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Abstract

The structure of the instantaneous flow fields and turbulence statistics in
oceanic convection affected by wind-induced shear are analysed using a large-
eddy simulation (LES) data set. LES is a method in which the large energy-
containing eddies are represented on the numerical grid while the smaller more
universal eddies have to be modeled by a subgrid-scale (SGS) model.

Three distinct convective flows driven by surface cooling are generated. One
is the convectively mixed layer with neglegible surface shear corresponding to
calm wind conditions. The other two are convectively mixed layers affected by
enlarged wind-generated shear stresses. The heat flux was held constant in order
to provide equal thermal forcing. Instantaneous flow fields reveal the ability of the
mean shear to order temperature fluctuations into convective roll-like structures
rather than the well-known cells from Rayleigh-Bénard convection.

A modified SGS model has been developed in order to overcome known defi-
ciencies of the Smagorinsky SGS model in near-wall flows. The SGS model has
been formulated as a second-order moment approach. In the present formulation
this corresponds to a non-linear SGS eddy viscosity formulation. It is shown that
some of recently proposed modifications of Smagorinsky SGS modeling can be
recovered from the present approach as special cases.

A new formulation of atmosphere-ocean boundary conditions is proposed
which avoids the restrictive assumptions inherent in Monin-Obukhov similarity
theory.

In free convection the well-known non-local effects due to turbulent and pres-
sure transport of turbulent kinetic energy from the surface to the bulk of the
convectively mixed layer are confirmed. The sheared convective flows under con-
sideration show hybrid characteristics. In the near-surface region, they exhibit
typical shear flow characteristics, since shear is by far the dominant mechanism.
In the bulk of the mixed layer the flows exhibit typical bouyant flow characteris-
tics.

The unstable stratification significantly lowers the Ekman volume transport
compared to near-neutral stratified flows. In comparison to neutral steady-state
conditions, the Ekman volume transport is lowered by one order of magnitude.
Accordingly, the Ekman volume transport is no longer perpendicular to the sur-
face stress but decreases to about one half of its near-neutral value.

Mixed layer bulk modeling was used to set up the numerical grid. The ana-
lytical solution for the mixed layer growing into a quiescent stably stratified layer
beneath derived by Zilitinkevich is shown to be a good estimation. Extensions
to more complex situations are considered.
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Chapter 1

Introduction

The interest in the process of oceanic convection has raised in the last decades due
to its rule in deep water formation in the world ocean. Deep water formation has
been identified as significant part of the global oceanic thermohaline circulation
(Broecker 1991, Rudels and Quadfasel 1991). As commonly a strong pycnocline
separates the upper water masses from the deep ocean deep-reaching convection
is regarded as important mechanism for the exchange of near-surface and deeper
water masses. Deep water masses form by two distinct mechanisms. One is the
descending of dense water along a continental slope which occurs in the shelf seas
of the Artic and the Antarctic. The second process is convection in the open
ocean. Deep open ocean convection occasionally takes place in the Weddell Sea,
the western Mediterranean, the Labrador and the Greenland Seas.

Vertical overturning of the water column in the convection regions is caused by
strong buoyancy loss associated with the prevailing meteorological conditions in
wintertime. In his conceptual model, Killworth (1976) describes three phases of
convection: preconditioning, violent mixing and restratification. Preconditioning
describes the doming of isopycnal surfaces by cyclonic circulation and moderate
surface cooling. The violent mixing phase starts with the formation of small-scale
convective plumes that can extend throughout the whole water column. The re-
stratification phase starts after some days when baroclinic instabilities grow due
to the horizontal gradient between the dense water in the interior and the less
dense water in the surroundings. This results in a final spreading of the dense
water and a gradual restratification of the convective region.

The volume of newly formed deep water depends crucially on the physical prop-
erties of the convective plumes. Conservation of mass requires that weak upward
motion compensates the intense downward flow.

Regarding convecting layers which extend over most of the water column, the
effect of Earth’s rotation cannot be neglected and has been investigated in a
number of field (Mertens 2000), laboratory (Maxworthy and Narimousa 1992)
and numerical experiments (Mironov et al. 2000).

Rotational effects are not important for atmospheric convection, and for the ma-



jority of convective processes in the ocean as well since the associated timescale
of these flows is short enough for rotational effects to be ignored. Such convection
may therefore be called shallow convection in contrast to the deep convection that
ventilates the deep ocean.

The Greenland Sea is typically covered by a cold and fresh surface layer (Aagaard
and Carmack 1989). For deep convection to occur, the low-density surface layer
has to be eroded locally. In the classical view of describing the preconditioning
phase of deep convection it is assumed that a cyclonic gyre circulation creates
an inclining of the isopycnals towards the surface (doming)(Marshall and Schott
1999) thus causing near-neutral stratification. There are however further mecha-
nisms which may act as Preconditioning for subsequent deep convection to occur.
Firstly, the ESOP-2 (European Sub Polar Ocean Programme) Project provided
growing evidence that pre-existing mesoscale eddy fields rather than basin-wide
gyre circulation may act as preconditioner (Jansen and Opheim 1999). A possible
mechanism for the creation of mesoscale eddies in the Greenland Sea basin has
been identified by Backhaus and Kampf (1999). The author propose that parts
of the East Greenland Current is deflected by the topography of the Jan Mayen
Ridge and injected towards the central Greenland Sea. The fresh-water wedge on
the top of the East Greenland Current will finally become dynamically unstable
and decay into a number of mesoscale eddies or freshwater lenses. Additionally,
it has been suggested that occasional removal of sea ice by prevailing winds is
necessary for efficient erosion of the surface layer (Schott et al. 1993). The role
of sea ice has been investigated in a number of numerical simulations coupling a
convection model with a sea ice model (Kdmpf and Backhaus 1998, Kampf and
Backhaus 1999).

The convective regions of the World Ocean are thought to be of extra importance
in determing the air-sea exchange of carbon dioxide due to the extended verti-
cal ventilation. The exchange is driven by both wind field and partial pressure
difference between air and water. Little is known about the carbon fluxes in the
surface layer of the Polar Ocean and its variability (Jansen and Opheim 1999).
The submesoscale variability of carbon uptake for the area of the Greenland Sea
gyre has been simulated by Wehde and Backhaus (1999). The authors coupled a
simplified version of the present numerical model with a carbon-fluxes and a sea
ice model. They report occasional outgasing of C'Os even in winter.

Deardorff (1972) found that for shallow convective flows with negligible shear
(free convection) the velocity and length scales of plumes are entirely determined
by the surface buoyancy flux By and the mixed layer depth D. From these scales
the relevant velocity scale w, can be found on dimensional arguments to be

w, = (—By - D)Y3. (1.0.1)



Neglecting evaporation effects, the buoyancy flux is related to the dynamic heat
flux Hy by
By = ——H,, (1.0.2)

where ¢ is the Earth’s gravity, « is the thermal expansion coefficient, cp is the
specific heat of water at constant pressure and g, is a reference density.

Since the thermal expansion coefficient a strongly depends on water tempera-
ture and salinity its value in the Greenland Sea differs considerably from that
in the Labrador Sea. Marshall and Schott (1999) take ags ~ 3-107°K~! as an
average near-surface value in the Greenland Sea while azg ~ 9-107°K~! in the
Labrador Sea. Consequently, at given heat flux the buoyancy flux in the Green-
land Sea is weaker than in the Labrador Sea by a factor of three. This results
in a velocity scale (1.0.1) which is smaller by a factor of 3'/3 ~ 1.4. The rele-
vance of w, is that it expresses the intensity of plume-caused downward motion.
It has been confirmed by field measurements that events of downward motion
are of larger downward velocity in the Labrador Sea than in the Greenland Sea
(Mertens 2000).

Rudels (1990) describes the formation of an unstable surface layer in the polar
regions due to local freezing and/or brine rejection which penetrates into the
water column when the instability becomes critical. However, as only molecular
diffusion processes are taken into account he estimated the unstable layer depth
to be on the order of 5 m.

It has been remarked by Backhaus (1995) that molecular processes are unlikely to
dominate the convection process in the surface layer. Under unstable conditions,
it is the interplay of winter cooling and wind mixing that operate to deepen the
mixed layer! on the shelves of the marginal seas of the Artic Ocean (Clarke et al.
1990). Locally confined shallow thermo-haline convection takes place mainly in
polynyas, oceanic areas which remain at least partially ice free and are bordered
by ice covered water. So-called latent-heat polynyas are created when the lo-
cally formed ice is continually removed by episodic cold wind events or currents.
They form either in the vicinity of an ice edge or in the lee of islands (Smith
et al. 1990). A sudden cold air outbreak will create enormous heat losses up
to 1000 Wm 2 (Backhaus, private communication) and may act as a trigger for
convection. Polynyas contribute most to the production of dense shelf bottom
water. During a cold air outbreak it is reasonable to assume that the ocean sur-
face is in Ekman balance and any convective activity will be accompanied by the
presence of wind-driven currents.The flow can be expected to be fully turbulent
outside the viscous sublayer. For wall-bounded channel flow, the extension of
the viscous sublayer is given by 2z ~ 40 (Bradshaw 1976) where 2% = u,2' /v
is the distance from the surface 2z’ non-dimensionalized by the oceanic friction

!Here and in the following 'mixed layer’ always refers to the "upper mixed layer’. Addition-
ally, there exists the perennial thermocline in greater depths.



velocity u, and the molecular viscosity v,,,. Inserting moderate wind conditions
(usx ~ lem/s) this criterion corresponds to a distance 2z’ ~ O(1lem) at which the
oceanic flow is fully turbulent. Hence, it is inappropriate to assume a laminar
unstable layer of 5m extension. The presence of surface waves will even tend to
increase turbulence intensity.

Instead of Rudels’ laminar result Backhaus (1995) suggested to regard the Ekman
layer as the appropriate (turbulent) length scale for the convectively unstable sur-
face layer. The well-known Ekman layer results from the balance of Coriolis force
and turbulent friction in neutrally stratified flows. Its extension D, scales with
us/ f,. It is the upper bound for the influence of surface momentum flux on the
flow field and the only relevant length scale in the neutrally stratified boundary
layer.

The consequence of the Backhaus (1995) hypothesis is that convection in the
marginal seas of the Artic Ocean is influenced by wind mixing, i.e. the flow is in
a state of sheared (or forced) convection rather than in a state of free convection.
Due to its relatively weak buoyancy forcing this result may hold for shallow con-
vection in the Greenland Sea as well (Backhaus, private commun.).

Free convective flows are characterised by the formation of hexagonale convective
cells. In sheared convection the shear tends to organize the plumes in the mean
shear direction. The main flow structure are roll-like vortices (Etling and Brown
1993) instead of cells.

The most important effect of mean shear is the modification of the heat transfer
but there is considerably disagreement about its role. For example, Monin and
Yaglom (1979) report that in a number of atmospheric field measurements the
heat flux increases for increasing shear. This finding has been confirmed by nu-
merical simulations (Hathaway and Sommerville 1986). In contrast, experiments
by Ingersoll (1966) revealed lower heat flux with larger shear. Numerical sim-
ulations by Domaradzki and Metcalfe (1988) indicate that shear decreases the
level of organization of the convective structures therefore decreasing the heat
transfer.

The complex interaction between buoyancy-driven and shear effects has not yet
been studied in detail in an oceanographic context. It is commonly argued that
wind-induced shear only affects the upper 100 — 200m of the ocean whereas the
interest of polar oceanographers has focussed on deep reaching convection (Mar-
shall and Schott 1999).

In contrast, in the atmospheric boundary layer the interaction of buoyancy and
wind manifests itself in cloud streets. These structures have been investigated
in detail by theoretical (e.g. Asai 1970, Kuettner 1971, Brown 1972, Clever
and Busse 1992), observational (e.g. LeMone 1973, Wilczak and Tillman 1980,
Lenschow and Stephens 1986) and numerical studies. Numerical studies of the at-
mospheric boundary layer using large eddy simulation (LES) have been pioneered
by Lilly (1967) and Deardorff (1970, 1972, 1974). LES is now an established tech-
nique for the investigation of turbulent flows. The physical basis for LES is the
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separation of the flow into resolved and unresolved motion by applying a spatial
filter. Whereas the large energy-containing eddies are represented on the compu-
tational grid, the smaller eddies are parameterised through a subgrid-scale (SGS)
model which is commonly based on inertial subrange theory. LES studies of the
convective atmospheric boundary layer in the presence of mean shear have been
performed by e.g. Deardoff (1972), Sykes and Henn (1989), Moeng and Sullivan
(1994) and Khanna and Brasseur (1998). However, simply adopting scaling laws
from atmospheric convection to the ocean leads to unrealistic predictions as will
be outlined in Chapter 2.

It is the aim of the present study to investigate the interaction of an unstable
buoyancy flux with wind-driven shear in the oceanic boundary layer. It is ex-
actly the situation met in high-latitude shelf seas subject to intense surface water
cooling due to a cold-air outbreak. The outbreak is occasionally accompanied by
intense freezing but the process of ice-formation is not considered in the present
study. The analogy to atmospheric convective flows suggests that the large eddy
formation in the form of roll vortices might be able to transfer momentum, heat,
salinity and suspended matter deep into the water column. It might therefore be
expected that the influence of wind reaches substantially deeper into the ocean
than the Ekman layer. It is however not clear whether the transfer of properties
depends on bouyant plumes attaining the form of convective rolls (in shear flow)
or convective cells (in free flow).

In geophysical flows, the mixed layer growing commonly occurs within the back-
ground of stable stratification: the pycnocline in the ocean, the thermocline in
lakes and the capping nocturnal inversion layer in the atmosphere. The mixed
layer growing is thus limited since a considerable amount of the turbulent kinetic
energy is converted into potential energy during the penetration of turbulent flow
into the adjacent stable layers. The entrainment of sinking plumes is therefore
called penetrative convection. The appropriate dimensionless number characteris-
ing the interaction of convective flow and stable stratification is a Froude number,
Fr = (7.- N)~'. Tt is based on the inverse of the Brunt-Vaisélla frequency N,

_ 9

B gaz

which forms the appropriate time scale for mixing in stable stratified flows and
the time scale of the convective flow 7,. The convective time scale is given by
the ratio of mixed layer depth and Deardorff velocity, 7. = D/w, and is therefore
also called large eddy-turnover time.

Although the entrainment process is common to nearly all turbulent geophys-
ical flows, it is generally not well understood since detailed measurements are
extremly difficult. From a practical perspective, the parameterisation of entrain-
ment is important but usually inadequate in most mixed layer models. Numerous
laboratory studies have attempted to model an idealized entrainment process via
convective tank experiments (e.g. Deardorff et al. 1980). The results, obtained

N2
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at low Reynolds number, have to be extrapolated to geophysical applications
using scaling laws. Obviously, laboratory experiments cannot address sheared
convective flows and their penetration because of the limited size of the do-
main. To study the detailed structure of the entrainment process is behind the
scope of the present work. However, since the SGS model is extended to capture
stratification effects, it might be enlightening to compare the numerical results
to one-dimensional bulk modelling and to consider the connection of shear and
entrainment efficiency. Recent attempts to capture the entrainment process in
one-dimensional bulk approaches are presented in Chapter 4.

In the present work, the method of large-eddy simulation (LES) is applied which
is capable to simulate the detailed plume dynamics of high Reynolds and Rayleigh
numbers typical for oceanic convective flows.

Previous, simpler versions of the numerical model used here have been succesfully
applied in the simulation of near-surface oceanic convection. It has been coupled
with a sea-ice model to investigate the interaction of oceanic convection with sea
ice (Kampf and Backhaus 1998, Backhaus and Kampf 1999), with a biological
production model to study the effect of oceanic convection on primary production
(Backhaus et al. 1999, Wehde and Backhaus 2000, Wehde et al. 2001) and with
a carbon dioxide flux model to simulate the atmosphere-ocean exchange of CO»
(Wehde and Backhaus 1999) in unstable conditions.

Using the LES data set, mean and turbulent quantities in three different con-
vective flows affected by different levels of wind-driven shear are analysed. One
scenario is the reference case of negligible shear resulting in a free convective
boundary layer. The other two are sheared convective boundary layers affected
by a steady wind forcing of 7 and 14 ms™!, respectively. The model domain is
chosen sufficiently shallow so that rotational influences on the plume dynamics
(Maxworthy and Narimousa 1992, Mironov et al. 2000, Mertens 2000) are negli-
gible.

The wind effect on convection might in principle be masked by surface-wave ef-
fects as will be discussed in Chapter 2. However, in polar oceans surface waves
are often damped by ice formation (Martin and Kauffman 1981). For this reason,
surfave-wave effects are explicity excluded in this work. The unresolved motions
have to be parameterised by the SGS turbulence model. The studies by Deardorff
(1970), Mason and Thomson (1992), Moeng and Sullivan (1994) and Khanna and
Brasseur (1998) indicate that shear-dominated flows require careful formulation
of the SGS model. This point will be further investigated in Chapter 3.2.2. Con-
sequently, for the present LES model a second-order closure approach following
Canuto et al. (2001) was applied.

The work is divided into eight Chapters. Chapter 2 deals with the theoreti-
cal treatment of atmospheric and oceanic boundary layers. In Chapter 3, the
foundations of the LES model are described. The description includes the filter
operation, the physical principles of the turbulence closure and the underlying
model equations. Chapter 4 is devoted to the implementation of the mathe-



matical model. It contains numerical algorithms as well as boundary and initial
conditions and the implementation of the turbulence closure. In Chapter 5, a
short overview of bulk modeling is given which is used to configurate the numer-
ical experiments described in Chapter 6 and tested against the results which are
presented in Chapter 7. Chapter 8 summarises the results and gives an outlook
on future work.



Chapter 2

Geophysical boundary layers

2.1 Ekman layer theory

The ocean surface is not in contact with a solid surface but imposed to atmo-
spheric forcing. For this reason the oceanic Ekman layer departs from its coun-
terpart in the atmosphere in which the tangential velocities vanish at the surface
(no slip condition). Instead, continuity of pressure and continuity of frictional
stress across the ocean surface will be used as upper boundary conditions. The
classic Ekman theory (Ekman 1905) delivers the steady-state motion of a bound-
ary layer in which the Coriolis force is balanced by friction stress. The profiles
of the horizontal velocities U,V (which are departures from the geostrophic ve-
locity) can be calculated from the Ekman equations assuming infinite depth and
horizontal homogeneity and a steady-state,

oUu 0 <uw>
0=3; = FV=——"%,—

1% 0 <vw>
O=37 = U——7F%—

(2.1.1)

The turbulent stresses <w;w> (i = 1,2) are approximated by an eddy viscosity

approach,
oU;

0z
In order to solve the above equations analytically the eddy viscosity is assumed
to be a constant. At the free surface at z = 0 they are subject to the tangential
stresses

<uw>= —uy (2.1.2)

T 8UZ
2= 2. 2.1.3
= u (2.1.3)

The integration of equation (2.1.1) with the upper boundary conditions yields
U = e *°(Cycos(z/8) + Cysin(z/9)),
V = e *°(=Cysin(z/6) + Cacos(z/6)),
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with

2Vt
5 = r
I
C: = —i( + 72)
1 = 2, T T T2),
)
02 = 2—]/75(7'1—7'2).

The depth in which the flow is damped to exp(—=) of its surface value is called

Ekman layer depth Dy,
2
Do = 4 /%. (2.1.4)

The surface velocity vector is seen to be 45° to the right of the applied stress (in
the northern hemisphere).

The assumption of a constant eddy viscosity is hard to justify in geophysical
boundary layer flows. Observations show that the turning angle between surface
current and geostrophic flow is less than the 45° predicted by classic Ekman the-
ory (Tritton 1988). However, the most important property of the Ekman theory
is that the horizontal mass flux associated with the Ekman-layer velocity is per-
pendicular to the wind stress (e.g. Kraus and Businger 1994). The magnitude of
the mass flux in the Ekman layer does not depend on the value of the eddy vis-
cosity. It is independent of any assumption about the turbulence. Consequently,
for the description of the wind-driven oceanic boundary layer it is sufficient to
know the wind field which is commonly available from routine measurements.
The connection between boundary layer and interior ocean is described by the
Ekman layer suction, i.e. the interior vertical velocity at the lower edge of the
Ekman layer. It can be shown to be proportional to the divergence of the wind
field.

However, the underlying assumption is that the stratification is close to neutral.
It has been shown in an article by Barcilon (1967) that unstable stratification
can inhibit vertical motions. As a result, the Ekman layer suction is prevented
from controlling the dynamics of a rotating stratified flow.

2.1.1 The stratified Ekman layer

There are some limited solutions of the Ekman equations in the atmosphere pos-
sible without having to resort to turbulence closure assumptions. The solutions
can be extended to take stratification effects into account using observational
data. Therefore, it might be helpful to start the discussion with a look at the
atmospheric boundary layer. For the sake of simplicity in the following discussion
the x-axes will be aligned in the direction of the surface stress.

Geostrophic drag laws (e.g. Tennekes and Lumley 1982) relate the geostrophic
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velocity outside the Ekman layer to the surface stress by asymptotic matching
procedures (Rossby-number similarity). Two layers with distinct intrinsic length
scales are matched. The one is the so-called inner layer in which the relevant
length scale is the roughness length z;, the other is the so-called outer layer
in which the relevant length scale is the Ekman depth D.. Under turbulent
conditions, D¢ =~ ku,/f where kK = 0.4 is v. Karman’s constant. There exist
an overlap region in which both scaling laws hold simultaneously provided that
the Rossby number Ro = Dg/z is very large. A typical atmospheric value is
Ro ~ 10>m/1072m = 10°. Matching of both layers yields the logarithmic law
of the wall. More important for the present consideration is the profile of the
turbulent Reynolds stress components which are given by (Kantha and Clayson

2000)
BI
<uw> = —uf(l—Dz>;
ek
5 2 Kz
<vw> = —u. g lnD +A-1].
ek ek

For atmospheric conditions the Ekman layer height is much larger than the surface
distance of the point under interest. Since the integration constants A and B are
of order one, the profiles of the Reynolds stress components are close to constant
throughout the surface layer.
If the stratification is not neutral, a similar matching can be done but another
length scale enters the problem, the Monin-Obukhov length scale (Monin and
Obukhov 1954) L = u?/(kBp) (which is negative for unstable bouyancy flux).
The integration constants A and B become similarity functions of the Monin-
Kazanski parameter u based on the Ekman layer extension D, and the Monin-
Obukhov length L, H
ek

=7 (2.1.5)
From measurements the functional forms of A(u) and B(u) are known. How-
ever, the large scatter of the data raises some doubt as to whether the Ekman
layer height D,y is the relevant length scale of the unstably stratified atmospheric
Ekman layer. Typical values for atmospheric conditions are D ~ 1000m, By ~
(1072 — 107?)m?s™ 3, uy, ~ Ims™! — D¢ ~ 2000m. They show that the mixed
layer is often shallower than the Ekman layer. Therefore, better agreement be-
tween the data and theory can be achieved by defining the Monin-Kazanski pa-
rameter based on the mixed layer extension D,

D
= —. 2.1.6
=7 (2.1.6)
By doing so, the similarity functions A(y) and B(p) under unstable conditions
are approximated by (Yamada 1976)

A(p) = 10.0 — 8.145(1 — 0.008376p) /3,

12



B(r) = 3.020(1 — 3.290u)"1/3.

For very unstable conditions, the similarity functions A(u) and B(u) become
larger and the Reynolds stress profiles get a linear shape.

It can be summarized that in most cases of interest the Ekman layer height is
not a relevant parameter in atmospheric boundary layer dynamics. The relevant
length scale is the mixed layer height which marks the limit for surface friction
processes to be significant. The shape of the Reynolds stress profiles is close to
constant in the surface layer and become linear with increasing surface distance
and/or increasing unstable stratification.

2.2 Numerical and observational studies

A review on large eddies of the atmospheric boundary layer covering theoretical,
observational and numerical investigations was presented by Etling and Brown
(1993). From stability theory, numerical simulations and laboratory experiments
three instability modes have been identified: thermal instability, inflection-point
instability and parallel instability. Although there are these three candidates
for the large-eddy formation, most researchers attribute the formation by the
interaction of strong shear with thermal instabilities (Etling and Brown 1993).
Numerical and observational results provide a quantitative estimate of the abil-
ity of mean shear to organize the bouyant plumes into roll-like structures. The
underlying mechanism for roll formation is probably the alignment of the tem-
perature fluctuations in the high shear region near the surface (Sykes and Henn
1989). The convective rolls then cover the entire mixed layer depth. Thus, the
shear can influence the bouyant eddies throughout the entire mixed layer. As
control parameter for the formation of either convective rolls or convective cells,
Deardorff (1972) identified the ratio of friction velocity to the convective velocity
scale, TI, = u,/w,. The role of II, can be illustrated in the budget equation
for the turbulent kinetic energy K which reads in the horizontal homogeneous
stationary boundary layer as

oF
O~ Ps+——B- 2.2.1
S + 0z g, ( )
where Ps = — < uw > 0U/0z— < vw > 0V/0z is the production rate of

turbulence due to the interaction of mean shear with the Reynolds stresses
< uw >, < vw >, F is the vertical flux of turbulent kinetic energy, B is the
buoyancy flux and ¢ is the turbulent dissipation rate. The Monin-Obukhov simi-
larity theory for turbulent surface layers (Monin and Obukhov 1954) states that
the only relevant parameters close to the surface are friction velocity u, and dis-
tance from the surface z’. Let the near-surface values be denoted by the index
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'0’. As a result, the production rate Psg due to shear is approximated '. by

3
O (2.2.2)

PS,O%_ ;
KRz

Near the surface it is appropriate to identify the mixed layer depth with the
surface distance, D =~ 2z’ (Wyngaard and Brost 1984). The ratio of production
rates due to shear and buoyancy can be expressed as

PSO (U*>3 3
By~ \w. . (2.2.3)

The ratio is related to the ratio of the two relevant length scales in atmospheric

stratified surface layer turbulence, namely the surface distance z’ and the Monin-
Obukhov length L as

I, = /3. = o (2.2.4)
« 7 . 2.

