Manometrische Bestimmung der NO₂-Sorptionsisothermen von Superberliner Blau - Derivaten und Charakterisierung der inneren Oberflächen mittels der BET - Methode

DISSERTATION

Zur Erlangung der Doktorgrades des Fachbereichs Chemie der Universität Hamburg

vorgelegt von

Min Ling

Aus Guangxi, China

Hamburg 2001

Danksagung

Die vorliegende Arbeit wurde unter Leitung von Herrn Prof. Dr. R. D. Fischer im Institut für Anorganische und Angewandte Chemie der Universität Hamburg in der Zeit von April 1996 bis August 2001 durchgeführt.

Für die Möglichkeit, das gewählte Thema bearbeiten zu können, sowie für die intensive Betreuung und die zahlreichen wertvollen Anregungen und Diskussionen während der Arbeit bin ich Herrn Prof. Dr. R. D. Fischer zu Dank verpflichtet.

Folgenden Damen und Herren danke ich für ihre technische Hilfe bei der Anfertigung dieser Arbeit: Frau S. Samba für die Synthese von Ausgangsverbindungen; Frau Dipl.-Chem. N. Oberender und Herrn Dipl.-Chem. M. Ott (Institut für Technische und Makromolekulare Chemie der Universität Hamburg) für die BET-Vermessung; Herrn E. T. K. Haupt für die Aufnahme von ESR-Diagrammen; Frau Ι. *Nevoigt* für die Aufnahme von Röntgenpulverdiffraktogrammen; Herrn Dipl.-Chem. R. Eckhardt für die Aufnahme von NMR-Diagrammen; Frau U. Sazama für die Durchführung der thermischen Analyse; Frau G. Graeske für die Durchführung der Elementaranalysen; Herrn Dr. M. Steiger für die Aufnahmen der Ionenchromatographie; Frau *M. Heffter* und *B. Höppner* für die Vermessung von Raman und UV/Vis-Spektren; Herrn H. Graeske für die reibungslose Versorgung mit Chemikalien und sog. Verbrauchsmaterial; Herrn T. Roth und J. Köster für die Anfertigung und Reparatur von Glasgeräten.

Nicht zuletzt danke ich allen Mitarbeitern des Arbeitskreises für das angenehme Arbeitsklima und ihre Hilfsbereitschaft.

Versicherung

Der Unterzeichner versichert, alle dieser Arbeit zugrunde liegenden Ergebnisse selbständig erworben zu haben und keine, außer den angegebenen Quellen und Hilfsmitteln, zum Verfassen dieser Arbeit genutzt zu haben.

Hamburg, den 03. 12. 2001

- 1. Gutachter: Prof. Dr. R. D. Fischer
- 2. Gutachter: Prof. Dr. B. Albert

Tag der letzten mündlichen Prüfung: 07. 01. 2002

Meiner Frau Zou Jianping

gewidmet

INHALTSVERZEICHNIS

1. Einleitung und Zielsetzung	1
2. Arbeits- und Meßtechniken	3
2.1 Eigenschaften und Darstellung von NO ₂	3
2.2 Die Meßmethode der NO ₂ -Sorption verschiedener Koordinationspolymere	6
2.3 Die Eigenschaften der inneren Oberflächen von Polymeren	7
2.3.1 Typen von Adsorptionsisothermen	8
2.3.2 Typen von Hysteresis-Schleifen	10
2.3.3 Bestimmung der spezifischen Oberfläche	. 11
2.3.4 Porengrößen-Verteilung	12
2.4 Identifizierung und Analyse von Röntgenpulverdiffraktogrammen	
kubischer Strukturen	14
3. Die NO ₂ - Aufnahme des Koordinationspolymers [(Me ₃ Sn) ₄ Fe ^{II} (CN) ₆]	. 17
3.1 Die Eigenschaften der inneren Oberflächen von [(Me ₃ Sn) ₄ Fe ^{II} (CN) ₆]	18
3.2 Oxidation von $[(Me_3Sn)_4Fe^{II}(CN)_6]$ mit NO ₂ -Gas	21
3.3 Reaktionen von $[(Me_3Sn)_4Fe^{III}(CN)_6 \bullet (NO_2^-)]$. 28
3.3.1 Thermische Behandlung von $[(Me_3Sn)_4Fe^{III}(CN)_6 \bullet (NO_2^{-})]$ im Vakuum	. 29
3.3.2 Behandlung von $[(Me_3Sn)_4Fe^{III}(CN)_6 \bullet (NO_2^-)]$ mit NH ₃	. 32
3.3.3 Umsetzung von [(Me ₃ Sn) ₄ Fe ^{III} (CN) ₆ •(NO $\frac{1}{2}$)] mit NH ₄ I	. 34
3.3.4 Die Behandlung von $[(Me_3Sn)_4Fe^{III}(CN)_6 \bullet (NO_2^-)]$ mit Na ₂ SO ₃	. 35
3.4 Oxidation von [(Me ₃ Sn) ₂ (Me ₃ Sb)Fe ^{II} (CN) ₆] mit NO ₂ -Gas	36
3.5 Diskussion	. 38
4. Die NO ₂ - Aufnahme von Koordinationspolymeren des Typs: [M ₂ Fe ^{II} (CN) ₆ •aq] (M=Zn, Cd)	. 39
4.1 Eigenschaften von [M ₂ Fe ^{II} (CN) ₆ •aq] (M=Zn, Cd)	. 39
4.1.1 Struktur von $[Zn_2Fe^{II}(CN)_6\bullet aq]$ und $[Cd_2Fe^{II}(CN)_6\bullet aq]$. 39
4.1.2 Thermische Analyse von $[Zn_2Fe^{II}(CN)_6\bullet aq]$ und $[Cd_2Fe^{II}(CN)_6\bullet aq]$. 42
4.1.3 BET-Analyse von $[Zn_2Fe^{II}(CN)_6]$ und $[Cd_2Fe^{II}(CN)_6]$	46

4.2 Oxidation von $[M_2Fe^{II}(CN)_6 \bullet aq]$ (M=Zn, Cd) mit NO ₂ und Br ₂	49
4.2.1 Thermische Analyse von $[Zn_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$	57
4.2.2 Thermische Analyse von $[Cd_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$	61
4.3 Die Zurückbildung der Ausgangsverbindungen	64
4.3.1 Extraktion des $[M_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ (M=Zn, Cd) mit H ₂ O	64
4.3.2 Reaktion des $[M_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ (M=Zn, Cd) mit Na ₂ SO ₃	66
4.4 Diskussion	68
5. Die NO ₂ - Aufnahme von [KLn ^{III} Fe ^{II} (CN) ₆ •aq] - System (Ln=La, Dy, Tb, Ce, Ho, Y)	69
5.1 Darstellung und Eigenschaften von [KLn ^{III} Fe ^{II} (CN) ₆ •aq]-System	69
5.1.1 Röntgenpulverdiffraktogramme von [KLnFe ^{II} (CN) ₆ •aq]	73
5.1.2 Thermische Analyse von [KDyFe ^{II} (CN) ₆ •aq]	75
5.1.3 Die BET - Analyse von [KDyFe ^{II} (CN) ₆] und [KLaFe ^{II} (CN) ₆]	78
5.2 Oxidation von [KLnFe ^{II} (CN) ₆ •aq] mit NO ₂	80
5.2.1 IR-Spektrum und Röntgenpulverdiffraktogramme von $[KDyFe^{II}(CN)_6 \bullet (NO_2^-) \bullet aq]$	82
5.2.2 Thermische Analyse von [KDyFe ^{III} (CN) ₆ •(NO $\frac{1}{2}$)•aq]	85
5.3 Regenerierung der Ausgangsverbindung	89
5.3.1 Extraktion des [KDyFe ^{III} (CN) ₆ •(NO $\frac{1}{2}$)•aq] mit H ₂ O	89
5.3.2. Reduktion von [KDyFe ^{III} (CN) ₆ •(NO $\frac{1}{2}$)•aq] mit Na ₂ SO ₃	92
5.4 Zyklische wiederholte Sorption von NO ₂ durch [NaDyFe ^{II} (CN) ₆ •aq]	95
5.5 Diskussion	96
6. Gasaufnahme von $[(Me_3E)_xM(CN)_y]$ (E = Sn, Pb; M = Fe, Co, Mo)	97
6.1 Die Eigenschaften von $[(Me_3E)_xM(CN)_v]$	97
6.1.1 Die Struktur von $[(Me_3Sn)_3Co(CN)_6]$ und $[Ag_3Co(CN)_6]$	97
6.1.2 Die Eigenschaften der inneren Oberfläche von $[Ag_3Co(CN)_6]$, $[(Me_3Sn)_3Co(CN)_6]$ und $[(Me_3Sn)_4Mo(CN)_8]$	100
6.1.3 Die Eigenschaften der inneren Oberfläche von [(Bu ₄ N)(Me ₃ Sn)Cu ₂ (CN) ₄] und [(Bu ₄ N)Cu ₃ (CN) ₄]	103
6.1.4 CH ₄ -Adsorption von [(Me ₃ Sn) ₃ Co(CN) ₆]	105
6.2 NO ₂ -Sorption von [(Me ₃ E) _x M(CN) _y]-Systemen	106

6.2.1 Die IR - Spektren von [(Me ₃ E) _x M(CN) _y •NO ₂]-Systemen	108
6.2.2 RöntgenPulverdiffraktogramme von[(Me ₃ E) _x M(CN) _y •NO ₂]	111
6.2.3 ESR - Spektroskopie	113
6.2.4 Festkörper - NMR - Spektroskopie	116
6.3 NO ₂ - Sorption von mesoporösem SiO ₂	121
6.4 Zyklisch wiederholte Aufnahme und Entfernung von NO_2 mit [(Me ₃ Sn) _x M(CN) _y] (M = Co, Mo)	123
6.5 Reaktion von SO ₂ , C ₄ H ₅ N (Pyrrol) und NH ₃ mit $[(Me_3Sn)_xM(CN)_y \bullet NO_2 (M = Co, Mo)$	2] 128
6.6 Reaktion von CO ₂ , SO ₂ , NH ₃ , NO und C ₄ H ₅ N (Pyrrol) mit (Me ₃ Sn) _x M(CN) _y] (M = Fe, Co, Mo, Cu)	130
6.7 Diskussion	134
7. Zusammenfassung	135
8. Anhang	140
8.1 Berechnung der Gitterkonstanten für kubische Struktur	140
8.1.1 Flußdiagramm der Berechnung von Gitterkonstanten für kubische Struktur.	140
8.1.2 Programm der Berechnung von Gitterkonstanten für kubische Struktur	141
8.1.3 Berechnungsergebnis von Strukturkonstanten kubischer Struktur	145
8.2 BET-Messergebnis	152
9. Experimenteller Teil	162
9.1 Allgemeine Arbeitstechniken	162
9.2 Analytische Einrichtungen·und Bestimmungsmethoden	162
9.3 Danksagung	166
9.4 Ausgangsverbindungen	167
9.5 Entsorgung	170
10. Nummerierung der Verbindungen	171
11. Verwendete Abkürzungen	172
12. Literaturverzeichnis	173

1. Einleitung und Zielsetzung

In den letzten Jahren hat eine verschärfte Abgasgesetzgebung zu einem steigenden Bedarf an technischen Verfahren zur Abgasreinigung geführt^[1].

Innerhalb der Chemie unserer Atmosphäre spielen Stickstoffoxide (NO_x) eine zentrale Rolle, indem sie die Oxidationskapazität der Atmosphäre und damit den Abbau der meisten Spurenstoffe kontrollieren. NO_x trägt zum sauren Regen und dem photochemisch erzeugten Smog bei, wenn es mit anderen Luftschadstoffen wie SO₂ und flüchtigen organischen Zusammensetzungen zusammen trifft^[2, 3, 4].

Viele industrielle Prozesse, bei denen Stickstoffoxide entfernt werden, sind sogenannte SCR–Verfahren (selective catalytic reduction). Als Reduktionsmittel dient hier normalerweise Ammoniak^[5,6]:

$$NO_x + NH_3 \xrightarrow{Katalysator} N_2 + H_2O$$
 (1-1)

In solchen Fällen sind sie nicht nur unwirtschaftlich, sondern bergen auch hohe Umweltrisiken in sich, wie sie z.B. in Falle einer Überdosierung des Ammoniaks auftreten können. So sucht man noch immer neue Methoden, um den NO_x - Anteil zu entfernen.

Im eigenen Arbeitskreis war bereits gefunden worden, daß poröse und polymere Metallcyanide als Wirtsgitter Gasmoleküle aufnehmen können. Dabei können die Gasmoleküle als Gäste in den Hohlräumen des Netzwerks festgehalten werden. Diese Sorptionsreaktionen vom Gas im 3D – Polymer können entweder chemische oder auch rein physikalische Sorptionen sein^[7, 8]:

$$[(Me_{3}Sn)_{3}Fe^{III}(CN)_{6}] + C_{4}H_{5}N \longrightarrow [\frac{1}{n}(C_{4}H_{5}N^{+})_{n}(Me_{3}Sn)_{3}Fe^{II}(CN)_{6}](1-2)$$

orange (Pyrrol) schwarz

1. Einleitung und Zielsetzung

$$[(Me_{3}Sn)_{3}Fe^{II}(CN)_{5}] + C_{5}H_{5}N \longrightarrow [(Me_{3}Sn)_{3}Fe^{II}(CN)_{5}\bullet(C_{5}H_{5}N)] \quad (1-3)$$

$$wei\beta \qquad (Pyridin) \qquad grün$$

$$2[(Me_{3}Sn)_{4}Fe^{II}(CN)_{6}] + Cl_{2} \longrightarrow 2[(Me_{3}Sn)_{4}Fe^{III}(CN)_{6}\bullet(Cl^{-})] \quad (1-4)$$

$$wei\beta \qquad orange$$

$$[(Me_{3}Sn)_{4}Fe^{II}(CN)_{6}] + NO_{2} \longrightarrow [(Me_{3}Sn)_{4}Fe^{III}(CN)_{6}\bullet(NO_{2}^{-})] \quad (1-5)$$

$$wei\beta \qquad orange$$

$$[(Me_{3}Sn)_{4}Fe^{III}(CN)_{6}\bullet(NO_{2}^{-})] + C_{4}H_{5}N \longrightarrow [(C_{4}H_{5}N^{+})(Me_{3}Sn)_{4}Fe^{II}(CN)_{6}\bullet(NO_{2}^{-})]$$

$$orange \qquad schwarz \qquad (1-6)$$

Interessant ist die Reaktion (1-5) von NO₂ mit $[(Me_3Sn)_4Fe^{II}(CN)_6]$. Nach diesem Gleichgewicht adsorbiert jedes Mol $[(Me_3Sn)_4Fe^{II}(CN)_6]$ ein Mol NO₂. In H₂O geht anschließend Me₃SnNO₂ in Lösung. Das Ausgangspolymer kann in Gegenwart bestimmter Reduktionsmittel wie KI oder NaHSO₃ wieder zurückerhalten werden.

Schema 1.1 Zyklische Entfernung von NO₂ mit [(Me₃Sn)₄Fe^{II}(CN)₆]

Auf diese Weise könnte $[(Me_3Sn)_4Fe^{II}(CN)_6]$ grundsätzlich zur Entfernung des NO₂ aus Abgasen eingesetzt werden^[8].

In dieser Arbeit wird versucht, die Sorption von NO₂ und anderen reaktiven Gasen mittels poröser und polymerer Cyanide vollständiger zu untersuchen.

2. Arbeits- und Meßtechniken

Einige der hier angewandten Arbeits- und Meßtechniken werden im folgenden erklärt. Weniger spezielle Methoden werden im jeweiligen Anhang genannt.

2.1 Eigenschaften und Darstellung von NO₂

Einige der zahlreichen Oxide des Stickstoffs sind für die Belastung der Umwelt verantwortlich. Vor allem Stickstoffdioxid (NO₂) ist hier zu nennen.

Stickstoffdioxid ist ein braunrotes, giftiges und stechend riechendes Gas. Es ist chemisch sehr reaktiv, vor allem als starkes Oxidationsmittel.

Stickstoffdioxid unterliegt dem stark temperaturabhängigen Gleichgewicht^[9]:

$$2NO_{2} \xleftarrow{\text{Kunlen}}{} N_{2}O_{4}$$

$$braun \quad farblos$$

$$paramagnetisch \quad diamagnetisch$$

$$(2-1)$$

Im festen Zustand liegt das Oxid nur als N_2O_4 vor. Vom Schmelzpunkt bis zum Siedepunkt steigt der Gehalt an NO_2 stetig von 0,01 auf 0,1% an. Im Dampf nimmt die Dissoziation von N_2O_4 nach NO_2 kontinuierlich zu; es ist bei 150°C vollständig dissoziiert^[9].

Vom N₂O₄ existieren zwei Isomere:

Das N_2O_4 - Molekül kann grundsätzlich auch als eine heterolytische Spaltung eingehen:

$$N_2O_4 = NO_2^+ + NO_2^-$$
 (2-3)

In Medien von hoher Dielektrizitätskonstante disproportioniert die Verbindung häufig so, als sei sie gemäß dem folgenden Gleichgewicht dissoziiert^[9]:

$$N_2O_4 = NO^+ + NO_3^-$$
 (2-4)

Ein interessantes Beispiel bildet die Reaktion mit NaCl^[10]:

$$NaCl + N_2O_4 \rightarrow NaNO_3 + NOCl \tag{2-5}$$

 N_2O_4 / NO_2 reagiert mit Wasser zu Salpetersäure, daher wirken die Gase in Gegenwart von Feuchtigkeit sehr ätzend^[9]:

$$N_2O_4 + H_2O \longrightarrow HNO_3 + HNO_2$$
(2-6)

$$3HNO_2 \longrightarrow HNO_3 + 2NO + H_2O \tag{2-7}$$

Abb. 2.1^[11] Übersichtsspektren eines sehr reinen NO_2 - N_2 Gemisches (unten) und eines verunreinigten NO_2 Gemisches in synthetischer Gas (oben) unter identischen Meßbedingungen: Glas-Langwegzelle, Absorptionsweglänge: 49 m, Druck in der Küvette: ca. 1 bar bei einem Gasfluß 75 L/h; Auflösung: 2 cm⁻¹, Akkumulation: ca. 500 Durchläufe

2. Arbeits- und Meßtechniken

Einige ausgewählte IR-Daten sind in Tabelle 2.1 zusammengestellt.

Schwingungstyp	NO ₂ ^[11]	0 0 0 0 0 0	
$v(NO_2)$	2945, 2820		
v _{Antisym.} (NO)	1665, 1535	1718	1829, 1645
v _{Sym.} (NO)		1282	1290
δ(NO)		751	785
$\omega(NO_2)$			564
v(NN)		266 (Raman)	

Tab. 2.1 Einige ausgewälte IR-Daten von NO_2 und $N_2O_4^{[11, 12, 13]}$.

Es gibt mehrere Methoden, um Stickstoffdioxid (NO₂) synthetisieren. Im Hinblick auf die hier unerwünschte Dissoziation von NO₂ gemä $\beta^{[9, 14]}$:

$$NO_2 = NO + \frac{1}{2}O_2$$
 (2-8)

wird es in dieser Arbeit durch thermische Zersetzung von gut getrocknetem Bleinitrat, Pb(NO₃)₂, dargestellt:

$$Pb(NO_3)_2 \xrightarrow{240-550^{\circ}C} PbO + 2NO_2 + \frac{1}{2}O_2$$
(2-9)

Das entstandene NO₂ wird in einer geeigneten Glaszelle gespeichert.

2.2 Die Meßmethode der NO₂-Sorption verschiedener Koordinationspolymere

Um das Sorptionsvermögen von NO_2 durch verschiedene Polymere quantitativ zu vergleichen, müssen die entsprechenden Sorptionsisothermen ermittelt werden. Dazu kann z.B. die Gewichtszunahme des Polymers oder die Abnahme des Drucks des überstehenden Gases verfolgt werden. In der letzteren Methode lassen sich die Sorptionsisothermen jeweils aus den Druck / Zeit – Kurven ermitteln. Wegen der starken Oxidationswirkung von NO_2 ist die normale Druckmessung hier nicht geeignet. Die in Schema **2.1** dargestellte Apparatur wurde entwickelt, um diese Schwierigkeit zu umgehen:

Schema 2.1 Die Meßanlage der Sorption von NO₂ im Polymer

Die Meßvorrichtung besteht aus zwei Zellen A und B von gleichem Volumen sowie der Zelle C. In Zelle A befindet sich die Polymerprobe, die Zelle C dient als Gasreservoir. Nach dem Evakuieren der gesamten Anlage wird sie durch das Ventil 2 von Kühlfalle und Ölpumpe getrennt.

2. Arbeits- und Meßtechniken

Nach dem Öffnen der Ventile 1, 3 und 4 strömt das Gas aus der Zelle C in die Zellen A und B. Durch Schließen des Hahns 1 wird die Apparatur in zwei symmetrische Hälften geteilt, und vom Rest der Anlage getrennt, deren Druckunterschied durch den Differenzdruckaufnehmer (DDA) gemessen werden kann.

Während nun der Gasdruck auf der linken Seite der Apparatur konstant bleibt, fällt er aufgrund der Sorption des Gases durch die Polymerprobe auf der rechten Seite ab.

2.3 Die Eigenschaften der inneren Oberflächen von Polymeren

Die Eigenschaften der inneren Oberflächen eines Polymers sind von entscheidendem Einfluß auf das Sorptionsvermögen des Polymers. Dieses wird in der Regel am Beispiel der Physisorption von N_2 im Polymer bei ca. –195,8°C untersucht.

Die Einteilung der in unterschiedlicher Größe vorliegenden Poren erfolgt allgemein in Grob- (Durchmesser > 20 pm) und Feinporen, wobei letztere nach IUPAC - Festlegung^[15] nochmals unterteilt werden in:

Makroporen > 50 nm Mesoporen 2 - 50 nm Mikroporen < 2 nm

2.3.1 Typen von Adsorptionsisothermen

Je nach Porengröße ergeben sich unterschiedliche Verläufe (Formen) der Isothermen. Die Mehrzahl von Physisorptions - Isothermen umfaßt sechs Typen, die in Abbildung **2.2** gezeigt werden. In zahlreichen Fällen mit ausreichend niedriger Oberflächenbedeckung reduziert sich die Isotherme auf ein lineares Kurvenfragment, welches oft als Gültigkeitsbereich des Henry'schen Gesetzes betrachtet wird.

Die Isothermen in Abbildung **2.2** spiegeln die verschiedenen Eigenschaften eines Polymers wider ^[15]:

 Die Isotherme gemäß *Typ I* ist mikroporösen Festkörpern zuzuschreiben, die verhältnismäßig kleine innere Oberflächen aufweisen, das beschränkte Aufnahmevermögen liegt eher am zugänglichen Mikroporenvolumen als an der inneren Oberfläche.

- 2) Isothermen vom *Typ II* zeigen den normalen Verlauf, der von porenfreien oder makroporösen Proben erzeugt wird. Diese Isotherme läßt uneingeschränkte Mono / Multilayer - Adsorption erkennen. *Punkt B*, der Anfang des fast linearen Mittelabschnitts der Isotherme, entspricht oft der Situation, bei der die erste monomolekulare Flächenbedeckung vollständig ist und die Adsorption nachfolgender Schichten beginnt.
- 3) Die Isotherme vom *Typ III* ist konvex zur p/p° Achse über den ganzen Meßbereich und liefert somit keinen Punkt *B*. Diese Isortherme ist ziemlich ungewöhnlich.
- 4) Die Hauptmerkmale der Isotherme vom *Typ IV* sind die Hystereseschleifen, die mit der Kapillarkondensation in Mesoporen zusammenhängt, und die begrenzte Aufnahmefähigkeit über einer Bereich höher p/p° -Werte. Der Anfangsteil der Isothermen wird auf monolayermultilayer Adsorption zurückgeführt, da er dem entsprechenden Teil einer Isotherme vom *Typ II* gleicht.
- Die wiederum ungewöhnliche Isotherme vom *Typ V* kommt zustande, wenn die Adsorbent - Adsorbat - Wechselwirkung schwach ist, das Polymer aber dennoch innere Hohlräume aufweist.
- 6) Die Isotherme vom *Typ VI* resultiert aus stufenweiser Multilayer -Adsorption auf einer gleichförmigen, porösenlosen Oberfläche. Die Stufenhöhe hängt vom Raumbedarf jeder adsorbierten Schicht dar.

2.3.2 Typen von Hysterese - Schleifen

Hysterese – Kurven zeigen üblicherweise Kapillarkondensation in mesoporösen Strukturen an. Die Formen von Hystereseschleifen (Abbildung **2.3**) sind oft mit bestimmten Porenstrukturen in Verbindung gebracht geworden^[15]:

- *Typ H1* ordnet man oft porösen Materialien zu, die in ungefähr einheitlicher Kugelform vorliegen, und deren Porengröße eine sehr scharfe Verteilungsfunktion aufweist.
- 2) Viele poröse Adsorbentien neigen dazu, *Typ H2* Schleifen auszubilden, aber in solchen Systemen ist die Verteilung der Porengröße und Gestalt noch nicht gut definiert. Die *H2* Schleife ist besonders schwierig zu interpretieren: Während früher ein Unterschied des Mechanismus von Kondensations- und Verdampfungsprozessen für relevant gehalten wurde, wie er in Poren mit schmalen Hälsen und weiten Körpern (oft als "Tintenfaß–Poren" bezeichnet) denkbar ist, berücksichtigt man heute zunehmend die Rolle von "Netzwirkungen".
- Die *Typ H3* Schleife, die keine begrenzte Adsorption bei hohen p/p° -Werten zeigt, wird bei plättchenförmigen Teilchenmengen beobachtet, die schlitzförmige Poren aufweisen.
- Auch Schleifen vom *Typ H4* verbindet man oft bei schmalen, schlitzartigen Poren, aber in diesem Fall ist die Ähnlichkeit mit *Typ I* ein Hinweis auf Mikroporosität.

Bei vielen Systemen, insbesondere solchen, die Mikroporen enthalten, kann die Hysterese bei niedrigem Druck (durch gestrichelte Linien in Schema 2.3 angezeigt), bis hin zu den niedrigsten erreichbaren Drucken beobachtet werden. Dieses Phänomen entspricht vielleicht der Schwellung einer flexiblen Struktur oder der irreversiblen Aufnahme von Molekülen in Poren, die genau die gleichen Ausmaße wie die Adsorbat – Moleküle haben, oder in einigen Fällen auch mit einer reziproken chemischen Wechselwirkung des Adsorbats mit dem Adsorbens.

2.3.3 Bestimmung der spezifischen Oberfläche

Zur Bestimmung der spezifischen Oberfläche poröser Feststoffe benutzt man die Adsorption von Gasmolekülen an der Oberfläche des Feststoffs. Die am häufigsten angewendete Funktion einer Adsorptionsisotherme zur Bestimmung der spezifischen Oberfläche ist die nach Brunauer, Emmett und Teller benannte BET - Funktion^[15]:

$$\frac{p}{v_a(p^\circ - p)} = \frac{1}{v_m C} + \frac{C - 1}{v_m C} \times \frac{p}{p^\circ}$$
(2-7)

Die Größe v_a ist das adsorbierte Volumen (cm³/g) beim relativen Druck p/p° , und v_m ist die Monolayer - Aufnahmefähigkeit.

Nach der BET-Theorie ist die Konstante *C* exponentiell mit der Adsorptionsenthalpie der ersten adsorbierten Schicht verknüpft. Ein hoher Wert von *C* (\approx 100) ist verbunden mit einem scharfen Knick (Punkt *B*) der Isotherme, welcher üblicherweise mit v_m übereinstimmt, das somit aus der obigen Gleichung innerhalb einer Fehlergrenze von ein paar Prozent herleitet werden kann.

Die BET - Gleichung verlangt einen linearen Zusammenhang von $\frac{p}{v_a(p^\circ - p)}$

und $\frac{p}{p^{\circ}}$ (sog. "BET–Plot"). Die Linearität ist experimentell häufig auf einen $\frac{p}{p^{\circ}}$ -Wertebereich von 0,05 bis 0,30 beschränkt.

Bei Monolayer - Aufnahmevermögen (v_m) ergibt sich mit der Kenntnis der durchschnittlichen Fläche der Adsorbat - Moleküle ($a_m = 16,2 \times 10^{-20} \text{ m}^2$ für N₂) die spezifische Oberfläche ($A_s(BET)$) zu:

$$A_{s}(BET)(m^{2}/g) = \frac{v_{m}}{22,41 \times 10^{3}} \times L \times a_{m}$$
(2-8)

worin L (= 6,022×10²³ Mol⁻¹) die Avogadro – Konstante bedeutet.

2.3.4 Porengrößen - Verteilung

Für Berechnungen der Mesoporen-Größenverteilung aus Physisorptionsisothermen wird im allgemeinen angenommen:^[15]

- 1) daß die Poren starr und von einer regulären Form sind,
- 2) daß Mikroporen abwesend sind,
- daß sich die Verteilung nicht kontinuierlich vom mesoporösen in den makroporösen Bereich fortsetzt.

Um die Porengrößen-Verteilung zu erhalten, die üblicherweise in der graphischen Form ($\Delta V_p / \Delta r_p$ gegen r_p) ausgedruckt wird, muß die Wirkung der Mehrschicht - Adsorption darin berücksichtigt werden, die Dimension des freien Hohlraum für kapillare Kondensation progressiv zu reduzieren.

2. Arbeits- und Meßtechniken

Die Bestimmung der Mesoporen-Größe ist mit Hilfe der Kelvingleichung möglich, die üblicherweise das folgende Aussehen hat^[15]:

$$\frac{1}{r_1} + \frac{1}{r_2} = -\frac{RT}{\sigma v} \ln(\frac{p}{p^{\circ}})$$
(2-9)

Darin bedeuten r_1 und r_2 von Hauptkrümmungsradien bezüglich des flüssigen Meniskus in der Pore beim relativen Druck p/p° , bei dem es zur Kondensation kommt; hier ist σ die Oberflächenspannung vom flüssigen Kondensat und v sein molares Volumen.

Um diese Näherung zur Bestimmung des Porenumfanges zu verwenden, muß vorausgesetzt werden:

- 1) Ein mathematischer Ausdruck für die Porenform
- 2) Ein Zusammenhang zwischen der Krümmung des Meniskus und der Porenbreite sowie der Porenform

Im allgemeinen wird für beides entweder eine Zylinder- oder Schlitzform angenommen: Im ersten Fall ist der Meniskus hemisphärisch und $r_1 = r_2$, im letzteren Fall entspricht $r_1 =$ der Schlitzbreite, und $r_2 = \infty$.

Umformen der Kelvingleichung und das Ersetzen von $(\frac{1}{r_1} + \frac{1}{r_2})$ durch $\frac{2}{r_k}$ führt

zum Ausdruck:

$$r_k = \frac{-2\sigma v}{RT \ln(p/p^\circ)}$$
(2-10)

(r_k heißt oft der Kelvinumkreis)

Im Fall von N2 als Adsorbens, folgt

$$r_{k}(nm) = \frac{-0.953}{\ln(p/p^{\circ})}$$
(2-11)

Wenn der Umkreis einer zylindrischen Pore r_p ist, und die Dicke eine Schicht, die auf den Porenwänden schon adsorbiert ist, weiter anwächst, d. h. wenn zahlreiche Schichten übereinander zustande kommen (Gesamtdicke: t), folgt:

$$r_p = r_k + t \tag{2-12}$$

Nachfolgend wird die Schichtdicke für N2 als Adsorbens angegeben:

$$t(nm) = 0.35 \times \left(\frac{5}{\ln(p/p^{\circ})}\right)^{1/3}$$
(2-13)

Der Zusammenhang zwischen Porenvolumen und Porendimensionen wird graphisch durch Auftragung des Porenvolumens gegen die mittlere Porengröße (d.h. v_p gegen r_p) oder idealerweise als eine Verteilung, dv_p/dr_p gegen r_p dargestellt. Die Berechnung begründet sich üblicherweise auf der fiktiven Beseitigung des Kondensats durch schrittweise geringere Werte von p/p° , in der Praxis ist die Porengrößenverteilung im Formular von $\delta v_p/\delta r_p$ gegen r_p ausgedrückt.

2.4 Identifizierung und Analyse von Röntgenpulverdiffraktogrammen kubischer Struktur

Röntgenpulverdiffraktogramme können wichtige Hinweise zur Unterscheidung von Gittertypen liefern. Die Auswertung der $sin^2\theta$ - Werte von Reflexen aus aufgenommenen Diffraktogrammen, erlaubt die Angabe, ob ein Polymer einem kubischen Gittertyp zuzuordnen ist oder nicht. Ob unter den gemessenen Reflexen solche vorhanden sind, die zu einem kubischen Kristall gehören, lässt

2. Arbeits- und Meßtechniken

sich folgendermaßen feststellen: Für ein kubisches Gitter müssen die Netzebenenabstände folgender Gleichung genügen^[16]:

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$
(2-14)

(*d* = *Netzebenenabstand*; *h*,*k*,*l* = *Millersche Indizes*; *a* = *Gitterkonstante*) Die Braggsche Gleichung für einen bestimmtes *h k l* – Satz lautet:

$$d_{hkl} = \frac{\lambda}{2\sin\theta}$$
(2-15)

 $(\lambda = Wellenlänge)$

Durch Kombination der Gleichungen (2-14) und (2-15) ergibt sich der Ausdruck:

$$\sin^2 \theta = (\frac{\lambda}{2a})^2 (h^2 + k^2 + l^2)$$
(2-16)

Gleichung (2-16) zeigt eine integrale Beziehung zwischen den $sin^2\theta$ Werten der verschiedenen Reflexe, und in einfachgelagerten Situationen zeigt sie sogar die Geometrie des Kristallgitters an. So entsprechen zwei Reflexe den Gleichungen:

$$\sin^2 \theta_1 = \left(\frac{\lambda}{2a}\right)^2 \left(h_1^2 + k_1^2 + l_1^2\right)$$
(2-17)

$$\sin^2 \theta_i = (\frac{\lambda}{2a})^2 (h_i^2 + k_i^2 + l_i^2)$$
(2-18)

Division der zweiten Gleichung durch die erste ergibt:

$$\frac{\sin^2 \theta_i}{\sin^2 \theta_1} = \frac{h_i^2 + k_i^2 + l_i^2}{h_1^2 + k_1^2 + l_1^2} = \frac{m_i}{m_1} = R_i$$
(2-19)

worin m_1 und m_i die integralen Summen der Quadrate der jeweiligen Millerschen Indizes $(h \ k \ l)$, $(h_1^2 + k_1^2 + l_1^2)$ und $(h_i^2 + k_i^2 + l_i^2)$, bedeuten.

