fails in complex areas with
very strong velocity variations for long source-receiver offsets. Approximations of traveltime of
higher orders and ray tracing method (Červený, 2001) could be used to improve the results of
imaging in these situations.

1.2 Conventional CMP stack method

In 2D seismic data acquisition sources and receivers are distributed along a line (e.g.,Mayne,
1962; Sheriff and Geldart, 1995; Yilmaz, 2001). In the field, seismic data are acquired as com-
mon source (CS) gathers and later sorted into common midpoint (CMP) gathers. The CMP is
defined as the midpoint between a source and a receiver. Its location on the seismic line is calcu-
lated from the source locationS and the receiver locationG by (S +G)/2. The distance between
a receiver and a source is calledoffset. Often the half offseth = (G − S)/2 is used instead.

For a horizontally layered medium with constant velocity the reflections spread over an area of
the reflector in a CS gather (see Figure1.1(a)). A CMP gather includes all rays that illuminate
the same point on a reflector (see Figure1.1(b)), but have different offsets. Thus, a CMP gather
contains redundant information about the subsurface. Thisis the basic idea for the CMP stack
method (Mayne, 1962). Since the traces from different offsets contain information for a common
point of the horizontal reflector, the redundant information can be summed up constructively to
generate a stacked section of higher S/N ratio.

In a CMP gather, reflection events appear as a set of time responses aligned along a moveout
curve (see, e.g.,Yilmaz, 2001). Conventional CMP stacking involves summing the primary
reflections along the calculated moveout curves which best approximate the actual reflection
traveltime curves. For small offsets the traveltime curvesare approximated by a hyperbolic
formula (Hubral and Krey, 1980):

t2(h, VNMO) = t20 +
4h2

V 2
NMO

, (1.1)

wheret is the time of wave propagation from source to receiver,h is half-offset,t0 is zero-offset
traveltime, i.e., the traveltime measured for coincident source and receiver (h = 0), andVNMO is
themoveout (or NMO) velocity. For a single dipping layer the NMO velocity is given by

VNMO =
V

cos φ
, (1.2)

whereV is the medium velocity andφ is the dip angle of the reflector. For several layers with
arbitrary dips the definition of the NMO velocity becomes more complex. It depends on model
parameters such as reflector positions and interval velocities.
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(a) CS gather (b) CMP gather

(c) CS gather (d) CMP gather

Figure 1.1: Reflection seismic geometry. The figure displays acommon source (a, c) and a
common midpoint (b, d) gather for the same profile. In a homogeneous and horizontally-layered
model, all rays in a CMP gather reflect from the same depth pointunder varying angles. If a
coincident source and receiver location exists in the acquisition geometry, a CMP gather contains
a zero-offset ray that originates from the coinciding source-receiver pair at the CMP location (b).
In a model with a dipping reflector one CMP gather contains raysreflected from different points
on a reflector (d).

The hyperbolic approximation given by equation1.1 should be distinguished from the formula
providing the best stacking result:

t2(h, Vst) = t20st +
4h2

V 2
st

, (1.3)

whereVst is thestacking velocitythat allows the best fit of the traveltime trajectory on a CMP
gather to a hyperbola within a spread length (Yilmaz, 2001). The optimum stacking hyperbola
described by equation1.3 is not necessarily the small-spread hyperbola given by equation 1.1.
The two-way timet0st associated with the best-fit hyperbola can be different fromthe observed
two-way ZO time in equation1.1. The difference between the stacking velocity and the NMO
velocity is calledspread-length bias(Hubral and Krey, 1980). From equations1.1 and1.3 fol-
lows that the smaller the half-offseth, the smaller the difference betweenVNMO andVst. In
practice, when we refer to stacking velocity, we approximate it by the NMO velocity associated
with the hyperbola given by equation1.1.

For CMP stacking the NMO correction must be applied to the seismograms. NMO correction
involves mapping non-zero offset traveltimet onto zero-offset traveltimet0. The hyperbolic
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Figure 1.2: CMP stacking scheme. A stacking velocity analysis algorithm is applied to determine
best-fit hyperbolas for reflection events in exemplarily chosen CMP gathers. Then, the NMO
correction is applied to the seismograms, and the reflectionbecomes straightened. Summation
of traces generates one stacked trace, where the signal is enhanced, and the noise is attenuated,
i.e., the S/N ratio is increased.
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traveltime curve defined by Equation1.1 depends only on one unknown parameter –VNMO.
Velocity analysis algorithms allow to estimate this velocity from recorded data (either automatic
or manually) without a priori knowledge. Standard velocityanalysis applies NMO corrections to
the CMP gathers with several velocity values in a given range,and finds the one velocity that best
fits the moveout of the events. After the application of the NMO correction with the appropriate
stacking velocity, the CMP gathers become straightened and can be summed to generate one ZO
trace in a CMP stacked section (see Figure1.2).

If the subsurface geometry is complex, the optimum stackingvelocity depends on the shape of
reflectors. Figures1.1(c)and1.1(d)show an example of a dipping layer model with a constant
velocity. The source-receiver pairs (Figure1.1(d)) having a common midpoint do not share the
same common reflection point as in Figure1.1(b). The reflection points are variable: they are
shifted up-dip with increasing offset (reflection point dispersal) and distributed over the inter-
face. Therefore, the CMP stacking involves reflection energyoriginating from different subsur-
face points, decreasing the quality of stacking (Yilmaz, 2001). This effect in time sections is
conventionally corrected using the DMO process (e.g.,Yilmaz, 2001). Alternatively, multipa-
rameter stacking techniques developed in the last years canbe used for better time stacking in
case of dipping layers.

In this thesis, I use the Common Reflection Surface (CRS) stack for generating time sections of
complex geological areas like the salt dome areas from Northern Germany.Müller (1999) has
shown that the CRS stack, where the dip of reflector is incorporated, approximates the traveltimes
of seismic reflection data better than the NMO/DMO stack in complex areas. Only for the rare
case when the shape of the true subsurface reflector is identical to the shape of the specific ZO
isochrone, the NMO/DMO stack describes the data identical to the CRS stack (e.g.,Müller, 1999;
Jäger et al., 2001).

1.3 Common Reflection Surface stack

1.3.1 Kinematic wavefield attributes

The CRS stack is a multi-parameter stacking technique (Müller, 1999; Jäger et al., 2001; Mann,
2002). The CRS stacking surface (see Figure1.3) can be calculated using the approximation of
the true subsurface reflector by a reflector element that locally has the same curvature as the true
reflector. The traveltimet of reflection events is described by three parametersα, RN andRNIP

in a hyperbolic formula:

t2(m,h, P ) =
(

t0 +
2 sin α

V0

m
)2

+
2t0 cos2 α

V0

( m2

RN

+
h2

RNIP

)

, (1.4)
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whereh is half source-receiver offset,m is midpoint distance with respect to the considered CMP
position,t0 is the zero offset (ZO) two-way traveltime (TWT) andP = (α,RN , RNIP ) defines
the shape of the stacking surface. In the following text, theparameter triplets (α, RN andRNIP )
are referred to as theCRS parameters.
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Figure 1.3: CRS stacking surface for a constant velocity 2-dimensional medium in a midpoint-
offset-time (m,h, t) domain. The blue curves are the common-offset time responses of the
curved subsurface reflector. The stacking surface results from approximating the true reflec-
tor by a reflector segmentR that locally has the same curvature as the true reflector. TheCRS
stack sums the data along the green surface that coincides locally with the common-offset time
response of the reflector, and assigns the result to the pointP0 = (xm, t0), wherexm is the CMP
coordinate andt0 is the ZO traveltime. Defined by the width of stacking surfacein midpoint di-
rection, the CRS involves more traces during the stacking compared to conventional CMP stack
(magenta line).

In equation1.4, α is the angle of emergence of the ZO ray,V0 is the near surface constant
velocity that has to be known,RN andRNIP are radii of curvature of the normal (N) wave and
normal-incidence-point (NIP) wave, respectively. The N- and NIP-waves are generated by two
hypothetical one-way experiments (seeHubral, 1983). The NIP-wave can be considered as a
wave that propagates from a point source at the NIP for a specific reflector. The N-wave is a
wave generated by an exploding reflector model, where dense point sources cover the common-
reflector-surface (CRS) around the NIP and explode simultaneously.RNIP can be associated with
the distance from the reflector element to the observation surface, andRN is a measure for the
CRS’s curvature (Figure1.4). However, for complex subsurface geometries, the true depth and
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curvature of the reflector element deviate significantly from the measuredRN andRNIP . Correct
reflector positions can be reconstructed only by performinga seismic inversion procedure, e.g.
using the NIP-wave tomography implemented byDuveneck(2004). From this point of view, the
parameters(α,RN , RNIP ) describe the kinematic properties of two hypothetical waves, and are
often referred to as thekinematic wavefield attributes.

(a) NIP-wave (b) N-wave

Figure 1.4: Physical interpretation of the CRS stacking parameters for a constant velocity model.
The angle of emergence,α, defines the angular orientation of the CRS (blue colour). The radius
of curvature of the NIP-wave (a) gives the distance from the NIP to the surface, while the radius
of curvature of the N-wave (b) is a measure for the CRS curvature.

The CRS stack sums up amplitudes of all traces over the calculated CRS stacking surface, and
assigns the result of summation to the considered ZO traveltime of a stacked trace. Depending on
the given maximum midpoint distancem from the considered CMP location, the CRS stacking
surface (green grid in Figure1.3) contains a larger number of traces than the number of traces
used during the conventional CMP stack (magenta line in Figure1.3). The choice ofm is impor-
tant for the resulting lateral resolution of the following processing results. The size of the first
projected Fresnel zone that is an intersection of the first Fresnel volume with the reflector is a
good guidance form, which can be interpreted as the lateral extension of the stacking operator
(Mann, 2002). The width of the first projected Fresnel zone can be estimated using the CRS
parameters. However, the CRS parameters of seismic reflectiondata are initially unknown, and
need to be found. Therefore, the first guess about the aperture size is usually made using the
geological information available for the area of interest.Then, the automatic CRS parameter
search provides all necessary information for updating theestimated width of the Fresnel zone.
The halfwidth of the first projected Fresnel zone is calculated by

FHW =
1

cos α

√

√

√

√

√

V0

2w

∣

∣

∣

∣

1

RNIP

− 1

RN

∣

∣

∣

∣

, (1.5)

wherew is the dominant frequency of the seismic signal. The CRS stack software updates the
result of stacking using the aperture derived by equation1.5. It follows from the geometry of
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the CRS stacking surface, that the midpoint aperture defines the number of neighbouring CMP
gathers used during the stacking to generate one ZO trace. However, if the maximum midpoint
displacementm is set to zero, the stacking surface reduces to only one CMP, and equation1.4
transforms into the classical CMP stacking formula (see the following section, equation1.7).

1.3.2 CRS stacking procedure

To perform the stacking of seismic reflection data using the equation1.4, the CRS parameters
must be estimated. A simultaneous 3-parameter search for(α,RN , RNIP ) would be computa-
tionally very expensive. The implementation of Jürgen Mann, used in this thesis, is based on
three independent one-parameter searches, with the possibility of further optimisation of stack-
ing parameters (Mann, 2002). Starting with the generation of an automatic CMP stack section,
the parametersα, RN andRNIP are estimated step by step.

Automatic CMP stack

The first step in the search strategy is the generation of the automatic CMP stacked section.
This procedure is similar to conventional CMP stacking, where the stacking velocities are picked
manually with respect to highest coherence values between calculated hyperbolas and recorded
data. The CRS stack uses the same criterion, i.e., the highest coherency value, but performs the
picking automatically. For this reason, the simulated ZO section is referred to as theautomatic
CMP stack. The stacking trajectory is obtained by restriction of the CRSstacking surface to one
CMP gather, i.e., by settingm to zero in equation1.4:

t2(m = 0, h, α,RNIP ) = t20 +
2t0 cos2 α

V0

h2

RNIP

. (1.6)

Equation1.6can be written as

t2(h, VNMO) = t20 +
4h2

V 2
NMO

, (1.7)

with the stacking velocity defined by

VNMO =

√

2V0RNIP

t0 cos2 α
. (1.8)

Therefore, equation1.7 is the standard CMP formula, which is identical to equation1.1, but the
stacking velocity is written in terms ofV0, α andRNIP . This means that the CMP stack is a
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special case of the CRS stack with the maximum midpoint aperture m = 0. In other words, the
CRS stack is an extension of the CMP stacking in the lateral (m) direction.

Using equation1.7 the CRS stack determines stacking velocities automatically for every time
sample in the output ZO section. A discrete number of stacking velocities is tested. Each one
defines a hyperbola in the CMP gather that is correlated with the prestack data. The velocity that
yields the highest coherency between the calculated hyperbola and recorded data is stored as an
initial value. The summation of prestack data along the defined hyperbola into the corresponding
ZO time samples yields an automatic CMP stack section.

The automatic CRS stack method sums up all coherent events thatcan be described by the CRS
parameters, among others multiples. In conventional manual velocity analysis, velocities of pri-
maries are picked while the multiples are ignored. Since traveltimes of long-term multiples
deviate significantly from traveltimes of primaries, they are easily identified in coherency stacks.
Since apparent velocities of multiples are lower than velocities of primary events at a considered
traveltime, the multiples becomeundercorrectedafter the NMO-correction with the proper ve-
locity while the primaries become flat. By CMP stacking, summation of flat events will enhance
flat primaries, and destructive summation will attenuate undercorrected multiples. If multiples
can be described by the hyperbolic moveout formula1.7, the automatic CMP stack will also
find stacking parameters for these multiples. It is possiblethat the automatic algorithm will stack
multiples instead of primaries if the coherence of multiples is higher at the considered traveltime.

However, the searching procedure can be constrained in order to suppress multiples during the
automatic CMP stack. For this purpose, the automatic CMP stackuses a reference model of
stacking velocities. Either a simple table of guide velocity values or the stacking velocity model
obtained from conventional NMO analysis can be used as a reference to build a constrained
velocity function. A given time-dependent window defines the maximum allowed deviation of
estimated velocity values from the guide values. Velocity analysis during the automatic CMP
stack is, therefore, constrained, and the multiples are attenuated by destructive summation like
in the conventional CMP stack.

CRS parameter search

After the generation of the automatic CMP stack section, the CRSstack performs a parameter
search using the zero-offset approximation of the CRS traveltime formula. Setting the half-offset
h to zero, equation1.4reduces to

t2(m,h = 0, α, RN ) =
(

t0 +
2 sin α

V0

m
)2

+
2t0 cos2 α

V0

m2

RN

. (1.9)
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This traveltime formula depends only on two unknown parametersα andRN . In short-offset
approximation equation1.9can be further simplified to yield a one-parametric equation, setting
RN = ∞ (Müller, 1999):

tpar(m,α) = t0 +
2sinα

V0

m. (1.10)

This equation depends only on the unknown angle of emergenceα. Using equation1.10, an ini-
tial angle of emergence is determined for every ZO time sample. Similar to the automatic velocity
scan, a discrete number of angles of emergence is tested. Foreach test parameter the traveltime
is calculated from equation1.10and is correlated with the automatic CMP stack section. The
angle of emergence that yields the highest coherency between the calculated and recorded data
is stored as the initial value ofα.

After theVNMO andα are estimated, theRNIP is defined through equation1.8as

RNIP =
V 2

NMOt0 cos2 α

2V0

. (1.11)

Now, the parametersα andRNIP are found, andRN can be estimated using equation1.9 by
testing the range of values and correlating the resulting traveltime curve with the CMP stack
section.

Finally, the search algorithm provides the CRS parametersP = (α,RN , RNIP ) for every ZO
time sample in the target zone. Each triplet defines a CRS stacking surface in the(m,h, t) domain
(Figure1.3). Summing up the prestack data along these surfaces and assigning the summation
result to the respective ZO time sample yields theinitial CRS stacked section.

Aperture considerations and optimisation

The validity of the approximation1.4 for the description of reflection traveltimes generally de-
creases with increasing distance in the midpoint and offsetdirections from the considered zero-
offset location, i.e. with increasing parametersm andh. The apertures in midpoint and offset
directions used during the CRS stack must be chosen appropriately to obtain optimum CRS pa-
rameters and stacked sections. For large apertures, the hyperbolic traveltime approximation may
no longer be valid, whereas a small aperture may decrease thequality of the CRS parameter
estimation. The proper choice of the offset and midpoint apertures depends on the characteristics
of the dataset under consideration, and is usually done after performing some numerical tests
with the data. Furthermore, apertures for the CRS parameter search and for the actual stacking
might be chosen independently. Larger apertures may improve the results of CRS parameter
estimation, whereas using smaller apertures can help to avoid smearing effects by stacking.
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The apertures inm andh directions are calledCRS aperturesin the following. The implemen-
tation of the CRS stack used in this work operates with time-dependent tapered apertures. Thus,
the stacking operator is defined as an elliptical surface in the(m,h) domain (Mann, 2002) for a
certain ZO traveltime (Figure1.5).

