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Abstract

Motivated by the practical issues in applying the vision systems to the industrial robot
vision applications, the dissertation has made great efforts on camera calibration, cam-
era recalibration, vision systems calibration and pose estimation.

Firstly, the calibration methods from Tsai are analyzed and improved by solving the de-
generate and extent situations. Since the image origin is not calibrated in Tsai methods,
the direct linear method and the calibration with vanishing points are referred. They
calibrate the image origin but neglect the lens distortion. The situation in practice is
that the lens distortion is more sensitive than the image origin to pose estimation and
it is difficult to give an initial guess to implement the distortion alignment. Therefore,
a direct search algorithm for the image origin is introduced by use of the other camera
parameters. Finally, the refinement with nonlinear minimization for all camera param-
eters comes into the discussing sight.

After the settle down of the mathematical issues in camera calibration, some approaches
to online calibration are proposed according to the application environments. The cal-
ibration with a robot tool and with a calibration body are the alternative solutions for
the robot vision applications. Taking further the application procedure into account, an
approach to camera pose calibration with an external measurement system is introduced.

When the applications in industries are given more concerns, the camera recalibra-
tion needs to be considered. Since the camera is disturbed by its pose in most of cases,
the recalibration is simplified to determine the changes happened to the camera pose.
Three recalibration approaches are proposed for checking the changes and determining
the corrections of the camera pose in real time.

Eventually, some contributions on vision systems calibration and pose estimation are
made according to the applications. Although the application with a mono-camera sys-
tem and the calibration to a stereo sensor are discussed in details, the dominating target
is the multi-camera system. Some valuable approaches, including pattern weight,zero
measurement, pattern compensation and security control, to improve the system per-
formances in industrial applications are therefore brought forward.

All the methods and approaches referred in the dissertation aim at applying the vi-
sion systems accurately and efficiently to the robot vision applications. They relate
fruitfully the techniques in laboratory to the industrial applications.
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Chapter 1

Introduction

Vision systems are applied more and more often in industries, the industrialization
process becomes more and more necessary and imperative. With many years of working
experience in vision software developing and industrial projects implementing, some
practical approaches to applying vision systems into robot vision applications as well
as the improvements in estimation algorithms on camera calibration and measurement
are discussed in this dissertation.

1.1 Practical issues

Oriented closely by the applications, our research work focuses on solving the practical
issues from the robot vision applications in automotive industry. The issues are mainly
from the following fields:

1. Accuracy of camera calibration
The importance of the accuracy of camera calibration is obvious, since the uncer-
tainty in calibration is inherited permanently by the vision system and always does
its work in measurements. The uncertainty can be from the improper calibration
methods as well as the inaccurate calibration data, such as the inaccuracy of tsai

methods [7, 8] is caused by taking the image center as the image origin; the inac-
curacy of the direct linear method [31] is from neglecting the lens distortion; the
accuracy of zhang method [48] as well as other methods from the vanishing points

is dependent too much on the accuracy of the image processing; the accuracy of
the nonlinear minimization method may be affected by interactions between the
camera parameters.

2. Efficiency and convenience on site
Camera calibration on site is different from calibration in laboratory because of the
different working environments. Efficiency indicates the quality of the calibration
results and convenience means the complexity of the calibration procedure. An
efficient and convenient calibration on site should make full use of the environment
and need as few as possible additional equipments, but educe the accurate and
stable calibration results.

3. Accuracy of measurement
The vision systems referred in the dissertation are applied to robot vision appli-
cations, where the measurement task is to determine the pose of the work objects
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1.2 Dissertation aims Introduction

and the accuracy is the issue, especially when the work object is relatively large.
The inaccuracy in pose estimation is possible from camera calibration, estimation
algorithm, pattern recognition or the non-rigidity of the work object. The error
caused from the former two sources is usually called system error. In most of
cases, a vision system is not accurate enough for the robot vision applications till
the system error is removed away.

4. Stability and security of vision systems
When a vision system is applied to industrial applications, the stability and secu-
rity have to be discussed. Much work must be done to prevent from the instability
or mistakes caused from the errors in pattern recognition, disturb to camera poses,
and so on.

1.2 Dissertation aims

Motivated by the above issues, the dissertation aims at the new ideas, better tools,
proper designs, improvements or refined solutions on calibration, measurement or recal-
ibration. They may not have the newest or best techniques, but they must satisfy well
the application requirements; they may not be the simplest or easiest to implement, but
they must be practical and economical in industries. They are outlined as follows:

1. Analyze respectively the calibration methods applied most frequently to prac-
tice, find out their advantages, disadvantages and applying situations, test their
degenerate configurations and make improvements if possible.

2. Since some calibration methods calibrate only part of the camera parameters,
develop some additional algorithms for estimating the uncalibrated parameters as
a complementarity procedure in calibration.

3. Make clear of the interactions between camera parameters in estimation and pro-
pose some appropriate combination solutions for accurate and complete calibra-
tions.

4. Develop some practical approaches for different types of applications by introduc-
ing some appropriate tools.

5. According to the specific working environments, some strategies are to be intro-
duced to improve the performances of the vision systems in robot vision applica-
tions.

6. Develop some online approaches to check whether the camera pose is disturbed
and estimate the correction to the camera pose if any change really happens.

7. Introduce some typical applications where some of the methods or approaches
proposed in the dissertation are applied and tested.

8. All the methods or approaches proposed in this dissertation must be programmed,
tested in laboratory and the stable and valuable ones are to be integrated into the
vision systems for industrial applications.

Generally speaking, the aim of the dissertation is to do contributions for applying the
vision systems more accurately and efficiently to the robot vision applications.
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1.3 Notation description Introduction

1.3 Notation description

In this dissertation, there are hundreds of symbols and equations for describing the
constraints within many kinds of variables. For better understanding and quoting,
some general rules are followed by the notations.

1.3.1 Camera parameters

Camera parameters include internal and external parameters and have settled symbols
throughout this dissertation.

A. Internal parameters

To describe the camera projection, the following parameters are needed

1. f : the focal length of the camera lens;

2. Sx, Sy: the pixel size on camera chip;

3. Cx, Cy: the intersection of the optical axis and the camera chip plane;

4. k: the scale factor of the radial distortion of the camera lens.

In mathematics these six variables are condensed into five parameters

1. fx, fy: the scale factor for transferring millimeters into pixels;

2. Cx, Cy: the origin of the image frame;

3. K: the magnified distortion scale factor from k.

When the lens distortion is neglected, the internal camera parameters can be included
into a matrix denoted as A

A =







fx 0 Cx

0 fy Cy

0 0 1







B. External parameters

The external camera parameters are the six elements of a transformation between co-
ordinate frames

1. x, y, z: the translation elements and sometimes denoted as tx, ty, tz;

2. rx, ry, rz: the rotation elements and sometimes denoted as α, β, γ.

When expressing in equations of matrix forms, they are usually denoted as R and ~t, or
as a whole T for homogeneous coordinates

(R,~t) ⇐⇒
(

R ~t
0 1

)

= T

7



1.3 Notation description Introduction

1.3.2 Point and pixel

Points in space and pixels in image and their coordinates are denoted with a subscript
number

~pi = (xi, yi, zi)
T ~Pi = (Xi, Yi)

T

For representing the homogeneous coordinates, they are denoted as

~pi = (xi, yi, zi, 1)T ~Pi = (Xi, Yi, 1)T

A point or pixel in a certain coordinate frame, e.g. the camera frame C, is usually
denoted with a superscript name

c~pi =







cxi
cyi
czi





 =







xi

yi

zi







c

c ~Pi =

(

cXi
cYi

)

=

(

Xi

Yi

)c

1.3.3 Matrix, vector and coordinate frame

A matrix is denoted usually as a capital letter and a vector as a letter with an arrow
on the top.

1. J : the coefficients matrix from an over-determined system and the element at row
i and column j is denoted as Jij;

2. ~x: the vector of unknowns from an over-determined system and the element at
position i is denoted as xi.

A matrix in this dissertation represents more often the transformation between coordi-
nate frames.

1. ARB: the rotation transformation from frame A to frame B, a 3 × 3 orthogonal
matrix;

2. ATB: the complete transformation from frame A to frame B, a 4 × 4 homography.

1.3.4 Others

1. F (x, y, · · ·): a function with the unknowns x, y, · · ·;

2. Ω∞: the absolute conic in projection space;

3. l∞, π∞: the line, plane at infinity in projection space;

4. (Vi, Vj): a pair of vanishing points from orthogonal directions.
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1.4 Dissertation outline Introduction

1.4 Dissertation outline

This dissertation is structured by 5 chapters and here is the chapter 1 for a general
introduction. Chapter 2 constructs a camera model, which is used throughout the
dissertation, and the camera parameters from this model are well explained in both
mathematics and real projection principle. Several calibration algorithms are described
in chapter 3 for determining all or parts of the camera parameters. Most of time,
these algorithms should be combined to carry out a complete and accurate calibration.
For applying these calibration techniques into practices, some practical approaches are
proposed in chapter 4. These approaches may use different tools or setups in calibration
procedure according to the different applying environments and objectives. Finally,
chapter 5 introduces some vision systems applied in robot vision applications, whose
measuring tasks, measuring algorithms and some issues for applying themselves into
applications are discussed in detail, and the techniques referred in foregoing chapters
are tested in the researching or industrial applications.
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Chapter 2

Camera Model

Camera is the basic element for computer vision. To model a camera is to describe in
mathematics how the camera projects a visible object point into a corespondent image
pixel on the camera chip.

2.1 Camera projection

To describe the projection procedure of the camera lens in mathematics, the following
coordinate frames, as shown in the below figure, are defined

Figure 2.1: camera projection in mathematics

1. the world frame: the user defined unique reference frame;

2. the image frame: the 2D image coordinate frame centered the intersection of
the optical axis and the camera chip plane.

11



2.1 Camera projection Camera Model

3. the camera frame: the projection frame with the origin lying at the optical
center point of the camera lens, z-axis pointing out against the camera chip and
the other two axises are so defined that their directions are the same respectively
as those of the image frame;

As seen from the above figure, the object point is projected into its corresponding image
pixel along a ray passing through the optical center point of the camera lens. Therefore,
here yield the following perspective equations

u

f
=

xc

zc

(2.1)

v

f
=

yc

zc

(2.2)

where f is the focal length of the camera lens, (xc, yc, zc) are the coordinates of the
object points in camera frame and (u, v) are the coordinates of the corresponding image
pixel in image frame. Since (xc, yc, zc) have the unit of millimeters, (u, v) must have the
same unit. However, the image coordinates are usually denoted with unit of pixel. For
converting pixels into millimeters, Sx, Sy are defined to denote the pixel size respectively
in x- and y-axis of the pixels array on the camera chip. Let (X,Y ) denote the image
coordinates in pixels and yield

u = XSx (2.3)

v = Y Sy (2.4)

Substituting u, v with X,Y and Sx, Sy, one can find that there are only two independent
parameters from Sx, Sy and f . One can simply verify as follows: if {Sx, Sy, f} is a set
of solution, {λSx, λSy, λf} with λ being an arbitrary non-zero factor must be another
set of solution to satisfy the projection relations, namely

X · λSx

λf
≡ u

f
=

xc

zc

(2.5)

Y · λSy

λf
≡ v

f
=

yc

zc

(2.6)

In order to make the calibration procedure stable, the following two parameters are
introduced

fx ≡ f/Sx (2.7)

fy ≡ f/Sy (2.8)

Then let’s look into the image frame. As defined above, the image coordinates (X,Y ) is
with respect to image frame, whose origin is the intersection of the optical axis and the
camera chip plane. However, an actual digital image for computer vision has its own
image coordinates, which is not the same as defined above. Moreover, the intersection
is dependent upon not only the camera and the lens, but also the mounting situation
of the lens to the camera. Therefore, it is necessary to calibrate the image origin of the
image frame. If the image origin is denoted as (Cx, Cy) and (X,Y ) denote again the
actual image coordinates, the projection procedure in camera frame can be described
as

X − Cx

fx

=
xc

zc

(2.9)

Y − Cy

fy

=
yc

zc

(2.10)
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2.2 Camera model

As Faugeras described in [52], an ordinary model for a pinhole camera can be written
into matrix form as following

δ ~P = A~p (2.11)

where δ is an arbitrary scale factor; ~p is an object point and ~P is the corresponding
image projection; the projective matrix A, whose elements are called camera internal
parameters, characterizes the properties of the camera optics and is given by

A =







fx γ Cx

0 fy Cy

0 0 1





 (2.12)

where (Cx, Cy) is the intersection of the optical axis with the camera chip, also named
as image origin; fx and fy are the scale factors, which will transfer object millimeters
into image pixels in x- and y-axis respectively; γ describes the skewness between the two
directions of the pixels array on the chip and is determined only by the manufacturer
of the camera. For a qualified camera used in industries, the skewness is often small
enough to be neglected. Thus the camera model referred in the dissertation is with zero
skewness.
The above camera model simply takes the camera frame as the world frame. In prac-
tice, the world frame is usually defined different from the camera frame, e.g. in a
multi-camera vision system, which poses another task for camera calibration: deter-
mine the transformation [R,~t] between the camera frame and the world frame. Since
[R,~t] describes the camera pose with respect to an external coordinate frame, whose
elements are also named camera external parameters. With both the internal and the
external parameters, the camera model is described as

δ ~P = A[R,~t]~p (2.13)

where ~P = (X,Y, 1)T and ~p = (x, y, z, 1)T for homogeneous coordinates, but [R,~t]~p
results a 3-vector of normal coordinates for the consistence of computation.

2.3 Lens distortion

It seems that the above camera model describes the camera projection well. However,
the actual cameras do not follow the perfect model, since the lenses in practice have
distortions. As zhuang concluded in [31], lens distortion can be classified traditionally
into radial and tangential distortions. From figure 2.2, one sees that the tangential
distortion is much more complex to model in mathematics. Fortunately, many camera
calibration researchers have verified experimentally that the radial distortion always
takes the dominant effect and the tangential distortion can be neglected in practice.
The radial distortion in geometric associates with the position of the image point on
the camera chip and is widely considered as following

~Pr = ~Pi + ~Pi(k1 · |~Pi|2 + k2 · |~Pi|4 + · · ·) (2.14)

where ~Pi is the ideal pixel and ~Pr is the real pixel.
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(a) radial distortion (b) tangential distortion

Figure 2.2: lens distortions in camera projection

If the higher order terms are dropped, one has

~Pr = ~Pi(1 + k · |~Pi|2) (2.15)

In order to integrate the distortion factor into the camera model expression for calculat-
ing, we need to express the ideal pixel ~Pi using ~Pr. Considering the fact that ‖ k ‖≪ 1,
one can approximate

~Pi =
~Pr

1 + k · | ~Pr|2
(2.16)

Experiments show that most cameras used in practice have negative radial distortion
as seen from figure 2.2, that is why the calibration results often satisfy k ≤ 0.
Since the lens distortion is a nonlinear factor, the camera model with distortion is no
longer linear. Combining the radial distortion and 2.13, one gets the following two
projective equations

1

1 + k
(

(X − Cx)2S2
x + (Y − Cy)2S2

y

)

X − Cx

fx

=
xc

zc

(2.17)

1

1 + k
(

(X − Cx)2S2
x + (Y − Cy)2S2

y

)

Y − Cy

fy

=
yc

zc

(2.18)

As discussed before, Sx, Sy, fx, fy are not four independent parameters. For consistence
reason, the distortion factor is defined as K = k · f 2. Rearrange the above equations,
the camera model with distortion yields

1

1 + K
(

(X−Cx)2

fx
2 + (Y −Cy)2

fy
2

)

X − Cx

fx

=
xc

zc

(2.19)

1

1 + K
(

(X−Cx)2

fx
2 + (Y −Cy)2

fy
2

)

Y − Cy

fy

=
yc

zc

(2.20)
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where











xc

yc

zc

1











=
(

R,~t
)











x
y
z
1











(2.21)

Remark: With the new definition of distortion factor by K = k · f 2, it satisfies no
longer that ‖ K ‖≪ 1. When f is very large, ‖ K ‖ may be even larger than 1.

2.4 Camera calibration

Camera calibration is the procedure to determine all the camera parameters from the
applied camera model. For the camera model discussed in the paper, the parameters
are as follows

1. Internal parameters: fx, fy, Cx, Cy, K

2. External parameters: x, y, z, α, β, γ

For extracting information from 2D images, the camera calibration is an important
and necessary step for all vision systems, especially for the systems to be used in 3D
measuring.

2.4.1 Classification of calibration methods

Many valuable calibration methods are reported by the researchers in the field of com-
puter vision. Similar to zhang ’s opinion in [48], the techniques for camera calibration
can be roughly classified into three categories: photogrammetric calibration, calibration
from view geometry and self-calibration.

Photogrammetric calibration: This is the traditional direction for camera calibra-
tion. The approaches are carried out with a calibration object whose geometry in space
is known with good precision. These approaches are normally efficient: stable and
accurate results can be expected. However, an expensive calibration object with 3D
coordinates and an elaborate setup are usually needed, which makes its applying in
practice to some degree difficult.

Calibration from view geometry: With further understanding in view geometry
and camera projection, researchers have found some easy calibration methods from
vanishing points or circular points, or from pure rotation. The calibration is done only
with some orthogonality or parallelity properties in geometry of the calibration model,
which makes the pattern recognition much more simple and accurate.

Self-calibration: The techniques need no special calibration object and are very flex-
ible. Just by matching the camera images of a static scene from several positions, the
camera is calibrated with fixed intrinsic parameters. Of course disadvantages are also
obvious: too many parameters need to be estimated, and one cannot always expect to
get reliable results.
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In the next chapter, some calibration methods are to be described in detail. Since
the aim of the dissertation is the industrial applications, where the most concerned
issues are the accuracy and stability, most of the methods are of photogram-metric
calibration, and none of them is of self-calibration techniques.

2.4.2 Calibration deviation

The normal way to check how well it is calibrated is to integrate the calibrated cameras
into a vision system and do the measurements. However, it is usually an elaborate
procedure to set up a vision system and do some test measurements. Actually, when the
camera is calibrated, one can easily obtain the deviations in both pixels and millimeters
for all calibration points to verify the calibration accuracy.
In the calibration procedure, the world points ~pi and their corresponding images ~Pi, or
named is ~Pi from pattern recognition, are used to determine the projective matrix A and
the camera pose (R,~t). On the contrary way, when the camera is calibrated, the ideal

image should ~Pi for a calibration point ~pi can be determined in mathematics. Firstly, the
coordinates in the camera frame can be obtained by







xi

yi

zi







camera

= cRw ·







xi

yi

zi







world

+ ~t (2.22)

Replacing the above into 2.19 and 2.20 for camera model with distortion, we will get
two equations about Xi, Yi, A and (R,~t). Since the camera is calibrated, the projective
matrix A and the camera pose (R,~t) are known and only Xi, Yi are unnowns, and the
equations can be rearranged into

Fx(X
2
i , Y 2

i ) = 0 (2.23)

Fy(X
2
i , Y 2

i ) = 0 (2.24)

Solving Xi and Yi from the above equations for the ideal pixel should ~Pi, the deviations
in pixels is obtained

∆~Pi = is ~Pi − should ~Pi = (Xi, Yi)
is − (Xi, Yi)

should, i = 1, · · · , N (2.25)

where ∆~Pi show how well the the camera parameters match the coordinates of the
calibration points, in other words, they show to some extent how well the camera is
calibrated.
The above computed deviation is in pixel, which can be converted into millimeter.
Looking into the above procedure, the point in the camera frame camera~pi is obtained,
consequently camerazi. With the projective matrix A known, the deviation in millimeter
can be estimated as follows

∆~Pi =camera zi ·
(

f−1
x 0
0 f−1

y

)

· ∆~Pi, i = 1, · · · , N (2.26)

Of course, the distortion factor can also be used to obtain more accurate deviations
by using the projective equations 2.19 and 2.20. Since the deviations in millimeter are
independent to the focal length and the distance from the camera to the calibration
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points, one can understand the calibration errors much easier.
Getting the deviations from all calibration points, one can easily determine how well the
camera is calibrated. If a calibration point has large deviations, it must match its image
pixel poorly and of course the point-pixel pair has done some negative contributions in
the calibration procedure. The error source is mostly from the image processing: the
pattern is not correctly recognized. In real situation, a reasonable threshold is usually
set for checking the deviations. If some points have deviations larger than the threshold,
the camera will be recalibrated without these bad calibration points. The procedure is
repeated till all deviations are small enough.

Remark: Since the equations Fx, Fy have 2nd order terms of Xi, Yi, they may have
two values for Xi and Yi in solutions. The correct solutions for Xi and Yi are the values
with the same signs as xc and yc respectively.
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2.5 Chapter review

Although the camera model adopted in this dissertation is referred by many researchers,
the below points should be paid more attention to in order to understand the calibration
and measurement approaches proposed later in the dissertation better.

1. Parameter sets fx, fy and f, Sx, Sy

For this camera model only five internal parameters fx, fy, Cx, Cy and k are needed
in mathematics but six parameters f, Sx, Sy, Cx, Cy and k are necessary to char-
acterize a camera in practice. Our solution is to get the value for Sy from the
camera specifications and take it as a constant, then

f = Sy ∗ fy (2.27)

Sx = Sy ∗ fy/fx (2.28)

With the above equations, fx, fy and f, Sx are uniquely determined to each other.

2. Lens distortion
After many times of test both in laboratory and at work site, a single coefficient
k describes well the radial distortion of the camera lens. In order to describe
simplifier and clearer in mathematics, a new coefficient K is defined as follows

K = k ∗ f 2 (2.29)

With this definition, K may not satisfy ‖ K ‖≪ 1.

3. Calibration deviation
In most of articles on camera calibration, the stabilities of the calibration results
from the same camera are observed to check the validity and reliability of the
calibration method. It is very effective for testing in laboratory. However, a
camera is usually calibrated once at working site and the stability checking can
not be applied. Thus the calibration deviation is introduced for checking the
compatibility of the calibration data and the camera parameters. Further more,
the deviations can be transferred into millimeters for easier understanding. If
all the calibration deviations from the valid calibration points are small enough,
the estimated camera parameters match the calibration data well and the camera
must be calibrated accurately.
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Chapter 3

Analyze and Improvements of the
Calibration Methods

In this chapter, some appropriate algorithms for camera calibration are analyzed and
some improvements are done. The two calibration methods from Tsai [7, 8] are efficient,
but the image origin is paid no attention to. To estimate the image origin, a direct
linear method is proposed, which takes the image origin into consideration but neglects
the lens distortion. Further in this direction, an algorithm from vanishing points in
projection geometry is studied. Considering of the importance of the lens distortion
to measurements, a direct searching technique for the image origin is then introduced.
Finally, a properly designed minimization algorithm is discussed to refine all camera
parameters in an integrated procedure.
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3.1 Calibration with coplanar points

In most of practices, the calibration points are given in an array in a plane. In fact, this
is the simplest way to supply more as possible known calibration points and the array
of points are normally given in a calibration board. With the calibration board lying
in one position in the camera sight, the camera can be calibrated if the image origin
Cx, Cy are known and fx = fy.
Without any loss of generality, the calibration points are assumed to locate in the plane
z = 0 of the world coordinate frame. Denote

X = X − Cx (3.1)

Y = Y − Cy (3.2)

f = fx = fy (3.3)

K = K/f (3.4)

To replace the above expressions into equations 2.19 and 2.20 for a camera model with
distortion,

X

f + K (X2 + Y 2)
=

xc

zc

(3.5)

Y

f + K (X2 + Y 2)
=

yc

zc

(3.6)

where







xc

yc

zc





 =
(

R,~t
)











x
y
0
1











=







r1 r2 tx
r4 r5 ty
r7 r8 tz













x
y
1





 (3.7)

3.1.1 Solving the calibration

According to the current situation, the task to calibrate a camera is to estimate the
focal length f and radial distortion factor K as well as the camera external parameters
(

R,~t
)

. The procedure is below:

Calculation for an intermediate vector ~v

Dividing both sides of equations 3.5 and 3.6, one gets

X

Y
=

xc

yc

=
r1x + r2y + tx
r4x + r5y + ty

(3.8)

If ty 6= 0, we define

~v =
(r1, r2, tx, r4, r5)

ty
(3.9)

Substituting the above definition into equation 3.8 and rearranging the resulting ex-
pression, yields to

Y xv1 + Y yv2 + Y v3 − Xxv4 − Xyv5 = X (3.10)
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For every calibration point, one can obtain such an equation. With no less than 5 non-
collinear calibration points, a set of solutions for the linear equations of ~v will be ob-
tained. Practically we have much more calibration points to create an over-determined
system, which can be solved by a linear least-squares algorithm.

Remark: When ty is zero and tx is non-zero, the vector ~v can be defined by tx in-
stead of ty. If tx and ty are both zero, either the camera or the calibration plane should
be rearranged; otherwise the calibration procedure fails. In practice, the projection
(Ox, Oy) of the origin of the world coordinate frame on the image plane may be checked
if it is near the image center. If |Ox| > |Oy|, tx will be chosen, otherwise ty will be
selected.

Calculation for R, tx and ty

Now we have got the intermediate vector ~v. However, what we want are R, tx and ty.
If ty is obtained, the others can be easy computed. Let’s look into the rotation matrix
R in RPY form

cos β cos γ sin α sin β cos γ − cos α sin γ cos α sin β cos γ + sin α sin γ
cos β sin γ sin α sin β sin γ + cos α cos γ cos α sin β sin γ − sin α cos γ
− sin β sin α cos β cos α cos β

(3.11)

Looking into 3.11 and contrasting to 3.7, we have
√

(r1 + r5)
2 + (r2 − r4)

2 +
√

(r1 − r5)
2 + (r2 + r4)

2 ≡ 2 (3.12)

Substituting the intermediate vector ~v, yields

|ty| =
2

√

(v1 + v5)
2 + (v2 − v4)

2 +
√

(v1 − v5)
2 + (v2 + v4)

2
(3.13)

At this moment, the sign of ty cannot be decided. At first it is supposed to be plus,
which will be verified later. Knowing ty, one can calculate r1, r2, tx, r4, r5 from vector ~v
as follows

(r1, r2, tx, r4, r5) = ~v · ty (3.14)

Since the z-axis from the camera frame is defined to be from the camera lens toward
outside and no objects behind the camera can be seen, zc must be positive. Looking back
again into 3.5 and 3.6, the signs of X and xc as well as Y and yc should be consistent.
At the same time, xc and yc can now be obtained by

xc = r1x + r2y + tx (3.15)

yc = r4x + r5y + ty (3.16)

Therefore, if both sign(xc) = sign(X) and sign(yc) = sign(Y ), ty > 0 is correct;
otherwise ty < 0, and r1, r2, tx, r4, r5 should be reversed accordingly.
For a pure rotation homography, it must be an orthonormal unit 3×3 matrix, and the
other elements can be computed as follows

r3 = ±
√

1 − r1
2 − r2

2 (3.17)

r6 = −sign (r3 · (r1r4 + r2r5))
√

1 − r4
2 − r5

2 (3.18)

(r7, r8, r9) = (r1, r2, r3) × (r4, r5, r6) (3.19)
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where the sign of r3 is decided by f in the next step.

Remark: The resulting matrix R from above may be not an orthonormal one. It
is strongly recommended to apply on R an orthonormalization procedure, which can be
found in the appendixes.

