Analyse und Quantifizierung geologischer Proben mit der Synchrotron-Röntgenfluoreszenz

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Geowissenschaften der Universität Hamburg

> vorgelegt von Daniel Robert Bessette aus Mannheim

> > Hamburg 1999

Als Dissertation angenommen vom Fachbereich Geowissenschaften der Universität Hamburg auf Grund der Gutachten von: Prof. Dr. H. Schleicher und: Prof. Dr. U. Bismayer

Inhaltsverzeichnis

1.	Einlei	tung	1
2.	Synch	rotronstrahlung	4
	2.1.	Grundlagen der Synchrotronstrahlung	6
	2.2.	Teilchenbeschleuniger	6
	2.3.	Speicherring	7
		2.3.1. Entwicklung von Speicherringen	8
3.	Röntgenstrahlung		
	3.1.	Charakteristische Röntgenstrahlung	10
	3.2.	Auger-Effekt und Fluoreszenz	11
	3.3.	Wechselwirkungen der Photonen mit Materie	12
		3.3.1. Photoelektrischer Effekt	13
		3.3.2. Streuungsvorgänge	13
		3.3.2.1. Rayleigh-Streuung	13
		3.3.2.2. Compton-Streuung	14
4.	Röntgenfluoreszenzanalyse (XRF)		
	4.1.	Grundlagen der quantitativen XRF	15
	4.2.	Wellenlängendispersive XRF	16
	4.3.	Energiedispersive XRF	16
5.	Analy	tik	18
	5.1.	Röntgenfluoreszenzanalyse mit Synchrotronstrahlung (SRXRF)	18
		5.1.1. Das Hamburger Synchrotronstrahlungslabor (HASYLAB)	19
		5.1.2. Der Speicherring DORIS	21
		5.1.3. Der Meßplatz 'Strahl L'	23
		5.1.4. Kapillaren	26
	5.2.	Stand der Forschung	28
		5.2.1. SRXRF-Forschung an terrestrischem Material	30
		5.2.2. SRXRF-Forschung an extraterrestrischem Material	31
		5.2.3. Sonstige SRXRF-Forschung	31
		5.2.4. SRXRF-Forschung am Strahl L des HASYLAB	31

	5.3.	Probenpräparation und Analysevorbereitung	34
	5.4.	Auswahl und Herstellung der Standards	34
	5.5.	Spektrenaufnahme	39
	5.6.	Spektrenauswertung	40
	5.7.	Umrechnung der erhaltenen Daten	43
	5.8.	Der Massenschwächungskoeffizient	44
6.	Quan	tifizierung	46
	6.1.	Einfluß verschiedener Faktoren auf die Fluoreszenzintensität	47
	6.2.	Intensitätskorrektur	51
	6.3.	Probenauswertung	54
	6.4.	Nachweisgrenzen und mögliche Fehlerbestimmung	56
7.	Anwe	endung	60
	7.1.	Petrographie	62
		7.1.1. Die 'Eastern Desert'	62
		7.1.2. 'Gebel Um Rasein'	64
		7.1.3. 'Gebel Hamradom'	66
	7.2.	Geochemie	70
8.	Zusar	nmenfassung und Ausblick	83
9.	Litera	aturverzeichnis	86
10.	Anha	ng	95

1. Einleitung

Die Analyse von Spuren- und Seltenen Erdelementen in einzelnen Mineralphasen und Einschlüssen in Mineralen wurde in den letzten Jahrzehnten zu einem der wichtigsten Werkzeuge in den Geowissenschaften. Es gibt jedoch nur wenige Methoden, die es erlauben, In-situ-Analysen mit einer räumlichen Auflösung von wenigen Mikrometern an natürlichen Gesteinsproben durchzuführen.

Quantitative Analysen zum Verhalten der Spurenelemente in natürlichen Systemen führten stetig zu neuen Entdeckungen über Prozesse und Materialien der Erde. Die hohe Intensität der Synchrotronstrahlung und die räumliche Auflösung von weniger als 5 µm bei einer Nachweisgrenze unter 10 ppm machen diese Strahlungsquelle für die Geowissenschaften so interessant.

Spurenelementbestimmungen in einzelnen Mineralphasen geben Auskünfte über ihre Zusammensetzung und erlauben Einblicke über Druck- und Temperaturbedingungen während ihrer Entstehung. Auch können Zersetzungs- und Absorptionsreaktionen an Mineraloberflächen untersucht werden. Für koexistierende Phasen werden Verteilungskoeffizienten aufgestellt, und durch die hohe räumliche Auflösung ist es möglich, Zonierungen geringster Spuren innerhalb eines Mineralkorns zu studieren.

Neben der Möglichkeit der punktgenauen Analyse liegt der große Vorteil der Röntgenfluoreszenzanalyse mit Synchrotronstrahlung (SRXRF) in der sehr hohen Primärstrahlenergie, mit der Synchrotronstrahlung abgegeben wird. Damit kann mit einer Messung das gesamte Spektrum einer Probe aufgenommen werden, was bei der SRXRF meist energiedispersiv erfolgt. Dabei entfallen annähernd die störenden Überlappungen der ausgesendeten K- und L-Schalenbindungsenergien, da fast ausnahmslos die besser zur Analyse geeigneten stärkeren K-Schalenenergien bis 80 keV gemessen werden können. Die zerstörungsfrei arbeitende SRXRF erreicht dabei Nachweisgrenzen bis in Bereiche unter 10 ppm. Zur Analyse können die in der Mineralogie benutzten Dünnschliffe herangezogen werden, welche lediglich aus ihrem Trägermaterial gelöst werden müssen, um störende Einflüsse zu vermeiden.

Für diese Analysemethode ist am 'Strahl L' des Hamburger Synchrotronstrahlungslabors (HASYLAB) am Deutschen Elektronensynchrotron (DESY) eigens ein Meßplatz eingerichtet worden. Da aber keine geeignete Quantifizierungsmethode zur Verfügung stand, lag das Ziel dieser Arbeit darin, ein für alle Benutzer zugängliches und möglichst leicht zu bedienendes Verfahren zur Quantifizierung zu entwickeln. Eine Quantifizierung mittels der Fundamentalparametermethode nach der Monte Carlo Simulation (Vincze, 1995) war zwar bereits etabliert, doch kompliziert und aufwendig in der Auswertung. Diese Methode war auch nicht ausgerichtet auf Messungen mit zusätzlichen fokussierenden Kapillaren, die den Strahl auf bis zu 2,7 μm einengen können. Diese unterschiedlichen Aufnahmebedingungen führten dazu, die in dieser Ar-

beit vorgestellte klassische Methode der Quantifizierung mit Standards als Basis für eine benutzerfreundliche Auswertung anzuwenden. Hierzu wurden insgesamt fünfzehn, sowohl internationale Geostandards als auch interne, geologische Multielementglasstandards herangezogen. Bei der Quantifizierung spielen zahlreiche Faktoren wie Interelementeffekte, Wechselwirkungen der Elektronen, oder das unterschiedliche Verhalten der Röntgenfluoreszenz mit der Dicke der Probe, der Matrix und der Ordnungszahl des zu untersuchenden Elements, eine wichtige Rolle. Für folgende Elemente wurden Eichgeraden aufgestellt: Zink, Gallium, Rubidium, Strontium, Yttrium, Zirkonium, Niob, Barium, Lanthan, Cer, Neodym, Samarium, Gadolinium, Dysprosium, Erbium und Thorium, ebenso wie Kalium, Calcium, Titan, Mangan und Eisen.

Erste Testmessungen wurden bereits im Spätsommer 1995 durchgeführt, jedoch konnten erst im November 1996 die ersten auswertefähigen Ergebnisse erzielt werden. Da sich der Meßplatz erst im Aufbau befand, konnte er nur Stück für Stück mit geeigneten Kapillaren für die Mikroanalyse und mit für die Quantifizierung notwendigen geologischen Glasstandards ausgerüstet werden. Im Zeitraum von November 1996 bis Oktober 1998 fanden insgesamt acht Meßsessions zu mindestens je drei Tagen statt. Beginnend mit fünf verschiedenen Multielementstandards konnte in dieser Zeit ein Satz von bis zu fünfzehn verschiedenen Standards aufgebaut werden. Hierbei war eine große Anzahl nötig, um die Reproduzierbarkeit und Genauigkeit der Messungen zu bewerten. Später genügt es, einige wenige ausgewählte Standards in eine Meßsession einzubinden.

Es wurden unter verschiedensten Meßbedingungen die unterschiedlichen Ausbeuten der Röntgenfluoreszenz beobachtet. Nach geeigneter Umrechnung der Intensitäten durch Matrix- und Dickenkorrekturen, können für diesen Meßplatz mit der in dieser Arbeit vorgestellten Quantifizierungsmethode Nachweisgrenzen unter 10 ppm bei einem analytischen Fehler von 20 % erreicht werden. Die Röntgenfluoreszenzanalyse mit Synchrotronstrahlung (SRXRF) stellt daher eine sehr nachweisstarke Multielementanalysemethode dar.

Zur Beurteilung und Bewertung der erhaltenen Daten wurden insgesamt 318 Spektren aus 9 verschiedenen Mineralphasen von 20 Gesteinsproben granitoider Zusammensetzung genommen. Mehrere Linienscans und Vergleiche mit anderen Literaturdaten sollen die Ergebnisse veranschaulichen.

In den ersten Kapiteln dieser Arbeit wird ein Einblick in die Synchrotron- und Röntgenstrahlung sowie in die Röntgenfluoreszenzanalyse mit Synchrotronstrahlung gegeben. Im Anschluß wird näher auf die Einrichtung HASYLAB und die Besonderheiten des Meßplatzes eingegangen. Es folgt ein Überblick über die Forschung mit Synchrotronstrahlung in den Geowissenschaften, zunächst allgemein, dann speziell für den Meßplatz Strahl L des HASYLAB sowie eine kurze Einführung in die Spektrenaufnahme und -auswertung. Kernpunkt der Arbeit ist eine Methode zur Quantifizierung unbekannter Proben mit einer Matrix- und Intensitätskorrektur. Anhand der dadurch ermittelten Gehalte verschiedener Mineralphasen werden diese dann mit einigen internationalen Daten verglichen und bewertet.

2. Synchrotronstrahlung

Als Synchrotronstrahlung bezeichnet man die beim Betrieb von Kreisbeschleunigern und Speicherringen auftretende elektromagnetische Strahlung, wenn geladene Teilchen mit relativer Geschwindigkeit eine radiale Beschleunigung erfahren. Dabei handelt es sich um eine sehr intensive, laserähnlich gebündelte Strahlung, die sich über den gesamten Spektralbereich erstreckt. Durch Änderung der Bewegungsrichtung der Elementarteilchen wird im Speicherring eine Primärstrahlenergie erreicht, die um einen Faktor von 10⁶ bis 10¹² höher als in einer herkömmlichen, konventionellen Röntgenröhre liegt. Dieser grundlegende Unterschied beruht auf der hohen Energie der Elektronen oder Positronen, die in einem Speicherring umlaufen und auf nahezu Lichtgeschwindigkeit beschleunigt werden. Die hohe Geschwindigkeit der Elektronen bewirkt, daß sie keulenförmig in eine bestimmte Richtung, die momentane Flugrichtung, strahlen, d.h. die Strahlungsverteilung zeigt eine Erhöhung in der Bewegungsrichtung des Teilchens, so daß man sie tangential zur Kreisbahn abzapfen kann, und sich der Strahl somit bequem in langen Vakuumrohren zum Experimentaufbau führen läßt. Daher sind die Meßplätze an einem Synchrotronspeicherring radialstrahlig angeordnet.

An Stelle von Elektronen werden am Hamburger Synchrotronstrahlungslabor (HASYLAB) Positronen benutzt, um die Streuung am residualen Gas im Speicherring zu vermindern, da die Wahrscheinlichkeit, mit residualen Gasen zu reagieren für Positronen geringer ist als für Elektronen. Dadurch wird gleichfalls eine längere Lebensdauer erzielt.

Da gebündelte Pakete von Positronen, sogenannte 'Bunches', stundenlang umlaufen (etwa einmal pro Mikrosekunde), ist die Ebene des Beschleunigers oder Speicherrings mit Synchrotronstrahlung im zeitlichen Mittel ständig ausgeleuchtet. Sie wird in Blitzen sehr hoher Intensität gepulst abgegeben. Die Bunchlänge ist normalerweise 50 ps bis 1 ns. Das breite, intensive Spektrum (vom Mikrowellen- und Infrarotbereich bis hin zur harten Röntgenstrahlung) ist einer der besonderen Vorzüge der Synchrotronstrahlung. Mit zunehmender Energie der umlaufenden Elektronen bzw. Positronen im Beschleuniger erweitert sich das Spektrum der abgestrahlten Synchrotronstrahlung in den kurzwelligen Bereich, d.h. wird die Elektronen-/Positronenenergie erhöht, so wird auch mehr und mehr harte Röntgenstrahlung emittiert. Typische Energien von Elektronen oder Positronen in Speicherringen für Synchrotronstrahlung sind einige 100 MeV bis einige GeV (1 eV ist die Energie, die ein Elektron bei der Beschleunigung durch ein Volt Spannung erreicht). Am HASYLAB werden Energien von 4,5 GeV erreicht. Dadurch können Photonen bis 100 keV angeregt werden, was es ermöglicht die K_{α} -Linien von Elementen hoher Atomzahl zu untersuchen. Da die abgestrahlte Leistung mit der Elektronenenergie anwächst, wird der mit Kreisbeschleunigern erreichbaren Endenergie der beschleunigten Teilchen allerdings eine Grenze gesetzt.

Die Synchrotronstrahlung zeichnet sich hauptsächlich durch folgende Eigenschaften aus:

- Ein intensives kontinuierliches Spektrum vom Infraroten bis in den Röntgenbereich.
- Starke Bündelung der Strahlung (der Öffnungswinkel des Strahlungskegels beträgt etwa 0,1
- bis 1 mrad, d.h. der Strahl weitet sich um 1 bis 10 µm auf einer Strecke von 1 cm auf).
- Die hohe Brillanz der Quelle (i.e. das Maß der Intensität der emittierten Strahlung).
- Die lineare Polarisation der Strahlung in der Kreisebene des Beschleunigers.
- Der hohe Grad an Polarisation und Kollimation (Ausrichtung des Strahls).
- Eine gut definierte Zeitstruktur (exakt gepulste Strahlung mit Lichtblitzen von einer zeitlichen Länge von typischerweise 100 ps; 1 ps = 10^{-12} s).
- Das im Beschleuniger erforderliche Ultrahochvakuum.
- Die gleichmäßig hohe Stabilität der Lichtquelle.

Die Synchrotronstrahlung vermittelt u.a. einen Einblick in die Elektronenschalen der Materie und in die geometrischen Anordnungen von Atomen in Molekülen, Flüssigkeiten, amorphen und festen Körpern.

Elektronen sind in Atomen mit bestimmten charakteristischen Energien gebunden. Es muß dabei eine bestimmte Energie aufgewendet werden, um ein Elektron herauszuschlagen. Die Elektronen der inneren Schalen haben dabei große Bindungsenergien, die Valenzelektronen, die an den chemischen Bindungen beteiligt sind, sind dagegen am schwächsten gebunden.

Abb.2.1: Beispiel eines Synchrotrons. Nach anfänglicher linearer Beschleunigung werden die Elektronen bzw. Positronen durch Ablenkmagneten in einem Kreisbeschleuniger auf höhere Energien gebracht. Fokussierungsmagnete dienen zur Optimierung der Strahloptik (modifiziert nach Wille, 1991).

2.1. Grundlagen der Synchrotronstrahlung

In ringförmigen Beschleunigern werden nahezu mit Lichtgeschwindigkeit fliegende, elektrisch geladene Teilchen durch Magnetfelder auf einer Kreisbahn gehalten (Abb.2.1). Die Intensität der Synchrotronstrahlung hängt einerseits von der Energie der kreisenden Elektronen oder Positronen, andererseits vom Radius des Beschleunigers, also ihrer Bahnkrümmung ab. Für die meisten Experimente mit Synchrotronstrahlung ist es wichtig, einen hohen Photonen-fluß an der Probe zu erhalten. Daher müssen das Schlitzblendensystem an der Strahlungsquelle und die Streubreite des primären Photonenstrahls so klein wie möglich gehalten werden. Ein Mittel, um die Qualität eines Photonenstrahls zu beschreiben, ist die durchschnittliche spektrale Brillanz. Sie wird hauptsächlich durch den Strom des Elektronen-/Positronenstrahls und seiner horizontalen und vertikalen Ausdehnung bestimmt. Um eine geringe Strahlausdehnung im Speicherring zu erreichen, wird ein möglichst großer Ablenkungsmagnetradius benötigt.

2.2. Teilchenbeschleuniger

Neben Linearbeschleunigern werden in Ringbeschleunigern elektrisch geladene Teilchen auf hohe kinetische Energien gebracht. Sie erreichen dabei sehr schnell fast Lichtgeschwindigkeit, die sie aber, einem Naturgesetz folgend, nicht überschreiten können. Das Maß der Beschleunigung drückt sich dann zweckmäßigerweise nicht mehr als Geschwindigkeitszunahme, sondern als Energieerhöhung aus, also in Elektronenvolt (eV). Die Teilchenbeschleuniger arbeiten meist als Mehrfachbeschleuniger, in denen den Teilchen immer wieder Energie zugeführt wird. Die elektrisch geladenen Teilchen erfahren durch elektrische Felder (elektromagnetische Wechselfelder) eine Querbeschleunigung. Diese Magnetfelder (aus Ablenkmagneten) halten die zu beschleunigenden Teilchen auf einer Kreisbahn. Da die Magnetfelder während des Beschleunigungsvorgangs synchron mit der steigenden Energie der Teilchen erhöht werden, nennt man solche Kreisbeschleuniger auch Synchrotrons. In ihnen kreist der Teilchenstrahl mit seiner Endenergie über mehrere Stunden, bleibt also gespeichert. Da die Lebensdauer des Elektronenstrahls im Ring aber begrenzt ist, führt dies zu einer exponentiellen Abnahme der Intensität innerhalb einiger Stunden. Die Lebensdauer ist definiert als die Zeit, in der der Ringstrom um 1/e von seinem anfänglichen Wert abnimmt. Da Synchrotrons Teilchen von niedriger Energie nicht beschleunigen können (B \propto E), bringt ein System kleinerer Vorbeschleuniger die Teilchen auf Energien von einigen 10 MeV, die für den Eintritt in die großen Teilchenbeschleuniger erforderlich sind. Vorbeschleuniger sind ein Mikrotron oder LINAC ('Linear Accelerator').

Gemäß der Synchrotronstrahlung wächst der Energieverlust während der Beschleunigung sehr schnell an. Bei Energien von einigen GeV ist der Verlust von gleicher Größe wie der Energiegewinn der Teilchen und erreicht im Bereich von 10 GeV die Höchstgrenze.

2.3. Speicherring

Ein Speicherring ist kein Beschleuniger, weil er für gewöhnlich bei festen Energien operiert. Der Zweck ist, den Strahl bei einer gut bestimmten Energie für einige Stunden zirkulierend zu halten, ohne neue Teilchen einzufüllen, er ist sozusagen im Ring gespeichert (Abb.2.2).

Abb.2.2: Beispiel eines Speicherrings mit Ablenk- und Fokussierungsmagneten. Nach Vorbeschleunigung in einem Linear- und Ringbeschleuniger wird der Strahl in einem Speicherring gehalten. Die Pfeile am Ring beschreiben den Gang der Synchrotronstrahlung zu imaginären Meßplätzen (modifiziert nach Streli, 1997).

Das Spektrum und die Intensität sind über eine längere Zeit konstant, die Kreisbahn extrem stabil. Um eine Streuung der Elektronen oder Positronen an Molekülen des Restgases in der Vakuumkammer zu vermeiden wird ein besonders hohes Vakuum ($P < 10^{-9}$ mbar) hergestellt. Wenn der Strahl mit einer langen Lebensdauer umläuft, ist es möglich, einen weiteren Strahl in den selben Speicherring zu füllen, ohne die Teilchen des ersten Strahls zu verlieren. Dieser Prozeß, auch 'Injektion' genannt, kann mehrmals wiederholt werden, wobei der angesammelte Strahlstrom im Speicherring zunimmt. Dimension und Winkelabweichung des Strahls werden durch Magnete im Speicherring bestimmt. Alle Teilchen bewegen sich entlang der Kreisbahn. Da dies in der Wirklichkeit nicht immer zutrifft, werden zusätzliche fokussierende Magnete, sogenannte Quadrupolmagnete, benötigt, um alle Teilchen im idealen Orbit zu halten. Da ein Quadrupolmagnet, der in x-Richtung fokussiert ist, in z-Richtung defokussierenden Quadrupolen zur notwendigen Optimierung der Strahloptik gewählt werden. Dabei muß das elektrische Kontrollsystem für die Magnete außerordentlich stabil sein, um eine Abweichung des Elektronen-/Positronenstrahls von seiner Sollbahn zu verhindern.

2.3.1. Entwicklung von Speicherringen

Speicherringe erfuhren in der Grundlagenforschung mit Röntgenstrahlen eine Entwicklung, die sich in drei Generationen von Speicherringen dokumentieren läßt.

Speicherringe der ersten Generation (CHESS¹, LURE², SSRL³) benutzten Beschleuniger, die für die Hochenergiephysik verwendet wurden. Galt ein Beschleuniger für die Hochenergiephysik als veraltet, konnte mehr Zeit für Röntgenforschungsexperimente zur Verfügung gestellt werden. Die Ablenkmagneten zur Röntgenerzeugung wurden an verschiedenen Stellen eines bereits existierenden Rings eingesetzt. Die Elektronenbunches tendierten jedoch zu lateraler Instabilität. Damit war dieser Strahl am besten für Experimente an großen Proben geeignet.

Speicherringe der zweiten Generation (HASYLAB, NLSL⁴, Photon Factory⁵, SRS⁶) wurden bereits für den Vollbetrieb entworfen, in dem man eine Anzahl von Ablenkmagneten um den gesamten Ring anordnete, und die Flugbahn der Elektronen bzw. Positronen damit gut einengen konnte.

¹ CHESS: Cornell High Energy Synchrotron Source, Cornell, New York, USA

² LURE: Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, Orsay, Frankreich

³ SSRL: Stanford Synchrotron Radiation Laboratory, Stanford, Kalifornien, USA

⁴ NLSL: National Light Source Laboratory, Brookhaven, New York, USA

⁵ Photon Factory: Tsukuba, Japan

⁶ SRS: Synchrotron Radiation Source, Daresbury, Großbritannien

Speicherringe der dritten Generation (ALS⁷, APS⁸, ESRF⁹, SPring-8¹⁰) beinhalten sogenannte Zusatzgeräte wie Wiggler und/oder Undulatoren, die die Brillanz der Synchrotronstrahlungsquellen erhöhen. An einigen Meßplätzen des HASYLAB wurden solche Zusatzgeräte bereits installiert. Jedes Zusatzgerät besteht aus einer angeordneten Vielzahl von Magnetpaaren, die in einem geraden Abschnitt zwischen zwei Ablenkmagneten installiert sind. Die Magnetpaare alternieren in ihrer Polarität, was zur Folge hat, daß die Elektronen sich auf einem Pfad schlängeln, ähnlich einer Sinuskurve. Die Entwicklung von Permanent-Magnetblöcken erlaubt eine Herstellung von solchen Zusatzgeräten mit typischerweise einigen 10 bis einigen 100 Polen innerhalb einer Gesamtlänge von wenigen Metern.

⁷ ALS: Advanced Light Source, Berkeley, Kalifornien, USA

⁸ APS: Advanced Photon Source, Argonne, Illinois, USA

⁹ ESRF: European Synchrotron Radiation Facility, Grenoble, Frankreich

¹⁰ SPring-8: Synchrotron Photon Ring, Nishi-Harima, Japan

3. Röntgenstrahlung

Untersuchungen mit Röntgenstrahlung sind seit ihrer Entdeckung im Jahre 1895 durch Wilhelm Conrad Röntgen in der Forschung, Medizin und in der Industrie von großer Bedeutung. Ausgehend von den atomaren Prozessen bei ihrer Erzeugung haben Röntgenstrahlen tiefe Einblicke in den elektronischen Aufbau von Atomen, Molekülen und kondensierter Materie wie Gasen ermöglicht. Max von Laue sowie die britischen Physiker William Henry und William Lawrence Bragg eröffneten der Forschung durch die Röntgenstrahlung ein breites Anwendungsgebiet: Sie bestimmten mit Hilfe der durchdringenden Strahlung erstmals atomare Strukturen von Materie (Zschornack, 1989).

Röntgenstrahlen sind elektromagnetische Strahlen, die Wellenlängen grob im Bereich von 0,05 bis 100 Å haben (1 Å = 10^{-10} m). Die für die Erkennung chemischer Elemente wichtigste Eigenschaft der Röntgenstrahlen ist zweifelsohne, daß sie in einem kontinuierlichen, für jedes chemische Element charakteristischen Linienspektrum emittieren und sie für jedes Element ein charakteristisches Absorptionsspektrum haben.

Röntgenstrahlen entstehen, wenn Elektronen, Positronen oder hochenergetisch geladene Teilchen Energie verlieren. Wenn diese Teilchen durch ein Atom dringen, werden sie abgebremst. Dabei entsteht Strahlung von verschiedener Wellenlänge. Diese kontinuierliche Strahlung heißt Bremsstrahlung. Es entstehen Wechselwirkungen der energiereichen Elektronen oder Positronen mit den Elektronen auf den inneren Schalen der Atome. Bei einem Stoß wird ein Elektron herausgeschlagen, und ein Elektron einer höheren Schale fällt in die Lücke. Dabei wird die Energiedifferenz als Röntgen-Photon abgestrahlt.

3.1. Charakteristische Röntgenstrahlung

Erzeugung charakteristischer Röntgenstrahlen beinhaltet Übergänge der Orbitalelektronen bei Atomen im Target zwischen den erlaubten Elektronenschalen oder Energiezuständen, wobei die inneren Atomschalen ionisiert werden. Wird ein Elektron durch Beschuß oder durch Absorption eines Photons aus der K-Schale herausgeschossen, wird das Atom ionisiert. Wird diese Elektronenleerstelle durch ein Elektron aus der L-Schale aufgefüllt, so wird der Übergang durch das Aussenden einer Röntgenstrahllinie, bekannt als K_a-Linie, begleitet. Die Leerstelle in der K-Schale kann aber auch durch ein Elektron der M-Schale aufgefüllt werden, was durch das Aussenden einer K_β-Linie beschrieben wird. Die Leerstellen der L- oder M-Schalen werden durch Elektronen äußerer Schalen aufgefüllt. Die Energie einer Emissionslinie kann als die Differenz zweier Zustände bezüglich eines definierten Atoms berechnet werden. Wenn E_1 und E_2 die Energien dieser zwei Niveaus beschreiben, ist die Energie E der Röntgenlinie gegeben durch:

$$E = E_1 - E_2 \tag{3.1}$$

Zur Berechnung der Anzahl der Fluoreszenzquanten ist zu berücksichtigen, daß ein Loch in der K-Schale durch verschiedene Übergänge aufgefüllt werden kann, man aber im allgemeinen nur den stärksten Übergang (K_{α}) heranzieht (Tertian und Claisse, 1982).

Moseley (1914) stellte eine Verbindung zwischen der Wellenlänge λ einer charakteristischen Röntgenlinie mit der Atomzahl Z des betreffenden Elements her:

$$\frac{1}{\lambda} = k(Z - \sigma)^2 \tag{3.2}$$

wobei k und o Konstanten für die jeweilige Spektralserie darstellen.

3.2. Auger-Effekt und Fluoreszenz

Der Überschuß an Energie, den ein Atom besitzt, nachdem ein Elektron aus einer inneren Schale entfernt wurde, wird als charakteristische Strahlung ausgesendet. Ein angeregtes Atom kann aber auch in seinem Zustand niedriger Energie zurückkehren, indem es ein weniger fest gebundenes Elektron ausstößt. Diesen strahlungslosen Übergang nennt man Auger-Effekt, und das ausgestoßene Elektron wird Auger-Elektron genannt. Je geringer die Differenz zweier korrespondierender Energiezustände ist, desto höher ist die Wahrscheinlichkeit des Auger-Effekts. Dementsprechend ist sie für Elemente niedriger Ordnungszahl am höchsten. Eine wichtige Folge des Auger-Effekts ist jedoch, daß weniger Röntgenstrahlphotonen als erwartet produziert werden (Müller, 1972).

Wird eine Leerstelle in einer Atomschale durch einen strahlenden Übergang wieder aufgefüllt, so nennt man dies Fluoreszenz. Die Fluoreszenzausbeute ω bezogen auf die K-Schale eines Atoms führt zu:

$$\omega_{\kappa} = \frac{I_{\kappa}}{n_{\kappa}} \tag{3.3}$$

 I_K ist die Anzahl der emittierten charakteristischen K-Röntgenstrahlen. n_K ist die Anzahl der primären Leerstellen.

3.3. Wechselwirkungen der Photonen mit Materie

Durchdringt ein Strahl von Röntgenphotonen Material, so kommt es zu Wechselwirkungen der Photonen mit den Atomen, aus denen jenes Material besteht. Die auftretenden Wechselwirkungen bezeichnet man als photoelektrischen Effekt, Rayleigh-Streuung (auch elastische oder kohärente Streuung) und Compton-Streuung (auch inelastische oder inkohärente Streuung). Trifft ein Röntgenstrahl mit der Energie I_0 (E) ein Material, so wird er durch dieses geschwächt. Diese Schwächung wird, für Proben mit einer endlichen Dicke d, durch das Lambert-Beer'sche Gesetz dargestellt (Haken und Wolf, 1987):

$$I(E) = I_0(E)e^{-\mu(E)\rho d}$$
(3.4)

Der Massenschwächungskoeffizient μ ist eine Proportionalitätskonstante und wird in [cm²/g] angegeben, die Dichte ρ in [g/cm³] und die Dicke d in [cm]. Da der Massenschwächungskoeffizient μ materialabhängig ist, wird er näherungsweise aus den Koeffizienten μ_i der bestehenden Elemente und W_i als der Gewichtsteil des Elementes i mit n als die Gesamtanzahl der Elemente im Absorber entsprechend des gewichteten Mittels abgeleitet.

$$\mu = \sum_{i=1}^{n} W_i \mu_i \tag{3.5}$$

Der Massenschwächungskoeffizient μ setzt sich aus den einzelnen Koeffizienten für die photoelektrische Absorption (τ), die Rayleigh- (σ_R) sowie die Compton-Streuung (σ_C) zusammen.

3.3.1. Photoelektrischer Effekt

Trifft ein Photon auf ein gebundenes Elektron, dessen Bindungsenergie in seiner Schale kleiner als die Energie des Photons ist, so ist es möglich, daß das Elektron die gesamte Energie des Photons absorbiert. Das Photon verschwindet, und seine Energie wird dem Elektron, das aus seiner Schale herausgeschlagen wurde, übertragen. Solch ein Elektron nennt man Photoelektron. Das Photoelektron wird mit einer Energie E - ϕ emittiert, wobei E die Energie des Primärphotons und ϕ die Bindungsenergie des Elektrons in seiner Schale ist. Die Differenz der Bindungsenergie zwischen den zwei Schalen wird in Form von charakteristischen Röntgenphotonen abgegeben. Der größte Energieverlust tritt durch photoelektrische Absorption der fest gebundenen innerschaligen Elektronen auf. Fällt die Photonenenergie unter die der Bindungsenergie der gegebenen Schale, kann ein Elektron nicht aus dieser Schale herausgeschlagen werden.

3.3.2. Streuungsvorgänge

Elektronen sind für die Streuung der Röntgenstrahlen durch Materie verantwortlich. Alle Streuungsvorgänge, die Röntgenstrahlen und Materie betreffen, können einem einzelnen Elektron zugeschrieben werden.

Ist die Energie der Streustrahlung die gleiche wie die der Primärstrahlung, spricht man von elastischer Streuung (auch Rayleigh- oder kohärente Streuung). Unterscheidet sich die Energie der Streustrahlung von der Primärstrahlung, so bezeichnet man den Streuprozeß als inelastisch (auch Compton- oder inkohärente Streuung) (Müller, 1972).

3.3.2.1. Rayleigh-Streuung

Elastische Streuung ist ein Vorgang, bei dem Photonen durch gebundene Elektronen gestreut werden und in denen sich das Atom weder in einem ionisierten noch in einem angeregten Zustand befindet. Die ankommenden Photonen werden mit unveränderter Energie gestreut. Die Intensität der Strahlung wird bestimmt, indem man die Amplitude der Strahlung beschreibt. Rayleigh-Streuung tritt meist bei niedrigen Energien und bei Materialen hoher mittlerer Ordnungszahl auf. Sie ist vorherrschend für Elemente, deren Elektronen stark an den Kern gebunden sind.

3.3.2.2. Compton-Streuung

Inelastische Streuung bezeichnet die Wechselwirkung eines Photons mit einem freien Elektron, das als 'in Ruhe' betrachtet wird. Die schwache Bindung der Elektronen zum Atom kann vernachlässigt werden, vorausgesetzt, daß das Moment oder der Impuls, der dem Elektron übertragen wird, dem der Elektronen in gebundenem Zustand deutlich übersteigt. Die Gesamtintensität, gestreut durch die Elektronen in der Elektronenwolke, die den Kern umgibt, ergibt sich aus der Summe der gestreuten Intensitäten der einzelnen Elektronen. Compton-Streuung tritt häufiger bei höheren Energien auf und verdrängt somit den Photoeffekt (Compton und Allison, 1935).

4. Röntgenfluoreszenzanalyse (XRF)

4.1. Grundlagen der quantitativen XRF

Die Röntgenfluoreszenzanalyse ist seit mehreren Jahrzehnten eine Standardmethode zur Elementanalyse in den Geowissenschaften. Hauptsächlich wird sie für die Gesamtgesteinsanalyse herangezogen. Wichtigster Bestandteil der quantitativen Analyse ist das Messen der Intensitäten der relevanten Röntgenlinien in der Probe und in geeigneten Standards, wobei zu beachten ist, daß identische Instrumentenbedingungen eingehalten werden. Dies beinhaltet sowohl die Probengeometrie, die Detektorgeometrie als auch die Anregungsintensität. In erster Näherung werden die Elementkonzentrationen der unbekannten Probe aus dem Verhältnis der Standard- und Probenintensitäten errechnet. Im günstigsten Fall läßt sich dies durch die Castaing-Näherung nach Reed (1996) beschreiben:

$$C_x = C_{Std} \frac{I_x}{I_{Std}}$$
(4.1)

 C_x : unbekannte Konzentration; C_{Std} : Konzentration des Standards; I_x : Intensität der unbekannten Probe und I_{Std} : Intensität des Standards

Wegen der unterschiedlichen Zusammensetzungen müssen Matrixkorrekturen durchgeführt werden (Tertian und Claisse, 1982), da die resultierenden Intensitäten in unterschiedlicher Probenmatrix unterschiedlich stark geschwächt werden.

In Verbindung mit Gleichung (3.4) lassen sich die Intensitäten wie folgt korrigieren:

Da bei Proben < 100 µm die Primärstrahlenergie nach Durchdringen der Probe kaum geschwächt wird, kann $\frac{I(E)}{I_0(E)} = 1$ gesetzt werden. Mit $I_0(E)$ als Primärstrahlenergie vor und I(E) nach Durchdringen der Probe. Damit können die resultierenden Intensitäten I_M matrixabhängig korrigiert werden (vgl. auch Hayakawa et al., 1991):

$$I_M = \frac{I}{e^{-\mu\rho d}} \tag{4.2}$$

I: Intensität einer Probe; µ: Massenschwächungskoeffizient; p: Dichte und d: Dicke einer Probe.

Die Intensitäten werden als Röntgenquanten, die aus der Probe emittieren, entweder wellenlängen- oder energiedispersiv detektiert.

4.2. Wellenlängendispersive XRF

Bei der wellenlängendispersiven XRF (WDXRF) wird ein Kristallspektrometer benutzt, um die charakteristischen Linien der verschiedenen Elemente zu trennen. Für Röntgenstrahlen definiert das Bragg'sche Gesetz den Winkel Θ für die Diffraktion der Wellenlänge n $\lambda = 2d \sin \Theta$. Die WDXRF gibt eine hohe Energieauflösung bzw. eine hohe Auflösung der Wellenlängenbereiche, erzielt aber relativ niedrige Intensitäten. Das Spektrometer wird auf eine bestimmte Wellenlänge eingestellt und die Elemente nacheinander aufgenommen (Reed, 1996).

4.3. Energiedispersive XRF

Bei der energiedispersiven XRF (EDXRF) werden die Röntgenstrahlen der Probe mit einem Si(Li)- oder Ge-Halbleiter-Detektor gemessen, welcher Impulse proportional der Energie der auftreffenden Röntgenstrahlen erzeugt, und der mit einem Vielkanal-Analysator (MCA: 'Multi-Channel Analyser') verbunden ist. Ein analog-digital Umwandler (ADC: 'Analog-Digital Converter') formt die registrierten Ereignisse um und ermöglicht die Bildung eines Spektrums aus Impulsgrößen, das dann bildlich dargestellt werden kann. Die Röntgenstrahlen aller Energien werden gleichzeitig gemessen. Ein Nachteil ist die begrenzte Energieauflösung des Detektors. Jedoch ist die schnelle Aufnahme eines kontinuierlichen Spektrums, und damit die gleichzeitige Multielementanalyse, überragend.

Am Strahl L des HASYLAB ist ein Ge(HP)-Detektor installiert, der für die Bestimmung hochenergetischer Photonen wegen des hohen photoelektrischen Querschnitts des Ge-Kristalls

besser geeignet ist. Durch ein Be-Fenster, das zum Schutz des Detektorkristalls angebracht ist, werden Energien unter 1 keV absorbiert und können nicht gemessen werden.

Nach Absorption eines Röntgenphotons im Detektor kann ein Ge- K_{α} -Photon emittieren, welches für gewöhnlich im Detektor absorbiert wird. Die Möglichkeit, daß ein Photon entkommt, resultiert in einem 'Escape-Peak'. Die Wahrscheinlichkeit eines Escape-Peaks hängt von der Energie des ankommenden Photons ab. So konnte beispielsweise bei starken Ba-Peaks auch immer ein Ba-Escape-Peak beobachtet werden (bei einem Ge-Detektor etwa 9,88 keV unter dem Mutterpeak; Ge- $K_{\alpha} = 9,88$ keV).

Bei hohen Zählraten erhöht sich auch die Wahrscheinlichkeit, daß zwei oder mehrere Photonen innerhalb einer Impulsdauer am Detektor ankommen. Tritt solch eine Überlappung auf, so summiert der Verstärker die Impulse zweier Photonen, er stapelt sie, was als 'Pile-Up' bezeichnet wird. Das Ergebnis ist eine Verzerrung des Verstärkerimpulses und damit eine Verfälschung der Intensität. Um verzerrte Impulse zu detektieren wird dazu ein sogenannter 'Pile-Up-Rejector' eingebunden. Der Zweck des 'Pile-Up-Rejectors' ist es, der Aufzeichnung solcher verzerrten Stapelimpulse vorzubeugen. Das Vorverstärkersignal wird einem zweiten Verstärker zugeführt, der eine sehr kurze Zeitformkonstante von 0,1 µs hat. Dieser 'schnelle' Verstärker ist in der Lage zeitlich eng gepackte Photonen aufzulösen.

Für wellenlängen- und energiedispersive Detektoren verringert sich die Effizienz oder Zählrate mit steigender Wellenlänge bzw. Energie, also mit steigender Ordnungszahl des Elements. Die Zählraten sind dabei bei einem WD geringer als bei einem ED, welcher aber eine schlechtere Energieauflösung aufweist. Der große Vorteil eines ED ist das gleichzeitige Aufnehmen eines kontinuierlichen Spektrums gegenüber dem seriellen Modus eines WD, wobei aber eine längere Detektionsdauer nötig ist (Reed, 1996).

5. Analytik

5.1. Röntgenfluoreszenzanalyse mit Synchrotronstrahlung (SRXRF)

Zur Untersuchung kleinster Proben wurde in den sechziger Jahren die Strahlung aus einer Röntgenröhre durch Kleinstöffnungen, Blenden- oder Kreuzschlitzsysteme kollimiert. Niedrige Zählraten führten aber dazu, daß diesem Konzept kaum Aufmerksamkeit geschenkt wurde. Das Verlangen nach Analysegeräten mit hoher lateraler Auflösung konzentrierte sich mehr auf die Entwicklung der Elektronenmikroskopie. Eine stetige Verbesserung der Strahlungsquellen beschleunigte die wissenschaftliche Nutzung der SRXRF. Durch mikrooptische Instrumente wie kleine Lochöffnungen, sogenannte 'Pin-Holes', Kreuzschlitzsysteme oder die in jüngerer Zeit oft eingesetzten fokussierenden Kapillaren, ist es heute sogar möglich den Strahl auf 100 Nanometer im Durchmesser einzueengen (Bilderback et al., 1994). Am Strahl L des HASYLAB stand eine elliptische Bleiglaskapillare mit einer Ausgangsöffnung von 2,7 µm zur Verfügung. Dadurch ist es möglich quantitativ Heterogenitäten auf kleinstem Raum im Mikrometerbereich zu analysieren, wie z.B. die Erstellung von Spurenelementverteilungsprofilen zweier benachbarter oder Zonierungen einzelner Mineralphasen. Durch die hohe Primärstrahlenergie der Synchrotronstrahlung sind dabei Nachweisgrenzen unter 10 ppm möglich, mit den sogenannten Zusatzgeräten wie Wigglern oder Undulatoren sogar im Bereich einiger 100 ppb (Hayakawa, 1998). Charakteristisch für die polychromatische Synchrotronstrahlung ist der hohe Grad an Polarisation der Primärstrahlung. Allgemein bewirkt polychromatische Strahlung eine Erhöhung des Untergrunds. Durch den hohen Grad der Polarisation werden aber Störungen wie die Streustrahlung in den Detektor minimiert und die Fluoreszenz gesteigert.

Im Gegensatz zu Analysemethoden, die mit energiereichen Ionen oder intensiven Laserstrahlen arbeiten, die den bestrahlten Teil mehr oder weniger physikalisch aus dem Material entfernen und meist einen kleinen Krater hinterlassen, werden die mit der SRXRF zu analysierenden Proben durch die Bestrahlung nicht zerstört. Das untersuchte Material bleibt unberührt, und Messungen können beliebig oft wiederholt werden, was vor allem für Fluideinschlüsse, eingebettet in geologisches Material, von großem Vorteil ist.

Eigenschaften, die die Synchrotronstrahlung für die XRF-Analyse so interessant macht, sind:

- Die hohe Primärstrahlintensität ermöglicht eine Detektierung der K_{α} -Linien bis 80 keV und erlaubt Nachweisgrenzen unter 10 ppm.
- Die kontinuierliche Energieverteilung ermöglicht eine gleichzeitige Aufnahme alle Elemente des Spektrums.

- Die Proben werden durch die Synchrotronstrahlung nicht angegriffen, d.h. sie können beliebig oft untersucht werden.
- Die Photonen sind in der Ebene der Elektronen-/Positronenkreisbahn hoch polarisiert, was extrem wichtig für eine Untergrundreduzierung in SRXRF-Experimenten ist.
- Die Möglichkeit der räumlichen Auflösung von weniger als 5 µm erlaubt Untersuchungen kleinster Bereiche.
- Mittels eines Monochromators können monoenergetische Strahlen über einen weiten Energiebereich hergestellt und bestimmte Energiebereiche ausgewählt werden, was etwaige Störungen der charakteristischen Linien durch Überlappungen anderer Linien minimiert und die Nachweisgrenzen herabsetzt (am Strahl L noch nicht realisiert).