Figure 1.5: CRS stacking operator for seismic reflection data.The operator (yellow colour) is
defined for every ZO point in a midpoint-offset domain as a surface of 2nd order that is limited
by the time-dependent CRS apertures.

The so-defined initial values of CRS parameters can be further updated using the available opti-
misation algorithm based on a local simultaneous 3-parameter search (Mann, 2002). However,
if the CRS apertures are chosen properly during the initial CRS stack, the results of the initial
and optimised CRS stack are very similar. The optimisation is,however, a very time consuming
process, and, therefore, was not used in this work. Therefore, the initial CRS parameters are used
asCRS parameters, and the initial CRS stack as theCRS stackin the following.
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1.4 NIP-wave tomography

The CRS stack process described in the previous section can be regarded as a tool for automati-
cally extracting traveltime information from the seismic data in the form of kinematic wavefield
attributes. If the traveltimes of reflection events in the data are well described by the hyperbolic
formula1.4, the information contained in the CRS attributes can be used for the determination
of a laterally inhomogeneous depth velocity model by aninversion process.

Ray segments of the specular rays connecting sources and receivers on the measurement surface
with a common reflection point (CRP) in the model (Figure1.6(a)) are geometrically identical
to ray trajectories associated with a hypothetical emerging wave due to a point source at the
NIP (Figure1.6(b)). Therefore, the imaging of the associated reflection signals to a common
reflection point in the model is equivalent to the focusing ofthe NIP-wave at zero traveltime
at that point (Figure1.6(c)). The NIP-wave tomographic inversion is based on the following
criterion: in a correct depth velocity model all consideredNIP waves, when propagated back
into the earth along the normal ray, focus at zero traveltime(Duveneck, 2004).

(a) (b) (c)

Figure 1.6: Ray trajectories associated with a CRP and NIP points. (a) Ray segments of specular
rays reflect at a CRP in the subsurface. (b) Geometrically, ray trajectories associated with a
hypothetical wave due to a point source at the NIP coincide with the CRP ray segments. (c) In
a consistent velocity model, the NIP-wave focuses at the NIPat zero traveltime, when they are
propagated back into the subsurface.

1.4.1 Data and model components

The NIP-wave tomography operates in the ZO domain approximated by the generated CRS stack
section. In a CRS stack section each point(t0, x), wheret0 is TWT andx is distance, can be
associated with a CRP in the subsurface. The second-order kinematic multioffset response of
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the CRP is defined through the corresponding CRS attributesRNIP andα. Instead ofRNIP , the
quantity

MNIP =
cos2 α

V0RNIP

(1.12)

is used (Duveneck, 2004), whereV0 is the near-surface velocity. The quantityMNIP can be
associated with the second spatial derivative of the NIP wave traveltime of a ZO ray in the
direction normal to the ray atx (∂2t/∂x2), andα is the estimated emergence angle. Identification
of MNIP with the NIP-wave’s second spatial derivative is possible using the NIP-wave theorem,
given byHubral and Krey(1980). It states that to second order in the offset coordinate theCMP
reflection traveltime coincides with the traveltime of hypothetical rays passed from the source
to the receiver through the NIP of the ZO ray on the reflector. Therefore, the traveltime of a
reflection event in a CMP gather can be calculated as a sum of thetraveltimes along the two rays
connecting the NIP with the source and with the receiver.MNIP can be calculated along a ray
by dynamic ray tracing. If the ray is started at the NIP, it is given by

MNIP = cos2 α
P2

Q2

, (1.13)

whereP2 andQ2 are elements of the ray propagator matrix in ray-centered coordinates (e.g.,
Červený, 2001; Duveneck, 2004). The formula approximates the CRP response in the vicinity
of a normal ray at any location along the ray.

The input for the inversion consists of a number of points picked in the ZO section (e.g., the CRS
stack section), defined by their values oft0 andx together with the associated values ofα and
MNIP , calculated from the corresponding CRS parameters. The inputdata are given by

d = (
t0
2

,MNIP , α, x)n
i=1, (1.14)

wheren is a number of picked data points.

Using the focusing properties of NIP-waves, a direct way forvelocity model estimation would be
to propagate the NIP-wave back into the subsurface and checkif they focus att0 = 0. Focusing
means that the radii of curvature of the NIP-waveRNIP becomes zero. However, all picked
data must be expected to have noise or measurement errors. Aninversion that does not allow
these errors is unstable. This is taken into account using the dynamic ray tracing started in the
subsurface at the respective CRPs. Since their true subsurface positions and local dips are initially
unknown, they must be estimated together with the unknown velocity distribution. The optimum
model is found when the misfit between modelled and measured values ofd is minimised.

The NIP-wave tomography exploits the concept of a smooth velocity model defined by discrete
B-spline coefficients (Duveneck, 2004). The use of such defined models in velocity estimation
methods leads to some advantages, as it allows the formulation of inversion algorithms which do
not assume continuous reflectors in the model. Pick locations in the stacked zero-offset section
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can be independent of each other, which simplifies the picking process: the picks required for this
approach do not have to follow continuous reflection events in the data, but may be located on
events that are only locally coherent. In particular, the determination of velocity models becomes
possible also in the areas of complex salt plugs, where it is difficult to follow reflection events
continuously along the seismic section.

Figure 1.7: Data and model components for the NIP-wave tomographic inversion.

The 2D NIP-wave tomography defines each CRP by its location in the subsurface(x, z) and its
local dip angleθ, which also gives the direction of the normal ray (see Figure1.7). The smooth
velocity model itself is described on a grid withnx andnz nodes in the horizontal and vertical
directions accordingly by

v(x, z) =
nx
∑

i=1

nz
∑

j=1

(vijβi(x)βj(−z)), (1.15)

whereβi andβj are the B-spline basis functions, and the coefficientsvij are the velocity model
parameters to be determined during the inversion procedure.

1.4.2 Inverse problem

The problem of estimating the correct velocity model consists of finding a vector of model com-
ponentsm defined as

m = [(x, z, θ)n
i=1, vij], (1.16)

that minimises the misfit between the picked datad (defined in expression1.14) and the modelled
values

dmod = f(m). (1.17)
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Here, the nonlinear operatorf symbolises the dynamic ray tracing in the given model. The
implementation ofDuveneck(2004) uses the least-squares norm as a measure of misfit. Thus,
the inverse problem becomes one of minimising a cost function:

S(m) =
1

2
‖d − f(m)‖2

D. (1.18)

This inverse problem is, however, ill-posed, because not all model components are sufficiently
constrained by the data alone, i.e., the number of parameters describing the data might be less
than the number of parameters describing the model. To regularise this problem, the NIP-wave
tomographic inversion needs additional constrains. Theseconstrains describe the smoothness of
the model, since the smooth model is the simplest one that explains the data. This criterion also
ensures the applicability of the dynamic ray tracing used for the forward modelling. To apply the
mentioned constrains, a term depending on the B-spline coefficients is added to the cost function:

S(m)reg = S(m) + c(vij) =
1

2
‖d − f(m)‖2

D + c(vij), (1.19)

wherec(vij) is a measure for the model smoothness.

Because of the nonlinearity off , a global nonlinear optimisation method is required. For com-
putational reasons, however, NIP-wave tomography uses an iterative search of velocities. The
modelling operatorf can be locally linearised. Therefore, a minimum of the cost functionS is
found by iteratively applying least-squares minimisationto the linearised problem (Duveneck,
2004). Starting with a first-guess modelm0, tomographic inversion generates a sequence of
model updates which, when properly performed, converges tothe global minimum ofS.

1.4.3 Inversion algorithm

First, the inversion algorithm sets up an initial velocity model by defining B-spline nodes in the
horizontal and vertical directions and assigning initial values to the velocity coefficients. As an
initial model a constant gradient model is usually used, described as

V (z) = V0 + gz, (1.20)

whereV0 is the surface velocity,g is the velocity gradient, andz is the depth. Alternatively, a
priori velocity information can constrain the initial velocity model.

For each of the picked data points with the corresponding attributes of vectord (expression1.14),
kinematic ray tracing in the downward direction of the starting velocity model yields initial el-
ements of vectorm (expression1.16). Using these values, dynamic ray tracing in the upward
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direction is performed until the rays reach the measurementsurface to obtain the elements of
model vectordmod (1.17). Then, the cost function is calculated using equation1.19, which char-
acterise the misfit between picked and modelled data. The linear system of equation using the
least-square method is solved, and the model update vector is obtained. Then the current model
is updated, and the forward dynamic ray tracing is repeated using the new model. If the cost
function increases, the model update vector decreases, andthe cost function is recalculated; oth-
erwise, the next iteration is started. The process of iterative model updates and forward dynamic
ray tracing is stopped, when the data misfit reaches the specified minimum, or when the given
maximum number of iterations is reached, or when the minimumof the cost function is found,
i.e., the further decreasing of the model update vector doesnot lead to the decrease of the cost
function. The characteristic decrease of the model update vector during the inversion has the
effect of the determination of the long-wavelength features during the first iterations, while more
and more details can be resolved in further iterations. Thiseffect is shown in the examples with
real data in Chapters 2 and 3.

1.4.4 Picking and editing of input data

Picking of zero-offset points, required for the determination of the input data vectord (expression
1.14) is performed after the estimation of the CRS parameters and generation of the CRS stack
section. For this purpose the automatic CRS stack section and corresponding coherence section
that is a by-product of the CRS stack can be used. The picking canbe carried out either manually
or in the automatic mode. The pick locations do not need to follow the interpreted horizons, but
they have to be located on primary reflection events. If in a given seismic dataset multiples are
attenuated, the automatic picking algorithm provides reliable results. The picking program uses
the CRS coherence section with additional constrains like a coherence threshold, a minimum
separation in space and time of pick locations and others. For complex geologies like in areas
with salt plugs, manual picking of events on the salt flanks issometimes more reasonable than
automatic picking. Examples of manual and automatic picking of input data for the NIP-wave
tomography are shown in Chapters 2 and 3.

After the picking has been performed and the coordinates(t0, x)i associated with each point
are defined, the data attributesMNIP andα are automatically extracted from the corresponding
CRS parameter sections and assigned to the picked points. Thus, the initial components of the
data vectord are completely defined, and the inversion could be started. However, prior to the
inversion process, the input data must be checked for the presence of outliers, multiples and other
noise, and, when necessary, edited. Such contaminated datacan be identified by plotting the data
componentsMNIP andVNMO as a function of traveltime.

If subsurface structures are relatively simple, the data points most likely related to multiples can
be identified in a way similar to the conventional velocity analysis. Substituting theRNIP from
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equation1.11in the data componentMNIP defined by equation1.12yields

MNIP =
cos2 α

V0RNIP

=
2

t0V 2
NMO

. (1.21)

SinceRNIP associated with the reflector depth monotonously increaseswith the traveltime, the
value ofMNIP should decrease with increasingt0. Thus, the characteristic decrease ofVNMO,
as normally observed for multiple reflections, can result into a corresponding increase ofMNIP

at the considered traveltime. In the plots ofMNIP for all picked data points againstt0, the
picks deviating significantly from the main trend can be associated with multiples and should
be eliminated from the inversion (see examples in Figure1.8(a)). The multiples can also be
identified using the plot ofVNMO, computed from input data by equation1.8, as a function of
t0. The process is similar to the conventional stacking velocity analysis: the data with too low
velocities at considered traveltimes are associated with multiples and should be removed (Figure
1.8(b)).

(a) (b)

Figure 1.8: Quality control of input points for the NIP-wavetomography. (a) The data component
MNIP and (b) stacking velocities are computed for each picked ZO point from the corresponding
CRS parameters. The picks deviating significantly from the main trend (dashed lines), most
likely correspond to multiples (or other noise), and shouldbe removed.
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1.5 Depth migration

1.5.1 Migration basics

Seismic data is generated by elastic waves propagating through the subsurface. The time image
obtained by the reflection seismic method is in general a distorted image that does not correctly
reflect the true geometry of the subsurface structure. While ahorizontal reflector in depth will
appear as a horizontal reflector on the time section, a dipping reflector is incorrectly positioned
on the time stacked section. This effect is demonstrated fora constant velocity medium in Figure
1.9. The true position of the reflector in depth differs from its position on the time section.
The lateral and vertical positions are different, as well asthe dip of the reflector. The wave
propagation process is characterised by the rays normal to the reflector that propagate from the
surface to the reflector and back. On a ZO time section the events associated with the normal
rays are plotted vertically at the position where the ray emerges at the surface (receiver location).
As a result, the apparent time dip of the reflection is smallerthan the true dip, and the reflector
itself appears longer.

The task of migration is to take into account the effects of the wave propagation through the
medium and to correct the reflector position in the recorded data. As a result, migration steepens
dips, shortens dipping events, and moves events updip. In addition to the geometrical distortions,
the wave propagation process creates diffractions from sharp edges as well as amplitude changes
due to the geometrical spreading. Migration with consistent velocity models collapses diffrac-
tions, focuses energy, and positions the diffraction events at their correct locations. The effect
of depth migration with a consistent velocity model can be summarised, but not limited, to the
following points:

• migration moves dipping reflectors updip to their true position;

• migration removes effects of reflector curvature such as increased anticlines, decreased
synclines and "bow-tie" structures (Stolt, 2002);

• migration focuses diffractions from faults, bed truncations, and other discontinuities;

• depth migration removes distortions due to lateral velocity variations. If the lateral changes
of medium velocity are rapid enough, the diffraction pattern can depart significantly from
the hyperbolic shape. Conventional stacking or time migration algorithms using the hyper-
bolic approximation can lead to errors both in velocity estimations and imaging.

Furthermore, prestack depth migration can be used as a tool for velocity model estimation
and for the quality control of the migration velocities using the CIGs.
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Figure 1.9: Geometrical principle of migration for a constant velocity medium with a dipping
reflector. The true position of the reflector in depth differsfrom its position on the time section.
Depth migration corrects this effect and moves the reflectorto its original position in space.
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1.5.2 Depth migration as diffraction summation

Poststack migration by thediffraction summationcan be described using theexploding reflectors
concept. Consider closely-spaced exploding sources that are located along the reflecting inter-
faces (Loewenthal et al., 1976). Also, consider one receiver located on the surface at eachCMP
position. The sources explode in unison and send out waves that propagate upward. The earth
model described by this experiment is referred to as theexploding reflectors model. With this
model, the seismic section is represented by the wavefield that is recorded on the surface. In
other words, the seismic section is described by function

f(x, z = 0, t), (1.22)

wherex is the lateral position (CMP coordinate),t is one-way traveltime, andz is depth. The
objective of migration is to reconstruct the situation thatexisted at the timet = 0 when the
wave propagation process from the exploding reflectors began. Therefore, the initial situation is
expressed by the function

f(x, z, t = 0), (1.23)

and the migration process is defined by the transformation

f(x, z = 0, t)
migration−−−−−→ f(x, z, t = 0), (1.24)

which is performed using wavefield extrapolation techniques, e.g., diffraction summation. Using
this principle, migration can be considered as a mapping of the data from the recorded time
domain to the initial time(t = 0). The mapping is obtained by deriving the wavefieldu(x, z, t)
from the recorded datau(x, z = 0, t), which is calledextrapolation, and further restricting to
u(x, z, t = 0), referred to asimaging.

Migration by a diffraction summation method uses the exploding reflector model and calculates
the diffraction traveltime corresponding to the closely spaced diffractor points on a reflector.
Each point on a migrated section is treated independently from other points. Imaging is per-
formed by summing the amplitudes along a diffraction curve in a unmigrated section and assign-
ing the result to the diffractor point in a migrated section (Figure1.10). The resulting migrated
section is a superposition of all contributions from diffraction points. The image is built as the
envelope of all curves by constructive interference. The edges of the curves are cancelled due to
destructive interference (see Figure1.10).

1.5.3 Kirchhoff depth migration

The diffraction summation that incorporates the obliquityfactor, which describes the angle de-
pendence of amplitudes, and the spherical spreading factor, is called the Kirchhoff summation,
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Figure 1.10: Diffraction summation method for a horizontalreflector. The depth image is ob-
tained by constructive summation of time responses for closely spaced diffraction points.

and the migration method based on this summation is called the Kirchhoff migration. In this
work I describe the main concepts of the Kirchhoff depth migration without going too deep into
the technical details. The detailed description of the method can be found in numerous pub-
lications, e.g., bySchneider(1978); Schleicher et al.(1993); Stolt and Benson(2001); Yilmaz
(2001).

Typically, for performing the depth migration, one wants tofind the solution of the acoustic wave
equation in 3D described by

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
=

1

V 2

∂2u

∂t2
, (1.25)

whereu(x, y, z, t) is the pressure wavefield as a function of the three orthogonal Cartesian co-
ordinates (x andy are two profile coordinates,z is depth) andt as time. The inhomogeneous
subsurface model is represented by the propagation velocity of seismic waves as a function of co-
ordinates,V = V (x, y, z). As mentioned above, the seismic reflection datasets used inthis work
were recorded using a 2D acquisition. Therefore, I consideronly the 2D case in the following.

