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Abstract

Based on the working hypothesis that gradation is a central phenomenon in natural language, this
thesis proposes the grammar formalism of weighted constraint dependency grammars (WCDG)
as a unified framework for the treatment of gradation.

Gradation can be found in different forms in natural language: as a preference for one outcome
over another or as an extended notion of grammaticality which accepts not only ‘well-formed’
sentences but also deviant structures if no other analysis is feasible. It also occurs in inherently
uncertain information such as that from automatic recognition of speech or blurred hand-writing.
WCDGs not only offer a well-defined formalism to concisely express what the underlying con-
straints of natural language understanding are but additionally allow one to state which status
a constraint has, be it a strict rule which describes what structures are possibly imaginable or
be it a slight preference which only selects the preferred one among a set of ambiguous analyses
for a sentence.

The formalism of WCDGs is formally defined both syntactically by specifying the constraint
language and semantically by providing a concise mapping from the WCDG parsing problem
to the well-known class of constraint satisfaction optimization problems. The set of languages
generated by WCDGs have been ranked between the mildly context-sensitive and the context-
sensitive languages; the word problem has been identified as being

���
-complete.

WCDGs are shown to be appropriate to be used for modeling a large variety of linguistic phe-
nomena such as immediate dominance, agreement, valence, aspects of word order, projectivity
as well as semantic aspects such as thematic roles.

A spectrum of algorithms that solve the WCDG parsing problem can be devised from which
an application can select the most appropriate method for the task at hand. Algorithms exist
which are complete and sound; others approximate the correct solution but compare favorably
with respect to temporal characteristics.

A large set of experimental results confirms that WCDGs are well-suited for handling gradation
in natural language:

� Graded constraints facilitate a robust mode of parsing so that even utterances with con-
siderable deviations can be analyzed.� The inherent robustness and the availability of characterizations of constraint conflicts
make the WCDG parser a suitable candidate for a diagnosis component in applications
for computer-assisted language learning.� The WCDG approach is capable of trading runtime against solution quality.
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� External graded assessments of linguistic structures such as those originating from a speech
recognizer can be integrated into the grammatical arbitration mechanism.� Constraint weights can be learned from annotated corpora, thus mitigating the grammar
acquisition problem.

WCDGs have been found to offer solutions for a series of problems in natural language processing
such as robustness, integration of preferences, information fusion and explanatory clarity. So far
WCDGs have been studied in an academic context but realistic applications begin to appear on
the horizon.



Zusammenfassung

Ausgehend von der Arbeitshypothese, daß Gradiertheit ein zentrales Phänomen natürlicher Spra-
che ist, schlägt diese Arbeit den Grammatikformalismus der gewichteten Constraint-Dependenz-
grammatiken (weighted constraint dependency grammar, WCDG) als einen universellen Rahmen
für die Behandlung von Gradiertheit vor.

Gradiertheit kommt in verschiedenen Formen in natürlicher Sprache vor: als Präferenz für eine
Variante gegenüber einer anderen oder als erweiterter Grammatikalitätsbegriff, welcher nicht
nur die ‘wohlgeformten’ Sätze akzeptiert, sondern auch abweichende Strukturen, wenn sonst
keine Lösung gefunden werden kann. Gradiertheit begegnet uns auch als inhärent unsichere
Information wie zum Beispiel beim automatischen Erkennen von Sprache oder undeutlichen
Handschriften. Gewichtete Constraint-Dependenzgrammatiken stellen nicht nur einen präzisen
Formalismus dar, in dem die dem Sprachverstehen zugrunde liegenden Bedingungen beschrieben
werden können, sondern erlauben auch, den Status einer Bedingung auszudrücken: Sei es eine
starre Regel, die beschreibt, was überhaupt als vorstellbar zu gelten hat, oder als schwache
Präferenz, die aus einer Menge von ambigen Analysen die bevorzugte auswählt.

Der Formalimus der WCDG wird formal definiert, sowohl syntaktisch durch die Spezifika-
tion der Constraint-Sprache als auch semantisch durch eine präzise Abbildung des WCDG-
Parsingproblems auf die bekannten Constraint-Optimierungsprobleme. Die Menge der durch
WCDG generierten Sprachen kann zwischen der der mild kontextsensitiven und der der kontext-
sensitiven eingeordnet werden. Das Wortproblem für WCDG ist als

���
-vollständiges Problem

erkannt worden.

Es wird gezeigt, daß WCDG für die Modellierung einer großen Menge von linguistischen Phä-
nomen geeignet ist: unmittelbare Dominanz, Kongruenz, Valenz, Aspekte von Wortstellung,
Projektivität und semantische Aspekte wie thematische Rollen.

Ein Spektrum von Algorithmen zum Lösen des WCDG-Parsingproblems wird angegeben, aus
denen eine Anwendung diejenige Methode auswählen kann, die am geeignetsten erscheint. Neben
vollständigen und korrekten Algorithmen existieren auch solche, die eine Lösung nur approxi-
mativ berechnen, dafür aber ein besseres Zeitverhalten zeigen.

Eine Anzahl von experimentellen Ergebnissen belegt, daß sich die WCDG gut für die Behandlung
von Gradiertheit in natürlicher Sprache eignen:

� Durch den Einsatz von gewichteten Constraints wird robustes Parsing ermöglicht, so daß
sogar Äußerungen mit erheblichen Störungen analysiert werden können.
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� Die inhärente Robustheit und die Verfügbarkeit von Informationen über Constraint-Ver-
letzungen ermöglichen den Einsatz des WCDG-Parsers als Diagnosekomponente in An-
wendungen für das computergestützte Erlernen von Fremdsprachen.� Der Ansatz erlaubt eine Verringerung der Laufzeit zu Lasten der Lösungsqualität (und
umgekehrt).� Externe gewichtete Bewertungen von linguistischen Strukturen wie zum Beispiel diejenigen
aus einem automatischen Spracherkenner können in das grammatische Bedingungssystem
integriert werden.� Die Constraint-Gewichte können anhand eines annotierten Korpus gelernt werden, so daß
der Aufwand der Grammatikerstellung gemindert wird.

Es wurde festgestellt, daß die gewichteten Constraint-Dependenzgrammatiken Lösungen für ei-
ne Reihe von Problemen der automatischen Verarbeitung von natürlicher Sprache anzubieten
haben: robustes Parsing, Integration präferenziellen Wissens, Informationsverschmelzung und
Erklärungsfähigkeit. Bisher wurden WCDG im akademischen Rahmen untersucht, aber realisti-
sche Anwendungen zeichnen sich bereits am Horizont ab.
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Chapter 1

Introduction

This thesis proposes the grammar formalism of weighted constraint dependency grammars
(WCDG) as a unified framework for the treatment of gradation in natural language.

Gradation is first of all a phenomenon in natural language data: Not all sentences fit into the
binary distinction of right vs. wrong; some are simply slightly better than others without the
latter having to be completely rejected. Gradation also concerns structure, i.e., one reading of
an utterance can be preferred over another one, be it by conscious reasoning or by perceiving
only one of the possibilities in the first place. Gradation is both an intra-personal and an inter-
personal phenomenon, i.e., one and the same speaker may argue about graded assessments, or
preferences can be due to statistical distributions over a population of speakers. And finally,
gradation is also found in classification tasks when the mapping between input and output is
inherently uncertain, e.g., in speech recognition.

This introduction presents examples of gradation in natural language and motivates a frame-
work for natural language processing that heavily relies on the concept of graded information.
Subsequently the major claims of this work are presented and this thesis is related to prior work.
Finally an outline of this thesis is given.

1.1 Gradation in natural language

Gradation is ubiquitous in natural language.

Gradation refers to fine-grained assessments of natural language or to degrees of certainty in
classification tasks. A graded judgment can come in different forms, e.g., as a ranking (This
sentence variant is better than that one.), by analogy with a different scale, such as length of lines
(This sentence is as good as the third line is long.), or as a numerical score on a pre-defined scale
(This sentence gets a score of 3.4/a probability of .23.). Both utterances alone and linguistic
structures, i.e., analyses of the underlying hierarchical composition of sentences, can be judged
by using a graded scale.

Chomsky [1965] distinguishes between the competence system, i.e., an ideal speaker-hearer’s
knowledge of his language, and the performance system, i.e., the actual use of the language
including all processing difficulties. A sentence is considered grammatical if it belongs to the

1



2 1. Introduction

language of the grammar according to the linguistic knowledge, i.e., grammaticality is defined
in terms of the competence system. Traditionally, theoretical linguistics deals with this aspect
of language. Acceptability of a sentence additionally depends on the performance system of
language, i.e., an utterance is acceptable if an actual native speaker-hearer judges it (spon-
taneously) as belonging to his language. Performance issues are investigated in, for instance,
psycholinguistics and cognitive science.

Since the performance system has to respect restrictions of the processing system, such as
memory limitations, and since it should explain all (spontaneous) utterances and judgments of
utterances, it must include a notion of fuzziness or probability. Hence gradation has always been
accepted for this area.1

But even for the competence system, gradation has been acknowledged quite early:2

“... an adequate linguistic theory will have to recognize degrees of grammaticalness.”
—— Chomsky [1975, p. 131]

It even has been identified as a central part of the competence system:

“Die sprachliche Kompetenz äußert sich u. a. in folgendem. Der kompetente Sprecher
kann

[...]

(e) Grade der sprachlichen Abweichung unterscheiden, wie sie in zunehmendem Maße
in den folgenden Beispielen vorliegt:

[...]” —— Grewendorf, Hamm & Sternefeld [1987, pp. 32-33]

Contrary to intuition, grammatical sentences are not automatically acceptable [Sternefeld 1998].
Repeated self embeddings (cf. Example E-1)3 are often unacceptable but nevertheless grammat-
ical. Example E-2 is incomprehensible because it misleads the reader in a way similar to garden
path sentences.

E-1 Das [der [dem Menschen wichtigen] Gesundheit] schädliche Rauchen...
The [the [the human important] health] harmful smoking...
‘Smoking being harmful to the health that is important to humans...’

E-2 Vorschriftennom, dat, dienom Dich stören, solltest Du Dich widersetzen.
‘You should defy regulations which perturb you.’

While ungrammatical utterances are produced very frequently in spontaneous speech (and thus
must be dealt with in a natural language analysis system), it is harder to find ungrammatical
sentences that are systematically judged acceptable. Sternefeld [1998] discusses this case and
gives Example E-3 on the next page which lacks the complementizer daß.

1Another reason why graded information is more common for performance is that experimental data, such as
reading time, is not binary per se so that a graded interpretation seems more natural.

2Cited after Keller [2000b, p. 18]. Although published in 1975, a manuscript of ‘The Logical Structure of
Linguistic Theory’ [Chomsky 1975] has been widely circulated since 1955.

3Examples E-1, E-2 and E-3 on the next page are taken from Sternefeld [1998].
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E-3 Ein Satz, den zu lesen Günther glaubt den Peter erfreuen wird, steht auf Seite 428.

While the competence vs. performance dichotomy attracts a lot of attention from a theoretical
point of view, it is of only minor relevance to the enterprise of building practical systems for
natural language analysis. Ultimately, it is irrelevant to such a system whether a particular
preference is justified by the competence system or (only) by the performance system. Linguistic
input should be processed in the best way possible. This argument holds in an even broader
sense. Pragmatically, one can demand that even distorted sentences that would be judged as both
ungrammatical and unacceptable should in fact be included in a system of graded assessment
since even those sentences might contribute something to the analysis, possibly in the form of a
partial analysis.

For the purpose of this thesis, we therefore assume gradation not to be restricted to competence
or performance but to include many more aspects where weighted information proves helpful.

In this broad sense gradation can be found in quite a variety of different phenomena in natural
language processing,4 as can be seen from the examples in the following subsections.

A central characteristic of graded assessments is that they potentially conflict with each other.
More than one preference might be triggered in a sentence variant, some of which favor one
outcome of the analysis and others another one. This potential for conflicts is deeply rooted in
our human language system, as will also be demonstrated by the examples.

Deviation from impeccable sentences is not always undesirable. Speakers deliberately produce
utterances that violate certain preferences in order to attract the attention of a hearer, to
emphasize certain aspects or to signal the forthcoming end of their contribution to the dialogue.
These communicative functions are often achieved by means of not fulfilling the expectations
of the hearer. In such cases the conflict not only has to be arbitrated but the conflict itself
contributes to the interpretation of the sentence.

1.1.1 Grammaticality, acceptability and beyond

The following examples5 show that language does not in general adhere to strict criteria. We
simply note that all these examples actually do occur in natural language and conclude that a
robust system for natural language analysis should deal with them in some way.

� The following examples are taken from Keller [2000b, pp. 51-52]. The selection of the
auxiliary verb in German passive formation (haben/have or sein/be) depends (at least)
on the classification of the verb with respect to a semantic hierarchy (change of location,
change of state, continuation of state, existence of state, uncontrolled process, motional
controlled process and non-motional controlled process), on telecity, on animacy of the
subject and on dialect.

4We only consider natural language analysis in this thesis. However, we feel that based on similar reasoning
it makes sense to argue for a graded approach to natural language production as well.

5We omitted the usual acceptability marks ‘*’ and ‘?’ from our own examples since they reflect the duality
of grammaticality which is in opposition to our approach. However, when citing an example we also quote the
acceptability marks as they appear in the source.
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E-4 Die Frau ?ist/hat etwas getorkelt.
The woman is/has a-bit tottered.
‘The woman tottered a bit.’

E-5 Die Frau *ist/hat in der Wohnung getorkelt.
The woman is/has in the flat tottered.
‘The woman tottered in the flat.’

E-6 Die Frau ist/*hat in die Wohnung getorkelt.
The woman is/has into the flat tottered.
‘The woman tottered into the flat.’

Both variants in Example E-4 are acceptable, although hat seems to be the preferred
option. The detelic variant in Example E-5 prefers hat even more while the telic alternative
in Example E-6 highly prefers ist. However, different native speakers of German prefer
different variants; only for some the dispreferred variant is acceptable.

� Genuine grammatical errors are most prominent among graded phenomena. Different de-
viations have to be weighted against each other, but most importantly they have to be
analyzed in the first place. To do so one has to balance out a huge variety of errors including
but not limited to spelling errors (Example E-7), punctuation mistakes (Example E-8),6

use of adjectives instead of adverbs (Example E-9), violated agreement (Example E-10),
omission of words (Example E-11), neglect of auxiliary verb (Example E-12), use of com-
paratives for absolute adjectives (Example E-13) and many more.

E-7 The enviroment around the libary (accept the hi bildings) is exceptable.

E-8 This birthday card say’s everything...

E-9 (How are you?) Thanks, I’m good.

E-10 Physics are my favorite subject.
The whereabouts of the stolen diamond are unknown.

E-11 Incomplete sentences not acceptable.

E-12 Where played you football?

E-13 Clara is more pregnant than last month.

� The acceptability of sentences with topicalized constituents depends on the syntactic struc-
ture as well as on the communicative function.

E-14 You’ve been telling me nice things!

E-15 Nice things you’ve been telling me!

E-16 Me you’ve been telling nice things!

� Metaphorical use of language often violates selectional restrictions but helps to concisely
express semantic parallels.

6Although good examples for real world deviations from ideal language use, spelling or punctuation errors will
not be dealt with in this work. However, incorporating these aspects into the proposed framework is feasible,
e.g., by adding spelling variants of words with associated penalties proportional to their Levenstein distance. We
do feel that real-world applications can greatly benefit from such small improvements that are often considered
scientifically uninteresting.
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E-17 The car uses up all my money.

E-18 The car eats up all my money.

E-19 The car eats gasoline.

E-20 The car eats all my money.

E-21 The car died.

� The separated prefix of a German discontinuous verb usually follows all other components
in a declarative sentence. On the other hand the attempt to keep (semantically) related
parts closely together can lead to extraposed constituents.

E-22 Das hängt von Dingen , die ich nicht verantworte, ab.
Das hängt von Dingen ab , die ich nicht verantworte.
Das hängt ab von Dingen , die ich nicht verantworte.
That depends from things that I not account for
‘That depends on circumstances I do not account for.’

� Sometimes it is more understandable to use a different gender than the grammatical one
in pronominal reference (Examples E-23 and E-247). Similarly a plural pronoun is used to
refer to a singular antecedent in Example E-25.

E-23 Das Mädchenneut sucht nach seinerneut Mutter.
Das Mädchenneut sucht nach ihrerfem Mutter.
‘The girl looks for her mother.’

E-24 Alfo hielt die Zahnbürstefem, als wäre siefem eine Waffe.
Alfo hielt die Zahnbürstefem, als wäre esneut eine Waffe.
‘Alfo held the toothbrush as if it were a weapon.’

E-25 Everyone ��� has their	�
 own role to play.

1.1.2 Preference

Another class of graded assessment is preferences. Preferences simply rank sentences or readings
of truly ambiguous sentences but do not distinguish between grammatical and ungrammatical in
the traditional sense. Typically, there is no clear-cut division between grammatical constraints
and preferences; the topicalization examples above can either be classified as grammatical con-
ditions or as preferences.

� The subject is preferably placed before the object in German although the inverse word
order is also perfectly grammatical.

E-26 Die Fraunom,acc sieht die Tochternom,acc .
The woman sees the daughter.

E-27 Die Fraunom,acc sieht der Mannnom.
The woman sees the man.
‘The man sees the woman.’

7Example E-24 has been adapted from Thiel [1987].
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E-28 (Wen sieht die Tochter?)
(Whom does the daughter see?)
Die Fraunom,acc sieht die Tochternom,acc.
The woman sees the daughter.
‘The woman, the daughter sees.’

E-29 Osama Bin Laden und 21 weitere Anführer hätten die eingekesselten
al-Qaida-Kämpfer ausliefern sollen, um frei abziehen zu dürfen.

Example E-26 on the preceding page is syntactically ambiguous with regard to the subject
and object functions. Nevertheless the reading with Frau as subject is preferred as long as
no counter-evidence is available as in Example E-27 on the page before (morpho-syntax)
and Example E-28 (information structure and optional prosody). Example E-29 is a
similar, but real-world example8 with inverted subject-object word order; in this case
world knowledge is needed for the correct analysis.� Ceteris paribus, a referential pronoun is preferably resolved to the nearest antecedent. Of
course, even very long distances between antecedent and pronoun are allowed and actually
do occur in natural language data.

E-30 Peter � hates his boss since he likes swimming.

E-31 Peter � hates his boss and he � likes swimming.

E-32 Peter � hates his boss since he � dislikes authorities.

In Example E-30 one might have a slight tendency to associate he with boss because the
distance to Peter is longer and no further evidence enforces the longer reference resolution.
As soon as additional evidence is available, however, the longer dependency is preferred,
for instance, in the case of syntactically parallel constructions (Example E-31) or semantic
hints (Example E-32). Again different kinds of graded evidence have to be weighted against
each other.

1.1.3 Combining different levels of analysis

The human language system is often divided into different subsystems.9 Syntax and semantics
are the most prominent ones. Not only do we find graded assessments on each of these levels
but the relation between them can be graded as well. The relative ‘strength’ of a level depends
on a variety of conditions and, of course, the lack of good evidence on other levels.

� Chomsky’s well-known Example E-33 [Chomsky 1957, p. 15] uses valid lexical items, is
syntactically well-formed but contains semantic anomalies. Semantics should probably not
play a prominent role during its analysis since almost no (meaningful) semantic evidence
is available.

E-33 Colorless green ideas sleep furiously.

8Taken from Spiegel Online 2001/12/13 http://www.spiegel.de/politik/ausland/0,1518,172454,00.

html.
9See, for instance, the arguments in Forster [1987], Marslen-Wilson & Tyler [1987], Fodor [1987] and Frazier

[1987].



1.1 Gradation in natural language 7

� Example E-34 is a more realistic example which is syntactically distorted but nevertheless
understandable. The semantic hints suffice to construct a meaning. In Example E-35,
selectional restrictions overrule word order preferences.

E-34 We cinema tonight going.

E-35 Steak eat lumberjack.

� The poem Jabberwocky by Carroll [1872] is an extreme case where most of the lexical
items (except function words) are non-words and therefore almost no semantics is available.
Nevertheless people are able (at least partially) to assign a syntactic structure and even
assume a very vague and underspecified meaning.

E-36 ‘Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
All mimsy were the borogoves,
And the mome raths outgrabe.

—— Carroll [1872, Jabberwocky]

� Sometimes one level is needed to resolve ambiguities on a different level. The syntactic
attachment of prepositional phrases, such as in Examples E-37 and E-38, is largely influ-
enced by the verb’s and the noun’s degree of affinity to the prepositional phrase [Hindle
& Rooth 1993].

E-37 Don’t startV a discussionN [with customers]PP � N.

E-38 Please helpV the customerN [with the decision]PP � V.

1.1.4 Uncertain information

In the previous section we looked at the relative strength of different linguistic levels. This section
considers a related issue, the integration of inherently uncertain information from (possibly extra-
linguistic) sources outside of the analysis system.

� If we understand natural language analysis as syntactic parsing and semantic disambigua-
tion, the recognition uncertainty stemming from a speech analyzer can be handled as
graded assessment of word hypotheses. See Section 5.6 for more details.

� Prosodic information, e.g., word stress, is inherently uncertain. Nevertheless the two
variants in Example E-39 and E-40 have different meanings.

E-39 Lassen Sie uns noch einen Termin ausmachen.
Let you us yet another/still an appointment schedule.
‘Let’s schedule yet another appointment.’

E-40 Lassen Sie uns noch einen Termin ausmachen.
Let you us yet another/still an appointment schedule.
‘We still have to make an appointment.’
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Although these examples mark an extreme case since the difference in meaning is deter-
mined by word stress alone (and sentence context if available), the inclusion of graded
prosody information can enrich the analysis process in other ways, e.g., by detecting likely
phrase boundaries or by supporting an inverted subject-object word order (cf. Example E-
28 on page 6).� Probabilistic part-of-speech (POS) taggers can accurately determine the likely categories
of words. Although a syntactic parser operating on word forms and using a lexicon can
disambiguate POS tags independently of a POS tagger, it nevertheless makes sense to
incorporate into the parsing system such a probabilistic preprocessor that annotates words
with tag probabilities. See Section 5.7 for more details.� Similar to the POS tagger case, it might be beneficial to use a chunker device which deter-
mines likely phrase boundaries in an utterance to help the syntactic parser to determine
the syntactic structure more efficiently. Again this evidence should be integrated as graded
information because of its uncertain nature.

1.1.5 Summary

The examples from the previous sections are all understandable (at least partially or in specific
contexts) and they might occur in actual language data. In all cases some kind of graded
information is involved that on the one hand prefers some (and hence also disprefers other)
readings and on the other hand provides valuable information about inconsistencies.

The causes of deviation from an ideal can be manifold. This thesis does not always make
assumptions about the deeper origin of graded information. We simply note that gradation
plays an important role in natural language and conclude that an analysis system can benefit
from regarding gradation as a vital part of the parsing system.

1.2 Motivation of gradation in natural language processing

The previous section gave evidence for the validity of the working hypothesis that gradation
can be found ubiquitously in natural language. This section is based on this working hypothesis
(as is the rest of this thesis) and explicates why a grammatical framework for natural language
analysis should not only accept the existence of graded phenomena but instead provide means
to deal with gradation as a central concept of natural language understanding.

� If one accepts that gradation plays an important role in human natural language processing,
it seems only consistent to model it explicitly also in an artificial system dealing with
natural language. Note, however, that the human language processing mechanisms are not
our primary concern although the proposed grammar system may be used as a modeling
tool in psycholinguistics or cognitive science.� Robustness is the ability to deal with unexpected and possibly erroneous input.

Some (if not all) examples in the previous section can be classified as ungrammatical with
respect to some grammar. However, if we are aiming at a system that can analyze natural
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language as flexibly as a human being can, we have to provide analyses for these examples,
and a process assessing these analyses inevitably has to deal with graded information.� Graded information can be inconsistent with natural language utterances, and robustness
can only be achieved when such violations do not lead to parsing failures. On the other
hand graded preferences are valid most of the time and can thus be exploited as valu-
able information to make the disambiguation task more accurate, more reliable and more
efficient.� Some classes of graded information rank competing analyses for a single utterance. Humans
usually only perceive a single analysis, even for truly ambiguous sentences. We are also
interested in a complete disambiguation, i.e., a single analysis instead of an enumeration of
possible structures, because subsequent stages of processing cannot reasonably distinguish
among multiple candidates. Hence, graded information must be consulted to make a well-
founded decision.

Note that graded information is used for two contrary purposes: Firstly, the coverage
of the grammar is extended so that more analyses become possible where fewer can be
found using a strict grammar. And secondly, the inclusion of preferences leads to less (i.e.,
completely disambiguated) results at the same time.� If one wants to include every available piece of information that can help to disambiguate a
natural language utterance, some arbitration mechanism must be provided that inevitably
has to utilize graded information to break ties in a justified way. In contrast to all pre-
vious reasons for graded information, this last one of information fusion is mainly extra-
linguistically motivated but nevertheless important in practical cases.

Hence it is our firm understanding that no artificial system that neglects the concept of gradation
will ever converge to or even reach the outstanding human capabilities of natural language
understanding. Traditional linguistics might not be wrong when it idealizes natural language
and considers only the competence system of a speaker, but it definitely tackles a different
problem.

1.3 Central claims

Starting from the assumption that gradation is one of the cornerstones of natural language
processing, the grammar formalism of weighted constraint dependency grammars (WCDG),
which is centered around the idea of graded evidence, is proposed and formally defined (cf.
Chapter 2). Three main claims are put forward.

1. The proposed grammar formalism is suitable for modeling a non-trivial subset of natural
language. See Chapter 3.

2. Algorithms can be devised that are capable of solving the parsing problem for a natural
language utterance and for a grammar that has been formulated in the new formalism.
Different solution methods exhibit different characteristics, and are therefore suitable for
a number of applications with varying requirements. Implementations are feasible and
computationally tractable in practical cases. See Chapter 4.
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3. A number of attractive properties can be experimentally confirmed for the new grammar
formalism. See Chapter 5.

� Given an appropriate grammar, sentences that would otherwise be declared ungram-
matical or uncovered can now be analyzed. This robust behavior can be proven
not only for genuine syntactic errors but also for other deviations, such as semantic
anomalies. See Section 5.3.� The formalism can not only parse deviant input but also allows the location of the
faults and the identification of the type of error without further effort. Such diagnostic
power is indispensable in applications for computer-aided natural language learning.
See Section 5.4.� The robustness against errors in language use can be carried over to robustness against
processing restrictions, such as time restrictions. See Section 5.5.� The formalism is flexible enough to integrate and exploit graded evidence originating
from external sources. See Sections 5.6 and 5.7.� The parameters of a grammar can be estimated from an annotated corpus either for
local clusters of constraints or for a complete grammar. See Sections 5.8 and 5.9.

1.4 Prior and related work

Gradation in natural language has many different aspects, some of which have been studied in
different research areas such as theoretical linguistics, psycholinguistics, computational linguis-
tics, artificial intelligence, cognitive science and computer science.

The notion of gradation does not play a major role in theoretical linguistics, in particular gen-
erative linguistics, although its importance has been recognized early [Chomsky 1964; Chomsky
1965]. Traditionally, linguists and especially syntacticians argue about the binary decision of
whether a sentence is grammatical (competence), while deviation in actual language data is
explained with generic references to performance aspects. Sells [1987] summarizes this attitude
towards gradations in acceptability ratings:

“Fuzziness of intuitions is noise in the data to the syntactician, and one must simply
find ways to deal with it.” —— Sells [1987, pp. 6-7]

Optimality theory [Prince & Smolensky 1993, OT] for the first time rests upon the concept of
possibly conflicting, violable constraints. The constraints are assumed to be universally valid
and only their specific strict orderings in various languages determine the differences between
individual languages. Grammaticality is defined in terms of least constraint violation, i.e., a
linguistic realization or structure is optimal (and thus grammatical) if it does not violate higher
ranked constraints than any other structure. The view is usually a generative one, i.e., different
realizations are ranked by constraints but the models do not aim at the structural disambiguation
of a single utterance. The focus of optimality theory research is still on crisp grammaticality:

“[...] eine Struktur ist grammatisch, wenn sie besser als ihre Konkurrenten ist, und
ungrammatisch sonst. Feinere Differenzierungen sind nicht vorgesehen.”

—— Fanselow & Féry [forthcomingb, p. 13]
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Only lately has gradation in grammaticality attracted more attention [Keller 2000b; Sternefeld
1998, for instance]. This shift has been influenced by new methods of collecting empirical judg-
ment data. In particular the ubiquity of conflicts [Fanselow & Féry forthcomingb] between (and
within) linguistic rule systems and linguistic data leads to the introduction of violability of con-
straints and preference rules. For instance, Keller [2000a] further elaborates on Uszkoreit [1987]’s
system of weighted constraints for German word order and presents supportive data that was
collected using a new experimental methodology [Keller 2001]. Graded grammaticality slowly
finds its way into linguistic research [Fanselow & Féry forthcominga] although the phenomena
are still often explained by means of performance models [Schlesewsky forthcoming].

In the meantime, a substantial portion of research in computational linguistics performed a
shift away from devices that recognize the grammatical sentences of a language, towards nat-
ural language applications that deal with large amounts of actual linguistic data.10 Driven by
the enormous increase of computational power and memory capacity in modern computers, the
success stories have mainly taken place in the field of probabilistic grammar research. Differ-
ent attempts to reconcile the two views [Klavans & Resnik 1996] have been made from varying
perspectives but the dualism between Chomskian rationalism and Shannon’s empirism [Pereira
2000], theory and application [Menzel 2000] or scientific understanding and approximation [Ab-
ney 1996b] still persists.

The technological challenge of dealing with all kinds of language data has been tackled mainly by
two means: shallow and partial parsing as well as statistical disambiguation. The former circum-
vents the tough problems by reducing the depth or the completeness of an analysis. Finite-state
techniques [Abney 1990; Abney 1996a; Abney 1997; Karttunen et al. 1997; Karttunen, Gaál &
Kempe 1997; Järvinen & Tapanainen 1997] are particularly successful in this area. Statistical
approaches [Black et al. 1992; Jelinek 1990; Chelba & Jelinek 1998; Eisner 1996; Collins 1996;
Collins 1997; Collins 1999; Charniak 1993; Carroll & Charniak 1992; Magerman 1994; Mager-
man 1995; Ratnaparkhi 1997a; Ratnaparkhi 1998; Bangalore & Joshi 1999; Joshi & Srinivas
1994] not only overcome the problem of too small a grammatical coverage and the lack of er-
ror tolerance because they always yield the ‘most plausible’ analysis as a result, but they also
offer solutions to some of the intrinsic and difficult problems of strict manual grammars: The
labor-intensive tasks of acquiring and porting grammars can be avoided as long as a suitable
annotated corpus is available from which probabilistic grammars are usually automatically in-
duced. They also facilitate a complete disambiguation by resolving even real ambiguities with
preferences (encoded by probabilities).

Two disadvantages can be identified for stochastic approaches (apart from the ubiquitous data
sparseness problem). They often come as a closed system, i.e., it is not feasible to integrate
external preferences into the probability models, in particular when the external ratings are in-
complete, i.e., when they do not cover all cases of the probability model. The second drawback
concerns the methodological status of the model. In statistical models, the underlying princi-
ples are not explicitly represented but distributed over a large set of numerical values so that
they are not accessible for inspection. The individual learned parameters themselves cannot be
meaningfully interpreted.11 Furthermore the problem of language acquisition, i.e., the question

10For early accounts to weighted grammars in artificial intelligence see, for instance, Thiel [1987].
11Though not strictly belonging to the class of statistical approaches to natural language processing, rule

induction systems somewhat are an exception. Error-driven learning of transformation-based rules [Brill 1995;
Brill 1996], for instance, yields relatively small sets of rules from annotated examples that are in fact interpretable.
Nevertheless, they cannot explain different ratings for different readings.
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Figure 1.1: Structure of this thesis.

of how a human can learn a language given the typical amount and quality of language data to
which he is exposed, is rarely addressed. The holistic explanation of emergent events is shared
by neural networks.

The framework proposed in this thesis can in this context be seen as a step towards a grammatical
framework which combines the advantages of stochastic models of language and of traditional
rule-based grammar systems. We bring together the successful concept of graded assessment
with the transparent explanatory power of a rule system. We allow the inclusion of information
from heterogeneous knowledge sources, both within the linguistic system, for instance syntax and
semantics, and from external sources, for instance acoustical preferences and domain knowledge.
Finally, we also point to a way of how free parameters can be estimated from corpora.

1.5 Overview of this thesis

This thesis is structured as follows.

� The introduction featured examples for gradation in natural language that serve as a
motivation for a concept of gradation in natural language processing. It also put forward
the main claims of the thesis.

� Chapter 2 introduces the formalism of weighted constraint dependency grammars. Formal
definitions for both the formalism and the proposed constraint language are given.

� The subsequent Chapter 3 describes the general techniques that were used in a grammar for
a non-trivial German corpus. It starts with non-graded grammar fragments and extends
the use to graded conditions.

� A set of algorithms capable of solving the parsing problem for weighted constraint de-
pendency grammars is introduced in Chapter 4. A discussion of their advantages and
disadvantages as well as their applicability for particular tasks is included.

� A compilation of different experimental results is presented in Chapter 5. Some aspects of
the examples from this introduction are revisited and discussed in the light of the proposed
grammatical framework for gradation. The section contains extensive experimental data.
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� Chapter 6 summarizes the thesis, highlights the achievements and describes possible further
lines of research.

Although reading the thesis from cover to cover is the preferred sequence, Figure 1.1 on the
preceding page outlines alternative possibilities. The technically uninterested reader can initially
skip over the formal definitions in Chapter 2 and the algorithmic part in Chapter 4 and return
to these sections later. Alternatively, a linguistically uninterested reader can at first omit the
linguistic modeling in Chapter 3.
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Chapter 2

Constraint Dependency Grammar

2.1 Overview

This chapter introduces the grammar formalism of weighted constraint dependency grammars
(WCDG).

Since the parsing problem for WCDG can be viewed as a (partial) constraint satisfaction problem
(CSP), this class of problems is introduced first. Sections 2.3 through 2.5, the main part of this
chapter, contain the formal definitions for WCDGs along with illustrative examples. Section 2.7
summarizes differences between WCDGs and CDGs as defined by Maruyama [1990b]; Section 2.8
clarifies complexity issues. The subsequent section then reviews related work and finally a
summary of the whole chapter is presented.

2.2 Constraint satisfaction problems

This section introduces constraint satisfaction problems (CSP), both intuitively and formally
(as far as it is required for this thesis). Algorithms that are capable of solving these kinds of
problems are described in Chapter 4.

2.2.1 Definition

Meseguer [1989] and Kumar [1992] feature introductory overview articles on CSP. However, the
formal definitions used here occasionally depart from theirs in order to better fit in the framework
of constraint dependency grammars. More recent introductions to CSP can be found in Miguel
& Shen [2001b] and Miguel & Shen [2001a].

Definition 2.1 A constraint satisfaction problem (CSP) is represented by a triple �����������������
where

15
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� is a finite set of constraint variables ���� �!#"��%$&$&$&�'!)(+* ;� is a finite set of finite domains �,�- .� " �%$&$&$&��� ( * corresponding to possible
values for the constraint variables � . The degree of a variable !/� is the
number of possible values in its domain �0� .� is a finite set of constraints 12�3���+45���64��879� where �:4;�3�<!)�<=5�%$&$&$&�'!)�?>@� is the
tuple of constrained variables and �042AB�C�<=ED9$&$&$FDG�C� > is the set of assign-
ments to those variables that are allowed by constraint 1 . The number H of
variables put in relation is the arity of constraint 1 . An alternative to ex-
plicitly specifying a separate domain for each variable is to assume a single
uniform domain for all variables and restrict the values of individual variables
using unary constraints, i.e., constraints of arity one. The relative satisfia-
bility of a constraint 1I�J���K45���64��87L� is the relative frequency of permitted
value tuples:

M
CSP N 1�O�� P �64 PP �C�<=QDR$&$&$:D��C� > P for �:4S���<!)�<=5�%$&$&$&�'!)�?>@�

The tightness of a constraint is the complement of the relative satisfiability.
The higher the tightness of a constraint, the more constraining information
is expressed by it.

The maximum degree of all variables is the degree of the CSP and the maximum arity of all
constraints is the arity of the CSP. A (partial) assignment of values to constraint variables
(also called labeling of constraint variables) is a (partial) function TVUW�,XY Z "'[#�<[#( �C� withT N !)��O�7\�C� . A solution to a constraint satisfaction problem is a complete assignment T^] that
satisfies all constraints: _`badc�e f/cdgih5jadclkm`on�p = e q q q e n�p > g

�rT ] N !)� = O��%$&$&$&�sT ] N !)� > O'�^7t�64

A tuple of value assignments T N !u�<=�O��%$&$&$&�sT N !)�?>vO is said to be inconsistent or in conflict if it fails
to fulfill at least one constraint: w

`badcse f/cxgih%jadcdkm`on p = e q q q e n p > g
�rT N !)� = O��%$&$&$&�sT N !)� > O'�zy7t�64

The density of a problem is only defined for CSP with an arity of two, i.e., binary CSP, and
denotes the ratio between the number of actual binary constraints and number of variable pairs:

{
CSP � P  |���:4%���64s�^7�� P �#4S���<!)�d�'!�}�s* P��~ N �����.O where � is the number of variables (as above)

There is a tendency that a CSP with a high density is more constrained than one with a low
density although more parameters, especially the tightness of the constraints, influence the
constrainedness. The tightness of a CSP is computed from the corresponding figure of the
constraints, usually the mean is taken.

CSPs belong to the set of
���

-complete problems [Hopcroft & Ullman 1979, cf. also Section 2.8].
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2.2.2 Example

Cryptarithmetic puzzles are typical examples of constraint satisfaction problems. An arithmetic
equation is presented with the digits replaced by letters (cf. Figure 2.1a). The task is to assign
a decimal digit to each (possibly repeatedly occurring) letter; each digit must not be used more
than once.

S E N D

+ M O R E

M O N E Y

(a)

S E N D

+ M O R E

C3 C2 C1

M O N E Y

(b)

9 5 6 7

+ 1 0 8 5

0 1 1

1 0 6 5 2

(c)

Figure 2.1: A cryptarithmetic puzzle as a typical CSP problem.

The direct mapping of letters to constraint variables is straight-forward. However, introducing
additional constraint variables for the carry bits (C1, C2 and C3 in Figure 2.1b) facilitates a
more convenient constraint formulation. Following that idea, the set of constraint variables
is �������9� with ���� ����������G�����s�B���C���C����* and ���� ����)���2�/���I�|* . The domain of
the variables corresponding to carry bits is ������ .������* and the set of decimal digits �0��� .�����)�s�/�s�/�'�m�s /�s¡/�£¢|�s¤m�s¥/* for the rest. The degree of those variables from set � is ten and of those
from set � it is two; hence the degree of the CSP is ten.

Specifying constraints by enumerating all allowed value tuples – as suggested by definition 2.1 –
is sometimes inconvenient. Instead, constraints are often expressed by means of logical formulae,
lists of forbidden value tuples, expressions in a specific constraint language or even code in a
programming language. The only restriction that a constraint formulation must fulfill is that
the constraint must be efficiently computable and that its meaning must be unambiguous.1 For
the example, mathematical formulae seem to be the most useful for constraint formulation.

The set of constraints for cryptarithmetic puzzles can be divided into two groups:

� Uniqueness: No two variables must be assigned the same digit. This constraint is appli-
cable to all instances of cryptarithmetic puzzles._

¦ e §�h5¨¦�©ku§ T N<ª O«y�¬T N< O
Note that this constraint is actually not a single constraint but a constraint template.
The meta-variables ª and  can be bound to any of the variables from set � , i.e., the
template stands for

P � P ~ N P � P ���.OE�� @¡ constraints (half of which are redundant because
the inequality relation is symmetric). The arity of these constraints is two because they
constrain the values of two variables; hence they are also called binary constraints.

1Constraint evaluations are considered basic operations, i.e., a constraint which just states that a value must
be such that it is part of a global solution is useless since evaluating that constraint is as hard as solving the
overall problem.
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� Arithmetic validity: These constraints are instance specific since each puzzle imposes
different restrictions.

In order to ease the exact formulation of the constraints we define two functions: modulo
and integer division.

ª mod  def� N<ª¯®} ��° ªF®}|± O²~ 
ª div  def� ° ª¯®}/±

For our example, the following constraints are appropriate.

N T N ��O´³�T N �µO¶³\T N �2�uO'O mod �%� � T N �ION T N ��O´³�T N �µO¶³\T N �2�uO'O div �%� � T N �µON T N �·O¸³\T N ��O¶³\T N �2�uO'O mod �%� � T N �RON T N �·O¸³\T N ��O¶³\T N �2�uO'O div �%� � T N �2�uON T N �RO´³\T N �IO¶³\T N �6�.O'O mod �%� � T N �·ON T N �RO¶³\T N �IO¶³\T N �6�.O'O div �%� � T N �2�uON T N ��O´³\T N �·O'O mod �%� � T N ��ON T N ��O´³\T N �·O'O div �%� � T N �6�.O

These constraints have an arity between three and four; therefore the arity of the CSP is
four.

Figure 2.1c on the preceding page shows a solution to the example problem. If the problem
is defined as above, there are 24 additional solutions with zero assigned to variable M, which is
usually forbidden by an additional unary constraint because the variable M stands for a leading
digit.

2.2.3 Partial constraint satisfaction problems

Real-world requirements often do not allow one to formulate a problem as a CSP or solve it
completely.

� Real-world problems are sometimes over-constrained, i.e., there exists no solution that
fulfills all constraints.

� It is often desirable to use different kinds of constraints in a problem formulation. While
some constraints are absolutely indispensable, others may simply encode properties that
a solution preferably but not necessarily has.
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� Some problems are inherently intractable, i.e., they cannot be solved completely with
current techniques and computational resources during the lifetime of the problem. Other
problems could be solved if enough time were available, but external requirements put
temporal limits on the process, e.g., a flight schedule restricts the time that is available
for luggage sorting on an airport.� Some problems simply do not need an exact solution but one is willing to settle for a
solution that is ‘good enough’.

In such situations one can try to find an assignment which at least partially fulfills the require-
ments. Partial constraint satisfaction problems (PCSP) [Freuder & Wallace 1992] formalize the
notion of partial satisfaction. The traditional (crisp) CSP can be seen as a special case of the
partial constraint satisfaction problem class.

PCSP can be divided [Tsang 1993] into minimal violation problems (MVP), where one wants to
find a labeling such that a minimum number of constraints is violated, and the maximal utility
problem (MUP), the solution of which assigns values to a maximum subset of the variables with
no constraints violated. Both views are relevant in practice:

� A typical instance of the MVP type is the problem of assigning a number of passengers
with different needs and preferences to a number of available flights. While it might be
tolerable if some individual wishes cannot be fulfilled, all passengers have to get a flight
eventually.� The decision of which cargo to load on a specific airplane and which freight to leave for
a later plane is a similar problem but belongs to the MUP type. There is a strict upper
bound for the weight and possibly other strict constraints.

As the example suggests, the classification as MUP or MVP sometimes depends on the problem
formulation.

In the context of natural language parsing, a MVP corresponds to assigning a structure to the
complete sentence but allows some constraints to be violated. Partial parsing, on the other hand,
which uses only a subset of the input words for building a structure, more directly maps to a
MUP. However, the decision of which words may be omitted from the solution cannot be properly
controlled. Since partial parsing can also be handled reasonably in the context of MVPs,2 partial
constraint satisfaction problems from here on are understood as minimal violation problems, i.e.,
as the problem of complete value assignment with possibly some constraints violated in some
minimal way.

Since PCSP are a special case of optimization in CSP, we postpone the formal definition until
Section 2.2.4.

2.2.4 Constraint satisfaction optimization problems

In practice, even PCSP are often not flexible enough because they do not distinguish between
more and less important constraints. Constraint satisfaction optimization problems (CSOP)

2See Section 3.5.4 for a discussion of how partial parsing can be achieved as a minimal violation problem.
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incorporate a more fine-grained distinction and therefore overcome this deficiency. PCSP (at
least the MVP) are a special case of CSOP where all constraints are of equal importance.

Tsang [1993] calls this kind stochastic CSP and postulates a function that maps assignments to
fine-grained assessments. However, associating the assessment with the constraints is equivalent
to this approach and more convenient here.

Definition 2.2 A constraint satisfaction optimization problem (CSOP) is represented by a tu-
ple �����������G���8��¹´������º«��»·��¼C��½2� where

�������G���I� is a constraint satisfaction problem as in definition 2.1;¹ is a function ¹LU¯�¾XY�� that assigns a valuation to each constraint; this is
related to the ‘importance’ of the constraint;� is a valuation set;º is a total order on � ;» is the maximum element in � with regard to º ;¼ is the minimum element in � with regard to º ;½ is a commutative, associative and monotonic (with respect to º ) function½�Uu� D¿� XY � that aggregates elements from the valuation set.

Let À� N TS����O be the set of constraints in � that are violated by an assignment T .

À� N TS����OS�� |���#4%���64s�Á7G� P �:4����<!)�i=��%$&$&$&�'!)� > ���.�rT N !)�<=5O��%$&$&$&�sT N !�� > O'�zy7��64£*
Let ¹+Â be a generalized assessment function for assignments.

¹+Â N TÃO��B½ 4dÄ²ÅÆ´ÇÉÈ/Ê Ë¶Ì ¹ N 1�O
The solution of a CSOP is an assignment T ] of values to constraint variables such that the
aggregated valuation of all violated constraints is minimal and lower than the top element »
of � .

T ] �ÎÍÐÏ?ÑÈVÒ ¹KÂ N T�O
Schiex, Fargier & Verfaillie [1995] provide an algebraic framework for different types of constraint-
based optimization problems called valued constraint satisfaction problems (VCSP).

Table 2.1 presents some instances of the VCSP framework. The classical VCSP corresponds
to the traditional crisp CSP: Constraints are all of equal importance and are either completely
satisfied or fail altogether. The other instances are relevant in the context of partial constraint
satisfaction. Optimality theory [Prince & Smolensky 1993, cf. Section 1.4] uses the lexicographic
VCSP instance [Fanselow & Féry forthcominga, Section 5] that suffers from a kind of the so-
called ‘drowning effect’ [Schiex, Fargier & Verfaillie 1995] because one important constraint can
overrule any number of weaker constraints (cf. Section 3.5.7). The probabilistic VCSP [Fargier
& Lang 1993] understands the constraint score as the probability that the constraint actually
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Name Notation E Order Ó Ô Õ Ö
Classical × -VCSP {true, false} false Ó true false true ×
Possibilistic max-VCSP Ø2Ù Ú ÛÁÜ Ý max
Lexicographic lex-VCSP ØIÞÙ ÚßÞ à%ÛÁÜRá â ã
Additive ä -VCSP Ø2Ù Ú ÛÁÜ Ý Û
Probabilistic å -VCSP æ Ývçsè�é Ú 0 1 è²êìë�è�ê�í/îsë�è�ê�ïuî
Multiplicative CDG-VCSP æ Ýuç�è�é ð Ý è ñ

Table 2.1: Instances of the valued constraint satisfaction problem framework. The information in
this table has been compiled from de Givry & Verfaillie [1997], Schiex, Fargier & Verfaillie [1995]
and Schiex [1992]. The instance in the last line is used in the WCDG paradigm.

exists. The possibilistic VCSP [Schiex 1992] is to an even greater degree subject to the drowning
effect than the lexicographic one and exclusively considers the maximum element among a set
of violated constraints.

We propose the new multiplicative CDG-VCSP which is similar to the additive instance but
avoids the problems with infinite penalties which are more difficult to handle computationally.
Scores taken from the interval ò �����£ó are assigned to constraints and the scores of violated con-
straints are aggregated multiplicatively. An aggregated score of zero means complete failure
while a score of one indicates an ideal solution. Although different instances are possible in
general, we will assume this kind of CSOP from here on. Section 3.5.7 motivates this choice
linguistically and discusses some of the consequences for a grammar writer. In particular, the
aggregation function takes into account all constraint violations (not just the most severe one)
and also allows several weaker constraints to overrule a stronger one.

It was suggested [de Givry & Verfaillie 1997] that by simplifying a more complex problem to
a simpler one (e.g., by modifying the constraint graph or by using a different VCSP scheme)
and solving the easier problem first, a lower bound for the original problem can be found. In
conjunction with the easily obtainable upper bound, an anytime bounding of the optimum in an
optimization problem can be achieved. However, no experimental results are available, neither
from de Givry & Verfaillie [1997] nor for our special case.

2.3 WCDG as a grammar formalism

This section formally describes the framework on which the grammar formalism WCDG is based.
The formalism is deliberately introduced separately from the parsing algorithms to make clear
that the meaning is completely descriptive, i.e., the semantics is formally defined without any
reference to operational issues. A grammar writer is therefore conceptually independent of the
procedures that are used for parsing. However, a specific grammar style3 may have consequences

3Grammar style may differ in a number of aspects, e.g., number of postulated representational levels, number
of function labels, integration of redundant constraining information, rate of the violable constraints, coverage
etc.
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on other characteristics than pure semantics, such as, for instance, efficiency; Chapter 4 discusses
efficiency issues in greater detail.

The upcoming sections will define the key components in the WCDG framework:

� Word graphs which are used as the input to a parsing component and represent utterances.� Lexica which associate orthographic word forms with additional information.� Constraints which are used to express (grammatical) knowledge.� Constraint dependency grammars which glue the items together.� Structure candidates which represent possible analyses for particular word graphs.

2.3.1 Word graph

Word graphs account for the individual parsing problems. Usually, the grammar and the lexi-
con are relatively static once the development has been finished while word graphs define new
problem instances.