Der große Vorteil der SRXRF liegt in der zerstörungsfreien Analyse. So können beispielsweise Fluideinschlüsse, ohne sie öffnen zu müssen, in-situ gemessen werden. Der Nachteil der SRXRF ist der Zugang zu Synchrotronstrahlungseinrichtungen, die zwar weltweit vertreten sind, deren Nutzung aber u.U. nur mit einem hohen Kostenaufwand verbunden ist. Die Detektion von Elementen mit einer Ordnungszahl < 19 ist nicht möglich, da die Experimente an Luft durchgeführt werden, und die niederenergetische Fluoreszenzstrahlung dieser Elemente an der Luft absorbiert wird. Damit ist die SRXRF vor allem für den Spurenelementbereich interessant. Die SRXRF tritt somit nicht in Konkurrenz, sondern eher als Ergänzung zu anderen Analysemethoden auf. Für die Ermittlung von Mineraldaten ist die Elektronenstrahl-Mikrosonde (EMS) nach wie vor eine unverzichtbare Analysemethode. Sie liefert vor allem die Hauptelementzusammensetzung einer Probe. In ihrer Nachweisstärke ist sie im Spurenelementbereich der SRXRF aber deutlich unterlegen. Die Bestimmung der Hauptelementzusammensetzung ist dabei für die SRXRF von besonderer Wichtigkeit bei der Berechnung der Koeffizienten für die Matrix-korrektur.

5.1.1. Das Hamburger Synchrotronstrahlungslabor (HASYLAB)

In Deutschland wurde, nach den Anfängen an der Universität Bonn, am Deutschen Elektronen-Synchrotron DESY (gegründet 1959) in Hamburg 1964 mit der Nutzung der Synchrotronstrahlung begonnen. DESY ist ein mit öffentlichen Mitteln finanziertes Forschungszentrum für Teilchenphysik und Mitglied der Hermann-von-Helmholtz-Gemein-schaft Deutscher Forschungszentren (HGF). DESY-Hamburg wird zu 90 % vom Bund (Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie) und zu 10 % von der Stadt Hamburg getragen. 1979 wurde das Hamburger Synchrotronstrahlungslabor (HASYLAB) gegründet. Im HASYLAB profitieren die Anwender insbesondere von der Breitbandigkeit der Synchrotronstrahlung. Weil die Photonenflußdichte sich primär auf die Energiebandbreite des weißen Spektrums dieser Strahlung bezieht, hat der weiße Strahl die höchste Flußdichte.

Abb.5.1: Übersicht der Beschleunigerringe auf dem Gelände des Deutschen Elektronensynchrotron DESY. PETRA (Positron-Elektron-Tandem-Ring-Anlage; 2304 m) dient u.a. als Vorbeschleuniger für HERA (Hadron-Elektron-Ring-Anlage; 6336 m), die weltweit einzige Anlage, in der Protonen und Elektronen bei hohen Energien kollidieren (aus DESY, 1998).

5.1.2. Der Speicherring DORIS

Die Forschung mit Synchrotronstrahlung erlebte einen großen Aufschwung, als 1974 der Speicherring DORIS den Betrieb aufnahm. Wegen der hohen Elektronen-, in diesem Falle Positronenströme, und ihrer Stabilität waren dort die Versuchsbedingungen sehr gut. Als Quelle für Röntgenstrahlung gehört DORIS III heute zu den leistungsfähigsten Speicherringen der Welt. Für viele Experimente übertifft die Intensität und Leuchtdichte der Röntgenstrahlung von DORIS die besten konventionellen Röntgenröhren um zwei bis fünf Größenordnungen. Am Speicherring sind 40 Meßstationen angebracht, davon sind 10 Strahlführungen mit Wigglern und/oder Undulatoren (VUV-Licht bis Röntgenstrahlung von 20 eV bis 200 keV) ausgestattet.

In einem Linearbeschleuniger und dem Synchrotron werden Positronen auf nahezu Lichtgeschwindigkeit beschleunigt, bevor sie dann in den Speicherring eingeschossen werden. Seit 1993 dient der Speicherring DORIS III mit einem Umfang von 289 m ausschließlich der Erzeugung von Synchrotronstrahlung. Die Positronen werden auf Energien von bis zu 5 GeV beschleunigt, genug, um auch relativ harte Röntgenstrahlung mit Wellenlängen deutlich unter einem Zehntel Nanometer zu erzeugen. Der ganze Bereich überdeckt Energien von 5 eV bis 300 keV.

Die Positronen werden am Speicherring DORIS III gepulst eingegeben. Die Dauer zwischen 2 solchen Impulsen oder 'Bunches' beträgt 2 ns, ihre Breite ca. 140 ps. Jeder Bunch wird mit einer verschiedenen Anzahl von Positronen gefüllt, die zu einer unterschiedlichen Intensität im Impuls führt.

Die maximale Anzahl an Bunches, die in einem Ring gespeichert ist, ergibt sich aus:

$$N = f_{RF} \frac{L}{c}$$
(5.1)

mit f_{RF} als die Frequenz, L der Umkreis des Ringes und c die Lichtgeschwindigkeit.

Es ist aber auch möglich nur einige der möglichen N Bunches mit Positronen anzufüllen oder sogar nur einen Bunch. In diesem sogenannten 'Single-Bunch' Betrieb ist die Zeit t zwischen 2 folgenden Lichtimpulsen:

$$\Delta t = \frac{L}{c} \tag{5.2}$$

Am HASYLAB ist der Betrieb von 1 - 5 Bunches möglich, wobei im 5-Bunch Betrieb die maximale Photonenenergie des Primärstrahls bei ca. 130 mA und die Lebensdauer bei 10 (\pm 2) Stunden liegt (im 1-Bunch Betrieb wird lediglich eine Energie von ca. 45 mA erreicht). Da die Photonenenergie des Primärstrahls (auch DORIS-Strom genannt) während den Messungen kontinuierlich abnimmt, wird diese für die Messungen auf 100 mA normiert (s. a. Iida et al., 1985).

Abb.5.2: Speicherring DORIS III mit Übersicht der Meßplätze. Die Synchrotronstrahlung wird radial zu den mit Buchstaben und Ziffern bezeichneten Meßplätzen abgeführt (aus HASYLAB Jahresbericht 1994).

5.1.3. Der Meßplatz 'Strahl L'

Am Strahl L (oder Beamline L) des HASYLAB (Lechtenberg, 1994) können Röntgenfluoreszenzanalysen mit Synchrotronstrahlung im Strahlgrößenbereich von wenigen Mikrometern durchgeführt werden. Das Set-up dieses Experimentierplatzes (Abb.5.3 und 5.4) stellt ein leistungsstarkes Instrument für eine simultane Multielementanalyse im Mikrometerbereich dar. Die Beamline L arbeitet ausschließlich im polychromatischen Anregungsmodus, der Röntgenenergien im Bereich von 3 bis 100 keV abdeckt. Durch die starke Synchrotronstrahlungsquelle, die ihre weiße und linear polarisierte Strahlung für die Fluoreszenzanregung benutzt, ist eine Quantifizierung der chemischen Elemente mit Atomzahlen zwischen 19 und 92 bei einer Nachweisgrenze unter 10 ppm möglich. Eine Energieauflösung von 100 eV ist dabei gewährleistet.

Durch den hohen Photonenfluß, und die sehr gleichförmige magnetische Feldstärke der Ablenkmagneten (B = 1,2 T) des Speicherrings DORIS III, werden Photonenenergien bis zu 100 keV erreicht. Dies ermöglicht auch die K-Schalenanregung für chemische Elemente mit sehr hoher Atomzahl. Die Benutzung der K-Linien für die quantitative Analyse der aufgenommenen XRF-Spektren vereinfacht die Spektrenauswertung ungemein, weil Trennungsprobleme der überlappten L-Linien damit nahezu entfallen (Roeder, 1985).

Nach Verlassen des Speicherrings wird der Strahl durch ein primäres Schlitzsystem zunächst auf 400 μ m kollimiert. Nach 16 m im Ultra-Hochvakuum (UHV) passiert der Strahl ein Beryllium- (400 μ m) und ein Karbonfenster (200 μ m), die den niederenergetischen Teil des Spektrums unterdrücken, und gelangt durch eine mit Helium gefüllte Röhre zum Eingang des SRXRF-Aufbaus in eine Vorkammer, die sich in einer Entfernung von etwa 24 m vom Speicherring befindet. Diese Vorkammer enthält ein Kreuzschlitzsystem mit 3 mm dicken, ineinander greifenden, rechtwinkligen Wolfram-Backen, die den Strahl bis auf maximal 20 \cdot 20 μ m einengen können. Durch die starke Bündelung, der vertikale Öffnungswinkel der Strahlungskeule beträgt nur 0,1 mrad, was einer Weitung des Strahls von 1 μ m/cm entspricht, können bei Messungen selbst ohne fokussierende Geräte Objekte von 50 μ m Durchmesser untersucht werden.

Alle Instrumente sind vom Meßplatz aus automatisch steuerbar. Zusätzlich ist ein Absorberwechsler für elf verschiedene Absorber und eine Ionisationskammer, um die Strahlintensität zu kontrollieren und zu optimieren, installiert. Nach Kollimation des Strahls durch das Kreuzschlitzsystem passiert der Strahl den optionalen Absorber, der Veränderungen in der Energieverteilung des finalen Strahls, der die Probe trifft, hervorruft. Somit kann das primäre Ausgangsspektrum so eingerichtet werden, daß eine optimale Anregung der interessierenden chemischen Elemente und ein bestmögliches Peak-zu-Untergrund Verhältnis gewährleistet ist. Bei einer Übersättigung des Detektors durch Matrixelemente kann man durch Einschalten eines Absorbers die Anregungsenergie geringfügig unter die Absorptionskante verändern, und die Fluoreszenzstrahlung des Matrixelements unterdrücken. Derzeit befinden sich zwölf Absorberpositionen zur Auswahl:

Leer (Position 0); 0,125 mm Al (1); 0,25 mm Al (2); 0,1 mm Mo (3); 0,1 mm Cu (4); 0,1 mm In (5); 0,1 mm Pt (6); 0,1 mm Ta (7); 0,2 mm Cu (8); 1,0 mm Al (9); 4,0 mm Al (10); 8,0 mm Al (11), die zwölfte Position ist wieder unbesetzt. Für die Messungen wurden, wenn nötig, Al-Absorber benutzt, um hohe Intensitäten aus dem Fe-Peak zu unterdrücken.

Die maximale Zählrate beträgt ca. 10000 Ereignisse pro Sekunde (cps: 'counts per second'). Ein "Überlaufen' des Detektors hat eine Totzeit größer 50 % zur Folge, bei der keine Ereignisse mehr registriert werden. Für Experimente, die eine hohe räumliche Auflösung benötigen, stehen optische Kapillaren zur Verfügung, die den Strahldurchmesser bis auf 2,7 µm einengen können. Die Probe ist im 45°-Winkel sowohl zum ankommenden Strahl als auch zum Detektor angebracht. Während der Analyse wird die Probe von einem Mikroskop mit maximaler Vergrößerung von 1200-fach und einer CCD-Kamera mit einer Auflösung von 3 µm überwacht. Das Fluoreszenzsignal wird von einen Ge(HP)-energiedispersiven Detektor (mit einer Detektorkristallfläche von 30 mm² und 5 mm Dicke), der möglichst nahe an das zu untersuchende Material positioniert ist, aufgenommen. Dieser ist im Winkel von 90° zum Primärstrahl befestigt, um den Beitrag der Streustrahlung im aufgenommenen Spektrum so klein wie möglich zu halten und ist genau in die horizontale Ebene der Primärstrahlung gestellt, um eine optimale Detektion zu erreichen. An der Vorderseite des Detektorfensters ist ein 2 cm langer Bleidetektorkollimator von 1 mm Durchmesser angebracht, um die detektierte Streuung, die hauptsächlich aus der Luft entsteht, zu reduzieren. Daher ist es schwierig in einer Probe den Pb-Gehalt zu quantifizieren, da durch den Pb-Kollimator immer auch die Pb-Peaks im Spektrum erscheinen. Nachdem der Synchrotronstrahl die Probe durchdrungen hat wird er in einer zweiten Ionisationskammer gemessen und schließlich in einem Bleiblock gestoppt. Das Messen des Stromes in der zweiten Ionisationskammer ist vor allem für die Optimierung des Strahls durch eine Kapillare wichtig, um eine gleichbleibende Strahlintensität für ein normiertes Signal für die quantitative Analyse zu erhalten. Durch Herausfahren der Probe aus dem Strahl sind auch die Energieunterschiede des Primärstrahls, geschwächt durch Absorption in der Probe, kontrollierbar. Es können automatisch Punkte gemessen sowie ein- und zweidimensionale Raster, sogenannte 'Scans', durchgeführt werden. Der Bedienerplatz am Strahl L des HASYLAB ist in zwei Rechnerplätze unterteilt, von denen die Spektrenaufnahme gesteuert, Strahlparameter wie DORIS-Strom und Ionisationskammerstrom abgefragt sowie die Motorsteuerung für die Strahlmanipulation, das Mikroskop und den Probentisch bedient sowie der gesamte Experimentiertisch und die Kapillarhalterung ferngesteuert werden können.

Abb.5.3: Ansicht der Meßplatzanordnung Beamline L. Der Strahl, von links ankommend, wird durch die Kapillare © geleitet und bestrahlt die Probe, die sich am Probenhalter (S) befindet. Die reflektierte Strahlung wird von einem Ge(HP)-Detektor (D) aufgenommen. Dabei kann die Probe vom Meßplatz aus über einen Monitor, der das durch die Mikroskopkamera (M) aufgenommene Bild zeigt, beobachtet werden (nach Vincze, 1995).

Abb.5.4: Schematische Darstellung des Set-up Beamline L. Die horizontale Detektorgeometrie zur Reduktion des Streuuntergrunds durch Ausnutzung der linearen Polarisation der Synchrotronstrahlung. Die isotrop emittierte Fluoreszenzstrahlung wird durch einen Detektor nachgewiesen (nach Vincze, 1995).

5.1.4. Kapillaren

Glaskapillargeräte ermöglichen es, Synchrotronstrahlen durch wiederholte Totalreflektion innerhalb der Glasröhre zu kollimieren und/oder zu fokussieren, ihn also entweder einzuengen oder die Strömungsdichte des Primärstrahls zu erhöhen. Der Strahl hat dabei seinen kleinsten Querschnitt am Kapillarende und wird sich dann mit der maximalen Divergenz ausweiten. Daher ist darauf zu achten, daß die Kapillare so nahe wie möglich an die Probe gebracht wird. Die Entwicklung der Kapillartechnik erfolgte dabei schrittweise. Erst in den letzten Jahren wurde dem Gebrauch von kapillarischen Röntgenkonzentratoren mehr Aufmerksamkeit geschenkt. Sie werden in weiten Gebieten der Wissenschaft und Technologie benutzt (Rindby et al., 1989).

Abb.5.5: Schematische Darstellung des Strahldurchgangs durch eine gerade (a), konische (b) und elliptische (c) Kapillare. Im Falle (c) tritt ideale Bedingung ein, wenn die Röntgenquelle (S) genau im Focus der Ellipse liegt, und die Strahlung gegen Punkt F fließt. Kommt das Photon aus einer Richtung S', so wird es vor Verlassen der Kapillare vielfach reflektiert oder gar absorbiert (nach Vincze, 1995)

Zur Zeit unterscheidet man drei verschiedene Arten von Kapillaren: gerade, konische und elliptische (Abb.5.5(a-c)). Die einfachste ist eine gerade Kapillare (Abb.5.5(a)). Während der wiederholten Totalreflektion der Röntgenstrahlen an den inneren Wänden der Glasröhre bleibt der Einfallswinkel (θ_0) konstant. Bei einer konischen oder spitz zulaufenden Kapillare (Abb. 5.5(b)), mit dem dickeren Ende in Richtung der Strahlungsquelle, wird der Röntgenstrahl praktisch zu einer kleineren Größe des Enddurchmessers mit einer entsprechend höheren Energie als der Primärstrahl 'gequetscht'. Nach jeder Reflektion wird der Einfallswinkel des Strahls aber doppelt so groß wie der konische Winkel ansteigen. Wird dabei ein kritischer Winkel erreicht, fallen die Reflektionen rapide herab. Nur Photonen, für die der Einfallswinkel der letzten Reflektion kleiner als der kritische Winkel der Totalreflektion ist, werden durch die Kapillare transportiert. Der kritische Winkel ist dabei energieabhängig, verringert sich aber zu hohen Energien hin. Weil konische Kapillaren die konzentrierte Strahlung aber mehr streuen als das ursprüngliche Synchrotronlicht, ist die Anwendung dieser Kapillaren auf die hochauflösende Mikrostrahlanalyse begrenzt. Die jüngste Entwicklung ist der Gebrauch von Kapillaren ellipsoider Form (Abb.5.5(c)). Solch eine Kapillare muß sehr gut justiert sein, damit die Synchrotronstrahlung möglichst direkt durch die Kapillare gelangt. Kommt ein Photon aus einer Richtung S', so wird es vor verlassen der Kapillare u.U. absorbiert. Die komerzielle Erwerbung dieser Kapillaren ist noch relativ teuer, so daß der Anwender darauf angewiesen ist, daß solche Kapillaren bereits am Meßplatz vorhanden sind. Derzeit werden am Institut für angewandte Chemie der Universität Hamburg unter der Leitung von Prof. A. Knöchel solche Kapillaren hergestellt. Neben Form und Dimension der Kapillaren beeinflussen eine Anzahl Faktoren das Aussehen eines aufgenommenenen Spektrums. Das Material der Kapillaren wie auch die Oberflächenbeschaffenheit der reflektierenden Wände und eventuelle Abweichungen in der Form, die 'wahre' Geräte leider oft gegenüber 'idealen' Geräten haben, können ein Spektrum individuell verändern. Auch beeinflussen physikalische Eigenschaften wie Größe, Streuung und Entfernung von der Röntgenquelle sowie die Energie oder Energieverteilung der Photonen, die in die Kapillare eintreten, die Arbeitsweise der Kapillare. Deshalb sollten reproduzierbare Messungen nur mit ein und derselben Kapillare durchgeführt werden. Wird eine andere Kapillare benutzt, so verändern sich automatisch alle bereits gegebenen Parameter und es müssen alle Standards erneut gemessen und dafür Eichgeraden aufgestellt werden.

5.2. Stand der Forschung

Die Nutzung von Synchrotronstrahlung in den Geowissenschaften ist zur Zeit in den Einrichtungen mit Synchrotronstrahlungsquellen im Vergleich zu physikalischen, medizinischen oder biologischen Anwendungen eher selten. Da ein verstärktes Interesse an In-situ-Spurenelementanalysen mit höchster räumlicher Auflösung besteht, werden die Geowissenschaften an einigen Speicherringen immer intensiver vertreten. Dabei werden neben der Röntgenfluoreszenzanalyse verschiedene andere Methoden wie Röntgenstreuung, Röntgendiffraktion, Röntgenabsorption, Röntgenemission, Röntgentomographie und -topographie sowie die Totalreflektion genutzt (Bassett und Brown, 1990; Sutton et al., 1997). Ein allgemeiner Überblick über mikroanalytische Methoden in den Geowissenschaften findet sich in Potts et al. (1995), speziell die Röntgen- und Elektronenstrahl-Mikroanalyse wird detailliert von Reed (1996) besprochen. In der Forschung mit Synchrotronstrahlung wird sich hauptsächlich die Röntgendiffraktion und die Absorptionsspektroskopie zu Nutzen gemacht.

Die Röntgendiffraktometrie beispielsweise bedient sich der Röntgenstreuung zur Identifizierung und Bestimmung von Zellstrukturen in Mineralen (Eichhorn, 1997) oder zur Untersuchung von Mineralstrukturen unter hohen Temperaturen und Drucken (Mao et al., 1998; Skulski et al., 1994). Mit der Röntgenabsorptionsspektroskopie (Smith, 1997) können u.a. Bindungsabstände an Kationen und Anionen gemessen werden (Mottana, et al., 1996), sie kann aber auch der quantitativen Analyse dienlich sein (Foster et al., 1998).

Nur wenige Synchrotronstrahlungsquellen haben Einrichtungen oder fest installierte Meßplätze, an denen Röntgenfluorszenzanalyse betrieben werden kann. Mancherorts sind speziell für die SRXRF gar keine Meßplätze angelegt (ELETTRA, Triest, persönliche Mitteilung, Maya Kiskinova; sowie SPEAR III¹¹). Am SPring-8¹² ist ein solcher gerade in Betrieb genommen worden. Dieser ist mit einem In-Vakuum-Undulator, Monochromatoren sowie Fokussieroptiken ausgestattet, wobei wahlweise wellen- oder energiedispersiv detektiert werden kann. Zusammen mit der extrem hohen Strahlungsintensität des SPring-8 von 8 GeV werden bei einer räumlichen Auflösung von 1 µm Nachweisgrenzen unter 1 ppm erwartet (Hayakawa et al., 1998; Suzuki, 1999).

Neben dem Strahl L des HASYLAB (Gaul und Knöchel, 1994; Lechtenberg et al., 1996) wird SRXRF vor allem am NSLS¹³ (Hanson et al., 1987), ALS¹⁴ (McHugo et al., 1998), APS¹⁵,

¹¹ SPEAR III: Synchrotronstrahlunsquelle des Stanford Synchrotron Radiation Laboratory (SSRL), Stanford, Kalifornien, USA

¹² SPring-8: Synchrotron Photon Ring der Science & Technology Agency (STA), Nishi-Harima, Japan

¹³ NSLS: National Synchrotron Light Source, Brookhaven, New York, USA

¹⁴ ALS: Advanced Light Source, Berkeley, Kalifornien, USA

¹⁵ APS: Advanced Photon Source, Argonne, Chicago, Illinois, USA

SRS¹⁶ (Van Langevelde et al., 1990), LURE¹⁷ (Chevallier et al., 1990) und ESRF¹⁸ betrieben. Dabei bezieht sich jeder Meßplatz auf unterschiedliche Quantifizierungsmethoden. Neben der am HASYLAB auch eingesetzten standardlosen Fundamentalparametermethode (Janssens et al., 1993; Hansteen et al., 1999) beziehen sich andere Einrichtungen auf individuell entwickelte Methoden. Ebenfalls auf Fundamentalparameter basierend, modifizierte Steve Sutton (persönliche Mitteilung) das für die konventionelle Röntgenanalyse konzipierte Programm NRLXRF (Criss, 1977) für die Synchrotronstrahlung, das am APS und NSLS Verwendung findet. Der Quantifizierung am SRS liegt die Fundamentalparametermethode nach Sparks (1976) zu Grunde. Lediglich Scott McHugo (persönliche Mitteilung) am ALS bedient sich einer, wie in der vorliegenden Arbeit beschriebenen, ähnlichen standardbezogenen matrix- und absorptionskorrigierten Methode. Auch am BEPC¹⁹ wird eine vergleichende Meßmethode mit geeignetem Standardmaterial angewendet (Chao et al., 1990). Pierre Chevallier am LURE bietet dagegen lediglich ein semiquantitatives Modell, basierend auf die Konzentrationsverhältnisse relativ zu Eisen (Philippot et al., 1995) bzw. Mangan (Basto et al., 1995) an. Erst in jüngster Zeit wird auch dort eine aussagekräftige Quantifizierungsmethode angestrebt (Philippot et al., 1998).

Elementspezifische Nachweisgrenzen bei Messungen mit Synchrotronstrahlung variieren dabei zwischen 4 ppm für homogene Proben (Dalpe et al., 1994) und 2000 ppm für tief eingebettete Fluide (Mavrogenes et al., 1995). Die Standardabweichungen schwanken zwischen 20 und 40 Prozent, je nach Strahlungsleistung und Stoffbestand. Eine räumliche Auflösung von 1 μ m bis 20 μ m wird an allen Einrichtungen entweder durch Kapillaren, fokussierende Spiegel oder durch Kirkpatrick-Baez Systeme (Underwood et al., 1988) erreicht.

Einen ersten Einblick der Nutzung der Synchrotronstrahlung speziell für Mineralogen gibt Fischer (1984). Erste Daten und Vergleiche mit anderen mikroanalytischen Techniken finden sich in Lu et al. (1989). Immer wieder wurden auch die Präzision und Wertigkeit von SRXRF-Messungen gegenüber anderen Methoden überprüft (Chen et al., 1993).

Die Streubreite der geologischen Anwendungen erstreckt sich dabei von Spurenelementuntersuchungen in Sedimenten (Dubinin et al., 1986) bis hin zu Untersuchungen an extraterrestrischem Material (Brearley et al., 1995).

¹⁶ SRS: Synchrotron Radiation Source am CLCR (Central Laboratory of Research Councils), Daresbury, England

¹⁷ LURE: Laboratoire d'Utilisation Rayonnement Electromagnétique, Paris, Frankreich

¹⁸ ESRF: European Synchrotron Radiation Facility, Grenoble, Frankreich

¹⁹ BEPC: Beijing Electron Positron Collider, Beijing, China

5.2.1. SRXRF-Forschung an terrestrischem Material

Reeder (1994) untersuchte die Spurenelementverteilungen an den verschiedenen Oberflächen eines Calcit-Kristalls, welche durch die Struktur der Wachstumsoberfläche kontrolliert werden. Rakovan und Reeder (1996) bedienten sich der Seltenen Erdelemente in Apatiten, welche während des Wachstums eine Verteilung bzw. Zonierung erfuhren und leiteten vom Verteilungsverhalten der Elemente zwischen Mineral und Schmelze genetische Indikatoren ab. Die mit der SRXRF bestimmten Zonierungen in Granaten aus kontaktmetamorphen Aureolen geben nach Ridgway et al. (1994) Hinweise auf die Kristallisationsmetamorphose und Metasomatose und nachfolgender Reequilibrierung. Basto et al. (1995) versuchten geochemische Variationen in Glimmerproben aus Erzlagerstätten in Verbindung mit den Mechanismen bei der Erzgenese zu bringen. SRXRF-Untersuchungen wurden u.a. weiterhin an Feldspäten (Lu et al., 1989) sowie an Karbonaten (Kopp et al., 1990) und Xenolithen (Ryan und Griffin, 1993) durchgeführt.

Untersuchungen an Fluid- und Schmelzeinschlüssen in-situ sind durch die zerstörungsfreie Analyse der Proben durch die Synchrotronstrahlung von besonders großem Interesse. Durch die Isolation in einem Wirtsmineral werden sie von nachfolgenden Reaktionen nicht beeinflußt und können wichtige Aufschlüsse über die Bedingungen, die bei der Entstehung der betreffenden Gesteinssysteme herrschten, geben (Frantz et al., 1988). Rankin et al. (1992) konnten mittels SRXRF durch Fluiduntersuchungen beweisen, daß diese direkte Produkte eines sich abkühlenden Granitmagmas sind, was für die Erzentstehung in granitischen Umgebungen von Bedeutung ist. Wechselwirkungen zwischen Fluid und Schmelze können nach Philippot et al. (1995) wichtige Hinweise auf einen selektiven Transport von Elementen zwischen einem abtauchenden Slab und einem darüberliegenden Mantelkeil geben.

Die Schwierigkeit bei der Analyse von Fluideinschlüssen liegt dabei in ihrer Geometrie. Das ist die Tiefe, in der sich ein Einschluß unter der Mineraloberfläche befindet, sein Volumen wie auch seine Form. Weil die im Einschluß erzeugten Röntgenstrahlen noch zusätzlich teilweise während ihrem Weg durch das Wirtsmineral absorbiert werden, erhöhen sich automatisch die Nachweisgrenzen (Bodnar et al., 1994).
5.2.2. SRXRF-Forschung an extraterrestrischem Material

Neben Anwendungen der SRXRF auf terrestrische Materialien sind auch Analysen an extraterrestrischen Proben von Bedeutung. Treiman und Sutton (1992) untersuchten z.B. Pyroxene in Mars-Meteoriten auf Spurenelemente zur Bestimmung der Zusammensetzung der Mutterschmelze. Flynn et al. (1994) untersuchten von Asteroiden und Kometen abstammende interplanetäre Staubpartikel aus der Stratosphäre, welche durch den Eintritt in die Athmosphäre aufgeheizt wurden. Mit dem Verlust der volatilen Elemente beim Athmosphäreeintritt konnte ein internes Thermobarometer aufgestellt werden.

5.2.3. Sonstige SRXRF-Forschung

Die zerstörungsfrei arbeitende Synchrotronstrahlung ist auch für andere wissenschaftliche Bereiche wie z.B. in der Archäometrie von großer Bedeutung und äußerst wertvoll, da hier oftmals unschätzbare Kulturgüter, wie z.B. die Schriften der Gutenberg Bibel (Mommsen et al., 1996), unbeschädigt untersucht werden können. Auch am Strahl L des HASYLAB finden solche Ansätze statt. Die Arbeitsgruppe um Koen Janssens (Universität Antwerpen) versucht z.B. mit der Spurenelementanalyse festzustellen, ob es in Antwerpen, nach Funden von luxuriösen Vasengefäßen aus dem 16. Jahrhundert, eine Produktion nach Art der Herstellung von venezianischen Vasen gab (Deraedt et al., 1998). Auch kann am Strahl L des HASYLAB durch einen zusätzlichen Experimentaufbau, der auf einem beweglichen Rolltisch in die Strahllage gefahren werden kann, Versuche mit Totalreflektion zur Oberflächenanalyse und Kontaminationsuntersuchungen an Wavern durchgeführt werden (Rieder et al., 1995; Wobrauschek und Streli, 1997). Die SRXRF am Strahl L wird sonst aber im wesentlichen von geologischen Fragestellungen dominiert.

5.2.4. SRXRF-Forschung am Strahl L des HASYLAB

Umsonst et al. (1994) untersuchten MOR-Basalte auf ihre Seltenen Erdelemente, da die chemischen Variationen in Basalten entlang des Mittelozeanischen Rückens auf unterschiedliche Magmenkammerprozesse, Unterschiede in Tiefe, Temperatur und Schmelzgrad in einem aufsteigendem Oberen Mantel schließen lassen (Bach et al., 1994). Zahlreiche Untersuchungen am Strahl L wurden von der Forschungsgruppe GEOMAR (Forschungszentrum für Marine Geowissenschaften an der Universität Kiel) getätigt. Streck et al. (1995) versuchten an Hand von Mineral/Schmelze-Verteilungskoeffizienten für Spurenelemente aus Pyroxenen und Feldspäten die chemische Entwicklung einer Magmenserie zu modellieren. Xenolithe wurden von Klügel et al. (1995) sowie von Sachs et al. (1998) auf ihre Spurenelementgehalte hin untersucht, um Informationen über die Dauer des Verbleibs der Xenolithe in ihrer Mutterschmelze zu erhalten. Anreicherung von hoch inkompatiblen Elementen in Ägirin-Augiten während der magmatischen Fraktionierung (Freundt-Malecha et al., 1994), Homogenitätsmessungen an Quarzkörnern (Hulsbergen et al., 1995) sowie die chemische Zonierung in metamorphen Granaten zur Deutung der Wachstumsgeschichte während der metamorphen Entstehung (Appel et al., 1998) beinhalten ebenfalls GEOMAR-Aktivitäten. Diese Experimente wurden ausnahmslos mit einer standardlosen Fundamentalparamethermethode quantifiziert (Janssens et al., 1993; Hansteen et al., 1999). Diffusionsuntersuchungen an silikatischen Schmelzen (Koepke et al., 1997 und 1998) sowie Messungen an Fluorapatiten und ihrer karbonatitischen Schmelze zur Bestimmung von Elementverhältnissen (Bühn et al., 1998) fanden qualitativ statt.

Die in dieser Arbeit vorgestellte Quantifizierungsmethode wurde für die Bestimmung von Apatit- und Calcitgehalten in Karbonatiten sowie von Klinopyroxenen genutzt (Schleicher et al., 1997). Spuren- und SEE-Gehalte verschiedener Minerale dienen zur Deutung von Fraktionierungsprozessen und der Entstehung dieser Schmelzen. Aus den erhaltenen Daten können Verteilungskoeffizienten für natürliche karbonatitische Systeme errechnet werden. Ferner wurden Schmelzeinschlüsse aus basaltischen Bohrkernproben der Hawaii-Vulkane Mauna Loa und Mauna Kea in Verbindung mit dem HSDP (Hawaii Scientific Drilling Project) untersucht (Jochum et al., 1997 und 1998). Deren Spurenelementanalyse ist von wichtiger Bedeutung, um die Primärzusammensetzung und Entwicklung der Magmen zu beschreiben. Dabei ergaben sich analytische Unsicherheiten von 10 bis 30 % sowie Nachweisgrenzen von 10 bis 20 ppm. Diese Angaben liegen damit im Bereich der erwähnten internationalen Veröffentlichungen. Die mit der SRXRF erhaltenen Elementgehalte der Hawaii-Basalteinschlüsse stimmen darüberhinaus im Vergleich mit anderen Meßmethoden überein (Sobolev et al., 1998).

Die bereits erwähnte, am Strahl L auch eingesetzte standardfreie Fundamentalparametermethode weist ähnliche Fehlerwerte auf (Hansteen et al., 1999). Dabei ist jedoch zu beachten, ob homogene oder inhomogene Proben oder aber Fluid- oder Schmelzeinschlüsse untersucht werden. Diese nach der Monte Carlo Simulation entwickelte Methode (Janssens et al., 1993; Vincze, 1995) wurde verschiedentlich mit Standardgläsern überprüft. In diesen Arbeiten variieren jedoch die Angaben über Präzision und Nachweisgrenzen erheblich, abhängig auch von den Anregungsbedingungen. So erhalten wir bei einem Strahldurchmesser von 150 µm beispielsweise einen viel höheren Stromfluß als bei einer Fokussierung des Strahls durch eine Kapillare von 5 um Durchmesser. Damit verbunden ist eine stärkere Anregung der Fluoreszenzstrahlung und eine Erhöhung der Intensitäten sowie eine deutlichere Trennung des Peaks zum Untergrund. Präzisionsangaben sowie Standardabweichungen schwanken von 10 bis 20 % (Jochum et al., 1995) und von 20 % (Horn et al., 1994; Vincze et al., 1995) bis 30 % (Amort et al., 1994) bei Nachweisgrenzen von 1 ppm (Hansteen et al., 1994) bis 10 ppm (Hansteen et al., 1997; Sachs und Lechtenberg, 1997; Umsonst et al., 1995) für homogene Proben und von 25 % (Hansteen et al., 1995) bei 20 ppm (Lechtenberg et al., 1995) für inhomogene Proben. In einer aktuellen Arbeit über diese Quantifizierungsmethode (Hansteen et al., 1999) wird für einige Elemente eine Standardabweichung besser als 1 % angegeben. Dabei wurden lediglich fünf Messungen pro Probe in einem Punkt durchgeführt. Standardabweichungen für die untersuchten Standards betragen dagegen 3,3 bis 20 %. Die in der vorliegenden Arbeit angegebenen Standardabweichungen für die standardbezogene und matrixkorrigierte Quantifizierungsmethode beziehen sich auf bis zu zwanzig verschiedene Messungen pro Probe an verschiedenen Punkten, was eine weitaus repräsentativere Aussage darstellt. Messungen für Rb ergeben bei Hansteen et al. (1999) sogar Divergenzwerte bis 33 %, was auf die Verwendung eines Cu-Absorbers zurückzuführen sein könnte. Der zur Fe-Peak Reduzierung benutzte Cu-Absorber unterdrückt aber auch die Intensitäten nachfolgender, höherenergetischer Linien. Also könnte Cu (Cu- $K_{\alpha} = 8,05$ keV) durchaus für die Schwankungen des Rb (Rb- K_{α} = 13,40 keV) verantwortlich sein. Die in der vorliegenden Arbeit durchgeführten Messungen wurden, wenn nötig, mit Al-Absorbern unterschiedlicher Dicke durchgeführt (Al- $K_{\alpha} = 1,5$ keV). Damit folgte man den Empfehlungen nach Basto et al. (1995), Lanzirotti (1995) und Treiman und Sutton (1992). Nachweisgrenzen werden von Hansteen et al. (1999) mit 1 bis 10 ppm angegeben.

Die in der vorliegenden Arbeit berechneten Nachweisgrenzen (1 σ) für die Seltenen Erdelemente von 3 ppm (La) bis 7 ppm (Sm), die sich aus den unterschiedlichsten Meßbedingungen (mit und ohne Kapillare bzw. Absorber) zusammensetzen ist somit als mehr als gut zu bezeichnen. Die Abweichungen in den Ergebnissen der Standardkonzentrationen verglichen mit ihren Referenzwerten liegen bei Hansteen et al. (1999) im Bereich von 0,3 bis 14 %, was auch für die vorliegende Arbeit gültig ist. Allerdings war im hiesigen Fall eine Detektion von Ho, Hf, Ta und U nicht möglich, da für diese Elemente keine geeigneten Standards zur Verfügung standen. Relative Unterschiede zu SIMS²⁰ -Untersuchungen (Sobolev, 1996) werden bei Hansteen et al. (1999) mit 15 bis 30 % angegeben. Derartige Angaben können hier leider noch nicht gemacht werden, da im Falle der Mauna Loa-Untersuchungen jeweils unterschiedliche Schmelzeinschlüsse untersucht wurden (SRXRF: Jochum et al., 1998; SIMS: Sobolev et al., 1998).

²⁰ SIMS: Secondary Ion Mass Spectrometry (Sekundärionen-Massenspektrometer)

5.3. Probenpräparation und Analysevorbereitung

Die aus einem Handstück gesägten Probenstücke bzw. die aus den Geostandards gewonnenen Schmelztabletten werden mit Siliziumcarbid (Körnung: 800) planar auf einer Seite angeschliffen. Sie werden bei ca. 130° C getrocknet und mit einem thermoplastischen Harz ('Lakeside') auf einen Objektträger geklebt. Nach Abkühlen werden überstehende Reste abgesägt und die eingebetteten Proben stufenweise erneut mit Siliziumcarbid (Körnung bis 1200) geschliffen bis eine Enddicke von ca. 30 µm erreicht ist. Anschließend werden sie mit Al₂O₃ poliert und im Ultraschallbad gereinigt. Etwa eine Nacht lang verweilen die Proben auf der auf 130° C aufgeheizten Heizscheibe. Das Präparat wird dann vorsichtig vom Objektträger abgezogen und anschließend in Aceton gegeben, um das Harz aufzulösen. Mit einem weichen Pinsel werden Reste vom Präparat gewischt und entfernt. Nach erneutem Trocknen können sie dann auf einen für die SRXRF geeigneten Probenhalter befestigt werden. Dies ist in der Regel ein 3 mal 6 cm großes Aluminiumblättchen von 1 mm Dicke. In der Mitte ist, je nach Größe der aufzutragenden Probe, eine Aussparung von 8 bis 20 mm im Durchmesser zu wählen. Über diese kann die Probe nun mittels einer Pinzette oder Saugröhrchen mit Klebestreifen wie Tesa[®]-Film 'frei schwebend' angebracht werden.

Die zur späteren Berechnung der Proben notwendige Dickenmessung erfolgte an dem Präzisionsmikroskop 'Olympus BX60F' nach der Methode 'Duc du Chaulnes'. Die mit dem geeichten Feintrieb des Mikroskops gemessene scheinbare Dicke multipliziert mit dem Brechungsindex des Minerals ergibt die wahre Dicke der Probe. Leider lassen sich die Dicken aber nur sehr ungenau messen, so daß diese Methode mit einem Fehler von 10 % (bei Probendicken > 100 μ m) bis 20 % (< 100 μ m) behaftet ist.

5.4. Auswahl und Herstellung der Standards

Für die Messungen am Strahl L des HASYLAB stehen derzeit bis zu fünfzehn verschiedene Multielementstandards zur Auswahl: Sechs international anerkannte natürliche (BCR-2, JF-1, JG-2, JR-1, MA-N, GD) sowie ein synthetischer Standard (NIST SRM 612), zwei selbst hergestellte interne Standards (BIO, FSP) und sechs schon vielfach untersuchte, aber noch nicht offiziell anerkannte, natürliche Standards (ATHO, T1, KL2, GOR128, ML3B, StHs6/80) (Jochum et al., 1999). Jeder dieser Standards deckt ein weites Spektrum an Elementen verschiedenster Konzentrationen ab. Dabei ist es wichtig, eine Auswahl von Standards zu treffen, die für jedes interessierende Element möglichst große Konzentrationsunterschiede aufweist. Ist ein Konzentrationsbereich für ein Element gut abgedeckt, so erhöht sich die Genauigkeit der zur späteren Quantifizierung benötigten Standardregressionsgeraden.

Die zu homogenen Gläsern geschmolzenen Standards wurden zunächst flächendeckend auf ihre Homogenität hin untersucht (Abb.5.6), um späteren Unregelmäßigkeiten vorzubeugen und um eine erfolgreiche Standardisierung zu gewährleisten. Die Streubreite der Zählraten lag dabei für alle Elemente unter 5 %. Dies gibt auch eine gute Reproduzierbarkeit der Meßmethode wider.

Zusätzlich wurden die Gläser mit dem Röntgendiffraktometer (J. Ludwig, Mineralogisch-Petrographisches Institut, Universität Hamburg) auf Bildung möglicher Phasen untersucht. Die Standards GD und MA-N wurden von Herrn Dr. B. Stütze (Geochemisches Labor, Universität Hamburg) zur Verfügung gestellt. Diese bereits als Schmelztabletten vorliegenden Standards sind zu je fünf sechsteln mit Lithiumtetraborat (Li₃BO₄) als geeignetem Flußmittel verdünnt.

Die als interne Standards vorgesehenen BIO und FSP wurden aus natürlichen Mineralen gewonnen, mit einem Achatmörser analysefein gepulvert und mit jeweils 1000 ppm Barium und Rubidium sowie je 200 ppm Strontium, Yttrium, Zirkonium, Niob, Gallium, Lanthan, Cer, Neodym, Samarium und Gadolinium als oxidische Pulver gedopt. Als einziges am Meßplatz bereits zugängliches Standardglas diente der NIST SRM 612, ein synthetisch hergestellter Careicher silikatischer Multielementstandard des 'National Institute of Standards and Technology' mit Spurenelementgehalten um 50 ppm. Die Standards JF-1, JG-2 und JR-1 konnten vom 'Geological Survey' Japan in Pulverform erworben werden. Die Standards BCR-2 sowie neue,

Abb.5.6: Homogenitätsmessung im Standardglas FSP am Beispiel für Yttrium (177 ppm). Zehn Messungen wurden, wahllos über das Präparat verteilt, mit einer 30 μ m Kapillare und 4mm Al-Absorber genommen. Die erhaltenen Intensitäten liegen dabei innerhalb eines Fehlers von < 5 %. Eine offensichtliche Meßdrift ist rein zufällig, aber nicht gegeben.

noch nicht international anerkannte, geologische Standardgläser wie ATHO, T1, GOR128, KL2, ML3B und StHs6/80 wurden von Herrn Dr. K.P. Jochum (Institut für Geochemie des Max-Planck-Instituts, Mainz) zur Verfügung gestellt. Das Schmelzen dieser Gesteine zu Gläsern wurde von D. Dingwell an der Universität Bayreuth durchgeführt.

Die analysefein gepulverten Standards BIO, FSP, JF-1, JG-2 und JR-1 wurden am Mineralogischen Institut der Universität Hannover von A. Becker bei einer Temperatur von 1050° C und 5 kbar Druck 24 Stunden lang mit 8 bis 9 % H₂O-Einbau in AgPd-Kapseln zu homogenen, wassergesättigten Gläsern geschmolzen. Diese Bedingungen liegen knapp unter dem Schmelzpunkt der Legierung der verwendeten Kapsel. Jedoch zeigte sich in den japanischen Gläsern eine Anreicherung von Silber aus dem Kapselmaterial. Untersuchungen mit dem Röntgendiffraktometer am Mineralogisch-Petrographischen Institut der Universität Hamburg zeigten aber, daß sich keine Phasen gebildet haben und die geschmolzenen Standardgläser in erster Näherung als homogen bezeichnet werden konnten. Flächendeckende Mehrpunktanalysen mit der Elektronenstrahl-Mikrosonde wie auch mit der SRXRF zeigten eine homogene Verteilung der Elemente im Glas. Die erhaltenen Schmelztabletten wurden schließlich am Mineralogisch-Petrographischen Institut der Universität Hamburg zeigten bie eine Schmelztabletten wurden schließlich am Mineralogisch-Petrographischen Institut der Universität Hamburg von Herrn P. Stutz auf eine geeignete Dicke geschliffen.