For 2D we assume no change of velocity along one profile coordinate (e.g.,y), and the term
∂2u/∂y2 in equation1.25is zero. First, the constant velocity case is considered. The problem
formulation reduces to finding the solution of the scalar wave equation with the constant velocity
Vc:

∂2u

∂x2
+

∂2u

∂z2
=

1

V 2
c

∂2u

∂t2
. (1.26)

This equation can be rewritten using the Laplacian operator∇ as

∇2u =
1

V 2
c

∂2u

∂t2
, (1.27)
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where

∇2u =

(

∂2u

∂x2
+

∂2u

∂z2

)

(1.28)

In these terms, the wavefield observed at the surface(z = 0) is described by the function

u(x, z = 0, t), (1.29)

which is the boundary value of the wavefield

u(x, z, t), (1.30)

propagating from a reflector in the subsurface upwards fort > 0.

The problem ofextrapolationconsists of determining the wavefieldu(x, z, t) for z > 0. Using
the wave equation1.27, u(x, z, t) is computed fromu(x, z = 0, t) that is measured at the surface.
This procedure is know as "downward continuation". Imaging is achieved by restricting the
wavefield to the caseu(x, z, t = 0). In the following the most commonly used solution of the
wave equation using the "Kirchhoff formula" is introduced.

Suppose that we wish to solve a boundary value problem for thescalar wave equation on the in-
terior of a closed surfaceF in two dimensions, with boundary conditions specified on a smooth
boundary∂F . Now, using the Huygens’ principle that every point on a wavefront can be consid-
ered a secondary source of a cylindrical wave, we are synthesising a general solution of the wave
equation from the cumulative effects of an infinite numbers of point sources. This can be made
mathematically by computing an impulse response function,or Green’s functionG(r , r ′), which
is the solution of the inhomogeneous Helmholtz equation

∇2G + k2G = −4πδ(r − r ′), (1.31)

where vectorr = (x, z) defines the diffractor point,r’ defines the receiver, andδ(r−r ′) is Dirac’s
delta function. The Green’s function, therefore, depends on both source and receiver coordinates.

Using the Fourier transformation with respect to traveltime

u(x, z, t) =
1

2π

∞
∫

−∞

U(x, z, w)eiwtdw (1.32)

and

U(x, z, w) =

∞
∫

−∞

u(x, z, t)e−iwtdt, (1.33)
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wherew is frequency, the second-order time derivative of the wavefield transforms as

∂2U

∂t2
FT−→ −w2U. (1.34)

Substitution of the functionU(x, z, w) into the wave equation1.27yields the Helmholtz equation

∇2U +

(

w

Vc

)2

U = ∇2U + k2U = 0, (1.35)

with k being the wavenumber.

Using the solution for the inhomogeneous Helmholtz equation 1.31in the frequency domain in
form of Green’s function, the solution of the wave equation1.27 is obtained by theKirchhoff
formula in 2D:

U(r , w) = − 1

4π

∮

∂F

[

U(r ′, w)
∂G(r , r ′, w)

∂n′
− G(r , r ′, w)

∂U(r ′, w)

∂n′

]

ds′. (1.36)

Here,ds′ anddn′ define the size and normal of the linear element of the boundary S that lim-
its the surfaceF , containing the point(x, z). To apply the equation1.36 for migration, some
transformations are made, which finally yield the solution of the scalar wave equation in form of

u(x, z, t) =

∞
∫

−∞

∂u(ξ, 0, t)

∂t
∗ W (x, z, ξ, t)dξ, (1.37)

whereW is aweight-functionand∗ indicates convolution.

Migration uses this solution with specified imaging conditions. The final 2D Kirchhoff migration
formula describes the depth migrated section

M(x, z) =
1√
2π

∞
∫

−∞

uF (ξ, 0, tI +
r

Vc

)
cos φ√

Vcr
dξ (1.38)

with the following parameters:

• the timetI +
r

Vc

describes the traveltime curve of the diffraction point located in(x, z);

• the factor
√

Vcr describes the geometrical spreading of a cylinder wave propagating from
the point(ξ, 0) to (x, z);
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• the angleφ is the emergence angle of the ray at the receiver;

• the functionuF describes the high-pass filter of the time section, which is also denoted
as thehalf-derivativeof the input wavefieldu(x, z = 0, t) in the time domain (e.g.,
Bleistein et al., 2000).

The classical Kirchhoff algorithm uses the solution with Green’s functions for a constant velocity
medium. By giving up the requirement that the Green’s function be computed analytically, the
Kirchhoff solution is extended to variable velocity media.The modified Kirchhoff method uses
traveltimes of waves travelling from each point in the subsurface to each source/receiver location,
instead of the hyperbolic traveltimes description of diffraction events in a homogeneous medium.

A direct method for calculating time response for diffractor points isray tracingthrough a spec-
ified depth velocity model. Traveltime computations can also be performed using different tech-
niques, e.g., a finite difference (FD) approximation to the Eikonal equation (Reshef and Kosloff,
1986), Gaussian beam ray tracing (Červený, 2001), direct wavefront construction methods (e.g.,
Vinje et al., 1993; Ettrich and Gajewski, 1998; Coman and Gajewski, 2001), dynamic ray tracing
(Červený, 2001) and others.

Ray tracing is a commonly used approach since it is less expensive in time and easier to ap-
ply. A bundle of rays emerging from a source location can be traced down into the earth to
the subsurface taking the velocity variations and refractions at layers boundaries into account.
The traveltimes from the source point to the reflector point and from the reflector point to the
receiver are then calculated along both raypaths, and summed to produce the traveltime from the
source to the receiver. Dynamic ray tracing additionally provides the computation of the ampli-
tudes, taking the geometrical spreading into account. Green’s function obtained by the dynamic
ray tracing form the basis for an amplitude-preserving depth migration (e.g.,Schleicher et al.,
1993). Alternative traveltime-based approach without the dynamic ray tracing was introduced
by Vanelle et al.(2006).

1.5.4 Practical aspects

Poststack depth migration

So far I have discussed the principles of depth migration only in the context of mapping seismic
sections from the time to depth domain. In practice, this means that the seismic reflection data is
first corrected for the normal moveout, then stacked, and finally migrated. This method, known
as depth migration after stack orpoststack migration, PostSDM, produces the correct image of
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reflectors only for simple media without strong lateral velocity variations. Poststack migration
assumes that the stacked data correctly represents the ZO section, i.e., where the source and
receivers coincide. The CRS stacked sections are better approximations of the ZO sections than
the conventional NMO/DMO stacks, as shown byMüller (1999). Therefore, in this work I use
the simulated ZO CRS stacked sections as input for poststack depth migration.

Nevertheless, any method of time stacking applied to seismic reflection data does not take strong
lateral velocity variations into account due to the hyperbolic traveltimes assumption (equations
1.1 and 1.4). When the subsurface structure is complex, reflection moveout becomes non-
hyperbolic and can not be correctly described by the hyperbolic traveltime formulas. The stack-
ing process does not work well, producing distorted stackedimage as output. These situations
can be solved by migration before stack, which is known asprestack migration, PreSDM. It mi-
grates the unstacked seismograms directly into the depth domain and then performs stacking in
order to generate the depth image.

Prestack depth migration

Prestack Kirchhoff depth migration operates on every offset of the data separately. For each
common-offset section the Kirchhoff summation procedure is applied. Migration focuses diffrac-
tions and moves reflectors to their true positions in every common-offset section. In other words,
prestack depth migration with a consistent velocity model results in a number of sections, having
different offsets, where the reflector depth is identical.

Results of migration in the common-offset domain allow the quality control of the depth veloc-
ity model. First, the focusing of diffraction events can be used to confirm the correctness of
the model. If the diffraction curves are collapsed, the velocity model fits the data. Remaining
diffractions usually observed at salt-sediments boundaries, faults, and other discontinuities, in-
dicate that the depth velocity model is not consistent with the data. More powerful is the quality
control scheme based on the depth migrated CIGs. CIGs result from sorting the depth migrated
data into gathers having common reflection points. Each CIG corresponds to one CMP location
in the data. Since the events in the prestack data are moved towards their true lateral position
after migration, each CIG contains traces describing one reflection point at the considered depth.
When the velocity model is correct, each offset plane is correctly migrated, and the reflector in
every common-offset section appears at the same position. Therefore, the CIGs become horizon-
tal (Figure1.11). However, if the velocity model does not fit the data, an over- or undercorrection
is observed in the CIGs (Figure1.12). This phenomenon can be explained as follows: when the
velocity is too low, the computed traveltime along the ray istoo high, and the imaging condition
is fulfilled for points at shallower depth. The effect increases with growing offset. Therefore, the
CIG is overcorrected, and the reflector is shifted upwards (Figure1.12(a)). If the migration ve-
locity is too high, the result is an undercorrected gather, where the reflector is shifted downwards
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(Figure1.12(b)).

Prestack depth migration, therefore, is very sensitive to the accuracy of the velocity model used
during the depth migration. This fact can be used for the migration velocity analysis using
the CIGs if the CIGs are not horizontal. The residuals are picked, and the velocity model is
updated. Usually this process is performed iteratively, every time picking the residuals, updating
the velocity model, and migrating the data using the updatedmodel until the residuals are below a
defined threshold. Once the CIGs are horizontal, they can be stacked along the offsets to generate
a depth migrated section, where the reflectors are at their true positions.

In this work the seismic reflection data were migrated with Kirchhoff prestack depth migration
using maximum amplitude ray tracing since it allows to generate the most accurate depth im-
ages of the subsurface in complex areas. The resulting CIGs are used for quality control of the
migration velocity model obtained by NIP-wave tomography (see Section 1.4).

Migration aperture

The migration formula1.38uses the infinite integral solution of the wave equation. In practice,
the seismic profile length is finite, and the integral is limited by the migration aperture. The aper-
ture width is defined in the common-offset domain as the length of the summation operator. The
choice of the aperture is very important for depth imaging ofreal seismic data. Whereas small
apertures can produce a poor image due to the destruction of steeply dipping events and can or-
ganise random noise signals as horizontal events, the largeapertures unnecessarily increase the
run time and produce artifacts and migration noise.Yilmaz (2001) described numerous examples
of different aperture effects by migration. The value of apertures must be chosen according to
many factors including, but not limited to, the acquisitiongeometry, the complexity of the sub-
surface and the chosen migration algorithm. From the geometrical aspect of migration follows
that larger apertures are better suited for steeply dippingevents, and shorter apertures should be
used for smaller inclination angles. The aperture must be large enough to include all rays trav-
elling downwards from a source to a reflector and upwards fromthe reflector to a receiver. The
lateral position of the reflection points for dipping reflectors deviates from the midpoint position,
and this difference increases with larger reflector dips. Therefore, large apertures width must be
used for steeply inclined reflectors.

The optimum migration aperture can be estimated from data (Schleicher et al., 1997). The cri-
terion for the minimum migration aperture is that the difference of traveltimes of the computed
diffraction curve and the reflection curve should be less than half a periodT/2 of the signal,
thus providing the constructive summation. This criterionalso defines the first Fresnel zone.
The difference between two approaches is that the minimum migration aperture is defined at the
surface, whereas the first Fresnel zone is defined on the reflector. In practice, the proper choice
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Figure 1.11: Flat common image gathers after prestack depthmigration.

(a) (b)

Figure 1.12: Common image gathers as a result of prestack depth migration. (a) When the
migration velocity is lower than the true velocity, the CIG isover-corrected, and the reflector is
shifted upwards from its original position. (b) When the velocity is higher than the true velocity,
the CIG is under-corrected and the reflector is shifted downwards.
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of migration aperture is usually achieved after a series of migration experiments with different
values, finally choosing the one that produces the best depthimage of the data.
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Chapter 2

Marine data example

In order to investigate the behaviour of the CRS stack method onseismic data with complex
geology, I apply it to a marine dataset from the North Sea. Thedataset was kindly provided by
BP with the assistance of RWE Dea AG (Hamburg). The main targetsof the CRS processing of
these data is the improvement of the quality of time-stackedsections in the areas of salt plugs
and the reconstruction of a depth velocity model followed bydepth migration.

2.1 Study area and acquisition geometry

The study area is located in the North Sea close to the German coast line (see Figure2.1).
Salt structures and complex fault systems characterise theregion. The area is a part of the in-
tracratonic Southern Permian Basin formed at the end of the Variscan orogeny (Ziegler, 1990).
The orogeny occurred in Paleozoic times (from∼390 to∼310 mya). It reflects the continen-
tal collision between Laurasia and Gondwana to form the supercontinent of Pangea (see, e.g.,
Mohr et al., 2005).

The sedimentation process started in the Upper Rotliegend (see Figure2.2) and continued to
the evaporites of the Zechstein Group, which reached up to 800 m. Different phases of salt
movements that started in Triassic time formed the salt structures of the region. Each phase
is characterised by changing tectonic regimes and different kinds of diapirism (seeMohr et al.,
2005).

A part of the data consisting of 4243 CMP gathers with a total line length of∼26.5 km was
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Figure 2.1: Marine data. The study area is located in the southern part of the North Sea approxi-
mately 30 km north of the German coast line (Kindly provided by RWE Dea AG, Hamburg).

Line length ∼26.5 km Acquisition type end-on
Recording time 7 s Receivers per shot 240
Time sample rate 2 ms Receiver group spacing 12.5 m
Number of shots 1055 Source-receiver offset range [-3238 m; -250 m]
Source spacing 25 m Number of CMPs 4243
Source type Airgun CMP spacing 6.25 m
Source depth 6 m Maximum CMP fold 60

Table 2.1: Marine data: acquisition parameters.

chosen for the CRS processing. Seismic reflection data were acquired in a 2D marine survey
carried out in 1988 on behalf of ARCO (later acquired by BP). The acquisition parameters are
summarised in Table2.1. An airgun generated the seismic signal at 6 m depth. The shotpoint
spacing was 25 m. A 240-channel streamer with 3000 m active length and 250 m lead-in with
hydrophones towed at 7.5 m water depth was used. The receivergroup spacing was 12.5 m. The
acquisition geometry leads to 6.25 m of CMP spacing and a maximum CMP fold of 60. The
record length was 7 s with 2 ms sample rate. No well information was available, but the stacking
velocities were provided with the dataset.
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Figure 2.2: Marine data: generalised stratigraphic chart of study area (kindly provided by RWE
Dea AG, Hamburg).
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2.2 Preprocessing

The seismograms were preprocessed by Petrologic Geophysical Service GmbH (Hannover) in
2002. All preprocessing steps were performed using ProMAX software of Halliburton (Hous-
ton). The main targets were the Rotliegend sandstones, placed below the salt domes. The pre-
processing consisted of the following steps:

1. Spherical divergence correction. The amplitude loss wasrecovered using a spherical di-
vergence correction described by1/(tV 2), wheret is TWT, andV (t) – root-mean-squared
(RMS) velocity of the primary reflections.

2. Editing. Spikes and noise-bursts were estimated statistically, and, when necessary, edited.

3. τ −p transformation for the reduction of noise. Improvement of S/N ratio was achieved by
the transformation of the data into theτ − p domain. The transformation was performed
using 501p-values. Aliasing effects were considerably attenuated through the weighting
of traces with lowp-values. After deconvolution the traces were transformed back into
x − t domain.

4. Deconvolution for recovering high frequencies. The deconvolution was applied in two time
gates 200–2500 ms and 2400–4200 ms. The parameters for deconvolution were chosen
for optimum resolution of the Rotliegend sediments with an operator length of 140 ms,
prediction interval of 20 ms, and prewhitening of 1%.

Examples of the preprocessed seismograms are shown in Figure2.3. Figure2.3(a)shows a CMP
gather located in the area between salt plugs. Reflections arevisible for all traveltimes from 0 to
2.5 s. No AGC correction was applied to the seismograms. Therefore, the amplitudes of events
below 3 s TWT are comparably low. In the CMP gather from the middle of a salt plug (Figure
2.3(b)), reflections are clearly visible only from 0 to 2 s TWT.

Tables of stacking velocities for specific CMP positions werekindly provided with the dataset
by RWE Dea AG. I applied an interpolation scheme to obtain velocities between the provided
points, smoothed, and saved them for every CMP and every time sample. The resulting model
describes the stacking velocities in the dimensions of the stacked domain (CMP-TWT) shown
in Figure2.4(a). In the upper part of the model (0–1.5 s TWT) lateral velocity variations are
minor. The stacking velocities are varying from 1.8 km/s at the surface to 2.7–3 km/s at 1.5 s
TWT. Since the geological structure of the study area is complicated by the presence of salt,
strong vertical and lateral velocity variations are visible at later times. Between CMP 1500 and
2000 the velocity increases up to 3.5 km/s, which corresponds to the salt plug in the left part of
the profile as presented in the CMP stacked section (Figure2.5). A similar velocity increase is
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(a) CMP gather 740 (b) CMP gather 1740

Figure 2.3: Marine data: examples of CMP gathers (a) from the area between salt plugs and (b)
from a centre of a salt plug.

visible in the right part of the model, at CMPs 3500–3700. In the deeper parts of the model the
stacking velocities increase monotonously and reach the values of 3.5–3.7 km/s at 4 s TWT.