However, no agreement exists about the exact value of the threshold value It
at which the convective flow organises in roll structures. Sykes and Henn (1989)
report II" ~ 0.35 whereas Moeng and Sullivan (1994) find IT** ~ 0.65 and
Khanna and Brasseur (1998) observe clear roll vortices in runs at II, = 0.37 and
II, = 0.51. Observations by Grossman (1982) agreed with the early numerical
study by Deardorff (1972) that ITt* ~ 0.43. For II, ~ 0.58, Walter and Overland
(1984) and Briimmer (1985) observed roll structures. Clearly, for very large val-
ues of II, the flow is close to neutral. Zilitinkevich (1994) recommends to regard
I, = 2 as upper bound for any convective effect.

Moeng and Sullivan attribute the different findings compared to Sykes and Henn
(1989) to the inclusion of the Coriolis effect in their study which is absent in the
study by Sykes and Henn. These authors regarded a plane Couette flow with
heating, i.e. shear was taken as varying linearly whereas in Ekman layers shear
shows exponential and turning behaviour. However, the linear approximation is
justified as long as the Ekman layer extension is much larger than the mixed layer
extension. It was shown that this is often true in atmospheric convection, conse-
quently the Ekman layer height does not enter the list of relevant parameters.
Simply adopting the atmospheric approach from (2.2.3), a value of IT" = 0.4
would correspond to

3 3

Dih — _ﬁ* — ()P % ~ 1600m, (2.2.5)
0 0

for moderate wind condition (u, ~ 107>ms~! ) and moderate unstable buoyancy
flux (By ~ —107%m?s™®). The formula states that convective roll structures

Tt is emphasized that the relations (2.2.1)-(2.2.2) only hold in the sense of an ensemble
average or equivalently averaged over a horizontal domain of at least several km.
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dominate the mixed layer down to a depth of ~ 1600m. This is an estimation for
Greenland Sea condition. In contrast, the critical depth in the Labrador Sea is
smaller by a factor of three due to its larger thermal expansion coefficient. Wind
effects in 1600 m depth is clearly in conflict with the assumption that wind only
affects the upper 100 — 200m.

2.3 Difference between atmospheric and oceanic
boundary layers

It can be seen that simply adopting the atmospheric threshold value II* to
oceanic convection leads to unrealistic results. In contrast, the Rossby-number
similarity procedure is hardly applicable in the ocean since the wave-influenced
depth usually exceeds the theoretical depth of the inner layer (Kraus and Businger
1994). Wave breaking is known to create a substantial deviation from the ’law
of the wall’ (e.g. Kantha and Clayson 2000). Measurements show that under
strong winds a region develops in the upper few meters in which the dissipation
rate is much larger than predicted by the law of the wall (Melville 1994). Below
these depths the law of the wall is often recovered. Under convective conditions
the dissipation rate behaves similar to the atmospheric dissipation rate (Shay
and Gregg 1986) although the larger scatter indicates the presence of wind-wave
processes. The interaction between wind and sea surface is associated with addi-
tional length scales which are subject of ongoing research. To present knowledge,
a wave-enhanced layer forms near the surface. Below that, the law of the wall is
found in greater depths. The wave-enhanced layer is characterised by an approx-
imate balance of turbulent transport and dissipation whereas the law of the wall
requires an approximate balance of shear production and dissipation (Burchard
2002). A suitable formulation of boundary conditions for wind-wave interaction
has been demonstrated by Craig and Banner (1994) and Craig (1996). Langmuir
circulation is the most prominent feature of surface wave-turbulence interaction.
It is considered to be caused by the vortex force that arises in a pertubation
theory for the wave-averaged currents by Craik & Leibovich (1976). This perbu-
tation theory has been integrated into LES models (Skyllingstad and Denbo 1995;
McWilliams et al. 1998) to explicitly resolve the dynamics of Langmuir circula-
tion. Another example of surface wave-turbulence interaction is wave pumping.
It describes the effect of a moving surface wave causing the surrounding fluid to
move with it. Nonlinear wave pumping can induce a mean surface stress. LES
results including this process can be found in the study by McWilliams et al.
(1998). A generalized surface-layer model has been proposed by Huang (1979)
which includes the balance between Coriolis forces due to the mean and wave-
induced motions and the surface wind stresses. The result indicates that surface
currents can be genearted not only by direct wind stress, as in the classic Ekman
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model, but also from the Stokes drift derived from the surface wave field, in an
interrelated manner.

Even if surface wave effects can be neglected, as it is done in the present study,
the Rossby-number similarity procedure is questionable. The oceanic Ekman
layer is shallower by a factor of roughly 30, the square root of the density ra-
tio. whereas zj is a nearly unknown value (Burchard 2002). It can be estimated
that the typical Rossby number will be at least two orders of magnitude smaller
than in the atmosphere, therefore the matching procedure might get invalid. The
Ekman layer depth is indeed limited to at most 100- 200 m whereas convective
mixing may homogenize the whole water column down to the bottom in several
km depth. Thus, due to the shallowness of the Ekman layer in the ocean convec-
tion will generally cover depths much larger than the Ekman layer, as opposed
to the atmosphere.

The main result of the analysis in this Chapter is that the appropriate scaling
variables in atmospheric sheared convection are the distance from the surface z’
(alternatively the mixed layer height D), the Monin-Obukhov length L, the fric-
tion velocity u, and the Deardorff velocity w,. The ratio of the velocities u./w.
can be related to the ratio of the length scales. Hereby, the nondimensional
height 2’/ L is valid for the surface layer whereas in the bulk of the flow D/L (the
Monin-Kazanski parameter) is appropriate.

Since there are no other scaling suggestions for oceanic sheared convection known
to the author, the predictions of this Chapter will be compared to the numerical
findings keeping in mind their limited validity. In the oceanographic context,
however, the role of the Ekman layer with regard to convective penetration needs
further investigation.
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Chapter 3

Large Eddy Simulation

Turbulent flows contain a wide range of length and time scales where the large
scale motions are generally much more energetic than the small scale ones. An
estimation of the number of eddies (corresponding to the degrees of freedom)
in a turbulent flow is made in the following. Let £ and n be the characteristic
size of the biggest and the smallest eddies, respectively. Thus, the number M
of eddies within a cube of volume £* can be estimated as M ~ (£/n)’. The
smallest size of eddies n (Kolmogorov scale) is given from dimension analysis
as a function of molecular viscosity v,,, and turbulent energy dissipation rate
e by n = (V2 /e)"/*. Hence the number of degrees of freedom is of the order

M ~ L334 Vf,{jl. Using the estimation of a characteristic velocity scale U ~
(Le)'/3, the degrees of freedom can be related to the Reynolds number Re =
UL /Vme in the following way:

M ~ Re%*

In the oceanic boundary layer one finds Reynolds numbers of 107 — 10® corre-
sponding to the requirement of 10' — 10'® grid points to resolve the turbulent
motion. These numbers must be contrasted with today’s supercomputers that
can handle at most 10° grid points. Solving the Navier-Stokes equations for all
of the motions in the flow in a direct numerical simulation (DNS) is therefore
restricted to Reynolds numbers on the order of 10%.

In order to decrease the degrees of freedom, large-eddy simulations (LES) apply
a local spatial filter to the basic equations. The simulation explicit describes the
large-scale turbulent motions, i.e. the low-frequency modes, while the unresolved
small-scale motions, i.e. the high-frequency modes, are parameterised. Resolved
and unresolved motions are separated by the filter operation under the (ques-
tionable) assumption that this separation does not influence the resolved motions
significantly. The filter scale is assumed to be well within an inertial subrange
of three-dimensional turbulence. The unresolved part is primarily responsible
for dissipation of the resolved turbulent kinetic energy which is captured by the
numerical model. The process of dissipation can be modeled in the framework
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of Kolmogorov’s (1941) inertial subrange theory, e.g. by an eddy-viscosity ap-
proach. Apparently, much of the uncertainty regarding LES results arise because
there are regions in the flow field where the turbulent scale is sharply reduced
and becomes smaller than the filter scale. This is especially true for boundary
regions but it holds for strongly stratified regions as well. Here, Kolmogorov’s
inertial subrange theory does not apply.

Starting with the filter equation the governing LES equations are derived in
Section 2.1. The importance of SGS modeling and a short review of common
approaches is considered in Section 2.2. This discussion is followed by the pre-
sentation of the novel second-order closure approch in Section 2.3. In Section 2.4
the resulting model equations are summarized.

3.1 The filter operation

In geophysical applications it is common practice to neglect viscous friction in
the high-Reynolds number limit. Consequently, no molecular effects are captured
by the model as the flow is assumed to be fully turbulent anywhere. On the mo-
mentum equations for an incompressible inviscid fluid with velocity components
U; (i =1,2,3) , dynamic pressure P and external force Fg,; (skipping rotational
terms),

oU;  OUU;) _ 10P

ot 0z 0o 0T;

a spatial filter operation is applied which separates the fields into a filtered part
(denoted by an overbar) and a fluctuation (denoted by small letters),

+F€$t7 (311)

Ui =TU; + u;. (3.1.2)

Commonly, explicit filtering of the basic equations is replaced by implicit filtering
due the numerical grid (Sagaut 2001). This greatly complicates the theoretical
analysis as different numerical algorithm will create different filtering properties.
The formal decomposition results in

U, 0(U;-U; 1 0P i =
aUz + ( ]) ___a_+%+Fe$t_ (313)

ot ox j 0o ox i ox j

Equation (3.1.3) represents the dynamics of the large-scale motion. It cannot be
solved yet, because it involves the unknown quantity U;U; which is absorbed into
the definition of the subgrid scale (SGS) stress tensor

Tij = — (TU] -U;- 7]) . (3.1.4)

The SGS stress tensor has to be parameterised by known quantities. Following
Leonard (1974) and filtering the field a second time yields three sets of terms
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;. (3.1.5)

There is a clear difference between the SGS stress tensor and the Reynolds
stress tensor in statistical turbulence modeling which is build on the Reynolds
averaged Navier-Stokes (RANS) equations. The SGS stress tensor only equals
the Reynolds stress tensor u;u; for filters that satisfy the properties of ensemble
averaging, namely

U, -

UiU,j =

&
|
&

'Uj:

e

(3.1.6)

Hence, if Reynolds (=ensemble) averaging were applied to (3.1.5), the first two
terms on the right hand side would vanish and the twice filtered field would be
equal to the once filtered field. Reynolds averaging implies that there is a clear
scale separation between the mean and the fluctuating part. This is often true
in mesoscale geophysical flows where turbulent and mean scales are observed to
be separated by a ’spectral gap’ (Stull 1988). The spectral gap expresses the
fact that two different time scales are involved in mesoscale dynamics: the fast
turbulent time scale and the comparatively slow mean flow time scale.

In contrast to RANS modeling, the filtering process in LES modeling invokes vol-
ume averaging which does not have the properties (3.1.6) of ensemble averaging.
Ensemble averaging removes all the turbulence. In contrast, volume averaging
only removes those components of the turbulent spectrum having smaller spatial
scales than the filter scale. As a result, the three sets of terms in (3.1.5) have
to be kept, each representing a different effect of the unresolved motions on the
resolved motions. The terms in the first line represent the interaction of two
resolved eddies to produce small scale turbulence. Because turbulence is trans-
fered from the resolved to the unresolved scales, this term is called outscatter
term. The terms in the second line represent the interaction between resolved
scale eddies and small scale eddies. These terms, summarized as cross term, can
transfer energy in either direction, but, on the average, transfer energy from the
large scales to the small ones. The last term represents the interaction between
two small scale eddies; as it may produce energy transfer from the small to the
large scales, it is called the backscatter term; as noted above, the cross term may
produce backscatter as well.

Obviously the interaction between resolved and unresolved motions is stronger
than in RANS models. In LES, the smallest of the resolved and the largest of
the unresolved scales have similar time scales, giving rise to a resonance, which
is known to alter the Kolmogorov spectrum (Canuto 1994). As by far the most
of the turbulent kinetic energy is contained in the resolved motions, the SGS
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model is assumed to be less crucial than the turbulence model in Reynolds aver-
aged flows. There have been suggestions how to approximate outscatter and cross
terms by Taylor series expansion (Leonard 1974), (Clark et al., 1979). Nowadays,
with respect to the uncertainty in modeling the SGS stress tensor it is common
practice to neglect outscatter and cross term (Ferziger 1996). Then the compo-
nents of the SGS stress tensor can be identified as SGS Reynolds stress terms.
Equation (3.1.2) demonstrates the decomposition of the velocity field into a mean
and a fluctuation part. The same procedure is carried out for the temperature
field,
T=T+09.

3.2 Introduction to SGS modeling

The most commonly SGS model was first proposed by Smagorinsky (1963)%. It
will be the starting point for a discussion of commonly used SGS models. In the
concept of LES it is assumed that although it cannot provide detailed information
about all the turbulent scales in the flow field, it should give the correct low-
order statistics of the mean flow field such as mean velocity or temperature. As
has been said above LES produces satisfactory results when the main producing
mechanism of turbulence is well resolved. Then the SGS model mainly serves to
drain the proper amount of energy from the resolved flow field. In those cases the
importance of SGS effects is minor. However, when the significant mechanism
of turbulence production is not fully resolved, SGS effects might even dominate.
Examples are discussed in Section 3.2.2.

3.2.1 The Smagorinsky model and its shortcomings

In the Smagorinsky model subgrid stresses 7;; are related to the filtered fields via
the down-gradient assumption

1
Tij = 3Tkk " dij = —2VsmSij, (3.2.1)
where vg,, is the Smagorinsky SGS eddy viscosity, Si; = 1/2(0U;/0x; + 0U; /0x;)
is the rate-of-strain tensor and ¢;; is the Kronecker symbol.
The Smagorinsky approach can be extended in order to include buoyancy effects.
The SGS eddy viscosity is assumed to be isotropic and given by the scalar

Vsm = A2 - S - f(Ri), (3.2.2)

'In the following, whenever refering to Smagorinsky, reference is made to Smagorinsky
(1963).
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where A\ is the SGS mixing length scale and S = (QSijSij)l/Q. Additionally,

f=0Q+o0g 1Rz’)l/ 2 accounting for stratification effects is a function of the gra-
dient Richardson number Ri and the turbulent SGS Prandtl number oy. The
gradient Richardson number is given by Ri = N?/5? where N is again the Brunt-
Viisélld frequency. It can be seen from (3.2.2) that the Smagorinsky model is a
three-dimensional mixing length approach.

In a grid point model the filter scale /. can be related to the grid space ?A. Iner-
tial subrange theory allows to relate the mixing length scale A\ to the grid space

via
A=Cg- A, (3.2.3)

The Smagorinsky constant Cs has been found experimentally to be about 0.2
(Mason 1994). Within this approach, the SGS heat fluxes are computed analo-
gously to the momentum fluxes,

— or
uif) = —Xsm* 5 -

with the SGS eddy diffusivity xsm,. The SGS Prandtl number o relates SGS eddy
viscosity and SGS eddy diffusivity via

(3.2.4)

o= 25m (3.2.5)

and is for simplicity taken as a constant, namely as its value under neutral con-
ditions, oy.

In applications it is found that the Smagorinsky 'constant’ C's is a rapidly varying
function of the flow field (Ferziger 1996). This is a hint that the Smagorinsky
model contains some defiencies which will be discussed in the following.

The main assumptions of the Smagorinsky model are alignement of SGS stresses
and strain rate (down-gradient assumption), the inertiality of the SGS, and a lo-
cal equilibrium of turbulence (Canuto and Cheng 1997). The limitations of these
assumptions have been recognized by various authors:

e the down-gradient assumption is the major deficiency of the Smagorinsky
model (Ferziger 1996) because the principal axes of the SGS stress and the
rate of strain tensor are only aligned in the case of pure strain but not for
flows with mean vorticity. Consequently, the eddy viscosity is actually a

2When dealing with grids of unequal sizes in each direction, e.g. Az < Ay < Agz, the
anisotropy can be accounted for by using an anisotropic three-dimensional filter. The analysis
by Scotti et al. (1993) yields to zeroth order in log(a;) (where a1 = Az/Az and ay = Ay/Az

are the two grid aspect ratios) that A = (AxAyAz)l/ %. Additionally, for very large filter
anisotropies, the Smagorinsky constant should be replaced by Cs-1(a1,as) where the correction

AN 1/2
function (a1, a2) ~ cosh (4/27- ((ln a1)’ =InaiInas + (In ag)z)) (Scotti et al., 1993). As
an example, for a; = as = 4,9(a1,a2) =~ 1.15.
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tensor quantity (Meneveau et al. 2001). The turbulence anisotropy, induced
by the continuous transfer of energy from the generally anisotropic resolved
flow towards the turbulent fluctuations, cannot be accounted for by the
scalar definition of the SGS eddy viscosity.

e the Smagorinsky model implies that only shear contributes to SGS Reynold
stress and only the temperature gradient contributes to the SGS heat flux.
Thus, neither the contribution of both shear and buoyancy terms to the
SGS fluxes is taken into account nor can the well-known 'countergradient’
effect® be captured (Canuto 1994).

e obviously, the eddy diffusivity is a tensor quantity as well. Neglecting this
property does not allow to account for random gravity waves in stratified
flows (Canuto 1994).

e the use of a constant SGS Prandtl number is a consequence of the down-
gradient assumption. It contradicts experiments which show that with in-
creasing stable stratification flows transport momentum increasingly more
efficiently than heat (e.g. Webster 1964).

e the assumption of inertiality is not justified near boundaries or stably strati-
fied regions. In these regions, the turbulence might do work against gravity.

e the local equilibrium assumption is a questionable simplification. The im-
plication of locality is obviously wrong in a convective boundary layer where
turbulence may be generated at one point but dissipated somewhere else.

Despite the list of shortcomings of the Smagorinsky SGS model it was applied
in a number of succesful simulations of free convective flows (e.g., Mason 1994).
It must be deduced that in these flows the turbulence producing mechanism are
well resolved and the deficiencies of the SGS model are of minor importance.

3.2.2 Modified Smagorinsky SGS models

In contrast to free convective flows which are apparently well suited for the LES
approach, LES of other kinds of flow using the Smagorinsky model have been
reported to provide unsatisfactory results as will be discussed below.

The low-speed streaks typical for shear-dominated flows carry most of the tur-
bulent fluxes of momentum and heat in a turbulent boundary layer. They are
preferentially generated near the surface (Deardorff 1972, Khanna and Brasseur
1998). Since resolving the small but dynamically important near-surface region

3The ’counter-gradient’ heat flux expresses that individual bouyant elements can transport
heat downwards although the mean temperature gradient is greater at the bottom. Obviously,
this feature cannot be correctly described by an eddy viscosity relation between flux and local
mean gradient.
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is prohibitively expensive (Baggett et al. 1997) the main burden is placed here
on the SGS model. It is well known that commonly used SGS models of the
Smagorinsky-type even fail to reproduce similarity theory predictions (Deardorff
1970, Schumann 1975, Mason and Thomson 1992, Sullivan et al. 1994). In the
first LES of turbulent channel flow, Deardorff (1970) was not able to obtain the
correct mean velocity profile unless the Smagorinsky ’constant’ was lowered to
about half of the theoretical value. He observed that the theoretical value of
Cs =~ 0.2 resulted in too much diffusion corresponding to excessive shear, and
hence - by integration - errors in the mean velocity profiles. The resulting short-
comings have been demonstrated by Khanna and Brasseur (1998) comparing the
performance of their LES of atmospheric sheared convection with the Smagorin-
sky and the Sullivan et al. (1994) SGS model, respectively. As the Smagorinsky
model tends to overestimate shear production, it predicts low-speed streaks that
are too pronounced and elongated in the streamwise direction. There have been a
number of proposals how to overcome the deficiencies of the Smagorinsky model.
Some of them will be discussed below.
Mason and Thomson (1992) found that errors in the mean velocity profiles have
a substantial indirect impact on the whole simulation. They failed to remove this
tendency by simply retuning Cs. Instead they introduced stochastic backward
cascade processes. Stochastic modeling has also been investigated by Schumann
(1995). Backward processes account for the fact that intermittently occuring tur-
bulent kinetic energy is transferred from small to large scales (backward) whereas
in inertial subrange theory only the (mean) forward cascade is considered. In the
computation a stochastic part is added to the subgrid scale stress tensor. The
stochastic part contains a white random number in space with a characteristic
correlation time which is of the same order of magnitude as the subgrid time
scale.
A different approach has been chosen by Schumann (1975) who added a new SGS
term in his channel flow LES. His SGS model might be viewed as a combination
of a real LES in the flow interior and a RANS model near the channel walls.
This approach has been modified in the work by Sullivan et al. (1994) and has
also been used in the above mentioned study of Khanna and Brasseur (1998).
In their formulation the resolved strain field is decomposed into horizontal mean
(denoted by angle brackets) and fluctuation part. The SGS stress tensor contains
two parts:

Tij = —2’)/1/7551']' — 2ur <Sij >, (326)

where v = S,;/(S;;+ <S;;>) is an isotropy factor. Near a solid boundary, the re-
solved strain field is highly anisotropic which results in v < 1 and the mean-field
term dominates in (3.2.6). The mean field eddy viscosity v is chosen to match
similarity theory prediction. In the interior, the flow is close to isotropic, hence
v = 1 and the first term in (3.2.6) dominates. In this case, the Smagorinsky
formulation (3.2.1) is recovered from (3.2.6). Sullivan et al. (1994) report that
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is was not required to correct the SGS model for the heat flux in an analogeous
manner since the improvement of the velocity field improved the mean tempera-
ture field accordingly. It must, however, be noted that the Sullivan et al. (1994)
SGS model is tuned towards the predictions of the Monin-Obukhov similarity
theory.

Another improvement of the Smagorinsky approach has been achieved by the
Dynamical Mized Model (e.g. Germano et al. 1991) in which the ’constant’ Cs
has been made a function of flow variables in a dynamical procedure assuming
similarity between the smallest resolved and the largest unresolved turbulence
spectrum. As has been recently pointed out by Gallerano and Napoli (2001),
most Smagorinsky-type models implicitly assume a balance between dissipation
and production of a turbulent kinetic energy budget which is not the pure unre-
solved but also contains a part of resolved turbulent kinetic energy. This is due
to the fact that the definition of the SGS stress tensor 7;; (3.1.5) provides the
following SGS turbulent kinetic energy é,

This expression contains two terms, the first and second term of the right-hand
side, which depend solely on the resolved field. Hence, the energy é is not the
unresolved turbulent kinetic energy and the assumption of local equilibrium, i.e.
the balance of production and dissipation, is not justified for €. Alternatively,
Gallerano and Napoli (2001) suggest the concept of a tensorial dynamic mixed
SGS model which greatly increases the expense of the computation. Additionally,
the dynamic model approach suffers from numerical instability and it is unclear
how to account for body-force effects such as stratification or rotational strains
which are often dominant in geophysical applications.

A different approach is the concept of nonlinear Reynolds stress modeling. It al-
lows a nonlinear stress-strain relationship that transcend the Boussinesq hypoth-
esis of a scalar eddy viscosity. The non-linear Reynolds stress model is based on
analogies between the mean turbulent flow of a Newtonian fluid and the laminar
flow of a non-Newtonian fluid*. Using a reduced form of the constitutive relation
for the non-linear Rivlin-Ericksen (Rivlin and Ericksen, 1955) fluids, Pope (1975)
developed a general eddy-viscosity hypothesis relating the SGS stresses to a finite
number of known tensors and scalars. The mean flow tensors under consideration
are rate-of-strain tensor S;; and vorticity tensor w;; = 1/2-(9U;/0z; — 0U, /Ox;).
The SGS stress tensor is assumed to be a functional of these tensors,

75 = F(Sij, wij) (3.2.8)

which results in a polynomial of five tensor products Sf'w/* where my, my =

0,1,2. Numerical experiments with this SGS model (Lund and Novikov, 1992)

4 Additionally to turbulence problems, the constitutive law of simple non-Newtonian fluids
has also been used in sea ice modeling, see e.g. Overland and Pease (1988)
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yielded good results but are costly. In a simplified version the nonlinear model
has been used by Kosovic (1997) in LES of the neutral shear-driven atmospheric
boundary layer. Kosovic defined the SGS stress tensor as

1
Tij = —cx1A (261/2Sij - CK2A(SiIcSkj - gSmnSmn(5ij) - CK3A(Sikwkj - wikSkj))

(3.2.9)
where the coefficients have to be determined analytically. Kosovic (1997) recom-
mends the values cx; = 0.116 and cxo = cx3 = 0.823. For setting cxo = cx3 =0
the linear down-gradient model is recovered. The second and third terms ac-
count for the backscatter of turbulent kinetic energy near the surface as well as
its redistribution among the normal SGS stress components which are caused
by anisotropy and nonlinear interactions. His results yielded the experimentally
observed and theoretically predicted logarithmic mean velocity profile. While the
linear Smagorinsky SGS model exhibited streaky streamwise velocity structures
aligned with the mean wind, the nonlinear SGS model exhibited more chaotic and
less coherent structures. As the Sullivan et al. (1994) SGS model, the Kosovic
(1997) SGS model succesfully reduces the excessive damping of the Smagorin-
sky model. It is, however, not obvious how to extend the expression (3.2.9) to
stratified flows.