Die Indizierung wird so durchgeführt, daß man tabellarisch die $sin^2 \theta_i / sin^2 \theta_l$ - Quotienten mit den Werten von m_i / m_l . vergleicht.

Aus $R_i = m_i / m_I$ folgt $m_i = m_I \times R_i$, und für $m_I = I$, 2, 3, ..., somit ergibt sich die Gleichung:

$$m_i = h_i^2 + k_i^2 + l_i^2$$
(2-20)

Die Gitterkonstante a_i kann wie folgt berechnet werden:

$$a_{i} = \frac{\lambda}{2} \frac{\sqrt{h_{i}^{2} + k_{i}^{2} + l_{i}^{2}}}{\sin \theta_{i}}$$
(2-21)

3. Das Gas – Aufnahmevermögen des Koordinationspolymers [(Me₃Sn)₄Fe(CN)₆]

Tetrakis-(trimethylzinn)-hexacyanoferrat(II), $[(Me_3Sn)_4Fe^{II}(CN)_6]$ (1), das zum ersten Mal von Yünlü^[17] 1983 dargestellt wurde, bildet relativ flexible dreidimensionale Strukturen mit großen Hohlräumen (ca. 1 nm) aus. Die vollständige Auswertung des Röntgenpulverdiffraktogramms des Koordinationspolymers $[(Me_3Sn)_4Fe(CN)_6]$ ergab, daß zwei der vier Me_3Sn⁺-Einheiten an der dreidimensionalen Vernetzung der $[Fe(CN)_6]^{4-}$ -Bausteins beteiligt sind, indem sie als verbrückende Einheiten fungieren (tbpund [Sn-NC-Fe-CN-Sn] Polymerstränge Konfiguration) bilden (diese Polymerstränge sind in Schema 3.1 dunkel gefärbt). Die anderen zwei Me₃Sn -Einheiten mit tetraedrisch koordiniertem Zinn sind an zwei jeweils transständige Cyanidgruppen eines $[Fe(CN)_6]^{4-}$ - Bausteins gebunden, ohne zwei dieser Einheiten zu verbrücken (diese Me₃Sn - Bausteine sind in Schema 3.1 heller gefärbt). ¹¹⁹Sn – Festkörper – NMR - Studien^[17] bestätigen diese Vorstellung.

Schema 3.1 Struktur von [(Me₃Sn)₄Fe(CN)₆] mit relativ großen Hohlräumen (hell: nicht verbrückende Me₃Sn-Gruppen)

Die Möglichkeit einer Einlagerung von NO₂, Cl₂ und Br₂ in die Hohlräume des Koordinationspolymers beruht darauf^[8], daß diese Gase das zentrale Atom Fe(II) zu Fe(III) oxidieren können, und die reduzierten Gasmoleküle als Gastanionen über koordinative Bindungen mit Sn – Atom im Polymer verankert werden.

3.1 Die Eigenschaften der Oberfläche von [(Me₃Sn)₄Fe^{II}(CN)₆]

Zur Untersuchung der Eigenschaften der Oberfläche von $[(Me_3Sn)_4Fe^{II}(CN)_6](1)$, wird die Sorptionsisotherme (Abb. 3.1 oben) für N₂ vermessen. Zu Vergleichszwecken wird auch die Sorptionsisotherme (Abb. 3.1 unten) des Wirt / Gast – Systems, $[(Cp_2Co)(Me_3Sn)_3Fe^{II}(CN)_6](2)$, bestimmt $(Cp=\eta^5-C_5H_5)$.

Aufgrund der allgemeinen Klassifizierung von Sorptionsisothermen (**Abb. 2.2**) können die Isothermen in Abbildung **3.1** dem stufenweise ansteigenden Typen *VI* zugeordnet werden. Außerdem haben beide Isothermen entsprechend große Hysteresis - Schleifen wie in *H3*. Somit kommen beiden Polymeren gleichförmige Mikroporen - Oberflächen mit "schmalen Poren" zu.

Abbildung **3.2** bestätigt, daß beide Verbindungen zwischen 2 und 40 nm keine gute Mesoporen - Verteilung aufweisen. Dies stimmt mit dem Ergebnis der Röntgenstrukturanalyse überein^[17](vgl. auch S. 17).

Abb.3.2 Mikroporen - Verteilung von $[(Me_3Sn)_4Fe(CN)_6](1)$ und $[(Cp_2Co)(Me_3Sn)_3Fe(CN)_6](2)$

Die Auswertung von BET–Messungen (**Tab. 3.1**) bestätigt, daß die Verbindung $[(Me_3Sn)(Me_3Sn)_3Fe(CN)_6](1)$ erwartungsgemäß größere innere Oberflächen aufweist als das Wirt / Gast - System $[(Cp_2Co)(Me_3Sn)_3Fe(CN)_6](2)$. Tatsächlich ist der Baustein $\{Cp_2Co\}^+$ größer als ein $\{Me_3Sn\}^+$ –Kation, so daß mehr Platz im Inneren des 3D – Netzwerks $[(Me_3Sn)_4Fe(CN)_6]$ verbleibt.

Probe	С	Vm (cm ³ /g)	$\frac{As}{(m^2/g)}$	Bemerkung [#]
$[(M_0 S_n) F_0(CN)](1)$	39,63	0,8953	8,73	AC, aus Abb. 3.1
	6,98	1,7087	7,47	TMC, Anhang 8.2.1
$\left[(Cn C_{2})(M_{2} Sn) E_{2}(CN) \right] (2)$	29,63	0,5002	2,18	AC, aus Abb. 3.1
$[(Cp_2C0)(Me_3Sn)_3Fe(CN)_6](2)$	27,75	0,4982	2,17	AC, Anhang 8.2.2

Tab. 3.1 Das Auswertungsergebnis der BET-Messung

[#] <u>AC</u> bedeutet, die Probe im <u>Institut für Angewandte und Anorganische Chemie</u>, Universität Hamburg, gemessen wurde.

<u>TMC</u> bedeutet, die Probe im <u>Institut für Technische und Makromolekulare Chemie</u>, Universität Hamburg, gemessen wurde.

3.2 Oxidation von [(Me₃Sn)₄Fe^{II}(CN)₆] mit NO₂-Gas

Die Reaktion von $[(Me_3Sn)_4Fe^{II}(CN)_6]$ mit gasförmigem NO₂ verläuft bei Raumtemperatur und Normaldruck spontan; dabei verfärbt sich die Ausgangsverbindung von weiß nach orange, und es entfärbt sich die Gasatmosphäre von braun nach farblos. (Abb. 3.4 und Tab. 3.2)

Abbildung **3.4** zeigt die Sorptionsisothermen für drei verschiedene Ausgangskonzentrationen des NO₂. Kurve *a* ist die mit der höchsten Konzentration an NO₂ in diesem Experiment. Nach ca. 4 Stunden erreicht Kurve *a* die maximal mögliche Sorptionsmenge, die Farbe des überstehenden Gases verändert sich dabei von tief braun nach hellbraun. Am Anfang (von 0 bis 4 Stunden) verläuft die Reaktion sehr schnell, möglicherweise wegen der frischen Oberflächen des Polymers und der noch relativ hohen Konzentration an NO₂.

	Gaskonzentration (%) $^{\#}$			Maximale	Farbveränderung	Farbveränderung	
	NO ₂	O_2	N_2	(Mol/Mol)	des Festkörpers	der Gasphase	
а	14,21	1,88	84,00	3,99	weiß→orange	tief braun→hell braun	
b	5,62	0,77	93,61	1,08	weiß→orange	braun→farblos	
c	2,29	0,32	97,39	0,17	weiß→hell gelb	hell braun→farblos	

Tab. 3.2 Die Sorption von NO₂ mit [(Me₃Sn)₄Fe^{II}(CN)₆]

Die Kurven b und c sind typisch für eine mittlere und die niedrige Konzentration an NO₂. Beide Kurven steigen kontinuierlich innerhalb der ganzen Meßzeiten an.

Tab. 3.3 Elementaranalytische Ergebnisse für 1 und dessen Nitrierungsprodukten

Verbindung		N	С	Н	0	Fe	Sn
1	ber.	9,69	24,93	4,19	0	6,44	54,75
	gef.	9,72	24,95	3,98		6,34	54,11
$\{1 \bullet 0, 17(NO_2)\}$	ber.	9,88	24,70	4,15	0,62	6,38	54,26
	gef.	9,75	24,44	4,19	1,20		
$\{1 \bullet 1,08(NO_2)\}$	ber.	10,82	23,57	3,97	3,77	6,09	51,78
	gef.	9,78	21,34	3,68	5,12		
{1•3,99(NO ₂)}	ber.	13,32	20,57	3,46	12,15	5,31	45,19
	gef.	11,83	18,44	3,07		5,12	44,85

Die Elementaranalyse (**Tab. 3.3**) stimmt der manometrischen Bestimmung der Zusammensetzung überein. Bemerkenswert ist, daß die gefundenen Sauerstoffanteile weniger als die berechneten sind. Vielleicht wurde gleichfalls adsorbiertes O_2 in NO_3^- - Ionen überführt.

Abbildung **3.5** zeigt die IR - Spektren von Verbindung (1) und von dem mit NO₂ behandelten Produkt. Die IR - Spektren zeigen, daß auf Grund von Oxidation des NO₂ zwei neue Banden bei 1384 cm⁻¹ (für NO₂⁻) und 1287 cm⁻¹ (für NO₃⁻) auftreten und mit zunehmender NO₂ - Aufnahme intensiver werden. Zugleich erscheint eine neue CN - Bande für Fe(III) bei 2143 cm⁻¹, während die Bande

[#] Die Gaskonzentrationen würden unter der Annahme eines Idealgases berechnet.

bei 600 cm⁻¹ für Fe(II) – CN - Valenzschwingung schwächer wird. Dies alles deutet daraufhin, daß das Zentralmetallion von Fe(II) nach Fe(III) oxidiert wird, wobei NO₂ zu NO_{$\frac{1}{2}$} / NO_{$\frac{1}{3}$} reduziert und im Polymer fixiert wird.

Abb. 3.5 IR-Spektren von $[(Me_3Sn)_4Fe(CN)_6]$ und $[(Me_3Sn)_4Fe(CN)_6 \bullet x(NO_2^-)]$

Tab. 3.4 Ausgewählte IR-Daten von [(Me₃Sn)₄Fe^{II}(CN)₆] (1) und dessen NO₂ - Anlagerungsprodukten

Ordnung	1	a a	b	С	$Me_3SnNO_2^{[18]}$	Me ₃ SnNO ₃ ^[19]
		2143	2143	2143		
V(CN)	2075, 2050	2084	2084	2084		
v(NO)			1932	1932		
$v(NO_3^-)$						1452
$\nu(NO_2^-)$		1384	1384, 1357	1384, 1357	1410	
$\nu(NO_3^-)$		1289	1289	1289		1300
$v(NO_2^-)$					1200	
					1050	1021
δ(ONO)			833	833		803
$\delta(Fe^{II}-C)$	600	600	600	600		

Für das Nitrit – Ion kennt man grundsätzlich fünf Koordinationsmöglichkeiten:

Das Nitrit - Ion selbst besitzt die niedrige Symmetrie C_{2v}, und seine drei Schwingungsmöglichkeiten, die symmetrische N–O-Valenz die vs. asymmetrische N–O-Valenz v_{as} und die Deformation δ , sind alle infrarotaktiv. Deswegen kann sich bei der Komplexierung keine Veränderung der Bandenzahl ergeben, und Aussagen über die Struktur aus den IR - Spektren müssen sich auf die Deutung von Frequenzverschiebungen gründen. Die Deformationsschwingung ist gegen Koordination recht unempfindlich, doch weisen v_s und v_{as} charakteristische Verschiebungen auf, die häufig eine verläßliche Festlegung von Nitro - oder Nitritostrukturen gestatten. So sind bei Nitro - Komplexen die beiden Frequenzen ähnlich; typische Werte sind $1300 - 1400 \text{ cm}^{-1}$ für v_s und $1460 - 1430 \text{ cm}^{-1} \text{ für } v_{as}.$

Im IR-Spektum von Me₃SnNO₂ findet man drei Banden bei 1410, 1200 und 1050 cm⁻¹ ^[18]. Die Bande bei 1200 cm⁻¹ könnte durch zwischenmolekulare Kräfte verbreitert sein. Bei IR-Spektren von NO₂ - Anlagerungsprodukten beobachtet man die Bande bei 1384 und 1357 cm⁻¹ ähnlich wie 1410 cm⁻¹ für $v(NO_2^-)$.

Vom Nitrat - Ion kennt man vier Koordinationsmöglichkeiten:

Aus zahlreichen Untersuchungen an Nitrato - Komplexen ergab sich die symmetrische, zweizähnige Struktur (i) als bevorzugt, während die einzähnige Form eine weniger verbreitete Alternative darstellt.

Das freie Nitrat - Ion besitzt die relativ hohe Symmetrie D_{3h} und demgemäß ein recht einfaches IR - Spektrum. Die totalsymmetrische N–O-Valenzschwingung ist IR-inaktiv, doch erzeugt die doppelt entartete N–O-Valenzschwingung eine

3. Das Gas-Aufnahmevermögen des Koordinationspolymers [(Me₃Sn)₄Fe(CN)₆]

intensive Bande bei ca. 1390 cm⁻¹. Es gibt ferner zwei IR-aktive Deformationsschwingungen bei 830 und 720 cm⁻¹, von denen eine doppelt entartet ist. Wird ein Nitrat-Ion koordiniert, so verringert sich seine tatsächliche Symmetrie. Damit werden alle Entartungen aufgehoben und alle (sechs) Schwingungen IR aktiv. Daher ist es leicht, zwischen ionischen und koordinierten Nitratgruppen zu unterscheiden.

Weil die beiden häufigsten Koordinationsformen des Nitrat-Ions die gleiche effektive Symmetrie besitzen und damit die gleiche Zahl IR-aktiver Schwingungen, müssen die spektroskopischen Unterscheidungsmerkmale in den Bandenlagen und nicht in den Bandenzahlen gesucht werden. Die Praxis ergibt eine recht komplizierte Situation, klare Unterscheidungskriterien fehlen. Das ist darauf zurückzuführen, daß die Frequenzlagen nicht nur von der Koordinationsstärke abhängen.

So ist die Bandenlage wichtiger als Bandenzahlen. Wird ein Nitrat-Ion koordiniert, verringert sich seine tatsächliche Symmetrie. Damit werden alle Entartungen aufgehoben und alle 6 Schwingungen IR-aktiv.

Im Fall von Me₃SnNO₃ findet man Banden bei 1452, 1300 und 1021 für $v(NO_3^-)$, sowie 803 cm⁻¹ für $\delta(NO_3^-)^{[19]}$. In den IR-Spektren von NO₂ – Anlagerungsprodukten findet man die Bande bei 1289 cm⁻¹ ähnlich wie 1300 cm⁻¹ für $v(NO_3^-)$. Außerdem findet man die Bande bei 833 cm⁻¹ auch für $\delta(ONO)$.

In einem Raman-Experiment mit $[(Me_3Sn)_4Fe(CN)_6 \bullet NO_2]$ tauchte keine typische Bande für NO_x auf.

Die Bandenverschiebung im Cyanidbereich von 2200 bis 2000 cm⁻¹, stimmt mit der Messung der magnetischen Suszeptibilität überein. Bei der magnetischen Suszeptibilitätsmessung ergab sich, daß die Ausgangsverbindung weiß und diamagnetisch ist, das Folgeprodukt mit NO_2 aber orange und paramagnetisch, ähnlich wie [(Me₃Sn)₃Fe^{III}(CN)₆] (**Tab. 3.5**).

	1	$[1 \bullet 1,08(NO_2)]$	$[(Me_3Sn)_3Fe^{III}(CN)_6]$
	(weiß)	(orange)	(orange)
$\chi_{\rm g}(\times 10^{-6})$	-0,49	1,93	3,04
$\mu_{\rm eff}$ (B.M.)	diamagnetisch	2,04	2,52

Tab. 3.5 Ergebnisse von Messungen der magnetischen Suszeptibilität

Zusammenfassend sei gesagt, daß die Sorptionsreaktion von NO_2 mit $[(Me_3Sn)_4Fe^{II}(CN)_6]$ wie folgt beschrieben werden kann:

$$[(Me_3Sn)_4Fe^{II}(CN)_6] + NO_2 \rightarrow [(Me_3Sn)_4Fe^{III}(CN)_6 \bullet NO_2^{-}]$$
(3-1)

und / oder:

$$[(Me_{3}Sn)_{4}Fe^{III}(CN)_{6}\bullet NO_{2}^{-}] + \frac{1}{2}O_{2} \rightarrow [(Me_{3}Sn)_{4}Fe^{III}(CN)_{6}\bullet NO_{3}^{-}]$$
(3-2)

Abb. 3.6 Röntgenpulverdiffraktogramme von freiem $[(Me_3Sn)_4Fe^{II}(CN)_6]$ und $[(Me_3Sn)_4Fe^{III}(CN)_6\bullet(1,08NO_2^-)]$

Die Röntgenpulverdiffraktogramme (**Abb. 3.6**) zeigen, daß sich nach der Sorption von NO_2 die Kristallstruktur des $[(Me_3Sn)_4Fe^{II}(CN)_6]$ signifikant verändert hat.

Es ist bemerkenswert, daß bei Kurve *C* (in Abb. 3.4) die maximale Sorptionsmenge mehr als 1 Mol (NO₂) / Mol (Polymer) betragen kann und bis 3,99 Mol (NO₂) / Mol (Polymer) anzusteigen vermag. Dies deutet darauf hin, daß das Polymer [(Me₃Sn)₄Fe^{II}(CN)₆] gasförmiges NO₂ nicht nur chemisch fixiert (Redoxreaktion), sondern darüber hinaus auch physikalisch sorbiert wird:

 $[(Me_3Sn)_4Fe^{III}(CN)_6 \bullet NO_x^-] + NO_2 \rightarrow [(Me_3Sn)_4Fe^{III}(CN)_6 \bullet NO_x^- \bullet NO_2]$

(3-3)

3.3 Reaktionen von $[(Me_3Sn)_4Fe^{III}(CN)_6 \bullet (NO_2^{-})]$

Das Reaktionsvermögen von Stickstoffoxiden ist kompliziert wegen der sehr vielfältigen Oxidationszustände von Stickstoff. Derartige Reaktionen können grundsätzlich auch im Fall des $[(Me_3Sn)_4Fe^{III}(CN)_6 \cdot (NO_2^-)]$ ablaufen. So hat das mit NO₂ behandelte und nach zwei Monaten unter N₂ bei RT gespeicherte Produkt ein anderes IR-Spektrum als die Originalverbindung (**Abb. 3.7**). Die Banden bei 1384 und 1357 cm⁻¹ für v(NO₂⁻) werden schwächer; zugleich werden die Banden bei 1930 cm⁻¹ für v(NO) und bei 1289 cm⁻¹ für v(NO₃⁻) stärker (jeweils bezogen auf die v(CH)–Banden der CH₃-Gruppen).

Abb. 3.7 IR-Spektren von frischem [(Me₃Sn)₄Fe^{III}(CN)₆•(NO⁻₂)](a) und zwei Monate unter N₂ bei RT gelagertem Produkt (b)

Vielleicht kann man auf die folgende Reaktion zurückführen:

$$[(Me_{3}Sn)_{4}Fe^{III}(CN)_{6}\bullet NO_{2}^{-}] \rightarrow [(Me_{3}Sn)_{4}Fe^{III}_{0,5}Fe^{II}_{0,5}(CN)_{6}\bullet \frac{1}{2}NO_{3}^{-}\bullet \frac{1}{2}NO]$$
(3-4)

3.3.1 Thermische Behandlung von [(Me₃Sn)₄Fe^{III}(CN)₆•(NO⁻₂)] in Vakuum

Die thermische Analyse von $[(Me_3Sn)_4Fe^{III}(CN)_6 \cdot (NO_2^{-})]$ wurde schon von R. Tarhouni^[8] unter Argon-Atmosphäre bis 150°C durchgeführt. In den IR-Spektren von dessen thermisch behandeltem Folgeprodukt tauchen drei neue Banden bei 1919, 1417 und 1293 cm⁻¹ auf. Dazu verschwindet die Bande bei 1384 cm⁻¹. Kein NO⁺-Fragment (m/e=30) wurde massenspektrometrisch beobachtet.

Hier wurde die thermische Behandlung von $[(Me_3Sn)_4Fe^{III}(CN)_6 \cdot (NO_2^{-})]$ im Vakuum durchgeführt. Das entstehende Gas wird in Kühlfallen gesammelt (Schema 3.2).

Schema 3.2. Thermische Behandlung des Polymers im Vakuum

Das Experiment zeigt, daß nach der Behandlung von $[(Me_3Sn)_4Fe^{III}(CN)_6 \cdot (NO_2^{-})]$ bei 120°C für 12 Stunden im Vakuum sich die Farbe des Festkörpers von orange nach braun verändert und das Gewicht der
Probe von 168,6 mg auf 153,6 mg verringert hat. Außerdem nimmt die magnetische Suszeptibilität ab (**Tab. 3.6**).

	$[(Me_3Sn)_4Fe^{III}(CN)_6 \bullet (NO_2^{-})]$ (orange)	Folgeprodukte (braun)
$Xg(\times 10^{-6})$	1,93	0,98
μ_{eff} (B.M.)	2,04	1,28

Tab. 3.6 Der Ergebnisses von der magnetischen Suszeptibilität

Abbildung 3.8 zeigt Vergleich das **IR-Spektrum** zum von $[(Me_3Sn)_4Fe^{III}(CN)_6 (NO_2^{-})]$ (a) und das des thermisch behandelten Produkts (b). Das IR - Spektrum (b) ähnelt dem des Rückstands der thermischen Analyse bis 150°C unter Argon - Atmosphäre^[8]. Im Cyanidbereich verschwindet die starke v(CN)-Bande bei 2143 cm⁻¹ für typische Fe(III)-Komplexe; dazu verschwindet auch die starke Bande bei 1357 cm⁻¹, und es nimmt die Intensität der Bande bei 1384 cm⁻¹ für v(NO₂⁻) weitgehend zugunsten einer neuer Bande bei 1474 ab. Intensiver wird dagegen die Bande bei 1289 cm⁻¹. Die Banden bei 1474 und 1289 cm⁻¹ sind typische Me₃SnNO₃ – Banden^[19].

und dessen thermisch behandelter Folgeprodukte(b)

Nach der Reaktion wird ein weißer Kristall auf der Oberseite des Filters im Proberohr gefunden. Das IR - Spektrum (**Abb.3.9**) bestätigt, daß es ein Nitritsalz

ist, weil die Banden bei 1384, 1241, 1154 cm⁻¹ typische Banden für ionisches NO⁻²₂ sind.

Abb. 3.9 IR-Spektrum des weißen Kristalls (Thermische Produkt, vgl. Text)

In der Kühlfalle entdeckt man in sehr kleiner Menge eine farblose Flüssigkeit. Das IR-Spektrum (**Abb. 3.10**) des darüber befindlichen farblosen Gases (aus der Kühlfalle) zeigt Banden bei 2360 und 2342 für $C_2N_2(Dicyan)^{[12]}$; die Banden bei 2237 und 2213 cm⁻¹ für $N_2O^{[11]}$; die Bande bei 1628 für $NO_2^{[11]}$; die Bande bei 1384 und 1355 cm⁻¹ für $NO_2^{-[18]}$; sowie die Banden bei 1305 und 1277 cm⁻¹ für H $NO_3^{[11]}$ (vgl. **Abb. 2.1**).

Abb. 3.10 IR-Spektrum des farblosen Gases aus der Kühlfalle (vgl. Text)

Das Massenspektrum (**Abb. 3.11**) der Flüssigkeit aus der Kühlfalle enthält Fragmente von NO_2^+ (m/e = 46) und Me_3Sn^+ (m/e = 164). Somit liegt nahe, daß auch Me_3SnNO_2 vorgelegen hat.

Abb. 3.11 Massenspektrum der Flüssigkeit aus der Kühlfalle (vgl. Text)

Insgesamt kann man sich die folgenden Reaktionen vorstellen:

$$[(Me_3Sn)_4Fe^{III}(CN)_6 \bullet NO_2^-] \xrightarrow{Vakuum}{120^{\circ}C} [(Me_3Sn)_3Fe^{III}(CN)_6] + Me_3SnNO_2$$
(3-5)

$$[(Me_3Sn)_3Fe^{III}(CN)_6] \xrightarrow{Vakuum}{120^{\circ}C} [(Me_3Sn)_3Fe^{II}(CN)_5] + \frac{1}{2}(CN)_2 \qquad (3-6)$$

3.3.2 Behandlung von [(Me₃Sn)₄Fe^{III}(CN)₆•(NO₂⁻)] mit NH₃

Ammoniak dient normalerweise als Reduktionsmittel bei dem SCR-Verfahren (vgl. Kapitel 1, Gl. 1-1). Hier stellt sich die Frage, ob Ammoniak auch das von 1 sorbierte NO_2 reduzieren kann.

Man bringt die Probe, $[(Me_3Sn)_4Fe^{III}(CN)_6 \cdot (NO_2^-)]$, in ein Reaktionsgefäß. Nach einigen Stunden im Vakuum bei RT leitet man gasförmiges NH₃ in dieses Reaktionsgefäß ein. Danach läßt man die Probe mit dem Gas bei Raum- oder höherer Temperatur reagieren.

Das Experiment zeigt, daß bei Raumtemperatur nach vier Stunden Reaktionszeit die Farbe der Probe sich von orange nach hellgelb verändert, und im IR-Spektrum die Bande bei 1289 cm⁻¹ für v(NO₃⁻) etwas schwächer wird, während eine neue schwache Bande bei 3255 cm⁻¹ für v(NH₃) auftaucht.

(unten) mit dem von [(Me₃Sn)₄Fe^{III}(CN)₆•(NO $_{2}^{-}$)•(NH₃)] (oben)

Dies könnte bedeuten, daß ein Teil des NO_x^- vom NH_3 reduziert wird und überschüssiges molekulares NH_3 physikalisch vom Netzwerk des Polymers eingelagert wird:

$$[(Me_{3}Sn)_{4}Fe^{III}(CN)_{6}\bullet NO_{2}^{-}] + NH_{3} \longrightarrow$$

$$orange \qquad [(Me_{3}Sn)_{4}Fe^{III}(CN)_{6}\bullet (NO_{2}^{-})\bullet (NH_{3})] \quad (3-7)$$

$$hell \ gelb$$

3.3.3 Umsetzung von [(Me₃Sn)₄Fe^{III}(CN)₆•(NO⁻₂)] mit NH₄I

In diesem Fall verreibt man $[(Me_3Sn)_4Fe^{III}(CN)_6 \cdot (NO_2^{-})]$ mit NH₄I im Überschuß. Dann wird das Gemisch mit Toluol vier mal digeriert (bis die Lösung sich von dunkelrot nach farblos verändert). Das verbleibende hellgelbe Produkt wird im Vakuum getrocknet. Das IR-Spektrum (**Abb. 3.13**) zeigt, daß das physisorbierte NO₂ vollständig entfernt und ein Teil des Fe(III) nach Fe(II) reduziert wurde.

Abb. 3.13 Vergleich des Spektrums von $[(Me_3Sn)_4Fe^{III}(CN)_6 \bullet (NO_2^-)]$ (unten) mit dem des Reduktionsprodukts mit NH₄I (oben)

Tab. 3.7 Ausgewählte IR-Daten von Abb. 3.13

Zuordnung	$[(\mathrm{Me}_{3}\mathrm{Sn})_{4}\mathrm{Fe}^{\mathrm{III}}(\mathrm{CN})_{6}\bullet(\mathrm{NO}_{2}^{-})]$	nachfolgende Produkte
$\nu(NH_4^+)$		3183
ν (N=O)	2200	
	2143	2139
V(CN)	2087	2059
v(NO)	1932	
$\delta(\mathrm{NH}_4^+)$		1402
$\nu(NO_2^-)$	1384, 1357	
$\nu(NO_3^-)$	1290	

3.3.4 Die Behandlung von [(Me₃Sn)₄Fe^{III}(CN)₆•(NO⁻₂)] mit Na₂SO₃

Addiert man eine Na_2SO_3 -Lösung zu einer Suspension von $[(Me_3Sn)_4Fe^{III}(CN)_6 \cdot (NO_2^{-})]$ in Wasser, so verfärbt sich der suspendierte Festkörper von orange nach weiß. Der feste Rückstand wird abfiltriert, gut mit Wasser gewaschen und im Vakuum getrocknet. Die IR - Spektren werden in Abbildung **3.14** verglichen.

Abb. 3.14 Vergleich des Spektrums von [(Me₃Sn)₄Fe^{III}(CN)₆•(NO⁻₂)] (a) und dem seines Reduktionsprodukts mit Na₂SO₃ (b)

Das IR - Spektrum zeigt, daß die Bande bei 2201 cm⁻¹ für v(N=O), 1931 cm⁻¹ für v(NO), 1384, 1357 cm⁻¹ für v(NO $_2^-$), 1289 cm⁻¹ für v(NO $_3^-$), und 2143 cm⁻¹ für v(Fe^{III}–C=N) verschwinden.

3.4 Oxidation von [(Me₃Sn)₂(Me₃Sb)Fe^{II}(CN)₆] mit NO₂-Gas

Ein anderes Beispiel, wobei die NO_2 -Sorption auf der oxidierbaren Polymere, ist die Oxidation von [(Me₃Sn)₂(Me₃Sb)Fe^{II}(CN)₆] (**20**) mit NO₂. Das thermisch beachtlich und an der Luft völlig stabile dreidimensional Polymere **20** wird schon von Stefan Eller et al.^[20] IR- und Ra-spektroskopisch sowie durch Röntgenpulverdiffraktogramme charakterisiert.

Nach 24 Stunden sowie bei RT, Normaldruck und 5,62% NO₂-Konzentration wird 7,72 mol NO₂ per mol **20** aufgenommen(**Tab. 3.8**).

Fab. 3.8 Adsorption von N	NO ₂ mit [(Me ₃ Sn) ₂ (Me	$e_3Sb)Fe^{II}(CN)_6]$ (20)
----------------------------------	--	-----------------------------

20	Addukte	NO_2	Sorption
0,04050 g	0,06085 g	0,02035 g	0,5025 g(NO ₂) / g(20)
0,05732 mmol		0,4423 mmol	7,72 mol(NO ₂) / mol(20)

Wie in der Sorption von NO₂ auf $[(Me_3Sn)_4Fe^{II}(CN)_6](1)$ (vgl. Tab. **3.3**), zeigt die elementaranalytische Ergebnisse (Tab. **3.9**) auch, daß die gefundenen Sauerstoffanteile weniger als die berechneten sind.

Tab. 3.9 Elementaranalytische Ergebnisse für 20 und dessen Addukte

Verbindung		С	Н	N	0	Fe	Sn	Sb
20[20]	ber.	25,50	3,85	11,90		7,91	33,60	17,24
20	gef.	25,21	3,97	11,98		7,88	33,09	17,25
(20.7.72(NO.))	ber.	16,97	2,57	18,11	23,27	5,26	22,36	11,47
$\{20, 7, 72(100_2)\}$	gef.	14,70	3,15	14,21				

Die IR-Spektren von 20 und dessen Addukten sind praktisch identisch (vgl. Abb. 3.15 und Tab. 3.10). Die identifizierten NO_2 - Schwingungen befinden sich bei 1384 und 1292 cm⁻¹ (Abb. 3.15).

Interessant ist, daß die CN-Schwingungen bei 2098 und 2007 cm⁻¹ für **20** verschwinden und eine neue Bande bei 2104 cm⁻¹ auftaucht. Die breiten IR -

<u>3. Das Gas-Aufnahmevermögen des Koordinationspolymers [(Me₃Sn)₄Fe(CN)₆]</u>

Banden bei 2098 und 2007 cm⁻¹ für **20** sind auf eine praktisch statistische Verteilung der {Fe-C=N-Sn-N=C} und {Fe-C=N-Sb-N=C}-Ketten im dreidimensional vernetzten Polymer zurückzuführen^[20].

Abb. 3.15 IR-Spektren von 20 und dessen NO₂-Addukten

Tab. 3.10 Ausgewählte IR-Daten von [(Me₃Sn)₂(Me₃Sb)Fe^{II}(CN)₆] (**20**) und dessen NO₂-Addukte

Ordnung	20	NO ₂ -Addukte
v(CH)	2996w, 2913w	
		2104st
$\nu(CN)$	2089st	
	2007st	
v(NO)		1945m
$v(NO_2^-)$		1386sst
$v(NO_3^-)$		1291sh
?	871m	871m
γ(CH)	791m	809w
δ(Fe-C)	604m	597w
v(SnC)	551m	
v(Fe-C)	498m	498w

3.5 Diskussion

- Obwohl die innere Oberfläche von [(Me₃Sn)₄Fe^{II}(CN)₆] klein ist, vermag die Verbindung gasförmiges NO₂ effizient zu sorbieren. Die sorbierte Menge ist größer als ein chemisches Äquivalent.
- Das Endprodukt, [(Me₃Sn)₄Fe^{III}(CN)₆•(NO⁻₂)], ist thermisch nur wenig stabil. Allerdings kann man allein durch thermische Behandlung die Ausgangsverbindung nicht zurückgewinnen.
- 3. Theoretisch kann man die Ausgangsverbindung durch Zugabe von Reduktionsmitteln zurückerhalten. Reduktionsmittel wie NH₄I oder Na₂SO₃, können das Zentralatom von Fe(III) nach Fe(II) reduzieren, dabei werden NO⁻_x in lösliche Produkte umgewandelt. Aber in der Praxis besteht die Möglichkeit, daß auch Co-Fällungsprodukte mit Na⁺ bzw. NH₄⁺ anstelle von Me₃Sn⁺ auftreten können (wobei die Lösung konzentrierter an Me₃Sn⁺ würde).