2.3 CRS processing

CRS processing of the dataset started with the search for the CRS parameters. As the simulta-
neous 3-parameter search would be computationally very expensive, I used the approach based
on three one-parameter searches as described inMüller (1999), Jäger et al.(2001) and Mann
(2002). The most important parameters for the automatic searchesare summarised in Table2.2.
The maximum midpoint aperture was chosen according to the tests carried out by Petrologic.
The following sections describe the results of the automatic CRS stack process.

2.3.1 Automatic CMP stack

In order to generate a CMP stacked section, the automatic search estimates the best-fit stacking
velocities for the preprocessed CMP gathers. Since the information about the stacking velocities
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(a) Model of stacking velocities provided with the dataset
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(b) Model of stacking velocities obtained during the automatic CMP stack

Figure 2.4: Marine data: model of stacking velocities (a) provided with the dataset and (b)
obtained from the automatic CMP stack. Velocities provided by the industry were used as guide
functions for the stacking velocity search. Since only 1% ofdeviation from the guide values was
allowed, the differences between the models are visible only in the deepest part (3.5–4 s TWT).
In the upper and middle parts the models are almost identical.
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Surface velocity 1500 m/s
Maximum deviation from
reference stacking velocity model 1%
Maximum dip angle 60◦

Minimum offset aperture 400 m at 0.2 s
Maximum offset aperture 3200 m at times > 2.3 s
Maximum midpoint aperture 500 m

Table 2.2: Marine data: processing parameters used for the automatic CRS stack.

was provided by the industry, the search was constrained. The computation time was, therefore,
significantly reduced. The stacking velocity model obtained from the provided velocity tables
(for details see Section 2.2) was used as a guide. The range oftested velocities was restricted to
1% maximum deviation from the reference value, i.e., the search was carried out in the interval
[0.99VNMO; 1.01VNMO], whereVNMO is the stacking velocity in the reference model.

Figure2.4(b)shows the final stacking velocity model obtained by the automatic search. Since
only 1% of velocity variations from the guide values were allowed, there are only minor changes
in the model compared to the reference model (Figure2.4(a)). The deepest part of the model
(3.5–4 s TWT) shows some fluctuations from the guide values. Inthe middle and upper parts
both models are almost identical, which provides the resultof automatic CMP stacking identical
to the conventional CMP stack section.

CMP stacking of the preprocessed CMP gathers with the obtainedvelocity model provided the
ZO time section shown in Figure2.5(a). In order to improve the visibility of late-arriving events,
an AGC with a 500 ms time window was applied to the stacked section (see Figure2.5(b)).
The amplitudes were balanced, making it possible to identify the reflections down to 4 s TWT.
However, the AGC enhances the amplitudes of noise as well, soreflection events should be
interpreted carefully, taking both sections without and with AGC into account.

The images of the most prominent reflections in the CMP stackedsection (Figure2.5) have
good quality at the time levels 0–2 s TWT. Almost horizontal reflections at 0.5 s and 1 s TWT,
corresponding to the Tertiary, are visible throughout the entire section. These horizons have con-
tinuous structure, and can be easily identified and correlated due to strong impedance contrasts.
A set of dipping layers complicates the shallow part of the section at 0–0.5 s TWT. The base
of Tertiary at 1 s TWT has a pull-up at CMP 1500–1700 crossed by a set of faults. The image
of the middle part of the section at 1.5–2.5 s TWT is influenced by the presence of salt, and
is complicated for the interpretation of the salt boundaries and reflections below. The base of
Upper Cretaceous (1.5 s TWT) was deformed during the salt movements in the areas of CMP
1400–1900 and 2900–3500. Since the salt distorts the sediments above its top, the images of
the top of salt are sometimes unclear. The images of Jurassic-Keuper-Muschelkalk sediments
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Figure 2.5: Marine data: automatic CMP stack (a) without and (b) with AGC. The rectangles
show the areas of the salt plugs, which are enlarged in Figure2.7.
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(1.5–2.5 s TWT) have anticline character between the salt plugs. The definition of the accurate
position of the salt flanks in the unmigrated sections is complicated. Because of dipping layers,
salt domes appear wider in the unmigrated sections than theyare in reality. Moreover, a lot of
conflicting dip situations are present at the salt-sedimentboundaries.

The base of Zechstein (2.5 s TWT) is well imaged and well correlated. Below the anticlines
the almost horizontal structure is only interrupted below the salt bodies. However, the correct
position of the base Zechstein in the areas of the salt plugs (CMP 1500–1900 and 2900–3300,
2.3–2.5 s TWT) can be determined only after the depth migration. Prestack depth migration
usually provides the best results for imaging of salt flanks and sub-salt structures.

Reflections below 2.5–3 s TWT in the CMP stack section are poorly imaged as the S/N ratio is
relatively low. Energy dispersal within the salt bodies leads to an increased noise. Moreover,
reflections that most likely belong to multiples complicatethe definition of sedimentary bound-
aries in the deeper part. Because of the energy loss with depththe correlation of horizons is
complicated in the areas below 3 s TWT.

2.3.2 Automatic CRS stack

After the generation of the CMP stacked section, the automatic searches provided the CRS stack-
ing parameters for the generation of the CRS stack section. Figure2.6shows the resulting auto-
matic CRS stack section without and with AGC correction. The results should be compared with
the conventional CMP stacked sections as presented in Figure2.5.

Most significantly, the continuity of reflection events in the CRS stack sections increased greatly,
and the S/N ratio appears much higher compared to the CMP stacked sections. This quality
improvement is observed at the top of the salt plugs and in deeper parts (> 2.5 s TWT) as well
as in the interior of the salt plugs. Although the precise definition of the salt flanks position is
still complicated, the images of the sediments surroundingthe salt are greatly improved in the
CRS stack section (compare zoomed images in Figure2.7) even permit the interpretation of the
salt-sediment interfaces in the non-migrated time sections. The images of seismic events below
2.5 s TWT in the CRS stack section are improved compared to the CMP stack section.

Figures2.8 to 2.11display the CRS semblance section and three CRS parameter sections. Most
reflections visible in the CMP and CRS stacked sections can be identified in the CRS semblance
section as well (see Figure2.8). With increasing recording time the semblance decreases because
of the lower S/N ratio and geometrical spreading loss. However, the reflection events can be
distinguished from the noise for times 0–2.5 s TWT. The areas of salt plugs have lower semblance
because of energy dispersal, but the bottom of the salt and the horizons around the salt flanks are
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Figure 2.6: Marine data: automatic CRS stack. The S/N ratio is increased compared to the
automatic CMP stack (Figure2.5). The rectangles are enlarged in Figure2.7.
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Figure 2.7: Marine data: zooms of the salt plugs as presentedin Figures2.5 and 2.6. The
automatic CRS stack (b) and (d) provided images with higher S/Nratio. Reflections appear more
continuous and the salt-sediments boundaries are easier toidentify compared to the CMP stacked
section (a) and (c).
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clearly visible.

Figure2.9 displays the angle of emergence,α, from -10◦ to 10◦. The upper part of the data
contains almost horizontal reflections with angles of emergence around 0◦. At the flanks of the
anticline structures and in the areas around the salt plugs the angles increase up to±10◦. The
diffractions in the semblance section below 3 s TWT lead to higher values of emergence angle
up to 20◦–40◦, but these values were clipped for displaying in order to show the slight variations
in the upper part of the section. However, the diffractions are visible within and below the salt
around CMP 1500 at times 1.5–4 s TWT as a set of bright red and bluestripes.

Figure2.10shows the radius of curvature of the NIP-wave,RNIP . In a constant velocity medium
this parameter is associated with the reflector depth, soRNIP is increasing smoothly with increas-
ing TWT. However, the complexity of the data with the presenceof anticline structures and salt
plugs results in values ofRNIP significantly different from the expected reflector depth. The true
reflector position can be reconstructed only after a seismicinversion procedure, e.g., using the
NIP-wave tomography followed by depth migration.

Figure 2.11 depicts the radius of curvature of the N-wave,RN . As a measure of reflection
curvature, large values ofRN correspond to almost plane reflectors. Most of the reflections in
the upper part of the section are almost flat and, therefore, have very large values ofRN . In order
to show the reflections in the deeper part of the section, clipvalues of±30km were used for
display.

Finally, Figure2.12illustrates the number of traces used by the CMP and CRS stacks tosimulate
one sample in the ZO sections. The CRS stack used up to 120 times more traces compared to
the CMP stack. This significant difference resulted in the increased S/N ratio of the CRS stack
section.

2.3.3 NIP-wave tomographic inversion

After the estimation of CRS parameters (α,RNIP , RN ) and the generation of the CRS stacked
section, I prepared the input data for the NIP-wave tomographic inversion. This approach, as
described inDuveneck(2004), operates with CRS parameters of ZO points picked in the stacked
domain. In order to obtain the ZO points, I picked the most important primary reflections in
the CRS stack section per hand. An automatic picking procedurewas not applied to the marine
dataset, but an example of its practical usage can be found below in Chapter 3. Picking per hand
provides the flexibility in choosing low-coherent events atthe salt-sedimentary boundaries and
also in the sub-salt areas. After the picking the CRS parameters corresponding to the chosen ZO
points were automatically extracted by the software provided by the WIT consortium.
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Figure 2.8: Marine data: CRS semblance section.
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Figure 2.9: Marine data: angle of emergence,α.



56 CHAPTER 2. MARINE DATA EXAMPLE

0

1

2

3

4

T
im

e 
(s

)

500 1000 1500 2000 2500 3000 3500 4000
CMP number

0

5

10

15

R
ni

p 
(k

m
)

Figure 2.10: Marine data: radius of curvature of the NIP-wave,RNIP .
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Figure 2.11: Marine data: radius of curvature of the N-wave,RN .
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Figure 2.12: Marine data: number of traces used by the automatic CMP and CRS stacks to
image one ZO time sample. Note the different scales. In the bottom of the section the CRS stack
comprises up to 120 times more traces compared to the CMP stack.

Although the ZO points were picked manually, the input data for the tomographic inversion
needed to be tested with respect to the reliability of the corresponding CRS parameters (see
Chapter 1 for details). After removing outliers, about 1000 points remained. The resulting ZO
points are shown in Figure2.13. Figure2.13(b)shows the distribution of picked ZO points over
the geological structures where the most prominent reflections were chosen for picking. Starting
from the sea bottom at∼0.1 s TWT the base Miocene at 0.5 s TWT, base Tertiary at 1 s TWT, and
base of Upper Cretaceous at 1.5 s TWT were picked. Since these horizons are almost horizontal
and are only rarely interrupted by faults, the precise picking of these reflections was easy. Picking
of the top of salt and salt flanks, however, was complicated bythe presence of faults, diffractions,
and conflicting dip situations. The benefit of the NIP-wave tomography in these areas is that it
is not necessary to follow the horizons continuously, but independent reflection elements may
be chosen for the inversion. Therefore, the bottom of the salt at CMP 1700–1900 CMP and
3000–3500, 2.5 s TWT was picked separately, without exact correlation with the neighbouring
horizons.

Most characteristic events within the anticline structures at 1.5–2 s TWT were picked without the
precise correlation of the stratigraphy, but with respect to the highest coherency and maximum
amplitudes. The aim of picking these events was to follow theshape of the anticline structures
with approximately constant pick spacing, which is preferable for stable tomographic inversion.
Since the S/N ratio of the data decreases with increasing recording time, the picking of reflec-
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tions is much more complicated below 2.5 s TWT in the CRS stacked section. Therefore, only
sparse points with the highest values of semblance and amplitude in the deeper part of the data
were picked. For more precise picking the section with AGC-corrected amplitudes was used, as
presented in Figure2.5(b).

The final check of picked data was carried out with respect to the reliability of CRS parame-
ters. The picks corresponding to multiples and other noise must be identified and, if necessary,
removed. The quality of input data is very important for the NIP-wave tomographic inversion.
The data were quality controlled using the plots of the parameterMNIP (see Chapter 1) and
stacking velocities with respect to the traveltime (see Figure2.14). A characteristic decrease of
VNMO, as normally observed for long-path multiples, may result into a corresponding increase
of MNIP value at the considered time. Therefore, the plots ofMNIP against traveltime that de-
viate significantly from the main trend can be considered as multiples. Figure2.14(a)shows,
however, excellent point distribution along the main trend, and the picks do not need any further
editing. This is partly the result of the manual picking procedure. Also the preprocessing of the
data, carried out by the industry, significantly attenuatedthe multiples in the upper part of the
section. The empty areas in Figure2.14(a)between the clouds of picks are the results of manual
picking when sparse horizons are chosen in the ZO section (see Figure2.13(b)). Since there are
no ZO points picked between 0.1 s and 0.5 s TWT, 0.6 s and 0.7 s TWT etc, these time intervals
contain no data in Figure2.14. Figure2.14(b)outlines the stacking velocities corresponding to
all picked events against traveltime. The plot shows a very good velocity distribution for the first
four picked horizons down to the base Tertiary at∼1 s TWT. Starting from 1.5 s to longer trav-
eltimes, there are some velocity fluctuations around the main trend, but no areas of significantly
lower velocities are found, which confirms the absence of multiples. Therefore, the picked data
were suitable as input for the NIP-wave tomographic inversion.

The depth velocity model estimated during the tomographic inversion was defined on a grid
of 55 x 41 nodes with a constant lateral spacing of 500 m and depth spacing of 200 m. A
near surface velocity of 1700 m/s and a constant velocity gradient of 0.5 s−1 were chosen as an
initial model for the inversion. The thin water layer of about 20 m does not influence the model
significantly, so the velocities of the sub-water sedimentswas taken for the near-surface. The
parameters of the NIP-wave tomographic inversion are summarised in Table2.3. A total of 10
iterations were carried out. After every iteration the input ZO points wereback-propagatedto
their corrected position in space. Figure2.15shows the depth velocity models plotted together
with the corresponding back-propagated picks after exemplarily chosen iteration steps.

After every iteration the cost functionS was determined that represents the deviation of the
predicted data from the picked data. Figure2.16shows that the cost function decreases contin-
uously. After the seventh iteration the changes in velocities were minor. The velocity model
obtained after ten iterations was taken as a final model for depth migration.

Figure2.17represents this final NIP-wave tomography model with corresponding back-propagated
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Figure 2.13: Marine data. (a) Input picks (black dots) for the NIP-wave tomographic inversion.
(b) The CRS stacked section was used for manual picking of reflection events.
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Figure 2.14: Marine data: quality control of input picks forNIP-wave tomography. (a) The
parameterMNIP and (b) stacking velocities are computed for each picked ZO point from the
corresponding CRS parameters. Fluctuations of velocities ofup to 500 m/s for the picks at later
traveltimes correspond to the lateral variations in the stacking velocity model (Figure3.3(b)).
Significant deviation from the main trends of points distribution is not observed, which confirms
the reliability of picked data and the absence of picks corresponding to long-path multiples.

Lateral grid spacing 500 m
Depth grid spacing 200 m
Number of nodes in lateral direction 55
Number of nodes in depth direction 41
Initial model:

surface velocity 1700 m/s
gradient 0.5 s−1

Number of tomographic iterations 10

Table 2.3: Marine data: parameters of the NIP-wave tomographic inversion.
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Figure 2.15: Marine data: depth velocity models with corresponding back-propagated picks
computed after exemplarily chosen iteration steps. Starting from the initial gradient (a), the
model is continuously updated after every iteration. The final model obtained after 10 iterations
is enlarged in Figure2.17.
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Figure 2.16: Marine data: value of the cost functionS computed after every tomographic itera-
tion. The changes after the seventh iteration are minor.
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picks. As the model is described by B-splines it appears smoothed in contrast to conventional
layer-based models. However, the main geological structures can be recognised in Figure2.17.
Starting with the initial velocities of∼1.7 km/s at the surface, the values smoothly increase up
to 2.1–2.3 km/s at∼0.9 km depth and reach 2.7–2.9 km/s for the base Tertiary located at∼1 km
depth. The interval from 1 km to 1.8 km depth corresponding tothe base Upper Cretaceous –
base Tertiary is described by a velocity increase to 3.5–3.8km/s. Slight lateral velocity variations
are visible in the upper part of the model. The deeper part from 1.8 km to 4 km is influenced by
the presence of salt domes and anticline structures. From CMP1300 to 2000 at 1.6 to 4 km depth
a high velocity zone is observed with velocities reaching 4.3–4.4 km/s. This zone corresponds to
the left salt plug as presented in Figures2.5and2.6. The salt plug located in the right part of the
sections is characterised by velocity values up to 3.8–3.9 km/s around CMP 3300.