Um eine repräsentative Zusammensetzung der intern hergestellten Standards BIO und FSP zu erhalten, wurden sie mehrfach mit unterschiedlichen Analysemethoden untersucht. Zunächst wurde die Hauptelementzusammensetzung mit der Elektronenstrahl-Mikrosonde des Mineralogisch-Petrographischen Instituts der Universität Hamburg analysiert²¹. Röntgenfluoreszenzanalysen (RFA) sowie atomabsorptionsspektrometrische Untersuchungen (AAS) wurden am geochemischem Labor der Universität Hamburg unter Leitung von Herrn Dr. B. Stütze durchgeführt. Eine instrumentelle Neutronenaktivierungsanalyse (INAA) erfolgte durch B. Spettel am Max-Planck-Institut für Chemie, Abteilung Kosmochemie, in Mainz²² (Tab.5.1).

²¹ Standardkristalle: TAP, PET, LIF Strahlstrom: 21,3 nA

Beschleunigungsspannung: 20 keV

Take-off Winkel: 40°

²² Bestrahlung am TRIGA-Reaktor des Instituts für Kernchemie, Universität Mainz. Aufenthalt: 6 Stunden im Karussell, Fluß 7 · 10¹¹ n / cm² · sec Abklingzeit: Halbe Stunde Detektoren: verschiedene Ge/Li- und reinst Ge-Detektoren, je 3 Messungen auf planaren Ge-Detektoren, koaxialen Ge- oder Ge/Li-Detektoren (Effizienz 15 - 40 %) Meßzeiten: 30 Minuten (kurz nach Bestrahlung) bis 2 - 3 Tage (3 - 4 Wochen nach Bestrahlungsende) Einwaage: je 0,1 g

Tafel 5.1: Übersicht der verwendeten, zur Verfügung stehenden Standardgläser. (GSJ: Geological
Survey of Japan, USGS: United States Geological Survey, NIST: National Institute of Standards
and Technology, CRPG: Centre des Recherches Petrographiques et Geochimiques).

Standard	Gesteinstyp / Mineral	Herkunft	Quelle
JF-1	Orthoklas/Albit	Japan	GSJ
JG-2	Biotit-Granit	Gunma, Japan	GSJ
JR-1	Rhyolith	Wada-Toge Obsidian, Nagano, Japan	GSJ
BCR-2	Basalt	Bridal Veil Flow Quarry, Washington,	USGS
		USA	
NIST SRM 612	synthetisch		NIST
MA-N	Albit-Lepidolith-Granit	Zentralmassif, Frankreich	CRPG
GD	Devonische Grauwacke	Göttingen, Deutschland	
ATHO	Rhyolith	Island	
T1	Quarzdiorit	Alpen, Italien	
KL2	Basalt	Kilauea, Hawaii	
ML3B	Basalt	Mauna Loa, Hawaii	
GOR128	Komatiit	Gorgona Island	
StHs6/80	Andesit	Mount St. Helens, Washington, USA	
BIO	Fe-Muskovit	Eastern Desert, Ägypten	
FSP	Adular	unbekannt	

Tab.5.1: Analyseergebnisse der internen Glasstandards BIO und FSP aus Untersuchungen mit der
Elektronenstrahl-Mikrosonde (EMS), der Röntgenfluoreszenzanalyse (RFA), der instrumentellen
Neutronenaktivierungsanalyse (INAA) und der Atomabsorptionsspektrometrie (AAS) mit Mittel-
wert M und Standardabweichung o. Die Mittelwerte M dienten den Auswertungen mit der SRXRF.
Die Spurenelemente sind ihrer Ordnungszahl nach aufgelistet.

	BIO						FSP					
	EMS	RFA	INAA	AAS	М	σ	EMS	RFA	INAA	AAS	М	σ
[Gew%]												
SiO ₂	48,30	48,57			48,44	0,19	63,46	63,51			63,49	0,04
Al_2O_3	30,32	29,71		27,49	29,17	1,49	18,73	18,38		17,53	18,21	0,62
FeO _(tot)	7,01	7,94	7,59	7,61	7,54	0,39	0,02	0,14	0,05	0,06	0,07	0,05
MnO	0,11	0,11	0,10	0,10	0,11	0,01	0,01		0,00	0,00	0,01	0,01
MgO	1,25	1,23		1,21	1,23	0,02	0,01	0,01		0,01	0,01	0,00
CaO	0,01	0,04	<1,00	0,03	0,03	0,02		0,04	<0,70	0,04	0,04	0,00
Na ₂ O	0,43	0,33	0,39	0,36	0,38	0,04	1,00	0,82	0,90	0,87	0,90	0,08
K ₂ O	11,02	10,78	10,64	12,16	11,15	0,69	15,07	14,78	14,12	15,30	14,82	0,51
TiO ₂	0,68	0,66	<1,10	0,54	0,63	0,08		0,01	<1,30	0,01	0,01	0,00
P_2O_5		0,01			0,01			0,01			0,01	
Summe	99,13	99,38					98,30	97,70				
LOI		0,08						0,21				
[ppm]												
Sc		170	186		178	11			0,32	2	0,32	
V		19			19			6			6	
Cr			<25	4,4	4,4				6,70) 2,9	4,80	2,69
Co		4	3,5	3,4	3,6	0,3			0,25	5 0,4	0,33	0,11
Ni		28	<140	23	26	4		13	<15	14	14	1
Cu		29		40,3	35	8		6		29,1	17,6	16,3
Zn		199	300	183	227	63		25	5	10,7	14	10
Ga		359	335		347	17		205	196		201	6
Rb		1409	1435		1422	18		1011	1050		1031	28
Sr		238	220	253	237	17		781	749	731	754	25
Y		166			166			177			177	
Zr		225			225			240	230		235	7
Nb		401			401			262			262	
Cs			18,7		18,7				11,2		11,2	
Ba	1750	1678	1580		1669	85	7520	6922	6460		6967	531
La		223	178		201	32		192	175		184	12
Ce		360	207		284	108		324	193		259	93
Nd		183	150		167	23		193	180		187	9
Sm			213		213				190	_	190	
Eu			0,07		0,07				0,07	7	0,08	
Gd			180		180				143	_	143	
Тb			<0,17						<0,07	7		
Dy			<0,60						<0,30)		
Yb			1,03		1,03				0,54	ŀ	0,54	
Lu			0,20		0,20				0,08	3	0,09	
Hf			5,66		5,66				6,11	_	6,11	
Ta			3,43		3,43				1,33	3	1,33	
W			3,50		3,50				<0,50)		
Pt			17		17				57		57	
Pb		18		26	22	6		203		196	200	5
Th		4	5,65		5	1		9	9,35)	9	0
U		3	0,88		2	1		6	1,10)	4	3

5.5. Spektrenaufnahme

Vor der Datenaufnahme muß die Strahlposition bestimmt oder überprüft werden. Da man den Synchrotronstrahl während der Messung auf der Probe nicht sehen kann, sollte am Monitor eine Markierung vorgenommen werden. Man bedenke dabei, daß die Probe in einem Winkel von 45° zum Strahl angebracht ist. Daher kann der Strahl in horizontaler Richtung 'wandern', durch die gute Kollimation des Strahls in vertikaler Richtung ist der Strahl diesbezüglich stabil. Mit einem geeigneten Leuchtschirm kann der Strahl sichtbar gemacht werden.

Es ist darauf hinzuweisen, daß die Versuchsbedingungen während einer Meßsession nicht verändert werden sollten. Messungen mit vergleichenden Standards müssen unter konstanten Bedingungen durchgeführt werden. Es müssen während einer Meßeinheit, also zwischen zwei Injektionen, jeweils Standardmessungen durchgeführt werden, um sofort auf etwaige Veränderungen, beispielsweise Instabilitäten des Strahlstroms, zu reagieren. Eine gelegentliche Überprüfung der Strahllage kann über den Stromfluß in der Ionisationskammer erfolgen. Vor Beginn der Meßsession wird ein Kalibrierspektrum eingelesen, das zur Identifikation der Kanäle bzw. Energien dient. Dazu wird ein von einer Goldfolie aufgenommenes Spektrum, an dem alle rele-

Abb.5.7: Ausschnitt des Spektrums des Glasstandards NIST SRM 620 unter verschiedenen Meßbedingungen, jeweils ohne und mit einem zwischengeschalteten 3 mm Al-Absorber aufgenommen. Durch Hinzunahme des Al-Absorbers werden die Intensitäten der niederenergetischen Elemente unterdrückt, Elemente höherer Ordnungszahl werden nicht so geschwächt, das Spektrum verändert deutlich seine Form (nach Knöchel et al., 1983).

vanten K- und L-Linien (Au) deutlich sichtbar sind, benutzt. Abb.5.7 zeigt die unterschiedlichen Spektren einer Probe unter unterschiedlichen Anregungsbedingungen.

Die eigentliche Spektrennahme erfolgt mit TMCA-Software (Target Multi Channel Analyser) der Firma 'Target System Electronic GmbH'. Es können einzelne Punkte gemessen, eine angeordnete Reihe von Punkten, ein eindimensionaler Linienscan oder ein zweidimensionales Raster angelegt werden. Die Meßzeit pro Probenpunkt variierte bei den Messungen zwischen 100 Sekunden und 1 Stunde, je nach Ausrichtung des Experiments. Langzeitmessungen von 12 oder mehr Stunden sind ebenfalls möglich. In der Regel betrug aber eine Messung 1000 Sekunden. Dies erwies sich als genügend, um noch geringste Spuren im höheren Energiebereich der Seltenen Erdelemente (33 - 54 keV) nachzuweisen. Bei Messungen von Spurenelementen von einigen tausend ppm und mehr reicht eine kürzere Meßzeit aus. Das aufgenommene Spektrum wird als Histogramm mit den Energien bzw. Kanälen auf der Abszisse und den Intensitäten bzw. Zählereignissen auf der Ordinate dargestellt. Abb.5.8 zeigt das gesamte Spektrum des Multielementglasstandards NIST SRM 612.

5.6. Spektrenauswertung

Die zur Röntgenanalyse entwickelte Software AXIL ('Analysis of X-ray Spectra by Iterative Least Squares Fitting') (Espen et al., 1986) bietet für den Anwender eine schnelle Möglichkeit der Auswertung der aufgenommenen Spektren. AXIL ist ein integriertes System für die energiedispersive Röntgenspektrometeranalyse. Es kann u.a. mit einem externen MCA kommunizieren sowie Spektrendaten verschiedener Formate konvertieren. Das Spektrum wird, ähnlich dem TMCA-Programm, als eine Summe von Gauß-Peaks dargestellt. Eine Beschreibung der Fluoreszenzlinien erfolgt durch die Gehalte eines Kanals eines Gauß-Peaks, Nettopeakbereich, Energieausbeute, Peakbreite, Energie des gemessenen Kanals bzw. der charakteristischen Linie. Die Spektrenberechnung aus der Peak-Evaluation mit dem AXIL-Programm beruht auf dem iterativen Verfahren des nichtlinearen kleinsten Quadrates χ^2 (Gillieson et al., 1965). Dies beinhaltet den Fit eines Spektrums mit einer vom Benutzer ausgewählten mathematischen Funktion. Dafür werden eine Vielzahl von Parametern, die das Spektrum beschreiben, optimal abgeschätzt. Das Ergebnis ist die repräsentative Bestimmung der Nettopeakzählraten.

41

 χ^2 bestimmt die Diskrepanz zwischen berechneten und beobachteten Werten:

$$\chi^{2} = \sum_{i=1}^{n} \frac{(x_{th} - x_{exp})^{2}}{x_{exp}}$$
(5.3)

mit n als Zahl der zu vergleichenden Wertepaare, x_{th} als berechnete und x_{exp} als experimentelle Werte.

Für nichtlineare Funktionen wie beim Fitten von mehreren untergrundgeglätteten Peaks wird χ^2 durch Iteration auf ein Mindestmaß gebracht, in dem der berechnete Wert im nächsten Rechengang für χ_{exp} eingesetzt wird usw., so daß $\chi^2_{neu} < \chi^2_{alt}$ ergibt. Dies wird so lange wiederholt, bis sich zwei aufeinanderfolgende χ^2 -Werte nicht mehr als 0,1 % voneinander unterscheiden. Dafür genügen erfahrungsgemäß fünf, maximal zehn Iterationen. Der reduzierte Wert ist ein Indikator für die Güte eines Fits und hat einen idealen Wert 1 für einen perfekten Fit. Das Erreichen der kleinstmöglichen Abweichung von 0,1 % ist hierbei aber ein wichtigeres Kriterium als der aktuelle χ^2 -Wert selbst. Die prozentuale Differenz gibt Auskunft darüber, inwieweit das Programm die Parameter des Modells optimiert.

Abb.5.9: Ausschnitt eines Spektrums mit der Untergrundabgleichung der 'Smooth Filter Estimation'-Methode und einzelnen Peakfits eines Fluideinschlusses in einem Quarz aus Bingham, Utah (nach Smith und Rivers, 1995).

Da eine Untergrundabschätzung zur Berechnung der Nettopeaks des gesamten Spektrums notwendig ist, stehen zur Errechnung verschiedene Modelle, die den Untergrund auf verschiedene Weise abgleichen, als Funktionen zur Verfügung. Es kann zwischen Berechnungen mit linearem, exponentialem, Bremsstrahlungs-, Glättungsfilter- und einem orthogonal polynomial bestimmten Untergrund ausgewählt werden. Als geeignetstes Modell erwies sich dabei die Berechnung mit einem Glättungsfilteruntergrund, der 'Smooth Filter Estimation'-Methode (Abb.5.9) mit einem Paramter 30. Der Parameterwert hängt jeweils vom ausgewählten Untergrundmodell ab. Die Filterfunktion nimmt eine Wichtung, bei der eine Binomialverteilung als Funktion angewendet wird, zur Beschreibung der Peakform vor. Die Wirkung des optimalen Filters besteht darin, alle verwertbare Information des Peaks in dem dem Peakzentrum entsprechenden Kanal zu konzentrieren. Die Approximation eines Röntgenpeaks richtet sich nach der Gauß-Funktion. Nach Bestimmung der speziellen, den Untergrund beschreibenden Filterfunktion kann der interpolierte Betrag zum Untergrund bestimmt und von den totalen Kanalinhalten abgezogen werden.

5.7. Umrechnung der erhaltenen Daten

Die Gesamtnettopeakgehalte oder Nettointensitäten jedes Elements werden in cps ('counts per second') umgerechnet und auf den Strom des Primärstrahls, den DORIS-Strom (D) normiert, da vergleichbare Gehalte zur späteren Quantifizierung der Proben nötig sind.

$$cps_{D} = \frac{Gesamtzählrate}{Me^{\circ}dauer} \frac{D_{n}}{D_{Probe}}$$
(5.4)

Bei der Meßdauer muß die Totzeit berücksichtigt werden, D_n ist der auf 100 mA normierte, D_{Probe} der zur gemessenen Probe notierte DORIS-Strom. Obwohl während einer Meßeinheit der DORIS-Strom exponentiell abnimmt, wird bei kurzen Meßzeiten von 1000 Sekunden eine lineare Abnahme angenommen, so daß für eine Messung der mittlere DORIS-Strom notiert werden kann.

Da die Probenzusammensetzung und Probendicke einen nicht unwesentlichen Beitrag zu den erhaltenen Intensitäten leisten, werden die erhaltenen ' cps_D ' auf die Probe matrixkorrigiert.

So entsprechen die Intensitäten I aus Gleichung (4.2) den erhaltenen 'cps' und es ergibt sich daraus:

$$cps_M = \frac{cps_D}{e^{-\mu\rho d}}$$
(5.5)

mit dem Massenschwächungskoeffizienten μ [cm²/g], der Dichte ρ [g/cm³] und der Dicke d [cm]. cps entspricht dabei den in Gleichung (4.2) verwendeten Intensitäten.

Da ausschließlich silikatische Proben sowie silikatische Geostandards zu den Messungen benutzt wurden, konnte die Dichtebestimmung vernachlässigt werden. Wie Messungen mit Nichtsilikaten wie Apatit zeigten, erbrachten auch diese gute Ergebnisse (Abb.7.19- 20).

5.8. Der Massenschwächungskoeffizient

Durchdringen Röntgenstrahlen Materie, so wird deren Intensität durch Absorptionsprozesse oder Streuung an den Atomen geschwächt. Geht die Dicke des durchstrahlten Materials gegen Null so können diese Effekte vernachlässigt werden. Durch unterschiedliche Probendicken bzw. Verwendung unterschiedlich dicker Standardgläser müssen für alle Proben die individuellen Massenschwächungskoeffizienten berechnet werden. Wie sich im folgenden bei den Standardregressionsgeraden zeigte, ergab die Korrektur mit Massenschwächungskoeffizienten ein besseres Ergebnis auch für dünne Proben.

Die Photonenschwächungskoeffizienten für die Energien, also für jede gemessene Linie, wurden dem Atomdatenbuch von Zschornack (1989) nach Werten von Veigele (1973) entnommen. Sie basieren auf einer auf der Grundlage experimenteller Daten vorgenommenen Approximation. Die Unsicherheiten liegen unter 5 %.

Jedes Element der Matrix wird je nach Gehalt durch ein anderes geschwächt. Also ergibt sich für jedes zu messende Element ein bestimmtes $\mu_{i, Probe}$ aus der Summe des Produkts der Konzentrationen C_i in der Probe mit dem jeweiligen Massenschwächungskoeffizienten μ_i :

$$\mu_{i(Probe)} = \sum C_i \mu_i \tag{5.6}$$

Hierbei ist nochmals ausdrücklich darauf hinzuweisen, daß die SRXRF nicht als unabhängige Meßmethode gelten darf. Da die meisten Matrixelemente wie Si, Al, Mg oder Na mit der SRXRF nicht gemessen werden können, sind die Daten der Elektronenstrahl-Mikrosonde besonders wichtig, gerade zur Bestimmung der matrixabhängigen Massenschwächungskoeffizienten.

Beispiel für die Berechnung des Massenschwächungskoeffizienten für die Röntgenlinie Sr- $K_{\alpha 1}$ nach Gleichung (5.6) für das Standardglas T1. μ -Werte aus Zschornack (1989) nach Veigele (1973).

	Zusammensetzung T1 [Gew.%]	$\mu_i [cm^2/g]$
Si	27,60	11,8
Al	9,03	9,38
Fe	5,09	67,2
Mn	0,10	58,6
Mg	2,27	7,36
Ca	5,04	34,3
Na	2,32	5,49
Κ	1,57	28,7
Ti	0,44	42,1
Р	0,07	14,3
С		0,919
0	46,47	2,17

$$\mu_{i(Probe)} = \sum C_i \mu_i$$

$$\mu_{Sr(TI)} = \frac{27,60}{100} \cdot 11,8 + \frac{9,03}{100} \cdot 9,38 + \frac{5,09}{100} \cdot 67,2 + \frac{0,10}{100} \cdot 58,6 + \frac{2,27}{100} \cdot 7,36 + \frac{5,04}{100} \cdot 34,3 + \frac{2,32}{100} \cdot 5,49 + \frac{1,57}{100} \cdot 28,7 + \frac{0,44}{100} \cdot 42,1 + \frac{0,07}{100} \cdot 14,3 + \frac{46,47}{100} \cdot 2,17$$

 $\mu_{Sr(T1)} = 11,25$

6. Quantifizierung

Nach Zuordnung der Fluoreszenzpeaks zu den einzelnen Elementen, und nach Erhalt der Intensitäten müssen diese vor der eigentlichen Quantifizierung korrigiert werden. Die Problematik beruht darin, daß die Hauptelemente der Probenmatrix einen Einfluß auf die Fluoreszenzintensität der zu analysierenden Spurenelemente ausüben. Neben diesem Phänomen mußte auch der Einfluß der Dicke auf die Intensität untersucht werden, da Proben unterschiedlicher Dicke auch Spektren unterschiedlicher Intensitäten zur Folge haben (Abb.6.1).

Um die Abhängigkeit der Fluoreszenzintensitäten bezüglich der einzelnen Elemente, also abhängig von der Atomzahl Z, und unterschiedlicher Dicken im Probenmaterial empirisch zu untersuchen, wurden von drei der zur Verfügung stehenden Standards (BIO, FSP, T1) Keile hergestellt. Die Präparation erfolgte wie in Kapitel 5.3. beschrieben. Die nach dem Schmelzen erhaltene Glastablette wurde schräg abgeschliffen, wobei darauf geachtet wurde einen möglichst gleichmäßigen Anstieg der Probendicke zu erhalten. Nach anschließendem Vermessen ergaben sich für die drei Standardgläser folgende, von einer Seite zur anderen stetig ansteigenden Dikken: BIO: 110 bis 330 μ m; FSP: 160 bis 300 μ m; T1: 170 bis 320 μ m. Nach Spektrenaufnahme konnte der Einfluß der Konzentrationen im Material und unterschiedlicher Dicken für verschiedene Z auf die Fluoreszenzausbeuten deutlich gemacht werden.

Abb.6.1: Vergleich der Spektren des Glasstandards NIST SRM 620 von 200 µm und 20 µm Dicke. Der Ausschnitt des Energiebereichs 0 - 20 keV zeigt eine Zunahme der Intensitäten in der dickeren Probe mit steigender Ordnungszahl (nach Vincze, 1995).

6.1. Einfluß verschiedener Faktoren auf die Fluoreszenzintensität

An den bis zu ca. 1 mal 2 cm großen, zu Keilen geschliffenen Standardgläsern wurden Linienscans vorgenommen. Auf einer Strecke von ungefähr 15 mm Länge wurden, beginnend an der dünneren Seite des Keils, in Abständen von 200 μ m insgesamt bis zu 65 Punktmessungen pro Probe durchgeführt. Das bedeutet, daß pro Meßpunkt die Probendicke in etwa um 2,5 μ m (T1), 3 μ m (FSP) bzw. 3,5 μ m (BIO) zunimmt. Die Meßzeit pro Probenpunkt betrug jeweils 500 Sekunden.

Mit wachsender Dicke steigen die auf den Primärstrom normierten Nettopeak-Intensitäten dabei linear an (Abb.6.2). Auffällig ist eine unterschiedliche Steigung der K_a-Intensitäten mit variierendem Z, also verschiedener Energie (Abb.6.3). Als Beispiel ist dies anhand der Rb- und La-Intensitäten im Glaskeil T1 zu erkennen. Trotz fast identischer Konzentrationen von 69 ppm (Rb) bzw. 70 ppm (La) zeigte das höherenergetische Lanthan (K_a = 33,4 keV) eine stärkere Zunahme der Intensität als Rubidium (K_a = 13,4 kev). Dies führt auch dazu, daß Elementverhältnisse mit zunehmender Probendicke variieren. Abb.6.4 zeigt die Veränderung der La/Sr-Verhältnisse im Standardkeil BIO. Elemente mit ähnlichem Z können in ihren Intensitätsverhältnissen dagegen als konstant bezeichnet werden (Abb.6.5). Abb.6.6 verdeutlicht das Anwachsen der Intensitäten mit zunehmender Dicke und steigender Ordnungszahl.

Es zeigte sich also, daß die Fluoreszenzausbeuten mit der Probendicke zwar linear zunehmen, jedoch aber abhängig von der Ordnungszahl bzw. Energie der einzelnen Elemente sind. Durch die unterschiedlichen Intensitätszunahmen mußte so für jedes interessierende Element eine individuelle Standardbeziehung aufgestellt werden. Aus diesen Erkenntnissen werden im weiteren Verlauf der Arbeit die Intensitäten als primärstromnormierte und absorptionskorrigierte Zählereignisse pro Sekunde [cps_M] aufgetragen.

Abb.6.2: Mit wachsender Probendicke nehmen die Fluoreszenzintensitäten, abhängig von der Konzentration des betreffenden Elements, stetig zu. Im Standardglas FSP steigen die K_a-Intensitäten für Strontium (754 ppm) sehr viel rascher an als im Standardglas T1 (Sr: 288 ppm) bzw. BIO (Sr: 237 ppm) (cps = cps_M).

Abb.6.3: Trotz nahezu gleicher Konzentrationen von 70 ppm (La) bzw. 69 ppm (Rb) wachsen im Geostandard T1 die K_{α} -Intensitäten bei dem höherenergetischen Element Lanthan (33,4 keV) schneller an als bei Rubidium (13,4 keV) (cps = cps_M).

Abb.6.4: Das Intensitätsverhältnis $[cps_M]$ von Elementepaaren mit großem Energieunterschied wie La (33,4 keV) und Sr (14,2 keV) steigt mit zunehmender Probendicke an. Die Elementgehalte im Geostandard BIO betragen: La 201 und Sr 237 ppm.

Abb.6.5: Intensitätsverhältnisse $[cps_M]$ von Elementen ähnlicher Ordnungszahl bzw. Energie am Beispiel T1 sind im Bereich von < 5 % konstant. La: 70 ppm; Ce: 125 ppm. Die K_{α}-Energien sind für La 33,4 keV und für Ce 34,7 keV.

Abb:6.6(a-c): Für die Standardproben BIO und FSP wurden jeweils bei 180 μ m und 300 μ m Dicke die Intensitäten gegen die jeweiligen Konzentrationen für die Elemente Kalium (a), Rubidium (b) und Lanthan (c) aufgetragen. Mit zunehmender Dicke nehmen die Intensitäten zu, d.h. die Steigung m der Geraden nimmt nach der Geradengleichung y = mx + b ab, mit y₁ für 180 μ m und y₂ für 300 μ m. Je höherenergetisch ein Element ist, desto größer wird das aus der Steigung resultierende Verhältnis y₁/y₂. Also muß auch bei einfachen qualitativen Untersuchungen der Einfluß der Probendicke und die zu betrachtenden Elemente berücksichtigt werden. Konzentrationen: BIO: K = 9,38 %; Rb = 1422 ppm; La = 201 ppm; FSP: K = 12,61 %; Rb = 1031 ppm; La = 184 ppm (cps = cps_M).

Die Intensitätsausbeuten für ein Element sind, abgesehen von der Absorption im Material, abhängig von seiner Konzentration. Da für die geologischen Standardgläser Dicken wie Konzentrationen bekannt sind, läßt sich eine Beziehung dieser Komponenten mit der Intensitätszunahme herstellen. Die Intensitätszunahme mit der Probendicke läßt sich am Beispiel Strontium auch einfach als Geradengleichung y = mx + b ausdrücken (Abb.6.7), deren Steigung m (im folgenden als m1 bezeichnet) gegen die Konzentration des betreffenden Elements die Beziehung m2 ergibt (Abb. 6.8). Die Steigung m2 drückt also für jedes Element eine Beziehung der Dicken auf die Fluoreszenzausbeuten aus und wird daher zur Quantifizierung unbekannter Proben unterschiedlicher Dicken herangezogen (die Werte für m2 aller gemessenen Elemente befinden sich im Anhang; Tab.10.2). Fortführend dienen m1 bzw. m2 also als Bezug für die für eine gegebene Probendicke gemessenen Intensitäten auf die Konzentrationen.

Abb.6.7: Die linearen Intensitätszunahmen mit der Dicke als Steigung m1 für Sr, abhängig von der Konzentration, für die Standardkeile FSP, BIO und T1 als Geraden dargestellt. Die Steigungen sind: $m_{1_{\text{FSP}}} = 9720$, $m_{1_{\text{T1}}} = 3054$, $m_{1_{\text{BIO}}} = 2702$ (cps = cps_M).

Abb.6.8: Trägt man die Intensitätszunahme der drei Standardgläser als Steigung (m1) aus Abb.6.7 gegen deren Konzentration auf, so erhält man aus der Regression dieser Werte eine Beziehungsgerade für Sr, mit der Steigung m2 = 12,505. Für m1 wird ein Fehler von 5 % angenommen.

6.2. Intensitätskorrektur

Da die Fluoreszenzintensitäten sowohl von der Dicke (\rightarrow m1), der Konzentration (\rightarrow m2) und der Ordnungszahl des betreffenden Elements abhängig sind, muß für jedes zu untersuchende Element eine individuelle Berechnung der Intensitäten aufgestellt werden, die es erlaubt Proben unterschiedlicher Dicke zu quantifizieren. Hierbei werden die erhaltenen Intensitäten mit Hilfe einer normierten Probendicke korrigiert. Abb.6.9 zeigt für eine Probe A mit der Dicke d(A) und den erhaltenen 'cps'(A) grafisch die Berechnung der korrigierten Intensitäten für ein beliebiges Element i.

Die hier angegeben Intensitäten sind bereits nach Gleichung (5.4) und (5.5) auf den Primärstrom normiert und absorptionskorrigiert. Ein Schema des Rechenwegs zur Quantifizierung unbekannter Proben (geeignet zum Einsetzen beispielsweise in eine 'Excel'-Arbeitsdatei) ist als Tabelle dem Anhang beigefügt (Tab.10.1).

Abb.6.9: Schematische Darstellung einer Probe A mit der Dicke d(A), den erhaltenen, auf den Primärstrahl normierten und absorptionskorrigierten Intensitäten cps(A) und der durch die Konzentration bekannten Steigung m1(A), normiert mit der Dicke 50 μ m (cps = cps_M).

Diese Korrektur war notwendig geworden, weil sich bei sehr hohen Konzentrationen in den Standard-Keilproben Steigungen für m1 ergaben, die nicht durch Null gingen. So wurden die Intensitäten zusätzlich auf die Normdicke 50 µm berechnet, so daß die Steigung erhalten blieb. Sie wird demzufolge nur in x-Richtung verschoben.

Der Gleichungsweg ist wie folgt beschrieben:

$$m1 = m2_i \cdot C_i \tag{6.1}$$

aus der für das Element i berechneten Standardsteigung m 2_i und der Konzentration C_i . Mit

$$c = \sqrt{2(\Delta d)^2} \tag{6.2}$$

wird der Einheitsradius, abhängig von der Dicke der Probe, mit 50 μ m normiert. Aus der Steigung m1 läßt sich der Winkel α wie folgt ableiten:

$$\alpha = \arctan(m1) \tag{6.3}$$

Um einen Wert zur Korrektur der Intensitäten zu erhalten, wird über den Winkel α und dem normierten Einheitskreis ein Wert Δ ermittelt

$$\Delta = \sin \alpha \cdot c \tag{6.4}$$

mit dem die Intensitäten, auf die Dicke der Probe bezogen, korrigiert werden können:

$$cps_{korr} = \frac{d - \Delta}{d} cps_M \tag{6.5}$$

Dieser Rechenweg wurde für alle Intensitätsmessungen angewendet.

Um eine für die Quantifizierung notwendige Beziehung zwischen Intensität und Konzentration zu erhalten, werden für jedes Element die korrigierten Intensitäten aller Standards gegen ihre Konzentration aufgetragen. Durch die erhaltenen Punkte wird eine Regressionsgerade gelegt, deren Steigung als Eichgerade für die unbekannten Proben der jeweiligen Meßserie dient. In Abb.6.10 ist eine solche Eichgerade am Beispiel Strontium dargestellt. Unkorrigierte Intensitäten ergaben dabei eine weitaus schlechtere Korrelation.

Abb.6.10: Erstellung einer Eichgerade am Beispiel Strontium. Für diese Meßserie gilt die Steigung m = 29,343 als Multiplikator für die erhaltenen Intensitäten unbekannter Proben. Der Fehler ist mit 5% angegeben. Der Korrelationskoeffizient R dient zur Bestimmung der Güte der Regression. Unkorrigierte Intensitäten ergaben eine weitaus schlechtere Korrelation (cps = cps_{korr}).

Der Korrelationskoeffizient R der Regressionsgeraden gibt dabei die Approximationsgüte an (Zschornack, 1989):

$$R = 1 - \frac{\sigma_{y,x}^2}{\sigma_y^2} \tag{6.6}$$

mit

$$\sigma_{y} = \left(\frac{\sum_{i} y - ax}{N - 1}\right) \tag{6.7}$$

als Standardabweichung des y-Werts und

$$\sigma_{y,x} = \left(\frac{\sum_{i}^{n} (y - y_{th})_{i}^{1/2}}{N - g}\right)^{1/2}$$
(6.8)

als abgeschätzter Standardfehler von y hinsichtlich x für N - g = F (F: Anzahl der Freiheitsgerade). Ein Wert von R = 1 entspricht idealer Korrelation der Variablen x und y, wogegen R = 0 das Fehlen jeglicher Korrelation angibt. Eine Quantifizierung unbekannter Proben kann nun mit Hilfe der jeweiligen Multiplikatoren aus den Eichgeraden durchgeführt werden.

Da zwischen zwei Meßserien meist eine längere Zeitspanne liegt, kann nicht davon ausgegangen werden, daß immer die selben Meßbedingungen herrschen (Abb.6.11). Deshalb ist es nötig, den ganzen Standardsatz, zumindest aber einige Repräsentive, für eine Meßserie komplett zu messen.

Abb.6.11: Am Beispiel dreier Meßserien unter verschiedenen Bedingungen wird die unterschiedliche Fluoreszenzausbeute dargestellt. Die Meßserie 04/97 wurde mit einer schlecht justierten Kapillare (2,7 μ m) durchgeführt. Mit einer optimal justierten Kapillare erzielt man deutlich höhere Ausbeuten (12/97). Ohne Kapillare (07/98) ist die Anregungsenergie am größten, somit auch die resultierenden Intensitäten. Jedoch ist in diesem Falle der Strahl mit einem Durchmesser von ca. 100 μ m für Analysen kleinster Phasen zu groß.

6.3. Probenauswertung

Gemäß Gleichungen (6.1-6.5) werden die gemessenen Intensitäten der zu quantifizierenden Proben korrigiert. Die Quantifizierung erfolgt dabei iterativ. Da die Konzentrationen nicht bekannt sind wird zunächst zur Berechnung von m1 für C_i eine angenommene Konzentration von 100 ppm für Spurenelemente bzw. 10 % für Hauptelemente angegeben. Die daraus resultierenden cps_{korr} werden mit dem aus der Regression der Eichgeraden erhaltenen Faktor multipliziert und der sich daraus errechnende Gehalt des Elements i in der Probe wieder in (6.1) eingesetzt. Dieser Vorgang wird so lange wiederholt, bis sich zwei aufeinanderfolgende Gehalte nur noch um 1% voneinander unterscheiden. Hierbei genügen erfahrungsgemäß fünf Iterationen. Eine Tabelle zur Berechnung unbekannter Proben (Tab.10.1) sowie die aus den Standardkeilen erhaltenen m2-Werte für die untersuchten Elemente (Tab.10.2) befinden sich im Anhang.

Durch die unterschiedlichen Zusammensetzungen der Geostandards wurden die Eichgeraden für jedes interessierende Element durch verschiedene Geostandards definiert (die Geostandards sind je Element ihrer Konzentration nach aufgeführt):

- K: FSP, BIO, JF-1, JG-2, JR-1, MA-N, ATHO, GD, T1, BCR
- Ca: NIST 612, BCR-2, T1, GD, ATHO, JG-2, JF-1
- Ti: BCR-2, T1, GD, BIO, ATHO
- Mn: BCR-2, T1, ATHO, BIO, GD, MA-N
- Fe: BCR-2, BIO, T1, GD, ATHO, JR-1, JG-2, MA-N
- Zn: BIO, MA-N, GD, BCR-2, T1, JR-1, FSP, JG-2
- Ga: BIO, FSP, MA-N, ATHO, BCR-2, T1
- Rb: MA-N, BIO, FSP, JG-2, JF-1, JR-1
- Sr: FSP, BCR-2, T1, BIO, JF-1, ATHO, MA-N, NIST 612
- Y: FSP, BIO, ATHO, JG-2, JR-1, BCR-2, T1, GD
- Zr: ATHO, FSP, BIO, BCR-2, GD, T1, JR-1, JG-2, JF-1, MA-N
- Nb: BIO, FSP, MA-N, ATHO, JR-1, JG-2, BCR-2
- Ba: FSP, BIO, JF-1, GD, BCR, ATHO, T1, JG-2
- La: BIO, FSP, T1, ATHO, NIST 612, GD, BCR-2, JR-1, JG-2
- Ce: BIO, FSP, T1, ATHO, BCR-2, GD, NIST 612, JR-1, JG-2, JF-1
- Nd: FSP, BIO, ATHO, T1, NIST 612, BCR-2, GD, JR-1, JG-2
- Sm: BIO, FSP, NIST 612, ATHO, T1, BCR-2
- Gd: BIO, FSP, NIST 612, T1
- Dy: NIST 612, ATHO, JG-2, BCR-2, T1
- Er: NIST 612, ATHO, JR-1
- Th: T1, JG-2, JR-1, FSP, GD, ATHO, BCR-2, BIO

6.4. Nachweisgrenzen und mögliche Fehlerbestimmung

Das Nachweisvermögen der SRXRF hängt in hohem Maße von den Anregungsbedingungen ab. Bei Messungen mit Kapillaren oder Absorbern ist die Ausbeute der Röntgenfluoreszenzintensität weitaus geringer, so ergeben sich dadurch auch unterschiedliche Peak/Untergrund-Verhältnisse, jedoch sind die Schwankungen gering. Durch die Energieabhängigkeiten der Elemente ergeben sich im folgenden für jedes zu untersuchende Element individuelle Nachweisgrenzen. Nach Long (1995) genügt es hierbei die jeweilige Standardabweichung (1 σ) anzugeben. Die Standardabweichung läßt sich als Varianz eines Satzes von Messungen als Wurzel der Summe der Quadrate der Abweichungen der Meßergebnisse vom arithmetischen Mittel definieren:

$$\sigma = \sqrt{\left(\sum_{i=1}^{n} \frac{\left(x_i - \bar{x}\right)^2}{n-1}\right)}$$
(6.9)

mit x_i gemessener Wert und \overline{x} Referenzwert des Standards.

Für die SRXRF sind durch die erfolgten Standardmessungen über alle Meßsessions folgende Standardabweichungen bestimmt worden:

	K	Ca	Ti	Mn	Fe			
σ[%]	0,49	0,30	0,06	0,02	0,16			
	Zn	Ga	Rb	Sr	Y	Zr	Nb	Ba
σ [ppm]	13	6	41	26	9	14	11	101
	La	Ce	Nd	Sm	Gd	Dy	Er	Th
σ [ppm]	3	7	7	4	6	5	5	5

Im Vergleich zu ähnlichen Untersuchungen an Synchrotronstrahlungsquellen können die erzielten Werte als gut bezeichnet werden (vgl. Chen et al., 1993).

Präzision und Genauigkeit der Meßmethode sind zufriedenstellend. Die Reproduzierbarkeit der SRXRF liegt bei 1 - 7 %, analytische Unsicherheiten bei 10 - 20 %. Der statistische Fehler,

gebunden an die nichtsystematische Fluktuation der experimentellen Bedingungen und Meßmethoden, ist < 1 %. Hinzu treten Fehlermöglichkeiten vor allem durch die Dickenbestimmung der zu analysierenden Proben auf, was sich ebenso wie Schwankungen im Primärstrom in der Korrektur der Intensitäten (cps_D) niederschlägt. Der Primärstrahl kann im allgemeinen aber als stabil bezeichnet werden. Unsicherheiten der Zusammensetzung der Probe zur Erstellung des Massenschwächungskoeffizienten μ sollten < 10 % sein. Die Konfidenzgrenzen liegen bei den Hauptelementen bei 20 %, bei den Spurenelementen bei 1 %.

Messungen der Geostandards StHs6/80, KL2, ML3B und GOR128 (Jochum et al., 1999), die nicht zu den Standardeichgeraden beitrugen, sondern als unbekannte Proben quantifiziert wurden, zeigen im Vergleich zu bisher vorliegenden Literaturwerten unterschiedliche Ergebnisse. So konnten KL2, ML3B und GOR128 in den Spurenelementen Zn, Ga, Sr, Y, Zr, Nb und Ba mit Abweichungen von 0 - 15 % gut quantifiziert werden, StHs6/80 jedoch bei Abweichungen bis zu 50 % (Ga) nicht zufrieden stellen. StHs6/80 zeigte aber schon in sich große Schwankungen. Die Abweichungen in den SEE lagen wegen der geringen Gehalte um 30 %.

	BIO			FSP			NIST 612		
	Refe-	SRXRF	σ	Refe-	SRXRF	σ	Refe-	SRXRF	σ
	renzwert	19 Anal.		renzwert	20 Anal.		renzwert	15 Anal.	
K_2O [Gew.%]	11,15	13,69	2,25	14,82	14,50	0,82	0,008	1,18	0,23
CaO	0,03	0,16	0,12	0,04	0,07	0,08	12	11,14	1,62
TiO ₂	0,63	0,77	0,33	0,01	0,58	0,26	0,008	0,00	0,00
MnO	0,11	0,14	0,03	0,01	0,02	0,01	0,005	0,01	0,00
$Fe_2O_3(t)$	7,54	7,24	1,25	0,07	0,03	0,01	0,005	0,02	0,01
Zn [ppm]	227	212	41	14	5	2		66	10
Ga	347	363	42	201	172	36		58	11
Rb	1422	1520	338	1031	1276	158	31	34	8
Sr	237	212	28	754	766	34	78	89	10
Y	166	167	14	177	175	9		40	6
Zr	225	220	32	235	217	30		53	6
Nb	401	404	49	262	198	20		47	5
Ba	1669	1437	176	6691	6757	208	41	40	5
La	201	204	14	184	178	9	36	42	5
Ce	284	299	28	259	217	15	39	69	11
Nd	167	161	16	187	207	61	36	34	6
Sm	213	217	18	190	184	8	39	36	4
Gd	180	177	11	143	145	9	39	41	8
Dy		22	13		14	8	35	32	3
Er		14	8		10	6	39	34	5
Th	5	10	4	9	5	4	38	39	4

Tab.6.1: Vergleichende SRXRF-Meßergebnisse der Glasstandards mit ihren Referenzwerten. Elemente sind mit steigender Ordnungszahl angegeben.

	JG-2			JR-1			JF-1		
	Refe-	SRXRF	σ	Refe-	SRXRF	σ	Refe-	SRXRF	σ
	renzwert	11 Anal.		renzwert	15 Anal.		renzwert	9 Anal.	
K_2O [Gew.%]	4,33	4,36	0,88	4,03	2,95	0,63	9,29	8,37	0,71
CaO	0,73	0,54	0,11	0,58	0,36	0,10	0,85	0,60	0,15
TiO ₂	0,037	0,02	0,02	0,1	0,06	0,02	0,005	0,12	0,08
MnO	0,014	0,02	0,00	0,1	0,06	0,01	0,001	0,00	0,00
$Fe_2O_3(t)$	0,84	0,78	0,13	0,96	0,82	0,14	0,07	0,06	0,01
Zn [ppm]	12	18	5	27	36	6	3	8	2
Ga	17	13	3	16	12	3	17	14	4
Rb	272	234	23	235	212	27	244	179	25
Sr	15	12	2	27	22	3	150	118	8
Y	82	77	24	42	35	10	4	4	2
Zr	89	42	12	93	87	10	38	22	8
Nb	14	8	2	14	8	2	1	0	0
Ba	61	43	6	37	41	13	1550	996	65
La	17	18	4	19	18	4	2	6	3
Ce	42	52	12	45	55	12	4	10	5
Nd	22	16	3	23	16	3	1	<17	17
Sm	7	12	6	6	9	3	0	< 5	3
Gd	4	<14	6	4	<11	3	1	< 5	3
Dy	11	12	4	6	8	4		< 5	5
Er		12	9	4	<14	11		<10	10
Th	27	21	8	24	13	4	1	< 4	2

Tab.6.1 (Fortsetzung): Vergleichende SRXRF-Meßergebnisse.

