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1 Introduction

Linear optimization problems, also known as linear programs, play an important
role in many di Cerent areas, such as mathematics, economics, finance and engi-
neering. There probably is no other type of optimization problem which is solved
as frequently as a linear program in these application. Even when the situation
being modeled is actually non-linear, a linear model is favored in many cases,
because of the highly sophisticated software available for the solution of such a
model and also because uncertainties in the model and the data often make it
impractical to construct a more elaborate non-linear model.

For a long time, the simplex method introduced by George Dantzig [18] in
the mid 1940s was the only method available to solve linear programs; it usually
performs very well in practice, even for large scale problems.

In 1972, however, Klee and Minty [38] showed that in theory the number of
iterations required by the simplex method to solve a problem could depend expo-
nentially on the dimension of the problem, even though the average performance
is typically much better, see in particular Borgwardt [3].

This observation prompted many researchers to find an algorithm which has a
better worst-case performance than the implex method; in fact one was interested
in finding algorithms where the number of iterations required to achieve a solution
depends polynomially on the problem’s dimension.

The first polynomial-time algorithm was found by Khachiyan [37] in 1979. Even
though this algorithm has a polynomial complexity bound, it turned out to be less
successful in practice than the simplex method. In 1984 Karmarkar [36] published
another algorithm for the solution of linear programs. Karmarkar showed that his
method has a polynomial complexity bound and claimed that his method is also
significantly faster than the simplex method for many practical problems.

Even though Karmarkar’s statement regarding his algorithm’s performance
may have been rather enthusiastic, his article may be considered the starting point
of the field of interior-point methods, these methods turned into the focus of many
researchers in the field of mathematical programming.

A few years ago in the field of complementarity problems another idea was
born. In this area it is a common technique to reformulate a complementarity
problem’s optimality conditions into a system of equations using so-called NCP-
functions and then apply Newton’s method to this system. The NCP-functions
employed here often are non-smooth, requiring the application of non-smooth
analysis and the use of a non-smooth version of Newton’s method. Kanzow was
the first to take a slightly di Cerent approach which, though not new in itself, was
applied to complementarity problems for the first time, see, e.g., [32]. The so-
called smoothing or continuation methods introduce a perturbation to the NCP-
function in order to turn the formerly non-smooth function into a di Cerkntiable
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one. When applied to complementarity problems, these continuation methods
perform quite well numerically

Smoothing methods typically perturb both sides of the system of equations
to which Newton’s method is applied. Chen, Qi and Sun [14] introduced another
related approach to the non-di Lerentiability problem of the NCP-functions. They
used a variant of a smoothing method which is now called a Jacobian smoothing
method, since only the Jacobian on the left hand side of the Newton equation is
actually perturbed. This appears to be a quite reasonable approach, since it is only
the Jacobian which poses a problem in this context of non-di Cerkntiability. The
resulting linear system is actually more similar to the one that is to be solved in
the first place.

In this thesis the smoothing and the Jacobian smoothing approach are applied
to linear programs for the first time. Since a linear optimization problem is a
special case of a linear complementarity problem, it appears to be a logical step
to take in the area of linear optimization.

In specializing these methods and taking into account the special structure of
the linear optimization problem, one obtains algorithms which perform quite well
numerically. Also for the first time, combinations of Jacobian smoothing and reg-
ular smoothing methods in form of predictor-corrector algorithms are presented
and examined in detail. The numerical results produced by these new methods
are comparable to those of modern-day interior-point codes used to solve linear
programs. The material on the new methods presented here has essentially been
taken from the articles [20, 21, 22, 23].

This thesis is structured as follows: After presenting the notation which will be
used here, some necessary background information is given in Chapter 3. In Chap-
ter 4 a short overview over interior-point methods is followed by a presentation
of Mehrotra’s predictor-corrector Algorithm [43], the currently most successful
primal-dual method for solving linear optimization problems. General ideas of
smoothing-type methods are conveyed in Chapter 5 and a basic Jacobian smooth-
ing method is presented in Chapter 6. Numerical results for this algorithm are
given. Chapter 7 introduces two slightly di Cerent approaches to regular smooth-
ing methods and gives global convergence results. Chapter 8 introduces the new
locally quadratically convergent combinations of Jacobian smoothing and regular
smoothing methods. Numerical results are also presented for these methods and
compared to those produced by an interior-point code.
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2 Notation

The notation used here is standard in most places.

Norms

All vector norms are Euclidian norms; for matrices the corresponding spectral
norm is used, which is, in particular, consistent with the Euclidian vector norm

in the sense that kAzk kAk kzk for all matrices A and all vectors z of appro-
1=2

2 denotes the

priate dimensions. For a matrix A 2 R™ ", KAk : ?J 18

Frobenius-norm of a matrix.

Eigenvalues and Matrices

The notations min A and max A are used for the minimal and maximal eigen-
value of a symmetric matrix A 2 R™ ™. We denote the Euclidian distance of a
vector z to the non-empty set S by dists z : infwaskw zk.

As common in interior-point literature, a matrix X : diag X3;:::;Xpn 2R™ "
denotes the diagonal matrix made up of the components of x 2 R".

Vectors and Index Sets

If x 2 R" then the subscript i in x; will indicate the i-th component of x. The
superscript k in x¥ is used to indicate that this x is the k-th iterate of a sequence
fxKg R".

Quite often a triple of the form w xT: T:sT T will be considered, were
x 2R", 2RM ands 2 R". Then, of course w is a vector in R™ ™M™ M In order
to simplify the notation, we will write w X; ;s instead of the mathematically
correct formulaw  xT; T;sT T,

If z is an r-dimensional vector and |  f1;2;:::;rg any given subset, then r;
denotes the subvector of the components r; for i 2 I. Similarly, if A denotes
anr s-matrixand |l f1;2;:::;rg,J f1;2;:::;s09 are two given subsets, A,

denotes the submatrix with elements aj; fori 2 1 and j 2 J. For any set I,
J1j denotes the number of elements in this set.

Furthermore, for any given vector z, we write z for the projection of z on
the non-negative orthant, i.e., the components of z are given by maxf0; zjg for

If X;y 2 R" are any given vectors satisfying the inequality X;  yi, for all
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NCP- and Smoothing Functions

NCP-functions are denoted by * a;b , where a and b are scalars. A vector of
NCP-functions is denoted by  x;s : :::;7 Xisi ;::: ' 2 R", with x;s 2 R™.
The MatrixDg 2 R™ ": diag :::;@~ Xj;sj =@a;::: denotes the diagonal matrix
whose components are the partial derivatives of ; x;s for the first variable, Dy
is defined similarly.

A smoothing function will be either denoted by > a;b orby ; a;b; where

a;b; are scalars with 0. The use of ” or depends on the view taken of the
smoothing parameter . Similarto X}y, XVY; i XisVis o i
and X;$s 207 X;Si ;i denote vectors of smoothing functions for

X;s 2 R". The diagonal matrices D5. and Dp. are defined analogously to the
Matrices D5 and Dy, respectively.

Order notation

At certain times the following two varieties of order notation, O ando , will
be used. If f gand f (g are two given, non-negative infinite sequences of scalars,
we say that

k O «
if there is a positive constant C such that
k C«k

for all k su Lciehtly large. That is, the elements of the first sequence ¥ kg do not
become too much larger than the elements of the second sequence f g. We write

if there is another non-negative sequence T (g such that



3 Theoretical Background

3.1 Linear Programming

The fundamental properties of a linear programming problem are:

(1) a vector of real variables, whose optimal values are found by solving the
problem,

(2) a linear objective function,
(3) linear constraints, both inequalities and equalities.

We will use one particular formulation of a linear program, the so called canon-
ical form, to describe and analyze the algorithms presented in this thesis. This
form is:

min c'x subjectto Ax b; x O; (3.1)

where ¢ and x are vectors in R", b isa vector in R™ and Aisanm n matrix with
real entries. If x satisfies the constraints AX b and x 0, we call it a feasible
point. The set of feasible points is called the feasible set.
Note that any linear program can be converted into the canonical form.
Associated with any linear program is a so-called dual program, which consists
of the same data di Cerkntly arranged. The dual problem for (3.1) is

max b' subjectto AT s c¢; s O (3.2)

where 2 R™ ands 2 R™ are the problem’s variablesand A2 R™ ", ¢ 2 R" and
b 2 R™ are the given data. Components of the vector are called dual variables,
components of s are named dual slacks or dual slack variables.

The dual problem (3.2) can of course be stated without the slack variables,
but these variables will turn out to be convenient in the development of the algo-
rithms. In this context, problem 3.1 is called the primal problem. Together the
two problems are often referred to as the primal-dual pair.

3.2 Duality

The following results further define the relationship between the primal and the
dual linear programs, (3.1) and (3.2), respectively. The application of these results
leads us to optimality conditions for a linear program. Proofs for all of the results
presented in this section can be found in the book by Wright [56].

There are two major duality results which will be needed, a weak and a strong
one.
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Proposition 3.1 (Weak Duality) Let x 2 R" be a feasible point of the primal linear
program (3.1),andlet ;s 2 R™ R" be afeasible point of the dual program (3.2).
Then

b" c¢"x:
Corollary 3.2 Letx 2 R" be afeasible point of the primal program (3.1), let ;s 2
R™ R" be a feasible point of the dual program (3.2), and assume thatc'x bT .
Then x is a solution of the primal problem (3.1) and ;s is a solution of the dual
problem (3.2)

It is already known from the weak duality result in Proposition 3.1 that
c'™x b" 0

holds for all primal feasible points x 2 R" and all dual feasible points 2 R™.
(The variable is called dual feasible if there exists a vector s of slack variables
such that the pair ;s is dual feasible.) The term

c'™x b'

is called the duality gap. We also know from Corollary 3.2 that we have a pair of
primal and dual solutions if there is no duality gap, i.e.,ifc™x bT 0.

Next we show that the reverse is true as well, i.e., if we have a pair of primal
and dual solutions, then there is no duality gap. Additionally, the result states
that the primal problem has a solution if and only if the dual one has one, too.

Theorem 3.3 (Strong Duality) The primal problem (3.1) has a solution x if and
only if the dual problem (3.2) has an optimal solution ;s . In this case, there is
no duality gap, i.e.,c™x bT .

While Theorem 3.3 says that the primal problem has an optimal solution if and
only if the dual program has an optimal solution, it is still unclear under which
assumptions these problems have any solutions at all. Theorem 3.5 gives a simple
condition, based on the following definition.

Definition 3.4 Consider the primal-dual pair of linear programs (3.1) and (3.2).
Define the primal-dual feasible set

n o
F X; ;s AX b;AT s ¢c;xXx 0,s O

Also define the primal-dual strictly feasible set

n )
FO: X: s Ax b; AT s ¢; x>0 s>0

Theorem 3.5 (Existence of a Solution) If the primal and the dual linear programs
are feasible, (i.e., if the primal-dual feasible set F is non-empty), then both have
optimal solutions.
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3.3 Optimality conditions

The duality theory in the previous section allows us to derive optimality conditions
for a linear program. These conditions must be satisfied by a solution of the
problem. They can also be stated as special cases of the optimality conditions for
general constrained optimization problems, known as the Karush-Kuhn-Tucker
conditions (or KKT conditions).

In this section, two theorems are presented which give information on the
optimality conditions for linearly constrained optimization problems and on the
relationship between these conditions and so-called convex programming prob-
lems. We will obtain the optimality conditions for the linear program (3.1) by
specializing these theorems.

Consider a not necessarily linear optimization problem with linear constraints
of the form

min F X
s.t. gix O 1;::0,m; (3.3)

i
hj x O; 1 1;::5:p;

where f: R" -1 R, and the constraints gi: R" -¥ Rand h;: R" -1 R are linear
functions.

The following result gives the necessary optimality conditions for the above
optimization problem. A proof can be found in the book by Wright [56].

Theorem 3.6 Consider the optimization problem (3.3) with a continuously di [ert
entiable objective function ¥ and linear functions g; and hj. Assume that x is a
solution of problem (3.3). Then there are vectors and such that the following
conditions hold

X X
rf x irgi X jl"hj X 0
i1 j 1 (3.4)
hx O

0,gx 0, Tgx O

Definition 3.7
(1) The conditions (3.4) are called the Karush-Kuhn-Tucker conditions (KKT con-
ditions) of the optimization problem (3.3).

(2) Everyvector x; ; 2R"™ R™ RP, which satisfies the KKT conditions, is
called a Karush-Kuhn-Tucker point (KKT point). The components of and
are called Lagrange multipliers.

To prove that a local minimizer of the non-linear problem (3.3) is a KKT point
another condition, a so-called constraint qualification, has to be met. Since linear
problems do not require any further qualifications (since the linearity is such a
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qualification already) and since non-linear problems are beyond the scope of this
discussion, constraint qualifications will not be investigated further.

Note that problem (3.3) is a convex programming problem. Also note that
a linear program is a special case of a convex programming problem. For such
convex optimization problems, and thus linear programs, the local and global
solutions are related by the following necessary optimality conditions:

Theorem 3.8
(1) If problem (3.3) is a convex programming problem with a local solution x |,
then the KKT conditions are su [cieht for x to be a global solution. That
is, if Lagrange multipliers and exist, such that the conditions (3.4) are
satisfied, then x is a global solution of the optimization problem (3.3).

(2) If, in addition, the function T is strictly convex on its feasible region, then
any local solution is a uniquely defined global solution.

For a proof of this result see Wright [56].

The optimality conditions of problem (3.1) are obtained by specializing Theo-
rems 3.6 and 3.8 and by taking into account that a linear program is also a convex
program, since linear functions are convex (and also concave). Note that these
conditions are both necessary and su [cieht in the case of linear programs.

Corollary 3.9 (Optimality Conditions) The vector x is a solution of the linear
program (3.1) if and only if there exist vectorss 2 R" and 2 R™ for which the

following conditions hold for x; ;s X ; ;S
AT s ¢
Ax b (3.5)
Xi 0;si 0 %xjsi O i 1;:::;n:

Note the choice of variable names: The Lagrange multipliers’ names and s have
deliberately been chosen equal to the variable names of the dual problem (3.2).
Applying Theorems 3.6 and 3.8 to the dual problem (3.2) also yields the condi-
tions stated in (3.5), i.e., the primal and the dual linear programs share the same
optimality conditions. This is one characteristic of a primal-dual pair.

Closer examination of the conditions (3.5) derived from problems (3.1) and (3.2)
shows that a vector X ; ;s solves the system (3.5) if and only if X solves
the primal problem (3.1) and ;s solves the dual problem (3.2). The vec-
tor X ; ;s s called the primal-dual solution.

Definition 3.10 A solution x ; ;s of (3.5)is called strictly complementary, if

X s >0,i.e,ifthere exists noindex 12 f1;:::;ngsuch that x; s; 0.

10
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3.4 Solution Sets, Partitions and the Goldman-Tucker Theorem

Definition 3.11 Denote the solution set of the optimality conditions (3.5) by S:
S: x; ;s 2R™ RM™ R" x; ;s solves(3.5) : (3.6)

Furthermore, let Sp and Sp be the solution sets of the corresponding primal and
dual linear programs:

Sp . fXxjx solves the primal problem (3.1) g;
Sp: f ;s J ;s solvesthe dual problem (3.2) g:

Note that
S Sp Sp;

i.e., Sp and Sp are the projections of S onto the x- and ;s -spaces, respectively.

Looking at the optimality conditions (3.5), we know that for every solution
X ; ;s of these conditions X; 0 and/or s; Oforalli 1;:::;n holds.
Now we can define two index sets B and N as follows:

B: fi2fl;:::;ngjx; >0 for some X 2 Spg;
N : fi2fl;:::;ngjsj >0 forsome ;s 2 Spg;

belongs to either B or N, but not both. It is easy enough to show half of this
result, namely, that B and N are disjoint. If there happened to be an index i
that belonged to both sets, then from (3.7) there would be a primal solution x
and a dual solution ;S such that x; > 0 ands; > 0. But then we would
have x; s; > 0, which contradicts the complementarity condition in (3.5). Hence,
B\ N s

The reverseresult B[ N f1;:::;Nng is known as the Goldman-Tucker Theo-
rem [28].

Theorem 3.12 (Goldman-Tucker) It holdsthat B [ N  f1;:::;ng. That is, there

exists at least one primal solution x 2 Sp and one dual solution ;S 2 Sp such
thatx; s; >Oforalli 1;:::;n.
Proof. [28] or [56] [ |

Next we state some simple properties of the two index sets defined in (3.7).

Lemma 3.13 The following statements hold:
(1) We have xy Oforallx2Spandsg Oforall ;s 2 Sp.

(2) we have B fi 2 f1;:::;ngjx; > 0g and N fi 2 11;:::;ngjs; > Og,
where w X ; ;s denotes a strictly complementary solution of the
optimality conditions (3.5)

11
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Proof.

(1) Let x 2 Sp and 1 2 N be arbitrarily given. Then there exists a solution
;S 2 Sp such thatsj > 0. Since X; ;s 2Sp Sp S, it follows from
the complementarity condition that X; 0. This shows that xNn O for all
X 2 Sp. In a similar way, one can verify the statement that sg 0 for all
'S 2 Sp.

(2) Letw X ; ;S beastrictly complementary solution of the optimality
conditions (3.5). Define the corresponding index sets

B : fi2fl::;;ngjx; >0g and N : fi2fl;:::;ngjs; > 0g:

Since x and ;S are particular solutions of the primal and dual lin-
ear programs (3.1) and (3.2), respectively, the definitions of the index sets
B and N immediately give

B B and N N: (3.8)

However, sinceB [N f1;:::; ng by the strict complementarity assump-
tion, this set has the same cardinality as the set B [ N (by the Goldman-
Tucker Theorem 3.12). Hence equalities must hold in (3.8). ]

3.5 Rank of the Matrix A

When discussing algorithms for linear programming, it is often convenient to as-
sume that the matrix A in (3.1) hat full row rank m. There exist perfectly valid
linear programs that do not satisfy this assumption, but such problems can always
be transformed to equivalent problems that do satisfy it.

In practice this is not much of a problem. Implementations of the simplex
algorithm typically introduce artificial variables into the formulation during the
determination of an initial basis. In the augmented formulation, the constraint
matrix A has full rank.

Interior-point codes as well as the implementations of the smoothing-type
methods presented in this thesis do not perform such an augmentation. Instead, a
presolver is run, which aims to eliminate the rank deficiencies by removing, among
others, redundant constraints and empty rows, before the actual method is applied
to the problem. Some presolvers used today employ some quite advanced linear
algebra to reach this goal.

For the remainder of this thesis it is therefore always assumed that the matrix A
has full row rank m, even if this is not explicitly specified.

3.6 Perturbation Results

This section covers two results which will be used later to prove local rate of
convergence results for some of the algorithms.

12



3.7 Convergence Results

The following result states that the non-singularity of the Jacobian F° w in
a neighborhood of x follows from the non-singularity of the Jacobian F? x
Additionally the inverse matrices are uniformly bounded. The proofs are based
on Banach’s Lemma, which is also known as Perturbation Lemma, [19, Theorem
3.1.4] or [25, Lemma B.8].

Lemma 3.14 Let F: R™ -1 R" be continuously di Cerkntiable, x 2 R™ and F° x
non-singular. Then there exists an " > 0, such that F® w is non-singular for all
w2U"x : fxX2R"jkx x k "g. Furthermore there is a constant ¢ > 0,
such that

kF'w 1k c¢ forallw 2 U- x

Proof. Geiger, Kanzow [25, Lemma 7.3]. ]

The following lemma is quite useful, since it gives an estimate of the distance
of a given vector xK 2 R" from the solution of an optimization problem such
as (3.3).

Lemma 3.15 Let F: R™ -1 R" be continuously di[erkntiable and fxKg R" a
sequence converging to X with F x 0 and F® x non-singular. Then there
is an index kg 2 N and a constant > 0 such that

kKF xKk  kxK x k

forallk Kko.

Proof. Geiger, Kanzow [25, Lemma 7.4]. [

3.7 Convergence Results

The following result is essentially an application of Taylor's Theorem. The proof
can be found in any standard optimization text book.

Lemma 3.16 LetF: R™ -1 R" be continuously di Cerkentiable, and let fxKg R" be
a sequence converging to X . Then the following assertions hold:

(1) kF xk  F x FOxK xK x k okxK x k.

(2) kF xk  F x FOxK xk x k 0O kxK x K2 ,if Flis locally Lip-
schitzian.

Proof. Geiger, Kanzow [25, Lemma 7.2]. [

13
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Lemma 3.17 Let fxKg R"™ and fAxKg R" be two sequences such that
fxXg -1 x  and kxK AxK x k okxK x k:

Let F: R" -¥ R" be continuously diCerkentiable and F x 0. Let F® x be
non-singular. Then

kF xK AxK k o kF xX k

Proof.  First note that F is locally Lipschitzian in X since it is continuously
di Cerentiable. Therefore
kKF xK AxKk KkF xK AxK  Fx k
0 kxK AxK x k
o kxK x k
okfF TFx* F1Fx k
okfF x¥ Fx k
o kF xK k

Here the last but second line follows from the Inverse Function Theorem (cf. [52])
and the last but one line follows from the fact that F 1 is locally Lipschitzian. m

The following result by Moré and Sorensen [46] gives conditions under which
an entire sequence converges to an accumulation point if a subsequence does the
same.

Proposition 3.18 Assume that x 2 R" is an isolated accumulation point of a
sequence fxXg  R" such that fkxk 1 xKkg -1 0 for any subsequence fxXg_
converging to X . Then the whole sequence fxKg converges to x .

Proof. Moré, Sorensen [46]. [

3.8 Multifunctions

For some of the convergence results, some more terminology is needed. The def-
initions and the following result are taken from Robinson [51].

Definition 3.19
(1) A function whose values are sets instead of points, i.e., a multivalued func-
tion is called a multifunction.

(2) A multifunction whose graph is the union of finitely many polyhedral convex
sets (called components) is called polyhedral multifunction.
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3.8 Multifunctions

Definition 3.20 A multifunction F: R™ -¥ R™M is called locally upper Lipschitzian
at a point vg with modulus #, if for some neighborhood U Xg of Xg and all x 2 U
holds F v Fvo #kv vokB1 O0,whereB; 0 : fvjkvk 1g denotes the
unit ball.

Proposition 3.21 Let F: R™ -¥ R™ be a polyhedral multifunction. Then there
exists a constant #, such that F is locally upper Lipschitzian at each vg 2 R".

Proof. Robinson [51, Proposition 1]. [
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3 Theoretical Background
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4 Interior-Point Methods

For a long time the simplex method had been state of the art in the field of linear
programming. In recent years, however, a new class of methods, so-called interior-
point methods, has become available and is now being widely used due to their
excellent performance.

The interior-point methods described here are so-called primal-dual methods,
i.e., no work is done on the the primal or dual problem directly but rather on the
both problems’ common optimality conditions.

In this chapter an overview will be given over interior-point methods, as they
are closely related to the smoothing-type method approach demonstrated in later
chapters. After general background information, we will give special attention to
the most prominent member of the class of primal-dual interior-point methods,
the predictor-corrector method published by Sanjay Mehrotra [43] in 1992.

4.1 The Central Path

The central path C is an arc of strictly feasible points that plays an important
role in the theory of primal-dual algorithms. The arc is parameterized by a scalar

> 0; each point x ; ;s solves the following system:
AT s ¢
Ax b; (4.2)
Xij=>0; sj=>0; XjSj o0 Loon:

These conditions di Cerlfrom the KKT conditions (3.5) only in the term  on the
right-hand side in the third equation. Instead of the complementarity condition,
we require that all pairwise products X;sj have the same value for all indices i.
From (4.1) we define the central path as

C fx,; ;s j =0g: (4.2)

This path plays a central role for the interior-point methods covered here; all
these methods try to follow the central path in a more or less precise way.

However, it is not clear that the central path conditions (4.1) have a (unique)
solution x ; ;s foreach > 0. Our firsttask is to establish the existence and
uniqueness of such a solution.

To this end we define the so-called (logarithmic) barrier problem corresponding
to the primal linear program (3.1):

X
min ¢'x log X;j subjectto Ax b, x>0; (4.3)
i1
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4 Interior-Point Methods

and the (logarithmic) barrier problem corresponding to the dual program (3.2):

X
max b’ log si subjectto AT s ¢, s>0; (4.4)
i1

The next result states that both barrier problems as well as the central path
conditions indeed have a solution.

Proposition 4.1 The following statements are equivalent for any given > O:

(1) The primal barrier problem (4.3) has a solution x .

(2) The dual barrier problem (4.4) has a solution ;S
(3) The central path condition (4.1) have a solution x ; ;s
Proof. Kanzow [34] ]

Having established this result, we can now turn to show that the primal barrier
problems attains a solution.

Since the problem does not always have a solution, an additional condition
is required to guarantee its solvability. Recall the definition of the primal-dual
strictly feasible set

n 0
FO: X; s AxXx b: AT s ¢ x>0 s>0

If x ; ;s satisfies this central path conditions (4.1), this vector obviously be-
longs to the feasible set F°. Hence, if this set is empty, then the central path
conditions (4.1) cannot have a solution. This, in turn, implies that the primal bar-
rier problem (4.3) does not have a solution by Proposition 4.1. Therefore F°  ;
is a necessary condition for (4.3) to attain a minimum. The following result shows
that this is also a su Lcieht condition.

Proposition 4.2 Assume that F® ;. Then the primal barrier problem (4.3) has
a solution x forany =0.

Proof. Kanzow [34] [

Theorem 4.3 Assume that F® ;. Then the central path conditions (4.1) have a

solution x ; ;s forany > 0. Moreover, X ands are unique. If A has full
row rank, is also unique.
Proof. Kanzow [34] ]
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4.2 Path Following Methods

4.2 Path Following Methods

The class of primal-dual algorithms which will be described in the following sec-
tions consists essentially of Newton’s method, applied to the central path condi-
tions.

These methods restrict the iterates to a neighborhood of the central path C
(as defined in (4.2)) and try to follow C numerically to a solution of the linear
program in question. For this reason this class of algorithms is generally referred
to as path-following methods.

4.3 A Basic Path-Following Method
Consider the linear program
min c'x subjectto Ax b; x O0;

where A2 R™ " ¢ 2 R", and b 2 R™ and recall the corresponding central path
conditions

AT s ¢
AX b;
Xij=>0; sj=>0; X;Sj foralli 1;:::;n:

An alternative way to write these conditions is to employ amapping F: R™ M " .1
Rn m n

2 3
AT s c;
Fx;is: & Ax b & (4.5)
XSe
where X : diag X1;:::;Xn 2R™ ", S: diag s1;:::;sn 2 R™ ", and the vector
e: 1;:::;1 T 2 R"is the vector of all ones. Now the central path conditions can
be written as
2 3

0
F x; ;s 90%;
e (4.6)

X;s > 0:
All interior-point methods described in this thesis try to solve the linear program

by finding a solution to the optimality conditions (3.5). Typically, this is done by
trying to solve a sequence of non-linear problems of the type

2 3
0

F x; ;s 20%
e
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4 Interior-Point Methods

with decreasing values of . Afterwards a suitable line search is performed in
order to guarantee that X and s stay positive. Note that all interior-point methods
generate iterates xK; K:sK that satisfy the constraints xk > 0 and sX > 0 strictly.
This property is the origin of the term interior-point, since the iterates xX and sk
stay within the positive orthant at all times.

When applying Newton’s method to F w 0, with w X; ;S , we have to

solve the linear system F? w Aw F w . We will start by showing that the
Jacobian
2
0o AT |
Fx :s 9A 0 05 (4.7
S 0 X

is non-singular under suitable assumptions.

Proposition 4.4 Let x; ;s 2R™ R™ R" be any given point with x;s > 0 and
assume that the matrix A 2 R™ " has full rank. Then the Jacobian F® x; ;s of F
is non-singular.

Proof. Kanzow [34] ]

Note that in the last result the assumption X;s > 0 is not hard to satisfy, since
all interior-point methods generate only positive iterates.
Proposition 4.4 now allows us to apply Newton’s method to the system
2 3

0
F x; ;s 20523:
e

The following algorithm 4.5 presents a general framework for path-following
methods which utilizes the strictly feasible set FO°.

Algorithm 4.5 (General Path Following Method)
Step 0: Choose x°; 9:s® 2 FC "2 0;1 and set the iteration counter k: 0.

Step 1: If xK Tsk ' Stop.

Step 2: Choose 2 0;1 andset : xK Tsk=n.
Find a solution AxK;A K;AsK of the linear system

2 T 32 3 2 3
0 | AX 0
A o 0592 % § 0 £ 4.8)
sk 0 xk As Xkske | ke
Step 3: Set xk 1. kK 1.gk 1 .k kgk ¢ AxK:A K:Ask setk -k 1and

go to Step 1. Here ti > 0 is a step length which guarantees that xX 1 >0
and sk 1> 0.
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4.4 Mehrotra’s Predictor-Corrector Approach

Note that the starting point x°; ©2:x° is selected from the strictly feasible
set F°, and that the choice of the step length ty in Step 3 guarantees the posi-
tivity of all iterates xX and sX. Hence all iterates belong to the set F°. Therefore
xK is always primal feasible and  K;sX is always dual feasible. Together with the
optimality conditions (3.5) and

s'™x ¢ AT ™x ™ TAx «¢™x b':

this yields

xk TSk CTXk bT k;

i.e. the expression xK TsK describes the duality gap, which is the only part of the
problem which needs to be driven to zero. This also explains the termination crite-
rion used in Step 1 of Algorithm 4.5: The iteration is terminated if the duality gap
is small enough, which indicates that a solution has been found, cf. Corollary 3.2.
Furthermore, since the linear constraints are always satisfied, it becomes obvious
why it is possible to use two zeros in the right-hand side of (4.8) in Step 2.

Since the system (4.8) can be solved uniquely if A has full row rank by Propo-
sition 4.4, and since we can always find a positive step size t, such that xK 1 >0
and sk 1> 0in Step 3, it follows that Algorithm 4.5 is well-defined.

Algorithm 4.5 has two degrees of freedom: The choice of the so-called center-
ing parameter | and the choice of the step size ty.

In (4.8) together with the weighted duality gap : xX TsK=n, the centering
parameter | plays the role of the parameter in the central path conditions (4.1).
While k will always denote the weighted duality gap, we are relatively free in the
choice of . The choice Kk 0 results in one Newton iteration being taken for
the optimality conditions (3.5), which is the system that is to be solved in the first
place. However, such a step may take us close to the boundary of the feasible
set and thus result in a smaller step length in order to ensure the feasibility of
the iterates xX and sk. On the other hand, choosing 1 will take us close to
the central path, but quite possibly not any closer to the solution set of (3.5), so
one needs to be careful with the choice of a centering parameter. Mehrotra [43]
addressed this problem when publishing his predictor-corrector method. This
algorithm will be presented in the next section.

4.4 Mehrotra’s Predictor-Corrector Approach

Most current implementations of primal-dual interior-point algorithms are based
on a predictor-corrector algorithm which was first introduced by Mehrotra [43] in
1992.

Mehrotra’s algorithm enhances the basic Newton-like search direction by a cor-
rection which is fairly inexpensive to compute. It also allows an adaptive choice
of the centering parameter at each iteration.
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4 Interior-Point Methods

Mehrotra’s approach is largely based on ideas which had been developed ear-
lier. One of the algorithm’s key features, the use of higher-order approxima-
tions to the central path, is based on work by Monteiro, Adler, and Resende [45],
who extended the initial research done by Megiddo [42]. Already an infeasible
interior-point method had successfully been implemented by Lustig, Marsten and
Shanno [40]. Such an infeasible interior-point method is characterized by the fact
that the initial point is not required to be strictly feasible, but rather that its x- and
s-components be strictly positive.

Mehrotra himself combined these ideas and added heuristics for choosing the
centering parameter (adaptively), step lengths, and a starting point. The result is
a highly e Ccieht algorithm on which most existing interior-point codes are based.

The algorithm generates a sequence of infeasible iterates xK; K:sK for which

xK:sK > 0. The search direction at each iteration is computed in three steps:

(1) An a [nekcaling “predictor” direction. This is the pure Newton direction for
the function F x; ;s defined in (4.5).

(2) A centering term whose size is governed by the adaptively chosen centering
parameter

(3) A “corrector” direction that attempts to compensate for some of the non-
linearity in the a [nekcaling direction.

The combination of the first two components, the a [nekcaling step and the cen-
tering term, makes up the standard infeasible-interior-point method.

In Mehrotra’s algorithm the a [nedscaling direction and the centering term are
computed separately from each other. Computing the scaling direction prior to
the centering component results in the algorithm’s main advantage: The centering
parameter can be chosen adaptively rather than a priori. If the a [nedcaling step
makes good progress in reducing the duality measure while remaining inside
the positive orthand defined by X;s > 0, one can conclude that little centering is
needed in this iteration, so is assigned a small value. If, on the other hand, one
can move only a short distance along the a Cnedkcaling direction before violating

X;s >0, a larger amount of centering is required, so a larger value close to 1 is
assigned to

The drawback of calculating the centering component separately in this way is
that now two linear systems have to be solved at each iterations instead of only
one. However, this disadvantage is mitigated by the fact that both systems have
the same coe Lcieht matrix, thus we only need to perform one matrix factorization
and two back-substitutions, one for each right-hand side.

The term predictor-corrector arose due to the analogy of this algorithm with a
class of methods used in the field of ordinary di Lerkntial equations.

The a [nekcaling direction is obtained from a linear approximation of the
equality conditions in the KKT system (3.5), the pure Newton directon for the
function F x; ;s from (4.5). Since this direction is computed separately, it can
be used to assess the error in the linear approximation. Knowledge of this er-
ror allows one to calculate the corrector component, the third component of the

22



4.4 Mehrotra’s Predictor-Corrector Approach

Mehrotra-search direction. Since the centering and corrector components are ob-
tained by solving linear systems with the same coe [cieht matrix as the a [ned
scaling direction, and since they are independent of each other, there is no need
to compute them separately. We can simply merge them into a single direction by
adding their corresponding right-hand sides and compute the combined centering-
corrector direction with a single back-substitution.

This way Mehrotra’s algorithm requires two back-substitutions at each itera-
tion instead of only one, as earlier methods did. The extra cost of an additional
back-substitution is easily justified by a significant reduction in the total number
of iterations required to solve a problem. This way Mehrotra’s method is highly
e [cieht in solving a linear program.

The idea of di Cerent primal and dual step lengths has been put to practical
use by numerous authors before. Mehrotra, however, added a quite successful
heuristic to the step length computation.

4.4.1 Statement of Algorithm

The description of Mehrotra’s predictor-corrector method given in this section
di Cerk slightly from the original one published by Mehrotra [43], but is similar to
the variant implemented in codes such as LIPSOL [57, 58] and PCx [16, 17].

Algorithm 4.6 (Mehrotra’s Predictor-Corrector Method)
Step 0: Choose w®  x0; 0:s0 2 R" RM R" with x° > 0 and s° > 0 (see
Section 4.4.3),0 < ¢ 1, " > 0 and set the iteration counter k: O.

Step 1: If the termination criterion

kAx bk KAT s ck jc™x blyj
maxf1; kbkg maxfl;kckg  maxfl;jcTxjg

is satisfied: Stop.

Step 2 (A [nefcaling Predictor Step):
Compute a solution AwX  AxX; A K:AsK of the linear system

2 32 3 2 3
0 AT I _ Ax AT kK sk ¢
8a 0 048245 8 Axk b 5 (4.9)
sk 0 xk As Xkske
Compute
- n o]
to" argmax t2 0;1 x* tAxX 0 ;

. n )
t2° argmax t2 0;1 sk task 0 ;
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and

. T .
k3P Ayk k  ¢&DAck
X<t Axg st TAs] _

Qo
(L]

s

Step 3 (Centering-Corrector Step):
Find a solution AwX  AxK;A K;Ask of the linear system

2 32 3 2 3
o AT | AX 0

8A o0 0487 % § 0 £
sk 0 Xxk As AXXASKe e

Step 4 (Search Direction):
Calculate the search direction: AwK AwK Awk.