It must be mentioned that the velocities obtained by NIP-wave tomographic inversion may differ
from the interval velocities of the corresponding sediments. For example, interval velocities of
4.5–4.6 km/s, typical for salt, are not observed in the model, which is the result of smoothing and
the presence of sediments in the salt. Therefore, this modelshould not be used for a geological
interpretation. It is suited for the depth migration of seismic data. However, around the salt
plugs at the depth 1.8–3 km the NIP-wave velocities are closeto the expected interval velocities
of corresponding sediments (Bunter to Upper Cretaceous), reaching 3.3–3.5 km/s. Deeper sedi-
ments down to base Zechstein are characterised by velocities of 4–4.2 km/s. Sparse distribution
of input picks used by the tomographic inversion leads to minor lateral velocity variations in the
deeper part of the model. A zone of slightly lower velocity values compared to the surrounding
sediments is observed between 3.5–5 km depth. The deeper part up to 5 km is characterised by
the values of velocities that coincide with the initial gradient model used by tomography.

Despite the fact that the NIP-wave tomography model should not be used for exact interpreta-
tion, it certainly provides complementary information. The distribution of back-propagated picks
plotted over the model in Figure2.17(b)shows an approximate depth of reflector elements.

2.4 Depth migration

Kirchhoff depth migration of the marine dataset was carriedout using the ProMAX software.
Poststack depth migration of the CRS stacked section as well asprestack depth migration of the
CMP gathers were carried out. The CMP spacing of the output depth-migrated sections is 6.25
m, the same as of the time-stacked sections. The seismogramswere migrated up to maximum
frequencies of 65 Hz and maximum 7 km depth with the depth sample interval of 6 m, which
was the same as used by the industry. Maximum amplitude ray tracing was used to produce the
Green’s functions. The maximum emergence angle was 70◦. For the migrations, the NIP-wave
tomography model as presented in Figure2.17 was used. The aperture width of the prestack
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CDP spacing in output field 6.25 m
Maximum frequency 65 Hz
Depth sampling interval 6 m
Maximum depth to migrate 7000 m
Migration aperture 1800 m for PostSDM

3600 m for PreSDM
Maximum emergence angle to trace rays 70◦

Velocity model sample interval 100 m
Method for generating the Green’s function Maximum amplitude ray tracing

Table 2.4: Marine data: processing parameters for depth migration.

depth migration was 3600 m, which is the value used by the industry, whereas the aperture of the
poststack depth migration of the CRS stack was reduced to 1800 m, in order to reduce migration
artifacts. The depth migration parameters are summarised in Table2.4.

2.4.1 Poststack depth migration of the CRS stack

Figure2.18(a)shows the poststack depth migration of the CRS stack using the NIP-wave to-
mographic model. The shape of the salt structures corresponds to the distribution of back-
propagated picks as presented in Figure2.18(b). All picked reflectors above the salt plugs coin-
cide exactly with the picks. The base Zechstein at about 3.5–4 km depth is also well correlated.
However, the salt flanks sometimes contradict the back-propagated picks. This is most likely the
result of the smooth velocity description used in tomographic inversion with coarse node spacing
(500 m in lateral and 200 m in vertical directions), which is not small enough to describe such
strong velocity variations. Also, non-hyperbolic reflections at the salt-sedimentary boundaries
may result in these deviations.

As expected, both salt plugs appear laterally compressed inthe poststack depth-migrated section
compared to the time sections (see Figures2.5(a)and2.6(a)). Since the depth migration process
handles lateral velocity variations, the images of complexstructures are corrected with respect
to their actual lateral position. Depth migration collapses diffractions; so the areas of salt flanks
where a lot of noise is present in the time sections are betterimaged in the depth migrated section.
The images of reflectors close to the top of salt plugs are improved compared to the time-stacked
sections.
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2.4.2 Prestack depth migration

Figure2.19shows the Kirchhoff prestack depth-migrated section. Although the poststack depth-
migrated section has higher S/N ratio compared to the prestack result, the latter shows much
more details that are important for interpretation. Despite the fact that some reflectors appear
less continuous compared to the poststack depth migration,areas of improvement are visible.
The fault systems located above both salt diapirs at 1–1.8 kmdepth around CMP 1600 and 3300
are clearly identified in the PreSDM section. The images of salt diapirs, their flanks and the
internal salt structures are greatly improved. PreSDM takes the strong lateral velocity variations
into account to generate the prestack depth migrated gathers (CIGs). Therefore, stacking of the
CIGs usually produces better images than the poststack depthmigration. Moreover, the accuracy
of the velocity model used by migration is estimated by the flatness of events in the CIGs.

Figure 2.20 shows the CIGs of the marine dataset migrated with the NIP-wave tomographic
model. The result shows very good flatness of gathers at 0.5 to3.5 km depth. It must be no-
ticed that the seismograms are plotted up to 3200 m offset, and up to 7 km depth, so the verti-
cal/horizontal ratio of each CIG is approximately 10:1. Using this scale, the residual moveouts
are overemphasised. The positive residual moveout observed at base Tertiary at∼1 km depth
can be associated with a too high initial velocity gradient used by the tomographic inversion,
which does not fit the upper part of the section perfectly, butis suited for the middle part of the
section from 1.5 to 3.5 km depth. In other parts of the CIGs, residual moveout is not visible,
which confirms the consistency of the depth velocity model with the data.

2.5 Conclusions

The presented CRS technique has demonstrated the potential toproduce high-quality images of
marine seismic data. The automatically-generated CRS stack shows a higher S/N ratio and im-
proved images of salt plugs compared to the conventional CMP stack sections. Moreover, the
CRS parameters estimated during the automatic searches can beused to construct a depth veloc-
ity model suitable for depth migration. The model was estimated by the NIP-wave tomographic
inversion. Picking of input data for the inversion was performed in the CRS stacked section with
its high S/N ratio. Reflector elements were picked independently, which is a great benefit when
working with complex salt structures. Poststack depth migration of the CRS stack and prestack
depth migration produced high-quality sections that can beused as a supplementary material for
a geological interpretation. Therefore, CRS stack and NIP-wave tomography techniques provide
fast generation of time and depth images of complex geological environment.
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(a) Depth velocity model
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(b) Depth velocity model with back-propagated picks

Figure 2.17: Marine data: reconstructed smooth velocity model with back-propagated picks,
obtained after ten NIP-wave iterations. The picks coincidewith the discontinuities in the velocity
model. Two zones of high velocity values reaching 4–4.3 km/sin the middle part of the model
(CMPs 1500 and 3200) correspond to the salt plugs as seen in thestacked sections (Figures2.5
and2.6). The model is used for the depth migration of the seismograms.
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(b) PostSDM of the CRS stack with back-propagated picks

Figure 2.18: Marine data: poststack depth migration of the CRSstack with back-propagated
picks. Migration corrected the images of the salt plugs and moved them towards their original
position in space as compared to the time stacked sections (Figures2.5 and2.6). Diffractions
present in the time-stacked sections are focused and the boundaries of the salt plugs can be better
identified.
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Figure 2.19: Marine data: Kirchhoff prestack depth migration with the back-propagated picks.
The images of salt plugs, salt-sediments boundaries, and fault structures are greatly improved
compared to the time-stacked sections. The corresponding common image gathers are shown in
Figure2.20.
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Figure 2.20: Marine data: common image gathers resulting from PreSDM with the NIP-wave
tomographic model as presented in Figure2.17. The images of most reflectors are almost hori-
zontal, which confirms the consistency of the velocity modelwith the data.
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Chapter 3

Land data example

This chapter shows the results of the application of the CRS technique to low-fold land data from
Northern Germany. In 2002, the industry provided seismic reflection data to the scientific com-
munity and opened new opportunities to have a more detailed look on the salt stocks of the area.
The data were acquired and processed in the 1980s. Compared tocontemporary reflection acqui-
sitions, the fold of these data is low (about 20). The processing in the 1980s provided basically
stacking velocities and the CMP stacks. Velocity model building, time and depth migration were
not applied to these data. Due to the structural complexity combined with the low fold severe
imaging challenges were met.

The functional dependence of the individual Northern German salt structures on salt stock fami-
lies was outlined bySannemann(1968) and their history was described byJaritz(1973). Trusheim
(1957) introduced the termhalokinesis. In the explanations of the formation of salt plugs and
the development of salt plug families, these authors presumed density instabilities for the North
German area between underlying light salt and overlying heavy sediments to be the major force
of the buoyancy-driven halokinetic processes. This assumption was already theoretically inves-
tigated in the early past byHunsche(1978) and, using analogue experiments, byHeye(1978).
Nowadays, there are new concepts of salt tectonics, e.g., byMohr et al.(2005) for NW Germany
and byHudec and Jackson(2007) for general concepts, based on complex multiphase salt tec-
tonic evolution in changing regional stress field. Earlier,however,Brink (1984, 1986, 1987) and
Brink et al. (1992) have reported several non-supporting observations for such concepts. Pro-
cessing and interpretation of seismic reflection lines, gravity data, and density logs in boreholes
raised severe doubts about the validity of the concept ofMohr et al.(2005), at least for the early
stages (i.e. Lower Triassic, Bunter) of the halokinesis in Northern Germany. To address these
doubts the structural settings of the study area were revisited. Yoon et al.(2008a,b) have re-
processed these data using the CRS stack with the focus on time imaging of the lower crustal
structures as well as the Moho-topography.Baykulov et al.(2009) have applied the CRS stack
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and NIP-wave tomography and built a depth velocity model fora Jurassic salt plug located in
the area of the Glückstadt Graben. This model allowed the application of prestack and poststack
depth migration. The obtained depth images provided details not seen before, motivating an
alternative view on the structural setting of the area.

The provided datasets were reprocessed within the priorityprogramme SPP 1135 "Dynamics
of Sedimentary Systems" (Bayer et al., 2008), sponsored by the German Research Foundation
(DFG). The seismic reflection data were provided through theGerman Society for Petroleum
and Coal Science and Technology (DGMK). The CRS stack techniqueis particularly suited for
these low-fold data. The larger number of traces used by stacking leads to an improved S/N ratio,
compared to the classical CMP processing. In this chapter, the results of the CRS processing and
depth migration are shown on the example of a seismic profile from the area of the Glückstadt
Graben.

3.1 Study area and acquisition geometry

The reprocessed profile is located north of the river Elbe. Italmost coincides with the so called
Elbe-Line, and crosses the Central Triassic Graben and its deepest part, i.e., the Glückstadt
Graben, perpendicular to the graben axis (see Figure3.1). Salt domes consisting of different
kinds of salt from Rotliegend to Zechstein age cross the studyarea in NS direction.

The dataset consists of 771 shot gathers recorded to 13 s time. Explosive sources were used with
an average shot spacing of 120 m. For every shot gather, 120 channels with a receiver group
spacing of 40 m were used. Irregular shooting geometry led toa varying CMP fold with an
average of 20. These and other important acquisition parameters are summarised in Table3.1.
This study, which focuses on the sedimentary structure and salt plugs, considers the time interval
from 0 to 6 s TWT.

Line length ∼93 km Acquisition type end-on
Total record time 13 s Receivers per shot 120
Time sample rate 2 ms Receiver group spacing 40 m
Number of shots 771 Source-receiver offset range [40 m; 4800 m]
Source spacing ∼120 m Number of CMPs 4649
Source type explosive CMP spacing 20 m
Total charge size 3-5 x 5-20 kgMaximum CMP fold 30
Shot depth 22-42 m Mean CMP fold 20

Table 3.1: Land data: acquisition parameters.
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Figure 3.1: Land data: map of Northern Germany displaying major geological units as well as
the distribution of salt plugs modified afterMaystrenko et al.(2005). The deepest part of the
Central Triassic Graben is also known as Glückstadt Graben. The reprocessed profile (red line)
crosses the Glückstadt Graben and salt structures perpendicular to the graben axis. The total line
length is about 93 km.

3.2 Preprocessing

I used the FOCUS software of Paradigm in order to enhance the quality and S/N ratio of the
seismograms and to prepare the data for the CRS stack. The preprocessing sequence started with
setting up the field geometry and applying the field static provided with the data. Then, manual
trace editing was carried out, e.g. elimination of dead and noisy traces and high-frequency bursts
in the shot gathers. After the trace editing, top muting was applied to remove the direct and
refracted waves. Also bottom muting was used to eliminate the strong instrument noise present
in some shot gathers at later times. The data were filtered using a bandpass filter of 5/18 to
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45/50 Hz. These values represent sequentially the 0% and 100% points of the low-cut ramp,
and the 100% and 0% points of the high-cut rump. After resorting, 4649 CMP gathers were
obtained. In order to enhance the amplitudes of reflection signals at deeper levels, an automatic
gain control (AGC) was applied to the CMP gathers. The time window of the AGC was 1000
ms. A typical example of the preprocessed CMP gathers is shownin Figure3.2. About 20 traces
are located irregularly over the full offset range, which, accompanied by the low S/N ratio, leads
to difficulties in identifying reflections.
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Figure 3.2: Land data: exemplarily chosen CMP gathers after preprocessing. The CMPs contain
irregularly-spaced traces. Reflections are hardly visible;the S/N ratio is low.

Tables of stacking velocities for certain CMP positions (approximately every 100th CMP) were
provided with the dataset. The velocities between the provided points were interpolated and
smoothed to obtain a velocity model in the same way as for the marine data (in Chapter 2).
The resulting model (Figure3.3(a)) represents the stacking velocities for every point in the ZO
domain. Strong lateral and vertical velocity variations are visible throughout the section. Starting
from ∼1.8 km/s at the surface, the velocity increases up to 5–6 km/sat 6 s TWT. The areas of
the salt plugs between CMP 3500–4000 and 2700–3000 are characterised by increased velocities
compared to the surrounding sediments.
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(a) Model of stacking velocities provided by the industry
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(b) Model of stacking velocities obtained after the automatic CMP stack

Figure 3.3: Land data: model of stacking velocities (a) provided by the industry and (b) obtained
after the automatic CMP stack. The velocities provided by theindustry were used as guide
functions for the stacking velocity search, where 10% maximum deviation was allowed. The
complexity of the interfaces with the presence of salt plugsand steep-dipping layers leads to
strong lateral variations in the models.
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Surface velocity 1750 m/s
Maximum deviation from
reference velocity model 10%
Maximum dip angle 60◦

Minimum offset aperture 40 m at 0 s
Maximum offset aperture 4800 m at 5 s
Minimum midpoint aperture 400 m at 0 s
Maximum midpoint aperture 2000 m at 5 s

Table 3.2: Land data: processing parameters for the automatic CRS stack.

3.3 CRS processing

The automatic search for CRS parameters was applied to the preprocessed CMP gathers. I used
the same approach as for the marine data, which is based on three one-parameter search pro-
cesses. In order to image near surface structures as well as deeper structures properly, different
offset and midpoint apertures were tested. After a number ofexperiments, the offset aperture
was defined between 40 m for near-surface times to 4800 m, i.e., full acquisition aperture, at 5 s
TWT. The interpolation of the aperture in between is linear, whereas for later times the constant
aperture of 4800 m was used. The midpoint aperture was definedfrom 400 m at the near-surface
to 2000 m at 5 s TWT (see Table3.2).

3.3.1 Automatic CMP stack

The stacking velocities provided by the industry were used as a guide during the stacking velocity
search. The maximum deviation from the guide values was set to 10%. The resulting model is
shown in Figure3.3(b). Since the best fit value of velocity for every time sample is estimated
during the search, the model appears less smooth than the guide model, but cares for the better
stacking results.

The obtained velocities were used to generate the CMP stack section (Figure3.4). The section
provides a detailed image of the sedimentary part down to 3–4s TWT. Salt plug areas with high
velocities are visible around CMP 1500, 2500–3000 and 3500–4000. At CMP 1500, a steep
fault is visible, which separates the East-Holstein Troughin the west from the Eastholstein-
Mecklenburg block in the east (Maystrenko et al., 2005). Also, sharp parallel dipping reflec-
tions are observed in the upper crust between 4.5 and 5.5 s at TWT CMP 4000–4500 that can
be correlated with two parallel dipping reflections between3 to 4 s TWT at CMP 3000–3500.
These reflections coincide with a high conductivity body observed in magnetotelluric data by
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Hoffmann et al.(2005). In the deeper part of the section reflections are hardly visible due to
energy loss in the salt and low S/N ratio.

