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Preface

This dissertation has its origin in an important link between mathematics and

other branches of sciences, namely, in mathematical modeling. The main idea of

mathematical modeling is a simplified mathematical representation and subsequent

analysis of systems, processes or phenomenons with the aim to describe the behavior

of these systems, enhance the understanding of the underlying mechanisms or even

enable predictions and use them for making decisions. There are various forms

of models, involving many different areas of mathematics such as probability and

game theory, dynamical systems, differential equations, optimization or numerics,

to name but a few fields of mathematics. But mathematical modeling also shaped

the development of different mathematical branches. So it was the abundance of

applications generated by mathematical models in various sciences which mostly

impelled a rapid development of the general theory of differential equations with

delayed argument in the second half of the last century. Today, large parts of

the theory of delay differential equations, at least in the case of constant delays,

are as well understood as the theory of ordinary differential equations (henceforth

abbreviated by ODE, respectively ODEs). We find delay differential equations in

numerous models across many branches of sciences such as physics, mechanics,

engineering, biology, medicine, economics or control theory. Many of these models

are discussed in the monographs [12, 13] of Kolomanovskii and Myshkis and in the

work [11] of Hartung et al. in detail.

The motivation for this thesis is a slight modification of a mathematical model

from economics to describe short-term fluctuations of exchange rates in a floating

exchange rate regime. The original model was, as far as known by the author,

constituted by Erdélyi in his diploma thesis [7] and is represented by the one-

parameter family

(⋆) ẋ(t) = a
[
x(t) − x(t− 1)

]
− |x(t)|x(t)

of scalar differential equations with constant delay one and a > 0. The main ideas

behind this model are explained in detail in the preprint [4] of Brunovský et al.

and they are briefly recapitulated below.

The Original Model. Let us denote by S = S(t) the exchange rate in direct

quotation, that is, the price of a unit of a selected foreign currency in terms of

units of the reference domestic one, as a function of time t. Then the principal

assumption of the model proposed by Erdélyi in [7] is that there is a kind of

‘natural’ exchange rate S∗, specified by macroeconomic fundamentals, which is

constant within the considered time range. This assumption should be consistent

with empirical literature on the behavior of exchange rates so far as that literature

confirms that if, for short times, the movement of exchange rate depends on any

macroeconomic fundamental, so it does only insignificantly.

iii
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The second important hypothesis of the model is the assumption that economic

agents anticipate the rate S∗ in some way but do not know its precise value. Con-

sider now the scaled deviation y := (S − S∗)/S∗ of the actually exchange rate S

from the ‘natural’ exchange rate S∗. As agents intend to draw profit from their

trading, it is supposed that they attempt to anticipate the changes of the exchange

rate in the nearest future by taking into account the following two aspects:

(i) the development of the exchange rate in the immediate past, which is

represented by the difference y(t) − y(t− h) under the assumption that

agents observe the exchange rate at equidistant time instants of short

distance h > 0, and

(ii) a perception of the current position of the exchange rate compared to S∗,

which is factored in by y(t).

Both aspects above should influence the expectation of agents in different way as

described in Brunovský et al. [4].

On the one hand, in case of a rising exchange rate in the immediate past, that

is, when y(t)− y(t− h) > 0, the agents should expect that this trend will persist in

the near future. Thus a rising exchange rate in the immediate past should result

in an increasing demand for foreign currency and so in an increase of the exchange

rate. Accordingly, in the situation of a falling exchange rate in the past, that is,

when y(t) − y(t − h) < 0, a symmetric reaction is assumed. The impact of this

effect on the evolution of the exchange rate is modeled linearly with respect to its

source, y(t) − y(t − h), and, therefore, assumed to be equal to b1 (y(t) − y(t − h))

for some constant b1 > 0.

On the other hand, the more the actual exchange rate should increase and, thus,

differ from the ‘natural’ exchange rate, the more agents should await a turning back

of the trend. Consequently, a higher actual rate should lead to an increased supply

and, hence, to a fall of the foreign currency reflected by a decrease of the exchange

rate. A symmetrical behavior is supposed in the case if the actual exchange rate

is lower than the ‘natural’ one. Again, the impact of this model on the evolution

of the exchange rate is assumed to be linear with respect to its source, resulting in

the term −B2 y(t) with B2 > 0.

With respect to the influence on the exchange rate, the two expectation mecha-

nisms described above differ essentially. While an increase or decrease of the ex-

change rate in the preceding rate is well-known and has the same value for each

economic agent, the value S∗ is subject to the individual anticipation of an agent.

However, the agents should exhibit a ‘collective wisdom’ to the effect that the num-

ber of agents discerning the deviation of the actual rate from S∗ should increase

with the magnitude of the deviation. The hypothesis of the model here is once more

that in the first approximation this effect is linear, that is, B2 = B2(y) = b2 |y| for

a constant b2 > 0.

By assuming, finally, a uniform distribution of the agents in time and therefore

an acting of the corresponding fraction of agents in a short time interval △t, the

change of the exchange rate in the time interval △t then reads

y(t+ △t) = y(t) + b1
[
y(t) − y(t− h)

]
△t− b2 |y(t)| y(t)△t+ o(△t).

Carrying out the limit process △t→ 0, we get the scalar differential equation

ẏ(t) = b1
[
y(t) − y(t− h)

]
− b2 |y(t)| y(t)



PREFACE v

with reals b1, b2 > 0 and a constant delay h > 0. Consequently, the normalization

x(t) := b2 · h · y(th)

results in the one-parameter family (⋆) of delay differential equations with the

sensitivity parameter a > 0, which is more convenient for mathematical analysis.

Dynamical Aspects of the Original Model. From an economic point of

view, due to the simplicity of the above model, one surely may not expect an

adequate description of short-term fluctuations of exchange rates. However, the

solutions of the delay differential equation (⋆) possess interesting dynamics from

the mathematical standpoint. So, the numerical experiments in the initial work [7]

of Erdélyi indicate the following behavior of solutions of Equation (⋆).

(i) For parameters 0 < a ≤ 1, the only equilibrium x(t) = 0, t ∈ R, of

Equation (⋆) is globally asymptotically stable, whereas for a > 1 it is

unstable.

(ii) For a > 1 there is a globally stable periodic orbit. The period of this

orbit tends to infinity as a→ 1.

In Brunovský et al. [3] a part of these numerical observations is rigorously

established. The authors of [3] proved asymptotic stability of the trivial solution for

parameters 0 < a < 1, instability for a > 1, and the existence of a periodic solution

in the situation a > 1. Thereby, it is worth to mention that these periodic solutions

are not born in a Hopf bifurcation as the spectrum of the linearization at the trivial

solution has the only imaginary eigenvalue 0 ∈ C, whose multiplicity is two at

the critical parameter a = 1 and one otherwise. Rather, for a parameter above

the critical one, a 2-dimensional global center-unstable manifold W connects the

trivial solution to a periodic orbit, which turns out to coincide with the boundary

W \W . An important step towards this conclusion is the study of so-called slowly

oscillating solutions characterized by the property that for any two zeros z < z′

there holds z < z′ + 1. The periodic orbits obtained for a > 1 are slowly oscillating

and their minimal periods are given by three consecutive zeros.

Walther analyzes the delay differential equation (⋆) for parameters a > 0 in

two further papers [27, 28]. In [27] he derives the asymptotic shape of the slowly

oscillating periodic orbits described above for a→ ∞. Additionally, he notes that,

starting with a slowly oscillating periodic solution for a > 1, one easily obtains

other periodic solutions for Equation (⋆) for other parameter values a > 1 and

without the property of slow oscillations.

In Walther [28], the bifurcation occurring at the critical parameter a = 1 is

studied. The main result establishes that for every ε > 0 there exists a parameter

1 − ε < a < 1 + ε such that Equation (⋆) has a slowly oscillating periodic solution

pε : R → (−a ε, a ε), whose minimal period τε > 0 is given by three consecutive

zeros and converges to infinity as ε→ 0.

A Modification of the Original Model and the Main Issue of this

Thesis. A possible modification of the model is to replace the constant delay by

a state-dependent one. Then the corresponding family of differential equations is

given by

(⋆⋆) ẋ(t) = a
[
x(t) − x(t− r)

]
− |x(t)|x(t)
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with the parameter a > 0 and the state-dependent delay r = r(x(t)) > 0. It seems

to be more realistic and hence to be an enhancement of the original model that the

agents do not observe the exchange rate at equidistant time instants, but rather at

instants depending on the difference between the actual and the ‘natural’ exchange

rate represented by x(t). The reason for such an assumption is that the more the

actual exchange rate should differ from the ‘natural’ one, the more precisely the

agents should pursue the development of the exchange rate and thus the shorter

the time instants where agents observe the exchange rate should be. So, in view of

the modeling aspects, the usage of a state-dependent delay with a delay function

r : R −→ R, which is positive, takes a maximum value r0 > 0 at x = 0, satisfies

r(x) = r(−x) for all x ∈ R and decreases monotonically to 0 as |x| → 0, appears

to be more appropriate than a constant delay to describe short-term fluctuations

of the exchange rate in a free floating regime.

Apart from the modeling feature, the replacement of the constant delay by a

state-dependent delay is also mathematically interesting itself. The adjustment of

the delay, namely, immediately raises the question how the dynamics of the differen-

tial equation (⋆⋆) with state-dependent delay change in contrast to the differential

equation (⋆) with constant delay. The principal goal of the present work is to ad-

dress the question whether periodic orbits still exist for parameters a > 1. We will

establish the existence under mild conditions on the delay function of similar type

as considered above in connection with the modeling aspect. Moreover, under the

imposed conditions on r, we will generalize the main result in Brunovský et al.

[3] to the case of a state-dependent delay and prove that in the situation a > 1,

a center-unstable manifold connects the trivial solution with a periodic orbit of

Equation (⋆⋆).

Outline

This thesis consists of two more or less self-contained parts. The first one

is intended to give a brief exposition of some basic aspects of the general theory

for differential equations with state-dependent delay. Here, we review some of the

recent results but also establish the existence of so-called local C1-smooth center-

unstable manifolds in a general setting. In the second part, we study the model

equation (⋆⋆) under certain assumptions on the delay function and prove our main

result on the existence of periodic solutions for parameter a > 1. Below, the content

of the particular chapters is briefly sketched.

The first chapter begins with a short recapitulation of some basic facts on delay

differential equations and their representation in the more abstract form of func-

tional differential equations. This discussion leads to a recent theorem on existence

of a smooth semiflow for a class of functional differential equations. In particu-

lar, this theorem seems to be often applicable in cases where the corresponding

functional differential equation represents a delay differential equation with state-

dependent delay. Afterwards, we summarize without proofs the relevant material

on linearization at a stationary point and close the first chapter with a proof of the

so-called principle of linearized instability.

In the second chapter, we formulate and prove our main result of the first

part of this thesis, namely, the existence of local center-unstable manifolds for the

semiflow considered in Chapter 1. Additionally, we establish the C1-smoothness of

these manifolds.
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Chapter 3 is the beginning of our analysis of the model equation (⋆⋆) with

parameter a > 0 and a state-dependent delay r = r(x(t)) > 0. Making certain

standing assumptions on the delay functions under consideration, in a first step we

study some basic properties such as existence and continuous dependence on initial

values of solutions of Equation (⋆⋆). As a simple consequence of these consideration,

we construct a suitable compact state space depending on the involved parameter

a > 0, such that solutions of the model equation constitute a continuous semiflow.

Next, the differences of solutions are examined. As a result, we will be able to

introduce a discrete Lyapunov functional for counting zeros of solutions. This

counting tool turns out to be very useful for our analysis of Equation (⋆⋆). At

the end of the third chapter we study the so-called slowly oscillating solutions and

prove that all globally defined slowly oscillating solutions form a global attractor

of a semiflow.

The fourth chapter is devoted to some aspects of local dynamics of the model

equation at the trivial solution. We consider the linearization and its spectrum, and

we show that the trivial solution of Equation (⋆⋆) is unstable for a > 1. Moreover,

in this case we derive an asymptotic ODE describing the induced flow of the model

equation on local center-unstable manifolds. From this ODE we infer a repellent

behavior of the trivial stationary point in local center-unstable manifolds.

In the final chapter our main result is stated and proved. Thereto, we choose

a sufficiently small neighborhood of the trivial solution in a local center-unstable

manifold for the delay differential equation (⋆⋆) and extend it to a global center-

unstable manifold W . Using the discrete Lyapunov functional introduced in Chap-

ter 3, we conclude that W and its closure W are both invariant for the semiflow

generated by solutions of Equations (⋆⋆) and contain, apart from the trivial statio-

nary point, only slowly oscillating solutions for the model equation. Afterwards, we

proceed with the study of the zero sets of solutions in W by applying an auxiliary

projection. This finally leads us to our main result and its proof.
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CHAPTER 1

A Smooth Semiflow

1. Introduction

The main goal of this chapter is to provide a detailed exposition of the frame-

work developed in Walther [24, 25, 26] and Hartung et al. [11] on the existence

of a continuous semiflows for a class of functional differential equations, which is

designed for applications to differential equations with state-dependent delay. In

addition, we establish the so-called principle of linearized instability for stationary

points of the considered class of functional equations.

The organization of the present chapter is as follows. In the next section we

begin with the introduction of a rather general class of equations, namely the so-

called retarded functional differential equations (abbreviated by RFDE, respectively

RFDEs). By discussing some of the primary properties, we briefly indicate that

under certain conditions, the solutions for the associated initial value problems

generate smooth semiflows. Afterwards, we point out that these results may also be

used to obtain continuous semiflows in case of differential equations with constant

delays. On the other hand, it can easily be seen that the basic approach of the

theory of RFDEs does generally not apply in presence of a state-dependent delay.

In Section 3 we motivate a slightly modified type of functional differential

equations, and present, without proof, a major theorem on the existence of smooth

semiflows with continuously differentiable time-t-maps. Then a first example indi-

cates the applicability of these results to differential equations with state-dependent

delay.

Finally, in the last section of this chapter we discuss in some detail the concept

of linearization at stationary points, touch some parts of the associated spectral

theory, and prove the above-mentioned principle of linearized instability for the

motivated type of functional differential equations.

2. Retarded Functional Differential Equations

Following the classical lines in Hale and Verduyn Lunel [10], below we briefly

sketch some basic aspects of the theory of RFDEs which has been developed since

the beginning of the second half of the last century. Thereby we indicate the

applicability of these results to delay differential equations (abbreviated by DDE,

respectively DDEs), and point out the difficulties arising in presence of a non time-

invariant delay as presented, for instance, in Walther [24].

Basic Terminology and Results. Let h > 0 and n ∈ N. For abbreviation,

let us denote by C the set of all continuous functions from the interval [−h, 0] into

R
n, equipped with the norm ‖ϕ‖C := maxs∈[−h,0]‖ϕ(s)‖Rn of uniform convergence.

Analogously, we write C1 for the Banach space of all continuously differentiable

functions ϕ : [−h, 0] −→ Rn, provided with the norm ‖ϕ‖C1 := ‖ϕ‖C + ‖ϕ′‖C .

3



4 1. A SMOOTH SEMIFLOW

Rn
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Figure 1.1. Segments of functions

For a given function x : I −→ Rn defined on some interval I ⊆ R, and t ∈ R with

[t−h, t] ⊂ I, the segment xt of x at t is defined by the relation xt(ϑ) := x(t+ϑ),

ϑ ∈ [−h, 0]; that is, by xt we restrict the function x to [t − h, t] and shift it back

to [−h, 0] as illustrated in Figure 1.1. In particular, if the function x is continuous,

then clearly xt ∈ C.

Suppose that D is an open subset of R × C, and let a function f : D −→ R
n

be given. Then we call an equation of the form

(1.1) ẋ(t) = f(t, xt) ,

where “ ˙ ” means the (right-hand side) derivative of x with respect to t, a retarded

functional differential equation on D. Equation (1.1) is a rather general type

of differential equation classified by the right-hand side. For example, we call an

RFDE (1.1) linear, if the function f can be represented as f(t, ϕ) = L(t, ϕ)+ q(t),

(t, ϕ) ∈ D, with mappings L and q, where L is linear in its second argument.

Analogously, an RFDE (1.1) is autonomous, if the function f is independent of

the time variable t; that means, there is f̃ such that f(t, ϕ) = f̃(ϕ) for all (t, ϕ) ∈ D.

The concept of solutions for retarded functional differential equations is the

following. A function x is a solution of the RFDE (1.1) on the interval [t0−h, t+),

if there are t0 ∈ R and t+ > t0 such that x : [t0 − h, t+) −→ R
n is continuous,

(t, xt) ∈ D and x satisfies Equation (1.1) for all t0 ≤ t < t+. In this case, the

initial value of x at t0 is the segment ϕ := xt0 ∈ C of x. Accordingly, given

ϕ ∈ C and t0 ∈ R with (t0, ϕ) ∈ D we call a function x a solution of (1.1) with

initial value ϕ at t0, if there is t+ > t0 such that x is a solution of RFDE (1.1) on

[t0 − h, t+) with initial value ϕ at t0. Solutions on unbounded intervals (−∞, t+),

t+ ∈ R, are defined in an analogous way.

Remark 1.1. To avoid any misunderstandings and to ensure consistency, we

mention that in the situation of an autonomous RFDE

ẋ(t) = f̃(xt)

with a function f̃ : V −→ Rn, V ⊆ C open, the above definitions of solutions are

understood as solutions of Equation (1.1) with D := R × V and the right-hand

side f : D ∋ (t, ϕ) 7−→ f̃(ϕ) ∈ Rn. In particular, this means that a function x is

a solution of the above autonomous RFDE with initial value ϕ ∈ V at t0 ∈ R, if

there is a real t+ > t0 such that x : [t0 − h, t+) −→ Rn is continuous, xt0 = ϕ,

xt ∈ V and x satisfies the differential equation for all t0 ≤ t < t+.
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An initial value problem (abbreviated by IVP) for the RFDE (1.1) has the

form {
ẋ(t) = f(t, xt)

xt0 = ϕ

with given initial data (t0, ϕ) ∈ D. Provided that the function f is continuous, this

problem has a solution x : [t0 − h, t+) −→ Rn, t+ > t0, for arbitrary (t0, ϕ) ∈ D.

These solutions can be extended in the forward direction of the independent variable

t to a maximal interval of existence in D. If, in addition, the function f is (locally)

Lipschitz continuous in its second argument, that is, if f satisfies the condition

(locLip) For each point (t, ψ) ∈ D there is an open neighborhood N of (t, ψ) in D

and a constant K̂ > 0 such that

‖f(s, ψ1) − f(s, ψ2)‖Rn ≤ K̂‖ψ1 − ψ2‖C

for all (s, ψ1), (s, ψ2) ∈ N .

in D, then for every (t0, ϕ) ∈ D the solution x of the associated IVP is unique.

Moreover, x depends continuously on t0, ϕ, and f .

In case of an autonomous RFDE, the right-hand side of the equation is indepen-

dent of the variable t. This implies the invariance of solutions under translations.

More precisely, consider the autonomous RFDE

(1.2) ẋ(t) = f(xt)

with f : V −→ Rn, V ⊆ C open, and suppose that x : [t0 − h, t+) −→ Rn is a

solution of (1.2) with initial value ϕ = xt0 at t0. Then for each τ ∈ R the translated

function

y : [τ + t0 − h, τ + t+) ∋ s 7−→ x(s− τ) ∈ R
n

defines also a solution of Equation (1.2), but with initial value ϕ at τ+t0. Therefore,

it is sufficient to consider only initial data given by ϕ ∈ V at t = 0. If the function

f in (1.2) is Lipschitz continuous, then every ϕ in V uniquely determines a maximal

solution xϕ : [−h, t+(ϕ)) −→ Rn with initial value ϕ at t = 0. The segments of

these solutions generate a continuous semiflow on the metric space V , defined by

the map

F : Ω ∋ (t, ϕ) 7−→ xϕt ∈ V

with domain Ω := {(t, ϕ) ∈ [0,∞) × V | 0 ≤ t < t+(ϕ)}. In this way we obtain

a continuous semi-dynamical system, including the corresponding terms such as

trajectories, stationary points, and periodic orbits.

All the results on RFDEs described above are well known, and for a deeper

discussion including the absent proofs we refer the reader to the monographs Hale

and Verduyn Lunel [10] and Diekmann et al.[6].

Representation of DDEs as RFDEs. At a first view it may be not apparent

but different DDEs with constant as well as with time- or state-dependent delay

can be rewritten in the more abstract form (1.1) as an RFDE. Accordingly, after

carrying out such a transformation, one may ask whether basic or even far-reaching

results for RFDEs may be used to study the initial differential equation. It turns

out that the solution of this question is essentially dependent on the involved delays

of the considered DDE.

For instance, the differential equation

ẋ(t) = g
(
x(t− h)

)
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with a function g : Rn −→ Rn can be transformed to an autonomous RFDE by

the right-hand side f : C ∋ ϕ 7−→ g(ϕ(−h)) ∈ Rn. Under the assumption that

g is continuous, the function f is clearly also continuous. Furthermore, Lipschitz

continuity of g implies that of f , even with the same Lipschitz-constant as g. Hence,

under such hypothesis on g, we may conclude the existence and uniqueness of

solutions of the above DDE for all initial functions ϕ ∈ C. Additionally, in this

situation the segments of the maximal solutions generate a continuous semiflow on

C. Analogously, the assumption of C1-smoothness on g leads to C1-smoothness of

f and enables us to apply further results that rest on continuous differentiability.

On the contrary, the transformation of a differential equation with retarded

argument into an RFDE may lead to a significant lack of smoothness. This is in

general the case in the presence of a non-trivial state-dependent delay. In particular,

consider the equation

ẋ(t) = g
(
x(t− r(xt))

)

given by a function g : Rn −→ Rn and a delay functional r : C −→ [0, h]. Intro-

ducing the evaluation map

ev : C × [−h, 0] ∋ (ϕ, s) 7−→ ϕ(s) ∈ R
n

and defining f := g ◦ ev ◦(1 × −r), we may rewrite the previous equation with

state-dependent delay in the more abstract form of an RFDE. The evaluation map

is obviously continuous so that the continuity of g and r implies the one of f . On

the other hand, ev is not differentiable, and thus the function f is in general not C1-

smooth despite the smoothness of g and r. Moreover, except for uninteresting cases,

f does not satisfy a Lipschitz condition, not even a local one, since the Lipschitz

continuity of ev would imply that of ϕ ∈ C. Accordingly, independent of the

smoothness of g and r, the resulting function f is in general not sufficiently smooth

for applications of basic results such as uniqueness and continuous dependence on

initial data for solutions of RFDEs.

3. The Semiflow on the Solution Manifold

In the last section we concluded that the theory of retarded functional dif-

ferential equations is in general not suitable to study differential equations with

state-dependent delays. In the following we will consider a slightly modified class

of functional differential equations and discuss a fundamental theorem on existence

of a smooth semiflow. Interestingly, the conditions of this result are often satisfied

in cases where the corresponding abstract differential equation represents a DDE

with a state-dependent delay. The underlying concept as well as the theorem itself

go back to the work [25, 24, 26] of Walther. We recall only some of the key ideas

summarized in Hartung et al. [11].

The Continuous Semiflow. We begin with the observation that the lack of

smoothness described in the last section disappears if we replace the Banach space

C by the smaller space C1. Indeed, the appropriate evaluation map

(1.3) Ev : C1 × [−h, 0] ∋ (ϕ, s) 7−→ ϕ(s) ∈ R
n

is not only continuous, it also continuously differentiable with partial derivatives

D1 Ev(ϕ, s)χ = Ev(χ, s)
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and

D2 Ev(ϕ, s) 1 = ϕ′(s).

Hence, for continuously differentiable g : Rn −→ Rn and r : U −→ [0, h], U ⊂ C1

open, the resulting map f : U ∋ ϕ 7−→ g
(
ϕ(−r(ϕ))

)
∈ Rn is also continuously

differentiable.

On the other hand, the IVP associated with a differential equation of the form

ẋ(t) = f(xt)

with a continuously differentiable function f : U −→ Rn, U ⊆ C1 open, is in general

not well-posed on U . If we suppose that x : [−h, t+) −→ Rn, t+ > 0, is a solution of

the last equation with initial value ϕ ∈ U at t = 0, then x would have continuously

differentiable segments xt ∈ U ⊆ C1 for all 0 ≤ t < t+. Consequently, this would

imply the continuous differentiability of x on [−h, t+), and thus the continuity of

the curve [0, t+) ∋ t 7−→ xt ∈ C1, which finally results in the equation

ϕ̇(0) = ẋ(0) = lim
tց0

ẋ(t) = lim
tց0

f(xt) = f(x0) = f(ϕ)

for the initial value ϕ ∈ U . As this condition is not necessarily satisfied on all of U ,

the IVP associated with the differential equation given by f is in fact not well-posed

on U .

The last consideration suggests to study the abstract differential equation

(1.4) ẋ(t) = f(xt)

defined by a function f : U −→ Rn, U ⊆ C1 open, only on the closed subset

(1.5) Xf :=
{
ϕ ∈ U | ϕ′(0) = f(ϕ)

}

of U . Under additional smoothness hypothesis on f , this idea succeeds in obtaining

a continuous semiflow onXf , generated by the segments of the solutions of Equation

(1.4). The following assumptions on the function f are needed:

(S 1) f is continuously differentiable, and

(S 2) each derivative Df(ϕ), ϕ ∈ U , extends to a linear map

Def(ϕ) : C −→ R
n,

and the induced map

U × C ∋ (ϕ, χ) 7−→ Def(ϕ)χ

is continuous.

These conditions seem to be often fulfilled in cases where f represents the right-

hand side of a DDE with state-dependent delay in the more abstract form (1.4).

In particular, note that condition (S 2) does not require the continuity of the map

U ∋ ϕ 7−→ Def(ϕ) ∈ L(C,Rn), where L(C,Rn) denotes the Banach space of all

bounded linear maps from C into R
n. Contrary to (S 2), the continuity of the

last map is not satisfied in various examples of differential equations with state-

dependent delays, as emphasized in Walther [26] and in Hartung et al. [11].

Before formulating the main result, we modify our understanding of solutions

for the functional differential equation (1.4) in the sense of C1-smoothness. More

precisely, we call a function x : [t0 − h, t+) −→ R
n with t0 ∈ R and t+ > t0 a

solution of Equation (1.4), if x is continuously differentiable on [t0 − h, t+), for

all t0 ≤ t < t+ the segments xt of x belong to U , and x satisfies the differential
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equation (1.4) for t0 < t < t+. Solutions for a given initial value ϕ ∈ U at t0 ∈ R

as well as solutions on unbounded intervals (−∞, t+), t+ ∈ R, are defined in the

obvious way.

Theorem 1.2 (Theorem 3.2.1 in Hartung et al. [11]). Suppose that U ⊆ C1 is

open, the function f : U −→ Rn satisfies the smoothness conditions (S 1) – (S 2),

and Xf 6= ∅. Then the following is true.

(i) The set Xf defined by (1.5) is a continuously differentiable submanifold

of U with codimension n.

(ii) Each function ϕ ∈ Xf uniquely defines a constant t+(ϕ) > 0 and a

non-continuable solution xϕ : [−h, t+(ϕ)) −→ Rn of Equation (1.4) with

initial value ϕ at t = 0. All the solution segments xϕt , 0 ≤ t < t+(ϕ),

belong to Xf , and define by

F : Ω ∋ (t, ϕ) 7−→ xϕt ∈ Xf

a continuous semiflow on the metric space Xf with domain

Ω :=
{

(t, ϕ) ∈ [0,∞) ×Xf
∣∣ 0 ≤ t < t+(ϕ)

}
.

(iii) For every t ≥ 0 the solution map at time t, that is, the map

Ft : {ψ ∈ Xf | 0 ≤ t < t+(ψ)} ∋ ϕ 7−→ F (t, ϕ) ∈ Xf ,

is continuously differentiable, and for all (t, ϕ) ∈ Ω and all χ ∈ TϕXf ,

where TϕXf denotes the tangent space of the submanifold Xf at ϕ, the

equation

DFt(ϕ)χ = vϕ,χt

holds with the solution vϕ,χ : [−h, t+(ϕ)) → Rn of the linear initial value

problem {
v̇(t) = Df(F (t, ϕ)) vt

v0 = χ

in TϕXf .

(iv) At each point (t, ϕ) with ϕ ∈ Xf and h < t < t+(ϕ) the partial derivative

of F with respect to the first argument exists and satisfies

D1F (t, ϕ) 1 = ẋϕt .

(v) The restriction of the semiflow F to {(t, ϕ) ∈ Ω| h < t} is continuously

differentiable.

Proof. For the complete proof we refer the reader to Walther [25, 26], whereas

a detailed outline is also given in Hartung et al. [11]. �

The subset Xf of C1 is called the solution manifold of Equation (1.4) on U .

Even in the case of a continuous semiflow generated by the segments of the solutions

of an autonomous RFDE, the corresponding set Xf contains the main dynamical

structures as described in the next remark.

Remark 1.3. If f̃ : V −→ Rn, V ⊆ C open, is a (locally) Lipschitz continuous

function and x : [−h, t+) −→ Rn, t+ > h, is a solution of the autonomous RFDE

ẋ(t) = f̃(xt),
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then for t ≥ h we have xt ∈ V ∩ C1 and ẋ(t) = f̃(xt); that is,

xt ∈ Xf̃ :=
{
ϕ ∈ V ∩ C1

∣∣ϕ′(0) = f̃(ϕ)
}

for t ≥ h. Hence, this means that every positive semi-orbit through a point ϕ ∈ U

enters and stays in Xf̃ , provided it exists for sufficiently long time intervals. In

particular, stationary points, periodic orbits, as well as (global) attractors of the

above RFDE are contained in the set Xf̃ .

A further important point concerning the last theorem is the fact that a part of

the statements remains true under a slightly weaker hypothesis on the smoothness

of f : U −→ Rn, U ⊆ C1 open. If the assumption (S 2) is replaced by

(S 2.1) Every derivative Df(ϕ), ϕ ∈ U , of f extends to a bounded linear map

Def(ϕ) : C −→ Rn.

and

(S 2.2) For every ϕ ∈ U there exists an open neighborhood V ⊂ U of ϕ in U and

a constant KLip > 0 such that

‖f(ψ1) − f(ψ2)‖Rn ≤ KLip‖ψ1 − ψ2‖C

for all ψ1, ψ2 ∈ V .

then at least the first two parts and the continuous differentiability of all solution

maps Ft with non-empty domains are still valid, as can be found in Walther [25].

In this context, note that the above condition (S 2.2) is not a consequence of the

C1-smoothness of f , because the inequality in (S 2.2) involves the norm ‖ · ‖C of C

and not ‖ · ‖C1 of C1. However, for the proof of assertions (iv) and (v) in Walther

[26] the stronger condition (S 2) is assumed, which particularly implies both (S 2.1)

and (S 2.2).

Example. As an illustration of Theorem 1.2, let us consider the scalar differ-

ential equation

(1.6) ẋ(t) = a
[
x(t) − x(t− r)

]
− |x(t)|x(t)

with parameter a > 0 and state-dependent delay r = r(x(t)) > 0 given by a

continuously differentiable function r : R −→ [0, h]. Subsequently, we transform

this equation to the conceptional form (1.4) and show that the resulting equation

satisfies the conditions of the theorem on the existence of a continuous semiflow.

To this end, we adopt our notation by setting n = 1 in the definitions of C and C1

from now on until the end of this section.

To rewrite the above DDE in the more abstract manner (1.4), we introduce the

real valued function

g : R
2 ∋ (ζ, ξ) 7−→ a

[
ζ − ξ

]
− |ζ| ζ ∈ R,

which is C1-smooth with continuous partial derivatives

∂g(ζ, ξ)

∂ζ
= a− 2 |ζ|

and

∂g(ζ, ξ)

∂ξ
= −a.
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Then Equation (1.6) takes the form of the functional differential equation (1.4) with

right-hand side

(1.7) f : C1 ∋ ϕ 7−→ g
(
Ev(ϕ, 0),Ev(ϕ,−r(Ev(ϕ, 0)))

)
∈ R,

involving the evaluation map (1.3). As a composition of C1-smooth functions, f

is also continuously differentiable, and hence satisfies smoothness condition (S 1).

Furthermore, note that Xf is not empty. Indeed, the trivial function x(t) = 0,

t ∈ R, is a solution of the functional differential equation induced by f , and this

implies 0 ∈ Xf .

In order to verify the left condition (S 2) for f given by Equation (1.7), observe

that a straightforward calculation yields

Df(ϕ)ψ = a ·
[
ψ(0)−ψ(−r(ϕ(0)))

]
+a ·r′(ϕ(0)) ·ϕ′(−r(ϕ(0))) ·ψ(0)−2 |ϕ(0)| ·ψ(0)

for all ϕ, ψ ∈ C1. Since, independent of ϕ ∈ C1, the right-hand side of this equation

is also well-defined for ψ ∈ C, the existence of a linear extensionDef(ϕ) ofDf(ϕ) to

the larger Banach space C is obvious as well as the definition of the linear operator

Def(ϕ) itself. Hence, it remains to confirm the continuity of the map

(1.8) C1 × C ∋ (ϕ, ψ) 7−→ Def(ϕ)ψ ∈ R.

Fix a point (ϕ1, ψ1) ∈ C1 × C and let a constant ε > 0 be given. By continuity of

the real valued functions

R ∋ s 7−→ r′(s) ∈ R,

R ∋ s 7−→ ψ1(−r(s)) ∈ R,

and

R ∋ s 7−→ ϕ′
1(−r(s)) ∈ R,

we find a constant δ1 > 0 such that for all s ∈ R with |ϕ1(0) − s| < δ1 we have

|r′(ϕ1(0)) − r′(s)| <
ε

4a · (‖ϕ1‖C1 + 1) · (‖ψ1‖C + 1)
,

|ψ1(−r(ϕ1(0))) − ψ1(−r(s))| <
ε

4a
,

and

|ϕ′
1(−r(ϕ1(0))) − ϕ′

1(−r(s))| <
ε

4a · |r′(ϕ1(0))| · (‖ψ1‖C + 1)
.

Choosing 0 < δ < min{δ1, δ2, 1}, where the second constant is given by

δ2 :=
ε

4
[
2‖ϕ1‖C1 + ‖ψ1‖C + 2a+ 2 + a · |r′(ϕ1(0))| · (‖ϕ1‖C1 + ‖ψ1‖C + 1)

] ,

we claim that

|Def(ϕ1)ψ1 −Def(ϕ)ψ| < ε

holds for all (ϕ, ψ) ∈ C1 × C with ‖ϕ1 − ϕ‖C1 + ‖ψ1 − ψ‖C < δ. The proof of this

assertion is straightforward by applying the triangle inequality in combination with

mere addition of zeros. More precisely, for (ϕ, ψ) ∈ C1 × C we have

|Def(ϕ1)ψ1 −Def(ϕ)ψ| ≤
4∑

i=1

|Ai|
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with

A1 := a
[
ψ1(0) − ψ(0)

]
,

A2 := a
[
ψ(−r(ϕ(0))) − ψ1(−r(ϕ1(0)))

]

= a
[
ψ(−r(ϕ(0))) − ψ1(−r(ϕ(0)))

]
+ a
[
ψ1(−r(ϕ(0))) − ψ1(−r(ϕ1(0)))

]
,

A3 := a
[
r′(ϕ1(0)) · ϕ′

1(−r(ϕ1(0))) · ψ1(0) − r′(ϕ(0)) · ϕ′(−r(ϕ(0))) · ψ(0)
]

= a
[
r′(ϕ1(0)) · ϕ′

1(−r(ϕ1(0))) · ψ1(0) − r′(ϕ1(0)) · ϕ′
1(−r(ϕ1(0))) · ψ(0)

]

+ a
[
r′(ϕ1(0)) · ϕ′

1(−r(ϕ1(0))) · ψ(0) − r′(ϕ1(0)) · ϕ′
1(−r(ϕ(0))) · ψ(0)

]

+ a
[
r′(ϕ1(0)) · ϕ′

1(−r(ϕ(0))) · ψ(0) − r′(ϕ1(0)) · ϕ′(−r(ϕ(0))) · ψ(0)
]

+ a
[
r′(ϕ1(0)) · ϕ′(−r(ϕ(0))) · ψ(0) − r′(ϕ(0)) · ϕ′(−r(ϕ(0))) · ψ(0)

]
,

and

A4 := 2
[
|ϕ(0)| · ψ(0) − |ϕ1(0)| · ψ1(0)

]

= 2
[
|ϕ(0)| · ψ(0) − |ϕ(0)| · ψ1(0)

]
+ 2
[
|ϕ(0)| · ψ1(0) − |ϕ1(0)| · ψ1(0)

]
.

Applying the triangle inequality, one easily derives the following estimates for the

absolute values of the last three quantities Ai:

|A2| ≤ a |ψ1(−r(ϕ(0))) − ψ1(−r(ϕ1(0)))| + a‖ψ1 − ψ‖C ,

|A3| ≤ a |r′(ϕ1(0))| · ‖ϕ1‖C1 · ‖ψ1 − ψ‖C

+ a |r′(ϕ1(0))| ·
[
‖ψ1‖C + ‖ψ1 − ψ‖C

]
· |ϕ′

1(−r(ϕ1(0))) − ϕ′
1(−r(ϕ(0)))|

+ a |r′(ϕ1(0))| ·
[
‖ψ1‖C + ‖ψ1 − ψ‖C

]
· ‖ϕ1 − ϕ‖C1

+ a
[
‖ϕ1‖C1 + ‖ϕ1 − ϕ‖C1

]
· [‖ψ1‖C + ‖ψ1 − ψ‖C

]
· |r′(ϕ1(0)) − r′(ϕ(0))| ,

and

|A4| ≤ 2
[
‖ϕ1 − ϕ‖C1 + ‖ϕ1‖C1

]
· ‖ψ1 − ψ‖C + ‖ψ1‖C · ‖ϕ1 − ϕ‖C1 .

Assuming that ‖ϕ1 − ϕ‖C1 + ‖ψ1 − ψ‖C < δ < 1 and using the above inequalities

finally leads to

|Def(ϕ1)ψ1 −Def(ϕ)ψ| < ε

as claimed. This yields the continuity and thus property (S 2) of the map f defined

by Equation (1.8).

By application of Theorem 1.2, we conclude that the set

Xf =
{
ϕ ∈ C1 |ϕ′(0) = f(ϕ)

}

with f from Equation (1.7) is a continuously differentiable submanifold of C1 of

codimension one. For each ϕ ∈ Xf we have a uniquely determined (maximal)

solution xϕ : [−1, t+(ϕ)) −→ R, t+(ϕ) > 0, of Equation (1.6) with segments in Xf ,

and the totality of the segments of all these solutions constitutes a semiflow on Xf
with properties as stated in Theorem 1.2. We will return to this subject in the

second part of the work.
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4. The Linearization at Stationary Points

For different types of non-linear differential equations an important technique to

analyze the qualitative behavior of solutions near stationary points is the so-called

linearization. The general motivation for this approach can be simply illustrated

via an ordinary differential equation defined by a smooth vector field in Rn. If in

such a situation x0 ∈ Rn is a critical point of the vector field, in other words, if x0

is a stationary point of the underlying flow, then it is natural to expand the vector

field in a Taylor series around x0 for investigations of the ODE in a sufficiently

small neighborhood of x0. In cases where x0 is not degenerated, the first non-zero

term of the Taylor series expansion is linear and near x0 quantitatively dominating

compared to the terms of higher order. Therefore, the reduction of the expansion to

the first order term leads to a linear ODE with stationary point x0, and one expects

that the behavior of this linear equation is closely related to that of the original

non-linear ODE near x0. In this context, the obtained linear ODE is called the

associated linearized problem of the original differential equation, or more precisely,

of the generated flow at the stationary point x0. Under appropriate conditions

on the vector field of the ODE, it is indeed so that different dynamical aspects in

a neighborhood of a stationary point such as local stability or instability can be

determined by its linearization.

For a long time it was almost mysterious how to linearize semiflows generated

by differential equations with state-dependent delays. As long as this problem had

not been solved, heuristical methods based on formal linearization were used for

considerations as local stability and instability of stationary points. The work [5] of

Cooke and Huang is indicative for such an approach. However, Theorem 1.2 solves

the difficulties concerning the linearization of DDEs with state-dependent delays as

we clarify in the sequel, following Hartung et al. [11, Section 3.4]. Afterwards we

will summarize some spectral properties for the linearization and finally close this

chapter with a proof of the principle of linearized instability for the semiflow from

Theorem 1.2.

The Linearization. Suppose that f : U −→ R
n, U ⊆ C1 open, has properties

(S 1) and (S 2) formulated on page 7 and that ϕ0 ∈ Xf is a stationary point of the

semiflow F generated by the differential equation

(1.9) ẋ(t) = f(xt)

according to Theorem 1.2 in the last section. Then the tangent space of the solution

manifold Xf at ϕ0 is given by

Tϕ0Xf =
{
χ ∈ C1 |χ′(0) = Df(ϕ0)χ

}
,

and forms a Banach space with the norm ‖ · ‖C1 of C1. The linearization of the

semiflow F at a stationary point ϕ0 is the family T := {T (t)}t≥0 of bounded linear

operators T (t) := D2F (t, ϕ0), t ≥ 0, on Tϕ0Xf . According to part (iii) of Theorem

1.2, for any t ≥ 0 the action of T (t) on an element χ ∈ Tϕ0Xf is determined by the

relation T (t)χ = vχt , where vχ : [−h,∞) −→ R
n is the unique solution of the IVP

{
v̇(t) = Df(ϕ0) vt

v0 = χ
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in Tϕ0Xf . Clearly, we have T (0) = 1. Also while considering the unique solvability

of the above IVP for each initial value in Tϕ0Xf , we see at once the semigroup

property T (t)T (s) = T (t + s) for all t, s ≥ 0. Moreover, for all χ ∈ Tϕ0Xf we get

‖T (t)χ−χ‖C1 → 0 as tց 0, since the solutions vχ are continuously differentiable.

Therefore, the family T forms a strongly continuous semigroup of operators on the

Banach space Tϕ0Xf . The infinitesimal generator G of T is given by the linear

operator

G : D(G) ∋ χ 7−→ χ′ ∈ Tϕ0Xf

with domain

D(G) :=
{
χ ∈ C2

∣∣χ′(0) = Df(ϕ0)χ, χ′′(0) = Df(ϕ0)χ
′
}
,

where C2 denotes the set of all twice continuously differentiable functions from

[−h, 0] into Rn.

On the other hand, the assumptions on f imply the existence of another

strongly continuous semigroup as follows. By condition (S 2), the bounded linear

operator Df(ϕ0) ∈ L(C1,Rn) from the Banach space C1 into Rn may be extended

to a bounded linear operator Def(ϕ0) on the larger space C. The operator Def(ϕ0)

induces the linear autonomous RFDE

ẇ(t) = Def(ϕ0)w(t)

in C. The associated IVP

(1.10)

{
ẇ(t) = Def(ϕ0)wt

w0 = χ

has, for each initial function χ ∈ C, a unique solution wχ : [−h,∞) −→ Rn as

shown, for instance, in Diekmann et al. [6, Theorem 2.12 in Chapter I.2]. In the

same way as for T , we see that the family Te := {Te(t)}t≥0 of operators Te(t) defined

by Te(t)χ = wχt for all t ≥ 0 and χ ∈ C is a strongly continuous semigroup on C.

For the infinitesimal generator Ge of Te we easily derive

Ge : D(Ge) ∋ χ 7−→ χ′ ∈ C

and

D(Ge) =
{
χ ∈ C1

∣∣χ′(0) = Def(ϕ0)χ
}
.

Thus, the domain D(Ge) of the operator Ge coincides with the tangent space Tϕ0Xf
of the solution manifold Xf at the stationary point ϕ0, and we have T (t)ϕ = Te(t)ϕ

for all ϕ ∈ D(Ge) and t ≥ 0.

As reflected in Hartung et al. [11], these relationships between T and Te and

their generators are not surprising in view of the fact that a strongly continuous

semigroup induces in a natural way a strongly continuous semigroup on the domain

of its generator. More precisely, suppose S = {S(t)}t≥0 is a strongly continuous

semigroup of bounded linear operators S(t) : X −→ X on a (complex) Banach space

X equipped with norm ‖ · ‖X . Then the infinitesimal generator A : D(A) −→ X of

S is a closed, densely defined operator so that the linear space D(A) forms a Banach

space provided with the graph norm ‖x‖gr := ‖x‖X + ‖Ax‖X , x ∈ D(A). Using

the invariance of D(A) under S in combination with the fact that A commutes with

S(t) for all t ≥ 0, we conclude the continuity of all linear operators

Sgr(t) : D(A) ∋ x 7−→ S(t)x ∈ D(A)
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with respect to the graph norm ‖ · ‖gr on D(A). Moreover, Sgr := {Sgr(t)}t≥0 tri-

vially satisfies the properties of a strongly continuous semigroup and the associated

infinitesimal generator Agr is given by

Agr : D(Agr) ∋ x 7−→ Ax ∈ D(A)

and

D(Agr) =
{
x ∈ D(A) |Ax ∈ D(A)

}
.

Returning to the strongly continuous semigroup Te = {Te(t)}t≥0 and noting

that the graph norm ‖ · ‖gr of Ge is just the ‖ · ‖C1-norm on D(Ge), we see at once

the identities G = (Ge)gr, T = (Te)gr and Tϕ0Xf = D(Ge).

Spectral Properties of the Linearization. A crucial point of the above

relation between the semigroups T on Tϕ0Xf and Te on C, and their infinitesimal

generators G and Ge, respectively, is the fact that it also entails a close connec-

tion for the associated spectra and spectral projections. In order to clarify this,

let σ(Ge), σ(G) denote the spectrum of the complexification of Ge, G, respectively.

As Ge is the infinitesimal generator of the solution semigroup for the linear au-

tonomous equation (1.10), the spectrum σ(Ge) is given by the solutions of a trans-

cendental characteristic equation, is discrete and contains only eigenvalues with

finite-dimensional generalized eigenspaces. These results in conjunction with the

discussed relation between the strongly continuous semigroups T and Te imply

σ(G) = σ(Ge)

as proven in Hartung et al. [11]. Moreover, for the spectral projections P (λ),

Pe(λ) and the generalized eigenspaces M(λ), Me(λ) associated with an eigenvalue

λ ∈ σ(Ge) = σ(G) we have

M(λ) = Me(λ)

and

P (λ)χ = Pe(λ)χ

for all χ in the complexification (Tϕ0Xf )C of the Banach space Tϕ0Xf . By realifica-

tion, we obtain the corresponding relations for the realified generalized eigenspaces

of G, Ge and their spectral projections.

Denote by σu(Ge), σc(Ge) and σs(Ge) the subsets of the spectrum σ(Ge), con-

sisting of eigenvalues with positive, zero, and negative real part, respectively. As

proven in Hale and Verduyn Lunel [10] or in Diekmann et al. [6], for each constant

β ∈ R the half-plane {λ ∈ C | Reλ > β} of C contains at most a finite number

of elements of σ(Ge), so that the spectral parts σu(Ge), σc(Ge) are empty or fi-

nite. Hence, the associated realified generalized eigenspaces Cu and Cc, which are

called the unstable and the center space of Ge, respectively, are finite dimen-

sional subspaces of C. In contrast, the stable space Cs ⊂ C of Ge, that is, the

realified generalized eigenspace associated to the spectral part σs(Ge), is infinite-

dimensional. The subspaces Cu, Cc and Cs are closed, invariant under Te(t), t ≥ 0,

and provide a decomposition

C = Cu ⊕ Cc ⊕ Cs

of C. As the restriction of Te to the finite dimensional spaces Cu, Cc has a bounded

generator, Te may be extended to a one-parameter group in each case. The action
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of Te on the above decomposition is characterized as follows: there are real numbers

K ≥ 1, cs < 0 < cu and cc > 0 with cc < min{−cs, cu} such that

(1.11)

‖Te(t) ϕ‖C ≤ Kecut‖ϕ‖C , t ≤ 0, ϕ ∈ Cu,

‖Te(t)ϕ‖C ≤ Kecc|t|‖ϕ‖C , t ∈ R, ϕ ∈ Cc,

‖Te(t)ϕ‖C ≤ Kecst‖ϕ‖C , t ≥ 0, ϕ ∈ Cs.

The relations between generalized eigenspaces and spectral projections of Ge
and G imply that the unstable and center spaces of G coincide with Cu and Cc,

respectively, and that the stable space of G is given by Cs ∩ D(Ge). Subsequently,

we obtain the spectral decomposition

(1.12) Y = Cu ⊕ Cc ⊕ Ys

for the Banach space Y = Tϕ0Xf , where Ys := Cs ∩ D(Ge). All the spaces Cu, Cc
and Ys are invariant under the semigroup T , and T forms a one-parameter group

on each of the both finite-dimensional subspaces Cu and Cc. Using the exponential

trichotomy (1.11), it is easy to check the analogous estimates

(1.13)

‖T (t)ϕ‖C1 ≤ Kecut‖ϕ‖C1, t ≤ 0, ϕ ∈ Cu,

‖T (t)ϕ‖C1 ≤ Kecc|t|‖ϕ‖C1, t ∈ R, ϕ ∈ Cc,

‖T (t)ϕ‖C1 ≤ Kecst‖ϕ‖C1 , t ≥ 0, ϕ ∈ Ys,

describing the asymptotic behavior of T on the decomposition of Y , which is of

particular importance in the next subsection.

The Principle of Linearized Instability. The remainder of this chapter

is devoted to prove the principle of linearized instability. This result enables us

to infer the instability of a stationary point with respect to a given non-linear

semiflow of Theorem 1.2 from the instability of that point with respect to the

associated linearization under certain conditions. More precisely, we will establish

the following result.

Proposition 1.4 (The Principle of Linearized Instability). Suppose the func-

tion f : U −→ Rn, U ⊂ C1 open, satisfies (S 1) and (S 2), and ϕ0 ∈ Xf is a

stationary point of the associated semiflow from Theorem 1.2. If Reλ > 0 for some

eigenvalue λ ∈ σ(Ge), then ϕ0 is unstable for the semiflow F .

Here, the stationary point ϕ0 is called unstable for F whenever there is ε > 0

such that for all δ > 0 we find ϕ ∈ Xf and t > 0 with ‖ϕ − ϕ0‖C1 < δ but

‖F (t, ϕ) − ϕ0‖C1 > ε. The main idea of the proof is to reduce the question on

the instability of the stationary point ϕ0 ∈ Xf for the semiflow F to that for

the discrete semi-dynamical system induced by a time-t-map of F . For smooth

semiflows generated by a certain class of differential equations on open subsets of

Banach spaces, especially for those induced by autonomous RFDEs, this approach

is presented in detail by Diekmann et al. [6, Chapter VII]. We adopt this technique

and need only minor changes, related to the fact that F is a semiflow on a Banach

manifold. On that account we begin with the construction of local coordinates for

the semiflow F in a neighborhood of ϕ0, following Hartung et al. [11].

As the tangent space Y = Tϕ0Xf of Xf at a stationary point ϕ0 is a closed

subspace of C1 with codimension n, we find a closed linear subspace E ⊂ C1

of dimension n which is complementary to Y in C1; that is, C1 = Y ⊕ E. In
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particular, the projection P of C1 along E onto Y is continuously differentiable,

and the equation

Q(ϕ) = P (ϕ− ϕ0)

defines a manifold chart for Xf on an open neighborhood V ⊂ Xf of the stationary

point ϕ0. Thereby, the image Y0 := Q(V ) of V underQ forms an open neighborhood

of 0 = Q(ϕ0) in the Banach space Y equipped with norm ‖ · ‖C1. The inverse of

Q is given by a continuously differentiable map R : Y0 → C1, and the derivative

DQ(ϕ0) of Q at ϕ0 as well as the derivative DR(0) of R at 0 ∈ Y0 is the identity

operator on Y in each case. Therefore we may assume that there is a constant

LR > 0 with

(1.14) ‖R(χ1) −R(χ2)‖C1 ≤ LR‖χ1 − χ2‖C1

for all χ1, χ2 ∈ Y0.

Let now a > 0 be given. By compactness of the interval [0, a] together with the

continuity of the map

(R × V ) ∩ Ω ∋ (t, χ) 7−→ F (t, R(χ)) ∈ Xf ,

we find an open neighborhood Ya of 0 in Y0 such that F (t, R(χ)) is well-defined for

all (t, χ) ∈ [0, a] × Ya and that F ([0, a], R(Ya)) ⊂ V . As a consequence, we are able

to represent the semiflow F in local coordinates, namely by the map

(1.15) Ha : [0, a] × Ya ∋ (t, χ) 7−→ Q(F (t, R(χ))) ∈ Y.

Obviously, we have Ha(t, 0) = 0 and Ha(t, Ya) ⊂ Y0 for all 0 ≤ t ≤ a. The function

Ha is also continuous. Moreover, for each 0 ≤ t ≤ a the induced map

Ha
t : Ya ∋ χ 7−→ Ha(t, χ) ∈ Y

is continuously differentiable with derivative given by

DHa
t (0) = DQ(ϕ0) ◦D2F (t, ϕ0) ◦DR(0) = D2F (t, ϕ0) = T (t).