Step 5 (Line Search):

Compute
max;P n 0
" argmax t 0 xK tAx 0 ;
n 0
7" argmax t 0 sk task 0
Calculate

. T .
xK tEaX'PAxk sk tlTaX’DAsk

n

(4.10)

(4.11a)
(4.11b)

For one particular index i for which xX 7> AxK 0, define by

Kk p .max;P Kk k max;D Kk

X Fot Asi st As; £
For one particular index i for which sk 7" Ask 0, define 2 by

k ¢maxP \ k .k gDymaxD ,_k
Xt Axy osp T ot As; f
Set
n P
tt max 1 gf o

Step 6 (Update):
Compute the new iterate as

xK 1 xK tEAxk;
k 1.6k 1 k. gk tEA k- AsK -

Setk k 1andgo to Step 1.
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4.4 Mehrotra’s Predictor-Corrector Approach

General Comments

For a better understanding of this algorithm we will give some notes on specific
parts of the method (we will leave out the iteration counter k throughout this
section):

The linear system solved in Step 2 of the Algorithm is obtained by setting 0
on the right-hand side of the generic infeasible-interior-point equations (4.8). The
step lengths to the boundary along this direction can now be computed, perform-
ing separate calculations for the primal and dual components as follows:

t27  argmaxft 2 0;1 jx tAxs Og;
t3P  argmaxft2 0;1 js tAsy O0g;

Now define 2 as the hypothetical value of resulting from a full step to the
boundary, i.e.,

x taPAx, ' s t2DAs, _

N

This gives us a measure of the a [nekcaling direction’s quality. If 2 is signifi-
cantly smaller than , the a [nedscaling direction is a good search direction which
permits significant progress to be made in reducing , so the centering parame-
ter can be chosen close to zero. If 2 isonly a little smaller than , we choose
closer to 1. This results in placing the iterate closer to the central path C, so
that the algorithm is in a better position to achieve a substantial decrease in on
the next iteration. The following heuristic for the computation of the centering
parameter has proven to be quite e [eckive in numerical tests:

1
a'3

One could compute a centering term by solving a linear system with the same
coe [cieht matrix as in the a [nekcaling step and the right-hand side 0;0; e T,
but as mentioned before, it is more e [cieht to compute this term in conjunction
with the corrector term.

For a motivation of the corrector step, consider the i-th pairwise product X;s;.
Let us examine how this product is alected by a full step in the a Cnedkcaling
direction. From (4.9) we have

Xi AXai Si Asai  XiSi XjAsai SiAXai AXaiAsa i (4.12)
AXga i Asa i

When a full step is taken, the pairwise product X;s; transforms to Axg i As; i,
instead of the zero value predicted in the linearized model used in (4.9). It is the
corrector component’s task to compensate for the deviation from linearity. This is
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done by modifying the search direction so that the pairwise products come closer
to their target value of zero.

In order to assess the e [ect the corrector component, examine the pairwise
product obtained from a full step in the combined a [Cnekcaling/corrector direc-
tion. From the linear systems (4.9) and (4.10) we obtain

Xi AXai AXci Si  Asai Asc

The pairwise product in (4.13) is closer to zero than the one in (4.12) if the
coe [cieht matrix of the linear systems approaches its limit. If the limiting ma-
trix is singular the corrector step may no longer be smaller in norm than the
a [nekcaling step, but in practice the use of the corrector component usually still
enhances the overall e [ciehcy of the algorithm. The cost of this additional e =1
ciency is quite small: For the corrector step one has to solve an additional linear
system with the same coe [cieht matrix as in the corrector step. Therefore only a
single back-substitution is required to obtain a solution of the linear system.

The step length computation described in Step 5 of Algorithm 4.6 is not com-
monly used. Most codes simply apply fixed factors such as 0.99 to the computed
step length rather than computing the step factors as documented. The heuristic
described in Step 5 was published by Mehrotra [43]. When using this heuristic
the scaling factors £° and P applied to t° and tP approach 1 in later iterations.
The factors are chosen to be the largest value for which the “critical” pairwise
products xjs;j are larger than ¢ , for asmall constant ¢. A typical value for ¢
is 0.01.

4.4.2 Termination Criteria

Unlike the simplex method, primal-dual algorithms usually do not find an exact
solution of the linear program. Termination criteria must therefore be used to de-
cide when the current iterate is close enough to the solution set. In this case most
primal-dual codes simply report an approximate solution for which the residuals
and duality measure are su [ciehtly small. Relative measures of smallness are
used to lessen the e [ect of scaling. The termination criterion in Step 1 of Algo-
rithm 4.6 is taken from the code LIPSOL by Zhang [57, 58] and represents a typical
case of such a criterion. The parameter " is typically set to a small positive value,
such as 10 8.

4.4.3 The Initial Point

First we present Mehrotra’s suggestion for choosing an initial point for his interior-
point method, then its merits are discussed.
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4.4 Mehrotra’s Predictor-Corrector Approach

Computation of the Initial Point

Mehrotra suggests in [43] that the initial point for the predictor-corrector method
should be computed as follows: First calculate

~ 1
AAT T Ac:

§ ¢ AT
% AT AAT b;
by solving the appropriate linear systems, then compute
x maxf 1:5 minfXjg;0g and s maxf 1.5 minf§jg;0g:

Then one obtains

~ 1 X e’ s e
x x5 XX~ = (4.144)
Sj s
i1l
~ 1 X eTs e
s s 5 XX~ S (4.14b)
Xj x

x{ % T 0 1
0 .

0 =~ . s A,
S; S s; 11 n

This approach does indeed generate x° > 0 and s® > 0. In the cases in which
it fails to produce such a point, either the problem reduces to that of finding a
feasible solution for the primal or dual problem (3.1) or (3.2), respectively, or an
optimal solution is generated.

From the definitions of » and s, we know that x® 0ands® 0. A positive
point is always generated if s> 0and s> 0. To show that x° >0ands® >0, it
is su [cieht to show that ~X >0 and ~S > 0.

First consider the case when « s 0. In this case X is a feasible so-
lution for the primal problem (3.1) and ;5 is a feasible solution for the dual
problem (3.2). If XT§ 0, then these solutions are optimal for the respective
problems. Otherwise, X'§ > 0 and hence x >0and ¢ > 0.

On the other hand, if X; 0 for all i, then b 0 and the problem reduces
to that of finding a feasible solution of the dual problem (3.2). This problem can
then be solved separately or by generating a perturbed problem for which the
right-hand side is Ae for any positive . The term e can be used as a feasible
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interior solution of the perturbed problem, and (4.14) can be used to generate a
feasible point of the perturbed problem. The case inwhich x >0and s Ocan
be argued in a similar manner.

The choice of the constants 1:5 and 1=2 in the computation of ~X and ~S is
arbitrary. These constants can be replaced by any value larger than 1 and 1=2,
respectively, without changing the validity of the approach and its properties.

Advantages of Mehrotra’s Initial Point

The approach described above has two advantages.
First, it is not a [ecked by scaling of the primal constraints or the cost vector c.
Second it is independent of a shift in the origin. To explain this, consider the
dual problem

max b’ A subjectto AT A s c;s O (4.15)

for any fixed choice of A . The polytope defined by the constraints in (4.15) is the
same as the polytope defined by the constraints in (3.2) except for a shift of the
origin. It is desirable that an initial point be the same in relation to the respective
polytopes. Note that §in (4.4.3) is independent of the choice of A .

To demonstrate how similar arguments hold for the primal problem (3.1), we
consider an equivalent formulation of this problem. Let Z 2 R™ ™ be a matrix
whose columns form the basis for the null space of A, and let Xo be any point
satisfying Axp b. It is easy to see that the primal problem (3.1) is equivalent to

max c'Z y Ay subjectto Z'y Ay X0 (4.16)

for y 2 R™ and any fixed choice of Ay. An approach analogous to that of finding §
computes

v Z'z 172Txo:

The slacks in the constraints of (4.15) are given by

Xo 222 1ZTxe | z 2Tz 12T xq
AT AAT TAxg
AT AAT 1p
X

Since X and § are independent of Ay and A , respectively, it is obvious that
x© and s° are independent of this as well.
Disadvantages of Mehrotra’s Initial Point

The initial point generated by the above mentioned approach is a [ected by the
presence of redundant constraints. This can pose a problem, for example, if re-
dundant dual constraints with large slacks (primal variables with huge costs) are
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4.4 Mehrotra’s Predictor-Corrector Approach

present. To alleviate this problem Mehrotra [43] suggests to let the user give rel-
ative importance to various primal variables (dual constraints). Redundant vari-
ables could then be assigned a zero weight and could be removed while generating
the initial point.

Column scaling also a [ecks the Mehrotra’s initial point. For numerical exam-
ples the reader is referred to Mehrotra’s paper [43], in which he compares initial
points generated with and without the previous application of a scaling function.

4.4.4 DilLerkences and Enhancements with Regard to Existing
Implementation

Step length
In Step 5 of Algorithm 4.6 scaling factors are applied to the step-to-boundary val-
ues t' " and t">“P. These factors are computed by using an advanced heuristic.

In a number of implementations, these step factors are either a fixed constant,
ranging from conservative values such as 0.9 or 0.995 to aggressive values such
as 0:999. The package LIPSOL by Zhang [57, 58] uses an adaptive strategy to pre-
vent the pairwise products Xx;s;j from becoming too unbalanced. It first tries a
multiplier very close to 1 and checks that the new iterate stays inside a neighbor-

hood
n 0
N 1 x; ;s 2F°% x;si foralli 1:;::::n

forsome 2 0;1 . If not, it backs o [Calong the chosen direction, trying smaller
and smaller values for the step length until the neighborhood condition is satisfied.

A typical value for ¢ in Step 5 of Algorithm 4.6 is 0:01. This heuristic speeds
up asymptotic convergence in addition to improving the robustness of the algo-
rithm. Wright [56] also states, that in a number of cases, the use of the heuristic
allows the algorithm to solve a problem, while the use of a step factor bounded
away from 1 causes failure.

Search Direction

In the original algorithm, Mehrotra calculates a little di Cerent search direction
from the one given in Algorithm (4.6). In [43] he defines the parameters "x and "'
as the maximum steps to the boundary along a curved path:

n o]
x argmax "2 0;1 x "Ax® "?Ax® ;

n
s argmax "2 0;1 s "As?® "2As

He then chooses the search direction to be
AX; A :As " AXal"sA 4l "sAsa "ZAXc;"2A ;"2 Asc

Note that the direction given in Algorithm 4.6 is slightly di Cerént, but is the one
implemented in codes such as LIPSOL [57, 58] and PCx [16, 17].
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Numerical performance

In [43] Mehrotra uses the cubic centering multiplyer  as stated in Algorithm 4.6.
Lustig, Marsten and Shanno [41] describe an implementation of Mehrotra’s method
which only uses a quadratic centering parameter. They state that it apparently
makes little di Cerbnce when comparing the iteration counts in [43] and [41]. The
authors of [41] also cite better numerical stability if the centering parameter is
computed as

8
xk Tgk <n?; ifn 5000;
k ————: Wwhere n - ooz -
N -n<2; if n > 5000:

For some numerical results produced by di Cerknt codes, see e.g. [57] and [16]
For a broader benchmark of di Cerknt codes see [44].
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5 Smoothing and Smoothing-Type Methods — Background

This chapter will cover the background required for the work with smoothing and
smoothing-type methods. The methods introduced in the following chapters aim
to solve a linear program’s KKT conditions (3.5) by reformulating these conditions
into a system of equations. To do this, a special class of functions, so-called NCP-
functions, is employed.

5.1 NCP-Functions

Let us begin by defining one of the basic tools which we will use for the remainder
of this thesis, the so-called NCP-function.

Definition 5.1 A mapping ”: R? -1 R is called an NCP-function if it has the fol-
lowing property:

7 a;b 0O O a 0 b 0; ab 0
i.e., an NCP-function is zero exactly on the two non-negative half-axes.

Here NCP stands for Non-linear Complementarity Problem. This class of functions
has originally been used in connection with non-linear and linear complementarity
problems, hence the name. For an in-depth discussion of the possible uses of NCP-
functions to solve complementarity and constrained optimization problems, see
Kanzow [31] and references therein.

Recall a linear program’s optimality conditions: A vector x 2 R" is a solution
of the linear program (3.1) if and only if there exist vectors 2RMands 2R"
such that Xx; ;s X ; ;s satisfies the following conditions:

AT s ¢ O
Ax b O
Xi 0;si O %xijsi O i 1;:::;n:
Now let * be any NCP-function and define the operator : R" M N .x RN M n
by

2 3
AT s ¢
d x; ;s : 9 AxX b &Z;; (5.1)
X;$s
where  X;s 7 X1;S1 ;11577 XniSn
Obviously, x ; ;s solves(3.5)ifandonlyif x ; ;s solvesthe system

b x; ;s 0. The solution of the optimality conditions (3.5) can therefore be
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5 Smoothing and Smoothing-Type Methods — Background

reduced to the solution of a non-linear system of equations. Of course, the system
of equations ® x; ;s 0 depends heavily on the choice of the NCP-function ~
The following example lists a number of NCP-functions.

Example 5.2 The following functions are NCP-functions:

(1) The Fischer-Burmeister function, see [24]:

p_
ab: a b az b2 (5.2)

(2) The minimum function, see [48] or [49]:

q____
ab : 2minfa;bg a b ja bj a b a b? (5.3)

(3) The penalized Fischer-Burmeister function, cf. [10]:

b
Z ab : a b az b2 1 a b with 2 0;1 fixed. (5.4)

(4) The penalized minimum function:
Z ajb : 2minfajbg 1 a b ;with 2 0;1 fixed. (5.5)

This function seems to be new. It is, however, constructed in a way similar
to the penalized Fischer-Burmeister function, therefore it is called the pe-
nalized minimum function. Its first apparent use has been in the course of
[20] and [23].

In the last two examples the notation z for any given scalar z 2 R denotes its
projection on the non-negative orthand, i.e., maxfO; zg.
For the remainder of this thesis, * will always denote an NCP-function.

5.2 Smoothing functions

All of the functions given in example 5.2 are obviously non-smooth, which leads
to the corresponding equation operator ¢ also being non-smooth. This poses a
problem if one intends to solve a system of equations suchas ® x; ;s 0 by ap-
plying Newton’s method. The primary reason why one does not use di Cerkntiable
NCP-functions is the fact that simple proofs show that the Jacobian ®® x ; ;s

may be singular in the solution vector x ; ;s of ® X; ;s 0. For further
details see [31]. To avoid this problem we use smooth approximations of the non-
di Cerkntiable NCP-functions. These smooth approximations of non-smooth map-
pings are called smoothing functions. They are constructed by adding a so-called
smoothing parameter to the function. This smoothing parameter will be called

for the remainder of this thesis. In most smoothing and Jacobian-smoothing re-
lated literature this parameter is commonly called , which conflicts with the nam-
ing convention used here for the duality measure in interior-point literature, see
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5.2 Smoothing functions

Chapter 4. Looking ahead at the system (5.21) one will see that this system is
identical to the central path conditions (4.1), in which the perturbation parameter
is also called . Hence the naming of the parameter is not misleading as it might
seem at first.

The following example will name some smoothing functions which will be used
throughout this thesis.

Example 5.3 The following functions are the smoothed counterparts of the re-
spective NCP-functions in example 5.2. Note that for the approximation given
here, we have * ~  for 0, and that = is continuously di Cerkntiable for
any >0.

(1) The smoothed Fischer-Burmeister function:
pP—
 ab: a b az b2 22 (5.6)
This mapping was first introduced by Kanzow [32].

(2) The smoothed minimum function, also known as the Chen-Harker-Kanzow-
Smale smoothing function:

q

 ab: a b a b2 4z (5.7)

See also [11, 32, 53]. There are several other suitable approximations of the
minimum function, see e.g. Chen and Mangasarian [12].

(3) The smoothed penalized Fischer-Burmeister function:

P Q——
> ab : a b a2 b2 22 1 a’b®> 22, (5.8)
with 2 0;1 fixed.
(4) The smoothed penalized minimum function:
q qg
> ab : a b a b2 42 1 a’b? 4 2; (5.9

with 2 0;1 fixed.

The last two functions have not been used extensively before, they first appear in
[10] and [20, 23], respectively

For the remainder of this thesis, will always denote a smoothing function.

The next result shows that the four smoothing functions * defined in exam-
ple 5.3 are indeed good approximations of the corresponding non-smooth NCP-
functions from example 5.2 (see also [33]).
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5 Smoothing and Smoothing-Type Methods — Background

Lemma 5.4 For each of the four NCP-functions * defined in Example 5.2 and the
corresponding smoothing functions = defined in Example 5.3, there exists a con-
stantc c- >0 (independent of and a;b ) such that

j” ab Z abj c
forall a;b 2R%2andall =>0.

For the four functions from examples 5.2 and 5.3 this constant has the following
values:

(1) Fischer-Burmeister function: ¢ p2.
(2) Minimum function: ¢ = 2.
(3) Penalized Fischer-Burmeister function: ¢ p2.

(4) Penalized minimum function: ¢ 2.

Proof. In case of the minimum function, we obtain
q— q
j” ajb ” abj a b a b?2 a b a b2 42
q q
a b2 42 a b?
.a b? 42 a b?
"a b2 42 a b2
42
2
2 ;

for all a;b 2 R?and all > 0, i.e, the statement holds with ¢ : 2. Simi-
lar calculations verify that the statement holds for the other NCP-functions from
example 5.2 with the values stated above. [

5.3 Smoothing a System of Equations

As the equation operator ® defined in (5.1) is non-smooth, it is not possible to
employ Newton’s method to solve the non-linear system & w O directly. In-
stead, we define a continuously di Cerentiable approximation of this operator. To
achieve this goal, we will use smoothing functions instead of NCP-functions. This
will give us a (perturbed) system which we will then solve while trying to lessen
the perturbation at each iteration.

Define the operator ® : R™ M N ¥ RN M N [y

- 3

S C
Ax b & (5.10)
X;S

2
A
<I>x;;s:9
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5.3 Smoothing a System of Equations

where X;S T OX1:81 50T XnsSn T2 RN,
As a direct consequence we obtain the following result, where & and & denote
the mappings defined in (5.1) and (5.10).

Lemma 5.5 There exists a constant > 0 (independent of and w X; ;S ),
such that

k®d w d w k

For equation operators defined by the four functions from examples 5.2 and 5.3
this constant has the following values:

(1) Fischer-Burmeister function: p%.

(2) Minimum function: 2pﬁ.

(3) Penalized Fischer-Burmeister function: pﬁ.
(4) Penalized minimum function: 2pﬁ.

Proof. Using Lemma 5.4 and the definition of the mappings ® and ¢ , we obtain
for the minimum function

Y
(U2 ¢
kd w d w Kk s 7 Xi;Sij 7 Xi;Si
i1
Y
U2 ¢
¥ c22
i1
P
P
c  n;
i.e., the statement holds with cpﬁ 2pﬁ. In a similar way, one can show
that the assertion holds for the other NCP-functions with the values stated above.

Note that the constant introduced in Lemma 5.5 is actually known. This fact
will play an important role in the design of the algorithms where this constant will
be used explicitly.

In later chapters Newton’s method will be used to solve the system ® w 0.
This yields the Newton equation

P wAw D w: (5.11)

The next result states that the Jacobian Matrices ®° w are non-singular for
all w. Hence the linear system (5.11) can always be solved uniquely.
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5 Smoothing and Smoothing-Type Methods — Background

Proposition 5.6 Let & denote any of the mappings defined by any of the four
smoothing functions from example 5.3. Then the Jacobian matrices ®° w are
non-singular for all w x; ;s 2R?" RM RMandall =0.

Proof. Itis easy to see that ® is di [Cerkntiable with

0o AT 1
O x s IA 0 05 (5.12)
Da; 0 Db’
with diagonal matrices
Da: : diag '::;@—a Xi:Sj ;i 2R™M ™ (5.13a)
and
Dp. : diag :::; ab Xi;Sj ;::0 2R™T ™ (5.13b)

For all functions * defined in example 5.3 simple calculations show that the
corresponding diagonal matrices D5; and Dy. are positive definite

Nowletq ql:;g2:9% 2R"™ R™ R" be an appropriately partitioned
vector with ®® w g 0. Then (5.12) implies

A'lg? g2 o (5.14a)
Aql o (5.14b)
Daq! Dp g3 O (5.14c)

Premultiplying (5.14a) by q 1 T and taking into account (5.14b) gives
at Tg® o (5.15)
On the other hand, solving (5.14c) for g ' and substituting into (5.15) yields that
q® T™D'Dp; g3 O (5.16)

Since Da: and Dy are positive definite, we obtain q 3 0 from (5.16). This
implies g 1 0 because of (5.14c). Hence we also get q 2 0 from (5.14a) and
the full rank assumption of A. ]

The following results will guarantee the existence of an accumulation point,
when using one of the penalized functions (5.5) and (5.4) and their smooth approx-
imations (5.9) and (5.8), respectively. It is not true, in general, for the minimum
and the Fischer-Burmeister function.
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5.3 Smoothing a System of Equations

Proposition 5.7 Let * be the penalized minimum or penalized Fischer-Burmeister
function, and consider the set

n o

Le: w X, ;s 2R™ R™ R™ AT s ¢c; AX b; kbwk c ;

where ¢ 2 R is any given constant. Assume that there exists a strictly feasible point
for the optimality conditions (3.5). Then the set L. is compact.

Proof.  We only consider the case where * denotes the penalized minimum
function since the proof for the penalized Fischer-Burmeister function is similar.

Assume that L. is unbounded for some ¢ 2 R. Then there is a sequence
fwkg f xK; K:skg Lc with fkwKkg -1 1 for k -1 1. The definition
of the penalized minimum function immediately implies that there is no index
i 2 fl;:::;ngsuch that x}‘ -1 1dor s:‘ -1 1 onasubsequence, since otherwise
we would have * xf;s}‘ -1 1 which, in turn, would imply kd wK k -1 1 on
a subsequence in contrast to kb wK k ¢ for all k 2 N. Hence all components of
the two sequences fxKg and fsKg are bounded from below, i.e.,

x%‘ and sik 8i 1;:::;n; 8k2N; (5.17)
where 2 R denotes a suitable (possibly negative) constant. On the other hand,
the sequence fwkg f xK; K;sK gisunbounded by assumption. Thisimplies that
there is at least one component i 2 f1;:::;ng such that xi -1 1 orsk -1 1
on a subsequence, since otherwise the two sequences fxXg and fskg would be
bounded. This, in turn, would imply the boundedness of the sequence f Kg as
well because we have AT K sk ¢ for all k 2 N and because A is assumed to
have full rank.

Nowletw X; ;§ 2RM™ RM R" pe astrictly feasible point for (3.5) whose
existence is guaranteed by our assumptions. Then, in particular, we have

AT § ¢ and AR b

Since we also have

for all kK 2 N, we get
AT k5 sk 0 (5.18a)
and

AxX xK o0 (5.18b)

by subtracting these equations. Premultiplying (5.18a) with X xX T and taking
into account (5.18b) gives

% xkTs sk o
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5 Smoothing and Smoothing-Type Methods — Background

Reordering this equation, we obtain

§TxK xTsk  xKkTsk «Ts (5.19)

for all k 2 N. Using (5.17) as well as X > 0 and § > O in view of the strict

feasibility of the vector w X; ;§, it follows from (5.19) and the fact that
xK -1 1 or s -1 1 onasubsequence for at least one index i 2 1;:::;ng
that

xK Tsk.n 1
Hence there exists a component j 2 f1;:::; ng (independent of k) such that

kek g
xjsj T 1

on a suitable subsequence. Using (5.17), this implies

n (o} n (o}

max O;xJ'-‘ max O;sjk -1

and therefore

> Kook g
xj,sj T 1

on this subsequence. This, in turn, gives kb wk k -1 1, a contradiction to
wk 2 L. forall k 2 N. m

We next state a simple consequence of Proposition 5.7.

Corollary 5.8 Let * be the penalized minimum or penalized Fischer-Burmeister
function, and consider the set

n o
Le: 0w X, ;s 2R™ RM™ R" AT s ¢ AX b; kd wk c ;

where ¢ 2 R and 0 are any given constants. Assume that there exists a strictly
feasible point for the optimality conditions (3.5). Then the set L. is bounded.

Proof. Letw 2 L. be given. Using Lemma 5.5 and the triangle inequality, it
follows that

kd w k kd w ® wk kd wk (o

Hence we have w 2 Lg, where c : ¢ and Lg denotes the set defined in
Proposition 5.7. This shows that the inclusion

Lc; LE

holds. Since the set on the right-hand side is compact by Proposition 5.7, the
statement follows. [ |

The proof of the previous result actually shows that the following uniform
boundedness result holds.
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5.3 Smoothing a System of Equations

Corollary 5.9 Let 7 be the penalized minimum function or the penalized Fischer-
Burmeister function, and let L. be the set defined in Corollary 5.8. Then the set

L
L.

2 0;
is bounded foranyc 2 Randany = 0.

As mentioned above of this section, Proposition 5.7 and its corollaries will
guarantee the existence of accumulation points when using one of the penalized
functions.

For the remaining part of this section, we now investigate the question whether
the smooth equation

® w O (5.20)

has a solution for each > 0.
The answer is relatively simple if  denotes an NCP-function. For this class of
functions, Kanzow [32] noted the following:

Theorem 5.10 Let® be defined using the Chen-Harker-Kanzow-Smale smoothing
function (smoothed minimum function) or the smoothed Fischer-Burmeister func-
tion. Then the vectorw : X ; ;s solves the non-linear system of equations
¢ w 0 if and only if w satisfies the conditions

AT s ¢
Ax b; (5.22)

Xij=>0; sj=>0; XjSj 2foralli 1:;:::;n.

Proof. It is easily verified that both the Chen-Harker-Kanzow-Smale smoothing
function and the smoothed Fischer-Burmeister function have the following

property:
ab 0 (O a=>0 b=>0 ab 2

The proposition then follows directly from the definition of ¢ . ]

These conditions, however, are precisely the central path conditions used by basi-
cally all interior-point methods. By Theorem 4.3 it is known that they have a unique
solution for every > O if there exists a strictly feasible vector w R: ;8§ for
the optimality conditions (3.5). Hence we now turn our attention to the two pe-
nalized functions. The next result states that the system (5.20) has a solution in
this case, too.

Proposition 5.11 Let * be the penalized minimum or penalized Fischer-Burmeister
function. Assume that there is a strictly feasible vector for the optimality condi-
tions (3.5). Then the system (5.20) has a solution for every = 0.
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5 Smoothing and Smoothing-Type Methods — Background

Proof. Let = 0 be fixed, and consider the optimization problem
min¥ w subjectto AT s c¢; Ax b; (5.22)

where ¥ : R™ -I R denotes the function
1 2
Y w : Ekd) w Kk<:

The set L.. defined in Corollary 5.8 is non-empty (for su Lciehtly large ¢ > 0)

and compact. Hence the above optimization problem has a global minimum w

X ; ;s . Wewill show that w is a solution of the non-linear system (5.20).
To this end, note that (5.22) is a linearly constrained optimization problem.

Hence there exist Lagrange multipliers 2 RM and 2 R" such that w ; ;

satisfies the KKT conditions of (5.22):
3
AT

rYy w QA% 0:

Since r¥Y w ® w Td w ,we can use the expression (5.12) for the Jaco-
bian in order to rewrite the above equation as

32 3 2_3 23
0 AT D _ AT s c AT 0
Gan 0 048 Ax b 5 §a £ §0&.
I 0 Dp: X ;S 0

where the diagonal matrices D5, and Dy. are defined in a way similar to (5.13).
In addition, w is feasible for (5.22). Consequently, the previous conditions can
be simplified to

Da: X ;S AT . A 0; Dy X ;S 0:

Multiplying the third equation with A, taking into account the second equation,
and replacing X ;s from the first equation gives

AD.'Dp. AT O

Since A has full rankand D5 ;Dp. 2 R™ " are positive definite diagonal matrices,

it follows that 0. This, in turn, implies X ;S 0. Using once again the
fact that w X ; ;s satisfies the linear constraints in (5.22), we see that the
vector w is indeed a solution of the non-linear system of equations (5.20). [ |

Even though Proposition 5.11 guarantees the existence of a solution of the sys-
tem (5.20) also for the two penalized functions, it is currently not clear whether
this solution is always unique. In view of Proposition 5.6, any such solution must
be an isolated solution, however, this does not necessarily exclude multiple solu-
tions. In any case, the existence of such a solution is used here only for motiva-
tional purposes since our smoothing-type methods try to follow the corresponding
smoothing path
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5.3 Smoothing a System of Equations

where w denotes a (unique) solution of (5.20). However, the convergence theory
for our methods still works even if this system may not have a solution (since,

in any case, we follow this smoothing path only inexactly, i.e., we require only
inexact solutions of the systems (5.20).

41



5 Smoothing and Smoothing-Type Methods — Background

42



6 Jacobian Smoothing Methods

We are now in a position to state a Jacobian smoothing method for the solution of
a linear program’s optimality conditions (3.5). Basically, this method is a Newton-
type method for the solution of the system & x; ;s 0. However, instead of

solving the corresponding Newton equation
2 3

AX
PO xk, K.gk 8n £ P xk: k.gk
As

k. ck

at each iteration with a possibly singular or not existing Jacobian ®° xk; k;sk

we solve a linear system of the form
2 3

AX
P xk; K sk 8a & & x* Kk
As
for some K > 0 and the operator & introduced in (5.10) . This guarantees that
the Jacobian of & | exists; moreover, as we will see later, this matrix is always non-

singular. The search direction computed in this way is, generally, not a descent
direction for the natural merit function

1 1
¥ x; s : =®x: ;s dx ;s —kd x; ;s k2;
2 2
but it turns out to be a descent direction for the smoothed merit function
1 1
¥ X ;s : Eq) X; s '® x; :s Ekfb x: s k2 (6.1)

with K-
The precise algorithm is as follows:

Algorithm 6.1 (Jacobian Smoothing Method)

Step O (Initialization):
Choose%; : 2 0:1:">0;, 2 0;% 1 and w9 : x0; 0:50 2
R" RM™ R Set o: kdwlk o: 5>— o and set the iteration
counter k: 0.

Step 1 (Termination Criterion):
If kb wkK k " Stop.

Step 2 (Search Direction):
Compute a solution AwK  AxK;A K:Ask 2 R" RM R" of the linear
system

o wkaw  d wk: (6.2)
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6 Jacobian Smoothing Methods

Step 3 (Line Search): n o
Computety, max % < 0;1;2;::: such that
¥,owk gAawk v, wk 2 g ¥ wk (6.3)
and setwk 1: wk gAwk

Step 4 (Update of Smoothing Parameter):

If
¢ kd wk 1 & wk1 k)
ké wk 1 k  max K k ; (6.4)
then set
k1. kd wkK 1k (6.5)
and choose | ; such that
. k
2 ; — T : .
k 12 0;min 5 k15 (6.6)
Otherwise (i.e., if (6.4) is not satisfied) set ¢ 1: kand g 1: K.

Step5: Setk - k 1andgoto Step 1.

For a better understanding, let us add some comments on the algorithm. Step O
of Algorithm 6.1 is the initialization (with  being the constant from Lemma 5.5),
while Step 1 contains the termination criterion. Step 2 computes the Newton-type
search direction which is the main computational e [ark of Algorithm 6.1. Step 3
then calculates a step size by using an Armijo-type condition for the smoothed
merit function ¥ . Step 4 contains the updating rule for the smoothing param-
eter k. This updating rule looks somewhat complicated, however, it is exactly
the rule that is required for the theoretical analysis. More precisely, the current
updating rule for , will be used in order to establish a global convergence re-
sult for Algorithm 6.1, see Section 6.1 for further details. To guarantee fast local
convergence, however, one has to impose some further conditions on the choice
of k. Loosely speaking,  has to go to zero su [ciehtly fast. This issue will be
discussed in more detail in Section 6.2.

6.1 Global Convergence

Throughout this section, we assume that the termination parameter " is equal to
zero and that Algorithm 6.1 does not terminate in a finite number of iterations.
Under this assumption, we will show that Algorithm 6.1 is well-defined and glob-
ally convergent in the sense that any accumulation point of a sequence generated
by the Jacobian smoothing method is a solution of the optimality conditions (3.5).

We next state a technical inequality which, however, will turn out to be very
helpful in our subsequent analysis.

44



6.1 Global Convergence

Lemma 6.2 Let fwKg be a sequence generated by Algorithm 6.1, and let  be the
parameter defined in the initialization phase of Algorithm 6.1. Then

kb wk @, wkk  kd wKk
holds for all k 2 N.

Proof. Define the index set
1
K: fogL k2N k& wXk max ¢ 1; —kdwk &, wkKk (6.7)

It is necessary to distinguish two cases:

Case 1. k2 K:
We obtain from (6.6) and Lemma 5.5

kd wk @ wkk K = k Kk k®& wkk

Case 2. k2 K:
In this case, we have k 1, SO that we obtain from (6.4)

kb wk @, wkk koewk &, wKkk< k& wKk;

k 1

and this completes the proof. ]

The following result guarantees that the line search in Step 3 of Algorithm 6.1
is well-defined. Its proof is quite similar to the ones used in Chen, Qi, and Sun [14]
or Kanzow and Pieper [35] and is based on Lemma 6.2.

Proposition 6.3 At each iteration k, there exists a finite exponent “i such that the
step size t, % satisfies the line search criterion (6.3).

Proof. The continuous di Cerkntiability of ¢ implies that ¥ is also continu-
ously di [erkntiable and that r¥ wk @ wk Td wk . By the construction of

Algorithm 6.1 ®° wk Awk & wk . Taking into account Lemma 6.2 we have

¥,owk ogAawk ¥ wk o gr?, wk TAwk o
t® W T’ wk Aw o

t® , Wi To wk oty

td Wk Td , wk oty

2t Y wkK h i

tk<I>WkT<I>Wk (I)kwk o tyx

2t Y wkK 2t ¥ wkK o tx
2t 1 ¥ wK oty
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6 Jacobian Smoothing Methods

Since < % 1 <1 there exists a finite non-negative integer “x such

that (6.3) holds. ]

Propositions 5.6 and 6.3 together imply that Algorithm 6.1 is well-defined. For
the proof of its global convergence we will use the index set K from (6.7) again.

Our next result says that, although k& wX k does not necessarily decrease
monotonically (since our line search is based on k& , k), a possible increase
cannot be too dramatic.

Proposition 6.4 All iterates wX  xK; K;sk 2 R" RM R" generated by Algo-

rithm 6.1 belong to the level set
n o]

L: w kdwk 1 kd wO k

Proof. The proof is essentially the same as the ones given in [14] and [35] for the
corresponding results in that papers. Nevertheless, it is included here not only for
the sake of completeness, but also, because we will derive an important inequality
which will be used in the subsequent analysis.

Let us partition the(index set K from (6.7) into K fOg [ K1 [ K2, where

ke ., wk & wkk
Kq: k2K kK 1
and
N kd , , wk & wK k)
Ks : k2K Kk 1<
Assume that K consistsof kg 0 <ki; <k; < (note that K might be finite

or infinite). Let k 2 N be arbitrarily given and kj be the largest number in K such
that kj k. Then we have

kK K and o kd wM ok

in view of our updating rules in Step 4 of Algorithm 6.1. Using the line search
criterion (6.3), we have

ko wK k  kd . wki k:
Hence we obtain from Lemma 5.5
kb wk k k&  wrk kdwt & wkKk

ko wK k  kd wkK ¢, wk Kk

ko wk Kk K

ko wki Kk K; (6.8)
kd wki k ko . wki @ whi Kk K

kd wki k K; K;

K 2 K
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6.1 Global Convergence

Now, if J O, we have K o and K; o and therefore
kbwKkk o 2 o 1 kd wO k

from (6.8) and Step O of Algorithm 6.1. On the other hand, if j 1, we get from
Step 4 of Algorithm 6.1 that

and either

or, using Lemma 5.5 again,

wki ® wki k

1
J H .
Kj — k1 — Kj 1 E Ki 1 if kj 2 Ko:

Let us define
r: max =;

Then it follows from the definitions of o and ¢ that, forj 1, we have

1 1 o
Kj F 0 2—J—k¢) w” k (6.9)

and
K P to ri ke wlk (6.10)

Therefore, using (6.8) and r 1=2, we obtainforj 1

kb whkk ri? 571 ke wlk rila kd wP k: (6.11)

This shows that the inequality
ké wk k1 kd wP k

holds in any case. n

We are now in the position to prove our main global convergence result.

Theorem 6.5 Every accumulation point of a sequence fwkg f xK; X;sk g gen-
erated by Algorithm 6.1 is a solution of the optimality conditions (3.5).

