Pyrimidin-Analoga des Analgetikums Flupirtin

Synthese, Analytik und biologische Eigenschaften von 2,4,5-substituierten Pyrimidin-Derivaten

Dissertation

Zur Erlangung des akademischen Grades "Doktor der Naturwissenschaften" der Universität Hamburg Department Chemie

vorgelegt von

Finn Kristian Hansen

aus Flensburg

Hamburg 2009

Gutachter: Prof. Dr. Detlef Geffken Prof. Dr. Claudia S. Leopold

Tag der Disputation: 11. September 2009

Meinen Eltern in Dankbarkeit gewidmet

Die vorliegende Arbeit entstand in der Zeit von September 2006 bis Juli 2009 am Institut für Pharmazie der Universität Hamburg unter der Leitung von **Herrn Prof. Dr. Detlef Geffken**, dem ich für die Aufnahme in seinen Arbeitskreis, für die Überlassung des Themas sowie die vorbildliche Betreuung und seine großzügige Unterstützung herzlich danke.

Mein besonderer Dank gilt **Frau Prof. Dr. Claudia S. Leopold** für die freundliche Übernahme des Korreferats.

Bei der Firma SCHWARZ PHARMA Deutschland GmbH (ein Unternehmen der UCB Gruppe), insbesondere bei Herrn Dr. Thomas Lauterbach und Herrn Dr. Joachim Hoppmann, bedanke ich mich für die großzügige finanzielle Unterstützung des Projekt sowie für die Durchführung der biologischen Testungen.

Herrn Dr. Ulrich Riederer danke ich herzlich für die freundliche Zusammenarbeit im Praktikum der instrumentellen Analytik sowie die wertvolle Hilfe bei zahlreichen computertechnischen Fragen.

Des Weiteren danke ich Frau Dr. Maria Anna Köllner, Frau Barbara Freund, Frau Michaela Seeger, Herrn Dr. Mehdi Khankischpur sowie Herrn Dr. Leif Henrik Hansen für ihre wertvolle Hilfe beim Lesen der Korrekturen.

Ferner gilt mein Dank Herrn Prof. Dr. Jürgen Kopf und Frau Isabelle Nevoigt für ihre große Hilfsbereitschaft und die Anfertigung der Röntgenstrukturanalysen.

Besonders herzlich möchte ich mich bei meinen Eltern Heike und Egon Hansen, Frau Victoria Michler und allen Freunden für ihre Geduld und Unterstützung während der Promotion bedanken.

Abschließend bedanke ich mich bei allen Kollegen des Instituts für Pharmazie, die zum Gelingen dieser Arbeit und zu einer angenehmen Arbeitsatmosphäre beigetragen haben.

Abkürzungsverzeichnis

AAV	Allgemeine Arbeitsvorschrift
Abb.	Abbildung
AMPA	α-Amino-3-hydroxy-5-methyl-4-isoxazolpropionsäure
Ar	Aryl
aromat.	aromatisch
benzyl.	benzylisch
ber.	berechnet
BMS	Bristol-Myers Squibb
Bn	Benzyl
Bz	Benzoyl
bzw.	beziehungsweise
ca.	zirka
CDI	1,1'-Carbonyldiimidazol
COSY	correlation spectroscopy
δ	chemische Verschiebung
d	Dublett
DC	Dünnschichtchromatographie
d.h.	das heißt
DMA	N,N-Dimethylacetamid
DMAP	4-Dimethylaminopyridin
DMF	N,N-Dimethylformamid
DMSO- d_6	Dimethylsulfoxid, deuteriert
EC ₅₀	mittlere effektive Konzentration
EDC	1-Ethyl-3-(3-dimethylaminopropyl)carbodiimid
EtOH	Ethanol
Et ₃ N	Triethylamin
evtl.	eventuell
FDA	Food and Drug Administration
GABA	γ-Aminobuttersäure
gef.	gefunden
HMBC	heteronuclear multiple bond correlation
HOBt	1-Hydroxybenzotriazol
HSQC	heteronuclear single quantum coherence
Hz	Hertz

i. Vak.	im Vakuum
IR	Infrarot
J	Kopplungskonstante
kon.	konzentriert
Lit.	Literatur
m	Multiplett
MeOH	Methanol
NMDA	N-Methyl-D-aspartat
NMR	nuclear magnetic resonance
NSAR	nichtsteroidale Antirheumatika
Ph	Phenyl
ppm	parts per million
q	Quartett
quart.	quartär
resp.	respektive
RT	Raumtemperatur
S	Singulett
S.	siehe
Sdp.	Siedepunkt
Schmp.	Schmelzpunkt
t	Triplett
Tab.	Tabelle
tert.	tertiär
THF	Tetrahydrofuran
TMS	Tetramethylsilan
ZNS	Zentralnervensystem

Inhaltsverzeichnis

Vorwort1		10	
1	Einlei	itung und Problemstellung	12
1.1		Das Prinzip des bioisosteren Ersatzes	12
1	.1.1	Isosterie	12
I	.1.2	Bioisosterie	13
1.2	2	K _v 7-Ionenkanäle als Angriffspunkt der Wirkstoffforschung	19
1	.2.1	Physiologische Bedeutung der K7-Kanäle	19 23
1	.2.3	Literaturbekannte K _v 7-Agonisten	25
1	.2.3.1	Retigabin-Analoga	25
1	.2.3.2	Oxindol- und Chinolon-Derivate	26
1	.2.3.5	Thiazol-5-carboxamide und 2 4-disubstituierte Pyrimidin-5-carboxamid-Derivate	27
1	.2.3.5	Benzamide und verwandte Derivate	29
1.3	3	Aufgabenstellung	32
2	N^2-M	ono-/Disubstituierte 5-Alkoxycarbonylamino-2,4-diaminopyrimidine	
	und il	nre bioisosteren Derivate	35
2.1		Einleitung	35
2.2	2	Literaturübersicht	36
2.3	3	Syntheseplanung	40
2.4	ŀ	Vorstufen	43
2	.4.1	Darstellung von 2,4-Dichlor-5-nitropyrimidin (23)	43
2	.4.2	Synthese von 2-Chlor-5-nitropyrimidin-4-amin (24) Darstellung von N ² -mono-/disubstituierten 5-Nitropyrimidin-2/4-diaminen (25)	44 45
2	.4.4	Versuche zur Synthese von Pyrimidin-2,4,5-triamin-Derivaten (21)	46
2.5	5	N ² -Mono-/Disubstituierte 5-Alkoxycarbonylamino-2,4-diaminopyrimidine	49
2	.5.1	Synthese von N ² -mono-/disubstituierten 5-Alkoxycarbonylamino-2,4- diaminopyrimidinen (26)	49
2	.5.2	Eigenschaften der N ² -mono-/disubstituierten 5-Alkoxycarbonylamino-2,4- diaminopyrimidine 26	51
2.6	5	N ² -Mono-/Disubstituierte 5-Acylamino-2,4-diaminopyrimidine	57
2	.6.1	Synthese von N ² -mono-/disubstituierten 5-Acylamino-2,4-diamino-	
2	.6.2	Eigenschaften der N ² -mono-/disubstituierten 5-Acylamino-4,5-diamino- pyrimidine 27	57
2.7	7	N ² -Mono-/Disubstituierte 2,4-Diamino-5-ureidopyrimidine	63
2	.7.1	Synthese von N ² -mono-/disubstituierten 2,4-Diamino-5-ureido- pyrimidinen (28)	63
2	.7.2	Eigenschaften der N ² -mono-/disubstituierten 2,4-Diamino-5-ureido- pyrimidine 28	64
3	Weite	erführende Untersuchungen an 5-(Alkoxy)acylaminopyrimidinen	68
3.1		N ⁴ -Mono-/Disubstituierte 5-Acylamino-4-amino-2-(4-fluorbenzylamino)-	(0
3	11	Einleitung	68 68
3	.1.2	Literaturübersicht und Syntheseplanung	<u>69</u>
3	.1.3	Vorstufen	71

3.1.3.1 3.1.3.2 3.1.4	N-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin (39) N ⁴ -Mono-/Disubstituierte N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamine (32) Versuche zur Synthese von N ⁴ -mono-/disubstituierten 4-Amino-5- ethoxycarbonylamino-2-(4-fluorbenzylamino)pyrimidinen (31) und	71 72
	Darstellung von N ⁴ -mono-/disubstituierten 4-Amino-2-(4-fluorbenzylamino)-5-	
215	propionamidopyrimidin-hydrochloriden (41) $\frac{1}{44}$	74
3.1.5	5-propionamidopyrimidin-hydrochloride 41	77
3.2	Ethyl[4-alkoxy-2-(4-fluorbenzylamino)pyrimidin-5-yl]carbamate	79
3.2.1	Einleitung	79
3.2.2	Literaturübersicht und Syntheseplanung	79
3.2.3 3.2.4	Darstellung von Ethyl[4-alkoxy-2-(4-fluorbenzylamino)pyrimidin-5-yl]-	82
3.2.5	Eigenschaften der Ethyl[4-alkoxy-2-(4-fluorbenzylamino)-pyrimidin-5-yl]- carbamate 42	84
3.3	Alkyl[4-amino-2-(benzylsulfanyl)pyrimidin-5-yl]carbamate	86
3.3.1	Einleitung und Syntheseplanung	86
3.3.2	Vorstufen	87
3.3.2.1	5,6-Diaminopyrimidin-2(1 <i>H</i>)-thion (53)	87
3.3.2.2	2-(Benzylsulfanyl)pyrimidin-4,5-diamin (52)	88
3.3.3	Darstellung von Alkyl[4-amino-2-(benzylsulfanyl)pyrimidin-5-yl]- carbamaten (51)	89
3.3.4	Eigenschaften der Alkyl[4-amino-2-(benzylsulfanyl)pyrimidin-5-yl]- carbamate 51	90
3.4	<i>N</i> -[2-(Aralkylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]benzamide	92
341	Einleitung und Synthesenlanung	92
3.4.2	Darstellung von <i>N</i> -[2-(Benzylsulfanyl)-6-oxo-1,6-dihydro-pyrimidin-5-yl]- benzamid (57a)	95
3.4.3	Synthese von Ethyl[2-(benzylsulfanyl)-6-oxo-1,6-dihydro-pyrimidin-5-yl]- carbamat (55)	96
3.4.4	Weiterführende Untersuchungen der Ringtransformationsreaktionen von	
	4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4 <i>H</i>)-on (60)	98
3.4.4.1	Einleitung	98
3.4.4.2	Mikrowellenunterstütze Synthesen	98
3.4.4.3	Mikrowellenunterstützte Synthese von <i>N</i> -[2-(Aralkylsulfanyl)-6-oxo-1,6- dihydropyrimidin-5-yl]benzamiden (57)	100
3.4.4.4	Eigenschaften der <i>N</i> -[2-(Aralkylsulfanyl)-6-oxo-1,6-dihydro-pyrimidin-5-yl]- benzamide 57	101
3.4.4.5	Mikrowellenunterstützte Synthese von <i>N</i> -(6-Oxo-2-phenethyl-1,6- dihydropyrimidin-5-yl)benzamid (69)	104
3.4.5	Mechanistische Betrachtung der Umlagerungsreaktionen	106
4 2,4-Di	aminosubstituierte Pyrimidin-5-carboxamide und	
ihre h	eterozyklischen bioisosteren Derivate	110
4.1	2,4-Diaminosubstituierte Pyrimidin-5-carboxamide	110
4.1.1	Einleitung	110
4.1.2	Literaturübersicht und Syntheseplanung	111
4.1.5	Vorsturen	113
4.1.3.1	Synurese von 4-Amino-2-(metnylsulfanyl)pyrimidin-5-carbonitril (85)	115
4.1.3.2 / 1.2.2	Darstellung von 4-Amino-2-(aralkylamino)pyrimidin-5-carbonitrilen (84)	113
4.1.4	Darstellung von 2,4-diaminosubstituierten Pyrimidin-5-carboxamiden (82)	115

4.1	.5 Eigenschaften der 2,4-diaminosubstituierten Pyrimidin-5-carboxamide 82	_ 1
4.2	Heterozyklische bioisostere Analoga der 2,4-diaminosubstituierten Pyrimidin- 5-carboxamide	1
4.2	2.1 Einleitung	- 1
4.2	2.2 N ² -Benzyl-5-(5-methyl/phenyl-1,2,4-oxadiazol-3-yl)pyrimidin-2,4- diamine (90)	1
4.2	2.2.1 Syntheseplanung	1
4.2	2.2.2 Darstellung von 4-Amino-2-(benzylamino)-N'-hydroxypyrimidin-5- carboxamidin (93)	_ 1
4.2	2.2.3 Synthese von N^2 -Benzyl-5-(5-methyl/phenyl-1,2,4-oxadiazol-3-yl)pyrimidin- 2,4-diaminen (90)	1
4.2	E.2.4 Eigenschaften der N^2 -Benzyl-5-(5-methyl/phenyl-1,2,4-oxadiazol-3-yl)- pyrimidin-2,4-diamine 90	_ 1
4.2	N^2 -Aralkyl-5-(1 <i>H</i> -tetrazol-5-yl)pyrimidin-2,4-diamine (92)	_ 1
4.2	2.3.1 Darstellung von N^2 -Aralkyl-5-(1H-tetrazol-5-yl)pyrimidin-2,4-diaminen (92)	_ 1
4.2 4.2	 2.3.2 Eigenschaften der N²-Aralkyl-5-(1H-tetrazol-5-yl)pyrimidin-2,4-diamine 92	_ 1
5	3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amine	_1
5.1	Einleitung]
5.2	Literaturübersicht	_ 1
5.3 5.3 5.3	Syntheseplanung und Vorstufen8.1N-Alkyl(phenyl)-5-nitro-4-thiocyanatopyrimidin-2-amine (114)8.25-Nitropyrimidin-2,4-diamine mit unterschiedlicher N²- und	_ 1 _ 1
	N ⁴ -Substitution (115A) (115B)	_ 1
5.2	3.3 5-Nitropyrimidin-2,4-diamine mit identischer N ² - und N ³ -Substitution (115B)	-
5.4	Synthese der 3 <i>H</i> -[1,2,3]Triazolo[4,5- <i>d</i>]pyrimidin-5-amin-Derivate	- 1
5.5	Eigenschaften der 3 <i>H</i> -[1,2,3]Triazolo[4,5- <i>d</i>]pyrimidin-5-amin-Derivate	_ 1
6	Abschließende Diskussion	_1
7	Experimenteller Teil	_1
7.1	Verzeichnis der Geräte und Analysenmethoden	
7.2	Allgemeine Arbeitsvorschrift	_ 1
7.3	Analytische Daten zu Kapitel 2	_ 1
7.4	Analytische Daten zu Kapitel 3	2
7.5	Analytische Daten zu Kapitel 4	2
7.6	Analytische Daten zu Kapitel 5	2
8	Zusammenfassung	_2
9	Summary	_2
10	Literaturverzeichnis	_2
11	Anhang	_2
11.1	Gefahrenmerkmale und Sicherheitsratschläge	-

Vorwort

Schmerz ist eine unangenehme Sinneswahrnehmung und entsteht dann, wenn mechanische, thermische, chemische oder elektrische Reize einen Schwellenwert überschreiten. Nach ihrer Ätiologie und Pathophysiologie lassen sich Schmerzen in die drei Typen *physiologischer Nozizeptorschmerz*, *pathophysiologischer Nozizeptorschmerz* und *neuropatischer Schmerz* einteilen.

Die normale physiologische Schmerzempfindung, die dem Organismus als Schutzfunktion dient, wird über Nervenfasern durch entsprechende schmerzhafte Stimuli vermittelt. Dieser physiologische Nozizeptorschmerz ist lebensnotwendig, um Verletzungen zu bemerken und einer dadurch hervorgerufenen Verstümmelung vorzubeugen. Der pathophysiologische Nozizeptorschmerz entsteht im Rahmen von Gewebeschädigungen oder Entzündungen und ist ein wichtiges Symptom vieler Erkrankungen. Häufige Ursachen von neuropathischen Schmerzen sind Schädigungen von peripheren Schädigung kann Nerven. Eine entsprechende beispielsweise durch durch Bandscheibenvorfall). Quetschung, Kompression (z.B. Krebserkrankung, Schlaganfall, Durchtrennung (z.B. infolge Amputation), Entzündung (z.B. bei Gürtelrose) oder metabolische Störungen (z.B. bei Diabetes mellitus) entstehen. Der neuropathische Schmerz ist abnormal, da er nicht im Dienst der Gefahrerkennung steht^[1-4].

Während sich pathophysiologische Nozizeptorschmerzen häufig gut mit den klassischen Schmerzmitteln aus den Gruppen der Opioid-Analgetika oder der nicht-steroidalen Antirheumatika (NSAR) therapieren lassen, gestaltet sich die Therapie von neuropathischen Schmerzen ungleich schwieriger. Mit einer medikamentösen Schmerztherapie ist in der Regel lediglich eine 50 bis 80% ige Schmerzreduktion möglich; eine Schmerzfreiheit kann fast nie erreicht werden. Bei allen medikamentösen Optionen sprechen 20 bis 40% nur unzureichend auf die Therapie an der Patienten (< 50% Schmerzreduktion, so genannte Nonresponder) oder leiden an nicht tolerierbaren Nebenwirkungen^[5]. Um die hohe Anzahl an Nonrespondern besser therapieren zu können, sind neue Schmerzmittel erforderlich, die mit möglichst neuartigen Wirkungsmechanismen weitere Therapieoptionen

ermöglichen sollen. In der jüngeren Vergangenheit wurde entdeckt, dass Substanzen, die neuronale Kaliumkanäle der Gruppe K_v7 öffnen, bei *neuropathischen Schmerzen* hochgradig wirksam sind.

Das Analgetikum **Flupirtin** ist der bisher einzige markteingeführte K_v 7-Agonist. Das Pyridin-Derivat Flupirtin dient in dieser Arbeit als Leitstruktur^{*}. Es sollen unter konsequenter Anwendung des Bioisosterieprinzips Pyrimidin-Analoga von Flupirtin hergestellt werden. Mit der vorliegenden Arbeit wird somit ein Beitrag zur Suche nach neuartigen Wirkstoffen zur Therapie von *neuropathischen Schmerzen* und anderer mit neuronaler Übererregbarkeit einhergehender Erkrankungen geleistet werden.

Im folgenden Abschnitt wird einerseits anhand von einigen Arzneistoffbeispielen auf das *Prinzip des bioisosteren Ersatzes* eingegangen. Andererseits sollen die *neuronalen K*_v7-*Ionenkanäle* als Angriffspunkt der Arzneimitteltherapie näher betrachtet werden.

^{*} Ein häufiger Ausgangspunkt bei der Suche nach einem neuen Arzneimittel ist die sogenannte Leitstruktur. Dies ist eine Substanz, welche zwar die erwünschte biologische Wirkung besitzt, aber in weiteren Faktoren (z.B. Wirkstärke, Selektivität, Nebenwirkungen oder pharmakokinetischen Eigenschaften) noch nicht die für einen Arzneistoff erforderlichen Anforderungen aufweist.

1 Einleitung und Problemstellung

1.1 Das Prinzip des bioisosteren Ersatzes

1.1.1 Isosterie

Der Begriff Isosterie wurde erstmals 1919 von dem amerikanischen Langmuir^[6] Physikochemiker eingeführt. Isostere (isoelektronische) Verbindungen besitzen eine identische Atom- und Gesamtelektronenzahl engeren Sinne). Sie zeichnen sich. falls die (Isosterie im Kernladungssummen übereinstimmen, durch eine auffallende Ähnlichkeit in ihren physikalischen Eigenschaften aus^[7].

Eine Erweiterung erfuhr das Konzept der Isosterie 1925 durch eine als *Grimmscher Hydridverschiebungssatz*^[8,9] bekannt gewordene Regel. Diese besagt, dass Atome durch Aufnahme von *n* Wasserstoff-Atomen (n = 1, 2, 3oder 4) die Eigenschaften der im Periodensystem um *n* Ordnungszahlen höheren Atome annehmen. Folglich entspricht ein Stickstoff-Atom einer CH-Einheit, ein Sauerstoff-Atom einer NH- bzw. CH₂-Einheit und das Fluor-Atom ist hydridisoster zu einer OH-, NH₂- bzw. CH₃-Gruppe.

In den 1930iger Jahren veröffentlichte Erlenmeyer einige detaillierte Studien über das Isosteriekonzept. Er definierte Isostere als Atome, Ionen oder Moleküle bei denen nur die periphere Elektronenschale (gleiche Gesamtzahl der Außenelektronen) identisch ist^[10]. Nach dieser klassischen Definition sind Benzen und Thiophen isostere Verbindungen. Erlenmeyer führte 1933 vergleichenden Studien hinsichtlich der physikalischen die ersten Eigenschaften von Benzen, Thiophen und Furan durch^[11]. Darüber hinaus konnte er erstmalig ein ähnliches biologisches Verhalten von Benzen und Thiophen beschreiben^[12]. Thiophen und Benzen wurden an Serum-Eiweiß (Schweine-Serum) gekoppelt und die Antikörperproduktion untersucht. Die induzierten spezifischen Antikörper banden gleichermaßen an die antigendeterminante Gruppe Benzen wie an Thiophen. Benzen und Thiophen besitzen also vergleichbare biologische Eigenschaften; sie verhalten sich bioisoster zueinander.

1.1.2 <u>Bioisosterie</u>

Unter dem Begriff *Bioisosterie* versteht man eine Erweiterung des Isosterie-Konzeptes. Es erfolgt ein Ersatz von Atomen oder Atomgruppen durch andere Funktionalitäten, welche die oben genannten Isosteriedefinitionen nicht vollständig erfüllen müssen, im Organismus aber eine ähnliche biologische Aktivität entfalten. Der bioisostere Ersatz von Atomen und funktionellen Gruppen war und ist eine der wichtigsten Strategien in der Arzneimittelforschung. Im Folgenden werden an einigen Arzneistoffbeispielen die Möglichkeiten des bioisosteren Austausches veranschaulicht.

In der Wirkstoffentwicklung werden häufig nach dem Auffinden einer Leitstruktur heteroatomare Reste, zyklische Strukturelemente oder funktionelle Gruppen ausgetauscht, um zu wirksameren oder besser verträglichen Wirkstoffen zu gelangen.

Für den Ersatz von Benzen durch Thiophen lassen sich eine Reihe von Beispielen finden. Ein prominentes Beispiel ist in der Gruppe der atypischen Neuroleptika^{*} zu finden.

Abb. 1-1: Beispiel für eine Benzen/Thiophen-Bioisosterie

Die beiden Vertreter **Clozapin** und **Olanzapin** verhalten sich bioisoster zueinander. Unter Erhalt der antipsychotischen Aktivität konnte der Benzen-Ring im Clozapin gegen Methylthiophen im Olanzapin ausgetauscht werden.

^{*} Atypische Neuroleptika sind u.a. dadurch charakterisiert, dass sie im Vergleich mit den älteren trizyklischen Neuroleptika sowie den Butyrophenonen und Diphenylbutylpiperidinen entweder kaum oder zumindest weniger extrapyrimidal-motorische Nebenwirkungen hervorrufen.

Olanzapin zeichnet sich gegenüber Clozapin durch eine deutlich verringerte Gefahr einer unter Umständen tödlich verlaufenden Agranulozytose aus. Bei Benzen/Thiophen-Bioisosterien ist jedoch zu beachten, dass aufgrund der niedrigeren Symmetrie des Thiophen-Ringes drei Annellierungsvarianten denkbar sind. Beim Beispiel Olanzapin kann die Annellierung des Thiophens formal so erfolgen, dass der Schwefel drei verschiedene Positionen in dem resultierenden trizyklischen System einnehmen kann. Somit sind für die drei Stellungsisomere unterschiedliche pharmakodynamische und pharmakokinetische Eigenschaften zu erwarten.

Meloxicam ist ein Beispiel für eine Pyridin/Thiazol-Bioisosterie. Ausgehend vom **Piroxicam** wurde der Pyridin-Ring durch einen Methylthiazol-Ring substituiert. Piroxicam ist ein unselektiver Hemmstoff beider Isoformen der Cyclooxygenase (COX). Meloxicam hemmt die COX-2 etwas stärker als die COX-1^[13], wodurch seltener gastrointestinale Komplikationen auftreten.

Abb. 1-2: Beispiel für eine Pyridin/Thiazol-Bioisosterie

Ein Beispiel für die Austauschbarkeit von Furan gegen Thiophen zeigt das Schleifendiuretikum **Azosemid**. Zusätzlich zum Austausch des Furan-Ringes wurde beim Azosemid im Vergleich zum **Furosemid** eine Carboxygruppe bioisoster durch Tetrazol ersetzt. Die Tetrazol/Carboxylat-Bioisosterie basiert auf den gemeinsamen physikochemischen Eigenschaften des Tetrazol-Restes und der Carboxyfunktion. Beide haben eine ähnliche Acidität.

Abb. 1-3: Beispiel für eine Carboxy/Tetrazol- und eine Furan/Thiophen-Bioisosterie

Besonders relevant für die vorliegende Arbeit ist die Möglichkeit einen Pyridin- gegen einen Pyrimidinkörper zu ersetzen. In der Gruppe der antibakteriell wirksamen Sulfonamide sind besonders häufig Pyrimidin-Derivate zu finden. Die meisten Sulfonamide sind Derivate des Sulfanilamids^{*}. Aufgrund der Struktur der Substitution am Sulfonamidstickstoff lassen sich die Sulfonamide in drei Wirkstoffklassen einteilen. Hierbei trägt das Stickstoffatom der Sulfonamidgruppe entweder einen nichtzyklischen Substituenten, einen Fünfring-Heterozyklus oder einen Sechsring-Heterozyklus. Das Sulfapyridin gehört zur letzten Gruppe und besitzt als N1-Substituenten einen Pyridinring. Durch (formalen) Ersatz des Pyridin- durch einen isosteren Pyrimidinsubstituenten gelangt man zum ebenfalls antibakteriell wirksamen Sulfadiazin.

Sulfapyridin

Sulfadiazin

Abb. 1-4: Beispiel für eine Pyridin/Pyrimidin-Bioisosterie

Ein sehr anschauliches Beispiel für die Bedeutung des bioisosteren Ersatzes in der Wirkstoffoptimierung ist die Entwicklungsgeschichte der H₂-

Sulfanilamid

Antihistaminika. **Burimamid** war der erste klinisch geprüfte H₂-Rezeptor-Antagonist. Das Imidazolylalkylthioharnstoff-Derivat erwies sich jedoch für eine Anwendung als Arzneistoff als zu wenig potent. Durch die Einführung einer Methylgruppe am Imidazolring und durch Ersatz einer Methylengruppe der Seitenkette durch eine bioisostere Thioetherfunktion wurde Metiamid entwickelt, das eine gute klinische Wirksamkeit aufwies. Die Entwicklung von Metiamid musste aber wegen des Auftretens von inakzeptablen Nebenwirkungen (Granulozytopenie) eingestellt werden. Die Vermutung, dass die Thioharnstoff-Gruppe für die Nebenwirkung verantwortlich war, Gruppe führte zum Ersatz dieser funktionellen durch eine Cyanoguanidingruppe. Dadurch stand 1976 mit dem Arzneistoff Cimetidin der erste H₂-Rezeptor-Antagonist zur Verfügung^[14].

Abb. 1-5: H₂-Antihistaminika

Abgeleitet vom Cimetidin entstanden seitdem vier weitere Arzneistoffe, deren gemeinsames Strukturmerkmal ein aromatisches oder heteroaromatisches Ringsystem mit einer basischen Funktion ist, welches über eine bewegliche Kette mit einer polaren Gruppe verknüpft ist.

Ranitidin besitzt einen Dimethylaminomethylfuran-Heterozyklus und anstelle des polaren Cyanoguanidin-Restes eine bioisostere Diaminonitroethen-Gruppe. Der Ersatz des Furan-Ringes im Ranitidin durch einen Thiazol-Ring führte zu **Nizatidin**. Sowohl Ranitidin als auch Nizatidin zeichnen sich gegenüber Cimetidin durch eine höhere Wirkstärke und ein günstigeres Nebenwirkungsprofil aus. **Famotidin** trägt eine Guanidinothiazol-Gruppe als Heteroaromat sowie ein Sulfonylamidin als polaren Molekülteil und verfügt über eine noch weiter erhöhte Wirkstärke^{*} und verlängerte Wirkdauer. **Roxatidinacetat** ist ein Prodrug, das als polare Gruppe ein Glykolsäureamid aufweist, dessen Hydroxylgruppe in acetylierter Form vorliegt. Im Gegensatz zu den anderen Arzneistoffen verfügt Roxatidinacetat über einen Piperidinomethylbenzen-Ring anstelle eines Fünfring-Heterozyklus. Weiterhin ist die Verknüpfung mit der polaren Gruppe über eine Etherfunktion neuartig.

Cimetidin hemmt mehrere Cytochrom- P_{450} -Isoenzyme und behindert damit den Abbau zahlreicher anderer Arzneistoffe. Die neueren H₂-Rezeptor-Antagonisten blockieren nicht das Cytochrom- P_{450} -Enzymsystem und beeinflussen somit nicht den Metabolismus anderer Arzneistoffe. Durch den systematischen Austausch von (hetero)aromatischen Systemen und funktionellen Gruppen gegen Bioisostere konnte Cimetidin zu Arzneistoffen mit weniger Interaktionen, erhöhter Wirkstärke und verlängerter Wirkdauer optimiert werden.

Die Geschichte der Arzneimittelforschung kennt eine Vielzahl von weiteren Beispielen, in denen die Anwendung des Bioisosterieprinzips zur Entdeckung und Optimierung von Arzneistoffen geführt hat. Tabelle 1-1 fasst häufig verwendete Beispiele für den bioisosteren Ersatz von Atomen bzw. funktionellen Gruppen zusammen[†].

^{*} Die übliche Tagesdosis beim peptischen Ulkus beträgt bei Cimetidin 800 mg, Ranitidin/Nizatidin 300 mg und Famotidin 40 mg.

[†] Für weitere Arzneistoffbeispiele soll an dieser Stelle auf entsprechende Übersichtsartikel verwiesen werden^[15-19].

Strukturen	Beispiele für bioisostere Gruppen
Substituenten	F, Cl, Br, I, CF ₃ , NO ₂
	Methyl, Ethyl, Isopropyl, Cyclopropyl, t-Butyl
	OH, SH, NH ₂ , OMethyl, N(Methyl) ₂
Brückenglieder	-CH ₂ -, -NH-, -O-
	-COCH ₂ -, -CONH-, -COO-
	>C=O, >C=S, >C=NH, >C=NOH, >C=NOAlkyl
Atome und Gruppen in	-CH=, -N=,
Ringen	-CH ₂ -, -NH-, -O-, -S-,
	-CH ₂ -CH ₂ -, -CH ₂ -O-, -CH=CH-, -CH=N-
Sonstige Gruppen	NHCOCH ₃ , SO ₂ CH ₃
	COOH, CONHOH, SO ₃ H, SO ₂ NH ₂ , Tetrazol
Vertauschungen	R_1 -CO-O R_2 , R_2 -CO-O R_1
	R_1 -CO-NH R_2 , R_2 -CO-NH R_1

Tab. 1-1:	Einige Beispiele für Möglichkeiten zum bioisosteren Austausch von Atomen
	bzw. Gruppen (modifiziert nach ^[20])

Im Rahmen der vorliegenden Arbeit soll das Konzept des bioisosteren Ersatzes auf das Analgetikum **Flupirtin** angewendet und Pyrimidin-Analoga hergestellt werden. Dies erscheint besonders vielversprechend, da das Bioisosteriekonzept bereits erfolgreich auf Flupirtin angewendet werden konnte. Durch den Ersatz des zentralen Pyridin- durch einen Benzenring wurde der potente K_v 7-Agonist **Retigabin** entdeckt.

Abb. 1-6: Flupirtin und das bioisostere Retigabin

In der Entwicklungsgeschichte der K_v 7-Agonisten kommen Flupirtin und dem bioisosteren Retigabin eine besondere Bedeutung zu, die im folgenden Abschnitt näher beleuchtet werden soll.

1.2 K_v7-Ionenkanäle als Angriffspunkt der Wirkstoffforschung

1.2.1 Einführung

Flupirtin wurde erstmalig 1970 in einem Patent^[21] der *Degussa Pharma* beschrieben und später im Rahmen einer umfangreichen Untersuchung von analgetisch wirksamen 2,3,6-Triaminopyridinen als vielversprechendster Vertreter identifiziert. Im Jahre 1985 konnte Flupirtin erfolgreich von der Fa. *Asta Medica AG* als Maleat-Salz (**Katadolon**®) auf dem deutschen Markt eingeführt werden.

Abb. 1-7: Flupirtin (Katadolon®)

Flupirtin ist in vielerlei Hinsicht ein einzigartiges Analgetikum. Chemisch betrachtet weist Flupirtin keine strukturelle Verwandtschaft zu anderen im Arzneischatz erhältlichen Schmerzmitteln auf. So ist weder eine Analogie zu den Analgetika vom Opioid-Typ noch zu den analgetisch wirksamen Verbindungen vom Typ der NSAR zu finden. Genauso wenig treten bei einer Therapie mit Flupirtin die klassischen Nebenwirkungen der Opioide oder NSAR auf. Beispielsweise konnte keine Abhängigkeit^{*}, atemdepressive oder ulzerogene Wirkung festgestellt werden^[23,24]. Zusätzlich zur starken analgetischen Wirkung[†] hat Flupirtin ausgeprägte muskelrelaxierende

^{*} Während bis vor kurzem keinerlei Abhänhigkeitspotential für Flupirtin bekannt war, wurde Anfang des Jahres 2009 ein Einzelfall einer Flupirtinabhängigkeit publiziert^[22].

[†] Die analgetische Wirkung von Flupirtin liegt im Haffner-, Elektroschmerz- und Randall-Selitto-Test (Entzündungsschmerz) zwischen den stärker wirksamen Substanzen Dextromoramid und Methadon einerseits und den schwächer wirksamen Substanzen Pethidin, Dextropropoxyphen, Codein, Phenacetin und Paracetamol andererseits. Im Vergleich zu Codein und Dextropropoxyphen ist Flupirtin bis zu viermal und zu Pethidin zweimal stärker wirksam. Die Wirksamkeit in Relation zu anderen Analgetika schwankt in Abhängigkeit zum Testmodell^[23].

Eigenschaften^{*}, die besonders bei der Behandlung von schmerzhaften Muskelverspannungen vorteilhaft sind.

Der Wirkungsmechanismus von Flupirtin war lange Zeit unbekannt. Nachgewiesen war jedoch, dass Flupirtin in therapeutischen Konzentrationen keine Affinität zu Opioid-Rezeptoren aufweist und die Wirkung auch nicht durch den Opioid-Antagonisten Naloxon antagonisierbar ist^[23,24]. Ferner hat Flupirtin nur in höheren Konzentrationen einen Einfluss auf den Arachidonsäure-Stoffwechsel, der aber in vivo von geringer Bedeutung ist^[26]. Eine Wirkung über die Benzodiazepin-Bindungsstelle konnte genauso ausgeschlossen werden^[27], wie ein Einfluss auf serotoninerge Mechanismen, da der 5-HT₂-Antagonist Cyproheptadin und der Tryptophan-Hydroxylase-Hemmer p-Chlorphenylalanin die analgetischen Eigenschaften von Flupirtin nicht beeinflussen^[24]. Als Wirkungsmechanismus wurde lange Zeit Schmerzwahrnehmung der über Modulation das eine absteigende noradrenerge-System angenommen^[28-30]. Eine genauere Untersuchung der Wirkung wurde aber nicht weiter verfolgt und erst ein Screeningbefund weckte neues Interesse an der Aufklärung des Wirkmechanismus.

In dem umfangreichen Screeningprogramm ADD[†] (antiepileptic drug development program) des U.S. National Institute of Health konnte für Flupirtin in verschiedenen Epilepsie-Modellen eine potente antiepileptische Wirkung nachgewiesen werden^[31]. Da Flupirtin sich zu diesem Zeitpunkt u.a. in Deutschland schon als Analgetikum im Handel befand, konnte in einer kleineren klinischen Studie schnell die Eignung von Flupirtin zur Behandlung von epileptischen Anfällen festgestellt werden. Flupirtin wurde somit als innovative Leitstruktur für neuartige Antiepiletika entdeckt. Durch umfangreiche Abwandlungen des Pharmakophors der Leitstruktur Flupirtin wurde 1993 das Retigabin entdeckt^[32]. Retigabin zeichnet sich im Vergleich

^{*} Die muskelrelaxierende Potenz ist vergleichbar mit der von Baclofen, Diazepam und Tetrazepam^[25].

[†] Die pharmakologische Wirksamkeit der bisher im Arzneischatz vorhandenen Antiepileptika wird überwiegend durch Blockade von Natrium- und Calciumkanälen sowie durch GABAerge Inhibition (durch Bindung der Substanzen an den GABA_A-Rezeptor oder durch Erhöhung der endogenen GABA-Konzentration im ZNS). Weitere Angriffspunkte für Antikonvulsiva sind NMDA- oder AMPA-/Kainat-Rezeptoren. Mit den vorhandenen Antiepileptika lassen sich 60 bis 80 % aller Patienten gut therapieren; etwa 30 % bleiben pharmakoresistent. Um pharmakoresistente Patienten besser behandeln zu können, sind neue Antikonvulsiva erforderlich. Diese sollen mit möglichst neuartigen Wirkmechanismen die Therapie vielfältiger gestalten.

zu Flupirtin durch eine bessere antiepileptische Wirkung bei reduzierter analgetischer Potenz aus.

Abb. 1-8: Retigabin

Daher wurde die Entwicklung von Flupirtin als Antiepileptikum zu Gunsten Retigabin eingestellt. In Tierversuchen konnte Retigabin von in verschiedenen Epilepsiemodellen eine vergleichbare Wirksamkeit wie die Antiepileptika Phenytoin, Carbamazepin gängigen und Valproat aufweisen^[33]. Die antikonvulsive Wirkung musste aber über einen neuartigen Wirkmechanismus erfolgen, da Retigabin nur in höheren Konzentrationen (100 µM) eine schwache Blockade von Natrium- und Calciumkanälen sowie des Kainat-Rezeptors verursacht^[34]. Es konnte auch eine gewisse Verstärkung der GABAergen Inhibition nachgewiesen werden. Diese lässt sich nicht durch Gabe des Benzodiazepin-Antagonisten Flumazenil aufheben und muss daher über eine andere Bindungsstelle am GABA_A-Rezeptor erfolgen. Die Verstärkung der GABAergen Inhibition war jedoch zu gering um die potente antikonvulsive Wirkung zu erklären^[33].

Schwarz und Mitarbeiter^[35,36] zeigten im Jahre 1994, dass der NMDA-Rezeptor an der muskelrelaxierenden Wirkung von Flupirtin beteiligt ist. Infolge dessen wurde seitdem immer wieder der NMDA-Rezeptor mit Verbindung gebracht. durch Flupirtin in Später wurde jedoch Rezeptorbindungsstudien nachgewiesen, dass Flupirtin in therapeutischen Konzentrationen keine relevante Affinität zum NMDA-Rezeptor zeigt^[37,38]. Da Flupirtin in seinen pharmakologischen Eigenschaften Ähnlichkeiten zu NMDA-Antagonisten aufweist, wurde ein indirekter NMDA-Antagonismus vermutet.

Durch die Verwendung der Patch-Clamp-Technik konnte *Rundfeldt*^[39] erstmalig über die Beteilung von neuronalen Kaliumkanälen am

Wirkungsmechanismus von Retigabin berichten, ohne die genaue Familie der beteiligten Kaliumkanäle zu kennen. *Kornhuber* und *Mitarbeiter*^[40,41] gelang es einen plausiblen Zusammenhang zwischen Kaliumkanal-Öffnung und indirektem NMDA-Antagonismus zu finden. Demnach sollte Flupirtin durch die Öffnung von neuronalen Kaliumkanälen das Ruhemembranpotential neuronaler Zellen stabilisieren und dadurch indirekt eine Hemmung des NMDA-Rezeptors bewirken^{*}. Die genaue Lokalisierung des Angriffspunktes gelang aber erst im Jahre 2000. Verschiedene Arbeitsgruppen konnten nahezu zeitgleich zeigen, dass Retigabin klonierte Kaliumkanäle der Familie K_v7 aktiviert, indem es die Spannungsabhängigkeit der K_v7-Kanäle in Richtung hyperpolarisierter Membranpotentiale verschiebt. Wenig später konnte auch für Flupirtin eine K_v7-aktivierende Wirkung nachgewiesen werden^[42-44].

Da Retigabin neben der Öffnung von K_v 7-Kanälen in höheren Konzentrationen noch Interaktionen mit anderen Rezeptoren wie die Verstärkung der GABAergen Inhibition und die Blockade von Natrium- und Calciumkanälen aufweist, stellte sich die Frage, ob die K_v 7-Kanal-Öffnung der Hauptwirkungsmechanismus ist. Im Vergleich zur Verstärkung der GABA-induzierten Chloridströme reicht bereits eine 30fach geringere Konzentration zur Öffnung der K_v 7-Kanäle aus^[43]. *Dost* und *Mitarbeiter*^[45] zeigten, dass die analgetische Wirksamkeit von Retigabin vollständig aufgehoben wird, wenn es zusammen mit dem selektiven K_v 7-Kanalblocker **Linopirdin** appliziert wird. Daher muss die K_v 7-Kanal-Öffnung als Hauptwirkungsmechanismus angesehen werden.

Die Erkenntnis, dass Flupirtin und Retigabin überwiegend durch die Öffnung von neuronalen Kaliumkanälen wirken, war gleichzeitig die Grundlage einer neuen Zielstruktur für die Wirkstoffforschung. Zum jetzigen Zeitpunkt ist Flupirtin der einzige markteingeführte K_v7-Kanal-Öffner, dessen Bedeutung als Analgetikum in den vergangenen Jahren zugenommen hat[†].

^{*} Unter physiologischen Bedingungen blockiert Mg²⁺ den Ionenkanal des NMDA-Rezeptors und verhindert die Aktivierung des Rezeptors und den Einstrom von Ca²⁺-Ionen. Erst bei Depolarisation der Zellmembran verlässt Mg²⁺ den Ionenkanal und erlaubt dann die Aktivierung des NMDA-Rezeptors.

[†] Seit Jahren nehmen die Verordnungen von Flupirtin kontinuierlich zu. Beispielsweise stiegen die Verordnungen im Jahr 2006 im Vergleich zum Vorjahr um 39.9%^[46].

In den vergangenen Jahren wurde intensiv auf dem Gebiet der K_v 7-Kanäle geforscht. Diese Forschung konzentrierte sich nicht nur auf die Suche nach K_v 7-Kanal-modulierenden Substanzen, sondern betraf auch die Funktionsweise und physiologische Bedeutung der K_v 7-Kanäle.

1.2.2 <u>Physiologische Bedeutung der K_v7-Kanäle</u>

Nach derzeitigem Kenntnisstand sind ca. 80 verschiedene Kaliumkanäle bzw. Kaliumkanaluntereinheiten bekannt, die in verschiedene strukturelle Gruppen eingeteilt werden. Die Familie der K_v 7-*Ionenkanäle*, nach alter Klassifikation *KCNQ-Kanäle*, umfasst bisher fünf Mitglieder (K_v7.1- K_v7.5 bzw. KNCQ1-5)^[47]. Sie werden zu den spannungsgesteuerten Ionenkanälen gezählt. Jeder Kanal setzt sich aus vier Untereinheiten zusammen, wobei sowohl Homo- als auch Heterotetramere gebildet werden.

K_v7.1 wird im Herzmuskel, in der Lunge, Niere, Leber, im Innenohr sowie im Gastrointestinal-Trakt exprimiert^[48]. Bei den anderen K_v7-Kanälen handelt es sich um neuronale Ionenkanäle, deren Bedeutung lange Zeit unbekannt war. Im Jahre 1998 entdeckten Wang und Mitarbeiter^[49], dass zumindest heteromere K_v7.2/7.3-Ionenkanäle einen Teil des morphologischen Korrelats den sogenannten M-Strom darstellen. Durch weiterführende Untersuchungen konnte auch für weitere Mitglieder der K_v7-Familie gezeigt werden, dass sie Einfluss auf den M-Strom haben^[50-53]. Bei diesem erstmals 1980 beschriebenen Kaliumstrom handelt es sich um einen spannungsabhängigen langsam aktivierenden und nicht inaktivierenden Kaliumionenstrom, der im zentralen und peripheren Nervensystem weit verbreitet ist^[54]. Der M-Strom lässt sich durch muskarinerge M1-Acetylcholinantagonisten inhibieren und wird selektiv durch Linopirdin und XE991 blockiert^[55-57]. Als nicht inaktivierender Kaliumstrom ist der M-Strom an der Regulierung des Feuerverhaltens im Subschwellenbereich^[58] und damit an der Regulierung der Erregbarkeit einer Vielzahl neuronaler Zellen beteiligt^[54]. Eine Aktivierung des M-Stroms hat daher eine erniedrigte Feuerrate der betroffenen Neuronen zur Folge^[59].

Abb. 1-9: Linopirdin und XE991 als selektive K_v7-Kanalblocker

Ein pathophysiologisches Merkmal von chronischen Schmerzen besteht in der Übererregbarkeit von Neuronen. Die Aktivierung von neuronalen K_v7-Kanälen führt über die Aktivierung des M-Stroms zu einer Hyperpolarisation der Zellmembran und somit zu einer Abnahme der elektrischen Erregbarkeit dieser Neuronen. Daher sind neuronale K_v7-Kanäle ein geeigneter Ansatzpunkt zur Behandlung von Schmerzen. Ferner sind K_v7.2/7.3 exprimierende Neurone der Hinterwurzelganglien an der Übertragung nozizeptiver Erregungen von der Peripherie ins Rückenmark beteiligt^[60]. Dementsprechend könnten neben den Indikationen neuropathische^[61] und chronische Schmerzen^[62] auch muskuläre^[63] und inflammatorische^[60]

Eine Aktivierung des M-Stroms und die damit verbundene reduzierte Erregbarkeit der betroffenen Neuronen stellt ebenfalls einen innovativen Forschungsansatz zur Therapie von pharmakoresistenten Epilepsieformen dar. Retigabin konnte in einer klinischen Phase II Studie die Eignung als Antiepileptikum unter Beweis stellen und im Jahre 2007 wurde unter dem Namen RESTORE (Retigabine Efficacy and Safety Trials for Partial Onset Epilepsy) eine klinische Phase III Studie mit über 800 Patienten gestartet^[33].

Darüber hinaus sind neuronale K_v 7-Kanäle ein denkbarer Angriffspunkt für die Therapie einer Vielzahl weiterer Erkrankungen, da die Übererregbarkeit von Neuronen mit weiteren Krankheitsbildern in Verbindung gebracht wird. Beispielsweise konnte für K_v 7-Agonisten ein therapeutisches Potential in den Indikationen Migräne^[64-66], Dystonie^[67,68], Harninkontinenz^[69], neurodegenerativen Erkrankungen^[70-74], Tinnitus^[75] und Angstzuständen^[76,77] nachgewiesen werden.

Aktuelle Forschungsanstrengungen beschäftigen sich mit der genauen Zuordnung von physiologischen und pathophysiologischen Effekten zu den einzelnen K_v 7-Subtypen^[78,79].

1.2.3 Literaturbekannte K_v7-Agonisten

Seit der Entdeckung des Wirkungsmechanismus von Retigabin im Jahre 2000 sind eine Vielzahl an K_v 7-Kanalöffner publiziert worden. Im Folgenden sollen die wichtigsten K_v 7-Kanalöffner und häufig vorkommende Funktionalitäten vorgestellt werden^{*}.

1.2.3.1 Retigabin-Analoga

Aufbauend auf der Struktur von Retigabin wurden in verschiedenen Patenten der Fa. Lundbeck weitere Derivatisierungen am zentralen Phenyl-Ring vorgenommen^[83-86].

Abb. 1-10: Beispiele für Retigabin-Analoga der Fa. Lundbeck^[83-86]

 $^{^*}$ Weitere Beispiele für literaturbekannte K_v7-Agonisten siehe unter Lit.^[80-82].

Die Variationen erstrecken sich auf sämtliche Ringsubstituenten, wobei auffällig ist, dass die Ethylcarbamat-Gruppe häufig durch verschiedene Anilid-Derivate ersetzt wurde. Ferner wurde die 4-Fluorphenyl-Gruppe durch heteroaromatische Ringsysteme substituiert. Beispielsweise sind anstelle des 4-Fluorphenylringes Thiophen-, Benzothiophen- und Benzofuran-Derivate beschrieben. Die Amino-Gruppe in Ringposition vier wurde gelegentlich durch einen annelierten Pyrrolidin-Ring rigidisiert. Weiterhin wurde die primäre Aminogruppe vielfältig variiert. Als Ersatz kommen dabei Alkyl-, Cyano-, Halogen- und Alkoxysubstituenten vor. In einigen Beispielen wurde die Aminogruppe durch Wasserstoff ersetzt, so dass ein Substituent in Ringposition zwei nicht zwingend erforderlich erscheint.

1.2.3.2 Oxindol- und Chinolon-Derivate

Das Oxindol-Derivat **BMS-204352** wurde als potenter Aktivator von verschiedenen homo- und heterotetrameren $K_v7.2$ -7.5-Kanälen entdeckt und in klinischen Studien bezüglich der Eignung zur Behandlung von *Schlaganfällen* untersucht^[87]. In einer klinischen Phase III Studie zeigte BMS-204352 allerdings keinen signifikanten therapeutischen Effekt^[88]. Interessanterweise weist das R-Enantiomer eine umgekehrte Wirkung auf und senkt die Öffnungswahrscheinlichkeit von K_v7 -Kanälen^[77].

Abb. 1-11: Der $K_v7.2$ -Agonist BMS-204352 und das $K_v7.2$ -antagonistische R-Enantiomer^[77,87]

Darüber hinaus wurden weitere **Oxindol-Derivate VI** mit $K_v7.2$ agonistischer Wirkung beschrieben^[89]. Durch formale Ringerweiterung wurden **Chinolon-Derivate VII** erschlossen, die ebenfalls potente $K_v7.2$ -Kanalöffner darstellen^[90].

Abb. 1-12: Weitere Oxindol- und ringerweiterte Chinolon-Derivate als K_v 7.2-Agonisten^[89,90]

Analog zu den Oxindol-Derivaten scheint ein elektronenziehender Substituent am Chinolon-Ring die K_v7.2-aktivierende Potenz günstig zu beeinflussen. Einzelne Derivate mit einer Trifluormethylgruppe am Chinolon-Ring haben unter den verwendeten Testbedingungen in vitro eine mit Retigabin vergleichbare K_v7.2-aktivierende Wirkung^[90].

1.2.3.3 Acrylamid-Derivate

Durch Hochdurchsatzscreening der Fa. Bristol-Myers Squibb wurde das Acrylamid-Derivat VIII als potenter K_v7.2-Kanalöffner identifiziert. VIII wies eine schlechte Löslichkeit (< 1 µg/mL in pH 6.5 Puffer) und Bioverfügbarkeit (ca. 6 % in Ratten und Hunden) auf. Daher wurde versucht, diese Leitstruktur durch umfangreiche Molekülvariationen in den Bereichen Löslichkeit, Bioverfügbarkeit und K_v7.2-Aktivität zu optimieren. Die publizierten Daten zu den Struktur-Aktivitäts-Beziehungen zeigen, dass sowohl die α,β -ungesättigte Amidgruppe als auch die S-Konfiguration für die Wirksamkeit essentiell sind. Ferner führt eine weitere N-Substitution zum Verlust der Wirkung. Das **Morpholinyl-Derivat** wurde IX als vielversprechender Vertreter identifiziert und konnte unter Erhalt der K_v7.2aktivierenden Wirkung eine verbesserte Löslichkeit (40 µg/mL in pH 6.5 Puffer) und eine exzellente Bioverfügbarkeit (80-100 % in Ratten, Hunden und Affen) aufweisen^[66,91].

Abb. 1-13: K_v7.2-agonistische Acrylamid-Derivate der Fa. Bristol-Myers Squibb^[91-93]

Eine weitere Verstärkung der K_v7.2-agonistischen Wirkung gelang durch die Einschränkung der Drehbarkeit des Morpholin-Ringes durch Annelierung des Morpholins an den Phenylsubstituenten zu **3,4-Dihydro-2***H***-benzo[1,4]oxazin-Verbindungen X**^[92].

Der Austausch der 3,4-Dihydro-2*H*-benzo[1,4]oxazin-Struktur gegen bioisostere Heterozyklen wie **Benzo[1,3]dioxolan XIa**, **2,3-Dihydrobenzofuran XIb** und **2,3-Dihydro-1***H***-indol XIc bewirkte eine abermalige Aktivitätssteigerung. Die Derivate XIb** und **XIc** weisen unter den verwendeten Testbedingungen eine gegenüber Retigabin um 50% gesteigerte $K_v7.2$ -aktivierende Wirksamkeit auf^[93].

1.2.3.4 Thiazol-5-carboxamide und 2,4-disubstituierte Pyrimidin-5carboxamid-Derivate

Im Rahmen von weiteren Untersuchungen der Fa. Bristol-Myers Squibb an Carboxamid-Derivaten wurden 2-arylsubstituierte **4-Trifluormethyl-thiazol-5-carboxamide XII** mit K_v7-agonistischer Wirkung gefunden. Diese Gruppe weist strukturell Ähnlichkeiten zu den Acrylamiden auf. Der trifluormethylsubstituierte Thiazol-Ring kann diesbezüglich als Ersatz für die Alken-Brücke zwischen der Carbonsäureamid-Gruppe und dem Phenylring betrachtet werden^[94]. In einem weiteren Patent wurde der Phenylring in 2Position erfolgreich durch einen Aminoalkylsubstituenten ersetzt^[95]. Abb. 1-14 zeigt die Grundstruktur dieser Substanzklasse und **XIII** als einen typischen Vertreter der alkylsubstituierten Derivate.

Abb. 1-14: $K_v7.2$ -agonistische Thiazol-5-carboxamide^[94,95]

Analog zu den **Acrylamiden** und **Thiazol-5-carboxamiden** konnte Bristol-Myers Squibb auch K_v 7-agonistische Carboxamid-Derivate mit Pyrimidinkern entwickeln. Für die 2,4-disubstituierten **Pyrimidin-5carboxamide XIV** wurde eine hochpotente K_v 7.2-agonistische Wirkung gefunden^[96]. Sämtliche Vertreter besitzen eine sekundäre oder tertiäre Aminogruppe in 2-Position und in 4-Position eine Cyclohexyl-, Trifluormethyl- oder Pyrrolidin-Substitution.

R¹ = Benzylamino, 4-Chlorbenzylamino, Morpholino, Pyrrolidino R² = Cyclohexyl, CF₃, Pyrrolidino R³ = F, CF₃

Abb. 1-15: 2,4,5-Substituierte Pyrimidin-Derivate als Öffner von neuronalen K_v 7.2-Kanälen^[96]

1.2.3.5 Benzamide und verwandte Derivate

Eine der ersten und am unfangreichsten untersuchten Gruppen von K_v7-Agonisten leitet sich von N-substituierten **Benzamiden** ab. Wissenschaftler der Fa. Icagen entdeckten mehrere *N*-(**Pyridin-3-yl**)**benzamide** mit EC₅₀-Werten an geklonten K_v7.2/7.3-Kanälen im submikromolarem Bereich. Weitere Derivatisierungen des Benzamidteils umfassten sowohl die Ringsubstitution als auch die Amidgruppe. Durch das Einführen von räumlich anspruchsvolleren Substituenten entstanden kettenverlängerte Derivate wie beispielsweise **XVII** und **XVIII**. Ferner wurde die Amidgruppe durch bioisostere Amidfunktionen ersetzt und dabei in bizyklische Systeme eingebunden. Die so entstandenen **Benzisoxazol-** und **Indazol-Derivate XIX** sind durch die Zyklisierung in ihrer Konformation eingeschränkt^[97,98].

Abb. 1-16: Beispiele für $K_v 7.2/7.3$ -agonistische Benzamide und verwandte Derivate^[97-99]

In einem Folgepatent^[99] sind weitere Beispiele für Pyridin/Pyrimidin-Bioisosterien zu finden. Es gelang den Pyridinteil der Benzamide gegen das isostere Pyrimidin zu ersetzen, ohne dass die K_v 7-agonistische Wirkung reduziert wurde. Das **Benzamid-Derivat XX** ist ein Beispiel für die *N*-(2-**Chlorpyrimidin-5-yl)benzamide**.

Die weitreichenden Untersuchungen der vergangenen Jahre konnten zeigen, dass die Öffnung von K_v 7-Kanälen ein vielversprechender Ansatzpunkt für die Behandlung von verschiedenen Erkrankungen darstellt, die mit neuronaler Übererregbarkeit einhergehen. Trotz der intensiven Forschung der vergangenen Jahre sind weiterhin neue K_v 7-Agonisten mit optimierten pharmakodynamischen und pharmakokinetischen Eigenschaften erforderlich. Dieser Bedarf führte zur Aufgabenstellung der vorliegenden Arbeit.

1.3 Aufgabenstellung

Im Mittelpunkt dieser Arbeit stehen neuartige Strukturmodifikationen des Analgetikums **Flupirtin**. Ziel war es, auf Basis des Bioisosterieprinzips weitere Analoga ausgehend vom Flupirtin-Gerüst herzustellen. Als zentraler Heterozyklus schien Pyrimidin aus mehreren Gründen besonders geeignet zu sein:

- Die Literatur kennt zahlreiche Beispiele, in denen Pyrimidin als Bioisoster von Pyridin verwendet wurde.
- Die biologischen Eigenschaften der 2,4-disubstituierten Pyrimidin-5carboxamide XIV (siehe Abschnitt 1.2.3.4) zeigen, dass 2,4,5substituierte Pyrimidin-Derivate eine geeignete Basis für potentielle K_v7-Agonisten darstellen*.
- Das direkte Pyrimidin-Analogon von Flupirtin (Zielstruktur) wurde bisher nicht in der Literatur beschrieben.

Im Rahmen der vorliegenden Arbeit sollte daher zunächst das Substitutionsmuster von Flupirtin beibehalten werden und als **Zielstruktur** das direkte Pyrimidin-Analogon von Flupirtin erstmalig hergestellt werden.

^{*} Ein Jahr nach dem Beginn der experimentellen Studien zu dieser Arbeit veröffentlichte die Fa. Lundbeck ein Patent, dass 2,4,5,6-substituierte Pyrimidin-Derivate beschreibt^[100]. Die Substanzen können als Retigabin-Analoga mit Pyrimidin-Kern aufgefasst werden. Auffällig ist im Vergleich zu den in Abschnitt 1.2.3.1 diskutierten Retigabin-Analoga, dass in Ringposition sechs eine Methylgruppe eingeführt wurde und ausschließlich Carboxamid-Derivate beschrieben werden.