3.3.2 Automatic CRS stack

After the CMP stack section was obtained, the automatic CRS parameter searches were carried
out and the CRS stack section was generated. Figure3.5shows the result of the automatic CRS
stack. Compared to the CMP stack, the CRS stack significantly increased the S/N ratio and
generally improved the image quality of the section. The sedimentary cover and internal salt
structures appear clearer and more detailed than in the CMP stack section. The CRS stack shows
apparently different reflectivity patterns in the eastern part than in the western part of the profile.
The section reveals a comparably highly reflective upper crust within a 3 to 4 s wide band in the
eastern part. This might indicate that this area was tectonically less active than the area in the
western part of the profile, where less reflectivity is observed.

Figure3.6shows enlarged images of the CMP and CRS stacked sections of the salt plug located
in the middle part of the profile. Beside the general improvement of image quality, the CRS stack
shows some details that are hardly visible in the CMP stack section. Internal salt reflections
between CMP 2500 and 2800 at 1.5–2 s and at 2.5 s TWT are clearly identified. The salt-
sediment boundaries are better imaged by the CRS stack, which is important for the interpretation
of the data and for building of the geological model of the area.

Besides the ZO-stacked section, the CRS stack provided the sections of CRS parameters. Figure
3.7 shows the CRS semblance section. The salt-rich areas are characterised by low values of
semblance due to the dispersal of reflection energy in the salt. The sedimentary boundaries have
semblance values of up to 0.4. Because of energy loss and increasing noise the middle and the
eastern parts of the section below 4 s TWT show only few coherent events. In the western part
between CMP 4000 and 4500 from 3.5 to 5.5 s TWT a number of reflection events are visible
that are also seen in the CMP and CRS stack sections.

Figure3.8 shows the angle of emergence,α, clipped to±10◦. These clip values emphasise the
small angles in different parts of the section. Low values characterise the sediment cover in the
eastern part of the section between CMP 0 and 1500 and in the western part between CMP 4000
and 4500. Inbetween, at the salt-sediments boundaries, theangle increases up to 10 degrees and
more. The maximum absolute values of emergence angle are observed at the diffraction events
around CMP 1500 and in intra-salt areas between CMP 2500–3000 and 3500–4000.

Figure3.9 shows the radius of curvature of the NIP-wave,RNIP . It increases smoothly with
increasing recording time and reaches the values of 30 km at 6s TWT. The complexity of the in-
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Figure 3.4: Land data: automatic CMP stack. The upper part (0–4 s TWT) of the sedimentary
cover is well imaged, whereas the deeper structures are hardly visible. The S/N ratio is low.
Irregular acquisition geometry leads to the data gaps in theshallow part of the section above 1 s
TWT. Salt plugs are present around CMP 1500, between CMP 2500–3000 and 3500–4000. The
area of the middle salt plug indicated by the rectangle is enlarged in Figure3.6(a).
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Figure 3.5: Land data: automatic CRS stack. The image shows pronounced reflections at all time
levels. The S/N ratio is increased and the reflections appearmore continuous compared to the
CMP stack section (Figure3.4). Diffraction events are also enhanced. The rectangle is enlarged
in Figure3.6(b).
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Figure 3.6: Land data: comparison of the CMP stack (a) and CRS stack (b) shows that the CRS
stack significantly enhanced the internal salt reflections.Due to higher S/N ratio the reflections
at deeper levels are better imaged in the CRS stack section, andthe salt-sediment boundaries are
easier identified.

terfaces with steeply-dipping salt-sediment boundaries accompanied by many diffraction events
leads to values ofRNIP significantly larger than the expected depth of the corresponding sed-
iments. NIP-wave tomographic inversion is, therefore, recommended to estimate the correct
reflector depth.

Figure3.10depicts the radius of curvature of the N-wave,RN . The section is shown using clip
values from -20 to 20 km in order to emphasise the changes of this parameter at the flanks of
the salt plugs. Inside the salt and in the upper part of the section, as well as in the areas of low
S/N ratio, low values ofRN are observed. The eastern part of the section is characterised by
comparably higher values than the western part, since almost flat reflections are present there.

The number of traces used by the automatic CRS stack to generateone ZO time sample is much
higher than used by the CMP stack (compare Figures3.11 a and b). Whereas the number of
traces used by the automatic CMP stack is limited by the CMP foldof the data (about 20), the
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Figure 3.7: Land data: CRS semblance section.
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Figure 3.8: Land data: angle of emergence,α.
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Figure 3.9: Land data: radius of curvature of the NIP-wave,RNIP .
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Figure 3.10: Land data: radius of curvature of the N-wave,RN .
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CRS technique uses up to 2000 traces for stacking.
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Figure 3.11: Land data: number of traces used by automatic CMPand CRS stacks to generate
one ZO time sample. Note the different scales. Using about 100 times more traces during the
CRS stack increases the S/N ratio of the stacked section and generates images of higher quality.

3.3.3 NIP-wave tomographic inversion

All required information for the tomographic inversion is contained in the CRS parameters ob-
tained during the automatic CRS stack. In order to acquire the input data for NIP-wave tomog-
raphy, a number of ZO points describing the primary events were picked (see Figure3.12). The
automatic picking software procedure provided the input data for inversion. The CRS semblance
section presented in Figure3.7 is used as a guidance for the coherency of the picks. After the
picking of most coherent events, the wavefield attributes were extracted from the corresponding
CRS parameter sections. Unlike the marine data, where the ZO points were picked per hand, the
complex salt structures and lower quality of the time sections complicate the manual picking in
these land data. Moreover, more picks are necessary to describe the complex reflection shape of
the section.

The quality of the extracted CRS parameters was controlled with the plots of the parameterMNIP

and stacking velocities as a function of traveltime. First,the values deviating significantly from
the main trend of stacking velocities were eliminated with the help of the plot presented in Figure
3.13(b). Then, the quality of picks was checked with respect to the correspondingMNIP values
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Figure 3.12: Land data. (a) Input picks (black dots) for the NIP-wave tomography obtained using
the automatic picking based on semblance threshold. (b) Thedistribution of the picks coincides
with the main geological structures of the CRS stacked section. Because of the low coherence
the internal parts of the salt plugs contain less picks than the surrounding sediments.
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(Figure3.13(a)). The points are aligned along the main trend, without outliers. Finally, about
35000 picks along the entire profile remained for the inversion. The distribution of the picks is
in good correlation with the main structures present in the CRSstack section (see combined plot
in Figure3.12(b)). Strong seismic impedance contrasts at the main seismic boundaries provide
high coherency values and, therefore, reliable results of the automatic picking down to base
Rotliegend. Also, the salt flanks and internal reflections in the salt body in the central part of the
section (CMP 2600–2800, 1.5–2 s TWT) were picked.
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Figure 3.13: Land data: quality control of input picks for NIP-wave tomography after the removal
of outliers. The parameterMNIP (a) and stacking velocities (b) are computed for each ZO point
from the corresponding CRS parameters.

The NIP-wave tomography model was determined on a grid consisting of 93 nodes in lateral and
41 nodes in vertical direction. The lateral grid spacing was1000 m, the vertical grid spacing
was 200 m. As an initial model a near-surface velocity of 1750m/s with a constant velocity
gradient of 0.5 s−1 was used. A priori velocity information from the well logs was not included
to constrain the tomography. With these parameters, the inversion converged after a total of
five iterations. Figure3.14shows the results of the NIP-wave tomography as a progress from
initial gradient to the final model. The cost functionS is outlined in Figure3.15. It decreases
with increasing iteration number, and after the fifth iteration remained unchanged. The sixth
iteration did not decrease the regularisation function, and no changes in the velocity model were
made. Therefore, the model obtained after the fifth iteration was considered the final result of
tomographic inversion.

For depth migration, the obtained velocities were extrapolated constantly to 12 km depth. The
resulting velocity section with corresponding back-propagated picks is outlined in Figure3.16.
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Lateral grid spacing 1000 m
Depth grid spacing 200 m
Number of nodes in lateral direction 93
Number of nodes in depth direction 41
Initial model:

surface velocity 1750 m/s
gradient 0.5 s−1

Number of tomographic iterations 6

Table 3.3: Land data: parameters of the NIP-wave tomographic inversion.

Velocities from 1.8 to 4.6 km/s are shown in order to emphasise the salt structures in the upper
part of the model. The values of velocities and corresponding back-propagated picks are con-
sistent with the input data. In the upper part of the model velocities vary between 1.8 and 3.5
km/s, which is typical for Tertiary sediments. At 3 km depth,two local velocity maxima reaching
4.5 km/s are present at CMP 2500–3000 and 3500–4000. These maxima correspond to the salt
plugs visible in the time stacked sections. A high velocity area in the western part of the section
between CMP 0 and 2000 at 2–4 km depth might indicate the presence of salt-rich sediments.
Areas with only a few picks display minor deviations from theinitial velocity model, e.g., in
the region between CMP 3000–4500, 3–5 km depth, as well as in the deeper part of the section
below 6 km depth.

3.4 Depth migration

Figure3.16shows the NIP-wave tomography model that was used for the depth migration of the
dataset. The ProMAX software provided a poststack depth migration of the CRS stack section,
as well as a prestack depth migration of the preprocessed CMP gathers. The CMP spacing of
the depth migrated sections was defined to 20 m, the same as forthe time stacked sections. The
seismograms were migrated to maximum frequencies of 50 Hz and 12 km depth with a depth
sampling interval of 10 m. Maximum amplitude ray tracing wasused to produce the Green’s
functions. The maximum emergence angle was 70◦. The migration aperture was set to 2400 m,
which provided a compromise solution to obtain few migration artefacts and better continuity of
reflector elements. The depth migration parameters are summarised in Table3.4.
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(b) Iteration 1
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(c) Iteration 2
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(d) Iteration 3
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(e) Iteration 4
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(f) Iteration 5

Figure 3.14: Land data: depth velocity models with corresponding back-propagated picks com-
puted after every tomographic iteration. Starting from theinitial gradient (a), the model is con-
tinuously updated, and the salt-rich structures become recognisable. The final model obtained
after five iterations (f) is enlarged in Figure3.16.
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Figure 3.15: Land data: value of the cost functionS computed after every tomographic iteration.
The function decreases with increasing iteration number, and after the fifth iteration remained
unchanged. The depth velocity model obtained after the fifthiteration was, therefore, considered
as the final model.
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(a) Depth velocity model
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(b) Depth velocity model with back-propagated picks

Figure 3.16: Land data: reconstructed smooth velocity model with back-propagated picks ob-
tained after five NIP-wave tomographic iterations. The velocities were extrapolated linearly from
8 to 12 km depth. Velocity maxima in the upper part of the section (1.5–4 km depth) correspond
to the salt plugs and salt-rich areas. The model is used for depth migration of the data.
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CDP spacing in output field 20 m
Maximum frequency 50 Hz
Depth sampling interval 10 m
Maximum depth to migrate 12000 m
Migration aperture 2400 m
Maximum emergence angle to trace rays 70◦

Velocity model sample interval 100 m
Method for generating the Green’s function Maximum amplitude ray tracing

Table 3.4: Land data: processing parameters for depth migration.

3.4.1 Poststack depth migration of the CRS stack

Poststack depth migration was applied to the CRS stacked section. Figure3.17shows the re-
sulting depth image down to 12 km. The PostSDM generated a depth section with high S/N
ratio, comparable with the result of the CRS stack. Reflectors are clearly visible from 0 to 7
km depth throughout the entire image. In the western part of the section, two deep events are
displayed at 8–10 km depth at CMP 4000–4500. The boundaries ofthe salt plugs appear at their
corrected lateral position and diffractions are focused ascompared to the time stacked sections.
At ∼9 km depth the images of reflector elements of the pre-Permianage are visible between
CMP 2000–2500 and 3000–3500. These reflectors were not identified before.

The interior of the salt plug located in the middle part of thesection is enlarged in Figure3.19(a).
The top of salt at about 1 km depth is clearly visible. The image shows a set of unique internal
reflectors between CMP 2600 and 2900 at 2–5 km depth that can be associated with different
kinds of salt of unknown age from Rotliegend to Keuper (see stratigraphic chart in Figure2.2).
All horizons down to base Rotliegend at 6.5–7 km depth are clearly visible.

PostSDM of the CRS stack can be used as complementary material to PreSDM for the inter-
pretation of the salt-rich areas of Northern Germany. The depth image of the entire section
reveals new details not identified before after conventional CMP processing, indicating an alter-
native geological interpretation of the salt structure andthe underlying pre-Permian. The latter
helps to evaluate the hydrocarbon systems in this area. Thisincludes the structural setting as
well as the distribution of source rocks, and possible migration pathways, which is discussed by
Baykulov et al.(2009).
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Figure 3.17: Land data: poststack depth migration of the CRS stack. The boundaries of the salt
plugs are corrected for their lateral position and diffractions are focused as compared to the time
stacked sections. Reflectors are clearly visible. The rectangle is enlarged in Figure3.19(a).
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Figure 3.18: Land data: Kirchhoff prestack depth migrationof the CMP gathers. The image
quality is low compared to the PostSDM of the CRS stack (see Figure 3.17). Salt-sedimentary
boundaries are hardly visible. The internal structure of the salt plug in the middle part of the
section is poorly imaged. However, the PreSDM produced better images of pre-Permian sedi-
ments in the deeper part of the section between 0 and 3500 CMP at5–8 km depth (below base
Rotliegend). The rectangle is enlarged in Figure3.19(b).
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3.4.2 Prestack depth migration

Kirchhoff prestack depth migration was applied to the preprocessed CMP gathers. The PreSDM
as applied here operates on common-offset gathers. Because of the irregular acquisition geom-
etry, the seismograms were first resorted to obtain binned common-offset gathers with an offset
bin spacing of 100 m. The migration result is shown in Figure3.18. Low S/N ratio of the input
CMP gathers and irregularity of traces lead to the low qualityof the prestack depth migrated
section. The upper part of the section from 0 to 5 km depth is poorly imaged. Strong lateral
amplitude variations complicate the correlation of reflector elements. Salt-sediment boundaries
are sometimes unclear compared to the PostSDM of the CRS stack.However, the deeper part of
the section between 5 and 10 km depth at CMP 0–1500, contains a set of horizontal reflectors
not clearly imaged in the PostSDM section. The prestack depth migration provides better verti-
cal resolution than the migration after stack in this area. Reflectors appear more continuous and
better suited for interpretation than the poststack depth migrated image of the same part of the
section3.17.

Comparison of the results of the CRS stack processing with the conventional processing in
the area of the salt plug (Figure3.19) shows a significant difference between the two images.
Whereas the PostSDM of the CRS stack shows improved images of theinternal salt reflectors
and of the salt-sedimentary boundaries compared to the PreSDM, the latter shows improved
images of the deeper part below base Rotliegend (>7 km depth).

Figure3.20shows the depth migrated CIGs. Only few irregularly located flat reflector elements
are visible in the seismograms. Due to the low quality, the CIGs are only partially suited for the
quality control of the migration velocities. In the noisy areas, where no reflectors are visible,
the reliability of the model can not be confirmed by the CIGs. However, the part of data from
0 to 1500 CMP contains pronounced reflectors at 3 to 8 km depth that are almost flat. Also,
in the western part, flat reflectors at CMP 4000 and 8 to 11 km depth are visible. In Chapter 4
of this work a method of improving the quality of prestack data is introduced, which generates
CIGs of higher S/N ratio with the same velocity model. using that method, the correctness of the
migration velocity model is confirmed using the new depth migrated gathers of higher quality,
where much more horizontal reflector elements are visible.

3.5 Conclusions

Seismic processing using the CRS stack provided results that can help revise the structural setting
and the evolution of salt plugs in the area of the Glückstadt Graben. The reprocessing of old
seismic data clearly demonstrated the capability of the CRS technique to produce high-quality
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Figure 3.19: Land data: comparison of the PostSDM of the CRS stack (a) and the PreSDM of the
CMP gathers (b). The enlarged images of the middle salt plug (see Figures3.17and3.18) show
the potential of the CRS technique to image low-fold data. Internal salt reflectors are clearly
visible between CMP 2600 and 2900 at 2–5 km depth in PostSDM. Pronounced reflectors in the
interval from 0 to 7 km depth are also better imaged in the PostSDM. However, the PreSDM
shows the pre-Permian sediments below 7 km depth more continuously and a correlation of the
sub-salt structures with the surrounding sediments can be performed more easily.
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Figure 3.20: Land data: common image gathers obtained afterPreSDM with the NIP-wave
tomographic model. The irregular acquisition geometry andlow S/N ratio of the CMP gathers
result in the low quality of the depth-migrated gathers. Large residual moveout is not observed,
which confirms the good quality of migration velocity model in the areas, where horizontal
reflectors are visible.

images of low-fold data. The CRS stack section displays a considerably-improved S/N ratio
and shows much more details than the CMP stack section. Moreover, a velocity model was
built and depth migrated sections were obtained, which wereso far not available for these data.
Conventional velocity building methods based on residual moveout analysis of the CIGs are not
well suited for these complex data since very few reflector elements are visible in the prestack
gathers. In contrast reflections in the time-stacked domainwith its higher S/N ratio are easily
picked using the results of the CRS stack. These picks provide all necessary information for the
tomographic inversion of the data. After several tomographic iterations, a smooth velocity model
was obtained, which was used for the depth migration of the dataset.