	BCR-2			ATHO			T1		
	Refe-	SRXRF	σ	Refe-	SRXRF	σ	Refe-	SRXRF	σ
	renzwert	15 Anal.		renzwert	9 Anal.		renzwert	7 Anal.	
K_2O [Gew.%]	1,72	1,54	0,41	2,67	3,64	0,44	1,88	3,10	0,28
CaO	7,06	5,83	1,20	1,62	1,49	0,02	6,75	7,47	0,37
TiO ₂	2,28	2,20	0,07	0,24	0,11	0,02	0,72	0,84	0,08
MnO	0,18	0,17	0,02	0,11	0,18	0,04	0,13	0,13	0,02
$Fe_2O_3(t)$	12,74	12,42	0,34	3,63	2,95	0,30	7,23	5,66	0,61
Zn [ppm]	130	102	18	140	227	30	76	94	29
Ga	22	13	5	25	38	10	18	21	6
Rb	47	30	8	63	107	8	78	86	14
Sr	330	290	43	94	151	7	288	280	20
Y	38	20	3	102	134	12	23	22	2
Zr	190	191	23	550	574	12	156	161	9
Nb	14	6	3	61	86	7	9	7	1
Ba	681	518	92	544	480	11	410	325	107
La	25	21	4	56	93	7	70	72	3
Ce	54	50	8	121	206	18	125	144	6
Nd	29	23	8	62	85	8	42	38	2
Sm	7	9	6	14	<32	9	7	<17	6
Gd	7	<12	9	15	<40	2	5	<15	2
Dy	6	< 9	7	17	<22	7	4	< 8	3
Er	4	<14	10	10	<14	8	2	< 7	3
Th	6	3	2	7	< 9	3	31	26	4

	GD			MA-N			StHs6/80		
	Refe-	SRXRF	σ	Refe-	SRXRF	σ	Refe-	SRXRF	σ
	renzwert	8 Anal.		renzwert	10 Anal.		renzwert	2 Anal.	
K_2O [Gew.%]	2,24	0,87	0,31	3,18	3,09	1,70	1,29	3,59	1,75
CaO	1,82	1,07	0,39	0,59	0,57	0,27	5,03	6,50	2,34
TiO ₂	0,68	0,47	0,08	0,01	0,01	0,01	0,69	1,01	0,43
MnO	0,07	0,06	0,01	0,04	0,03	0,01	0,08	0,12	0,06
$Fe_2O_3(t)$	5,34	5,60	1,02	0,47	0,49	0,09	4,82	3,00	0,53
Zn [ppm]	165	143	25	220	269	56	64	88	55
Ga	18	12	4	59	118	52	20	31	5
Rb	67	55	4	3600	3333	195	29	42	10
Sr	265	239	39	84	100	21	498	422	101
Y	19	14	6	1	15	17	11	13	4
Zr	160	141	15	27	33	10	118	135	33
Nb	6	5	2	173	238	41	7	8	3
Ba	730	569	81	42	66	17	307	209	46
La	26	34	8	0	14	3	12	18	5
Ce	52	65	19	1	109	27	26	41	11
Nd	26	32	12	1	17	5	13	16	5
Sm		38	33		22	11	3	< 7	3
Gd		38	30		30	17	3	<11	0
Dy		18	8		29	23	2	< 8	4
Er		19	10		30	24	1	< 6	5
Th	9	3	2	1	19	9	2	< 4	2

Tab.6.1 (Fortsetzun	g): Vergleichende	SRXRF-Meßergebnisse.

	KL2			ML3B			GOR128		
	Refe-	SRXRF	σ	Refe-	SRXRF	σ	Refe-	SRXRF	σ
	renzwert	2 Anal.		renzwert	2 Anal.		renzwert	2 Anal.	
K_2O [Gew.%]	0,49	1,72	0,21	0,38	1,23	0,05	0,03	0,70	0,24
CaO	10,61	11,72	0,19	10,1	9,20	0,67	5,81	5,75	0,05
TiO ₂	2,59	2,49	0,06	2,07	2,14	0,57		0,43	0,03
MnO	0,17	0,18	0,00	0,17	0,19	0,06	0,17	0,18	0,03
$Fe_2O_3(t)$	10,69	7,56	0,03	12,28	9,16	0,32	10,79	3,36	0,27
Zn [ppm]	110	129	4	115	122	31	75	100	19
Ga	20	30	2	19	20	1	8	8	0
Rb	9	14	1	6	16	4	0	11	3
Sr	362	347	4	312	316	42	33	41	5
Y	27	25	1	24	25	6	12	13	4
Zr	158	153	2	130	150	18	10	14	1
Nb	17	20	1	9	9	2	0	0	
Ba	124	98	1	80	80	10	1	5	1
La	13	17	1	9	16	1	0	3	2
Ce	33	44	1	23	40	4	0	4	2
Nd	22	22	1	17	19	3	1	< 5	2
Sm	6	< 9	1	5	8	2	1	< 5	2
Gd	6	<11	1	5	<15	2	2	< 7	0
Dy	5	< 7	1	5	<10	5	2	< 6	1
Er	3	< 7	2	3	< 9	5	1	< 8	3
Th				1	< 8	6	0	< 6	3

7. Anwendung

Die Nutzung von Synchrotronstrahlung in den Geowissenschaften durch die harte Röntgenstrahlung hat in vielen Bereichen zu neuen Entdeckungen über Prozesse und Materialverhalten der Erde geführt (Bassett und Brown, 1990). Ein Schlüsselelement, um geologische Prozesse zu verstehen, ist die Abhängigkeit der physikalischen und chemischen Eigenschaften der Erde. Durch Röntgenstreuung oder -diffraktion können Zellstrukturen in Mineralen identifiziert und bestimmt werden, in-situ Untersuchungen an Mineralstrukturen unter hohen Temperaturen und Drucken durchgeführt, und Atomkoordinaten und Gitterplätze aus Diffraktionsdaten aus Einkristallen oder Pulvern sowie Bindungsverhältnisse in Mineralen aus Elektronendichteverteilungen bestimmt werden.

Die chemische, quantitative Spurenelementbestimmung einzelner Mineralphasen im Mikrometerbereich liefert der Geologie durch die Röntgenspektroskopie Informationen verschiedenster Art (Ryan und Griffin, 1993). Verteilungsmuster der Elemente in koexistierenden Phasen können Informationen über PT-Bedingungen während ihrer Entstehung liefern. Spurenelemente spielen dabei eine substantielle Rolle. Spurenelementmuster spiegeln physikalische Bedingungen und geologische Prozesse wider. Eine quantitative Bestimmung kann Aufschlüsse über die Herkunft eines bestimmten Materials geben bzw. bei Vulkaniten auch über die Entstehungstiefe und -bedingungen. Ungleichgewichte, ausgedrückt beispielsweise durch Zonierungsmuster, helfen zum Verständnis der Oberflächenchemie und Dynamik des Kristallwachstums, ebenso fortschreitende geologische Prozesse wie Metamorphose und Metasomatose, verursacht durch infiltrierende Fluide und Schmelzen.

Alle Anwendungen profitieren dabei von der Steigerung der Brillanz der Synchrotronstrahlungsquellen im Vergleich zu herkömmlichen Röntgenröhren. Kinetische Studien von Phasenübergängen wurden beispielsweise durch die zeitlich gesteuerte Strahlung (mit einer gepulsten Zeitstruktur im zehner Nanosekundenbereich) durch die Synchrotronstrahlung erst möglich. Bei Untersuchungen an Fluideinschlüssen entfällt das Öffnen der Einschlüsse, was einen ungeheuren Vorteil gegenüber anderen Methoden darstellt.

Am Strahl L des HASYLAB wurden von verschiedensten Mineralphasen wie Plagioklasen, Kali-Feldspäten, Biotiten, Muskoviten, Hornblenden, Allaniten, Apatiten, Titaniten und Zirkonen Multielementanalysen getätigt, um das Verhalten der Spurenelemente zu studieren.

Als Gesteinsproben dienten dazu zwei ausgewählte granitoide Intrusionen der südlichen 'Eastern Desert' Ägyptens. Der eigentliche Grund dieser Probennahme bestand zu Beginn dieser Arbeit in der interdisziplinären Kollaboration des Mineralogisch-Petrographischen Instituts der Universität Hamburg, vertreten durch Herrn Prof. H. Schleicher, des strukturgeologischen Instituts der Universität Heidelberg, vertreten durch Herrn Prof. R. Greiling, und des 'Egypt Geological Survey and Mining Authority' (EGSMA) sowie der Universität Qena, Südägypten, vertreten durch Herrn Dr. A. Rashwan. Ziel dieser Zusammenarbeit war die Untersuchung der Granitserien der Eastern Desert. Durch die Möglichkeit der Spurenelementuntersuchungen im Mineralverband am HASYLAB rückte jedoch mit Fortdauer dieser Arbeit die Problematik der Quantifizierung der geologischen Proben mehr und mehr in den Vordergrund, so daß sich dies zum Schwerpunkt der Arbeit herauskristallisierte. Abb.7.1 gibt einen Überblick über die Loka-litäten der Probenentnahme. Dabei handelt es sich zum einen um syntektonische Trondhjemite und Gneise trondhjemitischer Zusammensetzung des 'Gebel Um Rasein', zum anderen um posttektonische, rötlich gefärbte Granite (sogenannte 'Pink Granites') des Gebel Hamradom. Gesamtgesteinsanalysen dieser Plutone wurden am Geochemischen Labor der Universität Hamburg mit der konventionellen Röntgenfluoreszenz (RFA) erstellt. Der Hauptelementchemismus der untersuchten Mineralphasen wurde mit der Elektronenstrahl-Mikrosonde am Mineralogisch-Petrographischen Institut der Universität Hamburg bestimmt. Ein ausführlicher Datensatz befindet sich im Anhang (Tab.10.6 und 10.9).

Abb.7.1: Geologische Karte des Arbeitsgebiets 'Southern Eastern Desert', Ägypten. Die beprobten Plutone 'Gebel Um Rasein' und 'Gebel Hamradom' sind durch Kreise gekennzeichnet. Nordwestlich des Um Rasein befindet sich die Ophiolitheinheit 'Gebel Garf'. Die Übersichtskarte Ägyptens zeigt das Grundgebirge als gepunktete Bereiche an (modifiziert nach Hassan und Hashad, 1990).

7.1. Petrographie

7.1.1. Die 'Eastern Desert'

Die 'Eastern Desert' besteht hauptsächlich aus zerklüfteten Gebirgszügen, die mehr oder weniger parallel zur Küste des Roten Meers verlaufen. Ihr Pan-Afrikanisches Basement ist Teil des Nubisch-Arabischen Schildes. Das Grundgebirge ist das Produkt einer komplexen orogenen Entwicklung im ausgehenden Proterozoikum (950 - 550 Ma), welche auf die Kollision und Akkretion von mehreren Inselbögen und Terrains folgte (Greiling et al., 1994). Das kristalline Grundgebirge besteht hauptsächlich aus nichttektonischen, unmetamorphen granitischen, syenitischen und gabbroiden Plutonen. Durch konvergente Kollisions- und Subduktionsprozesse, magmatische Krustenverdickung und Obduktion von Ophiolithen entstand ein Mosaik von Terrains, wie es vor allem im sehr gut untersuchten arabischen Teil des Schildes belegt ist. Möglicherweise mit der Kollision verknüpfte basaltische Intrusionen haben einen intensiven kalkalkalischen Plutonismus ausgelöst. Diese Magmenserien sind syntektonische Bildungen (ca. 650 Ma) und werden als 'Grey Granites' oder 'Older Granites' bezeichnet. Ein Vertreter dieser syntektonischen Granitoide ist der 'Um Rasein'. Nach dem durch Extension bedingten Kollaps des Orogens folgte eine Phase erneuter Kompression mit einhergehender Krustenverdickung, die wiederum zur Produktion von Granitoiden (ca. 500 Ma) führte. Diese spät- bis posttektonischen Granitoide, wie z.B. die des 'Hamradom', sind durch eine intensive Rotfärbung der Kalifeldspäte charakterisiert und werden als 'Pink Granites' oder 'Younger Granites' bezeichnet (El Gaby, 1975).

Zwei Hauptscherzonen, die SW-NE verlaufen, teilen die 'Eastern Desert' von Norden nach Süden in drei Teile (El Gaby et al., 1990): Die 'Northern Eastern Desert' (29° - 26°30' nördliche Breite), die 'Central Eastern Desert' (26°30' - 25°) und die 'Southern Eastern Desert' (25° - 22°). Die Entwicklung der kontinentalen Kruste der 'Eastern Desert' wird in den verschiedenen Stadien jeweils von verschiedenen Granitserien begleitet bzw. durch diese repräsentiert. Am Beginn der Granitentwicklung in der 'Eastern Desert' stehen Plagiogranite, die sich vereinzelt innerhalb der Ophiolitheinheiten der 'Eastern Desert' sowie als Gerölle in manchen Konglomeraten finden. Sie dürfen den frühen ozeanischen Stadien zugeordnet werden. Das eigentliche Inselbogenstadium und seine Akkretionierung war mit einem intensiven kalkalkalischen Plutonismus verbunden. Diese syntektonischen Magmenserien werden in Ägypten unter den sogenannten älteren Graniten (oder auch 'Grey Granites') und den Metagabbro-Diorit-Komplexen zusammengefaßt (850 - 600 Ma). Es handelt sich dabei generell um I-Typ Granitoide. Die Gesteine umfassen ein weites Spektrum von Tonaliten, Dioriten, Trondhjemiten, Quarz-, Monzound Granodioriten bis hin zu Leukogranodioriten. Die posttektonischen, oftmals grobkörnigen, roten bis rosa gefärbten Granite sind dagegen jünger als alle anderen magmatischen und metamorphen Einheiten (ca. 600 - 500 Ma).

Nach der Unterteilung der Granite Ägyptens in synorogene Granitoide (mit 'Grey Granites' und 'Porphyritic Granites') und in spät- bis postorogene Granite ('Younger Granites') (El Gaby, 1975) unternahmen Hussein et al. (1982) eine Klassifizierung der Granite ihrer Evolution nach vor, die heute akzeptiert wird:

(a) Subduktionsbezogene kalkalkaline Granodiorite (G1), welche 'Grey Granites' oder 'Synorogenic Granites' beinhalten,

(b) Suturbezogene Granite, die während der Krustenverdickung gebildet wurden (G2), zu denen die 'Younger', 'Pink' oder 'Postorogenic Granites' gehören und

(c) anorogene Intraplattengranite (G3), zu denen Hussein et al. (1982) alkaline oder peralkaline Granite zählen.

Tafel 7.1: Tektonisches Entwicklungsschema orogener Gebiete nach Dewey (1988), modifiziert auf die Gegebenheiten der 'Eastern Desert' von Greiling et al. (1994). TBCL: 'thermal boundary condition layer' der kontinentalen Lithosphäre (Thermale Grenze).

	Tektonische Entstehung von Gebirgsgürteln	
	allgemein	Gliederung (und panafrikanische Zeitskala)
5	Wiedererreichen des postextensionalen, thermalen Zustands, Verdickung der TBCL, schließlich retrograde Metamorphose, ma-	(Sinken)
4.D	rine Transgression	530 Ma
4B		575 Ma
4A	konvektive TBCL-Ausdünnung, partielles Schmelzen des Mantels, mafischer Magma- tismus, Granit-Suiten, Hochtemperatur Mantel-Diapire, schnelles Absinken, ausgedehnte Becken, Ablagerungen des Verrucano-Typs	beschleunigter ausgedehnter Kollaps, radiale Ausdehnung, Bildung metamorpher Core- Komplexe, wenig Beziehung zwischen Ver- schiebungsvektoren und Plattengrenzen- verschiebung 595 Ma
3	Abbau der TBCL, schnelles Aufsteigen, pro- grade Hochtemperaturmetamorphose, post- tektonische Granitsuiten	600 Ma beginnende Ausdehnung
2	Postkonvergenz oder langsame Annäherung, langsames Aufsteigen, einige 40 Ma dau- erndes thermales Gleichgewicht, langsame Ausdünnung der TBCL, weniger alkaline gegenüber sauren Graniten	Krusten- und Transversalverschiebungs- strukturen, starke direkte Beziehung zwi- schen Verkürzungsstrukturen und Platten- verschiebungsvektoren 615 Ma
1	lithosphärische/krustale Verkürzung und Verdickung, Hochdruck/Niedrigtemperatur Blauschiefer und Kyanit haltige metamorphe Ansammlungen, Kontinentalkollision, Rift- inversion, kompressiver Kontinentalrand- bogen	

7.1.2. Gebel Um Rasein

Der Gebel Um Rasein wird einem Teil der nördlichen Hamizana-Scherzone zugerechnet, wurde aber von dieser nicht aktiv beeinflußt. Die Trondhjemite dieser Intrusion sind in zwei aufragenden Domen aufgeschlossen. Die Dimensionen des Um Rasein betragen ca. 5 km in der Länge und 2 km in der Breite. Die maximale Höhe beträgt 908 m über NN. Die durchschnittliche Höhe des Eastern Desert-Plateaus beträgt ca. 300 m über NN. Zwischen den Domen und umliegend befinden sich Gneise trondhjemitischer Zusammensetzung, die teilweise Amphibolit-Xenolithe von bis zu einem Meter Größe einschließen, makroskopisch sind aber keine Reaktionssäume zu erkennen. Das angrenzende Kontaktgestein zeigt vereinzelt Migmatisierung, welche aber wahrscheinlich mit der Blattverschiebung der Hamizana-Scherzone (in N-S Richtung) korreliert ist. Die Lagerung des Rahmengesteins kann nicht eindeutig als Domstruktur angesprochen werden. Hauptsächlich bestehen die Gneise am äußeren Rand des Plutons aus psammopelitischen Komponenten und werden in der ägyptischen Literatur als psammitische Gneise bezeichnet. Diese treten als konkordante Lagen auf, welche nach Westen einfallen, und mit Amphibolitserien wechsellagern. Im südöstlichen Teil treten vereinzelt Pegmatitgänge auf. Die Hauptminerale der Trondhjemite sind Ab-reiche Plagioklase (An_{3,5-17}) und Quarz, Kalifeldspäte sind selten. Mafische Minerale machen in der Regel weniger als 20% des Modalbestandes aus und sind ausschließlich Hornblende und Biotit, sekundär tritt auch Chlorit auf. Als akzessorische Minerale kommen Apatit, Titanit, Allanit, Magnetit und Zirkon, vereinzelt auch Xenotim, vor. Eine Pb-Pb-Altersdatierung an Zirkonen ergab ein Alter von 657 ± 3 Ma (B. Kober, 1998, mündliche Mitteilung, Institut für Geochronologie der Universität Heidelberg). Um Rasein gehört zu den Randregionen der Hamizana Scherzone und zeigt kaum Deformation (Greiling et al., 1996).

Die Granite des syntektonischen Um Rasein sind Diopsid-normativ und haben bei SiO₂-Gehalten von 73 - 77 Gew.% einen trondhjemitischen Chemismus. Nach Barker (1979) gehören sie dem Niedrig-Al₂O₃-Typus an (10,8 - 13,2 Gew.% Al₂O₃), der auf eine ozeanische Herkunft schließen läßt. Atomare K/(K+Na)-Verhältnisse von 0,04 - 0,07 bei K₂O-Gehalten unter 0,7 Gew.% und Rb/Sr-Verhältnissen < 0,03 deuten nach den Kriterien von Chappell und White (1976) auf ein magmatisches Edukt hin. Helz (1976) konnte zeigen, daß Partialschmelzen von Tholeiiten trondhjemitische Zusammensetzung aufweisen. Im Gegensatz zu archaischen Trondhjemiten (Martin, 1987) weisen die Trondhjemite des Um Rasein bei (Ce/Y)_N-Verhältnissen von meist < 5 hohe Gehalte der Leichten SEE, Y (107 - 270 ppm) und Zr (245 - 567) auf. Es wurden geringe Gehalte an LIL-Elementen im Gesamtgestein (Rb bis 10 ppm, Sr bis 130 ppm, Ba bis 300 ppm) beobachtet, die relativ einheitlich sind. Im Diskriminierungsdiagramm nach Pearce et al. (1984) (Abb.7.5) fallen die Granitoide des Um Rasein in den Bereich von Graniten, die für Ozeanrücken bzw. Ophiolith-Einheiten typisch sind. Obwohl in der Nähe des

Abb.7.2: Satelliten-Luftbildaufnahme des Gebel Um Rasein. Trondhjemite sind nur in den beiden höchsten Erhebungen, den Domen G1 und G2 aufgeschlossen, sonst Gneise. Nach Osten fällt der Um Rasein steil ab. Erhebungen sind hell dargestellt, dunkle Stellen repräsentieren das Wadi (südwestlich) und die Ebene oder 'low land' (östlich) (mit freundlicher Genehmigung des 'Egyptian Geological Survey and Mining Authority' EGSMA, Kairo).

Um Rasein Ophiolith-Einheiten auftreten, Gebel Garf (Zimmer et al., 1995), scheint die Feldgeologie einen genetischen Zusammenhang auszuschließen. Der Chemismus dieser Trondhjemite ließe sich durch Partialschmelzbildung von mafischen Edukten (IAT, MORB) außerhalb des Stabilitätsfeldes von Granat erklären. Die mögliche Abwesenheit von Granat im Residuum könnte zu vergleichsweise hohen Y-Gehalten in den Teilschmelzen (Trondhjemiten) geführt haben. Als Ausgangsmaterial für diese syntektonischen Trondhjemite können Inselbogen-Tholeiite angenommen werden.

7.1.3. Gebel Hamradom

Die jüngeren Granitoide, zu denen Hamradom zählt, sind über den gesamten ägyptischen Schild verteilt und machen fast 30 % der plutonischen Vorkommen aus, wobei ihr Häufigkeitsverhältnis gegenüber den älteren Granitoiden in der 'Northern Eastern Desert' 1:1 beträgt, in der 'Southern Eastern Desert' dagegen bis auf 1:4 abnimmt (Hassaan et al., 1990). Hamradom wird demnach den spät- bis posttektonischen Graniten zugeteilt. Die Intrusion erstreckt sich über eine Länge von ca. 11 km, parallel zur Küste des Roten Meers ausgerichtet, und einer Breite von ca. 2 km, mit einer höchsten Erhebung von 388 m über NN. Auffällig ist die teilweise rasch vorangeschrittene Verwitterung der Hamradom-Granite, die ihre charakteristische Rotfärbung ihren bis zu einigen Zentimeter großen Kalifeldspäten (mit Hämatit imprägniert) verdanken. Kontaktgesteine dieser Intrusion sind nicht aufgeschlossen. Es treten häufig Quarz- und Aplitgänge auf. Korngrößen variieren von feinkörnig (Randbereiche) bis grobkörnig (im Zentrum). Kalifeldspat und Plagioklas sind etwa gleich verteilt, wobei die Zwillingslamellierungen des Plagioklas teilweise durch tektonische Beanspruchung verbogen sind. Die Quarzkörner erscheinen unter dem Mikroskop zerrieben, was als Anzeichen für eine spröde Deformation gelten könnte. Als mafische Komponente tritt hauptsächlich Biotit auf, Hornblenden kommen dagegen fast gar nicht vor. Akzessorien sind Magnetit, Apatit, Zirkon und Titanit. Mylonitisierte Bereiche dokumentieren den Verlauf von Scherzonen, in welchen die Quarze unter dem Mikroskop stark zerschert sind. Der Granit zeigt nur geringfügige Foliation.

Im Gegensatz zu den Trondhjemiten des Um Rasein sind die Granite des Hamradom moderat peralumisch. Diese haben bei SiO₂-Gehalten von 68 - 75 Gew.% und K₂O-Gehalten von 3,5 - 5,5 Gew.% atomare K/(K+Na)-Verhältnisse von 0,31 - 0,52. Während die geringen Gehalte der leichten SEE, Y(5 - 23 ppm) und Zr (75 - 188 ppm) dieser Granite typischen Leukograniten entsprechen, haben sie hohe Sr- (177 - 743 ppm) und Ba-Gehalte (356 - 2195).

Abb.7.3: Satellitien-Luftbildaufnahme des Gebel Hamradom. Erhebungen (die höchste ist mit G gekennzeichnet) sind hell dargestellt, die Ebene, das 'low land', dunkel. Unterschiedliche Helligkeiten des oberen und unteren Bildabschnitts sind durch die Originalfotografien bedingt (mit freundlicher Genehmigung des 'Egyptian Geological Survey and Mining Authority' EGSMA, Kairo).

Abb.7.4: Klassifizierung der Granitoide entsprechend der CIPW-normativen An-, Abund Or-Gehalte. UR: Um Rasein; HD: Hamradom (nach Barker, 1979).

Abb.7.5: Nb-Y Diskriminierungsdiagramm für Granite nach Pearce et al. (1984). Die Granite des Hamradom (HD) fallen in das Feld für Granite, die mit Inselbögen, aktiven Kontinentalrändern oder Kollisionszonen assoziiert sind. Die geologische Situation und der Chemismus dieser Granite deuten ebenfalls auf dieses tektonische Milieu hin. Die Granitoide des Um Rasein (UR) fallen in den Bereich von Graniten, die für Ozeanrücken bzw. Ophiolith-Einheiten typisch sind. Elementgehalte sind Gesamtgesteinsanalysen der RFA.

Abb.7.6: Harker-Diagramme für die Proben des Um Rasein (UR) und Hamradom (HD).

Im sogenannten 'Low Land', der Ebene oder Plateau zwischen den beiden Intrusionen treten lokal ebenfalls Granitoide auf, was auf einen großen Batholith im Untergrund hinweisen könnte. Die Hauptscherzonen sind in beiden Intrusionen identisch, wobei drei Populationen zu unterscheiden sind:

Die älteste verläuft N-S, eine zweite NW-SE und die jüngste SW-NE. Letztere läßt sich in der gesamten Eastern Desert verfolgen und ist sehr wahrscheinlich mit der Öffnung des Roten Meeres vor 34 bis 21 Mio Jahren korreliert (Omar und Steckler, 1995).

7.2. Geochemie

Die Hauptgemengteile der Granitoide des Um Rasein sind neben Quarz und Plagioklas Biotit und Hornblende. Kali-Feldspäte treten in den Trondhjemiten des Um Rasein nur vereinzelt auf, in den Gneisen fast gar nicht. Als Akzessorien sind vor allem Allanite zu bemerken, deren hohe Seltenen Erdgehalte (Gesamt-SEE über 20 Gew.%) auch auf die Gesamtgesteinschemie Einfluß haben. Ferner sind Apatit, Magnetit und Zirkon anzuführen. Im Gegensatz zu den Granitoiden des Um Rasein treten in den Graniten des Hamradom kaum Amphibole auf. Das Gestein setzt sich hauptsächlich aus Quarz, Plagioklas, Kali-Feldspat und Biotit zusammen. Als Akzessorium ist häufig Titanit anzutreffen. Allanit findet sich gar nicht, Titanit, Magnetit und Zirkon nur untergeordnet.

Die mit der SRXRF erhaltenen Daten der verschiedenen Mineralphasen werden in den folgenden Abbildungen anschaulich dargestellt. Abb.7.7(a,b) zeigen für Plagioklas und Biotit der Granite des Hamradom eine stärkere chemische Anreicherung als in den Granitoiden des Um Rasein. Lediglich Ba und Y sind in den Plagioklasen des Um Rasein stärker angereichert, wobei durch die chemische Zonierung von Ba in Plagioklas mit Extremwerten von 7 bis 996 ppm durch die Mittelung dieser Werte eine große Streubreite eintritt. Jedoch weisen im allgemeinen die Plagioklase des Hamradom geringere Ba-Werte als die Plagioklase des Um Rasein auf. Die Verteilungsmuster der beiden Intrusion sind als ähnlich zu bezeichnen, wobei Rb, Nb, Zr und Ti in den Plagioklasen des Um Rasein gegenüber einer primitiven Mantelzusammensetzung abgereichert sind. Ti-Meßergebnisse liegen für die Plagioklase des Hamradom unter der Nachweisgrenze.

Die Biotit-Muster sind gleichfalls als ähnlich zu bezeichnen, wenn auch Sr in den Biotiten des Um Rasein gegenüber des Hamradom ebenso wie Zr, das in den verwendeten Proben des Hamradom nicht nachgewiesen werden konnte, gegenüber einer primitiven Mantelzusammensetzung abgereichert ist. Deutlich ist die starke Anreicherung inkompatibler Elemente in Biotit.

Abb. 7.7(a-c): Mantelnormierte Darstellung der Mineralphasen Plagioklas, Biotit und Hornblende der beiden untersuchten Intrusionen Um Rasein und Hamradom (gemittelte Werte). Die Elemente Th, U, P, Hf und Tb konnten nicht bestimmt werden. Amphibole sind im Hamradom kaum anzutreffen. Die Schwankungen innerhalb der einzelnen Serien betragen 10%. Elemente sind von links nach rechts mit steigender Kompatibilität aufgetragen (Rollinson, 1993). Normierte Werte nach Taylor und McLennan (1985).

Die chemische Verteilung in Hornblenden ist degegen nahezu konstant, bis auf einen Probe/ PM-Wert für Sr von 1 sowie eine nicht so starke Anreicherung von Zr und Ti (Abb.7.7(c)). Ein chemisches Verteilungsmuster der koexistierenden Phasen Hornblende und Biotit zeigt am Beispiel von Meßergebnissen einer Probe des Um Rasein (Abb.7.8) deutlich eine zunehmende Anreicherung der kompatiblen Elemente in Hornblende, abgesehen von einer Anreicherung von Ti in Biotit gegenüber Hornblende. La und Ce wirken dagegen leicht überhöht.

Abb.7.8: Chemisches Verteilungsmuster der koexistierenden Phasen Hornblende und Biotit in einem Gneis des Um Rasein (R1012). Die reinen Meßergebnisse sind hier aufgetragen. Der Fehler pro Meßpunktverhältnis liegt bei 10 %.

Abb. 7.9 bis 7.11 zeigen graphisch dargestellte chemische Verteilungen ausgewählter Spurenelemente in verschiedenen Mineralphasen der Trondhjemite und Gneise des Um Rasein. In Abb. 7.9 ist aus einer Trondhjemitprobe des Um Rasein (R1055) ein Linienscan über einen Plagioklas und eine Hornblende dargestellt, denen über einen Zeitraum von ca. 13 Stunden 46 Probenpunkte in einem Abstand von ca. 2,5 µm entnommen wurden. Aus Platzgründen und zur Übersichtlichkeit wurde auf der Abbildung des Dünnschliffs nur jeder fünfte Probenpunkt eingezeichnet. Die Spektren wurden mit einer elliptischen Bleiglaskapillare von 2,7 µm Durchmesser aufgenommen. Die Meßzeit pro Probenpunkt betrug 1000 Sekunden. Fast alle Elemente zeigen eine gleichmäßige Verteilung innerhalb der Minerale. Analysen mit der Elektronenstrahl-Mikrosonde (EMS) ergaben in Plagioklasen konstante Gehalte an SiO₂ (60 - 70 Gew.%) und Al₂O₃ (19 - 24 Gew.%). Jedoch kann ein reger Na-Ca-Austausch festgestellt werden. Die Abreichen Plagioklase der Trondhjemite des Um Rasein weisen beispielsweise Na/Ca-Verhältnisse von 12 bis 16 auf, während in den Plagioklasen aus Amphiboliten nur Na/Ca-Verhältnisse von

Abb.7.9: Verteilung einiger ausgewählter Spurenelemente in den Mineralphasen Plagioklas und Hornblende aus einem Linienscan einer Trondhjemitprobe (R1055) des Um Rasein. Im Bild ist nur jeder fünfte Meßpunkt markiert.

1,5 vorherrschen. Werte von 5 bis 10 für Plagioklase aus den Gneisen des Um Rasein liegen dazwischen. In einer Gneisprobe aus der nördlichen Umgebung des Um Rasein überwiegt bereits der Anorthitgehalt (Na/Ca = 0,7). Auch wird hier Si vermehrt durch Al ersetzt (SiO₂ = 56 Gew.%; $Al_2O_3 = 27,4$ Gew.%). Für die mit der SRXRF ermittelten Spurenelementgehalte ist in Abb. 7.9 im Plagioklas eine deutliche Zonierung von hohen Ba-Gehalten inmitten des Minerals (102 ppm) zu niedrigen randlichen Werten (12 ppm) zu beobachten. Y liegt in diesem Plagioklas unter der Nachweisgrenze. Der dramatische Anstieg von Ba und Sr an den Korngrenzen ist auf eine Kontamination durch Schleif- und Poliermittel während der Präparation zurückzuführen, die sich vereinzelt an Grenzen unterschiedlicher Mineralphasen angesammelt haben können. Dies kann durch ölfilmartige Spuren mit einem Auflicht-Mikroskop festgestellt werden. Deutlich ist die starke, gleichmäßige Anreicherung von Y (bis 1657 ppm) und Zn (bis 2709 ppm) in Hornblende zu erkennen. Der Hauptelementchemismus der Hornblenden Um Raseins ist vor allem durch den intensiven Mg-Fe-Austausch der Trondhjemite und Gneise geprägt. EMS-Untersuchungen weisen bei Hornblenden der Trondhjemite MgO-Gehalte von 0,12 - 0,34 Gew.% bei FeO_{tot}-Gehalten von 32,73 - 36,07 Gew.% auf. In den Hornblenden der Gneise sind die Gehalte wie folgt: MgO = 5,95 - 9,23 Gew.%; FeO_{tot} = 17,95 - 27,10 Gew.%. In einem Amphibolit (R1040) ist das Mg/Fe-Verhältnis in der Hornblende gar > 1 (MgO = 13,55 -13,95 Gew.%; FeO_{tot} = 12,28 - 12,43 Gew.%).

Abb. 7.10 zeigt ebenfalls einen Linienscan. Hier wurden 5 Meßpunkte in Längsrichtung des Mineralkorns in Abständen von je 150 um auf einem Biotit einer Gneisprobe des Um Rasein (R1012) verteilt. Die Meßdauer pro Probenpunkt betrug ebenfalls 1000 Sekunden. Es wurde in der Grafik eine logarithmische Darstellung gewählt, um möglichst viele Spurenelemente aufzuzeigen. Auch eine lineare Darstellung zeigte keinerlei chemische Zonierungen innerhalb des Biotits, weder in den Spurenelementen noch in den Hauptelementen. Rb, Zn und Ba sind stark angereichert. Die leichten Schwankungen von Nb und Sr resultieren aus den niedrigen Werten nahe der Nachweisgrenze. EMS-Daten der Hauptelemente zeigen auch in Biotiten, ähnlich der Hornblende, eine starke Mg-Fe-Korrelation. Niedrige Mg- und hohe Fe-Gehalte korrespondieren mit höheren Mg- und niedrigeren Fe-Gehalten. Auffällig ist, daß nur eine Probe (NR96) übermäßig niedrige MgO-Werte aufweist (MgO = 0.33 - 0.41 Gew.%; FeO_{tot} = 33.98 - 34.25Gew.%). Die anderen untersuchten Biotite liegen bei Werten von 6,90 - 7,01 Gew.% MgO und 26,63 - 27,06 Gew.% FeO_{tot}. Die SRXRF-Werte für die Hauptkomponenten Ca, K und Fe liegen dabei immer etwas unter denen der EMS. Das kann zum einen an der teilweisen Absorption der niederenergetischen Fluoreszenzstrahlung dieser Elemente an Luft liegen, zum anderen aber an einem fehlenden Standard, der geeignete Konzentrationen aufweist. Bei Gew.% über 20 werden die Maximalwerte der eingesetzten Standards deutlich übertroffen, womit eine genaue Quantifizierung in diesem Bereich nicht mehr gewährleistet ist. Für genaue Messungen der Hauptkomponenten steht aber die Elektronenstrahl-Mikrosonde zur Verfügung.

Abb.7.10: Verteilung einiger ausgewählter Spurenelemente in einem Biotit aus einem Linienscan aus fünf Meßpunkten einer Gneisprobe (R1012) des Um Rasein. Links unten ist ein Zirkon (Zrk) zu erkennen.

Ein Hauptträger der Seltenen Erdelemente ist der Allanit. In den Gneisen des Um Rasein treten diese lokal recht zahlreich auf, was Auswirkungen auf die Chemie des Gesamtgesteins haben kann. RFA-Gesamtgesteinsmessungen an Gneisen des Um Raseins ergaben für einzelne Proben La-Konzentrationen bis 564 ppm (NR112c) sowie Ce-Werte von bis zu 718 ppm (NR94.2). Abb.7.11 zeigt einen solchen Allanit mit der Verteilung seiner Leichten Seltenen Erdelemente La, Ce, Nd und Sm. Bei gleich bleibenden Fe- (FeO_{tot} = 17,38 - 17,81 Gew.%), Al- (Al₂O₃ (11,64 - 12,55 Gew.%) und Ca-Werten (CaO = 10,38 - 11,43 Gew.%) ist jedoch eine leichte Zonierung der SEE zum Rand und zur Mitte hin festzustellen. Eine konforme Abnahme der Werte in Meßpunkt 11 ist auf einen nicht definierten Einschluß zurückzuführen.

Zur Bewertung der erhaltenen SRXRF-Daten werden diese in den Abb.7.12 - 7.20 mit diversen Literaturdaten ähnlicher Gesteinstypen verglichen. Dazu dienten Plagioklas-, Biotit-, Allanit-, Apatit- und Titanitanalysen aus dem 'Dartmoor-Kumulatgranit' (Ward et al., 1992), Plagioklas- und Hornblendeanalysen aus dem 'Sierra Nevada Batholith' (Dodge et al., 1982), Biotitdaten aus einem porphyrischen Biotit-Granit (Neves, 1997) sowie Plagioklasmeßergebnisse aus einem basaltischen Andesit (Dunn und Sen, 1994). Hierbei konnten nicht alle Elemente Berücksichtigung finden, da die unterschiedliche Datennahme nicht immer die gleichen Elemente abdeckt. Die dabei benutzten Analysemethoden erstreckten sich von der konventionellen RFA für die Gesamtgesteinsanalyse, über den Gebrauch der Elektronenstrahl-Mikrosonde, der SIMS²³, sowie ICP-MS²⁴ und ICP-AES²⁵.

Die über das Verhältnis der Mineraldaten über die Gesamtgesteinszusammensetzung ermittelten Verhältnisse sollen eine Einordnung der Mineraldaten der ägyptischen Granitoide und einen Überblick über die Reproduzierbarkeit der Daten geben.

Abb. 7.12 zeigt die Verteilung einiger Elemente in Ab-reichen Plagioklasen relativ zum Gesamtgestein. Die Muster für K, Sr, Ca und Fe sind dabei nahezu identisch. Ba weist in Plagioklasen des Hamradom unterdurchschnittlich geringe Werte auf, hat jedoch ein identisches Plagioklas/ Gesamtgesteins-Verhältnis wie beispielsweise die Plagioklase aus den Tonaliten des Adamello Massif (Blundy and Shimizu, 1991). Die Leichten Seltenen Erdelemente La, Ce und Nd des Um Rasein als auch des Hamradom streuen stark, was an Werten nahe der Nachweisgrenze liegt. Auffällig ist die überwiegende Abreicherung der angeführten Elemente gegenüber dem Gesamtgestein (außer Ca und Sr).

²³ SIMS: Secondary Ion Mass Spectrometry

²⁴ ICP-MS: Inductively Coupled Plasma-Mass Spectrometry

²⁵ ICP-AES: Inductively Coupled Plasma-Atomic Emission Spectrometry

Abb.7.11: Verteilung der Leichten Seltenen Erdelemente in einem Allanit aus einem Linienscan aus 13 Meßpunkten einer Gneisprobe (NR96) des Um Rasein. Links befindet sich ein Titanit (Sph), dazwischen ein Zirkon (Zrk).

Abb. 7.12: Verteilungsmuster von Plagioklasdaten der Granitoide des Um Rasein (UR) und des Hamradom (HD) im Verhältnis zum Gesamtgestein an ausgewählten Elementen. Vergleichende Daten aus ähnlichen Gesteinstypen nach Dunn und Sen (1994), Dodge et al. (1982) und Ward et al. (1992).

Abb. 7.13: Verteilungsmuster von Biotitdaten der Granitoide des Um Rasein (UR) und des Hamradom (HD) im Verhältnis zum Gesamtgestein an ausgewählten Elementen. Vergleichende Daten aus ähnlichen Gesteinstypen nach Neves (1997) und Ward et al. (1992).

Die Verteilungsmuster der Verhältnisse in Biotiten des Um Rasein und Hamradom in Abb.7.13 ähneln sich mit den Ergebnissen von Neves (1997) und Ward et al. (1993). Abgesehen von einer starken anomalen La-Abreicherung in den Biotiten des Um Rasein zeigen die Daten einen ähnlichen Verlauf, besonders bei den kompatiblen Elementen Sr, Zr, Y und Zn. Durch die geringen Leichten SEE-Gehalte in den Biotiten des Um Rasein und einem gleichzeitigen hohen Auftreten dieser Elemente im Gesamtgestein durch die Präsenz von Allanit könnte die starke La-Abreicherung gegenüber dem Gesamtgestein zu erklären sein, jedoch sind Ce und Nd deutlich angereichert. Dies kann durch die geringen Werte für La im Biotit nahe der Nachweisgrenze erklärt werden. Auffällig ist ein Verhältnis > 1 für La, Ce, Nd und Y in den Biotitdaten von Neves (1997) gegenüber Verhältnissen < 1 von Ward et al. (1992) und Hamradom sowie eine allgemeine Abreicherung von Sr und Zr.

Ein Vergleich der Hornblende-Verhältnisse mit Daten von Dodge et al. (1982) (Abb.7.14) zeigt erneut eine starke Abreicherung von La im Um Rasein, was auf einen systematischen Fehler schließen lassen könnte. Bei geringeren Gehalten der Leichten Seltenen Erdelemente in den Hornblenden des Um Rasein weisen diese höhere K-, Mn- und Fe-Gehalte gegenüber den Daten nach Dodge et al. (1982) auf. Ein K-Verhältnis > 1 resultiert aus den sehr geringen K-Gehalten des Gesamtgesteins des Um Rasein (K₂O = 0,18 - 0,78 Gew.%).

Abb. 7.14: Verteilungsmuster von Hornblendedaten der Trondhjemite des Um Rasein (UR) im Verhältnis zum Gesamtgestein an ausgewählten Elementen. Vergleichende Daten aus einem Tonalit nach Dodge et al. (1982).

Vergleiche der Elementverhältnisse in den Akzessorien der Granitoide des Um Rasein und des Hamradom mit Daten nach Ward et al. (1992) zeigen ähnliche Verteilungsmuster. Allanite sind in den Graniten von Ward et al. (1992) gegenüber dem Gesamtgestein stärker angereichert als im Um Rasein (Abb.7.15). Eine Chondrit-normierte Darstellung der Seltenen Erdelemente nach Werten von Taylor und McLennan (1985) zeigt jedoch höhere Werte für die trondhjemitischen Allanite (Abb.7.16).

Abb. 7.15: Verteilungsmuster von Allanitdaten der Trondhjemite des Um Rasein (UR) im Verhältnis zum Gesamtgestein an ausgewählten Elementen. Vergleichende Daten aus Ward et al. (1992).

Abb. 7.16: Chondrit-normierte SEE-Muster von Allanitdaten der Trondhjemite des Um Rasein (UR) im Vergleich mit Daten nach Ward et al. (1992). Normierte Werte nach Taylor und McLennan (1985).

Das Apatit-Verhältnismuster (Abb.7.17) zeigt Differenzen in der unterschiedlichen An- bzw. Abreicherung von K und einer übermäßigen Anreicherung von Ce im Trondhjemit des Um Rasein. Die starke Verarmung an Zr resultiert aus den geringen Gehalten unter der Nachweisgrenze. Das Verteilungsmuster der Seltenen Erdelemente (Abb.7.18) zeigt dagegen im Verhältnis auf Chondritwerte eine deutlich stärkere Anreicherung in den Apatiten nach Ward et al. (1992) gegenüber den Apatiten des Um Rasein. Die Anreicherung der Leichten bis zu den Schweren Seltenen Erden ist nahezu konstant, nur unterbrochen von einer typischen negativen Eu-Anomalie.