 $R^1 = 4$ -Trifluormethylbenzylamino, Morpholino $R^2 = NH_2$, Methyl $R^3 = Alkyl$, Aralkyl

Abb. 1-17: Zielstruktur der vorliegenden Arbeit

Im Anschluss waren umfangreiche Strukturmodifikationen der Zielstruktur geplant. Hierzu sollte die Substitution in den Ringpositionen zwei, vier und fünf unter konsequenter Anwendung des Bioisosterieprinzips vielfältig variiert werden. Um dies zu ermöglichen, war die Etablierung von ergiebigen Syntheseverfahren für 2,4,5-substituierte Pyrimidin-Derivate erforderlich.

In Ringposition zwei bot es sich an, den 4-Fluorbenzylamin-Rest gegen verschiedene Alkyl-, Aryl- und Aralkylamine zu ersetzen. Aufgrund der bekannten NH-/CH₂-/S-Bioisosterie wurden Phenylethyl- und Aralkylsulfanyl-Derivate angestrebt (Variation A).

Durch den Ersatz der primären Aminogruppe durch sekundäre und tertiäre Aminogruppen sowie gegen eine Hydroxy- bzw. verschiedene Alkoxy-Gruppen sollten weitere Derivate erschlossen werden (Variation B).

Ferner war geplant, die Ethylcarbamat-Gruppe systematisch zu verändern und durch andere Carbamate und bioisostere Gruppen wie Anilide^{*} und Harnstoffe zu substituieren. In Analogie zu den im Abschnitt 1.2.3 beschriebenen Pyrimidin-5-carboxamid-Derivaten **XIV** sahen die geplanten Strukturvariationen auch die Herstellung von Carboxamid- und

^{*} *N*-Phenyl-substituierte Carboxamide werden auch Anilide genannt. Zur Wahrung der Übersichtlichkeit und zur besseren Abgrenzung zu Pyrimidin-5-carboxamiden wird im Rahmen der vorliegenden Arbeit der Begriff Anilide auch für *N*-Pyrimidin-5-yl-substituierte Carboxamide verwendet.

Hydroxamsäure-Derivaten vor. Weiterhin waren bioisostere Derivate mit Tetrazol- und 1,2,4-Oxadiazol-Substitution von Interesse (Variation C). Einen Überblick über die geplanten Strukturmodifikationen veranschaulicht Abb. 1-18.

Abb. 1-18: Übersicht über die angedachten Strukturmodifikationen

Ausgewählte Vertreter der hergestellten Verbindungen sollten in Zusammenarbeit mit der Firma **SCHWARZ PHARMA Deutschland GmbH** (ein Unternehmen der UCB Gruppe) auf analgetische und K_v 7-agonistische Wirksamkeit getestet werden.

2 N²-Mono-/Disubstituierte 5-Alkoxycarbonylamino-2,4-diaminopyrimidine und ihre bioisosteren Derivate

2.1 Einleitung

Wie bereits in der Aufgabenstellung erwähnt, sollten zunächst das direkte Pyrimidin-Analogon von **Flupirtin** erstmalig hergestellt und anschließend die N²- und N⁵-Substituenten umfangreich variiert werden. Diese Strukturmodifikationen betrafen neben der Synthese von weiteren Carbamat-Derivaten auch den Ersatz der 5-Alkoxycarbonylamino-Gruppe durch (bio)isostere Anilid- und Harnstoff-Substituenten. Abb. 2-1 zeigt eine Übersicht der für dieses Kapitel geplanten Zielverbindungen.

Abb. 2-1: Übersicht über die geplanten Strukturmodifikationen

2.2 Literaturübersicht

Pyrimidinderivate sind als Bestandteile der Nukleinsäuren von entscheidender Bedeutung für das Leben. Seit der Entdeckung des Pyrimidins im Jahre 1818^[101] besteht ein großes Interesse an diesem heterozyklischen System. Es wurden in der Folge eine Vielzahl an Pyrimidinderivaten als biologisch aktive Substanzen entdeckt. Die chemische Struktur und Reaktivität von Pyrimidinen war Gegenstand vieler synthetischer und theoretischer Untersuchungen und es sind verschiedenste Synthesestrategien für Pyrimidine entwickelt worden. Im Folgenden sollen einige für diese Arbeit relevante Literaturbeispiele für die Synthese von 5-(Alkoxy)acylaminopyrimidinen vorgestellt werden.

5-(Alkoxy)acylaminopyrimidine werden überwiegend durch Reaktion der entsprechenden 5-Aminopyrimidine mit geeigneten Carbonsäurechloriden, Carbonsäureanhydriden oder Chlorameisensäureestern hergestellt. Sind zusätzlich zur 5-Aminogruppe weitere Aminogruppen vorhanden, findet die (Alkoxy)acylierung zunächst an der 5-Aminogruppe statt. Zusätzliche Aminogruppen in 2-, 4- oder 6-Position lassen sich auch derivatisieren, es Bedarf aber hierfür deutlich drastischere Reaktionsbedingungen^[102].

 $Wilson^{[103]}$ zeigte im Jahre 1948, dass die Acetylierung von 2,5,6-Triaminopyrimidin-4-ol (1) an der 5-Aminogruppe erfolgt. Zur Bestätigung dieser Annahme wurde eine unabhängige Synthese von N-(2,4-Diamino-6hydroxypyrimidin-5-yl)acetamid (2) durch die Zyklisierung von Guanidin mit Ethyl-2-acetamido-2-cyanoacetat (3) durchgeführt. Beide Synthesewege lieferten identische Produkte.

Schema 2-1: Synthesen von N-(2,4-Diamino-6-hydroxypyrimidin-5-yl)acetamid (2)^[103]
Die Reaktion **5-Position** sich durch die bevorzugte in lässt Elektronenstruktur des Pyrimidinringes erklären. Da die π -Elektronendichte an den Stickstoffatomen des Pyrimidinringes erhöht ist, weisen die 2-, 4- und 6-Positionen ein Defizit an Elektronendichte auf. Im Pyrimidin sind die beiden Ring-Stickstoffatome "meta"-ständig angeordnet, daher ist der Einfluss auf die Elektronendichteverteilung größer als bei den anderen beiden Diazinen, dem Pyrazin und Pyridazin. Der geringere Mangel an Elektronendichte in 5-Position macht diese Ringposition zum bevorzugten Angriffspunkt für elektrophile Reaktionen^[104].

5-Alkoxycarbonylaminopyrimidine werden, wie auch die Anilid-Derivate, überwiegend durch die direkte Umsetzung von Chlorameisensäurestern oder Pyrocarbonaten mit 5-Aminopyrimidinen erhalten. Auch hier zeigt sich die deutlich höhere Reaktivität der 5-Aminogruppe im Vergleich zu den anderen Ringpositionen. So beschrieben *Leonard* und *Mitarbeiter*^[105], dass die Alkoxyacylierung bei der Umsetzung von Pyrimidin-4,5,6-triamin (4) mit Chlorameisensäureethylester ausschließlich in Ringposition fünf erfolgte.

Schema 2-2: Alkoxyacylierung von Pyrimidin-4,5,6-triamin (4)^[105]

Eine weitere Möglichkeit zur Synthese von 5-Alkoxycarbonylaminopyrimidinen bieten Umlagerungsreaktionen nach *Hofmann* oder *Curtius* in alkoholischer Lösung. Beispielsweise gelang *Urban* und *Schnider*^[106] die Umlagerung von 2,4-Dimethylpyrimidin-5-carboxamid (6) zum entsprechenden Methylcarbamat 7.

Schema 2-3: Umlagerung von 2,4-Dimethylpyrimidin-5-carboxamid (6)^[106]

In Anwesenheit einer ortho-ständigen Aminogruppe sind bei Umlagerungsreaktionen bevorzugt intramolekulare Ringschlüsse zu 8-Hydroxypurin-Derivaten zu erwarten, da das intermediär gebildete Isocyanat leicht mit der benachbarten Aminogruppe zyklisieren kann. Dornow und *Hinz*^[107] verschiedene Carbonsäureamide konnten (8) mit Natriumhypochlorit in Kalilauge zu den entsprechenden 8-Hydroxypurin-Derivaten 9 umlagern. Durch das Erhitzen von Carbonsäureaziden (10) in Xylol konnten ebenfalls 8-Hydroxypurin-Derivate (11) gewonnen werden.

Schema 2-4: Intramolekulare Zyklisierung von 4-Aminopyrimidin-5-carbonsäure-Derivaten zu 8-Hydroxypurinen^[107]

Seltener als durch direkte (Alkoxy)acylierungen werden 5-(Alkoxy)acylaminopyrimidine durch Ringschlussreaktionen synthetisiert. *Wetzel* und *Mitarbeiter*^[108] beschrieben die Darstellung einiger 4-Hydroxypyrimidinderivate (**14**) durch die Umsetzung des Natriumsalzes von Ethyl-2-(ethoxycarbonylamino)-2-formylacetat (**13**) mit verschiedenen Amidinen (**12**).

Schema 2-5: Umsetzung von Natrium-ethyl-2-(ethoxycarbonylamino)-2-formylacetat (13) mit Amidinen (12)^[108]

Während die Zyklokondensation eine Möglichkeit zur Darstellung von 5-Alkoxycarbonylamino-4-hydroxypyrimidinen bietet, sind Ringschlussreaktionen zur Synthese von 5-Alkoxycarbonylamino-4-aminopyrimidin-Derivaten zumeist Einzelbeobachtungen. So beschrieben *Bischoff* und *Mitarbeiter*^[109] beispielsweise den Ringschluss des Amidins **15** mit Natrium-2-cyano-2-[(methoxycarbonyl)-methylamino]ethenolat zu **16** in geringer Ausbeute von 2%.

Schema 2-6: Synthese eines 5-(Alkoxycarbonyl)methylamino-4-aminopyrimidins (16) durch eine Zyklisierungsreaktion^[109]

2.3 Syntheseplanung

In Hinblick auf die geplanten Strukturmodifikationen sollte eine geeignete Synthesestrategie entwickelt werden, in der eine weitreichende Verzweigung zu den verschiedenen Derivaten erst spät in der Reaktionsfolge stattfindet. Diese Syntheseoption sollte es ermöglichen, sowohl das direkte Pyrimidin-Analagon von Flupirtin herzustellen, als auch die N²-Substitution und den N⁵-Acylrest anschließend möglichst vielfältig zu variieren. Aufbauend auf den in der Literaturübersicht beschriebenen Synthesewegen kommen zur N²-mono-/disubstituierten von Synthese 5-(Alkoxy)acylamino-2,4diaminopyrimidinen Umlagerungs-, insbesondere **Ringschluss**und Acylierungsreaktionen in Betracht.

Schema 2-7: Mögliche Synthesetrategien zur Herstellung der geplanten Strukturmodifikationen durch Retrosynthese

Retrosynthetisch betrachtet sind die Zielverbindungen u.a. über die drei in Schema 2-7 dargestellten Synthesewege zugänglich. Eine Möglichkeit besteht in der Zyklisierung von substituierten Guanidinen (**18**) mit geeigneten 2-Acylamino-2-formylacetonitril-Derivaten (**19**). Dieser Weg weist jedoch den Nachteil auf, dass die Verzweigungen in dieser Synthesefolge bereits in den ersten Schritten der Eduktsynthesen auftreten.

Bei der zweiten dargestellten Möglichkeit sollen Carbonsäure-Derivate (20) wie Carbonsäureazide oder Carboxamide in alkoholischer Lösung direkt zum korrespondierenden Carbamat umgelagert werden. Das bei dieser Reaktion intermediär gebildete Isocyanat kann allerdings nicht nur mit dem Alkohol zum gewünschten Carbamat sondern auch mit der benachbarten Aminogruppe unter Ringschluss zu 8-Hydroxypurin-Derivaten reagieren. Um diesen Ringschluss zu verhindern, erfordert diese Synthesestrategie daher mit der Einführung und späteren Abspaltung einer Schutzgruppe zwei zusätzliche Syntheseschritte. Überdies beschränkt sich dieser Syntheseweg auf die Darstellung von Carbaminsäure-Derivaten.

beschriebenen Nachteile der Aufgrund der **Ringschluss**und Umlagerungsreaktionen wurde die Herstellung der Zielverbindungen deshalb durch die Derivatisierung von N²-mono-/disubstituierten Pyrimidin-2,4,5triaminen (21) angestrebt. Diese Synthesevariante zeichnet sich insbesondere durch den Vorteil aus, dass eine umfangreiche Strukturmodifikation erst in der abschließenden Reaktion erfolgt. Die Darstellung der Vorstufen 21 kann in Anlehnung an die Synthese von Flupirtinhydrochlorid^[110-112] ausgehend von 2,4-Dichlor-5-nitropyrimidin (23) erfolgen. Dies ist durch Chlorierung käuflichem 5-Nitrouracil (22) zugänglich. von Die gewünschten Substituenten in den Ringpositionen zwei und vier sollen anschließend schrittweise eingeführt werden. Die Nitrogruppe in 5-Stellung erleichtert hierbei die nukleophile Substitution der beiden Chloratome. Anschließend können die 5-Nitro-Derivate 25 reduktiv in die korrespondierenden 5-Amino-Vorstufen 21 überführt werden. Im letzten Syntheseschritt ist dann eine umfangreiche Funktionalisierung der reaktiven 5-Aminogruppe zu verschiedenen Carbamat- (26), Anilid- (27) und Harnstoffderivaten (28)

angedacht. Einen Überblick über die geplante Syntheseführung zeigt Schema 2-8.

Schema 2-8: Übersicht über die geplante Syntheseführung zur Darstellung der Zielstrukturen

2.4 Vorstufen

2.4.1 <u>Darstellung von 2,4-Dichlor-5-nitropyrimidin (23)</u>

2,4-Dichlor-5-nitropyrimidin (23) stellt eine wichtige Ausgangsverbindung für die Pyrimidin- und Purinchemie dar. Im Rahmen seiner Untersuchungen zur Synthese des Purins konnte $Isay^{[113]}$ 1906 erstmalig 2,4-Dichlor-5-nitropyrimidin (23) aus 5-Nitrouracil (22) herstellen. Die Chlorierung wurde mit einem Überschuss an Phosphoroxychlorid und einer katalytischen Menge rauchender Salzsäure in einem Bombenrohr durchgeführt. Die Ausbeute betrug lediglich 34-41%.

Im Jahre 1951 berichtete *Whittaker*^[114] von einer verbesserten Synthese von **23**. Durch den Einsatz von *N*,*N*-Dimethylanilin^{*} konnte er auf die Verwendung eines Bombenrohres verzichten und die Ausbeute auf 61-72% steigern.

Schema 2-9: Darstellung von 2,4-Dichlor-5-nitropyrimidin (23)

Das im Rahmen dieser Arbeit als Ausgangsstoff verwendete 2,4-Dichlor-5nitropyrimidin (23) wurde nach dieser optimierten Methode hergestellt. Hierzu wurde 5-Nitrouracil (22) in Gegenwart von *N*,*N*-Dimethylanilin und einem Überschuss an Phosphoroxychlorid für zwei Stunden unter Rückfluss erhitzt. Nach dem Abkühlen wurde das überschüssige Phosphoroxychlorid abdestilliert und der sirupöse Rückstand langsam unter Rühren auf Eis gegeben. Nach der Zerstörung des restlichen Phosphoroxychlorides wurde mit Diethylether extrahiert und das nach Verdampfen des Diethylethers anfallende dunkelbraune Rohöl destillativ gereinigt. Das auf diese Weise

^{*} Die katalytische Wirkung von *N*,*N*-Dimethylanilin auf die Chlorierung von Hydroxypyrimidinen mit POCl₃ war in der Zwischenzeit mehrfach publiziert worden^[115-117].

gewonnene Produkt **23** fiel in einer Ausbeute von 74% als hellgelbes Öl an, welches im Kühlschrank erstarrte.

2.4.2 <u>Synthese von 2-Chlor-5-nitropyrimidin-4-amin (24)</u>

Elektronenziehende Substituenten, insbesondere in 5-Position, erniedrigen die Elektronendichte an den anderen Kohlenstoffatomen des Pyrimidinringes, wodurch ein nukleophiler Angriff begünstigt wird. So reagiert 2,4-Dichlor-5-nitropyrimidin (23) unter sehr milden Bedingungen mit alkoholischer Ammoniaklösung zu 2-Chlor-5-nitropyrimidin-4-amin (24). Die Synthese von 2-Chlor-5-nitropyrimidin-4-amin (24) wurde in Anlehnung an die Methode von Isay^[113] durchgeführt, indem 2,4-Dichlor-5nitropyrimidin (23) in Ethanol gelöst und unter Eiskühlung 2M ethanolische Ammoniak-Lösung zugetropft wurde. Der entstandene Kristallbrei wurde abfiltriert und aus Ethanol umkristallisiert, wobei das gewünschte 2-Chlor-5nitropyrimidin-4-amin (24) in einer Ausbeute von 84 % resultierte^{*}.

Schema 2-10: Synthese von 2-Chlor-5-nitropyrimidin-4-amin (24)

Die Aminolyse geschieht unter diesen Reaktionsbedingungen nahezu selektiv in 4-Position. Für eine vollständige Substitution des zweiten Chloratoms ist es aufgrund der elektronenspendenden Eigenschaften der Aminogruppe erforderlich, den Reaktionsansatz auf 100 °C zu erhitzen^[113].

^{*} *Brown*^[118] beschreibt die Verwendung von wässriger Ammoniak-Lösung zur Synthese von 2-Chlor-5nitropyrimidin-4-amin (**24**). Eigene Untersuchungen führten aber im Vergleich zur Methode von *Isay* zu einem verunreinigten Produkt bei vergleichbarer Ausbeute.

2.4.3 <u>Darstellung von N²-mono-/disubstituierten 5-Nitropyrimidin-2,4-</u> <u>diaminen (25)</u>

Die Gewinnung der N²-mono-/disubstituierten 5-Nitropyrimidin-2,4-diamine 25 erfolgte nach einer modifizierten Methode von *OBrien* und *Mitarbeitern*^[119]. 2-Chlor-5-nitropyrimidin-4-amin (**24**) wurde in Ethanol suspendiert, mit zwei Äquivalenten Aminkomponente versetzt und für zwei Stunden unter Rückfluss erhitzt (Schema 2-11). Nach dem Abkühlen wurde der entstandene Niederschlag abfiltriert und aus Methanol umkristallisiert. Die N²-mono-/disubstituierten 5-Nitropyrimidin-2,4-diamine **25a-h** fielen in Ausbeuten von 69-93% als hellgelbe amorphe Pulver oder kristalline Verbindungen an.

Schema 2-11: Darstellung von N^2 -mono-/disubstituierten 5-Nitropyrimidin-2,4diaminen (25)

25	\mathbf{R}^1	\mathbf{R}^2	Ausbeute [%]
a	4-Fluorbenzyl	Н	81
b	Benzyl	Н	84
c	Benzyl	CH ₃	70
d	4-Methylbenzyl	Н	93
e	4-(Trifluormethyl)benzyl	Н	69
f	Phenyl	Н	92
g	2-Phenylethyl H		80
h	-(CH ₂) ₂ O(CH ₂) ₂ -	84	

Tab. 2-1: Hergestellte N^2 -mono-/disubstituierte 5-Nitropyrimidin-2,4-diamine (25)

Durch eine exemplarisch durchgeführte Röntgenstrukturanalyse von Verbindung **25a** konnte eindeutig bewiesen werden, dass bei der gewählten

Synthese ausgehend von 2,4-Dichlor-5-nitropyrimidin (23) zunächst das Chloratom in 4-Stellung und anschließend das Chloratom in 2-Stellung nukleophil substituiert wurde.

Abb. 2-2: Molekülstruktur von N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin (25a)

2.4.4 <u>Versuche zur Synthese von Pyrimidin-2,4,5-triamin-Derivaten (21)</u>

Die Reduktion der Nitrogruppe der 5-Nitropyrimidin-Derivate **25** sollte N²mono-/disubstituierte Pyrimidin-2,4,5-triamine (**21**) liefern, deren anschließende Derivatisierung zu den Zielverbindungen **26-28** geplant war. Der Einsatz von verschiedenen Reduktionsmitteln wie Eisen, Zink, Zinn(II)chlorid oder Natriumdithionit erbrachte aber stets dunkle, stark verunreinigte Öle, aus denen die angestrebten Vorstufen **21** nicht freigesetzt werden konnten.

Schema 2-12: Geplante Reduktion der 5-Nitropyrimidin-Derivate 25

Durch katalytische Hydrogenolyse mit molekularem Wasserstoff über Palladium-Aktivkohle konnte dünnschichtchromatographisch innerhalb von zwei Stunden eine quantitative Umsetzung der 5-Nitropyrimidine 25 nachgewiesen werden. Die methanolische Lösung der Pyrimidin-2,4,5triamine 21 verfärbte sich allerdings bereits binnen weniger Minuten von hellgelb über orange nach dunkelbraun. Ein Dünnschichtchromatogramm der die dunkelbraunen Lösung zeigte Entstehung verschiedener Zersetzungsprodukte. Der Einsatz von Dioxan oder Tetrahydrofuran als Lösungsmittel führte zu deutlich verlängerten Reaktionszeiten der Hydrogenolyse von bis zu 15 Stunden. Im Vergleich zu den Versuchen in Methanol konnte eine etwas höhere Stabilität der Pyrimidin-2,4,5-triamine 21 festgestellt werden. Da aber auch nach ca. einer Stunde stark dunkel verfärbte Lösungen entstanden, konnten die Reduktionsprodukte nicht isoliert werden. Diese Befunde stehen im Einklang mit Literaturberichten über verwandte Pyrimidin-2,4,5-triamine.

Schema 2-13: Oxidative Selbstkondensation von Pyrimidin-2,4,5-triaminen (29) zu Pyrimidopteridin-Verbindungen (30)^[120]

Goldner und *Carstens*^[120] erklärten die Problematik der schwierigen Isolierung von Pyrimidin-2,4,5-triamin-Derivaten (**29**) mit der raschen oxidativen Selbstkondensation von **29** zu dunklen, fluoreszierenden Pyrimidopteridin-Verbindungen (**30**). *Taylor* und *Mitarbeiter*^[121] haben entsprechende Selbstkondensationsprodukte von Pyrimidin-4,5-diaminen näher untersucht und gefunden, dass eine enolisierbare Gruppe in 2-Stellung Voraussetzung für die Ausbildung des Verbindungstyps **30** ist.

O'Brien und *Mitarbeiter*^[119] gelang die Isolierung einiger Pyrimidin-2,4,5triamine als Sulfatsalze. Auch *Goldner* und *Carstens*^[120] beschreiben die Isolierung von Pyrimidin-2,4,5-triaminen als Salze. Eigene Versuche zur Isolierung der N²-mono-/disubstituierten Pyrimidin-2,4,5-triamine **21** als Sulfate oder Hydrochloride waren jedoch nicht erfolgreich. Es erwies sich daher als vorteilhaft, die Reduktion durch katalytische Hydrierung in Dioxan oder Tetrahydrofuran durchzuführen und die Reduktionsprodukte ohne Isolierung direkt weiter zu den Zielstrukturen umzusetzen.

2.5 N²-Mono-/Disubstituierte 5-Alkoxycarbonylamino-2,4diaminopyrimidine

2.5.1 <u>Synthese von N²-mono-/disubstituierten 5-Alkoxycarbonylamino-</u> 2,4-diaminopyrimidinen (**26**)

Wie zuvor erwähnt, sind die N²-mono-/disubstituierte Pyrimidin-2,4,5triamine **21** instabile Zwischenstufen und wurden deshalb direkt nach Beendigung der Reduktion in die Zielverbindungen **26** überführt. Die Synthese der Carbamat-Derivate **26** begann mit der katalytischen Hydrogenolyse der 5-Nitropyrimidin-Derivate **25** in Dioxan^{*}. Das Ende der Reaktion konnte durch den Stillstand der Wasserstoffaufnahme festgestellt werden.

Nach vollständiger Reduktion wurde der Katalysator abfiltriert und das Filtrat ohne weitere Aufarbeitung direkt umgesetzt. Hierzu wurden 1.1 Äquivalente der betreffenden Chlorameisensäureester in wenig Dioxan gelöst und über einen Zeitraum von fünf Minuten tropfenweise zum Filtrat hinzugefügt. In vielen Fällen zeigte eine Niederschlagsbildung der in Dioxan 5-Alkoxycarbonylaminopyrimidin-hydrochloride unlöslichen 26A die einsetzende Reaktion an. Der Erfolg der Reaktion war weiterhin im Infrarot-Spektrum an der intensiven Carbonyl-Absorptionsbande der entstandenen Carbamat-Funktionalität bei 1720-1750 cm⁻¹ erkennbar. Nach halbstündigem Rühren bei Raumtemperatur wurde der Niederschlag abfiltriert, mit Diethylether gewaschen und aus Methanol/Diethylether umkristallisiert. Auf diese Weise resultierten die Verbindungen 26Aa-h in Ausbeuten von 41 bis 64%.

^{*} Ausgangswasserstoffüberdruck: 2 bar, Katalysator: Palladium-Aktivkohle (10% Pd auf Kohlenstoff).

Schema 2-13: Darstellung von N^2 -mono-/disubstituierten 5-Alkoxycarbonylamino-2,4diaminopyrimidinen (**26**)

Bei zwei Vertretern konnte zwar infrarotspektroskopisch die Entstehung der (C=O)-Valenzschwingung des Carbamats beobachtet werden, die Bildung eines Niederschlags des Hydrochlorids blieb jedoch aus. In diesen Fällen wurden 1.3 Äquivalente Triethylamin zur Bindung der freigesetzten Salzsäure zugesetzt. Das Triethylammoniumchlorid wurde abfiltriert und das Filtrat vermindertem Druck Nach unter eingeengt. einer die säulenchromatographischen Reinigung konnten 5-Alkoxycarbonylaminopyrimidin-Basen 26Ba,b in Ausbeuten von 28 bzw. 35% isoliert werden.

26	\mathbf{R}^{1}	\mathbf{R}^2	\mathbf{R}^{3}	Ausbeute [%]
Aa	4-Fluorbenzyl	Н	Ethyl	59
Ab	4-Fluorbenzyl	Н	Propyl	53
Ac	4-Fluorbenzyl	Н	Butyl	64
Ad	4-Fluorbenzyl	Н	Isobutyl	47
Ae	4-Methylbenzyl	Η	Ethyl	51
Af	4-Methylbenzyl	Н	Propyl	41
Ag	4-Methylbenzyl	Н	Butyl	57
Ah	4-Methylbenzyl	Н	Isobutyl	49
Ba	Phenyl	Н	Propyl	28
Bb	-(CH ₂) ₂ O(CH ₂)) ₂ -	Ethyl	35

Tab. 2-2:Hergestellte N^2 -mono-/disubstituierte 5-Alkoxycarbonylamino-2,4-
diaminopyrimidine (**26**)

2.5.2 <u>Eigenschaften der N²-mono-/disubstituierten 5-Alkoxycarbonyl-</u> amino-2,4-diaminopyrimidine **26**

Die im Rahmen dieser Arbeit hergestellten N²-mono-/disubstituierten 5-Alkoxycarbonylamino-2,4-diaminopyrimidine **26** sind farblose bis hellgelbe amorphe Feststoffe, welche sich bei Lagerung im Kühlschrank über zwei Jahre als lagerbeständig erwiesen.

Im Infrarot-Spektrum dieser Verbindungsklasse befinden sich im Bereich von 3000 bis 3400 cm⁻¹ mehrere Banden, welche den (NH)-Valenzschwingungen zuzuordnen sind. Des Weiteren ist eine ausgeprägte Absorptionsbande der Carbonylvalenzschwingung bei 1715-1750 cm⁻¹ zu beobachten.

Abb. 2-3: IR-Spektrum (KBr) von Verbindung 26Aa

Anhand der NMR-Spektren^{*} der Zielstruktur (26Aa) wird auf einige Besonderheiten der 5-Alkoxycarbonylaminopyrimidine 26 hingewiesen. Im ¹H-NMR-Spektrum (Abb. 2-4) erscheinen die Protonen der Ethyl-Gruppe des Carbamats (a und b) erwartungsgemäß als Triplett und Quartett, wobei die Methylen-Protonen durch den elektronenziehenden Effekt des Sauerstoffatoms tieffeldverschoben sind. Die benzylischen Protonen (c)beobachtet man aufgrund einer Kopplung mit dem Proton der benachbarten Aminogruppe (i) als Dublett bei einer chemischen Verschiebung von 4.65 ppm. Analog ist das NH-Proton (i) der Fluorbenzylamino-Gruppe als Triplett zu finden und kann daher einfach von den beiden anderen NH-Singuletts unterschieden werden. Das Singulett der NH_2 -Gruppe (d) zeigt sich bei 5.15 ppm. Während die Resonanzsignale der aromatischen Protonen des 4-Fluorbenzylamino-Substituenten (e) als Multiplett^{\dagger} bei 7.11-7.53 ppm zu finden sind, ist das aromatische Proton (f) an Ringposition 6 des Pyrimidins als Singulett bei 7.56 ppm sichtbar. Eine eindeutige Zuordnung der NH-Singuletts des Carbamats und des Ammoniumsalzes (g und h) bei 8.91 und 9.28 ppm ist anhand der vorliegenden spektroskopischen Daten nicht möglich.

^{*} Gelöst in DMSO- d_6 erfolgte eine schnelle Zersetzung, so dass zur Aufnahme der NMR-Spektren eine zügige Messung erforderlich war.

[†] Mit einer Spinquantenzahl von I = $\frac{1}{2}$ und einer natürlichen Häufigkeit von 100% ist ¹⁹F im Gegensatz zu ¹³C (I = $\frac{1}{2}$, natürliche Häufigkeit 1.1%) zu deutlich sichtbaren heteronuklearen Kopplungen mit ¹H befähigt. Es ergeben sich somit komplexere Aufspaltungsmuster.

Abb. 2-4: Ausschnitt aus dem ¹H-NMR-Spektrum von Verbindung **26Aa** in DMSO- d_6

Beispielhaft für die 5-Alkoxycarbonylaminopyrimidine ist in Abb. 2-5 das ¹³C-NMR-Spektrum der Substanz **26Aa** dargestellt. Die in der ¹³C-NMR-Spektroskopie üblichen ¹³C-¹⁹F-Kopplungen, die über bis zu vier Bindungen detektierbar sind, lassen sich auch im vorliegenden Fall beobachten. Für das zum Fluoratom α -ständige Kohlenstoffatom (*12*) ist eine für direkte C-F-Bindungen typische Kopplungskonstante von ¹*J*_{C,F} = 242.8 Hz zu ermitteln. Die Dubletts der weiteren Kohlenstoffatome der 4-Fluorbenzylamin-Gruppe (*4*, 7 und 8) lassen sich ebenfalls anhand der Kopplungskonstanten (²*J*_{C,F} = 21.3 Hz, ³*J*_{C,F} = 8.1 Hz, ⁴*J*_{C,F} = 2.9 Hz) eindeutig zuordnen. Während sich das quartäre Signal des C5-Kohlenstoffes des Pyrimidins bei 121.6 ppm im erwarteten Bereich befindet, gestaltet sich die Zuordnung der quartären Signale der Pyrimidinkohlenstoffe in Ringposition zwei und vier sowie des Carbonyls schwieriger und bedarf zweidimensionaler NMR-Methoden.

Abb. 2-5: Ausschnitt aus dem ¹³C-NMR-Spektrum von Verbindung **26Aa** in DMSO-d₆

Das HMBC-Spektrum liefert Informationen zu Nachbarschaftsverhältnissen von Atomen, da Kopplungen zwischen Wasserstoff- und Kohlenstoffatomen über zwei, drei und vier Bindungen sichtbar sind. Abb. 2-6 zeigt einen Ausschnitt aus dem HMBC-Spektrum von Verbindung 26Aa. Das Kreuzsignal des Quartetts der Protonen der Ethylgruppe (b) zum Kohlenstoffatom bei 150.4 ppm beweist, dass es sich bei diesem Kohlenstoffatom um das Carbonylkohlenstoffatom (10) handeln muss. Die Pyrimidinkohlenstoffe sind über mehr als vier Bindungen von den Methylenprotonen entfernt und können folglich kein entsprechendes Kreuzsignal verursachen. Die Korrelation zwischen den benzylischen Protonen (c) und dem Kohlenstoffatom bei 149.0 ppm ermöglicht die Zuordnung zum C2-Pyrimidinkohlenstoff (9). Nach dem Ausschlussprinzip muss es sich bei dem Kohlenstoffatom bei 158.0 ppm um das C4-Pyrimidinkohlenstoffatom (11) handeln.

Abb. 2-6: Ausschnitt aus dem HMBC-Spektrum von Verbindung 26Aa in DMSO-d₆

Die Kreuzsignale des Pyrimidin-Protons (f) sind Abb. 2-7 zu entnehmen. Neben Korrelationen zu den Kohlenstoffatomen in Ringposition zwei (9)und vier (11) ist ein Kreuzsignal zum Carbonylkohlenstoff (10) zu beobachten. Aufgrund dieser Korrelation kann eine Alkoxyacylierung an der Aminogruppe in Ringposition vier ausgeschlossen werden^{*}.

Abb. 2-7: Ausschnitt aus dem HMBC-Spektrum von Verbindung 26Aa in DMSO-d₆

Letztlich lieferte die kristallographische Untersuchung von Verbindung **26Bb** einen eindeutigen Beweis für die Lage der Alkoxycarbonylamino-Gruppe in Ringposition fünf (Abb. 2-8).

^{*} Korrelationen über fünf Bindungen sind im HMBC-Spektrum nicht sichtbar.

Abb. 2-8: Molekülstruktur von Ethyl(4-amino-2-morpholin-4-ylpyrimidin-5-yl)carbamat (**26Bb**)

2.6 N²-Mono-/Disubstituierte 5-Acylamino-2,4-diaminopyrimidine

2.6.1 Synthese von N²-mono-/disubstituierten 5-Acylamino-2,4-diaminopyrimidinen (**27**)

N²-mono-/disubstituierten 5-Acylamino-2,4der Die Darstellung diaminopyrimidine 27 erfolgte in analoger Weise zu den Carbamat-Derivaten 26A. Hierfür wurden die 5-Nitropyrimidine 25 zunächst einer katalytischen Hydrogenolyse in Dioxan unterzogen^{*}. Anschließend wurden die in Dioxan gelösten N²-mono-/disubstituierte Pyrimidin-2,4,5-triamine **21** ohne den Einsatz einer Hilfsbase sofort tropfenweise mit den in Dioxan Säurechloriden gelösten versetzt. Im Gegensatz zu den 5-Alkoxyacylaminopyrimidinen 26 konnte bei sämtlichen Vertretern der 5-Acylaminopyrimidine 27 sofort bei der Zugabe des Säurechlorides die Bildung eines Niederschlags beobachtet werden. Die Entstehung einer Carbonyl-Absorptionsbande im Infrarot-Spektrum bei 1670-1690 cm⁻¹ bestätigte die erfolgreiche Umsetzung. Nach halbstündigem Rühren bei Raumtemperatur wurde der farblose Niederschlag abfiltriert und mit Diethylether gewaschen. Nach Umkristallisation aus Methanol/Diethylether konnten die 5-Acylaminopyrimidin-hydrochloride 27a-p in Ausbeuten von 57-80% gewonnen werden.

Schema 2-14: Darstellung der N²-mono-/disubstituierten 5-Acylamino-2,4-diaminopyrimidine 27

^{*} Ausgangswasserstoffüberdruck: 2 bar, Katalysator: Palladium-Aktivkohle (10% Pd auf Kohlenstoff).

27	\mathbf{R}^1	\mathbf{R}^2	\mathbb{R}^3	Ausbeute [%]
a	4-Fluorbenzyl	Н	Methyl	64
b	4-Fluorbenzyl	Н	Ethyl	69
c	4-Fluorbenzyl	Н	Propyl	65
d	4-Fluorbenzyl	Н	Butyl	70
e	4-Fluorbenzyl	Н	Cyclopentylmethyl	80
f	4-Fluorbenzyl	Н	3-Methoxyphenyl	58
g	4-Fluorbenzyl	Н	3-Methylphenyl	59
h	Benzyl	Н	Methyl	59
i	Benzyl	Н	Ethyl	60
j	Benzyl	CH ₃	Ethyl	62
k	4-Methylbenzyl	Н	Methyl	61
1	4-Methylbenzyl	Н	Ethyl	63
m	4-(Trifluormethyl)benzyl	Н	Ethyl	58
n	Phenyl	Н	Ethyl	57
0	2-Phenylethyl	Н	Ethyl	63
р	-(CH ₂) ₂ O(CH ₂) ₂ -		Ethyl	68

Tab. 2-3:Hergestellte N^2 -mono-/disubstituierte 5-Acylamino-2,4-diaminopyrimidin-
Derivate (27)

2.6.2 <u>Eigenschaften der N²-mono-/disubstituierten 5-Acylamino-4,5-</u> <u>diaminopyrimidine 27</u>

Die als farblose amorphe Pulver anfallenden 5-Acylaminopyrimidine stellen stabile Verbindungen dar, welche bei Lagerung über zwei Jahre keine Anzeichen von Zersetzung erkennen ließen.

Im IR-Spektrum ist diese Verbindungsklasse durch eine Carbonyl-Absorptionsbande bei 1665-1700 cm⁻¹ und eine (C=N)-Valenzschwingung bei ca. 1650 cm⁻¹ charakterisiert. Weiterhin sind mehrere Banden im Bereich von 2600-3400 cm⁻¹ zu beobachten, die durch (NH)-Valenzschwingungen und die Schwingungen des Ammonium-Salzes verursacht werden.

Abb. 2-9: IR-Spektrum (KBr) von Verbindung 27b

Beispielhaft für die Substanzklasse der 5-Acylaminopyrimidine **27** sollen die NMR-Spektren von Verbindung **27b** näher betrachtet werden. Im ¹H-NMR-Spektrum erscheinen die Protonen der Propionamid-Gruppe (*a* und *b*) als Triplett und Quartett. Analog zu dem bereits erwähnten ¹H-NMR-Spektrum des Carbamats **26Aa** zeigen sich die benzylischen Protonen (*c*) als Dublett bei 4.53 ppm. Im Bereich von 7.14-7.46 ppm liefern die aromatischen Protonen des 4-Fluorbenzylamino-Substituenten (*d*) ein Multiplett, während das aromatische Pyrimidin-Proton (*e*) bei 8.00 ppm tieffeldverschoben ist. Am weitesten im tiefen Feld sind die stickstoffgebundenen Protonen zu finden. Während das Signal des Ammoniumsalzes (*i*) bei 12.33 ppm erscheint, lässt sich das Signal der NH₂-Gruppe (*g*) aufgrund der Signalintensität dem Singulett bei 8.53 ppm zuweisen. Eine Zuordnung der NH-Singuletts des Amids (*h*) und der 4-Fluorbenzylamino-Gruppe (*f*) ist anhand eines ¹H-NMR-Spektrums nicht möglich und wurde anhand eines HMBC-Spektrums näher untersucht (siehe unten).

Abb. 2-10: Ausschnitt aus dem ¹H-NMR-Spektrum von Verbindung **27b** in DMSO-d₆

Das ¹³C-NMR-Spektrum der Substanz **27b** ist in Abb. 2-11 dargestellt. Die Kohlenstoffatome des Propionamids (*1* und *2*) liefern Signale bei 9.2 und 28.5 ppm. Das benzylische Kohlenstoffatom (*3*) erscheint bei einer chemischen Verschiebung von 43.0 ppm. Die aromatischen Kohlenstoffatome (*5*, *6* und *11*) zeigen sich aufgrund der ¹³C-¹⁹F-Kopplungen als Dubletts und können anhand der Kopplungskonstanten (¹*J*_{C,F} = 242.8 Hz, ²*J*_{C,F} = 21.3 Hz, ³*J*_{C,F} = 8.1 Hz) den Kohlenstoffatomen bei 115.1, 129.5 und 161.3 ppm zugeordnet werden. Das Carbonylkohlenstoffatom (*12*) weist ein Signal mit der chemischen Verschiebung 173.3 ppm auf.

Abb. 2-11: Ausschnitt aus dem ¹³C-NMR-Spektrum von Verbindung **27b** in DMSO-d₆

Von den Kohlenstoffatomen am Pyrimidin-Ring erscheint das C5-Atom (4) erwartungsgemäß am weitesten im hohen Feld bei 109.2 ppm. Das C6-Atom (8) liefert ein tertiäres Signal bei 136.1 ppm. Eine Zuordnung der Signale bei 151.6 und 160.8 ppm zu den C2- und C4-Pyrimidinkohlenstoffen gelingt über ein HMBC-Spektrum. Abb. 2-12 zeigt die Kreuzsignale der benzylischen Protonen (3). Diese zeigen u.a. eine Korrelation zum Kohlenstoffatom bei 151.6 ppm. Dies ist folglich dem Pyrimidin-C2 (9) und das Signal bei 160.8 ppm dem Pyrimidin-C4 (10) zuzuordnen.

Abb. 2-12: Ausschnitt aus dem HMBC-Spektrum von Verbindung 27b in DMSO-d₆

Das NH-Signal bei 9.51 ppm weist im HMBC-Spektrum Kopplungen zum Pyrimidin-C4 (10), -C5 (4) und -C6 (8) sowie zum Carbonylkohlenstoff (12) auf (Abb. 2-13). Es muss sich daher um NH-Signal der Propionamid-Gruppe handeln (h).

Abb. 2-13: Ausschnitt aus dem HMBC-Spektrum von Verbindung 27b in DMSO-d₆

2.7 N²-Mono-/Disubstituierte 2,4-Diamino-5-ureidopyrimidine

2.7.1 <u>Synthese von N²-mono-/disubstituierten 2,4-Diamino-5-ureido-</u> pyrimidinen (28)

Zur Darstellung der Harnstoff-Derivate **28** wurde erneut auf die bewährte Strategie der katalytischen Hydrierung und sofortiger anschließender Derivatisierung der freien 5-Aminogruppe zurückgegriffen.

Schema 2-15: Darstellung der N^2 -mono-/disubstituierten 2,4-Diamino-5-ureidopyrimidine 28

28	\mathbf{R}^{1}	\mathbf{R}^2	\mathbf{R}^{3}	Ausbeute [%]
а	4-Fluorbenzyl	Н	Ethyl	56
b	4-Fluorbenzyl	Н	Propyl	59
c	4-Fluorbenzyl	Н	Cyclohexyl	75
d	4-Fluorbenzyl	Н	Phenyl	52
e	4-Fluorbenzyl	Н	3-Cl-Phenyl	54
f	-(CH ₂) ₂ O(CH	2)2-	Ethyl	72
g	-(CH ₂) ₂ O(CH	2)2-	Propyl	71
h	-(CH ₂) ₂ O(CH	2)2-	Cyclohexyl	69

Tab. 2-4:Hergestellte N^2 -mono-/disubstituierte 2,4-Diamino-5-ureido-
pyrimidine (28)

Die 5-Nitropyrimidine **25** wurden in Tetrahydrofuran bei einem Ausgangswasserstoffüberdruck von 2 bar über Palladium-Aktivkohle bis zur Beendigung der Wasserstoffaufnahme reduziert. Im Anschluss wurde der Katalysator abfiltriert und das Filtrat tropfenweise mit den entsprechenden Isocyanaten versetzt. Nach einer Reaktionszeit von einer Stunde konnte

dünnschichtchromatographisch eine vollständige Umsetzung festgestellt werden. Die Reaktionsansätze wurden anschließend für mehrere Stunden im Eisfach aufbewahrt. Der entstandene Niederschlag enthielt die gesuchten Harnstoff-Derivate **28a-h**, die durch Umkristallisation aus Methanol in Ausbeuten von 52-75% analysenrein gewonnen wurden.

2.7.2 <u>Eigenschaften der N²-mono-/disubstituierten 2,4-Diamino-5-</u> <u>ureidopyrimidine 28</u>

Bei den Harnstoff-Derivaten handelt es sich um stabile, farblose und amorphe Substanzen. Das Infrarot-Spektrum von Verbindung **28f** zeigt bei 3319 cm⁻¹ eine breite Bande der (NH)-Valenzschwingungen. Im Bereich von 2850 cm⁻¹ bis 3000 cm⁻¹ sind mehrere Banden der aliphatischen (CH)-Valenzschwingungen der Ethylgruppe sowie des Morpholin-Restes zu finden. Die sehr breite Bande bei 1629 cm⁻¹ wird durch die Carbonyl-Valenzschwingung sowie (NH)-Deformationsschwingungen verursacht.

Abb. 2-14: IR-Spektrum (KBr) von Verbindung 28f

Im ¹H-NMR-Spektrum von Verbindung **28f** sind sieben Signale sichtbar. Die Signale der Ethylgruppe (a und b) erscheinen bei 1.01 und 2.98-3.13 ppm. Aufgrund einer Kopplung mit dem benachbarten stickstoffgebundenen Proton der Harnstoff-Gruppe erzeugen die Methylen-Protonen des Ethyl-Restes ein Multiplett. Die Methylen-Protonen des Morpholin-Restes (c)

liefern ein breites Multiplett bei 3.47-3.73 ppm. Die primäre Aminogruppe (*e*) zeigt sich bei 6.19 ppm, während das Signal des Pyrimidin-Protons (*g*) tieffeldverschoben bei 7.66 ppm erscheint. Die Signale der beiden Harnstoff-Protonen lassen sich anhand der Multiplizität unterscheiden, da das zum Ethyl-Rest benachbarte NH-Proton (*d*) aufgrund der Kopplung zur Methylen-Gruppe als Triplett erscheint.

Abb. 2-15: Ausschnitt aus dem ¹H-NMR-Spektrum von Verbindung **28f** in DMSO-d₆

Im ¹³C-Spektrum zeigen sich die Signale der Ethyl-Gruppe (1 und 2) bei 15.4 ppm und 34.2 ppm. Die Kohlenstoff-Atome des Morpholin-Restes (3 und 4) rufen Signale bei 44.2 ppm und 66.0 ppm hervor. Das tertiäre Pyrimidin-C6 (6) liefert ein Signal bei 152.8 ppm, während sich das Pyrimidin-C5 (5) bei 108.5 ppm zeigt. Die Zuordnung der restlichen quartären Kohlenstoff-Signale erfolgt anhand eines HMBC-Spektrums. Das Signal bei 156.6 ppm verursacht eine ³ $J_{C,H}$ -Korrelation zur Methylen-Gruppe des Ethyl-Restes (*b*) und ist daher dem Carbonyl-Kohlenstoffatom (7) zuzuordnen.

Abb. 2-16: Ausschnitt aus dem ¹³C-NMR-Spektrum von Verbindung **28f** in DMSO-d₆

Abb. 2-17 zeigt die Kreuzsignale des NH-Protons in Ringposition fünf (*f*). Neben Korrelationen zum Carbonyl-Kohlenstoffatom (7), Pyrimidin-C5 (5) und -C6 (6) ist eine Korrelation zum Kohlenstoffatom bei 160.1 ppm zu erkennen. Bei diesem Signal muss sich es daher um das Pyrimidin-C4 (9) handeln. Folglich erscheint das Pyrimidin-C2 (8) bei 159.1 ppm.

Abb. 2-17: Ausschnitt aus dem HMBC-Spektrum von Verbindung 28f in DMSO-d₆

Weiterführende Untersuchungen an 5-(Alkoxy)acylaminopyrimidinen

3.1 N⁴-Mono-/Disubstituierte 5-Acylamino-4-amino-2-(4fluorbenzylamino)pyrimidine

3.1.1 Einleitung

Nachdem das direkte Pyrimidin-Analogon von Flupirtin hergestellt wurde und anschließend die N²- und N⁵-Substitution weitreichend variiert werden weiterführende sollten Strukturmodifikationen nachfolgend konnte. durchgeführt werden, welche die primäre Aminogruppe der Zielstruktur betrafen. In Abschnitt 1.2.3.1 wurde bereits darauf eingegangen, dass bei den umfangreichen Variationen der Retigabin-Struktur die primäre Aminogruppe ohne Verlust der K_v7-agonistischen Wirkung ersetzt werden konnte. Somit kann diese nicht essentiell für die Wirksamkeit sein. Ferner ist für Retigabin bekannt, dass die primäre Aminogruppe intensiv metabolisiert wird. Als der Literatur das Retigabin- N^2 -glucuronid Hauptmetabolit wird in genannt^[122-125]. Um diese potentielle metabolische Inaktivierung zu erschweren, schien es daher sinnvoll, die Zielstruktur weiter zu modifizieren und Derivate mit sekundärer und tertiärer Aminogruppe in Ringposition vier herzustellen.

Abb. 3-1: Geplante Strukturmodifikation der primären Aminogruppe der Zielstruktur

3.1.2 Literaturübersicht und Syntheseplanung

Zur Darstellung der angestrebten N⁴-mono-/disubstituierten 4-Amino-5ethoxycarbonylamino-2-(4-fluorbenzylamino)pyrimidine **31** sollte auf die aus Kapitel 2 bewährte Methode der Reduktion der Nitrogruppe in 5-Stellung und der anschließenden sofortigen Derivatisierung der freien 5-Aminogruppe zurückgegriffen werden.

 R^1 , $R^2 = Alkyl$, Aryl, Aralkyl, H

Schema 3-1: Geplante Syntheseführung zur Herstellung der N^4 -mono-/disubstituierten Derivate **31**

Somit musste eine geeignete Methode zur Darstellung der benötigten N⁴mono/disubstituierten N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamine 32 entwickelt werden. Während 5-Nitropyrimidin-2,4-diamine mit identischer N²- und N⁴-Substitution leicht aus 2,4-Dichlor-5-nitropyrimidin zugänglich sind, gibt es nur wenige Literaturberichte zur Synthese von 2,4-5-Nitropyrimidinen diaminosubstituierten mit unterschiedlichen Substituenten an den Aminogruppen. Dies erscheint verständlich, wenn man bedenkt, dass beide Chloratome des 2,4-Dichlor-5-nitropyrimidin eine hohe Reaktivität besitzen und sich daher die erforderliche selektive Monoaminierung der 4-Position als problematisch darstellt.

In Kapitel 2 wurde bereits erwähnt, dass sich 2,4-Dichlor-5-nitropyrimidin (23) einfach unter milden Reaktionsbedingungen mit Ammoniak in das korrespondierende 4-Amino-Derivat überführen lässt. Für die selektive Monoaminierung unter Verwendung von primären bzw. sekundären Aminen anstelle von Ammoniak sind jedoch nur Einzelbeobachtungen in der Literatur zu finden. Beispielsweise konnte $Brown^{[126]}$ unter Verwendung von 25%iger wässriger Methylamin-Lösung ein Gemisch aus 2-Chlor-*N*-methyl-5-nitropyrimidin-4-amin (33) und N^2 , N^4 -Dimethyl-5-nitropyrimidin-2,4-

diamin (34) gewinnen. Dieses Gemisch ließ sich durch fraktionierende Kristallisation trennen und das reine 2-Chlor-N-methyl-5-nitropyrimidin-4amin 33 in einer Ausbeute von 16% gewinnen. Ein weiteres Beispiel wurde *Mitarbeitern*^[127] beschrieben. und Wiley Ihnen von gelang die Monoaminierung von 2,4-Dichlor-5-nitropyrimidin (23) zu 2-Chlor-N,Ndimethyl-5-nitropyrimidin-4-amin (35) durch den Einsatz von Dimethylammoniumacetat^{*}.

Schema 3-2: Beispiele für selektive Monoaminierungen von 2,4-Dichlor-5nitropyrimidin (23)^[126,127]

Himmelsbach und *Mitarbeiter*^[128] konnten 5-Nitropyrimidin-2,4-diamine (**38**) mit unterschiedlicher N²- und N⁴-Substitution herstellen, indem sie das Problem der selektiven Monoaminolyse der 4-Position von 2,4-Dichlor-5nitropyrimidin (**23**) durch die Verwendung von 2-Chlor-5-nitro-4thiocyanatopyrimidin (**36**) umgingen. Diese neuartige Synthesestrategie beruhte darauf, dass sich **36** leicht mit substituierten Anilin-Derivaten zu den entsprechenden *N*-arylsubstituierten 5-Nitro-4-thiocyanatopyrimidin-2aminen **37** umsetzen ließ. Anschließend gelang es, die Thiocyanatgruppe durch die Behandlung mit verschiedenen primären oder sekundären Aminen nukleophil zu substituieren und somit unterschiedliche Substituenten an den Aminogruppen einzuführen.

^{*} Eine wässrige Dimethylamin-Lösung wurde mit Essigsäure auf pH 8 eingestellt.

Schema 3-3: Darstellung von 5-Nitropyrimidin-2,4-diaminen (**38**) mit unterschiedlicher N^2 - und N^4 -Substitution^[128]

Zur Darstellung der benötigten N^4 -mono-/disubstituierten N^2 -(4-Fluorbenzyl)-5-nitro-pyrimidin-2,4-diamin-Vorstufen **32** schien es daher vielversprechend, die von *Himmelsbach* und *Mitarbeitern* beschriebene Methode auf *N*-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin (**39**) anzuwenden.

3.1.3 Vorstufen

3.1.3.1 N-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin (39)

Zur Synthese von N-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin (39) musste zunächst das literaturbekannte 2-Chlor-5-nitro-4thiocyanatopyrimidin 36 hergestellt werden. Dies gelang gemäß Literaturvorschrift^[129] durch Umsetzung von einem Äquivalent Kaliumrhodanid mit 2,4-Dichlor-5-nitropyrimidin (23) bei 0 °C in Eisessig. Nach einer Reaktionszeit von 15 Minuten wurde der Reaktionsansatz auf Eiswasser gegossen und der Niederschlag abfiltriert und getrocknet. Das entstandene 2-Chlor-5-nitro-4-thiocyanatopyrimidin 36 konnte ohne weitere Aufreinigung direkt umgesetzt werden.

Schema 3-4: Darstellung von N-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2amin (**39**)

Die nachfolgende Umsetzung von **36** sollte das literaturunbekannte *N*-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin **39** liefern. Dies geschah in Anlehnung an eine Vorschrift von *Sugiura* und *Mitarbeitern*^[130]. Hierfür wurde **36** in Benzen gelöst und zwei Äquivalente 4-Fluorbenzylamin in Ethanol tropfenweise unter Eiskühlung zugesetzt. Nach 15 Minuten wurde der Reaktionsansatz im Vakuum eingeengt, der Niederschlag nach Zugabe von wenig Ethanol abfiltriert und getrocknet, wobei das angestrebte *N*-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin **39** nahezu quantitativ resultierte.

3.1.3.2 N^4 -Mono-/Disubstituierte N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamine (**32**)

Darstellung der N⁴-mono-/disubstituierten N^2 -(4-Fluorbenzyl)-5-Die nitropyrimidin-2,4-diamine **32** erfolgte nach der Methode von *Himmelsbach Mitarbeitern*^[128]. und Zunächst wurde N-(4-Fluorbenzyl)-5-nitro-4thiocyanatopyrimidin-2-amin (39) in DMF gelöst. Im Anschluss wurden fünf Äquivalente der entsprechenden Aminkomponente zugesetzt und 1.5 Stunden bei Raumtemperatur gerührt. Die vollständige Umsetzung konnte durch das Verschwinden infrarotspektroskopisch der (SCN)-Absorptionsbande bei ca. 2170 cm⁻¹ festgestellt werden. Nach Wasserzugabe wurde der entstandene Feststoff abgetrennt, mit Wasser gewaschen und aus
Methanol umkristallisiert. Auf diese Weise konnten die Vorstufen **32** in Ausbeuten von 84-92% gewonnen werden.

Schema 3-5: Darstellung von N^4 -mono-/disubstituierten N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diaminen (**32**)

32	\mathbf{R}^1	\mathbf{R}^2	Ausbeute [%]
a	Methyl	Methyl	85
b	-(CH ₂) ₂ O(CH ₂) ₂ -		84
с	Phenyl	Н	92
d	Phenethyl	Н	90

Tab. 3-1:Hergestellte N^4 -mono-/disubstituierte N^2 -(4-Fluorbenzyl)-5-nitro-
pyrimidin-2,4-diamine (32)

Einen Beweis für die Lage der 4-Fluorbenzylaminogruppe in Ringposition zwei erbrachte die beispielhaft für **32b** angefertigte Röntgenkristallstrukturanalyse (Abb. 3-2).

Abb. 3-2: Molekülstruktur von N-(4-Fluorbenzyl)-4-morpholino-5-nitropyrimidin-2amin (**32b**)

3.1.4 <u>Versuche zur Synthese von N⁴-mono-/disubstituierten 4-Amino-5-</u> ethoxycarbonylamino-2-(4-fluorbenzylamino)pyrimidinen (31) und Darstellung von N⁴-mono-/disubstituierten 4-Amino-2-(4-fluorbenzylamino)-5-propionamidopyrimidin-hydrochloriden (41)

Wie bereits erwähnt, sollte die Synthese der N⁴-mono-/disubstituierten 4-Amino-5-ethoxycarbonylamino-2-(4-fluorbenzylamino)pyrimidine 31 analog zur Darstellung der Verbindungen 26 erfolgen. Dabei konnte die katalytische Hydrogenolyse glatt in trockenem Dioxan durchgeführt werden. Nach der Abtrennung des Katalysators wurden 1.1 Âquivalente Chlorameisensäureethylester tropfenweise zur Lösung der Pyrimidin-2,4,5-Nach triamin-Derivate **40** zugesetzt. dem Zutropfen des Chlorameisensäureethylesters blieb jedoch, obwohl die Entstehung einer Carbonylabsorptionsbande bei 1720-1740 cm⁻¹ detektiert werden konnte, eine Niederschlagsbildung des Hydrochlorids aus. Sämtliche Versuche, die Basen der N⁴-mono-/disubstituierten 4-Amino-5-ethoxycarbonylamino-2-(4fluorbenzylamino)-pyrimidine 31 durch Zusatz von Triethylamin freizusetzen, führten zu verunreinigten Ölen. Aus diesen ließ sich trotz mehrfacher Säulenchromatographie kein definiertes Reaktionsprodukt freisetzen. Auch beim Einsatz von anderen Basen wie DBU^{*} oder Hünig-Base[†] konnte dünnschichtchromatographisch lediglich die Zersetzung, zu nicht identifizierten Produkten, beobachtet werden.

^{* 1,8-}Diazabicyclo[5.4.0]undec-7-en.

[†] Diisopropylethylamin.