47
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Proof. If the index set K is infinite, then the statement follows immediately
from (6.11). So consider the case where K is finite. Let k be the largest number
in K. Then it follows from our updating rules in Step 4 of Algorithm 6.1 that the
following relations hold for all k k:

S (6.12a)
¢ kb wKk (6.12b)
kd wk k> kb wK k>o0; (6.12¢)
ke W k>kd . wh @ wkk: (6.12d)

Let w be an accumulation point of fwKg and fwXg, be a subsequence con-
verging to w . Without loss of generality, we assume that k k for all k 2 L.
Let

t : liminfty
k2L

(note that we take the limes inferior on the subset L only). We now distinguish
two cases.

Casel:t =>0.
Since ty t =2 for all k 2 L su Lciehtly large, we then get from the line
search rule that

vowkt oy wk 2 t¥ wk t ¥ wk <o: (6.13)

On the other hand (since  is fixed), the merit function ¥ _ is bounded
from below (by zero) and fY _ wK gyon is @ monotonically decreasing

sequence. Hence fY _ wK g is convergent. In particular, we therefore
have

Y.owkt ¥ wk .10 fork-ra:
Hence, taking the limitk -1 1 for k 2 L in (6.13), we get
0 t¥Yw 0

and therefore ¥ w 0.

Case 2: t 0.
Since g>0forallk 2L, <I>°R w is non-singular by Proposition 5.6,

and fwkgio, -1 w , it follows from Lemma 3.14 that ®° w* is non-
singular with

kd? wk kg
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for all k 2 L su [ciehtly large and a suitable constant 1 > 0. This implies
kAwkk  k@? wk 1o wk k
1kd wk k
11 kd wP k
2

for all large enough k 2 L by Step 2 of Algorithm 6.1 and Proposition 6.4.
Hence we can assume without loss of generality that

fAWKgeo -1 Aw

for some vector Aw 2 R"™ R™ R". On the other hand, subsequencing
if necessary, we have ftygrko, -¥ 0. Therefore the step size t=% does not
satisfy the Armijo-like condition (6.3), i.e., we have

2 t—k‘I’Wk <¥_ wkK t—kAWk v owk
% k % Kk

for all k 2 L su [Cciehtly large. Using the Cauchy-Schwarz inequality and

Lemma 6.2, this implies

2 v wk
v _oowk Eawk oy wk
Kk % Kk

L%
%

ry wk TAwK

<

‘I’Ewk L Awk ‘I’iwk

@ % o F\I’QWK TAWKA
%
CDRWkabwk
0 ko T Ak k 1
Y. . w =AW Y _ w
@_k % - K r\I’Rwk TAWKA

%

2¥ wk o wkT dwk & wK

O\If k tkA Kk V4 k 1
ek W IN e W rvy . wk TAwkA
LY ]
%
2¥ wk 2 ¥ wk
O\Ij k tkA k ¥ k 1
R W g AW R W K T A kA
@ T l"\I’EW AW A

%

Taking the limit k -1 1 for k 2 L and using wK -1 w |, AwK -1 Aw |,
and tx -¥ 0 on this subsequence, we obtain from the continuous di Ler}
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entiability of ¥ . that

2 Yw

2¥ w 2 ¥Yw ry . w TAW ryY . w TAW
and therefore
¥ w 1 Y w

By our choice of in Step O of Algorithm 6.1, this implies ¥ w 0.

We therefore obtain in both cases that ¥ w 0 and therefore also ® w 0.
However, by (6.12c) and continuity, we have k& w k > 0. This contradiction
shows that K is infinite, so the proof is complete. [

Note that the previous proof showed the following: Whenever the sequence
fwKg generated by Algorithm 6.1 has an accumulation point, then the index set K
is infinite. Hence K can be finite only if fwXg is unbounded.

6.2 Rate of Convergence

The aim of this section is to prove local quadratic convergence of the Jacobian
smoothing method from Algorithm 6.1 under suitable assumptions. To this end,
we first establish the following result which is also of interest by its own.

Theorem 6.6 Letw X ; ;s beasolution of the optimality conditions (3.5)
and let ® be defined by the minimum or the Fischer-Burmeister function. Then the
following statements are equivalent

(1) The operator & is continuously di [erkntiable at w , and the Jacobian ®° w
is non-singular.

(2) w is the unique solution of the optimality conditions (3.5).

Proof.

@ D @
Let ® be continuously di [erentiableatw with®’ w  being non-singular
and let w X; ;8 . Then, by Lemma 3.15

kd w k ckw wk

for all w su [ciehtly close to w . This inequality shows that, locally, w
is the unique solution of the optimality conditions (3.5). However, since it
is easy to see that the solution set of (3.5) is convex, it follows that w is
the unique solution of (3.5) also from a global point of view.
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6.2 Rate of Convergence

2 -> (1):
By the Goldman-Tucker Theorem 3.12, the unique solution w of the op-
timality conditions (3.5) satisfies the strict complementarity condition

X; s >0 fori 1;:::;n.

This implies that ® is continuously di Cerkntiable at w .

In order to see that the Jacobian of ¢ is non-singular at the point w
we assume throughout this proof that = denotes the Fischer-Burmeister
function from (5.2). The proof for the minimum function from (5.3) is
very similar and therefore omitted here.

Consider the two index sets B and N defined in (3.7). By Lemma 3.13 (2)
we have

Note that the Jacobian of ® w has the form

2
0o AT |
®w 2A 0o 08
Da 0 Dp
with
. @~
Da: diag :::;@—a X; :Si ;
Dy : diag '::;@—b X;5S; i

The definitions of the index sets B and N together with the definition of
the Fischer-Burmeister function shows that

8
0 X; <0 ifi2B;
— X;,S; 1 4 . o (6.14a)
ea x. 2 s 2 -1 ifi2N;
1 1 8
0 S <1 ifi2B;
— X;;S; 1 49 . o (6.14b)
@b x; 2 5 2 0 ifi2N:
Then ®° x ; :s ¢ 0 for an appropriately partitioned vector g
gl:qg?;q92 implies
A'g? q2 o (6.15a)
Aql o (6.15b)
Da 8ds Db Bds  O; (6.15¢)
Da NON Db nON O (6.15d)
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where qu denotes the jBj-dimensional subvector of g 1 consisting of the
components qil i 2 B ;similarly, Dy g denotes the jBj jBj-diagonal
matrix containing the diagonal entries ajj i 2 B from the matrix Dg.
The other subvectors and submatrices occurring in the above formulas
are defined analogously.

Using (6.14a), (6.14b), (6.15c), and (6.15d), we obtain
g5 O and qy O (6.16)

We will use (6.16) in order to show that the vector

X t; t;s t : x; ;s tql;q?:;q°
is also a solution of the optimality conditions (3.5) for all t > 0 su 1
ciently small. This then impliesthatq q':;q2;q°3 0;0;0 since
X ; ;S was assumed to be the only solution of (3.5).

Obviously, the equations Ax t band AT t s t c are satis-
fied for any t > 0 in view of (6.15b) and (6.15a), respectively. Moreover,
X t Oands t O for all t > 0 su [ciehtly small follows from the
definitions of the index sets B and N together with (6.16). Finally, we

also have
x t st
1 T 3 1 T 3
Xg tdg S tag XN tan Sne tan 0 (617)
since X ; ;s satisfies the optimality conditions (3.5), X, 0O,sg O
and because of (6.16). This completes the proof. [

Theorem 6.6 can also be derived from a similar result by Burke and Xu [8],
where the authors consider a smoothing-type method for linear complementarity
problems based on the minimum function.

Theorem 6.6 can be interpreted in the following way: Assume that a sequence
f xX; K:sk g generated by Algorithm 6.1 converges to a solution x ; ;s sat-
isfying the strict complementarity condition x; s; >0 foralli 1;:::;n, so
that @ is continuously di [Cerkéntiable around this solution point. Then Theorem 6.6
states that the sequence of Jacobian matrices f&° xK; K;sk g converges to a sin-
gular matrix whenever x ; ;s is not the unique solution of (3.5).

In the remaining part of this section, we want to show that Algorithm 6.1 is
locally quadratically convergent if one of the two equivalent conditions from Theo-
rem 6.6 is satisfied and if the smoothing parameter | isupdated in an appropriate
way. The latter is made more precise in our next two results.

In order to motivate this result, assume that ¢ is continuously di Cerkntiable at
apoint x; ;s.Then®® x; ;s -¥ &% x; :s for -¥ 0. Hence, forany >0,
there exists a constant = > 0 such that

kd? x: s ®’ x: s k
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6.2 Rate of Convergence

forall 2 0; . However, the existence of such a constant = does not guarantee
that this ~ can be computed easily. On the other hand, our local rate of conver-
gence result assumes that such a constant is computable. Therefore, our next
two results give explicit values of this — provided that the di Cerence between the
matrices ®° x; ;s and ®° x; ;s is measured in the Frobenius norm.

The first of these two results deals with the case where ® and ® are defined
by the Fischer-Burmeister function and its smooth counterpart.

Lemma 6.7 Let ® and & be defined using the Fischer-Burmeister-type functions
(5.2) and (5.6), respectively. Furthermore, let x; ;s 2 R" R™ R" be any
vector with x? s?>0foralli 1;:::;n,andlet > 0 be arbitrarily given. Then
we have

kd' x: ;s ®’ x: s ke

forall 2 0; ,where  ~ Xx;s; =>0isgiven by
n o}

Proof. Since xi2 si2 > 0O for all i 1;:::;n, the mapping ¢ is continuously
di Cerkntiable at x; ;s . Hence its Jacobian ®° x; ;s existsat x; ;s , and an
elementary calculation shows that

k®® x; ;s @ x; ;s k2

X @’ @’ 2 X @’ @’ 2
_ da Xi, Si @761 Xi; Si _ @T Xi; Si @7b Xij; Si : (6.18)
11 i1
Throughout this proof, let us use the notation
xs: min fx? s?g>0:
i 1N
Then we obtain
07 s & s G A
@a 121 @a 1 °1 l)(_2 Sz 2 > |X2 8.2
1 1 1
1
. 1 1
xij@e——  a—= A
¢ s Xisi, 2 2
i ple L
! pp XS il XS 2 2
e 22 P
IXi)—p P 52
pi XS XS
.. 2
JXi)

XS
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6 Jacobian Smoothing Methods

fori 1;:::;n, where the first inequality follows from the fact that the function
fa: P p—t
- Pa Paa

is strictly decreasing for a > 0 (since ¥° a < 0 for a > 0), and the second inequal-
ity follows from

p p_ P-—

a b a b

forall a;b 0. In a similar way, we get

pP_
- Xj; Si e Xj; Si Jsi] 2
@b 1721 @b 17921 1 s
fori 1;:::;n. Using the definition of —, we therefore obtain forany 2 0;
andany i 2 fl;:::;ng
e~ 0~ 2 xf2 ?
— Xj;Sj ~— Xj;Sj
@a (R @a ir2i )2(5
2x2 72
2
XS
2x} 2 %

2n
and, similarly,
e Xi; Si e Xi; Si i —2:
@b @b 2n
Using (6.18), this implies
ko' x: ;s ®° x: :s kg
Y
— XisSi Xi, Sj Xi, Sj — Xi,Sj
i1 02 @ ., b @b
s
nz2 n?2
2n 2n
This completes the proof. [

The next result deals with the case where ® and ¢ are defined by the minimum
function and its smooth counterpart.
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6.2 Rate of Convergence

Lemma 6.8 Let the operators ® and & be defined using the minimum-type func-
tions (5.3) and (5.7), respectively. Furthermore, let x; ;s 2R"™ R™ R" be any
vector with x; sjforalli 1;:::;n,andlet = 0 be arbitrarily given. Then we
have

kd' x: s ®’ x: s ke

forall 2 0; ,where ~ x;s; =>0isgiven by
n o
min  X; Sj 2
_ i 1;::n
X;S; L

Proof. The proof is essentially the same as the one given for Lemma 6.7. In fact,
if we define

n o]
xs. min  X; sj2 >0;
i 10N
then the previous proof goes through with only minor modifications. [

Lemmas 6.7 and 6.8 enable us to state the following local convergence result
for Algorithm 6.1 if the smoothing parameter  is being updated su [ciehtly fast
in Step 4 of algorithm 6.1.

The next result is somewhat technical but will be required for the proof of the
main convergence theorem of this section. It was originally presented by Kanzow
and Pieper [35] for a similar Jacobian smoothing method for non-linear comple-
mentarity problems, but can be adapted to our situation without problems.

Lemma 6.9 Let fwKg R"™ R™ R" be a sequence generated by Algorithm 6.1.
Assume that fwKkg has an accumulation pointw , which is a solution of the optimal-
ity conditions (3.5). Then the index set K defined in (6.7) is infinite and £ (g -¥ O.

Proof. Assume that K is finite. Then it follows from (6.4) and the updating rules
for g in Step 4 for Algorithm 6.1 that there is a kg 2 N such that

k Ko

and
C )

kd k 1 d klk
kd wK 1 k> max K. W w K ko

for all k 2 N with k kg. However, this contradicts the fact that w is a solution

of the optimality conditions (3.5), so that we have & w 0. Hence K is an
infinite set. The updating rules for  therefore immediately imply that the whole
sequence T kg converges to O. [

The following result is also of a technical nature, but will be used to show the
local superlinear convergence rate. This result goes back to Chen, Qi and Sun [14].
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Lemma 6.10 If there exists a scalar

1 1 2 2 1#
12 5 S, (6.19)
such that
Yy VYwk 217wk (6.20)
forsome k2 Kandy 2 R™ M " then it holds that
Y.y Y, wk 2 vwk; (6.21)

where  is the smoothing parameter in the k-th step.

Proof. By the definitions of ¢ in Step O of Algorithm 6.1 and of the index set K
(cf. (6.7)) we have

0< i« Sk wk k; fork 2 K.
Hence from Lemma 5.5, forany y 2 R™ ™ " and k 2 K we have
kb, y k k& yk Ek<1>w'<k:
and
kd , wk k  kd wk k Ekcpwkk:
Using these two inequalities and (6.20), we obtain

1 1
Y.y Y, wk 5|<<1>kyk2 5|<<1>kw'<|<2

1 2 1 2
Z kdy k —kd wk k =1 — kd wKKk?
2 2 2 2
Yy E|<c1>ykkc1>w'<k '
2 2"
—Vv wk 1 — ¥ wk
4 4

Yy Ek<1>yk|<c1>wkk 1 ¥ wk
p

Yy 1 2!‘I’W"p 1 ¥ wk

Yy ‘I’Wkp 1 1 21 ¥ wkK

21 1 1 2% ¥ wk;

where the second and the last inequalities follow from (6.20).
Let us denote
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6.2 Rate of Convergence

To prove (6.21), it su [ced to show

LAl #
1 1 2 21
f 1 for 12 — D= 6.22
2 22 2 2 ( )
Recallthat 2 0;1 and 2 0;% 1 .With0O< 1 2 =2 <1, it
follows that
1 2 2 1 2 2 1 2
6.23
22 2 2 2 2 ( )

Notice that f is monotone increasing in 0;1=2 . Thus it is only necessary to show
that (6.22) holds at the interval’s lower boundary

1 2 2
22 2

1
2

By the definition of ¥ and (6.23) we have

-1 1 2 2 1 2
f I = — 1
2 22 2 2 2
l 1 2 _ 1 2
2 2 2 2
1
2 2
This completes the proof. [

Now we are in a position to state the main convergence result of this section.

Theorem 6.11 Letw : X ; ;s be the unique solution of the optimality con-
ditions (3.5), and assume that x ; ;s is an accumulation point of a sequence
f xX; K:sk g generated by Algorithm 6.1. Then the entire sequence f xK; K;sk g
convergesto X ; ;s . Moreover, if | is being updated such that
2 0O;min — ;K5
k 1 ; 5 kL, k
for all k su Lciehtly large, where " : xk 1.gk 1., 1 denotes the constant

defined in Lemma 6.7 or Lemma 6.8 (depending on whether we choose the Fischer-
Burmeister or the minimum function), then f xX; X;sK g converges quadratically
to X ; ;s

Proof. We begin by showing that the entire sequence fwKg converges to the
accumulation pointw .
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Consider a subsequence fwKg, of fwXg converging to w . Then it holds for
this subsequence that

kwkK T wkk  kw® AWK wKk
kAwKk
k @ wk & wkk
ko wk Tk kd wk k
C k& wK k;

where the last but second line follows from equation (6.2) and last line follows from
Lemma 3.14, since fk®? wX kg, is bounded, since by assumption fwKg, con-
verges to w it follows that fk& wK kg, -¥ 0 and therefore fkwk 1 wXkg_ -1
0. Taking into account that w is the unique solution of the optimality condi-
tions (3.5) it follows from Proposition 3.18 that the entire sequence fwKg con-
verges tow .
Next, we prove that sequence fwKg converges globally Q-linear and locally Q-
quadratic to the solution vector w . To this end, first note that, since the solution
X ; ;s of the optimality conditions (3.5) satisfies strict complementarity in
view of our assumptions as well as the Goldman-Tucker Theorem 3.12, it follows
that the two conditions xi2 si2 >0and x; sjforalli 1;:::;nusedinlLem-
mas 6.7 and 6.8, respectively, are satisfied in a su [ciehtly small neighborhood of
X ; ;s . Hencewe can apply these two results in our situation.
In view of Theorem 6.6, the equation operator @ is continuously di Lerkntiable
at w X ; ;s .
By the proof of Lemma 6.9 we have that the index set K is infinite.
By Lemmas 6.7 and 6.8 we have
ko® wk @0 wk ke for all k 2 K;

k

where is the constant from Lemma 6.7 and 6.8, depending on the NCP-function
which is used. By construction of Algorithm 6.1 we can express this as

ke wkK  ®° wK ke k forallk 2 K.

k

Proposition 6.4 yields f g -¥ O for k -1 1. With Proposition 3.14 there exists a
constant kd® wkK 1k M. With the update rule of Algorithm 6.1 we have

kwk  AwK w k kwkK w <I>°k wk 1o wk k

k<I>0k wk 1 <I>°k wk wk  w dwk dw k
kd® wk 1k k@ wk % wk wk w k
kd® wk wk w dPwk dw k
M kkwk w K
kd? wk wk  w dwk dw k
(6.24)
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Lemma 3.16 then yields

kd? wk wk w dwk odw k okwK w k fork-T 1andk2K
and hence
kwX AwK w k okwK w k fork-! 1 andk2K. (6.25)

Furthermore, sincew is a solution of the optimality conditions (3.5), fwKg -1 w
and ®® w is non-singular, we also get from Lemma 3.17

kdé wX AwK k o kd wK k fork -¥ 1 and k 2 K. (6.26)
Let ¥ 11221 %  Then (6.26) implies that th i
et ¥ max 3 T - en (6.26) implies that there exists an

index k 2 K such that

¥ wk AwkK ¥ wk 2 ¥ wk; (6.27)

for all k 2 K with k k. By Lemma 6.10 we therefore have for any k k and
k 2K,

¥, wk Awk P wK 2 ¥ wk;
that is, the full step size tx 1 will eventually be accepted for all k kand k 2 K.
In particular, wX 1 wX AwK and from (6.27) and the definition of ¥ we obtain
— p — —
kb w1k 1 29kd wkk ké wkKk o

which implies that k 12K. Repeating the above process, we may prove that
forallk kwe have k 2 Kand wk 1wk AwK. Then by using (6.25), we
proved that fwKg converges to w superlinearly. Since the Jacobian ®° is locally
Lipschitzian, we obtain from Lemma 3.16 (2)

kd® wk wk w dwk dw k OkwK w K?:
Since @ is locally Lipschitzian, we further obtain
k kd wkk kdwk dw k Okwk wk:
Hence the Q-quadratic convergence of fwXgtow follows from (6.24), using sim-

ilar arguments as for the proof of the local Q-superlinear convergence. [

There is a recent result by Tseng [55] which indicates that the search direction
used in the Jacobian smoothing method has very good local properties. In fact,
Tseng [55] shows that it gives a superlinear rate of convergence even if the solution
set of the optimality conditions (3.5) is not a singleton. While this result cannot
be applied to the Jacobian smoothing framework from Algorithm 6.1, it will be
examined in detail in Chapter 8.
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6.3 Implementation Details: The Enhanced Jacobian Smoothing
Method

6.3.1 Parameters and Initial Point

When implementing the Jacobian smoothing method from algorithm 6.1, it is quite
helpful to observe that the linear systems we have to solve at each iteration have
exactly the same structure as those in primal-dual interior-point methods. Hence
it is possible to use the linear algebra subroutines from existing interior-point
codes. In particular the code LIPSOL by Zhang [57, 58] was used. This is a MATLAB
program which, however, calls a FORTRAN sparse Cholesky code by Ng and Pey-
ton [47] in order to solve the linear system of equations at each iteration. Note that
it is not necessary to solve the linear system (6.2) directly; instead, one can easily
use the special structure of this system in order to see that one has to solve only
a positive definite system of dimension m at each iteration. LIPSOL also uses the
minimum-degree ordering code by Liu [39]. Dense column handling is performed
by using the Sherman-Morrison-Woodbury approach or by applying a precondi-
tioned conjugate gradient method. (The book of George and Liu [26] gives further
information on sparse Cholesky algorithms. The paper [27] by the same authors
gives an overview of minimum degree ordering and its variants.)

Obviously, is has been necessary to completely rewrite the main program in LIP-
SOL in order to implement the Jacobian smoothing method. The implementation
of Algorithm 6.1 uses the following parameters:

0:99995; 0:31; % 0:9; 10 4

The definitions of ® and & are based on the minimum function (5.3) and its
smooth counterpart (5.7), respectively.

6.3.2 Termination criteria

The termination criterion used in the code is
kd wk kK " with " 10 3;

This is a much weaker condition than what is typically used in corresponding com-
plementarity software, where the Jacobian smoothing idea originated. However,
due to possible singularity problems (cf. the discussion in Section 6.2), it seems
that one should not use a too strong termination criterion. Moreover, according to
experiments, the approximate solutions found by using the above stopping rule
seem to have the same accuracy as those provided by interior-point solvers. Nev-
ertheless, it is important to understand that a suitable stopping criterion for the
Jacobian smoothing method is a non-trivial task since the iterates are no longer
guaranteed to be feasible.

The algorithm also terminates if no solution has been computed after 300
iterations. As an emergency measure two further termination criteria, based on
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6.3 Implementation Details: The Enhanced Jacobian Smoothing Method

the step length, have been introduced: The program is stopped immediately if the
step length is smaller that 10 15 or if the step length has been smaller than 10 8
for eight successive iterations.

6.3.3 Initial Point

0.<0

To lessen the impact of possible infeasible iterates, the starting point x%;
was chosen in such a way that at least the linear equations

S

AX b and AT s ¢

are satisfied at X; ;s x9; 0:50 | it follows that these linear equations are

satisfied at all iterates x; ;s xX: K:sk  Consequently, the only infeasibility

which can occur is in the complementarity conditions
Xi 0; s 0; Xjsij Ofori 1;:::;n.
The precise way the initial point is computed is as follows:
(1) Solve AATy b using a sparse Cholesky code in order to compute y° 2 R™,
(2) Set x°: ATy (hence we have Ax® b).
(3) Define ©: 0ands®: c (sothatwe also have AT 0 sO0 ).

This may not be the best choice for a starting point to be used within the Jacobian
smoothing method, but it seems to be a reasonable and relatively simple choice.
The newer and more advanced predictor-corrector methods described in Chapter 8
feature a di Cerknt initial point.

6.3.4 Non-Monotone Line Search, Significant Reductions and Watchdog
Strategy

The Jacobian smoothing method described in Algorithm 6.1 has been changed
in some respects to improve its numerical performance. The modifications are
described in the following sections have had a great impact on the overall behav-
ior of the algorithm, as some problems could be solved, which had posed great
problems so far.

Non-Monotone Line Search

For the implementation of the Jacobian smoothing method from Algorithm 6.1
the line search in Step 3 has been augmented by a non-monotone step length
algorithm, which is activated for the first time after mmono 30 iterations. This
non-monotone step length algorithm computes the maximum value of ¥ , of the
my preceding iterations, but considers no more than the last m 10 iterations.
These numbers are the result of extensive experimentation with the software
and the Netlib test set. Even slight modifications have shown great increases in
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the number of iterations required to solve many problems, even though some of
the test problems could be solved very fast, indeed.

Algorithm 6.1 was modified as follows. The initialization phase was augmented
in the following way:

Step O (Initialization):
Choose %; : 2 0;1:">0; 2 O;%l and w9 :  x0; 0:50 2
R" RM™ R" Set o: kd wl k; ¢: 5~ o and set the iteration counter
k : 0. Also set the line search control counters mmono : 30, m: 10,
mwp: 0,and mgg: O.

The last two counters myp and mgg are required to take the watchdog strategy and
the significant reduction test into account. These features are described below.
Additionally, Step 3 was changed to incorporate the non-monotone line search:

Step 3 (Non-Monotone Ling,Search): o
Computety, max % < 0;1;2;::: such that
¥, Wk hAwk max ¥, wkJ 2 ¥ wk:
0 j mg

If t,, < 10 15: Stop. Otherwise, set

8

<0; ifKk Mmono OrMwp 60rmsg 6
Mg 1: . . .
-minfmy  1;mg; otherwise:

Setmwp -mwp 1, mMsg - mgsg 1, wk 1. wk tkAWk.

Significant reductions

The monotone line search is also used for 6 iterations after a significant reduction
of ¥ occured, in the sense that

¥ wk tkAwk 02 ¥ wk:

If such a reduction is encountered, the counter mgg is reset to 0 and the next 6
steps are performed using a monotone line search.

All in all, it appears that the Jacobian smoothing method performs better if the
number of iterations in which the non-monotone line search algorithm is employed
is rather small. It still has to be noted that a little leeway in the computation of
the step length by allowing some non-monotone line searches does improve the
results over the use of a strictly monotone step length computation.

Watchdog

The enhanced Jacobian smoothing method also contains a so-called watchdog fea-
ture. If, after at least 10 iterations, the di [erknce between the smallest residual
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of the last myp 10 iterations and the current residual is too small in the sense
that

k min & wkJl & wkk<10?

the algorithm returns to the iterate which generated the smallest residual. After an
activation of the watchdog strategy, the counter myyp is reset to O and a monotone
line search is performed for the next 6 iterations. After every activation of the
watchdog, the maximum number of iterations to take into account in order to

find the best previous iterate is increased by 4, i.e., we set m&* - my3gy 4.

Enhanced Jacobian Smoothing Method
For the reader’s convenience, the enhanced algorithm is stated completely again.

Algorithm 6.12 (Enhanced Jacobian Smoothing Method)

Step O (Initialization):
Choose%; : 2 0:1:">0;, 2 0;%1 and w9 : x0; 0:50 2
R"™ RM™ R" Set o: k& wl k; o: 5 oand setthe iteration counter

2
k : 0. Also set the line search control counters Mmono : 30, m: 10,

mwp: 0, myy’ 10,and mgg: O.

Step 1 (Termination Criteria):
Stop if any one of the following criteria is satisfied:
kd wk k
tj <10 8forallj k;::i;k 7,
k > 300.
Step 2 (Search Direction):

Compute a solution AwK  AxK:A K:Ask 2 R RM  R" of the linear

system
<I>°k wk Aw & wk :

Step 3 (Non-Monotone Line Search):

Line Search: n o
Computety, max % < 0;1;2;::: such that
¥, Wk hAwk max ¥, wkJ 2 ¥ wk:
0 J mg

If t, < 10 1°: Stop.
Otherwise, set
8
ormsg 6
"minfmy  1;mg; otherwise:
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6 Jacobian Smoothing Methods

Descent Test:
If

v wkK tkAWk 02 ¥ wk

set msr O, otherwise increment the counter msg - msg 1.

Watchdog:
Ifk 10and
k min & wkJ & wKk<108
J Lummpde
setwk 11 argming p..pmack® wk I ko Set mE - mEE

4, reset the counter myp to 0, and go to Step 4.

Update of Iterate:
SetwKk 1: wkK tAwK and increment the counter myp by 1.

Step 4 (Update of Smoothing Parameter):

If
C k1 k 1
K 1 kd w ®  w k™
kd w k max K ; (6.28)

then set
k1. k& wkK 1k

and choose K 1 such that

. k
2 0O;min — T
k 1 > k 1 >

Otherwise (i.e. if (6.28) is not satisfied) set k 1: kand g 1: K-

Step 5. Setk - k 1andgoto Step 1.

6.4 Numerical Results for the Enhanced Jabocian Smoothing Method
for the Netlib Test Set

The algorithm was tested on all problems from the Netlib collection. All test runs
were made on a Sun Enterprise 450 using UltraSPARC Il CPUs. Table 6.1 presents
the results of the test runs. Its columns have the following meaning:

Problem: Name of the test example in the Netlib collection
m: Number of rows after preprocessing

n: Number of columns after preprocessing

k: Number of iterations until termination

WD: Number of times the watchdog was activated

ké wt k: Value of kb wT k at the final iterate wT

Primal Objective: Value of the primal objective function at the final iterate wT

64



6.4 Numerical Results for the Netlib Test Problems

Table 6.1: Numerical results of the enhanced Jacobian smoothing method 6.12

Problem m n k WD kd wf k Primal Objective
25fv47 798 1854 132 2 8.1618e 04 5.5018499123e+03
80bau3b 2235 11516 143 2 4.7837e 04 9.8722419241e+05
adlittle 55 137 18 0 1.1090e 05 2.2549496316e+05
afiro 27 51 8 0 4.8102e 07 4.6475314311e+02
agg 488 615 56 0O 4.0555e 04 3.5991767287e+07
agg2 516 758 33 0 7.7409 04 2.0239252356e+07
agg3 516 758 31 0 2.1183e 07 1.0312115935e+07
bandm 269 436 60 1 7.6182e 04 1.5862797925e+02
beaconfd 148 270 31 0 1.8352e 06 3.3592485807e+04
blend 74 114 27 0 4.9101e 05 3.0812150098e+01
bnil 632 1576 113 2 5.1622e 04 1.9776295614e+03
bni2 2268 4430 170 3 7.5310e 04 1.8112372371e+03
boeingl 347 722 81 1 1.1542e 04 3.3521356138e+02
boeing2 140 279 37 0 4.1229 05 3.1501872799e+02
bore3d 199 300 43 0O 6.4748e 05 1.3730803943e+03
brandy 149 259 47 0 3.0906e 04 1.5185098971e+03
capri 267 476 43 0 1.2333e 04 2.6900129008e+03
cycle 1801 3305 281 4 2.4260e 04 5.2249279076e+00
czprob 737 3141 60 0 1.8048e 04 2.1851966989e+06
d2q06c¢c 2171 5831 =>300 maximum number of iterations reached
d6cube 404 6184 8 stagnating step length

degen2 444 757 27 0 6.0299e 05 1.4351780000e+03
degen3 1503 2604 29 0 2.7391e 04 9.8729399966e+02
dflool 6071 12230 =300 maximum number of iterations reached
€226 220 469 69 0 4.7034e 04 1.8751928767e+01
etamacro 357 692 79 1 5.5534e 04 7.5571519859e+02
[TH8DO 501 1005 71 0O 7.6383e 04 5.5567956522e+05
finnis 492 1014 52 0 3.0823e 04 1.7279106560e+05
fitld 24 1049 227 4 1.7997e 06 9.1463780924e+03
fitlp 627 1677 9 stagnating step length

fitad 25 10524 203 3 4.2126e 04 6.8464293294e+04
fit2p 3000 13525 9 stagnating step length

forplan 135 463 44 0 5.0031e 04 6.6421884104e+02
ganges 1137 1534 54 0 5.3578e 04 1.0958573613e+05
greenbea 2318 5424 261 4 2.8941e 04 7.2462472670e+07
greenbeb 2317 5415 260 4 9.6754e 04 4.3022602105e+06
grow? 140 301 156 2 2.2648e 06 4.7787811815e+07
growl5 300 645 232 3 1.7870e 04 1.0687094129e+08
grow22 440 946 250 3 1.5337e 04 1.6083433648e+08
israel 174 316 162 3 1.8494e 04 8.9664482186e+05
kb2 43 68 =300 maximum number of iterations reached
lotfi 151 364 185 1 9.2147e 05 2.5264706074e+01
maros 835 1921 =300 maximum number of iterations reached
maros-r7 3136 9408 53 0 5.1758e 04 1.4971851665e+06
modszkl 686 1622 145 2 9.4655e 04 3.2061972915e+02
nesm 654 2922 109 1 6.5163e 05 1.4076036488e+07
perold 625 1530 187 3 1.4893e 04 9.3804849737e+03
pilot 1441 4657 =300 maximum number of iterations reached
pilot4 402 1173 =300 maximum number of iterations reached
pilot87 2030 6460 =300 maximum number of iterations reached
pilotja 924 2044 281 4 8.1970e 04 6.1129835116e+03
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6 Jacobian Smoothing Methods

Table 6.1: Numerical results of the enhanced Jacobian smoothing method 6.12 (continued)

Problem m n k WD kd wfk Primal Objective
pilotnov 951 2242 155 3 5.0075e 04 4.4972761882e+03
pilotwe 722 2930 =300 maximum number of iterations reached
recipe 85 177 13 0 9.8645e 05 2.6661599983e+02
sc105 105 163 39 0 5.718% 04 5.2202061282e+01
sc205 205 317 82 1 3.4097e 04 5.2202061208e+01
sc50a 49 77 20 0O 8.3305e 05 6.4575077292e+01
sc50b 48 76 27 0 9.4160e 09 7.0000000000e+01
scagr25 471 671 99 1 2.5476e 04 1.4753433061e+07
scagr7 129 185 37 0 9.5727e 07 2.3313898243e+06
scfxml 322 592 50 0 4.6251e 04 1.8416759030e+04
scfxm?2 644 1184 58 0 4.7686e 04 3.6660261565e+04
scfxm3 966 1776 51 0 3.1900e 04 5.4901254549e+04
scorpion 375 453 87 1 7.8545e 04 1.8781248227e+03
scrs8 485 1270 139 3 2.4730e 04 9.0429695385e+02
scsdl 77 760 10 0 3.4190e 04 8.6666666747e+00
scsd6 147 1350 13 0O 4.2885e 04 5.0500000078e+01
scsd8 397 2750 20 0 9.4377e 04 9.0500000003e+02
sctapl 300 660 39 0 3.9728e 04 1.4122500002e+03
sctap2 1090 2500 32 0 2.4227e 04 1.7248071429e+03
sctap3 1480 3340 29 0O 7.0305e 04 1.4240000000e+03
seba 515 1036 9 stagnating step length

sharelb 112 248 162 2 1.2334e 04 7.6589318579e+04
share2b 96 162 34 0 2.7101e 05 4.1573224073e+02
shell 496 1487 48 0 9.7677e 07 1.2088253460e+09
ship04l 356 2162 47 0 6.3126e 07 1.7933245380e+06
ship04s 268 1414 43 0 2.6374e 06 1.7987147004e+06
ship08l 688 4339 113 2 4.4860e 05 1.9090552114e+06
ship08s 416 2171 139 3 2.1824e 04 1.9200982105e+06
ship12l 838 5329 54 0O 1.3988e 04 1.4701879193e+06
ship12s 466 2293 108 2 1.6138e 04 1.4892361344e+06
sierra 1222 2715 42 0 1.5335e 04 1.5394359964e+07
stair 356 538 92 1 2.0571e 04 2.5126695120e+02
standata 359 1258 12 0 1.7527e 04 1.2576994995e+03
standgub 361 1366 23 0 3.5092e 06 1.2576995000e+03
standmps 467 1258 36 0 2.4049% 04 1.4060175000e+03
stocforl 109 157 51 0 8.2467e 10 4.1131976219e+04
stocfor2 2157 3045 135 2 4.7732e 04 3.9024408539¢e+04
stocfor3 16675 23541 =300 maximum number of iterations reached
truss 1000 8806 34 0 4.4329% 04 4.5881584719e+05
tul1 292 617 40 0 5.8251e 04 2.9549410844e 01
vtpbase 194 325 38 0 1.1010e 05 1.2983146246e+05
woodlp 244 2595 16 0 6.7710e 05 1.4429024111e+00
woodw 1098 8418 43 1 1.5940e 04 1.3044763327e+00

The results in Table 6.1 are not too bad, even though the software fails to solve
13 of the 96 problems in the test suite. Although interior-point software has a bet-
ter behavior on most of these problems, the reader should take into account that
almost all current implementations of interior-point methods for linear programs
are predictor-corrector methods, requiring the solution of two linear systems at
each iteration, whereas the enhanced Jacobian smoothing method requires only
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6.5 Comparison with Interior-Point Methods

one system to be solved. Moreover, the best choice for the parameters in Algo-
rithm 6.1 (especially the values for and ) is not clear, whereas interior-point
methods are well-understood in the meantime.