Compared to conventional tomographic methods, the NIP-wavetomographic inversion does not
need any user intervention after each iteration. The initial velocity model is automatically up-
dated in order to decrease the misfit between computed and input data.

Poststack depth migration of the CRS stack provided a depth image with high S/N ratio, where
some details not identified by the conventional processing are observed. The prestack depth mi-
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grated section, however, has lower S/N ratio. Here, the identification of reflectors is complicated
compared to the PostSDM section. The quality of the CIGs and consequently the PreSDM sec-
tion can be improved by applyingthe partial CRS stackmethod on the original CMPs. This new
method is described in the following chapter.
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Chapter 4

Partial CRS stack

The quality of seismic reflection data is very important for processing. It depends on a number of
factors, e.g., surface topography, the complexity of the subsurface, and the technical equipment
used during the acquisition. The presence of natural and anthropogenic factors can also affect
land seismic measurements (see, e.g.,Stolt, 2002; Spitzer et al., 2003; Chandola et al., 2004).
Inhomogeneities in the subsurface, the presence of fault structures and strong velocity contrasts
like in the areas of salt plugs lead to a decrease of the S/N ratio, as it was shown in the land data
examples in the previous chapter.

Quite often the quality of old seismic reflection data, whichneeds to be reprocessed, is compa-
rably low because of the short maximum offsets, irregular acquisition, and low CMP fold. All
these factors require a complex workflow to precondition thedata for velocity analysis, velocity
model building and other processes. The quality of time and depth migrated stacked sections
is consequently poor. Furthermore, the prestack CMP gathersof real land data may contain
sparse seismograms located irregularly over the short offset range. Regularisation of seismo-
grams and filling the gaps in case of missing data is usually performed using different binning
and interpolation techniques (see, e.g.,Brune et al., 1994; Yilmaz, 2001; Stolt, 2002; Fomel,
2003; Spitzer et al., 2003; Chandola et al., 2004; Herrmann et al., 2008).

Chapters 2 and 3 demonstrated the application of the CRS stack toenhance the quality ofstacked
time sections and corresponding PostSDM. However, the PreSDM of noisy CMP gathers of land
data produces depth migrated section of comparably lower quality than the PostSDM of the
CRS stack. This chapter shows the potential of the CRS stack method to improve the quality of
prestackdata. The CRS traveltime formula, where the dip of the reflectorelement is incorpo-
rated, is used to compute new partially-stacked CRS supergathers, where each trace is a result
of summation of data along the CRS stacking surface. The numberand location of traces in the
produced supergathers can be defined, e.g., to fill in missingoffsets. Since no interpolation but a



94 CHAPTER 4. PARTIAL CRS STACK

summation of data is performed, the method is very robust in the presence of non-coherent noise.
Moreover, a regularisation of traces can be achieved with the partial CRS stack. As described in
Müller (1999); Jäger et al.(2001), the CRS stacking surface approximates the traveltimes of seis-
mic reflection data more precisely than the NMO/DMO stack. Therefore, the application of the
CRS stacking surface to produce regularised data can be superior to the methods based on the
conventional NMO/DMO and binning/interpolation techniques described, e.g., byBrune et al.
(1994).

4.1 Basic idea of partial CRS stacks

Partial CRS stacks (Baykulov and Gajewski, 2009, 2008) calculate a stacking surface around a
specified point defined by its offset and traveltime coordinates in a chosen CMP location and
perform the summation of data along that surface. The resultof summation is assigned to a new
sample with the same CMP, offset, and time coordinates. Repeating this procedure for all desired
points generates a new gather that is called(partially stacked) CRS supergatherin the following.
In Figure4.1, the partial CRS stack surface is shown as a red grid around the specified event
(red point) in a selected CMP gather. That surface coincides locally with the CRS stack surface
introduced in Chapter 1, but the size of the partial CRS stackingsurface is smaller.

The partial CRS stacking surface is defined by the zero-offset (t0) time of the considered point
and the corresponding CRS parameters. The hyperbolic traveltime formula, introduced in Chap-
ter 1, describes the traveltime as

t2(m,h) =
(

t0 +
2 sin α

V0

m
)2

+
2t0 cos2 α

V0

(m2

Rn

+
h2

Rnip

)

, (4.1)

whereh is half source-receiver offset,m is the midpoint displacement with respect to the con-
sidered CMP position,t0 is the zero offset two-way traveltime, andα, Rn, andRnip are the CRS
parameters defined for thatt0.

To use all available traces for partial stacking it is necessary to define the same size of the surface
as it is used for the CRS stack. However, the maximum offset or midpoint distance from the se-
lected CMP point may be smaller than that defined for the CRS stacksurface. The measurements
of the partial CRS stack surface in offset and midpoint dimensions, therefore, are calledpartial
CRS stack aperturesin the following. These apertures should be adjusted according to the aim
of processing, and may enclose only some traces on the CRS stacking surface around the chosen
point. Stacking more traces may be necessary to fill large data gaps present in the CMP gathers.
In that case the information from the neighbouring CMPs or from the neighbouring offsets is
used to generate a new trace in the CRS supergather.
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Figure 4.1: The partial CRS stack performs the summation of data around the specified point
on a CMP traveltime curve (magenta line) and assigns the result to the same point in a newly-
generated CRS supergather. The partial CRS stacking surface shown with a red colour coincides
locally with the CRS stacking surface (green colour), but may be limited in size. In this example
only five neighbouring offsets and full midpoint range are considered to generate one trace in the
CRS supergather.

Since the partial CRS stack performs the summation of data to generate one sample in the CRS
supergather, it enhances the quality of the seismograms by increasing their S/N ratio. The CRS
stacking surface can be calculated for every desired offset, which means that the data regularisa-
tion can be performed within each CMP gather.

The incorporation of the midpoint displacementm into the calculation of the partial CRS stack-
ing surface acknowledges the reflector dip in the construction of CRS supergathers. As a result,
the partial CRS stack method is superior to the conventional CMPbinning technique (for detail
see, e.g.,Yilmaz, 2001), where the dip of the structure is not considered. As shown in Müller
(1999) andJäger et al.(2001), the CRS stacking surface describes the reflection response better
than the NMO/DMO stack. Therefore, the partial CRS stack should produce better results than
the existing NMO/DMO interpolation schemes as described byBrune et al.(1994). Only if the
shape of the true subsurface reflector is identical to the shape of the specific ZO isochrone, the
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NMO/DMO stacking surface describes the data identical to the partial CRS stacking surface (see,
e.g.,Jäger et al., 2001).

Since the partial CRS stacking surface is calculated not only for the zero-offset trace but for
every specified source-receiver offset and the result of partial stacking is assigned to the trace
with the specified offset, the output gathers are not NMO-corrected. Therefore, the partial CRS
stack supergathers may be used further in many standard processing steps, e.g., velocity analysis,
stacking, or migration.

4.2 Calculation of partial CRS stacking surface

The partial CRS stacking surface is calculated in a selected CMPlocation for every specified
sampleA(tA, hA), wheretA is two-way traveltime, andhA is half source-receiver offset. The
accurate zero-offset time and the corresponding CRS parameters (α,Rn, Rnip), describing this
event, need to be found. In the course of this thesis a search algorithm was developed and opti-
mised to find zero-offset traveltimes for offset locationshA of the partial CRS stacking surface
that exactly fits the sampleA. The CRS parameters for each CMP location in the stacked volume
need to be known. These CRS parameters are determined by the automatic search described by
Müller (1999), Jäger et al.(2001) andMann(2002).

The zero-offset traveltime search is performed for every CMPlocation of the data independently.
Since the CMP traveltime curve is a special case of the CRS stack surface when the midpoint
distancem = 0 (see equation1.7), this search is simplified to find the CMP hyperbola that fits
the event inA best. All zero-offset traveltimes within the range [0; tA] and the corresponding
CRS parameters are tested to determine the hyperbola that has the minimum time deviation from
tA at the offsethA. Following from equations1.7 and1.8, the traveltime of best-fitting CMP
curve is described as

t2(h) = t′20 +
2t′0 cos2 α

V0

h2

Rnip

, (4.2)

wheret′0 is the tested zero-offset traveltime, andα andRnip are the CRS parameters correspond-
ing to thatt′0.

However, the defined hyperbola does not fit the eventA(tA, hA) exactly because only discrete
values of zero-offset traveltimes may be tested. The determined t′0, may, therefore not be used
to describe the partial CRS stacking surface because the events would not be stacked coherently
in that case. In conclusion, the CMP hyperbola has to be corrected to exactly fit the pointA.
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Assuming thatα andRnip are varying smoothly in the vicinity of the considered eventA, these
parameters are kept fixed in the equation4.2. Setting the traveltimetA and the offsethA of the
eventA into equation4.2yields

t2A = t20 +
2t0 cos2 α

V0

h2
A

Rnip

, (4.3)

where t0 is a zero-offset traveltime of a CMP traveltime curve that fitsthe eventA exactly.
Solving this quadratic equation with respect tot0 and neglecting the negative solution results in

t0 = −h2
A cos2 α

V0Rnip

+

√

(h2
A cos2 α

V0Rnip

)2

+ t2A, (4.4)

whereα andRnip are defined for the traveltimet′0. Here, theRnip, which is a measurement of
a reflector depth, is assumed to be positive. Considering negative values ofRnip, which may
occur in some situations, it will be necessary to take the second solution of the equation4.3
into account. The such-definedt0 is now used in equation4.1 to construct the partial CRS
stacking surface that exactly fits the considered eventA. This surface is used to sum up the data
coherently. The resulting sum is divided by the number of traces involved in the summation. So,
the amplitudes of signal in the generated CRS supergather are comparable with the amplitudes
of signal in the CMP gathers, whereas the noise is attenuated.

4.3 Synthetic data tests

In order to test the partial CRS stack method and to show its advantages, I applied it to the
Sigsbee 2A synthetic dataset.

4.3.1 Noise-free Sigsbee 2A dataset

Sigsbee 2A is a constant density acoustic synthetic datasetreleased in 2001 by the "SMAART
JV" consortium. It models the geologic setting found in the Sigsbee escarpment in the deep water
Gulf of Mexico. In this study, I consider only that part of thedataset that does not contain the salt
structure. The data do not contain free surface multiples and almost no internal multiples due to
very low acoustic impedance contrasts. The interval velocity model used for the generation of
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of the data.

seismograms is shown in Figure4.3(a). The model has been computed as a linear velocity func-
tion with fluctuations of up to about 3%. The linear function of interval velocityV is described
as

V (Z) = V0 + 0.3(Z − Zseafloor), (4.5)

whereV0 is 1500 m/s,Z is depth, andZseafloor is the depth of the water bottom. The reflection
interfaces result of velocity contrasts that fluctuate within ±100 m/s relative to the linear velocity
function, enough to generate reflections.

A number of normal and thrust faults and diffractor points are present in the data. The shot
spacing is 45.72 m with 348 channels per shot and a receiver spacing of 22.86 m. Therefore,
the resulting CMP interval is 11.43 m, and the maximum CMP fold is 87. The data are sampled
every 8 ms with a total recording time of 12 s. Figure4.3(b)shows a typical CMP gather with
up to 3500 m offset and TWT=10 s.

In total, I processed 500 CMP with the CRS stack method. First, the CRS parameters were
estimated in a similar way as described in the previous chapters of the paper. I did not used a ref-
erence velocity model for the stacking velocity search for this data, i.e., only the surface velocity
and the range of tested velocity values were defined. Table4.1shows the summarised processing
parameters used during the automatic CRS searches. The maximum midpoint deviationm was
set to 260 m at TWT=2.3 s and 900 m at TWT=11 s and interpolated linearly for intermediate
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values. An offset range of 914 m at TWT=2.3 s and 3800 m at TWT=11 swas used and again
interpolated linearly. Figure4.4shows the resulting sections of CRS stacking parameters.
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Figure 4.3: Sigsbee 2A data: the true interval velocity model (a) and a CMP gather (b). Fluctua-
tions of interval velocities of up to±100 m/s from the gradient model produce the reflections in
the CMP gather.

Surface velocity 1500 m/s
Reference velocity model not used
Tested velocity range [1400; 5000]
Maximum dip angle 60◦

Minimum offset aperture 914 m at 2.3 s
Maximum offset aperture 3800 m at 11 s
Minimum midpoint aperture 260 m at 2.3 s
Maximum midpoint aperture 900 m at 11 s

Table 4.1: Sigsbee 2A data: processing parameters used for the automatic CRS search.

4.3.2 Sigsbee 2A data with sparse traces

In order to test the partial CRS stack method on sparse data, I randomly eliminated some traces
from the CMP gather shown in Figure4.3(b). As a result, only 20 seismograms spaced irregularly
remained in the gather (see Figure4.5(a)). The CRS parameters obtained during the automatic
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Figure 4.4: Sigsbee 2A data: results of the automatic CRS parameter searches.
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searches from the original data were used to compute partialstacked CRS supergathers. The
partial CRS stack aperture in offset dimension was limited to contain only one offset, corre-
sponding to one common-offset red curve in Figure4.1. In the midpoint direction the aperture
was the same as for the CRS stack (see Table4.1). The resulting CRS supergather is shown in
Figure4.5(b). It contains much more traces than the original sparse CMP gather. The areas of
missed traces are filled using the information from the neighbouring CMPs located at the partial
CRS stack surface. The gathers are muted according to the defined offset aperture used dur-
ing the CRS parameters search. Because of the larger number of traces, reflections in the CRS
supergathers appear sharper and can be better distinguished in comparison to the CMP gather
(compare to Figure4.3(b)).

CMP gathers and CRS supergathers were stacked with the same stacking velocity model obtained
from the original data. It is possible to use the partial CRS stacked supergathers during the
automatic CMP search to define a more reliable stacking velocity model and CRS parameters.
However, this is not yet implemented, and will be a target of further investigations. This work
emphasises the improvement of the data quality only due to the partial stacks, thus the CRS
parameters determined for the original data were used.

Figure4.7depicts the resulting ZO stacked sections. The ZO CMP stack section (Figure4.7(a))
displays a lower quality in the areas of fault structures andsteep dipping layers. The CRS super-
gather stack (Figure4.7(b)) shows better continuity of horizons at all time levels and produced a
better image of conflicting dip areas.

Conflicting dips areas are a general problem to the CRS stack method. For crossing reflections
only one dip is considered during the automatic parameter search with preference to the most co-
herent, i.e., strongest event. However, it is possible to analyse conflicting dips separately, which
results in a number of different CRS stack parameters(α,Rn, Rnip) for every pointt0 in con-
flicting dip areas. Although the partial CRS stack method takesthe information about different
conflicting dips into account, the automatic parameter search for Sigsbee 2A data was adjusted
to consider only one dip. Therefore, the primary events werepreferred, but the diffractions were
attenuated as it is seen by comparing Figures4.7(a)and4.7(b). Nevertheless, the stacked section
of the CRS supergathers appears clearer and better suited for interpretation than the CMP stack
section.

4.3.3 Sigsbee 2A data with noise

In order to show the advantages of applying the CRS supergathermethod to noisy data, I added
Gaussian noise with S/N=20 to the original seismograms. TheS/N ratio was computed with
respect to a signal with the maximum amplitude. As a result, only the strongest events like the
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Figure 4.5: Sigsbee 2A sparse data: (a) the seismograms wererandomly removed from the
original CMP gather (Figure4.3(b)) to obtain a sparse irregularly sampled gather. As a result,
20 traces remained. (b) CRS supergather. The partial CRS stacking increased the number of
traces and filled the gaps using the information from neighbouring traces. The red rectangles are
enlarged in Figure4.6.

(a) CMP gather (b) CRS supergather

Figure 4.6: Sigsbee 2A sparse data: enlarged images of the CMPgather (a) and the CRS super-
gather (b).
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(a) CMP stack (b) CRS supergather stack

Figure 4.7: Sigsbee 2A sparse data: the conventional CMP stack (a) has lower quality in con-
flicting dips areas. In the CRS supergather stack (b), reflections are more continuous and appear
clearer. Diffractions are attenuated.

reflection from the water bottom (4 s TWT) and the bottom of the model (9 s TWT) are visible
in the CMP gather (Figure4.8(a)). Since the amplitudes of all other reflections are lower, they
are almost not visible. An automatic CRS parameter search was carried out for the noisy seismo-
grams. The obtained CRS parameters were used to build the partial stacked CRS supergathers.
The result is shown in Figure4.8(b) and as a close-up in Figure4.9. Compared to the CMP
gather, the reflections in the CRS supergather are clearly visible at all times. The noise is still
present, but the S/N is significantly increased.

