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Abstract

We consider an arbitrary number of singly occupied one-level magnetic impurities supported
by a metallic host, and describe this system using an Anderson model in the small tunnelling
regime. The physics of such a system is not only determined by the Kondo effect, but also by
effective inter-impurity interactions like the RKKY effect. For an arbitrary number of impuri-
ties the local density of states of the problem is being formally computed, using a mean field
approach in the low temperature limit. As a concrete example of such a magnetic cluster we
consider an isosceles trimer and determine the behaviour of the Kondo temperature at certain
impurity sites with varying inter-impurity coupling. The overall outcome is that the Kondo
effect is enhanced for completely ferromagnetically coupled trimers, while it is suppressed for
antiferromagnetically coupled ones. The magnitude of this enhancement or suppression in the
above cases depends on the geometric configuration of the trimer. Antiferromagnetically coupled
chain like systems show a very strong decrease of the Kondo temperature, while systems in which
one atom is more and more separated from the remaining two experience a decomposition into
dimer systems which we call ”dimerisation“. In trimer systems in which two atoms are coupled
antiferromagnetically among each other while interacting ferromagnetically with the remaining
atom the Kondo temperature is influenced by frustration effects at all impurity sites.



Inhaltsangabe

In dieser Arbeit wird ein System untersucht, das aus einer zunächst beliebigen Anzahl einfach
besetzter, magnetischer Störatome mit nur einem relevanten Energieniveau besteht, welche auf
ein metallisches Substrat aufgebracht werden. Zur Beschreibung des Systems wird ein Ander-
sonmodell im Grenzwert kleiner Tunnelamplituden herangezogen. Das physikalische Verhalten
eines Systems mehrerer magnetischer Verunreinigungen in einem Substrat wird sowohl vom
Kondoeffekt bestimmt als auch von Spin-Spin Wechselwirkungen zwischen den verschiedenen
Störatomen, z.B. dem RKKY-Effekt. Für eine zunächst beliebige Zahl von Störstellen im Sys-
tem wird der Tieftemperaturlimes der lokalen Zustandsdichte mit Hilfe einer Mean-Field-Theorie
bestimmt. Als konkretes Beispiel eines magnetischen Clusters wird ein gleichschenkliger Trimer
betrachtet, anhand dessen jeweils am Ort der Verunreinigungen die Abhängigkeit der Kondotem-
peratur von den interatomaren Kopplungen untersucht wird. Das wesentliche Ergebnis ist, dass
ausschließlich ferromagnetisch gekoppelte Trimere eine Verstärkung des Kondoeffekts erfahren,
während dieser in ausschließlich antiferromagnetisch gekoppelten Trimeren abgeschwächt wird.
Diese Verstärkung bzw. Abschwächung hängt von der geometrischen Konfiguration des Trimers
ab. In antiferromagnetisch gekoppelten, kettenartigen Trimeren wird der Kondoeffekt stark ver-
mindert. Systeme, in denen ein Atom von den restlichen beiden immer weiter entfernt wird,
zerfallen in verbundene Dimersysteme, ein Vorgang der als Dimerisation bezeichnet werden
kann. In Trimersystemen, in denen ein Atom ferromagnetisch an die restlichen beiden Atome
gekoppelt wird, welche wiederum untereinander antiferromagnetisch verbunden sind, wird die
Kondotemperatur für alle Störstellen von Frustrationseffekten beeinflusst.
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1 Introduction

Studies of systems of magnetic impurities in a metal host have been done for many decades both
experimentally as well as theoretically. In the early thirties, measurements in gold with iron
impurities revealed some peculiar behaviour of the electrical resistance when a minimal value
was found at a finite temperature rather than a constant decrease toward a saturation point, as
had been expected. In the simple picture of a lattice in which all atomic vibrations are freezed
out if the system is cooled down, only lattice defects prevent the conduction electrons from
moving unresistant, so the resistivity should simply decrease with the temperature approaching
a finite value at T = 0. It was a long standing problem to explain the increase of the resistivity
for low temperatures, and it was not until 1964 that Jun Kondo was able to give a microscopic
explanation. He showed, that a s-d model describing the interaction of the spin of a magnetic
impurity with the spins of the surrounding conduction electrons led to a logarithmic increase of
the resistivity for low temperatures in second order perturbation theory in the coupling of the
localised spin to the itinerant spins. Since this model correctly predicted the existence of the
resistivity minimum, the low temperature increase of the electrical resistance was explained to
be caused by scattering of the conduction electrons off a magnetic impurity.

A simple but quite general model to describe impurities in a metal host was proposed by
Anderson in 1961. In this model, the impurity has only one electron level and its electron can
quantum mechanically tunnel into the Fermi sea of the surrounding metal and vice versa. This
model is also going to be the starting point of our studies in this work. The Anderson model
allows for exchange processes that lead to a spin-flip in the impurity and a spin excitation in the
Fermi sea. These processes are due to very short lived virtual excitations, in which the impurity
electron can tunnel into the Fermi sea occupying a state above the Fermi level. Classically, this
process is forbidden because of the conservation of energy, but due to quantum fluctuations such
a state can exist for a very short time period, within which an electron must tunnel from the
Fermi sea back to the impurity. However, the spin of this electron can be opposite to that of
the original electron, so that the impurity undergoes a spin-flip process.

The Kondo effect, that is the increase of the resistivity of a dilute alloy of a metal and
magnetic impurities, is the result of many such spin-flipping processes, due to which a many
body state called the Kondo resonance state is created which has exactly the Fermi energy.
This state enhances the scattering of conduction electrons near the Fermi level, which determine
the low temperature behaviour of the resistivity. It is therefore increased at temperatures
below the one for which the Kondo resonance state is formed. This temperature is called the
Kondo temperature and it is determined by the parameters of the Anderson model (the impurity
energy, the Coulomb energy, the tunnelling strength), which therefore can be replaced by a single
parameter (namely said Kondo temperature) characterising the system completely.

In the Kondo state, the spin of the impurity is screened by the spins of the surrounding
conduction electrons. At temperatures well below the Kondo temperature, the impurity spin
can be seen as being bound into a singlet with a conduction electron, while the other electrons
behave like a free gas. Today, one refers to this formation of a Kondo cloud of itinerant spins
screening the magnetic moment of the impurity as ”the Kondo effect“ rather than to the unusual
behaviour of the resistivity in dilute alloys.
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The Kondo effect has been studied extensively in theory for four decades and it is seen as being
completely understood in the case of a single magnetic impurity on a metal host. Experimentally,
however, the Kondo effect could only be observed indirectly until the late nineties, since no device
existed to access single magnetic impurities. Instead, measurements of the thermodynamical
properties of an impurity studded metal and their behaviour with varying temperature or their
dependence on magnetic fields were the only ways to get experimental evidence of the Kondo
effect. With the recent developments in nanotechnology, these restrictions could be overcome.
During the past decade, many Kondo systems were studied by means of scanning tunnelling
spectroscopy using a scanning tunnelling microscope (STM) or by conductance measurements
in a quantum dot. While STM experiments yield direct access on the atomic scale to a metallic
sample with impurities, quantum dots can be used to mimic such systems.

In STM measurements, the tip of the microscope is placed upon a certain location of the sample
and the tunnelling current between tip and sample with varying voltage bias is measured. If such
dI/dV measurements are made at low temperatures, the conductance is essentially proportional
to the local density of states (LDOS) of the substrate electrons. If one aims for predicting
the outcome of such STM experiments (which we do in this work), the local density of states
therefore is the quantity which has to be computed.

If the STM tip is placed over an isolated magnetic impurity and dI/dV spectra are taken,
indications of the Kondo effect can be seen. If the system is in the Kondo resonance state, a
sharp dip will occur in the dI/dV curve which is centered at the Fermi energy. This shape of
the differential conductance in the Kondo state is often referred to as the ”Kondo resonance“
although this phrase also describes the resonant spin-flip scattering of the conduction electrons
at the impurity. The shape of the dI/dV spectra in the Kondo case is that of a Fano resonance
known from atomic physics. The formula for the Fano resonance contains a so called Fano factor
which in the case of STM experiments describes the coupling of the tip to the sample (in this
work, we are often going to fit the energy resolved LDOS to a Fano line shape which always
has a vanishing Fano factor, so we always describe STM experiments in the limit of very weak
tip-sample coupling). At external temperatures well below the Kondo temperature, the width
of the dI/dV curve is proportional to the Kondo temperature. Thus, determining the width of
the energy resolved LDOS in the limit of vanishing temperature yields the Kondo temperature
(up to a factor).

Kondo physics becomes more involved, if one allows for more than one magnetic impurity in
a system. If the distance between different magnetic impurities in a metal sample gets small
enough, other effects apart from the Kondo effect will influence the system’s behaviour. Among
these effects are, for example, direct exchange couplings of the impurities or the RKKY effect
(named after Rudermann, Kittel, Kasuya and Yosida). The latter is an indirect interaction
between the spins of the impurities which is mediated by the electrons in the substrate. This
effective interaction can couple the impurity spins ferromagnetically as well as antiferromagnet-
ically depending on their mutual distance. Compared to other effects like direct inter atomic
hopping, the RKKY coupling is quite long ranged (decreasing with the inverse distance between
two impurities in two dimensional systems). In this work, we are going to neglect effects that
require a greater proximity of the magnetic impurities. This means, that we will only describe
more ”loosely“ arranged magnetic clusters. A system investigated at the location of an impu-
rity is therefore expected to be in the Kondo state, which is just slightly (or sometimes not
so slightly) changed by the influence of the other impurities. We are going to quantify these
changes by means of determining the Kondo temperature at a given cluster site. A higher Kondo
temperature compared to that of an isolated impurity means, that the Kondo effect is enhanced
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while a lower Kondo temperature suggests a suppression of the Kondo effect. This approach is
different from recent studies of magnetic trimers on metallic substrates in so far that those dealt
with more compact structures.

In the following chapter, we give a brief overview over the literature connected to Kondo
physics and its application to magnetic dimers and trimers. In chapter 3 we are going to present
the model Hamiltonian and give a short outlook on how we will deal with the system in the
following. Moreover, we are going to present the model for a magnetic trimer, which we will
concentrate on as a concrete example for a magnetic cluster. Using mean field theory, the
partition function and the local density of states for an N atomic cluster will be computed
formally in chapter 4, and we are going to state the mean field equations. In chapter 5, we are
going to consider the magnetic cluster to be an isosceles trimer and determine the variation of
the Kondo temperature with varying trimer geometry. We will end the main part of this work
with conclusions and an outlook on how the model could be generalised. In the appendix, you
will find some preliminary mathematical considerations which we made use of describing the
system and detailed calculations for the N atomic magnetic cluster.

In this work we will only enumerate equations, which either will be referred to later or which
are central results of the preceding calculations. For the sake of readability, we will sometimes
write down an equation repeatedly although it has already been stated earlier.

3





2 Literature survey

In this section we give a brief literature overview of the developments in Kondo physics during
the past decades. We are going to start with Kondo’s explanation of the resistance minimum
that can be observed in dilute alloys and then turn to the theoretical solution of the Kondo
problem during the late sixties and early seventies. In the late nineties the Kondo effect became
subject to extensive studies again after it had not been for twenty years. This was due to
developments in nano-physics which allowed to detect the Kondo resonance directly by means
of STM experiments or in artificially fabricated atoms, say quantum dots. We will give a brief
overview of the important experiments and the related theoretical works. Here, we are also
going to present more recent works in which systems were investigated both theoretically and
experimentally, which were expected to show interplay of the Kondo effect and inter-impurity
effects (like the RKKY interaction), such as coupled quantum dots or magnetic trimers. In the
last part of this overview, we will concentrate on the more technical issue of dealing with spin
Hamiltonians in so called semi-fermionic representations.

It has been well known for a long time that the resistance of pure metals like copper and gold
drops when they are cooled down, since electrons can travel through the metal more quickly
if the atomic vibrations (the phonon-number) get smaller. However, due to static defects in
the metal the resistance of gold and copper always stays finite and does not approach zero if
the temperature vanishes. Instead, it saturates at a finite value which depends on the number
of defects, even for the lowest accessible temperatures. In 1934, de Haas et al. observed an
unexpected low temperature behaviour of the resistance in gold (see [1]). It developed a minimum
at a finite temperature and rose again if the metal was cooled down further. At that time, no
explanation could be found for this anomaly. In 1964, Sarachik et al. studied the resistance in
dilute alloys of Fe in Nb-Mo alloys as host metals (see [2]). The outcome was that the depth
of the minimum depended on the Nb-Mo alloys that were considered. Since Fe has a varying
magnetic moment depending on the composition of the alloy, it was suggested that the magnetic
moment of the iron was responsible for the resistance minimum.

The first satisfactory explanation of the resistance minimum was given by Kondo in 1964 (see
[3]). He considered an s-d model describing the scattering from a magnetic ion which interacts
with the spins of the conduction electrons and made a perturbative approach, computing the
system’s quantities up to second order perturbation theory in the s-d interaction. His discovery
was that the second order term could be much larger than the leading term (at the Fermi
surface), which resulted in a logarithmic increase of the resistance of the metal if the external
temperature was lowered below a certain value. Kondo therefore was able to predict the increase
of the resistance at very low temperatures after it had reached a minimal value. However, the
logarithmic low-temperature behaviour led to a diverging resistance at vanishing temperature,
which was apparently not correct. Nevertheless, Kondo was able to explain the resistance
anomaly of metals hosting magnetic impurities as being the result of the interaction between the
spins of the localised and the conduction electrons rather than being due to any other properties
of the impurities like their charge. Moreover, he predicted that the depth of the minimum
relative to the resistance value at vanishing temperature should roughly be proportional to the
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impurity concentration. The conclusion was, that the minimum was basically due to a single
impurity effect and not so much the result of interactions among the impurities.

In the aftermath of Kondo’s discovery, many theoreticians began to study s-d models with
regard to the Kondo effect. Using a self-consistent approach rather than perturbation theory
at low temperatures, Nagaoka (see [4]) was able to show that perturbation theory has to break
down below a certain temperature and that near the Fermi surface a quasi-bound state between
the localised spin and the conduction electron spin appears. He concluded that this state was
responsible for the resistance minimum. Suhl and Abrikosov derived similar results in [5] and
[6], showing that for low temperature the singularity could be replaced by resonant scattering.
The overall outcome in [4, 5, 6] was that for sufficiently low temperatures an s-d model lead
to a condensation in which a localised conduction-electron spin polarisation compensates the
magnetic moment of the impurity.

While Kondo was considering an s-d model to characterise the interaction between an impurity
spin with the conduction band of the metal host, Anderson in 1961 proposed a different model
describing magnetic impurities embedded in a metal (see [7]). His model Hamiltonian contained a
free term for the conduction electrons as well as for the impurity electrons, a Hubbard interaction
term modelling the Coulomb repulsion of impurity electrons and an interaction term, which
described tunnelling of electrons from the band to the impurity and vice versa.

The Anderson model in a way is more general than the Kondo model, but because of that it
is even harder to solve. So far, no general solution is known. However, in 1966 Schrieffer and
Wolff showed in [8] that the Anderson model can be mapped to the Kondo model via a canonical
transformation in the regime of small s-d mixing (when the tunnelling amplitude between the
conduction band and the impurity is small), assuming that the energy of the (single) impurity
d-orbital is below the Fermi level, while the energy of a doubly occupied impurity (being the
sum of the d-orbital energy and the contribution of the Coulomb repulsion) is above it. The
outcome was that at low energy scales the more general Anderson model essentially is the same
as the Kondo model, and that it can be expected to develop a Kondo effect at low temperatures.
It thus cannot lead to a localised magnetic moment at vanishing temperature.

In the late sixties it was known that Kondo’s results were correct only above a certain temper-
ature below which perturbation theory broke down. This temperature was by then called the
Kondo temperature. In 1970, Anderson proposed a framework in which the physics of the Kondo
model could be described below the Kondo temperature (see [9]). He introduced a method of
scaling the problem, which meant a renormalisation of the cutoff given by the bandwidth of
the conduction electrons. In this approach, high energy degrees of freedom of the conduction
band were integrated out successively (so reducing the cutoff energy) in favour of an effective
interaction. This method leads to scaling equations for the interaction parameters, which show
that each step of the successive reduction of the band width results in an increased effective
interaction strength. Anderson stated, that if this scaling process is performed repeatedly, the
low-temperature limit of the Kondo Hamiltonian evolves toward a fixed point in which the effec-
tive exchange coupling of the impurity with the itinerant electrons becomes infinitely strong. In
Anderson’s approach, the energy scale of the Kondo temperature is a so called scaling invariant,
it does not change its value during the scaling process. For the method to be valid, one has
to assume that a low-temperature system is represented by a coarse-grained model, meaning
that the model becomes coarser if the temperature gets smaller so that the number of degrees
of freedom is reduced.

6
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In [10] Nozières showed that, assuming the propositions of Anderson, all low temperature
properties of a Kondo system can be phenomenologically described in the same way as in Fermi
liquid theory. He stated that, taking for granted that below the Kondo temperature the ”effective
coupling“ between the localised electron and the itinerant ones was diverging, the impurity spin
was frozen into a singlet so that the magnetic impurity was replaced by a non-magnetic one.
However, said singlet still remained in a sense polarisable (due to virtual excitations), so that an
indirect interaction between the conduction electrons was induced. Using this simple picture,
Nozières was able to describe thermodynamic properties of the system in the spirit of Fermi
liquid theory.

In 1975, Wilson dealt with the Kondo problem (see [11]) adopting the scaling ideas of Ander-
son. The method he used was numerical renormalisation group theory. In renormalisation group
theory, a Hamiltonian which depends on certain interaction parameters is mapped by some (gen-
erally non-linear) transformation into another Hamiltonian of the same form with an altered set
of interactions (as outlined, Anderson used such a renormalisation to reduce the energy scale of
the conduction band). With his renormalisation group approach, Wilson was able to overcome
the problems of perturbation theory (which breaks down at energy scales of the order of the
Kondo temperature) using an iterative method involving numerical diagonalisation. He was able
to completely predict the behaviour of an s-d system well below the Kondo temperature. He
proved that below the Kondo temperature, the magnetic moment of the impurity is completely
screened by the spins of the conduction electrons by spin-flip scattering processes. Oversimpli-
fying, one might say, the impurity and a band electron are glued together (thus confining the
impurity spin) while the other electrons behave like a free gas.

After the appearance of [11], several theoreticians took up Wilson’s numerical renormalisation
group method and investigated different physical systems related to the Anderson or Kondo
model ([12, 13, 14, 15]). With Wilson’s work, the Kondo problem for single magnetic impurities
in metallic hosts was finally solved for all temperature ranges. Since then, several theoreticians
were able to solve the s-d model or limiting cases of the Anderson model analytically. In 1980,
Andrei [16] and Wiegmann [17] independently of each other were able to solve the s-d model
by means of a Bethe-Ansatz (however, this approach cannot be extended to the case of more
than one magnetic impurity). The same year, Wiegmann used the Bethe-Ansatz to solve the
Anderson model in [18], assuming that all occurring energies were small compared to the Fermi
level and that the tunnelling amplitude did not depend on the wave vector (so that the problem
was reduced to a one-dimensional one). Moreover, he neglected all electron states far from the
Fermi surface.

[19] gives a very comprehensive overview of the theoretical work concerning the Anderson and
the Kondo model done up to 1983.

In 1981 Jayakaprash et al. were the first to study a two impurity Kondo model by means of
Wilson’s renormalisation group (see [20]). In this work, the main contribution to the physics
apart from the Kondo effect was assumed to be the RKKY effect, which was discovered in
the mid to late fifties by Rudermann, Kittel (see [21]), Kasuya ([22]) and Yosida ([23]), who
stated that in a metallic system with several magnetic impurities that can be described by
s-d coupling, an effective spin-spin interaction between the distinct impurities arises. This
indirect spin coupling is mediated by the conduction electrons, and its amplitude and sign
depend on the distance between the impurities. Moreover, it shows an oscillating behaviour and
can therefore couple the impurity spins ferromagnetically as well as antiferromagnetically (for
another illuminating presentation of the RKKY interaction see [24] and the textbook of Yosida
[25]). Antiferromagnetic RKKY interactions tend to counteract the Kondo spin screening, since

7
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they result in the spin system getting more localised. Jayakaprash et al. showed that in the
regime of strong antiferromagnetic RKKY interactions, the spins of the two impurities are bound
to a singlet state, so that the Kondo effect is suppressed (since the itinerant electrons cannot
spin-flip scatter with a vanishing magnetic moment).

After the low temperature problems with the Kondo model had been theoretically solved in
[11], no new results seemed to be obtainable by the study of Kondo physics, and from the early
eighties to the mid- to late nineties, no new exceptional results were made. This was mostly due
to the lack of an experimental device which allowed to study the Kondo effect on a microscopic
scale. Up to then, the only way to access Kondo systems was an indirect one. The usual way
was to analyse the thermodynamic and transport properties of a dilute alloy of a metal with
magnetic impurities and to study their dependence on the temperature or an external magnetic
field. With the advances in nanotechnology in the late nineties, other possibilities to study the
Kondo effect arose.

A scanning tunnelling microscope (STM) measures the tunnelling current flowing between the
tip of the microscope and the sample under examination if a voltage is applied to the system.
Moving the sample, the STM can measure the conductance at different locations of the sample.
Since the conductance at very low temperatures essentially is proportional to the local density
of states, STM experiments are able to determine the coordinate resolved LDOS in atomic
resolution. Moreover, the STM allows to manipulate the sample by moving impurities directly
with the tip (for example to form dimers and trimers). The possibility to resolve the LDOS on
an atomic scale was expected to allow studies of the Kondo effect on a microscopic scale.

The first results were being reported quite simultaneously in 1998 by Crommie’s group (see
[26], for further reading also [27]) and by the group around Schneider (see [28]). Both groups
considered systems of single magnetic impurities on metal hosts and measured tunnelling spectra,
say dI/dV curves. Crommie et al. measured individual Co atoms on gold (at 4 K) while
Schneider et al. took spectra of isolated Ce impurities on silver (at 5 K). The outcome was
quite similar. The dI/dV curves developed an antiresonance at the Fermi level if the voltage
was swept through. This resonance was interpreted as a Fano resonance (see [29]) showing the
”footprint“ of the Kondo effect.

The results of these experiments motivated experimentalists as well as theoreticians to renew
their studies of Kondo systems. In [30], Schiller and Hershfield presented a theoretical treatise
of scanning tunnelling spectroscopy of magnetic adatoms on metal hosts. They considered an
Anderson model in the sample, but also took into account terms that described the tip and the
tunnelling between tip and sample. Using self-consistent perturbation theory, they were able
to compute the Green’s function (and therefore the density of states) of the problem in the
limit of infinite Coulomb repulsion in the impurity. They correctly predicted the antiresonance
and showed that the features discovered in [26] and [28] were in fact due to a Fano resonance
between tip and impurity, in which the Fano factor was connected to the coupling of the tip to
the sample. They were also able to reproduce the rapid decay of the dip seen as the tip is moved
away from the impurity.

Quite simultaneously, Újsághy et al. also predicted the Fano line shape in dI/dV spectra
taken at the location of magnetic impurities on a metal host (see [31]). Using local spin density
approximation and a strong correlation method (see [32]) they computed the system’s Green’s
function and showed that the local density of states develops a Fano resonance, on which small
Friedel oscillations are superimposed. Moreover, they predicted the dependence of the line shape
on the distance of the tip from the impurity, emphasizing that the concrete results were strongly
depending on the band structure of the metal host.
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In 2005 Lin, Castro Neto and Jones developed a similar theory of a Kondo resonance in
an STM experiment (see [33]) using an Anderson model in the sample. They computed the
hybridisation energies and found, that those were strongly depending on the directions of the
conduction electron momenta, leading to different line shapes as the impurity is pushed further
from the surface into the bulk of the metal.

The STM results in [26] and [28] also motivated other experimentalists to consider systems in
which some kind of Kondo physics was expected to be involved. In 2000 Eigler et al. investigated
a quantum corral system (see [34]). Using the STM tip for sliding atoms, they constructed a
corral of elliptic form using Co atoms on copper. Afterwards they placed a single Co atom in one
of the focal points of the ellipse to serve as a magnetic impurity and measured dI/dV spectra,
using the STM. Remarkably, a Kondo resonance was detected not only at the position of the
Co impurity, but also at the other focal point despite the absence of an impurity there. This
behaviour was explained as being the result of the symmetry of the corral, since electron waves
passing through one focus had to converge at the second one. The authors called that peculiar
situation a ”quantum mirage“.

In 2002, Nagaoka et al. measured the broadening of a the Kondo resonance when the sample
is heated (see [35]). They used a STM to investigate isolated Ti atoms on silver and varied the
external temperature between a sixth of and the full Kondo temperature. They saw that the
Kondo resonance broadened rapidly with increasing temperature in very good accordance to the
predicted Fermi liquid behaviour of a Kondo impurity (see [10]).

In [36] and [37] the subject of the dependence of the Kondo temperature of a system on
its parameters was tackled. It is well known that the Kondo temperature is proportional to
an exponential term, which depends on the inverse of the unperturbed density of states of
the conduction electrons and the inverse of the Kondo coupling (see [38]). [36] was able to
measure the scaling of the Kondo temperature with the host electron density for Co adatoms
on two sorts of copper. For Cu(100) the Kondo temperature is higher than for Cu(111) which
can be explained by a higher bulk electron density at the adatom. In [37] cobalt adatoms
were measured in several metallic hosts like copper, silver and gold. A large range of Kondo
temperatures for the different systems was observed. It was explained as being due to different
hybridisations of the adatom with the substrate. Systems with smaller hybridisations had smaller
Kondo temperatures compared to those with larger hybridisations as it is expected if the Kondo
coupling is shifted from weak to strong.

Another development in nanotechnology that allows for more direct measurements of the Kondo
effect was the ability to construct so called artificial atoms or quantum dots. Those are very
small semi conducting boxes that can hold a small number of electrons adjustable by varying
the voltage applied to the dot. If the number of electrons confined in the dot is odd, the artificial
atom has a non-zero total spin. This localised spin embedded between the two large electron
seas of the leads can be seen as a magnetic impurity in a metallic substrate. Several theoretical
works predicted, that phenomena related to the Kondo effect could be observed in such quantum
dot systems (see [39, 40, 41, 42, 43, 44]). The approach to tackle Kondo physics in a quantum
dot is to measure the conductance through the dot (as one would do in a STM experiment).
However, the difference between a quantum dot and an impurity in a metal host is the geometry
of the system. In a quantum dot system, all conduction electrons have to travel through the dot,
while in a metal they are described as plane waves scattering off the impurity. In a quantum
dot, the Kondo resonance makes it easier for two states belonging to opposite electrodes to mix,
which results in a higher conductance. In the case of an impurity in a metal, the conductance
was lowered due to the Kondo resonance.
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The first experimental results that showed the hint of a Kondo effect in a quantum dot were
achieved by Goldhaber-Gordon et al. in 1998 (see [45]). They measured several narrow peaks
in the conductance of the dot, which they interpreted as being the result of a Kondo resonance.

In the same year, Cronenwett et al. also discovered narrow peaks in the conductivity in a
GaAs/AlGaAs quantum dot device, connected to the Kondo effect (see [46]). They measured
the temperature and magnetic field dependence of the dot. The results were in good agreement
with the theoretical predictions for a Kondo quantum dot. Moreover, they were able to switch
a quantum dot from a Kondo to a non-Kondo system by changing the number of the confined
electrons from odd to even (however, there were other experiments that showed that in some
situations a Kondo quantum dot can deviate from this odd-even behaviour, see [47]).

In 1999, Simmel et al. observed an anomalous Kondo effect, also in a GaAs/AlGaAs quantum
dot ([48]) with asymmetric barriers. The outcome was that the conductance developed an offset
of the Kondo resonance at zero magnetic field. The Kondo resonance was only observed in
the negative bias regime, while it was suppressed for bias of the opposite direction. Theory
predicts, that the Kondo resonance occurs at the chemical potential of the leads. In the case of
an asymmetric barrier, the Kondo resonance was pinned to the Fermi level of the more strongly
coupled lead.

Another quantum dot experiment in very good agreement with the theoretical predictions was
performed by van der Wiel et al.. They observed a strong Kondo effect when a small magnetic
field was applied to the dot (see [49]).

Although usually no Kondo effect can occur in quantum dots with an even number of electrons
(since there is no net magnetic moment the lead electrons can interact with), Sasaki et al.

were able to detect a large Kondo effect for an even number of electrons confined in a so-
called ”vertical“ multi-level dot (see [50], for theory of the Kondo effect in multi-level dots see
[51, 52, 53]). In such devices, the spacing of the discrete levels is comparable to the Coulomb
interaction strength. Due to Hund’s rule, two electrons put into nearly degenerate levels will
favor a spin triplet over a spin singlet, so that there is a net magnetic moment and a Kondo
resonance can occur. Eto and Nazarov theoretically investigated such systems in mean field
theory (see [54]). They showed that the competition of spin singlet and triplet states leads to a
Kondo effect, which is suppressed if a perpendicular magnetic field is applied to the system.

Due to the experimental accessibility of the Kondo effect on an atomic scale by STM measure-
ments or quantum dots, an interest to study coupled Kondo systems arose. If a single magnetic
impurity on a metal host developed a Kondo effect, what would happen if one coupled two
such impurities, for example by spin-spin interactions? Before the development of the STM
and quantum dots, there was no way to study such phenomena directly, since there was no
simple way to verify the existence of a magnetic dimer or trimer in a sample. Instead, one had
to rely on more indirect methods. For example, Kumar et al. predicted a change in the low
temperature behaviour of the specific heat due to competition of the Kondo effect and RKKY
interactions between the impurities, see [55]. With help of an STM, such coupled structures as
dimers and trimers can not only be measured, but also assembled by moving single impurity
atoms on the surface of the metal with the STM tip. It is also possible to mimic two proximal
magnetic impurities using two quantum dots which are coupled by an open conducting region.

In 1999 Chen et al. of the Crommie group investigated dI/dV spectra of Co dimers on gold (see
[56]) at 6 K. They measured dimers of different lengths (meaning the inter atomic Co-Co spacing)
and saw an abrupt disappearance of the Kondo resonance for dimers less than 6 Ålong. As
feasible explanations of this phenomenon, they gave three alternatives: the magnetic moment of
the dimer could be quenched, which was not supported by some weak localisation measurements,
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the dimer interaction could be antiferromagnetic or the exchange coupling between the dimer
magnetic moment could be reduced. Antiferromagnetic dimer interactions were excluded, since
Chen et al. assumed the energy scale of the RKKY interaction being far to small compared to
the Kondo effect and because weak localisation measurements showed ferromagnetic coupling
between the dimer atoms. The authors favoured the explanation that the Kondo exchange
coupling was reduced by the ferromagnetic dimer interactions, which led to a decrease of the
Kondo temperature below 6 K. The abruptness of the disappearance of the Kondo resonance was
thus said to be due to the exponential dependence of the Kondo temperature on the exchange
coupling.

Also quantum dot systems of two coupled dots were investigated experimentally. In [57]
Jeong et al. measured dI/dV spectra of two coupled GaAs/AlGaAs quantum dots. For weak
enough coupling between the dots, the system developed Kondo peaks in different regions of the
voltage bias which were connected to both dots being in the spin-1

2 case (each dot containing
one unpaired electron). In those regions, the Kondo resonance showed a splitting into two
peaks. This splitting was interpreted as the result of the two dots being in molecular bonding or
antibonding states (for such states, a splitting of the Kondo resonance was theoretically predicted
in [58, 59, 60]), since its energy was comparable to that of the molecular bonding-antibonding
splitting measured before (see [61]).

In 2004, Craig et al. investigated a system of two coupled quantum dots in which they
were able to control the inter-dot coupling and the electron number in each dot (see [62]). If
not coupled, the dots showed the typical Kondo peaks in the dI/dV spectra if they had non-
vanishing total spin (an odd number of electrons in them). If one dot contained an even number
of electrons and was coupled to the other dot (which was in a Kondo state), no significant
changes in the Kondo shaped spectrum of that dot were observed (which was expected, since
no spin-spin interactions could take place). If one dot contained an odd number of electrons
and was coupled to the other dot, the Kondo features of that dot were suppressed. This was
interpreted as being the result of strong RKKY coupling between the two dots, which led to
an overall spin-zero state for which no Kondo effect could occur, or an overall spin-one state
for which the Kondo temperature was assumed to be so small, that no Kondo effect could be
observed at the given external temperature of the experiment (in [63] and [64], Simon et al. and
Vavilov and Glazman independently of each other suggested a method to distinguish between
ferromagnetic and antiferromagnetic RKKY couplings and therefore between the spin-zero and
spin-one state).