Suppose that we have Ha(s, χ) ∈ Ya for a fixed (s, χ) ∈ [0, a] × Ya. Then

all values Ha(t,Ha(s, χ)), 0 ≤ t ≤ a, are well-defined. Accordingly, by setting

Ha(t + s, χ) := Ha(t,Ha(s, χ)) for 0 ≤ t ≤ a we may represent the positive semi-

orbit of the semiflow F through R(χ) in the local coordinates constructed above

at least on the interval [0, s+ a]. Additionally, in this case we see at once that the

semigroup property of F implies

Ha(t+ s,R(χ)) = Ha(t,Ha(s, χ)) = Q(F (t+ s,R(χ)))

for 0 ≤ t ≤ a. Therefore, we may extend the domain for the local representation

Ha of the semiflow F to the set
{
(t, χ) ∈ [0,∞) × Ya

∣∣Q(F (⌊t/a⌋ a,R(χ))) ∈ Ya

}
,

where ⌊t/a⌋ denotes the integer part of the real t/a. For instance, [0,∞) × {0}

belongs to this extended domain of the map Ha and the stationary point ϕ0 ∈ Xf
can obviously be represented by 0 ∈ Y0 for all t ≥ 0.

After the above construction of local coordinates for the semiflow F we are now

in the situation to prove the statement of Proposition 1.4.
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Proof of Proposition 1.4. The proof will be divided into four small parts.

1. Consider the decomposition (1.12) of Y and the associated trichotomy given

by (1.13). Defining Ycs := Cc ⊕ Ys and ccs := cc, we obtain the decomposition

Y = Cu ⊕ Ycs

with the exponential estimates

(1.16)
‖T (t)χ‖C1 ≤ Kecut‖ϕ‖C1 , t ≤ 0, χ ∈ Cu,

‖T (t)χ‖C1 ≤ Keccst‖ϕ‖C1, t ≥ 0, χ ∈ Ycs.

Fix 0 < q < 1 with 1/q > K ≥ 1. Then for all t ≥ 0 and χ ∈ Cu we have

‖χ‖C1 = ‖T (−t)T (t)χ‖C1 ≤ Ke−cut‖T (t)χ‖C1 ≤
1

q
e−cut‖T (t)χ‖C1,

that is,

(1.17) q ecut‖χ‖C1 ≤ ‖T (t)χ‖C1.

Since ccs < cu, there is a constant t0 > 0 such that ϑ1 := q ecut0 − K eccst0 > 0.

Hence the estimates (1.16) and (1.17) for the linear operator L := T (t0) imply the

two inequalities

(1.18)
‖Lχ‖C1 ≥ (ϑ1 + ϑ2)‖χ‖C1 , χ ∈ Cu,

‖Lχ‖C1 ≤ ϑ2‖χ‖C1, χ ∈ Ycs,

where ϑ2 := K eccst0 > 1.

2. Let P̂u : Y −→ Y denote the projection of Y along Ycs onto the unstable

space Cu of the operator G. Using the continuity of P̂u, it is easily seen that

‖ϕ‖u := ‖P̂u ϕ‖C1 + ‖(1− P̂u)ϕ‖C1

defines a norm on Y . In particular, the norm ‖ · ‖u is equivalent to ‖ · ‖C1 on Y .

Consider now the time-t0-map g := Ht0(t0, ·) : Yt0 −→ Y of the semiflow F in local

coordinates. Since Yt0 is an open neighborhood of the origin in Y , and L is the

derivative of g at χ = 0, we find a sufficiently small ε1 > 0 such that for all χ ∈ Y

with ‖χ‖u < ε1 we have χ ∈ Yt0 and

(1.19) ‖g(χ) − Lχ‖u ≤
1

4
ϑ1 ‖χ‖u.

Suppose for χ ∈ Y with ‖χ‖u < ε1 there holds ‖(1 − P̂u)χ‖C1 ≤ ‖P̂u χ‖C1 .

Then we claim that the value g(χ) satisfies the same cone condition as χ; that is,

‖(1− P̂u)(g(χ))‖C1 ≤ ‖P̂u(g(χ))‖C1 .

To see this, note first that the above assumptions on χ immediately imply the

inequality ‖χ‖u ≤ 2‖P̂u χ‖C1. Therefore the invariance of the spaces Cu, Ycs for L
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and the estimates (1.18), (1.19) yield

‖P̂u g(χ)‖C1 ≥ ‖P̂u Lχ‖C1 − ‖P̂u(g(χ) − Lχ)‖C1

= ‖L P̂u χ‖C1 − ‖P̂u(g(χ) − Lχ)‖C1

≥ (ϑ1 + ϑ2)‖P̂u χ‖C1 − ‖g(χ) − Lχ‖u

≥ (ϑ1 + ϑ2)‖P̂u χ‖C1 −
1

4
ϑ1‖χ‖u

≥ (ϑ1 + ϑ2)‖P̂u χ‖C1 −
1

2
ϑ1‖P̂u χ‖C1

≥

(
ϑ2 +

1

2
ϑ1

)
‖P̂u χ‖C1

and

‖(1− P̂u) g(χ)‖C1 ≤ ‖(1− P̂u)Lχ‖C1 + ‖(1− P̂u)(g(χ) − Lχ)‖C1

= ‖L (1− P̂u)χ‖C1 + ‖(1− P̂u)(g(χ) − Lχ)‖C1

≤ ϑ2‖(1− P̂u)χ‖C1 + ‖g(χ) − Lχ‖u

≤ ϑ2‖(1− P̂u)χ‖C1 +
1

4
ϑ1‖χ‖u

≤ ϑ2‖(1− P̂u)χ‖C1 +
1

2
ϑ1‖P̂u χ‖C1

≤

(
ϑ2 +

1

2
ϑ1

)
‖P̂u χ‖C1,

which proves the claim. Thus for all χ ∈ Y with ‖χ‖u < ε1 we have the implication

‖(1− P̂u)χ‖C1 ≤ ‖P̂u χ‖C1 =⇒ ‖(1− P̂u)(g(χ))‖C1 ≤ ‖P̂u(g(χ))‖C1 .

3. Proof of the instability of χ = 0 for g. Let 0 < ε2 < ε1/(‖P̂u‖ + ‖1 − P̂u‖)

be given. Assume that for every sufficiently small χ ∈ Y with ‖χ‖u < ε1 and

‖(1− P̂u)χ‖C1 ≤ ‖P̂u χ‖C1 there holds

‖gk(χ)‖C1 < ε2

for all k ∈ N, where gk denotes the k-th iteration of the map g. Then we would

have
‖gk(χ)‖u = ‖P̂u(g

k(χ))‖C1 + ‖(1− P̂u)(g
k(χ))‖C1

≤ ‖P̂u‖ ‖g
k(χ)‖C1 + ‖1− P̂u‖ ‖g

k(χ)‖C1

≤ (‖P̂u‖ + ‖1− P̂u‖) ε2

< ε1,

and hence by the part above

‖P̂u(g
k(χ))‖C1 ≥

(
ϑ2 +

1

2
ϑ1

)k
‖P̂u χ‖C1

for all k ∈ N. Subsequently, in consideration of ϑ1 > 0 and ϑ2 > 1, this would

imply

‖P̂u(g
k(χ))‖C1 → ∞

for k → ∞ whenever χ 6= 0. But by the hypothesis dimCu ≥ 1 of the proposition,

we see at once the existence of any desired small χu ∈ Y \{0} satisfying

‖(1− P̂u)χu‖C1 ≤ ‖P̂u χu‖C1 ≤ ‖χu‖u < ε1,
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which leads to a contradiction to our assumption on boundedness for the iterations

of g. Therefore the stationary point χ = 0 is unstable for g.

4. Contrary to the statement of the proposition, suppose that the stationary

point ϕ0 ∈ Xf is stable for the semiflow F . By definition, we find for each ε > 0 a

constant δ(ε) > 0 such that for all ϕ ∈ Xf with ‖ϕ − ϕ0‖C1 < δ and for all t ≥ 0

we have

‖F (t, ϕ) − ϕ0‖C1 < ε.

Choose δ := δ(ε2/‖P‖) > 0 where ‖P‖ denotes the norm of the projection

operator P : C1 −→ C1 along Y onto E involved in our construction of local

coordinates forXf . Further, define η := δ/LR with constant LR > 0 of the Lipschitz-

condition (1.14) for the mapping R. According to the last points, we find χ ∈ Y \{0}

satisfying the cone condition

‖P̂u χ‖C1 ≥ ‖(1− P̂u)χ‖C1 .

By the equivalence of the norms ‖ · ‖C1 and ‖ · ‖u on the space Y , we may assume

‖χ‖u < ε := ε2/‖P‖ and ‖χ‖C1 < η. Hence we have

‖R(χ) − ϕ0‖C1 = ‖R(χ) −R(0)‖C1 ≤ LR‖χ‖C1 < δ.

But on the other hand, in view of the inequality

‖gk(χ)‖C1 = ‖Ht0(k t0, χ)‖C1

= ‖Q(F (k t0, R(χ)))‖C1

= ‖P (F (k t0, R(χ)) − ϕ0)‖C1

≤ ‖P‖ ‖F (k t0, R(χ)) − ϕ0‖C1

the arguments of the last part implies that the positive semi-orbit of the time-t0-

map through R(χ), and thus the positive semi-orbit of the semiflow F through

R(χ), leaves the open ball at ϕ0 of radius ε2/‖P‖ in Xf ; that is, there is a t > 0

with ‖F (t, R(χ)) − ϕ0‖C1 > ε2/‖P‖, in contradiction to the stability of ϕ0. Thus

ϕ0 is unstable, which completes the proof. �

Remark 1.5. The counterpart of Proposition 1.4 is the so-called principle of

linearized stability, which is valid under an analogous smoothness condition on f

as proven in Hartung et al. [11, Section 3.6]. More precisely, if f : U −→ Rn,

U ⊂ C1 open, satisfies (S 1) and (S 2) and if ϕ0 ∈ Xf is a stationary point of the

resulting semiflow such that all eigenvalues of Ge have negative real parts, then ϕ0

is (exponentially) asymptotically stable.

An alternative way to prove Proposition 1.4 is indicated in Krisztin [15]. Under

the hypothesis of the proposition there exist local (fast) unstable manifolds at

the stationary point ϕ0, which can be used to show the existence of a solution

x : (−∞, t+) −→ Rn, t+ > 0, for Equation (1.4) that converges to 0 as t→ −∞.





CHAPTER 2

Local Center-Unstable Manifolds

1. Introduction

In the last chapter we saw that under certain conditions the stability properties

of stationary points of non-linear semiflows are determined by those for the associ-

ated linearized systems. Another important concept arising from the linearization of

non-linear differential equations at stationary points are the so-called local invariant

manifolds. Roughly speaking, these manifolds may be regarded as deformations of

the invariant linear spaces for the linearized semiflow under the non-linear pertur-

bation effected by the original system. The principal significance of these manifolds

is the fact that they provide one of the most potent ways to describe the qualitative

behavior of non-linear semiflows in close vicinity of stationary points.

From a historical point of view, first results on such manifolds for non-linear

differential equations date back to the work of Lyapunov [19] and Perron [22] on the

stability of stationary points for ODEs. In the last decades, the ideas of Lyapunov

and Perron were generalized and several other approaches were developed, so that

today the existence of local invariant manifolds at stationary points is well-known

for various types of differential equations. In this context, the most common in-

variant manifolds are the so-called stable, center-stable, center, center-unstable and

unstable manifolds.

In case of differential equations with state-dependent delays, two of the first

results on invariant manifolds near stationary points are due to Krishnan [14] and

Krisztin [15]. In Krishnan [14], the author considers a certain class of DDEs with a

state-dependent delay, and proves the occurrence of local unstable manifolds under

a hyperbolicity condition. Also assuming hyperbolicity, Krisztin discusses in [15]

the existence and smoothness of local unstable manifolds for more general equations

representing differential equations with state-dependent delays in the abstract form

of RFDEs. In particular, the results in Krisztin [15] are applicable to the semiflow

F of Theorem 1.2 in the last chapter. It is worth pointing out that in both papers

the approaches do not involve the knowledge of a semiflow, and in both cases only

a heuristic technique for the linearization is used.

A proof of the existence of continuously differentiable local stable manifolds for

the semiflow F considered in the last chapter is contained in Section 3 of Hartung et

al. [11]. In this survey paper the reader may also find the construction of local cen-

ter manifolds for F , where the associated conclusion of continuous differentiability

is established in Krisztin [16]. The occurrence of continuously differentiable local

center-stable manifolds at stationary points for the semiflow induced by Theorem

1.2 is confirmed by Qesmi and Walther in the recent work [23].

The goal of this chapter is to ensure the existence of continuously differentiable

local center-unstable manifolds at stationary points for the semiflow given by Theo-

rem 1.2. For this purpose, we first follow the approach used in Hartung et al.

21
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[11] for the construction of local center manifolds, and apply a modification of

the Lyapunov-Perron method contained in Diekmann et al. [6] to establish the

existence of Lipschitz continuous local center-unstable manifolds. Hereafter, we

employ the techniques from Krisztin [16] to prove C1-smoothness.

This chapter is organized as follows. After stating our main result in the next

section, we summarize the relevant material needed to show the assertion in order to

make our exposition self-containing. In Section 4 we construct Lipschitz continuous

local center-unstable manifolds and prove their C1-smoothness in Section 5. Finally,

we indicate an application of such manifolds for the study of the qualitative behavior

of non-linear semiflows near stationary points.

2. The Main Result

Assume that f : U −→ Rn, U ⊆ C1 open, satisfies the two smoothness con-

ditions (S 1) and (S 2) on page 7, and that 0 ∈ U with f(0) = 0. Then the set

Xf ⊂ U defined by (1.5) is obviously not empty, and according Theorem 1.2 the

segments of the solutions for the differential equation

(2.1) ẋ(t) = f(xt)

with initial values in Xf generate a smooth semiflow F on Xf . In particular,

ϕ0 = 0 ∈ Xf is a stationary point of F .

Let us denote by L the derivative C1 ∋ ϕ 7−→ Df(0)ϕ ∈ R
n of f at ϕ0 = 0,

and let Le denote the continuous linear extension C ∋ ϕ 7−→ Def(0)ϕ ∈ Rn on the

larger Banach space C, which exists by condition (S 1). For each ϕ ∈ C the IVP

(2.2)

{
v̇(t) = Le vt

v0 = ϕ

has a unique solution vϕ : [−h,∞) −→ Rn, and the segments of all these solutions

define a strongly continuous semigroup Te = {Te(t)}t≥0 on C with infinitesimal

generator

Ge : D(Ge) ∋ ϕ 7−→ ϕ′ ∈ C

where D(Ge) = {ϕ ∈ C1| ϕ′(0) = Le ϕ}. The spectrum σ(Ge) = σ((Ge)C) of Ge
defines a decomposition of C into

(2.3) C = Cu ⊕ Cc ⊕ Cs,

where Cu, Cc andCs denote the unstable, center and stable space ofGe, respectively.

Both Cu and Cc belong to D(Ge) ⊂ C1 and are finite dimensional, whereas Cs is

an infinite dimensional closed subspace of C. In addition, each of the spaces Cu,

Cc, Cs is invariant under Te and Te can be extended to a one-parameter group of

operators on both Cu and Cc.

As a consequence of the above decomposition of C we obtain also a decompo-

sition of the smaller Banach space C1, namely

(2.4) C1 = Cu ⊕ Cc ⊕ C1
s

with the closed subspace C1
s := Cs ∩ C1 of C1.

The linearization T = {T (t)}t≥0 of the semiflow F at the stationary point

ϕ0 = 0 forms a strongly continuous semigroup of linear operators on the Banach

space T0Xf =
{
χ ∈ C1 |χ′(0) = Lχ

}
, which in particular coincides with D(Ge).

The infinitesimal generator G of T is defined by G : D(G) ∋ χ 7−→ χ′ ∈ T0Xf on
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the domain D(G) = {χ ∈ C2 |χ′(0) = Lχ, χ′′(0) = Lχ′}. As discussed in the last

chapter, the unstable, center and stable space of G are Cu, Cc, and Cs ∩ D(Ge),

respectively, and the decomposition of C leads to the decomposition

T0Xf = Cu ⊕ Cc ⊕ (Cs ∩D(Ge))

of the tangent space T0Xf of F at ϕ0 = 0.

Using the notation Ccu := Cc ⊕ Cu for the center-unstable space of G, we

state our result on the existence of local center-unstable manifolds for F at ϕ0 = 0.

Theorem 2.1 (Existence of Local Center-Unstable Manifold). Suppose in ad-

dition to the previous assumptions on f that {λ ∈ σ(Ge)| Reλ ≥ 0} 6= ∅ or,

equivalently, Ccu 6= {0}. Then there are open neighborhoods Ccu,0 of 0 in Ccu and

C1
s,0 of 0 in C1

s with Ncu := Ccu,0 + C1
s,0 ⊆ U , and a Lipschitz continuous map

wcu : Ccu,0 −→ C1
s,0 with wcu(0) = 0, such that the graph

Wcu :=
{
ϕ+ wcu(ϕ)

∣∣ ϕ ∈ Ccu,0

}

has the following properties.

(i) The set Wcu belongs to the solution manifold Xf of Equation (2.1). More-

over, Wcu is a k-dimensional Lipschitz submanifold of Xf where k :=

dimCcu.

(ii) For each solution x : (−∞, 0] −→ R
n of Equation (2.1) on (−∞, 0], we

have
{
xt| t ≤ 0

}
⊆ Ncu =⇒

{
xt| t ≤ 0

}
⊆Wcu.

(iii) The graph Wcu is positively invariant with respect to the semiflow F re-

lative to Ncu; that is, if ϕ ∈ Wcu and t > 0 then
{
F (s, ϕ)| 0 ≤ s ≤ t

}
⊂ Ncu =⇒

{
F (s, ϕ)| 0 ≤ s ≤ t

}
⊂Wcu.

The submanifold Wcu of Xf is called a local center-unstable manifold of F

at the stationary point ϕ0 = 0. It is C1-smooth and passes ϕ0 tangentially to the

center-unstable space Ccu as we shall have established by our next theorem.

Theorem 2.2 (C1-Smoothness of Local Center-Unstable Manifold). The map

wcu : Ccu,0 −→ C1
s,0 obtained in Theorem 2.1 is continuously differentiable and

Dwcu(0) = 0.

In the next three sections we prove the above theorems. Even though the

proofs are quite long and at certain points technical, they are nevertheless not

difficult to understand. As mentioned before, we follow the construction of local

center manifolds in Hartung et al. [11] and apply the Lyapunov-Perron method

to obtain the existence of local center-unstable manifolds as claimed in Theorem

2.1. The basic idea of this method is to transform the differential equation (2.1),

or more precisely, a smoothed modification of it, into an integral equation such

that the corresponding integral operator forms a parameter-dependent contraction

in an appropriate Banach space of continuous functions. The fixed points of this

contraction define a mapping whose graph forms the desired invariant manifold.

After the described construction, we follow the procedure in Krisztin [16] and

show the C1-dependence of the obtained fixed points on the parameter which leads

to the continuous differentiability of the manifolds asserted in Theorem 2.2.
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3. Preliminaries for the Existence Proof

For the transformation of the considered differential equation into an integral

form we will employ a variation-of-constants formula, which is established in Diek-

mann et al. [6] and involves duality and adjoint semigroups. For the convenience

of the reader and to make our exposition self-contained, we repeat some of the

relevant material from Diekmann et al. [6] without proofs. Afterwards we discuss

some preparatory results.

Duality and Sun-Reflexivity. Recall that for a Banach space X over the

field K = R or K = C the dual space X∗ is the set of all continuous linear

functionals on X , that is, X∗ consists of all continuous linear maps from X into K.

We write x∗ for elements of X∗, and for x∗ ∈ X∗ and x ∈ X we use the notation

〈x∗, x〉 ∈ K instead of x∗(x). Provided with the norm

‖x∗‖X∗ := sup
‖x‖X≤1

|〈x∗, x〉|,

where ‖ · ‖X denotes the norm on X , the dual space X∗ becomes also a Banach

space over K.

If A : D(A) → X is a linear operator defined on some dense linear subspace

D(A) in X , then its adjoint A∗ is defined by

D(A∗) :=
{
x∗ ∈ X∗

∣∣ ∃ y∗ ∈ X∗ with 〈y∗, x〉 = 〈x∗, A x〉 for all x ∈ D(A)
}

and then for x∗ ∈ D(A∗)

A∗x∗ = y∗.

If A : X −→ X is a bounded linear operator, then for each x∗ ∈ X∗ the induced

map X ∋ x 7−→ 〈x∗, A x〉 ∈ K is linear and bounded. Thus, in this case, the

relations

〈A∗x∗, x〉 = 〈x∗, A x〉

for all elements x ∈ X and x∗ ∈ X∗ uniquely define a bounded linear operator

A∗ : X∗ −→ X∗. In particular, we have ‖A‖ = ‖A∗‖.

Consider now the Banach space C and the strongly continuous semigroup Te =

{Te(t)}t≥0 of bounded linear operators defined by the solutions of the IVP (2.2).

For every t ≥ 0 the adjoint T ∗
e (t) of Te(t) is a linear operator with norm ‖T ∗

e (t)‖ =

‖Te(t)‖ on the dual space C∗ of C and the family T ∗
e := {T ∗

e (t)}t≥0 obviously

constitutes a semigroup of operators on C∗. We also have T ∗
e (0)ϕ∗ = ϕ∗ for all

ϕ∗ ∈ C∗, but T ∗
e is in general not a strongly continuous semigroup. Indeed, if C∗ is

equipped with the topology given by the norm ‖ · ‖C∗ , it is not difficult to see that

for ϕ∗ ∈ C∗ the induced curve

(2.5) [0,∞) ∋ t 7−→ T ∗(t)ϕ∗ ∈ C∗

is not necessarily continuous. However, the set of all functions ϕ⊙ ∈ C∗ for

which the curve (2.5) is continuous, in other words, ϕ⊙ ∈ C∗ with the property

‖T ∗
e (t)ϕ⊙−ϕ⊙‖C∗ → 0 as tց 0, forms a closed subspace C⊙ of C∗. Furthermore,

T ∗
e (t)(C⊙) ⊂ C⊙ for all t ≥ 0 so that the family of operators

T⊙
e (t) : C⊙ ∋ ϕ⊙ 7−→ T ∗

e (t)ϕ⊙ ∈ C⊙

constitutes a strongly continuous semigroup T⊙
e on C⊙.
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Remark 2.3. It is worth to mention that the family T ∗
e of linear operators

on C∗ is a weak* continuous semigroup, and G∗
e the associated weak* generator.

More precisely, if the dual space C∗ of C is equipped with the so-called weak*

topology, that is, the coarsest topology on C∗ such that for all ϕ ∈ C the functions

C∗ ∋ ϕ∗ 7−→ 〈ϕ∗, ϕ〉 ∈ R are continuous, then for each ϕ∗ ∈ C∗ the induced curve

(2.5) is continuous. In this way, T ∗
e becomes a continuous semigroup and G∗

e its

generator.

Similarly, we can repeat the above process with the Banach space C⊙ and

the strongly continuous semigroup T⊙
e . At first, we introduce again the adjoint

operators T⊙∗
e (t) of T⊙

e (t), t ≥ 0, on the dual space C⊙∗ of C⊙, and afterwards we

restrict the semigroup T⊙∗
e := {T⊙∗

e (t)}t≥0 to the closed subspace C⊙⊙, for which

the semigroup is strongly continuous.

(C, Te)

j

��

YY

j−1∼=

//____________ (C∗, T ∗
e )

���
�
�
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e ) (C⊙, T⊙

e )

(C⊙∗, T⊙∗
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Figure 2.1. The repeated star-sun-process and the resulting sun-reflexivity

The original Banach space C together with the strongly continuous semigroup

Te is ⊙-reflexive in the sense that there is an isometric linear map j : C −→ C⊙∗

with jC = C⊙⊙ and T⊙∗
e (t)(jϕ) = j(Te(t)ϕ) for all ϕ ∈ C and t ≥ 0. We omit the

embedding operator j of C in C⊙∗ and simply identify the Banach space C with

C⊙⊙ as usual. Schematically, the whole process can be represented as shown in

Figure 2.1.

Remark 2.4. As we had real Banach spaces as underlying structure, our dis-

cussion of the linearization and its spectral properties in the last chapter relied on

the procedure of complexification and realification. Therefore, it is important to

note that these procedures are also compatible with the duality and sun-reflexivity

framework presented above. For more details we refer the reader to Diekmann et

al. [6, Chapter III.7]

The spectrum σ(G⊙∗
e ) of the generator G⊙∗

e for the semigroup T⊙∗
e coincides

with σ(Ge), and the decomposition (2.3) of C results in the decomposition

(2.6) C⊙∗ = Cu ⊕ Cc ⊕ C⊙∗
s

of C⊙∗, where Cu, Cc, and C⊙∗
s are closed and invariant under T⊙∗

e . Furthermore,

there are constants K ≥ 1, cs < 0 < cu and cc > 0 with cc < min{−cs, cu} so that

the asymptotic behavior of T⊙∗ on these subspaces is given by

(2.7)

‖Te(t)ϕ‖C ≤ Kecut‖ϕ‖C , t ≤ 0, ϕ ∈ Cu,

‖Te(t)ϕ‖C ≤ Kecc|t|‖ϕ‖C , t ∈ R, ϕ ∈ Cc,

‖T⊙∗
e (t)ϕ⊙∗‖C⊙∗ ≤ Kecst‖ϕ⊙∗‖C⊙∗ , t ≥ 0, ϕ⊙∗ ∈ C⊙∗

s .
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The above decompositions (2.4), (2.6) of C1 and C⊙∗ induce continuous pro-

jections Pu, Pc, Ps and analogously P⊙∗
u , P⊙∗

c , P⊙∗
s onto subspaces Cu, Cc, C

1
s , and

Cu, Cc, C
⊙∗
s , respectively. Also, using the identification of C with C⊙⊙ we see at

once C1
s = C1 ∩ C⊙∗

s .

The Variation-of-Constants Formula. Next, we proceed with recalling the

variation-of-constant formula for solutions of the inhomogeneous linear RFDE

(2.8) ẋ(t) = Le xt + q(t)

with given function q : I −→ Rn on some interval I ⊂ R. For this purpose, let

L∞([−h, 0],Rn) denote the Banach space of all measurable and essentially bounded

functions from [−h, 0] into R
n, provided with the norm ‖ · ‖L∞ of essential least

upper bound. With the norm

‖(α, ϕ)‖Rn×L∞ := max{‖α‖Rn , ‖ϕ‖L∞},

the product space R
n × L∞([−h, 0],Rn) becomes also a Banach space, which is

in particular isometrically isomorphic to the space C⊙∗. Using the temporary

notation k : C⊙∗ −→ Rn × L∞([−h, 0],Rn) for a norm-preserving isomorphism

from C⊙∗ onto Rn × L∞([−h, 0],Rn), we define elements r⊙∗
i := k−1(ei, 0) ∈ C⊙∗,

i = 1, . . . , n, where ei is the i-th canonical basis vector of Rn. Clearly, the family

{r⊙∗
1 , . . . , r⊙∗

n } constitutes a basis of the linear subspace Y ⊙∗ := k−1(Rn × {0}) of

C⊙∗, and the requirement l(ei) = r⊙∗
i for i = 1, . . . , n uniquely determines a linear

bijective mapping l : Rn −→ Y ⊙∗ with ‖l‖ = ‖l−1‖ = 1.

For reals a ≤ b ≤ c and a (norm) continuous function w : [a, b] −→ C⊙∗ the

weak* integral

(2.9)

∫ b

a

T⊙∗
e (c− τ)w(τ) dτ ∈ C⊙∗

is defined by

〈

∫ b

a

T⊙∗
e (c− τ)w(τ) dτ, ϕ⊙〉 :=

∫ b

a

〈T⊙∗
e (c− τ)w(τ), ϕ⊙〉 dτ

for ϕ⊙ ∈ C⊙. Furthermore, set
∫ a

b

T⊙∗
e (c− τ)w(τ) dτ := −

∫ b

a

T⊙∗
e (c− τ)w(τ) dτ

as usual. It turns out that, under the above condition on w, this weak* integral

belongs to C (more precisely, to C⊙⊙ = j(C)). Additionally, one obtains the

formulas

(2.10) T⊙∗
e (t)

∫ b

a

T⊙∗
e (c− τ)w(τ) dτ =

∫ b

a

T⊙∗
e (c+ t− τ)w(τ) dτ

for all t ≥ 0,

(2.11) P⊙∗
λ

∫ b

a

T⊙∗
e (c− τ)w(τ) dτ =

∫ b

a

T⊙∗
e (c− τ)P⊙∗

λ w(τ) dτ

with λ ∈ {s, c, u}, and finally the inequality

(2.12)

∥∥∥∥∥

∫ b

a

T⊙∗
e (c− τ)w(τ) dτ

∥∥∥∥∥
C⊙∗

≤

∫ b

a

‖T⊙∗
e (c− τ)w(τ)‖C⊙∗ dτ.
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If q : I −→ Rn is a continuous function defined on some interval I ⊆ R and

if x : I + [−h, 0] −→ Rn is a solution of the inhomogeneous RFDE (2.8), then the

curve u : I ∋ t 7−→ xt ∈ C satisfies the abstract integral equation

(2.13) u(t) = Te(t− s)u(s) +

∫ t

s

T⊙∗
e (t− τ)Q(τ) dτ

for all s, t ∈ I with s ≤ t, where Q : [s, t] ∋ τ 7−→ l(q(τ)) ∈ Y ⊙∗. On the

other hand, if Q : I −→ Y ⊙∗ is continuous, and if u : I −→ C is a solution of

Equation (2.13) then there is a continuous function x : I + [−h, 0] −→ Rn with

xt = u(t), t ∈ I, solving the differential equation (2.8) for the inhomogeneity

q : I ∋ τ 7−→ l−1(Q(τ)) ∈ Rn. In this sense we have a one-to-one correspondence

between solutions for Equations (2.8) and (2.13).

Preliminary Results on Inhomogeneous Linear Equations. As the last

step to prepare the construction of local center-unstable manifolds for Equation

(2.1), we establish the existence and some properties of special solutions of the

integral equation (2.13). In doing so, we will need certain Banach spaces which are

introduced below.

Let X be a Banach space with norm ‖ · ‖X . For every η ≥ 0 we define the linear

space

Cη((−∞, 0], X) :=

{
g ∈ C((−∞, 0], X)

∣∣∣ sup
s∈(−∞,0]

eηs ‖g(s)‖X <∞

}

where C((−∞, 0], X) denotes the Banach space of all continuous functions from the

interval (−∞, 0] into X . Providing Cη((−∞, 0], X) with the weighted supremum

norm given by

‖g‖Cη
:= sup

s∈(−∞,0]

eηs‖g(t)‖X ,

we obtain a one-parameter family of Banach spaces with the scaling property

Cη1((−∞, 0], X) ⊆ Cη2((−∞, 0], X)

for all η1 ≤ η2 and

‖g‖Cη1
≥ ‖g‖Cη2

for all g ∈ Cη1((−∞, 0], X). To simplify notation, we use the abbreviations Yη, C
0
η ,

and C1
η , for the spaces Cη((−∞, 0], Y ⊙∗), Cη((−∞, 0], C), and Cη((−∞, 0], C1),

respectively, which are mainly regarded in the sequel.

From now on, let us denote by P⊙∗
cu the projection of C⊙∗ along C⊙∗

s onto

the center-unstable space Ccu, that is, P⊙∗
cu := P⊙∗

u + P⊙∗
c . For a given function

Q : (−∞, 0] −→ Y ⊙∗ we formally introduce a mapping KcuQ from (−∞, 0] into

C⊙∗ by

(2.14) (KcuQ)(t) :=

∫ t

0

T⊙∗
e (t− τ)P⊙∗

cu Q(τ) dτ +

∫ t

−∞

T⊙∗
e (t− τ)P⊙∗

s Q(τ) dτ

for t ≤ 0. Note that the right-hand side of Equation (2.14) may not be well-defined

for arbitrary Q. However, in our next result we show that for maps Q ∈ Yη with

η ∈ R such that cc < η < min{−cs, cu} the integrals in (2.14) do not only exist, but

the functions KcuQ form also solutions for the abstract integral equation (2.13).
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Proposition 2.5. Let η ∈ R with cc < η < min{−cs, cu} be given. Then

Equation (2.14) induces a bounded linear map

K̃ : Yη ∋ Q 7−→ KcuQ ∈ C0
η .

In addition, for every Q ∈ Yη the function u := K̃Q is a solution of the integral

equation

(2.15) u(t) = Te(t− s)u(s) +

∫ t

s

T⊙∗
e (t− τ)Q(τ) dτ

for −∞ < s ≤ t ≤ 0, and the only one in C0
η satisfying P⊙∗

cu u(0) = 0.

Proof. The proof falls naturally into three parts. In the first one, we show

that, under the stated assumption on η ∈ R, the formal expression (2.14) forms

indeed a well-defined mapping KcuQ from (−∞, 0] into C for all Q ∈ Yη. Afterwards

we prove that K̃ is a bounded linear operator and finally we conclude the part of

the proposition concerning the abstract integral equation. From now on to the end

of the proof, we fix η ∈ R with cc < η < min{−cs, cu}.

1. In order to see (KcuQ)(t) ∈ C for all Q ∈ Yη and t ≤ 0, recall that for given

Q ∈ Yη and t ≤ 0 both
∫ t

0

T⊙∗
e (t− τ)P⊙∗

cu Q(τ) dτ = −

∫ 0

t

T⊙∗
e (−τ)T⊙∗

e (t)P⊙∗
cu Q(τ) dτ

and

I(s) :=

∫ t

s

T⊙∗
e (t− τ)P⊙∗

s Q(τ) dτ

with s ≤ t belong to C. Hence, it remains to prove the convergence of I(s) in

C as s → −∞. To show this, we assume {sk}k∈N ⊂ (−∞, t] with sk → −∞ as

k → ∞. Then, by inequality (2.12) and the estimate (2.7) for the action of T⊙∗
e on

the center space,

‖I(sk2) − I(sk1)‖C⊙∗ =

∥∥∥∥∥

∫ sk1

sk2

T⊙∗
e (t− τ)P⊙∗

s Q(τ) dτ

∥∥∥∥∥
C⊙∗

≤

∫ sk1

sk2

∥∥T⊙∗
e (t− τ)P⊙∗

s Q(τ)
∥∥
C⊙∗ dτ

≤ K ‖P⊙∗
s ‖

∫ sk1

sk2

ecs(t−τ) ‖Q(τ)‖C⊙∗ dτ

≤ ecstK ‖P⊙∗
s ‖

∫ sk1

sk2

e−(cs+η)τ eητ ‖Q(τ)‖C⊙∗dτ

≤ ecstK ‖P⊙∗
s ‖ ‖Q‖Yη

∫ sk1

sk2

e−(cs+η)τ dτ

≤
−ecst

cs + η
K ‖P⊙∗

s ‖ ‖Q‖Yη

[
e−(cs+η)sk1 − e−(cs+η)sk2

]

≤
−ecst

cs + η
K ‖P⊙∗

s ‖ ‖Q‖Yη
e−(cs+η)sk1

for all k1, k2 ∈ N with sk1 ≥ sk2 . Thus, {I(sk)}k∈N constitutes a Cauchy sequence

in C. In particular, I := limk→∞ I(sk) exists. Furthermore, in the same manner we

see that for any another given sequence {s̃k}k∈N ⊂ (−∞, t] of reals with s̃k → −∞,

we also have ‖I(s̃k) − I‖C⊙∗ → 0 as k → ∞. This implies the desired conclusion

I = lims→−∞ I(s). Hence, (KcuQ)(t) ∈ C for all Q ∈ Yη and t ≤ 0.
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2. The technical results in Diekmann et al. [6, Chapter III.2] on the continuous

dependence of the weak* star integral on parameters and estimates (2.7) enable to

show that the induced curve (−∞, 0] ∋ t 7−→ (KcuQ)(t) ∈ C is continuous for every

Q ∈ Yη. Consequently, Equation (2.14) defines by Q 7−→ KcuQ a mapping from Yη
into C((−∞, 0], C). This map is also linear. In addition, we claim KcuQ ∈ C0

η for

all Q ∈ Yη. To this end, consider the apparent inequality

eηt ‖(KcuQ)(t)‖C⊙∗ ≤ eηt
∥∥∥∥
∫ t

0

T⊙∗
e (t− τ)P⊙∗

c Q(τ) dτ

∥∥∥∥
C⊙∗

+ eηt
∥∥∥∥
∫ t

0

T⊙∗
e (t− τ)P⊙∗

u Q(τ) dτ

∥∥∥∥
C⊙∗

+ eηt
∥∥∥∥
∫ t

−∞

T⊙∗
e (t− τ)P⊙∗

s Q(τ) dτ

∥∥∥∥
C⊙∗

for fixed Q ∈ Yη and t ≤ 0. Using the inequalities (2.12) and (2.7) as in the part

above, we estimate the first term on the right-hand side by

eηt
∥∥∥∥
∫ t

0

T⊙∗
e (t− τ)P⊙∗

c Q(τ) dτ

∥∥∥∥
C⊙∗

≤ −eηt
∫ t

0

∥∥T⊙∗
e (t− τ)P⊙∗

c Q(τ)
∥∥
C⊙∗ dτ

≤ −K eηt
∫ t

0

ecc|t−τ | ‖P⊙∗
c Q(τ)‖C⊙∗dτ

= −K

∫ t

0

e(cc−η)(τ−t) eητ ‖P⊙∗
c Q(τ)‖C⊙∗ dτ

≤ −K ‖P⊙∗
c ‖

∫ t

0

e(cc−η)(τ−t) eητ ‖Q(τ)‖C⊙∗dτ

≤ K ‖P⊙∗
c ‖ ‖Q‖Yη

∫ 0

t

e(cc−η)(τ−t) dτ

≤ K ‖P⊙∗
c ‖ ‖Q‖Yη

1

η − cc
.

In the same manner we can see that

eηt
∥∥∥∥
∫ t

0

T⊙∗
e (t− τ)P⊙∗

u Q(τ) dτ

∥∥∥∥
Y ⊙∗

≤ K ‖P⊙∗
u ‖ ‖Q‖Yη

1

cu + η

and

eηt
∥∥∥∥
∫ t

−∞

T⊙∗
e (t− τ)P⊙∗

s Q(τ) dτ

∥∥∥∥
Y ⊙∗

≤ K ‖P⊙∗
s ‖ ‖Q‖Yη

1

−cs − η
.

Summarizing, we get

(2.16) eηt ‖(KcuQ)(t)‖Y ⊙∗ ≤ K ‖Q‖Yη

(
‖P⊙∗
c ‖

η − cc
+

‖P⊙∗
u ‖

cu + η
−

‖P⊙∗
s ‖

cs + η

)
,

and thus KcuQ ∈ C0
η . It follows that Q 7−→ KcuQ forms a linear mapping K̃ from

Yη into C0
η , which in particular is bounded as claimed.
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3. Given any Q ∈ Yη define δ(t, s) := (KcuQ)(t) − Te(t− s)
(
(KcuQ)(s)

)
for all

reals −∞ < s ≤ t ≤ 0. Then, by the linearity and formula (2.10), we get

δ(t, s) =

∫ t

0

T⊙∗
e (t− τ)P⊙∗

cu Q(τ) dτ +

∫ t

−∞

T⊙∗
e (t− τ)P⊙∗

s Q(τ) dτ

− Te(t− s)

(∫ s

0

T⊙∗
e (s− τ)P⊙∗

cu Q(τ) dτ +

∫ s

−∞

T⊙∗
e (s− τ)P⊙∗

s Q(τ) dτ

)

=

∫ t

0

T⊙∗
e (t− τ)P⊙∗

cu Q(τ) dτ +

∫ t

−∞

T⊙∗
e (t− τ)P⊙∗

s Q(τ) dτ

−

∫ s

0

T⊙∗
e (t− τ)P⊙∗

cu Q(τ) dτ −

∫ s

−∞

T⊙∗
e (t− τ)P⊙∗

s Q(τ) dτ

=

∫ t

s

T⊙∗
e (t− τ)P⊙∗

cu Q(τ) dτ +

∫ t

s

T⊙∗
e (t− τ)P⊙∗

s Q(τ) dτ

=

∫ t

s

T⊙∗
e (t− τ)Q(τ) dτ,

which yields that u := KcuQ satisfies Equation (2.15) for all −∞ < s ≤ t ≤ 0.

Moreover, in view of Equation (2.11) for the relation of the weak* integrals and

projections on the decomposition of C⊙∗, for t = 0 we have

u(0) = (KcuQ)(0)

=

∫ 0

−∞

T⊙∗
e (−τ)P⊙∗

s Q(τ) dτ

= P⊙∗
s

( ∫ 0

−∞

T⊙∗
e (−τ)Q(τ) dτ

)

implying P⊙∗
cu u(0) = 0.

So the assertion of the proposition follows if we are able to prove that u is the

only solution of Equation (2.15) in C0
η with vanishing Ccu component at t = 0. For

this purpose, suppose v ∈ C0
η is also a solution of (2.15) for −∞ < s ≤ t ≤ 0 with

P⊙∗
cu v(0) = 0. Then the difference w := u − v belongs to C0

η , has a vanishing Ccu
component at t = 0, and satisfies the equation

(2.17) w(t) = Te(t− s)w(s)

for all −∞ < s ≤ t ≤ 0. Furthermore, w can be extended by

t 7−→

{
w(t), for t ≤ 0,

T (t)w(0), for t ≥ 0

to a solution w̃ : R −→ C of Equation (2.17) for all −∞ < s ≤ t <∞. Since

sup
t≥0

e−ηt ‖w(t)‖C = sup
t≥0

e−ηt ‖Te(t)w(0)‖C

≤ K sup
t≥0

e−ηt ecst ‖w(0)‖C

= K ‖w(0)‖C

due to (cs − η) < 0 we get

sup
t∈R

e−η|t| ‖w̃(t)‖C ≤ sup
t≤0

eηt ‖w̃(t)‖C + sup
t≥0

e−ηt ‖w̃(t)‖C

= ‖w‖C0
η

+K ‖w(0)‖C <∞.
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Now from Diekmann et al. [6, Lemma 2.4 in Section IX.2] it follows w(0) ∈ Cu and

w̃(0) ∈ Cc. As w(0) = w̃(0) and Cu ∩Cc = {0}, we conclude w̃(0) = w(0) = 0, and

so by Equation (2.17),

0 = Te(s)w(0) = Te(s)Te(−s)w(s) = Te(0)w(s) = u(s) − v(s)

for all −∞ < s ≤ 0. This completes the proof. �

Next, we prove a smoothing property of the integral equation (2.18). This

property will be useful in combination with our preceding result.

Proposition 2.6. Suppose that Q ∈ Yη for some η ≥ 0. If u ∈ C0
η satisfies the

abstract integral equation

(2.18) u(t) = Te(t− s)u(s) +

∫ t

s

T⊙∗
e (t− τ)Q(τ) dτ

for all −∞ < s ≤ t ≤ 0, then u ∈ C1
η and

‖u‖C1
η
≤
(
1 + eηh ‖Le‖

)
‖u‖C0

η
+ eηh ‖Q‖Yη

.

Proof. Consider the mapping q : (−∞, 0] −→ Rn defined by q(t) = l−1(Q(t)),

−∞ < t ≤ 0. Of course, q ∈ C((−∞, 0],Rn). Moreover, since

sup
t∈(−∞,0]

eηt ‖q(t)‖Rn = sup
t∈(−∞,0]

eηt ‖l−1(Q(t))‖Rn

= sup
t∈(−∞,0]

eηt ‖Q(t)‖Y ⊙∗

= ‖Q‖Yη

we see at once q ∈ Cη((−∞, 0],Rn) with ‖q‖Cη
= ‖Q‖Yη

.

By assumption, u satisfies Equation (2.18) such that, taking into account our

discussion about the one-to-one correspondence between solutions for Equations

(2.8) and (2.13), the function x : (∞, 0] −→ R
n given by x(t) = u(t)(0) is a solution

of the differential equation

ẋ(t) = Le xt + q(t)

for all −∞ < t ≤ 0. Accordingly, x is everywhere continuously differentiable, xt
belongs to C1 for all −∞ < t ≤ 0, and the map (−∞, 0] ∋ t 7−→ u(t) = xt ∈ C1 is

continuous. Furthermore, by the differential equation for x and the estimate for q,

we have

‖ẋ(t)‖Rn ≤ ‖Le‖ ‖xt‖C + ‖q(t)‖Rn

≤ ‖Le‖ ‖u(t)‖C + e−ηt ‖q‖Cη

≤ e−ηt (‖Le‖ ‖u‖C0
η

+ ‖Q‖Yη
)

and therefore

sup
t∈(−∞,0]

eηt ‖ẋt‖C = sup
t∈(−∞,0]

(
eηt sup

ϑ∈[−h,0]

‖ẋ(t+ ϑ)‖Rn

)

≤ (‖Le‖ ‖u‖C0
η

+ ‖Q‖Yη
) sup
t∈(−∞,0]

(
eηt sup

ϑ∈[−h,0]

e−η(t+ϑ)

)

≤ eηh(‖Le‖ ‖u‖C0
η

+ ‖Q‖Yη
),



32 2. LOCAL CENTER-UNSTABLE MANIFOLDS

for all −∞ < t ≤ 0. From this, it follows that u ∈ C1
η and

‖u‖C1
η

= sup
t∈(−∞,0]

eηt‖u(t)‖C1

= sup
t∈(−∞,0]

eηt‖xt‖C1

= sup
t∈(−∞,0]

eηt(‖xt‖C + ‖ẋt‖C)

≤ ‖u‖C0
η

+ eηh(‖Le‖‖u‖C0
η

+ ‖Q‖Yη
)

as claimed. �

As an easy consequence of the last two results we conclude that the formal

definition (2.14) generates a bounded linear mapping from the Banach space Yη
into C1

η for cc < η < min{−cs, cu}.

Corollary 2.7. For each η ∈ R with cc < η < min{−cs, cu}, relation (2.14)

defines a bounded linear mapping

Kη : Yη ∋ Q 7−→ KcuQ ∈ C1
η

with

‖Kη‖ ≤ K (1 + eηh ‖Le‖)

(
‖P⊙∗
c ‖

η − cc
+

‖P⊙∗
u ‖

cu + η
−

‖P⊙∗
s ‖

cs + η

)
+ eηh.

Moreover, for all Q ∈ Yη the function u := KηQ is a solution of

u(t) = Te(t− s)u(s) +

∫ t

s

T⊙∗
e (t− τ)Q(τ) dτ

for −∞ < s ≤ t ≤ 0, and the only one in C1
η with P⊙∗

cu u(0) = 0.

Proof. Apply Propositions 2.5 and 2.6, taking into account the estimate (2.16)

for the bound of the linear map K̃. �

Remark 2.8. Observe that the bounds of the linear maps Kη in the above

corollary are given by a continuous function in η. This will be a crucial point in

the proof of Theorem 2.2.

4. The Construction of Local Center-Unstable Manifolds

This section is devoted to the actual proof of Theorem 2.1 about the existence

of local center-unstable manifolds for Equation (2.1). Throughout the proof, we

consider the differential equation (2.1) in the equivalent form

(2.19) ẋ(t) = Lxt + r(xt)

with the nonlinearity

(2.20) r : U ∋ ϕ 7−→ f(ϕ) − Lϕ ∈ R
n.

Obviously, r also satisfies the same smoothness conditions (S 1) and (S 2) as f and

we have r(0) = 0 and Dr(0) = 0.

The proof is organized as follows. In the first part, we modify the nonlinearity

r outside a small neighborhood of the origin and assign the resulting differential

equation to an abstract integral equation by the variation-of-constants formula.

Then, using the changes on the nonlinearity in combination with the auxiliary

conclusions of the last section, we show that the associated integral operator forms

a parameter-dependent contraction in C1
η for an appropriate η > 0. In the final step,
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we prove that the graph of this contraction is an invariant manifold for the modified

differential equation and that a part of this graph also satisfies the assertions of

Theorem 2.1.

Smoothing Modification of the Nonlinearity. As the Banach space Ccu
is finite-dimensional, there exists a norm ‖ · ‖cu on Ccu being infinitely often con-

tinuously differentiable on Ccu\{0}. Introducing the projection Pcu := Pc + Pu of

C1 along C1
s onto the center-unstable space Ccu and defining

(2.21) ‖ϕ‖1 := max
{
‖Pcu ϕ‖cu, ‖Ps ϕ‖C1

}

for ϕ ∈ C1, we get a second norm on C1, which is equivalent to ‖ · ‖C1.

Let ̺ : [0,∞) −→ R be a C∞-smooth function with ̺(t) = 1 for 0 ≤ t ≤ 1,

0 < ̺(t) < 1 for 1 < t < 2, and ̺(t) = 0 for all t ≥ 2. Further, let the map

r̂ : C1 −→ Rn be given by

r̂(ϕ) :=

{
r(ϕ), for ϕ ∈ U,

0, for ϕ 6∈ U.

Using these two functions, we introduce for all δ > 0 the smoothing modification

rδ : C1 ∋ ϕ 7−→ ̺

(
‖ϕcu‖cu

δ

)
· ̺

(
‖ϕs‖C1

δ

)
· r̂(ϕ) ∈ R

n

of the nonlinearity r, where we write ϕcu, ϕs for the components Pcu ϕ, Ps ϕ of ϕ,

respectively.

For every γ > 0 let Bγ(0) := {ϕ ∈ C1 | ‖ϕ‖1 < γ} denote the open ball in

C1 of radius γ with respect to the ‖ · ‖1-norm and centered at the origin. Since

U ⊂ C1 is open and r continuously differentiable due to property (S 1), we find

a sufficiently small δ0 > 0 with B2δ0(0) ⊂ U , so that the restriction r|B2δ0
(0) of

r to B2δ0(0) together with the associated derivative Dr|B2δ0
(0) are both bounded.

Subsequently, for small reals δ > 0, the modifications of r in a neighborhood of the

origin are also bounded and continuously differentiable with bounded derivatives.

More precisely, the following result holds.

Corollary 2.9. For all reals 0 < δ < δ0 the restriction of the map rδ to the

strip S :=
{
ψ ∈ C1| ‖ψs‖1 < δ

}
in C1 is a bounded, C1-smooth function with

bounded derivative. Moreover,

rδ(ϕ) = ̺

(
‖ϕcu‖cu

δ

)
· r(ϕ)

for all ϕ ∈ S.

Proof. Given any positive constant 0 < δ < δ0 suppose that ϕ ∈ S. Then, by

definition of rδ in combination with the inequality ‖ϕs‖C1 ≤ ‖ϕs‖1 we get

rδ(ϕ) = ̺

(
‖ϕcu‖cu

δ

)
· ̺

(
‖ϕs‖C1

δ

)
· r̂(ϕ) = ̺

(
‖ϕcu‖cu

δ

)
· r(ϕ).

Consequently, we have rδ(ϕ) = r(ϕ) for all ϕ ∈ S with ‖ϕ‖1 ≤ δ, and rδ(ϕ) = 0 for

all ϕ ∈ S with ‖ϕ‖1 ≥ 2δ. Since r, ̺ are C1-smooth and the norm ‖ · ‖1 continuously

differentiable on Ccu\{0} by assumption, the restriction of rδ to the strip S is clearly

also continuously differentiable. Moreover, using the above expressions for rδ on S

together with the boundedness of r and Dr on B2δ0(0) ⊂ U , we conclude that both

rδ and Drδ are bounded on S as claimed. �
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For sufficiently small δ > 0, the functions rδ are even globally bounded and

Lipschitz continuous with constants continuously depending on δ, as proved next.

Proposition 2.10. [Proposition II.2 in Krisztin et al. [18]] Under the above

assumptions there exists δ1 ∈ (0, δ0) and a monotone increasing λ : [0, δ1] −→ [0, 1]

with λ(0) = 0 and λ(δ) ց 0 as δ ց 0 such that

‖rδ(ϕ)‖Rn ≤ δ · λ(δ)

and

‖rδ(ϕ) − rδ(ψ)‖Rn ≤ λ(δ) · ‖ϕ− ψ‖C1

for all 0 < δ ≤ δ1 and ϕ, ψ ∈ C1.

Proof. We follow the proof given in Krisztin et al. [18, Proposition II.2] and

establish the assertion with respect to the ‖ · ‖1-norm on C1 first. Afterwards we

use the equivalence of ‖ · ‖1 and ‖ · ‖C1 to conclude the statement. On that account,

we choose K1 ≥ 1 with the property ‖ϕ‖1 ≤ K1‖ϕ‖C1 for all ϕ ∈ C1.

1. By our assumptions, we have r(0) = 0 and r is continuously differentiable on

U with Dr(0) = 0. Combining these, we find a constant α0 ∈ (0, 2δ0) and therewith

a monotonous increasing function λ0 : [0, α0] −→ [0,∞) with

lim
δց0

λ0(δ) = 0 = λ0(0)

such that {ϕ ∈ C1| ‖ϕ‖1 < α0} ⊂ U and

‖r(ϕ) − r(ψ)‖Rn ≤ λ0(α) · ‖ϕ− ψ‖1

for every 0 < α ≤ α0 and all ϕ, ψ ∈ Bα(0). We may even assume

6 · λ0(α0) ·K1 · max

{
sup
s≥0

|̺′(s)|, 1

}
≤ 1.