Definition 2.3 A word graph is represented by a set WG of edges of the form �õô:��ö#�'÷I� M � whereô�7Gø is the start point (in time) and ö�7Gø is the end point (with ô�ù�ö ) of word form ÷ andM 7�ú�û is a score associated with the confidence that the word form has actually been uttered
between the start point and the end point. This score is usually an acoustic measure taken from a
speech recognizer (cf. Section 5.6). The minimum start point of all edges is the start point and the
maximum end point of all edges is the end point of the word graph: ÍÐÏ?Ñ WG �ÎÍÐÏ?Ñ+ .ô P �õôK��öm�'÷�� M �;7
WG * and ÍÐü�ý WG �ÎÍ�ü�ý¯ .ö P �õôK��öm�'÷I� M �Q7 WG * . A path is a sequence of edges �rþv"��sþ�ÿ)�%$&$&$&�sþ�(:� withþ � ���õô � ��ö � �'÷ � � M � � such that adjacent edges in the path are adjacent in the word graph:_� [#���#( ö��¶�Îô|� û "
A complete path is a path �rþv"��sþ�ÿ@�%$&$&$&�sþ�(m� where ô � � Í�Ï Ñ WG and ö�(�� ÍÐü�ý WG. We usually
require all edges to be connected to both the start and end point of the word graph by a path.

Figure 2.2 on the next page exemplifies the idea of word graphs. Nine edges corresponding to
nine word hypotheses are shown that can be combined to four complete paths.

The scores are mentioned for completeness here; they will not become important before the
integration of acoustic scores in Section 5.6.

2.3.2 Lexicon

A lexicon associates a word form (an orthographic form in our case) with additional morphosyn-
tactic, syntactic and semantic information.

Definition 2.4 A lexicon is represented by a quadruple � ��� � ���F�������6� where
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we
1 2 5 6

a
3 4

recognize

wreck

speech

beachnice

word we wreck a nice recognize speech beach
start 1 2 3 4 2 5 5
end 2 3 4 5 5 6 6

score - - - - - - -

Figure 2.2: A simple word graph.�
is a finite set of word symbols;� is a finite set of attribute symbols;� is a finite set of value symbols. Let AVM � (attribute-value matrices) be the
set of all partial functions � XY � ;� is a function �¬U � XY � AVM ¨ that maps words to a set of attribute-value
matrices. For convenience, we assume that the attribute word exists, i.e.,
word 7�� , and furthermore _	 Ä�
 _� Ä� Ç 	 Ì � N word O²� ÷

Note that an attribute-value matrix is a flat structure in this definition: Values are symbols,
i.e., no recursion is allowed, nor is structure sharing. Therefore, we neither have a type-token
distinction nor do we support structure sharing as in standard feature structures [Shieber 1986;
Carpenter 1992, for instance]. Figure 2.3a on the following page shows a simple lexical entry �
as it is usually depicted at the top, and its formal meaning at the bottom. For convenience, we
sometimes write lexical entries as if they contained embedded structures; however, this syntactic
sugar can always be resolved to the canonical representation (cf. Figure 2.3b on the next page)
as long as no cyclic structures are allowed. Every sequence of attributes is collapsed into a single
attribute containing colons.4

Negation is not allowed in lexical entries since it would require either a closed world assumption
for feature values or an extended feature unification mechanism [Carpenter 1992, for instance].
We nevertheless sometimes use negation in the examples (cf. Figure 2.4 on page 27) when the
meaning is clear, e.g., � third-sg for value combinations of number and person except third
person singular.

The function � is necessary to allow for ambiguous word form like, for instance, run as a verb
or a noun, i.e., � N run OI�  run �Á� run �2* with run � N cat O�� ‘VERB’ and run � N cat OI� ‘NOUN’.
However, we will sometimes simplify the notation and write a subscript that uniquely identifies
the correct lexical reading.

4Even co-reference between substructures is feasible although the type-token distinction is lost when flattening
the structures.
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cat: ‘FINVERB’

number: ‘pl’

person: ‘third’

������
� N word O�� ‘bellen’� N cat O�� ‘FINVERB’� N number O�� ‘pl’� N person O�� ‘third’

(a) Flat AVM

������ word: ‘bellen’

cat: ‘FINVERB’

morph: � number: ‘pl’

person: ‘third’ �
�������

� N word O � ‘bellen’� N cat O � ‘FINVERB’� N morph:number O � ‘pl’� N morph:person O � ‘third’

(b) Structured AVM

Figure 2.3: Two lexical entries.

2.3.3 Definition CDG

In this section, we finally define weighted constraint dependency grammar in a formal way.

Definition 2.5 A weighted constraint dependency grammar (WCDG) is represented by a tuple
WCDG ��� LEV � LAB �sT����8��¹¯� where

LEV is a finite set of level symbols (corresponding to role-ids in the definition of
Maruyama [1990a]);

LAB is a finite set of label symbols;T is a function TJU LEV XY � LAB that assigns a subset of the label symbols
to each level symbol. Sometimes, we assume that the subsets are pairwise
disjoint _


 Ê 
�� Ä LEV

�^y���� mY T N ��O"!�T N �� ?OS�$#
and partition the set of all labels

LAB � %
 Ä LEV

T N ��O
so that one can tell the level given the label, e.g., that the subj belongs to the
syntactic level.

� is a set of constraints;¹ is a function ¹ U²� XY ò �����£ó that assigns a penalty factor between zero and
one to each constraint.

This definition departs from the original one by Maruyama [1990b] in two respects. First it
assumes that labels are valid for certain levels only and – more importantly – provides a weighting
function for the constraints which was first suggested by Menzel [1994].
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A second main difference between CDG as Maruyama [1990b] and also Harper & Helzerman
[1994] use it and our version of WCDG applies to the mapping from CDG parsing problems to
constraint satisfaction problems and is discussed in detail in Section 2.4.

Structure candidates are possible forests of dependency trees, one tree (maybe disconnected)
for each level. They represent complete alternative structures that have to be considered when
parsing a sentence (see examples in Section 2.3.4).

Definition 2.6 A structure candidate of an input word graph WG given a lexicon �L��� � ���¶���I���6�
and a weighted constraint dependency grammar WCDG ��� LEV � LAB �sTS���8��¹¯� is represented by
a triple SC �µ�õ�Á��&��(')� such that

� is a complete path �����rþu"��sþ�ÿ)�%$&$&$&�sþ%(:� in word graph WG. The set of all edges
in � is �*)��� }þ%� P �,+.-/+���* and �10) �B�2)·�  �»�* is the set of all edges plus
one otherwise unused symbol » ;& is a function &LU#�3)�XY AVM � such that & N þ�Oz74� N ÷zO for all þI� �õôK��öm�'÷I� M � ,
i.e., & selects the lexical reading for the edges in the selected path;' is a function '�Uv�3)zD LEV XY LAB D«� 0) which assigns structures to the edges
in the complete path on all levels. A function value ' N þ)�'����O8� �5�  �sþs)� means
that on level � the word contained in edge þ � is subordinated under the word
contained in edge þ£ with label �  . One such mapping represents a dependency
edge in a dependency tree.

The function 6�U WG D7�«��� D LEV D LAB D WG D8�z��� D �VXY  .������* is then used as an
indicator of whether a dependency edge fulfills a constraint or not.6 N þ � ��& N þ � O����l���9 r�sþ  ��& N þ  O���1�O��;: � U dependency edge ' N þ.�'����O����5�  �sþs�� satisfies 1 under &� U else

The following sets are defined for a dependency edge as the sets of satisfied and violated con-
straints, respectively.6 � N þ%�d��& N þ%��O����l���  �sþsu��& N þs)O'O��  .1«7G� P 6 N þ��d��& N þ%��O����l���  �sþ�@��& N þs)O���1�OS�Î�/*6)" N þ%�d��& N þ%��O����l���  �sþsu��& N þs)O'O��  .1«7G� P 6 N þ��d��& N þ%��O����l���  �sþ�@��& N þs)O���1�OS�µ��*
These sets are then extended to the multi-sets < � and <W" for complete solution candidates. Note
that a constraint might be violated multiple times by a solution candidate; hence we need to
use multi-sets here. < � N SC O � %=>= p =@?A h

LEV

6 � N þ%�d��& N þ%��O����l���  �sþsu��& N þs}O'O
<W" N SC O � %=>= p =@?A h

LEV

6)" N þ%�d��& N þ%��O����l���� r�sþsu��& N þs}O'O
for SC ���õ�Á��&��(')� and ' N þ��'����O����5�� <�sþs)�
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In order to aggregate the weights of all violated constraints into a single number, one has to define
an aggregation function as described in Section 2.2.4. As mentioned earlier, we use a simple
multiplicative aggregation scheme which results in the following aggregated scoring function:

¹ Â N SC O�� B4dÄ�CED Ç SC
Ì ¹ N 1�O

Definition 2.7 A solution structure for an input word graph WG given a lexicon � ��� � ���¶�������6�
and a weighted constraint dependency grammar WCDG ��� LEV � LAB �sTS���8��¹¯� is a structure can-
didate SC ] � �õ�Á��&��(')� that, intuitively, is minimal with respect to constraint violations among
all structure candidates. More formally, the solution structure is the solution candidate where
the aggregated scoring function is maximal:

SC ] �Îü@F�GßÍÐü�ý
SC

¹+Â N SC O
2.3.4 Example

In this section, a complete example including a lexicon, a word graph and a weighted constraint
dependency grammar is presented to illustrate the ideas behind the definitions. Assume that
the lexicon from Figure 2.4 on the next page is given which provides a subset of lexical entries
for the words occurring in Figure 2.2 on page 23.

Two possible structure candidates for the word graph of Figure 2.2 on page 23 are depicted in
Figure 2.5 on page 28. Whenever unambiguous, we present the path � implicitly by a sequence
of words; otherwise the complete edge information must be provided. The lexical selection
(function & ) is suggested by the part-of-speech symbols given below the word information; again,
if this kind of presentation is not unambiguous, more distinguishing elements or even the full
lexicon entry must be provided. The structural information of function ' is depicted as trees: a
mapping ' N þ � ����O����5�  �sþ  � corresponds to an arrow on level � labeled �  from a node belonging toþ%� to a node belonging to þ£ . An arrow pointing to none of the nodes means a function value
containing the special symbol » . In Figure 2.5 on page 28, two levels are shown: SYNTAX and
FUNCTOR-ARGUMENT.

The two left trees in Figure 2.5 on page 28 and the following formal notation are equivalent.

' N þ we � SYNTAX O�� � subj �sþ recognize �' N þ recognize � SYNTAX O�� � none ��»2�' N þ speech � SYNTAX O�� � obj �sþ recognize �' N þ we � FUNCTOR-ARGUMENT O�� � agent �sþ recognize �' N þ recognize � FUNCTOR-ARGUMENT O�� � none ��»2�' N þ speech � FUNCTOR-ARGUMENT O�� � theme �sþ recognize �
Note that there exist many more solution candidates than the two that we showed in Figure 2.5
on page 28.
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sem: ‘*speaker*’

syn:

HIIIIJ cat: ‘PPRO’

morph:

HIJ
number: ‘pl’

person: ‘first’

case: ‘nom’ K LM K LLLLM
K LLLLLLLLLM

HIIIIIIIIIJ word: ‘recognize’

sem: ‘*recognize*’

syn:

HIIIIJ cat: ‘VFIN’

morph: NPO number: ‘sg’

person: ‘third’ Q
tense: ‘present’

K LLLLM
K LLLLLLLLLMHIIIIIIIJ word: ‘wreck’

sem: ‘*damaged object*’

syn:

HIIJ cat: ‘NOUN’

morph: O number: ‘sg’

case: ‘ N gen’ Q K LLM K LLLLLLLM
HIIIIIIIIIJ word: ‘wreck’

sem: ‘*damage*’

syn:

HIIIIJ cat: ‘VFIN’

morph: N O number: ‘sg’

person: ‘third’ Q
tense: ‘present’

K LLLLM
K LLLLLLLLLMHIIIIIJ word: ‘a’

sem: ‘*indefinite*’

syn:

HJ
cat: ‘INDEF’

morph: R number: ‘sg’ S KM K LLLLLM
HIIJ word: ‘nice’

sem: ‘*beautiful*’

syn:: R cat: ‘ADJ’ S K LLMHIIIIIIIJ word: ‘beach’

sem: ‘*sandy waterfront*’

syn:

HIIJ cat: ‘NOUN’

morph: O number: ‘sg’

case: ‘ N gen’ Q K LLM K LLLLLLLM
HIIIIIIIJ word: ‘speech’

sem: ‘*spoken language*’

syn:

HIIJ cat: ‘NOUN’

morph: O number: ‘sg’

case: ‘ N gen’ Q K LLM K LLLLLLLM
Figure 2.4: An example lexicon.

The affinity of the verb wreck to the direct object beach in a neutral context is probably smaller
than that of recognize to speech (especially in a thesis about natural language processing). Hence,
one might argue that, all other things being equal, the solution candidate (a) in Figure 2.5 on the
next page is superior to solution candidate (b). If no further solution candidates are considered
this candidate (a) would then be the solution structure for the grammar and the word graph in
the example.

Of course, the exact determination of the solution depends on the constraints of the grammar
which will be dealt with shortly.

2.4 Mapping from WCDG parsing problem to CSOP

It is the relational nature of dependency structures that makes it easy to map the parsing
problem for WCDG to CSOP. In order to do so, one has to define exactly what the constraint
variables and the domains are and how a solution candidate can be put in relation to a complete
assignment of constraint variables.

Given a lexicon ��� � � ���F�������6� , a weighted constraint dependency grammar WCDG �� LEV � LAB �sT����8��¹¯� and a word graph
�UT �3 |�õô/�d��ö��d�'÷Á�d� M �r� P �,+V-W+���* , the set of constraint
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obj

subj

adjdet

we recognize speech

subj obj

we awreck

none

none

agent theme

none

agent

patient

none

VFINPPRO INDEF

nice
NOUNADJ

none none

PPRO VFIN NOUN

beach

FUNCTOR−ARGUMENT

SYNTAX

(a) (b)

Figure 2.5: Two CDG structure candidates for the example word graph of Figure 2.2 on page 23.

variables consists of all triples �rþ}�d��ôK����� with þ��W7 WG, ôt7X� N ÷Q�rO , �S7 LEV, i.e., for each lexical
reading of a word in an edge and each level an individual variable is constructed. All these
variables !C���rþ.�d��ô:����� have the set �ZYR� LAB D WG 0 �  �[�* as their domains.

� �  |�rþ%�d��ôv�d����� P þ%��7 WG ��ôv��7\� N ÷Á��O����²7 LEV *
WG 0 � �UT �G �»�*� �  |�5�  �sþ�@��ô)}� P �  7 LAB �sþ�I7 WG 0 ��ô�I7\� N ÷Á��O3] þ�Ðy�¬»C��ô�8� »^] þ�8� »·*�_Y � �µ�G �[·*

A structure candidate �������õ�Á��&��(')� is then equivalent to a complete assignment of values from
the domains to constraint variables.

Each variable �rþ.�x��ô|�d���r� with þ���y7B� or & N þ���O y� ô|� is assigned the dummy value [ . Such an
assignment marks those elements of the word graph that are not part of the path in the structure
candidate and those variables with a different lexical reading respectively. Recall that a structure
candidate represents a completely disambiguated parsing problem, i.e., it does not contain any
alternatives, neither acoustical, nor lexical nor structural.

If ' N þ��'����O²���5�  ��»2� the special symbol » is used again to denote that the word in edge þ@� depends
on no other word and is the root of the dependency tree. This is reflected as a value �5�  ��»C��»2�
for a constraint variable �rþ}�l��ô|�d����� .
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All other variables �rþ � ��ô � ���r� get a value �5�  �sþ  ��ô  � if and only if ' N þ � ����O����5�  �sþ  � , & N þ � OS�Îô � and& N þ�}O��Îô) .
T N �rþ � ��ô � �����'OS� `acb [ U iff þ%�Áy7t� or & N þ���Ozy�Îô|��5�  ��»C��»2� U iff ' N þ � ���l��O����5�  ��»2��5�  �sþsv��ô)}� U iff ' N þ��'����O����5�  �sþ��� and & N þ�}OS�Îô�

Furthermore we demand an assignment to be path consistent 5: The lexical readings must be
chosen consistently, i.e., one and the same word graph edge must take the same lexical entry on
all levels:

_d@e `�fõp�e g'p<e A gihÉk�` A � e fkj�e gljsgd@e `�f p e g(mp e A m gihÉkm` A � m e f > e g > g ô|�F�Îô ]�
and also in modifiee and modifier position:

_d@e `�f p e g p e A gihÉk�` A � e f j e g j gd@e `�f j e g(mj e A m gihÉk�` A � m e f > e g > g ô�E�Îô ]
Picking up the example from the previous sections, Figure 2.6 on the following page shows
the mapping from a WCDG structure candidate to a CSP assignment. Note that we again
abbreviated the notation when the meaning is unambiguous.

Since the notations as a structure candidate or as an assignment are equivalent and the latter
is more convenient, we will use constraint variables and values in the next Section 2.5 where we
define constraints more formally and exhaustively.

2.5 Constraints

Constraints are the main means to express (linguistic) knowledge. In this section, we will
describe how constraints can be used to encode grammatical requirements. We will make direct
reference to the constraint language that was developed for the DAWAI project6 [Heinecke et
al. 1998].

Table 2.2 gives the definition of the syntax of the constraint language in extended Backus-Naur
form [Wirth 1986]; an informal but complete explanation of the whole input language can be
found in the user manual [Schröder 1997d; Schröder 1997a; Foth, Schröder & Schulz 1998] of
the parser [Menzel & Schröder 1998c].

In Section 2.2 constraints are defined as an enumeration of feasible value combinations taken
from domains of the constraint variables. However, such an exhaustive listing is not possible for
[W]CDG parsing for two reasons.

5Not to be confused with path consistency of CSP, see Section 4.3.1.
6See http://nats-www.informatik.uni-hamburg.de/~dawai/ for further information.
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' N þ we � SYN OS��� subj �sþ recog �on T N �rþ we � wePPRO � SYN �'O���� subj �sþ recog � recogV �' N þ recog � SYN O���� none ��»2�pn T N �rþ recog � recogV � SYN �'OS��� none ��»·��»2�' N þ speech � SYN O���� obj �sþ recog �on T N �rþ speech � speechN � SYN �'OS��� obj �sþ recog � recogV �
T N �rþ wreck � wreckV � SYN �'OS�^[T N �rþ wreck � wreckN � SYN �'OS�^[T N �rþ a � aINDEF � SYN �'O²�V[T N �rþ nice � niceADJ � SYN �'O��^[T N �rþ beach � beachN � SYN �'O��V[' N þ we � F-ARG O���� agent �sþ recog �on T N �rþ we � wePPRO � F-ARG �'O���� agent �sþ recog � recogV �' N þ recog � F-ARG OS��� none ��»2�on T N �rþ recog � recogV � F-ARG �'OS��� none ��»·��»2�' N þ speech � F-ARG O���� theme �sþ recog �on T N �rþ speech � speechN � F-ARG �'O���� theme �sþ recog � recogV �
T N �rþ wreck � wreckV � F-ARG �'OS�^[

...

Figure 2.6: Mapping from [W]CDG structure candidate to a CSP assignment. Various words and
category symbols have been abbreviated.

� Firstly, the domains and also the variables themselves are instance specific since they
make reference to the input tokens and therefore depend on the utterance being parsed.
A number of variables are constructed for each word in the input and the values represent
dependency edges which certainly differ from sentence to sentence. No grammar writer
can anticipate all possible inputs to the parser.

� Secondly, it is essential for a natural language grammar to abstract from individual sen-
tences and describe the general principles. Therefore, constraints must express character-
istics of a whole class of configurations and not just those of a single sentence.

Therefore, we will use constraint templates with logical formulae (cf. example in Section 2.2.2)
which are checked for every value (combination) when a sentence is analyzed.

A constraint (template) is satisfied by a specific value or value combination if and only if the
constraint formula when applied to the value combination evaluates to true. The constraints are
implicitly universally quantified, i.e., all constraints must be applied to all edges and to all edge
combinations respectively, at least for the time being (cf. Section 4.13.3). Since constraints are
asymmetric in general, even the edge ordering is significant, i.e., not only the pair �rþv�d�sþ�}� must
be tested with a binary constraint but also the inverse pair �rþ�u�sþ%��� . Of course, most constraints
are specific to particular constructions so that the constraint formulae often take the form of an
implication where the antecedent restricts the application to the special configurations.

The rest of this section defines the semantics of the constraint language.
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Attr U&Ub� String
P
Number

ConId U&Ub� String

Constraint U&Ub� ‘{’ VarList ‘}’ ‘:’
ConId ‘:’ [ [ Section ] ‘:’ Penalty ‘:’ ]
Formula

Formula U&Ub� Term Relation TermP
Formula Junctor FormulaP
Predicate ‘(’ TermList ‘)’P
‘ q ’ FormulaP
‘(’ Formula ‘)’P
‘true’P
‘false’

Function U&Ub� String

Junctor U&Ub� ‘&’
P
‘
P
’
P
‘- r ’

P
‘ ù - r ’

Operator U&Ub� ‘+’
P
‘–’

P
‘*’

P
‘/’

Path U&Ub� Path ‘:’ Attr
P
Attr

Penalty U&Ub� Number
P
Term

Predicate U&Ub� String

Relation U&Ub� ‘=’
P
‘ r ’

P
‘ ù ’

P
‘ r =’

P
‘ ù =’

P
‘ !=’

Section U&Ub� String

Term U&Ub� Variable ‘ˆ’ PathP
Variable ‘@’ PathP
Variable ‘.label’P
Variable ‘.level’P
Term Operator TermP
Function ‘(’ TermList ‘)’P
‘[’ Term ‘]’P
StringP
Number

TermList U&Ub� Term
P
TermList ‘,’ Term

Variable U&Ub� String

VarList U&Ub� Variable
P
Variable ‘,’ VarList

Table 2.2: EBNF definition of the constraint syntax.

2.5.1 General structure

A constraint (element Constraint) consists of up to five parts (cf. Table 2.2): variables (ele-
ment VarList), name (element ConId), class (element Section), penalty (element Penalty)
and formula (element Formula).

The variables are placeholders which are replaced by actual dependency edges during evaluation.
The name is an identifier and the class facilitates a partitioning of the constraint set for mod-
ularization purposes. The penalty is the weight, of course. The formula is a logical expression
with extended propositional logics syntax and determines whether the constraint is satisfied or
not in a specific context.
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Constraints can be classified depending on the kind of penalty they carry. Hard constraints
are those with a weight of zero; soft constraints have weights greater than zero. Soft ones can
further be subdivided depending on whether their penalty is fixed by the grammar writer or
sensitive to different contexts, i.e., it dynamically changes its numeric value in different sentence
types. Section 3.5.6 motivates dynamic constraints linguistically and gives typical examples.
They are used in Sections 5.6 and 5.7 to import external assessments into the constraint system
and in Section 5.8 to model linguistic preferences involving distances between words and length
of constituents.

Note that while the meaning of constraint weights can usually be best described as the impor-
tance of the constraints, it also carries aspects of the degree of satisfaction in dynamic constraints.
In different approaches, constraints may have more than a single weight associated with them,
e.g., separate ones for importance, degree of satisfaction, relevance, level of formality etc. re-
spectively [Miguel & Shen 2001a, Section 5.1.1].7 But since these weights have to be combined
in some way eventually, we decided to stick to a single weight and let the grammar writer choose
the appropriate value, possibly using dynamic constraints.

Constraint C-1 is a unary example constraint named SubjectVerbNoun belonging to the con-
straint class Subject. Unary constraint always contain a single variable which is named X in
the example. The penalty is fixed at 0.1.

C-1 {X} : SubjectVerbNoun : Subject : 0.1 :

X.level=SYNTAX & X.label=subj -> X@cat=NOUN & X^cat=FINVERB;

The subject is a noun and depends on a finite verb.

During constraint evaluation every assignment, i.e., every combination of constraint variable
and value, is bound to the syntactic component Variable in the signature of the constraint.
Hence this component is a representative of a complete dependency edge with information about
the dependent and the governing words including lexical information, the label and the level: Xn��rþ%�d��ô|�x�����ts��5�  �sþ�@��ô)}� .8 Section 2.5.3 explains how these information bits are accessed.

Constraint C-2 is an example for a binary constraint since two variables X and Y are used.

C-2 {X, Y} : OneSubjectOnly : Subject : 0.0 :

X.level=SYNTAX & Y.level=SYNTAX &

X^id=Y^id &

X.label=subj ->

Y.label!=subj

A finite verb does not have more than one subject.

The score is fixed at 0.0, i.e., the constraint is a hard one. While every dependency edge has to
be tested against a unary constraint, all combinations of two dependency edges must be checked
with the binary constraints.

7See also Schröder [1997e].
8For dependency edges that lead to root the corresponding equivalence X u4vxw p5y>z.p5yl{i|~} v { � y���yl�t| holds. We

assume from here on that w j also subsumes the special symbol
�

.
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2.5.2 Formulae

The formula is the central and most complicated component of a constraint. This section
describes how formulae evaluate to true or false in the context of a binding, i.e., when applied
to an edge or a tuple of edges.

Truth constants

The simplest formulae are the truth constants true and false; they are satisfied either always
or never.

C-3 {X} : NonRoot : General : 0.1 :

root(X^id) -> false;

Nothing should be the root.

Negation

The negation is the only unary operator and is defined in the standard way: ~a is satisfied if
and only if a is not.

C-4 {X} : NonVerbNonRoot : General : 0.1 :

X.level=SYNTAX & X@cat!=FINVERB -> ~root(X^id);

Something that is not a finite verb is not the root.

Boolean junctors

The Boolean operators conjunction, disjunction, implication and bi-implication are defined in
the standard way; the following table lists the truth tables for satisfying (+) or violating (-)
conditions.

a b a&b a|b a->b a<->b

- - - - + +
- + - + + -
+ - - + - -
+ + + + + +

Predicates

Predicates take terms (cf. Section 2.5.3) as arguments and yield a truth value.

Six special purpose predicates are defined. We assume that X n¿�rþ@�d��ô|�l������s �5�  �sþ�@��ô)}� in all
examples.

� start(X@id) takes a word graph edge þ id as its only parameter and succeeds if and only
if the word graph starts with that edge: þ id ���õô id ��ö id �'÷ id � M id � and �P-�� WG �¬ô id
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� stop(X^id) takes a word graph edge þ id as its only parameter and succeeds if and only if
the word graph ends with that edge: þ id ���õô id ��ö id �'÷ id � M id � and �tô ª WG �Îö id

� root(X^id) takes a word graph edge or » as its only parameter and succeeds if and only
if the parameter equals » .

� exists(X@foo:bar) takes an attribute � (foo:bar) in a lexical entry þ (X@) as its pa-
rameter and succeeds if and only if the lexical entry contains a value at that attribute:þ N �¶Ozy� undef.

� subsumes(h, a, b) takes three strings as its parameters. The first is the name of an
ontology9 and is satisfied if symbol a is a superclass of symbol b in the ontology.

� print(a, b, ...) takes an arbitrary number of parameters, prints them and always suc-
ceeds.

Predicates can be added easily to the system in order to extend the system depending on fu-
ture demands. However, the calculation needed to determine the result of a predicate should
be efficiently computable and independent of the sentence context as a whole; otherwise the
considerations about the complexity (cf. Section 2.8.2 and Chapter 4) can be invalidated. For
instance, a fictitious predicate solution(X@id) which is satisfied if the argument edge is part
of the overall solution moves the complete solution process into a predicate and requires consid-
erable computational effort.

Relations

Relations are special purpose predicates which are used with an inline syntax for the operator.

There are six relational predicates defined: ‘equal =’ and ‘not equal !=’ (defined on numbers,
symbols and lexical ids) as well as ‘greater >’, ‘greater or equal >=’, ‘less <’ and ’less or equal
<=’ (defined only for numbers). All these predicates behave as expected.

2.5.3 Terms

There are three types of terms: numbers, strings (also called symbols) and lexical ids.

Constants

The simplest terms in the constraint language are constant numbers and strings. The latter can
be written with or without delimiting double quotes.

9See Foth et al. [1999] for details about how to use ontologies.
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Lexical information

Lexical information of the dependent and the governing word forms can be accessed using the
@ and ^ operators. If X n �rþ � ��ô � ������s �5�  �sþ  ��ô  � then X@foo tries to look up the attribute foo

in ô|� , i.e., the resulting term is determined by ô#� N foo O . If the attribute is not defined for ôm� , the
behavior is undefined.10 Lexical information for the governor can analogously be retrieved with
the X^foo construct in which case ôv is the relevant attribute-value matrix.

The lexicon only contains static information about word forms. However, there are a couple of
special attributes that can be used to retrieve information that is lexicon-independent as the
information is only induced specifically by the problem instance itself. The following table lists
these attributes for the dependent edge.

Attribute Semantics

X@id identification for edge þ}� , can be compared for (in)equality
X@from start node of edge þ}� , i.e., ô if þ��´���õôK��öm�'÷�� M �

X@to end node of edge þ.� , i.e., ö if þ��¶���õô:��ö#�'÷I� M �
X@pos positional index (used sometimes when analyzing word

strings)

As in all cases, the information is also available for the governor: X^id, X^from, X^to and X^pos.

Label and level information

The dot operator (‘.’) is used to access the information about the label and the level. If again
X n��rþ%�d��ô|�l�����ts��5�  �sþsv��ô).� then X.level and X.label stand for � and �  respectively.

Arithmetic operations and functions

The four standard arithmetic operations (‘+’, ‘-’, ‘*’, ‘/’) are available for numbers; they behave
as expected.

Some special purpose functions are used to compute new terms from given ones.

� min(a, b, ...) returns the smallest of the numbers a, b... .� max(a, b, ...) returns the largest of the numbers a, b ... .� abs(a) returns -a if a is negative and a itself otherwise.� distance(X@id, X^id) returns the ‘distance’ of two edges (corresponding to the ids X@id
and X^id) in the word graph under consideration and can be used to gather information
about linear ordering. If X n �rþ � ��ô � ������s �5�  �sþ  ��ô  � and þ � � �õô � ��ö � �'÷ � � M � � as well asþsE���õô�u��ö�v�'÷S@� M .� the above functions returns ö%Q� ôv� .

10See Section 2.5.2 for details about the predicate exists which can be used safely to check whether a value
for an attribute exists.
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� acoustics(X@id) returns the adjusted acoustic score of the word hypothesis in the input
word graph that corresponds to the given lexical id. Section 5.6 describes the integration
of acoustic scores into the parsing process in detail.

� pts(X@id) returns the assessment of an external POS tagger for the lexical item corre-
sponding to the given lexical id. Section 5.7 describes the integration of an external POS
tagger into the WCDG parsing system in detail.

2.6 Restriction of constraint arity

Recall that the arity of a CSP is the maximum number of variables in any of the constraints
and that the degree of a CSP is the maximum size of any of the domains (cf. Section 2.2.1).

A large part of constraint satisfaction research has exclusively considered – both theoretically
and empirically – the binary CSP, i.e., a CSP with arity two. There are two reasons:

� A relation between the arity and the degree of a CSP facilitates a transformation of
arbitrary � -ary CSP ( ��rV� ) to binary CSP with enlarged degree [Nudel 1983, p. 138].
The idea of a conversion is simple:11 A subset  �!)�<=��%$&$&$&�'!)�i�;* of the variables is replaced by
a new variable !  with an extended domain consisting of the cross-product of the domains
of the original variables: �  �-�C�<=ID\$&$&$¸D �C� � . Thus, there is a trade-off between the
number and the complexity of variables: Either a large number of variables each represent
an elementary property or a smaller set of variables encode more complex configurations.� Any solution algorithm for CSP has to check the compatibility of value combinations
whose variables are connected by a constraint [Mackworth & Freuder 1985, for instance].
Obviously, it suffices to check at most � N � ÿ O pairs of values in binary CSP while potentially� N ���%O triples have to be tested in ternary CSP. Some algorithms (cf. Section 4.6) also
employ data structures of size � N ��� arity � O . Therefore, a formulation of a problem as a
binary CSP is preferable and in fact indispensable for some algorithms.

From here on, we will consider at most binary CSP and accordingly allow at most two place-
holders for dependency edges in WCDG constraints. Section 3.3.3 discusses what this decision
means for a grammar writer.

2.7 Comparison of WCDG to CDG as defined by Maruyama

This section summarizes the differences between WCDGs and the variants of CDG as originally
defined by Maruyama [1990b] and as used by Harper et al. [1999a].

� Constraints are weighted in WCDG while CDG exclusively uses hard constraints. There-
fore WCDGs are a generalization of CDGs.

11Section 3.4.2 shows both that the problem is real and that the solution approach is relevant in WCDGs.
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� WCDGs define which labels are appropriate for which level.12� WCDG constraints have a greater expressiveness than the constraints suggested by Maruyama
[1990b] and Harper et al. [1999a]. Constraints in WCDGs can freely access any lexical in-
formation of any involved modifier or modifiee. Lexical ambiguity is possible both in terms
of different categories and of differing feature values (cf. Section 2.5.3). Maruyama [1990b]
in contrast assumed a completely disambiguated sequence of categories as the input to the
parser. No form of lexical ambiguity is allowed and the only accessible information about
the word forms is the category. Harper et al. [1995, Section 3.1] deal with ambiguities
regarding categories by duplicating constraint values for each possible part-of-tag. Lexical
ambiguity besides that of categories is handled by means of delayed constraint application
[Harper et al. 1995, Section 3.3]. Constraints that access the ambiguous lexical features
are later applied to the remaining variables after unambiguous values have been created
by duplication of constraint variables.

Nevertheless the expressiveness of their constraints falls short of those of WCDGs since
modifier and modifiee are not accessed symmetrically. Agreement between subject and
finite verb, for instance, cannot be expressed by a unary constraint [Harper et al. 1995,
p. 23] which is easily possible with a unary WCDG constraint. We decided to include
the extra expressiveness since we feel that the constraints are already restricted enough
(cf. Section 3.3.3). Obviously, the resulting CSP becomes more expensive to solve when
allowing fully disambiguated governor nodes because the numbers of constraint variables
and values increase.

Only recently White et al. [1997] have also proposed a kind of generalized constraints,
so-called aggregated constraints [White 2000, p. 38], which can at least partly access infor-
mation about the governor of a dependency edge.� The formalism of WCDG provides dynamic constraints which do not have a static score
but receive different weights depending on the context in which they are evaluated (cf.
Sections 3.5.6, 5.6 and 5.7). Dynamic constraints are not necessarily soft constraints.� The WCDG constraint language is richer than that of Maruyama [1990b]. It not only
includes more powerful access functions (see above) but additionally predicates, functions
and simple arithmetic operators. This added-value is particularly useful when used in
combination with information stored in the lexicon and with external ontologies [Foth et
al. 1999].� A further difference does not directly concern the definition of the grammar formalism
but the solution methods. Both Maruyama [1990b] and Harper et al. [1999a] deploy a
single consistency-based method known as filtering (cf. Section 4.6) in their parser, while
several algorithms including filtering have been implemented for WCDG (cf. Chapter 4).
Experimental evaluations have shown that filtering is in fact not appropriate for WCDG
parsing (cf. Section 4.6).� Again not being directly linked to the definitions, a further difference is connected to the
use of [W]CDGs. While Maruyama [1990a, Section 3.4] and Harper et al. [1993] propose
the inclusion of semantic evidence in the form of semantic constraints, they do not aim at
separate semantic structures as in WCDG (cf. Section 3.4.6).

12Harper & Helzerman [1995, Section 3.2] use a lookup table for the same purpose.
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2.8 Complexity

Three different aspects of complexity are distinguished in this section:

1. Relation of the constraint language to logic

2. Complexity of the parsing problem when using [W]CDG

3. Classification of the set of languages that can be generated with [W]CDG with respect to
the Chomsky hierarchy of formal languages [Hopcroft & Ullman 1979, chapter 9]

Each of these aspects will be discussed in the following subsections.

2.8.1 Relation of the constraint language to logic

The constraint language defined in Section 2.5 strikingly resembles the language of first-order
predicate logic formulae. Function and predicate symbols as well as variables and junctors can
be mapped directly. Constraint formulae are implicitly assumed to be universally quantified.
The lack of existential quantifiers does not seem to be important since every first-order predicate
formula can be converted into an equivalent (with respect to satisfiability) Skolem formula in
prenex form [Gallier 1987, pp. 305 & 340] where all existential quantifiers have been replaced
and all universal quantifiers precede the actual formula body [Schöning 1992a, p. 67].

A well-known theorem by Church [Schöning 1992a, for instance] proves that the satisfiability
and the validity problems for first-order predicate logic are undecidable.

The syntactical equivalence between CDG formulae and first-order predicate logic formulae sug-
gests that the satisfiability and the validity problems are undecidable for [W]CDG formulae
as well. But we only looked at the syntax of the formulae so far. The crucial point, how-
ever, is the semantics behind the syntax. If ones defines a semantics for [W]CDG constraints
equivalent to that of predicate logic formulae [Gallier 1987, p. 158], the questions of whether at
least one (satisfiability) or whether all structures (validity) fulfill a particular constraint become
undecidable.

However, such a general semantics is usually not assumed for [W]CDG.13 The space of possible
structures � �������>�^� is highly limited in CDG. The domain � is the set of labeled edges between
words and, in particular, infinite domains are expressly not allowed, which would correspond to
an infinite input. The interpretation function � is determined by the fixed definitions of the few
functions and predicates; no free variables are allowed.

A formal proof that the satisfiability and validity problems can always be answered for all
[W]CDG (given the restrictions listed here and the usual semantics defined in Section 2.5.2)
is still missing mainly because such a proof is completely irrelevant to the problem of natural
language parsing which only involves the application of the formulae to a finite set of pre-defined
dependency edges.

13It would be if we were looking for a procedure that can always answer the following question in finite time:
Given an arbitrary grammar, is there a sentence that can be parsed by that grammar. Obviously, this problem
is at least semi-decidable: Enumerate all sentences in a kind of diagonal triangle, try to parse the sentence and
answer ‘yes’ if successful.
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2.8.2 Complexity of the parsing problem

Computational complexity refers to the amount of time and memory that an algorithm needs to
solve a problem in the worst case. A problem itself falls into a specific complexity class if it can
be proven that no algorithm exists that both solves the problem and has a smaller complexity
class.

The parsing problem for [W]CDG is
���

-complete. This can easily be shown by reducing the
chromatic number problem [Hopcroft & Ullman 1979, p. 341] to a [W]CDG parsing problem.
Given a graph

T
and an integer H , construct a [W]CDG with a single lexical entry for a dummy

word, a single level, H distinct labels and the general initialization Constraint C-5.

C-5 {X} : 0.0 : root(X^id);

Assume that the vertices in
T

are numbered. For each edge in
T

that connects the vertices -
and � , add a constraint like Constraint C-6:

C-6 {X, Y} : 0.0 : X@pos=i & Y@pos=j -> X.label != Y.label;

The parsing problem for an input sequence of H words is then equivalent to the chromatic number
problem for

T
and H . If a parse can be found, the labels determine the color of the corresponding

vertices.

Given that the parsing problem for [W]CDG is
���

-complete it can be assumed that every
complete and sound algorithm that solves the parsing problem has exponential time complex-
ity � N � ( O . Note that this is only a worst case consideration; Chapter 4 deals with actual running
time and approximate algorithms.

The exponential complexity of CDG is not unexpected. It is presumed that, while a fully
projective14 dependency grammar is weakly equivalent to a context-free grammar [Gaifman 1965;
Rambow & Joshi 1994, p. 9] and the recognition problem for this restricted type of dependency
grammars is therefore in � N ����O ,15 the parsing problem for general dependency grammars which
allow discontinuous structures is probably exponential [Covington 1990, Section 5.3]. Neuhaus
& Bröker [1997] prove

���
-completeness for the recognition problem of a dependency grammar

which separates the immediate dominance relation from the linear precedence relation (which is
possible in [W]CDG); see also [Barton, Berwick & Ristad 1987, Chapter 7]. It should be noted
that the polynomial complexity � N �2�.O of the recognition problem for context-free grammars
[Hopcroft & Ullman 1979] is also fragile. As soon as the formalism is extended to handle
agreement and lexical ambiguity, as in feature unification grammars, the recognition problem
becomes

���
-complete [Barton, Berwick & Ristad 1987, Chapter 3]. Furthermore, a context-

free grammar may assign an exponential number of parses to an ambiguous input string so that
the extraction and enumeration of structures can also take exponential time. Nevertheless, the
word problem for CFGs is computable in polynomial time (while it is exponential for WCDG).
Plaehn [2000, p. 10] presumes that his parser [Plaehn 1999] for discontinuous phrase structure
grammars is also exponential in runtime.

14Section 3.4.5 defines projectivity.
15But note the following caveat:

“[...], context-free generative power does not guarantee efficient parsability. Every ID/LP grammar
technically generates a context-free language, but the potentially large size of the corresponding
CFG means that we can’t count on that fact to give us efficient parsing.”

—— Barton, Berwick & Ristad [1987, p. 208]
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2.8.3 Classification of the set of languages defined by WCDG

Maruyama [1990a, Section 4] shows that the weak generative capacity of CDG with at least
two levels is strictly greater than that of context-free grammars. He specifies a CDG which
generates the language �����L�- ��3� P ��7.� ] * which is not context-free. Furthermore, he gives
general instructions on how to construct a CDG from a CFG in Greibach normal form which
accepts the same language as the CFG.16

Harbusch [1997] extends the proof of Maruyama [1990a] from CFG to tree-adjoining grammars
[Joshi, Levy & Takahashi 1975, TAG for short] showing that every language recognized by a
TAG can also be generated by a CDG.17 Furthermore, she gives a CDG which generates the
non TAG language L-6 � ô (���( 1 ( { ( þ ( � ( proving that � TAG � � CDG. The set of languages
recognized by CDG therefore contains at least the mildly context-sensitive languages.18

Since the word problem for CDG is
���

-complete but the word problem for context-sensitive
languages is

� � �W����� -complete [Schöning 1992b, p. 169] it follows that the set of languages
generated by a CDG is properly contained in the set of context-sensitive languages.19

2.9 Related work

There exists a large spectrum of constraint-based formalisms [Shieber 1992] for natural language
processing that in part vary considerably. Hess [1996] compares the notion of constraints as it
is used in term [Robinson 1965] or feature unification [Kay 1984; Shieber 1986] formalisms and
in constraint satisfaction problems (cf. Section 2.2). An alternative interpretation of constraint
satisfaction in NLP is due to Blache [2000a].

The WCDG approach goes back to constraint dependency grammars of Maruyama [1990b;
1990a].20 The original idea of CDG has been extended at Purdue University [Harper et al.
1994; Harper & Helzerman 1994; Harper & Helzerman 1995; Harper et al. 1995; Harper et
al. 1999a] in the context of word graph filtering in speech applications. The enhancements

16White [1995] describes an implemented mono-directional conversion method from CFG to CDG.
17Harbusch [1997, p. 40] assumes that “... the runtime of the parser for CDG of arity 2 is �/ i¡£¢�¤ ”. Consequently,

she motivates her conversion from TAGs (for which the fastest parsing algorithm has complexity �/ i¡¦¥�¤ ) to CDGs
by conjecturing that parsers for TAGs with better runtime might become available. However, she is mistaken
in that only the filtering step of the consistency-based algorithm for CDGs (cf. Section 4.6) has a complexity of�/ i¡ ¢ ¤ while the subsequent extraction step still has exponential complexity in the worst case (cf. Section 2.8.2).
The filtering step generally only reduces the problem and does not solve it entirely although there are cases where
filtering suffices.

18Cf. Joshi, Vijay-Shanker & Weir [1991] or http://www.kornai.com/MatLing/mcs.html.
19We are grateful to Mary Harper (personal communication) for pointing us in this direction.
20The ‘inventor’ of CDG, Maruyama [1990a] of IBM Tokyo, first used the formalism in an interactive Japanese-

to-English machine translation system for newspaper texts [Maruyama, Watanabe & Ogino 1990]. The main
component (entered after morphological disambiguation) for the source language analysis is a syntactic parser
that assigns a dependency structure to the sequence of morphological units which is relatively easy for Japanese
because a common theory demands that all dependency links strictly branch to the right. The parser maintains
a consistent state of the analysis during the parsing process using constraint propagation algorithms [Maruyama
1990b, see also Section 4.3.1]. It not only considers grammatical constraints, but also allows the user to specify
dependency links directly using a computer mouse in a graphical environment. It can be argued that the human
operator dynamically adds constraints to the system by doing so. Due to the ease of interaction, Maruyama,
Watanabe & Ogino [1990] claim that the system is eligible for non-expert users and give evidence thereof in terms
of numbers from a comparative usability study.
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include an extension of the filtering algorithm to multiply-segmented constraint satisfaction
problems which allows the analysis of word graphs and lexically ambiguous sentences [Zoltowski
et al. 1992; Helzerman & Harper 1996; Harper et al. 1999b], a parallel implementation of the
parsing algorithm [Helzerman & Harper 1992; Harper et al. 1995], an integration of semantic
constraints [Harper et al. 1993], automatic grammar induction from corpora [White et al. 1997;
White 2000; Harper et al. 2000] and various other optimizations [Harper & Helzerman 1995;
Harper, Hockema & White 1999]. The use of constraint scores that allow the classification of
certain constraints as violable has first been suggested by Menzel [1994].

A similar step from strictly eliminating constraints to graded constraints is proposed by Qu,
Rosé & Eugenio [1996] in the context of plan-based discourse processing. High-level constraints
operate on discourse structures and on background knowledge and assign penalties to certain
inference chains. However, graded constraints are only used to resolve ambiguities that result
from previous processing steps.

Duchier [1999a] proposes an alternative eliminative approach to constraint dependency parsing
that is inspired by the original formulation of Maruyama [1990a] and based on constraint satis-
faction techniques as well. A prototypical parser and a grammar fragment for German have been
implemented using the constraint programming language Oz.21 For an account to German word
order in their framework see also Section 3.4.4. A separate axiomatization is given for parsing of
phrase structure trees with tree descriptions [Duchier 1999b; Duchier & Niehren 2000; Duchier
& Thater 1999].

Blache [2000c] presents the formalism property grammars which introduces the notion of prop-
erties (instead of constraints) which are subdivided into local properties represented as feature
structures (complex categories) in the lexicon and global properties which constrain co-occurring
categories with respect to a number of aspects such as constituency, obligation, unicity, require-
ment, exclusion, linearity and dependency. The properties take effect directly at category level
without the need to postulate a local configuration first [Blache 2000b] which is the reason why
Blache [2000a] distinguishes active constraints (properties) from passive constraints which are
relegated to a secondary role (as for instance in constraint grammar [Karlsson 1990], HPSG
[Pollard & Sag 1987; Pollard & Sag 1994] and also [W]CDG). The notion of grammaticality is
replaced by so-called characterizations, i.e., partitionings of the set of constraints into satisfied
and violated ones. This concept is found in a similar way in WCDG and accounts for a robust
system behavior. Blache & Morawietz [2000] hint at an implementation of property grammars.22

Constraint grammars [Karlsson 1990; Karlsson et al. 1995] and subsequent parsers [Tapanainen
& Järvinen 1997; Järvinen & Tapanainen 1997] share with [W]CDG the concept of eliminat-
ing ungrammatical structures instead of constructing grammatical structures, but they employ
finite-state techniques.

Link grammars [Sleator & Temperley 1991; Sleator & Temperley 1993] are lexicalized depen-
dency grammars and consist of a set of words with specific linking requirements. A grammatical
sentence has a projective and connected tree structure that satisfies all linking requirements.
Lafferty, Sleator & Temperley [1992] describe a probabilistic version of link grammars.

21Duchier, Gardent & Niehren [1999] give a tutorial for natural language processing with Oz. Oz [Smolka
1995] is now maintained by the Mozart Consortium http://www.mozart-oz.org/.

22According to Blache (personal communication), property grammars do not belong to the generative paradigm,
but fall somewhere between generative and equation theories.
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2.10 Summary

The grammar formalism of weighted constraint dependency grammars (WCDG) has been for-
mally described.

Abstract definitions of the expected input structures (word graph), the lexical knowledge base
(lexicon), the grammatical knowledge base (WCDG) and feasible structural interpretations
(structure candidate) of input sentences were given. A precise formulation of a mapping from
WCDG parsing problems to constraint satisfaction optimization problems facilitates the transfer
of insights, results and algorithms from the well-known area of constraint satisfaction problems
(CSP). In particular, the result that the [W]CDG parsing problem belongs to the class of

���
-

complete problems is based on a reduction of the well-known CSP problem of chromatic numbers
of graphs. The syntax and the semantics of the WCDG constraint language have been precisely
defined which is a prerequisite for the accurate formulation of optimality among structure candi-
dates which in turn is necessary for determining the solution structure of a parsing problem. We
deliberately avoided any reference to parsing algorithms because the view of the parsing problem
as a CSP emphasizes the declarative status of a WCDG, in particular the order independence of
constraints and the lack of control parameters in the grammar. That does of course not imply
that a WCDG only takes competence aspects into account; performance phenomena that often
arise from processing difficulties are simply described declaratively, i.e., without any reference
to procedural aspects of the processing model.23 Chapter 4 deals with algorithms for WCDG
parsing.

23Compare to the discussion of competence and performance vs. declarativity of grammar formalisms in Bröker,
Hahn & Schacht [1993, Section 1].



Chapter 3

Grammar Modeling

This chapter is based on an article [Schröder et al. 2000] published in the international journal
‘Traitement Automatique des Langues’ (Natural Language Processing)1.

3.1 Overview

The purpose of this chapter is three-fold. Firstly it serves as a tutorial about grammar writing
using the formalism of weighted constraint dependency grammars (WCDG). Although some
details have to be omitted we present those techniques that have proven themselves helpful
during grammar development.