Calculation for tz, f and K

With R, tx and ty being known, it is possible to estimate the remaining parameters,
tz, f and K. Starting again from 3.5 and 3.6, substituting all known parameters and
rearranging them, it yields

xc · f + xc

(

X2 + Y 2
)

· K − X · tz = (xr7 + yr8) · X (3.20)

yc · f + yc

(

X2 + Y 2
)

· K − Y · tz = (xr7 + yr8) · Y (3.21)

With more than 2 calibration points, the over-determined system of linear equations
can be solved as before for the solution of f,K and tz, then K = K · f .

Remark: Do not forget to check the sign of f . If f > 0, things work well, other-
wise the first assumption for the sign of r3 is wrong. The following parameters must be
reversed accordingly for above two equations

r3 = −r3 → r6 = −r6 =⇒ r7 = −r7, r8 = −r8 (3.22)

f = −f, tz = −tz, K = −K =⇒ balance (3.23)

K = (−K) · (−f) = K · f = K (3.24)

3.1.2 Extent configuration

The above procedure assumes that all calibration points are lying in the plane z = 0 of
the world frame. Sometimes in practice it happens that the coplanar points are located
in an arbitrary plane, as shown in figure 3.1. The calibration procedure referred from
above can not be applied directly. Since the calibration points are coplanar, a virtual
board can be defined to hold all the calibration points. A new reference frame, called
board frame, is defined as in figure 3.1. If we denote the coordinates of the calibration
points in the world frame as ~pi and the transformation from the world to the board as
[R,~t], the board frame can be set up by using 3 non-collinear points ~po, ~pa, ~pb as follows

~x = ~voa/|~voa| (3.25)

~z = ~x × ~vob/|~vob| (3.26)

~y = ~z × ~x (3.27)

where ~voa = ~pa − ~po and ~vob = ~pb − ~po. Then the transformation is

(R,~t) = (~x, ~y, ~z, ~po) (3.28)

Consequently, the coordinates of the calibration points in the board frame are obtained







xi

yi

zi







board

= (R,~t)−1 ·







xi

yi

zi







world

(3.29)
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With these coordinates, the calibration can be carried out in the board frame. The
camera pose resulting from the calibration can be calculated back with respect to the
world frame with [R,~t].

Figure 3.1: extent situation of the coplanar points

3.1.3 Degenerate configuration

If the calibration board is parallel or nearly parallel to the image plane, the
calibration algorithm will fail: only the rotation and tx, ty are available, f, k
and tz are unpredictable.

If the degenerate configuration occurs, the rotation from camera frame to the world
frame will be actually a rotation around z-axis. That is

cRw =







r1 r2 r3

r4 r5 r6

r7 r8 r9





 =







cos θ − sin θ 0
sin θ cos θ 0

0 0 1





 (3.30)

where θ is the angle of the rotation. By contrasting the elements, one can easily find
that r7 = r8 = 0, which result the equations 3.20 and 3.21 into

xc · f + xc

(

X2 + Y 2
)

· K − X · tz = 0 (3.31)

yc · f + yc

(

X2 + Y 2
)

· K − Y · tz = 0 (3.32)

The homogeneous equations result in an inability to solve f,K and tz uniquely. But if
we define f̌ = f/tz and Ǩ = K/tz, then

xc · f̌ + xc

(

X2 + Y 2
)

· Ǩ = −X (3.33)

yc · f̌ + yc

(

X2 + Y 2
)

· Ǩ = −Y (3.34)

where f̌ and Ǩ can be uniquely solved, consequently

f = f̌ · tz (3.35)

k = K · f = Ǩ · t2z (3.36)
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where tz is an arbitrary positive value and represents the distance from the camera to
the calibration board. If the translation in z-direction is given, the calibration is also
completed. In practice, it is easy to check the degenerate configuration: select two
parallel lines in the model plane. If their image lines are parallel, the direction of the
lines is parallel to the image plane. If there are more different directions parallel to
the image plane, the calibration board is parallel to the image plane. Otherwise, the
calibration succeeds.

3.1.4 Experimental results

The cameras used in the experiments are of JAI M50 camera, which is well introduced
in appendix, and the camera lenses are of 25mm focal length.

A. Calibration with the calibration board in normal poses

As shown in figure 3.2, a large calibration board with 11×11 patterns is used in the
experiments. By moving the calibration board into such eight positions that the board
plane is not nearly parallel to the camera chip plane, the camera is calibrated for eight
times.

(a) pos.1 (b) pos.2 (c) pos.3 (d) pos.4

(e) pos.5 (f) pos.6 (g) pos.7 (h) pos.8

Figure 3.2: calibration with calibration board in normal poses

As shown in table 3.1, this method calibrates actually only two internal parameters
f and K. The image origin Cx, Cy is simply supposed to be the image center of the
image with the dimension of 768 × 572 pixels and fx and fy are taken for granted to
be equal. For the camera pose, all the six parameters are estimated and the results are
shown in table 3.2. Since too few internal parameters are considered and the estimated
translation in z direction is too rough, this method is never applied to projects and thus
the accuracy of the camera pose is not verified in this experiment.

From figure 3.3, we can see that the deviations of the calibration come to 4mm, which is
a little far away from the industrial requirement. However, this method can be widely
used for daily applications and satisfy well the general public.
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fx fy K Sx=Sy f k
Pos.1 3163.97 3163.97 0.293969 → 0.008325 26.34 0.000424
Pos.2 3064.27 3064.27 0.300460 → 0.008325 25.51 0.000462
Pos.3 3173.88 3173.88 0.350217 → 0.008325 26.42 0.000502
Pos.4 2828.39 2828.39 0.275913 → 0.008325 23.55 0.000498
Pos.5 2972.56 2972.56 0.352071 → 0.008325 24.75 0.000575
Pos.6 2775.64 2775.64 0.387363 → 0.008325 23.11 0.000725
Pos.7 2955.27 2955.27 0.323586 → 0.008325 24.60 0.000535
Pos.8 3153.56 3153.56 0.374290 → 0.008325 26.25 0.000543
Aver 3010.94 3010.94 0.332234 → 0.008325 25.07 0.000533

MaxErr 162.94 162.94 0.055129 → —– 1.36 0.000193

Table 3.1: internal parameters with Cx=384 and Cy=286

X Y Z RX RY RZ
pos.1 279.24 641.10 4203.41 171.623 5.439 2.384
pos.2 1205.23 -83.04 4018.43 -176.633 16.580 7.650
pos.3 -1715.00 -461.07 3990.70 -169.950 -21.879 -9.883
pos.4 292.04 -910.97 3784.64 -165.672 5.678 5.007
pos.5 1565.25 -447.64 3755.30 -168.613 22.203 13.155
pos.6 515.75 -1645.52 3553.97 -153.921 6.074 7.873
pos.7 586.90 1923.73 3304.32 150.776 9.723 -0.603
pos.8 -3007.69 419.16 3136.14 -175.065 -44.271 -15.342

Table 3.2: external parameters of the calibrations

Figure 3.3: calibration deviations from coplanar points
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B. Calibration with the board nearly parallel to the image plane

As described before, the calibration will fail or be unstable when the calibration board
is nearly parallel to the plane of the image chip. If the calculation is completed, the
rotation rx, ry, rz must be correct. Thus the images from figure 3.5 are used separately
for calibration as follows

fx = fy K x y z rx ry rz
C1.Pos1 90.32 -0.000553 -5.60 1.54 91.38 177.797 -0.101 0.105
C1.Pos2 30.12 -0.000030 -14.27 -0.48 278.09 177.725 -0.090 0.106
C1.Pos3 1347.99 -0.059182 -42.79 42.34 1393.65 177.850 -1.009 0.122

C2.Pos1 4807.16 0.877158 10.24 226.52 4849.59 177.213 0.084 -0.027
C2.Pos2 3833.73 -0.387725 -3.11 174.08 3804.48 177.059 -0.123 -0.020
C2.Pos3 4375.80 0.607884 13.24 194.88 4197.90 176.866 0.111 -0.024

C3.Pos1 7878.31 2.309121 2.17 411.83 7931.23 176.959 0.044 0.201
C3.Pos2 6871.28 1.471520 7.53 328.73 6607.17 176.964 0.097 0.198
C3.Pos3 5777.78 -1.214248 -6.84 243.33 5373.35 177.054 -0.052 0.204

C4.Pos1 1571.03 0.107269 -17.51 64.62 1600.43 177.158 0.172 0.246
C4.Pos2 1320.65 0.011110 -13.60 48.43 1488.07 177.140 0.147 0.248
C4.Pos3 133.95 -0.003599 -10.04 -17.41 615.72 177.322 0.495 0.261

Table 3.3: calibration results with the board in parallel poses

The rotation values from figure 3.3 will be verified by contrasting to the results from
the non-coplanar calibration to be described in the next section.

26



3.2 Calibration with non-coplanar points Calibration Methods

3.2 Calibration with non-coplanar points

In this section, the camera is calibrated with a set of non-coplanar calibration points,
which are arbitrary, e.g. from more boards or the same board in different positions.
Same as the procedure with coplanar calibration points, the calibration will be done
only when the the image origin is known.
Denoting fy = f, fx = sf and X = X − Cx, Y = Y − Cy, 2.19 and 2.20 become

1

1 + K · r2
· X

sf
=

xc

zc

(3.37)

1

1 + K · r2
· Y

f
=

yc

zc

(3.38)

where

r2 = X2/(s2f 2) + Y 2/f2 (3.39)
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(3.40)

3.2.1 Solving the calibration

The calibration task here is to estimate the focal length f, s and radial distortion factor
K as well as the camera external parameters (R,~t).

Calculation for a intermediate vector ~v

Similarly dividing both sides of 3.37 and 3.38, one gets

X

Y
=

sxc

yc

=
s · (r1x + r2y + r3z + tx)

r4x + r5y + r6z + ty
(3.41)

Defining a vector ~v in length of 7 as follows

~v =

(

sr1, sr2, sr3

ty
,
r4, r5, r6

ty
,
stx
ty

)

(3.42)

Rearranging and rewriting into vector ~v, then yields

Y xv1 + Y yv2 + Y zv3 − Xxv4 − Xyv5 − Xzv6 + Y v7 = X (3.43)

With no less than 7 of such calibration points, a set of solution for the linear equations
of ~v will be obtained.

Calculation for R, tx and ty

Considering the orthonormal property of the rotation matrix R, one has

r2
1 + r2

2 + r2
3 = 1 (3.44)

r2
4 + r2

5 + r2
6 = 1 (3.45)
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Substituting the intermediate vector ~v, then yields

|ty| =
1

√

v2
4 + v2

5 + v2
6

(3.46)

s = |ty| ·
√

v2
1 + v2

2 + v2
3 (3.47)

(r1, r2, r3, tx) = (v1, v2, v3, v7) · ty/s (3.48)

(r4, r5, r6) = (v4, v5, v6) · ty (3.49)

The determination of the sign of ty and remaining calculation for R and tx are the same
as in the coplanar case.

Calculation for tz, fx, fy and K

Coming back to the equations 3.37 and 3.38 and noting Ǩ = K/(s2f), it yields

X

sf + (sX2 + s3Y 2)Ǩ
=

xc

zc

(3.50)

Y

f + (X2 + s2Y 2)Ǩ
=

yc

zc

(3.51)

Subsituting all known parameters and rearranging them into below

sxc · f + xc

(

sX2 + s3Y 2
)

· Ǩ − X · tz = (xr7 + yr8 + zr9) · X (3.52)

yc · f + yc

(

X2 + s2Y 2
)

· Ǩ − Y · tz = (xr7 + yr8 + zr9) · Y (3.53)

To solve the linear equations system, the solution for f,K and tz are obtained, then
fy = f, fx = sf,K = s2fǨ.

3.2.2 Degenerate configuration

There is also a degenerate configuration for calibration with non-coplanar calibration
points: if n − 1 points from total n calibration points are coplanar, the cali-
bration procedure will fail.
Let us look into the linear system from 3.43, it will give a unique solution if and only if
the coefficient matrix has full column ranks. The calibration procedure with coplanar
calibration points shows that coplanar points result in a coefficient matrix with five
ranks. When n−1 points from total n calibration points are coplanar, the n calibration
points will result in the coefficient matrix maximum of six ranks, which will make the
system from 3.43 with seven unknowns ill-conditioned. Consequently it results in no
unique solution for the intermediate vector ~v, and the procedure fails. In practice, the
problem is solved by using much more stochastic distributed calibration points in the
space where the camera can see.

Remark: when applying an over determined system of linear equations, it may happen
that majority eat minority, e.g. 50 points are in a plane and only 2 points are out of
the plane. When this situation really happens, the calibration with coplanar points
may work better. A practical procedure may be as follows: find a best-fit plane for all
calibration points; discard the farthest 5 percent points away; see if the left 95 percent
points are coplanar: if yes, calibrate the camera with the 95 percent coplanar points;
otherwise calibrate the camera with all non-coplanar points.
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3.2.3 Experimental results

Similar to the last section, four cameras from JAI M50 with lenses of 25mm focal length
and large calibration board are applied in the experiments.

Figure 3.4: calibration setup

As shown in figure 3.4, the board is mounted on the robot base, the location marked
with red ellipse is the position for camera mounting and the circles marked in green are
the controlling marks to determine the current pose of the calibration board. We have
repeated the calibration procedure for 4 times by mounting successively four cameras
in front of the calibration board. For each calibration, the board is moved into 3 poses
by driving the robot along to the robot linear axis to the 3 taught positions, where
the camera sees at the board and 2D coordinates are obtained from the corresponding
camera images as shown in figure 3.5. At the same time, in order to gather the 3D
coordinates of the calibration points in a common frame, the board at each position is
measured by a laser tracker system.
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(a) camera.1 pos.1 (b) camera.1 pos.2 (c) camera.1 pos.3

(d) camera.2 pos.1 (e) camera.2 pos.2 (f) camera.2 pos.3

(g) camera.3 pos.1 (h) camera.3 pos.2 (i) camera.3 pos.3

(j) camera.4 pos.1 (k) camera.4 pos.2 (l) camera.4 pos.3

Figure 3.5: images of calibration board in vertical poses
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x y z rx ry rz
Calibration board position.1 0.00 0.00 0.00 0.000 0.000 0.000
Calibration board position.2 -0.49 -0.67 250.03 -0.026 0.005 -0.001
Calibration board position.3 -1.00 -1.37 500.17 -0.039 0.008 -0.001

fx fy K x y z rx ry rz
C1.Pos 12 3037.19 3033.02 -0.300553 -113.60 2.89 3075.72 179.906 -2.014 0.106
C1.Pos 13 3038.76 3034.85 -0.297157 -113.86 2.56 3077.50 179.912 -2.018 0.104
C1.Pos 23 3039.93 3035.91 -0.296909 -114.07 2.56 3078.46 179.912 -2.021 0.105
C1.Pos123 3038.79 3034.74 -0.298088 -113.84 2.63 3077.41 179.911 -2.017 0.105
Average 3038.67 3034.63 -0.298177 -113.84 2.66 3077.27 179.910 -2.018 0.105
MaxErr 1.48 1.61 0.002376 0.24 0.23 1.55 0.004 0.004 0.001

C2.Pos 12 3049.20 3045.41 -0.314686 21.03 2.81 3080.12 179.770 0.335 -0.025
C2.Pos 13 3049.90 3045.98 -0.308901 21.08 2.48 3080.93 179.776 0.335 -0.025
C2.Pos 23 3050.03 3045.86 -0.312536 21.19 2.24 3080.87 179.782 0.338 -0.024
C2.Pos123 3049.87 3045.96 -0.311599 21.07 2.52 3080.82 179.776 0.335 -0.025
Average 3049.75 3045.80 -0.311931 21.09 2.51 3080.69 179.776 0.336 -0.025
MaxErr 0.55 0.39 0.003030 0.10 0.30 0.56 0.006 0.002 0.001

C3.Pos.12 3054.97 3050.73 -0.330825 3.29 3.19 3079.99 179.764 0.108 0.202
C3.Pos 13 3055.96 3051.83 -0.328390 3.22 3.06 3081.10 179.767 0.107 0.202
C3.Pos 23 3056.44 3052.37 -0.332939 3.16 3.01 3081.38 179.768 0.106 0.201
C3.Pos123 3055.91 3051.77 -0.330677 3.23 3.06 3080.96 179.767 0.107 0.202
Average 3055.82 3051.68 -0.330708 3.23 3.08 3080.86 179.767 0.107 0.202
MaxErr 0.85 0.95 0.002318 0.06 0.11 0.87 0.002 0.001 0.001

C4.Pos 12 3022.68 3018.31 -0.312781 45.15 2.57 3082.31 179.682 1.249 0.248
C4.Pos 13 3021.46 3017.22 -0.307858 45.15 2.63 3081.24 179.681 1.249 0.246
C4.Pos 23 3019.66 3015.46 -0.303082 45.18 2.76 3079.82 179.678 1.250 0.247
C4.Pos123 3021.52 3017.23 -0.308850 45.14 2.66 3081.30 179.680 1.249 0.247
Average 3021.33 3017.06 -0.308143 45.16 2.66 3081.17 179.680 1.249 0.247
MaxErr 1.67 1.59 0.005061 0.02 0.11 1.35 0.002 0.001 0.001

Table 3.4: non-coplanar calibration with Cx=384 and Cy=286

Table 3.4 shows the calibration results with 2 or 3 images and we have found that the
results are very consistent with each other. To the internal parameters, the maximum
errors for fx or fy are about 0.05% and about 2% for K; to the camera pose, the maxi-
mum erros for x and y are about 0.2mm, about 0.005 grad for rx, ry and rz, but nearly
1.6mm for z. Actually, the maximum error for z is no more than 0.05%. When the
camera looks the object too far away, from 2500mm to 3000mm, the deepth information
becomes relatively little for the camera to estimate. Of course we can put the calibration
board closer to the camera to get better results. However, this dissertation aims at the
industrial applications, which have a situation similar to the above experiment. In fact,
the accuracy for all parameters including z reaches the industrial requirement, which
can be seen from the deviations of the calibrations with 3 images as shown in figure 3.6.

We have not forgot to verify the validity of the rotations from last section with coplanar
points in a nearly parallel to the camera chip and the differences are shown in table 3.5.
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Figure 3.6: calibration deviations from non-coplanar points

Camera.1 Camera.2
Coplanar 177.791 -0.400 0.111 177.046 0.024 -0.024

Noncoplanar 179.910 -2.018 0.105 179.776 0.336 -0.025
Difference 2.120 1.618 0.006 2.730 0.312 0.001

rx ry rz rx ry rz

Coplanar 176.992 0.030 0.201 177.207 0.271 0.252
Noncoplanar 179.767 0.107 0.202 179.680 1.249 0.247
Difference 2.774 0.077 0.001 2.474 0.978 0.005

Camera.3 Camera.4

Table 3.5: differences between the resulted rotations
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3.3 Calibration for a distortion-free model

In this section, a direct calibration method, where the image origin is estimated at the
same time, is proposed at the price of radial distortion k = 0.

3.3.1 Solving the calibration

For a distortion-free camera model, K = 0 yields

(r7x + r8y + r9z + tz) · (X − Cx) − fx · (r1x + r2y + r3z + tx) = 0 (3.54)

(r7x + r8y + r9z + tz) · (Y − Cy) − fy · (r4x + r5y + r6z + ty) = 0 (3.55)

The above equations are nonlinear equations, which can not be solved directly. The
usual solution as before is to define some mediate variables for linearizing them. Assume
that tz! = 0, we define an 11-vector ~v by

(v1, v2, v3) = (r7, r8, r9) /tz (3.56)

(v4, v5, v6) = (r7Cx + r1fx, r8Cx + r2fx, r9Cx + r3fx) /tz (3.57)

(v7, v8, v9) = (r7Cy + r4fy, r8Cy + r5fy, r9Cy + r6fy) /tz (3.58)

(v10, v11) = (Cxtz + fxtx, Cytz + fyty) /tz (3.59)

Then the above two equations can be rewritten into ~v as follows

Xx · v1 + Xy · v2 + Xz · v3 − x · v4 − y · v5 − z · v6 − v10 = −X (3.60)

Y x · v1 + Y y · v2 + Y z · v3 − x · v7 − y · v8 − z · v9 − v11 = −Y (3.61)

For every calibration point, there are such two equations as above. With more than 5
calibration points, the over-determined linear system can be solved with ~v. Once ~v is
known, all the wanted parameters can be solved from the vector. With the orthogonal
properties of the rotation matrix, the parameters can be calculated as follows

tz = ± 1
√

v2
1 + v2

2 + v2
3

(3.62)

Cx = (v1, v2, v3) · (v4, v5, v6)
T · t2z (3.63)

Cy = (v1, v2, v3) · (v7, v8, v9)
T · t2z (3.64)

fx = | (v4, v5, v6) − (v1, v2, v3) · Cx| · |tz| (3.65)

fy = | (v7, v8, v9) − (v1, v2, v3) · Cy| · |tz| (3.66)

tx = (v10 − Cx) · tz/fx (3.67)

ty = (v11 − Cy) · tz/fy (3.68)

(r1, r2, r3) = ((v4, v5, v6) − (v1, v2, v3) · Cx) · tz/fx (3.69)

(r4, r5, r6) = ((v7, v8, v9) − (v1, v2, v3) · Cy) · tz/fy (3.70)

(r7, r8, r9) = (v1, v2, v3) · tz (3.71)

The sign of tz can be determined as follows:
In camera projection procedure, only the object points lying in front of the camera lens
are possible to be projected into corresponding image pixels on camera chip. On the
other hand, the camera frame is defined with the origin lying on the optical center of the

33



3.3 Calibration for a distortion-free model Calibration Methods

lens and the positive direction of z-axis pointing from camera chip toward lens center.
Thus all object points have positive z-coordinates with respect to the camera frame,
that is

z = r7x + r8y + r9z + tz

= (v1x + v2y + v3z) · tz + tz

= (v1x + v2y + v3z + 1) · tz > 0 (3.72)

Firstly assume that tz is positive, solve the above solutions and calculate the z-coordinates
in the camera frame for all calibration points.
If zi > 0, i = 1, · · · , n, then tz = |tz|;
If zi < 0, i = 1, · · · , n, then tz = −|tz|;
If zi > 0, zj < 0, 1 < i, j < n, the calibration procedure fails.

Remark: Since three rows of the rotation matrix are calculated separately, it may
not be orthonormal. An orthonormalization procedure is necessary to be applied on
the elements. After the orthonormalization, the parameters should be re-estimated for
better accuracy.

3.3.2 Degenerate configuration

With the above calibration method, there are two degenerate configurations arising from
the calculation procedure:

Configuration 1: if the world frame is defined in such a way that its ori-
gin locates exactly or nearly in the plane z = 0 of the camera frame, the
calibration will fail or become unstable.

If the exact situation happens, the z-coordinate of the transformation from camera frame
to world frame is zero tz = 0. However, tz 6= 0 is the precondition for linearization of the
system of nonlinear equations and the calibration procedure fails of course with tz = 0.
If the origin locates nearly in the plane z = 0, that is tz ≈ 0, the mediate vector ~v will
have very large elements, which will result in unstableness in continuous calculation and
consequently the unpredictable solutions. In order to avoid such situations, tz must be
verified: if it is too small, either the calibration object or the camera should be rotated
or moved into other positions.

Configuration 2: if all the calibration points are coplanar, the calibration
will fail.

Let’s look into the coefficient matrix for calculating the mediate vector ~v,

(

Xixi Xiyi Xizi −xi −yi −zi 0 0 0 −1 0
Yixi Yiyi Yizi 0 0 0 −xi −yi −zi 0 −1

)

(3.73)

The linear system can be solved with a unique solution for ~v, if and only if the above
matrix has a full column rank. If all the calibration points are coplanar, the column 4,
5 and 6 will give a maximum of rank 2, the same as column 7, 8 and 9. Thus the linear
system is ill-conditioned, no unique solution for ~v and the calibration fails.
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3.3.3 Experimental results

The images in figure 3.5 are used again in this experiment and the calibration results
are listed in table 3.6, where i.A is from the calibration for a distortion-free model and
i.B is with the non-coplanar points for the ith camera.

fx fy Cx Cy x y z rx ry rz
1.A 3033.89 3031.27 390.68 273.45 -114.07 2.66 3081.55 -179.853 -2.145 0.104
1.B 3038.79 3034.74 384.00 286.00 -113.84 2.63 3077.41 179.911 -2.017 0.105
∆ 4.90 3.47 6.68 12.55 0.23 0.03 4.14 359.764 0.128 0.001

2.A 3044.80 3042.26 381.28 288.73 21.43 2.43 3084.89 179.726 0.393 -0.026
2.B 3049.87 3045.96 384.00 286.00 21.07 2.52 3080.82 179.776 0.335 -0.025
∆ 5.07 3.70 2.72 2.73 0.36 0.09 4.07 0.050 0.058 0.001

3.A 3056.34 3054.08 395.87 284.14 3.28 3.07 3091.20 179.802 -0.115 0.201
3.B 3055.91 3051.77 384.00 286.00 3.23 3.06 3080.96 179.767 0.107 0.202
∆ 0.43 2.31 11.87 1.86 0.05 0.01 10.24 0.035 0.222 0.001

4.A 3016.04 3013.47 392.09 289.72 44.92 2.72 3085.04 179.608 1.090 0.247
4.B 3021.52 3017.23 384.00 286.00 45.14 2.66 3081.30 179.680 1.249 0.247
∆ 5.48 3.76 8.09 3.72 0.22 0.06 3.74 0.072 0.159 0.000

Table 3.6: calibration result for a distortion-free model

From table 3.6, we have to say that the differences are bigger than expected. Since the
lens distortion is more sensitive to the calibration than the image origin, the results
marked as i.B are considered to be better than those marked as i.A. This conclusion is
roughly demonstrated by the calibration deviations, which are shown in figure 3.6 and
figure 3.7 respectively.

Figure 3.7: calibration deviations from a distortion-free model
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3.4 Calibration with vanishing points

Similar to the last chapter, if the distortion of the camera lens is neglected or a distortion
alignment procedure has been applied, there are some calibration methods in projection
space for camera internal parameters including the image origin. In this section, an easy
calibration method with vanishing points is discussed.

3.4.1 Projective ray and vanishing point

In the camera projection procedure, an image point ~P back projects to a ray defined
by ~P and the optic center. Since the projective properties depend only on the camera
projective matrix, it tells us the fact that the projection matrix relates the image point
to the ray’s direction.

Figure 3.8: angle between projective rays

In figure 3.8, two arbitrary object points ~p1, ~p2 project into image point ~P1, ~P2 respec-
tively. The angle θ between the two projective rays d1, d2 is given by

cos θ =
dT

1 d2
√

dT
1 d1

√

dT
2 d2

=
~pT

1 ~p2
√

~pT
1 ~p1

√

~pT
2 ~p2

(3.74)

Since ~P1, ~P2 are the corresponding image points from the object points ~p1, ~p2, both ~p1, ~P1

and ~p2, ~P2 must satisfy equation 2.11 in the camera frame,

cos θ =
(δ1A

−1 ~P1)
T (δ2A

−1 ~P2)
√

(δ1A−1 ~P1)T (δ1A−1 ~P1)
√

(δ2A−1 ~P2)T (δ2A−1 ~P2)

=
~P T

1 A−T A−1 ~P2
√

~P T
1 A−T A−1 ~P1

√

~P T
2 A−T A−1 ~P2

=
~P T

1 W ~P2
√

~P T
1 W ~P1

√

~P T
2 W ~P2

(3.75)

where W = A−T A−1, which describes in fact the image of the absolute conic Ω∞ after
the camera projection, more details seen from [64] and [52].
The above equation supplies a constraint on the projective matrix, which is a surprising
thing for camera calibration. However, the angle θ is in the camera frame and depends
on the relative pose of the camera to the object. What we have in practice is usually
the geometry of the real object, which is different from the projective rays.