3.3 Second-order algebraic SGS model

In the present work, the SGS fluxes of momentum and heat are modeled by
second-order closure. In RANS simulations Reynolds stress models are known
for a long time (e.g. Launder et al. 1975, Speziale 1991). The aim of second-
order closure models is to derive a close set of second-moment equations. In the
present model, the differential equation for the turbulent kinetic energy will be
solved explicitly while all the other second-order moments are given by algebraic
relations. The derivation of the equations will be discussed in the following
Chapter. It will afterwards be shown in Chapter 3.3.5 how simpler turbulence
models (Smagorinsky, Kosovic) can be derived from the present formulation.
Outscatter and cross terms from (3.1.5) are neglected due to the large modeling
uncertainty.

3.3.1 Second-order closure in SGS modeling

The budget equation for the SGS turbulent kinetic energy e = %W will be
solved explicitly to avoid the above mentioned difficulties of a correct algebrai-
sation which arises in the framework of 'Dynamical Mixed Models’. Obviously,
information about the degree of anisotropy in the SGS turbulence cannot be
gained from the SGS turbulent kinetic energy. Instead, the equations for the
SGS Reynolds stress and the heat flux tensors are considered and solved in an
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approximate manner.

In the framework of the Reynolds stress formalism and second-order closure, the
following equations for the SGS turbulent kinetic energy e, the temperature vari-
ance 62, the anisotropic part of the SGS Reynolds stress tensor
bij = 7ij — 2/3ed;; and the SGS heat flux u;f are derived (e.g., Lumley et al.
1978):

2° = Do)~ bigSy + Ml — o (33.1)
%T = —D;(0?) — QU—iQS—z — 2ey, (3.3.2)
lzg = —Dy(bij) — Bij — Zij + Bij — T — gesij, (3.3.3)

—u;0Sij + N2 — T1¥ — 2¢;;5Q;u40, (3.3.4)

where Dn/Dt = 0/0t + U;0n/0x; for any quantity 7, D(n) contains third-order
contributions from turbulent and pressure transport, A, = (0,0, ga) with gravity
g and thermal expansion coefficient c, €;;;, is the antisymmetric tensor and €y is
half the dissipation rate of temperature fluctuations.

As can be seen from (3.3.1)-(3.3.4), the equations for the second-order moments
contain unknown moments of third-order (g;;, Ds(n), IT;;, I1?) which are discussed
in the next Chapter.

The traceless tensors in (3.3.3) are given by
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2
Lij = Sikbrj + Sjkbix — 30iSkiby, (3.3.5)
1+c¢
TS(ejk:lbik + Giklbjk)Ql,
5

— — 2 _
Bij = )‘iuje + /\juio - 3 : (5ij/\kuk0.

Zij = bigwjk + bjkwix +

While B;; represents a source of turbulence due to buoyancy, Y;; and Z;; rep-
resent anisotropic interaction of b;; with the mean flow (described by S;; and
wij). Again, w;; denotes vorticity. The exact value of the coefficient c¢; will be
discussed below. It couples vorticity and Earth’s rotation. The components of
Earth’s rotation are given by (0 = (0,Q,,3) = 1/2- (0, fa, f,) with f, f, the
zonal and the vertical components of the Coriolis parameter, respectively®.

The terms on the right hand side of equation (3.3.1) can be interpreted as follows:
The first one is the diffusive transport of turbulence by velocity and pressure fluc-
tuations. The second one, called the 'production term’ is the rate at which the

5In the present formulation fj, is neglected in the SGS model since in polar regions f; < f..
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mean flow does work on the turbulence. The third one is the buoyancy con-
tribution which increases the amount of turbulent kinetic energy under unstable
stratification and limits the amount under stable stratification conditions. Often,
both terms are merged together as 'production term’ . Finally, the last term of
(3.3.1) describes the dissipation, i.e. the mean rate at which the turbulence does
work against viscous stresses.

Similar, equation (3.3.2) expresses the fact that the amount of temperature fluc-
tuations is changed by an imbalance of the diffusive transport (first term on the
righ-hand side), production rate of temperature fluctuations by mean tempera-
ture gradients (second term) and the dissipation of fluctuations through molec-
ular processes (third term). The temperature variance is especially important
in stratified turbulence as it is proportional to the turbulent potential energy
(TPE = \202N~2).

The balance of SGS Reynolds stresses (3.3.3) is determined by turbulent trans-
port (first term on the right hand side of (3.3.3)), shear (second term) rotation
force (third term), buoyancy contribution (fourth term), pressure-strain corre-
lation (fifth term) and shear production (last term). Neglecting the molecular
dissipation in high-Reynolds number flow, it is the pressure redistribution which
limits the growth of the fluxes.

The first term on the right-hand side of (3.3.4) denotes the rate of turbulent
transport of temperature. The second and the third terms express the rate of
creation of the heat flux due to the actions of mean temperature and mean ve-
locity gradients, respectively, the former tending to increase the magnitude of
temperature fluctuations, the latter the magnitude of velocity fluctuations. The
fourth term represents augmentation of the heat flux due to gravity. Finally, the
last term is the pressure-temperature gradient correlation, the counterpart of the
pressure-strain correlation in the stress equations.

3.3.2 The Third-Order Moments

Closure of the set of second-order moment equations (3.3.1)-(3.3.4) requires elim-
ination of the unknown third-order tensors related to the effect of turbulent and
pressure transport (Dy), of pressure correlations (II;;, I1?) and of dissipation (e;;).
The transport terms are entirely neglected (equivalent with assuming conditions
of homogeneous turbulence) apart from the ones appearing in the equation for the
turbulent kinetic energy (3.3.1). These third-order terms are implicitly accounted
for by the upstream-discretization of (3.3.1) whereby the numerical induced dif-
fusion is proportional to the velocity. Therefore, the numerical induced diffusion
in vertical direction is probably too small near the surface where the vertical
velocity is small but the flow is expected to be strongly inhomogeneous. Vertical
diffusion is for this reason additionally modeled via

0%

D N —Vy—>.
f(e) 14 822

(3.3.6)
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The eddy viscosity v, has been adopted from Zeman and Tennekes (1975),
Ve = ceT(w? + %T)\gw), (3.3.7)

using the turbulent time scale 7 = 2e/e, A\3 = ga, and ¢, = 0.3.
The pressure-strain correlation tensor and the pressure-temperature gradient cor-
relation tensor,

Op Op
IL;; = wi—— j )
I " 8acj + i 8:131
1 00
nmn = =
' QOpaxi’

are known to play a crucial role in determining the structure of most turbu-
lent flows (Speziale 1991). In one-point closure, the pressure-correlations have
to be modeled in terms of the known local tensors b;;, S;;, Bij, wsj: start with
the pressure-strain correlation tensor which is expressed following Launder et al.
(1975). It can formally be derived as low-order Taylor-series expansion in b,
about the isotropic-turbulence state (corresponding to b;; = 0) in the case of
homogeneous turbulence. Especially the underlying requirement of approximate
vertical homogeneity of the mean shear is not satisfied in a geophysical surface
flow. The coefficients therefore contain the consequences of inhomogeneity. In
mathematical terms, the constraint of form invariance under coordinate transfor-
mations requires that II;; be an isotropic tensor function of its arguments,

C
_Hij ~ —%bij + CHQGSZ'J' - CH?,BZ']' + CH4ZZ']' + Crmzij, (338)

where the first three terms describe the ’return-to-isotropy’-part, the mean shear
interaction and the buoyancy contribution, respectively. The fourth and fifth
term are symmetric tensors constructed from vorticity contribution and anisotropic
production, respectively. The coefficients have to be calibrated from experiments
and simplified calculations. An overview over the variety of recommended coef-
ficients is listed in table 3.1 ®. In this work, the values Cr; — Crs are chosen
following the plume experiments in Shih and Shabbir (1992) whilst Cps is taken
equal to Cry. An analogeous procedure for the pressure-temperature gradient
correlation tensor results in

117 ~ —%m — Cpa\it? + Co3Sixurd + Coa(wir — €irah)url (3.3.9)
T

where the coefficients (see table 3.2 for a collection)” are taken from Shih and
Shabbir (1992) as well. In most common second-order RANS models in geo-

6Some coefficients result from asymptotic considerations, e.g.the Rapid-Distortion theory
result for C2 = 0.8 by Crow (1968), and the isotropic result for Cri3 = 0.33 by Launder
(1976).

In isotropic turbulence, Cp2 = Cypz = 0.33 (Launder 1976). The coefficient Cy; is related
to Cm1 via Equation (3.3.23).
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Authors CHl CHQ Cng CH4 CH5

Champagne et al. (1970),

Wind tunnel data of homogeneous shear flow | 3.24 0.8 - 0.61 0.74
Wyngaard et al. (1974),

Atmospheric surface layer data 3.46 0.8 - 0.45 0.62
Launder, Reece and Rodi (1975) 3.0 0.8 - 0.655 0.875
Gibson & Launder (1978) 36 08 06 0.6 0.6

Shih & Shabbir (1992) 476 08 04 057 098
Gatski and Speziale (1993) (linearised) 34 036 - 0.2 0.625

Table 3.1: Coefficients in the modeled pressure strain-correlation tensor

Authors Cor Cpo Cpz3 Cyy
Gibson & Launder (1978) | 6.0 0.33 0.33 -
Shih & Shabbir (1992) 7.5 042 0.6 1.0

Table 3.2: Coefficients in the modeled pressure temperature gradient-correlation
tensor

physics, the correlation tensors are highly simplified by assuming Cp3 = Cpy =
Crs = 0 (see, e.g., Mellor and Yamada (1982), Kantha and Clayson (1994), Bur-
chard and Baumert (1995) and the detailed comparison study by Burchard and
Bolding 2001)). However, it must be kept in mind that the recommended coeffi-
cients are derived for RANS calculations. It is not clear whether they can simply
be adopted to LES calculations where a large amount of turbulence is resolved.
As the small-scale dissipative structures are nearly isotropic, the dissipation ten-
sor

? 2 mo 3310
g J Y la.’lik &vk ( )
is commonly modeled as
2
Eij = 5551']'- (3311)

There are different suggestions how to extend this expression to slightly anisotropic
cases (Lewellen 1977, Canuto 1994) which contain (3.3.11) in the limit of
Re — oo. However, these corrections are neglected here despite the presence
of both shear and stratification. Durbin and Speziale (1991) argued that for lo-
cal isotropy to be a valid approximation, the relation S - 7 < 1 must hold. This
is in conflict with the concept of algebraic stress modeling (see footnote 10 in
this Chapter). The existence of local isotropy in stably stratified flows is the
subject of current research. Experiments of van Atta (1991) reveal that stable
stratification has a strong influence even on the smallest turbulent scales. The
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commonly used isotropic model for the scalar dissipation rate reads
3/2

le ’

€

€= (3.3.12)
where [, is the dissipation length scale. It can be deduced from inertial subrange

theory to be connected to the effective grid size (footnote (2) in this Chapter) A
by

A
le = —, 3.3.13
- (33.13)
5 \3/2
where ¢, =7 (%) ~ 0.85 for the Kolmogorov constant Ko ~ 1.6.

In the presence of rotation the dissipation rate is known to decrease which means
that the dissipation length scale tends to increase (Greenspan 1968). Rotation
disturbs the energy cascade from the large to the small scales since the effective
vorticity is suppressed. This is modeled following Canuto and Dubovikov (1997)
and Canuto et al. (2001) by making the dissipation length scale a function of
an inverse Rossby number Ro = Q3 - 1°/e}/2 where [ denotes the non-rotating
dissipation length scale. The present formulation is a truncated version of the
Canuto and Dubovikov (1997) expression. The complete derivation is given in
the appendix A. The rotational correction function is given by

lrot 2
& = € =
9(F) 2 1+vV1-R?

In the non-rotational case, g(Ro) = 1 and (3.3.13) is recovered. The present
formulation is obviously only valid for small inverse Rossby numbers, Fo < 1, i.e.
slow rotation. It does not yield the correct limit {"® — oo for rapidly rotating
turbulence since for rapid rotation, the truncation of the Canuto and Dubovikov
(1997) expression becomes invalid.

It is noted by Canuto et al. (2001) that since rotation tends to suppress the
turbulent cascading while stratification increases it both effects have to be taken
into account. However, it is expected that for the present application the effect of
(3.3.14) is small since Ro < 1 in shallow convection. The effect of stratification
is considered in the next Chapter.

(3.3.14)

3.3.3 Near-wall’ turbulence

The presence of a wall at the surface and of the density jump at the thermocline
strongly affects the turbulent flow and limits the accuracy of the LES method. In
both regions, the near-wall region and the entrainment zone, vertical motion is
suppressed. The relevant turbulent length scale is determined by local conditions
rather than by the LES filter scale (or equivalently, the grid spacing). As the
energy-containing eddies of near-wall and entrainment region cannot be repre-
sented on the numerical grid, the main burden is placed here on the SGS model.
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Commonly, it is assumed that in LES the subgrid scales can be described by a
Kolmogorov inertial energy spectrum

E(k) = Ko - 23k/3, (3.3.15)

where Ko is the Kolmogorov constant (= 1.6). In this range (inertial subrange),
the energy spectrum is determined entirely by ¢, the constant energy dissipation,
and k, the magnitude of the wavenumber. By integrating over all wavenumber
contributions, equation (3.3.12) is derived with [, given by (3.3.13). However, the
assumption that the SGS eddies are isotropic is not valid in the near-wall region
and the thermocline; more sophisticated SGS formulations are required. Some
of them addressing the near-wall flow (Mason and Thomson 1992, Sullivan et al.
1994, Kosovic 1997) have been described in chapter 3.2.2.

In the present work, the SGS model modification is extended to the entrainment
zone. The aim is to connect the grid spacing (which is the relevant turbulent
length scale in isotropic turbulence, see (3.3.13)) with the appropriate turbulent
length scales in both regions in a correct manner.

The surface region

Near the surface wall, the dissipation length scale is known to vary with distance
from the surface. As a result, the number of grid points required to resolve the
near-wall eddies increases dramatically. Baggett et al. (1997) calculated that the
number of grid points needed for accurate LES of the turbulent boundary layer
in shear flows scales as M, ~ Re? where Re, = u,l, /v is the friction Reynolds
number. For the flows under consideration here, M, is only slightly lower than
the estimation for direct numerical simulation.

The most common approach to alleviate the near-wall resolution requirements is
to replace the no-slip boundary condition with an appropriate 'wall model’. The
wall model derives boundary conditions for the mean variables of the flow (see
Chapter 3). In this Chapter the discussion is focussed on the effect of wall and
thermocline on the SGS turbulent quantities.

The most pronounced effect of the presence of a wall on turbulence is impeding
the energy transfer from the streamwise direction to that normal to the wall,
thus shortening the relevant turbulent (wall-normal) time scale. Therefore, Gib-
son and Launder (1978) introduced wall damping corrections into the models of
the pressure-strain and pressure temperature-gradient correlation tensors. This
is not done here. Instead, the shortening of the turbulent time scale is implicitly
incorporated within the formulation for the dissipation length scale which is pro-
portional to the turbulent time scale. Near the wall, the dissipation length scale
is known to grow linearly with the wall distance. It is computed by

199 = ay - k(2 + 2) (3.3.16)
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Figure 3.1: The dissipation length scale versus non-dimensionalised depth according
to equation (3.3.17). In the interior, the dissipation length scale is constant and only
a function of the grid spacing, see (3.3.13). Near the surface, it varies linearly with
surface distance according to (3.3.16).

where k = 0.4 is the von Karman constant, z’ is the vertical distance from the
surface, zy is the roughness length and the coefficient a; is derived following
Mason (1994)% | a; = (c.Cs)™' = (15Cm;/4)%*. In the interior of the flow, the
inertial subrange result (3.3.13) is used which is valid for isotropic turbulence.
For convenience it gets the label 'int’ (for ’interior’):

™ = Ale,

The two expressions are matched smoothly following Mason (1994) via
. , —1/2

I, = l::nt . (1 + (lént/lgall)Q) / _

The shortening of the lenght scale towards the rigid surface is illustrated in Figure
3.1. Note that equation (3.3.12) relates dissipation length scale and dissipation
rate. It is hence possible to account for enhanced dissipation, e.g. due to wave-
breaking, by modifying the surface length scale formulation (3.3.16) to (Y% ~ 2.
A discussion of appropriate values for the exponent n is found in Burchard 2002.

(3.3.17)

The entrainment region

In the presence of stable stratification, especially in the thermocline, the dissipa-
tion length scale is strongly reduced. The validity of the Kolmogorov hypothesis

8Mason (1994) determines the mixing length scale (3.2.3) as A = (CsA) -
(14 CsA/(k(2' + %)))"". The dissipation length scale is taken as proportional to his mix-
ing length scale. The coefficient a; is seen to depend on the coefficient Cty; from the model of
the pressure-gradient correlation tensor (3.3.8).
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is violated if there is any substantial transfer of energy directly into or out of
the ’inertial subrange’. Consequently, in the presence of stratification, the energy
spectrum may deviate from the ’-5/3 power law’: the buoyancy force tends to
increase the dissipation rate by converting part of the turbulent kinetic energy
into potential energy. Because velocity shear tends to decrease the dissipation
rate by supplying kinetic energy to the turbulence, shear partially balances the
deviation (Weinstock 1978). Therefore, both stratification and shear have to be
taken into account. Cheng and Canuto (1994) generalised the inertial energy
spectrum (3.3.15) to

E(k) = Ko -e(k)¥3k>/3 (3.3.18)

and define a correction function

f(N,S) :=¢(k)/e

to express the deviation from isotropy.The correction function depends on shear
frequency S and Brunt-Vaisilla frequency N (for stable stratification, N? < 0),
satisfying f(N =0,5=0) = 1. Using the relation (3.3.12) and the maximal re-
solvable wavenumber k., = 27/2A, and after substituting the two-point closure
result for £(k), the correction function reads as (Cheng and Canuto 1994, Canuto
and Cheng 1997)

F(N,S) = (/01 (1-bmn(1+ anQ))2 dq)3/2 (3.3.19)
with

31/2 3/2 o 1 2 2/3
b= ?KO B(Rf - 1),0/ = PFT f(N, S)

B\ el/? 1
= F = — = —
q (kma$> Y r N'A,ﬂ 2’

where Fr is a Froude number and Ry = B/—b;;S;; is the flux Richardson number.
In order to use the function in a numerical model, the integral is approximated
by Cheng and Canuto (1994), depending on the ratio between the critical and
the actual Richardson number r; = RY /Ry,

(1+ 00" if ry > 1,
f 73/2 .
(1 + wElmm) if rp <1,

where fi = 14 0.88(ry — 1), fo = 1.25(1 — f1)/f1, fs = 0.068(f1 — 1) and fs =
0.12|f; — 1+ 1.5/f1| */°. The correction function f(N,S) can in turn be regarded
as correction function for the dissipation length in stable stratification,

f(N,S) = (3.3.20)

I. =12 f(N,S). (3.3.21)
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By that, two correction functions for the dissipation length have been derived
which match the interior value from inertial subrange theory (3.3.13) with the
correct length scales near the surface via (3.3.17) and near the thermocline® via
(3.3.21), respectively.

3.3.4 Algebraisation of the second-order moment equa-
tions

In order to get the equations (3.3.1)-(3.3.4) tractable, they are strongly simplified
by algebraic stress modeling (Rodi 1976, Canuto 1994). The main purpose is to
transform them from differential equations into algebraic relations. Finally only
one differential equation is solved numerically, namely that for the SGS turbulent
kinetic energy, (3.3.1), while all the others are solved algebraically. The following
approximations are made: In the equations (3.3.2)-(3.3.4) the turbulent diffusion
terms are entirely neglected. In principle, this corresponds to the assumption of
homogeneous turbulence in the unresolved scales. This assumption is less restric-
tive than the assumption of isotropic turbulence which leads to the Smagorinsky
SGS model. Weak inhomogenities are accounted for by including turbulent dif-
fusion terms in the approximation of the equation for the SGS turbulent kinetic
energy, (3.3.1).

In (3.3.1), the horizontal part of the turbulent diffusion term Dy(e) is implicitly
taken into account by the numerical diffusion of the chosen advection scheme.
Since equation (3.3.1) is discretized using the upstream method the numerical
diffusion is expected to be larger than Dy(e). The vertical part of Dg(e) is
accounted for by a down-gradient formulation following Zeman and Tennekes
(1975). The approximated equation is given by (3.3.26).

In (3.3.2), the time-derivative and turbulent diffusion are neglected in order to get
the diagnostic expression ey = —u;00T /Ox;. Introducing the time scale of tem-
perature fluctuations 7y by 79 = 02/ey, the time scale of temperature fluctuations
is commonly connected to the turbulent time scale 7 = 2e/¢ by

= (3.3.22)
€1

Inertial subrange theory predicts ¢; = 1/2¢. - Ba/ Ko ~ 0.5 (Ba, Ko are the Batch-
elor and the Kolmogorov constant having a value of 1.34 and 1.6, respectively)
but this contrasts shear flow experiments by Webster (1964) which indicate that
¢1 ~ 0.7 (Launder 1976). As the Webster (1964) data will be used for f(N,S) in
Chapter 4.4.2, the latter value for c; is adopted. Finally, the algebraic expression
(3.3.27) is derived. The relation (3.3.22) can in turn be regarded as ratio of the

9The correction function f(N,S) is applied anywhere in the flow but it differs from unity
only in stably stratified regions.
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return-to-isotropy coefficients in (3.3.8) and (3.3.9),

Cp = 2. (3.3.23)

&

In (3.3.3), the dimensionless anisotropic part of the Reynolds stress tensor a;; =
bi; /e is introduced. Hence, the left hand side of (3.3.3) becomes

Dbij DCLZ']' De
— =€

Dt St T

(3.3.24)

Taken furthermore the approximation Dj(b;;) ~ %Df(e) suggested by Rodi
(1980) and assuming Da;;/Dt to be small, (3.3.24) together with the diffusion
term results in

D94 Dy(b) = ay ( + Die)) = AP~ ) = T2 (G- 1), (33.29)
where P, = —b;;S;; + Apu0 and € are the production and dissipation of turbulent

kinetic energy, respectively, from (3.3.1) and G = P,/e. Thus time derivative
and third-order moments are taken as proportional to the corresponding terms in
the equation for the turbulent kinetic energy (3.3.1), allowing to get a diagnostic
expression for the Reynolds stresses. This procedure is hoped to be a better
approximation to the Reynolds stress dynamics than simply neglecting the time
derivative and diffusion terms in (3.3.3)!°. Hence, the Reynolds stresses are
expressed as composed from non-stationarity contributions arising from shear,
buoyancy, and vorticity given in (3.3.28). In (3.3.4), the third-order moments
are neglected and local equilibrium is assumed to get an algebraic relation. Not
only the contribution of the temperature gradient is retained but also that of
temperature fluctuations and anisotropic production by shear (see (3.3.29)).
Equation (3.3.12), connecting dissipation rate of turbulent kinetic energy and
dissipation length scale, is modified to account for wall-proximity according to
(3.3.16) and for the effects of stratification, shear and rotation on the dissipation
length scale by the correction functions f(XV,S) according to (3.3.20) and g(Fo)
according to (3.3.14). The approximated equations for the SGS second-order
moments and the modified expression for the dissipation rate of turbulent kinetic
energy can now be written as follows
De 0%
Dt~ "2
10 However, there are some deficencies in this derivation. Firstly, neglecting Da;; /Dt is only
appropriate for 7S > 1 (Taulbee, 1992), where S is the shear frequency. This requirement is
only met in strong sheared flows in which in turn the assumption of local isotropy becomes ques-

tionable. Secondly, the assumption that Reynolds stress diffusion is proportional to diffusion
of turbulent kinetic energy implies constant anisotropy of the stress tensor.

- bijSz'j + /\km — &, (3326)
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02 = ——uf— 3.3.27
ok oxy’ ( )
2 — _
; (CQ + (G — 1)) bij = —C3€Sij + 64(/\in + /\3u,0
2 -
— §5i3/\kuk0) — 05(22']' + Zij), (3328)
2(36— _ 2 aT
TUZH = (bZJ + gedm)a—xj
—07)\35,'3@ — CgSij@, (3329)
63/2
e = (3.3.30)

f(N, S)g(Ho)l.’

where C1 = 14, Co = CH1/2 = 238, C3 = 4/3—01]2 = 053, Cqy = 1—CH3 = 07, Cy =
1-— CH4 = 043, Cg = 091/2 = 375, Cr = 1-— 092 = 058, Cg = 1-— 093 =0.4.

In summary, the SGS model is composed of one differential equation (for the
SGS turbulent kinetic energy). The effects of shear and buoyancy are taken
into account via algebraic relations for 62, b;; and u;f#. The main deficiences
of the Smagorinsky model are removed within this formulation. The assump-
tion of alignement of SGS stresses and the rate of strain tensor is released in
the formulation of (3.3.28). Shear and buoyancy terms contribute to both the
SGS fluxes of momentum (3.3.28) and of heat (3.3.29). The concept of the tur-
bulent SGS Prandtl number is obsolet since the fluxes of momentum and heat
adjust themselves according to the flow conditions. The work turbulence has
to do against gravity under stably stratified conditions is accounted for by the
correction function f(N,S). The differential equation for the turbulent kinetic
energy (3.3.26) accounts for (weak) deviations from local equilibrium. The system
(3.3.26)-(3.3.30) is solved in an iterative manner (Chapter 4.4).