4. Die NO₂-Aufnahme von Koordinationspolymeren des Typs [E₂Fe^{II}(CN)₆•aq] (E=Zn, Cd)

Wie weiter oben dargelegt, ist die Verbindung $[(Me_3Sn)_4Fe^{III}(CN)_6 \cdot (NO_2^{-})]$ für technische Anwendungen nicht stabil genug und vor allem als Zinnorganyl potentiell toxisch. So erscheint es sinnvoll, nach weiteren, besser geeigneten Koordinationspolymeren zu suchen.

Koordinationspolymere vom Typ $[E_2Fe^{II}(CN)_6 \cdot aq]$ (E=Zn, Cd) wurden u.a. schon als Pigmente verwendet^[21]. Die zeolithischen Eigenschaften von $[KZn_{1,5}Fe^{II}(CN)_6 \cdot aq]$ im Hinblick auf Gas-Sorption^[22], z.B. von CO, CO₂, O₂, N₂, H₂O, sowie C₂H₄ und C_nH_(2n+2) (n = 2, 3, 4); und die Adsorption von $[Zn_2Fe^{II}(CN)_6 \cdot aq]$ mit Cs⁺, Rb⁺, K⁺, Na⁺, Li⁺, Ag⁺ und Hg⁺ in Lösung sind schon mitgeteilt worden^[23]. So liegt es auch nahe, dieses Polymer auf die Adsorption von Stickstoffdioxid hin zu untersuchen.

4.1 Eigenschaften von $[E_2Fe^{II}(CN)_6 \cdot aq]$ (E = Zn, Cd)

Die Verbindungen $[Zn_2Fe^{II}(CN)_6 \cdot aq](3)$ und $[Cd_2Fe^{II}(CN)_6 \cdot aq](4)$ sind weiße, an der Luft beständige und in Wasser und üblichen Lösungsmitteln sehr schwer lösliche Stoffe^[24].

4.1.1 Struktur von [Zn₂Fe^{II}(CN)₆•aq] und [Cd₂Fe^{II}(CN)₆•aq]

Einige Hexacyanoferrate(II) von zweiwertigen 3d-Metallen $[E_2Fe(CN)_6 \cdot aq]$ (E = Fe, Co, Ni, Cu) kristallisieren kubisch flächenzentriert mit $a \approx 10$ Å (vgl. **Tab. 4.1**). Wahrscheinlich liegt eine Struktur vor, wie sie auch für die Berlinerblau-Verbindungen belegt ist^[25], jedoch ist dies durch Einkristalluntersuchungen bislang nicht abgesichert werden. Auf Grund von Röntgenpulverdiffraktogrammen und IR-Spektren haben Siebert et al^[26] der Verbindung $[Cd_2Fe^{II}(CN)_6]$ die Raumgruppe $D_{3d}^1 - P\bar{3}1m$ und dem Homologen $[Zn_2Fe^{II}(CN)_6 \cdot 2H_2O]$ die Raumgruppe $D_{3d}^3 - P\bar{3}m1$ zugeordnet (Schema **4.1**).

Schema 4.1 Kristallaufbau der Verbindungen $[Cd_2Fe^{II}(CN)_6]$ und $[Zn_2Fe^{II}(CN)_6]$

Für die Verbindung $[Cd_2Fe(CN)_6](4)$ berechnen sich die Winkel Cd–N–C unter der Annahme unverzerrter Fe(CN)₆-Oktaeder zu 124°. Hieraus ist zu entnehmen, daß zwischen den Kationen Cd^{2+} und den Anionen $[Fe(CN)_6]^{4-}$ keine gerichtete (koordinative) Wechselwirkungen bestehen. Das gleiche Verhalten zeigen die gegenüber dem freien Ion $[Fe(CN)_6]^{4-}$ nur wenig veränderten CN-Valenzschwingungen (vgl. **Tab. 4. 2**).

Für die Verbindung $[Zn_2Fe(CN)_6](3)$ unterscheidet sich die Kristallstruktur von der Raumgruppe D^1_{3d} hauptsächlich durch die Orientierung der Fe(CN)_6-Oktaeder. Die FeCN-Gruppen sind hier auf das Kation ausgerichtet (vgl. **Schema 4.1**), so daß man das Vorliegen gerichteter koordinativer Bindungen annehmen kann. Es handelt sich hier also um Koordinationspolymere: Oberhalb und unterhalb einer Schicht von Fe(CN)_6-Oktaedern befinden sich die Kationen, welche je 3 Oktaeder miteinander verknüpfen. Das Vorliegen solcher koordinativer Bindungen der N-Atome des Fe(CN)_6⁴⁻ an die Metallatome Fe- $C=N\rightarrow M^{II}$ äußert sich bei den Zinkverbindungen auch in einer kräftigen Erhöhung der CN-Valenzschwingungen gegenüber dem freien Ion Fe(CN)_6⁴⁻ (vgl. **Tab. 4. 2**). Die Röntgenpulverdiffraktogramme von $[Zn_2Fe^{II}(CN)_6\bullet 3H_2O](3)$ und $[Cd_2Fe^{II}(CN)_6\bullet 3H_2O](4)$ wurden in dieser Arbeit bestimmt (Anhang). In Tabelle **4.1** werden die Kristallstrukturen beider Verbindungen mit Angaben aus der Literatur verglichen.

Verbindung	Gittertype	Gitterkonstanten(Å)	Literatur
$[Cu_2Fe^{II}(CN)_4]$	kubisch	<i>a</i> = 4,988	[27]
$[Cd_2Fe^{II}(CN)_6\bullet 3H_2O](4)$	kubisch	<i>a</i> = 5,165	diese Arbeit
$[Zn_2Fe^{II}(CN)_6\bullet 3H_2O](3)$	kubisch	<i>a</i> = 9,076	diese Arbeit
$[Ni_2Fe^{II}(CN)_6\bullet 5H_2O]$	O_{h}^{5} / Fm $\overline{3}$ m	<i>a</i> = 9,90	[27]
$[\mathrm{Co}_{2}\mathrm{Fe}^{\mathrm{II}}(\mathrm{CN})_{6}\bullet5\mathrm{H}_{2}\mathrm{O}]$	$O_{h}^{5} Fm\bar{3}m$	<i>a</i> = 9,96	[27]
$[Cu_2Fe^{II}(CN)_6\bullet 2H_2O]$	kubisch flächenzentriert	<i>a</i> = 9,99±0,01	[28]
$[K_2CdFe^{II}(CN)_6]$	O_{h}^{5} / Fm $\overline{3}$ m	<i>a</i> = 10,05	[27]
$[Cu_2Fe^{II}(CN)_6]$	O_{h}^{5} / Fm $\overline{3}$ m	<i>a</i> = 10,08	[27]
[K ₂ FeFe ^{II} (CN) ₆ •aq] (Berliner Blau)	kubisch flächenzentriert	$a = 10,16\pm0,01$	[28]
$[Ni_2Fe^{II}(CN)_6]$	O_{h}^{5} / Fm $\overline{3}$ m	<i>a</i> = 10,18	[27]
$[Fe_2Fe^{II}(CN)_6]$	O_{h}^{5} / Fm $\overline{3}$ m	<i>a</i> = 10,184	[27]
$[\overline{\text{Co}_2\text{Fe}^{\text{II}}(\text{CN})_6}]$	O_{h}^{5} / Fm $\overline{3}$ m	<i>a</i> = 10,193	[27]

Tab. 4.1 Die Kristallstrukuren verschiedener M₂Fe^{II}(CN)₆ - Systeme

Es folgt aus den Ergebnissen dieser Arbeit (Anhang), daß $[Zn_2Fe^{II}(CN)_6 \cdot 3H_2O]$ und $[Cd_2Fe^{II}(CN)_6 \cdot 3H_2O]$ der kubischen Struktur mit einer Gitterkonstante ("*a*"– Wert) von 9,1 und 5,2 zuzuordnen sind. Die hier gefundene Gitterkonstante von (**3**) stimmt mit denen von anderen Autoren überein. Aber die Gitterkonstante von (**4**) ist kleiner als erwartet.

4.1.2 Thermische Analyse von [Zn₂Fe^{II}(CN)₆•aq] und [Cd₂Fe^{II}(CN)₆•aq]

Die Koordinationspolymere, $[Zn_2Fe^{II}(CN)_6 \cdot aq]$ und $[Cd_2Fe^{II}(CN)_6 \cdot aq]$, wurden thermogravimetrisch unter Argon bei einer Heizrate 3,0 K / min bis 300°C hinauf untersucht (Abb. **4.1**).

Abb. 4.1 Thermische Analyse der Verbindung [Zn₂Fe^{II}(CN)₆•aq] mit Massenverlusten von 4,95, 8,87 und 0,93%

 $[Zn_2Fe^{II}(CN)_6 \cdot aq]$ zeigt beim Erhitzen bis 115°C einen Massenverlust von 4,95%. Dies bedeutet, daß ein H₂O - Molekül pro Formeleinheit frei wird. Beim weiteren Erhitzen bis 240°C geht ein Massenanteil von 8,87% verloren, was bedeutet, daß zwei weitere H₂O - Fragmente pro Formeleinheit frei werden. Beim weiteren Erhitzen bis 300°C beträgt der Massenverlust nur noch 0,93%. Dies bedeutet, daß das Polymer [Zn₂Fe^{II}(CN)₆ \cdot aq] selbst bis 300°C stabil ist.

Fragmente von Typ: $H_2O^+(m/e = 18)$, $OH^+(m/e = 17)$ und $H^+(m/e = 1)$ können fast den ganzen Temperaturbereich über deutlich massenspektrometrisch beobachtet werden (Abb.**4.2**). Maxima treten bei ca. 150°C auf.

mit m/e = 18 (H₂O⁺), 17 (OH⁺), und 1 (H⁺)

Die "thermische Stabilisierung" von $[Zn_2Fe(CN)_6](3)$ kann anhand von IR-Spektren (Abb. 4.3) nachgewiesen werden. Beide Spektren sind einander sehr ähnlich.

Abb.4.3 Vergleich der IR – Spektren von [Zn₂Fe^{II}(CN)₆•aq] (a) und seines Rückstands nach der thermischen Analyse (b)

Tab. 4.2 Ausgewählte IR-Daten von M₂Fe^{II}(CN)₆ - Systeme

Zuordnung	$[K_4Fe^{II}(CN)_6]^{[12]}$	(3)	Rückstände von (3)	(4)	Rückstände von (4)
v(C≡N)	2041	2098, 2033	2099, 2033	2076, 2033	2075, 2033
δ(Fe-C)	585	604	603	602	602
γ(Fe-C)	415	494	496	469	469

Die thermische Analyse von $[Cd_2Fe^{II}(CN)_{6} \cdot aq](4)$ verläuft ähnlich wie die von $[Zn_2Fe^{II}(CN)_{6} \cdot aq](3)$. So zeigt Abbildung 4.4 die Massenverluste in drei dicht aufeinanderfolgenden Stufen: Zuerst verliert die Probe bis 120°C 1,74% Masse, was bedeutet, daß 0,5 H₂O - Fragmente pro Formeleinheit frei werden. Beim weiterem Erhitzen bis 170°C verliert die Probe 4,03% Masse, was bedeutet, daß 1 H₂O - Fragment pro Formeleinheit frei wird. Beim Stufe 3, also Erhitzen bis 240°C, verliert die Probe 6,75% Masse, was bedeutet, daß 1,5 H₂O - Fragmente pro Formeleinheit frei wird as 9,5 H₂O - Fragmente pro Formeleinheit frei wird. Beim Stufe 3, also Erhitzen bis 240°C, verliert die Probe 6,75% Masse, was bedeutet, daß 1,5 H₂O - Fragmente pro Formeleinheit frei wird as 9,5 H₂O - Fragmente pro Formeleinheit frei werden. Beim weiteren Erhitzen bis 300°C, verliert das 9,5 H₂O - Fragmente pro Formeleinheit frei werden. Beim weiteren Erhitzen bis 300°C, verliert das 9,5 H₂O - Fragmente pro Formeleinheit frei werden. Beim weiteren Erhitzen bis 300°C, verliert das 9,5 H₂O - Fragmente pro Formeleinheit frei werden. Beim weiteren Erhitzen bis 300°C, verliert das 9,5 H₂O - Fragmente pro Formeleinheit frei werden. Beim weiteren Erhitzen bis 300°C, verliert das 9,5 H₂O - Fragmente pro Formeleinheit frei werden. Beim weiteren Erhitzen bis 300°C, verliert das 9,5 H₂O - Fragmente pro Formeleinheit frei werden. Beim weiteren Erhitzen bis 300°C, verliert das 9,6 Negee Polymer einen Massenanteil von nur 0,78%.

Abb. 4.4 Thermische Massenverluste der Verbindung [Cd₂Fe^{II}(CN)₆•aq]

Die Verluste von Wasser können auch mittels Massenspektrometrie (MS) nachgewiesen werden. Die MS - Detektion (**Abb. 4.5**) zeigt, daß bei 210°C die stärkste H₂O-Eliminierung auftritt. Im Falle der MS-Detektion von anderen Fragmenten (wie z.B. CN^+ , HCN^+ , $C_2N_2^+$, N_2^+ , C^+) können die Gasentwicklungen vernachlässigen werden. Das bedeutet, daß die Verbindung, $[Cd_2Fe^{II}(CN)_6]$, bei Erhitzen bis 300°C stabil ist.

Die hohe thermische Stabilität von $[Cd_2Fe^{II}(CN)_6]$ kann auch IRspektroskopisch (**Abb. 4.6**, **Tab. 4.2**) verfolgt werden.

Abb.4.6 Vergleich der IR – Spektren von [Cd₂Fe^{II}(CN)₆•aq] (a) und seines Rückstands nach der thermische Analyse (b)

Die IR – Spektren von $[Cd_2Fe^{II}(CN)_6 \bullet aq]$ und seines Rückstands nach erfolgter thermischer Analyse sind erwartungsgemäß sehr ähnlich.

4. NO₂ - Aufnahme von Koordinationspolymeren des Typs [E₂Fe(CN)₆•aq]

4.1.3 BET-Analyse von [Zn₂Fe(CN)₆] und [Cd₂Fe(CN)₆]

Zur Untersuchung der Eigenschaften der inneren Oberflächen von $[Zn_2Fe(CN)_6]$ und $[Cd_2Fe(CN)_6]$ wird die Adsorptionsisotherme (**Abb. 4.7**) von N₂ vermessen.

 $[Cd_2Fe(CN)_6]$ (4) mit N₂

Aufgrund der allgemeinen Klassifizierung der Sorptionsisothermen (**Abb. 2.2**) sind die Isothermen in Abbildung **4.7** dem Typ *II* zuzuordnen. Dieser Typ ist bekanntlich im Fall mikro- oder auch makroporöser Probe zu erwarten. Diese Isothermen stehen für uneingeschränkte Multilayer - Adsorption. Allerdings enthalten diese Isothermen keinen deutlichen "Punkt *B*", weil das "*C*-Wert" hier kleiner als 100 ausfällt (**Tab. 4.3**).

Abbildung **4.8** bestätigt, daß beide Verbindungen zwischen von 2 und 50 nm erwartungsgemäß keine gute Mesoporenverteilung aufweisen. Das heißt, die Poren der beiden Verbindungen sind Mikroporen (< 2 nm).

Abb. 4.8 Mesoporenverteilungen von $[Zn_2Fe(CN)_6]$ (3) und $[Cd_2Fe(CN)_6]$ (4)

Abb. 4.9 BET - Plots von $[Zn_2Fe(CN)_6]$ (3) und $[Cd_2Fe(CN)_6]$ (4)

<u>4. NO₂ - Aufnahme von Koordinationspolymeren des Typs [E₂Fe(CN)₆•aq]</u>

Die BET - Plots zielen nicht durch den Ursprung, wegen der Anwesenheit von der Mikroporen im Polymer.

Das Berechnungsergebnis der BET - Messung zeigt, daß die $[Zn_2Fe(CN)_6]$ -Probe die größere Oberfläche enthält als $[Cd_2Fe(CN)_6]$ (**Tab. 4.3**). Entsprechend (**Tab. 4.1**) ist die Gitterkonstante *a* von $[Zn_2Fe(CN)_6\bullet aq]$ auch größer als die von $[Cd_2Fe(CN)_6\bullet aq]$.

 Tab. 4.3 Das Rechenergebnis der BET-Messung

Probe	С	Vm (cm ³ /g)	$As (m^2/g)$	Bemerkung
$[Zn_2Fe(CN)_6](3)$	-19,53	30,86	134,33	AC, Abb. 4.7
$[Cd E_{\alpha}(CN)](A)$	42,35	4,097	17,90	TMC, Anhang 8.2.3
$\left[\operatorname{Cu}_{2}\operatorname{Fe}(\operatorname{CN})_{6}\right](4)$	82,00	3,70	16,11	AC, Abb. 4.7

4.2 Oxidation von [M₂Fe^{II}(CN)₆•aq] (M=Zn, Cd) mit NO₂ und Br₂

Die Oxidation von $[Zn_2Fe^{II}(CN)_6 \cdot aq](3)$ und $[Cd_2Fe^{II}(CN)_6 \cdot aq](4)$ mit NO₂ verläuft ähnlich wie die von $[(Me_3Sn)_4Fe^{II}(CN)_6](1)$. Die Reaktion kann bei Raumtemperatur und Normaldruck spontan verlaufen; dabei verfärbt sich die Ausgangsverbindung von weiß nach orange und die Gasatmosphäre von braun nach farblos (Abb.4.10, Tab. 4.4).

Abb. 4.10 NO₂-Sorptionsisotherme von [Zn₂Fe^{II}(CN)₆•aq] (**3**) und [Cd₂Fe^{II}(CN)₆•aq] (**4**) bei RT, Normaldruck und bei der Gaskonzentration NO₂ 5,62, O₂ 0,77 und N₂ 93,61%

1 ab. 4.4 NO_2 -Sorptionen von $ Zn_2Fe $ (CN) ₆ •aq und $ Cd_2Fe $ (CN) ₆ •	i) ₆ •aq∣
--	----------------------

Ausgangs-	Max. Abs.	Festkörper	Gasphase
verbindung	moi/moi	Farbe	Farbe
$[Zn_2Fe^{II}(CN)_6\bullet 3H_2O](3)$	0,57	weiß→orange	braun→farblos
$\left[\mathrm{Cd}_{2}\mathrm{Fe}^{\mathrm{II}}(\mathrm{CN})_{6}\bullet3\mathrm{H}_{2}\mathrm{O}\right](4)$	0,50	weiß→orange	braun→farblos

Abbildung **4.10** zeigt die Sorptionsisothermen von NO_2 der beiden Verbindungen $[Zn_2Fe^{II}(CN)_6\bullet aq]$ und $[Cd_2Fe^{II}(CN)_6\bullet aq]$. Die beide Kurven steigen innerhalb des ganzen Messzeitraums an. Es fällt auf, daß trotz der größeren Oberfläche des $[Zn_2Fe(CN)_6]$ (vgl. **Tab. 4.3**) dessen maximales Sorptionsvermögen nur wenig größer ist als das von $[Cd_2Fe(CN)_6]$ (**Tab. 4.4**).

Die Farbe der Ausgangsverbindungen verändert sich von weiß nach orange, was bedeutet, daß das Zentralmetall von Fe(II) nach Fe(III) oxidiert wird, wobei das NO_2 zu NO_2^- reduziert und im Polymer fixiert wird. Das Ergebnis kann auch elemetaranalytisch (**Tab. 4.5**) und IR-spektroskopisch (**Abb. 4.11** und **4.12**) verfolgt werden.

Tab. 4.5 Elementaranalytische Ergebnisse zur NO_2 -Aufnahme von

Ν С 0 Zn Verbindung Η Fe Cd 1,53 21,19 18,16 12,10 14,07 32,96 0 ber. $[Zn_2Fe(CN)_6\bullet 3H_2O](3)$ 18,06 15,70 1,85 11,92 32,75 gef. 15,66 13,20 0 ber. 21,76 17,04 1,43 30,91 $[Zn_2Fe(CN)_6 \bullet NO_2 \bullet 3H_2O]$ 0,33 20,40 gef. 15,08 9,78 11,38 0 17,12 14,68 45,81 $[Cd_2Fe(CN)_6\bullet 3H_2O](4)$ ber. 1,23 11,21 gef. 16,94 14,84 1,69 45,68 12,46 10,87 43,75 $[Cd_2Fe(CN)_6 \bullet NO_2 \bullet 3H_2O]$ 17,72 14,02 1,18 0 ber. gef. 19,20 11,14 0,50 (b) (a) %T X Х 4000,0 1000 3000 2000 1500 400,0 cm-1

Abb.4.11 Vergleich der IR-Spektren von $[Zn_2Fe^{II}(CN)_6\bullet aq]$ (a) und $[Zn_2Fe^{III}(CN)_6\bullet (NO_2^-)\bullet aq]$ (b)

 $[M_2Fe(CN)_6\bullet aq]$

Zuordnung	$[Zn_2Fe^{II}(CN)_6\bullet aq](3)$	$[Zn_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$
ν(OH)	3623, 3433	3409
v(C-N)		2188
V(C=N)	2098	2100, 2033
δ(OH)	1610	1618
$v(NO_2^-)$		1395, 1364
?	1135, 1053	1116
δ(ONO)		826
δ(Fe-C)	604	619
?		551
γ (Fe-C)	495	445

Tab. 4.6 IR-Daten aus Abbildung 4.11

Abbildung **4.11** zeigt die IR-Spektren von $[Zn_2Fe^{II}(CN)_6 \cdot aq]$ (weiß) und $[Zn_2Fe^{III}(CN)_6 \cdot (NO_2^{-}) \cdot aq]$ (orange). Die IR-Spektren zeigen, daß durch Oxidation von NO₂, eine neue Bande bei 2188 cm⁻¹ für v(Fe^{III}C=N), sowie zwei neue Banden bei 1395 und 1364 cm⁻¹ für NO₂⁻ - Schwingungen auftreten. Zugleich verschwinden die Banden bei 604 cm⁻¹ für δ (Fe^{II}–C) und 494 cm⁻¹ für γ (Fe^{II}–C), dafür erscheinen drei neue Banden bei 619, 551, 444 cm⁻¹.

Die unkoordinierte Schwingung für $H_2O^{[29]}$ bei 3623 cm⁻¹ verschwindet ebenfalls nach der Oxidation. Und die koordinierte Schwingung für H_2O verändert ihre Frequenz von 3433 cm⁻¹ nach 3409 cm⁻¹. Das deutet darauf hin, daß das NO₂ auch mit dem H_2O reagiert.

Die Veränderung im IR-Spektrum von $[Cd_2Fe^{II}(CN)_6 \bullet aq]$ (Abb.**4.12** und Tab. **4.7**) ist sehr ähnlich wie im IR-Spektrum von $[Zn_2Fe^{II}(CN)_6 \bullet aq]$. Nach der Oxidation durch NO₂ werden neue Banden bei 1395 und 1354 cm⁻¹ für v(NO₂⁻), bei 1954 cm⁻¹ für v(NO) und bei 834 cm⁻¹ für δ (ONO) beobachtet; dabei wird die CN-Schwingung bei 2076 cm⁻¹ für Fe(II) stark abgeschwächt, während zwei neue CN-Schwingungen bei 2152 und 2142 cm⁻¹ für koordiniertes Fe(III)

4. NO₂ - Aufnahme von Koordinationspolymeren des Typs [E₂Fe(CN)₆•aq]

auftreten. Zugleich verschwinden auch die Banden bei 602 cm⁻¹ für δ (Fe^{II}–C) und bei 469 cm⁻¹ für γ (Fe^{II}–C). Außerdem verändern sich auch die H₂O – Schwingungen nach der Reaktion. Es ist auch anzunehmen, daß auch hier wieder das H₂O an der Reaktion teilnimmt.

Abb.4.12 IR-Spektren von $[Cd_2Fe^{II}(CN)_6\bullet aq]$ (a) und $[Cd_2Fe^{III}(CN)_6\bullet(NO_2^-)\bullet aq]$ (b)

Tab. 4.7 IR-Daten aus	Abbildung 4.12
-----------------------	----------------

Zuordnung	$[Cd_2Fe^{II}(CN)_6\bullet aq](4)$	$[Cd_2Fe^{III}(CN)_6\bullet(NO_2^-)\bullet aq]$
м (О Ш)	3613	3613
V _{koord} (O–n)	3585, 3568	
$v_{unkoord}(O-H)$	3368	3422, 3265
$\mathbf{v}(\mathbf{C}-\mathbf{N})$		2152, 2142
V(C=N)	2067, 2033	2068, 2033
ν (N=O)		1954
δ(О–Н)	1654, 1597	16636, 1608
$\nu(NO_2^-)$		1395, 1354
δ(ONO)		834
δ(Fe–C)	602	598
γ (Fe–C)	469	427

<u>4. NO₂ - Aufnahme von Koordinationspolymeren des Typs [E₂Fe(CN)₆•aq]</u>

Zum weiteren Vergleich wurde die Ausgangsverbindung, $[Zn_2Fe^{II}(CN)_6\bullet aq]$, auch mit Br₂-Dampf oxidiert. Das IR–Spektrum des Edukts zeigt eine neue Bande für Fe(III) (Abb.**4.13**, Tab.**4.8**).

Abb.4.13 Vergleich der IR-Spektren von $[Zn_2Fe^{II}(CN)_6\bullet aq]$ (a) und $[Zn_2Fe^{III}(CN)_6\bullet (Br^-)\bullet aq]$ (b)

3
3

Zuordnung	$[Zn_2Fe^{II}(CN)_6\bullet aq]$	$[Zn_2Fe^{III}(CN)_6\bullet(Br^{-})\bullet aq]$
Zuorunung	(weiß)	(orange)
v_{koord} (O–H)	3623	3621
$v_{unkoord}$ (O–H)	3432	3435
$\mathcal{H}(\mathbf{C}-\mathbf{N})$		2183
V(C≡IN)	2098	2100
?		1696
δ(Ο–Η)	1610	1612
?		1420, 1369
?		1231
?	1135, 1053	1136, 1059
$\delta(Fe^{II}-C)$	604	603
$\gamma(Fe^{II}-C)$	494	496
γ (Fe ^{III} –C)		443

4. NO₂ - Aufnahme von Koordinationspolymeren des Typs [E₂Fe(CN)₆•aq]

Ein sehr charakteristisches Merkmal der IR-Spektren ist die neue v(C=N)-Schwingung bei 2183 cm⁻¹ für Fe(III) und die γ (Fe^{III}–C)-Schwingung bei 443 cm⁻¹. Es zeigt an, daß Br₂-Dampf das Polymer oxidieren kann. Das zentrale Metallatom wird von Fe(II) nach Fe(III) oxidiert. Aber diese Reaktion läuft nicht vollständig, da die Banden bei 603 cm⁻¹ für δ (Fe^{II}–C) und 496 cm⁻¹ für γ (Fe^{II}–C) noch erhalten bleiben.

Die Veränderung der Oxidationsstufe des Fe-Atoms kann auch durch Messungen der magnetischen Suszeptibilität (**Tab. 4.9**) verfolgt werden. Beide Ausgangsverbindungen sind diamagnetisch, aber die Produkte sind paramagnetisch, indem die μ_{eff} - Wert von $[Zn_2Fe^{III}(CN)_6 \cdot (NO_2^-) \cdot aq]$ 1,95 und von $[Cd_2Fe^{III}(CN)_6 \cdot (NO_2^-) \cdot aq]$ 1,86 B.M. betragen.

Nach der Oxidation mit Br_2 - Dampf oder mit NO_2 steigt auch die elektrische Leitfähigkeit (**Tab.4.9**) des Polymers an. Dabei erweisen sich die Leitfähigkeiten des $[E_2Fe^{III}(CN)_6 \bullet (Br^-) \bullet aq]$ (E=Zn, Cd) als größer gegenüber den Werten von $[E_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ (E=Zn, Cd).

1 ab. 4.9 Zusammenstellung der magnetischen Suszeptibilität (μ_{eff}), der	
elektrischen Leitfähigkeiten (σ) sowie der Gitterkonstanten (a) von	
$[Zn_2Fe(CN)_6 \bullet aq]$ (3), $[Cd_2Fe(CN)_6 \bullet aq]$ (4) und dessen Edukten.	

	3	3 •Br ₂	3 •NO ₂	4	4 •Br ₂	4 •NO ₂
	(weiß)	(orange)	(orange)	(weiß)	(orange)	(orange)
Xg×10 ⁶	-0,39	1,65	4,19	-0,37	0,14	3,04
μ _{eff}	diamagnetisch	0,97	1,95	diamagnetisch	0,38	1,86
Dicke(mm)(*)	0,380	0,440	0,345	0,361	0,335	0,345
$R(M\Omega)$	68,2	23,4	3,76	>100	57,3	3,55
$\sigma(\text{Scm} \times 10^{10})$	1,04	3,50	17,1	<1,14	1,09	18,1
<i>a</i> (Å)	9,1	9,1	15,0	5,2	5,2	15,6

(*) des Presslings

Durch die Oxidation von $[E_2Fe(CN)_6 \cdot aq]$ (E=Zn, Cd) mit NO₂ werden die Röntgenpulverdiffraktogramme signifikant verändert (**Abb. 4.14, 4.15**). Die Gitterkonstanten des Kristalls wachsen von 9,1 auf 15,0 Å für $[Zn_2Fe(CN)_6 \cdot aq]$ und von 5,2 nach 15,6 Å für $[Cd_2Fe(CN)_6 \cdot aq]$ an (**Tab. 4.9** und **Anhang**). Demgegenüber führt die Oxidation von $[E_2Fe(CN)_6 \cdot aq]$ (E=Zn, Cd) mit Br₂ zu kaum veränderten Röntgenpulverdiffraktogrammen (**Abb. 4.14, 4.15** und **Tab. 4.9**).

Abb.4.14 Vergleich der Röntgenpulverdiffraktogramme von $[Zn_2Fe^{II}(CN)_6 \bullet aq], [Zn_2Fe^{III}(CN)_6 \bullet (Br^-) \bullet aq]$ und $[Zn_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$

Abb.4.15 Vergleich der Röntgenpulverdiffraktogramme von $[Cd_2Fe^{II}(CN)_6 \bullet aq], [Cd_2Fe^{III}(CN)_6 \bullet (Br^-) \bullet aq]$ und $[Cd_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$

4.2.1 Thermische Analyse von [Zn₂Fe^{III}(CN)₆•(NO⁻₂)•aq]

Zur Überprüfung der hier gemachten Annahmen wurde die Verbindung $[Zn_2Fe^{III}(CN)_6 \bullet (NO_2^{-}) \bullet aq]$ in einem TG / DTG - Analysator thermisch bis 300°C bei einer Heizrate von 5 K/min unter Argon erhitzt.

Abb.4.16 Thermische Massenverluste von [Zn₂Fe^{III}(CN)₆•(NO⁻₂)•H₂O] mit Stufe 1: 2,12%, 2: 0,96%, 3: 0,44%, 4: 14,00%

In Abbildung **4.16** sind die erhaltenen TG- und DTG-Meßkurven dargestellt. So kann man ablesen, daß die Verbindung beim Erhitzen aufeinander folgend Massenverluste von 3,52% (2,12% + 0,96% + 0,44%) erleidet und bei 290°C einen weiteren Massenverlust von 14,00%, was mit der theoretischen Erwartung von 4,43% für H₂O- und 11.31% für NO₂ übereinstimmt. Bei der DTG - Kurve lassen sich die ersten vier Ereignisse als exotherm (aufwärts gerichtete Maxima) und das letzte als endotherm zuordnen (Abwärtsminimum).

In den Abbildungen **4.17** bis **4.20** wird das massenspektroskopisch (MS) verfolgte Auftreten flüchtiger Produkte wiedergegeben; so zeigt vor 170°C Abbildung **4.17** das Entweichen von H₂O aus $[Zn_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet H_2O]$ an.

Abb. 4.17 Massenspektrometrische Detektion von Fragmenten aus $[Zn_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq] \text{ mit } m/e = 18 (H_2O^+), 17 (OH^+), und 1 (H^+)$

Abbildung **4.18** zeigt an, daß beim Erhitzen bis 240°C, CN^+ – und $C_2N_2^+$ – Ionen auftreten. HCN⁺– Ionen treten nicht so deutlich auf.

Abb. 4.18 Massenspektrometrische Detektion von Fragmenten der Verbindung $[Zn_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ mit $m/e = 26 (CN^+)$, 27 (HCN⁺), und 52 (C₂N₂⁺)

Das sorbierte NO_2 liefert zwischen von 230 und 270°C hauptsächlich NO^+ (Abb.4.19).

Die C=N-Gruppe zersetzt sich bei ca. 280°C hauptsächlich zu die Fragmente von CO_2^+ und C⁺(Abb. 4.20).

Die IR-Spektren von Rückständen der thermischen Analyse zeigen im Vergleich mit denen von $[Zn_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$, (Abb. 4.22), daß nach dem

Erhitzen bis auf 300°C unter Argon die Banden bei 2188 cm⁻¹ für v(Fe^{III}C=N) sowie bei 1395 und 1364 cm⁻¹ für v(NO₂) schwächer werden.