Secondly it describes the backbone of a grammar that we developed for the Stellingen cor-
pus (cf. Section 5.2.1), a subset of the German Verbmobil [Wahlster 1993] corpus of spoken
appointment-scheduling dialogues. The analyses had to be simplified for presentation purposes
but the underlying ideas are preserved as described.

The third and most important intention of this chapter is to answer the scientifically interesting
question of whether the grammar formalism of WCDG is adequate for modeling a non-trivial
part of the phenomena occurring in natural language, in this case in German. We will give
example constraints and examine how serious certain restrictions of the formalism are and how
they can be overcome by different approximation techniques.

The main focus is on practical models for observed phenomena; it is neither the intention to
develop a linguistic theory nor to describe a complete grammar in detail.

After a general introduction to grammar modeling and a brief review of the dominant theories
in Section 3.2, we start by briefly recapitulating the WCDG formalism; however, this time we
will look at it from the point of view of a grammar writer and discuss consequences that arise
from its definition for actual grammars (Section 3.3).

In Section 3.4, we present constraint modelings for a series of language phenomena. For clarity
of the presentation, only hard constraints are used in this part; it should be easily imaginable
how selected crisp constraints can be made soft by assigning an appropriate weight larger than
zero.

1See http://www.atala.org/tal/ for further information.
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The subsequent Section 3.5 then describes more thoroughly how to use soft constraints for
grammar development. A spectrum of application scenarios for soft constraints is given to
demonstrate the usefulness of the concept. Again, only the basic principles can be described
while details like, for instance, the complete fine-tuned system of exact numerical weights has
to be omitted.

Section 3.6 discusses related work, and in Section 3.7 we summarize the possibilities but also the
limitations of the approach and suggest further extensions of the grammar and the formalism.

3.2 Introduction

Grammar modeling is understood as the task of describing the underlying regularities of a natural
language2 using a given well-defined formalism. Ideally, the description should be complete,
accurate and unambiguous. However, the fuzzy (and generally unlimited) nature of language as
well as external (sometimes computational) requirements often enforce a restriction to specific
subclasses of language use. The difficulties of artificial components to process natural language
both exhaustively and accurately as well as efficiently, often lead to the limitation to a subset
of ‘real’ language, either by using so-called controlled language3, i.e., explicitly preventing a
user from entering ‘forbidden’ constructions or lexical items, or by simply rejecting uncovered
input as unparsable. In anticipation of the upcoming sections, we note here that WCDG allows
a grammar writer to extend the coverage of a grammar by means of soft constraints while
providing a ranking of the (now possibly ambiguous) admissible analyses at the same time (and
by the same means).

Different goals can be pursued when modeling a grammar. For linguistic theories, the classical
levels of adequacy [Bußmann 1990, Y Adäquatheitsebenen, p. 46] of Chomsky [1965] distin-
guish between observational, descriptive and explanatory adequacy, depending on whether the
sentences, the underlying structures or the process of learning the language respectively can
be predicted by a theory of grammar. Natural language parsing as an important subtask of
natural language processing usually aims at finding a structural interpretation for the relevant
sentences that is sufficient for a subsequent task-dependent processing. Also, engineers of NLP
systems must often pay attention to more practical properties such as efficiency, good empirical
coverage and maintainability that are essential in real systems for automatic language analysis
or generation.

In this work, we are interested in language modeling for analysis, i.e., for parsing. We focus on
syntax rather than on phonetics and prosody or semantics and discourse. However, we try to
incorporate knowledge from these levels into the syntactic analysis (see, for instance, Sections 3.3
and 3.4.6).

Different grammatical frameworks have been developed for language modeling, among which
context-free grammars (CFG) or phrase-structure grammars (PSG) are the most widely adopted
for actual applications. Context-free languages are the type-2 languages in Chomsky’s hierarchy
of formal languages [Chomsky 1956; Hopcroft & Ullman 1979]. Context-free grammars are
characterized by rewrite rules with one non-terminal symbol on the left and a sequence of symbols

2This work assumes that a grammar is language specific although one might use the same formalism to describe
universal characteristics and provide parameters for specific languages.

3See, for instance, the international workshops on controlled language applications (CLAW).
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(terminals and non-terminals) on the right. Although there are some syntactic phenomena that
are inherently not context-free, e.g., discontinuous structures in German, nesting of subordinated
clauses in Swiss German [Gazdar & Mellish 1989, p. 133, for instance] or cross-serial dependencies
in center-embeddings in Dutch [Rambow & Joshi 1994, p. 12], it is generally accepted (at least
for languages like English, not so much for languages with free word order) that the power of
CFGs is basically sufficient for natural language analysis.4 CFGs have been used quite early in
natural language parsing, for instance, in definite clause grammars (DCG) [Pereira & Warren
1980]. Their predominant position still persists, although CFGs are nowadays often enriched
with additional formal frameworks, such as feature unification which was first widely used in
PATR-II [Shieber 1984]. Figure 3.1a presents a context-free analysis of an example sentence.

N’

S

NP

Pro V Det Adj N

VP

appointment.
einenWir

We arrange a
neuen
new

Termin.vereinbaren

(a) Context-free analysis

appointment.
einenWir

We arrange a
neuen
new

Termin.

obj

subj
det

mod

vereinbaren

(b) Dependency analysis

Figure 3.1: Analyses in the frameworks of context-free and dependency grammars.

Phrase structure rules are also a central part in transformational grammars [Chomsky 1957;
Chomsky 1965] but they are augmented by transformations which map between the deep struc-
ture that has been generated by the PSG rules and the surface structure which, among other
things, describes the output sentence. The successor yo transformational grammar, government
and binding theory [Chomsky 1981; Haegeman 1991], reduces the number of transformations to
one: move- T . This completely underspecified transformation allows to move anything anywhere
[Sells 1987], but its application is restricted by universal constraints which are part of a universal
grammar. Parameters then tailor constraints to specific languages.

Transformational grammars have played (and still play) a very influential role in theoretical
linguistics. However, the focus is not so much on actually occuring language data or even
applications, which is partly due to the generative view on grammar. Although some prototyp-
ical implementations exist [Fong 2000, for instance] their purpose is rarely a natural language
application but mostly a system to verify specific theoretical assumptions about grammar.

Weighted constraint dependency grammars ([W]CDG) – as the name suggests – rely upon a
different framework, dependency grammars (DG). The latter are based on the concepts of con-
nexion, junction and translation [Weber 1992]. Connexion relates to hierarchical dependency
relations between elements of the sentence, i.e., the assumption that one of a pair of directly
related words is the governor and the other is the dependant. Figure 3.1b shows an admissible

4Compare to Joshi, Vijay-Shanker & Weir [1991].
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syntactic dependency structure or – more precisely – the connexion relations of the dependency
tree.

Junction and translation are less central in that they are only introduced for the specific phe-
nomena of coordination and category conversion respectively. Both junction and translation are
not explicitly supported by particular formal constructs in [W]CDG but have to be implemented
by means of regular constraints and possibly additional levels. Note that especially a depen-
dency model of coordination [Kunze 1972; Hesse & Küstner 1985] is inherently difficult because
information about the coordinated constituents has to made available at the word node of the
coordination which is lexically largely underspecified but must represent the whole coordinated
phrase. No satisfactory treatment of coordinations which fulfills all requirements is available so
far within the WCDG framework.

A grammar writer will almost always refer to an established dependency theory [Tesnière 1959;
Kunze 1975; Hudson 1990], but the formalism of [W]CDG does not enforce a specific one.
[W]CDGs may be used as long as only relations between word forms5 are considered, only a
limited number of edge labels is involved and the resulting structures obey the tree property.
This last restriction to tree structures could even be relaxed but is usually useful for grammar
modeling.

Other semantic representations like the meaning text model [Mel’čuk 1988; Kahane forthcoming]
employ semantic units more complex than word forms which therefore cannot be modeled di-
rectly. Hence, semantic modeling in [W]CDG is restricted, e.g., to functor-argument structures.

[W]CDGs do not support ‘competing dependencies’, i.e., multiple governors for a single word
on a single level, which are proposed for the treatment of discontinuities and non-projective
structures in word grammar [Hudson 2000, p. 19]. However, words can have different governors
on different levels so that an equivalent account can be modeled.

3.3 WCDG grammar formalism revisited

A brief informal introduction and discussion of the grammar formalism of weighted constraint
dependency grammar (WCDG) is presented. For a formal definition see Section 2.3.

3.3.1 Linguistic structures and disambiguation

Assuming a simplified set of three different dependency relation types subj(ect), obj(ect) and
aux(iliary), Figure 3.2a on the facing page shows all nine combinatorially possible dependency
edges6 for each word in a simple four word example sentence. This set is a compact representation
of all conceivable structures, in this case N ¥F³ �.O�§z���%�����@�@� of which � � ~�� � �µ�)��¢)�@¤ are connected
trees.

In [W]CDGs, there is no need for an additional component (such as context-free rules) that
generates structures which are checked against compatibility constraints. This is a fundamental

5Dependency is often defined in purely linguistic terms and captures syntactic as well as semantic aspects of
an utterance. The resulting relations of subordinations are usually anti-symmetrical.

6Additionally, a word can be the root of the tree which is not shown explicitly in Figure 3.2 on the next page.



3.3 WCDG grammar formalism revisited 47

Haben Sie es
Have (aux) you it
Did you write it down?

notiert?

subj/obj/aux

subj/obj/aux subj/obj/aux subj/obj/aux

subj/obj/auxsubj/obj/auxsubj/obj/aux

subj/obj/aux subj/obj/aux

subj/obj/aux

subj/obj/aux subj/obj/aux

(written down)?

(a) Space of possible dependency arcs

Haben Sie es
Have (aux) you it
Did you write it down?

notiert?
(written down)?

subj

aux

obj

(b) Final solution for the example

Figure 3.2: Totally underspecified initial space of possible subordinations consisting of 72 edges and
a fully specified unambiguous dependency analysis as one possible outcome of the disambiguation
process (cf. Figure 3.3 on the next page).

difference to other constraint-based approaches [Shieber 1992] such as definite clause grammar
[Pereira & Warren 1980], functional unification grammar [Kay 1984], PATR-II [Shieber 1984],
HPSG [Pollard & Sag 1987; Pollard & Sag 1994] and general feature unification formalisms
[Shieber 1986]. Instead, constraints have to be used to exclude some of the theoretically possible
structures either by discarding them in the first place using hard constraints or by penalizing
them with soft constraints so that the desired structures are ranked higher.

It is this eliminative nature of WCDGs that requires a substantially different approach to gram-
mar development. For a context-free grammar to cover new phenomena it is neccessary to
add rules while constraints have to be retracted or softened for a WCDG to analyze additional
constructions correctly:7

CFG:
T A T  ©¨ � N T O^A�� N T  O

CDG: ��A��W ¨ � N �IO�ª�� N T  O
This counter-intuitive behavior makes it essential to verify all analyses and not just the new
ones when extending the coverage. One such example turns up when one wants to allow non-
projective structures in exceptional constructions but still requires projectivity to hold in the
general case (cf. Section 3.4.5).

7Recent work on grammar induction [Schröder 1996; White 2000] focuses on the concept of support for
a configuration rather than on that of elimination of unwanted structures. Under this view the traditional
perception of grammar extension can be restored.
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Figure 3.2b on the preceding page (a different depiction is given in Figure 3.3) shows the re-
maining edges after applying all constraints; the tree actually describes the unique best solution
to this parsing problem.

Haben Sie es
Have (aux) you it
Did you write it down?

aux

obj
subj

notiert?
(written down)?

SYNTAX

Figure 3.3: A syntactic dependency tree.

The labels in this example describe syntactic functions, e.g., subj marks the subject and aux

connects the finite auxiliary verb with the past participle verb form. The finite verb does not
depend on any other word form and is the root of the tree.

Traditionally only a single tree is considered during dependency analysis, namely the syntactic
structure. WCDGs, in contrast, are not limited to one structural level or, more vividly, WCDGs
can be used to build any number of dependency structures in parallel, not just a single syntactic
one. Figure 3.4, for instance, describes some functor-argument relations for the previous example
where the dependent is considered to be the argument.

Haben Sie es
Have (aux) you it
Did you write it down?

agent
theme

tense

SEMANTICS

notiert?
written−down?

Figure 3.4: A semantic analysis belonging to the syntactic analysis of Figure 3.3.

Within the framework of WCDG, the two levels are independent in the sense that each can
be constructed without recourse to the other one. However, they can be interrelated by giving
appropriate constraints that couple them more or less tightly. During parsing, the structures
on all levels are actually built simultaneously so that syntactic evidence not only influences the
semantic structure but also vice versa. This architecture is compatible with the assumption that
the human language system is organized as independent modules which interact with each other
[Trueswell, Tanenhaus & Garnsey 1994].
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As we shall see later, the ability to build multiple levels of description in parallel can be used
for quite different purposes. Besides maintaining independent representations on a number of
primary levels such as semantics (cf. for example Section 3.4.6), auxiliary ones can be used (cf.
for example Section 3.4.1) to further constrain the structures on a main level.

Another generalization of WCDGs, if compared to traditional dependency grammars, is that
a WCDG is quite flexible with regard to the target structures. While usually all dependency
edges on each level should form a single tree, this is not enforced by WCDGs. If no single tree
can be found, say, for the syntax level, an analysis may consist of disconnected subtrees each
representing a partial parse. Section 3.5.4 addresses this issue in greater depth.

3.3.2 Constraints

A formal definition of constraints can be found in Section 2.5.

Constraints are propositions about the well-formedness of local configurations of edges in a
dependency tree. They are used to encode grammatical restrictions that should hold for a
natural language utterance.

C-7 {X} : SubjectVerbNoun : Subject : 0.0 :

X.level=SYNTAX & X.label=subj -> X@cat=NOUN & X^cat=FINVERB

The subject is a noun and depends on a finite verb.

The most important part of a constraint is a logical formula expressing the condition imposed
by the constraint. This formula is given in the second line of Constraint C-7.8,9 When testing a
dependency edge for compliance with a constraint, it is bound to the variable X and the formula
is evaluated following the rules of an extended version of propositional logic. If it evaluates to
false, the constraint is said to be violated, not fulfilled or not satisfied.

The formula of Constraint C-7 can be paraphrased as follows: For all dependency edges, it must
hold that if the considered edge is on level SYNTAX and the label of the edge is subj, then the
feature cat of the dependent word form of the edge must have a value NOUN and the feature
cat of the governing word form must have a value FINVERB. Or following the literal formula less
strictly: Subjects are nouns and modify finite verbs.

Different types of information about the edge can be accessed in constraints. Figure 3.5 on
the following page shows the available information of one particular example edge that fulfills
Constraint C-7 because both the premise (subject edge on syntax level) and the conclusion (noun
depending on finite verb) of the formula are satisfied.

C-8 {X, Y} : SubjectBeforeObject : WordOrder : 0.1 :

X.level=SYNTAX & Y.level=SYNTAX &

X^id=Y^id &

X.label=subj & Y.label=obj ->

X@pos<Y@pos

8The first line in Constraint C-7 serves more technical purposes by introducing a variable that is a placeholder
for a dependency edge (X), assigning a name to the constraint (SubjectVerbNoun), defining a group the constraint
belongs to (Subject) and specifying the constraint weight (0.0). Finally, an optional comment is given underneath
the constraint.

9In order not to complicate the representation, we will not quote too complicated constraints here. If the
context is clear, we will sometimes leave out extra information like level restrictions.
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cat: FINVERB

morph: ® number: pl

person: third ¯
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subj

«¬¬¬¬¬¬ word: Hunde

cat: NOUN

morph:

«¬
case: nom

number: pl

gender: masc

° ±²
° ±±±±±±²

SYNTAX

Hunde bellen.
Dogs bark.

Figure 3.5: A dependency edge which satisfies Constraint C-7 on the page before.

The subject precedes the object.

Constraint C-8 on the preceding page looks at two dependency edges: the subject and the
object edge (bound to variables X and Y respectively) of one and the same finite verb. It is
violated in configurations where the subject follows the object as in Example E-41 (repeated
from Example E-15 on page 4).10

E-41 Nice things you’ve been telling me!

Note that constraints only carry out a passive check of compatibility. In contrast, operations
like unification create new objects and insert them into the space of possible structures. How-
ever, [W]CDGs depend on a selection from a uniform set of subordination possibilities which
is pre-defined independently of the constraints themselves. Therefore, no operations such as
value assignment or update are available. This restriction means that the compatibility of two
substructures, i.e., their potential for unification or unifiability, can indeed be checked while the
actual unification is not possible (cf. Section 3.4.2).

3.3.3 Critical appraisal of WCDG constraints

This section discusses several aspects that arise from how we defined constraints.

10This constraint may be part of a constraint cluster that is used to enforce the SVO order of languages like
English. However, exceptions have to be included (probably as soft constraints) in order to facilitate an analysis
of Example E-41.
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Restricted constraints

In Section 2.6 we motivated the limitation – from a computational point of view – that any
one constraint must not relate more than two dependency edges. This restriction to unary and
binary constraints together with the lack of an assignment operation is a severe limitation since
usually one wants to be able to write constraints about an arbitrary (and possibly unlimited)
number of connected dependency edges in order to cope with some natural language phenomena
such as non-local dependencies. Figure 3.6 gives a German example where certain dependencies
can only be dealt with by long chains of edges. In order to constrain the agent of the infinite
verb fahren, at least three edges have to be inspected. Possible solutions which allow one to
cope with such situations are based on a combination of techniques discussed in Sections 3.4.6
and 3.5.5. Despite these mitigating techniques the restriction to binary constraints turns out to
be a problematic limitation when modeling certain phenomena.

Ich behaupte das Auto fahren zu können.

det

dobj

subj inf

modal

part_zu

I claim the car to be−able−to.
I claim to be able to drive the car.

drive

Figure 3.6: A dependency tree for a German control verb construction.

As stated earlier, constraints are implicitly universally quantified. Not allowing direct existential
quantification and limiting the arity of constraints are closely related. Intuitively, it is clear that
universal constraints can easily be checked locally while an existence condition requires looking
at the intermediate result from a global point of view. The same holds for the arity of constraints.
The larger the arity of a constraint, the larger the substructures that have to be checked. In
general, it is possible to express existence conditions with universally quantified constraints when
the arity of the constraint equals or exceeds the number of edges in the parsing problem. Such
constraints look at all edges at the same time and therefore can enforce the existence of arbitrary
features. The following equivalence demonstrates this for the simplified case of only two word
nodes ( ô and � ): w³ Ä�´¶µ Ê ·�¸ � N<ª O n _³ Ä�´¶µ Ê ·�¸ _¹ Ä�´¶µ Ê ·�¸ ª y�  Yº� N<ª O~»¼� N< O
Although the grammatical framework neither allows an arbitrary arity nor existential conditions,
some grammatical restrictions nevertheless need an existence quantifier:

� There must be a subject for a finite verb.
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� Some nominal phrases need a determiner.� The main part of a discontinuous word form (such as the French negation ne ... pas or
the German circumposition um ... willen) must be accompanied by the other part.

Fortunately, it is possible to work around these limitations. Additional levels allow one to cope
with situations where constraints of a higher order would be needed, and to indirectly (but not
inelegantly) express existential requirements (cf. Section 3.4.1).

Domain of locality

The domain over which various dependencies can be expressed in a grammar formalism is usually
called the domain of locality [Joshi & Schabes 1997]. In context-free grammars (CFG), it spreads
over a local tree, i.e., a single rule.11 Tree-adjoining grammars [Joshi & Schabes 1997] feature an
extended domain of locality because more complex trees are the basic elements of the formalism.
As always, an extended expressiveness has its price: The larger the domain of locality, the more
basic elements exist and the harder it is to enumerate them all. In the extreme case of data-
oriented parsing [Bod 1995], this results in an exponential number of subtrees that – at least in
theory – have to be considered when parsing a sentence.

The domain of locality in the WCDG framework is both larger and smaller than that for CFG.
On the one hand, the scope is rather limited because at most two dependency edges can be put
in relation by any one constraint. On the other hand, constraints can relate any two edges,
even if they are structurally and linearly distant from each other which is not directly possible
in general even for tree-adjoining grammars. It is, for instance, no problem in WCDG to look
at a node and the governor of its governor at the same time. Furthermore, WCDGs allow the
grammar to define additional auxiliary levels which can serve as ‘short-cuts’ to transport and
concentrate information about the sentence at certain points (cf. Section 3.4.7).

Separation of structure building and assessment

In WCDG parsing, the component that builds up structural hypotheses and the knowledge base
that assesses those hypotheses are strictly separated. This property is shared with optimality
theory [Prince & Smolensky 1993] but contrasts with the common practice in probabilistic
grammars to associate judgments directly with grammar rules, for instance, in probabilistic
context-free grammars [Charniak 1993; Krenn & Samuelsson 1996] which define probability
distributions over all sets of rules which share a common left-hand symbol. Actually there is no
device in WCDG that proposes feasible structures. It is simply assumed that all theoretically
possible dependency trees have to be considered (which is equivalent to the assumption of a
completely uninformed structural component).

Separating these two aspects has a number of advantages:

� The independence of the assessment from constructive rules allows for arbitrarily fine-
grained formulation of well-formedness conditions. It is even possible to postulate (par-
tially) contradicting preferences for one and the same linguistic phenomenon.

11We do not consider the fact that CFG that are enriched with feature-unification can freely percolate arbitrary
information in the tree.
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� As a related issue, the combinatorial explosion of structural rules that becomes necessary
when combining different judgments with a single rule can be avoided [Menzel 2000, p. 7].

� Most importantly, parsing is not a constructive process any longer but a procedure of
selection of the best among a set of alternatives. This eliminative nature can be used to
guarantee that an analysis always comes up with a solution, even if it is heavily penalized.

3.4 General techniques for selected natural language phenomena

We will now describe how WCDG constraints can be used to model various grammatical phe-
nomena. Fortunately, a great number of well-formedness conditions can easily be captured in a
natural way, despite the imposed limitations. Other cases may require more complicated con-
straints or additional auxiliary structures that have no intuitive counterpart. Some phenomena
can only be described approximately, i.e., a constraint grammar will cover most but not all
instances of a certain construction. Finally, some kinds of phenomena cannot be modeled by
restricted constraints at all unless an inordinate number of additional variables is introduced.

This section features mainly crisp constraints because we feel that the underlying principles can
be better imparted if the additional complexity of exceptional cases and soft weights is omitted
at first. However, we will point out candidates for soft constraints from time to time.

3.4.1 Valence

The important concept of valence models the observation that certain words tend to govern
specific other words. To properly describe the valence of a lexeme, three conditions have to be
considered:

� Valence possibility: A lexeme selects its argument, i.e., it determines what properties
another lexeme must have to be a suitable dependent.

� Valence uniqueness: An argument position (or slot) must be uniquely specified, i.e., no
two lexemes can fill the same slot of one lexeme.

� Valence necessity: While some arguments are optional, in many cases an argument is
obligatory, i.e., there must be exactly one lexeme in an analysis that fills a specific argument
position.

All three conditions can be ensured by WCDG constraints.

Valence possibility

In the following Example E-42 on the next page the verb verschieben opens three slots to be
filled by appropriate arguments.
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E-42 Wir verschieben das Treffen [auf die nächste Woche].
We postpone the meeting [until the next week].
‘We postpone the meeting until next week.’

Figure 3.7 on the facing page shows the desired analysis of Example E-42 including the correct
lexical entries for all word forms.

Modeling the valence possibility of a verb12 like this means to describe what kind of words can
fill the government requirements of the verb. Lexically, the subcategorization frame is encoded
in the args feature. In this case, the first two argument positions model the obligatory nominal
constituents while the last one refers to an optional prepositional phrase.

Since WCDGs have no notion of unification (which would come in handy for checking the
compatibility of the verb with its arguments), constraints have to be formulated to guarantee
that the arguments fulfill all of the individual requirements of the verb.

C-9 {X} : ValenceFirstArg : Valence :

X.label=subj ->

X^args:1:cat=X@cat &

X^args:1:morph:case=X@morph:case &

X^args:1:morph:number=X@morph:number &

X^args:1:morph:person=X@morph:person

The first argument has to fulfill the valence requirements.

Constraint C-9, for example, checks the compatibility of the first argument with its governor.
Note that the constraint is quite generic because it is almost completely lexically driven. Though
the constraint writer has to explicitly specify all features that should (potentially) agree, the
individual characteristics of the argument, e.g., its category, and the specific claims of the
governor are completely lexicalized. Assigning a soft score to the constraint would allow the
violation of the valence requirements by a deviant utterance.

Uniqueness of valence fillers

In the previous section, Constraint C-9 was used to enforce conditions that an argument must
fulfill, such as agreement. However, the constraint cannot ensure the uniqueness of certain
arguments. Nothing so far prevents an analysis with, e.g., the syntactic function subj assigned
to two different lexemes if they both carry the required case, i.e., nominative, as in Example E-43.

E-43 Wir treffen die Kollegen
Pro,nom Vfin Det,{nom,acc} Noun,{nom,gen,acc,dat}

We meet the colleagues.

Only constraint C-10 on page 56 ensures that any two dependency edges do not assign the same
function subj to different lexemes.

12For ease of presentation, we restrict ourselves to the valence of verbs; the same pattern applies to different
categories with valences as well, e.g., nouns.
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½o¾¿¾¿¾¿¾¿¾À¾¿¾¿¾¿¾¿¾¿¾À¾¿¾¿¾¿¾¿¾¿¾¿¾À¾¿¾¿¾¿¾¿¾¿¾�Á

word: verschieben

cat: FINVERB

args:

½o¾À¾¿¾¿¾¿¾¿¾¿¾¿¾À¾¿¾¿¾¿¾¿¾¿¾¿¾À¾¿¾¿¾¿¾�Á

1:

½Â¾¿¾¿¾�Áoptional: no

morph:

½p¾�Ácase: nom

number: pl

person: 1

ÃpÄ�Å ÃÂÄ¿Ä¿Ä�Å

2:

Æ

optional: no

morph:case: acc

Ç

3:

½p¾¿¾¿¾�Áoptional: yes

cat: PREP

prep: auf

morph:case: acc

ÃpÄ¿Ä¿Ä�Å
ÃoÄÀÄ¿Ä¿Ä¿Ä¿Ä¿Ä¿ÄÀÄ¿Ä¿Ä¿Ä¿Ä¿Ä¿ÄÀÄ¿Ä¿Ä¿Ä�Å

ÃoÄ¿Ä¿Ä¿Ä¿ÄÀÄ¿Ä¿Ä¿Ä¿Ä¿ÄÀÄ¿Ä¿Ä¿Ä¿Ä¿Ä¿ÄÀÄ¿Ä¿Ä¿Ä¿Ä¿Ä�Å ½p¾¿¾¿¾�Áword: auf

cat: PREP

prep: auf

morph:case: acc

ÃpÄ¿Ä¿Ä�Å

½o¾¿¾À¾¿¾¿¾¿¾�Áword: Treffen

cat: NOUN

morph:

½Â¾�Ácase: acc

number: sg

gender: neut

ÃÂÄ�Å
ÃoÄ¿ÄÀÄ¿Ä¿Ä¿Ä�Å

½o¾¿¾À¾¿¾¿¾¿¾�Áword: Woche

cat: NOUN

morph:

½Â¾�Ácase: acc

number: sg

gender: fem

ÃÂÄ�Å
ÃoÄ¿ÄÀÄ¿Ä¿Ä¿Ä�Å

½p¾À¾¿¾¿¾¿¾¿¾�Áword: wir

cat: PRONOUN

morph:

½o¾�Ácase: nom

number: pl

person: 1

ÃoÄ�Å
ÃpÄÀÄ¿Ä¿Ä¿Ä¿Ä�Å
½p¾À¾¿¾¿¾¿¾¿¾�Áword: das

cat: DEFART

morph:

½o¾�Ácase: acc

number: sg

gender: neut
ÃoÄ�Å

ÃpÄÀÄ¿Ä¿Ä¿Ä¿Ä�Å
½p¾À¾¿¾¿¾¿¾¿¾�Áword: die

cat: DEFART

morph:

½o¾�Ácase: acc

number: sg

gender: fem

ÃoÄ�Å
ÃpÄÀÄ¿Ä¿Ä¿Ä¿Ä�Å
½p¾À¾¿¾¿¾¿¾¿¾�Áword: nächste

cat: ADJ

morph:

½o¾�Ácase: acc

number: sg

gender: fem

ÃoÄ�Å
ÃpÄÀÄ¿Ä¿Ä¿Ä¿Ä�Å

Wir verschieben das Treffen [auf die nächste Woche].

subj

dobj

pobj

prep

det
det

attr
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C-10 {X, Y} : SubjUnique : Valence :

X.label=subj & X^id=Y^id -> Y.label!=subj

The subject for a given word form is unique.

Note that while it was sufficient to examine a single edge in order to check, for example, agree-
ment, one has to constrain pairs of dependency edges for the uniqueness property.

Valence necessity

Modeling valence possibilities and the uniqueness of valence fillers is not sufficient. What we
cannot express up to now is the condition that there is at least one instance of a specific argument
type. Only by adding this kind of restriction to the grammar can we make sure that exactly one
word form exists that fills a specific valence slot.

It is not possible to write a constraint that directly expresses this condition in the restricted
formalism: The presence of an edge with specific properties could only be enforced by examining
all edges at once or by employing an existential quantifier, whereas our restricted constraints
may only relate two edges at most and must be universally quantified. One can overcome this
problem by introducing an auxiliary level. Its purpose is to establish the inverse edge between
the two lexemes, i.e., whenever a governor dominates its argument on the syntax level, the
argument will dominate the governor on the auxiliary level [Maruyama 1990a]. A constraint can
now check whether the valence slot of a lexeme is filled by testing whether the lexeme depends
on another form on the auxiliary level. Note that as many of these auxiliary levels are required
as there are different valence requirements of a single lexeme. These additional levels are just
a technical means to compensate for the lack of an existence quantifier. Generally, they do not
have a linguistic interpretation. Figure 3.8 on the facing page shows how the syntactic level and
an auxiliary level are used in combination.

Since the edges of the auxiliary level do not build complex tree structures, it is possible to
represent them as simple arcs drawn below the syntactic tree. Figure 3.9 on page 58, therefore,
contains the same information as Figure 3.8 on the facing page.

Finally, the syntactic dependency edge and its inverse edge on the auxiliary level need to be
coupled to ensure that they can only occur together. This is achieved by Constraint C-11: A
lexeme selects another lexeme as its first argument on the auxiliary level if and only if there is
an inverse dependency edge on the syntactic level with the label subj.

C-11 {X, Y} : Aux1SyntaxMapping : ValenceExistence :

X.level=SYNTAX & Y.level=AUX1 ->

( X^id=Y@id & X.label=subj <-> X@id=Y^id )

The first syntactic argument (subject) is mirrored on the first auxiliary level.

Constraint C-12 restricts the scope of the auxiliary level to those lexical items that are specified
for a first argument by forcing the link to the root of the tree if no argument is possible.

C-12 {X} : Aux1Root : ValenceExistence :

X.level=AUX1 & ~exists(X@args:1) -> root(X^id)

Words without a first complement point to the root on the AUX1 level.

Constraint C-13 on the next page ensures that the subject slot of a finite verb is filled.



3.4 General techniques for selected natural language phenomena 57

SYNTAX

Haben Sie es
Have (aux) you it
Did you write it down?

Haben Sie es
Have (aux) you it
Did you write it down?

aux

obj
subj

AUXILIARY 1

notiert?
written−down?

notiert?
written−down?

subj_inverse

Figure 3.8: Dependency analysis for the main level SYNTAX and an auxiliary level for the first
argument.

C-13 {X} : Aux1Existence : ValenceExistence :

X.level=AUX1 & X@args:1:optional=no ->

~root(X^id)

Words with obligatory first arguments must modify the latter on the first auxiliary level.

Although these constraints jointly express an existence condition13, they fulfill the conditions
stipulated above: At most two edges are considered, and no existential quantifier is used. Again
introducing soft weights for certain constraints would facilitate the analysis of sentences with
missing arguments.

3.4.2 Feature percolation

Feature transport refers to the process of carrying some kind of information along dependency
chains of possibly arbitrary length. This mechanism is required to describe natural language
phenomena where constraining information is applied at a particular node but originates from
a structurally distant one.

13As a side effect, Constraints C-11 on the facing page and C-13 also guarantee the uniqueness of the argument,
which has already been enforced by the binary Constraint C-10 on the facing page.
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SYNTAX

Haben Sie es
Have (aux) you it
Did you write it down?

aux

obj
subj

notiert?

AUXILIARY 1

written−down?

Figure 3.9: Dependency analysis with an alternative presentation of the first auxiliary level.

obj

inf
subj

Der Montag würde sich anbieten.
The Monday would suggest.itself
The Monday suggests itself.

det
3rd

3rd
3rd

Figure 3.10: Feature percolation in a dependency tree.

In Figure 3.10, it is necessary to have access to the person feature of the reflexive pronoun sich
at a node where its antecedent can be identified in order to establish the required agreement.
The information has to percolate all the way up the verb chain.

Because WCDG is based solely on passive feature checking, it provides no direct mechanism
for feature transportation. Therefore it is not possible for a node to ‘inherit’ properties from
another node (which could only be achieved through some kind of assignment or unification).
The dashed arrows indicate the way that the person feature of the word sich would have to
travel to be matched against the word Montag but no transport of this information can take
place.

One possibility to overcome this deficiency is to introduce labels for the dependency edges that
encode more information than just the syntactic function. The labels obj, inf and subj could
be augmented to the labels obj_3rd, inf_3rd and subj_3rd so that the person agreement could
be checked at both ends of the chain.

There are several disadvantages to this approach. Since labels can be accessed only as atomic
values, constraints would become much more complicated, having to encode and decode the
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information contained in the labels several times. While this is more of a technical complication,
the considerable increase in the number of possible labels is highly problematic since �L~��
different labels are necessary, where � is the number of syntactic functions and � is the number
of different values the percolating feature may take.

Since the computational complexity grows polynomially in the number of labels, this method is
rejected and Sections 3.4.7 (additional levels) and 3.5.5 (approximation of high-order constraints)
introduce mechanisms that are better suited to solve the problem of feature transportation.

3.4.3 Word order

Word order is a complex phenomenon and some of its aspects are (partly implicitly) dealt
with in other sections in this chapter, e.g., vorfeld realization in Section 3.4.4, linear ordering
of complements in Sections 3.3.2, 3.5.1 and 3.5.2 and projectivity in Section 3.4.5. Here, we
restrict ourselves to simple aspects of word order.

The standard linear ordering of an adjective and its governing noun, for example, differs for
German and French in that in German the adjective precedes the noun while it often is the
other way around in French (cf. Examples E-44 and E-45).

E-44 Ein großer Hund ...
A big dog ...

E-45 Le traitement automatique ...
The processing automatic ...
‘The automatic processing...’

Since the restriction on word order is directly connected to the dependency between adjective
and noun, it is easy to formulate Constraint C-14 that excludes constructions with a wrong word
order from the set of well-formed German sentences. Section 3.5.1 extends this example to soft
constraints.

C-14 {X} : AdjNounWordOrder : WordOrder :

X.level=SYNTAX & X@cat=ADJ & X^cat=NOUN -> X@pos<X^pos

An adjective precedes its noun.

As long as only up to two dependency edges are needed to constrain the word order, it is quite
easy to write the corresponding constraints. Note, however, that some word order phenomena
depend on deeply embedded structures and cannot easily be described by a single constraint. The
next section gives an example of how a grammar writer can deal with such complex constructions
for word order.

3.4.4 Vorfeld realization

The word order at sentence level in German is characterized by so-called topological fields
(topologische Felder or Satzfelder) [Grewendorf, Hamm & Sternefeld 1987] which correspond
roughly to positions in a sentence which again may be filled by no, one or more constituents.
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Left Right
Vorfeld Sentence Mittelfeld Sentence Nachfeld

Bracket Bracket

Ich habe den Mann gesehen.
Den Mann habe ich gesehen.

Wen habe ich gesehen?
Ich habe gesagt daß ich nach Berlin komme.

daß ich nach Berlin komme.

Figure 3.11: Topological fields in German sentences.

Figure 3.11 contains several examples of the assignments of constituents to the topological fields.

The vorfeld rule of German states that in a declarative main clause, the finite verb is preceded
by exactly one constituent. This condition can be formalized by Constraints C-15 through C-17.
These constraints ensure that a finite verb directly governs exactly one node on its left. Note
how an auxiliary level VORFELD is used to ensure that the vorfeld slot is filled in much the
same way as in Section 3.4.1. First the Constraint C-15 forces each finite verb to select a word
to its left as its vorfeld. Then constraints C-16 and C-17 make sure that the main level SYNTAX
is properly coupled with the auxiliary level VORFELD.

C-15 {X} : VorfeldInit : Vorfeld :

X.level=VORFELD ->

(X@cat=FINVERB -> ~root(X^id) & X^pos<X@pos)

&

(X@cat!=FINVERB -> root(X^id))

Only finite verb must point to the vorfeld to the left.

C-16 {X, Y} : UnderVerbVorfeld : Vorfeld :

X.level=SYNTAX & Y.level=VORFELD &

X^id=Y@id & X@pos<X^pos & Y@cat=FINVERB ->

Y^id=X@id

A constituent depending on the verb from the left must occupy the vorfeld.

C-17 {X, Y} : VorfeldUnderVerb : Vorfeld :

X.level=SYNTAX & Y.level=VORFELD & Y^id=X@id ->

X^id=Y@id

The vorfeld constituent depends on the finite verb.

Note that a complete vorfeld treatment with subordinate clauses and non-projective construc-
tions requires more complicated constraints with exceptions and possibly soft constraints.

Separating word order phenomena from dependency structures has first been suggested by Bröker
[1998] by postulating an additional so-called word order domain structure. An extension of the
Stellingen grammar to an entire model of topological fields is subject to further research. In
particular, a treatment along the lines of Duchier & Debusmann [2001] who propose a complete
topological dependency tree in addition to the tree of syntactic dependencies is compatible with
our approach.14 An alternative suggestion is due to Gerdes & Kahane [2001] who postulate an

14A formalization is given in Duchier [2001].
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intermediate phrase structure to model topological fields. Assuming such a model of topological
fields is feasible within the framework of WCDG, the integration of supplementary preferences
about the word order within the middle field (Mittelfeld) [Uszkoreit 1987] is straight-forward.

3.4.5 Projectivity

A general rule about constituents is that they are nested structures of adjacent words, i.e., a
constituent may be contained within another, but two constituents may not partially overlap.
This rule can be formulated in terms of projectivity : A dependency tree is projective if every
word node can be projected to the base of the tree without crossing a dependency edge. An
analysis is projective if and only if a projective dependency tree can be drawn for that analysis.
Throughout this chapter, we present projections as dotted lines and dependency edges as solid
lines in the figures. For example, Figure 3.12 shows a non-projective dependency tree for a
non-projective analysis, with the instances of projectivity violations marked by circles.

When we

subj

obj

modal

When do we want to meet?

wh_mod

Wann wollen wir uns
us

treffen?
meet (infinitive)?want−to

Figure 3.12: A non-projective dependency tree.

For efficiency reasons, one often wants to restrict the syntactic analyses to projective ones [Ka-
hane, Nasr & Rambow 1998; Sleator & Temperley 1991; Courtin & Genthial 1998]. Nevertheless,
there are some natural language phenomena for which it is difficult to establish a projective anal-
ysis, such as the surface strings resulting from wh-movement.

In general we demand projectivity, but allow non-projective structures for some exceptions (such
as modal verb constructions like the one in Figure 3.12).

For connected dependency trees, projectivity can be enforced by the following constraints C-19
and C-20 on the following page.15 For reasons of simplicity, we have eliminated those parts of
the constraints that deal with exceptional cases for which we explicitly allow non-projectivity.

C-19 {X, Y} : ProjectivityDirect : Projectivity :

X.level=SYNTAX & Y.level=SYNTAX & X^id = Y@id ->

Y^pos <= min(X@pos, Y@pos) | Y^pos>=max(X@pos, Y@pos)

A dependency cannot cover an ancestor.

15Maruyama [1990a] used a similar Constraint C-18 for the same purpose:

C-18 {X, Y} : Maruyama : Projectivity :

X^pos<Y@pos & Y@pos<X@pos ->

X^pos<=Y^pos & Y^pos<=X@pos
Hudson [2000, p. 30] uses a combination of no-tangling, no-dangling and sentence-root principles and restricts

their applicability to the surface structure.
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C-20 {X, Y} : ProjectivityNoCrossing : Projectivity :

X.level=SYNTAX & Y.level=SYNTAX & min(X@pos, X^pos) < min(Y@pos, Y^pos) ->

max(X@pos, X^pos) >= max(Y@pos, Y^pos)

|

max(X@pos, X^pos) <= min(Y@pos, Y^pos)

Dependency edges do not cross.

Figure 3.13 on the facing page proves that these constraints forbid all cases of non-projectivity.

Note that constraint violations for non-projective structures are not always visible at the same
location in the tree where we mark them with circles. The non-projectivities in Figure 3.12 on
the page before, for instance, are both covered by a single violation of Constraint C-19 on the
preceding page.16 When the edge from wann to treffen labeled wh_mod is bound to variable X

and the edge from treffen to wollen labeled modal is bound to Y the term Y^pos (position of
wollen) is neither smaller than the minimum nor larger than the maximum of X@pos (position
of wann) and Y@pos (position of treffen). This corresponds to case (Ia) in Figure 3.13 on the
facing page with � representing wann, � wollen and � treffen.

Relative clauses with inverted subject-object word order as in Figure 3.14 on page 64 are in-
stances where the non-projectivity is detected by Constraint C-20. In this case the dependency
edges that cause the violation are not connected (case (Ib) in Figure 3.13 on the facing page).

3.4.6 Thematic roles

The representation of semantic information in CDG is hampered by the fact that only direct
relations between word forms can be established. A grammar that employs only binary con-
straints cannot always investigate an entire constituent, but only its head word. Since features
from subordinated words are not available at the head word, no compositional semantic structure
can be built. Nevertheless, it is possible to model a number of selection and subcategorization
phenomena. Furthermore, special problems of semantics, e.g., reference resolution, can often be
solved by postulating additional levels of analysis (cf. Section 3.4.7).

In principle, the very same mechanisms that enable the analysis of syntactic head-complement
structures can be used to establish a kind of functor-argument structure. There are, however,
a number of different possibilities for representing such a structure by means of dependency
relations.

Since in many cases, especially with complex verb groups, the syntactic and semantic structures
differ considerably (cf. Figures 3.3 on page 48 and 3.4 on page 48), an obvious solution would
be to create an autonomous semantic level in analogy to the syntactic one. Semantic relations
between word forms are represented as dependency edges on that level, and the kind of relation
(e.g., the thematic role) can be notated as the label of the edge.17 This approach is conceptually
simple, but introduces an additional problem. While syntactic analyses are traditionally trees,
i.e., each word form has a unique governor, such an assumption is not necessarily justified for

16It is questionable whether it is a shortcoming to detect only a single violation although two or possibly more
intersections of projection lines and dependency edges exist (circles in Figure 3.12 on the page before). Arguably
one can consider this a single non-projectivity caused by the subordination of the first under the last word.

17 Word grammar [Hudson 1990; Hudson 2000] uses a similar approach but allows extra edges in the syntactic
structure itself, rather than introducing additional levels.
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Let � be the set of word nodes in the tree. Let Y � � D8� be the direct subordination
relation and Y ] the transitive closure thereof, the partial order of subsumption. Let
further ù � ��D0� be the total order of linear order, i.e., �µù�� means � appears to
the left of � .
The following figure shows all possible configurations for three nodes � ù¾� ùJ�
with �¬Y � . Only configuration (I) is a non-projective one.

C

A

C

B

A

B

A

C

A B

(I) (III)(II) (IV)

B

C

The next figure looks at this configuration in greater detail. There are only three
possible expansions for the path �BY ] � :

A

C

B
DE

A

C

BDE

(Ib)(Ia) (Ic)

A

C

B
D

(Ia) No edge on the path ends to the right of node � . The first edge ��Y,� on the
path �BY�]^� in combination with edge �¬Y � is forbidden by Constraint C-19
on page 61.

(Ib) At least one edge on the path ends between node � and node � and starts to the
right of node � . Edges ��Y�� and � Y�� are forbidden by Constraint C-20
on the facing page.

(Ic) symmetric with configuration (Ib)

Figure 3.13: Proof (by case differentiation) that Constraints C-19 on page 61 and C-20 on the
facing page ensure projectivity of dependency trees.

semantics. In contrast to syntactic subordination, it is quite common for a word form to fill
more than just one semantic slot.

In Example E-46 the word form Mann fills at least two roles: It is the agent both for the ‘telling’
and the ‘laughing’ event. All attempts to represent both relations in a single tree are artificial
and lead to additional problems, e.g., by introducing extra labels (cf. Section 3.4.2).
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that
... the appointment that we have agreed on.

Termin,... der den vereinbart haben.
... the appointment agreed on have.

det

rel

wir
we

aux

subj

obj

Figure 3.14: A non-projective dependency tree violating Constraint C-20 on page 62.

E-46 Der Geschichten erzählende Mann lacht.
The stories telling man laughs.
‘The man telling stories laughs.’

Heinecke & Nolda [1998], for instance, keep the concept of a single semantic tree but allow
reversed semantic edges with appropriate labels in cases where a word fills more than one
semantic slot.

An alternative solution is to distribute the semantic representation across a number of additional
levels (one for each type of semantic role) on which the functor is the dependant, i.e., the relation
is reversed if compared to the analysis in Figure 3.4 on page 48. Now the unique specification
of the governor can be maintained. The disadvantage of requiring an entire set of new levels
is compensated for by the natural and flexible representation of semantic relations. On each
level, word forms that have a corresponding semantic slot to fill, ‘depend on’ or select the slot
filling word forms. Figure 3.15 on the next page shows three semantic edges originating from
two semantic levels below the syntax tree. The use of arrows in Figure 3.15 on the facing page
also emphasizes that word forms with open semantic slots select or point to the word forms that
fill the slots.

3.4.7 Reference resolution

As already mentioned in Section 3.4.6, many different problems of natural language analysis can
be addressed by the introduction of additional levels in WCDG. One such problem is feature
percolation (cf. Section 3.4.2) that can be addressed by directly connecting the source and the
destination of a percolating feature on a separate level.

Another example is reference resolution, i.e., identification of those word forms that anaphoric
pronouns refer to.

On a special level, say REF, referring pronouns select their antecedents (cf. Section 3.4.6 for an
in-depth explanation of the general technique of introducing an additional level on which specific
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Der Geschichten erzählende Mann lacht.
The stories telling man laughs.
The man telling stories laughs.

subj

obj

det

mod

THEME AGENT AGENT

Figure 3.15: A syntactic dependency tree with two additional levels for thematic roles.

selectional processes are carried out). Constraints dealing with properties of relations between
referent and antecedent can then easily be formulated for dependency edges on that level.

In Example E-47 the relative pronoun der has two possible antecedents: Ehemann and Frau.

E-47 Ich sehe den Ehemann der Frau, der schläft
Det,acc,masc Noun,acc,masc Det,gen,fem Noun,gen,fem Rel,nom,masc

I see the husband (of the) woman who sleeps.
‘I see the sleeping husband of the woman.’

Constraints like C-21 have access to dependency edges on the level REF and constrain them to
those where, for example, the pronoun and the noun agree with respect to gender and number.

C-21 {X} : RelativeGenderNumber : RelativeSentence :

X.level=REF & X@cat=RELPRONOUN ->

X@gender=X^gender & X@number=X^number

Relative pronoun and antecedent agree with respect to gender and number.

Figure 3.16 on the next page presents a possible analysis for Example E-47. Note that this
structure departs form the classical analysis of relative clauses [Tesnière 1959] in so far as it does
not have to assume a double position for the relative pronoun, both as a governor of the whole
relative clause and as a regular dependent pronoun [Gerdes & Kahane 2001, Section 2.9].

Other restrictions, such as those involving quantifier scope or discourse [Kamp & Reyle 1993],
cannot easily be modeled because firstly the domain of a WCDG analysis is usually a single
sentence and secondly the logical inventory is generally too weak.
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Ich den

det

sehe Ehemann der Frau der schläft.

det subj

rel
gen_attr

obj

subj

REF

Figure 3.16: An analysis of a sentence with a relative clause including reference resolution.

3.5 Modeling gradation using weighted constraints

In order to emphasize certain techniques of WCDG grammar modeling in the previous section,
we only used constraints as strict conditions, i.e., a valid dependency structure is not allowed to
violate any of these constraint. We now come back to gradation in natural language which can
only be (or is at least much better) described in terms of soft constraints that encode preferences
rather than absolute conditions (cf. Section 1.1).

Grammatical conditions can then be subdivided into a number of classes, partially along the di-
mension of constraint strength, partially depending on their interaction with related constraints.

Certainty: Conditions that must hold in any case in a valid solution are modeled as hard
constraints. Even if one allows almost all grammatical rules to be violable, hard conditions
are used to define the ‘fall-back’ cases; otherwise too many alternative equivalent structures
would be possible in case of an erroneous utterance.

Well-formedness: Grammatical rules are formulated as soft constraints that receive a small
weight (near zero). This ensures that language errors in utterances do not lead to a break-
down of the system, but also takes into consideration that a violation is a severe fault in
language use.

Preference: Preferential information enters the system in the form of constraints with high
weights (near one). They allow the distinction between otherwise equivalent candidates
but (usually) cannot overrule a well-formedness constraint.

Spurious ambiguity: Some constraints with weights very close to one have the sole purpose
of avoiding spurious ambiguities that do not correspond to any real linguistic ambiguity
in the sentences.

Markers: Constraint with a weight of exactly one do not influence the score of a structure.
Their only purpose is that their violation indicates that a certain condition is fulfilled,
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such as the existence of a relative clause in the sentence. This completes the hierarchy of
constraints that is defined by an increasing weight, from zero (certainty) to one (markers).