3.3.5 Recovering of simpler SGS models

The formulation of the SGS fluxes may be simplified and rewritten in order to
compare it with commonly used SGS models.

The down-gradient types of SGS models (this approach is e.g. used by Deardorff
(1980) and Mironov et al.(2000)) assume alignement of SGS Reynolds stress ten-
sor and strain rate tensor. All the non-diagonal terms, the temperature fluctu-
ations and the vorticity terms are simply neglected. This results in skipping all
terms of (3.3.28) and (3.3.29) apart from the mean gradient, hence

2

ﬂbij = —c3eSi,
206— 2 OT
—u) = ——e

T 3 0x;
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are the simplified counterparts of (3.3.28) and (3.3.29), respectively. The SGS
eddy viscosity and diffusivity then reads as

—by

Vi= o = c,et?l,, (3.3.31)
b
Xa = T om; cxe ', (3.3.32)

where the suffix 'd” denotes the down-gradient approach. All the model constants
are summarized in ¢, = ¢3/2¢; and ¢, = 2/3cg, respectively.

Within the Smagorinsky approach, the local equilibrium assumption is made
additionally. It changes (3.3.26) to

€= —bijSij + )\km = —bijSij(l — Rf),

where Ry is the flux Richardson number approximated by Ry = —oy LRi, Riis the
gradient Richardson number and oy = v4/xq4 = ¢, /¢, = 3/4-c3c6/co the SGS tur-
bulent Prandtl number under neutral conditions. Hence, using
e = e&¥2/l, = €3?/(A/c.), thus neglecting the shortening of the dissipation
length scale near the surface,

Vi = ¢, 71, = (CsA)? - S(1+ 0y " Ri) 7,

where S = (25;;5;;)'/2. The result corresponds to (3.2.2). All model constants
have been summarized in the Smagorinsky constant C's where

CS _ (@)3/41{03/23\8/3/2
Y

C2

shows up to depend on the model coefficients ¢3 and ¢y and, in turn, on the
model coefficients Cyy, Cro of the pressure-strain correlation tensor (3.3.8). For
the present set of coefficients, C's &~ 0.096. The Kosovic approach (3.2.9) can be
recovered from the proposed iterative procedure in Chapter 4.4.2. By inserting
the down-gradient estimation b,(;) from (3.3.31) into the second iteration bg) from
(4.4.10), it can be seen that under neutral conditions, assuming inertiality, local
equilibrium and neglecting Coriolis contributions,

1
bz(?) = _CIKIA (261/251'3' — CIKQA (Sszk] - gSmnSmn51] - clKg(Sikwkj — jkwik)>> y

which is of the same structural form as the Kosovic formulation (3.2.9). In the
highly simplified formulation here the coefficients have the values
Cer = e3/(2 - cace) & 013,y = 4cs/(cace) &~ 1.13, ¢y = 2¢5/(cace) = 0.57
whereas in the Kosovic approach (3.2.9), cx1 = 0.116, cxo = 0.823, cx3 = 0.823.
The coeflicients are in reasonable agreement which demonstrates that the Kosovic
approach can be regarded as a special case of the present second-order moment
model.
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3.4 The model equations

After the filter operation described in Chapter 3.1 the conservation equations for
ocean momentum in Boussinesq approximation read (e.g. Tritton 1988):

RPN L 3.4.1
ot 8ﬂ3j Q0 8331 Cagh™ gk 633]' QOg ( )

where U; are the cartesian components of the filtered velocity vector, P* is the
nonhydrostatic part of the total mean dynamic pressure, {2; are the components
of the Earth rotation vector (taken here at 75°N geographic latitude), b;; are the
components of the anisotropic part of the SGS stress tensor, o' = o — p,(2) is
the reduced density, where o denotes the local density and p,.(z) is the ambient
background density and g; = (0,0, g) is the Earth’s gravity. The pressure term
includes the diagonal elements of the subgrid scale stress tensor, i.e. P* = P +
00 (2/3 + aaa)e (see Chapter (4.4.2)).
In the present model there is only one additional conservation equation for scalar
properties, namely for heat,

or oU;-T) 0 —

5 + oe; axjuﬂ. (3.4.2)
The budget equation for the SGS turbulent kinetic energy (equation (3.3.26)) is
repeated here for clarity. It reads

e N o(U; - e) e

— == e——bi-Si- )\—0— .
ot " T on, | Veam  Puvutomb—e

38



Chapter 4

Implementation

The effective filter operation which had transformed the basic unfiltered equa-
tions into the LES equations is not known in detail. It is an interplay of the
representation on the numerical grid with the numerical algorithms and the SGS
model. The effective filter can therefore only be deduced a posteriori and it is
common practice to use the same initial and boundary conditions as for the unfil-
tered equations (Sagaut 2001). For the sake of simplicity, the overbars indicating
the LES filtering process will be omitted from now on.

The implementation Chapter starts with the discussion of appropriate initial and
boundary conditions. Section 4.2 is devoted to the numerical algorithms used to
integrate the LES equations. A closer look on the numerical formulation of the
SGS model is undertaken in Section 4.3. Suitable initial conditions are considered
in Section 4.4.

4.1 Initial Conditions

With respect to initial conditions, i.e. for a model ’spin-up’, the one-dimensional
Ekman dynamics according to equation (2.1.1) together with the eddy viscosity
approach (2.1.2) is prescribed. The equations are integrated by a forward-in-
time-centered-in-space (FCTS) method until a quasi-stationary state is reached.
It has been shown by Svensson (1979) that the constant eddy viscosity

u2

v = 0.026—* (4.1.1)
[

yields nearly identical results to more sophisticated turbulence parameterisations.

The resulting one-dimensional velocity profiles are stored as initial values for the

three-dimensional simulations.

As an example, the integrated profiles of the run ’strong’ (see Chapter 6) are

shown in figure along with the corresponding analytical solutions according to

(2.1.4). While the agreement for the v-component (in blue) is satisfactory the

39



—80F

Depthinm

-100 -

-120

-140f

velocities in cm/s

Figure 4.1: The horizontal velocity components from the numerical integration of the
Ekman layer equations pym, (solid red line) and vpyy, (solid blue line) for run ’strong’
in comparison with the theoretical results us, (dotted red line) and vy, (dotted blue
line) according to (2.1.4).

u-component (red line) significantly differs from the theoretical profiles. The
result is due to the fact that the wind was chosen in the y-direction and thus, the
boundary condition for u according to (2.1.3) was zero. For too coarse resolution
the transfer of momentum from v to u is underpredicted. This deficit can only
be overcome by very fine vertical resolution®.

The initial values for the turbulent kinetic energy are derived from the simplified

equation (3.3.32) via
ginit — ( vt )2
e L)

4.2 Boundary Conditions

The surface heat flux H, is gained from a balance equation for the sum of long-
wave radiation, sensible and latent heat fluxes in the form

HO = A/71'[LW + Hsens + ,Hlat- (421)

While short-wave radiation can be omitted in winter time at a latitude of 75°
(Smith et al., 1990), the difference of in- and outgoing long-wave radiation is

! Alternatively, a kind of *wall function’ is currently under investigation in order to bridge
the first grid point.
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given by Boltzmann’s law:

air sea

AHrw = €4ir0sB (T4 -T ) , (4.2.2)

where €, &~ 0.97 (Harms, 1994) is the transmission coefficient, ogp is the Stefan-
Boltzmann constant, 7,;, is the air temperature and T, is the sea surface tem-
perature. Sensible heat fluxes are computed from

Hsens = ﬂsens@aircP,air‘Wld(Tair - Tsea)- (423)

The turbulent exchange coefficient for sensible heat Bye,s ~ 1.5 - 1073 is chosen
following Maykut (1986). Thereby, cp g4 is the specific heat of air at constant
pressure. The latent heat flux

Hlat = ﬁlatQaierap‘WIO‘(Qair - QO) (424)

is determined by the turbulent exchange coefficient for latent heat (., taken as
equal to the exchange coefficient for sensible heat. Thereby, L,,, denotes the
latent heat of vaporisation, ¢,; is the constant ambient humidity and g¢pis the
humidity close to the sea surface which depend on the actual temperature. The
kinematic heat flux will be used for the bulk formula (4.2.9). It is related to the
dynamic heat flux and the buoyancy flux (see (1.0.2)) via

Q=0 = Do (4.2.5)
CrpQo go

At the surface, the rigid-lid condition w = 0 at z = 0 is employed. As surface
waves are thus excluded, neither wave breaking nor Langmuir circulation can be
described.
However, the importance of surface gravity waves is largely reduced in polar
boundary layers compared to midlatitude or tropical regions. Waves are likely
to be damped in artic leads and polynyas by ice floes or growing frazil ice (Mar-
tin and Kaufmann 1981). It should be kept in mind that the common rigid-lid
approximation based on the hydrostatic approximation does not apply here. In-
stead, it should be viewed as an observational finding that surface displacements
are small. The surface fluxes of momentum and heat are prescibed by atmospheric
input. From constant wind and temperature fields, surface fluxes are computed
using bulk formulae (Gill 1982). The surface stress tensor 73 is determined from

7:(') = QairCD . (W10 - Ul,j,lc) ‘Wl() — Ul,j,k y (426)
where g, is the mean density of air, C'p is the drag coefficient, Wm is the
wind vector taken at 10 meters height and U, ; is the surface current vector
with grid indices 1, 57 and k for the vertical, meridional and zonal direction,
respectively. For the sake of simplicity, the drag coefficient was chosen to be
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constant throughout the test cases at a value of Cp = 1.0-1073. This value is at
the lower bound of the available estimations (Harms, private commun.). Thus, it
tends to underestimate the momentum flux associated with a given wind speed.
Measurements and theoretical arguments suggest that the drag coefficient may be
a good indicator of wind-wave interactions (Kraus and Businger 1994). Therefore,
it appears possible to extend the present formulation of the boundary conditions
to a free surface flow using empirical laws for the drag coefficient (Smith 1988,
Kraus and Businger 1994) accounting for fetch and stability effects.

Since from the bulk formula (4.2.6) the surface stress is known, the velocity
gradient can be prescribed:

oU (z)

 _ D at z =0,

32 00Vx

oV Téy)

—_— = t =0 4.2.7

where v, denotes the horizontally isotropic vertical eddy viscosity near the sur-
face. The actual value of v, is unknown and will be discussed below.
Additionally, the following relations hold at the surface:

aP_ae

or Qo
= _=xY = 4.2.
% . at z=0, (4.2.9)

where y, the vertical eddy diffusivity near the surface. Eddy diffusivity and eddy
viscosity are related by the turbulent Prandtl number. Its value has to be speci-
fied at the surface according to equation (4.4.6). Corresponding to the Neumann
boundary condition for pressure, the density term is prescribed as zero resulting
in a balance of pressure gradient and buoyancy at the surface.

The boundary condition for temperature - and that for horizontal velocities
(4.2.7) - require closer inspection. The surface fluxes of momentum and heat
are explicitly known from the bulk formulae (4.2.6) and (4.2.5), respectively.
Thus, gradients of the mean velocity and temperature can be directly linked to
the surface fluxes. As both of them are similar in structure, only the temperature
boundary condition is considered in detail. It is Fourier’s law with the molecular
diffusivity for heat replaced by an eddy diffusivity. The first implication of the
Fourier law due to the parabolic character of the heat conduction equation is an
infinitely fast spreading velocity. Fourier’s law implies the assumption that the
surface fluxes (4.2.7), (4.2.9) apply instantenously. This is confirmed by observa-
tions in which records of current changes closely followed pronounced changes of
the surface wind (Kraus und Businger 1994). The second more severe point is the
determination of eddy diffusivity (and eddy viscosity, respectively). Fortunately,
due to the explicit time integration of the turbulent diffusion, the exact value is of

42



no importance. It cancels out during the computation (demonstrated in Chapter
4.4.3) and is therefore taken as a constant.
The following relations hold at the lower boundary:

8—P = 6—T = % = at z = —L
0z 0z 0z N “
u=v=w=0 at z = —L,. (4.2.10)

To avoid reflecting internal gravity waves, a Rayleigh damping function is applied
to the lower 1/4 of the model domain where the horizontal components of the
SGS eddy viscosity and eddy viscosity tensors (4.4.1) are increased according to

vI = 1 4 Vg (4.2.11)
for I > 3/4- NZ, where I is the vertical layer index and NZ the total number of
vertical layers. The damping value is taken as

I—3/4-NZ)

Vdamp = Vdamp, 0 * sin? <7r/2 . 1/4-NZ

with Vgamp, 0 = 0.1ms™L.

The requirement for the horizontal boundary conditions is that the model domain
is chosen sufficiently large such that the flow is not affected by the boundaries.
The horizontal conditions therefore satisfy periodicity where flow out of a hori-
zontal boundary enters the opposite boundary. The requirement will be discussed
in the model set up (Chapter 5).

4.3 Numerical Algorithms

The equations are discretized as finite differences on a staggered C-grid (Mesinger
and Arakawa 1976). Scalar mean quantities are located in the mid-cell, the ver-
tical velocity component at the top wall of the cell and the horizontal velocity
components at the side walls corresponding to their respective directions. The
turbulent kinetic energy is located at the top wall. The totally six components
of the SGS eddy viscosity and diffusivity tensors v, xx(k = 1,2, 3), see equation
(4.4.1), are located differently. Figure 4.2 displays the numerical grid in the hor-
izontal direction. The numerical grid in vertical direction is shown in Figure 4.3.

The discretization of the momentum equations is done by a TVD flux-limited

modified MacCormack scheme (MacCormack 1969). Originally, it combines for-
ward differencing in the first step with backward differencing in the second step
to achieve second order accuracy in space and time. For the use in a flux-limited
advection algorithm, the steps are slightly modified.
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Figure 4.2: The Arakawa C Grid in horizontal direction
The mean flow scalar variables P and T' are located in the middle of
the cell while the horizontal velocity components U and V' are located
at the corresponding cell boundaries. The grid indices j and k refer
to the meridional and the zonal direction, respectively. The horizontal
components of the SGS eddy viscosity and diffusivity tensors, v1, x1, X2,
from (4.4.1), are located in the middle of the cell as well.

To simplify the presentation, regard a two-dimensional advection equation of
velocity u with source term g(u)*:

(M ) ga

where f(u) = u?,g(u,v) = u-v are the flux functions. With respect to the
following discussion the numerical approximation is written in conservation form,

n n At
Uj,]j_l — Uj,k _A—;I; . (Fj,k:-l—l/? — Fj,k—l/Z)
At
T Ay (Gj+1/2,1c - Gj—1/2,lc) + At - Qjik, (4.3.2)

where U, F, G and () denote the numerical approximations to velocity u, flux func-
tions f, g and source term ¢, and 7, k are the grid indices in z— and y—direction,

2The term q(u) contains diffusion, rotation and pressure-gradient in the model equations.
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Figure 4.3: The Arakawa C Grid in vertical direction.
The vertical velocity component W is staggered by half a vertical grid
size compared to the other mean flow variables. The grid index 7 and
k refers to the vertical direction. The SGS turbulent kinetic energy e is
located on the W-point. The same is true for the vertical components of
the SGS eddy viscosity and diffusivity tensors, vy, 3, x3, from (4.4.1).

respectively. Skipping the source term for a moment, methods which can be
written in this form are guaranteed to converge to a weak solution of the original
equation (4.3.1) (as long as they are convergent and consistent). The numeri-
cal flux functions F,G can be viewed as approximating the flux functions f, g
averaged over the time step. The predictor step of the modified MacCormack
algorithm is an upstream approximation,

Fw P G -G
U](,lk) _ U;'?k _At- < gy k+1/2 J,k—1/2 + J+1/2,k =12,k _ Qj,k) , (4.3.3)

Ax Ay
where
Fup . U£k+l/2 + ‘U?k+1/2‘ U” i U£k+1/2 - |U£k+1/2|
Jik+1/2 T 2 j 9 G411
am N VJ+1/2 + 1V, +1/2 K| n g+1/2 k | +1/2 K| n
J+1/2,k T 2 gk 1,k

are the upstream flux functions in x— and y—dlrectlon, respectively, and veloci-
ties Uy 172, V}i1/9,5 derived from the Rankine-Hugenot jump condition (Sweby
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1984).

In the corrector step, antidiffusive downstream fluxes are added in each direction
to correct the upstream predictor step. In order to avoid oscillations, the correc-
tor fluxes are limited by so-called flux limiters ¢(®), ¢®). The corrector step has
the structure

2 1
v =yl -

Js Js

At ka+1/2 - F]?k—1/2 n G]C+1/2,k - ch—l/2,k
2 Az Ay
At

+ (@ - @), (4.3.4)

where F'¢, G denote the corrected fluxes,

1 1 1 1
(@) Upiae Ukl oy Upbrge = 1Upkgel
¢ U 2 U],k ,

C —
Fj,k+1/2 - ¢j,k+1/2 92 j,k+1+

vt

9 Jj+1, k:

Vi + V]
+1/2,k
GJC+1/2,1; = ¢§'gj.)1/2,k' ( L

—|—12k: | —|—12k|
J / / Ug,lc) .

The flux-limiters ¢(*), $¥) are chosen to enforce the TVD property to the solution.
Their derivation is given in the Appendix.

The solution is denoted U® instead of U™*! since it is not divergence-free. Now
U®) containing the modified pressure field P* of the previous time step?, is used
to compute the actual pressure implicitly in order to guarantee conservation of
mass. This is done implicitly by correcting the velocity field according to

ga(Pn+1 _ P*)

yrtt — @ _
Po oz

(4.3.5)

Using the one-dimensional continuity equation QU™ /dx = 0, this expression
yields a Poisson equation for the pressure update

0?
0z2

Po oU ()

Pn+1 P* —
522 ) At Oz

(4.3.6)

The pressure equation is solved by a successive overrelaxation (SOR) iteration
(e.g. Meister 1999).

The heat equation is approximated by a flux-limited, modified two-step Lax-
Wendroff scheme which is in close analogy to the MacCormack scheme. The only
difference lies in the use of the advection velocity U™ which is identical in the
predictor and the corrector step of temperature advection. This fact would in
principle allow to compute the solution within a single step. However,the two-
step procedure implicitly contains fourth-order derivatives which are effectively

3The old pressure includes the normal stress components @
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in damping high-wave number noise. The conservation equation for heat and the
constant salinity (34psu) are linked to the momentum equations by the nonlinear
equation of state (UNESCO, 1981). As the study deals with shallow convection
the pressure dependence of the equation of state (thermobaric effect) is neglected.
The approximated budget equation for the SGS turbulent kinetic energy e, (3.3.26),
is treated by the upstream method. In order to guarantee the positivity of e and ¢
the sink term ¢ is computed by the quasi-implicit treatment proposed by Patankar
(1980).

The time step of the convection model is chosen as 30s. It is neither limited
by the stability criterion for the explicit TVD advection scheme (CFL number)
nor by stability criterion for the centered-in-space diffusion scheme. The limiting
factor was found to be the pressure equation. During the penetration of sinking
plumes into the stably stratified layer below, fast-travelling internal waves are
radiated which require high temporal resolution.

4.4 The SGS model algorithm

As the system of equations (3.3.26)-(3.3.30) describing subgride-scale second-
order moments is nonlinear despite of the algebraisation procedure, it cannot be
solved explicitly. In this Chapter a short explanation is given how the simplified
equations are stored and solved iteratively in the LES model.

4.4.1 Storage procedure

The coupling of mean and SGS flow is given by (compare with equations (3.4.1)
and (3.4.2)) the following expressions in which the SGS contribution have been
isolated on the right-hand side,

o il %110 - _
ot * Ox; + 00 Ox 261484 U ( oz * oy + 0z |’
oV 8(V . UJ) 1 oP* 61)12 8(622 + 26/3) 8b23
v = %01 () - _
ot + Ox; + 00 Oy 262184 Us (8:5 + oy + 0z |’
8W 8(W . UJ) 1 BP* 8b13 6b23 8(b33 + 26/3)
2+ Pt ) - _
ot * 0z + 00 0z 26512 Ui (8:5 + oy * 0z ’
or N ov; -1y oufl N ovl N owl
ot Ox; B oxr  dy 0z )

Within the computation both the SGS Reynolds stress and the heat flux tensors
are related to the strain rate and temperature gradient tensors via the quasi-
tensors of eddy viscosity and eddy diffusivity, respectively*. These quasi-tensors

4The turbulence model is still an eddy viscosity diffusion approach but a tensorial one. The
diffusion approach induces a parabolic behavior of the turbulent fluxes whereas it might be
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are written in a way that they finally contain three elements only. Each element
is related to a three-dimensional array. Consequently, the quasi-tensors are stored
in six three-dimensional arrays.

The quasi-viscous laws b;; = —2v;;;,,S;; and u;f = —Xijki0T /0x; can be simplified
as all tensors are symmetric, e.g. b;; = b;; and the diagonal terms are treated
separately. Rewriting the traceless part of the Reynolds stress tensor and the
heat flux tensor in vector form, the eddy viscosity and diffusivity quasi-tensors
are defined by

612 11 0 0 512
bi3 = =21 0 »n 0 |-| S |,
b23 0 0 123 523
uf x1 0 0 oT/ox
W | = | 0 xo 0 |-| 0T/0y
wh 0 0 xs oT |0z

(4.4.1)

As can be seen there are only three elements in the SGS eddy viscosity and
diffusivity quasi-tensors, respectively, which are computed by

bags
Vg = _QSaﬂ’
uaf

= ¥ 4.4.2

Xk aT 9z, (442)

where k£ = 1,2,3. The six three-dimensional fields vy and x,(k = 1,2,3) have
to be stored which is equivalent with storing the arrays of the six SGS fluxes
blg, b13, b23, w, m and m

Additionally there are three normal components of the SGS Reynold stress tensor
u_i = baa +2/3 - € with @ = 1,2,3. The components b,, are given by contrac-
tion of (3.3.28) and the additional condition that b; = 0, i.e. the tensor of
anisotropic SGS Reynolds stresses is traceless. The SGS turbulence is assumed
to be anisotropic only in the first two model layers and to relax to an isotropic
state in the interior. Consequently, the anisotropic parts b, of the normal stress
components u2 are only stored in the first two model layers. They are assumed to
be negligible further away from the surface where u2 ~ 2/3-e. Note that during
the iterative computation of the tangential stress and the heat flux components
((4.4.10), (4.4.12)), the anisotropic normal stress components b,, are taken into
account. They are only neglected apart from the first two model layers in the
determination of the modified pressure P* (see footnote 3 in this Chapter) .

equally reasonable to assume a hyperbolic behavior.
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4.4.2 Tterative computation

The notation of the constants is the same as in (3.3.26)-(3.3.30) and the same as
in the source coding as well.

e The SGS turbulent kinetic energy e is given at the old time level (e").

e The dissipation length scale ["! is taken as f(IV,S)g(Fo) - A/c., where
c. = 0.85, A is the grid size, f(N,S) is the correcture function given by
(3.3.20), and g(FRo) is the correction function given by (3.3.14). With respect
to the computation of f(N,S) the flux Richardson number Ry is needed.
As Ry is not yet known at this stage, it is replaced by an expression con-
taining the actual available gradient Richardson number Ri = N?/S? and
an estimation of the SGS Prandtl number o, which is itself a function of
the Richardson number,

R; = —0 ' (Ri) - Ri, (4.4.3)
where o(Ri) is fitted from experimental data (Webster, 1964) resulting in

o(Ri)

0o

~ 1+ 1.6Ri+ 2Ri*. (4.4.4)

The dissipation length scale is now available and the dissipation can be
computed from (3.3.12) :

w1 _ (€2
g™t = T (4.4.5)

It is in this step and in the computation of the surface boundary (4.2.9)
that an estimation for oy, the SGS turbulent Prandtl number under neutral
conditions is required. From equation (3.3.32) the following estimation is
available:

30306
gg =

~ 0.63. (4.4.6)

Co

Unfortunately, this value is seen to depend on the coefficients from the
model of the pressure-gradient correlation tensors.

e A first estimation for the Reynolds stresses b?j“ is made with the aid of the
eddy viscosity at the previous time step. The preliminary Reynolds stress
reads

1 n n
b} = —2up - Sy, (4.4.7)

where greek symbols indicate that there is no index summation. Addition-

ally, a # .
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The temperature fluctuation is estimated as

2 2
0= T (20(90) gy sy (2T (OF
7 = o ( ; ( 55| 20 (1—0y) ov: ) \oz; ) | (4.4.8)

The provisional heat flux u;0 is determined by

——(1) T 1) 2, or™ cy —(1)
0 = ——(b;; —e"0;:)—— + —TN30;30% . 4.4.9
u 266( ] + 36 J) a.Tj + 2667— 3¢43 ( )

Using (4.4.9), the Reynolds stresses are corrected as

- - 2
bz(']2') = DPPs (—036"52?} + ca(Niui + Ajuf — 5)"““’“9) - 65(25]1-) + Zz-(jl))> ,

(4.4.10)
where
.
pps = )
T 22 (B )
PO = —b S + \ew),
2
S = Subl) + Subly) — g(sijsklb;?,
Zz(Jl) = bg;)wjk + bg-}c)wik + Cq (ijlbl%) + eiklbg'}c))Ql-
The temperature fluctuation is updated to
_ - T
2 = — Tt <a_) . (4.4.11)
(&1 8xk
The new heat flux reads as
—(2) T (2) 2 n orm Cr —(2)
07 = ——(b + €)= + —TA30:30% . 4.4.12
U 206(23 +36 ])axj +266T 3043 ( )

The iteration procedure (4.4.10)-(4.4.12) is repeated two times.