Abb. 4.21 Vergleich der IR–Spektrem von $[Zn_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ (a) und dessen thermischen Rückstand (b)

Zuordnung	$[Zn_2Fe^{II}(CN)_6 \bullet (NO_2^{-}) \bullet aq]$	Rückstände
Zuorunung	(orange)	(grau)
ν(O–H)	3409	3421
$\mathbf{v}(\mathbf{C}-\mathbf{N})$	2188	2161
V(C=N)	2099, 2033	2097, 2033
δ(O–H)	1613	1613
$\nu(NO_2^-)$	1395, 1364	1395
?		1117
	619	603
δ(Fe–C)	551	
γ(Fe–C)	444	497

Tab. 4.10 IR-Daten aus	Abbildung 4.21
------------------------	-----------------------

4.2.2 Thermische Analyse von [Cd₂Fe^{III}(CN)₆•(NO⁻₂)•aq]

Das thermische Analyse von $[Cd_2Fe^{III}(CN)_6 \cdot (NO_2^-) \cdot aq]$ wurde wie zuvor beschrieben bis 300°C bei einer Heizrate von 5 K/min unter Argon durchgeführt.

Die Abbildung **4.22** gibt die erhaltenen TG- und DTG-Meßkurven wieder. Diese Abbildung zeigt, daß die Verbindung beim Erhitzen nacheinander einen Massenverlust von 12,7% und 64,8% erleidet, was der theoretischen Erwartung für den gesamten H₂O- und NO₂-Verlust entspricht. Die DTG-Kurve zeigt bei 260°C ein endothermes Ereignis (Minimum).

Die Abbildungen **4.23** bis **4.25** belegen die massenspektrometrische Detektion verschiedener kationischer Fragmente der Verbindung $[Cd_2Fe^{III}(CN)_6 \cdot (NO_2^{-}) \cdot aq].$

Die Abbildung 4.23 zeigt die thermische Häufigkeitsverteilung der Ionen H_2O^+ ,

Die Abbildungen **4.24** und **4.25** zeigen, daß sich NO₂ - und CN – Liganden bei ca. 260°C zersetzen, wobei scharfe Häufigkeitsmaxima der Fragmente CN^+ , HCN^+ , $C_2N_2^+$, NO_2^+ , NO^+ und CO_2^+ auftreten.

Hauptsächlich zersetzt sich die NO_2 – Gruppe zum NO^+ - Fragment.

Abb. 4.25 Massenspektrometrische Detektion von Fragmenten der Verbindung $[Cd_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ mit $m/e = 30 (NO^+)$, 46 (NO_2^+) und 44 (CO_2^+)

Tab. 4.11 Zusammensetzung der massenspektrometrischen Daten

Verbindungen	Hydration	Desorption von NO ₂	Dekomposition von CN
verbilldungen	(°C)	(°C)	(°C)
$[Zn_2Fe(CN)_6 \cdot aq](3)$	150		>300
$[Zn_2Fe(CN)_6 \bullet (NO_2) \bullet aq]$	100	230	240
$[Cd_2Fe(CN)_6 aq](4)$	190		>300
$[Cd_2Fe(CN)_6 \bullet (NO_2) \bullet aq]$	190	260	260

Tabelle 4.11 zeigt, daß die Verbindungen, $[E_2Fe(CN)_6 \bullet aq]$ (E=Zn, Cd), bis 300°C stabil sind. Das "Trocknen" gelingt bei 150°C für $[Zn_2Fe(CN)_6 \bullet aq]$ sowie bei 190°C für $[Cd_2Fe(CN)_6 \bullet aq]$ und $[Cd_2Fe(CN)_6 \bullet (NO_2) \bullet aq]$. Die letztgenannte Verbindung, $[Cd_2Fe(CN)_6 \bullet (NO_2) \bullet aq]$, verliert schnell ihre Bestandteile NO₂ und CN. Die Verbindung $[Zn_2Fe(CN)_6 \bullet (NO_2) \bullet aq]$ verhält sich ähnlich, wenngleich etwas komplizierter. Das "Trocknen" erfolgt nacheinander bei 60, 100 und 140°C. Die Abgabe von NO₂ erfolgt zwischen 230 und 270°C, die von CN zwischen 240 und 260°C.

4.3 Die Zurückbildung der Ausgangsverbindungen

Wie oben gezeigt, kann das sorbierte NO_2 thermisch wieder entfernt werden. Das zentrale Fe – Atom kann von Fe(III) nach Fe(II) reduziert werden. Cyanidgruppen, CN, werden erst zusammen mit dem sorbierten NO_2 wieder entfernt. Nachfolgend wird eine "Naßmethode" erprobt, um NO_2 vom Polymer zu entfernt.

4.3.1 Extraktion des [E₂Fe(CN)₆•(NO₂)•aq] (E=Zn, Cd) mit H₂O

Man addiert 10 ml destilliertes Wasser zu 200 mg $[Zn_2Fe(CN)_6 \cdot (NO_2) \cdot aq]$ oder $[Cd_2Fe(CN)_6 \cdot (NO_2) \cdot aq]$ und rührt die Suspension bei Raumtemperatur über 4 Stunden. Nach dem Zentrifugieren und viermaligem Extrahieren mit jeweils 10 ml Wasser, werden die festen Rückstände im Vakuum bei Raumtemperatur getrocknet. Die weißen getrockneten Rückstände werden IR - spektroskopisch vermessen, und die wässerige Lösung wird in 50ml Meßkolben gesammelt, um das Nitrit photometrisch zu bestimmen.

Abb. 4.26 IR – Spektren von mit H₂O-behandelten Rückstände aus $[Zn_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ (a) und $[Cd_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ (b)

Zuordnung	$[Zn_2Fe(CN)_6 \bullet (NO_2^-) \bullet aq]$	Rückstände	$[Cd_2Fe(CN)_6 \bullet (NO_2^-) \bullet aq]$	Rückstände
	3409	2924	3613	3613
V(OH)			3422, 3265	3421, 3268
$\mathcal{N}(\mathcal{C}-\mathbf{N})$	2188	2188	2152, 21422	2152, 2142
V(C=N)	2099, 2033	2100	2068, 2033	2068, 2033
v(NO)		1968	1954	
δ(OH)	1618	1612	16636, 1608	1636, 1608
$v(NO_2^-)$	1395, 1364	1395	1395, 1354	1395, 1354
δ(ONO)	826		834	
δ(Fe-C)	619	602	598	598
$\gamma(Fe-C)$	551, 445	550,444	427	425

Tab. 4.12 Ausgewählte IR-Daten aus Abb. 4.26, 4.21 und 4.12

Die IR-Spektren der Rückständen (**Abb. 4.26, Tab. 4.13**) zeigen, daß nach der H₂O - Extraktion noch die Banden bei 1395 und 1354 cm⁻¹ für v(NO₂⁻) erhalten bleiben; im $[Zn_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ -Spektrum taucht noch eine neue Bande bei 1968 cm⁻¹ für v(NO) auf.

Die photometrische Nitritbestimmung im Rückstand mit Lunges-Reagenz zeigt auch, daß mit dieser Methode das sorbierte NO_2 nicht vollständig entfernt werden kann (Tab.**4.13**).

Tab.	4.13	Nitritbestin	nmungsergebnis
------	------	--------------	----------------

Verbindung	NO _x -Konzentration durch NCH-Analyse (mol/mol)	NO ₂ -Konzentration durch Nitritbestimmung (mol/mol)
$[Zn_2Fe^{III}(CN)_6\bullet(NO_2^-)\bullet aq]$	0,57	0,0238
$[Cd_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$	0,50	0,0179
4.3.2 Reaktion des [E₂Fe(CN)₆•(NO₂)•aq] (E=Zn, Cd) mit Na₂SO₃

Legt man 100mg $[E_2Fe(CN)_6 \cdot (NO_2) \cdot aq]$ (E=Zn, Cd) und 20ml destilliertes Wasser im Becherglas vor, und addiert unter Rühren festes Na₂SO₃, so verändert sich die Farbe des suspendierten Feststoffs von orange nach weiß. Nach dem Zentrifugieren und viermaligem Waschen des Rückstands wird dieser mit destilliertem Wasser im Vakuum getrocknet.

Durch diese Methode kann das Eisen vollständig von Fe(III) zu Fe(II) reduziert und das sorbierte NO_2 vollständig aus dem Polymer in die wäßrige Phase überführt werden (**Abb. 4.27**).

Abb. 4.27 Vergleich der IR – Spektren von $[Zn_2Fe^{III}(CN)_6 \cdot (NO_2^{-}) \cdot aq]$ (a) und denen von mit Na₂SO₃-behandelte Rückstände(b)

Tab. 4.14 IR-Daten aus	Abbildung 4.27
------------------------	----------------

Zuordnung	$[Zn_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$	Rückstände
ν(OH)	3409	3625, 3467
v(C≡N)	2188 2099, 2033	2097
δ(О–Н)	1618	1611
$v(NO_2^-)$	1395, 1364	
?	1116	
δ(ONO)	826	
δ(Fe–C)	619	604
$\gamma(Fe-C)$	551, 445	495

Bei Na₂SO₃ - Überschuß verschwindet der suspendierte Feststoff und eine klare Lösung entsteht. Ein Grund ist vielleicht die Bildung von Schwefelsäure:

$$2Fe^{III}(CN)_{6}^{3-} + SO_{3}^{2-} + H_{2}O \longrightarrow 2Fe^{II}(CN)_{6}^{4-} + SO_{4}^{2-} + 2H^{+}$$
(4-1)

Alle Cyanide, auch die stabilsten Komplexe, werden von konzentrierter H_2SO_4 zerstört, wobei sowohl Blausäure als auch Kohlenmonoxid und Ammoniumsulfat entstehen^[30]:

$$\operatorname{Fe}^{II}(CN)_{6}^{4-} + \operatorname{SO}_{4}^{2-} + 6H^{+} \longrightarrow \operatorname{FeSO}_{4} + 6HCN$$
(4-2)

$$6HCN + 3H_2SO_4 + 6H_2O \longrightarrow 3(NH_4)_2SO_4 + 6CO^{\uparrow}$$
(4-3)

Allerdings wird durch diese Methode nur 13 bis 23% Ausgangsverbindung zurückerhalten (**Tab. 4.15**).

Tab. 4.15 Experiment der Zurückerhaltung von der Ausgangsverbindung

Verbindung	Waage (mg)	Rückstand (mg)	Rückgewinnungs- quote (%)
$[Zn_2Fe(CN)_6 \bullet NO_2 \bullet 3H_2O]$	158,4	17,3	13,0
$[Cd_2Fe(CN)_6 \bullet NO_2 \bullet 3H_2O]$	176,3	34,5	22,3

Das Filtrat verfärbt sich nicht mit Lunges-Reagenz.

4.4 Diskussion

Von den mikroporösen Polymeren $[Zn_2Fe(CN)_6 \cdot aq](3)$ und $[Cd_2Fe(CN)_6 \cdot aq](4)$ kann das giftig Gas NO₂ effektiv aufgenommen werden. Obwohl die innere Oberfläche von (3) (134,33 m²/g) deutlich großer ist als die von (4) (17,01 m²/g), sind ihre NO₂-Aufnahmenfähigkeiten vergleichbar: 0,57 mol/mol für (3) und 0,50 mol/mol für (4). Die thermische Analyse bestätigt, daß das aufgenommene NO₂ durch thermische Behandlung entfernt werden kann. Aber die Ausgangsverbindung kann nicht durch thermische Behandlung zurückerhalten werden, da die Zersetzungstemperaturen von sorbiertem NO₂ und CN – Liganden einander sehr nahe liegen.

Im Falle der "Nassmethode" gibt es auch die Schwierigkeiten für die Zurückerhaltung der Ausgangsverbindung hauptsächlich wegen der kleinen Rückgewinnungsquoten. Daher könnten vielleicht andere Polymer-Typen wie $[KM^{III}Fe^{II}(CN)_6\bullet aq]$ bessere Ausgangsverbindungen als der hier genannte Typ $[M_2^{II}Fe^{II}(CN)_6\bullet aq]$ sein. Wegen der Extraktionsmöglichkeit:

 $[KM^{III}Fe^{II}(CN)_{6} \bullet NO_{2}^{-} \bullet aq] \xrightarrow{H_{2}O} [M^{III}Fe^{II}(CN)_{6}] + K^{+} + NO_{2}^{-}$ (4-4) wird im Folgenden auch die zweite Polymerklasse näher untersucht.

5. Die NO₂-Aufnahme von [KLn^{III}Fe^{II}(CN)₆•aq]-Syatem (Ln=La, Dy, Tb, Ce, Ho, Y)

Sowohl Verbindungen vom Typ $[(Me_3Sn)_4Fe(CN)_6]$ als auch $[E_2Fe(CN)_6]$ (E=Zn, Cd), lagern das Gas NO₂ ein. Allerdings ist die Verbindung $[(Me_3Sn)_4Fe(CN)_6]$ potentiell toxisch, und $[E_2Fe(CN)_6\bullet aq]$ -Systeme (E=Zn, Cd) verhalten sich kompliziert bei der Extraktion mit H₂O (nach zuvor erfolgter NO₂-Sorption). Daher wird im Folgenden die NO₂-Sorption von Verbindungen des Typs [KLnFe(CN)₆•aq] näher untersucht.

5.1 Darstellung und Eigenschaften von [KLn^{III}Fe^{II}(CN)₆•aq]-Systemen

Gibt man zu einer gesättigten, wäßrigen Lösung von $K_4Fe(CN)_6$ eine klare, wäßrige Lösung von $Ln(NO_3)_3$, so entsteht spontan ein fein kristalliner Niederschlag. Dieser Niederschlag wird abfiltriert, dreimal mit wenig Wasser gewaschen und im Vakuum bei Raumtemperatur getrocknet.

Elementaranalysen deuten verläßlich auf die Bruttoformel $[KLnFe^{II}(CN)_6 \bullet 5H_2O]$ (Ln = Tb, La, Ce, Y, Ho) und $[KDyFe^{II}(CN)_6 \bullet H_2O]$ hin (Tab. **5.1**), so daß die folgende Reaktionsgleichung zu formulieren ist:

$$Ln(NO_3)_3 + K_4Fe(CN)_6 \xrightarrow{H_2O} [KLnFe(CN)_6 \bullet aq] + 3K^+ + 3NO_3^-$$
(5-1)

Verbindungen		Ν	С	Н	0	K	Ln	Fe
$[KDyEe^{II}(CN) \rightarrow H_{2}O](6)$	ber.	19,47	16,70	0,47	3,71	9,06	37,65	12,94
$[KDyre (CN)_6 II_2O] (0)$	gef.	19,23	16,90	0,53				12,89
$[KTbEe^{II}(CN) = 5H_{2}O](7)$	ber.	16,81	14,41	2,02	16,00	7,82	31,78	11,17
	gef.	16,78	14,57	1,31				11,23
$[KI_{2}Ee^{II}(CN) = 5H_{2}O]$ (5)	ber.	17,51	15,01	2,10	16,66	8,14	28,94	11,63
$[\text{KLare} (Civ)_6 \text{-} 511_2 \text{-} \text{-} \text{-} \text{-} \text{-} \text{-} \text{-} \text{-}$	gef.	16,68	14,63	2,04				11,72
$[KVFe^{II}(CN)] = 5H_{2}OI(10)$	ber.	19,54	16,76	2,34	18,60	9,09	20,67	12,99
	gef.	19,17	16,60	2,08				13,04
$[KH_0Ee^{II}(CN) \leftarrow 5H_0OI(0)]$	ber.	16,61	14,24	1,99	15,81	7,73	32,59	11,04
	gef.	16,06	14,17	1,56				11,15
$[KCeEe^{II}(CN) = 5HeO](8)$	ber.	17,46	14,97	2,09	16,62	8,12	29,12	11,60
$[\mathbf{K} \in \mathbf{C} \cap \mathbf{C} \cap$	gef.	17,02	14,76	2,22				11,53

Tab. 5.1 Elementaranalysen für [KLnFe^{II}(CN)₆•aq]-Systeme

Die Verbindungen [KLnFe^{II}(CN)₆•aq] sind luftstabil sowie unlöslich in Wasser, verdünnten Säuren und gängigen organischen Lösungsmitteln. Sie lösen sich in Natronlauge vom pH \geq 9, und mit konzentrierten Säuren erfolgt Zersetzung. Oberhalb 320°C zersetzt sich der Feststoff thermisch unter Farbveränderung über grau nach schwarz.

Strukturanalysen an Einkristallen von $[KLn^{III}Fe^{II}(CN)_6 \cdot 4H_2O]$ (Ln = La, Ce, Pr, Nd) haben ergeben, daß diese Verbindungen isomorph mit $[Ln^{III}Fe^{III}(CN)_6 \cdot 5H_2O]$ sind (**Schema 5.1**)^[31]. Für diesen Komplextyp (Ln = La, Ce, Pr, Nd) wurde gefunden, daß drei der Wassermoleküle am Ln-Atom koordiniert und die zwei übrigen Wassermoleküle zeolithischer Natur sind. Sie sind über Wasserstoffbrücken an den koordinierten Wassermolekülen in den Hohlräumen fixiert. In der Verbindung $[KLn^{III}Fe^{II}(CN)_6 \cdot 4H_2O]$ wird eines dieser zeolithischen Wassermoleküle allerdings durch ein Kaliumion ersetzt.

Schema 5.1^[31] Blick auf die hexagonale [LaFe(CN)₆•5H₂O] - Struktur, die die oktaedrische Koordinierung des Übergangselements [FeC₆] und die trigonal prismatische Koordinierung des Seltenerd -Ions [LaN₆] hervorhebt und auch der trigonalen Bipyramide, die von den Wassermolekülen gebildet wird.

5. Die NO₂-Sorption von [KLn^{III}Fe^{II}(CN)₆•aq] (Ln=La, Dy, Tb, Ce, Ho, Y)

Die IR-Spektren (**Abb. 5.1**) zeigen zwei ausgeprägte O–H-Valenzschwingungen, deren sehr scharfe Peaks bei ungefähr 3613 - 3563 cm⁻¹ den koordinierten Wassermolekülen zugewiesen wird, während das eher breite Maximum zwischen 3411 - 3367 cm⁻¹ auf die Existenz von Wasserstoffbrückenbindungen hindeutet.

Im Unterschied zu anderen Verbindungen zeigt [KDyFe^{II}(CN)₆•H₂O] nur ein breites Maximum bei 3413 cm⁻¹ für v(OH) und ein Bande bei 1613 cm⁻¹ für δ (OH). Dies bedeutet, daß die Wassermoleküle in dieser Verbindung nicht an das Dy(III)–Ion koordiniert, sondern über Wasserstoffbrücken fixiert sind^[29].

Tabelle **5.2** enthält die gefundenen Frequenzen und ihre Zuordnung zu den erwarteten Grundschwingungen.

Zuordnung	Ln = Dy(a)	Ln = Tb(b)	Ln = Ce(c)	Ln = Ho(d)	Ln = Y(e)
		3613	3605	3612	3610
		3585		3585	3585
V(OH)		3563		3568	3569
	3413	3367	3411	3391	3369
	2065vs	2099sh	2064	2077	2078
$\nu(CN)$	2033sh	2076vst		2033sh	2033
	2028sh	2033			
S(OII)	1613	1655	1626	1654	1647
0(ОП)		1597	1602	1598	1599
?	1119			1117	
δ(Fe-C)	594	602	598	602	602
γ(Fe-C)	446	470	456	469	472

Tab. 5.2 Die IR-Daten von [KLnFe(CN)₆•aq]-Systemen (vgl. Abb.5.1)

5.1.1 Röntgenpulverdiffraktogramme von [KLnFe^{II}(CN)₆•aq]

Die Kristallstrukturen der Verbindungen [KLnFe^{II}(CN)₆•aq] (Ln = Ce, La und Nd) sind mittels Röntgenpulverbeugung bestimmt worden(**Tab. 5.3**). **Tab. 5.3** Die Kristallstrukturen der Verbindungen [KLnFe^{II}(CN)₆•4H₂O]

Verbindung	Raum Gruppe	Gitterkonstanten (Å)	Dichte (g/cm^3)	Bindungsabstand (Å)	Lit.
[KCeFe ^{II} (CN) ₆ •4H ₂ O]	P6 ₃ /m	a = 7,392(1) c = 13,871(1)	2,336(2)	Ce-N = $2,556(2)$ Fe-C = $1,911(1)$ C=N = $1,158(1)$	[28]
[KLaFe ^{II} (CN) ₆ •4H ₂ O]	P6 ₃ /m	a = 7,412(2) c = 13,943(2)		La-N = $2,599(10)$ Fe-C = $1,896(9)$ C=N = $1,154(10)$	[32]
[KNdFe ^{II} (CN) ₆ •4H ₂ O]	P6 ₃ /m	a = 7,358(1) c = 13,780(2)	2,399(5)	Nd-N = $2,518(3)$ Fe-C = $1,903(3)$ C=N = $1,166(4)$	[33]

Die Verbindung des $[KLnFe^{II}(CN)_6 \cdot 4H_2O]$ -Typs kristallisiert in der hexagonalen Raumgruppe P6₃/m mit den Gitterkonstanten *a* und *c*. Die neunfach – koordinierten LnN₆(H₂O)₃-Fragmente sind über Cyanidbrücken mit den oktaedrischen FeC₆-Gruppen verkettet. Das unkoordinierte Wassermolekül und das Kaliumion besetzen Hohlräume in der Struktur entlang einer dreifachen Achse ober- und unterhalb des Ln–Ions(vgl. Schema **5.1**).

In der Verbindung [KDyFe^{II}(CN)₆•H₂O] (6) gibt es nur ein Wassermolekül; so ist zu erwarten, daß (6) eine andere Kristallstruktur hat. Das Röntgenpulverdiffraktogramm von (6) (Abb. 5.2) und die Berechnung der $\sin^2\theta$ -(bzw. d-) Werte aus den aufgenommenen Reflexen haben zum Ergebnis geführt, daß [KDyFe^{II}(CN)₆•H₂O] einer kubischen Struktur zuzuordnen ist (**Tab. 5.4**).

Jede Formeleinheit von [KLnFe(CN)₆•xH₂O] (Ln=La, Y, Ho, Ce) enthält fünf Wassermoleküle. Die Röntgenpulverdiffraktogramme (**Abb. 5.2**) sind alle sehr ähnlich. Die Berechnung der sin² θ -Werte aus den Reflexen haben zum Ergebnis geführt, daß [KLnFe(CN)₆•5H₂O] einer kubischen Struktur zuzuordnen ist (**Tab. 5.4**).

Abb. 5.2 Röntgenpulverdiffraktogramm von [KDyFe^{II}(CN)₆•H₂O](6), [KLaFe(CN)₆•5H₂O](5), [KYFe(CN)₆•5H₂O](10), [KHoFe(CN)₆•5H₂O](9), und [KCeFe(CN)₆•5H₂O](8)

Tab. 5.4 Das Ergebnis von Röntgenpulverdiffraktogramm - Auswertung

Verbindung	Gittertyp	Gitterkonstanten (Å)	Dichte (g/cm ³)
$[KDyFe^{II}(CN)_6 \bullet H_2O] (6)$	kubisch	<i>a</i> =5,236	1,75
$[KLaFe^{II}(CN)_6 \bullet 5H_2O] (5)$	kubisch	<i>a</i> =5,174	
$[KYFe^{II}(CN)_6 \bullet 5H_2O] (10)$	kubisch	<i>a</i> =5,096	
$[KHoFe^{II}(CN)_6 \bullet 5H_2O] (9)$	kubisch	<i>a</i> =5,081	
$[KCeFe^{II}(CN)_6 \bullet 5H_2O] (8)$	kubisch	<i>a</i> =5,195	

5.1.2 Thermische Analyse von [KDyFe^{II}(CN)₆•aq]

Das Koordinationspolymer [KDyFe^{II}(CN)₆ \bullet H₂O] wurde thermogravimetrisch unter Argon bei einer Heizrate von 3 K / min bis 270°C hin untersucht. Diese Messung zeigt kontinuierliche Massenverluste an (Abb. 5.3 und 5.4), und es wurde massenspektrometrisch die Gasentwicklung von H2O und dessen Fragmenten beobachtet (Abb. 5.5). So zeigt Abbildung 5.4 einen Massenverlust von 2,41%, was ungefähr einem Mol Wasser pro Mol Polymer entspricht:

(5-2) $[KDyFe(CN)_6 \bullet H_2O] \rightarrow [KDyFe(CN)_6] + H_2O$

Es wird auch massenspektrometrisch die Gasentwicklung von $(CN)_2$ und dessen Fragmenten beobachtet (**Abb. 5.6** und **5.7**). Die Ergebnis zeigt, daß nur sehr wenige von diesen Fragmenten gefunden werden. So ist die Verbindung [KDyFe^{II}(CN)₆] bis 270°C unter Argon stabil.

5.1.3 Die BET - Analyse von [KDyFe^{II}(CN)₆] und [KLaFe^{II}(CN)₆]

Zur Untersuchung der Eigenschaften von inneren Oberflächen wurden die Sorptionsisothermen (Abb. 5.8) von [KDyFe(CN)₆] und [KLaFe(CN)₆] mit N₂ bei ca. -196°C gemessen.

 $[KLaFe^{II}(CN)_6]$ (5) mit N₂

Aufgrund der Klassifizierung der Adsorptionsisothermen (Abb. 2.2), kann die Isotherme für (6) in Abbildung 5.8 dem Typ *II* zugeordnet werden, obwohl eine schwache Hysterese zu erkennen ist. Diese Isotherme ist reversibel und typisch sowohl für mikroporöse als auch für makroporöse - Festkörper. Diese Isotherme ist uneigeschränkt für Multilayer- Adsorption gültig. Für diese Isotherme liegen die Werte von "Punkt B" und dem "C-Wert" oberhalb von 100 (Tab. 5.5).

Die Isotherme für (5) kann dem Typ VI, bei dem stufenweise Multilayer – Adsorption auf einer mikroporösen Oberfläche resultiert, zugeordnet werden, obwohl auch eine starke Hysterese zu erkennen ist. Diese Isotherme ist auch

5. Die NO₂-Sorption von [KLn^{III}Fe^{II}(CN)₆•aq] (Ln=La, Dy, Tb, Ce, Ho, Y)

uneigeschränkt für Multilayer- Adsorption bei relativ hohem Druck (P/P°) gültig.

Aufgrund der BET-Plots von (5) und (6) (Abb. 5.9), kann man die innere Oberfläche berechnen. Die innere Oberfläche von (6) ist größer als die von (5)(Tab. 5.5). Das entspricht dem größeren Wert der Gitterkonstanten(Tab. 5.4). Die Gitterkonstante von a = 5,326 Å für (6) ist größer als die von a = 5,174Å für (5).

Tab. 5.5 Die Berechnungsergebnis der BET-Messung

Probe	С	Vm (cm ³ /g)	As(BET) (m²/g)	Bemerkung
$[KDyFe(CN)_6]$ (6)	139,07	6,01	26,18	AC, Abb. 5.8
$[KLaFe(CN)_6] (5)$	-20,89	0,049	0,21	AC, Abb. 5.8

Die Mikroporengrößen, die von der Desorptionsisotherme für N_2 von $[KDyFe^{II}(CN)_6]$ und $[KLaFe^{II}(CN)_6]$ abgeleitet wird, sind unspezifisch zwischen 2 bis 50 nm verteilt. Das heißt, die Porengrößen von (5) und (6) sind kleiner als 2 nm.

5.2 Oxidation von [KLnFe^{II}(CN)₆•aq] mit NO₂

Die Reaktion von $[KLnFe^{II}(CN)_6 \cdot aq]$ (Ln = Dy, Tb, Ce, Ho, Y,) mit gasförmigem NO₂ verläuft ähnlich wie die von $[(Me_3Sn)_4Fe(CN)_6]$ und $[E_2Fe(CN)_6 \cdot aq]$ (E=Zn, Cd). Die Reaktion läuft bei Raumtemperatur und Normaldruck spontan ab; dabei verfärbt sich die Ausgangsverbindung von weiß nach orange und die Gasatmosphäre von braun nach farblos.

Abb. 5. 10 NO₂-Sorptionsisothermen mit [KLnFe^{II}(CN)₆•aq] bei RT und Normaldruck; Gaskonzentrationen 5,62% NO₂, 0,77% O₂ und 93,61% N₂

Der Abbildung **5.10** kann man entnehmen, daß die Verbindung $[KDyFe^{II}(CN)_6 \cdot H_2O](6)$ viel effizienter als andere homologe Verbindungen NO₂-Gas zu sorbieren vermag, und daß die maximale Sorption auch schneller erreicht wird. Die übrigen Kurven zeigten Anstiegszeiten von \geq 50 Stunden. Vielleicht liegt dies an der geringeren Zahl von Wassermolekülen in der Formeleinheit der Dy-Verbindung.

In der Verbindung [KLnFe^{II}(CN)₆•aq] hat das Ln^{3+} -Ion normalerweise die Koordinationszahl 9 (6 N- und 3 O-Atome). Aber in der Verbindung (6) ist das Dy-Atom nur von 6 N-Atomen koordiniert, da das H₂O-Molekül nur zeolithisch in den Hohlräumen mittels Wasserstoffbrücke fixiert ist (vergl. **Abb. 5. 1**). So hat das Dy(III)-Ion noch drei freie Koordinationsstellen, und es tendiert naturgemaß besser dazu, mit NO₂ zu koordinieren.

Tab. 5.6 Die maximale Adsorptionen von NO2 gemäß Abbildung 5.11

Ausgangs- verbindung	Max. Abs. mol/mol
$[KDyFe^{II}(CN)_6 \bullet H_2O] (6)$	1,40
$[KTbFe^{II}(CN)_6 \bullet 5H_2O] (7)$	1,23
$[KCeFe^{II}(CN)_6 \bullet 5H_2O] (8)$	1,10
$[KHoFe^{II}(CN)_6 \bullet 5H_2O] (9)$	1,04
$[KYFe^{II}(CN)_6 \bullet 5H_2O]$ (10)	1,03

 Tab. 5.7 Elementaranalytische Ergebnisse

Verbindung		N	С	Н	0	Fe	Κ	Ln
[KDyEe(CN) = 1 4NO-eH-O]	ber.	20,90	14,53	0,41	12,26	11,26	7,88	32,76
	gef.	21,00	14,64	1,07	13,84	10,79		
$[KThE_{2}(CN) \rightarrow 1.22NO \rightarrow 5H \cdot O]$	ber.	18,20	12,94	1,81	21,44	10,03	7,02	28,55
[K10Fe(CIV)6•1,231VO2•3112O]	gef.	18,72	12,58	2,01				
$[KC_{2}E_{2}(CN), -1, 1NO, -5H, O]$	ber.	18,70	13,55	1,90	21,66	10,50	7,35	26,34
	gef.	18,93	13,36	2,13				
[KHoEo(CN) of 04NO of H.O]	ber.	17,81	13,01	1,82	20,45	10,08	7,06	29,77
[KII0Fe(CIV)6•1,04IVO2•5II2O]	gef.	17,97	13,00	2,07				
	ber.	20,63	15,09	2,12	23,66	11,70	8,19	18,62
$[K \Pi C(CIN)_{6} \bullet 1,05 NO_{2} \bullet 5 \Pi_{2}O]$	gef.	20,84	15,34	2,48				

Die Farbänderung gegenüber der Ausgangsverbindungen deutet wieder darauf hin, daß das zentrale Übergangsmetallion von Fe(II) nach Fe(III) oxidiert wird, wobei das NO₂ zu NO $\frac{1}{2}$ reduziert und als solches in das Polymer adsorbiert wird. Dieses Ergebnis kann auch durch das IR-Spektrum bestätigt werden.

5.2.1 IR-Spektrum und Röntgenspulverdiffraktogram von [KDyFe^{II}(CN)₆•(NO⁻₂)•aq]

Das Endprodukt, [KDyFe^{II}(CN)₆•(NO $_{2}^{-}$)•aq], hat ein sehr unterschiedliches IR-Spektrum gegenüber seiner Ausgangsverbindung (**Abb. 5.11**). Im Cyanidbereich tauchen eine intensive, für Fe(III) typische v(CN) - Bande bei 2136 und eine neue Valenzschwingung für koordiniertes NO $_{2}^{-}$ bei 1395 cm⁻¹ auf; dazu verschwindet bzw. verkleinern sich die für Fe(II) typische v(CN) - Bande bei 2065 cm⁻¹ und die v(Fe–C) - Bande bei 446 cm⁻¹ sowie die δ (Fe–C) - Bande bei 594 cm⁻¹.

Abb. 5. 11 Vergleich der IR-Spektrum von $[KDyFe^{II}(CN)_6 \bullet aq]$ (b) und $[KDyFe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ (a)

Zuordnung	[KDyFe ^{II} (CN) ₆ ●aq] (weiß)	[KDyFe ^{III} (CN) ₆ •(NO $_{2}^{-}$)•aq] (orange)
v(OH)	3412	3430
v(CN)	2065; 2033; 2028	2136 2064; 2033
δ(OH)	1636	1618
$\nu(NO_2^-)$		1395
?	1119	1126
δ(ONO)		834
δ(Fe–C)	594	594
γ(Fe–C)	446	

Tab. 5.8 IR-Banden von [KDyFe^{II}(CN)₆•aq] und [KDyFe^{III}(CN)₆•(NO $\frac{1}{2}$)•aq]

Die Oxidation des Zentralatoms von Fe(II) nach Fe(III) kann durch die Farbveränderung und die Veränderung der magnetischen Suszeptibilität bestätigt werden(**Tab. 5.9**).