Schema 3-6: Darstellung von N^4 -mono-/disubstituierten 4-Amino-2-(4-fluorbenzylamino)-5-propionamidopyrimidinen (**41**)

41	\mathbf{R}^1	\mathbf{R}^2	Ausbeute [%]
a	Methyl	Methyl	64
b	-(CH ₂) ₂ O(CH ₂) ₂ -		58
c	Phenyl	Н	71
d	Phenethyl	Н	69

Tab. 3-2:Hergestellte N^4 -mono-/disubstituierte 5-Acylamino-4-amino-2-(4-fluor-
benzylamino)pyrimidine (41)

Um überprüfen, ob die beobachteten Zersetzungsprodukte zu möglicherweise auf der Labilität der Carbamat-Gruppe beruhen, wurde ein Chlorameisensäureethylesters anstelle des Säurechlorid als Acylierungsreagenz verwendet werden. Hierfür wurde das Filtrat der katalytischen Hydrogenolyse tropfenweise mit 1.1 Äquivalenten Propionylchlorid versetzt. Bereits während der Zugabe des Säurechlorides konnte die Bildung eines Niederschlages festgestellt werden. Die infrarotspektroskopische Reaktionskontrolle zeigte die Entstehung einer Carbonylabsorptionsbande bei ca. 1680 cm⁻¹. Es wurde für 30 Minuten nachgerührt und anschließend der voluminöse Niederschlag abfiltriert. Die N^4 -Umkristallisation lieferte die aus Methanol/Diethylether 4-Amino-2-(4-fluorbenzylamino)-5-propionamidomono-/disubstituierten pyrimidin-hydrochloride **41a-d** in 58-71% iger Ausbeute.

3.1.5 <u>Eigenschaften der N⁴-mono-/disubstituierten 4-Amino-2-(4-fluor-benzylamino)-5-propionamidopyrimidin-hydrochloride **41**</u>

Die Verbindungen dieser Stoffklasse fielen als farblose, amorphe Feststoffe an und zeigten bei Raumtemperatur-Lagerung über einen Zeitraum von einem Jahr keine Anzeichen auf Zersetzung.

Die Infrarotspektren der N^4 -mono-/disubstituierten 4-Amino-2-(4-fluorbenzylamino)-5-propionamidopyrimidin-hydrochloride **41** liefern im Bereich von 2600-3400 cm⁻¹ mehrere Banden, die durch NH-Valenzschwingungen und die Schwingungen des Ammonium-Salzes verursacht werden. Ferner ist diese Verbindungsklasse durch eine Carbonyl-Absorptionsbande bei 1670-1690 cm⁻¹ charakterisiert.

Abb. 3-3: IR-Spektrum (KBr) von Verbindung 41a

Die Kernresonanzspektren der Verbindungen **41** weisen erwartungsgemäß eine große Ähnlichkeit zu denen der N²-mono-/disubstituierten 5-Acylamino-2,4-diaminopyrimidine **27** auf (siehe Abschnitt 2.6.2). Charakteristisch im Vergleich zu den Anilid-Derivaten **27** sind für diese Substanzklasse das Fehlen der Signale der primären Aminogruppe und das Auftreten weiterer Signale in Abhängigkeit von der zusätzlichen N⁴-Substitution. Beispielhaft zeigt das ¹H-NMR-Spektrum von Verbindung **41a** ein Signal für die beiden magnetisch äquivalenten Methylgruppen (*c*) bei einer chemischen Verschiebung von 3.20 ppm. Analog liefern die Methylgruppen (3) im ¹³C-NMR-Spektrum ein Signal bei 39.8 ppm.

Abb. 3-4: Ausschnitt aus dem ¹H-NMR-Spektrum von Verbindung **41a** in DMSO-d₆

Abb. 3-5: Ausschnitt aus dem ¹³C-NMR-Spektrum von Verbindung **41a** in DMSO-d₆

3.2 Ethyl[4-alkoxy-2-(4-fluorbenzylamino)pyrimidin-5-yl]carbamate

3.2.1 Einleitung

Im Rahmen der bereits erwähnten Abwandlungen der Retigabin-Struktur gelang es Wissenschaftlern der Fa. Lundbeck, unter Erhalt der K_v7agonistischen Wirkung die primäre Aminogruppe durch eine Methoxygruppe zu ersetzen^[83]. Ein Patentbeispiel für ein 2-Methoxy-Derivat ist in Abb. 3-6 aufgeführt. Hierauf aufbauend wurde versucht, die primäre Aminogruppe der Zielstruktur durch eine kurzkettige Alkoxygruppe zu ersetzen und so 4-Alkoxyderivate vom Typ **42** zu erschließen.

Abb. 3-6: Weiterführende Strukturmodifikationen der primären Aminogruppe der Zielstruktur

3.2.2 Literaturübersicht und Syntheseplanung

Aus retrosynthetischer Sicht sind die angestrebten Ethyl[4-alkoxy-2-(4-fluorbenzylamino)-pyrimidin-5-yl]carbamate **42** durch Alkoxyacylierung der primären Aminogruppe der 4-Alkoxy- N^2 -(4-fluorbenzyl)pyrimidin-2,5-diamin-Vorstufen **43** zugänglich. Diese wiederum leiten sich von den entsprechenden 4-Alkoxy-*N*-(4-fluorbenzyl)-5-nitropyrimidin-2-aminen **44** ab.

Schema 3-7: Retrosynthetische Syntheseplanung zur Herstellung von Ethyl[4-alkoxy-2-(4-fluorbenzylamino)-pyrimidin-5-yl]carbamaten (**42**)

Da 4-Alkoxy-*N*-(aralkyl)-5-nitropyrimidin-2-amine bisher noch nicht in der Literatur beschrieben sind, musste zunächst ein geeigneter Syntheseweg für 4-Alkoxy-*N*-(4-fluorbenzyl)-5-nitropyrimidin-2-amine (44) entwickelt werden.

Ausgehend von 2,4-Dichlor-5-nitropyrimidin (23) besteht eine mögliche Synthesestrategie für die Vorstufen 44 in der selektiven Substitution des 4-Chloratoms durch Alkoholate und anschließender 4-Fluorbenzylaminolyse. Als kritischer Syntheseschritt muss hierbei die selektive Substitution in 4-Stellung angesehen werden. Im Abschnitt 3.1.2 wurde bereits erwähnt, dass beide Chlorsubstituenten des 2,4-Dichlor-5-nitropyrimidin 23 eine hohe Reaktivität besitzen und in Gegenwart von guten Nukleophilen leicht zu substituieren sind. Daher sind bei solchen Reaktionen immer Produktgemische zu erwarten. Während 2-Chlor-4-ethoxy-5-nitropyrimidin der Literatur gänzlich unbekannt ist, gelang es Grandel und in *Mitarbeitern*^[131] 2-Chlor-4-methoxy-5-nitropyrimidin (45) herzustellen. Hierfür wurde 2,4-Dichlor-5-nitropyrimidin (23) bei -10 °C mit einem Kaliummethanolat zur Reaktion Âquivalent gebracht und nach säulenchromatographischer Trennung das gesuchte 4-Methoxy-Derivat 45 in einer Ausbeute von 37.9% erhalten. Als Nebenprodukt konnte auch das 2-Methoxy-Derivat **46** isoliert werden (13.7%).

Schema 3-8: Darstellung von 2-Chlor-4-methoxy-5-nitropyrimidin (45) und 4-Chlor-2-methoxy-5-nitropyrimidin (46)^[131]

Wie das Beispiel von *Grandel* und *Mitarbeitern* gezeigt hat, sind bei dieser Synthesestrategie geringe Ausbeuten, Nebenprodukte und damit verbundene aufwendige Aufreinigungen zu erwarten.

Als Möglichkeit zur Darstellung alternative von 4-Alkoxy-*N*-(4fluorbenzyl)-5-nitropyrimidin-2-aminen (44) sollte daher überprüft werden, ob es möglich ist, analog zur Synthese der N⁴-mono-/disubstituierten N^{2} -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamine **32** die Thiocyanat-Gruppe von *N*-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin (39) durch Alkoholate zu substituieren. Bei Durchsicht der Literatur konnte ein verwandtes Beispiel für die formale Substitution einer Thiocyanat-Gruppe durch Alkohole gefunden werden. Naito und Inoue^[132] gelang es, die Thiocyanat-Gruppe von 5-Nitro-2-thiocyanatopyrimidin-2-amin (47) in Gegenwart eines Überschusses an Methanolat bzw. Ethanolat ZU substituieren.

Schema 3-9: Darstellung von 4-Alkoxy-5-nitropyrimidin-2-aminen (48)^[132]

Es wurde daher versucht, diese Reaktion auf *N*-(4-Fluorbenzyl)-5-nitro-4thiocyanatopyrimidin-2-amin (**39**) zu erweitern, um somit die gesuchten 4-Alkoxy-*N*-(4-fluorbenzyl)-5-nitropyrimidin-2-amine **44** zu erhalten.

3.2.3 <u>Synthese von 4-Alkoxy-N-(4-fluorbenzyl)-5-nitropyrimidin-2-</u> <u>aminen (44)</u>

Zur Synthese der 4-Alkoxy-*N*-(4-fluorbenzyl)-5-nitropyrimidin-2-amine **44** wurde zunächst aus zwei Äquivalenten elementarem Natrium und absolutem Methanol oder Ethanol die entsprechenden Alkoholat-Lösungen erzeugt. In Anlehnung an die Methode von *Naito* und *Inoue* wurde dann das *N*-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin **39** bei 0 °C den Alkoholat-Lösungen zugesetzt und für zwei Stunden bei dieser Temperatur gerührt. Der gebildete Niederschlag wurde abfiltriert und aus Methanol oder Ethanol umkristallisiert. Auf diese Weise gelang es, die angestrebten Vorstufen **44** in Ausbeuten von 76 bzw. 77% zu gewinnen.

Schema 3-10: Synthese der 4-Alkoxy-N-(4-fluorbenzyl)-5-nitropyrimidin-2-amine 44

44	R	Ausbeute [%]
a	Methyl	76
b	Ethyl	77

Tab. 3-3:Hergestellte 4-Alkoxy-N-(4-fluorbenzyl)-5-nitropyrimidin-2-amine (44)

Somit konnte gezeigt werden, dass die Thiocyanat-Gruppe des *N*-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin **39** sowohl durch Amine (siehe Abschnitt 3.1.3.2) als auch durch Alkoholate substituiert werden kann. Folglich bietet **39** einen einfachen Zugang zu diversen 4-substituierten *N*-(4-Fluorbenzyl)-5-nitropyrimidin-2-amin-Derivaten.

3.2.4 <u>Darstellung von Ethyl[4-alkoxy-2-(4-fluorbenzylamino)pyrimidin-5-</u> yl]carbamaten (**42**)

Nachdem die Vorstufen **44** erschlossen werden konnten, sollte die katalytische Hydrogenolyse die 4-Alkoxy- N^2 -(4-fluorbenzyl)pyrimidin-2,5diamine **43** liefern. Hierzu wurden die Verbindungen **44** in trockenem THF suspendiert und mit Palladium-Aktivkohle-Katalysator versetzt. Die katalytische Hydrogenolyse wurde bei einem Ausgangswasserstoffüberdruck von 1 bar über Nacht durchgeführt.

Schema 3-11: Synthese der Ethyl[4-alkoxy-2-(4-fluorbenzylamino)pyrimidin-5-yl]carbamate 42

42	R	Ausbeute [%]
а	Methyl	63
b	Ethyl	56

Tab. 3-4:Hergestellte Ethyl[4-alkoxy-2-(4-fluorbenzylamino)pyrimidin-5-yl]-
carbamate (42)

Im Anschluss wurde der Katalysator abfiltriert und die in THF gelösten Zwischenstufen **43** direkt weiter umgesetzt. Zunächst wurde das Filtrat mit 1.1 Äquivalenten Triethylamin versetzt. Nach Abkühlung des

Reaktionsansatzes auf 0 °C wurden 1.1 Äquivalente Chlorameisensäureethylester zugetropft. Es konnte dabei die sofortige Bildung eines feinen Niederschlages des Triethylammnoniumchlorides festgestellt werden. Ferner zeigte das Erscheinen einer intensiven Carbonylabsorptionsbande bei etwa 1700 cm⁻¹ die einsetzende Reaktion an. Da nach vollständiger Zugabe des 4-Alkoxv- N^2 -(4-Chlorameisensäureethylesters noch wenig fluorbenzyl)pyrimidin-2,5-diamin (43)dünnschichtchromatographisch detektiert werden konnte, wurde weitere zwei Stunden unter Erwärmen auf Raumtemperatur gerührt. Danach wurde der Niederschlag abfiltriert und das Filtrat unter vermindertem Druck eingeengt. Nach der säulenchromatographischen Reinigung des öligen Rückstandes konnten die Ethyl[4-alkoxy-2-(4-fluorbenzylamino)-pyrimidin-5-yl]carbamate 42a,b aus Dichlormethan/n-Hexan zur Kristallisation gebracht werden.

3.2.5 <u>Eigenschaften der Ethyl[4-alkoxy-2-(4-fluorbenzylamino)-pyrimidin-</u> <u>5-yl]carbamate 42</u>

Die Ethyl[4-alkoxy-2-(4-fluorbenzylamino)-pyrimidin-5-yl]carbamate **42** sind farblose Pulver, die sich über einen Zeitraum von einem Jahr als lagerbeständig erwiesen.

Im Infrarotspektrum zeigt diese Verbindungsklasse eine scharfe Absorptionsbande der (C=O)-Valenzschwingung bei ca. 1700 cm⁻¹. Ferner sind mehrere Banden der (NH)-Valenzschwingungen zu beobachten.

Abb. 3-7: IR-Spektrum (KBr) von Verbindung 42a

Die ¹H-NMR-Spektren der Verbindungen **42** unterscheiden sich insbesondere durch die Signale der Alkoxy-Gruppe von den Spektren der Carbamate **26** (siehe Abschnitt 2.5.2). Beispielsweise bestätigt das Singulett bei 3.80 ppm im ¹H-NMR-Spektrum von Verbindung **42a** die erfolgreiche Einführung der Methoxy-Gruppe (*b*).

Abb. 3-8: Ausschnitt aus dem ¹H-NMR-Spektrum von Verbindung **42a** in DMSO-d₆

3.3 Alkyl[4-amino-2-(benzylsulfanyl)pyrimidin-5-yl]carbamate

3.3.1 <u>Einleitung und Syntheseplanung</u>

Weiterführende Strukturmodifikationen sollten auch auf die Aminogruppe in 2-Stellung ausgedehnt werden. Eine gängige Strategie in der Leitstruktur-Optimierung besteht im Ersatz einer divalenten NH-Gruppe durch ein Schwefelatom. Ein Beispiel hierfür ist das atypische Neuroleptikum **Quetiapin**. Der Dibenzodiazepin-Ring von **Clozapin** wurde durch einen bioisosteren Dibenzothiazepin-Ring ersetzt. Quetiapin zeichnet sich durch den Vorteil aus, dass es als einziges atypisches Neuroleptikum auch zur Behandlung der depressiven Phasen bei bipolaren Störungen zugelassen ist. Ein weiteres anschauliches Beispiel für eine NH/S-Bioisosterie zeigen Untersuchungen an Pethidin-Analoga. Als potentester Vertreter wurde das Derivat **49** identifiziert. Der formale Ersatz der NH-Gruppe durch eine Thioether-Funktionalität lieferte das ebenfalls stark analgetisch wirksame Analogon **50**, welches in vivo um 50% stärker wirkt als Pethidin^[133].

Abb. 3-9: Beispiele für NH/S-Bioisosterien

Daher schien es lohnenswert, den 4-Fluorbenzylamino-Substituenten der Zielstruktur durch eine Benzylsulfanyl-Gruppe auszutauschen.

Abb. 3-10: Geplante Benzylsulfanyl-Analoga der Zielstruktur

Zur Darstellung der angestrebten Alkyl[4-amino-2-(benzylsulfanyl)pyrimidin-5-yl]carbamate 51 bot sich ein Syntheseweg über das **52**^[134,135] literaturbekannte 2-(Benzylsulfanyl)pyrimidin-4,5-diamin an. Zunächst sollte 52 in einer zweistufigen Reaktionsfolge nach den entsprechenden Literaturvorschriften hergestellt werden und anschließend durch Reaktion mit verschiedenen Chlorameisensäurestern 51 in umgewandelt werden.

Schema 3-12: Geplante Alkoxyacylierung von 2-(Benzylsulfanyl)pyrimidin-4,5diamin (52)

3.3.2 Vorstufen

3.3.2.1 5,6-Diaminopyrimidin-2(1H)-thion (**53**)

Das als Ausgangsmaterial benötigte 5,6-Diaminopyrimidin-2(1*H*)-thion **53** wurde nach einer modifizierten Methode von *Elion* und *Hitchings*^[136] hergestellt. Das Erhitzen einer Suspension von 2-Chlor-5-nitropyrimidin-2-amin (**24**) in einer 1M Natriumhydrogensulfid-Lösung erbrachte nach etwa zwei Stunden eine klare Lösung. Diese wurde heiß filtriert und nach dem Abkühlen auf Raumtemperatur durch vorsichtige Zugabe von Eisessig auf

pH 5-6 eingestellt. Der entstandene Niederschlag lieferte das 5,6-Diaminopyrimidin-2(1H)-thion **53** in 60% iger Ausbeute.

Schema 3-13: Synthese von 5,6-Diaminopyrimidin-2(1H)-thion (53)

3.3.2.2 2-(Benzylsulfanyl)pyrimidin-4,5-diamin (52)

Die Darstellung von 2-(Benzylsulfanyl)pyrimidin-4,5-diamin (**52**) gelang nach der von *Badger* und *Barlin*^[134] beschriebenen Methode. Hierzu wurde 5,6-Diaminopyrimidin-2(1*H*)-thion (**53**) in 2M Natronlauge suspendiert und Benzylchlorid über einen Zeitraum von einer Stunde tropfenweise zugesetzt. Nach drei weiteren Stunden wurde der gebildete Niederschlag abfiltriert und aus Wasser umkristallisiert.

Schema 3-14: Darstellung von 2-(Benzylsulfanyl)pyrimidin-4,5-diamin (52)

Der Versuch, die *S*-Alkylierung mit 4-Fluorbenzylbromid unter gleichen Versuchsbedingungen durchzuführen, lieferte nur ein verunreinigtes Reaktionsprodukt, welches auch nach Säulenchromatographie kein definiertes Reaktionsprodukt lieferte^{*}.

^{*} Die Verwendung von Kaliumcarbonat als Base und absolutem Ethanol als Lösungsmittel erbrachte ebenfalls ein verunreinigtes Rohöl, das sich nicht aufreinigen ließ.

3.3.3 <u>Darstellung von Alkyl[4-amino-2-(benzylsulfanyl)pyrimidin-5-</u> yl]carbamaten (**51**)

Zur Herstellung der Alkyl[4-amino-2-(benzylsulfanyl)pyrimidin-5-yl]carbamate **51** wurde zunächst 2-(Benzylsulfanyl)pyrimidin-4,5-diamin **52** in trockenem THF suspendiert und mit 1.2 Äquivalenten Triethylamin behandelt. Anschließend wurden die in wenig THF gelösten Chlorameisensäureester tropfenweise unter Eiskühlung hinzugefügt.

Schema 3-15: Synthese der Alkyl[4-amino-2-(benzylsulfanyl)pyrimidin-5-yl]carbamate **51**

51	R	Ausbeute [%]
a	Ethyl	54
b	Propyl	52
c	Butyl	67
d	Isobutyl	59

Tab. 3-5:Hergestellte Alkyl[4-amino-2-(benzylsulfanyl)pyrimidin-5-yl]-
carbamate (51)

Nach wenigen Minuten wurde der Ansatz milchig-trüb und im Infrarotspektrum erschien eine intensive Bande der entstandenen Carbamat-Funktionalität bei ca. 1700-1710 cm⁻¹. Um die Reaktion vollständig ablaufen zu lassen, wurde drei weitere Stunden bei Raumtemperatur gerührt. Anschließend wurde das Triethylammoniumchlorid abfiltriert und das Lösungsmittel im Vakuum entfernt. Die säulenchromatographische Reinigung des Rückstandes lieferte die Alkyl[4-amino-2-(benzylsulfanyl)pyrimidin-5-yl]carbamate **51a-d** in Ausbeuten von 52-67%.

3.3.4 <u>Eigenschaften der Alkyl[4-amino-2-(benzylsulfanyl)pyrimidin-5-</u> yl]carbamate **51**

Die Alkyl[4-amino-2-(benzylsulfanyl)pyrimidin-5-yl]carbamate **51** stellen farblose, lagerbeständige Pulver dar. Im Infrarotspektrum liefern sie eine charakteristische Carbonylabsorptionsbande bei ca. 1700 cm⁻¹.

Abb. 3-11: IR-Spektrum (KBr) von Verbindung 51a

Charakteristisch für die ¹H-NMR-Spektren dieser Substanzklasse im Vergleich zu den Carbamaten **26** ist die Multiplizität der benzylischen Protonen. Während die benzylischen Protonen der Verbindungen **26** (siehe Abschnitt 2.5.2) aufgrund einer Kopplung mit dem Proton der benachbarten Aminogruppe als Dublett erscheinen, liefern die Protonen der Benzylsulfanyl-Gruppe ein Singulett.

Abb. 3-12: Ausschnitt aus dem ¹H-NMR-Spektrum von Verbindung **51a** in DMSO-d₆

3.4 *N*-[2-(Aralkylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]benzamide und Derivate

3.4.1 <u>Einleitung und Syntheseplanung</u>

Im Zusammenhang mit den vorstehend beschriebenen Alkyl[4-amino-2-(benzylsulfanyl)pyrimidin-5-yl]carbamaten **51** waren auch weitere 5-(Alkoxy)acylaminopyrimidine mit Aralkylsulfanylsubstitution in 2-Stellung von Interesse. Der formale Ersatz der primären Aminogruppe von Verbindung **51a** durch eine bioisostere Hydroxygruppe sollte das 4-Hydroxy-Analogon **54** liefern. Da 2-, 4- und 6-Hydroxypyrimidine bevorzugt in der tautomeren Lactam-Form vorliegen^[104,137], ist zu erwarten, dass hauptsächlich das 6-Oxo-Tautomer **55** vorherrscht. Das angedachte Ethyl[2-(benzylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]carbamat **55** würde somit als ein 1,6-Dihydropyrimidin-Derivat einen neuartigen Beitrag zu den bisher durchgeführten Strukturabwandlungen der Zielstruktur darstellen.

Schema 3-16: Geplante Strukturmodifikation der primären Aminogruppe von 51a

Die Synthese des angestrebten Ethyl[2-(benzylsulfanyl)-6-oxo-1,6dihydropyrimidin-5-yl]carbamats 55 ist prinzipiell über zwei unterschiedliche Synthesewege möglich (siehe Schema 3-17). Die erste Zyklisierungsreaktion Möglichkeit besteht in einer von Benzylisothioharnstoff Ethyl-2-(56) mit dem Natriumsalz von (ethoxycarbonylamino)-2-formylacetat Die (13). alternative Synthesestrategie geht von dem literaturbekannten N-[2-(Benzylsulfanyl)-6oxo-1,6-dihydropyrimidin-5-yl]benzamid 57a aus. Nach der alkalischen Hydrolyse des Benzoylrestes sollte die anschließende Alkoxyacylierung der freien 5-Aminogruppe das gesuchte 5-Ethoxycarbonylamino-Derivat 55 liefern. Aufgrund der einfacheren Verfügbarkeit der Ausgangsmaterialien erfolgte die Synthese von 55 ausgehend vom Benzamid 57a.

Schema 3-17: Mögliche Syntheseführung zur Herstellung des Carbamats 55

3.4.2 <u>Darstellung von N-[2-(Benzylsulfanyl)-6-oxo-1,6-dihydro-pyrimidin-</u> <u>5-yl]benzamid (57a)</u>

Im Jahr 1986 beschrieben *Tripathy* und *Mukerjee*^[138] die Darstellung von *N*-[2-(Benzylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]benzamid (**57a**). Die Synthese von **57a** gelang ihnen durch eine Ringtransformationsreaktion von 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4*H*)-on (**60**) in Gegenwart von Benzylisothioharnstoff-hydrochlorid (**59a**) und Triethylamin. Obwohl sie die Reaktion kurze Zeit später in zwei weiteren Publikationen^[139,140] beschrieben, wurde die Identität des Reaktionsproduktes bis heute weder durch kernresonanzspektroskopische noch durch röntgenkristallographische Daten belegt.

Schema 3-18: Darstellung von N-[2-(Benzylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5yl]benzamid (57a)

Bei eigenen Untersuchungen wurde die Reaktion zunächst nach der Vorschrift von *Tripathy* und *Mukerjee*^[138] durchgeführt. Hierzu wurden 4- (Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4*H*)-on (**60**)^{*} und eine äquimolare Menge Benzylisothioharnstoff-hydrochlorid **59a** in Ethanol suspendiert. Nach Zugabe von zwei Äquivalenten Triethylamin entstand eine rötlich gefärbte Lösung. Die infrarotspektroskopische Kontrolle zeigte, dass die charakteristische Carbonylabsorptionsbande des Azlactons bei 1784 cm⁻¹ verschwunden war. Daraufhin wurde der Reaktionsansatz erwärmt und für eine Stunde unter Rückfluss erhitzt. Während des Siedens entstand ein

^{*} Für sämtliche im Rahmen der vorliegenden Arbeit durchgeführten Experimente wurde käufliches 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4*H*)-on (**60**) verwendet. Das Ausgangsmaterial **60** lässt sich auch sehr einfach durch die Reaktion von Hippursäure mit Acetanhydrid und Triethylorthoformiat herstellen^[141,142].

voluminöser Niederschlag. Im Anschluss wurde die Suspension unter vermindertem Druck bis zur Trockne eingeengt und mit Ethanol-Wasser (1:1) versetzt. Nach dem Abfiltrieren des entstandenen Niederschlages wurde dieser aus Ethanol umkristallisiert, wobei die Ausbeute mit 60% niedriger ausfiel als von *Tripathy* und *Mukerjee*^[138] beschrieben (74%). Für das auf diese Weise erhaltene Reaktionsprodukt konnte ein Schmelzpunkt von 254 °C ermittelt werden. Tripathy und Mukerjee^[138] hatten einen Schmelzpunkt von 251-253 °C publiziert, so dass von einem identischen Reaktionsprodukt auszugehen ist. Durch eine vorgenommene röntgenkristallographische Untersuchung konnte der Strukturvorschlag von Tripathy und Mukerjee bestätigt werden (siehe Abschnitt 3.4.4.4).

3.4.3 <u>Synthese von Ethyl[2-(benzylsulfanyl)-6-oxo-1,6-dihydro-pyrimidin-</u> 5-yl]carbamat (**55**)

Nachdem N-[2-(Benzylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]benzamid (57a) hergestellt und die Struktur eindeutig bewiesen werden konnte, wurde anschließend das gesuchte Ethyl[2-(benzylsulfanyl)-6-oxo-1,6-55 dihydropyrimidin-5-yl]carbamat in einer zweistufigen Synthese erschlossen. Zunächst gelang es die Benzoyl-Gruppe von 57a durch das Erhitzen in 15% iger Natronlauge hydrolytisch zu entfernen. Nach dem Abkühlen auf Raumtemperatur wurde vorsichtig mit Eisessig auf pH 5 angesäuert, der gebildete Niederschlag abfiltriert und getrocknet.

Schema 3-19: Synthese von Ethyl[2-(benzylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5yl]carbamat (55)

Anschließend wurde das Zwischenprodukt **58** in trockenem THF suspendiert und mit 1.2 Äquivalenten Triethylamin versetzt. 1.1 Äquivalente Chlorameisensäureethylester wurden in wenig trockenem THF gelöst und tropfenweise unter Eiskühlung hinzugefügt. Dabei konnte sofort nach der Zugabe im Infrarotspektrum eine intensive Carbonylabsorptionsbande beobachtet werden. Der Reaktionsansatz wurde für drei Stunden bei Raumtemperatur gerührt, das gebildete Hydrochlorid des Triethylamins abfiltriert und das Filtrat unter vermindertem Druck eingeengt. Die säulenchromatographische Reinigung lieferte das Ethyl[2-(benzylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]carbamat **55** in einer Gesamtausbeute von 38%.

Im Infrarotspektrum bestätigt die ausgeprägte Absorptionsbande bei 1719 cm⁻¹ die erfolgreiche Einführung des Ethoxycarbonylamino-Substituenten (Abb. 3-13).

Abb. 3-13: IR-Spektrum (KBr) von Verbindung 55

3.4.4 <u>Weiterführende Untersuchungen der Ringtransformationsreaktionen</u> von 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4*H*)-on (**60**)

3.4.4.1 Einleitung

Aufgrund der strukturellen Verwandtschaft zur Zielstruktur sind vom dem Benzamid **57a** ebenfalls interessante biologische Eigenschaften zu erwarten. Ferner wurde im Abschnitt 1.2.3.5 bereits erwähnt, dass für N-(2-Chlorpyrimidin-5-yl)benzamid-Derivate eine potente K_v7-agonistische Wirkung gefunden wurde. Hierauf aufbauend sollten weitere Derivate des Benzamids 57a hergestellt werden. Um dieses umzusetzen, schien es sowohl aus wirkstoffchemischer als auch aus heterozyklenchemischer Sicht interessant. weiterführende Untersuchungen der Ringtransformationsdes Azlactons 60 durchzuführen. Zunächst reaktionen sollte das Benzylisothioharnstoff-hydrochlorid **59a** durch andere Aralkylisothioharnstoff-hydrohalogenide ersetzt werden, um weitere N-[2-(Aralkylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]benzamide (57) erschließen zu können.

3.4.4.2 Mikrowellenunterstütze Synthesen

Diese weiterführenden Untersuchungen der Ringtransformationreaktionen von 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4*H*)-on (**60**) wurden mikrowellenunterstützt durchgeführt. Die Vorzüge der

mikrowellenunterstützten Synthese sind in vereinfachter Weise dahingehend zusammenzufassen, dass diese Methode bei hoher Reproduzierbarkeit oft zu wesentlich kürzeren Reaktionszeiten und höheren Ausbeuten führt^[143,144]. Im Vergleich zu konventionellen Heizmethoden (z.B. Ölbäder oder Heizpilze) entsteht bei mikrowellenunterstützten Reaktionen ein geringerer Energieverlust durch Konvektion. Durch die direkte Erwärmung mittels Mikrowellenstrahlung wird die Energie effektiver auf den Reaktionsansatz übertragen und der Wirkungsgrad verbessert. Dadurch sind die hohen Ausbeuten und kurzen Reaktionszeiten zu erklären Die hohe Reproduzierbarkeit wird durch die exakte Steuerbarkeit der Parameter Temperatur, Druck und Leistung gewährleistet. Ferner kann bei mikrowellenunterstützten Synthesen unter Verwendung von druckversiegelten Reaktionsgefäßen eine Reaktionstemperatur erreicht werden. welche die konventionellen unter Bedingungen lösungsmittelabhängige Siedetemperatur deutlich übertrifft^[145,146].

möglichst effiziente mikrowellenunterstützte Methode Um eine zu entwickeln, wurde die Synthese von N-[2-(Benzylsulfanyl)-6-oxo-1,6dihydropyrimidin-5-yl]benzamid (57a) unter Mikrowelleneinstrahlung wiederholt. Um einen Überblick über die benötigte Reaktionszeit zu erhalten, wurde die Reaktion dreimal durchgeführt, wobei jeweils unterschiedliche Einwirkzeiten der Mikrowellenstrahlung eingesetzt wurden. Bis die Verwendung der Mikrowellenstrahlung auf anstelle des konventionellen Erhitzens im Ölbad wurde die Reaktion und Aufarbeitung unter den im Abschnitt 3.4.2 beschriebenen Bedingungen durchgeführt. Bei einer Reaktionszeit von drei Minuten gelang es, das N-[2-(Benzylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]benzamid 57a in einer Ausbeute von 60% zu gewinnen. Dies entspricht exakt der Ausbeute, die auf konventionellem Wege erzielt wurde. Eine Verlängerung der Reaktionszeit auf fünf Minuten erhöhte die Ausbeute auf 67%. Eine abermalige verlängerte Reaktionszeit von fünfzehn Minuten erbrachte keine weitere Steigerung der Ausbeute (66%). Daher wurden sämtliche weitergehenden Untersuchungen mit der fünfminütigen Methode durchgeführt. Tabelle 3-6 fasst diese Ergebnisse zusammen.

Mikrowellenunterstützte Synthese^{*} von N-[2-(Benzylsulfanyl)-6-oxo-1,6-*Schema 3-20:* dihydropyrimidin-5-yl]benzamid (57a)

Methode	Reaktionsdauer [min]	Ausbeute [%]
konventionell	60	60
mikrowellenunterstützt	3	60
mikrowellenunterstützt	5	67
mikrowellenunterstützt	15	66

Tab. 3-6: Ausbeuten und Reaktionszeiten der Synthesen von N-[2-(Benzylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]benzamid (57a)

3.4.4.3 Mikrowellenunterstützte Synthese von N-[2-(Aralkylsulfanyl)-6oxo-1,6-dihydropyrimidin-5-yl]benzamiden (57)

Die Umsetzung von 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4H)-on (60) mit verschiedenen Aralkylisothioharnstoff-hydrohalogeniden $(59)^{\dagger}$ lieferte die entsprechenden N-[2-(Aralkylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5yl]benzamide 57. Hierzu wurde die Reaktion, wie für Verbindung 57a beschrieben, in Gegenwart von zwei Äquivalenten Triethylamin durchgeführt. mikrowellenunterstützt Nach fünfminütiger Mikrowelleneinstrahlung wurden die Umlagerungsprodukte 57a-f in Ausbeuten von 64-70% isoliert.

[†] Die Synthese der Aralkylisothioharnstoff-hydrohalogenide **59** erfolgte nach Literaturvorschriften^[147-150] durch die Alkylierung von Thioharnstoff (62) mit den entsprechenden Aralkylhalogeniden 63 in Ethanol.

Reaktionsparameter: Maximalleistung 150 W, Maximaltemperatur 100°C und Maximaldruck 10 bar.

Schema 3-21: Mikrowellenunterstützte Synthese^{*} von N-[2-(Aralkylsulfanyl)-6-oxo-1,6dihydropyrimidin-5-yl]benzamiden (57)

57	R	Ausbeute [%]
a	Н	67
b	4- F	70
c	2-C1	64
d	3-Cl	69
e	4-Cl	66
f	4-Br	65

Tab. 3-7:Hergestellte N-[2-(Aralkylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-
yl]benzamide(57)

3.4.4.4 Eigenschaften der N-[2-(Aralkylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]benzamide **57**

Die Verbindungen dieser Substanzklasse fallen bei Raumtemperatur als farblose Pulver an. Im Infrarotspektrum der *N*-[2lagerstabile (Aralkylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]benzamide 57 kann eine ausgeprägte Bande der (NH)-Valenzschwingungen bei etwa 3370 cm⁻¹ beobachtet werden. Ferner sind die Signale der Carbonylabsorptionsbanden für diese Verbindungsklasse charakteristisch. Während es sich bei der Bande des Lactamcarbonyls bei ca. 1640-1650 cm⁻¹ um ein sehr intensives Signal handelt, erscheint die (C=O)-Valenzschwingung des Benzamids häufig nur als ein schwaches Signal bei 1670-1680 cm⁻¹.

^{*} Reaktionsparameter: Maximalleistung 150 W, Maximaltemperatur 100°C, Maximaldruck 10 bar und Reaktionsdauer 5 Minuten.

Abb. 3-14: IR-Spektrum (KBr) von Verbindung 57a

Aufgrund der Unlöslichkeit der Verbindungen 57 in CDCl₃ und geringen Löslichkeit in DMSO-d₆ konnten die Pyrimidin-Kohlenstoffatome im ¹³Cunvollständig detektiert werden. Auf die NMR-Spektrum nur Besonderheiten der ¹H-NMR-Spektren dieser Substanzklasse soll am Beispiel der Verbindung 57a eingegangen werden (Abb. 3-15). Das Signal der benzylischen Protonen (a) erscheint am weitesten im hohen Feld bei 4.44 ppm. Im Bereich von 7.24-7.99 ppm sind die Signale der zehn aromatischen Protonen (b) zu finden. Das Signal bei 8.55 ppm ist dem Pyrimidin-Proton (c) zuzuordnen. Am weitesten im tiefen Feld sind die beiden NH-Protonen (d und e) zu finden. Insbesondere das Signal des Lactam-Protons (e) bei 13.25 ppm liegt sehr weit tieffeldverschoben vor.

Einen eindeutigen Beweis für die postulierte Ringtransformation vom Oxazol-Derivat **60** zu den entsprechenden Pyrimidin-Derivaten **57** konnte durch eine röntgenkristallographische Untersuchung von Verbindung **57a** erbracht werden (Abb. 3-16). Ferner zeigt die Molekülstruktur von **57a** das Vorhandensein der tautomeren Lactam-Form.

Abb. 3-15: Ausschnitt aus dem ¹H-NMR-Spektrum von Verbindung **57a** in DMSO-d₆

Abb. 3-16: Molekülstruktur von N-[2-(Benzylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]benzamid (57a)

3.4.4.5 Mikrowellenunterstützte Synthese von N-(6-Oxo-2-phenethyl-1,6dihydropyrimidin-5-yl)benzamid (**69**)

Nachdem verschiedene N-[2-(Aralkylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]benzamide (57) hergestellt werden konnten, wurde anschließend überprüft, ob die Ringtransformation von 4-(Ethoxymethylen)-2-phenyl-1,3oxazol-5(4H)-on Gegenwart (60)auch in von anderen 1.3-Distickstoffnukleophilen aralkylsubstituierten wie Amidinen bzw. Guanidinen gelingt. Exemplarisch wurde daher die mikrowellenunterstütze Umlagerung in Gegenwart von Phenylpropionamidin (64)* bzw. 1-(4-Fluorbenzyl)guanidin (67)[†] durchgeführt.

^{*} Phenylpropionamidin (64) wurde in Anlehnung an eine Literaturvorschrift von *Ringom* und *Mitarbeiter*^[151] aus dem korrespondierenden Imidoester-hydrochlorid 66 durch die Reaktion mit methanolischer Ammoniak-Lösung und anschließender Behandlung mit Natronlauge gewonnen.

[†] 1-(4-Fluorbenzyl)guanidin (67) konnte in einer zweistufigen Synthese nach der Vorschrift von *Heesing* und *Schmaldt*^[152] hergestellt werden. Zunächst lieferte das Erhitzen von *S*-Methylisothioharnstoffhemisulfat (68) und 4-Fluorbenzylamin in Ethanol das Sulfatsalz. Im Anschluss wurde das 1-(4-Fluorbenzyl)guanidin 67 in Gegenwart von Natronlauge aus dem Sulfatsalz freigesetzt.

Schema 3-22: Mikrowellenunterstützte Synthese von N-[6-Oxo-2-(2-phenylethyl)-1,6dihydropyrimidin-5-yl]benzamid (69)

Bei der Reaktion des Azlactons **60** mit Phenylpropionamidin (**64**) wurde ein Reaktionsprodukt erhalten, welches anhand der Elementaranalyse sowie kernresonanz- und infrarotspektroskopischer Daten als *N*-[6-Oxo-2-(2-phenylethyl)-1,6-dihydropyrimidin-5-yl]benzamid (**69**) identifiziert werden konnte. Besonders charakteristisch sind im Infrarotspektrum von Verbindung **69** die Carbonylabsorptionsbanden des Benzamids und des Lactams bei 1674 resp. 1648 cm⁻¹ (Abb. 3-17).

Abb. 3-17: IR-Spektrum (KBr) von Verbindung 69

Bei der Umsetzung von 60 mit 1-(4-Fluorbenzyl)guanidin (67) konnte lediglich die Entstehung eines dunklen Öles beobachtet werden, aus dem sich N-{2-[(4-Fluorbenzyl)amino]-6-oxo-1,6weder das gesuchte dihydropyrimidin-5-yl}benzamid 70 noch ein anderes definiertes Reaktionsprodukt freisetzen lies. Wahrscheinlich ist dieser Befund auf das dritte reaktionsfähige Stickstoffatom der Guanidin-Struktur zurückzuführen. Da dieses ebenfalls mit 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4H)-on (60) reagieren kann, sind hier zusätzliche Nebenreaktionen denkbar.

3.4.5 Mechanistische Betrachtung der Umlagerungsreaktionen

Die Stabilität von heterozyklischen Systemen hängt insbesondere vom Grad der Aromatizität und von den Elektronegativitätsdifferenzen der beteiligten Atome ab. Die Beschreibung von Aromatizitäten war und ist Gegenstand vieler Untersuchungen. Ein häufig verwendeter Maßstab zur Darstellung von aromatischen Zuständen ist der *Bird-Index*. Im Jahre 1985 konnte *Bird*^[153], ausgehend von experimentell ermittelten Bindungslängen, ein Indexsystem für den Grad der Aromatizität von fünfgliedrigen Heterozyklen entwerfen. Kurze Zeit später publizierte er ähnliche Indizes für sechsgliedrige Heterozyklen^[154] und annelierte heterozyklische Systeme^[155]. Nachteilig war jedoch, dass die drei Indizes nicht direkt mit einander vergleichbar waren. Aufbauend auf weiterführenden Arbeiten von *Katritzky* und *Mitarbeitern*^[156] gelang es *Bird*^[157] 1992 einen von der Ringgröße unabhängigen und somit

allgemein gültigen Index für die Aromatizität von heterozyklischen Systemen aufzustellen.

Als Referenzwert wurde beim Bird-Index Benzen ($I_A = 100$) ausgewählt. 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4H)-on (60) ist als ein Derivat des Oxazols (Bird-Index $I_A = 47$)^[157] ein nur schwach resonanzstabilisiertes heterozyklisches System und dementsprechend relativ labil. Es überrascht daher nicht, dass in der Literatur verschiedenartige Umlagerungsreaktionen für Oxazol-Derivate bekannt sind*. Bei den im Rahmen der vorliegenden durchgeführten Ringtransformationen Arbeit ist aufgrund der infrarotspektroskopischen und dünnschichtchromatographischen Reaktionskontrolle von einer zweistufigen Reaktion auszugehen. Im ersten Schritt erfolgt zunächst die Substitution der Ethoxygruppe des 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4H)-ons **60** durch das 1.3-Distickstoffnukleophil Dies **74**. konnte besonders gut bei der konventionellen Synthese N-[2-(Benzylsulfanyl)-6-oxo-1,6von dihydropyrimidin-5-yl]benzamid (57a) beobachtet werden (Abschnitt 3.4.2). Als 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4*H*)-on (60)und Benzylisothioharnstoff-hydrochlorid (59a) in Ethanol suspendiert wurden, sowohl infrarotspektroskopisch als auch dünnschichtkonnte chromatographisch das Ausgangsmaterial 60 detektiert werden.

^{*} Die wahrscheinlich bekannteste Umlagerungsreaktion von Oxazol-Verbindungen ist die 1949 entdeckte Cornforth-Umlagerung^[141]. Bei dieser Reaktion lagern 4-carbonylsubstituierte Oxazole (**71**) beim Erhitzen zu den Oxazol-Derivaten **73** um. Dies geschieht vermutlich über die offenkettige Ylid-Zwischenstufe **72**^[158-160], welche als Dicarbonyl-Verbindung zwei Möglichkeiten zum erneuten Ringschluss hat. Die Natur der Substituenten R² und R³ bestimmt, ob eine Umlagerung möglich ist^[161].

Schema 3-23: Substitution der Ethoxygruppe von 4-(Ethoxymethylen)-2-phenyl-1,3oxazol-5(4H)-on (60)

Triethylamin Anschluss Im wurde zugesetzt und somit die Benzylisothioharnstoff-Base freigesetzt. Dabei entstand binnen kurzer Zeit eine klare Lösung, in der 60 nicht mehr dünnschichtchromatographisch nachzuweisen auch die charakteristische war. Ferner war Carbonylabsorptionsbande des Azlactons bei 1784 cm⁻¹ verschwunden. Daher ist bei den beschriebenen Ringtransformationen davon auszugehen, zunächst die Ethoxy-Gruppe durch die verschiedenen 1.3dass Distickstoffnukleophile 74 substituiert wurde und anschließend die Oxazolon-Derivate 75 zu den 5-Hydroxyoxazolen 76 tautomerisiert sind.

Schema 3-24: Postulierter Mechanismus der Ringtransformationsreaktion
In dem nachfolgenden Reaktionsschritt geschieht dann die eigentliche Umlagerung. Beim Erhitzen der ethanolischen Lösungen der schwach resonanzstabilisierten Oxazol-Intermediate 76 erfolgt in einem konzertierten Prozess der Ringschluss zum Pyrimidin-Ring unter Ringöffnung des Oxazol-Ringes. Die Umlagerung zu den Pyrimidin-Derivaten 79 erfordert thermische Energie. Dies konnte bei der konventionellen Synthese von N-[2-(Benzylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]benzamid (57a) visuell beobachtet werden, da das Oxazol-Intermediat 76 in Ethanol löslich war. Erst als der Reaktionsansatz erhitzt wurde, fiel das in Ethanol schwerlösliche Benzamid 57a aus. In Schema 3-24 ist ein denkbarer, allgemeiner Reaktionsmechanismus für die beschriebenen Ringtransformationen skizziert.

Entscheidend für die quantitative Umlagerung zum Pyrimidin-System ist, dass die resultierenden Pyrimidin-Derivate die thermodynamisch stabileren Ringsysteme darstellen. Dies ist durch die im Vergleich zum Oxazol höheren Aromatizität des Pyrimidins (Bird-Index $I_A = 84$)^[157] zu erklären.

4 2,4-Diaminosubstituierte Pyrimidin-5-carboxamide und ihre heterozyklischen bioisosteren Derivate

4.1 2,4-Diaminosubstituierte Pyrimidin-5-carboxamide

4.1.1 Einleitung

Bei den bisher vorgestellten Strukturmodifikationen handelte es sich ausschließlich um 5-Acylaminopyrimidin-Derivate. Bei den folgenden Strukturabwandlungen sollten auch bioisostere Derivate mit abweichender Substitution in Ringposition fünf erschlossen werden. Eine in der Wirkstoffforschung häufig vorgenommene Leitstrukturabwandlung ist die sogenannte Funktionsumkehr. Dieser Begriff soll anhand des Opioid-Analgetikums **Pethidin** näher betrachtet werden. Pethidin lässt sich als Ethylester einer Carbonsäure beschreiben. Wird nun formal die Lage des Carbonyls umgekehrt, gelangt man zum Propionsäure-Derivat **1-Methyl-4-phenyl-4-propionoxypiperidin** (**MPPT**). Dieses konformationsisomere Pethidin-Derivat übertrifft die analgetische Potenz des Pethidin um das Fünffache^[162,163].

Abb. 4-1: Beispiel für eine Ethoxycarbonyl/Ethylcarbonyloxy-Bioisosterie

Um die bisher vorgenommenen Strukturmodfikationen konsequent weiter fortzuführen, sollte die Funktionsumkehr auf die in Kapitel 2 beschriebenen Anilid- und Carbamat-Derivate angewendet werden. Bei den Anilid-Derivaten führt die formale Umkehr der Lage der Amino-Gruppe im Vergleich zur Carbonyl-Gruppe zu Carboxamid-Derivaten. Analog liefert die Funktionsumkehr der Carbamat-Derivate die in Schema 4-1 dargestellten Hydroxamat-Derivate. Da die Hydroxamat-Derivate auch als *N*-Alkoxy(aralkoxy)pyrimidin-5-carboxamide aufgefasst werden können, werden beide Substanzklassen im Folgenden als Carboxamid-Derivate zusammengefasst.

Schema 4-1: Funktionsumkehr von 5-(Alkoxy)acylaminopyrimidin-Derivaten

Im Abschnitt 1.2.3.4 wurde bereits auf *N*-aralkylsubstituierte Pyrimidin-5carboxamide der Fa. Bristol-Myers Squibb hingewiesen, die bemerkenswerte K_v 7-modulierende Aktivitäten zeigten. Aus diesem Grund wurde zusätzlich zur Synthese von *N*-alkyl(alkoxy)substituierten Carboxamiden auch die Darstellung von *N*-aralkyl(aralkoxy)substituierten Carboxamid-Derivaten angestrebt.

4.1.2 Literaturübersicht und Syntheseplanung

Carboxamide werden hauptsächlich aus den entsprechenden Carbonsäuren hergestellt. Die direkte Aminolyse von Carbonsäuren hat im Laboratorium aufgrund der geringen Carbonylreaktivität nur geringe Bedeutung. Üblicherweise werden die Carbonsäuren zu reaktiveren Derivaten aktiviert, ehe sie durch Reaktion mit Aminkomponenten in die Carboxamide überführt werden. Es sind verschiedene Methoden zur Aktivierung von Carbonsäuren bekannt. Bei Durchsicht der Literatur wurde ein Beispiel für die Synthese von strukturell verwandten Pyrimidin-5-carboxamiden (**80**) gefunden. *Nagashima* und *Mitarbeiter*^[164] aktivierten die Pyrimidin-5-carbonsäuren **81** mit 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimid-hydrochlorid (EDC) und 1-Hydroxybenzotriazol (HOBt). Im Anschluss erfolgte dann die Aminolyse der aktivierten Pyrimidin-5-carbonsäuren mit verschiedenen Alkylaminen.

Schema 4-2: Synthese von Pyrimidin-5-carboxamid-Derivaten (80)^[164]

Aufgrund der strukturellen Verwandschaft schien es vielversprechend, die angestrebten 2,4-diaminosubstituierten Pyrimidin-5-carboxamide **82** nach der Methode von *Nagashima* und *Mitarbeitern* herzustellen. Die hierfür erforderlichen 4-Amino-2-(aralkylamino)pyrimidin-5-carbonsäuren **83** leiten sich retrosynthetisch beispielsweise von entsprechenden Carbonitril-Derivaten (**84**) ab. Diese wiederum sollten durch Aminolyse des literaturbekannten 4-Amino-2-(methylsulfanyl)pyrimidin-5-carbonitrils **85** zugänglich sein.

Schema 4-3: Retrosynthese von 2,4-diaminosubstituierten Pyrimidin-5-carboxamiden (82)

4.1.3 Vorstufen

4.1.3.1 Synthese von 4-Amino-2-(methylsulfanyl)pyrimidin-5-carbonitril (85)

Die Synthese von 4-Amino-2-(methylsulfanyl)pyrimidin-5-carbonitril (**85**) ist nach unterschiedlichen Methoden möglich. Das im Rahmen der vorliegenden Arbeit als Ausgangsmaterial verwendete 4-Amino-2-(methylsulfanyl)pyrimidin-5-carbonitril **85** wurde nach der Vorschrift von *Cottis* und *Tieckelmann*^[165] hergestellt. Die Synthese gelang durch Zyklisierung von *S*-Methylisothioharnstoff, welches in situ durch Natronlauge aus dem Hemisulfat **68** freigesetzt wurde, mit einer äquimolaren Menge Ethoxymethylenmalononitril **86** in Aceton. Nach dreistündiger Reaktion wurde das Zyklisierungsprodukt **85** durch Wasserzugabe ausgefällt. Nach Umkristallisation aus 70%igem Ethanol wurde die Vorstufe **85** in einer Ausbeute von 68% erhalten.

Schema 4-4: Synthese von 4-Amino-2-(methylsulfanyl)pyrimidin-5-carbonitril (85)

4.1.3.2 Darstellung von 4-Amino-2-(aralkylamino)pyrimidin-5carbonitrilen (84)

Die Aminolyse von 4-Amino-2-(methylsulfanyl)pyrimidin-5-carbonitril (**85**) bietet einen einfachen Zugang zu N²-substituierten 2,4-Diaminopyrimidin-5-carbonitrilen^{*}. Die 4-Amino-2-(aralkylamino)pyrimidin-5-carbonitrile **84** wurden nach einer modifizierten Methode von *Taylor* und *Mitarbeitern*^[167] synthetisiert. Hierzu wurde das Ausgangsmaterial **85** in einem Überschuss des Aralkylamins **87** suspendiert und für 18 Stunden auf 130 °C erhitzt. Dabei entstand eine klare Lösung. Nachdem Abkühlen auf Raumtemperatur wurde der Reaktionsansatz für mehrere Stunden im Eisfach aufbewahrt. Im

^{*} Sollen Aminkomponenten mit geringer Nukleophilie eingesetzt werden, wird 4-Amino-2-(methylsulfanyl)pyrimidin-5-carbonitril (**85**) zunächst zum korrespondierenden Sulfon oxidiert^[166].

Anschluss wurde der entstandene Niederschlag nach Zugabe von wenig Ethanol abgesaugt und aus Ethanol umkristallisiert.

Schema 4-5: Darstellung von 4-Amino-2-(aralkylamino)pyrimidin-5-carbonitrilen (85)

84	\mathbf{R}^1	Ausbeute [%]	
a	Н	60	
b	F	65	

Tab. 5-1:Hergestellte 4-Amino-2-(aralkylamino)pyrimidin-5-carbonitrile (85)

4.1.3.3 Darstellung von 4-Amino-2-(aralkylamino)pyrimidin-5carbonsäuren (83)

Die vollständige Hydrolyse von Carbonitrilen zu den entsprechenden Carbonsäuren ist prinzipiell im stark sauren oder stark basischen Milieu möglich. Die Synthese der 4-Amino-2-(aralkylamino)pyrimidin-5carbonsäuren **83** erfolgte basenvermittelt. Eine Suspension der Nitril-Derivate **84** in einem Gemisch aus 33%iger Natronlauge und Ethanol (3:7) wurde für acht Stunden unter Rückfluss erhitzt. Im Anschluss wurde der Reaktionsansatz heiß filtriert und das Filtrat nach dem Abkühlen auf Raumtemperatur vorsichtig mit Salzsäure angesäuert. Der entstandene Niederschlag wurde abgesaugt und aus Ethanol umkristallisiert.

Schema 4-6: Darstellung von 4-Amino-2-(aralkylamino)pyrimidin-5-carbonsäuren (83)

83	\mathbf{R}^1	Ausbeute [%]	
а	Η	84	
b	F	79	

Tab. 5-2:Hergestellte 4-Amino-2-(aralkylamino)pyrimidin-5-carbonsäuren (83)

4.1.4 <u>Darstellung von 2,4-diaminosubstituierten Pyrimidin-5-carbox-</u> <u>amiden (82)</u>

Die Synthese der im Rahmen der vorliegenden Arbeit hergestellten 2,4diaminosubstituierten Pyrimidin-5-carboxamide 82 gelang in Anlehnung an die Methode von Nagashima und Mitarbeitern^[164]. Hierzu wurden die 4-Amino-2-(aralkylamino)pyrimidin-5-carbonsäuren 83 in DMF suspendiert und 1.15 Äquivalente EDC zugesetzt. Im Anschluss wurden 1.15 Aquivalente HOBt zugegeben und für 30 Minuten bei Raumtemperatur gerührt. Die erfolgreiche Aktivierung der Carbonsäuren konnte im Infrarotspektrum anhand der enstandenen Carbonylabsorptionsbande bei ca. 1770 cm⁻¹ festgestellt werden. Anschließend wurden die Amin- bzw. Hydroxylamin-Komponenten hinzugefügt und über Nacht weitergerührt. Zur Aufarbeitung wurde Ethylacetat zugesetzt und anschließend nacheinander mit Wasser, gesättigter NaHCO₃- und NaCl-Lösung extrahiert. Nachdem die organische Phase unter vermindertem Druck eingeengt wurde, konnten die angestrebten 2,4-diaminosubstituierten Pyrimidin-5-carboxamide 82 durch Kristallisation aus Ethylacetat/n-Hexan in Ausbeuten von 35-46% gewonnen werden.

Bei dieser Reaktionssequenz handelte es sich um eine modifizierte Carbodiimid-Methode. Die zunächst entstandenen instabilen^{*} Acylisoharnstoff-Derivate **88** wurden mit HOBt zu den stabilen Intermediaten **89** umacyliert. Diese aktivierten Carbonsäure-Derivate **89** reagierten dann mit den Amin- bzw. Hydroxylamin-Nukleophilen zu den Carboxamiden **82**.

^{*} Die Carbodiimid-Methode hat in seiner ursprünglichen Form einen prinzipiellen Nachteil. Wenn das zugesetzte Nukleophil eine geringe Reaktivität aufweist, lagern die Acylisoharnstoff-Zwischenstufen zu unreaktiven *N*-Acylharnstoffen um. Da diese als Amid-Derivate keine Acylierungsmittel darstellen, führt diese Nebenreaktion zu reduzierten Ausbeuten^[168,169].

Schema 4-7: Synthese von 2,4-diaminosubstituierten Pyrimidin-5-carboxamiden (82)

82	R ¹	\mathbf{R}^2	Ausbeute [%]
a	Benzyl	Butyl	43
b	4-Fluorbenzyl	Butyl	40
c	Benzyl	Benzyl	39
d	Benzyl	4-Fluorbenzyl	46
e	Benzyl	Benzyloxy	35
f	Benzyl	2-Fluorbenzyloxy	44
g	Benzyl	Ethoxy	35
h	4-Fluorbenzyl	Ethoxy	45

Tab. 5-3:Hergestellte 2,4-diaminosubstituierte Pyrimidin-5-carboxamide (82)

4.1.5 <u>Eigenschaften der 2,4-diaminosubstituierten Pyrimidin-5-carbox-</u> <u>amide **82**</u>

Die 2,4-diaminosubstituierten Pyrimidin-5-carboxamide **82** fielen als amorphe Substanzen an, welche sich bei Raumtemperatur über einen Zeitraum von einem Jahr als lagerstabil erwiesen. Charakteristisch für die Infrarotspektren dieser Substanzklasse sind mehrere Banden der (NH)-Valenzschwingungen sowie die Carbonylabsorptionschwingung. Die (C=O)-Valenzschwingung der *N*-alkyl(aralkyl)substuierten Carboxamide treten bei etwa 1640 cm⁻¹ auf. In den Infrarotspektren der *N*-alkoxy(aralkoxy)substituierten Carboxamide liegt die Carbonylvalenzschwingung deutlich hypsochrom verschoben bei 1655-1665 cm⁻¹ vor.