Several theoretical groups have studied two Anderson impurities in a metal or systems of
coupled quantum dots mimicking those. Various inter-impurity (inter-dot) interactions were
considered, such as direct exchange coupling or RKKY interaction. In [65] a two impurity
system was investigated using a variational approach in which doublet interactions of the Kondo
impurities lead to ferromagnetic impurity coupling (which was not due to the RKKY interaction)
enhancing the Kondo effect. In [63] and [64], the RKKY interaction was explicitly taken into
account to describe the experimental situation of a double quantum dot given in [62]. Other
theoretical works being concerned with coupled quantum dots can be found in [58, 59, 60, 66, 67].

In the last decade the attention of several theoretical and experimental groups has been drawn
to the investigation of compact magnetic trimers on metallic substrates, since those are the
minimal magnetic clusters to show frustration effects. The question was, whether some trimer
geometries allowed for the development of the features of a Kondo effect while others did not.

In 1999 Uzdin et al. calculated the ground state properties of a compact chromium trimer on
a non-magnetic surface using a modified Anderson model in Hartree-Fock approximation (see
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[68]). They stated that the spins in a linear trimer will be collinear while other geometries lead
to non-collinear spin arrangements which can either have a non-vanishing net-magnetic moment
or a vanishing one. The net magnetic moment of an equilateral trimer, for example, should be
zero, while an isosceles trimer should have a non-vanishing one. Similar results were found in
[69] using local spin-density theory and Monte-Carlo methods.

In 2001 Jamneala et al. experimentally investigated compact triangular chromium trimers
on gold (see [70]) by means of scanning tunnelling spectroscopy. They placed Cr atoms on an
otherwise clean gold surface at 7 K and manipulated them with the tip of an STM to form
artificial dimers and trimers. Then the low-energy excitation spectra were measured using STM
spectroscopy. Single Cr atoms as well as dimers did not reveal any hints of a Kondo resonance
in their dI/dV graph, their spectra being basically featureless. The conclusion was that the
external temperature was significantly higher than the Kondo temperature connected to those
configurations, so that no Kondo screening cloud could be formed. However, compact trimers
showed a different behaviour. The experiments revealed that there were two different states a
compact trimer could be in, one in which the dI/dV spectrum displayed no structure at all, as for
single impurities and dimers, and one where the STM measurements showed a sharp dip around
the Fermi energy. The latter was interpreted as being the result of a Kondo resonance. Jamneala
et al. were able to switch reversibly between those two trimer states by manipulation of the
geometry with the STM tip. While the featureless dI/dV spectrum in the first case implied
that the Kondo temperature of the corresponding trimer configuration was still well below the
external temperature, rearranging the geometry to a resonance showing trimer considerably
increased the Kondo temperature (the line width implied a Kondo temperature of 50 ± 10 K
compared to 7 K external temperature). Jamneala et al.’s explanation is, that the non-Kondo
state is connected to the most symmetric case of an equilateral trimer in which the atomic
spins align non-collinearly, so that the net magnetic moment of the trimer vanishes. This state
should be a singlet, which does not allow any spin-flip scattering of the substrate electrons, and
therefore no Kondo effect can occur. If the trimer is isosceles rather than equilateral, it gains a
net magnetic moment (due to the separation of one of the atoms from the other two) which allows
spin-flip scattering with the conduction electrons and therefore results in a Kondo effect. Thus,
this geometric configuration was seen as being connected to the Kondo trimer state. Jamneala
et al. also investigated more “loose” trimers, which showed no Kondo resonance though.

In the aftermath of [70], several theoretical works dealt with compact Cr trimer systems to
reproduce the experimental results. Several different technical approaches were considered to
tackle the problem, including variational methods, renormalisation group analysis, Monte-Carlo
methods and mapping the trimer system to a single impurity model. Kudasov and Uzdin (see
[71]) considered a Coqblin-Schrieffer model ([72]) to describe a Cr trimer on a metallic surface and
provided it with an additional direct inter atomic exchange term. They dealt with this system by
using a variational approach which allowed them to take into account superpositions of states
in which some trimer atoms were in a Kondo singlet state while others kept their magnetic
moment. Computing the ground state energies for several different geometric configurations of
the trimer, they were able to estimate the corresponding Kondo temperature. However, the
outcome was different from the interpretations of the results in [70]. The Kondo temperature of
an equilateral Cr trimer was found to be always higher than that of a single impurity (up to two
orders of magnitude higher), while a slight change of the geometry to isosceles form strongly
suppressed the Kondo effect.

A different approach was chosen in 2005 by Lanzarovits et al. to describe an equilateral Cr
trimer on gold (see [73]). Their starting point was a Hamiltonian taking into account spin-
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spin interactions of the trimer (basically Heisenberg like with antiferromagnetic coupling) plus
a term describing the Kondo coupling between trimer spins and the surrounding conduction
electrons. The energy scale of the Kondo term was assumed to be much smaller than that of the
inter-atomic interactions, so to describe the system in the low energy regime (where a Kondo
effect could take place) they used a perturbative ansatz to transform the original Hamiltonian
to an effective one (describing quantum fluctuations from the cluster spins). To determine
the low-energy dynamics of the system and the Kondo temperature, they did a perturbative
renormalisation group analysis, in which high energy conduction electrons are integrated out
and the original bandwidth of the conduction band gradually becomes smaller and smaller.
The outcome was that for large cluster spins the Kondo temperature of an equilateral trimer
could be magnitudes higher than that of a single magnetic impurity (while the enhancement
was not as large for smaller cluster spins), and that this increase was due to orbital fluctuations.
Distortions from the equilateral shape of the trimer led to a lift of the ground state degeneracy
of the spin-spin part of the Hamiltonian, thus suppressing orbital fluctuations and resulting in
a much lower Kondo temperature. Contrary to the interpretation of the experimental results
given in [70], isosceles trimers therefore were expected to exhibit no Kondo effect at the Kondo
energy scale of the equilateral case.

Also in 2005, Savkin et al. tackled the trimer problem in [74] using the numerical continuous-
time quantum Monte-Carlo method (see [75]). In this approach a random walk in the space of
terms of the perturbation expansion for the Green’s function is performed and the contributions
are computed in terms of a path integral. Savkin et al. considered an effective exchange term
for the trimer atoms, being modelled by a Kondo-lattice (since the trimer is the smallest non-
trivial Kondo lattice). They investigated two different types of this effective interaction, namely
a Heisenberg like one and an Ising like one, where spin-flip exchange terms are neglected. In
an equilateral trimer, the latter type of interactions lead to no significantly different behaviour
of the Kondo resonance in the antiferromagnetic case compared to the resonance of a single
impurity. On the other hand, the Kondo peak in the density of states was strongly suppressed
if the effective interactions were assumed to be Heisenberg like. In that case, the Kondo effect
will thus be reduced in an equilateral trimer. If the geometry was slightly changed from an
equilateral to an isosceles trimer, the Kondo resonance at the more weakly bonded adatom was
restored, while it still did not appear at the other two atoms. Qualitatively, this is in good
accordance with the results in [70].

A different ansatz to describe a compact magnetic chromium trimer on a gold surface was
made by Aligia in [76]. The main idea in this approach is to map the trimer model to a single
impurity Kondo model with an effective exchange interaction that depends on the geometry
of the magnetic trimer. Aligia used a Hubbard-Anderson model that included a hopping term
for the trimer atoms. He solved the part of the Hamiltonian which consists only of the trimer
degrees of freedom exactly, retaining only the ground state doublet in the subspace of three
particles. Then he made a generalised Schrieffer-Wolff transformation (see [8]), which mapped
the full Hamiltonian to a single impurity Kondo model, in which the localised spin is given
by the spin of said ground state doublet. The effective exchange interaction of the resulting
s-d model depends on the geometry of the trimer. This interaction was computed for a two-
and a three-dimensional band assuming that mostly itinerant electrons near the Fermi energy
are involved in the relevant scattering processes. With the exchange coupling being known,
the Kondo temperature can be estimated using its well known formula for a single magnetic
impurity (see [11]). Aligia investigated the Kondo temperature for several isosceles geometries
of the trimer. He found out that starting with the single impurity case (where the apex is
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infinitely far away from the basis) the Kondo temperature increased up to a maximum at a
certain configuration where the distance between the apex and any basis atom was still larger
than the length of the basis, but then decreased again if an equilateral shape of the trimer was
approached. Beyond this, when the trimer got more chain like, the Kondo temperature dropped
down quickly. This behaviour was qualitatively in good accordance with [70]. Two scenarios
were considered to explain the variation of the Kondo temperature. In the first, the decrease
after reaching the maximum is due to symmetry effects, in the second, where the energy level of
the trimer atoms has to be closer to the Fermi energy, the ground state of an equilateral trimer
is a singlet which prevents the system from developing a Kondo effect.

In the last part of this literature survey we want to give a brief overview over the development
of a more technical method to describe spin systems in terms of fermions which is called ”semi-
fermionic“.

In the present work, we want to compute the partition function of the system in terms of a
fermionic path integral. If one wants to do so, there arises the well known problem of how to
treat the spin parts of the Hamiltonian. The interacting part of the Hamiltonian modelling the
present system of a given number of magnetic impurities embedded on the surface of a metallic
host has the form of an s-d model with a localised spin describing each impurity. Since a spin
is not given by a fermionic operator, it is not quite obvious how the partition function could be
written as a fermionic path integral. Although spin operators can be represented in terms of
bilinear forms of fermionic construction operators (see [77], here the fermionic representation is
given for general SU(N) operators and spin-1

2 operators are two-dimensional representations of
SU(2) generators), one has to accept some ambiguities to arise. The problem is that representing
spins in a fermionic way leads to a dimensionality problem, since the state space constructed
by the fermionic operators is always larger than the spin space (the dimensionality of the spin
representation matrices). It is a non-trivial question how to eliminate these superfluous states
and it is usually quite complicated to establish diagrammatic techniques ([78, 79, 80, 81]). In
[82] Popov and Fedotov suggested a method of cancelling the contributions of these superfluous
states in spin-1

2 and spin-1 Hamiltonians by introducing a purely imaginary chemical potential
term into the partition function in which moreover the spin Hamiltonian is replaced by the one
in which the spin operators are being given in fermionic form. The original partition function is
thus given by a partition function of a fermionic system with an imaginary chemical potential
which can be computed in terms of a fermionic path integral, since only fermionic operators
appear. When computing these integrals and the corresponding unperturbed Green’s function,
it turns out that the Matsubara frequencies (see [83]) are neither fermionic nor bosonic, which
is not unexpected since the original spin system is neither. Due to this fact, the method is
sometimes called ”semi-fermionic“.

We are going to use this ansatz of Popov and Fedotov in the present work. The method was
generalised to arbitrary spin by Veits et al. (see [84]) and even to any SU(N) pseudo spin with
arbitrary occupation by Kiselev et al. (see [85]). These cases are more complicated but still
follow the idea that contributions of unphysical states in the partition function are cancelled by
introducing (several) imaginary chemical potentials. The original partition function is then given
in a more complicated way, namely as a weighted sum of partition functions of fermionic systems
with imaginary chemical potential. But still, each such partition function can be computed as
a fermionic path integral with a well known related diagrammatic expansion, although the
corresponding Matsubara frequencies are neither fermionic nor bosonic anymore. We will not
have to make use of any of this more advanced methods here. However, for generalising the
presented model to impurity clusters with a total occupation differing from the cluster size, the
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knowledge of treating SU(N) pseudo spin Hamiltonians is necessary (see chapter 7). [86] gives
a very comprehensive overview on how to deal with SU(N) pseudo spin Hamiltonians (which of
course includes the case of the ordinary spin) in equilibrium and non-equilibrium systems.
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We consider a system consisting ofN magnetic impurities on a metallic substrate. The impurities
shall be one-level, all with energy εd. Moreover, we assume the total occupation of the magnetic
cluster to be N at all times and that each impurity is singly occupied. In chapter 4 we will
compute the partition function and the local density of states for such a system in mean field
theory for an unspecified N , while in chapter 5 we will consider a trimer of isosceles geometry,
say N = 3, and present concrete results. We are going to present the trimer system in more
detail in section 3.2.

3.1 N atomic cluster

A system of N magnetic impurities on a metallic substrate is quite well described by the An-
derson model (see [38]) for which the Hamiltonian reads

Ĥ =
∑

kσ

εkNkσ +
∑

jσ

εdnjσ +

N∑

j=1

Unj↑nj↓ +

N∑

j=1

∑

kσ

(
Tjkc

†
jσakσ + h.c.

)
. (3.1.1)

Here, akσ is the annihilation operator in the substrate, cjσ is the one for the j-th atom, Nkσ

and njσ are the particle number operators in the substrate and in the j-th atom respectively, εd
is the energy level of the cluster atoms, U the Hubbard interaction and Tjk is proportional to
the tunnelling amplitude |T (k)|. Moreover, the absolute value of Tjk should be the same for all
j and ∑

j

|Tjk|2 = |T (k)|2.

This justifies to write

Tjk =
1√
N
e−iRjk |T (k)|

= tjk |T (k)|,

where Rj is the position of the j-th atom and where we defined

tjk =
1√
N
e−iRjk. (3.1.2)

The dominating scattering processes will involve substrate electrons in the vicinity of the Fermi
level, so that we can approximately neglect the k-dependence of |T (k)| and write

|T (k)| ≈ |T (kFermi)| = TF .

To simplify our notation, we combine the position dependent part of the tunnelling amplitude
with the substrate operators to a new quantity

ψjσ(k) = tjk akσ.
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Moreover, we define the 2-dimensional vectors

Φi = (ci↑, ci↓)
T

and
Ψi(k) = (ψi↑(k), ψi↓(k))T .

The interacting part of the Anderson Hamiltonian can thus be written as

ĤT =

N∑

j=1

∑

kσ

(
Tjkc

†
jσakσ + h.c.

)
=
∑

k

N∑

j=1

TF

(
Φ†
i · Ψi(k) + Ψi(k)† · Φi

)
.

If the tunnelling amplitudes are small compared to the other occurring energies, one can expand
the Hamiltonian (3.1.1) in terms of the interaction constant

J ∝ T 2
F

N

(
1

εd + U
− 1

εd

)
≪ 1 (3.1.3)

using a Schrieffer-Wolff transformation (see [8]). The proper Kondo regime is given for

εd < 0 < εd + U,

where we set the Fermi energy εF = 0. We perform the Schrieffer-Wolff transformation in
detail in appendix A.4. In first order approximation in J , the Anderson Hamiltonian (3.1.1) is
transformed into

H = H ′
0 +N · J

∑

kk′

N∑

i=1

3∑

ν=1

[
Φ†
i σ

ν Φi

]
·
[
Ψ†
i (k)σν Ψi(k

′)
]
, (3.1.4)

with the Pauli spin matrices σν and where

H ′
0 =

∑

kσ

εkNkσ +
∑

jσ

ε′dnjσ +
∑

j

U ′nj↑nj↓.

The primed quantities ε′d and U ′ are just slightly shifted in energy compared to εd and U
respectively. We assume the energy ε′d to be large compared to J . The term

N∑

j=1

ε′dnjσ

does not play an important role to describe the physics of the system and we will skip it.
Moreover, we want each of the impurities to be singly occupied at any time, which means
U ′ → ∞. Thus, we can also omit the Hubbard term. The resulting model Hamiltonian is

H =
∑

kσ

εkNkσ +N · J
∑

kk′

N∑

i=1

3∑

ν=1

[
Φ†
i σ

ν Φi

]
·
[
Ψ†
i (k)σν Ψi(k

′)
]

(3.1.5)

with the additional constraint that each impurity is singly occupied, meaning that the cluster
always stays in a most spinfull state. This constraint is implemented into the model by the
semi-fermionic Popov-Fedotov method of imaginary chemical potentials, which will be discussed
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in the next paragraph. The interacting part of the resulting s-d model Hamiltonian (3.1.5) has
the form of a Kondo Hamiltonian for each cluster site. However, since there is more than one
impurity, additional effects apart from the Kondo effect will occur. Expanding (3.1.5) to second
order perturbation theory in J will yield cross-over terms connecting different impurity sites,
which will give rise to the RKKY effect.

We turn to the constraint that each impurity is singly occupied. The quantity which we have to
compute for describing the physics of the system is the partition function, which without any
constraints would be

Z = Tr exp
(
−βH

)
. (3.1.6)

However, this expression is not the partition function of the problem presented here, since it
does not comply with the constraint that each magnetic impurity is singly occupied. If we
simply performed the trace, we would get contributions of states which correspond to empty
or doubly occupied impurity sites. It is necessary to eliminate those contributions from the
partition function. Popov and Fedotov suggested a method that does so, introducing imaginary
chemical potentials. We will give a more detailed outline of the method in appendix A.5. A full
presentation can be found in [82] and [85]. Using this method, the proper partition function of
the system is given as

Z = iN · Tr exp


−β


H − µ

∑

jσ

njσ




 , (3.1.7)

where njσ as in (3.1.1) is the particle number operator of the cluster sites, and where

µ = − iπ

2β

is a purely imaginary chemical potential. Equation (3.1.7) yields no contributions of states which
correspond to empty or doubly occupied sites. On the physical space of all states describing
singly occupied impurities, it coincides with (3.1.6). Since we will compute the partition function
via a path integral approach, we will have to add such an imaginary chemical potential term to
the action of the system.

We are going to approach the problem by a mean field approximation. The ”mean field“ is the
mean hybridisation between the itinerant and the localised degrees of freedom. In chapter 4 (and
in more detail in appendix B.1) we are going to perform a Hubbard-Stratonovich transformation
(see [87]) of the interacting part of the model Hamiltonian (3.1.5). If we fix the auxiliary bosonic
fields related to this transformation, the Kondo term in (3.1.5) becomes

1

N J

N∑

j=1

b2j +
∑

k

N∑

j=1

bj t
∗
jk a

†
kσ cjσ +

∑

k

N∑

j=1

bj tjk c
†
jσ akσ,

where the bj are the mean field parameters, say the mean hybridisations of the degrees of
freedom of the substrate and the cluster. Using this altered interaction term, we can compute
the partition function and the local density of states of the problem (chapter 4). The parameters
bj are determined by the mean field equations

∂ logZ

∂bj
= 0
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which means minimisation of the free energy. The most important quantity which we are going
to compute is the local density of states. At low temperatures, it is proportional to the differ-
ential conductance dI/dV , which can be measured in STM experiments. In the Kondo regime,
the width of the energy resolved local density of states (and thus the one of the differential con-
ductance) is proportional to the Kondo temperature, which characterises the system completely,
since it determines below which temperature the Kondo cloud is formed. For a single magnetic
impurity, the Kondo temperature is known to be given as

T0 = ∆e
− 1

2J ρ0

(see [38]), where ∆ is the bandwidth of the substrate and ρ0 is the unperturbed density of states
of the substrate at the Fermi level. We will see, that this case is contained in the model presented
here, if the effective interactions between distinct magnetic impurities vanish. For non-vanishing
effective inter-impurity interactions, the idea still is to determine the Kondo temperature by
computing the width of the differential conductance. However, at distinct sites the widths could
be different, thus giving rise to a varying Kondo temperature. At a given external temperature,
the Kondo effect could already occur at some sites of the cluster while it would not at some
other.
The key to determining the width of the differential conductance (or the corresponding local
density of states) in the Kondo regime is to fit it to the shape of a Kondo-Fano resonance (see
[29])

ρ(ω) = ρ0
(q π Γ + ω)2

ω2 + (πΓ)2
,

where q is the Fano factor (which depends on the coupling of the STM tip to the sample).

3.2 Magnetic isosceles trimer

As a concrete example of a cluster composed of magnetic impurities, we will consider an isosceles
trimer. In general, this can be described like any other N -atomic cluster, so that we will be able
to make use of all formulas for the case of N impurities, especially the ones for the mean field
equations and the local density of states. As for N atoms, there will occur effective interactions
between the spins of the distinct trimer atoms, which have to comply with the geometry of the
trimer. Figure 3.1 shows a schematic of the magnetic isosceles trimer. The effective interaction
between the basis atoms is determined by the coupling g2 while the coupling g1 gives rise to the
effective interactions between the basis atoms and the apex atom. g0 is the on-site coupling.
These effective couplings are determined by scattering processes of the substrate electrons. g0 is
proportional to the unperturbed density of states of the underlying substrate at the Fermi level
by g0 = ρ0/3, while g1 and g2 reflect the RKKY interaction. In general, the couplings decrease
with increasing inter atomic distances (up to a superimposed oscillation).
The effective inter impurity interactions can be ferromagnetic as well as antiferromagnetic lead-
ing to a corresponding alignment of the impurity spins. In this work, we are only interested in
ground state properties, since we are going to perform the calculations for vanishing temper-
ature. If g2 corresponds to ferromagnetic interaction, there is a stable ground state which is
non-degenerate up to switching of all spins. The basis atoms then will align ferromagnetically and
the apex spin will either align ferromagnetically (if g1 is ferromagnetic) or antiferromagnetically
(if g1 gives rise to antiferromagnetic interactions). If g2 entails an effective antiferromagnetic
coupling, the ground state is degenerate. In this case, the apex spin cannot align ferromag-
netically or antiferromagnetically with both spins of the basis. Hence, two of the three trimer
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Figure 3.1: Schematic of isosceles trimer

Effective couplings in the magnetic
trimer. g0 = ρ0/3 is the on-site
coupling while g1 and g2 are related
to effective interactions between dis-
tinct trimer impurities.

spins are always frustrated, if they have non-vanishing projections on each other. One could
expect that this frustration of spins has an effect on the geometrical behaviour of the Kondo
temperature at a certain site. However, the results show that the influence of frustration on
the system has to be rather small if all couplings are antiferromagnetic. In the case of mixed
interactions (with g2 being antiferromagnetic and g1 ferromagnetic), frustration seems to have
a strong influence on the geometric behaviour of the Kondo temperature.
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In this chapter, we are going to perform the mean field calculations for a cluster of arbitrary size
and structure (being composed of N arbitrarily arranged impurities). However, we will only be
able to derive formal results. For a given cluster of a specific geometry, certain N -dimensional
matrices have to be diagonalised, which in general is of course not manageable analytically. We
will give an example in the next chapter, where we consider an isosceles trimer.
In the present chapter we will start performing a Hubbard-Stratonovich transformation to
achieve an action which is at most quadratic in the fermionic construction operators. Then,
we will compute the partition function in a static mean field approximation and derive the mean
field equations. After that, we will formally calculate the Matsubara Green’s function of the
system and its local density of states, the latter being the crucial quantity for the scope of
describing the outcome of an STM experiment at low temperatures.
Some insight can already be gained from the formal calculations done in this chapter. We will
see that a system of isolated cluster atoms behaves like a combination of pure Kondo systems,
which one would expect in this limiting case. Moreover, we are going to prove a theorem on the
local density of states which implies that our model is only valid if the inter atomic distances
are sufficiently large.

4.1 Hubbard-Stratonovich transformation and mean field

approximation of the interaction

To compute the partition function of the system under consideration here, we use the path
integral approach (see [87] or [90]). To this end, one has to determine the action of the problem
which contains the Hamiltonian of the system with all fermionic operators being replaced by
Grassman numbers. In general, it is only possible to analytically perform path integrals of
Gaussian type, i.e. those in which the action is at most quadratic in the Grassman variables.
However, after the Schrieffer-Wolff transformation, the action of the present system also includes
quartic Grassman terms and can thus not be treated via a path integral approach as it stands.

The Hubbard-Stratonovich transformation (see [87]) decouples terms being quartic in the
fermionic operators and reduces them to quadratic ones. The fermionic path integrals then
become of Gaussian type and can be computed analytically. In exchange, certain auxiliary
bosonic fields have to be introduced, which also have to be integrated over; this integration still
cannot be done analytically. However, in a static mean field approach, the auxiliary fields are
fixed at specific values, thus omitting the final integration over them. In this section, we are
going to give the main results of the Hubbard-Stratonovich transformation of the interacting
parts of the action. Moreover, we will determine their forms in a static mean field approach.
For detailed calculations, see appendix B.1.

After a Schrieffer-Wolff transformation of the Anderson model to the low energy sector, the
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interaction between cluster fermions and the substrate becomes

HI = N J ′
N∑

i=1

3∑

ν=1

∑

kk′

(
Φ†
iσ
νΦi

)(
Ψ†
i (k)σνΨi(k

′)
)

(see A.4.8). This term is quartic in the fermionic operators and therefore, the corresponding
path integral cannot be analytically performed. Via a Hubbard-Stratonovich transformation,
we can reduce the fermionic terms to second order but in exchange have to introduce auxiliary
bosonic fields. These fields Qiτσρ (with Greek indices referring to the spin and τ to the imaginary

time) define hermitian 2 × 2-matrices Qiτ for each i = 1 . . . N which can be represented as

Qiτ =
∑

µ

qiτµ σ
µ (4.1.1)

(see section A.2), where the coefficients qiτµ are real valued. The Hubbard-Stratonovich transfor-
mation essentially is a transformation of the variable of integration combined with a completion
of the square. Using the representation (4.1.1), the Hubbard-Stratonovich transformation yields
for each (imaginary) time τ

e−H
τ
I = C ′

∫
dQiτ exp

{1

2

1

N J ′

∑

i µ

(qiτµ )2− 2

N J ′

∑

i

(qiτ0 )2 +
∑

ik

Ψ
τ
i (k)

(
1

2
Qiτ − 2 qiτ0 σ

0

)
Φτ
i

+
∑

ik

Φ
τ
i

(
1

2
Qiτ − 2 qiτ0 σ

0

)
Ψτ
i (k)

}
.

C ′ is a (physically irrelevant) constant. Up to now, we did not gain any advantages with
regard to path integration. If we perform either the fermionic or the bosonic integration first,
the remaining integration still will not be accomplishable analytically. In order to be able to
perform the path integration, we have to use some approximation. We will choose the most
simple one and do some static mean field theory.

In a static mean field approximation, the bosonic fields Qiτ are fixed to certain, time independent
values (determined by the mean field equations). They act as fields describing the (mean)
interaction between the degrees of freedom of the fixed and the itinerant electrons. Since the
model does not prefer a specific direction of the spin, we adopt the form

Qiτ =
2

3
bi12 = qi0σ

0 (4.1.2)

for the auxiliary fields in the mean field approach. Here, bi is real valued (the factor 2/3 is just
for convenience, see appendix B.1). For the sake of a simple notation, we define

J =
3

4
J ′

and the matrix
b = diag(bi| i = 1 . . . N). (4.1.3)

Moreover we introduce the 2N -dimensional vectors

Φ =
(
Φi

∣∣ i = 1 . . . N
)
T

and Ψ(k) =
(
Ψi(k)

∣∣ i = 1 . . . N
)

T

.

Using (4.1.2) and the latter definitions, we arrive at

e−H
τ
I = C ′ exp

{
− 1

N J
Tr b2 −

∑

k

Ψ
τ
(k)(b ⊗ 12)Φ

τ −
∑

k

Φ
τ
(b ⊗ 12)Ψ

τ (k)

}
(4.1.4)

for each (imaginary) time τ .
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4.2 Partition function in mean field theory

In this section we are going to present the main steps of computing the partition function of
the problem in mean field theory. We will first state the path integral of the problem and then
calculate it approximately. For further details of the calculations, see appendix B.2.

We will start with writing down the partition function in mean field in terms of a path integral.
We will use the Hubbard-Stratonovich transformed terms (4.1.4) in mean field and we will Fourier
transform the occurring Grassman fields from (imaginary) time space to frequency space

φτiσ → φiωn

iσ , aτkσ → aiωn

kσ .

We recall that

ψiσ(k) = tik akσ =
1√
N
e−iRik akσ.

The 2N -dimensional vector Ψ(k) can thus be written as

Ψ(k) = tk ⊗ ak,

where tk is a N -dimensional vector composed of the tik, and ak is a two-dimensional vector
composed of ak↑, ak↓. For the localised degrees of freedom, we will use the Popov-Fedotov
method of imaginary chemical potentials, which for singly occupied cluster sites means, that
one has to include a term

− iπ

2β
Φ · Φ

in the action. For the sake of a brief notation and more clarity, we define the unperturbed
Green’s function Giωn(k) of the itinerant degrees of freedom by

G−1
iωn

(k) = iωn − εk (4.2.1)

and the unperturbed Green’s function Diωn of the localised degrees of freedom by

D−1
iωn

= iωn −
iπ

2β
. (4.2.2)

The partition function in static mean field theory is then given as

ZMF = C e−
β

NJ
Trb2

∫
D
(
Φ,Φ, a, a

)
exp

(
−
∑

iωn

[∑

k

aiωn

k
G−1

iωn
(k)12 a

iωn

k
+ Φ

iωn
D−1

iωn
12N Φiωn

−
∑

k

(t†
k
⊗ aiωn

k
)(b ⊗ 12)Φ

iωn −
∑

k

Φ
iωn

(b ⊗ 12)(tk ⊗ aiωn

k
)

])
.

(4.2.3)

We denote the prefactor of the path integral as C Z0. C is a constant, but it is of no importance
to us, since all quantities of interest are derivatives of logarithms of the partition function, so
that C never has to be taken into account. One can rewrite the integral (4.2.3) by defining the
vector

χiωn =
(
φiωn

1↑ , φ
iωn

1↓ , . . . , φ
iωn

3↑ , φ
iωn

3↓ ,
{
aiωn

k↑ , a
iωn

k↓

∣∣k
})

T

,
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so that

ZMF = C Z0

∫
D(χ, χ) exp

(
−
∑

iωn

χiωn
(
Miωn

⊗ 12

)
χiωn

)

= C Z0

∏

iωn

(
detMiωn

)2
= C Z0 exp

(
2
∑

iωn

Tr log Miωn

)
,

where the matrix Miωn
is defined by (4.2.3). For details, see appendix B.2. The matrix Miωn

can be unitarily transformed into another matrix M̃iωn
such that

detMiωn
= det M̃iωn

= exp Tr log M̃iωn
.

This matrix M̃iωn
has the form

M̃iωn
=

(
X̂iωn

0

A diag
(
G−1

iωn
(k)
∣∣k
)
)

with A being irrelevant for the determinant and with the N ×N -matrix X̂iωn
being defined as

(
X̂iωn

)
ij

= D−1
iωn

δij −
∑

k

(
t†
k
b∗
)
i
(btk)j Giωn(k)

= D−1
iωn

δij −
∑

i′j′

bii′

(
1

N

∑

k

ei(Ri′−Rj′ )k

iωn − εk

)
bj′j (4.2.4)

= D−1
iωn

δij − bi

(
1

N

∑

k

ei(Ri−Rj)k

iωn − εk

)
bj , (4.2.5)

where we used the definition of tik as well as the fact that b is diagonal. The partition function
is thus given as

ZMF = C Z0 e
2

P

iωn

P

k
logG−1

iωn
(k) exp

(
2
∑

iωn

Tr log X̂iωn

)
. (4.2.6)

The exponential term consisting of unperturbed Green’s functions of substrate electrons only,
will not have to be taken into account if we look at derivatives of logarithms of the partition
function with respect to the auxiliary fields. Thus, we absorb it into the prefactor C. To compute
the partition function more explicitly, we obviously have to diagonalise the matrices X̂iωn

to get
the eigenvalues. To this end, we define the matrix g̃(iωn) by

(
g̃(iωn)

)
ij

=
1

N

∑

k

ei(Ri−Rj)k

iωn − εk
(4.2.7)

so that
X̂iωn

= D−1
iωn
1N − b g̃(iωn) b.