Information fusion: Constraints that integrate external judgments, such as acoustic scores
from a speech recognizer or part-of-speech tag probabilities, are special because their
weights must be carefully balanced with the rest of the grammatical constraints. No
general rule about the score range can be given for them. See Section 5.6 for an example.

Defaults: Default values are a mixture of previous types: The space of possibilities is described
with certainty conditions and all values except the default are dispreferred using preference
constraints.

Approximation of higher order constraints: Soft constraints are well suited for encoding
complex conditions that could otherwise not be modeled with the restricted constraints.

Dynamic constraints: Dynamic constraints do not have a fixed weight, but receive different
scores depending on the context in which they are evaluated (cf. Section 2.5.1).

A WCDG with soft constraints defines a hierarchy of possible parses, each one annotated with a
score and the list of soft constraints that are violated by the particular structure. Soft constraints
have the additional advantage that they allow one to integrate all kinds of preferences into the
analysis, so that even if the utterance is really ambiguous the parsing system can rank its parses
based on the preferences of the grammar. A practical system may then choose to either use only
the best solution or more than one parse; whichever seems more appropriate depending on the
particular application and on the scores of the structures.

Note that the introduction of weighted constraints can have two almost contradictory conse-
quences:

� If hard constraints are changed so that they may be violated, then those utterances that
violate these constraints become parsable. Of course, the search space for the parsing
problem increases as more dependency edges remain acceptable.� On the other hand, ambiguous analyses for an utterance can be eliminated by introducing
additional constraints with high scores. Such constraints can assign slightly different scores
to competing analyses so that only one of them is selected as the solution. These prefer-
ences also guide the analysis process so that the most promising hypotheses are tried first.
Thus, the expansion of the space of possible solutions (see above) can be counterbalanced
by a more goal-oriented disambiguation.

3.5.1 Well-formedness

Although speakers most often follow the rules of a language, there are always exceptions: Agree-
ment requirements are ignored, words are omitted, sentences are truncated, word order regular-
ities are not satisfied etc.

Constraints in the previous section encode crisp ‘grammatical’ rules. In order to be able to parse
deviant utterances these constraints have to be extended by exceptions and non-zero weights.

For instance, Section 3.4.3 featured Constraint C-22 (repeated from Constraint C-14 on page 59)
that forces an adjective to precede its governing noun in a German noun group.
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C-22 {X} : AdjNounWordOrder : WordOrder :

X.level=SYNTAX & X@cat=ADJ & X^cat=NOUN -> X@pos<X^pos

An adjective precedes its noun.

While this constraint is correct also for English from a text book point of view (cf. Example E-44
on page 59), there are exceptions to the rule where it makes sense to allow for post-modifying
adjectives as well. Examples E-48 [Cowie 1989] through E-51 are such instances of different
types.

E-48 (a) Students have to do a year’s preparation before they start the degree course proper.

(b) She hadn’t had a proper holiday for years.

(c) A hammer is the proper tool for the job.

E-49 The task could not be finished in the time available.

E-50 Forelle blau
Trout blue
‘Truite bleu’

E-51 Es gibt hier keine Bücher... alte.
It exists here no books... old.
‘There are no books here, old ones.’

Of course, it is always possible to argue for alternative (more appropriate) analyses of these
examples that differ from that of an adjective modifying a noun: One might want to provide
multiple lexical entries for the word proper because it has a different meaning in Example E-48a
than in Examples E-48b and E-48c; an analysis of Example E-49 as a reduced relative clause
might seem more appropriate;18 Example E-50 could be considered a fixed term originating
from the French translation19; the adjective in the spontaneous utterance of Example E-51 could
be analyzed as extraposed. However, offering a special treatment does not solve the problem
completely. Alternative analyses can only be provided for anticipated constructions. But even
for foreseen deviations from the standard, a grammar writer may abstain from arranging a
special treatment for them, for instance, because the construction is computationally expensive
to parse or difficult to express in the formalism. The point here is that a simple standard analysis
can easily be extended to deviating cases so that even unforeseen constructions can be parsed
(although maybe in a linguistically suboptimal way).

Constraint C-23 on the next page demonstrates two major methods to extend the coverage of the
grammar to non-standard utterances. Firstly, and most importantly, the constraint gets a soft
weight of 0.1, making post-modifying adjectives possible but penalized. Secondly, an exception
has been coded into the constraint. Adjectives that are explicitly marked as post-modifying in
the lexicon (such as proper) are not penalized by the constraint.

18There are also cases that do not allow an adjective to be placed before the noun. The adjective asleep in
Example E-52 only allows a predicative use, thus supporting an analysis as a reduced relative clause.

E-52 The fire alarm saved a man asleep.

19The word order of the adjective proper when placed after the noun is probably also influenced by the word
order of the French adjective propre.
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C-23 {X} : AdjBeforeNoun : WordOrder : 0.1 :

X.level=SYNTAX & X@cat=ADJ & X^cat=NOUN & X@type!=postmodifier ->

X@pos<X^pos

Non-postmodifying adjectives (usually) precede the noun.

Note that Example E-51 on the facing page shows an additional difficulty. The adjective alte
does not agree with the noun, neither with regard to case as in ‘Es gibt hier keine alten Bücher.’
nor with regard to adjective type (‘Es gibt hier alte Bücher.’ ). The next paragraph shows how
the sentence can nevertheless be analyzed in the desired way.

In Section 3.4.1, the hard Constraint C-9 on page 54 was suggested to enforce the complete set
of lexical valence requirements (category & morpho-syntactic agreement) in a head-argument
structure at once. Assigning a non-zero weight facilitates the successful analysis of utterances
with agreement errors. A much better idea, however, would be to split it into a set of smaller
soft constraints which only constrain a single feature respectively, e.g., as in Constraints C-24
through C-27.

C-24 {X} : ValenceFirstArgCat : Valence : 0.1 :

X.label=subj -> X^args:1:cat=X@cat

C-25 {X} : ValenceFirstArgCase : Valence : 0.2 :

X.label=subj -> X^args:1:morph:case=X@morph:case

C-26 {X} : ValenceFirstArgNumber : Valence : 0.2 :

X.label=subj -> X^args:1:morph:number=X@morph:number

C-27 {X} : ValenceFirstArgPerson : Valence : 0.2 :

X.label=subj -> X^args:1:morph:person=X@morph:person

The smaller constraints have the advantage that the weights can be assigned in a more fine-
grained fashion and that a sentence with a single error, e.g., wrong case only, can be treated
differently from utterances with multiple faults. Additionally, errors can be detected individually,
which is crucial for diagnosis of language faults (cf. Section 5.4).

3.5.2 Preference constraints

Besides contributing to a robust analysis, soft constraints allow the integration of preferential
knowledge into the parsing system. By preferences, we mean information about the structure of
natural language utterances that are often, but not always true and that help to find the most
plausible analysis of an ambiguous sentence.

In German, for example, subjects usually precede the object, but this is not as strict as it is in
English, for instance. If the speaker wants to focus on the object or just get the attention of
the hearer, it is perfectly grammatical to move the object to the beginning of the sentence as in
Example E-53 (cf. Example E-15 on page 4).

E-53 Diesen Termin mag ich nicht.
This appointment like I not.
‘This appointment, I do not like.’
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Thus, Constraint C-28 (repeated from Constraint C-8 on page 49) is too strict for German.
Softening the constraint with a weight of, say, 0.9, preserves the preferential characteristic of
the condition without leading to a system failure in the topicalized case.

C-28 {X, Y} : SubjectBeforeObject : WordOrder : 0.1 :

X.level=SYNTAX & Y.level=SYNTAX &

X^id=Y^id &

X.label=subj & Y.label=obj ->

X@pos<Y@pos

The subject precedes the object.

This kind of preferential information blends well with the lexicalized constraints shown in Sec-
tion 3.4. For instance, the word form paßt (‘suit � ��� ’) expresses approval. It takes an indirect
object that indicates who gives the approval. In the Verbmobil domain this will most often be
the speaker and sometimes the hearer. The lexical entry for the word form may include this
domain-specific knowledge as a list of preferred types for its second argument (cf. Figure 3.17).
Note that the least preferred sort is anything that subsumes every other sort so that a second
argument that is not a human being only leads to a penalization with a weight of 0.5.�����������������

word: paßt

cat: finite

args:

�����������
1:

��� cat: nominal

case: nom

number: sg

����
2:

��� cat: nominal

case: dat

sort: � speaker 1.0 human 0.8 anything 0.5 �
����
������������

������������������
Figure 3.17: A lexical entry with preferences for the type of its second argument.

3.5.3 Spurious ambiguity

The weakest kind of constraints is used to avoid spurious ambiguities in natural language analyses
that can be traced back to the failure of the formalism to cope with underspecification.

E-54 Ich dachte noch in der nächste Woche.
Adj,{nom,acc} Noun,dat

I thought still in the next week.
‘I thought still next week.’

Example E-54 (n001k001-1 from the Stellingen corpus) violates an agreement constraint because
the dative noun Woche does not agree with its adjective with respect to case. But nächste is
ambiguous in that it can be nominative or accusative case. In order to avoid an enumeration
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of these readings, a constraint very slightly prefers nominative case to the other cases. Thus,
we get an analysis with nominative assigned to nächste (and, of course, identifying that a case
violation occurred). This kind of preference corresponds to the linguistic preference for the
unmarked nominative case. Nevertheless a speaker of a language would not assign nominative
case to nächste but instead note that nächste should be replaced by the correct form nächsten.
The preference is here used as a technical means to overcome a technical problem that humans
do not even have.

3.5.4 Default subordination

Usually, the finite verb is considered the root of the dependency tree. However, in cases where
no consistent structure can be found, it may be desirable that word forms of other categories
form the root. This may be because no adequate governor is available for them or because the
finite verb is missing from the utterance. Allowing word forms of all categories to form the
root of a tree considerably contributes to the robustness because unknown constructions and
fragmentary input can be at least partly analyzed.

Mitjushin [1992] identifies the general underlying cause why dependency analysis is well-suited
for partial parsing:

“In our opinion, dependency structures are better adapted to partial parsing than
constituent structures. The reason is that the dependency structure of a segment is
the same both when the segment is considered as isolated and when it is considered
as a part of some sentence (by “segment” we understand any sequence of words).”

—— Mitjushin [1992, p. 1]

The Constraints C-29 and C-30, for example, demonstrate the method of an isolated analysis
for adverbs.

C-29 {X} : AdverbInit : Adverb : 0.0 :

X@cat=ADVERB ->

X^cat=VERB | X^cat=ADJ | X^cat=ADVERB | root(X^id)

An adverb is subordinated under a verb, an adjective or another adverb or may be the root of the
tree.

C-30 {X} : AdverbNoRoot : Adverb : 0.1 :

X@cat=ADVERB -> ~root(X^id)

Most often, an adverb is not the root of the tree.

Constraint C-29 generally allows the subordination of adverbs under verbs, adjectives and ad-
verbs, as well as an analysis of adverbs as the root of the tree. Constraint C-30 penalizes the
root analysis with a weight of 0.1. Therefore, the subordination under verbs, adjectives and
adverbs is highly preferred, but in case that no such dependency can be found, an analysis as
root is acceptable as well.

E-55 (Wie hat Schalke die Bayern geschlagen?)
(How has Schalke defeated the Bavarians?)

Haushoch È�É � !
Resoundingly!
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In Example E-55 on the preceding page, the single adverb haushoch can be analyzed even though
no complete sentence, especially no finite verb, can be found. While this example is trivial the
very same mechanism allows an analysis of fragmentary input (cf. Example E-56).

E-56 Ich ... wie ist es am Donnerstag?
I ... how is it on Thursday?
‘How about Thursday?’

Obviously (at least for human beings), the speaker started a sentence with ich, but changed his
mind, aborted the sentence and uttered a different question. This kind of self-correction is found
quite often in spontaneous speech and practical systems have to deal with it. Figure 3.18 shows
a possible dependency analysis for this utterance.

Ich... Wie ist es Donnerstagam

wh_mod

subj

pmod

prep

How it on Thursday
How about Thursday?
I... is

Figure 3.18: An analysis of an utterance with self-correction.

The personal pronoun ich is subordinated under the root of the tree because it does not fit very
well into the dependency tree for the rest of the utterance. Such a structure cannot only be
used by a subsequent processing stage to identify the structure of the main sentence but also (in
conjunction with a corresponding constraint violation) to determine that there was some kind
of self-repair. However, some additional component has to detect that the overall low score of
the analysis can solely be attributed to the sentence restart; the structure of the sentence proper
(without the leading superfluous words) probably receives a high score.

Hudson [2000, p. 24] suggests the similar sentence-root principle in the context of word grammar
to allow other categories but finite verbs to be analyzed as the root element. However, this
principle does not solve the problem of fragmentary input because it still limits the number of
root elements to one.

The additional subordinations under root allow for a fall-back in case nothing better can be
found. This applies not only to anticipated cases like the missing finite verb but leads to a
general fall-back strategy by partial parsing. Although this suffices to cover simple cases of
self-repair such as the one above, partial parsing cannot handle all problems that arise from
self-corrections, especially when later parts of the utterance refer to the aborted sentence or
when the correction takes place in the middle of the utterance.
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A similar pattern can be used to cope with cases of category conversion such as the one in
Example E-57 where the preposition ohne depends on another preposition inklusive although
the latter usually only takes nouns as complements.20

E-57 Inklusive ohne drei Monate Grundgebühr!
Including without three months basic fee!
‘Including free basic fee for three months!’

Soft constraints which strongly prefer nouns as dependants of prepositions but also allow other
categories such as prepositions can be used to find a connected analysis for the example. Of
course, a partial analysis analogous to the one in Figure 3.18 on the facing page with both
prepositions subordinated under the root is possible as well.

3.5.5 Approximation of higher order constraints

As some examples in previous sections have shown, it is sometimes desirable to relate more
than only two dependency edges using a single constraint. Different methods to circumvent this
problem have been introduced so far, including feature percolation (cf. Section 3.4.2) and the
addition of specialized levels (cf. Section 3.4.7).

For some phenomena, however, it is not necessary to make the constraints bullet-proof because
the alternative solutions are so rare that they do not merit the effort. In these cases an approx-
imation of higher order constraints comes in handy.

In order to correctly model the restrictions of the reflexive pronoun in Figure 3.10 on page 58,
a constraint must access at least three dependency edges simultaneously. Constraint C-31 is
especially tailored for this problem, but unfortunately it is a ternary one and therefore fails to
meet the requirements for constraints we set up in Section 2.6 (cf. Section 3.3.3).

C-31 {X, Y, Z} : ReflexivePronounAntecedent : Ternary : 0.0 :

X.level=SYNTAX & Y.level=SYNTAX & Z.level=SYNTAX &

X^id=Y@id & Y^id=Z^id &

X.label=obj & Y.label=inf & Z.label=subj &

X@cat=REFLEXIVE ->

X@morph:person=Z@morph:person

A reflexive pronouns agrees with its antecedent with respect to the person feature.

Approximations of higher order constraints can take two forms:

� Only a subset of the configurations that are not well-formed is forbidden by the approxi-
mation. The rest may actually occur so seldom that it is not worthwhile writing rules to
forbid them.� A superset of the invalid configurations is penalized by the approximating constraints, i.e.,
there are some well-formed structures that spuriously make constraints fail. Most often, a
grammar writer wants to use soft constraints in this case because, then, only the score of
a structure decreases, but it is still possible to analyze the utterance correctly.

20The example has been taken from an advert for ‘Genion’.
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Constraint C-32 is of the second kind. The rationale behind it is that, if there is a subject to
an auxiliary verb and a reflexive pronoun depends on an infinitive verb to the right of the first
verb, we assume that the infinitive verb directly or indirectly depends on the auxiliary verb.

C-32 {X, Y} : ReflexivePronounAntecedent : Approximation : 0.5 :

X.level=SYNTAX & Y.level=SYNTAX &

X.label=subj & Y.label=obj & X^pos<Y^pos &

Y@cat=REFLEXIVE & X^cat=AUX & Y^cat=INFINITIVE ->

X@morph:person=Y@morph:person

3.5.6 Dynamic constraints

Dynamic constraints do not have a weight that is fixed by the grammar writer. Instead they
depend on the sentence context in which they are evaluated.

Dynamic constraints can, of course, be used for all purposes listed in the previous sections. Typ-
ical examples are constraints that handle the preferred maximum length of certain dependency
links, e.g., article-noun dependencies such as in Constraint C-33.

C-33 {X} : LengthArticleNoun : Length :

[ .2 + .8 * 5/[4 + abs(distance(X@id, X^id))] ] :

X.level=SYNTAX & X.label=det -> false

An article modifies a nearby noun.
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Usually short distances are favored and the longer the distance, the higher the penalty. The
particular form of the penalty term in Constraint C-33 ensures a lower bound of 0.2 since
grammatical sentences exist with arbitrarily long distances between article and governing noun
(cf. Example E-1 on page 2).

Another type of dynamic constraint is one with a penalty term with reference to the lexicon,
e.g., the penalty in Constraint C-34 which enforces a dynamic penalty for missing arguments
(cf. Constraint C-13 on page 57).

C-34 {X} : ObligatoryArgument : Argument : [ X@args:2:obl ] :

X.level=AUX2 & exists(X@args:2:obl) ->

~root(X^id)

A missing argument is penalized as specified in the lexicon.

Constraints like Constraint C-34 are supplemented by lexical entries with specifications as to
how a missing argument should be penalized (cf. Figure 3.19 on the facing page). Completely
optional arguments can be described by a very high value for the corresponding lexical feature,
for instance 0.9 for the feature args:3:obl in Figure 3.19 on the next page.

Strictly speaking, dynamic constraints do not have to be soft constraints since it is also possible
to specify the value zero in the lexicon. Our grammar, for instance, contains hard dynamic
constraints for the obligatoriness of the coordinated components for particular coordination
particles. Most of the dynamic constraints nevertheless have soft weights.
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word: verschiebst

cat: FINVERB

morph: � number: sg

person: second �

args:
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1:

����������������
realized: yes

obl: 0.1

cat: Nominal

morph:

��� number: sg

person: second

case: nom

����
role: AGENT

sort: human

�����������������
2:

����������
realized: yes

obl: 0.1

cat: Nominal

morph:case: acc

role: THEME

sort: appointment

�����������
3:

��������
realized: yes

obl: 0.9

cat: Adposition

loctype: lative

prepsort: temporal

���������
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Figure 3.19: A lexical entry with penalties for missing arguments specified in the lexicon.

3.5.7 Outvoting

Multiple violated soft constraints induce a more severe fault than any violation of the individual
constraints alone. Furthermore, multiple less important constraints can even ally against a single
more important constraint as long as the single constraint is not weighted with zero in which
case no solution at all can violate this constraint.

The reason for this behavior is due to the employed aggregation function (cf. Sections 2.2.4
and 2.3.3). Penalties of violated constraints are multiplied and, hence, the combined power of
multiple soft constraints can outvote a different single constraint which has a soft score which
is lower (is more important) than any of the other weights alone.

This behavior is in conflict with the strict dominance hypothesis of optimality theory [Prince &
Smolensky 1993, cf. Section 1.4] which postulates the lexicographic aggregation of Section 2.2.4.
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The following artificial variants of the impeccable Example E-58 can help to illustrate both
effects. In all sentences, the word Mann is supposed to be analyzed as the subject.

E-58 Der Mannsg kauftsg Autospl.
The man buys cars.

E-59 Autos kauft der Mann.

E-60 Mann kauft Autos.

E-61 Der Mann kaufen Autos.

E-62 Autos kauft Mann.

E-63 Autos kaufen Mann.

In Example E-59, the word order preference subject-before-object is not satisfied. Example E-60
violates the weak constraint that countable singular nouns must be accompanied by an article.
Example E-61 contains a number agreement violation. Example E-62 violates both constraints
of E-59 and E-60. Example E-63 finally combines all three constraint violations.

Given the results of an uncontrolled experiment to rank the six sentences21 it can be assumed
that each example can be judged worse than its predecessor expect that the result for E-61 º
E-62 is not significant.

The assumption that Example E-62 is worse than both E-59 and E-60 supports the claim that
constraint violations are culminative. The placement of E-61 after both E-59 and E-60 but (at
least) en par with E-62 indicates that weak constraints can gang up against a stronger one and
finally overrule the latter.

This example is by no means meant as a proof but only as an illustration. Keller [2000b], however,
gives extensive experimental psycholinguistic evidence for outvoting linguistic constraints. Note
that his notion of hard constraints differs from ours; his hard constraints compare more closely
to low weighted constraints in our framework.

“Furthermore, we found evidence against strict domination among hard constraints.
The constraints Res is ranked higher than both Inv and Agr. However, the com-
bined violations of Inv and Agr are as unacceptable as a single violation of Res

(cf. Figure 3.8). Such a ganging up of constraint violations should be impossible
under strict domination; the combination of two lower ranked violations should not
compensate for a single violation of a higher ranked constraint.”

—— Keller [2000b, p. 95]

21Fifteen native speakers of German were requested to intuitively rank the variants with regard to quality or
acceptability under the condition that the man (Mann) is the one who buys cars. The following results were
obtained ( Ê means ‘is ranked higher’):

word order vs. unmarked E-58 Ê E-59 12 80%
article vs. unmarked E-58 Ê E-60 13 87%

word order vs. word order+article E-59 Ê E-62 15 100%
article vs. word order+article E-60 Ê E-62 13 87%

word order vs. number E-59 Ê E-61 15 100%
article vs. number E-60 Ê E-61 14 93%

number vs. word order+article E-61 Ê E-62 8 53%
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His findings also support the property of the multiplicative aggregation function that the com-
bined score of two violated constraints is lower than any of the individual scores.22

“We found evidence for the hypothesis that constraint violations are cumulative: the
more constraints a structure violates, the higher its degree of unacceptability.”

—— Keller [2000b, p. 95]

3.6 Related work

Dependency grammar as a grammatical theory has been introduced to modern linguistics by
Tesnière [1959] though he did not provide a formalization. Subsequent dependency grammar ap-
proaches include a grammatical account for German [Kunze 1972; Kunze 1975], word grammar
[Hudson 1990; Hudson 2000], meaning text theory [Mel’čuk 1988; Kahane forthcoming] and de-
pendency unification grammar [Hellwig 1988]. Weber [1992] presents a textbook for dependency
grammars.

A systematic approach to German word order in dependency grammar was suggested by Bröker
[1998] and has thereafter been modified within various frameworks [Gerdes & Kahane 2001;
Duchier & Debusmann 2001; Duchier 2001]. An English version [Järvinen & Tapanainen 1997,
EngCG-2] of constraint grammar [Karlsson 1990; Karlsson et al. 1995] which aims at dependency
structures, features a large coverage and robust analysis.23 The ParseTalk model [Bröker, Hahn
& Schacht 1994; Bröker et al. 1997; Bröker et al. 1996] is a cognitively motivated parsing
system that draws on a lexicalized performance grammar aiming at dependency structures.
Here, parsing is understood as parallel communication (based on message passing) between
linguistic objects.

In the context of speech parsing as word graph filtering Harper & Helzerman [1995, p. 47] devel-
oped a CDG for English which uses hard constraints only and is still under further development
[Harper et al. 1999a, Section 3.1].

Our WCDG (Stellingen grammar, cf. Section 5.2.1) that employs most of this section’s techniques
in one or the other way, has been inspired by an earlier grammar [Heinecke & Schröder 1998;
Heinecke & Nolda 1998; Nolda & Heinecke 1999] but knowingly departs from the latter in some
fundamental aspects. In particular, it puts the focus on distributing structure over several levels,
on weighted constraints and therefore on graded assessment and robust analysis.

3.7 Summary

This section demonstrated major techniques for [W]CDG modeling that have been employed in
a grammar for German (cf. Section 5.2.1) but are more generally applicable.

22See also Keller [2000a] and Keller [2001]. Fanselow & Féry [forthcominga, Section 6], in contrast, argue that
multiple constraints are conjoined into a new constraint which is more important than each of the original con-
straints. Of course, cumulative acceptability ratings can always be explained even without cumulative aggregation
functions by postulating aggregated constraints, in the extreme case the power set of the basic constraints.

23Conexor functional dependency grammar, the successor of EngCG-2, is now a commercial product. An online
demo is available at http://www.conexoroy.com/products.htm.
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The first part emphasized techniques for crisp constraints. Linguistic phenomena such as agree-
ment, uniqueness and necessity of arguments, feature percolation, word order and projectivity as
well as semantic aspects like thematic roles and reference resolution have been addressed. To do
so a rich inventory of methods such as feature agreement, uniqueness conditions for certain types
of dependency edges, introduction of auxiliary levels mirroring edges on a main level, enrich-
ment of edge labels with additional information, access to positional variables and introduction
of specialized auxiliary levels have been employed.

Subsequently, we focused on weighted constraints. Various types of constraints depending on
their strength as well as on their purpose have been identified. Different aspects such as word
order errors, agreement violations, preferential knowledge, spurious ambiguities, partial parsing
and the approximation of complex constraints can be modeled with soft constraints such that
the robustness of the system improves while at the same time the disambiguation power of
the grammar increases. The cumulative nature of constraint violations and the possibility of
constraint outvoting have been linguistically motivated.

It was argued that hard and soft constraints together can handle a wide variety of linguistic
phenomena, originating from both the competence system and the performance system of a
speaker. However, we also identified limitations of the expressiveness of the formalism. While
the lack of existential quantifiers can be elegantly (if not also automatically) overcome, the
restriction to at most binary constraints which originates from procedural considerations is a
more severe one. The eliminative nature of [W]CDG turned out to be the reason for an unfamiliar
style of grammar development where old constraints have to be revised when extending the
coverage of the grammar (for instance, making hard constraints soft under certain conditions
such as exceptions to the projectivity condition). But exactly this selection mechanism from a
predefined set of possibilities also enables a fall-back strategy that increases the robustness of a
grammar and leads to a fail-soft behavior.

The introduction of soft constraints in all their different manifestations has been identified as
the main cause for increased robustness and coverage. This claim will be verified quantitatively
in Section 5.3.



Chapter 4

Algorithms

4.1 Overview

In Chapter 2, weighted constraint dependency grammars (WCDG) have been presented including
a mapping from the WCDG parsing problem to constraint satisfaction problems (CSP). This
chapter presents general algorithms for CSP, classifies them according to specific properties and
describes and evaluates special variants thereof for WCDG parsing.

Section 4.2 looks at solving CSPs from an informal point of view. Human heuristics are men-
tioned, and the importance of a good problem model and effective heuristics is emphasized.

The subsequent Section 4.3 introduces algorithms for general CSP and CSOP solving.

Criteria with regard to soundness, completeness, temporal behavior (efficiency, incrementality,
anytime) and parallelism that are developed in Section 4.4 are applied to the algorithmic schemes
in Section 4.5 and advantages and disadvantages of the algorithms are discussed.

The Sections 4.6 through 4.9 then go into detail regarding variants of these algorithms for
WCDG parsing. An implementation is mentioned in Section 4.10 and results from experiments
with these methods are described in Section 4.11.

An incremental mode of the WCDG parsing algorithms is briefly discussed in Section 4.12, and
program optimizations are presented in Section 4.13.

Related work is reviewed in Section 4.14 and a summary is given in Section 4.15.

4.2 Solving a constraint satisfaction problem

There exist sound and complete algorithms to solve a CSP as defined in definition 2.1, i.e., as the
problem of consistently assigning values to variables. Since the number of possible combinations
is finite,1 all of them can be generated and tested for consistency. This naïve approach – known
as generate-and-test – of course suffers from combinatorial explosion: The number of possible

1More precisely, the number of solution candidates for a CSP as defined in definition 2.1 is the product of the
sizes of all domains Ë Ì ="Í�Î�ÎÏÎ@Í Ì ? ËÀÐ¼Ñ =>= p =�? Ë Ì p Ë .
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Figure 4.1: Two CSP models for the � -queens problem. (a) naïve model with the field numbers (from
1 to � ÿ ) used as values for the variables, (b) modeling that exploits problem specific information
and uses column numbers as values, (c) example solution for �G� ¤ .
combinations grows exponentially in the number of constraint variables and renders the problem
intractable even for moderate problem sizes.

Although the human capabilities to solve combinatorial problems are limited because usually a
large number of possibilities have to be evaluated (in parallel),2 human beings manage to decide
on a solution by applying a number of techniques:

� Problem specific information: Often domain specific knowledge can be used to dra-
matically reduce the set of solution candidates. For instance, when solving the � -queens
problem, i.e., the task to place � queens on a �2DÁ� -checkerboard so that no queen threatens
another one, it is a good idea to assume (without loss of generality) that queen number �
is in column � (cf. Figure 4.1).� Early constraint checking: The naïve generate-and-test procedure always generates
complete solution candidates before checking the first constraints. Obviously, a lot of
work is wasted3 if an inconsistency is due to values of variables that are assigned early. A
better strategy is to apply constraints as soon as possible, i.e., already while building a
solution candidate. Two kinds of interleaved constraint checking can be distinguished.

– Prospective checks: Whenever a new value is assigned, it is checked whether all
future variable domains contain values that are consistent with the newly assigned
value. If all values from at least one domain are inconsistent, another value is tried.
One algorithm based on this method is forward checking (cf. Section 4.3.1).

– Retrospective checks: New values are checked for consistency with values that have
already been assigned. If an inconsistency is detected, a different value is tried. The
most basic algorithm using this technique is known as backtracking (cf. Section 4.3.2).� Heuristic information: Heuristic knowledge is different from problem specific informa-

tion because it is not used to reduce the problem before actually solving it. Instead, the

2Try to solve the cryptarithmetic puzzle from Section 2.2.2 without using a pen and paper!
3However, there exist successful algorithms that are based on the random generation of candidates [Minton et

al. 1992, p. 3, Las Vegas algorithm for ¡ -queens problem]. Problems where most of the candidates are actually
solutions, i.e., only a small portion is not allowed by constraints, can easily be solved by randomly picking a
candidate until a solution is found.
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search process itself is modified. Miguel & Shen [2001a, Section 2] list some of the general
heuristics. Consider again the cryptarithmetic puzzle from Section 2.2.2 and Figure 2.1 on
page 17 (repeated as Figure 4.2). People tend to start with variables for which there is a
lot of constraining information available in order to narrow down the set of possible values
for these variables. From these islands of relative certainty, they then try to proceed to the
next variable. The general principle applied is to re-order the constraint variables so that
problem solving becomes easier. While this rearrangement of variables can have a great
impact on the efficiency, solutions cannot be cut off nor does the model have to change.

� Heuristic search: Sometimes the set of possibilities is so large that it is prohibitive to
look at it systematically. However, a problem solver might be willing to apply a rule of
thumb and use his experience to make local decisions without being sure that the globally
correct branch is taken. A traveling sales person, for example, who wishes to minimize the
length of a round trip through a number of cities, might assume that he or she has to visit
two nearby cities directly one after the other because experience shows that it is a good
strategy (or heuristic) in most cases. Note however, that the really shortest path may
include an arbitrary number of intermediate cities between the two nearby. In contrast to
heuristic information which simply changes the way the search space is traversed, heuristic
search really cuts away branches which might contain the solution. Therefore, heuristic
search is neither sound nor complete. Real-world problems are nevertheless often solved
this way. Reasons why this is acceptable include absence of complete information and the
readiness to live with outcomes that are close to the overall best solution.
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Figure 4.2: A cryptarithmetic puzzle is a typical CSP problem (repeated from Figure 2.1 on page 17).
Humans typically start by narrowing down the set of possible values for the letter M because it seems
to be highly constrained in a direct way. After proving that only one or a small number of values
are possible for the letter M, this additional (formerly implicit but now unveiled) information is used
to procede to the next variable.

The importance of, e.g., interleaved constraint checks and application of heuristic information
is demonstrated by two Prolog [Clocksin & Mellish 1987] programs in Figure 4.3 on the next
page which both solve the cryptarithmetic puzzle of Figure 4.3 on the following page. Prolog
generally employs a top-down left-to-right systematic depth-first search (cf. Figure 4.5 on page 85
in Section 4.3.2). In order to activate the retrospective checks, the corresponding clauses have
to be textually interleaved with clauses which generate choice points. Heuristic information is
applied by means of variable re-ordering: The variables S and M which seem to be constrained
in the most direct way are tried first. Table 4.1 compares the two procedures with respect to
the required computational resources.
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send_more_money_naive(S,E,N,D,M,O,R,Y) :-

; First generate a complete solution candidate...

member(S, [0,1,2,3,4,5,6,7,8,9]),

member(E, [0,1,2,3,4,5,6,7,8,9]),

member(N, [0,1,2,3,4,5,6,7,8,9]),

member(D, [0,1,2,3,4,5,6,7,8,9]),

member(M, [0,1,2,3,4,5,6,7,8,9]),

member(O, [0,1,2,3,4,5,6,7,8,9]),

member(R, [0,1,2,3,4,5,6,7,8,9]),

member(Y, [0,1,2,3,4,5,6,7,8,9]),

; ... then apply the general uniqueness constraint

no_duplicates([S,E,N,D,M,O,R,Y]),

; ... and finally the problem specific constraint.

0 is S*1000+E*100+N*10+D

+ M*1000+O*100+R*10+E

- M*10000+O*1000+N*100+E*10+Y.

no_duplicates([E|Es]) :-

not(member(E, Es)),

no_duplicates(Es).

no_duplicates([]).

(a) Naïve generate-and-test procedure

send_more_money_interleaved_heuristic(S,E,N,D,M,O,R,Y) :-

; Start with directly constrained variables,

member(S, [0,1,2,3,4,5,6,7,8,9]),

; ... apply the uniqueness constraint as soon as possible

member(M, [0,1,2,3,4,5,6,7,8,9]), not(member(M, [S])),

member(C3, [0,1]),

; ... and also utilize specific constraints early.

M is (S+M+C3) // 10,

O is (S+M+C3) mod 10,

member(O, [0,1,2,3,4,5,6,7,8,9]), not(member(O, [M,S])),

member(E, [0,1,2,3,4,5,6,7,8,9]), not(member(E, [M,S,O])),

member(C2, [0,1]),

C3 is (E+O+C2) // 10,

N is (E+O+C2) mod 10,

member(N, [0,1,2,3,4,5,6,7,8,9]), not(member(N, [M,S,O,E])),

member(R, [0,1,2,3,4,5,6,7,8,9]), not(member(R, [M,S,O,E,N])),

member(C1, [0,1]),

C2 is (N+R+C1) // 10,

E is (N+R+C1) mod 10,

member(D, [0,1,2,3,4,5,6,7,8,9]), not(member(D, [M,S,O,E,N,R])),

C1 is (D+E) // 10,

Y is (D+E) mod 10,

member(Y, [0,1,2,3,4,5,6,7,8,9]), not(member(Y, [M,S,O,E,N,R,D])).

(b) Interleaved constraint checking and variable re-ordering

Figure 4.3: Two Prolog programs for the example cryptarithmetic puzzle.

The following section looks at different solution methods in greater detail and discusses how the
general intuitive techniques described in this section can be realized in precise algorithms.
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CPU Seconds Inferences # Solutions

naïve 3,332.33 1,927,424,291 25
interleaved 0.03 14,322 25

Table 4.1: Interleaving constraint checks with variable assignments as well as re-ordering of variables
can have a great impact on the efficiency of the algorithms. The table shows CPU time (on a SUN
Ultra5 360 Mhz workstation) and number of logical inferences needed by the SWI Prolog system
[Wielemaker 2000] as well as the number of solutions produced for the example programs from
Figure 4.3 on the preceding page.

4.3 Algorithms for (partial) constraint satisfaction problems and

constraint optimization

While some aspects from the previous section are problem specific so that one cannot deal
with them in general, various algorithms have been developed based on general insights in CSP
solving.

4.3.1 Consistency techniques

Consistency or filtering algorithms achieve a state of consistency by removing those values
from the domains of variables that are incompatible with some other ‘neighboring’ variables.
Generally, the problem becomes smaller and easier to solve when less values have to be considered
because they were previously removed. By proving local inconsistency for the removed values, it
is guaranteed that the reduced problem is equivalent to the original problem with regard to the
solutions. However, a consistent problem may still have no, one or more solutions so that other
techniques must finally be used to solve the now smaller problem (see below for other methods).

The notion of local consistency was first introduced by Waltz [1975] who was looking for a way
to reconstruct the three-dimensional composition of a blocks’ world scene from a simple line
drawing (see Figure 4.4 on the following page for an example). Each line (variable) should
be tagged with a label that describes its type (value), e.g., whether an edge divides an object
from the background or whether the angle at that edge is concave or convex. There exist only
a limited number of junctions so that not all combinations of edge types can actually occur
(constraints).

Local consistency has been described in more general frameworks, and algorithms to achieve local
consistency of different degrees have been designed [Mackworth 1977]. The following definition
describes local consistency formally.

Definition 4.1 A set of constraint variables is H -consistent if for each set of H�� � variables
that have been assigned values that satisfy all constraints among them, it is possible to find a
value for an arbitrary H th variable such that all constraints among these H variables are satisfied.
A set of variables can be H -consistent without being H6��� -consistent [Freuder 1988, p. 349]. If
the set is H  -consistent for all H  +�H then it is strongly H -consistent.
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Figure 4.4: Reconstruction of three-dimensional information from line drawings by constraint satis-
faction. The edges of two objects have already been classified; the remaining one in the middle is
truly ambiguous.

Strong 1-consistency is known as node consistency, strong 2-consistency as arc consistency and
strong 3-consistency as path consistency.

There are algorithms that make arbitrary CSP H -consistent by removing inconsistent values from
the domains [Freuder 1985]. For instance, the temporal and spatial complexity of the optimum
arc consistency algorithm AC-4 is � N P � P ~lÍ�ü�ý¯� P �C� P ÿ O while PC-4 achieves path consistency with
a temporal and spatial complexity of � N � � ~rÍ�ü�ý/� P �C� P � O [Mohr & Henderson 1986]. Generally the
consistency methods for path consistency and above are often too expensive in practice [Miguel
& Shen 2001b, p. 261]. Freuder [1985] gives a general algorithm for H -consistency but it has
exponential complexity.

Definition 4.2 An ordered CSP is a CSP with a total order on the constraint variables. The
width of a variable in an ordered CSP is the number of constraints between that variable and
variables that precede it in the ordering. The width of an ordering is the maximum width of the
variables and the width of a CSP is the minimum width of all orderings.

A theorem by Freuder [1982] states that a strongly H -consistent problem that has a width
smaller than H can always be solved without backtracking.4 The problem with this approach is
that achieving H -consistency is, for larger H , very expensive, even more expensive than simple
backtracking. That means that while it is generally infeasible to solve larger CSP through
consistency techniques alone, they are well suited for reducing the problem size before actually
applying a search algorithm (cf. Section 4.3.3).

One particular problem with consistency-based solution methods and PCSP is that it is often
not obvious what incompatible means in this context. Since occasional constraint violations
have to be tolerated in this context, a single conflict is not a sufficient condition for eliminating
a possible value (cf. Section 4.6).5

4The original algorithm of Waltz [1975] achieves strong 2-consistency while the problem of identifying the types
of lines in line drawings (cf. Figure 4.4) has a width of 2 even for moderately complicated scenes. Therefore at
least strong 3-consistency is required to guarantee a backtrack-free extraction of solutions [Freuder 1988, p. 352].

5Compare the notion of arc consistency counts in Miguel & Shen [2001a, 5.2.1].
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4.3.2 Retrospective techniques

Retrospective search algorithms successively assign values to constraint variables and maintain
a consistency measure for the values assigned so far. Their key characteristic is that they always
look at the assignments made so far (and not at those that have to be made in the future)
and try to avoid unnecessary work when it becomes clear that the partial assignment under
consideration cannot lead to a global solution.

Backtracking is the simplest such technique. The order in which the variables are assigned is
fixed and whenever a freshly chosen value emerges as inconsistent with the previous bindings,
the latest assignment is reverted and an alternative value is tried. If no more alternatives for
a given variable exist, the value assignment for the preceding variable is questioned. The time
complexity is exponential, of course, but the algorithm only needs space linear in the number of
variables because only a single path is considered at any one moment. This simplest variant is
known as chronological backtracking because the assignments are reverted in the exact reverse
chronological order.

Branch-and-bound is the analogue to backtracking for the PCSP case. While a search path in
a crisp CSP can be truncated when the first constraint violation is found, a certain degree of
inconsistency has to be accepted in the PCSP case. Only if the path falls short of a lower bound
of consistency can it be ignored. A lower bound may be defined externally and can be updated,
i.e., increased, whenever a new complete solution has been reached.

Backtracking and branch-and-bound in their simplest forms both traverse the search tree in a
depth-first manner which is the reason why their spatial complexity is linear. However, both
techniques can also be used with a breadth-first or best-first agenda strategy.

A 0

B 1 C 3

D 2 E 6 F 4 G 5

H 5 I 7 J 4 K 6

One and the same search tree is traversed in
different orders depending on the agenda strategy
of the search procedure. The numbers next to
the node identifiers denote the number of violated
constraints up to that point.

Breadth-first: A B C D E F G H* I J* K
Depth-first: A B D H* !! E# !! C F J* !! G#

Best-first: A B D C F J * H G# E#

An asterisk ‘*’ marks a new solution state, a ex-
clamation mark ‘ !’ indicates backtracking and a
hash sign ‘#’ signals that the search space has been
pruned, i.e., a whole branch of the search tree has
been cut off.

Figure 4.5: Three agenda strategies for systematic tree search: breadth-first, depth-first and best-
first.

Figure 4.5 gives examples of the sequences of visited nodes while traversing the search tree
with the three named strategies. Obviously, the linear space bound is sacrificed when using a
breadth-first or best-first strategy since the agenda must hold an exponential number of nodes in
the worst case. The breadth-first strategy guarantees that the ‘smallest’ solution is found first,
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which is important when search trees with varying depths for the leaf nodes or even cyclic search
graphs are considered. This is not the case in standard constraint satisfaction problems since
the number of variables determine the uniform depth of the search tree. A best-first strategy
always selects the most promising internal nodes for the next node expansion; therefore detours
can be avoided when the search space is ‘well-behaved’ (compare the number of nodes visited in
Figure 4.5 on the page before).

These two basic algorithms have been extended by Freuder & Wallace [1992]. Backjumping,
for instance, tries to avoid duplicate work when a failure somewhere in the search tree has its
ultimate cause in an assignment much higher in the search tree. The algorithm then jumps
directly to that variable instead of the preceding one. Backmarking, on the other hand, tries
to minimize the number of constraint checks by maintaining additional data about the level of
backtracking and re-using results from previous constraint checks (cf. Section 4.8).

4.3.3 Mixed techniques

The two approaches to solving a CSP that have been introduced so far can be combined and,
in fact, a whole spectrum of algorithms have been devised, each of which combines a systematic
tree search algorithm with intermediate filtering steps which ensure a certain degree of local
consistency. Nadel [1988], for instance, compares the performance of six algorithms that suc-
cessively include a higher degree of consistency: generate-and-test, simple backtracking, forward
checking, partial lookahead, full lookahead and really full lookahead. Nudel [1983] investigates
the expected complexity of such algorithms and derives specific heuristics for different classes of
CSP. Forward checking [Haralicj & Elliot 1980] is particulary simple and successful at the same
time: Each time a value is assigned to a variable, the domains of all future, i.e., yet unassigned,
variables are checked for compatibility with the current value. If at least one domain contains
no consistent value, the current assignment is reverted and backtracking starts.

Freuder & Wallace [1992] compare the performance of a set of mixed-techniques algorithms
based on a number of artificially designed partial constraint satisfaction problems.

4.3.4 Heuristic search

Heuristic search [Selman 1999] is fundamentally different from systematic search in that it does
not explore the search space systematically. The main reason is that the search space is not a tree
as in tree search (hence, the name) but a graph which leads to greatly increased costs for keeping
records about which parts of the search space have been visited. Mostly it is even intractable to
store complete information about the seen parts so that no systematic and complete exploration
is feasible.

The search states in heuristic search are complete assignments or solution candidates. This is
in contrast to tree search where search states consist of partial assignments. Heuristic search
methods move from the current solution candidate to that solution candidate among all solution
candidates in the neighborhood which seems most promising with regard to specific measure or
heuristics.

Since the next search state is always a neighbor of the current search state, the general search
scheme is also called local search. The decision of which neighbor to move to depends on
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the variant of local search [Hromkovic̆ 1998, p. 177]: steepest ascent selects the neighbor that
improves the assessment in some maximum way while greedy search takes the first improving
step that can be found.

Obviously local search can get stuck in local optima when none of the neighboring states im-
proves on the current state. A so-called meta-heuristic is then applied in order to escape from
the local optimum. The heterogeneity of these meta-heuristics accounts for a large variety of
different types of heuristic search. Simple examples for meta-heuristics include the multistart
approach which re-initializes the start assignment, the multilevel approach which uses variable
definitions for the neighborhood and the variable-depth local search which iteratively increases
the neighborhood [Aarts & Lenstra 1997a]. Advanced techniques are, for instance, simulated
annealing [Kirkpatrick, Gelatt & Vecchi 1983; Aarts, Korst & van Laarhoven 1997], tabu search
[Glover & Laguna 1997] and guided local search [Voudouris & Tsang 1995].

One of the first meta-heuristics in the heuristic search paradigm is min-conflicts [Minton et al.
1992] which starts with a complete but random assignment and repeatedly selects a variable (or
a set of variables) with a conflict and chooses a better value for that variable.

28 conflicts

1 ß 2: 16c *
1 ß 3: 18c
1 ß 4: 16c
...

16 conflicts
...

3 ß 6: 8c *
...

8 conflicts
...

4 ß 8: 4c *
...

4 conflicts
...

1 ß 3: 3c *
...

3 conflicts
...

4 ß 7: 1c *
...

1 conflict
1 ß 2: 1c
1 ß 3: 4c
1 ß 4: 2c
...

Figure 4.6: Example of how min-conflicts tries to solve the 8-queens problem: Starting from an
arbitrary (here regular) assignment, the best improving swap of two columns (marked by an asterisk)
is chosen at each time. However, after swapping two columns five times the process is stuck in a
local optimum and no progress can be made although the last assignment is not a valid solution.

Figure 4.6 illustrates the progress of the algorithm for the � -queens problems. Since the method
always greedily selects the locally most attractive move and only allows improving steps, the
process can still be caught in local optima.

Some variations of the basic algorithm have been proposed. While walk-minconflicts adds ran-
dom (possibly degrading) steps, retry-minconflicts occasionally restarts the process from a ran-
dom assignment.

The search space is explored unsystematically by heuristic search procedures and therefore it is
hard to provide a termination criterion except when a perfect solution has been found. Usually
an external termination criterion must be met. Hence no generally valid analysis of the worst-
case complexity can be made without reference to the employed termination criterion. The time
complexity of the local search procedure itself of course depends on the definition of the neigh-
borhood and the nature of the scoring function. Therefore, even the worst-case complexity of
local search alone is exponential in general. The art of designing a successful heuristic algorithm
includes the definition of a neighborhood that is small enough to be searched in polynomial time
and that is large enough so that the global optimum can be reached from arbitrary points in the
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search space in a reasonable amount of time (cf. Hromkovic̆ [1998, Section 3.6.3]). Since only a
single candidate is kept during local search the space complexity is only linear in the number of
variables.6

4.4 Evaluation criteria for CSP solution methods

This section develops a set of criteria that can be used to classify the different algorithms for
CSP solving with regard to specific application requirements.

Besides the classical features of soundness, completeness, termination and complexity we discuss
four more properties that determine aspects of the temporal behavior of an algorithm.

� Efficiency refers to practical runtime in contrast to the theoretical worst case considerations
that are examined under the keyword complexity.� Anytime algorithms have the ability to dynamically improve the quality of a solution
during processing, thus delivering an approximate solution quickly and better alternatives
if more time is available.� Incrementality is a mode of operation where an algorithm starts while the problem still
changes, e.g., before the complete input is available.� Parallelism refers to the potential of an algorithm to be split into a number of subtasks
that can be executed simultaneously and (relatively) independently on separate processors.

4.4.1 Soundness, completeness and termination

The properties of soundness and correctness are fundamental aspects of algorithmic analysis but
have their roots in logical calculus [Schöning 1992a; Schöning 1992b].7

Definition 4.3 A (non deterministic) algorithm is called sound if it yields only correct results.

Definition 4.4 A (non deterministic) algorithm is called complete if it yields (at least) every
correct result.

Given the above definitions, one might be tempted to demand that all algorithms fulfill these
conditions. While this is justified for ‘standard’ algorithms, there are exceptions:

� Approximations per se only return approximate results, often within some guaranteed
bounds. Strictly speaking, the results differ from the ideal, thus preventing soundness.
Example: Newton’s approximation for finding a null of a function [Kiyek & Schwarz 1989,
p. 237].

6Of course, different meta-heuristics may need additional space, for instance, for a tabu list in tabu search.
7Compare the terms soundness and correctness to the terms of accuracy and recall in Figure 5.1.
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� Probabilistic algorithms can guarantee that the returned result is correct with a certain
probability. Nevertheless not all output is correct. Example: Rabin primality test [Rabin
1980].

� Heuristic search usually cannot guarantee that the returned result is correct and has even
more difficulties to enumerate all correct results. Example: cf. Figure 4.6 on page 87.

Definition 4.5 An algorithm is terminating if it finishes its computation on arbitrary input in
finite time.

We refrain from requiring an algorithm to be terminating (as is sometimes done) since there exist
algorithms that are designed to run forever, e.g., operating system procedures or monitoring
software. Algorithms that are not terminating can be controlled by a kind of meta-control
mechanism, e.g., a timeout.

4.4.2 Complexity and efficiency

Complexity theory [Schöning 1992b, for instance] determines upper and lower bounds for the
amount of computational resources (depending on input length � ) that are required for specific
problems or algorithms. Standard computational resources are processing time or processing
steps and memory.