Abb. 4-1: IR-Spektrum (KBr) von Verbindung 82c

Die Zuordnung der Signale in den ¹H-NMR und ¹³C-NMR-Spektren soll hier exemplarisch anhand Verbindung **82c** erläutert werden. Das ¹H-NMR-Spektrum von Verbindung **82c** (Abb. 4.2) zeigt für die beiden benzylischen Protonensorten (*a* und *b*) jeweils ein Dublett bei 4.40 bzw. 4.48 ppm. Weiter im tiefen Feld (7.05-8.12 ppm) ist ein breites Multiplett zu finden, das eine Gesamtintensität von 13 Protonen aufweist. Es handelt sich hier um die Signale der aromatischen Protonen (*c*), die mit den signalen der NH-Gruppe (*d*) sowie der NH₂-Gruppe (*e*) überlappen. Ferner liefert das aromatische Pyrimidin-Proton (*f*) ein Singulett bei 8.45 ppm, während die Carboxamid-NH-Gruppe (*g*) sich am weitesten im tiefen Feld bei 8.64 ppm zeigt. Diese tritt in Resonanz mit den benachbarten benzylischen Protonen und erscheint als Triplett mit einer Kopplungskostante von 5.7 Hz.

Abb. 4-2: Ausschnitt aus dem ¹H-NMR-Spektrum von Verbindung 82c in DMSO-d₆

Abb. 4-3 zeigt das ¹³C-NMR-Sepktrum von Verbindung 82c. Diesem sind die Signale der beiden benzylischen Kohlenstoffatome (1 und 2) bei 41.9 bzw. 43.6 ppm zu entnehmen. Die Signale der tertiären aromatischen Kohlenstoffatome (3) sind bei 126.4-128.1 ppm zu finden. Die beiden quartären aromatischen Signale (4 und 5) erscheinen bei 137.8 und 139.9 ppm mit geringer Intensität, während das Pyrimidin-C6 (6) ein Signal bei 157.2 ppm liefert. Am weitesten im tiefen Feld zeigen sich die Signale von quartären Pyrimidinkohlenstoffatomen (7 und zwei 8) sowie das Carbonylkohlenstoffatom (9). Charakteristisch für diese Substanzklasse ist, dass sich trotz der Erhöhung der Scan-Anzahl und einer größeren Konzentration der Probenlösung nicht alle quartären Kohlenstoffatome detektierbar waren. Dieses Phänomen betrifft insbesondere das Pyrimidin-C5.

Abb. 4-3: Ausschnitt aus dem ¹³C-NMR-Spektrum von Verbindung **82c** in DMSO-d₆

4.2 Heterozyklische bioisostere Analoga der 2,4-diaminosubstituierten Pyrimidin-5-carboxamide

4.2.1 Einleitung

Im Zusammenhang mit den zuvor beschriebenen 2,4-diaminosubstituierten Pyrimidin-5-carboxamiden 82 sollten auch Derivate mit bioisosterer Amid-Der bioisostere Gruppe hergestellt werden. Ersatz Amidvon Funktionalitäten ist insbesondere auf dem Gebiet der Peptidomimetika von Bedeutung^{*}. Ein hier häufig anzustreffendes Beispiel sind 1,2,4-Oxadiazol-Substituenten^[171-175]. Die 1,2,4-Oxadiazol-Analoga zeichnen sich gegenüber der Amidbindung durch eine größere hydrolytische und metabolische Stabilität aus. Da in einem Patent der Fa. Neurosearch auch Retigabin-Analoga mit 1,2,4-Oxadiazol-Substitution beschrieben werden^[176], wurde die Synthese von 5-(1,2,4-Oxadiazol-3-yl)pyrimidin-Derivaten vom Typ 90 angestrebt.

Abb. 4-4: Geplante heterozyklische bioisostere Analoga der 2,4-diaminosubstituierten Pyrimidin-5-carboxamide **82**

^{*} Der Einsatz von Peptiden als Arzneistoffe wird durch mehrere Faktoren eingeschränkt. Peptide werden nach oraler Gabe meist schlecht resorbiert, im Wesentlichen bedingt durch das häufig hohe Molekulargewicht. Ferner werden Peptide metabolisch leicht gespalten oder über die Leber und Nieren schnell wieder ausgeschieden. Optimale Peptidomimetika müssen daher bestimmte Eigenschaften besitzen. Neben eines geringem Molekulargewichts und einer geeigneten räumlichen Anordnung, sollten Peptidomimetika wenige bzw. nicht spaltbare Amidbindungen zur Erhöhung der Stabilität enthalten^[170].

Die Tetrazol-Gruppe ist ein weiteres heterozyklisches Bioisoster für Carbonsäure-Derivate. In dem erwähnten Neurosearch-Patent werden auch tetrazolsubstituierte Retigabin-Analoga erwähnt. Ein Patentbeispiel ist die Verbindung **91.** Auch *Kohara* und *Mitarbeiter*^[177] berichteten von einer 1,2,4-Oxadiazol/Tetrazol-Bioisosterie. Aus diesem Grund waren auch Tetrazol-Analoga vom Verbindungstyp **92** von Interesse.

4.2.2 <u>N²-Benzyl-5-(5-methyl/phenyl-1,2,4-oxadiazol-3-yl)pyrimidin-2,4-</u> diamine (90)

4.2.2.1 Syntheseplanung

1,2,4-Oxadiazole können auf unterschiedlichen Synthesewegen erschlossen werden. Am häufigsten erfolgt die Darstellung durch die Zyklisierung von *O*-Acylamidoximen oder durch die Zykloaddition von Nitriloxiden an Carbonitrile^{*}. Da es in orientierenden Vorversuchen gelang, 4-Amino-2-(benzylamino)pyrimidin-5-carbonitril (**84a**) in das entsprechende Amidoxim **93** zu überführen, wurde der erstgenannte Syntheseweg über die *O*-Acylamidoxime beschritten. Die weitere Syntheseplanung sah vor, das Amidoxim **93** durch die Reaktion mit reaktiven Carbonsäure-Derivaten wie Acetanhydrid und Benzoylchlorid zu den *O*-Acylamidoxim-Vorstufen **94** umzusetzen. Im abschließenden Reaktionsschritt sollte die Zyklisierung der *O*-Acylamidoxim-Derivate **94** in Eisessig erfolgen. Schema 4-8 fasst die geplante Syntheseführung zusammen.

^{*} Für weitere Synthesebeispiele von 1,2,4-Oxadiazolen wird an dieser Stelle auf entsprechende Übersichtsartikel verwiesen^[178-180].

R = Methyl, Phenyl

Schema 4-8: Übersicht über die geplante Synthese von 5-(1,2,4-Oxadiazol-3-yl)pyrimidin-Derivaten (**90**)

4.2.2.2 Darstellung von 4-Amino-2-(benzylamino)-N'-hydroxypyrimidin-5carboxamidin (93)

die existieren Für Herstellung Amidoximen vielfältige von Syntheseoptionen. Im einfachsten Fall erfolgt die Synthese durch die Reaktion von Hydroxylamin mit Carbonitrilen^{*}. Das Ausgangsmaterial 4-Amino-2-(benzylamino)-N'-hydroxypyrimidin-5-carboxamidin (93) wurde durch die Behandlung von 4-Amino-2-(benzylamino)pyrimidin-5-carbonitril (84a) mit überschüssiger wässriger Hydroxylamin-Lösung gewonnen. Zur Lösungsvermittlung wurde tropfenweise THF zugesetzt und die entstandene Lösung bei Raumtemperatur gerührt. Der Verlauf der Reaktion konnte dünnschichtchromatographisch verfolgt werden. Nach einer Reaktionszeit von zwei Tagen konnte die vollständige Umsetzung festgestellt werden. Der Reaktionsansatz wurde unter vermindertem Druck auf etwa ein Drittel des ursprünglichen Volumens eingeengt, der gebildete Niederschlag abgesaugt und aus Methanol umkristallisiert.

^{*} Einen Überblick über gebräuchliche Syntheseverfahren für Amidoxim-Derivate bietet Lit.^[181].

Schema 4-9: Synthese von 4-Amino-2-(benzylamino)-N'-hydroxypyrimidin-5-carboxamidin (93)

4.2.2.3 Synthese von N²-Benzyl-5-(5-methyl/phenyl-1,2,4-oxadiazol-3yl)pyrimidin-2,4-diaminen (**90**)

Wie bereits in der Syntheseplanung erwähnt, sollte die Synthese der N^2 -Benzyl-5-(5-methyl/phenyl-1,2,4-oxadiazol-3-yl)pyrimidin-2,4-diamine 90 in einer zweistufigen Reaktion ausgehend von der Amidoxim-Vorstufe 93 erfolgen. Im ersten Reaktionsschritt wurden die O-Acylamidoxime 94 hergestellt. Die Acylierung von 93 zum O-Acetyl-Derivat 94a gelang in überschüssigem Acetanhydrid. Das O-Benzoyl-Derivat 94b wurde durch Reaktion von 93 mit 1.1 Äquivalenten Benzoylchlorid in Pyridin hergestellt. In beiden Fällen entstand nach wenigen Minuten ein voluminöser Niederschlag der abgesaugt und ohne weitere Charakterisierung direkt zu den N^2 -Benzyl-5-(5-methyl/phenyl-1,2,4-oxadiazol-3-yl)pyrimidin-2,4diaminen 90 zyklisiert wurde. Hierzu wurden die O-Acylamidoxime 94 in Eisessig suspendiert und für drei Stunden rückfließend erhitzt. Anschließend wurde der Reaktionsansatz unter vermindertem Druck eingeengt und der Rückstand säulenchromatographisch an Kieselgel gereinigt. Durch diese Verfahrensweise konnten die gesuchten N^2 -Benzyl-5-(5-methyl/phenyl-1,2,4-oxadiazol-3-yl)pyrimidin-2,4-diamine 90a,b in Gesamtausbeuten von 45 bzw. 38% gewonnen werden.

Schema 4-10: Synthese von N²-Benzyl-5-(5-methyl/phenyl-1,2,4-oxadiazol-3-yl)pyrimidin-2,4-diaminen (**90**)

90	R	Ausbeute [%]
а	Methyl	45
b	Phenyl	38

Tab. 5-4:Hergestellte N²-Benzyl-5-(5-methyl/phenyl-1,2,4-oxadiazol-3-yl)-
pyrimidin-2,4-diamine (90)

4.2.2.4 Eigenschaften der N²-Benzyl-5-(5-methyl/phenyl-1,2,4-oxadiazol-3-yl)pyrimidin-2,4-diamine **90**

Die Verbindungen des Typs **90** stellen farblose und lagerbeständige Substanzen dar. In den Infrarotspektren sind drei ausgeprägte Banden der NH-Valenzschwingungen zu beobachten. Ferner ist die (C=N)-Valenzschwingung bei etwa 1650 cm⁻¹ charakteristisch.

Abb. 4-5: IR-Spektrum (KBr) von Verbindung 90a

Beispielhaft sollen im Folgenden die Kernresonanzspektren von der Verbindung **90a** erläutert werden. Das ¹H-NMR-Spektrum zeigt die Protonen der Methylgruppe (*a*) bei 2.61 ppm, während die benzylischen Protonen (*b*) bei 4.54 ppm als Dublett in Resonanz treten. Das Signal der NH-Gruppe (*c*) erscheint bei 6.78 ppm. Ähnlich wie bei den 2,4-diaminosubstituierten Pyrimidin-5-carboxamiden **82** liefern die aromatischen Protonen (*d*) sowie die NH₂-Gruppe (*e*) ein sich gegenseitig überlappendes Multiplett. Das aromatische Pyrimidin-Proton (*f*) erfährt die größte Entschirmung und ist folglich am weitesten im tiefen Feld bei einer chemischen Verschiebung von 8.55 ppm wiederzufinden.

Im ¹³C-Spektrum von Verbindung **90a** fällt insbesondere auf, dass die Signale der Kohlenstoffatome des 1,2,4-Oxadiazolringes (9 und 10) sehr weit tieffeldverschoben bei 165.5 und 175.5 ppm erscheinen.

Abb. 4-6: Ausschnitt aus dem ¹H-NMR-Spektrum von Verbindung **90a** in DMSO-d₆

Abb. 4-7: Ausschnitt aus dem ¹³C-NMR-Spektrum von Verbindung **90a** in DMSO-d₆

1,2,4-Oxadiazol-Derivate sind aufgrund ihrer geringen Aromatizität (Bird-Index $I_A = 48$)^[157] anfällig für Umlagerungsreaktionen^{*}. Außerdem erlauben die vorliegenden kernresonanzspektroskopischen Daten keinen eindeutigen Strukturbeweis. Daher wurde die postulierte Struktur durch eine exemplarisch vorgenommene röntgenkristallographische Untersuchung von Verbindung **90a** (siehe Abb. 4-8) zweifelsfrei gesichert.

Abb. 4-8: Molekülstruktur von N^2 -Benzyl-5-(5-methyl-1,2,4-oxadiazol-3-yl)pyrimidin-2,4-diamin (**90a**)

^{*} Umlagerungsreaktionen vom Boulton-Katritzky-Typ^[182,183] sind seit den 1960iger Jahren bekannt. In den folgenden Jahren wurden verschiedenste Variationen der Boulton-Katritzky-Umlagerung publiziert und in Übersichtsartikeln^[184-188] zusammengefasst. Viele dieser Umlagerungen gehen von 1,2,4-Oxadiazol-Derivaten aus. Beispielsweise gelang es zwei Arbeitsgruppen nahezu zeitgleich 2-aminophenylsubstituierte 1,2,4-Oxadiazol-Derivaten **96** umzulagern^[189,190]. Ferner konnten *Korbonits* und *Mitarbeiter*^[189] den Phenylring durch andere Heteroaromaten ersetzen und so weitere annelierte 3-Acylaminopyrazole erschließen.

4.2.3 N^2 -Aralkyl-5-(1*H*-tetrazol-5-yl)pyrimidin-2,4-diamine (92)

4.2.3.1 Darstellung von N²-Aralkyl-5-(1H-tetrazol-5-yl)pyrimidin-2,4diaminen (**92**)

Am häufigsten werden 5-substituierte Tetrazole durch Zykloaddition von Stickstoffwasserstoffsäure bzw. ionischen Aziden an Carbonitrile hergestellt. Die Synthese der im Rahmen der vorliegenden Arbeit hergestellten N^2 -Aralkyl-5-(1H-tetrazol-5-yl)pyrimidin-2,4-diamine 92 erfolgte in Anlehnung an Literaturvorschriften für verwandte (1H-Tetrazol-5-yl)pyridin- und (1H-Tetrazol-5-yl)pyrimidin-Derivate^[191,192]. Hierzu wurden die Carbonitril-Vorstufen 84 in DMF suspendiert und jeweils mit 1.5 Äquivalenten Lithiumchlorid, Natriumazid und Ammoniumchlorid^{*} versetzt. Der Reaktionsansatz wurde für 15 Stunden auf etwa 120 °C erhitzt. Die infrarotspektroskopische und dünnschichtchromatographische Reaktionskontrolle bestätigte die vollständige Umsetzung der Edukte 84. Zur Aufarbeitung wurde das Lösungsmittel unter vermindertem Druck entfernt, der Rückstand in Natronlauge aufgenommen und filtriert. Im Anschluss wurde das Filtrat mit Eisessig angesäuert, der entstandene Niederschlag abgesaugt und aus Methanol umkristallisiert.

Schema 4-11: Synthese von N^2 -Aralkyl-5-(1H-tetrazol-5-yl)pyrimidin-2,4-diaminen (92)

92	R	Ausbeute [%]	
a	Н	61	
b	F	70	

Tab. 5-5: Hergestellte N^2 -Aralkyl-5-(1H-tetrazol-5-yl)pyrimidin-2,4-diamine (92)

^{*} Für die Umsetzung weniger reaktiver Carbonitrile wird bevorzugt Ammoniumazid verwendet. Dieses kann sehr leicht in situ durch Mischen von Natriumazid und Ammoniumchlorid hergestellt werden^[193].

4.2.3.2 Eigenschaften der N²-Aralkyl-5-(1H-tetrazol-5-yl)pyrimidin-2,4diamine **92**

Die als amorphe Pulver anfallenden N^2 -Aralkyl-5-(1*H*-tetrazol-5yl)pyrimidin-2,4-diamine (**92**) stellen stabile Verbindungen dar, welche bei Lagerung über einen Zeitraum von einem Jahr keine Anzeichen von Zersetzung erkennen ließen.

Die Infrarotspektren dieser Verbindungsklasse zeigen mehrere charakteristische Banden der (NH)-Valenzschwingungen. Ferner ist eine ausgeprägte (C=N)-Valenzschwingung bei ca. 1655 cm⁻¹ zu beobachten.

Abb. 4-10: IR-Spektrum (KBr) von Verbindung 92a

Im ¹H-NMR-Spektrum von Verbindung **92a** zeigen sich die benzylischen Protonen (*a*) bei einer chemischen Verschiebung von 4.55 ppm. Im Bereich von 7.16-8.31 ppm erscheint ein sehr breites Multiplett mit einer Gesamtintensität von neun Protonen. Diese Signale sind den aromatischen Protonen (*b*), der primären Aminogruppe (*c*) sowie den NH-Protonen (*d* und *e*) zuzuordnen. Das aromatische Pyrimidin-Proton (*f*) liefert ein tieffeldverschobenes Signal bei 8.52 ppm.

Abb. 4-10: Ausschnitt aus dem ¹H-NMR-Spektrum von Verbindung 92a in DMSO- d_6

4.2.3.3 Synthese von N-Benzyl-5,5-dimethyl-5,6-dihydropyrimido[5,4-e]tetrazolo[1,5-c]pyrimidin-8-amin (**97**)

Die zum Tetrazol-Substituenten benachbarte primäre Aminogruppe bot die Gelegenheit, durch Reaktion mit Aldehyden oder Ketonen 5.6dihydropyrimido[5,4-*e*]tetrazolo-[1,5-*c*]pyrimidin-Derivate zu erschließen. Solche Vertreter können formal als rigidisierte N^2 -Aralkyl-5-(1*H*-tetrazol-5yl)pyrimidin-2,4-diamine (92) aufgefasst werden. Dies wurde exemplarisch durch die Acetalisierung von 92a mit Aceton untersucht. Hierzu wurde 92a in Eisessig suspendiert und mit einem fünffachen Überschuss Aceton versetzt. Der Reaktionsansatz wurde drei Tage unter Rückfluss erhitzt und anschließend vermindertem Druck Die unter eingeengt. dünnschichtchromatographische Untersuchung des Rückstandes zeigte ein Gemisch aus nicht umgesetztem Ausgangsmaterial 92a und einem Reaktionsprodukt. Dieses Gemisch unpolareren konnte säulenchromatographisch getrennt werden und anschließend das gesuchte N-Benzyl-5,5-dimethyl-5,6-dihydropyrimido[5,4-*e*]tetrazolo-[1,5-*c*]pyrimidin-8-amin 97 aus Dichlormethan/n-Hexan in 35% iger Ausbeute zur Kristallisation gebracht werden. Das nicht umgesetzte N^2 -Benzyl-5-(1H-

tetrazol-5-yl)pyrimidin-2,4-diamin **92a** konnte nahezu quantitativ zurückgewonnen werden.

Schema 4-12: Synthese von N-Benzyl-5,5-dimethyl-5,6-dihydropyrimido[5,4-e]tetrazolo[1,5-c]pyrimidin-8-amin (**97**)

5 *3H*-[1,2,3]Triazolo[4,5-*d*]pyrimidin-5-amine

5.1 Einleitung

Im Jahr 2006 entdeckten Wissenschaftler der Fa. Grünenthal *N*aralkylsubstituierte Benzo[*d*]isoxazol-3-ylamin-Verbindungen (**98**) mit analgetischer Wirkung. Für diese Derivate konnte eine $K_v7.2/7.3$ modulierende Wirkung nachgewiesen werden^[194]. Auf verwandte K_v7 -Aktivatoren mit Oxindol- (**VI**) und Chinolon-Grundkörper (**VII**) wurde bereits in Abschnitt 1.2.3.2 eingegangen.

Abb. 5-1: Analgetisch wirksame Benzo[d]isoxazol-3-ylamin-Verbindungen (98) und angedachte N,3-substituierte 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amin-Derivate (99)

Ermutigt durch die in den vorherigen Kapiteln etablierten Synthesewege für substituierte Pyrimidin-2,4,5-triamin-Derivate, interessierte nun die Synthese von 3H-[1,2,3]Triazolo[4,5-*d*]pyrimidin-5-amin-Derivaten vom Typ **99**. Aufgrund der strukturellen Verwandtschaft zu den Benzo[*d*]isoxazol-3-ylamin-Verbindungen **98** sowie zu den Oxindol- **VI** und Chinolon-Derivaten **VII** stellen insbesondere 3-aralkylsubstituierte 3H-[1,2,3]Triazolo[4,5-*d*]pyrimidin-5-amine (**99**) potentielle K_v7-Agonisten dar. Darüber hinaus sind in der Literatur für verschiedene strukturell mit den angestrebten 3H-Triazolo[4,5-*d*]pyrimidin-5-amin-Derivaten **99** verwandte Substanzklassen vielfältige biologische Aktivitäten beschrieben. Im Folgenden sollen einige ausgewählte Beispiele vorgestellt werden.

Kelley und *Mitarbeiter* beschrieben einige Benzylpurin-Derivate als antikonvulsiv wirksame Substanzen mit unbekanntem Wirkmechanismus^[195-197]. Eines der wirksamsten Derivate war das 2-Fluorbenzylderivat **BW** A78U. Da bei BW A78U in einer klinischen Phase I Studie vermehrt Übelkeit und Erbrechen auftraten, wurden mit BW A78U als Leitstruktur verschiedene Molekülvariationen durchgeführt, um diese Nebenwirkungen zu reduzieren^[198-202]. Im Rahmen dieser Untersuchungen wurde die Verbindung BW 534U87 mit einem 1,2,3-Triazolo[4,5-c]pyridin-Grundkörper als vielversprechendste Substanz identifiziert^[199]. Das 3H-[1,2,3]Triazolo[4,5-*d*]pyrimidin-Derivat 100 zeigte ebenfalls eine hochpotente antikonvulsive Wirkung^[198].

Abb. 5-2: Antikonvulsiv wirksame Benzylpurin-Derivate^[198,199]

Weitere Beispiele für biologisch aktive 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-7-amin-Derivate sind in der Gruppe der Adenosin-Rezeptor-Antagonisten zu finden. Beispielsweise wurde für 3-aralkylsubstituierte 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-7-amin-Derivate Typ 101 vom eine gefunden^[203]. antagonistische Wirkung am Adenosin-A₁-Rezeptor Weiterführende Untersuchungen führten zu den N'-Arylcarbamoyl-Derivaten 102. Diese weisen eine selektive Adenosin-A3-Rezeptorantagonististische Wirkung auf^[204].

Abb. 5-3: 3*H*-[1,2,3]*Triazolo*[4,5-*d*]*pyrimidin-7-amin-Derivate als selektive Adenosin-Rezeptor-Antagonisten*^[203,204]

Ferner wurde für einige N,3-arylsubstituierte 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amine (**103**) eine inhibitorische Wirkung auf die Glykogen Synthase Kinase-3 (GSK-3) beschrieben^[205,206].

Abb. 5-4: N,3-arylsubstituierte 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amine (103) als Inhibitoren der GSK- $3^{[205]}$

5.2 Literaturübersicht

Die Synthesen von 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-7-amin-Derivaten sind umfangreich in der Literatur beschrieben. Dagegen gibt es nur wenige Literaturberichte über die Darstellung von 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amin-Derivaten. 3-Aralkylsubstituierte Derivate des Typs **99** sind gänzlich literaturunbekannt.

Das unsubstituierte 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amin **104**, welches auch als 2-Amino-8-azapurin bezeichnet wird, wurde erstmalig 1959 von *Bergmann* und *Mitarbeitern*^[207] hergestellt. Die Synthese gelang durch Zyklisierung von Pyrimidin-2,4,5-triamin (**105**) in Gegenwart von Natriumnitrit und Essigsäure.

Schema 5-1: Synthese von 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amin (104)^[207]

Dille und *Mitarbeiter*^[208] berichteten bereits vier Jahre zuvor über die Synthese von zwei N,3-substituierten 3H-[1,2,3]Triazolo[4,5-*d*]pyrimidin-5aminen (**106**). Ausgehend von 2,4-Dichlor-5-nitropyrimidin (**23**) wurden beide Chloratome durch einen Überschuss der Aminkomponenten nukleophil substituiert und die Nitrogruppe anschließend mittels katalytischer Hydrogenolyse zu den korrespondierenden Pyrimidin-2,4,5-triamin-Derivaten **108** reduziert. Nach der Diazotierung der 5-Aminogruppe erfolgte der Ringschluss zu den N,3-substituierten 3H-[1,2,3]Triazolo[4,5-*d*]pyrimidin-5-aminen **106**.

Schema 5-2: Darstellung von N,3-substituierten 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-aminen (106)^[208]

Die Synthese der einleitend erwähnten GSK-3-Inhibitoren 103 erforderte 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amin-Synthesestrategie für eine Derivate mit unterschiedlichen Substituenten in 3-Position bzw. an der 5und *Mitarbeiter*^[205] konnten unter geeigneten Aminogruppe. Love Reaktionsbedingungen das 4-Chloratom von 2,4-Dichlor-5-nitropyrimidin (23) durch verschiedene Arylamine selektiv substituieren. Die anschließende Reaktion mit dem Natriumsalz des Methylmercaptans lieferte die Narylsubstituierten 2-(Methylthio)-5-nitropyrimidin-4-amine 110. Nach der Reduktion zu den korrespondierenden Amino-Verbindungen 111 erfolgte der den 3-arylsubstituierten 5-(Methylthio)-3H-Ringschluss zu [1,2,3]triazolo[4,5-d]pyrimidinen **112**. Im Anschluss an eine Oxidation zu den 5-methylsulfonylsubstituierten Derivaten 113 gelang die Darstellung der 3-Aryl-*N*-phenyl-3*H*-[1,2,3]triazolo[4,5-*d*]pyrimidin-5-amine **103** durch die Aminolyse der Vorstufen 113.

Schema 5-3: Synthese von N,3-arylsubstituierten 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-aminen (103) als Inhibitoren der GSK-3^[205]

5.3 Syntheseplanung und Vorstufen

Bei der in der Literaturübersicht vorgestellten Methode von Love und Mitarbeitern^[205] handelt es sich um eine komplizierte mehrstufige Synthesefolge. Im ersten Schritt erfolgt eine selektive Monoaminolyse von 2,4-Dichlor-5-nitropyrimidin (23). Hierbei sind häufig Nebenreaktionen und geringe Ausbeuten zu beobachten. Insbesondere bei der Verwendung von Aminkomponenten mit hoher Nukleophilie sind Produktgemische aus 2-Chlor-5-nitropyrimidin-4-aminen, 4-Chlor-5-nitropyrimidin-2-aminen und 5-Nitropyrimidin-2,4-diaminen zu erwarten. Daher sollte ein alternatives Verfahren zur Synthese der geplanten N.3-substituierten 3*H*-[1,2,3]Triazolo[4,5-d]-pyrimidin-5-amin-Derivaten (99) entwickelt werden, welches eine umfangreiche Variation der Substituenten R¹ und R² erlaubt.

Die Syntheseplanung sah zunächst die Herstellung von N^2 , N^4 -substituierten 5-Nitropyrimidin-2,4-diaminen (115) vor. 5-Nitropyrimidin-2,4-diamine (115) mit unterschiedlichen Substituenten an den Aminogruppen sind ausgehend von 2-Chlor-5-nitro-4-thiocyanatopyrimidin (36) zugänglich (siehe Abschnitt 3.1.3). 5-Nitropyrimidin-2,4-diamine mit identischer N^2 - und N^4 -Substitution ($R^1 = R^2$) können direkt aus 2,4-Dichlor-5-nitropyrimidin (23) synthetisiert werden.

Die auf diese Weise gewonnenen 5-Nitropyrimidin-2,4-diamin-Derivate **115** können durch eine katalytische Hydrogenolyse zu den korrespondierenden Pyrimidin-2,4,5-triamin-Derivaten **116** reduziert werden. Eine Diazotierung der 5-Aminogruppe durch Zugabe von Natriumnitrit zur salzsauren Lösung der Pyrimidin-2,4,5-triamin-Derivate **116** ermöglicht den Ringschluss zu den gesuchten 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amin-Derivaten **99**. Im Vergleich zur Synthesestrategie von *Love* und *Mitarbeitern*^[205] sind von dieser Reaktionsfolge größere Variationsmöglichkeiten der Substituenten in 3- und 5-Position, höhere Ausbeuten sowie eine geringere Anzahl an Syntheseschritten zu erwarten. Einen Überblick über die geplante Syntheseführung zeigt Schema 5-4.

Schema 5-4: Übersicht über die geplante Syntheseführung zur Herstellung von 3H-Triazolo[4,5-d]pyrimidin-5-amin-Derivaten (99)

5.3.1 <u>N-Alkyl(phenyl)-5-nitro-4-thiocyanatopyrimidin-2-amine (114)</u>

Die Synthese der *N*-Alkyl(phenyl)-5-nitro-4-thiocyanatopyrimidin-2-amine **114** erfolgte analog zur Synthese von *N*-(4-Fluorbenzyl)-5-nitro-4thiocyanatopyrimidin-2-amin (**39**) (siehe Abschnitt 3.1.3.1) durch die Reaktion von **36** mit den entsprechenden primären Aminen.

Schema 5-5: Darstellung von N-Alkyl(phenyl)-5-nitro-4-thiocyanatopyrimidin-2aminen (114)

114	\mathbf{R}^{1}	Ausbeute [%]
a	Cyclopropyl	91
b	Ethyl	94
c	Phenyl	93

Tab. 5-1:Hergestellte N-Alkyl(phenyl)-5-nitro-4-thiocyanatopyrimidin-2-
amine (114)

5.3.2 <u>5-Nitropyrimidin-2,4-diamine mit unterschiedlicher N²- und N⁴-</u> Substitution (**115A**)

Zur Darstellung der 5-Nitropyrimidin-2,4-diamine **115A** wurden die Nsubstituierten 5-Nitro-4-thiocyanatopyrimidin-2-amine **39** bzw. **114** in DMF gelöst, fünf Äquivalente der Aminkomponente zugesetzt und 1.5 Stunden bei Raumtemperatur gerührt. Die vollständige Umsetzung konnte infrarotspektroskopisch durch das Verschwinden der Absorptionsbande der (SCN)-Gruppe bei ca. 2170 cm⁻¹ festgestellt werden. Nach Wasserzugabe wurde der entstandene Feststoff abgetrennt, mit Wasser gewaschen und aus Methanol umkristallisiert. Auf diese Weise konnten die Vorstufen **115A** in Ausbeuten von 83 bis 93% erhalten werden.

Schema 5-6: Darstellung von 5-Nitropyrimidin-2,4-diamin-Derivaten (115A)

115A	\mathbf{R}^{1}	\mathbf{R}^2	Ausbeute [%]
a	4-Fluorbenzyl	Cyclopropyl	83
b	4-Fluorbenzyl	2-Chlorbenzyl	91
с	Cyclopropyl	2-Fluorbenzyl	92
d	Cyclopropyl	Phenylethyl	88
e	Ethyl	4-Fluorbenzyl	85
f	Phenyl	Benzyl	93
g	Cyclopropyl	Phenyl	89

 Tab. 5-2:
 Hergestellte 5-Nitropyrimidin-2,4-diamin-Derivate (115A)

5.3.3 <u>5-Nitropyrimidin-2,4-diamine mit identischer N²- und N⁴-</u> <u>Substitution (115B)</u>

Die Darstellung der 5-Nitropyrimidin-2,4-diamine mit identischen Substituenten an den Aminogruppen erfolgte nach der Methode von *Goldner* und *Carstens*^[120]. Hierzu wurde 2,4-Dichlor-5-nitropyrimidin (**23**) in Ethanol gelöst und mit vier Äquivalenten der entsprechenden primären Amine versetzt. Im Anschluß wurde für eine Stunde unter Rückfluss erhitzt. Nach dem Abkühlen auf Raumtemperatur gelang die vollständige Abscheidung der Umsetzungsprodukte durch Zugabe von Wasser zum Reaktionsansatz. Die in Wasser praktisch unlöslichen 5-Nitropyrimidin-2,4-diamin-Derivate **115B** wurden anschließend abfiltriert und aus Methanol umkristallisiert.

Schema 5-7: Darstellung der 5-Nitropyrimidin-2,4-diamine **115B** mit identischer N^2 und N^4 -Substitution

115B	R	Ausbeute [%]
а	Benzyl	88
b	4-Fluorbenzyl	80

Tab. 5-3: Hergestellte 5-Nitropyrimidin-2,4-diamine (**115B**) mit identischer N^2 - und N^4 -Substitution

5.4 Synthese der 3*H*-[1,2,3]Triazolo[4,5-*d*]pyrimidin-5-amin-Derivate

Zur Herstellung der 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amin-Derivate 99 wurden die 5-Nitropyrimidin-2,4-diamine 115 in Methanol suspendiert und Palladium-Aktivkohle-Katalysator Die mit versetzt. katalytische Hydrogenolyse erfolgte bei einem Ausgangswasserstoffüberdruck von 2 bar. Nach vollständiger Reduktion^{*} wurde der Katalysator abfiltriert und das Filtrat eingeengt. Der Rückstand der Pyrimidin-2,4,5-triamine 116 wurde ohne weitere Reinigung in einem 1:1 Gemisch aus Ethanol und 1M Salzsäure aufgenommen und auf 0 °C abgekühlt. Anschließend wurde ein Äquivalent Natriumnitrit[†] in wenig Wasser gelöst und tropfenweise zur Lösung der Pyrimidin-2,4,5-triamine 116 zugesetzt. Die Bildung eines weißen Niederschlages während des Zutropfens zeigte die einsetzende Reaktion an. Das Eisbad wurde nach der vollständigen Zugabe der Natriumnitrit-Lösung entfernt und der Ansatz eine Stunde unter Erwärmen Raumtemperatur gerührt. Die dünnschichtchromatographische auf Reaktionskontrolle bestätigte den vollständigen Umsatz der Pyrimidin-2,4,5triamine 116 zu einem unpolareren Produkt. Der Reaktionsansatz wurde unter vermindertem Druck auf etwa ein Drittel des ursprünglichen Volumens eingeengt und für mehrere Stunden im Kühlschrank gelagert. Der Niederschlag wurde daraufhin abfiltriert und aus Methanol umkristallisiert. Die N,3-substituierten 3*H*-[1,2,3]Triazolo[4,5-*d*]pyrimidin-5-amin-Derivate 99a-i fielen in Ausbeuten von 51 bis 75% als amorphe Pulver oder feine farblose Nadeln an.

Schema 5-8: Darstellung von N,3-substituierten 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amin-Derivaten (99)

^{*} Die Wasserstoffaufnahme war nach 1-2 Stunden beendet.

[†] Bezogen auf die eingesetzte Menge an 5-Nitropyrimidin-2,4-diamin **115**.

99	\mathbf{R}^{1}	\mathbf{R}^2	Ausbeute [%]
a	4-Fluorbenzyl	Cyclopropyl	55
b	4-Fluorbenzyl	Benzyl	67
c	4-Fluorbenzyl	4-Fluorbenzyl	60
d	Cyclopropyl	2-Fluorbenzyl	66
e	Cyclopropyl	Phenylethyl	68
f	Ethyl	4-Fluorbenzyl	63
g	Benzyl	Benzyl	59
h	Phenyl	Benzyl	51
i	Cyclopropyl	Phenyl	75

Tab. 5-4:Hergestellte 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amin-Derivate (99)

Einen interessanten Befund lieferte die Umsetzung von N^4 -(2-Chlorbenzyl)- N^2 -(4-fluorbenzyl)-5-nitropyrimidin-2,4-diamin (**115Ab**). Die Auswertung des ¹H-NMR-Spektrums in Verbindung mit dem massenspektrometrischen Befund ergab, dass eine vollständige Abspaltung des Chlorsubstituenten erfolgt war. Somit wurde als Reaktionsprodukt 3-Benzyl-N-(4-fluorbenzyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amin (**99b**) erhalten. Dieses Phänomen der *Hydrodehalogenierung* wurde bereits u.a. von *Wu* und *Mitarbeitern*^[209] diskutiert.
5.5 Eigenschaften der 3*H*-[1,2,3]Triazolo[4,5-*d*]pyrimidin-5amin-Derivate

Die N,3-substituierten 3H-[1,2,3]Triazolo[4,5-*d*]pyrimidin-5-amine **99** sind stabile Feststoffe, die über einen Zeitraum von einem Jahr ohne ein Anzeichen von Zersetzung gelagert werden konnten. Stellvertretend für die unterschiedlich substituierten 3H-[1,2,3]Triazolo[4,5-*d*]pyrimidin-5-amine **99** erkennt man im Infrarot-Spektrum der Verbindung **99f** (Abb. 5-5) eine ausgeprägte Bande der (NH)-Valenzschwingung bei 3256 cm⁻¹. Ferner sind die charakteristischen Banden der aliphatischen und aromatischen (CH)-Valenzschwingungen zu beobachten.

Abb. 5-5: IR-Spektrum (KBr) von Verbindung 99f

Die Kernresonanzspektren der N,3-substituierten 3H-[1,2,3]triazolo[4,5d]pyrimidin-5-amine **99** weisen einige Besonderheiten auf. Im ¹H-NMR-Spektrum der Verbindung **99f** fällt insbesondere auf, dass die Signale der benzylischen Protonen (c) und des Pyrimidin-Protons (f) mit chemischen Verschiebungen von 5.61 bzw. 9.00 ppm sehr weit tieffeldverschoben erscheinen. Dieses lässt sich durch den starken elektronenziehenden Effekt des annelierten 1,2,3-Triazolrings erklären^{*}. Die räumlich weiter entfernten

^{*} Das Diazonium-Ion ist ein sehr elektronenarmer Substituent ($\sigma_p = 1.93$)^[210]. Da der annelierte 1,2,3-Triazolring formal ein intramolekulares Reaktionsprodukt einer Diazoniumgruppe mit einem sekundären Amin darstellt, geht von diesem ebenfalls ein starker elektronenziehender Effekt aus.

Protonen der Ethylamin-Gruppe (a, b und d) sowie die aromatischen Protonen (e) zeigen sich dagegen bei den üblichen chemischen Verschiebungen.

Abb. 5-6: Ausschnitt aus dem ¹H-NMR-Spektrum von Verbindung **99f** in CDCl₃

Abb. 5-7 zeigt ein für die 3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amin-Derivate **99** typisches ¹³C-NMR-Spektrum. Die Zuordnung der Dubletts der Kohlenstoffatome des 4-Fluorbenzyl-Substituenten (4, 5, 6 und 11) gelingt anhand der Kopplungskonstanten. Mit einer chemischen Verschiebung von 131.2 ppm erscheint das Pyrimidin-C5 (7) ungewöhnlich weit im tiefen Feld. Dieses ist ebenfalls auf den starken Elektronenzug des annelierten Ringsystems zurückzuführen.

Abb. 5-7: Ausschnitt aus dem ¹³C-NMR-Spektrum von Verbindung **99f** in CDCl₃

6 Abschließende Diskussion

Im Rahmen der vorliegenden Arbeit wurde erstmalig das direkte Pyrimidin-Analogon von Flupirtin (**Zielstruktur**) hergestellt. Im Anschluss gelang eine umfangreiche Strukturmodifikation dieser Leitstruktur. Dabei konnten effiziente Synthesewege für 2,4,5-substituierte Pyrimidin-Derivate etabliert werden, die vielfältige Variationen sämtlicher Substituenten der Zielstruktur erlauben.

Abb. 6-1: Zielstruktur der vorliegenden Arbeit

Zahlreiche der hergestellten Verbindungen zeigten in vitro und in vivo interessante biologische Aktivitäten, die aufgrund einer Geheimhaltungsvereinbarung nicht offengelegt werden dürfen. Es konnte gezeigt werden, dass 2,4,5-substituierte Pyrimidin-Derivate eine geeignete Basis für potentielle zentraldämpfende Wirkstoffe darstellen. Mit vertieften Struktur-Aktivitäts-Untersuchungen wurde im Arbeitskreis von Herrn Prof. Geffken bereits begonnen.

7 Experimenteller Teil

7.1 Verzeichnis der Geräte und Analysenmethoden

<u>Schmelzpunktapparaturen</u>

Mettler FP 62 (für klarschmelzende Verbindungen mit Schmelzpunkt <300°C), ansonsten Electrothermal 9100 (unkorrigiert)

IR-Spektren

Varian 800 FT-IR und ATI Genesis Series FT-IR, vermessen als KBr-Pressling (wenn nicht anders angegeben) oder als Film auf NaCl-Fenster

¹H NMR-Spektren

Bruker AMX 400 (400 MHz), chemische Verschiebung mit δ -Werten in ppm, innerer Standard: Tetramethylsilan (TMS), Ermittlung der Protonenverhältnisse durch Integration, Nachweis von NH- und OH-Protonen durch Austausch mit D₂O. Die durch Spin-Kopplung hervorgerufenen Signalmultiplizitäten werden wie folgt abgekürzt: s = Singulett, bs = breites Singulett, d = Dublett, t = Triplett, bt = breites Triplett, q = Quartett, m = Multiplett. Angabe der Beträge der Kopplungskonstanten *J* in Hertz (Hz).

¹³C NMR-Spektren

Bruker AMX 400 (100.6 MHz), chemische Verschiebung mit δ -Werten in ppm, innerer Standard: Tetramethylsilan (TMS). Die Spektren wurden nach dem DEPT-Verfahren und breitband-entkoppelt aufgenommen. Es wurden folgende Abkürzungen verwendet: tert. aromat. = tertiäres, aromatisches C-Atom; quart. aromat. = quartäres, aromatisches C-Atom.

Massenspektren

EI-Massenspektren: Massenspektrometer MAT 311A, Einheit m/z (Quotient aus der Masse m und der Ladung z)

HRFAB-Massenspektren: Massenspektrometer VG 70-250S

Röntgenkristallstruktur-Analysen

Bruker SMART APEX CCD, Strahlung Mo-Kα, Wellenlänge 0.71073 Å, Temperatur 100K (Oxford Cryosystem, 700 series Cryostream Cooler)

Elementar-Analysen

C,H,N,S: EA 1108 CHNS-O, 1020°C, Angabe der berechneten (ber.) und gefundenen (gef.) Werte in Prozent.

Mikrowelle

CEM Discover, Software: Chemdriver Version 3.6.0, Discover Applications Software

Dünnschichtchromatographie

DC-Mikrokarten Polygram[®] SIL G/UV254, Firma Macherey-Nagel, Düren, Schichtdicke: 0.2 mm Kieselgel. Die Chromatographie wurde über eine Laufstrecke von 6 cm durchgeführt.

<u>Säulenchromatographie</u> Kieselgel MP Silica 100-200, aktiv 60Å

<u>Trockenmittel für organische Phasen</u> Magnesiumsulfat Hydrat

7.2 Allgemeine Arbeitsvorschrift

AAV 1: Darstellung von N²-mono-/disubstituierten 5-Nitropyrimidin-2,4diaminen (25)

1.75 g 2-Chlor-5-nitropyrimidin-4-amin (**24**) (10 mmol) werden in 40 mL absolutem Ethanol suspendiert, mit 20 mmol der entsprechenden Aminkomponente versetzt und für zwei Stunden unter Rückfluss erhitzt. Nach dem Abkühlen auf Raumtemperatur wird der entstandene Niederschlag abfiltriert und aus Methanol umkristallisiert.

AAV 2: Synthese der 5-(Alkoxy)acylamino-2,4-diaminopyrimidinhydrochloride 26A/27/41

3 mmol der 5-Nitropyrimidin-2,4-diamine **25** bzw. **32** werden in 30 mL trockenem Dioxan suspendiert. Nach Zugabe des Palladium/Aktivkohle-Katalysators (10% Pd auf Kohlenstoff) wird bei Raumtemperatur und einem Ausgangswasserstoffüberdruck von 2 bar bis zur Beendigung der Wasserstoffaufnahme geschüttelt (die vollständige Reaktion kann bis zu 20 Stunden dauern). Im Anschluss wird der Katalysator durch Filtration durch eine SPE-Kartusche (Supelco SupercleanTM, LC-18, 6 mL) entfernt. Danach werden 3.3 mmol des entsprechenden Chlorameisensäureesters bzw. Säurechlorides in wenig trockenem Dioxan gelöst und über einen Zeitraum von fünf Minuten tropfenweise zum Filtrat hinzugefügt. Nach einer Reaktionszeit von 30 Minuten wird der gebildete Niederschlag abgesaugt, mit Diethylether gewaschen und aus Methanol/Diethylether umkristallisiert.

AAV 3: Synthese der N²-mono-/disubstituierten 5-Alkoxycarbonylamino-2,4-diaminopyrimidine 26B

Die Reaktion wird analog zur **AAV 2** durchgeführt. Fünf Minuten nach der vollständigen Zugabe des Chlorameisensäureesters werden jedoch 4 mmol Triethylamin hinzugefügt (es bildet sich sofort ein feiner Niederschlag). Nach 30 weiteren Minuten wird der Niederschlag abfiltriert und mit THF gewaschen. Das Filtrat wird unter vermindertem Druck eingeengt und der

ölige Rückstand einer säulenchromatographischen Reinigung an Kieselgel mit Ethylacetat/n-Hexan als Elutionsmittel unterzogen.

AAV 4: Synthese der N²-mono-/disubstituierten 2,4-Diamino-5-ureidopyrimidinen 28

3 mmol der N²-mono-/disubstituierten 5-Nitropyrimidin-2,4-diamine **25** werden in 30 mL trockenem THF suspendiert und Palladium/Aktivkohle-Katalysator (10% Pd auf Kohlenstoff) zugesetzt. Dann wird bei einem Ausgangswasserstoffüberdruck von 2 bar für 15 Stunden geschüttelt. Im Anschluss wird der Katalysator durch Filtration durch eine SPE-Kartusche (Supelco SupercleanTM, LC-18, 6 mL) entfernt. Nun wird das Filtrat mit 3.3 mmol des entsprechenden Isocyanats versetzt. Der Reaktionsansatz wird für eine Stunde gerührt und anschließend für mehrere Stunden im Eisfach aufbewahrt. Der entstandene Niederschlag wird abgesaugt und aus Methanol umkristallisiert.

AAV 5: Synthese der N-substituierten 5-Nitro-4-thiocyanatopyrimidin-2amine 39, 114

Zu einer Lösung von 2.17 g (10 mmol) 2-Chlor-5-nitro-4thiocyanatopyrimidin **36** in 20 mL Benzen werden 20 mmol des entsprechenden Amins in 20 mL Ethanol tropfenweise unter Eiskühlung zugesetzt. Es wird 15 Minuten bei 0 °C nachgerührt und anschließend der Reaktionsansatz im Vakuum eingeengt. Der Niederschlag wird nach Zugabe von wenig Ethanol abfiltriert und getrocknet.

AAV 6: Synthese von 5-Nitropyrimidin-2,4-diamin-Derivaten (39, 115A)

Zu 3 bzw. 4 mmol des N-substituierten 5-nitro-4-thiocyanatopyrimidin-2amins **39**, **114** in 10 mL DMF werden 15 bzw. 20 mmol des entsprechenden Amins zugegeben und 1.5 Stunden bei Raumtemperatur gerührt. Nach Zugabe von 40 mL Wasser wird der entstandene Feststoff abgesaugt, mit Wasser gewaschen und aus Methanol umkristallisiert.

AAV 7: Darstellung der 4-Alkoxy-*N*-(4-fluorbenzyl)-5-nitropyrimidin-2amine 44

0.14 g (6 mmol) Natrium werden in 30 mL abs. Methanol bzw. Ethanol gelöst. Diese Lösung wird auf 0 °C abgekühlt und anschließend werden portionsweise 0.916 g (3 mmol) N-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin (**39**) zugegeben. Man rührt für 2 Stunden unter fortwährender Eiskühlung. Der entstandene Niederschlag wird abfiltriert und aus Methanol oder Ethanol umkristallisiert.

AAV 8: Synthese der Ethyl[4-alkoxy-2-(4-fluorbenzylamino)-pyrimidin-5yl]carbamate 42

mmol der 4-Alkoxy-N-(4-fluorbenzyl)-5-nitropyrimidin-2-amine 44 2 in 30 mL trockenem THF suspendiert. Nach Zugabe des werden Palladium/Aktivkohle-Katalysators (10% Pd auf Kohlenstoff) wird bei Raumtemperatur und einem Ausgangswasserstoffüberdruck von 1 bar für 15 Stunden geschüttelt. Im Anschluss wird der Katalysator durch Filtration durch eine SPE-Kartusche (Supelco SupercleanTM, LC-18, 6 mL) entfernt. Danach werden 0.33 g (3.3 mmol) Triethylamin zum Filtrat zugesetzt und Reaktionsansatz auf 0 °C 0.36 g (3.3 mmol) abgekühlt. der Chlorameisensäureethylester werden in wenig trockenem THF gelöst und tropfenweise über einen Zeitraum von fünf Minuten zum Filtrat hinzugefügt. Es wird für zwei Stunden unter Erwärmen auf Raumtemperatur nachgerührt. Danach wird der Niederschlag abfiltriert und mit THF gewaschen. Das Filtrat wird unter vermindertem Druck eingeengt und der Rückstand einer säulenchromatographischen Reinigung an Kieselgel mit Ethylacetat/n-Hexan als Elutionsmittel unterzogen.

AAV 9: Darstellung der Alkyl[4-amino-2-(benzylsulfanyl)pyrimidin-5yl]carbamate 51

0.232 g (1 mmol) 2-(Benzylsulfanyl)pyrimidin-4,5-diamin (**52**) werden in trockenem THF suspendiert und 0.12 g (1.2 mmol) Triethylamin zugesetzt. Anschließend werden 1.2 mmol des entsprechenden Chlorameisensäureesters tropfenweise unter Eiskühlung hinzugefügt. Der Reaktionsansatz wird für drei Stunden bei Raumtemperatur gerührt. Anschließend wird das ausgefallene Triethylammoniumchlorid abfiltriert und das Lösungsmittel im Vakuum entfernt. Der Rückstand wird säulenchromatographisch an Kieselgel mit Ethylacetat/n-Hexan als Elutionsmittel gereinigt.

AAV 10: <u>Mikrowellenunterstützte</u> Synthese von *N*-(Dihydropyrimidin-5yl)benzamid-Derivaten (57/69)

einem Mikrowellen-Druckgefäß werden 0.217 g (1 In mmol) 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4*H*)-on (60) und 1 mmol Aralkylisothioharnstoff-hydrohalogenid bzw. Phenylpropionamidin unter Zusatz von 0.202 g (2 mmol) Triethylamin in 5 mL Ethanol gelöst. Die Reaktion wird unter folgenden Parametern in der CEM Discover Mikrowelle durchgeführt: eine Maximalleistung von 150 W, eine Maximaltemperatur von 100 °C, ein Maximaldruck von 10 bar sowie eine Reaktionszeit von 5 Minuten nach einer Aufwärmzeit (ramp time) von 30 Sekunden. Für die Aufarbeitung wurde das Lösungsmittel unter vermindertem Druck entfernt und der Rückstand mit 10 mL eines Ethanol-Wasser-Gemisches (1:1) versetzt. Der gebildete Niederschlag wird abfiltriert und aus Methanol oder Ethanol umkristallisiert.

AAV 11: Darstellung von 4-Amino-2-(aralkylamino)pyrimidin-5-carbonitrilen (84)

2.49 g (15 mmol) 4-Amino-2-(methylsulfanyl)pyrimidin-5-carbonitril (**85**) werden in 150 mmol des entsprechenden Aralkylamins suspendiert. Diese Suspension wird für 18 Stunden auf 130 °C erhitzt. Nachdem Abkühlen auf Raumtemperatur wird der Reaktionsansatz für mehrere Stunden im Eisfach aufbewahrt. Im Anschluss wird der entstandene Niederschlag nach Zugabe von wenig Ethanol abgesaugt und aus Ethanol umkristallisiert.

AAV 12: Darstellung von 4-Amino-2-(aralkylamino)pyrimidin-5-carbonsäuren (83)

10 g NaOH werden in 100 mL 70%igen Ethanol gelöst. Zu dieser Lösung werden 10 mmol der 4-Amino-2-(aralkylamino)pyrimidin-5-carbonitrile **84** zugesetzt. Die entstandene Suspension wird für 8 Stunden unter Rückfluss erhitzt und dann heiß filtriert. Das Filtrat wird unter vermindertem Druck auf ca. 20 mL eingeengt und vorsichtig mit Salzsäure angesäuert. Der entstandene Niederschlag wird abfiltriert und aus Ethanol umkristallisiert.

AAV 13: Darstellung von 2,4-diaminosubstituierten Pyrimidin-5carboxamiden (82)

Eine Suspension von 2 mmol der jeweiligen 4-Amino-2-(aralkylamino)pyrimidin-5-carbonsäure 83 in 10 mL trockenem DMF wird nacheinander mit 0.441 g (2.3 mmol) EDC und 0.353 g (2.3 mmol) 1-Hydroxybenzotriazol-hydrat versetzt. Dieses Gemisch wird für 30 Minuten bei Raumtemperatur gerührt. Dann werden 2.3 mmol der entsprechenden Amin- bzw. Hydroxylamin-Komponente zugesetzt und für 15 Stunden weitergerührt. Im Anschluss werden ca. 70 mL Ethylacetat zugegeben und die Lösung zweimal mit 30 mL Wasser, zweimal mit je 30 mL gesättigter NaHCO₃-Lösung und einmal mit 30 mL gesättigter NaCl-Lösung gewaschen. Die Ethylacetat-Phase wird über MgSO₄ getrocknet und am Die Rotationsverdampfer eingeengt. Umkristallisation erfolgt aus Ethylacetat/n-Hexan.

AAV 14: Synthese von N²-Aralkyl-5-(1H-tetrazol-5-yl)pyrimidin-2,4diaminen (92)

2 mmol des entsprechenden 4-Amino-2-(aralkylamino)pyrimidin-5-carbonitrils **84**, 0.195 g (3 mmol) Natriumazid, 0.127 g (3 mmol) Lithiumchlorid und 0.160 g (3 mmol) Ammoniumchlorid werden in 10 mL trockenem DMF für 15 Stunden auf etwa 120 °C erhitzt. Das Lösungsmittel wird im Vakuum entfernt, der Rückstand mit 20 mL 10%iger Natriumhydroxid-Lösung geschüttelt und filtriert. Im Anschluss wird das basische Filtrat mit konz. Salzsäure im Eisbad angesäuert. Der gebildete Niederschlag der N^2 -Aralkyl5-(1H-tetrazol-5-yl)pyrimidin-2,4-diaminen **92** wird abgesaugt und aus Methanol umkristallisiert.

AAV 15: Synthese der 2,4-diaminosubstituierten 5-Nitropyrimidinen 115B

0.97 g (5 mmol) 2,4-Dichlor-5-nitropyrimidin (23) werden in 10 mL Ethanol gelöst und mit 20 mmol der entsprechenden Aminkomponente versetzt. Der Reaktionsansatz wird für 2 Stunden unter Rückfluss erhitzt. Danach lässt man die Lösung auf Raumtemperatur abkühlen. Durch Zugabe von ca. 40 mL Wasser entsteht ein voluminöser Niederschlag, der abgesaugt und mit Wasser gewaschen wird. Zur Reinigung wird das Produkt aus Methanol umkristallisiert.

AAV 16: Darstellung der <u>3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amin-</u> Derivate <u>99</u>

2 mmol des entsprechenden 5-Nitropyrimidin-2,4-diamins **115** werden in 20 mL Methanol suspendiert. Nach Zugabe des Palladium/Aktivkohle-Katalysators (10% Pd auf Kohlenstoff) wird bei Raumtemperatur und einem Ausgangswasserstoffüberdruck von 2 bar bis zur Beendigung der Wasserstoffaufnahme geschüttelt (ca. 1-2 Stunden). Im Anschluss wird der durch Filtration durch eine SPE-Kartusche Katalysator (Supelco SupercleanTM, LC-18, 6 mL) entfernt. Danach wird der Reaktionsansatz unter vermindertem Druck eingeengt und der Rückstand mit 20 mL Ethanol und 20 mL 1N Salzsäure versetzt. Dieses Gemisch lässt man auf 0 °C abkühlen. Nun werden 0.138 g (2 mmol) Natriumnitrit in wenig Wasser gelöst und tropfenweise zum Reaktionsansatz zugesetzt. Das Eisbad wird nach der vollständigen Zugabe der Natriumnitrit-Lösung entfernt und eine Erwärmen auf Stunde unter Raumtemperatur nachgerührt. Der Reaktionsansatz wird unter vermindertem Druck auf etwa ein Drittel des ursprünglichen Volumens eingeengt und für mehrere Stunden im Kühlschrank gelagert. Der Niederschlag wird daraufhin abfiltriert und aus Methanol umkristallisiert.

7.3 Analytische Daten zu Kapitel 2

2,4-Dichlor-5-nitropyrimidin 23

31.4 g 5-Nitrouracil werden mit 39 g *N*,*N*-Dimethylanilin und 160 mL Phosphoroxychlorid versetzt und 2 Stunden unter Rückfluss erhitzt. Nach dem Abkühlen wird der Überschuss an Phosphoroxychlorid im Vakuum abdestilliert und der sirupöse Rückstand auf 300 g Eis gegossen. Nach fünfminütigem Rühren wird viermal mit 200 mL Diethylether extrahiert und die vereinigten Etherauszüge werden mit 200 mL Wasser gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer unter vermindertem Druck entfernt. Zur weiteren Aufreinigung wird das Rohöl im Vakuum destilliert.

Ausbeute:74%, gelbes ÖlIR: 3049 cm^{-1} (C-H) $C_4HCl_2N_3O_2$ [193.98]EI-MS:ber. 193gef. 193

2-Chlor-5-nitropyrimidin-4-amin 24

5 g 2,4-Dichlor-5-nitropyrimidin werden in 10 mL Ethanol gelöst und unter Eiskühlung tropfenweise mit 30 mL 2M NH₃ in Ethanol versetzt. Nach vollständiger Zugabe der Ammoniak-Lösung wird für 30 Minuten unter fortwährender Kühlung nachgerührt. Anschließend wird der entstandene Niederschlag abgesaugt und aus Ethanol umkristallisiert.