The eddy viscosity and diffusivity components are computed in the form

bas
Vg = _2Saﬁ’
ul

= - = =1,2 . 4.4.13

Xk 6T/833a’k ’ 737047516 ( )

These values are used in the approximations for momentum and tempera-
ture to compute the eddy diffusion terms.
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e The anisotropic normal stress components are only stored in the first two
layers, see Chapter 4.4.1,

= oo (4.4.14)

In the first two layers, these values are added to the modified pressure to
give P* = P" + 00(2/3 + aqna)e (see Chapter 4.3).

e Finally, the e-equation is solved by the discrete approximation of (3.3.26).

4.4.3 Numerical considerations of the SGS model

In order to keep the numerical model stable it is required to specify minimum
and maximum values of the SGS fields.

Unfortunately, numerical stability requires the eddy viscosity and diffusivity to
be positive. From a physical point of view, they might become negative repre-
senting a backscatter of energy towards the resolved scales. Whereas on average
the energy cascade is in the forward direction, backscattering is known to occur
intermittently. In the present model the appearance of physically possible neg-
ative viscositiy and diffusivity is suppressed by prescribing a minimum value of
Vmin = 1+-107°m?2s™1. Especially the process of 'counter-gradient fluxes’ (e.g.,
Deardorff 1974) during penetrative convection cannot be captured by the present
SGS formulation. The maximum value of the vertical eddy vsicosity and diffu-
sivity components (5, v3, 3) is given by 0.15m?s~! whereas the horizontal com-
ponents (1, x1, X2) are limited by 1m?s~'. One (among others) of the limiting
factors is numerical stability of the centered-in-space diffusion scheme.

A further remark is required concerning the numerical discretization of the first
model layer. For computing the boundary conditions (4.2.7) and (4.2.9) there
are auxiliary grid points Uy, Vo jk, To,5k- They are located half a vertical grid
size outside the grid domain corresponding to the vertical grid index i = 0 (see
Figure 4.4) such that

oU )
Unjp = Unjh+ 8z 5= = Urjp + Az ooV

oU Téy)
Vojke = Vige+Az: 9z Vijk + Az OoVs’

or Qo
Togr = Tigr+Az- 57 = Luik— Az Xe

The values Uy x, Vo,5k, L0, are computed in order to give the correct boundary
fluxes at z = 0 which is the top of the model domain where all fluxes enter
through SGS turbulent diffusion. At the boundary, the resolved fluxes are zero
due to the boundary condition w = 0. It has been mentioned above that the
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Figure 4.4: The auxiliary grid points Uy are located half a vertical grid
size outside the model domain. The correct surface flux is given by the
central difference (Up j 1, —U. ;) /Az. Analogeously for the V-component
and the temperature field.

exact value of the surface eddy viscosity v, is of no importance since it cancels
out during computation. This can be seen as follows. The vertical diffusion of
velocity U, j is given by

0 oUu 1
9 (Wa)(ljk) = A2 (V*(Uo,j,k - Ul,j,k) - V2,(3/2,j,k)(U1,j,k - U2,j,k))

1 Téz)
= A7 V*QO—V — va,3/2,5,k) (Ui — Uzjk) | -

Here the notation vy (3/9, j ) refers to the eddy viscosity v, inbetween the points
(1, 4, k) and (2, j, k) and v, is located inbetween the points (0, j, k) and (1, j, k).
It is visible that v, cancels out. It has just been required to define Uy ;; as sum
of Uy and shear stress contribution. Any other choice of v, would have only
changed Up ;x but not the term v, (Up ;x — Ui,;x) which appears in the diffusion
equation.

Unfortunately, the employed TVD advection schemes are relatively diffusive as
will be shown in Chapter 7. The reason for using TVD Lax-Wendroff schemes®

5The MacCormack scheme is simply a nonlinear formulation of the Lax-Wendroff scheme.
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instead of more sophisticated formulations is the following. The coefficient of
numerical diffusion of the TVD Lax-Wendroff scheme is proportional to the flow
velocity (LeVeque 1992). Therefore, numerical diffusion is large only in horizontal
directions where the near-surface velocities are several cm/s. This is relatively
uncritical for the prediction of the convective flow as the physical eddy viscosity
and diffusivity in horizontal directions are larger in general. It has been shown
in the introductory Chapter that LES of convective flows mainly suffer from the
inability of the SGS models to predict the near-wall flow correctly. The vertical
turbulence structure is hardly influenced by the vertical numerical diffusivity. Its
effect is negligible simply because due to the small vertical (wall-normal) velocity
the coefficient of vertical numerical diffusion is small accordingly. That is only
true for the near-surface flow. In greater depths, the vertical velocity becomes
larger, thus the numerical induced diffusion will grow.
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Chapter 5

Bulk modeling of penetrative
convection

5.1 Introduction

The bulk model of Zilitinkevich (1991) originally developed for the atmospheric
boundary layer is used in the present study for two reasons: 1) under certain not
too restrictive conditions it results in an analytic solution for the growth of the
mixed layer depth with time. This allows to choose the LES model domain size
according to the applied surface cooling, 2) it gives a simple picture of the main
effects of convective mixing including the phenomenon of 'counter-gradient’ heat
flux. This feature cannot be captured by traditional eddy-viscosity models as
they rely on the down-gradient hypothesis.

Bulk (or slab) models represent a second group of mixed layer models apart from
the diffusion models. While the latter solve partial differential equations for tur-
bulence quantities bulk models approximate the mixed layer in an integral sense.
The main feature in bulk modeling is the strong turbulent mixing embracing
the whole layer and causing the approximate uniformity of the vertical profile of
momentum, heat and tracers. At the interfaces to the surface and the entrain-
ment layer, respectively, zero-order discontuinities are applied. At least under
convective conditions the vertical homogeneity of the mixed layer is well verified
from laboratory (Deardorff et al. 1980) and field studies (Anis and Moum 1994).
Bulk models pioneered in oceanic research by Kraus and Turner (1967) are of
low computational cost. Therefore, they are used to make long-time predictions
(e.g., Gaspar 1988) or to parameterize the surface boundary layer in large-scale
circulation models (e.g., Oberhuber 1993).

Closure of the vertically integrated equations requires knowledge about the en-
trainment processes at the base of the mixed layer. As the turbulence in the
entrainment zone is highly intermittent accurate field measurements are difficult
to make. On the other hand side, laboratory data only cover a small range of
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Reynolds numbers.

In the next Section, the zero order jump model is introduced. Closure hypothe-
sises for the zero order jump model is derived in Section 4.2. The distinct closure
hypothesises will be derived as asymptotic cases of the Zilitinkevich (1991) model
in Section 4.3. Analytical solutions for simple flow configurations will be shown
in Section 4.4. It will then be discussed how the solutions can be applied in the
setup of numerical studies.

In this Chapter, the letter ' D’ will refer to the dissipation rate of turbulent kinetic
energy. The mixed layer depth will instead be referred to as 'h’.

5.2 The zero order jump model

Resulting from an unstable surface buoyancy flux (due to cooling or freezing), a
density gradient forms near the surface. The density p is expressed here in terms
of buoyancy b,

bz) = 2= 22

Qo

A well-mixed layer forms which is separated from the surface region by a buoyancy
jump. Since the layer is nearly homogeneous in vertical direction, the buoyancy
can be considered as depth constant. The homogeneous mixed layer is separated
from the nonturbulent layer underneath. The stable stratification of this layer is
characterised by the Brunt-Vaisalla frequency N. The interfacial layer between
the mixed and the nonturbulent layer is called ’entrainment zone’. In the en-
trainment zone kinetic energy of bouyant plumes is spent for penetration into
the stably stratified layer and for upward entrainment.
In zero order jump modeling (Lilly 1968) horizontal homogeneity without large-
scale subsidence is assumed. Vertical buoyancy b and buoyancy flux B are rep-
resented by discontinuous functions:

b — IE ifz<h
a b+Ab+ N?.2 if 2> h,
0 if z > h.

B = (5.2.1)
Here, b is the mean buoyancy, Ab is the buoyancy jump at the mixed layer base,
h is the mixed layer depth (the letter 'D’ is reserved in this Chapter for the
dissipation rate of turbulent kinetic energy), By is the surface buoyancy flux and
the negative buoyancy flux at the mixed layer base is given by

dh
By, = —Aba = —Abw,, (5.2.2)
where w, = dh/dt is often called ’entrainment velocity’. The discontinuous ap-
proximation is illustrated in Figure 5.1. However, it is more convenient for com-

parison with the LES results to replace the buoyancy flux B by the kinematic heat
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flux . Both are linearly related via equation (1.0.2) but their sign is reversed.
The evolution equation for the buoyancy b in the case of horizontal homogeneity

Qn

+3

v

h/2
h

v Y

Figure 5.1: The discontinuous approximation of buoyancy b and heat
flux Q. For calculating, buoyancy flux B is more convenient but for
comparison with LES results @ is displayed. The dashed lines indicate
the continuous profiles and the thick lines the discontinuous approxima-
tion. The buoyancy jump Ab is taken at the outer edge of the mixed
layer and Ah/2 denotes half the entrainment zone extent.

takes the form
ob 0B

ot 0z
Termwise vertical integration of (5.2.3) from the surface to the mixed layer depth

h and ignoring molecular transfer as well as temperature transport through the
mixed-layer base can be simplified (Zilitinkevich 1991) to result in

(5.2.3)

d (1
L (ZNep2 - hAb) ~ By. 5.2.4
dt (2 0 (5.2.4)
Hence, the profiles of mean temperature and buoyancy flux in penetrative convec-
tion are determined by two time-dependent parameters, mixed layer depth h(t)
and buoyancy jump Ab(t), which are coupled via (5.2.4). Closure of the mixed
layer equations requires knowledge of the entrainment process at the mixed layer
base.
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5.3 The entrainment law

The simplest approach to the entrainment phenomenon is assuming that the
negative buoyancy flux at the mixed layer base is a fixed fraction of the surface
flux,

Bh - —A . Bo, (531)

with the ’entrainment coefficient’ A. Equation (5.3.1) forms, together with
(5.2.4), a closed pair of equations for determing A(¢) and Ab(t). Experimen-
tal results for the entrainment coefficient A lay in the range 0.1 - 0.3 (Stull 1976).
The entrainment velocity can be nondimensionalized by the Deardorff velocity
scale w, = (Boh)l/ ® which is the appropriate velocity scale for not too strong
shear. The resulting parameter is the ’entrainment rate’
1 dh
E=——. 5.3.2
w, dt ( )
Entrainment rate and entrainment coefficient are commonly related by a Richard-
son number based on the buoyancy jump in the thermocline, Ri; = hAb/w?, via

E=A-Ri", (5.3.3)

This formulation of the ’entrainment law’ has been suggested by, e.g. Betts
(1973), Tennekes (1973) and the laboratory studies by Deardorff et al. (1980). It
will be shown below how (5.3.3) can be recovered from the Zilitinkevich (1991)
formulation as a special case.

Starting point for the derivation of the entrainment law is the budget equation
for turbulent kinetic energy K in the mixed layer!

0K
Ps is the production rate due to wind generated shear,
oF
D;(K)=—
1(K) = 5~

denotes the third-order terms which are vertical gradients of turbulent fluxes F
due to velocity and pressure fluctuations and D is the dissipation rate of turbulent
kinetic energy. Equation (5.3.4) is integrated over the whole mixed layer depth
starting from the surface. Assuming that below the mixed layer turbulence is
small (i.e. K} = 0), the left-hand side term is given by

h OK dK dh

! The total amount of turbulent kinetic energy is called K and its corresponding dissipation
rate is called D. In contrast, e in the previous Chapters denotes the subgrid turbulent kinetic
energy and ¢ its dissipation rate. K can be thought of being the sum of e and the amount of
turbulent kinetic energy which is explicitly resolved in Large-eddy simulations.

(5.3.5)
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From now on, vertical averages over the mixed layer are considered which are
indicated by calligraphic letters.

The first term on the right side of (5.3.4) denotes vertical losses of turbulence
due to the radiation of internal waves into the adjacent stable layer. Zilitinkevich
(1991) takes

h OF A \3
—dz=F, ~CpN? 3(—) .3.

where the turbulent fluxes through the surface vanish, N is the Bruunt-Vaisalaa
frequency and Cr = 0.02. The parameterisation (5.3.6) for the energy transport
is questionable in the presence of shear but no other has yet been proposed
(Mironov, priv. comm.).

The second term of (5.3.4) gives the contribution of shear which reads

Po— (T@)a_U N T(y)a_v> | (5.3.7)

where 7(*) = 5w, 7® = vw are the Reynolds shear stresses. The Ekman layer
equations (2.1.1) are integrated to give

du . dh
he = SV = Vieo) = 0 4+ (U, - Uy,

d dh
WY = (U~ Ugey) — 7+ (V= V) (5.3.8)

where the index ’geo’ denotes the geostrophic velocity component. Here the
last terms on the right side represent effective momentum entrainment at the
mixed layer base where velocities U, and V), are from the non-turbulent layer
underneath.They have to be specified, for instance by geostrophic balance. The
integral production rate can be approximated as (Zilitinkevich, 1990)

dh
dt’
The third term of (5.3.4) shows the entrainment effect of turbulence. The buoy-

ancy flux profile is approximated as linear composition of two contributions, at
the surface and at the base,

i _ (14 Wy, L 2 Y
| Pods = U + Vg )—|—2((Uh Uy? + (Vi = V)?) (5.3.9)

2 z
B=(1——-)B —By,. 5.3.10
( h) 0+h h ( )

Vertical integration results in
h h
/ Bdz = 5(By+ By). (5.3.11)
0

It remains to evaluate the vertical averaged profiles of turbulent kinetic energy
and its dissipation rate, i.e. K and D. Three velocities enter the problem : the
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free convective scale wy, the surface friction velocity u, and the friction velocity
based on the velocity jump at the mixed layer base,

1/4 (dh 1/2
ulh = 2*1/2((Uh — U+ (Vj — V)Q) (E) . (5.3.12)
Zilitinkevich (1990) argues that in the bulk of the mixed layer energy and dis-
sipation rate might be scaled with w, while the other two velocities are only
important near the boundaries. However, Sullivan et al. (1994) found it appro-
priate to account for surface shear stress and scaled sheared convection LES data
with the velocity w, = (w® + 5u3)"/®. Therefore, a general expression is

K ~ cxaw?,

w3

D = cp3— 2. (5.3.13)
h

The constants have been found from atmospheric observations, water tank ex-
periments and LES data (Schmidt and Schumann 1989, Zilitinkevich 1991) to
be cxs = (0.4 — 0.5),cps ~ (0.3 — 0.4). The constants were originally found for
shear-free boundary layers but they are simply adopted for the sheared case.
The entrainment equation can now be found by inserting (5.3.5), (5.3.6), (5.3.9),
(5.3.11) and (5.3.13) into the vertical integrated version of (5.3.4), resulting in

Ao | o dh ()
h——"1< =  _CwNh{——
a L osUn gy CrNM73a) T
. 1 dh
Ur” + Vi) + 5 (Un = U)* + (Va = V)*) = +
h
5 (Bo+ By) — cpgu,. (5.3.14)

The main goal of the one-dimensional modeling of turbulent penetrative convec-
tion has now been reached: the equation of total buoyancy budget (5.2.4), the
entrainment equation (5.3.14), the evolution equations for the velocity compo-
nents (5.3.8), together with the initial conditions (5.2.1), form a closed set of
equations for the four unknown mixed layer depth A(t), buoyancy jump Ab(t)
and velocities U(t), V(¢).

5.4 Recovering of the empirical entrainment law

The entrainment equation considerably simplifies in the case of free convection
in which the surface stress 7 vanishes and w,, = w,. Then, (5.3.14) reads as

dh d AN h
Crs (wfa + h%wf) = _CFNh<1—f——A> + 5 (B() + Bh) - cmwf. (541)
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This expression can be rewritten using By-h = w3, (5.3.2), (5.3.3), Ri; and intro-
ducing a second Richardson number based on the stratification of the undisturbed
layer underneath,

1 N2h?
Riy, = 3 2 (5.4.2)
resulting in
5 1. 1 32/ RHE \?
2 —R)E:—— —C /<————) 4.
(30;(;3 -+ 2 21 9 Cp3 FRZQ 1— RZIE y (5 3)

where C% = C - 23/2. If the undisturbed layer is weakly stratified, i.e. Riy ~ 0,
and the system is in a quasi-stationary state, i.e. Ri; > 10/3cks, then

E = (1 —2cp3) - Riy*. (5.4.4)

The result corresponds to the empirical entrainment law (5.3.3) and the entrain-
ment coefficient A can be identified with 1 — 2¢ps.

5.5 Analytical Solutions for Free Convection

An analytical solution related to the LES experiments can be derived for the
situation of quasi-stationary free convection in which (5.4.3) takes the form

A 3
A+ CURi> <1+—A> — A, (5.5.1)

(C = Cp - 2°/? ~ 0.1), which forms, together with (5.2.4) and the initial condi-
tions,

h=Ab=0 att=0, (5.5.2)
a closed set of equations for the growth of the mixed layer depth h(t) and the
buoyancy jump Ab(t). At the beginning the asymptotic solutions are

2Bt (1 +24)\ "/
ht) = <—°(+ )> ,
N2
2Byt \/?
A = AN ) 5.
w0 - v 55
With increasing time there is another asymptotic solution,
2Byt /2
h(t) = (N2> ,
A4\
Ab(t) = (C—%> N3RS, (5.5.4)

The solutions (5.5.4) allow to configurate numerical experiments as they are a
fairly accurate estimation of the steady-state flow. The use of (5.5.4) will be
described in the next Chapter.
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Chapter 6

The LES experiments

In this study, free convective flows are compared with convective shear flows.
One approximately shear-free convective flow, referred to as 'weak’, and two
flows affected by shear, referred to as 'moderate’ and ’strong’, respectively, are
generated.

The three external parameters By, N? and simulation time ¢ from (5.5.4) can be
combined in a way to fulfill the following requirements:

e The simulation time t.,q is large enough to reach a steady state which
requires that te,q ~ 7t, where t, = D/w, is the large eddy-turnover time
scale (Schmidt and Schumann 1989),

e The vertical domain should be almost twice as large as the mixed layer
depth because of internal wave reflections at the lower boundary.

The buoyancy flux is entirely caused by temperature fluctuations and salinity is
taken as constant. This is simply done to save computational time and a conser-
vation equation for salinity can easily be added.

The study’s focus is on the evolution of convection after former convective events
due to which the upper layers are homogenized. For any particular simulation,
the initial potential temperature profile is therefore chosen as a three-layer struc-
ture: in the upper mixed layer a constant temperature, a strong gradient at
the thermocline and a weaker constant stratification in the depth. The model
ocean is assumed to be in Ekman equilibrium due to strong shear stress at the
atmosphere-ocean interface.

The simulations start with the mixed layer at rest. Initially, the mixed layer depth
is 100 m and its temperature is —1.0K. Below the mixed layer the entrainment
zone extends over 30 m with a constant temperature gradient of 2 - 103K m~L.
Underneath, in the stable stratified deeper part there is a constant temperature
gradient of 5-107*K m~! throughout the whole model domain. The initial pro-
file shown in Figure 7.1. The flow is then perturbed by adding a small random
component to the temperature field. The simulation is run for several large-eddy
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Run Wio(m/s) u.(m/s) T (°C) Bo(m*s™?)
WEAK 2 2.24-1073 -97 -3.82-10°8
MODERATE 7 778107  -32.6 -3.82-10°8
STRONG 14 1.56 - 1072 -15 -3.82-1078

Table 6.1: Numerical parameters for the three runs

turnover times. After about six large-eddy turnover times, the flow is expected
to achieve a stationary state. The final mixed layer depth can be estimated from
equation (5.5.4) to 230m after a simulation time of 24 h. These estimations
will be used to create the numerical grid. In order to accomodate several plume
structures, the horizontal extent of the computational domain has to be about
ten times the mixed layer depth (Moeng and Sullivan 1994). The vertical extent
has to be about twice the mixed layer depth. The second requirement ensures
that internal waves reflected at the bottom boundary do not disturb the solution
significantly.

The grid spacing has to provide that the energy-containing parts of the spectrum
are well resolved. As a reasonable cut-off wave number k.- D = 100 is chosen.
At wavenumber k., the spectral energy is found to be decreased relative to the
peak value (at k- D = 20) by a factor of 50 (Deardorff and Willis, 1985). In
the inertial subrange, Mason (1994) shows that grid spacing A and cut-off wave
number are related via

D
1.5K0) % * ~ = 0.1
(1.5Ko) 0 (6.0.1)

A —
Csk.D

Consequently, 40 vertical points are used to resolve the mixed layer and the
vertical grid spacing is given by Az = 230m/40 ~ 5m. In summary, 64 vertical
grid cells are used. It should be noted that according to the values for the friction
velocity in table 6.1 the Ekman layer depths are 11,40 and 80m which is clearly
the lower limit of what can be represented on a grid with 5m vertical resolution,
to say the least. In the z- and y-directions, the computational domain contains
128 grid cells with a grid spacing Az = Ay = 20m. The horizontal grid size is
a compromise between the requirement that the computational domain is large
enough and the requirement that the numerical grid does not induce an artifical
anisotropy between horizontal and vertical scales.

The mixed layer depth D is computed from LES data as the vertical location
of the average minimum heat flux following Deardorff (1980)'. All runs are
tuned to have the same thermodynamical forcing, namely a surface heat loss to
the atmosphere of Hy = 650Wm~2. This corresponds to different atmospheric
surface temperatures. The ’strong’ run has been chosen as the reference case

! This definition allows a simple computation. However, it can hardly be compared to field
measurements and ignores horizontal variations. More realistic definitions have been investi-
gated by Sullivan et al. (1998).
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with a (realistic) atmospheric temperature of —15°C. In order to give the same
heat flux for all runs, it was necessary to choose an atmospheric temperature of
—32.6°C for the 'moderate’ case and a rather artificial temperature of —97°C' for
the 'weak’ run. However, it is the scope of the work to isolate the role of mean
shear.

The input parameters of the three runs are listed in Table 6.1. The wind blows
in meridional direction.
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Chapter 7

Results

The analysis is applied after a simulation time of 24 h. The values are nondi-
mensionalised by the velocity, temperature and height scales appropriate for con-
vective flows (Deardorff 1972), namely Deardorff velocity w,, temperature scale
T, = Qo/w. where @ is the kinematic heat flux at the surface and D is the
mixed layer depth. The simulation time corresponds to roughly eight large eddy-
turnover time scales 7, = D/w, which is expected to be sufficient for a steady-
state (Schmidt and Schumann 1989). Applying the minimum heat flux criterion
from Chapter 5 results in the following scales (see table 7.1).

It can be seen that the estimation from the bulk model (5.5.4), D =~ 230m is
within 10 per cent of the numerical results. This is a good agreement regarding
that (5.5.4) resulted from a strong simplification of the more complete equation
(5.3.14) and that the parameter have simply been adopted from laboratory and
atmospheric measurements.

7.1 Mean flow profiles

Mean values are averaged over the horizontal plane denoted by < f > where f is
any quantity.

Figure 7.1 shows the mean potential temperature profiles versus nondimensional
depth. They are compared with the initial temperature distribution (thick line).
The run 'weak’ is indicated by a dash-dotted line whereas the 'moderate’ and the
'strong’ case are indicated by dotted and solid lines, respectively. This notation

Run D(m) w.(m/s) Il, =u,/w, sampling time/7. Ty (°C)
WEAK 220 2.03-1072 0.11 7.97 -1.0959
MODERATE | 225 2.05-1072 0.38 7.87 -1.0955
STRONG 210  2.00-107? 0.78 8.23 -1.0929

Table 7.1: Internal parameters for the three runs
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Figure 7.1: Vertical distributions of the mean potential temperature. The thick line

denotes the initial profile whereas the dash-dotted, dotted and solid lines depict the
runs 'weak’, 'moderate’ and ’strong’, respectively.
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holds for all the mean profile figures. The comparison with the simplified Figure
5.1 from bulk modeling reveals that the main features are the same for all of
the three runs: the nearly homogeneous mean temperature profile in the bulk of
the mixed layer indicates the effectiveness of turbulent mixing by the convective
plumes. In the surface layer, a temperature gradient has formed. Hence the
plumes fail to homogenize the water column in wall proximity where they are
strongly damped. While the profiles of runs 'moderate’ and 'weak’ are nearly the
same close to the surface the run ’strong’ exhibits a broader surface layer. The
minimum temperature in the bulk of the layer is lowest for the ’strong’ case. How-
ever, in an integral sense averaged from the surface to the mixed-layer depth, the
averaged temperature for the run ’'weak’ is the lowest, namely —1.0959°C' (see
Table 7.1). The corresponding averaged temperatures for the runs 'moderate’
and ’strong’ are —1.0955°C' and —1.0929°C, respectively. It has to be kept in
mind that the temperature difference is rather small but the mixed layers in run
'weak’ and 'moderate’ are significantly deeper than in run ’strong’ according to
Table 7.1. However, the differences are small, especially those between the runs
‘moderate’ and 'weak’. One can only conclude that if there is any influence of
shear on the efficiency of convective mixing at all, it will be rather negligible. The
deviation from homogeneity at about 0.9 D markers the extent of the entrain-
ment region. As a consequence of entrainment a gradient has formed here but
less pronounced than at the surface. The gradient is strongest for run 'moderate’.