Since the general CSP is an
���

-complete problem (cf. Section 2.8.2) it can be assumed that
every sound and complete algorithm has an exponential worst time complexity of � N � ( O . Of
course, this does not mean that algorithms that fail to meet the soundness or completeness
criteria also have an exponential time complexity.

For practical systems, it is often more important how an implemented algorithm behaves on real
input data. We will use the term efficiency for the practical runtime of alternative algorithms.
Obviously, runtime can only be used to compare solution procedures if the input data and the
experimental settings are kept constant.

4.4.3 Anytime property

The term anytime algorithm8 [Hertzberg 1995, for instance] was coined by Dean & Boddy [1988]
for application in the domain of time-dependent planning. They identify three characteristic
properties for this class of algorithms:

“The most important characteristics of these algorithms are that (i) they lend them-
selves to preemptive scheduling techniques (i.e., they can be suspended and resumed
with negligible overhead), (ii) they can be terminated at any time and will return
some answer, and (iii) the answers returned improve in some well-behaved manner
as a function of time.” —— Dean & Boddy [1988, p. 52]

8Horvitz [1987] uses the term flexible computations for a similar concept.
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Obviously, the first point is less useful for purely computational processes because modern
operating systems already interrupt processes preemptively with negligible overhead on a very
frequent basis.

The authors [Dean & Boddy 1988] distinguish different kinds of compromises between complexity
and the standard measure for algorithmic quality, i.e., correctness:

� Monte Carlo simulations randomly generate data samples using the assumingly ‘true’
probability distribution and derive the results by generalization from these samples. They
are likely correct and guaranteed polynomial. Example: Data-oriented parsing [Bod 1995;
Bod 1998].� Las Vegas algorithms are randomized algorithms that are guaranteed correct and likely
polynomial but exponential in the worst case, i.e., randomization concerns runtime not
correctness. Example: Las Vegas algorithm for � -queens problem [Minton et al. 1992,
p. 3].� An approximation is guaranteed optimal within some error margin and guaranteed polyno-
mial. Example: Newton’s approximation for finding a null of a function [Kiyek & Schwarz
1989, p. 237].� An anytime algorithm can guarantee to return a (not necessarily correct) solution in the
time available.

Two prerequisites for anytime algorithms can be identified (cf. Figure 4.7 on the facing page).

1. The (time independent) utility or value of a computation result must gradually increase
with increasing quality (cf. Figure 4.7a on the next page).

2. The value of a solution decreases or is discounted with increasing computation time (cf.
Figure 4.7b on the facing page).

Under these circumstances, the utility reaches an optimum at a certain point in time at which
the computation should be stopped at the latest (cf. Figure 4.7d on the next page).

Deliberation scheduling [Boddy & Dean 1994], i.e., meta-reasoning about how much of the re-
sources one should spend for computation and how much for action in dynamic environments,
concerns the distribution of available computational resources to reasoning procedures depending
on what kind of impact on the system’s performance can be expected from these computations.
In contrast to their original presentation [Dean & Boddy 1988], the authors make clear that
they focus on probabilistic performance profiles:

“Instead, we employ algorithms for which the expected value increases monotonically.
For some algorithms, there is no difference: a probabilistic algorithm for identifying
large prime numbers has a “value” that is strictly increasing, in the sense that the
probability of a correct identification is guaranteed to improve by a known amount
with increasing computational effort. [...] The statistics are summarized in what
are called performance profiles... [...] Knowing the expected value is in general
insufficient; there are situations where what is needed is a complete probability
distribution.” —— Boddy & Dean [1994, pp. 254-255]
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Figure 4.7: A utility that grows with the quality of the solution (a) and shrinks over time (b)
are prerequisites for anytime algorithms. An anytime performance profile (c) relates the solution
quality to runtime so that an optimal point in time for the termination of the computation can be
determined (d).

The latter point is illustrated by Figure 4.8 on the following page. Although both probability
distributions exhibit the same mean à7á�â , they cannot be considered equivalent in the presence
of a deadline ã . Solutions after the deadline have no value and the distribution with greater
variance assigns a greater probability mass to those events (shown as the grey area in Figure 4.8
on the next page).

A related point is made by Menzel [1995] by distinguishing between weak and strong anytime
algorithms. For weak anytime algorithms, performance profiles are instance specific, i.e., a
probabilistic profile for them can be given only on the basis of a given set of input instances
(which might be more or less representative). Strong anytime algorithms, on the other hand,
have performance profiles that are generally valid for all kinds of input.

Figure 4.9 on the following page shows why caution must be exercised when dealing with proba-
bilistic performance profiles. Probabilistic performance profiles only describe the expected quality
after a certain time span.

Russell & Wefald [1991] give a cognitive motivation for limited rationality under bounded re-
sources:

“For us, the promise of AI lies in explaining how it might be possible for humans,
computers, and other animals, with their slow and tiny calculating equipment, to
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Figure 4.8: Two Gaussian distributions with the same mean but different variances illustrate that
the mean as a criterion for performance profiles is not enough in general if one considers absolute
deadlines (adapted from Boddy & Dean [1994]).
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cope successfully with a relatively huge world of blooming, buzzing and often urgent
confusion. Rather than achieving some absolute standard of performance with un-
limited amounts of resources and simple algorithms, intelligence seems linked with
doing as well as possible given what resources one has; good design, elegance and
efficiency ought to get in somewhere.” —— Russell & Wefald [1991, p. 11-12]
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and

“The original formulation of perfect rationality allowed the rational agent to make
‘mistakes’ – that is, choices with undesired actual outcomes – through ignorance. A
bounded optimal agent can also make mistakes through stupidity, because it can’t
calculate the rational action fast enough.” —— Russell & Wefald [1991, p. 28]

In this chapter, we focus on the question of whether the algorithms per se exhibit the anytime
property. Section 5.5 calls this kind of anytime behavior intrinsic in order to distinguish it from
extrinsic anytime behavior which is based on meta-control mechanisms or modifications of the
basic algorithms.

4.4.4 Incrementality and parallelism

Incrementality is a mode of operation which starts the computation on the partial problem before
the problem is completely available. Although often used that way, it is not strictly required to
output (partial) results before the input is complete. Typical examples are filter programs, e.g.,
compressors or word counters, which do not need all of the data to start processing the first
items. Incrementality plays an important role in natural language analysis and we will discuss
it more thoroughly in Section 4.12.

Parallelism of an algorithm refers to the ability to execute subtasks independently and (poten-
tially) simultaneously. A parallel program can theoretically run � times faster on � processors
than on a single one. Practically, this speedup is often limited by additional factors, such as
communication overhead and latency. We will only look at the potential of algorithms to be
executed in parallel environments. Further experiments are subject to future research.

4.5 Classification of CSP algorithms

This section evaluates the algorithms presented so far with regard to the criteria of the pre-
vious section: soundness, completeness, termination, complexity, efficiency, anytime behavior,
incrementality and parallelism.

We will use a standard academic problem, the traveling sales person (TSP) problem, as an
example throughout the section. The generic TSP problem is defined as the task to find the
shortest cyclic path through a weighted graph so that every node is visited exactly once. The
euclidic TSP problem assumes that the nodes are points in an euclidic space and that the
weight of an arc between two nodes is their euclidic distance. The TSP problem is a well-known���

-complete optimization problem; the problem of finding a Hamilton circuit is a special case
thereof [Hopcroft & Ullman 1979].

The TSP is a typical constraint satisfaction optimization problem but only has a single soft
constraint which judges a complete assignment. Although this does not match the WCDG pars-
ing case very well, which uses grammars with hundreds of soft constraints, it is nevertheless
well suited for our discussion because, in this section, we are not interested in exactly how an
assessment is determined but only in the algorithms which use a generic evaluation function.
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This well-understood example has been chosen for its simplicity and clarity of presentation. Sec-
tions 4.6 through 4.9 will give details about WCDG parsing procedures which are experimentally
evaluated in Section 4.11.

(a) A TSP problem
instance: 100 points
in a 100 Í 100 euclidic
space

(b) A random se-
quence of edges. Dis-
tance 5,558.8.

(c) A path resulting
from always visiting
the nearest yet unvis-
ited city next. Dis-
tance 859.3.

(d) A route result-
ing from successive
extension. Distance
790.5.

(e) A path found by
repeated local search
with node exchange.
Distance 1,184.3.

(f) A round trip
found by a single
local search with edge
exchange. Distance
843.2.

(g) A path found by
repeated local search
with edge exchange.
Distance 779.2.

(h) The (probably)
shortest round trip.
Distance 764.9.

Figure 4.10: A sample euclidic traveling sales person problem and some solution candidates obtained
with different methods. Our still naïve implementation of branch-and-bound was not able to prove
optimality for the example TSP problem in reasonable time. There are, however, specialized algo-
rithms that can compute the optimal path even for problems consisting of thousands of cities; see, for
instance, the CONCORDE project (http://www.math.princeton.edu/tsp/concorde.html).

Figure 4.10 shows a sample problem instance of the euclidic TSP and some solution candidates
found by different solution methods. In particular, we look at the following algorithms:9

Random sequence: Start with an arbitrary node; choose a random next node; finally go back
to first node.

9The software used in this demonstration can be downloaded from http://nats-www.informatik.

uni-hamburg.de/~ingo/prg/.
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Nearest neighbor: Start with a random node; always choose the nearest yet unvisited node
as the next node.

Successive extension: Start with a random edge; choose next node randomly and insert it
into the intermediate path so that the resulting path is minimal.

Node exchange: Start with random path; local search: repeatedly exchange two nodes so that
the path is minimal (among the reachable paths) after the exchange; re-start with new
random path.

Edge exchange: Start with random path; local search: repeatedly exchange two edges so that
the path is minimal (among the reachable paths) after the exchange; re-start with new
random path.

Biased depth-first search: Conduct a depth-first search as explained in Section 4.3.2 but
choose nearby neighbors first at each choice point.

Random sequence is used to find a (weak) lower bound. Nearest neighbor and successive ex-
tension are randomized constructive methods that extend partial solutions candidates using a
heuristic approach. Node exchange and edge exchange are heuristic search variants with differ-
ent definitions of neighborhood. Biased depth-first search is a systematic tree search method
with heuristic value ordering.

All methods except the last one are not deterministic in that they use one or the other random
component. Therefore, it makes sense to restart the process, in particular the local search
variants, from time to time in order to reach different positions in the search space (multistart
approach).

Of course, the systematic search is the only method that is sound and complete but it also has an
exponential time complexity. Figure 4.11 on the following page shows experimental results of the
relation between problem size and computational resources needed (time and recursion steps) for
the biased depth-first solution procedure. Clearly, the requirements increase exponentially (note
the logarithmic scales) which must be expected since the procedure must potentially explore allN �·�G�.O�í paths for a problem of size � . In practice, some branches are cut early during the search
whenever it becomes clear that they cannot lead to a solution candidate better than the one
already found (cf. branch-and-bound in Section 4.3.2).

All other solution methods are incomplete and not sound since they lack a systematic exploration
of the search space.

Random sequence, nearest neighbor and depth-first search are terminating or can easily be
modified to do so. Successive extension, node exchange and edge exchange rely to a higher
degree on randomness and may require an external control that terminates the algorithm after
a certain period of computation or when a satisfactory solution has been found.

4.5.1 Efficiency and anytime behavior

It is practically impossible to prove optimality of a path using depth-first search for a TSP
problem size larger than �)� . Therefore, one might be willing to accept suboptimal solution
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Figure 4.11: Computational resources (number of recursive steps and time needed) vs. problem
size during depth-first search. The combinatorial explosion of the search space clearly turns up in
the experimental setting. For problem sizes smaller than 8, the accuracy of the time measurement
prevents the practical curve from following the theoretical one.

candidates if they can be found fast. Figure 4.12 on the next page relates the problem size
to the quality, i.e., the length of the path in this example, that can be achieved by different
methods in a limited amount of time (here 30 seconds on a 450 MHz Intel Pentium III).

While the random and the node exchange methods perform much worse than the rest, depth-
first search and nearest neighbor are intermediate, and successive extension and edge exchange
are by far the most efficient methods. It can be seen that depth-first search fails to find optimal
solutions in the limited time starting at a problem size of 32 nodes.

Figure 4.13 on page 98 shows how the solutions improve over a period of 60 seconds for the
methods successive extension, edge exchange and depth-first search and problem sizes of 64 and
256.10

It can be observed that not only the (intermediate) results are better for non-systematic methods,
but that the heuristic variants also improve their results at a much higher rate.

Freuder & Wallace [1992] claim that branch-and-bound is well-suited for anytime applications,
and this can be confirmed in a limited way, although the other methods seem much better with
regard to their anytime behavior (early first solution, steady improvement, good final results).

“Circumstances may also impose resource bounds. In particular, real time process-
ing may require immediate answers, that can be refined later if time allows. The
branch-and-bound process is well suited to providing resource-bounded solutions.
We can simply report the best solution available when, for example, a time bound
is exceeded. The branch-and-bound process is also clearly well-suited to support
an anytime algorithm, which can repeatedly provide a “best-so-far” answer when
queried. It can quickly provide some answer, with a better one perhaps to follow as
time allows.” —— Freuder & Wallace [1992, p. 29]

10The absolute values for the distances in Figures 4.12 on the next page and Figure 4.13 on page 98 differ
because the underlying TSP problems have been freshly generated. Of course, the problems have been kept
constant within the experiments themselves.
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Figure 4.12: Quality (length of path; shorter paths are better) of TSP solutions obtained within
30 seconds for various problem sizes and various solution methods. Figures are averaged over
multiple runs.

We conclude that for large problems the heuristic search methods can be much more efficient
when appropriate neighborhoods are chosen (compare node exchange and edge exchange) and
either computation time is a concern or optimality cannot be proven in reasonable time. Not only
do local search algorithms return approximate solutions earlier, but the quality of the delivered
results is often much better than those of systematic methods. This favorable behavior, according
to Minton et al. [1992], is due to the useful information contained in suboptimal complete
solution candidates as opposed to partial solutions in systematic tree search.

Although our findings for a single example cannot easily be generalized, the above observations
carry over quite well to the application of WCDG parsing (cf. Section 4.11).

4.5.2 Incrementality and parallelism

In principle, constraint satisfaction problems are well-suited for incremental solution methods
because the set of consistent assignments for a subset of variables is always a superset of the
corresponding set in all complete solutions. An intuitive approach to constraint solving that
starts by looking at the set of consistent values for a small subset of variables and proceeds by
extending this set of variables step by step (Section 4.2) can already be considered incremental
because the complete set of variables does not have to be known in advance. A systematic
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Figure 4.13: Improvements of best round trip lengths so far depending on computation time and
search method for traveling sales person problems with 64 and 256 nodes. Only improving steps
are shown, i.e., the biased depth-first method, for instance, has not been able to improve the result
for the 64 nodes problem after 18,310 ms. Figures have been averaged over five runs.

depth-first tree search can also start to process the first variables even if the complete problem
is not yet available. In Section 4.12 we will explain why the constraint satisfaction problems
that correspond to WCDG parsing problems are more difficult to solve incrementally. Two
alternative approaches will be discussed.

Consistency-based methods have already been parallelized [Helzerman & Harper 1992; Harper
et al. 1995]. Furthermore, both search variants, systematic and local, are well-suited for parallel
processing [Hromkovic̆ 1998, Section 7.5]. For tree search it is either imaginable to keep the
agenda from which subtasks receive nodes for further processing centralized or to divide the
search tree into disjoint partitions early and let each subtask work on one of them. Local search
methods can start on different initial states or diverge from each other by means of different
parameterization [Yannakalis 1997].

4.5.3 Summary

Table 4.2 on the next page summarizes the properties of the three classes of solution meth-
ods: consistency-based algorithms, systematic tree search and heuristic search. Note that the
consistency-based algorithms do not completely solve the CSP problem but only reduce its size
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(cf. Sections 4.3.1 and 4.6). Furthermore, they cannot handle soft constraints very well (cf.
Section 4.6).

Criterion Consistency Systematic search Local search

Soundness yes yes, as long as an un-
limited agenda is used;
often this is not the
case for efficiency rea-
sons

no

Completeness yes yes, same restriction as
for soundness

no

Termination yes yes external
Complexity polynomial, îzëxïñð£î for

arc consistency in gen-
eral and îzëxïóò5î for
CDG (incl. SLCN)

exponential îzë�ôÙõvî depends on neighbor-
hood definition and
commitment strategy;
largely externally con-
trolled

Efficiency very fast varying; slow for
very large problems;
partially shows ex-
ponential worst case
complexity in practical
cases

moderate; termination
criteria not clear;
quickly finds first
solution

Anytime property not relevant theoretically yes, but
depends on agenda
strategy and sparse-
ness of soft solutions

yes

Incrementality not relevant well-suited in general,
but difficult for parsing
(cf. Section 4.12

not directly

Parallelism yes various realizations
possible

various realizations
possible

Table 4.2: Summary of evaluation of algorithmic classes for CSP solving.

4.6 Consistency-based parsing

Consistency-based methods are the algorithms of choice for both Maruyama [1990b], the ‘founder’
of CDG, and the researchers at Purdue University [Harper et al. 1994; Harper & Helzerman
1994; Harper & Helzerman 1995; Harper et al. 1999b]. Both restrict themselves to crisp con-
straints and propose a limited number of representational levels besides the syntactic one, mainly
for modeling existential conditions. Their motivation, of course, is to keep the CSP relatively
small and hence the computation efficient.

While the suggestion of Maruyama [1990a] only covered the analysis of sequences of words
where all words have unique unambiguous lexical entries, Helzerman & Harper [1996] extend
the algorithms to so called spoken language constraint networks (SLCN) which can handle word
graphs and lexical ambiguity [Zoltowski et al. 1992; Harper et al. 1999b]. The proposed
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algorithm achieves arc consistency for constraint networks where only a subset of variables are
part of the final solution, thus facilitating to ignore superfluous words in the input. The worst
case complexity is � N �"§�O 11 where � is the number of words in the input. This seemingly increased
complexity when compared to that of arc consistency ( � N � ÿ O where � is the number of constraint
variables) is due to the fact that words are needed as both variables and values in CDG.

Harper et al. [1999a] use SLCN as a post processing component for a speech recognizer in order
to filter out ungrammatical sentences from word graphs. For this application, the use of crisp
constraints is appropriate and the system works satisfactorily well although the consistency-
based methods are not always able to reduce the remaining ambiguity enough [Harper et al.
1995]. Helzerman & Harper [1992] developed a massively parallel version of their algorithms.

As soon as one looks at soft constraints, however, a fundamental difficulty emerges. Consistency
methods heavily rely on the notion of local consistency, a concept which refers to the isolated
compatibility of the domains of a single constraint variable, a pair or more variables (cf. Sec-
tion 4.3.1). For hard constraints, it is easy to define that domains are consistent when for each
value at least one combination exists so that no constraints are violated. For soft constraints,
however, such a definition is much more problematic. Value combinations are now assessed with
a numeric score between zero and one. In general, only a score of zero justifies the deletion of
values from domains, which in turn leads to an insufficient reduction of the domains because
almost all values receive a score greater than zero when a lot of soft constraints are used.12

Alternative definitions of inconsistency have been tried for the treatment of soft constraints, but
with limited success [Menzel & Schröder 1998c].

� The simplest form uses an external absolute threshold for the assessment of values and
value tuples. Of course, this is only a very coarse approximation since firstly, the absolute
score is nearly irrelevant when looking for the best alternative, and secondly, even a value
that has a low score locally can be part of the overall solution. Additionally, it is difficult
for a user to determine reasonable thresholds.� A slightly better strategy is to remove a certain percentage of the values from the domain
of a variable since it at least considers which direct alternative values are available and
does not blindly assume an absolute bound.� A similar strategy for value pairs compares the assessment of a value pair to the assessments
of pairs with one value replaced by an alternative one. The same objections as before hold.� A variant of the previous strategy computes the sum of squares of the assessments of
similar value pairs [Schröder 1996].

No attempted strategy is satisfactory for soft constraints, i.e., either the heuristics deletes too
many values it should not remove, or the ambiguity remains too high.

11More precisely, the complexity of achieving arc consistency for a SLCN is �/ iöø÷ù¡ ¢ ¤ where ö is the number of
constraints.

12de Givry & Verfaillie [1997] identified the same problem for the general VCSP framework (cf. Section 2.2.4):

“The filtering methods, also called constraint propagation or consistency enforcing methods (arc,
path, i, i-j-consistency (Freuder 1978)) can be extended to the VCSP framework, but only when
the aggregation operator is idempotent.” —— de Givry & Verfaillie [1997, p. 3]
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It can be concluded that consistency-based methods are not appropriate for weighted CDG
parsing since no reliable local consistency measure can be defined.

4.7 Heuristic consistency: Pruning

The procedure Pruning [Schröder 1997c] is similar to consistency-based methods in that it uses
the support a specific value gets from other variables as a criterion for the decision of which
values to discard and which to keep. It also runs in a repeated loop where information about
deleted values is propagated. However, exactly one value is removed in each iteration and the
selection scheme is more flexible so that fine tuned procedures can be devised that select the
next ‘doomed’ value.

Figure 4.14 gives the simple procedure for pruning in pseudo code notation.

1 procedure Pruning
2 while noOfPathsThroughWordgraph r � or ú N !|�Ã7G�·OWU P �C� P r � do
3 select �<!  � {  � to be deleted
4 delete

{  from domain of variable !  
5 done

Figure 4.14: Procedure Pruning in pseudo code. Values are successively deleted from the domains
of variables in a loop based on a selection heuristics.

Obviously, the selection heuristics is the crucial part of the procedure.

Simple selection functions only consider the minimum support a value gets from another variable
[Menzel 1994]. They combine the mutual compatibilities of the value under consideration and
all possible values for another variable. Then the minimum support for each value is determined
and finally the value with the least support is selected for deletion. In other words, the value
for which at least one variable’s values have only low or no support is ruled out as a possible
solution.

However, these selection functions suffer from the same problem as the consistency-based meth-
ods. The context considered is too small for global correctness and the absolute numeric value
of an assessment is an unreliable measure.

More complicated selection methods take into account at least the difference between lack of
support due to grammatical incompatibilities and lack of support due to temporal alternatives
in word graphs.

But even these fail to analyze word graphs with overlapping edges (cf. Figure 4.15) correctly
because they have to approximate the path criterion for efficiency reasons.13 Menzel & Schröder
[1998c] describe the issue in greater detail.

The selection heuristics generally lie between two extreme points. Either they only consider
local information and can thus operate very fast, or more global aspects are regarded at the cost
of prolonged computation time.

13It seems feasible however to extend the pruning method in a similar way the basic arc consistency algorithm
has been extended to word graphs [Helzerman & Harper 1996].
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Figure 4.15: A word graph with overlapping edges.

We can conclude that although the pruning procedure leaves more room for powerful selection
schemes, it cannot fulfill the overall requirements of an efficient and reliable solution method.
Similar remarks as for the consistency-based methods hold here as well.

4.8 Systematic tree search: Netsearch

The procedure Netsearch is a variant of the systematic tree search algorithm branch-and-bound
with best-first agenda strategy and node as well as value ordering for WCDG parsing. Additional
checks ensure acyclicity and compliance with the path criterion for word graphs.

Figure 4.16 on the next page lists the procedure in pseudo code notation. It uses the following
variables: � best score found so far; lower boundû set of (currently) best solution candidatesô agenda; contains search states �õ�0����� M �� set of bindings �<!:� { � made so far (partial assignment)� set of yet unassigned variablesM score of partial assignment�<!:� { � binding of value

{
to variable !

The procedure solves a CSOP which corresponds to a WCDG parsing problem (cf. Section 2.4).
It selects the correct path in a word graph by assigning the dummy value [ to variables cor-
responding to unused arcs and assigns a structure to the words in the unambiguous path by
binding appropriate values to the variables.

The procedure is sound, complete and fast for small to medium-sized parsing problems. For
larger problems, however, it often shows the exponential worst-case complexity. In these cases
it is indispensable to limit the size of the agenda so that the search space is pruned based on
intermediate heuristic information. As a consequence, the procedure loses its soundness and
completeness, not only theoretically but also for real parsing problems.

Fünning [2001] extends the procedure to backmarking which does not, however, improve the
runtime because the additional administration effort on the meta-level is larger than the time
saved through fewer constraint checks (on the basic level).
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1 procedure Netsearch
2 set � Ub�¬��$ � ; best score so far

3 set û Ub�$# ; set of solutions

4 set ô�Ub�� |�>#/�������)$ �v�s* ; initialize agenda

5 while ô y�^# do ; process agenda

6 get best item �õ�0����� M � from agenda ô ; best first

7 if M ù � then continue fi ; bound

8 if ���^# then ; complete assignment?

9 if M � �
then ; best so far?

10 add �õ�0����� M � to û ; equally good

11 else
12 set û Ub�µ |�õ�����²� M �s* ; better

13 set � Ub� M
14 fi
15 else
16 ; node ordering

17 select !@��7G� ; try next free variable

18 set �  Ub�B��üv �!)�l*
19 ; value ordering

20 for all
{ 7��C� do ; try all values including ý

21 if incompatible( �<!K� { ����� ) then
22 continue ; acyclicity & path criterion

23 fi
24 set �  Ub�Î� �� |�<!:� { �s*
25 compute new score M  for �  
26 if M  øþ �

then ; already worse?

27 add �õ�  ���  � M  � to agenda
28 fi
29 done
30 truncate agenda ô (if desired)
31 fi
32 done
33 return û
Figure 4.16: Systematic tree search procedure Netsearch in pseudo code.

4.9 Heuristic search: Frobbing and Gls

The search states in heuristic search are complete solution candidates, i.e., complete analyses in
the parsing case. The process moves from one such candidate to a better one in the neighborhood
until no further improvement can be made. Different variants of the basic algorithm can be
distinguished based on their definitions of neighborhood and on the means that are employed
to escape local optima. The latter techniques are called meta-heuristics.

For WCDG parsing, admissible operations that transform one candidate into a neighboring one
include at least the following:
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� Exchange a lexical reading of a word with an alternative one.� Change the label of a dependency edge.� Change the governor of a word.� Choose an alternative edge from the word graph which is not part of the current interme-
diate candidate.

Note that some operations entail subsequent modification steps in order to arrive at a feasible
candidate again. Choosing an alternative edge, for instance, requires not only changing all
assignments that use the old edge but also ensuring that the new edge is part of a complete path
through the word graph. In extreme cases this necessitates a complete change of the assignments.

Figure 4.17 presents two steps from an intermediate candidate (a) to the final solution (c) for
Example E-64 (a typical German garden path sentence).

E-64 Er gibt das Buch der Frau dem Mann.
{gen,dat} {dat}

He gives the book the woman the man.
‘He gives the book of the woman to the man.’

In the first step, the governor of the word Mann and the label of the edge are changed. The
second step involves the exchange of the lexical entry for the word Frau (from dative to genitive)
and again a switch of an edge label.

It can be seen that the intermediate candidate (b) violates at least one hard constraint so that
its score falls to zero. It is sometimes said that the local search procedure has to ‘walk through
a valley’ in order to arrive at a new better candidate.14

Different variants of the pure local search algorithm use different means to deal with these
frequent local optima in the search space. Two have been realized for WCDG parsing. They
employ either a sophisticated neighborhood definition (cf. Section 4.9.1) or a modification scheme
for the scoring function itself (cf. Section 4.9.2).

In order to be able to reasonably compare two solution candidates which both violate hard
constraints, we have to generalize the candidate scoring function. Given a weighted constraint
dependency grammar WCDG � � LEV � LAB �sTS���8��¹¯� and a solution candidate SC � �õ�Á��&��(')� ,
the extended candidate scoring function ¹2ÿÂ N SC O is defined as follows.

¹ ÿÂ N SC O�� Bc h�� D e SC
h� e c h�� D ¹ N 1�O�� P  .1«7\< � N SC O P ¹ N 1�Oß�Î�/* P

The idea behind this definition is simple; all soft constraints together account for a range of N �����£ó
and for each violated hard constraint the score is decremented by one. The resulting range
is òÉ���/���£ó where � is the maximum number of hard constraint violations that depends on the

14This is even more important for grammars with interdependent levels and for word graphs as input where
one change can trigger a whole set of necessary follow-up changes.



4.9 Heuristic search: Frobbing and Gls 105

violated constraints

no violated constraints

violated constraints
0.1 fragmented analysis

0.0 duplicate indirect object

(a)

(c)

(b)

Er gibt das Buch der Frau dem Mann

subj dobj

art art art

nom acc dat dat

idobj
idobj

Er gibt das Buch der Frau dem Mann

subj

art art art

nom acc gen dat

dobj idobj

Er gibt das Buch der Frau dem Mann

subj dobj
idobj

art art art

nom acc dat dat

genattr

Figure 4.17: Heuristic search for CDG parsing: Transforming one analysis into another one.

grammar and the utterance. The score of a solution candidate that violates at least one hard
constraint is always lower than the score of an alternative solution candidate that violates only
soft constraints, i.e., a number of weak soft constraints can overrule a single not so weak soft
constraint, but a hard constraint can never be overruled by soft constraints.

Figure 4.18 on the next page lists the general heuristic search procedure in pseudo code notation.

4.9.1 Min-conflicts with tabu list

The procedure Frobbing [Foth, Menzel & Schröder 2000] is a variant of the local search algorithm
for WCDG parsing with a sophisticated neighborhood function. It is based on the min-conflict
algorithm [Minton et al. 1992, see above], i.e., it primarily considers those solution candidates
as neighbors to the current one that manage to remove at least one of the constraint violations.

Additionally it maintains a list of recently removed conflicts that are not allowed to be re-
introduced in neighboring states, thus avoiding cycles in traversal of the search space. This
technique is borrowed from tabu search [Glover & Laguna 1997; Glover & Laguna 2000; Hertz,
Taillard & de Werra 1997; Domschke, Klein & Scholl 1996], another variant in the local search
framework that uses a dynamic, adaptive memory, a so called tabu list, to store features of
search states that are prohibited (or taboo). Of course, depending on the size of the tabu list
the linear space complexity of the algorithm may increase.
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1 procedure HeuristicSearch
2 set SC := random initial solution candidate ; start randomly

3 set BSF := SC ; remember best so far

4 while not finished do ; external termination criteria

5 repeat ; local search

6 set IMPROVED := false
7 for all SC  neighboring SC do ; steepest ascent

8 if ¹ ÿÂ N SC  ?O^º�¹ ÿÂ N SC O then ; compares favorable

9 set NEW := SC’ ; found better state

10 set IMPROVED := true
11 fi
12 done
13 if IMPROVED = true then ; better neighbor

14 set SC := NEW ; store new state

15 fi
16 until IMPROVED = false
17 if ¹ ÿÂ N SC O^º�¹ ÿÂ N BSF O then ; compare local opt. to best so far

18 set BSF := SC ; found new best state so far

19 fi
20 ; escape local optimum

21 apply meta-heuristics (new SC, modified neighborhood or ¹ ÿÂ )
22 done
23 return BSF

Figure 4.18: Heuristic search in pseudo code: local search + meta-heuristics.

The third extension to pure local search is a careful ranking of neighboring states according to
the limits (similar to but more powerful than support in consistency-based algorithms) that are
attached to the basic blocks of the solutions candidates.

Foth [1999] is the authoritative reference to the Frobbing procedure as a WCDG parsing method.

4.9.2 Guided local search

Guided local search [Voudouris & Tsang 1995] takes a different approach to the problem of lo-
cal optima in heuristic search. Instead of ‘walking through the valley’, i.e., allowing occasional
deteriorating steps, it uses an auxiliary scoring function as the objective function which is ini-
tially identical to the candidate scoring function ¹ ÿÂ [Voudouris & Tsang 1995, p. 9]. While
monitoring the progress, the auxiliary scoring function is modified such that local optima sim-
ply disappear for the adapted versions of the auxiliary function. Where Frobbing uses recently
resolved conflicts, i.e., formerly violated constraints at a specific position on a tabu list, here
violated constraints are used as solution features that characterize certain properties of search
states [Voudouris & Tsang 1995, Section 6.1]. The scoring function is augmented such that
states with solution features that have often been observed in local optima are downgraded.

Figure 4.19 on the facing page illustrates how a local minimum is ‘filled up’ for revised versions
of the augmented scoring function �K� N O so that the local search can finally escape from the local
minimum and find a better candidate.
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Figure 4.19: Guided local search: The augmented scoring function � N O is modified in local optima
so that the optimum vanishes for the updated function. Figure adapted from Schulz & Menzel
[submitted].

For the final decision of which candidate to return, the original scoring function is of course still
available.

The procedure Gls employs a guided local search strategy for WCDG parsing but instead of
the multiplicative scoring function it uses an additive cost measure as the auxiliary function in
order to allow multiple soft constraints to overrule a hard constraint when trying to escape a
local optimum. Schulz [2000] is the authoritative reference.

Gls cannot analyze word graphs with overlapping edges (such as the one in Figure 4.15 on
page 102) at the time of this writing; it is therefore limited to a subset of simpler parsing
problems compared to the other methods.

4.10 Implementation

A computer system [Schröder 1997d; Schröder 1997a; Foth, Schröder & Schulz 1998; Foth et al.
1999] for experiments with weighted constraint dependency grammars has been implemented15

that includes the parsing methods described in Sections 4.6 to 4.9.

Besides this core functionality it provides facilities to develop and maintain grammars, i.e., sets
of weighted constraints, lexica, ontologies and annotated corpora. A user can interact with the
system through an integrated command-line tool or a graphical user interface (cf. Figure 4.20
on the following page).16 The core functionality can also be accessed through an application
programming interface and a library [Foth 1998a].

15The software, documentation and example grammars can be downloaded from http://nats-www.

informatik.uni-hamburg.de/~ingo/dawai/.
16I am grateful to various people who have contributed to the WCDG parsing system. In particular, I would

like to mention Kilian Foth and Michael Schulz. The latter also realized the graphical user interface XCDG.
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Figure 4.20: Graphical user interface XCDG. The left figure shows the main view with subsections
for word graphs, constraint networks, dependency trees, databases of stores analyses and grammar
information. A syntactic analysis is pictured in the right figure.

The system has been extensively used for experiments which are partly described in this the-
sis (cf. Section 4.11 and Chapter 5). It has also been embedded in a prototypical system for
computer aided language learning [Menzel & Schröder 1998f; Menzel & Schröder 1999, cf. Sec-
tion 5.4].

4.11 Experiments

A number of experiments have been run in order to empirically examine the properties of the
algorithms for WCDG parsing.

The Stellingen corpus of approximately 220 utterances has been analyzed with a grammar which
makes extensive use of soft constraints (cf. Section 5.2.1 for a description of the grammar and the
corpus). No word graphs were used but instead linear sequences of possibly ambiguous words.17

For all runs the computation time has been limited per problem instance. All experiments
reported in this section were run on a PC with a 1.1GHz Intel Pentium III processor under the
Linux operating system. Most results are given separately for varying problem sizes. To do so
we split the corpus into partitions with different numbers of possible constraint values (after
unary constraints); Table 4.3 on the next page lists the ranges and the number of instances per
class.18 The mean number of values per class is used as an x-value in the figures of this section.

4.11.1 Tree search

Figures 4.21 on the facing page through 4.23 on page 111 give experimental data for the sys-
tematic tree search procedure Netsearch.

Figure 4.21 on the facing page presents the influence of the agenda size on accuracy and efficiency.
The agenda is restricted in size in order to limit the memory requirement of the algorithm.

17See remark in the previous section about the incapability of Gls to handle ‘real’ word graphs. Note that
a procedure that is prepared to handle word graphs can possibly do worse on linear sequences of words than a
similar procedure that cannot handle word graphs at all. However, no evaluation of the increase of the parsing
difficulty due to word graphs has been conducted so far.

18A parsing problem which consists of more admissible values is not necessarily more difficult to solve than one
with less. In practice, the figure is nevertheless a good approximation for parsing difficulty.
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Range #val. No. Avg. #nodes Min. #val. Max. #val. Avg. #val.�_+	� ù �%�@� 9 55.000 49 95 77.556�%�@�_+	� ù��)�@� 73 91.301 100 299 205.301�)�@�_+	� ù� )�@� 47 130.702 304 492 386.723 )�@�_+	� ù�¢��@� 22 156.636 500 699 596.273¢��@�_+	� ù�¥)�@� 17 178.529 701 876 769.059¥)�@�_+	�3ù ���/���@� 15 193.533 905 1,144 1,018.400�)�s�)�@� +	� ù �)�s¡)�@� 13 231.154 1,226 1,591 1,445.538�)�s¡)�@� +	� ù��/�s )�@� 14 240.643 1,612 2,456 1,880.714�/�s )�@�,+	� ù�
 14 338.000 2,810 10,047 4,275.857

Table 4.3: Problem classes based on number of constraint values: ranges for the number of con-
straint values; number of problem instances per range; average number of nodes in these ranges;
average, minimum and maximum number of values in these ranges
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Figure 4.21: Accuracy and efficiency depending on agenda size for the solution method Netsearch.

Although it is hoped for of course, nothing guarantees that only those parts of the search space
are pruned that do not contain solutions. A clear dependency of the needed processing time on
the agenda size can be observed: The smaller the agenda, the faster the search. The general
principle that larger agenda sizes lead to better accuracies because fewer solutions are pruned
by mistake can also be confirmed, at least for agenda sizes smaller than 10,000. The larger
agenda sizes 20,000 and 50,000 do not differ significantly in efficiency and accuracy, which can
be explained by the fact that the limited processing time becomes the primary restriction.
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Figure 4.22: Accuracy and efficiency depending on the pre-set time limitation for the solution
method Netsearch.

Figure 4.22 presents results from an experiment about the impact of the pre-set time limit on
accuracy and efficiency. The figure suggests the possibility that the procedure Netsearch in
fact suffers from the exponential explosion that is typical for combinatorial processes. While
nearly no differences among the various runs are visible for the small problem classes, the large
problems take much longer for those runs where a high time limit has been set. However, the
additional time spent is not wasted; long lasting runs score better accuracy than runs that are
prematurely stopped.

Figure 4.23 on the facing page relates three types of time measures and two types of accuracy.

Soft time is the amount of time needed to find a first solution candidate that does not violate a
hard constraint. Solution time is the time until the final solution has been found, and termination
time is the total time until the process terminates. It can be seen that the final solution is found
shortly after the first soft solution and that the majority of time is spent between the final
solution and the termination. This confirms the claim [Freuder & Wallace 1992] that branch-
and-bound can supply a solution relatively early; nevertheless no anytime property can be
diagnosed because the solution does not steadily improve over time but stays the same for long
periods of time (cf. Section 5.5).

Accuracy can be given as the mean over all levels or for a particularly important level such as
syntax. It can be seen that the accuracy for syntax is slightly worse than the overall one. This
can be explained by the fact that all words must have a meaningful governor on the syntax
level; in contrast, auxiliary levels such as semantic ones (cf. Section 3.4.6) often only contain
meaningful links for a subset of the words.

Finally, it should be mentioned that the decreased accuracy for large problems is mainly due
to failures to find a solution at all. For all classes but the largest problem size the procedure
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Figure 4.23: Three types of time measures and two types of accuracy for Netsearch: Soft time,
solution time and termination time as well as overall accuracy and accuracy for the syntax level
alone.

was able to find solutions for all problems. However, 14.3% of the problems in the last class
could not be solved at all by the procedure which corresponds quite well to an overall accuracy
of 84.5%.

4.11.2 Heuristic search with tabu list

Figure 4.24 on the next page gives the analogous experimental data for the heuristic search
procedure Frobbing as does the last Figure 4.23 for Netsearch.

It stands out that the quality of the procedure is very high, even for large problems.19 The syntax
accuracy is again worse than the overall accuracy but this time a difference of four percent can
be found which once more can be explained by the different types of failures. While Netsearch
fails to find some solutions for the largest class of problems, the heuristic search methods always
yield a result. The lack of a solution candidate results in a smoothing of the differences in
parsing difficulty among the levels. Therefore, the gap between syntax and overall accuracy is
larger for the heuristic search methods. The percentage of time spent after the final solution is
found is smaller than that for the Netsearch procedure.

4.11.3 Heuristic search as guided local search

Figure 4.25 on the following page gives the corresponding experimental data for the heuristic
search method Gls.

19Note the different scales in Figures 4.23, 4.24 on the following page and 4.25 on the next page.
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solution time and termination time as well as overall accuracy and accuracy for the syntax level
alone.

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000 4500
88

90

92

94

96

98

100

Ti
m

e 
[s

]

A
cc

ur
ac

y 
[%

]

Problem size

Time/Accuracy Gls (-g 3)

soft time
solution time

termination time
overall accuracy

syntax accuracy

Figure 4.25: Three types of time measures and two types of accuracy for Gls: Soft time, solution
time and termination time as well as overall accuracy and accuracy for the syntax level alone.



4.11 Experiments 113

In general, the run of the curves is similar to those for Frobbing. However, the procedure tends
to run faster at the cost of delivering a slightly worse accuracy than Frobbing. Again, the
discrepancy between overall accuracy and that for syntax alone increases.

4.11.4 Comparison

Figures 4.26 and 4.27 on the following page finally compare the three solution methods directly.
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Figure 4.26: Comparison of soft, solution and termination time for various solution methods.

The runtime of the systematic tree search Netsearch grows combinatorially with the problem
size. Only with a runtime limited to a reasonable amount of time (here 60s) can the procedure
compare favorably to the heuristic search methods Frobbing and Gls. It achieves the best soft as
well as the best solution time and is on par with Gls with regard to the termination time. Note
that this is not only an artificial effect due to the failure of Netsearch to provide a solution at all.
Only for the largest problems such failures exist (28.6% for Netsearch 60s, 14.3% for Netsearch
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600s). If the runtime is not limited enough, the time needed grows fast with the problem size
(see Netsearch 600s). The heuristic search variants Frobbing and Gls are more ‘well-behaved’
with respect to scalability. Even though their runtimes grow considerably when the problem
size increases they do not show the combinatorial explosion typical for exponential processes.
In general, Gls seems to run faster than Frobbing.
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Figure 4.27: Comparison of accuracy for various solution methods.

Figure 4.27 compares the algorithms with regard to the achieved accuracy. The systematic search
procedure Netsearch scores the best accuracy possible for small and medium-sized problems
(with one exception). It achieves results comparable to those of Frobbing for the second largest
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problem class but its accuracy breaks down for the class of the largest problems, which is due to
the failure to produce a solution at all for some problems within the time allowed (see above).20

The heuristic search variants Frobbing and Gls both show more constant results, even for the
largest problems. However, neither one reaches the absolute correctness of a systematic search
for small and medium-sized problems. In general, Frobbing achieves a slightly higher accuracy
than Gls. For both heuristic search variants, the distance in accuracy to that of the systematic
tree search even increases when moving from the overall accuracy to the syntax accuracy.

4.11.5 Summary

In conclusion, it can be confirmed that the parsing methods for WCDG show the characteristic
behaviors of the algorithmic paradigms they are based on. A grammar writer and experimenter
can choose the algorithm that best suits his needs. For small and medium-sized problems the
systematic tree search method delivers accurate results quickly. For the largest problem class, the
heuristic search procedure Frobbing manages to find very good results in a reasonable amount
of time, and if time is absolutely crucial Gls returns results that are still good even faster.

4.12 Incremental mode of operation

Section 4.5.2 outlined a general incremental mode of operation for a solution method for con-
straint satisfaction problems. The rationale behind such a procedure is that values that are
judged inconsistent based on the constraints among a subset of variables can never become
consistent again, even if more variables have to be considered. This monotonic behavior of
constraint satisfaction make CSPs promising candidates for incremental solution methods.

In the case of natural language parsing, however, an incremental mode not only means that not
all variables are available when the computation starts, it also means that not even all values
for the available variables are known. Variables roughly correspond to words in an utterance;
values to dependency relations between words. A dependency link of the first word in a sentence
to the last word can only be postulated and checked after the last word is available.21 This
intertwining of variables and values complicates the incremental case for WCDG parsing. The
general case of dynamic CSP [Dechter & Dechter 1988] where arbitrary elements of the CSP can
change over time can, for instance, be solved by a variant of the dynamic backtracking algorithm
[Verfaillie & Schiex 1994a].

Mitjushin [1992] identifies the reason why dependency structures are well-suited for incremental
analysis:

“The reason is that the dependency structure of a segment is the same both when
the segment is considered as isolated and when it is considered as a part of some

20Note that Netsearch never delivers solutions which violate any hard constraints while the heuristic search
procedure does. Consequently Netsearch always scores zero percent accuracy for these problems, although it
could easily get at least 47.9% which is the easily achievable baseline accuracy for this kind of measure (cf.
Section 5.9.4).

21This double role of words both as variables and as values is also the reason why consistency-based methods
based on arc consistency (cf. Section 4.6) need �/ i¡E¢�¤ time where ¡ is the number of words, while arc consistency
itself can be achieved in �/ i¡�(¤ where ¡ is the number of constraint variables.
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sentence [...] In our opinion, this comparison demonstrates that, in a certain sense,
dependency structures reflect the incremental nature of sentence comprehension from
left to right better than constituent structures do.” —— Mitjushin [1992, p. 930]

Incremental natural language parsers can be divided into two classes: Either they always pursue
all structural possibilities and only extend the set of hypotheses or they commit themselves
relatively early to one or a small set of possibilities and remove the remaining ones. Chart
parsers [Wirén 1992; Amtrup 1999] are typical examples of the first class. Deterministic parsers
[Marcus 1987] and parsers with an early commitment strategy as well as repair mechanisms
[Lombardo 1992] fall into the second.

In the context of WCDG, Schulz [1999] realized a parser of the first kind that utilizes an under-
specified word node that is used temporarily to represent all future possibilities.

A WCDG parser of the second kind, described by Foth et al. [2000], robustly parses larger
and larger prefixes of an utterance into intermediate structures. It takes advantage of the
optimal structure of the previous smaller prefix to efficiently compute the structure of the next
larger prefix by only allowing a limited amount of modifications and extensions of the previous
structure. Verfaillie & Schiex [1994b] propose a similar re-use of intermediate solutions in the
context of general dynamic constraint satisfaction problems.

Figure 4.28 presents some results of such a parser with regard to the achieved accuracy and the
computation time needed.
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Figure 4.28: Incremenal WCDG parsing: Processing time and accuracy vs. sentence length. Num-
bers extracted from Foth et al. [2000].

The following observations can be made:

� The accuracy of the incremental parser is a little worse than that of the non-incremental
one. The difference can be explained by the fact that only a subset of all structural
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possibilities are taken into account during re-analysis in incremental mode. The solution
to the previous prefix and the update heuristics determine which dependency links are not
even considered. Naturally, the heuristics make mistakes occasionally so that solutions are
missed.� For small problems, the incremental parser is less efficient than the non-incremental one.
The reason for this behavior is, of course, that a non-incremental analysis is reasonably
fast for small problems. Only for larger problems, the additional effort that is needed for
re-analysis in the incremental case can be compensated for by the reduction of work that is
possible because only smaller problems have to be solved at each step. In these important
cases, however, a considerable amount of time can be saved: The incremental procedure
is ten times faster than the non-incremental one for sentences longer than sixteen words.� Even with the incremental parser, longer sentences take considerably longer to parse than
shorter ones. Of course, no final statement can be made from only four data points, but it
seems as if the growth rate of the runtime is super-linear, i.e., at least polynominal if not
even exponential. This means that, although the suggested modification is a step towards
the goal of a parser whose runtime grows only linearly in the number of words, this goal
has not yet been achieved.

4.13 Optimizations

This section describes various modifications of the program system that improve the practical
runtime. Their applicability depends on the specific application and they cannot change the
theoretic order of growth of the solution methods. Nevertheless they are indispensable not only
for real applications but also for systematic experimentation because only due to their speeding
up the runtime can the program system be put to practical use. They allow the user to run
experiments much more efficiently. We merely touch the surface of program optimizations in this
section since literally hundreds of code improvements found their way into the system during
the period of its still ongoing development.

Note that not all steps that seem promising at first automatically lead to an improved runtime.
Only experimental evaluations can determine the actual impact and thus the practical use.

4.13.1 Sorting constraint nodes

A well known heuristic to improve the runtime efficiency listed in the constraint satisfaction
literature [Meseguer 1989, for instance] is to change the order in which the constraint nodes are
considered for assignment (cf. heuristic information in Section 4.2).

Only the branch-and-bound search method is influenced by these heuristics because the heuristic
search methods do not have a notion of strict sequential assignment of value to nodes.

Three different orderings have been tried.

� Natural order: The constraint variables are assigned in the order in which their cor-
responding words appear in the word graph. For one and the same word, the nodes are
sorted in the order in which the levels are declared in the grammar.
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� Domain size: In this ordering, the variable with the smallest number of domain values is
used first, and the more values are available the later the node is accessed. The motivation
for this heuristic is that one tries to keep the search tree narrow at the top and wider at
the bottom in order to reduce the number of search nodes.

� Level priority: As discussed in, for instance, Section 3.4.1, not all levels are equally
important. Only some carry real linguistic information, and it depends on the grammar
writer to decide which levels are of central importance. Therefore, the user of the system
can associate priorities with levels and these priorities are used in this ordering scheme.
A grammar writer might decide to include more (constraining) information on a syntac-
tic level; in this case the syntactic nodes should be assigned first so that the effective
constraints can be applied early.

Figure 4.29 presents the impact of the different node orderings on efficiency and accuracy.
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Figure 4.29: Impact of various node ordering strategies for Netsearch.

Surprisingly the general heuristic of assigning variables with small domains first is clearly the
worst of all alternatives. It not only needs more computation time but it also achieves only a
reduced accuracy. The node ordering that is determined by the level priority22 yields the best
results. The natural ordering is slightly worse than the best ordering for both efficiency and
accuracy.