One can compute the sum (which of course is meant as an integral) in (4.2.7) approximately if
the band structure is known. However, for the following, the explicit form is not as important
as the general structure of the matrix. By taking the adjoint, we see

(
g̃(iωn)

)∗
ji

=
1

N

∑

k

e−i(Rj−Ri)k

−iωn − εk
=
(
g̃(−iωn)

)
ij
.
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Moreover, writing down the integral

(
g̃(iωn)

)
ij

=

∫
dk

∫
dφf(k, φ)

ei|Ri−Rj |k cosφ

iωn − εk
(4.2.8)

for two or three dimensions, where k is the absolute value of k and φ the angle between Ri−Rj

and k, one can see that (
g̃(iωn)

)
ji

=
(
g̃(iωn)

)
ij
.

For a broad and flat band the diagonal elements of g̃ can be computed to

[g̃(iωn)]ii = −iπsgn(ωn)
ρ0

N
= −iπsgn(ωn)g0,

where ρ0 is the unperturbed electronic density of states (for the case without impurities) and
where we defined g0. Computing also the off-diagonal terms, one arrives at the general formula

g̃(iωn) = −iπ sgn(ωn)
[
gR + i sgn(ωn) gI

]
= −iπ sgn(ωn) g(iωn), (4.2.9)

where gR and gI are real valued symmetric matrices (not depending on ωn) and where we defined
the matrix g(iωn). The diagonal elements of gR are all given by g0 and gI has a vanishing
diagonal. We remark that always ∣∣∣∣

(
gR/I

)
ij

∣∣∣∣ ≤ g0,

for all i, j. The derivation of (4.2.9) is given in more detail in appendix B.2. We remark that
in a two-dimensional substrate the coordinate dependence of the off-diagonal entries of g(iωn)
is that of Bessel functions with arguments z = kF |Ri −Rj |. Since the Fermi wave vector is the
inverse Fermi wavelength, z measures distance as multiples of the Fermi wavelength. For large
arguments z (that is z > 1), the [g(iωn)]ij decay like

√
2/πz · cos(z − π/4).

The matrix X̂iωn
can be written as

X̂iωn
= D−1

iωn
1N + iπ sgn(ωn) b g(iωn) b.

In order to diagonalise the matrix X̂iωn
, we have to diagonalise the matrix b g(iωn)b. The way

this is done depends on the size and geometric configuration of the cluster. We are going to
give the result of the diagonalisation in the case of an isosceles trimer in chapter 5. The matrix
b g(iωn)b is connected to the RKKY interaction which depends on the geometry of the trimer.
We are going to discuss the physical meaning of the matrix in section 4.2.1.

Let us assume the matrix b g(iωn)b has been diagonalised. Because of the structure of g(iωn),
the eigenvalues are of the form

T̂j(iωn) = TRj + i sgn(ωn)T
I
j (4.2.10)

for j = 1 . . . N and with real valued T
R/I
j . We denote the eigenvectors as ûj(iωn), and it holds

ûj(iωn) = ûj(i sgn(ωn)) = uRj + i sgn(ωn)u
I
j (4.2.11)

with real valued vectors uRj and uIj . Depending on the geometry of the cluster it is possible that
some of the eigenvalues are degenerate. However, this does not affect the general results. But
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in concrete calculations, when a fixed geometry is given, possible degeneracy of the eigenvalues
has to be taken into account. Knowing the eigenvalues of X̂iωn

, we can now give a more explicit
form of the partition function (4.2.6). It is

ZMF = Ĉ Z0 exp


2
∑

iωn

N∑

j=1

log

[
iωn −

iπ

2β
+ iπ sgn(ωn)T

R
j − π T Ij

]
 . (4.2.12)

Here, we absorbed the exponential factor depending only on the free electronic Green’s function
into the prefactor Ĉ, and Z0 is given as

Z0 = exp

(
− β

N J
Tr b2

)
(4.2.13)

The partition function (4.2.12) fixes all other quantities of interest. It determines the mean field
equations, which specify the values of the mean field parameters b. Having the value of those
parameters for a specific geometry, the local density of states (the quantity we are interested in
most) can be explicitly computed.

4.2.1 RKKY interaction

Up to now, we have defined the matrix b g(iωn) b but so far have not attached to it any physical
content. It turns out, that this matrix is connected to the RKKY interaction.
After the Hubbard Stratonovich transformation, the interacting part of the s-d model Hamilto-
nian becomes

1

N J

N∑

j=1

b2j +
∑

k

N∑

j=1

bj t
∗
jk a

†
kσ cjσ +

∑

k

N∑

j=1

bj tjk c
†
jσ akσ. (4.2.14)

We fix the hybridisations bi to their mean values in mean field theory. Therefore, the first term
in (4.2.14) only gives rise to a constant. When computing the partition function, each term

bj tjk c
†
jσ akσ

(or its hermitian conjugate) gives rise to a diagram shown on the left hand side in figure 4.1. The
solid line corresponds to the itinerant degrees of freedom, the dashed line to the located cluster
electrons and the vertex is given by bj tjk. The RKKY interaction is an effective interaction

�ik �i
j

k

j

i

k′

Figure 4.1: Interacting part after Hubbard-Stratonovich transformation, R.H.S.: RKKY inter-
action. Solid line correspond to itinerant degrees of freedom, dashed lines to localised
ones, the vertex is given by bj tjk.
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between distinct located spins of the cluster. It is given as a diagram in fourth order perturbation
in the bosonic auxiliary fields (see [38]). The diagram is shown on the right hand side of figure
4.1, and it has negative weight. The diagram includes a fermionic loop which gives an additional
sign. Therefore its contribution to the RKKY interaction computes to

(
bi
∑

k

tik t
∗
jkGiωn(k) bj

)(
bj
∑

k′

tjk′ t∗ik′ Giωn(k′) bi

)

=

(
bi
∑

k

e−i|Ri−Rj |k

iωn − εk
bj

)(
bj
∑

k′

e−i|Rj−Ri|k′

iωn − εk′

bi

)

=
(
−iπ sgn(ωn) bi

[
g(iωn)

]
ij
bj

)(
−iπ sgn(ωn) bj

[
g(iωn)

]
ji
bi

)

= −π2
(
bi
[
g(iωn)

]
ij
bj

)2

= −π2 (b g(iωn) b)2ij .

Here, we used the definitions (4.2.7) and (4.2.9). Thus, the RKKY interaction is connected
to the matrix b g(iωn) b. The matrix b is always real-valued while the matrix g(iωn) can be
real-valued or imaginary. Hence, the RKKY interaction between the i-th and the j-th site is
ferromagnetic if

[
g(iωn)

]
ij

is real-valued (since its contribution to the Hamiltonian lowers the

free energy in this case), and it is antiferromagnetic if
[
g(iωn)

]
ij

is imaginary.

4.3 Mean field equations

The partition function Z of a given system is connected to its free energy F by the relation

Z = e−βF .

The value of the mean field parameters is determined by minimising the free energy. The
auxiliary fields bi, the entries of the diagonal matrix b, are therefore fixed by the system of
equations given by

∂ logZMF

∂bi
= 0

for each i. Recalling the form of the prefactor Z0 in (4.2.13)

Z0 = exp

(
− β

NJ
Trb2

)
= exp

(
− β

NJ

∑

i

b2i

)
,

the mean field equations are given as

∂ logZMF

∂bi
= − 2β

N J
bi + 2

N∑

j=1

[
∂TRj
∂bi

∑

iωn

iπsgn(ωn)

iωn − iπ
2β + iπ sgn(ωn)TRj − π T Ij

−
∂T Ij
∂bi

∑

iωn

π

iωn − iπ
2β + iπ sgn(ωn)TRj − π T Ij

]
= 0.
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The frequency summations in the latter formula can be performed using the bandwidth ∆ as
energy cut-off, which is done in detail in appendix B.3. It is

∑

iωn

iπsgn(ωn)

iωn − iπ
2β + iπ sgn(ωn)TRj − π T Ij

=
β

2

[
Ψ

(
β

2
∆ +

β

2
T ∗
j +

1

4

)
− Ψ

(
β

2
T ∗
j +

1

4

)

+ Ψ

(
β

2
∆ +

β

2
Tj +

3

4

)
− Ψ

(
β

2
Tj +

3

4

)] (4.3.1)

and

∑

iωn

−π
iωn − iπ

2β + iπ sgn(ωn)TRj − π T Ij
= −i

β

2

[
Ψ

(
β

2
T ∗
j +

1

4

)
− Ψ

(
β

2
Tj +

3

4

)]
, (4.3.2)

where we defined

Tj = TRj − iT Ij and T ∗
j = TRj + iT Ij respectively, (4.3.3)

and where Ψ denotes the Digamma function. For arguments of large absolute value, the
Digamma function takes the form of the logarithm (see [88]):

Ψ(z) ≈ log(z) for |z| ≫ 1.

Since we want to investigate the mean field equations in the limit of low temperatures, we assume
β ≫ 1 so that (4.3.1) and (4.3.2) get much simpler. In this limit, the mean field equations take
the form

N∑

j=1

[
∂TRj
∂bi

log

(
(TRj )2 + (T Ij )2

∆2

)
− 2

∂T Ij
∂bi

arctan

(
T Ij

TRj

)]
= − 2

NJ
bi (4.3.4)

Here, we assumed |Tj | ≪ ∆. We are going to see in section 4.5 that this assumption means

Jρ0 ≪ 1 (4.3.5)

(ρ0 being the unperturbed density of states) in the case of isolated impurities. Relation (4.3.5)
means, that we always are in the regime of small s-d coupling. In our model, J was assumed to
be small compared to all other occurring energies of the model, and (4.3.5) simply states that
the Fermi energy is much larger than the energy scale of the s-d coupling.

4.4 Green’s function and local density of states

In this section we are going to state the formula for the electronic Green’s function in mean
field theory. Moreover, we will determine the local density of states, the quantity we are mostly
interested in, since it is connected to the conductance at low temperatures. Again, mostly we
are just going to present final results here, while more detailed computations are performed in
appendix B.4. To get the Green’s function one introduces a source term

SSource =
∑

iωn

∑

k

(
ηkiωn

aiωn

k
+ aiωn

k
ηkiωn

)
(4.4.1)
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into the action of the model. This leads to a modified partition function

ẐMF = ZMF exp

(
∑

iωn

Θiωn

[
M−1

iωn
⊗ 12

]
Θiωn

)
, (4.4.2)

where the vector Θiωn is defined by

Θiωn =


0, 0, . . . , 0︸ ︷︷ ︸

N−times

,
{
ηkiωn

|k
}



T

and where the matrix Miωn
is the same as in section 4.2. The electronic Green’s function is then

defined as

Ĝ(iωn;k,k
′) =

∂2 log ẐMF

∂ηkiωn
∂ηk

′

iωn

∣∣∣∣∣
η=η=0

. (4.4.3)

Inverting the matrix Miωn
, the Green’s function is actually given as

Ĝ(iωn;k,k
′) = Giωn(k) δkk′ +Giωn(k)Diωnt

†
k

b
∞∑

n=0

Dn
iωn

[
−iπsgn(ωn) b g(iωn) b

]n
b tk′Giωn(k′).

(4.4.4)
Here, the matrix b g(iωn) b appears again. As in section 4.2, we denote the eigenvalues of this
matrix as T̂j(iωn) and its eigenvectors as ûj(iωn). Let the matrix Uiωn

diagonalise the matrix
b g(iωn) b so that

Uiωn
b g(iωn) b U†

iωn
= diag

(
T̂j(iωn)

∣∣ j = 1 . . . N
)
.

Then (
b g(iωn) b

)n
= U†

iωn

[
diag

(
T̂j(iωn)

∣∣ j = 1 . . . N
)]n

Uiωn

and

Diωn

∞∑

n=0

Dn
iωn

[
−iπsgn(ωn) b g(iωn) b

]n

= U†
iωn

diag

(
1

D−1
iωn

+ iπ sgn(ωn) T̂j(iωn)

∣∣∣∣∣ j = 1 . . . N

)
Uiωn

.

Using the eigenvectors of b g(iωn) b we can thus write the Green’s function (4.4.4) as

Ĝ(iωn;k,k
′) = Giωn(k) δkk′ +

N∑

j=1

Giωn(k)
[
t†
k
b ûj(iωn)

]
·
[
û†j(iωn) b tk′

]
Giωn(k′)

D−1
iωn

+ iπ sgn(ωn) T̂j(iωn)
. (4.4.5)

Since our overall goal is to get the coordinate resolved local density of states, we perform a
Fourier transformation of (4.4.5) to coordinate space. It is

G̃(iωn; r) =
∑

kk′

Ĝ(iωn;k,k
′) e−ir(k−k′).

The integrals involved here are the same as for the computation of the matrix g̃(iωn) in section
4.2. The coordinate resolved Green’s function is thus given as

G̃(iωn; r) = −iπ sgn(ωn) ρ0 −
π2ρ2

0

N

N∑

j=1

[
v̂T

r (iωn) b ûj(iωn)
]
·
[
û†j(iωn) b v̂r(iωn)

]

D−1
iωn

+ iπ sgn(ωn) T̂j(iωn)
. (4.4.6)
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The vector v̂(iωn) is defined by the Fourier transformation

∑

k

Giωn(k) tk e
ikr = −iπ sgn(ωn)

ρ0√
N
v̂r(iωn).

It is of the form
v̂r(iωn) = vRr + i sgn(ωn) v

I
r

with some real-valued vectors vR and vI , and we remark that

(
v̂Rj

(iωn)
)
i
=

[g(iωn)]ij
g0

.

We emphasise that v̂T means transposed and not hermitian conjugate. The iωn-dependence of
v̂ and v̂T is the same, their entries are not complex conjugate to each other.

The local density of states is related to the imaginary part of the advanced electronic Green’s
function by the formula

ρ(ω, r) =
1

π
ImGadv(ω, r). (4.4.7)

Therefore, one needs to know the advanced Green’s function which can be derived from (4.4.6)
by the usual technique of complex continuation to the lower half plane:

Gadv(ω, r) = lim
δ→0

G̃

(
iωn −

iπ

2β
→ ω − iδ; r

)
.

The continuation

iωn −
iπ

2β
→ ω − iδ

also means
i sgn(ωn) → −i.

Using this relations and the definitions (4.2.10) and (4.2.11) of the eigenvalues and eigenvectors
of b g(iωn) b, one gets

D−1
iωn

→ ω, iπ sgn(ωn) T̂j(iωn) → −iπ TRj − π T Ij , v̂r(iωn) → vr = vRr − i vIr

and
ûj(iωn) → uj = uRj − iuIj .

The advanced Green’s function therefore is

Gadv(ω, r) = iπ ρ0 − π2 ρ0 g0

N∑

j=1

[
vT

r buj

]
·
[
u†j b vr

]

ω − iπ TRj − π T Ij
, (4.4.8)

where we replaced g0 = ρ0/N . To get the local density of states we use (4.4.7) and therefore
have to determine the imaginary part of (4.4.8), where we have to take the structure of vr and
uj into account, using that due to the symmetry of a real scalar product, it is

vT bu = uT b v
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for any real-valued vectors v and u. In order to keep the formulas manageable, we define

Bjr
XY =

(
vXr
)T

buYj (4.4.9)

where X,Y ∈ {R, I}. Using this abbreviation, the local density of states is given as

ρ(ω, r) = ρ0

(
1 − π g0

N∑

j=1

π TR
j [(Bjr

RR
)2−(Bjr

II
)2−(Bjr

IR
)2+(Bjr

RI
)2]−2(ω−π T I

j )[Bjr
RI

Bjr
II

+Bjr
IR

Bjr
RR]

(ω−π T I
j )

2
+(π TR

j )
2

)
. (4.4.10)

In the low temperature limit, the local density of states is essentially proportional to the con-
ductivity at a certain point r and the voltage bias related to the energy ω.

4.4.1 The ”touching ground“ theorem for the local density of states

In this section we are going to prove a theorem on the local density of states, which implies that
the present mean field model can only be applied to magnetic clusters with sufficiently large
inter atomic distances. The theorem reads:

The local density of states observed at any cluster atom vanishes at the Fermi level.

ρ(0,Ri) = 0 for i = 1 . . . N.

(4.4.11)

Before proving (4.4.11), we discuss its consequences. Given an arbitrary cluster, the local density
of states taken at any cluster atom always shows a dip at the Fermi level. As this dip is an
indicator of the Kondo effect, we can conclude that the model treated here always is in the
regime of the Kondo effect which cannot be destroyed by any other occurring effects. It can be
enhanced or reduced but it cannot be completely destroyed.
This behaviour can be explained by the terms of the model itself. We described the system by
using mean field theory for the hybridisation of the substrate spins and the localised ones at
each site. However, this approach will fail if the distances of the cluster atoms become smaller
than the Fermi wavelength, since then the cluster atoms should be collectively hybridised with
the substrate. The mean field approach presented here is only valid if the inter-atomic distances
are large enough - and this means the Kondo effect will be the most important.

We will now turn to the proof of (4.4.11). Afterwards, we are going to show that the necessary
requirement for the validity of (4.4.11) is the absence of fluctuations of the hybridisations, so
the theorem will only hold true in mean field theory.

The starting point of the proof of (4.4.11) is the advanced Green’s function given in equation
(4.4.8).

Tj = TRj − iT Ij

and
uj = uRj − iuIj

are the eigenvalues and eigenvectors of the matrix b g b with

g = gR − i gI .

This simply follows by complex continuation from T̂j(iωn) and ûj(iωn) to the lower half-plane,
since those are the eigenvalues and eigenvectors of b g(iωn) b. As stated in section 4.4 it is

(v̂Ri
(iωn))j =

[g(iωn)]ji
g0
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and therefore
(vRi

)j =
gji
g0
.

So

ρ(0,Ri) = ρ0


1 − π g0 Im




N∑

j=1

[
vT

Ri
buj

]
·
[
u†j b vRi

]

−iπ (TRj − iT Ij )






= ρ0


1 − g0 Im


i

∑

l1l2l3l4

gil1
g0

bl1l2

N∑

j=1

(uj)l2 (uj)
∗
l3

Tj
bl3l4

gl4i
g0




 .

Since uj are the eigenvectors of b g b with eigenvalues Tj, they also are the eigenvectors of
(b g b)−1 with T−1

j being the corresponding eigenvalues. Hence

N∑

j=1

(uj)l2 (uj)
∗
l3

Tj
= (b gb)−1

l2l3
.

So

ρ(0,Ri) = ρ0


1 − 1

g0
Im


i

∑

l1l2l3l4

gil1 bl1l2(b g b)−1
l2l3

bl3l4 gl4i






= ρ0

(
1 − 1

g0

∑

l

gil δli

)

= ρ0

(
1 − gii

g0

)

= 0,

since gii = g0. This proves (4.4.11).

In the following we show, that the theorem 4.4.11 is only valid in mean field theory. The main
reason for this is, that the Dyson series given in (4.4.4) does not converge toward the limit of a
geometric series if the hybridisations are fluctuating. Therefore, the Green’s function does not
have the form (4.4.8) in that case, which was crucial for proving the theorem (4.4.11).

If we consider the hybridisation matrices b to be fluctuating rather than being fixed to a
mean value, the partition function is not given by (4.2.3) anymore, but by a similar expression,
in which also the integration over all possible values of b has to be performed. In the fluctuating
case, the matrices b are arbitrary, hermitian, complex-valued matrices which also depend on
the Matsubara frequencies iωn. Rather than (4.2.12), the partition function would therefore be
given as

Z =

∫
D(biωn) D(b∗iωn

) Ĉ e−
1

J N

P

iωn
Trb†

iωn
b

iωn×

× exp


2
∑

iωn

N∑

j=1

log

[
iωn −

iπ

2β
+ iπ sgn(ωn)T

R
j (iωn) − π T Ij (iωn)

]
 ,

(4.4.12)
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where biωn and b∗iωn
denote all possible values of the hybridisations and their complex conjugate

and where the eigenvalues T
R/I
j now have to depend on iωn, since they depend on the hybridi-

sations. We denote the integrand of 4.4.12 as z̃(b, b∗). The Matsubara Green’s function of the
system still can be computed by introducing a source term as defined in (4.4.1) into the partition
function, thus altering it from Z as given in (4.4.12) to Z̃ fulfilling

Z̃
∣∣
η=η=0

= Z.

The Green’s function is given as already defined in (4.4.3):

Ĝ(iωn;k,k
′) =

∂2 log Z̃

∂ηk

iωn
∂ηk

′

iωn

∣∣∣∣∣
η=η=0

.

Contrary to the mean field result (4.4.4), the Green’s function for fluctuating hybridisations is

Ĝ(iωn;k,k
′) = Giωn(k) δkk′ +Giωn(k)Diωnt

†
k

∞∑

n=0

[−iπsgn(ωn)Diωn ]n×

× 1

Z

(∫
dbdb∗ z̃(b, b∗) b†

iωn

[
biωn

g(iωn) b†
iωn

]n
biωn

)
tk′Giωn(k′).

(4.4.13)

The Dyson series in (4.4.13) does not converge to the limit of a geometric series in general.
Instead, it is given as the sum over all connected diagrams in b, which of course does not only
contain the mean field part. The Dyson series in (4.4.13) will only coincide with the geometric
series, if the (slightly altered) n-point function

〈b∗ b∗ . . . b b〉 =
1

Z

(∫
dbdb∗ z̃(b, b∗) [b∗ b]n

)

has the property
〈b†b† . . . bb〉 = 〈b〉〈b〉 . . . 〈b〉〈b〉,

which is the definition of the mean field approach. For fluctuating hybridisations, the Green’s
function (4.4.13) will thus not take a form similar to (4.4.8), which would be necessary in order
that theorem (4.4.11) would still hold true.

This means, that theorem (4.4.11) will not be valid anymore, if fluctuations of the hybridis-
ation are taken into account. It is therefore linked to the mean field approach used throughout
this work. Since (4.4.11) implies, that the model will always develop a Kondo effect, one can
draw the conclusion that mean field theory will only be valid for systems in the Kondo regime.

We want to conclude this section with a remark on the outcome of an STM experiment described
by the present model. In the domain of the Kondo effect the differential conductance dI/dV
(and thus for small temperatures the local density of states) taken at an impurity will be of
Fano-Kondo resonance shape (see for example [31] or [30])

ρ(ω,Ri) =
(q π Γ + ω)2

ω2 + (π Γ)2
.

Here, q is the Fano factor and ω = 0 is the Fermi level. The theorem ρ(0,Ri) = 0 then implies
q = 0. In the model presented here, the Fano shape fit to the local density of states will always be
one of vanishing Fano factor, which means that we always are in the regime where the coupling
between STM tip and the substrate is weak. This is not very surprising, since the present model
does not take into account any terms describing the tip of the STM or its coupling to the sample.
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4.5 Single impurity limit

As outlined in the last subsection, the model presented here mostly starts from a Kondo case
which then can be altered by geometric effects. Of course, it is mandatory for the model to
contain the pure Kondo effect as a limiting case. The pure Kondo case will be given if the
cluster consists of isolated atoms which do not interact with each other. In our model, this
corresponds to diverging inter atomic distances:

|Ri −Rj | → ∞ for all i, j = 1 . . . N.

In this case the integrals in (4.2.8) vanish if i 6= j and the matrix g(iωn) defined in (4.2.9)
becomes proportional to the unity:

g(iωn) = g0 1N .
The matrix b g(iωn) b then already is diagonal

b g(iωn) b = diag
(
b2j g0

∣∣ j = 1 . . . N
)

with the real-valued eigenvalues

Tj(iωn) = Tj = TRj = b2j g0.

The mean field equations (4.3.4) are given as

2 bi g0 log
b2i g0
∆

= − 1

NJ
bi

with the non-trivial solution

b2i g0 = ∆ exp

(
− 1

2N g0 J

)
= ∆ exp

(
− 1

2ρ0J

)
= Tj , (4.5.1)

for every i = 1 . . . N . We used g0 = ρ0/N . So all Tj and bj respectively coincide, and we remark
that

T0 = ∆ exp

(
− 1

2J ρ0

)
(4.5.2)

has the usual form of a Kondo temperature known for a single magnetic impurity (see [38]).
The local density of states (4.4.10) becomes strikingly simple:

ρ(ω, r) = ρ0


1 − π g0

N∑

j=1

π Tj
[
(vr)

T buj
]2

ω2 + (π Tj)
2


 .

The eigenvectors uj here simply are
(uj)l = δil.

At the position Ri of any cluster atom, the vectors vRi
are given as

(vRi
)l =

gli
g0

= δil.

So in this case
(vr)

T buj = bj δij
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and

ρ(ω,Ri) = ρ0

(
1 − π g0

π Ti b
2
i

ω2 + (π Ti)
2

)

= ρ0

(
1 − π2 T 2

0

ω2 + π2 T 2
0

)
.

This is the Fano-Kondo form of a Kondo dip with width π T0 and vanishing Fano factor. The
case of isolated atoms leads to the formation of a Kondo peak at each atom with same Kondo
temperature T0 given in (4.5.2).

4.6 Summary

In this section we considered a cluster of N magnetic impurities sufficiently far from each other.
The interacting part of the Hamiltonian was given by a Kondo term at each site. We formally
computed the partition function of the problem in mean field theory, the mean field here being
the mean hybridisation of each cluster atom with the surrounding substrate atoms. Using the
partition function as a starting point, we calculated the mean field equations of the problem
as well as the Green’s function and the local density of states in coordinate space. During the
calculations, the quantity b g(iωn) b arose. The eigenvalues of this matrix determine the values
of the mean field parameters. It was outlined that the squares of the entries of b g(iωn) b are
related to the RKKY interaction, which acts ferromagnetically for real-valued entries of g(iωn)
and antiferromagnetically for imaginary ones. The influence of the cluster geometry on the
system is therefore encoded in the matrix g(iωn).

It was proven, that the local density of states taken at any cluster site vanishes at the Fermi
level. As a result, the LDOS at a cluster site (as a function of energy) always develops a dip
around the Fermi energy. Since this is what one would expect from a system with dominating
Kondo effect, we concluded that only such cases are to be considered here. For dominating
RKKY effect, the inter atomic distances have to be small (less than a Fermi wavelength) which
is not compatible with the mean field ansatz used here.

We considered the limiting case of a completely isolated cluster, where no interactions between
the distinct atoms occur. In this case, the system develops a normal Kondo effect at each cluster
site. The Kondo temperature then is

T0 = ∆ exp

(
− 1

2J ρ0

)

with ∆ the bandwidth of the substrate, J the strength of the s-d coupling and ρ0 the substrate
density of states at the Fermi level. We are going to use this system in the following chapter as
a reference system.

The problem of a cluster consisting of N magnetic impurities cannot be treated analytically in
general, since the N × N matrix b g(iωn) b has to be diagonalised for solving the mean field
equations. We are going to restrict ourselves in the following to a trimer so that N = 3. To
make things even simpler, we will assume the trimer to be isosceles. However, the case of an
N -dimensional cluster can be treated in principle, though a numerical approach would then be
appropriate.
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In this chapter, we are going to look at an actual example of a magnetic cluster. We are going
to consider three single level magnetic impurities that form an isosceles trimer. As we have
stated in the latter chapter, geometrical effects are completely encoded in the eigenvalues and
eigenvectors of the matrix b g b. We will have to solve the mean field equations (4.3.4) for a
given geometry and compute the local density of states (4.4.10) at a certain point. We are going
to consider several limiting cases of the geometry of an isosceles trimer, which can be treated
analytically to a large extend, for example an equilateral triangle and a chain. Yet, we are also
going to deal with more general geometries, whose corresponding mean field equations will then
have to be solved using numerical methods. In all cases, we are going to determine the local
density of states given at the cluster atoms and interpret its behaviour with varying geometry.

5.1 General case

We start with the general case of an isosceles trimer. To model it, we consider the related g-
matrix to be given as

g =




g0 g1 g2
g1 g0 g1
g2 g1 g0


 . (5.1.1)

This is due to the isosceles form, where we consider the apex to be located at R2. We recall
that g0 = ρ0/3 is positive real-valued but g1 and g2 are complex. It is

g = gR − igI ,

and we use the notation
gj = gRj − igIj

with real-valued g
R/I
j for the entries of the matrix. Since the hybridisation at the cluster atoms

opposite the apex should be of the same kind (due to symmetry considerations) we assume the
matrix b to be of the form

b =




b 0 0

0 b̂ 0
0 0 b


 . (5.1.2)

So b1 = b3 = b and b2 = b̂. Since there are only two distinct mean field parameters left, the
mean field equations (4.3.4) are slightly altered. Their right hand side computes to

− 1

3J

∂

∂bi
Trb2 = − 2

3J

(
2 b δbib + b̂ δbi b̂

)
.

Since the mean field parameter b appears twice in the matrix b, the right hand side of its mean
field equation is multiplied by 2. As outlined earlier, the main tasks are to diagonalise the matrix



5 Isosceles Trimer

b g b formally, solve the mean field equations and compute the local density of states. Assuming
(5.1.1) and (5.1.2), the matrix b g b is given as

b g b =




b2 g0 b b̂ g1 b2 g2
b b̂ g1 b̂2 g0 b b̂ g1
b2 g2 b b̂ g1 b2 g0


 (5.1.3)

For the sake of a brief notation, we define

z0 = b2 g0, ẑ0 = b̂2 g0, z1 = b b̂ g1 and z2 = b2 g2. (5.1.4)

The characteristic polynomial of the matrix (5.1.3) is

det (b g b − T 13) = (z0 − T )
[
(ẑ0 − T )(z0 − T ) − z2

1

]

− z1
[
z1(z0 − T ) − z1 z2

]
+ z2

[
z2
1 − z2(ẑ0 − T )

]

=
[
(z0 − T )2 − z2

2

]
(ẑ0 − T ) − 2(z0 − T )z2

1 + 2z2
1z2

= (T − z0 + z2)(T − z0 − z2)(ẑ0 − T ) + 2z2
1(T − z0 + z2)

= −
(
T − z0 + z2

)[
T 2 − (z0 + ẑ0 + z2)T + ẑ0z0 + ẑ0z2 − 2z2

1

]
. (5.1.5)

The roots of the characteristic polynomial are

T1 = b2(g0 − g2), (5.1.6)

T2 =
1

2

[
b2(g0 + g2) + b̂2g0 +

√(
b2(g0 + g2) − b̂2g0

)2
+ 8 b2 b̂2 g2

1

]
, (5.1.7)

T3 =
1

2

[
b2(g0 + g2) + b̂2g0 −

√(
b2(g0 + g2) − b̂2g0

)2
+ 8 b2 b̂2 g2

1

]
. (5.1.8)

The square roots in the latter equations are meant to be complex, since g1 and g2 are. There
are two different square roots of any given complex number z which differ by sign. However,
switching the sign of the roots just turns T2 into T3 and vice versa. The normalised eigenvectors
uj are determined by the equations

b g buj = Tj uj , |uj |2 = 1.

Using the notation (5.1.4), this reads for T1 and u1 = (x, y, z)T

z0x+ z1y + z2z = (z0 − z2)x,

z1x+ ẑ0y + z1z = (z0 − z2) y,

z2x+ z1y + z0z = (z0 − z2) z,

which means z = −x, y = 0 and therefore

u1 =
1√
2




1
0
−1


 . (5.1.9)

For T2/3 and u2/3 it is

z0x+ z1y + z2z =
1

2

[
z0 + z2 + ẑ0 ±

√
(z0 + z2 − ẑ0)2 + 8z2

1

]
x,

z1x+ ẑ0y + z1z =
1

2

[
z0 + z2 + ẑ0 ±

√
(z0 + z2 − ẑ0)2 + 8z2

1

]
y,

z2x+ z1y + z0z =
1

2

[
z0 + z2 + ẑ0 ±

√
(z0 + z2 − ẑ0)2 + 8z2

1

]
z.
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Adding the first and the last of these equations, one arrives at

2 z1 y =
1

2

[
ẑ0 − z0 − z2 ±

√
(z0 + z2 − ẑ0)2 + 8z2

1

]
(x+ z). (5.1.10)

Using this relation, the second equation is trivially solved and does not yield any new informa-
tion. By subtracting the third equation from the first, one gets

(z0 − z2)(x− z) =
1

2

[
z0 + z2 + ẑ0 ±

√
(z0 + z2 − ẑ0)2 + 8z2

1

]
(x− z)

which is solved for x = z. Using (5.1.10), we get

y =
Tj − z0 − z2

z1
x

=
2z1

Tj − ẑ0

T 2
j − Tj(z0 + ẑ0 + z2) + ẑ0z0 + ẑ0z2

2z2
1

x

=
2z1

Tj − ẑ0
x,

(5.1.11)

where we used, that Tj is a root of the characteristic polynomial (5.1.5). With the requirement
|uj|2 = 1, it is

u2/3 =
1√

2 + |y2/3|2




1
y2/3

1


 , (5.1.12)

with

y2/3 =
2 b b̂ g1

T2/3 − b̂2 g0
. (5.1.13)

The case T2/3 = b̂2 g0 could apparently be problematic. It is equivalent to g1 = 0 (see (5.1.11))
which describes the splitting of the trimer into a dimer and an isolated atom, since g1 = 0 means
that the apex atom is infinitely far away from the remaining two (see the definition of the matrix
g̃(iωn), (4.2.7)). A priori it is unclear what the outcome of yj will be, since both nominator and
denominator are vanishing. We are going to deal with this case in section 5.2.