Figure 7.2 displays the profiles of the horizontal velocity components at the
end of the simulations (thick lines) for the three cases, respectively. They are
compared with the initial velocity field (thin lines) derived from the simplified
Ekman balance (equation (2.1.1)). The red lines show the zonal components, the
blue lines the corresponding meridional components. Note the different range of
velocities in the three figures. The run ’weak’ reveals a shallow Ekman layer.
The non-smooth profiles of the Ekman velocity components (thin lines) indicate
that the grid spacing is hardly sufficient to resolve the initial Ekman dynamics
properly. The runs 'moderate’ and ’strong’ show the well-known Ekman spiral
for the initial velocity field. In these cases, the Ekman dynamics is well-resolved.
In the final stage (thick lines), the profiles have turned considerably. Apparently,
the characteristics of the Ekman spiral have been partially transported in greater
depths by convective turbulence but its features have been strongly damped ad-
ditionally. A common feature to all the runs is that the velocity profiles are close
to zero in the bulk of the mixed layer while the gradients near the surface have
broadened compared to the Ekman profiles. For run ’strong’ the near-surface cur-
rent remains approximately the same as for the initial Ekman dynamics whereas
for the runs 'weak’ and 'moderate’, even the flow at the very surface is strongly
damped due to convective mixing. Apparently, convective plumes failed to ho-
mogenize the surface region in run ’strong’ where unstable stratification shows
little influence. In the entrainment regions there is little horizontal flow in run
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Figure 7.2: Vertical distributions of the mean horizontal velocity components. The
LES results for runs ’weak’, 'moderate’ and ’strong’ are displayed. The thick lines
represent the final velocities after 24 h of simulation while the thin lines represent the
initial velocities from the Ekman ’spin-up’. Red lines depict the meridional components
and blue lines depict the zonal components, respectively.
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Horizontal velocity from z/D = 0.02 to z/D = 0.28 from z/D = 0.35to z/D = 0.61
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Figure 7.3: Polar plot for the horizontal velocity vector in run 'moderate’. The plots
show four depth intervals starting from the upper left panel. The arrows display velocity

vectors at a grid spacing of 10 m, respectively. Note the distinct range of velocity
contours ( in ms1).

'moderate’ but significant flow and vertical shear in the runs 'weak’ and ’strong’.
This result might indicate that shear processes play a role during entrainment of
heavier water from underneath. It cannot be explained why the run ’'moderate’
shows a distinct behaviour from the other two.

The turning of the horizontal velocity vector is displayed somewhat differently in
polar plots for the runs 'moderate’ (Figure 7.3) and ’strong’ (Figure 7.4), respec-
tively. The run 'weak’ has been skipped from further analysis since its Ekman
layer is only poorly resolved. Note that the Ekman spiral from the initialization
would show up in this polar plot as an arrow pointing at 45° near the surface
decrasing rapidly with depth and turning to the right. In contrast, run 'moder-
ate’ reveals that the magnitude of the velocity vector is much smaller near the
surface. The vector points predominantly in negative zonal direction in the bulk

68



Horizontal velocity from z/D = 0.02 to z/D = 0.30 from z/D = 0.38 to z/D = 0.65
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Figure 7.4: Polar plot for the horizontal velocity vector in run ’strong’. The plots show
four depth intervals starting from the upper left panel. The arrows display velocity

vectors at a grid spacing of 10 m, respectively. Note the distinct range of velocity
contours (in ms1).

of the layer which can be interpreted as compensating the surface flow behaviour.
Here, the velocity is on the order of 1/5 of the near-surface value. At the mixed
layer base, anticlockwise turning is observed. The run ’strong’ shows a complete
distinct picture. Here, the flow in the bulk of the layer is predominantly in nega-
tive meridional direction. The magnitude is again about 1/5 of the near-surface
value. The turning at the mixed-layer base is in clockwise direction. The two
distinct behaviours in runs 'moderate’ and ’strong’ indicate the convective shear
flow is not only a result of interaction between mean shear and thermal instability
but that the effect of Earth’s rotation enters the flow through the turning of the
mean shear direction.

It is obvious that the momentum transport, i.e. the vertical integrated momen-
tum is very different from what is known from classical Ekman theory. From
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Run Ug (m?/[s) Vi (m?/[s) U™ (m?[s) Vi*(m?[s) o (°)
MODERATE | 0.43 0 0.19 -0.01 87
STRONG 1.73 0 118 1.88 58

Table 7.2: Ekman volume transport: Theoretical prediction for neutral conditions
versus findings from numerical experiments with unstable conditions.

vertical integration of the Ekman equations the Ekman volume transport in neu-
tral stratification can be calculated exactly. In steady conditions, the transport
is directed at right angles to the surface stress. The transport component Ug
is equal to the surface stress in zonal direction divided by the vertical Coriolis
parameter (e.g., Gill 1982). In the present study, the wind blows in meridional
direction. Hence,

Z/{E = Uz/fz;
Ve = 0,

are the analytical steady-state solutions in neutral stratification. In Table 7.2,
these results are contrasted with the numerical findings. The findings for run
'moderate’ confirm that qualitatively the transport behaves similar as in the
neutral case: The zonal component nearly vanishes since the near-surface trans-
port is approximately balanced by the recirculating flow in the bulk of the mixed
layer while the meridional component is small but nonzero throughout. Hence,
the transport angle a.gy, is close to 90°. Quantitatively, the mean flow transport
is damped by more than 50 percent due to the secondary convective flow. For run
'strong’ the meridional transport has almost reversed while the zonal transport
is mainly made of its contributions near the surface and at the mixed layer edge.
The resulting transport angle .,y is —58°. Apparently, the mean flow is fed by
the secondary convective flow.

In summary, the addition of a negative flux to the Ekman dynamics has two very
distinct consequences depending on the wind. Run 'moderate’ which corresponds
to strong bouyant and moderate wind forcing shows that the mean flow is weak-
ened compared to the neutral case. Run ’strong’ which corresponds to strong
bouyant and strong wind forcing shows the opposite: the mean flow is enhanced
compared to the neutral case.

7.2 Instantaneous flow structures

In order to detect the presence of coherent structures in the convective flow field
and to elucidate the differences due to the interaction with shear, a flow visual-
ization study of the instantaneous flow field was carried out. Vertical sections
in the y — z-plane of temperature are displayed versus nondimensional depth for
the three cases 'weak’ (Figure 7.5), 'moderate’ (Figure 7.6), and ’strong’ (Figure
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Figure 7.5: Cross-section of temperature field in the y — z-plane, in the interior of the
model domain, for run ’weak’.
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Figure 7.6: Cross-section of temperature field in the y — z-plane, in the interior of the
model domain, for run 'moderate’. The colorbar coincides with the colorbar in 7.5.
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Figure 7.7: Cross-section of temperature field in the y — z-plane, in the interior of the
model domain, for run ’strong’. The colorbar coincides with the colorbar in 7.5.
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7.7). The sections are taken at a zonal position of 1280 m, respectively. The
model domain is shown only down to a nondimensional depth of about 1.2 and
the vertical axes are enlarged compared to the horizontal ones. The range of
color is the same in all three figures, the contour intervals are 0.005 °C'. Large
plumes spanning the whole mixed layer are clearly visible in all three cases pro-
viding vigorous mixing. Single events penetrate down to about 1.2 D. The three
simulations mainly differ in the surface and in the entrainment region. In run
'weak’ (Figure 7.5), the well-mixed layer extends from 0.2 to 0.8 D in accordance
with Figure 7.1. There is only a single plume event in the middle of Figure 7.5
which reaches from the surface to the outer edge of the mixed layer. All other
plumes only reach down to roughly 0.5 D where they are entrained by the al-
ready homogenized water masses. At the outer edge of the mixed layer, plumes
grow which intend to leave into the depth. The picture is in consistency with
the ’filling-box’ principle of convection (Backhaus, priv. comm.). The wave-like
instability near the surface and near the base has a wavelength of roughly 200
m, i.e. approximately 1.0D.

In contrast, the surface layer of run 'moderate’ (Figure 7.6) looks quite different
although the horizontal mean is very similar (see Figure 7.1). Local temperature
gradients are higher than in simulation 'weak’. More deep-reaching events are
visible which directly penetrate from surface into the stably stratified layer near
the bottom. The mean wavelength of the wave-like instability near the surface is
on the order of 320 m, i.e. 1.4 D but more random than for the case 'weak’. The
middle of the mixed layer is still rather inhomogeneous. The entrainment zone
shows less steep gradients compared to run 'weak’.

Run ’strong’ (Figure 7.7) reveals even stronger localised temperature gradients
in the near-surface region than run 'moderate’. In accordance with Figure 7.1,
the well-mixed layer is restricted on the region between 0.4 and 0.8 D. All other
flow regions are influenced whether by the near-surface instability or entrainment
processes. The convective events penetrating into the mixed layer are as intense
as the events in run 'moderate’ but broader. Therefore they are easier to entrain
by the well-mixed water masses on their way and less efficient in penetrating into
the stably stratified layer underneath. The mean wavelength of the wave-like
instability near the surface is on the order of 360 m, i.e. 1.7 D. It appears to
be more regular than in run 'moderate’ and resembles the smooth near-surface
instability of run 'weak’. It might be speculated that due to the dominant wind
stress the level of regularity is increased compared to run 'moderate’. A sequence
of views of the temperature flow patterns at different depths are provided in the
Figs. 7.8-7.10. They show the flow at the locations z/D= 0.1, 0.5, and 0.9 for run
'weak’, 'moderate’ and ’strong’, respectively. The contour intervals are 0.005 °C
again. For run 'weak’ the temperature structure close to the surface is dominated
by the forming of irregular cells. It is repeated that the wind blows in meridional
direction. The cells show no visible orientation with the wind direction but are
rather isotropic. The horizontal spacing of the cells is about 1.0D. The cells are
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Figure 7.8: Cross-sections of temperature field in the x —y-plane for run 'weak’. From
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surrounded by cold sinking regions. The uprising warm regions are considerably
larger in area. Continuity requires the sinking cold plumes (small area, high ve-
locity) to be compensated by slowly rising warm water masses from below (large
area, low velocity). This is to be compared with the flow fields of vertical velocity
(Figures 7.11-7.13). The horizontal mean temperature is —1.0959°C. Therefore,
the colorbar indicates the strong asymmetry in the regions of sinking and rising
water masses. In the middle of the mixed layer there are only few downward
regions left. Still, the relatively warm regions are larger in area. At the outer
edge of the mixed layer, the flow pattern is nearly homogeneous. The area is
equally distributed between relatively warm and relatively cold water masses.
In Figure 7.9 it is readily visible that the dominating structure in run 'moderate’
are cells. No transition to roll structures is visibile although the velocity ratio
II, = 0.38 appears to be large enough to expect the starting of transition ac-
cording to atmospheric findings. The cells have broadened compared to the ones
in run 'weak’ and show a horizontal spacing on the order of 1.4 D. However,
no preferred direction of orientation is visible. The broadening of the structures
indicates that the cell structures are influenced by local shear. The cell structure
is strongly damped in the middle of the mixed layer. Convective activity is larger
than in run ’weak’. The relatively warmer water masses are orientated at an
angle of about 30°. At the outer edge of the mixed layer there is no cell structure
left but still the temperature field is more inhomogeneous than in run ’weak’.
The transition to convective rolls is visible in Figure 7.10. As the velocity ratio in
run ’strong’ is I, = 0.78, the threshold value for roll formation might be estimated
to be somewhere between 0.4 and 0.7. The roll orientation is in almost 90° to the
wind direction with a roll spacing of roughly 1.7 D. The depth z/D=0.5 corre-
sponds to 105 m which is more than the Ekman depth D, = m/2v;/f, = 80m
with the eddy viscosity v, = 0.026u?2/f, from Svensson (1979). The footprints of
the convective rolls are clearly visible. Even at the outer edge of the mixed layer
at a depth of 200 m the streaky structures indicate that the convective rolls have
transported the wind’s influence through the whole mixed layer. Thus, the wind
influence manifesting in the roll structure is visible well below the Ekman layer.
In contrast to the temperature field, the field of vertical velocity becomes stronger
with increasing surface distance. This is illustrated in the Figs. 7.11-7.13 where
a sequence of views of the vertical velocity flow patterns at different depths are
provided. They show the flow at the location z/D= 0.1, 0.5, and 0.9 for run
'weak’, 'moderate’ and ’strong’, respectively. Contour intervals are 0.005 ms*.
Figure 7.11 displays a similar cell pattern near the surface as for the temperature
field. However, the downward velocities are on the order of only -0.01 ms™'.
They are damped due to the presence of the rigid surface. The velocity of the
downward elements increases in the middle of the mixed layer in which they reach
their (negative) maximum of -0.04 ms~!. At the outer edge of the mixed layer

the coherent structures have broken up but still single downward elements reach
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Figure 7.9: Cross-sections of temperature field in the z — y-plane for run 'moderate’.
From left to right: at z = 0.1D, at z = 0.5D, and at z = 0.9D. The colorbar coincides
with the colorbar in 7.8.
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Figure 7.10: Cross-sections of temperature field in the z — y-plane for run ’strong’.
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with the colorbar in 7.8.
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Figure 7.11: Cross-sections of vertical velocity field in the x — y-plane for run 'weak’.
From left to right: at z = 0.1D, at z = 0.5D, and at z = 0.9D.
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large negative velocity.

For run ’moderate’ (Fig 7.12), the near-surface values of vertical velocity are
rather small as well and becomer stronger in the interior. The structures are
more random than in run 'weak’ near the surface but the differences become
smaller in the bulk of the mixed layer. This is in consistency with the compar-
ison of the figures 7.5 and 7.6. In the bulk of the mixed layer both flow fields
are almost indistinguishable. At the outer edge of the mixed layer there are less
convective structures left than in run 'weak’. This is probably due to small-scale
mixing.

The mixing is even stronger at the mixed layer base of run ’strong’ (Fig 7.13).
However, run ’strong’ exhibits a strong tendency to organize the convective struc-
tures in form of rolls. The angle between the roll structures and the wind direction
is about 60° and is approximately constant throughout the mixed layer. This is a
larger turning than expected from Ekman theory. Apparently, the turning angle
represents an depth-averaged behaviour.

Although there is strong similarity between the instantaneous fields of vertical
velocity and temperature fluctuations there are some striking differences. One is
the fact that the vertical velocity vanishes at the surface and increases towards
the middle of the mixed layer whereas the temperature fluctuations show their
maximum at the very surface. Secondly, the vertical velocity field at the mixed
layer base is relatively well-mixed in the runs 'moderate’ and ’strong’ compared
to the field in run 'weak’. From Figure 7.2 it is recognized that in these two runs
residues of the surface-induced velocity shear still shows up at the mixed layer
base. As velocity shear enhances small-scale mixing it is obvious that shear is the
mechanism by which the vertical velocity fields in the runs ’strong’ and 'moder-
ate’ are smoother than in the run 'weak’. However, temperature fluctuations at
the mixed layer base show a reversed picture: the stronger the shear the more
pronounced are the footprints of the convective structures. One possible explana-
tion is the presence of the counter-gradient flux which damps convective plumes
since kinetic plumes energy is dissipated in order to erode the stable stratification
underneath. From the instantaneous flow structures it is tempting to judge that
the counter-gradient flux is largest for run 'weak’. This issue will be continued
in the next section.

7.3 Mean variances and fluxes

For the following discussion the double prime denotes a deviation from the hor-
izontal mean value written in brackets, e.g. U” = U— < U > where U is the
filtered (resolved) quantity. Later on, the filtered (resolved) quantity will be de-
noted U and a distinction between U and U will be required. However, in this
section the former notation is sufficient.

The vertical profiles of the vertical heat flux < W/ T" >=<W'T" > + < wl >
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are plotted in Figure 7.14. The SGS contributions are represented by dashed
lines whereas the solid lines represent the sum of resolved-scale and SGS contri-
butions. The numerical data are to be compared with the schematic picture 5.1
which forms the foundation of mixed layer bulk modeling. The assumption of a
linear decrease is well confirmed by Figure 7.14. The little kink at the very sur-
face might indicate that the flow is not perfectly adjusted to the upper boudary
condition. For further comparison, results from the water tank experiments by
Deardorff and Willis (1985) are displayed in Figure 7.14. The open circles rep-
resent their data points while the solid line is a polynomial fitting curve. The
linear decrease is found for the experimental heat flux as well.

As the resolved vertical velocity vanishes at the surface, the resolved-scale con-
tributions of the heat flux at the surface vanish accordingly. The total heat flux
at the surface is purely made of the SGS contribution wf. The surface value
of wh is prescribed as Qy. Therefore, in all the three runs, the profiles start at
unity. The SGS contributions become smaller with increasing depth. Whether
the flow has approximately reached a steady-state can be checked in the following
way. Assuming that the temperature profile is mainly driven by vertical diffusion

results in
o _ _oq
ot 0z

Taking the vertical derivative of this expression results in

o (or\y 0 (0Q
ot (82) 0z (8,2) ’
where the order of ¢t and 2z derivatives was changed. For stationarity,
0 (0T /0z) /Ot ~ 0. This implies that the vertical heat flux is linear in z. The
profiles in Figure 7.14 are close to linear indicating stationarity for all three runs.
In the entrainment zone the profiles become negative due to the 'countergradi-
ent flux’. Since the thermocline acts like a (permeable) wall, one might expect
the formation of some kind of boundary layer which might be broadened due
to increasing shear. Unfortunately, the resolution is not fine enough to detect
significant differences between the three runs. It is not clear whether the strati-
fication is strong enough to show remarkable 'blocking’ effects. In contrast, the
entrainment zone in the experiments by Deardorff and Willis (1985) is signifi-
cantly narrower than in the three model runs. This fact might be a hint that the
entrainment zone in the runs is broadened due to numerical diffusion. This issue
will be adressed in further detail in Section 7.6. According to Figure 5.1, one can
find the entrainment buoyancy flux B, from (5.2.2) as the linear extrapolation
of the heat flux profile to the depth z/D = 1. The entrainment coefficient A in-
troduced in equation (5.3.1) relates entrainment and surface buoyancy flux. For
'weak’, A =~ 0.23 is found whereas for 'moderate’ A =~ 0.20 and for the ’strong’
case A is approximately 0.26. In contrast, the value of 0.2 is frequently reported
in the literature (Zilitinkevich 1991). No clear trend with increasing shear can be
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Figure 7.14: Vertical distributions of the vertical heat flux. The LES results for runs
'weak’, 'moderate’ and ’strong’ are displayed, respectively. Dashed lines represent the
SGS contribution while solid lines depict the sum of resolved-scale and SGS parts,
respectively. For comparison, results from laboratory experiments by Deardorff and
Willis (1985) (open circles) are shown. The solid line represents a polynomial fitting
to the data points of Deardorff and Willis (1985).
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Run D(m) AT(K) Qo(Kms™) Nu Ra

WEAK 220 24-1072 1.55-10* 1.0-10" 4.5-10"
MODERATE | 225 2.7-1072 155-107% 9.2-105 5.4-10"
STRONG 210 3.6-1072 155-107* 6.5-10° 5.8-10™"

Table 7.3: Governing parameters for the three runs. Nu is the surface Nusselt number,
Ra is the Rayleigh number.

deduced from these values.
The non-dimensional heat flux is described by the Nusselt number Nu which is
the ratio of the actual heat transport to the purely diffusive flux due to molecular
conduction,

Nu = Qo

B XmolAT/D

where X0 is the molecular diffusivity of water and AT is the temperature differ-
ence between the surface and the bulk of the mixed layer. The results are listed
in table 7.3 along with the Rayleigh number

_ gaATD?

Vol Xmol

Ra

They indicate that the heat transfer is reduced with increasing shear. Apparently,
small-scale mixing due to mean shear enhances turbulent heat conduction, thus
reducing the efficiency of convection.

In summary, with the same heat flux given mean shear reduces the heat transport.
No effect of the presence of mean shear on the entrainment efficiency is found
which may be due to insufficient resolution. The vertical profile of the components
of vertical momentum flux is displayed in Figure 7.15. The SGS contributions
of <V"W" > is represented by the dashed blue line whereas the solid blue line
represents the sum of resolved-scale and SGS contribution. The SGS contribution
of <U"W" > is not shown here as it is two orders of magnitude smaller than
the resolved portion. It is evident from all the three runs that this is in contrast
to the meridional component < V"W" > which is almost entirely made of its
SGS portion. This fact can be explained by the upper boundary condition: The
transfer of momentum from the atmosphere to the ocean is parameterised by
turbulent diffusion, i.e. by SGS motion, as from W = 0 at the very surface it
follows that the resolved momentum fluxes < V'W" >, < U"W" >,., vanish
accordingly. The wind stress vector 7 is given by 7 = (0, 7)) since the wind blows
in meridional direction. Hence, at the very surface < V'W" >gg5= —u? and
<U"W" >ggs= 0. It can be seen that the momentum flux enters the ocean by
SGS diffusion through the meridional component and is then transferred to the
zonal component. The LES results are contrasted with the initial momentum
fluxes which are derived from the Ekman balance with constant eddy viscosity.
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The Ekman solution for the momentum fluxes (see Chapter 2) reads
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< > Vi (5(U + V)

and is depicted in Figure 7.16. Only the upper part of the mixed layer is displayed
in this figure since the dynamics is restricted to the Ekman layer. Differences be-
tween the final and the initial profiles are entirely due to the unstable heat flux.
For the runs 'moderate’ and ’strong’ the momentum profiles have been distributed
over the whole mixed layer instead of being restricted close to the surface. The
profiles of both components have been broadened significantly. Additionally, the
maximum value of the zonal component has approximately doubled during the
simulation. Apparently, in the runs 'moderate’ and ’strong’ the dynamics is
largely determined by the wind stress. In contrast, in run 'weak’ the momentum
profiles are not determined by the wind stress. Instead, the maximum value of
the momentum flux is three times larger than the surface flux. This fact reveals
that large momentum fluxes can be generated by convective motion itself.

In Figure 7.17 (a)- (c), the vertical velocity variances < W' >=< W + <
w? > are shown against nondimensional depth. Figure 7.17 (d) displays results
from the laboratory experiments by Deardorff and Willis (1985). Again, the open
circles denote their data points and the solid line is a polynomial fitting curve.
The dashed line in Figure 7.17 (d) represents an interpolation curve deduced
from various atmospheric measurements by Lenschow et al. (1980) which reads
<W™ > /w? = 1.8(z/D)?3(1 — 0.82/D)?. Here the resolved parts are drawn
by dashed lines since the SGS contribution w? had to be estimated. This was
done in the following way. In the interior where the unresolved scales are nearly
isotropic, w? & 2 e/3. In contrast, w? = 0 at the surface is prescribed. The SGS
profile is interpolated linearly to match the surface and the interior estimation.
The profiles are parabolic in shape with a peak at a depth of 2/D = 0.4 for the
runs 'weak’ and 'moderate’ while the ’strong’ case has its peak at about 0.3 D.
The peak value of the resolved variance is almost the same of about 0.35 w?.
Some differences are due to the SGS contribution which makes the variance in
case 'strong’ the largest one and the variance in case 'weak’ the smallest one.
Thus the SGS variances are influenced by shear. However, the difference is only
about 10 percent. While the shape of the profiles and the positions of the peak
value agree with the laboratory results of Deardorff and Willis (1985) the peak
values are considerably larger. In contrast, the peak of the atmospheric mea-
surements by Lenschow et al. (1980) is in closer agreement to the LES data. In
addition, compared to the Deardorff and Willis (1985) results, the peak value
of the Lenschow et al. (1980) data is closer to the surface which might indicate
the presence of shear: the movement of the peak value towards the surface with
increasing shear was e. g. reported by Moeng and Sullivan (1994) in their LES
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Figure 7.15: Vertical distributions of the vertical momentum flux. The LES results
for runs 'weak’, 'moderate’ and ’strong’ are displayed, respectively. Dashed blue lines
represent the SGS contribution of < V”W?” > while solid blue lines depict the sum of
resolved-scale and SGS parts, respectively. For the zonal component <U”W?” > only
the sum is drawn (red lines) since the SGS contribution is much smaller.
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data of convective shear flows and is confirmed by the present LES results. Below
the mixed layer, the variance rapidly tends to zero.