Ausbeute:	84%, hellgelbe Kristalle
Schmp.:	215 °C (Ethanol), Lit. ^[113] : 217 °C
IR:	3433 cm ⁻¹ (N-H)
C ₄ H ₃ ClN ₄ O ₂	[174.55]
EI-MS:	ber. 174
	gef. 174

 N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin 25a

Aus 1.75 g 2-Chlor-5-nitropyrimidin-4-amin **24** und 2.5 g 4-Fluorbenzylamin nach **AAV 1**

- Ausbeute: 81%, gelbe Nadeln
- Schmp.: 195 °C (Methanol)

IR: 3469 cm^{-1} , 3282 cm^{-1} (N-H), 1560 cm^{-1} (N=O)

- ¹H-NMR^{*}: (400 MHz, DMSO-*d*₆), δ(ppm): 4.49 (d, *J* = 6.4 Hz, 1.5H, benzyl.), 4.55 (d, *J* = 6.4 Hz, 0.5H, benzyl.), 7.09-7.42 (m, 4H, aromat.), 7.91 + 8.04 (2s, 0.5H, N*H*₂, überlagert), 8.06 + 8.25 (2s, 1.5H, N*H*₂, überlagert), 8.37 (t, *J* = 6.9 Hz, 0.25H, N*H*), 8.62 (t, *J* = 6.2 Hz, 0.75H, N*H*), 8.86 (s, 0.75H, Pyrimidin-*H*), 8.91 (s, 0.25H, Pyrimidin-*H*)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 43.4, 43.5 (benzyl.), 115.0 (d, ² $J_{C-F} = 21.4$ Hz, tert., aromat.), 119.5, 120.5 (quart., aromat.), 129.0 (d, ³ $J_{C-F} = 8.4$ Hz, tert., aromat.), 129.5 (d, ³ $J_{C-F} = 7.6$

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

Hz, tert., aromat.), 135.2 (d, ${}^{4}J_{C-F} = 3.1$ Hz, quart., aromat.), 135.8 (d, ${}^{4}J_{C-F} = 3.1$ Hz, quart., aromat.), 157.1, 157.4 (quart., aromat.), 157.7, 157.9 (Pyrimidin-*C*6), 161.2 (d, ${}^{1}J_{C-F} = 241.9$ Hz, quart., aromat.), 161.3 (d, ${}^{1}J_{C-F} = 242.6$ Hz, quart., aromat.), 161.8, 162.0 (quart., aromat.)

 $C_{11}H_{10}FN_5O_2$ [263.23]

HRFAB-MS: [M+H]⁺ ber. 264.0897 [M+H]⁺ gef. 264.0893

<u>N²-Benzyl-5-nitropyrimidin-2,4-diamin **25b**</u>

Aus 1.75 g 2-Chlor-5-nitropyrimidin-4-amin **24** und 2.14 g Benzylamin nach **AAV 1**

Ausbeute: 84%, gelbe Kristalle

Schmp.: 194 °C (Methanol)

IR: 3469 cm^{-1} , 3354 cm^{-1} , 1620 cm^{-1} (N-H), 1543 cm^{-1} (N=O)

¹H-NMR^{*}: (400 MHz, DMSO-*d*₆), δ(ppm): 4.54 (d, *J* = 6.6 Hz, 1.5H, benzyl.), 4.59 (d, *J* = 6.6 Hz, 0.5H, benzyl.), 7.19-7.38 (m, 5H, aromat.), 7.91 + 8.03 (2s, 0.5H, N*H*₂, überlagert), 8.05 + 8.24 (2s, 1.5H, N*H*₂, überlagert), 8.37 (t, *J* = 6.3 Hz, 0.25H, N*H*), 8.62 (t, *J* = 6.2 Hz, 0.75H, N*H*), 8.87 (s, 0.75H, Pyrimidin-*H*), 8.91 (s, 0.25H, Pyrimidin-*H*)

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 44.0, 44.1 (benzyl.), 119.4, 120.4 (quart., aromat.), 126.7, 126.8, 126.9, 127.3, 128.2 (tert., aromat.), 139.0, 139.5 (quart., aromat.), 157.0, 157.4 (quart., aromat.), 157.6, 157.9 (Pyrimidin-C6), 161.9, 162.0 (quart., aromat.)

 $C_{11}H_{11}N_5O_2$ [245.24]

HRFAB-MS: [M+H]⁺ ber. 246.0991 [M+H]⁺ gef. 246.0995

 N^2 -Benzyl- N^2 -methyl-5-nitropyrimidin-2,4-diamin **25c**

Aus 1.75 g 2-Chlor-5-nitropyrimidin-4-amin **24** und 2.43 g *N*-Methylbenzylamin nach **AAV 1**

Ausbeute: 70%, hellgelbes Pulver

- Schmp.: 84 °C (Methanol)
- IR: 3433 cm^{-1} , 3280 cm^{-1} (N-H)
- ¹H-NMR: (400 MHz, DMSO-*d*₆), δ(ppm): 3.10 (s, 1.5H, *CH*₃), 3.16 (s, 1.5H, *CH*₃), 4.89 (s, 1.0H, benzyl.), 4.95 (s, 1.0H, benzyl.), 7.18-7.42 (m, 5H, aromat.), 7.97-8.32 (m, 2H, NH₂), 8.94 (s, 0.5H, Pyrimidin-*H*), 8.96 (s, 0.5H, Pyrimidin-*H*)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 34.8, 35.1 (*C*H₃), 51.7, 51.8 (benzyl.), 119.6, 119.7 (quart., aromat.), 127.1, 127.2, 127.5, 128.5, 128.6, 128.8, 129.7 (tert., aromat.), 137.1, 137.4 (quart.,

aromat.), 156.8, 156.9 (quart., aromat.), 157.3, 157.5 (Pyrimidin-C6), 161.0, 161.1 (quart., aromat.)

 $C_{12}H_{13}N_5O_2$ [259.27]

HRFAB-MS: $[M+H]^+$ ber. 260.1148 $[M+H]^+$ gef. 260.1150

 N^2 -(4-Methylbenzyl)-5-nitropyrimidin-2,4-diamin **25d**

Aus 1.75 g 2-Chlor-5-nitropyrimidin-4-amin **24** und 2.43 g 4-Methylbenzylamin nach **AAV 1**

Ausbeute: 93%, hellgelbe Kristalle

Schmp.: 221 °C (Methanol)

IR: 3471 cm^{-1} , 3352 cm^{-1} , 1618 cm^{-1} (N-H), 1543 cm^{-1} (N=O)

- ¹H-NMR^{*}: (400 MHz, DMSO- d_6), δ (ppm): 2.27 (s, 3H, CH₃), 4.48 (d, J = 6.4 Hz, 1.5H, benzyl.), 4.53 (d, J = 6.6 Hz, 0.5H, benzyl.), 7.06-7.26 (m, 4H, aromat.), 7.91 + 8.03 (2s, 0.5H, NH₂, überlagert), 8.05 + 8.24 (2s, 1.5H, NH₂, überlagert), 8.35 (t, J = 6.5 Hz, 0.25H, NH), 8.60 (t, J = 6.2 Hz, 0.75H, NH), 8.86 (s, 0.75H, Pyrimidin-H), 8.91 (s, 0.25H, Pyrimidin-H)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 20.6 (*C*H₃), 43.7, 43.9 (benzyl.), 119.3, 120.3 (quart., aromat.), 126.9, 127.4, 128.7 (tert., aromat.), 135.7, 135.8, 135.9, 136.5 (quart., aromat.),

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

157.0, 157.3 (quart., aromat.), 157.6, 157.8 (Pyrimidin-C6), 161.8, 161.9 (quart., aromat.)

 $C_{12}H_{13}N_5O_2$ [259.27]

HRFAB-MS: $[M+H]^+$ ber. 260.1148 $[M+H]^+$ gef. 260.1148

5-Nitro- N^2 -[4-(trifluormethyl)benzyl]pyrimidin-2,4-diamin **25e**

Aus 1.75 g 2-Chlor-5-nitropyrimidin-4-amin **24** und 3.5 g 4-Trifluormethylbenzylamin nach **AAV 1**

Ausbeute: 69%, gelborange Kristalle

Schmp.: 195 °C (Methanol)

IR: 3483 cm^{-1} , 3363 cm^{-1} (N-H), 1548 cm^{-1} (N=O)

- ¹H-NMR^{*}: (400 MHz, DMSO-*d*₆), δ(ppm): 4.63 (d, *J* = 5.9 Hz, 1.5H, benzyl.), 4.68 (d, *J* = 5.9 Hz, 0.5H, benzyl.), 7.46-7.77 (m, 4H, aromat.), 7.92-8.34 (m, 2H, N*H*₂), 8.46 (t, *J* = 6.4 Hz, 0.25H, N*H*), 8.72 (t, *J* = 6.1 Hz, 0.75H, N*H*), 8.90 (s, 1H, Pyrimidin-*H*)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 43.8, 43.9 (benzyl.), 119.7, 120.7 (quart., aromat.), 124.3 (q, ${}^{1}J_{C-F} = 271.6$ Hz, tert., aromat.), 125.1 (q, ${}^{3}J_{C-F} = 3.8$ Hz, tert., aromat.), 127.6 (q, ${}^{2}J_{C-F} = 31.7$ Hz, tert., aromat.), 127.6, 128.1 (tert., aromat.), 144.0,

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

144.6 (quart., aromat.), 157.1, 157.4 (quart., aromat.), 157.7, 157.9 (Pyrimidin-*C*6), 162.0, 162.1 (quart., aromat.)

 $C_{12}H_{10}F_3N_5O_2$ [313.24]

HRFAB-MS: [M+H]⁺ ber. 314.0865 [M+H]⁺ gef. 314.0866

5-Nitro-N²-phenylpyrimidin-2,4-diamin 25f

Aus 1.75 g 2-Chlor-5-nitropyrimidin-4-amin **24** und 1.87 g Anilin nach **AAV 1**

Ausbeute: 92%, gelb, amorph

Schmp.: 239 °C (Methanol)

IR: 3467 cm^{-1} , 3344 cm^{-1} (N-H), 1560 cm^{-1} (N=O)

- ¹H-NMR: (400 MHz, DMSO-*d*₆), δ(ppm): 7.00-8.02 (m, 5H, aromat.), 8.21 + 8.53 (2s, 2H, N*H*₂), 8.99 (s, 1H, aromat.), 10.22 (s, 1H, N*H*)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 120.1, 123.0, 128.5 (tert., aromat.), 139.1, 157.1 (quart., aromat.), 157.2 (tert., aromat.), 159.7 (quart., aromat.)

 $C_{10}H_9N_5O_2$ [231.22]

HRFAB-MS: [M+H]⁺ ber. 232.0835 [M+H]⁺ gef. 232.0835

5-Nitro-N²-(2-phenylethyl)pyrimidin-2,4-diamin 25g

Aus 1.75 g 2-Chlor-5-nitropyrimidin-4-amin **24** und 2.43 g 2-Phenylethylamin nach **AAV 1**

Ausbeute: 80%, hellgelbes Pulver

Schmp.: 176 °C (Methanol)

IR: 3485 cm^{-1} , 3356 cm^{-1} (N-H), 1542 cm^{-1} (N=O)

- ¹H-NMR^{*}: (400 MHz, DMSO-*d*₆), δ(ppm): 2.79-2.91 (m, 2H, NHCH₂CH₂Ph), 3.46-3.63 (m, 2H, NHCH₂CH₂Ph), 7.14-7.38 (m, 5H, aromat.), 7.81-8.32 (m, 3H, NH und NH₂, überlagert), 8.84 (s, 0.75H, Pyrimidin-*H*), 8.92 (s, 0.25H, Pyrimidin-*H*)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 34.5, 35.2 (NHCH₂CH₂Ph),
 42.3, 42.6 (NHCH₂CH₂Ph), 119.2, 120.2 (quart., aromat.),
 126.0, 128.2, 128.6, 128.6 (tert., aromat.), 139.2, 139.2, 156.9,
 157.4 (quart., aromat.), 157.4, 157.8 (Pyrimidin-C6), 161.6,
 161.8 (quart., aromat.)

 $C_{12}H_{13}N_5O_2$ [259.27]

HRFAB-MS: $[M+H]^+$ ber. 260.1148 $[M+H]^+$ gef. 260.1150

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

2-Morpholin-4-yl-5-nitropyrimidin-4-amin 25h

Aus 1.75 g 2-Chlor-5-nitropyrimidin-4-amin **24** und 1.75 g Morpholin nach **AAV 1**

- Ausbeute: 84%, orange Nadeln
- Schmp.: 215 °C (Methanol), Lit.^[127]: 214 °C
- IR: 3469 cm^{-1} , 3280 cm^{-1} (N-H), 1560 cm^{-1} (N=O)
- ¹H-NMR: (400 MHz, DMSO-*d*₆), δ(ppm): 3.58-3.95 (m, 8H, Cycloalkyliden-C*H*₂), 8.03 + 8.19 (2s, 2H, N*H*₂), 8.91 (s, 1H, Pyrimidin-*H*)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 44.1, 65.9 (Cycloalkyliden-CH₂), 119.5, 156.9 (quart., aromat.), 157.3 (Pyrimidin-C6), 160.0 (quart., aromat.)
- $C_8H_{11}N_5O_3$ [225.21]
- HRFAB-MS: [M+H]⁺ ber. 226.0940 [M+H]⁺ gef. 226.0942

Ethyl{4-amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}carbamathydrochlorid **26Aa**

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.359 g Chlorameisensäureethylester nach **AAV 2**

Ausbeute: 59%, farbloses Pulver

Schmp.: 140 °C (Zers.), (Methanol/Diethylether)

IR: 3349 cm^{-1} , 3192 cm^{-1} , 3104 cm^{-1} (N-H), 1744 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.36 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 4.43 (q, J = 7.0 Hz, 2H, OCH₂CH₃), 4.65 (d, J = 5.9 Hz, 2H, benzyl.), 5.15 (s, 2H, NH₂), 7.11-7.53 (m, 4H, aromat.), 7.56 (s, 1H, Pyrimidin-H), 8.91 (s, 1H, NH), 9.28 (s, 1H, NH), 9.45 (t, J = 6.0 Hz, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 13.6 (OCH₂CH₃), 44.0 (benzyl.), 65.8 (OCH₂CH₃), 114.9 (d, ${}^2J_{C-F} = 21.3$ Hz, tert., aromat.), 115.1 (Pyrimidin-C6), 121.6 (quart., aromat.), 130.1 (d, ${}^3J_{C-F} = 8.1$ Hz, tert., aromat.), 134.1 (d, ${}^4J_{C-F} = 2.9$ Hz, quart., aromat.), 149.0 (quart., aromat.), 150.4 (C=O), 158.0 (quart., aromat.), 161.3 (d, ${}^1J_{C-F} = 242.8$ Hz, quart., aromat.)

C₁₄H₁₇ClFN₅O₂ [341.77]

Ber.[%]:	C 49.20	N 20.49	H 5.01
Gef.[%]:	C 49.13	N 20.44	Н 5.31

Propyl{4-amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}carbamathydrochlorid **26Ab**

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.405 g Chlorameisensäurepropylester nach **AAV 2**

Schmp.: 135 °C (Zers.), (Methanol/Diethylether)

IR: 3319 cm^{-1} , 3168 cm^{-1} , 3035 cm^{-1} (N-H), 1748 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 0.99 (t, J = 7.4 Hz, 3H, OCH₂CH₂CH₂CH₃), 1.71-1.80 (m, 2H, OCH₂CH₂CH₃), 4.34 (t, J = 6.4 Hz, 2H, OCH₂CH₂CH₃), 4.65 (d, J = 5.8 Hz, 2H, benzyl.), 5.27 (s, 2H, NH₂), 7.11-7.52 (m, 4H, aromat.), 7.56 (s, 1H, aromat.), 9.07 (s, 1H, NH), 9.30 (s, 1H, NH), 9.44 (t, 1H, J = 5.9 Hz, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 10.1 (OCH₂CH₂CH₃), 21.1 (OCH₂CH₂CH₃), 44.0 (benzyl.), 70.9 (OCH₂CH₂CH₃), 114.9 (Pyrimidin-C6), 114.9 (d, ² $J_{C-F} = 21.4$ Hz, tert., aromat.), 121.1 (quart., aromat.), 130.1 (d, ³ $J_{C-F} = 8.4$ Hz, tert., aromat.), 134.1 (d, ⁴ $J_{C-F} = 3.1$ Hz, quart., aromat.), 149.0 (quart., aromat.), 150.8 (C=O), 158.0 (quart., aromat.), 161,3 (d, ¹ $J_{C-F} = 241.9$ Hz, quart., aromat.)

 $C_{15}H_{19}ClFN_5O_2[355.80]$

Ber.[%]:	C 50.64	N 19.68	H 5.38
Gef.[%]:	C 50.24	N 19.67	Н 5.50

Butyl {4-amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl} carbamathydrochlorid **26Ac**

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.451 g Chlorameisensäurebutylester nach **AAV 2**

Ausbeute:	64%, hellgelbes Pulver
Schmp.:	164 °C (Zers.), (Methanol/Diethylether)
IR:	3297 cm ⁻¹ , 3185 cm ⁻¹ , 3067 cm ⁻¹ (N-H), 1741 cm ⁻¹ (C=O)
¹ H-NMR:	(400 MHz, DMSO- d_6), δ (ppm): 0.93 (t, $J = 7.4$ Hz, 3H, OCH ₂ CH ₂ CH ₂ CH ₂ CH ₃), 1.37-1.49 (m, 2H, OCH ₂ CH ₂ CH ₂ CH ₂ CH ₃), 1.65-1.77 (m, 2H, OCH ₂ CH ₂ CH ₂ CH ₃), 4.38 (t, $J = 6.4$ Hz, 2H, OCH ₂ CH ₂ CH ₂ CH ₂ CH ₃), 4.65 (d, $J = 5.9$ Hz, 2H, benzyl.), 5.37 (s, 2H, NH ₂), 7.12-7.53 (m, 4H, aromat.), 7.54 (s, 1H, Pyrimidin-H), 9.23 (s, 1H, NH), 9.33 (s, 1H, NH), 9.43 (t, $J = 5.9$ Hz, 1H, NH)
¹³ C-NMR:	(101 MHz, DMSO- d_6), δ (ppm): 13.5 (OCH ₂ CH ₂ CH ₂ CH ₃), 18.4 (OCH ₂ CH ₂ CH ₂ CH ₂) 29.7 (OCH ₂ CH ₂ CH ₂ CH ₂) 44.0

(101 MHZ, DM3O- a_6), 0(ppH). 15.5 (OCH₂CH₂CH₂CH₂CH₂CH₃), 18.4 (OCH₂CH₂CH₂CH₃), 29.7 (OCH₂CH₂CH₂CH₃), 44.0 (benzyl.), 69.2 (OCH₂CH₂CH₂CH₃), 114.9 (d, ²J_{C-F} = 21.1 Hz, tert., aromat.), 114.9 (Pyrimidin-C6), 121.7 (quart., aromat.), 130.1 (d, ³J_{C-F} = 8.3 Hz, tert., aromat.), 134.2 (d, ⁴J_{C-F} = 2.8 Hz, quart., aromat.), 149.1 (quart., aromat.), 150.5 (C=O), 158.0 (quart., aromat.), 161.4 (d, ¹J_{C-F} = 242.9 Hz, quart., aromat.)

C₁₆H₂₁ClFN₅O₂ [369.83]

Ber.[%]:	C 51.96	N 18.94	Н 5.72
Gef.[%]:	C 51.82	N 19.07	Н 5.78

Isobutyl{4-amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}carbamathydrochlorid **26Ad**

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.451 g Chlorameisensäureisobutylester nach **AAV 2**

Ausbeute:	47%, farbloses Pulver
Schmp.:	149 °C (Zers.), (Methanol/Diethylether)
IR:	3295 cm ⁻¹ , 3183 cm ⁻¹ , 3063 cm ⁻¹ (N-H), 1742 cm ⁻¹ (C=O)
¹ H-NMR:	(400 MHz, DMSO- d_6), δ (ppm): 0.99 (d, $J = 6.8$ Hz, 6H, OCH ₂ CH(CH ₃) ₂), 1.99-2.15 (m, 1H, OCH ₂ CH(CH ₃) ₂), 4.17 (d, $J = 6.5$ Hz, 2H, OCH ₂ CH(CH ₃) ₂), 4.65 (d, $J = 5.5$ Hz, 2H, benzyl.), 5.47 (s, 2H, NH ₂), 7.10-7.55 (m, 4H, aromat.), 7.56 (s, 1H, Pyrimidin-H), 9.33 (s, 1H, NH), 9.36 (s, 1H, NH), 9.44 (t, $J = 5.5$ Hz, 1H, NH)
¹³ C-NMR:	(101 MHz, DMSO- d_6), δ (ppm): 18.6 (OCH ₂ CH(CH ₃) ₂), 27.0 (OCH ₂ CH(CH ₃) ₂), 44.0 (benzyl.), 74.9 (OCH ₂ CH(CH ₃) ₂), 114.7 (Pyrimidin-C6), 114.9 (d, ² J _{C-F} = 22.0 Hz, tert., aromat.), 121.7 (quart., aromat.), 130.1 (d, ³ J _{C-F} = 8.3 Hz, tert., aromat.), 134.1 (d, ⁴ J _{C-F} = 2.8 Hz, quart., aromat.), 149.1 (quart.,

aromat.), 150.5 (C=O), 158.0 (quart., aromat.), 161.3 (d, ${}^{1}J_{C-F}$ = 242.9 Hz, quart., aromat.)

 $C_{16}H_{21}ClFN_5O_2$ [369.83]

Ber.[%]:	C 51.96	N 18.94	Н 5.72
Gef.[%]:	C 51.88	N 19.07	H 5.90

Ethyl{4-amino-2-[(4-methylbenzyl)amino]pyrimidin-5-yl}carbamathydrochlorid **26Ae**

Aus 0.778 g N^2 -(4-Methylbenzyl)-5-nitropyrimidin-2,4-diamin **25d** und 0.359 g Chlorameisensäureethylester nach **AAV 2**

Ausbeute: 51%, farbloses Pulver

Schmp.: 137 °C (Zers.), (Methanol/Diethylether)

IR: 3348 cm^{-1} , 3170 cm^{-1} , 3026 cm^{-1} (N-H), 1738 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.36 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 2.28 (s, 3H, CH₃), 4.42 (q, J = 7.1 Hz, 2H, OCH₂CH₃), 4.63 (d, J = 5.9 Hz, 2H, benzyl.), 5.27 (s, 2H, NH₂), 7.05-7.39 (m, 4H, aromat.), 7.56 (s, 1H, Pyrimidin-*H*), 9.07 (s, 1H, NH), 9.27 (s, 1H, NH), 9.36 (t, J = 5.6 Hz, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 13.7 (OCH₂CH₃), 20.7 (CH₃),
 44.5 (benzyl.), 65.8 (OCH₂CH₃), 115.0 (Pyrimidin-C6), 121.6 (quart., aromat.), 127.8, 128.8 (tert., aromat.), 134.8, 136.3, 149.1 (quart., aromat.), 150.5 (C=O), 158.2 (quart., aromat.)

 $C_{15}H_{20}ClN_5O_2$ [337.81]

Ber.[%]:	C 53.33	N 20.73	Н 5.97
Gef.[%]:	C 53.20	N 20.60	H 6.05

<u>Propyl</u>{4-amino-2-[(4-methylbenzyl)amino]pyrimidin-5-yl}carbamathydrochlorid **26Af**

Aus 0.778 g N^2 -(4-Methylbenzyl)-5-nitropyrimidin-2,4-diamin **25d** und 0.405 g Chlorameisensäurepropylester nach **AAV 2**

Ausbeute: 41%, farbloses Pulver

Schmp.: 139 °C (Zers.), (Methanol/Diethylether)

IR: 3283 cm^{-1} , 3176 cm^{-1} , 3069 cm^{-1} (N-H), 1744 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 0.98 (t, J = 7.4 Hz, 3H, OCH₂CH₂CH₂CH₃), 1.66-1.83 (m, 2H, OCH₂CH₂CH₃), 2.28 (s, 3H, CH₃), 4.33 (t, J = 6.5 Hz, 2H, OCH₂CH₂CH₃), 4.63 (d, J = 5.8 Hz, 2H, benzyl.), 5.36 (s, 2H, NH₂), 7.10-7.37 (m, 4H, aromat.), 7.56 (s, 1H, Pyrimidin-H), 9.18 (s, 1H, NH), 9.29 (s, 1H, NH), 9.35 (t, J = 5.9 Hz, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 10.1 (OCH₂CH₂CH₃), 20.6 (CH₃), 21.1 (OCH₂CH₂CH₃), 44.5 (benzyl.), 71.0 (OCH₂CH₂CH₃), 115.0 (Pyrimidin-C6), 121.5 (quart., aromat.), 127.7, 128.8 (tert., aromat.), 134.7, 136.3, 149.1 (quart., aromat.), 150.6 (C=O), 158.0 (quart., aromat.)

$C_{16}H_{22}CIN_5O_2$ [351.84]

Ber.[%]:	C 54.62	N 19.90	H 6.30
Gef.[%]:	C 54.28	N 19.92	Н 6.43

Butyl{4-amino-2-[(4-methylbenzyl)amino]pyrimidin-5-yl}carbamathydrochlorid **26Ag**

Aus 0.778 g N^2 -(4-Methylbenzyl)-5-nitropyrimidin-2,4-diamin **25d** und 0.451 g Chlorameisensäurebutylester nach **AAV 2**

Ausbeute: 57%, farbloses Pulver

Schmp.: 160 °C (Zers.), (Methanol/Diethylether)

IR: 3297 cm^{-1} , 3183 cm^{-1} , 3068 cm^{-1} (N-H), 1742 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 0.93 (t, J = 7.3 Hz, 3H, OCH₂CH₂CH₂CH₂CH₃), 1.35-1.51 (m, 2H, OCH₂CH₂CH₂CH₃), 1.65-1.79 (m, 2H, OCH₂CH₂CH₂CH₃), 2.28 (s, 3H, CH₃), 4.37 (t, J = 6.3 Hz, 2H, OCH₂CH₂CH₂CH₃), 4.63 (d, J = 5.7 Hz, 2H, benzyl.), 5.27 (s, 2H, NH₂), 7.07-7.38 (m, 4H, aromat.), 7.54 (s, 1H, Pyrimidin-H), 9.06 (s, 1H, NH), 9.28 (s, 1H, NH), 9.35 (t, J = 5.7 Hz, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 13.4 (OCH₂CH₂CH₂CH₂CH₃),
 18.3 (OCH₂CH₂CH₂CH₃), 20.6 (CH₃), 29.6 (OCH₂CH₂CH₂CH₂CH₃), 44.4 (benzyl.), 69.2 (OCH₂CH₂CH₂CH₂CH₃),
 115.2 (Pyrimidin-C6), 121.4 (quart., aromat.), 127.7, 128.8 (tert., aromat.), 134.7, 136.3, 149.1 (quart., aromat.), 150.5 (C=O), 158.0 (quart., aromat.)

 $C_{17}H_{24}ClN_5O_2$ [365.86]

Ber.[%]:	C 55.81	N 19.14	H 6.61
Gef.[%]:	C 55.35	N 19.15	H 6.66

Isobutyl{4-amino-2-[(4-methylbenzyl)amino]pyrimidin-5-yl}carbamathydrochlorid **26Ah**

Aus 0.778 g N^2 -(4-Methylbenzyl)-5-nitropyrimidin-2,4-diamin **25d** und 0.451 g Chlorameisensäureisobutylester nach **AAV 2**

Ausbeute: 49%, farbloses Pulver

Schmp.: 150 °C (Zers.), (Methanol/Diethylether)

IR: 3286 cm^{-1} , 3179 cm^{-1} , 3061 cm^{-1} (N-H), 1745 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 0.99 (d, J = 6.3 Hz, 6H, OCH₂CH(CH₃)₂), 1.98-2.14 (m, 1H, OCH₂CH(CH₃)₂), 2.28 (s, 3H, CH₃), 4.16 (d, J = 6.0 Hz, 2H, OCH₂CH(CH₃)₂), 4.63 (d, J = 4.4 Hz, 2H, benzyl.), 5.42 (s, 2H, NH₂), 7.05-7.41 (m, 4H, aromat.), 7.55 (s, 1H, Pyrimidin-H), 9.24 (s, 1H, NH), 9.31 (s, 1H, NH), 9.36 (t, J = 5.7 Hz, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 18.6 (OCH₂CH(*C*H₃)₂), 20.6 (*C*H₃), 27.0 (OCH₂CH(CH₃)₂), 44.5 (benzyl.), 74.9 (OCH₂CH(CH₃)₂, 114.8 (Pyrimidin-*C*6), 121.7 (quart., aromat.), 127.8, 128.8 (tert., aromat.), 134.7, 136.3, 149.1 (quart., aromat.), 150.6 (C=O), 158.0 (quart., aromat.)

C₁₇H₂₄ClN₅O₂ [365.86]

Ber.[%]:	C 55.81	N 19.14	H 6.61
Gef.[%]:	C 55.42	N 19.17	H 6.68

Aus 0.694 g 5-Nitro- N^2 -phenylpyrimidin-2,4-diamin **25f** und 0.405 g Chlorameisensäurepropylester nach **AAV 3**

- Ausbeute: 28%, hellgraues Pulver
- Schmp.: 155 °C, (Ethylacetat/n-Hexan)
- IR: $3000-3600 \text{ cm}^{-1}$ (N-H, breit), 1691 cm⁻¹ (C=O)
- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 0.83-1.03 (m, 3H, OCH₂CH₂CH₂CH₃), 1.53-1.71 (m, 2H, OCH₂CH₂CH₃), 3.98 (t, J = 6.3 Hz, 2H, OCH₂CH₂CH₃), 6.47 (s, 2H, NH₂), 6.80-7.79 (m, 5H, aromat.), 7.83 (s, 1H, NH), 8.36 (s, 1H, NH), 8.93 (s, 1H, Pyrimidin-H)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 10.2 (OCH₂CH₂CH₃), 21.8 (OCH₂CH₂CH₃), 65.8 (OCH₂CH₂CH₃); 108.9 (quart., aromat.), 118.2, 120.2, 128.2 (tert., aromat.), 141.3 (quart., aromat.), 152.2 (Pyrimidin-*C*6), 155.1 (quart., aromat.), 157.5 (C=O), 159.2 (quart., aromat.)

 $C_{14}H_{17}N_5O_2 \ \ [287.32]$

Ber.[%]:	C 58.52	N 24.37	Н 5.96
Gef.[%]:	C 58.53	N 24.41	H 6.15

Aus 0.676 g 2-Morpholino-5-nitropyrimidin-4-amin **25h** und 0.359 g Chlorameisensäureethylester nach **AAV 3**

Ausbeute:	35%, farbloses Pulver
Schmp.:	161 °C (Dichlormethan/n-Hexan)
IR:	3487 cm ⁻¹ , 3296 cm ⁻¹ , 3202 cm ⁻¹ (N-H), 1716 cm ⁻¹ (C=O)
¹ H-NMR:	(400 MHz, DMSO- d_6), δ (ppm): 1.21 (s, 3H, OCH ₂ CH ₃), 3.49- 3.68 (m, 8H, c-Alkyliden-CH ₂), 4.05 (q, $J = 6.7$ Hz, 2H, OCH ₂ CH ₃), 6.34 (s, 2H, NH ₂), 7.72 (s, 1H, Pyrimidin-H), 8.26 (s, 1H, NH)
¹³ C-NMR:	(101 MHz, DMSO- <i>d</i> ₆), δ(ppm): 14.4 (OCH ₂ CH ₃), 44.1 (c-Alkyliden-CH ₂), 60.1 (OCH ₂ CH ₃), 66.0 (c-Alkyliden-CH ₂), 107.5 (quart., aromat.), 152.6 (Pyrimidin-C6), 155.1 (C=O), 159.3, 159.5 (quart., aromat.)

 $C_{11}H_{17}N_5O_3 \ \ [267.29]$

Ber.[%]:	C 49.43	N 26.20	Н 6.41
Gef.[%]:	C 49.37	N 25.87	Н 6.55

<u>N-{4-Amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}acetamid-hydrochlorid 27a</u>

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.26 g Acetylchlorid nach **AAV 2**

Ausbeute: 64%, farbloses Pulver

Schmp.: 239 °C (Zers.), (Methanol/Diethylether)

IR: 3294 cm^{-1} , 3174 cm^{-1} (N-H), 1654 cm^{-1} (C=O, C=N, breit)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 2.05 (s, 3H, CH_3), 4.53 (d, 2H, J = 5.9 Hz, benzyl.), 7.10-7.49 (m, 4H, aromat.), 8.00 (s, 1H, Pyrimidin-H), 8.38 (s, 1H, NH), 8.57 (s, 2H, NH₂), 9.65 (s, 1H, NH), 12.39 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 23.0 (CH₃), 43.0 (benzyl.), 109.1 (quart., aromat.), 115.1 (d, ${}^2J_{C-F} = 21.4$ Hz, tert., aromat.), 129.4 (d, ${}^3J_{C-F} = 8.4$ Hz, tert., aromat.), 134.2 (quart., aromat.), 136.4 (Pyrimidin-C6), 151.7, 160.9 (quart., aromat.), 161.3 (d, ${}^1J_{C-F} = 242.6$ Hz, quart., aromat.), 169.6 (C=O)

C₁₃H₁₅ClFN₅O [311.75]

Ber.[%]:	C 50.09	N 22.46	H 4.85
Gef.[%]:	C 50.00	N 22.43	H 5.04

<u>N-{4-Amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}propanamid-hydrochlorid **27b**</u>

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.306 g Propionylchlorid nach **AAV 2**

Ausbeute: 69%, farbloses Pulver

Schmp.: 242 °C (Zers.), (Methanol/Diethylether)

IR: 3293 cm^{-1} , 3171 cm^{-1} (N-H), 1676 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.05 (t, J = 7.5 Hz, 3H, CH₂CH₃), 2.38 (q, J = 7.5 Hz, 2H, CH₂CH₃), 4.53 (d, J = 5.9 Hz, 2H, benzyl.), 7.14-7.46 (m, 4H, aromat.), 8.00 (s, 1H, Pyrimidin-H), 8.33 (s, 1H, NH), 8.53 (s, 2H, NH₂), 9.51 (s, 1H, NH), 12.33 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 9.2 (CH₂CH₃), 28.5 (CH₂CH₃), 43.0 (benzyl.), 109.2 (quart., aromat.), 115.1 (d, ${}^{2}J_{C-F} = 21.3$ Hz, tert., aromat.), 129.5 (d, ${}^{3}J_{C-F} = 8.1$ Hz, tert., aromat.), 134.3 (quart., aromat.), 136.1 (Pyrimidin-C6), 151.6, 160.8 (quart., aromat.), 161.3 (d, ${}^{1}J_{C-F} = 242.8$ Hz, quart., aromat.), 173.3 (C=O)

C₁₄H₁₇ClFN₅O [325.77]

Ber.[%]:	C 51.62	N 21.50	Н 5.26
Gef.[%]:	C 51.53	N 21.49	Н 5.42

<u>*N*-{4-Amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}butanamid-</u> hydrochlorid **27c**

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.352 g Butyrylchlorid nach **AAV 2**

Ausbeute:	65%, farbloses Pulver	
-----------	-----------------------	--

Schmp.: 243 °C (Zers.), (Methanol/Diethylether)

IR: 3388 cm^{-1} , 3265 cm^{-1} 3132 cm^{-1} (N-H), 1691 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 0.90 (t, 3H, J = 7.4 Hz, CH₂CH₂CH₂CH₃), 1.54-1.63 (m, 2H, CH₂CH₂CH₃), 2.38 (t, 2H, J = 7.4 Hz, CH₂CH₂CH₃), 4.54 (d, 2H, J = 5.9 Hz, benzyl.), 7.11-7.49 (m, 4H, aromat.), 8.08 (s, 1H, Pyrimidin-H), 8.47 (s, 1H, NH), 8.58 (s, 2H, NH₂), 9.70 (s, 1H, NH), 12.45 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 13.6 (CH₂CH₂CH₃), 18.3 (CH₂CH₂CH₃), 37.3 (CH₂CH₂CH₃), 43.1 (benzyl.), 109.3 (quart., aromat.), 115.2 (d, ²J_{C-F} = 21.4 Hz, tert., aromat.), 129.5 (d, ³J_{C-F} = 8.4 Hz, tert., aromat.), 134.3 (quart., aromat.), 135.7 (Pyrimidin-C6), 151.6, 160.6 (quart., aromat.), 161.4 (d, ¹J_{C-F} = 242.6 Hz, quart., aromat.), 172.4 (C=O)

C₁₅H₁₉ClFN₅O [339.80]

Ber.[%]:	C 53.02	N 20.61	Н 5.64
Gef.[%]:	C 52.60	N 20.78	H 5.61

<u>*N*-{4-Amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}pentanamid-</u> hydrochlorid **27d**

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.398 g Valerylchlorid nach **AAV 2**

- Ausbeute: 70%, farbloses Pulver
- Schmp.: 215 °C (Zers.), (Methanol/Diethylether)

IR: 3312 cm^{-1} , 3150 cm^{-1} (N-H), 1671 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 0.89 (t, 3H, J = 7.3 Hz, CH₂CH₂CH₂CH₂CH₃), 1.26-1.37 (m, 2H, CH₂CH₂CH₂CH₃), 1.49-1.60 (m, 2H, CH₂CH₂CH₂CH₃), 2.40 (t, 2H, J = 7.6 Hz, CH₂CH₂CH₂CH₃), 4.53 (d, 2H, J = 6.1 Hz, benzyl.), 7.12-7.49 (m, 4H, aromat.), 8.07 (s, 1H, Pyrimidin-H), 8.46 (s, 1H, NH), 8.57 (s, 2H, NH₂), 9.68 (s, 1H, NH), 12.44 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 13.7 (CH₂CH₂CH₂CH₂CH₃), 21.7 (CH₂CH₂CH₂CH₂CH₃), 26.9 (CH₂CH₂CH₂CH₃), 35.1 (CH₂CH₂CH₂CH₂CH₃), 43.0 (benzyl.), 109.3 (quart., aromat.), 115.1 (d, ²J_{C-F} = 21.4 Hz, tert., aromat.), 129.5 (d, ³J_{C-F} = 7.6 Hz, tert., aromat.), 134.3 (quart., aromat.), 135.7 (Pyrimidin-C6), 151.5, 160.6 (quart., aromat.), 161.3 (d, ¹J_{C-F} = 242.6 Hz, quart., aromat.), 172.5 (C=O)

C₁₆H₂₁ClFN₅O [353.83]

Ber.[%]:	C 54.31	N 19.79	H 5.98
Gef.[%]:	C 54.00	N 20.10	Н 6.27

<u>*N*-{4-Amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}-2-cyclopentyl-</u> acetamid-hydrochlorid **27e**

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.484 g Cyclopentylacetylchlorid nach **AAV 2**

- Ausbeute: 80%, farbloses Pulver
- Schmp.: 228 °C (Zers.), (Methanol/Diethylether)

IR: 3296 cm^{-1} , 3188 cm^{-1} , 3122 cm^{-1} (N-H), 1684 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.07-1.79 (4m, 8H, c-Pentyl-CH₂), 2.12-2.28 (m, 1H, c-Pentyl-CH), 2.40 (d, 2H, J = 7.4Hz, CH₂), 4.53 (d, 2H, J = 5.9 Hz, benzyl.), 7.12-7.48 (m, 4H, aromat.), 8.09 (s, 1H, Pyrimidin-H), 8.45 (s, 1H, NH, überlagert), 8.53 (s, 2H, NH₂, überlagert), 9.67 (s, 1H, NH), 12.40 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 24.4, 31.8 (c-Pentyl- CH_2), 36.3 (c-Pentyl-CH); 41.4 (CH_2), 43.0 (benzyl.), 109.3 (quart., aromat.), 115.1 (d, ${}^2J_{C-F} = 20.6$ Hz, tert., aromat.), 129.5 (d, ${}^3J_{C-F} = 7.6$ Hz, tert., aromat.), 134.3 (quart., aromat.), 135.5 (Pyrimidin-C6), 151.5,160.5 (quart., aromat.), 161.3 (d, ${}^1J_{C-F} =$ 242,6 Hz, quart., aromat.), 172.1 (C=O)

C₁₈H₂₃ClFN₅O [379.87]

Ber.[%]:	C 56.91	N 18.44	H 6.10
Gef.[%]:	C 56.88	N 18.29	H 6.28
<u>N-{4-Amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}-3-methoxybenzamid-hydrochlorid 27f</u>

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.563 g *m*-Anisoylchlorid nach **AAV 2**

Ausbeute: 58%, hellgraues Pulver

Schmp.: 262 °C (Zers.), (Methanol/Diethylether)

IR: 3355 cm^{-1} , 3288 cm^{-1} , 3156 cm^{-1} (N-H), 1668 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO-*d*₆), δ(ppm): 3.84 (s, 3H, OC*H*₃), 4.56 (d, *J* = 5.9 Hz, 2H, benzyl.), 7.13-7.62 (m, 8H, aromat.), 7.96 (s, 1H, Pyrimidin-*H*), 8.24 + 8.57 (2s, 2H, N*H*₂), 8.71 (s, 1H, N*H*), 9.88 (s, 1H, N*H*), 12.65 (s, 1H, N*H*)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 43.2 (benzyl.), 55.4 (OCH₃), 108.6 (quart., aromat.), 113.3 (tert., aromat.), 115.1 (d, ${}^2J_{C-F} =$ 21.3 Hz, tert., aromat.), 117.6, 120.4, 129.3 (tert., aromat.), 129.6 (d, ${}^3J_{C-F} = 8.1$ Hz, tert., aromat.), 134.3, 134.9 (quart., aromat.), 139.3 (Pyrimidin-C6), 152.3, 159.0 (quart., aromat.), 161.4 (d, ${}^1J_{C-F} = 242.8$ Hz, quart., aromat.), 162.0 (quart., aromat.), 166.3 (C=O)

 $C_{19}H_{19}ClFN_5O_2$ [403.84]

Ber.[%]:	C 56.51	N 17.34	H 4.74
Gef.[%]:	C 56.38	N 17.29	H 4.77

<u>N-{4-Amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}-3-methylbenzamid-hydrochlorid 27g</u>

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.511 g 3-Methylbenzoylchlorid nach **AAV 2**

Ausbeute: 59%, farbloses Pulver

Schmp.: 266 °C (Zers.), (Methanol/Diethylether)

IR: 3262 cm^{-1} (N-H), 1686 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 2.39 (s, 3H, C H_3), 4.56 (d, J = 6.1 Hz, 2H, benzyl.), 7.13-7.90 (m, 8H, aromat.), 7.95 (s, 1H, aromat.), 8.21 + 8.55 (2s, 2H, N H_2), 8.68 (s, 1H, NH), 9.79 (s, 1H, NH), 12.61 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 20.8 (CH₃), 43.1 (benzyl.), 108.6 (quart., aromat.), 115.1 (d, ${}^2J_{C-F} = 21.4$ Hz, tert., aromat.), 125.2, 128.0, 128.5 (tert., aromat.), 129.5 (d, ${}^3J_{C-F} =$ 8.4 Hz, tert., aromat.), 132.3 (tert., aromat.), 133.4, 134.2, 137.3, (quart., aromat.), 139.2 (Pyrimidin-C6), 152.2 (quart., aromat.), 161.3 (d, ${}^1J_{C-F} = 242.6$ Hz, quart., aromat.), 162.0 (quart., aromat.), 166.6 (C=O)

C₁₉H₁₉ClFN₅O [387.84]

Ber.[%]:	C 58.84	N 18.06	H 4.94
Gef.[%]:	C 58.70	N 18.19	H 5.03

Aus 0.736 g N^2 -Benzyl-5-nitropyrimidin-2,4-diamin **25b** und 0.26 g Acetylchlorid nach **AAV 2**

Ausbeute: 59%, farbloses Pulver

Schmp.: 235 °C (Zers.), (Methanol/Diethylether)

IR: 3388 cm^{-1} , 3155 cm^{-1} (N-H), 1697 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 2.06 (s, 3H, CH₃), 4.56 (d, 2H, J = 6.0 Hz, benzyl.), 7.24-7.40 (m, 5H, aromat.), 8.03 (s, 1H, Pyrimidin-H), 8.42 (s, 1H, NH), 8.49-8.68 (m, 2H, NH₂), 9.71 (s, 1H, NH), 12.43 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 23.1 (*C*H₃), 43.8 (benzyl.), 109.2 (quart., aromat.), 127.2, 127.3, 128.4 (tert., aromat.), 136.3 (Pyrimidin-*C*6), 138.1, 151.9, 160.9 (quart., aromat.), 169.7 (C=O)

C₁₃H₁₆ClN₅O [293.76]

Ber.[%]:	C 53.15	N 23.84	Н 5.49
Gef.[%]:	C 52.88	N 23.93	Н 5.44

Aus 0.736 g N^2 -Benzyl-5-nitropyrimidin-2,4-diamin **25b** und 0.306 g Propionylchlorid nach **AAV 2**

Ausbeute: 60%, farbloses Pulver

Schmp.: 235 °C (Zers.), (Methanol/Diethylether)

IR: 3390 cm^{-1} , 3119 cm^{-1} (N-H), 1696 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.05 (t, J = 7.5 Hz, 3H, CH₂CH₃), 2.40 (q, J = 7.5 Hz, 2H, CH₂CH₃), 4.56 (d, J = 5.9 Hz, 2H, benzyl.), 7.22-7.47 (m, 5H, aromat.), 8.05 (s, 1H, aromat.), 8.42 (s, 1H, NH), 8.58 (s, 2H, NH₂), 9.63 (s, 1H, NH), 12.42 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 9.3 (CH₂CH₃), 28.5 (CH₂CH₃), 43.8 (benzyl.), 109.2 (quart., aromat.), 127.2, 127.3, 128.4 (tert., aromat.), 136.0 (Pyrimidin-C6), 138.1, 151.8, 160.8 (quart., aromat.), 173.2 (C=O)

C₁₄H₁₈ClN₅O [307.78]

Ber.[%]:	C 54.63	N 22.75	H 5.89
Gef.[%]:	C 55.16	N 23.23	H 6.04

<u>N-{4-Amino-2-[benzyl(methyl)amino]pyrimidin-5-yl}propanamid-hydrochlorid 27j</u>

Aus 0.778 g N^2 -Benzyl- N^2 -methyl-5-nitropyrimidin-2,4-diamin **25c** und 0.306 g Propionylchlorid nach **AAV 2**

Ausbeute: 62%, farbloses Pulver

Schmp.: 230 °C (Zers.), (Methanol/Diethylether)

IR: 3346 cm^{-1} , 3266 cm^{-1} , 3185 cm^{-1} (N-H), 1685 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.06 (t, J = 7.6 Hz, 3H, CH₂CH₃), 2.40 (q, J = 7.4 Hz, 2H, CH₂CH₃), 3.10 (s, 3H, CH₃), 4.84 (s, 2H, benzyl.), 7.26-7.46 (m, 5H, aromat.), 8.00 (s, 1H, Pyrimidin-H), 8.34 + 8.50 (2s, 2H, NH₂, überlagert), 9.55 (s, 1H, NH), 12.42 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 9.2 (CH₂CH₃), 28.6 (CH₂CH₃), 35.5 (CH₃), 52.1 (benzyl.), 109.8 (quart., aromat.), 127.3, 127.4, 128.5 (tert., aromat.), 134.9 (Pyrimidin-*C*6), 136.2, 150.9, 159.8 (quart., aromat.), 173.2 (C=O)

 $C_{15}H_{20}CIN_5O$ [321.81]

Ber.[%]:	C 55.99	N 21.76	Н 6.26
Gef.[%]:	C 55.76	N 21.70	Н 6.36

<u>N-{4-Amino-2-[(4-methylbenzyl)amino]pyrimidin-5-yl}acetamid-hydrochlorid 27k</u>

Aus 0.778 g N^2 -(4-Methylbenzyl)-5-nitropyrimidin-2,4-diamin **25d** und 0.26 g Acetylchlorid nach **AAV 2**

Ausbeute: 61%, farbloses Pulver

Schmp.: 238 °C (Zers.), (Methanol/Diethylether)

IR: 3399 cm^{-1} , 3142 cm^{-1} (N-H), 1695 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 2.05 (s, 3H, CH_3), 2.28 (s, 3H, CH_3), 4.50 (d, J = 6.1 Hz, 2H, benzyl.), 7.12-7.28 (m, 4H, aromat.), 7.99 (s, 1H, Pyrimidin-H), 8.36 (s, 1H, NH), 8.54 (s, 2H, NH₂), 9.65 (s, 1H, NH), 12.32 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 20.6 (*C*H₃), 23.0 (*C*H₃), 43.5 (benzyl.), 109.1 (quart., aromat.), 127.3, 128.9 (tert., aromat.), 134.9, 136.3, 151.8, 161.0 (quart., aromat.), 169.6 (C=O)

C₁₄H₁₈ClN₅O [307.78]

Ber.[%]:	C 54.63	N 22.75	H 5.89
Gef.[%]:	C 54.34	N 22.67	Н 6.03

<u>N-{4-Amino-2-[(4-methylbenzyl)amino]pyrimidin-5-yl}propanamid-hydrochlorid 271</u>

Aus 0.778 g N^2 -(4-Methylbenzyl)-5-nitropyrimidin-2,4-diamin **25d** und 0.306 g Propionylchlorid nach **AAV 2**

Ausbeute: 63%, farbloses Pulver

Schmp.: 241 °C (Zers.), (Methanol/Diethylether)

IR: 3394 cm^{-1} , 3261 cm^{-1} , 3129 cm^{-1} (N-H), 1694 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.04 (t, J = 7.6 Hz, 3H, CH₂CH₃), 2.28 (s, 3H, CH₃), 2.38 (q, J = 7.5 Hz, 2H, CH₂CH₃), 4.50 (d, J = 5.9 Hz, 2H, benzyl.), 7.12-7.28 (m, 4H, aromat.), 7.99 (s, 1H, Pyrimidin-H), 8.31 (s, 1H, NH), 8.49 (s, 2H, NH₂), 9.50 (s, 1H, NH), 12.26 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 9.2 (CH₂CH₃), 20.6 (CH₃), 28.5 (CH₂CH₃), 43.5 (benzyl.), 109.2 (quart., aromat.), 127.3, 128.9 (tert., aromat.), 135.0 (quart., aromat.), 136.0 (Pyrimidin-C6), 136.3, 151.7, 160.8 (quart., aromat.), 173.2 (C=O)

 $C_{15}H_{20}CIN_5O$ [321.81]

Ber.[%]:	C 55.99	N 21.76	Н 6.26
Gef.[%]:	C 55.72	N 21.72	Н 6.42

<u>N-(4-Amino-2-{[4-(trifluormethyl)benzyl]amino}pyrimidin-5-yl)</u> propanamid-hydrochlorid **27m**

Aus 0.94 g 5-Nitro- N^2 -(4-trifluormethylbenzyl)pyrimidin-2,4-diamin 25e und 0.306 g Propionylchlorid nach **AAV 2**

- Ausbeute: 58%, farbloses Pulver
- Schmp.: 260 °C (Zers.), (Methanol/Diethylether)
- IR: 3294 cm⁻¹, 3176 cm⁻¹ (N-H), 1663 cm⁻¹, 1655 cm⁻¹ (C=O, C=N, breit)
- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.05 (t, J = 7.6 Hz, 3H, CH₂CH₃), 2.40 (q, J = 7.5 Hz, 2H, CH₂CH₃), 4.66 (d, J = 5.9 Hz, 2H, benzyl.), 7.53-7.79 (m, 4H, aromat.), 8.07 (s, 1H, Pyrimidin-H), 8.45 + 8.56 (2s, 2H, NH₂), 8.68 (s, 2H, NH), 9.64 (s, 1H, NH), 12.55 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 9.2 (CH₂CH₃), 28.5 (CH₂CH₃), 43.3 (benzyl.), 109.4 (quart., aromat.), 124.2 (q, ¹ $J_{C-F} = 271.9$ Hz, CF₃), 125.2 (q, ³ $J_{C-F} = 3.8$ Hz, tert., aromat.), 127.7 (q, ² $J_{C-F} = 31.5$ Hz, quart., aromat.), 128.0 (tert., aromat.), 136.0 (Pyrimidin-C6), 143.1, 151.7, 160.8 (quart., aromat.), 173.2 (C=O)

C₁₅H₁₇ClF₃N₅O [375.78]

Ber.[%]:	C 47.94	N 18.64	H 4.56
Gef.[%]:	C 47.74	N 18.70	H 4.78

Aus 0.694 g 5-Nitro- N^2 -phenylpyrimidin-2,4-diamin **25f** und 0.306 g Propionylchlorid nach **AAV 2**

Ausbeute:	57%, farbloses Pulver
Schmp.:	257 °C (Zers.), (Methanol/Diethylether)
IR:	3314 cm ⁻¹ , 3162 cm ⁻¹ (N-H), 1676 cm ⁻¹ (C=O)
¹ H-NMR:	(400 MHz, DMSO- d_6), δ (ppm): 1.07 (t, $J = 7.5$ Hz, 3H, CH ₂ CH ₃), 2.43 (q, $J = 7.4$ Hz, 2H, CH ₂ CH ₃), 7.10-7.69 (m, 5H, aromat.), 8.22 (s, 1H, Pyrimidin- H), 8.68 (s, 2H, NH ₂), 9.73 (s, 1H, NH), 10.57 (s, 1H, NH), 12.21 (s, 1H, NH)
¹³ C-NMR:	(101 MHz, DMSO- <i>d</i> ₆), δ(ppm): 9.3 (CH ₂ CH ₃), 28.6 (CH ₂ CH ₃), 110.2 (quart., aromat.), 121.4, 124.3, 129.0 (tert., aromat.), 136.2 (Pyrimidin- <i>C</i> 6), 137.3, 149.6, 160.5 (quart., aromat.), 173.3 (C=O)

C₁₃H₁₆ClN₅O [293.76]

Ber.[%]:	C 53.15	N 23.84	Н 5.49
Gef.[%]:	C 53.28	N 24.13	Н 5.65

<u>N-{4-Amino-2-[(2-phenylethyl)amino]pyrimidin-5-yl}propanamid-hydrochlorid 270</u>

Aus 0.778 g 5-Nitro- N^2 -phenylethyl-pyrimidin-2,4-diamin **25g** und 0.306 g Propionylchlorid nach **AAV 2**

Ausbeute:	63%, farbloses Pulver
Schmp.:	249 °C (Zers.), (Methanol/Diethylether)
IR:	3387 cm ⁻¹ , 3314 cm ⁻¹ , 3118 cm ⁻¹ (N-H), 1696 cm ⁻¹ (C=O)
¹ H-NMR:	(400 MHz, DMSO- d_6), δ (ppm): 1.05 (t, $J = 7.5$ Hz, 3H, CH ₂ CH ₃), 2.40 (q, $J = 7.6$ Hz, 2H, CH ₂ CH ₃), 2.85 (t, $J = 7.5$ Hz, 2H, HNCH ₂ CH ₂ Ph), 3.49-3.59 (m, 2H, HNCH ₂ CH ₂ Ph), 7.19-7.35 (m, 5H, aromat.), 8.02 (s, 1H, aromat.), 8.40 (s, 1H, NH), 8.54 + 8.12 (2s, 2H, NH ₂), 9.63 (s, 1H, NH), 12.24 (s, 1H, NH)
¹³ C-NMR:	(101 MHz, DMSO- d_6), δ (ppm): 9.2 (CH ₂ CH ₃), 28.5 (CH ₂ CH ₃), 34.5 (NHCH ₂ CH ₂ Ph), 42.0 (NHCH ₂ CH ₂ Ph), 109.1 (quart., aromat.), 126.2, 128.3, 128.7 (tert., aromat.), 136.0

(quart., aromat.), 126.2, 128.3, 128.7 (tert., aromat.), 136.0 (Pyrimidin-C6), 138.7, 151.5, 160.7 (quart., aromat.), 173.2 (C=O)

C₁₅H₂₀ClN₅O [321.81]

Ber.[%]:	C 55.99	N 21.76	Н 6.26
Gef.[%]:	C 55.66	N 21.73	Н 6.45

Aus 0.676 g 2-Morpholino-5-nitropyrimidin-4-amin **25h** und 0.306 g Propionylchlorid nach **AAV 2**

- Ausbeute:
 68%, farbloses Pulver

 Schmp.:
 $259 \, ^{\circ}C$ (Zers.), (Methanol/Diethylether)

 IR:
 $3353 \, \mathrm{cm}^{-1}$, $3266 \, \mathrm{cm}^{-1}$, $3181 \, \mathrm{cm}^{-1}$ (N-H), $1681 \, \mathrm{cm}^{-1}$ (C=O)

 ¹H-NMR:
 (400 MHz, DMSO- d_6), δ (ppm): 1.06 (t, 3H, $J = 7.6 \, \mathrm{Hz}$, CH₂CH₃), 2.43 (q, 2H, $J = 7.5 \, \mathrm{Hz}$, CH₂CH₃), 3.62-3.77 (m, 8H, c-Alkyliden-CH₂), 8.08 (s, 1H, Pyrimidin-H), 8.56 (s, 2H, NH₂), 9.77 (s, 1H, NH), 12.90 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 9.3 (CH₂CH₃), 28.7 (CH₂CH₃), 44.7, 65.3 (c-Alkyliden-CH₂), 110.0 (quart., aromat.), 134.8 (Pyrimidin-C6), 150.4, 159.9 (quart., aromat.), 173.3 (C=O)

 $C_{11}H_{18}CIN_5O_2[287.75]$

Ber.[%]:	C 45.92	N 24.34	Н 6.31
Gef.[%]:	C 45.65	N 23.92	Н 6.41

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.235 g Ethylisocyanat nach **AAV 4**

- Ausbeute: 56%, farbloses Pulver
- Schmp.: 202 °C (Zers.), (Methanol)
- IR: 3342 cm⁻¹ (N-H), 2923 cm⁻¹, 2854 cm⁻¹ (C-H), 1637 cm⁻¹ (C=O), 1603 cm⁻¹ (N-H)
- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.01 (t, J = 7.3 Hz, 3H, NHCH₂CH₃), 2.94-3.18 (m, 2H, NHCH₂CH₃), 4.39 (d, J = 6.4 Hz, 2H, benzyl.), 5.95 (t, J = 5.5 Hz, 1H, NH), 6.07 (s, 2H, NH₂), 6.88 (t, J = 6.4 Hz, 1H, NH), 7.04 (s, 1H, NH), 7.06-7.37 (m, 4H, aromat.), 7.55 (s, 1H, Pyrimidin-H)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 15.5 (NHCH₂CH₃), 34.3 (NHCH₂CH₃), 43.4 (benzyl.), 108.3 (quart., aromat.), 114.7 (d, ${}^2J_{C-F} = 21.4$ Hz, tert., aromat.), 128.9 (d, ${}^3J_{C-F} = 7.6$ Hz, tert., aromat.), 137.4 (d, ${}^4J_{C-F} = 3.1$ Hz, quart., aromat.), 153.4 (Pyrimidin-C6), 156.8 (C=O), 160.0, 160.6 (quart., aromat.), 160.9 (d, ${}^1J_{C-F} = 241.1$ Hz, quart., aromat.)