36



3.4 Calibration with vanishing points Calibration Methods

Figure 3.9: projective angles in different frames

In figure 3.9, p1 and p2 are two object points, α is the angle between ~p1 and ~p2 in world
frame, then

cos α =
~pT

1 ~p2
√

~pT
1 ~p1

√

~pT
2 ~p2

(3.76)

If θ denotes the angle between the projective rays determined by ~p1 and ~p2 in camera
frame and T = [R,~t] the transformation from the camera frame to the world frame, one
has

cos θ =
(R~p1 + ~t)T (R~p2 + ~t)

√

(R~p1 + ~t)T (R~p1 + ~t)
√

(R~p2 + ~t)T (R~p2 + ~t)
(3.77)

In the above equation, the rotation R is an orthogonal matrix and the only trouble is
~t. In practice, the world frame is usually defined with difference to the camera frame,
which makes ~t 6= 0. If the euclidean space extents to projective space and ~pi denotes
the homogeneous coordinate, the above equation can be rewritten into

cos θ =
(T~p1)

T (T~p2)
√

(T~p1)T (T~p1)
√

(T~p2)T (T~p2)
=

~pT
1 T T T~pT

2
√

~pT
1 T T T~p1

√

~pT
2 T T T~p2

(3.78)

In order to eliminate ~t, consequently T, ~pi is forced to be with a form as (xi, yi, zi, 0)T

and yields

T

(

~pi

0

)

= (R,~t)

(

~pi

0

)

=

(

R~pi

0

)

i = 1, 2 (3.79)

Noticing that the pure rotation matrix R is an orthogonal one and satisfies RT R =
R−1R = I, then

cos θ =
~pT

1 ~pT
2

√

~pT
1 ~p1

√

~pT
2 ~p2

= cos α (3.80)

0 < θ, α < 180 =⇒ θ = α (3.81)
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An object point ~pi with form of (xi, yi, zi, 0)T means that it is a point at infinity. That
is to say, the angle between points at infinity in both the world frame and the camera
frame are the same.

Remark: in figure 3.9, one can understand as follows: when ~pi is from the camera
far away enough, till to infinity, the finite translation between the camera frame and
the world frame can be ignored, or speaking strictly in mathematics, the projective ray
is trending unlimitedly to be parallel to the direction of ~pi in the world frame.

One of the distinguishing features of perspective projection is that the image of an
object stretching off to infinity can have finite extent. Normally, the image projected
from a point at infinity is called vanishing point. If the vanishing points from the object
points at infinity ~p1 and ~p2 are denoted as ~V1 and ~V2 respectively, then

cos α = cos θ =
~V T

1 A−T A−1~V2
√

~V T
1 A−T A−1~V1

√

~V T
2 A−T A−1~V2

(3.82)

Specially, if the two directions defined by ~p1 and ~p2 in world space are perpendicular,

~V T
1 A−T A−1~V2 = 0 (3.83)

The equation is the basic constraint on camera projective matrix for the following
calibration technique.

3.4.2 Calibration object

To complete the camera calibration, such constraints as 3.83 are needed, consequently
some pairs of perpendicular directions and their vanishing points are necessary. In
practice, the simplest calibration object must be a rectangle model as shown in figure
3.10

Figure 3.10: a rectangle model and its image

Since the parallel directions in real world are imaged into the same vanishing point,
the intersections of lines AB,CD and AD,BC in image plane must be the responding
vanishing points, which are denoted as ~V1, ~V2, namely

~V1 = lAB × lCD
~V2 = lAD × lBC
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Considering the fact that the neighbor directions of a rectangle are perpendicular, the
vanishing points ~V1, ~V2 satisfy

~V T
1 A−T A−1~V T

2 = 0 (3.84)

Since the above constraint is independent to the camera pose, the calibration for camera
projective matrix will be solved by moving the model or the camera into more than 4
different poses, and the movements need not to be known.

More pairs of perpendicular directions in the model plane?

From the above description, it is easy to arise such a question: why not set in the model
plane more such pairs of perpendicular directions for giving more pairs of vanishing
points instead of moving the camera or the model into different poses. The reason is
that all the pairs of vanishing points from the model plane will give the same
constraint on the projective matrix. The proof is as follows.
Denote ~v1, ~v2 two points at infinity, which are determined from two perpendicular di-
rections in the model plane, and ~V1, ~V2 the responding vanishing points, then

~vT
1 ~v2 = ~vT

2 ~v1 = 0 ~V T
1 A−T A−1~V T

2 = 0

Since the model plane intersects the plane π∞ at infinity into a line l∞, any point on
the line at infinity must be a linear combination of ~v1, ~v2,

~v3 = a~v1 + b~v2 ~v4 = c~v1 + d~v2

If ~v3 and ~v4 are perpendicular to each other, one has

~vT
3 ~v4 = (a~v1 + b~v2)

T (c~v1 + d~v2)

= ac~vT
1 ~v1 + bd~vT

2 ~v2 = 0 (3.85)

Similarly denote the corresponding vanishing points as ~V3, ~V4, then

~V T
3 W ~V4 = (δ3A~v3)

T A−T A−1(δ4A~v4)
T

= δ3δ4(ac~vT
1 ~v1 + bd~vT

2 ~v2) + δ3δ4(ad~V T
1 W ~V2 + bc~V T

2 W ~V1)

= δ3δ4(ad + bc)~V T
1 W ~V2 (3.86)

where W = A−T A−1. This means that it rises no other constraint on W, consequently
on the projective matrix A, by forcing ~V T

3 W ~V4 = 0.

3.4.3 Solving camera calibration

For a zero-distortion camera model, the projective matrix and its inverse are as follows

A =







fx 0 Cx

0 fy Cy

0 0 1





 =⇒ A−1 =









1
fx

0 −Cx

fx

0 1
fy

−Cy

fy

0 0 1









(3.87)

the image of the absolute conic W = A−T · A−1 must be symmetric and is denoted as
follows

W =











1
f2

x
0 −Cx

f2
x

0 1
f2

y
−Cy

f2
y

−Cx

f2
x

−Cy

f2
y

1 + C2
x

f2
x

+
C2

y

f2
y











=







w1 0 w3

0 w2 w4

w3 w4 w5





 (3.88)
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Noting that w5 = 1 + C2
x

f2
x

+
C2

y

f2
y
≥ 1, a 4-vector is defined

~x = (x1, x2, x3, x4)
T = (

w1

w5

,
w2

w5

,
w3

w5

,
w4

w5

)T (3.89)

For every pair of vanishing points ~Vi and ~Vj, we have

~V T
i W ~Vj = 0 (3.90)

Extracting the above equation with the coordinates of the vanishing points by ~Vn =
(Xn, Yn, 1)T , n = i, j, one has

(XiXj, YiYj, Xi + Xj, Yi + Yj)
T · ~x = −1 (3.91)

For every image of the model plane, there is an useful pair of vanishing points, which
yield a constraint equation like above. If n different poses are observed and stack the n
equations, one has

V ~x = −1 (3.92)

where V is n × 4 matrix and the right side is a 4-vector with all elements -1. If n ≥ 4,
we can solve an unique solution for ~x, consequently W including w5, finally fx, fy, Cx

and Cy as follows

Cx = −x3/x1

Cy = −x4/x2

w5 = 1 − Cx · x3 − Cy · x4

fx = 1/
√

w5x1

fy = 1/
√

w5x2

If the poses are too few for all parameters, the projective matrix can also partially
estimated:
If n = 3, fx = fy = f and Cx, Cy can be solved.
If n = 2, fx, fy or Cx, Cy can be solved with the others known;
If n = 1, one parameter can be solved, e.g. fx = fy = f with Cx, Cy known.

Figure 3.11: the model frame
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Estimation of camera pose

Once the projective matrix A is obtained, the camera pose can be determined as follows:
as shown in figure 3.11, the world frame is defined in the model plane and the size of
the rectangle is given by ab = cd = l > 0 and ad = bc = kl, the coordinates of the
points a, b, c, and d have the following values in the world frame

~a = (0, 0, 0)T ~c = (l, kl, 0)T

~b = (l, 0, 0)T ~d = (0, kl, 0)T

As denoted before, the transformation from the camera frame to the reference frame
is denoted as [R|~t] and the four points are projected into A, B, C and D respectively.
With the camera projective equation 2.13, the coordinates of the origin ~a of the world
frame will define the translation

~t = [R|~t]~a = δa · A−1 ~A (3.93)

Since δa is unknown, the translation cannot be determined. Let’s look into the other
points, we have

δb · A−1 ~B = [R|~t]~b = l~r1 + ~t (3.94)

δd · A−1 ~D = [R|~t]~d = kl~r2 + ~t (3.95)

δc · A−1 ~C = [R|~t]~c = l~r1 + kl~r2 + ~t (3.96)

where ~ri is the ith column of the rotation matrix R. From the above three equations,
the first columns of the rotation matrix can be solved

~r1 = λcA
−1 ~C − λdA

−1 ~D (3.97)

k~r2 = λcA
−1 ~C − λbA

−1 ~B (3.98)

where λb = δb/l, λc = δc/l and λd = δd/l. Thinking about the properties of a rotation
matrix, one has

~rT
1 ~r2 = 0 (3.99)

|~r1| = |~r2| = 1 (3.100)

If the length ration between the neighbor sides k is given, the problem becomes three
equations for three unknowns λb, λc, λd. Since all unknowns are positive values, a unique
solution for λb, λc, λd will be obtained, consequently r1, r2, and then

~r3 = ~r1 × ~r2 (3.101)

Once the rotation matrix is determined, the translation ~t is solved up to the scale factor
l, namely

~t = (λb · A−1 ~B − ~r1) · l (3.102)

This solution for camera pose is also reasonable in geometry: the rotation is the relative
pose, which is determined by the ratio of the lengths from both directions, but com-
pletely independent to the absolute size of the rectangle; the translation is up to the
model size: with the same image size, a larger model object must be standing further
away from the camera.
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3.4.4 Degenerate configurations

A degenerate configuration is a situation that the camera and the model stand in such
relative poses that the image of the model provides no useful constraint on the projec-
tive matrix.

Situation 1: If the model plane at the second pose is parallel to the first pose, the

second image will not provide any additional constraint.

Denote πi the plane at the ith pose and ai, bi, ci, di are the object points from the model,

π1 ‖ π2 ai, bi, ci, di ∈ πi, i = 1, 2

If the model {a2, b2, c2, d2} from plane π2 projects into the model {a′

1, b
′

1, c
′

1, d
′

1} in plane
π1, then

#     »

a
′

1b
′

1 ‖
#     »

a2b2 b
′

1c
′

1 ‖ b2c2 c
′

1d
′

1 ‖ c2d2 d
′

1a
′

1 ‖ d2a2

Since all parallel object lines will intersect to each other at the same point at infinity,
the responding vanishing points V

′

i from model {A′

1B
′

1C
′

1D
′

1} and Vi from {A2B2C2D2}
must be the same. At the same time, both {a1b1c1d1} and {a′

1b
′

1c
′

1d
′

1} locate in the plane
π1, which guarantees that their vanishing points result in the same constraint. Conse-
quently, the model {a1b1c1d1} and {a2b2c2d2} give the same constraint on the camera
projective matrix.

Situation 2: If the model plane is parallel to the image plane, or any side of the

rectangle model is parallel to any coordinate axis of the image frame, there is no helpful

constraint with this pose.

With the camera projective procedure, a vanishing point Vi from an object point pi

at infinity is the intersection between the image plane and the projective ray passing
through the optical center and parallel to the direction determined by pi. When the
model plane is parallel to the image plane, the vanishing points from all directions in
the model plane are image points at infinity, which can not be detected in the image.
For the same reason, when a side lab/cd (or lbc/ad) is parallel to a coordinate axis of the
image frame, the corresponding lines in the image plane will satisfy

lAB ‖ lCD =⇒ V1 = lAB × lCD = (Xi, Yi, 0, 0)T

A vanishing point at infinity will fail to satisfy the equation 3.83.

A square model: the improved solution

Although there is no solution for the problem that the model plane is parallel to the
image plane, the left parallel problem can be avoided by introducing a square model
instead of the rectangle model in practice. As shown in figure 3.12, a square model
has two perpendicular diagonals. If ~V1, ~V2, ~V3, ~V4 denote the vanishing points imaged
respectively from the directions ~ac, ~bd, ~ab(~cd), ~bc( ~ad), one has

~V T
1 A−T A−1~V T

2 = 0 ~V T
3 A−T A−1~V T

4 = 0 (3.103)

As proved before, the above 2 equations supply the same constraint on projective matrix
A. However, when one pair of them does not work because of the parallel problem, the
other pair maybe work well.
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Figure 3.12: a square model and its image

Vanishing points from the diagonals

As shown in figure 3.12, ~V1, ~V2 denote the vanishing points from neighbor sides and ~V3, ~V4

the vanishing points from the diagonals. ~V1, ~V2 can be easily determined as described
before, let us focus on ~V3, ~V4.
Denote v3 as the intersection of line lac and the plane at infinity π∞, v3 is of course a
point at infinity. Since o is the midpoint of the stretch ac and v3 is a point at infinity,
the four collinear points a, c, o, v3 actually consist a harmonic points series, that is, the
cross-ratio of them is a constant -1, namely

(a, c; o, v3) =
(a, c, o)

(a, c, v3)
=

#»ao
#»oc

·
#  »v3c
#   »av3

= −1 (3.104)

Suppose the harmonic points series project into A,C,O, V3 respectively. Since collinear-
ity and cross-ratio are invariant under camera projection, A,C,O, V3 must be also a
harmonic points series,

(
#»

A × #»

C)T #»

V 3 = 0 (3.105)

| #    »

AO|| #     »

V3C| + | #    »

OC|| #     »

AV3| = 0 (3.106)

From above two equations, vanishing point ~V3 can be easily solved. In the same way,
vanishing point ~V4 is obtained from B, D, and O.

Remark: In computing the vanishing point ~V3(~V4), A, C and O are assumed to be
collinear. However, they do not in practice hold this property due to noise and lens
distortion. It is necessary to apply a maximum likelihood algorithm on them to get a
best-fit line before solving ~V3(~V4).
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3.4.5 Experimental results

In experiments, a board with a white paper sticked to moves before the camera and 40
images are taken to calibrate a JAI CV-M50 camera with a lens of 8mm focal length.

(a) original image (b) vanishing points

Figure 3.13: procedure for searching the vanishing points

As seen in figure 3.13, a hough transform procedure is used for searching the vanishing
points. Since a vanishing point is the cross from the opposite sides of the rectangle,
it may have very large values in pixel coordinates because of noises. When all the 40
pairs of vanishing points are used, no reasonable result is obtained. Therefore, we have
removed the pairs with too large coordinates and get 25 pairs listed in table 3.7.

Vi.X Vi.Y Vj .X Vj .Y Vi.X Vi.Y Vj .X Vj .Y

1 -835.42 1750.42 3855.88 2921.67 14 -2664.77 1575.62 1514.99 2802.02
2 -627.93 7084.14 -714.93 70.30 15 -3316.10 1612.66 1554.26 3159.30
3 -3746.61 310.44 485.93 2185.79 16 -2489.39 1669.08 2397.55 4325.27
4 -3602.38 1071.84 818.50 1862.84 17 -2931.65 2557.26 2017.78 2453.17
5 -2795.84 1534.05 926.14 1432.93 18 -3666.83 2847.24 1135.89 1426.38
6 -2779.55 -717.96 144.00 1329.41 19 -8773.22 8574.97 1027.73 976.67
7 -2913.01 90.67 371.34 1496.89 20 -3538.87 4639.55 1142.09 881.34
8 -3931.35 1920.56 893.66 1494.79 21 -702.16 133.64 1175.54 800.68
9 -5821.80 3467.00 1001.70 1532.92 22 -4107.74 3473.94 897.86 913.13
10 -2148.04 2581.75 1467.18 1308.23 23 -4186.94 4957.69 1047.40 973.62
11 -2724.90 3628.59 1479.61 1198.20 24 -1945.08 3924.50 1218.64 765.49
12 743.86 2504.87 -6912.47 1408.75 25 -2014.98 6407.42 1262.19 609.53
13 -3323.37 1239.05 1075.36 2576.89

Table 3.7: vanishing points for the calibration

With the vanishing points pairs in above table, we have obtained the following values
for the image origin and focal length as shown in table 3.8. Although this technique
may be the new direction of camera calibration and some researchers, such as zhang
in [48], has made some improvements in this field, we see no possibilities in the near
future for this method to be improved so greatly that it may be applied to industrial
applications.
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Cx Cy fx fy → f Sx Sy

vanishing points 1-10 314.57 325.67 831.88 851.36 → 6.93 0.008135 0.008325
vanishing points 1-11 312.70 324.60 837.20 854.58 → 6.97 0.008156 0.008325
vanishing points 1-12 325.32 323.18 819.99 834.48 → 6.83 0.008180 0.008325
vanishing points 1-13 324.33 325.49 830.11 843.97 → 6.91 0.008188 0.008325
vanishing points 1-14 324.96 326.96 831.42 846.72 → 6.92 0.008175 0.008325
vanishing points 1-15 318.17 337.28 865.49 875.93 → 7.21 0.008226 0.008325
vanishing points 1-16 318.64 339.29 869.74 881.53 → 7.24 0.008214 0.008325
vanishing points 1-17 312.97 347.83 892.82 900.46 → 7.43 0.008254 0.008325
vanishing points 1-18 309.70 351.67 902.78 911.28 → 7.52 0.008247 0.008325
vanishing points 1-19 341.87 313.98 788.58 793.70 → 6.56 0.008271 0.008325
vanishing points 1-20 341.34 312.29 790.86 796.49 → 6.58 0.008266 0.008325
vanishing points 1-21 332.20 335.02 871.95 879.02 → 7.26 0.008258 0.008325
vanishing points 1-22 332.27 335.01 872.08 879.17 → 7.26 0.008258 0.008325
vanishing points 1-23 328.85 353.97 908.20 914.36 → 7.56 0.008269 0.008325
vanishing points 1-24 332.07 360.60 908.81 913.04 → 7.57 0.008286 0.008325
vanishing points 1-25 333.68 365.87 912.66 915.48 → 7.60 0.008299 0.008325

average 325.23 336.17 858.41 868.22 → 7.15 0.008230 0.008325

Table 3.8: calibration results from the calibration
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3.5 Search of the image origin

From the calibration methods described in foregoing sections, we notice that none of
them estimates both the image origin and the radial distortion as well as the other
camera parameters. Since the radial distortion is very sensitive to measurements, a
direct searching method for the image origin, known as the polytope method or the
simplex method, is introduced in this section as a complementarity to the calibrations.

3.5.1 Response function

To estimate the image origin, an initial guess is needed. With the initial guess, the
other camera parameters will be obtained from the calibration methods described in
last sections for distortion camera model. Using the solved camera parameters, the best
values for the image origin will be searched. The best means the searched values for the
image origin are better than any other values by describing the camera projection with
the other camera parameters together. Therefore, the following two residue functions
are defined

Rx =
X − Cx

1 + k
(

(

X−Cx

fx

)2
+
(

Y −Cy

fy

)2
) − fx · xc

zc

(3.107)

Ry =
Y − Cy

1 + k
(

(

X−Cx

fx

)2
+
(

Y −Cy

fy

)2
) − fy · yc

zc

(3.108)

In an ideal situation, Rx = Ry = 0. But it in the actual situations will never hap-
pen, that is why they are called residues. The following response function F for all n
calibration points is defined

F (~P ) =
n
∑

i=1

(

R2
xi + R2

yi

)

(3.109)

where

~P ≡ (Cx, Cy)
T (3.110)

The task now is to search a best pixel ~P = (Cx, Cy)
T to minimize the response function.

3.5.2 Searching algorithm

The searching algorithm is based on the theory that a pixel closer to the best pixel has
a smaller response, which is supported by the continuity of the response function.
The algorithm starts with three appropriate non-collinear pixels ~Pb, ~Pm, ~Pw, which are
so ordered that F (~Pb) < F (~Pm) < F (~Pw), as shown in figure 3.14. The three points
composing of the so-called polytope are named respectively as the best, the middle

and the worst pixel. In an iteration, a new polytope is generated by introducing a new
pixel to replace the worst pixel till the polytope converge to a vanishing point. The
procedure in detail consists of following steps:
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Figure 3.14: image origin searching by polytope method

1. Polytope initialization and controlling
Order and name them into ~Pb ≤ ~Pm ≤ ~Pw, and check if the polytope is becoming
a vanishing point, which is determined by

(

F (~Pw) − F (~Pb)
)2

< ε (3.111)

where ε is a sufficiently small value. If the required accuracy is reached, the
searching procedure will end, otherwise go to the next step to continue searching.

2. Reflection pixel
The worst pixel is optimized by moving it along a correct direction, which is found
out by firstly generating the reflection pixel of ~Pw,

~Pr = ~Pb + ~Pm − ~Pw (3.112)

Its response F (~Pr) is calculated and the direction is determined as follows:

if F (~Pr) < F (~Pb), go to the expansion direction in step 3;

if F (~Pb) ≤ F (~Pr) < F (~Pm), maintain the polytope in step 4;

if F (~Pr) ≥ F (~Pm), go to the contraction direction in step 5.

3. Polytope expansion
Generate a new pixel at the extension of W-R by

~Pn = ~Pr + ρ(~Pr − ~Pw) (3.113)

where ρ > 0. Then the corresponding response is calculated and checked: if
F (~Pn) < F (~Pr), replace the worst pixel with the new pixel ~Pw = ~Pn; otherwise

replace the worst pixel with the reflection pixel ~Pw = ~Pr; go back to step 1 to
continue optimizing.

4. Polytope maintain
The polytope keeps its size, but the worst pixel is replaced by the reflection pixel
~Pw = ~Pr, and go back to step 1.
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5. Polytope contraction
Generate a new pixel on the portion of W-R, but the middle pixel ~Mn must be
dropped out, because it must be also on the line determined by ~Pb and ~Pm. If
the reflection pixel is better than the worst pixel F (~Pr) < F (~Pw), the new pixel
should be closer to the reflection pixel, that is

~Pn = ~Pr + λ(~Pw − ~Pr) (3.114)

Otherwise the new pixel should be closer to the worst pixel, yields

~Pn = ~Pw + λ(~Pr − ~Pw) (3.115)

where 0 < λ < 0.5. The corresponding response is calculated and checked: if
F (~Pn) < F (~Pw), replace the worst pixel with the new pixel ~Pw = ~Pn and come

back to step 1; otherwise there is no better pixel than ~Pw on the line WR, the
optimizing area must be reduced by

~Pm =
(

~Pm + ~Pb

)

/2 (3.116)

~Pw =
(

~Pw + ~Pb

)

/2 (3.117)

then go back to step 1 to continue optimizing.

The above procedure is repeated till the polytope becomes a vanishing point, that is,
the three positions are close enough to each other, and at the same time are also close
enough to the best pixel.

Remark: The above optimizing algorithm is a general method in mathematics. How
well it works in practice depends on how well the parameters are set. Fortunately, ρ
and λ are not very sensitive in our case and ρ ≈ 0.5, λ ≈ 0.25 are good choices. If
an initial pixel ~P0 for the image origin is obtained from other methods, e.g. calibra-
tion for a distortion-free model, or simply got from the image center, the three initial
non-collinear positions can be set as follows

~Pb = ~P0 (3.118)

~Pm = ~P0 + h · ~Ex (3.119)

~Pw = ~P0 + h · ~Ey (3.120)

where ~Ex = (1, 0)T , ~Ey = (0, 1)T and h is the initial step length, which works well in
image origin searching if h ≈ 5 − 10 pixels.

3.5.3 Combination solution

The searching method for image origin consists in fact of two dependent stages: the
first stage, any calibration method described in last sections, need a given image origin
for calibrating the other parameters; the second stage, the polytope algorithm, need the
solved parameters from the first stage for a better image origin. Given an inaccurate
image origin, the inaccuracy will be inherited by dispatching into the other camera
parameters, which will result in some inaccuracy to the new image origin from the
polytope algorithm in the second stage. That is to say, the end result is dependent on
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the initial guess of the image origin.
If the ideal pixel for the image origin is denoted as ~Pideal, the initial guess is denoted
as ~Pold and the searched pixel is denoted as ~Pnew, it must be sure that ~Pnew is closer to
~Pideal than ~Pold, that is

|~Pnew − ~Pideal| < |~Pold − ~Pideal| (3.121)

If ~Pold is replaced by ~Pnew for calibration stage, a better pixel for the image origin can be
expected from the following searching algorithm. Thus a practical combining solution
is as follows:

1. calibrate the other camera parameters fx, fy, d and (R,~t) with a given image origin
~Pold;

2. search a more accurate image origin ~Pnew with the solved camera parameters from
step 1 ;

3. replace the old image origin with the newly calculated one, ~Pold = ~Pnew, then go
back to step 1 to continue searching.

The above procedure is repeated till the image origin changes no longer, which is deter-
mined by

(

~Pnew − ~Pold

)2
< ε (3.122)

where ε is a sufficiently small value.

Remark: Here an iterative procedure for calibration and searching is applied. The
iteration can be integrated into the searching algorithm: every time a new pixel is cre-
ated, the camera is calibrated with this pixel as the image origin, then the response is
calculated with the newly solved camera parameters. When the searching algorithm is
finished, the obtained pixel is the final solution for the image origin.

3.5.4 Experimental results

In this experiment, the images in figure 3.5 are applied for a non-coplanar calibration
method followed by an image origin searching procedure, which brings better integrity
of the calibration procedure.

From table 3.9 and 3.10, we find that the image origin has impact mainly on the camera
pose, especially the rotation and almost no impact on other internal parameters. More
concretely, deviations of Cx and Cy are compensated respectively by ry and rx.

Contrasting carefully the deviations from figure 3.6 and 3.15, such a conclusion can
be generally made that the camera parameters estimated by the combination solution
satisfy the calibration points a little better than those from non-coplanar calibration.
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fx fy Cx Cy K
Camera.1 Noncoplanar 3038.79 3034.74 384.00 286.00 -0.298088
Camera.1 Combination 3038.72 3034.65 383.71 279.92 -0.295396
Camera.1 Difference 0.07 0.09 0.29 6.08 0.002692

Camera.2 Noncoplanar 3049.87 3045.96 384.00 286.00 -0.311599
Camera.2 Combination 3049.80 3045.90 383.37 300.51 -0.313424
Camera.2 Difference 0.07 0.06 0.63 14.51 0.001825

Camera.3 Noncoplanar 3055.91 3051.77 384.00 286.00 -0.330677
Camera.3 Combination 3055.86 3051.71 416.11 296.46 -0.320664
Camera.3 Difference 0.05 0.06 32.11 10.46 0.010013

Camera.4 Noncoplanar 3021.52 3017.23 384.00 286.00 -0.308850
Camera.4 Combination 3021.51 3017.23 384.19 297.02 -0.307897
Camera.4 Difference 0.01 0.00 0.19 11.02 0.000953

Table 3.9: internal parameters affected by image origin

x y z rx ry rz
Camera.1 Noncoplanar -113.84 2.63 3077.41 179.911 -2.017 0.105
Camera.1 Combination -113.84 2.53 3077.41 -179.972 -2.012 0.105
Camera.1 Difference 0.00 0.10 0.00 0.117 0.005 0.000

Camera.2 Noncoplanar 21.07 2.52 3080.82 179.776 0.335 -0.025
Camera.2 Combination 21.06 2.49 3080.71 179.503 0.347 -0.025
Camera.2 Difference 0.01 0.03 0.11 0.273 0.012 0.000

Camera.3 Noncoplanar 3.23 3.06 3080.96 179.767 0.107 0.202
Camera.3 Combination 3.27 3.02 3081.21 179.571 -0.496 0.205
Camera.3 Difference 0.04 0.04 0.25 0.196 0.603 0.003

Camera.4 Noncoplanar 45.14 2.66 3081.30 179.680 1.249 0.247
Camera.4 Combination 45.15 2.63 3081.33 179.471 1.245 0.247
Camera.4 Difference 0.01 0.03 0.03 0.209 0.004 0.000

Table 3.10: external parameters affected by image origin

Figure 3.15: deviations from polytope searching
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3.6 Refinement with nonlinear minimization

Some easy but effective calibration methods have been proposed in last sections. Since
no iteration is required, the algorithms seem clear and easy and the procedures are
implemented quickly. However, the actual constraints are applied mostly to restore the
final camera parameters from the intermediate parameters, not directly to the interme-
diate parameters, which causes that the intermediate solutions satisfy the constraints
not so well because of noises. Consequently, the accuracy of the final solution is not
optimum for applying into measurement. In this section, an iterative algorithm with
the objective of minimizing the the residual errors of nonlinear equations is applied.