Finally, of those problems for which the algorithm terminated with an error,
there is a number of problems which can be solved with di [Cerknt parameter set-
tings. Among these are kb2, pilot4, and seba. For some problems the step
length tx became too small (< 10 1°) or had been very small (< 10 8) for 8 suc-
cessive iterations. Note again that most of these problems can be solved by using
di Cerknt parameter settings.

It is interesting to note that neither the enhanced Jacobian smoothing method,
nor the original LIPSOL code were able to solve the problem df1001, at least not on
the machine on which the computations were performed. One code which could
solve the problem is PCx (requiring 71 iterations and almost three times the CPU-
time necessary to solve all remaining problems in the test set). PCx is another
interior-point solver based on Mehrotra’s predictor-corrector algorithm. Results
for the complete Netlib set of test cases are given in Table 8.9 on page 146.

It is notable that some problems, such as cycle, greenbea, greenbeb, fitld,
and pilotja can be solved after a very large number of iterations, with a to-
tal of 4 watchdog activations each. This is a rather large number of activations,
since most other problems required at most 2 of the partial restarts. These above
mentioned problems are apparently very hard to solve for the enhanced Jacobian
smoothing method 6.1, not considering the failures, of course. Another triple of
test examples which could be solved only slowly are the three grow*-examples.
Most other algorithms presented in the following chapters exhibit great problems
in solving these three test cases. Other problems, such asafiro, adlittle, scsdl,
scsd8, scsd8, and woodlp seem to be rather simple and could be solve in less than
20 iterations.

Another fact to note is that the failures related to a too small stagnating step
length occur typically quite early. None of the problems which failed with this
error (d6cube, Fitlp, Fit2p, and seba) did so after more than 9 iterations. This
indicates that the step length had been very small, i.e. less than 10 & from the very
beginning on, since the algorithm terminates after 8 iterations with t,c < 10 &,

Considering the iteration counts in table 6.1, it appears that Algorithm 6.1
performs quite well on most small problems, whereas larger test examples, i.e.,
those with m 600 still pose a problem.

6.5 Comparison with Interior-Point Methods

The Jacobian smoothing method 6.1 is closely related to interior-point methods
(primal-dual path-following methods, to be more precise). To see this, recall that
interior-point methods typically perturb the complementarity conditions within
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the optimality conditions (3.5) in order to deal with a system of the form

AT s ¢
Ax b (6.29)
Xi>0; si>0; xijsi 2 i 1:::::n

(here we use 2 instead of just for technical reasons). Interior-point methods
then apply some kind of Newton’s method to the equations within these perturbed
optimality conditions and deal with the non-negativity of the x- and s-variables
separately by a suitable line search. By reducing in an appropriate way, interior-
point methods have a strong theoretical background and an outstanding numerical
performance, see, e.g., the book by Wright [56] for further details.

The relation to the Jacobian smoothing method comes from an observation
made by Kanzow [32]: The perturbed optimality conditions (5.21) can be rewritten
as

Xj; Si o, 1 1;:::;nm;
where * still denotes either one of the Chen-Harker-Kanzow-Smale smoothing
function or the smoothed Fischer-Burmeister function defined in (5.7) and (5.6),
respectively. Hence the system (6.29) is completely equivalent to the non-linear
system of equations

P x; ;s 0 (6.30)

which does not contain any non-negativity constraints (at least not explicitly) and
which is the basis of the Algorithm 6.1.

Both the theoretical background and the numerical performance of modern
interior-point methods are currently stronger than those of the Jacobian smooth-
ing method presented here. However, interior-point methods were not born in
just one day, and Algorithm 6.1 represents the first step in the area of Jacobian
smoothing methods, at least as far as linear programs are concerned. In fact,
Jacobian smoothing methods have some definite advantages if compared with
interior-point methods. In particular, the following points are worth being men-
tioned:

The Newton-type search direction computed by using the system (6.30) in-
cludes explicitly the information that the x- and s-variables should stay
non-negative, whereas the Newton-type direction computed by interior-point
methods completely disregards this point. Therefore it stands to reason that
from a local point of view, the search direction from (6.2) is actually the bet-
ter one. In fact, in view of the numerical experience, the Jacobian smoothing
method seems to converge locally faster than interior-point methods.
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6.5 Comparison with Interior-Point Methods

The system (6.30) is an unconstrained reformulation of the perturbed opti-
mality conditions (6.29). Hence it is possible to allow negative components
in the iterates. In particular, there is no further restriction on the step length,
in contrast to interior-point methods.

Since, as mentioned above, the iterates are not required to belong to the
positive orthant, it is relatively easy to combine Jacobian smoothing methods
with an active set strategy. This cannot be done in an easy way by interior-
point methods since basically any active set method will project at least some
components on the boundary of the positive orthant. If this procedure does
not give the solution of the linear program, interior-point methods cannot do
much with the information provided by such a strategy, whereas Jacobian
smoothing methods can start easily from this projected point (even if the
projected point is not a solution of the linear program, it might be much
closer to a solution and therefore be an attractive point).

Finally, if one solves a sequence of similar linear programs (like in branch-
and-bound techniques for the solution of integer or mixed integer programs),
one typically wants to use the solution of the previous problem as a starting
point for the next one. This, however, is usually not possible for interior-
point methods because the solution of the previous problem does, in general,
not belong to the positive orthant of the next problem, whereas the Jacobian
smoothing method can easily deal with this situation since we can start at
an arbitrary point. In fact, this might even be an advantage if compared to
simplex-type schemes.

Since the results presented above seem quite promising for a first implemen-
tation of a relatively new approach, further enhancements have been made. Chief
among those is the combination of the Jacobian smoothing idea with the approach
of regular smoothing methods.

In the following chapter, two regular smoothing methods are described in de-
tail. No numerical results are presented, as these smoothing algorithms only serve
as a vehicle for a combination of the Jacobian smoothing idea with the smoothing
methods. In Chapter 8 the two smoothing methods from Chapter 7 are merged
with the Jacobian smoothing method presented in this chapter to form advanced
predictor-corrector algorithms.
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7 Smoothing Methods

This chapter covers so-called smoothing methods. These methods are closely re-
lated to the Jacobian smoothing method discussed in Chapter 6, since they are also
based on a perturbed reformulation of the linear program’s KKT conditions (3.5)
into a system of equations. Newton’s method is then applied to the resulting
system.

The main di Cerknce between Jacobian smoothing and regular smoothing meth-
ods is that a di[erent search direction is computed. The Jacobian smoothing
method presented in Algorithm 6.1 calculates the search direction Aw as a solu-
tion of the following system:

P wAw D w: (7.1)

The smoothing methods presented in this chapter use the following equation to
compute their search direction:

' w Aw & w:

Note that in this case both sides are perturbed, as opposed to only the left-hand
side as in (7.1).

This chapter discusses the basics of these regular smoothing methods. In
Chapter 8 regular smoothing and Jacobian smoothing methods will be combined
into a single predictor-corrector-type algorithm. Di [erent approaches are exam-
ined.

7.1 A Globally Convergent Smoothing Method with a Smoothing
Parameter

In this section we will once again examine the common KKT conditions (3.5) of the
primal and dual linear programs (3.1) and (3.2) respectively.

We employ the NPC-functions defined in example 5.2 and the equation opera-
tors® and & from (5.1) and (5.10), respectively, to formulate these conditions as
a (non-smooth) system of equations.

7.1.1 Description of Algorithm

We now state a model smoothing algorithm and examine its global convergence
properties.

In this section let = be one of the NCP-functions from example 5.2 and ~*
the corresponding smoothing function from example 5.3. Let ® and & be the
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mappings defined in (5.1) and (5.10) respectively, which of course depend on the
choice of the NCP-function ~

Based on the discussion in Section 5.3, following Corollary 5.9, which is appli-
cable for this method as well, the non-linear system

d w 0

has asolutionw : x ; ;s forall > 0 under suitable assumptions.

In case of the minimum- or Fischer-Burmeister function this smoothing path
coincides with the central path defined in the field of interior-point methods, see
Theorem 5.10, even though a di Cerent parameterization is used. This is not the
case for the two penalized NCP- and smoothing functions.

Smoothing methods try to follow this path numerically. This requires the def-
inition of a suitable neighborhood of the smoothing path. A number of di [erknt
neighborhoods is common, see, e.g. [4, 5, 8]. Here we will use the neighborhood

N o fw X; ;8 jk& w k fora =>0g (7.2)
with > 0. The notation N is standard both in interior-point and smoothing
literature.

If we set
‘I’W:Efbwtbw Ek(b w k<; (7.3)

again as in (6.1), we are able to formulate a smoothing algorithm. This algorithm
is a simplified form of the one presented in [20]. The algorithm used in this paper
will be described in greater detail in Section 8.1.

Algorithm 7.1 (Smoothing Method)

Step O (Initialization):
Choose w?° x0; 0.0 2 R RM RN 4 >0, kd , wl k= o,
%; 2 0;1," >0 and set the iteration counter k: O.

Step 1 (Termination Criterion):
If k& wk k <": Stop.

Step 2 (Search Direction):
Compute a solution AwK  AxK:A K:Ask 2 R" RM  R" of the linear

system
" wkaAaw b, wk: (7.4)
Step 3 (Line Search): n o
Compute astep lengthtx, max % < 0;1;2:;::: such that
¥ owk gAawk v, wk ter?  wk TAawK (7.5)
and setwk 1: wk gAwk
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Step 4 (Update of Smoothing Parameter): o
Compute , max % < 0;1;2;::: ,such that
kb, ., wKk1k 1« « (7.6)

andset  1: 1 K k-
Step 5: Setk - k 1 andgo to Step 1.

Algorithm 7.1 is fairly straightforward. After the initialization phase and a test
if the solution has been reached, one step of Newton’s method is used to solve
¢, w 0 with a fixed g in Step 2. Proposition 5.6 guarantees that the linear
system (7.4) is always uniquely solvable as long as the matrix A has full rank.
Afterwards, a new step size tx > 0 is computed by employing the Armijo’s rule
for ¥ ,, which allows us to define new iterates. Finally, in Step 4 the smoothing
parameter | is decreased with respect to the requirement that the next iterate
should reside in the neighborhood N

For the formal analysis of Algorithm 7.1’s convergence properties, we will as-
sume that

kd , wk k>0 forallk2N

holds. This results in the fact that no iterate wK lies directly on the smoothing
path. Numerically, this is highly improbable; theoretically this assumption can be
made without loss of generality, since Algorithm 7.1 can be adapted so that in the
case of kd wK k 0 the algorithm skips Steps 2 and 3 and proceeds directly
to Step 4. This way only the reduction of the smoothing parameter is performed
and no actual step is taken. The following results remain true if this modification
is made.

7.1.2 Convergence Analysis
Well-Definedness of Algorithm 7.1

We first show that the Algorithm 7.1 is well-defined.

Proposition 7.2 Under the assumptions made above, the step size tx computed in
Step 3 of Algorithm 7.1 is uniquely defined.

Proof. For later reference a short discussion on the way the step size tyx is com-
puted in Step 3 is included here. To this end, recall that the gradient of ¥ wk
isgivenby rY , wk @ wk T  wk:

With Proposition 5.6 and the full rank assumption for the matrix A, the linear
system (7.4) has a unique solution

AwK <I>°k wk 1o wk:
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with rv, wk  @° wk Td  wk and kd , wk k 0 forall k 2 N it follows
that

k
kd | wk K2 (7.7)
<0:

rY, wk Tawk o wk Tl wke® wk 1o wk

Therefore, Armijo’s rule in Step 3 of Algorithm 7.1 is well-defined. [ |

The next result shows that all iterates wX generated by Algorithm 7.1 belong
to the neighborhood N defined in (7.2) of the smoothing path.

Proposition 7.3 The iterates wK generated by Algorithm 7.1 satisfy k® K wkK k
k for all Kk 2 N.

Proof. Taking into account the definition of the merit function ¥ w : 1=2
k® w k2, equation (7.7) allows us to rewrite (7.5) into the following form:

¥,owKk gawk ¥, owKk o o2 P, WK 1 2 ¥, wRe
withwk 1wk tAwKand ¥, wX >0 it follows that

kb, wk 1k ko, wh tAwK k<kd  wk k (7.8)

k
forall k 2 N.

We now prove by induction on k that k® wkK k k holds and that the
computation of  in Step 4 of Algorithm 7.1 is a finite process.

For k O the choice of in Step O guarantees ko , w? k 0. From (7.8) it
follows that

ke , wl k< o

hence a > 0 exists for which (7.6) holds, since & is continuous in
Let kd wk k k be true forak Oandlet i > 0 with (7.6). Similar to
the case k O it follows from (7.8) that

kb, wh k<
Therefore, due to continuity of & in |, there exists a positive scalar i 1 such
that (7.6) holds. Furthermore, the definition of ;1 in Step 4 immediately implies

the inequality

kP wklk< 1

k1

This completes the proof. [ |

The combination of Propositions 7.2 and 7.3 shows that Algorithm 7.1 is well-
defined.
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Before starting the convergence analysis, we close this subsection by noting
another simple property of Algorithm 7.1: If one chooses a starting point which
satisfies the linear equations AT s ¢ and Ax b, Newton’s method then
guarantees that the linear equations are also satisfied for all subsequent iterations.
This simple induction argument allows us to state the following lemma.

Lemma 7.4 Assume that the starting point w° x%; 0:s0 2 R RM RN
satisfies the linear equations AT © s ¢ and Ax® b. Then all iterates wk
xK: k.sK generated by Algorithm 7.1 satisfy these equations as well, i. e., we have

AT kK sk cand AxK bforallk2N.

Note that it is quite easy to construct points w®  x%; ©;s0 satisfying the
assumptions from Lemma 7.4 since our starting points are not assumed to have
positive components x° and s° (in contrast to the initial points of many interior-
point methods, for example).

Global convergence

The following result states that the sequence of smoothing parameters f (g actu-
ally does converge to 0. For the remainder of this section, let = denote any one
of the four NCP-function defined in Example 5.2 and * the respective smooth
counterpart from Example 5.3.

To prove global convergence of Algorithm 7.1 we first recall from Proposi-
tion 7.3 that any sequence fwXg generated by the algorithm has the property

kd |, wK Kk K

forallk 2 N. Therefore, if converges to zero we obtaink® wK k -1 0, and this,
in turn, shows that any accumulation point of the sequence fwKg is a solution of
the optimality conditions (3.5), see Theorem 7.7. The basic question which needs
to be answered is therefore: Under which assumptions does the sequence f g
converge to zero?

Many papers on smoothing-type methods (mainly in the related context of
complementarity problems) deal with the same question and prove f g # 0 under
restrictive assumptions which typically imply that the solution of the underlying
problemisunique, see, e.g., [4,6, 7, 8,9, 13] (three exceptions to this are [9, 29, 54]).

Since the uniqueness is of the solution is usually viewed as a too strong as-
sumption in the context of linear programs, we want to state a global convergence
result which also holds for solution sets that do not necessarily consist of only a
single vector. The main step in this direction is the following proposition:

Proposition 7.5 Assume that the sequence fwKg generated by Algorithm 7.1 has
at least one accumulation point. Then the sequence of smoothing parameters f g
converges to 0.
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Proof. By construction, the sequence T kg of smoothing parameters is monoton-
ically decreasing. Since it is also bounded from below by zero, it follows that f g
converges to some number ~ 0. If — 0, we are done.

Assume that > 0. Then Step 4 of Algorithm 7.1 shows that we necessarily
have

k #0: (7.9)

Now let w be an accumulation point of the sequence fwKg whose existence is
guaranteed in view of our assumption. Let fwKgy be a corresponding subsequence
converging to w . Since the Jacobian ®2 w is non-singular by Proposition 5.6,
it follows from Lemma 3.14 that there is a constant € > 0 with

ke wk k € (7.10)

k

for all k 2 K su Lciehtly large. We now consider the two cases liminfyok tx > 0
and liminf ok tx O separately and derive a contradiction in each of these cases.

Case 1: liminfyok t = 0. B B
Then there exists a positive constant t > 0 such that ty t for all k 2 K.
In view of (7.1.2) and (7.5), this implies

Yo owkl o1 o2t Y, owk o1 o2t ¥, wk:

Proposition 7.3 therefore gives

q__
kd , wk 1k 1 2t k&, wKk
1 Ckd, wk (7.11)
1 ¢

for some constantc 2 0;1 . Since one can easily show that the inequality
kb w ®owk 0

holds for all ; %> 0 and all w, where > 0 denotes the constant from
Lemma 5.5 (cf. [33]), we obtain from (7.11)

kd ; wk ik k&, wklk ko, wkl o
1 ¢ « K

c K

k

forall 2 0;1 . Since an elementary calculation shows that the inequality
c Kk 1 k

holds for all > 0 satisfying
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7.1 A Globally Convergent Smoothing Method with a Smoothing Parameter

Case 2:

the computation of  in Step 4 of Algorithm 7.1 yields

K %c

for all k 2 K su Lciehtly large, i.e., these | are uniformly bounded away
from zero by the positive constant ~. This, however, is a contradiction
to (7.9).

liminfok te 0.

Subsequencing if necessary, we then have limok ty 0. Consequently,
the Armijo condition (7.5) is not satisfied for | : t=% and all kK 2 K
su Lciehtly large, i.e., we have

K k k K T Awk
Y, w kKAw® =¥  w k r¥Y, w® "Aw

or, equivalently,

Y ,owk Aawk v wk

k

> rv, wk Tawk:

Using the Mean Value Theorem, we obtain

ry, KTawk> rv wk Tawk (7.12)

k

for some vector K belonging to the line segment joining wk and wX

KAwK. From (7.10) and (7.4), f gk -1 —, and fwXgk -1 w , it follows
that the sequence fAwKXgk converges to a vector Aw which solves the
linear system

Prw Aw  d-w (7.13)

Taking the limitk -¥ 1 on K and using f gk -¥ O as well as f gk -1
~, we then obtain from (7.12) and the continuity of r¥ with respect to
w and

rv-w TAw rv-w TAw
Consequently, we have
rv‘-w TAw O

On the other hand, it follows from r¥ , wk TAwK ke, wkk? 0
that

rv-w TAw 0:
We therefore get

rv-w TAw 0:
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7 Smoothing Methods

Since r¥- w &L w Td- w ,we obtain
& w 0 (7.14)

from (7.13). On the other hand, it follows from (7.9) that =% does not
satisfy the test (7.6) for all k 2 K su Lciehtly large, Ii.e., we have

k

wk 1 k> 1 —
%

ko 1 k=% K-

Since =% -¥ O;tx -¥ Oand, therefore, wk 1 -1 w for k 2 K, we obtain
kd- w Kk >0
by taking the limitk -¥ 1 on K. This, however, contradicts (7.14). [

Note that the assumption used in Proposition 7.5, namely the existence of
at least one accumulation point, is weaker than the condition that the entire se-
quence fwKg remains bounded. Nevertheless, in Theorem 7.7 below we will give
a su [cieht condition for the boundedness of the whole sequence fwKg.

Before, however, we state the main global convergence result for Algorithm 7.1,
which is a direct consequence of Proposition 7.5.

Theorem 7.6 Every accumulation point of a sequence fwKg £ xX; K;sK g gen-
erated by Algorithm 7.1 is a solution of the optimality conditions (3.5).

Proof. In view of Proposition 7.3, we have
kd | wK Kk K (7.15)

for all k 2 N. Now let w be an accumulation point of fwKg, and let fwkgx be
a subsequence converging to w . Then we have f g -% 0O in view of Propo-
sition 7.5. Therefore, taking the limit k -¥ 1 for k 2 K and using the fact
that ¢ is a continuous function in both w and , we obtain from (7.15) that
kd w Kk kdo w k 0: Hence & w 0. The definition of & therefore
implies that w is a solution of the optimality conditions (3.5). [

The next result gives a su Lcieht condition for the existence of accumulation
points. Note that this result is stated here only for the penalized minimum and
the penalized Fischer-Burmeister function, whereas it is not true, in general, for
the minimum or Fischer-Burmeister functions themselves.

Theorem 7.7 Let * denote either the penalized minimum or the penalized Fischer-
Burmeister function. Assume there exists a strictly feasible point for the optimality
conditions (3.5) and that the starting point w©° x0; 0:50 satisfies the linear
equations Ax® band AT © sO c. Then the sequence fwKg f xX; K:sk g
generated by Algorithm 7.1 remains bounded.

Proof. Using Lemma 7.4 and our assumption regarding the starting point, we

have AT kK sk cand Axk b forall k 2 N. Since k& wX k K in view of
Proposition 7.3 and o for all k 2 N, the statement follows immediately from
Corollary 5.9. [
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7.2 A Globally Convergent Smoothing Method with a Smoothing Variable

7.2 A Globally Convergent Smoothing Method with a Smoothing
Variable

In this section another smoothing method is presented. This method follows an
idea by Jiang [30]. As Algorithm 7.1, it is based on a smooth equation refor-
mulation of the optimality conditions (3.5) themselves but views the smoothing
parameter not as a parameter but as an additional variable of the system.

It is, however, closely related to both smoothing-type methods and interior-
point methods. This is made clear as soon as we develop the algorithm in Sec-
tion 7.2.1.

The algorithm can be viewed as an improved smoothing-type method due to
some better theoretical properties if compared to Algorithm 7.1. The method
presented in the following section is based on the corrector step of an algorithm
published by Burke and Xu [8]. In Section 8.2 Algorithm 8.11 will be combined
with a suitable predictor step to form a predictor-corrector method similar to the
one proposed by Burke and Xu.

We will now consider the smoothing parameter not as a parameter, but rather
as an additional variable of the non-linear system, hence it will be referred to as a
smoothing variable to articulate this di Cerent point of view.

In the following section the algorithm is developed; a detailed statement is
given. Both its global and local convergence properties are investigated in Sec-
tion 7.2.2.

7.2.1 Description of Algorithm

For the remainder of this section let = : R? -1 R denote the minimum function

q__
* ajb : 2minfajbg a b a b2z
Let = : R? -1 R denote the smoothed minimum- or Chen-Harker-Kanzow-Smale
smoothing function
q
= ab: a b a b2 4 2

with a smoothing parameter > 0.
Using the equation operator ¢ as defined in (5.1) and its smoothed counter-
part ® from (5.10), it was noted in Section 5.3 that it is su [cieht to solve

o w 0

in order to solve the linear program’s KKT conditions (3.5).

So far, we have viewed as a parameter. In this section, however, it is some-
times useful to treat  as an independent variable. In order to make this di Cerknt
point of view clear in our notation, let us write

xX;s; X;S . (7.16)
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7 Smoothing Methods

The new variable  will be referred to as the smoothing variable. Moreover, we
will exploit the mapping®: R" RM™ R"™ 0;1 -*R"™ RM R" R defined
by

2 3
AT s ¢
A b
®Ow, : 0Xx;;s; E X_ ) z: (7.17)
X;S;
Note that the definition of ® w; isnotequalto® w since one more line has
been added. Since the equation ©® w; 0 automatically implies 0, we
obtain the equivalence
w X ; ;s solves (3.5 O w ;0 solves ©® w; 0:

In this way we therefore get a reformulation of the optimality conditions (3.5) with
being viewed as an independent variable. This kind of reformulation goes back
to Jiang [30].

For later reference, it will be important to exploit the relation between Newton’s
method applied to the system & w 0 and applied to the system © w; 0.
First consider the system ® w 0, and assume that wk  xK; K:sk denotes
the current iterate and i > 0 the current value of the smoothing parameter. Then
we define

wk 1wk tkAWk

for a suitable step size ty > 0, where the correction vector AwK  AxK:A k:Ask
is a solution of the linear system of equations

®° wkAawk & wk:

Taking into account the definition of & , this equation is equivalent to

2 32 3 2 3
0o AT Ax AT k gk ¢
§8A 0 05895 8 Axk b £ (7.18)
DS 0 Dg  As . xK; sk
where
1
D'a‘l; . diag :::;@@ak x:‘;sik;::: 2R™ ™
and, similarly,
1
D'g; . diag :::;@@—bk xKsl i 2R M
On the other hand, if we apply Newton’s method to the system © w; 0, we
have to solve an equation like
vop
Aw
0% w7y 0wk
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7.2 A Globally Convergent Smoothing Method with a Smoothing Variable

at each iteration, where the derivatives are taken with respect to w and . Hence
the above system becomes

2 0 AT 1 03203 2 qrk o 3
200 UIBIE M h
DK 0 Df dk54As xk sk Kk 5’ (7.19)
0 0 0 1 A
where
@_ T
dX: e xSl ki 2RM

Motivated by similar considerations in the field of interior-point methods (see,
e.g., Wright [56]), we will consider a generalization of the system (7.19) and replace
the parameter | on the last row of the right-hand side in (7.19) by  k for some
number k2 0;1,i.e., we solve

2 o AT | 32 3 2 AT koK C3
TR ARy
ED"; 0 D'g; dk524 As xK:sk: (7.20)
0 0 0 1 A k k
(the choice | 1 corresponds to (7.19)). Note, however, that we do not replace
k by « kinthedefinition of the function X;s; . Inordertohave ashort-hand
notation for the linear system (7.20), we introduce the function

2

A s ¢

EAX bz
X:S;

with the subscript indicating the dependence of ©® on the parameter . Then
the linear system (7.20) can be rewritten as

0% wX; « A 0 wkK :

Note that this or, equivalently, (7.20) immediately gives
A Kk Kk k- (7.21)

Replacing this expression into the remaining equations of (7.20), we obtain

2 32 3 2 3

o AT 1 X AT kK sk ¢
8A o 0585 § AxK b £ (7.22)
DX 0 Dg As xK: sk K kdk
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7 Smoothing Methods

Obviously, this can be rewritten as
2 3

0
®° wkaAaw @, wK kkﬁo%:
dk

This shows that the linear system (7.20) can be viewed as a perturbation of the
system (7.18), with the perturbation being active only in the third block row of the
right-hand side.

Based on the notation introduced so far, we next give a precise statement of
the new smoothing method.

Algorithm 7.8 (Smoothing Method with a Smoothing Variable)
Step O (Initialization):

Choose w® :  x9; 0;s0 2 R" RM R" such that AT © s° ¢,
Ax® b, choose ¢ >0, select ké , WO k= 0,%2 0;1,0< min<
max < 1," 0, and set the iteration counter k: O.

Step 1 (Termination Criterion):
If kb wX k " Stop.

Step 2 (Search Direction):
Choose k2 min; max -
Compute a solution AwX; A AxK:A K AsK:A 2R RM RN
R of the linear system
#
Aw
0" wk; A 0, wk

K (7.23)
Step 3 (Line Search apd Update of Smoqgghing Variable):
Letty, max % < 0;1;2;::: such that

k xK tkAXk;Sk tkASk; 1 ktk kK 1 ktk k- (7.24)
Setwk 1: wk gAwkKand 1 1 ktk

Step 4 (Update):
Setk -k 1,andgo to Step 1.

To get a better understanding of the way Algorithm 7.8 works, let us add a cou-
ple of comments. In Step 0, we require the starting point w®  x% 2:s9 to be
feasible with respect to the linear equations AT s cand Ax b. Since the
components x° and s° do not have to be positive (like in interior-point methods),
it is relatively easy to find such a starting point. Step 1 contains the termination
criterion. Steps 2 and 3 of this algorithm coincide with the corrector step of a
smoothing-type predictor-corrector method proposed by Burke and Xu [8]. Note
that the linear system (7.23) is precisely the one from (7.20) and includes a per-
turbation on the right-hand side as well. A procedure to decrease the value of the
smoothing parameter is also included in Step 3.
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7.2 A Globally Convergent Smoothing Method with a Smoothing Variable

7.2.2 Convergence Analysis

This section investigates the convergence properties of Algorithm 7.8. To this
end, we assume throughout this section that the termination parameter " is equal
to zero, and that Algorithm 7.8 generates an infinite number of iterates wX, i.e.,
we assume that the algorithm does not stop after a finite number of iterations in
a point wX satisfying the optimality conditions (3.5).

Lemma 7.9 The following statements hold for any k 2 N:
(1) The linear system (7.23) has a unique solution.
(2) The step size tx in Step 2 is uniquely defined.

3A) k xK:sk; | k K.

Proof.

(1) The structure of the Jacobian 8% wX;  in (7.19) shows that this matrix
is non-singular if and only if <I>°k wK is non-singular. This has already
been shown in Proposition 5.6.

(2), (3) We prove the last two parts of this lemma at the same time by induction.
First, define the function Xx;s; : k Xx;s; k. Then

. x;s; T O x;s;
T k x:s: k

For the directional derivative it holds together with (7.23) that

2 3
AX
0 x:s;  AX;As; A 0 x:s; T9AsS
A 2 3
xis; T, QAX
——— ' X;S; AsS
k X;s; k A
xis; T
k x;s; k S
k x;s; k2
k Xx;s; k
k x;s; k:

Now we proceed with the actual induction argument.

The inequality k  x%;s%; ¢ k o holds by the choice of in Step 0 of
Algorithm 7.8.
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84

Assume that (7.24) does not hold, i.e.
x% % Ax%:s® % As?; 1 o%‘ o> 1 0%‘ 0
forall = 0;1;:::.
Using the definition of andk x%s% ¢ k o one gets:
x% % Ax%:s% % As? 1 % o > 1 o% k w% ok
1 o%  x%s% o
It then follows that
x0% % Ax%:s® %'As?; 1 % o x%%:s% o
"

Taking the limit < -1 1 gives
0 x%s% o; Ax%As%A o ok x%s% ok
which is obviously equivalent to
k x9:s9 o k ok N o k:
WithO0 < min< 0< max <1 from Step O of Algorithm 7.8, this contra-

dicts the assumption, therefore there exists a finite step length to. This

also implies that both
wl  w° toAWO and 1 1 oto o

exist and that k x1;s1; ;1 k 1 by construction.

Assume that (7.24) holds for the k-th iterate, i. e., there exists tyx such that
the updating rules in Step 3 yield the existence of wk 1w t AwK
and

k xK skl 1k K 1t (7.25)

Now consider the k 1 -st step.

Using the same argumentation as above and keeping in mind (7.25), one
gets that there exists a step length tx ; such that

k xK1 g AxK skl g Ask L1 k 1tk 1 k1K
1 katk 1 k1!
Therefore the updating rules in Step 3 give
wk 2 wk1 ¢ AwK ! and 5 1 otk 1 ko1
Since K 12 0;1 this also implies
k x®2Zsk2 5k Kk 28

This completes the proof. [
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Note that this result yields that Algorithm 7.8 is well-defined.
We next state some simple properties of Algorithm 7.8 to which we will refer
in our subsequent analysis.

Lemma 7.10 The two sequences fwKg f xX; X:sk gand f g generated by Al-
gorithm 7.8 have the following properties:

(1) AT kK sk cand AxK bforallk 2 N.

(2) « k11 k 1tk 1 T ol oto forallk 2 N.

Proof.

(1) For k 0, this follows from the choice of the starting point in Step 0. New-
ton’s method then guarantees that the linear equations AT S ¢ and
AX b are also satisfied for all k 1.

(2) The updating rules in Step 3 of Algorithm 7.8 give 1 1 ktk k. This
gives the desired formula.

The next result is quite simple and will be used in order to show that the
sequence fwKkg generated by Algorithm 7.8 will be bounded under certain condi-
tions.

Lemma 7.11 The two sequences fwKg f xX; X:sk gand f g generated by Al-
gorithm 7.8 satisfy the inequality

kminfxK;skgk1 ~ &
forall k2 Nwith 7: 2 =2.
Proof. Let ; denote the i-th component function of ,i.e.,
iab;, : a b qa b2 4 2

Then it follows from Lemma 5.4 that the inequality
j iab0 iab, j 2

holds for all a;b 2 R and all > 0. Using Lemma 7.9 (3), it then follows that
n o

2 min xK;sk jixSsfo]
JxSsE ki G ixSsS0 XSS K
k xNs% kk jixSsio xSk
2
forallk2 Nandalli 1;:::;n. This implies
kminfx®;skgkq1 = «
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for all k 2 N, where ~ is the constant specified in the statement of the lemma. =

Next we show that the sequence fwKg  f xK; K;sK g generated by Algo-
rithm 7.8 remains bounded provided that there is a strictly feasible point for the
optimality conditions 3.5 (i. e., a vector w R; ;8 satisfying AT" 5§ CcAR b
and X > 0;§ > 0) and that the initial smoothing parameter ¢ > O is su [ciehtly
small. This boundedness result is similar to one given by Chen and Ye [15] in the
context of box constrained variational inequality problems.

Proposition 7.12 Assume that there is a strictly feasible point X; ~:§ for the op-
timality conditions (3.5), and suppose that the initial smoothing parameter ¢ >0
satisfies

1 . o .~
o< =_min fX;;§jg;
i 1;::n

where 7 2 =2 denotes the constant from Lemma 7.11. Then the sequence
fwkg f xK; K;sk g generated by Algorithm 7.8 is bounded.

Proof. Consider the sequence fwKg f xX; K:sk g generated by Algorithm 7.8.
Assume that this sequence is unbounded. Since T kg is monotonically decreasing,
it follows from Lemma 7.11 that

jminfx%‘;s:(gj kminfx¥;skgka ~k  ~ o (7.26)
forallk 2 Nand alli 1;:::;n. This obviously implies that there is no index
i 2 f1;:::;ng such that xK -1 1 orsK -1 1 on a subsequence. Therefore, all

components of the two sequences fxKg and fsXg are bounded from below.
On the other hand, the sequence fwKg f xX: K:sk g is unbounded by as-

that x}‘ - 1 or s}‘ -1 1 on a subsequence since otherwise the two sequences
fxKg and fsKg would be bounded which, in turn, would imply the boundedness
of the sequence f Kg as well, because we have AT K sk ¢ forall k 2 N
(cf. Lemma 7.10 (1)) and because A is assumed to have full rank.

Now let W R; ;8§ 2R RM RN be the strictly feasible point from our
assumption. Then, in particular, we have

AT 5§ ¢ and AX b:
Since we also have
AT K sk ¢ and AxK b
for all k 2 N by Lemma 7.10 (1), we get

ATT kK 5 sk 0 and AR xK o0 (7.27)
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by subtracting these equations. Premultiplying the first equation in (7.27) with
% %K T and taking into account the second equation in (7.27) gives

Ri xK § sk % xXTs sk o (7.28)

We now assume without loss of generality that there is at least one component i
such that fxé‘g is unbounded, i.e., fx!‘gK -1 1 for a suitable subset K N (the
argument would be similar if there would exist at least one component i with fs!(g
being unbounded). Let us define the following index sets:

n o]
Iy : i2fl;:::;ng fx%‘gK is unbounded ;

n o]
Is i2fl;:::;ng fsikgK is unbounded ;

n o]
Iy : i2fl;:::;ng fx:‘gK and fs}‘gK are bounded

Note that Ik is non-empty, whereas Is (and Ip) might be empty. Using the defini-
tions of these three index sets and subsequencing if necessary, we obtain from
the inequality (7.26) that

fxgk -¥ 1 and sf ~ o 8k2K; 8i2lx (7.29)
and
fskgk -1 1 and x¥ ~ o 8k2K; 8i2ls; (7.30)

whereas there is a constant ¢ 2 R such that
X

xK % sk § ¢
i2lp,
for all k 2 K. Using (7.28) then gives
X
c xK R sk §

i2l
= Kk o & Kk x Kk o & k

X; Xi §i s X; Xi S sj
i21x i2ls

for all k 2 K. However, the right-hand side is unbounded on a subsequence due to

(7.29) and (7.30) since §; s}‘ §§ ~ o=>0fori?2lxandX; xé‘ Xi T o0=>0
for i 2 Is in view of our choice of ¢ > 0. This contradiction completes the proof.
]

Looking ahead at Algorithm 8.11, it is quite interesting to note that Proposi-
tion 7.12 guarantees the boundedness of the iterates wX provided that the initial
smoothing parameter ¢ is su [Lciehtly small. Burke and Xu [8], on the other hand,
can prove the boundedness of their iterates under the assumption that ¢ issu =1
ciently large. In fact, Burke and Xu [8] can provide a lower bound for their choice

87



7 Smoothing Methods

of o which is known in advance, whereas our upper bound from Proposition 7.12
is, in general, not known. However, the lower bound from [8] could be very large,
and this, in turn, could have a bad influence on the numerical behavior of the
smoothing-type method. — In any case, it should be noted that some interior-
point methods generate bounded iterates under the sole assumption that the pri-
mal and dual linear programs (3.1) and (3.2), respectively, are feasible (rather than
strictly feasible).
Next we give a global convergence result for Algorithm 7.8.