Abb. 7.17: Verteilungsmuster von Apatitdaten der Trondhjemite des Um Rasein (UR) im Verhältnis zum Gesamtgestein an ausgewählten Elementen. Vergleichende Daten aus Ward et al. (1992).

Abb. 7.18: Chondrit-normierte SEE-Muster von Apatitdaten der Trondhjemite des Um Rasein (UR) im Vergleich mit Daten nach Ward et al. (1992). Normierte Werte nach Taylor und McLennan (1985).

In Titaniten ist bis auf eine starke Verarmung an Ba, K und Sr das Probe/Gesamtgesteinsverhältnis nahezu identisch (Abb.7.19). Nb und Y sind im Hamradom stärker angereichert. Auch zeigen die Titanite des Hamradom eine deutlich höhere chondrit-normierte SEE-Verteilung (Abb.7.20).

Abb. 7.19: Verteilungsmuster von Titanitdaten der Granite des Hamradom (HD) im Verhältnis zum Gesamtgestein an ausgewählten Elementen. Vergleichende Daten aus Ward et al. (1992).

Abb. 7.20: Chondrit-normierte SEE-Muster von Titanitdaten der Granite des Hamradom (HD) im Vergleich mit Daten nach Ward et al. (1992). Normierte Werte nach Taylor und McLennan (1985).

8. Zusammenfassung und Ausblick

Die Röntgenfluoreszenzanalyse mit Synchrotronstrahlung hat sich durch ihre Effektivität in der Spurenelementanalyse zu einer sehr wichtigen Quantifizierungsmethode für die Geowissenschaften entwickelt. Am Hamburger Synchrotronstrahlungslabor HASYLAB wurde eigens dafür vor einigen Jahren ein solcher Meßplatz eingerichtet. Mit einer räumlichen Auflösung von < 5 µm ist es möglich in-situ kleinste Zonierungen in Mineralphasen oder Einschlüsse zu untersuchen. Eine spezielle Probenpräparation ist dabei nicht nötig. Die zerstörungsfrei arbeitende SRXRF erreicht durch ihre hohe Primärstrahlintensität die Anregung von Fluoreszenzphotonen bis 100 keV. Dadurch kann ein gesamtes Elementspektrum aufgenommen, und eine energiedispersive Detektion der charakteristischen K_{α} -Strahlung erzielt werden, wobei lästige K-, L- und M-Schalen-Überlappungen nahezu entfallen.

Kernpunkt der vorliegenden Arbeit war die Ausarbeitung einer Quantifizierungsmethode für geologische Proben. Es wurde die klassische Methode der Quantifizierung mit Geostandards als Basis für eine benutzerfreundliche Auswertung angewendet. Hierzu wurden insgesamt fünfzehn, sowohl internationale Geostandards als auch interne, geologische Multielementglasstandards herangezogen.

Die vorgestellte Quantifizierungsmethode erlaubt es Spuren- und Seltene Erdelemente mit einer Nachweisgrenze von 3 - 10 ppm und einem systematischen Fehler von maximal 20 % zu quantifizieren. Damit liegt sie im Bereich der Angaben anderer SRXRF-Meßplätze in den Synchrotron-Strahlungseinrichtungen weltweit und erweist sich als durchaus konkurrenzfähige Methode.

Zahlreiche Faktoren wie Interelementeffekte, Wechselwirkungen der Elektronen, oder das unterschiedliche Verhalten der Röntgenfluoreszenz mit der Dicke der Probe, der Matrix und der Ordnungszahl des zu untersuchenden Elements, mußten dabei berücksichtigt werden.

Für die Elemente K, Ca, Ti, Mn, Fe, Zn, Ga, Rb, Sr, Zr, Y, Nb, Ba, La, Ce, Nd, Sm, Gd, Dy, Er und Th wurden Intensitätskorrekturen durchgeführt und Kalibriersysteme entwickelt bzw. Eichgeraden aufgestellt.

Anhand der ermittelten Gehalte verschiedener Mineralphasen wie Plagioklas, Biotit, Hornblende und Akzessorien wie Allanit, Apatit und Titanit wurden Verteilungsprofile erstellt und die Daten mit international publizierten anderen Mineraldaten verglichen.

Momentan erfährt der SRXRF-Meßplatz am Strahl L eine Umstrukturierung (Ranck et al., 1998). Neben einer Umstellung der Software soll in nächster Zeit ein Monochromator installiert werden, um gezielt einen bestimmten Elementbereich mit einer noch besseren Nachweisgrenze zu untersuchen. Wünschenswert wäre eine zusätzliche Ausrüstung mit Wigglern oder Undula-

toren sowie eine Probenuntersuchung im Vakuum, was dem derzeit weltweit leistungsstärksten SRXRF-Meßplatz am Synchrotronspeicherring SPring-8 in Japan (Hayakawa, 1998) am nähesten käme.

Vorrangig ist jedoch die Benutzung einer kleinstmöglichen raumauflösenden Kapillare. Die für diese Arbeit verwendete elliptische Bleisglaskapillare mit einem Öffnungsdurchmesser von 2,7 μ m steht derzeit leider nicht mehr zur Verfügung. Ein ohne Kapillare erreichbarer minimaler Strahldurchmesser von 50 \cdot 50 μ m ist für die in-situ Analysen kleinster Mineralbereiche zu groß. Auch sollte eine weniger aufwendigere und sicherere Installation der Kapillare gewährleistet sein.

Abschließend stellt der SRXRF-Meßplatz am Strahl L des HASYLAB, in Verbindung mit der hier vorgestellten Quantifizierungsmethode, aber nach wie vor eine außerordentlich nachweisstarke Analysemethode für den Spurenelementbereich dar, und sollte, gerade auch im Zuge des Zusammenwachsens Europas, für immer mehr Benutzer von Interesse sein.

Danksagung

Für die Vergabe des Themas und das stete Interesse an der Arbeit sowie die Möglichkeit in einem internationalen Forschungsinstitut wie dem HASYLAB gearbeitet haben zu können möchte ich Herrn Prof. Dr. H. Schleicher herzlich danken.

Für die logistische Planung bei der Probennahme und die freundschaftliche Betreuung während meiner Ägyptenaufenthalte danke ich Herrn Dr. A. Rashwan.

Für die Bereitstellung einiger geologischer Glasstandards und die angenehme Zusammenarbeit möchte ich Herrn Dr. K.P. Jochum des Max-Planck-Instituts für Chemie in Mainz danken.

Den Herren Dr. M. Haller und M. Radtke danke ich für die freundliche und stets hilfsbereite Einweisung in den Meßplatz.

Für das Schmelzen der Standardgläser möchte ich mich bei Herrn Dr. J. Koepke und A. Becker des Mineralogischen Instituts der Universität Hannover bedanken.

Herrn P. Stutz danke ich für die schnelle und sehr gute Probenpräparation.

Für die chemischen Analysen danke ich Frau B. Cornelisen (Elektronenstrahl-Mikrosonde, Mineralogisch-Petrographisches Institut, Universität Hamburg), Herrn Dr. B. Stütze (RFA-Gesamtgesteinsanalysen, Geochemisches Labor, Universität Hamburg) sowie Herrn B. Spettel (INAA, Max-Planck-Institut für Chemie, Mainz).

Nicht zuletzt möchte ich mich bei meinen Kollegen Herrn Dr. C. Vellmer und T. Geisler-Wierwille für Rat und Tat über die letzten Jahre bedanken, als auch bei allen anderen nicht namentlich genannten Mitarbeitern des Mineralogisch-Petrographischen Instituts der Universität Hamburg sowie allen Freunden, die mich bei der Fertigstellung dieser Arbeit unterstützt haben.

Ferner möchte ich dem Forschungszentrum Jülich für die finanzielle Unterstützung der Ägyptenreisen danken.

9. Literaturverzeichnis

- Amort, H., Brandenburg, T., Diercks, H., Garbe, S., Haller, M., Knöchel, A., Radtke, M., Hoffmann, A., Jochum, K.P., Adams, F., Janssens, K. and Vincze, L. (1994)
 Quantification of Geological Standards. HASYLAB Ann. Rep. 1994, 993 - 994.
- Appel, P., Schenk, V. and Lechtenberg, F. (1998) Trace Element (Y, Zr, REE, Hf, Ta) Zoning of Metamorphic Garnet. HASYLAB Ann. Rep. 1998.
- Bach, W., Hegner, E., Erzinger, J. and Satir, M. (1994) Chemical and Isotopic Variations along the Superfast Spreading East Pacific Rice from 6 to 30° S. Contrib. Mineral. Petrol. 116, 365 - 380.
- Barker, F. (1979) Trondhjemites, Dacites, and Related Rocks. Elsevier Sci. Publ. Co., Amsterdam.
- Bassett, W.A. and Brown, G.E., Jr. (1990) Synchrotron Radiation: Applications in the Earth Sciences. Annu. Rev. Earth Planet. Sci. 18, 387 447.
- Basto, M.J. et al. (1995) Gold Assessment in Micas by XRF Using Synchrotron Radiation. Chem. Geol. 124 (1-2), 83 - 90
- Bearden, J.A. (1967) X-Ray Wavelengths, Rev. of Mod. Phys., 86 99.
- Bilderback, D.H., Hoffman, S.A. and Thiel, D.J. (1994) CHESS Records Smallest Hard X-ray Beam. Synchr. Rad. News 7, 27.
- Blundy, J.D. and Shimizu, N. (1991) Trace Element Evidence for Plagioclase Recycling in Calc-alkaline Magmas. Earth Planet. Sci. Lett. 102, 178 - 197.
- Bodnar, R.J., Mavrogenes, R.J., Anderson, A.J., Bajt, S., Rivers, M.L. and Sutton, S.R. (1994) Assessment of the Uncertainties and Limitations of Quantitative Elemental Analysis of Individual Fluid Inclusions Using Synchrotron X-ray Fluorescence. NSLS Ann. Rep. 1994.
- Brearley, A.J., Bajt, S. and Sutton, S. (1995) Distribution of Moderately Volatile Trace Elements in Fine-grained Chondrule Rims in the Unequilibrated CO3 Chondrite, ALH A 77307. Geochim. Cosmochim. Acta 59, 4307 - 4316.
- Bühn, B., Wall, F., Le Bas, M.J. and Knöchel, A. (1998) REE- and Y-Systematics of Carbonatitic Fluorapatites. HASYLAB Ann. Rep. 1998.
- Chao, Z., Wu, Y., Zhao, S. and Xian, D. (1990) X-ray Microprobe Fluorescence (XRMF)Scanning Analyses. In Winick, H., Yin, Y., Shi, C., Jin, Y. and Xie, X. (Eds.): Proc.Int. Conf. Synch. Rad. Applic. Press Univ. Sci. Tech. China.
- Chappell, B.W. and White, A.J.R. (1976) Two Contrasting Granite Types. Pac. Geol. 8, 173 174.

- Chen, J.R., Chao, E.C.T., Back, J.M., Minkin, J.A., Rivers, M.L., Sutton, S.R., Cygan, G.L., Grossmann, J.N. and Reed, M.J. (1993) Rare Earth Element Concentrations in Geological and Synthetic Samples Using Synchrotron X-ray Fluorescence Analysis. Nucl. Instr. Meth. Phys. Res. B75, 576 - 581.
- Chevallier, P., Brissaud, I. and Wang, J.X. (1990) Quantitative Analysis by Synchrotron Radiation Induced X-ray Fluorescence. Nucl. Instr. Meth. Phys. Res. B49, 551 554.
- Compton, A.H. and Allison, S.K. (1935) X-rays in Theory and Experiment. Van Nostrand, New York.
- Criss, J.W. (1977) NRLXRF. Naval Research Laboratory Cosmic Program #DOD-00065. Nav. Res. Lab., Washington D.C.
- Dalpe, C., Baker, D. and Sutton, S.R. (1994) Synchrotron X-ray Fluorescence and Laser Ablation ICP-MS Microprobes: Useful Instruments for Analysis of Experimental Run Products and Other Small Samples. NSLS Ann. Rep. 1994.
- Deraedt, I., Janssens, K., Vincze, L., Vekemans, B., Bichlmeyer, S., Vittiglio, G. and Veeckman, J. (1998) Trace Analysis of Glass Fragments from 16th Century Antwerp. HASYLAB Ann. Rep. 1998.
- DESY (1998) Das Jahrbuch des Forschungszentrums DESY 1998, Deutsches Elektronen-Synchrotron, Hamburg.
- Dewey, J.F. (1988) Extensional Collapse of Orogens. Tectonics 7, 1123 1139.
- Dodge, F.C.W., Millard, H.T., Jr. and Elsheimer, H.N. (1982) Compositional Variations and Abundances of Selected Elements in Granitoid Rocks and Constituent Minerals, Central Sierra Nevada Batholith, California. Geol. Surv. Prof. Pap. 1248, US Gov. Print. Off., Washington.
- Dubinin, A.V., Volkov, I.I., Baryshev, V.B. and Kulipanov, G.N. (1986) X-ray Fluorescence Analysis by Means of Synchrotron Radiation for Rare-Earth Elements, Yttrium, and Barium in Pacific Bottom Sediments. Geochem. Int. 23, 61 - 68.
- Dunn, T. and Sen, C. (1994) Mineral/Matrix Partition Coefficients for Orthopyroxene, Plagioclase, and Olivin in Basaltic to Andesitic Systems: A Combined Analytical and Experimental Study. Geochim. Cosmochim. Acta 58, 717 - 733.
- Eichhorn, K.D. (1997) Single-Crystal X-ray Diffractometry Using Synchrotron Radiation. Eur. J. Mineral. 9, 673 - 692.
- El Gaby, S. (1975) Petrochemistry and Geochemistry of Some Granites from Egypt. N. Jahrb. Mineral. Abh. 124, 147 - 189.
- El Gaby, S., List, F.K. & Tehrani, R. (1990) The Basement Complex of the Eastern Desert and Sinai. In Said, R. (Ed.): The Geology of Egypt, Baalkema, Rotterdam, 175 - 184.
- Espen, P.V., Janssens, K. and Nobels, J. (1986) Chemometrics and Intell. Lab. Syst. 1, 109 114.

- Fischer, K.F. (1984) Anwendungsmöglichkeiten von Röntgen-Synchrotronstrahlung für Mineralogen. Fortschr. Mineral. 62, 173 - 186.
- Flynn, G.J., Sutton, S.R. and Bajt, M. (1994) Synchrotron X-ray Fluorescence Trace Element Measurements on Interplanetary Dust Particles as a Method to Infer their Sources and Interrelationships. NSLS Ann. Rep. 1994.
- Foster, A.L., Brown, G.E., Jr. and Parks, G.A. (1998) Quantitative Arsenic Speciation in Mine Tailings Using X-ray Absorption Spectroscopy. Amer. Mineral. 83, 553.
- Frantz, J., Mao, H., Zhang, Y, Wu, Y. and Thompson, A. (1988) Analysis of Fluid Inclusions by X-ray Fluorescence Using Synchrotron Radiation. Chem. Geol. 69, 235 - 244.
- Freundt-Malecha, B., Lechtenberg, F. and Schmincke, H.U. (1994) In-situ Synchrotron X-ray Fluorescence Analyses of Trace and Rare Earth Elements in Feldspar and Clinopyroxene from Syenite Fragments and their Trachyphonolitic Host Ignimbrites (Gran Canaria, Spain). HASYLAB Ann. Rep. 1994, 921 - 922.
- Gaul, G. und Knöchel, A. (1994) Röntgenfluoreszenzanalyse mit Synchrotronstrahlung. In Günzler, H., Bahadir, A.M., Borsdorf, R., Danzer, K., Fresenius, W., Galensa, R., Huber, W., Lüderwald, I., Schwedt, G., Tölg, G. und Wisser, H. (Eds.): Elementar-analytik, Springer Verlag, 151 199.
- Gillieson, A.H., Reed, D.J., Milliken, K.S. and Young, M.J. (1965) Am. Soc. Test. Mater. Spec. Tech. Publ. 376, 3.
- Greiling, R.O., Abdeen, M.M., Dardir, A.A., El Akhal, H., El Ramly, M.F., Kamal El Din, G.M., Osman, A.F., Rashwan, A.A., Rice, A.H.N. and Sadek, M.F. (1994) A Structural Synthesis of the Proterozoic Arabian-Nubian Shield in Egypt. Geol. Rundsch. 83, 484 - 501.
- Greiling, R.O., De Wall, H., Naim, G.M., Hussein, A.A., Sadek, M.F. and El Kady, M.F. (1996) Structural Evolution and Magnetic Fabric at the Hamisana Shear Zone (Proterozoic, SE Egypt). Abs. Geol. Survey Egypt Cent. 1996, 72 73.
- Haken, H. und Wolf, H.C. (1987) Atom- und Quantenphysik. Springer-Verlag.
- Hanson, A.L., Jones, K.W., Gordon, B.M., Pounds, J.G., Kwiatek, W.M., Rivers, M.L., Schidlovsky, G. and Sutton, S.R. (1987) Trace Element Measurements Using Synchrotron Radiation. Nucl. Instr. Meth. B24/25, 400 - 404.
- Hansteen, T.H., Lechtenberg, F., Sachs, P.M., Garbe, S., Freitag, J. und Schmincke, H.U. (1994) Synchrotron X-Ray Fluorescence Analyses of Trace Elements in Selected Geological Reference Samples. HASYLAB Ann. Rep. 1994, 915 916.
- Hansteen, T.H., Lechtenberg, F., Sachs, P.M. and Schmincke, H.U. (1995) In-Situ Trace Element Determinations of High-Salinity Fluid Inclusions in Quartz Using SYXRF. HASYLAB Ann. Rep. 1995, 951 - 952.

- Hansteen, T.H., Lechtenberg, F. and Sachs, P.M. (1997) Synchrotron-XRF Microprobe Analysis of Natural Silicate Glass Standards. HASYLAB Ann. Rep. 1997, 988 - 989.
- Hansteen, T.H., Sachs, P.M. and Lechtenberg, F. (1999) Synchrotron-XRF Microprobe Analysis of Silicate Reference Standards Using Fundamental Parameter Quantification. Europ. J. Mineral., in Vorbereitung.
- Hassaan, M.M., Sabet, A.H. and Abu El-Leil, I. (1990); Geological Studies on Granitoids in the Northern Part of the Basement Complex, Eastern Desert, Egypt. Ann. Geol. Surv. Egypt 16, 133 - 141.
- Hassan, M.A. and Hashad, A.H. (1990); Precambrian of Egypt. In Said, R. (Ed.): The Geology of Egypt, Baalkema, Rotterdam, 201 245.
- Hayakawa, S., Iida, A. and Gohshi, Y. (1991) Trace Element Quantification Using Synchrotron Radiation X-ray Fluorescence Analysis. Anal. Sci. 7, 509 512.
- Hayakawa, S., Goto, S., Shoji, T., Yamada, E. and Gohshi, Y. (1998) X-ray Microprobe System for XRF Analysis and Spectroscopy at SPring-8 BL39 XU. J. Synch. Rad. 5 (3), 1114 - 1116.
- Helz, R.T. (1976) Phase Relations of Basalts in their Melting Range at P $H_2O = 5$ kb as a Function of Oxygen Fugacity. Part II. Melt Compositions. J. Petrol. 17, 139 193.
- Horn, S., Lechtenberg, F., Garbe, S., Sachs, P.M., Hansteen, T.H. und Schmincke, H.U. (1994) Synchrotron XRF Analyses of Matrix Glasses of the 1000 AD Baitoushan Eruption (NE China/Northkorea): First Results. HASYLAB Ann. Rep. 1994, 905 906.
- Hulsbergen, M.R., Lechtenberg, F. and Sachs, P. (1995) In-situ Synchrotron X-ray Fluorescence Analyses of Trace- and Rare Earth Elements in Quartz Grains Picked from I.R.D. Layers. HASYLAB Ann. Rep. 1995, 975 - 976.
- Hussein, A.A.A., Ali, M.M. and El Ramly, M.F. (1982) A Proposed New Classification of the Granites of Egypt. J. Volc. Geotherm. Res. 14, 187 198.
- Iida, A., Sakurai, K., Matsushita, T. and Gohshi, Y. (1985) Energy Dispersive X-Ray Fluorescence Analysis with Synchrotron Radiation. Nucl. Instr. Meth. Phys. Res. 228, 556 - 563.
- Janssens, K., Vincze, L., van Espen, P. and Adams, F. (1993) Monte Carlo Simulation of Conventional and Synchrotron Energy-Dispersive X-Ray Spectrometers. X-Ray Spectrom. 22, 234 - 243.
- Jochum, K.P., Hofmann, A.W., Haller, M., Radtke, M., Knöchel, A., Vincze, L. and Janssens, K. (1995) Comparison of Synchrotron X-Ray Fluorescence Analyses of Geological Standard Glasses with Reference Values. HASYLAB Ann. Rep. 1995, 1003 -1004.

- Jochum, K.P., Hofmann, A.W., Graup, G., Bessette, D., Haller, M. and Knöchel, A. (1997) Trace Element Analysis of Melt Inclusions in Hawaiian Basalts by Synchrotron X-ray Fluorescence. HASYLAB Ann. Rep. 1997, 965 - 966.
- Jochum, K.P., Hofmann, A.W., Bessette, D., Stoll, B. and Graup, G. (1998) SR-XRF Microprobe Trace Element Study on Melt Inclusions from Hawaiian Basalts. HASYLAB Ann. Rep. 1998.
- Jochum et al. (1999) New Geological Standard Reference Glasses for In-situ Microanalysis. Geostand. Newslett, in Vorbereitung.
- Klügel, A., Sachs, P.M., Lechtenberg, F. and Schmincke, H.U. (1995) Trace Element Zoning in Mantle Xenoliths: First results of Synchrotron X-ray Fluorescence Analyses (SYXRF). HASYLAB Ann. Rep. 1995, 947 - 948.
- Knöchel, A. et al. (1983) Nucl. Instr. Meth. Phys. Res. 208, 659.
- Koepke, J., Behrens, H., Haller, M. and Knöchel, A. (1997) Measurements of Tracer Diffusivity in Hydrous Andesitic Melts Using Synchrotron X-ray Fluorescence Microanalysis (SYXRF). HASYLAB Ann. Rep. 1997, 953 - 954.
- Koepke, J., Behrens, H., Tegge-Schüring, A., Haller, M. Knöchel, A. and Lechtenberg, F. (1998) Tracer Diffusion Data of 21 Elements in Hydrous Andesitic Melts Derived by SYXRF (Synchrotron X-ray Fluorescence Microanalysis). HASYLAB Ann. Rep. 1998.
- Kopp, O.C., Reeves, D.K., Rivers, M.L. and Smith, J.V. (1990) Synchrotron X-ray Fluorescence Analysis of Zoned Carbonate Gangue in Mississippi Valley-type Deposits (USA). Chem. Geol. 81, 337 - 347.
- Lanzirotti, A. (1995) Yttrium Zoning in Metamorphic Garnets. Geochim. Cosmochim. Acta 59, 4105 4110.
- Lechtenberg, F. (1994) Höchstauflösende Röntgenfluoreszenzanalyse mit weißer Synchrotronstrahlung. Inaug. Diss., Universität Münster.
- Lechtenberg, F., Hansteen, T.H., Dingwell, D.B. and Roano, C. (1995) Fluid Inclusion Studies at the μ-SYXRF. HASYLAB Ann. Rep. 1995, 943 944.
- Lechtenberg, F., Garbe, S., Bauch, J., Dingwell, D.B., Freitag, F., Haller, M., Hansteen, T.H., Ippach, P., Knöchel, A., Radtke, M., Romano, C., Sachs, P.M., Schmincke, H.U. and Ullrich, H.J. (1996) The X-ray Fluorescence Measurement Place at Beamline L of Hasylab. J. Trace Micro. Tech. 14, 561 587.
- Long (1995) Microanalysis from 1950 to the 1990s. In Potts, P.J., Bowles, J.F.W., Reed, S.J.B. and Cave, M.R. (Eds.) Microprobe Techniques in the Earth Sciences. Chapman & Hall, London.

- Lu, F.Q., Smith, J.V., Sutton, S.R., Rivers, M.L. and Davis, A.D. (1989) Synchrotron X-ray Fluorescence Analysis of Rock-Forming Minerals, 1. Comparison with Other Techniques, 2. White-Beam Energy-Dispersive Procedure for Feldspars. Chem. Geol. 75, 123 - 143.
- Mao, H.K., Shu, J., Shen, G., Hemley, R.J., Li, B. and Singh, A.K. (1998) Elasticity and Rheology of Iron above 220 Gpa and the Nature of the Earth's Inner Core. Nature 396, 741 - 743.
- Martin, H. (1987); Petrogenesis of Archaean Trondhjemites, Tonalites and Granodiorites from Eastern Finland: Major and Trace Element Geochemistry. J. Petrol. 28-5, 921 953.
- Mavrogenes, J.A., Bodnar, R.J., Anderson, A.J., Bajt, S., Sutton, S. and Rivers, M.L. (1995) Assessment of the Uncertainties and Limitations of Quantitative Elemental Analysis of Individual Fluid Inclusions Using Synchrotron X-ray Fluorescence (SXRF). Geochim. Cosmochim. Acta 59, 3987 - 3995.
- McHugo, S.A., Thompson, A.C. and Pepe, R. (1998) Advanced Light Source: Scanning X-Ray Fluorescence Microprobe, Beamline 10.3.1. ALS Ann. Rep. 1998.
- Mommsen, H., Beier, Th., Dittmann, H., Heimermann, D., Hein, A., Rosenberg, A. Boghardt, M., Hanebutt-Benz, E.M. and Halbey, H. (1996) X-ray Fluoresecnce Analysis with Synchrotron Radiation on the Inks and Papers of Incunabula. Archaeometry 38, 347 - 357.
- Moseley, H.G.J. (1914). Phil. Mag. 27, 703.
- Mottana, A., Paris, E., Marcelli, A, Wu, Z. and Giuli, G. (1996) Crystal Chemistry of Olivines and Garnets in Alpine Ultramafics: Information Contributed by XAFS. Mitt. Österr. Mineral. Gesell. 141, 35.
- Müller, R. (1972) Spectrochemical Analysis by X-ray Fluorescence. Hilger, London.
- Neves, L.J.P.F. (1997) Trace Element Content and Partitioning between Biotit and Muscovit of Granitic Rocks: A Study in the Viseu Region (Central Portugal). Europ. J. Mineral. 9, 849 - 857.
- Omar, G.I. and Steckler, M.S. (1995) Fission Track Evidence on the Initial Rifting of the Red Sea: Two Pulses, No Propagation. Science 270, 1341 1344.
- Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 25, 956 983.
- Philippot, P., Chevallier, P., Chopin, C. and Dubessy, J. (1995) Fluid Composition and Evolution in Coesit-Bearing Rocks (Dora-Maira Massif, Western Alps): Implications for Element Recycling during Subduction. Contrib. Mineral. Petrol. 121, 29 - 44.
- Philippot, P., Menez, B., Chevallier, P., Gibert, F., Legrand, F. and Populus, P. (1998) Absorptions Correction Procedures for Quantitative Analysis of Fluid Inclusions Using Synchrotron Radiation X-ray Fluoresecence. Chem. Geol. 144, 121 - 136.

- Potts, P.J., Bowles, J.F.W., Reed, S.J.B. and Cave, M.R. (1995) Microprobe Techniques in the Earth Sciences. Chapman & Hall, London.
- Rakovan, J., and Reeder, R. (1996) Intracrystalline Rare Earth Element Distributions in Apatite: Surface Structural Influences on Incorporation During Growth. Geochim. Cosmochim. Acta 60, 4435 - 4445.
- Ranck, A., Börner, M., Lechtenberg, F. and Knöchel, A. (1998) New Setup at SY-XRF Beamline. HASYLAB Ann. Rep. 1998.
- Rankin, A.H., Ramsey, M.H., Coles, B. Van Langevelde, F. and Thomas, C.R. (1992) The Composition of Hypersaline, Iron-rich Granitic Fluids Based on Laser ICP and Synchrotron-XRF Microprobe Analysis of Individual Fluid Inclusions in Topaz, Mole Granit, Eastern Australia. Geochim. Cosmochim. Acta 56, 67 - 79.
- Reed, S.J.B. (1996) Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge Univ. Press, Cambridge.
- Reeder, R.J. (1994) Surface-controlled Distributions of Trace Elements Studied by Synchrotron X-ray Fluorescence Microanalysis. NSLS Ann. Rep. 1994.
- Ridgway, C.K., Stowell, H.H., Bajt, S. and Nuessle, P. (1994) Synchrotron XRF Analysis of Trace Elements in Zoned Garnets from Metasomatic Contact Metamorphic Aureoles, SE Alaska. NSLS Ann. Rep. 1994.
- Rieder, R., Wobrauschek, P., Ladisich, W., Streli, C., Aiginger, H., Garbe, S., Gaul, G., Knöchel, A. and Lechtenberg, F. (1995) Total Reflection X-ray Fluorescence Analysis with Synchrotron Radiation Monochromatized by Multilayer Structures. Nucl. Instr. Meth. Phys. Res. A355, 648 - 653.
- Rindby, A., Engström, P., Larsson, S. and Stocklassa, B. (1989) Microbeam Technique for Energy-Dispersive X-ray Fluorescence. X-Ray Spectrom. 18, 109 - 112.
- Roeder, P.L. (1985) Electron-Microprobe Analysis of Minerals for Rare-Earth Elements: Use of Calculated Peak-Overlap Corrections. Canad. Mineral. 23, 263 271.
- Rollinson, H. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical, Harlow, Essex, England.
- Ryan, C.G. and Griffin, W.L. (1993) The Nuclear Microprobe as a Tool in Geology and Mineral Exploration. Nucl. Instr. Meth. Phys. Res. B77, 381 398.
- Sachs, P. and Lechtenberg, F. (1997) Synchrotron X-ray Fluorescence (SYXRF) Analysis of the International Standards SY-3, JB-2, JF-2, NIM-G and NIM-S. HASYLAB Ann. Rep. 1997, 985 - 986.
- Sachs, P.M., Lechtenberg, F. and Hansteen, T.H. (1998) The Nature of the Earth's Lithospheric Mantle beneath Oceanic Islands: Constraints from Synchrotron X-ray Fluorescence (SYXRF) Analyses of Garnet-Orthopyroxenite Xenoliths. HASYLAB Ann. Rep. 1998.

- Schleicher, H., Bessette, D., Haller, M., Knöchel, A. and Radtke, M. (1997) Trace Element and REE Synchrotron XRF Measurements on Carbonatite and Fenitized Pyroxenite from Tamil Nadu, Southern India. HASYLAB Ann. Rep. 1997, 949 - 950.
- Skulski, T., Minarik, W. and Watson, E.B. (1994) High-pressure Experimental Trace-element Partitioning between Clinopyroxene and Basaltic Melts. Chem. Geol. 117, 127 - 147.
- Smith, A. (1997) Project on how Minerals are Formed with Electron-Microscope X-ray Absorption Spectroscopy. Ann. Rep. 1996/97 of the Synchr. Rad. Dept. Cent. Lab. Res. Cc. SRS/CLCR, Daresbury, UK.
- Smith, J.V. and Rivers, M.L. (1995) Synchrotron X-ray Microanalysis. In Potts, P.J., Bowles, J.F.W., Reed, S.J.B. and M.R. Cave (Eds.): Microprobe Techniques in the Earth Sciences. Chapman & Hall, London, 163 - 233.
- Sobolev, A.V. (1996) Melt Inclusions in Minerals as a Source of Principle Petrological Information. Petrology 4, 228 - 239.
- Sobolev, A., Hofmann, A.W. and Nikogosian, I. (1998) Anomalous Sr in Melt Inclusions from Mauna Loa, Hawaii: Fingerprint of Recycled Gabbro? Eos 79, S345.
- Sparks , C.J. (1976) Quantitative X-ray Fluorescent Analysis Using Fundamental Parameters. In Gould, R.W. et al. (Eds.): Advances in X-Ray Analysis 19, Kendall Hunt, 19 - 52.
- Streck, M.J., Lechtenberg, F., Sachs, P. and Schmincke, H.U. (1995) Trace Element Concentrations Obtained by Synchrotron-XRF Spot Analysis for Mineral Partition Coefficients of High-Silica Rhyolites. HASYLAB Ann. Rep. 1995, 945 - 946.
- Streli, C. (1997) X-ray Analysis with Synchrotron Radiation. Unpubl. Scriptum, Atominstitut der Österreichischen Universitäten, Wien.
- Sutton, S.R., Rivers, M.L., Eng, P.J. and Neville, M. (1997) Applications of Synchrotron Xray Microprobe Analysis in Geochemistry and Cosmochemistry, Eos Trans AGU 78, F789.
- Suzuki, M. (1999) BL39XU Physicochemical Analysis. SPring-8 Facility Information of Beamlines. http://www.spring8.or.jp
- Taylor, S.R. and McLennan, S.M. (1985) The Continental crust: Its Composition and Evolution. Blackwell, Oxford.
- Tertian, R. and Claisse, F. (1982) Principles of Quantitative X-ray Fluorescence Analysis. Heyden & Son Ltd, London.
- Treiman, A.H. and Sutton, S.R. (1992) Petrogenesis of the Zagami Meteorite: Inferences from Synchrotron X-ray (SXRF) Microprobe and Electron Microprobe Analyses of Pyroxenes. Geochim. Cosmochim. Acta 56, 4059 - 4074.

- Umsonst, T., Emmermann, R., Lauterjung, J., Bach, W., Garbe, S., Radtke, M., Knöchel, A., Janssens, K., Vincze, L. and Adams, F. (1994) REE Determination in Mid Ocean Ridge Basalts from the East Pacific Rice - Results from Synchrotron Radiation Induced X-ray Fluorescence (SYXRF). HASYLAB Ann. Rep. 1994, 989 - 990.
- Umsonst, T., Lauterjung, J., Emmermann, R., Haller, M., Radtke, M. and Knöchel, A. (1995) Microprobe Analysis of Basalt Glasses - Results from Synchrotron Radiation Induced X-Ray Fluorescence (SYXRF), HASYLAB Ann. Rep. 1995, 997 - 998.
- Underwood, J.H., Thompson, A.C., Wu, Y. and Giauque, R.D. (1988) X-ray Microprobe Using Multilayer Mirrors. Nucl. Instr. Meth. Phys. Res. A266, 296.
- Van Langevelde, F., Tros, G.H.J., Bowen, D.K. and Vis, R.D. (1990) The Synchrotron Radiation Microprobe at the SRS, Daresbury, UK and its Applications. Nucl. Instr. Meth. B49, 544 - 549.
- Veigele, W.M.J. (1973) Atomic Data Tables 5, 51.
- Vincze, L. (1995) Monte Carlo Simulation of Conventional and Synchrotron X-ray Fluorescence Spectrometers. Inaug. Diss. Univ. Antwerpen.
- Vincze, L., Janssens, K., Adams, F., Radtke, M., Haller, M., Knöchel, A., Hoffmann, A. and Jochum, K.P. (1995) Quantitative Analyses of SRXRF Spectra of Geological Reference Materials by Means of a Combined FP/MC Quantification Procedure. HASYLAB Ann. Rep. 1995, 999 - 1000.
- Ward, C.D., McArthur, J.M. and Walsh, J.N. (1992) Rare Earth Element Behaviour During Evolution and Alteration of the Dartmoor Granite, SW England. J. Petrol. 33, 785 815.
- Wille, K. (1991) Synchrotron Radiation Sources. Rep. Prog. Phys. 54, 1005.
- Wobrauschek, P. and Streli, C. (1997) Total Reflection X-ray Fluorescence Analysis with Synchrotron Radiation and other Sources for Trace Element Determination. In Johnson, R.L., Schmidt-Böcking, H. and Sonntag, B. (Eds.): X-ray and Inner-shell Processes, AIP Conf. Proc. 389, 233.
- Zimmer, M., Kröner, A., Jochum, K.P., Reischmann, T. and Todt, W. (1995) The Gabal Gerf Complex: A Precambrian N-MORB Ophiolite in the Nubian Shield, NE-Africa. Chem. Geol. 123, 29 - 51.
- Zschornack, G. (1989) Atomdaten für die Röntgenspektralanalyse. VEB Dt. Verl. Grundstoffind., Leipzig.

10. Anhang

-	Glossar	A1
-	Tab.10.3: Zusammensetzung der Standardgläser (Referenzwerte)	A5
-	Abb.10.1: Darstellung der SRXRF-Spektren aller verwendeten geologischen	
	Standardgläser	A7
-	Tab.10.4: Röntgenemissionslinien	A12
-	Tab. 10.5: Massenschwächungskoeffizienten ausgewählter K_{α} -Röntgenlinien	A14
-	Tab.10.6: Einzelmessungen mit der Elektronenstrahl-Mikrosonde	A15
-	Tab.10.7: SRXRF-Daten (Mittelwerte)	A20
-	Tab.10.8: SRXRF-Daten (Einzelmessungen)	A26
-	Tab.10.9: RFA-Gesamtgesteinsanalysen	A46

Glossar

Häufig verwendete Begriffe und Abkürzungen (DESY, 1998):

Auflösungsvermögen: Maß für die kleinsten Intervalle, die von einem Nachweisgerät noch getrennt registriert werden können, seien es Zeitintervalle, Energie- oder Wellenlängenunterschiede oder räumliche Abstände.

Beschleuniger: Anlagen, in denen elektrisch geladene Partikel (z.B. Elektronen, Protonen oder deren Antiteilchen) in elektrischen Feldern auf hohe Energien gebracht werden. Neben der Untersuchung von Teilchen und deren Wechselwirkungen dient sie u.a. als Quelle von intensiver elektromagnetischer Strahlung.

Brightness (Leuchtdichte): Fluß der Photonen, der von 1 mm² des Querschnitts des Elektronenstrahls emittiert wird (Photonen/s/mA/mm²/0,1 % Bandbreite).

Brillanz: Größe zur Beschreibung der Güte einer Quelle für Synchrotronstrahlung. Je geringer die Quellgröße ist, also die Ausdehnung des Elektronenstrahls, um so brillanter ist die Strahlung. So ist die Brillanz ein Maß für die Konzentration der abgestrahlten Photonen. Praktisch bedeutet das: Je höher die Brillanz ist, umso kleinere Proben können untersucht werden, oder der Fluß der Photonen, der von 1 mm² des Querschnitts des Elektronenstrahls in den horizontalen und vertikalen Winkelbereich (mrad²) emittiert wird (Photonen/s/mA/mm²/mrad²/0,1 % Bandbreite).

Bunch: Kleine Pakete, zu denen die in einem Beschleuniger umlaufenden Teilchen gebündelt sind.

DESY: Deutsches Elektronen-Synchrotron.

Detektor: Allgemein: Bezeichnung für ein Nachweisgerät. In der Teilchenphysik komplexes Instrument aus zahlreichen verschiedenen Einzelkomponenten zum Nachweis von Elementarteilchen und ihren Reaktionen durch Aufzeichnung ihrer Spuren und Messung ihrer Energie.

DORIS III: Name für einen DESY-Speicherring. Wird seit 1993 ausschließlich als Synchrotronstrahlungsquelle betrieben.

Elektron: Stabiles, negativ geladenes Elementarteilchen aus der Gruppe der Leptonen, zusammen mit Proton und Neutron Grundbaustein der Atome, außerdem Träger des elektrischen Stroms.

Elektronenvolt (eV): Maßeinheit sowohl für die Energie als auch für die Masse von Teilchen. 1 eV ist die Energie, die ein Elektron aufnimmt, wenn es eine elektrische Spannungsdifferenz von 1 Volt durchfliegt. Die Masse des Elektrons ist 0,5 MeV/ c^2 , das entspricht 10⁻²⁹ Gramm.

Elementarteilchen: Kleinste Einheiten von Materie, die beim Urknall entstanden sind und zum größten Teil bei der Entstehung des Universums nach Bruchteilen von Sekunden zerfielen oder sich umwandelten. Nur wenige stabile Teilchen blieben übrig, von denen zwei Quarks und das Elektron als kleinste Bausteine der Natur die gesamte beständige Materie bilden. Man kennt heute mehr als 300 verschiedene Teilchen: die Austauschteilchen sowie die Materieteilchen, die die beiden Gruppen der Leptonen (Elektron-, Myon- und Tau-Neutrino-Paare) und Hadronen (aus Quarks zusammengesetzt) bilden.

Emittanz: Von Größe und Öffnungswinkel eines Teilchenstrahls abhängiger Parameter, der die Unordnung der Teilchen im Strahl beschreibt und somit ein wichtiges Maß für seine Qualität darstellt. Je niedriger die Emittanz, um so besser läßt sich der Strahl fokussieren.

Fluoreszenz: Lichtemission von gasförmigen, flüssigen oder festen Stoffen, die nach Bestrahlung mit Licht, Röntgen- oder Elektronenstrahlen die absorbierte Energie innerhalb von 10⁻⁶ s in Form von elektromagnetischer Strahlung gleicher oder größerer Wellenlänge wieder abgeben.

Fluß (spektraler Fluß, Photonenfluß): Zahl der Photonen, die pro Sekunde bei einem Elektronenstrom von 1 mA in einem Energieintervall von 0,1 % der angegebenen Energie emittiert werden (Photonen/s/mA/0,1 % Bandbreite).

HASYLAB: Hamburger Synchrotronstrahlungslabor.

Interferenz: Überlagerungserscheinung, die auftritt, wenn zwei oder mehr Wellen denselben Raum durchlaufen. Dabei addieren sich an jedem Punkt in jedem Augenblick die momentanen Auslenkungen der Wellen, so daß jeder Raumpunkt entsprechend dem erzeugten Interferenzmuster schwingt.

kohärent: Eigenschaft von sich überlagernden Wellen, die von einer einzigen Quelle erzeugt werden. Sie zeigen Kohärenz, wenn eine definierte Beziehung zwischen ihren Phasen (Schwingungszuständen) besteht. Der Vorteil bei Messungen mit kohärenter Strahlung ist, daß nach ihrer Streuung an der zu untersuchenden Probe nicht nur die Intensität, sondern auch die Phase registriert werden kann. Strahlung ist um so kohärenter, je kleiner die sie erzeugende Quelle ist.

Linearbeschleuniger: Lineare Struktur, in der elektrisch geladene Teilchen nach ihrer Erzeugung gebündelt und in einem Feld zwischen Driftröhren beschleunigt werden.

Modulator: Mit Hilfe von Modulatoren wird die gepulste Eingangshochspannung erzeugt.

Monochromator: Apparatur, mit der einzelne Wellen einer bestimmten Wellenlänge bzw. Energie, d.h. monochromatische Strahlung, aus einem Spektrum von elektromagnetischer Strahlung z.B. durch einen Kristall herausgefiltert werden können. Durch Drehen des Kristalls läßt sich die ausgewählte Wellenlänge sehr genau abstimmen und ändern.

Photomultiplier (Photoverfielfacher): Verstärkerröhre zum Nachweis und zur Messung schwacher Lichtströme. Der Lichteinfall löst aus einer Photokathode Elektronen heraus, die auf eine reihe weiterer Elektroden prallen, wobei die Anzahl der Elektroden jedesmal weiter anwächst. So wird der ursprüngliche Photostrom in einen elektrischen Strom von zweckmäßiger Intensität umgewandelt.

Photon (auch Lichtquant): Austauschteilchen der elektromagnetischen Wechselwirkung. Das Photon ist masselos und elektrisch neutral.

Polarisation: Aus der Optik bekannt als Eigenschaft transversaler Wellen; polarisiertes Licht schwingt nur in einer Ebene. In der Teilchenphysik spricht man von Polarisation, wenn der Eigendrehimpuls von Teilchen, ihr Spin, in eine Richtung zeigt. Ein Teilchenstrahl ist transversal polarisiert, wenn die Teilchen-Spins senkrecht, und longitudinal polarisiert, wenn sie parallel zu ihrer Flugbahn ausgerichtet sind.