3.6.1 Nonlinear minimization

In order to estimate all camera parameters accurately and simultaneously by an iterative
algorithm, the following two functional relations from 2.19 and 2.20 for distortion model
are introduced and to be zeroed

Fx(R,~t, fx, fy, Cx, Cy, K) = zc(X − Cx) − xcfx(1 + Kr) = 0 (3.123)

Fy(R,~t, fx, fy, Cx, Cy, K) = zc(Y − Cy) − ycfy(1 + Kr) = 0 (3.124)

where






xc

yc

zc





 = R ·







x
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z





+ ~t (3.125)

r =

(

X − Cx

fx

)2

+

(

Y − Cy

fy

)2

(3.126)

where (R,~t) is the matrix form from α, β, γ, tx, ty, tz, which describe the transformation
from the camera frame to the world frame. Ideally, Fx and Fy are both zero. Due to
uncertainties or errors in the system modeling and patterns recognizing, they are in
general nonzero. By stacking up such relations for all calibration points, a system of
nonlinear equations is obtained. The solution from the system for both the internal and
external parameters listed in Fx and Fy must have minimized the least squares error

F (R,~t, fx, fy, Cx, Cy, K) =
n
∑

i=1

(

Fx,i
2 + Fy,i

2
)

=⇒ min (3.127)

To solve such systems of nonlinear equations, an iterative algorithm is usually applied
as described with details in appendix.

3.6.2 Initial guess

To solve an over-determined system of nonlinear equations, a good set of initial guess
values for fx, fy, Cx, Cy, K and R,~t are necessary and there are two possibilities to get
such a set of initial guess

1. The combination solution referred in section 3.5;

2. The calibration for distortion-free model with K = 0.

In fact, these two methods are complete procedure for camera calibration, the result of
which can not be far away from the ideal values and must satisfy the following iteration
algorithm well.
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3.6.3 Convergence and stability

Whenever a nonlinear algorithm is employed, the convergence of the system and the
stability of the final solution are always the issues. In the research field of the stabil-
ity of the minimization algorithm in camera calibration, some valuable work has been
done and a common opinion is arrived at: if the iterative procedure is not prop-
erly designed, the minimization algorithm may be unstable or even diverges.

Weng said in [15], if the distortion is included in the parameters space, the interac-
tion between the distortion parameters and external parameters can lead to divergence,
or even false solution. Therefore, he suggests to solve the distortion and the other pa-
rameters alternatively in each iteration.

However, zhuang has a different opinion in [31], if the image origin is assumed known,
the calibration problem is reduced to a standard nonlinear square and any appropriate
nonlinear least squares procedure can be applied to solve it with a good set of guess
values. Thus he thinks that the iteration procedure should be so designed that the
image origin and the remaining parameters can be estimated separately.

Although weng and zhuang have different opinions on designing the iteration, their
common point is clear: the camera parameters including internal and external parame-

ters consist an over-dimensions space and the complex constraints between them makes

it unsuitable to estimate them all together in an iterative procedure. Therefore, we have
done such an experiment: a calibration body, which is described in detail in section
calibration with a calibration body from the next chapter, is placed successively into 8
positions, where a fixed camera can see it and the images are shown in figure 3.16. At
each position, the camera is calibrated with the direct minimization method.

(a) Pos.1 (b) Pos.2 (c) Pos.3 (d) Pos.4

(e) Pos.5 (f) Pos.6 (g) Pos.7 (h) Pos.8

Figure 3.16: camera images for minimization algorithm

To analyze the interactions to each other, the internal parameters are much more valu-
able than the external parameters as a whole. That is why table 3.11 simply shows us
the internal parameters.
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fx fy Cx Cy K f Sx k
Pos.1 3057.25 3055.25 397.55 287.87 -0.256064 → 25.43 0.008320 -0.000396
Pos.2 3025.09 3024.16 397.26 263.91 -0.401871 → 25.18 0.008322 -0.000634
Pos.3 3043.98 3042.33 392.16 287.38 -0.341061 → 25.33 0.008321 -0.000532
Pos.4 3030.85 3028.16 297.97 315.31 -0.415928 → 25.21 0.008318 -0.000654
Pos.5 3029.79 3027.10 348.65 349.19 -0.410402 → 25.20 0.008318 -0.000646
Pos.6 3023.09 3020.97 396.39 342.70 -0.352578 → 25.15 0.008319 -0.000557
Pos.7 3049.92 3049.25 438.00 344.41 -0.255513 → 25.38 0.008323 -0.000397
Pos.8 3036.38 3034.24 389.44 336.34 -0.289593 → 25.26 0.008319 -0.000454

Average 3037.04 3035.18 382.18 315.89 -0.340376 → 25.27 0.008320 -0.000534
Max.Err 20.21 20.07 84.21 51.98 0.084863 → 0.17 0.000003 0.000138

Table 3.11: calibration testing for stability with Sy=0.008325

Since the calibrations are for the same camera, the internal parameters must be consis-
tent or in a reasonable range. But what we see from table 3.11 are more differences than
consistences: fx and fy, or clearer in forms of f and Sx, are quite consistent; Cx, Cy

and k are distinct to each other to about 30%. Actually, we draw such a conclusion
after experiments: the camera parameters are profiled into two groups: Cx, Cy

and [R,~t], f and K. The interaction in groups is much greater than between
groups, especially the image origin and the camera pose (mainly rx and ry),
which correlate tightly.

Figure 3.17: calibration options
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3.6.4 Iteration design

In order to prove the above conclusion, the iterative algorithm is so programmed that
any parameter can be fixed in implement as shown in figure 3.17. With the flexible
calibration options, we have tried some experiments by fixing successively the image
origin and the distortion factor. For convenience, the first image from figure 3.16 is
used and the experiments are carried out as follows

Distortion dominant: the image origin fixed

Thinking of the maximum errors of the image origin, the drifting ranges for Cx, Cy are
set respectively to (−30, +30) and (−20, +20) from the base of (397, 287) and the results
are shown in table 3.12. As seen from the table 3.12, the image origin Cx, Cy differ in a
range of (30, 20) pixels, and the influences to fx, fy are relatively slight, no more than
0.5% and its deviations are compensated mostly by the camera pose.

Cx Cy fx fy K x y z rx ry rz

367 267 3065.04 3062.80 -0.259716 2313.71 2093.14 2487.86 -129.362 -1.408 132.289

367 287 3064.12 3062.10 -0.224910 2313.56 2092.67 2487.25 -129.734 -1.412 132.287

367 307 3051.83 3049.91 -0.244054 2305.02 2084.87 2477.39 -130.106 -1.415 132.285

397 267 3064.53 3062.36 -0.261168 2313.06 2093.14 2487.83 -129.355 -1.761 131.862

397 287 3057.85 3055.84 -0.254797 2308.67 2088.94 2482.50 -129.726 -1.768 131.860

397 307 3047.91 3046.01 -0.266235 2301.84 2082.69 2474.46 -130.098 -1.774 131.858

427 267 3054.89 3052.47 -0.306805 2305.26 2087.38 2480.22 -129.344 -2.113 131.435

427 287 3048.92 3046.66 -0.302689 2301.47 2083.63 2475.32 -129.714 -2.122 131.433

427 307 3041.98 3039.87 -0.303425 2296.94 2079.30 2469.65 -130.085 -2.131 131.431

Average 3055.23 3053.11 -0.269311 2306.61 2087.31 2480.28 -129.725 -1.767 131.860

Max.Err 13.25 13.24 0.044401 9.68 8.01 10.63 0.382 0.363 0.429

Table 3.12: influences from image origin

Image origin dominant: the distortion factor fixed

Similarly the drifting range for distortion factor K is set to (−0.08, +0.08) from the
base of -0.25 and the results are shown in table 3.13.

K fx fy Cx Cy x y z rx ry rz

-0.1700 3075.17 3073.38 384.45 285.95 2321.76 2099.90 2496.65 -129.711 -1.620 132.038

-0.1900 3071.01 3069.18 386.88 286.21 2318.64 2097.26 2493.27 -129.715 -1.648 132.004

-0.2100 3066.84 3064.96 389.64 286.59 2315.51 2094.61 2489.86 -129.721 -1.681 131.965

-0.2300 3062.66 3060.73 392.78 287.08 2312.35 2091.97 2486.45 -129.729 -1.718 131.920

-0.2500 3058.51 3056.52 396.37 287.68 2309.20 2089.35 2483.05 -129.739 -1.760 131.869

-0.2700 3054.41 3052.35 400.42 288.31 2306.07 2086.79 2479.68 -129.749 -1.808 131.811

-0.2900 3050.46 3048.32 404.84 288.80 2303.01 2084.32 2476.41 -129.756 -1.860 131.748

-0.3100 3046.78 3044.53 409.27 288.72 2300.11 2082.03 2473.34 -129.752 -1.912 131.685

-0.3300 3043.49 3041.12 412.77 287.48 2297.45 2079.97 2470.57 -129.727 -1.953 131.636

Average 3058.81 3056.79 397.49 287.42 2309.34 2089.58 2483.25 -129.73 -1.77 131.85

Max.Err 16.36 16.59 15.28 1.47 12.41 10.32 13.40 0.02 0.18 0.22

Table 3.13: influences from radial distortion

As seen from the table 3.13, the distortion factor K affects the camera pose R very
slightly. But it is more sensitive to other parameters than the image origin. Looking
into both the table 3.12 and 3.13, we can imagine such a cycle procedure: the image
origin is given with a deviations in (30, 20) and may result the deviations to the dis-
tortion about 0.04, which may cause to much smaller deviations to the image origin, no
more than (8, 2) pixels. The situation is similar when we start with the image origin
dominant procedure. Thus these are two appropriate design for the iterative procedure
to implement the camera calibration. However, the distortion dominant principle is
usually adopted in our applications for the following reasons
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1. The cameras designed specially for industrial applications have good quality and
the image origin is never be far away from the image center, which makes it possible
for us to suppose the image origin to be the image center at the beginning.

2. Since the distortion K is sensitive to calibration, it is relatively difficult to give
an appropriate start guess.

3. The image origin can be improved separately by searching after the minimization
procedure. Furthermore, the cycle can be repeated till both the image origin
Cx, Cy and the camera pose R,~t converge.

4. In measurements, the distortion factor is much more sensitive than the image
origin. If the image origin is off from the image center no more than 20 pixels, the
measurement works still well, especially when the calibration procedure is online
carried out and the calibration object is placed in the area where the object to be
measured will stand in measuring procedure. More details can be found in [7].

3.6.5 Experimental results

For convenience of contrast, the images from figure 3.5 are used again and the final
results are listed in table 3.14 and 3.15. In the minimization procedure, the image
origin Cx, Cy are fixed and the initial guess for the other parameters are obtained from
two methods: i.A denotes the values from the calibration for a distortion-free model and
i.B denotes the values from the non-coplanar calibration followed by an image origin
searching procedure.

fx fy Cx Cy K

1.A 3038.39 3034.71 383.67 279.93 -0.293282
1.B 3038.42 3034.75 390.68 273.45 -0.289484
∆ 0.03 0.04 7.01 6.48 0.003798

2.A 3049.72 3045.86 383.59 300.90 -0.312715
2.B 3049.72 3045.86 381.28 288.73 -0.309871
∆ 0.00 0.00 2.31 12.17 0.002844

3.A 3055.59 3051.79 416.09 296.51 -0.318183
3.B 3055.61 3051.83 395.87 284.14 -0.320966
∆ 0.02 0.04 20.22 12.37 0.002783

4.A 3020.99 3017.11 384.18 297.17 -0.305812
4.B 3021.14 3017.26 392.09 289.72 -0.305936
∆ 0.15 0.15 7.91 7.45 0.000124

Table 3.14: internal parameters

For better understanding, table 3.14 and 3.15 should be observed together with table
3.6: although the initial guess for the camera parameters are quite different, they are
optimized greatly by the minimization procedure and converge to the similar results.
Since Cx, Cy are fixed, their differences are compensated mainly by rx and ry. The
deviations from both calibrations are shown in figure 3.18.
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x y z rx ry rz
1.A -113.83 2.63 3077.31 -179.974 -2.011 0.103
1.B -113.84 2.65 3077.44 -179.852 -2.143 0.103
∆ 0.01 0.02 0.13 0.122 0.132 0.000

2.A 21.20 2.43 3080.66 179.496 0.346 -0.026
2.B 21.20 2.46 3080.73 179.725 0.389 -0.027
∆ 0.00 0.03 0.07 0.229 0.043 0.001

3.A 3.32 3.03 3081.14 179.570 -0.494 0.203
3.B 3.32 3.08 3081.06 179.801 -0.115 0.200
∆ 0.00 0.05 0.08 0.231 0.379 0.003

4.A 45.18 2.76 3081.03 179.465 1.246 0.245
4.B 45.18 2.78 3081.17 179.606 1.096 0.246
∆ 0.00 0.02 0.14 0.141 0.150 0.001

Table 3.15: external parameters

Figure 3.18: deviations from minimization procedures
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3.7 Chapter review

In this chapter many algorithms about camera calibration are demonstrated in details.
Some of them educe independent methods for camera calibration, and some of them
work only for implement or improvement to some calibrations and is applied usually
with other calibration methods. Here we make a conclusion for all of them.

3.7.1 Property overview

Since different methods need different preconditions and result in different outputs,
the properties of the calibration methods are listed in table 3.16 for an overview and
comparison.

coplanar non-coplanar distortion free vanish point origin search minimization
estimation fx, k, T fx, fy , k, T all but k fx, fy , Cx, Cy Cx, Cy all
condition Cx, Cy , fx = fy Cx, Cy k k fx, fy , k, T —

object coplanar non-coplanar non-coplanar rectangle — non-coplanar
stability good good ok ok good very good
accuracy bad good ok bad very good best
robust good very good very good ok ok good
easiness good ok ok very good best ok

Table 3.16: properties overview of the calibration methods

where T = (R,~t) is the camera pose.

3.7.2 Applicable situations

According to the properties from above table and the experiences in practice, the ap-
plicable situations or rules of the calibration methods are roughly concluded as follows

1. Calibration with coplanar points
When the calibration points with known coordinates are coplanar, we should use
this method to calibrate a camera. Since only two fx = fy and k of the internal
parameters are calibrated, the results are too rough for most practical applications.
However, the easiness of the calibration condition in preparation makes it very
popular to the general public for the desktop visions.

2. Calibration with non-coplanar points
If plenty of calibration points are non-coplanar and well prepared with accurate
coordinates, this calibration works well for the general applications. The disad-
vantages have two points: one is that the image origin must be given, and the
other is that the accuracy is not enough for the accurate positioning applications,
especially for the pose estimation in the robot vision applications.

3. Calibration for a distortion-free model
Compared to the calibration with non-coplanar points, the only advantage of the
calibration for a distortion free model is to estimate the image origin Cx, Cy, but
the distortion is neglected, which causes the worse stability and accuracy. Thus
this method is useful only after the distortion factor is known and a distortion
alignment is made to the calibration points.
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4. Calibration with vanishing points
As same as the calibration for a distortion free model, the distortion is neglected.
Since the calibration object moves to some arbitrary poses, this calibration method
is only for determining the internal parameters in most of time. Thinking that the
calibration object is very simple and the calibration technique is relatively new,
we developed it mainly for testing, and comparison and the method has never
applied to our applications.

5. Image origin searching
Strictly saying, image origin searching is not a method for camera calibration
since it estimates only two internal parameters with other parameters known.
The method is used usually in an iterative procedure: given an initial guess to the
image origin, the other parameters are estimated with any calibration method;
with the obtained parameters, the image origin is improved by the image origin
searching algorithm. This cycle is repeated till the image origin converges.

6. Refinement with nonlinear minimization
This method works well only when the iterative procedure is appropriately de-
signed and a relatively good set of initial guess of all camera parameters is given.
To get the initial guess, one from the above calibration should be selected. Thus
this procedure is only for improving the results from the single or any combinations
of the above calibration methods.

7. Combination solutions
As discussed above, no single calibration method works perfectly for all camera
parameters. For the accurate positioning applications, we usually combine two or
more methods above to complete a calibration procedure.

Generally speaking, the calibration with coplanar points, or the calibration for a dis-

tortion free model, or the calibration with vanishing points is acceptable usually to the
general public. The calibration with accurate non-coplanar points may be applied to
some practical applications. However, the industrial applications for accurate posi-
tioning usually need some appropriate combination solutions of these methods and the
image origin searching or the refinement with nonlinear minimization.

3.7.3 Contributions

Although there is no completely new calibration method proposed in this chapter, we
have put our own opinions boldly forward and made some improvements to these cali-
bration methods.

1. The extent configuration to the calibration with coplanar points is proposed and
the degenerate configurations of calibrations with both coplanar and non-coplanar
are discussed in details.

2. In calibration for a distortion free model, the sign determination for tz is strictly
given in mathematics and the degenerate configurations are throughout analyzed.

3. Although the concept of the calibration with vanishing points is nothing new,
the calibration procedure is built on our own understanding. The degenerate
configuration is demonstrated and an improvement on calibration object is given.
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4. A best-fit procedure between coordinates frames is proved in mathematics and
solved in programming.

5. The image origin searching is improved by bringing the other calibration methods
into the iteration procedure.

6. The nonlinear minimization is throughout analyzed and a new opinion about
iterative design is brought forward. With specially designed codes and plenty of
testing, an appropriate design is given for the camera calibrations to the industrial
applications.
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Chapter 4

Calibration Approaches Applied to
Practice

In the last chapter, a quite of algorithms or methods for camera calibration are well
described in mathematics. In applying them to practice, they may have different forms,
or some additional tools and setups are needed according to the specific application en-
vironments. In this chapter, some practical approaches to camera calibration in working
area are proposed in details.
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4.1 Calibration with calibration board

Calibration with a calibration board is the most popular and traditional calibration
method. Although it is our first attempt to camera calibration in laboratory and lit-
tle attention is given to its practical values, this approach is appropriate for accurate
calibration to the stereo sensors.

4.1.1 Calibration board and setup

At the beginning, a calibration board is produced by printing an array of patterns on a
paper sticked onto a metal board. But it is too inaccurate by printing and the deviation
may be 1 mm or even more. As seen in figure 4.1, we finally have designed a board
made of glass with circle patterns in an array. The coordinates of the patterns have de-
viations of no more than 0.02 mm and are constant against the change of temperature.
The calibration setup equipment is called microscope, which can move independently
in three orthogonal directions (X, Y, Z) with an accuracy of 0.01 mm.

(a) calibration board (b) calibration setup

Figure 4.1: camera calibration with a calibration board

When calibrating, the camera or stereo sensor is mounted on the top of the vertical
part, the board is fixed on the horizontal plane of the microscope and the setup serves
for accurate coordinates collecting. Although the microscope knows its movement and
the current position and the arrange details of the patterns on the board is also known,
the mounting mode of the board onto microscope should be so properly adjusted in me-
chanics that the axes directions of the board frame are parallel to the moving directions
of microscope. This procedure is completed carefully once with a laser tracker.

4.1.2 Solving calibration

Since the camera is mounted on the microscope for calibration and remounted in the
working environment for measurements, the camera pose should be determined again.
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If we calibrate the cameras from a stereo vision system, where the cameras are relatively
fixed and form a stereo sensor as a whole, the method works well since the stereo sensor
is ready for measurements after calibration. Actually the setup is used by us only for
calibrating the cameras from a stereo sensor. The calibration algorithm can be any or
combination methods from the last chapter and the calibration procedure is as follows

1. Move the board into an appropriate position and define the current board frame
as the reference frame for the cameras of the sensor, namely sensor frame.

2. The cameras are calibrated successively with any suitable algorithm in the sensor
frame.

3. Demount the stereo sensor as a whole and it is ready for being applied to any
measurement in the sensor frame.

4.1.3 Experimental results

The experiment is carried out for a stereo sensor with two cameras parallel mounted
and the cameras are of JAI CV-M50 and equipped with a lens of 6 mm focal length.

x y z rx ry rz
C1 -28.78 40.17 224.93 177.155 0.141 90.822
C2 -28.81 -36.42 223.18 177.600 -0.706 90.309

fx fy Cx Cy K f Sx k

C1 676.97 677.30 323.01 232.59 -0.225809 5.639 0.008329 -0.007102
C2 677.22 677.68 333.59 232.47 -0.222593 5.642 0.008331 -0.006993

Table 4.1: body calibration results with Sy=0.008325

From the values in table 4.1, we have to say that the calibration results, both the internal
parameters and the cameras poses, are completely consistent with the real situation as
seen from figure 4.1. The results are also approved by the deviations of the calibrations
in figure 4.2, where the maximum deviation is under 0.08 mm.
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Figure 4.2: deviations from board calibrations
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4.2 Calibration with robot tools

As the title mentioned, a practical approach to camera calibration with the aid of a set
of specially designed robot tools is proposed in this section.

4.2.1 Motivation from applications

In car manufacturing industry, the first stage of process work is implemented in the
press shop, where the steel sheets are pressed into all kinds of car body parts by the
press machines. For safety reason, the work to feed the steel sheets into press machines
is done more and more often by robots.

Figure 4.3: vision solution for steel sheets feeding in press shop

As demonstrated in figure 4.3, the steel sheet is delivered by a conveyor with high speed
and stops before the press machine by braking the conveyor. However, the sheet is
easy to glide in an arbitrary mode when brakes, especially when the sheet has just gone
through an oil-washing machine. Therefore, one can never expect that the sheet always
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stops at the same position and waits for the robot to feed it correctly into the press
machine. Our solution is a vision system with two cameras, which are fixed vertically
and far away above the conveyor belt. When the sheet stops, the vision system is
triggered to measure the current pose of the sheet and guide the robot to adjust its pose
for grabbing the sheet at the part and lay it correctly into the press machine. Since this
is an easy application and there is nothing else except the cameras to be calibrated, it is
not worthwhile to get an external measurement system only for calibrating two cameras.
It is natural to think of utilizing the robot to calibrate the cameras. If a pattern mounted
on the robot hand moves in the camera sight-field by driving the robot and at the same
time the robot remembers the positions of the pattern, the camera can be calibrated.

4.2.2 Robot tools

In the calibration procedure, the robot tools act as calibration objects for supplying the
3D coordinates.

(a) tool set (b) ball (c) tine

Figure 4.4: robot tools used for camera calibration

As seen in figure 4.4, the tools set is composed of two parts: a ball and a tine. Both
the ball and the tine are at the end of a steel stick, whose another end has screw
thread for mounting. Of course, in the figure there is still the base mechanics which
is only for mounting the steel stick onto the robot hand and can have any shape or form.

Ball for camera calibration: in the camera calibration procedure, the ball is mounted
on the robot hand and moves to several positions, where the camera sees the ball and
searches it in the camera image; at the same time the robot controller gives the 3D
coordinates of the ball in robot base frame.
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Tine for tool calibration: in order to get the coordinates of the ball in robot base
frame from the robot controller, the coordinates of the ball in robot hand frame and its
mounting mode must be known. The tine is so designed in mechanics that the center
point of the ball is exactly in the same position as the tine end when both of them are
mounted alternatively on the robot hand. If the coordinates of the tine end in robot
hand frame are obtained, the coordinates of the ball are also known to the robot. The
procedure to estimate the coordinates of the tine, also the ball, is called tool calibration.
The tine is introduced absolutely for solving this problem.

4.2.3 Robot tool calibration

The robot tool referred in the calibration procedure is the tine, the part C in figure 4.4,
with which the calibration procedure is carried out as shown in figure 4.5.

Figure 4.5: procedure of robot tool calibration

With this tool on the robot hand mounted, one can drive the robot for the tine to
touch any point exactly within the working space. If a reasonable fixed point is selected
and the robot is driven from some different directions to let the tine touch the fixed
point, the calibration of the robot tool will be solved. The calibration procedure can be
summarized into the following steps:

1. Select a fixed point which the robot with tine can reach, and its coordinates need
not be known;

2. Drive the robot in different directions (at least two) to let the tine touch the fixed
point exactly;

3. Calculate the coordinates of the tine in the robot hand frame;

4. Set the calculated values for the robot tool and activate the robot tool;

5. The robot tool is ready: the robot can give the correct coordinates of the center
point of the ball with respect to the robot base.

Since both the fixed point with respect to the robot base frame and the tine with respect
to the robot hand frame are kept unchanged whenever the tine touches the fixed point,

67



4.2 Calibration with robot tools Practical Calibrations

the mathematics for calculation is obvious.

(a) direction 1 (b) direction 2

(c) direction 3 (d) direction 4

Figure 4.6: tool calibration from kuka robot

If the coordinates of the tine in the robot hand frame is denoted as (x, y, z)T and the
fixed point as (x0, y0, z0)

T , then
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Considering two directions and writing the transformation into rotation R and transla-
tion ~t, one gets

BR1
H ·







x
y
z





+ ~t1 = BR2
H ·







x
y
z





+ ~t2 (4.2)

and consequently the tool coordinates can be obtained
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If we have more than two directions, we will get an over-determined linear system,
from which a set of best-fit results will be obtained by minimum errors. Actually
such a module for robot tool calibration is already integrated into the robot controller
software, e.g. KUKA robot needs four directions to complete the tool calibration, which
is as shown in figure 4.6.

4.2.4 Camera calibration

Once the robot tool is calibrated, the robot can act as a flexible calibration setup
for supplying accurate 3D coordinates of the calibration points, and the calibration
algorithm can be a combination of the methods as described in the previous chapters.
Therefore, the complete calibration procedure for the approach with the aid of a robot
tool consists of the following steps:

1. Mount robot tool with a tine on the robot hand, and carry out the tool calibration
procedure;

2. Activate the calibrated tool with correct values, and change to the other tool with
a ball;

3. Drive the robot to some positions for gathering calibration information, which
includes 3D coordinates of the ball in the world scene and 2D coordinates in the
camera images;

4. Calibrate the camera by the method of non-coplanar calibration points with a set
of initial parameters;

5. Refine the camera parameters by the direct nonlinear minimization, and combine
the estimation of the image origin if necessary;

6. If the robot base frame is the reference frame, the calibration is completed; if not,
compare the robot base frame with the reference frame, and consequently convert
the camera pose into the reference frame.

Remark: In the real applications, the vision system from VMT has a communication
module through a configurable protocol, such as profibus, serial port and so on, for con-
trolling the robot. Thus the calibration procedure is usually carried out automatically
in few minutes.