Tab. 5.9 Magnetische Suszeptibilität

	[KDyFe ^{II} (CN) ₆ •aq]	$[KDyFe^{III}(CN)_6 \bullet (NO_2^{-}) \bullet aq]$
Farbe	weiß	orange
$\chi_{g}(\times 10^{-6})$	-0,30	2,49
$\mu_{\rm eff}({\rm B.M.})$	diamagnetisch	1,57

Die Röntegenpulverdiffraktogramme (**Abb. 5.12**) von $[\text{KDyFe}^{II}(\text{CN})_6 \cdot \text{aq}]$ (**6**) und $[\text{KDyFe}^{III}(\text{CN})_6 \cdot (\text{NO}_2^-) \cdot \text{aq}]$ (**6** \cdot NO₂) sind praktisch identisch. Dies korreliert mit der Erklärung aus Kapitel **5.1**, die Verbindungen $[\text{KLnFe}^{II}(\text{CN})_6 \cdot 4\text{H}_2\text{O}]$ und $[\text{LnFe}^{III}(\text{CN})_6 \cdot 5\text{H}_2\text{O}]$ haben homologe Kristallstrukturen. Aber die 20-Werte von $[\text{KDyFe}^{III}(\text{CN})_6 \cdot (\text{NO}_2^-) \cdot \text{aq}]$ sind größer als die entsprechenden von $[\text{KDyFe}^{II}(\text{CN})_6 \cdot \text{aq}]$. Zum Beispiel verschiebt sich die Lage des intensivsten Peaks von 24,74° für (**6**) nach 24,80° für (**6** \cdot NO₂). Die Auswertungsergebnisse (**Anhang**) zeigen auch, daß die Gitterkonstante von $[\text{KDyFe}^{III}(\text{CN})_6 \cdot (\text{NO}_2^-) \cdot \text{aq}]$ (a = 11,477 Å) größer als die von $[\text{KDyFe}^{II}(\text{CN})_6 \cdot \text{aq}]$ (a = 5,236 Å) ist.

Abb. 5.12 Vergleich der Röntgenpulverdiffraktogramm von [KDyFe^{II}(CN)₆•H₂O](**6**), und [KDyFe(CN)₆•(NO₂)•H₂O](**6**•NO₂)

5.2.2 Thermische Analyse von [KDyFe^{III}(CN)₆•(NO⁻₂)•aq]

Zur Überprüfung der hier gemachten Annahmen wurde die Verbindung $[KDyFe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ bis 270°C einer thermischen Analyse bei einer Heizrate von 5 K/min unter Argon unterzogen.

In der Abbildung **5.13** sind die so erhaltenen TG-, DTG- und DTA - Meßkurven dargestellt. Die DTA - Kurve zeigt es zwei Peaks, die einem endothermen (bei 195°C) und einem exothermen Ereignis (bei 230°C) entsprechen^[34, 35].

Abb. 5.13 Thermische Analyse der Verbindung [KDyFe^{III}(CN)₆•(NO₂⁻)•aq]

Der Abbildung **5.14** kann man auch ablesen, daß die Verbindung $[KDyFe^{III}(CN)_{6} \cdot (NO_{2}^{-}) \cdot aq]$ beim Erhitzen abgestuft einige Massenverluste von 1,34; 1,45; 6,30 und 3,14% erleidet.

5. Die NO₂-Sorption von [KLn^{III}Fe^{II}(CN)₆•aq] (Ln=La, Dy, Tb, Ce, Ho, Y)

Die ersten zwei Stufen entsprechen den Massenverlusten von Wassermolekülen (**Abb. 5.15**). Maximale Fragment-Häufungen sind massenspektrometrisch bei ca. 110°C beobachtbar. Die Fragmente deuten hauptsächlich auf H_2O^+ hin:

$$[KDyFe^{III}(CN)_6 \bullet (NO_2^-) \bullet H_2O] \rightarrow [KDyFe^{III}(CN)_6 \bullet (NO_2^-)] + H_2O$$
(5-3)

Abb. 5.15 Massenspektrometrische Detektion von Fragmenten mit m/e = $18 (H_2O^+), 17 (OH^+) und 1 (H^+)$

Die anderen zwei Stufen entsprechen dem Verlust von CN (vgl. Abb. 5.16, 5.17) und NO₂ (vgl. Abb. 5.18):

$$[KDyFe^{III}(CN)_{6}(NO_{2}^{-})] \longrightarrow [KDyFe^{II}(CN)_{6}] + NO_{2}$$

$$[KDyFe^{III}(CN)_{6}(NO_{2}^{-})] \longrightarrow [KDyFe^{II}(CN)_{5}(NO_{2}^{-})] + \frac{1}{2}(CN)_{2}$$

$$m=26/A^{*10^{-12}}$$

$$m=27/A^{*10^{-11}}$$

Peakmaxima der Fragmente CN^+ und HCN^+ treten bei ca. 180 und 210°C auf. Weitere beobachtbare Fragmente werden hauptsächlich den Ionen HCN^+ und CO_2^+ zugeschrieben(**Abb. 5.16** und **5.17**).

 NO_2^- zersetzt sich ab ca. 195°C (Abb. **5.18**). Als Folgefragment wird hauptsächlich NO^+ gefunden.

mit m/e = 46 (NO_2^+), 30 (NO^+) und 14 (N^+)

Das IR-Spektrum des Rückstands der thermischen Analyse belegt, daß durch Erhitzen bis 270°C unter Argon das gebundene (NO_2^-) nicht vollständig entfernt werden kann (**Abb. 5.19**).

und seines thermischen Rückstands (oben)

Tab. 5.10 IR-Banden von $[KDyFe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ und dessen Rücksta	and
---	-----

Zuordnung	$[KDyFe^{III}(CN)_6 \bullet (NO_2^{-}) \bullet aq]$ (orange)	Rückstand (blau)
v(OH)	3430	3412
v(CN)	2136 2064; 2033	2064; 2030
δ(ON)		1957
δ(OH)	1618	1654
$v(NO_2^-)$	1395	1395
?	1126	
δ(ONO)	834	833
δ(Fe–C)	594	594
γ (Fe–C)	420	445

Interessant ist, daß die Bande bei 2136 cm⁻¹, die als typisch für Fe(III) v(C=N) – Schwingung gilt, vollständig verschwindet.

5.3 Regenerierung der Ausgangsverbindung

Da die Umsetzung von [KDyFe^{II}(CN)₆•aq] mit gasförmigem NO₂ als eine Gas-Feststoff-Reaktion abläuft, ist es unwahrscheinlich, daß sie unmittelbar zu einem echten Gemisch aus [DyFe^{III}(CN)₆•aq] und KNO₂ führt. Dennoch sollte es nicht unmöglich sein, KNO₂ z.B. mit H₂O aus dieser Verbindung zu "extrahieren".

5.3.1 Extraktion des [KDyFe^{III}(CN)₆•(NO₂⁻)•aq] mit H₂O

100mg $[KDyFe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ wurden zu 10ml destillierten Wassers hinzugefügt. Die Suspension wurde bei Raumtemperatur 4 Stunden lang gerührt. Nach Zentrifugieren wurde der Rückstand mit jeweils 10ml destilliertem Wasser viermal extrahiert. Der endgültige Rückstand wird im Vakuum bei Raumtemperatur getrocknet und IR-spektroskopisch vermessen.

Die wäßrigen Extrakte wurden in einem 50ml Meßkolben gesammelt; und danach mit Zn-Pulver 1 Stunde verrührt, um das NO_3^- zu NO_2^- zu reduzieren. Dann wird die Probelösung 4 Mal gewässert und in einen 100ml Meßkolben aufgefüllt. Diese Lösung wurde photometrisch auf Nitrit untersucht.

Die Messungsergebnisse sind in Tabelle 5.11 wiedergegeben.

durch NCH-Analyse (mol/mol)	durch Photometrischskopie (mol/mol)		durch Anion-C (mol	hromatographie /mol)
$NO_2^- + NO_3^-$	NO_2^-	$NO_2^- + NO_3^-$	NO_2^-	NO ₃
1,40	0,150	1,185	0,0238	1,1822
Extraktion (%)	84	,64	86	,14

Tab. 5.11 Nitritbestimmung für [KDyFe(CN)₆•(NO₂)•aq]

Die Nitritbestimmung (**Tab. 5.11**) zeigt, daß ein großer Teil (84,64 - 86,14%) von NO⁻_x mit H₂O extrahiertbar ist:

$$[KDyFe^{III}(CN)_6 \bullet (NO_x^{-}) \bullet aq] \xrightarrow{H_2O} [DyFe^{III}(CN)_6 \bullet aq] + KNO_x$$
(5-6)

Die photometrische Nitritbestimmung zeigt auch, daß im Filtrat (pH = 3,8) nur kleine Anteile von NO_2^- -Ionen, aber unerwartet große Mengen an NO_3^- -Anionen enthalten waren. Das Anionen-Chromatogramm liefert ebenfalls dieses Ergebnis (**Abb. 5.20, Tab. 5.11**).

Abb. 5.20 Anion-Chromatogramm von [KDyFe(CN)₆•(NO₂)•aq]

Das IR-Spektrum des Rückstands (**Abb. 5.21**) zeigt, daß allerdings weiterhin zwei Banden für $v(NO_2^-)$ bei 1395 und 1324 cm⁻¹ sprechen, und eine dritte starke Bande bei 1952 cm⁻¹ eher für v(NO) typisch ist.

Abb. 5.21 Vergleich der IR- Spektren von [KDyFe^{III}(CN)₆•(NO₂⁻)•aq] (unten) und seines Extraktionsrückstands (oben)

Zuordnung	$[KDyFe^{III}(CN)_{6} \bullet (NO_{2}^{-}) \bullet aq]$	Rückstand
	(orange)	(orange)
ν(OH)	3430	3437
	2136	2194
V(CIN)	2064, 2033	2064, 2033
δ(NO)		1952
δ(OH)	1618	1613
$v(NO_2^-)$	1395	1395, 1325
?	1126	1125
δ(ONO)	834	828
$\delta(Fe-C)$	594	594
$\gamma(Fe-C)$	420	419

Tab. 5. 12 IR-Banden von $[KDyFe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ und dessen Rückstand

5.3.2 Reduktion von [KDyFe^{III}(CN)₆•(NO⁻₂)•aq] mit Na₂SO₃

Die Verbindung [DyFe^{III}(CN)₆•aq] oder [KDyFe^{III}(CN)₆•(NO $_{2}^{-}$)•aq] läßt sich in Gegenwart bestimmter Reduktionsmittel wie Na₂SO₃, NaHSO₃ und KI wieder in die Ausgangsverbindung überführen, wie zu Beispiel:

$$2[DyFe^{III}(CN)_6 \cdot aq] + Na_2SO_3 + H_2O \rightarrow 2[NaDyFe^{II}(CN)_6 \cdot aq] + H_2SO_4$$
(5-7)

In dieser Arbeit wird Na₂SO₃ als Reduktionsmittel untersucht.

Man legt 0,5 g $[DyFe^{III}(CN)_6 \cdot aq]$ oder $[KDyFe^{III}(CN)_6 \cdot (NO_2^-) \cdot aq]$ mit 20ml destilliertem Wasser im Becherglas vor, und addiert unter Rühren solange festes Na₂SO₃, bis sich die Farbe der suspendierten Lösung von orange nach farblos verändert hat. Zentrifugieren führt zur Separation, und wonach der Rückstand mit destilliertem Wasser extrahiert wird. Schließlich wird der Rückstand am Vakuum getrocknet.

Durch diese Methode kann das zentrale Ion vollständig von Fe(III) nach Fe(II) reduziert und das sorbierte NO_2^- vollständig entfernt werden, wie das IR-Spektrum des Rückstands belegt (**Abb. 5.22**).

Abb. 5.22 Vergleich der IR-Spektren von [KDyFe^{III}(CN)₆•(NO⁻₂)•aq] (unten) und seiner Rückstandes (nach Reduktion mit Na₂SO₃) (oben)

Zuordnung	$[KDyFe^{III}(CN)_6 \bullet (NO_2^{-}) \bullet aq]$	Rückstand
	(orange)	(weiß)
ν(OH)	3430	3437
v(CN)	2136	
· · ·	2064, 2033	2065, 2033
δ(OH)	1618	1627
$v(NO_2^-)$	1395	1395
?	1126	
δ(ONO)	834	
δ(Fe–C)	594	594
$\gamma(Fe-C)$	420	450

Tab. 5. 13 IR-Banden aus Abb. 5.21

Die Elementaranalyse (**Tab. 5.13**) ergibt, daß der Rückstand die Zusammensetzung [NaDyFe^{II}(CN)₆ \bullet 2H₂O] hat.

Tab. 5. 14 Elementaranalyse von Rückstand als [NaDyFe^{II}(CN)₆•2H₂O] (erwartet)

	N	С	Н	0	Fe	Dy	Na
ber (%)	19,39	16,62	0,93	7,38	12,88	37,49	5,30
gef. (%)	19,33	16,81	0,55		12,57		

Für die Verbindung [KDyFe^{III}(CN)₆•(NO $_{2}^{-}$)•aq] erhält man die gleiche Ergebnis. Aber das Filtrat (pH = 8) von [KDyFe^{III}(CN)₆•(NO $_{2}^{-}$)•aq] mit Na₂SO₃ färbt sich nicht mit Lunges-Reagenz. Vielleicht wird das NO $_{2}^{-}$ -Ion durch Na₂SO₃ zerstört^[9]:

$$NO_{2}^{-} + 2SO_{3}^{2-} + 2H_{2}O \rightarrow NH_{2}OH + 2SO_{4}^{2-} + OH^{-}$$
 (5-8)

Das Röntgenpulverdiffraktogramm (**Abb. 5.23**) von [NaDyFe^{II}(CN)₆•2H₂O] ähnelt dem von [KDyFe^{II}(CN)₆•H₂O]; beide Verbindungen sind kubisch, obwohl die Gitterkonstante von [NaDyFe^{II}(CN)₆•2H₂O] (a = 10,26Å) größer ist als die von [KDyFe^{II}(CN)₆•H₂O] (a = 5,24Å) (vgl. **Anhang**). Das ist vielleicht durch die ungleiche Zahl von Wassermolekülen im Gitterhohlraum bedingt.

 $[NaDyFe^{II}(CN)_{6} \bullet 2H_{2}O](6a) \text{ und } [KDyFe^{II}(CN)_{6} \bullet H_{2}O](6)$

Weil die Ausgangsverbindung, [KDyFe^{II}(CN)₆•H₂O], und der Rückstand, [NaDyFe^{II}(CN)₆•2H₂O], offenbar von gleichen Struktur sind, erschien es aussichtsreich, den Rückstand einer zyklisch-wiederholten NO₂-Sorption abermals zu unterwerfen.

5.4 Zyklisch wiederholte Sorption von NO₂ mit [NaDyFe^{II}(CN)₆•aq]

Schema 5.2 Zyklische Entfernung von NO₂

Abbildung **5.24** zeigt die Sorptionsisothermen von NO₂ für eine dreimalige zyklische Wiederholung unter Raumtemperatur und Normaldruck.

Abb.5.24 Zyklische NO₂-Sorptionsisothermen durch [NaDyFe(CN)₆•2H₂O] unter RT, Normaldruck und 5,62% NO₂, 0,77% O₂ und 93,61% N₂

Zyklus	maximale Adsorption (Mol (NO ₂) / Mol (Polymer))	Farbveränderung des Gasphase
1	1,07	braun \rightarrow farblos
2	0,82	braun \rightarrow farblos
3	0,94	braun \rightarrow farblos

Tab. 5.15 Die Sorptionsergebnise von NO₂ durch [NaDyFe^{II}(CN)₆•2H₂O]

5.5 Diskussion

- Von den in diesem Kapitel untersuchten Verbindungen adsorbiert [KDyFe(CN)₆•H₂O] NO₂ kräftiger als andere Verbindungen, vielleicht wegen der relativ kleinen Zahl von Wassermolekülen und der größeren Gitterkonstanten. Die maximal adsorbierten NO₂-Mengen sind für alle Verbindungen größer als ein chemisches Formeäquivalent.
- Das Endprodukt, [KDyFe^{III}(CN)₆•(NO⁻₂)•H₂O], ist thermisch nicht stabil. Die Fe-C≡N - Bindungen zersetzen sich partiell zwischen 170 und 220°C, und das gebundene NO⁻_x um 200°C.
- 3. Theoretisch kann man die Ausgangsverbindung zurückerhalten. Das Reduktionsmittel, Na₂SO₃, kann das Zentralatom von Fe(III) nach Fe(II) reduzieren, dabei werden NO_{2}^{-}/NO_{3}^{-} Ionen in die Lösung überführt.

6. Gasaufnahme von $[(Me_3E)_xM(CN)_y]$ (E = Sn, Pb; M = Fe, Co, Mo)

Den Ergebnissen von Kapitel **3** war zu entnehmen, daß die Verbindung, [(Me₃Sn)₄Fe^{II}(CN)₆](1), nicht nur chemisch, sondern darüber hinaus auch "physikalisch" NO₂-Gas sorbieren kann. Außerdem wurde über die Sorption von 2,2-Dimethylbutan und 3-Methylpentan mit [Zn_{1,5}Co^{III}(CN)₆] schon berichtet^[36]. Daher werden im Folgenden verschiedene Verbindungen, die nicht mehr oxidierbar sind, auf ihr potentielles physikalisches NO₂–Sorptions-vermögen hin untersucht.

6.1 Die Eigenschaften

Die Koordinationsverbindungen $[(Me_3Sn)_3Fe(CN)_6](11)$, $[(Me_3Sn)_3Co(CN)_6](12)$, $[Ag_3Co(CN)_6](13)$, $[(Me_3Pb)_3Co(CN)_6](14)$, $[(Me_3Sn)_4Mo(CN)_8](15)$, $[(Me_2Sn(CH_2)_3SnMe_2)_2Mo(CN)_8](16)$, und $[(Me_3Sn)Cu(CN)_2 \cdot 0,5bpy](17)$ sind beständig an der Luft und relativ schwer löslich in Wasser und üblichen Lösungsmitteln.

6.1.1 Die Struktur von [(Me₃Sn)₃Co(CN)₆] und [Ag₃Co(CN)₆]

Die Struktur von $[(Me_3Sn)_3Co(CN)_6](12)$ wird in Schema 6.1 dargestellt. Die Verbindung (12), und auch $[(Me_3Pb)_3Co(CN)_6]$ (14), setzt sich aus verzerrtoktaedrischen Co(CN)_6-Fragmenten und trigonal bipyramidal (tbp) – konfigurierten N₂SnMe₃- bzw. N₂PbMe₃-Einheiten unter vollständiger dreidimensionaler Vernetzung zusammen:

Beide Gitter (12 und 14) weisen Hohlräume auf, die von Methylgruppen "ausgekleidet" sind. Sie weisen daher kleinere freie Volumina pro Formeleinheit auf als die Gitter der idealen Super-Berlinerblau-Analoga^[37] (Tab. 6.1). Dem wird die Struktur des bekannten, kubischen Hexacyanokomplexes $[Ag_3Co(CN)_6]$ (13) (Schema 6.2) gegenübergestellt.

Schema 6.1. Die Kristallstruktur von [(Me₃Sn)₃Co(CN)₆] Blick entlang den Hauptkanälen

Schema 6.2. Die Kristallstruktur von [Ag₃Co(CN)₆] Blick entlang den Hauptkanälen^[38]

Verbindung	$M_r/D_c(cm^3/mol)^{\#}$	Literatur
$[(Me_3Sn)_3Fe(CN)_6\bullet 4H_2O](11)$	552,4	[37]
$[(Me_3Sn)_3Co(CN)_6]$ (12)	476,4	[37]
$[(Me_3Pb)_3Co(CN)_6]$ (14)	432,7	[37]
$[Ag_{3}Co(CN)_{6}]$ (13)	183,8	[37]
$[(C_5H_5)_2Co^+(Me_3Sn)_3Fe(CN)_6]$ (2)	553,0	[37]
$[(Me_3Sn)_4Mo(CN)_8\bullet 2THF]$	596,9	[39]

Tab. 6.1 Formelvolumenswerte einiger polymerer Hexacyanokomplexe

Die Verbindung(**13**) setzt sich ebenfalls aus oktaedrischen Co(CN)₆-Fragmenten unter vollständiger dreidimensionaler Vernetzung zusammen:

Das Gitter weist auch Hohlräume auf, die aber nicht von Methylgruppen "ausgekleidet" sind. So darf man annehmen, daß die Verbindung von $[Ag_3Co(CN)_6]$ mehr frei verfügbare Hohlräume hat als die meisten anderen Verbindungen diesem Kapitel, trotz die Formelvolume (Tab. **6.1**) von (**13**) kleine gegenüber anderen Verbindungen. Bekanntlich durchdringen sich deshalb im realen $[Ag_3Co(CN)_6]$ - Kristall drei äquivalente, unabhängige Netzwerke^[37]. So können die Gasmoleküle nur in etwas kleinere, noch verfügbare Hohlräume eindringen.

[#] Formelvolumen = M_r / D_c : M_r = Molmasse, D_c = Dichte

6.1.2 Die Eigenschaften der inneren Oberfläche von 12, 13 und 15

Die BET-Adsorptionsisothermernen von $[(Me_3Sn)_3Co(CN)_6]$ (12), $[(Me_3Sn)_4Mo(CN)_8]$ (15) und $[Ag_3Co(CN)_6]$ (13) für N₂ bei ca. –196°C wurden zur Untersuchung der Eigenschaften der Oberfläche vermessen. Das Messergebnis ist in Abbildung 6.1 dargestellt.

Abbildung 6.1 zeigt, daß unter vergleichbaren Bedingungen die Verbindung (13) gegenüber (12) und (15) viel mehr N_2 adsorbiert. Dieser Befund stützt die Vermutung, daß die keine Methylgruppen enthaltende Verbindung (13)

gegenüber den Organozinn-Verbindungen wie (12) und (15) eine effizientere innere Oberfläche hat (Abb. 6.3, Tab. 6.2). Aufgrund der Klassifizierung der Sorptionsisothermen (Abb. 2.2) kann die Isotherme von $[Ag_3Co(CN)_6]$ dem Typ *IV* zugeordnet werden. Diese Isotherme bildet eine Hystereseschleife aus, die mit Kapillarkondensation in Mesoporen (ca. 7 nm, vgl. Abb. 6.2) Verbindung gebracht werden kann, und beschränkt sich auf signifikante Sorption in einem Bereich hoher p/p°-Werte.

Die Isotherme von $[(Me_3Sn)_4Mo(CN)_8]$ (15) kann dem Typ *VI* zugeordnet werden. Diese Isotherme spiegelt eine stufenweise und uneingeschränkte "Multilayer - Adsorption" auf einer gleichförmigen und mikroporösen (< 2 nm) inneren Oberfläche wider. Diese Probe (15) adsorbiert deutlich weniger N₂ - Gas als (12) und (13), so daß ihre innere Oberfläche auch kleiner sein dürfte als die von (12) und (13) (Tab. 6.2).

Die Isotherme von $[(Me_3Sn)_3Co(CN)_6]$ (12) (Abb.6.1) kann dem Typ *II* zugeordnet werden. Diese Isotherme läßt uneingeschränkte Multilayer – Adsorption zu und deutet Mikroporen (<2 nm) Proben hin. Aber manchmal
lieferte diese Probe auch BET–Isothermen vom Typ VI (vgl. **Anhang**). Obwohl die Wiederholung der BET–Messung von (**12**) keine konstanten Ergebnisse geliefert hat, kann man festhalten, daß die innere Oberfläche von [(Me₃Sn)₃Co(CN)₆] (**12**) kleiner als die von [Ag₃Co(CN)₆] (**13**) ist (vgl. **Tab. 6.2**), wahrscheinlich wegen der Auskleidung der Kanalwände durch die Methylgruppe auf den Sn-Atomen, deren schnelle Rotation zusätzlich den "freien" Raum reduzieren dürfte.

Abb.6.3 BET-Plots von [(Me₃Sn)₃Co(CN)₆](12), [(Me₃Sn)₄Mo(CN)₈](15) und [Ag₃Co(CN)₆](13)

S

Probe	С	Vm (cm ³ /g)	$\frac{As(BET)}{(m^2/g)}$	Bemerkung
	18,56	1,05	4,57	AC, Anhang 8.2.7
	-90,40	16,12	70,18	AC, Abb.6.1
$\left[\left(\mathbf{M}_{2},\mathbf{S}_{n}\right),C_{2}\left(\mathbf{C}\mathbf{N}\right),\left[\left(1_{2}\right)\right]\right]$	212,57	3,490	15,15	TMC, Anhang 8.2.8
	42,26	3,893	17,01	TMC, Anhang 8.2.4
	-2206	2,625	11,43	Yünlü, Anhang 8.2.5
	-64,81	2,390	10,40	Yünlü, Anhang 8.2.6
$[(Me_3Sn)_4Mo(CN)_8](15)$	30,22	1,185	5,16	AC, Abb.6.1
$[Ag_3Co(CN)_6](13)$	170,33	161,04	701,03	AC, Abb.6.1

Ein Vergleich des BET-Messergebnisses von $[(Me_3Sn)_3Co(CN)_6]$ (12) (Tab. 6.2) und $[(Me_3Sn)_4Fe(CN)_6]$ (1) (Tab. 3.1) ergibt, daß die innere Oberfläche von (12) größer ist als die von (1), weil Verbindung (1) noch eine Me_3Sn-Gruppe mehr als (1) erhält.

6.1.3 Die Eigenschaften der inneren Oberfläche von 18 und 19

Die große Beeinflussung der inneren Oberflächen durch Methylgruppen kann auch durch Vergleich mit den BET-Messergebnissen für die Verbindungen [(Bu₄N)(Me₃Sn)Cu₂(CN)₄](**18**)^[40] und [(Bu₄N)Cu₃(CN)₄•CH₃CN](**19**)^[41] (**Abb. 6.4**, **Tab. 6.3**) belegt werden.

Abb.6.5 BET-Plots von $[(Bu_4N)(Me_3Sn)Cu_2(CN)_4](18)$ und $[(Bu_4N)Cu_3(CN)_4 \bullet CH_3CN](19)$

Tab.	6.3	BET-M	lessergebnis
------	-----	-------	--------------

Probe	С	Vm (cm ³ /g)	$\frac{As(BET)}{(m^2/g)}$	Bemerkung
$[(Bu_4N)(Me_3Sn)Cu_2(CN)_4](18)$	35,67	0,19	0,83	AC, Abb.6.1
$[(Bu_4N)Cu_3(CN)_4\bullet CH_3CN](19)$	3,45	5,42	23,58	AC, Abb.6.1

Vor der BET-Messung wird die CH₃CN-Gruppe in (**19**) bei ca. 100°C am Ölpumpenvakuum entfernt. Die Verbindung (**19**) enthält statt der Me₃Sn-Gruppe in der Verbindung (**18**) ein weiteres Cu⁺-Ion. Das Sn-Atom in (**18**) ist mit Methylgruppen "bekleidet", aber das entsprechende Cu-Atom in (**19**) ist "entblößt". So wird erwartet, daß die innere Oberfläche von (**19**) größer ausfällt als in (**18**).

6.1.4 CH₄-Adsorption von [(Me₃Sn)₃Co(CN)₆]

Auch die Adsorption von CH_4 auf $[(Me_3Sn)_3Co(CN)_6]$ bei tiefer Temperatur (**Abb. 6.6**)[#] zeigt, daß die Verbindung $[(Me_3Sn)_3Co(CN)_6]$ eine nur kleine innere Oberfläche aufweist. Der maximale Wert von 11,88 cm³/g bei 35 kg/cm² ist nicht auf Sorption auf inneren Oberflächen, sondern von äußeren Oberflächen zurückführen (auch die Meinung der Japanischen Kollegen).

Abb. 6.6. Adsorptionsisotherme von [(Me₃Sn)₃Co(CN)₆] mit CH₄[#]

[#] Diese Messung ist in einem Labor von "Department of Synthetic and Biological Chemistry, Kyoto University" in Japan bei S. Kitagawa durchgeführt.

6.2 NO₂-Sorption von [(Me₃E)_xM(CN)_y]-Systemen

Die Sorption von gasförmigem NO₂ durch Polymere des allgemeinen Typs $[(Me_3E)_xM(CN)_y]$ (E = Sn, Pb, Ag; M = Fe, Co, Mo, Cu) kann bei RT und Normaldruck spontan ablaufen; dabei verfärbt sich die Gasatmosphäre von braun nach farblos oder hellbraun. Aber die Farbe des festen Koordinationspolymers verändert sich praktisch nicht. Die Sorptionsisothermen werden in Abbildung **6.7** dargestellt.

Abb. 6.7 Die NO₂-Sorptionsisothermen mit [(Me₃E)_xM(CN)_y]; bei RT, Normaldruck und bei der Gaskonzentration NO₂ 5,62; O₂ 0,77 und N₂ 93,61%

Tab. 6.4 Die NO ₂ -Sorptionsdaten von	1 [(Me ₃ E	$)_{x}M($	(CN)) _v]
--	-----	--------------------	-----------	------	----------------	---

Ausgangsverbindung	Maximale Sorption mol/mol	Festkörper Farbe	Gasphase Farbe
$[(Me_3Sn)_3Fe^{III}(CN)_6](11)$	1,52	orange→orange	braun→farblos
$[(Me_3Sn)_3Co^{III}(CN)_6]$ (12)	0,51	weiß→weiß	braun→hell braun
$[Ag_3Co^{III}(CN)_6]$ (13)	0,079	weiß→weiß	braun→braun
$[(Me_3Pb)_3Co^{III}(CN)_6]$ (14)	0,48	weiß→weiß	braun→hell braun
$[(Me_3Sn)_4Mo^{IV}(CN)_8]$ (15)	0,89	weiß→weiß	braun→hell braun
$[(Me_2Sn(CH_2)_3SnMe_2)_2 -Mo^{IV}(CN)_8] (16)$	0,91	weiß→weiß	braun→hell braun
$[(Me_3Sn)Cu^{I}(CN)_2 \bullet 0,5bpy]$ (17)	0,21	gelb→gelb	braun→braun

Es fällt auf, daß im Vergleich mit der kleineren inneren Oberfläche und N₂-Sorptionsmöglichkeit von $[(Me_3Sn)_3Co^{III}(CN)_6]$ (12) gegenüber $[Ag_3Co^{III}(CN)_6]$ (13), das Sorptionsvermögen für NO₂ im Fall von (12) größer ist als das von (13). Es deutet daraufhin, daß die mit Methylgruppen "bekleideten" Me₃Sn-Gruppen gegenüber dem "entblößten" Ag⁺-Ion die Sorption von N₂ begünstigt.

Die elementaranalytischen Ergebnisse (**Tab. 6.5**) zeigen, daß nach der Reaktion mit NO_2 die Konzentration von Stickstoff im Endprodukt angestiegen ist.

Verbindungen		Ν	С	Н	0	М	Е
$[(Ma,Sn),Ea^{III}(CN),1,(11)]$	ber.	11,95	25,61	3,88	0	7,94	50,63
	gef.	11,89	25,57	3,91		7,88	50,57
(11-1 52NO)	ber.	13,62	23,30	3,53	6,29	7,22	46,04
$\{11 \bullet 1, 321 \circ 0_2\}$	gef.	12,92	21,01	3,47			
$[(M_0, S_n), C_0^{III}(C_N), 1, (12)]$	ber.	11,90	25,50	3,86	0	8,34	50,40
[(112)]	gef.	11,83	25,35	3,90		8,28	50,54
{12-0.51NO-}	ber.	12,50	24,68	3,74	2,24	8,07	48,78
{12•0,511\02}	gef.	12,02	23,76	3,74			
$[\mathbf{A} \mathbf{g}, \mathbf{C} \mathbf{o}^{\mathrm{III}}(\mathbf{C} \mathbf{N}), \mathbf{I}(13)]$	ber.	15,61	13,38	0	0	10,94	60,08
$[Ag_{3}CO (CN)_{6}](I3)$	gef.	15,65	13,37	0			
(13.0.070NO)	ber.	15,70	13,29	0	0,47	10,87	59,67
{ 13 •0,079NO ₂ }	gef.	15,72	13,27	0			
$[(Me_3Pb)_3Co^{III}(CN)_6](14)$	ber.	8,65	18,53	2,81	0	6,06	63,95
	gef.	8,55	18,47	2,84			
$\{14-0,48N(0_{2})\}$	ber.	9,13	18,12	2,74	1,55	5,93	62,53
{14-0,401\02}	gef.	9,27	17,10	2,68			
$[(Me,Sp),Mo^{IV}(CN),1]$ (15)	ber.	11,68	25,04	3,79	0	10,00	49,49
	gef.	11,53	24,92	3,84		9,89	50,06
(15-0 80NO.)	ber.	12,45	24,01	3,63	2,85	9,59	47,46
{13•0,891\02}	gef.	11,67	22,28	3,58			
$[(Me_2Sn(CH_2)_3SnMe_2)_2$	ber.	11,40	26,87	3,70	0	9,76	48,28
$-Mo^{IV}(CN)_{8}$] (16)	gef.	10,76	26,05	3,68			
$\{16-0, 01NO_{1}\}$	ber.	12,18	25,77	3,55	2,84	9,36	46,31
{ 10 •0,911(O ₂ }	gef.	11,46	24,27	3,60			
$[(Me_{s}Sn)Cu^{I}(CN)_{s} = 0.5 hnv^{I}(17)$	ber.	11,76	33,60	3,67	0	17,77	33,20
[(1103511)Cu (C11)2•0,50py] (17)	gef.	11,74	33,73	3,70			
{17-0.21NO.}	ber.	12,25	32,71	3,58	1,83	17,31	32,33
$\{170,211,02\}$	gef.	12,05	31,78	3,44			

Tab. 6.5 Die elementaranalytische Ergebnisses

6.2.1 Die IR-Spektren von [(Me₃E)_yM(CN)_y•NO₂]-System

Infolge der Sorption von NO₂ sind als größte Veränderungen im IR-Spektrum aller $[(Me_3E)_yM(CN)_y \cdot NO_2]$ -Addukte zwei neue Banden für v(NO₂) bei 1384 und 1298-1287 cm⁻¹ zu beobachten (Abb. 6.8 und Tab. 6.6).