Theorem 7.13 Assume that the sequence fwKg f xX; X:skK g generated by Al-
gorithm 7.8 has at least one accumulation point. Then f kg converges to zero.

Proof. Since the sequence f (g is monotonically decreasing and bounded from
below by zero, it converges to a number 0. If 0, the assertion is proven.
So assume that > 0. For k 2 N su [ciehtly large Lemma 7.10 (2) and

Kk min yield

oyt eyt
Kk 0 1 it 0 1 mintj : (7.31)

J o jo
Since -1 > 0 by assumption, it follows from (7.31) that limy.xq tx 0.

Therefore, the step size : tx=% does not satisfy the line search criterion (7.24)
for all k 2 N su [ciehtly large. Hence we have

k xX  AxKsk Asf 1 Lk kk> 1k k& (7.32)
forall k 2 N.
Now let w X ; ;s be an accumulation point of the sequence fwKg,

and let fwKgk be a subsequence converging to w . Since k 2 min; max for
all k 2 N, we can assume without loss of generality that the subsequence f (gk

converges to some number 2 min, max . Furthermore, since > 0, it
follows from Lemma 7.9 (1) that the corresponding subsequence f AwWX; A gk
converges to a vector Aw ;A AX ;A ;As A , Where Aw ;A is
the unique solution of the linear equation
L] #
Aw
0w ; A 0 w; (7.33)

cf. (7.23). Using f gk -¥ O and taking the limit k -¥ 1 on the subset K, we then
obtain from (7.32) that

k x ;s ; k > 0: (7.34)
On the other hand, we get from (7.32), Lemma 7.10 (3), and max that
k xK  AxMsK Aski 1k k> 1 k&
1 Kk k ko xKisk kK

1 max k K Xk;sk; k K
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for all k 2 N su Lciehtly large. Using A k k (cf. (7.21)), this implies

k xKk  cAxkisk L AsK o WA Kk ko xKiskr  k

k
maxk x4 8K k:
Due to (7.34) k ; ; Kk s a continuously di Leréntiable function at x ;s ;
Taking the limit k -¥ 1 for k 2 K then gives
2 3
x s T Ax
2 0 x :s ; Qas & maxk X s k;
k X ;s ; k A

where Ax ;A ;As ;A denotes the solution of the linear system (7.33). Us-
ing (7.33) then gives

k X ;s ; k maxK X ;S ; k:

Since max 2 0;1 , thisimpliesk Xx ;s ; k 0, which contradicts (7.34). =

Note that the assumed existence of an accumulation point in Theorem 7.13 is
automatically satisfied under the conditions of Proposition 7.12. — An immediate
consequence of Theorem 7.13 is the following result.

Corollary 7.14 Every accumulation point of a sequence fwXg £ xK; K:sk ggen-
erated by Algorithm 7.8 is a solution of the optimality conditions (3.5).

Proof. Letw X ; ;s be an accumulation point of the sequence fwkg
f xX; K:sk g, and let fwXgk denote a subsequence converging to w . Then we
have k -¥ O in view of Theorem 7.13. Hence Lemma 7.9 (3) implies

k x ;s ;0k limk xKsK Kk lim , O
k2K k2K
i.e., we have x 0, s 0 and X; s; O fori 1;:::;n due to the definition
of . Since Lemma 7.10 (1) also shows that we have AT S c and AX b, we
see that w X ; ;s isindeed a solution of the optimality conditions (3.5).

This completes the global convergence analysis of Algorithm 7.8. The above re-
sults will be used extensively in Sections 8.2 and 8.3, since the predictor-corrector
methods 8.11 and 8.18 are based on Algorithm 7.8 discussed in this section.
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8 Predictor-Corrector Methods

This chapter will provide details on how the Jacobian smoothing idea presented in
Chapter 6 can be merged with regular smoothing methods as described in Chap-
ter 7. The resulting three predictor-corrector algorithms have shown quite inter-
esting numerical performance. Detailed results for the complete Netlib test set
are presented for each one of the algorithms.

8.1 Global and Quadratic Convergence of a Smoothing
Predictor-Corrector Method

The algorithm which is presented and analyzed in the following section is directly
related to Algorithm 7.1. For the predictor-corrector method presented here, Steps
2 through 4 are cast into the new corrector step, while the predictor step follows
the Jacobian smoothing idea introduced in Chapter 6.

Basically, the smoothing-type steps are used to monitor global convergence,
while the Jacobian smoothing steps guarantee fast local convergence. Notable
about this approach is that the local convergence theory supplied here (which is
partially based on a paper by Tseng [55]) does not imply that the linear program’s
solution set is a singleton.

8.1.1 Description of Algorithm

Let * be any of the NCP-functions introduced in example 5.2. The basic idea of our
method is to solve the optimality conditions (3.5) by solving the equivalent non-
linear system of equations ® w 0, where ¢ is defined via (5.1). However, since
$ is non-smooth and may also have singular Jacobian matrices, we replace the
system & w 0 by the smooth equation ® w 0 to which we apply Newton’s
method. Note that we consider the perturbation as a parameter again, not as an
independent variable. Of course, we have to take care of the way we update the
smoothing parameter . Using the notation introduced in (6.1)

1 1
‘I’WZEqD w e w 5k<1> w k2

we first give a formal statement of the smoothing-type method. The method can be
viewed as a simplification of a recently proposed continuation method by Chen and
Chen [9] (in [9], the authors use some additional perturbations of the mapping ¢
in order to improve their global convergence properties).
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Algorithm 8.1 (Predictor-Corrector Smoothing Method)
Step O (Initialization):

Choose w9 :

XO; O;SO 2Rn Rm
%, 2 0;1:;"

R", o> 0;
0, and set the iteration counter k :
Step 1 (Termination Criterion):

If k& wK k

kd , wO k= o;
0.

'": Stop.

Step 2 (Jacobian Smoothing Predictor Step):
Compute a solution AwK

AxK:A K:Ask 2 RN
system

R™ R" of the linear

0 ok K .
" w® Aw b w" (8.1)
If kb wX AwkK k " Stop. Otherwise, if

kd wk  AwK k>
then set

whe wk e
else compute ty

%k, where “i is the non-negative integer such that
kdyi  wk  AwkKk % o 8j 0;1;2

Py 1, W AWK k> %k Ty
Set "x: tx kand
8
Kk <wk if “x O,
W . .
“wk  AwK  otherwise:

Step 3 (Smoothing Corrector Step):

Compute a solution AWK  ARK;AkK:Ask 2 RN

R™M R of the linear
system
oL Wk aw o WK (8.2)
R n . o]
Letty max % “ 0;1;2;::: such that
¥~ WK AWk v W T rve, WK TawK, (8.3)
and set
wk 1wk gAwk:
n . o]
Compute ¢ max % “ 0;1;2;::: such that
kb1 A WSk 1 T (8.4)
andset | 1: 1 Kk k-
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Step 4 (Update):
Setk -k 1,andgo to Step 1.

Algorithm 8.1 solves two linear systems of equations at each iteration, one in
the predictor step and one in the corrector step. However, the coe [cieht matrices
of these two systems are identical in case the predictor step is not successful; in
this case only one matrix factorization per iteration needs to be calculated.

The global and local convergence properties of Algorithm 8.1 will be discussed
in Section 8.1.2. Nevertheless, it needs to be emphasized at this point that the
global properties mainly follow from the corrector step, whereas the local theory
is entirely based on the predictor step. To this end, it is also interesting to note a
major di Cerknce between the two linear systems (8.1) and (8.2): While the linear
system (8.2) arising in the corrector step is just Newton’s method applied to the
non-linear equation &~ w 0, the right-hand side of the linear system (8.1) in
the predictor step is unperturbed, i.e., it does not depend on the smoothing pa-
rameter. Hence the linear system (8.1) cannot be interpreted as a pure Newton
equation. The resulting direction is called a Jacobian smoothing step, see Chap-
ter 6 and, e.g., [14, 35, 23]. Such a Jacobian smoothing step may be viewed as
the counterpart of the a [nelscaling step from the interior-point literature (see,
e.g., [56]) for smoothing-type methods.

Next we give some further explanations about the way Algorithm 8.1 works.
The basic philosophy behind Algorithm 8.1 is quite simple: It tries to generate a
sequence fwkg of iterates and a sequence T (g of smoothing parameters satisfying
the relation

kd |, wK Kk K (8.5)

for all k 2 N. In this way, it is guaranteed that each wK belongs to a certain
neighborhood of the smoothing path. Moreover, we control the size of the neigh-
borhood by the smoothing parameter . A neighborhood of the form (8.5) for the
smoothing path was first used by Chen and Xiu [13] (for the minimum function),
whereas other authors sometimes prefer to use slightly di Cerent neighborhoods
for the smoothing path, see, e.g., [4, 5, 8]. We have already used this neighborhood
for the smoothing method 7.1 from Section 7.1, (cf. (7.2)).

Having this philosophy in mind, the predictor step in Algorithm 8.1 does the
following: After solving the Jacobian smoothing equation (8.1), it checks whether
the full step wX  AwK still belongs to the neighborhood (8.5) in the sense that

kb wk  AwK Kk K (8.6)

If this is true, we set WX : wk AwkK and reduce the smoothing parameter  as

much as possible with the restriction that a condition like (8.5) holds at the inter-
mediate iterate WX and for the new smoothing parameter ~. In Proposition 8.2
below we will see that the calculation of 7 is a finite procedure. Otherwise, if (8.6)
does not hold, we basically skip the predictor step and set WX : wKand “: .
However, there is one exception which will become important in our global con-
vergence analysis: Even if (8.6) is satisfied, we do not set WX wk AwKif<, 0
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(so that "k k). By (not) performing the update in this way, we make sure that
always both the intermediate iterate WX and the smoothing parameter ~ are mod-
ified, i. e., the predictor step is only accepted if the smoothing parameter could be
decreased su Lciehtly.

The corrector step then computes a new Newton direction AWK in (8.2), fol-
lowed by a line search in order to reduce the value of ¥ , so that wX 1
WK AWK becomes the new iterate, where of course tx > 0 denotes the step
length in the corrector step. In addition, we try to reduce the smoothing param-
eter in the corrector step in such a way that a condition like (8.5) still holds at
iteration k 1.

In the remaining part of this section, we state some elementary properties of
Algorithm 8.1 and show, in particular, that the method is well-defined. To this end,
we first recall that the two linear systems (8.1) and (8.2) have a unique solution due
to Proposition 5.6. We next show that the computation of tx > 0 in the predictor
step is a finite procedure.

Proposition 8.2 The step size tx > 0 in Step 2 of Algorithm 8.1 is uniquely defined.

The proof is quite standard, see, e.g., [8], and is included here only for the sake of
completeness.

Proof. When computing the step size tx > 0 in Step 2 of Algorithm 8.1, one is in

the situation that ké wK AwK k> 0and kd , wKk AwK k k. Therefore,
since & is continuous in both w and , there is a unique exponent “y such that
tx % * has the properties given in Step 2. ]

The computation of the step size ty in Step 3 of Algorithm 8.1 corresponds to
a standard globalization of Newton’s method for non-linear systems of equations
by Armijo’s rule and is known to be well-defined. Hence we can state the following
result. For a proof the reader is referred to Proposition 7.2, as the arguments are
identical.

Proposition 8.3 The step size i > 0 in Step 3 of Algorithm 8.1 is uniquely defined.

8.1.2 Convergence Analysis

In this section the convergence properties of Algorithm 8.1 are investigated.

The algorithm’s global convergence properties only depend on the corrector
step. This step, however, has already been analyzed as part of Algorithm 7.8.
Therefore we can apply the global convergence theory from Section 7.2.

Now we concentrate on the local behavior. To prove fast local convergence,
the following assumptions are made:

Assumption 8.4 Assume the following:
(1) * denotes the minimum function.

(2) The starting point w®  x2; 0;50 satisfies AT © s® cand Ax® b.
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(3) The parameter satisfies kdé , wl k= gand > ,where > 0 denotes
the (known) constant from Lemma 5.5.

(4) The sequence fwKg converges to a vector w X ; ;s satisfying the
strict complementarity condition x; s; >O0foralli 1;:::;n.

Note that this also implies limg.x1 k O.

Assumption 8.4 (1) is a restriction compared to the global convergence the-
ory from the previous section. However, the subsequent analysis could not be
extended to any of the NCP-functions stated in Example 5.2 other than the mini-
mum function. Assumption 8.4 (2) requires the starting point w®  x9% ©0;59 to
satisfy the linear equations AT © s° cand Ax® b. Recall that this is a rather
weak assumption since we do not assume, in addition, that x9 and s© have positive
components. Condition 8.4 (3) states that the parameter issu [Lciehtly large. The
first condition in Assumption 8.4 (3) is identical to the initialization of the globally
convergent Algorithm 8.1; the second condition is only used in order to establish
local fast convergence, as will become clear from the analysis in this section. Fi-
nally, it is currently not clear whether Assumption 8.4 (4) holds automatically and
is therefore superfluous. Note, however, that it is certainly satisfied if the opti-
mality conditions (3.5) have a unique solution since then this solution satisfies the
strict complementarity condition by the Goldman-Tucker Theorem 3.12.

Also note, however, that our subsequent analysis would remain true if Assump-
tion 8.4 (4) would be replaced by the requirement that

liminf x}‘ s}‘ > 0;
k-11
so that every accumulation point satisfies the strict complementarity assumption,
see also Tseng [55]. Since, in any case, part of the analysis is somewhat technical, it
is preferable to use the slightly stronger condition 8.4 (4) throughout this section.

Before we state the next lemma, recall the definition of the solution set of a

linear program’s optimality conditions (3.5) as introduced in (3.6):

S: x; ;s 2R" RM R" x; ;s solves the optimality conditions (3.5)

Furthermore, recall the definitions of Sp and Sp, the solution sets of the primal
and dual linear programs, (3.1) and (3.2), respectively:

Sp: fXxjx solves the primal problem (3.1)g;
Sp: T ;s J ;s solves the dual problem (3.2)g:

The following result states that the function k& k provides a local error
bound for the distance of a vector w to the solution set S (cf. Definition 3.11)
of the optimality conditions (3.5).

Lemma 8.5 There exists a constant > 0 with
dists wX kd wK k

for all k 2 N su LCciehtly large.
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Proof. We first note that ® ! is a polyhedral multifunction (cf. Definition 3.19).
Therefore, it follows from Proposition 3.21 that ® 1 is locally upper Lipschitzian
at the origin, i.e., there exist scalars " >0 and > 0 such that

1tz dlo kzkB;1 O

for all z with kzk <™, where B; 0 denotes the unit ball in R" R™ R". Using
z & wK and taking into account that wK -¥ w for some vector w 2 S by
Assumption 8.4 (4), it follows that

wk2o 10 kd wk kB; 0

for all k 2 N su Lciehtly large. Since ® 1 0 is equal to the solution set S of the
optimality conditions (3.5), this implies

dists wX kd wk k

for all k 2 N large enough. [

Next we show that the distance of the current iterate wX to the solution set S
is bounded from above by a constant multiplied with the current smoothing pa-
rameter .

Lemma 8.6 We have
dists wK O «

for all k 2 N large enough.

Proof. Since the primal-dual solution set S is closed and non-empty, there exists,
for each k 2 N, a vector w K 2 S such that

kwk  w Kk dists wX :

In view of Lemma 8.5, there is a constant > 0 with
kw  w Kk kd wk Kk
for all k 2 N su [ciehtly large. Using Proposition 7.3 and Lemma 5.5, this gives
kwK  w Kk kd wk k

kd Wik kd wk @, wKk
Kk k
ks
where > 0 denotes the constant from Lemma 5.5. This implies our statement. m

Next we estimate the growth behavior of the vector AwK, where AwX denotes
the solution of the linear system (8.1) in the predictor step. Typically, one ob-
tains simple estimates if the inverse of the Jacobian matrices ® , wX * would
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remain bounded, and, indeed, this is the standard way in which most papers on
smoothing-type methods prove local fast convergence results for their methods.
However, according to Theorem 6.6 (see also [8, 23]), the above Jacobian matri-
ces converge to a singular matrix unless the optimality conditions (3.5) have a
unique solution. Since we want to avoid the uniqueness assumption here, we
cannot use standard perturbation results. Instead, techniques used in the recent
paper by Tseng [55] are applied and show by a somehow technical analysis that the
term kAwKk can be estimated by a constant multiplied by the current smoothing
parameter. This result will play a crucial role in order to establish local quadratic
convergence of our method at the end of this section.

Lemma 8.7 We have
kAwKk O

for all k 2 N su Lciehtly large.

Proof. Taking into account the structure of the Jacobian <I>°k wK  (cf. (5.12)) and
the definition of ®, we get from the linear system (8.1) in the predictor step that

ATA K Ask o (8.7a)
AAXK  0; (8.7b)
Dg; AxK D'g; Ask xK; sk ; (8.7¢)
where, similar to (5.13),
!
DX diag ’@@ak Xt sl 2R™ ™
1
Dg diag ’@@bk XI5 sl 2R™ ™
T
xK; sk 57X s 2R"™,

and the right-hand sides of (8.7a) and (8.7b) are zero because of Assumption 8.4 (2)
and Lemma 7.4. For each k 2 N, let w X be a solution of the optimality condi-
tions (3.5) such that

dists wX  kwk w Kk (8.8)
Sincew K x K, k.g K gatisfies (3.5), we have
AT kK sk ¢ 0 (8.9a)
Ax X b 0 (8.9b)
x ks kK 0 (8.9¢)
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Furthermore, Lemma 7.4 implies that wk  xK; k:sk satisfies the linear equa-
tions

AT kK sk ¢ 0 (8.10a)
AxK b o (8.10b)

Adding (8.7a), (8.9a), and (8.10a) on the one hand, and adding (8.7b), (8.9b), and
(8.10b) on the other hand, we obtain

AT kK A K ko gk Ask s ko (8.11a)
AxK AxK x kK o (8.11b)

Premultiplying (8.11a) with xX AxK x ¥ T and taking into account (8.11b)
gives

xK  AxK x KT gk Ask gk o (8.12)
Using (8.7c), we further have
Dg; xK AxK  x K D'g; sk Ask s ko ok (8.13)
with
r: D§ x* x* D sk sk xK; sk (8.14)

Having derived these preliminary formulas, we now show in three steps that

kAxKk O
kAskk O  : and
kA Yk O :

Step 1: In this step, we show that kAxKk O . Premultiplying (8.13) with
xK AxK x T Dk 1 using(8.12), and taking into account that the

matrix product D'a‘l; D‘,;. is positive definite, we obtain
min D& Df. kDf. 1T xK o AxK x kK2
xK AxK x kT pk 1pk pk DE 1 xK Axk x K
xK AxK  x kK Tpk pk 1 xk Axk x Kk
xK  AxK x KT DE. lpk
k DE 1 xK AxK  x * kkrkk
and therefore

min D Dg. k Df. 1 xM AxK x Kk krkk (8.15)
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Using the definition of rK in (8.14) as well as the fact that
XN O forall X 2 Sp
and
sg O for all _;§ 2Sp
by Lemma 3.13 (1) together with the simple observation that
D Df 2

for all k 2 N (recall that = denotes the minimum function by Assump-
tion 8.4 (1)), we obtain from Lemma 3.13 (2) and Assumption 8.4 (4) that

r§ 21 Df se xS xg DK Besk sg  2minfx;skg
21 DE ee x§ xg* Df pesf 2s§
21 Dg; BB XE XB;k Sg SB;k
Dg; BB Xg XB;k Sé SB;k
and
r 21 D'g; NIV N D'g; NN SK s 2minfxk isK g
21 DK nnxK  DE N sk sn< 2xK
DE. NN SN oSN X xS

Therefore, we have
n o

krkk  max k Dg; Bek; k D'g; avk  kxK o ox Kk ksk s KRk
(8.16)
Hence (8.15) implies
min DX. Dlg; Kk D'g; 1 xk Axko x Kk
max k DK sekik DE vk kxK x Kk ksk s Kk
(8.17)
Since one can verify that the sequence
8 n 09
<max k Dg; BBk;k DE NNk =
: K oK - (8.18)
- min Da; Db; -

remains bounded for k -¥ 1 by Assumption 8.4 (4), it follows from (8.17)
and the observation that

k
kDE k2
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Step 2:

100

for all k 2 N that
kAxKk  kxK x Kk
2
kAxKk  kxK x Kk
kDg. K
kxK  AxK  x Kk
kDg. K

kDg; Ixk Axk x Kk

kAxKk  kxK x Kk

1 kxK x Kk ksk s Kk

for some constant 1 > 0. As aresult, we obtain from (8.8) and Lemma 8.6
that

KAXXk  okwX w Kk odists wK O
where » > 0 denotes a suitable constant.

Here we show that kAskk O . To this end, we premultiply (8.13) with
DK. 1 to obtain
ks Ask s Kk
kDE 'r¢k kDE Df 1 xK oAxM x Kk
k DY ' DE  'kkDE kkrk kDK kk Df. 1 xK AxK x K
2 max D§ 1D T krkk 2k Dt xMoAxkK xRk
1

k k
min Da; Db;

krkk 2k D, T xK Axk o x kK

since
kDK k 2

for all k 2 N. Therefore, using (8.16), (8.17) and the boundedness of the
sequence in (8.18), we see that

ksk  AsK s Kk 5 kxK x Kk ksK s Kk
for all k 2 N su [ciehtly large and a constant 3 > 0. Using Lemma 8.6
and (8.8), this implies
kAsKk ksk  AsK s Kk ksk s Kk
akwk w Kk
4distg wk
O «

(8.19)

for all k 2 N su [Lciehtly large and a suitable constant 4 > 0.
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Step 3: Using (8.19), (8.7a), the full rank of the matrix A immediately implies that
kKA Xk O ;
which proves Step 3.

Putting together Steps 1 through 3, we finally obtain
kAwkk O

for all k 2 N su Lciehtly large. [

The next result shows that, eventually, the full predictor direction AwX computed
in (8.1) satisfies the neighborhood condition
kd  wkK AwK k K

k

so that Step 2 of Algorithm 8.1 is eventually successful.
Lemma 8.8 We have
kd  wk  AwK k K

for all k 2 N su [Cciehtly large.

Proof. Let us use the abbreviations

ak;i; @@—ak x%‘;sik fori 1;::::n
and
bk . @, K Xk.sk for i 1::::e n
:i' @b i oy

for the diagonal elements of the matrices Dg; and D'g. , respectively. Since

ak. bpK. 2 foralli 1;:::;:nand for all k 2 N;

M M
we obtain from the linear system (8.1) and Assumption 8.4 (1) that
k Kk k k ; k. ok D e .
2 b%; AXy b7 As; 2minfx;;si’g fori  1;:::;n; (8.20)

cf. (5.12). Since the sequence fwKg f xX; X:;sk gconverges to a strictly comple-
mentary solution w X ; ;s ofthe optimality conditions (3.5) by Assump-
tion 8.4 (4), Lemma 3.13 (2) implies that there is a constant > 0 such that

xK  foralli2B and s  foralli2N (8.21)
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and

jxé‘j<5 foralli2 N and js}‘j<E foralli 2B

and for all k 2 N large enough.

(8.22)

We now consider an arbitrary index i 2 B. Using (8.21) and (8.22), we get

for all k 2 N su Lciehtly large. Furthermore, (8.20) implies

2 b, Axf  Asf 2 s Ask:
The definition of bk;i gives
@,
2 bkK. 2 k xK.gk
H O@b 7 1
k ok
2 @1 q Xl Sl A
xK sk2 42
ok s
- <K k2 g4 2
i i k
q
k ok 2 k ok
Xigsu2 4 X5 oS
T Uk k 2
Xi si?2 4y
2k
X sf
4-K

Consequently, we obtain from (8.23) and Lemma 8.7 that

2jsf Asfj 2 bK; jAx{  Askj
4  kAxKk kAsKk
o ¢
Since
xK Ax:‘ —

in view of (8.21) and Lemma 8.7, it follows that

i7 xE AxEsK AsKj 2 minfxE  AxEsK AsKg  2jsk
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foralli 2 B.
In a similar way, we can also show that

i7 xE AxEsK AsKj o 2jminfx[ AxIGsK AsKgl 2jxE AxKj o 2
for all 1 2 N. Consequently, we have

kd wk Awkk O 2

because of Assumption 8.4 (2) and Lemma 7.4. Using Lemma 5.5 as well as the
factthat > by Assumption 8.4 (3), we finally obtain

kd  wh AWK Kk kd wk AWK k k® |, wk AWK @ wk AWK Kk
o ? K
k

for all k 2 N su Lciehtly large since  # 0 by Assumption 8.4 (4). [

Next we show that the update of the smoothing parameter "y tx K in the
predictor step of Algorithm 8.1 is such that the factor ty is in the order of the
smoothing parameter  itself.

Lemma 8.9 We have
tw O «

for all k 2 N su [ciehtly large.

Proof. As shown in the proof of Lemma 8.8, we have
kd wk Awkk O 2:
Hence there is a constant s > 0 such that
kd wk AwKk 5 2
for all k 2 N large enough. This implies

kde WX AWKk kd wK AwK k kde , wK o AwK @ wK AwK k
5 E t K
for all t = 0O, cf. Lemma 5.5. Now, an easy calculation shows that the inequality

5& t k t x

holds for all t 5 k= (recall that > by Assumption 8.4 (3)). Therefore,
the definition of tx in Step 2 of Algorithm 8.1 implies that

Bkl 9w %k ut <
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Hence we have

tk%ikok

for all k 2 N large enough. ]

We are now in the position to state our main local convergence result for Al-
gorithm 8.1. It says that we eventually have local quadratic convergence of the
smoothing parameter  to zero.

Theorem 8.10 We have

for all k 2 N large enough, i.e., the sequence | converges to zero at least Q-
quadratically.

Proof. Inview of Lemma 8.9 and the updating rules for the smoothing parameter
in Algorithm 8.1, we have

—~

2
K 1 k Wk O

for all k 2 N su Lciehtly large. ]

It appears very likely that Theorem 8.10 is also true for some of the other
NCP-functions mentioned in example 5.2, or at least for the Fischer-Burmeister
function, but currently there is no formal proof for this.

8.1.3 Numerical Results

As the predictor-corrector method 6.1, Algorithm 8.1 was implemented in MATLAB
by modifying the LIPSOL code by Zhang [57, 58].

Numerous approaches to choose a starting point w®  x9% 9:s% have been
tested. There are several possibilities for choosing w©.

(1) One could take the starting point provided by LIPSOL. However, this starting
point is optimized for interior-point methods and there is no reason why it
should be useful for the smoothing-type methods as well. In particular, w°

x?; 0:50 does not, in general, satisfy the linear equations AT © s® cand
Ax® b, although this might be an important property for Algorithm 8.1,
see, in particular, Proposition 5.7 and Theorem 7.7.

(2) For the implementation of the Jacobian smoothing method introduced in
Chapter 6 (see also [23]) a starting point w®  x9% ©;5° s used, whose
components are computed as follows:

a) Compute y° 2 R™ by solving AATy b using a sparse Cholesky code.
b) Set x%: ATyO.
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c) Define %: 0Oands®: c.

Obviously, the resulting vector w° x0; 0:50 satisfies the linear equa-
tions AT © s% ¢ and Ax® b. However, the two vectors x° and s°
typically have many negative components.

(3) The initial pointw®  x0; 0;s0 actually used in the implementation of the
predictor-corrector method 8.1 is calculated as follows:

a) Compute y° 2 R™ by solving AATy b using a sparse Cholesky code.

b) Set x°: ATy?O.

c) Solve AAT Ac using a sparse Cholesky code in order to compute
02 RM.

d) Sets®: ¢ AT O

One arrives at this starting point by solving the two simple programs
.1 5 .
min Ekxk subjectto AxX b

for x% and
1 2 ; T
min Eksk subjectto A s C

for 9 and s°. Again, the resulting vector w©° x0; 0:50 satisfies the
linear equations AT © s® ¢ and Ax® b. The dilerknce between this
starting vector and the one described in the previous procedure (2) lies in
the computation of the vector ©. The idea behind the strategy here is to
have possibly many components of s® equal to zero (or at least small) by
solving the equation AT c in the least squares sense. The advantage of
having zero (or small) components in s° is that the initial residual k& w° k
is smaller, so that this starting point w® is hopefully closer to the solution
set of (3.5).

However, the choice of the starting point is crucial and the procedure given in (3) is
not always better than the one stated in (2). Furthermore, since interior-point and
smoothing-type methods use di [erent starting points, it is di Cculk to compare
both methods with each other.
Another crucial part of the implementation is the stopping criterion. Interior-
point methods typically terminate the iteration if the (weighted) duality gap
k Tek
x< s
Do 8.24
K o (8.24)
(or a certain residual vector whose size is controlled by the duality gap) is su =1
ciently small in the sense that

k<10 8:
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This criterion cannot be used by our method since the x- and s-components of
the iterates wKk  xK; X:skK are no longer guaranteed to stay positive. Hence it
is necessary to use a di Cerknt stopping criterion. The one implemented is

k<10 % (8.25)

where, of course, K denotes the smoothing parameter. The motivation for this
stopping rule is as follows: Using the number  from (8.24), interior-point meth-
ods basically follow the central path conditions

AT s ¢
AX b;
Xj > 0; sj=>0; XSij kK 8i 1;:::;n

parameterized by k. Comparing with (5.21), it therefore follows that ¢ plays
(more or less) the role of ,f hence the criterion | < 10 8 corresponds to E <
10 8 or, equivalently, to , < 10 4. Moreover, in view of Proposition 7.3 and
Lemma 5.5, the violation k& wK k is also bounded from above by a constant
times .

After some preliminary experiments with Algorithm 8.1, is was observed that
the predictor step is accepted only very few times. Moreover, the situation did
not improve by allowing some kind of restricted line search in the predictor step;
by this it is meant that if the full step AwK did not satisfy the neighborhood
criterion (8.6), AwK was replaced by, say, 1=2AwK or even 1=4AwX and accepted
this step in case (8.6) is satisfied with this shorter direction.

It turned out that this strategy works more successful if the right-hand side
in (8.1) is replaced by & wK | so that the predictor step becomes a real smooth-
ing step. Since this does not necessarily guarantee local fast convergence under
Assumption 8.4, it was finally decided to implement a three-step modification of
Algorithm 8.1. This modification adds another step between the predictor step
(Step 2) and the corrector step (Step 3), let us call it Step 2a. Step 2a is exactly the
same as Step 2 only that the right-hand side in (8.1) is replaced by ® wK . In the
following, we call Step 2 the Jacobian smoothing predictor step, and Step 2a the
smoothing predictor step, while Step 3 is still be called the corrector step. Thus,
Step 2a has the following form:

Step 2a (Smoothing Predictor Step):
Compute a solution AwK  AxK;A K;Ask 2 R" R™ R" of the linear
system

o wkaw  d, wk:
If kb wX AwkK k " Stop. Otherwise, if
kd wkK AwK k>

k
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8.1 A Predictor-Corrector Smoothing Method

then set
WS WS Tk kg
else compute t, %k, where “y is the non-negative integer such that
k<1>%jkwk AwK k o) k 8] 0;1;2;:::;“kand
kP 1, wk AWK k> %k 1

and set " : tx kand
8
<wk if “« O,

“wk  AwK  otherwise:

Wk'

Obviously, this modified method has the same local and global convergence prop-
erties as Algorithm 8.1, but it seems to work better from a practical point of view.

On the other hand, the amount of work per iteration is higher for this three-
step method than for Algorithm 8.1. In theory, it could happen that up to three
linear systems with di Cerkent coe [cieht matrices need to be solved. Algorithm 8.1
on the other hand required the factorization of at most two matrices per iteration.
However, if the Jacobian smoothing predictor step and/or the smoothing predictor
step cannot be accepted, then all three, or at least two of the coe [cieht matrices
are identical. In this case, we still solve three linear systems, but the amount
of work is significantly smaller since we factorize only one or two matrices per
iteration.

In practice, averaging over the test suite used for the numerical experiments, it
turns out that we have to factorize less than two matrices per iteration. It should
be mentioned, however, that this is still more than what is done by LIPSOL and
many other implementations of interior-point methods which typically solve two
linear systems per iteration having the same coe [cieht matrix so that only one
factorization is needed.

Taking into account the modifications mentioned above, Algorithm 8.1 was
implemented using the penalized minimum function and the parameters

. N 0 L 1n5 . o ke, WOk .0 4.
o: min k& w" k;10° ; : 70, % 0:9; 10 *:
In addition to the termination criterion < 10 4 (cf. (8.25)), the algorithm also
terminates after 150 iterations. The step length-based emergency stopping criteria
described in Section 6.3.2 are implemented as well.

Experiments showed that for this algorithm the penalized minimum function
does indeed give the best results, as far as the total number of iterations is con-
cerned.

The program was run on a Sun Enterprise 450 on UltraSPARC Il processors. The
results for the complete Netlib test suite are given in Table 8.1, whose columns
have the following meanings:
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8 Predictor-Corrector Methods

Problem:

® < x33

f.
kd wt kiq:

Primal Objective:

Name of the test problem in the Netlib collection
Number of rows (after preprocessing)

Number of columns (after preprocessing)

Number of iterations until termination
Number of accepted Jacobian smoothing predictor steps
Number of accepted smoothing predictor steps

Value of g in final iterate

Value of k& wX k4 in final iterate

Value of primal objective function in final iterate.