Figure4.10demonstrates the advantage of CRS supergathers for the stacking. Whereas the CMP
stack of the noisy seismograms (Figure4.10(a)) has a lower S/N ratio than the CMP stack in
Figure4.7(a), the stacked CRS supergathers (Figure4.10(b)) show almost no visible differences
to the stacked supergathers without noise (Figure4.7(b)). This means that the partial CRS stack
is very stable in the presence of non-coherent noise. This advantage, however, requires a reliable
determination of the CRS parameters (α, Rn, Rnip).
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Figure 4.8: Sigsbee 2A data with noise: the CMP gather (a) contains less traces than the partial
stacked CRS supergather (b). Reflections in the CMP gather are hardly visible. The CRS su-
pergather displays a significantly increased S/N and reflections are clearly visible from 4 to 9 s
TWT. The red rectangles are enlarged in Figure4.9

(a) CMP gather (b) CRS supergather

Figure 4.9: Sigsbee 2A data with noise: enlarged images of the CMP gather and the CRS super-
gather as shown in Figure4.8.
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(a) CMP stack (b) CRS supergather stack

Figure 4.10: Sigsbee 2A data with noise: the conventional CMPstack (a) has lower S/N ratio
than the CMP stack section without noise (Figure4.7(a)). The CRS supergather stack (b) shows
almost no visual differences to the stacked section withoutnoise (Figure4.7(b)).
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4.4 Application to land data and depth migration

After successful tests of the partial CRS stack on the synthetic dataset, I applied it to the low-fold
land data from Northern Germany introduced in Chapter 3. Figure4.11(a)shows a typical CMP
gather of the data. Although preprocessing was applied, theS/N ratio of the seismograms is
low. About 20 traces are distributed irregularly over the full offset range, leading to difficulties
in identifying reflections.

Conventional binning of neighbouring CMP gathers into a new gather does not yield the desirable
quality enhancement of the prestack data because merging ofdata without the correction for the
dip of the layers leads to smearing. Figure4.11(b)shows a binned gather obtained by combining
ten CMPs, corresponding to a bin size of 200 m. The resulting CMPbin provides a better
coherency of the reflection events in the upper part, but it does not completely fill the data gaps
at certain offsets (around 2000 m and 3700 m). Combining 20 CMPstogether (bin size 400 m) as
shown in Figure4.11(c)fills these gaps but decreases the energy of reflection events. Combining
more CMPs would further decrease the coherency of the reflection events.

Since the CRS parameters were already estimated for the dataset (see Chapter 3, Figures3.7 to
3.10) they were used to generate the partial stacked CRS supergathers. The partial CRS stack
aperturem was set to 400 m at the surface and 2000 m at 5 s TWT, which is the same as used
during the CRS parameter search. Regularisation of traces was applied to the dataset with the
partial CRS stack aperture in offset dimension adjusted to 100m.

An example of the resulting CRS supergathers is shown in Figure4.11(d). A significantly larger
number of traces is present in the CRS supergather than in the original CMP gather. The traces
are well distributed and fill the gaps in Figure4.11(a). Reflections are clearly visible at all times
down to 4 s TWT. Also, some events at TWT = 4.5–5 s, 1000–2000 m offset can be observed.
Compared to the binned CMP gathers (Figures4.11(b)and4.11(c)), the CRS supergather pro-
vides a better S/N ratio and shows a better continuity of reflections at all time levels.

4.4.1 PreSDM of CRS supergathers

Prestack Kirchhoff depth migration was applied to the CRS supergathers with the same param-
eters as used for the original CMPs (see Table3.4). In order to demonstrate the benefits of the
partial CRS stack only, the NIP-wave tomography model derivedfrom the original data (see Fig-
ure3.16) was used to migrate both sets of original and partial stacked gathers. The improvement
of the migration velocity model using the partial stacked CRS supergather for the NIP-wave to-
mographic inversion may be the target of further investigations. Performing a PreSDM with the
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(a) CMP gather (b) CMP bin with 10 CMPs

(c) CMP bin with 20 CMPs (d) CRS supergather

Figure 4.11: Real land data from Northern Germany: the CMP gather (a) has about 20 traces
distributed irregularly and is not well suited for advancedseismic processing as coherent reflec-
tion events can not be observed. Combination of more CMP gathers into a new one, ten CMPs
for (b) and 20 CMPs for (c), increases the coherence of events,but does not increase the S/N ra-
tio. The CRS supergather (d) provides significantly increasedS/N ratio and increased reflection
continuity since the information about reflector dips is incorporated in the partial stacks during
the formation of supergathers. The red rectangles are enlarged in Figure4.12.
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(a) CMP gather (b) CRS supergather

Figure 4.12: Close-up of real land data from Northern Germanypresented in Figure4.11. (a)
the CMP gather contains only a few traces with irregular spacings. Reflections are not visible,
the S/N ratio is low. (b) The partial stacked CRS supergather contains more traces with higher
S/N ratio than the CMP gather. The CRS supergather is regularised, and the data gaps present in
the CMP gather are filled. Reflections are clearly visible and can be used for further processing
steps, e.g., velocity analysis or migration.

original data yields the depth-migrated section with low S/N ratio shown in Figure3.18. Exem-
plarily chosen CIGs shown in Figures4.13(a)and4.13(c)are only partially suited for residual
moveout analysis and quality control. Only the strongest reflector at 1.2 km depth can be seen in
Figure4.13(a)and at 2, 4, 5, and 6 km depth in Figure4.13(c).

The PreSDM section obtained from CRS supergathers is shown in Figure4.15. It shows a signif-
icant improvement of image quality (compare enlarged images of the middle salt plug in Figures
4.17and4.16). Horizons are more continuous and a higher S/N ratio is obtained. PreSDM of
CRS supergathers provides better resolution than the original CIGs (see Figures4.13and4.14).
Reflectors in the improved gathers are clearly visible and canbe easily identified in Figure4.19.

The zoomed images of internal salt structure presented in Figure4.18show that the PreSDM of
CRS supergathers produced a depth section with a quality comparable to the PostSDM of the
CRS stack. This result is very important for the geological interpretation in the study area. The
horizontal depth migrated CRS supergathers (4.19) confirm the consistency of the velocity model
used for migration with the data, which was hardly possible using the conventional CIGs.
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(a) CIG 3100 (b) Super CIG 3100

(c) CIG 2140 (d) Super CIG 2140

Figure 4.13: CIGs of real land data located to the left and right of the salt plug (see Figure4.16
and Figure4.17). The conventional CIGs display only the strongest reflectors at 1.2 km depth
for CIG 3100 (a) and at 2 to 6 km depth for CIG 2140 (c). The corresponding depth migrated
CRS supergathers (b, d) have an increased S/N ratio and reflectors at depths down to 9–10 km
are visible. The red rectangles are enlarged in Figure4.14.
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(a) CIG 2140 (b) Super CIG 2140

Figure 4.14: Zoom of prestack depth migrated CIGs of real landdata as presented in Figure4.13.
The conventional CIG (a) is not suited for residual velocity analysis and quality control since the
reflectors are hardly visible. The PreSDM of the partial stacked CRS supergather (b) shows much
more reflector elements, which allows further residual moveout analysis and quality control of
the depth velocity model.

0

1

2

3

4

5

6

7

8

9

10

11

12

D
ep

th
 (

km
)

50010001500200025003000350040004500
W                                              CMP number                                              E

Figure 4.15: Kirchhoff prestack depth migration of the CRS supergathers. The image quality is
high compared to the original PreSDM section (see Figure3.18). Salt-sedimentary boundaries
are clearly visible. The internal structure of the salt plugin the middle part of the section is
significantly improved.
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Figure 4.16: Land data: conventional PreSDM section in the salt plug area. The S/N ratio is low.
Reflectors are not continuous. The internal structure of the salt plug and the reflectors below 7
km depth are hardly visible.

Figure 4.17: Land data: PreSDM section of CRS supergathers in the salt plug area. The image
quality is significantly enhanced compared to Figure4.16. The horizons are more continuous
and the S/N ratio is enhanced. Internal salt reflectors between 2600 and 2800 CMP at 2-6 km
depth are clearly visible. Also, the images of the sub-salt areas of the section below 7 km are
improved. The areas of improvement are shown with the black arrows.
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(a) PostSDM of the CRS stack
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(c) PreSDM of CRS supergathers

Figure 4.18: Land data: comparison of depth migrated sections in the salt-rich area. Whereas
the quality of the conventional PreSDM section (b) is low, the PreSDM of CRS supergathers (c)
produced an image with a quality comparable to the PostSDM ofthe CRS stack (a).
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Figure 4.19: Land data: CIGs of CRS supergathers. The image quality is significantly enhanced
compared to the conventional CIGs as presented in Figure3.20. The gathers are flat almost
everywhere. Only the CIG 3600, located close to the salt-sedimentary boundary, shows residual
moveout at 8.5 to 10 km depth.

4.5 Discussion and Conclusion

The developed partial CRS stack technique has shown the potential to enhance the quality of 2D
prestack seismic data. The program generates new regularised gathers of higher quality. In this
study, the method was successfully implemented and appliedto 2D synthetic data and to low-fold
land data. The synthetic examples confirm potential of the method to increase the S/N ratio of
seismograms and the regularity of traces. The sparse land data were regularised and the S/N ratio
of seismograms was increased. Prestack depth migrated CRS supergathers of land data allowed
a reliable quality control of the velocity model used for migration, which was not possible after
conventional processing. The new depth migrated images of improved quality may be useful as
a supplementary information for better geological interpretation.

Similar to the CRS stack, the partial CRS stack takes the information from conflicting dips into
account. To use this option the proper CRS parameter set must beestimated. This results in a
number of different stacking surfaces for one sample of seismic data. The automatic search of
CRS parameters for conflicting dips is already implemented in 2D and can be applied for partial
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CRS stacks.

The usage of partially stacked CRS supergathers instead of conventional CMPs in seismic pro-
cessing is advantageous especially for sparse data of low quality. Results of velocity analysis,
stacking and depth migration may be improved using the gathers generated by the new approach.
The new gathers can also be useful for the optimisation of theCRS parameter search. The
improved CRS parameter sets will probably provide a basis for stable NIP-wave tomographic
inversion. Finally, the CRS supergathers may also contributeto improve multiple attenuation
techniques, as used byDümmong and Gajewski(2008).

Compared to the conventional CMP stack, the CRS stack in general requires more CPU time.
For example, the automatic CMP stack of the real land data usedin this work took about 10
min, whereas the CRS stacking needed about 10 hours to completewhen one CPU with 2.6
GHz and 1 GB RAM was used. More significant is the CPU time needed to estimate the CRS
parameters, which took more than 10 days on the hardware mentioned above. The computation
time, however, may vary depending on the apertures used by the CRS parameter search, the
number of conflicting dips, and other factors. Much more difficult is to estimate the time that a
user needs for testing the apertures, thresholds etc. Nevertheless, the CRS stack is an automatic
approach that needs only minor human interaction, if the processing parameters are known for
the dataset. In this case, the total time costs might be even less than the turnaround time of the
conventional CMP processing. The partial CRS stack of the land dataset took about 30 hours,
which is fast compared to the CRS parameter search. It is important to mention that the CRS
stack is an independent process for each sample and is well suited for parallelisation. Using a
computer cluster (a group of processors) the computation time for the CRS parameter search and
the partial CRS stack can be significantly reduced. Due to the independence of each time sample,
no communication of nodes is required. The decrease of CPU time should scale almost linearly
with the number of nodes on a parallel system.
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Chapter 5

Summary and Outlook

5.1 Summary

The CRS stack used in this work allows to enhance the quality of poststack and prestack seismic
reflection data in complex geological settings. Due to the increased number of traces used by
stacking in comparison to the conventional CMP stack, the resulting CRS stack sections have a
higher S/N ratio, thus providing clearer images of the subsurface. Moreover, information about
the shape of seismic reflectors, i.e., dip and curvature, is taken into account by the CRS stack,
further improving stacking results. Especially in the areas of complex salt tectonics with the
presence of steeply dipping layers the CRS stack provides moredetailed images of the geological
structure than the conventional CMP stack method. Additional benefit of the method is that the
stacking and velocity model building is carried out in an automatic mode with moderate human
interaction. The CRS stack allows to perform a complete processing workflow that starts with
generating an automatically stacked CMP section and ends with prestack depth migration of
partially stacked CRS supergathers.

The results of the CRS stack processing applied to two datasetsfrom Northern Germany and
from the North Sea provided supplementary information for further interpretation of the data.
Neither depth velocity model nor depth migrated sections ofthe land data presented in this work
were so far available. The reprocessing of old low-fold datawith the CRS stack method outlined
new features not identified before. The presented results may lead to a new view of the geological
understanding of the region. The resulting time and depth images partly contributed to the special
project of the German Research Foundation SPP 1135 "Dynamics of Sedimentary Systems".

Thepartial CRS stackdeveloped in this work allows to generate prestack seismic data of better
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quality than the original CMP gathers. The method uses the CRS traveltime formula for partially
stacking the seismograms without the application of the normal moveout (NMO) correction. As
a result, partially stacked CRS supergathers of higher S/N ratio are obtained. Moreover, the
method allows to regularise irregularly-acquired data. Partial stacking fills in missing traces and
creates seismograms which are equally spaced. Partially stacked CRS supergathers can be used
in conventional processing like velocity analysis or migration instead of the original data. The
partial CRS stack method allows to enhance seismic events thatwere not recognisable in original
low-quality data.

The partial CRS stack method was tested on a synthetic dataset for sparse and noisy data. For
sparse data, the partial CRS stack filled in the missing offsetsin an exemplarily-chosen CMP
gather with the information from neighbouring CMPs. The resulting gather showed parts of re-
flections which were not visible in the input CMP gather. The second synthetic example demon-
strated the possibility of the partial CRS stack to improve theS/N ratio of seismograms. Gaussian
noise was added to the seismic traces until the reflections became almost not visible. In the gen-
erated CRS supergather these reflections could again be easilyidentified.

The partial CRS stack method was then applied to low-fold land data in order to improve the
quality of the prestack depth migrated gathers. First, the partially-stacked CRS supergathers
were generated. The result showed greatly improved prestack data of higher S/N ratio, where
continuous reflections were clearly visible. Then, the improved data were depth migrated using
the velocity model derived from the original data. Reflectorsin the depth migrated CRS super-
gathers are clearly visible and almost horizontal at all depth levels. The latter confirms that the
depth velocity model used by migration is consistent with the data, and that the results of mi-
gration can be used for geological interpretation. Reliablequality control of the migration result
was so far not possible using the original data. The prestackdepth migrated section obtained
from the CRS supergathers has higher S/N ratio than the conventional PreSDM section, and the
reflectors appear more continuous, supporting further geological interpretation.

5.2 Outlook

The partial CRS stack method based on the CRS traveltime formula provides a hyperbolic ap-
proximation of the reflection response. Therefore, the apertures of stacking in both offset and
midpoint directions must be chosen carefully with respect to the complexity of the subsurface.
However, the developed search algorithm allows to find the best fit hyperbolic formula for the
non-hyperbolic events as well. I suppose, therefore, that the robust summation in the midpoint di-
rection used to generate the supergathers would produce reliable results also for non-hyperbolic
events. This point, however, needs further investigations. Also, the conflicting dip problem
indicated in the discussion of partial CRS stack method may be the target of future work.
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Since the partial CRS stack performs summation of data, amplitude variation with offset is not
taken into account. However, by means of the CRS parameters it is possible to estimate the ge-
ometrical spreading factor required in true amplitude imaging. The application of the CRS stack
for improved AVO analysis has already been presented byPruessmann et al.(2004). Preservation
of amplitudes in the partial stacks will be addressed in future work efforts.

Here, the method was implemented for the 2D case only. The first examples of the 3D CRS
stack on real 3D land data were presented byBergler et al.(2002). They indicated some of the
possible applications of the kinematic wavefront attributes estimated during the 3D CRS stack.
Beyond the outlined applications, the partial CRS stacking surface can be computed for the 3D
data as well, which is the aim of further investigations. Interpolation of data in missing CMP
locations might be useful in the 3D case. The parallelisation of the software and the application
of the partial CRS stack on 3D data are important targets of further work.
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Used software

In the course of this thesis several computers running the free GNU/Linux operation system were
used.

The partial CRS stack method developed during this work was written in C++. The program is
based on the 2D ZO CRS stack code as implemented byMann(2002).

For simple processing and visualisation of the data, the free Seismic Un*x (SU) package was
used. Additional figures were generated using gnuplot, inkscape and gimp. Preprocessing of
the seismic data was carried out with Paradigm FOCUS software. Poststack and prestack depth
migrations were performed using ProMAX of Halliburton.

The Wave Inversion Technology (WIT) consortium provided further software for the CRS pro-
cessing:

• 2D ZO CRS stack (implemented by Jürgen Mann)

• Automatic picking of input data for tomographic inversion (by Tilman Klüver)

• 2D NIP-wave tomography (by Eric Duveneck)

The thesis itself was written on a PC with the free operating system Debian GNU/Linux with the
typesetting system LATEX.
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