Abb. 6.8 IR-Spektren von 12 und 15 sowie von deren NO₂-Addukten

Die IR-Banden der CN-Schwingungen verändern sich dagegen nicht (Vergleiche auch **Tab. 6.6**). Das bedeutet, daß das Eindringen von NO_2 in das Polymer die Symmetrie und Oxidationsstufe des $M(CN)_y$ -Fragments nicht

verändert hat. Das sorbierte NO_2 ist wohl nur als dimeres Gasmolekül im Hohlraum des Netzwerks vorhanden.

	v(CH)	v(CN)	δ(NO)	$v(NO_2)$	γ(CH)	ν(E-C)	$\nu(M-C)$
11	3003w	2145st			792st	553st	410st
11	2917w	2080st					
$\{11 \bullet NO_2\}$	3006w	2145st	1940w	1384st	796st	553st	410st
	2917w	2090st		1298sh			
12	3001m	2158st			791st	553st	436st
12	2917m						
{12.NO.}	3004m	2160st		1384st	794st	553st	435st
{ 12 •1(0 ₂)	2917m			1296sh			
13		2128st				565	416
15		2087w					
{13•NO_}		2128st		1384		565	416
{ 13 •1 10 ₂ }		2087w					
14	3020w	2138st			802st	497m	422st
17	2928m						
$\{14 \in \mathbb{N} \cap \mathbb{N}\}$	3022w	2140st		1384st	802st	497m	426st
	2928m			1287sh			
15	2999m	2143st			793st	554st	414m
13	2917m						
{15•NO_}	3003w	2145st		1384st	796st	555st	413m
{13•1102}	2917m			1286sh			
	2994w	2136st			786st	552m	409m
16	2914m						
	2851w						
{16•NO_}	2915m	2138st		1384st	787st	552m	410w
(10-1102)				1287sh			
. –	3058w	2117st			810st	548st	406
17	2998m	2098st			798st		
	2914m	2091sh			793sh		
	3058w	2117st		1383st	810st	558sh	419
$\{17 \bullet NO_2\}$	2998m	2098st		1298sh	787st	548st	
	2915m	2072sh					

Tab. 6.6 Ausgewählte IR - Daten

verschiedener $[(Me_3E)_xM(CN)_y] / [(Me_3E)_yM(CN)_y \bullet NO_2]$ - Paare

Dennoch liegen die IR-Banden für $\nu(NO_2)$ von $[(Me_3E)_yM(CN)_y\bullet NO_2]$ (1384 und 1298-1286 cm⁻¹) und die Banden von $[(Me_3Sn)_4Fe^{III}(CN)_6\bullet(NO_2^-)]$ (1384, 1357 und 1289 cm⁻¹) bei praktisch gleichen Frequenzen. IR-Banden von Stickstoffoxiden mit Frequenzen nahe bei 1384 cm⁻¹ wurden sehr häufig beobachtet. Wie schon zuvor angemerkt, kann die beobachtete Bande einer $v(NO_2^-)$ -Schwingung zugeordnet werden. Einige weitere Beispiele für $v(NO_2)$ -Schwingungen sind in Tabelle **6.7** zusammengestellt^[13].

Tab. 6.7 Die einige ausgewählte IR-Daten für $NO_2 / N_2O_4^{[13]}$

Moleküle	Frequenz (cm	n^{-1})
NO_2 (Gas)	, 1671, 1617, 1498, 1353, 1320,	760, 750
NaNO ₂ (Kristall)	1337, 1270,	829
KNO ₃ (Kristall)	1388, 1045,	829, 720
N_2O_4 (Gas)	1758, 1709, 1368, 1264,	812, 751, 659, 475, 425
N ₂ O ₄ (Flüssigk.)	1733, 1699, 1359, 1257,	743, 423

Ein Vergleich der Daten der Tabellen 6.6 und 6.7 läßt vermuten, daß die Stickstoffoxide als N_2O_4 in Polymer eingelagert sind.

In Raman-Experiment mit $[(Me_3E)_yM(CN)_y\bullet NO_2]$ tauchte allerdings keine für NO_x bzw. N_2O_4 typische Bande auf.

6.2.2 Röntgenpulverdiffraktogramme von[(Me₃E)_yM(CN)_y•NO₂]

Die Röntgenpulverdiffraktogramme (**Abb. 6.9**) von $[(Me_3Sn)_3Co(CN)_6]$ (**12**) und $[(Me_3Sn)_3Co(CN)_6 \cdot NO_2]$ sind praktisch identisch. Dies deutet darauf hin, daß die Adsorption von NO₂ auf $[(Me_3Sn)_3Co(CN)_6]$ die Kristallstruktur nicht verändert. Aber die entsprechenden 2 θ -Werte von $[(Me_3Sn)_3Co(CN)_6 \cdot NO_2]$ sind größer als die von $[(Me_3Sn)_3Co(CN)_6]$ (**12**). Zum Beispiel verschiebt sich die Lage des intensivsten Peaks von 16,42° nach 16,70° (vgl. **Tab. 6.8**).

Abb. 6.9 Vergleich der Röntgenpulverdiffraktogramme von [$(Me_3Sn)_3Co(CN)_6$] (12) und [$(Me_3Sn)_3Co(CN)_6$ •NO₂]

Ähnlich verhalten sich auch die Röntgenpulverdiffraktogramme (**Abb. 6.10**) von $[(Me_3Sn)_4Mo(CN)_8]$ (**15**) und $[(Me_3Sn)_4Mo(CN)_8 \cdot NO_2]$. Nach der Sorption von NO₂ verschieben sich die entsprechenden Peaks nach größeren 2 θ -Winkeln. Zum Beispiel verschiebt sich der intensivste Peaks von 17,12° nach 17,18° (vgl. **Tab. 6.6**). Ansonsten bleiben beide Röntgenpulverdiffraktogramme identisch.

Abb. 6.10 Vergleich der Röntgenpulverdiffraktogrammen von [$(Me_3Sn)_4Mo(CN)_8$] (15) und [$(Me_3Sn)_4Mo(CN)_8 \bullet NO_2$]

Tab. 6.8 Daten der Röntgenpulverdiffraktogramme von Abb. 6.6 und Abb. 6.7

1	2	12•]	NO_2	1	5	15•1	NO_2
20	%	20	%	20	%	20	%
8,12	25,97	8,44	21,51	10,24	29,66	10,32	28,14
9,66	32,28	9,92	39,31	13,7	34,78	13,74	34,41
13,52	41,18	13,80	50,19	15,24	27,80	15,36	27,19
13,92	44,05	14,20	46,35	17,12	100	17,18	100
14,26	31,13	14,62	29,54	18,04	14,44	18,16	13,88
14,92	32,57	15,20	31,27	19,38	18,63	19,44	20,53
16,42	100	16,70	100	20,52	51,55	20,62	47,72
17,14	30,13	17,38	29,42	21,68	12,11	21,76	10,46
17,68	67,14	17,98	78,86	24,72	6,21	24,82	6,65
19,56	67,58	19,82	75,77	25,96	7,76	26,04	7,79
25,1	28,12	25,40	27,81	27,64	15,22	27,78	10,84
				29,42	17,70	29,54	13,31
				33,10	16,30	33,16	15,02
				36,76	19,72	36,86	16,73

Wahrscheinlich ändert die NO₂-Aufnahme das 3D - Netzwerk nicht. Das NO₂-Molekül besetzt lediglich geeignete Hohlräume des 3D-Netzwerks und erhöht dabei ein wenig die Gitterkonstanten.

6.2.3 ESR-Spektroskopie

 NO_2 - Moleküle in verschiedenen Matrizen sind seit mehr als 35 Jahren Gegenstand von Elektronen – Spin – Resonanz (ESR) – spektroskopischen Untersuchungen^[42, 42a, 43]. Monomeres NO_2 enthält als ein Radikal eine ungerade Anzahl von Elektronen, die einen Gesamtspin von S=1/2 aufweisen. Weil der Spin im Sinne einer anisotropen räumlichen Verteilung ausgerichtet ist, sind die Resonanzlagen stark abhängig von der Orientierung des Moleküls, die sich jeweils auf die Richtung des angewandten Magnetfelds bezieht. Die Linienform eines ESR-Spektrums ist demnach eine Wiedergabe der Verteilung der paramagnetischen Teilchen in Meßraum. Die Mittellinienlage entspricht einem *g*-Faktor von 2.0037^[42].

Abb. 6.11 Vergleich der ESR – Spektren von $[(Me_3Sn)_3Co(CN)_6]$ und $[(Me_3Sn)_3Co(CN)_6 \cdot NO_2]$

Die ESR–Spektren von $[(Me_3Sn)_3Co(CN)_6 \cdot NO_2]$ und $[(Me_3Sn)_4Mo(CN)_8 \cdot NO_2]$ sind in Abbildung 6.11 und 6.12 wiedergegeben. Die beiden Abbildungen zeigen, daß nach der Sorption von NO_2 mit [(Me₃Sn)₄Mo(CN)₈] im ESR-Spektrum eine breite Bande bei ca. 3550G auftaucht.

Die sehr ähnliche Bande kann auch von einer Sorption von NO mit $[(Me_3Sn)_4Mo(CN)_8]$ herrühren. Nach der Sorption von Cl_2 taucht auch eine breite Bande bei ca. 3575G auf.

	Verbindung	Temp.	Frequenz (GHz)	Power (mW)	g-Factor
а	$[(Me_3Sn)_4Mo(CN)_8]$	RT	9,75	5,02	
b	$[(Me_3Sn)_4Mo(CN)_8\bullet NO]$	RT	9,75	10,0	1,90309
c	$[(Me_3Sn)_4Mo(CN)_8 \bullet NO_2]$	RT	9,75	2,00	1,98185
d	$[(Me_3Sn)_4Mo(CN)_8 \bullet NO_2]$	RT	9,75	5,02	1,96615
e	$[(Me_3Sn)_4Mo(CN)_8 \bullet NO_2]$	107K	9,43	0,20	1,93234
f	$[(Me_3Sn)_4Mo(CN)_8\bullet Cl_2]$	RT	9,75	5,02	1,99007
1		K1),15	5,02	1,98332

Tab. 6.9 Einige ausgewählte ESR – Daten aus Abb. 6.9

Die magnetische Suszeptibilität des Polymers [(Me₃Sn)₃Co(CN)₆] bzw. $[(Me_3Sn)_4Mo(CN)_8]$ verändert nicht durch die NO₂ - Aufnahme. Die magnetische Suszeptibilität $[(Me_3Sn)_3Co(CN)_6]$ und von $[(Me_3Sn)_3Co(CN)_6 \bullet NO_2]$ $[(Me_3Sn)_4Mo(CN)_8]$ bzw. und von $[(Me_3Sn)_4Mo(CN)_8 \bullet NO_2]$ entspricht durchweg diamagnetischem Verhalten. Da NO₂ selbst paramagnetisch, aber N₂O₄ diamagnetisch ist, liegt die Annahme nahe, daß das Meßgas als N₂O₄ in [(Me₃Sn)₃Co(CN)₆] bzw. [(Me₃Sn)₄Mo(CN)₈] eingelagert wird:

$$[(Me_3Sn)_3Co(CN)_6] + NO_2 \longrightarrow [(Me_3Sn)_3Co(CN)_6 \bullet \frac{1}{2}N_2O_4]$$
(6-1)

$$[(Me_3Sn)_4Mo(CN)_8] + NO_2 \longrightarrow [(Me_3Sn)_4Mo(CN)_8 \bullet \frac{1}{2}N_2O_4]$$
(6-2)

6.2.4 Festkörper - NMR - Spektroskopie

Für die störungsfreie Untersuchung von Festkörpern ist heute die CP – MAS – NMR Technik unentbehrlich^[44]. Aus der chemischen Verschiebung und dem Auftreten von ggf. mehreren Hauptsignalen ("Centerbands") können wichtige Rückschlüsse auf die kristallographische Ungleichheit von Atomen im Kristall, sowie auf verschiedene Koordinationsarten eines Liganden im Komplex gezogen werden.

Abb. 6.13 ¹³C - NMR von [(Me₃Sn)₃Co(CN)₆•NO₂]

Das Auftreten von zwei scharfen symmetrischen ¹³C-Signalen bei $[(Me_3Sn)_3Co(CN)_6 \cdot NO_2]$ (Abb. 6.13) ist wie $[(Me_3Sn)_3Co(CN)_6]$ (Abb. 6.14) wahrscheinlich einmal durch die schnelle Rotation des Me₃Sn-Fragmente um ihre dreizählige N-Sn-N Achse bedingt und zum anderen durch das röntgengraphisch belegte Vorliegen zweier kristallographisch nicht äquivalenter Me₃Sn-Einheiten im Kristall^[37, 45].

Die zwei neuen, sehr schwachen ¹³C-Signale bei $\delta = 21,277$ und 18,202 ppm

könnten Methyl-C-Atomen in besonders großer Nähe zu den eingelagerten N_2O_4 -Gästen zukommen.

Abb. 6.14 ¹³C - NMR von [(Me₃Sn)₃Co(CN)₆]^[37]

Ein ähnliches Argument gilt auch für [(Me₃Sn)₄Mo(CN)₈•NO₂]. Das Auftreten eines scharfen symmetrischen ¹³C-Signals bei [(Me₃Sn)₄Mo(CN)₈•NO₂] (**Abb. 6.15**) ist wahrscheinlich durch schnelle Rotation der Me₃Sn-Fragmente um die dreizählige N-Sn-N Achse bedingt.

Ein neues schwaches ¹³C-Signal bei $\delta = 12,805$ ppm ist vielleicht wegen der Anwesenheit der NO₂-Moleküle verursacht.

Abb. 6.15 Vergleich der 13 C - NMR – Spektren von [(Me₃Sn)₄Mo(CN)₈•NO₂] und von [(Me₃Sn)₄Mo(CN)₈]^[46]

Tab. 6.10 ¹³ C	-Festkörper-NMR	-Ergebnisse
----------------------------------	-----------------	-------------

Varhindung	¹³ C				
verbindung	δ (ppm)	1 J	I(rel)		
	0,82(CH ₃ -)	550	2		
$[(Me_3Sn)_3Co(CN)_6]^{[37]}$	-0,55(CH ₃ -)	570	1		
	132(CN-)				
$[(Me_3Sn)_3Co(CN)_6\bullet NO_2]$	4,446; 3,192; 0,804; -0,490; -2,797				
	21,277; 18,202 (schwach)				
$[(Me_3Sn)_4Mo(CN)_8]^{[46]}$	-0,1	500			
$[(Me_3Sn)_4Mo(CN)_8\bullet NO_2]$	3,580; 0,019; -3,623				
	12,805 (schwach)				

Die ¹¹⁹Sn-NMR-Spektren (**Abb. 6.16**) von $[(Me_3Sn)_3Co(CN)_6 \cdot NO_2]$ (**12** $\cdot NO_2$) und von $[(Me_3Sn)_3Co(CN)_6]$ (**12**) sind praktisch identisch. Dies Auftreten ¹¹⁹Sn– Resonanz bei $\delta = -88,2$ und -118,3 im Spektrum von (**12**) und $\delta = -88,543$ und -118,233 im Spektrum von (**12** $\cdot NO_2$) zeigen, daß diese Verbindungen (**12**) und (**12** $\cdot NO_2$) sehr symmetrisch aufgebaut sind.

und von $[(Me_3Sn)_4Mo(CN)_8]^{[46]}$

Die ¹¹⁹Sn-NMR-Spektren (**Abb. 6.17**) von $[(Me_3Sn)_4Mo(CN)_8 \bullet NO_2]$ (**15**•NO₂) und von $[(Me_3Sn)_4Mo(CN)_8]$ (**15**) sind sehr identisch. Dies Auftreten ¹¹⁹Sn–Resonanz einer ¹¹⁹Sn–Resonanz bei $\delta = -108,016$ im Spektrum von (**15**) und (**15**•NO₂) zeigen ebenfalls, daß diese Verbindungen (**15**) und (**15**•NO₂) sehr symmetrisch aufgebaut sind.

6.3 NO₂-Adsorption von mesoporösem SiO₂[#]

Ein anderes Beispiel, wobei die NO_2 – Adsorption auf einer Redox – Reaktion beruht, ist die Reaktion von NO_2 mit mesoporösem SiO₂ (**21**). Diese Verbindung (**21**) hat eine besonders große "innere" Oberfläche (1247 m²/g, vgl. Abb.6.18, 6.19 und Tab. 6.11).

Abb. 6.18. Ad- und Desorptionsisothermen von mesoporösem SiO₂

Tab. 6.11 BET-Messergebnis

Probe	С	Vm (cm ³ /g)	$\frac{As(BET)}{(m^2/g)}$	Bemerkung
mesoporösem SiO ₂ (21)	107,53	286,36	1247	AC, Abb.6.18

[#] Diese Probe wurde mir freundlicherweise von Prof. Fröba überlassen

Abb. 6.19. BET-Plot von mesoporösem SiO₂

Das mesoporös SiO₂ hat die maximale Porenverteilungen von 1,347nm (Abb. **6.20**).

Abb.6.20 Porenverteilungen von mesoporösem SiO2

Nach 24 Stunden sowie bei RT, Normaldruck und 5,62% NO₂-Konzentration werden 0,138 mol NO₂ per mol SiO₂ aufgenommen (**Tab. 6.12**). Die gut identifizierten NO₂-Schwingungen befinden sich bei 1384 und 1232 cm⁻¹ (**Abb. 6.21**).

Tab. 6.12 Adsorption von NO2 mit mesoporösem SiO2 (21)21AddukteNO2Adsorption

21	Addukte	NO_2	Adsorption
0,03645 g	0,04030 g	0,00385 g	0,1056 g(NO ₂) / g(21)
0,2419 mmol		0,02555 mmol	0,1379 mol(NO ₂) / mol(21)

Abb. 6.21 IR-Spektren von mesoporösen SiO2 und von deren NO2-Addukten

Die Röntgenpulverdiffraktogramme (**Abb. 6.22**) von SiO₂ und dessen NO₂-Addukten sind praktisch identisch. Nach der Sorption von NO₂ verschieben sich die entsprechenden Peaks nach kleineren 2 θ -Werten. Zum Beispiel verschiebt sich der intensivste Peaks von 2,86° nach 2,48°.

Abb. 6.22 Vergleich der Röntgenpulverdiffraktogramme von SiO₂ und von dessen NO₂-Addukt

6.4 Zyklische wiederholte Aufnahme und Entfernung von NO₂ mit [(Me₃Sn)_xM(CN)_y] (M=Co, Mo)

Weil die Sorption von NO₂ durch $[(Me_3Sn)_3Co(CN)_6]$ oder $[(Me_3Sn)_4Mo(CN)_8]$ rein "physikalischer" Natur ist, erfolgt auch wieder leicht Desorption. Das Experiment zeigt, daß nach der Sorption von NO₂, das sorbierte NO₂ durch Erhitzen auf 150°C unter Stickstoff - Atmosphäre oder im Ölpumpenvakuum wieder abgegeben wird:

$$[(\operatorname{Me}_{3}\operatorname{Sn})_{3}\operatorname{Co}(\operatorname{CN})_{6}\bullet x\operatorname{NO}_{2}] \xrightarrow{150^{\circ}C/N_{2}} [(\operatorname{Me}_{3}\operatorname{Sn})_{3}\operatorname{Co}(\operatorname{CN})_{6}] + x\operatorname{NO}_{2}$$
(6-3)

$$[(Me_3Sn)_4Mo(CN)_8 \bullet xNO_2] \xrightarrow{150^\circ C/N_2} [(Me_3Sn)_4Mo(CN)_8] + xNO_2 \quad (6-4)$$

Diese Reaktion kann mit Lunges Reagenz (Sulfanilsäure und α -Naphthylamin in essigsaurer Lösung) nachgewiesen werden. Gelangt das frei gewordene Gas (NO₂/N₂) zu Lunges Reagenz, wird die Sulfanilsäure nach einigen Minuten diazotiert, und das entsprechende Diazoniumsalz setzt sich mit α -Naphthylamin zu einem roten Azofarbstoff um.

Die NO₂-Abgabe kann auch IR-spektroskopisch nachgewiesen werden. Am IR-Spektrum (**Abb. 6.23, 6.24**) kann man deutlich sehen, daß bei der thermischen Behandlung von [(Me₃Sn)₃Co(CN)₆•NO₂] oder [(Me₃Sn)₄Mo(CN)₈•NO₂] bis 150°C unter N₂-Atmosphäre ein Folgeprodukt entsteht, dessen IR-Spektrum Unterschiede gegenüber der Ausgangsverbindung erkennen läßt. Bemerkbar ist, daß die starke Bande bei 1384 cm⁻¹ für v(NO₂) deutlich schwächer wird.

Im IR-Spektrum^[8] des Folgeprodukts von $[(Me_3Sn)_4Fe^{III}(CN)_6 \bullet (NO_2)]$, das bis 150°C unter Argon-Atmosphäre behandelt wurde, taucht allerdings eine neue Valenzschwingung für koordiniertes NO bei 1919 cm⁻¹ auf. Dieser signifikante Unterschied läßt vermuten, daß NO₂ in $[(Me_3Sn)_4Fe^{II}(CN)_6]$ eine "chemische" und in $[(Me_3Sn)_3Co^{III}(CN)_6]$ eine "physikalische" Sorption eingeht. So wird das sorbierte NO₂ wird leicht wieder in die Gas - Phase überführt.

mit NO₂ behandeltes $[(Me_3Sn)_4Mo(CN)_8]$ (*mitte*) und dessen thermisches behandeltes Folgeprodukt (*unten*)

Das dabei erhaltene NO₂-freie Polymer kann nochmals NO₂ sorbieren. Die entsprechenden Kurven der mehrmals wiederholten Sorption von NO₂ durch $[(Me_3Sn)_3Co(CN)_6]$ wird in Abbildung 6.25, und die durch $[(Me_3Sn)_4Mo(CN)_8]$ in Abbildung 6.26 dokumentiert.

Tab. 6.13 Die Sorptionsergebnisse von NO2 auf [(Me3Sn)3Co(CN)6]

Zyklus	Maximale Adsorption (Mol(NO ₂)/Mol(Polymer))	Farbveränderung (Gasphase)
1	0,343	braun→hell braun
2	0,445	braun→weiß
3	0,480	braun→weiß
4	0,515	braun→weiß

Abb. 6.26 Die zyklische NO₂-Sorptionsisothermen auf [(Me₃Sn)₄Mo(CN)₈] bei RT, Normaldruck und der Gaskonzentration von NO₂ 5,62; O₂ 0,77 und N₂ 93,61%

Tab. 6.14 Die Sorptionsergebnisse von NO₂ auf [(Me₃Sn)₄Mo(CN)₈]

Zyklus	Maximal Adsorption (Mol(NO ₂)/Mol(Polymer))	Farbveränderung von Gasphase
1	0,20	braun→hell braun
2	0,35	braun→hell braun
3	0,51	braun→weiß
4	0,83	braun→weiß
5	0,89	braun→weiß

Das Schema **6.3** zeigt, daß NO₂ unter Mitwirkung des vollständig rezyklierbaren Sorbens $[(Me_3E)_vM(CN)_z]$ gezielt entfernt werden kann.

Schema 6.3 Zyklische Entfernung von NO2

Die Praktische Ergebnisse von zyklische Entfernung des NO₂ (Abb. **6.25**, **6.26**) zeigt, die Sorptionsvermögen von NO₂ immer mit dem Zyklus steigt zunehmen. Das ist wahrscheinlich wegen der Vergrößerung der Gitterkonstanten nach der NO₂-Aufnahmen (vgl. Abb. **6.9** und **6.10**)

6.5 Reaktion von SO₂, C₄H₅N (Pyrrol) und NH₃ mit [(Me₃Sn)_xM(CN)_y•NO₂] (M = Co, Mo)

Die Sorption von gasförmigem SO_2 durch die Festkörper $[(Me_3Sn)_3Co^{III}(CN)_6 \bullet NO_2]$ oder $[(Me_3Sn)_4Mo^{IV}(CN)_8 \bullet NO_2]$ läuft bei Raumtemperatur und Normaldruck spontan ab. Die Farbe des Festkörpers verändert sich dabei nicht, aber zwei neue IR-Banden bei 1108 / 1105 und 594 cm⁻¹ für SO_4^{2-} treten auf, und die Banden bei 1384 und 1296 cm⁻¹ für NO_2^{-} Schwingungen werden intensitätsschwächer (Tab. **6.15**, Abb. **6.27**).

Abb. 6.27 Vergleich der IR-Spektren von ohne (unten) und mit SO₂ behandelt $[(Me_3Sn)_3Co(CN)_6\bullet NO_2] (oben)$

Polymer	Adsorptionsgas	Zeit (Std.)	Farb - veränderung	Neue IR-Bande
	SO_2	50	weiß \rightarrow weiß	1105 594
$[(Me_3Sn)_3Co(CN)_6\bullet NO_2]$	C ₄ H ₅ N	66	weiß→ schmutzig weiß	3460 1044, 1015 727
	NH ₃	48	keine	keine
[(Me ₃ Sn) ₄ Mo(CN) ₈ •NO ₂]	SO_2	52	weiß \rightarrow weiß	1108 594
	C ₄ H ₅ N	64	weiß→ schmutzig weiß	3460 1044, 1015 727
	NH ₃	48	keine	kein

Tab. 6.15 Die Adsorptionen von SO₂ und C₄H₅N mit $[(Me_3Sn)_xM(CN)_v\bullet NO_2]$

Nach der Reaktion erscheint eine ölige Flüssigkeit auf der Glaszelle. Diese ölige Flüssigkeit färbt pH – Papier rot und reagiert mit $Pb(NO_3)_2$ zum weißen Niederschlag (PbSO₄).

Bei der Reaktion des sorbierten NO_2 mit SO_2 wird SO_2 zu SO_3 oxidiert, wobei wie im Bleikammer – Verfahren NO_2 zu NO reduziert wird:

$$[(Me_3Sn)_3Co(CN)_6 \bullet NO_2] + SO_2 \longrightarrow [(Me_3Sn)_3Co(CN)_6] + NO + SO_3$$
(6-5)

Kräftig adsorbiert das zunächst gasförmige SO₃ auch Spuren von Wasser, wobei Schwefelsäure entsteht:

$$SO_3 + H_2O \longrightarrow H_2SO_4$$
 (6-6)

Diese ölige Flüssigkeit wird in Lösung gebracht und eine Pb(NO₃)₂–Lösung dazu gegeben, wonach sofort ein weißer Niederschlag entsteht:

 $H_2SO_4 + Pb^{2+} \longrightarrow PbSO_4 \downarrow_{(weiß)} + 2 H^+$ (6-7)

Das sorbierte Gasmolekül NO₂ kann auch weiter mit Pyrrol-Dampf (C_4H_5N) reagieren (**Abb.6.28** und **Tab.6.15**). Die Farbe des Polymers verändert sich von weiß nach schmutzig weiß, und drei neue und unbekannte IR-Banden bei 1044, 1015 und 727 cm⁻¹ erscheinen im Spektrum.

Abb. 6.28 Vergleich der IR-Spektren von [(Me₃Sn)₄Mo(CN)₈•Pyrrol] (*oben*), [(Me₃Sn)₄Mo(CN)₈•NO₂] (*unten*) und dessen mit Pyrrol behandeltem Folgeprodukt (*Mitte*)

6.6 Reaktion von CO₂, SO₂, NH₃, NO und C₄H₅N (Pyrrol) mit [(Me₃Sn)_xM(CN)_v•NO₂] (M = Fe, Co, Mo, Cu)

Die NO₂-freien Ausgangsverbindungen 11, 12, 14, 15 und 17 können bei Raumtemperatur und Normaldruck keines der Gase CO₂, SO₂, NH₃ und NO nennenswert sorbieren (vgl. **Tab. 6.16**). Die Farbe des Polymers verändert sich nicht, und keine neue IR-Bande taucht auf. Nur die Reaktion von $[(Me_3Sn)Cu(CN)_2•0,5bpy]$ (17) mit NH₃ bildet eine Ausnahme. Nach der Adsorption von NH₃ mit 17 verändert sich die Farbe des Polymers von gelb nach rot. Zwei neue Bande bei 3355 und 3251 cm⁻¹ für v(NH₃) tauchen auf (Abb. 6.29, Tab. 6.16).

· · · · · · · · · · · · · · · · · · ·	Adaptiona	Zoit	Earb	ID Danda
Polymer	Ausorptions-	Zeit	raio-	IN-Dallue
101911101	gas	(Std.)	veränderung	Veränderung
	CO_2	15	keine	keine
$[(Ma Sp) E_{2}(CN)] (11)$	SO_2	24	keine	keine
$[(MC_3SII)_3FC(CN)_6](11)$	NH ₃	24	keine	keine
	NO	15	keine	keine
	CO_2	24	keine	keine
$[(M_{2}, S_{n}), C_{2}(CN),](12)$	SO_2	24	keine	keine
$[(Me_3SII)_3CO(CN)_6](12)$	NH ₃	24	keine	keine
	NO	24	keine	keine
	CO_2	19	keine	keine
$[(M_{2}, \mathbf{Ph}), C_{2}(\mathbf{CN})] (14)$	SO_2	20	keine	keine
$[(Me_3Pb)_3Co(CN)_6](14)$	NH ₃	24	keine	keine
	NO	24	keine	Keine
	CO_2	18	keine	Keine
$[(M_{2}, S_{2}), M_{2}(C_{N})] (15)$	SO_2	20	keine	Keine
$[(1010_3311)_41010(C10)_8](13)$	NH ₃	24	keine	Keine
	NO	16	keine	Keine
	CO_2	19	keine	Keine
	SO_2	20	keine	Keine
$[(Me_3Sn)Cu(CN)_2 \bullet 0,5bpy]$				Neue Bande
(17)	NH_3	15	Gelb →Rot	für v(NH ₃)=
				3355,3251cm ⁻¹
	NO	24	keine	keine

Tab. 6.16 Die Adsorption von CO₂, SO₂, NH₃ und NO

Abb. 6.29 Vergleich der IR-Spektren von 17 (oben) und [17•NH₃] (unten)

6.7 Diskussion

- Es wurde gefunden, da
 ß eine Beseitigung von NO₂ durch Kontaktierung mit por
 ösen, polymeren Metallcyaniden m
 öglich ist. Diese Entfernung des NO₂ aus Gasen durch Kontakt mit einem por
 ösen, polymeren Cyanid d
 ürfte auf physikalischer Wirkung beruhen.
- 2. Das nur physikalisch sorbierte NO₂ ist wieder leicht durch Erhitzen unter N₂-Atmosphäre oder unter Vakuum entfernbar. Auch durch Reaktion mit SO₂ kann man die Ausgangsverbindung zurück erhalten. Auf dieser Regenerierbarkeit des porösen und polymeren Cyanides kann man grundsätzlich im Modell einen Zyklus aufbauen, um NO₂ und SO₂ aus Abgas zu entfernen.
- Die Größe der inneren Oberfläche des Polymers hat keinen bedeutenden Einfluß auf das NO₂-Sorptionsvermögen des Polymers. Die Verbindung [Ag₃Co(CN)₆](13) hat eine viel größere innere Oberfläche gegenüber die Verbindung [(Me₃Sn)₃Co(CN)₆](12), aber das NO₂-Sorptionsvermögen von (13) ist sehr viel kleiner als das von (12).
- 4. Wegen der schnellen Rotation der Me₃Sn- und der Methylgruppen, die beachtlich viel Platz im Gitter-Tunnel des Kristall beansprucht, üben die Meoder Me₃Sn-Gruppe einen bedeutenden Einfluß auf das reale Ausmaß der inneren Oberfläche des Polymers aus.

7. Zusammenfassung

Die inneren	Oberflächen	der dreidimensional	vernetzten Koordinationspolymere
(1), (2), (3),	(4), (5), (6),	(12), (13), (15), (17)	, (18) und (19) mit unterschiedlich

		C:4 1 4 4	Durchschnittlich	Maximal
Verbindungen	M_r / D_c	Gitterkonstanten	innere Oberfläche	NO ₂ -Sorption
	(cm ² /mol)	(A)	(m^{2}/g)	(mol/mol)
$[(Me_3Sn)_4Fe(CN)_6](1)$	477		8,10	3,99
	550 ^[47]	$C2/c^{[48]}$:	2,18	
		<i>a</i> = 17,995		
$[(Cp_2Co)(Me_3Sn)_3Fe(CN)_6]$ (2)		b = 15,570		
		c = 12,360		
		$\beta = 92,60(^{\circ})$		
$[Zn_2Fe(CN)_6\bullet 3H_2O]$ (3)	201	<i>a</i> = 9,076	134,33	0,57
$\left[\mathrm{Cd}_{2}\mathrm{Fe}(\mathrm{CN})_{6}\bullet3\mathrm{H}_{2}\mathrm{O}\right](4)$	206	<i>a</i> = 5,165	17,01	0,50
$[KLaFe(CN)_{6}\bullet 5H_{2}O] (5)$	173	<i>a</i> = 5,174	0,21	
$[KDyFe(CN)_6 \bullet H_2O] (6)$	156	<i>a</i> = 5,236	26,18	1,40
	185 ^[47]	$D_{3d}^{1}/P31m^{[27]}$:	701,03	0,08
$[Ag_3Co(CN)_6]$ (13)		a = 7.030		
		c = 7,127		
	460 ^[47]	$P2_{1}/c^{[47]}$:	21,49	0,51
		<i>a</i> = 16,857		
$[(Me_3Sn)_3Co(CN)_6]$ (12)		<i>b</i> = 12,941		
		<i>c</i> = 14,664		
		β=106,99(°)		
$[(Me_3Sn)_4Mo(CN)_8]$ (15)	1201		5,16	0,89
	579 ^[39]	$D_{3d}^{1}/P31m^{[39]}$:		
$[(Me_3Sn)_4Mo(CN)_8\bullet 2THF]$		a = 13,1912		
		<i>c</i> = 11,4482		
	420 ^[49]	$P2_{1}/c^{[49]}$:	5,71	0,21
		<i>a</i> = 10,035		
$[(Me_3Sn)Cu(CN)_2 \bullet 0,5bpy] (17)$		<i>b</i> = 11,980		
		<i>c</i> = 12, 425		
		$\beta = 110,94(^{\circ})$		
	$477^{[40]}$	$C2/m^{[40]}$:	0,83	
[(Bu ₄ N)(Me ₃ Sn)Cu ₂ (CN) ₄] (18)		a = 16,74		
		b = 14,02		
		c = 14,08		
	57 0 ^[41]	$\beta = 106,4950(^{\circ})$	22.50	
[(Bu ₄ N)Cu ₃ (CN) ₄ •CH ₃ CN] (19)	578[**]	$C2^{113}$:	23,58	
		a = 10,85/2 b = 14,1190		
		v = 14,1100 c = 13,3010		
		c = 13,3910 B = 113,20(0)		
		p = 113,30()		

7. Zusammenfassung

großen Hohlräumen wurden unter anderen mittels der sogenannten BET -Methode analysiert.