Quantenfeldtheorie: Mathematisch-physikalische Theorie zur Beschreibung von Prozessen, bei denen Teilchen erzeugt oder vernichtet werden.

Resonator: Wichtige Komponente von Beschleunigern. Resonatoren (oder Kavitäten) sind metallische Hohlkörper, in denen elektromagnetische Felder von einigen 100 Megahertz schwingen, die der Beschleunigung des Teilchenstrahls dienen.

Rückkopplungssysteme (feedback): Systeme zur Erzeugung stabiler Teilchenstrahlen bei starken Strömen. Ab einer bestimmten Größe des Strahlstroms erzeugen die in einem Kreisbeschleuniger umlaufenden Teilchenpakete parasitäre elektromagnetische Felder, die den Strahl instabil machen. Die Kontrollsysteme ermitteln die Abweichung eines Teilchenpakets und zwingen dieses auf die Sollbahn zurück.

Speicherring: Anlage, in der auf hohe Energien beschleunigte Teilchen über mehrere Stunden umlaufen.

Streuung: In der Teilchenphysik der Vorgang bei der Kollision von Partikeln in Beschleunigern. Das gestreute Teilchen (z.B. ein Elektron) überträgt einen Teil seines Impulses und seiner Energie auf das streuende Teilchen (z.B. ein Photon), wobei neue Teilchen erzeugt werden. Bei einem Streuprozess ändert das Elektron seine Flugrichtung und kann sich auch in ein anderes Teilchen umwandeln.

Synchrotron: Ringbeschleuniger, in dem die Bahn des umlaufenden Teilchenstrahls während des Beschleunigungsvorgangs unverändert bleibt. Dazu ist es erforderlich, daß das Magnetfeld synchron zur Energiezunahme anwächst.

Synchrotronstrahlung: Intensive, laserähnlich gebündelte und extrem breitbandige elektromagnetische Strahlung, die von Elektronen oder Positronen in den Ablenkmagneten von Ringbeschleunigern oder in Wigglern/Undulatoren emittiert wird.

SRXRF: Synchrotron Radiation X-ray Fluorescence analysis (Röntgenfluoreszenzanalyse mit Synchrotronstrahlung).

Target: Objekt (Probe), an dem durch Beschuß mit energiereichen Teilchen Reaktionen ausgelöst und beobachtet werden.

Teilchenstrahl: Gesamte Teilchenmenge im Vakuumrohr eines Beschleunigers. Ein Teilchenstrahl wird aus vielen Milliarden Teilchen gebildet, z.B. Elektronen oder Protonen oder deren Antiteilchen. Um eine hohe Trefferwahrscheinlichkeit zu erzielen, werden möglichst viele Teilchen in ein möglichst kleines Volumen fokussiert. So entstehen mehrere Teilchenpakete, die einige Zentimeter lang sind, einen sehr kleinen Querschnitt haben und im Beschleuniger auf Abstand fliegen, sogenannte Bunches.

Vorbeschleuniger: System von linearen oder kreisförmigen Beschleuinigern, in denen die Teilchen erzeugt, gebündelt und stufenweise beschleunigt werden, bis sie die erforderliche Anfangsenergie für die Einspeisung in den Speicherring haben.

Wiggler und **Undulatoren**: Besondere Magnetstrukturen (Permanentmagnete) in Beschleunigern zur Erzeugung von Synchrotronstrahlung, die bis zu 1000 mal intensiver ist als in Ablenkmagneten.

	А	В
2		Probe bzw. Standard
3	Dicke (d) [µm]	
4	Differenz Dicke (Δd)	= B3-50µm
5	c	$=\sqrt{2(B4)^2}$
6	Element i	
7	cps _D	
8	e ^{-µd}	
9	cps _M	= B7/B8
10	Konzentration [%], [ppm]	
11	m2 _i	siehe Tab. 10.2
12	m1	= B11·B10
13	α	= (arc tan B12)
14	Δ	= (sin B13)·B5
15	cps _{korr}	$= \frac{B3 - B14}{B3} \cdot B9; \text{ wenn } B4 > 0$ B3 + B14
		$= \frac{B3 + B14}{B3} \cdot B9; \text{ wenn } B4 < 0$
16	Faktor aus Regression	
17	1. Ergebnis (Konzentration)	= B15·B16
1. Iteration:		
19	m1	= B11·B17
20	etc	

Tab. 10.1: Rechenweg zur Intensitätskorrektur und Erstellung der Standardregressionsgeraden sowie zur Quantifizierung unbekannter Proben.

Tab. 10.2: Werte m2, ermittelt aus den Standardkeilen BIO, FSP und T1.

m2	für Dicken	
Elemente	$0 < d < 100 \ \mu m$	
K	0,3763	
Ca	0,0705	
Ti	1,3965	
Mn	2,5141	
Fe	2,6155	
Zn	0,00078178	
Ga	0,00084946	
Rb	0,0013832	
Sr	0,0012505	
Y	0,0019129	
Zr	0,0015342	
Nb	0,0018503	
Ba	0,0017963	
La	0,0015557	
Ce	0,0010991	
Nd	0,0015718	
Sm	0,0011779	
Gd	0,00083566	
Dy	0,0015151	
Er	0,0013887	
Th (L)	0,0015008	

Standard	BIO	FSP	GD	MA-N	JG-2	JR-1	JF-1	BCR-2
Dicke [µm]	50	35	40	60	50	40	50	40
[Gew.%]								
SiO ₂	48,44	63,49	64,10	66,60	70,56	68,85	61,48	54,9
Al_2O_3	29,17	18,21	14,80	17,62	11,38	11,77	16,6	13,8
$Fe_2O_3(t)$	7,54	0,07	5,34	0,47	0,84	0,96	0,07	
MnO	0,11	0,01	0,07	0,04	0,014	0,1	0,001	0,18
MgO	1,23	0,01	2,49	0,04	0,037	0,08	0,006	3,54
CaO	0,03	0,04	1,82	0,59	0,73	0,58	0,85	7,06
Na ₂ O	0,38	0,90	4,01	5,84	3,26	3,74	3,27	3,32
K ₂ O	11,15	14,82	2,24	3,18	4,33	4,03	9,29	1,72
TiO ₂	0,63	0,01	0,68	0,01	0,037	0,1	0,005	2,28
P_2O_5			0,15	1,39	0,002	0,02	0,009	
CO ₂				0,13	0,01	0,03		
H ₂ O				1,29	8,5	8,86	8,14	
[ppm]								
Ba	1669	6691	730	42	61	37	1550	681
Ce	284	259	52	1	42	45	4	53,7
Co			13	1	3,9	0,59	0,2	37
Cr			66	3	7	2,1	5,4	16
Cs	18,7	11,2		640	6,9	18,4	2	0,96
Cu			14	140	0,4	1,3	0,2	19
Dy	< 0,6	< 0,3			10,9	5,7		6,3
Er	< 1	< 1				3,6		3,6
Eu	< 1	< 1				0,28	0,78	1,95
Ga	347	201	18	59	17	16,1	16,7	22
Gd	180	143			3,8	4,4	1,2	6,7
Hf	5,66	6,11		4,5	1,65	4,3	1,2	4,95
Но	0,26	0,11				1		
La	201	184	26	0,4	16,5	19	2,4	25
Li	647	9,12		4900	39,8	56,9	10	13
Lu	0,2	0,086				0,62	0,06	0,51
Мо					0,21	2,9	0,4	1,6
Nb	401	262	6	173	14	14,2	0,5	14
Nd	167	187	26	1	22	23,3	1,4	29
Ni			27	3	1,9	0,6	0,4	13
Pb	22	200	59	29	30,1	17,4	30,8	14
Pr	< 0,2	< 0,1			4,4	5,6	0,7	6,8
Rb	1422	1031	67	3600	272	235	244	47
Sb				1,9	0,06	1,35	0,06	
Sc	178	< 1		0,24	2	4,8	0,2	33
Sm	213	190			6,5	5,7	0,35	6,6
Sn				1050	2,3	2,5	0,3	2,7
Sr	237	754	265	84	15	27	150	330
Та				290	1,7	1,7	0,4	0,81
Tb	< 0,2	< 0,1			- - ·	1	0,1	1,05
Th	5	9	9	1	27,2	24,2	1,2	5,98
U	2	4	2	12	11,5	8	0,3	1,8
V	19	6	100	4,6	3		3	407
Y	166	177	19	1	82	42	4	38
Yb	1,03	0,54			7,6	4,2	0,32	3,4
Zn	227	14	165	220	11,7	27	3	130
Zr	225	235	160	27	89	93	38	190

Tab. 10.3: Zusammensetzung der Standardgläser (Referenzwerte). Für BIO und FSP gelten die Werte aus Tab.5.1.

Standard	NIST 612	ATHO	T1	StHs 6/80	ML3B	GOR 128	KL2
Dicke [µm]	100	80	65	100	80	130	100
[Gew.%]							
SiO ₂	72	75,10	58,60	63,12	51,35	45,57	50,28
Al_2O_3	2	11,98	16,93	17,32	13,51	9,71	13,17
$Fe_2O_3(t)$	0,005	3,63	7,23	4,82	12,28	10,79	11,88
MnO	0,005	0,11	0,13	0,08	0,17	0,17	0,17
MgO		0,11	3,73	1,92	6,58	25,7	7,23
CaO	12	1,62	6,75	5,03	10,1	5,81	10,61
Na ₂ O	14	4,39	3,11	4,46	2,32	0,54	2,28
K ₂ O	0,008	2,67	1,88	1,29	0,38	0,03	0,49
TiO ₂	0,008	0,24	0,72	0,69	2,07		2,59
P_2O_5		0,03	0,16	0,16	0,25	0,03	0,25
CO_2							
H ₂ O							
[ppm]							
Ba	41	544	410	307	80	1,08	124
Ce	39	121	125	26,2	23,1	0,481	33,2
Co	35,5	2,6	19	12,7	44	84,6	43
Cr		5	21	15	160	2100	280
Cs		1,3	3,1	1,98	0,1	0,27	0,12
Cu	37,7	20	18	40	120		86
Dy	35	16,5	4,43	2,3	5,03	1,91	5,37
Er	39	10,2	2,38	1,21	2,5	1,34	2,64
Eu	36	2,86	1,21	0,975	1,69	0,302	1,99
Ga		25	18	20	19	8,3	20
Gd	39	14,7	4,66	2,74	5,46	1,5	6,07
Hf		14,3	4,1	3,29	3,46	0,357	4,2
Но		3,38	0,83	0,42	0,92	0,45	0,98
La	36	56,3	69,5	12,3	8,93	0,127	13,3
Li							4,6
Lu		1,54	0,35	0,17	0,3	0,21	0,293
Mo		4	6,7	1,8	19	< 0,7	4
Nb		61	8,5	7	9,1	0,128	17
Nd	36	61,7	41,8	13,3	16,7	0,866	22,2
Ni	38,8	5	12	23	110	1060	120
Pb	38,57	6	10				2,4
Pr		14,9	12,7	3,4	3,54	0,1	4,7
Rb	31,4	62,5	78	28,9	5,75	0,369	8,69
Sb		0,37	0,27	0,2	< 0,2	< 0,03	0,15
Sc		5,2	26	9,6	31	30,2	31
Sm	39	14,3	6,67	2,86	4,75	0,596	5,72
Sn		5	1,4				1,6
Sr	78,4	93,9	288	498	312	32,8	362
Та		3,98	0,48	0,44	0,57	0,02	1,05
Tb		2,57	0,8	0,38	0,81	0,25	0,93
Th	37,79	7,34	31,4	2,34	0,56	0,008	1,08
U	37,38	2,27	1,8	1,07	0,5	0,012	0,56
V		{10}	190	98		0,17	400
Y		102	22,9	11	23,6	11,5	27
Yb	42	10,2	2,25	1,12	2,05	1,32	2,09
Zn		140	76	64	115	75	110
Zr		550	156	118	130	9,6	158

Tab. 10.3 (Fortsetzung): Zusammensetzung der Standardgläser (Referenzwerte)

Abb.10.1(a-n): SRXRF-Spektren aller Standardgläser. Nur die signifikanten K_{α} -Intensitäten sind gekennzeichnet. Meßbedingungen: Blendenschlitzöffnung 20 · 20 µm (ohne Kapillare), 8 mm Al-Absorber, Meßdauer: BIO, FSP, BCR-2, JF-1 (a-d) 3600 s; ATHO, NIST 612 (i,n) 1000 s; JR-1, JG-2, MA-N, GD, T1, ML3B, GOR128 (e-h, k-m) 500 s.

A9

Ζ	Element	$\mathbf{K} \boldsymbol{\alpha}_1$	$K\alpha_2$	$\mathbf{K}\boldsymbol{\beta}_1$	$L\alpha_1$
3	Li	0.0543			
3 4	Be	0,0045			
5	B	0,1005			
6	C	0,1055			
7	N	0,277			
8	0	0,3924			
0	F	0,5249			
9	Ne	0,0708	0.9496		
10	Na	0,8480	1,04008	1.0711	
11	Ma	1,04096	1,04098	1,0711	
12		1,23300	1,23300	1,3022	
15	Si	1,46070	1,40027	1,33743	
14	P	1,73996	1,75956	1,05394	
15	S	2,0157	2,0127	2,1391	
10		2,30784	2,30004	2,40404	
1/		2,62239	2,62078	2,8150	
18	AI K	2,95770	2,95563	3,1905	
19	K Ca	3,3138	3,3111	3,5896	0.2412
20	Ca	3,69168	3,68809	4,0127	0,3413
21	<u>эс</u> т:	4,0906	4,0861	4,4605	0,3954
22	11 V	4,51084	4,50486	4,93181	0,4522
23	V Cr	4,95220	4,94464	5,42729	0,5113
24	Cr Mr	5,41472	5,405509	5,946/1	0,5728
25	MIN Ea	5,89875	5,88765	6,49045	0,6374
26	re Ca	6,40384	6,39084	7,05798	0,7050
27		6,93032	6,91530	7,64943	0,7762
28	INI Cu	7,47815	7,46089	8,26466	0,8515
29		8,04778	8,02783	8,90529	0,9297
30		8,63886	8,61578	9,5720	1,0117
31	Ga	9,25174	9,22482	10,2642	1,09792
32	Ge Ac	9,88642	9,85532	10,9821	1,18800
33	AS	10,54372	10,50799	11,7262	1,2820
34	Se De	11,224	11,1814	12,4959	1,37910
35	DI V.	11,9242	11,8776	13,2914	1,48043
36		12,649	12,598	14,112	1,5860
3/	NU Sr	13,3953	13,3358	14,9613	1,69413
38	SI V	14,1650	14,0979	15,8357	1,80656
39	1 7::	14,9584	14,8829	16,/3/8	1,92256
40	Zľ	15,7751	15,6909	17,6678	2,04236
41	IND Ma	16,6151	16,5210	18,6225	2,16589
42		17,47934	17,3743	19,6083	2,29316
43		18,3671	18,2508	20,619	2,4240
44	KU Dh	19,2792	19,1504	21,6568	2,55855
45	KII DJ	20,2161	20,0737	22,7236	2,69674
46	Pu A c	21,1771	21,0201	23,8187	2,83861
47	Ag	22,16292	21,9903	24,9424	2,98431
48	Ca La	23,1736	22,9841	26,0955	3,13373
49	In Cu	24,2097	24,0020	27,2759	3,28694
50	Sn	25,2713	25,0440	28,4860	3,44398

Tab.10.4: Röntgenemissionslinien der ersten vier Energieübergänge (Angaben in keV). (nach Bearden, 1967):

Z	Element	$K\alpha_1$	$K\alpha_2$	$\mathbf{K}\boldsymbol{\beta}_1$	$L\alpha_1$
51	Sb	26.3591	26.1108	29.7256	3.60472
52	Te	27.4723	27.2017	30,9957	3.76933
53	Ι	28.6120	28.3172	32,2947	3.93765
54	Xe	29.779	29.458	33.624	4,1099
55	Cs	30.9728	30.6251	34,9869	4.2865
56	Ba	32.1936	31.8171	36.3782	4.46626
57	La	33.4418	33.0341	37.8010	4.65097
58	Ce	34,7197	34.2789	39.2573	4.8402
59	Pr	36.0263	35,5502	40,7482	5.0337
60	Nd	37,3610	36,8474	42,2713	5,2304
61	Pm	38,7247	38,1712	43,826	5,4325
62	Sm	40,1181	39,5224	45,413	5,6361
63	Eu	41,5422	40,9019	47,0379	5,8457
64	Gd	42,9962	42,3089	48,697	6,0572
65	Tb	44,4816	43,7441	50,382	6,2728
66	Dy	45,9984	45,2078	52,119	6,4952
67	Ho	47,5467	46,6997	53,877	6,7198
68	Er	49,1277	48,2211	55,681	6,9487
69	Tm	50,7416	49,7726	57,517	7,1799
70	Yb	52,3889	51,3540	59,37	7,4156
71	Lu	54,0698	52,9650	61,283	7,6555
72	Hf	55,7902	54,6114	63,234	7,8990
73	Та	57,532	56,277	65,223	8,1461
74	W	59,31824	57,9817	67,2443	8,3976
75	Re	61,1403	59,7179	69,310	8,6525
76	Os	63,0005	61,4867	71,413	8,9117
77	Ir	64,8956	63,2867	73,5608	9,1751
78	Pt	66,832	65,112	75,748	9,4423
79	Au	68,8037	66,9895	77,984	9,74133
80	Hg	70,819	68,895	80,253	9,9888
81	T1	72,8715	70,8319	82,576	10,2685
82	Pb	74,9694	72,8042	84,936	10,5515
83	Bi	77,1079	74,8148	87,343	10,8388
84	Ро	79,290	76,862	89,80	11,1308
85	At	81,52	79,95	92,30	11,4286
86	Rn	83,78	81,07	94,87	11,7270
87	Fr	86,10	83,23	97,47	12,0313
88	Ra	88,47	85,43	100,13	12,3397
89	Ac	90,884	87,67	102,85	12,6520
90	Th	93,350	89,953	105,609	12,9687
91	Pa	95,868	92,287	108,427	13,2907
92	U	98,439	94,665	111,300	13,6147
93	Np	-	-	-	13,9441
94	Pu	-	-	-	14,2786
95	Am	-	-	-	14,6172

Tab.10.4 (Fortsetzung): Röntgenemissionslinien.

Haupt-	Si	Al	Fe	Mn	Mg	Ca	Na	Κ	Ti	Р	С	0
element	0.00	2 (04	7.06	7.0	1 705	1 55	0.070	0.06	4.5.4	1.00	2.25	0.0012
[g/cm ³]	2,32	2,694	7,86	7,3	1,/35	1,55	0,969	0,86	4,54	1,82	2,25	0,0013
Röntgen-												
linie (K_{α})												
K	769	614	427	370	500	209	383	174	258	893	65,2	162
Ca	570	456	320	277	369	157	282	122	193	665	46,9	118
Ti	326	261	187	163	209	827	159	710	113	383	25,4	65
Mn	152	122	90,7	79,5	97	401	72,1	342	466	180	11,2	29,1
Fe	120	96,1	73	63,9	76,4	320	57,1	272	375	143	8,73	22,7
Cu	61,9	49,6	315	280	39,2	170	29,1	144	203	74,1	4,38	11,4
Zn	50,3	40,2	260	231	31,8	139	23,6	118	167	60,3	3,49	9,21
Ga	41,2	32,9	217	191	25,9	115	19,3	97,1	139	49,5	2,8	7,5
Rb	13,9	11,1	78,4	68,5	8,68	40,3	6,47	33,7	49,2	16,8	1,06	2,55
Sr	11,8	9,38	67,2	58,6	7,36	34,3	5,49	28,7	42,1	14,3	0,919	9 2,17
Y	10	7,99	57,8	50,4	6,27	29,4	4,68	24,5	36,1	12,2	0,803	3 1,85
Zr	8,57	6,84	49,7	43,3	5,37	25,2	4,02	21	31	10,4	0,719	9 1,61
Nb	7,37	5,87	43	37,4	4,62	21,7	3,47	18,1	26,7	8,98	0,646	5 1,41
Cs	1,28	1,04	7,34	6,34	0,856	3,62	0,675	3,05	4,47	1,54	0,251	0,36
Ba	1,17	0,949	6,58	5,68	0,786	3,25	0,624	2,74	4,01	1,4	0,244	0,34
La	1,06	0,867	5,91	5,11	0,722	2,93	0,577	2,47	3,6	1,27	0,237	0,32
Ce	1	0,818	5,51	4,76	0,684	2,74	0,549	2,31	3,36	1,19	0,233	0,31
Pr	0,885	0,727	4,78	4,14	0,612	2,39	0,496	2,01	2,92	1,05	0,225	5 0,29
Nd	0,837	0,689	4,49	3,88	0,582	2,24	0,474	1,89	2,74	0,99	0,221	0,29
Sm	0,68	0,564	3,53	3,05	0,483	1,77	0,399	1,5	2,16	0,798	0,208	3 0,25
Eu	0,633	0,527	3,19	2,78	0,455	1,62	0,378	1,37	1,96	0,738	8 0,205	5 0,25
Gd	0,59	0,493	2,89	2,52	0,428	1,48	0,358	1,26	1,79	0,684	0,202	2 0,24
Tb	0,55	0,462	2,62	2,3	0,404	1,36	0,34	1,15	1,63	0,635	5 0,198	3 0,23
Dy	0,514	0,433	2,37	2,1	0,381	1,24	0,322	1,06	1,49	0,589	0,195	5 0,23
Er	0,449	0,381	1,96	1,75	0,34	1,05	0,291	0,897	1,25	0,509	0,189	0,21
Yb	0,4	0,343	1,66	1,48	0,309	0,895	0,268	0,771	1,06	0,449	0,184	0,20
Th	0,195	0,18	0,427	0,384	0,177	0,286	0,165	0,261	0,306	0,2	0,154	0,15
$Th(L_{\alpha})$	15,2	12,2	85,7	74,9	9,55	44,1	7,12	36,9	53,9	18,5	1,14	2,8
U	0,186	0,173	0,382	0,345	0,171	0,263	0,16	0,241	0,279	0,19	0,152	2 0,15
$U(L_{\alpha})$	13,2	10,5	74,9	65,5	8,28	38,4	6,17	32,1	47	16	1,01	2,43

Tab.10.5: Massenschwächungskoeffizienten für ausgewählte Röntgenlinien nach Veigele (1973). Werte in $[cm^2/g]$.

Gestein			Т	rondhjemit				Gneis					
Herkunft		Um Rasein											
Probe		R1055b											
Mineral				Plagioklas				Plagioklas					
[Gew.%]													
Na ₂ O	11,12	11,35	11,22	11,55	11,34	11,04	11,35	10,26					
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00					
Al ₂ O3	20,05	19,92	20,09	20,41	20,10	20,27	20,60	21,60					
SiO ₂	67,37	66,75	67,45	67,79	66,85	66,90	68,97	65,89					
K ₂ O	0,25	0,23	0,22	0,16	0,27	0,19	0,22	0,27					
CaO	0,69	0,67	0,71	0,71	0,69	0,87	0,70	2,18					
TiO ₂	0,00	0,00	0,02	0,02	0,00	0,00	0,00	0,00					
MnO	0,01	0,01	0,00	0,00	0,01	0,01	0,01	0,00					
FeO _{tot}	0,18	0,15	0,27	0,50	0,15	0,23	0,26	0,10					
SrO	0,39	0,37	0,38	0,39	0,39	0,38	0,00	0,43					
BaO	0,04	0,03	0,03	0,02	0,05	0,00	0,02	0,02					
Gesamt	100.26	99.66	100,50	101.75	100.06	100.09	102.27	100.86					

Tab.10.6: Einzelmessungen Elektronenstrahl-Mikrosonde: Plagioklas

Gestein	Gneis		Gneis			Gneis		Gneis
Herkunft	Um Rasein		Um Rasein			Um Rasein	n	Um Rasein
Probe	NR96a-b		R1004d			R1011		R1012b
Mineral	Plagioklas		Plagioklas			Plagiokla	5	Plagioklas
[Gew.%]								
Na ₂ O	10,29	11,00	11,23	11,09	10,75	10,50	10,50	9,60
MgO	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00
Al ₂ O3	21,29	20,31	20,61	20,37	21,86	21,75	21,74	22,26
SiO ₂	64,76	67,17	68,24	67,35	65,96	65,48	65,41	64,67
K ₂ O	0,23	0,18	0,14	0,17	0,18	0,32	0,32	0,20
CaO	2,13	1,02	1,05	1,01	2,07	2,04	2,06	3,23
TiO ₂	0,00	0,00	0,02	0,02	0,00	0,00	0,01	0,00
MnO	0,01	0,00	0,00	0,00	0,01	0,00	0,01	0,00
FeO _{tot}	0,12	0,09	0,05	0,08	0,12	0,11	0,13	0,17
SrO	0,41	0,38	0,38	0,37	0,00	0,00	0,00	0,41
BaO	0,01	0,01	0,02	0,00	0,02	0,03	0,01	0,01
Gesamt	99,37	100,29	101,87	100,59	100,97	100,24	100,19	100,69

Gestein			Gn	eis			Amphi	ibolit	
Herkunft				Um Rasein					
Probe			R10	012b			R1040		
Mineral			Plagi	oklas			Plagio	klas	
[Gew.%]									
Na ₂ O	9,67	9,69	9,83	9,56	9,61	9,61	8,12	8,30	
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	
Al ₂ O3	22,09	22,39	22,01	22,24	21,79	21,75	24,40	24,33	
SiO ₂	64,03	64,24	64,99	64,80	64,71	64,74	59,79	60,26	
K ₂ O	0,28	0,30	0,24	0,31	0,48	0,43	0,18	0,24	
CaO	3,11	3,25	3,15	3,23	3,15	3,11	5,57	5,39	
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,00	
MnŌ	0,01	0,00	0,00	0,00	0,03	0,03	0,00	0,01	
FeO _{tot}	0,12	0,06	0,15	0,08	0,12	0,09	0,11	0,08	
SrO	0,43	0,43	0,40	0,00	0,00				
BaO	0,02	0,04	0,06	0,08	0,08				
Gesamt	99,91	100,53	100,95	100,86	100,48	100,39	98,26	98,69	

Gestein		Amphibolit				Gneis				
Herkunft		Um Rasein		Umgebung Um Rasein						
Probe		R1040			A01					
Mineral		Plagioklas				Plagioklas				
[Gew.%]										
Na ₂ O	8,35	8,22	8,41	11,24	11,29	10,86	11,12	11,02		
MgO	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
Al ₂ O3	24,38	24,40	24,85	19,92	20,08	19,47	19,31	18,93		
SiO ₂	60,07	59,79	60,73	67,20	68,31	66,50	66,75	65,75		
K ₂ O	0,24	0,17	0,26	0,33	0,25	0,24	0,24	0,25		
CaO	5,45	5,64	5,56	0,54	0,52	0,53	0,52	0,52		
TiO ₂	0,00	0,01	0,00	0,00	0,00	0,01	0,01	0,00		
MnO	0,00	0,00	0,02	0,01	0,01	0,02	0,01	0,01		
FeO _{tot}	0,09	0,10	0,11	0,10	0,14	0,10	0,12	0,13		
SrO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
BaO	0,07	0,06	0,07	0,05	0,03	0,01	0,04	0,04		
Gesamt	98,66	98,39	100,01	99,39	100,63	97,74	98,12	96,65		

Tab.10.6 (Fortsetzung): Einzelmessungen Elektronenstrahl-Mikrosonde: Plagioklas bzw. Biotit

Gestein	G	neis	Gneis	Gneis	
Herkunft	Umgebung	g Um Rasein	Umgeb. UR	Umgeb. UR	
Probe	A	.01	A1002	A1002b	
Mineral	Plag	ioklas	Plagioklas	Plagioklas	
[Gew.%]					
Na ₂ O	11,48	11,43	10,57	6,34	
MgO	0,00	0,00	0,00	0,00	
Al ₂ O3	19,52	19,65	21,31	27,37	
SiO ₂	66,96	66,52	64,90	56,03	
K ₂ O	0,26	0,18	0,22	0,15	
CaO	0,51	0,50	2,24	8,98	
TiO ₂	0,01	0,00	0,00	0,01	
MnO	0,00	0,00	0,00	0,00	
FeO _{tot}	0,12	0,11	0,02	0,14	
SrO	0,00	0,00	0,00	0,00	
BaO	0,01	0,02	0,00	0,02	
Gesamt	98,87	98,41	99,26	99,04	

Gestein		C	Ineis			G	neis	
Herkunft		Um	Rasein		Um Rasein			
Probe		NF	R96a-b			R1	012c	
Mineral		В	Biotit			Bi	iotit	
[Gew.%]								
Na ₂ O	0,05	0,03	0,04	0,04	0,08	0,04	0,05	0,07
MgO	0,41	0,38	0,33	0,40	7,01	6,90	7,10	7,10
Al_2O_3	14,87	14,53	14,70	14,72	13,83	13,74	14,02	14,06
SiO ₂	32,75	33,35	32,90	32,45	34,98	34,79	35,30	35,06
K ₂ O	8,50	8,64	8,61	8,26	8,91	8,94	8,84	8,79
CaO	0,00	0,04	0,00	0,01	0,00	0,01	0,01	0,01
TiO ₂	4,07	4,27	4,25	4,14	3,59	3,67	3,82	3,67
MnO	0,59	0,56	0,59	0,61	0,43	0,40	0,40	0,43
FeO _{tot}	34,25	33,98	34,00	34,20	27,04	26,66	26,45	26,71
Rb ₂ O	0,12	0,12	0,19	0,15	0,20	0,13	0,14	0,14
BaO	0,23	0,25	0,25	0,25	0,51	0,50	0,55	0,45
Gesamt	95,86	96,14	95,88	95,23	96,58	95,77	96,69	96,49

Gestein Herkunft Probe Mineral			Gn Um R R10 Bio	eis asein 12c otit			Gneis Um Rasein R1012d Biotit		
[Gew.%]									
Na ₂ O	0,04	0,04	0,05	0,04	0,03	0,04	0,04	0,04	
MgO	7,01	7,00	6,98	6,90	6,93	7,01	6,55	6,58	
Al_2O_3	13,87	14,19	13,74	14,02	13,98	13,55	13,85	14,08	
SiO ₂	35,19	35,30	35,32	35,38	35,36	35,15	35,30	35,15	
K ₂ O	8,76	8,72	8,76	8,87	8,95	8,64	9,20	9,07	
CaO	0,01	0,01	0,06	0,01	0,01	0,03	0,01	0,03	
TiO ₂	3,70	3,65	3,65	3,74	3,70	3,67	4,30	4,47	
MnO	0,44	0,40	0,48	0,44	0,37	0,41	0,01	0,00	
FeO _{tot}	26,98	26,73	26,87	26,66	26,63	27,06	26,67	26,10	
Rb ₂ O	0,18	0,12	0,15	0,15	0,16	0,17	0,15	0,15	
BaO	0,48	0,38	0,46	0,44	0,44	0,48	0,54	0,48	
Gesamt	96,67	96,55	96,52	96,64	96,58	96,21	97,22	96,76	

Tab.10.6 (Fortsetzung): Einzelmessungen Elektronenstrahl-Mikrosonde: Biotit bzw. Chlorit, Muskovit

Gestein		Gı	neis		Gneis			
Herkunft		Um I	Rasein		Um Rasein			
Probe		R1	004f			R10	12c	
Mineral		Ch	lorit			Chl	orit	
[Gew.%]								
Na ₂ O	0,04	0,15	0,11	0,11	0,03	0,08	0,05	0,03
MgO	10,12	9,22	10,15	10,00	8,36	7,66	8,19	8,76
Al_2O_3	14,19	13,55	13,38	13,81	15,15	14,57	15,10	16,04
SiO ₂	39,49	37,54	38,81	38,94	30,55	32,22	30,70	28,43
K ₂ O	8,56	7,71	8,56	8,49	3,46	5,29	3,72	1,25
CaO	0,08	2,49	0,18	0,13	0,14	0,18	0,17	0,24
TiO ₂	2,52	2,74	3,00	2,80	2,62	3,20	2,95	2,39
MnO	0,41	0,50	0,70	0,63	0,46	0,48	0,46	0,58
FeO _{tot}	18,10	16,60	17,86	17,73	31,21	29,28	30,72	32,43
Rb ₂ O	0,14	0,12	0,13	0,11	0,11	0,09	0,08	0,04
BaO	0,17	0,12	0,15	0,15	0,19	0,20	0,21	0,07
Gesamt	93,83	90,74	93,02	92,89	92,28	93,25	92,36	90,26

Gestein		Gneis		-	G	neis			
Herkunft		Um Rasein	n		Umgebung Um Rasein				
Probe		R1012c			A1002				
Mineral		Chlorit			Mus	skovit			
[Gew.%]									
Na ₂ O	0,04	0,04	0,05	0,52	0,52	0,60	0,37		
MgO	8,61	9,07	7,91	0,81	0,75	0,91	0,81		
Al_2O_3	15,40	18,88	14,95	32,37	32,92	32,83	31,84		
SiO ₂	29,89	26,12	32,45	44,61	45,50	46,76	45,49		
K ₂ O	2,34	0,04	5,07	10,06	10,14	10,16	10,24		
CaO	0,18	0,11	0,62	0,00	0,00	0,01	0,01		
TiO ₂	2,30	0,15	2,97	0,37	0,66	0,38	0,54		
MnO	0,53	0,56	0,45	0,03	0,03	0,05	0,04		
FeO _{tot}	31,62	33,67	27,80	4,11	3,83	4,25	3,96		
Rb ₂ O	0,11	0,05	0,12						
BaO	0,10	0,02	0,26	0,01	0,01	0,00	0,01		
Gesamt	91,11	88,71	92,65	92,89	94,36	95,95	93,31		

Gestein				Trondhiemit				Gneis		
Herkunft		I'm Rasein								
Probe				R1055b				SR23		
Mineral				Hornblende				Hornblende		
[Gew.%]										
Na ₂ O	1,69	1,58	1,46	1,51	1,51	1,21	1,58	1,89		
MgO	0,12	0,13	0,17	0,12	0,12	0,13	0,15	9,05		
Al_2O_3	8,07	7,82	7,26	7,67	8,14	8,60	8,28	12,32		
SiO ₂	39,45	39,41	40,24	40,15	39,88	39,68	39,90	40,23		
K ₂ O	0,92	0,89	0,83	0,86	0,93	1,07	0,94	0,18		
CaO	8,91	8,59	7,89	8,42	8,95	9,54	8,77	11,90		
TiO ₂	1,08	1,02	0,92	0,92	0,92	0,87	1,07	0,91		
MnÕ	1,79	2,01	2,35	2,05	1,99	1,85	1,87	0,19		
FeO _{tot}	35,58	35,25	36,07	35,71	35,08	34,61	35,20	18,78		
Y_2O_3	0,20	0,13	0,10	0,14	0,15	0,09	0,24			
BaO	0,01	0,02	0,02	0,00	0,01	0,03	0,03	0,01		
Gesamt	97.92	97.17	97.64	97.13	98.01	98.03	98.12	95.46		

Tab.10.6 (Fortsetzung): Einzelmessungen Elektronenstrahl-Mikrosonde: Hornblende

Gestein	G	neis	Gneis			Gr	neis	Gneis
Herkunft	Um l	Rasein	Um Rasein			Um Rasein		Um Rasein
Probe	SI	R23		NR96a-b		R1	011	R1012b
Mineral	Horn	blende		Hornblende		Horn	blende	Hornblende
[Gew.%]								
Na ₂ O	2,01	1,95	1,90	2,10	2,26	1,59	1,60	1,62
MgO	8,90	9,23	0,33	0,34	0,33	3,71	3,67	5,92
Al_2O_3	12,88	12,86	9,86	9,88	10,15	9,78	9,72	9,37
SiO ₂	40,23	40,43	38,61	38,83	38,94	41,31	41,23	41,59
K ₂ O	0,19	0,17	0,92	0,86	0,93	1,20	1,19	1,00
CaO	11,74	11,70	9,72	9,68	9,21	10,35	10,14	10,82
TiO ₂	0,97	0,93	1,53	1,93	1,92	1,04	1,14	1,37
MnO	0,16	0,22	1,07	1,10	1,06	1,36	1,38	0,90
FeO _{tot}	18,73	17,95	32,73	33,03	33,64	27,10	26,82	25,02
Y_2O_3			0,08	0,02	0,14			0,03
BaO	0,04	0,02	0,02	0,04	0,06	0,01	0,02	0,03
Gesamt	95,85	95,46	97,07	98,11	98,95	97,45	96,91	97,98

Gestein		0	Ineis		Gneis			
Herkunft		Um	Rasein		Umgebung Um Rasein			
Probe		R	1012b			B	R1	
Mineral		Hor	nblende			Hornt	olende	
[Gew.%]								
Na ₂ O	1,64	1,73	1,67	1,86	1,25	1,31	1,47	1,34
MgO	5,95	6,12	6,04	6,10	7,39	7,51	7,78	7,77
Al_2O_3	9,79	9,26	9,45	10,13	12,12	12,44	13,22	12,37
SiO ₂	42,02	42,38	42,40	41,95	39,26	39,89	40,75	40,71
K ₂ O	1,05	1,02	0,95	1,07	0,85	0,86	0,90	0,85
CaO	10,87	10,91	10,66	10,79	11,33	11,50	11,49	11,45
TiO ₂	1,27	1,23	1,27	1,32	0,99	1,01	1,03	1,09
MnŌ	0,81	0,79	0,88	0,84	0,88	0,83	0,88	0,88
FeO _{tot}	25,05	24,98	25,27	24,92	20,81	20,66	20,75	20,96
Y_2O_3	0,01	0,03	0,11	0,08				
BaO	0,01	0,03	0,03	0,03	0,01	0,03	0,03	0,02
Gesamt	98,78	98,82	99,07	99,40	94,89	96,04	98,30	97,44

Gestein		Migmatit			Amphibolit		
Herkunft		Um Rasein			Um Rasein		
Probe		SR50			R1040		
Mineral		Hornblende			Hornblende		
[Gew.%]							
Na ₂ O	1,64	1,70	1,63	2,25	2,33	2,11	
MgO	10,80	10,90	10,78	13,55	13,62	13,95	
Al_2O_3	12,17	12,14	12,18	11,72	11,74	11,15	
SiO ₂	42,02	42,05	41,96	42,85	42,91	43,49	
K ₂ O	0,64	0,64	0,66	0,77	0,77	0,75	
CaO	11,27	11,27	11,24	11,78	11,79	11,52	
TiO ₂	1,16	1,15	1,16	1,03	1,07	0,92	
MnO	0,39	0,38	0,34	0,19	0,20	0,20	
FeO _{tot}	16,20	16,30	16,51	12,37	12,43	12,28	
Y_2O_3							
BaO	0,01	0,03	0,02	0,05	0,03	0,03	
Gesamt	96,30	96,56	96,48	96,56	96,89	96,40	

Tab.10.6 (Fortsetzung): Einzelmessungen Elektronenstrahl-Mikrosonde: Hornblende und Akzessorien

Gestein		Gneis				Granit		
Herkunft		Um Rasein				Hamradom		
Probe		NR96a-e				SH8		
Mineral		Allanit				Titanit		
[Gew.%]								
Na ₂ O	0,01	0,03	0,01	0,07	0,07	0,08	0,06	0,06
MgO	0,02	0,02	0,02	0,04	0,04	0,05	0,03	0,04
Al_2O_3	12,55	11,96	11,64	2,76	2,69	2,59	2,27	2,72
SiO ₂	28,77	28,39	28,15	29,27	29,72	28,87	29,41	29,78
K ₂ O	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	11,43	10,65	10,38	25,93	26,52	25,19	26,42	26,56
TiO ₂	1,45	1,40	1,40	32,52	33,13	31,84	34,19	33,29
MnO	0,67	0,67	0,67	0,70	0,72	0,79	0,71	0,77
FeO _{tot}	17,38	17,81	17,70	2,56	2,41	2,45	2,12	2,44
SrO	0,20	0,17	0,17					
Y_2O_3	0,56	0,27	0,20					
Gesamt	73,10	71,39	70,42	93,85	95,30	91,86	95,21	95,66

Gestein	Granit	Gneis	
Herkunft	Hamradom	Um Rasein	
Probe	SH8	R1004b	
Mineral	Titanit	Zirkon	
[Gew.%]			
Na_2O	0,07	0,00	
MgO	0,04	0,00	
Al_2O_3	3,14	0,00	
SiO ₂	30,74	33,22	
K ₂ O	0,01	0,00	
CaO	26,73	0,01	
TiO ₂	32,35	0,00	
MnO	0,75	0,01	
FeO _{tot}	2,38	0,09	
SrO		0,59	
Y_2O_3		0,23	
Gesamt	96,21	35,24	

Gestein	Trondhjemit		Gneis		Amphi (aus Tron	ibolit dhjemit)	Amphibolit (aus Gneis)	
Herkunft	Um Ra	asein	Um Rasein		Um Rasein		Um Rasein	
Mineral	Plagio	Plagioklas		oklas	Plagic	oklas	Plagioklas	
Analysen	31		2	6	8		3	5
	М	σ	М	σ	М	σ	М	σ
[Gew.%] K O	0.17	0.07	0.24	0.05	0.73	0.01	1 20	0.08
$\Gamma_2 O$	0,17	0,07	0,24	0,05	5 60	0,01	17.03	1 28
TiO.	0,02	0.01	0.04	0.02	0.11	0.01	0.02	0.01
MnO	0.00	0.00	0.01	0.01	0.03	0.01	0.04	0.02
FeO _{tot}	0,09	0,02	0,69	0,50	2,06	0,11	4,45	3,48
[ppm]								
Zn	8	1	31	23	17	1	7	1
Ga	29		25	15	32	7	50	5
Rb	1	0	3	0	8	0	18	1
Sr	46	3	265	110	1409	330	1618	101
Y	4	2	20	20	3	2	11	9
Zr	8	11	5	3	33	42	5	4
Nb	0	0	1	1				
Ba	162	55	159	104	478	513	23	5
La	3	1	4	1	8	1	3	0
Ce	5	0	7	3	10	7	8	4
Nd	3	1	6	3	9	4	5	2
Sm	3	1	4	2	3	0	4	1
Gd	7	1	6	3	4	1	5	2
Dy	3		4	3	4	1	3	1
Er	5		6	2	7	4	3	2
Th	0		1	1	3	0	2	0

Tab.10.7: SRXRF-Daten (Mittelwerte): Plagioklas, Um Rasein

Gestein	Granit (aus Gang)		Gneis (leukokrat)		Gnei (mafitre	s eich)	Granite	
Herkunft	Umgeb. Um Rasein (Probe A1002)		Umgeb. Um Rasein (Probe A01)		Umgeb. Um Rasein (Probe BR1)		Hamradom	
Mineral	Plagio	klas	Plagio	oklas	Plagiol	klas	Plagic	oklase
Analysen	1		4		1		1	5
	М	σ	М	σ	М	σ	М	σ
[Gew.%]	0.44	0.00	0.01	0.04	0.50	0.00	0.00	0.07
K ₂ O	0,41	0,03	0,21	0,04	0,59	0,02	0,26	0,06
CaO	1,36	0,03	0,34	0,05	6,60	0,03	2,14	0,86
TiO ₂			0,00	0,00			0,06	0,09
MnO	0,03	0,00	0,00	0,00	0,05	0,00	0,01	0,00
FeO _{tot}	0,43	0,00	0,21	0,25	2,03	0,00	0,17	0,17
[ppm]								
Zn	7	1	17	15	71	1	10	9
Ga	24	1	42	6	42	1	28	25
Rb	36	1	0	0	5	0	6	7
Sr	1	0	46	8	1421	3	495	207
Y			9	6	15	0	3	2
Zr	0	0	1	1	72	1	5	4
Nb	1	0	2	3			2	3
Ba	5	1	101	53	90	1	38	23
La	9	1	2	0	131	1	8	6
Ce	4	1	30	20	362	2	10	6
Nd	3	1	3	2	114	1	7	4
Sm	1	1	5	2	40	1	6	5
Gd	4	4 1		1	27	1	9	6
Dy	7	1	4	1	7	1	8	5
Er	5	2	6	1	6	2	14	14
Th	1	0	0		30	1	3	4