Set δ1 := α0/4. We claim

‖rδ(ϕ)‖Rn ≤ λ0(δ) · 2δ

for all (δ, ϕ) ∈ (0, δ1] × C1. Indeed, in case ‖ϕ‖1 ≥ 2δ either ‖ϕcu‖cu ≥ 2δ or

‖ϕs‖C1 ≥ 2δ by Equation (2.21), and thus rδ(ϕ) = 0. On the other hand, if

‖ϕ‖1 < 2δ then we have ‖ϕ‖1 < α0, which implies ϕ ∈ U and

‖rδ(ϕ)‖Rn ≤ ‖r̂(ϕ)‖Rn = ‖r(ϕ)‖Rn ≤ λ0(2δ) · ‖ϕ‖1 ≤ λ0(2δ) · 2δ.

2. Suppose now δ ∈ (0, δ1] and ϕ, ψ ∈ C1. Then, by definition, we have

‖rδ(ϕ) − rδ(ψ)‖Rn =

∥∥∥∥ ̺
(
‖ϕcu‖cu

δ

)
· ̺

(
‖ϕs‖C1

δ

)
· r̂(ϕ)

− ̺

(
‖ψcu‖cu

δ

)
· ̺

(
‖ψs‖C1

δ

)
· r̂(ψ)

∥∥∥∥
Rn

≤ ‖r̂(ϕ) − r̂(ψ)‖Rn · ̺

(
‖ϕcu‖cu

δ

)
· ̺

(
‖ϕs‖C1

δ

)
+ ‖r̂(ψ)‖Rn

·

∣∣∣∣ ̺
(
‖ϕcu‖cu

δ

)
· ̺

(
‖ϕs‖C1

δ

)
− ̺

(
‖ψcu‖cu

δ

)
· ̺

(
‖ψs‖C1

δ

)∣∣∣∣ .

If ‖ϕ‖1 ≥ 2δ and ‖ψ‖1 ≥ 2δ then similar arguments to the first part, based on the

definitions of ‖ · ‖1 and ̺, immediately imply

‖rδ(ϕ) − rδ(ψ)‖Rn = 0.
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In case ‖ϕ‖1 ≥ 2δ and ‖ψ‖1 ≤ 2δ we have either ‖ϕcu‖cu ≥ 2δ or ‖ϕs‖C1 ≥ 2δ.

Both subcases result in the estimate

‖rδ(ϕ) − rδ(ψ)‖Rn ≤ ‖r̂(ψ)‖Rn ·

∣∣∣∣ ̺
(
‖ϕcu‖cu

δ

)
· ̺

(
‖ϕs‖C1

δ

)

− ̺

(
‖ψcu‖cu

δ

)
· ̺

(
‖ψs‖C1

δ

) ∣∣∣∣

≤ λ0(2δ) · 2δ ·

∣∣∣∣ ̺
(
‖ϕcu‖cu

δ

)
· ̺

(
‖ϕs‖C1

δ

)

− ̺

(
‖ψcu‖cu

δ

)
· ̺

(
‖ψs‖C1

δ

) ∣∣∣∣

= λ0(2δ) · 2δ ·

∣∣∣∣ ̺
(
‖ϕcu‖cu

δ

)
·

(
̺

(
‖ϕs‖C1

δ

)
− ̺

(
‖ψs‖C1

δ

))

+

(
̺

(
‖ϕcu‖cu

δ

)
− ̺

(
‖ψcu‖cu

δ

))
· ̺

(
‖ψs‖C1

δ

) ∣∣∣∣

≤ λ0(2δ) · 2δ ·

(
̺

(
‖ϕcu‖cu

δ

)
·

∣∣∣∣ ̺
(
‖ϕs‖C1

δ

)
− ̺

(
‖ψs‖C1

δ

)∣∣∣∣

+ ̺

(
‖ψs‖C1

δ

)
·

∣∣∣∣ ̺
(
‖ϕcu‖cu

δ

)
− ̺

(
‖ψcu‖cu

δ

)∣∣∣∣

)

≤ λ0(2δ) · 2δ ·

(
sup
s≥0

|̺′(s)| ·
| ‖ϕs‖C1 − ‖ψs‖C1 |

δ

+ sup
s≥0

|̺′(s)| ·
| ‖ϕcu‖cu − ‖ψcu‖cu|

δ

)

≤ 4λ0(2δ) · sup
s≥0

|̺′(s)| · ‖ϕ− ψ‖1.

In the situation ϕ, ψ ∈ B2δ(0), by combining the same methods as above we get

the inequality

‖rδ(ϕ) − rδ(ψ)‖Rn ≤ λ0(2δ) · ‖ϕ− ψ‖1 + 4λ0(2δ) · sup
s≥0

|̺′(s)| · ‖ϕ− ψ‖1.

Summarizing, we conclude

‖rδ(ϕ) − rδ(ψ)‖Rn ≤

(
λ0(2δ) + 4λ0(2δ) · sup

s≥0
·|̺′(s)|

)
· ‖ϕ− ψ‖1

for every 0 < δ ≤ δ0 and all ϕ, ψ ∈ C1.

3. Defining the function λ : [0, δ1] −→ [0,∞) by

λ(δ) := 6λ0(δ) ·K1 · max

{
sup
s≥0

|̺′(s)|, 1

}

and applying the preliminary steps, one easily proves the properties of λ as given

in the assertion. This completes the proof. �

Using the modification rδ of the nonlinearity r, we introduce for each 0 < δ ≤ δ1
the retarded functional differential equation

ẋ(t) = Lxt + rδ(xt), −∞ < t ≤ 0,(2.22)

and the associated abstract integral equations

u(t) = Te(t− s)u(s) +

∫ t

s

T⊙∗
e (t− τ) l(rδ(u(τ))) dτ, −∞ < s ≤ t ≤ 0.(2.23)
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We have now a one-to-one correspondence in the following sense: If the function

x : (−∞, 0] −→ Rn is a continuously differentiable solution of RFDE (2.22), then

u : (−∞, 0] 7−→ xt ∈ C1 is a solution of Equation (2.23). On the other hand,

for a continuous mapping u : (−∞, 0] −→ C1 satisfying integral equation (2.23),

the function x : (−∞, 0] −→ Rn defined by x(t) = u(t)(0), −∞ < t ≤ 0, forms a

continuously differentiable solution of (2.22).

Center-Unstable Manifolds of the Smoothed Equation. Until the end

of this section fix η ∈ R satisfying the estimate

(2.24) cc < η < min{−cs, cu}.

Then we find a constant 0 < δ < δ1 with

(2.25) ‖Kη‖ λ(δ) <
1

2

where the mappings Kη and λ are defined in Corollary 2.7 and Proposition 2.10, re-

spectively. Below, we construct a parameter-dependent contraction on the Banach

space C1
η , such that the fixed points will form solutions for the abstract integral

equation (2.23). For this purpose, we assign to Equation (2.23) an integral operator.

We begin with the non-linear part.

Corollary 2.11. Let R denote the map, which assigns to u ∈ C((−∞, 0], C1)

the mapping (−∞, 0] ∋ s 7−→ l(rδ(u(s))) ∈ Y ⊙∗ in C((−∞, 0], Y ⊙∗). Then R maps

C1
η into Yη, and the induced mapping Rδη : C1

η ∋ u 7−→ R(u) ∈ Yη satisfies

‖Rδη(u)‖Yη
≤ δ λ(δ)(2.26)

and

‖Rδη(u) −Rδη(v)‖Yη
≤ λ(δ) ‖u − v‖C1

η
(2.27)

for all u, v ∈ C1.

Proof. First, note that R indeed assigns a continuous function from (−∞, 0]

into Y ⊙∗ to a function u ∈ C((−∞, 0], C1), as the mappings l and rδ are continuous.

Given u ∈ C1
η , Proposition 2.10 implies

sup
t∈(−∞,0]

eηt ‖R(u)(t)‖Y⊙∗ = sup
t∈(−∞,0]

eηt ‖l(rδ(u(t)))‖Y ⊙∗

= sup
t∈(−∞,0]

eηt ‖rδ(u(t))‖Rn

≤ sup
t∈(−∞,0]

eηt δ λ(δ)

= δ λ(δ).

This shows R(C1
η ) ⊂ Yη and in particular the boundedness of Rδη by δλ(δ) as

claimed. Using the Lipschitz continuity of rδ from Proposition 2.10, we also see

that Rδη is Lipschitz continuous with Lipschitz constant λ(δ), and the corollary

follows. �

Remark 2.12. The mapping R : C((−∞, 0], C1) −→ C((−∞, 0], Y ⊙∗) in the

last result is called the substitution or also the Nemitsky operator of the map-

ping C1 ∋ ϕ 7−→ l(rδ(ϕ)) ∈ Y ⊙∗ on (−∞, 0].

Next, we consider the linear part of the integral equation (2.23) and prove that

it constitutes a bounded linear operator from the center-unstable space into C1
η .
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Corollary 2.13. For each ϕ ∈ Ccu, the curve (−∞, 0] ∋ t 7−→ Te(t)ϕ ∈ C1

belongs to C1
η , and Sη : C1 ⊃ Ccu −→ C1

η defined by (Sη ϕ)(t) = Te(t)ϕ for ϕ ∈ Ccu
and t ≤ 0 is a bounded linear operator with

(2.28) ‖Sη‖ ≤ K
(
‖P⊙∗
c ‖ + ‖P⊙∗

u ‖
)
.

Proof. To start with, recall that Te defines a group on Ccu ⊂ C1 and coincides

with T . Thus, for all ϕ ∈ Ccu, the curve (−∞, 0] ∋ t 7−→ Te(t)ϕ ∈ Ccu takes values

in C1 and is in fact a continuous map from (−∞, 0] into C1. Furthermore, we have

‖Te(t)ϕ‖C1 = ‖Te(t)ϕ‖C +
∥∥ d
dt
Te(t)ϕ

∥∥
C

and
d
dt

(Te(t)ϕ) = Te(t)Ge ϕ = Te(t)ϕ
′

for ϕ ∈ Ccu. Hence, by the exponential trichotomy under our assumption (2.24), it

follows

sup
t∈(−∞,0]

eηt ‖Te(t)ϕ‖C1 = sup
t∈(−∞,0]

eηt
(
‖Te(t)ϕ‖C + ‖Te(t)ϕ

′‖C
)

≤ sup
t∈(−∞,0]

eηt
(
‖Te(t)P

⊙∗
c ϕ‖C + ‖Te(t)P

⊙∗
u ϕ‖C

+ ‖Te(t)P
⊙∗
c ϕ′‖C + ‖Te(t)P

⊙∗
u ϕ′‖C

)

≤ sup
t∈(−∞,0]

eηt
(
‖Te(t)P

⊙∗
c ϕ‖C + ‖Te(t)P

⊙∗
c ϕ′‖C

)

+ sup
t∈(−∞,0]

eηt
(
‖Te(t)P

⊙∗
u ϕ‖C + ‖Te(t)P

⊙∗
u ϕ′‖C

)

≤ K sup
t∈(−∞,0]

e−(cc−η)t
(
‖P⊙∗
c ϕ‖C + ‖P⊙∗

c ϕ′‖C
)

+K sup
t∈(−∞,0]

e(η+cu)t
(
‖P⊙∗
u ϕ‖C + ‖P⊙∗

u ϕ′‖C
)

≤ K ‖P⊙∗
c ‖

(
‖ϕ‖C + ‖ϕ′‖C

)
+

K ‖P⊙∗
u ‖

(
‖ϕ‖C + ‖ϕ′‖C

)

= K
(
‖P⊙∗
c ‖ + ‖P⊙∗

u ‖
)
‖ϕ‖C1 .

Accordingly, Sη ϕ ∈ C1
η for ϕ ∈ Ccu, and thus Sη is well-defined. In addition, the

mapping Sη is obviously linear by definition, and

‖Sηϕ‖C1
η
≤ K(‖P⊙∗

c ‖ + ‖P⊙∗
u ‖)

for ‖ϕ‖C1 ≤ 1. Therefore, inequality (2.28) holds and this completes the proof. �

Using Corollaries 2.7, 2.11, and 2.13 to guarantee the well-definedness, we in-

troduce the mapping Gη from the product space C1
η × Ccu into C1

η given by

(2.29) Gη(u, ϕ) = Sη ϕ+ Kη ◦Rδη(u).

In the next proposition we prove that each function ϕ ∈ Ccu uniquely determines

a solution of u = Gη(u, ϕ) in C1
η .

Proposition 2.14. For each ϕ ∈ Ccu, the mapping Gη( · , ϕ) : C1
η −→ C1

η has

exactly one fixed point u = u(ϕ). Moreover, the associated solution operator

(2.30) ũη : Ccu ∋ ϕ 7−→ u(ϕ) ∈ C1
η

of u = Gη(u, ϕ) is (globally) Lipschitz continuous.
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Proof. We begin with the claim that, for given ϕ ∈ Ccu, Gη( · , ϕ) maps suf-

ficiently large closed balls centered at the origin into themselves. Indeed, for fixed

ϕ ∈ Ccu we find a positive real γ > 0 with 2 ‖Sη‖ ‖ϕ‖C1 ≤ γ so that both estimates

(2.25) and (2.27) together imply

‖Gη(u, ϕ)‖C1
η

= ‖Sη ϕ+ Kη ◦Rδη(u)‖C1
η

≤ ‖Sη ϕ‖C1
η

+ ‖Kη ◦Rδη(u)‖C1
η

≤ ‖Sη‖ ‖ϕ‖C1 + λ(δ) ‖Kη‖ ‖u‖C1
η

≤
γ

2
+
γ

2
= γ

for all u ∈ C1
η with ‖u‖C1

η
≤ γ. Hence, Gη( · , ϕ) maps

{
u ∈ C1

η | ‖u‖C1
η
≤ γ

}
into

itself. The mapping Gη( · , ϕ), ϕ ∈ Ccu, is also a contraction since, by application

of (2.25) and (2.27),

‖Gη(u, ϕ) − Gη(v, ϕ)‖C1
η

= ‖Kη ◦Rδη(u) −Kη ◦Rδη(v)‖C1
η

≤ ‖Kη‖ ‖Rδη(u) −Rδη(v)‖Yη

≤ λ(δ) ‖Kη‖ ‖u− v‖C1
η

≤
1

2
‖u− v‖C1

η

for all u, v ∈ C1
η . Consequently, using the Banach contraction principle, we find a

unique u(ϕ) ∈ C1
η satisfying u = Gη(u, ϕ).

To see the global Lipschitz continuity of ũη : Ccu ∋ ϕ 7−→ u(ϕ) ∈ C1
η , assume

ϕ, ψ ∈ Ccu. Using the two inequalities (2.25) and (2.27) once more, we see

‖ũη(ϕ) − ũη(ψ)‖C1
η

= ‖Gη(ũη(ϕ), ϕ) − Gη(ũη(ψ), ψ)‖C1
η

= ‖Sη(ϕ− ψ) + Kη ◦Rδη(ũη(ϕ)) −Kη ◦Rδη(ũη(ψ))‖C1
η

≤ ‖Sη‖ ‖ϕ− ψ‖C1 + ‖Kη‖ ‖Rδη(ũη(ϕ)) −Rδη(ũη(ψ))‖Yη

≤ ‖Sη‖ ‖ϕ− ψ‖C1 + λ(δ) ‖Kη‖ ‖ũη(ϕ) − ũη(ψ)‖C1
η

≤ ‖Sη‖ ‖ϕ− ψ‖C1 +
1

2
‖ũη(ϕ) − ũη(ψ)‖C1

η
.

Therefore

‖ũη(ϕ) − ũη(ψ)‖C1
η
≤ 2 ‖Sη‖ ‖ϕ− ψ‖C1 ,

which completes the proof. �

For all ϕ ∈ Ccu, the associated fixed point ũ(ϕ) of the last proposition forms

a solution of Equation (2.23) in C1
η with the property that its component in the

center-unstable space at t = 0 is just given by ϕ, as shown in the following.

Corollary 2.15. For all ϕ ∈ Ccu the mapping ũη(ϕ) is a solution of the

abstract integral equation (2.23) with Pcu(ũη(ϕ)(0)) = ϕ.

Proof. The proof is straightforward. Given ϕ ∈ Ccu define z := ũη(ϕ)−Sη ϕ.

By Corollary 2.7, we have

z(t) = Te(t− s) z(s) +

∫ t

s

T⊙∗
e (t− τ)Rδη(ũη(ϕ))(τ) dτ, −∞ < s ≤ t ≤ 0,
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and Pcu z(0) = P⊙∗
cu z(0) = 0. From this we conclude

ũη(ϕ)(t) − Te(t)ϕ = ũη(ϕ)(t) − (Sη ϕ)(t)

= z(t)

= Te(t− s) z(s) +

∫ t

s

T⊙∗
e (t− τ)Rδη(ũη(ϕ))(τ) dτ

= Te(t− s) ũη(ϕ)(s) − Te(t− s) (Sη ϕ)(s)

+

∫ t

s

T⊙∗
e (t− τ)Rδη(ũη(ϕ))(τ) dτ

= Te(t− s) ũη(ϕ)(s) − Te(t)ϕ+

∫ t

s

T⊙∗
e (t− τ)Rδη(ũη(ϕ))(τ) dτ

for all −∞ < s ≤ t ≤ 0 and

Pcu(ũη(ϕ)(0)) − ϕ = Pcu(ũη(ϕ)(0)) − Pcu ϕ

= Pcu(ũη(ϕ)(0)) − Pcu((Sη ϕ)(0))

= Pcu z(0) = 0

Adding Te(t)ϕ and ϕ, respectively, yields the assertion. �

By the discussed one-to-one correspondence of solutions for the differential

equation (2.22) and the associated abstract integral equation (2.23), the above

corollary shows that for all ϕ ∈ Ccu there exists a continuously differentiable func-

tion x : (−∞, 0] −→ Rn satisfying xt = ũ(ϕ)(t) for −∞ < t ≤ 0 and solving

Equation (2.23) on (−∞, 0]. The set W η consisting of all segments of these solu-

tions at time t = 0, that is, the set

W η :=
{
ũη(ϕ)(0)

∣∣ ϕ ∈ Ccu

}
,

is called the global center-unstable manifold of RFDE (2.22) at the stationary

point 0 ∈ C1. Note that W η can also be represented as the graph of the operator

wη : Ccu ∋ ϕ 7−→ Ps(ũη(ϕ)(0)) ∈ C1
s .

Indeed, applying Corollary 2.15, we see at once

W η =
{
ϕ+ wη(ϕ)| ϕ ∈ Ccu

}
.

We close this subsection with the conclusion that the values of every solution v ∈ C1
η

of the abstract integral equation (2.23) belong to the global center-unstable mani-

fold W η.

Proposition 2.16. Suppose that v ∈ C1
η is a solution of Equation (2.23). Then

v(t) ∈ W η

for all t ≤ 0.

Proof. Assuming v ∈ C1
η satisfies the abstract integral equation

u(t) = Te(t− s)u(s) +

∫ t

s

T⊙∗
e (t− τ) l(rδ(u(τ))) dτ
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for −∞ < s ≤ t ≤ 0, we begin with the claim that v(0) ∈W η. In order to see this,

let z : (−∞, 0] −→ C1 be defined by z(t) := v(t) − Te(t)Pcu v(0). As

sup
t∈(−∞,0]

eηt ‖z(t)‖C1 = sup
t∈(−∞,0]

eηt ‖v(t) − Te(t)Pcu v(0)‖C1

≤ sup
t∈(−∞,0]

eηt ‖v(t)‖C1

+ sup
t∈(−∞,0]

eηt ‖Te(t)Pcu v(0)‖C1

≤ ‖v‖C1
η

+ sup
t∈(−∞,0]

eηt ‖Te(t)Pc v(0)‖C1

+ sup
t∈(−∞,0]

eηt ‖Te(t)Pu v(0)‖C1

≤ ‖v‖C1
η

+K sup
t∈(−∞,0]

e−(cc−η)t ‖Pc v(0)‖C1

+K sup
t∈(−∞,0]

e(cu+η)t ‖Pu v(0)‖C1

≤ ‖v‖C1
η

+K ‖Pc‖ ‖v(0)‖C1 +K ‖Pu‖ ‖v(0)‖C1

≤
(
1 +K ‖Pc‖ +K ‖Pu‖

)
‖v‖C1

η
<∞,

we have z ∈ C1
η . Moreover, for all s ≤ t ≤ 0, we have

z(t) = v(t) − Te(t)Pcu v(0)

= Te(t− s) v(s) +

∫ t

s

T⊙∗
e (t− τ) l(rδ(v(τ))) dτ − Te(t)Pcu v(0)

= Te(t− s) v(s) − Te(t− s)Te(s)Pcu v(0) +

∫ t

s

T⊙∗
e (t− τ) l(rδ(v(τ))) dτ

= Te(t− s) z(s) +

∫ t

s

T⊙∗
e (t− τ) l(rδ(v(τ))) dτ.

Since furthermore Rδη(v) ∈ Yη by Corollary 2.11 and P⊙∗
cu z(0) = Pcu z(0) = 0, we

obtain z = K ◦Rδη(v) due to Corollary 2.7. Hence, by definition

v(t) = z(t) + Te(t)Pcu v(0) = (Kη ◦Rδη(v))(t) + Te(t)Pcu v(0)

for all t ≤ 0, or equivalently,

v = Kη ◦Rδη(v) + Sη(Pcu v(0)) = G(v, Pcu v(0)).

This implies v(0) = G(v, Pcu v(0))(0) = ũη(Pcu v(0))(0) ∈ W η as claimed.

The proof of v(t) ∈ W η as t < 0 may now be reduced to the above claim as

follows. For given t0 < 0 consider the translation

v̂ : (−∞, 0] ∋ s 7−→ v(t0 + s) ∈ C1.

Obviously, we have v̂ ∈ C1
η and v̂ is a solution of Equation (2.23). Therefore

v(−t0) = v̂(0) ∈W η by the above claim. This completes the proof. �

Remark 2.17. Note that by application of the above result we easily deduce

the identity

ũη(ϕ)(t) = ũη(Pcu ũη(ϕ)(t))(0)

for all ϕ ∈ Ccu and t ≤ 0.
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Proof of Theorem 2.1. In this final part of the present section we complete

the proof of Theorem 2.1 on the existence of Lipschitz continuous local center-

unstable manifolds. We conclude that in a neighborhood of the origin, the global

center-unstable manifoldW η of Equation (2.22) has the properties asserted in Theo-

rem 2.1.

Our proof starts with the following series of definitions depending on the con-

stant δ > 0 from condition (2.25):

Ccu,0 :=
{
ϕ ∈ Ccu

∣∣ ‖ϕ‖1 < δ
}
,

C1
s,0 :=

{
ϕ ∈ C1

s

∣∣ ‖ϕ‖1 < δ
}
,

Ncu := Ccu,0 + C1
s,0,

wcu := wη
∣∣
Ccu,0

,

and

Wcu :=
{
ϕ+ wcu(ϕ)

∣∣ ϕ ∈ Ccu,0

}
.

Given an open neighborhood V of 0 in Xf , note that one may choose δ > 0 with

Wcu ⊂ V . Applying Corollary 2.7 and estimate (2.26) of Corollary 2.11, we obtain

for all ϕ ∈ Ccu,0

(2.31)

‖wcu(ϕ)‖1 = ‖wη(ϕ)‖1

= ‖Ps(ũη(ϕ)(0))‖C1

= ‖ũη(ϕ)(0) − Pcu(ũη(ϕ)(0))‖C1

= ‖Gη(ũη(ϕ), ϕ)(0) − Pcu(Gη(ũη(ϕ), ϕ)(0))‖C1

= ‖(Sη ϕ)(0) + (Kη ◦Rδη(ũ(ϕ)))(0) − P cu((Sη ϕ)(0))

− P cu((Kη ◦Rδη(ũ(ϕ)))(0))‖C1

= ‖(Kη ◦Rδη(ũ(ϕ)))(0)‖C1

≤ ‖Kη ◦Rδη(ũ(ϕ))‖C1
η

≤ ‖Kη‖ ‖Rδη(ũ(ϕ))‖Yη

≤ ‖Kη‖ δ λ(δ),

and thus, wcu(Ccu,0) ⊂ C1
s,0 by assumption (2.25). The mapping wcu is also Lip-

schitz continuous, because for all ϕ, ψ ∈ Ccu,0 we have

‖wcu(ϕ) − wcu(ψ)‖C1 = ‖wη(ϕ) − wη(ψ)‖C1

= ‖Ps(ũη(ϕ)(0)) − Ps(ũη(ψ)(0))‖C1

≤ ‖Ps‖ ‖ũη(ϕ)(0) − ũη(ψ)(0)‖C1

≤ ‖Ps‖ ‖ũη(ϕ) − ũη(ψ)‖C1
η

and the operator ũη is (globally) Lipschitz continuous due to Proposition 2.14.

Moreover, since Gη(0, 0) = 0 by definition, we have ũη(0) = 0 and hence wcu(0) = 0.

Consequently, Theorem 2.1 follows if we verify properties (i) - (iii) for Wcu, which

is done below.

Proof of Assertion (ii). Assuming that x : (−∞, 0] −→ R
n is a solution

of the differential equation (2.1) with xt ∈ Ncu, t ≤ 0, we have to show xt ∈ Wcu
for all t ≤ 0. To this end, notice that by definition ‖Pcu xt‖1 < δ and ‖Ps xt‖1 < δ



42 2. LOCAL CENTER-UNSTABLE MANIFOLDS

so that Corollary 2.9 yields r(xt) = rδ(xt) for all t ≤ 0. Therefore x satisfies

the smoothed differential equation (2.22) as well. Setting u(t) := xt, t ≤ 0, we

consequently obtain a solution of the smoothed abstract integral equation (2.23).

In particular, as u is bounded on (−∞, 0], we conclude that u ∈ C1
η , and hence

u(t) ∈ W η, t ≤ 0, by Proposition 2.16. This implies xt ∈ Wcu for all t ≤ 0, which

is the desired conclusion. �

Proof of Assertion (iii). Assume that for ϕ ∈ Wcu and tN > 0 we have

{F (t, ϕ) | 0 ≤ s ≤ tN} ⊂ Ncu. To deduce {F (t, ϕ) | 0 ≤ s ≤ tN} ⊂ Wcu from this,

consider the function

v(t) :=

{
ũη(Pcu ϕ)(tN + t), for t ≤ −tN ,

F (tN + t, ϕ), for − tN ≤ t ≤ 0,

where ũη(Pcu ϕ) ∈ C1
η is the solution of Equation (2.23) with ũη(Pcu ϕ)(0) = ϕ from

Corollary 2.15. As v takes values in C1, it is continuous at the questionable point

t = −tN in view of the limits

lim
tր−tN

v(t) = lim
tր−tN

ũη(Pcu ϕ)(tN + t) = ũη(Pcu ϕ)(0) = ϕ

and

lim
tց−tN

v(t) = lim
tց−tN

F (tN + t, ϕ) = F (0, ϕ) = ϕ.

In addition, v is bounded in the ‖ · ‖C1
η
-norm due to

sup
t∈(−∞,0]

eηt ‖v(t)‖C1 ≤ max

{
‖ũη(Pcu ϕ)‖C1

η
, max
t∈[0,tN ]

‖F (t, ϕ)‖C1

}
<∞,

we have v ∈ C1
η . Moreover, we claim that v is also a solution of Equation (2.23).

Indeed, suppose s, t ∈ (−∞, 0] with s ≤ t. Then the cases s ≤ t ≤ −tN < 0 and

−tN ≤ s ≤ t ≤ 0 are obvious, whereas in the situation s ≤ −tN ≤ t ≤ 0, we get

v(t) − Te(t− s) v(s) = v(t) − Te(t+ tN )Te(−tN − s) v(s)

= Te(t+ tN ) v(−tN ) +

∫ t

−tN

T⊙∗
e (t− τ) l(rδ(v(τ))) dτ

− Te(t+ tN )Te(−tN − s) v(s)

= Te(t+ tN )
(
v(−tN ) − Te(−tN − s) v(s)

)

+

∫ t

−tN

T⊙∗
e (t− τ) l(rδ(v(τ))) dτ

= Te(t+ tN )

∫ −tN

s

T⊙∗
e (−tN − τ) l(rδ(v(τ))) dτ

+

∫ t

−tN

T⊙∗
e (−tN − τ) l(rδ(v(τ))) dτ

=

∫ −tN

s

T⊙∗
e (t− τ) l(rδ(v(τ))) dτ +

∫ t

−tN

T⊙∗
e (t− τ) l(rδ(v(τ))) dτ

=

∫ t

s

T⊙∗
e (t− τ) l(rδ(v(τ))) dτ .

Thus, v is a solution of Equation (2.23) in C1
η as claimed.
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Now Proposition 2.16 shows v(t) ∈ W η for all t ≤ 0. Consequently, for con-

stants 0 ≤ t ≤ tN we have

F (t, ϕ) = v(t− tN ) ∈ Ncu ∩W
η,

and hence F (t, ϕ) ∈Wcu, which proves our assertion. �

Proof of Assertion (i). It remains to prove that Wcu is contained in the so-

lution manifold Xf of Equation (2.1), and that Wcu forms a Lipschitz submanifold

of dimension dimCcu. For the first part, let ϕ ∈ Wcu be given. Then from Corollary

2.15 it follows that the equations xt = ũη(Pcu ϕ)(t), t ≤ 0, define a continuously

differentiable function x : (−∞, 0] −→ R
n satisfying the smoothed differential

equation (2.23) on (−∞, 0] and x0 = ϕ. In particular, ϕ̇(0) = Lϕ + rδ(ϕ). As

ϕ ∈ Wcu ⊂ Ncu and in addition rδ = r on Ncu due to Corollary 2.9 we conclude

ϕ̇(0) = Lϕ+ r(ϕ) = f(ϕ) ∈ Xf .

This proves Wcu ⊂ Xf .

To see the second part of the assertion, we consider an n-dimensional comple-

mentary space E of Y = T0Xf in the Banach space C1. We claim that there is no

loss of generality in assuming E ⊂ C1
s . In fact, let {e1, . . . , en} denote a basis of E.

Then by the decomposition C1 = Ccu ⊕ C1
s according to Equation (2.4) we get for

each i = 1, . . . , n

ei = ui + si

with uniquely determined ui ∈ Ccu and si ∈ C1
s . As the center-unstable space Ccu

is contained in Y , we conclude that si 6∈ Y for all i = 1, . . . , n. Define vectors

êi := ei − ui for i = 1, . . . , n and suppose we have

n∑

i=1

λi êi = 0

with reals λi, i = 1, . . . , n. Using the definition of êi, we obtain

E ∋
n∑

i=1

λi ei =
n∑

i=1

λi ui ∈ Ccu.

Since Ccu ∩ E = {0} it follows λi = 0 for all i ∈ {1, . . . , n}. Thus, the elements êi,

i = 1, . . . , n, generate an n-dimensional subspace Ê of C1, which is complementary

to Y in C1. In particular, Ê ⊂ C1
s .

In view of the above, we suppose now that indeed E ⊂ C1
s , which leads to

C1
s = E ⊕ (C1

s ∩ Y ),

Y = Ccu ⊕ (C1
s ∩ Y ),

and

C1 = E ⊕ (C1
s ∩ Y ) ⊕ Ccu = E ⊕ Y.

Let PY : C1 −→ C1 denote the projection operator of the Banach space C1 onto Y

along E. Then we find an open neighborhood V of 0 in Xf such that the restriction

of PY to V forms a manifold chart of Xf with a C1-smooth inverse mapping from

Y0 := PY (V ) onto V . Additionally, we may assume that δ > 0 is sufficient small

such that Wcu ⊂ V and PY Wcu ⊂ Y0. Consequently, we shall have established the
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assertion if we prove that PY Wcu is an dimCcu-dimensional Lipschitz submanifold

of the Banach space Y . But this is clear, since

PYWcu =
{
PY (ϕ+ wcu(ϕ)) |ϕ ∈ Ccu,0

}
=
{
ϕ+ PY wcu(ϕ) |ϕ ∈ Ccu,0

}

and wcu(ϕ) ∈ C1
s for all ϕ ∈ Ccu,0. Therefore, for every ϕ ∈ Ccu,0 we obviously

have PY wcu(ϕ) ∈ C1
s ∩ Y , so that PY Wcu is the graph of the map

{
ϕ ∈ Ccu | ‖ϕ‖1 < δ

}
∋ χ 7−→ PY wcu(χ) ∈ C1

s ∩ Y.

In particular, the above map is Lipschitz continuous. This finishes the proof of the

assertion (i) and so of Theorem 2.1 as a whole. �

5. The C1-Smoothness of Local Center-Unstable Manifolds

Having proved the existence of local center-unstable manifolds in the last sec-

tion, below we establish Theorem 2.2, asserting the C1-smoothness of these mani-

folds. For this purpose, we follow very closely the procedure in the proof of smooth-

ness of local center manifolds in Krisztin [16] and show that the technique also works

in our situation.

Auxiliary Results. The main idea of the proof for Theorem 2.2 is to employ

the following abstract lemma stating under which conditions the fixed points of

a parameter-dependent contraction form a C1-smooth mapping of the involved

parameter.

Lemma 2.18 (Lemma II.8 in Krisztin et al. [18]). Let X, Λ denote two Banach

spaces over R, let P ⊂ Λ be open, and let a map ξ : X×P −→ X and a real κ ∈ [0, 1)

be given satisfying

‖ξ(x, p) − ξ(x̃, p)‖X ≤ κ ‖x− x̃‖X

for all x, x̃ ∈ X and all p ∈ P. Consider a convex subset M of X and a map

Φ : P −→ M with the property that for every p ∈ P, the element Φ(p) is the unique

fixed point of the induced map ξ(·, p) : X −→ X. Furthermore, suppose that the

following hypotheses hold.

(i) The restriction ξ0 := ξ
∣∣
M×P

of the mapping ξ has a partial derivative

D2ξ0 : M×P −→ L(Λ, X), and D2ξ0 is continuous.

(ii) There exist a Banach space X1 over R and a continuous injective map

j : X −→ X1 such that the composed map k := j ◦ ξ0 is continuously

differentiable with respect to M in the sense that there is a continuous

map

B : M×P −→ L(X,X1)

such that for every (x, p) ∈ M × P and every ε∗ > 0 one finds a real

δ∗ > 0 guaranteeing
∥∥k(x̃, p) − k(x, p) −B(x, p)

(
x̃− x

)∥∥
X1

≤ ε∗ ‖x̃− x‖X

for all x̃ ∈ M with ‖x̃− x‖X ≤ δ̃.

(iii) There exist maps

ξ(1) : M×P −→ L(X,X)

and

ξ
(1)
1 : M×P −→ L(X1, X1)
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such that

B(x, p) x̃ =
(
j ◦ ξ(1)(x, p)

)
(x̃) =

(
ξ
(1)
1 (x, p) ◦ j

)
(x̃)

for all (x, p, x̃) ∈ M×P ×X and
∥∥∥ξ(1)(x, p)

∥∥∥ ≤ κ

as well as ∥∥∥ξ(1)1 (x, p)
∥∥∥ ≤ κ

on M×P.

(iv) The map

M×P ∋ (x, p) 7−→ j ◦ ξ(1)(x, p) ∈ L(X,X1)

is continuous.

Then the map j ◦ Φ : P −→ X1 is continuously differentiable and its derivative

satisfies

D(j ◦ Φ)(p) = ξ
(1)
1 (Φ(p), p) ◦D(j ◦ Φ)(p) + j ◦D2ξ0(Φ(p), p)

for all p ∈ P.

To verify the hypotheses of the last lemma in our situation, we will need an-

other auxiliary result on some smoothness properties of Nemitsky operators bet-

ween scaled Banach spaces. This result is a negligible modification of Lemma II.6

in Krisztin et al. [18] and Lemma 3.1 in Krisztin [16].

Lemma 2.19. Given any two Banach spaces E, F over R, consider for a real

η ≥ 0 the scaled Banach spaces Eη := Cη((−∞, 0], E) and Fη := Cη((−∞, 0], F ).

Further, let q : U −→ F be a continuous and bounded map defined on some subset

U ⊂ E and let M((−∞, 0], U), M((−∞, 0], F ) denote the sets of all mappings from

the interval (−∞, 0] into U , F , respectively. Then for the induced substitution

operator

q̃ : M((−∞, 0], U) −→ M((−∞, 0], F )

defined by

q̃(u)(t) := q(u(t))

for all u ∈ M((−∞, 0], U) and t ≤ 0 the following holds.

(i) If η, η̃ ≥ 0, then q̃(M((−∞, 0], U) ∩ Eη) ⊂ Fη̃.

(ii) If U is open, if q is continuously differentiable with a bounded derivative

Dq and 0 ≤ η ≤ η̃, then, for all u ∈ C((−∞, 0], U), the linear map

A(u) : M((−∞, 0], E) −→ M((−∞, 0], F ),

given by

A(u)(v)(t) := Dq(u(t)) v(t)

for v ∈ M((−∞, 0], E) and t ≤ 0, satisfies

A(u)(Eη) ⊂ Fη̃

and

sup
‖v‖Eη≤1

‖A(u)(v)‖Fη̃
≤ sup

x∈U
‖Dq(x)‖,

the induced linear maps

Aηη̃(u) : Eη −→ Fη̃
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are continuous and in case η < η̃, the map

Aηη̃ :
(
C((−∞, 0], U) ∩ Eη

)
∋ u 7−→ Aηη̃(u) ∈ L(Eη, Fη̃)

is continuous as well.

(iii) If additionally to the hypothesis stated above there holds η < η̃ and the set

U is convex, then for every ε̃ > 0 and u ∈ C((−∞, 0], U)∩Eη there exists

δ̃ > 0 such that for every v ∈ C((−∞, 0], U)∩Eη with ‖v− u‖Eη
< δ̃ we

have

‖q̃(v) − q̃(u) −Aηη̃(u)(v − u)‖
Fη̃

≤ ε̃ ‖v − u‖Eη
.

Proof. We adopt the proof of Lemma 3.1 in Krisztin [16] which falls naturally

into three steps.

1. The proof of (i). Assuming u ∈ (M((−∞, 0], U) ∩ Eη), we see at once that

the continuity of u and q implies the one of

(−∞, 0] ∋ t 7−→ q̃(u)(t) = q(u(t)) ∈ F.

Moreover, the boundedness of q leads to

sup
t∈(−∞,0]

eη̃t ‖q(u(t))‖F ≤ sup
t∈(−∞,0]

eη̃t sup
t∈(−∞,0]

‖q(u(t))‖F ≤ sup
x∈U

‖q(x)‖F <∞,

and thus ‖q̃(u)‖Fη̃
< ∞. Consequently, we have q̃(u) ∈ Fη̃, which is the desired

conclusion.

2. The proof of (ii). We begin with the observation that for all elements

u ∈ C((−∞, 0], U) the map A(u) is well-defined, linear and that under the stated

assumption the image A(u) v ∈ M((−∞, 0], F ) of an element v ∈ Eη, that is, the

map

[0,∞) ∋ t 7−→ Dq(u(t)) v(t) ∈ F,

is continuous. As in this situation we also have

eη̃t ‖Dq(u(t)) v(t)‖F ≤ e(η̃−η)t eηt ‖v(t)‖E sup
x∈U

‖Dq(x)‖

≤ sup
t∈(−∞,0]

eηt‖v(t)‖E sup
x∈U

‖Dq(x)‖

≤ ‖v‖Eη
sup
x∈U

‖Dq(x)‖ <∞

due to the boundedness of Dq on U , we conclude A(u)(Eη) ⊂ Fη̃ and additionally

sup
‖v‖Eη≤1

‖A(u) v‖Fη̃
≤ sup
x∈U

‖Dq(x)‖.

In particular, this shows the continuity of the maps Aηη̃ : Eη 7−→ Fη̃.

The only point remaining of assertion (ii) concerns the continuity of the map

Aηη̃ : C((−∞, 0], U) ∩ Eη ∋ u 7−→ Aηη̃(u) ∈ L(Eη, Fη̃)

in case η < η̃. To see this, choose u ∈ C((−∞, 0], U) ∩ Eη and let ε̃ > 0 be given.

As η < η̃ and Dq is bounded on U , there clearly is a real t0 < 0 satisfying

2 e(η̃−η)t sup
x∈U

‖Dq(x)‖ < ε̃

for all t ≤ t0. Furthermore, in view of the continuity of u and Dq we find a constant

δ̃ > 0 such that

Bt(u) :=
{
y ∈ E

∣∣ ‖y − u(t)‖E < δ̃ e−ηt0
}
⊂ U
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as t0 ≤ t ≤ 0 and such that additionally

‖Dq(y) −Dq(u(t))‖ < ε̃

holds for all y ∈ Bt. Consequently, if ũ ∈ C((−∞, 0], U) ∩ Eη with ‖ũ− u‖Eη
< δ̃,

and if v ∈ Eη with ‖v‖Eη
≤ 1, then the above estimates yield

eη̃t
∥∥(Dq(ũ(t)) −Dq(u(t))

)
v(t)

∥∥
F
≤ ε̃

for all t ≤ 0. Indeed, in case t ≤ t0 we see

eη̃t
∥∥(Dq(ũ(t)) −Dq(u(t))

)
v(t)

∥∥
F
≤ 2 e(η̃−η)t eηt ‖v(t)‖E sup

x∈U
‖Dq(x)‖

≤ 2 e(η̃−η)t ‖v‖Eη
sup
x∈U

‖Dq(x)‖

< ε̃,

whereas, for t0 < t ≤ 0, we first conclude

‖ũ(t) − u(t)‖E < δ̃ e−ηt < δ̃ e−ηt0

and hence

eη̃t
∥∥(Dq(ũ(t)) −Dq(u(t))

)
v(t)

∥∥
F
≤ e(η̃−η)t eηt ‖v(t)‖E ‖Dq(ũ(t)) −Dq(u(t))‖

≤ ‖v‖Eη
‖Dq(ũ(t)) −Dq(u(t))‖

< ε̃.

This shows

‖Aηη̃(ũ) −Aηη̃(u)‖ ≤ ε̃,

and the continuity of Aηη̃ is proved.

3. The proof of (iii). Note that from the additional assumption on the convexity

of the open set U in E it is easy to check that the set C((−∞, 0], U)∩Eη is convex

as well. Hence, for all u, v ∈ C((−∞, 0], U) ∩ Eη and all t ≤ 0 we have

(2.32)

eη̃t
∥∥q(v(t)) − q(u(t)) −Dq(u(t))

(
v(t) − u(t)

)∥∥
F

= eη̃t
∥∥∥∥
∫ 1

0

(
Dq
(
s v(t) + (1 − s)u(t)

)
−Dq

(
u(t)

))(
v(t) − u(t)

)
ds

∥∥∥∥
F

≤ e(η̃−η)t eηt ‖v(t) − u(t)‖E

· max
s∈[0,1]

∥∥Dq
(
s v(t) + (1 − s)u(t)

)
−Dq

(
u(t)

)∥∥

≤ e(η̃−η)t ‖v − u‖Eη

· max
s∈[0,1]

∥∥Dq
(
s v(t) + (1 − s)u(t)

)
−Dq

(
u(t)

)∥∥ .

Fix u ∈ C((−∞, 0], E)∩Eη and ε̃ > 0. Then, using η < η̃, we find constants t0 < 0

and δ̃ ≥ 0 as in the last part. Let now an arbitrary v ∈ C((−∞, 0], U) ∩ Eη with

‖v − u‖Eη
< δ̃ be given. Then, in the situation t ≤ t0, the estimate (2.32) and the

choice of the real t0 yield

eη̃t
∥∥ q(v(t)) − q(u(t)) −Dq(u(t))

(
v(t) − u(t)

)∥∥
F

≤ e(η̃−η)t ‖v − u‖Eη

· max
s∈[0,1]

∥∥Dq
(
s v(t) + (1 − s)u(t)

)
−Dq

(
u(t)

)∥∥

≤ 2 e(η̃−η)t max
x∈U

‖Dq(x)‖ ‖v − u‖Eη

< ε̃ ‖v − u‖Eη
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On the other hand, if t0 < t ≤ 0, then we have

‖v(t) − u(t)‖E ≤ δ̃ e−ηt < δ̃ e−ηt0 .

This implies s v(t) + (1 − s)u(t) ∈ Bt(u) for all 0 ≤ s ≤ 1 and hence, by inequality

(2.32), we get again

eη̃t
∥∥ q(v(t)) − q(u(t)) −Dq(u(t))

(
v(t) − u(t)

)∥∥
F

≤ e(η̃−η)t ‖v − u‖Eη

· max
s∈[0,1]

∥∥Dq
(
s v(t) + (1 − s)u(t)

)
−Dq

(
u(t)

)∥∥

< ε̃ e(η̃−η)t ‖v − u‖Eη

< ε̃ ‖v − u‖Eη
.

Combining these yields
∥∥ q̃(v) − q̃(u) −Aηη̃(u)

(
v − u

)∥∥
Fη̃

≤ ε̃ ‖v − u‖Eη
,

and the proof is complete. �

Proof of Theorem 2.2. After the preparatory results above, we return to the

local center-unstable manifolds from the last section and prove Theorem 2.2.

We start our proof with the observation that an important, but probably in-

conspicuous point of our construction of the invariant manifolds in the foregoing

section was the choice of a constant η > 0 satisfying condition (2.24), that is,

cc < η < min{−cs, cu},

and hereafter the choice of a second constant 0 < δ < δ1 satisfying condition (2.25),

that is,

‖Kη‖λ(δ) <
1

2
.

Now, recall from Corollary 2.7 that Kη is a bounded linear map from the Banach

space Yη into C1
η . Moreover, the bound of Kη satisfies the inequality

(2.33) ‖Kη‖ < c(η)

with the continuous map c : (cc,min{−cs, cu}) −→ [0,∞) given by

c(η) := K
(
1 + eηh ‖Le‖

)(‖P⊙∗
c ‖

η − cc
+

‖P⊙∗
u ‖

cu + η
−

‖P⊙∗
s ‖

cs + η

)
+ eηh.

Hence, fixing a constant η1 > 0 with cc < η1 < min{−cu, cs} and additionally a

constant 0 < δ < δ1 with

c(η1)λ(δ) <
1

2
,

we clearly find a real cc < η0 < η1 such that the estimate

(2.34) c(η)λ(δ) <
1

2

is fulfilled for all η0 ≤ η ≤ η1. As an immediate consequence, we see that for any

η0 ≤ η ≤ η1 the pair (η, δ) satisfies both conditions (2.24), (2.25), and thus the

construction in the last section works for any such choice of constants.

Below, we show the assertion of Theorem 2.2 for the map wη1 . Hereby, remem-

ber that wη1 may be also written as the composition

wη1 = Ps ◦ ev0 ◦ũη1
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with the projection operator Ps of C1 along the center-unstable space Ccu onto C1
s ,

the evaluation map

ev0 : C1
η1

∋ u 7−→ u(0) ∈ C1

and the fixed point operator ũη1 : Ccu −→ C1
η1

defined by (2.30). Since Ps and

ev0 are both bounded linear maps, for a conclusion on the C1-smoothness of wη1

we are obviously reduced to proving the continuous differentiability of ũη1 on Ccu.

By application of Lemmata 2.18, 2.19, we show that ũη1 is indeed continuously

differentiable on Ccu in the following.

Consider the open neighborhood

Oδ :=
{
ψ ∈ C1 | ‖Ps ψ‖1 < δ

}

of the origin in C1. The set Oδ is clearly convex, and from Corollary 2.9 and

Proposition 2.10 we see that the restriction of the function rδ to Oδ is bounded,

C1-smooth and has a bounded derivative with

sup
ϕ∈Oδ

‖Drδ(ϕ)‖ ≤ λ(δ).

Additionally, we claim
{
ũη(ϕ)(t)

∣∣ϕ ∈ Ccu, t ≤ 0
}
⊂ Oδ

for all η0 ≤ η ≤ η1. Indeed, combining the inequalities (2.26), (2.33) and (2.34)

yields
‖wη(ϕ)‖1 = ‖Ps ũη(ϕ)(0)‖C1

=
∥∥(Kη ◦Rδη(ũη(ϕ))

)
(0)
∥∥
C1

≤
∥∥(Kη ◦Rδη(ũη(ϕ))

)∥∥
C1

η

≤ ‖Kη‖ ‖Rδη(ũη(ϕ))‖Yη

≤ c(η) δ λ(δ)

< δ

as ϕ ∈ Ccu and η0 ≤ η ≤ η1. Thus, in view of Remark 2.17 we obtain

‖Ps ũη(ϕ)(t)‖1 = ‖Ps ũη(Pcu ũη(ϕ)(t))(0)‖1 = ‖wη(Pcu ũη(ϕ)(t))‖1 < δ

for all (ϕ, η, t) ∈ Ccu × [η0, η1] × (−∞, 0], as claimed. Now, setting E = C1,

F = Y ⊙∗, O = Oδ, q = l ◦ rδ, η = η0, η̃ = η1 and applying Lemma 2.19, we

conclude that the linear maps

A(u) : M((−∞, 0], C1) −→ M((−∞, 0], Y ⊙∗)

define a continuous map Aη0η1 from the convex set

M :=
{
u ∈ C1

η0

∣∣u(t) ∈ Oδ for all t ∈ (−∞, 0]
}

into the Banach space L(C1
η0
, Yη1). In addition, we see that Aη0η1 has the property

that for every point u ∈ M and every real ε̃ > 0 there is a constant δ̃(ε̃) > 0 such

that for all v ∈ M with ‖v − u‖C1
η0

≤ δ̃ we have Rδη1(u), Rδη1(v) ∈ Yη1 and

(2.35)
∥∥Rδη1(u) −Rδη1(v) −Aη0η1(u)

(
v − u

)∥∥
Yη1

≤ ε̃ ‖v − u‖C1
η0
.

Next, we are going to employ Lemma 2.18. To this end, we regard the inclusion

map

jη0η1 : C1
η0

∋ u 7−→ u ∈ C1
η1
.
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As η0 < η1, this map obviously is well-defined and is trivially linear and bounded.

Moreover, for all ϕ ∈ Ccu, jη0η1 maps the fixed point ũη0(ϕ) of Gη0 ( · , ϕ) defined in

Proposition 2.14 onto the fixed point ũη1(ϕ) of Gη1( · , ϕ). Indeed, since for a given

ϕ ∈ Ccu we have

Gη1(jη0η1(ũη0(ϕ)), ϕ) = Sη1 ϕ+ Kη1 ◦Rδη1(jη0η1(ũη0(ϕ)))

= Te( · )ϕ+ KcuR(ũη0(ϕ))

= jη0η1
(
Sη0 ϕ+ Kη0 ◦Rδη0(ũη0(ϕ))

)

= jη0η1
(
Gη0(ũη0(ϕ), ϕ)

)

= jη0η1(ũη0(ϕ)),

jη0η1(ũη0(ϕ)) is a fixed point of Gη1( · , ϕ) : C1
η1

−→ C1
η1

and from the uniqueness of

the fixed point there actually follows

jη0η1(ũη0(ϕ)) = ũη1(ϕ).

Set X = C1
η0

, X1 = C1
η1

, Λ = P = Ccu, ξ = Gη0 , j = jη0η1 and κ = 1/2. Then

we see at once that ũη0(P ) ⊂ M, and this implies that the unique fixed point of

ξ( · , ϕ) : X −→ X is given by the value Φ(ϕ) of the map

Φ : P ∋ ϕ 7−→ ũη0(ϕ) ∈ M.

Additionally, for each ϕ ∈ Ccu the map ξ( · , ϕ) = Gη0( · , ϕ) is Lipschitz continuous

with Lipschitz constant κ due to the proof of Proposition 2.14. Thus, for an appli-

cation of Lemma 2.18 with the above choice of spaces, maps and reals it remains

to confirm conditions (i) - (iv). This point is done below in detail.

Verification of hypothesis (i). Observe that for the restriction ξ0 of the map ξ

to M×P we have

ξ0(u, ϕ) = Gη0 (u, ϕ) = Sη0ϕ+ Kη0 ◦Rδη0 (u).

Consequently, ξ0 is partially differentiable with respect to the second variable, and

for every (u, ϕ) ∈ M×P its derivative D2ξ0(u, ϕ) ∈ L(Λ, X) is given by

D2ξ0(u, ϕ)ψ = Sη0 ψ

for all ψ ∈ Ccu. Obviously, D2ξ0 : M×P −→ L(Λ, X) is a constant map and thus

in particular continuous. This shows hypothesis (i) of Lemma 2.18.

Verification of hypothesis (ii). The mapping k := j ◦ ξ0 reads

k(u, ϕ) = Sη1ϕ+ Kη1 ◦Rδη1(j(u)),

and the map

B : M×P ∋ (u, ϕ) 7−→ Kη1 ◦ (Aη0η1(u)) ∈ L(X,X1)

is of course continuous as Kη1 , Aη0η1 are so. Consider next an arbitrary point

(u, ϕ) ∈ M×P and ε∗ > 0. Choosing

δ∗ = δ̃

(
ε∗

1 + ‖Kη1‖

)
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with the constant δ̃ from estimate (2.35), we find that for all points v ∈ M with

‖v − u‖C1
η0
< δ∗ we have

∥∥k(v, ϕ) − k(u, ϕ) −B(u, ϕ)
(
v − u

)∥∥
X1

=
∥∥Kη1(R(v)) −Kη1(R(u)) −Kη1

(
Aη0η1(u) (v − u)

)∥∥
C1

η1

≤ ‖Kη1‖
∥∥R(v) −R(u) −Aη0η1(u)

(
v − u

)∥∥
Yη1

≤ ‖Kη1‖
ε∗

1 + ‖Kη1‖
‖v − u‖C1

η0

≤ ε∗ ‖v − u‖C1
η0
.