22Priorities have been determined by the number of binary constraints that are applicable to the corresponding
level in order to approximate the constrainedness and importance of the level. For the Stellingen grammar, this
resulted in the following order: SYN (syntax) OBL4 OBL1 OBL2 OBL3 (auxiliary levels for obligatoriness conditions)
VORFELD (word order) SUB (subjunctive clauses) AGENT EXP PATIENT QUALITY THEME (thematic levels).
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4.13.2 Agenda normalization

In Section 4.3.2 where systematic tree search was introduced we discussed three basic agenda
strategies (cf. Figure 4.5 on page 85):

� A queue as the agenda leads to a breadth-first traversal of the search tree, which is not
appropriate for WCDG parsing since all incomplete analyses have to be constructed be-
fore the first complete one is encountered, which makes the method intractable for large
problems.

� Depth-first search only needs a lean stack as the agenda. However, it cannot be used for
WCDG parsing because the valuable information about the score of partial solutions is
almost completely ignored (except for value ordering within the constraint variables).

� An agenda that is sorted by the score of the partial assignments results in a best-first
search which is generally employed in the systematic tree search procedure Netsearch.

A number of feasible variations of the naïve best-first method take into account that two partial
solution candidates with equal score but different numbers of still missing assignments should
be treated differently since the expected penalties resulting from future constraint violations of
yet unassigned variables are different.

Three adjustment functions have been tried that map a score of a partial assignment ¹ to a
score � N ¹¯O used for agenda sorting.

� Off: This is the naïve best-first approach: � N ¹¯O²� ¹ .� Linear: Since a partial assignment accumulates the violations of all assignments, the
strategy multiplies the score with the number of assignments made so far: � N ¹¯O8� �ì~v¹
where � is the number of assignments made so far.

� Square: This approach uses the square root since penalties are aggregated multiplicatively
in the WCDG framework: � N ¹¯O�� ?� ¹ where � is the number of assignments made so far.

Figure 4.30 on the next page summarizes the impact of the various normalizations on efficiency
and accuracy.

Although the results are not as dramatic as for the node ordering schemes they nevertheless
provide a clear picture. The adjustment that uses the � th square root of the assignment score
as the basis for agenda ordering outperforms the alternatives in terms of both efficiency and
accuracy. The linear adjustment gets medium placing.

The search algorithm obviously benefits from a strategy that mixes aspects from depth-first
and best-first. The more relatively complete assignments are preferred, the more the behavior
resembles depth-first. The square root method is closer to depth-first than the linear adjustment
which in turn is closer than the naïve approach.
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Figure 4.30: Impact of various agenda normalization schemes for Netsearch.

4.13.3 Constraint indexing

Constraints are usually tailored to specific levels. General constraints that are valid for all or
at least some levels are relatively rare.23 Therefore, constraints usually take the form of an
implication where the premise ensures that the currently tested dependency edges belong to the
correct level.

C-35 {X, Y} : UnderVerbVorfeld : Vorfeld :

X.level=SYNTAX & Y.level=VORFELD &

X^id=Y@id & X@pos<X^pos & Y@cat=FINVERB ->

Y^id=X@id

Constraint C-16 on page 60, repeated here as Constraint C-35, is a typical example. The
constraint is only relevant if the first edge is a syntactic one and the second one belongs to the
level VORFELD. In all other cases the constraint is trivially satisfied because the premise evaluates
to false.

Since the levels of the dependency edges are known during constraint checking, constraints can be
indexed before the actual evaluation based on their levels. Then, only the relevant constraints
are touched and only a small portion of constraint evaluations has to be carried out. This
optimization cannot change the operational semantics of the system since irrelevant constraints
are always satisfied and do not contribute to the assessment of a configuration.24

23One exception to this rule are constraints that deal with general properties of structures like acyclicity or
projectivity (cf. Section 3.4.5).

24Side effects actually can lead to a modified behavior of the indexed constraints. The predicate print() (cf.
Section 2.5.2) is the only source of side effects in the constraint language. It is mainly used while debugging a
grammar.
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This idea can be extended beyond an index based on levels. Often a specific spatial configura-
tion of a dependency edge or of two dependency edges is a prerequisite for a constraint to be
applicable. In addition to the level membership, this information can be used as an index key.

Extension of the constraint language

The syntax of constraints (cf. Table 2.2 on page 31) has been slightly extended to separate the
information that can be used for indexing from the main formula. Conditions regarding levels
or spatial configurations are moved into the signature of the constraints. Table 4.4 lists the
extensions in EBNF.

Connexion U&Ub� ‘,’
P
‘/\’

P
‘\/’

P
‘||’

P
‘==’

P
‘ q =’

P
‘\’

P
‘/’

Direction U&Ub� ‘:’
P
‘|’
P
‘\’

P
‘/’

P
‘ !’

Formula U&Ub� Variable Connexion VariableP
Variable Direction

VarInfo U&Ub� Variable Direction String

VarList U&Ub� VarInfo
P
VarInfo Connexion VarInfo

Table 4.4: Extension (in EBNF notation) of the syntax of the constraint language for constraint
indexing. These rules supplement or replace those in Table 2.2 on page 31. Given this extension,
the limitation to at most binary constraints (cf. Section 2.6) is anchored even in the syntax of the
constraint language.

The signature of a constraint not only introduces the placeholders for the variable bindings (often
X and Y), but also restricts the applicability of the constraints to certain configurations, e.g., to
variables belonging to a certain level. Two kinds of restrictions can be used in the signature and
both have an equivalent formulation in the formula body.

If the syntactic element VarInfo (cf. Table 4.4) in the signature of a constraint has, for instance,
the form X!FOO and the formula is F, then the restriction of the signature can also be written
as (X! & X.level=FOO) -> F, i.e., the information is a prerequisite for the constraint to fail.
These limitations of the orientation of a dependency edge are called directions.

In binary constraints, the signature may contain information about the spatial configuration of
the two involved edges. A restriction X:FOO /\ Y:BAR in a signature can be moved to the formula
by using (X.level=FOO & Y.level=BAR & X^id=Y^id) -> F instead of the original formula F.
These limitations of the configuration of two dependency edges are called connexions.25

Direction

Directions describe the spatial orientation of a single dependency edge. The following enumer-
ation lists the possible forms and the equivalent formulations.

� X| (equivalent to root(X^id))
The edge has no governor, i.e., the corresponding word is the root.

25Note that the element ‘connexion’ of our constraint language is related but not identical to the general
concept that has been introduced in Section 3.2.
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� X! (equivalent to ~root(X^id))
The edge has a real governor, i.e., it is not the root.� X/ (equivalent to distance(X^id, X@id)<0)
The edge leads to the right, i.e., the governor is a word to the right of the dependant.� X\ (equivalent to distance(X^id, X@id)>0)
The edge leads to the left, i.e., the governor is a word to the left of the dependant.� X: (equivalent to true)
No further restriction.

Connexion

Connexions describe the ‘spatial’ configuration of two dependency edges. The following enumer-
ation lists the possible forms, equivalent formulations in parentheses, descriptions and example
constraints. For some cases a violating configuration is provided as a side figure.

� X/\Y (equivalent to X^id=Y^id)
The governors of both edges are identical.

C-36 {X!SYN/\Y!SYN} : subj_uniq : 0.0 :

X.label=subj -> Y.label!=subj;

At most one subject per verb.

X Y

ClaralovesPeter

subj subj

� X\/Y (equivalent to X@id=Y@id)
The dependants of both edges are identical.

C-37 {X:THEME\/Y!OBL2} : THEME_OBL2_parallel : 0.1 :

Y@args:2:role=THEME -> X==Y;

An auxiliary level edge for obligatory com-
plements follows a thematic edge (if re-
quired by the lexical entry).

OBL2THEME YX

subj

Peter cooks the dinner

obj

� X||Y (equivalent to X^id!=Y^id & X^id!=Y@id & X@id!=Y^id & X@id!=Y@id)
All involved dependants and governors are disjoint.

C-38 {X!SYN||Y!SYN} : projectivity : 0.0 :

min(X@from, X^from) < min(Y@from, Y^from) ->

max(X@from, X^from) > max(Y@from, Y^from) |

max(X@from, X^from) < min(Y@from, Y^from);

Dependency edges do not cross (cf. Con-
straint C-20 on page 62).

X

Y

... den wir gemeint haben
that we meant have (aux)
that we have meant

...

...

� X\Y (equivalent to X^id=Y@id)
The governor of X is identical to dependant of Y, i.e., there exists a dependency chain X@idY X^id = Y@id Y Y^id.
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C-39 {X!SYN\Y!SYN} : subj_case_art_verb : 0.1 :

X@cat=ART & X^cat=NOUN & Y.label=subj ->

Y^subcat:subj:case=X@case;

The article of a (subject) complement
noun (maybe underspecified for case)
agrees with the verb with regard to case
(cf. Section 3.4.2 on page 57).

det

subj

The
Hund bellt
dog barks

Den (acc)

Y

X

� X/Y (equivalent to X@id=Y^id)
The governor of Y is identical to dependant of X, i.e., there exists a dependency chain Y@idY Y^id = X@id Y Xid.� X==Y (equivalent to X^id=Y^id & X@id=Y@id)
The edges are parallel edges on different levels (cf. Constraint C-37 on the preceding page).� X~=Y (equivalent to X^id=Y@id & X@id=Y^id)
The edges are inverse to each other.� X, Y (equivalent to true)
No further restriction.

Example

Constraint C-40 is semantically equivalent to Constraint C-35 on page 120 but has some informa-
tion moved from the formula body to the signature of the constraint. The complete information
of level membership, spatial configuration of the edge X and how the two edges are arranged can
then be used to compute an index so that only relevant edges have to be checked for compatibility
with this constraint.

C-40 {X/SYNTAX\Y:VORFELD} : UnderVerbVorfeld : Vorfeld :

Y@cat=FINVERB -> Y^id=X@id

Evaluation

Figure 4.31 on the following page shows the results of an experiment that deals with the impact
of two different types of constraint indexing on the efficiency of the system. No indexing is
used as a baseline to which a level indexing and a full indexing scheme are compared. The
comparison is done for three operations (application of unary constraints only and complete
analysis using tree search as well as heuristic search), and two measures (time and number of
constraint evaluations) are given. Taking into account that 12 levels were used in the grammar
and assuming an (over-optimistic) uniform distribution of constraints to levels, the theoretical
lower bound for the level indexing method is 8.3% for unary constraints and 0.7% for binary ones
(systematic tree and heuristic search). It turns out that these minima cannot be reached due
to asymmetries in the grammar, but a huge gain in efficiency can still be observed. Of course,
binary constraint evaluations benefit much more than unary ones because there are many more
possible indices if one considers the combination of two levels and configurations instead of only
a single level and configuration. The bigger part of the improvement is already achieved by the
level index but the full index nevertheless facilitates an additional enhancement. The number
of constraint evaluations benefits more than the time requirement because the indexing directly
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Figure 4.31: Relative runtime and relative number of constraint evaluations for two types of con-
straint indexing compared to the baseline with no indexing. The black bars represent the means
over a corpus while the small gray bars on the left and the right give the minima and maxima
respectively.

reduces the number of evaluations while the practical runtime is influenced by other factors
as well. The heuristic search method benefits most from this optimization because it always
evaluates the full set of constraints for a given configuration, even if a hard constraint is violated
already. In contrast, the systematic tree search immediately abandons the branch when a hard
constraint is violated.
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4.13.4 Further optimizations

This section describes some additional optimizations that have been implemented in the WCDG
grammar system.

� Compact level values: Every implementation of the solution methods must have a repre-
sentation of the combination of a word form (including the lexical entry) and a level. These
items are the elementary building blocks from which the dependency edges are constructed.
The constraint variables of Section 2.4 on page 27 are closely related to these units, too.
However, for a large number of words, lexical variations exist that only differ in a small
number of features. For instance, run as a finite verb occurs with the morphosyntactic
feature combinations 1st-sg, 2nd-sg, 1st-pl, 2nd-pl and 3rd-pl. A similar situation
can occur in word graphs where edges that cover the same time span resemble each other,
such as the personal pronouns she and he that are distinguished by a single feature gender.
Furthermore, only a small portion of the levels (or more precisely: constraints defined for
these levels) refer to these distinguishing features. Therefore, it makes sense to fold those
units consisting of a lexical entry and a level where the lexical entries are equivalent with
respect to the level, i.e., no constraint exists that behaves differently for the lexical entries
on this level. A good example are semantic homonyms, i.e., word forms with identical syn-
tactic features but different semantic features like bank (financial institute and river side).
All levels that do not deal with semantic information can safely fold the two readings, thus
saving a lot of work. Foth [1998b] gives a detailed description of compact levels and how
optimal partitions of lexical entries can be constructed.� Indexing of lexical information: Recent years have seen a trend to lexicalization of
natural language grammars [Pollard & Sag 1994, for instance] and WCDGs also offer this
possibility to the grammar writer (cf. Section 3.4.1 on page 53 for an example). Lexical
entries are recursive data structures in our system (cf. Section 2.3.2 on page 22) and
constraint evaluations often require the extraction of certain pieces of information that
are embedded in these entries. In order to avoid the expensive recursive descent during
constraint evaluation, all lexical entries are flattened (cf. Figure 2.3b on page 24) while
they are read into the system and all paths within lexical entries and within constraints
are mapped to unambiguous indices. This technique reduces the extraction to a simple
array lookup. A similar technique (but in a different context) is used for the compilation
of attribute-value matrices of the grammar formalism ALE [Carpenter & Penn 1994] into
first order terms of the programming language Prolog.� Constraint compiler: Constraint evaluations are one of the most frequently executed
operations in a constraint system. Hence, they are often used as a measure of how effi-
cient a specific solution method is. In the WCDG system, for instance, an analysis may
need several millions of these evaluations. Since the constraints (or more exactly: their
formulae) are recursively defined (cf. Table 2.2 on page 31), an evaluation usually is the
application of an also recursively defined interpretation function to the formula and the de-
pendency edge(s) to be tested. This interpretation process returns whether the constraint
is satisfied or violated. In order to accelerate the constraint evaluation, a compiler has been
implemented which translates the constraints into C functions, then calls an appropriate
C compiler and dynamically loads the object code into the address space of the WCDG
parser. Thereafter all constraints are evaluated by the native functions instead of the
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recursive interpretation process. The integration of compiled constraints is seamless, i.e.,
compiling, loading and unloading are all online operations that do not require any mod-
ification of the system, in particular no re-compiling. Switching back and forth between
interpreted and compiled mode as well as mixing compiled and interpreted constraints is
possible. Pre-compiled object files of constraints can be re-used in later parser runs and are
automatically recognized during the load operation.26 Details about the implementation
can be found in Hagenström [2001].� Symbol table: Finally, as a further example of program optimization, it should be men-
tioned that the whole WCDG system operates on symbols (stored in a system-wide table)
instead of strings. Symbols are efficient representatives of strings and, in particular, can
be compared in time that is independent of the string length. Since string comparisons
are very frequent, a considerable speed-up can be observed.� Hashing constraint evaluation: Constraint evaluation is a frequent operation. Hashing
the results and returning the pre-computed information if the information is requested a
second time therefore saves some computation time. The different solution methods benefit
to different degrees.

Figure 4.32 on the facing page presents comparative results for the impact that the compact
level values (labeled II), the constraint compiler (labeled III) and the indexing of the lexical
information (labeled IV) have on the efficiency of the system. The numbers are relative to a
baseline with all optimizations disabled (labeled I). This baseline already corresponds to the best
results of Figure 4.31 on page 124. The improvements are at least partially orthogonal to each
other as can be seen from the results for the combined optimizations (labeled V). Two measures
for the efficiency are used again: runtime in Figure 4.32a on the facing page and number of
constraint evaluations in Figure 4.32b on the next page.

Of course, only the compact representation of level values actually reduces the number of con-
straint evaluations; the indexing of lexical information and the constraint compiler merely speed
them up. Since the runtime of the parsing has been limited in the evaluations, the number of
constraint evaluations sometimes actually increases for all optimizations other than the compact
representation of level values. More constraints can be evaluated in the fixed amount of time
since the evaluation itself is faster.

4.14 Related work

Algorithms for general constraint satisfaction problems and constraint satisfaction optimization
problems have been studied extensively. There exists an abundance of literature, for instance
general overview articles [Meseguer 1989; Kumar 1992; Miguel & Shen 2001b; Miguel & Shen
2001a], monographs about systematic search [Kanal & Kumar 1988] as well as about heuristic
search [Aarts & Lenstra 1997b; Voß et al. 1999] and textbooks [Tsang 1993; Hromkovic̆ 1998] all
of which contains further references. Wallace & Freuder [1995a] compare heuristic (min-conflicts,
walk-minconf, retry-minconf) and systematic (branch-and-bound, forward checking) methods

26Harper et al. [1995, p. 848] already describe a similar compiler for their CDG constraints which however
seems to lack a seamless integration into the parser.
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Figure 4.32: Relative runtime and relative number of constraint evaluations for three optimizations
and for the combination of them: (I) no optimization (baseline), (II) compact level values, (III)
constraint compiler, (IV) indexing of lexical information and (V) combined (II)-(IV). The wide
black bars are the means over a corpus and the small gray bars indicate the range ò ¹t���¯��¹�³��+ó
where ¹ is the mean and � is the standard deviation.

for CSP solving with regard to their anytime properties. Probabilistic performance profiles are
given. They [Wallace & Freuder 1995b] suggest using heuristic methods first to find a good
approximation and continue with systematic techniques to ensure optimality. Gomes, Selman &
Kautz [1998] add randomization to complete, systematic, backtrack-style search procedures in
order to break the unpredictability of running time which may seem promising for the application
of WCDG parsing as well. If the heuristic function ranks � possible actions (e.g., an extension
of a partial solution) to be within the � percent best assessment then the next action is selected
randomly among those � possible ones. Additionally a cutoff parameter is used to restart the
search whenever it seems to be stuck. Bookkeeping makes sure that no part of the search space
is explored more than once. The cutoff parameter, however, does limit the size of the space that
can be searched exhaustively between restarts. The authors give a formal account for so-called
heavy-tail problems and for the restart strategy.
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Waltz [1975] first suggested the filtering algorithm that Maruyama [1990b] proposed for CDG
parsing. But only the extension to multiply-segmented constraint satisfaction problems [Zoltowski
et al. 1992; Helzerman & Harper 1996; Harper et al. 1999b] made the application to lexically am-
biguous sentences and word graphs feasible for the consistency-based methods (cf. Section 4.6).

4.15 Summary

Algorithms for WCDG parsing have been studied.

Standard techniques of CSP and CSOP solving have been described: consistency-based methods,
systematic tree search and heuristic search. Criteria for an evaluation of algorithms have been
developed and typical characteristics of these algorithmic families have been identified. The
standard techniques have then been applied to and adapted for the WCDG parsing problem;
experimental evaluations have been conducted.

� Consistency-based methods (cf. Section 4.6) have proven themselves problematic for WCDG
parsing since no definition of consistency is available for soft constraints which on the one
hand filters out a considerable amount of structural alternatives and on the other hand
does not delete (too many) wrong values based on local decisions.� Heuristic pruning (cf. Section 4.7) is a mixture between local consistency and global search
in that it takes more information into account for the decision which candidate to discard
next but cannot guarantee global correctness. Although different pruning schemes were
tried and limited success was achieved, heuristic pruning has not been identified as a
satisfactory solution method for WCDG parsing.� Systematic tree search (cf. Section 4.8) can solve small and medium-sized WCDG problems
fast and absolutely reliable. For the largest class of problems however the theoretical expo-
nential complexity shows up in practice and either an external limitation of the processing
time or of the agenda size or of both are required in practical cases.� Heuristic search (cf. Section 4.9) solves even large WCDG parsing problems in moderate
time and yields a only slightly suboptimal quality for all problem classes. However, it
cannot prove optimality of a solution and depends on external termination criteria.

An application can therefore base its decision of which search method to employ on the varying
characteristics that have been found and on the actual requirements.

Preliminary experiments about an incremental mode of operations showed that the early com-
mitment strategy can lead to increased system performance without the loss of a considerable
amount of accuracy. Finally, a set of necessary optimizations of the algorithms has been de-
scribed and evaluated.



Chapter 5

Experimental Results

5.1 Overview

This chapter presents results of various experiments within the weighted constraint dependency
grammar (WCDG) framework. It will be shown that the proposed approach to gradation in
natural language is well suited to handling the soft conditions of natural language listed in
the introduction, such as grammatical deviation, preference, multi-level interdependence and
(external) uncertain information. Some attractive properties that are due to the concept of
gradation can be confirmed for WCDG parsing.

Section 5.2 describes the experimental environment; the corpus, the grammar and evaluation
criteria that were used in most of the experiments throughout this chapter are introduced.

Section 5.3 deals with robust parsing with WCDGs.

In Section 5.4, a diagnosis component capable of detecting errors in language use is discussed
that is based on a robust WCDG parser.

The anytime property of algorithms that we discussed in Section 4.4.3 is revisited in Section 5.5
and experiments with both the basic methods and meta-control mechanisms are described.

The subsequent Section 5.6 presents details about what influence the integration of acoustic
weights from a speech recognizer has on the parsing process. Similarly, Section 5.7 outlines the
integration of another external component, namely a probabilistic part-of-speech tagger, into
the parsing system.

In Section 5.8, the weights of a small number of conflicting soft constraints that model the
isolated linguistic phenomenon of extraposition of German relative clauses are estimated from
an annotated corpus.

Section 5.9 describes an experiment in automatic learning of a complete set of WCDG constraint
weights.

129
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5.2 Experimental environment

5.2.1 Stellingen grammar and corpus

This section introduces the grammar and the corpora we used in the experiments described in
Section 4.11 and throughout this chapter. Two factors prevent the use of standard corpora,
such as the English Penn Tree Bank [Marcus, Santorini & Marcinkiewicz 1993] or the German
NEGRA corpus [Skut et al. 1997b; Brants, Skut & Uszkoreit 1999], as the domain of WCDG
parsing in this thesis:

1. Style and depth of annotation: An analysis with weighted constraint dependency gram-
mars parses a natural language utterance into multiple dependency analyses on different
representational levels. While the problem of a dependency model being different from
the phrase structure model of standard corpora can be overcome by a mapping [Collins
1996; Collins 1997], the amount of annotated information cannot easily be enlarged. In
particular, information about the semantic structure needed for a WCDG annotation is
not available. Even worse, nearly no assumption about the domain of general-purpose
corpora can be made so that an inclusion of domain knowledge is rarely feasible.

2. Grammar development: Designing and implementing a WCDG is a labor-intensive task
that essentially still has to be done manually (but see Sections 5.8 and 5.9). While very
large corpora are an advantage for automatically generated grammar systems (such as
probabilistic grammars) because they allow for a more precise training of the parameters,
we had to limit the set of linguistic phenomena present in the corpus in order to keep
manual grammar development feasible.

Therefore we developed our own grammar and corpus, named Stellingen grammar and corpus,
for testing of and experiments with the WCDG parsing system.

The grammar is based on the general techniques described in Chapter 3. It is the successor to an
earlier WCDG grammar [Heinecke & Nolda 1998; Nolda & Heinecke 1999; Heinecke & Schröder
1998] but departs from its predecessor in so far as it focuses less on the traditional notion of
crisp grammaticality and is more concerned with actual language data, practical solutions and,
in particular, soft constraints and preferences. It does not try to accept the sentences of the
German language but aims at assigning the most plausible structural description to any input.

The expected input format is a sequence of words, i.e., unambiguous word forms (containing
no acoustic alternatives) which however have been extracted from spoken language dialogues.
That does not mean that the grammar or parser are limited to word sequences. In fact, the
sequences have been enriched with alternatives originating from a finite-state chunker which
identifies likely non-recursive phrases, mainly for date and time expression. Hence, the typical
input consists of small word graphs with some overlapping arcs labeled with artificial words such
as DATE.

It features twelve representational levels: syntax (SYN), four auxiliary levels for modeling obli-
gatoriness (OBL1, OBL2, OBL3, OBL4), word order of the vorfeld (VORFELD), an auxiliary level for
subordinate clauses and miscellaneous purposes (SUB) and five semantic levels modeling thematic
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roles (AGENT, EXP, PATIENT, QUALITY, THEME). Some 500 constraints are contained in the gram-
mar; 44% are hard, 56% soft constraints; 14% of the soft constraints are dynamic constraints;
65% of the constraints are unary, 35% binary.

The lexicon consists of some 1,400 word forms which expand into 7,000 unambiguous lexical
entries, i.e., the average lexical ambiguity on the feature level is 4.97 entries per word form.

The employed test corpus consists of approximately 220 utterances which have been taken from
the Verbmobil [Wahlster 2000] corpus of appointment-scheduling dialogues. However, the Verb-
mobil turns of spontaneously spoken language have been hand-segmented into ‘sentence-like’
sections. Interjections and punctuation marks (if any were introduced by the annotators) have
been removed. For instance, Examples E-66 and E-67 are extracted from the original Verbmobil
annotation g460ac of Example E-65.

E-65 ja , Wochenende wei"s ich noch <!1 no’> nicht <!1 nich’> . ich hab’ mal <!1 ma’> meinen
<!1 mein’> Kalender <:<#> mitgebracht:> . schauen <!1 schau’> wir <!1 me> mal ,
wann Sie Zeit haben . <#>

E-66 ich habe mal meinen Kalender mitgebracht

E-67 schauen wir mal wann Sie Zeit haben

The sentences have an average length of 8.7 words (sd 3.96, min 3, max 29). There are 442 word
types and 1,941 word tokens in the corpus. The corpus has a mean lexical ambiguity of 3.53 lex-
ical entries per word form. See Section 5.7.2 for further corpus statistics.

The grammar has been designed to minimize modeling errors, i.e., it assigns the highest grammar
score to the desired structure that has been included in the annotations. However, it could not
be guaranteed that the scores of two arbitrary suboptimal structures always reflect their ranking
with respect to their accuracies when compared to the annotation. All experiments (except when
integrating external assessments) therefore assume that a reduced accuracy is due to search errors
but not to modeling errors.

5.2.2 Criteria

This chapter mainly uses accuracy and efficiency (cf. Section 4.4) as evaluation criteria. Unless
otherwise stated, average processing time per sentence on a 1.1GHz Pentium III running the
Linux operating system will be reported as an efficiency measure. However, the focus will be on
comparative results and care has been taken not to confuse results from different experimental
settings, such as different machines or grammars. Parsing usually is limited to 60 seconds per
utterance (cf. Section 4.11) unless otherwise stated. In most of the experiments, labeled accuracy
on the syntax level is used as an accuracy measure. If, however, the experimental settings do
not allow such a measure, we will report sentence accuracy, e.g., in Section 5.3, or f-measure (cf.
Figure 5.1 on the next page), e.g., in Sections 5.6 and 5.9.



132 5. Experimental Results
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Figure 5.1: Recall and precision.

5.3 Robustness

This section looks at the property of robustness in greater detail and describes experiments
which investigate the claim that weighted constraint dependency grammars can contribute to a
robust system behavior.

5.3.1 Motivation

Although we mentioned robustness several times already (for instance, in Sections 3.5.2 and
3.5.4), no explicit definition has yet been given. A crisp or even formal definition for robustness
seems difficult because the term inherently refers to the notion of unseen, unexpected and
unpredictable events which are in turn difficult to grasp.

System robustness is sometimes defined as the
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“... extent of the ability of a system [...] to continue to function despite the existence
of faults in its component subsystems or parts.”

—— T1A1 [2000, Y system robustness]

This definition addresses an internal robustness where the faults occur internally to the system
while the environment or type of input stays constant. In the context of natural language
processing, however, robustness usually means robustness against changes of the external world:

� A grammar writer cannot possibly anticipate the complete variability of future inputs,
e.g., ungrammatical input or constructions that are not yet covered by the grammar. A
robust system manages to deal with such cases (maybe with degraded performance). The
rest of this section focuses on this aspect of robustness.

� Some input sources for NLP systems are potentially faulty, e.g., recognition uncertainty
in noisy environments for speech or blurred writing for optical character recognition. Sec-
tion 5.6 deals with the additional ambiguity in the input of a parser when dealing with
speech.

� Sometimes additional external requirements are demanded dynamically from a system,
e.g., temporal pressure or a request for correction or a more detailed analysis. Section 5.5
discusses how a component can react meaningfully to temporal requirements.

We follow Chanod [2001] in the particular respect that the scope of robustness is not limited
to parsing of linguistic phenomena that are currently not covered by the grammar. This is in
contrast to approaches that exclusively deal with the latter aspect under the term of extra-
grammaticality [Weng 1993].

“Robustness is about exploring all constructions humans actually produce, be they
grammatical, conformant to formal models, frequent or not. Linguistic phenomena,
regardless of their oddity or frequency, account for the meaning of whatever segment
of text they appear in. [...] In this view, robustness is a matter of broadth and depth
of linguistic analysis. Altogether.” —— Chanod [2001, p. 188]

In particular, the following questions are investigated in this section:

� What are the prerequisites for robust parsing?

� Does the inclusion of graded preferences lead to increased robustness?

� Can WCDGs cope with errors in the linguistic input in the sense that small deviations do
not hamper the correctness of the output and only multiple faults lead to more and more
undesired results?
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5.3.2 Means to achieve robustness

At least two properties play an important role in robust system behavior: the ability to accom-
modate inconsistent evidence and the use of multiple knowledge sources.1

1. Inconsistencies are ubiquitous in natural language (cf. Introduction), not only in ungram-
matical input, but also within the grammatical system. The soft constraints of WCDG
allow the grammar writer to incorporate fall-backs for faulty input and uncertain knowl-
edge as well as different kinds of preferences (cf. Section 3.5). All these conditions can be
violated during the analysis of an utterance. Furthermore, the weights facilitate a fine-
grained gradation so that constraint violations are treated differently depending on the
severity of the error.

2. The second major reason for robust behavior besides weighted constraints results from the
inclusion of (partially redundant) information originating from different knowledge sources,
which is made possible by the simultaneous analysis on multiple levels (cf. Section 3.4.7).

Figure 5.2 on the facing page gives an example of the fruitful mutual influence of differ-
ent levels.2 On the syntax level, the utterance shows an ambiguity with regard to the
attachment of the prepositional phrase. If it can be assumed, however, that the system
has strong evidence for the domain information that only Peter has access to the tele-
scope, this knowledge can propagate through the levels and finally determine the syntactic
PP-attachment.

The inclusion of redundant information is necessary to compensate errors or unexpected
cases. If only pre-defined, unambiguous and well-formed sentences are to be analyzed,
additional levels such as domain information about ownership only lead to a greater depth
of analysis but this could also be achieved by a sequential architecture.

5.3.3 Experiments

In order to verify the claim that WCDGs are well suited for robust analysis, an experiment has
been conducted [Menzel & Schröder 1998a] where both the error degree of the input and the
amount of supportive evidence in the grammar have been artificially controlled. Syntactic errors
have systematically been introduced into a single utterance (cf. Example E-68).

E-68 Der Mannnom besichtigt den Marktplatzacc.
The man visits the marketplace.

The following error metric has been used.

� Case agreement: Confusing nominative and accusative case counts as a double fault for
both the subject and the object while an erroneous genitive case is a single error. Dative
case was omitted because it produces the same results as genitive.

1Chanod [2001, p. 196] speaks about inclusion of background knowledge and tractable constraint relaxation
mechanisms in this context.

2Compare this to the use of semantic constraints proposed by Maruyama [1990a] and Harper et al. [1993] as
described in Section 2.7.
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SYNTAX

patient

Peter sees Mary with a telescope.
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det

pmod

owner

agent

Figure 5.2: Dependency structures for three levels of analysis: Certain information from the domain
level propagates through semantics to the syntactic level.

� Number agreement: Violating the number agreement between verb and subject again
counts as two error points.� Word order: The word order (subject before object) is not mandatory although preferred
in German. We therefore increase the error count by only one in the case of a marked
word order.

The resulting 72 variants (with error counts from zero to seven) have then been analyzed in
three different contexts where domain and semantic information either support, contradict or
are neutral with respect to the desired outcome.

Figure 5.3 on the following page summarizes the results. The use of semantic and domain-specific
knowledge greatly enhances the syntactic robustness in the supportive case. While 50% of the
results for sentences with an error measure of three were wrong when only a syntactic level was
represented, even 83% of the utterances with an error count of five are interpreted correctly
when enough semantic and domain-specific support is available. Naturally, the robustness is
reduced if the additional evidence contradicts the intended interpretation.

Although we emphasized the robustness against syntactic deviations, the robust behavior is
symmetric with respect to the different levels. Thus, positive information on the syntactic level
also helps to find a semantic interpretation. This can be best seen in the three-dimensional
Figure 5.4 on page 137 where the accuracy is shown depending on syntactic and, at the same
time, on semantic and domain-specific deviation. Whether semantics helps syntax or vice versa
is just a matter of interpretation depending on the point of view. Different levels are mutually
beneficial.
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Figure 5.3: Percentage of correct analyses depending on the number of syntactic errors and, ad-
ditionally, parameterized by the kind of semantic and domain-specific support. The number of
sentences for each number of syntactic errors is given above the bar chart.

Foth, Menzel & Schröder [submitted] replicated the experiment for the larger Stellingen grammar
and real utterances that have been artificially distorted by changing the inflection of words,
deleting a word from the sentence and reversing the word order of two siblings in a constituent.
They confirm the increased robustness due to soft constraints.

However, a word of caution is appropriate here. The synergistic effect of different represen-
tational levels is, of course, highly dependent on the actual grammar. While the experiment
described in this section has proven that truly redundant information from different knowledge
sources can have an important beneficial impact on the robustness of the overall system, such
behavior cannot be found for all kinds of grammars. The levels of syntax and semantics of the
Stellingen grammar, for instance, are highly interwoven so that not all the levels sustain their
independence. Additionally, the semantic evidence is very poor in the domain of the corpus used,
i.e., appointment scheduling dialogues, since semantically weak verbs are used almost exclusively
and domain information, such as information about the calendars of the participating dialogue
partners, is completely omitted. When trying to analyze regular, i.e., largely grammatical sen-
tences from that domain using the Stellingen grammar but switching off the semantic levels,
one finds that the accuracy is not necessarily lower than with semantic levels. Table 5.1 on
the facing page gives experimental results which confirm that the quality of a syntactic analysis
even increases slightly for the Stellingen grammar when semantic levels are omitted from the
analysis. It has to be assumed that in this case the robustness does not benefit from the semantic
levels either. WCDGs with tightly coupled levels behave in this respect similar to integrated
approaches to syntax and semantics as found, for instance, in HPSG.

Of course, adding semantic levels always provides a richer or deeper analysis.
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Figure 5.4: Percentage of correct analyses depending on the number of syntactic errors and on a
semantic and domain-specific error count. A violation of sortal restrictions or domain information
counts two error points while the absence of semantic and domain knowledge is counted as one
error respectively. This results in semantic judgments in the range from zero to four error points.
The different levels of representation are treated in a completely symmetrical way.

Tree search Heuristic search with tabu list

with sem. without sem. with sem. without sem.

Accuracy (all) 90.85% 93.35% 97.46% 97.65%
Recall (all) 90.89% 93.44% 97.44% 97.65%

F-measure (all) 90.87% 93.40% 97.45% 97.65%

Accuracy (solved) 97.43% 97.29% 97.46% 97.65%
Recall (solved) 97.48% 97.39% 97.44% 97.65%

F-measure (solved) 97.46% 97.34% 97.45% 97.65%

Table 5.1: Accuracy, recall and f-measure (for the syntactic level) for experiments with and without
semantic levels using the Stellingen grammar.

5.3.4 Related work

The problem of robustness in natural language processing is nowadays mainly tackled through
partial parsing techniques [Abney 1996a] and probabilistic grammars [Charniak 1993; Young et
al. 1997] in computational linguistics.
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Finite-state automata and finite-state transducer [Abney 1990; Abney 1996a; Karttunen 1993;
Karttunen et al. 1997; Karttunen, Gaál & Kempe 1997; Koskenniemi 1990; Koskenniemi,
Tapanainen & Voutilainen 1992] recognize structures and transform them into larger ‘chunks’.
These chunks often cover the input sentences only partially and are defined not to include
recursive elements. Finite-state techniques process texts extremely fast because usually no
backtracking is allowed.3

Shallow parsing [Federici, Montemagni & Pirelli 1996], in contrast, leaves certain decisions un-
derspecified which are difficult to make locally, for instance attachment of prepositional phrases.
Early versions of the formalism of constraint grammar [Karlsson 1990; Karlsson et al. 1995]
which is based on manual finite-state rules and aims at syntactic dependency structures also
omitted the precise attachment position in some cases by, for instance, only constraining the
governor of a word to be a noun to the left. The successor of the constraint grammar parser
for English (ENGCG) is not subject to this drawback; it establishes complete linkages between
words [Tapanainen & Järvinen 1997; Järvinen & Tapanainen 1997].

Chart parsers [Earley 1970; Kay 1986] in bottom-up mode also lend themselves to partial parsing
because partial structures are already contained in the chart when a complete analysis fails
[Ehrlich & Hanrieder 1996].

Probabilistic approaches to NLP [Chelba & Jelinek 1998; Collins 1999; Charniak 1993; Mager-
man 1994; Ratnaparkhi 1998; Charniak 2000; Brill 1996; Bangalore & Joshi 1999] are blossoming
because they overcome some of the intrinsic problems of manual and non-probabilistic gram-
mars. They always yield the ‘most plausible’ result based on some kind of probability model.
Hence they usually achieve complete disambiguation and feature a high degree of error tolerance.
One of the most important advantages is that probabilistic grammars are usually automatically
induced from (annotated) corpora, thus solving the problem of grammar acquisition and easing
portability.

All of the above approaches share one drawback: They cannot argue how good an input utterance
is. They hide the notions of deviation and grammatical error either behind too small a depth
of analysis or behind the term of joint probability which does not allow a distinction between
unlikely and deviant events. WCDGs, in contrast, have an explicit notion of grammatical rules
and preferences which easily identify faults (cf. Section 5.4).

This capability is shared by some extensions of standard parsing which either employ a robust
version of a grammar [Goeser 1992; Uszkoreit 1991; Erbach 1993] or augment the parsing pro-
cedure with additional operations such as generalized rules in a chart parser [Mellish 1989] or
word deletions and insertions in a GLR parser for speech applications [Rosé & Lavie 1997; Rosé
& Lavie 2001].

Using semantic and possibly domain-dependent information to improve parsing is a well-established
technique. Head-driven phrase structure grammar [Pollard & Sag 1987; Pollard & Sag 1994,
HPSG], for instance, tightly couples syntactic and semantic aspects in a single feature structure
so that on the one hand constraints about the semantic type of complements are checked during

3Instead, a repair mechanism is suggested in some cases [Abney 1990]. Note that the use of finite-state
machinery does not automatically guarantee efficient algorithms. Two-level morphology [Koskenniemi 1983;
Karttunen & Beesley 1992], for instance, is computationally expensive because there are choice points in the
processing of the input, i.e., the underlying machinery needs to be non-deterministic [Barton, Berwick & Ristad
1987, Chapter 5].
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structure building but on the other hand the slightest incompatibility leads to parsing failures.
The consideration of semantic aspects within the CDG framework has already been suggested
by Maruyama [1990b, p. 35] and also by Harper et al. [1993]. However, both only add seman-
tic constraints which take effect directly on the syntax structure and cannot be violated by a
valid solution. Thus semantic information is used to reduce the ambiguity, but no independent
semantic structure is built. Autonomous parallel structures for syntax and semantics in the
context of CDG have first been proposed by Menzel [1995].

5.3.5 Summary

We identified two prerequisites for robust behavior: (a) the ability to deal with inconsistencies
between the input and the grammar and (b) the simultaneous consideration of all available
knowledge sources so that the loss of syntactic evidence (possibly due to inconsistencies) does
not lead to parsing failures. The potential of the WCDG parsing approach for robust parsing has
been investigated in an artificial framework of controlled but highly systematic linguistic devia-
tions. Even without any semantic support, the grammatical system showed a remarkable degree
of robustness against syntactic errors. The inclusion of additional semantic and domain-specific
support further boosted the immunity against syntactic faults. Not unexpectedly, semantic evi-
dence that contradicts the desired outcome hampers the system with regard to robustness. We
have found that the relation between syntactic and semantic evidence is one of mutual support,
i.e., not only the syntactic analysis is easier with semantic backup but a semantically odd or new
sentence can also be analyzed correctly when the syntactic evidence is clear. Such situations
arise when new statements in a discourse violate the expectations or assumptions of a hearer.
A replication of the experiment with a larger corpus is desirable. However, corpora of utter-
ances which show systematic faults are not available, especially when the deviations have to be
annotated. Foth, Menzel & Schröder [submitted] try to overcome this data acquisition problem
by using a procedure which semi-automatically introduces a number of error types into a given
corpus of sentences.

5.4 Error diagnosis

5.4.1 Motivation

Computer assisted language learning (CALL) systems should help the learner to practice the use
of a foreign language and to overcome individual difficulties.4 Goals pursued include, for instance,
vocabulary drill, practicing of isolated grammatical constructions and – more sophisticated –
exercising free rephrasing of statements or interactive pronunciation training [Menzel et al. 2000;
Menzel et al. 2001]. Off the shelf systems usually employ simple techniques such as multiple-
choice, fill-in the gaps or other methods that only require a small list of valid answer keys. If
a CALL system is supposed to give comprehensive and highly accurate feedback, however, a
parsing component must be included which meets at least two requirements:

4Cf. European Association for Computer Assisted Language Learning (EUROCALL) (http://www.eurocall.
org/) which, among others, publishes the ReCALL journal (partially available from their web page) and organizes
the annual EUROCALL conferences.
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Robustness: Since it must be expected that the learner enters highly deviating sentences, the
system must be able to cope with such input and it must provide a reasonable interpretation
even for non-standard utterances.

Diagnosis: A suitable parsing component must not only be capable of processing deviant input,
it must also be able to provide error detection and error explanation facilities at the same
time. Robust parsers based on statistical models or on neural networks, for instance,
often cannot offer this additional meta-information because they lack an explicit notion of
linguistic rules.

Good user feedback is only feasible if, on the one hand, the intended meaning of an utterance
can be inferred and if, on the other hand, the location and type of mistakes can be determined.5

This section tries to answer the question of whether and how the WCDG parser can be used as
a diagnosis component in a CALL system.

5.4.2 Prototype

WCDGs provide good support for both tasks that have been identified as prerequisites for ad-
vanced CALL systems. Robustness is an inherent property of WCDGs (cf. Section 5.3) and
diagnosis is easily achieved with WCDGs because grammatical faults more or less directly corre-
spond to constraint violations. Figure 5.5 on the next page presents the outline of an architecture
for a CALL system based on a WCDG parsing component that yields two types of results, a
linguistic structure and a set of constraint violations.

A prototypical CALL system [Menzel & Schröder 1998b; Menzel & Schröder 1998a; Menzel &
Schröder 1999] has been implemented based on this idea. A picture of a small town scene (cf.
Figure 5.6a on the facing page) has been used as the contextual embedding for the user but a
textual representation is equally possible.

The contextual information has also been encoded as constraints so that the language system
could use some domain information as background knowledge. Since grammatical and domain
knowledge are processed with the same mechanisms of the parser, and constraint violations
are used to indicate faults, not only syntactic and semantic errors but also errors regarding
the propositional content of the context can be diagnosed. The following list from Menzel &
Schröder [1998b] gives examples of student utterances and diagnoses that are reported by the
system in the form of constraint violations at specific positions in the sentence:

� Partial analysis: Utterances should be complete main clauses (cf. Section 3.5.4).

E-69 Das alte Rathaus.
The old town hall.

�KY Missing verb� Agreement: A noun agrees with its article and adjectives with respect to gender, number
and case. In general, governors may impose certain restrictions on (morphological) features
of their complements (cf. Section 3.4.1).

5Depending on the type of error detected, a good feedback probably should not list the errors of the user but
instead give positive reinforcement or provide additional exercises.
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Figure 5.5: Architecture of a CALL system using a WCDG grammar component.

(a) Pictorial embedding

“A man visits a new town.
He parks his car in the park-
ing lot. The old church is
located at the central mar-
ketplace. A butcher’s shop
is next to the church and
a bakery is opposite to the
butcher.”

(b) Textual embedding

Figure 5.6: The exercise context was made accessible to the student using a picture. Different
exercise types might alternatively (or even additionally) require a textual presentation (read to or
by the student). In all cases, the relevant contained information must also be encoded in terms of
constraints so that the diagnosis component can exploit the ‘common background’.

E-70 Diefem große Mannmasc schläft.
The large man sleeps.

�KY Missing gender agreement for the article ‘die’
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� Word order: Word order rules should be observed; preferences can sometimes be violated
and do not always count as errors (cf. Section 3.4.3).

E-71 Der Mann die Stadt besichtigt.
The man the town visits.
‘The man visits the town.’

�KY Wrong word order, verb not in second position� Auxiliary verb selection: Verbs determine which auxiliary verb, haben (have) or sein
(be), is used for the perfect form.

E-72 Der Mann istsein die Stadt besichtigthaben.
The man is the town visited.
‘The man has visited the town.’

�KY Wrong auxiliary verb form� Case frame: The obligatory case frame of verbs should be filled (cf. Section 3.4.1).

E-73 Der Mann besichtigt.
The man visits.

�KY Missing second argument� Sortal restrictions: The semantic classes of arguments often need to conform with verbal
requirements (cf. Section 3.4.6).

E-74 Die Stadt schläft.
The town sleeps.

�KY Violation of sortal restrictions for the first verb argument� Contextual restrictions: The student’s utterances should not be in conflict with the
given contextual information. Such constraint violations may indicate that the student
has comprehension problems reading an introductory text.

E-75 Die Bäckerei liegt neben der Fleischerei.
The bakery is next to the butcher.

�KY Propositional content not supported by the context

The detected faults must, of course, be mapped to an appropriate feedback for the user (cf.
Figure 5.5 on the page before). Such mapping may contract multiple errors into one explanation
or drop faults altogether because no pedagogically suitable interaction is available.

5.4.3 Related work

Surprisingly, the research communities of CALL and computational linguistics are largely disjoint
although it seems natural for an advanced CALL system to include a sophisticated parsing
component. This is due to the partially different focus. A CALL engineer has to take additional
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issues into account, such as a model of the student’s current state, pedagogically adequate error
explanations, an inspiring user interface and a reasonable and motivating sequence of exercises.
On the other hand, computational linguists have failed to come up with a high-precision, general-
purpose parser that reliably diagnoses errors. Zock [1996] discusses the relation of CALL and
computational linguistics.

The simplest CALL methods still widely in use are based on multiple choice and fill-in-the-blank.
Diagnosis only involves a comparison with a stored set of answer keys or pattern matching
techniques at most. Two techniques are widely used in advanced parsing components in CALL
systems: error rules (generally called ‘bug libraries’) and constraint retraction. The former are
overgenerating grammar rules that model typical cases of students’ faults [Weischedel, Voge
& James 1978]. Since the robust behavior is not derived from a grammar that models correct
language use, all possibly occurring errors have to be anticipated by the grammar writer [Yazdani
1986]. In contrast, constraint retraction [Uszkoreit 1991; Erbach 1993] starts from a correct
grammar and softens certain constraints if no complete parse can be found. Often the two
techniques are combined, for instance, error rules for word insertions, word deletions and errors
of word order and constraint retraction for agreement errors [Schwind 1988; Schwind 1990;
Schwind 1995].

A model-based diagnosis [Struss 1992; Davis 1994] that is solely based on descriptions of structure
and behavior is difficult to transfer to a diagnosis of errors in natural language utterances since
the identification of the internal structure of a sentence is part of the parsing process proper
which must be guided by expectations about possible errors. Menzel [1988; 1990] demonstrates
the general feasibility of the idea but his approach is limited to a small number of pre-defined
structural possibilities. Self [1992] applies the same idea to the general problem of student
modeling (cognitive diagnosis).

5.4.4 Summary

The WCDG parsing system has been used as a diagnosis component in a prototypical CALL
application. Although no systematic evaluation in the form of a usability study has been con-
ducted, the prototype proves the appropriateness of the approach for language learning exercises,
at least in the limited framework that was used. Nevertheless, in order to extend the system
to a full-featured CALL system, additional components, such as sophisticated exercise control,
student models, tools and utilities for teachers and authors, etc. are required. A particularly
helpful module is a correction facility which can generate a corrected version of the student’s
input. Although generally adequate, the WCDG framework offers only little support for this
task. A combination of a WCDG parser and model-based diagnosis [Menzel & Schröder 1998f;
Menzel & Schröder 1998d] seems to be a promising approach. The model-based approach not
only offers a mechanism of constructing a corrected version of deviant input but additionally
extends the range of grammatical faults that can be diagnosed. It needs a structural hypothesis,
however, which fortunately can be found by the WCDG parser.6

6Stockfleth [2000] demonstrates that such a combination is feasible and describes a prototypical implementa-
tion.
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5.5 Anytime behavior

This section motivates why anytime behavior is important in the context of natural language
analysis and investigates whether WCDG parsing obeys the anytime property (cf. Section 4.4.3).

5.5.1 Motivation

An application of natural language processing that interacts with a human user is a kind of
real-time system since the pace of the dialogue is largely determined externally, i.e., by the
user. Either the system manages to react within a limited amount of time or the user looses
his patience and aborts the communication. The more natural such a conversation is supposed
to be, the tighter the temporal margin within which the system must act. This is due to the
turn-taking behavior of humans who do not pause after the contribution but usually immediately
start to formulate an answer. Sometimes it is even appropriate to start the own contribution
before the end of the utterance of the partner. However, such a behavior can only be reproduced
when parsing occurs incrementally (cf. Section 4.12) and anytime algorithms are employed.