In fact, the calibration approach is also suitable for a robot hand camera if the fol-
lowing changes are made:

1. Trade the positions with each other: the camera is mounted on the robot
hand and the tool with a ball is fixed in an unknown position.

2. Get the coordinates of the ball in the robot hand frame: replace firstly
the tool with a ball by the tool with a tine and mount another calibrated tool with
a tine on the robot hand. By driving the robot to touch the two tines exactly
together, the coordinates of the tine in the robot base frame can be read from
the robot controller, consequently the coordinates with respect to the robot hand
frame is obtained.
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3. Collect the information for calibration: drive the robot to some positions
for the camera to search the ball in the images. At this moment, the camera is
assumed to be still and the ball is conducting the opposite movements.

4. The reference frame is the robot hand frame: the estimation algorithm is
the same as that of a stationary camera. However, the reference frame is not the
robot base frame, but the robot hand frame.

Remark: In the step for information collecting, the robot can not move freely. If and
only if the camera has no rotating movements, it will be a valid assumption that the
camera is still and the ball is moving in the opposite directions. In fact, this kind of
movements without rotation is one of the normal operation modes for all kinds of robots.

4.2.5 Experimental results

The example setup in our laboratory is shown in figure 4.7, where we can calibrate both
the camera fixed on the floor and the camera mounted on the robot hand.

Figure 4.7: camera calibration with robot tools in laboratory

With this setup, a stationary camera fixed in the floor is calibrated with 27 positions,
whose coordinates in both the image frame and the world frame are listed in table 4.2.
For contrast, two methods are implemented in calibration: the first one is to calibrate
all parameters with the nonlinear minimization procedure, and the second one is a
combination of the image origin searching procedure and the nonlinear minimization
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procedure. The results are shown in table 4.3.

X Y x y z X Y x y z

1 31.51 14.91 643.5 -899 243.94 15 206.02 4.92 583.5 -899 243.94
2 -152.46 25.02 703.5 -899 278.94 16 199.74 -97.63 583.5 -934 243.94
3 -145.54 132.88 703.5 -864 278.94 17 25.10 -86.88 643.5 -934 243.94
4 39.15 122.34 643.5 -864 278.94 18 31.45 15.15 643.5 -899 243.94
5 223.77 111.44 583.5 -864 278.94 19 30.45 16.18 643.5 -899 208.94
6 216.86 2.57 583.5 -899 278.94 20 -136.44 26.30 703.5 -899 208.94
7 210.55 -105.57 583.5 -934 278.94 21 -130.41 123.53 703.5 -864 208.94
8 26.32 -93.90 643.5 -934 278.94 22 36.40 114.01 643.5 -864 208.94
9 -158.56 -83.02 703.5 -934 278.94 23 202.11 103.71 583.5 -864 208.94
10 -149.22 -76.31 703.5 -934 243.94 24 195.98 6.39 583.5 -899 208.94
11 -143.42 26.12 703.5 -899 243.94 25 190.41 -90.43 583.5 -934 208.94
12 -137.47 128.06 703.5 -864 243.94 26 24.10 -80.84 643.5 -934 208.94
13 37.68 117.84 643.5 -864 243.94 27 -141.40 -70.77 703.5 -934 208.94
14 212.19 107.45 583.5 -864 243.94

Table 4.2: calibration points

fx fy Cx Cy K
direct min 1920.36 1926.98 -55.61 7.29 -0.280687

combination 1921.42 1928.59 -17.90 -14.20 -0.210960
x y z rx ry rz

direct min 651.76 -891.52 900.05 -179.067 1.915 176.606
combination 651.70 -891.55 900.87 -178.432 0.793 176.597

Table 4.3: calibration results with robot tools

Although the deviations from both calibrations are in the same level, as shown in figure
4.8, the results from the combination method are considered to be closer to the real
values. In order to have a contrast to the current method from VMT GmbH, the eleven
parameters in table 4.4 are converted into twelve parameters, which have clear physical
meanings and can be directly used in a vision software.

f Cx Cy Sx Sy k
VMT 16.00 0.00 0.00 0.008325 0.008325 -0.00080
Here 16.06 -17.90 -14.20 0.008356 0.008325 -0.000818
Diff 0.06 17.90 14.20 0.000031 0.000000 0.000018

x y z rx ry rz
VMT 652.07 -891.18 930.98 -178.870 0.220 176.580
Here 651.70 -891.55 900.87 -178.432 0.793 176.597
Diff 0.37 0.37 30.11 0.438 0.573 0.017

Table 4.4: contrast of the the calibration results

In table 4.4, there are three main differences: Cx, Cy, z and rx, ry. Since VMT uses
default internal parameters and calibrates only external parameters, but all the camera
parameters are calibrated here.
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1. Difference of the image origin: as referred before, the image origin is the
intersection between the optical axis and the chip plane. The deviation caused
from 17.9 pixels, or 0.149 mm on the camera chip, is possible for a camera with a
c-mount lens.

2. Difference of the shift in z-direction: for easily applying some practical cali-
bration approaches, the camera frame in VMT software is defined with regard to
the camera shell, not in the camera lens.

3. Difference of the rotation around x- and y-axis: the difference may be the
main reason for the differences of the image origin. Cx affects ry and Cy affects
rx.

Figure 4.8: deviations from robot tools calibration

Remark: this approach for camera calibration is designed at the beginning only for
applications in press shop, since there is always a robot and the conveyor usually has
a dark color. Moreover, the required accuracy for the application is about 3 mm for
the press machine. The applications from VMT systems with this approach to cam-
era calibration can be found in press shops from Daimler-Chrysler Bremen, FAW-VW
Changchun and Beijing Benz-Daimler-Chrysler.
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4.3 Calibration with a calibration body

As we know, calibration boards are widely used in camera calibration. Since the cal-
ibration with a calibration board in automobile industry is protected by a patent in
Germany, we have to think of other practical methods and thus an approach to camera
calibration with a calibration body is introduced in applications.

4.3.1 Calibration body

The figure 4.9 shows two calibration bodies, the large one is for laboratory test and
the small one for the practical applications. A calibration body is composed of three
planes, where locate some calibration patterns that build up a calibration space. On
the calibration body, there are some aluminum adapters, which serves as the control
patterns for determining the pose of the calibration body.

(a) the large calibration body (b) the small calibration body

Figure 4.9: calibration bodies for camera calibration

Before being used in applications, the calibration body must be prepared in laboratory
as follows

1. Object frame: first of all, an object frame, or called body frame, on the calibra-
tion body must be set up. For example, the red lines marked in figure 4.9.

2. Calibration patterns: all calibration patterns must be numbered and their
coordinates with respect to the object frame must be accurately measured. The
patterns are usually numbered in such a way that the 2D-3D pairs matching in
pattern recognition becomes as easy as possible in programming.

3. Controlling patterns: in the same way, the control patterns must also be num-
bered and in the object frame accurately measured.

To apply a ready calibration body in applications for camera calibration, the camera
pose from the calibration results is with respect to the calibration body frame. Thus
the pose of the body with respect to a reference frame should be determined and conse-
quently the camera pose with respect to the reference frame is obtained. With a laser
tracker, the controlling patterns can be measured in reference frame. Meanwhile, their
coordinates in body frame are known and the transformation between the body frame
and the reference frame is solved by a best-fit procedure.
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4.3.2 Calibration procedure

Through the description above, the calibration procedure with a ready calibration body
is obvious as follows

1. Initialization for the image origin: set up a default set of values for the image
origin, e.g. the image center;

2. Non-coplanar calibration: move the calibration body into such a pose that
the whole calibration body is in the camera sight field and the camera image
is relatively clear, then calibrate the camera in calibration body frame with the
linear method named calibration with non-coplanar points.

3. Image origin searching: with the results from calibration with non-coplanar

points, new values of the image origin are obtained by an image origin searching
procedure named polytope method.

4. Refinement with direct nonlinear minimization: with the image origin from
the last step being fixed, other camera parameters are refined by a direct nonlinear
minimization.

5. Camera pose with respect to the world frame: determine the transformation
between the calibration body frame and the world frame and the camera pose with
respect to the world frame is obtained.

Remark: we notice that a laser tracker is involved in the above procedure and indeed
this is a strict additional condition. Actually the approach is applied mainly to our
multi-camera system to measure car bodies in painting or assembly shops, where there
are many components, such as car bodies, robots, robot linear tracks and so on, need to
be initialized and an external measurement system is in one way or another necessary
in the startup procedure.
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4.3.3 Experimental results

Since this approach has been applied to VMT system since 2006, the data sources for
this experiment are from a practical project realized in 2007 in Volkswagen Shanghai,
where a VMT system with four cameras is installed in painting shop for PVC fine sealing
at the UBS station for the new car model Lavida.

(a) front view (b) back view

Figure 4.10: calibration body used in SVW project

For the use in China, we have produced a new calibration body for this project as
shown in figure 4.10. With contrast to the old ones, this calibration body is smaller in
size, lighter in weight and more flexible in mechanics for mounting on a robot hand, a
framework or any other installations.

x y z x y z x y z
01 55.00 61.00 0.00 16 249.56 60.46 0.32 31 120.71 0.48 60.20
02 55.03 125.53 0.42 17 249.80 125.40 0.68 32 55.97 0.91 59.57
03 55.10 190.42 0.52 18 249.76 190.31 0.68 33 -1.90 101.95 192.33
04 55.07 255.77 0.25 19 249.66 256.00 0.51 34 -1.61 166.65 191.67
05 54.72 320.79 -0.28 20 249.69 321.10 -0.09 35 -1.28 231.54 191.22
06 120.03 60.50 0.10 21 249.49 -1.11 191.82 36 -0.97 296.09 190.86
07 119.87 125.71 0.47 22 184.40 -0.22 190.82 37 -1.47 101.29 127.76
08 120.02 190.41 0.52 23 119.27 0.53 189.88 38 -0.98 166.24 127.04
09 119.79 256.21 0.31 24 54.71 1.15 189.30 39 -0.60 231.05 126.54
10 119.69 321.16 -0.15 25 249.92 -0.89 126.48 40 -0.21 295.83 126.01
11 185.07 60.29 0.26 26 185.11 -0.06 125.94 41 -0.96 100.43 62.68
12 184.91 125.25 0.57 27 120.47 0.62 125.21 42 -0.38 165.63 62.08
13 184.86 190.41 0.59 28 55.19 1.10 124.68 43 0.06 230.12 61.56
14 184.77 256.16 0.40 29 250.76 -0.87 61.17 44 0.46 295.14 60.75
15 184.77 320.86 -0.08 30 185.63 -0.18 60.76

Table 4.5: coordinates of the calibration patterns in the body frame

The coordinates of the calibration patterns on the body are listed in table 4.5. With
these coordinates, we can reckon approximately the origin and axes of the calibration
body frame. Mounted on a robot hand, the calibration body moves successively to let
the cameras see clearly and the following 4 images from the cameras are grabbed.
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(a) C1: image (b) C2: image (c) C3: image (d) C4: image

(e) C1: pattern (f) C2: pattern (g) C3: pattern (h) C4: pattern

Figure 4.11: camera calibration in SVW project

At each position, where the camera grabs image, the pose of the calibration body is
measured by a laser tracker in cabinet frame

x y z rx ry rz
Camera.1 / body -318.02 -654.32 130.79 124.835 51.917 -60.713
Camera.2 / body -174.43 528.07 236.38 -77.570 -27.438 89.099
Camera.3 / body 3052.53 -800.15 120.33 -84.533 -6.733 -117.363
Camera.4 / body 2889.96 410.93 252.00 88.648 69.975 110.471

Table 4.6: poses of the calibration body in cameras calibration

With the above described calibration procedure, the cameras are calibrated and the
calibration results are listed in table 4.7. For applying the results to the vision system,
a conversion as follows is necessary

1. f, Sx, Sy: f is the focal length of the camera lens and Sx, Sy represent the pixel size
in millimeter on the camera chip. As discussed in the chapter camera model,
two parameters fx, fy in mathematics describe well the functions of f, Sx, Sy in
projection procedure. Simply taking Sy = 0.008325 from the camera data sheet,
f, Sx are solved with equations 2.7 and 2.8.

2. Cx, Cy: the image coordinates in VMT software are with respect to the image
center, the image origin from the calibration results must be corrected according
to the current camera image.

3. k: the radial distortion factor can be recovered by k = K/f2.

4. Camera pose: the camera poses from table 4.7 are with respect to the calibration
body and should be converted into the world frame and the poses of the calibration
body with respect to the world frame are listed in table 4.6.

After converted one by one as above described, the calibration results for a vision system
are listed in table 4.8 and these results will be used in section multi-camera system from
chapter vision systems for experiments.
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fx fy Cx Cy K

Camera.1 4235.24 4227.56 416.04 332.77 -0.010727
Camera.2 4417.89 4409.38 410.47 282.89 1.061292
Camera.3 4323.44 4315.07 398.94 243.58 0.376498
Camera.4 4233.38 4227.22 425.40 285.26 0.110802

x y z rx ry rz
Camera.1 1664.88 1773.90 1865.12 171.226 50.766 35.348
Camera.2 1639.54 2632.79 1259.74 -132.715 -56.876 -172.961
Camera.3 1275.77 1341.93 1860.18 -149.759 -33.732 -177.617
Camera.4 1757.04 1255.77 2002.16 -156.141 39.317 67.727

Table 4.7: calibration results with a calibration body

f Sx Sx Cx Cy k

Camera.1 35.19 0.008310 0.008325 32.04 46.77 -0.000009
Camera.2 36.71 0.008309 0.008325 26.47 -3.11 0.000788
Camera.3 35.92 0.008309 0.008325 14.94 -42.42 0.000292
Camera.4 35.19 0.008313 0.008325 41.4 -0.74 0.000089

x y z rx ry rz
Camera.1 -1884.24 -3062.70 -938.71 -69.175 -2.986 -35.415
Camera.2 -1931.60 3070.88 -1049.34 -66.208 1.826 -144.400
Camera.3 4165.85 -2955.86 -880.70 -66.704 0.613 29.304
Camera.4 4098.95 2810.87 -952.76 -65.071 2.036 151.067

Table 4.8: values for applying in the vision system

Figure 4.12: calibration deviations in SVW project
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In the same way, the deviations of the calibrations are monitored and shown in figure
4.12. With contrast to the deviations in figure 3.18, we realize that the accuracy of
calibration in working field is not as good as that in laboratory, and the final accuracy
in measurement will be tested in the next chapter.

4.3.4 Extent of body calibration

Although the external measuring system in our projects is used passingly in camera
calibration, we have tried to improve the calibration approach by dropping out the
external measuring system. For instance, we have ever got such a query from a customer
in China. Their application is simple, one object type, one robot without linear track
and the measuring task is to guide the robot to take the object by sensing the object
pose when it comes and stops before the robot. What is more, the application accuracy
is 2 mm, not 1 mm, the standard accuracy for sealing applications in painting shop.
Accordingly, a cheap quotation is claimed for the simple application, consequently, an
economical approach for such kind of applications is necessary.

Figure 4.13: calibration with the calibration body on robot hand

For cost reduction, the startup procedure is simplified to use the robot in stead of the
expensive laser tracker. The robot without linear track can be self-calibrated and the
teaching pose of the object can be measured with the aid of the robot and corresponding
tools. The camera calibration is solved again with the calibration body mounted on the
robot hand, which is outlined in figure 4.13. Since the camera internal parameters are
constant for a given camera, they can be estimated in a calibration with the calibration
body in an arbitrary position. Therefore, the critical problem here is to determine the
camera pose with respect to the robot base frame. Firstly, we make following notations
in figure 4.13:

1. rTh: the transformation from the robot base frame to the robot hand frame is
marked in orange in figure 4.13. It can be obtained in any time from the robot
controller.
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2. hTb: the transformation from the robot hand frame to the calibration body frame
is marked in pink in figure 4.13. It is unknown but fixed once the calibration body
mounted on the robot hand.

3. bTc: the transformation from the calibration body frame to the camera frame.
It will be estimated by any camera calibration procedure discussed in the last
chapter.

As seen from figure 4.13, the calibration procedure is completed by driving the robot into
several positions, where the camera looks at the calibration body and gets calibrated in
calibration body frame. With rT i

h given from the robot controller and bT i
c estimated in

camera calibrations, the transformation hTb from the robot hand frame to the calibration
body frame is determined with the following equations

rT 1
h • hTb • bT 1

c = · · · = rT i
h • hTb • bT i

c = · · · = rTc (4.4)

Once hTb is obtained, the camera pose rTc with respect to the robot base frame is also
determined with above equations.
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4.4 Calibration of camera pose

A camera can be calibrated easily and accurately in laboratory, but to calibrate a camera
in the working area is usually an elaborate procedure. Thinking of the fact that the
internal camera parameters are dependent only to the hardware, we have an idea for
camera calibration in two steps: firstly calibrate the camera in laboratory and at the
same time save some additional information in that procedure; in the working area, the
camera pose is estimated with the determined internal parameters and the additional
information. The calibration in laboratory is already well described, the main topic in
this section is to determine the camera pose in the working area.

4.4.1 Pose calibration with a framework

Before the calibration approach with a calibration body is applied in the applications
in 2006, VMT has used a framework to determine the camera pose in applications for
almost five years. The framework and the mounting mode in calibration procedure is
shown in figure 4.14.

(a) framework (b) mount mode

Figure 4.14: pose calibration with a framework

The method is only to calibrate the cameras of JAI CV-M50, on which the framework
can be mounted with four different but fixed modes: upward, downward, P2 upward
and P3 upward with relative to the camera. For each mode, the four reference points on
the framework are accurately measured and their coordinates saved in camera frame.
In working area, the framework is mounted again onto the camera with one of the four
modes and the four reference points are measured in the world frame, the camera pose
with respect to the world frame is determined by a best-fit procedure. Although this
approach is easy to be carried out and has been applied to projects for many years, it
has some obvious disadvantages. Firstly it is applicable only to the predefined types
of cameras. The most critical disadvantage of the approach is the accuracy: the four
defined mounting modes of the framework to the camera body are aligned by a metal
adapter, which actually can not guarantee the alignment, especially the orientations.
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4.4.2 Pose calibration with reference points

In mathematics, the calibration approach with a framework can be abstracted as follows:
defining some features fixed with relative to the physical camera and determine their
coordinates in camera frame in calibration procedure in laboratory, then the camera
pose is estimated by measuring the features in the world frame in the working area.
Going further from the approach, we can define some features directly on the camera
body and the calibration for the camera pose will be completed without any tools.
However, we should not forget the fact that the camera body is relatively small and
the orientation of the estimated camera pose may have considerable errors. Finally, we
have a new solution: define a feature on the camera body, which is measured in camera

frame in calibration procedure; in working area, two or more arbitrary reference points

are observed by the camera and at the same time measured by an external measurement

system, the camera pose is well estimated.

Figure 4.15: camera pose calibration in working area

As seen in figure 4.15, we denote c~p0,
w~p0 the reference point on the camera body with

respect to the camera frame and the world frame, w~pi, ~Pi the reference points in world
frame and their corresponding images, and R,~t the camera pose to be estimated, then

w~p0 = R · c~p0 + ~t (4.5)
w~pi = R · c~pi + ~t i = 1, 2, · · · (4.6)

Since the internal camera parameters are calibrated, the coordinates of the reference
points in camera frame can be represented by their image coordinates with the equation
5.1 and the above equations can be rewritten into







wxi − wx0
wyi − wy0
wzi − wz0





 = w~pi − w~p0 = R · (c~pi − c~p0) = R ·







δiXi − cx0

δiYi − cy0

δi − cz0





 (4.7)

Denoting the rotation matrix into RPY form, the 3 + i unknowns can be solved by 3i
equations with no less than two reference points. In fact, R is an orthogonal matrix
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and there is a closed form solution for R. Once R is obtained, the translation is also
determined by

~t = w~p0 − R · c~p0 (4.8)

Remark: although only one reference point is needed, more reference points on the
camera body are practically defined, which makes it easier for an external measurement
system to see and measure one of them in the working area.

4.4.3 Experimental results

For laboratory test, a metal feature is sticked onto the body of JAI CV-M50 camera
with the lens of 25 mm focal length. The calibration is carried out with a calibration
body and the results together with the feature information are listed in table 4.9.

fx fy Cx Cy K
internal 3037.88 3034.23 383.67 279.93 -0.292873

x y z rx ry rz
camera pose 4636.41 1632.12 -3815.94 -17.066 20.159 -179.861

feature -30.60 21.76 -7.26 coordinates in camera frame

Table 4.9: information for the calibration

(a) camera calibration (b) pose estimation

Figure 4.16: simulation in laboratory

As shown in figure 4.16, four reference points are used for estimating the camera pose and
their coordinates are searched manually from the camera image. The input information
and the estimating results are listed in table 4.10.

Since sometimes VMT uses default values simply from camera manuals for internal
camera parameters, the estimation procedure is tested with both sets of internal camera
parameters. In table 4.10, calib.A denotes the camera pose calibrated with the internal
parameters from the body calibration and calib.B denotes the camera pose calibrated
with default internal parameters. Although this approach to camera pose calibration
is still not applied in real applications, the experiment is carried out so strictly as in
a working area since the setup in our laboratory is similar to a working area, which is
shown in figure 4.17.
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X Y x y z
reference point.1 57 98 3688.20 678.19 39.88
reference point.2 541 150 2889.47 479.91 253.57
reference point.3 562 393 2857.98 93.34 235.85
reference point.4 84 434 3675.66 210.40 2.37

f Sx Sy Cx Cy k
intern.A 25.26 0.008315 0.008325 383.67 279.93 -0.000459

x y z rx ry rz
calib.A 4636.40 1632.10 -3815.99 -16.985 20.201 -179.798

camera pose 4636.41 1632.12 -3815.94 -17.066 20.159 -179.861

calib.B 4636.40 1632.10 -3815.95 -17.118 20.204 -179.845
f Sx Sy Cx Cy k

intern.B 25.00 0.008325 0.008325 384.00 286.00 0.000000

Table 4.10: Verification of the vision system

Figure 4.17: simulation environment in laboratory
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4.5 Chapter review

Based on the algorithms for camera calibration as described in the last chapter, four
practical approaches to camera calibration are proposed in this chapter according to
the different applying situations.

4.5.1 Characters and applicable situations

The four approaches are designed for different purposes and their characters and appli-
cable situations are as follows

1. Calibration with a 2D board
A 2D board equipped with an accurate device which is able to move in three
orthogonal directions is a very common and traditional setup for camera calibra-
tion. In our laboratory, the device is named as microscope with an accuracy about
0.01mm, the board is made of glass and the coordinates of the array patterns have
an accuracy in 0.02mm. Thus the most important properties of the approach are
the efficiency and the accuracy. Although it is designed mainly for experiments
in the laboratory, our stereo sensors are calibrated with it. Firstly, the cameras
of a stereo sensor are usually well calibrated in the laboratory. Secondly, a stereo
sensor has to be calibrated very accurately since its uncertainty in calibration will
be inherited in its measurements.

2. Calibration with robot tools
Obviously, the applications, where this approach is applied, must have industrial
robots. A communication module in the vision system that guides the robot with
the robot tool to some specific positions and then the calibration procedure is
done in a few minutes. This approach makes full use of the applying environment
and is integrated perfectly into the vision system. However, the accuracy of the
calibration results is not very good since the industrial robots have the absolute
accuracies of 0.5 mm to 1 mm. Thus this approach is applied by us only for 2D
pose estimation in the press sheets auto-feeding applications, where the largest
sheets till to 4200 × 1900 mm may be measured and the accuracy of 2 mm is
required.

3. Calibration with a 3D body
With a 3D body, the cameras can be calibrated accurately and efficiently. The only
problem is that the resulted camera pose is to the body frame, which is unknown
to the world frame. This trouble may be solved by the extent mode of the body
calibration. This approach is widely applied to the applications for a multi-camera
system. When the cameras are located not far away from each other and can be
calibrated with the 3D body mounted on the same robot, the robot base frame
may be taken for the world frame and the extent mode is applied. Otherwise, an
external measurement system, for example a laser tracker, is adopted to relate the
cameras poses to the world frame.

4. Calibration of the camera pose
The camera calibration is completed in two steps: calibrate the internal camera
parameters in the laboratory and determine the camera pose on site. In the former
procedure, the internal parameters are accurately calibrated and at the same time
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some fixed points on the camera body are well defined. The latter procedure is
done with a fixed point on the camera body and some arbitrary reference points in
the camera sight. The advantage is that the whole procedure is easily carried out
and the results are relatively accurate, and the disadvantage is that an external
measurement system is necessary.

Remark: In fact, the calibration with a simpler 2D board is a popular and efficient ap-
proach for camera calibration on site. However, it is protected by the patent registered
by a competitor of VMT GmbH. We cannot apply it to the vision applications and that
is why we haven’t referred in this dissertation.

4.5.2 Contributions

Since the approaches are designed for some specific purposes, they are able to be carried
out on site and show us their practical values. The main contributions of this chapter
can be concluded as follows

1. In the calibration with a 2D board in the laboratory, the high accuracy of the
microscope and the coordinates on the 2D board reduces furthest the external
errors in the calibration procedure. Thus it is a perfect workbench for testing all
kinds of calibration algorithms.

2. The robot tool is introduced to determine the coordinates of the calibration ball
and the calibration of the robot tool is solved both in mathematics and practice.

3. Through integrating the calibration module into the vision system, the approach
with a robot tool is a complete procedure, which is able to be carried out quickly
and automatically.

4. With a ready 3D body and an external measurement system, the cameras can be
calibrated accurately and quickly on site.

5. The extent mode of the calibration with a 3D body makes it possible to calibrate
a camera completely without any external measurement systems.

6. To the applications in automotive industry, the car bodies and robots must be
initialized as well as the vision system and an external measurement system is
needed in most of cases. Thus the approach to determining the camera pose on
site has its practical values.

7. Although there are no smart setups or amazing ideas, the approaches are built on
our thoughts and have gone through the trial in the industrial applications.
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Chapter 5

Vision Systems Applied to Robot
Vision Applications

A vision system with one or more cameras is usually designed for the specific vision
applications, such as inspections, measurements, pose estimation and so on. The dis-
sertation aims at the industrial applications in robot vision, the vision systems referred
in this chapter are specially for pose estimation, which requires the cameras from the
vision systems to be calibrated. The calibration issue is discussed in the last chapters,
thus the cameras referred in this chapter are already calibrated.
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5.1 Direction vector

For a calibrated camera, all the camera parameters, the projection matrix A and the
camera pose [R|~t], are known. Without loss of generality, the camera frame is assumed
to be the world frame. Either from 2.13 for pinhole cameras or from 2.19 and 2.20 for
a camera model with distortion, one can obtain the following equation
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 = δ
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1





 = δ







X
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1





 (5.1)

where f and g are two functions defined by image coordinates and camera internal
parameters; X and Y are used to denote the two functions f and g respectively by abuse
of notation; δ is actually the distance from the object point to the lens plane. Since the
distance δ cannot be obtained from any image, a single camera can not determine the 3D
coordinates of any object point without other additional information. It is not difficult
to understand geometrically: a 2D pixel can only define a direction vector in the
camera frame, or determine a 3D point up to a certain scale factor. Generally speaking,
equation 5.1 is the ground stone to all algorithms for coordinates determination or pose
estimation.

88



5.2 Mono-camera system Vision Systems

5.2 Mono-camera system

Just as its name applied, a mono-camera system is such a setup that is configured with
only one camera but it can do measurements. For convenience of contrasting to the
following vision systems, it is called in this dissertation a mono-camera system. In
this section, it will be described what a mono-camera system can measure and how it
measures.