The vertical profile of the temperature variance is shown in Figure 7.18. Temper-
ature variance is produced by the interplay of heat flux and temperature gradient.
It is visible that the SGS contributions clearly dominate over the resolved-scale
variance (dotted lines). This undesireable behavior improves with increasing
shear with acts to broaden the thermal boundary layer. Note that run 'moder-
ate’ gives higher values of temperature variance than run ’strong’. The agreement
with the tank data of Deardorff and Willis (1985) which are displayed in (d) is
not very well. However, the LES data agree much better with the interpolation
curve which Kaimal et al. (1976) proposed for their atmospheric measurements
of temperature variance, < T"? > /T? = 1.8(z/D)?® . An explanation might
be that at least slightly sheared conditions (as in the field measurements) en-
hance temperature variance. The second maximum in the entrainment zone is
small for the LES data. This might again be related to unwarranted numerical
diffusion. Higher values have been reported by Schmidt and Schumann (1989).
Unfortunately, Moeng and Sullivan (1994) did not publish temperature variance
for their LES of sheared convective flows. Third-order moments enter the budget
equations for the second-order moments. In Figure 7.19, some of the third-
order moments and how they alter with increasing shear are illustrated. The
dashed-dotted line represents run 'weak’ while dotted and solid lines represent
runs ‘'moderate’ and ’strong’, respectively. Note that only the resolved-scale part
of the third-order moments is available from the present LES model since the
SGS third-order moments are neglected. From (7.5.2) it will be seen that the
vertical derivatives of < W" > and < W'U"" > enter the budget equation of
turbulent kinetic energy via turbulent transport term (III). While <W"™> can
be viewed as the vertical flux of vertical velocity variance, <W U > represents
the corresponding vertical flux of zonal velocity variance. Both fluxes are shown
in (a) and (b), respectively. In run 'weak’, < W > exceeds < W U~ > by
one order of magnitude. It increases linearly down to about 0.6 D, reaching a
maximum of about 0.17 w? in the bulk of the mixed layer. This is a well-known
feature of free convection (e.g., Schmidt and Schumann 1989). It can be infered
from Figures 7.17 and 7.20 that with increasing shear the vertical fluctuations
are slightly damped while the horizontal fluctuations are strongly enhanced. The
corresponding vertical fluxes behave in the same manner: increasing shear damps
the vertical fluctuations while enhancing the horizontal ones. Again, as for the
vertical velocity variance the peak value is shifted towards the surface with in-

=512

creasing shear. In Figure (c) and (d), the vertical flux of heat flux < W' T >
and the vertical flux of temperature variance <W" T > are shown. Figure (c)
shows again that vertical motion is damped by increasing shear: <W "~ T" > and
<W"'T" > are largest for run 'weak’. However, the smallest peak value results

for run 'moderate’. The vertical flux changes sign at the outer edge of the mixed
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Figure 7.18: Vertical distributions of the temperature variance. The LES results
for runs ’weak’, 'moderate’ and ’strong’ are displayed in Figures (a), (b) and (c),
respectively. Dotted lines represent the resolved-scale contribution while solid lines
depict the sum of resolved-scale and SGS parts, respectively. For comparison, Figure
(d) displays results from laboratory experiments by Deardorff and Willis (1985) (open
circles) and from field measurements by Kaimal et al. (1976). The dotted line represents
the interpolation curve proposed by Kaimal et al. (1976). The solid line represents a
polynomial fitting to the data points of Deardorff and Willis (1985).
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layer where the direction of transport is reversed (’counter-gradient flux’).

In Figure 7.20, the variances of the horizontal components of velocity are dis-
played. In purely bouyant driven flows the horizontal components of velocity
gain turbulent kinetic energy solely by pressure redistribution whereas the en-
ergy is directly fed into the vertical component. In bouyant shear flows there
is another mechanism to drive the horizontal components, namely the shear.
The highest values of horizontal velocity fluctuations are observed in the sur-
face region where the turbulent kinetic energy is entirely distributed between the
meridional and the zonal component since w? = 0. Here, turbulent kinetic energy
is predominantly produced by shear. All the profiles are similar in the way that
they exhibit more or less a four-layer ’S’-like structure: the surface region (which
broadens with increasing shear), a mixed-layer region in which the gradient is
small, an entrainment region with pronounced gradient, and finally a constant
layer underneath. In the bulk of the mixed layer the velocities are very small
due to effective mixing of the bouyant plumes. Although the laboratory results
of Deardorff and Willis (1985) exhibit large scatter (Figure 7.20 (d)) there is sat-
isfactory agreement for run 'weak’. Both horizontal components are similar for
all the three runs. While near the surface this is expected from Ekman theory
(as the wind blows in meridional direction), in the bulk of the mixed layer the
components are well-mixed due to the convective plumes. Results from the LES
of atmospheric sheared convection by Moeng and Sullivan (1994) are shown along
with the Deardorff and Willis (1985) findings. The wind in this LES blows in
meridional direction. This shows up in enhanced meridional variance (red aster-
iks) compared to zonal variance (blue asteriks). This contrasts findings from the
runs ‘'moderate’ and ’strong’ which show approximate horizontal isotropy. Prob-
ably, the effect of Earth’s rotation is strong enough to completely redistribute
variance horizontally in the oceanic case whereas it fails to homogenize horizon-
tal variance in the atmospheric case.

However, note the strong disparity of the corresponding velocity axes for the
three model runs. It reflects the fact that especially near the surface the Dear-
dorff velocity w, is not the appropriate velocity scale to make the three profiles
self-similar.

7.4 Velocity Scales

It is obvious from Figure 7.20 that scaling with w, cannot account for the shear
generated turbulence which causes the large horizontal velocity variance. It might
be tempting to use the friction velocity u, as appropriate surface scale, instead.
This analysis is illustrated in Figure 7.21 (a) and (c¢) for both the variances of
vertical and of meridional velocity. Profiles of run 'weak’ have been skipped from
Figure 7.21 (a) and (c). Those profiles become very much larger than the ones of
runs ‘moderate’ (dotted line) and ’strong’ (solid line). Apparently, the velocity
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Figure 7.20: Vertical distributions of the horizontal velocity variances. The LES
results for runs ’weak’, 'moderate’ and ’strong’ are displayed in Figures (a), (b) and
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94



variances in run 'weak’ do not scale with friction velocity at all. The problem
of the appropriate velocity scale for sheared convective flow has been discussed
in Moeng and Sullivan (1994). For their atmospheric LES results, the authors
developed the velocity scale w,, which is a combination of Deardorff velocity w,
and surface friction velocity u,. It is taken as

w3, = w? + 5ul. (7.4.1)

m

Moeng and Sullivan (1994) could successfully scale the profiles of velocity vari-
ances with w,,. This means that the profiles of the sheared convective flows were
found to lie between the profiles of their free convective and their neutral sheared
flow.

The Moeng and Sullivan (1994) velocity scale has been tested for the present LES
results. The profiles of velocity variances nondimensionalised by w,, are shown
in Figure 7.21 (b) and (d). The results for scaling with u, (in (a) and (c¢)) and
with w,, (in (b) and (d)) are to be compared with the profiles from 7.17 and
7.20 which were scaled with the Deardorff velocity w,. Hence, there are three
velocity scales available; w, which cannot account for shear effects by definition,
u, which cannot account for buoyancy effects by definition, and w,, which rep-
resents a combination of both. It can be infered from Figures (a) and (b) that
neither u, nor w,, forms the appropriate velocity scale to make the profiles of
vertical velocity variance self-similar. In constrast, the profiles from Figure 7.17
indicated that w, is a better velocity scale. Figure 7.21 (c) reveals that u, scales
the near-surface flow of the meridional velocity variance in a correct manner, at
least for the runs 'moderate’ and ’strong’. Apparently, buoyancy plays a minor
role here. This fact suggests that near the surface, the flows in ‘'moderate’ and
‘strong’ resemble shear flow. However, in the interior, w,, orders the profiles in a
proper manner, see (d). Here, the interaction of shear and buoyancy is apparently
the dominant mechanism. In contrast, w,, fails to scale the near-surface flow.

It is obvious that none of the three velocities w, u,, w,, is an unique velocity scale
for sheared convective flow. The failure of w,, which was appropriate for the Mo-
eng and Sullivan (1994) LES data of sheared convection suggests the following
view. The velocity scale w,, constructed according to equation (7.4.1) is tailored
for atmospheric results. The combination of w, and wu, is chosen to be indepen-
dent of height (or of depth), i.e., w, was assumed to be the appropriate velocity
scale for bouyant effects throughout the mixed layer while u, was assumed to be
the appropriate velocity scale for shear effects throughout the mixed layer. It
seems likely that the first assumption will hold in the present study as well. In
contrast, the second assumption might be erraneous. The effect of u, only reaches
a small portion of the mixed layer. Figure 7.15 shows that the momentum flux is
determined by u, only at the very surface and strongly decreases due to Earth’s
rotation. It is for this reason that the atmospheric similarity theory by Monin
and Obukhov is of little use here: the Monin-Obukhov length only applies in the
surfce layer in which the fluxes are assumed to be constant. From Figure 7.15 it
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is obvious that the momentum flux is not constant but rapidly decreasing away
from the surface. '

The correct velocity scaling should take into account that shear convective flows
exhibit hybrid behaviour in that they behave similar to a shear flow close to the
surface but like a free convective flow in the bulk of the mixed layer with some
kind of transition inbetween. Hence, the velocity scale has to be depth-dependent
taking into account the quasi-Ekman spiral. In future work, it will be attempted
to define a depth-dependent velocity scale for shear effects and to combine this
scale with w, to hopefully give an appropriate velocity scale for sheared convec-
tive flows. In atmospheric research a promising approach has been started in the
modified Monin-Obukhov similarity theory proposed by Zilitinkevich (1971) and
Betchov and Yaglom (1971). According to this theory of ’directional dimensional
analysis’, within an unstable stratified bondary layer there are three distinct
sublayers where turbulence structure is self-preserving and obeys rather simple
power laws. This allows to separate horizontal and vertical motions. Further
details can be found in the papers by Zilitinkevich (1973), Kader et al. (1989),
Kader and Yaglom (1990) or Zilitinkevich (1994). However, it seems that at
present there is no obvious way how to connect the three sublayers in a physical
manner (Mironov, priv. commun.).

7.5 Turbulent kinetic energy

In order to gain insight into the driving mechanism of the sheared convective flow,
the budget of the turbulent kinetic energy is analysed. Under horizontally homo-
geneous, quasi-steady conditions the budget of the ensemble averaged turbulent
kinetic energy < K > is given by

0<K> oU;
— = —<UW> + A <W'T' >
at N az/ T
1
10
—2<W’K>———<W’P’>—<s> (7.5.1)
0z \goaz . T
II1 v

where the brackets denote ensemble averaging and U], W', T", P' are deviations
from the ensemble-mean values <U; >, <W >, <T >, < P >, respectively. The
first two terms on the right-hand side represent the production terms due to shear
(I) and buoyancy (II). The third and the fourth term are the turbulent transport
(IIT) and the pressure transport (IV) term, respectively, and the last term rep-
resents the dissipation term (V). The time-rate-of-change term is close to zero

1Tt must however be kept in mind that the Arakawa C grid is known to produce large errors
associated with the numerical discretization of the Coriolis force.
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provided the flow has reached a steady state.
With respect to the computation of the budgets, quantities like
U] = U;— <U;> are required. However,

e instead of U;, only the resolvable field U; = U; — u; is available from LES,

e in the present non-stationary simulations, horizontal averaging is applied
as an approximation to ensemble averaging. It approximates < U; >, but
not <U;>. The distinction shows up in terms like <Uj; U; > which contain
both resolved and SGS contributions,

<UiUj>=<U;U;> — <U;><U;> + <uju;> .

e From now on, the brackets will denote horizontal averaging as approxima-
tion to ensemble averaging and a double-prime the deviation thereof,

U, =<U;> +U; .

e It follows that
=1 =11
<UvZIUvJI>:<UvZ Uj >+ <U; Uj > .

For a comparison of LES results with ensemble-mean budgets as they are pro-
vided by field experiments, the subgrid-scale contributions have to be added. It
will show up that estimations of the subgrid-scale contributions are not uniquely
determined. Hence the relation between the LES results and ensemble-mean
budgets is not straightforward. Presumably, the LES results approximate the
ensemble-mean budgets progressively closer as the resolution is increased. The
turbulent kinetic energy consists of a resolved part and the SGS turbulent ki-
netic energy e. The budget equation for the resolved-scale TKE is derived by
subtracting from equation (3.4.1) its horizontal mean, multiplying the result by
U;' and averaging the resulting equation. To this equation, the horizontal aver-
aged budget equation for the SGS TKE (for details of the averaging procedure,
the reader may refer to Mironov et al. (2000) ) is added. Finally, due to the
periodic boundary conditions in the horizontal directions, only vertical gradients
are retained. The resulting TKE budget equation reads

0 (1 o — 0 <U;> i —
( <U;" >+<e>> —(<Uz-"W">+<uiw>)7+)\3(<W"T">+<w0>)
ot A 0z o g ”
7 IT
0 /1 1 0 y—
( <W'U"?> + <W' e>>——— (<W"P">)
8z g goaz g
11 v

z

~ J
~~

VI

0 == 2 ! n Oe
—<€>—8—<<UZ’ UZ’LU>+§ <W'e >—<I/e£>>. (752)
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By comparison of (7.5.1) and (7.5.2), the contributions (I) - (V) of (7.5.1) can
immediately be identified with their counterparts of (7.5.2). However, there is
the 'remainder’ (VI). Mironov et al. (2000) regard the term (VI) as 'budget im-
balance’. Since in many LES the SGS turbulent kinetic energy e is not available
from the data, e. g. when applying the Smagorinsky SGS formulation, the second
and third part of (VI) (as well as the second part of (III)) would not be available
accordingly.

Figure 7.22 displays the budget of turbulent kinetic energy (resolved plus SGS).
Due to the large differences in the production mechanisms the horizontal axes
show distinct ranges. All terms have been nondimensionalized by the surface
bouyancy flux. It is remarkable that the runs 'weak’ and 'moderate’ show more
similarity than the runs 'moderate’ and ’strong’.

For run 'weak’, the primary source over the entire mixed layer is buoyancy B while
the shear contribution S rapidly decreases away from the surface. Buoyancy is
a sink of turbulent kinetic energy in the entrainment region. The dissipation
rate is a loss throughout. Apart from the surface region, it is nearly constant in
depth. Qualitatively this finding agrees with tank experiments (Deardorff and
Willis 1985), results from atmospheric measurements (Lentschow et al. 1980)
and numerical studies (Schmidt and Schumann 1989). However, the amount of ¢
is overestimated by about a factor of three. This causes an imbalanced budget.
From inertial subrange theory the relation € = €2/l can be infered. It can be
deduced that an error should be present either in the distribution of the SGS
turbulent kinetic energy e or in the prescribtion for the dissipation length scale
l.. No obvious error could be detected. It may only be speculated that (i) the
SGS turbulent kinetic energy is erraneous due to the poorly resolved shear pro-
duction term near the surface and that (ii) the effective grid size (proportional
to the dissipation length scale) might be too small and contains aliasing effects.
In contrast, the distributions of the two transport terms is correctly represented
in Figure 7.22. It can be seen that the turbulent transport term 7' is responsible
for the downward motion of turbulent kinetic energy from the upper half to the
lower half of the mixed layer. The pressure transport term brings turbulent ki-
netic energy from the middle of the mixed layer to the depth and to the surface.
Surprisingly, shear production grows again in the middle of the mixed layer. Fig-
ure (a) indicates that this contribution comes from the entrainment zone where
one can find a sink of shear production. This process is not confirmed by the lit-
erature. At the worst, this is a footprint of internal waves reflection at the lower
boundary. Hopefully, it represents non-local physical mechanisms in the entrain-
ment zone acting back on the mixed layer (known in meteorology as 'top-down
diffusion’, Wyngaard and Brost 1984). Due to the relative coarse resolution, de-
tails of the entrainment process cannot be evaluated from the current simulations.
The pressure transport term P shows wiggles in the middle of the mixed layer
which may be another hint of spurious reflections. However, shear production
at z = D on the order of 0.058, is consistent with results from the literature
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(Moeng and Sullivan 1994, Mironov et al. 2000). While shear production is in-
creased for run 'moderate’ in (b), the shear contribution is still limited to the
near-surface region. The convective plumes induce effective mixing resulting in
a rapid decrease of shear production with depth. Figure (b) does not exhibit
the unexpected transport of shear production. The magnitude of the turbulent
transport term 1" does not depend on mean shear.

For run 'weak’ the transport term shows a minimum of about 0.358, at a depth
of roughly 0.3D while the same minimum shows up at a depth of about 0.1D for
run 'moderate’. It reverses sign in the middle of the mixed layer. The feature
suggests that the transport term is mainly due to bouyant forcing. The pressure
term is slightly larger than in run ’weak’. The terms in the entrainment zone are
almost unchanged. The dissipation rate is now close to linear instead of being
constant in the bulk of the mixed layer. Its value is still too large to obtain a
balanced budget but the situation has improved compared to case 'weak’.

Run ’strong’ shows the largest contribution of shear production. The shear term
decreases slowly with depth and becomes zero only in the middle of the mixed
layer. Accordingly, £ decreases slowly. The transport and the pressure term are
not negligible compared with the buoyancy contribution but the main balance is
between shear production and dissipation. This is a typical feature of shear flows
but in run ’strong’ the buoyancy influence is strong enough to provide effective
mixing in the bulk of the layer. It is clearly visible that ¢ is overestimated for runs
‘moderate’ and ’strong’ analogeously to run ’weak’. This point requires further
investigation.

The imbalance term (VI) from (7.5.2) is not considered here since the analysis
revealed that it decreases rapidly away from the very surface.

In summary, the analysis of the budget of turbulent kinetic energy shed some
light on the driving mechanisms. In free convection, all terms are of comparable
size. The transport terms are by no means negligible but provide the transport
of turbulent kinetic energy from its generation to its dissipation region. It is
the non-local character which distinguishes convection from turbulent shear flow.
With increasing shear, the dominant forcing is no longer buoyancy but shear
production. The terms of turbulent and pressure transport term show unique
dependence on increasing shear. The reason for the unrealistic large values of
dissipation rate have to be explored in future work.

7.6 SGS contributions

7.6.1 Comparison with the original formulation

In order to evaluate the role of the SGS model, the present convection model is
compared with the previous model in the original formulation by Backhaus 1995.
The original model has been extended to three dimensions by Kampf 1996 and
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Figure 7.22: Vertical distributions of the terms in the budget equation for the to-
tal turbulent kinetic energy according to (7.5.2) for the runs ’weak’, 'moderate’, and
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tion, the solid green line (’S’) is the shear production, and the solid red line ("P’) is
the pressure transport term. The blue dotted line ("T”) represents turbulent transport
and the dissipation rate (’¢’) is denoted by a blue dashed line. Note the distinct range
of the horizontal axes.
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used in a number of numerical studies (Kampf 1996, Kdmpf and Backhaus 1998,
Backhaus and Kampf 1999, Kampf and Backhaus 1999). However, it has to be
stressed that in general the role of the SGS model cannot be discriminated from
the role of numerical algorithms (Sagaut 2001). Additionally, boundary condi-
tions, particularly the ’wall model’, play a central role on the model performance.
Therefore, a short description of the model in the formulation by Backhaus (1995)
and Kampf (1996) is given. Afterwards, some of the model predictions are com-
pared with the present LES results. The SGS eddy viscosity is originally given
by the Smagorinsky formulation with buoyancy correction (see (3.2.2)).

The implementation of the upper boundary condition of Backhaus (1995) and
Kampf (1996) for the momentum flux is very similar to the present approach.
The authors also define a model layer outside the model domain (with vertical
grid index ¢ = 0, compare to Figure 4.4). However, there is an essential dif-
ference in the location of the eddy viscosity which Backhaus (1995) and Kampf
(1996) place in the middle of the cell on a ’P-point’ (see Figure 4.3). During the
computation of the vertical gradients at the upper boundary (compare 4.2.7),

oU (z)
- at z =0,
82 OoV«
1% (¥)
EASE— at z =0,
0z QoVx

the authors have to make further assumptions about the actual value of v,. This
introduces a value of large uncertainty. The Backhaus (1995) and Kémpf (1996)
wall model for the temperature field reads
A
L

which implies that during the integration over one time step the heat loss to
the atmosphere is distributed over the first grid cell. Horizontal diffusion or any
advection of temperature is ignored in this formulation. The advection of momen-
tum, heat and salinity is originally discretized by the upstream method which is
known to induce a large amount of numerical diffusion (Sagaut 2001). Addition-
ally, there is no thermocline in the simulations of Kampf (1996). Consequently,
the mixed layer extents over the entire depth of the model domain.
Unfortunately, only resolved-scale parts of the second-order moments are avail-
able from the study by Kampf (1996). Two runs from Kampf (1996) will be
considered for comparison. The first assumes the absence of a wind forcing and
will therefore be denoted as the 'K-free’ run. The second regards convection in
the presence of steady wind conditions at 10 ms ! and will therefore be referred
to as the 'K-forced’ run. Both runs are performed on a numerical grid with
200 points in the horizontal directions and 20 points in the vertical direction.
The grid spacing is 10 m in each direction. The heat flux in the ’K-free’ run
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is 174.5 Wm™2 corresponding to a bouyancy flux of —1.03 - 107=8m?2s=3. The
heat flux in the ’K-forced’ run is 580 Wm ™2 corresponding to a bouyancy flux of
—3.41 -1078m?s~3. Figure 7.23 compares predicted second-order moments from
the present run "weak’ (solid lines) with the free convective flow 'K-free’ in Kdmpf
(1996) (dotted lines). In Figure (a) the resolved part of the vertical heat flux is
displayed. It is visible that in run ’'free’ the heat flux is overpredicted since it
cannot exceed the surface value unity. Obviously, too little energy due to ther-
mal instability has been dissipated from the resolved scales. The vertical velocity
variance (Figure 7.23 (b)) is similar in shape in both simulations but the max-
imum value differs by almost fifty percent. The peak value of the run 'weak’ is
located slightly deeper than in the ’K-free’ run. The horizontal velocity variance
(sum of zonal and meridional contributions) in run 'K-free’ is larger than in run
'weak’ near the surface but becomes smaller in the bulk of the mixed layer. The
large gradient at the mixed layer bottom is probably an artefact caused by the
applied no-slip boundary condition.

In Figure 7.24, second-order moments from the present run ’strong’ (solid lines)
is compared with the sheared convective flow 'K-forced’ in Kampf (1996) (dotted
lines). From Figure 7.24 (a) it can be seen that the resolved-scale part of the
heat flux is overpredicted in run 'K-forced’, analogeously to what had shown up
in 7.23 (a) . The vertical velocity variance is shown in Figure 7.24 (b). Both
simulations are in rough agreement. Figure 7.24 (c) shows the horizontal velocity
variance. Near the surface the 'K-forced’ run shows significantly highler values
although the wind speed is smaller than in run ’strong’.

Exemplary one horizontal section from the 'K-forced’ run of Kampf (1996) is

considered in Figure 7.25. The roll structure of the convective flow is readily
visible. As the wind blows in meridional direction, the structures show a turning
of about 45° to the right. The rolls are elongated and show a high degree of
coherence. Comparison with the Figures 7.9 and 7.10 indicates that this high
degree of coherence is probably due to the excessive damping of the Smagorin-
sky SGS scheme. Probably, the assumption of an isotropic SGS eddy viscosity
directly induces the 45°-direction of the rolls. This means that the weakest part
of the model (the SGS model) determines the major result of the simulation (the
organization of the convective structures) which is clearly undesirable. The up-
stream advection scheme induces additional numerical diffusion. Both sources of
false diffusion tend to convert the high-turbulent flow into a ’quasi-laminar’ flow
with overly smooth and coherent structures.
In summary, the introduction of physically more plausible upper boundary con-
ditions and the turbulence closure at a higher level compared with the original
formulation improved the results significantly and gave better agreement with
available experimental and numerical data.
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Figure 7.23: Vertical distributions of the vertical heat flux and the velocity variances.
The LES results for run 'weak’ are compared with results by Kampf (1996) for free
convective flow. This flow is referred to as 'K-free’. The solid lines display results

from run 'weak’ while the dotted line represent results taken from Kampf (1996). Only
resolved-scale parts are depicted.
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Figure 7.24: Vertical distributions of the vertical heat flux and the velocity variances.
The LES results for run ’strong’ are compared with results by Kampf (1996) for sheared
convective flow at a windspeed of 10 ms—!. This flow is referred to as 'K-forced’. The
solid lines display results from run ’strong’ while the dotted line represents results taken
from Kampf (1996). Only resolved-scale parts are depicted.

105



7.6.2 Numerical and physical diffusion

Next the effect of numerical induced diffusion on the temperature field is il-
lustrated exemplary. In the appendix C it is shown that the numerical flux
(equation(C.0.2)) is composed of upstream flux function and a flux correction.
The flux correction is limited by the flux-limiter ¢ which can be seen from equa-
tion (C.0.10) to lie in the range between 0 and 2 depending on the ratio of
consecutive gradients 6 from equation (C.0.9). From LES data it is possible to
infer the value of # and thus of ¢ in each grid point where to any grid point
there are three values of ¢ due to the three-dimensional flow field. For the sake
of simplicity, only the meridional direction is considered in the following. The
numerical diffusion coefficient 4™™ can be approximated as the weighted sum
of the numerical diffusion coefficient of the upstream method and the numerical
diffusion coefficient of the Lax-Wendroff method. The weighting factor is the
flux-limiter ¢; according to equation (C.0.2) where j denotes the grid index in
meridional direction,

num U, U, num, LW
™ = (1= ¢5) - ™™ 4 g5 g,

Let the linear advection equation

oT oT
E—}—Va—y = 0,

be discretized by the upstream method,

Tn—|—1 =T" _

V-At{ Tr—Tr, if V>0,

Ay T4 —Tp iV <.