C₁₄H₁₇FN₆O [304.33]

Ber.[%]:	C 55.25	N 27.61	H 5.63
Gef.[%]:	C 55.00	N 27.34	H 5.80

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.281 g Propylisocyanat nach **AAV 4**

Ausbeute:	59%, farbloses Pulver
Schmp.:	201 °C, (Methanol)
IR:	3448 cm ⁻¹ , 3344 cm ⁻¹ , 3232 cm ⁻¹ (N-H), 2964 cm ⁻¹ (C-H), 1637 cm ⁻¹ (C=O), 1604 cm ⁻¹ (N-H)
¹ H-NMR:	(400 MHz, DMSO- d_6), δ (ppm): 0.84 (t, $J = 7.4$ Hz, 3H, NHCH ₂ CH ₂ CH ₃), 1.34-1.47 (m, 2H, NHCH ₂ CH ₂ CH ₃), 2.92- 3.03 (m, 2H, NHCH ₂ CH ₂ CH ₃), 4.39 (d, $J = 6.4$ Hz, 2H, benzyl.), 5.98 (t, $J = 5.6$ Hz, 1H, NH), 6.05 (s, 2H, NH ₂), 6.88 (t, $J = 6.0$ Hz, 1H, NH), 7.03 (s, 1H, NH), 7.06-7.37 (m, 4H, aromat.), 7.55 (s, 1H, Pyrimidin-H)
13	

¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 11.2 (NHCH₂CH₂CH₃), 23.0 (NHCH₂CH₂CH₂CH₃), 41.2 (NHCH₂CH₂CH₃), 43.3 (benzyl.), 108.3 (quart., aromat.), 114.6 (d, ² $J_{C-F} = 21.3$ Hz, tert., aromat.), 128.8 (d, ³ $J_{C-F} = 8.1$ Hz, tert., aromat.), 137.3 (d, ⁴ $J_{C-F} = 2.9$ Hz, quart., aromat.), 153.2 (Pyrimidin-C6), 156.8 (C=O), 159.9, 160.4 (quart., aromat.), 160.8 (d, ¹ $J_{C-F} = 241.4$ Hz, quart., aromat.)

 $C_{15}H_{19}FN_6O$ [318.36]

Ber.[%]:	C 56.59	N 26.40	H 6.02
Gef.[%]:	C 56.35	N 26.41	H 6.04

<u>1-{4-Amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}-3-cyclohexyl-harnstoff</u> **28c**

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.414 g Cyclohexylisocyanat nach **AAV 4**

- Ausbeute: 75%, farbloses Pulver Schmp.: 210 °C (Zers.), (Methanol) 3341 cm⁻¹, 3288 cm⁻¹ (N-H), 2927 cm⁻¹, 2856 cm⁻¹ (C-H), IR: 1635 cm⁻¹ (C=O), 1604 cm⁻¹ (N-H) ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.06-1.86 (m, 10H, Cyclohexyl-CH₂), 3.32-3.47 (m, 1H, Cyclohexyl-CH), 4.39 (d, J = 6.4 Hz, 2H, benzyl.), 5.86 (d, J = 7.6 Hz, 1H, NH), 6.03 (s, 2H, NH₂), 6.86 (t, J = 6.1 Hz, 1H, NH), 6.97 (s, 1H, NH), 7.04-7.36 (m, 4H, aromat.), 7.55 (s, 1H, Pyrimidin-H) ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 24.5, 25.3, 33.1 (Cyclohexyl-CH₂), 43.3 (benzyl.), 48.1 (Cyclohexyl-CH), 108.4 (quart., aromat.), 114.7 (d, ${}^{2}J_{C-F} = 21.4$ Hz, tert., aromat.), 128.8 (d,
 - ${}^{3}J_{C-F} = 7.6$ Hz, tert., aromat.), 137.4 (d, ${}^{4}J_{C-F} = 3.1$ Hz, quart., aromat.), 153.0 (tert., Pyrimidin-*C*6), 156.0 (C=O), 159.8, 160.3 (quart., aromat.), 160.9 (d, ${}^{1}J_{C-F} = 241.1$ Hz, quart., aromat.)

C₁₈H₂₃FN₆O [358.42]

Ber.[%]:	C 60.32	N 23.45	Н 6.47
Gef.[%]:	C 60.04	N 23.45	Н 6.52

<u>1-{4-Amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}-3-phenyl-harnstoff</u> **28d**

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.393 g Phenylisocyanat nach **AAV 4**

Ausbeute: 52%, farbloses Pulver

Schmp.: 198 °C, (Methanol)

- IR: 3345 cm⁻¹, 3291 cm⁻¹ (N-H), 1646 cm⁻¹ (C=O), 1610 cm⁻¹ (N-H)
- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 4.41 (d, J = 6.4 Hz, 2H, benzyl.), 6.24 (s, 2H, N H_2), 6.83-7.49 (m, 9H, aromat. und 2H, 2 NH, überlagert), 7.61 (s, 1H, Pyrimidin-H), 8.56 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 43.3 (benzyl.), 107.3 (quart., aromat.), 114.7 (d, ${}^2J_{C-F} = 21.1$ Hz, tert., aromat.), 117.9, 121.3, 128.6 (tert., aromat.), 128.9 (d, ${}^3J_{C-F} = 7.3$ Hz, tert., aromat.), 137.4 (d, ${}^4J_{C-F} = 2.8$ Hz, quart., aromat.), 140.2 (quart., aromat.), 154.1 (Pyrimidin-C6), 154.2 (C=O), 160.3 (quart., aromat.), 160.8 (quart., aromat.), 160.9 (d, ${}^1J_{C-F} = 241.9$ Hz, quart., aromat.)

 $C_{18}H_{17}FN_6O$ [352.37]

Ber.[%]:	C 61.36	N 23.85	H 4.86
Gef.[%]:	C 61.40	N 23.96	Н 5.22

<u>1-{4-Amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}-3-(3-chlorphenyl)-harnstoff **28e**</u>

Aus 0.79 g N^2 -(4-Fluorbenzyl)-5-nitropyrimidin-2,4-diamin **25a** und 0.507 g 3-Chlorphenylisocyanat nach **AAV 4**

Ausbeute: 54%, farbloses Pulver

Schmp.: 183 °C (Zers.), (Methanol)

IR: 3296 cm^{-1} (N-H), 1654 cm⁻¹ (C=O), 1596 cm⁻¹ (N-H)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 4.41 (d, J = 6.1 Hz, 2H, benzyl.), 6.26 (s, 2H, N H_2), 6.86-7.42 (m, 7H, aromat. und 2H, 2 NH, überlagert), 7.60 (s, 1H, Pyrimidin-H), 7.68 (s, 1H, aromat.), 8.80 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 43.2 (benzyl.), 106.8 (quart., aromat.), 114.6 (d, ${}^2J_{C-F} = 20.6$ Hz, tert., aromat.), 116.3, 117.3, 120.8, 130.1 (tert., aromat.), 128.8 (d, ${}^3J_{C-F} = 8.4$ Hz, tert., aromat.), 132.9 (quart., aromat.), 137.3 (d, ${}^4J_{C-F} = 3.1$ Hz, quart., aromat.), 141.8 (quart., aromat.), 154.0 (C=O), 154.2 (Pyrimidin-C6), 160.3 (quart., aromat.), 160.8 (d, ${}^1J_{C-F} = 241.1$ Hz, quart., aromat.)

C₁₈H₁₆ClFN₆O [386.82]

Ber.[%]:	C 55.89	N 21.73	H 4.17
Gef.[%]:	C 55.49	N 21.41	H 4.30

Aus 0.676 g 2-Morpholino-5-nitropyrimidin-4-amin **25h** und 0.235 g Ethylisocyanat nach **AAV 4**

- Ausbeute: 72%, farbloses Pulver
- Schmp.: $> 300 \,^{\circ}C$ (Zers.), (Methanol)
- IR: 3469 cm⁻¹, 3319 cm⁻¹ (N-H), 2971 cm⁻¹, 2857 cm⁻¹ (C-H), 1629 cm⁻¹ (C=O)
- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.01 (t, J = 7.1 Hz, 3H, NHCH₂CH₃), 2.98-3.13 (m, 2H, NHCH₂CH₃), 3.47-3.73 (m, 8H, c-Alkyliden-CH₂), 5.96 (t, J = 5.3 Hz, 1H, NH), 6.19 (s, 2H, NH₂), 7.12 (s, 1H, NH), 7.66 (s, 1H, Pyrimidin-H)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 15.4 (NHCH₂CH₃), 34.2 (NHCH₂CH₃), 44.2, 66.0 (c-Alkyliden-CH₂), 108.5 (quart., aromat.), 152.8 (Pyrimidin-C6), 156.6 (C=O), 159.1, 160.1 (quart., aromat.)

 $C_{11}H_{18}N_6O_2$ [266.31]

Ber.[%]:	C 49.61	N 31.56	H 6.81
Gef.[%]:	C 49.56	N 31.67	H 6.92

Aus 0.676 g 2-Morpholino-5-nitropyrimidin-4-amin **25h** und 0.281 g Propylisocyanat nach **AAV 4**

- Ausbeute: 71%, farbloses Pulver
- Schmp.: > 300 °C (Zers.), (Methanol)
- IR: 3448 cm⁻¹, 3302 cm⁻¹ (N-H), 2965 cm⁻¹, 2863 cm⁻¹ (C-H), 1631 cm⁻¹ (C=O)
- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 0.84 (t, J = 7.4 Hz, 3H, NHCH₂CH₂CH₂CH₃), 1.32-1.48 (m, 2H, NHCH₂CH₂CH₃), 2.93-3.05 (m, 2H, NHCH₂CH₂CH₃), 3.46-3.72 (m, 8H, c-Alkyliden-CH₂), 5.99 (t, J = 5.6 Hz, 1H, NH), 6.19 (s, 2H, NH₂), 7.11 (s, 1H, NH), 7.66 (s, 1H, Pyrimidin-H)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 11.4 (NHCH₂CH₂CH₃), 23.1 (NHCH₂CH₂CH₃), 41.3 (NHCH₂CH₂CH₃), 44.3, 66.1 (c-Alkyliden-CH₂), 108.7 (quart., aromat.), 152.8 (Pyrimidin-C6), 156.8 (C=O), 159.2, 160.2 (quart., aromat.)

 $C_{12}H_{20}N_6O_2$ [280.33]

Ber.[%]:	C 51.42	N 29.98	Н 7.19
Gef.[%]:	C 51.42	N 29.85	Н 7.28

Aus 0.676 g 2-Morpholino-5-nitropyrimidin-4-amin **25h** und 0.414 g Cyclohexylisocyanat nach **AAV 4**

- Ausbeute: 69%, farbloses Pulver
- Schmp.: $> 300 \,^{\circ}C$ (Zers.), (Methanol)

IR: 3447 cm⁻¹, 3345 cm⁻¹, 3277 cm⁻¹ (N-H), 2948 cm⁻¹, 2924 cm⁻¹, 2853 cm⁻¹ (C-H), 1605 cm⁻¹ (N-H)

- ¹H-NMR: (400 MHz, DMSO-*d*₆), δ(ppm): 1.04-1.88 (m, 10H, c-Hexyl-CH₂), 3.32-3.47 (m, 1H, c-Hexyl-CH), 3.48-3.71 (m, 8H, c-Alkyliden-CH₂), 5.87 (d, *J* = 7.9 Hz, 1H, NH), 6.16 (s, 2H, NH₂), 7.06 (s, 1H, NH), 7.68 (s, 1H, Pyrimidin-H)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 24.6, 25.3, 33.1 (c-Hexyl-CH₂), 44.3 (c-Alkyliden-CH₂), 48.1 (c-Hexyl-CH), 66,1 (c-Alkyliden-CH₂), 108.8 (quart., aromat.), 152.3 (Pyrimidin-C6), 155.9 (C=O), 159.1, 160.0 (quart., aromat.)

 $C_{15}H_{24}N_6O_2$ [320.40]

Ber.[%]:	C 56.23	N 26.23	Н 7.55
Gef.[%]:	C 56.04	N 25.95	Н 7.67

7.4 Analytische Daten zu Kapitel 3

2-Chlor-5-nitro-4-thiocyanatopyrimidin 36

Eine Lösung von 5.82 g (30 mmol) 2,4-Dichlor-5-nitropyrimidin **23** wird bei höchstens 10 °C portionsweise mit 2.91 g (30 mmol) KSCN versetzt. Der Reaktionsansatz wird für 15 Minuten gerührt und anschließend auf Eiswasser gegeben. Der Niederschlag wird abgesaugt und getrocknet.

 Ausbeute:
 84%, hellgelbes Pulver

 Schmp.:
 131 °C (Zers.), Lit.^[129]: 141 °C

 IR:
 2175 cm⁻¹ (SCN)

 $C_5HCIN_4O_2S$ [216.61]

 EI-MS:
 ber. 216

 gef. 216

Aus 2.16 g 2-Chlor-5-nitro-4-thiocyanatopyrimidin **36** und 2.50 g 4-Fluorbenzylamin nach **AAV 5**

Ausbeute: 98 %, hellgelbes Pulver

Schmp.: 160 °C (Zers.), (Ethanol)

IR: 3221 cm^{-1} (N-H), 2173 cm^{-1} (SCN)

- ¹H-NMR^{*}: (400 MHz, DMSO-*d*₆), δ(ppm): 4.64 (d, *J* = 6.3 Hz, 0.6H, benzyl.), 4.69 (d, *J* = 6.3 Hz, 1.4H, benzyl.), 7.10-7.52 (m, 4H, aromat.), 9.08 (s, 0.70H, Pyrimidin-*H*), 9.15 (s, 0.30H, Pyrimidin-*H*), 9.73 (t, *J* = 6.3 Hz, 0.30H, N*H*), 9.85 (t, *J* = 6.4 Hz, 0.70H, N*H*)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 43.3, 44.0 (benzyl.), 107.9, 108.1 (SCN), 115.07 (d, ${}^2J_{C-F} = 21.6$ Hz, tert., aromat.), 115.14 (d, ${}^2J_{C-F} = 20.8$ Hz, tert., aromat.), 129.5, 129.9 (d, ${}^3J_{C-F} = 8.5$ Hz, tert., aromat.), 130.8, 130.9 (quart., aromat.), 134.08, 134.11 (d, ${}^4J_{C-F} = 3.1$ Hz, quart., aromat.), 157.1, 157.4 (Pyrimidin-C6), 160.1, 160.2, 160.5, 160.9 (quart., aromat.), 161.3, 161.4, (d, ${}^1J_{C-F} = 242.8$ Hz, quart., aromat.)

 $C_{12}H_8FN_5O_2S$ [305.29]

HRFAB-MS: $[M+H]^+$ ber. 306.0461 $[M+H]^+$ gef. 306.0446

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

Aus 1.22 g N-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin **39** und Dimethylamin^{*} nach **AAV 6**

Ausbeute: 85%, hellgelbe Kristalle

Schmp.: 154 °C (Methanol)

- IR: 3222 cm^{-1} (N-H), 1594 cm⁻¹ (C=C), 1570 cm⁻¹ (N=O)
- ¹H-NMR[†]: (400 MHz, DMSO- d_6), δ (ppm): 2.89-3.01 (m, 6H, CH₃), 4.47 (d, J = 6.0 Hz, 1.5H, benzyl.), 4.54 (d, J = 6.3 Hz, 0.5H, benzyl.), 7.09-7.41 (m, 4H, aromat.), 8.34 (t, J = 6.3 Hz, 0.25H, NH), 8.57 (t, J = 6.2 Hz, 0.75H, NH), 8.69 (s, 0.75H, Pyrimidin-H), 8.72 (s, 0.25H, Pyrimidin-H)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 39.6 (CH₃), 43.4, 43.9 (benzyl.), 114.9 (d, ${}^2J_{C-F} = 21.2$ Hz, tert., aromat.), 122.9 (quart., aromat.), 129.0 (d, ${}^3J_{C-F} = 7.3$ Hz, tert., aromat.), 129.2 (d, ${}^3J_{C-F} = 8.1$ Hz, tert., aromat.), 135.6 (d, ${}^4J_{C-F} = 2.9$ Hz, quart., aromat.), 156.5 (quart., aromat.), 158.0 (Pyrimidin-C6), 160.1, 160.4 (quart., aromat.), 161.1 (d, ${}^1J_{C-F} = 242.2$ Hz, quart., aromat.)

C₁₃H₁₄FN₅O₂ [291.29]

HRFAB-MS: [M+H]⁺ ber. 292.1210 [M+H]⁺ gef. 292.1206

^{*} Es wurden 2.7 mL einer 33%igen Dimethylamin-Lösung in abs. Ethanol zugesetzt.

[†] Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

Aus 1.22 g *N*-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin **39** und 1.74 g Morpholin nach **AAV 6**

A ala t	040/	11	V. mintalla
Ausbeule:	84%0,	geibe	Kristalle

Schmp.: 174 °C (Methanol)

- IR: 3246 cm^{-1} (N-H), 1604 cm^{-1} (C=C), 1579 cm^{-1} (N=O)
- ¹H-NMR^{*}: (400 MHz, DMSO- d_6), δ (ppm): 3.40-3.69 (m, 8H, c-Alkyliden-CH₂), 4.46 (d, J = 6.0 Hz, 1.5H, benzyl.), 4.55 (d, J = 6.3 Hz, 0.5H, benzyl.), 7.10-7.40 (m, 4H, aromat.), 8.48 (t, J = 6.3 Hz, 0.25H, NH), 8.72 (t, J = 6.2 Hz, 0.75H, NH), 8.76 (s, 0.75H, Pyrimidin-H), 8.79 (s, 0.25H, Pyrimidin-H)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 43.5, 43.9 (benzyl.), 47.5, 47.7, 65.8 (c-Alkyliden- CH_2), 114.9, (d, ${}^2J_{C-F} = 21.2$ Hz, tert., aromat.), 122.7, (quart., aromat.), 129.1, 129.2 (d, ${}^3J_{C-F} = 8.8$ Hz, tert., aromat.), 135.4 (d, ${}^4J_{C-F} = 2.9$ Hz, quart., aromat.), 156.2 (quart., aromat.), 158.7 (Pyrimidin-C6), 160.4, 160.8 (quart., aromat.) 161.1 (d, ${}^1J_{C-F} = 242.2$ Hz, quart., aromat.)

 $C_{15}H_{16}FN_5O_3$ [333.32]

HRFAB-MS: [M+H]⁺ ber. 334.1315 [M+H]⁺ gef. 334.1320

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

Aus 1.22 g *N*-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin **39** und 1.86 g Anilin nach **AAV 6**

- Ausbeute: 92%, gelbes Pulver
- Schmp.: 191 °C (Methanol)
- IR: 3249 cm^{-1} (N-H), 1585 cm⁻¹ (C=C), 1558 cm⁻¹ (N=O)
- ¹H-NMR^{*}: (400 MHz, DMSO-*d*₆), δ(ppm): 4.41 (d, *J* = 6.0 Hz, 1.5H, benzyl.), 4.59 (d, *J* = 6.0 Hz, 0.5H, benzyl.), 7.07-7.83 (m, 9H, aromat.), 8.86 (t, *J* = 6.2 Hz, 0.25H, N*H*), 9.00 (s, 0.75H, Pyrimidin-*H*), 9.03-9.15 (m, 0.25H, Pyrimidin-*H* und 0.75H, N*H*), 10.22 (s, 0.25H, N*H*), 10.32 (s, 0.75H, N*H*)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 43.5, 43.9 (benzyl.), 114.9, (d, ² $J_{C-F} = 21.6$ Hz, tert., aromat.), 115.0 (d, ² $J_{C-F} = 20.8$ Hz, tert., aromat.), 119.8, 120.8, (quart., aromat.), 122.7, 123.3, 124.6, 124.9, 128.5, 128.6 (tert., aromat.), 128.9, 129.3 (d, ³ $J_{C-F} = 8.5$ Hz, tert., aromat.), 134.8, 135.2 (d, ⁴ $J_{C-F} = 3.1$ Hz, quart., aromat.), 137.0, 137.4, 153.5, 153.8 (quart., aromat.), 158.1, 158.4 (Pyrimidin-C6), 161.1 (d, ¹ $J_{C-F} = 242.0$ Hz, quart., aromat.), 161.2 (d, ¹ $J_{C-F} = 242.8$ Hz, quart., aromat.), 161.5 (quart., aromat.)

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

 $C_{17}H_{14}FN_5O_2$ [339.33]

HRFAB-MS: $[M+H]^+$ ber. 340.1210 $[M+H]^+$ gef. 340.1215

 N^2 -(4-Fluorbenzyl)-5-nitro- N^4 -(2-phenylethyl)pyrimidin-2,4-diamin **32d**

Aus 1.22 g *N*-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin **39** und 2.42 g 2-Phenylethylamin nach **AAV 6**

Ausbeute:	90%, hellgelbe Nadeln	

.

Schmp.: 179 °C (Methanol)

- IR: 3346 cm⁻¹, 3251 cm⁻¹ (N-H), 1593 cm⁻¹ (C=C), 1562 cm⁻¹ (N=O)
- ¹H-NMR^{*}: (400 MHz, DMSO- d_6), δ (ppm): 2.79 (t, J = 7.5 Hz, 1.6H, NHCH₂CH₂Ph), 2.91 (t, J = 7.5 Hz, 0.4H, NHCH₂CH₂Ph), 3.62-3.77 (m, 2H, NHCH₂CH₂Ph), 4.55 (d, J = 6.3 Hz, 1.6H, benzyl.), 4.59 (d, J = 6.5 Hz, 0.4H, benzyl.), 7.08-7.38 (m, 9H, aromat.), 8.57-8.85 (m, 2H, NH), 8.87 (s, 0.8H, Pyrimidin-H), 8.92 (s, 0.2H, Pyrimidin-H)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 34.6 (NHCH₂CH₂Ph), 41.5, 41.6 (NHCH₂CH₂Ph), 43.4, 43.8 (benzyl.), 114.9, (d, ² J_{C-F} =

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

21.6 Hz, tert., aromat.), 119.6, 120.6, (quart., aromat.), 126.1, 126.2, 128.3, 128.5, 128.7 (tert., aromat.), 128.9 (d, ${}^{3}J_{C-F} = 7.7$ Hz, tert., aromat.), 129.1 (d, ${}^{3}J_{C-F} = 8.5$ Hz, tert., aromat.) 135.2, 135.5 (d, ${}^{4}J_{C-F} = 3.1$ Hz, quart., aromat.), 139.0, 139.1, 155.1, 155.3 (quart., aromat.), 157.7, 157.9 (Pyrimidin-*C*6), 161.1 (d, ${}^{1}J_{C-F} = 242.0$ Hz, quart., aromat.), 161.1 (d, ${}^{1}J_{C-F} = 242.0$ Hz, quart., aromat.), 161.1 (d, ${}^{1}J_{C-F} = 242.0$ Hz, quart., aromat.), 161.2 (d, ${}^{1}J_{C-F} = 242.8$ Hz, quart., aromat.), 161.6, 161.7 (quart., aromat.)

 $C_{19}H_{18}FN_5O_2$ [367.39]

HRFAB-MS: [M+H]⁺ ber. 368.1523 [M+H]⁺ gef. 368.1522 <u>*N*-{4-(Dimethylamino)-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}-</u> propanamid-hydrochlorid **41a**

Aus 0.874 g N^2 -(4-Fluorbenzyl)- N^4 , N^4 -dimethyl-5-nitropyrimidin-2,4-diamin **32a** und 0.305 g Propionylchlorid nach **AAV 2**

Ausbeute: 64%, farbloses Pulver

Schmp.: 226 °C (Zers.), (Methanol/Diethylether)

IR: 3170 cm^{-1} (N-H), 1686 cm⁻¹ (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.04 (t, 3H, J = 7.6 Hz, CH₂CH₃), 2.29 (q, J = 7.6 Hz, 2H, CH₂CH₃), 3.20 (s, 6H, N(CH₃)₂), 4.54 (d, J = 5.6 Hz, 2H, benzyl.), 7.14-7.46 (m, 4H, aromat.), 7.70 (s, 1H, Pyrimidin-H), 8.79 (s, 1H, NH), 9.76 (s, 1H, NH), 12.78 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 9.2 (CH₂CH₃), 28.2 (CH₂CH₃), 39.8 (N(CH₃)₂), 43.5 (benzyl.), 108.1 (quart., aromat.), 115.1 (d, ² J_{C-F} = 21.6 Hz, tert., aromat.), 129.3 (d, ³ J_{C-F} = 7.7 Hz, tert., aromat.), 134.6 (quart., aromat.), 142.5 (tert., Pyrimidin-C6), 150.8, 159.6 (quart., aromat.), 161.3 (d, ¹ J_{C-F} = 242.8 Hz, quart., aromat.), 173.9 (C=O)

C₁₆H₂₁ClFN₅O [353.83]

Ber.[%]:	C 54.31	N 19.79	H 5.98
Gef.[%]:	C 54.21	N 19.92	Н 6.24

<u>*N*-{2-[(4-Fluorbenzyl)amino]-4-morpholin-4-ylpyrimidin-5-yl}propanamid-hydrochlorid **41b**</u>

Aus 1.0 g *N*-(4-Fluorbenzyl)-4-morpholin-4-yl-5-nitropyrimidin-2-amin **32b** und 0.305 g Propionylchlorid nach **AAV 2**

Ausbeute: 58%, farbloses Pulver

Schmp.: 209 °C (Zers.), (Methanol/Diethylether)

IR: 3165 cm^{-1} (N-H), 1687 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.04 (t, 3H, J = 7.5 Hz, CH₂CH₃), 2.28 (q, J = 7.5 Hz, 2H, CH₂CH₃), 3.52-3.91 (2m, 8H, c-Alkyliden-CH₂), 4.52 (d, J = 5.1 Hz, 2H, benzyl.), 7.11-7.49 (m, 4H, aromat.), 7.76 (s, 1H, Pyrimidin-H), 8.76 (s, 1H, NH), 9.71 (s, 1H, NH), 12.79 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 9.2 (CH₂CH₃), 28.3 (CH₂CH₃), 43.5 (benzyl.), 46.6, 66.0 (c-Alkyliden-CH₂), 108.4 (quart., aromat.), 115.1 (d, ²J_{C-F} = 21.3 Hz, tert., aromat.), 129.4 (d, ³J_{C-F} = 8.1 Hz, tert., aromat.), 134.5 (quart., aromat.), 143.2 (Pyrimidin-C6), 150.9, 158.7 (quart., aromat.), 161.3 (d, ¹J_{C-F} = 242.8 Hz, quart., aromat.), 173.5 (C=O)

C₁₈H₂₃ClFN₅O₂ [395.86]

Ber.[%]:	C 54.61	N 17.69	H 5.86
Gef.[%]:	C 54.08	N 17.57	H 6.08

<u>*N*-{4-Anilino-2-[(4-fluorbenzyl)amino]pyrimidin-5-yl}propanamidhydrochlorid **41c**</u>

Aus 1.02 g N^2 -(4-Fluorbenzyl)-5-nitro- N^4 -phenylpyrimidin-2,4-diamin **32c** und 0.305 g Propionylchlorid nach **AAV 2**

Ausbeute: 71%, farbloses Pulver

Schmp.: 243 °C (Zers.), (Methanol/Diethylether)

IR: 3283 cm^{-1} , 3208 cm^{-1} (N-H), 1685 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.08 (t, J = 7.5 Hz, 3H, CH₂CH₃), 2.45 (q, J = 7.5 Hz, 2H, CH₂CH₃), 4.45 (s, 2H, benzyl.), 7.07-7.62 (m, 9H, aromat.), 8.10 (s, 1H, Pyrimidin-*H*), 8.73 (s, 1H, N*H*), 9.77 (s, 1H, N*H*), 10.22 (s, 1H, N*H*), 12.63 (s, 1H, N*H*)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 9.2 (CH₂CH₃), 28.7 (CH₂CH₃), 43.5 (benzyl.), 109.9 (quart., aromat.), 115.0 (d, ${}^{2}J_{C-F} = 21.2$ Hz, tert., aromat.), 123.4, 125.4, 128.4 (tert., aromat.), 129.1 (d, ${}^{3}J_{C-F} = 8.1$ Hz, tert., aromat.), 134.1, 136.9 (quart., aromat.), 137.4 (Pyrimidin-C6), 151.3, 156.8 (quart., aromat.), 161.2 (d, ${}^{1}J_{C-F} = 243.0$ Hz, quart., aromat.), 173.4 (C=O)

C₂₀H₂₁ClFN₅O [401.87]

Ber.[%]:	C 59.78	N 17.43	Н 5.27
Gef.[%]:	C 59.81	N 17.39	Н 5.46

<u>*N*-{2-[(4-Fluorbenzyl)amino]-4-[(2-phenylethyl)amino]pyrimidin-5-</u> yl}propanamid-hydrochlorid **41d**

Aus 1.1 g N^2 -(4-Fluorbenzyl)-5-nitro- N^4 -(2-phenylethyl)pyrimidin-2,4diamin **32d** und 0.305 g Propionylchlorid nach **AAV 2**

Ausbeute: 69%, hellgraues Pulver

Schmp.: 219 °C (Zers.), (Methanol/Diethylether)

IR: $3199, 3161 \text{ cm}^{-1}$ (N-H), 1678 cm⁻¹ (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.06 (t, J = 7.5 Hz, 3H, CH₂CH₃), 2.41 (q, J = 7.5 Hz, 2H, CH₂CH₃), 2.79 (t, J = 7.3 Hz, 2H, HNCH₂CH₂Ph), 3.50-3.64 (m, 2H, HNCH₂CH₂Ph), 4.56 (d, J = 5.9 Hz, 2H, benzyl.), 7.10-7.42 (m, 9H, aromat.), 7.96 (s, 1H, aromat.), 8.71 (s, 1H, NH), 9.03 (t, J = 5.6 Hz, 1H, NH), 9.65 (s, 1H, NH), 12.43 (s, 1H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 9.2 (CH₂CH₃), 28.6 (CH₂CH₃), 34.2 (HNCH₂CH₂Ph), 42.2 (HNCH₂CH₂Ph), 43.3 (benzyl.), 109.4 (quart., aromat.), 115.1 (d, ² J_{C-F} = 22.0 Hz, tert., aromat.), 126.2, 128.3, 128.5 (tert., aromat.), 129.0 (d, ³ J_{C-F} = 7.3 Hz, tert., aromat.), 134.5 (quart., aromat.), 135.5 (tert., Pyrimidin-C6), 138.7 (quart., aromat.), 151.5 (quart., aromat.), 158.2 (quart., aromat.), 161.2 (d, ¹ J_{C-F} = 241.9 Hz, quart., aromat.), 173.3 (C=O)

C₂₂H₂₅ClFN₅O [429.93]

Ber.[%]:	C 61.46	N 16.29	Н 5.86
Gef.[%]:	C 61.33	N 16.23	Н 5.88

Aus 0.916 g *N*-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin **39** und Methanol nach **AAV 7**

Ausbeute: 76%, hellgrüne Kristalle

Schmp.: 183 °C (Methanol)

IR: 3230 cm^{-1} (N-H), 1594 cm⁻¹ (C=C), 1545 cm⁻¹ (N=O)

- ¹H-NMR^{*}: (400 MHz, DMSO-*d*₆), δ(ppm): 3.98 (s, 1.8 H, OC*H*₃), 4.00 (s, 1.2 H, OC*H*₃), 4.55 (d, *J* = 6.3 Hz, 1.2H, benzyl.), 4.60 (d, *J* = 6.3 Hz, 0.8H, benzyl.), 7.11-7.45 (m, 4H, aromat.), 8.92 (s, 0.60H, Pyrimidin-*H*), 8.96 (s, 0.40H, Pyrimidin-*H*), 9.03 (t, *J* = 6.3 Hz, 0.40H, N*H*), 9.20 (t, *J* = 6.2 Hz, 0.60H, N*H*)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 43.6, 44.1 (benzyl.), 54.4, 54.5 (OCH₃), 115.0, 115.1 (d, ${}^2J_{C-F} = 21.1$ Hz, tert., aromat.), 122.8, 123.7 (quart., aromat.), 129.2, 129.5 (d, ${}^3J_{C-F} = 8.3$ Hz, tert., aromat.), 134.9 (d, ${}^4J_{C-F} = 2.8$ Hz, quart., aromat.), 158.17, 158.22 (Pyrimidin-C6), 161.2 (d, ${}^1J_{C-F} = 242.9$ Hz, quart., aromat.), 161.3 (d, ${}^1J_{C-F} = 241.9$ Hz, quart., aromat.), 161.9, 162.1, 162.4, 162.8 (quart., aromat.)

 $C_{12}H_{11}FN_4O_3$ [278.24]

HRFAB-MS: [M+H]⁺ ber. 279.0893 [M+H]⁺ gef. 279.0888

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

Aus 0.916 g *N*-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin **39** und Ethanol nach **AAV 7**

Ausbeute: 77%, hellgrüne Kristalle

Schmp.: 194 °C (Ethanol)

IR: 3226 cm^{-1} (N-H), 1591 cm⁻¹ (C=C), 1541 cm⁻¹ (N=O)

- ¹H-NMR^{*}: (400 MHz, DMSO-*d*₆), δ(ppm): 1.28 (t, *J* = 7.0 Hz, 2H, OCH₂CH₃), 1.36 (t, *J* = 7.0 Hz, 1H, OCH₂CH₃), 4.42-4.61 (m, 4H, benzyl. und OCH₂CH₃), 7.11-7.42 (m, 4H, aromat.), 8.89-9.20 (m, 2H, Pyrimidin-*H* und N*H*)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 13.9, 14.0 (OCH₂CH₃), 43.6, 44.1 (benzyl.), 63.2, 63.3 (OCH₂CH₃), 114.99 (d, ² J_{C-F} = 21.6 Hz, tert., aromat.), 115.02 (d, ² J_{C-F} = 20.8 Hz, tert., aromat.), 122.8, 123.7 (quart., aromat.), 129.2, 129.3 (d, ³ J_{C-F} = 8.5 Hz, tert., aromat.), 135.0 (d, ⁴ J_{C-F} = 3.1 Hz, quart., aromat.), 158.2 (Pyrimidin-C6), 161.2 (d, ¹ J_{C-F} = 242.0 Hz, quart., aromat.), 161.9, 162.1, 162.3 (quart., aromat.)

C₁₃H₁₃FN₄O₃ [292.27]

HRFAB-MS: [M+H]⁺ ber. 293.1050 [M+H]⁺ gef. 293.1055

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

Aus 0.556 g *N*-(4-Fluorbenzyl)-4-methoxy-5-nitropyrimidin-2-amin **44a** nach **AAV 8**

- Ausbeute: 63%, farbloses Pulver
- Schmp.: 95 °C (Dichlormethan/Hexan)

IR: 3310 cm^{-1} , 3233 cm^{-1} (N-H), 1701 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.07-1.29 (m, 3H, OCH₂CH₃), 3.80 (s, 3H, OCH₃), 3.92-4.13 (m, 2H, OCH₂CH₃), 4.43 (d, J = 6.0 Hz, 2H, benzyl.), 7.05-7.43 (m, 4H, aromat.), 7.67 (s, 1H, NH), 7.91 (s, 1H, Pyrimidin-H), 8.38 (s, 1H, NH)
- ¹³C-NMR^{*}: (101 MHz, DMSO- d_6), δ (ppm): 14.5 (OCH₂CH₃), 43.6 (benzyl.), 53.0 (OCH₃), 60.1 (OCH₂CH₃), 114.7 (d, ² J_{C-F} = 21.1 Hz, tert., aromat.), 128.8 (quart., aromat.), 129.0 (d, ³ J_{C-F} = 7.3 Hz, tert., aromat.), 136.6 (quart., aromat.), 155.1 (C=O), 159.8 (quart., aromat.), 160.9 (d, ¹ J_{C-F} = 241.9 Hz, quart., aromat.), 164.2 (quart., aromat.)

C₁₅H₁₇FN₄O₃ [320.33]

Ber.[%]:	C 56.24	N 17.49	Н 5.35
Gef.[%]:	C 56.22	N 17.64	Н 5.54

^{*} Für das Pyrimidin-C6 konnte kein Signal detektiert werden.

Aus 0,585 g 4-Ethoxy-*N*-(4-fluorbenzyl)-5-nitropyrimidin-2-amin **44b** nach **AAV 8**

- Ausbeute: 56%, farbloses Pulver
- Schmp.: 102 °C (Dichlormethan/Hexan)

IR: 3305 cm^{-1} , 3234 cm^{-1} (N-H), 1697 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.03-1.33 (m, 6H, OCH₂CH₃), 4.03 (q, J = 6.6 Hz 2H, OCH₂CH₃), 4.27 (q, J = 6.1 Hz 2H, OCH₂CH₃), 4.42 (d, J = 6.1 Hz, 2H, benzyl.), 7.06-7.38 (m, 4H, aromat.), 7.62 (s, 1H, NH), 7.93 (s, 1H, Pyrimidin-H), 8.33 (s, 1H, NH)
- ¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ (ppm): 14.2, 14.5 (OCH₂CH₃), 43.6 (benzyl.), 60.1, 61.4 (OCH₂CH₃), 109.5 (quart., aromat.), 114.7 (d, ²*J*_{C-F} = 21.6 Hz, tert., aromat.), 128.9 (d, ³*J*_{C-F} = 7.7 Hz, tert., aromat.), 136.7 (quart., aromat.), 155.0 (C=O), 159.7 (quart., aromat.), 161.0 (d, ¹*J*_{C-F} = 242.0 Hz, quart., aromat.), 163.6 (quart., aromat.)

C₁₆H₁₉FN₄O₃ [334.35]

HRFAB-MS: $[M+H]^+$ ber. 335.1519 $[M+H]^+$ gef. 335.1512

^{*} Für das Pyrimidin-C6 konnte kein Signal detektiert werden.

Eine Suspension von 5 g 2-Chlor-5-nitropyrimidin-4-amin **24** in 150 mL einer 1M Natriumhydrogensulfid-Lösung wird für zwei Stunden unter Rückfluss erhitzt. Im Anschluss wird der Reaktionsansatz heiß filtriert und nach dem Abkühlen auf Raumtemperatur durch vorsichtige Zugabe von Eisessig auf pH 5-6 eingestellt. Der entstandene Niederschlag wird abfiltriert, in heißem Methanol digeriert und getrocknet.

Ausbeute:	60%, gelbes Pulver
Schmp.:	248 °C (Zers.), (Methanol), Lit. ^[136] : 250 °C
IR:	3330 cm^{-1} , 32901 cm^{-1} (N-H)
$C_4H_6N_4S$	[142.18]
EI-MS:	ber. 142
	gef. 142
2-(Benzylsulfanyl)pyrimidin-4,5-diamin 52

0,5 g 5,6-Diaminopyrimidin-2(1*H*)-thion **53** werden in 5 mL 2M NaOH suspendiert und tropfenweise über einen Zeitraum von einer Stunde 0.57 mL Benzylchlorid zugesetzt. Nach drei weiteren Stunden wird der gebildete Niederschlag abfiltriert und aus Wasser umkristallisiert.

Ausbeute:	40%, farbloses Pulver
Schmp.:	151 °C (Wasser), Lit. ^[134] : 151-153 °C
IR:	3352 cm ⁻¹ , 3290 cm ⁻¹ , 3153 cm ⁻¹ (N-H)
$C_{11}H_{12}N_4S$	[232.30]
EI-MS:	ber. 232
	gef. 232

Aus 0.232 g 2-(Benzylthio)pyrimidin-4,5-diamin **52** und 0.13 g Chlorameisensäureethylester nach **AAV 9**

- Ausbeute: 54 %, farbloses Pulver
- Schmp.: 154 °C (Dichlormethan/Hexan)

IR: 3422 cm^{-1} , 3144 cm^{-1} (N-H), 1702 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.22 (t, J = 6.9 Hz, 3H, OCH₂CH₃), 4.09 (q, J = 7.2 Hz, 2H, OCH₂CH₃), 4.30 (s, 2H, benzyl.), 6.91 (s, 2H, NH₂), 7.13-7.49 (m, 5H, aromat.), 8.04 (s, 1H, Pyrimidin-H), 8.59 (s, 1H, NH)
- ¹³C-NMR*: (101 MHz, DMSO-*d₆*), δ(ppm): 14.4 (OCH₂*C*H₃), 34.0 (benzyl.), 60.5 (OCH₂CH₃), 113.5 (quart., aromat.), 126.8, 128.2, 128.8 (tert., aromat.), 138.5 (quart., aromat.), 149.9 (Pyrimidin-*C*6, HSQC) 154.4 (C=O), 165.2 (quart., aromat., HMBC)

C₁₄H₁₆N₄O₂S [304.37]

Ber.[%]:	C 55.25	N 18.41	Н 5.30	S 10.53
Gef.[%]:	C 55.14	N 18.21	Н 5.44	S 10.70

^{*} Ein quartäres Kohlenstoffatom konnte nicht detektiert werden.

Aus 0.232 g 2-(Benzylthio)pyrimidin-4,5-diamin **52** und 0.147 g Chlorameisensäurepropylester nach **AAV 9**

- 52%, farbloses Pulver Ausbeute: Schmp.: 148 °C (Dichlormethan/Hexan) 3421 cm⁻¹, 3141 cm⁻¹ (N-H), 1703 cm⁻¹ (C=O) IR: ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 0.92 (t, J = 6.8 Hz, 3H, $OCH_2CH_2CH_3$, 1.55-1.69 (m, 2H, $OCH_2CH_2CH_3$), 4.00 (t, J =6.7 Hz, 2H, OCH₂CH₂CH₃), 4.30 (s, 2H, benzyl.), 6.92 (s, 2H, NH₂), 7.19-7.44 (m, 5H, aromat.), 8.04 (s, 1H, Pyrimidin-H), 8.60 (s, 1H, NH) (101 MHz, DMSO-d₆), δ(ppm): 10.2 (OCH₂CH₂CH₃), 21.8 ¹³C-NMR^{*}: (OCH₂CH₂CH₃), 34.0 (benzyl.), 66.0 (OCH₂CH₂CH₃), 113.5 (quart., aromat.), 126.7, 128.2, 128.8 (tert., aromat.), 138.5 (quart., aromat.), 150.2 (Pyrimidin-C6, HSQC), 154.5 (C=O),
 - 165.2 (quart., aromat., HMBC)

 $C_{15}H_{18}N_4O_2S$ [318.40]

Ber.[%]:	C 56.59	N 17.60	Н 5.70	S 10.07
Gef.[%]:	C 56.55	N 17.47	Н 5.85	S 9.94

^{*} Ein quartäres Kohlenstoffatom konnte nicht detektiert werden.

Aus 0.232 g 2-(Benzylthio)pyrimidin-4,5-diamin **52** und 0.164 g Chlorameisensäurebutylester nach **AAV 9**

- Ausbeute: 67%, farbloses Pulver Schmp.: 147 °C (Dichlormethan/Hexan) IR: 3417 cm⁻¹, 3140 cm⁻¹ (N-H), 1703 cm⁻¹ (C=O) ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 0.91 (t, J = 7.2 Hz, 3H, OCH₂CH₂CH₂CH₂CH₃), 1.29-1.45 (m, 2H, OCH₂CH₂CH₂CH₃), 1.50-1.67 (m, 2H, OCH₂CH₂CH₂CH₂CH₂), 4.04 (t, J = 6.4 Hz, 2H, OCH₂CH₂CH₂CH₂CH₃), 4.30 (s, 2H, benzyl.), 6.91 (s, 2H, NH₂), 7.19-7.44 (m, 5H, aromat.), 8.04 (s, 1H, Pyrimidin-H), 8.59 (s, 1H, NH)
- ¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ(ppm): 13.5 (OCH₂CH₂CH₂CH₃),
 18.5 (OCH₂CH₂CH₂CH₃), 30.5 (OCH₂CH₂CH₂CH₃), 34.0 (benzyl.), 64.3 (OCH₂CH₂CH₂CH₃), 113.5 (quart., aromat.),
 126.8, 128.2, 128.8 (tert., aromat.), 138.5 (quart., aromat.),
 150.0 (Pyrimidin-*C*6), 154.5 (C=O), 164.8 (quart., aromat.)

 $C_{16}H_{20}N_4O_2S$ [332.43]

Ber.[%]:	C 57.81	N 16.85	H 6.06	S 9.65
Gef.[%]:	C 57.88	N 16.74	H 6.11	S 9.54

^{*} Ein quartäres Kohlenstoffatom konnte nicht detektiert werden.

Aus 0.232 g 2-(Benzylthio)pyrimidin-4,5-diamin **52** und 0.164 g Chlorameisensäureisobutylester nach **AAV 9**

- Ausbeute: 59%, farbloses Pulver
- Schmp.: 130 °C (Dichlormethan/Hexan)

IR: 3430 cm^{-1} , 3168 cm^{-1} (N-H), 1697 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 0.91 (d, J = 4.5 Hz, 6H, OCH₂CH(CH₃)₂), 1.80-2.00 (m, 1H, OCH₂CH(CH₃)₂), 3.83 (d, J = 6.5 Hz, 2H, OCH₂CH(CH₃)₂), 4.30 (s, 2H, benzyl.), 6.92 (s, 2H, NH₂), 7.17-7.46 (m, 5H, aromat.), 8.04 (s, 1H, Pyrimidin-H), 8.60 (s, 1H, NH)
- ¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ(ppm): 18.9 (OCH₂CH(*C*H₃)₂), 27.5 (OCH₂CH(CH₃)₂), 34.1 (benzyl.), 70.5 (OCH₂CH(CH₃)₂), 113.6 (quart., aromat.), 126.8, 128.3, 128.9 (tert., aromat.), 138.6 (quart., aromat.), 154.6 (C=O)

C₁₆H₂₀N₄O₂S [332.43]

Ber.[%]:	C 57.81	N 16.85	H 6.06	S 9.65
Gef.[%]:	C 57.72	N 16.71	Н 6.15	S 9.53

^{*} Drei Pyrimidin-Kohlenstoffatome wurden nicht detektiert.

0.675 (2 mmol) g N-[2-(Benzylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5vl]benzamid 57a werden in 10 mL 15% iger Natriumhydroxid-Lösung suspendiert. Das Gemisch wird für 3 Stunden rückfließend erhitzt und anschließend auf Raumtemperatur abgekühlt. Danach wird vorsichtig mit Eisessig auf pH 5 angesäuert, der Niederschlag abgesaugt und getrocknet. Im Anschluss wird der getrocknete Feststoff quantitativ in einen 50 mL Rundkolben überführt, in 5 mL trockenem THF gelöst und mit 0.24 g (2.4 mmol) Triethylamin versetzt. Man lässt diesen Reaktionsansatz auf 0 °C abkühlen. 0.239 g (2.2 mmol) Chlorameisensäureethylester werden in 2 mL trockenem THF gelöst und tropfenweise zum eisgekühlten Reaktionsansatz zugegeben. Man rührt für eine Stunde unter Erwärmen auf Raumtemperatur. Im Anschluss wird der entstandene Niederschlag abfiltriert und das Filtrat unter vermindertem Druck eingeengt. Der Rückstand wird säulenchromatographisch an Kieselgel mit Ethylacetat/n-Hexan (1:5) als Elutionsmittel gereinigt.

Ausbeute: 38%, farbloses Pulver Schmp.: 219 °C (Zers.), (Ethylacetat/Hexan) IR: 3268 cm⁻¹ (N-H), 1719 cm⁻¹, 1655 cm⁻¹ (C=O) ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 1.21 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 4.10 (q, J = 7.0 Hz, 2H, OCH₂CH₃), 4.39 (s, 2H, benzyl.), 7.14-7.50 (m, 5H, aromat.), 8.20 (s, 1H, Pyrimidin-H), 8.33 (s, 1H, NH), 13.05 (s, 1H, NH) ¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ(ppm): 14.3 (OCH₂CH₃), 33.7 (benzyl.), 60.7 (OCH₂CH₃), 127.2, 128.4, 128.9 (tert., aromat.), 137.0 (quart., aromat.), 153.6 (C=O)

C₁₄H₁₅N₃O₃S [305.36]

Ber.[%]:	C 55.07	N 13.76	H 4.95	S 10.50
Gef.[%]:	C 54.93	N 13.65	Н 5.02	S 10.06

^{*} Für die Pyrimidin-Kohlenstoffatome konnten keine Signale detektiert werden.

Aus 0.217 g 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4*H*)-on **60** und 0.203g 2-Benzylisothioharnstoff-hydrochlorid nach **AAV 10**

Ausbeute:	67%, farblose l	Nadeln		
Schmp.:	254 °C (Zers.),	(Methanol), Li	it. ^[138] : 251-25	3 °C
IR:	3368 cm ⁻¹ (N-H	H), 1671 cm ⁻¹ , 1	$638 \text{ cm}^{-1}(\text{C}=$	O)
¹ H-NMR:	(400 MHz, DM 7.99 (m, 10H, a N <i>H</i>), 13.25 (s,	MSO- <i>d</i> ₆), δ(pp aromat.), 8.55 (1H, N <i>H</i>)	m): 4.44 (s, 2 s, 1H, Pyrimi	2H, benzyl.), 7.24- din- <i>H</i>), 9.32 (s, 1H,
¹³ C-NMR [*] :	(101 MHz, DM 128.4, 128.5, 1 aromat.), 165.1	ASO- <i>d</i> ₆), δ(ppr 29.0, 131.9 (ter (C=O)	n): 32.7 (ben rt., aromat.), 1	zyl.), 127.3, 127.4, 33.4, 137.0 (quart.,
$C_{18}H_{15}N_3O_2S$	[337.40]			
Ber.[%]:	C 64.08	N 12.45	H 4.48	S 9.50

N 12.37 H 4.56

S 9.67

Gef.[%]: C 63.97

^{*} Aufgrund der Unlöslichkeit in CDCl₃ und der geringen Löslichkeit in DMSO-*d*₆ konnten die Signale der Pyrimidin-Kohlenstoffatome nicht detektiert werden.

<u>*N*-{2-[(4-Fluorbenzyl)sulfanyl]-6-oxo-1,6-dihydropyrimidin-5-yl}-</u> benzamid **57b**

Aus 0.217 g 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4H)-on **60** und 0.265 g *S*-(4-Fluorbenzyl)isothioharnstoff-hydrobromid nach **AAV 10**

Ausbeute: 70%, farbloses Pulver

Schmp.: 264 °C (Zers.), (Methanol)

IR: 3369 cm^{-1} (N-H), 1674 cm⁻¹, 1643 cm⁻¹ (C=O)

- ¹H-NMR: (400 MHz, DMSO-*d*₆), δ(ppm): 4.43 (s, 2H, benzyl.), 7.11-7.99 (m, 9H, aromat.), 8.57 (s, 1H, Pyrimidin-*H*), 9.30 (s, 1H, N*H*), 13.19 (s, 1H, N*H*)
- ¹³C-NMR^{*}: (101 MHz, DMSO- d_6), δ (ppm): 32.9 (benzyl.), 115.2 (d, ${}^{2}J_{C-F}$ = 20.8 Hz, tert., aromat.), 127.4, 128.5 (tert., aromat.), 131.0 (d, ${}^{3}J_{C-F}$ = 8.5 Hz, tert., aromat.), 131.9 (tert., aromat.), 133.4 (d, ${}^{4}J_{C-F}$ = 3.1 Hz, quart., aromat.), 133.5 (quart., aromat.), 161.3 (d, ${}^{1}J_{C-F}$ = 243.5 Hz, quart., aromat.), 165.1 (C=O)

 $C_{18}H_{14}FN_3O_2S$ [355.39]

Ber.[%]:	C 60.83	N 11.82	Н 3.97	S 9.02
Gef.[%]:	C 60.77	N 11.76	H 4.22	S 9.12

^{*} Aufgrund der Unlöslichkeit in CDCl₃ und der geringen Löslichkeit in DMSO- d_6 konnten drei Signale nicht detektiert werden.

<u>*N*-{2-[(2-Chlorbenzyl)sulfanyl]-6-oxo-1,6-dihydropyrimidin-5-yl}-</u> benzamid **57**c

Aus 0.217 g 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4*H*)-on **60** und 0.237 g *S*-(2-Chlorbenzyl)isothioharnstoff-hydrochlorid nach **AAV 10**

Ausbeute: 64%, farbloses Pulver

Schmp.: 244 °C (Methanol)

IR: 3368 cm^{-1} (N-H), 1670 cm⁻¹, 1639 cm⁻¹ (C=O)

- ¹H-NMR: (400 MHz, DMSO-*d*₆), δ(ppm): 4.53 (s, 2H, benzyl.), 7.27-8.00 (m, 9H, aromat.), 8.58 (s, 1H, Pyrimidin-*H*), 9.30 (s, 1H, N*H*), 13.27 (s, 1H, N*H*)
- ¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ(ppm): 31.8 (benzyl.), 127.3, 127.4, 128.5, 129.38, 129.42, 131.4, 131.9 (tert., aromat.), 133.3, 133.5, 134.4 (quart., aromat.), 165.1 (C=O)

 $C_{18}H_{14}ClN_3O_2S$ [371.85]

Ber.[%]:	C 58.14	N 11.30	Н 3.79	S 8.62
Gef.[%]:	C 57.99	N 11.22	H 3.91	S 8.60

^{*} Aufgrund der Unlöslichkeit in CDCl₃ und der geringen Löslichkeit in DMSO- d_6 konnten die Signale der Pyrimidin-Kohlenstoffatome nicht detektiert werden.

<u>*N*-{2-[(3-Chlorbenzyl)sulfanyl]-6-oxo-1,6-dihydropyrimidin-5-yl}-</u> benzamid **57d**

Aus 0.217 g 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4H)-on **60** und 0.237 g *S*-(3-Chlorbenzyl)isothioharnstoff-hydrochlorid nach **AAV 10**

Ausbeute: 69%, farbloses Nadeln

Schmp.: 237 °C (Zers.), (Methanol)

IR: 3406 cm^{-1} (N-H), 1685 cm^{-1} , 1647 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO-*d*₆), δ(ppm): 4.44 (s, 2H, benzyl.), 7.31-7.96 (m, 9H, aromat.), 8.56 (s, 1H, Pyrimidin-*H*), 9.30 (s, 1H, N*H*), 13.24 (s, 1H, N*H*)
- ¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ(ppm): 32.9 (benzyl.), 127.2, 127.4, 127.7, 128.5, 128.7, 130.2, 131.9 (tert., aromat.), 132.8, 133.6, 139.9 (quart., aromat.), 165.1 (C=O)

C₁₈H₁₄ClN₃O₂S [371.85]

Ber.[%]:	C 58.14	N 11.30	Н 3.79	S 8.62
Gef.[%]:	C 57.98	N 11.21	Н 3.86	S 8.60

^{*} Aufgrund der Unlöslichkeit in $CDCl_3$ und der geringen Löslichkeit in $DMSO-d_6$ konnten die Signale der Pyrimidin-Kohlenstoffatome nicht detektiert werden.

<u>*N*-{2-[(4-Chlorbenzyl)sulfanyl]-6-oxo-1,6-dihydropyrimidin-5-yl}-</u> benzamid **57**e

Aus 0.217 g 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4H)-on **60** und 0.237 g *S*-(4-Chlorbenzyl)isothioharnstoff-hydrochlorid nach **AAV 10**

Ausbeute: 66%, farbloses Pulver

Schmp.: 265 °C (Zers.), (Methanol)

IR: 3367 cm^{-1} (N-H), 1676 cm^{-1} , 1645 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO-*d*₆), δ(ppm): 4.43 (s, 2H, benzyl.), 7.35-7.98 (m, 9H, aromat.), 8.56 (s, 1H, Pyrimidin-*H*), 9.30 (s, 1H, N*H*), 13.23 (s, 1H, N*H*)
- ¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ(ppm): 32.8 (benzyl.), 127.3, 128.3, 128.5, 130.8, (tert., aromat.), 131.86 (quart., aromat.), 131.9 (tert., aromat.), 133.5, 136.4, 154.8 (HMBC), 158.9 (HMBC) (quart., aromat.), 165.1 (C=O)

 $C_{18}H_{14}ClN_3O_2S$ [371.85]

Ber.[%]:	C 58.14	N 11.30	Н 3.79	S 8.62
Gef.[%]:	C 58.01	N 11.25	Н 3.78	S 8.88

^{*} Aufgrund der Unlöslichkeit in $CDCl_3$ und der geringen Löslichkeit in DMSO- d_6 konnten zwei Signale nicht detektiert werden.

<u>N-{2-[(4-Brombenzyl)sulfanyl]-6-oxo-1,6-dihydropyrimidin-5-yl}-</u> benzamid **57f**

Aus 0.217 g 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4H)-on **60** und 0.326 g *S*-(4-Brombenzyl)isothioharnstoff-hydrobromid nach **AAV 10**

Ausbeute: 65%, farbloses Pulver

Schmp.: 260 °C (Zers.), (Methanol)

IR: 3365 cm^{-1} (N-H), 1676 cm^{-1} , 1645 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO-*d*₆), δ(ppm): 4.41 (s, 2H, benzyl.), 7.35-7.99 (m, 9H, aromat.), 8.55 (s, 1H, Pyrimidin-*H*), 9.30 (s, 1H, N*H*), 13.25 (s, 1H, N*H*)
- ¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ(ppm): 32.9 (benzyl.), 120.4 (quart., aromat.), 127.3, 128.5, 131.1, 131.2, 131.9 (tert., aromat.), 133.5, 136.8 (quart., aromat.), 165.1 (C=O)

 $C_{18}H_{14}BrN_3O_2S$ [416.30]

Ber.[%]:	C 51.93	N 10.09	Н 3.39	S 7.70
Gef.[%]:	C 51.91	N 10.12	Н 3.44	S 7.81

^{*} Aufgrund der Unlöslichkeit in CDCl₃ und der geringen Löslichkeit in DMSO- d_6 konnten drei Signale nicht detektiert werden.

Aus 0.217 g 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4*H*)-on **60** und 0.148 g Phenylpropionamidin nach **AAV 10**

Ausbeute: 51 %, farbloses Pulver

Schmp.: 276 °C (Zers.), (Methanol)

IR: 3389 cm^{-1} (N-H), 1674 cm⁻¹, 1648 cm⁻¹ (C=O)

- ¹H-NMR: (400 MHz, DMSO-*d*₆), δ(ppm): 2.83-3.05 (m, 4H, *CH*₂*CH*₂Ph), 7.15-7.99 (m, 10H, aromat.), 8.59 (s, 1H, Pyrimidin-*H*), 9.28 (s, 1H, N*H*), 12.90 (s, 1H, N*H*)
- ¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ(ppm): 32.4 (CH₂CH₂Ph), 35.6 (CH₂CH₂Ph), 126.0, 127.3, 128.2, 128.3, 128.6, 131.9 (tert., aromat.), 133.5, 140.4 (quart., aromat.), 165.0 (C=O)

 $C_{19}H_{17}FN_3O_2$ [319.37]

Ber.[%]:	C 71.40	N 13.16	Н 5.37
Gef.[%]:	C 71.52	N 13.23	Н 5.45

^{*} Aufgrund der Unlöslichkeit in CDCl₃ und der geringen Löslichkeit in DMSO- d_6 konnten die Signale der Pyrimidin-Kohlenstoffatome nicht detektiert werden.