Tab.10.7 (Fortsetzung) SRXRF-Daten (Mittelwerte): Plagioklas, Umgebung Um Rasein und Hamradom

Gestein	Trondhjemit		Gra	nit	Granit (aus Gang)		
Herkunft	Um Rasein K-Feldspat		Hamra	dom	nördl. Um Rasein		
Mineral	K-Feld	lspat	K-Feld	lspat	Musk	covit	
Analysen	1		14	Ļ	5		
	М	σ	М	σ	М	σ	
[Gew.%]	12 32	0.06	10.90	3 33	8 94	2 64	
$\mathbf{R}_{2}\mathbf{O}$	0.07	0,00	0.35	0,60	0.03	2,04	
TiO.	0.17	0,01	0,55	0,00	0.25	0.07	
MnO	0.01	0.00	0.00	0.00	0.02	0.00	
FeO _{tot}	0,01	0,00	0,08	0,06	3,02	0,57	
	,	,		,	,	,	
Zn	2	1	6	5	43	2	
Ga	93	1	28	23	97	21	
Rb	552	2	439	235	165	222	
Sr	301	2	337	122	21	27	
Y	77	1	1	1	1	0	
Zr	69	1	1	1	1		
Nb	84	1	1	1	14	20	
Ba	2943	7	1082	479	6	1	
La	71	2	4	2	5	3	
Ce	86	3	13	14	9	4	
Nd	75	2	16	9	4	3	
Sm	62	2	4	1	4	1	
Gd	48	3	4	1	5	1	
Dy	1	1	4	2	6	2	
Er			6	3	10	8	
Th			2	0	3		

Tab.10.7 (Fortsetzung): SRXRF-Daten (Mittelwerte): K-Feldspat bzw. Muskovit, Um Rasein und Umgebung und Hamradom

Gestein	Gneis (leukokrat)		Gneis (mafitreich)		Gra	nit	Granit	
Herkunft	Um R	asein	Um Rasein		Hamradom		Hamradom	
Mineral	Bio	tit	Bie	otit	Bio	tit	Biotit (chl	oritisiert)
Analysen	21	l	-	7	16	6	3	
	М	σ	М	σ	М	σ	М	σ
[Gew.%] K O	1 86	1 10	1 00	0 33	878	1 06	1 72	1.00
$\mathbf{K}_{2}\mathbf{O}$	4,80	1,19	4,90	0,55	0,70	1,90	0.10	1,00
TiO	3.02	1 23	0,52 4 4 5	0,15	0,13 2 51	0,00	0,10	0,05
MnO	0.21	0.06	0.43	0,02	0.87	0,34 0.25	0.38	0,40
FeO.	16,65	2,08	30,62	0,73	17,44	0,57	10,93	1,76
[ppm]	,	,	,	,	,	,	,	,
Zn	950	236	1938	19	728	234	1174	207
Ga	21	10	50	0	44	1	32	10
Rb	212	72	597	84	1266	332	272	30
Sr	9	4	8	2	19	12	11	4
Y	4	2	113	62	16	16	2	0
Zr	4	5	28	5	21	18	30	26
Nb	21	7	71	5	60	55	8	4
Ba	1321	425	2725	460	478	196	39	7
La	4	2	4	0	8	4	2	1
Ce	6	3	6	3	15	7	4	1
Nd	27	19	30	6	17	8	2	1
Sm	5	3	7	7	9	2	1	0
Gd	4	2	22	18	8	7	2	1
Dy	3	2	13	12	6	7	1	0
Er	11	2	8	6	19	14	1	1
Th			25	12	8	1	26	

Tab.10.7 (Fortsetzung): SRXRF-Daten (Mittelwerte): Biotit, Um Rasein und Hamradom

Gestein	Trondh	ijemit	Gneis		Amph	ibolit	Gn	Gneis	
Herkunft	Um Rasein		Um Rasein		Um Rasein		Umgeb. Um Rasein (Probe BR1)		
Mineral	Hornb	lende	Horn	olende	Hornb	lende	Hornblende		
Analysen	33	3	6	8	13	3	4	ļ	
	М	σ	М	σ	М	σ	М	σ	
[Gew.%] K ₂ O	0,90	0,06	0,80	0,09	0,90	0,33	0,94	0,24	
CaO	10,95	1,63	7,54	0,28	11,89	0,87	9,50	1,93	
TiO ₂	1,19	0,62	1,22	0,25	1,28	0,25	1,06	0,18	
MnÕ	0,92	0,71	0,70	0,27	0,27	0,05	0,80	0,17	
FeO _{tot}	32,74	1,52	26,76	8,77	28,68	7,01	33,24	6,35	
[ppm]									
Zn	1192	135	1122	534	149	37	1171	246	
Ga	32	4	34	19	29	4	40	12	
Rb	26	17	13	6	17	7	15	4	
Sr	33	7	35	16	127	56	103	16	
Y	658	91	1032	1138	10	13	20	9	
Zr	60	38	52	26	40	43	50	25	
Nb	97	8	43	26	0	0	1	0	
Ba	69	13	92	53	180	214	120	39	
La	9	5	34	42	7	6	4	1	
Ce	56	6	133	136	17	20	10	3	
Nd	62	8	104	52	11	11	7	3	
Sm	49	6	79	45	6	3	5	2	
Gd	74	9	143	109	7	4	9	2	
Dy	23	26	101	71	4	2	9	3	
Er	14	9	89	47	7	4	10	5	
Th	8	3	50	63	10	13	7	3	

Tab.10.7 (Fortsetzung): SRXRF-Daten (Mittelwerte): Hornblende, Um Rasein und Umgebung

Gestein	Gr	neis	Gneis		Gra	anit	Gneis	
Herkunft	Um F	Rasein	Um Rasein		Hamradom		Um I	Rasein
Mineral	Allanit		Ар	atit	Tita	anit	Zirkon	
Analysen	13		6	Ó	1	2	1	.3
	Μσ		М	σ	М	σ	М	σ
[Gew.%]	0.70	0.00	1.50	0.06	0.01	0.10	1.5	1.00
K_2O	0,70	0,22	1,59	0,36	0,81	0,13	1,50) 1,09
CaO	8,94	1,84	34,01	5,39	30,31	12,82	5,39	4,46
110_2	4,26	1,34	0,18	0,26	35,03	3,80	4,9	1,80
MnO	1,92	0,53	0,05	0,02	0,36	0,10	1.07	0.50
FeO _{tot}	12,32	2,71	0,81	1,33	4,03	1,60	1,83	o 0,53
[ppm]	004	24	22		110	101	0.4	00
Zn	234	34	33	57	110	101	94	80
Ga	21	10	2		53		3013	1096
Rb	8	6	2		26	13	/9	18
Sr	140	49	165	22	36	1	380	131
Y	3640	1154	848	167	3924	193	6160	225
Zr	90	105	1	0	343	272	485148	78882
Nb	10	6	1	1	2980	56	224	36
Ba	43	19	17	9	38	14	79	67
La	29444	5985	66	9	568	535	212	58
Ce	88352	17154	379	41	3821	2762	183	157
Nd	26523	6810	248	73	2071	1567	63	10
Sm	9864	2196	128	15	886	614	47	22
Gd	4887	1109	175	21	791	467	71	93
Dy	1746	649	91	15	407	259	184	133
Er	313	435	61	17	230	126	223	64
Th	240	76	6	2	263	17	1233	1000

Tab.10.7 (Fortsetzung): SRXRF-Daten (Mittelwerte): Allanit, Apatit, Titanit und Zirkon, Um Rasein und Hamradom

-	-			-							
Gestein				Trond	hjemit						
Herkunft				Um F	lasein						
Probe				R10	55.3						
Mineral	Plagioklas (Linienscan)										
[Gew.%]											
K ₂ O	0,20	0,31	0,25	0,27	0,27	0,25	0,26	0,26			
CaO	0,54	0,53	0,52	0,53	0,56	0,57	0,57	0,56			
TiO ₂	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01			
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
FeO _{tot}	0,08	0,08	0,09	0,09	0,09	0,09	0,09	0,09			
Zn [ppm]	11	9	12	11	12	11	11	12			
Ga	28	29	28	27	31	30	30	31			
Rb								0			
Sr	36	39	38	40	41	41	43	41			
Y			0			1					
Zr	1	0		0		0	1	0			
Nb		0	0	0	1	0	1	1			
Ba	88	87	101	102	91	96	102	100			
La	3	5	4	2	5	3	4	3			
Ce	4	3	5	11	1	6	4	9			
Nd	6	3	6	4	3	5	3	3			
Sm	6	7	13	8	5	8	6	5			
Gd	4	11	16	4	12	11	4	11			
Dy	2	7	8	5	3	2	2	5			
Er	5	2	9	11	3	6	5	6			
Th	0	1		0	0	1		0			

Tab.10.8: SRXRF-Daten	(Einzelmessungen):	Plagioklas.	Um Rasein
racificite branch baten	(Binzennessangen).	I Ingionias,	O III I Kubelli

Gestein				Trond	hjemit					
Herkunft	Um Rasein									
Probe	R1055.3									
Mineral			Plagio	klas (Liniens	scan - Fortse	tzung)				
[Gew.%]										
K ₂ O	0,27	0,27	0,24	0,26	0,23	0,25	0,23	0,20		
CaO	0,55	0,60	0,61	0,61	0,61	0,59	0,61	0,63		
TiO ₂	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01		
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
FeO _{tot}	0,09	0,09	0,09	0,09	0,08	0,09	0,22	0,20		
Zn [ppm]	11	11	11	13	10	12	35	35		
Ga	30	30	31	30	31	31	31	30		
Rb								0		
Sr	39	43	41	43	43	43	41	39		
Y			2			0	6	9		
Zr	1	0	1		1	16	1	1		
Nb	0	0	0	1	1		0	1		
Ba	91	80	73	65	55	61	69	52		
La	6	6	6	5	5	2	5	4		
Ce	3	8	11	6	9	3	13	3		
Nd	3	4	6	7	4	5	5	4		
Sm	1	3	7	7	13	7	1	6		
Gd	1	8	26	10	-4	10	11	20		
Dy	6	5	5	2	5	2	3	5		
Er	4	8	5	3	6	6	3	3		
Th	1					0				

Gestein			Trondhjemit								
Herkunft		Um Rasein									
Probe		R1055.3									
Mineral]	Plagioklas (I	Linienscan - H	Fortsetzung)		Übergang	g Plagioklas/H	Iornblende			
[Gew.%]											
K ₂ O	0,17	0,17	0,15	0,18	0,17	0,40	10,80	12,80			
CaO	0,63	0,65	0,64	0,66	0,57	0,27	0,20	0,14			
TiO ₂	0,01	0,01	0,00	0,00	0,00	0,01	0,12	0,11			
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
FeO _{tot}	0,08	0,08	0,07	0,11	0,06	0,04	0,09	0,14			
Zn [ppm]	11	13	10	14	10	6	17	19			
Ga	31	32	31	31	22	14	27	24			
Rb						6	77	74			
Sr	38	37	35	32	21	16	100	73			
Y					0	1	3	3			
Zr	2	0	1	52	2	4	2	0			
Nb	1		0	2	1	1	1				
Ba	31	27	17	12	15	132	1791	1717			
La	5	6	1	4	6	4	1	4			
Ce	9	3	7	11	4	5	8	7			
Nd	6	6	5	9	5	4	25	28			
Sm	5	3	14	8	2	5	5	8			
Gd	3	5	19		7	12	0	3			
Dy	4	2	3	3	4	0	4	3			
Er	4	4	3	6	9	0	8	3			
Th	0						0	0			

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Plagioklas, Um Rasein

Gestein			Trond	hjemit			Trondhjemit		
Herkunft			Um R	lasein					
Probe				R1055.3b					
Mineral			Plagi	oklas			Plagi	oklas	
[Gew.%]									
K ₂ O	0,20	0,26	0,25	0,23	0,25	0,21	0,08	0,11	
CaO	0,56	0,74	0,73	0,74	0,54	0,79	0,34	0,54	
TiO ₂	0,02	0,01	0,01	0,01	0,01	0,00	0,01	0,03	
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
FeO _{tot}	0,07	0,08	0,08	0,08	0,08	0,07	0,09	0,08	
Zn [ppm]	9	7	7	6	10	12	8	9	
Ga					29				
Rb	1	0	0			2	1	0	
Sr	51	50	47	50	43	48	38	46	
Y	0	1	1	2		19	1	2	
Zr	3	1	1	1	1		1	3	
Nb	0		0	0	0		0		
Ba	135	122	121	110	91	51	161	205	
La	4	5	1	0	6	2	1	4	
Ce	6	3	5	2	12	3	5	4	
Nd	6	2	3	2	5	2	0	2	
Sm	5	1	4	5	4	2	2	4	
Gd	7	5	7	10	6	7	5	6	
Dy					3				
Er					4				
Th					0				

Gestein	Tron	dhjemit	Gne	eis (psammit	isch)	Gneis			
Herkunft	Um	Rasein	Um Rasein				Um Rasein		
Probe	R10)55.3c		SR23		R1011			
Mineral	Plag	gioklas		Plagioklas		Plagioklas			
[Gew.%]									
K ₂ O	0,21	0,16	1,23	1,11	1,27	0,28	0,20	0,26	
CaO	0,72	0,57	18,37	15,82	16,91	1,31	1,33	1,38	
TiO ₂	0,01	0,03	0,03	0,02	0,02	0,06	0,05	0,05	
MnO	0,00	0,00	0,06	0,02	0,03	0,02	0,02	0,02	
FeO _{to} t	0,10	0,13	8,45	2,22	2,67	1,27	1,29	1,18	
Zn [ppm]	7	9	5	7	8	57	57	49	
Ga			55	45	49	35	35	37	
Rb	0		18	16	18	5	4	3	
Sr	45	50	1695	1503	1655	256	256	275	
Y	7	4	21	8	5	39	40	43	
Zr	20	21	10	2	3	9	7	7	
Nb		0				2	1	2	
Ba	216	190	18	26	27	209	222	288	
La	1	3	3	4	3	3	3	3	
Ce	4	5	12	7	4	4	6	5	
Nd	3	4	8	5	3	7	7	7	
Sm	1	4	5	4	2	3	5	4	
Gd		7	8	5	3	7	10	8	
Dy			4	2	3	6	7	6	
Er			6	2	2	4	5	6	
Th			2	1	2	2	1		

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Plagioklas, Um Rasein

Gestein	Gneis		G	neis		Gneis			
Herkunft	Um Rasein		Um	Rasein			Um Rasein		
Probe	R1011		R10	12a-2		R1012a-3			
Mineral	Plagioklas		Plag	gioklas			Plagioklas		
[Gew.%]									
K ₂ O	0,27	0,14	0,13	0,08	0,10	0,16	0,18	0,32	
CaO	1,36	1,34	1,33	1,66	1,75	1,43	1,53	1,89	
TiO ₂	0,04	0,02	0,01	0,01	0,01	0,02	0,02	0,00	
MnO	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
FeO _{tot}	0,85	0,08	0,08	0,07	0,07	0,07	0,07	0,05	
Zn [ppm]	39	7	6	6	5	6	7	5	
Ga	36	14	14	15	13	18	17	20	
Rb	3	0				0		1	
Sr	271	281	292	322	310	285	303	320	
Y	27				0				
Zr	6	2	2	3	3	4	6	1	
Nb	1								
Ba	233	124	118	77	52	101	117	131	
La	3	3	3	18	2	2	1	2	
Ce	5	8	10	17	8	7	3	5	
Nd	6	8	7	11	5	7	9	1	
Sm	4	7	5	6	4	4	3	1	
Gd	4	7	4	5	3	7	5	3	
Dy	5	6	2	5	2	2	4	1	
Er	3	8	6	16	7	7	14	2	
Th								0	

a . :		a ·		C	•		<u> </u>		
Gestein		Gneis		G	neis		Gneis		
Herkunft		Um Rasei	n	Um	Rasein	Um Rasein			
Probe		R1012A-3	3	R10	12a-4		R1012.1		
Mineral		Plagioklas	8	Plag	ioklas		Plagioklas		
[Gew.%]									
K ₂ O	0,29	1,59	0,27	0,13	0,17	0,19	0,52	0,16	
CaO	1,80	2,38	1,90	1,40	1,39	2,16	1,49	1,84	
TiO ₂				0,02	0,02	0,10	0,02	0,05	
MnO	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,02	
FeO _{tot}	0,06	0,16	0,05	0,07	0,07	2,17	0,03	1,27	
Zn [ppm]	6	31	9	5	6	79	3	38	
Ga	21	32	22	13	15	7	7	9	
Rb	1	33	0			1	9		
Sr	320	414	320	281	267	94	204	165	
Y		0	1			12	1	7	
Zr	1	2	3	0	0	4	2	3	
Nb	1				0	0		0	
Ba	136	38	41	113	117	9	41	9	
La	3	4	5	2	3			2	
Ce	10	16	2	7	6	2	3	5	
Nd	3	3	5	6	8	1	3	2	
Sm	2	4	4	3	4	1	1	1	
Gd	3	3	5	5	5		2	5	
Dy	2	3	4	2	4				
Er	2	3	1	4	17			1	
Th	0	0	0						

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Plagioklas, Um Rasein

Gestein				Gneis				Amphibolit		
Herkunft				Um Rasein				Um Rasein		
Probe				R1012.1				R1014		
Mineral		Plagioklas								
[Gew.%]										
K ₂ O	0,10	0,31	0,10	0,06	0,06	0,11	0,29	0,73		
CaO	1,43	2,67	1,42	1,47	1,60	1,39	1,86	6,07		
TiO ₂		0,15	0,00	0,00		0,01	0,04	0,10		
MnO	0,00	0,06	0,00	0,00	0,00	0,00	0,02	0,03		
FeO _{tot}	0,03	2,77	0,04	0,03	0,03	0,04	0,96	2,14		
Zn [ppm]	4	88	3	4	2	7	42	16		
Ga	12	3	11	10	10	9	7	37		
Rb			2		0	1	1	8		
Sr	167	141	177	153	164	166	152	1642		
Y	3	18	3	1	2	2	9	2		
Zr			20	0		1	6	3		
Nb							1			
Ba	17	18	8	15	7	38	20	115		
La	2	3		0		1	26	7		
Ce	8	15	5	12	3	7	43	5		
Nd			2	3		2	22	6		
Sm		3	0	6		4	8	3		
Gd		1		8		3	18	5		
Dy	0	8	0	2		1	6	5		
Er	2	1		8		7	4	10		
Th								3		

Gestein		Amphibolit			Amphibolit				
Herkunft		Um Rasein			Um	Rasein		Umgeb.UR	
Probe		R1040.1			R1040.2				
Mineral		Plagioklas			Plagioklas				
[Gew.%]									
K ₂ O	0,71	1,08	0,71	0,92	0,59	0,56	0,52	0,41	
CaO	5,28	8,70	4,50	3,85	4,26	4,33	4,01	1,36	
TiO ₂	0,13	0,44	0,04	0,04	0,02	0,04	0,03		
MnO	0,04	0,08	0,02	0,02	0,05	0,02	0,02	0,03	
FeO _{tot}	3,96		1,56	0,97	1,45	1,18	1,28	0,43	
Zn [ppm]	25	41	11	8	9	8	10	7	
Ga	29	26	29	27	27	27	26	24	
Rb	8	11	6	18	4	5	5	36	
Sr	1159	895	1324	1237	1246	1259	1154	1	
Y	6	11	2	2	3	1	2		
Zr	22	25	30	9	371	10	6	0	
Nb								1	
Ba	882	667	979	746	923	894	799	5	
La	9	17	6	6	8	6	6	9	
Ce	14	39	9	8	11	7	7	4	
Nd	13	17	12	8	11	9	16	3	
Sm	4	6	3	3	1	2	1	1	
Gd	5	6	3	3	2	2	2	4	
Dy	3	3	3	2	3	3	3	7	
Er	5	4	3	3	3	2	5	5	
Th		4		2	1	1	1	1	

Tab.10.8 (Fortsetzung): SRXRI	F-Daten (Einzelmessunger	n): Plagioklas, Ur	m Rasein und	Umgebung
und Hamradom				

Gestein		Gne	eis		Gneis		Granit	
Herkunft		Umgebung I	Um Rasein		Umgeb.UR		Hamradom	
Probe		A0	1		BR1		SH8a	
Mineral		Plagic	oklas		Plagioklas		Plagioklas	
[Gew.%]								
K ₂ O	0,15	0,23	0,21	0,25	0,59	0,22	0,17	0,32
CaO	0,30	0,41	0,32	0,33	6,60	1,29	1,02	0,77
TiO ₂		0,01	0,00			0,90	0,41	0,11
MnO	0,00	0,01	0,00	0,00	0,05	0,01	0,01	0,01
FeO _{tot}	0,07	0,58	0,09	0,10	2,03	0,72	1,12	0,48
Zn [ppm]	10	40	9	9	71	17	36	26
Ga	35	39	46	47	42	20	22	22
Rb		0	0		5	19	12	33
Sr	36	45	48	54	1421	206	213	240
Y	11	14	0	11	15		18	7
Zr		1		0	72		7	16
Nb	0	4					20	7
Ba	31	109	104	160	90		12	17
La	2	2	2	2	131		6	6
Ce	44	47	3	25	362		17	6
Nd	2	6	3	3	114		9	6
Sm	5	8	3	3	40		5	2
Gd	3	5	2	3	27		6	4
Dy	3	5	3	2	7		3	2
Er	7	6	5	6	6		2	3
Th			0		30			

Gestein	Gra	nit	Granit		Granit		Granit	
Herkunft	Hamra	adom	Hamradom		Hamradom	Hami	adom	
Probe	SH	8a	SH8b		NH60a.1		NHE	60a.2
Mineral	Plagic	oklas	Plagioklas		Plagioklas		Plagioklas	
[Gew.%]								
K ₂ O	0,32	0,18	0,20	0,30	0,28	0,21	0,07	
CaO	0,73	1,19	1,08	2,96	2,74	2,10	1,41	1,21
TiO ₂	0,01	0,43	0,00	0,02	0,02	0,03	0,03	0,14
MnO	0,01	0,05	0,01	0,01	0,01	0,01	0,01	0,00
FeO _{tot}	0,15	0,87	0,18	0,11	0,11	0,13	0,12	0,08
Zn [ppm]	14		22	8	10	8	9	5
Ga	22	27	22	30	34	30		25
Rb	39	4	10	1	1	3	2	
Sr	266	223	210	671	741	779	605	507
Y	1	20	0	3	3	2	2	2
Zr	1		1	1	1	2	2	3
Nb	0	17	0			1		
Ba	24	17	16	74	85	105	44	
La	10	5	4	15	14	13	29	11
Ce	11	18	6	22	16	28	17	13
Nd	9	7	1	14	12	17	10	
Sm	3	5	3	19	20	9	9	12
Gd	4	5	3	16	19	21	11	24
Dy	1	4	2	15	17	16	11	13
Er	2	4	3	36	48	43	16	
Th				8	10	5	3	6

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Plagioklas, Hamradom

Gestein	Granit	Granit	Granit	Granit
Herkunft	Hamradom	Hamradom	Hamradom	Hamradom
Probe	NH60a.3	H1024	H1040.1	H1040.2
Mineral	Plagioklas	Plagioklas	Plagioklas	Plagioklas
[Gew.%]				
K ₂ O	0,33	0,26	0,46	0,24
CaO	2,03	3,08	2,36	2,52
TiO ₂	0,02	0,01	0,00	0,00
MnO	0,01	0,00	0,01	0,00
FeO _{tot}	0,09	0,06	0,13	0,05
Zn [ppm]	8	3	8	3
Ga	32	0	61	
Rb	2	4	2	1
Sr	840	579	516	428
Y	3	1	1	
Zr		10	2	4
Nb		2		1
Ba	72	41	33	17
La	15	5	7	5
Ce	19	5	9	3
Nd	15	4	4	5
Sm	13	4	5	1
Gd	18	8	5	7
Dy	11		8	
Er	30		8	
Th	6		1	

114111144001								
Gestein	Trondhjemit	Gne	eis			Granit		
Herkunft	Um Rasein	Hamra	adom	Hamradom				
Probe	R1055.2	SH	8b			SH52-1b		
Mineral	K-Feldspat	K-Fel	dspat			K-Feldspat		
[Gew.%]								
K ₂ O	12,32	11,36	11,94	15,79	15,30	12,49	15,93	14,98
CaO	0,07	0,04	0,01	0,02	0,04	0,25	0,00	0,18
TiO ₂	0,17			0,14	0,17	0,14	0,15	0,15
MnO	0,01	0,00	0,01	0,00	0,01	0,00	0,01	0,00
FeO _{tot}	0,01	0,15	0,16	0,05	0,25	0,26	0,05	0,06
Zn [ppm]	2	11	14	3	4	5	3	8
Ga	93	19	18	16	18		14	
Rb	552	737	742	494	607	404	552	466
Sr	301	198	247	293	256	253	307	253
Y	77	2	1					
Zr	69	0	2	3	2		3	
Nb	84		1	1	0	1	0	1
Ba	2943	1018	961	1284	1398	852	1239	1029
La	71	3	3	3	9	4	3	3
Ce	86	14	54	3	10	4	5	4
Nd	75	11	9	39	44	8	40	11
Sm	62	4	7	4	7	2	3	2
Gd	48	5	4	4	4	4	3	5
Dy	1	3	3	10	7	5	7	5
Er		2	3	14	14	3	9	4
Th					0	8	0	3

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): K-Feldspat, Um Rasein und Hamradom

Gestein		Granit			Granit		Granit
Herkunft		Hamradom			Hamradom		Hamradom
Probe		SH52-1b			H1021		H1040
Mineral		K-Feldspat			K-Feldspat		K-Feldspat
[Gew.%]							
K ₂ O	16,36	15,29	15,89	8,03	7,61	7,57	8,94
CaO	0,02	0,21	0,03		0,00	0,04	1,25
TiO ₂	0,14	0,16	0,14				
MnO	0,01	0,00	0,00	0,00	0,00	0,00	0,00
FeO _{tot}	0,05	0,04	0,05	0,02	0,02	0,02	0,05
Zn [ppm]	2	1	1	2	0	0	8
Ga	21		14	18	15	14	62
Rb	559	481	544	289	259	246	239
Sr	308	231	320	350	355	328	505
Y				0		0	1
Zr	4	0	1		0		
Nb	0	0	0				
Ba	1206	1084	1229	1728	1704	1570	507
La	2	6	3	2	3	3	8
Ce	7	3	3	2	3	5	8
Nd	41	11	38	12	14	17	9
Sm	5	3	4	2	2	3	4
Gd	4	5	5	2	2	2	5
Dy	2	5	6	1	3	4	3
Er	10	9	16	4	7	4	4
Th	1	3	2	1	1	2	2

Gestein		G	neis			Gneis		Gneis
Herkunft		Um l	Rasein		Um Rasein			Um Rasein
Probe		R10)11.1		R1011.2			R1012.1
Mineral		Bi	otit		Biotit			Biotit
[Gew.%]								
K ₂ O	4,88	5,04	5,32	5,32	4,93	4,53	4,54	4,27
CaO	0,18	0,15	0,20	0,33	0,35	0,48	0,43	2,33
TiO ₂	4,58	4,49	4,75	4,93	4,41	4,16	4,10	5,02
MnO	0,41	0,43	0,46	0,50	0,40	0,42	0,44	0,19
FeO _{tot}	28,85	30,12	32,04	33,53	30,54	29,60	30,19	13,71
Zn [ppm]	1834	1894	1995	2081	1946	1883	1944	807
Ga	46	52	49	53	47	52	50	17
Rb	628	630	686	684	580	539	495	247
Sr	8	7	6	4	9	10	9	7
Y	68	44	59	106		166	147	6
Zr	10	7	43	66	25			
Nb	61	64	70	76	81	74	67	30
Ba	2824	2958	3173	3245	2469	2413	2317	1225
La	4	4	4	4	6	3	4	3
Ce	3	4	3	5	13	7	6	4
Nd	24	23	26	31	46	30	28	17
Sm	2	2	2	4	19	9	8	2
Gd	9	6	8	16	55	25	24	
Dy	5	3	4	8	36	13	15	
Er	3	3	3	6	20	8	9	
Th	2	34		13	23	57	19	

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Biotit, Um Rasein

Gestein			Gneis		Gneis			
Herkunft			Um Rasein		Um Rasein			
Probe			R1012A-3	R1012A-4				
Mineral			Biotit	Biotit				
[Gew.%]								
K ₂ O	4,12	6,22	6,38	6,09	6,17		5,99	7,18
CaO	0,20	0,15	0,12	0,15	0,16	0,70	0,50	0,27
TiO ₂	2,58	3,02	3,06	2,94	3,00	2,90	3,59	3,50
MnO	0,24	0,22	0,22	0,21	0,22	0,36	0,30	0,25
FeO _{tot}	17,56	16,83	16,86	16,77	16,88	18,32	19,21	17,95
Zn [ppm]	815	776	780	780	785	1195	1160	1185
Ga	36	29	27	34	29	2		
Rb	251	329	315	344	330	107	212	240
Sr	22	12	7	18	8	15	9	8
Y	3	1		3		4	1	
Zr	26	14	3	11	2	0	1	0
Nb	26	22	17	27	19	17	18	21
Ba	1632	2246	2098	1972	2067	969	1467	1628
La	9	2	1	9	1	4	5	8
Ce	12	3		9		8	3	8
Nd	54	60	54	66	56	9	14	17
Sm	15	1		12		5	3	4
Gd		4				6	4	9
Dy		3				5	0	7
Er		11				10	6	18
Th						7	4	7

Gestein		Gneis				Gneis			
Herkunft		Um Rasein				Um Rasein			
Probe		R1012A-4		R1012B-1					
Mineral		Biotit				Biotit			
[Gew.%]									
K ₂ O	6,56	4,48		4,10	4,25	4,48	6,61	5,94	
CaO	0,20	0,34	0,42	1,68	1,44	3,20	0,55	0,13	
TiO ₂	3,19	2,59	1,92	1,68	1,85	2,01	2,62	2,41	
MnO	0,21	0,19	0,25	0,19	0,21	0,20	0,24	0,22	
FeO _{tot}	27,22	12,42	18,89	14,33	14,82	15,28	17,33	15,69	
Zn [ppm]	1140	635	780	1586	1429	1231	1475	1309	
Ga	29	20	31	6	7	7	17	10	
Rb	328	208	116	171	219	250	297	267	
Sr	0	12	12	7	7	8	4	3	
Y				6	5	7	1	1	
Zr			0	5	13	2	1		
Nb	18	16	11	19	24	24	28	22	
Ba	1533	1395	886	782	1048	1171	1426	1293	
La	8	2	2	9	7	4	4	4	
Ce	8	3	3	12	26	9	7	5	
Nd	14	42	31	9	11	11	13	11	
Sm	1		3	5	10	3	5		
Gd	8	0	2	15	11	8	4	2	
Dy	2		1	7	8	6	7	1	
Er	2			21	21	12	10	7	
Th				6	7	7	5	5	

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Biotit, Um Rasein und Hamradom

Gestein		Gneis			Granit		Granit	
Herkunft		Um Rasein			Hamradom		Hamradom	
Probe		R1012B-1		SH8a			SH52-1a/b	
Mineral	Biotit			Biot	tit (chloritisie	ert)	Bio	otit
[Gew.%]								
K ₂ O	5,62	5,56	3,86	1,04	1,27	2,86	10,85	10,16
CaO	0,17	0,15	0,09	0,14	0,09	0,09	0,11	0,14
TiO ₂	2,35	2,26	1,66	0,35	0,48	1,10	2,19	2,13
MnO	0,22	0,21	0,20	0,41	0,28	0,45	1,15	1,02
FeO _{tot}	15,45	15,05	15,51	12,70	9,18	10,91	17,52	16,90
Zn [ppm]	1262	1207	1023	1389	1157	976	460	460
Ga	4	4	4	43	24	29	42	51
Rb	251	234	147	250	293		1393	1336
Sr	4	3	3	8	10	15	9	17
Y	3	1	3	1	2	2		8
Zr	2		4	4	56	29	1	22
Nb	24	22	16	6	5	13	32	35
Ba	1249	1161	604	34	44		275	240
La	5	5	6	4	2	2	0	10
Ce	4	3	10	5	3	5	6	21
Nd	10	10	6	3	2	3	10	18
Sm	4		6	2	1	1	1	19
Gd	7	0	5	2	2	1	1	34
Dy	4		3	1	1	1		57
Er	17		0	1	1	2		159
Th	7	4	7	26			1	18

Gestein	Granit				Granit			Granit	
Herkunft		Hamradom			Hamradom	l	Hamradom		
Probe		SH52-1a/b		NH60			NH60a.1		
Mineral	Biotit				Biotit		Bie	otit	
[Gew.%]									
K ₂ O	11,00	11,07	10,27	9,63	10,21	9,84	8,22	8,17	
CaO	0,11	0,09	0,15	0,21	0,21	0,17	0,15	0,23	
TiO ₂	2,32	2,28	2,06	3,44	3,65	3,63	2,44	2,64	
MnO	1,16	1,18	1,20	0,91	0,96	0,88	0,52	0,52	
FeO _{tot}	17,23	17,62	18,56	23,54	23,23	21,73	15,30	15,14	
Zn [ppm]	490	432	443	1210	1301	1120	613	636	
Ga	49	42	44	42	50	40	40	42	
Rb	1333	1336	1200	1331	1372	1261	724	721	
Sr	15	7	9	2	11	5	17	17	
Y	5				25	0	4	2	
Zr	7		5		19		5	7	
Nb	38	30	31	17	33	25	19	22	
Ba	261	253	234	591	803	790	534	565	
La	5		3		9	2	11	11	
Ce	15	0	10	2	3	14	16	21	
Nd	13	8	10		9	7	30	32	
Sm	5		4		7	8	10	10	
Gd	10		5		10		16	11	
Dy	14		1		7		16	8	
Er	53		8		19		35	27	
Th	14		3				6	8	

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Biotit, Hamradom

Gestein	Gra	nit		Granit		
Herkunft	Hamra	adom		Hamradom		
Probe	NH60	Da.1		NH60a.2		
Mineral	Bio	tit		Biotit		
[Gew.%]						
K2O	8,19		8,75	8,25	8,80	
CaO	0,14	0,70	0,10	0,48	0,12	
TiO2	2,36	2,21	2,64	2,71	2,58	
MnO	0,51	0,40	0,56	0,56	0,61	
FeO	14,93	12,45	15,90	17,06	16,62	
Zn [ppm]	639	514	647	992	677	
Ga	42	40	45		45	
Rb	682	495	787	688	786	
Sr	20		19	10	16	
Y	9	2	2	4	4	
Zr	8	37	3	15	2	
Nb	20	21	22	24	23	
Ba	595	437	633	437	601	
La	13	22	13	11	15	
Ce	19	59	25	31	15	
Nd	37	31	33	18	31	
Sm	11	20	16	6	13	
Gd	11	16	16	12	15	
Dy	21	18	19	7	9	
Er	63	42	29	18	30	
Th	11	3	9	7	9	

Gestein		Gn	eis		Gneis
Herkunft		Umgebung	Um Rasein		Umgebung Um Rasein
Probe		A10	002		A1002
Mineral		Musl	covit		Muskovit
[Gew.%]					
K ₂ O	6,48	7,25	6,91	7,63	10,81
CaO	0,10	0,01	0,00	0,02	1,34
TiO ₂	0,24	0,34	0,38	0,25	0,20
MnO	0,02	0,02	0,02	0,03	0,02
FeO _{tot}	3,25	3,43	3,19	3,82	2,62
Zn [ppm]	38	51	47	42	42
Ga	71	78	101	77	111
Rb	281	327	336	344	8
Sr	2	2	2	2	40
Y	0				1
Zr	1	1	1	2	
Nb	12	36	53	13	0
Ba	7	7	5	7	5
La	2	4	3	2	8
Ce	4	6	5	7	12
Nd	0	2	3	2	6
Sm	1	3	3	3	5
Gd	4	1	5	13	4
Dy	4	4	4	7	8
Er	3	3	5	6	16
Th	2	2	2	8	

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Muskovit und Hornblende, Um Rasein und Umgebung

Gestein	Trondhjemit										
Herkunft				Um Ra	asein						
Probe	R1055.3										
Mineral	Hornblende (Linienscan)										
[Gew.%]											
K ₂ O	1,10	0,95	0,83	0,79	0,87	0,77	0,77	0,86			
CaO	8,26	8,24	8,17	8,21	8,21	7,97	8,27	8,31			
TiO ₂	0,66	0,66	0,73	0,72	0,70	0,75	0,81	0,81			
MnO	1,20	1,23	1,17	1,28	1,29	1,39	1,41	1,35			
FeO _{tot}	30,44	30,44	30,11	30,91	31,34	32,14	32,95	32,56			
Zn [ppm]	2063	1924	1895	1906	2074	2058	2011	2045			
Ga	32	32	30	21	29	30	29	31			
Rb	41	41	39	46	43	42	43	39			
Sr	8	7	6	7	6	8	7	7			
Y	1001	997	1071	1044	1112	1084	1169	1180			
Zr	56	53	104	65	58	60	68	61			
Nb	87	85	86	87	88	82	92	95			
Ba	59	59	63	59	62	65	72	64			
La	2	10	9	10	5	9	12	2			
Ce	92	100	113	108	118	111	106	115			
Nd	115	114	119	123	123	122	136	138			
Sm	86	76	116	98	106	115	103	119			
Gd	123	141	166	128	150	151	165	172			
Dy	41	46	42	45	43	46	52	49			
Er	23	22	22	27	21	19	31	23			
Th	11	8	9	9	11	9	9	9			

Gestein				Trond	hjemit						
Herkunft				Um F	Rasein						
Probe				R10	55.3						
Mineral	Hornblende (Linienscan - Fortsetzung)										
[Gew.%]											
K ₂ O	0,89	0,85	0,86	0,77	0,79	0,90	0,82	0,78			
CaO	9,14	9,08	8,56	8,29	8,82	9,17	8,65	9,30			
TiO ₂	0,85	0,85	0,82	0,83	0,86	0,88	0,85	0,89			
MnO	1,30	1,32	1,46	1,51	1,41	1,42	1,50	1,44			
FeO _{tot}	32,11	32,32	33,38	34,29	33,91	34,07	34,59	34,68			
Zn [ppm]	1971	1938	2103	2182	2073	2095	2178	2157			
Ga	38	35	28	39	39	24	36	32			
Rb	42	43	44	43	39	41	45	44			
Sr	6	9	9	8	7	5	8	7			
Y	1259	1256	1150	1142	1285	1243	1192	1243			
Zr	73	69	62	59	71	71	64	74			
Nb	93	91	91	90	100	95	99	104			
Ba	59	69	74	63	70	63	61	51			
La	6	11	9	12	14	13	11	6			
Ce	103	117	97	111	131	131	123	103			
Nd	138	146	132	130	150	150	141	149			
Sm	115	108	95	101	118	109	100	100			
Gd	182	188	175	136	168	139	146	163			
Dy	48	56	50	47	54	59	51	48			
Er	22	25	22	22	29	25	22	22			
Th	9	10	8	9	10	7	9	8			

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Hornblende, Um Rasein

Gestein				Trondh	ijemit						
Herkunft				Um Ra	asein						
Probe				R105	5.3						
Mineral	Hornblende (Linienscan - Fortsetzung)										
[Gew.%]											
K ₂ O	0,92	1,10	1,21	0,98	0,98	0,92	0,94	0,94			
CaO	9,31	10,02	10,19	9,73	10,31	9,47	9,68	9,68			
TiO ₂	0,88	0,96	0,91	0,90	0,95	0,93	0,93	0,95			
MnO	1,38	1,29	0,98	1,30	1,51	1,49	1,43	1,42			
FeO _{tot}	34,34	33,95	29,00	32,56	36,19	35,53	35,08	34,84			
Zn [ppm]	2170	2137	2069	2000	2268	2163	2171	2186			
Ga	31	34	27	28	30	35	35	32			
Rb	40	38	26	43	44	40	40	40			
Sr	7	8	12	8	7	7	10	10			
Y	1262	1316	1167	1110	1211	1258	1304	1271			
Zr	71	75	105	63	69	74	74	74			
Nb	101	101	85	96	103	101	104	98			
Ba	58	55	37	41	57	56	62	57			
La	11	6	15	6	20	11	12	12			
Ce	124	121	107	109	120	131	145	145			
Nd	144	157	140	125	129	146	155	162			
Sm	101	133	119	85	103	112	122	128			
Gd	191	186	170	144	152	166	188	169			
Dy	55	60	58	45	48	52	58	60			
Er	26	23	28	17	29	23	30	29			
Th	8	10	6	8	10	9	11	9			

Gestein				Trond	hjemit			
Herkunft				Um F	Rasein			
Probe				R105	55.3a			
Mineral			Hornt	olende (Linier	iscan - Fortset	zung)		
[Gew.%]								
K ₂ O	0,81	0,88	0,71	0,52	1,11	0,87	0,68	0,80
CaO	8,03	9,42	9,89	3,72	11,82	10,72	11,54	11,16
TiO ₂	0,72	0,83	0,76	0,60	0,75	0,95	0,61	0,50
MnO	1,27	1,65	1,44	1,34	1,11	1,30	1,55	1,28
FeO _{tot}	30,22	37,25	31,59	30,37	29,82	30,84	38,21	34,10
Zn [ppm]	1854	2314	1662	2036	1602	1718	2709	2591
Ga	25	28						
Rb	32	48					5	8
Sr	7	6					2	8
Y	1130	1340	1315	787	1431	1324	1657	1571
Zr	58	74				108	118	107
Nb	93	85					104	104
Ba	58	34	116		102	103	89	75
La	13	9					16	15
Ce	116	42						
Nd	120	65						
Sm	102	57						
Gd	136	87						
Dy	42	22						
Er	22	13						
Th	8	5						

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Hornblende, Um Rasein

Gestein		Gneis (psa	mmitisch)		Gneis				
Herkunft		Um R	asein			Um H	Rasein		
Probe		SR	23			R1	011		
Mineral		Hornb	lende		Hornblende				
[Gew.%]									
K ₂ O	0,59	0,68	0,47	0,42	0,84	0,80	0,83	0,69	
CaO	15,11	15,83	10,99	9,28	7,27	7,82	7,88	6,68	
TiO ₂	1,10	1,36	1,01	0,67	1,40	1,55	1,55	1,36	
MnO	0,26	0,27	0,20	0,16	0,90	0,99	1,00	0,82	
FeO _{tot}	33,05	34,07	25,79	20,95	34,55	37,53	37,49	31,74	
Zn [ppm]	150	140	108	108	1651	1901	1792	1587	
Ga	37	23	16	23	34	74	35	39	
Rb	13	14	13	9	17	18	19	16	
Sr	275	247	125	118	43	46	39	73	
Y	4	4		0	2151	2532	2594	2085	
Zr	8	8	5	4	43	53	55	46	
Nb			0		66	72	70	61	
Ba	35	37	27	27	114	197	130	139	
La	3	3	2	2	4	5	5	5	
Ce	4	4	3	2	39	49	52	43	
Nd	3	3	2	2	131	154	158	123	
Sm	3	3	2	2	101	117	117	96	
Gd	3	3	2	3	244	287	275	225	
Dy	3	2	1	2	168	189	195	147	
Er	4	6	2	2	96	118	124	90	
Th	2	4	3	3		214		30	