The upcoming subsections present results from WCDG parsing experiments for two kinds of
anytime behavior: intrinsic and extrinsic. Anytime behavior as an intrinsic property of the
basic solution methods has already been briefly discussed in Chapter 4. An extrinsic anytime
property is based on meta-control mechanisms which modify parameters of the basic algorithms
so that they show the desired behavior.

5.5.2 Intrinsic anytime behavior

In Section 4.5.1, we realized that the heuristic search methods are generally well-suited for
anytime requirements since they immediately start with a first (suboptimal) solution candidate.
This has been confirmed with respect to WCDG parsing for the methods of Frobbing and Gls
in Section 4.11 in so far as both are able to find a first approximate solution within a fraction
of the time that they need to terminate.

Also, following Freuder & Wallace [1992], we conjectured that branch-and-bound should be able
to deliver an approximation early and to improve on this intermediate result when the score
of a newly encountered candidate falls below the current bound. The fact that a first solution
without violated hard constraints can be identified relatively soon (Figure 4.23 on page 111) is a
first evidence that this property can actually be found in problems of natural language parsing.

The rest of this section tries to support these claims experimentally.

Tree search

Figure 5.7 on the next page shows how the accuracy of intermediate solutions develops depending
on processing time when using the systematic tree search method (cf. Section 4.8).7

7Wallace [1996] also suggests the distance of an intermediate solution candidate to the optimal solution as a
measure for quality in anytime curves.
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Figure 5.7: Accuracy (as percentage of correct links) of intermediate solutions depending on pro-
cessing time for the solution method Netsearch (cf. Section 4.8). Problems of varying difficulty (as
identified by the number of constraint values, cf. Section 4.11) have been distinguished.

It can in fact be confirmed that approximate solutions start to become available after a short
period of time. Note however that an accuracy of some 50% after five seconds for the class of
the hardest problems can mean quite different things: Either half of the problem instances have
been solved correctly or all problem instances have solutions which are only 50% correct. Only
the latter case can be counted as anytime behavior because only then a quality improvement
over time can be assumed for individual problem instances.

Time [s] 0.05 0.1 0.5 1 2 5 10 20 30 52
Tree Search [%] 62.5 68.8 81.3 87.9 91.5 94.6 96.4 97.3 98.2 98.7

Heuristic Search [%] 90.6 98.7 100 100 100 100 100 100 100 100

Table 5.2: Fraction of problems with soft solutions after a certain period of time.

Table 5.2 lists the percentage of problems for which a first solution is available after a certain
period of time. Although a number of over 94.6% after five seconds may seem high at first glance,
it also means that no solution has been found for the remaining 5.4%. It must be assumed that
no real anytime behavior can be attributed to the tree search because no solution at all can be
found for some problems even after a long time of computing.
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To summarize: It has to be concluded that the predicted suitability of branch-and-bound for
anytime behavior [Freuder & Wallace 1992] can only partially be confirmed for the problem of
WCDG parsing. Two reasons can be identified:

1. The Netsearch procedure immediately terminates a branch in the search space when a
hard constraint is violated. Hence, it can only deliver intermediate results that already
satisfy all hard constraints. This is the main reason for the observed delay in producing a
first solution.

2. Netsearch employs an optimized agenda strategy which is a mixture between depth-first
and best-first (cf. Section 4.3.2). Different variants of agenda strategies are imaginable
and the more it resembles depth-first, the earlier one can expect a first solution.

Heuristic search

We now turn to heuristic search variants and focus on the procedure Frobbing (cf. Section 4.9.1)
which uses the min-conflicts heuristics and a tabu list.

Figure 5.8 on the next page shows how the accuracy of the intermediate solutions develops
depending on processing time when using the heuristic search. Note that the accuracy range in
Figure 5.8 on the facing page differs from the one in Figure 5.7 on the page before.

It can be clearly seen that almost immediately after the start of the procedure a first solution is
available that already features a considerably high accuracy of over 80%. For smaller problems,
the maximum accuracy is reached after less than 10 seconds while it seems to still improve
after 60 seconds for the largest problems. Considering also the information in Table 5.2 on the
preceding page, it can be concluded that the parsing procedure sustains the intrinsic property
of anytime behavior typical for heuristic search methods.

It should be noted however, that there is still a lot of variance in the quality of a solution after
a specific period of processing time. The performance profiles for WCDG parsing are instance-
specific and a probabilistic performance profile can only be given for a corpus of utterances (cf.
Section 4.4.3).

Figure 5.9 on page 148 gives examples of the development of the solution quality over time for
individual parsing problems.

The problems in Figures 5.9a on page 148 through 5.9c on page 148 have been selected so that
they have approximately the same number of constraint values and are, therefore, of comparable
difficulty. Accuracy is given depending both on absolute time in a constant range of 10 seconds
and on relative time, i.e., relative to the time needed until the particular parsing process termi-
nates. For comparison, the candidate score ¹ ÿÂ N SC O is also shown. Note that a solution procedure
has access only to the score but not the accuracy of intermediate solutions.

The accuracies for sentence n002k015-1 in Figure 5.9a on page 148 and sentence n004k023-1 in
Figure 5.9b on page 148 both show a similar run of the curves over relative time. However, the
absolute runtime is quite different: The second example needs only one fifth of the time of the
first example to find the solution although they seem to be of similar difficulty judging from the
number of constraint values.
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Figure 5.8: Accuracy (as percentage of correct links) of intermediate solutions depending on process-
ing time for the solution method Frobbing (cf. Section 4.9.1). Problems classes of varying difficulty
(as identified by the number of constraint values, cf. Section 4.11) have been distinguished.

Figure 5.9c on the following page shows that the quality of intermediate solutions can be quite
irregular over time. That does of course not mean that the quality of a solution that is returned
later must be worse than an earlier one since the search procedure can always remember good
candidates and deliver the best intermediate solution so far but it has to use the score as the
only criterion since the accuracy is not available to the search method.

Finally, Figure 5.9d on the next page shows an unrelated phenomenon that can easily be ob-
served in some performance profiles: The solution method Frobbing obviously finds the same
intermediate candidates multiple times as can be seen from the regular run of the curves to the
right of the figure. Although a tabu list (cf. Section 4.9.1) is used to avoid short cycles, this
cannot guarantee the procedure not to return to previously visited candidates, a property that
is typical for heuristic search variants.

To summarize: The solution method Frobbing shows a runtime characteristic that is typical for
weak anytime algorithms. Approximate solutions are available almost immediately. Although
probabilistic performance profiles (based on a given corpus) can be derived, the profiles of
individual problems vary to a large degree.
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1,129 values)
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1,021 values)
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Figure 5.9: Individual performance profiles.

5.5.3 Extrinsic anytime behavior

A system with an extrinsic anytime property is characterized by a two-stage architecture. A
meta-control mechanism supervises the underlying algorithm and controls its behavior, e.g., by
adjusting parameters when some modification of the parsing process seems appropriate in order
to achieve anytime behavior. Parameters can either belong to the basic algorithm itself or to
the grammar employed.8

Intuitively one would think that the meta-control mechanism requires some leeway in the pro-
cessing characteristics so that it can apply some kind of pressure to the underlying system to

8Given this admittedly vague definition, even the heuristic search variant guided local search (cf. Section 4.9.2),
for instance, might be characterized as a two-stage architecture because a mechanism modifies the augmented
assessment function and controls the basic local search. Actually, guided local search is often called a meta-
heuristics [Voudouris 1998]. However, we will consider here only systems where the meta-control modifies the
underlying process in order to achieve a better anytime behavior.
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accelerate the computation. For WCDG parsing, we are willing to sacrifice parts of the robust-
ness that the system shows in normal operation mode (cf. Section 5.3) in order to improve the
efficiency of the system under temporal pressure. In this case, only the standard sentences will be
parsed correctly; deviating utterances will not be analyzed accurately (or not at all) any longer.
This behavior is consistent with human language understanding under difficult conditions, such
as reading in a hurry or comprehension difficulties when listening to someone speaking in a
foreign language.

A series of experiments were run to verify whether the WCDG parsing system is suitable for
such a trade-off where a speedup is traded against decreased robustness. An actual meta-
control mechanism was not built because a component that dynamically adjusts the parameters
of the system only makes sense when temporal pressure can be observed. This however is only
feasible (or natural) in natural language parsing when the analysis works incrementally and the
distance between the position of the currently analyzed word and the horizon of the language
input becomes too large. Incremental analysis with WCDG, however, is still in its infancy (cf.
Section 4.12).

For the systematic tree search procedure Netsearch two means of applying pressure to the system
have been tried:

� Tighter grammar: All constraints with a weight smaller than the parameter � are made
hard, i.e., their weight is re-adjusted to zero. This has two consequences:

1. All sentences that do not violate any of the constraints 1 that encode knowledge about
severe violations ( ¹ N 1�O0ù�� ), can be analyzed faster than before because deviating
local alternatives can be discarded early during the analysis.

2. The system parses deviating utterances that violate one or more of the tightened
constraints into a wrong structure or not at all because the correct analysis has been
removed by the now hard constraint.

� Pre-setting the bound: A pre-set bound value allows branch-and-bound search methods
to prune parts of the search space early. In particular those problems for which it takes a
long time to find a first solution and therefore a first bound, can benefit from such a step.

Figure 5.10 on the following page relates a parameter � which represents either the threshold for
grammar tightening or the pre-set bound to the achieved accuracy and the computation time
needed.

First of all, the expected behavior that the quality decreases and the efficiency grows with
increased parameter can be observed for both variants of applying pressure.9 But only the
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(b) External time pressure through pre-set bound.

Figure 5.10: Systematic tree search procedure under external time pressure.

grammar threshold (cf. Figure 5.10a) shows the favorable behavior of the accuracy degrading
to a lesser degree and later than the efficiency improves. The run of the curves as a hysteresis
guarantees that a considerable speedup can be achieved at the cost of negligible losses in accuracy.
The pre-set bound in Figure 5.10b does not show such a behavior.
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For the method of Frobbing, an internal parameter � determines how long detours may get during
a local search. Figure 5.11 gives the achieved accuracy as well as the time needed depending on
the applied pressure.
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Figure 5.11: Heuristic search method with tabu list under external time pressure.

Obviously, a moderately increased pressure leads to a minor decrease in accuracy and almost
no speedup for small problems. For the interesting cases of larger problems, however, a huge
speedup and again almost no decrease in accuracy can be observed. This behavior is welcome
since smaller problems are solved quickly anyway while large problems benefit most from the
applied pressure. The outline of the curves again resembles a hysteresis. Since a suitable
parameter is available that a meta-control can use to fine-tune the temporal behavior of the
algorithm, the property of extrinsic anytime behavior can be confirmed for the heuristic search
method when applied to the problem of WCDG parsing.

5.5.4 Related work

Various classification schemes for anytime algorithms have been proposed in the literature.
Wahlster & Tack [1998] distinguish two types of resource-sensitive algorithms. Resource-adapted
means that the reasoning about the strategy takes place during the design phase; the required
resources are fixed at runtime. In contrast a variable amount of resources is necessary for
resource-adaptive and resource-adapting processes. The former embarks on a fixed process-
ing strategy while the latter may change its processing regime during runtime. The classes of
resource-adaptive and resource-adapting procedures can be roughly mapped to the interrupt-
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ible and contract anytime algorithms (as defined by Russell & Zilberstein [1991]) respectively.
However, contract algorithms need to know ahead of time how much time is available while
resource-adapting methods can change their parameter during runtime. We add the terms of
intrinsic and extrinsic anytime algorithms which again roughly correspond to the distinction
between interruptible and contract algorithms but emphasize the separation between basic al-
gorithm and meta-reasoning device. We call an algorithm an intrinsic anytime algorithm when
the basic method can be interrupted at any time and still yields a reasonable result. In contrast,
an extrinsic anytime algorithm offers parameters that enable an external component to control
the trade-off between speed and quality. Parameters may have to be adjusted before the start
of the algorithm or can be adapted during runtime. Figure 5.12 summarizes these classification
schemes.
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Figure 5.12: Classification of anytime algorithms.

Menzel [1994] introduced the distinction between weak anytime algorithms whose performance
profiles are instance-specific and strong anytime algorithms with generally valid performance
profiles.

In the context of natural language processing (NLP), Wahlster [1993] proposes anytime algo-
rithms for NLP modules in the speech-to-speech translation system Verbmobil.10 Relatively few
references to the anytime property can be found for natural language parsing. Menzel [1994]
suggests anytime algorithms in the context of CDG for the first time. However, he focuses on
the view of CDG parsing as successive ambiguity reduction which facilitates an introspection of
the remaining work load and therefore a goal-oriented scheduling of delayed constraint applica-
tions. Unfortunately, the corresponding techniques have proven not to be directly applicable for
WCDG parsing. Görz & Kessler [1994a] investigate the potential of chart parsing techniques as
anytime algorithms.11 However, their view is quite narrow; they only focus on possible points of
interruption for a chart parser: after application of the fundamental rule, after a complete unifi-
cation etc. One particular problem with their approach is that a chart parser obviously needs a

10As far as we know the ideas were first mentioned by Wahlster [1992] at his invited lecture at COLING-92.
11Görz & Kessler [1994b] also give details about an underlying protocol for interfaces to anytime algorithms.
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hardly predictable amount of time before a first solution can be returned. Ehrlich & Hanrieder
[1996, p. 29] claim that their island chart parser obeys the anytime property simply because it
acknowledges a timeout. Their notion of anytime algorithms is of course only a superficial one
since it is in no way guaranteed (or made plausible) that the (expected) quality of the procedure
actually degrades gracefully under tightened timeout values.

The anytime property has been more widely investigated in the area of dialogue planning and
natural language generation. The goal of the READY project [Wahlster et al. 1995] is to
model the cognitive resources of the human dialogue partner. The cognitive capacity of humans
during a natural language dialogue is modeled by a temporal Bayes network [Schäfer & Weyrath
1996]. Weis [1997] presents a framework for the evaluation of action plans and utterances which
verbalize these plans. It is based on hierarchical planning using plan operators and can be used
as a basis for resource-adaptive action and dialogue planning. The system is also presented from
the point of view of user interface design [Jameson et al. 1999] with examples from a car repair
scenario in which a naïve driver is to be instructed over a mobile phone [Weyrath 1997]. Wahlster
et al. [1998] describe the system REAL which answers where-questions under time pressure, i.e.,
it must first locate the object under consideration and then verbalize the location in a suitable
way. The system is time sensitive in two different ways: Firstly, it must take the resource
limitation of the user and the situation into account, e.g., the proximity of the next crucial
situation for a traffic information system in a fast-moving car, and secondly, the algorithms
themselves should have the anytime property. An alternative approach to anytime dialogue
planning is presented by Carletta [1992] who bases her computational model on extensive corpus
analyses. Carletta, Caley & Isard [1993] try to simulate hesitations and self-repairs in human
dialogues through anytime techniques. Donaldson & Cohen [1997] develop an anytime model
for turn-taking in discourse. Interestingly, they use similar techniques (dynamic constraint
satisfaction problems, local search) in their work.

5.5.5 Summary

The potential of WCDG parsing for the anytime property has been experimentally investigated.
Two types of anytime behavior are distinguished.

� The intrinsic anytime behavior refers to the capability of the basic algorithm to suggest
an approximate solution early and improve on that intermediate candidate if more time
is available. For both search variants, tree search and heuristic search, this characteristic
can be confirmed when a corpus as a whole is considered. Tree search, however, fails to
provide approximate solutions soon for some very large problems and can therefore only be
partially classified as an anytime algorithm. Heuristic search, in contrast, improves first
candidates from the very beginning. Both algorithmic types show great variances over
different problem instances so that they have to be classified as weak anytime algorithms.� The extrinsic anytime behavior refers to the availability of parameters in the basic algo-
rithm that allows a meta-level method to control the trade-off between speed of compu-
tation and quality of results. Suitable parameters have been identified in the form of a
threshold for grammar weights in the case of tree search and in the form of a limitation
of the length of detours in the case of heuristic search. In contrast, a pre-set bound for
the branch-and-bound method does not show the favorable behavior of large efficiency
improvements being achieved by sacrificing only a small amount of accuracy.
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5.6 Interfacing a WCDG with a speech recognizer

5.6.1 Motivation

Analyzing spoken language instead of written language is a challenging task because the acoustic
ambiguity, i.e., the uncertainty which words have actually been uttered, is added to the already
ambitious process of finding the underlying structure of a sequence of words.

Figure 5.13 on the facing page shows the input and output of a typical speech recognizer in
which a digitized waveform of the speech segment is analyzed into a weighted directed graph.12

This so-called word hypotheses graph consists of ordered vertices and edges which are labeled
with words and weighted with acoustic scores13. Overlapping edges represent alternative inter-
pretations of the same speech segment. The cheapest path through the graph is the acoustically
preferred sentence hypothesis. Word graphs are widely used because they allow for a compact
representation of recognition ambiguities. Section 2.3.1 describes word graphs from the point of
view of WCDGs.

This section suggests an architecture for the integration of acoustic scores into the WCDG
parsing system and describes results from a number of experiments in which different instances
of such a combination are explored. The following questions are of particular interest:

� Is it at all tractable that a WCDG parser processes realistic word graphs?� Can acoustic scores help the grammatical system to select the correct sentence structure?� Can a WCDG parser successfully re-rank the sentence hypotheses of a recognizer?

5.6.2 Combination of acoustic scores and constraint weights

Although the WCDG system uses word hypotheses graphs as standard input and can therefore
be classified as a sequentially coupled system, we have so far ignored the question of how to
combine acoustic scores in a word graph and constraint weights from a (manual) WCDG.

12State-of-the-art speech recognizers convert the digitized waveforms first into multi-dimensional feature vectors
over a small window of samples and then compute the more probable paths through a large hidden Markov model

that has words as states and outputs the observed feature vectors. The details of speech recognition systems are
beyond the scope of this thesis [Rabiner 1990; O’Shaughnessy 1990; Eppinger & Herter 1993; Schukat-Talamazzini
1995].

13Typical speech recognizers nowadays employ two statistical models based on acoustic probabilities and sen-
tence prior probabilities respectively. This is feasible because the probability �/ ���Ë �W¤ (where � is a sequence
of words and � is a sequence of acoustic observations) that is to be maximized [Schukat-Talamazzini 1995, for
instance] can be re-written as follows (using the Bayes rule):

� m Ð���� �!#" ��$%�/ ���Ë �è¤ñÐ���� �!�" ��$ �/ ��2¤£÷&�/ �� Ë �2¤�/ ��W¤ Ð��'� �!(" ��$ �/ ��2¤) *,+ -
language
model

÷ �/ �� Ë �2¤) *,+ -
acoustic
model

The acoustic model contains information about the pronunciation of the basic unit (often phones) while the
language model takes the word sequence information into account. The latter is often realized through an ¡ -gram
model, although it is of course generally agreed that an ¡ -gram is too weak a model of natural language.

Hence, it is not quite precise to talk about an acoustic score since partially grammatical evidence from the
language model is included. To ease the presentation, we nevertheless use the term ‘acoustic score’ for the
assessment of a hypothesis edge originating from a speech recognizer. Although possible in general, the speech
recognizer used for the experiments in this section does not offer to entirely switch off the language model.
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(b) Output: Word hypotheses graph with the acoustically preferred path marked by black edges

Figure 5.13: Word graphs as an interface to a speech recognizer.

In principle, one should be able to multiply the acoustic scores directly with the CDG weights
since ideally the former are the combined transition and output probabilities of the Markov
model. There are two factors against this:

� Speech recognition systems often output scores that are no longer real probabilities. Due
to different normalizations and simplifications, the scores should merely be used to rank
the competing alternatives.
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� Acoustic scores are by several magnitudes smaller than usual constraint weights.14 This
means that their scale usually does not fit the scale of a constraint system. While the
difference between, say, scores �%� ÿ "/. and �%� ÿ �&0 (from the word graph in Figure 5.13b on
the page before) might be small enough for a speech recognizer to include both hypotheses
for the same speech segment in a relatively small word graph, it is highly unlikely that a
grammatical score resulting from constraint violations reaches the same numerical range.

We therefore tried different methods for the integration of acoustic scores.

Let � be the best and ÷ the worst score in a word graph. An original acoustic score � is adjusted
by applying a function ôÐUvúµXY�ò �����£ó .

� Linear: Normalize the emitted scores in the range ò �����£ó .
ô N �¯O�� ���R÷� �R÷21 � �

The graph to the right shows the transformed
scores of the example word graph. The
smaller acoustic scores are much smaller than
the largest one and as a consequence the ma-
jority of the values is very close to zero.
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� Logarithmic: Normalize the logarithms of the scores in the range ò �����£ó .
ô N �¯OS� 3�4 G N � ® ÷«O354 G N � ® ÷zO

This function distributes the acoustic scores
much more evenly over the interval ò �����£ó .
Only the worst scores are close to zero. This
kind of adjustment is used in all subsequent
experiments.
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The normalized word graph score is made available to the constraint system through the function
acoustics() which has been added to the constraint language (cf. Section 2.5.3). Constraint C-
41 is a constraint template (with parameter T ) that rescales the acoustic score so that it always
falls into the interval ò TS���)$ ��ó . A small value for T leads to a greater influence of the acoustic
score while a larger value T makes the inevitable constraint violations caused by the acoustics
constraint less decisive. A value of one renders the constraint ineffective because the score of
the constraint becomes one in any case then.

C-41 {X} : Acoustics : [ 6 + ë�è87 ÝWê96¯î *acoustics(X@id)] :

X.level=SYNTAX -> false;

Integrate the adjusted acoustic score.

By using the truth constant false in the constraint body and restricting the application to a
single level, it is guaranteed that every (adjusted) acoustic score is integrated exactly once.

14Often the acoustic scores ‘behave’ like negative logarithmic probabilities [Nöth & Plannerer 1993] to prevent
arithmetic underflow in a computer program.
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5.6.3 Reduction of word graph density

It is intuitively clear that (ceteris paribus) larger word graphs represent harder problem instances
because the additional recognition uncertainty has to be compensated by the parser. A common
measure for the size of word graphs is the word graph density which is defined as the ratio
between the number of hypotheses edges in the word graph and the number of words in the
reference sentence. In general, a word graph with a higher density contains more alternative word
sequences and thus a greater recognition uncertainty than one with a low density. Conversely,
the probability that a word graph contains the reference utterance decreases when the density
is low.15

In order to be able to systematically compare the efficiency and accuracy of the parser under
varied word graph sizes, we created word graphs for a small corpus of 25 test sentences that
were taken from the Stellingen corpus (cf. Section 5.2.1) and are thus covered by the grammar.
The Verbmobil [Wahlster 2000] recognizer for German [Waibel et al. 2000] was configured to
output word graphs with an average density of 10, and the manually segmented utterances were
read rather than spontaneously spoken. The resulting word graphs have an actual mean density
of 8.5 (sd 4.9). It is quite likely (although unknown to the author, cf. Section 5.6.5) that the
used sentences (the word sequence, not the waveform) are contained in the training material of
the speech recognizer since both are taken from the standard Verbmobil corpus. This, however,
does not constitute a serious problem here because we are only interested in the impact of using
word graphs (of different size) on our parser, not in a general evaluation of the speech recognizer
or the overall system.

For each of the initial word graphs a sequence of smaller and smaller word graphs is created
where the less dense word graphs are subgraphs of the larger ones. Starting from the maximum
word graphs, the density has been successively reduced by removing word hypotheses with a low
acoustic score. The employed algorithm (cf. Figure 5.14 on the next page) uses the following
utility functions on word graphs

T
(cf. Definition 2.3 on page 22): � U T XY�ú (forward score),� U T XY,ú (backward score) and ��U T XY,ú (best path score).16

� N �õôK��öm�'÷I� M �'O�� : ��$ � iff ö·�ÎÍÐü�ý;:Í�Ï ÑØ �=<?>A@ Ê @ � Ê 	 � Ê � �=B M  ³ � N þ  O else

� N �õô:��ö#�'÷I� M �'O � : ��$ � iff ôC�ÎÍÐÏ?Ñ;:Í�Ï?ÑØ �=<?> µ � Ê µ Ê 	 � Ê � �CB M  ³ � N þ  O else

� N �õôK��öm�'÷I� M �'O�� � N �õôK��öm�'÷�� M �'O�³ M ³ � N �õô:��ö#�'÷I� M �'O
The forward score � N þ}O is the accumulated score of the cheapest path, i.e., minimal with regard
to the acoustic weight, starting at the end node of edge þ and ending at the end of the word
graph. Analogously, the backward score � N þ}O is the accumulated score of the cheapest path from

15Amtrup [1999, p. 38] suggests a different measure for the size of a word graph that is based on the number
of paths in the word graph. In general, the two measures correlate to quite some degree.

16Sixtus & Ortmanns [1999] use similar definitions.
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the start of the word graph to the start node of the edge and the best path score � N þ}O is the
accumulated score of the minimal path that goes through edge þ . The idea behind this definition
is that the absolute weight of an edge is rather inadequate for assessing its quality but the best
path score is better suited since it incorporates the topological context of the edge.

1 procedure ReduceWordGraphDensity(G, R, M)
2 ; G word graph, R reference, M maximum density

3 while
P T P ® P � P r�� do ; small enough

4 set D Ub�� }þ�7 T P � N þ�O���Í�Ï?ÑØ � ÄE: � N þ  Os* ; edges to be removed

5 set
T Ub� T üFD

6 remove dangling edges from
T

7 done

Figure 5.14: Reduction of word graph density in pseudo code.

Note that it is not always possible for the algorithm to return a word graph with the exact
requested density because the removal of one hypothesis may trigger the deletion of additional
edges that are not members of a complete path anymore (‘loose ends’ in the graph). This post-
processing is not included in Figure 5.14. Figure 5.15 on the facing page shows a selection of
reduced word graphs that are derived from the word graph in Figure 5.13b on page 155. The
word graph in Figure 5.15a on the facing page, for instance, has a density smaller than the
requested value of four due to the optimization described above.

Of the 25 word graphs with minimal density of (up to) one, 64% already contain the reference
utterance, i.e., the sentence that was read to the speech recognizer. This figure increases to 80%
for densities of up to five where it reaches its maximum; conversely, 20% of the utterances are
not contained in any of the corresponding word graphs. The relatively high sentence accuracy
means that the recognizer would return the correct sentence in 64% of the cases when asked for
the best sentence hypothesis (i.e., a linear word graph). It should be noted that even an ideal
parser can only improve the sentence accuracy from 64% to 80% at best unless it adds new arcs
to the word graph. This relatively small margin means that we should not expect too big an
improvement with respect to sentence accuracy from an integration of a parser, i.e., it is difficult
for a parser to correct recognition errors.

5.6.4 Impact of recognition uncertainty on parsing

This section describes some experimental findings regarding efficiency and accuracy using the
word graphs with increasing density.

The move from smaller word graphs to larger ones has two contrary effects with respect to
parsing accuracy.

� On the one hand, larger word graphs contain more alternatives and are therefore more
difficult to analyze. Multiple word sequences that differ considerably from the reference
sentence may be grammatical and some may even be preferred by the grammar. This
tendency leads to a decreased accuracy.
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Figure 5.15: Word graphs of different densities. Larger word graphs contain more acoustic alterna-
tives.

� On the other hand, the more alternative paths in a word graph, the higher the probability
that the correct one is included (which is the motivation for using a word graph with
ambiguities in the first place).

Table 5.3 on the next page gives the f-measure values for different acoustics integration schemes,
different word graph densities and two solution methods.
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Acoustics J�Ð�K Î ë J1ÐLK Î M J1Ð8ë Î K (no integration)

Density all 1 5 max. all 1 5 max. all 1 5 max.

# Problems 182 25 17 25 182 25 17 25 182 25 17 25

# TS Sol. 104 21 8 13 128 24 10 16 128 24 10 16

# HS Sol. 182 25 17 25 182 25 17 25 182 25 17 25

Time TS [s] 70 29 104 50 77 10 91 90 77 9 82 86

Time HS [s] 160 42 199 177 116 19 132 138 114 12 121 146

SYN 84.7 92.7 77.4 77.8 76.6 91.4 59.1 76.8 73.9 91.4 54.9 75.9
TS Sol. SEM 88.5 95.1 85.6 83.8 81.4 92.8 73.0 77.8 78.2 92.8 68.5 76.6

TOT 89.0 94.8 86.0 85.6 82.7 92.5 74.4 80.9 79.9 92.5 69.9 79.7

SYN 48.4 77.8 36.4 40.5 53.8 87.8 34.8 49.1 52.0 87.8 32.3 48.6
TS All SEM 50.6 79.9 40.3 43.6 57.3 89.1 43.0 49.8 55.0 89.1 40.3 49.0

TOT 50.8 79.6 40.5 44.5 58.2 88.8 43.8 51.8 56.2 88.8 41.1 51.0

SYN 66.3 90.8 62.9 56.7 68.6 89.6 61.8 66.9 66.3 89.9 55.5 63.7
HS SEM 77.5 91.8 79.2 70.5 77.9 90.9 76.2 74.9 75.4 90.9 72.5 72.9

TOT 77.8 92.3 78.5 71.7 78.4 91.3 76.1 76.8 75.9 91.4 71.2 74.3

Table 5.3: Parsing f-measure (in percent) and average computation time for experiments with
varying degrees of integration of acoustic scores. Values of T refer to Constraint C-41 on page 156.
For densities, ‘all’ means mean of all problem instances, 1 and 5 mean the average f-measure of those
word graphs with requested density of 1 and 5 respectively. ‘max.’ means the problem instances
with maximum density per utterance (may be smaller than 5). Note that different numbers of
problem instances are available for the different word graph densities (in particular for density 5).
‘Time’ is average computation time needed per solved instance. ‘TS’ stands for systematic tree
search, ‘HS’ for heuristic search with tabu list. ‘All’ means f-measure relative to all instances, ‘Sol.’
means f-measure relative to the solved instances only. SYN is the f-measure for syntax edges only.
SEM is the mean f-measure of all semantic edges (AGENT, EXP, PATIENT, QUALITY and THEME). TOT
is the mean f-measure of all edges on all levels.

The following observations can be made:

� The integration of acoustic scores with the parameter T set to ��$?� leads almost always to
worse results compared to the lack of integration. Obviously, the acoustic scores get too
large weights in this case leading to neglect of grammatical information.

� A parameterization with T ����$o¥ is (almost) consistently better than no integration.
Acoustics and grammar are better balanced in this case.

� Significantly better f-measure values are achieved for minimal word graphs (with a density
of one) compared to those with a density of five or maximum density. This result is some-
what disappointing since we had hoped that the combination of acoustics and grammar
would not only reproduce the result from a sequential architecture but improve on it.

In an experiment of re-ranking paths in word graphs using a CDG with hard constraints
only, Harper et al. [1999a] could achieve an increase in sentence accuracy from 90% to
94% when using a random sample of word graphs and from 0% to 37% when using only
those word graphs that contain the target sentence but not as the highest ranked one.
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� Since some word graphs have a maximum density smaller than five, only a reduced number
of utterances are taken into account for the columns with density 5 which is why values
for density 5 often do not lie between those for density 1 and maximum density.� Although the semantic levels SEM score higher values than the syntactic level SYN and
slightly lower values than all levels together, no principal difference in f-measure can be
found for the different levels.� Larger word graphs take over-linearly longer to parse than smaller ones except when using
a parameter setting of T-����$?� . This can best be seen when comparing the average
computation time for densities one and five. The word graphs are five times greater
(in terms of word edges) but the procedures only need 3.59 to 4.74 longer for TB�3��$?� .
For T¬�3��$o¥ the tree search method requires 9.1 times longer while the heuristic search
needs 6.95 times longer. This observation is consistent with our findings in Section 4.11
that the heuristic search methods scale better for large problems. Heuristic search takes
10.1 times longer for word graphs of density five when no integration of acoustic scores is
done (compared to 6.95 with TR�Î��$o¥ ), i.e., there is a relative speedup for larger problems
when integrating the acoustic score. In absolute numbers, the heuristic search still takes
slightly longer with acoustic integration than without in most cases.� Finally, it can be seen that the heuristic search achieves a higher f-measure when all
problem instances are considered. Again the reason is that the transformation-based search
can always return an analysis while the tree search fails to do so sometimes. For those
cases where a solution could be found, the tree search scores higher f-measure values (but
only because it omits the difficult instances).

It should be noted that Table 5.3 on the facing page only gives average numbers; individual
problem instances may vary considerably. Figure 5.16 on the next page shows parsing time and
f-measure against word graph density for an individual non-representative sentence (n001k011-1
from the Stellingen corpus). Here the integration not only leads to a much better f-measure
but also achieves a considerable speedup. While the time needed for the analysis seems to
‘explode’ when not considering the acoustic scores, only a moderate increase in parsing time can
be observed with acoustic scores integrated.

5.6.5 Evaluation with unknown sentences

It has already been noted that 64% of the minimal word graphs contain (‘are’) the reference
utterance and that this figure increases to 80% for a density of five. Although this leaves some
room for improvement for the parser, the baseline is remarkably high. Reasons probably include
the following:

� All utterances in our corpus have been manually split into ‘sentence-like’ segments. Con-
sequently, they are much shorter (namely, 8 words on average per utterance) than the
average turn length of 22 words per turn [Niemann et al. 1998, p. 2] in Verbmobil.17

Shorter utterances, of course, have a much greater probability of being returned as the
best sentence hypothesis by a speech recognizer.

17They are still longer than the utterances of the ATIS (Air Travel Information System) corpus [Marcus,
Santorini & Marcinkiewicz 1993].
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Figure 5.16: Parsing time and f-measure depending on the word graph density for sentence
n001k011-1.

� In our experimental setting, the sentences have been read instead of sponteanously spoken.
Additionally, no context neighboring the sentence was used and considerable effort has been
spent to avoid non-speech noise.

� The sentences used in the experiment are taken from the first parts of the Verbmobil
corpus. Therefore, it is highly likely that the employed speech recognizer had already
incorporated them into its language model.

At least the last point seems contra-productive for our purpose if we want to verify whether the
additional grammatical information used by the parser can help to correct errors made by the
speech recognizer. If the recognizer already has access to that knowledge, the effect cannot be
as pronounced as in the case where new knowledge is used.

Therefore, a second experiment has been conducted where 50 additional utterances that are not
included in the language model18 have been analysed with the same recognizer which, however,
has been configured for an even higher word graph density of 30. The resulting word graphs
have an average density of 24.7 (sd 22.6). In 31 of the 50 cases, the reference utterance is
contained as the acoustically preferred hypothesis, i.e., the sentence accuracy is almost as high
(62% compared to 64%) as in the previous experiment. Furthermore, the reference is identical to

18More specifically, the first 50 utterances (manually segmented) from dialogue g460ac that is part of the official
test set of the speech recognizer (Hagen Soltau, personal communication) have been used in this experiment.
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the best hypothesis in three more cases if one ignores minor spelling variations (unsere Y unsre,
ganze Y Ganze, ...) resulting in a sentence accuracy of 68%. Seven word graphs do not contain
the reference and for the remaining nine instances the reference is contained in the word graphs
but not as the best hypothesis.

An ideal parser can, therefore, be expected to improve the sentence accuracy from 68% to at
most 86%. However, this is of course a theoretical upper bound. It is also likely that grammatical
sentences in the larger word graphs that are different from the reference will be selected by the
parser.

In order to get a more realistic upper bound of what our parser can achieve on the data, the
new lexical items and grammatical constructions from those nine word graphs which contain
the reference as a suboptimal path have been added to the grammar and the parser was run on
them. Note that this experiment is too optimistic since only those sentences are considered that
bear some potential for improvement. It is not at all easy to avoid errors in the other cases.

Table 5.4 presents the word accuracy and recall19 for these nine cases resulting from different
parser runs (tree search vs. heuristic search, different acoustics integration, TR�Î��$o¥ ). The values
for the best (acoustic) hypothesis is also given for comparison.

Word graph Density Length Parser Best hypothesis

Accuracy Recall Accuracy Recall

24 21 8 46.2 - 66.7% 75.0% 66.7% 75.0%
25 12 6 50.0% 50.0% 83.3% 83.3%
28 7 11 90.0 - 90.9% 81.8 - 90.9% 90.9% 90.9%
29 23 8 37.5 - 55.6% 37.5 - 62.5% 71.4% 62.5%
36 3 6 66.6 - 83.3% 66.6 - 83.3% 83.3% 83.3%
40 2 6 83.3 - 100.0% 83.3 - 100.0% 83.3% 83.3%
41 6 8 71.4 - 85.7% 62.5 - 75.0% 85.7% 75.0%
45 2 12 90.9% 83.3% 80.0% 66.7%
49 4 5 75.0% 60.0% 100.0% 60.0%

Table 5.4: Word accuracy and recall for unknown utterances.

The outcome is not too promising. Although there are some cases where the parser improves
the suboptimal best hypothesis of the speech recognizer, the general conclusion is that it is
still better to use the best hypothesis than to operate on larger word graphs. Reasons for this
behavior include the following.

� The quality of the produced word graphs is still very high so that the improvement that
a parser can even potentially achieve is limited. Amtrup, Heine & Jost [1997] report word
accuracies for speech recognizers on the Verbmobil corpus of 70% to 84% for word graph
densities of one which go up to 96% for densities of ten (and larger) while the word graphs
used in the experiments of this section showed a sentence accuracy of up to 68%.

The question of whether the WCDG parser can yield more favorable results when using
more realistic word graphs is subject to further research. But it must be taken into account

19Word accuracy and recall are based on a standard Levenstein distance with equal weights for substitutions,
deletions and insertions.



164 5. Experimental Results

that favorable results can be achieved with word graphs that are similar in quality to ours:
The word graphs used in Harper et al. [1999a, p. 3] contain the correct sentence in 98% of
the cases (compared to 80% in our case) and in 83% (compared to 64%) the acoustically
preferred path is the correct sentence.� Parts of the parser failures are based on search errors rather than modeling errors. That
means that if we were not limiting the computation time, the correct solution would finally
drop out of the process.� The interface between acoustics and grammar is still naïve. More work must go into
fine-tuning the interface.� Most importantly, the parser and the grammar have not been designed with speech parsing
in mind but were written for analysis of linear sentences (cf. Section 5.2.1). In particular,
phenomena of spontaneous speech (such as self corrections, hesitations, repetitions and
sentence abortions) and word recognition errors (for instance, wir Y sie, sie Y die) have not
been taken into account when modeling the grammar.20 Therefore no constraints exist
that discriminate between different words that are temporal alternatives.

5.6.6 Related work

Harper et al. [1994] discuss different degrees of tightness in coupling a speech recognizer with a
parsing component. Tight integration means that the individual processes and knowledge bases
cannot be separated while the latter are relatively independent in a loosely integrated system. In
a tightly coupled architecture, recognition and parsing are interleaved so that the predictions of
the language component can complement the acoustic scores in the search for the best sequence
of words. A language model based on � -grams is still often used in tightly and moderately
coupled architectures, but lately alternative approaches received more attention, for instance,
filtering of bi-gram follow-sets using unification-based CFG [Hauenstein & Weber 1994] as well
as direct use of stochastic CFG [Jurafsky et al. 1995] or headword dependencies [Chelba &
Jelinek 1998]. Tight (and partially moderate) integration, however, turns out to be difficult for
at least three reasons:

� The complexity of the parser is incorporated into the simpler (with regard to complexity)
stage of recognition. This can lead to efficiency problems.� It is not always clear which probabilities to use for the language part and how to train
them.� Only a subset of grammar models and parsing strategies are appropriate for the task since
they must operate in a time-synchronous left-or-right manner. In particular, they must be
able to assign probabilities to prefix analyses.

A loose coupling is achieved when the recognizer passes a space of hypotheses (in the form of a
word graph) to the parser and the latter chooses the best one or acceptable ones from this set.

20The parsers in van Noord [2001] and Rosé & Lavie [2001], for instance, explicitly deal with speech phenomena.
Heeman [2001] argues for speech recognizers that model spontaneous speech events and pass output to a parser
that is enriched with information about such events.
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Chappelier et al. [1999] describe a general framework for such a sequential coupling. Note that
this more closely resembles the standard view of sequential processing stages where syntactic
parsing strictly follows speech analysis without feedback [Amtrup & Weber 1998; Amtrup 1999;
Amtrup 2000; Rosé & Waibel 1996; Rosé & Lavie 2001; Bod 1998]. It sometimes seems to
be more a question of personal research preferences of whether one considers a parser a more
sophisticated form of language model for a speech recognizer or a speech recognizer a dedicated
device that delivers (ambiguous and possibly erroneous) input for a parser.

Harper et al. [1999a] report that a loose coupling of a speech recognizer [Harper et al. 1994] and
a manual CDG (with only hard constraints) results in an improvement in sentence accuracy.
Using an automatically induced CDG [Harper, Hockema & White 1999; White 2000] further
boosts the selection power [Harper et al. 2000]. Also see Johnson [2000, Sections 5.5 and 5.6]
for experiments with a hand-written as well as induced CDG grammars.

In addition to the loose-tight distinction, coupled recognizer-parser combinations can be distin-
guished depending on whether they offset the acoustic with the grammatical scores. Systems
where the acoustic weight is actually combined with a grammar score of some kind are difficult
to find. Ehrlich & Hanrieder [1996, p. 31] combine the acoustic assessment with a score that
describes how well a hypothesis fits pragmatic predictions based on dialogue knowledge [Görz &
Hanrieder 1995]. Multidimensional weights consisting of, for instance, acoustic score, number of
skip edges, number of maximum projections and � -gram statistics are suggested by van Noord
[2001] along with appropriately defined update functions and orderings. However, no uniform
framework but a cascaded decision procedure is used.

5.6.7 Summary

For the first time an interface between a speech recognizer and the WCDG parser has been
designed and experimentally investigated. Although the time needed for analysis increased
more than linearly in the size of the word graph, the parser nevertheless succeeded in parsing
of word graphs with densities ranging from 3 to 18.25. The number of word arcs of up to 184
arcs per word graph increased considerably when compared to the case of linear sentences. The
results suggest that the parser benefits from the integration of acoustic scores from the speech
recognizer, independently of the employed solution method. However, as can be expected from
the results in Section 4.11, the heuristic search component is superior to the tree search method
for large word graphs. At least in the limited setting that has been assumed in these experiments,
it was not possible for the parser operating on word graphs to reach the sentence accuracy of
the acoustically preferred path. For the time being, it is still better to let the parser run on the
best hypothesis of the speech recognizer and ignore the ambiguity contained in the word graph.
This last result should be seen in the context of the favorable results that Harper et al. [2000]
achieved using a word graph filtering method based on a hard CDG. A direct comparison of the
two approaches is not feasible for several reasons:

� The corpora differ. While Harper et al. [2000] use the (extended) resource management
corpus, a subset of the Verbmobil corpus of appointment-scheduling dialogues has been
used in this section.� The speech recognizers differ. In particular, they yield different accuracies and varying
word graph densities.
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� The evaluation metrics differ. While we measured parsing accuracy on a completely dis-
ambiguated sentence, Harper et al. [2000] report sentence accuracies on the reduced word
graphs.

Although these differences render the experiments nearly comparable, a closer investigation is
subject to further research.

5.7 Integrating a part-of-speech tagger

5.7.1 Motivation

Part-of-speech (POS) taggers assign one or more category tags to words in a sentence. Very dif-
ferent architectures for POS taggers have been derived from a manifold set of frameworks: man-
ual finite state rules [Voutilainen 1995], neural networks [Schmid 1994a], decison trees [Mager-
man 1995; Schmid 1994b], Markov models [Rabiner 1990; Cutting et al. 1992; Charniak 1993;
DeRose 1988], maximum entropy models [Ratnaparkhi 1997b; Ratnaparkhi 1996], error-driven
learning of transformation rules [Brill 1993; Brill 1995; Brill 1997; Ngai & Florian 2001] and
example-based reasoning [Daelemans et al. 1996; Zavrel & Daelemans 1999]. Implementations
for these architectures exist that achieve an accuracy of at least 95% on previously unseen data.

A subsequent parser can benefit from a tagger because either the former can then operate directly
on a sequence of category symbols instead of ambiguous word forms or it can at least prune its
search space by deleting hypotheses that are incompatible with the categories predicted by the
tagger.

This section describes results from experiments with the integration of a part-of-spech tagger
in the WCDG parsing system. In particular, we are interested in an interface which takes into
account that the tagger prediction may be uncertain or even wrong in some cases and which
therefore treats the tagging classification as ‘soft’ information. The following questions are of
particular interest:

� Can a tagger reduce the ambiguity so that the parsing process itself becomes faster?

� Is the information provided by a tagger accurate enough to improve the parsing accuracy?

� What are upper bounds for efficiency and accuracy improvements?

� Does it help the parser when the tagger emits more than one symbol per word if the
decision is unclear?

Tagging word graphs is more complicated than tagging word sequences [Samuelsson 1997a;
Samuelsson 1997b]. Unfortunately, no taggers for word graphs are available so that we restricted
the experiments in this section to linear sequences of possibly ambiguous words.
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5.7.2 Experimental setup

The TnT tagger [Brants 2000], a state-of-the-art Markov tagger, has been deployed for all
experiments.

The tagger was trained on the NEGRA corpus version 2 [Skut et al. 1997b; Brants, Skut &
Uszkoreit 1999] which uses the Stuttgart-Tübingen tagset (STTS) [Schiller et al. 1995]. The
category inventory of the Stellingen grammar and lexicon is based on the STTS, but departs
from it in some details so that a mapping of tags becomes necessary. Some STTS tags, e.g.,
FM (foreign language), NE (name) or punctuation marks, have been omitted from the Stellingen
tag set because they do not occur in the corpus. If such tags are output by the tagger they
are automatically mapped to appropriate tags by default rules, e.g., NE Y NN (proper noun).
Most STTS tags correspond to Stellingen tags in a one-to-one way. We make the additional
distinction between definite and indefinite articles that the STTS does not show. But a correct
mapping from the underspecified STTS tag for determiners to Stellingen tags is feasible because
articles belong to the group of closed-class categories and the cases can thus be enumerated. In
exceptional cases it was necessary to include specialized mapping rules for particular words. For
instance, the word group of beid- (both) is treated as an adjective in the Stellingen grammar but
as an attributive indefinite pronoun with determiner in the STTS. Ambiguous mapping rules
are used in cases where the STTS uses a unique tag for words for which the Stellingen grammar
provides more than one. For instance, the STTS lists the word group of haben (to have) as an
auxiliary verb only while the Stellingen grammar additionally allows main verb forms. These
ambiguous mapping rules lead to incomplete disambiguation even if the tagger emits exactly
one tag per word.

Table 5.5 on the next page compares the Stellingen corpus to the NEGRA corpus with regard
to POS ambiguity.

Two classification figures are given to characterize the corpora.

POS tag entropy is defined as the entropy for the tag unigram � NON O and determines the minimum
number of bits per word necessary to encode the tag sequence in the corpus given the probability
distribution of tag unigrams:

���µ�QP ÜõÄ8R � NON OÃ~ 3�4 GW� NON O
Average tag ambiguity is simply the mean tagging ambiguity in a corpus ÷C"%$&$&$ ÷Á( under the
(unrealistic) assumption that a complete lexicon is available.

�¬� �� ~
(P � < "
P  N 79S P N is admissible tag for ÷;��* P

It can be seen that the tag set size for the Stellingen corpus is reduced from 55 to 33 tags. The
Stellingen corpus is more ‘uniform’ than the NEGRA corpus since both the mean ambiguity per
word (1.23<1.61) and the entropy (3.76<4.27) are smaller for the Stellingen corpus. Of course,
the corpus used for training is much larger than the one used for testing.
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T 224 sentences, spontaneous dialoguesT 442 word types, 1,941 word tokensT 33 tagsT Average ambiguity A=1.230602T POS tag entropy H=3.761071

#T Type Type Token Token

no. perc. no. perc.

1 357 92.727 1,467 79.598
2 25 6.494 327 17.743
3 3 0.779 49 2.659

385 100.000 1,843 100.000

(a) Stellingen corpus

T 20,602 sentences, newspaper textT 51,272 word types, 355,096 word tokensT 55 tagsT Average ambiguity A=1.611544T POS tag entropy H=4.273873

#T Type Type Token Token

no. perc. no. perc.

1 49,189 95.937 238,545 67.178
2 1,884 3.675 45,586 12.838
3 164 0.320 46,789 13.176
4 32 0.062 20,090 5.658
5 1 0.002 2,715 0.765
6 1 0.002 1,363 0.384
7 1 0.002 8 0.002

51,272 100.000 355,096 100.000

(b) NEGRA corpus

Table 5.5: POS statistics for the Stellingen and the NEGRA corpus.

The TnT tagger achieves 96.7% accuracy [Brants 2000] on the NEGRA corpus. Its quality
has been independently confirmed by Megyesi [2001]. On the Stellingen corpus it achieves an
accuracy of 93.489% when emitting exactly one tag per word. The tag ambiguity in the output
nevertheless is 1.07 tags/word because of the ambiguous mapping rules (see above). The accuracy
on the Stellingen corpus is reduced in comparison to that on the NEGRA corpus because firstly
the corpora for training and testing are different and secondly because the differing tag sets
require a mapping that inevitably loses some information. When allowing multiple tags per
word (beam 1,000), the accuracy increases to 98.318% with a tag ambiguity of 1.51 tags/word.

5.7.3 Interface

In Section 5.6.2 it was discussed how an acoustic score can be integrated into the WCDG parsing
system. Here we adopt a similar approach but can omit the adjustment of scores because the
tagger scores are in the same range as the WCDG scores. Again, we use a constraint template
(with parameter T ) which allows flexible adjustment of the weight the tagger information should
receive by projecting the tagger score to the interval ò TS���)$ ��ó (cf. Constraint C-42). By settingT�� ��$ � possible structures that are not licensed by the tagger can be eliminated; for valuesT r���$ � unsupported selections are only penalized but not completely discarded.