Knowing the form of the eigenvalues of the matrix b g b, we can solve the mean field equations
(4.3.4) in principle. For certain geometric configurations of the cluster this is doable analytically,
for others one would like to consider a numerical approach. Since we have the eigenvalues uj as
well, the local density of states (4.4.10) can be computed at a given position, preferably at an
atomic site. The main point we are interested in, is the influence of the geometry on the Kondo
behaviour. Hence, we determine the width of the density peak at an atomic site, since this is
proportional to the Kondo temperature, and investigate its behaviour with varying geometry.

Varying the geometry will be implemented by varying the value of the entries of the matrix g.
Here, we will abstain from considering arbitrary values of g1 and g2 but concentrate on either
real-valued or purely imaginary ones, corresponding to ferromagnetic and antiferromagnetic
coupling respectively.
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5 Isosceles Trimer

5.1.1 Useful formulas for the isosceles trimer

As mentioned earlier, we are mostly interested in the local density of states at the position of
the trimer atoms. Due to the symmetry of the trimer, the LDOS should be the same for R1

and R3. Since in the LDOS equation (4.4.10) the real and imaginary parts of the eigenvalues
and eigenvectors appear, we will give more explicit formulas for those to make computations or
numerical implementations simpler. Moreover, we will compute the BjRi

XY , as defined in (4.4.9),
for the impurity positions Ri.

This section is rather a formulary for further computations or numerical implementations. It
is not necessarily needed for the understanding of the following sections, though we will make
use of the formulas given here.

We start with the eigenvalues Tj . As we have defined the matrix g as

g = gR − i gI

with real-valued symmetric matrices gR and gI , we will stick to the same structure for the entries
of that matrix:

g1/2 = gR1/2 − i gI1/2. (5.1.14)

The diagonal values g0 = ρ0/3 are strictly positive. The eigenvalue T1 given in (5.1.6) thus
simply is

T1 = b2(g0 − gR2 ) − i(−b2 gI2) = TR1 − iT I1 . (5.1.15)

For dealing with T2 and T3 we first bring the square root to a more manageable form. It is

(
b2(g0 + g2) − b̂2g0

)2
+ 8 b2 b̂2 g2

1 =
(
b2(g0 + gR2 ) − b̂2g0 − i b2 gI2

)2
+ 8 b2 b̂2(gR1 − i gI1)2

=
(
b2(g0 + gR2 ) − b̂2g0

)2 − b4 (gI2)
2 + 8 b2 b̂2

[
(gR1 )2 − (gI1)2

]

−i
[
2 b2 gI2

(
b2(g0 + gR2 ) − b̂2g0

)
+ 16 b2 b̂2 gR1 g

I
1

]

= zR − i zI (5.1.16)

Here, we defined zR and zI . We need the square root of zR − i zI . To get it explicitly, we
transform zR − i zI to polar form. It is

zR − i zI = sgn(zR)
√

(zR)2 + (zI)2 exp

(
−i arctan

zI

zR

)
.

Rewriting the sign-function as
sgn(x) = e−i πΘ(−x)

with the Heaviside-function Θ, we get

√
zR − i zI =

(
(zR)2 + (zI)2

)1/4
exp

(
−i

1

2
arctan

zI

zR
− i π

2
Θ(−zR)

)

=
(
(zR)2 + (zI)2

)1/4
cos

(
1

2
arctan

zI

zR
+
π

2
Θ(−zR)

)
−

− i
(
(zR)2 + (zI)2

)1/4
sin

(
1

2
arctan

zI

zR
+
π

2
Θ(−zR)

)
.
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5 Isosceles Trimer

There is another complex square root with changed sign due to the invariance of the exponential
function under translations by 2πi. However, changing the sign of the root just switches the
meaning of the eigenvalues T2 and T3, which has no physical effect. Putting this relation into
the formulas (5.1.7) and (5.1.8) for the eigenvalues and using T2 = TR2 − iT I2 and T3 = TR3 − iT I3 ,
one gets

TR2 =
1

2

[
b2(g0 + gR2 ) + b̂2g0 +

(
(zR)2 + (zI)2

)1/4
cos

(
1

2
arctan

zI

zR
+
π

2
Θ(−zR)

)]
, (5.1.17)

T I2 =
1

2

[
b2gI2 +

(
(zR)2 + (zI)2

)1/4
sin

(
1

2
arctan

zI

zR
+
π

2
Θ(−zR)

)]
, (5.1.18)

TR3 =
1

2

[
b2(g0 + gR2 ) + b̂2g0 −

(
(zR)2 + (zI)2

)1/4
cos

(
1

2
arctan

zI

zR
+
π

2
Θ(−zR)

)]
, (5.1.19)

T I3 =
1

2

[
b2gI2 −

(
(zR)2 + (zI)2

)1/4
sin

(
1

2
arctan

zI

zR
+
π

2
Θ(−zR)

)]
. (5.1.20)

As mentioned in the latter section, the eigenvector corresponding to the eigenvalue T1 is

u1 =
1√
2




1
0
−1


 = uR1 − iuI1, (5.1.21)

so uI1 = 0. To get the real and imaginary parts of the eigenvectors u2 and u3 given in (5.1.12),
we have to know those of yj. According to (5.1.13) it is

yj =
2 b b̂ g1

T2/3 − b̂2g0

=
2 b b̂ (gR1 − i gI1)

TR2/3 − b̂2g0 − iT I2/3

=
2 b b̂ (gR1 − i gI1)

(
TR2/3 − b̂2g0 + iT I2/3

)

(
TR2/3 − b̂2g0

)2
+
(
T I2/3

)2

=
2 b b̂

[
gR1

(
TR2/3 − b̂2g0

)
+ gI1 T

I
2/3

]

(
TR2/3 − b̂2g0

)2
+
(
T I2/3

)2 − i
2 b b̂

[
gI1

(
TR2/3 − b̂2g0

)
− gR1 T

I
2/3

]

(
TR2/3 − b̂2g0

)2
+
(
T I2/3

)2

= yR2/3 − i yI2/3, (5.1.22)

where we defined y
R/I
2/3 . The eigenvectors of T2 and T3 are therefore given as

u2/3 =
1√

2 + (yR2/3)
2 + (yI2/3)

2




1
yR2/3
1


− i

1√
2 + (yR2/3)

2 + (yI2/3)
2




0
yI2/3
0




= uR2/3 − iuI2/3. (5.1.23)

In (4.4.9) we introduced the quantities

Bj r
XY = (vXr )T buYj
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5 Isosceles Trimer

to keep the formula for the LDOS (4.4.10) manageable. We compute those quantities for r = Ri

to get the LDOS at the respective trimer site. As mentioned earlier, it is

[vRi
]j =

gij
g0

at any cluster site Ri. Hence, we get

vR1
=




1
gR1 /g0
gR2 /g0


− i




0
gI1/g0
gI2/g0


 = vRR1

− ivIR1
, (5.1.24)

vR2
=




gR1 /g0
1

gR1 /g0


− i




gI1/g0
0

gI1/g0


 = vRR2

− ivIR2
(5.1.25)

and

vR3
=




gR2 /g0
gR1 /g0

1


− i




gI2/g0
gI1/g0

0


 = vRR3

− ivIR3
. (5.1.26)

At r = R2, we thus get

B1R2

RR = B1R2

RI = B1R2

IR = B1R2

II = 0,

B
2/3R2

RR =
1√

2 + (yR2/3)
2 + (yI2/3)

2

(
2 b

gR1
g0

+ b̂ yR2/3

)
, B

2/3R2

II = 0,

B
2/3R2

RI =
b̂ yI2/3√

2 + (yR2/3)
2 + (yI2/3)

2
, B

2/3R2

IR =
2 b

gI
1

g0√
2 + (yR2/3)

2 + (yI2/3)
2
,

(5.1.27)

and at r = R1 and r = R3 respectively

B1R1

RR =
1√
2
b

(
1 − gR2

g0

)
= −B1R3

RR , B1R1

RI = B1R3

RI = 0

B1R1

IR = − 1√
2
b
gI2
g0

= −B1R3

IR , B1R1

II = B1R3

II = 0,

B
2/3R1

RR =
1√

2 + (yR2/3)
2 + (yI2/3)

2

(
b

[
1 +

gR2
g0

]
+ b̂ yR2/3

gR1
g0

)
= B

2/3R3

RR ,

B
2/3R1

II =
1√

2 + (yR2/3)
2 + (yI2/3)

2
b̂ yI2/3

gI1
g0

= B
2/3 R3

II ,

B
2/3R1

RI =
1√

2 + (yR2/3)
2 + (yI2/3)

2
b̂ yI2/3

gR1
g0

= B
2/3R3

RI ,

B
2/3R1

IR =
1√

2 + (yR2/3)
2 + (yI2/3)

2

(
b
gI2
g0

+ b̂ yR2/3
gI1
g0

)
= B

2/3R3

IR .

(5.1.28)

Plugging (5.1.28) in (4.4.10) one can see that

ρ(ω,R1) = ρ(ω,R3)
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5 Isosceles Trimer

as expected. We can now give a more explicit formula for the local density of states taken at
R2 and R1 respectively. At the apex atom, one gets

ρ(ω,R2) = ρ0 − ρ0 π g0

3∑

j=2

1[(
ω − π T Ij

)2
+
(
π TRj

)2
]
·
[
2 + (yRj )2 + (yIj )

2
]×

×
(
π TRj

[
4b2

([
gR1
g0

]2

−
[
gI1
g0

]2
)

+ b̂2
[
(yRj )2 + (yIj )

2
]
+ 4 b b̂ yRj

gR1
g0

]
−

− 2 (ω − π T Ij )

[
2 b b̂ yRj

gI1
g0

+ 4 b2
gR1
g0

gI1
g0

])
.

(5.1.29)

At the basis atoms, the LDOS is

ρ(ω,R1/3) = ρ0 − ρ0 π g0
1

2
b2
π TR1

[(
1 −

[
gR
2

g0

]2)
−
[
gI
2

g0

]2]
+ 2 (ω − π T I1 )

(
1 − gR

2

g0

)
gI
2

g0

(
ω − π T I1

)2
+
(
π TR1

)2 −

− ρ0 π g0

3∑

j=2

1[(
ω − π T Ij

)2
+
(
π TRj

)2
]
·
[
2 + (yRj )2 + (yIj )

2
] ×

×
(
π TRj

[
b2

([
1 +

gR2
g0

]2

−
[
gI2
g0

])
+ 2 b b̂ yRj

gR1
g0

+ 2 b b̂ yRj

(
gR1
g0

gR2
g0

− gI1
g0

gI2
g0

)
+

+ b̂2
(
(yRj )2 + (yIj )

2
)
([

gR1
g0

]2

−
[
gI1
g0

]2
)]

−

− 2 (ω − π T Ij )

[
b2
gI2
g0

+ b b̂ yRj
gI1
g0

+ b b̂ yRj

(
gR1
g0

gI2
g0

+
gI1
g0

gR2
g0

)
+ b2

gR2
g0

gI2
g0

+

+ b2
(
(yRj )2 + (yIj )

2
) gR1
g0

gI1
g0

])
.

(5.1.30)

The formulas (5.1.29) and (5.1.30) are rather inconvenient for analytical calculations. However,
they may serve as a starting point for numerical computations. As mentioned earlier, we are
only interested in cases, where g1 and g2 are either real-valued or imaginary. So every term of
the form gRj · gIj does not have to be taken into account in actual computations.

5.2 Dimer

In this section, we are going to deal with the case in which the apex atom is isolated from
the remaining two. The isosceles trimer then is split up into a dimer and a single atom. This
limiting case is given if there is no interaction between the apex atom and the other two. Using
the definition of the matrix g̃(iωn) (4.2.7) this means g1 = 0 (the apex atom is infinitely far
away from the other two). Hence, the matrix b g b is given as

b g b =




b2g0 0 b2g2
0 b̂2g0 0
b2g2 0 b2g0


 ,
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5 Isosceles Trimer

where
g2 = gR2 − i gI2 .

The eigenvalues of this matrix are the solutions of

(
T 2
j − 2Tj b

2g0 + b2g0 − b2g2
) (
b̂2g0 − Tj

)
= 0.

Hence, one gets

T1 = b2(g0 − g2), (5.2.1)

T2 = b2(g0 + g2), (5.2.2)

T3 = b̂2g0. (5.2.3)

This also follows from last section’s equations (5.1.6)-(5.1.8). The eigenvectors compute to

u1 =
1√
2




1
0
−1


 , u2 =

1√
2




1
0
1


 , u3 =




0
1
0


 . (5.2.4)

The eigenvectors do not depend on any of the parameters and are always real-valued. They
also can be computed by (5.1.23), but then one has to determine the quantities yj, as given in
(5.1.13), more carefully. We will come back to this subject at the end of this section.

Having the eigenvalues and eigenvectors of b g b we can solve the mean field equations (4.3.4)
and compute the local density of states (4.4.10) at any cluster site. We consider two different
cases: ferromagnetic coupling of the dimer modelled by a real-valued g2 and antiferromagnetic
coupling where g2 is purely imaginary. However, since the apex atom is isolated from the dimer,
its local density of states should be the same in either case. Before we come to the dimer itself,
we will treat the isolated atom first.

Since the eigenvalues T1 and T2 depend only on b while the real-valued T3 = TR3 only depends
on b̂, the mean field equations decouple completely into an equation for b̂ and one for b. The
one for b̂ is reads

2 b̂g0 · 2 log
b̂2g0
∆

= − 2

3J
b̂

which apart from b̂ = 0 has the solution

b̂2g0 = ∆ exp

(
− 1

2J ρ0

)
= TR3 = T3, (5.2.5)

where we used 3g0 = ρ0. T3 is the same as T0 in (4.5.2), so b̂ is the same as in the pure Kondo
case. We compute the local density of states at the apex position R2. Since

(
vRi

)
j

=
gij
g0
,

it is

vR2
=




0
1
0


 .
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Hence, the only BjR2

XY as defined in (4.4.9) that does not vanish and has to be taken into account
in the local density of states (4.4.10) is

B3R2

RR = (vR2
)Tbu3 = b̂.

The local density of states is therefore given as

ρ(ω,R2) = ρ0

(
1 − πg0

π TR3 b̂2

ω2 +
(
πTR3

)2

)

= ρ0

(
1 − (πT0)

2

ω2 + (πT0)
2

)
,

(5.2.6)

where we used (5.2.5). The local density of states has the same form as in the completely isolated
case which we treated in section 4.5. T0, as defined in (4.5.2), is the Kondo temperature of a
single magnetic impurity. As expected, a pure Kondo effect occurs at the apex site, since it is
completely isolated from the rest of the trimer so that geometric effects do not play any role.

We turn to treating the dimer, considering first ferromagnetic coupling between the dimer atoms
corresponding to real-valued g2, and afterwards antiferromagnetic coupling corresponding to
imaginary g2. Before we come to the mean field equations, we will compute the LDOS formally
at the dimer atom R1. As we have seen in section 5.1.1, we would get the same result if we
computed the LDOS at R3. Using the eigenvectors (5.2.4) and

vR1
=




1
0

gR2 /g0


− i




0
0

gI2/g0




we can determine the BjR1

XY as defined in (4.4.9). The only non-vanishing BjR1

XY are

B1R1

RR =
1√
2
b

(
1 − gR2

g0

)
, B1R1

IR = − 1√
2
b
gI2
g0
, B2R1

RR =
1√
2
b

(
1 +

gR2
g0

)

and

B2R1

IR =
1√
2
b
gI2
g0
.

The LDOS (4.4.10) then computes to

ρ(ω,R1) = ρ0 − ρ0 π g0

π b2(g0−gR
2

) 1

2
b2

"

„

1−
gR
2

g0

«2

−

„

gI
2

g0

«2
#

+2 (ω+π b2 gI
2
) 1

2
b2

„

1−
gR
2

g0

«

gI
2

g0

(ω+π b2 gI
2)

2
+(π b2[g0−gR

2 ])
2

− ρ0 π g0

π b2(g0+gR
2

) 1

2
b2

"

„

1+
gR
2

g0

«2

−

„

gI
2

g0

«2
#

−2 (ω−π b2 gI
2
) 1

2
b2

„

1+
gR
2

g0

«

gI
2

g0

(ω−π b2 gI
2)

2
+(π b2[g0+gR

2 ])
2

= ρ0 − ρ0
1

2

[π b2 g0]
2
(1−εR)[(1−εR)2−ε2

I ]+2 (ω+π b2 g0 εI)π b2 g0(1−εR)εI

(ω+π b2 g0 εI)2+(π b2 g0(1−εR))2

− ρ0
1

2
[π b2 g0]

2
(1+εR)[(1+εR)2−ε2I]−2 (ω−π b2 g0 εI)π b2 g0(1+εR)εI

(ω−π b2 g0 εI)2+(π b2 g0(1+εR))2
, (5.2.7)

where we introduced

εR =
gR2
g0

and εI =
gI2
g0
. (5.2.8)

47



5 Isosceles Trimer

As one can see, the mean field parameter b̂ does not appear in the LDOS at a dimer atom site.
It only depends on b, and we will have to solve the corresponding mean field equations to get
explicit formulas for the local density of states.

Before we start doing so for ferromagnetic dimer interactions, we will make some remarks about
the connection of the density derived here and the general LDOS formulas (5.1.29) and (5.1.30)
given in section (5.1.1). One can make use of these formulas directly, but then one has to make
some considerations concerning the yj (as given in (5.1.13)) which enter the eigenvectors uj .
The yj are

yj =
2 b b̂ g1

Tj − b̂2 g0
.

Since T3 = b̂2 g0, the denominator of y3 vanishes, but since g1 = 0 for the dimer, so does the
nominator. Thus, the value of yj at g1 → 0 is unclear up to now. To get it, we expand the general
eigenvalues Tj for the isosceles trimer (5.1.6)-(5.1.8) for small g1/g0 up to first non-vanishing
order. It is

T1 = b2(g0 − g2),

T2 = b2(g0 + g2) +
2 b2 b̂2 g2

1

b2(g0 + g2) − b̂2 g0
,

T3 = b̂2 g0 −
2 b2 b̂2 g2

1

b2(g0 + g2) − b̂2 g0
.

For g1 → 0 this gives the dimer eigenvalues (5.2.1)-(5.2.3) since b2(g0 + g2) − b̂2 g0 6= 0. Using
this expansion for the Tj , we can immediately see that y2 = 0 for g1 → 0. On the other hand,
it is

y3 ∝ 1

g1
,

so that |y3| → ∞ for g1 → 0. Putting these results along with g1 = 0 into the LDOS formulas
(5.1.29) and (5.1.30), one arrives at the dimer densities (5.2.6) and (5.2.7). The dimer case
therefore is a continuous limit of the isosceles trimer, a special treatment (which we applied
to it here) would not have been necessary. However, we decided to choose a more instructive
way of deriving the dimer quantities. Moreover, it will turn out that the more general LDOS
formulas (5.1.29) and (5.1.30) in some systems give rise to numerical problems if the dimer case
is approached, due to the divergence of y3.

5.2.1 Ferromagnetic dimer coupling

If the dimer atoms are coupled ferromagnetically, the coupling g2 is real-valued:

g2 = gR2 .

The eigenvalues T1 and T2 in this case read

T1 = b2(g0 − gR2 ) = b2 g0(1 − εR) = TR1 ,

T2 = b2(g0 + gR2 ) = b2 g0(1 + εR) = TR2 ,

48



5 Isosceles Trimer

where we used εR as in (5.2.8). The eigenvalue T3 is still given by (5.2.3). The mean field
equation (4.3.4) for b reads in the ferromagnetic case

2 b g0 (1 − εR) · 2 log
b2 g0 (1 − εR)

∆
+ 2 b g0 (1 + εR) · 2 log

b2 g0 (1 + εR)

∆
= − 4

3J
b.

Neglecting the trivial solution b = 0, this equation is equivalent to

2 log
b2 g0
∆

+ log(1 − ε2R) + ε log
1 + εR
1 − ε

= − 1

Jρ0
,

where we used 3 g0 = ρ0. Hence, one gets

b2 g0 = ∆ exp

(
− 1

2J ρ0

)
exp

(
−1

2
log(1 − ε2R) − 1

2
εR log

1 + εR
1 − εR

)

= T0 f(εR),

(5.2.9)

where T0 is the single-impurity Kondo temperature (4.5.2) and

f(εR) = exp

(
−1

2
log(1 − ε2R) − 1

2
εR log

1 + εR
1 − εR

)
. (5.2.10)

Using (5.2.6), we get the LDOS

ρ(ω,R1) = ρ0

(
1 − 1

2

[π T0 f(εR)]2 (1 − εR)3

ω2 + [π T0 f(εR)]2 (1 − εR)2
− 1

2

[π T0 f(εR)]2 (1 + εR)3

ω2 + [π T0 f(εR)]2 (1 + εR)2

)
. (5.2.11)

Plotting (5.2.11), one can see that a Kondo dip appears for each εR. We plotted the LDOS for
εR = 0.3 on the left hand side of figure 5.1 as a solid line. We are interested in the behaviour of
the Kondo temperature when the geometry of the Dimer is changed, say with varying εR. As
we know, the Kondo temperature is proportional to the width of the density dip. We can most
accurately fit the density (5.2.11) with the formula of a Fano-resonance

ρ(ω,R2) = ρ0
(q π Γ + ω)2

ω2 + (πΓ)2
. (5.2.12)

Here, q is the Fano factor which depends on the coupling of the STM tip to the substrate. For
εR between 0 and 0.3, we get q ≈ 0. We plotted the approximation (5.2.12) for εR = 0.3 as
a dashed line on the right hand side of figure 5.1. As one can see, the approximation is very
accurate. It is better, the smaller the coupling εR is. πΓ is the half-width of (5.2.12). We
compute it for each εR and compare it to πT0, the one of a pure Kondo system. We plot the
εR dependence of this normalised half-width on the right hand side of figure 5.1. As T0 was
interpreted as the Kondo temperature of an isolated pure Kondo system, we can now interpret
Γ as the Kondo temperature for the interacting system. We make some simple observations. As
the ferromagnetic coupling εR gets stronger, the Kondo temperature rises, which means that the
Kondo effect is enhanced: the Kondo cloud will form at a higher external temperature than it
would in the case of a single magnetic impurity. This enhancement has to be due to the increase
of the total magnetic moment of the dimer. Since the dimer atoms are ferromagnetically coupled,
they tend to maximise the total spin of the system, which results in a higher Kondo temperature
(see [50]). It is quite remarkable, that the increase of the total magnetic moment of the dimer
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Figure 5.1: LDOS and Fano resonance fit for ferromagnetic coupling εR = 0.3. RHS: Dependence
of Kondo temperature on coupling εR ∈ [0, 0.3].

influences the Kondo temperature even for ”loose“ system, which we are considering here. The
shape of the right hand side of figure 5.1 is very accurately approximated by

Γ

T0
= 1 + 0.258 · ε2R. (5.2.13)

As mentioned in section 4.2.1, the couplings gj in lowest order enter quadratically in the RKKY-
interaction, which they seem also to do in the Kondo temperature. If one takes into account
only widths up to couplings εR = 0.2 and fits a parabola to the data, the prefactor in front of
the quadratic term becomes 0.253. The smaller the couplings strengths εR are, which are taken
into account for the fit, the closer this prefactor comes to 0.25. The enhancement of the Kondo
temperature is therefore roughly given by

∆
Γ

T0
=

1

4
· ε2R

and is about 2.3 per cent at εR = 0.3. However, beyond that coupling strength, the enhancement
is even stronger, but it is not clear if the system is still well described by the present mean field
model at such strong couplings.

5.2.2 Antiferromagnetic dimer coupling

If the dimer atoms are coupled antiferromagnetically, g2 is purely imaginary. As we defined
g2 = gR2 − i gI2 we get

g2 = −i gI2 .

Using the abbreviation (5.2.8), the eigenvalues T1 and T2 read

T1 = b2 g0 − i(−b2 g0 εI) = TR1 − iT I1

T2 = b2 g0 − i b2 g0 εI = TR2 − iT I2 .
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The mean field equation (4.3.4) for b reads

4 b g0 log

[
b2 g0

]2
(1 + ε2I)

∆2
− 2 · (−2) b g0 εI arctan

−b2 g0 εI
b2 g0

− 2 · 2 b g0 εI arctan
b2 g0 εI
b2 g0

= − 4

3J
b.

Excluding the trivial solution b = 0, this equation is equivalent to

2 log
b2 g0
∆

+ log
(
1 + ε2I

)
− 2 εI arctan εI = − 1

J ρ0
,

where we used 3 g0 = ρ0. Solving this for b2 g0, one gets

b2 g0 = ∆ exp

(
− 1

2J ρ0

)
exp

(
εI arctan εI −

1

2
log
(
1 + ε2I

))

= T0 g(εI),

(5.2.14)

with T0 being the single-impurity Kondo temperature and

g(εI) = exp

(
εI arctan εI −

1

2
log
(
1 + ε2I

))
. (5.2.15)

With the formula for the local density of states (5.2.7) one gets

ρ(ω,R1) = ρ0

(
1 − 1

2

[π T0 g(εI )]
2 (1 − ε2I) + 2

(
ω + π T0 g(εI) εI

)
π T0 g(εI ) εI

[ω + π T0 g(εI)εI ]
2 + [π T0 g(εI)]

2 −

− 1

2

[π T0 g(εI)]
2 (1 − ε2I) − 2

(
ω − π T0 g(εI) εI

)
π T0 g(εI) εI

[ω − π T0 g(εI )εI ]
2 + [π T0 g(εI )]

2

)
.

(5.2.16)

For each εI this has the form of a Kondo dip. As in the ferromagnetic case, we fit a Fano
resonance (5.2.12) to (5.2.16) for any given εI between 0 and 0.3. These fits are quite accurate,
but not as good as in the ferromagnetic case, as one can see on the left hand side of figure 5.2,
where we plotted the LDOS (solid line) and its Fano fit (dashed line) for εI = 0.3. However,
the smaller the couplings are, the better the LDOS can be fitted to a Fano resonance. As in
the previous case, we compute the half-width π Γ of the Fano fit and compare it to the single-
impurity width π T0. The dependence of this normalised width on the coupling εI is shown on the
right hand side of figure 5.2. Again, we interpret Γ as the Kondo temperature of the system. As
the antiferromagnetic coupling increases, the Kondo temperature gets lower. The Kondo effect
is therefore suppressed, the formation of the Kondo cloud will occur at lower temperatures than
it would in the case of a single magnetic impurity. This, as in the ferromagnetic case, is due to
the spin interaction of the dimer atoms. Since they are antiferromagnetically coupled, they tend
to minimise the total magnetic moment of the dimer, which apparently leads to a lower Kondo
temperature. The shape of the Kondo temperature graph in 5.2 can quite well be fitted with a
quadratic function

Γ

T0
= 1 − 0.234 · ε2I .

This behaviour is similar to the one in the ferromagnetic case except for the sign. As in the
ferromagnetic case, the prefactor of the quadratic term comes the closer to 0.25 the smaller the
couplings εI are, which are taken into account for the fit. The influence of the dimer couplings
on the Kondo temperature is therefore roughly given as

∆
Γ

T0
= −1

4
· ε2I .
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Figure 5.2: LDOS and Fano resonance fit for antiferromagnetic coupling εI = 0.3. RHS: Depen-
dence of Kondo temperature on coupling εI ∈ [0, 0.3].

5.3 Equilateral trimer

We turn to another special case of an isosceles trimer, the equilateral one. In this case the entries
g1 and g2 in (5.1.1) coincide since all inter atomic distances |Ri−Rj | do so for i 6= j. Moreover,

we assume b̂ = b in (5.1.2), since the hybridisations must be the same for each cluster site. This
means, we only have to deal with one mean field parameter b instead of two and therefore only
one mean field equation has to be solved. The right hand side of (4.3.4) then reads

− 1

3J

∂

∂b
Tr b2 = − 1

3J
3 · 2 b = − 2

J
b.

We therefore get the mean field equation

N∑

j=1

[
∂TRj
∂b

log

(
(TRj )2 + (T Ij )2

∆2

)
− 2

∂T Ij
∂b

arctan

(
T Ij

TRj

)]
= − 2

J
b. (5.3.1)

In the following, we use the notation

g1 = g2 = gR1/2 − i gI1/2 = g0 (εR − i εI) , (5.3.2)

as we have done quite similarly when we treated the dimer. The eigenvalues T1, T2 and T3 as
defined in (5.1.6)-(5.1.8) are given as

T1 = b2 g0 (1 − εR) − i
(
−b2 g0 εI

)
= TR1 − iT I1 , (5.3.3)

T2 = b2 g0 (1 + 2 εR) − i 2 b2 g0 εI = TR2 − iT I2 , (5.3.4)

T3 = b2 g0 (1 − εR) − i
(
−b2 g0 εI

)
= TR3 − iT I3 . (5.3.5)

Here, we used (with g1 = g2 and b = b̂)
√(

b2 g0 + b2 g2 − b̂2 g0

)2
+ 8 b2 b̂2 g2

1 =

√
(b2 g1)

2 + 8 b4 g2
1

= 3 b2 g0 (εR − i εI) .
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Sign ambiguities of the square root are not relevant since both signs appear in T2 and T3. As
one can see, T1 and T3 coincide for the equilateral trimer. Before we turn to solving the mean
field equations for the ferromagnetic and the antiferromagnetic case, we give the LDOS of the
problem. Since it must be the same at all three trimer atoms (because the trimer is equilateral),
we are free to one of the formulas (5.1.30) or (5.1.29). The latter is easier to handle, though.

To compute it, we first have to determine the y
R/I
j as given in (5.1.22) for g1 = g2 and b = b̂.

Those become quite simple: it is

yR2 = 1, yI2 = 0, yR3 = −2 and yI3 = 0.

Using (5.1.29) we arrive at

ρ(ω,R2) = ρ0 − ρ0
1

3
[π b2 g0]

2
(1+2 εR)[(1+2 εR)2−4 ε2I ]−2(ω−2 π b2 g0 εI) 2π b2 g0 εI(1+2 εR)

[ω−2π b2 g0 εI ]2+[π b2 g0 (1+2 εR)]2

− ρ0
2

3
[π b2 g0]

2
(1− εR)[(1− εR)2−ε2I ]+2(ω+π b2 g0 εI)π b2 g0 εI(1−εR)

[ω+π b2 g0 εI ]2+[π b2 g0 (1−εR)]2
.

(5.3.6)

5.3.1 Ferromagnetic trimer coupling

We start with the ferromagnetic case for which g1/2 is real valued

g1/2 = g0 εR.

The eigenvalues then are

T1 = b2 g0(1 − εR) = T3,

T2 = b2 g0(1 + 2 εR).

The mean field equation (5.3.1) is

2 · 2 b g0(1 − εR) · 2 log
b2 g0(1 − ε)

∆
+ 2 b2 g0(1 + 2εR) · 2 log

b2 g0(1 + 2 εR)

∆
= − 2

J
b.