Thus, condition (ii) is satisfied.

Verification of hypothesis (iii). Next we note that for every u ∈ M and all

v ∈ X we have
A(u)(v)(t) = Dq(u(t)) v(t)

= D(l ◦ rδ)(u(t)) v(t)

= Dl(rδ(u(t))) ◦Drδ(u(t)) v(t)

= l ◦Drδ(u(t)) v(t)

for t ≤ 0. Since supϕ∈Oδ
‖Drδ(ϕ)‖ ≤ λ(δ) and ‖Kη0‖ ≤ c(η0), and ‖l‖ = 1, it is

obvious that for every u ∈ M, the induced map

Kη0 ◦ (Aη0η0(u)) ∈ L(X,X)

satisfies

‖Kη0 ◦ (Aη0η0(u))‖ ≤ c(η0)λ(δ).

In the same manner we see that for all u ∈ M

Kη1 ◦ (Aη1η1(u)) ∈ L(X1, X1)

with

‖Kη0 ◦ (Aη1η1(u))‖ ≤ c(η1)λ(δ).

Define

ξ(1) : M×P ∋ (u, ϕ) 7−→ Kη0 ◦ (Aη0η0(u)) ∈ L(X,X)

and

ξ
(1)
1 : M×P ∋ (u, ϕ) 7−→ Kη1 ◦ (Aη1η1(u)) ∈ L(X1, X1).

Then, for all (u, ϕ, v) ∈ M×P ×X , we get

B(u, ϕ) v =
(
Kη1 ◦ (Aη0η1(u))

)
(v)

= Kcu(A(u) v)

= j
(
ξ(1)(u, ϕ) v

)

= ξ
(1)
1 (u, ϕ)

(
j(v)

)
.

Moreover, in view of the choice of η0, η1 and δ due to Equation (2.34) we have
∥∥∥ξ(1)(u, ϕ)

∥∥∥
X

≤ κ

and
∥∥∥ξ(1)1 (u, ϕ)

∥∥∥
X1

≤ κ
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for all (u, ϕ) ∈ M×P . This shows that hypothesis (iii) is valid too.

Verification of hypothesis (iv). Finally, we find that the map

M×P ∋ (x, p) 7−→ j ◦ ξ(1)(x, p) ∈ L(X,X1)

satisfies

j
(
ξ(1)(u, ϕ) v

)
=
(
j ◦ Kη0 ◦ (Aη0η0(u))

)
(v) = Kcu(A(u) v) = B(u, ϕ) v

for all (u, ϕ, v) ∈ M × P × X . As B is continuous, the continuity of the map

M×P ∋ (x, p) −→ j ◦ ξ(1)(x, p) ∈ L(X,X1) follows, and this is precisely condition

(iv) of Lemma 2.18.

As by the above all assumptions of Lemma 2.18 are fulfilled, we conclude that

the map

ũη1 = j ◦ Φ : Ccu −→ C1
η1

is in fact continuously differentiable. So, if we prove that additionally we have

Dwcu(0) = 0, the assertion of Theorem 2.2 follows. But this is easily seen in

consideration of the formula

Dũη1(ϕ) = ξ
(1)
1 (ũη0(ϕ), ϕ) ◦Dũη1(ϕ) + j ◦D2ξ0(ũη0(ϕ), ϕ)

for the derivative of ũη1 at ϕ ∈ Ccu. Indeed, byDrδ(0) = 0, we first obtain A(0) = 0

and ξ
(1)
1 (0, 0) = 0. Thus, in consideration of ũη0(0) = 0 we get

Dũη1(0)ψ = j ◦D2ξ0(0, 0)ψ = Sη1 ψ

for all ψ ∈ Ccu. This implies

Dwη1 (0)ψ =
(
Ps ◦ ev0 ◦Dũη1(0)

)
(ψ) = Ps ψ = 0

on Ccu. Consequently, we get

Dwη1 (0) = 0

and this completes the proof of Theorem 2.2.

6. The Dynamics on Local Center-Unstable Manifolds

Subsequently, we demonstrate the possibility to reduce the smooth semiflow F

generated by the solutions of the differential equation (2.1) to a local flow on a fixed

manifold Wcu. The advantage of such a reduction lies in the fact that one obtains

a system of ordinary differential equations, describing the dynamics on Wcu. In our

exposition we follow the discussion and notation of Diekmann et al. [6, Section

VI.2], where the reader may also find a thorough treatment of the necessary results

of the spectral theory.

Consider once more the differential equation (2.1) under the conditions of Theo-

rem 2.1 and let {ϕ1, . . . , ϕd}, d ∈ N, denote a basis of the center-unstable space

Ccu at the trivial stationary point. Introducing the row vector

Φcu :=
(
ϕ1, . . . , ϕd

)

and using the invariance of Ccu under Ge, we find a matrix Bcu ∈ L(Rd,Rd) such

that

Ge Φcu = ΦcuBcu.

Here Ge Φcu denotes the row vector (Ge ϕ1, . . . , Ge ϕn) and ΦcuBcu the usual mul-

tiplication of a row vector with a matrix. The matrix Bcu has exactly the same
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eigenvalues as the restriction of the operator Ge to Ccu and the last equation implies

that the action of the group Te on Φcu is given by

Te(t)Φcu = Φ cu e
tBcu

for t ∈ R. In particular, this relation also defines the action of Te on the whole

center-unstable space Ccu. Indeed, each function ϕ ∈ Ccu has an unique expression

ϕ =

d∑

j=1

ĉj(ϕ)ϕj

with coefficients ĉj(ϕ) ∈ R and basis elements ϕj of Ccu. Writing the coefficient

ĉj(ϕ) as a column vector c(ϕ) := (ĉ1(ϕ), . . . , ĉd(ϕ))T in Rd, we obtain the repre-

sentation

(2.36) ϕ = Φcu c(ϕ)

and for the action of Te on ϕ the formula

Te(t)ϕ = Te(t)Φcu c(ϕ) = Φcu e
tBcu c(ϕ)

for t ∈ R.

Suppose now that x : I + [−h, 0] −→ Rn, where I is some interval in R, is

a solution of the differential equation (2.1) on the local center-unstable manifold

Wcu; that is, x is a solution with xt ∈ Wcu for all t ∈ I. Then the function

u : I ∋ t 7−→ xt ∈ Wcu ⊂ C1 satisfies, for all s, t ∈ I, s ≤ t, the abstract integral

equation

u(t) = Te(t− s)u(s) +

∫ t

s

T⊙∗
e (t− τ) l(r(u(τ))) dτ.

In addition, as u(t) ∈Wcu we have the representation u(t) = Pcu u(t)+wcu(Pcu u(t)).

Set

v : I ∋ t 7−→ P⊙∗
cu u(t) ∈ Ccu.

From the continuity of the mapping I ∋ t 7−→ l(r(u(t)))) ∈ C⊙∗, the identity

P⊙∗
cu ϕ = Pcu ϕ on C1 and the above integral equation for u, it follows that

v(t) = P⊙∗
cu u(t)

= P⊙∗
cu

(
Te(t− s)u(s) +

∫ t

s

T⊙∗
e (t− τ) l(r(u(τ))) dτ

)

= P⊙∗
cu Te(t− s)u(s) + P⊙∗

cu

∫ t

s

T⊙∗
e (t− τ) l(r(Pcu u(τ) + wcu(Pcu u(τ)))) dτ

= Te(t− s)P⊙∗
cu u(s) +

∫ t

s

T⊙∗
e (t− τ)P⊙∗

cu l(r(v(τ) + wcu(v(τ)))) dτ

= Te(t− s) v(s) +

∫ t

s

Te(t− s)P⊙∗
cu g(v(τ)) dτ

with the continuously differentiable function

g : Ccu,0 ∋ ϕ 7−→ l(r(ϕ + wcu(ϕ))) ∈ C⊙∗.

Thus, the spectral projection v of the solution u on the finite dimensionale space

Ccu satisfies the abstract integral equation

(2.37) v(t) = Te(t− s) v(s) +

∫ t

s

Te(t− τ)P⊙∗
cu g(v(τ))dτ

for all s, t ∈ I, s ≤ t.
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Next, we rewrite Equation (2.37) in coordinates on Ccu, with respect to the

fixed basis {ϕ1, . . . , ϕd} of the center-unstable space. For this purpose consider the

mapping Γcu, which assigns to each element ϕ ∈ Ccu the coefficient vector c(ϕ) ∈ Rd

due to relation (2.36). We see at once that Γcu is a bounded linear map. Moreover,

for all ϕ ∈ Ccu we have the identity ϕ = Φcu c(ϕ) = Φcu Γcu ϕ and for all c ∈ Rd

we get c = Γcu Φcu c. Combining this with the integral equation (2.37) for v, we

conclude that the coordinate function

y : I ∋ t 7−→ Γcu v(t) = Γcu P
⊙∗
cu u(t) ∈ R

d

of v satisfies the integral equation

(2.38) y(t) = e(t−s)Bcu y(s) +

∫ t

s

e(t−τ)Bcu Γcu P
⊙∗
cu g(Φcu y(τ)) dτ

in Rd for all reals s, t ∈ I with s ≤ t. In fact, a straightforward argument shows

(2.39) Γcu

∫ t

s

Te(t− τ)P⊙∗
cu g(v(τ)) dτ =

∫ t

s

Γcu Te(t− τ)P⊙∗
cu g(v(τ)) dτ

so that Equation (2.37) results in the variation-of-constants formula

y(t) = Γcu v(t)

= Γcu

(
Te(t− s) v(s) +

∫ t

s

Te(t− τ)P⊙∗
cu g(v(τ)) dτ

)

= Γcu Te(t− s) v(s) + Γcu

∫ t

s

Te(t− τ)P⊙∗
cu g(Φcu Γcu v(τ)) dτ

= Γcu Te(t− s)Φcu Γcu v(s) +

∫ t

s

Γcu Te(t− s)Φcu Γcu P
⊙∗
cu g(Φ cu y(τ)) dτ

= Γcu Φcu e
(t−s)Bcu y(s) +

∫ t

s

e(t−τ)BcuΓcu P
⊙∗
cu g(Φcu y(τ)) dτ

= e(t−s)Bcu y(s) +

∫ t

s

e(t−τ)Bcu Γcu P
⊙∗
cu g(Φcu y(τ)) dτ

for the coordinate function y.

Remark 2.20. Note the distinction of the both integrals involved in Equation

(2.39). On the left hand-side we have a weak* integral for a continuous function

from [s, t] into Ccu ⊂ C⊙∗, whereas on the right it is the usual integral for a

continuous curve from [s, t] into Rd.

By differentiation of Equation (2.38) with respect to t, we obtain the ordinary

differential equation

(2.40) ẏ(t) = Bcu y(t) +Q(y(t))

in Rd with the matrix Bcu and the nonlinearity Q( · ) := Γcu P
⊙∗
cu g(Φcu · ), which

is obviously continuously differentiable in y. This equation describes the solutions

of the differential equation (2.1) on the local center-unstable manifold Wcu at the

stationary point ϕ0 = 0.
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CHAPTER 3

Basic Properties and Slowly Oscillating Solutions

1. Introduction

Here, we begin the study of the scalar differential equation

(3.1) ẋ(t) = a
[
x(t) − x(t− r)

]
− |x(t)|x(t)

with a parameter a > 0 and a state-dependent delay r = r(x(t)) > 0. As already

mentioned, this equation is a slight modification of a mathematical model for a

currency exchange rate, which is represented by the DDE

(3.2) ẋ(t) = a
[
x(t) − x(t− 1)

]
− |x(t)|x(t)

and extensively analyzed by Erdélyi, Brunovský, and Walther [7, 3, 4, 27, 28].

For our investigations of the model equation (3.1), we suppose the following

hypotheses on the delay function r : R −→ R:

(DF 1) r ∈ C1(R,R),

(DF 2) 0 < r(s) ≤ r(0) =: r0 for all s ∈ R,

(DF 3) r(s) = r(−s) for all s ∈ R, and

(DF 4) r0 = 1.

Condition (DF 1) is a mild smoothness assumption, whereas (DF 2) guarantees

that the retardation does not vanish. In addition, (DF 2) ensures that all solutions

forget their history prior to a maximal value r0. The motivation for (DF 3) is

the reflection symmetry of the original equation with constant delay. Under the

assumption (DF 3) a function x : [t0 − r0, t+) −→ R, t0 < t+, satisfies DDE (3.1)

for t0 < t < t+ if and only if −x does so. For the sake of simplicity, we assume

condition (DF 4) to hold, and this can be achieved by scaling. Indeed, assuming

r : R −→ R has the properties (DF 1) - (DF 3) with a maximal value r0 > 0, and

introducing the new time-variable s := t/r0, the new delay function

τ : R ∋ u 7−→
1

r0
r(u/r0) ∈ [0, 1],

and the new state-variable y(s) := r0 x(t), we obtain

ẏ(s) =
d

ds

(
r0 x(t)

)

= r20 ẋ(t)

= a r0
[
r0 x(t) − r0 x(t− r(x(t)))

]
− |r0 x(t)| (r0 x(t))

= a r0
[
y(s) − y(t/r0 − r(x(t))/r0)

]
− |y(s)| y(s)

= a r0
[
y(s) − y(s− τ(r0 x(t)))

]
− |y(s)| y(s)

= ã
[
y(s) − y(s− τ(y(s)))

]
− |y(s)| y(s),

57
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where ã := a r0 > 0 and τ obviously satisfies (DF 1) - (DF 4). Simple examples for

delay functions with the stated properties are given by

r1 :R ∋ s 7−→ e−c s
2k

∈ R

and

r2 :R ∋ s 7−→
1

1 + c s 2k
∈ R

with constants c ≥ 0 and k ∈ N. For the choice c = k = 1, both are sketched in

Figure 3.1.

R

R

0−2

r1

r2

Figure 3.1. Examples of delay functions satisfying (DF 1) - (DF 4)

Remark 3.1. Note that the stated assumptions on the delay function r are in

particular satisfied in case of the constant delay 1, which reduces Equation (3.1) to

(3.2). As a consequence, under conditions (DF 1) - (DF 4) all results for Equation

(3.1) are also valid for the DDE (3.2). On the other hand, different statements

and techniques from Brunovský et al. [3] on Equation (3.2) may be elementarily

generalized to the situation of a state-dependent delay with properties (DF 1) -

(DF 4), as we will see throughout this part.

Under the above hypothesis on r, Equation (3.1), or more precisely its trans-

formation to the abstract form (1.4), fulfills the conditions of Theorem 1.2, as was

seen in the adjacent example on page 9. In particular, this guarantees the existence

of a continuous semiflow with respect to the underlying concept of C1-smooth solu-

tions. Despite this fact, our study of the DDE (3.1) begins with the classical idea of

solutions for an RFDE; that is, until further notice, we call a real valued function x

a solution of Equation (3.1) on [t0−1, t+), if there are t0 ∈ R and t+ > t0 such that

x : [t0 − 1, t+) −→ R is continuous, continuously differentiable on (t0, t0 + t+), and

satisfies Equation (3.1) for all t0 ≤ t < t0 + t+, where ẋ(t0) denotes the right-hand

side derivative.

This temporary arrangement on solutions enables us to consider also an only

continuous function as an initial value for the associated IVP of the DDE (3.1). On

the other hand, in Chapter 1 we clarified that such a selection of initial data may

raise difficulties concerning the uniqueness and continuous dependence of solutions.

Using the technique in Krisztin and Arino [17], in the first instance we discuss the

basic properties as existence and uniqueness of solutions and construct a continuous

semiflow of Equation (3.1) on an appropriate subset of all continuous functions from

[−1, 0] into R.

By postulating a further property of the delay function in Section 3 we will

conclude that a weighted difference of any two solutions, which are globally defined
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and contained in the constructed state-space, satisfy a linear DDE. This fact will

be crucial in the present work. It will allow us to apply a Lyapunov functional

defined in Krisztin and Arino [17] as a counting tool for sign changes of solutions

for Equation (3.1).

The last section of this chapter is devoted to so-called slowly oscillating solu-

tions characterized by the property that the distance of any two consecutive zeros is

greater than 1, the maximal “memory” of the DDE (3.1) due to the two conditions

(DF 2) and (DF 3). After proving the existence of such solutions, we close this

chapter with a characterization of all global slowly oscillating solutions.

Before we proceed recall the abbreviations C, C1 in Part 1 and the associated

norm ‖ · ‖C , ‖ · ‖C1 , respectively. Subsequently they are used for the underlying

situation h = 1 and n = 1.

2. A Continuous Semiflow on a Compact State Space

The main goal of this section is the construction of a continuous semiflow on

an appropriate state-space in C for solutions of Equation (3.1) by adapting the

method contained in Krisztin and Arino [17]. For this purpose, we begin with

the discussion of basic results concerning the existence and uniqueness of solutions.

Hereafter, a boundedness result, which will be established completely similarly to

the case of constant delay from Brunovský et al. [3], will allow us to restrict our

attention to a subset of C and to derive a continuous semiflow.

The Existence and Uniqueness of Solutions. Introduce the mapping

(3.3) fe : C ∋ ϕ 7−→ a
[
ϕ(0) − ϕ(−r(ϕ(0)))

]
− |ϕ(0)|ϕ(0) ∈ R

so that the differential equation (3.1) reads in the more abstract form

(3.4) ẋ(t) = fe(xt)

of an RFDE. In order to prove the existence of non-continuable solutions we estab-

lish two auxiliary observations about the complete continuity of fe and the bound-

edness of solutions.

Corollary 3.2. The function fe is completely continuous; that is, fe is con-

tinuous and maps bounded sets into relative compact sets.

Proof. For the continuity of fe, we notice the representation of fe as

fe(ϕ) = g(ev0(ϕ), ev(ϕ,−R̂(ϕ)))

with the function g : R2 ∋ (ζ, ξ) 7−→ a
[
ζ − ξ

]
− |ζ| ζ ∈ R, the evaluation maps

ev0 : C ∋ ϕ 7−→ ϕ(0) ∈ R

and

ev : C × [−1, 0] ∋ (ϕ, s) 7−→ ϕ(s) ∈ R,

and the delay function R̂ : C ∋ ϕ 7−→ r(ϕ(0)) ∈ [0, 1]. Obviously, each of these

functions is continuous. Hence, fe is also continuous as their composition.

For the remaining part of the proof, assume U ⊂ C is bounded. Then we find

a constant KU > 0 such that ‖ϕ‖C ≤ KU for all ϕ ∈ U . Defining the constant
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M := 2aKU +K2
U > 0 leads to

|fe(ϕ)| = |g(ϕ(0), ϕ(−r(ϕ(0)))| =
∣∣[a− |ϕ(0)|

]
ϕ(0) − aϕ(−r(ϕ(0)))

∣∣

≤ | a− |ϕ(0)| | KU + aKU ≤ aKU +K2
U + aKU = M

for ϕ ∈ U . Thus fe(U) ⊂ R is bounded, and subsequently fe(U) compact. �

Next, we show the boundedness of solutions of Equation (3.1). The proof is

similar to the situation of constant delay in Brunovský et al. [3].

Proposition 3.3. Suppose that x : [t0, t+) −→ R, t0 < t+ − 1, is a solution of

the differential equation (3.1). Then x is bounded.

Proof. Assume the assertion is false. Then there is a value t0 < s < t+ such

that 2a < |x(s)|, but |x(t)| < |x(s)| for all t0 − 1 ≤ t < s. Hence, for x(s) > 2a > 0

we obtain
0 ≤ ẋ(s)

= a
[
x(s) − x(s− r(x(s)))

]
− |x(s)|x(s)

< 2a x(s) − |x(s)|x(s)

≤ 2a x(s) − 2a x(s)

= 0,

and in the situation x(s) < −2a < 0

0 ≥ ẋ(s)

= a
[
x(s) − x(s− r(x(s)))

]
− |x(s)|x(s)

> 2a x(s) − |x(s)|x(s)

≥ 2a x(s) − 2a x(s)

= 0,

a contradiction to the existence of such a value s. Hence, x is bounded. �

Now we state the existence of (in forward direction) non-continuable solutions

for the differential equation (3.1). This follows as a straightforward application of

basic theorems on existence and continuation of solutions for RFDEs in view of the

last auxiliary results.

Proposition 3.4. Let ϕ ∈ C.

(i) There exists a solution x : [−1, t+) −→ R, t+ > 0, of Equation (3.1) with

initial value x0 = ϕ.

(ii) If x : [−1, t+) −→ R, t+ > 0, is a (in forward direction) non-continuable

solution of Equation (3.1) with x0 = ϕ, then t+ = ∞.

Proof. We understand Equation (3.1) as the autonomous RFDE (3.4). Since

fe is continuous, the existence theorem on solutions for RFDEs as stated, for in-

stance, in Hale and Verduyn Lunel [10, Theorem 2.1 in Chapter 2] can be applied,

and implies the existence of a solution x : [−1, t+) −→ R, t+ > 0, with initial value

ϕ at t = 0. This proves the first assertion.

For the second part of the proposition, suppose x : [−1, t+) −→ R, t+ > 0,

is a non-continuable solution of the RFDE given by fe with initial value x0 = ϕ,

and t+ < ∞. The continuity result on fe from Corollary 3.2 in combination with

elementary results on continuation of solutions as is, for instance, contained in Hale
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and Verduyn Lunel [10, Theorem 3.2 in Chapter 2] imply ‖xt‖C → ∞ as t → t+.

But this contradicts Proposition 3.3 on boundedness of the solution x, and the

proof is complete. �

Recall that we may not expect, due to the presence of a state-dependent delay,

the uniqueness of solutions of Equation (3.1) for arbitrary initial data in C, even if

the delay function r is smoother than C1. However, a Lipschitz continuous initial

function in C provides a solution that is uniquely determined (in the forward time

direction), as shown in the next result.

Proposition 3.5. Suppose that ϕ ∈ C is Lipschitz continuous, and suppose

x : [−1,∞) −→ R and x̃ : [−1,∞) −→ R are solutions of Equation (3.1) with

x0 = ϕ = x̃0. Then it follows that x(t) = x̃(t) for all −1 ≤ t <∞.

Proof. According to Proposition 3.3, both x and x̃ are bounded. Hence, there

are constants 0 < mϕ,Mϕ with x(t), x̃(t) ∈ (−mϕ,Mϕ) for all −1 ≤ t < ∞. Now

the maps [0,∞) ∋ s 7−→ xs ∈ C and [0,∞) ∋ s 7−→ x̃s ∈ C are both continuous

and therefore the solutions x and x̃ may be represented by

x(t) = ϕ(0) +

∫ t

0

fe(xs) ds

and

x̃(t) = ϕ(0) +

∫ t

0

fe(x̃s) ds

for all t ≥ 0. Combining this with the complete continuity of fe due to Corollary

3.2, we find an additional constant ML ≥ max{1, a} such that x, x̃ are Lipschitz

continuous in [−1,∞) with Lipschitz constant ML. Moreover, we may also assume

that the map [−mϕ,Mϕ] ∋ ζ 7−→ |ζ|ζ ∈ R as well as the function r are Lipschitz

continuous in [−mϕ,Mϕ], even with the same Lipschitz constant ML. Define now

y(t) := x(t) − x̃(t), η(t) := t− r(x(t)), and η̃(t) := t− r(x̃(t)). Then we have

|ẏ(t)| = |ẋ(t) − ˙̃x(t)|

≤ a |x(t) − x̃(t)| + a |x(η(t)) − x̃(η̃(t))| + | |x̃(t)| x̃(t) − |x(t)|x(t) |

≤ML |y(t)| +ML |x(η(t)) − x(η̃(t))| +ML |x(η̃(t))

− x̃(η̃(t))| +ML |x(t) − x̃(t)|

≤ML |y(t)| +M2
L |η(t) − η̃(t)| +ML |y(η̃(t))| +ML |y(t)|

≤ML |y(t)| +M3
L |y(t)| +ML |y(η̃(t))| +ML |y(t)|

for all t ≥ 0. Hence, defining

z(t) := max
s∈[−1,t]

|x(s) − x̃(s)|,

we obtain the estimate

|y(t)| ≤

∫ t

0

(
3ML +M3

L

)
z(s) ds ≤

∫ τ

0

(
3ML +M3

L

)
z(s) ds

as 0 ≤ t ≤ τ . Thus for all τ ≥ 0 we have

z(τ) ≤

∫ τ

0

(
3ML +M3

L

)
z(s) ds,
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and hence by application of Gronwall’s inequality, compare for instance Hale [8,

Chapter I.6], it follows

0 ≤ z(τ) ≤ 0 · exp

(∫ τ

0

(3ML +M3
L ) ds

)
= 0.

Consequently, x = x̃ as asserted. �

The Continuous Semiflow. After the above discussion of existence and

uniqueness of solutions for DDE (3.1), we proceed with the construction of a semi-

flow by restriction of initial data. As a first step, we show that each solution with

an initial value bounded by 2a remains bounded by 2a.

Proposition 3.6. Suppose that ϕ ∈ C with ‖ϕ‖C ≤ 2a, and that the function

xϕ : [−1,∞) −→ R is a solution of (3.1) with x0 = ϕ. Then |x(t)| ≤ 2a for all

t ≥ −1. Furthermore, ‖ϕ‖C < 2a implies |x(t)| < 2a for t ≥ −1.

Proof. We follow the proof in Brunovský et al. [3] for the case of constant

delay, and prove the second part of the statement first. For this purpose, assume

there is a function ϕ ∈ C with ‖ϕ‖C < 2a such that, contrary to our claim, for a

solution x : [−1,∞) −→ R of Equation (3.1) with x0 = ϕ the inequality |x(t)| < 2a

does not hold for all t ≥ −1. Then there is a s > 0 such that |x(s)| ≥ 2 a. Especially,

we find a t0 > 0 such that |x(t0)| = 2a > |x(t)| for all −1 ≤ t < t0. But this leads

to a contradiction since in case x(t0) = 2a we would have

0 ≤ ẋ(t0)

= a
[
x(t0) − x(t0 − r(x(t0)))

]
− |x(t0)|x(t0)

= a
[
2 a− x(t0 − r(2a))

]
− 4a2

= −2a2 − a x(t0 − r(2a))

< −2a2 + 2a2

= 0,

and a similar argument applies also to the situation x(t0) = −2a. Consequently,

|x(t)| < 2a for all t ≥ −1, which shows the second statement of the proposition.

For the proof of the first assertion of the proposition, let us consider a solution

x : [−1,∞) −→ R of Equation (3.1), and assume the existence of s > 0 such that

|x(s)| > 2a holds. By the former argument, it follows ‖ϕ‖C ≥ 2a where ϕ := x0.

Hence, it is sufficient to show that the case ‖ϕ‖C = 2a leads to a contradiction.

For this purpose, define

t0 := max
{
t ∈ [−1,∞)

∣∣∣ |x(t)| = 2a and |x(s)| ≤ 2a for all − 1 ≤ s ≤ t
}

under the assumption ‖ϕ‖C = 2a. Obviously, we have 0 ≤ t0 < s, and there is a

constant ε > 0 such that either x(t) > 2a for t0 < t < t0 + ε and x is monotonically

increasing in (t0, t0 + ε), or analogously x(t) < −2a for t0 < t < t0 + ε and x is

monotonically decreasing. Additionally, in view of hypothesis (DF 2) on the delay

function r and the continuity of the map [0,∞) ∋ t 7−→ t − r(x(t)) ∈ R we may

assume that t − r(x(t)) ≤ t0 for all t0 < t < t0 + ε. Consider now the situation

x(t0) = 2a first. Fixing t1 ∈ (t0, t0 + ε), by assumptions we find a constant δ > 0
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with x(t1) = 2a+ δ. But this leads to

0 ≤ ẋ(t1)

= a
[
x(t1) − x(s− r(x(t1)))

]
− |x(t1)|x(t1)

= a
[
(2a+ δ) − x(t1 − r(x(t1)))

]
− (2a+ δ)2

= −2a2 − 3aδ − δ2 − a x(t1 − r(x(t1))

≤ −2a2 − 3aδ − δ2 + 2a2

= −3aδ − δ2

< 0,

a contradiction. A similar reasoning applies to the case x(t0) = −2a. Therefore,

the situation ‖ϕ‖C = 2a is impossible as claimed, and the proof is complete. �

Subsequently, we merge the previous results on solutions for the delay differen-

tial equation (3.1) to obtain an appropriate state-space and a smooth semiflow. On

that account we define the number

(3.5) Ka := 4a2 > 0,

where a > 0 is the parameter involved in the differential equation (3.1). Additional-

ly, we introduce the real-valued function

(3.6) g : [−2a, 2a]× [−2a, 2a] ∋ (ζ, ξ) 7−→ a
[
ζ − ξ

]
− |ζ| ζ ∈ R.

Then Equation (3.1) reads

ẋ(t) = g(x(t), x(t − r(x(t))),

and it is a simple matter to conclude |g(ζ, ξ)| ≤ Ka for all ζ, ξ ∈ [−2a, 2a] as also

indicated in Figure 3.2. For a given ϕ ∈ C satisfying the boundedness condition

ξ
ζ

−a
0a

−a
0

a

−2a2

0

2a2

Figure 3.2. Behavior of g on the square [−2a, 2a]× [−2a, 2a]

‖ϕ‖C ≤ 2a as well as the Lipschitz condition |ϕ(s) − ϕ(s̃)| ≤ Ka |s − s̃|, we make

the following observation:



64 3. BASIC PROPERTIES AND SLOWLY OSCILLATING SOLUTIONS

(a) There is a unique solution xϕ : [−1,∞) −→ R of Equation (3.1) with

x0 = ϕ due to Propositions 3.4 and 3.5 on existence and uniqueness of

solutions.

(b) All values xϕ(t), t ≥ −1, of the solution xϕ belong to [−2a, 2a] by the

last proposition on boundedness. In particular, ‖xϕt ‖C ≤ 2a for t ≥ 0.

(c) Every segment xϕt , t > 0, of the solution xϕ is again Lipschitz continuous

with constant Ka. Indeed, observe that for all s, s̃ ∈ R with s ≥ s̃ ≥ 0

we have

|xϕ(s) − xϕ(s̃)| =

∣∣∣∣
∫ s

s̃

g(xϕ(t), xϕ(t− r(xϕ(t))) dt

∣∣∣∣

≤

∫ s

s̃

|g(xϕ(t), xϕ(t− r(xϕ(t))))| dt

≤

∫ s

s̃

Ka dt

= Ka |s− s̃|,

and for all s, s̃ ∈ R with s ≥ 0 ≥ s̃ ≥ −1

|xϕ(s) − xϕ(s̃)| ≤ |xϕ(s) − xϕ(0)| + |xϕ(0) − xϕ(s̃)|

= |xϕ(s) − xϕ(0)| + |φ(0) − φ(s̃)|

≤ Ka |s− 0| +Ka |s̃|

= Ka |s− s̃|.

The above conclusions motivate to consider the subset

(3.7) La :=
{
ϕ ∈ C

∣∣ ‖ϕ‖C ≤ 2a, |ϕ(s) − ϕ(s̃)| ≤ Ka |s− s̃| for s, s̃ ∈ [−1, 0]
}

of C as a choice for a possible state space and the mapping

(3.8) F : [0,∞) × La ∋ (t, ϕ) 7−→ xϕt ∈ La

for the associated semiflow.

The subset La of the Banach space C is of course not linear, but convex, as

is easily seen. Furthermore, La is trivially bounded, closed and equicontinuous.

Therefore it is compact by the Arzelà-Ascoli theorem, see Brown and Page [2,

Theorem 4.6.2 in Chapter 4].

The function F is obviously well-defined, and by using the definition of F in

combination with the uniqueness of solutions for initial values in La at t = 0, we

obtain the identity F (0, ϕ) = ϕ as well as the semigroup property

F (s+ t, ϕ) = F (s, F (t, ϕ))

for all ϕ ∈ La and all s, t ≥ 0. Moreover, for each ϕ ∈ La the induced map

[0,∞) ∋ t 7−→ F (t, ϕ) = xϕt ∈ La

is continuous. The next result implies also the remaining property of a semiflow for

F , namely, the continuity of the so-called time-t-maps, which are defined by

La ∋ ϕ 7−→ F (t, ϕ) ∈ La

for t ≥ 0. The proof is patterned after a similar one in Krisztin and Arino [18].
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Proposition 3.7. Suppose that ϕ ∈ La and that {ϕn}n∈N is a sequence in La
such that ϕn → ϕ as n → ∞. Let x : [−1,∞) −→ R and xn : [−1,∞) −→ R,

n ∈ N, denote the uniquely determined solutions of Equation (3.1) with x0 = ϕ and

xn0 = ϕn, respectively. Then for every fixed T > 0 the following holds.

(i) The sequence
{
xn
}
n∈N

converges uniformly to x in [−1, T ] as n→ ∞.

(ii) The sequence
{
ẋn
}
n∈N

converges uniformly to ẋ in [0, T ] as n→ ∞.

Proof. The proof of part (i) is provided by a contradiction, whereas the state-

ment (ii) will be deduced from the first one.

1. Assume that assertion (i) is false. Then we find a constant δ > 0 and a

subsequence {nk}k∈N ⊂ N such that

sup
−1≤t≤T

|xnk(t) − x(t)| ≥ δ

for all k ∈ N. Let M denote the set of all continuous functions ψ from [−1, T ]

into [−2a, 2a], which are Lipschitz continuous with constant Ka. By application of

the Arzelà-Ascoli theorem, we conclude that M is a compact subset of the Banach

space C([−1, T ],R) equipped with the supremum norm. Accordingly, we find an

element y ∈ M and a subsequence {nkl
}l∈N of {nk}k∈N such that xnkl → y as

l → ∞. Notice

y 6= x
∣∣
[−1,T ]

by construction. Now we claim that y : [−1, T ) −→ R is also a solution of Equation

(3.1) with initial value ϕ at t = 0.

Proof of the claim. For every 0 ≤ t < T and l ∈ N we have

xnkl (t) = ϕnkl
(0) +

∫ t

0

fe
(
x
nkl
s

)
ds,

and hence in consideration of |fe
(
x
nkl
s

)
| ≤ Ka for 0 ≤ s ≤ t and l ∈ N

y(t) = lim
l→∞

xnkl (t)

= lim
l→∞

(
ϕnkl

(0) +

∫ t

0

fe
(
x
nkl
s

)
ds

)

= lim
l→∞

ϕnkl
(0) + lim

l→∞

∫ t

0

fe
(
x
nkl
s

)
ds

= lim
l→∞

ϕnkl
(0) +

∫ t

0

lim
l→∞

fe
(
x
nkl
s

)
ds

= lim
l→∞

ϕnkl
(0) +

∫ t

0

fe

(
lim
l→∞

x
nkl
s

)
ds

= ϕ(0) +

∫ t

0

fe(ys) ds .

By fundamental theorem of calculus we obtain

ẏ(t) = fe(yt)

for 0 < t < T . Since

y|[−1,0] = lim
l→∞

(
xnkl |[−1,0]

)
= lim

l→∞
ϕnkl

= ϕ,

y : [−1, T ) −→ R is a solution of Equation (3.1) with initial value ϕ at t = 0, as

claimed.
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Returning to the proof of part (i), we have solutions x and y of Equation (3.1)

with x0 = ϕ = y0, but

x|[−1,T ) 6= y|[−1,T ),

in contradiction to the uniqueness property of solutions from Proposition 3.5.

Hence, xn(t) → x(t) as n→ ∞ uniformly for t in [−1, T ].

2. Let now Lg ≥ 0 denote the Lipschitz constant of the continuously differ-

entiable function [−2a, 2a] ∋ ζ 7−→ |ζ| ζ ∈ R, and Lr ≥ 0 the one of the function

R ∋ ζ 7−→ r(ζ) ∈ R on the interval [−2a, 2a]. Then we get

|ẋn(t) − ẋ(t)| =
∣∣∣a
[
xn(t) − xn(t− r(xn(t)))

]
− |xn(t)|xn(t)

− a
[
x(t) − x(t− r(x(t)))

]
+ |x(t)|x(t)

∣∣∣

≤ a |xn(t) − x(t)| + a |x(t− r(x(t))) − xn(t− r(xn(t)))|

+
∣∣ |x(t)|x(t) − |xn(t)|xn(t)

∣∣

≤ a |xn(t) − x(t)| + a
∣∣x(t − r(x(t))) − x(t− r(xn(t)))

∣∣

+ a
∣∣x(t− r(xn(t))) − xn(t− r(xn(t)))

∣∣+ Lg |x(t) − xn(t)|

≤ (a+ Lg)
∣∣xn(t) − x(t)

∣∣ + aKa

∣∣r(x(t)) − r(xn(t))
∣∣

+ a
∣∣x(t− r(xn(t))) − xn(t− r(xn(t)))

∣∣

≤ (a+ Lg) |x
n(t) − x(t)| + aKa Lr |x(t) − xn(t)|

+ a
∣∣x(t− r(xn(t))) − xn(t− r(xn(t)))

∣∣

= (a+ Lg + aKa Lr)
∣∣xn(t) − x(t)

∣∣

+ a
∣∣x(t− r(xn(t))) − xn(t− r(xn(t)))

∣∣

≤ (2a+ Lg + aKa Lr) sup
s∈[−1,T ]

|xn(s) − x(s)|

for all 0 ≤ t ≤ T . Accordingly, the uniform convergence of {xn}n∈N to x on the

interval [−1, T ] as n→ ∞ implies that {ẋn}n∈N converges to ẋ on [0, T ] as n→ ∞.

This completes the proof. �

We summarize the fact that the segments of solutions for Equation (3.1) with

initial values in La generate a semiflow and prove its continuity in the next corollary.

Corollary 3.8. Let a > 0 be given. Then the mapping F given by Equation

(3.8) defines a continuous semiflow on the compact state space La from (3.7).

Proof. In view of the previous results, the only point to prove is the continuity

of the mapping F on the product space [0,∞)×La. Now, recall that for each fixed

t ≥ 0 the map

La ∋ ϕ 7−→ F (t, ϕ) ∈ La

and for each fixed ϕ ∈ La the map

[0,∞) ∋ t 7−→ F (t, ϕ) ∈ La
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are continuous. Moreover, the last map is continuous, uniformly with respect to

ϕ ∈ La. Indeed, for all ϕ ∈ La and arbitrary t1, t2 ≥ 0 we have

‖F (t1, ϕ) − F (t2, ϕ)‖C = ‖xϕt1 − xϕt2‖C

= sup
s∈[−1,0]

|xϕt1(s) − xϕt2(s)|

= sup
s∈[−1,0]

|xϕ(t1 + s) − xϕ(t2 + s)|

≤ sup
s∈[−1,0]

Ka|t1 − t2|

= Ka|t1 − t2|

due to the Lipschitz continuity of solutions with the Lipschitz constant Ka > 0.

Applying Lemma 8.1 in Amann [1, Chapter 8], we conclude the continuity of F as

a mapping from [0,∞)×La into La, and this shows the assertion of the lemma. �

In the remainder of this chapter we primarily consider this semiflow. Neverthe-

less one may ask about the behavior, especially the long-time behavior, of solutions

for initial values ϕ ∈ C with ‖ϕ‖C > 2a. A starting point for solving this ques-

tion could be the next result adapted from the situation with constant delay in

Brunovský et al. [3].

Proposition 3.9. If x : [−1,∞) −→ R is a solution of Equation (3.1), then

−2a ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤ 2a.

Proof. We begin with the claim that for every t0 > 0 with x(t0) > 2a, or

x(t0) < −2a, there is s > t0 such that x(s) = 2a, or x(s) = −2a, respectively.

Proof of the claim: To begin with, suppose x(t0) > 2a for some t0 > 0. If our

claim is false, then x(t) > 2a for all t0 ≤ t <∞. Hence we obtain

ẋ(t) =
[
a− |x(t)|

]
x(t) − a x(t− r(x(t)))

≤
[
a− 2a

]
2a− 2a2

= −4a2

< 0

for t0 + 1 ≤ t <∞, a contradiction. Consequently, there is t ≥ t0 with x(t) = 2a.

In case x(t0) < 2a for some t0 > 0, it is clear that an application of the above

arguments to the reflected solution −x yields the assertion, which completes the

proof.

We return now to the proof of the proposition and assume ‖xt‖C > 2a for all

t ≥ 0 since otherwise the assertion is clear due to Proposition 3.6. Then we find

a sequence {tj}j∈N ⊂ [0,∞) such that |x(tj)| > 2a for all j ∈ N, and tj → ∞

as j → ∞. Without loss of generality we may assume that either x(tj) > 2a for

all j ∈ N, or conversely x(tj) < −2a for all j ∈ N. Subsequently, we divide the

remaining part of the proof and consider these two cases separately.

1. In the situation x(tj) > 2a for j ∈ N, the above implies the existence of a

sequence {Mj}j∈N ⊂ [0,∞) of local maxima of x such that Mj → ∞ and

2a < x(Mj) → lim sup
t→∞

x(t)

as j → ∞. For every j ∈ N we have

0 = ẋ(Mj) =
[
a− |x(Mj)|

]
x(Mj) − a x(Mj − r(x(Mj))).
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In particular, the inequality 0 < 2a < x(Mj) implies the estimate

a x(Mj − r(x(Mj))) =
[
a− |x(Mj)|

]
x(Mj)

= a x(Mj) −
(
x(Mj)

)2

< −a x(Mj)

< 0

for j ∈ N. Set sj := Mj − r(x(Mj)). Then, combining x(Mj) > 2a and the last

inequality, we see x(sj) < −2a for j ∈ N, and sj → ∞ as j → ∞. Accordingly,

the claim proved above shows the existence of a sequence {s∗j}j∈N ⊂ [0,∞) such

that s∗j > sj and x(s∗j ) = −2a for all j ∈ N. Hence, we now find a sequence

{mj}j∈N ⊂ [0,∞) of local minima of the solution x with the property mj → ∞ and

−2a > x(mj) → lim inf
t→∞

x(t)

as j → ∞. Analogously to the sequence {Mj}j∈N of local maxima, it follows that

0 = ẋ(mj) =
[
a− |x(mj)|

]
x(mj) − a x(mj − r(x(mj)))

and thus, in view of x(mj) < −2a < 0, that

a x(mj − r(x(mj))) =
[
a− |x(mj)|

]
x(mj)

= a x(mj) +
(
x(mj)

)2

> −a x(mj)

> 0

for all j ∈ N. By Proposition 3.3, the two limits

c := lim sup
t→∞

x(t) ≥ 2a

and

d := lim inf
t→∞

x(t) ≤ −2a

are finite, and the inequalities x(Mj − r(x(Mj))) < −x(Mj), j ∈ N, yield d ≤ −c.

Analogously, the inequalities x(mj − r(x(mj))) > −x(mj), j ∈ N, imply −c ≤ d.

Therefore, we have −c = d and

−c = d

= lim inf
t→∞

x(t)

≤ lim inf
j→∞

x(Mj − r(x(Mj)))

≤ lim sup
j→∞

x(Mj − r(x(Mj)))

= lim sup
j→∞

(
x(Mj) −

1

a

(
x(Mj)

)2
)

= c− c2/a,

which finally results in 2a ≥ c. In particular,

2a ≥ lim sup
t→∞

x(t) ≥ lim inf
t→∞

x(t) ≥ −2a,

and this proves the assertion in the situation x(tj) > 2a for j ∈ N.
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2. In the case x(tj) < 2a for all j ∈ N, the argumentation of the first part

applied to the reflected solution −x of Equation (3.1) implies

−2a ≤ lim inf
t→∞

−x(t) ≤ lim sup
t→∞

−x(t) ≤ 2a,

and therewith

2a ≥ lim sup
t→∞

x(t) ≥ lim inf
t→∞

x(t) ≥ −2a.

This completes the proof. �

3. Differences of Solutions and a Discrete Lyapunov Functional

Under an additional hypothesis on the delay function, the weighted differen-

ces of solutions of Equation (3.1) satisfy linear differential equations with time-

dependent coefficients and delay. This feature will allow us to follow the idea of

Krisztin and Arino [17] and to introduce a discrete, integer-valued functional for

counting sign changes of solutions of DDE (3.1). Such a counting tool will become

crucial for our considerations of so-called slowly oscillating solutions in the course

of this work.

Weighted Differences. Until further notice we assume in addition to the hy-

potheses (DF 1) - (DF 4) formulated on page 57 that the considered delay function

r : R −→ R satisfies also the following further condition:

(DF 5) |r′(s)| < 1/Ka for all −2a ≤ s ≤ 2a.

This appended postulation on the delay will ensure that along a solution x the

model equation (3.1) “ forgets ” for all t > t0 its history prior to t0 − r(x(t0)) in the

sense that we have t− r(x(t)) > t0 − r(x(t0)).

Remark 3.10. An easy computation shows that by a suitable choice of constant

c > 0 for fixed k ∈ N and given parameter a > 0 the additional assumption (DF 5)

can also be guaranteed for our examples r1 and r2 of a delay function on page 58.

Next we prove the announced strongly increasing property along solutions of

the delayed argument involved in Equation (3.1).

Corollary 3.11. If x : [t0 − 1,∞) −→ [−2a, 2a] is a solution of Equation

(3.1) then
d

dt

(
t− r(x(t))

)
> 0

for all t > t0. Moreover, in case of a globally defined solution x : R −→ [−2a, 2a],

the above inequality is valid for all t ∈ R.

Proof. Suppose x : [t0 − 1,∞) −→ [−2a, 2a] is a solution of Equation (3.1).

Combining condition (DF 5) on r with the fact that the function g defined by (3.6)

is bounded on the square [−2a, 2a]× [−2a, 2a] by Ka, we obtain

d

dt

(
t− r(x(t))

)
= 1 − r′(x(t)) ẋ(t)

≥ 1 − |r′(x(t)) ẋ(t)|

> 1 −
1

Ka

|g(x(t), x(t− r(x(t)))|

≥ 1 −
1

Ka

Ka

= 0
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for all t > t0. The same reasoning applied for a solution x : R −→ [−2a, 2a]

completes the proof. �

We can now formulate and establish the result about the differences of solutions

for the differential equation (3.1).

Proposition 3.12. Suppose x, y : R −→ [−2a, 2a] are solutions of Equation

(3.1). Then there exist constants ma ≤Ma < 0, both depending only on parameter

a > 0, and continuous functions u : R −→ R and α : R −→ R such that

(i) α(R) ⊆ [ma,Ma],

(ii) u is bounded, and

(iii) the function

(3.9) v : R ∋ t 7−→
[
x(t) − y(t)

]
· exp

(
−

∫ t

0

u(s) ds

)
∈ R

satisfies for all t ∈ R the time-dependent delay differential equation

v̇(t) = α(t) v(t− r(x(t))) .

Proof. Throughout the proof, let us define the constants um, ma and Ma by

um := 6a, ma := −a eum , and Ma := −a e−um . Additionally, we note that x, y are

both continuously differentiable as global solutions of Equation (3.1). Let now the

functions z, u : R −→ R be given by

z(t) = x(t) − y(t),

and

u(t) = a

∫ 1

0

ẏ
(
(1 − s)

[
t− r(x(t))

]
+s
[
t− r(y(t))

])
ds

∫ 1

0

r′
(
(1 − s) y(t) + s x(t)

)
ds

− 2

∫ 1

0

|(1 − s) y(t) + s x(t)| ds+ a,

respectively. According to the assertions (i) to (iii), the proof will be divided into

three steps, but in a different order.

1. The function u is obviously continuous. By the triangle inequality, the

monotonicity property of the integral and the boundedness of g by Ka in the square

[−2a, 2a]× [−2a, 2a], we obtain

|u(t)| ≤ a

∫ 1

0

sup
s̃∈R

|ẏ(s̃)| ds

∫ 1

0

max
s̃∈[−2a,2a]

|r′(s̃)| ds+ 2

∫ 1

0

2a ds+ a

= 5a+ a max
s̃∈[−2a,2a]

|r′(s̃)| · max
s̃∈R

|g(y(s̃), y(s̃− r(y(s̃))))|

≤ 5a+ aKa max
s̃∈[−2a,2a]

|r′(s̃)|

for t ∈ R. Hence, hypothesis (DF 5) on r implies |u(t)| ≤ um, t ∈ R, which in

particular yields the boundedness of u claimed in part (ii).
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2. According to the C1-smoothness of solutions x, y of Equation (3.1), the

function z is also continuously differentiable on R. Moreover, from

ẋ(t) − ẏ(t) = a
[
x(t) − x(t− r(x(t)))

]
− |x(t)|x(t)

− a
[
y(t) − y(t− r(y(t)))

]
+ |y(t)| y(t)

= a
[
x(t) − y(t)

]
− a
[
x(t − r(x(t))) − y(t− r(x(t)))

]

− a
[
y(t− r(x(t))) − y(t− r(y(t)))

]
− |x(t)|x(t) + |y(t)| y(t)

= a z(t) − a z(t− r(x(t))) − a
[
y(t− r(x(t))) − y(t− r(y(t)))

]

− 2

∫ 1

0

|(1 − s) y(t) + s x(t)|ds (x(t) − y(t))

= a z(t) − a z(t− r(x(t))) − 2

∫ 1

0

|(1 − s) y(t) + s x(t)|ds (x(t) − y(t))

+ a

∫ 1

0

ẏ
(
(1 − s) [t− r(x(t))] + s [t− r(y(t))]

)
ds

·

∫ 1

0

r′
(
(1 − s) y(t) + s x(t)

)
ds (x(t) − y(t))

for t ∈ R, we see that the difference z of solutions x and y satisfies the DDE

ż(t) = u(t) z(t) − a z(t− r(x(t))).

As a consequence of this equation, it now easily follows that the function v defined

by (3.9) fulfills for all t ∈ R the differential equation

v̇(t) = −a exp

(
−

∫ t

t−r(x(t))

u(s) ds

)
v(t− r(x(t))).

Hence, defining

α : R ∋ t 7−→ −a exp

(
−

∫ t

t−r(x(t))

u(s) ds

)
∈ R,

we get assertion (iii).

3. To see the conclusion (i), that is, α(R) ⊂ [ma,Ma], recall that |u(t)| ≤ um,

t ∈ R, from the first part of the proof, and that 0 < r(s) ≤ 1 by our assumptions.

Consequently, we have

um ≥

∫ t

t−r(x(t))

um ds ≥ −

∫ t

t−r(x(t))

u(s) ds ≥ −

∫ t

t−r(x(t))

um ds ≥ −um,

which finally yields α(R) ⊂ [ma,Ma] and completes the proof. �

In general, a solution of a delay differential equation may not be continued in

the backward time direction in contrast to an ordinary differential equation defined

by a smooth vector field; and if a backward solution of a DDE exists, the uniqueness

may fail. As a simple corollary of the last result on the difference of solutions for

Equation (3.1) we show that globally defined solutions are unique.

Corollary 3.13. If both x : R −→ [−2a, 2a] and y : R −→ [−2a, 2a] are

solutions of Equation (3.1), and if there is s ∈ R such that xs = ys, then x(t) = y(t)

for all t ∈ R.
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Proof. Under the above assumptions, for each t ∈ R the segments xt and

yt belong to La. Therefore, Proposition 3.5 implies x(t) = y(t) for all t ≥ s − 1.

Defining

t0 := inf {t ∈ R |x(s̃) = y(s̃) for all s̃ ≥ t} ,

we only need to show t0 = −∞. Contrary to that, let us assume that t0 > −∞. As

v(t) = 0 for t ≥ t0, where v is defined by (3.9), the last propositions implies

v(t− r(x(t))) = 0

for all t ≥ t0. Denote by mr > 0 the minimum of r in [−2a, 2a]. Then we obtain

v(t) = 0 as t ≥ t0−mr, in contradiction to the definition of t0. This yields t0 = −∞,

and accordingly the assertion x(t) = y(t) for all t ∈ R. �

A Discrete Lyapunov Functional. The remainder of this section will be

devoted to the presentation of a discrete functional for counting sign changes along

solutions of Equation (3.1). This construction goes back to the work [17] of Krisztin

and Arino and forms a modification of a corresponding concept for DDEs with

constant delay, which is used in Mallet-Paret [20] and Mallet-Paret and Sell [21].

Let ϕ be a real-valued continuous function defined on a subset I ⊆ R. For

a subinterval [a, b] ⊂ I, a < b, with ϕ|[a,b] 6= 0 the number of sign changes

sc(ϕ, [a, b]) of ϕ on [a, b] is 0 if ϕ is nonnegative or nonpositive on [a, b]. Otherwise

sc(ϕ, [a, b]) is defined by the quantity

sc(ϕ, [a, b]) := sup
{
k ≥ 0

∣∣ there exist si ∈ [a, b] for i = 0, 1, . . . , k,

such that si−1 < si and ϕ(si−1) · ϕ(si) < 0 for 1 ≤ i ≤ k
}
.