C-42 {X} : Tagging : [ 6 + ë�è87 Ý^ê96¯î *pts(X@id)] :

X.level=SYNTAX -> false;

Integrate the tagger score.

The function pts() (POS tag score) makes the score that a tagger assigns to a category available
to the grammar writer. The function must be added to the constraint language (cf. Section 2.5.3).
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By restricting the constraint to the syntactic level, it is guaranteed that the score is integrated
exactly once for each word. Table 5.6 exemplarily shows the relation between tagger output,
tagging score function pts() and constraint weight for the example sentence n001k000-2.

word tagger output: tags & prob. X@cat pts(X@id) weight

wann ADV 0.862 PWAV 0.148
ADV

PWAV

else

ÝU7 V8W�ôÝU7 è�XYVÝU7 Ý
ÝZ7\[F[^]^VÝZ7bè`_8_ ôÝZ7bè

wäre FIN 0.500 VAUXFIN 0.500
X@cat=FIN

X@cat=VAUXFIN

else

ÝU7\]ÝU7\]ÝU7 Ý
ÝZ7 XE]ÝZ7 XE]ÝZ7bè

es PPER 1.00
X@cat=PPER

else
è87 ÝÝU7 Ý ÝZ7 aÝZ7bè

Ihnen PPER 1.00
X@cat=PPER

else
è87 ÝÝU7 Ý ÝZ7 aÝZ7bè

denn ADV 0.873 KON 0.124 KOKOM 0.003

X@cat=ADV

X@cat=KON

X@cat=KOKOM

else

ÝU7 VY[^_ÝU7 è ô^XÝU7 Ý.ÝF_ÝU7 Ý
ÝZ7\[^VF]F[ÝZ7bè}è.èbWÝZ7 Ý}Ý ôF[ÝZ7bè

recht ADJP 0.617 ADV 0.375 NN 0.008

X@cat=ADJP

X@cat=ADV

X@cat=NN

else

ÝU7 Wuèc[ÝU7 _Y[8]ÝU7 Ý.ÝFVÝU7 Ý
ÝZ7 ]F]8]^_ÝZ7 _F_Y[^]ÝZ7 Ý}ÝY[�ôÝZ7bè

Table 5.6: Tagger output, POS tag score function and constraint weight for Tì�Î��$?� .
Note that the value of the POS tag score function pts() is zero for all categories that are not
predicted by the tagger. In particular, if the tagger emits a single category the function value is
one for this category and zero for all others.

5.7.4 Experimental results

This section describes the experiments that were run to examine the impact of tagger information
on the WCDG parsing system.

The heuristic search method with tabu list (cf. Section 4.9.1) is used in this evaluation and the
runs have been limited to 60 seconds processing time. Accuracy of unlabeled dependency edges
is reported.

We will look at efficiency and accuracy for four types of tagging modes:

1. No tagger is used in a baseline experiment.

2. The ideal tagger ‘knows’ the correct tags; it is used to approximate an upper bound of
what we can expect from integrating a tagger device.

3. A single tag tagger emits a single tag for each word.

4. The multi tag tagger may emit more than one tag (along with a probability estimation) for
a single word when the probabilities of more tags are within a certain beam (here 1,000).



170 5. Experimental Results

For the last three modes, experiments with the parameter T of Constraint C-42 on page 168 set
to 0.0, 0.1 and 0.9 respectively have been conducted.

224 utterances from the Stellingen corpus have been analyzed for all settings. We excluded five
sentences from the evaluation because they were not solved either in the baseline experiment
or in one of the experiments with T$rµ��$ � . We did so in order to simplify the evaluation and
enhance the comparability of the results.21 The parameter setting of T��V��$ � requires special
mentioning because the information provided by a tagger is integrated as a hard constraint in
this case and the search space is pruned rigorously. This results in 31.5% unanalyzed sentences
for the single tag tagger and 8.7% failures for the multi tag tagger.

Figure 5.17 on the next page looks at accuracy and efficiency for the idealized assumption that
we have a perfect tagger available which always predicts the correct tag. The experiment can
tell us what we can expect from a tagger integration at best.

The system with the ideal tagger integrated is both faster and more accurate. In Figure 5.17a on
the facing page, it is clearly visible that information about the correct part-of-speech can help to
make the parsing problems easier to solve. The largest effect can be observed for a setting withT9����$ � ; the computation time is approximately halved. This comes as no surprise because all
alternatives with wrong part-of-speech tags are strictly discarded from the space of admissible
hypotheses in this case. For a soft integration with parameter T set to 0.1, the effect is still very
pronounced while no final conclusion can be drawn for the weakest kind of integration (withT9����$o¥ ). Figure 5.17b on the next page shows a similarly favorable outcome for the accuracy.
The achieved results are generally better when the tagging information is incorporated; the best
accuracy is achieved for values 0.0 and 0.1 for the parameter T .

Figure 5.18 on page 172 gives analogous information for the single tag tagger.

In Figure 5.18a on page 172, it stands out that the hard integration with T � ��$ � again speeds
up the parsing process. For the soft variants with TÎ�¾��$?� or T �¾��$o¥ , the parsing time does
not show significant differences to the baseline with no tagger. Figure 5.18b on page 172 clearly
shows that although a hard integration of a single tag tagger can in fact accelerate the analysis,
the tagger also makes too many errors so that the accuracy drops dramatically. However, if the
predicted tags are considered soft information, the accuracy tends to increase when compared
to the baseline.

Figure 5.19 on page 173 gives the experimental data for the multi tag tagger.

This time not even the hard integration leads to a speedup (Figure 5.19a on page 173). All
attempted variants are similarly efficient with only slight advantages for the T � ��$ � setting.
The crisp integration again results in a greatly reduced accuracy while the soft integration
variants in turn tend to improve the accuracy.

Finally Figure 5.20 on page 174 contrasts the four tagging modes directly by repeating the
results for parameter T fixed at 0.1.

Of course, the ideal tagger is unrivaled, both for efficiency and accuracy. The multi tag tagger is
slightly faster and more accurate than the single tag tagger. Only the ideal tagger is significantly
faster than the rest. Single tag tagger, multi tag tagger and baseline are approximately of the
same speed. The baseline experiment results in the worst accuracy.

21The named procedures all solved more than 98.6% of the utterances (i.e., less than three unsolved sentences).
The only procedure that managed to solve all problems surprisingly is the single tag tagger with J,Ð�K Î ë , not
the ideal tagger.
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Figure 5.17: Efficiency and accuracy of the WCDG parser using the ideal tagger.
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Figure 5.18: Efficiency and accuracy of the WCDG parser using the single tag tagger.
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Figure 5.19: Efficiency and accuracy of the WCDG parser using the multi tag tagger.
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Figure 5.20: Direct comparison of four tagging modes: no tagger, ideal tagger, single tag tagger
and multi tag tagger.
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5.7.5 Related work

Part-of-speech tagging is a popular research area because it is both simple and well-understood
as well as challenging. Although accuracies of over 90% can easily be achieved with very simple
techniques, building a perfect tagger nevertheless requires a complete understanding of natural
language, thus rendering the problem ‘AI-hard’. Nearly all current tagging approaches are based
on local contexts, i.e., no global or structural information is used for the decisions. Taggers are
useful for the semi-automatic al construction of tree banks [Marcus, Santorini & Marcinkiewicz
1993; Skut et al. 1997b], information extraction and of course as a preprocessing step before
parsing. Charniak et al. [1996] investigate the impact of POS taggers on accuracy and effi-
ciency of a probabilistic context-free grammar chart parser. They conclude that the gain in
accuracy achieved by a multi tag tagger is not worth the increased work load when compared
to the performance of a single tag tagger and therefore recommend the latter. This is partially
incompatible with our findings although one has to consider that the parsing frameworks are
completely different.

5.7.6 Summary

Hard and soft integration of an external part-of-speech tagger into the WCDG parsing system
has been examined. The potential of such a combination is clearly demonstrated by an ideal
tagger which always predicts the correct tag. In this case the accuracy increases by 5 percentage
points while reducing the computation time by 50%. The experiments with a realistic tagger
show that a hard integration where only those lexical entries are considered by the parser that are
compatible with the prediction of the tagger lead to a large decrease in accuracy (and partially
an increase in efficiency). This disadvantage may be mitigated in the future when taggers with
state-of-the-art precisions of 98% and above are applied to WCDG parsing. A soft integration on
the other hand causes an increased accuracy. In short, a soft integration of tagging information
allows for more accurate parsing runs but no significant differences in efficiency. The multi tag
tagger showed even better results than the single tag tagger.

A seamless integration of exchangeable POS tagging modules into the WCDG system is forth-
coming. Hagenström [forthcoming] describes the integration in detail, both conceptually and
technically.

5.8 Adjusting constraint weights using corpus data

5.8.1 Motivation

This section describes an experiment where the weights of conflicting constraints are adjusted so
that the combined impact of the constraints mimics the observations from a corpus of annotated
utterances as closely as possible. The purpose here is two-fold:

� Firstly, we try to answer the question of whether weighted constraints can be used to
model linguistic phenomena when inherently conflicting tendencies as well as performance
aspects of language production and comprehension are involved.
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� Secondly, the parameters of our model, i.e., the weights of the constraints, should be
approximated using a corpus of annotated sentences.

It should be noted that although we investigate a linguistic phenomenon largely influenced by
performance aspects we do not lay claim to psycholinguistic adequacy. That does not mean
that it is impossible to base a psycholinguistic theory on WCDG but such an undertaking would
require additional theoretical work and experiments which are beyond the scope of this thesis.

This section only looks at a single phenomenon and only simulates the effects of the small
constraint cluster responsible for the assessment of extraposition of relative clauses. We model
the observations found for a linguistic phenomenon, but these findings will not directly improve
the parsing performance of the grammatical system because the competing alternatives can
usually be clearly identified on the surface of the utterance so that they cannot be confused.
However, the discussed constraints can prefer one or the other reading when more and different
analyses are possible.

Section 5.9 adopts a different approach and estimates the weights of a given grammar using a
corpus of completely annotated WCDG structures. It optimizes the parsing performance instead
of the prediction quality for the extraction of relative clauses. Hence, the evaluation criteria
are more coarse-grained since only accuracy and recall measures are used and no individual
phenomena are examined.

5.8.2 Extraposition of relative clauses

“Leser schwitzen nicht, aber sie sind auch nicht trainiert, zwölf Wörter zu speichern;
eher die Hälfte. 32 dieser 38 kostbaren Vokabeln also baumeln im Nirgendwo – außer
bei jenen sieben Getreuen, die sich verzückt an eine nochmalige Lektüre machen.”

—— Schneider [1999]

The potential extraposition of relative clauses from German discontinuous verb groups has been
chosen as the grammatical phenomenon to be scrutinized.

E-76 Kaum jemand trauert � dem alten Parteichef 
nach � , gegen dessen Umgebung eine Reihe
von Korruptionsprozessen läuft.

Rarely anybody mourns the former party leader
mournprefix against whose environment a series
of corruption trials is pending.

‘Rarely anybody mourns the former party leader against whose environment
a series of corruption trials is pending.’

Example E-76 (cf. Figure 5.21 on the next page22) has been taken from the training corpus (cf.
next section) whereas its counterpart without extraposed relative clause is given as Example E-77
on the facing page.

22This figure has been produced with our own negra2png tool (available from http://nats-www.informatik.

uni-hamburg.de/~ingo/prg/) which has been extensively used for visualization during the experiments.
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E-77 Kaum jemand trauert � dem alten Parteichef  ,
gegen dessen Umgebung eine Reihe

von Korruptionsprozessen läuft, nach � .

Figure 5.21: Discontinuous phrase structure tree.

Both variants are grammatical. One and the same principle is violated (and also satisfied) in
both cases: Parts of a sentence that belong together should occur close to each other. Either
the relative clause is separated from its antecedent (as in the first case) or the separable verb
prefix appears only long after the verb itself. It is beyond dispute that other factors influence
the potential for extraposition as well, such as the nature of linguistic material between noun
phrase and relative clause (verbal words only vs. nouns, pronouns etc.), information structure,
thematic roles, definiteness, animacy and prosody in the case of speech data [Uszkoreit et al.
1998a; Uszkoreit et al. 1998b]. The linear distance, however, is a particularly simple criterion
and is considered exclusively here. We follow Uszkoreit et al. [1998b] who empirically confirm
Hawkins [1994]’s principle which predicts a linear sequence of phrases in a sentence such that the
processing of the phrases can start as soon as possible. For German relative clauses, Hawkins
[1994] therefore considers the distance between relative pronoun and antecedent as well as the
length of the relative clause the two main criteria.

5.8.3 Corpus data

As in Section 5.7, the NEGRA corpus version 2 [Skut et al. 1997b; Brants, Skut & Uszkoreit
1999] has been used for these experiments. It consists of German newspaper sentences annotated
with part-of-speech tags [Schiller et al. 1995], morphological information and a discontinuous
phrase structure (see Figure 5.21 for an example). We neglect the differences between sponta-
neous language and newspaper text which has been modified by the editorial departments of the
publisher.

The corpus contains 20,602 sentences of which 2,332 contain relative clauses. One (0.04%)
sentence contains four relative clauses, nine (0.39%) three, 118 (5.06%) two and 2,207 (94.51%)
one.

As Uszkoreit et al. [1998b], we only consider relative clauses that depend on a noun phrase
(node label NP) or a prepositional phrase (node label PP) and that are themselves embedded in
a sentence.
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This excludes 39 relative clauses because they depend on the whole sentence (or other phrases)
and 106 relative clauses because they are not (or not directly enough) embedded in a sentence.
We consider a relative clause extraposed if the governing phrase contains a gap immediately
before the relative clause; otherwise the relative clause is not extraposed. Relative clauses (962
occurrences) that are located at the end of the sentence and adjacent to the noun phrase are
further excluded from consideration because the two cases cannot be distinguished properly.
This leaves us with 622 cases of extraposed relative clauses and 742 cases of counter examples.
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Figure 5.22: Frequency of extraposed and embedded relative clauses depending on (a) the length
of the relative clause and (b) the (potential) distance between embedded and extraposed location
(limited to lengths and distances not larger than 20).

Figure 5.22a shows the distribution of relative clause lengths for both cases. The relative clauses
(up to length 20) have a mean length of 8.565 (limited to length up to: 
 9.155, 30 9.009, 25
8.873, 15 8.022) for the embedded case and of 9.471 (limited to length up to: 
 10.537, 30
10.132, 25 9.852, 15 8.545) for the extraposed sentences.

The extraposition distance is the number of words (excluding punctuation) between the end of
the governing noun phrase and the beginning of the extraposed relative clause or between the end
of the relative clause and the end of the embedding sentence. Figure 5.22b gives an overview of
how the two distinguished cases are distributed for different extraposition distances. The mean
distance is 1.542 for extraposed clauses (with 66.9% having distance 1, 22.2% distance 2, 6.3%
distance 3 and only 4.7% having a distance larger than 3). For embedded clauses, the distance is
more evenly distributed with only 16.6% having a distance smaller than 4 and a mean of 9.806.

These corpus statistics suggest that both length and distance influence the acceptability of
extraposed relative clauses. However, the latter seems to be a much stronger indicator.

5.8.4 Constraints

The two surface criteria described in Uszkoreit et al. [1998b] and confirmed for our corpus in
the last section, should now be formulated using (slightly simplified) constraints.
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C-43 {X, Y} : RCLength : 0.5 :

X.level=RCEND & Y.level=SYNTAX &

X@id=Y@id &

X@cat=RELPRONOUN &

distance(X^id, X@id)>1 ->

distance(Y@id, Y^id)>threshold

Extraposed relative clauses tend to be long.

Assuming an additional level RCEND (comparable to level REF in Section 3.4.7 but pointing to the
end of the noun phrase), we can use Constraint C-43 to express our finding that the extraposed
relative clauses are longer on average. However, such a simple approximation is relatively coarse
because only two cases are distinguished: lengths that exceed the threshold and those that do
not. The same objection holds for Constraint C-44 which penalizes extrapositions over long
distances.

C-44 {X} : RCDistance : 0.5 :

X.level=RCEND & X@cat=RELPRONOUN ->

distance(X^id, X@id)<threshold

Actual extraposition distances are relatively small.

Since the acceptability of an extraposition changes gradually depending on the length of the
relative clause and the extraposition distance, dynamic constraints (cf. Section 2.5.1) whose
weight depends on the actual construction should be employed.

Going back to Figure 5.22b on the facing page, we can conjecture that the ‘extraposition rate’
follows a function d N { O6�Jô ÿ ·fe where

{
is the extraposition distance. For the other criterion

(cf. Figure 5.22a on the preceding page), the picture is not as clear but we will assume a linear
relation for simplicity reasons here: � N �rOS�Î1À� .
The free parameters ô , � and 1 can be approximated using the nonlinear least-squares Marquardt-
Levenberg algorithm [Williams & Kelley 1998, for instance] and the example cases of the corpus.
The expected function value has been set to one for extraposed examples and to zero for embed-
ded clauses.23 This results in concrete formulae � N ��O��Î��$ �u�@¤)�u¤@ ���� and d N { Oß�µ�)$o�@¡)�u��� ÿ "&g �'h . � h e .
So far, the criteria have been considered in isolation. For comparison, we define two more
functions that combine the two in an additive and in a multiplicative way. The final func-
tions (with optimized parameters) are ô N �l� { O6� �)$o�)�u @�@� ÿ "&g i£" � "/j e ³Î��$ �@�u¡@¥u¢)���5��� and � N �l� { OC��)$o�@�@�u¢)¡ ÿ "&g ÿ h � "/. e ~���$?�%�u�@¥@����� .
These functions can now be used as dynamic weights as in Constraint C-45 and Constraint C-46
on the following page. Note that we neglect normalization here.

C-45 {X, Y} : DynRCLength : [ 0.038 * distance(Y@id, Y^id) ] :

X.level=RCEND & Y.level=SYNTAX &

X@id=Y@id &

X@cat=RELPRONOUN &

distance(X^id, X@id)>1 ->

false;

The shorter an extraposed relative clause the better.

23Using the corpus examples directly instead of the percentage of extraposed clauses (as in Figure 5.22 on the
facing page) should reflect the fact that we are not going to model the rate but find a classifier for our problem.
However, varying machine learning approaches, such as decision trees, are feasible here.
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C-46 {X} : DynRCDistance : [ 1.26**(-1.08*distance(X@id, X^id)) ] :

X.level=RCEND & X@cat=RELPRONOUN &

distance(X@id, X^id)>1 ->

false;

The shorter the extraposition distance the better.

Figure 5.23 shows the results of an experiment where the impact of such constraints has been
simulated using the examples from the corpus, i.e., the above constraints have been applied to
each example and the threshold on the x-axis splits the range into those examples for which
an extraposition is preferred and those where it is not. The resulting accuracy on the corpus
data is the depending value. This procedure corresponds to a WCDG which decides on the
extraposition using only the two mentioned constraints.
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Figure 5.23: Accuracy of six classifiers for relative clause extraposition. The isolated classifiers � N ��O
and d N { O correspond to the criteria of relative clause length and extraposition distance. ô N �l� { O and� N �l� { O refer to the (additive and multiplicative) combinations. Finally, � N ��O¯³�d N { O and � N ��O¸~�d N { O
are combinations where the components have been optimized individually, but not in combination.

The following observations can be made. As expected from the corpus statistics, the extraposi-
tion distance is a much stronger indicator than the relative clause length (and thus should have
a much more influential constraint weight). The latter achieves an accuracy of only 56.5% which
is hardly above the baseline of 54.4%. The first one, however, predicts the correct outcome in
90.4% of the cases. It is only surpassed by the additive combination ô N �l� { O which reaches 90.6%.
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All classifiers that include the distance criterion achieve at least 85% accuracy for one or the
other threshold.

In order to verify the general validity of the approach, the set of examples has been split into
disjoint training (1,106 cases), held-out (122 cases) and test (136 cases) sets. The function pa-
rameters have been re-adjusted using the same method but using the training set only. Table 5.7
summarizes the results which confirm that even this simple approach manages to generalize from
training examples to unseen instances. However, the only reliable estimator for which the thresh-
old parameter stays constant for the three sets is the distance criterion alone. Here almost 90%
accuracy can be achieved on the test set using the threshold from the held-out data. All other
estimators seem to be ‘polluted’ by the unreliable clause length criterion.

k   { ¤ l� �mÙ¤ z  �m yl{ ¤ n1 �m yl{ ¤ k   { ¤poql� �mÙ¤ k   { ¤rsl� �mÙ¤
Threshold for training set 0.54 0.62 0.46 0.27 0.87 0.13

Threshold for held-out data 0.54 0.36 0.52 0.22 0.84 0.1

Threshold for test set 0.54 0.59 0.49 0.35 0.95 0.17

Accuracy at training threshold 89.7% 61.8% 86.8% 83.0% 87.5% 79.4%

Accuracy at held-out data threshold 89.7% 52.9% 89.0% 81.6% 85.3% 72.8%

Accuracy at test set threshold 89.7% 63.2% 90.4% 89.7% 88.2% 86.0%

Table 5.7: Accuracy on the test set.

5.8.5 Related work

The work described in this section is inspired by the first part of Uszkoreit et al. [1998b], a case
study about extraposition of German relative clauses that combines methods of linguistic theory
and corpus-linguistics in order to better understand performance aspects of language generation
and perception. Müller [1999] includes an HPSG analysis for extraposed relative clauses in
German which employs performance constraints to restrict the ambiguity. The idea of estimating
grammar parameters from annotated corpora is, of course, fundamental in most probabilistic
grammars (cf. Sections 1.4 and 5.3.4). Alshawi & Carter [1994] describe an automatic method
to balance the contributions of a set of preference functions that rank competing analyses from a
natural language system. They report that although scale factors found by using a least-square
optimization on a corpus improve on hand-tuned parameters, the quality can be even further
improved when the optimization is followed by a hill-climbing procedure.

5.8.6 Summary

This section demonstrated that conflicting criteria for particular linguistic phenomena taken
from the linguistic literature can be transfered to a WCDG. In this case dynamic constraints are
utilized to encode preferences about the acceptability of the extraposition of relative clauses. The
distance between relative pronoun and relative clause as well as the length of the relative clause
have been used as the main influential parameters. Constraint weights have been estimated from
an annotated corpus which would result in a prediction accuracy of almost 90%. It could be
observed that the extraposition distance is a much stronger indicator which may be traced back
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to the choice of the simple linear approximation function used for the condition of clause length.
The focus in this section was on formulating known linguistic conditions as WCDG constraints
and on the general possibility of determining constraint weights automatically.

5.9 Learning constraint weights

This section is based on a paper published in the proceedings of the conference ‘Recent Advances
in Natural Language Processing 2001’ [Schröder et al. 2001a].

5.9.1 Motivation

This section describes an experiment in automatic learning of the weights of a WCDG using an
evolutionary optimization technique.

Because there are usually very many constraints and because the consequences of their inter-
action are hardly foreseeable, the manual assignment of appropriate weights to constraints is a
labor-intensive and error-prone task. Furthermore, since constraints forbid (or at least dispre-
fer) certain configurations instead of allowing additional constructions (as is the case for, e.g.,
context-free rules) the extension of a given grammar requires revising old constraints and re-
adjusting their weights. An automatic procedure that optimizes the weights for a given grammar
can therefore help a grammar writer to focus on the constraints themselves without having to
worry that the weights are unbalanced. However, the learning of constraint scores is difficult
mainly because constraints can generally encode a large range of conditions, the represented
restrictions can overlap or even contradict each other and in general the effects of interactions of
weights are complex. Hence, probabilistic models which usually rely on a decomposition of the
overall probability into smaller stochastically independent parameters can hardly be applied to
this problem. This section aims at answering the following questions:

� What kind of properties must an optimization technique have in order to be applicable to
the problem at hand?� Is it tractable in practice to run such an optimization process?� Can the procedure improve the manually assigned weights of a given grammar?� Can the procedure find good weights starting from (almost) random weights?

5.9.2 Optimization techniques for constraint weights

Standard estimation techniques for probabilities do not qualify for learning the weights of a
given WCDG (see above). Optimizing constraint scores can also be viewed as a constraint
satisfaction optimization problem (cf. Section 2.2.4) itself. The constraints are the variables
which get weights assigned to them; the scoring function is defined by an objective function
which takes into account the accuracy and the efficiency of a candidate on a fixed corpus.
Obviously this constraint satisfaction optimization problem is much harder to solve than the
WCDG parsing problems that we investigated so far. Firstly, the values are real-valued numbers
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instead of discrete symbols which define a dependency edge.24 Secondly, the objective function
is extremely expensive to calculate since one evaluation involves solving of all WCDG parsing
problems from the chosen corpus. Apparently, it is prohibitive to ask for a complete systematic
search procedure (cf. Section 4.3.2) and even the heuristic search (cf. Section 4.3.4) variants
that we considered so far are not applicable because either no real conflicts are available (for
min-conflicts, cf. Section 4.9.1) or the definition of an appropriate neighborhood is difficult (for
guided local search, cf. Section 4.9.2). Given the gigantic search space and an expensive objective
function, a search method is needed which on the one hand sparsely draws samples from the
search space and on the other hand allows fast moves within the set of candidates.

Genetic algorithms [Holland 1975; Michalewicz 1996] are an optimization technique inspired by
biological systems.25 They maintain an evolving population of candidates, so-called individuals,
throughout an iterative process, i.e., from generation to generation. The initial population is
either an educated guess or consists of randomized individuals. Each new generation is created
by first adding individuals resulting from recombination and mutation to the population and
then selecting the ‘fittest’ ones for the next cycle.

Evolutionary optimization techniques seem appropriate for the problem at hand for two reasons.
On the one hand, genetic algorithms explore only a small portion of the neighborhood. It is this
selective nature that makes it feasible to find an approximate solution in a reasonable amount
of time. On the other hand, the randomness in genetic algorithms allows jumps in the search
space, making it possible to reach areas of the search space when other methods get stuck in
small isolated areas.

5.9.3 Genetic operators

Each individual consists of the whole set of weights for one particular grammar instance, i.e., a
list of real-valued numbers, one for each constraint.26 Two different genetic operators are applied
to the population (cf. Figure 5.24): crossover and mutation.27

7bèt7cô 7 _ 7 X7 V 7 W 7 _ 7cô u v
AC

v
.45 .4 7 _ .3

7bèt7cô 7 _ 7 X7 V 7 W 7 _ 7cô u v
MC

v w
.1 .6 .3 .4

.8 .2 .3 .27bèt7cô 7 _ 7 X v
M

v 7 è .25 7 _ .2

Figure 5.24: Illustration of different genetic operators.

Crossover is the rough analog of reproduction in nature, and for each pair of individuals two
different crossover operators are used (with probabilities ��µs4 and � Þ 4 respectively):

24Strictly speaking, constraint satisfaction optimization problems do not allow real-valued numbers as values
because the domains have to be finite. Of course, this could be overcome by assuming a large but limited set of
possible constraint weights.

25See, for example, Gottlieb [2001] for an overview. Stützle & Hoos [2001] describe the newer ant colony

optimization approach to combinatorial optimization that is also population-oriented by borrowing techniques
from the behavior of ants.

26Assuming that the constraints themselves are fixed, an individual completely describes one grammar instance.
27Schröder et al. [2001b] provide a brief analysis of the effectiveness of the individual genetic operators.
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� Arithmetic crossover (AC): The descendant is the pairwise weighted arithmetic mean
of the two involved individuals.

� Multi-point crossover (MC): The genes of the two involved individuals, i.e., their lists
of weights, are ‘intertwined’.

Mutation (M) is inspired by random changes in biological genes in nature, e.g., due to cosmic
rays. It is applied to a single individual and can be subdivided into three types (with probability� Ý , �øµ and � @ respectively):

� Relative mutation: A weight is randomly increased or decreased.

� Absolute mutation: A weight is assigned a completely random number.

� Mutation-to-zero: The current weight is set to zero.

During the whole process, the population size is kept constant. Because the individuals produced
by the genetic operators are added to the population, a mechanism is needed to select the
members of the new generation from the current population.

Selection is based on the objective function or fitness measure which in our experiments is defined
as a weighted mean of the f-measure (80%, cf. Figure 5.1 on page 132) and a time index28 (20%):

� Include the five fittest individuals in the next generation.

� Discard the five worst individuals.

� Replenish the new population with randomly selected individuals where the chance of a
survival of an individual is proportional to its fitness.

This procedure guarantees that the best individuals are not lost and the genetic diversity is
maintained.

5.9.4 Experiments

The experiments were run using the Stellingen grammar and corpus (cf. Section 5.2.1). The
experimental design needed to be extremely careful because the computational load for such
experiments is very high. A cluster of some 20 SUN Ultra workstations were used in parallel to
compute the objective function values for the individuals of a population. Between five and ten
generations were evaluated per day.

28The time index is a measure for parsing speed with zero meaning immediate completion and one meaning
that the process uses the maximum amount of time allowed by a hard time limit that is necessary for practical
reasons.
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Baseline

In order to get a feeling for what a trivial algorithm can achieve on our data, we counted
the number of ‘trivial’ edges (with root attachment and null label) in the annotations. The
parsing procedure actually has to tackle two tasks, finding the correct structural configuration
and disambiguating lexical alternatives. It turns out that if one ignores lexical ambiguity, 83.5%
of all edges point to the root and have the null (default) label. This high number is due to
our design decisions when modeling the grammar, in particular the use of twelve levels most of
which are auxiliary levels and therefore irrelevant for large parts of a sentence (cf. Chapter 3).
However, if one chooses a random (i.e., totally uninformed) lexical possibility, the percentage of
trivial edges decreases to 47.9% which may be considered the baseline for our experiments.

Improving a manual grammar

The first experiment tries to answer the question of whether it is possible to improve the weights
of the carefully crafted manual Stellingen grammar with 485 constraints (free parameters). In
an educated guess the following probabilities were selected as experimental parameters: �3µs4E���$o�@  (arithmetic crossover), � Þ 4��3��$o�@  (multipoint crossover), � Ý �3��$ �u� (relative mutation),�©µz�Î��$ �@�u� (absolute mutation) and � @ �Î��$ �@�u� (mutation-to-zero).
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Figure 5.25: F-measure, time and fitness for the experiment of improving manually assigned weights.

Figure 5.25 presents the results from which the following observations can be made. The f-
measure increased from 96.9% to 98.4% (reduction of error rate from 3.1% to 1.6% by 48.4%).
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Since processing time was measured over the corpus and the time index may be dominated by
some few lengthy parsing runs, no further conclusions can be drawn with respect to the efficiency
criteria.

The resulting fitness increased from 93.6% to 95.1% (reduction of ‘error rate’ from 6.4% to 4.9%
by 23.4%). The improvements are small but significant and it should be noted that the original
grammar was already heavily hand-tuned.

Finding soft weights automatically

The encouraging results from the first experiment suggested another, more ambitious one: Can a
similar level of performance be achieved without resorting to the weights of a hand-crafted initial
grammar? In this experiment, soft constraints receive random weights in the initial population;
however, we assume here that the grammar designer deliberately distinguished between hard and
soft constraints. Therefore, absolute mutation and mutation to zero were de-activated which
resulted in a reduction of the number of free parameters by 44%. The final parameters were as
follows: �øµ�4S�Î��$o�@  , � Þ 4S�Î��$o�@  , � Ý �Î��$ �u� , �©µz� ��$ � and � @ �Î��$ � . The experimental parameters
were changed slightly multiple times after the process seemed to enter a saturation phase. In
order to escape this local minimum, additional randomness was introduced into the procedure.
The number of generations was increased to 300 for the this experiment.

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

F-
m

ea
su

re
 &

 fi
tn

es
s

Ti
m

e 
in

de
x

No. of generations

f-measure
time

fitness

Figure 5.26: F-measure, time and fitness for the experiment of learning soft grammar weights from
scratch.
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As can be seen from Figure 5.26 on the facing page, the f-measure started at 83.3%, hit 96.6%
after 100 generations and finally reached 97.4% (reduction of error rate from 16.7% via 3.4%
to 2.6% by 79.6% and 84.4% respectively); the total processing time decreased by 52.5% (via
36.1% at generation 100). The fitness rose from 76.3% via 90.3% after 100 generations to 92.8%
(reduction of ‘error rate’ from 23.7% via 9.7% to 7.2% by 59.0% and 69.6% respectively). Two
observations can be made. The learning process was able to reach a similar level of performance
as the original manual grammar. Even though a considerable improvement was achieved, it was
not possible to attain the quality of the optimized manual grammar weights that resulted from
the first experiment.

Results on test set

The results reported so far are intra-experimental, i.e., they are tested on the training set. In
order to judge the evolved grammars independently, we tested the individuals from the experi-
ments on a held-out test set of 90 more utterances. For this problem set, the manual grammar
has a fitness of 91.5%. This value increases for the final individual of the first experiment
to 92.3%. The best random assignment of weights that was used to start the second experiment
scored an initial fitness of 77.2% and improved to a fitness of 91.6% (cf. Figure 5.27). In either
case, both a speedup of analysis and an increased f-measure were observed.
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Figure 5.27: F-measure, time and fitness of the best individuals taken from each generation of the
second experiment evaluated on the test set.
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In order to confirm the robustness of these results with respect to test set variations, the test
set was randomly split into two subsets. Both subsets showed exactly the same tendencies and
varied only within a three percent margin. A verification of these results on a larger test set
seems desirable.

5.9.5 Related Work

Automatic learning of grammars and grammar weights has been investigated in a wide range of
research activities. However, few reports can be found for dependency grammars, and indeed
very little work deals with genetic algorithms as the primary method.

Optimality theory [Prince & Smolensky 1993, cf. Section 1.4] assumes a strict ordering of con-
straints with respect to importance, and this hierarchy determines the grammatical utterances.
It is assumed that the constraints themselves are universal while the ordering is language-
dependent (cf. Section 3.5). Although it can be argued that it is a simpler problem to decide
on a hierarchy of constraints than on individual numerical weights, it nevertheless remains a
difficult task. As far as learning the hierarchical ordering is concerned, only selected problems
within phonology have been studied, mainly from the (cognitively interesting) perspective of
unsupervised learning [Tesar 1995; Tesar & Smolensky 1998]. For an alternative learning algo-
rithm for optimality theory see Boersma & Hayes [2000] and its critical assessment in Keller &
Asudeh [2002].

This work focuses on the task of learning parameters for a given grammar. The more general
problem of finding a complete grammar (including the rules themselves) has been tackled by
various approaches in the field of statistical NLP (cf. Sections 1.4 and 5.3.4). For probabilistic
context-free grammars, for instance, the rules are extracted from an annotated corpus and the
weights are computed from their relative frequencies in the corpus. If no annotated corpus is
available, however, the parameters for the context-free rules can be approximated by an efficient
training algorithm [Charniak 1993]. Collins [1997] describes a probabilistic model for dependency
parsing based on lexical as well as tag affinities and linear distance. An evaluation on the Wall
Street corpus [Marcus, Santorini & Marcinkiewicz 1993] is given. Eisner [1996] additionally
investigates models based on selectional preferences as well as decisions made during language
production, but restricts himself to unlabeled trees. Carroll & Charniak [1992] go one step further
by trying to learn complete rules for dependency grammars from unannotated corpora. However,
they train from artificially created data. Lankhorst [1993] describes an approach for induction
of context-free grammars using genetic algorithms, but this work deals with small artificial
languages only. Keller & Lutz [1997] extend the idea to stochastic context-free grammars.
Formal languages such as those recognized by push-down automata are induced using genetic
algorithms also by Huijsen [1993].

The main difference between statistical methods and the work reported in this section is that
the former calculate the parameters more directly, i.e., in a well-defined deterministic way, and
can therefore guarantee a certain rate of convergence. Probabilistic methods, however, need a
well-defined probabilistic model with stochastically independent parameters (if possible) which
can then be estimated from a corpus. Genetic algorithms, in contrast, rely on the random-
ized generation of new candidates and a powerful selection strategy. Neither is a stochastic
model required which is difficult for WCDG [Schröder 1996] nor is the search space systemat-
ically explored. It is interesting to note that some parallels can be identified between how the
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parsing problem for WCDG is understood and how grammar weights are learned, especially in
comparison to probabilistic approaches. Parsing with WCDGs is a process of selection from a
pre-defined set of possibilities in a similar way that the constraint scores are selected by the
genetic algorithm. In contrast, parsing with probabilistic context-free grammars, for instance,
is a constructive process driven by re-write rule, and probabilities can also be constructed or
deterministically derived from an annotated corpus.

Constraint induction for [W]CDG has been tried in two related ways so far. Schröder [1996]
uses an annotated corpus to find a set of constraint instances using a small set of constraint
templates and based on smoothed relative frequencies. However, the approach suffers from too
small a corpus and limited constraint templates [Schröder 1997b]. For hard constraints, White
[2000] introduces so-called abstract role values which are derived from example utterances. An
abstract role value covers a whole set of actual configurations and can therefore be used to
generalize the characteristics of the training set.

5.9.6 Summary

The possibility of automatic learning of constraint weights for a grammar from annotated corpora
has been investigated. The general expressiveness and flexibility of constraints as well as the
enormous size of the search space have been identified as obstacles for the application of standard
probabilistic techniques and standard search methods respectively. Although requiring still a
huge amount of computational effort genetic algorithms prove themselves suitable for the task
of optimizing constraint weights. A first experiment confirmed that the quality of a manual
grammar (in terms of efficiency and accuracy) can be significantly improved (f-measure error
rate reduced by 48.4%). In a second experiment, which started with almost random weights
(except hard scores) assigned to the constraints, the quality reached the level of the original
manual grammar but not the level of the final optimized grammar resulting from the first run.
These results have been validated on a test set. The techniques developed in this section can fully
replace the labor-intensive and error-prone task of manual weight assignment to soft constraints.
This finding is even more remarkable as only a comparatively small training corpus has been
used.
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Chapter 6

Conclusion

Gradation is ubiquitous in natural language.

This is the working hypothesis that started this thesis. In the previous five chapters it has been
shown that the proposed formalism of weighted constraint dependency grammars (WCDG)
can serve as a unified framework for the treatment of gradation in natural language. WCDGs
not only offer a well-defined formalism to concisely express what the underlying constraints of
natural language understanding are but additionally allow one to ascertain the status of the
constraint, be it a strict rule which describes what structures are possibly imaginable or be it a
slight preference which only selects the preferred one among a set of ambiguous analyses for a
sentence.

6.1 Summary

WCDGs are an extension of constraint dependency grammars (CDG) as defined by Maruyama
[1990b], a grammar definition that assigns feasible dependency structures to natural language ut-
terances based on constraints which describe properties of grammatical utterances. In WCDGs,
a constraint receives a score between zero and one depending on how important it is for an
analysis to fulfill the constraint or on the dynamic degree to which the constraint is satisfied.
This generalization of constraints allows the inclusion of grammatical (and other) conditions in
the arbitration process that hold often but not always or that should preferably hold but are
not absolutely required. Constraint violations are cumulative as supported by psycholinguistic
experiments; in particular it is possible for multiple weaker constraints to overrule a stronger
constraint whose penalty score is lower than any of the weights of the former constraints.

A constraint language for WCDG has been defined, both syntactically by means of rules in
extended Backus-Naur form and semantically by a concise mapping of the WCDG parsing
problem to the well-known class of constraint satisfaction optimization problems. Based on this
formalization of WCDG, the worst-case complexity of the WCDG recognition problem has been
identified as belonging to the class of

���
-complete problems and the set of languages generated

by WCDGs has been classified as a proper superset of the mildly context-sensitive languages
and as a proper subset of the context-sensitive languages.

191



192 6. Conclusion

WCDGs have been shown to be appropriate for modeling a large variety of linguistic phenomena,
such as immediate dominance, valence, a subset of German word order, projectivity including
exceptional cases and semantic aspects of thematic roles and reference resolution. However, the
(computational) restriction to at most binary constraints has also been found to severely limit
the expressiveness of the formalism in practical cases, and several techniques to circumvent this
restriction have been discussed. The spectrum of application scenarios for weighted constraints
includes well-formedness conditions (traditional grammar constraints), preferences, technical
means to avoid spurious ambiguities and to ‘tag’ certain configurations, interfaces for the fusion
of information from different sources, partial parsing, approximation of higher constraints and
dynamic constraints which carry varying weights depending on the evaluation context.

The reduction of the WCDG parsing problem to constraint satisfaction optimization problems
facilitates the deployment of well-studied algorithmic schemes. Three major classes have been
discussed and experimentally evaluated:

� Consistency-based (or filtering) methods discard undesired readings by achieving a state
of mutual local support that depends on the notion of inconsistency between values. For
weighted constraints, inconsistency cannot easily be defined in a way that the ambiguity
is effectively reduced and only suboptimal values are discarded. Therefore, it must be con-
cluded that consistency-based methods are of limited use to the WCDG parsing problem
although they have proven successful for CDGs with hard constraints only [Maruyama
1990b; Harper et al. 1999a].� Tree search successively extends partial solutions and systematically explores the entire
search space. The methods are complete and sound but require exponential runtime in
the worst case so that some kind of pruning has to be applied which of course renders
the algorithm incomplete. In practical cases, tree search has been found to be superior in
small and medium-sized problems while unsatisfactory in some cases of very large problems
because no solution at all is found in the time available.� Heuristic search immediately starts with a suboptimal solution candidate and iteratively
moves on to promising candidates which can be derived from the current candidate by
means of simple transformations. The search space is explored unsystematically, i.e., no
records about visited regions are kept, and hence an external termination criterion must
be used. The accuracy of the returned solutions is high and stays high even for very large
problems.

Various claims about the suitability of WCDGs for handling gradation in natural language have
been experimentally verified.

� Claim: The use of weighted constraints leads to a robust mode of parsing.

Result: To corroborate the claim, an experiment has been conducted where both the
grammar support and the degree of deviation in the input have been systematically con-
trolled. WCDGs have proven to be able to deal with contradictions between the grammar
and the input in a fail-soft way, i.e., although the accuracy decreases with an increasing
number of inconsistencies it does so in a graceful manner. Inclusion of redundant infor-
mation from different knowledge sources has been identified as a second means (besides
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weighted and hence violable constraints) for robust behavior. The interaction between
levels is mutually beneficial in this case.

� Claim: WCDG can be successfully deployed in applications for natural language learning.

Result: Applications for natural language learning require a diagnosis component that
robustly analyzes utterances and determines the location and the type of faults. WCDG
parsing fulfills both requirements: It not only yields analyses even in cases of highly
distorted input but also identifies conflicts, i.e., constraint violations at specific positions,
which have been used to generate user feedback in a prototypical application.

� Claim: WCDGs allow for anytime parsing algorithms.

Result: The robust behavior of WCDG parsing has been identified as a prerequisite for
anytime behavior because it provides the procedure with the necessary room to react
to temporal pressure. Two kinds of anytime behavior have been distinguished: intrinsic
anytime behavior which refers to inherent characteristics of an algorithm and extrinsic
anytime behavior which refers to the availability of parameters in the basic algorithm that
allow an external component to control the behavior of the underlying procedure. While
the systematic tree search method fails to meet some requirements for the former form
and is only adequate for the latter, heuristic search has been found to be suitable for both
kinds. These results have not only been found to be valid theoretically, but have also been
confirmed in experiments.

� Claim: Constraints in WCDGs are flexible enough to integrate external judgments into
the parsing process.

Result: Graded information from a speech recognizer on the one hand and from a part-of-
speech tagger on the other hand has been integrated into the WCDG parsing component
by means by parameterized constraints. WCDG parsing benefits from the integration of
acoustic scores when confronted with large word graphs but nevertheless fails to improve
on results with the acoustically preferred (and thus possibly erroneous) path of the word
graph. A soft integration of tagging information allows for more accurate parsing runs but
no significant differences in efficiency have been found. The multi tag tagger yields even
better results than the single tag tagger.

� Claim: Constraint weights for WCDGs can be estimated from annotated corpora.

Result: The scores of a small constraint cluster that handles a single linguistic phe-
nomenon, namely extraposition of German relative clauses, have been approximated from
corpus data using the least-squares method. Nearly 90% of the test cases have been
correctly classified using a decision procedure based on these constraints. Although this
does not directly influence parsing accuracy (since extraposed clauses obviously cannot
be confused with embedded ones for a given surface form), it can be assumed that such
preferences can indirectly influence the quality of the parser. In a second experiment using
genetic algorithms the weights of a complete WCDG have been (a) optimized starting
from a manual assignment and (b) learned from scratch. In the first case a considerable
improvement has been found and in the second case the final grammar has been as good
as a highly-tuned manual grammar.
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6.2 Further research

Not every detail of WCDG has been covered in this thesis and new open questions arise as
known problems are tackled. This section is a collection of further lines of research that either
deal with aspects of WCDG that have been identified as being problematic in this thesis or open
up views on new applications of the WCDG parsing approach.

� The anytime property (cf. Sections 4.11 and 4.4.3) in natural language applications is par-
ticularly interesting when investigated for an incremental parsing model (cf. Section 4.12)
since an external temporal pressure can best be justified when the speed of the parsing
component falls behind the rate of incoming language data. Thus, coupling the two aspects
such that a meta-control mechanism switches to a faster parsing mode when it detects such
time critical situations, but stays with the most thorough strategy otherwise, is especially
interesting. Such a coupled feedback device is compatible with the behavior of humans
who easily switch between skimming and thoroughly studying a text. Would it be possible
to really react to time pressure (at the cost of decreased accuracy)? Can such a parsing
component be switched back and forth between fast and slow mode by means of a sim-
ple parameter? Is it possible to achieve considerable time savings with only a graceful
degradation of the quality?� WCDGs aim at dependency trees for a number of representational levels as results of the
parsing process. These non-standard structures are the main reason why the development,
the evaluation and most experiments have been conducted on a relatively small corpus
that has been constructed especially for this purpose. Nevertheless, an application of
the WCDG techniques to and an evaluation on standard corpora such as the Wall Street
Journal [Marcus, Santorini & Marcinkiewicz 1993] or the NEGRA corpus [Skut et al.
1997a] seems highly desirable. Is it possible to not only derive syntactic dependency
structures from the phrase structure annotations in these corpora but also dependency
structures for other aspects such as thematic roles, at least for subsets of the corpora? How
can a large coverage WCDG be built for these corpora? What results can be achieved when
lexical information is ignored and a (possibly ambiguous) sequence of category symbols is
used for parsing?� An issue related to the application of WCDGs to very large corpora is the treatment of
unknown words. No attempt has been made so far to deal with word forms that do not
occur in the lexicon, but eventually this task will have to be tackled. A straight-forward
approach can simply use an underspecified lexical item each time it encounters a new
word. More sophisticated schemes can ‘learn’ from the discourse and build successively
richer information structures for formerly unknown items.� WCDG parsing degenerates to partial parsing when no connected dependency tree can
be found (cf. Section 3.5.4). Applications such as question-answering or information ex-
traction which are interested only in specific parts of a text or utterance can exploit this
behavior by using a grammar and a lexicon which quickly parse the irrelevant parts into
a shallow structure while the interesting segments can be analyzed completely and in full
depth. Research into these kinds of strategies for variable-depth analysis is undertaken in
the PAPA1 project.

1For further information see http://nats-www.informatik.uni-hamburg.de/~papa/.
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� A semantic modeling in WCDG suffers from the limitation to models which allow only
relations between word forms (cf. Section 3.4.6). It seems worthwhile, however, to couple
the WCDG parsing system with a knowledge-based inference system into which the more
complex resolutions and discourse representations can be transferred [Lahres 1997].� The WCDG paradigm is flexible enough to integrate external assessments by means of
special-purpose constraints. Information fusion has been demonstrated for acoustic scores
in word graphs (cf. Section 5.6) and for probabilities of part-of-speech tags (cf. Section 5.7).
Both types have opened up follow-up questions.

– Although the parser benefits from taking the acoustic scores into account, the overall
success of parsing word graphs is limited because higher accuracies can be achieved
by simply parsing the acoustically preferred path. This result should be compared
to the findings of Harper et al. [1999a] who managed to achieve a higher sentence
accuracy in word graphs that have been filtered using a CDG with hard constraints
only.

– The largest improvements in efficiency have been achieved using a hard integration
of tagger information. The accuracy, however, dropped dramatically in these cases,
which can be attributed to the relatively low accuracy of the tagger on the corpus
used. An interesting question is whether this relation changes when a more accurate
tagger (or tag mapping) is utilized.

A further interesting candidate for information fusion is the inclusion of phrase boundary
information from a finite-state ‘chunker’ [Federici, Montemagni & Pirelli 1996] or from a
prosody component [Niemann et al. 1998] which could help the WCDG parser to overcome
the inherent efficiency problems with non-projective structures (cf. Section 2.8.2).� The restriction to binary constraints (cf. Section 2.6) has been motivated by computational
needs but on the other hand has been identified as a severe limitation of the expressiveness
of the formalism. While this restriction is more important for consistency-based methods
(cf. Section 4.6) because they have to build a data structure of size � N � ÿ g O where � is the
number of words and ô the maximum arity of constraints, it is less critical for tree search
and heuristic search which only need to apply constraints � N � ÿ g O times. Therefore it seems
feasible to allow ternary constraints or even higher order constraints, especially when used
sparsely and when combined with constraint indexing techniques (cf. Section 4.13.3).� The solution method of systematic tree search sometimes shows unpredictable runtime
requirements for WCDG parsing (cf. Section 5.5). Research in randomization techniques
for systematic search [Gomes, Selman & Kautz 1998] indicates that this disadvantage can
be overcome by introducing random elements into the search procedure (without sacrificing
the soundness). This hypothesis should be experimentally verified.

6.3 Final remarks

WCDGs have been found to offer solutions for a series of problems in natural language processing
such as robustness, integration of preferences, information fusion and explanatory clarity. So far
WCDGs have been studied in an academic context but realistic applications begin to appear on
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the horizon, most probably in the area of computer assisted language learning where both the
domain and the coverage of the grammar can be precisely controlled.
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