7.5 Analytische Daten zu Kapitel 4

4-Amino-2-(methylsulfanyl)pyrimidin-5-carbonitril 85

Eine Lösung von 4 g Natriumhydroxid in 10 mL Wasser wird zu einer Suspension von 13.9 g (100 mmol) *S*-Methylisothioharnstoff-hemisulfat in 75 mL Aceton zugesetzt. Im Anschluss werden 12.2 g (100 mmol) Ethoxymethylenmalononitril, gelöst in 50 mL Aceton, hinzugefügt. Dann wird der Reaktionsansatz für 2 Stunden bei Raumtemperatur gerührt. Anschließend werden 100 mL Wasser zugegeben und das Reaktionsgemisch für 12 Stunden bei Raumtemperatur gelagert. Der entstandene Niederschlag wird abfiltriert, mit Wasser gewaschen und aus Ethanol-Wasser (70:30) umkristallisiert.

Ausbeute:	68%, hellgelbe Nadeln
Schmp.:	239 °C (Methanol), Lit. ^[165] : 240-241 °C
IR:	3358 cm ⁻¹ , 3174 cm ⁻¹ , 3117 cm ⁻¹ (N-H), 2222 cm ⁻¹ (CN)
$C_6H_6N_4S$	[166.21]
EI-MS:	ber. 166
	gef. 166

4-Amino-2-(benzylamino)pyrimidin-5-carbonitril 84a

Aus 2.49 g 4-Amino-2-(methylsulfanyl)pyrimidin-5-carbonitril **85** und 16.1 g Benzylamin nach **AAV 11**

- Ausbeute: 60%, farbloses Pulver
- Schmp.: 180 °C (Ethanol)

IR: 3455 cm^{-1} , 3338 cm^{-1} (N-H), 2216 cm^{-1} (CN)

- ¹H-NMR^{*}: (400 MHz, DMSO- d_6), δ (ppm): 4.42-4.55 (m, 2H, benzyl.), 7.05-7.35 (m, 5H, aromat. und 2H, N H_2 , überlagert), 7.86 (s, 0.4H, NH), 8.04 (t, J = 5.6 Hz, 0.6H, NH), 8.18 (s, 0.6H, Pyrimidin-H), 8.23 (s, 0.4H, Pyrimidin-H)
- ¹³C-NMR: (101 MHz, DMSO-*d₆*), δ(ppm): 43.6, 43.7 (benzyl.), 77.9, 79.5 (quart., aromat.), 117.2, 117.3 (*CN*), 126.6, 126.8, 127.2, 128.1 (tert., aromat.), 139.6, 140.0 (quart., aromat.), 161.9, 162.1 (Pyrimidin-*C*6), 162.2, 162.7, 163.2 (quart., aromat)
- $C_{12}H_{11}N_5$ [225.25]
- HRFAB-MS: [M+H]⁺ ber. 226.1092 [M+H]⁺ gef. 226.1089

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

Aus 2.49 g 4-Amino-2-(methylsulfanyl)pyrimidin-5-carbonitril **85** und 18.7 g 4-Fluorbenzylamin nach **AAV 11**

Ausbeute: 65%, hellgraue Kristalle

Schmp.: 180 °C (Ethanol)

IR: 3460 cm^{-1} , 3337 cm^{-1} , 3233 cm^{-1} (N-H), 2219 cm^{-1} (CN)

¹H-NMR^{*}: (400 MHz, DMSO-*d*₆), δ(ppm): 4.40-4.53 (m, 2H, benzyl.), 7.05-7.41 (m, 4H, aromat. und 2H, N*H*₂, überlagert), 7.86 (t, *J* = 5.5 Hz, 0.4H, N*H*), 8.04 (t, *J* = 6.0 Hz, 0.6H, N*H*), 8.18 (s, 0.6H, Pyrimidin-*H*), 8.24 (s, 0.4H, Pyrimidin-*H*)

¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 42.9, 43.0 (benzyl.), 78.0, 79.6 (quart., aromat.), 114.8 (d, ${}^2J_{C-F} = 21.2$ Hz, tert., aromat.), 117.1, 117.3 (CN), 128.8 (d, ${}^3J_{C-F} = 7.3$ Hz, tert., aromat.), 129.2 (d, ${}^3J_{C-F} = 8.1$ Hz, tert., aromat.), 135.8, 136.2 (quart., aromat.), 161.0 (d, ${}^1J_{C-F} = 241.5$ Hz, quart., aromat.), 161.9 (Pyrimidin-C6), 162.1, 162.7, 163.2 (quart., aromat)

 $C_{12}H_{10}FN_5$ [243.25]

HRFAB-MS: [M+H]⁺ ber. 244.0998 [M+H]⁺ gef. 244.1007

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

Aus 2.25 g 4-Amino-2-(benzylamino)pyrimidin-5-carbonitril 84a nach AAV 12

Ausbeute: 84%, farbloses Pulver

Schmp.: 209 °C (Ethanol)

IR: 3474 cm^{-1} , 3252 cm^{-1} (N-H), $2300-3400 \text{ cm}^{-1}$ (O-H)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 4.50 (d, J = 5.1 Hz, 2H, benzyl.), 6.95-7.97 (m, 5H, aromat.; 1H, NH und 2H, NH₂, überlagert), 8.43 (s, 1H, Pyrimidin-H)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 43.7 (benzyl.), 95.1 (quart., aromat.), 126.6, 127.2, 128.2 (tert., aromat.), 140.0 (quart., aromat.), 161.0 (Pyrimidin-*C*6), 163.0, 163.5 (quart., aromat.), 168.1 (C=O)

 $C_{12}H_{12}N_4O_2$ [244.26]

HRFAB-MS: [M+H]⁺ ber. 245.1039 [M+H]⁺ gef. 245.1044

Aus 2.43 g 4-Amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-carbonitril **84b** nach **AAV 12**

- Ausbeute: 79%, farbloses Pulver
- Schmp.: 217 °C (Ethanol)
- IR: 3471 cm^{-1} , 3247 cm^{-1} (N-H), $2300-3400 \text{ cm}^{-1}$ (O-H), 1671 cm^{-1} (C=O)
- ¹H-NMR: (400 MHz, DMSO-*d*₆), δ(ppm): 4.50 (s, 2H, benzyl.), 7.04-8.08 (m, 4H, aromat.; 1H, N*H* und 2H, N*H*₂, überlagert), 8.43 (s, 1H, Pyrimidin-*H*)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 43.1 (benzyl.), 95.3 (quart., aromat.), 114.9 (d, ${}^2J_{C-F} = 21.4$ Hz, tert., aromat.), 129.3 (d, ${}^3J_{C-F} = 7.6$ Hz, tert., aromat.), 136.1 (quart., aromat.), 160.2 (Pyrimidin-C6), 161.1 (d, ${}^1J_{C-F} = 241.1$ Hz, quart., aromat.), 162.3, 163.5 (quart., aromat.), 168.0 (C=O)

C₁₂H₁₁FN₄O₂ [262.25]

HRFAB-MS: [M+H]⁺ ber. 263.0944 [M+H]⁺ gef. 263.0936

Aus 0.489 g 4-Amino-2-(benzylamino)pyrimidin-5-carbonsäure **83a** und 0.168 g Butylamin nach **AAV 13**

- Ausbeute: 43%, farbloses Pulver
- Schmp.: 181 °C (Ethylacetat/n-Hexan)
- IR: 3440 cm^{-1} , 3362 cm^{-1} , 3225 cm^{-1} (N-H), 1639 cm^{-1} (C=O)
- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 0.88 (t, J = 7.3 Hz, NHCH₂CH₂CH₂CH₂CH₃), 1.23-1.36 (m,2H, NHCH₂CH₂CH₂CH₂CH₃), 1.38-1.52 (m, 2H, NHCH₂CH₂CH₂CH₃), 3.16 (q, J = 6.6 Hz, 2H, NHCH₂CH₂CH₂CH₃), 4.47 (d, J = 6.1 Hz, 2H, benzyl.), 7.06-7.80 (m, 5H, aromat., 1H, NH und 2H, NH₂, überlagert), 8.03 (t, J = 5.3 Hz, 1H, NH), 8.35 (s, 1H, aromat.)
- ¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ(ppm): 13.6 (NHCH₂CH₂CH₂CH₃), 19.6 (NHCH₂CH₂CH₂CH₃), 31.2 (NHCH₂CH₂CH₂CH₃), 38.2 (NHCH₂CH₂CH₂CH₃), 43.6 (benzyl.) 126.3, 127.0, 128.0 (tert., aromat.), 156.9 (Pyrimidin-*C*6), 162.2, 163.0 (quart., aromat.), 166.6 (C=O)

C₁₆H₂₁N₅O [299.38]

Ber.[%]:	C 64.19	N 23.39	Н 7.07
Gef.[%]:	C 64.10	N 23.41	H 7.07

^{*} Zwei quartäre Kohlenstoffatome wurden nicht detektiert.

Aus 0.525 g 4-Amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-carbonsäure **83b** und 0.168 g Butylamin nach **AAV 13**

- Ausbeute: 40%, farbloses Pulver Schmp.: 164 °C (Ethylacetat/n-Hexan) IR: 3452 cm⁻¹, 3367 cm⁻¹, 3229 cm⁻¹ (N-H), 1641 cm⁻¹ (C=O) ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 0.88 (t, J = 7.4 Hz, NHCH₂CH₂CH₂CH₂CH₃), 1.23-1.36 (m,2H, NHCH₂CH₂CH₂CH₃), 1.39-1.53 (m, 2H, NHCH₂CH₂CH₂CH₃), 3.09-3.23 (m, 2H, NHCH₂CH₂CH₂CH₂CH₃), 4.44 (d, J = 5.9 Hz, 2H, benzyl.), 7.01-7.76 (m, 4H, aromat., 1H, NH und 2H, NH₂, überlagert), 8.03
- ¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ (ppm): 13.7 (NHCH₂CH₂CH₂CH₂CH₃), 19.6 (NHCH₂CH₂CH₂CH₃), 31.3 (NHCH₂CH₂CH₂CH₃), 38.3 (NHCH₂CH₂CH₂CH₂CH₃), 43.0 (benzyl.), 114.7 (d, ²*J*_{C-F} = 21.3 Hz, tert., aromat.), 128.9 (tert., aromat.), 156.9 (Pyrimidin-*C*6), 161.0 (d, ¹*J*_{C-F} = 242.1 Hz, quart., aromat.), 162.1 (quart., aromat.), 166.7 (C=O)

(t, *J* = 5.3 Hz, 1H, N*H*), 8.35 (s, 1H, aromat.)

 $C_{16}H_{20}FN_5O$ [317.37]

Ber.[%]:	C 60.55	N 22.07	Н 6.35
Gef.[%]:	C 60.40	N 21.93	Н 6.46

^{*} Drei quartäre Kohlenstoffatome wurden nicht detektiert.

Aus 0.489 g 4-Amino-2-(benzylamino)pyrimidin-5-carbonsäure **83a** und 0.246 g Benzylamin nach **AAV 13**

- Ausbeute: 39%, farbloses Pulver
- Schmp.: 210 °C (Methanol)

IR: 3454 cm^{-1} , 3363 cm^{-1} , 3222 cm^{-1} (N-H), 1638 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 4.40 (d, J = 6.0 Hz, 2H, benzyl.), 4.48 (d, J = 6.3 Hz, 2H, benzyl.), 7.05-8.12 (m, 10H, aromat., 1H, NH und 2H, NH₂, überlagert), 8.45 (s, 1H, Pyrimidin-H), 8.64 (t, J = 5.7 Hz, 1H, NH)
- ¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ(ppm): 41.9, 43.6 (benzyl.), 126.4, 126.5, 127.0, 128.0, 128.1 (tert., aromat.), 137.8, 139.9 (quart., aromat.), 157.2 (Pyrimidin-*C*6), 162.2, 163.1 (quart., aromat.), 166.7 (C=O)
- C₁₉H₁₉N₅O [333.40]

Ber.[%]:	C 68.45	N 21.01	Н 5.74
Gef.[%]:	C 68.32	N 21.10	Н 5.76

^{*} Ein quartäres Kohlenstoffatom wurde nicht detektiert.

Aus 0.489 g 4-Amino-2-(benzylamino)pyrimidin-5-carbonsäure **83a** und 0.288 g 4-Fluorbenzylamin nach **AAV 13**

- Ausbeute: 46%, farbloses Pulver
- Schmp.: 190 °C (Ethylacetat/n-Hexan)

IR: 3449 cm^{-1} , 3357 cm^{-1} , 3221 cm^{-1} (N-H), 1638 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 4.37 (d, J = 5.8 Hz, 2H, benzyl.), 4.48 (d, J = 6.0 Hz, 2H, benzyl.), 7.09-8.05 (m, 9H, aromat., 1H, NH und 2H, NH₂, überlagert), 8.44 (s, 1H, Pyrimidin-H), 8.65 (t, J = 5.7 Hz, 1H, NH)
- ¹³C-NMR^{*}: (101 MHz, DMSO- d_6), δ (ppm): 41.2, 43.6 (benzyl.), 114.8 (d, ² $J_{C-F} = 21.1$ Hz, tert., aromat.), 126.4, 127.0, 128.0 (tert., aromat.), 129.0 (d, ³ $J_{C-F} = 8.3$ Hz, tert., aromat.), 136.0 (quart., aromat.), 157.2 (Pyrimidin-C6), 161.0 (d, ¹ $J_{C-F} = 241.9$ Hz, quart., aromat.), 162.2 (quart., aromat.), 166.7 (C=O)

C₁₉H₁₈FN₅O [351.39]

Ber.[%]:	C 64.95	N 19.93	Н 5.16
Gef.[%]:	C 64.91	N 20.11	Н 5.26

^{*} Drei quartäre Kohlenstoffatome wurden nicht detektiert.

Aus 0.489 g 4-Amino-2-(benzylamino)pyrimidin-5-carbonsäure **83a** und 0.283 g *O*-Benzylhydroxylamin nach **AAV 13**

Ausbeute: 35%, farbloses Pulver

Schmp.: 191 °C (Ethylacetat/n-Hexan)

IR: 3372 cm^{-1} , 3221 cm^{-1} (N-H), 1655 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 4.47 (d, J = 6.5 Hz, 2H, NHC H_2 Ph), 4.85 (s, 2H, OC H_2 Ph), 7.06-7.79 (m, 10H, aromat., 1H, NH und 2H, N H_2 , überlagert), 8.18 (s, 1H, Pyrimidin-H), 11.30 (s, 1H, NH)
- ¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ(ppm): 43.6 (NH*C*H₂Ph), 77.0 (O*C*H₂Ph), 126.4, 127.0, 128.0, 128.1, 128.2, 128.8 (tert., aromat.), 136.0 (quart., aromat.), 157.8 (Pyrimidin-*C*6), 162.2, 162.8 (quart., aromat.), 165.8 (C=O)

 $C_{19}H_{19}N_5O_2$ [349.40]

Ber.[%]:	C 65.32	N 20.04	Н 5.48
Gef.[%]:	C 65.42	N 19.87	Н 5.65

^{*} Zwei quartäre Kohlenstoffatome wurden nicht detektiert.

<u>4-Amino-2-(benzylamino)-*N*-[(2-fluorbenzyl)oxy]pyrimidin-5carboxamid **82f**</u>

Aus 0.489 g 4-Amino-2-(benzylamino)pyrimidin-5-carbonsäure **83a** und 0.324 g *O*-(2-Fluorbenzyl)hydroxylamin nach **AAV 13**

Ausbeute: 44%, farbloses Pulver

Schmp.: 162 °C (Ethylacetat/n-Hexan)

IR: 3369 cm^{-1} , 3221 cm^{-1} (N-H), 1664 cm^{-1} (C=O)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 4.47 (d, J = 6.4 Hz, 2H, NHC H_2 Ph), 4.92 (s, 2H, OC H_2 Ar), 7.05-7.80 (m, 9H, aromat., 1H, NH und 2H, N H_2 , überlagert), 8.16 (s, 1H, Pyrimidin-H), 11.30 (s, 1H, NH)
- ¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ (ppm): 43.5 (NH*C*H₂Ph), 70.3 (d, ³*J*_{C-F} = 1.8 Hz, OCH₂Ar), 115.2 (d, ²*J*_{C-F} = 21.1 Hz, tert., aromat.), 122.9 (d, ²*J*_{C-F} = 13.8 Hz, quart., aromat.), 124.3 (d, ⁴*J*_{C-F} = 3.7 Hz, tert., aromat.), 126.4, 127.0, 128.0 (tert., aromat.), 130.7 (d, ³*J*_{C-F} = 8.3 Hz, tert., aromat.), 132.0 (d, ³*J*_{C-F} = 3.7 Hz, tert., aromat.), 140.1 (quart., aromat.), 156.8 (Pyrimidin-*C*6), 160.7 (d, ¹*J*_{C-F} = 247.4 Hz, quart., aromat.), 162.2, 162.7 (quart., aromat.), 165.9 (C=O)

^{*} Zwei quartäre Kohlenstoffatome wurden nicht detektiert.

 $C_{19}H_{18}FN_5O_2$ [367.39]

Ber.[%]:	C 62.12	N 19.06	H 4.94
Gef.[%]:	C 61.93	N 19.82	Н 5.27

Aus 0.489 g 4-Amino-2-(benzylamino)pyrimidin-5-carbonsäure 83a und O-Ethylhydroxylamin^{*} nach **AAV 13**

Ausbeute:	35%, farbloses Pulver
Schmp.:	180 °C (Ethylacetat/n-Hexan)
IR:	3375 cm ⁻¹ , 3222 cm ⁻¹ (N-H), 1665 cm ⁻¹ (C=O)
¹ H-NMR:	(400 MHz, DMSO- d_6), δ (ppm): 1.17 (t, $J = 7.0$ Hz, 3H, OCH ₂ CH ₃), 3.86 (q, $J = 6.9$ Hz, 2H, OCH ₂ CH ₃), 4.48 (d, $J = 5.8$ Hz, 2H, benzyl.), 7.04-7.79 (m, 5H, aromat.; 1H, NH und 2H, NH ₂ , überlagert), 8.22 (s, 1H, Pyrimidin-H), 11.16 (s, 1H, NH)
¹³ C-NMR [†] :	(101 MHz, DMSO- <i>d</i> ₆), δ(ppm): 13.4 (OCH ₂ CH ₃), 43.6 (benzyl.), 70.6 (OCH ₂ CH ₃), 126.4, 127.0, 128.0 (tert., aromat.), 140.2 (quart., aromat.), 156.6 (Pyrimidin-C6), 162.2, 162.7 (quart., aromat.), 165.6 (C=O)
$C_{14}H_{17}N_5O_2$	[287.32]

Ber.[%]:	C 58.52	N 24.37	Н 5.96
Gef.[%]:	C 58.43	N 23.91	Н 6.11

O-Ethylhydroxylamin wurde in situ aus 0.244 g O-Ethylhydroxylamin-hydrochlorid und einer äquimolaren Menge Diisopropylethylamin generiert. [†] Ein quartäres Kohlenstoffatom wurde nicht detektiert.

Aus 0.525 g 4-Amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-carbonsäure 83b und O-Ethylhydroxylamin^{*} nach AAV 13

Ausbeute:	45%, farbloses Pulver
Schmp.:	168 °C (Ethylacetat/n-Hexan)
IR:	3492 cm ⁻¹ , 3353 cm ⁻¹ (N-H), 1655 cm ⁻¹ (C=O)
¹ H-NMR:	(400 MHz, DMSO- d_6), δ (ppm): 1.18 (t, $J = 7.0$ Hz, 3H, OCH ₂ CH ₃), 3.86 (q, $J = 6.8$ Hz, 2H, OCH ₂ CH ₃), 4.46 (s, 2H, benzyl.), 6.92-7.94 (m, 4H, aromat.; 1H, NH und 2H, NH ₂ , überlagert), 8.22 (s, 1H, Pyrimidin-H), 11.18 (s, 1H, NH)
¹³ C-NMR [†] :	(101 MHz, DMSO- d_6), δ (ppm): 13.4 (OCH ₂ CH ₃), 42.9 (beneral) 70.6 (OCH CH) 114.7 (d $^2 L$ = 21.2 Hz text

(benzyl.), 70.6 (OCH₂CH₃), 114.7 (d, ${}^{2}J_{C-F} = 21.2$ Hz, tert., aromat.), 129.0 (tert., aromat.), 136.3 (quart., aromat.), 156.6 (Pyrimidin-C6), 161.0 (d, ${}^{1}J_{C-F} = 241.5$ Hz, quart., aromat.), 162.1, 162.8 (quart., aromat.), 165.6 (C=O)

C₁₄H₁₆FN₅O₂ [305.31]

Ber.[%]:	C 55.08	N 22.94	Н 5.28
Gef.[%]:	C 55.04	N 22.60	Н 5.54

O-Ethylhydroxylamin wurde in situ aus 0.244 g O-Ethylhydroxylamin-hydrochlorid und einer äquimolaren Menge Diisopropylethylamin generiert. [†] Ein quartäres Kohlenstoffatom wurde nicht detektiert.

1.13 g (5 mmol) 4-Amino-2-(benzylamino)pyrimidin-5-carbonitril **84a** werden in 10 mL Hydroxylamin-Lösung (50% in Wasser) suspendiert. Im Anschluss wird tropfenweise THF hinzugefügt, bis eine klare Lösung entstanden ist und für 2 Tage bei Raumtemperatur gerührt. Dann wird der Reaktionsansatz unter vermindertem Druck auf etwa ein Drittel des ursprünglichen Volumens eingeengt, der gebildete Niederschlag abgesaugt und aus Methanol umkristallisiert.

Ausbeute:	76%, farblo	ses Pulver	
Schmp.:	213 °C (Me	thanol)	
IR:	$3452 \text{ cm}^{-1}, 3$	3366 cm ⁻¹ (N-H)	, 3247 cm ⁻¹ (О-Н)
¹ H-NMR:	(400 MHz, benzyl.), 6. O <i>H</i> und 2H	DMSO- d_6), $\delta(72 \text{ (s, 2H, N}H_2)$, NH_2 , überlager	(ppm): 4.46 (d, J = 6.3 Hz, 2H,), 6.56-8.07 (m, 5H, aromat.; 1H, t), 9.47 (s, 1H, Pyrimidin- <i>H</i>)
¹³ C-NMR:	(101 MHz, aromat.), 1 (quart., ar aromat.), 16	DMSO- <i>d</i> ₆), δ(p 26.2, 126.9, 12 omat.), 154.5 51.1 (C=N)	opm): 43.7 (benzyl.), 109.3 (quart., 28.0 (tert., aromat.), 140.8, 150.8 (Pyrimidin-C6), 160.7 (quart.,
$C_{12}H_{14}N_6O$	[258.28]		
Ber.[%]:	C 55.80	N 32.54	Н 5.46
Gef.[%]:	C 55.65	N 32.87	Н 5.78

Eine Suspension von 0.517 g (2 mmol) 4-Amino-2-(benzylamino)-*N*-hydroxypyrimidin-5-carboxamidin **93** in 5 mL Acetanhydrid wird für 30 Minuten bei Raumtemperatur gerührt. Der Niederschlag wird abfiltriert und getrocknet. Im Anschluss wird der Niederschlag in 10 mL Eisessig suspendiert und für drei Stunden rückfließend erhitzt. Der Reaktionsansatz wird unter vermindertem Druck eingeengt und der ölige Rückstand einer säulenchromatographischen Reinigung an Kieselgel mit Ethylacetat/n-Hexan (1:1) als Elutionsmittel unterzogen.

Ausbeute:	45%, farblos	es Pulver	
Schmp.:	182 °C (Ethy	lacetat/n-Hexa	n)
IR:	$3409 \text{ cm}^{-1}, 32$	$225 \text{ cm}^{-1} \text{ (N-H)}$, 1649 cm ⁻¹ (C=N)
¹ H-NMR:	(400 MHz, D 5.7 Hz, 2H, aromat. und 2	9MSO- <i>d</i> ₆), δ(pp benzyl.), 6.78 2H, N <i>H</i> ₂ , überla	om): 2.61 (s, 3H, CH_3), 4.54 (d, $J =$ (s, 1H, NH), 7.18-7.83 (m, 5H, agert), 8.55 (s, 1H, Pyrimidin-H)
¹³ C-NMR:	(101 MHz, 1 92.3 (quart., 140.2 (quart. 165.5, 175.5	DMSO- <i>d</i> ₆), δ(j aromat.), 126 , aromat.), 15 (quart., aromat	opm): 11.7 (<i>C</i> H ₃), 43.7 (benzyl.), 5.4, 127.1, 128.1 (tert., aromat.), 7.8 (Pyrimidin- <i>C</i> 6), 160.5, 162.5, .)
$C_{14}H_{14}N_6O$	[282.31]		
Ber.[%]:	C 59.56	N 29.77	Н 5.00

Eine Suspension von 0.517 g (2 mmol) 4-Amino-2-(benzylamino)-*N*-hydroxypyrimidin-5-carboxamidin **93** in 5 mL Pyridin wird mit 0.309 g (2.2 mmol) Benzoylchlorid versetzt und für 30 Minuten bei Raumtemperatur gerührt. Der Niederschlag wird abfiltriert und getrocknet. Im Anschluss wird der Niederschlag in 10 mL Eisessig suspendiert und für drei Stunden rückfließend erhitzt. Der Reaktionsansatz wird unter vermindertem Druck eingeengt und der ölige Rückstand einer säulenchromatographischen Reinigung an Kieselgel mit Ethylacetat/n-Hexan (1:1) als Elutionsmittel unterzogen.

Ausbeute:	38%, farbloses Pulver
Schmp.:	181 °C (Ethylacetat/n-Hexan)
IR:	3385 cm ⁻¹ , 3187 cm ⁻¹ (N-H), 1655 cm ⁻¹ (C=N)
¹ H-NMR:	(400 MHz, DMSO- d_6), δ (ppm): 4.55 (d, $J = 6.0$ Hz, 2H, benzyl.), 6.88 (s, 1H, N <i>H</i>), 7.19-8.22 (m, 10H, aromat. und 2H, N H_2 , überlagert), 8.68 (s, 1H, Pyrimidin- <i>H</i>)
¹³ C-NMR [*] :	(101 MHz, DMSO- <i>d</i> ₆), δ(ppm): 43.7 (benzyl.), 123.2 (quart., aromat.), 126.5, 127.1, 127.9, 128.1, 129.5, 133.2 (tert., aromat.), 140.2 (quart., aromat.), 158.1 (Pyrimidin- <i>C</i> 6), 160.6, 162.7, 166.1, 173.5 (quart., aromat.)

C₁₉H₁₆N₆O [344.38]

^{*} Ein quartäres Kohlenstoffatom wurde nicht detektiert.

Ber.[%]:	C 66.27	N 24.40	H 4.68
Gef.[%]:	C 65.98	N 24.13	H 4.81

N²-Benzyl-5-(1*H*-tetrazol-5-yl)pyrimidin-2,4-diamin 92a

Aus	0.451	g	4-Amino-2-(benzylamino)pyrimidin-5-carbonitril	84a	nach
AAV	′ 14				

Ausbeute:	61%,	farbloses	Pulver
-----------	------	-----------	--------

Schmp.: 265 °C (Zers.), (Methanol)

IR: 3422 cm^{-1} , 3234 cm^{-1} (N-H), 1655 cm^{-1} (C=N)

¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 4.55 (d, J = 6.0 Hz, 2H, benzyl.), 7.16-8.31 (m, 5H, aromat.; 2H, 2 NH und 2H, NH₂, überlagert), 8.52 (s, 1H, Pyrimidin-H)

¹³C-NMR^{*}: (101 MHz, DMSO-*d*₆), δ(ppm): 43.7 (benzyl.), 92.6 (quart., aromat.), 126.6, 127.1, 128.1 (tert., aromat.), 139.6 (quart., aromat.), 152.4 (Pyrimidin-*C*6, HSQC), 152.9, 160.6 (quart., aromat.)

 $C_{12}H_{12}N_8$ [268.28]

Ber.[%]:	C 53.72	N 41.77	H 4.51
Gef.[%]:	C 53.68	N 41.51	H 4.61

^{*} Ein quartäres Kohlenstoffatom wurde nicht detektiert.

Aus 0.487 g 4-Amino-2-[(4-fluorbenzyl)amino]pyrimidin-5-carbonitril **84b** nach **AAV 14**

- Ausbeute: 70%, farbloses Pulver
- Schmp.: > 300 °C (Zers.), (Methanol)

IR: 3459 cm^{-1} , 3179 cm^{-1} (N-H), 1655 cm^{-1} (C=N)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 4.52 (d, J = 6.3 Hz, 2H, benzyl.), 7.09-8.36 (m, 4H, aromat.; 2H, 2 N*H* und 2H, N H_2 , überlagert), 8.51 (s, 1H, Pyrimidin-*H*)
- ¹³C-NMR^{*}: (101 MHz, DMSO- d_6), δ (ppm): 43.1 (benzyl.), 92.5 (quart., aromat.), 114.8 (d, ${}^2J_{C-F} = 20.8$ Hz, tert., aromat.), 129.1 (d, ${}^3J_{C-F} = 5.4$ Hz, tert., aromat.), 136.4 (quart., aromat., HMBC), 151.4 (Pyrimidin-C6), 152.8, 160.6 (quart., aromat.), 161.1 (d, ${}^1J_{C-F} = 242.0$ Hz, quart., aromat.)

 $C_{12}H_{11}FN_8$ [286.27]

Ber.[%]:	C 50.35	N 39.14	Н 3.87
Gef.[%]:	C 50.14	N 38.70	H 4.05

^{*} Ein quartäres Kohlenstoffatom konnte nicht detektiert werden.

<u>*N*-Benzyl-5,5-dimethyl-5,6-dihydropyrimido[5,4-*e*]tetrazolo[1,5-*c*]pyrimidin-8-amin **97**</u>

Eine Suspension von 0.537 g (2 mmol) N^2 -Benzyl-5-(1*H*-tetrazol-5yl)pyrimidin-2,4-diamin **92a** und 0.581 g (10 mmol) Aceton in 5 mL Eisessig wird für 3 Tage unter Rückfluss erhitzt. Das Reaktionsgemisch wird danach abgekühlt und unter vermindertem Druck eingeengt. Der Rückstand wird durch Säulenchromatographie an Kieselgel mit Ethylacetat/n-Hexan (4:1) gereinigt.

Ausbeute:	35%, weißes Pu	ılver		
Schmp.:	204°C (Zers.), (Dichlormethan	n/n-Hexan)	
IR:	3297 cm ⁻¹ , 3233	3 cm ⁻¹ (N-H), 1	623 cm ⁻¹ (C=N)	
¹ H-NMR:	(400 MHz, CD benzyl.), 5.44-6 8.65-8.91 (m, 1	Cl ₃), δ(ppm): 1 5.15 (m, 2H, 2 1 H, Pyrimidin- <i>H</i>	1.96 (s, 6H, 2 CH ₃), 4.61 (s, 2 NH), 7.22-7.40 (m, 5H, aroma H)	2H, ıt.),
¹³ C-NMR [*] :	(101 MHz, CD (<i>C</i> (CH ₃) ₂) 127. aromat., HMB aromat., HMBC	PCl ₃), δ(ppm): 1 4, 127.6, 128. 3C), 154.9 (C)	30.0 (CH ₃), 45.4 (benzyl.), 7 7 (tert., aromat.), 138.2 (qua Pyrimidin-C6), 158.1 (qua	4.1 art., art.,
$C_{15}H_{16}N_8$	[308.35]			
Ber.[%]: Gef.[%]:	C 58.43 C 58.06	N 36.34 N 36.71	H 5.23 H 5.55	

^{*} Drei quartäre Kohlenstoffatome konnten nicht detektiert werden.

7.6 Analytische Daten zu Kapitel 5

N-Cyclopropyl-5-nitro-4-thiocyanatopyrimidin-2-amin 114a

Aus 2.17 g 2-Chlor-5-nitro-4-thiocyanatopyrimidin **36** und 1.14 g Cyclopropylamin nach **AAV 5**

Ausbeute: 91 %, hellgelbes Pulver

Schmp.: 196 °C (Zers.), (Dichlormethan/n-Hexan)

IR: 3283 cm^{-1} (N-H), 2184 cm^{-1} (SCN)

- ¹H-NMR^{*}: (400 MHz, DMSO-*d*₆), δ(ppm): 0.61-0.92 (m, 4H, c-Propyl-C*H*₂), 2.98-3.12 (m, 1H, c-Propyl-C*H*), 9.05 (s, 0.7H, Pyrimidin-*H*), 9.18 (s, 0.3H, Pyrimidin-*H*), 9.31 (d, *J* = 4.3 Hz, 0.3H, N*H*), 9.46 (d, *J* = 3.8 Hz, 0.7H, N*H*)
- ¹³C-NMR: (101 MHz, DMSO-*d₆*), δ(ppm): 6.0, 6.1 (c-Propyl-CH₂), 24.7, 24.9 (c-Propyl-CH), 107.7, 107.9 (SCN), 130.67, 130.71 (quart., aromat.), 156.5, 157.3 (Pyrimidin-C6), 159.6, 160.8, 161.4, 161.6 (quart., aromat.)

C₈H₇N₅O₂S [237.24]

HRFAB-MS: [M+H]⁺ ber. 238.0399 [M+H]⁺ gef. 238.0402

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

Aus 2.17 g 2-Chlor-5-nitro-4-thiocyanatopyrimidin **36** und Ethylamin^{*} nach **AAV 5**

Ausbeute:	94%, farbloses Pulver
Schmp.:	166 °C (Dichlormethan/Hexan), Lit. ^[130] : 156 °C
IR:	3288 cm ⁻¹ (N-H), 2184 cm ⁻¹ (SCN)
$C_7H_7N_5O_2S$	[225.23]
EI-MS:	ber. 225
	gef. 225

5-Nitro-N-phenyl-4-thiocyanatopyrimidin-2-amin 114c

Aus 2.17 g 2-Chlor-5-nitro-4-thiocyanatopyrimidin **36** und 1.86 g Anilin nach **AAV 5**

Ausbeute:	93%, gelbes Pulver
Schmp.:	200 °C (Dichlormethan/Hexan), Lit. ^[132] : 199-200 °C
IR:	3278 cm ⁻¹ (N-H), 2174 cm ⁻¹ (SCN)
$C_{11}H_7N_5O_2S$	[273.03]
EI-MS:	ber. 273
	gef. 273

^{*} Ethylamin wurde in situ aus 1.63 g Ethylamin-hydrochlorid und 0.46 g Natrium generiert.

Aus 0,916 g *N*-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin **39** und 0.857 g Cyclopropylamin nach **AAV 6**

- Ausbeute: 83%, hellgelbes Pulver
- Schmp.: 195 °C (Methanol)
- IR: 3345 cm^{-1} , 3248 cm^{-1} (N-H)
- ¹H-NMR^{*}: (400 MHz, DMSO-*d*₆), δ(ppm): 0.60-0.85 (m, 4H, c-Propyl-C*H*₂), 2.95-3.11 (m, 1H, c-Propyl-C*H*), 4.54 (d, *J* = 6.3 Hz, 1.6H, benzyl.), 4.57 (d, *J* = 6.3 Hz, 0.4H, benzyl.), 7.00-7.48 (m, 4H, aromat.), 8.31 (d, *J* = 4.5 Hz, 0.2H, NH), 8.44 (d, *J* = 4.0 Hz, 0.8H, NH), 8.68 (t, *J* = 6.4 Hz, 0.2H, NH), 8.81-8.89 (m, 0.8H, Pyrimidin-*H* und 0.8H, N*H*), 8.91 (s, 0.2H, Pyrimidin-*H*)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 6.4, 6.5 (c-Propyl-CH₂), 23.88, 23.92 (c-Propyl-CH), 43.5, 43.9 (benzyl.), 114.88 (d, ${}^{2}J_{C-F} = 20.8$ Hz, tert., aromat.), 114.92 (d, ${}^{2}J_{C-F} = 21.6$ Hz, tert., aromat.), 119.8, 120.8 (quart., aromat.), 129.2 (d, ${}^{3}J_{C-F} = 7.7$ Hz, tert., aromat.), 129.6 (d, ${}^{3}J_{C-F} = 8.5$ Hz, tert., aromat.), 135.3, 135.5 (d, ${}^{4}J_{C-F} = 3.1$ Hz, quart., aromat.), 156.5, 156.7 (quart., aromat.), 157.4, 157.7 (Pyrimidin-C6), 161.2 (d, ${}^{1}J_{C-F} = 242.0$ Hz, quart., aromat.), 161.4, 161.7 (quart., aromat.)

C₁₄H₁₄FN₅O₂ [303.30]

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

HRFAB-MS: $[M+H]^+$ ber. 304.1210 $[M+H]^+$ gef. 304.1216

 N^4 -(2-Chlorbenzyl)- N^2 -(4-fluorbenzyl)-5-nitropyrimidin-2,4-diamin **115Ab**

Aus 0,916 g *N*-(4-Fluorbenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amin **39** und 2.12 g 2-Chlorbenzylamin nach **AAV 6**

- Ausbeute: 91%, gelbes Pulver
- Schmp.: 188 °C (Methanol)

IR: 3356 cm^{-1} , 3250 cm^{-1} (N-H)

- ¹H-NMR^{*}: (400 MHz, DMSO-*d*₆), δ(ppm): 4.32 (d, *J* = 6.3 Hz, 1.6H, benzyl.), 4.53 (d, *J* = 6.1 Hz, 0.4H, benzyl.), 4.72-4.83 (m, 2H, benzyl.), 6.87-7.51 (m, 8H, aromat.), 8.55 (t, *J* = 6.1 Hz, 0.2H, N*H*), 8.79 (t, *J* = 6.2 Hz, 0.8H, N*H*), 8.89 (s, 0.8H, Pyrimidin-*H*), 8.97 (s, 0.2H, Pyrimidin-*H*), 9.03 (t, *J* = 5.9 Hz, 0.2H, N*H*), 9.25 (t, *J* = 5.8 Hz, 0.8H, N*H*)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 41.4, 41.5, 43.4, 43.7 (benzyl.), 114.8 (d, ${}^2J_{C-F} = 21.2$ Hz, tert., aromat.), 114.9 (d, ${}^2J_{C-F} = 21.2$ Hz, tert., aromat.), 120.0, 120.9 (quart., aromat.), 127.06, 127.14, 128.1, 128.36, 128.43, 128.5, 129.0 (tert., aromat.), 129.1 (d, ${}^3J_{C-F} = 8.1$ Hz, tert., aromat.), 129.2 (tert., aromat.), 131.6, 131.8 (quart., aromat.), 135.0 (d, ${}^4J_{C-F} = 2.9$

Hz, quart., aromat.), 135.4 (d, ${}^{4}J_{C-F} = 2.9$ Hz, quart., aromat.), 135.8, 155.39, 155.43 (quart., aromat.), 157.7, 158.0 (Pyrimidin-*C*6), 161.0 (d, ${}^{1}J_{C-F} = 242.2$ Hz, quart., aromat.), 161.4, 161.7 (quart., aromat.)

 $C_{18}H_{15}ClFN_5O_2$ [387.80]

HRFAB-MS: [M+H]⁺ ber. 388.0977 [M+H]⁺ gef. 388.0981

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

Aus 0.712 g *N*-Cyclopropyl-5-nitro-4-thiocyanatopyrimidin-2-amin **114a** und 1.88 g 2-Fluorbenzylamin nach **AAV 6**

- Ausbeute: 92%, gelbe Nadeln
- Schmp.: 182 °C (Methanol)

IR: 3382 cm^{-1} , 3211 cm^{-1} (N-H)

- ¹H-NMR^{*}: (400 MHz, DMSO- d_6), δ (ppm): 0.41-0.72 (m, 4H, c-Propyl-CH₂), 2.70-2.97 (m, 1H, c-Propyl-CH), 4.78 (d, J = 6.1 Hz, 0.5H, benzyl.), 4.83 (d, J = 6.1 Hz, 1.5H, benzyl.), 7.10-7.47 (m, 4H, aromat.), 8.15 (d, J = 4.0 Hz, 0.25H, NH), 8.40 (d, J = 3.8 Hz, 0.75H, NH), 8.84 (s, 0.75H, Pyrimidin-H), 8.94 (t, J = 5.7 Hz, 0.25H, NH), 9.00 (s, 0.25H, Pyrimidin-H), 9.22 (t, J = 5.8 Hz, 0.75H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 5.8, 6.1 (c-Propyl-CH₂), 24.1, 24.2 (c-Propyl-CH), 37.3 (d, ${}^{3}J_{C-F} = 3.7$ Hz, benzyl.), 37.5 (d, ${}^{3}J_{C-F} = 4.4$ Hz, benzyl.), 114.9 (d, ${}^{2}J_{C-F} = 21.2$ Hz, tert., aromat.), 119.8, 120.9 (quart., aromat.), 124.2 (d, ${}^{4}J_{C-F} = 3.7$ Hz, tert., aromat.), 124.3 (tert., aromat), 125.7 (d, ${}^{2}J_{C-F} = 13.9$ Hz, quart., aromat.), 128.7 (d, ${}^{3}J_{C-F} = 8.1$ Hz, tert., aromat.), 128.9 (tert., aromat.), 129.5 (d, ${}^{3}J_{C-F} = 4.4$ Hz, tert., aromat.), 155.1, 155.3 (quart., aromat.), 157.2, 158.0 (Pyrimidin-C6),

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

160.1 (d, ${}^{1}J_{C-F} = 243.7$ Hz, quart., aromat.), 162.6, 162.8 (quart., aromat.)

C₁₄H₁₄FN₅O₂ [303.30]

HRFAB-MS: [M+H]⁺ ber. 304.1210 [M+H]⁺ gef. 304.1217

 N^2 -Cyclopropyl-5-nitro- N^4 -(2-phenylethyl)pyrimidin-2,4-diamin **115Ad**

Aus 0.712 g *N*-Cyclopropyl-5-nitro-4-thiocyanatopyrimidin-2-amin **114a** und 1.82 g 2-Phenylethylamin nach **AAV 6**

Ausbeute: 88%, hellgelbe Nadeln

Schmp.: 176 °C (Methanol)

IR: 3380 cm^{-1} (N-H)

¹H-NMR^{*}: (400 MHz, DMSO-*d*₆), δ(ppm): 0.55-0.79 (m, 4H, c-Propyl-C*H*₂), 2.84-3.00 (m, 1H, c-Propyl-C*H* und 2H, NHCH₂C*H*₂Ph, überlagert), 3.66-3.85 (m, 2H, NHC*H*₂CH₂Ph), 7.17-7.35 (m, 5H, aromat.), 8.18 (d, *J* = 4.3 Hz, 0.25H, N*H*), 8.43 (d, *J* = 4.0 Hz, 0.75H, N*H*), 8.56 (t, *J* = 5.4 Hz, 0.25H, N*H*), 8.75-8.89 (m, 0.75H, N*H* und 0.75H, Pyrimidin-*H*, überlagert), 8.96 (s, 0.25H, Pyrimidin-*H*)

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 6.0, 6.2 (c-Propyl-CH₂), 24.2 (c-Propyl-CH), 34.5, 34.7 (NHCH₂CH₂Ph), 41.4, 41.8 (NHCH₂CH₂Ph), 119.6, 120.6 (quart., aromat.), 126.1, 128.3, 128.56, 128.64 (tert., aromat.), 139.2, 154.8, 155.3 (quart., aromat.), 157.2, 157.9 (Pyrimidin-C6), 162.7 (quart., aromat.)
- $C_{15}H_{17}N_5O_2$ [299.34]
- HRFAB-MS: [M+H]⁺ ber. 300.1461 [M+H]⁺ gef. 300.1462

<u>N²-Ethyl-N⁴-(4-fluorbenzyl)-5-nitropyrimidin-2,4-diamin **115Ae**</u>

Aus 0.676 g *N*-Ethyl-5-nitro-4-thiocyanatopyrimidin-2-amin **114b** und 1.88 g 4-Fluorbenzylamin nach **AAV 6**

- Ausbeute: 85%, hellgelbe Nadeln
- Schmp.: 177 °C (Methanol)
- IR: 3367 cm^{-1} , 3257 cm^{-1} (N-H)

- ¹H-NMR^{*}: (400 MHz, DMSO- d_6), δ (ppm): 1.02 (t, J = 7.2 Hz, 2.4H, NHCH₂CH₃), 1.12 (t, J = 7.2 Hz, 0.6H, NHCH₂CH₃), 3.21-3.43 (m, 2H, NHCH₂CH₃), 4.64-4.77 (m, 2H, benzyl.), 7.09-7.49 (m, 4H, aromat.), 8.09 (t, J = 5.6 Hz, 0.2H, NH), 8.28 (t, J = 5.4 Hz, 0.8H, NH), 8.85 (s, 0.8H, Pyrimidin-H), 8.94 (s, 0.2H, Pyrimidin-H), 9.03 (t, J = 5.8 Hz, 0.2H, NH), 9.29 (t, J = 5.8 Hz, 0.8H, NH)
- ¹³C-NMR: (101 MHz, DMSO- d_6), δ (ppm): 14.0, 14.8 (NHCH₂*C*H₃), 35.7, 35.9 (NH*C*H₂CH₃), 42.4, 42.9 (benzyl.), 114.9 (d, ²*J*_{C-F} = 21.2 Hz, tert., aromat.), 119.4, 120.4 (quart., aromat.), 129.3 (d, ³*J*_{C-F} = 8.8 Hz, tert., aromat.), 129.6 (d, ³*J*_{C-F} = 8.8 Hz, tert., aromat.), 135.1 (d, ⁴*J*_{C-F} = 2.9 Hz, quart., aromat.), 135.3 (d, ⁴*J*_{C-F} = 2.9 Hz, quart., aromat.), 155.0, 155.3 (quart., aromat.), 157.5, 158.0 (Pyrimidin-C6), 161.1 (d, ¹*J*_{C-F} = 242.2 Hz, quart., aromat.), 161.2, 161.5 (quart., aromat.)

C₁₃H₁₄FN₅O₂ [291.29]

HRFAB-MS: [M+H]⁺ ber. 292.1210 [M+H]⁺ gef. 292.1213

<u>N⁴-Benzyl-5-nitro-N²-phenylpyrimidin-2,4-diamin **115Af**</u>

Aus 0.819 g 5-Nitro-*N*-phenyl-4-thiocyanatopyrimidin-2-amin **114c** und 1.61 g Benzylamin nach **AAV 6**

Ausbeute: 93%, gelbe Nadeln

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

Schmp.: 193 °C (Methanol)

IR: 3376 cm^{-1} , 3269 cm^{-1} , 3205 cm^{-1} (N-H)

- ¹H-NMR: (400 MHz, DMSO- d_6), δ (ppm): 4.79 (d, J = 6.1 Hz, 2H, benzyl.), 6.99-7.62 (m, 10H, aromat.), 9.02 (s, 1H, Pyrimidin-*H*), 9.44 (s, 1H, N*H*), 10.34 (s, 1H, N*H*)
- ¹³C-NMR: (101 MHz, DMSO-*d*₆), δ(ppm): 43.9 (benzyl.), 120.1, 123.2, 126.7, 128.2, 128.4 (tert., aromat.), 138.6, 138.7, 155.4 (quart., aromat.), 157.3 (Pyrimidin-C6), 159.4 (quart., aromat.)
- C₁₇H₁₅N₅O₂ [321.34]
- HRFAB-MS: [M+H]⁺ ber. 322.1304 [M+H]⁺ gef. 322.1295

<u>N²-Cyclopropyl-5-nitro-N⁴-phenylpyrimidin-2,4-diamin **115Ag**</u>

Aus 0.712 g *N*-Cyclopropyl-5-nitro-4-thiocyanatopyrimidin-2-amin **114a** und 1.40 g Anilin nach **AAV 6**

Ausbeute: 89%, gelbe Nadeln

Schmp.: 228 °C (Methanol)

IR: 3224 cm^{-1} (N-H), 1630 cm⁻¹ (C=N)

- ¹H-NMR^{*}: (400 MHz, DMSO-*d*₆), δ(ppm): 0.56-0.80 (m, 4H, c-Propyl-C*H*₂), 2.72-2.80 (m, 0.75H, c-Propyl-C*H*), 2.92-3.00 (m, 0.25H, c-Propyl-C*H*), 7.12-7.95 (m, 5H, aromat.), 8.39 (d, *J* = 4.3 Hz, 0.25H, N*H*), 8.72 (d, *J* = 3.5 Hz, 0.75H, N*H*), 8.97 (s, 0.75H, Pyrimidin-*H*), 9.09 (s, 0.25H, Pyrimidin-*H*), 10.18 (s, 0.25H, N*H*), 10.40 (s, 0.75H, N*H*)
- ¹³C-NMR: (101 MHz, DMSO-*d₆*), δ(ppm): 6.06, 6.11 (c-Propyl-CH₂), 24.3, 24.4 (c-Propyl-CH), 119.8 (quart., aromat.), 122.2, 122.7, 124.4, 124.5, 128.5, 128.6 (tert., aromat.), 137.4, 153.5 (quart., aromat.), 157.7, 158.4 (Pyrimidin-C6), 162.8 (quart., aromat.)
- $C_{13}H_{13}N_5O_2$ [271.28]
- HRFAB-MS: [M+H]⁺ ber. 272.1148 [M+H]⁺ gef. 272.1145

^{*} Die ¹H- und ¹³C-NMR-Spektren zeigen ein Gemisch aus zwei Rotameren.

N,N'-Dibenzyl-5-nitropyrimidin-2,4-diamin 115Ba

Aus 0.97 g 2,4-Dichlor-5-nitropyrimidin 23 und 2.15 g Benzylamin nach AAV 15

Ausbeute:	88%, hellgelbe Kristalle
Schmp.:	182 °C (Methanol), Lit. ^[211] : 179-182 °C
IR:	3385 cm^{-1} , 3232 cm^{-1} (N-H)
C ₁₈ H ₁₇ N ₅ O ₂	[335.37]
EI-MS:	ber. 335
	gef. 335

N,N'-Bis(4-fluorbenzyl)-5-nitropyrimidin-2,4-diamin 115Bb

Aus 0.97 g 2,4-Dichlor-5-nitropyrimidin 23 und 2.51 g 4-Fluorbenzylamin nach AAV 15

Ausbeute:	80%, farbloses Pulver
Schmp.:	153 °C (Methanol)
IR:	3342 cm ⁻¹ , 3255 cm ⁻¹ (N-H)
$C_{18}H_{15}F_2N_5O_2$	₂ [371.35]
EI-MS:	ber. 371
	gef. 371

<u>3-Cyclopropyl-N-(4-fluorbenzyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amin **99a**</u>

Aus 0.606 g N^4 -Cyclopropyl- N^2 -(4-fluorbenzyl)-5-nitropyrimidin-2,4-diamin **115Aa** nach **AAV 16**

- Ausbeute: 55%, farbloses Pulver
- Schmp.: 130 °C (Methanol)

IR: 3249 cm^{-1} (N-H), 1612 cm⁻¹ (C=N)

- ¹H-NMR: (400 MHz, CDCl₃), δ(ppm): 1.15-1.49 (m, 4H, c-Propyl-CH₂), 3.72-3.84 (m, 1H, c-Propyl-CH), 4.68 (d, J = 5.6 Hz, 2H, benzyl.), 6.19 (s, 1H, NH), 6.94-7.42 (m, 4H, aromat.), 8.96 (s, 1H, Pyrimidin-H)
- ¹³C-NMR^{*}: (101 MHz, CDCl₃), δ(ppm): 6.5 (c-Propyl-CH₂), 28.4 (c-Propyl-CH), 45.6 (benzyl.), 115.9 (d, ${}^{2}J_{C-F} = 21.4$ Hz, tert., aromat.), 129.8 (d, ${}^{3}J_{C-F} = 7.6$ Hz, tert., aromat.), 134.6 (quart., aromat.), 152.3 (quart., aromat.), 153.2 (Pyrimidin-C6), 161.7 (quart., aromat.), 162.6 (d, ${}^{1}J_{C-F} = 246.4$ Hz, quart., aromat.)
- C₁₄H₁₃FN₆ [284.30]

Ber.[%]:	C 59.15	N 29.56	H 4.61
Gef.[%]:	C 59.21	N 29.30	Н 4.91

^{*} Ein quartäres Kohlenstoffatom wurde nicht detektiert.

Aus 0.776 g N^4 -(2-Chlorbenzyl)- N^2 -(4-fluorbenzyl)-5-nitropyrimidin-2,4diamin **115Ab** nach **AAV 16**

- Ausbeute: 67%, farbloses Pulver
- Schmp.: 192 °C (Methanol)

IR: 3246 cm^{-1} (N-H), 1614 cm^{-1} (C=N)

- ¹H-NMR: (400 MHz, CDCl₃), δ (ppm): 4.66 (d, J = 5.6 Hz, 2H, benzyl.), 5.63 (s, 2H, benzyl.), 6.05 (s, 1H, NH), 6.96-7.41 (m, 9H, aromat.), 9.01 (s, 1H, Pyrimidin-H)
- ¹³C-NMR^{*}: (101 MHz, CDCl₃), δ (ppm): 45.2, 49.8 (benzyl.), 115.5 (d, ²*J*_{C-F} = 21.1 Hz, tert., aromat.), 128.38, 128.41, 128.8 (tert., aromat.), 129.3 (d, ³*J*_{C-F} = 8.3 Hz, tert., aromat.), 135.0 (quart., aromat.), 152.9 (Pyrimidin-*C*6)

 $C_{18}H_{15}FN_6$ [334.36]

Ber.[%]:	C 64.66	N 25.13	H 4.52
Gef.[%]:	C 64.49	N 25.04	H 4.80

^{*} Die quartären Pyrimidin-Kohlenstoffatome wurden nicht detektiert.

Aus 0.614 g *N*,*N*'-Bis(4-fluorbenzyl)-5-nitropyrimidin-2,4-diamin **115Bb** nach **AAV 16**

- Ausbeute: 60%, farbloses Pulver
- Schmp.: 169 °C (Methanol)

IR: 3248 cm^{-1} (N-H), 1614 cm⁻¹ (C=N)

- ¹H-NMR: (400 MHz, CDCl₃), δ (ppm): 4.67 (d, J = 5.3 Hz, 2H, benzyl.), 5.59 (s, 2H, benzyl.) 6.18 (s, 1H, NH), 6.93-7.41 (m, 4H, aromat.), 8.99 (s, 1H, Pyrimidin-H)
- ¹³C-NMR^{*}: (101 MHz, CDCl₃), δ (ppm): 45.2, 49.1 (benzyl.), 115.5 (d, ²*J*_{C-F} = 22.0 Hz, tert., aromat.), 115.7 (d, ²*J*_{C-F} = 22.0 Hz, tert., aromat.), 129.2 (d, ³*J*_{C-F} = 8.1 Hz, tert., aromat.), 130.4 (d, ³*J*_{C-F} = 8.8 Hz, tert., aromat.), 130.8 (d, ⁴*J*_{C-F} = 2.9 Hz, quart., aromat.), 134.2, 150.8 (quart., aromat.), 152.9 (Pyrimidin-C6), 161.2 (quart., aromat.), 162.2 (d, ¹*J*_{C-F} = 245.9 Hz, quart., aromat.), 162.7 (d, ¹*J*_{C-F} = 247.4 Hz, quart., aromat.)

 $C_{18}H_{14}F_2N_6$ [352.35]

Ber.[%]:	C 61.36	N 23.85	H 4.00
Gef.[%]:	C 61.20	N 23.89	Н 4.27

^{*} Ein quartäres Kohlenstoffatom wurde nicht detektiert.

<u>N-Cyclopropyl-3-(2-fluorbenzyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amin **99d**</u>

Aus 0.606 g N^2 -Cyclopropyl- N^4 -(2-fluorbenzyl)-5-nitropyrimidin-2,4-diamin **115Ac** nach **AAV 16**

- Ausbeute: 66 %, farbloses Pulver
- Schmp.: 132 °C (Methanol)
- IR: 3236 cm^{-1} (N-H), 1614 cm^{-1} (C=N)
- ¹H-NMR: (400 MHz, CDCl₃), δ(ppm): 0.55-0.92 (m, 4H, c-Propyl-CH₂), 2.81-2.89 (m, 1H, c-Propyl-CH), 5.76 (s, 2H, benzyl.), 5.89 (s, 1H, NH), 7.05-7.43 (m, 4H, aromat.), 9.05 (s, 1H, Pyrimidin-H)
- ¹³C-NMR: (101 MHz, CDCl₃), δ (ppm): 7.3 (c-Propyl-CH₂), 24.3 (c-Propyl-CH), 43.1 (d, ${}^{3}J_{C-F} = 5.4$ Hz, benzyl.), 115.6 (d, ${}^{2}J_{C-F} = 20.8$ Hz, tert., aromat.), 122.2 (d, ${}^{2}J_{C-F} = 14.6$ Hz, quart., aromat.), 124.3 (d, ${}^{4}J_{C-F} = 3.9$ Hz, tert., aromat.), 130.3 (d, ${}^{3}J_{C-F} = 8.5$ Hz, tert., aromat.), 130.6 (tert., aromat.), 131.4 (quart., aromat.), 151.2 (quart., aromat.), 152.5 (Pyrimidin-C6), 160.6 (d, ${}^{1}J_{C-F} = 248.9$ Hz, quart., aromat.), 162.4 (quart., aromat.)