Excluding the trivial solution b = 0, this is equivalent to

3 log
b2 g0
∆

+ 2(1 − εR) log(1 − εR) + (1 + 2 εR) log(1 + 2 εR) = − 3

2J ρ0
,

where we used 3 g0 = ρ0. Solving for b2 g0, one arrives at

b2 g0 = ∆ exp

(
− 1

2J ρ0

)
exp

(
−2

3
(1 − εR) log(1 − εR) − 1

3
(1 + 2 εR) log(1 + 2 εR)

)

= T0 f(εR),

(5.3.7)

with T0 the single impurity Kondo temperature (4.5.2) and with

f(εR) = exp

(
−2

3
(1 − εR) log(1 − εR) − 1

3
(1 + 2 εR) log(1 + 2 εR)

)
. (5.3.8)

The LDOS at any trimer atom is in this case given as

ρ(ω,R2) = ρ0

(
1 − 1

3

[π T0 f(εR)]2 (1 + 2 εR)3

ω2 + [π T0 f(εR)]2 (1 + 2 εR)2
− 2

3

[π T0 f(εR)]2 (1 − εR)3

ω2 + [π T0 f(εR)]2 (1 − εR)2

)
.

(5.3.9)
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Figure 5.3: LDOS and Fano resonance fit for ferromagnetic coupling εR = 0.3. RHS: Dependence
of Kondo temperature on coupling εR ∈ [0, 0.3].

For each εR this density shows a Kondo dip. As with the dimer we fit the LDOS (5.3.9) to
a Fano resonance shape (5.2.12). These fits are quite accurate for couplings εR between 0
and 0.3. The left hand side of figure 5.3 shows the LDOS for εR = 0.3 (solid line) and the
corresponding Fano fit (dashed line). We compute the widths of the Fano fits for εR between 0
and 0.3 and compare them to the width π T0 of the LDOS of a single magnetic impurity. The
result is shown on the right hand side of 5.3. As for the dimer, we can interpret Γ as the Kondo
temperature of the system. The Kondo effect is enhanced compared to T0 for non-vanishing
ferromagnetic coupling. This is due to the trimer tending to maximise the total spin because of
the ferromagnetic interaction of the trimer spins. The εR-dependence of the normalised Kondo
temperature is approximated quite well by

Γ

T0
= 1 + 0.494 · ε2R.

As in the dimer case, the behaviour is quadratic for sufficiently small couplings and the approx-
imation becomes more accurate if the couplings, which are taken into account, become smaller.
The enhancement of the Kondo temperature is about twice as large as for the ferromagnetic
dimer. It seems, that it can be seen as being the result of the cumulative influence of two dimers
each impurity is linked to.

5.3.2 Antiferromagnetic trimer coupling

We turn to the antiferromagnetic case where g1/2 is imaginary

g1/2 = −i g0 εI .

The eigenvalues T1, T2 and T3 then read

T1 = b2 g0 − i(−b2 g0 εI) = TR1 − iT I1 = T3,

T2 = b2 g0 − i 2 b2 g0 εI = TR2 − iT I2 .
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The mean field equation (5.3.1) is given as

2 · 2 b g0 log

[
b2 g0

]2
(1 + ε2I)

∆2
+ 2 · 2 · 2 b g0 εI arctan

−b2 g0 εI
b2 g0

+

+ 2 b g0 log

[
b2 g0

]2
(1 + 4 ε2I)

∆2
+ 2 · 2 b g0 · 2 εI arctan

b2 g0 2 εI
b2 g0

= − 1

J
b.

If b 6= 0 this equation becomes

3 log
b2 g0
∆

+ log(1 + ε2I) +
1

2
log(1 + 4 ε2I) − 2 εI [arctan(εI) + arctan(2 εI)] = − 3

2J ρ0
,

where we inserted 3 g0 = ρ0. We solve for b2 g0 and get

b2 g0 = ∆ exp

(
− 1

2J ρ0

)
exp
(
−1

3
log(1 + ε2I) −

1

6
log(1 + 4 ε2I)+

+
2

3
εI [arctan(εI) + arctan(2 εI)]

)

= T0 g(εI ), (5.3.10)

with T0 given by (4.5.2) and where

g(εI) = exp

(
−1

3
log(1 + ε2I) −

1

6
log(1 + 4 ε2I) +

2

3
εI [arctan(εI) + arctan(2 εI)]

)
. (5.3.11)

The local density of states at any trimer atom is given as

ρ(ω,R2) = ρ0

(
1 − 1

3

[π T0 g(εI )]2(1−4 ε2
I
)−2
[
ω−2 π T0 g(εI) εI

]
·2π T0 g(εI) εI

[ω−2π T0 g(εI) εI ]2+[π T0 g(εI)]2
−

− 2

3

[π T0 g(εI)]2(1−ε2
I
)+2
[
ω+π T0 g(εI) εI

]
·π T0 g(εI) εI

[ω+π T0 g(εI) εI ]2+[π T0 g(εI )]2

)
.

(5.3.12)

The LDOS is dipped around ω = 0 for each coupling εI . We fit the LDOS (5.3.12) to a Fano
shape (5.2.12). For εI up to 0.3 this approximation works quite well. We plotted the LDOS
(solid line) and its Fano shaped fit (dashed line) for εI = 0.3 in the left hand side of figure 5.4.
The fit is the more accurate the smaller the coupling strength is.

As in the ferromagnetic case, we compute the widths of the Fano fits for εI between 0 and 0.3
and compare them to the reference width π T0. The dependence of that normalised width on εI is
plotted on the right hand side of 5.4. Since the width is proportional to the Kondo temperature
in the domain of the Kondo effect, the plot shows that the Kondo temperature of the equilateral
trimer compared to the one of a single magnetic impurity decreases, if the antiferromagnetic
coupling εI gets larger. Antiferromagnetic trimer interactions therefore suppress the Kondo
effect, the Kondo cloud is formed at lower temperatures. One can explain this behaviour with
the tendency of the trimer to minimise its total spin as in the dimer case. However, there could
be another effect which would have to be taken into account. Contrary to the dimer spins,
the trimer spins are always frustrated, since no stable antiferromagnetic configuration can be
achieved, if all impurities are coupled antiferromagnetically. Nevertheless εI dependence of the
normalised Kondo temperature Γ/T0 is approximately quadratic as for the systems described
up to now. It is quite well fit by

Γ

T0
= 1 − 0.503 · ε2I .
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Figure 5.4: LDOS and Fano resonance fit for antiferromagnetic coupling εI = 0.3. RHS: Depen-
dence of Kondo temperature on coupling εI ∈ [0, 0.3].

As for the ferromagnetic trimer, the decay of the Kondo temperature is about twice as large as
for the dimer case. Again, one could roughly state that each impurity is under the cumulative
influence of two antiferromagnetic dimers. Therefore, frustration effects do not seem to be very
large.

5.4 Linear chain

The third of the limiting cases of an isosceles trimer we are going to treat is the impurities
forming a linear chain. The apex atom is the centre of the chain while the remaining two are its
boundaries. We assume the chain to have only next neighbour interactions since the interaction
between the boundary sites will be screened for a sufficiently large chain length. In the notation
presented here, that means

g2 = 0

in the matrix (5.1.1). The remaining inter impurity coupling is

g1 = gR1 − i gI1 = g0(εR − i eI).

As in the latter sections, we assume g1 to be either real-valued or purely imaginary. The
eigenvalues T1, T2 and T3 of b g b are given by (5.1.15) and (5.1.17) - (5.1.20) as presented in
section 5.1.1. To get them, we determine the quantities zR and zI as given in (5.1.16). Using
that either gR1 = 0 or gI1 = 0 and that g2 = 0 we get

zR =
(
b2 − b̂2

)2
g2
0 + 8 b2 b̂2

[
(gR1 )2 − (gI1)

2
]

and
zI = 0
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and thus

T1 = b2 g0 = TR1 ,

T2 =
1

2

(
b2 g0 + b̂2 g0 +

√(
b2 − b̂2

)2
g2
0 + 8 b2 b̂2

[
(gR1 )2 − (gI1)2

]
)

= TR2 ,

T3 =
1

2

(
b2 g0 + b̂2 g0 −

√(
b2 − b̂2

)2
g2
0 + 8 b2 b̂2

[
(gR1 )2 − (gI1)2

]
)

= TR3 .

The eigenvalues T1 - T3 are therefore real-valued. Although this significantly simplifies the mean
field equations (4.3.4), it is still more convenient to solve them numerically, which we did using
MAPLE. Afterwards we used the formulas (5.1.29) and (5.1.30) to determine the local density
of states at the central impurity and the boundary impurities respectively.

5.4.1 Ferromagnetic chain interactions

If the boundary atoms interact ferromagnetically with the central atom, it is

g1 = gR1 = g0 εR.

We solve the mean field equations for b and b̂ numerically and compute the local density of
states at the central atom (5.1.29) and at the boundary atoms (5.1.30). In both cases the LDOS
is dipped around the Fermi energy ω = 0. We approximate the LDOS at R1 and R2 with
a Fano resonance shape (5.2.12) for εR between 0 and 0.3. This approximation is better for
the central atom than for the boundaries of the chain, but in both cases it is quite accurate.
The LDOS at the central impurity (solid line) and its corresponding Fano fit (dashed line)
are plotted on the left hand side of figure 5.5 for εR = 0.3, the fits getting the better the
smaller εR is. As in the latter sections we compute the width of the Fano fit for each εR and

Figure 5.5: LDOS and Fano resonance fit for ferromagnetic coupling εR = 0.3 at the central
atom. RHS: Dependence of Kondo temperature on coupling εR ∈ [0, 0.3] for central
atom (dashed line) and boundary atoms (solid line).
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compare it to the single impurity width π T0, interpreting the fraction Γ/T0 of those widths
as the normalised Kondo temperature. The right hand side of 5.5 shows the dependence of
this normalised Kondo temperature on the ferromagnetic coupling strength εR for the central
impurity (dashed line) and the boundary impurities (solid line). At both sites, the Kondo
temperature increases with ascending interaction strength, but the enhancement of the Kondo
effect is larger at the central atom than it is at the boundary atoms. As with the dimer and the
equilateral trimer, the dependence of the normalised Kondo temperature on the couplings εR is
approximately quadratic and it is

Γ

T0
(Centre) = 1 + 0.549 · ε2R

and
Γ

T0
(Boundary) = 1 + 0.246 · ε2R.

For the boundary impurities this is about the same behaviour as for the ferromagnetic dimer,
for the central impurity the dependence resembles the one of the equilateral trimer. The fer-
romagnetic chain can be interpreted as being composed of two dimers where the effect on the
central atom, the connexional atom of the two dimers, is twice as large as for a single dimer.
The increase of the Kondo effect can be explained the same way as for the dimer: each dimer
tends to maximise its total magnetic moment and thus gives rise to a higher Kondo temperature.
The central atom is part of two distinct dimers and thus the effect on the Kondo temperature
is twice as large.

5.4.2 Antiferromagnetic chain interactions

For the boundary impurities coupling antiferromagnetically to the central atom, it is

g1 = −i gI1 = −i g0 εI .

The mean field equations for b and b̂ are solved numerically, and again we compute the local
density of states at the centre of the chain and at its boundaries. As in the ferromagnetic
case the densities develop a dip around the Fermi energy and we approximate them by Fano
resonances (5.2.12) for εI between 0 and 0.3. As in the latter case, these fits are quite well for
both sites. We plotted the LDOS at the centre and its Fano fit for εI = 0.3 on the left hand
side of figure 5.6. Computing the normalised Kondo temperature of the system depending on
the coupling strength similarly to the latter cases, we see on the right hand side of figure 5.6
that the Kondo effect is suppressed at the centre (dashed line) as well as at the boundary of the
chain (solid line). As for ferromagnetic couplings, the effect on the central impurity is stronger
than that on the boundary atoms, but most notably, it is much stronger for both of them
than in the ferromagnetic case. While the increase of the Kondo temperature for ferromagnetic
interactions was about 5.0 per cent at the centre and about 2.2 per cent at the boundary, the
decrease in the antiferromagnetic case is approximately 22.0 per cent at the centre and 19.4
per cent for the boundary impurities. For ferromagnetic couplings, the chain behaved like a
composition of two linked dimers, which definitely does not describe the geometric behaviour in
the antiferromagnetic case.

Nevertheless, the dependence of the normalised Kondo temperature on the couplings is quite
accurately approximated quadratically for εI less than 0.3, as it was in the latter cases. It is

Γ

T0
(Centre) = 1 − 2.437 · ε2I
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Figure 5.6: LDOS and Fano resonance fit for antiferromagnetic coupling εI = 0.3 at the central
atom. RHS: Dependence of Kondo temperature on coupling εI ∈ [0, 0.3] for central
atom (dashed line) and boundary atoms (solid line).

and
Γ

T0
(Boundary) = 1 − 2.172 · ε2I .

5.5 Asymmetric isosceles trimer

As a last example, we consider an actually isosceles trimer. The impurities opposite the apex
are assumed to be at fixed distance from each other. Their distance to the apex atom is varied.
We model this by keeping the interaction g2 in (5.1.1) fixed while we vary g1. Since the mean
field equations for b and b̂ cannot be handled easily for an arbitrary isosceles trimer, we solve
them numerically using MAPLE. Afterwards, we compute the local density of states at the apex
atom using (5.1.29) and at the opposite atoms using (5.1.30).

5.5.1 Ferromagnetic interactions

We consider the occurring couplings g1 and g2 to be ferromagnetic. In this case, they are given
as

g1 = gR1 = g0 ε
1
R and g2 = gR2 = g0 ε

2
R

and we fix
ε2R = 0.1

in the following. ε1R is varied between 0 and 0.3. For any ε1R the LDOS at the apex or opposite
of it is dipped around ω = 0, and we fit it by a Fano resonance shape (5.2.12) as in the latter
sections. For ε1R between 0 and 0.3 these fits are quite accurate, being the better the smaller the
coupling is. We plotted the LDOS (solid line) and its Fano fit (dashed line) at the apex atom
for ε1R = 0.3 on the left hand side of figure 5.7. On the right hand side of 5.7 we plotted the ε1R
dependence of the normalised widths for the apex atom (dashed line) and the other atoms (solid
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5 Isosceles Trimer

Figure 5.7: LDOS and Fano resonance fit for ferromagnetic coupling ε1R = 0.3 and ε2R = 0.1 at
the apex atom. RHS: Dependence of Kondo temperature on coupling ε1R ∈ [0, 0.3]
and ε2R = 0.1 for apex atom (dashed line) and the other trimer atoms (solid line).

line). The normalised Kondo temperature gets higher for increasing coupling ε1R in both cases.
The crossing point of the two line shapes is located at ε1R = 0.1 since this value corresponds
to an equilateral trimer. Because εR2 = 0.1, the width for the LDOS at R1 and R3 is different
from π T0 at ε1R = 0, since those atoms already form a ferromagnetic dimer with non-vanishing
coupling.

For all preceding ferromagnetic cases we saw, that the impurity atoms can be interpreted as
either being part of one dimer (for the boundary impurities of a chain) or being part of two
linked dimers. We will pursue this thought here. For the ferromagnetic dimer, the influence of
the dimer interaction was roughly given by

∆
Γ

T0
=

1

4
ε2R.

We now assume that each impurity in the present case is linked to two dimers, experiencing a
cumulative influence. Since the apex impurity is linked two the remaining two atoms with a
coupling strength ε1R we assume its width shape to be given by

Γ

T0
= 1 +

1

4

(
ε1R
)2

+
1

4

(
ε1R
)2

= 1 +
1

2

(
ε1R
)2
. (5.5.1)

Any other impurity of the trimer is linked to the apex by a coupling strength ε1R and to the
remaining atom with a coupling ε2R = 0.1. The shape of the normalised Kondo temperature
then is

Γ

T0
= 1 +

1

4

(
ε1R
)2

+
1

4

(
ε2R
)2
. (5.5.2)

Figure 5.8 shows the ε1R-dependence of the normalised widths for the apex atom and the other
atoms (black lines) together with the approximations (5.5.1) and (5.5.2) (red lines). The approx-
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Figure 5.8: Normalised widths (black lines) and their approximations (5.5.1) and (5.5.2) (red
lines) for a ferromagnetically coupled isosceles trimer. The interaction between the
basis impurities is fixed at ε2R = 0.1 while ε1R ∈ [0, 0.3]. Apex atom quantities are
indicated by dashed lines, those of the remaining atoms by solid lines.

imations (5.5.1) and (5.5.2) seem to be quite well. The deviations of the numerically determined
influences ∆Γ/T0 of the couplings from the approximated ones are less than 8.4 per cent for
ε1R < 0.3. Let us recall that the idea behind the approximations is that each impurity can
be described as being part of two distinct dimers, which have a cumulative effect on its nor-
malised Kondo temperature. The influence of the dimer interactions between the other atoms
is neglected. As figure 5.8 indicates, it is rather small if the couplings are.

5.5.2 Antiferromagnetic interactions

We now consider the antiferromagnetic version of the latter case. The couplings g1 and g2 are

g1 = −i gI1 = −i g0 ε
1
I and g2 = −i gI2 = −i g0 ε

2
I

and we fix
ε2I = 0.1.

ε1I is varied between 0 and 0.3. Again, the LDOS is dipped around the Fermi energy, and we can
fit it quite accurately by a Fano resonance shape for each ε2I , determine the width and compare
it to the single impurity width π T0. The normalised widths are plotted in figure 5.9 (black
lines) for the apex atom (dashed line) and the other atoms (solid lines). As in the latter case, we
approximate the normalised Kondo temperatures by quadratic functions composed of dimers,
say

Γ

T0
= 1 − 1

2

(
ε1I
)2

(5.5.3)

at the apex atom and
Γ

T0
= 1 − 1

4

(
ε1I
)2 − 1

4

(
ε2I
)2

(5.5.4)
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Figure 5.9: Normalised Kondo temperatures (black lines) and approximations 5.5.3 and 5.5.4
(red lines) for an antiferromagnetically coupled isosceles trimer. The AFM basis
interaction is fixed at ε2I = 0.1 and ε1I ∈ [0, 0.3]. Apex atom quantities are indicated
by dashed lines, those of the remaining atoms by solid lines.

at the other impurities. These approximations are plotted as red lines in figure 5.9. This
approximation does not seem to be too bad, but not as good as in the ferromagnetic case. It
becomes the more accurate, the larger the interaction ε2I between the atoms opposite the apex
is compared to ε1I . For ε2I = 0.1 the difference between the approximated ∆(Γ/T0) and the
numerical one is about 17.1 per cent at ε1I = 0.3. At ε2I = 0.05 it is already 21.5 per cent, but
for ε2I = 0.15 it is only 12.8 per cent. The smaller the quotient

|g1|
|g2|

,

the better are the approximations (5.5.3) and (5.5.4). The same is true for the ferromagnetic
isosceles trimer, but the effect is smaller. A small quotient |g1|/|g2| means that the trimer is
acute-angled, being closer to the limiting case of a dimer and an isolated atom than to the
limiting case of a chain. The more the trimer becomes a chain, the less the approximation of
splitting it into distinct dimers is valid.

5.5.3 Mixed type interactions

We consider the case of a mixed type of interactions. The apex atom is assumed to interact
ferromagnetically with the remaining two, which among themselves are coupled antiferromag-
netically. This means

g1 = gR1 = g0 ε
1
R

and
g2 = −i gI2 = −i g0 ε

2
I .

We fixed the antiferromagnetic interaction between the basis impurities to values between
ε2I = 0.08 and ε2I = 0.17 and varied the ferromagnetic coupling ε1R between the apex and the ba-
sis from 0 to 0.3 (corresponding to a varying distance between those). We solved the mean field
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equations using MAPLE and computed the local density of states at the apex and the position
of the remaining impurities. Due to numerical problems, the LDOS could not be computed for
small interactions. For ε2I = 0.08, those problems arose for ε1R < 0.028, at ε2I = 0.17, the LDOS
could not be computed for interactions ε1R < 0.06. These numerical problems were due to the
divergence of yI3 when the system approaches the dimer case (see section 5.2). For all values
εR < 0.3 for which it can be computed, the LDOS is dipped at all impurity sites, and it can be
quite accurately fitted to a Fano-Kondo shape. As in the previous sections, we determined the
normalised width of the LDOS for each interaction ε1R. Figure 5.10 shows the results for the
apex (dashed line) and the opposite atoms (solid lines).

Figure 5.10: Normalised Kondo temperatures at apex site (dashed line) and remaining sites
(solid lines) for ε2I = 0.17.

In contrast to the cases treated so far, the curves cannot be fitted by quadratic ones, the geo-
metric behaviour of the normalised Kondo temperature being in a way more complicated. For
all investigated values of the antiferromagnetic basis interaction, it was qualitatively the same:
For small ferromagnetic couplings, the normalised Kondo temperature is lower than that of a
single magnetic impurity at all three sites, having a point of minimal value that depends on the
strength of the antiferromagnetic coupling ε2I . Hence, small ferromagnetic interactions ε1R do
not have an increasing but a decreasing effect on the Kondo temperature. At the apex atom,
ε2I = 0.1 and ε1R = 0.05, the normalised Kondo temperature already is more than 2.5 per cent
lower than that of a single magnetic impurity. For comparison: for an all-antiferromagnetic
trimer with ε2I = 0.1 the decrease of the normalised Kondo temperature at the apex was less
than 0.15 per cent at ε1I = 0.05.
This decreasing effect and the location of the minimum depends on the antiferromagnetic cou-
pling ε2I . Tabular 5.11 gives the location of the minimum and the associated decrease of the
normalised Kondo temperature for several ε2I .
The shape of the normalised Kondo temperature is as in figure 5.10 for all investigated ε2I , al-
though the minimum is shifted to larger values of ε1R and the minimal value gets lower as the
antiferromagnetic basis interaction increases.
If the ferromagnetic coupling ε1R gets larger, it gains more influence on the systems behaviour,
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ε2I Location of minimum

in interval

Decrease of normalised

Kondo temperature

0.08 [0.030, 0.034] 2.2 per cent
0.10 [0.040, 0.044] 2.7 per cent
0.13 [0.052, 0.056] 3.4 per cent
0.17 [0.070, 0.074] 4.3 per cent

Figure 5.11: Location of minimum and approximated associated decrease of the normalised
Kondo temperature for different antiferromagnetic basis couplings.

increasing the Kondo temperature due to the increasing tendency of the trimer impurities to
maximise the total spin. For dominating ferromagnetic interaction ε1R (compared to ε2I), the sys-
tem approaches the limiting case of a ferromagnetic chain; the normalised Kondo temperature
at all three sites exceeds the one of a single impurity despite the antiferromagnetic coupling of
the opposite impurities.
The geometric behaviour of a trimer with mixed interactions cannot be approximated by splitting
it up into distinct ferromagnetic or antiferromagnetic dimers (if ε2I is not completely negligible
compared to ε1R), even if |g1|/|g2| < 1 which means that the trimer is close to the dimer case.
Each impurity ”feels“ the influence of the couplings between all other impurities.
On first sight, it is quite peculiar that the Kondo temperature at the apex site sinks when
the ferromagnetic interaction to the basis atoms is turned on. However, this behaviour can
be explained with frustration of spins. If the antiferromagnetic interaction between the basis
impurities is large compared to the ferromagnetic coupling ε1R, the basis atoms form an antifer-
romagnetic dimer. As long as there is no ferromagnetic interaction of the apex with those, the
apex spin is free to point in any direction and a Kondo effect as for a single magnetic impurity
is observed at this site. As the interaction is turned on, the basis atoms still form a dimer, but
any non-zero z-component of the apex spin will lead to frustration of that spin. In order to
avoid frustration, the apex spin will tend to minimise its z-component, thus confining itself to
a plane. Therefore its possible degrees of freedom are reduced, which results in a lower Kondo
temperature (see figure 5.12).
This effect gets stronger with increasing ferromagnetic coupling as the favourable orientation
of the spin is more and more confined due to stronger frustration. If the coupling gets large
enough, the ferromagnetic interaction tends to align all three spin parallelly and the normalised
Kondo temperature will rise again with further increase of ε1R.
All considerations made here are also applicable to the spins of the basis impurities. For small
ferromagnetic interactions between those and the apex, the basis forms an antiferromagnetic
dimer. Its spin orientation axis avoids to have a non-vanishing projection on that of the apex
spin, since one of the spins would be frustrated otherwise. Hence, the spin axis of the dimer is
confined, its degrees of freedom are reduced and the normalised Kondo temperature decreases.
If the ferromagnetic interaction with the apex gets strong enough, it tends to gain more influence
on the magnetic behaviour of the trimer than frustration and the Kondo temperature starts to
increase again.
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Figure 5.12: Alignment of the spins in a trimer with mixed type interactions for small ferro-
magnetic couplings between the apex and the basis. The basis impurities form an
antiferromagnetic dimer while it is favourable for the apex spin to avoid having a
non-vanishing projection on the basis spin axes. Therefore the spin is confined and
the loss of freedom leads to a lower Kondo temperature compared to that of a single
magnetic impurity. On the other hand, the basis spins also are confined, and the
Kondo temperature at the basis sites is also reduced.

5.6 Summary

In this chapter we investigated the influence of geometric effects on the Kondo temperature in
an isosceles trimer. As a preparatory work for further considerations we computed the local
density of states formally at the position of the apex atom (5.1.29) and the position of the
other atoms (5.1.30). This can be used as a starting point for investigations of arbitrary trimer
configurations. However, we concentrated on cases where the couplings g1 and g2 were either
real-valued, corresponding to ferromagnetic atomic interactions, or purely imaginary, which
describes antiferromagnetic interactions. We considered the limiting case of a dimer isolated
from the remaining atom. It is the most simple case, where one would expect the geometry
(here only the dimer length) to have an influence on the system. As expected, the LDOS at
the isolated atom in this case is the same as for a single magnetic impurity. We computed the
LDOS at the dimer atoms for ferromagnetic and antiferromagnetic coupling. In the domain of the
Kondo effect, the width of the local density of states is proportional to the Kondo temperature.
We determined the normalised width, which is the fraction of the given dimer width and the
one of a single magnetic impurity. Figure 5.13 indicates that this normalised width, and thus
the Kondo temperature, gets larger for increasing ferromagnetic coupling and diminishes in the
antiferromagnetic case. This is due to the system tending to maximise (ferromagnetic case) or
minimise (antiferromagnetic case) its total magnetic moment. In both cases, the dependence of
the Kondo temperature on the couplings is approximately quadratic. This seems plausible, since
the couplings quadratically enter the RKKY interaction which is expected to be responsible for
the geometric influence.
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Figure 5.13: Dependence of the normalised Kondo temperature on ferromagnetic coupling
(dashed line) and on antiferromagnetic coupling (solid line) in a magnetic dimer.
ε is gR2 /g0 in the first case and gI2/g0 in the latter. Ferromagnetic dimer interac-
tions lead to an enhancement of the Kondo temperature while antiferromagnetic
interactions suppress the Kondo effect.

As another limiting case we considered the trimer atoms to form an equilateral triangle. This
is also quite a simple system in which the geometry is only depending on the distance of the
atoms. The LDOS coincides at all trimer sites, and we computed it for ferromagnetic and
antiferromagnetic inter atomic interactions. Staying in the domain of the Kondo effect, we
determined the normalised width of the LDOS which is proportional to the Kondo temperature
of the system. According to figure 5.14, the normalised Kondo temperature increases with the
coupling strength in the ferromagnetic case and decreases for antiferromagnetic couplings. For
ferromagnetic interactions this can be explained by the tendency of the system to maximise
its total spin, while in the antiferromagnetic case the occurring influences on the geometrical
behaviour are due to minimisation of the total spin. Frustration effects do not seem to play
an important role in this case. The normalised Kondo temperature depends approximately
quadratic on couplings ε less than 0.3 and it is

Γ

T0
≈ 1 ± 1

2
· ε2,

where ” + ” means the ferromagnetic and ” − ” the antiferromagnetic case.

As the last limiting case of a degenerate isosceles trimer we considered a linear magnetic chain,
where we restricted ourselves to next neighbour interactions. We solved the mean field equations
numerically and computed the LDOS at the centre and the boundary of the chain as well as the
normalised Kondo temperatures. Figure 5.15 shows the dependence of the normalised Kondo
temperature on the couplings. In the ferromagnetic case, the Kondo effect is increased while it is
suppressed for antiferromagnetic couplings. In general, the geometrical influence is larger on the
centre of the chain than on the boundary impurities. For ferromagnetic couplings, the boundaries
can be seen as being part of a dimer, while the central atom is the link between two dimers,
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Figure 5.14: Dependence of the normalised Kondo temperature on ferromagnetic coupling
(dashed line) and on antiferromagnetic coupling (solid line) in a equilateral mag-
netic trimer. ε is gR1/2/g0 in the first case and gI1/2/g0 in the latter. Ferromagnetic
interactions lead to an enhancement of the Kondo temperature while antiferromag-
netic interactions suppress the Kondo effect.

Figure 5.15: Normalised Kondo temperature at chain centre (lhs) and boundary (rhs) for ferro-
magnetic (solid) and antiferromagnetic (dashed) coupling.

both influencing the geometric behaviour of the Kondo temperature. For antiferromagnetic
interactions, things are quite different. The suppression of the Kondo effect due to the coupling
is much stronger than in the ferromagnetic case. The antiferromagnetically geometric behaviour
cannot be described by a dimer decomposition of the chain.
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We also considered an actual non-degenerate isosceles trimer with varying geometry, in which
the trimer impurities were either coupled ferromagnetically or antiferromagnetically. We mod-
elled this system by fixing the coupling strength ε2 between the impurity spins opposite the
apex and varying ε1, the one between the apex atom and the remaining two. For ferromagnetic
couplings, an increase of the normalised Kondo temperature was observed, while the influence of
antiferromagnetic interactions leads to decreasing Kondo temperature. In both, the ferromag-
netic and the antiferromagnetic case, we approximated the system by splitting up the trimer
into distinct dimers. Each of the trimer impurities was then part of two dimers which had a
cumulative influence on the normalised temperature at that impurity. The results of the nu-
merically computed geometric dependencies of the Kondo temperatures and the approximated
ones were given in figure 5.8 (ferromagnetic case) and figure 5.9 (antiferromagnetic case). The
approximation was better in the ferromagnetic case than in the antiferromagnetic one, since
for antiferromagnetic interactions, chain-like system cannot be thought of as decomposing into
distinct dimers. However, in both cases, the approximation was the better, the smaller the
quotient ε1/ε2 was, meaning that the system comes closer to the limiting case of a dimer.

As the last example, we considered an isosceles trimer with mixed interactions. The apex atom
was coupled ferromagnetically to the remaining two which among themselves interacted antifer-
romagnetically. The behaviour of the normalised Kondo temperature was quite different from
any of the former cases. Neither could the geometric dependence be approximated by splitting
up the trimer into distinct dimers nor could it be fitted to a quadratic function. Moreover, the
normalised Kondo temperature at the apex and the basis impurities decreased with increas-
ing ferromagnetic coupling down to a minimal value and then increased again, if the coupling
strength became even larger. The decrease of the Kondo temperature for small ferromagnetic
couplings could be explained with frustration of the trimer spins. In that case, the spin orien-
tation axes of the apex spin and the basis spins tend to align perpendicular to each other in
order to avoid frustration. This results in a reduction of the degrees of freedom of the spin axis
and therefore in a lower normalised Kondo temperature. If the ferromagnetic interaction gets
large enough, its tendency to align the spins parallelly gets stronger and the normalised Kondo
temperature is increased.