5.2.1 Measuring task

5.1 says clearly that a single camera can only measure an arbitrary single object point
when its distance to the camera lens plane is known. Fortunately, the applications in
automobile industry are usually not for measuring arbitrary object points, but for rigid
work objects. A typical application of pose estimation is as follows

Figure 5.1: measuring with a single camera

As shown in figure 5.1, there are n (n > 3) marks on the object and their coordinates in
the object frame are known. The object pose, the transformation from the world frame
to the object frame, is what we want.

5.2.2 Coordinates estimation

Let’s denote N nonlinear object points with known coordinates in the object frame as
follows

o~pi = (oxi,
o yi,

o zi)
T i = 1, 2, · · · , N (5.2)

Thinking of the fact that the distances between any two object points are independent
to the reference frame, the distance between two arbitrary points o~pi and o~pj can be
obtained by

d2
ij = (oxi −o xi)

2 + (oyi −o yi)
2 + (ozi −o zi)

2 (5.3)
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As mentioned above, the coordinates of the object points in the camera frame can be
denoted by the direction vectors with a calibrated camera







cxi
cyi
czi





 = δi
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 (i = 1, 2, · · · , N) (5.4)

With the fact that the distances between the points are kept unchanged whichever frame
the coordinates are with respect to, one has

(Xiδi − Xjδj)
2 + (Yiδi − Yjδj)

2 + (δi − δj)
2 = d2

ij (5.5)

where Xi, Yi and Xj, Yj can be obtained from image coordinates X,Y and camera in-
ternal parameters, dij is also known with the point coordinates in the object frame,
only δi, δj are variables. With N object points, one will get a nonlinear overdetermined
system with N variables and N(N − 1)/2 relations as above. The system can be solved
with the Newton-Rapson method, which is explained in appendix, if the relations are
no less than the variables, namely

N(N − 1)

2
≥ N =⇒ N ≥ 3 (5.6)

It seems that with 3 or more known points, one will get a solvable overdetermined
nonlinear system, which can be solved if a good set of initial values for δi are given.
Once the δi is obtained, the coordinates of the points in the world frame can be easily
determined

w~pi = [R|~t] ·c ~pi = δi · [R|~t] ·







Xi

Yi

1





 (5.7)

5.2.3 Initial guess for δi

In fact, the scale factor δ is the z-coordinate of the object point with respect to the
camera frame, or can be approximately understood in geometry as the distance from
the object point to the camera optical center. Normally for measuring with a mono-
camera, the measuring distance is relatively small. That makes the mono-camera have a
small scene deepth, only the objects within which can be seen clearly. Select two object
points o~pi and o~pi, which satisfy dij −→ min, and assume that δi = δj and it yields

δi = δj =
dij

√

(Xi − Xj)
2 + (Yi − Yj)

2
(5.8)

Having Solved δi and δj, all scale factors can be obtained one after another by relating
to δi or δj. With these initial guesses, the nonlinear system can be solved for all scale
factors δi.

5.2.4 Pose estimation

With the above steps, the coordinates of the points in the camera frame are approxi-
mately estimated as (cxi,

c yi,
c zi). The coordinates of the points in the object frame are
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known, and yield
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czi





 =c To ·
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 (5.9)

With no less than three nonlinear points, the transformation cTo can be estimated by
a best-fit procedure, which is shown in the appendixes. Since the camera is calibrated,
the camera pose with respect to the world frame must be known

wTo =w Tc ·c To (5.10)

5.2.5 Improvement of pose estimation

In the above calculation, we have thought only the distances between object points.
However, what keeps unchanged to all coordinate frames is not only the distances, but
also the relative positions of the points to each other. Thus the object pose can be
directly estimated as follows:
Let’s think in the camera frame and the transformation from camera to object is denoted
as

cTo = [R|~t] = {α, β, γ, x, y, z} (5.11)

then the coordinates of the points in the camera frame are as follows

δi







Xi

Yi

1





 =c ~pi = [R|~t] ·o ~pi (5.12)

Removing the scale factor δ and writing the rotation into RPY, the above equation can
be rearranged into the following two equations

Fx(α, β, γ, x, y, z) = 0 (5.13)

Fy(α, β, γ, x, y, z) = 0 (5.14)

With N ≥ 3 object points, one will get an overdetermined nonlinear system to be
solved with a good set of initial guess, which can be obtained from the results of points
measuring.

5.2.6 Application in automotive industry

Hereby a vision solution with a mono-camera is proposed for verifying the painting gun
used in sealing applications.

Destination of the application

To let the robot do its applications at the right position, one of the preconditions is that
the painting gun, which is shown in the below figure, is undamaged and its mounting
situation is unchanged. As seen in figure 5.2, each nozzle has its pose and coordinates
with respect to the robot hand. In fact, a coordinate frame on the nozzle is defined
and the transformation between the nozzle frame and the robot hand frame will be
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determined in the tool calibration procedure. Once the painting gun is fixed on the
robot hand and the robot application program is taught, the referred transformation
must be kept absolutely unchanged. Otherwise, the robot application windage may
be out of tolerance however accurate the work object is measured. In practice, some
cases such as slight collision of the painting gun against other fixings, take-down and
remounting the painting gun may happen. The mono-camera system is applied to verify

if the nozzle frames are changed with respect to the robot hand frame in necessary cases.

(a) overview (b) detail

Figure 5.2: a painting gun for sealing applications

Applied tool

Since the painting gun may be damaged, the mono-camera system of course can not
measure it directly. Therefore, a specially designed tool is introduced as follows

(a) verification tool (b) mounting mode

Figure 5.3: verification of a painting gun

As seen in figure 5.3, the balls with different sizes and heights can be freely screwed
onto the calibration board in a free array. Once the balls or marks are fixed, a laser
tracker system, as described in the appendix, will be used for setting up a tool frame
on the board and determining the 3D coordinates of all marks with respect to the tool
frame.
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Infrared light for pattern recognition

For any vision system, the accuracy errors are mainly from two directions: camera
calibration and pattern recognition. The first issue is discussed much more in detail in
the last chapter. Hereby we focus on improving the accuracy of the pattern recognition.
To get better accuracy in pattern recognition, the basic and critical factor is to get
images with high quality. In this application, the infrared light is used as seen from figure
5.4. Many infrared light LEDs are fixed around the camera lens, the tool background is
completely covered by a layer of infrared-light sensitive materials and the marks on the
tool are naked steel balls. At the same time, the aperture of the camera is set so small
that the camera can see almost nothing in normal environment. Once the infrared light
is on, the tool will always have a perfect image: black rounds with clear contours on a
totally white background, which makes it easy and accurate to search the circles and
their center points.

(a) camera with infrared light (b) tool under infrared light

Figure 5.4: verification setup with infrared light

Verification procedure in practice

The whole procedure of the application can be summarized as follows:

1. Prepare the camera in laboratory: calibrate the camera, only the internal camera
parameters are neccessary, and equipe the infrared light around the camera lens;

2. Prepare the verification tool in laboratory: tightly screw the steel marks, define a
tool frame and measure the 3D coordinates of all marks with respect to the tool
frame; stick the infrared-light sensitive materials;

3. Prepare at the working area: mount the camera fixedly in a safety corner, and
teach the application robot with the painting gun such a pose, which is normally
called zero position, that the camera can see clearly the verification tool when it
is mounted on the painting gun;
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Figure 5.5: verification setup in laboratory

4. Initialization of the setup: mount the tool on the painting gun, drive the robot
to the zero position, measure the tool frame with the mono-camera and save the
zero pose.

5. Verification routine: mount the tool on the painting gun exactly as that in the
initialization, measure the tool frame again with the mono-camera, calculate the
relative transformation from the zero pose to the current pose, contrast the relative
transformation to the permitted tolerance and execute the correct reactions.

Experimental results

In our experiments in laboratory, a fire-wire camera with a 25mm lens is used and the
image resolution is 1280 × 1024 pixels. The measurement distance is from 150mm to
300mm. The camera is fixed and the tool is mounted on a KUKA robot hand. Through
driving the robot, the tool is searched with 15 different poses, which are measured with
the above described algorithm by the mono-camera. Meanwhile, all poses are measured
accurately with a laser tracker system, which is called Leica system and is described
in detail in the appendixes. To simulate the real application, the relative poses are
calculated and the differences are shown in table 5.4.
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(a) Pos.1 (b) Pos.2 (c) Pos.3 (d) Pos.4 (e) Pos.5

(f) Pos.6 (g) Pos.7 (h) Pos.8 (i) Pos.9 (j) Pos.10

(k) Pos.11 (l) Pos.12 (m) Pos.13 (n) Pos.14 (o) Pos.15

Figure 5.6: verification with the tool in 15 different poses

x y z rx ry rz
Pos.01 32.38 7.68 228.99 177.2596 3.6122 -61.2130
Pos.02 32.48 5.65 218.84 177.1109 3.5128 -76.2186
Pos.03 26.42 9.65 261.13 176.9395 3.3923 -75.8091
Pos.04 19.63 12.90 275.15 178.0261 -0.1283 -56.7000
Pos.05 23.44 5.69 294.22 -177.1840 0.9680 15.8600
Pos.06 19.78 8.01 292.76 -177.3882 -0.4669 15.8520
Pos.07 22.24 11.89 259.35 176.7931 -1.2952 -78.9048
Pos.08 36.27 3.79 327.39 176.2613 3.3615 -81.5008
Pos.09 34.61 0.12 323.68 177.0100 3.6773 -58.2138
Pos.10 30.31 -11.76 312.96 175.5897 1.0867 -35.9412
Pos.11 22.88 1.15 350.33 174.9833 1.8785 -133.8089
Pos.12 20.75 4.77 322.77 177.9787 -2.2794 -141.3489
Pos.13 33.09 6.85 196.92 177.5607 -1.1537 -49.0101
Pos.14 26.43 8.68 163.27 179.1989 -4.4035 155.7672
Pos.15 13.15 16.61 318.92 2.9885 -172.4454 7.1068

Table 5.1: poses measured by a mono-camera system
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x y z rx ry rz
Pos.01 0 0 0 0 0 0
Pos.02 2.78 -5.57 10.07 0.1319 -0.1204 14.9962
Pos.03 10.03 -6.73 -33.70 0.2915 -0.2558 14.5759
Pos.04 -0.06 10.31 -45.24 2.7081 2.6925 -4.4261
Pos.05 -9.90 27.32 -62.52 -6.0618 1.0340 -76.9055
Pos.06 -13.72 30.15 -60.04 -6.2620 2.4625 -77.0527
Pos.07 5.95 10.09 -30.23 4.9055 0.4864 17.7031
Pos.08 3.96 -4.42 -98.97 0.3957 -0.9483 20.2237
Pos.09 -0.78 9.73 -94.84 0.0759 -0.2460 -3.0153
Pos.10 14.37 -1.93 -85.00 0.5592 -2.9748 74.6452
Pos.11 33.69 1.51 -122.04 -0.3207 -2.8412 72.4948
Pos.12 13.97 13.59 -93.90 4.2486 -4.1483 79.9903
Pos.13 -10.17 21.76 34.28 3.4040 3.3512 -12.0969
Pos.14 42.75 16.19 63.91 -1.5292 -8.1045 143.1147
Pos.15 -5.11 40.65 -86.71 7.1667 -10.3233 110.8338

Table 5.2: relative poses to the first position

x y z rx ry rz
Pos.01 0 0 0 0 0 0
Pos.02 2.87 -5.59 10.50 0.0895 -0.1174 15.1315
Pos.03 10.12 -6.80 -34.01 0.2958 -0.2207 14.7275
Pos.04 -0.02 10.31 -45.59 2.7163 2.6851 -4.5521
Pos.05 -9.89 27.33 -62.94 -6.0235 1.0679 -77.0109
Pos.06 -13.75 30.19 -60.27 -6.2239 2.4250 -76.9054
Pos.07 5.90 10.08 -30.56 4.9110 0.4728 17.8063
Pos.08 3.92 -4.44 -98.65 0.3914 -0.9965 20.3475
Pos.09 -0.75 9.76 -94.97 0.0519 -0.2920 -3.1306
Pos.10 14.34 -1.97 -84.70 0.5185 -2.9495 74.7904
Pos.11 33.68 1.52 -122.48 -0.3413 -2.8824 72.3896
Pos.12 13.94 13.57 -94.31 4.2973 -4.1966 79.8806
Pos.13 -10.14 21.72 33.85 3.4079 3.3023 -11.9938
Pos.14 42.79 16.18 64.22 -1.5583 -8.1090 143.2293
Pos.15 -5.11 40.70 -86.82 7.1334 -10.3466 110.9677

Table 5.3: relative poses measured by a laser tracker
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x y z rx ry rz
pos.2 0.090 -0.019 0.430 -0.1024 0.1353 0.0030
pos.3 0.093 -0.067 -0.310 0.1043 0.1517 0.0352
pos.4 0.038 0.007 -0.340 0.1081 -0.1261 -0.0075
pos.5 0.005 0.017 -0.420 0.1032 -0.1055 0.0340
pos.6 -0.025 0.045 -0.240 0.1080 0.1473 -0.0375
pos.7 -0.049 -0.010 -0.330 0.1055 0.1031 -0.0136
pos.8 -0.040 -0.018 0.330 -0.1043 0.1237 -0.0483
pos.9 0.023 0.032 -0.140 -0.1241 -0.1153 -0.0460
pos.10 -0.030 -0.034 0.300 -0.0808 0.1452 0.0252
pos.11 -0.011 0.009 -0.440 -0.0907 -0.1052 -0.0412
pos.12 -0.029 -0.013 -0.400 0.0986 -0.1097 -0.0483
pos.13 0.032 -0.039 -0.420 0.1040 0.1031 -0.0488
pos.14 0.047 -0.010 0.310 -0.1292 0.1147 -0.0045
pos.15 -0.007 0.048 -0.110 -0.0830 0.1338 -0.0233
Aver 0.010 -0.004 -0.127 0.0012 0.0426 -0.0158

MaxErr 0.083 0.063 0.557 0.1304 0.1687 0.0510

Table 5.4: differences between the measurements

Figure 5.7: deviations of the verification
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From table 5.4 or figure 5.7, careful readers may find that x, y and rz elements are very
well estimated, but the results for z, rx and ry, especially z, are not so accurate. This
situation is reasonable to a mono-camera system: a mono-camera can see the world only
from one direction, the optical axis, which is almost parallel to the z-axis of the tool
frame in our application. This fact results that any small movement in XOY plane is
reflected directly and differences in z-axis shrink on the camera image. The movement
or the difference is more parallel to the optical axis, the shrink is greater. Therefore,
the mono-camera system gets the worst accuracy in z estimation.
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5.3 Stereo vision system

A stereo vision system is composed of two cameras, whose relative poses are fixed to
each other, and they have a common sight field. With the 2D information from both
cameras, it is possible to rebuild the real world scene in the common sight field. The
most common task of the stereo vision is to correlate the two camera images and find the
corresponding pairs for obtaining the depth information of the scene. Since our focus
is on pose estimation, a few special features are used for 3D coordinates estimating, or
consequently the pose of the work object.

(a) calibration setup (b) sensor inside

Figure 5.8: configure of a stereo vision

5.3.1 Point coordinates estimation

Since the both calibrated cameras have different poses, the coordinates of any object
point in the common sight field of them can be estimated. Let’s denote as follows

cameras poses : wTi = wRi + ~ti i = 1, 2

direction vectors : c~pi = δi
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wanted object point : w~p = w~p1 = w~p2

Relating the 2D - 3D coordinates, one has
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Since there are only two unknowns δ1 and δ2, the above equations can be easily solved
and the coordinates of the object point are obtained

w~p = w~pi = wRi · δi







Xi

Yi

1





+ w~ti i = 1, 2

Experimental results

As described before, the calibration setup of the stereo vision can move accurately
in three orthogonal directions. Thus the device frame is used as our world frame in
experiments and one can also verify the accuracy of the stereo vision in coordinates
estimation. The glass calibration board with 5 × 5 marks is used and one of the
calibration position is selected for the estimation and the deviations are as follows

(a) x-deviation (10−6m) (b) y-deviation (10−6m)

(c) z-deviation (10−6m) (d) vector-deviation (10−6m)

Figure 5.9: measurement deviations from the stereo vision

Seen from the above figure, the deviations in x and y directions are very small, within
0.05mm and it is much worse in z direction, about 0.1mm. To get such results, the
measure distance must be relatively small, from about 200mm to 300mm.

5.3.2 Stereo sensor calibration

As seen from figure 5.8, once the stereo vision system is calibrated, both cameras must
be fixed relatively to each other and form a rigid body, which is also called stereo
sensor. A stereo sensor has its own coordinate frame, in which its both cameras are
calibrated. For a product of a stereo vision system, it is most of time delivered in a
form of black box package. The user can simply do the measuring work in the sensor
frame. However, every application has its own user defined world coordinate frame,
which is usually different from the sensor frame. Only with the transformation between
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the sensor frame and the world frame, the user can get the expected results in the world
frame.

(a) stationary sensor (b) robot hand sensor

Figure 5.10: calibration of the stereo sensors

The procedure of determining the transformation wTs is called sensor calibration. To
carry out the calibration, some known object points w~pi in the world frame are needed.
Since the cameras are calibrated in the sensor frame, the coordinates s~pi of the known
object points with respect to the sensor frame can be estimated, then

w~pi = wTs ·s ~pi, i = 1, 2, 3, · · · (5.15)

For no less than three nonlinear known object points, the transformation wTs can be
determined. However, one of the most common applications of a stereo vision is to
mount the sensor on a robot, as shown in figure 5.8. In this case, the sensor calibration
is to determine the transformation hTs between the sensor frame and the robot hand
frame. But the calibration procedure is similar:

1. Select no less than three nonlinear known object points w~pi.

2. Drive the robot to such positions that the stereo sensor can see the known points
one by one. For each position, the robot knows its hand frame with respect to
the world frame and denoted as wTh. The coordinates of the known point with
respect to the robot hand frame are obtained by h~pi = hTw · w~pi.

3. At the same time, the known points are measured by the stereo sensor and denoted
respectively as s~pi.

4. Relate the coordinates by hTw · w~pi = h~pi = hTs · s~pi and solve the calibration.

5.3.3 Pose estimation of known object

For a stereo vision, the pose estimation is implemented through estimating the coordi-
nates of individual object points. Selecting no less than three nonlinear known object
points with respect to the object frame, their coordinates s~pi with respect to the sensor
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frame can be determined by a stationary sensor or a mobile sensor. Since the sensor
is calibrated, the coordinates of the object points with respect to the world frame are
obtained

w~pi = wTs · s~pi i = 1, 2, 3, · · · (5.16)

Since the object is known, the coordinates o~pi of the object points with respect to the
object frame are known. The object pose wTo can be determined from the following
relations

w~pi = wTo · o~pi i = 1, 2, 3, · · · (5.17)
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5.3.4 Application with a mobile stereo sensor

The familiar setup of stereo vision in most applications is to mount the stereo sensor
on a robot hand, which can be seen from figure 5.8. The application we have tested in
laboratory is for a robot to mount automatically a windowpane onto a car body.

Solutions from multi-camera system

The current industrial solutions for such problems from VMT GmbH are to apply a
multi-camera system, which is shown in the below figure. The left setup in the figure
is using a single camera mounted on the robot hand. The robot goes to some mea-
suring positions to let the camera search the selected features. Except that the setup
needs some more seconds to complete the measure procedure, the following estimation
algorithm is exactly the same as that there are many cameras. The right setup in the
figure is especially designed for windowpane mounting. It does not estimate any pose
of any object, what it measures is the gaps between the window rim and the pane in all
directions and finally guide the robot to find a best-fit position for mounting.

(a) multi-camera setup (b) hand camera setup

Figure 5.11: current solution in applications

(a) stereo solution (b) experimental setup

Figure 5.12: stereo vision experiments in laboratory
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Solution from stereo vision system

The greatest advantage of the stereo vision solution, as shown in figure 5.12, is that a
new object can be automatically introduced.

New object definition

New object definition is to set up an object frame and get the coordinates of its marks
with respect to the object frame. For convenience of depiction, the robot base frame is
taken as the world frame and the procedure in our application is as follows

1. Drive the robot hand with the stereo sensor to a position wTh near the object and
define the sensor frame wTs = wTh · hTs = wTo as the object frame, which at this
moment is also called zero frame wTz = wTo.

2. Drive the robot into such positions one by one that the sensor can see the selected
marks on the object. If the robot hand positions are denoted as wThi, the sensor
positions must be wTsi = wThi · hiTsi.

3. Measure the mark with the stereo sensor and denote the coordinates in the sensor
frame as si~pi at each position.

4. Get the coordinates of the marks with respect to the object frame o~pi = wTo
−1 ·

wTsi · si~pi.

Figure 5.13: introducing a new object
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Figure 5.13 is an example in the laboratory to introduce a new object with four marks.
The left six values are to define the object frame and the right bottom three values are
the calculated coordinates of the current mark with respect to the object frame.

Experimental results and accuracy

Since the stereo sensor has been tested with high accuracy by using the calibration
setup, there is no external measure system applied for checking the absolute accuracy.
The values in table 5.5 are the results in the application.

x y z rx ry rz
at zero position 0.010 -0.004 0.011 -0.0011 0.0025 0.0006
an arbitrary pos -0.166 -3.335 -6.013 0.3840 -0.0003 -0.0012

Table 5.5: Test measurements with mobile sensor

However, the absolute deviations of the stereo sensor can be seen in the first row of the
table. Once a new object is introduced, a test measurement is carried out immediately
with the object position unchanged. To check the application accuracy, the robot is
taught to simulate the real application, some verification points touching as shown in
figure 5.14. For this purpose, the zero frame must be remembered by the robot and the
complete procedure will be described in detail in the section of multi-camera system. In
laboratory, the application deviations are less than 1mm, which is estimated by human
eyes and including the robot error in absolute positioning, which has a normal range of
0.5mm to 1mm for the applied KUKA robots.

(a) verification points (b) application simulation

Figure 5.14: accuracy testing of the stereo vision
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5.3.5 Application with stationary stereo sensors

Currently the alignment of the wheels, or checking if the two front wheels of an auto-
mobile are parallel in mounting states, is more and more concerned by the automobile
producers and handlers. As shown in figure 5.15, the measurement task is to determine
the two angles, the camber and the toe.

(a) camber angle (b) toe angle

Figure 5.15: installation verification of the front wheels

In our laboratory, a vision solution with three stereo sensors is proposed to determine
the pose of the wheel plane. If poses for both front wheels are determined, the alignment
problem is solved.

System setup and initial calibration

As seen from figure 5.16, the three sensors are fixed relatively on a metal plate with an
angle of 120 degree to each other, which is a reasonable setup for the three sensors to
determine the wheel plane. In order to constitute a vision system with the three sensors,
their relative pose must be determined. This task is usually called initial calibration.
To initialize the system, a calibration plate with 121 points in an array is used to define
a common reference frame for the three sensors. The reference is defined as shown in
figure 5.16 and the coordinates of the points with respect to the reference frame are
known. As described before, the sensors can be calibrated if they can see no less than
three points. Then the sensors can measure any point with respect to the reference
frame.

The wheel plane and the structured light

To measure the pose of the tire plane, a coordinate frame for the tire plane must be
defined. As seen from figure 5.18, the rotation axis of the tire is defined as the z axis of
the tire frame and the x direction is forward and y direction upward. Thus the camber
and toe angles are determined by measuring the plane of the tire, or the rotations of the
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(a) sensors layout (b) initial calibration

Figure 5.16: experimental setup

defined frame around x and y axes, namely RX and RY respectively. To measure the
plane of the wheel, we should find on the wheel edge more than two fixed marks, which
are coplanar and define the wheel plane. However, the solution will have no practical
values if we must set some marks with hand onto the wheels for every automobile to be
measured. In order to have the same marks for all types of wheels, a special designed
structured light is applied in our experiments.

(a) cameras and light projector (b) wheel under structured light

Figure 5.17: stationary sensor with structured light

As seen from figure 5.17, the structured light draws three radial white lines and at least
three white lines in the perpendicular direction on the dark wheel. The intersections of
the white lines are to be recognized as pattern marks. With these marks, we can solve
the two main issues in our experiments as follows

1. Pair-matching of patterns
Pair-matching of patterns is an important and necessary procedure in coordinates
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determining with a stereo vision system. Careful readers may notice that the
structured light is so designed that the right radial line has only one cross in-
tersection and others are trifurcate intersections, at least two of which must be
seen. The three intersections marked with circles are serving as control points,
which can clearly define a 2D coordinate frame in camera images. With the help
of the frame, all marks in the image can be ordered into an array. Thus the pair-
matching procedure is easily solved and the coordinate determination with the
stereo sensors is possible.

2. Determination of tire profiles
As we know, the tire surface is not at all a plane. The most difficult problem
in the experiment is to get some marks which can define the wheel plane. The
solution in laboratory is to recognize the profiles on the tires, which can be seen
from figure 5.18. Coming back to the camera image of the structured light, the
three radial white lines must have intersections with the tire profiles. Without
loss of generality, let us look into only one line: with interpolating splines, the
coordinates of the points on the line can be determined in reference frame and
should form a smooth curve in space. However, the profiles on the tire may cause
some heaves or concaves to the curve. Through analyzing the heaves or concaves
from all three stereo sensors, we can get nine points on some profile, which is to
be thought to define the tire plane and its pose can be determined.

Experimental results

To check how well the solution with a stereo vision system works, a specially designed
workbench as shown in figure 5.18 is applied.

Figure 5.18: workbench for a wheel measuring

With this workbench, it is possible to adjust in both camber and toe angles and there
are indicators for showing the current angles. Both of the adjusting ranges are from
-3.0 to 2.0 degrees, which covers the most cases in practice. The experiment procedure
is as follows
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1. Set both camber and toe angles from the workbench to zero and define the tire
frame, actual a plane but its vector direction is defined, as the zero frame.

2. Measure with the three sensors to determine the zero frame wT0 and save the zero
frame.

3. Adjust the tire to an arbitrary position by the camber and the toe angles {shouldRX,
shouldRY }, which can be read out from the workbench, and estimate the current
tire frame with the sensors wTi.

4. Calculate the relative frame to the zero frame as
0Ti = wT0

−1 · wTi −→ {isRX, isRY }.

5. Get the deviations for the camber and the toe angles
δRX = isRX − shouldRX, δRY = isRY − shouldRY .

Part of the results are shown in figure 5.19 and the deviation ranges are within 0.5
degree. The left figure shows the camber deviations according to the camber positions
and the right figure shows the toe deviations according to the toe positions. In both
figures, there are some cases that there are different deviations at the same position.
That means, the camber deviation is influenced not only by the camber position, but
also in some degrees by the toe position. For the same reason, the toe deviation arises
also from both the camber and toe positions.

(a) camber contribution (b) toe contribution

Figure 5.19: deviations in camber and toe measuring

In figure 5.19, the application accuracy seems not bad. In fact, the stability and apply-
ing conditions of the experiment have not reached the practical requirements. That is
why the expensive laser solutions are widely used in this field. However, it is a good
start for us to continue in the direction with the vision solutions. To get greater appli-
cation values, the illumination schedule, consequently the pattern recognition and pair
matching, especially the latter, must be improved.
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5.4 Multi-camera system

A multi-camera system is of course a vision system with more than 2 cameras. Such a
vision system is usually used in the automotive industry for measuring large working
objects, such as a car body, which is often so large that a mono-camera or even two
cameras can not overview it. In such a situation, the cameras are usually hidden in a
corner far away from the measuring object, normally two or three meters away, some-
times even to five meters away, which makes it impossible for a mono-camera or stereo
vision system to do the measurements. A typical layout of industrial applications with
a multi-camera system is shown in figure 5.20.