C₁₄H₁₃FN₆ [284.30]

Ber.[%]:	C 59.15	N 29.56	H 4.61
Gef.[%]:	C 59.11	N 29.64	H 4.89

<u>N-Cyclopropyl-3-(2-phenylethyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amin 99e</u>

Aus 0.600 g N^2 -Cyclopropyl-5-nitro- N^4 -(2-phenylethyl)pyrimidin-2,4diamin **115Ad** nach **AAV 16**

Ausbeute: 68 %, farbloses Pulver

Schmp.: 112 °C (Methanol)

IR: 3236 cm^{-1} (N-H), 1610 cm^{-1} (C=N)

- ¹H-NMR: (400 MHz, CDCl₃), δ(ppm): 0.55-0.92 (m, 4H, c-Propyl-CH₂), 2.79-2.88 (m, 1H, c-Propyl-CH), 3.34 (t, J = 7.7 Hz, 2H, NHCH₂CH₂Ph), 4.70-4.80 (m, 2H, NHCH₂CH₂Ph), 5.88 (s, 1H, NH), 7.16-7.32 (m, 5H, aromat.), 9.03 (s, 1H, Pyrimidin-H)
- ¹³C-NMR: (101 MHz, CDCl₃), δ(ppm): 7.3 (c-Propyl-CH₂), 24.3 (c-Propyl-CH), 35.4 (NHCH₂CH₂Ph), 47.3 (NHCH₂CH₂Ph), 126.9, 128.65, 128.74 (tert., aromat.), 131.5, 137.4, 151.2 (quart., aromat.), 152.4 (Pyrimidin-C6), 162.2 (quart., aromat.)
- $C_{15}H_{16}N_6$ [280.33]

Ber.[%]:	C 64.27	N 29.98	Н 5.75
Gef.[%]:	C 64.31	N 30.18	Н 5.75

Aus 0.582 g N^2 -Ethyl- N^4 -(4-fluorbenzyl)-5-nitropyrimidin-2,4-diamin **115Ae** nach **AAV 16**

- Ausbeute: 63%, farbloses Pulver
- Schmp.: 131 °C (Methanol)
- IR: 3256 cm^{-1} (N-H), 2966 cm⁻¹ (C-H), 1618 cm⁻¹ (N-H)
- ¹H-NMR: (400 MHz, CDCl₃), δ (ppm): 1.29 (t, J = 7.3 Hz, 3H, NHCH₂CH₃), 3.48-3.59 (m, 2H, NHCH₂CH₃), 5.61 (s, 2H, benzyl.), 5.73 (s, 1H, NH), 6.97-7.50 (m, 4H, aromat.), 9.00 (s, 1H, Pyrimidin-H)
- ¹³C-NMR: (101 MHz, CDCl₃), δ (ppm): 14.4 (NHCH₂CH₃), 36.6 (NHCH₂CH₃), 48.9 (benzyl.), 115.7 (d, ²*J*_{C-F} = 21.4 Hz, tert., aromat.), 130.4 (d, ³*J*_{C-F} = 8.4 Hz, tert., aromat.), 130.9 (d, ⁴*J*_{C-F} = 3.1 Hz, quart., aromat.), 131.2 (quart., aromat.), 150.9 (quart., aromat.), 152.6 (Pyrimidin-C6), 161.3 (quart., aromat.), 162.6 (d, ¹*J*_{C-F} = 247.2 Hz, quart., aromat.)
- C₁₃H₁₃FN₆ [272.29]

Ber.[%]:	C 57.35	N 30.86	H 4.81
Gef.[%]:	C 57.17	N 30.72	Н 5.15

Aus 0.670 g N,N'-Dibenzyl-5-nitropyrimidin-2,4-diamin 115Ba nach AAV 16

Ausbeute: 59%, farbloses Pulver

Schmp.: 161 °C (Methanol)

IR: 3248 cm^{-1} (N-H), 1608 cm⁻¹ (C=N)

- ¹H-NMR: (400 MHz, CDCl₃), δ(ppm): 4.69 (d, *J* = 5.0 Hz, 2H, benzyl.), 5.62 (s, 2H, benzyl.), 6.46 (s, 1H, N*H*), 7.24-7.42 (m, 10H, aromat.), 8.84 (s, 1H, Pyrimidin-*H*)
- ¹³C-NMR: (101 MHz, CDCl₃), δ(ppm): 46.0, 49.8 (benzyl.), 127.5, 127.7, 128.3, 128.5, 128.7, 128.8 (tert., aromat.), 131.5, 135.1, 138.5 151.0 (quart., aromat.), 152.7 (Pyrimidin-*C*6), 161.3 (quart., aromat.)

 $C_{18}H_{16}N_6$ [316.37]

Ber.[%]:	C 68.34	N 26.56	Н 5.10
Gef.[%]:	C 68.35	N 26.64	Н 5.30

Aus 0.642 g N^4 -Benzyl-5-nitro- N^2 -phenylpyrimidin-2,4-diamin **115Af** nach **AAV 16**

- Ausbeute: 51%, farbloses Pulver
- Schmp.: 194 °C (Methanol)

IR: 3248 cm^{-1} (N-H), 1618 cm⁻¹ (C=N)

- ¹H-NMR: (400 MHz, CDCl₃), δ(ppm): 5.72 (s, 2H, benzyl.), 7.10-7.69 (m, 10H, aromat.), 7.72 (s, 1H, N*H*), 9.14 (s, 1H, Pyrimidin-*H*)
- ¹³C-NMR: (101 MHz, CDCl₃), δ(ppm): 50.3 (benzyl.), 119.6, 123.5, 128.52, 128.54, 128.9, 129.0 (tert., aromat.), 132.0, 134.8, 138.7, 150.4 (quart., aromat.), 152.7 (Pyrimidin-C6), 158.6 (quart., aromat.)
- $C_{17}H_{14}N_6$ [302.34]
- Ber.[%]:C 67.54N 27.80H 4.67Gef.[%]:C 67.15N 27.60H 4.74

Aus 0.542 g N^2 -Cyclopropyl-5-nitro- N^4 -phenylpyrimidin-2,4-diamin **115Ag** nach **AAV 16**

- Ausbeute: 75%, farblose Nadeln
- Schmp.: 184 °C (Methanol)
- IR: 3229 cm^{-1} (N-H), 1617 cm⁻¹ (C=N)
- ¹H-NMR: (400 MHz, CDCl₃), δ(ppm): 0.61-0.68 (m, 2H, c-Propyl-C*H*₂), 0.88-0.96 (m, 2H, c-Propyl-C*H*₂), 2.86-2.95 (m, 1H, c-Propyl-*CH*), 6.00 (s, 1H, N*H*), 7.39-7.61 (m, 3H, aromat.), 8.32 (s, 2H, aromat.), 9.13 (s, 1H, Pyrimidin-*H*)
- ¹³C-NMR: (101 MHz, CDCl₃), δ(ppm): 7.3 (c-Propyl-CH₂), 24.4 (c-Propyl-CH), 120.5, 127.7, 129.4 (tert., aromat.), 132.4, 136.6, 150.6 (quart., aromat.), 152.9 (Pyrimidin-C6), 162.6 (quart., aromat.)
- $C_{13}H_{12}N_6$ [252.28]

Ber.[%]:	C 61.89	N 33.31	H 4.79
Gef.[%]:	C 61.87	N 33.14	H 4.88

8 Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Synthese von neuen Derivaten des Analgetikums **Flupirtin** und des Antiepileptikums **Retigabin**. Erst kürzlich ließ sich der Hauptwirkungsmechanismus von Flupirtin und Retigabin aufklären. Er beruht auf der Aktivierung von neuronalen Kaliumkanälen der Familie K_v7 . Neuronale K_v7 -Kanäle sind ein neuartiger Angriffspunkt für die Entwicklung von Wirkstoffen zur Behandlung von chronischen und neuropathischen Schmerzen, Epilepsie sowie von weiteren Erkrankungen, die mit neuronaler Übererregbarkeit einhergehen.

Im Rahmen der vorliegenden Arbeit wurde der Pyridin-Ring von Flupirtin durch einen Pyrimidin-Ring ersetzt und unter konsequenter Anwendung des Bioisosterieprinzips eine Vielzahl an Pyrimidin-Analoga von Flupirtin hergestellt.

In Kapitel 2 wurde ein ergiebiges Verfahren zur Synthese des direkten Pyrimidin-Analogons von Flupirtin (**Zielstruktur**) sowie von weiteren Carbamat-Derivaten **26** entwickelt. Die Synthese erfolgte ausgehend von käuflichem 5-Nitrouracil (**22**). Dieses wurde in einer zweistufigen Reaktion in 2-Chlor-5-nitropyrimidin-4-amin (**24**) überführt. Die Reaktion von **24** mit verschiedenen primären und sekundären Aminen lieferte die Intermediate **25**. Die 5-Nitro-Derivate **25** wurden anschließend einer katalytischen Hydrogenolyse unterzogen und die entstandenen 5-Amino-Zwischenstufen 21 direkt mit verschiedenen Chlorameisensäureestern zu den Zielverbindungen 26 umgesetzt. Die Carbamate 26 wurden entweder als Hydrochloride oder als freie Basen isoliert und charakterisiert. Der Strukturbeweis erfolgte anhand von spektroskopischen Daten sowie durch Röntgenkristallstrukturanalyse.

In analoger Weise waren zahlreiche Anilid- (27) und Harnstoff-Derivate (28) zugänglich. Hierzu wurden im abschließenden Reaktionsschritt die Chlorameisensäureester durch Säurechloride bzw. Isocyanate ersetzt.

In Kapitel 3 wurden weiterführende Untersuchungen 5an (Alkoxy)acylaminopyrimidinen beschrieben. In diesem Zusammenhang N⁴-mono-/disubstituierte wurden 4-Amino-2-(4-fluorbenzylamino)-5propionamido-pyrimidin-hydrochloride des Typs 41 und Ethyl[4-alkoxy-2-(4-fluorbenzylamino)-pyrimidin-5-yl]carbamate (42)hergestellt. Die Synthese erfolgte ausgehend von den entsprechenden 5-Nitro-Vorstufen durch katalytische Hydrogenolyse und anschließender (Alkoxy)acylierung. Die erforderlichen 5-Nitro-Vorstufen wurden durch die nukleophile Substitution der Thiocyanat-Gruppe von N-(4-Fluorbenzyl)-5-nitro-4thiocyanato-pyrimidin-2-amin (39) erhalten.

Mit dem Ziel, Benzylsulfanyl-Analoga (**51**) der Zielstruktur zu erschließen, wurde 2-(Benzylsulfanyl)pyrimidin-4,5-diamin (**52**) mit verschiedenen Chlorameisensäureestern umgesetzt. Das Ausgangsmaterial **52** war durch *S*-Alkylierung von 5,6-Diaminopyrimidin-2(1*H*)-thion (**53**) zugänglich.

Die mikrowellenunterstützte Ringtransformationreaktion von 4-(Ethoxymethylen)-2-phenyl-1,3-oxazol-5(4*H*)-on (**60**) in Gegenwart von aralkylsubstituierten Isothioharnstoff-hydrohalogeniden (**59**) sowie Triethylamin lieferte in sehr kurzen Reaktionszeiten und guten Ausbeuten unterschiedlich substituierte N-[2-(Aralkylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-yl]benzamide (**57**).

Kapitel 4 umfasst die Darstellung von 2,4-diaminosubstituierten Pyrimidin-5-carboxamiden (82). Diese können als formal funktionsumgekehrte Carbamat- (26) bzw. Anilid-Derivate (27) aufgefasst werden. Als geeignete Ausgangsmaterialien erwiesen sich die entsprechenden 2,4diaminosubstituierten Pyrimidin-5-carbonitrile 84. Durch die alkalische Hydrolyse der Carbonitril-Derivate 84 entstanden die Carbonsäure-Vorstufen 83. Nach einer anschließenden Aktivierung der Carbonsäure-Derivate 83 mit EDC/HOBt lieferte die Umsetzung mit verschiedenen Aminbzw. Hydroxylamin-Komponenten die 2,4-diaminosubstituierten Pyrimidin-5-carboxamide 82. Überdies wurden bioisostere heterozyklische Analoga der Pyrimidin-5-carboxamide 82 hergestellt. Einerseits gelang die Synthese von 1,2,4-Oxadiazol-Analoga (90) durch die Zyklisierung der entsprechenden O-Acylamidoxim-Vorstufen. Andererseits erbrachte die Zykloaddition von Ammoniumazid an die 2,4-diaminosubstituierten Pyrimidin-5-carbonitrile 84 die N^2 -Aralkyl-5-(1H-tetrazol-5-yl)pyrimidin-2,4-diamine **92**.

Im Kapitel 5 dieser Arbeit wurde ein ergiebiges Verfahren zur Synthese von neuartigen 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amin-Derivaten (99) aufgezeigt. Die Darstellung gelang ausgehend von substituierten 5-Nitropyrimidin-2,4-diaminen (115). Im Anschluss an die Reduktion der Nitrogruppe erfolgte der Ringschluss zu den 3H-[1,2,3]Triazolo[4,5-d]pyrimidin-5-amin-Derivaten 99 durch Diazotierung der entstandenen 5-Aminogruppe.

Zahlreiche der im Rahmen der vorliegenden Arbeit hergestellten Verbindungen zeigten in vitro und in vivo interessante biologische Aktivitäten, die wegen einer Geheimhaltungsvereinbarung nicht offengelegt werden dürfen.

9 Summary

The objective of this work is the synthesis and analysis of novel derivatives of the analgesic **flupirtine** and the anticonvulsant **retigabine**. Recently, the mode of action of flupirtine and retigabine was elucidated. The compounds act as potent activators of neuronal K_v7 channels. These channels represent attractive targets for the development of therapeutics for chronic and neuropathic pain, epilepsy and other neuronal hyperexcitability disorders.

This work deals with the replacement of the pyridine core of flupirtine by a pyrimidine ring. Using the bioisosterism concept several pyrimidine analogues of flupirtine were prepared.

In chapter 2 a convenient synthetic pathway leading to the direct pyrimidine analogue of flupirtine (**target structure**) as well as further carbamate derivatives (**26**) has been developed. Starting from purchasable 5-nitrouracil (**22**) 2-chloro-5-nitropyrimidin-4-amine (**24**) was obtained in a two-step procedure. Reaction of **24** with primary and secondary amines yielded the 5nitro-intermediates **25**. Catalytic hydrogenation of the compounds **25** furnished the key precursors **21** and subsequent alkoxyacylation with alkyl chloroformates led to the desired products **26**. The carbamate derivatives **26** were isolated as hydrochlorides or as free bases. The structures were proven by spectroscopic methods and x-ray analysis.

In a similar way numerous 5-acylamino derivatives (27) and ureas (28) were synthesized. For this purpose the alkyl chloroformates were replaced by acid chlorides and isocyanates respectively.

Chapter 3 describes further investigations concerning 5-(alkoxy)acylaminopyrimidines. In this context N⁴-mono-/disubstituted 4amino-2-(4-fluorobenzylamino)-5-propionamidopyrimidine-hydrochlorides (41) and ethyl [4-alkoxy-2-(4-fluorobenzylamino)-pyrimidine-5-yl]carbamates (42) were prepared. The synthesis was accomplished by catalytic hydrogenation of the corresponding 5-nitro-precursors and subsequent (alkoxy)acylation. The necessary 5-nitro-precursors were obtained via nucleophilic substitution of the thiocyanato group of N-(4-fluorobenzyl)-5-nitro-4-thiocyanatopyrimidin-2-amine (**39**).

In order to synthesize the benzylsulfanyl analogues **51** of the target structure 2-(benzylsulfanyl)pyrimidine-4,5-diamine (**52**) was alkoxyacylated with alkyl chloroformates. The starting material was obtained by *S*-alkylation of 5,6-diaminopyrimidine-2(1H)-thione (**53**).

The microwave-assisted reaction of 4-(ethoxymethylene)-2-phenyl-1,3oxazol-5(4*H*)-one **60** with aralkylisothiouronium halogenides (**59**) and triethylamine led to several N-[2-(aralkylsulfanyl)-6-oxo-1,6dihydropyrimidin-5-yl]benzamides (**57**). The ring transformation proceeded in high yields and very short reaction times.

Chapter 4 contains the synthesis of 2,4-diaminosubstituted pyrimidine-5carboxamides (82). They can be considered as functionally reversed 5-(alkoxy)acylamino derivatives (26, 27). Suitable precursors for the compounds 82 were the 2,4-diaminosubstituted pyrimidine-5-carbonitriles 84. The alkaline hydrolysis of 84 furnished the corresponding 2,4diaminosubstituted pyrimidine-5-carboxylic acids 83. In the final step, the carboxylic acid was activated with EDC/HOBt and converted into the desired 2,4-diaminosubstituted pyrimidine-5-carboxamides 82 by treatment with different amines and hydroxylamines. Furthermore, some heterocyclic bioisosteric analogues of 82 were prepared. On the one hand the preparation of 1,2,4-oxadiazole derivatives (90) succeeded by cyclisation of the corresponding *O*-acylamidoxime precursors. On the other hand the cycloaddition of ammonium azide to the 2,4-diaminosubstituted pyrimidine-5-carbonitriles 84 afforded the N^2 -aralkyl-5-(1*H*-tetrazol-5-yl)pyrimidine-2,4-diamines 92.

In chapter 5 of this work a versatile synthetic pathway for the synthesis of novel 3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amines (99) was demonstrated. The compounds 99 were obtained by reduction of 5-nitropyrimidine-2,4-diamine derivatives (115) and subsequent cyclisation of the resulting pyrimidine-2,4,5-triamines 116 by treatment with sodium nitrite in acidic solution.

Several of the prepared compounds displayed remarkable in vitro and in vivo activity which unfortunately can not be unfolded due a signed secrecy agreement.

10 Literaturverzeichnis

- ^[1] Aktories, K.; Foerstermann, U.; Hofmann, F. B.; Starke, K. in *Allgemeine und spezielle Pharmakologie und Toxikologie*, Urban & Fischer Verlag, Muenchen (2005), 231.
- ^[2] Mutschler, E.; Geisslinger, G.; Kroemer, H. K.; Ruth, P.; Schäfer-Korting, M. in *Arzneimittelwirkungen*, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart (2008), 211.
- ^[3] Mutschler, E.; Schaible, H.-G.; Vaupel, P. in *Anatomie, Physiologie, Pathophysiologie des Menschen*, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart (2007), 706.
- ^[4] Schaible, H. G., Orthopaede, (2007), **36**, 8.
- ^[5] Naleschinski, D.; Baron, R., *Psychopharmakotherapie*, (2008), **5**, 217.
- ^[6] Langmuir, I., J. Am. Chem. Soc., (1919), **41**, 1543.
- ^[7] Holleman, A. F.; Wiberg, N. in *Lehrbuch der anorganischen Chemie*, Walter de Gruyter, Berlin (2007), 134.
- ^[8] Grimm, H. G., Z. Elektrochem. Angew. Phys. Chem., (1925), **31**, 474.
- ^[9] Grimm, H. G., *Naturwissenschaften*, (1929), **17**, 535.
- ^[10] Erlenmeyer, H., Bull. Soc. Chim. Biol., (1948), **30**, 792.
- ^[11] Erlenmeyer, H.; Leo, M., *Helv. Chim. Acta*, (1933), **16**, 1381.
- ^[12] Erlenmeyer, H.; Berger, E.; Leo, M., *Helv. Chim. Acta*, (1933), **16**, 733.
- ^[13] Mutschler, E.; Geisslinger, G.; Kroemer, H. K.; Ruth, P.; Schäfer-Korting, M. in *Arzneimittelwirkungen*, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart (2008), 247.
- ^[14] Kubas, H.; Stark, H., Pharm. Unserer Zeit, (2007), 36, 24.
- ^[15] Burger, A., *Prog Drug Res*, (1991), **37**, 287.
- ^[16] Patani, G. A.; LaVoie, E. J., Chem. Rev. (Washington, D. C.), (1996), 96, 3147.
- ^[17] Siebert, C. D., Chem. Unserer Zeit, (2004), 38, 320.
- ^[18] Thornber, C. W., Chem. Soc. Rev., (1979), **8**, 563.
- ^[19] Wermuth, C. G. in *The Practice of Medicinal Chemistry*, Academic Press, London (1996), 203.
- ^[20] Boehm, H.-J.; Klebe, G.; Kubinyi, H. in *Wirkstoffdesign*, Spektrum Akademischer Verlag, Heidelberg (2002), 150.
- ^[21] Degussa, FR 306; Chem. Abstr. (1970) **78**, 71930.
- ^[22] Arzneimittelkommission der deutschen Ärzteschaft, *Dtsch Arztebl*, (2009), **106**, A 310
- ^[23] Jakovlev, V.; Sofia, R. D.; Achterrath-Tuckermann, U.; Von Schlichtegroll, A.; Thiemer, K., *Arzneim.-Forsch.*, (1985), **35**, 30.
- ^[24] Nickel, B.; Herz, A.; Jakovlev, V.; Tibes, U., Arzneim.-Forsch., (1985), 35, 1402.
- ^[25] Friedel, H. A.; Fitton, A., *Drugs*, (1993), **45**, 548.

- ^[26] Darius, H.; Schroer, K., Arzneim.-Forsch., (1985), **35**, 55.
- ^[27] Nickel, B.; Borbe, H. O.; Szelenyi, I., Arzneim.-Forsch., (1990), 40, 905.
- ^[28] Swedberg, M. D.; Shannon, H. E.; Nickel, B.; Goldberg, S. R., J Pharmacol Exp Ther, (1988), 246, 1067.
- ^[29] Szelenyi, I.; Nickel, B., Postgrad. Med. J., Suppl., (1987), 63, 57.
- ^[30] Szelenyi, I.; Nickel, B.; Borbe, H. O.; Brune, K., *Br. J. Pharmacol.*, (1989), **97**, 835.
- ^[31] Kupferberg, H. J., *Epilepsia*, (1989), **30 Suppl 1**, S51.
- ^[32] Dieter, H. R.; Engel, J.; Kutscher, B.; Polymeropoulos, E.; Szelenyi, S.; Nickel, B., DE 4200259; Chem. Abstr. (1993) **119**, 225705.
- ^[33] Porter, R. J.; Nohria, V.; Rundfeldt, C., *Neurotherapeutics*, (2007), **4**, 149.
- ^[34] Boscia, F.; Annunziato, L.; Taglialatela, M., *Neuropharmacology*, (2006), **51**, 283.
- ^[35] Schwarz, M.; Block, F.; Pergande, G., *NeuroReport*, (1994), **5**, 1981.
- ^[36] Schwarz, M.; Schmitt, T.; Pergande, G.; Block, F., *Eur J Pharmacol*, (1995), **276**, 247.
- ^[37] Osborne, N. N.; Cazevieille, C.; Wood, J. P. M.; Nash, M. S.; Pergande, G.; Block, F.; Kosinski, C.; Schwarz, M., *Gen. Pharmacol.*, (1998), **30**, 255.
- ^[38] Osborne, N. N.; Schwarz, M.; Pergande, G., *Invest Ophthalmol Vis Sci*, (1996), **37**, 274.
- ^[39] Rundfeldt, C., Eur. J. Pharmacol., (1997), **336**, 243.
- ^[40] Kornhuber, J.; Bleich, S.; Wiltfang, J.; Maler, M.; Parsons, C. G., J. *Neural Transm.*, (1999), **106**, 857.
- ^[41] Kornhuber, J.; Maler, M.; Wiltfang, J.; Bleich, S.; Degner, D.; Ruther, E., Fortschr Neurol Psychiatr, (1999), **67**, 466.
- ^[42] Main, M. J.; Cryan, J. E.; Dupere, J. R.; Cox, B.; Clare, J. J.; Burbidge, S. A., *Mol Pharmacol*, (2000), **58**, 253.
- ^[43] Rundfeldt, C.; Netzer, R., Neurosci Lett, (2000), 282, 73.
- ^[44] Wickenden, A. D.; Yu, W.; Zou, A.; Jegla, T.; Wagoner, P. K., *Mol Pharmacol*, (2000), **58**, 591.
- ^[45] Dost, R.; Rostock, A.; Rundfeldt, C., *Naunyn-Schmiedeberg's Arch. Pharmacol.*, (2004), **369**, 382.
- ^[46] Schwabe, U.; Paffrath, D. in Arzneiverordnungs-Report 2007, Springer Medizin Verlag, Heidelberg (2008), 246.
- ^[47] Gutman, G. A.; Chandy, K. G.; Adelman, J. P.; Aiyar, J.; Bayliss, D. A.; Clapham, D. E.; Covarriubias, M.; Desir, G. V.; Furuichi, K.; Ganetzky, B.; Garcia, M. L.; Grissmer, S.; Jan, L. Y.; Karschin, A.; Kim, D.; Kuperschmidt, S.; Kurachi, Y.; Lazdunski, M.; Lesage, F.; Lester, H. A.; McKinnon, D.; Nichols, C. G.; O'Kelly, I.; Robbins, J.; Robertson, G. A.; Rudy, B.; Sanguinetti, M.; Seino, S.; Stuehmer, W.; Tamkun, M. M.;

Vandenberg, C. A.; Wei, A.; Wulff, H.; Wymore, R. S., *Pharmacol. Rev.*, (2003), **55**, 583.

- ^[48] Bleich, M.; Warth, R., *Pflugers Arch*, (2000), **440**, 202.
- ^[49] Wang, H. S.; Pan, Z.; Shi, W.; Brown, B. S.; Wymore, R. S.; Cohen, I. S.; Dixon, J. E.; McKinnon, D., *Science*, (1998), **282**, 1890.
- ^[50] Kubisch, C.; Schroeder, B. C.; Friedrich, T.; Lutjohann, B.; El-Amraoui, A.; Marlin, S.; Petit, C.; Jentsch, T. J., *Cell*, (1999), **96**, 437.
- ^[51] Lerche, C.; Scherer, C. R.; Seebohm, G.; Derst, C.; Wei, A. D.; Busch, A. E.; Steinmeyer, K., *J Biol Chem*, (2000), **275**, 22395.
- ^[52] Schroeder, B. C.; Hechenberger, M.; Weinreich, F.; Kubisch, C.; Jentsch, T. J., *J Biol Chem*, (2000), **275**, 24089.
- ^[53] Selyanko, A. A.; Hadley, J. K.; Wood, I. C.; Abogadie, F. C.; Jentsch, T. J.; Brown, D. A., J. Physiol. (Cambridge, U. K.), (2000), **522**, 349.
- ^[54] Brown, D. A.; Adams, P. R., *Nature (London)*, (1980), **283**, 673.
- ^[55] Aiken, S. P.; Lampe, B. J.; Murphy, P. A.; Brown, B. S., *Br J Pharmacol*, (1995), **115**, 1163.
- ^[56] Brown, B. S.; Yu, S. P., Prog Biophys Mol Biol, (2000), 73, 135.
- ^[57] Zaczek, R.; Chorvat, R. J.; Saye, J. A.; Pierdomenico, M. E.; Maciag, C. M.; Logue, A. R.; Fisher, B. N.; Rominger, D. H.; Earl, R. A., *J. Pharmacol. Exp. Ther.*, (1998), 285, 724.
- ^[58] Shapiro, M. S.; Roche, J. P.; Kaftan, E. J.; Cruzblanca, H.; Mackie, K.; Hille, B., *J Neurosci*, (2000), **20**, 1710.
- ^[59] Delmas, P.; Brown, D. A., Nat. Rev. Neurosci., (2005), 6, 850.
- ^[60] Passmore, G. M.; Selyanko, A. A.; Mistry, M.; Al-Qatari, M.; Marsh, S. J.; Matthews, E. A.; Dickenson, A. H.; Brown, T. A.; Burbidge, S. A.; Main, M.; Brown, D. A., *J. Neurosci.*, (2003), 23, 7227.
- ^[61] Roza, C.; Lopez-Garcia, J. A., Pain, (2008), 138, 537.
- ^[62] Blackburn-Munro, G.; Jensen, B. S., *Eur. J. Pharmacol.*, (2003), **460**, 109.
- ^[63] Nielsen, A. N.; Mathiesen, C.; Blackburn-Munro, G., *Eur. J. Pharmacol.*, (2004), **487**, 93.
- ^[64] Bartsch, T.; Goadsby Peter, J., Curr Pain Headache Rep, (2003), 7, 371.
- ^[65] Welch, K. M. A., *Neurol Sci*, (2003), **24 Suppl 2**, S149.
- ^[66] Wu, Y.-J.; Boissard, C. G.; Greco, C.; Gribkoff, V. K.; Harden, D. G.; He, H.; L'Heureux, A.; Kang, S. H.; Kinney, G. G.; Knox, R. J.; Natale, J.; Newton, A. E.; Lehtinen-Oboma, S.; Sinz, M. W.; Sivarao, D. V.; Starrett, J. E., Jr.; Sun, L.-Q.; Tertyshnikova, S.; Thompson, M. W.; Weaver, D.; Wong, H. S.; Zhang, L.; Dworetzky, S. I., *J. Med. Chem.*, (2003), **46**, 3197.
- ^[67] Richter, A.; Sander, S. E.; Rundfeldt, C., *Br. J. Pharmacol.*, (2006), **149**, 747.
- ^[68] Rundfeldt, C.; Richter, A., WO 2007128462; Chem. Abstr. (2007) **147**, 496367.

- ^[69] Rundfeldt, C.; Kuss, H.; Draheim, R.; Bernoester, K., WO 2006079559; Chem. Abstr. (2006) **145**, 159879.
- ^[70] Schuster, G.; Schwarz, M.; Block, F.; Pergande, G.; Schmidt, W. J., *CNS Drug Rev.*, (1998), **4**, 149.
- ^[71] Otto, M.; Cepek, L.; Ratzka, P.; Doehlinger, S.; Boekhoff, I.; Wiltfang, J.; Irle, E.; Pergande, G.; Ellers-Lenz, B.; Windl, O.; Kretzschmar, H. A.; Poser, S.; Prange, H., *Neurology*, (2004), **62**, 714.
- ^[72] Schroder, H. C.; Muller, W. E. G., Drugs Today, (2002), 38, 49.
- ^[73] Schwarz, M.; Nolden-Koch, M.; Purr, J.; Pergande, G.; Block, F., J. *Neural Transm.*, (1996), **103**, 581.
- ^[74] Schwarz, M.; Pergande, G.; Engel, J.; Szelenyi, I.; Nickel, B.; Ulrich, H., DE 4327516; Chem. Abstr. (1995) **122**, 178415.
- ^[75] Muller-Schwefe, G., WO 2002015907; Chem. Abstr. (2002) **136**, 194264.
- ^[76] Hansen, H. H.; Waroux, O.; Seutin, V.; Jentsch, T. J.; Aznar, S.; Mikkelsen, J. D., *J. Physiol. (Oxford, U. K.)*, (2008), **586**, 1823.
- ^[77] Korsgaard, M. P. G.; Hartz, B. P.; Brown, W. D.; Ahring, P. K.; Strobaek, D.; Mirza, N. R., *J. Pharmacol. Exp. Ther.*, (2005), **314**, 282.
- ^[78] Gribkoff, V. K., Expert Opin. Ther. Targets, (2003), 7, 737.
- ^[79] Maljevic, S.; Wuttke, T. V.; Lerche, H., J. Physiol. (Oxford, U. K.), (2008), **586**, 1791.
- ^[80] McNaughton-Smith, G.; Wickenden, A. D., *Methods Princ. Med. Chem.*, (2006), **29**, 355.
- ^[81] Munro, G.; Dalby-Brown, W., J. Med. Chem., (2007), **50**, 2576.
- ^[82] Wu, Y.-J.; Dworetzky, S. I., Curr. Med. Chem., (2005), **12**, 453.
- ^[83] Khanzhin, N.; Rottlaender, M.; Ritzen, A.; Watson, W. P., WO 2004082677; Chem. Abstr. (2004) **141**, 314020.
- ^[84] Khanzhin, N.; Rottlaender, M.; Watson, W. P., WO 2004096767; Chem. Abstr. (2004) **141**, 395417.
- ^[85] Rottlaender, M.; Ritzen, A.; Bang, N. M.; Khanzhin, N.; Wenzel, T. C., WO 2004058739; Chem. Abstr. (2004) **141**, 123466.
- ^[86] Tornoee, C. W.; Rottlaender, M.; Greve, D. R.; Khanzhin, N.; Ritzen, A.; Watson, W. P., WO 2006029623; Chem. Abstr. (2006) **144**, 311786.
- ^[87] Schroder, R. L.; Jespersen, T.; Christophersen, P.; Strobaek, D.; Jensen, B. S.; Olesen, S. P., *Neuropharmacology*, (2001), 40, 888.
- ^[88] Labiche Lise, A.; Grotta James, C., *NeuroRx*, (2004), **1**, 46.
- ^[89] Hewawasam, P.; Dextraze, P.; Gribkoff, V. K.; Kinney, G. G.; Dworetzky, S. I., WO 2002066426; Chem. Abstr. (2002) **137**, 201228.
- ^[90] Hewawasam, P.; Chen, N.; Ding, M.; Natale, J. T.; Boissard, C. G.; Yeola, S.; Gribkoff, V. K.; Starrett, J.; Dworetzky, S. I., *Bioorg. Med. Chem. Lett.*, (2004), 14, 1615.

- ^[91] Wu, Y.-J.; He, H.; Sun, L.-Q.; L'Heureux, A.; Chen, J.; Dextraze, P.; Starrett, J. E., Jr.; Boissard, C. G.; Gribkoff, V. K.; Natale, J.; Dworetzky, S. I., *J. Med. Chem.*, (2004), **47**, 2887.
- ^[92] Wu, Y.-J.; Boissard, C. G.; Chen, J.; Fitzpatrick, W.; Gao, Q.; Gribkoff, V. K.; Harden, D. G.; He, H.; Knox, R. J.; Natale, J.; Pieschl, R. L.; Starrett, J. E.; Sun, L.-Q.; Thompson, M.; Weaver, D.; Wu, D.; Dworetzky, S. I., *Bioorg. Med. Chem. Lett.*, (2004), **14**, 1991.
- ^[93] Wu, Y.-J.; Sun, L.-Q.; He, H.; Chen, J.; Starrett, J. E.; Dextraze, P.; Daris, J.-P.; Boissard, C. G.; Pieschl, R. L.; Gribkoff, V. K.; Natale, J.; Knox, R. J.; Harden, D. G.; Thompson, M. W.; Fitzpatrick, W.; Weaver, D.; Wu, D.; Gao, Q.; Dworetzky, S. I., *Bioorg. Med. Chem. Lett.*, (2004), 14, 4533.
- ^[94] Boy, K. M.; Wu, Y.-J.; Guernon, J. M., WO 2004060281; Chem. Abstr. (2004) **141**, 140426.
- ^[95] Boy, K. M.; Wu, Y.-J., US 2004138268; Chem. Abstr. (2004) **141**, 123615.
- ^[96] Hewawasam, P.; Dodd, D. S.; Weaver, C. D.; Dextraze, P.; Gribkoff, V. K.; Kinney, G. G.; Dworetzky, S. I., WO 2002066036; Chem. Abstr. (2002) **137**, 185506.
- ^[97] McNaughton-Smith, G.; Fritch, P. C.; Amato, G. S., US 2001049444; Chem. Abstr. (2001) **136**, 20023.
- ^[98] McNaughton-Smith, G. A.; Gross, M. F.; Wickenden, A. D., WO 2001010380; Chem. Abstr. (2001) **134**, 157577.
- ^[99] McNaughton-Smith, G. A.; Amato, G. S.; Fritch, P. C., WO 2003068767; Chem. Abstr. (2003) **139**, 197498.
- ^[100]Khanzhin, N.; Greve, D. R.; Rottlander, M., US 2007066612; Chem. Abstr. (2007) **146**, 337905.
- ^[101]Brugnatelli, G.; Fiz, G., Ann. Chim. Phys., (1818), 8, 201.
- ^[102]Brown, D. J. in *The Pyrimidines*, Interscience Publishers, New York (1962), 324.
- ^[103] Wilson, W., J. Chem. Soc., (1948), 1157.
- ^[104] von Angerer, S., *Sci. Synth.*, (2004), **16**, 379.
- ^[105]Leonard, N. J.; McDonald, J. J.; Henderson, R. E. L.; Reichmann, M. E., *Biochemistry*, (1971), **10**, 3335.
- ^[106] Urban, R.; Schnider, O., Helv. Chim. Acta, (1958), 41, 1806.
- ^[107] Dornow, A.; Hinz, E., Chem. Ber., (1958), 91, 1834.
- ^[108] Wetzel, B.; Woitun, E.; Reuter, W.; Maier, R.; Lechner, U.; Goeth, H., DE 2851270; Chem. Abstr. (1980) **93**, 204635.
- ^[109]Bischoff, H.; Stasch, J.-P.; Weigand, S., WO 2005046725; Chem. Abstr. (2005) **142**, 476243.
- ^[110]Orth, W.; Engel, J.; Emig, P.; Scheffler, G.; Pohle, H., DE 3608762; Chem. Abstr. (1986) **106**, 50057.
- ^[111]Seydel, J. K.; Schaper, K. J.; Coats, E. A.; Cordes, H. P.; Emig, P.; Engel, J.; Kutscher, B.; Polymeropoulos, E. E., *J Med Chem*, (1994), **37**, 3016.
- ^[112]Von Bebenburg, W.; Thiele, K.; Engel, J.; Sheldrick, W. S., *Chem.-Ztg.*, (1981), **105**, 217.
- ^[113]Isay, O., *Ber.*, (1906), **39**, 250.
- ^[114] Whittaker, N.; Jones, T. S. G., J. Chem. Soc., (1951), 1565.
- ^[115]Baddiley, J.; Topham, A., J. Chem. Soc., (1944), 678.
- ^[116]Kenner, G. W.; Lythgoe, B.; Todd, A. R.; Topham, A., J. Chem. Soc., (1943), 574.
- ^[117] King, F. E.; King, T. J.; Spensley, P. C., J. Chem. Soc., (1947), 1247.
- ^[118]Brown, D. J., J. Appl. Chem., (1952), 2, 239.
- ^[119]O'Brien, D. E.; Noell, C. W.; Robins, R. K.; Cheng, C. C., J. Med. Chem., (1966), 9, 121.
- ^[120]Goldner, H.; Carstens, E., J. Prakt. Chem. (Leipzig), (1961), **12**, 242.
- ^[121] Taylor, E. C., Jr.; Loux, H. M.; Falco, E. A.; Hitchings, G. H., J. Am. Chem. Soc., (1955), **77**, 2243.
- ^[122]Blackburn-Munro, G.; Dalby-Brown, W.; Mirza, N. R.; Mikkelsen, J. D.; Blackburn-Munro, R. E., *CNS Drug Rev.*, (2005), **11**, 1.
- ^[123]Borlak, J.; Gasparic, A.; Locher, M.; Schupke, H.; Hermann, R., *Metab., Clin. Exp.*, (2006), **55**, 711.
- ^[124] Hempel, R.; Schupke, H.; McNeilly, P. J.; Heinecke, K.; Kronbach, C.; Grunwald, C.; Zimmermann, G.; Griesinger, C.; Engel, J.; Kronbach, T., Drug Metab Dispos, (1999), 27, 613.
- ^[125]Hiller, A.; Nguyen, N.; Strassburg, C. P.; Li, Q.; Jainta, H.; Pechstein, B.; Ruus, P.; Engel, J.; Tukey, R. H.; Kronbach, T., *Drug Metab Dispos*, (1999), **27**, 605.
- ^[126]Brown, D. J., J. Appl. Chem., (1957), 7, 109.
- ^[127] Wiley, R. H.; Lanet, J.; Hussung, K. H., *J. Heterocycl. Chem.*, (1964), **1**, 175.
- ^[128]Himmelsbach, F.; Fuchs, K.; Briem, H.; Fechteler, K.; Kostka, M.; Dorner-Ciossek, C.; Bornemann, K.; Klinder, K., WO 2003032994; Chem. Abstr. (2003) **138**, 338160.
- ^[129] Takahashi, T.; Naito, T.; Inoue, S., Chem. Pharm. Bull., (1958), 6, 334.
- ^[130] Sugiura, S.; Suzuki, E.; Naito, T.; Inoue, S., *Chem. Pharm. Bull. (Tokyo)*, (1968), **16**, 745.
- ^[131]Grandel, R.; Braje, W. M.; Haupt, A.; Turner, S. C.; Lange, U.; Drescher, K.; Unger, L., WO 2007118859; Chem. Abstr. (2007) **147**, 486332.
- ^[132]Naito, T.; Inoue, S., Chem Pharm Bull (Tokyo), (1958), 6, 338.
- ^[133]Wermuth, C. G. in *The Practice of Medicinal Chemistry*, Academic Press, London (1996), 209.
- ^[134]Badger, R. J.; Barlin, G. B., J. Chem. Soc., Perkin Trans. 1, (1976), 151.

- ^[135]Ram, S.; Evans, W.; Wise, D. S., Jr.; Townsend, L. B.; McCall, J. W., J. *Heterocycl. Chem.*, (1989), **26**, 1053.
- ^[136]Elion, G. B.; Hitchings, G. H., J. Am. Chem. Soc., (1947), 69, 2553.
- ^[137]Brown, D. J. in *The Pyrimidines*, Interscience Publishers, New York (1962), 9.
- ^[138] Tripathy, P. K.; Mukerjee, A. K., *Indian J. Chem., Sect. B*, (1986), **25B**, 1059.
- ^[139] Tikdari, A. M.; Tripathy, P. K.; Mukerjee, A. K., Chem. Ind. (London), (1986), 825.
- ^[140] Tikdari, A. M.; Tripathy, P. K.; Mukerjee, A. K., J. Chem. Soc., Perkin Trans. 1, (1988), 1659.
- ^[141]Cornforth, J. W.; Clarke, H. T.; et al., *Chemistry of Penicillin*, (1949), 688.
- ^[142] Matos, M. R. P. N.; Gois, P. M. P.; Mata, M. L. E. N.; Cabrita, E. J.; Afonso, C. A. M., *Synth. Commun.*, (2003), **33**, 1285.
- ^[143]Kappe, C. O., Angew. Chem., Int. Ed., (2004), 43, 6250.
- ^[144] Wathey, B.; Tierney, J.; Lidstrom, P.; Westman, J., Drug Discovery Today, (2002), **7**, 373.
- ^[145]Baghurst, D. R.; Mingos, D. M. P., J. Chem. Soc., Chem. Commun., (1992), 674.
- ^[146]Gabriel, C.; Gabriel, S.; Grant, E. H.; Halstead, B. S. J.; Mingos, D. M. P., *Chem. Soc. Rev.*, (1998), **27**, 213.
- ^[147] Dewey, B. T.; Shasky, H. G., J. Am. Chem. Soc., (1941), 63, 3526.
- ^[148]Iwai, N.; Fujii, T.; Nagura, H.; Wachi, M.; Kitazume, T., *Biosci., Biotechnol., Biochem.*, (2007), **71**, 246.
- ^[149]Laven, G.; Nilsson, J.; Stawinski, J., Eur. J. Org. Chem., (2004), 5111.
- ^[150] Paquette, L. A.; Wittenbrook, L. S.; Schreiber, K., J. Org. Chem., (1968), **33**, 1080.
- ^[151]Ringom, R.; Axen, E.; Uppenberg, J.; Lundbaeck, T.; Rondahl, L.; Barf, T., *Bioorg. Med. Chem. Lett.*, (2004), **14**, 4449.
- ^[152]Heesing, A.; Schmaldt, W., Chem. Ber., (1978), **111**, 320.
- ^[153]Bird, C. W., Tetrahedron, (1985), **41**, 1409.
- ^[154]Bird, C. W., *Tetrahedron*, (1986), **42**, 89.
- ^[155]Bird, C. W., Tetrahedron, (1987), 43, 4725.
- ^[156]Katritzky, A. R.; Barczynski, P.; Musumarra, G.; Pisano, D.; Szafran, M., *J. Am. Chem. Soc.*, (1989), **111**, 7.
- ^[157]Bird, C. W., Tetrahedron, (1992), 48, 335.
- ^[158] Dewar, M. J. S.; Spanninger, P. A.; Turchi, I. J., J. Chem. Soc., Chem. Commun., (1973), 925.
- ^[159] Dewar, M. J. S.; Turchi, I. J., J. Org. Chem., (1975), 40, 1521.
- ^[160] Turchi, I. J.; Dewar, M. J. S., Chem. Rev., (1975), **75**, 389.
- ^[161]L'abbé, G., J. Heterocycl. Chem., (1984), 21, 627.

- ^[162]Foster, R. H. K.; Carman, A. J., *J. Pharmacol. Exp. Ther.*, (1947), **91**, 195.
- ^[163] Jensen, K. A.; Lindquist, F.; Rekling, E.; Wolffbrandt, C. G., *Dan. Tidsskr. Farm.*, (1943), **17**, 173.
- ^[164]Nagashima, S.; Yokota, M.; Nakai, E.-I.; Kuromitsu, S.; Ohga, K.; Takeuchi, M.; Tsukamoto, S.-I.; Ohta, M., *Bioorg Med Chem*, (2007), **15**, 1044.
- ^[165]Cottis, S. G.; Tieckelmann, H., J. Org. Chem., (1961), 26, 79.
- ^[166]Katiyar, S. B.; Kumar, A.; Chauhan, P. M. S., *Synth. Commun.*, (2006), **36**, 2963.
- ^[167] Taylor, E. C., Jr.; Knopf, R. J.; Meyer, R. F.; Holmes, A.; Hoefle, M. L., *J. Am. Chem. Soc.*, (1960), **82**, 5711.
- ^[168]Brueckner, R. in *Reaktionsmechanismen*, Spektrum Akademischer Verlag, Berlin (2007), 281.
- ^[169]Brueckner, R. in *Reaktionsmechanismen*, Spektrum Akademischer Verlag, Berlin (2007), 300.
- ^[170]Boehm, H.-J.; Klebe, G.; Kubinyi, H. in *Wirkstoffdesign*, Spektrum Akademischer Verlag, Heidelberg (2002), 176.
- ^[171]Ahn, J.-M.; Boyle, N. A.; MacDonald, M. T.; Janda, K. D., *Mini-Rev. Med. Chem.*, (2002), **2**, 463.
- ^[172]Borg, S.; Estenne-Bouhtou, G.; Luthman, K.; Csoeregh, I.; Hesselink, W.; Hacksell, U., *J. Org. Chem.*, (1995), **60**, 3112.
- ^[173]Crimmin, M. J.; O'Hanlon, P.; Rogers, N. H.; Walker, G., J. Chem. Soc., Perkin Trans. 1, (1989), 2047.
- ^[174]Leite, A. C.; Vieira, R. F.; de Wanderley, A. G.; Afiatpour, P.; Ximenes, E. C.; Srivastava, R. M.; de Oliveira, C. F.; Medeiros, M. V.; Antunes, E.; Brondani, D. J., *Farmaco*, (2000), **55**, 719.
- ^[175] Watjen, F.; Baker, R.; Engelstoff, M.; Herbert, R.; MacLeod, A.; Knight, A.; Merchant, K.; Moseley, J.; Saunders, J.; et al., *J. Med. Chem.*, (1989), **32**, 2282.
- ^[176]Brown, W. D.; Teuber, L.; Dahl, B. H., WO 2004080377; Chem. Abstr. (2004) **141**, 295736.
- ^[177]Kohara, Y.; Imamiya, E.; Kubo, K.; Wada, T.; Inada, Y.; Naka, T., *Bioorg. Med. Chem. Lett.*, (1995), **5**, 1903.
- ^[178]Clapp, L. B., Adv. Heterocycl. Chem., (1976), 20, 65.
- ^[179]Hemming, K., J. Chem. Res., Synop., (2001), 209.
- ^[180] Jakopin, Z.; Dolenc, M. S., Curr. Org. Chem., (2008), **12**, 850.
- ^[181]Eloy, F.; Lenaers, R., Chem. Rev., (1962), 62, 155.
- ^[182]Boulton, A. J.; Ghosh, P. B.; Katritzky, A. R., *Angew. Chem.*, (1964), **76**, 816.
- ^[183]Boulton, A. J.; Katritzky, A. R., Proc. Chem. Soc., London, (1962), 257.
- ^[184] Boulton, A. J.; Ghosh, P. B., Advan. Heterocycl. Chem., (1969), 10, 1.
- ^[185]Gasco, A.; Boulton, A. J., Adv. Heterocycl. Chem., (1981), **29**, 251.

- ^[186]Katritzky, A. R., J. Heterocycl. Chem., (1994), **31**, 569.
- ^[187]Katritzky, A. R.; Gordeev, M. F., *Heterocycles*, (1993), **35**, 483.
- ^[188]Sliwa, W.; Thomas, A., *Heterocycles*, (1985), **23**, 399.
- ^[189]Korbonits, D.; Kanzel-Szoboda, I.; Horvath, K., J. Chem. Soc., Perkin Trans. 1, (1982), 759.
- ^[190] Vivona, N.; Cusmano, G.; Macaluso, G.; Frenna, V.; Ruccia, M., J. *Heterocycl. Chem.*, (1979), **16**, 783.
- ^[191]Ried, W.; Aboul-Fetouh, S., Chem.-Ztg., (1988), **112**, 135.
- ^[192]Ried, W.; Singh, M., Chem.-Ztg., (1988), **112**, 311.
- ^[193]Finnegan, W. G.; Henry, R. A.; Lofquist, R., J. Am. Chem. Soc., (1958), **80**, 3908.
- ^[194] Merla, B.; Frank, R.; Bahrenberg, G.; Schroeder, W.; Zemolka, S., WO 2006122800; Chem. Abstr. (2006) **146**, 7966.
- ^[195]Kelley, J. L.; Krochmal, M. P.; Linn, J. A.; McLean, E. W.; Soroko, F. E., *J Med Chem*, (1988), **31**, 1005.
- ^[196]Kelley, J. L.; Krochmal, M. P.; Linn, J. A.; McLean, E. W.; Soroko, F. E., *J Med Chem*, (1988), **31**, 606.
- ^[197]Kelley, J. L.; Soroko, F. E., *J Med Chem*, (1986), **29**, 1133.
- ^[198]Kelley, J. L.; Davis, R. G.; McLean, E. W.; Glen, R. C.; Soroko, F. E.; Cooper, B. R., *J Med Chem*, (1995), **38**, 3884.
- ^[199]Kelley, J. L.; Koble, C. S.; Davis, R. G.; McLean, E. W.; Soroko, F. E.; Cooper, B. R., *J Med Chem*, (1995), **38**, 4131.
- ^[200] Kelley, J. L.; Linn, J. A.; Bankston, D. D.; Burchall, C. J.; Soroko, F. E.; Cooper, B. R., *J Med Chem*, (1995), **38**, 3676.
- ^[201]Kelley, J. L.; Thompson, J. B.; Styles, V. L.; Soroko, F. E.; Cooper, B. R., *J. Heterocycl. Chem.*, (1995), **32**, 1423.
- ^[202]Kelley, J. L.; Wilson, D. C.; Styles, V. L.; Soroko, F. E.; Cooper, B. R., *J. Heterocycl. Chem.*, (1995), **32**, 1417.
- ^[203] Betti, L.; Biagi, G.; Giannaccini, G.; Giorgi, I.; Livi, O.; Lucacchini, A.; Manera, C.; Scartoni, V., *J. Med. Chem.*, (1998), **41**, 668.
- ^[204]Biagi, G.; Bianucci, A. M.; Coi, A.; Costa, B.; Fabbrini, L.; Giorgi, I.; Livi, O.; Micco, I.; Pacchini, F.; Santini, E.; Leonardi, M.; Nofal, F. A.; Salerni, O. L.; Scartoni, V., *Bioorg. Med. Chem.*, (2005), **13**, 4679.
- ^[205]Love, C. J.; Cooymans, L. P.; Vandermaesen, N., WO 2006075023; Chem. Abstr. (2006) **145**, 167273.
- ^[206]Lum, C.; Kahl, J.; Kessler, L.; Kucharski, J.; Lundstrom, J.; Miller, S.; Nakanishi, H.; Pei, Y.; Pryor, K.; Roberts, E.; Sebo, L.; Sullivan, R.; Urban, J.; Wang, Z., *Bioorg. Med. Chem. Lett.*, (2008), **18**, 3578.
- ^[207]Bergmann, F.; Levin, G.; Kwietny, H., Arch. Biochem. Biophys., (1959), 80, 318.
- ^[208]Dille, K. L.; Sutherland, M. L.; Christensen, B. E., J. Org. Chem., (1955), **20**, 171.

- ^[209] Wu, G.; Huang, M.; Richards, M.; Poirier, M.; Wen, X.; Draper, R. W., Synthesis, (2003), 1657.
- ^[210] Ustynyuk, Y. A.; Subbotin, O. A.; Buchneva, L. M.; Kazitsyna, L. A., *Dokl. Akad. Nauk SSSR*, (1976), **227**, 101. ^[211]Fidler, W. E.; Wood, H. C. S., *J. Chem. Soc.*, (1957), 3980.

11 Anhang

11.1 Gefahrenmerkmale und Sicherheitsratschläge

Daten im Sinne des Chemikaliengesetztes über die toxikologischen Eigenschaften der im Rahmen dieser Arbeit verwendeten Chemikalien bzw. synthetisierten Verbindungen liegen häufig nicht vor. Gefährliche Eigenschaften können nicht ausgeschlossen werden. Die Substanzen sind mit der für gefährliche Chemikalien üblichen Vorsicht zu handhaben.

Nachfolgend sind die wichtigsten im Rahmen dieser Arbeit verwendeten Reagenzien und Lösungsmittel aufgeführt, die nach Anhang II (Besondere Vorschriften zur Information, Kennzeichnung und Verpackung) der Gefahrstoffverordnung mit Gefahrensymbolen und Sicherheitsratschlägen versehen sind.

Lösungsmittel	Gefahren-	R-Sätze	S-Sätze
	symbole		
1,4-Dioxan	F, Xn	11-19-36/37-40-66	9-16-36/37-46
Aceton	F	11-36-66-67	9-16-26
Acetonitril	F, Xn	11-20/21/22-36	16-36/37
Benzen	F, T	45-46-11-36	53-45
		38-45/23/24/25-65	
Dichlormethan	Xn	40	(2-)23-24/25-36/37
Diethylether	F ⁺ , Xn	12-19-22-66-67	9-16-29-33
Eisessig	С	10-35	23-26-45
Ethanol	F	11	7-16
Ethylacetat	F	11-36-66-67	16-23-29-33
Methanol	T, F	11-23/24/25-39/23/24/25	7-16-24-45
N,N-	Т	61-20/21-36	53-45
Dimethylformamid			
Petrolether	F, N, Xn	11-38-51/53-65-67	(2-)9-16-29-33-61-
			62
Pyridin	F, Xn	11-20/21/22	(2-)26-28
Tetrahydrofuran	Xi, F	11-19-36/37	16-29-33
Toluen	Xn, F	11-38-48/20-63-65-67	16-25-29-33

Reagenz	Gefahren-	R-Sätze	S-Sätze
2-Fluorbenzylamin	C	34	26-27-36/37/39-45
3-Anisovlchlorid	Xi	34-36	26-36/37/39-45
3-Chlorphenylisocyanat	T^+	26-35-37-42	23-26-28-36/37/39-
	_		45
3-Methylbenzoylchlorid	С	34	24/25
4-Fluorbenzylbromid	С	34-36	26-36/37/39-45
4-Fluorbenzylamin	С	20/21/22-34	26-36/37/39-45
4-Methylbenzylamin	С	34	26-36/37/39-45
4-Trifluormethylbenzylamin	Xi	36/37/38	26-36
5-Nitrouracil	-	-	22-24/25
Acetanhydrid	С	10-20/22-34	26-36/37/39-45
Acetylchlorid	F, C	11-14-34	9-16-26-45
Ammoniak	T, N	34-50	9-16-26-36/37/39-
			45-61
Ammoniumchlorid	Xn	22-36	22
Anilin	T, N	23/24/25-40-	26-27-36/37/39-45-
		41-43-	46-61-63
		48/23/24/25-50-	
N 111 11		68	
Benzoylchlorid	C	34	(1/2-)26-45
Benzylamin	C	21/22-34	26-36/37/39-45
Benzylchlorid	1	45-22-23-	53-45
Dects and a labor of t	EC	3//38-41-48/22	(1/2) 1(22) 2(2)
Butyryichiofid	Г, С	11-34	(1/2-)10-25-20-50-
Butylamin	F C	11 20/21/22 35	3 16 26 20
Butylamin	Γ, C	11-20/21/22-33	36/37/39-45
Chlorameisensäureethylester	F T ⁺	11-22-26-34	(1/2)9-16-26-28-33-
	1,1	11 22 20 54	36/37/39-45
Chlorameisensäurepropylester	Т	10-23-34	26-36-45
Chlorameisensäurebutylester	Т	10-23-34	26-36-45
Chlorameisensäureisobutylester	Т	10-22-23-34	26-36/37/39-45
Cyclohexylisocyanat	T^+	10-21/22-26-	26-28-36/37-45
		36/37/38-42	
Cyclopentylacetylchlorid	С	34	26-36/37/39-45
Cyclopropylamin	C, F	11-34	7/9-16-26-33
Diisopropylethylamin	F, C	11-22-34-52/53	16-26-36/37/39-45-
			61
Dimethylamin	F, C	11-20/22-34	3-16-26-29-
			36/37/39-45
Ethoxymethylenmalononitril	Т	23/24/25-42/43	22-26-36/37/39-45
Ethylamin-hydrochlorid	Xi	36/37/38	26-36
Ethylisocyanat	F, T	11-20/21-25-	16-26-36/37/39-45
		36/37/38-42	
HCI (rauchend)	C	34-37	(1/2-)26-45
HUI-Gas	1, C	23-25	(1/2-)9-26-36/37/39-
	1		43

Hydroxylamin (50% in Wasser)	Xn, N	22-37/38-40-	26-36/37/39-61
		41-43-48/22-50	
Kaliumcarbonat	Xn	36/37/38	22-26
Kaliumthiocyanat	Xn	20/21/22-32-	13-61
		52/53	
Lithiumchlorid	Xn	22-36/37/38	26-36/37/39
Magnesiumsulfat	-	-	26-36
Morpholin	С	10-20/21/22-34	(1/2-)23-36-45
Natrium	F, C	14/15-34	8-43-45
Natriumazid	T^+ , N	28-32-50/53	28-45-60-61
Natriumhydrogensulfid	C	31-34	-
Natriumhydrogencarbonat	-	-	24/25
Natriumhydroxid	С	35	26-36/37/39-45
Natriumnitrit	O, T, N	8-25-50	45-61
<i>N</i> , <i>N</i> -Dimethylanilin	T, N	23/24/25-40-	(1/2-)28-36/37-45-
		51/53	61
N-Methylbenzylamin	Xi	36/37/38	26-36/37/39-45
O-Ethylhydroxylamin-	Xi	36/37/38	26
hydrochlorid			
Phenylethylamin	C, Xn	21/22-34	26-27-36/37/39-45
Phenylisocyanat	T^+	10-22-26-34-	16-26-28-36/37/39-
		42-52	45
Phosphoroxychlorid	T^+, C	14-22-26-29-	26-45-7/8
		35-48/23	
Propionylchlorid	F, C	11-14-34	(1/2-)9-16-26-45
Propylisocyanat	F, Xn	11-20/21/22-	23-26-36/37/39-45
		37/38-41-42/43	
Triethylamin	F, C	11-20/21/22-35	3-16-26-29-
			36/37/39-45
Valerylchlorid	C, Xn	10-20-34	8-16-36/37/39-45