In other words, sc(ϕ, [a, b]) = k ≥ 0, if and only if there exists a partition of

[a, b] into (k + 1) subintervals such that ϕ ≥ 0 or ϕ ≤ 0 in each subinterval, ϕ

does not vanish in any subinterval, and the sign of ϕ is different in neighboring

subintervals. Accordingly, the value sc(ϕ, [a, b]) is either a nonnegative integer, or

infinity. Subsequently, we establish an auxiliary result about the behavior of sign

changes for continuously differentiable functions under certain conditions.

Proposition 3.14. Let a, b ∈ R with a < b.

(i) If ϕ ∈ C1([a, b],R) and if the number of zeros of ϕ in [a, b] is not finite,

then there is some s ∈ [a, b] with

ϕ(s) = ϕ′(s) = 0.

(ii) Suppose that ϕ ∈ C1([a − δ, b + δ],R), δ > 0, has finitely many zeros

in [a, b], that all zeros of ϕ are simple, and that ϕ(a) 6= 0, ϕ(b) 6= 0.

Then there is some γ ∈ (0, δ) such that |a − c| < γ, |b − d| < γ, and

ψ ∈ C1([c, d],R) with ‖ψ − ϕ‖C1([c,d],R) < γ implies

sc(ψ, [c, d]) = sc(ϕ, [a, b]).

Proof. As the proof is a simple exercise in calculus, we only repeat the argu-

ments for the first part of the assertion.

Let x1 ∈ [a, b] be a zero of ϕ. If ϕ′(x1) = 0, then the claim is clear. Otherwise,

the function ϕ has infinitely many zeros in at least one of the intervals [a, x1] and

[x1, b]. Let us at first assume that x has infinitely many zeros in the interval [x1, b].

Then we find a zero x2 ∈ (x1, b] of ϕ with ϕ(s) 6= 0 as x1 < s < x2. Again, if

ϕ′(x2) 6= 0 then there exists an element x3 ∈ (x2, b] with ϕ(x3) = 0 but ϕ(s) 6= 0
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for all x2 < s < x3. Successively, we construct a strictly monoton increasing

sequence {xn}n∈N ⊂ [a, b] of simple zeros of ϕ. Obviously, there is an x ∈ [a, b]

with xn ր x as n −→ ∞, and the continuity of ϕ implies ϕ(x) = 0. By application

of the mean value theorem, we find a sequence {ξn}n∈N of reals in [a, b] such that

ξn ∈ (xn, xn+1) and ϕ′(ξn) = 0 for n ∈ N. Hence, ξn ր x as n −→ ∞, and the

continuous differentiability of ϕ implies ϕ′(x) = 0. In particular, ϕ(x) = ϕ′(x) = 0.

Since an analogous reasoning applies to the situation in which the function ϕ has

infinitely many zeros on [a, x1], this finishes the proof of (i). �

Consider once more reals a < b and a real-valued continuous function ϕ defined

on the interval [a, b]. Using the number of sign changes sc(ϕ, [a, b]) of ϕ on [a, b],

we define the quantity

V (ϕ, [a, b]) :=

{
sc(ϕ, [a, b]) if sc(ϕ, [a, b]) is odd or infinite,

sc(ϕ, [a, b]) + 1 if sc(ϕ, [a, b]) is even.

Obviously, V (ϕ, [a, b]) is either a nonnegative odd integer or infinity. Let H[a,b]

denote the subset

(3.10)
H[a,b] :=

{
ϕ ∈ C1([a, b],R)

∣∣ ϕ(b) 6= 0 or ϕ(a) · ϕ′(b) < 0, andϕ(a) 6= 0 or

ϕ′(a) · ϕ(b) > 0, and all zeros of ϕ in (a, b) are simple
}

of C1([a, b],R). The next result contains some basic properties of the quantity V ,

especially for functions in H[a,b].

Proposition 3.15 (Lemma 4.1 in Krisztin and Arino [17]). Let reals a, b ∈ R

with a < b be given.

(i) V is lower semicontinuous in the following sense: If ϕ : [a, b] −→ R is

a non-zero continuous function and if ϕn : [an, bn] −→ R, n ∈ N, is

a sequence of non-zero continuous functions defined on some intervals

[an, bn] ⊂ R such that

max
s∈[a,b]∩[an,bn]

|ϕn(s) − ϕ(s)| → 0, an → a, bn → b

as n→ ∞, then

V (ϕ, [a, b]) ≤ lim inf
n→∞

V (ϕn, [an, bn]).

(ii) If ϕ ∈ H[a,b], then V (ϕ, [a, b]) <∞.

(iii) If ϕ ∈ C1([a− δ, b+ δ],R) for some δ > 0 and ϕ|[a,b] ∈ H[a,b], then there

is a constant γ ∈ (0, δ) such that conditions |a− c| < γ, |b− d| < γ, and

ψ ∈ C1([c, d],R) with ‖ψ − ϕ‖C1([c,d],R) < γ imply

V (ψ, [c, d]) = V (ϕ, [a, b]).

Proof. Subsequently, we follow the proof given in Krisztin and Arino [17].

1. The proof of (i). If V (ϕ, [a, b]) = ∞, then assertion (i) is clear. Therefore

assume V (ϕ, [a, b]) < ∞. Then we find a constant γ ∈ (0, (b − a)/4) such that ϕ

has no sign change in the intervals [a, a + 2γ] and [b − 2γ, b]. By the assumptions

an → a and bn → b as n→ ∞, it is also clear that there is a constant N1 ∈ N with

[a+ γ, b− γ] ⊂ [an, bn] for n ≥ N1. Moreover, from

max
s∈[a,b]∩[an,bn]

|ϕ(s) − ϕn(s)| → 0
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as n→ ∞ we conclude the existence of N2 ∈ N, N2 ≥ N1, with

V (ϕn, [a+ γ, b− γ]) ≥ V (ϕ, [a+ γ, b− γ])

for all n ≥ N2. Consequently, as n ≥ N2 we have

V (ϕn, [an, bn]) ≥ V (ϕn, [a+ γ, b− γ]) ≥ V (ϕ, [a+ γ, b− γ]) = V (ϕ, [a, b]),

which implies the statement.

2. The proof of (ii). This part of the proposition is an immediate conclusion

of Corollary 3.14. Indeed, if V (ϕ, [a, b]) = ∞ for a function ϕ ∈ C1([a, b],R) then

there is an s ∈ [a, b] with ϕ(s) = ϕ′(s) = 0, which in turn implies ϕ 6∈ H[a,b].

3. The proof of (iii). Under the additional assumption that ϕ(a) 6= 0 and

ϕ(b) 6= 0, the assertion is obvious due to the last part in combination with Corollary

3.14. On the other hand, assume that ϕ(b) = 0 and ϕ(a) ·ϕ′(b) < 0. Then we have

either ϕ(a) > 0 and ϕ′(b) < 0, or viceversa. However, in both cases the number

of the sign changes of ϕ in [a, b] is even. Furthermore, it is clear that there is a

constant 0 < ε < min{δ, (b − a)/2} such that ϕ′ has no zero in [b − ε, b + ε] and

thus ϕ is strictly monotonous in [b − ε, b+ ε]. In particular, we have ϕ(b − ε) 6= 0

and sc(ϕ, [a, b]) = sc(ϕ, [a, b − ε]). Applying part (ii) of Corollary 3.14, we find a

constant 0 < γ1 < ε such that for all c, d ∈ R and all ψ ∈ C1([c, d],R) satisfying

|a− c| < γ1, |b− ε− d| < γ1 and ‖ϕ− ψ‖C1([c,d],R) < γ1, we have

sc(ϕ, [a, b− ε]) = sc(ψ, [c, d]).

Choose 0 < γ < min{γ1, |ϕ(b−ε)|,m}, wherem := min
{
|ϕ′(s)| |s ∈ [b−ε, b+ε]

}
> 0,

and suppose that c, d ∈ R with c < d and a function ψ ∈ C1([c, d],R) fulfill

|a − c| < γ, |b − d| < γ and ‖ϕ − ψ‖C1([c,d],R) < γ. Then it is easy to check

that ψ(b − ε) 6= 0 and that the function ψ is strictly monotonous in [b − ε, d].

Consequently, ψ can have at most one sign change in [b− ε, d]. Therefore, we get

sc(ϕ, [a, b]) = sc(ϕ, [a, b− ε]) = sc(ψ, [c, b− ε]) ≤ sc(ψ, [c, d])

and

sc(ψ, [c, d]) = sc(ψ, [c, b− ε]) + sc(ψ, [b − ε, d]) ≤ sc(ϕ, [a, b]) + 1.

Combining these inequalities yields

sc(ϕ, [a, b]) ≤ sc(ψ, [c, d]) ≤ sc(ϕ, [a, b]) + 1,

and establishes the formula V (ϕ, [a, b]) = V (ψ, [c, d]) in consideration of the defini-

tion of V .

The same conclusion can be drawn for the case ϕ(a) = 0 and ϕ′(a) · ϕ(b) > 0,

and this completes the proof. �

In our next result, we consider functions α, τ : I −→ R defined on some interval

I = [c, d] ⊂ R with α(t) < 0 and τ(t) > 0 for all t ∈ I, and we assume that the

induced function η : I ∋ t 7−→ t − τ(t) ∈ R is strictly increasing. We further

suppose that there is an integer k > 1 and reals cj ∈ I, j = 1, . . . , k, satisfying

c1 = c and η(cj) = cj−1 for j = 2, . . . , k. Additionally, let the function η0 : I −→ R

be defined by η0(t) = t and then inductively for each j ∈ {1, . . . , k} the function

ηj : [cj , d] −→ R by the relation ηj(t) = η(ηj−1(t)). Compare here Figure 3.3 which

indicates how the reals c1, . . . , ck behave under the functions ηj for j = 1, . . . , k.

Note also that by assumption the interval {t − τ(t) | t ∈ I} contains the real

c1 = c ∈ I and therefore the union J := {t− τ(t) | t ∈ I} ∪ I is an interval as well.
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Figure 3.3. Sample Construction for Proposition 3.16

Proposition 3.16 (Lemma 4.2 in Krisztin and Arino [17]). Suppose that addi-

tionally to I, J , α, τ , η, k as above, there is a continuous function v : J −→ R with

the property that v is continuously differentiable on I, for each t ∈ I the restriction

v[η(t),t] is not identically zero and v satisfies the differential equation

(3.11) v̇(t) = α(t) v(t − τ(t))

as t ∈ I. Then the following holds.

(i) If t1, t2 ∈ I and t1 < t2, then V (v, [η(t1), t1]) ≥ V (v, [η(t2), t2]).

(ii) If k ≥ 3, and if there is some t ∈ [c3, d] with v(t) = v(η(t)) = 0, then

either V (v, [η(t), t]) = ∞ or V (v, [η(t), t]) < V (v, [η3(t), η2(t)]).

(iii) If k ≥ 4, and if there is t ∈ [c4, d] satisfying

V (v, [η(t), t]) = V (v, [η4(t), η3(t)]) <∞,

then v|[η(t),t] ∈ H[η(t),t].

Proof. We reproduce the arguments from Krisztin and Arino [17] for the

completeness.

1. The proof of (i). We begin with the claim that we shall have established

assertion (i) if for each t ∈ I we show the existence of a constant ε0 = ε0(t) > 0 so

that for all 0 ≤ ε ≤ ε0 with t+ ε ∈ I

(3.12) V (v, [η(t), t]) ≥ V (v, [η(t+ ε), t+ ε]).

Proof of the claim: Suppose that t1, t2 ∈ I with t1 < t2 and that for each t ∈ I

we find an ε0 = ε0(t) > 0 such that for all 0 ≤ ε ≤ ε0 with t + ε ∈ I the above

inequality for V is fulfilled. Define

t∗ := sup
{
s ∈ [t1, t2]

∣∣ V (v, [η(t1), t1]) ≥ V (v, [η(u), u]) for all t1 ≤ u ≤ s
}
.

By assumption, we have t1 < t∗ ≤ t2. In view of the definition of t∗ there is a

sequence {sn}n≥0 ⊂ [t1, t
∗] with sn → t∗ as n→ ∞ and

V (v, [η(t1), t1]) ≥ V (v, [η(sn), sn])

for all n ∈ N. The continuity of η leads to the convergence η(sn) → η(t∗) as n→ ∞,

and hence part (i) of Proposition 3.15 implies

V (v, [η(t1), t1]) ≥ lim inf
n→∞

V (v, [η(sn), sn]) ≥ V (v, [η(t∗), t∗]).
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If now t∗ < t2 were true, then due to our assumption we would find a constant

0 < ε0(t
∗) ≤ t2 − t∗ such that

V (v, [η(t∗), t∗]) ≥ V (v, [η(t∗ + ε), t∗ + ε])

for all 0 ≤ ε ≤ ε0(t
∗), in contradiction to the definition of t∗. Therefore t∗ = t2,

which establishes our claim.

Now, we only need to show that for each t ∈ I there is an ε0 = ε0(t) > 0

such that for all 0 ≤ ε ≤ ε0 with t + ε ∈ I inequality (3.12) holds. As in the case

V (v, [η(t), t]) = ∞ this assertion is obviously true, we may assume V (v, [η(t), t]) is

finite. Furthermore, we need only consider the situation v(t) = 0, because under the

condition v(t) 6= 0 the assertion is clear from the strong monotonicity of function

η. Hence, suppose that V (v, [η(t), t]) < ∞ and v(t) = 0. Then η(t) is not an

accumulation point of a sequence of sign changes of v in (η(t), t], and thus we find

a sufficiently small 0 < δ < τ(t) such that v has no sign change in [η(t), η(t) + δ].

Consider first the situation v(s) ≥ 0 for all η(t) ≤ s ≤ η(t) + δ. Using the

continuity and strong monotonicity of η, we see at once the existence of ε0 > 0

such that t ≤ s ≤ t+ ε0 implies η(t) ≤ η(s) ≤ η(t) + δ. Therefore, Equation (3.11)

shows

v̇(s) = α(s) v(s− τ(s)) = α(s) v(η(s)) ≤ 0,

and thus v(s) ≤ 0 for all t ≤ s ≤ t + ε0 due to our assumption v(t) = 0. If v is

identically zero in [t, t+ε0], then we clearly obtain the claimed inequality (3.12) for

all 0 ≤ ε ≤ ε0. Otherwise, v(s) < 0 for some t < s ≤ t+ ε such that the differential

equation (3.11) implies 0 < v(η(t̃)) for some t < t̃ < s with η(t) ≤ η(t̃) ≤ η(t) + δ.

Accordingly, we find a constant 0 < γ < t− η(t) = τ(t) such that v|[t−γ,t] 6= 0 and

either v(s) ≥ 0 or v(s) ≤ 0 for all t−γ ≤ s ≤ t. In case v ≥ 0 in [t−γ, t], we obtain

sc(v, [η(t), t + ε]) ≤ sc(v, [η(t), t]) + 1,

and hence the claimed inequality (3.12) for all 0 ≤ ε ≤ ε0, because sc(v, [η(t), t+ε])

is even due to the fact that the value of v on the right of η(t) and the left of t is

positive. On the other hand, if v ≤ 0 in [t− γ, t], then

sc(v, [η(t), t + ε]) = sc(v, [η(t), t])

such that in this case (3.12) is also satisfied for all 0 ≤ ε ≤ ε0. This establishes

inequality (3.12) under the assumption v(s) ≥ 0 for η(t) ≤ s ≤ η(t) + δ. As the

differential equation (3.11) is linear, the above argumentation applies also in the

situation −v(s) ≥ 0 for η(t) ≤ s ≤ η(t) + δ, which completes the proof of the

statement (i).

2. The proof of (ii). As in the situation V (v, [η(t), t]) = ∞ there is nothing to

prove, we assume that in case of k ≥ 3 there is c3 ≤ t ≤ d with v(t) = v(η(t)) = 0

and V (v, [η(t), t]) <∞. Set m := sc(v, [η(t), t]). Then by definition we find a subset

{ti| i = 0, 1, . . . ,m+ 1,m+ 2} of [η(t), t] with

η(t) = tm+2 < tm+1 < · · · < t1 < t0 = t

and v(ti) v(ti+1) < 0 for all i = 1, 2, . . . ,m. In particular, it follows that for each

i ∈ {0, 1, . . . ,m + 1} we have v(ti) − v(ti+1) 6= 0. Additionally, the mean value

theorem implies the existence of ξi ∈ (ti+1, ti) satisfying

v(ti) − v(ti+1) = v̇(ξi) (ti − ti+1) = α(ξi) v(η(ξi)) (ti − ti+1)
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where the last equality holds due to Equation (3.11). Now define t̂i := η(ξi) for all

i = 0, 1, . . . ,m+ 1. As η is strongly increasing we get

η(tm+2) = η2(t) < t̂m+1 < t̂m < · · · < t̂0 < η(t) = η(t0).

Moreover, using the above equation for the differences v(ti) − v(ti+1) and the as-

sumption v(t0) = v(tm+2) = 0, we immediately see

v(t̂i) v(t̂i+1) < 0

for all i ∈ {0, 1, . . . ,m}. Thus sc(v, [η2(t), η(t)]) ≥ m+1. If m is odd, then we have

V (v, [η2(t), η(t)]) ≥ m+ 2 > m = V (v, [η(t), t]),

and thus part (i) implies, in view of η2(t) < η(t),

V (v, [η3(t), η2(t)]) ≥ V (v, [η2(t), η(t)]) > V (v, [η(t), t]),

as claimed.

Otherwise the integer m is even, and the values v(t̂0) and v(t̂m+1) consequently

have different signs. Since v(η(t)) = 0 and v(t̂0) 6= 0, there is a real t∗ ∈ (t̂0, η(t))

such that

sign(v(t∗)) = sign(v(t̂0))

and

sign(v̇(t∗)) = − sign(v(t̂0)).

Therefore, the differential equation (3.11) for v leads to

sign(v(η(t∗))) = − sign(v̇(t∗)) = sign(v(t̂0)) = − sign(v(t̂m+1)),

whereby the above in combination with η(t∗) < η2(t) < t̂m+1 results in

sign(v, [η(t∗), t∗]) ≥ m+ 2.

Using η(t∗) > η3(t) and applying part (i), we obtain

V (v, [η3(t), η2(t)]) ≥ V (v, [η(t∗), t∗]) ≥ m+ 3 > m+ 1 = V (v, [η(t), t]).

This completes the proof of assertion (ii).

3. The proof of (iii). Suppose that in the case of k ≥ 4 there is a real c4 ≤ t ≤ d

with V (v, [η(t), t]) = V (v, [η4(t), η3(t)]) < ∞. As for each η(t) ≤ s ≤ t we have

η3(t) ≤ η2(s) ≤ s ≤ t, the first part of the proposition implies

V (v, [η4(t), η3(t)]) ≥ V (v, [η3(s), η2(s)]) ≥ V (v, [η(s), s]) ≥ V (v, [η(t), t]),

and hence

(3.13) V (v, [η(s), s]) = V (v, [η3(s), η2(s)]) <∞

as η(t) ≤ s ≤ t. Applying the second part, we conclude

(v(s), v(η(s))) 6= 0 ∈ R
2,

such that the differential equation (3.11) for v yields

(v(s), v̇(s)) 6= 0 ∈ R
2

for all η(t) ≤ s ≤ t. Therefore, every zero of v in [η(t), t] is simple. In particular,

v(t) = 0 implies 0 6= v̇(t) = α(t) v(η(t)) and v̇(t) v(η(t)) < 0 as α(t) < 0. Conse-

quently, it remains to prove that either v(η(t)) 6= 0 or v̇(η(t)) v(t) > 0. For this
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purpose, suppose we have v(η(t)) = 0. Then from the second part of the proposi-

tion in combination with the above we get v(t) 6= 0 and v(η2(t)) 6= 0, so Equation

(3.11) yields v̇(η(t)) v(t) 6= 0.

Assuming in the following that v̇(η(t)) v(t) < 0 is true, we conclude that the

integerm := sc(v, [η(t), t]) is odd. By definition, there is a set {ti|i = 0, 1, . . . ,m+1}

of points in [η(t), t] with

η(t) = tm+1 < tm < · · · < t1 < t0 = t

and

v(ti) v(ti+1) < 0

as i = 0, 1, . . . ,m − 1. We can now proceed analogously to the proof of part (ii)

and find m + 1 sign changes of v in [η2(t), η(t)] by application of the mean value

theorem and using v̇(η(t)) v(t) < 0. Accordingly, in this way we conclude

V (v, [η2(t), η(t)]) ≥ m+ 2 > m = sc(v, [η(t), t]) = V (v, [η(t), t]),

and hence by the first part,

V (v, [η4(t), η3(t)]) > V (v, [η(t), t])

in contradiction to (3.13). This shows v̇(η(t)) v(t) > 0 under the assumption of

v(η(t)) = 0 and completes the proof for v|[η(t),t] ∈ H[η(t),t]. �

We close this section with a remark concerning the applicability of the last

result for the study of solutions of the differential equation (3.1).

Remark 3.17. Proposition 3.12 on the weighted differences of global solutions

enables us to use the last result for the study of Equation (3.1). Indeed, assuming

x, y : R −→ [−2a, 2a] are two solution of the DDE (3.1), from Proposition 3.12 we

obtain the existence of bounded functions α, u : R −→ R with α(t), u(t) < 0 for

t ∈ R such that

v : R ∋ t 7−→
[
x(t) − y(t)

]
· exp

(
−

∫ t

0

u(s) ds

)
∈ R

satisfies the linear DDE

v̇(t) = α(t) v(t − τ(t))

where τ(t) := r(x(t)) > 0 and the induced function η : R ∈ t 7−→ t − τ(t) ∈ R is

strictly increasing by Corollary 3.11. Hence we may apply the last proposition for

considerations of the weighted difference of x and y introduced above.

4. Slowly Oscillating Solutions

The discussion of the existence and structure of so-called slowly oscillating

solutions for Equation (3.1) with values in [−2a, 2a] is the main intention of this

section. Thereby a real valued function x : R ⊇ I −→ R is called slowly oscilla-

ting if |z−z̃| > 1 for any pair z, z̃ ∈ I of zeros of x with z 6= z̃. We will soon see that

the differential equation (3.1) provides quite a few slowly oscillating solutions, and

that the set of all global slowly oscillating solutions, which additionally are bounded

by 2a, can be characterized by the discrete Lyapunov functional introduced in the

last section.



4. SLOWLY OSCILLATING SOLUTIONS 79

Existence of Slowly Oscillating Solutions. Suppose x : I −→ [−2a, 2a]

defined on I = [−1,∞) or I = (−∞,∞) is a slowly oscillating solution of Equation

(3.1) with initial value x0 ∈ La. Then the segments of x belong to the subset

(3.14) Za := {ϕ ∈ La| ϕ has at most one zero}

of La. The closure Sa of Za with respect to the topology induced by the norm of C

consists of all functions ϕ ∈ La with no more than one sign change in [−1, 0]; that

is, ϕ ∈ Sa if and only if ϕ ∈ La and ϕ is either nonnegative, or nonpositive, or there

is a z ∈ [−1, 0] such that ϕ(s) ≥ 0 for −1 ≤ s ≤ z, and ϕ(s) ≤ 0 for z ≤ s ≤ 0,

or viceversa. By compactness of La, we conclude that Sa is also compact, but in

contrast to La the set Sa is not convex, although λϕ ∈ Sa for all −1 ≤ λ ≤ 1 and

ϕ ∈ Sa.

Remark 3.18. If x : [−1,∞) −→ [−2a, 2a] is a slowly oscillating solution for

the delay differential equation (3.1), and if z ≥ 0 is a zero of x, then z is simple. In

fact, the assumption x(z) = ẋ(z) = 0 leads to

0 = ẋ(z) =
[
a− |x(z)|

]
x(z) − a x(z − r(x(z))) = −a x(z − 1).

Consequently, we obtain x(z − 1) = 0. But this contradicts our assumption that x

is slowly oscillating. Therefore, z is a simple zero of x as claimed. Analogously, all

zeros of global slowly oscillating solution of (3.1) are simple.

The question on the existence of slowly oscillating solution of Equation (3.1)

is solved by our next proposition. This results particularly yields that every non-

trivial initial data ϕ ∈ Sa at t = 0 provides a solution of (3.1) that becomes slowly

oscillating in finite time. It is exactly the same conclusion as in the situation of the

differential equation (3.2) with constant delay, which was established in the work

[3, Proposition 3.1] of Brunovský et al. and which we carry over to the situation

of a delay function with properties (DF 1) - (DF 5) in the following.

Proposition 3.19. If ϕ ∈ Sa \ {0}, and x : [−1,∞) −→ [−2a, 2a] denotes the

uniquely determined solution of the differential equation (3.1) with x0 = ϕ, then

(i) xt ∈ Sa \ {0} for 0 ≤ t ≤ 5,

(ii) there is a time t∗ ∈ [0, 5] such that 0 6∈ x([t∗ − 1, t∗]), and

(iii) xt ∈ Za for t ≥ 5.

The proof of the above statement is based on three small technical propositions,

which we establish below. We will make use of the observation that in case of a

non-zero ϕ ∈ Sa either x = ϕ or x = −ϕ possesses one of the following properties.

(A) There is a zero z ∈ (−1, 0] of x, and t+ ∈ (−1, z) such that x(t) ≥ 0 in

[−1, z], x(t+) > 0, and x(t) ≤ 0 in [z, 0].

(B) x(t) ≥ 0 for −1 ≤ t ≤ 0 and x(0) > 0.

The main idea is now to compare solutions of Equation (3.1) with solutions of

appropriate initial value problems for an induced ordinary differential equation.

On that account, we recall that a function k : I × R −→ R where I denotes an

interval in R is called locally Lipschitz continuous in the second argument, if k

satisfies the condition

(locLip) For each (t, η) ∈ I ×R there is an open neighborhood D of (t, η) in I ×R

and a constant KD such that

|k(t, η1) − k(t, η2)| ≤ KD|η1 − η2|
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for all (t, η1), (t, η2) ∈ D.

in I × R. We begin with an auxiliary result about solutions of an ODE.

Proposition 3.20 (Proposition 2.1 in Brunovský et al. [3]). Suppose that

for given t0, t1 ∈ R, t0 < t1, the function k : [t0, t1] × R −→ R is continuous,

and satisfies a (local) Lipschitz condition in the second argument. If there exists a

constant η0 > 0 such that η k(t, η) < 0 for all |η| ≥ η0 and for all t ∈ [t0, t1], then

for every w0 ∈ R the maximal solution of the initial value problem

(3.15)

{
ẇ(t) = k(t, w(t))

w(0) = w0

is defined on [t0, t1].

Proof. See the proof of Proposition 2.1 in Brunovský et al. [3]. �

As a simple consequence we obtain the following corollary, which will be essen-

tial to establish Proposition 3.19.

Corollary 3.21. Let ϕ ∈ La and t1 > t0 ≥ 0 be given. Further, denote

x : [−1,∞) −→ [−2a, 2a] the uniquely determined solution of Equation (3.1) with

initial value ϕ at t = 0, and let the function kc : [t0, t1] × R −→ R be defined by

kc(t, η) :=
[
a− |η|

]
η − a x(t− r(η)) + c

with parameter c ∈ R. Then for each w0 ∈ R the initial value problem
{
ẇ(t) = kc(t, w(t))

w(0) = w0

has a unique solution defined for all t ∈ [t0, t1].

Proof. Obviously, it is sufficient to confirm the conditions of Proposition 3.20

for the function kc. Furthermore, as the continuity of kc is clear, we are left to

establish the locally Lipschitz continuity of kc in the second variable, and the exis-

tence of η0 > 0 having the property η kc(t, η) < 0 for all (t, η) ∈ [t0, t1] × R with

|η| ≥ η0.

For the proof of the local Lipschitz continuity, let η ∈ R be given. Then we

find constants ε > 0, Lr ≥ 0 and L|·| ≥ 0 such that

| |η1| η1 − |η2| η2 | ≤ L|·| |η1 − η2|

and

|r(η1) − r(η2)| ≤ Lr |η1 − η2|

for all η1, η2 ∈ (η−ε, η+ε). Using these in combination with the Lipschitz continuity

of x, we obtain

|kc(t, η1) − kc(t, η2)| =
∣∣∣
[
a− |η1|

]
η1 − a x(t− r(η1)) −

([
a− |η2|

]
η2 − a x(t− r(η2))

)∣∣∣

≤ a |η1 − η2| + | |η1| η1 − |η2| η2 |

+ a |x(t− r(η1)) − x(t − r(η2))|

≤ (a+ L|·|) |η1 − η2| + aKa |r(η2) − r(η1)|

≤ (a+ L|·| + aKa Lr) |η1 − η2|.
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for (t, η1), (t, η2) ∈ [t0, t1]× (η− ε, η+ ε). Since η ∈ R was arbitrary, this shows the

local Lipschitz continuity of function kc with respect to the second argument.

The final assertion on the product η kc(t, η) is an immediate consequence of the

inequality
[
a− |η|

]
η − a max

s∈[−1,t1]
x(s) + c ≤ kc(t, η) ≤

[
a− |η|

]
η − a min

s∈[−1,t1]
x(s) + c

for all (t, η) ∈ [t0, t1] × R. As
[
a− |η|

]
η − a min

s∈[−1,t1]
x(s) + c→ −∞

for η → ∞, and analogously
[
a− |η|

]
η − a max

s∈[−1,t1]
x(s) + c→ ∞

for η → −∞, it becomes clear that we find a constant η0 > 0, which is in particular

independent of t, such that

η kc(t, η) < 0

for all (t, η) ∈ [t0, t1] × R with |η| ≥ η0. �

Our next result describes the short time behavior of solutions for Equation

(3.1) with initial values in Sa and property (A) on page 79.

Proposition 3.22. Suppose x : [−1,∞) −→ [−2a, 2a] is a solution of Equation

(3.1) with x0 ∈ Sa and x0 has property (A) on page 79; that is, there is a constant

z ∈ (−1, 0] such that x(s) ≥ 0 for s ∈ [−1, z], x(t+) > 0 for a real t+ ∈ (−1, z), and

x(s) ≤ 0 on [z, 0]. Then xt ∈ Sa \ {0} for all t ∈ [0, 1], and there exists t∗ ∈ [0, 4]

with 0 6∈ x([t∗ − 1, t∗]).

Proof. The complete proof will be divided into a sequence of five steps, which

we will establish one after another.

1. Proof of x(t) ≤ 0 for all t ∈ [0, z + 1]. Consider the initial value problem
{
ẇ(t) =

[
a− |w(t)|

]
w(t) − a x(t− r(w(t)))

w(0) = 0

having a maximal solution w on [0, z + 1] by Corollary 3.21. Since the restriction

of x to [0, z+1] is a solution of the ODE involved in the last IVP, and solutions for

different initial values can not cross due to uniqueness, the inequality x(0) ≤ 0 =

w(0) implies x(t) ≤ w(t) for all 0 ≤ t ≤ z + 1. Therefore, it is sufficient to show

w(t) ≤ 0, t ∈ [0, z + 1]. For this purpose, we regard solutions wε : [0, z + 1] −→ R

of the IVPs
{
ẇε(t) =

[
a− |wε(t)|

]
wε(t) − a x(t− r(wε(t))) − ε

wε(0) = 0

with parameter ε > 0, which exist for all t ∈ [0, z + 1] due to Corollary 3.21. We

claim that for every ε > 0 and t ∈ [0, z + 1] we have wε(t) ≤ 0. If this was false,

then, according to

wε(0) = 0 > −ε ≥ 0 − a x(0 − 1) − ε = ẇε(0),

we would find t0 ∈ (0, z + 1) with wε(t0) = 0 but ẇε(t0) ≥ 0, in contradiction to

ẇε(t0) = 0 − a x(t0 − r(wε(t0))) − ε = −a x(t0 − 1) − ε ≤ −ε < 0.
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Hence, wε(t) ≤ 0 for all t ∈ [0, z+ 1] and all ε > 0. Since the results on continuous

dependence of solutions of ODEs on parameters, compare, for instance, Hale [8,

Chapter 1.3], imply wε(t) → w(t) as εց 0 for all 0 ≤ t ≤ z+1, we finally conclude

w(t) ≤ 0 on [0, z + 1].

2. Proof on existence of t ∈ (0, z + 1] with x(t) < 0. Assume this assertion is

false. Then x(t) = 0 for all t ∈ [0, z + 1] due to the last part, and the hypothesis

on t+ ∈ (−1, z) leads to the contradiction

0 = ẋ(t+ + 1)

=
[
a− |x(t+ + 1)|

]
x(t+ + 1) − a x(t+ + 1 − r(x(t+ + 1)))

= 0 − a x(t+ + 1 − r(x(t+ + 1)))

= −a x(t+ + 1 − r(0))

= −a x(t+)

< 0.

Hence, there is a real t ∈ (0, z + 1] with x(t) < 0.

3. Claim: x(t) < 0 for t ∈ (t0, z + 1], where t0 := inf{t ∈ [0, z + 1]|x(t) < 0}.

By the definition of t0 in combination with the above, we have either t0 = 0 and

x(t0) = x(0) < 0, or 0 ≤ t0 < z + 1 and additionally x(t) = 0 for all 0 ≤ t ≤ t0.

However, in both cases there is a sequence {sj}j∈N ⊂ (t0, z+1] such that x(sj) < 0

and sj ց t0 as j → ∞. Thus, it is sufficient to show x(t) < 0 on [sj , z + 1] for all

j ∈ N. To obtain this conclusion, we apply for a given j ∈ N Corollary 3.21 once

more and compare the resulting solution w : [sj , z + 1] −→ R of the IVP
{

ẇ(t) =
[
a− |w(t)|

]
w(t) − a x(t− r(w(t)))

w(sj) = 0

with x. The inequality x(sj) < 0 implies x(t) < w(t) on [sj , z + 1]. We can now

proceed analogously to the first part and derive w(t) ≤ 0, t ∈ [sj , z + 1]. For this

reason, x(t) < 0 for all sj ≤ t ≤ z + 1 and this implies the claim, since j ∈ N was

arbitrary.

4. Suppose x(t) < 0 for all t ∈ (t0, t0 +1], where t0 is defined as in the last part.

Then it is evident that the segments xt, t ∈ [0, 1], are non-zero and belong to Sa.

For a sufficiently small ε > 0, the solution x has no zeros in [t0+ε, t0+1+ε] ⊂ [0, 2].

In particular, xt0+1+ε ∈ Za. Hence, under the additional assumption x(t) < 0 on

(t0, t0 + 1] the assertion of the proposition is clear.

5. For cases where the additional assumption of the last step is not satisfied,

there is a smallest zero z1 of x in (z+1, t0 +1]. We have x(t) ≤ 0 for t ∈ [z1−1, z1],

x(t) < 0 for t ∈ (t0, z1) and z1 − 1 ≤ t0 < z1. Similar arguments to those of parts

(i) and (ii) imply x(t) ≥ 0 in [z1, z1 + 1] and the existence of t ∈ (z1, z1 + 1] with

x(t) > 0. Define t1 := inf{t ∈ [z1, z1 +1]| x(t) > 0}. Then we have z1 ≤ t1 < z1 +1

and x(t) = 0 for z1 ≤ t ≤ t1. Furthermore, using the techniques of the third step,

we find x(t) > 0 on (t1, z1 + 1]. Subsequently, we distinguish the subcases z1 = t1
and z1 < t1 < z1 + 1.

In the situation z1 = t1, it is clear that xt ∈ Sa \ {0} for 0 ≤ t ≤ 1 ≤ z1 + 1.

Additionally, we find a constant ε > 0 such that z1 + 1 + ε ≤ t0 + 2 + ε < 3 and the

restriction of x to [z1 + ε, z1 +1+ ε] has no zero. On the other hand, in the subcase

z1 < t1 < z1 + 1, the application of the methods used in the first three steps leads

to x(t) > 0 on (t1, t1 + 1]. Subsequently, this implies xt ∈ Sa \ {0} for t ∈ [0, 1],
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and we find again a sufficiently small constant ε > 0 such that x has no zeros in

[t1 + ε, t1 + 1 + ε] and

t1 + 1 + ε < z1 + 2 + ε < t0 + 3 + ε < 4.

�

Next, we consider the short time behavior of the solutions of Equation (3.1)

with initial values in Sa having the property (B) on page 79.

Proposition 3.23. Assume that x : [−1,∞) −→ [−2a, 2a] is a solution of the

DDE (3.1) with x0 ∈ Sa, and that x0 has property (B); that is, x(t) ≥ 0 in [−1, 0],

and x(0) > 0. Then xt ∈ Sa \ {0} for t ∈ [0, 1], and there is a real t∗ ∈ [0, 5] with

0 6∈ x([t∗ − 1, t∗].

Proof. By assumption we have either x(t) > 0 for all t ∈ [0, 1] or we find

a smallest zero z ∈ (0, 1] of x. In the first case the assertion of the proposition

follows immediately. Thus, the only point remaining concerns the behavior of x

in the situation where there is a smallest zero z ∈ (0, 1] of x. On that account,

we consider the translated solution y : [−1,∞) ∋ t 7−→ x(z + t) ∈ [−2a, 2a] of

Equation (3.1). Then y(t) ≥ 0 for t ∈ [−1, 0] and y(−z) > 0. Accordingly, y0 ∈ Sa
has property (A) and hence Proposition 3.22 shows yt ∈ Sa \ {0} for t ∈ [0, 1] and

the existence of t∗ ∈ [0, 4] with 0 6∈ y([t∗ − 1, t∗]). In particular, xt ∈ Sa \ {0} for

t ∈ [0, 1], and 0 6∈ x([t∗ − 1 + z, t∗ + z]) as claimed. �

The last auxiliary result for the proof of Proposition 3.19 will allow us to make

conclusions from the short-time behavior on the long-time behavior of solutions of

Equation (3.1) with non-trivial initial values ϕ ∈ Sa at t = 0.

Proposition 3.24. Let x : [−1,∞) −→ R be a solution of Equation (3.1) with

initial value x0 ∈ La. Suppose z ≥ 0 is a zero of x and 0 6∈ x([z − 1, z)). Then

sign(x(t)) = − sign(x(z − 1)) 6= 0

for z < t ≤ z + 1.

Proof. In addition to the assumption, suppose x(t) > 0 for z − 1 ≤ t < z so

that we have to show x(t) < 0 on (z, z + 1]. Then, in consideration of

ẋ(z) =
[
a− |x(z)|

]
x(z) − a x(z − r(x(z))) = −a x(z − 1) < 0,

we find a constant c ∈ (0, 1] with x(t) < 0 in (z, z+ c). Set t0 := z+ c/2. Applying

Corollary 3.21 and comparing the resulting solution w : [t0, z + 1] −→ R of
{

ẇ(t) =
[
a− |w(t)|

]
w(t) − a x(t− r(w(t)))

w(t0) = 0

with the restriction of x to [t0, z + 1], we obtain x(t) < w(t) for all t0 ≤ t ≤ z + 1.

Therefore, it is sufficient to prove w(t) ≤ 0, t0 ≤ t ≤ z + 1, in this case. On this

purpose, we consider the IVPs
{

ẇε(t) =
[
a− |wε(t)|

]
wε(t) − a x(t− r(wε(t))) − ε

wε(t0) = 0
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with the associated solutions wε : [t0, z+ 1] −→ R due to Corollary 3.21. As in the

proof of Proposition 3.22, we claim wε(t) ≤ 0 for all t ∈ [t0, z + 1] and all ε > 0. If

this was false, then, in view of

wε(t0) = 0 > −ε ≥ −a x(t0 − 1) − ε = ẇε(t0),

we would find a smallest t ∈ (t0, z+1) with wε(t) = 0 and ẇε(t) ≥ 0, in contradiction

to

ẇε(t) = 0 − a x(t− r(0)) − ε = −a x(t− 1) − ε < 0.

Thus, wε(t) ≤ 0 for all ε > 0 and all t ∈ [t0, z + 1] and the convergence of wε(t) →

w(t) for ε ց 0 implies w(t) ≤ 0 for t ∈ [t0, z + 1]. In particular, we have x(t) < 0

for all t ∈ (z, z + 1].

In the case x(z) = 0 and x(t) < 0 in [z − 1, z), note that −x is a solution

of Equation (3.1), which satisfies the conditions of the proposition as well as the

additional assumption. Subsequently, the above arguments are applicable to −x,

and this completes the proof. �

We can now prove Proposition 3.19 in particular containing the statement that

every non-trivial initial value in Sa provides a solution of (3.1) which becomes

slowly oscillating in finite time.

Proof of Proposition 3.19. Under the stated assumption it follows that

either the initial segment of the solution y = x or the one of y = −x has property

(A) or (B) formulated on page 79. In case (A) the statement of Proposition 3.22,

whereas in case (B), the statement of Proposition 3.23 implies yt ∈ Sa \ {0} for

t ∈ [0, 1] and 0 6∈ y([t∗ − 1, t∗]) for at least one t∗ ∈ [0, 5]. By induction, we find

yt ∈ Sa \ {0} for all t ≥ 0. Hence, assertions (i) and (ii) of Proposition 3.19 are

clear.

For the last part of the statement, it is sufficient to prove the existence of a

sequence {sn}n∈N ⊂ [5,∞), which converges to infinity as n→ ∞ and additionally

has the property that for every n ∈ N the segments xt, 5 ≤ t ≤ sn, belong to Za.

For this purpose, choose s0 ∈ [0, 5] with 0 6∈ x([s0−1, s0]). If solution x has no zeros

in (s0,∞), define s1 := s0 + 1. Obviously, we have xt ∈ Za for s0 ≤ t ≤ s1 in this

situation. In the other case, we find a smallest zero z ∈ (s0,∞) of x. Application

of Proposition 3.24 implies

0 6∈ x([z − 1, z) ∪ (z, z + 1]).

Hence, there is a sufficiently small ε > 0 such that for s1 := z + 1 + ε > s0 + 1, all

solution segments xt, s0 ≤ t ≤ s1, are contained in Za and 0 6∈ x([s1 − 1, s1]).

Next, consider the restriction of x to (s1,∞). This has again either no zeros or

a smallest zero z in (s1,∞). In the first situation, that is, where x has no zero in

the interval (s1,∞), the definition s2 := s1 + 1 results in xt ∈ Za for s1 ≤ t ≤ s2.

Otherwise, repeated application of Proposition 3.24 shows again

0 6∈ x([z − 1, z) ∪ (z, z + 1])

and therefore we find a sufficiently small ε > 0 such that for s2 := z+1+ε > s1 +1

we get 0 6∈ x([s2 − 1, s2]) and xt ∈ Za as s1 ≤ t ≤ s2. Hence, in both cases we

clearly have 0 /∈ x([s2 − 1, s2]) and xt ∈ Za for all 5 ≤ t ≤ s2. Successively, we

construct in this way a sequence {sn}n∈N ⊂ [5,∞) with the claimed properties,

which implies the remaining part of the statement. �
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A direct consequence of Proposition 3.19 is the positive invariance of Sa under

the semiflow F from Corollary 3.8, that is, F (t, Sa) ⊂ Sa for all t ≥ 0.

Corollary 3.25. The closure Sa of the set Za given by (3.14) is positively

invariant under the continuous semiflow F defined in Corollary 3.8. In particular,

the restriction

FS : [0,∞) × Sa ∋ (t, ϕ) 7−→ F (t, ϕ) ∈ Sa

of F to Sa induces a continuous semiflow on the compact metric space Sa.

Observe that Proposition 3.19 does not show the existence of slowly oscillating

solutions of Equation (3.1) with infinitely many zeros. In Chapter 5 we will prove

that under the stated assumptions (DF 1) - (DF 5) on the delay function such

solutions indeed exists for parameters a > 1. In the situation of the DDE (3.2)

with constant delay, this conclusion is proved in Brunovský et al. [3]. However,

let us first adopt the ideas of Brunovský et al. [3, Proposition 3.2] and see that

slowly oscillating solutions with a bounded set of zeros are not interesting and their

long-time behavior is simple.

Proposition 3.26. Suppose x : [−1,∞) −→ [−2a, 2a] is a solution of Equation

(3.1), and suppose that x has no zeros. Then

x(t) → 0

as t→ ∞.

Proof. If the solution x : [−1,∞) −→ [−2a, 2a] of Equation (3.1) has no zeros,

then in particular we have either x(0) > 0 or x(0) < 0. Without loss of generality

we may assume x(0) > 0 in the following, because in the situation x(0) < 0 the

function y = −x : [−1,∞) −→ [−2a, 2a] is also a solution of Equation (3.1) but with

y(0) > 0. Define c := lim supt→∞ x(t) and d := lim inft→∞ x(t). From Proposition

3.9 we get

0 ≤ d ≤ c ≤ 2a.

We claim c = d, and establish this by contradiction for both cases d > 0 and d = 0

separately.

Proof of the claim c = d. Consider at first the situation d > 0. Under this

assumption, we find an ε > 0 sufficiently small such that

2a ε− (d− ε)2 < 0.

Furthermore, the definition of d implies the existence of t ≥ 0 with

d− ε < x(s)

for all s ≥ t. Suppose now, contrary to our claim, that d < c. Then there is a local

minimum tm > t+ 1 such that x(tm) < d+ ε holds. But this leads to

0 = ẋ(tm)

= a
[
x(tm) − x(tm − r(x(tm)))

]
−
(
x(tm)

)2

≤ a
[
d+ ε− (d− ε)

]
− (d− ε)2

= 2a ε− (d− ε)2 < 0,

a contradiction, which yields c = d under the assumption d > 0.

On the other hand, in the situation d = 0 the hypothesis d < c implies the

existence of a real 0 < m < c with x(t) > m for all −1 ≤ t ≤ 0. Consequently,
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there is a tm > 0 such that x(tm) = m and x(s) > m for all 0 ≤ s < tm. In

particular, ẋ(tm) ≤ 0. As c > m we find a smallest zero ξ ≥ tm of ẋ, and we have

either ξ = tm, or ξ > tm and ẋ(s) < 0 for all tm ≤ s < ξ. In any case, the above

yields 0 < x(ξ) < x(ξ − r(x(ξ))), and thus results in the contradiction

0 = ẋ(ξ) = a
[
x(ξ) − x(ξ − r(x(ξ)))

]
−
(
x(ξ)

)2
< −

(
x(ξ)

)2
< 0.

This clearly shows c = d in the situation d = 0 and completes the proof of the claim

c = d.

From the above we get x(t) → c as t→ ∞. Consequently, we see

lim
t→∞

ẋ(t) = lim
t→∞

(
a
[
x(t) − x(t− r(x(t)))

]
−
(
x(t)

)2)

= a
[
c− c

]
− c2

= −c2,

which leads to a contradiction for c > 0. Therefore c = 0, and hence x(t) → 0 as

t→ ∞, which is the assertion. �

Global Slowly Oscillating Solutions. Having discussed the existence of

slowly oscillating solutions for DDE (3.1) with initial values in Sa, in this subsection

we prove that the segments of all these solutions that in addition are globally defined

form a global attractor for the restricted semiflow FS from Corollary 3.25. We begin

with the result that FS has indeed a global attractor.

Proposition 3.27. Let A denote the set

A :=
⋂

t≥0

F (t, Sa).

(i) A is a maximal compact set in Sa, which is invariant for F , that is,

F (t,A) = A for all t ≥ 0, and attracts each bounded set B ⊂ Sa. In

other words, A is the global attractor of the semiflow FS on Sa from

Corollary 3.25.

(ii) The map FA : R × A ∋ (t, ϕ) 7−→ xϕt ∈ A constitutes a continuous flow

on the compact metric space A.

(iii) A is connected.

Proof. 1. The first assertion of the proposition follows immediately from

Theorem 3.4.2 in Hale [9] on existence of global attractors for smooth dissipative

semiflows, provided that Sa is nonempty and attracts compact subsets of Sa. But

this is clear, because 0 ∈ Sa, and Sa is positively invariant under the semiflow F

due to Corollary 3.25 and thus attracts all subsets of Sa.

2. Part (ii) is also a direct consequence of Hale [9, Theorem 3.4.2], since all

restricted time-t-maps F (t, ·)|A, t ≥ 0, are injective. Indeed, consider ϕ, ψ ∈ A and

suppose the existence of t ≥ 0 with F (t, ϕ) = F (t, ψ). As A is invariant for the

semiflow F we find solutions x, y : R −→ [−2a, 2a] of Equation (3.1) with segments

contained in A and initial values x0 = ϕ and y0 = ψ, respectively. By assumption,

we have

xt = F (t, ϕ) = F (t, ψ) = yt,

so Corollary 3.13 implies x(s) = y(s) for all s ∈ R. In particular, ϕ = ψ. Hence,

for each t ≥ 0, the restricted time-t-map F (t, ·)|A is in fact injective.
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3. The proof of the last statement of the proposition is by contradiction. For

this purpose, suppose A is not connected. Then, by definition, there are open

disjoint sets V1, V2 ⊂ Sa such that A ⊂ V1 ∪ V2, and both V1 ∩ A and V2 ∩ A are

nonempty. As A attracts Sa we obviously find a t ≥ 0 with

F (t, Sa) ⊂ V1 ∪ V2.

Now the definition of A and the invariance of A for F give A = F (t,A) ⊂ F (t, Sa).

Accordingly, we obtain

F (t, Sa) ∩ V1 ⊃ A∩ V1 6= ∅

and

F (t, Sa) ∩ V2 ⊃ A∩ V2 6= ∅,

that is, F (t, Sa) is not connected. On the other hand, for each real −1 ≤ λ ≤ 1

we have λSa ⊂ Sa, which implies that for every pair ϕ, ψ ∈ Sa the mapping

pϕ→ψ : [0, 1] −→ Sa, defined by

pϕ→ψ(λ) :=

{
(1 − 2λ)ϕ, for 0 ≤ λ ≤ 1/2,

(2λ− 1)ψ, for 1/2 ≤ λ ≤ 1,

forms a path from ϕ to ψ in Sa. Consequently, Sa is arcwise connected and so

its continuous image F (t, Sa). This forms a contradiction to the above, since each

arcwise connected subset of a topological space is connected. �

Our next proposition provides some criteria for solutions x : R → [−2a, 2a] of

Equation (3.1) to be slowly oscillating. In particular it shows that beside the zero

function, A contains the segments of all globally defined slowly oscillating solutions

of Equation (3.1) with values in [−2a, 2a].

Proposition 3.28. The following statements are equivalent.

(i) ϕ ∈ A \ {0}.

(ii) There is a solution x : R −→ [−2a, 2a] of Equation (3.1) satisfying x0 = ϕ

and xt ∈ Sa \ {0} for all t ∈ R.

(iii) There is a slowly oscillating solution x : R −→ [−2a, 2a] of Equation

(3.1) with initial value x0 = ϕ.

(iv) There is a non-trivial solution x : R −→ [−2a, 2a] of Equation (3.1) with

x0 = ϕ such that x|[t−r(x(t)),t] 6= 0 and V (x, [t− r(x(t)), t]) = 1 for t ∈ R.

Proof. 1. Proof of (i) ⇒ (ii). Let ϕ ∈ A \ {0} be given. By the invariance

of A for F from the last result, we find a solution x : R −→ [−2a, 2a] of the

differential equation (3.1) with initial value ϕ at t = 0 and segments contained in

A. Moreover, as the restriction FA of F to A constitutes a continuous flow, and as

FA(t, 0) = 0 for all t ∈ R, the solution x is uniquely determined by ϕ and we have

xt ∈ A \ {0} ⊂ Sa \ {0} for t ∈ R. Hence, statement (i) implies (ii).

2. Proof of (ii) ⇒ (iii). Suppose x : R −→ [−2a, 2a] is a solution of Equation

(3.1) such that xt ∈ Sa \ {0} for t ∈ R and x0 = ϕ. If we prove that xt ∈ Za as

t ∈ R, the assertion follows. For this purpose, consider a fixed t ∈ R. In case t ≥ 5

the statement of Proposition 3.19 shows xt ∈ Za. Otherwise, t < 5 and we find a

constant ξ ∈ R with ξ < t− 5 < 0. Define y : R ∋ s 7−→ x(s+ ξ) ∈ [−2a, 2a]. Then
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y is obviously also a solution of Equation (3.1), and we have ys = xs+ξ ∈ Sa \ {0},

s ∈ R. Therefore by application of Proposition 3.19 to y we get

ys ∈ Za \ {0}

for all s ≥ 5. Especially, xt = yt−ξ ∈ Za \ {0} as t − ξ > 5. This completes the

proof of the implication (ii) ⇒ (iii).

3. Proof of (iii) ⇒ (iv). This part is immediate since the segments of a

slowly oscillating solution x : R −→ [−2a, 2a] of Equation (3.1) have by definition

at most one zero in [t − 1, t], and thus in particular at most one sign change in

[t− r(x(t)), t] ⊂ [t− 1, t] for all t ∈ R.

4. Proof of (iv) ⇒ (i). Assume that x : R −→ [−2a, 2a] is a non-trivial solution

of the differential equation (3.1) with x|[t−r(x(t)),t] 6= 0 and V (x, [t− r(x(t)), t]) = 1

for t ∈ R. To conclude x0 ∈ A \ {0}, we begin with the claim that the orbit

O := {xt| t ∈ R}

of the solution x is contained in Sa, that is, for each t ∈ R the associated segment

xt has at most one sign change. Let t ∈ R be given. We may assume that there

is a largest zero ξ0 ∈ [t − 1, t] of x in the interval [t − 1, t] since otherwise there

is nothing to show. Then r(x(ξ0)) = r(0) = 1 and it suffices to consider only the

subcase ξ0 < t, because in the situation ξ0 = t we have

sc(x, [t− 1, t]) ≤ V (x, [t− 1, t]) = V (x, [t− r(x(t)), t]) = 1.