Table 8.1: Numerical results of the three-step predictor-corrector method

Problem m n k J P £ kd wf ki Primal Objective
25fva7 798 1854 20 4 15 423e 05 2.972e 03 5.50184572e+03
80bau3b 2235 11516 31 7 22 9.72e 05 1.084e 02 9.87224192e+05
adlittle 55 137 10 4 6 492e 05 6.716e 04 2.25494960e+05
afiro 27 51 6 6 4 2.11e 07 2.682e 06 4.64739283e+02
agg 488 615 24 7 14 159 06 4.800e 05 3.59917679e+07
agg2 516 758 21 8 17 6.06e 08 2.698e 06 2.02392524e+07
agg3 516 758 23 5 15 2.46e 05 3.885e 04 1.03121159e+07
bandm 269 436 13 6 9 1.76e 05 3.163e 04 1.58628020e+02
beaconfd 148 270 17 4 12 1.95e 05 3.304e 04 3.35924858e+04
blend 74 114 8 3 6 5.00e 06 8.538e 05 3.08121507e+01
bnll 632 1576 21 5 16 9.08e 05 2.192e 03 1.97762726e+03
bnl2 2268 4430 30 5 17 7.34e 05 6.468e 03 1.81123654e+03
boeingl 347 722 21 4 17 298e 05 5.541e 04 3.35214102e+02
boeing2 140 279 20 5 14 8.03e 05 2.689e 03 3.15018724e+02
bore3d 199 300 26 5 12 1.27e 06 2.882e 05 1.37308039e+03
brandy 149 259 15 8 10 1.22e 05 3.153e 04 1.51850990e+03
capri 267 476 13 6 12 6.20e 05 2.011e 03 2.69001283e+03
cycle 1801 3305 124 2 9 9.55e 05 2.425e 03 5.06987267e+00
czprob 737 3141 22 4 12 3.46e 06 2.035e 04 2.18519670e+06
d2q06¢ 2171 5831 65 2 29 9.46e 05 8.490e 03 1.22784238e+05
d6cube 404 6184 8 5 6 6.49e 05 9.216e 03 3.15491659e+02
degen2 444 757 6 5 4 1.16e 05 2.441e 04 1.43517800e+03
degen3 1503 2604 11 6 5 3.60e 05 1.071e 03 9.87294069¢e+02
dfloo1 6071 12230 =150 maximum number of iterations exceeded
e226 220 469 11 7 9 6.92e 05 2.279e 03 1.87519260e+01
etamacro 357 692 16 4 15 4.80e 05 7.180e 04 7.55715241e+02
[TH8D0 501 1005 33 6 23 3.75e 05 9.561le 04 5.55679578e+05
finnis 492 1014 21 3 20 597e 05 1.380e 03 1.72791093e+05
fitld 24 1049 27 6 12 1.12e 08 6.994e 07 9.14637809e+03
fitlp 627 1677 11 1 2 stagnating corrector step length

fitad 25 10524 13 6 6 8.97e 06 1.596e 03 6.84642932e+04
fit2p 3000 13525 11 1 2 stagnating corrector step length

forplan 135 463 34 3 17 1.27e 05 4.200e 04 6.64218236+02
ganges 1137 1534 18 7 16 246e 05 1.117e 03 1.09585736e+05
gfrd pnc 600 1144 30 5 11 3.04e 05 7.234e 04 6.90223600e+06
greenbea 2318 5424 56 6 14 593e 06 7.958e 04 7.24625478e+07
greenbeb 2317 5415 41 4 21 stagnating corrector step length

israel 174 316 29 5 15 1.46e 06 4.085e 05 8.96644822e+05
kb2 43 68 19 7 4 7.83e 05 3.024e 04 1.74990013e+03
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Table 8.1: Numerical results of the three-step predictor-corrector method (continued)
Problem m n k J P f kd wt kg Primal Objective
lotfi 151 364 38 3 18 5.72e 05 7.785e 04 2.52644858e+01
maros 835 1921 60 4 25 8.95e 05 5.867e 03 5.80630232e+04
maros-r7 3136 9408 23 5 7 4.10e 05 3.919e 03 1.49718517e+06
modszk1l 686 1622 28 8 16 3.69e 06 2.555e 04 3.20619728e+02
nesm 654 2922 32 3 25 8.09e 05 4.882e 03 1.40760365e+07
perold 625 1530 58 3 24 5.40e 05 2.456e 03 9.38065157e+03
pilot 1441 4657 36 2 25 7.56e 05 5.118e 03 5.57483879e+02
pilotja 924 2044 97 1 30 7.02e 05 1.665e 03 6.11207802e+03
pilotwe 722 2930 34 1 28 6.92e 05 2.407e 03 2.72010735e+06
pilot4 402 1173 41 3 22 480e 05 1.364e 03 2.58113492e+03
pilot87 2030 6460 122 3 23 3.44e 05 1.703e 03 3.017486460e+02
pilotnov 951 2242 47 4 16 2.80e 05 2.462e 03 4.49727619e+03
recipe 85 177 7 4 5 6.98e 06 9.192e 05 2.66616001e+02
sc105 105 163 9 4 7 2.88e 05 9.198e 05 5.22020560e+01
sc205 205 317 30 4 5 6.25e 06 1.052e 04 5.22020613e+01
sc50a 49 77 11 4 5 2.84e 05 2.130e 04 6.45750516e+01
sc50b 48 76 8 4 3 5.55e 05 2.475e 05 6.99999917e+01
scagr25 471 671 27 5 10 2.92e 10 9.765e 09 1.47534331e+07
scagr7 129 185 15 6 8 5.89e 07 1.114e 05 2.33138982e+06
scfxm1l 322 592 15 5 12 9.16e 05 3.799e 03 1.84167590e+04
scfxm2 644 1184 19 5 11 2.18e 06 1.403e 04 3.66602616e+04
scfxm3 966 1776 19 7 14 6.83e 07 2.837e 05 5.49012545e+04
scorpion 375 453 15 3 10 293e 06 7.267e 05 1.87812482e+03
scrs8 485 1270 13 4 11 8.57e 05 3.904e 03 9.04296952e+02
scsdl 77 760 6 4 5 5.73e 11 8.188e 10 8.66666667e+00
scsd6 147 1350 7 5 4 1.77e 05 2.211e 04 5.05000001e+01
scsd8 397 2750 4 4 4 5.69e 05 3.501e 03 9.04986876e+02
sctapl 300 660 13 5 5 4.68e 05 2.275e 03 1.41225000e+03
sctap2 1090 2500 11 6 7 491e 07 1.671le 05 1.72480714e+03
sctap3 1480 3340 9 5 6 3.06e 06 3.146e 04 1.42400000e+03
seba 515 1036 10 0 0 stagnating corrector step length
sharelb 112 248 33 6 22 9.45e 05 1.294e 03 7.65893186e+04
share2b 96 162 10 2 8 7.63e 07 1.048e 05 4.15732241e+02
shell 496 1487 19 7 15 3.92e 09 9.638e 08 1.20882535e+09
ship04l 356 2162 17 5 7 1.406e 06 1.136e 04 1.79332454e+06
ship0O4s 268 1414 14 6 5 1.86e 08 9.237e 07 1.79871470e+06
ship08I 688 4339 19 8 6 9.18e 05 1.182e 02 1.90905521e+06
ship08s 416 2171 18 7 5 6.31le 06 4.677e 04 1.92009821e+06
ship12l 838 5329 18 5 10 141e 05 1.268e 03 1.47018792e+06
ship12s 466 2293 14 5 7 2.36e 06 1.659e 04 1.48923613e+06
sierra 1222 2715 18 9 9 4.49e 07 2.065e 05 1.53943623e+07
stair 356 538 12 6 10 1.96e 05 4.306e 04 2.51268061e+02
standata 359 1258 13 6 8 191e 06 8.002e 05 1.25769934e+03
standgub 361 1366 7 5 5 2.29e 08 5.693e 07 1.25769941e+03
standmps 467 1258 13 5 7 1.86e 08 6.371e 07 1.40601750e+03
stocforl 109 157 18 2 6 6.22e 06 8.962e 05 4.11319765e+04
stocfor2 2157 3045 32 5 10 453e 05 3.001e 03 3.90244086e+04
stocfor3 16675 23541 65 4 20 7.34e 05 8.415e 03 3.99767845e+04
stocfor3old 16675 23541 45 2 19 9.74e 05 1.237e 02 3.99767840e+04
truss 1000 8806 15 6 6 4.15e 07 2.641e 05 4.58815845e+05
tul1 292 617 22 5 17 9.98e 05 3.865e 03 2.92147322e 01
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Table 8.1: Numerical results of the three-step predictor-corrector method (continued)

Problem m n k J P £ kd wf kq Primal Objective
vtpbase 194 325 13 7 10 2.32e 07 8.298e 06 1.29831463e+05
woodlp 244 2595 10 5 7 4.36e 05 3.447e 03 1.44290241e+00
woodw 1098 8418 15 2 11 9.49e 05 1.276e 02 1.30445782e+00

The examples grow7, growl5, and grow22 have not been included in Table 8.1,
as they exhibit a quite interesting behavior which requires an in-depth look. Ta-
ble 8.2 first gives those results which have not been included in table 8.1.

Table 8.2: Numerical results of the grow* examples (author’s initial point)

problem m n Kk J S £ k& wf ki Primal Objective

grow?7 140 301 130 3 5 9.9175e 07 1.9719 05 4.7787811822e+07
growl5 300 645 201 3 6 4.1590e 07 8.0793e 06 1.0687094132e+08
grow22 440 946 295 3 5 1.0204e 09 1.4146e 08 1.6083433648e+08

It is notable that the number of iterations required to obtain a solution is quite
large with up to almost 300 iteration for the problem grow22. Interestingly, the
results improve dramatically if the initial point is chosen di Cerkntly. Table 8.3
gives the results for the grow* test examples, this time using the default starting
point provided by LIPSOL.

Table 8.3: Numerical results of the grow* examples (LIPSOL’s initial point)

problem m N k J S f k& wf kq Primal Objective

grow7 140 301 33 4 11 3.8723e 10 5.1334e 09 4.7787811815e+07
grow15 300 645 29 5 12 6.6616e 10 1.1677e 08 1.0687094129e+08
grow22 440 946 24 4 12 5.0103e 05 9.5985e 04 1.6083433738e+08

Even though the iteration count is enormous when Algorithm 8.1 is applied
with the default initial point, the local behavior, should be looked at more closely.
Consider, for example, the last five iterations for the problem grow22. The values
in table 8.4 demonstrate the local quadratic rate of convergence quite nicely.

Table 8.4: Local behavior of grow22 (author’s initial point)

k K k® wk k Primal Objective
291 1.0544e+00 1.0384e+01 1.6083406637e+08
292 1.0544e+00 1.0453e+01 1.6083419330e+08
293 5.6036e 01 2.6892e+00 1.6083431197e+08
294 1.3814e 03 3.6227e 05 1.6083433648e+08
295 9.1839e 10 5.4320e 08 1.6083433648e+08

Looking at Table 8.1, it is also notable that the failure to solve the prob-
lem dFI001 persists. The test cases greenbea and greenbeb as well as stocfor3
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could be solved by Algorithm 8.1 without problems. Problems fitlp and Fit2p
still produce failures due to a too small step length in the corrector step. In con-
trast to the Jacobian smoothing method 6.1 Algorithm 8.1 fails to solve the exam-
ples growl5 and grow22 within the given maximal number of iterations. Other
problems, such as cycle, pilot. ja, or pilot87 require a large number of itera-
tions to obtain a solution. Still, it has to be noted that the total number of errors
dropped to 7 for this method. Opposed to the Jacobian smoothing method 6.1,
Algorithm 8.1 performs quite well, even on larger problems, such as maros-r7
or modzkil. This can be viewed as another major improvement of the predictor-
corrector approach compared to the pure Jacobian smoothing method, especially
as most problems could be solved in less than 40-50 iterations.
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8.2 Global and Quadratic Convergence of a Predictor-Corrector
Method with a Smoothing Variable

In this section another smoothing-type predictor-corrector method based on the
method introduced in Section 7.2 is presented. This method follows an idea de-
veloped by Jiang [30]. The algorithm presented in this section is quite similar to
the one proposed by Burke and Xu [8] (see also [5]). As the method introduced in
Section 8.1, the algorithm is a predictor-corrector method with the corrector step
being responsible for the global convergence and the predictor step guaranteeing
local fast convergence under suitable assumptions. In fact, the corrector step of
Algorithm 8.11 is identical to the one used by Burke and Xu [8], but we will prove a
di Cerknt global convergence result, using less stringent assumptions. The predic-
tor step is essentially the same as in Algorithm 8.1 (and was introduced by Chen,
Qi and Sun [14]) and can be shown to be locally quadratically convergent under
weaker assumptions than those used by Burke and Xu [8]. Due to its stronger
convergence properties it improves Algorithm 8.1. The numerical results stated
in Table 8.5 are somewhat better than the ones for Algorithm 8.1.

8.2.1 Description of Algorithm

For this algorithm we use the same approach as for Algorithm 7.8, i. e., we consider
the smoothing parameter as an independent variable.

For the remainder of this section, let * always denote the minimum func-
tion (5.3) from example 5.2 and * its smoothed counterpart, the Chen-Harker-
Kanzow-Smale smoothing function (5.7) from example 5.3.

We will also employ the mappings (cf. (7.16)) and O (cf. (7.17)) which were
already introduced in Section 7.2.1.

The only di Cerknce between Algorithm 8.11 and Algorithm 7.8 is the addition
of a predictor step to the following algorithm. This predictor step will allow us to
prove that the resulting algorithm converges locally Q-quadratically.

Algorithm 8.11

Step O (Initialization):
Choosew?: x9; 0:sO© 2R" RM RMsuchthatAT © s® ¢;AxO
b, choose ¢ > 0, select kd , WO k= ;%2 0:1:0< "min < “max <
1;" 0, and set the iteration counter k: 0.

Step 1 (Termination Criterion):
If kb wX k ' Stop.

Step 2 (Predictor Step):
Compute a solution AwX; A AxK:A K AsKA 2R RM RN

R of the linear system
0% wk;

K. .
A ® wk;0 : (8.26)
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If kb wK AwK k ": Stop. Otherwise, if
k xX AxKisk AsK; k>
then set
wheowk Ter g ke L

else compute %'k, where “y is the non-negative integer such that

k xX AxKisk AsKiw (kW  8j 0;1;2;:::;“k and

k xK AxKisK AsKp'c 1 k> 9k 1.

and set " : k kand

if ‘O,
AwK  otherwise:

w
Wk.

Step 3 (Corrector Step):
Choose "k 2 "min; “max -
Compute a solution AWK; A7 ARK:ATK:ASK AT 2R RM RN
R of the linear system

TR
AW
0% wk; A 0~ WK 7 : (8.27)
—~ n < O
Letty max % “ 0;1;2;::: such that

k >?k kaﬁk;gk kaé\k; 1 Ak’t\k Ak k 1 Akfk Aki (8.28)
Setwk 1: wk tAwKand ¢ 1: 1 “ktk Tw

Step 4 (Update):
Setk -k 1,andgo to Step 1.

To get a better understanding of the way Algorithm 8.11 works, let us add a
couple of comments. In Step 0, we require the starting point w® %% ©9:s° to
be feasible with respect to the linear equations AT s cand AX b. Since
the components x° and s® do not have to be positive (in contrast to interior-point
methods), it is relatively easy to find such a starting point.

In the predictor step, we first compute a search direction by solving the linear
system (8.26). The interesting part about this linear system is the fact that the
right-hand side of (8.26) is unperturbed with respect to , whereas we use the
standard Jacobian of the perturbed function ©® w; on the left. This may be
viewed as the counterpart of the a [nekcaling step typically used as a predictor
step in primal-dual interior-point methods, see Wright [56]. Like in the interior-
point setting, this predictor step will eventually guarantee local fast convergence
(under suitable assumptions).
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After having computed the search direction in (8.26), we try to reduce the
smoothing parameter K as much as possible with the only restriction that the full
step stays within a certain neighborhood of the central path (cf. Lemma 7.10 (3),
which still holds for Algorithm 8.11).

While our predictor step is di Lerknt from the one used by Burke and Xu [8] in
their smoothing-type method, the corrector step coincides with the one from [8], as
already mentioned in the comments following Algorithm 7.8. Note that the linear
system (8.27) is precisely the one from (7.20) and includes a perturbation on the
right-hand side as well. The predictor step also contains a procedure to reduce
the smoothing parameter. This procedure will guarantee global convergence in
the sense that | decreases to zero under mild conditions.

8.2.2 Convergence Analysis

This section investigates the global and local convergence properties of Algo-
rithm 8.11. To this end, we assume throughout this section that the termination
parameter " is equal to zero, and that Algorithm 8.11 generates an infinite num-
ber of iterates wK, i.e., we assume that the algorithm does not stop after a finite
number of iterations in a point wK satisfying the optimality conditions (3.5).

Since Algorithm 8.11’s corrector step coincides with Step 3 of Algorithm 7.8,
many of the following results can be taken directly from Section 7.2.2.

We now note that Algorithm 8.11 is well defined.

Lemma 8.12 The following statements hold for any k 2 N:
(1) The linear systems (8.26) and (8.27) have a unique solution.
(2) There exists a unique g satisfying the conditions in Step 2.
(3) The step size ty in Step 3 is uniquely defined.

4) k xKsK; Kk « for all k 2 N.

Proof.

1) The structure of the Jacobian ®° wkK; . (cf. (7.19)) shows that this matrix
is non-singular if and only if <I>°k wK is non-singular. This has already
been shown in Proposition 5.6.

(2) This statement follows with the same arguments as Proposition 8.2.

(3), (4) These results can be proven analogously to parts (2) and (3) of Lemma 7.9
|

Note that as a consequence, Algorithm 8.11 is well-defined.

The following properties of Algorithm 8.11 will be used a number of times
later on. The parts (1) and (4) are identical to the corresponding properties listed
in Lemma 7.9 and Lemma 7.10. Part (2) needed to be adapted to accommodate the
predictor step’s step length variable .
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Lemma 8.13 The sequences f xK; K:sk g and f g generated by Algorithm 8.11
have the following properties:

(1) AT kK sk cand Axk b forall k2 N.

(2) « k11 Tk 1f|(1 K 1 .. ol Aofo o forall k 2 N.

Proof.

(1) The assertion follows with the same arguments as used in the proof of
Lemma 7.10 (1).

(2) Step 2 of Algorithm 8.11 implies that 7 k k- The updating rulesin Step 3
therefore give

k1 1 Tkt e 1 Tkt Kok
for all k 2 N. This gives the desired formula. [ |

We can now state a global convergence result for Algorithm 8.11. Note that
this result is di Lerknt from the one provided by Burke and Xu [8]. (They use an
assumption which is even stronger than the one we use for our local convergence
result in Theorem 8.16; on the other hand, the main emphasis in [8] was to prove
a global linear rate of convergence result.)

Theorem 8.14 Assume that the sequence fwKg f xK; X;sK g generated by Al-
gorithm 8.11 has at least one accumulation point. Then ¥ g converges to zero.

Proof. Since the sequence T g is monotonically decreasing and bounded from
below by zero, it converges to a number 0. If 0, we are done.

So assume that > 0. Then the updating rules in Step 2 of Algorithm 8.11
immediately give

wk  wk: “k Kk, and 1 (8.29)

for all k 2 N su LCciehtly large. Taking this into account, the remainder of the proof
is identical to that of Theorem 7.13. The results from Section 7.2.2 employed in
this proof still hold for Algorithm 8.11. [ |

We now give a local convergence result. To this end, we first note that the
search direction we obtain in our predictor step is identical to the one obtained in
the predictor step of Algorithm 8.1 (see also [20]).

Lemma 8.15 The vector AwK; A | is a solution of the linear system (8.26) if and
only if AwK solves the system
d)ok wk Aw dg wk :

and A ¢ O.
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Proof. Since the smoothing parameter on the right-hand side of the linear sys-
tem (8.26) is equal to zero, the assertion follows immediately from the discussion
following (7.19). ]

The previous result implies that we can apply the local rate of convergence
analysis from Section 8.1.2 (see also [20]). Hence we obtain the following result,
which is equivalent to Theorem 8.10 (see also Tseng [55]).

Theorem 8.16 Assume that the sequence fwXg generated by Algorithm 8.11 con-
verges to a strictly complementary solution of the optimality conditions (3.5). Sup-
pose further that the parameter from Step O of Algorithm 8.11 is chosen su =1
ciently large such that = 2" n (cf. Lemma 5.5). Then the predictor step is eventu-
ally accepted, and we have

for all k 2 N su LCciehtly large, i.e., the smoothing parameter converges locally
Q-quadratically to zero.

Note that a typical interior-point method can guarantee the convergence of the
corresponding iteration sequence to a strictly complementary solution, so from
this point of view, the assumptions we use in Theorem 8.16 are stronger. However,
this is basically the only di Cerknce, in particular, we stress that the assumptions
used in Theorem 8.16 do not necessarily imply that the solution set of the opti-
mality conditions 3.5 reduces to a singleton.

We close this section by noting that all results (with the possible exception
of Theorem 8.16) would still be true if * would denote the Fischer-Burmeister
function from (5.2) together with its smooth counterpart from (5.6); this can be
seen by an easy inspection of the above proofs. On the other hand, it is currently
an open question whether Theorem 8.16 also holds for the Fischer-Burmeister
function or not.

8.2.3 Numerical Results

Algorithm 8.11 has been implemented in MATLAB, utilizing once again Zhang'’s
interior-point code LIPSOL [57, 58].
The starting point for the smoothing-type adaption of Zhang’s code is com-
puted as described in number (3) on page 105 in Section 8.1.3 for Algorithm 8.1.
Furthermore, the initial smoothing parameter ¢ is taken such that

0 x?sio foralli2f1;:::;ngwithx?>0ands?>0:

This choice guarantees that we have x9%:s% o O (for both the minimum and
the Fischer-Burmeister function).
The iteration is terminated if one of the following conditions holds:

(1) <10 %or
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(2) k& wK k1 <10 4or
(3) k& wK k1 <10 3 and k& wk kq=k® w® kq <10 6.

Note that we do use the equation operator ® from (5.1) rather than the operator ®
from (7.17), this allows for a better comparison of the results.

Criterion (1) was used for the implementation of Algorithm 8.1 and is moti-
vated by the fact that the square of does, more or less, play the role of the
duality gap in interior-point methods (cf. (4.2)) for which 10 8 is a typical value
for the stopping parameter. Criterion (2) is an absolute error measuring the total
residual k& wX k4, whereas (3) is a mixture between a weakened form of this ab-
solute error and a relative error comparing the k-th residual k& w* k4 with the
initial residual k& w° k4. Additionally the program was configured to terminate
after 150 iterations in case no solution was reached. As usual, the known step
length related emergency stops were added.

Another enhancement which has been made to Algorithm 8.11 is the imple-
mentation of a criterion to adaptively modify the neighborhood N ¢ by in-
creasing . If the Jacobian smoothing predictor step has not been accepted and

Kk , we multiply g by aconstant > 1. For the implementation described
here, a choice of 2 in combination with 1 produced good results.

The remaining parameters from Step O of Algorithm 8.11 were chosen as fol-
lows:

kd , wl k
0

% 0:9;

and ~ being the Fischer-Burmeister function (according to our experience, the
Fischer-Burmeister function gives better results than the minimum function, at
least within the framework of Algorithm 8.11).

Finally, the parameter ~ from Step 3 of Algorithm 8.11 was always taken to
be 0:5.

All test runs were done on a SUN Enterprise 450. Table 8.5 contains the corre-
sponding results, with the columns of table 8.5 having the following meanings:

Problem: Name of the test problem in the Netlib collection,

m: Number of equality constraints (after preprocessing),
n: Number of variables (after preprocessing),

k: Number of iterations until termination,

P: Number of accepted predictor steps,

£ value of i at the final iterate,
kd wt ki: value of k& wkK k4 at the final iterate,
Primal Objective: Value of the primal objective function at final iterate.

Table 8.5: Numerical results of Algorithm 8.11

Problem m n k P £ kd wf kq Primal Objective
25fv47 798 1854 34 17 6.0250e 04 2.9537e 04 5.5018459053e+03
80bau3b 2235 11516 29 23 1.0987e 03 7.1465e 04 9.8722419211e+05
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Table 8.5: Numerical results of Algorithm 8.11 (continued)

Problem m n k P £ kd wf kq Primal Objective
adlittle 55 137 15 15 2.1737e 02 8.7395e 05 2.2549496391e+05
afiro 27 51 10 10 4.7999e 02 3.2452e 05 4.6474687177e+02
agg 488 615 23 20 1.3406e 02 6.9052e 04 3.5991767286e+07
agg2 516 758 25 18 7.6969e 03 4.7607e 04 2.0239252355e+07
agg3 516 758 30 14 7.0617e 03 1.1522e 04 1.0312115936e+07
bandm 269 436 20 19 49684e 04 9.3110e 05 1.5862801756e+02
beaconfd 148 270 18 15 2.7426e 03 5.8563e 04 3.3592485986e+04
blend 74 114 13 12 2.7468e 03 2.9106e 06 3.0812134385e+01
bnll 632 1576 26 16 3.5355e 04 7.0895e 05 1.9776295617e+03
bnl2 2268 4430 26 14 9.5617e 04 4.8772e 04 1.8112367543e+03
boeingl 347 722 26 16 2.2843e 03 4.9528e 04 3.3521310546e+02
boeing2 140 279 16 15 5.4054e 03 9.8945e 04 3.1500732408e+02
bore3d 199 300 28 22 1.3979e 03 4.1970e 05 1.3730804026e+03
brandy 149 259 19 15 1.1040e 03 7.8205e 05 1.5185099104e+03
capri 267 476 20 19 9.5525e 03 6.4732e 04 2.6900133856e+03
cycle 1801 3305 39 19 9.4566e 05 1.0106e 02 5.2249915841e+00
czprob 737 3141 22 19 1.1163e 02 2.8069e 04 2.1851966995e+06
d2qg06¢c 2171 5831 57 19 8.3779e 05 4.0045e 05 1.2278421095e+05
d6cube 404 6184 25 21 1.7077e 03 2.6014e 05 3.1549167161e+02
degen2 444 757 23 23 2.3842e 03 9.9759e 05 1.4351779632e+03
degen3 1503 2604 16 16 7.9692e 04 5.7716e 05 9.8729398786e+02
dflool 6071 12230 > 150 maximum number of iterations exceeded

e226 220 469 27 25 2.4792e 04 5.3902e 05 1.8751928739e+01
etamacro 357 692 26 13 1.5436e 04 7.3792e 05 7.5571522983e+02
[1H8DO 501 1005 36 14 6.2879e 03 8.5460e 04 5.5567957590e+05
finnis 492 1014 31 20 1.3882¢ 03 2.9195e 04 1.7279127031e+05
fitld 24 1049 20 18 5.7480e 04 4.0534e 05 9.1463780917e+03
fitlp 627 1677 19 19 1.7472e 03 7.3692e 06 9.1463780936e+03
fit2d 25 10524 22 20 6.0248e 04 8.2675e 05 6.8464293289e+04
fit2p 3000 13525 20 20 1.2942e 03 3.0570e 04 6.8464293283e+04
forplan 135 463 28 17 4.7384e 03 9.3267e 04 6.6421820761e+02
ganges 1137 1534 25 20 3.0644e 03 6.4436e 04 1.0958573612e+05
gfrd-pnc 600 1144 23 16 1.2681e 02 2.4942e 04 6.9022360024e+06
greenbea 2318 5424 25 20 5.7593e 03 8.5643e 04 7.2462520306e+07
greenbeb 2317 5415 35 15 2.2551e 03 4.7930e 04 4.3022602607e+06
grow?7 140 301 34 19 3.2322e 02 2.2135e 05 4.7787811813e+07
growl5 300 645 37 18 2.4283e 02 3.7293e 06 1.0687094129e+08
grow22 440 946 37 15 1.0882e 01 7.5577e 06 1.6083433646e+08
israel 174 316 27 17 3.9926e 03 2.8436e 04 8.9664482178e+05
kb2 43 68 32 10 3.3160e 03 9.8866e 05 1.7499000911e+03
lotfi 151 364 35 16 3.7591e 03 8.0923e 04 2.5263066012e+01
maros 835 1921 37 12 3.1239e 03 7.1513e 04 5.8063742927e+04
maros-r7 3136 9408 22 22 4.7684e 03 9.7763e 04 1.4971851671e+06
modszkl 686 1622 26 17 1.1499e 02 8.3608e 04 3.2061981508e+02
nesm 654 2922 52 14 29135e 04 2.4794e 04 1.4076036489e+07
perold 625 1530 33 14 3.3115e 03 7.3875e 04 9.3805322461e+03
pilot 1441 4657 81 14 1.1707e¢ 04 1.4059e 04 5.5748445014e+02
pilotja 924 2044 76 14 9.6009e 05 4.3618e 03 6.1130052461e+03
pilotwe 722 2930 61 13 5.8582e¢ 04 3.7472e¢ 04 2.7201075333e+06
pilot4 402 1173 132 13 9.5377e 05 6.9395e 03 2.5810606602e+03
pilot87 2030 6460 63 14 8.3070e 05 8.8733e 03 3.0173031374e+02
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Table 8.5: Numerical results of Algorithm 8.11 (continued)

Problem m n k P f kd w' kg Primal Objective

pilotnov 951 2242 27 22 25409e 03 3.0714e 04 4.4972761773e+03
recipe 85 177 14 14 1.2207e 03 3.5042e 05 2.6661598322e+02
sc105 105 163 19 13 1.4451e 03 7.7940e 05 5.2202033312e+01
sc205 205 317 22 19 7.5991e 04 1.3473e 04 5.2202035425e+01
sc50a 49 7 15 10 3.6860e 03 4.9576e 05 6.4575009902e+01
sc50b 48 76 14 11 6.6556e 03 7.6186e 06 6.9999776566e+01
scagr25 471 671 19 17 2.3406e 02 2.9238e 04 1.4753433056e+07
scagr7 129 185 19 18 3.4159e 03 3.3656e 04 2.3313898243e+06
scfxml 322 592 20 19 5.9750e 03 6.4703e 04 1.8416759818e+04
scfxm2 644 1184 26 18 4.3503e 03 8.7736e 04 3.6660262213e+04
scfxm3 966 1776 26 21 4.9124e 03 9.6075e 04 5.4901255716e+04
scorpion 375 453 21 20 2.7373e 04 1.8825e 05 1.8781248227e+03
scrs8 485 1270 21 19 6.6791e 04 4.5185e 05 9.0429695560e+02
scsdl 77 760 22 22 4.7684e 03 9.5696e 06 8.6666991041e+00
scsd6 147 1350 15 15 4.0199e 04 1.1125e 06 5.0500000067e+01
scsd8 397 2750 13 13 1.1068e 02 4.6656e 05 9.0500023711e+02
sctapl 300 660 24 23 4.0019e 03 5.1964e 05 1.4122500207e+03
sctap2 1090 2500 18 16 15629 03 1.4780e 05 1.7248071430e+03
sctap3 1480 3340 18 17 2.1396e 03 9.2047e 05 1.4240000008e+03
seba 515 1036 23 15 3.1158e 03 9.3931e 05 1.5711600096e+04
sharelb 112 248 43 14 3.0326e 03 9.3991e 04 7.6589318369e+04
share2b 96 162 16 16 3.0518e 04 4.4814e 07 4.1573224024e+02
shell 496 1487 22 14 1.7418e 01 1.6486e 05 1.2088253461e+09
ship04l 356 2162 20 20 1.6465e 02 8.0608e 04 1.7933245380e+06
ship04s 268 1414 20 20 1.2018e 02 6.5490e 05 1.7987147004e+06
ship08l 688 4339 21 20 1.0490e 02 3.7678e 04 1.9090552114e+06
ship08s 416 2171 20 20 1.8916e 02 1.4499% 04 1.9200982105e+06
ship12l 838 5329 21 20 8.4547e 03 5.6258e 04 1.4701879193e+06
shipl2s 466 2293 20 19 8.9471e 03 6.2617e 04 1.4892361344e+06
sierra 1222 2715 22 19 1.9638e 02 9.5043e 04 1.5394362263e+07
stair 356 538 19 18 2.3050e 03 1.6815e 04 2.5126689656e+02
standata 359 1258 13 12 7.2079e 02 9.5241e 06 1.2577586668e+03
standgub 361 1366 13 12 7.2079e 02 9.5241e 06 1.2577586668e+03
standmps 467 1258 18 14 9.0258e 03 1.1631e 05 1.4060176463e+03
stocforl 109 157 16 11 3.3401e 02 1.2536e 04 4.1131976111e+04
stocfor2 2157 3045 29 16 8.3230e 04 2.4732e 05 3.9024408532e+04
stocfor3 16675 23541 63 17 1.8715e 04 2.8605e 04 3.9976784284e+04
stocfor3old 16675 23541 70 13 8.7370e 05 6.0456e 04 3.9976783942e+04
truss 1000 8806 19 18 6.3715e 03 5.6972e 05 4.5881584778e+05
tul1 292 617 32 16 3.2629e¢ 04 1.5624e 04 2.9216987102e 01
vtpbase 194 325 19 19 3.8147e 02 3.2374e 05 1.2983146617e+05
woodlp 244 2595 13 13 3.3617e 04 6.1025e 05 1.4429024524e+00
woodw 1098 8418 34 22 22390e 04 9.7122e 05 1.3044869516e+00

The overall results are quite good and seem to be better than the corresponding
results from the three-step method given in table 8.1. This method only fails on
problem dfl001, which, as stated before, cannot be solved by LIPSOL either. Most
test problems can be solved in less than 20-30 iterations. Even formerly hard-
to-solve problems, such as cylce or d2q06c can now be solved much quicker in
39 and 57 iterations, as opposed to 124 and 65 iterations, respectively. Unfortu-
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nately, to solve the pi lot*-test cases Algorithm 8.11 still requires more iterations
than for most other problems. One still has to take into account that this algo-
rithm, opposed to Algorithm 8.1 is not a three-step method, but a regular two-
step predictor-corrector algorithm. This means that, Algorithm 8.11 only solves
at most two linear systems with di Lerknt coe [cieht matrices per iteration, as
opposed to a maximum of three matrix factorizations required by Algorithm 8.1.

When comparing iteration numbers, the results presented here are close to
the performance of interior-point methods (for a set of results which the solver
PCx by Czyzyk, Mehrotra, Wagner, and Wright [16, 17] produced, see table 8.9 on
page 146). The comparison of these results, however, has to be done carefully;
one has to take into account that Algorithm 8.11 may have to solve up to two lin-
ear system with di Lerknt coe [cieht matrices per iteration, whereas interior-point
methods, which are mostly based on Mehrotra’s Algorithm 4.6, only perform one
factorization per iteration. Still, one has to remember that, in case the predictor
step is not accepted, Algorithm 8.11 will have to factorize only one matrix, which
reduces the overall amount of work necessary.
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8.3 A More Flexible Update of the Smoothing Variable

In this section an improved version of Algorithm 8.11 is discussed. The new
method features a more flexible update rule for the smoothing variable in addi-
tion to a di Cerknt generalization of the smoothing operator @. It also features no
Jacobian smoothing component anymore. The contents of this section are mainly
based on the article [21].

8.3.1 Development of Algorithm

As in the previous section, we will only consider the minimum function and its
smooth counterpart, the Chen-Harker-Kanzow-Smale smoothing function as the
basis for the smoothing method.

We will use the same technique to reformulate the KKT system into a non-
linear system of equations as described in Section 7.2.1. This way we are left with

a non-linear system © x; ;s; 0 which we have to solve.
Consider a function : 0;1 -¥ R having the following properties:
(P. 1) is continuously di Cerkntiable with 0 0.

(P. 2) 0 >o0forall 2 0;1.
(P. 3) 0 forall 2 0;1 .

(P.4) Foreach o =>0,thereisaconstant > O (possibly dependingon ) such
that 0 forall 2 0; o .

Lemma 8.17 The following functions have properties (P. 1) through (P. 4):

1) S

(2) S | 2 1,
(3) .exp 1,
Proof.

1)
(P. 1): This is obvious.
(P. 2): This follows immediately from ° 1>0forall 2 0;1 .

(P. 3): 0 a 1 . Therefore the function : obvi-
ously has the Property (P. 3).

(P. 4): 0 a immediately yields 1 for all
Note that the value of is independent of ¢ in this case.

(2) S| 2 1
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(P. 1):
(P. 2):
(P. 3):

(P. 4):

3
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(P. 1):
(P. 2):
(P. 3):

(P. 4):

This is obvious.
0 2 2 2>0forall 2 0:1.
Forall 2 0;1 itholds that
1 2 1 2 2 2 2 2 0

Therefore this function obviously has the Property (P. 3).
Forall 2 0;1 itholds

1
2 2 2 1 =2 2
2
1 1
2 2 =0
2 2
Hence with : 1=2 this function has the Property (P. 4) where is

independent of .
exp 1:
This is obvious since exp 0 1.

Since ° exp itisobviousthat ° 1>0forall 2 0;1 .
It holds forall 2 0O;1 :

0

a exp 1 exp
a exp exp 1
a exp exp exp  exp
a exp exp exp
a 1 exp
a 1 exp :
Therefore ©oexp 1 has Property (P. 3).
Itholdsforall 2 0; g and o =>0:
0
a  exp 1 exp
a 1 exp
a exp 1
a exp 1
The monotonously decreasing function 1 is equal to exp for

0 and for some o > 0. Considering this last equality
exp o 1 0

now gives us the value of o for which the inequality from (P. 4) is
satisfied. Hence o 1 exp o = o. This shows that
Toexp 1 has Property (P. 4). [ |
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We will use the following generalization of the equation operator ©:

AT s ¢

A b
0 . XxX;;s; g X. . z; (8.30)

' X:S;

and its Jacobian
2 o AT 1 0 3
o §A 0 o 0 z 6 a1
0 0 0 0

Here 2 0;1 denotes a suitable centering parameter, and, as usual,
1

D‘a‘l; . diag :::; @ak xz‘;sz‘;::: 2RM M
L
D‘g; . diag :::; @bk x:‘;sz‘;::: 2R ™
gk 0 ke ke TZR”
. "'1@—Xi'si’ K ’
where j is the i-th component function of
Note that the choice corresponds to the one used in [5, 8], whereas

here we aim to generalize the approach from [5, 8] in order to allow a more flexible
procedure to decrease . Since the precise reduction of has a significant influ-
ence on the overall performance of the smoothing-type method presented in the
previous section, such a generalization is very important from a computational
point of view.