Figure 5.20: a typical layout for sealing applications

The application can be outlined as follows: an object to be processed, such as a type
of a raw car, is transported and stops in the work cell. The robots try to carry out
the routine applications, which are taught when a sample car stops in the ideal stop
position. In production, the transportation equipments are usually not so accurate as
expected and the car stops in such a position that is a little different from the ideal
stop position. A multi-camera system is introduced for serving as an eye by measuring
the current object pose, with which the robots adjust the working paths and do the
applications at the correct positions with the correct poses.

Remark: The component denoted as a triangle in figure 5.20 is an additional measure-
ment system, such as a laser tracker, which is only needed at the initializing procedure
to define a world frame, relating the cameras poses and robots bases to the world frame,
and adjusting the robots linear tracks.

5.4.1 Measurement task

In mathematics, the setup in figure 5.20 can be abstracted into figure 5.21. There are
three types of coordinate frames: the world frame, the camera frame and the object
frame. The world frame is defined by the user, and it is the reference to all the following
work. The cameras have their own coordinate frames, which are marked with green
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color in the figure and determined with respect to the world frame in the calibration
procedures. The object, here is the car body, is taken as a perfect rigid body and can be
defined in mathematics by more than three features on the car body. The coordinates of
the features marked with blue color in the figure with respect to the object frame must
be given, usually can be obtained with the CAD drawings from the car body designer.
The measuring task of the system hereby is to determine the transformation from the
world frame to the object frame, which is usually called object pose and marked in the
figure with red color.

Figure 5.21: coordinate frames in a multi-camera system

5.4.2 Pose estimation

For convenience of calculation, we don’t compute directly the transformation from the
world frame to the object frame, but the inverse transformation which is denoted as
follows

oTw = [R|~t] = {α, β, γ, x, y, z} (5.18)

Since there are many cameras, we cannot consider things any longer in the camera frame.
Taking the above transformation for granted, the coordinates in the object frame can
be related with the direction vector in the camera frame again
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 (5.19)
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Removing the scale factor δ and representing the transformation oTw, the above equation
can be rearranged into the following two equations

Fx(α, β, γ, x, y, z) = 0 (5.20)

Fy(α, β, γ, x, y, z) = 0 (5.21)

With N ≥ 3 object points, one will get an overdetermined nonlinear system, which can
be solved with a good set of initial guess.

Remark: In practice, the reference frame is usually defined near the working objects,
and the translation and rotation are relatively small. With a set of all zeroed initial
guess, one may expect to obtain the satisfied results from the overdetermined system.

To get a set of initial values for the elements of oTw, we denote N object points with
known coordinates in the object frame as follows

o~pi = (oxi,
o yi,

o zi)
T i = 1, 2, · · · , N (5.22)

With the fact that the distances between the points are kept unchanged whichever frame
the coordinates are with respect to, one has
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o
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o
j are known, the distance can be easily calculated. Since

all the integrated cameras are calibrated, the pose of the camera corresponding to the
object point o~pi is denoted

wTci = wRci + w~tci (5.24)

The coordinates of the object points in the camera frame can be denoted by the direction
vectors
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Then the coordinates in the world frame can be represented as follows
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where Li,Mi, Ni are three functions defined by the pose of related camera. Replacing
the above equations into the distances calculating

Fij(
wRci,

w~tci, Xi, Yi,
wRcj,

w~tcj, Xj, Yj, δi, δj) = d2
ij (5.27)

where only δi, δj are variables. With N ≥ 3 object points, one will get a nonlinear
overdetermined system with N variables and the initial values for δi are obtained with
the following rules

112



5.4 Multi-camera system Vision Systems

1. Select a camera which searches more than one feature. If there is such a camera
Ck searches more than one feature, denote two of them as i and j and go to step
3; otherwise go to step 2.

2. Select such two cameras ci, cj that the difference of their lens focuses is the mini-
mum, that is |fi − fj| −→ min and get two features mi,mj respectively from the
two cameras, then go to step 3.

3. Similar to the mono-camera system, assume that δi = δj and it yields

Fij(
wRci,

w~tci, Xi, Yi,
wRcj,

w~tcj, Xj, Yj, δ) = d2
ij

Solving δ = δi = δj, all other scale factors can be obtained one after another by
relating to δi or δj.

With the initial values, a set of final values of δi will be obtained. Then the coordinates
of the features with respect to the corresponding cameras are obtained, consequently
the coordinates with respect to the world frame
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Noticing the fact that the coordinates of the points with respect to the object frame are
known, we have N ≥ 3 points, whose coordinates with respect to both the world frame
and the object frame are known. Therefore, the transformation cTo can be estimated
by a best-fit procedure. Finally the transformation is used as the initial guess in the
nonlinear equations of 5.20 and 5.21 and then a better set of values for cTo will be
estimated.

5.4.3 Pattern compensation

In the above estimation procedure of the object pose, the 2D coordinates from pat-
terns recognition and the 3D coordinates of the patterns in the object frame are simply
matched through equation 5.19. The presupposition to match the 2D and 3D coordi-
nates of a pattern is that the 2D pixel is exactly the projection from the 3D pattern
point. Let’s have a look how the presupposition is satisfied in practice.

1. 3D coordinates of a pattern
The pattern referred here is an object mark, which is normally a part of the object.
When a pattern is selected for the vision system to ’search’, its 3D coordinates
are usually obtained from the design drawings of the car body. The values may
be accurate, but the problem is the quality of the finished products. For instance,
the common coordinate deviations of the patterns from a car body is about 2 mm,
which makes it impossible for a vision system to determine the pose of the car
body with the errors within 1 mm.

2. 2D coordinates of a pattern
In the camera image, a pattern is a block of pixels, of which a suitable pixel on
the pattern is defined as the reference point usually through a mouse click. The
coordinates of the reference point from the pattern recognition indicate the current
position of the pattern and are used for continuous calculation.
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As described above, the correspondence of the 2D pixel and 3D pattern point is guar-
anteed by human eyes. Thus the deviation may be to a few pixels and the error will be
reflected on the result of the object pose determination. In fact, there is no difference
whatever pixel is defined to be the reference point. The important factor is that the
pixel indicated by the 2D coordinates is exactly projected from the object point by the
3D coordinates. A procedure called compensation of pattern coordinates is applied for
solving the correspondence of 2D / 3D coordinates: according to the recognition results,
the 3D coordinates of the patterns are adjusted slightly to reach a best-fit between all
values. The adjustment of the pattern coordinates is called pattern compensation.

Figure 5.22: compensation of pattern coordinates

As shown in figure 5.22, an object point i is projected into the pixel I, but the coordi-
nates from the pattern recognition indicate the pixel K, which is different from I. In the
compensation procedure, we try to adjust the object point, actually its 3D coordinates,
so that the new point j is projected exactly into the pixel K = J. If o~pi,

c~pi denote the
the 3D coordinates of the object point in the object frame and the camera frame re-
spectively and Pi the responding 2D coordinates, the compensation procedure is carried
out in the following steps:

1. Estimation of the object pose
With the camera parameters A, wTci, the object pose can be estimated with the
referred procedure and denoted as wTo.

2. Calculation of 2D deviations of the patterns
Once the object pose is obtained, the coordinates c~pi of patterns with respect to
the related camera frame can be determined. As shown in figure 5.22, an object
point i is taken for instance. Since the related camera is calibrated, its projection
I can be easily calculated. In theory the pixel I should be the same pixel as the
pattern recognition result K. In practice there have errors and the difference is
denoted as

δ ~Pi = |~Pi − ~Pk| i = 1, 2, · · · , n

Supposing ε is an user defined sufficient small value. If δ ~Pi < ε for all patterns,
the procedure is completed; otherwise continue to the next step.

3. Creation of a new 2D image pixel J
To reduce the deviation, a new pixel J is created by

~Pj = λ~Pk + (1 − λ)~Pi 0 < λ ≤ 1 (5.29)
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If λ = 0, no compensation is applied; if λ = 1, the pattern recognition result is
taken as the new pixel.

4. Creation of the corresponding object point j
Since the new pixel J is closer to the pixel K than the image of the pattern i, the
object point i should be compensated into j, which will project into J. However,
an image pixel can not determine an object point. Thus the new object point j is
considered to have the same distance as the point i to the plane of camera lens,
that is

~cpi = (xi, yi, zi)
T = δi(Xi, Yi, 1)T = δi

~Pi

~cpj = (xj, yj, zj)
T = δj(Xj, Yj, 1)T = δj

~Pj

where δi = δj and ~cpi, ~Pi and ~Pj are known, ~pj is easily calculated, consequently
the coordinates with respect to the object frame

~opj = (wTo)
−1 · wTc · ~cpj.

5. Update the 3D coordinates of the patterns
Taking the calculated coordinates ~opi = ~opj for all patterns and go back to the
first step to continue the procedure.

When the above procedure is completed, the projections of the 3D object points must
be close enough respectively to their corresponding 2D pattern pixels. If the original
coordinates and the current coordinates of the patterns are denoted respectively as org~pi

and cur~pi, the compensations are defined as follows

com~pi = cur~pi − org~pi i = 1, 2, · · · , n (5.30)

Remark: The value λ in creation of a new pixel seems to indicate the convergence speed
of the compensation procedure. However, one must notice that the newly calculated
coordinates of patterns may lead to a new object pose, which will cause new coordinates
of patterns in the camera frames and finally the new image pixels. Sometimes λ = 1
may cause the repeating procedure to wiggle, instead of converge. In practice λ = 0.5
is applied and it converges actually with only several times of calculation.

5.4.4 Pattern weight

To estimate the object pose, the equations 5.20 and 5.21 are in ideal situation. In fact, Fx

and Fy will never be exactly equal to zero. The algorithm to solve the over-determined
system can be interpreted as minimizing the following function

n
∑

i=1

F 2
x + F 2

y → min n ≥ 3 (5.31)

where n is the count of patterns. The above function takes all patterns without dif-
ferences. Sometimes different patterns have different significances in determining the
object pose. The function can be improved by introducing a weight factor for every
pattern

n
∑

i=1

(F 2
x + F 2

y ) · w2
i → min 1 ≥ wi ≥ 0 (5.32)
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where wi is the user assigned weight factor. In real applications, the weight factors are
in percentage forms, 100% is for normal patterns, 0% for the discarded patterns and
the values from 1% to 99% for the less significant patterns.

(a) same weights (b) different weights

Figure 5.23: strategy of weights assignment

Generally speaking, it may be useful to assign different weights for different patterns in
the following cases

1. The object to be measured is not a rigid body and its parts are subjected to
distortion. The patterns from the distorted parts can be given a smaller weights
to estimate the object pose more correctly.

2. The object to be measured may zoom within a certain degree. The normal strategy
with the same weight for all patterns will lead to such a pose result that the errors
are dispatched equally into the patterns as shown in figure 5.23a. Users can assign
different weights for the patterns according to their significances in application to
get a flexible result as shown in figure 5.23b.

Remark: The example from figure 5.23 is with 2 patterns to estimate the 2D pose (X,
Y, RZ) of an object moving in a plane parallel to the camera chip. Pattern B does little
work in estimating the shift X and Y, but is necessary in determining the rotation RZ.

5.4.5 Zero measurement

As shown in figure 5.21, all cameras are calibrated with respect to a world frame and the
multi-camera system estimates the object pose of course in the world frame. In the best
case, the object should come and stop exactly at the position where the robot routine is
taught with a sample object. Normally the object comes and stops usually at a different
position nearby. If we name the object pose with respect to the world frame as absolute

pose and the pose with respect to the ideal position as relative pose, the robot needs
the relative pose for doing its work correctly. Therefore, a zero measurement procedure
is in practice introduced for the multi-camera system to measure the ideal pose and
’remember’ it for later converting absolute poses into relative poses.
In practice, the ideal pose of the object must have been determined in initializing the
system, which gives us a chance to verify the accuracy of the multi-camera system by
contrasting the result vectors respectively from the additional measure system and the
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multi-camera system. What troubles us is the fact that the differences, about 2 mm in
translation and 0.2 degree in rotation, are not satisfied to the industry required accuracy,
maximum 1.0 mm in translation and 0.1 degree in rotation, which includes the robot
error additionally. The possible error sources may be as follows

1. Camera modeling: whatever model is applied, it can not describe the camera
behavior exactly correct and errors may arise in mathematical calculation.

2. Camera calibration: camera calibration is an elaborate procedure which may
consist of many steps, such as 2D and 3D coordinates gathering. Each step may
have errors and the errors are inherited into the camera parameters.

3. Object distortion: the multi-camera system referred here is mainly for esti-
mating the pose of rigid objects. If the current object is not rigid enough, the
measurement result, which is computed by taking the object an exactly rigid one,
is of course not highly satisfied.

4. Pattern recognition: the result from pattern recognition can be accurate to
pixel, even sub-pixel, but can not be 100% correct.

For a well-running vision system, the measuring errors arisen from object distortion
and pattern recognition are stochastic and should be improved respectively. However,
the errors from camera modeling and calibration are almost constant and totally called
system error, which can be mostly eliminated through a zero measurement procedure.

Figure 5.24: zero measurement

As denoted in figure 5.24, wT0 is for the absolute pose of the object in ideal position,
wTi for the object pose in an arbitrary position and consequently 0Ti for the relative
pose. In a qualified production line in industry, the arbitrary position is relative close
to the ideal position. For example, in a PVC fine sealing station, the tolerances of
the stop position for transporting a raw car are about 30 mm in translation and 0.2
degrees in rotation. Since the external factors are so similar, the system errors included
respectively in wT0 and wTi are supposed to be same and finally the relative pose 0Ti

should be much more accurate in correcting the robot path after a zero measurement
procedure.
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5.4.6 Security control

As known, security is the most important thing for applications in automobile industry.
If the result vector from the vision system is not correct but is given directly to the
related robots, collisions from robots against car body may happen and consequently
an elaborate procedure for robot tool calibration is needed. For security controlling, the
following approaches are applied.

A. Limit for correction vector

To guarantee the measurement to be correct, the most direct way is to check the validity
of the values from the correction vector. As referred in section zero measurement, the
tolerance for the object to move around the zero position is relatively finite, which
makes it possible to limit the result vector in a scope. Most of the time, we can set
rigorous ranges for X, Y, Z, RX, RY and RZ respectively according to some additional
conditions in real applications.

B. Effective patterns and cameras

In a successful measurement, the pattern which has been in estimating the ultimate
object pose is called an effective pattern; otherwise it is a noneffective pattern. If a
camera has no effective patterns related, it is in this measurement a noneffective camera;
otherwise it is an effective camera. In mathematics, we need minimum 3 nonlinear
effective patterns for determining the object pose, but it is commonly considered that
more effective patterns lead to better and stabler measurement, which is the reason that
a redundancy strategy of patterns is usually adapted in practice.
Although there is no requirements in mathematics on cameras count for pose estimation,
we can see clearly how important the cameras count is to the accuracy of the vision
system from figure 5.20: the car body has a size about 4 meters long and 2.5 meters
wide, which makes it impossible to measure it with only one camera. To measure with
two effective cameras from the system, there are two possibilities

1. two cameras from one side: The two cameras are supposed without loss of
generality to be at the front side. When the rear of the car body turns up or
down but the fore side keeps almost unmoved, the measurement result can not be
accurate, especially the rotation angles. Thus the guided robot works smoothly
in the front and problems may come in the behind part.

2. two cameras from one diagonal: There may happen such a case that the
car rotates a small angle around a car body diagonal, where the two effective
cameras locate, the similar problems as above may arise when the robots do their
application at the other two corner parts of the car.

Measuring with three or four cameras can greatly reduce such problems to happen.
Therefore, it is a complementary and applicable strategy to assure the measurement by
checking the counts of effective patterns and cameras.

C. Validity of pattern recognition

Among the factors which may affect the measurement result, the main and critical error
arises from pattern recognition, for example, a pattern is wrongly recognized at an other
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position in the image. For instance, as shown in figure 5.25, an object is defined by
four patterns A, B, C and D and denoted in green. When the corner E is recognized by
mistake as the pattern D, the estimation procedure tries to find such an object pose by
matching the coordinates searched for A, B, C and E to the reference object patterns
A, B, C and D as well as possible. As a result, the error in searching pattern D is
dispatched to some degree into other patterns and an object pose spoiled by rotating
the object a little is obtained.

Figure 5.25: mistakes in pattern recognition

In order to kick out the wrongly recognized pattern, we have looked carefully into the
estimation procedure and found that the deviation at the wrongly recognized pattern is
larger than those at other patterns although the error is shared by all patterns. There-
fore, the estimated pose wTo is firstly taken for granted correctly and the coordinates of
patterns in the camera frame is obtained by

c~p =











xi

yi

zi

1











c

= cTw · wTo ·











xi

yi

zi

1











o

= cTw · wTo · o~p (5.33)

With a point in the camera frame c~p, its projection should ~Pi in the corresponding cal-
ibrated camera can be uniquely determined and consequently the deviations δ ~Pi is
defined

δ ~Pi = is ~Pi − should ~Pi, i = 1, · · · , N (5.34)

where is ~Pi is the image coordinates from pattern recognition. If tolerances are set sepa-
rately for patterns, the security controlling can be completed by checking the deviations
of the patterns after getting the object pose. When some patterns have deviations be-
yond their tolerances, they will be discarded and the system will try to estimate the
object pose again with the left patterns.

Remark: The deviations can be checked in both pixels and millimeters as described in
section calibration deviations from chapter camera model.
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5.4.7 Experimental results

The data for this experiment are again from the practical application from VW Shang-
hai. The multi-camera system is composed of four JAI CV-M50 cameras, which are
calibrated with a calibration body and the results are listed in table 4.8, and the lenses
are of 35 millimeters focal length. In theory, it is enough for each camera to search
a pattern. In practice, we usually introduce more patterns than needed for improving
accuracy and stability of the measurement by a redundancy strategy. As seen in fig-
ure 5.26, the features marked in black circles are defined as our patterns for searching.
Among these patterns, some of them are on the longeron of the car and have good
rigidness property; some are on the shell of the car and are subjected to distortion. The
patterns on the rigid part keep their coordinates well and others not. That is why we
assign them different pattern weights: 100% and 50% respectively.

(a) camera.1 (b) camera.2

(c) camera.3 (d) camera.4

Figure 5.26: camera images at zero position

Actually the camera images in figure 5.26 are taken by the ideal stop position of the
car body, where the robots routines should be taught. For our multi-camera system,
the car frame at ideal position is indeed defined as the world frame,in which all cameras
are calibrated. If we measure the car body with these images, the result pose of the
car body should be a zero vector. In practice, VMT system has never got a zero vector
and the difference this time is listed in table 5.6, which is usually called the absolute
error.
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x y z rx ry rz
absolute error 1.00 -0.78 1.52 -0.150 0.070 -0.020

Table 5.6: absolute measurement from the VMT system

Obviously, this error is too large for this type of applications. Especially the error of
rx, 0.15 degree may cause about 4 mm deviation at a position of 2 m away. The zero
measurement is introduced to reduce the errors by forcing the result to a zero vector
but saving the absolute error in vision software.

(a) camera.1 (b) camera.2

(c) camera.3 (d) camera.4

Figure 5.27: camera images after a shift from zero position

To test how well the zero measurement works, a shift to the car body is made by hand
and the measurements from both VMT system and also the external measure system.
The camera images in figure 5.27 are taken after the shift and the measuring results are
listed in table 5.7, where absolute pose denotes the shift without the zero measurement
procedure, relative pose denotes the shift after the zero measurement and laser tracker

denotes the shift measured by a laser tracker.

When the sample car stops at the ideal position, the zero measurement is usually fol-
lowed by a procedure named relaxation, which compensates the coordinates of the pat-
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terns. After this procedure, the deviations should be relatively small in a good measure
of a rigid object. The table 5.8 shows the compensations of the patterns and the current
deviations in the shift measurement.

x y z rx ry rz
absolute pose 31.12 -2.59 1.59 -0.240 0.080 -0.270
relative pose 30.12 -1.80 0.11 -0.080 0.010 -0.240

laser tracker 30.23 -1.57 0.08 -0.086 -0.001 -0.259

absolute error 0.89 1.02 1.52 0.154 0.081 0.011
relative error 0.11 0.23 0.04 0.006 0.011 0.019

Table 5.7: relative measurement after the zero measurement

x y z x y z d
Camera.1/Pattern.1 -0.78 0.22 0.61 0.06 -0.05 0.04 0.09
Camera.1/Pattern.2 0.04 -0.07 0.09 -0.02 0.10 -0.19 0.22
Camera.1/Pattern.3 1.05 -0.22 -1.22 -0.04 -0.03 -0.01 0.05
Camera.2/Pattern.1 -0.53 -0.43 -0.18 0.04 0.04 0.01 0.06
Camera.2/Pattern.2 -0.47 -0.06 0.42 -0.01 -0.01 0.01 0.02
Camera.2/Pattern.3 0.79 0.79 0.50 -0.01 -0.01 0.01 0.02
Camera.3/Pattern.1 0.12 -0.14 0.51 0.05 -0.04 -0.01 0.06
Camera.3/Pattern.2 0.19 -0.06 0.40 0.00 -0.01 -0.02 0.02
Camera.3/Pattern.3 0.07 -0.11 0.28 0.03 -0.03 0.02 0.05
Camera.4/Pattern.1 -0.78 -0.48 -2.06 0.05 0.04 0.11 0.13
Camera.4/Pattern.2 -0.41 -0.94 -2.51 -0.12 0.02 -0.06 0.14
Camera.4/Pattern.3 0.72 1.49 3.16 0.06 -0.02 0.09 0.11

compensations deviation in shift measure

Table 5.8: patterns compensations and measurement deviations

In each measurement, the deviation of a pattern feedbacks the rigidness details or the
recognition situation about the corresponding pattern. For instance, if the maximum
distortion of features from a car is 2 mm, we can set the tolerances of deviations for
all patterns to 2 mm. As a result, the nonrigid errors are permitted and errors from
pattern recognition are prevented. If more details of the features distortion are known,
a strategy of the different tolerances will work more efficiently.
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5.5 Camera pose recalibration

5.5.1 Motivations

As we know, camera calibration is important and necessary, but usually an elaborate
procedure. An applied vision system can work smoothly and correctly only when all
cameras are kept absolutely unchanged after the calibration. Unfortunately, in practi-
cal applications changes may happen to any camera from time to time, mostly to the
camera pose. If the camera or its lens is changed, we have to carry out the elaborate
calibration procedure again. In fact, the camera pose is changed much more often, e.g.
changes by mistake during the daily cleaning work, changes by system re-design for
a longer car body, and so on. If the camera is changed and the vision system is not
informed, it may get wrong results, with which the robot maybe breaks the car body.
Therefore, an approach to recalibrate the camera pose, which can be easily and quickly
carried out in the working environment, has great values in industry.
Since a reference point is the easiest additional condition to have in an industrial pro-
duction line, the proposed approaches only require the camera to observe some reference
points, whose 3D coordinates in the world frame may be known or unknown. Due to the
different prerequisites, we developed three online approaches to recalibrate the camera
pose.

5.5.2 Reference point

A reference point, also called fixed point, in theory can be any fixed point in the working
environment, e.g. a characteristic part of a fixed object, or a fixed artificial mark, and
so on. In industrial applications, the reference points are usually artificial marks as seen
in figure 5.28.

(a) reference point (b) reference points group

Figure 5.28: designs of reference points

A reference points group is a collection of reference points, in which the points’ positions
to each other are relatively fixed. Actually, only the distances between the points are
needed. The design of the reference points group in figure 5.28 is used in experiments.
With this design, the ordering of the points is easy: the point farthest away from the
other two points is P1, and in anti-clockwise order the other two points are P2 and
P3. The reference points can be recognized well in the camera image with the camera
at about 2m to 3m away. In practice, one can have any other design according to the
actual situation.
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5.5.3 Approach with known RPs

This approach estimates the complete camera pose, including both orientation and
translation. As seen from figure 5.29, there are three reference points, whose 3D coor-
dinates in the world frame have to be known.

Figure 5.29: recalibration with 3 known reference points

With the coordinates of the reference points in the world frame and the transformation
between the world frame and the old camera frame, the coordinates of the reference
points in the old camera frame can be calculated as follows
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The three reference points with known coordinates will define a size-known object, which
can be measured in the new camera frame by only one camera as described in section
mono-camera system.
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With the 3D coordinates from both frames, one can get the following constraints over
the transformation
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This is a best-fit problem between coordinate frames, which is solved well in the ap-
pendix.

124



5.5 Camera pose recalibration Vision Systems

5.5.4 Approach with arbitrary RPs

Mostly, the change to the camera pose happens by mistake or unconsciously, like a
minor collision in cleaning, or little influence to working environment for installing
a neighboring appliance, or people passing too close, and so on. The scale of the
change is usually so small that the translation can be neglected. But the orientation,
which is always the dominant influence, cannot be neglected. In this situation, a rough
recalibration approach with 2 reference points is introduced to estimate the change in
the orientation of the camera pose.

Figure 5.30: recalibration with 2 arbitrary reference points

As seen in figure 5.30, the two reference points are arbitrary points, whose coordinates
in the world frame are fixed, but need not be known. What we have are the patterns
coordinates in the camera images from the old and the new positions. From equation
5.1, we can construct the constraints between the two direction vectors in the old and
new camera frames for each point
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If the change in translation can be neglected, the origins of the two frames can be taken
for granted that they are located in the same point. In other words, the two direction
vectors have the same length. Making them into unit vectors, one gets

(oXi,
oYi, 1)T

√

oX2
i + oY 2

i + 1
= oRn • (nXi,

nYi, 1)T

√

nX2
i + nY 2

i + 1
(5.39)

If the orientation is written into RPY angles, the above relation will give two equations
on α, β and γ. With two reference points, one can get an over-determined non-linear
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system for three unknowns. Since the change in the camera pose is very small, the
system can be solved with an initial guess of all zero values.

5.5.5 Approach with groups of RPs

As seen from figure 5.31, there are two groups of reference points, whose coordinates
in the world frame need not be known. Each group has at least three points, and the
distances between points in the same group are already known. With these conditions,
the complete correction for the camera pose can be estimated.

Figure 5.31: recalibration with 2 groups of reference points

For every group, the reference points can be considered as the character points on
an object. For the distances between the points are known, the object is a size-known
object, which can be measured by only one camera with known fixed internal parameters
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Since the coordinates from the old frame and the new frame are known, the condition
is suitable for recalibration with three known reference points. The scale factors as well
as the orientation and translation are calculated and noted as follows

(

oRn, ~t, n~δ
)

0
(5.41)

However, there is an accuracy problem with the results from only one group. The group
of reference points are located on a specially designed plate, which cannot be very large
in practical applications. The fact that the reference points in the same group are too
close to each other will cause an accuracy problem: small errors from recognition will
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lead large errors in the results. With two or more groups, which can be far away from
each other, the result of the recalibration can be improved with the maxi-likelihood
algorithm. Starting again from the wanted transformation, one can rewrite it into a
functions form as follows
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where M, N and L are three functions for translating the pattern coordinates from the
new frame into the coordinates in the old frame. Replacing the coordinates in the old
frame with the direction vector, one gets
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By removing oδi , the above equations can be simplified into

{

oXi • L(R,~t, nXi,
nYi,

nδi) − M(R,~t, nXi,
nYi,

nδi) = 0
oYi • L(R,~t, nXi,

nYi,
nδi) − N(R,~t, nXi,

nYi,
nδi) = 0

(5.44)

where the pattern coordinates X and Y are known, and stem from the pattern recogni-
tion in the procedure of image processing. Therefore, if we have six or more than six
reference points, one will obtain an over-determined non-linear system, which will be
solved with the Newton-Rapson algorithm, and the values in 5.41 can be taken as the
initial guess.