Now, if ξ0 ∈ [t− 1, t) is the largest zero of x in [t− 1, t], then the inequality

ξ0 − r(x(ξ0)) = ξ0 − 1 < t− 1

in combination with the monotonicity of R ∋ s 7−→ s− r(x(s)) ∈ R from Corollary

3.11 implies the existence of ξ1 ∈ (ξ0, t) with [t− 1, ξ0] ⊂ (ξ1 − r(x(ξ1)), ξ1]. By the

definition of ξ0, x(s) is either strictly positive or strictly negative for all ξ0 < s ≤ t.

Hence the solution x has no sign change in the interval (ξ0, t]. Therefore we obtain

sc(x, [t− 1, t]) = sc(x, [t − 1, ξ1]) ≤ sc(x, [ξ1 − r(x(ξ1)), ξ1]) = 1,

which implies that x has at most one sign change in [t−1, t]. This proves our claim

O ⊂ Sa.

The proof of the implication (iv) ⇒ (i) follows now easily from the above. We

have F (t,O) = O for all t ∈ R and hence,

O =
⋂

t≥0

F (t,O) ⊂
⋂

t≥0

F (t, Sa) = A.

In particular, x0 ∈ A. As it also holds x0 6= 0, the above leads to the desired

conclusion x0 ∈ A \ {0}. �

The property (iv) of global slowly oscillating solutions in the last result will

prove extremely useful in Chapter 5.

Remark 3.29. Note that the last two propositions show that the compact set

A contains all segments of slowly oscillating solutions x : R → [−2a, 2a], but they

do not contain a result whether Equation (3.1) actually has globally defined slowly

oscillating solutions; that is, the global attractor A for FS may also consists only

of the zero function. However, in Chapter 5 we will see that for parameters a > 1,

the compact set A has indeed more elements than the trivial one.
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We close this chapter with a sharpened version of continuous dependence on

initial data for solutions of Equation (3.1) in A, which is formulated and proven in

the two corollaries below.

Corollary 3.30. Suppose that ϕ ∈ A and that {ϕn}n∈N ⊂ A is a sequence

with ϕn → ϕ as n → ∞. Then the family {xϕn}n∈N of the uniquely determined

globally defined solutions xϕn for Equation (3.1) with initial conditions xϕn

0 = ϕn,

n ∈ N, converges uniformly on each compact interval in R to the solution xϕ of

(3.1) with xϕ0 = ϕ as n→ ∞.

Proof. Let the above assumptions be fulfilled, and let a compact interval

I ⊂ R be given. Consider an integer k ∈ N with I ⊂ [−k, k]. As the restriction of

F to A constitutes a continuous flow on A due to Proposition 3.27, we conclude

that for every fixed j ∈ Z the induced map F : (j, · ) : A −→ A is continuous.

Subsequently, for each ε > 0 there is δj = δj(ε) > 0 such that the implication

‖ϕn − ϕ‖C < δj =⇒ ‖F (j, ϕn) − F (j, ϕ)‖C < ε

is true. Set now δ := min{δj| j ∈ Z, 1 ≤ |j| ≤ k}. If ‖ϕn − ϕ‖C < δ, then we

obviously have

sup
{
‖xϕn

j − xϕj ‖C
∣∣ j ∈ Z, 1 ≤ |j| ≤ k

}
< ε,

and hence,

sup
t∈I

|xϕn(t) − xϕ(t)| < ε.

Subsequently, this shows the uniform convergence of {xϕn}n∈N to xϕ on interval I

for n→ ∞ and the assertion follows. �

In the situation of the above corollary, not only the solutions {xϕn}n∈N of

Equation (3.1) do uniformly converge on compact intervals of R to the solution xϕ,

but also their derivatives to the one of xϕ. More precisely, the following holds.

Corollary 3.31. The topologies on A induced by the norms of the Banach

spaces C and C1 are equivalent.

Proof. We only need to prove that for every point ϕ ∈ A and all sequences

{ϕn}n∈N ⊂ A with ‖ϕn − ϕ‖C → 0 as n → ∞ we also have the convergence of

‖ϕ′
n − ϕ′‖C → 0 as n → ∞. But if ‖ϕn − ϕ‖C → 0 for n → ∞, then the last

corollary implies

‖xϕn

−1 − xϕ−1‖C → 0

for n → ∞. Applying Proposition 3.7 about continuous dependence of solutions

for Equation (3.1) on initial values to the sequence

{xϕn

−1}n∈N ⊂ A

and the function xϕ−1 ∈ A, we conclude the uniform convergence of {yn}n∈N to y

on [0, 1] as n → ∞, where yn(s) := ẋϕn(−1 + s) and y(s) := ẋϕ(−1 + s), s ∈ R.

Consequently, ‖yn1 − y1‖C → 0, or equivalently, in view of yn1 = ϕ′
n and y1 = ϕ′,

‖ϕ′
n − ϕ′‖C → 0 for n→ ∞. This completes the proof. �





CHAPTER 4

Some Aspects of the Local Behavior at the Trivial

Solution

1. Introduction

In the last chapter we discussed some basic properties and slowly oscillating

solutions of the model equation (3.1). Here, we continue the study of DDE (3.1)

by analyzing its local behavior near the trivial solution. To this end, we consider

the model equation (3.1) in the more abstract form

(4.1) ẋ(t) = f(xt)

with right-hand side given by

f : C1 ∋ ϕ 7−→ a
[
ϕ(0) − ϕ(−r(ϕ(0)))

]
− |ϕ(0)|ϕ(0) ∈ R.

As seen in Section 3 of Chapter 1, the functional f satisfies the smoothness con-

ditions (S 1) and (S 2) of Theorem 1.2 on the existence of a continuously differen-

tiable semiflow; that is, f is continuously differentiable and each derivative Df(ϕ),

ϕ ∈ C1, extends to a linear functional Def(ϕ) : C −→ R so that the induced map

C1 × C ∋ (ϕ, χ) 7−→ Def(ϕ)χ is continuous. Thereby recall from page 10 that the

functional Def(ϕ) ∈ L(C,R), ϕ ∈ C1, is given by

Def(ϕ)ψ = a ·
[
ψ(0)−ψ(−r(ϕ(0)))]+a ·r′(ϕ(0))·ϕ′(−r(ϕ(0)))·ψ(0)−2 · |ϕ(0)| ·ψ(0)

for all ψ ∈ C.

From now on and until the end of this work, we shall only deal with C1-smooth

solutions as considered in Theorem 1.2. More precisely, in the following we call

x : [t0−1, t+) −→ R, t+ > t0, a solution of Equation (4.1), if x ∈ C1([t0−1, t+),R)

and if x satisfies (4.1) for all t0 < t < t+. In the same way we define solutions on

intervals of the form (−∞, t+), t+ ∈ R. As the zero function is a solution of the

model equation (4.1) in the sense defined above, the set

Xf :=
{
ϕ′(0) = f(ϕ) |ϕ ∈ C1

}

is not empty. Subsequently, we are able to apply Theorem 1.2, which implies that

each ϕ ∈ Xf uniquely defines a non-continuable solution xϕ : [−1, t+(ϕ)) −→ R of

Equation (4.1) with xϕ0 = ϕ and xϕt ∈ Xf for all 0 ≤ t < t+(ϕ). Moreover, the

equation

F (t, ϕ) = xϕt

for ϕ ∈ Xf and 0 ≤ t < t+(ϕ), defines a domain Ω ⊂ R × Xf and a continuous

semiflow F on the solution manifold Xf with continuously differentiable solution

maps Ft, t ≥ 0. Since every C1-smooth solution of Equation (4.1) as introduced

above is of course as well a solution of Equation (3.1) in the sense of the last chapter,

we see at once that t+(ϕ) = ∞ holds for all ϕ ∈ Xf in view of Propositions 3.4 and

3.5.
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Remark 4.1. Note that it is suggestive to use the same notation for the semi-

flow as in the last chapter, namely F , and it shall not cause any confusions to the

reader, because, as already pointed out above, each C1-smooth solution of (4.1)

is also a solution of Equation (3.1) in the sense used in the foregoing chapter. In

particular, for each ϕ ∈ Xf ∩ La and all 0 ≤ t <∞ we have xϕt ∈ Xf ∩ La.

This adaption of the semiflow enables us to use the techniques of linearization

and local invariant manifolds to study the local behavior of solutions for Equation

(4.1) in close vicinity of the trivial stationary point. The application of these

methods is the main goal of this chapter, which is arranged as follows. In the next

section we discuss the linearization of F at ϕ0 = 0 and its spectral properties.

After that we consider the question of stability of the trivial solution in Section 3.

Finally, we close this chapter by proving that in the case a > 1 the trivial solution

is repelling within the local center-unstable manifolds. This fact will be essential

for our investigation of the model equation in the last part of the work.

2. The Linearization

Our local analysis of the continuously differentiable semiflow F at the trivial

solution begins with the study of the linearization and its spectral properties. For

this purpose, we follow the outline in Chapter 1 on the linearization of a semiflow

obtained by Theorem 1.2 and study the associated linear RFDE.

The Associated Linear RFDE. Consider the derivative Df(0) ∈ L(C1,R)

of f at the stationary point ϕ0 = 0, which we denote by L in the following. As a

trivial verification shows, L acts by

Lψ = a
[
ψ(0) − ψ(−1)

]

on ψ ∈ C1. Subsequently, the tangent space T0Xf of the solution manifold Xf at

the trivial stationary point is given by the subspace

T0Xf =
{
ψ ∈ C1

∣∣ψ′(0) = a
[
ψ(0) − ψ(−1)

]}

of C1 and the linearization of the semiflow F at 0 ∈ Xf is the strongly continuous

semigroup T = {T (t)}t≥0 of bounded linear operators T (t) = D2F (t, 0) on T0Xf .

The action of T (t), t ≥ 0, on ψ ∈ T0Xf is determined by the relation T (t)ψ = vψt
with the unique solution vψ : [−1,∞) −→ R of the IVP

{
v̇(t) = Lvt

v0 = ψ

in T0Xf . Let now Le ∈ L(C,R) denote the linear extension Def(0) of the operator

L = Df(0) to C, that is, the mapping

(4.2) Le : C ∋ ψ 7−→ a
[
ψ(0) − ψ(−1)

]
∈ R.

Then Le continues the above IVP induced by Df(0) in a natural way to an IVP

for the linear RFDE

(4.3) ż(t) = Le zt

on the larger Banach space C. For every ψ ∈ C this equation has a unique solution

zψ : [−1,∞) −→ R. The corresponding solution semigroup Te = {Te(t)}t≥0 is

defined by

Te(t) : C ∋ ψ 7−→ zψt ∈ C,
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and the spectral properties of the associated infinitesimal generator Ge of Te, that

is, the linear operator

Ge : D(Ge) ∋ ψ 7−→ ψ′ ∈ C

with domain

D(Ge) =
{
ψ ∈ C1| ψ′(0) = Le ψ

}
,

are closely related to those of the infinitesimal generator G of T , as explained

in detail in Chapter 1. Therefore, we study the linear RFDE (4.3), its solution

semigroup Te and the associated generator Ge in the following.

The Spectrum and Spectral Subspaces. Using the ansatz z(t) = eλt c

with a scalar λ for a solution of Equation (4.3), we obtain the transcendental

characteristic equation

(4.4) △(λ) = 0

with

△(λ) := λ− a
[
1 − e−λ

]

of RFDE (4.3). The solutions of Equation (4.4) in C coincide with the spectrum of

the complexified operator (Ge)C. Thereby, the order of a root λ ∈ C of Equation

(4.4) agrees with the dimension of the generalized eigenspace of (Ge)C related to λ.

Our next result specifies the location of the roots of the transcendental equation

(4.4) in the complex plane by taking into account the parameter a > 0.

Proposition 4.2 (Proposition 4.1 in Brunovský et al. [3]).

(i) If a > 0 and if a 6= 1, then λ = 0 is a single root of Equation (4.4). In

case a = 1, λ = 0 is a double root of (4.4).

(ii) For all a > 0 with a 6= 1, Equation (4.4) has an unique non-trivial root

λ = κ ∈ R; κ is simple and κ < 0 for 0 < a < 1, κ > 0 for a > 1.

(iii) Except for the real roots described above, the solutions of Equation (4.4)

occur in conjugate complex pairs µk ± iνk, k ∈ N, with νk 6= 0 and the

real parts µk, k ∈ N, satisfy µk < κ for a < 1, whereas µk < 0 for a ≥ 1.

Proof. Analogously to the proof in Brunovský [3], we begin with the obser-

vation that λ ∈ C is a root of Equation (4.4) for the parameter a > 0 if and only if

ζ := λ− a is a solution of the equation

(4.5) ζ + α e−ζ = 0

for α = ae−a. We use this fact and deduce statements (i) - (iii) for Equation (4.4)

from solutions of (4.5), following Wright [29, Theorem 5].

1. Consider the positive function g : (0,∞) ∋ s 7−→ s e−s ∈ (0,∞). In view of

the derivative g′(s) = (1 − s) e−s of g, it is obvious that g is strictly monotonically

increasing in (0, 1), has a strict global maximum 1/e at s = 1, and is strictly

monotinically decreasing in (1,∞), as shown in Figure 4.1. Therefore, the equality

α = g(a), a > 0, implies that it is sufficient to consider Equation (4.5) only for

parameters 0 < α ≤ 1/e.

2. Let 0 < α ≤ 1/e be given. Then Equation (4.5) may have only negative real

roots. Moreover, ζ ∈ R is a root of (4.5) if and only if g(−ζ) = α. Combining this

with

lim
sց0

g(s) = 0 = lim
sր∞

g(s)
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R

R

0
1

1/e

g(s) = se−s

g′(s)

Figure 4.1. Relevant parameters for Equation (4.5)

and the properties of g described in the first part, we see that, as illustrated in

Figure 4.2, in case 0 < α < 1/e Equation (4.5) has exactly two real roots ζ1, ζ2 ∈ R,

both simple and satisfying

0 < −ζ1 < 1 < ln(1/α) < −ζ2,

whereas for α = 1/e there exists only the real root ζ = −1 of (4.5) but of order

R

R

α

1

1/e

g(s)

−ζ1 −ζ2

b b

Figure 4.2. Real roots of Equation (4.5) for parameters 0 < α ≤ 1/e

two.

Accordingly, in the situation 0 < a 6= 1, Equation (4.4) has exactly two real

roots, namely the two simple roots λ1 := ζ1+a, λ2 := ζ2+a satisfying the inequality

a > λ1 > a− 1 > a+ ln(a e−a) > λ2,

and in case a = 1 we only find the double root λ = 0 of Equation (4.4) in R. Using

these and taking into account that λ = 0 is a root of Equation (4.4) for all a > 0,

we immediately conclude the first two statements of the proposition.

3. We are left to prove part (iii) of the proposition. For this purpose, let us

apply formula (4.5) to a complex number σ + iν ∈ C with σ, ν ∈ R. This leads to

the equality

−σ − iν = α e−σ−iν = α e−σ
(
cos(ν) − i sin(ν)

)
,

and so to

(4.6)

{
−σ = α e−σ cos(ν),

ν = α e−σ sin(ν).

Consequently, if σ + iν ∈ C with σ, ν ∈ R and ν 6= 0 is a solution of Equation

(4.5), then it necessarily holds that ν 6= kπ for all k ∈ Z. In addition, a trivial

manipulation of the equalities in (4.6) leads to

(4.7) −σ = ν cot(ν),

and therewith to

(4.8) α = ν e−ν cot(ν) csc(ν).
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Define the right-hand side of the last equation as a function χ, that is,

χ : (0,∞) ∋ s 7−→ s e−s cot(s) csc(s) ∈ R.

If (2k − 1)π < s < 2k π, k ∈ N, then we have χ(s) < 0, and subsequently s does

surely not satisfy Equation (4.8) for 0 < α ≤ 1/e. For this reason, let us suppose

in the following that 2k π < s < (2k + 1)π for k ≥ 0, and hence χ(s) > 0. Then,

using

χ′(s) = e−s cot(s) · csc(s) + s · e−s cot(s) · csc(s) ·
(
− 2 cot(s) + s · csc2(s)

)
,

we see
χ′(s)

χ(s)
=

1

s
− 2 · cot(s) + s · csc2(s)

=
1 − 2 · s · cot(s) + s2 · csc2(s)

s

=
(1 − s · cot(s))2 + s2

s
> 0,

which yields that χ is strictly monotonous increasing in (2k π, (2k + 1)π). Ac-

cordingly, in consideration of χ(s) → ∞ as s ր (2k + 1)π, and χ(s) → 0 as

s ց 2k π for k ≥ 1, for every positive integer k there obviously exists exactly one

real 2k π < νk < (2k + 1)π satisfying (4.8), as indicated in Figure 4.3. Observe

b b b

ν1 ν2 ν3

π

(ν1, χ(ν1)) (ν2, χ(ν2)) (ν3, χ(ν3))

3π 5π

1/e

α

R

R

0

Figure 4.3. Solutions of Equation (4.8) for parameters 0 < α ≤ 1/e

that in case k = 0, and thus 0 < s < π, we have χ(s) > 1/e ≥ α; this means,

ν1 is the smallest positive solution of (4.8) for 0 < α ≤ 1/e. Hence, by defin-

ing σk := −νk cot(νk) for k ≥ 1, in view of Equation (4.7) it becomes clear that,

apart of the real roots discussed in the second part, Equation (4.5) has the complex

conjugate pairs σk ± iνk, k ∈ N, as solutions.

Next we derive an estimate for the real part of the eigenvalues σk ± iνk, k ∈ N.

For this purpose, note that α ≤ π/2 and νk > 2π for all k ≥ 1. Thus, by (4.6), we

easily conclude that the real parts of these roots satisfy

−σk =
1

2
ln

(
σ2
k + ν2

k

α2

)
>

1

2
ln

(
ν2
k

α2

)
> ln

(
νk
α

)
> ln

(
2π
1
2π

)
= ln 4 > 1.

Define the sequence {σ̃k}k∈N0 by σ̃0 := −ζ2 and σ̃k := −σk for all k ≥ 1. Additional-

ly, let v : [0,∞) −→ R be given by

v(σ̃) := α2 e2σ̃ − σ̃2.
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Using Equation (4.5) and (4.6), we see v(σ̃0) = 0 and v(σ̃k) = ν2
k as k ≥ 1. Now for

each fixed k ≥ 1 we have σ̃k > 1 and this implies that for all σ̃ ≥ σ̃k the function v

is strictly increasing in [σ̃k,∞) due to

v′(σ̃) = 2α2 e2σ̃ − 2σ̃ = 2(v(σ̃) + σ̃2 − σ̃) > v(σ̃)

and v(σ̃k) = ν2
k > 0. As 1 < νk < νk+1 for all k ≥ 1 it also follows σ̃k+1 > σ̃k for all

k ≥ 1. Moreover, the assumption σ̃0 ≥ σ̃1 leads to 0 = v(σ̃0) ≥ v(σ̃1) = ν2
1 which

is impossible as ν1 > 0. Hence, σ̃k+1 > σ̃k for all k ≥ 0, and thus

ζ2 > σk > σk+1

as k ≥ 1.

Returning to Equation (4.4) and defining µk := σk + a for k ≥ 1, we conclude

that µk± iνk, k ∈ N, form complex conjugate pairs of roots for (4.4). In particular,

these roots are the only ones of Equation (4.4) in C\R. Finally, combining the

estimates for the real roots and for σk, k ∈ N, yields the asserted estimates for µk,

which completes the proof. �

After the description of the location of the spectrum of Ge, or more precisely

of (Ge)C, in the complex plane, we proceed with the characterization of some

eigenspaces. On that account, for every fixed a > 0 we write Cc ⊂ C for the

center space of Ge, and M ⊂ C for the realified generalized eigenspaces given by

the eigenvalues on the real line due to the last proposition. Additionally, let Cu
denote the unstable space of Ge in case a > 1.

Corollary 4.3 (Corollary 4.1 in Brunovský et al. [3]). For every real a > 0,

Cc ⊂ M and dimM = 2. Moreover, if we define functions η0, ηd, and in case

a 6= 1, additionally, a function ηκ by

η0 : [−1, 0] ∋ ϑ 7−→ 1 ∈ R,

ηd : [−1, 0] ∋ ϑ 7−→ ϑ ∈ R,

and

ηκ : [−1, 0] ∋ ϑ 7−→ eκϑ ∈ R,

respectively, then

(i) Cc = R η0 and M = R η0 ⊕ R ηκ for 0 < a < 1,

(ii) Cc = R η0 ⊕ R ηd and M = Cc in case a = 1, and

(iii) Cc = R η0, Cu = R ηκ and M = Cc ⊕ Cu for a > 1.

Proof. The proof is straightforward in view of the spectrum specified in Corol-

lary 4.3. Let us consider the case a 6= 1 first. The functions η0, ηκ defined above

are both continuously differentiable and satisfy

Le η0 = a
(
η0(0) − η0(−1)

)
= 0 = η′0(0)

and in view of Equation (4.4)

Le ηκ = a
(
ηκ(0) − ηκ(−1)

)
= a

(
1 − e−κ

)
= κ = η′κ(0),

respectively. Thus η0, ηκ ∈ D(Ge). Furthermore,

Ge η0 = η′0 = 0
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yields Cc = R η0, and

Ge ηκ = η′κ = κ ηκ

implies that the realified generalized eigenspace of Ge associated with the real eigen-

value κ is given by R ηκ. Accordingly, we conclude M = R η0 + R ηκ for a 6= 1, and

Cu = R ηκ in case a > 1.

Analogously, for a = 1 trivial verifications show that η0, ηd ∈ D(Ge), Ge η0 = 0

and Ge ηd = η0, which imply Cc = R η0 ⊕ R ηd. Since λ = 0 is the only real

eigenvalue of Ge, we also conclude M = Cc, and the proof is complete. �

Each initial value in the subspace M of C uniquely defines a global solution of

Equation (4.3) which is either constant or strictly monotone and thus in particular

slowly oscillating, as we show below.

Corollary 4.4. Let a > 0 be given.

(i) For all ϕ ∈ M Equation (4.3) has a unique solution zϕ : R −→ R, and

in the case ϕ 6= 0 the solution zϕ is slowly oscillating; that is, for every

pair of zeros z1 > z2 of zϕ there holds z1 > z2 + 1.

(ii) If a ≤ 1 and if z : (−∞, 0] −→ R is a solution of Equation (4.3) such

that ‖zt‖C ≤ ‖z0‖C for all t ≤ 0, then there exists a constant c ∈ R with

z(t) = c as t ≤ 0.

(iii) If a > 1 and if z : (−∞, 0] −→ R is a solution of Equation (4.3) with

‖zt‖C ≤ ‖z0‖C for all t ≤ 0 then zt ∈M as t ≤ 0.

(iv) If a > 1, and if z : (−∞, 0] −→ R is a solution of Equation (4.3) such

that there is a constant ε > 0 with ‖zt‖C ≤ e(κ+ε)t‖z0‖C for all t ≤ 0,

then z(t) = 0 as t ≤ 0.

Proof. 1. Proof of (i). The first point of the assertion concerning the existence

of a uniquely determined solution of Equation (4.3) for every initial data in M is,

in consideration of the last corollary, an immediate consequence of the basic theory

for RFDEs as for instance can be found in the standard work of Hale and Verduyn

Lunel [10] or of Diekmann et al. [6]. For the remaining part, we note that in case

ϕ = 0 we have zϕ(t) = 0, t ∈ R, whereas for a non-trivial initial value ϕ ∈ M we

find constants c1, c2 ∈ R so that

ϕ =

{
c1 η0 + c2 ηκ, for a 6= 1,

c1 η0 + c2 ηd, for a = 1,

and the associated solution of Equation (4.3) is given by

(4.9) zϕ(t) =

{
c1 + c2 e

κ t, for a 6= 1,

c1 + c2 t, for a = 1,

on R. Each of these solutions is either constant or strictly monotonous. In par-

ticular, for ϕ 6= 0 the solution zϕ has clearly at most one zero and, thus, is slowly

oscillating.

2. Proof of (ii). According to Proposition 4.2, we find a constant β < 0 such

that the set Λ(β) := {λ ∈ σ(Ge)| Re(λ) > β} contains only the eigenvalue λ = 0 of

Ge. Subsequently, there is, compare Diekmann et al. [6, Theorem 2.9 in Chapter

IV.2], a complementary subspace Q for Cc in C and reals 0 < δ < −β and K̂ ≥ 1

with C = Cc ⊕Q and

(4.10) ‖Te(t)ψ‖C ≤ K̂ e(β+δ) t‖ψ‖C
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for all t ≥ 0 and ψ ∈ Q. Recall thereby that the sets Cc and Q are both invariant

under the solution semigroup Te of Equation (4.3). Let now P : C −→ C denote

the projection operator of C along Q onto the center space Cc of Ge. Then for all

s ≤ t ≤ 0 we have

‖(1− P ) zt‖C = ‖(1− P )Te(t− s) zs‖C

= ‖Te(t− s) (1− P ) zs‖C

≤ K̂ e(β+δ)(t−s)‖(1− P ) zs‖C

≤ K̂ e(β+δ)(t−s)‖1− P‖ ‖zs‖C

≤ K̂ e(β+δ)(t−s)‖1− P‖ ‖z0‖C ,

and thus ‖(1− P ) zt‖C → 0 as s→ −∞. Therefore zt ∈ Cc for all t ≤ 0.

If a < 1, then part (i) of Corollary 4.3 implies Cc = R η0. Hence, we find a

constant c ∈ R with z0 = c η0 and so obviously z(t) = c for all t ≤ 0.

On the other hand, in the case a = 1, we have Cc = R η0⊕R ηd due to statement

(ii) of Corollary 4.3. This implies the existence of c1, c2 ∈ R with z0 = c1 η0 + c2 ηd
and, of course, z(t) = c1 + c2 t for all t ≤ 0. Accordingly, it remains to show that

c2 = 0. But this is clear, since in the case c2 6= 0 we immediately find a real t ≤ 0

with ‖zt‖C > ‖z0‖C in contradiction to our assumptions on z. On that account,

z(t) = c1 for all t ≤ 0, which is the desired conclusion.

3. Proof of (iii). The proof is completely analogous to the first part of the last

one. Under the given assumptions we first find β < 0 with Λ(β) = {0, κ} and then

a subspace Q for M in C together with reals 0 < δ < −β and K̂ ≥ 1 such that

C = M ⊕Q and

‖Te(t)ψ‖C ≤ K̂ e(β+δ) t‖ψ‖C

for ψ ∈ Q and t ≥ 0. Then the same argumentation as we used in the proof of (ii)

leads to zt ∈M as t ≤ 0.

4. Proof of (iv). If a > 1, then the spectral bound sup{Re(λ) | λ ∈ σ(Ge)} of

the infinitesimal generator Ge of the strongly continuous semigroup Te is given by

the real eigenvalue κ > 0. Therefore, for 0 < δ < ε there is a constant K̂ ≥ 1 such

that

‖Te(t)ψ‖C ≤ K̂ e(κ+δ) t‖ψ‖C

for all ψ ∈ C and all t ≥ 0, as, for instance, shown in Diekmann et al. [6, Sections

IV.2 and IV.3]. Subsequently, using the assumed estimate for zt in combination

with the above for Te, we obtain

‖z0‖C = ‖Te(−t) zt‖C ≤ K̂ e(κ+δ)(−t)‖zt‖C

≤ K̂ e(κ+δ)(−t)e(κ+ε)t‖z0‖C = K̂ e(ε−δ)t‖z0‖C

for all t ≤ 0. Choosing t ≤ 0 small enough, namely such that K̂ e(ε−δ)t < 1, yields

‖z0‖C = 0, and thus z(t) = 0 for all t ≤ 0 as claimed. �

The parts (ii) and (iii) of the above corollary particularly imply that in case of a

solution z : (−∞, 0] −→ R for the linear DDE (4.3), which satisfies ‖zt‖C ≤ ‖z0‖C
for all t ≤ 0, there are constants α, β ∈ R with

zt = Te(t)
(
α η0 + β ηκ

)
;
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that is, z(t) = α + β eκ t for all t ≤ 0. In the next result we prove that in this

situation each segment zt belongs to the subset H[−1,0] of C1 defined by Equation

(3.10) in the last chapter.

Corollary 4.5. For given (α, β) ∈ R2 \ {0} and c ∈ R with c > 0 let the

function z : (−∞, 0] → R be defined by

z(t) = α+ β ec t.

Then V (z, [t− 1, t]) = 1 and z|[t−1,t] ∈ H[t−1,t] for all t ≤ 0.

Proof. For each choice of reals α, β, c ∈ R with α, β 6= 0 and c > 0, the

induced function z is obviously continuously differentiable and either constant or

strictly monotonous. Subsequently, z has at most one sign change on the negative

real semi-axis. Accordingly, V (z, [t− 1, t]) = 1 for all t ≤ 0.

It remains to verify that for each t ≤ 0 we have z(t) 6= 0 or z(t− 1) · z′(t) < 0

and also z(t − 1) 6= 0 or z(t) · z′(t − 1) > 0. To see this, we first observe that for

β = 0 this is clear since z is constant with a value α 6= 0. Consequently, consider

β 6= 0 in the following. Then z is strictly monotonous, and therefore we need only

consider the subcases z(t) = 0 or z(t − 1) = 0. In the situation z(t) = 0, we have

α = −β ec t and z(t− 1) 6= 0 from the monotonicity property of z. Additionally, we

see

z′(t) z(t− 1) = c β ect
(
α+ β ec (t−1)

)

= −c α
(
α− α e−c

)

= −c α2
(
1 − e−c

)
< 0

as c > 0. On the other hand, z(t− 1) = 0 implies α = −β ec (t−1) and also z(t) 6= 0,

which leads to

z′(t− 1) z(t) = c β ec (t−1)
(
α+ β ec t

)

= −c α
(
α− α ec

)

= −c α2
(
1 − ec

)
> 0.

Thus, both situations result in z|[t−1,t] ∈ H |[t−1,t]. This completes the proof. �

Another important consequence of Proposition 4.2 are the stability properties

of the trivial solution for the linear RFDE (4.3) in dependence of the parameter

a > 0. Even though it is a standard conclusion from the theory of linear RFDEs

as, for instance, is treated in Diekmann et al. [6], we shall explicitly show it using

the above results and ideas.

Corollary 4.6 (Corollary 4.2 in Brunovský et al. [3]). For 0 < a < 1 the

trivial solution of the linear autonomous RFDE (4.3) is stable, while for a ≥ 1 it

is unstable.

Proof. If a ≥ 1, then due to Equation (4.9) each neighborhood of the origin in

C contains a non-trivial initial function ϕ ∈M such that the associated solution zϕ,

or, more precisely, its trajectory [0,∞) ∋ t 7−→ zϕt ∈ C, is unbounded. Therefore,

the trivial solution is unstable.

On the other hand, suppose 0 < a < 1 and consider the spectral decomposition

C = Cc ⊕ Q together with the associated estimate (4.10) for the action of the
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solution semigroup Te of (4.3) on Q. Writing P : C −→ C for the projection of C

along Q onto the center space Cc and using the invariance of the subspaces Cc, Q

for Te together with Te(t) η0 = η0, we obtain

‖zϕt ‖C = ‖Te(t)ϕ‖C

≤ ‖Te(t)P ϕ‖C + ‖Te(t) (1− P )ϕ‖C

≤ ‖P ϕ‖C + K̂ e(β+δ) t‖(1− P )ϕ‖C

≤
(
‖P‖ + K̂ ‖1− P‖ e(β+δ) t

)
‖ϕ‖C

≤
(
‖P‖ + K̂ ‖1− P‖

)
‖ϕ‖C

for all ϕ ∈ C and t ≥ 0. Clearly, this implies the stability of the zero solution. �

In our next result we show that initial values ϕ ∈ C vanishing at the boundary

points but not inside of [0, 1] lead to solutions of Equation (4.3) on [−1,∞) which

stay bounded away from zero in [1,∞).

Proposition 4.7. Suppose that a > 0, and let ϕ ∈ C satisfy ϕ(−1) = ϕ(0) = 0

and ϕ(t) 6= 0 as −1 < t < 0. Then ϕ admits a unique solution zϕ : [−1,∞) −→ R

of Equation (4.3) with zϕ0 = ϕ and there is a constant c > 0 with |zϕ(t)| ≥ c for all

t ≥ 1.

Proof. 1. Similarly to the proof of Corollary 4.4, the existence of a uniquely

determined solution zϕ : [−1,∞) −→ R of the linear RFDE (4.3) for a given initial

value ϕ ∈ C follows by the basic existence theory for RFDEs as presented in Hale

and Verduyn Lunel [10] or in Diekmann et al. [6]. However, in view of the second

part of the assertion it is appropriate to derive the solution zϕ at least in [−1, 1]

by an alternate approach, the so-called method of steps, here.

For this purpose, note that for given ϕ ∈ C Equation (4.3) reads

ż(t) = Lezt = a
[
z(t) − z(t− 1)

]
= a

[
z(t) − ϕ(t − 1)

]

for all t ∈ [0, 1]. Hence, it forms an ODE. By the variation-of-constants formula for

ODEs as can be found in Hale [8], it follows that for each c ∈ R

zc(t) := c eat − a

∫ t

0

ea(t−s) ϕ(s− 1) ds

with 0 ≤ t ≤ 1 is a solution of the above ODE for z. Using the continuity condition

zϕ(0) = ϕ(0), we see that zϕ is given by

zϕ(t) =






ϕ(t), −1 ≤ t ≤ 0

ϕ(0) eat − a

∫ t

0

ea(t−s) ϕ(s− 1) ds, 0 ≤ t ≤ 1

for −1 ≤ t ≤ 1.

2. By assumption, we have ϕ(−1) = ϕ(0) = 0 and ϕ(t) 6= 0 as t ∈ (−1, 0).

Hence, either ϕ(t) > 0 for all −1 < t < 0 or ϕ(t) < 0 for all −1 < t < 0. Consider

the situation ϕ(t) > 0 as −1 < t < 0 first. We claim

zϕ(t) ≤ zϕ(1) < 0

for all t ≥ 1. In order to see this, observe that zϕ is negative and strictly decreasing

in (0, 1] since

zϕ(t) = −a

∫ t

0

ea(t−s) ϕ(s− 1) ds
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as 0 ≤ t ≤ 1 and ϕ(s − 1) > 0 for all 0 < s < 1. Consider now the interval [1, 2].

By the above, for 1 ≤ t ≤ 2 we have

a
[
y − zϕ(1)

]
≥ a

[
y − zϕ(t− 1)

]
≥ ay

for all y ∈ R. Consequently,

ẏ1(t) ≥ żϕ(t)

and

y1(t) ≥ zϕ(t)

follow for all t ∈ [1, 2] where y1 : [1, 2] −→ R denotes the unique solution of the

initial value problem {
ẏ(t) = a y(t) − a zϕ(1)

y(1) = zϕ(1)

on [1, 2]. A simple calculation shows

y1 : [1, 2] ∋ t 7−→ zϕ(1) ∈ R

and therefore

zϕ(t) ≤ y1(t) = zϕ(1) < 0

for all t ∈ [1, 2]. In particular, the solution zϕ of Equation (4.3) with initial value

zϕ0 = ϕ is also monotone decreasing in the interval [1, 2] since żϕ(t) ≤ ẏ1(t) = 0 as

1 ≤ t ≤ 2. This enables us to proceed by induction. Indeed, assume for k ∈ N that

the solution zϕ of (4.3) satisfies zϕ(t) ≤ zϕ(1) < 0 as t ∈ [k, k + 1] and that zϕ is

monotone decreasing in [k, k + 1]. Then it is possible to conclude

a
[
y − zϕ(k + 1)

]
≥ a

[
y − zϕ(t− 1)

]

for all t ∈ [k + 1, k + 2] and all y ∈ R. Hence,

zϕ(t) ≤ yk+1(t) ≤ yk+1(k + 1) ≤ zϕ(1) < 0

and

żϕ(t) ≤ 0 = ẏk+1(t)

for all t ∈ [k + 1, k + 2] where

yk+1 : [k + 1, k + 2] ∋ t 7−→ zϕ(k + 1) ∈ R

is the uniquely determined solution of
{
ẏ(t) = a y(t) − a zϕ(k + 1)

y(k + 1) = zϕ(k + 1)

on [k+ 1, k+ 2]. This proves the proposition under the assumption ϕ(t) > 0 for all

−1 < t < 0.

In the situation ϕ(−1) = ϕ(0) = 0 and ϕ(t) < 0, the above arguments applied

to −ϕ show z−ϕ(t) ≤ z−ϕ(1) < 0 for all t ≥ 0. By linearity of Equation (4.3), it

follows that zϕ = −z−ϕ and thus

zϕ(t) = −z−ϕ(t) ≥ −z−ϕ(1) > 0

for all t ≥ 1. This completes the proof of the proposition. �
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Projection on the Subspace M. We close this section with the derivation of

a projection operator on the two-dimensional subspace M of C1 from Corollary 4.3

to describe the dynamics of trajectories for the semiflow F . Thereto, we consider

the closed hyperplanes

H−1 :=
{
ϕ ∈ C1

∣∣ϕ(−1) = 0
}

and

H0 :=
{
ϕ ∈ C1

∣∣ϕ(0) = 0
}

of C1 and prove that their intersection is a complementary space of M in C1.

Corollary 4.8. Let N denote the closed subspace H−1 ∩ H0 of the Banach

space C1. Then codimN = 2 and C1 = N ⊕M .

Proof. The first part of the assertion, that is, codimN = 2, is clear, whereas

for the second one observes that each ϕ ∈ M\{0} has at most one zero due to

statement (i) of Corollary 4.4 and hence, ϕ 6∈ N . In particular, M ∩N = {0}. As

dimM = 2 = codimN we conclude that M is a complementary subspace of N in

C1 as claimed. �

By the form of the functions in M , there is a function Φ0 ∈ (H0∩M)\H−1 with

Φ0(−1) = 1 and analogously a function Φ−1 ∈ (H−1 ∩M)\H0 with Φ−1(0) = 1. As

Φ0 and Φ−1 are linearly independent, they form a basis of the subspace M of C1.

The projection of C1 onto M along H−1 ∩H0 can be represented in terms of this

basis as follows.

Corollary 4.9. If P : C1 −→ C1 denotes the continuous projection of C1

onto M , then

P ϕ = ϕ(−1)Φ0 + ϕ(0)Φ−1

for all ϕ ∈ C1.

Proof. Let ϕ ∈ C1 be given. Due to C1 = M ⊕N we find an element ψ ∈ N

with ϕ = Pϕ + ψ. Therefore ϕ(0) = (P ϕ)(0) + ψ(0) = (P ϕ)(0) and analogously

ϕ(−1) = (P ϕ)(−1) + ψ(−1) = (P ϕ)(−1). Now we have

P ϕ = c0 Φ0 + c−1 Φ−1

with reals c0, c−1 ∈ R and hence,

(P ϕ)(0) = c0 · 0 + c−1 · 1 = c−1

and

(P ϕ)(−1) = c0 · 1 + c−1 · 0 = c0.

This establishes the asserted formula for P ϕ. �

In case a > 1 the elements of the kernel of the above projection P , that is, the

linear space of all ϕ ∈ C1 with P ϕ = 0, has at least three zeros as proved in the

next corollary.

Corollary 4.10. Suppose that a > 1 and that ϕ ∈ C1 \ {0} satisfies P ϕ = 0

where P is the projection of C1 onto M from the last corollary. Then the function

ϕ has a zero in (−1, 0).
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Proof. Assume the assertion is false; that is, ϕ is either positive in (−1, 0)

or negative in (−1, 0). However, define ψ(t) := |ϕ(t)| for all t ∈ [−1, 0]. Then

ψ ∈ C1 \ {0}, P ψ = 0 and ψ(t) > 0 for all −1 < t < 0 by assumption. Thus, from

Proposition 4.7 we see that ψ admits a unique solution zψ : [−1,∞) −→ R of the

linear RFDE (4.3) with initial value zψ0 = ψ and that there is a constant c > 0 with

|zψ(t)| ≥ c for all t ≥ 1. In particular, ‖zψt ‖C ≥ c as t ≥ 2.

On the other hand, Corollary 4.3 implies that M coincides with the center-

unstable space Cu ⊕ Cc of Ge as a > 1. Consequently, from P ψ = 0 it follows

ψ ∈ Cs where Cs ⊂ C denotes the stable space of Ge. Now, due to the exponential

trichotomy property we find real numbers K ≥ 1 and cs < 0 with

‖zψt ‖C = ‖Te(t)ψ‖C ≤ Kecst

for all t ≥ 0. Hence, we have ‖zψt ‖C → 0 as t → ∞ and herewith a contradiction

to the above conclusion ‖zψt ‖C ≥ c > 0 for all t ≥ 2. This shows that the function

ϕ ∈ C1 \{0} is neither positive nor negative in (−1, 0). Therefore, in any case there

is a real −1 < ξ < 0 with ϕ(ξ) = 0 as claimed. �

3. The Stability of the Trivial Solution

After having clarified some of the spectral properties of the linearization of

the semiflow F at the trivial solution, we now discuss the consequences for the

local behavior of F at ϕ0 = 0. In this context, an interesting question is the one

on stability of the trivial stationary point in dependence of the parameter a > 0.

Below we address this issue, even if we will not be able to solve this question for

all a > 0.

In the remainder of this chapter we consider Equation (4.1) represented by

(4.11) ẋ(t) = Lxt + g(xt)

with the derivative L = Df(0) of f at 0 ∈ Xf and the non-linear part

(4.12) g : C1 ∋ ϕ 7−→ f(ϕ) − Lϕ ∈ R,

which obviously inherits the smoothness conditions (S 1) and (S 2) of f on Page 7.

An Instability Result. Our stability analysis of the semiflow F begins with

an immediate consequence of the principle of linearized instability in view of the

spectrum of the linearization.

Corollary 4.11. For a > 1 the trivial solution of Equation (4.1) is unstable.

Proof. As the spectrum σ(Ge) contains an element with positive real part,

namely λ = κ, as proved in Proposition 4.2, the assertion follows by the principle

of linearized instability from Proposition 1.4. �

Geometrically speaking, the assertion of the corollary above is that in case

a > 1 there is a neighborhood U ⊂ Xf of the stationary point ϕ0 = 0, which

contains for every ε > 0 at least one initial value ϕε ∈ U with ‖ϕε‖C1 < ε such

that the associated trajectory [0,∞) ∋ t 7−→ xϕε

t for the semiflow F leaves U in

finite time. This fact can also be concluded from the existence of a so-called local

unstable manifold of Equation (4.1) at 0 ∈ Xf . We show the existence of such

manifolds for Equation (4.11) in the case a > 1 by our next result, in which we use

the notation C1
cs for the Banach space Cc ⊕ C1

s where C1
s is the intersection of C1

with the stable space Cs of Ge.
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Proposition 4.12. If a > 1, then there are open neighborhoods Cu,0 of 0 in

Cu and Ccs,0 of 0 in C1
cs, constants 0 < ν < κ and Ku > 0, and a continuously

differentiable map wu : Cu,0 −→ C1
cs,0 with wu(0) = 0 and Dwu(0) = 0, such that

the following holds.

(i) The graph of wu, that is, the subset

Wu :=
{
ψ + wu(ψ)

∣∣ψ ∈ Cu,0

}

of C1, belongs to Xf .

(ii) For each ϕ ∈ Wu there exists a unique solution xϕ : (−∞, 0] −→ R of

Equation (4.1) with xϕ0 = ϕ and ‖xϕt ‖C1 ≤ Ku e
ν t for all t ≤ 0.

(iii) If ϕ ∈ Xf with Pu ϕ ∈ Cu,0 and if there is a solution xϕ : (−∞, 0] −→ R

of Equation (4.1) with ‖xϕt ‖C1 ≤ Ku e
ν t for all t ≤ 0, then ϕ ∈ Wu.

(iv) Wu is negative invariant in the sense, that there is an open neighborhood

Nu ⊂ Xf of 0 ∈ Xf such that ϕ ∈Wu ∩Nu implies xϕt ∈ Wu for all t ≤ 0.

Proof. The statement is a straightforward consequence of Theorem 4.1 in

Krisztin [15] on the existence of local unstable manifolds for DDEs with state-

dependent delay, provided Equation (4.11) satisfies the required assumptions. We

verify these assumption in the following. On that account, consider the continuation

of Equation (4.11) to C, that is, the RFDE

ẋ(t) = Le xt + ge(xt)

with the linear extension Le = Def(0) ∈ L(C,R) of L from assumption (S 2) on

f and the extension ge = fe − Le of g, where fe is defined by Equation (3.3). By

Corollary 3.2, it follows that fe is continuous and so is ge as a sum of continuous

functions. Further, we have ge(0) = 0, and the restriction of ge to C1, that is simply

g, satisfies the smoothness conditions (S 1) and (S 2) with

Dg(0) = D(f − L)(0) = Df(0) − L = 0.

Finally, for any choice of constant 0 < β < κ Proposition 4.2 on the spectrum of

Ge also yields the last condition (H1’) in Krisztin [15] and enables the application

of Theorem 4.1 in [15] to conclude the stated result. �

The set Wu ⊂ Xf is called a local unstable manifold of Equation (4.1) at

the stationary point ϕ0 = 0. For all a > 1 it is a one-dimensional continuously

differentiable submanifold of Xf . In view of property (ii) it becomes now clear

that choosing any non-trivial ϕ ∈ Wu we find a initial value ψ in any open ball

Bε(0) ⊂ C1 with center 0 ∈ C1 and radius 0 < ε < ‖ϕ‖C1 , such that the associated

trajectory t 7−→ xψt ∈ Xf reaches ϕ and thus in particular leaves Bε(0) in finite

time. Consequently, this shows once more the instability of the trivial solution in

case a > 1.

The Center Manifold Reduction for a 6= 1. In contrast to the case a > 1,

in the situation 0 < a ≤ 1 the question on stability of the trivial solution of

Equation (4.1), or equivalently of (4.11), is not solved by the stability of the trivial

solution of the associated linear RFDE (4.3). Indeed, the spectrum σ(Ge) contains

a zero eigenvalue of Le for all parameter a > 0 and therefore we may not apply the

principle of linearized stability. For the model equation (3.2) with constant delay

Brunovský et al. [3] solve the question on the stability by employing the classical

technique, namely the so-called center manifold reduction, to study stability of
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differential equations in such a situation. The general idea of this method is to

reduce the local semiflow at the stationary point to a local center manifold, where

the restriction induces a local flow generated by an ODE and the original stationary

point becomes a stationary point of this flow. Under the condition that the local

center manifolds are attracting in absence of unstable directions, such a reduction

allows to draw conclusions about the stability property of the stationary point for

the original equation from the one of this ODE. For Equation (3.2) this approach

leads to the result on local asymptotical stability of the trivial solution for 0 < a < 1,

as proved in Brunovský et al. [3]. One may ask whether this result is still true

in case of Equation (4.1) with a state-dependent delay satisfying the assumptions

(DF 1) - (DF 5).

Below we prove that the center manifold reduction of Equation (4.1), or equi-

valently of Equation (4.11), induces the same ODE as in case of DDE (3.2). Never-

theless, we will not be able to deduce from this fact the stability of the trivial

solution for 0 < a < 1. The reason for this is that, as far as we know, there is

no result stating the attractivity of local center manifolds in absence of unstable

directions for a semiflow obtained from Theorem 1.2, and an attempt for a proof

of such a result exceeds the scope of this work. However, via the center manifold

reduction we will see an interesting qualitative behavior of the semiflow F near

the trivial solution for parameters a > 1. As this behavior will be crucial for our

considerations of Equation (4.1), we carry out the center manifold reduction in

detail.

Before we begin, let us recall the definition of the Landau symbol o characte-

rizing the asymptotical behavior of functions. We write h1 = o(h2) as s→ 0 for any

given continuous functions h1, h2 : U −→ R, defined on some open neighborhood

U of 0 in a Banach space with norm ‖ · ‖, if and only if for each c > 0 there is a

constant δ > 0 such that for all s ∈ U with ‖s‖ < δ we have |h1(s)| ≤ c |h2(s)|.

We begin our discussion with a result about the existence and C1-smoothness

of local center manifolds for Equation (4.1) at the trivial solution.

Proposition 4.13. For all a > 0 there exist open neighborhoods Cc,0 of 0 in Cc
and C1

su,0 in C1
s ⊕Cu with Nc = Cc,0 +C1

su,0 ⊂ C1 and a continuously differentiable

map wc : Cc,0 −→ C1
su,0 satisfying wc(0) = 0 and Dwc(0) = 0 with the following

properties.

(i) The graph

Wc :=
{
ψ + wc(ψ)

∣∣ψ ∈ Cc,0

}

of wc belongs to Xf and is a continuously differentiable submanifold of

Xf with the same dimension as Cc.

(ii) If x : R −→ R is a continuously differentiable solution of Equation (4.1)

on R with xt ∈ Nc for all t ∈ R, then xt ∈Wc for all t ∈ R.

(iii) Wc is locally positively invariant with respect to the semiflow F , that is,

if ϕ ∈ Wc and α > 0 such that F (t, ϕ) is defined for all t ∈ [0, α) and

F (t, ϕ) ∈ Nc for all t ∈ [0, α), then F (t, ϕ) ∈ Wc for all t ∈ [0, α).

Proof. Apply Theorem 4.1.1 in Hartung et al. [11] on the existence and

Theorem 2.1 in Krisztin [16] on continuous differentiability of local center manifolds

for differential equations with state-dependent delay. �
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The graph Wc in the former result is called a local center manifold of Equa-

tion (4.1) at ϕ0 = 0. As Proposition 4.2 implies dimCc = 1 for parameter 0 < a 6= 1

and on the other hand dimCc = 2 for a = 1, Wc is a one-dimensional continuously

differentiable submanifold of Xf in the first situation and a two-dimensional sub-

manifold in the second one. In any case, the restriction of the non-linear part g of

Equation (4.1) defined by (4.12) has the following asymptotical behavior in close

vicinity of the trivial solution.

Corollary 4.14. For each a > 0 the restriction of the non-linear continuous

differentiable functional

g : C1 ∋ ϕ 7−→ a
[
ϕ(−1) − ϕ(−r(ϕ(0)))

]
− |ϕ(0)|ϕ(0) ∈ R

to a local center manifold Wc satisfies the asymptotic formula

g(ψ + wc(ψ)) = −|ψ(0)|ψ(0) + o(‖ψ‖2
C1)

as Cu,0 ∋ ψ → 0.

Proof. 1. First consider the linear part of the function g for ϕ ∈ C1, that

is, the difference a
[
ϕ(−1) − ϕ(−r(ϕ(0)))

]
. The mean value theorem yields the

existence of 0 ≤ ξ ≤ |ϕ(0)| with

ϕ(−1) − ϕ(−r(ϕ(0))) =

∫ 1

0

ϕ′
(
− s− (1 − s) · r(ϕ(0))

)
ds ·

(
r(ϕ(0)) − 1

)

=

∫ 1

0

ϕ′
(
− s− (1 − s) · r(ϕ(0))

)
ds ·

(
r(ϕ(0)) − r(0)

)

= ±r′(ξ) · ϕ(0) ·

∫ 1

0

ϕ′
(
− s− (1 − s) · r(ϕ(0))

)
ds.

Consequently,

|ϕ(−1) − ϕ(−r(ϕ(0)))| ≤

∣∣∣∣ max
ξ∈[0,|ϕ(0)|]

|r′(ξ)| · ϕ(0) ·

∫ 1

0

ϕ′
(
− s− (1 − s) · r(ϕ(0))

)
ds

∣∣∣∣

≤ max
ξ∈[0,‖ϕ‖C ]

|r′(ξ)| · ‖ϕ‖C ·

∫ 1

0

∣∣ϕ′
(
− s− (1 − s) · r(ϕ(0))

)∣∣ ds

≤ max
ξ∈[0,‖ϕ‖C ]

|r′(ξ)| · ‖ϕ‖C ·

∫ 1

0

‖ϕ′‖C ds

= max
ξ∈[0,‖ϕ‖C ]

|r′(ξ)| · ‖ϕ‖C · ‖ϕ′‖C

≤ k(ϕ) · ‖ϕ‖2
C1

where

k(ϕ) := max
ξ∈[0,‖ϕ‖C1 ]

|r′(ξ)|.

As the delay function is continuously differentiable and possesses a global maxi-

mum at the origin due to assumptions (DF 1) and (DF 2), the previous calculation

implies

0 ≤ lim
06=ϕ→0

|ϕ(−1) − ϕ(−r(ϕ(0)))|

‖ϕ‖2
C1

≤ lim
06=ϕ→0

k(ϕ) · ‖ϕ‖2
C1

‖ϕ‖2
C1

= lim
ϕ→0

k(ϕ) = 0,

that is,

ϕ(−1) − ϕ(−r(ϕ(0))) = o(‖ϕ‖2
C1)

as ϕ→ 0.
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2. Consider for arbitrary parameter a > 0 a local center manifold

Wc = {ψ + wc(ψ) |ψ ∈ Cc,0}

of Equation (4.1) at the stationary point ϕ0 = 0. Then for all sufficiently small

ψ ∈ Cc,0 the mean value theorem shows

‖wc(ψ)‖C1 = ‖wc(ψ) − wc(0)‖ ≤ sup
χ∈S

‖Dwc(χ)‖ ‖ψ‖C1

where the strip S is defined by {λψ | λ ∈ [0, 1]}. Combining the continuity of Dwc
with Dwc(0) = 0 yields

(4.13) wc(ψ) = o(‖ψ‖C1)

as ψ → 0. Next, by application of the mean value theorem in one dimension, we

find for every sufficiently small ψ ∈ Cc,0 a constant 0 ≤ λ ≤ 1 with

|(ψ+wc(ψ))(0)| (ψ+wc(ψ))(0) = |ψ(0)|ψ(0)+2 |λψ(0)+(1−λ)wc(ψ)(0)|wc(ψ)(0).