Zusammenhänge zwischen der inneren Oberfläche und der Gitterkonstanten werden näher untersucht, wie z.B. im Fall der Verbindungen (3) und (4) sowie die Verbindungen (5) und (6). Wenn die Gitterkonstanten gleich oder vergleichbar sind, übt eine eingelagerte Gruppe wie Cp_2Co^+ und Me_3Sn^+ einen negativen Einfluß auf das Ausmaß der inneren Oberfläche aus, wie z.B. im Fall der Verbindungen (1) und (2), der Verbindungen (12) und (13) sowie der Verbindungen (18) und (19).

Die NO₂-Sorptionsisothermen der Verbindungen (1), (3) ~ (17) werden in dieser Arbeit bei Raumtemperatur und Normaldruck manometrisch bestimmt. Die erhaltenen NO₂-Sorptionsisothermen können in "chemisch" und "physikalisch" bedingt unterteilt werden.

Wenn das zentrale Metallion oxidierbar (z.B. Fe(II)) ist, kann NO₂ "chemisch" vom Polymer sorbiert werden, wobei das zentrale Fe(II) - Ion zum Fe(III) - Ion oxidiert, und das sorbierte Gas von NO₂ zum NO₂⁻ - Ion reduziert wird. Nach einer chemischen Sorption kann man die Ausgangsverbindung nicht wieder durch physikalische Methoden (z.B. Erhitzen, im Vakuum) entfernen, aber mittels chemischer Methoden (durch Reduktionsmittel, wie z.B. KI, NaHSO₄) läßt sie sich ebenfalls zurückerhalten.

Wenn das zentrale Metallatom nicht weiter oxidierbar ist (z.B. Fe(III), Co(III), Mo(IV)), kann das NO_2 - Gas von diesen Verbindungen nur physikalisch adsorbiert wurden. Diese Art der Sorption verändert die Kristallstruktur des erhaltenen Verbindung nicht, obwohl das sorbierte Gas als N_2O_4 vom Polymer aufgenommen wird. Die Me₃Sn - Gruppe scheint diese physikalische Sorption

7. Zusammenfassung

zu fördern. Die inneren Oberflächen des Polymers sind hier keine schlüssigen Kenngrößen. Beim Erhitzen auf 150°C unter N_2 oder in Vakuum kann das sorbierte Gas wieder vollständig entfert und die Ausgangsverbindung chemisch unverändert zurückerhalten wurden.

Die NO₂-Aufnahme und Wiederabgabe läßt sich in einigen Fällen vielfach wiederholen, wobei das Aufnahmevermögen für das Gas stetig und signifikant zunimmt.
Manometrische Bestimmung der NO₂-Sorptionsisothermen von Superberliner Blau – Derivaten und Charakterisierung der inneren Oberflächen mittels der BET - Methode

(Summary)

The surfaces of coordination polymers $[(Me_3Sn)_4Fe(CN)_6](1),$ inner $[(Cp_2Co)(Me_3Sn)_3Fe(CN)_6](2), [Zn_2Fe(CN)_6 \cdot 3H_2O](3), [Cd_2Fe(CN)_6 \cdot 3H_2O](4),$ $[KLaFe(CN)_{6} \bullet 5H_{2}O](5),$ $[KDyFe(CN)_6 \bullet H_2O](6),$ $[(Me_3Sn)_3Co(CN)_6](12),$ $[Ag_3Co(CN)_6](13), [(Me_3Sn)_4Mo(CN)_8](15), [(Me_3Sn)Cu(CN)_2 \cdot 0.5bpy](17),$ $[(Bu_4N)(Me_3Sn)Cu_2(CN)_4](18)$ and $[(Bu_4N)Cu_3(CN)_4 \bullet CH_3CN](19)$ were analysed with BET-method. These polymers are tridimensionally cross-linked and have different large cavities.

The relationship between the inner surface and the lattice constant have been examined in detailed, for example the coordination polymer (3) was compared with (4) as well as (5) with (6). If the lattice constants are identical or comparable, an intercalary group like Cp_2Co^+ or Me_3Sn^+ performs a negative influence on the area of the inner surface, comparing the coordination polymers (1) with (2), (12) with (13) as well as (18) with (19).

The NO₂-adsorption-isotherms of the coordination polymers (1), (3) ~ (17) were determined manometrically at the room temperature and normal pressure. The NO₂-adsorption-isotherms can be divided into "chemical" and "physical" adsorption.

If the central metal atoms of the coordination polymers can be oxidized (e.g. Fe(II)), NO₂ will be adsorbed chemically by the polymers, the central atom will be oxidized (e.g. Fe(II) to Fe(III)), at the same time the adsorbed NO₂ is reduced to NO₂⁻. The experiments of adsorption and desorption are in accordance with the mechanism of chemical adsorption, that is, once a chemical adsorption

7. Zusammenfassung

happens, it is impossible to get the initial coordination polymers through physiacal means (e.g. by heating, or cooling); but it is possible by chemical means (e.g. using KI, or NaHSO₃).

If the central metal atom can not be oxidized (e.g. Fe(III), Co(III), Mo(IV)), NO₂ can only be adsorbed physically by the coordination polymeers. This kind of adsorption does not change the crystal structure of the coordination polymers. NO₂ is adsorbed in the form of N₂O₄ by the polymer. The Me₃Sn-group seems to support this kind of physical adsorption. The role of the inner surfaces of polymer is not characteristic here. When the coordination polymers with adsorbed NO₂ were heated to 150°C in N₂ or vacuum, the adsorbed NO₂ will be removed completely and the initial coordination polymer will be recovered.

The NO_2 – adsorption and desorption of (12) and (15) have been repeated. The adsorption ability increases with the circles of the experiments.

8 Anhang

- 8.1 Berechnung der Strukturkonstanten für kubische Struktur
- 8.1.1 Flußdiagramm der Berechnung der Strukturkonstanten für kubische Struktur

8.1.2 Programm der Berechnung von Strukturkonstanten für kubische Struktur

cls

OPEN "A:\beispiel.txt" FOR OUTPUT AS #1

REM ---- Das sind die Datum von theta-Werte----

DATA 19.611, 28.136, 35.156, 41.564, 47.769, 54.119, 60.876, 68.912, 69.349, 81.520, 82.588

n = 11

titel\$ = "Roentgenpulverdiagrammenanalysis von Tantalum Powder/beispiel"

```
DIM kr(50)
DIM km(50)
DIM dwerte(50)
DIM ddwwerte(50)
DIM ratios(50)
DIM ahkl(50)
DIM hhh(50)
DIM kkk(50)
DIM III(50)
DIM asigema(30, 6)
DIM sigema1(30, 6)
DIM A(30, 6)
DIM aa(30, 6)
DIM XX(30, 6)
DIM krjj(50)
DIM ratJJ(30, 6)
DIM JJddwwerte(30, 6)
dim theta(50)
dim radtheta(50)
BB = 50
print
print "N", "theta", "sin(theta)", "d-Werte"
for I%=1 to n
      read theta(I%)
      radtheta(1%)=theta(1%)*3.14159/180
      dwerte(1%)=1.54184/(2*sin(radtheta(1%)))
      print 1%, theta(1%), sin(radtheta(1%)), dwerte(1%)
next I%
FOR I% = 1 TO n
      rem READ dwerte(I%)
    IF I% = 1 THEN
         dw1 = dwerte(1\%)
         ddww11 = dw1 * dw1
    END IF
NEXT I%
```

```
FOR jj = 1 TO n
     PRINT
     PRINT jj; "---";
       FOR kk = 1 \text{ TO } 6
             PRINT kk;
             XX(jj, kk) = 1
             ZZZ = 100
             FOR I% = 1 TO n
                    IF ii = 1\% THEN
                           JJddwwerte(jj, kk) = dwerte(I%) * dwerte(I%)
                           ratJJ(jj, kk) = CINT(ddww11 / JJddwwerte(jj, kk))
                    END IF
             NEXT I%
100 FOR I% = 1 TO n
     hhh(1\%) = 0
     kkk(1\%) = 0
     III(1\%) = 0
     ddwwerte(I%) = dwerte(I%) * dwerte(I%)
     ratios(I%) = ddww11 / ddwwerte(I%)
     krjj(I%) = kk * ratJJ(jj, kk) * (JJddwwerte(jj, kk) / ddwwerte(I%))
     km(1\%) = CINT(krjj(1\%))
     FOR h = 0 TO 10
          FOR k = 0 TO 9
               FOR I = 0 TO 8
                    IF km(I\%) = h * h + k * k + I * I THEN
                         hhh(1\%) = h
                         kkk(1\%) = k
                         |||(1\%) = 1
                    END IF
               NEXT I
          NEXT k
     NEXT h
     ahkl(1%) = dwerte(1%) * SQR(hhh(1%) * hhh(1%) + kkk(1%) * kkk(1%) + III(1%) *
III(I%))
     XX(jj, kk) = XX(jj, kk) * ahkl(1\%)
     ZZZ = ZZZ * ahkl(I\%)
     IF ahkl(1\%) = 0 THEN
          PRINT "F ";
             GOTO 499
     ELSE
          PRINT "R";
     END IF
NEXT I%
FOR I% = 1 TO n
     aa(jj, kk) = aa(jj, kk) + ahkl(1\%)
NEXT I%
A(jj, kk) = aa(jj, kk) / n
FOR I% = 1 TO n
     sigema1(jj, kk) = sigema1(jj, kk) + (ahkl(1\%) - A(jj, kk)) * (ahkl(1\%) - A(jj, kk))
NEXT 1%
asigema(jj, kk) = SQR(sigema1(jj, kk)) / n
```

```
IF XX(jj, kk) <> 0 THEN
     IF asigema(jj, kk) < BB THEN
          Ba = A(ij, kk)
          BB = asigema(jj, kk)
          Bi = ii
          Bk = kk
     END IF
END IF
IF ZZZ <> 0 THEN
print titel$
print " N theta sin(theta) d d*d Ration m k*Ration km h k I a(Aø)"
FOR I% = 1 TO n
     IF jj = 1% THEN
          JJddwwerte(jj, kk) = dwerte(I%) * dwerte(I%)
          ratJJ(jj, kk) = CINT(ddww11 / JJddwwerte(jj, kk))
     END IF
NEXT I%
FOR I% = 1 TO n
     hhh(1\%) = 0
     kkk(1\%) = 0
     III(1\%) = 0
     ddwwerte(1\%) = dwerte(1\%) * dwerte(1\%)
     ratios(I%) = ddww11 / ddwwerte(I%)
     krij(I%) = kk * ratJJ(jj, kk) * (JJddwwerte(jj, kk) / ddwwerte(I%))
     km(1\%) = CINT(krij(1\%))
     FOR h = 0 TO 10
          FOR k = 0 TO 9
               FOR I = 0 TO 8
                    IF km(I\%) = h * h + k * k + I * I THEN
                         hhh(1\%) = h
                         kkk(1\%) = k
                         |||(1\%) = 1
                    END IF
               NEXT I
          NEXT k
     NEXT h
     ahkl(1\%) = dwerte(1\%) * SQR(hhh(1\%) ^ 2 + kkk(1\%) ^ 2 + III(1\%) ^ 2)
      print using"###";1%;
      print using"###.###";theta(1%);
      print using"###.#####";sin(radtheta(I%));
      print using"###.####";dwerte(I%);
      print using"###.####";ddwwerte(1%);
      print using"###.####"; ratios(1%);
      print using"###";cint(ratios(I%));
      print using"###.####"; krjj(I%);
      print using"###"; km(1%); III(1%); kkk(1%); hhh(1%);
      print using"###.####";ahkl(I%)
next I%
      print "a=";Ba;"(Aø)", "of N=";jj,"K=";kk
      print "asigema=";BB
      print
```

```
END IF
input "Ausdrucken(1=Ja)"; ausdruck
if ausdruck=1 then
      goto 199
end if
200 input "Speichen(2=Ja)"; speichen
if speichen=2 then
      goto 299
      else
             goto 499
end if
199 Iprint
Iprint tiel$
Iprint "N theta sin(theta) d dd Ration m k*Ration k*m h k l a(Aø)"
for I%=1 to n
      lprint using"###";I%;
      lprint using"###.###";theta(I%);
      lprint using"###.#####";sin(radtheta(I%));
       lprint using"### ####";dwerte(1%);
      lprint using"###.####"; ddwwerte(I%);
      lprint using"###.####"; ratios(1%);
      lprint using"###"; cint(ratios(I%));
      lprint using"###.####"; krjj(1%);
      lprint using"###"; km(I%);III(I%); kkk(I%); hhh(I%);
      lprint using"###.####"; ahkl(I%)
next I%
lprint "a=";Ba;"(Aø) of N=";jj;"k=";kk
Iprint "asigema=";BB
goto 200
299 write#1,
write#1,titel$
write#1,"N","theta", "sin(theta)", "d","dd","Ration", "m","k*Ration", "k*m", "h", "k", "l",
"a(Aø)"
for I%=1 to n
       write#1, 1%, theta(1%), sin(radtheta(1%)), dwerte(1%), ddwwerte(1%), ratios(1%),
cint(ratios(1%)), krjj(1%), km(1%), III(1%), kkk(1%), hhh(1%),ahkl(1%)
next I%
write#1, "a=";Ba;"(Aø)";"N=";jj;"k=";kk
write#1, "asigema=";BB
qoto 499
499
NEXT kk
NEXT ji
CLOSE #1
print
print
print "-----END-----"
999 END
```

Ν	θ	sinθ	d	d∙d	Ration	m	k•Ration	k∙m	h l	x 1	<i>a</i> (Å)
1	19,611	0,33563	2,2969	5,2758	1	1	2,0263	2	0	1	3,2483
2	28,136	0,47157	1,6348	2,6726	1,9740	2	4	4	0 () 2	3,2696
3	35,156	0,57580	1,3389	1,7925	2,9432	3	5,9638	6	1	1 2	3,2795
4	41,564	0,66346	1,1620	1,3502	3,9075	4	7,9177	8	0 2	2 2	3,2866
5	47,769	0,74044	1,0412	1,0840	4,8669	5	9,8618	10	0	3	3,2924
6	54,119	0,81024	0,9515	0,9053	5,8277	6	11,809	12	2 2	2 2	3,2960
7	60,876	0,87357	0,8825	0,7788	6,7743	7	13,727	14	1 2	2 3	3,3020
8	68,912	0,93303	0,8263	0,6827	7,7279	8	15,659	16	0 0) 4	3,3050
9	69,349	0,93575	0,8239	0,6787	7,7730	8	15,750	16	0 0) 4	3,2954
10	81,52	0,98907	0,7794	0,6075	8,6841	9	17,597	18	1	l 4	3,3069
11	82,588	0,99164	0,7774	0,6044	8,7294	9	17,688	18	1	4	3,2983
Durchschnitt 3,									3,2891		

8.1.3 Berechnungsergebnis von Strukturkonstanten kubischer Struktur Röntgenpulverdiagrammanalyse von Tantalpulver^[16]

Strukturkonstanten von $[Cd_2Fe^{II}(CN)_6 \cdot aq]$ (Abb. 4.15)

-N-	2 θ	-d-	%	d•d	k•Ration	k∙m	h k l	a(Å)
1	15,399	5,7494	30,65	33,0556	0,78	1	100	5,7494
2	16,169	5,4773	33,21	30,0008	0,86	1	100	5,4773
3	17,448	5,0785	84,74	25,7912	1	1	100	5,0785
4	24,060	3,6958	45,67	13,6589	1,89	2	110	5,2267
5	24,751	3,5941	100.00	12,9176	2,00	2	110	5,0828
6	25,443	3,4979	44,08	12,2353	2,11	2	110	4,9468
7	31,725	2,8181	30,89	7,94169	3,24	3	111	4,8811
8	33,429	2,6783	25,52	7,17329	3,60	4	200	5,3566
9	35,302	2,5404	58,97	6,45363	4,00	4	200	5,0808
10	38,755	2,3216	32,84	5,38983	4,79	5	210	5,1913
11	39,642	2,2717	41,76	5,16062	5,00	5	210	5,0797
12	42,691	2,1162	34,68	4,47830	5,76	6	211	5,1836
13	44,459	2,0361	37,48	4,14570	6,22	6	211	4,9874
14	50,818	1,7952	30,04	3,22274	8,00	8	220	5,0776
15	57,340	1,6055	31,62	2,57763	10,00	10	310	5,0770
			Durch	schnitt				5,1651

-N-	2 θ	-d-	%	d∙d	k•Ration	k∙m	h k l	a(Å)
1	9,55	9,0598	47,75	82,0800	2,98	3	111	15,6920
2	13,571	6,5195	41,10	42,5039	5,76	6	211	15,9694
3	13,970	6,3342	40,28	40,1221	6,10	6	211	15,5156
4	16,249	5,4505	100	29,7080	8,24	8	220	15,4163
5	19,568	4,5329	49,15	20,5472	11,91	12	222	15,7024
6	21,568	4,1168	50,90	16,9480	14,44	14	321	15,4037
7	23,578	3,7701	38,18	14,2137	17,21	17	410	15,5445
8	24,377	3,6484	38,65	13,3108	18,38	18	411	15,4789
9	25,576	3,4800	30,24	12,1104	20,20	20	420	15,5630
10	26,200	3,3985	33,45	11,5498	21,18	21	421	15,5739
11	28,370	3,1433	35,08	9,88033	24,76	25	500	15,3990
12	29,445	3,0310	36,89	9,18696	26,63	27	511	15,4551
13	35,227	2,5456	33,10	6,48008	37,76	38	611	15,4843
14	41,181	2,1903	36,95	4,79741	51,00	51	711	15,4878
15	41,911	2,1538	33,22	4,63885	52,74	53	720	15,5313
			Durc	hschnitt				15,5478

Strukturkonstanten von $[Cd_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ (Abb. 4.15)

Strukturkonstanten von $[Cd_2Fe^{III}(CN)_{6} \bullet (Br^-) \bullet aq]$ (Abb. 4.15)

-N-	2θ	-d-	%	d∙d	k•Ration	k∙m	h k l	a(Å)
1	17,454	5,0790	77,58	25,77	1	1	100	5,077
2	21,511	4,1276	38,32	17,04	1,51	2	110	5,837
3	24,085	3,6920	46,87	13,63	1,89	2	110	5,221
4	24,765	3,5921	100	12,90	2,00	2	110	5,080
5	25,420	3,5010	41,98	12,26	2,10	2	110	4,951
6	29,565	3,0189	33,02	9,11	2,83	3	111	5,229
7	31,662	2,8236	32,88	7,79	3,23	3	111	4,891
8	35,288	2,5414	63,32	6,46	3,99	4	200	5,083
9	38,701	2,3247	34,24	5,40	4,77	5	210	5,198
10	39,650	2,2712	42,26	5,16	5,00	5	210	5,079
11	42,799	2,1111	34,92	4,46	5,78	6	211	5,171
12	44,350	2,0408	39,67	4,16	6,19	6	211	4,999
13	50,817	1,7952	30,57	3,22	8,00	8	220	5,078
14	57,206	1,6090	35,33	2,59	9,96	10	310	5,088
			Durc	hschnitt				5,142

-N-	2 θ	-d-	%	d∙d	k•Ration	k∙m	h k l	<i>a</i> (Å)
1	13,859	6,3845	47,32	40,7618	2	2	110	9,0290
2	14,025	6,3091	51,22	39,8047	2,05	2	110	8,9224
3	16,426	5,3921	100,00	29,0747	2,8	3	111	9,3394
4	19,797	4,4810	75,00	20,0794	4,06	4	200	8,9620
5	21,907	4,0539	81,04	16,4341	4,96	5	210	9,0648
6	24,502	3,6300	46,14	13,1769	6,19	6	211	8,8916
7	28,943	3,0824	52,68	9,50119	8,58	9	300	9,2472
8	32,278	2,7711	44,19	7,67900	10,62	11	311	9,1907
9	35,695	2,5133	49,46	6,31668	12,91	13	320	9,0618
10	35,794	2,5065	50,23	6,28254	12,98	13	320	9,0373
11	41,260	2,1860	47,86	4,77860	17,06	17	410	9,0131
12	43,070	2,0985	47,32	4,40370	18,51	19	331	9,1471
			Durch	schnitt				9,076

Strukturkonstanten von $[Zn_2Fe^{II}(CN)_6\bullet aq]$ (Abb. 4.14)

Strukturkonstanten von $[Zn_2Fe^{III}(CN)_6 \bullet (NO_2^-) \bullet aq]$ (Abb. 4.14)

-N-	2θ	-d-	%	d•d	k•Ration	k•m	h k l	a(Å)
1	6,027	14,6520	28,12	214,6811	1,04	1	100	14,6520
2	14,508	6,1002	29,58	37,2124	6,02	6	211	14,9424
3	16,741	5,2913	100,00	27,9979	8,00	8	220	14,9661
4	19,364	4,5801	23,06	20,9773	10,68	11	311	15,1905
5	21,411	4,1466	32,28	17,1943	13,03	13	320	14,9508
6	23,781	3,7385	61,53	13,9764	16,03	16	400	14,9540
7	27,331	3,2604	36,33	10,6302	21,07	21	421	14,9410
8	33,771	2,6520	33,86	7,0331	31,85	32	440	15,0020
9	33,935	2,6395	35,88	6,9670	32,15	32	440	14,9313
10	35,443	2,5305	23,28	6,4034	34,98	35	531	14,9706
11	37,805	2,3777	31,83	5,6535	39,62	40	620	15,0379
12	38,060	2,3624	34,87	5,5809	40,13	40	620	14,9411
13	39,342	2,2883	26,77	5,2363	42,77	43	533	15,0054
Durchschnitt								14,9604

Strukturkonstanten von $[Zn_2Fe^{III}(CN)_6 \bullet (Br^-) \bullet aq]$ (Abb. 4.14)

-N-	2 θ	-d-	%	d•d	k•Ration	k∙m	h k l	a(Å)
1	9,722	9,0900	38,20	82,63	1	1	100	9,090
2	16,245	5,4519	100	29,72	2,78	3	111	9,443
3	19,732	4,4955	70,62	20,21	4,09	4	200	8,991
4	21,526	4,1248	72,61	17,01	4,86	5	210	9,223
5	21,820	4,0699	85,20	16,56	4,99	5	210	9,101
6	24,415	3,6428	71,46	13,27	6,23	6	211	8,923
7	29,583	3,0171	58,66	9,10	9,08	9	300	9,051
8	41,174	2,1906	64,74	4,80	17,22	17	410	9,032
Durchschnitt								

N	d Warta	4-4	Dation	100	1D-+	1	TT	1r	1	~(Å)
IN 1	d-weite	d•d	Kation	1	K●Ration	K•m	П	K	1	<i>a</i> (A)
l	5,756	33,13	1,000	l	0,838	l	0	0	l	5,756
2	4,667	21,78	1,521	2	1,275	1	0	0	1	4,667
3	3,726	13,88	2,386	2	2,000	2	0	1	1	5,269
4	3,666	13,44	2,465	2	2,066	2	0	1	1	5,185
5	2,890	8,352	3,967	4	3,324	3	1	1	1	5,006
6	2,872	8,248	4,017	4	3,366	3	1	1	1	4,974
7	2,618	6,854	4,834	5	4,051	4	0	0	2	5,236
8	2,517	6,335	5,230	5	4,383	4	0	0	2	5,034
9	2,406	5,789	5,723	6	4,797	5	0	1	2	5,380
10	2,368	5,607	5,909	6	4,952	5	0	1	2	5,295
11	2,306	5,318	6,231	6	5,222	5	0	1	2	5,156
12	2,273	5,167	6,413	6	5,374	5	0	1	2	5,083
13	2,219	4,924	6,729	7	5,639	6	1	1	2	5,435
14	2,134	4,554	7,275	7	6,097	6	1	1	2	5,227
15	2,129	4,533	7,310	7	6,126	6	1	1	2	5,215
16	2,124	4,511	7,344	7	6,155	6	1	1	2	5,203
17	2,089	4,364	7,592	8	6,363	6	1	1	2	5,117
18	1,869	3,493	9,485	9	7,949	8	0	2	2	5,286
19	1,839	3,382	9,797	10	8,210	8	0	2	2	5,201
20	1,817	3,301	10,035	10	8,410	8	0	2	2	5,139
21	1,811	3,280	10,102	10	8,466	8	0	2	2	5,122
22	1,753	3,073	10,781	11	9,035	9	0	0	3	5,259
23	1,712	2,939	11,304	11	9,473	9	0	0	3	5,136
24	1,667	2,779	11,923	12	9,992	10	0	1	3	5,272
25	1,651	2,726	12,155	12	10,19	10	0	1	3	5,221
	r		Durchs	chnitt		•	•			5,195

Strukturkonstanten von [KCeFe(CN)₆•aq] (Abb. 5.2)

Ν	d-Werte	d∙d	Ration	m	k•Ration	k∙m	h	k	1	$a(\text{\AA})$
1	5,997	35,963	1	1	0,7203	1	0	0	1	5,997
2	5,777	33,371	1,078	1	0,7763	1	0	0	1	5,777
3	5,646	31,880	1,128	1	0,8126	1	0	0	1	5,646
4	5,090	25,905	1,388	1	1	1	0	0	1	5,090
5	4,554	20,734	1,734	2	1,249	1	0	0	1	4,554
6	4,153	17,244	2,086	2	1,502	2	0	1	1	5,873
7	3,983	15,863	2,267	2	1,633	2	0	1	1	5,635
8	3,705	13,729	2,620	3	1,887	2	0	1	1	5,240
9	3,598	12,943	2,779	3	2,002	2	0	1	1	5,088
10	3,497	12,232	2,940	3	2,118	2	0	1	1	4,946
11	3,120	9,733	3,695	4	2,662	3	1	1	1	5,403
12	3,023	9,137	3,936	4	2,835	3	1	1	1	5,236
13	2,821	7,960	4,518	5	3,255	3	1	1	1	4,887
14	2,543	6,466	5,562	6	4,006	4	0	0	2	5,086
15	2,329	5,424	6,630	7	4,776	5	0	1	2	5,208
16	2,274	5,169	6,957	7	5,011	5	0	1	2	5,084
17	2,118	4,488	8,014	8	5,773	6	1	1	2	5,189
18	2,097	4,398	8,177	8	5,890	6	1	1	2	5,137
19	2,058	4,235	8,492	8	6,118	6	1	1	2	5,041
20	2,037	4,148	8,670	9	6,246	6	1	1	2	4,989
21	1,798	3,232	11,13	11	8,015	8	0	2	2	5,085
22	1,718	2,953	12,18	12	8,774	9	0	0	3	5,155
23	1,609	2,589	13,89	14	10,01	10	0	1	3	5,088
			Du	rchsch	nitt					5,236

Strukturkonstanten von [KDyFe(CN)₆•aq] (**Abb. 5.2**)

Strukturkonstanten von [KHoFe(CN)₆•aq] (Abb. 5.2)

Ν	d-Werte	d∙d	Ration	m	k•Ration	k∙m	h	k	1	<i>a</i> (Å)
1	5,640	31,81	1	1	0,834	1	0	0	1	5,640
2	4,562	20,81	1,528	2	1,275	1	0	0	1	4,562
3	3,642	13,26	2,398	2	2	2	0	1	1	5,151
4	3,599	12,95	2,456	2	2,048	2	0	1	1	5,090
5	3,593	12,91	2,464	2	2,055	2	0	1	1	5,081
6	2,563	6,569	4,842	5	4,038	4	0	0	2	5,126
7	2,559	6,548	4,858	5	4,051	4	0	0	2	5,118
8	2,461	6,057	5,252	5	4,380	4	0	0	2	4,922
9	2,321	5,387	5,905	6	4,924	5	0	1	2	5,190
10	2,227	4,959	6,414	6	5,349	5	0	1	2	4,980
11	2,115	4,473	7,111	7	5,930	6	1	1	2	5,181
12	2,088	4,360	7,296	7	6,085	6	1	1	2	5,115
13	2,04	4,162	7,644	8	6,375	6	1	1	2	4,997
14	2,037	4,149	7,666	8	6,393	6	1	1	2	4,990
Durchschnitt 5,0										5,081

/II uitt	annonstante	in von [ittea	1 e (e 11) ₀ - u	11 (*						
Ν	d-Werte	d∙d	Ration	m	k•Ration	k∙m	h	k	1	<i>a</i> (Å)
1	5,690	32,38	1	1	0,8549	1	0	0	1	5,690
2	4,643	21,56	1,502	2	1,284	1	0	0	1	4,643
3	3,72	13,84	2,340	2	2	2	0	1	1	5,261
4	3,714	13,79	2,347	2	2,006	2	0	1	1	5,252
5	3,651	13,33	2,429	2	2,076	2	0	1	1	5,163
6	2,881	8,300	3,900	4	3,334	3	1	1	1	4,990
7	2,872	8,248	3,925	4	3,355	3	1	1	1	4,974
8	2,621	6,870	4,713	5	4,029	4	0	0	2	5,242
9	2,615	6,838	4,735	5	4,047	4	0	0	2	5,23
10	2,609	6,807	4,756	5	4,066	4	0	0	2	5,218
11	2,52	6,350	5,098	5	4,358	4	0	0	2	5,04
12	2,516	6,330	5,115	5	4,372	4	0	0	2	5,032
13	2,513	6,315	5,127	5	4,383	4	0	0	2	5,026
14	2,371	5,622	5,759	6	4,923	5	0	1	2	5,302
15	2,365	5,593	5,788	6	4,948	5	0	1	2	5,288
16	2,361	5,574	5,808	6	4,965	5	0	1	2	5,279
17	2,358	5,560	5,823	6	4,978	5	0	1	2	5,273
18	2,272	5,162	6,272	6	5,362	5	0	1	2	5,080
19	2,27	5,153	6,283	6	5,371	5	0	1	2	5,076
20	2,135	4,558	7,103	7	6,072	6	1	1	2	5,230
21	2,131	4,541	7,129	7	6,095	6	1	1	2	5,220
22	1,872	3,504	9,239	9	7,898	8	0	2	2	5,295
23	1,841	3,389	9,552	10	8,166	8	0	2	2	5,207
			Durchsch	nitt						5,174

Strukturkonstanten von [KLaFe(CN)₆•aq] (**Abb. 5.2**)

Strukturkonstanten von [KYFe(CN)₆•aq] (**Abb. 5.2**)

N	d-Werte	d∙d	Ration	m	k•Ration	k∙m	h	k	1	<i>a</i> (Å)
1	5,633	31,73	1	1	0,8333	1	0	0	1	5,633
2	4,562	20,81	1,525	2	1,270	1	0	0	1	4,562
3	3,636	13,22	2,400	2	2	2	0	1	1	5,142
4	3,601	12,97	2,447	2	2,039	2	0	1	1	5,093
5	2,563	6,569	4,830	5	4,025	4	0	0	2	5,126
6	2,461	6,057	5,239	5	4,366	4	0	0	2	4,922
7	2,326	5,410	5,865	6	4,887	5	0	1	2	5,201
8	2,324	5,401	5,875	6	4,896	5	0	1	2	5,197
9	2,227	4,960	6,398	6	5,331	5	0	1	2	4,980
10	2,114	4,469	7,100	7	5,917	6	1	1	2	5,178
11	2,090	4,368	7,264	7	6,053	6	1	1	2	5,119
12	2,085	4,347	7,299	7	6,082	6	1	1	2	5,107
13	2,042	4,170	7,610	8	6,341	6	1	1	2	5,002
14	1,827	3,338	9,506	10	7,921	8	0	2	2	5,168
15	1,807	3,265	9,718	10	8,098	8	0	2	2	5,111
16	1,777	3,158	10,05	10	8,373	8	0	2	2	5,026
17	1,772	3,140	10,11	10	8,421	8	0	2	2	5,012
18	1,631	2,660	11,93	12	9,940	10	0	1	3	5,158
Durchschnitt 5.										