Before we give a precise statement of our algorithm, let us add some further
comments on the properties of the function : (P. 1) is obviously needed since we
want to apply a Newton-type method to the system of equations ® . X; ;s;

0, hence has to be su [ciehtly smooth. The second property (P. 2) implies that
is strictly monotonically increasing. Together with 0 0 from Property
(P. 1), this means that the non-linear system of equations

0 . X ;s; 0

is equivalent to the optimality conditions (3.5) themselves (and not to the central
path conditions (4.2)), since the last row immediately gives 0. The third
property (P. 3) will be used in order to show that the algorithm to be presented
below is well-defined, cf. the proof of Lemma 8.19 (3). Furthermore, Properties
(P. 3) and (P. 4) together will guarantee that the sequence T kg is monotonically
decreasing and converges to zero, see the proof of Theorem 8.23.

We now return to the description of the algorithm. The method to be presented
below is a predictor-corrector algorithm with the predictor step being responsible

123
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for the local fast rate of convergence, and with the corrector step guaranteeing
global convergence. More precisely, the predictor step consists of one Newton

iteration applied to the system ® Xx; ;s; 0, followed by a suitable update
of which tries to reduce as much as possible. The corrector step then applies
one Newton iteration to the system ©1. X; ;s; 0, but with the usual right-

hand side ®1. X; ;s; being replaced by ® . X; ;s; for some centering
parameter 2 0;1 . This Newton step is followed by an Armijo-type line search.

The computation of all iterates is carried out in such a way that they belong to
the neighborhood

N c fx; ops; jAT s ¢, Ax b; k x;s; Kk g

of the central path, where > 0 denotes a suitable constant. In addition, we will
see later that all iterates automatically satisfy the inequality Xx;s; 0, which
will be important in order to establish a result regarding the boundedness of the
iterates, cf. Lemma 8.21 and Proposition 8.22 below.

The precise statement of our algorithm is as follows (recall that ® and © .
denote the mappings from (7.17) and (8.30), respectively).

Algorithm 8.18 (Generalized Predictor-Corrector Smoothing Method)
Step O (Initialization):
Choose w0 : x9 0:s0 2 R"™ RM RMand o > 0 such that AT ©
s c;Ax® b,and x9%s% o O, select k x%s% ok= 0;%2
0;1:0< "hin < "max < 1;" 0, and set the iteration counter k: 0.

Step 1 (Termination Criterion):
Ifk xK;skK;0 k ' Stop.

Step 2 (Predictor Step):
Compute a solution AwX; A AxK A K ASKA 2R RM™ RN
R of the linear system

' H
Aw

0% wk; A

0 wk; K - (8.32)

Ifk xK AxK:sk Ask;0 k ' Stop. Otherwise, if
k xX AxKisk AsK; k>
then set
whe owk e g ke 1
else compute %'k, where “ is the non-negative integer such that
k xK AxK;sk Askiwl |k w 8 0;1;2;:::;“kand

k xK AxKisk Askip'k 1 | k> o'« 1 -
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and set
8k ks
<wk if “x 0, (8.34)

~wk  AwK  otherwise:

Step 3 (Corrector Step):
Choose "k 2 "min; max -
Compute a solution AWK; A7y ARK: ATK:AGK: AT, 2 RN RM RN
R of the linear system

#
0. wk % AAVY O~ W<y (8.35)
R n o]
Letty max % “ 0:;1;2;::: such that
k K fAaxK sk §Aass T Ak k “« WAk (8.36)
and set
wKk 1wk AWK and 1 Tk WA (8.37)

Step 4 (Update):
Setk -k 1andgoto Step 1.

Algorithm 8.18 is closely related to Algorithm 8.11. In fact, when choosing

the only di Cerknce which remains is that a di Cerent right-hand side is

used in the predictor step, namely ® wk; | instead of ® wX;0 . The latter choice

seems to give slightly better local properties, however, the current version allows

to prove better global convergence results. Note that by doing so, we abandon the

Jacobian smoothing idea, as in Algorithm 8.18 both sides of all linear system are
perturbed.

From now on, it is always assumed that the termination parameter " in Algo-
rithm 8.18 is equal to zero and that Algorithm 8.18 generates an infinite sequence
f xK; K:sk: | g, i.e., we assume that the stopping criteria in Steps 1 and 2 are
never satisfied. This is not restrictive at all, since otherwise wK or wk  AwK would
be a solution of the optimality conditions (3.5).

We first note that Algorithm 8.18 is well-defined.

Lemma 8.19 The following statements hold for any k 2 N:
(1) The linear systems (8.32) and (8.35) have a unique solution.
(2) There exists a unique  satisfying the conditions in Step 2.

(3) The step size ty in Step 3 is uniquely defined.
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Consequently, Algorithm 8.18 is well-defined.

Proof.

(1) Taking into account the structure of the Jacobians @ w; and ©° Sw,
and using the fact that ° > 0 by Property (P. 2), part (1) is an immediate
consequence of Proposition 5.6.

(2) The statement follows with the same arguments as Proposition 8.12 (2) and
Proposition 8.2.

(3) In order to verify the third statement, assume there is an iteration index k
such that

k KK % ARK s % As% W % AT Kk> Tk % AT

forall < 2 N. Sincek xK:8%;" k "k, we obtain from Property (P. 3) that
k% ATk % Tk k= 7k
k% kK
1 Amax%‘ Ak

Taking this inequality into account, the proof can now be completed by using
a standard argument for the Armijo line search rule in the same manner as
in the proof of Lemma 7.9 (2).

We next state some simple properties of Algorithm 8.18 to which we will refer
a number of times in our subsequent analysis.

Lemma 8.20 The two sequences fwXg f xX; K:sk gand f g generated by Al-
gorithm 8.18 have the following properties:

(1) AT kK sk cand AxK bforallk 2 N.

2 « o0l Toto o i 1  Tkatk1 k1forallk2N,where >0
denotes the constant from property (P. 4).

A) k xKk:ski | k « for all k 2 N.
Proof. Part (1) holds for k 0 by our choice of the starting point x°%; 0;s0 .

Hence it holds for all k 2 N since Newton’s method solves linear systems exactly.
In order to verify statement (2), we first note that we get

A7k o k= "% (8.38)
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from the fourth block row of the linear equation (8.35). Since , k2 0; o for
all k 2 N, it therefore follows from Property (P. 4) and the updating rules in Steps
2 and 3 of Algorithm 8.18 that
k1 Tk tATk
ok k= Yk
PR
1 &k kK

Using a simple induction argument, we see that (2) holds.
Finally, statement (3) is a direct consequence of the updating rules in Algo-
rithm 8.18. ]

8.3.2 Convergence Analysis

In this section, we analyze the global and local convergence properties of Algo-
rithm 8.18. Even though the analysis for the local rate of convergence is essentially
the same as in [8] (recall that our predictor step is identical to the one from [8]),
the relevant results are included here for the sake of completeness. In particular,
we will show that all iterates xK; K:sK remain bounded under a strict feasibility
assumption. This was noted by Burke and Xu [8] for a particular member of our
class of methods (namely for the choice . ), butis not true for many other
smoothing-type methods like those from [11, 12, 13, 14, 20, 22, 55, 54].

The central observation which allows us to prove the boundedness of the iter-
ates xK; K:sK s that they automatically satisfy the inequality

k. k. 0

for all k 2 N provided this inequality holds for k 0. This is precisely the state-
ment of our first result.

Lemma 8.21 Thesequences fwkg f xX; K;sk g fwkg £ xK; " kK;5 gandf g,
T7kg generated by Algorithm 8.18 have the following properties:

(1) xK;§k;7 Oforallk2N.
(2) xK;sk;  Oforallk2N.
Proof. We first derive some useful inequalities, and then verify the two statements
simultaneously by induction on k.
We begin with some preliminary discussions regarding statement (1). To this

end, let k 2 N be fixed for the moment, and assume that we take Wk wk AwK
in Step 2 of Algorithm 8.18. Since each component of the function is concave,
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we then obtain

KK 8K~y
xK  AxK sk Ask: K Kk
xK  AxK sk Ask: K k 1 K
3
AxK
xK: sk 0 xkigk: 8 Ask &
k 1 «
2 3 2 3
AxK
xK:sk: 0 xkigk: QAskE 0 ki gk. K 9 0 £
A k k 1 k Ak
(8.39)
From the third block row of (8.32), we have
2 3
AxK
0Xk,Sk, K QASKE Xk,Sk, K
A g
Hence we get from (8.39):
2 3
0
K 8% 0 xkosk: 9§ 0 £ (8.40)

We claim that the right-hand side of (8.40) is non-positive. To prove this statement,
we first note that

2 3
0
OXk;Sk; kg 0 g k 1 k Akdk
k 1 k Ak
with
0] 1
K i k. .k ! 4k
d s XS ks @::;q A0
@ e 4

where j denotes the i-th component function of . Hence it remains to show that
k 1 k A K 0:

However, this is obvious since the last row of the linear system (8.32) immediately

implies A K-

We next derive some useful inequalities regarding statement (2). To this end,
we still assume that k 2 N is fixed. Using once again the fact that is a concave
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function in each component, we obtain from (8.35)

Xk l;Sk 1; kK 1 )’Zk ’t\kAik;gk kagk;Ak kaAk
ARK
ik,éq(, “k L% 0 )?k;’S\k, “k 9A§k%
Ay (8.41)
xK; §k;  QH

kK
1t R58%7%;
and this completes our preliminary discussions.
We now verify statements (1) and (2) by induction on k. For k 0, we have

x9:s%; o 0byourchoice of the starting pointw®  x9% ©;5% and the initial
smoothing parameter o > 0 in Step 0 of Algorithm 8.18. Therefore, if we set W°
w9 in Step 2 of Algorithm 8.18, we also have T o and therefore X9;89%; 7
0. On the other hand, if we set W°® w°® Aw? in Step 2, the argument used in
the beginning of this proof shows that the inequality X9;8%; 7 0 also holds
in this case.

Suppose that we have xK;sK; 0and XX;§%;7 0 for some k 2 N.
Then (8.41) immediately implies that we have xk 1;sk 1. | 0. Conse-
quently, if we have Wk 1 wK 1 in Step 2 of Algorithm 8.18, we obviously have

gk 1.gk 1.~ . 0. Otherwise, i.e., ifwesetwk 1wk 1 AwK 1inStep 2,
the argument used in the beginning part of this proof shows that the same in-
equality holds. This completes the formal proof by induction. ]

Proposition 8.22 Assume that there is a strictly feasible point for the optimality
conditions (3.5). Then the sequence fwkg  f xX; K;sK g generated by Algo-
rithm 8.18 is bounded.

Proof. The statement is essentially due to Burke and Xu [8], therefore the proof
is included here only for the sake of completeness.

Assume that the sequence fwkg f xK; K:sk ggenerated by Algorithm 8.18 is
unbounded. Since f kg is monotonically decreasing by Lemma 8.20 (2), it follows
from Lemma 8.20 (3) that

k xK:sk; k k K 0 (8.42)

for all k 2 N. The definition of the (smoothed) minimum function therefore im-
plies that there is no index i 2 f1;:::;ng such that x}‘ - 1or sik -T d1ona
subsequence, since otherwise we would have j x}‘;s}‘; k -1 1 which, in turn,
would imply k  xK;sK; . k -¥ 1 on asubsequence in contrast to (8.42). There-
fore, all components of the two sequences fxXg and fsXg are bounded from below,
i.e.,

xK and sK foralli 1;:::;nandforallk2N; (8.43)

where 2 R denotes a suitable (possibly negative) constant.
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8 Predictor-Corrector Methods

On the other hand, the sequence fwKg f xX; K:sk g is unbounded by as-

that x¥ -1 1 orsf -1 1 onasubsequence since otherwise the two sequences
fxKg and fskg would be bounded which, in turn, would imply the boundedness
of the sequence f Kg as well because we have AT ¥ sk ¢ forallk 2 N
(cf. Lemma 8.20 (1)) and because A is assumed to have full rank.

Nowletw X; ;§ 2RM™ R™ R" be astrictly feasible point for (3.5) whose

existence is guaranteed by our assumption. Then, in particular, we have
AT 5§ ¢ and AX b:
Since we also have
AT K sk ¢ and AxK b
for all k 2 N by Lemma 8.20 (1), we get
AT kK 5 sk o0 and Ax xK o0 (8.44)

by subtracting these equations. Premultiplying the first equation in (8.44) with
% xK T and taking into account the second equation in (8.44) gives

§TxK KTs xK Tsk gTs (8.45)

for all k 2 N. Using (8.43) as well as X > 0 and § > 0 in view of the strict feasibility

of the vector w X; ;§ , it follows from (8.45) and the fact that x}‘ -¥ 1 or
k

s; -1 1 on asubsequence for at least one index i 2 f1;:::;ng that

xK Tgk .n 71

Kok

on a suitable subsequence.
Now, using Lemma 8.21 (2), we have

for all k 2 N. Taking into account the definition of and looking at the j-th
component, this implies

2
xK st X s % (8.47)
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8.3 A More Flexible Update of the Smoothing Variable

for all k 2 N. Using (8.46) and (8.43), we see that we necessarily have xJ!( >

0 and s}( > 0 for all those k belonging to the subsequence for which (8.46) holds.
Therefore, taking the square in (8.47), we obtain

kok 2
4xjsj 4 ©

after some simplifications. However, since the right-hand side of this expression
is bounded by 4 g, this gives a contradiction to (8.46). ]

We next prove a global convergence result for Algorithm 8.18. Note that this
result is di Cerknt from the one provided by Burke and Xu [8] and is more in the
spirit of those from [54, 20, 22]. (Burke and Xu [8] use a stronger assumption in
order to prove a global linear rate of convergence for the sequence f g.)

Theorem 8.23 Assume that the sequence fwkg f xK; K;sK g generated by Al-
gorithm 8.18 has at least one accumulation point. Then ¥ g converges to zero.

Proof. Since the sequence T kg is monotonically decreasing (by Lemma 8.20 (2))
and bounded from below by zero, it converges to a number 0. If 0, we
are done.

So assume that > 0. Then the updating rules in Step 2 of Algorithm 8.18
immediately give

wk  wk; “k Kk, and 1 (8.48)

for all k 2 N su [ciehtly large. Subsequencing if necessary, we assume without
loss of generality that (8.48) holds for all k 2 N. Then Lemma 8.20 (2) and "k
“min Yield

kyl A kyd N
% 0 1 it 0 1 mintj : (8.49)
io jo
The remainder of this proof is analogous to the proof of Theorem 7.13 [

Due to Proposition 8.22, the assumed existence of an accumulation point in
Theorem 8.23 is automatically satisfied if there is a strictly feasible point for the
optimality conditions (3.5). An immediate consequence of Theorem 8.23 is the
following result, which can be proven in the same way as Corollary 7.14.

Corollary 8.24 Every accumulation point of a sequence fwXkg £ xK; K:sk ggen-
erated by Algorithm 8.18 is a solution of the optimality conditions (3.5).

The following result will give us some insight on a property of the Chen-Harker-
Kanzow-Smale smoothing function which will be used in the proof of the main
convergence result. This result was originally proven by Qi and Sun [50].
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Lemma 825 Let a;b; :R R 0;1 -¥ R denotethe Chen-Harker-Kanzow-
Smale smoothing function. Then we have forany a;b; 2R R 0;1:

4 2
0 4. p- B <
k ab; k r—'a 7 4 2
Proof. Simple calculations show that
2 3
1 B a b
“a b2 42
0 e n a b
ab; ! “a b2 42
- 4
"a b2 42
and
2 3
4 2 2 a b
0 5. b 5 32 2 2 a b g
a b2 42 a b a b a b?
Therefore,
k ©ab; k k %anb: ke o
4 1
P 3 a b4 4a b22 44
a b?2 42
D 4 a b?2 272
a b2 42
4

IN

We finally state our local rate of convergence result. Since our predictor step
coincides with the one by Burke and Xu [8], the proof of this result is essentially
the same as in [8], and is presented here for the sake of completeness.

The central observation in order to prove Theorem 8.26 is that the sequence
of Jacobian matrices ®° wK; . converges to a non-singular matrix under the as-
sumption of Theorem 8.26. In fact, as noted in Theorem 6.6 (and [8] and [23], for
that matter), the convergence of this sequence to a non-singular Jacobian matrix
is equivalent to the unique solvability of the optimality conditions (3.5).

Theorem 8.26 Letthe parameter satisfy the inequality > 2pﬁ, assume that the
optimality conditions (3.5) have a unique solution w X ; ;S ,and suppose
that the sequence fwKg f xK; K;sK g generated by Algorithm 8.18 converges
tow . Then f (g converges locally quadratically to zero.
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8.3 A More Flexible Update of the Smoothing Variable

Proof. Assume that Algorithm 8.18 does not terminate in a solution of the
optimality conditions (3.5).

First consider the system (8.32). Applying the same technique as used to
rewrite system (7.22), and taking into account that A k, this equation is
reduced to

2 3

k

0
. wk Aw ® , wk kﬁo%;
dk

Together with the choice of the starting point in Step O this yields

ATA  As 0
AAx O
DX  AX D'g; As xK: sk kdk:

Using this reformulation, it is possible to attain a bound for k Ax; As k. From

2 . 32 3 2 3
0o A I~ “Ax 0
A o 0492 % § 0 £
D, 0 Df  As Xiiski ko Kkd"
and
. dk & X!(.Sk o 4 k 'p—47 2
J i) @ i'2i K L a b 2 4 2 4 2

as well as Lemma 8.13 (4) it follows that

w oy 2.3 2 ; 3 1 2 3

Ax AX 0 A | 0

- G258 §A o o0& § 0 Z
As DX 0 D Xkiski k- kdX

C k XSk, k k  kkd®k
c . 2°n

C 2pﬁ K-

(8.50)

Here C is the constant from Lemma 3.14.

Note that the unique solution satisfies the strict complementarity conditions
due to the Goldman-Tucker Theorem 3.12. Therefore Lemma 8.25 indicates that
there exists constants " > 0 and L > O such that

k ©x;s; k L; whenever k X;s; x ;s 0k ™ (8.51)
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Hence, for all k su [Cciehtly large and 2 0;1 , we have foreach i 2 f1;:::;ng

j .xz‘ Axé‘,slk Aslk, | 2 3
AxK
1
P xSl sk T Ask g
1 «
2 3T 2 3
AxK AxK
1 1 1
18 ask B P maxdsl masli1 a1 8 sk 8
1 « 1 «
ZA K3
X
K. k. 0 kogk. TG |'<g @i k. k.
k
2 3T 2 3
AX!( Ax!<
1 1 1
> 2 Aslk g ?O x:‘ #iAxg‘;slk #.As}‘; 1 # 1 kﬁ As!‘ Eza
1 « 5 s 1 «
2
0 L Ax}‘
« b xkegke o = 8 AsK 4
) 2 1
O« # 5 1k
L@ AXk 2 2A
2 — ! 1 ;
kK 2 Ask k

where the last inequality follows from the fact that j@ ; a;b; =0 j 2 forall a,
b,and . With (8.50)and 2 0;1 itis now easy to see that

_ L _ _
k xX Ax:sKk As: (k 2Pa K 3 c? Pz Prg 2 2
P_ L P, P_
2 n g > c? 2n? "n 2
(8.52)

Hence the inequality68.33) holds with “i O for all k su Cciehtly large. Taking
into account that > 2" n, it is easy to verify that

PR %cz Prz PR 2 K
whenever
4ij c? Prnz Ph K
2 2'n
and so
K 2%4"25%— c? Prnz Ph K
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for all k su Cciehtly large. Therefore by (8.34) and (8.37) it follows that
k1 O 2

i.e, the sequence T kg converges locally quadratically to zero. ]

8.3.3 Numerical Results
Implementation

Algorithm 8.18 was implemented in C. In order to simplify the work, the code
PCx by Czyzyk, Mehrotra, Wagner, and Wright [16, 17] was used and modified
appropriately. PCx is a predictor-corrector interior-point solver for linear pro-
grams, written in C and calling a FORTRAN subroutine in order to solve certain
linear systems using the sparse Cholesky method by Ng and Peyton [47] which
is also employed by Zhang’s LIPSOL code. PCx, as well as LIPSOL, uses the mini-
mum degree ordering code by Liu [39]. Dense column handling is performed by
using the Sherman-Morrison-Woodbury approach or by applying a preconditioned
conjugate gradient method.

Since the linear systems occurring in Algorithm 8.18 have essentially the same
structure as those arising in interior-point methods, it has been possible to use the
numerical linear algebra part from PCx for the implementation of Algorithm 8.18.
The C-code’s main program has been rewritten from scratch.

The initial pointw®  x9 ©:59 is the same as the one used for the numerical
experiments in Section 8.2.3. The termination criteria described in Section 8.2.3
are used again.

Jacobian Smoothing Predictor Step

Another fact to note is that Algorithm 8.18’s implementation includes a Jacobian
smoothing-component, i.e., the linear system (8.32) solved in the predictor step
(Step 2) has been changed to:

' H
Aw

K. -
A ® w0 :

0° wk;
Numerical experiments have shown implementation to be superior to the one de-
scribed in algorithm 8.18 when comparing the iteration counts produced by both
implementations.

Presolving

PCx’s preprocessor was also applied to the problems. Note that this preprocessor,
while being more advanced than LIPSOL’s presolver, is still far away from perfect.
Based on techniques described by Andersen and Andersen [1], it only tries to
resolve some basic inconsistencies in the problem formulation. These include the
following checks:
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Zero rows and columns in A:

When the column A is zero, the value of X; has no e [ect on the prod-
uct Ax. We can deduce the value of x; by considering its bounds and
the i-th element c; of the cost vector. If ¢; < O, then the product cjX; is
minimized by setting X; to its upper bound; if there is no upper bound,
the primal objective must be unbounded below. Similarly, when c; > 0,
then X; is forced to its lower bound. When ¢; 0, then X; is irrelevant to
the problem.

Duplicate rows and columns in A:
When two columns of A are simply scalar multiples of one another, we
can replace the two components of x with a single primal variable and re-
duce n by 1. Similarly, when A contains duplicated rows, we can combine
two components of and reduce m by one.

Row singleton:
When the i-th row of A contains only a single non-zero element A;j, we
can immediately set X;  bj=A;j and eliminate row i and column j from
the problem, reducing both m and n by 1.

Forced rows:
Sometimes the combination of a single constraint and bounds forces a
collection of variables to take on certain fixed values. Therefore all of
these variables can be eliminated from the program, further reducing its
size.

For example, if one if the constraints is
10x3 4X10 Xi2 4,
and the bounds on the variables are
X32 0;1 ;X102 0;1; and, x122 0;1 ;

the values of these three variables must be x3 0, X30 1, and X1»
0. Therefore all three variables and the corresponding rows of A can be
removed from the linear program.

PCx’s presolver makes several sweeps through the rows and columns of A.
When an opportunity to reduce the problem is detected, the appropriate rows and
columns are flagged as “deleted” and the information is pushed onto a stack. An-
other sweep through A can uncover new opportunities for reductions, so repeated
passes through the data are performed until no more reductions are found.

Once the reduced problem is solved a postprocessing phase is activated to
undo the changes made by the presolver by popping the stack. This way the
solution can be expressed in terms of the original model.

Since LIPSOL’s preprocessor only catches some of these potential problems,
one should expect an improvement concerning the e [ciehcy and robustness of
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the actual LP solver by the use of PCx’s preprocessor. As redundant information
is removed, the resulting problems usually contain fewer variables, which also
lessens the time the actual solver has spend on the problems. At times, some
components of the solution can be determined without recourse to a sophisticated
algorithm.

Presolving is less expensive in terms of CPU-time than a single primal-dual
iteration, so it is almost always worth doing. For more information see Andersen
and Andersen [1], Andersen, et. al [2] and references therein.

Adaptive Choice of the Centering Parameter

The centering parameter " is chosen as follows:
We let "min  0:4; "max 0:6; 0:1, start with 9 0:5 and set

—~

k 1: minf ma; Tk g

if the predictor step was successful (i.e., if we were allowed to take WK 1wk
AwX), and

k 1. maxt min; Tk g

otherwise. This strategy guarantees that all centering parameters belong to the
interval “min; “max - According to experimental numerical results, a larger value
of T usually gives faster convergence, but the entire behavior of the algorithm
becomes less stable. A smaller value of the centering parameter gives a more
stable behavior, while the overall number of iterations increases. The dynamic
choice of " given above tries to combine these observations in a suitable way.
The remaining parameters from Step O of Algorithm 8.18 are chosen as follows:

k x%s9% ok

0

% 0:79 and

First we consider the function : (this, more or less, corresponds to the
method from Section 8.1.3)

Numerical Results of Algorithm 8.18 for Di [Lerkent -Functions

For easier comparison to results produced by PCx a column indicating the CPU-
time required to solve each problem is included. All programs were compiled using
the Sun FORTE FORTRAN 77 compiler version 6u2 for the sparse Cholesky solver
and the GNU C Compiler version 2.95.2 for the C-part of program. Other combi-
nations of GNU and Sun compilers have proven to produce less e [cieht binary
code and therefore require more CPU-time to solve a problem. This is most likely
due to the fact that neither the GNU 77 compiler front end nor Sun’s C compiler
are as highly optimized as the Sun FORTRAN and GNU C compilers, respectively.
The code was compiled with the highest possible level of optimization enabled
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(-06 for the C- and -0 for the FORTRAN compiler). All test runs were done on a
Sun Enterprise 450.

Table 8.6 contains the results for the minimum function and : , with
the columns of table 8.6 having the following meanings:

Problem:

m:

n:
k:
P:

f.
kd wt kq:

Primal Objective:

Name of the test problem in the Netlib collection,
Number of equality constraints (after preprocessing),
Number of variables (after preprocessing),

Number of iterations until termination,

Number of accepted predictor steps,

Value of  at the final iterate,

Value of k& wk k4 at the final iterate,

Value of the primal objective function at final iterate.

CPU: CPU-time in seconds required to solve the problem. This does
not include the time required to perform disc i/o to read the
MPS-file containing the problem data and to produce possi-
ble output files, nor is the time required to run the presolver
included. Both of these times are identical for all PCx-based
codes and are therefore irrelevant for the comparison.

Table 8.6: Numerical results of Algorithm 8.18 with : using the minimum function
Problem m n k P £ k& wT kq  Primal Objective CPU
25fv47 788 1843 29 13 1.2e 04 1.509 04 5.5018459¢+03 2.50
80bau3b 2140 11066 61 17 1.9e 04 3.787e 04 9.8722419e+05  20.03
adlittle 55 137 15 13 1.4e 02 1.388e 05 2.2549496e+05 0.06
afiro 27 51 13 10 25e 02 3.678¢ 05 4.6475311e+02 0.03
agg 390 477 26 17 1.6e 02 1l.4lle 04 3.5991767e+07 0.68
agg2 514 750 31 19 25e 03 2.644e 04 2.0239252e+07 1.47
agg3 514 750 27 17 l.4e 02 2.05% 04 1.0312116e+07 1.30
bandm 240 3905 16 13 1l.le 04 3.972e 05 1.5862802e+02 0.23
beaconfd 86 171 22 19 5.4e 04 7.035e 04 3.3592486e+04 0.18
blend 71 111 10 10 8.2e 04 4.086e 05 3.0812150e+01 0.04
bnll 610 1491 37 18 29e 04 3.167e 04 1.9776296e+03 1.67
bni2 1964 4008 30 12 26e 04 5.068e 04 1.8112366e+03 6.47
boeingl 331 697 22 15 15e 04 2144e 04 3.3521358e+02 0.58
boeing?2 126 265 23 10 24e 03 9.683e 06 3.1501873e+02 0.23
bore3d 81 138 15 12 15e 03 3.814e 06 1.3730804e+03 0.08
brandy 133 238 18 15 3.4e 04 3.623e 04 1.5185099e+03 0.22
capri 241 436 16 14 2.4e 03 8.084e 04 2.6900118e+03 0.24
cycle 1420 2773 31 13 8.0e 05 1.759e 04 5.2263987e+00 4.14
czprob 671 2779 16 14 25e 03 1.753e 05 2.1851967e+06 0.81
d2qg06¢c 2132 5728 55 11 4.le 04 6.343e 04 1.2278421e+05  21.69
décube 403 5443 15 11 1.3e 04 2.326e 05 3.1549157e+02 3.99
degen2 444 757 11 11 8.3e 04 1.071e 05 1.4351780e+03 0.56
degen3 1503 2604 12 11 16e 04 2.585e 05 9.8729405e+02 6.81
dfloo1 6071 12230 > 350 maximum number of iterations reached
€226 198 429 23 14 85e 05 5.179% 05 2.5864931e+01 0.38
etamacro 334 669 19 14 15e 04 3.581le 05 7.5571523e+02 0.48
[TH8DO 322 826 31 17 49e 04 8.090e 04 5.5567957e+05 1.19
finnis 438 935 21 19 3.le 04 8.108e 04 1.7279107e+05 0.51
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Table 8.6: Numerical results of Algorithm 8.18 with
(continued)

using the minimum function

Problem m n k P k® w' k1  Primal Objective CPU
fitld 24 1049 15 14 1.1e 03 3.174e 04 9.1463796e+03 0.92
fitlp 627 1677 17 14 8.9e 05 1.169e 02 9.1464198e+03 3.46
fitad 25 10524 51 21 15e 04 2.85le 05 6.8464293e+04 40.42
fit2p 3000 13525 24 20 1.8e 04 3.812e 04 6.8464293e+04 43.30
forplan 121 447 29 17 4.9e 04 8.401le 04 6.6421901e+02 0.64
ganges 1113 1510 22 20 39e 04 4.636e 04 1.0958574e+05 1.47
gfrd-pnc 590 1134 20 16 1.2e 02 3.308e 05 6.9022360e+06 0.52
greenbea 1933 4153 26 7 step length too small

greenbeb 1932 4154 30 16 3.5e 04 6.945e 04 4.3022607e+06 4.98
growl5 300 645 244 8 94e 05 2.143e 02 9.8628817e+07 12.45
grow22 440 946 > 350 maximum number of iterations reached

grow?7 140 301 198 10 9.9e 05 1.705e 02 4.3214951e+07 477
israel 174 316 20 15 2.8e 03 5.505e 04 8.9664482e+05 0.70
kb2 43 68 15 11 9.0e 04 1.308e 06 1.7499001e+03 0.05
lotfi 133 346 25 13 3.1e 04 4.226e 04 2.5264717e+01 0.20
maros 655 1437 39 17 99e 04 7.280e 04 5.8063744e+04 1.96
maros-r7 2152 7440 27 15 4.8e 04 8.965e 04 1.4971852e+06 63.21
modszk1l 665 1599 22 18 29e 03 1.682e 04 3.2061973e+02 0.87
nesm 654 2922 51 11 83e 05 6.817e 03 1.4076036e+07 5.73
perold 593 1374 29 16 2.2e 04 7.92le 04 9.3807553e+03 1.72
pilot 1368 4543 72 12 7.0e 05 2.652e 04 5.5728443e+02 52.49
pilot.ja 810 1804 63 14 27e 04 9.259e 04 6.1131365e+03 8.66
pilot.we 701 2814 42 16 27e 04 8.33% 04 2.7201075e+06 3.36
pilot4 396 1022 29 14 99e 05 3.745e 04 2.5811393e+03 1.63
pilot87 1971 6373 70 11 99e 05 8.339e¢ 03 3.0171649e+02 140.35
pilotnov 848 2117 20 17 6.5e 05 1.779e 04 4.4972762e+03 2.72
recipe 64 123 12 11 4.1e 04 1.426e 06 2.6661600e+02 0.05
sc105 104 162 19 14 6.2e 04 4.420e 05 5.2202061e+01 0.08
sc205 203 315 27 16 2.1e 04 1.486e 04 5.2202062e+01 0.22
sc50a 49 77 15 12 1.8e 03 1.583e 05 6.4575077e+01 0.04
sc50b 48 76 15 11 4.2e 03 3.091e 05 6.9999998e+01 0.04
scagr25 469 669 32 14 6.6e 03 1.663e 05 1.4753433e+07 0.59
scagr7 127 183 19 14 7.0e 04 5.924e 04 2.3313898e+06 0.09
scfxml 305 568 17 15 1.4e 03 4.693e 04 1.8416758e+04 0.30
scfxm?2 610 1136 25 19 7.5e 04 3.825e 04 3.6660261e+04 0.91
scfxm3 915 1704 20 15 9.6e 04 7.701le 04 5.4901254e+04 1.08
scorpion 340 412 18 15 7.4e 05 5.759e 05 1.8781248e+03 0.21
scrs8 421 1199 19 15 3.6e 03 7.262e 04 9.0429695e+02 0.50
scsdl 77 760 13 12 3.1e 03 9.581e 06 8.6666670e+00 0.20
scsd6 147 1350 12 9 12e 04 8.437e 06 5.0499980e+01 0.30
scsd8 397 2750 10 9 48e 03 1.945e 05 9.0500000e+02 0.53
sctapl 284 644 13 11 3.4e 03 7.324e 06 1.4122500e+03 0.20
sctap?2 1033 2443 20 14 23e 03 1.371e 05 1.7248071e+03 1.22
sctap3 1408 3268 36 14 25e 03 5.208e 05 1.4240000e+03 3.18
seba 448 901 20 13 19e 03 4.716e 05 1.5711600e+04 4.98
sharelb 112 248 38 18 45e 04 5.924e 04 7.6589319e+04 0.30
share2b 96 162 17 14 35e 04 3.101e 06 4.1573224e+02 0.10
shell 487 1451 22 17 1.3e 01 6.100e 04 1.2088254e+09 0.69
ship04l 292 1905 21 16 5.1e 04 6.280e 04 1.7933245e+06 0.79
ship0O4s 216 1281 15 15 3.1e 03 4.180e 04 1.7987147e+06 0.34
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Table 8.6: Numerical results of Algorithm 8.18 with : using the minimum function
(continued)

Problem m n k P £ k& wf kq  Primal Objective CPU
ship08l 470 3121 27 17 1.3e 02 5.954e 04 1.9090552e+06 1.80
ship08s 276 1604 17 15 1.1e 02 1.032e 04 1.9200982e+06 0.51
ship12l 610 4171 40 14 19e 03 3.21le 04 1.4701879e+06 3.60
shipl12s 340 1943 26 16 1.7e 03 2.844e 04 1.4892361e+06 1.03
sierra 1212 2705 28 16 6.1e 03 1.170e 04 1.5394362e+07 2.66
stair 356 532 22 15 6.4e 05 1.273e 04 2.5126695e+02 0.79
standata 314 796 11 9 6.0e 02 2.032e 04 1.2577010e+03 0.19
standgub 314 796 11 9 6.0e 02 2.032e 04 1.2577010e+03 0.19
standmps 422 1192 17 13 55e 03 2199 05 1.4060175e+03 0.46
stocforl 102 150 13 13 2.1e 02 3.290e 04 4,1131983e+04 0.06
stocfor2 1980 2868 18 13 33e 03 1.029e 05 3.9024400e+04 1.44
stocfor3 15362 22228 99 19 1.3e 04 2.031le 04 3.9976784e+04 77.12
stocfor3old 15362 22228 99 19 1.3e 04 2.031le 04 3.9976784e+04 78.69
truss 1000 8806 28 13 4.0e 03 7.474e 05 4.5881585e+05 6.48
tul1 257 567 21 14 6.3e 05 1.327e 04 2.9214753e 01 0.51
vtp.base 72 111 11 11 13e 01 1.952e 04 1.2983146e+05 0.05
woodlp 171 1718 20 12 6.5e 05 1.258e 04 1.4428956e+00 4.67
woodw 708 5364 44 10 5.6e 05 2.768e 03 1.3044762e+00 6.54

Note that the run on the entire Netlib problem suite as given above required a
total of 3572 iterations, for which 711.24 seconds of CPU-time were necessary.

These results do not seem to be an improvement over the results computed by
Algorithm 8.11 (see Table 8.5 on page 117). This is the case since Algorithm 8.18
fails to solve the test cases greenbea and grow22, while Algorithm 8.11 is able to
solve all of the grow*-examples as well as the test case greenbea rather quickly.
The performance of Algorithm 8.18 on the problems stocfor3 and stocfor3old
is also a reason for concern.

In most cases the iteration numbers are higher than those presented in ta-
ble 8.5. Algorithm 8.18 performs better on the pi lot* examples, but it is not able
to solve the problems grow7 and growl5 in a reasonable number if iterations.

Even though it is not quite clear if the theory can be adapted to the use of the
smoothed Fischer-Burmeister function instead of the Chen-Harker-Kanzow-Smale
smoothing function, some numerical experiments have shown quite interesting
results, which are even better than those for the minimum function. These results
are presented in the following two tables.