68



6 Conclusion

We computed the local density of states of a system composed of N magnetic impurities on
a metallic surface. To describe the system, we employed an Anderson model in the regime
of small tunnelling (Schrieffer-Wolff-transformation). We assumed that there were exactly N
electrons in the magnetic cluster which they were distributed upon uniformly. To model this
fact, we assumed the Hubbard interaction to be very large compared to all other occurring
energies (U → ∞). We chose a mean field approach, where the ”mean field“ refers to the mean
interaction of the itinerant degrees of freedom with the localised ones. To fulfill the constraint
of each impurity being only singly occupied, we used the Popov-Fedotov method of imaginary
chemical potentials when we computed the partition function of the system.
In mean field theory, the geometry of the magnetic cluster is encoded by a matrix product b g b,
which is determined by the mean field equations. The matrix b is real-valued and diagonal, its
entries being the mean hybridisations of the impurity degrees of freedom with the surrounding
substrate electrons. The matrix g is complex-valued and symmetric. Its real-valued diagonal is
given by ρ0/N 1, describing the effect of the unperturbed substrate on a single impurity, while
its off-diagonal elements correspond to the effective couplings between different cluster sites.
The elements b g b enter quadratically in the RKKY interaction, which has the most important
influence on the geometrical behaviour of the system. The RKKY interaction between the i-th
and the j-th impurity is given as

H ij
RKKY = −π2 (bi gij bj)

2 . (6.0.1)

Therefore, real-valued entries of the matrix g correspond to ferromagnetic RKKY interactions
between the impurities, while antiferromagnetic interactions are given for imaginary matrix el-
ements.
Using this model, we saw that the local density of states taken at any impurity site develops
a dip around the Fermi energy. The conclusion was that the model is only valid in the regime
of the Kondo effect, where such behaviour is expected. The results of our computations lose
validity, if the inter atomic distance becomes smaller than the Fermi wavelength. Above it, the
Kondo effect dominates, while below it, the cluster cannot be thought of as being composed of
distinct atoms anymore.
In the Kondo regime, the only important quantity describing the whole system is the Kondo
temperature. If the external temperature is below the Kondo temperature, the Kondo effect
occurs; the formation of the Kondo cloud takes place. At low temperatures, the Kondo temper-
ature is proportional to the width of the local density of states. We can compute the width of
the LDOS at different cluster sites, giving rise to different Kondo temperatures for every site.
We can thus say, that if we cool down the system to a certain external temperature, the Kondo
effect will occur at some site, while it will not occur at another. Therefore, the most important
quantity to determine is the width of the LDOS at any site in the cluster.

As a concrete example of such a magnetic cluster, we considered an isosceles trimer. There are
two quantities which fix its geometry: the distance between the apex atom and the other two
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and the distance between the atoms opposite the apex. These distances determine the couplings
between the atoms, given as entries of the matrix

g =




g0 g1 g2
g1 g0 g1
g2 g1 g0


 .

g0 is the on-site interaction for each atom, being related to the the unperturbed density of states
of the substrate electrons by g0 = ρ0/3, g1 is the coupling between the apex and the basis of the
triangle and g2 is the one between the basis atoms. In two dimensions, the trimer being placed
on the surface of a metallic substrate, these couplings decrease with increasing inter atomic
distance as 1/

√
R. We took g1 and g2 as varying parameters of our model and computed the

local density of states at each atom to determine its width at low temperatures and thus the
local Kondo temperature. The width πΓ was compared to that of the LDOS of a single magnetic
impurity given by πT0. The quotient Γ/T0 could then be interpreted as the normalised Kondo
temperature at a given site. If the apex atom is infinitely far away (and therefore g1 = 0) the
basis atoms form a dimer. The dependence of the normalised Kondo temperature at a dimer
site on the coupling g2 is approximately given as

Γ

T0
= 1 ± 1

4

( |g2|
g0

)2

where ”+” refers to ferromagnetic dimer coupling (real-valued g2) and ”−” to antiferromagnetic
coupling (imaginary g2). This approximation is the better, the smaller the coupling is, however,
it is quite good as long as the dimer length is well above the Fermi wavelength. The geometric
influence on the Kondo temperature in a dimer is thus

∆
Γ

T0
= ±1

4

( |g2|
g0

)2

. (6.0.2)

Ferromagnetic inter atomic couplings give rise to higher Kondo temperatures, thus enhancing
the Kondo effect, while antiferromagnetic ones suppress the formation of the Kondo cloud. The
influence of the couplings on the normalised Kondo temperature is quadratic as it is (in lowest
order) for the RKKY interaction (6.0.1). The enhancement (suppression) of the Kondo effect is
due to the dimer maximising (minimising) its total spin.

For arbitrary isosceles trimers, we have to distinguish between two different cases of geometrical
configurations. Either the distance of the apex to the basis atoms is larger than the distance
between themselves, or it is smaller. The asymptotic limit of the first case is the dimer system
(the apex being infinitely far away) while the limit of the second case is the linear chain (where
we assumed only next neighbour interactions). We call configurations of the first kind ”dimer
like“ and those of the second kind ”chain like“. Dimer like configurations are characterised by
|g1| < |g2| while for chain like it is |g2| < |g1|.
For dimer like isosceles trimers which are completely ferromagnetically or antiferromagnetically
coupled, the geometric influence on the normalised Kondo temperature at a certain impurity
is quite accurately approximated by superposition of the influences (6.0.2) of each dimer the
impurity is connected to. The normalised Kondo temperature at the apex is given as

(
Γ

T0

)

Apex

= 1 ± 1

2

( |g1|
g0

)2

(6.0.3)
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while for the basis atoms it is

(
Γ

T0

)

Basis

= 1 ± 1

4

( |g1|
g0

)2

± 1

4

( |g2|
g0

)2

. (6.0.4)

Again ”+” corresponds to the ferromagnetic case while ”−” describes the behaviour for antifer-
romagnetic couplings. In this approximation, the influence of the dimer interaction between the
remaining two atoms on the impurity under consideration is neglected.
For chain like isosceles trimers, the approximations (6.0.3) and (6.0.4) are not as good anymore.
However, in the ferromagnetic case, the errors are still tolerable, even for a linear chain where
g2 = 0. For a ferromagnetic chain, the geometric influence at the apex is given by

∆
Γ

T0
= 0.549 ·

( |g1|
g0

)2

,

if one quadratically fits the widths for couplings up to |g1|/g0 = 0.3, which compared to (6.0.3)
means an error of 9.8 per cent, while at the basis atoms it is

∆
Γ

T0
= 0.246 ·

( |g1|
g0

)2

meaning an error of 1.6 per cent. These errors become the smaller the less chain like the system
is.
For antiferromagnetic couplings, chain like systems strongly deviate from (6.0.3) and (6.0.4).
For an antiferromagnetic chain and a coupling strength of |g1|/g0 = 0.3 the error at the apex
using those formulas is about 490 per cent, while it is even about 870 per cent at the basis
atoms. The geometric influence on the normalised Kondo temperature at a given atom cannot
be modelled anymore as cumulative dimer influences for chain like antiferromagnetic systems,
the antiferromagnetic interactions tend to prevent the system from dimerisation. This behaviour
is not totally unexpected. To explain the differences between the dimer like and the chain like
case qualitatively, we use the following (a little too simple) classical picture. The influence
on a given spin by another can either be direct (meaning that it is mediated by the substrate
electrons on a direct way, it is still an indirect coupling) or via the remaining spin. The latter
is the result of combined scattering, while the first only involves one scattering process, so in
general the effect of the indirect influence will be less than that of the direct one. For dimer
like systems, the indirect influence will almost be negligible compared to the direct one, since
it quite unlikely for a substrate electron to travel from one impurity to another by passing the
remaining one. For chain like systems, the probability of a spin being influenced by a combined
scattering process gets larger (compared to the one in a dimer like system of the same scale), so
the indirect influence becomes more important. Hence, in dimer like systems the influence on a
given spin by the other two is mostly due to direct scattering, which leads to a dimerisation of
the system. In chain like systems, dimerisation will only occur, if the growing influence of the
indirect scattering processes does not change the nature of the interactions between a given spin
and another. This is the case for ferromagnetic couplings, and dimerisation can still be observed,
though it is not as pronounced as for dimer like systems. For antiferromagnetic interactions,
this is not the case anymore, dimerisation is strongly suppressed.
For completely antiferromagnetically coupled trimers, we expected frustration of spins to have
an influence on the geometric behaviour of the Kondo temperature. It is quite remarkable, that
frustration does not seem to be of great importance in that case. The geometric configuration
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in which frustration of spins should have the largest effect, is the most symmetric, namely the
equilateral trimer. For the antiferromagnetic equilateral trimer, the ground state should be the
most degenerate compared to all other cases. However, the geometrical behaviour of the Kondo
temperature is still very well described by (6.0.3) and (6.0.4). Moreover, as figure 5.9 shows,
there is no dramatic change in the behaviour of the normalised Kondo temperature, when the
symmetry point g2 = g1 is crossed. It seems that the tendency of the system to dimerise is
stronger than any frustration effects.
In chain like antiferromagnetic systems, where dimerisation is not so likely to occur, frustration
is also not as strong as in the most symmetric case. In an antiferromagnetic chain, there is
no frustration at all and still the deviation from the dimerisation approximations (6.0.3) and
(6.0.4) is largest compared to all other cases. Hence, frustration cannot have any influence on
this behaviour in the chain case. It is rather explained by the indirect spin influences already
described above. All in all, frustration effects seem to play a minor role for completely antifer-
romagnetically coupled trimers.
The only system of the ones we investigated here, where a hint of frustration influence arose, was
the trimer with mixed type interactions. The basis atoms were coupled antiferromagnetically
in that case while the apex spin was interacting ferromagnetically with the basis. None of the
normalised Kondo temperatures could be described by dimerisation. For a fixed antiferromag-
netic basis interaction, the normalised Kondo temperature as a function of the ferromagnetic
apex-basis interaction develops a minimal value, the position of which depends on the given
basis interaction. For small ferromagnetic couplings, the Kondo temperature at all three sites
was lower than that of a single magnetic impurity, and in case of the basis, even lower than
that of an antiferromagnetic dimer. At first sight, this seemed rather peculiar since ferromag-
netic interactions tended to increase the Kondo temperature in all previous cases. However,
this effect can be explained with frustration of the spins (at least in a classical picture). If the
ferromagnetic coupling is small compared to the antiferromagnetic basis interaction, the basis
impurities form an antiferromagnetic dimer. If the apex spin has a non-vanishing projection
on the spin orientation axis of the dimer, it will be frustrated and so will be one of the dimer
spins. Therefore, the dimer spin axis and the one of the apex tend to be perpendicular, so
confining the spin directions and reducing the Kondo temperature due to the loss of degrees of
freedom. This effect gets larger as the ferromagnetic coupling does, since frustration becomes
stronger. However, above a certain ferromagnetic coupling strength (which depends on the basis
interaction), the tendency of the trimer spins to align parallelly becomes more important and
the Kondo temperatures begin to rise again. The combination of frustration of spins and, for
stronger ferromagnetic couplings, the preference of the system to align its spins parallelly
It is remarkable that this sort of system behaves so different from an overall antiferromagnetically
coupled trimer. In the case of mixed type interactions, the decrease of the Kondo temperature
for small ferromagnetic couplings is much larger than the dimerisation approximations (6.0.3)
and (6.0.4) suggest for small antiferromagnetic interactions (and as said already, these approxi-
mations are in very good accordance with the numerical results for an antiferromagnetic dimer
like trimer). One would think that the above explanation of the influence of frustration on
the Kondo temperature in the mixed type interaction case would still be valid if the apex was
coupled antiferromagnetically to the basis. However, this is not the case. The tendency of an
antiferromagnetic system to dimerise suppresses effects of frustration, while dimerisation does
not take place in the mixed interaction case and frustration effects dominate. The explanation
for that behaviour has to be the different nature of the couplings. In a dimer like geometrical
configuration, it seems to be preferable for a spin to be part of two antiferromagnetic dimers,
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but not of an antiferromagnetic one and a ferromagnetic one. The problem in explaining this
effect using an easy picture is, that our model of three magnetic impurities in a bath of substrate
electrons cannot be described entirely by the more simple model of three coupled spins, which
we used here as a thought model in our explanations. In fact, a simple model of an isosceles
trimer of coupled spins, where the spin-spin interaction is the only relevant part and where the
basis spins are interacting antiferromagnetically, does not show any differences in the ground
state energies for a ferromagnetically or an antiferromagnetically coupled apex spin.

The results in this work are different from the measured behaviour of the Kondo temperature
in the experiments of Jamneala et al. (see [70]). They observed that the Kondo temperature
of a (dimer like) isosceles trimer can be higher than both that of a single magnetic impurity
and that of an equilateral trimer. Our results do not allow for such a conclusion. However,
the starting point of the experiments in [70] was quite different from the one of our model. As
outlined, mean field theory is only valid for systems of ”loosely“ arranged trimers, in which the
inter impurity distances are sufficiently large. Such systems stay in the Kondo state and will
only be slightly altered by the long-ranged RKKY interactions. In the very compact systems
Jamneala et al. considered, additional effects like direct exchange couplings have to be taken
into account, which may be responsible for the differences.

In summary, we have considered an Anderson model in the small tunnelling regime to describe an
arbitrary number of magnetic impurities on a metallic substrate and formally computed the local
density of states at low temperatures, using mean field theory. We showed that the mean field
approach is only valid, if the inter atomic distances of the magnetic cluster are sufficiently large.
As a concrete example for such a cluster, we considered an isosceles trimer. We determined the
dependence of the Kondo temperature taken at each trimer site on the effective inter impurity
couplings. The result was that the Kondo effect is enhanced in completely ferromagnetically
coupled trimers, compared to a single magnetic impurity, while it is weakened for completely
antiferromagnetically coupled ones. In the case of mixed type interactions, frustration effects
come into play, and the Kondo temperature can both increase or decrease, depending on the
configuration of the trimer.
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In this section we want to discuss some ideas on how the present model could be generalised
to more complicated systems. The key characteristics of the model should be untouched. That
means, that the interacting part of the underlying effective Hamiltonian should still be Kondo
like, that one stays in the regime U → ∞ and that everything is computed in mean field.
The first thing to do would be to consider concrete examples of a cluster different from an
isosceles trimer. First of all, one could skip the restriction that the trimer is isosceles. For an
arbitrary triangle, the matrix g would be less symmetric which means that the eigenvalues of
the matrix b g b are not determined as easily. In principle, it is of course possible to compute
the eigenvalues of an arbitrary 3 × 3 matrix analytically, but the results will in general be
quite complicated. This means, that the mean field equations will be rather cumbersome and
therefore should be solved numerically, which is not really a strong restriction, since for most
cases we already had to rely on numerical methods to solve the mean field equations in our
more symmetric model. However, it is quite unlikely that an arbitrary trimer will give rise
to completely different results. Most of the geometric influences on the Kondo temperature
should already be observed in the system we presented here. It might be possible though, to
investigate the influence of frustration on the Kondo temperature a bit more. Starting with an
antiferromagnetically coupled equilateral triangle, in which the spins are maximally frustrated,
one could shift one of the trimer atoms parallel to the other two, so breaking the symmetry
entirely and thus cancelling frustration. This might allow to quantify the (as we observed rather
weak) effect of frustration.
The next thing one could do, is to consider more than three magnetic impurities. 4× 4 matrices
can still be diagonalised analytically and therefore, computations could be extended to magnetic
clusters of four atoms without immoderate effort. It would be interesting to see under which
conditions the system still develops a dimerisation behaviour, if at all. One would expect
such a system to dimerise for completely ferromagnetic couplings, but it is not at all obvious
how dimerisation in the ferromagnetic case would translate from a trimer to a cluster of four
impurities.
For clusters of more than four atoms, additional problems in solving the mean field equations
arise. Since N × N matrices cannot be diagonalised analytically in general, their eigenvalues
cannot be formally derived. Since these enter the mean field equations, those could not be
formally written down. Hence, the mean field equations have to be solved under the condition,
that their solutions give rise to eigenvalues of the matrix b g b, which enter the mean field
equations. Such a self-consistent approach would rather be tackled with entirely numerical
techniques. Assuming that those problems could be solved, it would again be of interest if
dimerisation occurs in such ”large” clusters, or under which condition they separate into smaller
clusters.
Up to now, we only discussed how one could treat more complicated clusters with the model
presented here. Another idea would be to slightly change the model by skipping the restriction
that the total occupation in a given cluster coincides with the number of the cluster atoms.
In that case, the Hamiltonian is still Kondo like, but can not be seen as a spin-1

2 Hamiltonian
anymore. This should lead to quite different results from what we observed here, since the
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system then cannot be though of as coupled spins anymore. Technically, the only difference to
the present model is that the assumption of each impurity to be singly occupied is changed to the
assumption that the total occupation of the cluster is fixed and that its total spin is maximal.
The latter could be described by reintroducing the Hubbard term and transforming it into the
form of a spin-spin interaction term for the cluster. Using a Hubbard-Stratonovich transform on
this term will give rise to another auxiliary field which enters the mean field equations. However,
this field plays a minor role in the limit U → ∞ (which has to be performed in the mean field
equations).
In order to incorporate the boundary condition of the cluster having a fixed occupation number,
one would use the generalised method of imaginary chemical potentials as presented by Kiselev
et al. in [85]. In this framework, the Hamiltonian would not be seen as a SU(2) Hamiltonian
composed of N different SU(2) spins with spin-1

2 . Instead the whole cluster would represent a
single SU(2 × N) pseudo spin, and the total occupation of the cluster would determine which
irreducible representation of the SU(2×N) group would be used (quite analogous to the ordinary
spin). The approach via imaginary chemical potentials to such a system is quite analogous to the
one presented here, but instead of one imaginary chemical potential there occur several ones and
the partition function cannot be computed as a single path integral anymore but as a weighted
sum of path integrals. Still, each of these path integrals can be calculated the same way we did
here.
Such a system with fixed cluster occupation that does not coincide with the size of the cluster
is expected to develop effects due to hopping of the cluster electrons from site to site, which
cannot play any role in the present model.
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A Preliminary Considerations

A.1 Mathematical definitions and useful relations

In this section we are going to state some general mathematical definitions and give some useful
relations, which we use throughout this appendix. We start with the Fourier transformation
from the imaginary time space to frequency space. The Fourier transform of a function f in the
space of imaginary time is given as

f̂iωn =

∫ β

0
dτ f(τ)eiωnτ

and the inverse transformation is

f(τ) =
∑

iωn

f̂iωne
−iωnτ

where the summation is performed over the Matsubara frequencies. Using this definition, one
arrives at the relations

δωnω′
n

=

∫ β

0
dτ ei(ωn−ω′

n)τ

and
δττ ′ =

∑

iωn

eiωn(τ−τ ′).

Hence, for any two functions f and g it is

∫ β

0
dτ f(τ) ∂τg(τ) =

∑

iωn

f̂iωn (−iωn) ĝiωn

and ∫ β

0
dτ f(τ)Ag(τ) =

∑

iωn

f̂iωn A ĝiωn .

We state some more relations which will be used later. The trace of the tensor product of two
operators A and B is the product of their traces:

Tr (A⊗B) = TrA · TrB. (A.1.1)

This simply follows from the definition of the tensor product. It is

Tr (A⊗B) =
∑

iσ

AijδijBσρδσρ

=
∑

i

Aii
∑

σ

Bσσ

= TrA · TrB.
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The determinant of an operator A is defined as

detA = exp Tr logA. (A.1.2)

For finite dimensional operators A and B (which therefore can be written as matrices) it holds

det(A⊗B) = (detA)dimB · (detB)dimA. (A.1.3)

For any operator A and N ∈ N it is

det(A⊗ 1N ) = (detA)N = expN Tr logA.

In the following we give a very useful formula for block triangular operators, say operators whose
representation matrix has the form

A =

(
A1 0
B A2

)

with any operators A1, A2 and B. For those triangular operators, it is

Tr log

(
A1 0
B A2

)
= Tr logA1 + Tr logA2. (A.1.4)

Using the definition of the determinant (A.1.2), this apparently means

det

(
A1 0
B A2

)
= detA1 · detA2.

Equation (A.1.4) can be shown easily if one is not too rigid on convergence conditions for the
Taylor series of the logarithm. Since we have to deal with a power series of matrices A as defined
above, we first determine the form of the monomials An. It is

(
A1 0
B A2

)n
=

(
An1 0
B′ An2

)

for some matrix B′. This can be easily shown for A2 and then follows for An by induction.
Using this formula and the power series of the logarithm, we write

Tr log

(
A1 0
B A2

)
= Tr

∞∑

n=1

1

n

[(
A1 0
B A2

)
− 1]n

= Tr

∞∑

n=1

1

n

n∑

k=0

(n
k

)
(−1)n+k

(
A1 0
B A2

)k

= Tr

∞∑

n=1

1

n

n∑

k=0

(n
k

)
(−1)n+k

(
Ak1 0
Bk Ak2

)

=

∞∑

n=1

1

n

n∑

k=0

(n
k

)
(−1)n+k

[
TrAk1 + TrAk2

]

= Tr

∞∑

n=1

1

n

[
A1 − 1]n + Tr

∞∑

n=1

1

n

[
A2 − 1]n

= Tr logA1 + Tr logA2.

This proves (A.1.4).
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A.2 SU(N)-generators

In this chapter, we are going to show some general properties of the SU(N) generators. In
what follows, we always assume the generators to be represented by N2−1 linearly independent
N × N matrices. Those are hermitian and traceless. Moreover, the generators of the SU(N)
algebra satisfy the product rule

GνGµ =
1

N
δνµ 1N +

1√
2

N2−1∑

a=1

(ifνµa + dνµa) G
a (A.2.1)

for ν, µ = 1 . . . N2 − 1. The product here is the matrix product. fνµa and dνµa are the so called
structure constants. fνµa is completely antisymmetric under exchange of any two indices, while
dνµa is completely symmetric. Moreover they fulfill the following contraction rules:

N2−1∑

µ,ν=1

faµνfbµν = N δab (A.2.2)

N2−1∑

µ,ν=1

daµνdbµν =
N2 − 4

N
δab (A.2.3)

N2−1∑

µ,ν=1

faµνdbµν = 0 (A.2.4)

N2−1∑

µ=1

daµµ = 0. (A.2.5)

We define

G0 =
1√
N
1N .

The matrices G0, G1, . . . GN
2−1 span the space HN of the hermitian N × N matrices, its field

being R. Because of the tracelessness of G1 . . . GN
2−1 and due to (A.2.1) it holds

TrGνGµ =
1

N
δνµ Tr1N = δνµ (A.2.6)

for all ν, µ = 0 . . . N2−1. Let A and B any hermitian N ×N matrices. They can be represented
as

A =
∑

ν

aν G
ν and B =

∑

µ

bµG
µ

with real valued coefficients. The mapping

〈·, ··〉 : HN ×HN → R (A.2.7)

defined by

〈A,B〉 = TrAB =
∑

νµ

aνbµTrGνGµ =
∑

µ

aµbµ

is bilinear and symmetric because of linearity and cyclicity of the trace. Moreover

〈A,A〉 = TrA2 =
∑

µ

(aµ)
2 ≥ 0
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for all A, and 〈A,A〉 = 0 if and only if A = 0. Thus, the mapping (A.2.7) is a real symmetric
scalar product. It implies a norm on HN , and being finite dimensional, HN is complete with
respect to this norm. Thus, HN is a Hilbert space w.r.t. the scalar product (A.2.7).

In the following, we show a projection theorem which will be used when performing the Hubbard-
Stratonovich transformation of the action. Let ν = 0. Then

N2−1∑

µ=0

GµGνGµ =
1√
N

N2−1∑

µ=0

GµGµ

=
1

N
· 1√

N
1N +

1√
N

N2−1∑

µ=1

GµGµ

=
1

N
G0 +

1

N

N2−1∑

µ=1

1√
N
1N +

1√
2N

N2−1∑

a=1

(ifµµa + dµµa)G
a

=
1

N
G0 + (N2 − 1)

1

N
G0

= N ·G0,

where we made use of (A.2.1), (A.2.5) and the antisymmetry of f . Now let ν 6= 0. Then

N2−1∑

µ=0

GµGνGµ =
1

N
Gν +

N2−1∑

µ=1

GµGνGµ

=
1

N
Gν +

N2−1∑

µ=1

Gµ


 1

N
δνµ 1N +

1√
2

N2−1∑

a=1

(ifνµa + dνµa)G
a




=
2

N
G0 +

1√
2

N2−1∑

µ,a=1

(ifνµa + dνµa)


 1

N
δµa1N +

1√
2

N2−1∑

b=1

(ifµab + dµab)G
b




=
2

N
Gν +

1√
2N

N2−1∑

µ=1

(ifνµµ + dνµµ)1N +
1

2

N2−1∑

µ,a,b=1

(ifνµa + dνµa)(ifbµa + dbµa)G
b

=
2

N
Gν +

1

2

N2−1∑

µ,a,b=1

(
−fνµafbµa + ifνµadbµa + ifbµadνµa + dνµadbµa

)
Gb

=
2

N
Gν +

1

2

N2−1∑

b=1

(
−N δνb +

N2 − 4

N
δνb

)
Gb

=

(
2

N
+
N2 − 4

2N
− N

2

)
Gν

= 0,

where we used (anti-)symmetry of f and d and the contraction rules (A.2.2)-(A.2.5). Hence, we
have proven the relation

N2−1∑

µ=0

GµGνGµ = N · δν0G0 (A.2.8)
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for every ν = 0 . . . N2 − 1.

The SU(2) generators can be represented as the famous Pauli matrices

σ0 =
1√
2

(
1 0
0 1

)
, σ1 =

1√
2

(
0 1
1 0

)
, σ2 =

1√
2

(
0 −i
i 0

)

and

σ3 =
1√
2

(
1 0
0 −1

)
.

We are going to use them to describe spin degrees of freedom.

A.3 Conductance at low temperatures

We outline the connection between the local density of states and the differential conductance
dI/dV for low temperatures. The outcome is that the latter is just proportional to the first. In
order to derive this result, we first show the following δ identity: the functional sequence

δβ,y : δβ,y(f) =
β

2

∫ ∞

−∞
dx

1

1 + cosh(β(x− y))
f(x)

is converging pointwisely towards the δ functional for all continuous polynomially bound func-
tions f . The latter assumption on f just ensures the integral to exist. We show this claim by
direct computation. It is

β

2

∫ ∞

−∞
dx

1

1 + cosh(β(x− y))
=
β

2

1

β
tanh

(
β

2
[x− y]

) ∣∣∣∣∣

∞

−∞

=
1

2
(1 − [−1]) = 1

for all β > 0. Hence

lim
β→∞

β

2

∫ ∞

−∞
dx

1

1 + cosh(β(x− y))
f(x) =

1

2

∫ ∞

−∞
dx̄

1

1 + cosh(x̄)
lim
β→∞

f

(
x̄

β
+ y

)
= f(y),

where we used continuity of f and the dominated convergence theorem, which is valid for β
large enough (finitely large being sufficient).
Assuming a broad and flat conduction band, the current in an STM experiment is approximately
given as

I(V, r) =
e

~
ρ0 |ttip|2

∫ ∞

−∞
dε ρε(r) [f(ε) − f(ε+ eV )] ,

where e is the elementary charge, ρ0 the local density of states in the metal at the Fermi level,
ttip the tunnelling strength in the tip, ρε the normalised local density of states and f the Fermi
distribution

f(ε) =
1

eβε + 1
.
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The differential conductance is thus given as

σ(V, r) =
dI

dV
(V, r)

=
e

~
ρ0 |ttip|2

∫ ∞

−∞
dε ρε(r)

β e eβ(ε+eV )

(
1 + eβ(ε+eV )

)2

=
e2

~
ρ0 |ttip|2β

∫ ∞

−∞
dε ρε(r)

1(
1 + eβ(ε+eV )

) (
1 + e−β(ε+eV )

)

=
e2

~
ρ0 |ttip|2β

∫ ∞

−∞
dε ρε(r)

1

2 + 2 cosh(β[ε + eV ])

=
e2

~
ρ0 |ttip|2

∫ ∞

−∞
dε̄ ρ ε̄

β
−eV (r)

1

2

1

1 + 1 cosh(ε̄)
.

Hence, for β → ∞ we get

lim
β→∞

σ(V, r) =
e2

~
ρ0 |ttip|2 ρ−eV (r).

For very low temperatures, the conductance at a given point is proportional to the local density
of states.

A.4 Schrieffer-Wolff transformation

In this section, we are going to map the original Hamiltonian of the microscopic Anderson model
to the low energy sector, thus achieving an effective Kondo like Hamiltonian. The transformation
applied here is the well known Schrieffer-Wolff transformation [8]. It is based on the idea of
applying a unitary transformation which maps the Anderson Hamiltonian to the one of the
Kondo model if the tunnelling amplitude is sufficiently small. After this transformation any
terms linear in the tunnelling amplitude will not contribute to the effective Hamiltonian anymore.
We start with proving a short lemma. Let Ĥ = H0 +H1 and S an operator with [H0, S] = H1.
Then

H = eSĤe−S = H0 +

∞∑

n=1

n

(n+ 1)!
[S,H1]n, (A.4.1)

where [S,A]n = [S, [S,A]n−1] and [S,A]0 = A.

By induction, we prove [S, Ĥ ]n = −[S,H1]n−1 + [S,H1]n for n ≥ 1. For n = 1 it is [S, Ĥ]1 =
−H1 +[S,H1] due to the form of the commutator of S and H0. Assume the lemma to be correct
for some n. Then for n+ 1

[S, Ĥ ]n+1 = [S, [S, Ĥ ]n] =
[
S,−[S,H1]n−1 + [S,H1]n

]
= −[S,H1]n + [S,H1]n+1,
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and we have proven the claim. Due to the Baker-Campbell-Hausdorff theorem it is

H = eSĤe−S

=

∞∑

n=0

1

n!
[S, Ĥ ]n

= Ĥ +

∞∑

n=1

1

n!

(
−[S,H1]n−1 + [S,H1]n

)

= Ĥ −H1 +
∞∑

n=1

(
1

n!
− 1

(n+ 1)!

)
[S,H1]n

= H0 +

∞∑

n=1

n

(n + 1)!
[S,H1]n.

We remark that for an anti-hermitian operator S, the transformation is unitary.
We will now turn to the Hamiltonian of interest. The Anderson Hamiltonian in our case is given
by

Ĥ =
∑

kσ

εkNkσ +
∑

iσ

εdniσ +
∑

i

Uni↑ni↓ +
∑

i

∑

kσ

(
Tikc

†
iσakσ + h.c.

)
, (A.4.2)

where Nkσ = a†
kσakσ with a the construction operators of the substrate electrons, niσ = c†iσciσ

with ci the construction operators of the electrons in the i-th atom of the cluster. U is the
Hubbard-interaction energy and Tik is proportional to the tunnelling amplitude |T (k)|. We
denote the first three terms of the Hamiltonian by H0 and the interaction term by H1. We
now seek an anti-hermitian operator S which fulfills [H0, S] = H1, so that we can use (A.4.1).
The aim is to get rid of all terms which are linear in the tunnelling amplitude, so that the first
nontrivial term in the expansion (A.4.1) is of quadratic order in |T (k)|. We use the following
ansatz for S:

S = s− s†

with
s =

∑

i

∑

kσ

Tik
(
Aikni,−σ +Bik

)
c†iσ akσ,

where all A, B are real valued coefficients. It is

[H0, S] = [H0, s] − [H0, s
†] = [H0, s] + [H0, s]

†.

We compute

[H0, s] =

[
∑

kσ

εkNkσ +
∑

iσ

εdniσ +
∑

i

Uni↑ni↓,
∑

j

∑

k′σ′

Tjk′

(
Ajk′nj,−σ′ +Bjk′

)
c†iσ akσ

]

= −
∑

ikσ

εkTik
(
Aikni,−σ +Bik

)
c†iσ akσ +

∑

ikσ

εdTik
(
Aikni,−σ +Bik

)
c†iσ akσ

+
∑

ikσ

UTik
(
Aik +Bik

)
ni,−σc

†
iσ akσ

=
∑

ikσ

Tik
[
Aik(U + εd − εk)ni,−σ +Bik(U ni,−σ + εd − εk)

]
c†iσakσ
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Here, we used
[A,B C] = B [A,C] + [A,B]C,

[nα, nβ ] = 0,

[Nkσ, c
†
jσ′ ak′σ′ ] = −δkk′ δσσ′ c

†
jσ′ akσ,

[niσ, c
†
jσ′ ak′σ′ ] = δij δσσ′ c

†
jσ′ak′σ′

and n2
µ = nµ. The requirement [H0, S] = H1 reads

[H0, s] =
∑

ik

Tikc
†
iσ akσ =: h1

which is fulfilled for

Aik =
1

U + εd − εk
− 1

εd − εk

and

Bik =
1

εd − εk
.

So S = s− s† with

s =
∑

i

∑

kσ

Tik

(
1

U + εd − εk
ni,−σ +

1

εd − εk
[1 − ni,−σ]

)
c†iσ akσ (A.4.3)

fulfills (A.4.1). Since S is already proportional to Tik, all terms in (A.4.1) apart from H0 will be
at least quadratic in the tunnelling amplitude. For (in some sense) small tunnelling amplitudes
this justifies to approximate

H = H0 +
1

2
[S,H1].