5.5.6 Experimental results

The experiments are carried out with a JAI CV-M50 camera and a lens of 35 millimeters
focal length. The camera is firstly calibrated with a calibration body and the reference
points or groups are mounted. Then the camera pose is changed by hand 3 times, which
are classified into little change, small change and large change. For each change, the
camera is recalibrated with the calibration body and a laser tracker and the camera
pose change is denoted as laser tracker. At the same time, the pose changes are also
estimated with the approaches discussed in this section and the results are listed in
table 5.9.
The values in table 5.9 show clearly that the approach with 2 reference points has a
much worse accuracy on rotation estimation and the translation is neglected. However,
at this moment only this method is integrated into the VMT system. The reasons are
as follows

1. Firstly, the approach is easy to realize in practice, since it needs only 2 reference
points, whose coordinates need not be known.

2. Secondly, online recalibration approaches are never used when the camera has a
large change. When a small change is happened to the camera and the translation
is really small, the accuracy for the approach to estimate the camera pose is enough
for applications.
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x y z rx ry rz
laser tracker -2.84 1.28 0.75 0.092 0.02 0.006

2 reference points — — — 0.051 0.048 -0.012
3 reference points -1.98 2.06 1.21 0.109 0.029 -0.003
2 reference groups -1.87 1.84 2.12 0.128 0.009 -0.007

laser tracker 9.86 1.32 -7.63 0.645 2.097 0.126
2 reference points — — — 0.492 1.788 0.244
3 reference points 10.64 2.01 -7.08 0.597 2.021 0.187
2 reference groups 10.97 1.9 -7.16 0.603 2.015 0.191

laser tracker 42.04 388.92 -200.83 1.07 -1.654 8.047
2 reference points — — — 2.142 -2.027 6.146
3 reference points 43.87 391.63 -198.76 1.128 -1.563 8.136
2 reference groups 43.64 390.75 -198.04 1.136 -1.547 8.132

Table 5.9: accuracy of the recalibration approaches

3. Finally, when the change to the camera pose is very small, the rotation deviations
have the dominant influence in measurements and the influence from translation
deviation can be neglected as shown in table 5.10, especially if we carry out a new
zero measurement.

unit: mm / degree x y z rx ry rz
normal measure -21.02 4.60 16.69 0.260 1.300 0.000

errors from x -0.5 -0.33 0.02 -0.54 -0.060 -0.020 0.010
errors from x+1.0 0.33 -0.08 0.62 0.110 0.010 -0.010
errors from x+2.0 0.68 -0.21 1.28 0.220 0.020 -0.020
errors from x+3.0 1.09 -0.31 1.98 0.330 0.040 -0.030
errors from rx-0.1 -2.83 2.44 1.77 -0.070 -0.450 0.050
errors from rx-0.2 -5.85 4.91 3.76 -0.160 -0.930 0.110

Table 5.10: different influences from translation and rotation
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5.6 Chapter review

In this chapter, we discussed three types of vision systems: mono-camera system, stereo
vision system and multi-camera system. Our research work on computer vision starts
from the stereo vision system, the mono-camera system is referred because of a specific
application, and our main target is on the multi-camera system.

5.6.1 Characters and applicable situations

The vision systems have different characters and are suitable for different types of ap-
plications.

1. Mono-camera system
Since a single camera is not able to get the depth information from the camera
image, a mono-camera system is usually used to determine the pose of the rigid
objects with known patterns. The object to be measured must be small and the
measurement distance must be short since the measurement accuracy is worse
and worse as the measured object gets farther and farther away to the camera.
A mono-camera system is used by us for verifying the mounting situation of the
painting gun on the robot hand.

2. Stereo vision system
A stereo vision system is composed of two cameras, which look the objects in
parallel poses or with a fixed angle. The most dominant character is that the sights
of the two cameras have a common part, where the measured objects locate. Then
the stereo vision system can determine the 3D coordinates of any object point
in the common sight. Since the common sight is relatively limited, the stereo
vision system is sometimes mounted on a robot hand to extend the measurement
range. Therefore, the stereo vision system is very flexible in measurements, such
as absolute or relative coordinates of the specific object patterns, the pose of any
rigid objects, and so on.

3. Multi-camera system
A multi-camera system has more than two cameras, which may be installed far
away from each other and have completely different sights. With the different
camera looking different part of a large rigid object, the multi-camera system is
usually designed for determining the pose of the object. The multi-camera system
is often applied to robot vision applications, such as fine sealing in the painting
shop, car doors or windows mounting in the assembly shop, and so on.

4. Recalibration of the camera pose
Any vision system should keep its camera or cameras undisturbed so that it can do
the measurements correctly. With some reference points in the camera sight, the
proposed approaches to camera pose recalibration are able to check if the camera
pose is disturbed and correct the camera pose if disturbed. These approaches are
specially designed for a multi-camera system, that is why it is referred in this
chapter.

Remark: In some situations, a single camera is mounted on a robot hand and the
measurement is done by driving the robot into several positions for the camera to see
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the object. Although there is only one camera, each position can be taken as an inde-
pendent virtual camera and we classify this configuration into a multi-camera system
and not a mono-camera system.

5.6.2 Contributions

In this chapter, the following approaches or viewpoints have done valuable contributions
in applying the vision systems efficiently and accurately to the industrial applications.

1. A mono-camera system is developed and its uncertainty in measurements are
tested. Finally it is applied successfully to an industrial application.

2. Two types of configurations for a stereo vision system are set up and the accuracy
in measurements is well verified.

3. The calibration concept for the stereo sensor is brought forward and solved in
both mathematics and practice.

4. The applications of the stereo vision system are developed and tested in the lab-
oratory.

5. The pattern compensation strategy has improved greatly the performances of
the multi-camera system in practice: a. The mismatch possibility between 3D
coordinates and 2D coordinates is decreased and the stability of the system is
improved; b. The mistakes or deviations in pattern recognition may be informed;
c. Through discarding the wrongly and badly recognized patterns, the result can
be refined.

6. According to the working situations on site, a zero measurement procedure is
introduced for producing the relative vector instead of the absolute vector. The
zero measurement procedure improves the accuracy of the multi-camera system
greatly in robot vision applications.

7. The pattern weight strategy enables the different kinds of patterns to contribute
differently in resulting the final vector. It makes the multi-camera system work
safer and more smoothly.

8. Some small points on security controlling are introduced to make the multi-camera
system more suitable for the industrial applications.

9. To make the multi-camera system a more complete and qualified industrial prod-
uct, the issue of the recalibration for the camera pose is also taken in consideration
and three online approaches to the camera pose recalibration are proposed.
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As mentioned before, the aim of the dissertation is to apply the vision systems to
the robot vision applications accurately and efficiently. After the camera model is de-
termined, some camera calibration methods are thoroughly analyzed, and then some
practical approaches to camera calibration are proposed, and finally some practical
issues on applying the vision systems to the robot vision applications are brought for-
ward and well solved. Actually, all approaches referred in this dissertation have roots
in the practical projects and they outline briefly the research activities and the working
experiences of the author during the past years.

6.1 Contributions of the dissertation

Although the exact contributory points have been referred in the chapter reviews, they
are summarized here at a global viewpoint.

1. The deviations in pixel or millimeter for both the camera calibration and the pose
measurement are introduced to verify the validity and accuracy of the calibration
or measurement.

2. Some familiar but effective calibration methods for the stationary cameras are
well discussed in the calibration chapter. After careful analysis and experiments
in laboratory, their disadvantages are clearly pointed out as well as their valuable
points. Finally, they are improved and completed by extending their applicable
situations or determining their degenerate configurations.

3. The interactions between the camera parameters are sought hardly and an original
opinion about that is brought boldly forward. Although it must be verified more
in experiments and practices, it is a good attempt and start for the follow-up
research on camera calibration.

4. To make full use of the advantages of the referred calibration methods and mini-
mize their weaknesses, the combination solutions of the referred calibration meth-
ods are proposed and the appropriate iterative procedures are carefully used in
practice.

5. Some practical approaches to camera calibration are proposed for the typical ap-
plications in robot vision, where the working environment is made the best of.
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6. The proposed approaches to camera calibration are done at the beginning only for
the real projects, but finally applied steadily in the industrial applications after
many times of improvements in details.

7. To verify the mounting situation of a robot tool, a mono-camera system is intro-
duced and its measurement task and applicable situations are defined. In fact,
there are many such kinds of industrial applications may be settled down with a
mono-camera system.

8. A set of accurate and elaborate calibration setup is used not only for calibrating
the cameras but also for testing the accuracy of the system. For demonstrating
how to apply the system to practice, a sensor calibration procedure is introduced
and two applications with the stereo vision system is proposed.

9. The zero measurement and pattern compensation procedures have improved greatly
the accuracy of the multi-camera system when it is applied to the robot vision
applications.

10. By adopting the strategies of the pattern compensation, the pattern weight and the
security controlling, the multi-camera system becomes a safe, stable and qualified
vision system for the industrial applications.

11. The dissertation gets a separate sub-chapter for discussing the recalibration of the
camera pose. Although only the partial recalibration approach is applied in the
industrial applications, the attentions from more researchers may be raised on this
issue in the near future.

12. Finally, the most important contribution of the dissertation is that the referred
setups, opinions and attempts are caused from the practice and the proposed
methods, approaches or procedures are to serve the industrial applications.

6.2 Open issues and future directions

In a view of vision systems in the industrial applications, the remaining open issues or
the possible research directions in the future may be as follows

1. Complete recalibration of the camera pose
Although three online approaches are proposed in this dissertation, one has gone
through the trial of the applications but it corrects only the rotations change and
neglects the shift changes. The other two approaches are of complete recalibration
but have never been used in the applications. More attention and research work
should be concentrated on this topic to get some stable and accurate solutions for
the complete recalibration of the camera pose in practice.

2. Online calibration for the flexible cameras
With the vision systems used more and more for the applications, some flexible
cameras, such as rotating cameras and cameras with zoom lens or wide-angle lens,
are needed sometimes in practice. Since the camera parameters are changing from
time to time during the working period, the flexible cameras must be calibrated
online, quickly and automatically.
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3. Depth scenery rebuilding with a stereo vision system
The stereo vision referred in this dissertation is only for determining the 3D co-
ordinates of the object points, whose 2D pixels from both camera images must
be paired exactly. In the real life, a stereo vision system is applied more often
for rebuilding the depth scenery of the common sight, where the quickly and
automatically pairs matching is a great challenge.

Generally speaking, all the possible future research work must be oriented by the prac-
tical applications.
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Appendix A

System of Nonlinear Equations

Generally speaking, there are no very good methods to solve systems of more than one
nonlinear equation. Unfortunately, problems about nonlinear systems are very com-
mon in practical computation. Therefore, the simplest multidimensional root finding
method, the Newton-Rapson method, is here introduced. This method gives you a very
efficient means of converging to a root, if you have a sufficiently good initial guess.

Let’s think a typical problem with N functional relations to be zeroed as follows

Fi(~x) = 0 where ~x = (x1, x2, · · · , xN) (A.1)

Giving an intial guess ~x0, the functions Fi can be expanded in Taylor series in the
neighborhood of ~x0

Fi(~x0 + δ~x) = Fi(~x0) +
N
∑

j=1

∂Fi

∂xj

δxj + O(δ~x2) (A.2)

The matrix of the partial derivations from above equation is usually called Jacobian
matrix J:

Jij =
∂Fi

∂xj

(A.3)

Then the Taylor series can be written into matrix notation

F (~x0 + δ~x) = F (~x0) + J · δ~x + O(δ~x2) (A.4)

Neglecting the terms of order ~x2 and higher and setting F (~x0 + δ~x) = 0, the above
equations will become a set of linear equations for the correction δ~x, which makes all
the funtions closer to zero simutanoeusly, namely

F (~x0) + J · δ~x = 0 =⇒ δ~x = −J−1 · F (~x0) (A.5)

where J−1 can be obtained by a SVD or LU decomposition. Since δ~x makes the functions
closer to zero, a better set of solution yields

~xnew = ~xold + δ~x (A.6)

The above process will be iterated till the system converges, which can be found by
checking if both the function and the solution have converged.
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However, the process may fail to converge, the reason in most of time is that the
initial guess is not good enough if you are sure the root exists. A more sophisticated
implementation of the New-Rapson method, which tries to improve the poor global
convergence from Newton-Rapson, can also be found in [1].
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R-Matrix Orthonormalization

A rotation matrix must be an orthonormal matrix. However, in many cases its ele-
ments are computed one after another independently, which makes the matrix satisfy
this property not so well. An orthonormalization procedure can help us to get better
accuracy.

The orthonormalization procedure is to approximate a best rotation matrix R from
a given 3 × 3 matrix Q. In general case, the best means in the sense of the smallest
Frobenius norm of the difference R − Q. Then the problem is as follows:

min(‖ R − Q ‖2
F ) where RT R = I (B.1)

Thinking the properties of the Frobenius norm of a matrix, one has

‖ R − Q ‖2
F = trace((R − Q)T (R − Q))

= 3 + trace(QT Q) − 2trace(RT Q) (B.2)

Since trace(QT Q) is fixed with the given matrix, the above minimum problem becomes
the following maximum problem

min(‖ R − Q ‖2
F ) ⇐⇒ max(trace(RT Q)) (B.3)

Applying the singular value decomposition to Q: Q = USV T , then

trace(RT Q) = trace(RT USV T ) = trace(V T RT US) (B.4)

Defining Z = V T RT U , then Z is obviously an orthogonal matrix

trace(RTQ) = trace(ZS) =
∑

ziisii ≤
∑

sii = trace(IS) (B.5)

The equal case from above equation comes, or trace(RT Q) achieves maximum, if and
only if

Z = V T RT U = I =⇒ R = UV T (B.6)

Therefore, the above R is the solution for B.1, the destination of the orthonormalization
procedure.
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Appendix C

Best-Fit between Coordinate
Frames

A common issue in practice is to determine the transformation between coordinate
frames. In most of time, the coordinate frames are defined separately, which makes it
difficult to solve the problem with any direct method. By measuring the coordinates
of some object points with respect to both frames, the issue can be solved efficiently in
mathematics. The calculation procedure with coordinates of object points to determine
the transformation between coordinate frames is usually called best-fit.

Figure C.1: best-fit between coordinate frames

From figure C.1, the task of the best-fit is as follows: with the coordinates of n
(n ≥ 3) non-collinear points Api and Bpi with respect to both frames, the
transformation ATB is needed to be determined.

C.1 Solving the best-fit

Denote the ATB into rotation R and translation ~t = (x, y, z)T , then
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If the rotation matrix R is denoted into RPY form as equation 3.11, the above equation
can outspread into 3 nonlinear equations, which can be zeroed as follows











fx(α, β, γ, x, y, z) = 0
fy(α, β, γ, x, y, z) = 0
fz(α, β, γ, x, y, z) = 0

(C.2)

n (n ≥ 3) such points can form an overdetermined nonlinear system with 3n equations,
which will be solved by the Newton-Rapson method with a set of start values. At this
moment, it is not easy to get a good set of start values. Thus we try to prove that
the system has an exclusive solution and always converges to the right solution if it
converges.

C.2 Exclusive solution

Since the n points are non-collinear, there are only two situations: coplanar or non-
coplanar. In both situations the best-fit has a unique solution.

C.2.1 Coplanar points

Without loss of generality, the following prove procedure is demonstrated with 3 non-
collinear points. Firstly, we shift the frame A so that the origin of A locates in the
plane π, which is determined by the different points ~p1, ~p2, ~p3. By abuse of notation,
A~pi denotes again the new coordinates of the points in A. Since the origin of frame A
locates in π, there must have such 3 factors to satisfy

a · A~p1 + b · A~p2 + c · A~p3 = 0 (C.3)

The fact that ~p1, ~p2 and ~p3 are non-collinear makes a + b + c 6= 0. Otherwise, suppose
a + b + c = 0, then

c = −(a + b)

=⇒ a · (A~p1 − A~p3) + b · (A~p2 − A~p3) = 0

=⇒ a · #     »p3p1 + b · #     »p3p2 = 0 (C.4)

The above equation states that p1, p2, p3 are collinear, which conflicts with the precon-
dition. Therefore, a + b + c 6= 0 satisfies.
Suppose that there are 2 frames B1 and B2 to satisfy the preconditions and denote
[R1,~t1] and [R2,~t2] respectively the transformations from B1 and B2 to A, then

R1 · A~pi + ~t1 = B~pi = R2 · A~pi + ~t2 i = 1, 2, 3

=⇒ (R1 − R2) · A~pi + (~t1 − ~t2) = 0 i = 1, 2, 3

=⇒ (R1 − R2) · (a · A~p1 + b · A~p2 + c · A~p3) + (a + b + c)(~t1 − ~t2) = 0

=⇒ (a + b + c)(~t1 − ~t2) = 0

=⇒ ~t1 = ~t2 (C.5)

If denote R−1
2 R1 = R, then

R · [A~p1,
A~p2,

A~p3] = [A~p1,
A~p2,

A~p3]

=⇒ R = R−1
2 R1 = I

=⇒ R1 = R2 (C.6)
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The above procedure indicates that the solution for the best-fit between coordinate
frames is exclusive and the system C.2 can be solved with an arbitrary set of start
values.

C.2.2 Non-coplanar points

Specially, if the points ~pi are non-coplanar, the method described above works of course
well, but there is a simpler method to determine the best-fit transformation.
Suppose there are n (n ≥ 4) non-coplanar points and denote ~pi their homogeneous
coordinates, one has

ATB · (B~p1,
B~p1, · · · , B~pn) = (A~p1,

A~p1, · · · , A~pn) (C.7)

Since ~pi are non-coplanar, the order of the matrix (B~p1,
B~p1, · · · , B~pn) must be 4 and its

inverse matrix exists, thus

ATB = (A~p1,
A~p1, · · · , A~pn) · (B~p1,

B~p1, · · · , B~pn)−1 (C.8)
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Appendix D

Distortion Alignment

Although distortion, only the radial distortion is referred here, is unavoidable for all
camera lenses, we have proposed some approaches to camera calibration for a distortion-
free model. If the distortion factor k is given, a distortion alignment can be applied and
then the approaches can be applied more efficiently, or sometimes just for testing. The
distortion alignment can be applied either to the camera images or the coordinates of
the calibration points obtained in pattern recognition.

D.1 Alignment to camera images

Given a distorted image from the camera, an undistorted image is obtained by applying
a distortion alignment to the distorted image. Denote Pi(Xi, Yi) the pixel gray at col
Xi row Yi from the undistorted image and Pr(Xr, Yr) the pixel gray at col Xr row Yr

from the distorted image. Thinking of the radial distortion with equation 2.15, one has

Pi(Xi, Yi) = Pr(Xr, Yr) (D.1)

where

(Xr, Yr) = (1 + k · (X2
i + Y 2

i )) · (Xi, Yi) (D.2)

Since the scale factor k is a float value, the calculated pixel index (Xr, Yr) has also float
values, which makes the pixel Pr(Xr, Yr) cannot be detected from the distorted image.
Thus an interpolation method is needed and its gray value can be easily determined in
practice from its four neighborhoods as follows

Pr(Xr, Yr) = Pr([Xr], [Yr]) · ∇Xr · ∇Yr +

Pr([Xr] + 1, [Yr]) · ∆Xr · ∇Yr +

Pr([Xr], [Yr] + 1) · ∇Xr · ∆Yr +

Pr([Xr] + 1, [Yr] + 1) · ∆Xr · ∆Yr (D.3)

where

∆Xr = Xr − [Xr] ∆Yr = Yr − [Yr]

∇Xr = 1 − ∆Xr ∇Yr = 1 − ∆Yr

143



Distortion Alignment

D.2 Alignment to pattern coordinates

In fact, the undistorted image is not necessary. What we need are the undistorted
coordinates of the calibration points, which are the exact values for the estimation in
the following calibration procedure.
With equation 2.16, the undistorted coordinates Pi(Xi, Yi) can be restored from the
results Pr(Xr, Yr) of pattern recognition below

(Xi, Yi) =
(Xr, Yr)

1 + k · (X2
r + Y 2

r )
(D.4)

Since the calibration points are relatively fewer, it is much more efficient to apply the
distortion alignment to the pattern coordinates.

Remark: the distortion factor k referred above is the original one, not the factor
defined with K = k · f 2. In practice it is easy to check it by verifying k ≪ 1.
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Appendix E

The Applied Camera

The cameras used in the experiments and applications referred in this dissertation are
from a type of JAI CV-M50, which is a monochrome CCD camera designed for indus-
trial applications and featured with high performance and unique functions and has a
uniform and compact housing, which can be seen in figure E.1

Figure E.1: CV-M50 camera from JAI

The main features of CV-M50 cameras are as follows

• CCD sensor: monochrome 1/2” interline
• Sensing area: 6.6 (h) × 4.8 (v) mm
• Cell size: 0.0086 (h) × 0.0083 (v) mm
• Effective pixels: 752 (h) × 582 (v) pixels
• Scanning system: 625 lines and 25 frames/second
• Sensitivity on sensor: minimum 0.05lux illumination
• S/N ratio: better than 56 dB
• Gamma: 0.45 - 1.0
• Gain: manual - automatic. 0 to +15 dB by potentiometer or AGC
• Accumulation: field - frame
• Lens mount: C-mount
• Power: 12V DC ±10% and 2.5W
• Dimension: 40×50×80 mm (H/W/D)
• Mass: 230 g
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⋆ the above features are for CCIR mode

To digitize the video signals, we have introduced the frame grabber PX510/610, which
can be connected to maximum 4 such cameras and outputs digitalized images with di-
mension of 768 (h) × 572 (v) pixels.

Although the cameras with better resolution, such as SONY XC-HR70, JAI CV-A1
and CV-A2, are applied to inspection applications in machine vision, VMT GmbH
takes JAI CV-M50 cameras as the standard configuration for robot vision applications
with multi-camera system during the past five years.
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Appendix F

A Laser Tracker System

For applications with accurate measurement, a mobile laser tracker is widely applied to
industries, especially in automobile industry.

F.1 Leica laser tracker

The laser tracker we have used by TecMedic GmbH is from Leica Geosystems AG, a
company in Switzerland and is shown in figure F.1.

(a) overview (b) detail

Figure F.1: Leica laser tracker LTD 840

A laser tracker uses of course the laser light to do the measuring tasks. The Leica
laser tracker can measure the 3D coordinates of any point the laser light can reach
with respect to the base coordinate frame, which is defined in the laser body. To do
that, a laser reflector is needed. For different applications and environments, different
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A Laser Tracker System

reflectors can be utilized. The figure F.2 shows the most common reflectors for a Leica
laser tracker.

(a) cateye (b) thumb (c) others

Figure F.2: laser reflectors for a laser tracker

In fact, the Leica measurement system is equipped with many other accessories, such
as gradienter, meters for temperature and air pressure, kinds of adapters, and so on.

F.2 Technical parameters

The technical parameters of the laser tracker are profiled as follows

1. Measuring range
Maximal distance: 40 meters; horizontal / vertical angles: 360o/ ± 45o.

2. Measuring accuracy
Distance resolution: 0.001 mm; distance repeatability: ± 0.012 mm; distance
absolute accuracy: 0.025 mm.

3. Measuring rate
Measuring rate: 3000 points per second; measuring rate output: 1000 points per
second.

4. Tracking speed
Lateral: > 4 meters per second; radial: > 6 meters per second.

More details can be found at www.leica-geosystems.com.

F.3 Frame determination

As referred in the last section, a laser tracker can measure accurately the 3D coordinates
of any point it can see. With a best-fit procedure, the laser tracker can determine any
object frame as follows

1. Features on the object
The object to be measured must be a rigid body and the object frame is defined
by its features, whose coordinates in the object frame must be given.
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2. Features in the laser system frame
The referring features can be measured with the laser tracker, that is to say, the
coordinates of the features in the laser system frame are determined.

3. Object frame in the laser system frame
If more than 3 features are so measured, a best-fit can be applied for determining
the object frame with respect to the laser system frame.

4. Transformation between object frames
If more objects are measured with the laser system, the objects’ frames are de-
termined with respect to the laser system frame and the transformation between
object frames are known.

Remark: network orientation of the laser tracker

With the above determining procedure, all measuring work are completed with regard
to the laser system, or the laser tracker body. In order to continue the measuring work
when the laser tracker moves, a routine called network orientation is integrated in the
laser software. When the laser tracker is set up in position A, some fix points are
measured; when the laser tracker moves to position B, some of the fix points (at least
3) are measured again and the transformation between the laser tracker frames in both
positions can be determined with a best-fit procedure. What is more, when the network

orientation procedure is completed, the system will transfer the coordinate values from
the following measuring automatically into values with respect to the first base frame,
and the operator can continue the work just like nothing happened to the measurement
system.

F.4 Applications with a laser tracker

With the help of the laser tracker, TecMedic GmbH has developed the following appli-
cations in automobile industry

1. Camera calibration
In our practical approaches to camera calibration in working area, the cameras are
mostly calibrated with a laser tracker to determine the camera pose with regard
to our reference frame. The details have been described in the relevant chapters
of the dissertation.

2. Determination of work objects
To initialize a vision system, the work object must be measured initially at the
ideal position. When the work object is too large, such as a car body, its transla-
tion and orientation can be determined by a laser tracker.

3. Determination of robot base
All robots to be navigated by a vision system must be measured with respect to
the world frame, which is known to the vision system. Only after that, the vision
system can transform correctly the correction of the work object for the robots.

4. Verification of robot linear axis
All robots must be calibrated after its installation in the working area. The arm
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axes can be self-calibrated, and the linear axis needs an external measurement
system to carry out the calibration.

5. Mounting and adjusting the working tools
In body in white shop of automobile factory, a laser tracker is more and more
often applied for adjusting or mounting the working tools, whose accurate relative
poses will result qualified car bodies. TecMedic GmbH has done many such kinds
of work in Opel Zaragoza, Spain through the integrator FFT GmbH.

Actually, all the calibration and measurement approaches proposed in the paper are
tested in laboratory with a laser tracker.
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classification of calibration, 15
contribution, 58, 85, 130, 131
convergence and stability, 52
coplanar points, 20

direction vector, 88
dissertation aim, 6
distortion alignment, 143
distortion dominant, 54
distortion-free model, 33

framework, 80
future direction, 132

hough transform, 44

image origin, 46
image origin dominant, 54
infrared light, 93
interaction, 53
iteration design, 54

Jacobian matrix, 135

laser tracker, 147
lens distortion, 13

radial distortion, 13
tangential distortion, 13

microscope, 62
mobile stereo sensor, 103
mono-camera system, 89
multi-camera system, 110

non-coplanar points, 27
nonlinear equation, 135
nonlinear minimization, 51
notation description, 7

open issue, 132
Orthonormalization, 137

painting gun, 91
pattern compensation, 113
pattern weight, 115
point at infinity, 38
polytope, 46
pose calibration, 80, 81
pose recalibration, 123
practical issue, 5

accuracy of calibration, 5
efficiency and convenience, 5
stability and security, 6

projective ray, 36
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reference point, 81, 123
robot tool, 66

ball, 66
tine, 67

robot tool calibration, 67

security control, 118
simplex, 46
stationary stereo sensor, 106
stereo sensor, 100
stereo vision system, 99
structured light, 106
system error, 117

toe, 106

vanishing point, 36

zero measurement, 116
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