Gestein				Gne	eis			
Herkunft				Um R	asein			
Probe				R101	12.1			
Mineral				Hornblende (Linienscan)			
[Gew.%]								
K ₂ O	1,13	1,22	0,80	1,18	1,34	1,25	1,01	1,10
CaO	9,72	9,78	8,73	8,89	9,30	9,32	7,67	8,80
TiO ₂	1,23	1,31	1,04	1,26	1,26	1,32	0,97	1,00
MnO	0,51	0,50	0,46	0,54	0,53	0,54	0,38	0,45
FeO _{tot}	18,62	18,59	17,21	18,79	18,63	18,80	15,04	16,79
Zn [ppm]	936	903	857	863	872	893	741	863
Ga	35	38	22	34	16	14	14	12
Rb	9	9	6	6				
Sr	18	21	19	15	11	8	5	3
Y	218	225	188	233	223	211	140	184
Zr	28	26	77	36	15	18	17	17
Nb	25	23	24	29	16	10	9	9
Ba	33	36	35	33	16	20	21	12
La	17	19	15	11				
Ce	60	86	71	51	43	23	49	40
Nd	57	47	39	47	31	32	21	28
Sm	39	51	36	27	8		8	5
Gd	47	65	56	53	10	14	20	
Dy	51	46	45	36	30	2	11	
Er	51	74	35	33				
Th								

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Hornblende, Um Rasein

Gestein	Gneis									
Herkunft				Um R	asein					
Probe				R10	12.1					
Mineral	Hornblende (Linienscan - Fortsetzung)									
[Gew.%]										
K ₂ O	1,30	1,01	1,39	1,10	1,47	1,38	0,85	1,25		
CaO	9,29	9,59	9,82	8,61	9,88	9,61	6,54	9,54		
TiO ₂	1,36	1,38	1,27	1,16	1,28	1,10	0,66	1,28		
MnO	0,53	0,55	0,56	0,46	0,56	0,53	0,34	0,49		
FeO _{tot}	17,95	18,87	19,00	16,77	19,23	18,97	14,02	18,93		
Zn [ppm]	827	887	910	822	922	932	655	926		
Ga	10	12	15	14	15	8	11	17		
Rb					8		1	5		
Sr	13	6	11	7	19	4	6	10		
Y	196	193	218	172	225	217	135	233		
Zr	15	15	20	12	31	10	14	31		
Nb	12	10	14	11	26	13	7	23		
Ba	23	21	21	19	34	11	11	27		
La			6		4		4	12		
Ce	11	8	49	35	44	13	18	45		
Nd	34	26	25	15	38	22	27	40		
Sm			13	4	30	3	5	24		
Gd	7	4	26		51		5	34		
Dy	14				33	6	10	10		
Er				1	61	5	5	25		
Th										

Gestein				Gnei	is						
Herkunft				Um Ra	sein						
Probe				R1012	2.1						
Mineral	Hornblende (Linienscan - Fortsetzung)										
[Gew.%]											
K ₂ O	1,28	1,14	1,16	1,11	1,11	1,07	1,05	1,17			
CaO	9,52	8,42	8,15	8,56	8,80	8,22	8,53	8,70			
TiO ₂	1,28	1,15	1,17	1,23	1,02	1,21	1,17	1,22			
MnO	0,50	0,44	0,49	0,49	0,45	0,48	0,49	0,44			
FeO _{tot}	18,66	16,57	17,37	17,97	17,24	17,15	17,30	16,85			
Zn [ppm]	921	818	869	859	815	857	839	810			
Ga	28	28	22	15	15	38	14	18			
Rb	3	3 8 10 10 5									
Sr	26	15	16	8	9	21	13	14			
Y	229	187	218	202	211	193	211	205			
Zr	36	38	40	13	21	24	17	25			
Nb	22	18	26	2	13	19	10	26			
Ba	28	23	39	15	19	35	22	37			
La	18	16	19			21		7			
Ce	52	80	49	18	31	54	33	50			
Nd	51	46	40	23	35	53	31	48			
Sm	32	33	24	3	14	24	12	19			
Gd	58	43	40	10	29	65	24	33			
Dy	54	48	43		23	46	7	34			
Er	56	41	44		9	71		32			
Th											

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Hornblende, Um Rasein

Gestein				Gne	is						
Herkunft				Um Ra	sein						
Probe				R1012	2.1						
Mineral		Hornblende (Linienscan - Fortsetzung)									
[Gew.%]											
K ₂ O	1,00	1,06	0,61	1,00	1,05	0,83	0,75	0,81			
CaO	8,39	8,21	5,27	7,25	7,69	7,47	7,33	7,18			
TiO ₂	1,20	1,17	0,57	0,79	1,01	1,03	1,03	1,02			
MnO	0,46	0,50	0,23	0,31	0,43	0,42	0,44	0,38			
FeO _{tot}	16,71	16,84	9,52	14,08	15,85	15,30	15,36	14,50			
Zn [ppm]	784	778	458	619	731	713	773	630			
Ga	20	11	18	9	21	16	31	14			
Rb	1		3			0	7				
Sr	15	2	63	18	13	8	14	2			
Y	198	200	90	149	179	180	188	164			
Zr	18	11	15	3	23	20	27	12			
Nb	14	1	10		15	12	24	6			
Ba	29	18	19	12	26	22	42	15			
La	6		12		2	8	19	4			
Ce	26	18	66	16	27	42	78	23			
Nd	31	11	36	26	30	28	55	17			
Sm	20		24	9	8	19	47	1			
Gd	21	6	43		17	18	74				
Dy	22		37		15	8	59	9			
Er			43		15	9	56				
Th											

Gestein				Gr	neis						
Herkunft				Um I	Rasein						
Probe				R10	12.1						
Mineral			Hornb	lende (Linier	nscan - Fortse	tzung)					
[Gew.%]											
K ₂ O	1,03	1,13	1,09	1,12	1,00	0,92	1,02	1,09			
CaO	6,35	7,88	8,01	7,81	7,49	8,16	6,85	8,13			
TiO ₂	0,90	0,96	1,13	1,20	1,19	1,20	0,80	0,97			
MnO	0,34	0,40	0,45	0,45	0,46	0,43	0,34	0,40			
FeO _{tot}	12,89	15,62	16,21	16,01	16,02	16,20	13,61	15,74			
Zn [ppm]	630	741	802	756	792	737	646	745			
Ga	14	15	14	10	14	10	33	7			
Rb	4	4 9 3 6									
Sr	19	7	14	9	21	8	23	5			
Y	147	175	205	187	201	192	167	169			
Zr	23	8	29	15	25	22	27	20			
Nb	17	10	27	11	29	4	18	13			
Ba	30	14	30	17	35	22	33	22			
La	15	0		2	15		33	3			
Ce	258	29	36	26	47	24	66	48			
Nd	48	15	35	22	44	23	62	38			
Sm	36	5	15	1	23		54	16			
Gd	26	8	34	11	28	2	74	15			
Dy	27		30	8	26	4	69	8			
Er	48	11	20	9	29		83				
Th											

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Hornblende, Um Rasein

Gestein		Gn	neis			Gneis		Gneis
Herkunft		Um F	Rasein			Um Rasein		Um Rasein
Probe		R10	12.1		R1012a-2			R1012b
Mineral	Hornbl	ende (Linier	nscan - Fortse	tzung)	Hornblende			Hornblende
[Gew.%]								
K ₂ O	0,90	0,93	0,77	0,80	0,80	0,87	0,60	0,69
CaO	7,73	7,58	7,45	6,99	7,34	7,70	6,36	7,60
TiO ₂	1,10	1,12	1,15	0,94	0,91	0,89	0,73	0,88
MnO	0,42	0,43	0,42	0,36	0,41	0,39	0,37	0,42
FeO _{tot}	15,76	15,51	15,77	14,84	17,23	17,34	16,38	18,08
Zn [ppm]	761	790	735	696	643	668	628	943
Ga	9	38	26	30	18	18	12	
Rb		14		6	4	4		3
Sr	7	22	10	21	24	23	19	20
Y	189	202	182	195	371	352	343	322
Zr	16	25	15	26	32	34	21	34
Nb	8	24	19	26	17	21	9	15
Ba	20	45	28	35	44	43	33	32
La		16	2	16	8	10		80
Ce	25	59	35	61	54	63	40	230
Nd	27	56	37	54	41	48	36	107
Sm	2	45	17	53	36	37	16	53
Gd	21	62	28	65	58	61	33	61
Dy	3	51	18	62	47	56	22	33
Er		88	17	61	50	77		23
Th								5

Gestein	Gn	eis		Gneis		Amphibolit			
Herkunft	Um R	lasein		Um Rasein			Um Rasein		
Probe	R10	12b		R1012B-1			R1014		
Mineral	Hornb	olende		Hornblende			Hornblende		
[Gew.%]									
K ₂ O	0,82	0,92	1,01	0,96	0,84	1,44	0,93	1,11	
CaO	7,89	0,60	8,40	8,70	8,86	11,56	10,64	12,21	
TiO ₂	0,60	1,31	0,62	1,05	1,24	1,39	1,34	1,53	
MnO	0,39	0,24	0,40	0,42	0,48	0,33	0,29	0,34	
FeO _{tot}	18,01	17,51	19,26	19,12	21,03	33,62	33,29	37,62	
Zn [ppm]	949	1335	996	1062	1135	183	162	213	
Ga					1	26	25	35	
Rb	5	23	4	5	5	22	23	28	
Sr	18	9	18	21	25	119	76	96	
Y	325	4	236	313	395	1	3	2	
Zr	63	0	22	29	33	22	23	30	
Nb	16	13	11	16	21				
Ba	36	84	24	42	56	71	66	93	
La	11	5	12	11	9	7	4	5	
Ce	51	17	53	56	52	7	8	8	
Nd	51	6	39	51	52	6	6	6	
Sm	32	6	26	27	29	5	4	4	
Gd	53	9	30	46	44	5	6	2	
Dy	40	9	26	43	43	8	4	5	
Er	31	12	13	24	25	13	8	14	
Th	6	7	6	6	7	25			

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Hornblende, Um Rasein

Gestein	Amphibolit		1	Amphibolit			Migmatit	Gneis
Herkunft	Um Rasein			Um Rasein			Um Rasein	Umgeb.UR
Probe	R1014				SR50	BR1		
Mineral	Hornblende			Hornblende			Hornblende	Hornblende
[Gew.%]								
K ₂ O	1,24	0,98	0,98	1,11	1,02	0,78	0,95	0,84
CaO	12,82	12,08	9,76	13,18	10,93	9,37	12,11	8,71
TiO ₂	1,89	1,52	0,81	1,66	1,15	1,15	1,63	1,13
MnO	0,34	0,28	0,34	0,31	0,21	0,21	0,42	0,74
FeO _{tot}	38,64	25,26	17,24	27,61	18,79	19,95	31,66	30,84
Zn [ppm]	208	154	96	159	115	122	235	1077
Ga	33	32	33	31	38	30	35	39
Rb	29	11	12	16	15	12	14	20
Sr	100	76		89		111	59	94
Y	5	28	23	32	20	22	14	10
Zr	29	134		102	54	62	34	41
Nb		1		1	0	0		1
Ba	106	318		527		431	60	114
La	6	16	12	17	14	13	5	4
Ce	9	45	32	52	34	38	12	9
Nd	8	23	22	28	21	22	6	6
Sm	9	8	8	11	8	10	5	3
Gd	11	11	9	14	11	12	8	12
Dy	6	5	5	5	5	6	5	5
Er	9	5	7	5	5	6	8	6
Th					2	3	6	5

Gestein		Gneis						
Herkunft	Umgebung Um Rasein							
Probe	BR1							
Mineral	Hornblende							
[Gew.%]								
K ₂ O	0,67	1,23	1,02					
CaO	7,26	11,68	10,37					
TiO ₂	0,80	1,07	1,22					
MnO	0,59	0,94	0,93					
FeO _{tot}	25,35	38,20	38,56					
Zn [ppm]	866	1372	1368					
Ga	32	58	31					
Rb	11	14	16					
Sr	100	90	126					
Y	14	29	27					
Zr	28	86	47					
Nb	1	0	1					
Ba	74	126	168					
La	3	6	4					
Ce	7	12	14					
Nd	3	7	11					
Sm	3	6	7					
Gd	9	7	9					
Dy	9	13	9					
Er	6	17	10					
Th	4	7	11					

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Hornblende bzw. Akzessorien, Um Rasein und Umgebung

Gestein	Gneis										
Herkunft	Um Rasein										
Probe	NR96a.1										
Mineral	Allanit (Linienscan)										
[Gew.%]											
K ₂ O					1,00	0,64	0,48				
CaO	9,04	8,18	7,71	7,52	11,21	11,94	10,13	9,17			
TiO ₂	5,75	4,29	4,44	4,21	3,34	3,51	2,05	5,23			
MnO	2,61	2,32	2,00	2,04	1,62	1,69	0,96	2,24			
FeO _{tot}	12,80	11,21	10,20	10,20	16,78	16,60	11,53	10,30			
Zn [ppm]	238	271	222	219	218	252	176	238			
Ga	16	40	9	33	12	29		21			
Rb	4	4	14				11	7			
Sr	157	135	121	123	139	162	255	163			
Y	4074	4769	4225	4432	4619	4563	4379	4499			
Zr	408	138	146	108	13	35	18	91			
Nb		19	15	9				19			
Ba	47	28	33	23	89	50	36	36			
La	36096	25364	23501	23316	25875	26184	26339	23381			
Ce	100006	76234	69527	68796	86089	84909	86890	68998			
Nd	24474	21966	19340	19503	30460	30605	28789	19565			
Sm	9069	8894	7608	7907	13087	12567	10567	7956			
Gd	4229	5442	4447	4849	7005	6931	4929	4949			
Dy	1463	2025	1677	1872	2902	2545		1910			
Er	91	123	112	118	1419	692		114			
Th					275	292					
Gestein			Gneis				Gneis				
--------------------	-------	--------------	--------------	-------------	-------	----------	-----------	-------	--		
Herkunft			Um Rasein				Um Rasein				
Probe			NR96a.1			R1012A-4					
Mineral		Allanit (Lir	ienscan - Fo	ortsetzung)		Apatit					
[Gew.%]											
K ₂ O		0,68				1,94	1,76	1,83			
CaO	6,10	9,64	7,90	6,46	11,19	40,66	37,00	35,43			
TiO ₂	5,83	5,15	5,97	1,91	3,67	0,03	0,38	0,63			
MnO	2,26	1,69	2,19	0,89	2,41	0,04	0,04	0,08			
FeO _{tot}	9,79	15,94	9,40	10,91	14,47	0,38	0,67	3,49			
Zn [ppm]	270	228	239	173	293	13	23	149			
Ga	11	21	16								
Rb	5		4	20	4			2			
Sr	54	134	143	64	167	199	181	165			
Y	1441	2040	2654	2210	3417	1120	930	901			
Zr	72	21	52	32	40	1	0	1			
Nb	8	4	7	5	6		1	2			
Ba	32	72	46	28	35	12	18	32			
La	34337	36426	28153	41417	32384	82	67	66			
Ce	94323	107748	78870	127094	99086	453	390	382			
Nd	23046	32096	19469	37381	38107	352	296	287			
Sm	8397	12521	6954	12666	10041	154	131	129			
Gd	3502	4871	3147	4436	4796	209	179	186			
Dy	879	1158	1030			116	96	98			
Er	42	343	72			45	49	46			
Th		153				7	6	4			

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Akzessorien, Um Rasein und Hamradom

Gestein		Gneis		Gra	anit		Granit	
Herkunft	1	Um Rasein		Hamr	radom		Hamradom	
Probe		R1012A-4		SH	I8a		SH8a.2	
Mineral		Apatit		Tit	anit		Titanit	
[Gew.%]								
K ₂ O	1,18	1,23		0,34	0,33	0,64	1,15	1,49
CaO	28,32	28,64		11,58	10,62	15,10	10,87	13,80
TiO ₂	0,00	0,00	0,02	38,13	24,25	37,66	29,86	32,98
MnO	0,03	0,03	0,08	0,26	0,28	0,34	0,24	0,31
FeO _{tot}	0,10	0,09	0,12	4,91	2,78	8,09	4,60	6,73
Zn [ppm]	2	5	7	151	128	258	200	211
Ga			2	43	48	65	81	82
Rb					14	23	62	82
Sr	141	143	159	39		18	39	33
Y	728	711	697	3289	2344	4829	4483	4963
Zr		1	1	185	109	184	132	150
Nb		0		2414	2294	3483	3565	4008
Ba	9	13		13	15	30	94	123
La	57	62	60	213		183	157	158
Ce	338	348	360	2493		1360	1142	1226
Nd	179	186	189	947		1032	911	994
Sm	110	116	127	479		454	402	419
Gd	166	150	161	459	341	546	494	523
Dy	76	79	83	213	152	277	247	269
Er	74	67	85	121	80	183	171	187
Th			l					Ì

0	C	•.		G	•.		a i	a ·
Gestein	Gra	anit		Gran	it		Granit	Gneis
Herkunft	Hamr	adom		Hamrao	lom		Hamradom	Um Rasein
Probe	NH	[60		NH6	Oa		NH60-a	NR96a.1
Mineral	Tita	anit		Titar	it		Titanit	Zirkon
[Gew.%]								
K ₂ O	1,29	1,50	0,46	0,54	0,25	0,27	0,95	
CaO	32,26	31,88	28,30	27,48	26,91	22,74	32,49	3,63
TiO ₂	44,15	43,75	38,58	36,83	29,57	30,68	35,28	3,52
MnO	0,53	0,58	0,30	0,35	0,34	0,36	0,41	
FeO _{tot}	3,42	3,67	2,40	2,54	2,39	2,45	2,70	
Zn [ppm]	51	56	10	21	41	35	33	
Ga	46	57	25	30		60		1974
Rb	13	21						149
Sr	43	41	33	27	22	20	42	475
Y	3180	3886	3137	2986	3619	5094	4940	8174
Zr	549	518	497	388	472	478	615	518207
Nb	3522	3646	1919	2337	2769	3652	2569	267
Ba	7	13	22	29	13	24	51	
La	667	758	1063	756	917	746	1255	227
Ce	4521	5144	5979	4481	5350	4769	7345	415
Nd	2572	3033	2290	1821	3103	2252	4367	76
Sm	939	1108	1184	964	1231	1303	1766	32
Gd	763	917	930	787	1048	1194	1532	96
Dy	423	506	430	381	534	693	798	277
Er	223	278	326	355	227	598	329	117
Th			275	232	240	352	251	

Tab.10.8 (Fortsetzung): SRXRF-Daten (Einzelmessungen): Akzessorien, Um Rasein und Hamradom

Gestein	Gn	eis			Gneis			Gneis
Herkunft	Um R	asein			Um Rasein			Um Rasein
Probe	NR9	6a.1			NR96a.2			R1011
Mineral	Zirk	con			Zirkon			Zirkon
[Gew.%]								
K ₂ O								
CaO	2,76	2,61	0,55	1,46	2,79	2,08	3,21	9,30
TiO ₂	3,52	3,87	5,09	5,51	5,95	6,17	7,93	
MnO								
FeO _{tot}	2,09	0,86						2,23
Zn [ppm]								65
Ga	1614	1801	3095	2962	3119	3356	3747	3109
Rb	66	61						
Sr	290	350	441	463	940	466	938	331
Y	5031	6833	5435	6215	7980	6114	10102	7002
Zr	491944	528021	718809	668733	688090	668811	749516	472450
Nb	204	217	357	157	525	169	264	217
Ba	29	13	93	17	85	13	1	139
La	240	234	387	200	343	201	229	220
Ce	366	364	315	147	336	139	152	77
Nd	83	75	105	33	105	39	29	65
Sm	58	43	171	22	162	23	8	37
Gd	78	92	239	62	249	46	60	
Dy	188	226	403	165	568	150	271	114
Er	92	120	155	65	232	65	127	339
Th								1148

Gestein				Trond	hjemit			
Probe	NR111a	NR111b	NR111c	NR111d	NR112a	NR112b	NR112c	R1041
[Gew.%]								
SiO ₂	79,36	78,62	78,88	78,2	78,51	77,68	77,63	76,64
TiO ₂	0,06	0,04	0,06	0,04	0,20	0,20	0,21	0,11
Al_2O_3	10,78	12,07	10,80	12,09	11,21	11,43	11,25	12,33
Fe ₂ O _{3(tot)}	0,67	0,48	0,64	0,47	2,29	2,20	2,22	1,57
MnO	0,01	0,00	0,01	0,00	0,10	0,10	0,10	0,03
MgO	0,08	0,04	0,07	0,03	0,08	0,09	0,08	0,02
CaO	1,14	0,22	1,13	1,22	1,36	1,39	1,40	0,67
Na ₂ O	4,71	5,24	4,63	5,54	5,09	5,07	5,07	5,80
K ₂ O	0,72	0,74	0,72	0,76	0,50	0,49	0,50	1,57
P_2O_5	0,02	0,01	0,01	0,01	0,02	0,02	0,02	0,02
Gesamt	97,55	97,46	96,95	98,36	99,36	98,67	98,48	98,76
[ppm] Li								
Rb	2	3	2	1	1	0	3	9
Sr	127	152	127	154	105	92	109	50
Ba	215	228	239	221	137	137	157	361
Cs								
Sc								
V	8	1	4	0	7	1	0	0
Cr	13	10	13	11	13	12	10	12
Со	66	49	66	48	154	86	78	61
Ni	2	4	1	1	10	0	21	43
Zn	14	11	22	7	96	98	74	100
Pb	0	3	5	4	0	4	3	0
Ga	16	18	17	16	21	16	16	25
Y	5	4	9	3	110	109	108	181
Zr	308	316	258	264	453	443	450	211
Nb	0	3	3	2	4	5	5	15
Hf								
Та								
Th	13	8	12	8	1	3	12	4
U	2	3	2	1	1	0	5	3
La	0	1	18	0	00	90	564	123
Ce	0	0	0	0	251	250	227	63
Pr	Ŭ	0	Ū	Ū	231	250	221	05
Nd	7	6	6	3	164	160	154	64
Sm	1	Ū	0	5	104	100	154	04
Fu								
Gd								
Th								
Dv								
Ho								
Er								
Tm								
Yb								
Lu								
B	•							

Tab.10.9: RFA-Gesamtgesteinsanalysen: Um Rasein

Gestein		Trondhjemit				Gneis		
Probe	R1055.I	R1055.II	R1104	SR45.1a	SR45.1b	SR46a	SR46b	SR46c
10 11								
[Gew.%]	70.2	79.09	75.05	7457	74 14	75.26	74.60	74 77
S1O ₂	/9,3	/8,98	/5,95	/4,5/	/4,14	/5,36	/4,69	/4,//
T_1O_2	0,08	0,07	0,11	0,17	0,17	0,21	0,21	0,28
Al_2O_3	11,46	11,43	12,20	12,46	12,54	12,53	12,50	12,55
$Fe_2O_{3(tot)}$	1,21	1,17	1,86	2,71	2,69	3,18	3,10	3,58
MnO	0,03	0,02	0,03	0,08	0,08	0,09	0,09	0,11
MgO	0,01	0,00	0,03	0,32	0,30	0,18	0,17	0,19
CaO	0,52	0,52	0,68	1,34	1,37	1,53	0,56	1,64
Na ₂ O	5,89	5,88	6,28	5,88	5,84	5,92	5,91	5,68
K ₂ O	0,47	0,48	0,75	0,55	0,55	0,53	0,53	0,53
P_2O_5	0,01	0,01	0,01	0,02	0,01	0,04	0,03	0,04
Gesamt	98,98	98,56	97,90	98,10	97,69	99,57	97,79	99,37
[ppm] Li Rb Sr Ba	0 37 219	2 39 216	1 52 151	10 116 175	10 106 186	3 125 168	0 115 154	0 111 171
Cs								
Sc								
V	0	0	0	5	7	0	0	4
Cr	11	14	9	15	11	12	10	10
Со	66	65	37	234	148	189	117	51
Ni	0	0	0	8	2	8	1	4
Zn	43	39	62	138	110	163	142	167
Pb	0	0	0	0	0	0	0	0
Ga	26	24	26	23	23	27	23	28
Y	129	120	229	268	262	166	165	190
Zr	30	22	255	245	252	422	403	417
Nb	7	8	14	6	7	6	9	9
Hf				-				
Та								
Th	2	6	3	1	2	0	1	0
U	2	2	3	6	4	Ő	1	0
	-	-	c	Ū	·	Ū	-	Ū
La	189	437	181	58	64	67	74	48
Ce	26	42	92	201	183	223	191	134
Pr								
Nd	61	52	80	171	172	149	144	110
Sm								
Eu								
Gd								
Tb								
Dy								
Ho								
Er								
Tm								
Yb								
Lu								

Tab.10.9 (Fortsetzung): RFA-Gesamtgesteinsanalysen: Um Rasein

Gestein				Gr	neis			
Probe	SR46d	SR46e	SR47a	SR47b	SR101	SR102	NR94.2	NR96b
[Gew.%]								
SiO ₂	73,95	74,2	73,87	74,05	75,54	76,66	73,45	76,03
TiO ₂	0,27	0,27	0,16	0,16	0,14	0,17	0,28	0,17
Al_2O_3	12,34	12,57	13,17	13,04	12,22	11,69	12,28	12,26
Fe ₂ O _{3(tot)}	3,48	3,52	2,37	2,34	2,49	2,44	4,29	2,78
MnO	0,11	0,11	0,06	0,06	0,07	0,06	0,08	0,08
MgO	0,19	0,18	0,19	0,15	0,03	0,10	0,34	0,08
CaO	1,62	1,66	1,44	1,44	1,21	1,21	1,39	1,71
Na ₂ O	5,53	5,84	6,06	5,82	6,06	5,79	5,37	5,45
K ₂ O	0,53	0,54	0,66	0,66	0,54	0,49	0,38	0,32
P_2O_5	0,05	0,05	0,02	0,03	0,02	0,03	0,03	0,02
Gesamt	98,07	98,94	98,00	97,75	98,32	98,64	97,89	98,90
[ppm]								
Li	0	2	4	0	2	0	-	0
Rb	0	2	4	0	3	0	5	0
Sr	113	130	140	140	102	74	154	180
Ba	167	185	150	159	190	181	148	139
Cs								
Se								
SC V	4	0	2	2	1	0	4	0
v Cr	4 11	13	2	2	1	11	13	15
Cr Co	50	15	43	43	206	52	211	13 54
Ni	3	4.5 0	+3		200	2	211	0
7n	150	154	73	71	120	0/	160	74
Ph	6	134	0	0	0	0	100	,4
T U Ga	25	-4 24	22	24	25	21	26	21
Ga	25	27	22	24	25	21	20	21
Y	189	200	111	109	233	233	107	68
Zr	435	431	364	345	329	567	561	324
Nb	10	11	8	5	4	4	7	7
Hf								
Та								
Th	0	5	4	0	0	2	1	0
U	2	4	1	1	5	3	3	0
La	43	186	71	98	78	34	314	267
Ce	129	165	216	220	227	95	718	240
Pr								
Nd	117	126	156	166	175	116	371	143
Sm								
Eu								
Gd								
Tb								
Dy								
Но								
Er								
Tm								
Yb								
Lu								

Tab.10.9 (Fortsetzung): RFA-Gesamtgesteinsanalysen: Um Rasein

Gestein			Gneis			Gr	anit (aus Gan	lg)
Probe	R1012	R1022	R1024	R1052	R1060	NR55a	NR55b	NR55c
[Gew.%]								
SiO ₂	71,76	76,61	75,5	73,76	73,79	76,67	75,55	75,45
TiO ₂	0,13	0,10	0,11	0,51	0,33	0,07	0,07	0,07
Al_2O_3	16,52	11,73	11,94	13,06	12,54	13,06	13,12	13,04
Fe ₂ O _{3(tot)}	1,56	1,55	1,75	2,30	3,76	0,67	0,68	0,69
MnO	0,04	0,05	0,05	0,15	0,11	0,04	0,04	0,05
MgO	0,32	0,01	0,02	0,76	0,31	0,05	0,06	0,08
CaO	2,71	0,82	0,83	1,67	2,05	0,57	0,55	0,54
Na ₂ O	6,72	6,10	6,21	5,39	5,55	4,20	4,07	4,04
K ₂ O	0,68	0,58	0,59	0,78	0,49	3,91	4,40	4,41
P_2O_5	0,07	0,01	0,01	0.09	0,09	0,01	0,01	0,01
Gesamt	100.51	97.56	97.01	98,47	99.02	99.25	98,55	98.38
		,	,	,		,	,	,
[ppm]								
Li								
Rb	9	0	0	11	0	84	96	95
Sr	389	57	58	138	133	43	25	26
Ba	288	213	212	77	183	410	430	416
Cs	200	210	212		105	110	150	110
0.5								
Sc								
V	2	0	0	4	0	10	8	9
Cr	15	11	14	12	16	15	14	8
	15	38	14	12	10 62	247	61	62
CU Ni	0	58	4	44	02	247	1	02
	0 72	0	0 81	61	117	4	1	4
ZII Dl	75	//	01	01	117	17	14	17
P0 C	24	20	25	0	24	2 10	12	10
Ga	24	20	25	16	24	19	15	17
V	25	161	162	41	111	4.4	50	50
ľ	23 50	101	103	41	111	44	50 97	50 80
Zr	59	213	202	1//	405	106	87	80
Nb	4	6	5	5	9	/	10	9
HI								
la	0	2	~	-	2	10	10	0
1h	0	2	5	5	2	10	12	8
U	0	5	6	4	0	13	10	6
	102	020	107	100	02	2	0	17
La	123	238	137	100	93	3	0	17
Ce	0	84	73	20	67	6	0	0
Pr	_	100						0
Nd	5	109	82	25	55	12	12	8
Sm								
Eu								
Gd								
Tb								
Dy								
Но								
Er								
Tm								
Yb								
Lu								

Tab.10.9 (Fortsetzung): RFA-Gesamtgesteinsanalysen: Um Rasein

Gestein		Amphibolit		
Probe	SR23	R1014	R1030	
[Gew.%]	20 71	12 00	47.05	
S1O ₂	39,71	42,00	47,25	
T_1O_2	2,85	1,50	1,23	
Al_2O_3	13,93	14,43	15,48	
$Fe_2O_{3(tot)}$	20,64	16,75	10,50	
MnO	0,18	0,19	0,16	
MgO	7,87	7,02	9,02	
CaO	12,02	11,55	10,00	
Na ₂ O	1,75	2,52	2,99	
K ₂ O	0,18	0,89	1,22	
P_2O_5	0,01	0,05	0,09	
Gesamt	99,14	96,90	97,94	
[ppm]				
Li				
Rb	5	11	25	
Sr	189	179	151	
Ba	57	89	77	
Cs				
Sc				
V	992	628	222	
Cr	27	12	422	
Co	95	70	62	
Ni	33	51	131	
Zn	96	101	71	
Pb	2	0	0	
Ga	9	16	16	
Y	11	15	35	
Zr	12	21	81	
Nb	8	8	9	
Hf				
Та				
Th	7	12	9	
U	0	3	4	
La	100	70	74	
Ce	27	14	18	
Pr				
Nd	9	11	6	
Sm			-	
Eu				
Gd				
Tb				
Dv				
Ho				
Fr				
Tm				
Vh				
டu				

Tab.10.9 (Fortsetzung): RFA-Gesamtgesteinsanalysen: Um Rasein

Gestein				Gr	anit			
Probe	HD4	SHp4a	SHp4b	SH6	SH13a	SH13b	SH16a	SH16b
		•						
[Gew.%]								
SiO ₂	75,67	73,69	73,06	74,13	74,02	73,3	74,93	74,96
TiO ₂	0,11	0,14	0,14	0,11	0,15	0,15	0.11	0,11
$Al_2 O_3$	12,89	13,81	13,67	13,36	14,17	13,94	13,36	13,38
Fe ₂ O _{2(tot})	0.86	1.09	1.09	0.83	0.91	0.91	0.50	0.49
MnO	0.04	0.06	0.06	0.03	0.02	0.03	0.03	0.03
MgO	0.12	0.23	0.20	0.15	0.18	0.20	0.19	0.20
CaO	0.70	0.70	0.69	0.81	0.95	0.97	0.64	0.63
Na ₂ O	3 40	4 02	3 96	3 25	3 89	3,86	3 84	3 76
K ₂ O	4 74	4 80	4 74	5 35	4 82	4 85	4 25	4 22
P.O.	0.01	0.04	0.03	0.02	0.04	0.04	0.03	0.03
Gesamt	98 54	98 58	97.64	98.04	99.15	98.25	97.88	97.81
Gesann	<i>J</i> 0, <i>J</i> 4	<i>J</i> 0, <i>J</i> 0	57,04	50,04	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	90,25	27,00	27,01
[ppm]								
Li								
Rb	137	252	244	126	194	198	258	249
Sr	111	117	114	120	267	271	136	126
Ba	452	379	386	599	770	763	356	339
La Cs	752	517	500	577	110	105	550	557
05								
Sc								
V	3	7	8	11	11	13	1	10
Cr	19	13	11	12	12	12	8	8
	70	72	70	280	60	65	58	50
Ni	, o 0	6	3	209	4	3	5	1
Zn	10	52	12	22	30	28	18	- 76
Dh	26	52 25	42 24	16	25	20	20	20
Ga	17	20	16	10	10	16	29	22
Ga	17	20	10	17	19	10	23	23
v	12	16	14	8	13	15	14	13
T 7r	86	120	112	81	104	107	96	07
Nh	8	120	16	8	9	107	14	11
Hf	0	10	10	0	,	10	14	11
Ta								
	16	22	27	11	15	13	35	32
TT T	10	5	6	3	5	6	0	32 8
0	, T	5	0	5	5	U	,	0
Та	63	23	32	24	15	16	14	17
Ce	40	37	57	24 41	23	2	18	8
Pr	-10	51	51	71	23	2	10	0
Nd	26	17	23	24	27	12	11	16
Sm	20	17	25	24	21	12	11	10
Fu								
Gd								
Fr								
Tm								
Vh								
Lu								

Tab.10.9 (Fortsetzung): RFA-Gesamtgesteinsanalysen: Hamradom

Gestein				Gr	anit			
Probe	SH19	SH20a	SH20b	SH22a	SH22b	SH22c	SH25a	SH25b
[Gew.%]								
SiO ₂	73,61	74,93	74,97	73,53	73,17	73,17	74,93	74,09
TiO ₂	0,14	0,03	0,03	0,20	0,20	0,21	0,22	0,22
Al_2O_3	13,33	13,47	13,57	14,05	14,06	14,03	13,11	12,91
$Fe_2O_{3(tot)}$	1,15	0,47	0,48	1,37	1,37	1,38	1,42	1,39
MnO	0,01	0,04	0,17	0,05	0,05	0,05	0,05	0,05
MgO	0,27	0,08	0,07	0,31	0,32	0,32	0,41	0,42
CaO	0,83	0,63	0,63	1,03	1,04	1,02	1,18	1,17
Na ₂ O	4,21	4,91	4,86	4,05	4,07	4,11	3,66	3,60
K ₂ O	4,08	3,42	3,42	4,47	4,45	4,44	4,17	4,15
P_2O_5	0,04	0,01	0,01	0,07	0,07	0,06	0,07	0,07
Gesamt	97,67	97,99	98,21	99,13	98,80	98,79	99,22	98,07
[ppm] Li Rb Sr P-	157 201	297 2	295 0	187 296	193 303	195 303	145 292	144 291
Da	341	42	41	730	750	780	/19	703
Cs								
Sc								
V	15	1	4	16	16	12	16	11
Cr	12	13	12	12	10	19	10	11
Co	205	66	67	61	59	53	70	71
Ni	7	3	6	3	4	0	5	4
Zn	21	29	27	11	39	37	43	42
Ph	15	44	51	24	23	25	21	17
Ga	20	32	34	17	17	20	17	22
<u>Cu</u>			0.	17	17		17	
Y	8	21	21	12	12	14	9	9
Zr	117	75	76	129	127	133	128	116
Nb	14	22	25	10	11	11	8	8
Hf								
Та								
Th	31	16	13	16	23	30	10	12
U	7	6	6	6	12	14	0	1
La	15	0	0	29	21	157	16	13
Ce	17	0	0	28	24	35	11	26
Pr								
Nd	8	0	0	23	17	20	11	11
Sm								
Eu								
Gd								
Tb								
Dy								
Ho								
Er								
Тm								
Yb								
Lu								

Tab.10.9 (Fortsetzung): RFA-Gesamtgesteinsanalysen: Hamradom

Gestein				Gr	anit			
Probe	SH28a	SH28b	SH31a	SH31b	SH32	SH50a	SH50b	SH52a
[Gew.%]								
SiO ₂	68,09	68,08	73,56	73,53	73,01	73,33	72,75	72,2
TiO ₂	0,35	0,35	0,14	0,14	0,16	0,14	0,14	0,15
Al_2O_3	15,91	15,97	13,94	13,93	14,79	14,27	14,29	13,77
$Fe_2O_{3(tot)}$	2,08	2,14	1,08	1,07	1,24	1,15	1,17	1,20
MnO	0,17	0,04	0,05	0,05	0,06	0,07	0,07	0,07
MgO	0,63	0,65	0,29	0,29	0,35	0,29	0,27	0,32
CaO	1,99	1,99	1,21	1,23	1,29	1,35	1,34	1,30
Na ₂ O	4,63	4,53	4,08	4,12	4,53	4,34	4,19	4,20
K ₂ O	4.10	4.13	3.73	3.73	3.94	4.00	4.03	3.98
$P_2 O_{\varepsilon}$	0.12	0.12	0.04	0.04	0.05	0.04	0.05	0.05
Gesamt	98.07	98.00	98.12	98.13	99.42	98.98	98.30	97.24
	,	,	,	,	,	,	,	,
[ppm]								
Li								
Rb	119	118	207	202	223	221	218	223
Sr	743	736	256	254	331	314	317	237
Ba	2195	2173	665	642	666	685	691	443
Cs	2175	2175	005	012	000	005	071	110
0.5								
Sc								
V	37	34	13	13	12	11	10	9
Cr	12	12	13	13	12	14	10	12
	47	47	57	58	199	51	52	52
Ni	5	7	4	5	7	4	32	52
Zn	38	/ 1	30	30	16	36	38	51
Dh	10	41 14	38	38	20	34	34	28
T U Ga	19	14 23	20	38 24	29	34 20	34 21	28
Ua	19	23	20	24	20	20	21	24
v	5	4	5	6	5	7	10	6
1 7r	188	4	87	87	87	70	84	88
ZI Nh	100	104	11	10	11	12	13	88 7
	4	2	11	10	11	12	15	/
1a Th	0	1	14	10	10	10	10	20
	9	1	14	10	10	10	10	20
U	0	1	0	3	0	20	23	3
1.0	18	30	2	12	14	15	5	13
	40 57	59 58	5	13	14 22	1.5 21	ر 11	10
Dr	51	50	0	12	LL	$\angle 1$	11	10
Nd	28	19	5	21	Q	7	1	16
Sm	20	10	5	21	0	/	1	10
Cd								
HO								
Er								
Yb								
Lu								

Tab.10.9 (Fortsetzung): RFA-Gesamtgesteinsanalysen: Hamradom

Gestein	Granit								
Probe	SH52b	NH60a	NH60b	NH69	NH82a	NH82b	NH82c	NH83	
[Gew.%]									
SiO ₂	73,32	69,17	70,23	71,69	73,33	73,16	72,74	73,12	
TiO ₂	0.16	0.42	0.42	0.20	0.16	0.16	0.16	0.16	
Al ₂ O ₂	13.96	14.76	15.08	14,46	14.58	14.54	14.58	14.28	
Fe_2O_3	1.19	2.29	2.38	1.50	1.33	0.32	1.32	1.20	
MnO	0.07	0.06	0.07	0.05	0.05	0.05	0.05	0.03	
MgO	0.30	0.72	0,68	0.44	0.33	0,03	0.32	0.31	
CaO	1 32	1.80	1.80	1.67	1 59	1 59	1.61	1 27	
$N_{2}O$	1,32	1,00	1,00	1,07	1,55	1,32	1,01	1,27	
K O	3.07	3 87	3 80	3 57	3 47	3 47	3 45	3 68	
$\mathbf{R}_{2}\mathbf{O}$	5,97	5, 87	5,80	5,57	5,47	5,47	5,45	5,08	
F_2O_5	0,04	0,13	0,14	0,00	0,03	0,03	0,04	0,04	
Gesam	98,04	97,09	99,03	97,94	99,52	97,97	98,57	96,27	
[]									
[ppm]									
Li	229	171	156	100	02	02	100	01	
Rb	228	161	156	109	93	93	102	91	
Sr	245	495	502	472	471	465	482	513	
Ba	447	1017	1023	1015	962	966	949	1110	
Cs									
Sc									
V	16	32	39	17	19	18	18	11	
Cr	7	12	22	15	16	15	16	14	
Со	52	42	45	278	138	141	102	88	
Ni	5	3	5	3	9	12	5	0	
Zn	44	70	63	42	39	45	43	22	
Pb	26	16	19	17	28	11	19	14	
Ga	22	20	21	21	23	21	20	16	
Y	5	23	22	3	1	3	4	7	
Zr	95	187	199	92	90	91	94	86	
Nb	10	16	14	4	0	0	6	5	
Hf									
Та									
Th	19	16	11	1	3	0	5	4	
U	6	3	3	3	5	6	8	2	
-	-	-	~	-	-	-	~	_	
La	13	36	40	13	9	10	5	137	
Ce	12	88	84	4	15	16	4	26	
Pr	1 2	00	UТ	т	1.7	10	т	20	
Nd	5	30	44	11	8	16	12	23	
Sm	5	39		11	0	10	12	23	
5m Eu									
Cd									
Dy									
Ho									
Er									
Тm									
Yb									
Lu									

Tab.10.9 (Fortsetzung): RFA-Gesamtgesteinsanalysen: Hamradom

Gestein			Granit			Gneis	Dacit
Probe	NH85	H1010	H1018	H1024	H1040	H1014	H1045
[Gew.%]							
SiO ₂	73,18	73,36	73,07	73,34	72,57	70,52	51,06
TiO ₂	0,18	0,20	0,17	0,17	0,17	0,60	2,55
Al_2O_3	14,37	13,75	14,02	14,24	14,13	13,89	18,06
Fe ₂ O _{3(tot)}	1,30	1,35	1,16	1,20	1,26	3,65	9,96
MnO	0,05	0,04	0,08	0,02	0,06	0,10	0,11
MgO	0,35	0,24	0,23	0,25	0,32	1,17	3,91
CaO	1,39	1,17	1,02	1,14	1,13	3,26	7,32
Na ₂ O	4,33	3,95	4,25	4,18	4,20	4,65	4,87
K ₂ O	3,60	4,54	4,75	4,14	4,32	0,65	0,75
P_2O_5	0,05	0,05	0,04	0,03	0,05	0,16	0,40
Gesamt	98,80	98,65	98,79	98,71	98,21	98,65	98,99
[nnm]							
[ppm]							
Rb	194	214	236	152	165	4	2
Sr	356	273	145	395	240	297	1582
Ba	691	705	415	869	522	247	447
Cs	071	102	115	009	522	217	,
0.5							
Sc							
V	14	9	1	16	13	50	249
Cr	13	22	17	19	20	12	2
Со	48	17	58	2	8	61	33
Ni	49	45	0	0	0	0	9
Zn	45	33	56	44	56	52	89
Pb	27	25	29	18	32	1	11
Ga	22	16	18	21	21	16	16
V	-	10	07	10	0	27	16
Y	05	18	27	10	8	37	16
	95	141	117	106	114	156	101
	11	14	17	9	9	/	10
Th	10	20	26	14	22	4	0
	6	20 17	20	9	3		2
U	0	17	5	,	5	1	2
La	128	127	92	155	151	137	111
Ce	4	44	42	28	4	24	43
Pr							
Nd	9	23	26	21	13	16	23
Sm							
Eu							
Gd							
Tb							
Dy							
Но							
Er							
Tm							
Yb							
Lu							

Tab.10.9 (Fortsetzung): RFA-Gesamtgesteinsanalysen: Hamradom