It is possibe to calculate the numerical diffusion coefficient of the upstream
method analytically (e.g. LeVegue 1992). It is given by

I/(num’um _ V. Ay 1— |V| . At ‘
2 2 Ay

For the LES data at z/D = 0.1 the horizontal mean value of the numerical
diffusion coefficient is computed as v5™™") & (7.26+11.41)-10~2m2s~!. Analo-
geously it can be calculated that the Lax-Wendroff scheme is free of numerical
diffusion, hence

Vénum,LW) —0.

The distribution of the flux-limiter ¢; is plotted in Figure 7.26 where the tem-
perature field at z/D = 0.1 of the run 'moderate’ is considered. There are three
extreme cases visible:

e for ¢; = 0 (shown in blue) the TVD scheme is reduced to the upstream
scheme with high numerical diffusion,
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e for ¢; = 1 (shown in green) the TVD scheme is reduced to the Lax-Wendroff
scheme with no numerical diffusion,

e for ¢; > 1 the TVD scheme is reduced to a scheme which is composed of
upstream scheme plus diffusion correction. This kind of scheme can only
be applied locally since it is unstable in a global sense?.

Since blue is the dominant color it is obvious that in the mean there is rather
strong numerical diffusion present. The horizontal mean value of ¢; is 0.819 &+
0.562 which corresponds to a horizontal mean numerical diffusion coefficient in
meridional direction of about (9.6 &+ 69.6) - 1073m?s™! with maximum values
of 0.456 m2s~!. Note the large variability of this quantity where the standard
deviation exceeds the mean value by one order of magnitude. These values have
to be compared with the eddy diffusivity from the SGS turbulence model. In
Figure 7.27 there is the SGS eddy diffusivity displayed for comparison. It can
be seen that the SGS eddy diffusivity is also a rapidly varying function of the
flow. In general it is quite small but on the edges of intense convective motion
it raises suddenly. For numerical stability reasons, the diffusivity is allowed to
lie in the interval of 1-107° and 2 m?s!. Both values are somewhat arbitrary.
Unfortunately, it can be seen from 7.27 that both the minimum and the maximum
value of eddy diffusivity are often reached. This leads to the unwarranted result
that the choice of these values directly affects the flow. The mean value of x-
from Figure 7.27 and its standard deviation is about (0.27540.514)m?s~!. Thus,
the contribution of numerical diffusion can be regarded as rather small in a global
sense. On average, numerical diffusion is only three percent of the actual physical
diffusivity. It is however by no means negligible since in a local sense it can reach
the same order of magnitude.

This is even more true with respect to the vertical diffusion. Figure 7.28 depicts
a vertical section of the flux-limiter ¢, for vertical advection. The figure reveals
that on average, ¢, = 0.9528 £ 0.3587 which is very close to the diffusion-free
Lax-Wendroff algorithm for which ¢ = 1. However, the amount of numerical
diffusion (indicated by the blue regions) is large whenever there is a downward
event. As the vertical numerical diffusion of the upwind scheme is on the order
of Wynaz * Az /2 & 0.1m?s™!, Figure 7.28 indicates that the entrainment process is
accompanied by a large amount of numerical diffusion. Hence, numerical diffusion
is of the same order of magnitude as physical SGS diffusion which is restricted
to be smaller than 0.15m?s~! in the vertical direction. It is for this reason that
entrainment, processes at the edge of the mixed layer cannot be discriminated
from pure numerical artefacts. Consequences of the unwarranted diffusion can
be found in the overly smooth entrainment regions in the Figures 7.14 and 7.18,
respectively.

2For ¢; = 2 it can be shown to approach the downstream scheme for small velocitiy V.
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Figure 7.25: Horizontal cross-section of the near-surface temperature field. The figure
is taken from Kampf (1996). The figure displays a forced convective flow which is
referred to as ’K-forced’. The black regions are convergent downward regions while

the divergent upward regions are white. The winds blows in meridional direction at 10
-1
ms~ .
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Figure 7.26: Horizontal cross-section of the near-surface field of the numerical flux-
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Figure 7.27: Horizontal cross-section of the near-surface field of the SGS eddy diffu-
sivity component in meridional direction, xs. The figure shows results at 0.1 D for
the run 'moderate’. Note that the figure displays the diffusivity in units m?s~!. The
minimum and maximum values are 1-1075 and 2 m2s~!, respectively.
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Figure 7.28: Vertical cross-section of the numerical flux-limiter function in vertical
direction, ¢;. The figure shows results for the run 'moderate’. The flux limiter is
constructed to lie between 0 and 2. The blue regions are regions of high numerical
diffusion corresponding to ¢; < 1. The green regions are regions of low numerical
diffusion corresponding to ¢; ~ 1. In yellow to red regions numerical diffusion is
extracted from the temperature field ('numerical antidiffusion’). This corresponds to
¢; > L.
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Chapter 8

Summary and Outlook

The interaction between shear and unstable stratification in the oceanographic
context has been studied by performing numerical simulations.

Oceanic convection is mostly accompanied by strong winds so that it differs
significantly from the classical Rayleigh-Bénard experiment. The wind-induced
effect on thermal convection is stronger in the Greenland Sea than it is in the
Labrador Sea. This can be dedicated to a comparatively weaker buoyancy forcing
in the Greenland Sea. Hence, the effect of wind-induced shear shear is expected
to become more pronounced in the Greenland Sea. The role of mechanically
and thermally generated turbulence can be expressed in terms of velocity scales,
namely the surface friction velocity u, and the Deardorff velocity scale w,, re-
spectively. The ratio of both is used in boundary-layer meteorology in order to
describe the regime of convective shear flows. An analogeous approach has been
attempted in the present work for the oceanic case.

The structure of instantaneous flow fields and turbulence statistics in shallow con-
vection affected by wind-induced shear has been analysed using a data set derived
from large-eddy simulations (LES). Three different scenarios were considered: one
is the reference case of a nearly shear-free convective mixed layer penetrating into
a stably stratified layer (case 'weak’). The other two are convective mixed layers
affected by moderate and strong wind-induced shear, respectively (cases 'moder-
ate’ and ’strong’). The bouyant forcing was held constant in the three runs.
LES explicitly computes the large energy-containing eddies and parameterises the
small eddies (subgrid-scale) which are not captured by the numerical grid. The
parameterisation of the small eddies has been formulated as an iterativ algebraic
second-order moment approach. This approach avoids the common assumption
that subgrid-scale stress tensor and strain-rate tensor are aligned. The class of
recently proposed non-linear eddy viscosity models has been demonstrated to
be a special case of the present second-order moment approach. A correction
function for the dissipation of turbulent kinetic energy in stable stratification
has been taken from literature and incorporated in the numerical model. The
rigid-lid approximation was applied to filter surface gravity waves. Flux-limited
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advection schemes have been implemented in the equations of momentum and
heat transport. Their amount of numerical diffusion is commonly less than the
amount of diffusion due to the subgrid-scale turbulence model. Time integration
is performed using the second-order predictor-corrector scheme. For the construc-
tion of the numerical grid, the extension of the mixed layer has to be estimated.
The mixed layer extension is the relevant integral length scale for the large-scale
plumes which are the dominant feature in convective flows. The vertical and hor-
izontal dimensions of the numerical grid have to be related to this quantity. The
vertical dimension has been chosen to be sufficiently in order to reduce internal
gravity wave reflection at the bottom boundary. In horizontal directions, cyclic
boundary conditions are applied. Hence, horizontal dimensions have been chosen
sufficiently large in order to accomodate several large-scale plumes. From bulk
layer modeling an analytic approximation to the mixed layer growth is derived
which is in turn applied to estimate the expected mixed layer depth at the end
of the simulation. The agreement between the simple theoretical prediction and
the numerical findings was rather striking. For the determination of the grid
size, spectral energy arguments were applied. The grid is capable of resolving
structures whose spectral energy is by a factor of fifty smaller than the spectral
energy of the most energetic structures. This procedure ensures to separate the
large from the small eddies in a well-defined manner.

From the simulations it is found that the heat transfer, i.e. the heat loss to the
atmosphere, decreases slowly with increasing shear. This result does not confirm
the atmospheric measurements presented in Monin and Yaglom (1979) who found
increasing heat transfer with increasing shear. However, it agrees with the direct
numerical simulations of Domaradzki and Metcalfe (1988) who found decreasing
heat transfer with increasing shear.

Mean profiles of temperature and velocity show the ability of convection to ho-
mogenize the water column. Momentum transport calculations for the run 'mod-
erate’ and the run ’strong’ indicate that the presence of an unstable bouyancy
flux alters the Ekman dynamics considerably. Run 'moderate’ revealed a damp-
ing of the magnitude of the momentum transport associated with the mean flow
by more than 50 percent but the resulting transport angle was close to its neu-
tral value of 90°. In contrast, the mean momentum transport in run ’strong’ was
found to be enlarged compared to the neutral case. The transport angle was
found to be —58°. Apparently, the interaction of bouyancy flux and mean shear
is a highly nonlinear process with a kind of ’phase transition’ somewhere between
the cases 'moderate’ and ’strong’.

The visualisation of instantaneous flow pattern reveals that strong shear is re-
quired in order to organize the convective structures in the form of convective
rolls. The lower shear runs instead resulted in convective cells which were by
no means hexagonal (as in laboratory experiments) but approximately isotropic.
Convective instabilities were found to grow with increasing shear.A detailed of
inspection of entrainment was not possible due to the relatively coarse resolution.
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However, it was found that while the vertical velocity at the mixed layer base is
well-mixed for the runs with larger mean shear, the opposite is true for tempera-
ture fluctuations which are the more significant the larger the mean shear. This
is possibly linked to the presence of the counter-gradient flux.

Profiles of mean variances and fluxes were found to be in good agreement with
existing data sets of experimental and numerical studies. They revealed the ten-
dency of shear to slightly suppress vertical and to strongly enhance horizontal
motion. The linear profiles of the vertical heat flux indicate that all runs had
reached a quasi-stationary state. The entrainment coefficient was found to be
largest for the run 'moderate’ and to lie in a range of 0.2 to 0.3 similar to val-
ues from the literature. The profiles indicate that the grid resolution is still too
coarse to capture entrainment processes.

The budget equation of the total turbulent kinetic energy was analysed and the
main production and transport mechanisms were identified. With increasing shear
the role of bouyant production becomes smaller and the flow approaches an ap-
proximate balance of shear production and dissipation of turbulent kinetic energy.
This is a typical feature of turbulent shear flows. However, the LES data report
very large values of dissipation which cause an imbalance of the budget of tur-
bulent kinetic energy. The imbalance decreases for incereasing shear suggesting
that the imbalance might at least partially be attributed to poorly resolved shear
production terms.

It is difficult to evaluate the performance of the new subgrid-scale model due
to the complexity of sheared convection. The surface flow exhibits less coherent
structures which indicates that the excessive damping of the Smagorinsky model
and the upstream advection scheme has been reduced. Any effect of the cor-
rection function for the dissipation rate could not be detected. Unfortunately,
the simulations appear to be sensitive to minimum and maximum values of the
turbulent diffusion coefficients for which one has no other guide than experience.
Despite of the relatively expensive TVD advection scheme the model still suffers
from severe numerical diffusion. The effect showed up in the profiles of vertical
heat flux and temperature variance. Those profiles appear to be too smooth.
For future work, it is desirable to replace the TVD Lax-Wendroff scheme with
an algorithm which is, if not better, at least faster. With regard to numerical
diffusion it might appear doubtful to apply sophisticated SGS turbulence mod-
els. It must be emphasized that this is not true for the near-surface flow where
numerical diffusion in vertical direction is small.

It is surprising to see that in many respects the similarity between the runs 'weak’
and 'moderate’ were more striking than between the runs 'moderate’ and ’strong’.
This shows up not only in the mean temperature profile but also in instantaneous
flow pattern and the budget of turbulent kinetic energy. Since in both 'weak’ and
'moderate’, the flow was organized in convective cells whereas it was organized
in convective rolls in the run ’strong’, there appears to be a fundamental differ-
ence in the properties of convective shear flow related to the dominating coherent
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structures.

A composed velocity scale proposed for atmospheric sheared convection by Mo-
eng and Sullivan (1994) was tested with the present LES data. It showed up that
the scaling is inappropriate for oceanic application. It is probably the influence
of Earth’s rotation which inhibits to simply adopt atmospheric approaches to the
ocean. This is suggested by the profiles of the vertical momentum flux and the
variances of horizontal momentum. Both show distinct behaviour from atmo-
spheric findings which suggests a more pronounced effect of the coriolis force.

It is the obvious task for future work to provide higher numerical accuracy. The
present simulations demonstrate that the spatial resolution has to be increased.
This is true for the near-surface region and the entrainment region. Whereas it is
known that LES performs poorly in the vicinity of solid walls the shallow oceanic
Ekman layer is another requirement for higher resolution. Higher resolution in
turn requires more grid points and more computing time. The available com-
puting ressources did not only limit the spatial resolution but also the vertical
dimension of the flow since deeper mixed layers require longer time-integration.
As one is preliminary interested in the stationary state of the convective flow, it
might appear tempting to use implicit time-integration schemes. However, the
time step was mainly limited by fast-travelling internal waves. Hence, it might
be more reasonable to improve the method which solves the poisson equation for
the pressure. Some investigation has already be done in this direction.

The success of LES for oceanic applications is related to the key issue of realistic
surface modeling. The applied rigid-lid approximation does not account for the
range of wave-associated phenomena which are found in reality. In engineering
and atmospheric turbulent research the limitations of numerical simulations are
mainly due to the shallowness of viscous and molecular boundary layers. While
these are ’only’ technical problems in terms of computational time the issue of the
oceanic surface boundary conditions is more fundamental. A lot more research
will be required at this point.

115



Appendix A

Rotational effect on dissipation

The correction function g(Rv) introduced in equation (3.3.14), accounts for the
suppression of the turbulent energy cascade caused by the Earth’s rotation. How-
ever, the formulation of g(Fo) is simplified compared to the original derivation
by Canuto and Dubovikov (1997). Their function (labelled 'cd’) reads as

acd]?ocd

_— A.0.1
1 + bcdRocd, ( )

gcd:1+

where a.4 = 0.25,b.4 = 0.12 and Fo.4 is a Rossby number which is based on the
dissipation rate itself, Ro,q = (Q3e/¢)’. As € is not stored in the present model
but computed diagnostically, it is not available for the Rossby number based
equation (A.0.1).

Instead, ¢ is computed using the linearised form of (A.0.1), ¢/, = 1 + a4 Fo.q,
via

3/2

LG’
which is equivalent to equation (3.3.12) and the dissipation length scale . al-

ready includes the stratification correction function f(N, S) according to equation
(3.3.20). The resulting second-order algebraic relation is solved by

€= (A.0.2)

3/2 3/2

e 4 e
2, ' 2,

E =

V1 — Ro?, (A.0.3)
where the Rossby number Ro = Q3. /e'/? is now based on available quantities, in
contrast to Ro.q. From (A.0.3) it can be seen that ¢g(Fo) is given by

2
g(Fo) = PR gy > (A.0.4)

which is the same as (3.3.14).
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Appendix B

Second-order moments in
Cartesian form

The traceless tensors ¥;;, Z;; introduced in equation (3.3.6) describe anisotropic
turbulence production by interaction of mean flow (represented by S;; and w;;)
with turbulence (represented by b;;). As their computation is relatively expensive
it might be reasonable to attempt an order-of-magnitude estimation of their in-
dividual components and to retain only the largest contribution. This is planned
for future work.

The tensors b;; and S;; are symmetric, i.e. b;; = —b;; while w;; is antisymmet-
ric and all have zero trace. Therefore only six of the tensor components have to
be considered. The tensor Z;; is not in its general form with arbitrary external
rotation but already includes the earth’s rotation rate (€ = (0,€%,€s3)). Dur-
ing computation, as first approximation all terms containing the zonal Coriolis
component )y are neglected since (23 exceeds 2y by one order of magnitude in
high-latitude. In cartesian form the tensor components are given by (P; = —b;;5;;
is the shear production)

2
Y11 = 2(S11bi1 + Siobig + Sisbis) + - P,

3
2
Yoo = 2(Siabia + Saobos + Sozbas) + §Psa

2
Y33 = 2(Sisbiz + Sagbos + Sssbss) + gPs,

Y12 = (S11+ Sa2)bia + S12(b11 + bag) + S13bes + Sa3bis,
Y3 = (S1 + S33)bis + Si3(b11 + b33) + Siabas + Sasbiy,
Y3 = (S22 + Ss3)bas + Sas(bag + bsg) + Si2biz 4 Sizbia,
Z11 = 2bia(wiz + cof3) + 2b13(wis — cofla),

Zyy = 2bogwaz — 2bia(wio + co823),

Zyz = —2biz(wiz + co$p) + 2by3wo3,
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(bag — b11) (w12 — €9€23) + bizwas + bag(wis — co€22),
(533 - b11)(w13 - 6992) — biowas + 523(0013 + CgQ3);
(bs3 - 522)w23 — b3 (w12 + 0993) - b12(w13 - 0992)-
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Appendix C
TVD Advection Schemes

Monotone advection approximations (e.g. the upstream method) converge in a
nonoscillatory manner to the unique entropy solution (LeVeque 1992). However,
they are at most first order accurate because of the large amount of numerical
diffusion. Diffusion-free approximations (e.g. the Lax-Wendroff method) are at
least second order accurate on smooth solutions but tend to create local extrema.
Thus, first-order schemes smear out gradients, while second-order schemes pro-
duce oscillations. The reason is the leading order truncation error: in the former
schemes it contains second derivatives responsible for diffusion, in the latter it
involves third-order derivatives responsible for dispersion.

In the framework of flux-corrective transport (FCT) schemes (Boris and Book
1973, Zalesak 1979), the diffusive low order and the dispersive high order schemes
are combined in a nonlinear way. This can be done in different ways, one of which
is the method of flux-limitation. For example, regarding the Lax-Wendroff flux
FL=W of the temperature T}, at a place k as consisting of the upstream flux F“?
plus a correction gives

FLW(T,) = FY(Ty) + [FEW(Ty) — FYP(Ty)]. (C.0.1)

In a flux-limiter method the correction is limited depending on the local behaviour
of the temperature field, ending up in

FEVIVE(L) = FP(T) + 9()FS V(L) - F7(T)), (C02)

where ¢(T}) is the limiter driving the portions of the two fluxes. One possibility
of choosing the flux-limiter is ensuring the TVD (Total Variation Dimishing)
property (Sweby 1984). The importance of the TVD property lies in the fact
that TVD schemes are monotonicity preserving, thus creating no new under- or
overshoots. Defining the total variation as

TV(T") = 3 |T¢ — T | (C.0.3)
k
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the TVD constraints are satisfied if
TV (T <TV(T"). (C.0.4)
Consider a general method of the form
TP = T7 + Apyyjo(Tfyy — T7) — Beoryo(T] — TPy), (C.05)

then the sufficient condition in order for the method to be TVD is

Agirp2 20, (C.0.6)
By_1/2 >0, (C.0.7)

The TVD constraint is achieved by making the flux-limiter ¢ a function of the
ratio of consecutive gradients of the temperature field, 0*,

n n
Tkl+1 - Tk’

L (C.0.9)
Tk+1 - Tk

Okr1/2 =

where k' = k — sgn(c) depends on the flow direction. As limiter function, a
smooth function suggested by van Leer (1974) is used:

10l +0
R

() (C.0.10)

Lwhich is not to be confused with the temperature fluctuations 6.
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Appendix D

List of symbols

Quantity | Units

A - entrainment coefficient

A - similarity function

B m?s™3 | bouyancy flux

By m?s~3 | bouyancy flux at the surface

By, m?s~3 | bouyancy flux at the mixed layer base

B;; m?s~* | Tensor representing the anisotropic interaction of b;; and u;f
B - similarity function

Ba - Batchelor constant

Cp - drag coefficient
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Quantity | Units
Cs - Smagorinsky constant
D m mixed layer depth
(in Chapter 4 dissipation rate of turbulent kinetic energy)
D m vertically averaged dissipation rate in the mixed layer
Dy, m Ekman layer depth
Dy (distinct) | (SGS) third-order transport terms
due to turbulent and pressure fluctuations
E - entrainment rate
F m3s~3 vertical flux of turbulent kinetic energy
Fik, Gy m?s~? numerical approximations to f(u), g(u,v)
F.. ms~? external force
Fr - Froude number
G - ratio of production and dissipation of SGS turbulent kinetic energy
H,ops Wm 2 Sensible heat flux
Hio. Wm™? Latent heat flux
Ho Wm™2 dynamic heat flux at the surface
K m?s? horizontally averaged turbulent kinetic energy
K m vertically averaged turbulent kinetic energy in the mixed layer
Ko - Kolmogorov constant
L m Monin-Obukhov length
Lyap Jkg~! latent heat of vaporisation
L m characteristic size of the biggest eddies in a turbulent flow
M, M, - number of degrees of freedom
N st Brunt-Vaisilla frequency
P kgm s ? | dynamic pressure
P, kgm~1s~? | dyn. pressure including diagonal elements of the SGS stress tensor
Ps m?s~3 production rate of (SGS) turbulent kinetic energy due to mean shear
Qj.k m?s™? numerical approximation to source term ¢(u)
Re, Re, - Reynolds numbers
Ry - flux Richardson number
RY - critical flux Richardson number
Ri, Riq, Riy | - Richardson numbers
Ro - Rossby number
S st mean shear
Sij s rate-of-strain tensor
T K ocean Temperature
Toir K air Temperature
Tsea K sea surface Temperature
U; ms velocity components
u,v ms~1 vertically averaged velocities in the mixed layer
Wio ms~! wind vector at 10 ms~! height
Zij m?s™3 Tensor representing the anisotropic interaction of b;; and w;;
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Quantity | Units

i m2s—? dimensionless anisotropic part of the SGS stress tensor
b ms~? bouyancy

b ms~2 vertically averaged bouyancy

bi; m?s? anisotropic part of the SGS stress tensor

cp, 4T Jkg~'K~! | specific heat of water and air at constant pressure
e m?s~2 SGS turbulent kinetic energy

fns [ st horizontal and vertical Coriolis parameter

f(N,S) - correction function for /. due to bouyancy and shear
f(w),g(u,v) | m?s—2 flux functions

g ms™2 Earth’s gravity

g(Ro) - correction function for /. due to rotation

h m mixed layer depth (in Chapter 4)

1,7,k - grid indices

k m1 wave number

l, m filter scale

I, m dissipation length scale

Jwatl m dissipation length scale near the surface

[ret m dissipation length scale in the presence of rotation
q(u) m2s~? source term

Qo - specific background constant humidity

Gair - specific humidity close to the sea surface

Tf - Ratio of critical and actual Richardson number

U; ms? SGS turbulent velocity fluctuations

Us ms! oceanic friction velocity

u ms™! oc. friction velocity based on velocity jump at the mixed layer base
u;f Kms™! components of the SGS heat flux tensor

uw, VW m2s 2 components of (SGS) Reynold stress tensor

W, ms—! Deardorff velocity

We ms? entrainment velocity

Z m distance from the surface

2zt - non-dimensional distance from the surface

20 m roughness length

o K1 thermal expansion coefficient

Biats Bsens - turbulent exchange coefficients for latent and sensible heat
0% - isotropy factor in the Sullivan et al. (1994) model
5 m length scale in Ekman theory=Ekman depth -7~!
A m mean grid size

Ab ms=2 bouyancy jump at the mixed layer base

AHrw Wm™2 difference of in- and outgoing long-wave radiation
Ah m extent of entrainment region

Az, Ay, Az | m grid size in z—, y—, z—direction
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Quantity | Units

Op m molecular heat conduction layer

0 - Kronecker symbol

£ m2s—3 dissipation rate of (SGS) turbulent kinetic energy

€ gir - transmission coefficient of long-wave radiation

Eij m?s™3 dissipation rate tensor of (SGS) turbulent kinetic energy
€9 K?%s71 half the dissipation rate of SGS temperature variance
€ijk - antisymmetric tensor

n m Kolmogorov scale

0 K SGS turbulent temperature fluctuations

02 K? SGS temperature variance

K - von Karman’s constant

A m SGS mixing length scale

Ak ms 2K ! | bouyancy parameter

1 - Monin-Kazanski parameter (based on mixed layer depth)
v m?s~? (SGS) eddy viscosity

Vdamp m2s~! SGS eddy viscosity in damping layer

Ve m2s~! vertical eddy viscosity of SGS turbulent kinetic energy
Vinol m2s~! molecular viscosity of water

Vsm m2s~! Smagorinsky SGS eddy viscosity

vr m?s~1 horizontal mean SGS eddy viscosity in the Sullivan et al. (1994) model
Vs m2s~! local SGS eddy viscosity

vy m?s ! SGS surface eddy viscosity

IT;; m?s~3 pressure-strain correlation tensor

I1? Kms™2 pressure-temperature gradient correlation tensor

00 kgm 3 reference density

Oair kgm™3 mean density of air

g m?s~3 Tensor representing the anisotropic interaction of b;; and S;;
o - turbulent SGS Prandt]l number

o - turbulent SGS Prandtl number at neutral conditions
0SB - Stefan-Boltzmann constant

T S SGS turbulent time scale

Ty s time scale of SGS temperature fluctuations

Ta S large eddy-turnover time

Tij m?s™? SGS stress tensor

X m2s~t (SGS) eddy diffusivity

Xmol m2s—! molecular diffusivity of water

X $m m2s~! Smagorinsky SGS eddy diffusivity

X+ m?st SGS surface eddy diffusivity

Q, 571 Earth’s rotation vector

Wij 571 vorticity tensor
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