It is H1 = h1 + h†1 and so

[S,H1] = [s− s†, h1 + h†1] = [s, h1] + [s, h1]
† + [s, h†1] + [s, h†1]

†.

So, we have to know [s, h1] and [s, h†1]. Before we compute the commutators in question, we
make some further assumptions to simplify the problem. First, we assume εk ≪ εd. This is
justified, if mostly conduction electrons near the Fermi energy are expected to play an important
role for the physics of the system. With this assumption it is

Aik ≈ 1

U + εd
− 1

εd
= A

and

Bik ≈ 1

εd
= B.

Moreover, we assume the absolute value of the tunnelling amplitude to be the same for all sites,
giving Tik the form

Tik =
1√
N
TF e

−iRik = TF tik,

where tik has been defined. Using this assumptions, we get

[s, h1] = T 2
F

∑

ij

σσ′

∑

kk′

tik tjk′

[
(Ani,−σ +B)c†iσ′ ak′σ′ , c

†
jσakσ

]
.
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It is [
c†iσ′ ak′σ′ , c

†
jσ akσ

]
= 0,

so

[s, h1] = T 2
F

∑

ij

σσ′

∑

kk′

tik tjk′A
[
ni,−σ, c

†
jσ akσ

]
c†iσ′ ak′σ′

= T 2
F

∑

ij

σσ′

∑

kk′

tik tjk′Aδij δσ′,−σ c
†
jσ akσc

†
iσ′ ak′σ′

= T 2
F

∑

iσ
kk′

tik tik′Ac†iσakσc
†
i−σak′−σ.

(A.4.4)

Equation (A.4.4) contains two creators for the localised electrons. [s, h1] and [s, h1]
† correspond

to creating and annihilating two site electrons respectively. These terms do not conserve the
particle number within the cluster; they will lead to energetically excited states. Since we are
only interested in the low energy behaviour, we will skip these terms altogether.
Let us turn to the computation of [s, h†1]. It is

[s, h†1] = T 2
F

∑

ij

σσ′

∑

kk′

tik′tjk
[
(Ani,−σ′ +B)c†iσ′ak′σ′ , a

†
kσcjσ

]
.

We use [
ni,−σ′ , a

†
kσcjσ

]
= a†

kσ

[
ni,−σ′ , cjσ

]
= −δij δ−σ′σ a†kσci−σ′

and [
c†iσ′ak′σ′ , a

†
kσcjσ

]
= δkk′ δσσ′ c

†
iσ′cjσ − δij δσσ′ a

†
kσak′σ′ .

Hence we get

[s, h†1] = T 2
F

∑

ij

σσ′

∑

kk′

tik′tjk

(
Ani,−σ′

[
c†iσ′ak′σ′ , a

†
kσcjσ

]
+A

[
ni,−σ, a

†
kσcjσ

]
c†iσ′ak′σ′

+B
[
c†iσ′ak′σ′ , a

†
kσcjσ

])

= T 2
F

∑

ij

σσ′

∑

kk′

tik′tjk

(
Ani,−σ′c

†
iσ′cjσ δkk′ δσσ′ −Ani,−σ′a

†
kσak′σ′ δij δσσ′

−Aa†
kσci−σ′c

†
iσ′ak′σ′ δij δ−σ′σ +Bc†iσ′cjσδkk′δσσ′ −Ba†

kσak′σ′δij δσσ′
)

= T 2
F

∑

ij
σk

tiktjkAni,−σc
†
iσcjσ

(1)

− T 2
0

∑

kk′

σi

tik′tikAni,−σa
†
kσak′σ

(2)

− T 2
F

∑

kk′

σi

tik′tikAa
†
kσciσc

†
i−σak′−σ

(3)

+ T 2
0

∑

ij
σk

tiktjkBc
†
iσcjσ

(4)

− T 2
0

∑

kk′

σi

tik′tikBa
†
kσak′σ

(5)

.

The term [s, h†1](3) is not normally ordered yet. It is

−T 2
F

∑

kk′

σi

tik′tikAa
†
kσciσc

†
i−σak′−σ = T 2

F

∑

kk′

σi

tik′tikAc
†
i−σciσa

†
kσak′−σ.
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Moreover, it is

tiktjk =
1

N
e−i(Ri−Rj)k.

Hence ∑

k

tiktjk =
1

N
δij .

So

[s, h†1](1) + [s, h†1](4) = T 2
F

∑

iσ

(Ani,−σ +B)ni,σ = T 2
FA
∑

iσ

ni,−σni,σ + T 2
FB

∑

iσ

ni,σ.

These terms have the same form as the Hubbard part and the cluster electron part of the
Anderson Hamiltonian. They only redefine U and εd a bit. Since T 2

F is assumed to be small
compared to the other occurring energies, those changes are negligible. As we can see by direct
computation for all its parts, [s, h†1] is hermitian.

The terms [s, h†1](2) and [s, h†1](3) contain the Kondo term. To see this, we compute

~Si · ~skk′ =
3∑

ν=1

∑

σσ′

ρρ′

c†iσσ
ν
σσ′ciσ′a

†
kρσ

ν
ρρ′ak′ρ′

=
∑

σσ′

ρρ′

c†iσciσ′a
†
kρak′ρ′

(
3∑

ν=1

σνσσ′σ
ν
ρρ′

)

=
∑

σσ′

ρρ′

1

2

(
2δσρ′δσ′ρ − δσσ′δρρ′

)
c†iσciσ′a

†
kρak′ρ′

=
∑

σρ

c†iσciρa
†
kρak′σ −

1

2

∑

σρ

c†iσciσa
†
kρak′ρ

=
1

2

∑

σ

niσa
†
kσak′σ +

1

2

∑

σ

ni,−σa
†
kσak′σ +

∑

σ

c†i−σciσa
†
kσak′−σ −

∑

σ

c†i−σci−σa
†
kσak′σ.

It is

[s, h†1](2) + [s, h†1](3) = T 2
FA
∑

kk′

i

tik′tik
∑

σ

(
c†i−σciσa

†
kσak′−σ − c†i−σci−σa

†
kσak′σ

)
,

so

[s, h†1](2) + [s, h†1](3) = T 2
FA
∑

kk′

i

tik′tik ~Si · ~skk′

(i)
− 1

2
T 2
FA
∑

kk′

iσ

tik′tik(ni,σ + ni,−σ)a
†
kσak′σ

(ii)

. (A.4.5)

Expression (i) is the Kondo term. It can be useful to ascribe the tik to the construction operators
of the conduction electrons. Since

tik =
1√
N
e−iRik,

the Kondo term (i) can be written as

T 2
FA
∑

kk′

i

tik′tik ~Si · ~skk′ =
1

N
T 2
FA
∑

i

~Si · ~s(Ri),

88



A Preliminary Considerations

where we performed the wave vector summations. We define

N · J = T 2
F A = T 2

F

(
1

U + εd
− 1

εd

)
, (A.4.6)

where the factor N is for normalisation. It arises due to the fact that the tunnelling amplitudes
are assumed to be normalised. In the proper Kondo regime, where εd < 0 < U + εd, the
interaction constant J is positive.

The part (ii) of equation (A.4.5) can be combined with [s, h†1](5). It is

[s, h†1](5) −
1

2
T 2
FA
∑

kk′

iσ

tik′tik(ni,σ + ni,−σ)a
†
kσak′σ

= −T 2
F

∑

kk′

iσ

tik′tik

[
1

2
A(ni,σ + ni,−σ) +B

]
a†
kσak′σ,

which in the half filled case (where either ni,σ = 1 and ni,−σ = 0 or the other way round)
becomes

= −T 2
F

1

2

U + 2εd
(U + εd)εd

∑

kk′

iσ

tik′tika
†
kσak′σ.

This redefines the conduction electron term in the original Hamiltonian. As with the redefining
terms before, the deviations from the original term is rather small.

Let ε′
k
, ε′d and U ′ be the redefined energies for the conduction term, the site term and the

Hubbard interaction term. Let

H ′
0 =

∑

kσ

ε′kNkσ +
∑

iσ

ε′dniσ +
∑

i

U ′ni↑ni↓.

Then

H ≈ H0 +
1

2
[S,H1]

≈ H0 +
1

2
[s, h†1] +

1

2
[s, h†1]

†

= H0 + [s, h†1]

= H ′
0 + J

∑

i

~Si · ~s(Ri).

(A.4.7)

The mapping of the Anderson Hamiltonian to the low energy sector yields an effective Hamil-
tonian of Kondo form. This Hamiltonian is the starting point of all further investigation made
in this work. Although the form (A.4.7) is very instructive, we use the alternative form

H = H ′
0 +N J

∑

kk′

i

3∑

ν=1

∑

σσ′

ρρ′

[
c†iσσ

ν
σσ′ciσ′

] [
ψ†
iρ(k)σνρρ′ψiρ′(k

′)
]
, (A.4.8)

where
ψiσ(k) = tikakσ.
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A.5 Spin Hamiltonians and the Popov-Fedotov method

In the system under consideration, we deal with a magnetic cluster on a metallic substrate. A
crucial boundary condition is, that the total occupation number within of the cluster is fixed
to its size (there are always N electrons in a cluster of N atoms). The boundary conditions,
we assume here, are even more restrictive, only allowing each cluster atom to be exactly singly
occupied. In general, such conditions cannot be implemented easily into the model. The model
Hamiltonian is given as

H =
∑

kσ

εkNkσ +N · J
∑

kk′

N∑

i=1

3∑

ν=1

[
Φ†
i σ

ν Φi

]
·
[
Ψ†
i (k)σν Ψi(k

′)
]
, (A.5.1)

with the two-dimensional vectors
Φi = (ci↑, ci↓)

T

and
Ψi(k) = (ψi↑(k), ψi↓(k))T .

If one simply computed the partition function

Z = Tr e−βH ,

by means of a fermionic path integral, the trace would involve states which correspond to doubly
occupied or empty sites, which does not comply to the condition of each impurity being exactly
singly occupied. The contributions of those states to the partition function therefore have to
be cancelled. In 1988 Popov and Fedotov proposed a method to cancel out the contribution of
these states (see [82]) which we will make use of here.

The original goal of Popov and Fedotov was to describe Spin-Hamiltonians in a way such that
one could make use of the usual path integral method when computing the partition function,
and such that the diagrammatical techniques well known for fermionic systems could be applied.
Let us consider a Hamiltonian being composed of localised spins with S = 1

2 (have in mind a
Heisenberg model for example). For spin Hamiltonians, there is no way to represent the partition
function of the model as a fermionic or bosonic path integral, since spins are neither bosons nor
fermions but angular momenta. However, it would be very convenient to be able to resort
on such a representation as a path integral, for the diagrammatic techniques related to it are
rather easy. Moreover, it is well known how to compute those integrals, if they are of Gaussian
type. Therefore, it would be desirable to find a fermionic or bosonic representation of the spin
operators. In the spin-1

2 case, the spins are described by Pauli matrices, which in fact can be
represented as combinations of fermionic operators at each site j:

σzj → a†jaj − b†jbj, (A.5.2)

σ+
j → a†jbj, (A.5.3)

σ−j → b†jaj, (A.5.4)

or in short

Sj →
(
a†j , b

†
j

)
· ~σj ·

(
aj
bj

)
,
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where ~σj = (σxj , σ
y
j , σ

z
j )

T is the vector composed of the Pauli matrices. aj and bj are fermionic
operators, therefore fulfilling

{a†j , aj} = {b†j , bj} = 1.

All other possible anti-commutators vanish, including those taken on different sites. Let Hσ

denote the original spin Hamiltonian. The above mappings then transform this Hamiltonian
into a Hamiltonian HF which is composed of fermionic operators. One can easily show by direct
computation that the definitions (A.5.2) - (A.5.3) fulfill the commutation relations of the spin
operators

[σ+, σ−] = σz, [σz, σ+] = 2σ+ and [σz, σ−] = −2σ−,

and one can show that these definitions also are in accordance to the requirement that spin
operators at different sites commute. Therefore, the mappings (A.5.2) - (A.5.3) in fact give rise
to a representation of the spin operators, up to their domain of definition. And this is, where
a crucial problem arises: the dimensionality of the Pauli spin matrices is 2 while the fermionic
space corresponding to the j-th site is four-dimensional, being generated by the vectors

a†jΦ0 = |1, 0〉 , b†jΦ0 = |0, 1〉 , Φ0 = |0, 0〉 and a†jb
†
jΦ0 = |1, 1〉,

where Φ0 is the vacuum. We call the subspace spanned by |1, 0〉 and |0, 1〉 the space of physical

states. This is reasonable since

(a†jaj − b†jbj)|1, 0〉 = |1, 0〉 and (a†jaj − b†jbj)|0, 1〉 = −|0, 1〉

as well as
a†jbj |0, 1〉 = |1, 0〉 and b†jaj |1, 0〉 = |0, 1〉,

so the relations

σzψ+ = ψ+ , σzψ− = −ψ− , σ+ψ− = ψ+ , σ−ψ+ = ψ−

are reproduced. Because of the relations

(a†jaj − b†jbj)|1, 1〉 = |1, 1〉 − |1, 1〉 = 0 , (a†jaj − b†jbj)|0, 0〉 = 0

and
a†jbj |1, 1〉 = 0 , a†jbj |0, 0〉 = 0 , b†jaj|1, 1〉 = 0 , b†jaj|0, 0〉 = 0,

the spin operators vanish on the unphysical subspace. The physical subspace is given by all
states Φ which fulfill Nj Φ = Φ, where Nj = a†jaj + b†jbj is the fermionic number operator on
the j-th site. For the physical states, each site is only singly occupied, therefore giving rise to
a non-vanishing spin-1

2 . Obviously, HF is not the same as Hσ, since its domain is larger than
that of the original spin Hamiltonian, additionally containing the unphysical states. Instead,
it is the restriction of HF to the direct product of the physical subspaces at all different sites
which coincides with Hσ.

The quantity of interest, if one wants to characterise a system in statistical physics, is the
partition function. For the original problem, it is given as

Zσ = Tr e−βHσ . (A.5.5)

However, if we simply computed the partition function as

Z = Tr e−βHF ,

91



A Preliminary Considerations

it would not coincide with (A.5.5) because taking the trace would involve summing over the
unphysical states as well as the physical ones. One would take into account states, which the
system simply cannot be in. Popov and Fedotov proposed a solution to this problem which still
allows to use the fermionic version of the Hamiltonian for computing the partition function.
They stated that in case of spin-1

2 Hamiltonians, it holds

Zσ = Tr exp (−βHσ) = iMTr exp

(
−β
[
HF +

iπ

2β
NF

])
. (A.5.6)

Here M is the number of sites and

NF =
M∑

j=1

Nj =
M∑

j=1

(a†jaj + b†jbj)

is the total occupation number. The term involving the purely imaginary chemical potential

µ = − iπ

2β

is introduced to cancel the contributions of the unphysical states to the trace. We will give a
short justification of (A.5.6) in the following. To this end we decompose HF = (HF )j + (HF )′j
and NF = Nj + (NF )′j where (HF )j and Nj are the Hamiltonian and the number operator for
the j-th site and the primed operators are those for all other sites. For the unphysical states at
the j-th site it is

Tr j,unphys. exp

(
−β
[
HF +

iπ

2β
NF

])
= exp(O′

j)Tr j,unphys. exp

(
−β
[
(HF )j +

iπ

2β
Nj

])
,

with

O′
j = −β

[
(HF )′j +

iπ

2β
(NF )′j

]
.

Since Hσ is composed only of σz, σ+ and σ−, (HF )j vanishes on the unphysical states (see
calculations above). It is Nj |0, 0〉 = 0 and Nj |1, 1〉 = 2|1, 1〉. Hence

Tr j,unphys. exp

(
−β
[
HF +

iπ

2β
NF

])
= exp(O′

j)
(
e0 + e−iπ

)
= 0.

The contributions of the unphysical states to the trace vanish. On the physical states, HF and
Hσ coincide and NFΦj = MΦj, since NjΦj = Φj . Hence, we get

Tr exp

(
−β
[
HF +

iπ

2β
NF

])
= e−

iπ
2
MTr phys. exp (−βHF )

= (−i)MTr phys. exp (−βHF )

= (−i)MTr exp (−βHσ) .

This proves (A.5.6). The usefulness of this equation is, that its left hand side can be computed
like a usual fermionic path integral.

How can we make use of this method in the present system of a magnetic cluster on a metallic
surface? We did not start with a pure spin Hamiltonian in the first place, but nevertheless, the
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technique presented here is applicable to our problem. As we have outlined, equation (A.5.6)
gives a possibility to incorporate the boundary condition of each impurity site being singly oc-
cupied into the computation of the partition function as long as the Hamiltonian vanishes on
the unphysical states (which correspond to doubly occupied or empty cluster sites). This is the
case for our model Hamiltonian (A.5.1). Or we could look at the Hamiltonian in another way.
As we have shown in appendix A.4, the Anderson Hamiltonian after the Schrieffer-Wolff trans-
formation (when neglecting the free term for the cluster sites and for large Hubbard interaction)
becomes

Hσ =
∑

kσ

εkNkσ +N · J
∑

kk′

σσ′

N∑

i=1

3∑

ν=1

Sνi ·
[
tika

†
kσ σ

ν
σσ′ tik′ak′σ′

]
.

Here, we already included the condition of each impurity being singly occupied which leads to
non-vanishing spin-1

2 at each site. Concerning the localised degrees of freedom, this Hamiltonian
is in fact a spin Hamiltonian and equation (A.5.6) can be applied to compute the partial trace
on the localised states. Instead of computing

Tr e−βHσ ,

the partition function of the system is given as

Z = iN · Tr exp


−β


H − µ

∑

jσ

njσ




 (A.5.7)

with H given as in (A.5.1) and with the purely imaginary chemical potential

µ = − iπ

2β
.

Equation (A.5.7) is the proper partition function of the system, since it already complies to the
boundary conditions, but it still can be calculated in terms of a fermionic path integral.

The method of Popov and Fedotov can be generalised to spin Hamiltonians for arbitrary spins
(which was done by Veits et al. in 1993, see [84]) and even to general SU(N) Hamiltonians
with arbitrary occupation numbers (see [85]). The latter generalisation would be made use of
if one considered a cluster of N impurities with a total occupation other than N . For example,
one could alter the present system of a magnetic trimer of three spin-1

2 to one with two or less
electrons in the cluster. The formula for computing the partition function of the system then
gets more complicated but it still can be computed as a fermionic path integral.
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B.1 Hubbard-Stratonovich transformation

We perform the calculations for section (4.1) in more detail. After the Schrieffer-Wolff transfor-
mation, the interaction of the cluster electrons with the substrate is given as

HI = N J ′
N∑

i=1

3∑

ν=1

(
Φ†
iσ
νΦi

)(
Ψ̂†
i (0)σ

νΨ̂i(0)
)
.

Here, φiα = ciα are the construction operators of the cluster fermions and ψiα(k) = tikakα are
combinations of construction operators for the itinerant electrons and the tunnelling amplitude.
It is ∑

k

ψiα(k) = ψ̂iα(0)

and the capital Greek Φi and Ψi are vectors composed of the φiα and ψiα. HI is part of the
action and for each imaginary time τ gives rise to a term

e−H
τ
I (Φ

τ
,Φτ ,Ψ̂

τ
,Ψ̂τ )

where all fermionic operators are replaced by their respective Grassman numbers. For the sake
of simplicity, we omit the τ -dependence in the following but keep it in mind. Moreover, we omit
the coordinate dependence for the Ψ̂i simply writing ψ̂iα(0) ≡ ψ̂iα.

The Hubbard-Stratonovich transformation essentially is a completion of the square (see [87]).
We define the matrix A by

Aαβ′,α′β =

3∑

ν=1

σναα′ σνββ′

(one can think of the combinations αβ′ and α′β as single indices) and write down the product
of Gaussian integrals

(C ′′)−1 =

N∏

i=1

∫
dχi exp



−

∑

αβ′,α′β

χi
∗

αβ′Aαβ′,α′βχ
i
α′β





with complex valued χi and some constant C ′′ (essentially the Nth power of the determinant of
A ). For each i we perform a transformation of the integration variable defining

χiα′β =
1√
NJ ′

Qiα′β +
√
NJ ′ ψ̂iβφiα′ . (B.1.1)

Here, Q is the new variable on integration and ψ and φ are Grassman numbers, their product be-
ing complex valued. Overlining denotes the adjoint Grassman number, not complex conjugation.
The complex conjugate of χi is given as

χi
∗

αβ′ =
1√
NJ ′

Qi
∗

αβ′ +
√
NJ ′ φiαψ̂iβ′ ,
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since the usual definition of the complex conjugate of a product of Grassman number is

(ab)∗ = ba.

The Qiα′β define (hermitian) 2 × 2-matrices Qi. Using the transformation (B.1.1) we get

(C ′)−1 =

N∏

i=1

∫
dQi exp

{
−
∑

αβ′α′β

[
1√
NJ ′

Qi
∗

αβ′ +
√
NJ ′ φiαψ̂iβ′

]
Aαβ′,α′β

[
1√
NJ ′

Qiα′β +
√
NJ ′ ψ̂iβφiα′

]}

= e−NJ
′

PN
i=1

P

αα′ββ′ φiαψ̂iβ′Aαβ′,α′βψ̂iβφiα′

N∏

i=1

∫
dQi exp

{
− 1

NJ ′

∑

αα′ββ′

Qi
∗

αβ′Aαβ′,α′βQ
i
α′β

−
∑

αα′ββ′

Qi
∗

αβ′Aαβ′,α′βψ̂iβφiα′ −
∑

αα′ββ′

φiαψ̂iβ′Aαβ′,α′βQ
i
α′β

}
.

Using the definition of A, it is

−NJ ′
N∑

i=1

∑

αα′ββ′

φiαψ̂iβ′Aαβ′,α′βψ̂iβφiα′ = NJ ′
N∑

i=1

3∑

ν=1

∑

αα′ββ′

φiασ
ν
αα′φiα′ ψ̂iβσ

ν
ββ′ψ̂iβ′

= NJ ′
N∑

i=1

3∑

ν=1

(
Φiσ

νΦi

)(
Ψ̂i(0)σ

νΨ̂i(0)
)

= HI(Φ,Φ, Ψ̂, Ψ̂).

The change of sign is due to Grassman multiplication. Hence, we can write

e−HI(Φ,Φ,Ψ̂,Ψ̂) = C ′
N∏

i=1

∫
dQi exp

{
− 1

N J ′

3∑

ν=1

∑

αα′

ββ′

Qi
∗

αβ′σναα′σνββ′Qiα′β

(i)

−
3∑

ν=1

∑

αα′

ββ′

Qi
∗

αβ′σναα′σνββ′ψ̂iβφiα′

(ii)

−
3∑

ν=1

∑

αα′

ββ′

φiαψ̂iβ′σναα′σνββ′Qiα′β

(iii)

}
. (B.1.2)

Being a hermitian 2 × 2-matrix, Qi can be represented as

Qi =
∑

µ

qiµσ
µ (B.1.3)

with real-valued qiµ and µ = 0 . . . 3. For the remainder of the section, we stick to the following
notation: if no lower and upper summation limits are given, the sum is performed over full range
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(i.e. µ = 0 . . . 3 rather than µ = 1 . . . 3). Using (B.1.3) we compute

(i) = − 1

NJ ′

∑

αα′

ββ′

∑

µµ′

3∑

ν=1

qiµ(σ
µ)∗αβ′σναα′σνββ′qiµ′σ

µ′

α′β

= − 1

NJ ′

∑

αα′

ββ′

∑

µµ′

3∑

ν=1

qiµq
i
µ′σ

µ
β′ασ

ν
αα′σ

µ′

α′βσ
ν
ββ′

= − 1

NJ ′

∑

µµ′

3∑

ν=1

qiµq
i
µ′Trσµσνσµ

′

σν

= − 1

NJ ′

∑

µµ′ν

qiµq
i
µ′Trσµσνσµ

′

σν +
1

2

1

NJ ′

∑

µµ′

qiµq
i
µ′Trσµσµ

′

,

using σ0 = 1/
√

212,

= − 1

NJ ′

∑

µµ′

qiµq
i
µ′ 2·δ0µ′Trσµσ0 +

1

2

1

NJ ′

∑

µ

(qiµ)
2,

where we used the SU(N) properties (A.2.6) and (A.2.8),

=
1

2

1

NJ ′

∑

µ

(qiµ)
2 − 2

NJ ′
(qi0)

2.

(B.1.4)
Quite analogously and using the same theorems for SU(N) generators, we compute

(ii) = −
∑

µ

3∑

ν=1

qiµ ψ̂iβ (σνσµσν)βα′ φiα′

= −
∑

µν

qiµ ψ̂iβ (σνσµσν)βα′ φiα′ +
1

2

∑

µ

qiµ ψ̂iβσ
µ
βα′ φiα′

= Ψ̂i(0)

[
1

2
Qi − 2qi0σ

0

]
Φi

=
∑

k

Ψi(k)

[
1

2
Qi − 2qi0σ

0

]
Φi (B.1.5)

(where we used
∑

k ψiσ(k) = ψ̂iσ(0)) and

(iii) =
∑

k

Φi

[
1

2
Qi − 2qi0σ

0

]
Ψi(k). (B.1.6)

In the static mean field approximation, the Qi are all fixed to certain time independent values
and so are not integrated over anymore in equation (B.1.2). Moreover, we assume that the spin
does not prefer any specific direction. Hence, we adopt the form

Qi = bi 12 = qi0 σ
0,
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B General calculations for a cluster of N atoms

where bi is real valued. Putting this in (B.1.4) - (B.1.6), we get

(i) = − 3

NJ ′
b2i , (ii) = −3

2
bi
∑

k

Ψi(k) · Φi and (iii) = −3

2
bi
∑

k

Φi · Ψi(k).

We absorb the factor 3/2 into the bi and redefine

J =
3

4
J ′.

Then

(i) = − 1

NJ
b2i , (ii) = − bi

∑

k

Ψi(k) · Φi and (iii) = − bi
∑

k

Φi · Ψi(k).

To simplify the notation a bit and to get rid of the orbital index i, we define the N ×N - matrix

b = diag (bi| i = 1 . . . N)

and the vectors

Ψ(k) = (Ψi(k)| i = 1 . . . N)T and Φ = (Φi| i = 1 . . . N)T.

Using this definitions equation, (B.1.2) in the static mean field approach becomes

e−HI(Φ
τ
,Φτ ,Ψ

τ
,Ψτ ) = C ′ exp

{
− 1

NJ
Tr b2 −

∑

k

Ψ
τ
(k)[b ⊗ 12]Φ

τ − Φ
τ
[b ⊗ 12]Ψ

τ (k)

}
.

B.2 Partition function in mean field theory

In this section we are going to perform the calculations which yield the partition function in
detail. We compute the partition function by means of a fermionic path integral. For the theory
of path integrals see [90].

The partition function in mean field is given as

ZMF =

∫
[Daτ ][Daτ ][DΦ

τ
][DΦτ ] exp

(
−S(aτ , aτ ,Φ

τ
,Φτ )

)

with S being the action of the model. In the system under consideration we use the Popov-
Fedotov method of imaginary chemical potentials to deal with the unphysical states arising from
treating the localised spin degrees of freedom as ordinary fermions. For singly occupied cluster
sites, this means we have to introduce an additional term in the action which has the form

iπ

2β
Φ
τ · Φτ .

The action is thus given as

S =

∫ β

0
dτ

{
∑

k

aτk∂τ12a
τ
k + Φ

τ
(
∂τ +

iπ

2β

)12N Φτ +Hτ
0 +Hτ

I

}

As stated in the introduction, the only term left in Hτ
0 is the term describing the free substrate

electrons. exp(−Hτ
I ) was Hubbard-Stratonovich transformed with the auxiliary fields being
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B General calculations for a cluster of N atoms

fixed in the static mean field approach. For actual calculations, it is more convenient to use the
Fourier transformed form of the action, depending on the Matsubara frequencies ωn instead of
imaginary time. In order to keep notation simple, we define the free electronic Green’s function
Giωn(k) by

G−1
iωn

(k) = iωn − εk (B.2.1)

and its cluster pendant Diωn by

D−1
iωn

= iωn −
iπ

2β
. (B.2.2)

Then finally, the Fourier transformed action is given as

S =
β

NJ

∑

i

b2i −
∑

iωn

{
∑

k

aiωn

k
G−1

iωn
(k)12 a

iωn

k
+ Φ

iωn
D−1

iωn
12N Φiωn−

−
∑

k

(t†
k
⊗ aiωn

k
)(b ⊗ 12)Φ

iωn −
∑

k

Φ
iωn

(b ⊗ 12)(tk ⊗ aiωn

k
)

}
.

(B.2.3)

The frequency depending part of the action can be rewritten in a more convenient form. To this
end, we combine the vectors Φiωn and aiωn

k
for all k into a single vector χiωn defined by

χiωn =
(
φiωn

1↑ , φ
iωn

1↓ , . . . , φ
iωn

N↑ , φ
iωn

N↓ ,
{
aiωn

k↑ , a
iωn

k↓

∣∣k
})T

. (B.2.4)

The action then reads

S =
β

NJ

∑

i

b2i −
∑

iωn

χiωn ·
(
Miωn

⊗ 12

)
· χiωn (B.2.5)

with an operator Miωn
defined by the matrix product. Miωn

can be written as a matrix if we
assume the wave vectors to be discrete. Of course, a continuous limit is meant, but we can
perform all computation using the discrete form of Miωn

and perform the continuum limit for
the wave vectors afterwards. In the discrete form, the matrix looks like

Miωn
=




D−1
iωn
1N −(btk1

)1 · · · −(btk1
)N

−(btk2
)1 · · · −(btk1

)N
...

...
...

−(t†
k1

b)1 −(t†
k2

b)1 · · ·
...

...
...

−(t†
k1

b)N −(t†
k2

b)N · · ·
diag

(
G−1

iωn
(k)
∣∣k
)




. (B.2.6)

As already stated, a continuous limit for the wave vectors is meant. Using this definitions the
partition function in mean field is given as

ZMF = Ce−
β

NJ

P

i b
2
i

∫
[Dχ][Dχ] exp

[
−
∑

iωn

χiωn · (−Miωn
⊗ 12) · χiωn

]

= Ce−
β

NJ

P

i b
2
i

∏

iωn

(
det Miωn

)2
,

(B.2.7)
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where we used
det (A⊗B) = (detA)dimB · (detB)dimA.

In order to compute the partition function, we have to calculate the determinant of Miωn
.

Keeping in mind that Miωn
is rather an operator than a matrix, its determinant is defined as

detMiωn
= exp Tr log Miωn

.

As stated in section A.1 in equation (A.1.4), this expression becomes easier for block trigonal
matrices. Since the determinant is invariant with respect to unitary transformations, so is the
above formula. We therefore define an operator M̃iωn

which is a unitary transform of Miωn
and

fulfills
detMiωn

= det M̃iωn
= exp Tr log M̃iωn

.

The goal of the unitary transformation is to get rid of the upper right block matrix in (B.2.6).
To this end, one adds to the n-th row of the matrix (where n = 1 . . . N)

(b tkm
)n ·Giωn(km) × the km-th row

for all possible km (here, we assumed discrete wave vectors, still a continuous limit is meant).
If one does so for the first N rows, the resulting transformed matrix is given as

M̃iωn
=




X̂iωn
0

A† diag
(
G−1

iωn
(k)
∣∣k
)



, (B.2.8)

where A† is the lower left block matrix in (B.2.6) and where X̂iωn
is defined by

(
X̂iωn

)
ij

= D−1
iωn

δij −
∑

km

(
t†
km

b
)
i
(btkm

)j Giωn(km). (B.2.9)

We perform the continuum limit for the wave vectors in (B.2.9) by replacing the summation
over all km by a summation over all wave vectors. Using (A.1.4) the determinant of Miωn

is
thus given as

detMiωn
= exp Tr log M̃iωn

= exp
[
Tr log diag

(
G−1

iωn
(k)
∣∣k
)

+ Tr log X̂iωn

]
.

We write down a more explicit form for the matrix X̂iωn
. To this end, we recall the form of tk

(tk)i = tik =
1√
N
e−iRik

and
(b)ij = bi δij .