The results for the Fischer-Burmeister function and : are presented

in Table 8.7.

Table 8.7: Numerical results of Algorithm 8.18 with : using the Fischer-Burmeister

function
Problem m n k P f kd wf kq Primal Objective CPU
25fv47 788 1843 27 11 1.0e 03 1.758e 04 5.5018459e+03 2.06
80bau3b 2140 11066 29 15 6.0e 04 2.527e 04 9.8722419e+05 6.09
adlittle 55 137 14 12 33e 02 2.239% 04 2.2549496e+05 0.05
afiro 27 51 12 12 19e 02 5.456e 06 4.6475316e+02 0.02
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8.3 A More Flexible Update of the Smoothing Variable

Table 8.7: Numerical results of Algorithm 8.18 with
function (continued)

using the Fischer-Burmeister

Problem m n k P k® w' k1  Primal Objective CPU
agg 390 477 22 17 38e 02 6.257e 04 3.5991767e+07 0.54
agg2 514 750 22 16 2.1e 02 4.992e 04 2.0239252e+07 1.00
agg3 514 750 21 16 3.1e 02 5.673e 04 1.0312116e+07 0.96
bandm 240 395 15 12 2.6e 04 9.065e 05 1.5862803e+02 0.19
beaconfd 86 171 21 18 25e 03 5.156e 04 3.3592486e+04 0.16
blend 71 111 10 9 8.1e 04 8.746e 05 3.0812183e+01 0.04
bnil 610 1491 30 16 8.2e 04 1.737e 04 1.9776296e+03 111
bnl2 1964 4008 25 10 9.3e 04 4.893e 04 1.8112350e+03 5.02
boeingl 331 697 18 13 1.7e 03 3.652e 04 3.3521357e+02 0.43
boeing2 126 265 18 13 2.7e 03 4.166e 06 3.1501873e+02 0.14
bore3d 81 138 14 11 59e 03 3.980e 05 1.3730804e+03 0.07
brandy 133 238 16 14 2.1e 03 3.469% 04 1.5185099e+03 0.20
capri 241 436 15 14 4.0e 03 9.161e 04 2.6900100e+03 0.19
cycle 1420 2773 30 14 8.2e 05 8.349 05 5.2263996e+00 3.60
czprob 671 2779 17 13 5.7e 03 5.207e 05 2.1851967e+06 0.67
d2q06¢ 2132 5728 48 18 1.8e 04 5.59le 04 1.2278421e+05 18.46
d6cube 403 5443 13 10 5.3e 04 3.157e 05 3.1549167e+02 3.20
degen2 444 757 10 10 1.9e 03 2.901e 05 1.4351780e+03 0.47
degen3 1503 2604 10 10 9.2e 04 7.742e 05 9.8729400e+02 5.87
dflool 6071 12230 => 350 maximum number of iterations reached

226 198 429 14 13 24e 04 1.889%e 05 2.5864929e+01 0.21
etamacro 334 669 20 13 8.8e 05 1.625e 03 7.5571523e+02 0.42
[TH8DO 322 826 28 17 1.2e 03 5.876e 04 5.5567956e+05 0.96
finnis 438 935 20 17 2.0e 03 7.843e 04 1.7279107e+05 0.41
fitld 24 1049 14 14 27e 03 8491e 05 9.1463781e+03 0.77
fitlp 627 1677 17 14 7.0e 05 3.469%e 02 9.1464871e+03 3.18
fitad 25 10524 17 17 1.4e 03 7.494e 04 6.8464293e+04 8.94
fit2p 3000 13525 19 19 1.5e 03 9.397e 05 6.8464293e+04 26.93
forplan 121 447 26 17 2.2e 03 4.722e 04 6.6421896e+02 0.53
ganges 1113 1510 20 19 24e 03 1.218e 04 1.0958574e+05 121
gfrd-pnc 590 1134 17 15 3.2e 02 4.308e 04 6.9022360e+06 0.33
greenbea 1933 4153 248 3 failure

greenbeb 1932 4154 43 13 1.7e 03 9.559 04 4.3022603e+06 6.15
grow?7 140 301 185 15 85e 05 2.149 02 4.3371411e+07 13.71
growl5 300 645 325 7 1.0e 04 1959 02 9.8472971e+07 3.80
grow22 440 946 > 350 maximum number of iterations reached

israel 174 316 17 15 1.0e 02 4.732e 04 8.9664482e+05 0.59
kb2 43 68 15 10 1.6e 03 1.653e 06 1.7499001e+03 0.05
lotfi 133 346 23 12 3.2e 03 7.087e 04 2.5264704e+01 0.16
maros 655 1437 22 14 24e 03 1.738e 04 5.8063744e+04 0.94
maros-r7 2152 7440 39 14 4.0e 03 8.053e 04 1.4971852e+06 83.03
modszk1l 665 1599 21 17 7.2e 03 3.330e 04 3.2061973e+02 0.68
nesm 654 2922 46 9 47e 04 4.718e 04 1.4076037e+07 4.19
perold 593 1374 26 12 2.1e 03 6.564e 04 9.3807553e+03 1.34
pilot 1368 4543 71 9 9.0e 05 1.600e 02 5.5727421e+02 48.00
pilot.ja 810 1804 30 14 7.1e 04 9.749e 04 6.1131365e+03 3.93
pilot.we 701 2814 36 10 2.6e 03 9.98le 04 2.7201075e+06 2.19
pilot4 396 1022 26 12 1.7e 03 6.888e 04 2.5811392e+03 131
pilot87 1971 6373 67 11 9.1e 05 6.095e 03 3.0171547e+20 132.35
pilotnov 848 2117 15 15 23e 03 4.059%9 04 4.4972762e+03 1.99
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8 Predictor-Corrector Methods

Table 8.7: Numerical results of Algorithm 8.18 with

function (continued)

using the Fischer-Burmeister

Problem m n k P kd w' ki  Primal Objective CPU
recipe 64 123 11 10 1.2e 03 4.205e 05 2.6661600e+02 0.04
sc105 104 162 18 13 1.2e 03 2.793e 05 5.2202062e+01 0.07
sc205 203 315 24 14 6.8e 04 1.030e 04 5.2202062e+01 0.16
sc50a 49 77 14 11 4.7e 03 8.546e 05 6.4575080e+01 0.04
sc50b 48 76 15 10 7.1e 03 7.714e 06 7.0000005e+01 0.03
scagr25 469 669 31 13 4.7e 03 1.049 04 1.4753433e+07 0.46
scagr7 127 183 15 14 3.6e 03 4.563e 04 2.3313898e+06 0.07
scfxml 305 568 15 13 8.4e 03 6.230e 04 1.8416759e+04 0.24
scfxm2 610 1136 18 15 2.7e 03 1.834e 04 3.6660262e+04 0.56
scfxm3 915 1704 20 15 5.4e 03 9.098e 04 5.4901255e+04 0.94
scorpion 340 412 19 14 24e 04 1.815e 05 1.8781248e+03 0.19
scrs8 421 1199 17 14 19e 03 2.169% 04 9.0429322e+02 0.34
scsdl 77 760 12 12 42e 03 7.203e 06 8.6666636e+00 0.14
scsd6 147 1350 11 8 38e 04 1937e 05 5.0500000e+01 0.24
scsd8 397 2750 9 9 87e 03 3.131e 05 9.0499999e+02 0.37
sctapl 284 644 12 12 9.4e 03 8.910e 06 1.4122500e+03 0.15
sctap2 1033 2443 11 11 7.2e 03 8.233e 05 1.7248071e+03 0.52
sctap3 1408 3268 12 12 3.8e 03 1.051e 05 1.4240000e+03 0.76
seba 448 901 19 12 25e 03 1.550e 06 1.5711600e+04 4.46
sharelb 112 248 29 14 22e 03 3.762e 04 7.6589319e+04 0.19
share2b 96 162 15 10 2.5e 03 8.099e 05 4.1573224e+02 0.07
shell 487 1451 19 16 34e 01 4.313e 04 1.2088254e+09 0.45
ship04l 292 1905 22 16 53e 03 7.616e 04 1.7933245e+06 0.67
ship04s 216 1281 16 13 6.9e 03 1.561e 04 1.7987147e+06 0.28
ship08I 470 3121 25 15 2.1e 03 7.592e 04 1.9090552e+06 1.14
ship08s 276 1604 15 13 3.0e 02 7.416e 04 1.9200982e+06 0.34
ship12l 610 4171 21 13 7.0e 03 2.670e 04 1.4701879e+06 1.28
ship12s 340 1943 18 14 53e 03 7.548e 05 1.4892361e+06 0.48
sierra 1212 2705 20 16 7.7e 03 2548e 05 1.5394362e+07 1.35
stair 356 532 18 14 6.9e 04 2.105e 04 2.5126695e+02 0.61
standata 314 796 11 10 39e 02 1.699e 05 1.2576993e+03 0.14
standgub 314 796 11 10 39e 02 1.699e 05 1.2576993e+03 0.15
standmps 422 1192 14 12 9.6e 03 4.418e 05 1.4060175e+03 0.30
stocforl 102 150 13 13 2.1e 02 2.014e 05 4.1131983e+04 0.05
stocfor2 1980 2868 14 13 2.0e 03 1.481le 06 3.9024400e+04 0.93
stocfor3 15362 22228 23 19 28e 04 5514e 05 3.9976784e+04 13.12
stocfor3old 15362 22228 23 19 28e 04 5514e 05 3.9976784e+04 13.24
truss 1000 8806 16 13 25e 03 3.621e 04 4.5881579e+05 2.77
tul1 257 567 20 15 19e 04 4.977e 05 2.9214785e 01 0.45
vtp.base 72 111 10 10 29e 01 3.126e 04 1.2983146e+05 0.04
wood1p 171 1718 22 11 15e 04 9.009e 05 1.4428646e+00 5.01
woodw 708 5364 36 10 1.0e 04 5.104e 03 1.3044083e+00 4.29

Note that this run on the Netlib problem suite as given above required a total
of 1841 iterations for which 432.11 seconds of CPU-time were necessary. A total
of 3021 linear systems with di Cerent coe [cieht matrices were solved. These to-
tals do not include the problems brandy, df1001, greenbea, greenbeb and the
three grow*-problems. This has been done for easier comparison with the results
of PCx, which can be found in Table 8.9.
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8.3 A More Flexible Update of the Smoothing Variable

Table 8.7 presents results which are much better than the ones obtained by
using the minimum function (cf. Table 8.6). Especially the previously extremely
high iteration counts for problems stocfor3 and stocfor3old could be lowered
drastically from 99 to 23 in both cases. Unfortunately the failure to solve prob-
lem greenbea still exists. After 348 iterations the code stops since the smoothing
variable attains a value smaller than 10 4, but the iterate was still far away from
the solution, as the value of the primal objective function documents: Instead of

7:246240 107, which is the objective function’s value in the exact solution (as
documented in the Netlib files), Algorithm 8.18 computed c"xf  1:2707 108
when it terminated. Another error which occurs in both algorithms is the failure
to solve problem grow22. However, one has to note that the final iterate gener-
ated by Algorithm 8.18 when using the minimum function is apparently closer to
the solution than the final iterate generated when using the Fischer-Burmeister
function, at least, when the objective function’s values are compared. it is still
noteworthy, that the Fischer-Burmeister function variant of Algorithm 8.18 comes
close to the solution in a significantly shorter time than the minimum function
variant.

When comparing these results to those of Algorithm 8.11 it is notable that Al-
gorithm 8.18 fails on three problems in the test set (df1001, greenbea, grow22),
whereas Algorithm 8.11 only fails on df1001. Comparing the iteration counts for
most problems, it becomes obvious that an improvement has been made, espe-
cially in the case of the hard problems, such as the pilot*-examples.

In fact, for almost all examples the number of iterations could be reduced
considerably regarding both Algorithm 8.11 and Algorithm 8.18 (with the mini-
mum function). This becomes clear when looking at the total number of iterations
needed to solve all problems in the Netlib test suite. When using the minimum
function, Algorithm 8.18 requires 3572 iterations as opposed to 2760 iterations
when using the Fischer-Burmeister function.

We finally state some results for the function . 2 1.

Table 8.8: Numerical results of Algorithm 8.18 with 1 2 1 using the Fischer-

Burmeister function

Problem m n k P £ kd wf kq Primal Objective
25fv47 788 1843 32 10 6.9e 04 1.516e 04 5.50184589e+03
80bau3b 2140 11066 49 7 6.5e 04 7.665e 04 9.87224192e+05
adlittle 55 137 16 10 2.7e 02 7.941e 05 2.25494963e+05
afiro 27 51 12 10 19e 02 2.034e 05 4.64753174e+02
agg 390 477 24 14 1.6e 02 1.007e 05 3.59917673e+07
agg2 514 750 28 13 1.1e 02 7.963e 04 2.02392524e+07
agg3 514 750 25 14 1.8e 02 1.105e 05 1.03121159e+07
bandm 240 395 16 12 2.8e 04 8.822e 06 1.58628018e+02
beaconfd 86 171 38 8 43e 03 7.533e 04 3.35924858e+04
blend 71 111 10 9 8.1e 04 8.648e 05 3.08121831e+01
bnl1 610 1491 34 15 4.2e 04 2.046e 04 1.97762954e+03
bnl2 1964 4008 33 7 89e 04 8182 04 1.81342102e+03
boeingl 331 697 26 9 1l1e 03 2.607e 04 3.35213566e+02
boeing2 126 265 19 7 6.8e 03 3.505e 05 3.15018741e+02
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8 Predictor-Corrector Methods

Table 8.8: Numerical results of Algorithm 8.18 with . 2 1 using the Fischer-
Burmeister function (continued)

Problem m n k P f kd wf kq Primal Objective
bore3d 81 138 14 10 5.5e 03 3.087e 05 1.37308039e+03
brandy 133 238 21 12 2.1e 03 3.965e 04 1.51850990e+03
capri 241 436 20 9 12e 02 3.888e 04 2.69001290e+03
cycle 1420 2773 33 10 3.1e 04 8.515e 05 5.22639040e+00
czprob 671 2779 26 7 4.1e 03 3.548e 06 2.18519670e+06
d2q06¢ 2132 5728 68 13 7.2e 05 1.179e 03 1.22784214e+05
d6cube 403 5443 16 11 2.6e 04 1.569e 05 3.15491667e+02
degen2 444 757 11 10 1.2e 03 5.838e¢ 07 1.43517800e+03
degen3 1503 2604 10 9 12e 03 8.302e 05 9.87294002e+02
dflool 6071 12230 > 350 maximum number of iterations reached
€226 198 429 13 11 3.7e 04 3.843e 05 2.58649291e+01
etamacro 334 669 23 11 1.0e 04 1.473e 05 7.55715232e+02
[TH8DO 322 826 33 12 1.1e 03 9.914e 04 5.55679564e+05
finnis 438 935 32 7 85e 04 8.702e 04 1.72827128e+05
fitld 24 1049 21 14 83e 04 2259 04 9.14637809e+03
fitlp 627 1677 38 13 6.6e 05 1.269e 01 9.14645845e+03
fitad 25 10524 29 14 89e 05 2.406e 03 6.84642934e+04
fit2p 3000 13525 =350 maximum number of iterations reached
forplan 121 447 29 12 3.1e 03 5.568e 04 6.64218850e+02
ganges 1113 1510 26 14 2.7e 03 1539 04 1.09585736e+05
gfrd-pnc 590 1134 23 9 29 02 4.750e 04 6.90223600e+06
greenbea 1933 4153 296 3 step length too small

greenbeb 1932 4154 56 7 15e 03 7.772e 04 4.30225229e+06
grow15 300 645 > 350 maximum number of iterations reached
grow22 440 946 > 350 maximum number of iterations reached
grow7 140 301 228 5 7.1e 05 1.694e 02 4.32769031e+07
israel 174 316 28 9 6.2e 03 3.699 05 8.96644822e+05
kb2 43 68 14 9 28e 03 4.988e 05 1.74990013e+03
lotfi 133 346 25 9 27e 03 5972 04 2.52647150e+01
maros 655 1437 23 10 2.8e 03 3.551e 04 5.80637437e+04
maros-r7 2152 7440 25 12 3.1e 03 6.525e 04 1.49718517e+06
modszk1l 665 1599 28 12 43e 03 8.353e 04 3.20598092e+02
nesm 654 2922 43 3 16e 03 9.85le 04 1.40760365e+07
perold 593 1374 33 8 15e 03 4.714e 04 9.38075528e+03
pilot 1368 4543 66 7 17e 04 5.401e 04 5.57303588e+02
pilot.ja 810 1804 50 6 22e 04 4.265e 04 6.11313633e+03
pilot.we 701 2814 45 6 19e 03 8.489% 04 2.72010753e+06
pilot4 396 1022 33 9 17e 03 7.245e 04 2.58113842e+03
pilot87 1971 6373 107 3 92e 05 1.010e 02 3.02716952e+02
pilotnov 848 2117 25 6 1.1e 03 3.756e 04 4.49727619e+03
recipe 64 123 11 10 1.1e 03 2.346e 05 2.66616000e+02
sc105 104 162 16 13 1.3e 03 5.456e 05 5.22020619e+01
sc205 203 315 18 14 4.4e 04 3.869e 05 5.22020615e+01
sc50a 49 77 15 12 19e 03 3.248e 06 6.45750773e+01
sc50b 48 76 12 11 45e 03 3.960e 06 7.00000019e+01
scagr25 469 669 20 10 1.3e 02 6.860e 06 1.47534331e+07
scagr7 127 183 19 13 1.7e 03 1.379e 04 2.33138982e+06
scfxml 305 568 26 12 39e 03 1.724e 04 1.84167590e+04
scfxm?2 610 1136 28 9 44e 03 2.755e 04 3.66602615e+04
scfxm3 915 1704 27 12 32e 03 2.184e 04 5.49012545e+04
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Table 8.8: Numerical results of Algorithm 8.18 with S 2 1 using the Fischer-
Burmeister function (continued)
Problem m n k P £ kd wf kq Primal Objective
scorpion 340 412 20 12 2.3e 04 2.095e 05 1.87812482e+03
scrs8 421 1199 26 10 3.0e 03 1.583e 04 9.04296954e+02
scsdl 77 760 13 11 4.9e 03 1.700e 05 8.66665929e+00
scsd6 147 1350 11 8 3.8e 04 2.034e 05 5.05000001e+01
scsd8 397 2750 9 8 13e 02 8.734e 05 9.04999977e+02
sctapl 284 644 14 10 6.9e 03 2.492e 06 1.41225000e+03
sctap2 1033 2443 14 11 4.2e 03 8.108e 06 1.72480714e+03
sctap3 1408 3268 14 11 4.1e 03 1.126e 05 1.42400000e+03
seba 448 901 16 11 2.3e 03 1.263e 06 1.57116000e+04
sharelb 112 248 27 13 2.2e 03 3.420e 04 7.65893186e+04
share2b 96 162 14 10 1.2e 03 1.112e 05 4.15732241e+02
shell 487 1451 29 11 9.4e 02 9.766e 06 1.20882535e+09
ship04l 292 1905 20 9 12e 02 7.977e 04 1.79332454e+06
ship04s 216 1281 18 9 25e 02 7.025e 04 1.79871470e+06
ship08l 470 3121 20 10 8.1le 03 2.125e 04 1.90905521e+06
ship08s 276 1604 18 9 3.1e 02 9.04%9 04 1.92009821e+06
ship12l 610 4171 22 9 1.1e 02 7.134e 04 1.47018792e+06
shipl12s 340 1943 20 10 3.5e 03 3.788e 04 1.48923611e+06
sierra 1212 2705 27 10 1.0e 02 5.200e 05 1.53943623e+07
stair 356 532 20 12 509e 04 1.683e 04 2.51266951e+02
standata 314 796 15 7 57e 02 2779 05 1.25769906e+03
standgub 314 796 15 7 57e 02 2779 05 1.25769906e+03
standmps 422 1192 20 8 9.1e 03 4.456e 05 1.40601750e+03
stocforl 102 150 19 7 29 02 4.43le 05 4.11319832e+04
stocfor2 1980 2868 20 9 23e 03 1.886e 06 3.90243999e+04
stocfor3 15362 22228 40 8 4.6e 04 1.099e 04 3.99767824e+04
stocfor3old 15362 22228 40 8 46e 04 1.099e 04 3.99767824e+04
truss 1000 8806 23 15 3.7e 03 7.499e 06 4.58815847e+05
tul1 257 567 26 9 4.1e 04 1.046e 04 2.92149276e 01
vtp.base 72 111 13 10 2.0e 01 9.302e 04 1.29831462e+05
woodlp 171 1718 30 8 3.6e 04 8.402e 05 1.44290243e+00
woodw 708 5364 40 7 5.1le 05 1.826e 04 1.30447607e+00

Looking at table 8.8, one notices that the results are not quite as good as the
ones presented in table 8.7, but still better than the ones generated by the some
other algorithms presented in this thesis. It is also notable that new failures are
present for problems growl5 and fit2p. The number of iteration required to
obtain a solution for the two stocfor3* problems has increased from 23 to 40.

Considering the above tables shows that the best numerical performance has
been achieved by using Algorithm 8.18 together with

It is quite notable that all of the algorithms presented here have problems to
solve the test cases grow7, growl5 and grow22. Other problems which are appar-
ently hard to solve for smoothing-type methods include pilot87 and pilot.we.
It is not clear, why this is the case, as the Netlib files include no information re-
garding the structure and the background of the test problems.
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Numerical Results of PCx

Now compare the above results with those from a run of PCx [16, 17] on the entire
Netlib test set. Version 1.2beta of PCx was used to make these computations.
Table 8.9 contains the corresponding results, with the columns of table 8.9 having
the following meanings:

Problem:
m:

n:

k:

Primal Objective:

Status

CPU

Name of the test problem in the Netlib collection,

Number of equality constraints (after preprocessing),

Number of variables (after preprocessing),

Number of iterations until termination,

Value of the primal objective function at final iterate.

Status with which PCx terminated: optimal (opt), infeasible or
unknown. PCx terminates with status unknown in cases where
the code is unable to resolve the question of feasibility, i.e.,
either if it exhibits slow convergence or if the improvement
in the duality measure is greater than the improvement in
primal and dual infeasibility. See [16] for further details.
CPU-time in seconds required to solve the problem. This does
not include time spend on disk i/0 or the time required for the
presolver to run as these are identical for all PCx-based codes
used here.

Table 8.9: Numerical results of PCx

Problem m n k Primal Objective Status CPU
25fv47 788 1843 22 5.50184598e+03 optimal 1.09
80bau3b 2140 11066 37 9.87224443e+05 optimal 3.08
adlittle 55 137 12 2.25494963e+05 optimal 0.02
afiro 27 51 8 4.64753143e+02 optimal 0.01
agg 390 477 17 3.59917673e+07 optimal 0.26
agg2 514 750 20 2.02392524e+07 optimal 0.56
agg3 514 750 19 1.03121159e+07 optimal 0.54
bandm 240 395 17 1.58628018e+02 optimal 0.11
beaconfd 86 171 10 3.35924858e+04  optimal 0.05
blend 71 111 10 3.08121498e+01 optimal 0.02
bnll 610 1491 39 1.97762957e+03 optimal 0.68
bnl2 1964 4008 31 1.81123661e+03 optimal 413
boeingl 331 697 20 3.35213567e+02 optimal 0.22
boeing2 126 265 14 3.15018728e+02 optimal 0.06
bore3d 81 138 16 1.37308039e+03 optimal 0.04
brandy 133 238 16 1.51850990e+03 unkown

capri 241 436 19 2.69001291e+03 optimal 0.13
cycle 1420 2773 21 5.22639302e+00 optimal 1.64
czprob 671 2779 26 2.18519682e+06 optimal 0.40
d2q06¢ 2132 5728 24 1.22784233e+05 optimal 6.16
d6cube 403 5443 16 3.15491668e+02 optimal 2.25
degen2 444 757 11 1.43517800e+03 optimal 0.32
degen3 1503 2604 14 9.87293999e+02 optimal 5.08
dflool 5984 12143 71 1.12663961e+07 optimal 802.29
€226 198 429 18 2.58649291e+01 optimal 0.14
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Table 8.9: Numerical results of PCx (continued)

Problem m n k Primal Objective Status CPU
etamacro 334 669 25 7.55715223e+02 optimal 0.28
[TH8DO 322 826 25 5.55679599e+05 optimal 0.50
finnis 438 935 25 1.72791066e+05 optimal 0.24
fitld 24 1049 17 9.14637659e+03 optimal 0.47
fitlp 627 1677 17 9.14637812e+03 optimal 0.63
fit2d 25 10524 23 6.84642917e+04 optimal 6.24
fit2p 3000 13525 19 6.84644144e+04 optimal 4.20
forplan 121 447 20 6.64218961e+02 optimal 0.24
ganges 1113 1510 17 1.09585736e+05 optimal 0.54
gfrd-pnc 590 1134 18 6.90223600e+06 optimal 0.15
greenbea 1933 4153 9 2.19982120e+03 infeasible

greenbeb 1932 4154 37 4.30226031e+06 unknown

grow?7 140 301 17 4.77878118e+07 optimal 0.15
growl5 300 645 21 1.06870941e+08 optimal 0.38
grow22 440 946 22 1.60834336e+08 optimal 0.60
israel 174 316 19 8.96644817e+05 optimal 0.39
kb2 43 68 13 1.74990013e+03 optimal 0.02
lotfi 133 346 15 2.52647061e+01 optimal 0.05
maros 655 1437 20 5.80637437e+04 optimal 0.42
maros-r7 2152 7440 14 1.49718517e+06 optimal 22.62
modszkl 665 1599 22 3.20619895e+02  optimal 0.33
nesm 654 2922 27 1.40760378e+07 optimal 1.06
perold 593 1374 31 9.38075527e+03  optimal 0.94
pilot 1368 4543 31 5.57489695e+02 optimal 16.73
pilot.ja 810 1804 29 6.11313646e+03 optimal 2.44
pilot.we 701 2814 46 2.72010748e+06 optimal 1.17
pilot4 396 1022 46 2.58113926e+03 optimal 1.33
pilot87 1971 6373 30 3.01710519e+02 optimal 48.89
pilotnov 848 2117 16 4.49727619e+03 optimal 1.24
recipe 64 123 9 2.66616000e+02 optimal 0.02
sc105 104 162 10 5.22020612e+01 optimal 0.02
sc205 203 315 11 5.22020612e+01 optimal 0.04
sc50a 49 77 8 6.45750771e+01 optimal 0.01
sc50b 48 76 6 7.00000000e+01 optimal 0.01
scagr25 469 669 18 1.47534331e+07 optimal 0.13
scagr7 127 183 14 2.33138982e+06 optimal 0.03
scfxml 305 568 17 1.84167590e+04 optimal 0.14
scfxm2 610 1136 20 3.66602616e+04 optimal 0.31
scfxm3 915 1704 20 5.49012545e+04 optimal 0.46
scorpion 340 412 12 1.87812482e+03 optimal 0.07
scrs8 421 1199 22 9.04296961e+02 optimal 0.20
scsdl 77 760 9 8.66666667e+00 optimal 0.05
scsd6 147 1350 12 5.05000002e+01 optimal 0.11
scsd8 397 2750 11 9.05000075e+02  optimal 0.21
sctapl 284 644 16 1.41225000e+03 optimal 0.10
sctap? 1033 2443 14 1.72480714e+03 optimal 0.32
sctap3 1408 3268 15 1.42400000e+03 optimal 0.46
seba 448 901 12 1.57116000e+04 optimal 1.85
sharelb 112 248 19 7.65893186e+04  optimal 0.07
share2b 96 162 17 4.15732241e+02 optimal 0.05
shell 487 1451 21 1.20882535e+09 optimal 0.20
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8 Predictor-Corrector Methods

Table 8.9: Numerical results of PCx (continued)

Problem m n k Primal Objective Status CPU
ship04l 292 1905 13 1.79332454e+06 optimal 0.15
shipO4s 216 1281 13 1.79871471e+06 optimal 0.10
ship08l 470 3121 16 1.90905521e+06 optimal 0.29
ship08s 276 1604 12 1.92009821e+06 optimal 0.12
ship12l 610 4171 16 1.47018797e+06 optimal 0.37
ship12s 340 1943 13 1.48923613e+06 optimal 0.15
sierra 1212 2705 21 1.53943622e+07 optimal 0.57
stair 356 532 13 2.51266951e+02 optimal 0.28
standata 314 796 13 1.25769951e+03  optimal 0.08
standgub 314 796 13 1.25769951e+03 optimal 0.08
standmps 422 1192 26 1.40601750e+03 optimal 0.23
stocforl 102 150 12 4.11319832e+04 optimal 0.03
stocfor2 1980 2868 20 3.90243966e+04 optimal 0.65
stocfor3 15362 22228 31 3.99767824e+04 optimal 8.55
stocfor3old 15362 22228 31 3.99767824e+04 optimal 8.47
truss 1000 8806 20 4.58815847e+05 optimal 1.57
tul1 257 567 18 2.92147823e 01 optimal 0.24
vtp.base 72 111 11 1.29831463e+05 optimal 0.02
wood1p 171 1718 20 1.44290241e+00 optimal 2.62
woodw 708 5364 31 1.30447633e+00 optimal 1.69

PCx required 1682 iterations for this run. For better comparison with the re-
sults of Algorithm 8.18 this count does not include the problems brandy, df1001,
greenbea, greenbeb as well as the three grow*-problems, since these problems
could not be solved either by PCx or by Algorithm 8.18). The PCx-software failed
on the problems brandy, greenbea, and greenbeb. It took 802.29 seconds of
CPU-time to solve the problem df1001; all remaining test cases could be solved in
another 169.32 seconds.

One of the most interesting aspect of the comparison of the results from Ta-
bles 8.7 and 8.9 is the following: PCx required approximately 91% of the num-
ber of iterations to solve the problems from the Netlib test suite, if compared to
Algorithm 8.18 (1682 vs. 1841 iterations). Compared to PCx, Algorithm 8.18 re-
quired 2.55 times the CPU-time (432.11s vs. 169.23s). This does not include the
problems either one of the algorithms failed to solve (brandy, df1001, greenbea,
greenbeb, as well as the three grow*-problems.

When comparing the CPU-times one has to keep in mind that the implementa-
tion of Algorithm 8.18 had to perform almost twice as many matrix factorizations
as PCx (3021 vs. 1682 factorizations).

With these results one can be hopeful that further research in this area will
yield an algorithm which, if implemented as e [ciehtly as state-of-the-art interior-
point codes, is at least comparable, if not superior to interior-point solvers in terms
of CPU-time. This is especially the case since the performance of Algorithm 8.18
appears to be better on larger problems than on the smaller ones.
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9 Concluding Remarks

This thesis presents a new approach to the numerical solution of linear optimiza-
tion problems, ranging from a simple Jacobian smoothing method to complex
multi-step predictor-corrector algorithms.

Even though the Jacobian smoothing approach exhibits good theoretical con-
vergence properties, it did not provide a satisfactory performance in terms of the
number of iterations required to find an approximate solution of the linear pro-
gramming problem. This could be improved by combining the Jacobian smoothing
method with a regular smoothing method to achieve better global convergence be-
havior. The numerical results produced by the two methods presented here are
quite good. When comparing iteration counts, those of the three step method from
Section 8.1.3 are quite promising. Unfortunately each iteration is rather expensive
in terms of CPU-time, as up to three linear systems with di [Cerent coe [cieht ma-
trices have to be solved. An implementation of Algorithm 8.1 based on the PCx
framework could provide even better results, since it benefits from PCx’s prepro-
cessor. In comparison to LIPSOL’ presolver this preprocessor is by far superior,
even though there are better ones (commercially) available.

The current state-of-the-art in the field of smoothing-type methods for linear
programs is presented in Algorithm 8.18, which produces results almost as good
as a modern-day interior-point solver. Note, however, that the implementation
di Cerk in one major aspect from the theoretical model of the algorithm: As op-
posed to the presentation of Algorithm 8.18, the actual implementation contains
a Jacobian smoothing predictor step rather than a regular smoothing predictor
step.

Even though the best results presented here (Table 8.7) are not backed by
a convergence theory, as they were achieved using the Fischer-Burmeister NCP-
function, for which no convergence result could be established, they are remark-
able. One needs to keep in mind that most implementations of interior-point
methods are based on Mehrotra’s predictor-corrector algorithm, which also relies
heavily heuristics, especially as far as the generation of an initial point, the com-
putation of the primal and dual step lengths and the calculation of the centering
parameter are concerned.

Research in the area of smoothing-type algorithms is still ongoing. The author
feels that this research will eventually result in methods with a performance equal
to, if not superior to, interior-point algorithms. Interior-point methods have been
developed and improved over a timespan of more than a decade, whereas the
field of smoothing-type methods is by far younger. Therefore one should expect
further advances in this area, so that it is quite possible that these algorithms could
replace interior-point methods as the leaders in the field of linear programming.
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Abstract/Zusammenfassung

Abstract

This thesis presents a new approach to the numerical solution of linear optimiza-
tion problems, ranging from a simple Jacobian smoothing method to complex
multi-step predictor-corrector algorithms.

All presented algorithms employ a reformulation of the linear program’s opti-
mality conditions based on one of several NCP-functions. The resulting non-linear
system of equations is then solved by a Newton-type method.

In order to solve the system of equations common smoothing methods per-
turb both sides of the Newton equation, whereas Jacobian smoothing methods
only apply the smoothing technique to the left-hand side of the system. This
last approach exhibits nice theoretical properties, chief among those is the locally
quadratic rate of convergence.

The proposed globally convergent smoothing methods are used as a basis upon
which more advanced predictor-corrector algorithms are build which combine
both smoothing and Jacobian smoothing ideas. The resulting methods feature
a Jacobian smoothing predictor step and a regular smoothing corrector step. In
this context the smoothing step supplies the global convergence properties, while
the addition of the Jacobian smoothing step yields locally quadratic convergent
methods.

The performance of this type of algorithm is close to that of modern imple-
mentations of interior-point solvers.
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Abstract/Zusammenfassung

Zusammenfassung

Diese Arbeit stellt einen neuen Zugang zur L6sung linearer Optimierungsaufga-
ben auf der Basis von Glattungs- und Jacobi-Glattungsverfahren vor. Es werden
sowohl einfache Einschritt-Verfahren, als auch komplexere Pradiktor-Korrektor-
Algorithmen dargestellt.

Alle vorgestellten Verfahren nutzen eine Umformulierung der Optimalitatsbe-
dingungen eines linearen Programms in ein nichtlineares Gleichungssystem unter
Zuhilfenahme nicht di Cerknzierbarer NCP-Funktionen zur Lésung des Optimie-
rungsproblems.

Um zur L6sung des aus dieser Umformulierung resultierenden nichtlinearen
Gleichungssystems das Netwon-Verfahren anwenden zu kénnen, werden von her-
kommliche Glattungsverfahren beide Seiten des im Verfahren auftretenden linea-
ren Gleichungsystems gestort. Im Gegensatz hierzu wird beim Jacobi-Glattungs-
ansatz nur die linke Seite des zu I6senden linearen Gleichungssystems (die Jacobi-
Matrix) geglattet. Dieser Ansatz besticht durch seine guten theoretischen Eigen-
schaften. Insbesondere ist das betrachtete Verfahren lokal quadratisch Konver-
gent. Die vorgestellten global konvergenten Glattungsverfahren dienen als Basis
fur eine Reihe von Pradiktor-Korrektor-Algorithmen, in denen der Glattungs- und
der Jacobi-Glattungsansatz kombiniert werden.

Die Kombination von einfachen Glattungs- und Jacobi-Glattungsalgorithmen
zu komplexeren Pradiktor-Korrektor-Verfahren wird derart durchgefihrt, dass
zundachst als Pradiktor-Schritt ein Jacobi-Glattungschritt durchgefuhrt wird, um
dann als Korrektor-Schritt einen reinen Glattungsschritt anzuschlieRen. Hierbei
zeichnet sich der Glattungsschritt fur die globalen Konvergenzeigenschaften des
Verfahrens verantwortlich, der Jacobi-Glattungsschritt hingegen fur die lokal qua-
dratisch Konvergenz des Algorithmus’ verantwortlich ist.

Die mit dieser Verfahrensklasse erzeugten numerischen Resultate kommen de-
nen moderner Implementationen Innerer-Punkte-Methoden sehr nahe.
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