This leads to the inequality

|(ψ+wc(ψ))(0)|(ψ+wc(ψ))(0)= |ψ(0)|ψ(0) + 2 |λψ(0)+(1 −λ)wc(ψ)(0)|wc(ψ)(0)

≤ |ψ(0)|ψ(0) + 2
(
|ψ(0)| + |wc(ψ)(0)|

)
|wc(ψ)(0)|

≤ |ψ(0)|ψ(0) + 2
(
‖ψ‖C1 + ‖wc(ψ)‖C1

)
‖wc(ψ)‖C1 ,

and hence in view of Equation (4.13)
∣∣(ψ + wc(ψ)

)
(0)
∣∣ (ψ + wc(ψ)

)
(0) = |ψ(0)|ψ(0) + o(‖ψ‖2

C1)

as ψ → 0.

3. Combining the last two parts, we immediately see

g(ψ + wc(ψ)) = a
[(
ψ + wc(ψ)

)
(−1) −

(
ψ + wc(ψ)

)
(−r((ψ + wc(ψ))(0))

]

− |(ψ + wc(ψ))(0)|
(
ψ + wc(ψ)

)
(0)

= −|ψ(0)|ψ(0) + o(‖ψ‖2
C1)

for Cu,0 ∋ ψ → 0, which establishes the claimed formula. �

Consider now a local center manifold Wc in the case 0 < a 6= 1. Then, by

Corollary 4.4, we have Cc = R η0 with the function η0 : [−1, 0] ∋ ϑ 7−→ 1 ∈ R and,

of course, Ge η0 = 0. Applying similiar arguments to those in Section 6 of Chapter

2 on the dynamics on local center-unstable manifolds, we conclude that the local

behavior of the semiflow F on Wc at the stationary point ϕ0 = 0 ∈ Xf is determined

by the scalar first-order ODE

(4.14) ẏ(t) = Qc
(
y(t) η0 + wc(y(t) η0)

)
,

where Qc : Cc,0 −→ R denotes the composition Qc = Γc ◦P⊙∗
c ◦ l ◦ g of the bounded

linear operator Γc : Cc ∋ ϕ 7−→ c(ϕ) ∈ R associating ϕ ∈ Cc with the uniquely

determined real c(ϕ) with ϕ = c(ϕ) η0, the spectral projection P⊙∗
c of C⊙∗ along

C⊙∗
s ⊕ Cu onto the center space Cc, the linear bijective mapping l : R −→ Y ⊙∗

involved in the variation-of-constants formula (2.13) and finally the nonlinearity g

of Equation (4.1) defined by (4.12). Observe that the right-hand side of this ODE is

continuously differentiable and thus there is an open neighborhood U ⊂ R of 0 ∈ R

such that every c ∈ U uniquely defines a solution y : R ⊃ (t−(u), t+(u)) −→ R of

Equation (4.14) with y(0) = c. In particular, these solutions generate a local flow

with y0 = 0 as a stationary point.
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In order to obtain an explicit asymptotic formula for the right-hand side of the

above ODE, we calculate the projection operator Pc of C along Cs ⊕ Cu onto Cc.

To this end, let ζ : [0, 1] −→ R be defined by

(4.15) ζ(ϑ) :=

{
0, ϑ ∈ {0, 1},

a, ϑ ∈ (0, 1),

such that we have

Le ϕ =

∫ 1

0

dζ(ϑ)ϕ(−ϑ)

for all ϕ ∈ C with the continuous extension Le of L on C given by (4.2). Following

Chapter IV in Diekmann et al. [6] on spectral theory for operator semigroups,

where a straightforward argument also shows the result of [6, Exercise 3.12 in

Chapter IV.3], we obtain

(4.16)

Pc ϕ =
1

1 − a

(
ϕ(0) +

∫ 1

0

dζ(ϑ)

∫ ϑ

0

ϕ(σ − ϑ) dσ

)
η0

=
1

1 − a

(
ϕ(0) − a

∫ 1

0

ϕ(σ − 1) dσ

)
η0

=
1

1 − a

(
ϕ(0) − a

∫ 0

−1

ϕ(−σ) dσ

)
η0

for functions ϕ ∈ C and so

(4.17) (P⊙∗
c ◦ l)(c) =

c

1 − a
η0

for all c ∈ R. Combining this with Corollary 4.14 leads to

Qc(y η0 + wc(y η0)) =
(
Γc ◦ P

⊙∗
c ◦ l

)
(g(y η0 + wc(y η0)))

=
(
Γc ◦ P

⊙∗
c ◦ l

)(
− |y| y + o(|y|2)

)

= −
1

1 − a
|y| y + o

(
|y|2
)

for all sufficiently small reals y. Consequently, in the case 0 < a 6= 1 the center

manifold reduction (4.14) of the semiflow F at the stationary point ϕ0 = 0 has the

asymptotic expansion

(4.18) ẏ(t) = −
1

1 − a
|y(t)| y(t) + o(|y(t)|2)

in close vicinity of the stationary point y0 = 0.

Remark 4.15. As already mentioned, the derived asymptotic form (4.18) of

the center manifold reduction for the model equation (4.1) is just the same as in

the case of Equation (3.2) with constant delay, which is discussed in Brunovský et

al. [3] in detail and from which we also adopt the next result.

An important consequence of the obtained asymptotic expansion (4.18) is the

answer on the question of the stability of the trivial solution for the differential

equation (4.14).

Proposition 4.16. For all 0 < a < 1 the trivial solution of Equation (4.14) is

locally asymptotically stable, whereas for a > 1 it is unstable.
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Proof. As solutions of scalar first order ODEs are monotone functions, the

behavior of solutions of the ODE (4.14) near the trivial solution is determined by the

leading term of the asymptotic expansion (4.18). If 0 < a < 1, then the coefficient

of the leading term |y(t)| y(t) of the asymptotic expansion (4.18) is negative and

consequently the trivial stationary point is locally asymptotically stable. On the

other hand, for a > 1 we have −1/(1− a) > 0 and thus the trivial stationary point

is unstable. �

An analogous result for the situation of constant delay leads to the conclusion,

compare Brunovský et al. [3, Corollary 5.1], that in the case 0 < a < 1 the trivial

solution of Equation (3.2) is asymptotically stable. But, unfortunately, we are not

able to draw the same conclusion for the model equation (4.1) due to the lack of a

result on the attractivity of local center manifolds for semiflows from Theorem 1.2,

provided there is no unstable direction. On the other hand, observe that in the case

a > 1, where the question of stability of the trivial solution for Equation (4.1) is

clear according to Corollary 4.11, the asymptotic expansion (4.18) shows that the

trivial solution is repelling in the local center manifold Wc at ϕ0 = 0; that is, there

is an open neighborhood U of ϕ0 = 0 ∈ Xf in Wc such that for every ϕ ∈ U there

exists a solution xϕ : (−∞,∞) −→ R of Equation (4.1) with xϕ0 = ϕ and xϕt ∈ Wc
for t ≤ 0, and xϕt → 0 as t → −∞. This fact will be essential in the following

section.

Remark 4.17. In the case a = 1 the local center manifolds at the trivial

solution of Equation (4.1) are two-dimensional and it is also possible to carry out

a center manifold reduction, which is given by a two-dimensional first order ODE

on an open neighborhood of 0 in R2. But since we will not discuss the case a = 1

in the remainder of this work, we do not develop this point here.

4. The Repellent Behavior of the Trivial Solution in Local

Center-Unstable Manifolds

In our discussion of the local analysis of the model equation so far, we concluded

that for a > 1, Equation (4.1) possesses continuously differentiable local center- and

unstable manifolds at the stationary point ϕ0 = 0. But besides these conclusions,

the main result of Chapter 2 also implies the existence of local center-unstable

manifolds for the semiflow F at the trivial solution. Furthermore, as the trivial

solution ϕ0 = 0 is repelling on local center manifolds by the last section, it is of

course expected that the trivial solution is also repelling in these center-unstable

manifolds for the semiflow F . Below we shall prove this conjecture in detail. But

let us first state the result on the existence of local center-unstable manifolds at

the trivial solution for the semiflow F .

Corollary 4.18. If a > 1, then there is an open neighborhood Ccu,0 of 0 in the

center-unstable space Ccu = Cc⊕Cu of the operator Ge, an open neighborhood C1
s,0

of 0 in C1
s = Cs ∩ C1 and a continuously differentiable map wcu : Ccu,0 −→ C1

s,0

with wcu(0) = 0 and Dwcu(0) = 0, such that

Wcu :=
{
ψ + wcu(ψ)

∣∣ψ ∈ Ccu,0

}

satisfies the following.
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(i) The graph Wcu of wcu is a 2-dimensional continuously differentiable sub-

manifold of Xf .

(ii) If x : (−∞, 0] −→ R is a solution of Equation (4.1) with xt ∈ Ccu,0⊕C1
s,0

for all t ≤ 0, then {xt | t ≤ 0} ⊂Wcu.

(iii) The set Wcu is positively invariant under F relative to Ncu := Ccu,0⊕C1
s,0

in the sense that if ϕ ∈Wcu and t > 0 then

{F (s, ϕ) | 0 ≤ s ≤ t} ⊂ Ncu =⇒ {F (s, ϕ) | 0 ≤ s ≤ t} ⊂Wcu.

Proof. Apply Theorems 2.1 and 2.2 in view of Proposition 4.2. �

In the remainder of this chapter we assume a > 1 and derive, by applying the

reduction principle of Section 6 in Chapter 2, an ODE describing the dynamics

induced by the semiflow F on the local center-unstable manifolds. After that we

will be in the position to prove the repellent behavior of ϕ0 = 0.

The Reduced Differential Equation. In order to deduce the restricted dif-

ferential equation describing the dynamics on the local center-unstable manifolds of

the semiflow F at ϕ0 = 0, recall from Proposition 4.2 that in the regarded situation

the spectrum σ(Ge) of operator Ge has, apart from the trivial one, only the simple

positive real eigenvalue κ with a non-negative real part. Additionally, by Corollary

4.3 we have seen that the center-unstable space Ccu is spanned by the continuously

differentiable functions

η0 :[−1, 0] ∋ ϑ 7−→ 1 ∈ R

and

ηκ :[−1, 0] ∋ ϑ 7−→ eκϑ ∈ R.

Of course, we have Ge η0 = 0 and Ge ηκ = κ ηκ and thus, the matrix

Bcu :=

(
0 0

0 κ

)

satisfies

Ge Φcu = ΦcuBcu

with the row vector Φcu := (η0, ηκ).

Consider now a local center-unstable manifold Wcu = {ψ+wcu(ψ) |ψ ∈ Ccu,0}

of F at ϕ0 = 0 given by a continuously differentiable map wcu : Ccu,0 −→ C1
s on

some open neighborhood Ccu,0 of the origin in the center-unstable space Ccu. Let

Γcu : Ccu −→ R
2 denote the coefficient function which associates to each ψ ∈ Ccu

the uniquely determined column vector (c1, c2)
T ∈ R2 with ψ = c1 η0 + c2 ηκ, and

let P⊙∗
cu : C⊙∗ −→ Ccu denote the projection of C⊙∗ along C⊙∗

s onto Ccu. The

operator P⊙∗
cu is the sum P⊙∗

c + P⊙∗
u where P⊙∗

c : C⊙∗ −→ Cc is the projection

of C⊙∗ along Cu ⊕ C⊙∗
s onto the center space Cc and P⊙∗

u : C⊙∗ −→ Cu is the

projection of C⊙∗ along Cc ⊕ C⊙∗
s onto the unstable space Cu. From Section 6

in Chapter 2 we see at once that the dynamics of F on the local center-unstable

manifold Wcu is given by the two-dimensional first-order ODE

(4.19) ẏ(t) = Bcu y(t) +Qcu(Φcu y(t) + wcu(Φcu y(t)))

with the continuously differentiable non-linear part Qcu = Γcu ◦ P
⊙∗
cu ◦ l ◦ g.

Our next goal is to gain an asymptotic expansion of Qcu by analogy to the

center manifold reduction carried out in the last section. Thereto, we begin with
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the observation that the asymptotic formula for the function g obtained in Corollary

4.14 is also valid in Wcu.

Corollary 4.19. For any a > 1 the restriction of the non-linear continuous

differentiable functional g defined by (4.12) to Wcu is of type

g(ψ + wcu(ψ)) = −|ψ(0)|ψ(0) + o
(
‖ψ‖2

C1

)

as Ccu,0 ∋ ψ → 0.

Proof. We have the same situation as in the proof of Corollary 4.14 and can

thus proceed completely analogously. The details are left to the reader. �

In addition to the last result, we also need the projection operator P⊙∗
cu of the

Banach space C⊙∗ along C⊙∗
s onto Ccu for our calculation of an asymptotic formula

for the right-hand side of ODE (4.19). For this purpose, observe that Pcu = Pc+Pu
and that by Chapter IV in Diekmann et al. [6] we have in analogy to the projection

Pc calculated in (4.16)

Puϕ =
1

1 − a e−κ

(
ϕ(0) +

∫ 1

0

dζ(ϑ)

∫ ϑ

0

e−κσϕ(σ − ϑ) dσ

)
ηκ

=
1

1 − a e−κ

(
ϕ(0) − a

∫ 1

0

e−κσϕ(σ − 1) dσ

)
ηκ

for all ϕ ∈ C. Combining this with Equation (4.17), we conclude

(P⊙∗
cu ◦ l)(c) = (P⊙∗

c ◦ l)(c) + (P⊙∗
u ◦ l)(c)

=
c

1 − a
η0 +

c

1 − a e−κ
ηκ.

for c ∈ R and hence, in view of equivalence of norm on finite dimensional spaces

Qcu(y1η0 + y2 ηκ) =
(
Γcu ◦ P

⊙∗
cu ◦ l

)(
g(y1 η0 + y2 ηκ + wcu(y1 η0 + y2 ηκ))

)

=
(
Γcu ◦ P

⊙∗
cu ◦ l

)(
− |y1 + y2|(y1 + y2) + o((|y1| + |y2|)

2)
)

= Γcu

((
− 1

1−a |y1 + y2|(y1 + y2) + o
(
(|y1| + |y2|)

2
))
η0

+
(
− 1

1−a e−κ |y1 + y2|(y1 + y2) + o
(
(|y1| + |y2|)

2
))
ηκ

)

=

(
1

a−1 |y1 + y2|(y1 + y2) + o((|y1| + |y2|)
2)

1
a e−κ−1 |y1 + y2|(y1 + y2) + o

(
(|y1| + |y2|)2

)

)

as y1, y2 → 0. Consequently, the reduction (4.19) of F on Wcu has the asymptotical

behavior

(4.20)






ẏ1(t) =
1

a− 1
|y1(t) + y2(t)|(y1(t) + y2(t)) + o

(
(|y1(t)| + |y2(t)|)

2
)

ẏ2(t) = κ y2(t) +
1

a e−κ − 1
|y1(t) + y2(t)|(y1(t) + y2(t))

+ o
(
(|y1(t)| + |y2(t)|)

2
)

in the close vicinity of the trivial solution (0, 0) ∈ R2, which corresponds to the

stationary point ϕ0 = 0 of F .
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The Local Flow on Wcu at the Trivial Solution. After having derived the

reduced differential equation (4.19) and the associated asymptotic expansion (4.20)

for the dynamics on Wcu, our next goal is to establish a repellent behavior of the

trivial solution for F in a sufficiently small neighborhood in Wcu. For this, consider

the following observation concerning the vector field induced by the right-hand side

of Equation (4.20).

Corollary 4.20. Suppose that the functions f1, f2 : U −→ R, defined on some

open neighborhood U ⊂ R2 of (0, 0) ∈ R2, are continuous and satisfy

f1(y1, y2) =
1

a− 1
|y1 + y2| (y1 + y2) + o

(
(|y1| + |y2|)

2
)

and

f2(y1, y2) = κ y2 +
1

a e−κ − 1
|y1 + y2| (y1 + y2) + o

(
(|y1| + |y2|)

2
)

as (y1, y2) → (0, 0), and let S1 denote the unit circle. Then there is a constant

̺0 > 0 such that

(4.21) R(y1, y2; s) := f1(s y1, s y2) y1 + f2(s y1, s y2) y2 > 0

for all (y1, y2) ∈ S1 and all 0 < s ≤ ̺0.

Proof. The main idea of the proof is to estimate the value R(y1, y2; s) for

(y1, y2) ∈ S1 and s ∈ (0,∞) with (s y1, s y2) ∈ U in two different ways as s → 0.

As U is an open neighborhood of 0 ∈ R2 it is clear that we find a constant ̺ > 0

such that for all (y1, y2) ∈ S1 and 0 ≤ s ≤ ̺ we have (s y1, s y2) ∈ U . Throughout

the proof, we write

G(y1, y2; s) := R(y1, y2; s) −
s2

a− 1
|y1 + y2| y

2
1 −

s2

a− 1
|y1 + y2| y1 y2

− κ s y2
2 −

s2

a e−κ − 1
|y1 + y2| y1 y2 −

s2

a e−κ − 1
|y1 + y2| y

2
2

for all (y1, y2) ∈ S1 and reals 0 ≤ s ≤ ̺. Note that we have the asymptotic behavior

G(y1, y2; s) = o(s2) as [0, ̺) ∋ s→ 0 uniform for all (y1, y2) ∈ S1.

1. The first estimate of the values of R is based on the simple observation that

R(y1, y2; s) ≥
s2

a− 1
|y1 + y2| y

2
1 + s2 |y1 + y2|

(
y1 y2
a− 1

+
y1 y2 + y2

2

a e−κ − 1

)
+G(y1, y2; s)

for all (y1, y2) ∈ S1 and 0 ≤ s ≤ ̺. Define

p1 : S1 ∋ (y1, y2) 7−→
1

a− 1
y1 y2 +

1

a e−κ − 1

(
y1 y2 + y2

2

)
∈ R.

Then the inequality

|p1(y1, y2)| ≤

∣∣∣∣
1

a− 1
+

1

a e−κ − 1

∣∣∣∣ |y1 y2| +
∣∣∣∣

1

a e−κ − 1

∣∣∣∣ y
2
2

≤

∣∣∣∣
1

a− 1
+

1

a e−κ − 1

∣∣∣∣ |y2|
√

1 − y2
2 +

∣∣∣∣
1

a e−κ − 1

∣∣∣∣ y
2
2

yields the existence of a constant 0 < ε1 < 1 such that

|p1(y1, y2)| <
1

2 (a− 1)
(1 − y2

2) =
1

2 (a− 1)
y2
1
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for all (y1, y2) ∈ S1 with −2 ε1 < y2 < 2 ε1. Thereby, we can certainly assume

1

2 (a− 1)

(√
1 − 4 ε21 − 2 ε1

)(
1 − 4 ε21

)
> 0.

As G(y1, y2; s) = o(s2) as [0, ̺) ∋ s → 0, there also is a sufficiently small constant

0 < ε2 < min{1, ̺} such that for all (y1, y2) ∈ S1 with y2 ∈ (−2 ε1, 2 ε1) and all

reals 0 < s < ε2

|G(y1, y2; s)| <
s2

2 (a− 1)

(√
1 − 4 ε21 − 2 ε1

)(
1 − 4 ε21

)

<
s2

2 (a− 1)
||y1| − |y2|| y

2
1

≤
s2

2 (a− 1)
|y1 + y2| y

2
1 .

Combining the above inequalities for R and for the absolute values of p1 and G

gives

R(y1, y2; s) ≥
s2

a− 1
|y1 + y2| y

2
1 + s2 |y1 + y2|

(
y1 y2
a− 1

+
y1 y2 + y2

2

a e−κ − 1

)
+G(y1, y2; s)

≥
s2

a− 1
|y1 + y2| y

2
1 − s2 |y1 + y2| |p1(y1, y2)| +G(y1, y2; s)

>
s2

a− 1
|y1 + y2| y

2
1 − s2 |y1 + y2||p1(y1, y2)| −

s2

2 (a− 1)
|y1 + y2| y

2
1

>
s2

a− 1
|y1 + y2| y

2
1 −

s2

2 (a− 1)
|y1 + y2| y

2
1 −

s2

2 (a− 1)
|y1 + y2| y

2
1

= 0

for all (y1, y2) ∈ S1 with |y2| < 2 ε1 and 0 < s < ε2.

2. On the other hand, note that the real-valued function

p2 : R
2 ∋ (y1, y2) 7−→

1

a− 1
|y1 + y2| y

2
1 +

1

a− 1
|y1 + y2| y1 y2

+
1

a e−κ − 1
|y1 + y2| y1 y2 +

1

a e−κ − 1
|y1 + y2|y

2
2 ∈ R

is continuous and thus takes a minimum m ∈ R on the compact set S1. This shows

R(y1, y2; s) = s κ y2
2 + s2 p2(y1, y2) +G(y1, y2; s) ≥ s κ y2

2 + s2m+G(y1, y2; s)

for all (y1, y2) ∈ S1 as 0 ≤ s < ̺. Next, in view of κ > 0 we find a sufficiently small

real 0 < ε3 < min{1, ̺} with

1

2
κ ε21 + sm > 0

as 0 < s < ε3. Additionally, as G(y1, y2; s) = o(s2) for [0, ̺) ∋ s → 0, there is also

a constant 0 < ε4 < ̺ such that for all (y1, y2) ∈ S1 and 0 < s < ε4

|G(y1, y2; s)| <
κε21
2

s2.
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Consequently, using the last three inequalities, we conclude that for all (y1, y2) ∈ S1

with |y2| ≥ ε1 and for all 0 < s < min{ε3, ε4}

R(y1, y2; s) ≥ s κ y2
2 + s2m+G(y1, y2; s)

> sκ y2
2 + s2m−

κ ε21
2

s2

≥ s κ y2
2 + s2m−

κ y2
2

2
s2

≥
1

2
s κ ε21 + s2m

> 0.

3. Choosing 0 < ̺0 < min{ε2, ε3, ε4} and applying the last two steps implies

R(y1, y2; s) > 0

for all (y1, y2) ∈ S1 and 0 < s ≤ ̺0 and this is precisely the assertion of the

proposition. �

The last corollary gains in interest if we additionally assume that the functions

f1, f2 are locally Lipschitz continuous and consider the autonomous ODE

(4.22)

{
ẏ1(t) = f1(y1(t), y2(t))

ẏ2(t) = f2(y1(t), y2(t))

defined by f1, f2. Under these assumptions each initial data in U admits a uniquely

determined solution of the above ODE in U . Now the continuous map

(4.23) L : R
2 ∋ (y1, y2) 7−→

1

2

(
y2
1 + y2

2

)
∈ R

is positive definite, that is, L(0, 0) = 0 and L(y1, y2) > 0 for all (y1, y2) 6= (0, 0), and

the last result yields that L is strictly increasing along non-trivial solutions of (4.22).

From this we conclude not only the instability but also the repellent behavior of

the trivial solution of Equation (4.22) in sufficiently small neighborhoods.

Proposition 4.21. Suppose that in addition to the assumptions of Corollary

4.20 the functions f1, f2 are both locally Lipschitz continuous. Then there exists an

open neighborhood V ⊂ U of (0, 0) ∈ R2 such that for any non-trivial initial value

u ∈ V there is a solution y : (−∞, t+(u)) → R2, t+(u) > 0, of Equation (4.22)

with y(0) = u, y(t) ∈ V for all t ≤ 0, y(t) → 0 as t→ −∞, and y(t) 6∈ V for some

0 < s < t+(u).

Proof. As the functions f1, f2 : U 7−→ R are locally Lipschitz continuous,

the induced map U ∋ y 7−→ (f1(y), f2(y)) ∈ R2 is locally Lipschitz continuous

too. Therefore, it is clear that for every u ∈ U there exists a maximal solution

y : (t−(u), t+(u)) −→ R2, t−(u) < 0 < t+(u), of Equation (4.22) with initial value

u at t = 0. Further, applying the last result, we find a sufficiently small open ball

B̺0(0), ̺0 > 0, around the origin in R2 with R(u/‖u‖2; ‖u‖2) > 0 for all u in the

closure B̺0(0) of B̺0(0), where R is defined by Equation (4.21) and ‖ · ‖2 denotes

the Euclidean norm.

Set V := B̺(0) for a fixed 0 < ̺ < ̺0 and suppose y : (t−(u), t+(u)) −→ R2,

t−(u) < 0 < t+(u), is a maximal solution of Equation (4.22) with y(0) = u ∈ V \{0}.

We have

(4.24)
d

dt
L(y(t)) = ‖y(t)‖2 · R

(
y(t)/‖y(t)‖2; ‖y(t)‖2

)
> 0
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as long as y(t) ∈ B̺0(0). This gives 0 < L(u) ≤ L(y(t)) and hence

0 < ‖u‖2 ≤ ‖y(t)‖2

for all 0 ≤ t < t+(u) with y(t) ∈ B̺0(0). Define

m := min
{
d
dt

L(y(t))
∣∣ y(t) ∈ B̺0(0) andL(y(t)) ≥ L(u) with 0 ≤ t < t+(u)

}
.

Then m exists and is positive since the norm of the considered values y(t) as well as

the continuous function R on the compact set B̺0(0) \B‖u‖2
(0) are both bounded

from below by a positive constant. As ‖y(t)‖2 ≥ ‖u‖2 for all 0 ≤ t < t+(u) with

y(t) ∈ B̺0(0) we conclude

L(y(t)) = L(u) +

∫ t

0

d
ds

L(y(s)) ds ≥ L(u) +mt

as long as 0 ≤ t < t+(u) and y(t) stays in B̺0(0). Assume now that solution y would

not reach the boundary ∂B̺(0) as 0 < t < t+(u). From the continuation results for

solutions of ODEs as presented in Hale [8, Chapter I.2] we would obtain t+(u) = ∞

since y is a maximal solution. Hence, the above inequality for L would be valid for

all t ≥ 0 and therefore the value of L(y(t)) would become arbitrarily large. But on

the other hand, the function L is bounded from above on B̺0(0), in contradiction

to the previous inequality. Consequently, the non-continuable solution y reaches

the boundary ∂B̺(0) in finite time and hence necessarily leaves the neighborhood

V for some 0 < t < t+(u).

For the the remaining part of the assertion, observe that Equation (4.24) also

implies 0 < L(y(t)) ≤ L(u) for t−(u) < t ≤ 0. Therefore, the non-continuable

solution y stays bounded by ‖u‖2 > 0 for t ≤ 0 and thus does not reach the

boundary of V . In particular, we have y(t) ∈ V for all t−(u) < t ≤ u. Moreover,

using the continuation results for solutions of ODEs, we get t−(u) = −∞. We

shall have established the proposition if we additionally prove that for any given

0 < ε < ‖u‖2 there is a Tε ∈ (−∞, 0] with ‖y(t)‖2 < ε for all t ≤ Tε. To obtain

this, fix for given constant 0 < ε < min{1, ‖u‖2} a constant

0 < mε < min
{
‖w‖2 · R

(
w/‖w‖2; ‖w‖2

) ∣∣∣w ∈W
}

where W := {w ∈ R2 | ε/2 ≤ ‖w‖2 ≤ ‖u‖2}. If ‖y(s)‖2 < ε for some s ≤ 0, then

in view of Equation (4.24) we have ‖y(t)‖2 < ε for all t ≤ Tε with Tε := s. Now

assume there is no such a constant s < 0. Then we would have y(t) ∈ W and

L(u) − L(y(t)) =

∫ 0

t

d
ds̃

L(y(s̃)) ds̃ ≥ −mε t,

that is,

L(y(t)) ≤ L(u) +mε t,

for all t ≤ 0. But this is impossible, because the continuous and positive definite

function L takes a positive minimum mL > 0 on the compact set W and for all

t < (mL − L(u))/mε ≤ 0 we would obtain

L(y(t)) ≤ L(u) +mε t < L(u) +mε

mL − L(u)

mε

= mL.

Hence, the assumption that there does not exist some s < 0 with ‖y(s)‖2 < ε results

in a contradiction. Consequently, it follows that we find Tε ≤ 0 with ‖y(t)‖2 < ε

for all t ≤ Tε, and this completes the proof. �



116 4. SOME ASPECTS OF THE LOCAL BEHAVIOR AT THE TRIVIAL SOLUTION

Obviously, in consideration of the asymptotic formula (4.20) the above result

also applies to the ODE (4.19) and consequently shows that the trivial solution

ϕ0 = 0 of the model equation (4.1) has a repelling behavior in the local center-

unstable manifold Wcu in the sense of Proposition 4.21. This fact will be crucial in

the next chapter.

Another important point in the last part of this work will follow from our next

proposition stating that a solution of the ODE (4.22), which converges to the origin

as t → −∞, does so tangentially to an axis of the Cartesian coordinate system of

the Euclidean plane.

Proposition 4.22. Suppose that the right-hand side of Equation (4.22) is lo-

cally Lipschitz continuous and satisfies the hypothesis of Corollary 4.20, and as-

sume y : (−∞, t+) −→ R2, t+ > 0, is a non-trivial solution of Equation (4.22) with

y(t) → 0 as t → −∞. Let e1 := (1, 0)T , e2 := (0, 1)T denote the canonical basis

vectors of the Euclidean space R2. Then

dist‖ · ‖2

(
‖y(t)‖−1

2 y(t), {e1,−e1}
)
→ 0

or

dist‖ · ‖2

(
‖y(t)‖−1

2 y(t), {e2,−e2}
)
→ 0

as t→ −∞.

Proof. The proof of the assertion will be divided into two steps. At first we

show that

lim
t→−∞

1

‖y(t)‖2
y(t)

indeed exists, followed by the conclusion that this limit or its negative coincides

with one of the canonical basis vectors of the Euclidean plane.

1. In order to see the existence of the limit above, we start with the observation

that there is a sufficiently small K ≤ 0 such that the restriction of the solution y

to (−∞,K] does not oscillate around (0, 0) ∈ R2. More precisely, we claim the

existence of a constant K ≤ 0 and the existence of some point ϕ of the unit circle

S1 with the property
1

‖y(t)‖2
y(t) 6= ϕ

for all t ≤ K. To see this claim, consider for a given ϕ1 ∈ S1 with components

ϕ11, ϕ12 > 0 and a given ϕ2 ∈ S1 with ϕ21 < 0 < ϕ22 the lines

Gϕ1 : [0,∞) ∋ s 7−→ s ϕ1 ∈ R
2

and

Gϕ2 : [0,∞) ∋ s 7−→ s ϕ2 ∈ R
2,

and the associated perpendicular vectors ψ1 := (−ϕ12, ϕ11) and ψ2 := (ϕ22,−ϕ21),

respectively. For these fixed point ϕ1, ϕ2 ∈ S1 we have

f1(Gϕ1(s))ψ11 + f2(Gϕ1(s))ψ12 = −
s2

a− 1
|ϕ11 + ϕ12| (ϕ11 + ϕ12)ϕ12 + s κϕ12 ϕ11

+
s2

a e−κ − 1
|ϕ11 + ϕ12| (ϕ11 + ϕ12)ϕ11 + o(s2)

= s κϕ12 ϕ11 + o(s)
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and

f1(Gϕ2(s))ψ21 + f2(Gϕ2(s))ψ22 =
s2

a− 1
|ϕ21 + ϕ22| (ϕ21 + ϕ22)ϕ22 − κ sϕ22 ϕ21

−
s2

a e−κ − 1
|ϕ21 + ϕ22| (ϕ21 + ϕ22)ϕ21 + o(s2)

= −s κϕ22 ϕ21 + o(s)

as s→ 0. Consequently, as ϕ11, ϕ12, ϕ22 > 0 and ϕ21 < 0, we obtain

f1(Gϕ1(s))ψ11 + f2(Gϕ1(s))ψ12 > 0

and

f1(Gϕ2(s))ψ21 + f2(Gϕ2(s))ψ22 > 0

for all sufficiently small s > 0. This implies that in the situation of increasing t,

the solution y may cross both lines Gϕ1 ,Gϕ2 in close vicinity of (0, 0) ∈ R2 only

from bottom to top as sketched in Figure 4.4. But since y(t) → 0 as t→ −∞, this

clearly yields the existence of a constant K ≤ 0 such that y is not oscillating around

b ϕ1

b

ϕ2

Gϕ1

Gϕ2

b
ψ1

b

ψ2

y1

y2

Figure 4.4. Scheme illustrating that non-trivial solutions of

Equation (4.22) may cross the lines Gϕ1 , Gϕ2 near (0, 0) ∈ R
2 only

in one way, namely, from lower to upper side

(0, 0) ∈ R2 for −∞ < t ≤ K, as claimed. In particular, the former arguments show

that there is no sequence {tk}k∈N ⊂ (−∞, 0] with tk → −∞ as k → ∞ such that

ϕ1 or ϕ2 is an accumulation point of the sequence {y(tk)/‖y(tk)‖2}k∈N.

Now, in the same manner as above, we can also see that in case of points

ϕ3, ϕ4 ∈ S1 with coordinates ϕ31, ϕ32 < 0 and ϕ41 > 0 > ϕ42, respectively, and the

associated lines

Gϕ3 : [0,∞) ∋ s 7−→ s ϕ3 ∈ R
2

and

Gϕ4 : [0,∞) ∋ s 7−→ s ϕ4 ∈ R
2,
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we have

Gϕ3(s)ψ31 + Gϕ3(s)ψ32 > 0

and

Gϕ4(s)ψ41 + Gϕ4(s)ψ42 > 0

for the two vectors ψ3 := (−ϕ32, ϕ31), ψ4 := (ϕ42,−ϕ41) and all sufficiently small

s > 0. Hence, it follows that near (0, 0) ∈ R
2 the solution y may cross any of the

lines Gϕi
, i = 1, . . . , 4, only in the way as indicated in Figure 4.5. Particularly, we

conclude that there does not exist a sequence {tk}k∈N ⊂ (−∞, 0] with tk → −∞ as

k → ∞ such that any of the points {ϕi | i = 1, 2, 3, 4} is an accumulation point of

{y(tk)/‖y(tk)‖2}k∈N.

The above gives now a simple argument for the existence of the limit

lim
t→−∞

ξ(t)

where ξ(t) := y(t)/‖y(t)‖2, −∞ < t ≤ t+. Namely, consider an arbitrary sequence

b ϕ1

b

ϕ2

b

Gϕ4

Gϕ3

ϕ3

ϕ4

b

Gϕ1

Gϕ2

b

ψ3

b ψ4

b
ψ1

b
ψ2

y1

y2

Figure 4.5. Indication of possible cross-directions of a non-trivial

solution for Equation (4.22) along lines near the origin (0, 0) ∈ R2

{tk}k∈N ⊂ (−∞, t+) with tk → −∞ as k → ∞. Since S1 is compact and ξ(tk) ∈ S1

for all k ∈ N, there clearly is at least one accumulation point ξ∗ ∈ S1 of {ξ(tk)}k∈N.

But this is also the only such point of the sequence {ξ(tk)}k∈N. Indeed, assume we

would find another accumulation point ξ∗∗ ∈ S1 \ {ξ∗}. Then there would exists a

line Gϕ : [0,∞) ∋ s 7−→ s ϕ ∈ R
2 for a point ϕ ∈ S1 with components ϕ1, ϕ2 6= 0

and a sequence {t̃k}k∈N ⊂ (−∞, 0] with t̃k → −∞ as k → ∞ such that ϕ would be

an accumulation point of {ξ(t̃k)}k∈N. But the existence of such a line and such a

sequence would contradict the above conclusions. Hence, limk→∞ ξ(tk) = ξ∗. By

the same method, we see that in case of another sequence {sk}k∈N ⊂ (−∞, t+] with

sk → −∞ as k → ∞ we have again limk→−∞ y(sk) = ξ∗, because otherwise we

might construct a sequence with two different accumulation points. This finally

shows the existence of limt→−∞ ξ(t).
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2. Consider ξ∗ = limt→−∞ ξ(t) with ξ(t) = y(t)/‖y(t)‖2, −∞ < t < t+, and

suppose ξ∗ 6= ±(1, 0)T , that is,

lim
t→−∞

y2(t)

‖y(t)‖2
6= 0.

Then we claim that

lim
t→−∞

y1(t)

y2(t)
= 0.

In order to see this, observe that we have y1(t), y2(t) → 0 due to ‖y(t)‖2 → 0 as

t→ −∞ and thus by application of l’Hospital’s rule

lim
t→−∞

y1(t)

y2(t)
= lim
t→−∞

ẏ1(t)

ẏ2(t)

= lim
t→−∞

f1(y1(t), y2(t))

f2(y1(t), y2(t))

= lim
t→−∞

(
f1(y1(t), y2(t))

‖y(t)‖2

‖y(t)‖2

f2(y1(t), y2(t))

)

whenever the last limit exists. But this is indeed the case since

lim
t→−∞

f1(y1(t), y2(t))

‖y(t)‖2
= lim

t→−∞

(
1

a− 1
|y1(t) + y2(t)|

(
y1(t)

‖y(t)‖2
+

y2(t)

‖y2(t)‖2

))

+ lim
t→−∞

1

‖y(t)‖2
o((|y1(t)| + |y2(t)|)

2)

= 0

and

lim
t→−∞

f2(y1(t), y2(t))

‖y(t)‖2
= lim

t→−∞

(
1

a e−κ − 1
|y1(t) + y2(t)|

(
y1(t)

‖y(t)‖2
+

y2(t)

‖y(t)‖2

))

+ lim
t→−∞

1

‖y(t)‖2

(
κ y2(t) + o((|y1(t)| + |y2(t)|)

2)
)

= lim
t→−∞

κ
y2(t)

‖y(t)‖2
.

Consequently, the claimed formula

lim
t→−∞

y1(t)

y2(t)
= 0

follows.

The rest of the proof is now trivial in view of the limit above, because we see

at once

ξ∗1 = lim
t→−∞

y1(t)

‖y(t)‖2
= lim

t→−∞

y1(t)

y2(t)

y2(t)

‖y(t)‖2
= lim
t→−∞

y1(t)

y2(t)
lim

t→−∞

y2(t)

‖y(t)‖2
= 0.

But ξ∗ ∈ S1 and thus we necessarily have |ξ∗2 | = 1, which is the desired conclusion.

�

The foregoing proposition suggests that solutions of Equation (4.1) in Wcu
tending to zero as t→ −∞ do so either tangentially to the center or to the unstable

direction. This is indeed the case and will play a decisive role.

Corollary 4.23. Suppose x : (−∞, t+) −→ R, t+ > 0, is a solution of

Equation (4.1) with xt ∈ Wcu for t ≤ 0 and x(t) → 0 as t → −∞. Then we have

either

dist‖ · ‖C1

(
‖xt‖

−1
C1 xt,

{
‖η0‖

−1
C1 η0, −‖η0‖

−1
C1 η0

})
→ 0
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or

dist‖ · ‖C1

(
‖xt‖

−1
C1 xt,

{
‖ηκ‖

−1
C1 ηκ, −‖ηκ‖

−1
C1 ηκ

})
→ 0

as t→ −∞.

Proof. By assumption, we have xt = Pcu xt+wcu(Pcu xt) for t ≤ 0 and hence,

according to Section 6 in Chapter 2, there is a continuously differentiable function

y : (−∞, 0] −→ R2 with Pcu xt = y1(t) η0 + y2(t) ηκ which forms a solution of

Equation (4.19). Moreover, from xt → 0 for t → −∞ we see at once y(t) → 0 as

t→ −∞, and thus the last proposition implies that either

dist‖ · ‖2

(
‖y(t)‖−1

2 y(t),
{
e1,−e1

})
→ 0

or

dist‖ · ‖2

(
‖y(t)‖−1

2 y(t),
{
e2,−e2

})
→ 0

for t→ −∞.

To begin with, consider the first situation, that is, y1(t)/‖y(t)‖2 → ±1 and

y2(t)/‖y(t)‖2 → 0 as t → ∞. Then there is a constant T ≤ 0 with y1(t) 6= 0 for

all −∞ < t ≤ T and we have y2(t)/y1(t) → 0 as t→ −∞. Now wcu is C1-smooth,

implying

xt = y1(t) η0 + y2(t) ηκ + wcu
(
y1(t) η0 + y2(t) ηκ

)

= y1(t) η0 + y2(t) ηκ +

∫ 1

0

Dwcu
(
s y1(t) η0 + s y2(t) ηκ

) (
y1(t) η0 + y2(t) ηκ

)
ds

= y1(t)

(
η0 + y2(t)

y1(t)
ηκ +

∫ 1

0

Dwcu
(
s y1(t) η0 + s y2(t) ηκ

) (
η0 + y2(t)

y1(t)
ηκ

)
ds

)

= y1(t)
(
η0 + ξ(t)

)

for all −∞ < t ≤ T , where

ξ(t) :=
y2(t)

y1(t)
ηκ +

∫ 1

0

Dwcu
(
s y1(t) η0 + s y2(t) ηκ

)(
η0 + y2(t)

y1(t) ηκ

)
ds.

Furthermore, since we have Dwcu(0) = 0, limt→−∞ ξ(t) = 0 and thus we get

1

‖xt‖C1

xt −
y1(T )

|y1(T )|‖η0‖C1

η0 = ±

(
1

‖η0 + ξ(t)‖C1

[
η0 + ξ(t)

]
−

1

‖η0‖C1

η0

)

= ±

(
1

‖η0 + ξ(t)‖C1

−
1

‖η0‖C1

)
η0

±
1

‖η0 + ξ(t)‖C1

ξ(t)

→ 0

as t→ −∞, which is the desired conclusion.

In the case y1(t)/‖y1(t)‖2 → 0 and y2(t)/‖y2(t)‖2 → ±1 for t → −∞, one

finds a constant T ≤ 0 with y2(t) 6= 0 for −∞ < t ≤ T and immediately sees

y1(t)/y2(t) → 0 as t→ −∞. A computation similar to the above leads to

1

‖xt‖C1

xt −
y2(T )

|y2(T )|‖ηκ‖C1

ηκ → 0

for t→ −∞, which finally completes the proof. �



CHAPTER 5

Dynamics on the Center-Unstable Manifolds

1. Introduction

In this final chapter of the second part we establish our main result for the

model equation

ẋ(t) = a
[
x(t) − x(t− r)

]
− |x(t)|x(t)

with a state-dependent delay r = r(x(t)) > 0 and parameter a > 0, which asserts

the existence of a periodic orbit for a > 1. This orbit will be given by a slowly

oscillating solution p : R −→ [2a, 2a] and its minimal period by three consecutive

zeros of p. In the situation of the constant-delay r ≡ 1, that is, in case of Equation

(3.2), the above assertion was proved by Brunovský et al. in [3], and we generalize

this statement under certain conditions to the situation with a state-dependent

delay.

Overall, our discussion below follows the proceedings in Brunovský et al. [3],

and partially we arrive at analogous conclusions, but, due to the presence of a

state-dependent delay, we use different techniques on several occasions, following

once more the ideas in Krisztin and Arino [17]. For example, in the course of

our analysis we will repeatedly make use of the Lyapunov functional introduced

in Chapter 3, whereas the periodic solutions in [3] are constructed without such a

counting tool for the zeros of solutions. However, the final result on the existence

of a periodic solution for the above DDE for a > 1 will be completely the same as

in case of Equation (3.2).

From now on and until the end of this chapter, we make the standing as-

sumption that a > 1. Then, by Corollary 4.18, we see the existence of a local

center-unstable manifold

Wcu = {ψ + wcu(ψ)|ψ ∈ Ccu,0} ⊂ Xf

of the model equation above, or more precisely, of its abstract representation (4.1),

at the stationary point ϕ0 = 0. Additionally, our consideration of the model so far

immediately implies that the strip

X2a
f :=

{
ϕ ∈ Xf | ‖ϕ‖C < 2a

}

of the solution manifold Xf is non-empty, positively invariant for the semiflow

F in view of Proposition 3.6 and t+(ϕ) = ∞ for all ϕ ∈ X2a
f . Furthermore,

combining the above with Proposition 4.21 and Corollary 4.23 in the preceding

chapter straightforwardly leads to the following repellent behavior of the trivial

solution in Wcu ∩X2a
f .

Corollary 5.1. There is a neighborhood N cu of 0 in Wcu ∩ X2a
f with the

following properties:

121
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(i) For each non-trivial ϕ ∈ N cu there is a uniquely determined solution

xϕ : R −→ R of Equation (4.1) satisfying xϕt ∈ N cu as t ≤ 0, xϕ(t) → 0

as t→ −∞ and xϕs 6∈ N cu for some s > 0.

(ii) If ϕ ∈ N cu and ϕ 6= 0, then either

distC1

(
xϕt

‖xϕt ‖C1

,

{
η0

‖η0‖C1

,
−η0

‖η0‖C1

})
→ 0

or

distC1

(
xϕt

‖xϕt ‖C1

,

{
ηκ

‖ηκ‖C1

,
−ηκ

‖ηκ‖C1

})
→ 0

as t→ −∞.

Now the main idea for the construction of a periodic solution for Equation (4.1)

is to study the forward extension

(5.1) W := F ([0,∞) ×N cu)

of the neighborhood N cu of ϕ0 = 0 from the above corollary and its closure W .

The remaining part of this chapter is structured as follows. In the next section

we show the invariance of W under the semiflow F and the slowly oscillating beha-

vior of the non-trivial solutions in W . Using these facts, in Section 3 we prove that

solutions in W \ {0} are indeed oscillating in the sense that they have infinitely

many zeros. From this, we finally conclude our main result which in particular

asserts that W \W is a slowly oscillating periodic orbit of the model equation.

2. The Slowly Oscillating Behavior of Solutions

Our study of the set W begins with the simple observation that W belongs to

X2a
f ∩ La with La given by (3.7) and is invariant for the semiflow F .

Corollary 5.2. The set W is contained in X2a
f ∩ La and for each ϕ ∈ W

there is a solution xϕ : R −→ (−2a, 2a) of Equation (4.1) with xϕt ∈ W for all

t ∈ R.

Proof. Given ϕ ∈ W , observe that from the definition ofW we find a function

ψ ∈ N cu and a real t0 ≥ 0 with ϕ = F (t0, ψ). By Corollary 5.1, it is clear that the

solution xϕ = xψ(t0 + · ) exists on all of R and that there is no loss of generality

in assuming t0 > 2 in view of xϕt−t0 = xψt ∈ N cu for t ≤ 0. As we also have

‖ψ‖C < 2a, Proposition 3.6 yields ‖xψt ‖C < 2a for all t ≥ 0, and we thus get

ϕ = F (t0, ψ) ∈ X2a
f .

For the conclusion that ϕ is also contained in La, it is sufficient to show the

Lipschitz continuity of ϕ with the constant Ka > 0 defined in (3.5). For this

purpose, recall from Section 2 in Chapter 3 that for all χ ∈ C with ‖χ‖C ≤ 2a

the absolute value of f(χ) is bounded by Ka. Considering arbitrary s, s̃ ∈ [0, 1]

and using the continuous differentiability of xϕ = xψ(t0 + · ) : R −→ R, we find a

constant 0 < ξ < 1 with

|ϕ(s) − ϕ(s̃)| = |xϕ(s) − xϕ(s̃)| = |ẋϕ(ξ)||s− s̃|.

From t0 + ξ > 0 we conclude xψt0+ξ ∈ X2a
f and hence

|ẋϕ(ξ)| = |ẋψt0(ξ)| = |f(xψt0+ξ)| ≤ Ka.

Consequently, ϕ is Lipschitz continuous with Lipschitz constant Ka, which yields

ϕ ∈ La as claimed.
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It remains to prove the invariance of W under F , that is, xϕt ∈ W for all t ∈ R.

To see this, let s ∈ R be given. Then, using xψ(t) → 0 as t → −∞ once more, we

find k ≤ 0 with t0 + s+ k ≤ 0 and xψt0+s+k ∈ N cu. Therefore

xϕs = xψt0+s = F (−k, xψt0+s+k) ∈W,

and the proof is complete. �

Another simple conclusion from the construction of W is the fact that W can

not contain any periodic solutions for Equation (4.1). The reason is that on the

one hand, non-trivial solutions in W without zeros converge to 0 as t → ∞ due to

Proposition 3.26, but on the other hand the zero set of a non-trivial solution in W

is bounded from below as shown next.

Corollary 5.3. If ϕ ∈W\{0} then there is a t = t(ϕ) ∈ R such that

xϕ(s) 6= 0

for all s ≤ t(ϕ).

Proof. Assuming ϕ ∈ W and ϕ 6= 0, from the definition of the set W we

find a function ψ ∈ N cu and a constant t ≥ 0 with ϕ = F (t, ψ). In particular,

xϕ = xψ(t+ · ) and ψ 6= 0. Now we have

0 <
e−κ

1 + κ
=

minϑ∈[−1,0] ηκ(ϑ)

‖ηκ‖C1

< 1 =
minϑ∈[−1,0] η0(ϑ)

‖η0‖C1

,

and part (ii) of Corollary 5.1 implies that either

distC1

(
xψs

‖xψs ‖C1

,

{
η0

‖η0‖C1

,
−η0

‖η0‖C1

})
→ 0

or

distC1

(
xψs

‖xψs ‖C1

,

{
ηκ

‖ηκ‖C1

,
−ηκ
‖ηκ‖C

})
→ 0

for s → −∞. Consequently, in view of ‖χ‖C ≤ ‖χ‖C1 for all χ ∈ C1, in any case

there is clearly a real t∗ ≤ 0 such that for all s ≤ t∗ and all −1 ≤ s̃ ≤ 0

1

2 (1 + κ) eκ
<

|xψs (s̃)|

‖xψs ‖C1

holds. Therefore we get

0 6= xψ(s) = xϕ(t+ s)

for all s ≤ t∗, and this is precisely the assertion of the corollary. �

Our next aim is to prove that all solutions of Equation (4.1) in W are slowly os-

cillating and that the difference of any two such solutions xϕ1 , xϕ2 : R −→ [−2a, 2a]

with ϕ1 6= ϕ2 has at most one sign change in [t−r(xϕ1(t)), t], t ∈ R. In preparation

for the proofs of these assertions, we will need some auxiliary results involving the

discrete Lyapunov functional V introduced in Section 3 of the last chapter. The

first one particularly yields that for solutions xϕ1 , xϕ2 : R −→ [−2a, 2a] of Equation

(4.1) with initial functions

xϕ1

0 = ϕ1 6= ϕ2 = xϕ2

0

we have

(xϕ1 − xϕ2) |[t−r(xϕ1(t)),t] 6= 0
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for all t ∈ R, such that the values

V (xϕ1 − xϕ2 , [t− r(xϕ1(t)), t])

are indeed defined.

Proposition 5.4. Let ϕ1, ϕ2 ∈ Xf with ϕ1 6= ϕ2 and ‖ϕ1‖C , ‖ϕ2‖C ≤ 2a

be given, and suppose that xϕ1 , xϕ2 : R −→ [−2a, 2a] are associated solutions of

Equation (4.1) with initial values xϕ1

0 = ϕ1, x
ϕ2

0 = ϕ2, respectively. Then

(xϕ1 − xϕ2)|[t−r(xϕ1(t)),t] 6= 0

for all t ∈ R. Moreover, under the same hypothesis, the following conditions are

equivalent.

(i) V (xϕ1 − xϕ2 , [t− r(xϕ1 (t)), t]) = 1 for all t ∈ R.

(ii) V (xϕ2 − xϕ1 , [t− r(xϕ2 (t)), t]) = 1 for all t ∈ R.

Proof. We begin with the observation that Corollary 3.13 in Section 3 of

Chapter 3 implies xϕ1

t 6= xϕ2

t and therefore

(xϕ1 − xϕ2)|[t−1,t] 6= 0

for all t ∈ R. Suppose now, contrary to our claim, that there is a t ∈ R with

(xϕ1 − xϕ2)|[t−r(xϕ1(t)),t] = 0.

Define

t0 := inf
{
s ∈ R | xϕ1(ϑ) = xϕ2(ϑ) for all s ≤ ϑ ≤ t

}
.

Then, by assumption, we have t− 1 < t0 ≤ t− r(xϕ1 (t)) and subsequently also

ẋϕ1(s) −
[
a− |xϕ1(s)|]xϕ1(s) = ẋϕ2(s) −

[
a− |xϕ2(s)|

]
xϕ2(s)

as well as

r(xϕ1 (s)) = r(xϕ2(s))

for all t0 ≤ s ≤ t. As xϕ1 , xϕ2 are both solutions of Equation (4.1) and a 6= 0, we

see that

xϕ1(s− r(xϕ1 (s))) = xϕ2(s− r(xϕ2 (s)))

as t0 ≤ s ≤ t. Consequently, the above assumption leads to the conclusion xϕ1(s) =

xϕ2(s) for all min{ϑ − r(xϕ1(ϑ))| t0 ≤ ϑ ≤ t} ≤ s ≤ t in contradiction to the

definition of t0 in view of condition (DF 2) on the delay functional. This yields

(xϕ1 − xϕ2) |[t−r(xϕ1(t)),t] 6= 0

for t ∈ R.