Thus,
(
X̂iωn

)
ij

= D−1
iωn

δij − bi

(
1

N

∑

k

ei(Ri−Rj)k

iωn − εk

)
bj . (B.2.10)
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The term in brackets on the right hand side of (B.2.10) defines the entries of a matrix g̃(iωn).
Using some approximations, we will now compute those entries formally for a two-dimensional
substrate to derive a general form of g̃(iωn), starting with the diagonal elements. For i = j it is

[
g̃(iωn)

]
ii

=
1

N

∑

k

1

iωn − εk

= − 1

N

1

2π

∫
d2k

1

εk − iωn

= − 1

N

1

2π

∫ 2π

0
dϕ

∫ ∆

2

−∆

2

dε ρ(ε)
1

ε− iωn
.

Here, ∆ is the bandwidth and ρ(ε) is the energy density in the unperturbed substrate. We
assume a flat and broad band, so that we can approximate ρ(ε) = ρ0 with the Fermi density ρ0

and ∆ → ∞. So

[
g̃(iωn)

]
ii

= −ρ0

N

∫
dε

1

ε− iωn

= −ρ0

N

(∫
dε

ε

ε2 + ω2
n

+

∫
dε

iωn
ε2 + ω2

n

)

= −ρ0

N
iωn

∫
dε

1

(ε− iωn)(ε + iωn)
,

where we used that ε/(ε2 + ω2
n) is antisymmetric,

= −ρ0

N
iωn 2πi sgn(ωn)

1

2 iωn

= −iπ sgn(ωn)
ρ0

N
= −iπ sgn(ωn) g0,

where we used the residue theorem and where we defined g0 = ρ0/N . We will come now to the
off-diagonal elements. It is

[
g̃(iωn)

]
ij

=
1

N

∑

k

ei(Ri−Rj)k

iωn − εk

= − 1

N

1

2π

∫
d2k

ei(Ri−Rj)k

εk − iωn

= − 1

N

1

2π

∫ 2π

0
dϕ

∫ ∆

2

−∆

2

dε ρ(ε)
ei|Ri−Rj |kε cos(ϕ)

ε− iωn

= − 1

N

∫ ∆

2

−∆

2

dε ρ(ε)
J0(kε|Ri − Rj |)

ε− iωn
,

where kε is the absolute value of the wave vector at energy ε, φ is the angle between the wave
vector and Ri − Rj and J0 is the Bessel function defined by

J0(z) =
1

2π

∫ 2π

0
dϕe iz cos(ϕ).
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In order to proceed, we make some very rough assumptions. J0(kε|Ri − Rj |) is assumed to be
analytic in ε and very weakly depending on it, being approximately given everywhere by its
value at the Fermi level. Since it is analytic, we can expand the function in the vicinity of the
Fermi level as

J0(kε|Ri − Rj |) =
∑

m

am(εF )εm.

Moreover, we again assume ρ(ε) ≈ ρ0 and ∆ → ∞. Then

[
g̃(iωn)

]
ij

= −ρ0

N

∑

m

am(εF )

∫
dε

εm

ε− iωn

= −ρ0

N

∑

m

am(εF )

(∫
dε

εm+1

ε2 + ω2
n

+ iωn

∫
dε

εm

ε2 + ωn

)

= −ρ0

N

∑

m

am(εF ) (Im + Jm) ,

where we defined the integrals Im and Jm in the order of their appearance. We compute those
integrals formally using the residue theorem. If m is even, the integrand of Im is antisymmetric
and therefore Im = 0. If m is odd, one formally gets

Im =

∫
dε

εm+1

(ε− iωn)(ε+ iωn)

= 2πi sgn(ωn)
sgn(ωn)

m+1(iωn)
m+1

2 iωn
= iπ (i|ωn|)m.

We remark, that Im is real-valued since m is odd. For odd m, the integrand of Jm is antisym-
metric and the integral vanishes. For even m, it is

Jm = iωn

∫
dε

εm

(εiωn)(ε + iωn)

= iωn 2πi sgn(ωn)
sgn(ωn)

m iωn
m

2 iωn
= iπ sgn(ωn) (i|ωn|)m.

This is imaginary, since m is even. So formally

[
g̃(iωn)

]
ij

= −iπ sgn(ωn)
ρ0

N

∑

m

a2m(εF )(i|ωn|)2m − π
ρ0

N
i
∑

m

a2m+1(i|ωn|)2m+1.

∑
m a2m(εF )(i|ωn|)2m is the symmetric part of J(kε|Ri−Rj |) which should only depend weakly

on i|ωn| so we write
ρ0

N

∑

m

a2m(εF )(i|ωn|)2m ≈ gRij

where gRij is independent of ωn. Analogously, we define

−i
ρ0

N

∑

m

a2m+1(εF )(i|ωn|)2m+1 ≈ gIij .
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gRij and gIij are both real-valued and define the real symmetric matrices gR and gI . Using
[−isgn(ωn)][isgn(ωn)] = 1, we get

g̃(iωn) = −iπ sgn(ωn)
(
gR + i sgn(ωn) gI

)

= −iπ sgn(ωn) g(iωn),
(B.2.11)

where we defined the matrix g(iωn). We remark that the derivation of (B.2.11) given here is only
formally correct, a ”best of all worlds“ approximation with many harsh assumptions involved.
However, if one computes the occurring integrals numerically for a given band structure (for
example truncated parabolic), the approximation of gR and gI to be independent of ωn is very
well fulfilled over several magnitudes of ωn, and g̃(iωn) has the structure given in (B.2.11). The
approximations become the better, the higher the Fermi energy, the broader the band and the
lower the temperature.

We show another property of the entries of g(iωn). In a very rough approximation, it is J0(kε|Ri−
Rj |) = J0(kF |Ri −Rj |). Then

∣∣∣∣
∫

dε
J0(kε|Ri − Rj|)

ε− iωn

∣∣∣∣ =

∣∣∣∣
∫

dε
J0(kF |Ri − Rj |)

ε− iωn

∣∣∣∣

=
∣∣iπ sgn(ωn)J0(kε|Ri − Rj |)

∣∣
≤ π,

since |J0(z)| ≤ 1 for real-valued z. Hence, it is

|gRij | ≤ g0 and |gIij | ≤ g0

for all i, j, and as mentioned earlier, gRii = g0 and gIii = 0 for the diagonals. One final remark
about the coordinate dependence of g(iωn). In two dimensions, the most important contributions
to the off-diagonal elements depend on the product kF |Ri −Rj| like Bessel functions. Since kF
is the inverse of the Fermi wavelength, this gives a natural length scale for the system. The
distance of the impurities is measured as multiples of the Fermi wavelength. For large arguments
z, Bessel functions decay like

√
2/πz · cos(z − π/4) and so do the off-diagonal terms of g(iωn).

Having computed g̃(iωn), the matrix X̂iωn
takes the form

X̂iωn
= D−1

iωn
1n + iπsgn(ωn) b g(iωn) b. (B.2.12)

With this form of the matrix X̂iωn
we can write the partition function (B.2.7) as

ZMF = Ce−
β

NJ

P

i b
2
i exp 2

∑

iωn

Tr log
[
D−1

iωn
1n + iπsgn(ωn) b g(iωn) b

]
, (B.2.13)

where we absorbed the factor
e2

P

iωn

P

k
G−1

iωn
(k)

into the prefactor C. We can do so, because this term does not depend on bi, and all quantities
of interest will be derivatives of the logarithm of the partition function with respect to the mean
field parameters. To determine (B.2.13) one has to compute the eigenvalues of X̂iωn

which means
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that one has to compute the eigenvalues of b g(iωn) b. Those can be complex valued and are
determined by the roots of the characteristic polynomial

det
(
b g(iωn) b − T̂ (iωn)1N) = 0.

The structure of the eigenvalues T̂j(iωn) is the same as the one of the matrix g(iωn):

T̂j(iωn) = TRj + i sgn(ωn)T
I
j , (B.2.14)

where j = 1 . . . N and where T
R/I
j are real-valued. This is due to the fact, that for each

complex number x + isgn(ωn)y with real-valued x and y the real parts of [x + i sgn(ωn)y]
n

and [x + i sgn(ωn)y]
1/n do not depend on sgn(ωn) while the respective imaginary parts are

proportional to sgn(ωn) (which can easily be proved by direct computation using the polar
coordinate representation of complex numbers). The actual form of the eigenvalues strongly
depends on the geometry of the cluster, which determines the matrices g(iωn) and b. However,
for the rest of the chapter, we assume the eigenvalues have been found. Using the eigenvalues
of b g(iωn) b the partition function (B.2.13) can be written as

ZMF = Ce−
β

NJ

P

i b
2
i exp 2

∑

iωn

N∑

j=1

log

[
iωn −

iπ

2β
+ iπsgn(ωn)T

R
j − πT Ij

]
. (B.2.15)

Knowing the partition function, one can state the mean field equations determining the param-
eters bj, which we are going to continue with in the following section.

B.3 Mean field equations

In this section we mostly are going to perform the frequency summations appearing in section
4.3 in detail. The mean field parameters bi are the solutions of the system of equations given by

∂ logZMF

∂bi
= 0

for each bi. Using the partition function (B.2.15) these equations write

0 = − 2β

NJ
bi + 2

N∑

j=1

[
∂TRj
∂bi

∑

iωn

iπsgn(ωn)

iωn − iπ
2β + iπ sgn(ωn)TRj − π T Ij

−
∂T Ij
∂bi

∑

iωn

π

iωn − iπ
2β + iπ sgn(ωn)T

R
j − π T Ij

]
.

(B.3.1)

We perform the frequency summations in (B.3.1). The summations are over fermionic Matsubara
frequencies

iωn =
iπ

β
(2n+ 1)

for n = −∞ . . .∞. To perform the summations, we use the Digamma function Ψ which is
defined by

N−1∑

n=0

1

n+ z
= Ψ(N + z) − Ψ(z) (B.3.2)
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for each complex number z 6= 0. We will see that the first frequency sum in (B.3.1) can only be
performed using an energy cut-off while the second does not depend on this cut-off. We start
writing down

∑

iωn

iπsgn(ωn)

iωn − iπ
2β + iπ sgn(ωn)TRj − π T Ij

= lim
N→∞

(
N−1∑

n=0

iπ
iπ
β (2n + 1) − iπ

2β + iπ TRj − π T Ij
+
N−1∑

n=1

−iπ
iπ
β (−2n+ 1) − iπ

2β − iπ TRj − π T Ij

)

= lim
N→∞

(
β

2

N−1∑

n=0

1

n+ 1
4 + β

2 T
R
j + iβ2 T

I
j

+
β

2

N−1∑

n=0

1

n+ 3
4 + β

2 T
R
j − iβ2 T

I
j

)

=
β

2
lim
n→∞

[
Ψ

(
N +

1

4
+
β

2
TRj + i

β

2
T Ij

)
− Ψ

(
1

4
+
β

2
TRj + i

β

2
T Ij

)

+ Ψ

(
N +

3

4
+
β

2
TRj − i

β

2
T Ij

)
− Ψ

(
3

4
+
β

2
TRj − i

β

2
T Ij

)]
,

where we used (B.3.2). Having a closer look at (B.3.2), we see that the Digamma function
logarithmically diverges with N , since so does

N∑

n=0

1

n+ z
.

Thus, the above expression does not converge. We have to use a cut-off for N in order to have a
finite expression. Having in mind the meaning of the Matsubara frequencies, this cut-off can be
translated to a cut-off in frequency space which corresponds to the highest achievable energy for
the conduction electrons. Hence, it is determined by the width ∆ of the conduction band. Due
to symmetry considerations for negative and positive frequencies, we therefore set the cut-off to

N =
β

2
∆.

Then

∑

iωn

iπsgn(ωn)

iωn − iπ
2β + iπ sgn(ωn)TRj − π T Ij

=
β

2

[
Ψ

(
β

2
∆ +

1

4
+
β

2
TRj + i

β

2
T Ij

)
− Ψ

(
1

4
+
β

2
TRj + i

β

2
T Ij

)

+ Ψ

(
β

2
∆ +

3

4
+
β

2
TRj − i

β

2
T Ij

)
− Ψ

(
3

4
+
β

2
TRj − i

β

2
T Ij

)]

=
β

2

[
Ψ

(
β

2
∆ +

1

4
+
β

2
T ∗
j

)
− Ψ

(
1

4
+
β

2
T ∗
j

)
+ Ψ

(
β

2
∆ +

3

4
+
β

2
Tj

)
− Ψ

(
3

4
+
β

2
Tj

)]
,

(B.3.3)

where we defined
Tj = TRj − iT Ij (B.3.4)
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and its complex conjugate T ∗
j . Using this expression, one could start analysing the mean field

equations for arbitrary inverse temperatures β. However, this task is analytically not so easily
manageable and one would rather make use of numerical techniques. In this work, we want to
investigate cases which can be treated analytically, so we stick to the limiting case of very low
temperature. Then, β → ∞ and (B.3.3) becomes much simpler. As already mentioned, the
Digamma functions behaves like a logarithm for large arguments (see [88]):

Ψ(z) → log(z) if |z| ≫ 1, Rez 6= 0.

So we get

∑

iωn

iπsgn(ωn)

iωn − iπ
2β + iπ sgn(ωn)T

R
j − π T Ij

=
β

2

[
log

(
β

2
∆ +

β

2
Tj

)
− log

(
β

2
Tj

)
+ log

(
β

2
∆ +

β

2
T ∗
j

)
− log

(
β

2
T ∗
j

)]

= −β
2

[
log

Tj
∆ + Tj

+ log
T ∗
j

∆ + T ∗
j

]

= −βRe

(
log

Tj
∆ + Tj

)
.

(B.3.5)

Quite analogously to the latter considerations, we can compute the second frequency summation
in (B.3.1). It is

∑

iωn

−π
iωn − iπ

2β + iπ sgn(ωn)TRj − π T Ij

= lim
N→∞

(
i
β

2

N−1∑

n=0

1

n+ 1
4 + β

2 T
∗
j

− i
β

2

N−1∑

n=0

1

n+ 3
4 + β

2 Tj

)

= i
β

2
lim
N→∞

[
Ψ

(
N +

1

4
+
β

2
T ∗
j

)
− Ψ

(
1

4
+
β

2
T ∗
j

)
− Ψ

(
N +

3

4
+
β

2
Tj

)
+ Ψ

(
3

4
+
β

2
Tj

)]

= −i
β

2

[
Ψ

(
β

2
T ∗
j +

1

4

)
− Ψ

(
β

2
Tj +

3

4

)]
.

(B.3.6)

Here, no cut-off is needed. The expression

Ψ

(
N +

1

4
+
β

2
T ∗
j

)
− Ψ

(
N +

3

4
+
β

2
Tj

)

vanishes in the limit of large N . This is due to the analyticity of the Digamma function ev-
erywhere in the complex plane except for the negative real axis. As for (B.3.5), we investigate
(B.3.6) in the low temperature limit using the logarithmic behavior of the Digamma function
for large arguments, which yields

∑

iωn

−π
iωn − iπ

2β + iπ sgn(ωn)T
R
j − π T Ij

= −i
β

2
log

T ∗
j

Tj
. (B.3.7)
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We remark that this is a real-valued expression, which vanishes if T Ij = 0. With the two
quantities (B.3.5) and (B.3.7) the mean field equations (B.3.1) in the low temperature limit are
given as

N∑

j=1

[
∂TRj
∂bi

2Re

(
log

Tj
∆ + Tj

)
+ i

∂T Ij
∂bi

log
T ∗
j

Tj

]
= − 2

NJ
bi. (B.3.8)

This can be even more simplified if one assumes |Tj |/∆ ≪ 1 for all j = 1 . . . N . We will see
that this assumption is justified since it corresponds to the condition Jρ0 ≪ 1 which is initially
assumed to treat the model in the low energy regime. Then, the mean field equations become

N∑

j=1

[
∂TRj
∂bi

2Re

(
log

Tj
∆

)
+ i

∂T Ij
∂bi

log
T ∗
j

Tj

]
= − 2

NJ
bi. (B.3.9)

We remark that one could rewrite these equations using

2Re log
Tj
∆

= log
Tj
∆

+ log
T ∗
j

∆
= log

|Tj |2
∆2

= 2 log
|Tj |
∆

and

i log
T ∗
j

Tj
= i log

|Tj |e
i arctan

TI
j

TR
j

|Tj |e
−i arctan

TI
j

TR
j

= −2 arctan
T Ij

TRj
.

B.4 Green’s function and local density of states in mean field theory

In the following we are going to perform the computations that lead to the results in section
4.4. The quantity describing the whole system is its Matsubara Green’s function. To get it, we
introduce a source term in the action (B.2.5):

SSource =
∑

iωn

∑

k

(
ηkiωn

aiωn

k
+ aiωn

k
ηkiωn

)

=
∑

iωn

(
Θiωn ·χiωn + χiωn ·Θiωn

)
,

where we defined

Θiωn =


0, 0, . . . , 0︸ ︷︷ ︸

N−times

,
{
ηkiωn

|k
}



T

and made use of the vector (B.2.4). Adding the source term to the action (B.2.5) yields a
partition function ẐMF different from the original ZMF . The Matsubara Green’s function is
given as

Ĝ(iωn;k,k
′) =

∂2 log ẐMF

∂ηkiωn
∂ηk

′

iωn

∣∣∣∣∣
η=η=0

. (B.4.1)

Any fermionic Gaussian integral computes to (see [90])

∫
[Dξ] exp


−

∑

αβ

ξαHαβ ξβ +
∑

α

(
ηα ξα + ξα ηα

)

 = det(H) · exp



∑

αβ

ηαH
−1
αβ ηβ


 .
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So, the altered partition function ẐMF can be computed as

ẐMF = ZMF exp

(
∑

iωn

Θiωn

[
M−1

iωn
⊗ 12

]
Θiωn

)

with M−1
iωn

being the inverse of (B.2.6). The matrix Miωn
has the structure

Miωn
=




D−1
iωn
1N A

A† diag
(
G−1

iωn
(k)
∣∣ k
)



,

and we assume a similar one for M−1
iωn

:

M−1
iωn

=

(
Y B

B† X

)
(B.4.2)

with all blocks having the same dimension as their counterparts in Miωn
. We suppressed all

iωn- and k-dependencies for the sake of a simple notation. Keeping in mind that we are only
interested in the electronic Green’s function given by (B.4.1) and what M−1

iωn
looks like, we only

need to know the matrix X, and it is

Xkk′ = Ĝ(iωn;k,k
′).

The matrices X,Y and B are determined by the condition Miωn
· M−1

iωn
= 1, which yields

1) D−1
iωn

B + A · X = 0,

2) A† · B + G−1
iωn

· X = 1,
3) D−1

iωn
Y + A · B† = 1N ,

4) A† · Y + G−1
iωn

· B† = 0,

with the abbreviation
G−1

iωn
= diag

(
G−1

iωn
(k)
∣∣k
)
.

X is computed using the first two of the four equations. Multiplying the first equation by Diωn A†

from the right, solving it for A† · B and putting this into the second equation, one arrives at

[
−Diωn A† · A + G−1

iωn

]
· X = 1

which has the formal solution

X =
[
G−1

iωn
−Diωn A† · A

]−1

=

∞∑

n=0

(
Diωn Giωn

A† A
)n

Giωn
,

(B.4.3)
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with Giωn
being the inverse of G−1

iωn
. The matrix A† ·A has the same dimension as Giωn

and it is

(
A† · A

)
kk′

=

N∑

j=1

(t†
k

b)j (b tk′)j = t†
k

b2 tk′ .

In order to compute the matrix elements of (B.4.3), we use the relation

[(
Giωn

A† A
)n

Giωn

]
kk′

= Giωn(k) t†
k

b
[
−iπ sgn(ωn) b g(iωn) b

]n−1
b tk′ Giωn(k′) (B.4.4)

for n ≥ 1. We prove (B.4.4) by induction. For n = 1 it is

[
Giωn

A† AGiωn

]
kk′

=
∑

ll′

Giωn(k)δkl t
†
l
b2 tl′ Giωn(k′)δk′l′

= Giωn(k)t†
k

b2 tk′ Giωn(k′).

Assume (B.4.4) is correct for some n ≥ 1. Then it is

[(
Giωn

A† A
)n+1

Giωn

]
kk′

=
∑

l

(
Giωn

A† A
)
kl

[(
Giωn

A† A
)n

Giωn

]
lk′

=
∑

l

Giωn(k) t†
k

b2 tlGiωn(l) t†
l
b
[
−iπ sgn(ωn) b g(iωn) b

]n−1
b tk′ Giωn(k′)

= Giωn(k) t†
k

b
[
−iπ sgn(ωn) b g(iωn) b

]n
b tk′ Giωn(k′),

where we used the definition of the matrix g(iωn) as given in section B.2:

(
∑

l

tlGiωn(l) t†
l

)

ij

=

(
1

N

∑

l

e−i(Ri−Rj)l

iωn − εl

)

ij

= −iπ sgn(ωn) [g(iωn)]ij .

So, we have proven (B.4.4). Using this relation, it is

Ĝ(iωn;k,k
′) = Giωn(k) δkk′ +Giωn(k) t†

k
b

∞∑

n=1

Dn
iωn

[
−iπsgn(ωn) b g(iωn) b

]n−1
b tk′Giωn(k′).

= Giωn(k) δkk′ +Giωn(k)Diωnt
†
k

b

∞∑

n=0

Dn
iωn

[
−iπsgn(ωn) b g(iωn) b

]n
b tk′Giωn(k′).

This can be more conveniently written by diagonalising the matrix b g(iωn) b. Let T̂j(iωn) as
defined in (B.2.14) be the eigenvalues of this matrix and

ûj(iωn) = uRj + i sgn(ωn)u
I
j (B.4.5)

with real-valued u
R/I
j the corresponding eigenvectors for j = 1 . . . N . The structure of the

eigenvectors is due to that of g(iωn). Let the unitary matrix Uiωn
be defined as

Uiωn
=
(
û1(iωn)

∗
∣∣ û2(iωn)

∗
∣∣. . .

∣∣ ûN (iωn)
∗
)

T

,
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so its rows are the complex conjugate of the eigenvectors. Let U†
iωn

denote the adjoint, its
columns being the eigenvectors ûj(iωn). Those matrices then diagonalise b g(iωn) b:

T̂iωn
= Uiωn

b g(iωn) b U†
iωn

= diag
(
T̂j(iωn)

∣∣ j = 1 . . . N
)
,

and it is [
b g(iωn b)

]n
= U†

iωn
T̂
n
iωn

Uiωn
.

Hence,

Ĝ(iωn;k,k
′) = Giωn(k) δkk′+Giωn(k)Diωnt

†
k

bU†
iωn

∞∑

n=0

[
−iπsgn(ωn)Diωn

]n
T̂
n
iωn

Uiωn
b tk′ Giωn(k′).

We compute the geometric series

Diωn

∞∑

n=0

[
−iπ sgn(ωn)Diωn T̂j(iωn)

]n
= Diωn

1

1 + iπ sgn(ωn)Diωn T̂j(iωn)

=
1

D−1
iωn

+ iπ sgn(ωn) T̂j(iωn)

and thus
(

U†
iωn

Diωn

∞∑

n=0

[
−iπsgn(ωn)Diωn

]n
T̂
n
iωn

Uiωn

)

ij

=

(
U†

iωn
diag

(
1

D−1
iωn

+ iπ sgn(ωn) T̂l(iωn)

∣∣∣ l = 1 . . . N

)
Uiωn

)

ij

=

N∑

l=1

(
U†

iωn

)
il

1

D−1
iωn

+ iπ sgn(ωn) T̂l(iωn)

(
Uiωn

)
lj

=
N∑

l=1

(
ûl(iωn)

)
i

(
ûl(iωn)

)∗
j

D−1
iωn

+ iπ sgn(ωn) T̂l(iωn)
.

Using this relations, we finally get the Matsubara Green’s function

Ĝ(iωn;k,k
′) = Giωn(k) δkk′ +

N∑

j=1

Giωn(k)
[
t†
k

b ûj(iωn)
]
·
[
ûj(iωn)

† b tk′

]
Giωn(k′)

D−1
iωn

+ iπ sgn(ωn) T̂j(iωn)
. (B.4.6)

Our overall goal is to get the coordinate resolved local density of states, so we have to compute
the coordinate resolved Green’s function. To this end, we perform a Fourier transformation of
(B.4.6):

G̃(iωn; r) =
∑

kk′

Ĝ(iωn;k,k
′) e−ir(k−k′).

Bearing in mind the definition of the tk

(tk)i =
1√
N
e−iRik,
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all occurring integrals are of the form

∑

k

Giωn(k)(tk)i e
irk =

1√
N

∑

k

e−i(Ri−r)k

iωn − εk
.

We already computed integrals of that kind when we defined the matrix g(iωn) is section B.2.
For certain assumptions as a wide and flat band, the general structure is

∑

k

e−i(Ri−r)k

iωn − εk
= −iπ sgn(ωn) ρ0

[
f ir + i sgn(ωn) g

i
r

]

with real-valued f ir and gir which do not depend on ωn. Hence, we define the vector v̂r(iωn) by

∑

k′

Giωn(k′) tk′ eirk
′

= −iπ sgn(ωn)
ρ0√
N
v̂r(iωn) = −iπ sgn(ωn)

ρ0√
N

[
vRr + i sgn(ωn) v

I
r

]
,

(B.4.7)

with real-valued vectors v
R/I
r independent of iωn. It is quite important here, that

∑

k

e−i(Ri−r)k

iωn − εk
=
∑

k

ei(Ri−r)k

iωn − εk
,

because this means

∑

k

Giωn(k) t†
k
e−irk = −iπ sgn(ωn)

ρ0√
N
v̂T

r (iωn) = −iπ sgn(ωn)
ρ0√
N

[(
vRr
)T

+ i sgn(ωn)
(
vIr
)T]

.

The Fourier transformations of Giωn(k)tk and Giωn(k)t†
k

give rise to the same vector v̂r(iωn) (up
to transposition). The iωn-dependence of both Fourier transformations is the same, no complex
conjugation occurs. Performing these transformations in (B.4.6) and inserting the definition of
v̂r(iωn), one ends up with

G̃(iωn; r) = −iπ sgn(ωn) ρ0 − π2ρ0
ρ0

N

N∑

j=1

[
v̂T

r (iωn) b ûj(iωn)
]
·
[
ûj(iωn)

† b v̂r(iωn)
]

D−1
iωn

+ iπ sgn(ωn) T̂j(iωn)

= π ρ0


−i sgn(ωn) − π g0

N∑

j=1

[
v̂T

r (iωn) b ûj(iωn)
]
·
[
ûj(iωn)

† b v̂r(iωn)
]

D−1
iωn

+ iπ sgn(ωn) T̂j(iωn)


 ,

(B.4.8)

where we used (−i sgn(ωn))
2 = −1 and g0 = ρ0/N . We remark that the v̂r are related to the

entries of the matrix g(iωn), if they are taken at the site Ri of a cluster atom, since

[
∑

k

Giωn(k) tk e
iRik

]

j

= −iπ sgn(ωn)
√
N
[
g(iωn)

]
ij

= −iπ sgn(ωn)
ρ0√
N

[v̂Ri
(iωn)]j ,

so

[v̂Ri
(iωn)]j =

[
g(iωn)

]
ij

g0
.
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The local density of states essentially is given as the imaginary part of the advanced Green’s
function (see [90]):

ρ(ω, r) =
1

π
ImGadv(ω, r). (B.4.9)

The advanced Green’s function is achieved from its Matsubara form by complex continuation
into the lower half plane. Usually, this is done by replacing iωn → ω+iδ where δ → 0+. However,
in this model it is a little different. Due to the Popov-Fedotov ansatz of dealing with superfluous
states in the partition function by introducing an imaginary chemical potential, the Matsubara
frequencies are not simply fermionic ones but they have slightly changed. We denoted with iωn
the usual Matsubara fermionic frequencies but the frequencies occurring here are rather

iω′
n = iωn −

iπ

2β
=

iπ

β

(
2n +

1

2

)
= D−1

iωn
.

It is theses Matsubara frequencies ω′
n the continuation has to be applied to. However, this does

not cause major problems, since
sgn(ωn) = sgn(ω′

n).

The continuation therefore reads

iω′
n = D−1

iωn
→ ω − iδ and i sgn(ω′

n) = i sgn(ωn) → −i. (B.4.10)

The transformation of i sgn(ω′
n) is due to the fact, that only negative ωn are taken into account

for the continuation into the lower half plane. The eigenvalues and eigenvectors of b g(iωn) b
and the vectors v̂r(iωn) transform like

T̂j(iωn) → Tj = TRj − iT Ij

ûj(iωn) → uj = uRj − iuIj

v̂r(iωn) → vr = vRr − ivIr ,

(B.4.11)

where we introduced Tj, uj and vr for the sake of brief notation. We remark, that Tj and uj are
the eigenvalues and eigenvectors of the matrix

b g b = b
(
gR − i gI

)
b

and that
[vRi

]j =
gij
g0

at any cluster site Ri. The advanced Green’s function is obtained from (B.4.8) by the continu-
ation (B.4.10) and is given as

Gadv(ω, r) = π ρ0


i − π g0

N∑

j=1

[
vT

r buj
]
·
[
u†j b vr

]

ω − iπ Tj


 , (B.4.12)

where we already performed the limit δ → 0+. According to (B.4.9), the local density of states
reads

ρ(ω, r) = ρ0


1 − π g0Im




N∑

j=1

[
vT

r buj
]
·
[
u†j b vr

]

ω − iπ Tj




 . (B.4.13)
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For each j and r we determine the imaginary part of the fraction in (B.4.13). We omit the j-
and r-dependence in the following. It is

Im
[vT bu] · [u† b v]

ω − iπ T
=

Im
(
[vT bu] · [u† b v] ·

[
ω − π T I + iπ TR

])

(ω − π T I)2 + (π TR)2

=

(
ω − π T I

)
Im
(
[vT bu] · [u† b v]

)
+ π TR Re

(
[vT bu] · [u† b v]

)

(ω − π T I)
2
+ (π TR)

2

and

vT bu = (vR − ivI)Tb(uR − iuI)

= (vR)TbuR − (vI)TbuI − i (vI)TbuR − i (vR)TbuI

as well as

u† b v = (uR + iuI)Tb(vR − ivI)

= (uR)Tb vR + (uI)Tb vI + i (uI)Tb vR − i (uR)Tb vI .

Because of the symmetry of a real scalar product, it is

xT b y = yT bx

for any real-valued vectors x and y and any real symmetric matrix b. Let X,Y ∈ {R, I}. We
define for each j and r

Bjr
XY = (vXr )TbuYj = (uYj )Tb vXr . (B.4.14)

Again, we omit the j- and r-dependence in the following calculations. It is

[vT bu] · [u† b v] = (BRR −BII − iBRI − iBIR) · (BRR +BII − iBIR + iBRI)

= B2
RR −B2

II −B2
IR +B2

RI − 2 i [BRRBIR +BII BRI ] .

Hence,

Im
[vT bu] · [u† b v]

ω − iπ T
=
π TR

[
B2
RR −B2

II −B2
IR +B2

RI

]
− 2(ω − π T I) [BRRBIR +BII BRI ]

(ω − π T I)2 + (π TR)2
.

Using this relation and restoring the j- and r-dependencies, we arrive at

ρ(ω, r) = ρ0

(
1−π g0

N∑

j=1

π TR
j [(Bjr

RR
)2−(Bjr

II
)2−(Bjr

IR
)2+(Bjr

RI
)2]−2(ω−π T I

j )[Bjr
RI

Bjr
II

+Bjr
IR

Bjr
RR]

(ω−π T I
j )

2
+(π TR

j )
2

)
. (B.4.15)

The main task to perform in order to get the local density of states is to diagonalise the matrix
b g b formally to get its eigenvalues and eigenvectors. Having those, the mean field equations
(B.3.9) can be solved and the solutions can be plugged into (B.4.15).
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lehrreiche Gespräche. Ich danke auch allen anderen Mitgliedern des Instituts, die durch ihre
umgängliche und kollegiale Art für ein angenehmes Arbeitsklima gesorgt haben.

Den Mitgliedern und Organisatoren des SFB 668 möchte ich für die vielen Anregungen danken,
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