Ν	2_theta	d	0/	Ration	k*Ration	m	h	k	1	$a(\mathring{\lambda})$
1	2-tileta	u 5 0649	25.64	1	2 7057292	111	п 0	<u>к</u>	1 2	u(A)
1	14,839	5,9048	33,04	l	5,7057285	4	0	0	2	11,95
2	15,421	5,/412	38,87	1,07941	4	4	0	0	2	11,48
3	15,796	5,6056	37,30	1,1322637	4,1958613	4	0	0	2	11,21
4	17,500	5,0634	97,07	1,3877375	5,1425781	5	0	1	2	11,32
5	21,519	4,1261	31,35	2,0898361	7,7443647	8	0	2	2	11,67
6	24,086	3,6918	43,07	2,6104503	9,6736193	10	0	1	3	11,67
7	24,805	3,5864	100,0	2,7661409	10,250566	10	0	1	3	11,34
8	25,520	3,4875	35,84	2,9252524	10,84019	11	1	1	3	11,57
9	28,707	3,1072	26,37	3,6851346	13,656107	14	1	2	3	11,63
10	29,307	3,0449	25,39	3,8374763	14,220644	14	1	2	3	11,39
11	29,578	3,0176	26,17	3,9072249	14,479113	14	1	2	3	11,29
12	31,664	2,8234	23,14	4,4632063	16,539429	17	0	1	4	11,64
13	32,567	2,7472	19,82	4,7142348	17,469673	17	0	1	4	11,33
14	33,382	2,6819	20,70	4,9465976	18,330746	18	1	1	4	11,38
15	35,326	2,5387	53,52	5,52038	20,457027	20	0	2	4	11,35
16	36,498	2,4598	21,00	5,8802009	21,790426	22	2	3	3	11,54
17	38,729	2,3231	26,66	6,5925879	24,43034	24	2	2	4	11,38
18	39,674	2,2699	34,96	6,9052324	25,588915	26	0	1	5	11,57
19	42,733	2,1142	29,39	7,959753	29,496681	29	0	2	5	11,39
20	43,162	2,0942	26,56	8,1125154	30,062777	30	1	2	5	11,47
21	44,513	2,0337	29,00	8,6023674	31,878035	32	0	4	4	11,50
22	49,181	1,8510	19,73	10,384341	38,481544	38	1	1	6	11,41
23	50,739	1,7978	26,37	11,008016	40,792713	41	1	2	6	11,51
24	53,443	1,7130	21,68	12,124868	44,931465	45	0	3	6	11,49
25	57,237	1,6082	26,46	13,756618	50,978287	51	1	1	7	11,48
26	59,323	1,5565	21,78	14,685662	54,421074	54	1	2	7	11,44
Durchschnitt								11,48		

Strukturkonstanten von [KDyFe(CN)₆ \bullet (NO₂) \bullet aq]

Strukturkonstanten von [NaDyFe(CN)₆•2H₂O]

Ν	2-theta	d	%	Ration	k*Ration	m	h	k	1	$a(\text{\AA})$
1	14,893	5,9433	43,09	1,0000	3,0000	3	1	1	1	10,29
2	17,305	5,1202	100,00	1,3474	4,0421	4	0	0	2	10,24
3	24,577	3,6192	94,55	2,6967	8,0901	8	0	2	2	10,24
4	28,789	3,0985	37,10	3,6972	11,0376	11	1	1	3	10,27
5	34,991	2,5622	19,98	5,3806	16,1417	16	0	0	4	10,25
6	35,180	2,5489	24,16	5,4369	16,3106	16	0	0	4	10,20
7	42,963	2,1034	19,61	7,9838	23,9515	24	2	2	4	10,30
Durchschnitt							10,26			

8.2 BET - Messergebnis

8.2.1 BET - Messergebnis für [(Me₃Sn)₄Fe(CN)₆]

Probe	$[(Me_3Sn)_4Fe(CN)_6]$
Probeneinwaage(g)	1,0784
Anfangspunkt (P/P0) zur linearen	0,05
Regression der BET Region	
Endpunkt(P/P0) zur linearen	0,33
Regression der BET Region	
Korrelationsfaktor	0,9988871
Monolayer Volumen(CM3/G)	1,708703
C-Wert der BET - Gleichung	6,984122
Spezifische Oberflaeche(M2/G)	7,46641
Spezifisches Porenvol(CM3/G)	5,766961E-02
Gesamt dosiertes Volumen	52,02723
(CM3/G)	
Labor	TMC
Datum(mm/dd/yy)	04-16-1997

Porenverteilungen von [(Me₃Sn)₄Fe(CN)₆](1)

8.2.2 BET -	Messergebnis	für	(Cp ₂	Co)(Me ₃	Sn) ₃ Fe($(CN)_{6}(2)$

Probe	$[(Cp_2Co)(Me_3Sn)_3Fe(CN)_6](2)$
Probeneinwaage(g)	0,1108
Korrelationsfaktor	0,995393824
Monolayer Volumen(cm ³ /g)	0,4981886
C-Wert der BET - Gleichung	27,749442
Spezifische Oberflaeche(m²/g)	2,168741
Labor	AC
Datum(mm/dd/yy)	27 11 1999

8.2.3 BET - Messergebnis für [Cd₂Fe(CN)₆] (4)

Probe	$[Cd_2Fe(CN)_6]$
Probeneinwaage(g)	1,0745
Korrelationsfaktor	0,999936
Monolayer Volumen(cm ³ /g)	4,096578
Spezifische Oberflaeche(m²/g)	17,90055
C-Wert der BET - Gleichung	42,34672
Spezifisches Porenvol(cm ³ /g)	1,958647E-
	02
Gesamt dosiertes Volumen	16,36425
(cm³/g)	
Labor	TMC
Datum(mm/dd/yy)	04-21-1997

Adsorptionsisotherm von [Cd₂Fe(CN)₆]

8.2.4 BET -	- Messergebnis	für [(Me3	Sn) ₃ Co(CN) ₆]
-------------	----------------	-----------	--------------------------------------	---

Probe	$[(Me_3Sn)_3Co(CN)_6]$
Probeneinwaage(g)	1,1044
Korrelationsfaktor	0,9882452
Monolayer Volumen(cm ³ /g)	3,892609
Spezifische Oberflaeche(m²/g)	17,00929
C-Wert der BET - Gleichung	42,26299
Spezifisches Porenvol(cm ³ /g)	1,570735E-02
Gesamt dosiertes Volumen	52,02723
(cm³/g)	
Labor	TMC
Datum(mm/dd/yy)	04-16-1997

Probe	$[(Me_3Sn)_3Co(CN)_6]$
Probeneinwaage(g)	0,0262424
Korrelationsfaktor	0,999796
Monolayer Volumen(cm³/g)	2,62516
Spezifische Oberflaeche(m²/g)	11,42546
C-Wert der BET - Gleichung	-2206,08
Labor	K. Yülü
Datum(mm/dd/yy)	10-22-1981

8.2.5 BET - Messergebnis für [(Me₃Sn)₃Co(CN)₆]

8.2.6 BET-Messergebnis für I(M	$e_3Sn_3Co(CN)_6$
--------------------------------	-------------------

Probe	$[(Me_3Sn)_3Co(CN)_6]$
Probeneinwaage(g)	0,02626
Korrelationsfaktor	0,993465
Monolayer Volumen(cm ³ /g)	2,390423
C-Wert der BET - Gleichung	-64,808
Spezifische Oberflaeche(m²/g)	10,4038
Labor	K. Yülü
Datum(mm/dd/yy)	02-05-1982

8.2.7 BET-Messergebnis von	$[(Me_3Sn)_3Co(CN)_6]$
----------------------------	------------------------

Probe	$[(Me_3Sn)_3Co(CN)_6]$
Probeneinwaage(g)	0,1397
Korrelationsfaktor	0,9776472
C-Wert der BET - Gleichung	18,555559
Monolayer Volumen(cm ³ /g)	1,050499
Spezifische Oberflaeche(m²/g)	4,5730877
Labor	AC
Datum	03. 05. 1999

8.2.8 BET -	Messergebnis für	[(Me ₃ Sn) ₃ Co	$O(CN)_6$
			· · · ·

Probe	$[(Me_3Sn)_3Co(CN)_6]$
Probeneinwaage(g)	1,1044
Korrelationsfaktor	0,9997339
C-Wert der BET - Gleichung	212,56557
Monolayer Volumen(cm ³ /g)	3,4898714
Spezifische Oberflaeche(m²/g)	15,192293
Labor	TMC
Datum(mm/dd/yy)	01-29-1997

8.2.9 BET - Messergebnis für [(Me₃Sn)Cu(CN)₂ $\bullet \frac{1}{2}$ bpy](17)

Probe	$[(Me_3Sn)Cu(CN)_2 \bullet 0,5bpy](17)$
Probeneinwaage(g)	0,2309
Korrelationsfaktor	0,8442934
Monolayer Volumen(cm ³ /g)	1,3119562
C-Wert der BET - Gleichung	2,0964785
Spezifische Oberflaeche(m²/g)	5,7100035
Labor	AC
Datum	06/08/1999

BET - Sorptionsisotherme von [(Me₃Sn)Cu(CN)₂•0,5bpy] mit N₂

BET-Plot von [(Me₃Sn)Cu(CN)₂•0,5bpy]

9. Experimenteller Teil

9.1 Allgemeine Arbeitstechniken

Die meisten in dieser Arbeit verwendeten Edukte und Produkte sind luftstabil, so daß ein Arbeiten unter N₂-Schutzgasatmosphäre nur selten erforderlich war. Die Substanzen wurden in der Regel im Ölpumpenvakuum ($p<10^{-1}$ mbar) getrocknet. Bei lichtempfindlichen Verbindungen wurden die entsprechenden Geräte mit Aluminium-Folie umwickelt. Die Chemikalien wurden von den Firmen Merck, Fluka und Aldrich bezogen.

9.2 Analytische Einrichtungen und Bestimmungsmethoden

Die analytischen Bestimmungen von Kohlenstoff, Wasserstoff, Stickstoff und Sauerstoff wurden in der Analytikabteilung des Instituts für Anorganische und Angewandte Chemie der Universität Hamburg mit einem <u>Elementaranalysator</u> <u>CHN-O-Rapid</u> der Firma Heraeus vergenommen.

Die Bestimmung der Elemente Sn, Pb, Fe, Co, Cu, Zn, Cd, Ag wurde von der genannten Analytikabteilung auf naßchemischen Wege erreicht. Dazu war ein spezieller Aufschluß für Anhaltige Verbindungen nötig, um eine Störung durch die Bildung von schwerlöslichem SnO₂ zu vermeiden:

50-100 mg Substanz wurden in einem Kjeldahl-Kolben mit 5 ml konz. H₂SO₄ und 0,5 ml rauchender HNO₃ versetzt und langsam bis zum Sieden erhitzt. Nach ca. 1 Std. war der Aufschluß beendet. Wenn nach der Verdünnung mit Wasser braune Dämpfe beobachtet wurden, dann wurden sofort 10 ml konz. HCl zugegeben, um Sn⁴⁺ in Lösung zu halten. Anschließend wurde erwärmt bis eine klare Lösung entstand.

9. Experimenteller Teil

Bei Anwesenheit von Molybdän fiel an dieser Stelle MoO₃ bzw. MoO₃•aq (Molybdänsäure) aus. Durch Zugabe von NaOH wurde dieses wieder in Lösung gebracht, wobei dann wiederum SnO₂ ausfiel. Unmittelbar vor der Bestimmung wurde mit viel HCl angesäuert und zügig weitergearbeitet. Dies ist möglich, weil Molybdänsäure nicht sofort aus saurer Lösung ausfällt.

Die Bestimmungen der Metallgehalte wurden in der Analytikabteilung nach folgenden Methoden durchgeführt:

- Co: photometrisch mit Nitroso-R-Salz
- Cu: photometrisch mit Oxalsäure-bis-cyclohexanonhydrazid
- Fe: photometrisch mit Ferroin
- Mo: photometrisch als Peroxid
- Sn: photometrisch mit Phenylfuoron

Die Bestimmung von Nitrit wird durch Anionen - Chromatogramm oder photometrisch durchgeführt. Die photometrische Bestimmung von Nitrit wird nach folgender Methoden durchgeführt:

Reagenzien: 0,1 g Sulfanilsäure und 0,05 g α -Naphthylamin werden mit 2,5 ml Eisessig und 2,5ml destillierten Wasser erwärmt und durch Zugabe von 30 ml heißen destillierten Wasser gelöst. Danach werden 25g Natriumacetat p.a. zugegeben und nach dem Abkühlen mit destillierten Wasser auf 100ml aufgefüllt.

Bestimmung: Die Probelösung wird in einem 100ml fassenden Meßkolben mit 1ml Mischreagenz und 5ml Eisessig versetzt und gut durchmischt. Dann wird mit destillierten Wasser bis zur Eichmarke aufgefüllt. Nach 15min Reaktionszeit, während der die Reaktionszeit, während der die Rektionslösung lichtgeschützt aufbewahrt wird, mißt man in 1cm-Küvetten die Farbdichte gegen Blindlösung bei 530 mµ. *Auswertung*: Die Auswertung des Nitrit – Gehalts erfolgt über eine Eichkurve. Zur Aufstellung der Eichkurve wird eine Stammlösung bereitet, die 0,1 mg NO/ml enthält. Die Stammlösung wird 1:10 verdünnt und von dieser Eichlösung, die dann 0,01 mgNO/ml enthält, werden Volumina von 1 bis 10ml steigend in einen 50ml fassenden Meßkolben pipettiert, nach der Ausführungsvorschrift behandelt und die Farbintensität gemessen.

 $\{(Me_3Sn)_3Co(CN)_6(N_2O_4)\} + H_2O \longrightarrow [(Me_3Sn)_3Co(CN)_6] + HNO_3 + HNO_2$

Stammlösung # V(ml)	Absorption (a)	1 ml Probelösung* + V(ml) Stammlösung #	Absorption (b)
0	0	0	0,038
1	0,127	1	0,175
2	0,254	2	0,316
3	0,383	3	0,445
4	0,508	4	0,575
5	0,638	5	0,700
6	0,765	6	0,822

#Die Konzentration der Stammlösung ist 10,37 mg(NO₂⁻)/100ml *Die Probelösung ist 100ml wässern Lösung aus 0,2406g [Cd₂Fe(CN)₆•(NO₂)•3H₂O]

Der Schnittpunkt von Kurve b mit der X-Achse ist 0,355 ml. So beträgt die Konzentration der Probelösung von NO_2^- :

$$C = 0.355 \times 0.01037 = 0.00368 \text{ mg}(\text{NO}_2^-)/\text{ml}$$

Bei der Ausgangsverbindung [Cd₂Fe(CN)₆•(NO₂)•3H₂O]

$$C_{\text{Pr}ob} = \frac{0,00368(mg/ml) \times 100(ml)}{0,2406(g)} = 1,53mg(NO_2)/g(Polymer)$$

Oder

$$C_{\text{Prob}} = \frac{1,53 \times 10^{-3} \times 536,85}{46,01} = 0,0179 Mol(NO_2) / Mol(Polymer)$$

Eie IR-Spektren wurden mit dem Gerät <u>FT-IR-1720</u> der Firma Perkin-Elmer an KBr-Presslingen aufgenommen.

Die Raman-Spektren wurden mit einem Spektrometer <u>Ramanov U-1000</u> der Firma Jobin Yvon erhalten.

Die ¹³C-und ¹¹⁹Sn-Festkörper-NMR-Spektren wurden an einem Gerät <u>Varian</u> <u>VXR 300</u> im Industrial Research Laboratory der University of Durham (England) aufgenommen.

Die Röntgenpulverdiagramme wurden nach dem Debye-Scherrer-Verfahren mit einem Gerät <u>PW 1050</u> der Firma Philips mit $Cu_{\kappa\alpha}$ -Strahlung und einem Ni-Filter aufgenommen.

Die magnetischen Suszeptibilitäten wurden mit einer Magnetwaage der Firma Johnson Mattey Chemicals Ltd. Durchgefüht. Sie arbeitet nach der Evans-Methode.

9. Experimenteller Teil

Thermoanalytische Messungen erfolgten mit dem <u>NETZSCH STA 409 C/MS</u>-Gerät gekoppelt mit einem Quadrupol-Massenspektrometer <u>BALZER QMS 421</u>. Es wurde in Argon-Atmosphäre mit einer Abfolge von 5K/min gemessen.

Die BET - Messungen wurden mit dem <u>Autosorb-1</u> der Firma <u>Quantachrome</u> (in AC) und <u>Milestone 100</u> der Firma <u>Carlo Erba Strumentazione</u> (in TMC) vergenommen.

9.3 Danksagung

Folgenden Damen und Herren danke ich für ihre technische Hilfe bei der Anfertigung dieser Arbeit:

Frau *S. Samba* für die Synthese von Ausgangsverbindungen **2**, **5**, **7**, **8**, **9**, **10**, **17**, **18**, **19**;

Herrn Prof. Dr. M. Fröba für die Überlassung von mesoporösem SiO2;

Frau *Dipl.-Chem. N. Oberender* und Herrn *Dipl.-Chem. M. Ott* (Institut für Technische und Makromolekulare Chemie der Universität Hamburg) für die BET-Vermessung;

Herrn Dr. E. T. K. Haupt für die Aufnahme von ESR-Diagrammen;

Frau I. Nevoigt für die Aufnahme von Röntgenpulverdiffraktogrammen;

Herrn Dipl.-Chem. R. Eckhardt für die Aufnahme von NMR-Spektren;

Frau U. Sazama für die Durchführung der thermischen Analyse;

9. Experimenteller Teil

Frau G. Graeske für die Durchführung der Elementaranalysen;

Herrn Dr. M. Steiger für die Aufnahmen der Ionenchromatographie;

Frau *M. Heffter* und *B. Höppner* für die Vermessung von Raman und UV/Vis-Spektren;

Herrn *H. Graeske* für die reibungslose Versorgung mit Chemikalien und sog. Verbrauchsmaterial;

Herrn T. Roth und J. Köster für die Anfertigung und Reparatur von Glasgeräten.

9.4 Ausgangsverbindungen

Folgende Chemikalien wurden käuflich erworben:

Me₃SnCl, K₃Fe(CN)₆, K₄Fe(CN)₆, K₃Co(CN)₆, K₄Mo(CN)₈ und 4.4-Bipyridin von der Firma Merck; Me₃PbCl, ZnCl₂, CdCl₂, Dy(NO)₃ von der Firma Fluka; KI, Na₂SO₃ von der Firma Aldrich.

Darstellung von [KDyFe^{II}(CN)₆•H₂O]

Analog zur Verbindung $[(Me_3Sn)_4Fe^{II}(CN)_6]$ erhält man die Verbindung $[KDyFe^{II}(CN)_6\bullet H_2O]$, indem man eine fast gesättigte wässrige Lsg. von $Dy(NO_3)_3$ zu einer ebenfalls fast gesättigten Lsg. von $K_4Fe(CN)_6$ in Wasser zu tropft:

$$Dy(NO_3)_3 + K_4Fe(CN)_6 + H_2O \longrightarrow [KDyFe^{II}(CN)_6 \bullet H_2O] + 3KNO_3$$

Es fällt ein weißer, feinkristalliner Niederschlag aus. Dieser wird abfiltriert, dreimal mit wenig Wasser gewaschen und im ÖV getrocknet. Die Ausbeute beträgt 86%. Die Verbindung [KDyFe^{II}(CN)₆•H₂O] ist luftstabil und unlöslich in Wasser und verdünnten Säuren sowie in gängigen organischen LM. Die Verbindung löst sich in Natronlauge mit pH > 9, von konzentrierten Säuren wird sie zersetzt. Oberhalb 315°C zersetzt sich der Feststoff unter Farbveränderung über grau nach schwarz. Die phynometrisch bestimmte Dichte in Dioxan beträgt $\rho = 1,75$ g cm⁻³.

 $[KDyFe^{II}(CN)_{6}\bullet H_{2}O]$ Einwaage: 6,2787g Dy(NO₃)₃•5H₂O \cong 14,32mmol 5,2697g K₄Fe(CN)₆ \cong 14,31mmol Auswaage: 5,3431g [KDyFe^{II}(CN)_{6}\bullet H_{2}O] \cong 12,38mmol \cong 86,51% d. Th M = 431,57 g/mol Summenformel: C₆H₂N₆OFeDyK

	N	С	Н	0	K	Dy	Fe
ber.[%]	19,47	16,70	0,47	3,71	9,06	37,65	12,94
gef.[%]	19,23	16,90	0,53				

Darstellung von [Cd₂Fe^{II}(CN)₆•3H₂O] und [Zn₂Fe^{II}(CN)₆•3H₂O]

Tropft man eine fast gesättigte wässrige Lsg. von $CdCl_2$ oder $ZnCl_2$ zu einer ebenfalls fast gesättigten Lsg. von $K_4Fe(CN)_6$ in Wasser zu:

$$2CdCl_2 + K_4Fe(CN)_6 + 3H_2O \longrightarrow [Cd_2Fe^{II}(CN)_6 \bullet 3H_2O] + 4KCI$$

oder:

$$2ZnCl_2 + K_4Fe(CN)_6 + 3H_2O \longrightarrow [Zn_2Fe^{II}(CN)_6 \bullet 3H_2O] + 4KCl$$

9. Experimenteller Teil

Es fällt ein weißer, feinkristalliner Niederschlag aus. Dieser wird abfiltriert, dreimal mit wenig Wasser gewaschen und im ÖV getrocknet. Die Ausbeute beträgt 86%. Die Verbindungen $[Cd_2Fe^{II}(CN)_6\bullet 3H_2O]$ und $[Zn_2Fe^{II}(CN)_6\bullet 3H_2O]$ sind luftstabil und unlöslich in Wasser und verdünnten Säuren sowie in gängigen organischen LM. Die Verbindung löst sich in Natronlauge mit pH > 9, von konzentrierten Säuren wird sie zersetzt. Oberhalb 315°C zersetzt sich der Feststoff unter Farbveränderung über grau nach schwarz. Die phynometrisch bestimmte Dichte in Dioxan beträgt $\rho = 1,75$ g cm⁻³.

 $[Cd_2Fe^{II}(CN)_6\bullet 3H_2O]$

Einwaage: $6,2787g \text{ Dy}(\text{NO}_3)_3 \bullet 5\text{H}_2\text{O} \cong 14,32\text{mmol}$ $5,2697g \text{ K}_4\text{Fe}(\text{CN})_6 \cong 14,31\text{mmol}$ Auswaage: $5,3431g [\text{KDyFe}^{\text{II}}(\text{CN})_6 \bullet \text{H}_2\text{O}] \cong 12,38\text{mmol}$ $\cong 86,51\% \text{ d. Th}$

M = 431,57 g/mol Summenformel: C₆H₂N₆OFeDyK

	N	С	Н	0	Fe	Cd
ber.[%]	17,12	14,68	1,23	9,78	11,38	45,81
gef.[%]	16,94	14,84	1,69		11,21	45,68

 $[Zn_2Fe^{II}(CN)_6\bullet 3H_2O]$

Einwaage: $6,2787g \text{ Dy}(\text{NO}_3)_3 \bullet 5\text{H}_2\text{O} \cong 14,32\text{mmol}$ $5,2697g \text{ K}_4\text{Fe}(\text{CN})_6 \cong 14,31\text{mmol}$

Auswaage: $5,3431g [KDyFe^{II}(CN)_6 \bullet H_2O] \cong 12,38 \text{mmol}$ $\cong 86,51\% \text{ d. Th}$

M = 431,57 g/mol Summenformel: C₆H₂N₆OFeDyK

	Ν	С	Н	0	Fe	Zn
ber.[%]	21,19	18,16	1,53	12,10	14,07	32,96
gef.[%]	18,06	15,70	1,85		11,92	32,75

9.5 Entsorgung

Die cyanidhaltigen Reststoffe werden in konzentrierter KOH gelöst und nach Zugabe von 30%iger H₂O₂-Lösung und Abklingen der zunächst heftigen Reaktion vorsichtig für eine Stunde erhitzt.

Dabei werden alle eventuell freien Cyanide zu weniger giftigen Cyanaten oxidiert. Die so erhaltene Suspension wird bis fast zur Trockene eingedampft. Der abgekühlten Lösung werden mehrere ml HNO₃ zugefügt um die Zinn- und Bleialkyle zu zerstören. Die beim Verdünnen der Lösungen anfallenden Zinnoxide und Bleisulfate werden abfiltriert und den anorganischen Feststoffen zugeführt.

10. Numerierung der Verbindungen

- $1 \qquad [(Me_3Sn)_4Fe(CN)_6]$
- 2 $[(Cp_2Co)(Me_3Sn)_3Fe(CN)_6]$
- $3 \qquad [Zn_2Fe(CN)_6]$
- $4 \qquad [Cd_2Fe(CN)_6]$
- 5 $[KLaFe(CN)_6 \bullet aq]$
- 6 [KDyFe(CN)₆•aq]
- **6a** [NaDyFe(CN)₆●aq]
- 7 $[KTbFe(CN)_6 \bullet aq]$
- 8 [KCeFe(CN)₆•aq]
- 9 $[KHoFe(CN)_6 \bullet aq]$
- 10 $[KYFe(CN)_6 \bullet aq]$
- 11 $[(Me_3Sn)_3Fe(CN)_6]$
- 12 $[(Me_3Sn)_3Co(CN)_6]$
- **13** [Ag₃Co(CN)₆]
- $14 \quad [(Me_3Pb)_3Co(CN)_6]$
- 15 $[(Me_3Sn)_4Mo(CN)_8]$
- 16 $[(Me_2Sn(CH_2)_3SnMe_2)_2Mo(CN)_8]$
- 17 [(Me₃Sn)Cu(CN)₂• $\frac{1}{2}$ bpy]
- $18 \quad [(^{n}Bu_{4}N)(Me_{3}Sn)Cu_{2}(CN)_{4}]$
- **19** $[(^{n}Bu_{4}N)Cu_{3}(CN)_{4}\bullet CH_{3}CN]$
- $20 \quad [(Me_3Sn)_2(Me_3Sb)Fe(CN)_6]$
- **21** [SiO₂] (mesopore)

11. Verwendete Abkürzungen

- Me: Methyl
- Bu: *n*Butyl
- $Cp: \quad \eta^5\text{-}C_5H_5$
- LM: Lösungsmittel
- ÖV: Ölpumpenvakuum (ca. 10⁻³ Torr)
- IR: Infrarot Spektrum
- Ra: Raman Spektrum
- sst: sehr stark
- st: stark
- m: mittel
- w: schwach
- sw: sehr schwach
- br: breit
- sh: Schulter
- RT: Raumtemperatur

12. Literaturverzeichnis

- [1] Jüttner, K.; Kreysa, G.; Kleifges, K. H.; und Rottmann, R. Chem. Ing. -Tech. 1994, 1, 82-85
- [2] Saito, K.; and Ichihara, I. Catal. Today 1991, 45
- [3] Lammel, G.; Wiesen, P. Nachr. Chem. Tech. Lab. 1996, 5, 477-480
- [4] Armor, N. J. Appl. Catal. B: Environ. 1992, 221
- [5] Bosch, H. and Janssen, F. Catal. Today 1987, 369
- [6] Salker, A. V.; Maurer, B. und Weisweiler, W. Chemie Ingenieur Technik 1998, 5198, 566-570
- [7] Brandt, P. und Fischer, R. D. etc. Angew. Chem. 1989, 101, 1275
- [8] Tarhouni, R. Dissertation, Universität Hamburg 1996
- [9] Greenwood, N. N. und Earnshaw, A. Chemie der Elemente, übersetzt von Hückmann, K., VCH Verlagsgesellschaft mbH, Weinheim, 1990
- [10] Peters, S. J. and Ewing, G. E. J. Phys. Chem., **1996**, 100, 14093-14102
- [11] Brenner, K. und Reimann, B., GIT Lhabor Fachzeitschrift, 1999, 5, 472-474
- [12] Siebert, H. Anwendungen der Schwingungsspektroskopie in der Anorganischen Chem, Springer - Verlag, Berlin, 1966
- [13] Laane, J. and Ohlsen, J. *Progress in Inorganic Chemistry*, **1980**, *27*, Wiley-Interscience, 465-513
- [14] Meunier, F. C.; Breen, J. P. and Ross, J. R. H. Chem. Commun. 1999, 259-260
- [15] Pure Appl. Chem., **1985**, 57, 603
- [16] Klug, H. P. and Alexander, L. E. *X-Ray Diffraction Procedures*, John Wiley & Sons, New York, **1974**, 437-457
- [17] Yünlü, K. Dissertation, Universität Hamburg 1983
- [18] Kobayashi, K.; Kawanisi, M. and Kozima, S. Synth. React. Inorg. Met. Org. Chem. 1978, 1, 75-82
- [19] Yasuda, K. and Okawara, R. J. Organometal. Chem., 1965, 3, 76-83
- [20] Eller, S.; Dülsen, S. und Fischer, R. D. Journal of Organometallic Chemistry, 1990, 390, 309-315
- [21] Ayers, J. B. and Waggoner, W. H. J. inorg. nucl. Chem., 1971, 33, 721-733
- [22] Cartraud, P.; Cointot A. and Renaud, A. J. Chem. Soc., Faraday Trans. 1, 1981, 77, 1561-1567
- [23] Valentini, M. T. G.; Meloni, S. and Maxia, V. J. inorg. Nucl. Chem., 1972, 34, 1427-1436
- [24] Bellomo, A. Talanta, 1970, 17, 1109-1114
- [25] Ludi, A. and Güdel, H. U. *Structure and Bonding*, Springer-Verlag, Berlin, 1973, 14, 1-20
- [26] Siebert, H.; Nuber, B.; und Jentsch, W. Z. anorg. allg. Chem. 1981, 474, 96-104
- [27] Pies, W. und Weiss, A. Landolt-Börnstein, Band 7, Teil C, 1979, 220-242 Springer - Hirzel - Verlag, Berlin
- [28] Mullica, D. F.; Milligan, W. O. and Oliver, J. D. Inorg. Nucl. Chem. Lett. 1979, 1
- [29] Hesse, M.; Meier, H. und Zeeh, B. Spektroskopische Methoden in der organischen Chemie, Springer - Hirzel - Verlag, Stuttgart, 1977
- [30] Jander, G. und Blasius, E. *Einführung in das anorganisch-chemische Praktikum*, Springer - Hirzel - Verlag, Stuttgart, **1977**
- [31] Hulliger, F.; Landolt, M. und Vetsch, H. J. Solid State Chem., **1976**, 18, 283-291
- [32] Beall, G. W.; Mullica, D. F. and Milligan, W. O. Acta Crystallogr. Sect. B. 1978, 34, 1446-1149
- [33] Milligan, W. O.; Mullica, D. P. and Perkins, H. O. *Inorg. Chim. Acta*, **1982**, 60, 35-38

- [34] Braun, R. D. Introduction of Instrumental Analysis, McGraw-Hill Book Company, New York, 1987
- [35] Miller, B.(ed.): Thermal Anylysis, vols. I and II, 1982, Wiley, New York
- [36] Boxhoorn, G.; Moolhuysen, J.; Coolegem, J. G. F. and Santen, R. A. V. J. Chem. Soc., Chem. Commun., 1985, 1305-1307
- [37] Brimah, A. K. Dissertation, Universität Hamburg, 1991
- [38] Kahlert, H. Dissertation, Universität Humboldt-Berlin 1998.
- [39] Lu, J.; Harrison, W. T. A. und Jacobson, A. J. Angew. Chem. **1995**, 22, 2759-2760
- [40] Poll, E.-M. etc. Journal of Organometallic Chemistry, 2001, 621, 245-260
- [41] Bowmaker, G. A.; Hartl, H. and Urban, V. Inorg. Chem. 2000, 39, 4548-4554
- [42] Jen, C. K.; Foner, S. N.; Cochran, E. L.; Bowers, V. A. *Phys. Rev.* 1958, 4, 1169-1182
- [42a] Shiotani, M. and Freed J. H. J. Phys. Chem. 1981, 85, 3873-3883
- [43] Beckendorf, M.; ect. J. Phys. Chem. 1996, 100, 9242-9246
- [44] Abdoul-Enein, H. Y. Spectroscopy International, 1990, 5, 24
- [45] Apperley, D. C.; Davies, N. A.; Harris, R. K. ect. Organometallics, 1990, 9, 2672-2676
- [46] Schütze, J. U.; Eckhardt, R. and Fischer. R. D. J. Organomet. Chem. 1997, 534, 187-194
- [47] Behrens, U.; Brimah, A. K.; Soliman, T. M. and Fischer R. D. Organometallics, 1992, 11, 1718-1726
- [48] Schwarz, P. Dissertation, Universität Hamburg 1994
- [49] Siebel, E. Dissertation, Universität Hamburg 1998

Lebenslauf

Name:	Min Ling
Geburtsdatum und -ort:	20. März 1961 in Guangxi, VR China
Familienstand:	verheiratet, ein Kind
Staatsangehörigkeit:	chinesisch

Bildungsgang

09.1968-07.1973	Grundschule in Hepu, Guangxi, China
09.1973-07.1978	Gesamtschule in Hepu, Guangxi, China
	Abschluß: Abitur
10.1978-07.1982	Zentralsüd Technische Universität in Changsha, China
	für analytische Chemie
	Abschluß: Bachelor's Degree
09.1986-06.1989	Zentralsüd Technische Universität in Changsha, China
	für angewandte Chemie
	Abschluß: Master's Degree
09.1991-07.1992	Tongji-Universität in Shanghai, China, (Deutschkurs)
11.1992-04.1993	Goethe-Institut in Mannheim (Deutschkurs)
04.1993-04.1996	Diplomstudium an der Universität Gesamthochschule
	Essen
	für Pädagogik
04.1996-jetzt	Anfertigung der Dissertation im Arbeitskreis von
	Herrn Prof. Dr. R. D. Fischer an der Universität
	Hamburg

Berufstätigkeit

07.1982-09.1986	Assistent für analytische Chemie an der Hochschule
	für Geologie in Guilin, China
06.1989-09.1991	Dozent für analytische Chemie an der Hochschule für
	Geologie in Guilin, China
04.1993-11.1994	Gastwissenschaftler der Friedrich - Ebert - Stiftung für
	technische Chemie an der Universität
	Gesamthochschule Essen
07.1997-09.1998	Assistent für medizinische Dokumentation am
	Berufsgenossenschaftliches Unfallkrankenhaus
	Hamburg
10.1998-10.2000	Wissenschaftlicher Mitarbeiter der Deutschen
	Forschungsgemeinschaft