For the second part of the proposition, we initially note that the application of

the first part to the situation with reversed roles of ϕ1 and ϕ2 shows

(xϕ1 − xϕ2) |[t−r(xϕ2(t)),t] 6= 0

as t ∈ R. Hence, for each t ∈ R, both values V (xϕ1 − xϕ2 , [t − r(xϕ1 (t)), t]) and

V (xϕ1 − xϕ2 , [t − r(xϕ2 (t)), t]) are in fact defined, and it is sufficient to show the

implication (i) ⇒ (ii). Accordingly, assume that for all t ∈ R

V (xϕ1 − xϕ2 , [t− r(xϕ1 (t)), t]) = 1,

and consider first the case where there is a sufficiently small constant −∞ < M ≤ 0

such that xϕ1(t)− xϕ2(t) 6= 0 as −∞ < t ≤M . Then, by definition of V , we see at

once

V (xϕ1 − xϕ2 , [t− r(xϕ2(t), t]) = 1
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for all t ≤ M . Now, combining Corollary 3.11 and Proposition 3.12 yields the

applicability of Proposition 3.16 on the monotonicity of V which leads to

1 = V (xϕ1 − xϕ2 , [M − r(xϕ2 (M)),M ]) ≥ V (xϕ1 − xϕ2 , t[−r(xϕ2(t)), t]) ≥ 1

for t > M . Hence, V (xϕ1 − xϕ2 , [t− r(xϕ2 ), t]) = 1 for all t ∈ R in this case.

If there does not exist a constant M ≤ 0 such that xϕ1(t) − xϕ2(t) 6= 0 for

all reals t ≤ M , then we find a sequence {tk}k∈N with tk → −∞ as k → ∞ and

xϕ1(tk) − xϕ2(tk) = 0 for all n ∈ N. In particular, r(xϕ1 (tk)) = r(xϕ2(tk)) and

therefore

V (xϕ1 − xϕ2 , [tk − r(xϕ2(tk)), tk]) = V (xϕ1 − xϕ2 , [tk − r(xϕ1 (tk), tk]) = 1

for k ∈ N. Subsequently, for each t ∈ R there is an index k ∈ N with tk < t such

that the application of Proposition 3.16 on the monotonicity property of V results

in

1 = V (xϕ1 − xϕ2 , [tk − r(xϕ2(tk))]) ≥ V (xϕ1 − xϕ2 , [t− r(xϕ2 (t))]) ≥ 1.

This shows V (xϕ1 −xϕ2 , [t−r(xϕ2 (t)), t]) = 1 as t ∈ R and completes the proof. �

The next step towards the result that W is invariant for F and every non-trivial

solution of Equation (4.1) in W is slowly oscillating is the conclusion that solutions

in W \{0} are slowly oscillating. This will be a simple consequence of the following

proposition.

Proposition 5.5. If ϕ1, ϕ2 ∈ N cu and ϕ1 6= ϕ2 then

V (ϕ1 − ϕ2, [−r(ϕ1(0)), 0]) = 1.

Proof. As the proof is technical, we divide it into three consecutive parts.

1. Consider for given ϕ1, ϕ2 ∈ N cu with ϕ1 6= ϕ2 the associated global so-

lutions xϕ1 , xϕ2 : R −→ [−2a, 2a] of the differential equation (4.1) with the ini-

tial values xϕ1

0 = ϕ1, x
ϕ2 = ϕ2, respectively, which exists due to Corollary 5.1.

As xϕ1(t), xϕ2 (t) → 0 for t → −∞, we find a sequence {tk}k∈N ⊂ (−∞, 0] with

tk → −∞ as k → ∞, satisfying

|xϕ1(tk) − xϕ2(tk)| = sup
{
|xϕ1(tk + t) − xϕ2(tk + t)|

∣∣ t ≤ 0
}

for all k ∈ N. For every k ∈ N define the function

zk : (−∞, 0] ∋ t 7−→
xϕ1(tk + t) − xϕ2(tk + t)

|xϕ1(tk) − xϕ2(tk)|
∈ R.

Then a computation similar to the one in the proof of Proposition 3.12 shows that

for each k ∈ N the function zk satisfies the differential equation

(5.2) żk(t) = αk(t) z
k(t) − a zk(t− r(xϕ1 (tk + t)))

with αk : (−∞, 0] −→ R given by

αk(t) =a−

∫ 1

0

2 |(1 − s) · xϕ2(tk + t) + s · xϕ1(tk + t)| ds

+ a

∫ 1

0

ẋϕ2
(
(1 − s)(tk + t− r(xϕ2(tk + t))) + s(tk + t− r(xϕ1(tk + t)))

)
ds

·

∫ 1

0

r′
(
(1 − s) · xϕ1(tk + t) + s · xϕ2(tk + t)

)
ds
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for k ∈ N. Using xϕ1(t), xϕ2(t) → 0 as t → −∞, we also see at once αk(t) → a

and r(xϕ1 (tk + t)) → 1 uniformly on (−∞, 0] for k → ∞.

2. Next we claim that there is a subsequence {zkl}l∈N of {zk}k∈N and a con-

tinuously differentiable function z : (−∞, 0] −→ R such that zkl → z uniformly on

compact subsets of (−∞, 0] as l → ∞ and additionally, z satisfies the differential

equation

ż(t) = a
[
z(t) − z(t− 1)]

on (−∞, 0] and its segments the inequality

‖zt‖C ≤ |z(0)| = 1

for all t ≤ 0.

To verify the above claim, we start with the simple observation that the se-

quence {zk}k∈N of real-valued functions with domain (−∞, 0] obtained in the first

part is equicontinuous and equibounded. Indeed, by definition, we have |zk(t)| ≤ 1

for all k ∈ N and t ≤ 0 and from the differential equations (5.2) we moreover con-

clude the existence of a real K̂ > 0 satisfying |żk(t)| ≤ K̂ as k ∈ N and t ≤ 0. Thus,

for each T < 0, the sequence {zk|[T,0]}k∈N is relatively compact as a subset of the

Banach space C([T, 0],R) due to the Arzelà-Ascoli theorem. We proceed with a

diagonalization process with respect to T < 0.

Fix T < 0 and define the function sequence {vk}k∈N by vk := zk, k ∈ N. As

{vk|[T,0]}k∈N is relatively compact in C([T, 0], [−1, 1]) by the above, we find a sub-

sequence {vkl |[T,0]}l∈N of {vk|[T,0]}k∈N and a function w1 ∈ C([T, 0], [−1, 1]) with

vkl(t) → w1(t) uniformly on [T, 0] as l → ∞. Define u1 := vk1 . For the next step, set

vl := vkl as l ∈ N, to simplify notation. As the sequence {vl|[2T,0]}l∈N is relatively

compact in the function space C([2T, 0], [−1, 1]), we conclude, completely analogous

to our first step, the existence of a subsequence {vlm |[2T,0]}m∈N of {vl|[2T,0]}l∈N and

a continuous function w2 ∈ C([2T, 0], [−1, 1]) with vlm(t) → w2(t) uniformly on

[2T, 0] as l → ∞. Clearly, we have w2|[T,0] = w1. Define u2 := vl2 . By induction,

we find a subsequence {uk}k∈N of the original sequence {vk}k∈N and a continuous

function w ∈ C((−∞, 0], [−1, 1]) with the property uk → w(t) as k → ∞, where

the convergence is uniform in t on each compact subset of (−∞, 0].

Combining the above with the differential equations (5.2) for uk, we see that w

is also continuously differentiable and that the sequence {u̇k}k∈N of the derivatives

of functions uk, k ∈ N, converges uniformly to ẇ on compact subsets of (−∞, 0] as

k → ∞. Furthermore, w satisfies the limit differential equation

ẇ(t) = a
[
w(t) − w(t− 1)]

since αk(t) → a and r(xϕ1 (tk)) → 1 for k → ∞. As we obviously also have

|w(0)| = 1 and ‖wt‖C ≤ 1 for t ≤ 0, the choice zkl = ul, l ∈ N, and z = w proves

our claim.

3. Consider the function z : (−∞, 0] −→ R obtained in the last step. From

Corollary 4.4 and the subsequent comment, we see that there are α, β ∈ R with

z(t) = α+β eκt, t ≤ 0. Moreover, (α, β) 6= (0, 0) since z(0) 6= 0. Accordingly, using

Corollary 4.5 we get V (z, [t−1, t]) = 1 and z|[t−1,t] ∈ H[t−1,t] for all t ≤ 0 and thus,

part (iii) of Proposition 3.15 yields the existence of N̂ ∈ N implying

V (zkl , [−r(xϕ1(tkl
)), 0]) = V (z, [−1, 0]) = 1
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for all l ≥ N̂ . Next, by Proposition 3.12, we find bounded continuous functions

ũ, α̃ : R −→ R with α̃(t) < 0 such that v : R −→ R defined by

v(t) :=
(
xϕ1(t) − xϕ2(t)

)
· exp



−

t∫

0

ũ(s)ds





satisfies the differential equation

v̇(t) = α̃(t) v(t− r(xϕ1 (t))).

Using Proposition 3.16, we finally get

1 ≤ V (ϕ1 − ϕ2, [−r(ϕ1(0)), 0])

= V (v, [−r(ϕ1(0)), 0])

≤ V (v, [tkl
− r(ϕ1(tkl

)), tkl
])

= V (xϕ1(tkl
+ · ) − xϕ2(tkl

+ · ), [−r(xϕ1 (tkl
)), 0])

= V (zkl , [−r(xϕ1(tkl
)), 0])

= V (z, [−1, 0]) = 1

for all sufficiently large k ∈ N, which establishes the asserted formula. �

As already mentioned, a simple consequence of the last proposition is the fact

that all non-trivial solutions of the model equation in W are slowly oscillating,

which is part of the corollary below.

Corollary 5.6. Suppose that ϕ1, ϕ2 ∈W satisfy ϕ1 6= ϕ2. Then

V (xϕ1 − xϕ2 , [t− r(xϕ1(t)), t]) = 1

for all t ∈ R. In particular, each non-trivial solution in W is slowly oscillating.

Proof. 1. We first prove that for given functions ϕ1, ϕ2 ∈ W with ϕ1 6= ϕ2

we have V (ϕ1 −ϕ2, [−r(xϕ1 (0), 0]) = 1. For this purpose, we choose reals t1, t2 ≥ 0

and functions χ1, χ2 ∈ N cu with ϕ1 = F (t1, χ1) and analogously ϕ2 = F (t2, χ2)

from the definition of W . As by Corollary 5.1 we have xχj (t) = xϕj (tj + · ) → 0

as t → −∞ and x
χj

t ∈ N cu for all t ≤ 0, there actually is a constant t0 ≥ 0 and

functions ψ1, ψ2 ∈ N cu with ϕ1 = F (t0, ψ1) and ϕ2 = F (t0, ψ2). In particular,

ψ1 6= ψ2. From Proposition 3.12 we now find functions ũ, α̃ : R −→ R with α̃ < 0

such that v : R −→ R defined by

v(t) :=
(
xψ1(t) − xψ2(t)

)
· exp



−

t∫

0

ũ(s)ds





satisfies the differential equation

v̇(t) = α̃(t) v(t− r(xψ1 (t)))
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for all t ∈ R. Hence, Proposition 3.16 in combination with the last result leads to

1 = V (ψ1 − ψ2, [−r(ψ1(0)), 0])

= V (xψ1 − xψ2 , [−r(ψ1(0), 0])

= V (v, [−r(ψ1(0)), 0])

≥ V (v, [t0 − r(xψ1 (t0)), t0])

= V (xψ1 − xψ2 , [t0 − r(xψ1 (t0)), t0])

= V (xψ1(t0 + · ) − xψ2(t0 + · ), [−r(xψ1 (t0)), 0])

= V (xϕ1 − xϕ2 , [−r(xϕ1(0)), 0])

= V (ϕ1 − ϕ2, [−r(ϕ1(0)), 0]) ≥ 1,

which implies the desired conclusion

V (ϕ1 − ϕ2, [−r(ϕ1(0)), 0]) = 1.

2. To see that for given ϕ1, ϕ2 ∈ W with ϕ1 6= ϕ2 and all t 6= 0 we also have

V (xϕ1 − xϕ2 , [t − r(xϕ1 (t)), t]) = 1, recall from Corollary 5.2 the invariance of W

which implies xϕ1

t , xϕ2

t ∈W . In particular, we have xϕ1

t 6= xϕ2

t . Therefore, the part

above yields
1 = V (xϕ1

t − xϕ2

t , [−r(xϕ1

t (0)), 0])

= V (xϕ1(t+ · ) − xϕ2(t+ · ), [−r(xϕ1(t)), 0])

= V (xϕ1 − xϕ2 , [t− r(xϕ1 (t)), t])

and this completes the proof of the first part of the statement.

3. It remains to prove that non-trivial solutions x : R −→ [−2a, 2a] of the

model equation with segments in W are slowly oscillating. But this is clear in view

of Proposition 3.28 since the application of the part above to solutions determined

by the initial values ϕ1 = x0 and ϕ2 = 0 yields V (x, [t − r(x(t)), t]) = 1 for all

t ∈ R. �

Now we are in the position to establish the assertion that W is also invariant

for the continuous semiflow F and all solutions of the model equation in W \ {0}

are slowly oscillating as well.

Proposition 5.7. Consider A defined in Proposition 3.27. Then W ⊂ A, and

the closure W ⊂ A is compact. Moreover, for every ϕ ∈ W\{0} there is a uniquely

determined slowly oscillating solution xϕ : R −→ R of Equation (4.1) with xϕ0 = ϕ,

xϕt ∈ W for all t ∈ R.

Proof. 1. Let ϕ ∈ W be given. If ϕ = 0, then we clearly have ϕ ∈ A.

Otherwise ϕ 6= 0, and the last corollary yields that the uniquely defined solution

xϕ : R −→ [−2a, 2a] with xϕ0 = ϕ is slowly oscillating. Using part (iv) of Proposition

3.28, we get ϕ ∈ A\{0}. This shows W ⊂ A.

2. The compactness of W is an immediate consequence of the first part as A is

compact due to Proposition 3.27 and Corollary 3.31 on the equivalence of the both

topologies on A induced by the norms of C and C1.

3. From Proposition 3.28 it is now clear that for all ϕ ∈ W \ {0} there is a

uniquely determined slowly oscillating solution xϕ : R −→ [−2a, 2a] of Equation

(4.1) with initial value ϕ at t = 0. Therefore, it remains to prove that for such

a solution we indeed have xϕt ∈ W for all t ∈ R. For ϕ = 0 this is clear. In the

situation ϕ 6= 0 we find a sequence {ϕk}k∈N ⊂W with ϕk → ϕ as k → ∞. As W is
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invariant for F , we get F (t, ϕ) = limk→∞ F (t, ϕk) ∈W for all t ≥ 0, which implies

the positive invariance of W for F . Now the assertion xϕt ∈W for all t ∈ R follows if

we prove that for each j ∈ N there is a function ψj ∈ W satisfying F (j, ψj) = ϕ. To

deduce this, consider for a fixed j ∈ N the functions ψj,k := F (−j, ϕk) ∈W , k ∈ N.

Then the compactness of W implies the existence of ψj ∈ W and a subsequence

{ψj,kl
}l∈N with ψj,kl

→ ψj as l → ∞. Consequently, the continuity of F implies

F (j, ψj) = lim
l→∞

F (j, ψj,kl
) = lim

l→∞
F (j, F (−j, ϕkl

)) = lim
l→∞

ϕkl
= ϕ,

and this completes the proof. �

The above result on the invariance ofW under F allows to extend the statement

of Corollary 5.6 on the number of sign changes of differences of solutions to the

closure of W .

Corollary 5.8. Given any ϕ1, ϕ2 ∈W suppose that ϕ1 6= ϕ2 holds. Then

V (xϕ1 − xϕ2 , [t− r(xϕ1(t)), t]) = 1

for all t ∈ R.

Proof. We proceed analogously to the proof of Corollary 5.6 and first show

that for given functions ϕ1, ϕ2 ∈W with ϕ1 6= ϕ2

V (ϕ1 − ϕ2, [−r(ϕ1(0)), 0]) = 1

holds. Thereto, we choose a sequence {ψ1
k}k∈N ⊂W and a sequence {ψ2

k}k∈N with

ψ1
k → ϕ1 and ψ2

k → ϕ2 as k → ∞. Hereby, we clearly may assume that ψ1
k 6= ψ2

k

for all k ∈ N, since ϕ1 6= ϕ2 by assumption. Now from Corollary 5.6 it follows that

V (ψ1
k − ψ2

k, [−r(ψ
1
k(0)), 0]) = 1

for all k ∈ N. Hence part (i) of Proposition 3.15 gives

1 ≤ V (ϕ1 − ϕ2, [−r(ϕ1(0)), 0])

≤ lim inf
k→∞

V (ψ1
k − ψ2

k, [−r(ψ
1
k(0)), 0]) = 1;

that is,

V (ϕ1 − ϕ2, [−r(ϕ1(0)), 0]) = 1.

Let now t ∈ R be given. Then, due to the invariance of W from the last

proposition, we have xϕ1

t , xϕ2

t ∈ W and in view of uniqueness, xϕ1

t 6= xϕ2

t . Thus

from the above conclusion we see

V (xϕ1 − xϕ2 , [t− r(xϕ1 (t)), t]) = V (xϕ1

t − xϕ2

t , [−r(xϕ1

t (0)), 0]) = 1.

�

3. The Zero Sets of Solutions

The last preliminary step smoothing the way for our proof on the existence of

a periodic solution for the model equation (4.1) is the analysis of the zero sets of

solutions in W . Below we address this subject, following once more the ideas in

Brunovský et al. [3].

We begin with the auxiliary observation that the delay function r being under

consideration is bounded from below by 1/2 along solutions of Equation (4.1) with

values in [−2a, 2a].
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Corollary 5.9. Suppose x : R −→ [−2a, 2a] is a solution of Equation (4.1).

Then

r(x(t)) > 1/2

for all t ∈ R.

Proof. Recall our standing assumptions (DF 1) - (DF 5) on the delay function

r from pages 57 and 69 and note that it is sufficient to prove r(s) > 1/2 for all

0 ≤ s ≤ 2a due to condition (DF 3). Hence, let s ∈ [0, 2a] be given. Then the

fundamental theorem of calculus implies

r(s) =

∫ s

0

r′(t) dt+ r(0) =

∫ s

0

r′(t) dt+ 1.

From the inequality r′(t) > −1/(4a2) for all −2a ≤ t ≤ 2a due to (DF 5) and the

fact a > 1 we obtain

r(s) ≥

∫ s

0

−1

4a2
dt+ 1 = −

s

4a2
+ 1 ≥ −

2a

4a2
+ 1 =

(a− 1) + a

2a
>

a

2a
=

1

2

as claimed. �

Using the above conclusion, we prove that W is homeomorphic to a closed

subset of the two-dimensional subspace M of C1 from Corollary 4.3. A homeomor-

phism hereby is simply defined by the restriction of the projection of the Banach

space C1 along the complementary space N for M in C1 considered in Corollary

4.8 in the previous chapter.

Proposition 5.10. Let PM : C1 −→ C1 denote the continuous projection of C1

along N onto M from Corollary 4.8. Then the restriction of PM to W is injective.

Moreover,

P : W ∋ ϕ 7−→ PM ϕ ∈ PM W

is a homeomorphism between W and PM W , and P W = P W .

Proof. 1. We begin with the proof that the restriction of PM to W is injective.

This is done by contradiction. Hence, assume that there are functions ϕ1, ϕ2 ∈ W

with ψ := ϕ1 − ϕ2 6= 0 but

PM ψ = PM (ϕ1 − ϕ2) = 0.

Then Corollary 4.9 shows ψ(−1) = ψ(0) = 0 and from the hypothesis ψ 6= 0 we

find an additional zero ξ ∈ (−1, 0) of ψ due to Corollary 4.10. In view of the last

result, it follows that

−r(ϕ1(0)) ≤ ξ < 0

or

ξ − r(ϕ1(ξ)) ≤ −1 < ξ.

On the other hand, Corollary 5.8 implies

(5.3) V (xϕ1 − xϕ2 , [t− r(xϕ1(t)), t]) = 1

for all t ∈ R where xϕ1 , xϕ2 : R −→ [−2a, 2a] denote the solutions of Equation

(4.1) with initial values ϕ1, ϕ2, respectively. Moreover, from Proposition 3.12 we
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conclude the existence of continuous bounded functions ũ, α̃ : R −→ R with α̃ < 0

such that v : R −→ R defined by

v(t) :=
(
xϕ1(t) − xϕ2(t)

)
· exp



−

t∫

0

ũ(s)ds





satisfies the differential equation

v̇(t) = α̃(t) v(t− r(xϕ1(t)))

for all t ∈ R. Obviously, each zero of the difference xϕ1 − xϕ2 and so of ψ is also a

zero of v. Applying part (iii) of Proposition 3.16 to v, we see

v|[t−r(xϕ1(t)),t] ∈ H[t−r(xϕ1(t)),t]

as t ∈ R. This implies that all zeros of v are simple and additionally that

ξ 6= −r(ϕ1(0)) = −r(xϕ1(0))

as well as

−1 6= ξ − r(ϕ1(ξ)) = ξ − r(xϕ1 (ξ)).

Hence, as the function R ∋ t 7−→ t− r(xϕ1 (t)) ∈ R is monotonically increasing and

continuous we find a sufficient small constant ε > 0 such that

ε− r(xϕ1(ε)) < ξ < 0 < ε

or

ξ + ε− r(xϕ1 (ξ + ε)) < −1 < ξ < ξ + ε ;

that is, at least the interior of one of the intervals

I1 := [ε− r(xϕ1(ε)), ε]

and

I2 := [ξ + ε− r(xϕ1 (ξ + ε)), ξ + ε]

contains two zeros of v. Since each zero of v leads to a sign change in view of the

simplicity of zeros, we have sc(v|I1 , I1) ≥ 2 or sc(v|I2 , I2) ≥ 2. However, as

sc(v|[t−r(xϕ1 (t)),t], [t− r(xϕ1(t)), t]) ≤ V (v, [t− r(xϕ1 (t)), t])

for all t ∈ R by definition, in any case we obtain a contradiction to Equation (5.3).

Consequently, there are no functions ϕ1, ϕ2 ∈W with ϕ1 6= ϕ2 but PM ϕ1 = PM ϕ2.

This proves the injectivity of the restriction of PM to W .

2. By the above, P is a continuous bijection from W onto PM W . Hence, the

compactness of W implies the continuity of P−1.

For the last part of the statement observe that P W ⊃ P W immediately follows

from the continuity of the operator P . The inverse relation is a consequence of the

compactness of P W in combination with P W ⊂ P W . �

Despite our analysis of solutions for the model equation (4.1) and their slowly

oscillating behavior so far, one question still unanswered is whether there is a slowly

oscillating solution with infinitely many zeros. Under the assumptions made on the

delay functional, this is indeed the case since all solutions in W \ {0} have this

property. For the proof of this statement we need the following corollary of the

preceding proposition.
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Corollary 5.11. Suppose that ϕ ∈ N cu is an interior point of N cu. Then

P N cu forms a neighborhood of P ϕ in M ; that is, there is an open set V ⊂M with

P ϕ ∈ V ⊂ P N cu.

Proof. If ϕ ∈ N cu is an interior point of N cu, then in particular we have

ϕ ∈ Wcu and thus, ϕ = P ϕ + wcu(P ϕ). Suppose now that the assertion of the

corollary is false. Using the openness of Ccu,0 in M and the relation

P N cu ⊂ Ccu,0 ⊂M,

we find a sequence {ψn}n∈N with ψn ∈ Ccu,0 but ψn 6∈ P N cu for all n ∈ N such

that ψn → P ϕ as n → ∞. Define ϕn := ψn + wcu(ψn) ∈ Wcu. Then by the

continuity of wcu

ϕn = ψn + wcu(ψn) → P ϕ+ wcu(P ϕ) = ϕ

for n → ∞. Now ϕ is an interior point of N cu and therefore there clearly is a

sufficiently large N̂ ∈ N such that

ϕn = ψn + wcu(ψn) ∈ N cu

for all n ≥ N̂ . But this implies

P ϕn = P ψn + P wcu(ψn) = ψn + 0 = ψn ∈ P N cu

for all n ≥ N̂ , in contradiction to our assumption {ψn}n∈N ⊂ Ccu,0\P N cu. Hence,

PN cu is a neighborhood of P ϕ in M as claimed. �

A consequence of the above corollary is the fact that the set P W is open in

the two dimensional Banach space M . This is shown in our next corollary.

Corollary 5.12. The set P W is open in M .

Proof. Recall from Corollary 5.2 that for every ϕ ∈ W there is a unique

solution xϕ : R −→ [−2a, 2a] and that for all t ∈ R the segments xϕt belong to

W . Furthermore, observe that in view of Proposition 5.7 and Corollary 3.31 the

restriction FWA of the continuous flow FA from Proposition 3.27 to R×W generates

also a continuous flow on W , even though the topology on W is induced by the

norm of the Banach space C1. In particular, we clearly have FWA (t, ϕ) = xϕt for all

t ∈ R and all ϕ ∈ W .

Suppose now ϕ ∈ P W . We have to show that there is a neighborhood U ⊂M

of ϕ with U ⊂ P W . By assumption, we have ξ := P−1 ϕ ∈ W . Consider the

associated solution xξ : R −→ [−2a, 2a]. By Corollary 5.1, it follows xξt → 0 ∈ N cu

as t → −∞. Therefore, we find an open neighborhood V of 0 in M and a T > 0

such that

P ◦ FWA (−T, P−1 ϕ) = P ◦ FWA (−T, ξ) = P xξ−T ∈ V ⊂ P N cu.

As for each t ∈ R the mapping P ◦ FWA (t, · ) ◦ P−1 : P W −→ P W is continuous,

we conclude that the set
(
P ◦ FWA (−T, · ) ◦ P−1

)−1
(V ) ⊂ P W

is open. Additionally, we have

ϕ ∈
(
P ◦ FWA (−T, · ) ◦ P−1

)−1
(V ) ⊂ P W.

This proves the assertion. �
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We can now return to the solutions of Equation (4.1) in W \ {0} and prove, as

already announced, that their zero sets are unbounded.

Proposition 5.13. Consider ϕ ∈ W with ϕ 6= 0. Then for every t ∈ R the

interval [t,∞) contains a zero of the solution xϕ of Equation (4.1) with initial

value ϕ at t = 0. Moreover, for each ϕ ∈ W\{0} the zeros of xϕ form a strictly

monotonically increasing sequence {zj(ϕ)}∞J(ϕ) ⊂ R, where J(ϕ) ∈ Z for ϕ ∈ W\{0}

and J(ϕ) = −∞ otherwise. In both cases,

zj−1(ϕ) + 1 < zj(ϕ)

for all j > J(ϕ).

Proof. We follow the ideas of the proof of Corollary 6.5 in Brunovský et al.

[3] of the assertion for the case of constant delay.

1. Given a non-trivial ϕ ∈ W , suppose that the solution xϕ : R −→ [−2a, 2a]

of the differential equation (4.1) has no zeros in the interval [t,∞) for some t ∈ R.

Then, by Proposition 3.26, we get xϕ(s) → 0 as s → ∞. Hence, as N cu is a

neighborhood of 0 in W and thus P N cu a neighborhood of the origin in M due

to the last corollary, we consequently find a real s0 ∈ R with the property that for

all s ≥ s0 the projected segments P xs are contained in P N cu. But this implies

xs ∈ N cu for s ≥ s0 in consideration of Proposition 5.10 and therefore contradicts

the fact that each positive semi-orbit of F through a value in N cu\{0} leaves N cu

in finite time due to Corollary 5.1. Thus [t,∞) contains a zero of xϕ.

2. Now consider the case ϕ ∈ W\{0}. Combining the above with Corollary

5.3, we find a smallest zero z0(ϕ) of xϕ in R. As xϕ is slowly oscillating and its

segments belong to W ⊂ La we may apply Proposition 3.24, which yields

sign(xϕ(t)) = − sign(xϕ(z0(ϕ) − 1)) 6= 0

for z0(ϕ) < t ≤ z0(ϕ) + 1. Define z1(ϕ) as the smallest zero of the solution xϕ

in (z0(ϕ) + 1,∞) and proceed by induction. In this way, we obtain a strictly

monotonous sequence {zj(ϕ)}j∈N of zeros of xϕ.

3. Suppose ϕ ∈ W\W next. As both W and W are invariant for F , xϕt ∈W\W

for all t ∈ R follows. We proceed with the conclusion that the set of zeros of xϕ

is unbounded from below. For this purpose, assume contrary to this claim the

existence of a t0 ∈ R with xϕ(t) 6= 0 for all t ≤ t0 and consider the case xϕ(t) > 0

on (−∞, t0] first. Since xϕt ∈ W\W ⊂ W\N cu for all t ∈ R, the bijectivity of

P immediately implies P xϕt 6∈ P N cu as t ∈ R. But P N cu is a neighborhood

of the origin in M due to Corollary 5.11, such that there clearly is a c > 0 with

c ≤ ‖xϕt ‖C1 for t ∈ R. Therefore, the α-limit set α(ϕ), which belongs to W and

is not empty due to the compactness of W , consists only of nonnegative functions

ψ ∈ C1 with ‖ψ‖C1 ≥ c. As α(ϕ) is invariant for F , there is a solution of Equation

(4.1) with segments contained in α(ϕ). In particular, such a solution is slowly

oscillating, nonnegative and does not converge to 0 as t → ∞. But the last point

is impossible in view of Proposition 3.26 and the fact that each zero of a slowly

oscillating solution is simple. Thus we obtain a contradiction under the hypothesis

that there is a t0 ∈ R with xϕ(t) > 0 for all t ∈ (−∞, t0]. Under the assumption

that there is a t0 ∈ R with xϕ(t) < 0 for all t ≤ t0, a completely analogous argument

works. Thus we see the unboundedness of the zero set of xϕ from below.

The proof of the remaining assertion now becomes clear. Fixing t0 ∈ R, we find

a smallest zero z0(ϕ) of the solution xϕ in [t0,∞). Since xϕ is slowly oscillating
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and xϕt ∈ W ⊂ (C1 ∩ La), there is a largest zero z−1(ϕ) of xϕ in (−∞, z0(ϕ)). An

application of Proposition 3.24 shows

sign(x(t)) = − sign(x(z−1(ϕ) − 1)) 6= 0

for z−1 < t ≤ z−1 + 1. Next we find a largest zero z−2(ϕ) of xϕ in (−∞, z−1(ϕ))

and can inductively proceed to obtain a strongly increasing sequence {zj}0
−∞ of

zeros of xϕ in (−∞, t0]. On the other hand, Proposition 3.24 yields

sign(x(t)) = − sign(x(z0(ϕ) − 1)) 6= 0

for z0(ϕ) < t ≤ z0(ϕ) + 1. Hence, by the first part, there is a smallest zero z1(ϕ) of

xϕ in (z0(ϕ),∞), and we may apply the same argument again. Thus, by induction,

we finally get a strongly increasing sequence {zj(ϕ)}∞−∞ of zeros of xϕ with the

asserted property. �

For the rest of this work it is convenient to fix a numbering of the zeros of

solutions for Equation (4.1) in W . We do it in the following way.

Remark 5.14. If ϕ ∈W and ϕ 6= 0, then let z0(ϕ) denote the smallest zero of

the solution xϕ for the differential equation (4.1) in [−1,∞).

The oscillation of the non-trivial solutions in W induces a winding behavior

of the projected trajectories in P W , which becomes exceedingly clear by means

of the basis {Φ0, Φ−1} for M selected prior to Corollary 4.9. Recall that we have

Φ0(0) = Φ−1(−1) = 0 and Φ0(−1) = Φ−1(0) = 1.

Corollary 5.15. Let ϕ ∈ W\{0}, and let xϕ be briefly denoted by x and the

associated strongly increasing sequence of zeros due to Proposition 5.13 by {zj}∞J(ϕ).

(i) If 0 < ẋ(zj) for some j, then

P xzj
∈ (−∞, 0)Φ0,

P xt ∈ (−∞, 0)Φ0 + (0,∞)Φ−1 for zj < t < zj + 1,

P xzj+1 ∈ (0,∞)Φ−1,

P xt ∈ (0,∞)Φ0 + (0,∞)Φ−1 for zj + 1 < t < zj+1, and

P xzj+1 ∈ (0,∞)Φ0.

(ii) If ϕ ∈W\{0}, and if 0 < ẋzJ(ϕ)
and t < zJ(ϕ), then

P xt ∈ (−∞, 0)Φ0 + (−∞, 0)Φ−1.

(iii) If 0 > ẋ(zj) for some j, then

P xzj
∈ (0,∞)Φ0,

P xzj
∈ (0,∞)Φ0 + (−∞, 0)Φ−1 for zj < t < zj + 1,

P xzj+1 ∈ (−∞, 0)Φ−1,

P xt ∈ (−∞, 0)Φ0 + (−∞, 0)Φ−1 for zj + 1 < t < zj+1, and

P xzj+1 ∈ (−∞, 0)Φ0.

(iv) If ϕ ∈W\{0}, and if 0 > ẋzJ(ϕ)
and t < zJ(ϕ), then

P xt ∈ (0,∞, 0)Φ0 + (0,∞)Φ−1.
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(v) If P xzj
∈ (0,∞)Φ0 for some j, then

P xt ∈ (0,∞)Φ0 + (0,∞)Φ−1 for zj − 1 < t < zj , and

P xt ∈ (0,∞)Φ0 + (−∞, 0)Φ−1 for zj < t < zj + 1.

Proof. The proof is a straightforward application of Corollary 4.9 in combi-

nation with the foregoing result. Indeed, Corollary 4.9 implies

P xt = xt(−1)Φ0 + xt(0)Φ−1

= x(t− 1)Φ0 + x(t)Φ−1,

for all t ∈ R. Now, assuming 0 < ẋ(zj) for some j and using the preceding result,

we see that x(s) < 0 for zj − 1 ≤ s < zj and x(s) > 0 for zj < s < zj+1 where,

in particular, zj + 1 < zj+1. Substituting these values into the above equation for

P xt immediately yields assertion (i). Statement (ii) is also obvious in view of the

fact that the stated assumption forces x(s) < 0 for all s < J(ϕ).

In the case ẋ(zj) > 0, a completely analogous reasoning establishes parts (iii)

and (iv). The details, as well as the trivial verification of assertion (v), are left to

the reader. �

We close this section with the construction of a recurrence map for the set of

all nonnegative functions ϕ ∈ W \ {0} with ϕ(0) = 0 under the semiflow F . This

set is compact and coincides with the set of all ϕ ∈ W with P ϕ ∈ (0,∞)Φ0, as

shown in the next corollary.

Corollary 5.16. Define the subset H+
0 of the closed hyperplane H0 of C1

from page 102 by

H+
0 :=

{
ϕ ∈ H0 |ϕ ≥ 0

}
.

Then W ∩H+
0 is compact and

(5.4)
{
ϕ ∈W

∣∣P ϕ ∈ (0,∞)Φ0 ∪ {0}
}

= W ∩H+
0 .

Proof. For the first part of the statement, recall that W is a compact subset

of C1 due to Corollary 5.7. As H+
0 is obviously closed in C1, the compactness of

W clearly implies the one of the closed subset W ∩ H+
0 . Hence, it only remains

to prove Equation (5.4). For this purpose, note that both sets obviously contain

0 ∈ C1 and that in view of Proposition 5.10 for ϕ ∈W we have P ϕ = 0 if and only

if ϕ = 0. Consider now ϕ ∈ (W ∩H+
0 ) with ϕ 6= 0. Then Corollary 4.9 leads to

0 6= P ϕ = ϕ(−1)Φ0 + ϕ(0)Φ−1 = ϕ(−1)Φ0

and so ϕ(−1) 6= 0. As ϕ ≥ 0 it follows ϕ(−1) > 0. Thus

P ϕ = ϕ(−1)Φ0 ∈ (0,∞)Φ0.

On the other hand, if ϕ ∈ W and P ϕ ∈ (0,∞)Φ0 ⊂ H+
0 then, by definition of

Φ0, there holds ϕ(−1) > 0 and ϕ(0) = 0. As all elements in W \ {0} have at most

one zero due to the last proposition, we see ϕ ≥ 0. Thus ϕ ∈ H+
0 , and (5.4) is

proved. �

Now we establish a recurrence map for the set (W ∩H+
0 ) \ {0} which will be

essential for our proof of the existence of a slowly oscillating periodic solution for

Equation (4.1).
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Proposition 5.17. The map

W : (W ∩H+
0 )\{0} ∋ ϕ 7−→ xϕ

z2(ϕ) ∈ (W ∩H+
0 )

is well-defined and maps the set (W ∩H+
0 )\{0} homeomorphically onto

{
ψ ∈ (W ∩H+

0 ) \ {0} | J(ψ) ≤ −2
}
.

Proof. We begin the proof with the observation that for ϕ ∈ (W ∩H+
0 ) \ {0}

we have indeed

W(ϕ) ∈
{
ψ ∈ (W ∩H+

0 ) \ {0} | J(ψ) ≤ −2
}

due to Corollaries 5.15 and 5.16. The remaining part falls naturally into four steps.

1. Proof of the continuity of W. Given any ϕ ∈ (W ∩H+
0 )\{0} suppose that

for a sequence {ϕk}k∈N ⊂ (W ∩H+
0 )\{0} we have ϕk → ϕ as k → ∞. Using the

definition of H+
0 together with the fact that solutions xϕ, xϕk are slowly oscillating,

we conclude z1(ϕ), z1(ϕ
k) > 1 and xϕ(1), xϕk(1) < 0 for all k ∈ N. By Proposition

3.7, for each ε > 0 and each z2(ϕ) < T < z3(ϕ) there is a constant k1(ε, T ) ∈ N

with

sup
{
|xϕk(t) − xϕ(t)|

∣∣1 ≤ t ≤ T
}
< ε

as k ≥ k1(ε, T ). Now for every given 0 < δ < min{1/2, T − z2(ϕ)} we find an ε > 0

sufficiently small such that |xϕ(t)| ≥ ε holds for all t ∈ I, where

I :=
⋂

i=1,2

{
1 ≤ t ≤ T

∣∣ |t− zi(ϕ)| ≥ δ
}
.

In particular, under this condition, we have xϕk(t) 6= 0 for all k ≥ k1(ε, T ) and all

t ∈ I and the solutions xϕk have exactly one zero in each interval [zi(ϕ)−δ, zi(ϕ)+δ]

for i = 1, 2. But as δ > 0 may be chosen arbitrarily small, we obviously get

z1(ϕk) → z1(ϕ), z2(ϕk) → z2(ϕ) as k → ∞. Hence, the continuity of the semiflow

F implies

W(ϕk) = xϕk

z2(ϕk) → xϕ
z2(ϕ) = W(ϕ)

as k → ∞. Since ϕ ∈ (W ∩H+
0 )\{0} was arbitrary, this shows the continuity of W .

2. The proof of the injectivity of W. Suppose that for ϕ, ψ ∈ (W ∩ H+
0 )\{0}

we have

W(ϕ) = W(ψ).

As solutions with initial values in W are unique, this implies

xϕ(t+ z2(ϕ)) = xψ(t+ z2(ψ)),

or equivalently

(5.5) xϕ(t) = xψ(t+ z2(ψ) − z2(ϕ)),

for all t ∈ R.

We claim that z2(ϕ) = z2(ψ) and thus, xϕ = xψ . In order to derive a con-

tradiction, suppose that this claim is false. Then there is no loss of generality in

assuming z2(ψ) > z2(ϕ). From z2(ϕ) > 0 it follows

0 < z2(ψ) − z2(ϕ) < z2(ψ).

Combining this with xψ(0) = 0 and 0 = xϕ(0) = xψ(z2(ψ)−z2(ϕ)) due to Equation

(5.5), we get

z1(ψ) = z2(ψ) − z2(ϕ).
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On the other hand, Equation (5.5) implies

0 = xϕ(z1(ϕ)) = xψ(z1(ϕ) + z2(ψ) − z2(ϕ)),

and hence

z1(ψ) = z2(ψ) − z2(ϕ) + z1(ϕ)

in view of 0 < z1(ϕ)+z2(ψ)−z2(ϕ) < z2(ψ). Consequently, we obtain z1(ϕ) = 0 in

contradiction to 0 = z0(ϕ) < z1(ϕ). This shows z2(ϕ) = z2(ψ) and thus, xϕ = xψ ,

which finally implies

ϕ = xϕ0 = xψ0 = ψ.

3. The proof of the surjectivity of W. Let ϕ ∈ (W ∩H+
0 )\{0} with J(ϕ) ≤ −2

be given. As xϕ is slowly oscillating, every zero of xϕ is simple and thus leads to a

sign change of xϕ. By assumption, xϕ has at least the three zeros

z−2(ϕ) < z−1(ϕ) < z0(ϕ) = 0

in (−∞, 0]. Furthermore, we obviously can conclude 0 > ẋϕ(z0(ϕ)) and xϕ(t) > 0

for z−1(ϕ) > t > z0(ϕ) = 0. Consequently, ẋϕ(z−1(ϕ)) > 0 and xϕ(t) < 0 for all

z−2(ϕ) > t > z1(ϕ) follows such that finally we obtain 0 > ẋϕ(z−2(ϕ)) and hence

xϕ
z−2(ϕ) ∈ (W ∩H+

0 )\{0}

by Corollary 5.15 and 5.16. In particular, this implies

W(xϕ
z−2(ϕ)) = xϕ0 = ϕ,

and shows

W
(
(W ∩H+

0 )\{0}
)

=
{
ψ ∈ (W ∩H+

0 )\{0}
∣∣J(ψ) ≤ −2

}
.

4. For the conclusion on the continuity of the map

{
ψ ∈ (W ∩H+

0 )\{0}| J(ψ) ≤ −2
}
∋ ϕ 7−→ xϕ

z−2(ϕ) ∈ (W ∩H+
0 )\{0}

recall that W is contained in A. Hence, in consideration of Corollary 3.30 on the

continuity of the flow on A, we can proceed analogously to the first part which

completes the proof. �

Remark 5.18. The map W defined in the last result is called the first return

map of (W ∩H+
0 )\{0} under the flow F . By Corollaries 5.15 and 5.16, W(ϕ) is

the first intersection between the set (W ∩H+
0 )\{0} and the orbit of the trajectory

ξ : R ∋ s 7−→ xϕs ∈W for some t > 0, provided ξ(0) = ϕ ∈ (W ∩H+
0 )\{0}.

4. A Slowly Oscillating Periodic Orbit

After the preliminaries of the two preceding sections, we are now in the position

to show that W \W is a slowly oscillating periodic orbit for the model equation

(4.1). The crucial idea here is to consider the ω-limit sets of trajectories in W .

Proposition 5.19. Suppose ϕ ∈ W and ϕ 6= 0. Then 0 6∈ ω(ϕ) and ω(ϕ) is

a slowly oscillating periodic orbit. Moreover, if ϕ ∈ W \W then ω(ϕ) = α(ϕ) and

xϕ : R −→ [−2a, 2a] is a slowly oscillating periodic solution.
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Proof. 1. Let ϕ ∈ W with ϕ 6= 0 be given. Notice that there is no loss of

generality in assuming P ϕ ∈ (0,∞)Φ0. Indeed, in the case P ϕ 6∈ (0,∞)Φ0, by

Propositions 5.13 and Corollary 5.15 we would find a t ∈ R and a ψ ∈W\{0} such

that ψ = xϕt and P ψ ∈ (0,∞)Φ0. As in this situation we obviously would have

ω(ϕ) = ω(ψ) for the associated ω-limit sets, it becomes clear that there is in fact

no loss of generality in assuming P ϕ ∈ (0,∞)Φ0 and thus, ϕ ∈ (W ∩H+
0 )\{0} due

to Corollary 5.16.

2. Consider the strictly monotonic sequence {zj(ϕ)}∞J(ϕ) of zeros of the solution

xϕ and set

ξj := P xϕ
z2j(ϕ)

for all j ∈ Z with 2j ≥ J(ϕ). In this way, we get a sequence {ξj}∞J⋆(ϕ) in (0,∞)Φ0

where J⋆(ϕ) = ∞ if J(ϕ) = ∞ and J⋆(ϕ) ∈ Z \ N otherwise. Additionally, we

define a sequence {sj}∞J⋆(ϕ) in R by

sj := z2j(φ).

The two sequences are obviously related by

xϕ
sj = P−1(ξj),

and {sj}∞J⋆(ϕ) is strongly increasing. Moreover, combining the facts that F is a

continuous flow on W and that P maps W homeomorphic onto P W , we obtain a

monotonicity property for {ξj}∞J⋆(ϕ) in the following sense. We have either

(5.6) 0 < ‖ξj+1‖C1 ≤ ‖ξj‖C1

for all integers j ≥ J⋆(ϕ) or vice versa

(5.7) ‖ξj+1‖C1 ≥ ‖ξj‖C1 > 0

for all integers j ≥ J⋆(ϕ). Thus we may define the values

ξ− :=





lim

j→−∞
ξj , for J⋆(ϕ) = −∞,

0, for J⋆(ϕ) ∈ Z,

and

ξ+ := lim
j→∞

ξj ,

since ξj ∈ P (W ∩H+
0 ) for all j ≥ J⋆(ϕ) and P (W ∩H+

0 ) is compact as a continuous

image of the compact subset W ∩ H+
0 of W . In particular, we conclude that

ξ−, ξ+ ∈ (0,∞)Φ0 ∪ {0}.

3. We now claim that if {ξj}j∈N converges to some ξ+ ∈ (0,∞)Φ0 as j → ∞,

then xP
−1(ξ+) is a slowly oscillating periodic solution of Equation (4.1) and

ω(ϕ) =
{
x
P−1(ξ+)
t

∣∣∣ t ∈ R

}
.

For the proof of this claim, first observe that under the given assumption we

have ξj , ξ+ ∈ P ((W ∩H+
0 )\{0}) and hence P−1(ξj), P−1(ξ+) ∈ (W ∩H+

0 )\{0} for

all j ∈ N. Now for each j ≥ 0

P−1(ξj) = xϕ
sj = xϕ

z2j(ϕ) = W−1(xϕ
z2j+2(ϕ)) = W−1(xϕ

sj+1 ) = W−1(P−1(ξj+1)).

Thus, by application of W and consideration of the last equation for j → ∞, we

obtain

P−1(ξ+) = W(P−1(ξ+)) = F (z2(P
−1(ξ+)), P−1(ξ+)),
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since P−1 and W are continuous. Consequently, the solution xP
−1(ξ+) of Equation

(4.1) is not only slowly oscillating, but also z2(P
−1(ξ+))-periodical since we have

x
P−1(ξ+)
0 = x

P−1(ξ+)
z2(P−1(ξ+))

and for all ψ ∈ W Equation (4.1) has a unique solution xψ : R −→ [−2a, 2a] with

initial value xψ0 = ψ. In particular, z2(P
−1(ξ+)) is the minimal period of xP

−1(ξ+)

in view of

F (z1(P
−1(ξ+)), P−1(ξ+)) ∈ (−∞, 0)Φ0

due to Corollary 5.15.

Defining

O
+ :=

{
x
P−1(ξ+)
t

∣∣∣ 0 ≤ t ≤ z2(P
−1(ξ+))

}
,

we shall have established the claim if we prove distC1(xϕt ,O
+) → 0 as t→ ∞. For

this purpose, let ε > 0 be given. From Propositions 3.7 and 3.14 we find a constant

δ(ε) > 0 such that for all ψ ∈ (W ∩ H+
0 )\{0} with ‖ψ − P−1(ξ+)‖C1 < δ(ε) we

have

distC1(xψs ,O
+) < ε

as 0 ≤ s ≤ z2(P
−1(ξ+)) + 1, and

|z2(ψ) − z2(ξ
+)| < 1.

Fix j0 ≥ 0 with

‖P−1(ξj) − P−1(ξ+)‖C1 < δ(ε)

as j ≥ j0, and let t > sj0 be given. Since the sequence {sj}∞J⋆(ϕ) is strongly

increasing, we find an integer j1 ≥ j0 such that

sj0 ≤ sj1 < t ≤ sj1+1.

In particular, ‖P−1(ξj1) − P−1(ξ+)‖C1 < δ(ε), and hence

distC1(xP
−1(ξj1 )

s ,O+) < ε

as 0 ≤ s ≤ z2(P
−1(ξ+)) + 1, and

|z2(P
−1(ξj1 )) − z2(P

−1(ξ+))| < 1.

Using

xϕ
sj1+1 = F (z2(P

−1(ξj1)), xϕ
sj1

) = F (z2(P
−1(ξj1)), P−1(ξj1)),

we see

0 < t− sj1 ≤ sj1+1 − sj1 = z2(P
−1(ξj1 )) < z2(P

−1(ξ+)) + 1,

and this implies

distC1

(
xϕt ,O

+
)

= distC1

(
x
P−1(ξj1 )

t−sj1
,O+

)
< ε.

As ε > 0 was arbitrary, we conclude distC1(xϕt ,O
+) → 0 as t → ∞. In particular,

this shows ω(ϕ) = O+ and completes the proof of our claim.

4. We return to the proof of the proposition and consider the case ϕ ∈W with

ϕ 6= 0 first. Then, by definition, there are ψ ∈ N cu and s ≥ 0 with ϕ = F (s, ψ)

and xϕ(t) = xψ(s+ t) → 0 as t → −∞. Hence, P xϕt → 0 as t → −∞. Now, recall

the monotonicity property of the sequence {‖ξj‖C1}∞J⋆(ϕ). We have either the case

(5.6) or the case (5.7) for all integers j ≥ J⋆(ϕ). Assuming that (5.6) holds, we

obtain a contradiction, since the projected flowline R ∋ t 7−→ P xϕt ∈ W \ {0} is
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injective and P xϕt → 0 as t → −∞. Therefore, we have the situation (5.7) and

thus,

‖ξj‖C1 ≥ ‖ξ0‖C1 > 0

for all j ≥ 0. As in addition J⋆(ϕ) ∈ Z due to Corollary 5.3 we obtain the inequality

‖ξ+‖C1 > 0 = ‖ξ−‖C1 and hence the conclusion

ξ+ ∈ (0,∞)Φ0.

Subsequently, the result of the last step shows that xP
−1(ξ+) is a slowly oscillating

periodic solution and

ω(ϕ) =
{
x
P−1(ξ+)
t

∣∣∣ t ∈ R

}
.

This proves the first part of the proposition.

5. Assume now ϕ ∈ W\W . By the invariance of W and W under F , we

get xϕt ∈ W \ W for all t ∈ R. Additionally, the zero set of the solution xϕ is

unbounded from both sides. As P W is an open neighborhood of 0 ∈ M and

ξj ∈ P (W \W ) = P W \ P W = P W \ P W for all j ∈ Z due to Proposition 5.10,

the sequence {ξj}j∈Z can not converge to 0 as j → ∞ or j → −∞. Moreover, we

find a sufficiently small ε > 0 with ‖ξj‖C1 ≥ ε for all j ∈ Z. Therefore, we obtain

ξ+, ξ− ∈ (0,∞)Φ0 and the third part of the proof implies that xP
−1(ξ+) is a slowly

oscillating periodic solution and

ω(ϕ) =
{
x
P−1(ξ+)
t

∣∣ t ∈ R

}
.

Next, we claim that xP
−1(ξ−) is also a slowly oscillating periodic solution of

Equation (4.1) and

α(ϕ) =
{
x
P−1(ξ−)
t

∣∣ t ∈ R

}
.

To show this claim, we proceed analogously to the third part and consider the

sequence {ξj}j∈Z\N in (0,∞)Φ0 = P ((W ∩H+
0 ) \ {0}) with ξj → ξ− ∈ (0,∞)Φ0

as j → −∞. For all j ≤ 0 we have P−1(ξj), P−1(ξ−) ∈ (W ∩H+
0 ) \ {0} and

W(P−1(ξj−1)) = W(xϕ
sj−1 ) = W(xϕ

z2(j−1)(ϕ)) = xϕ
z2j(ϕ) = xϕ

sj = P−1(ξj).

Carrying out the limit j → −∞, we obtain

P−1(ξ−) = W(P−1(ξ−)) = F (z2(P
−1(ξ−)), P−1(ξ−))

in view of the continuity of P−1 and W . It follows that xP
−1(ξ−) is a slowly

oscillating and z2(P
−1(ξ−))-periodic solution. By Corollary 5.15, we have

F (z1(P
−1(ξ−)), P−1(ξ−)) ∈ (−∞, 0)Φ0

so that z2(P
−1(ξ−) is also the minimal period of solution xP

−1(ξ−) of Equation

(4.1). Hence, the above claim follows, if we additionally prove dist(xϕt ,O
−) → 0 as

t→ −∞ where

O
− :=

{
x
P−1(ξ−)
t

∣∣∣ 0 ≤ t ≤ z2(P
−1(ξ−))

}
.

For this purpose, observe that for a given ε > 0 Corollaries 3.30, 3.31 and Propo-

sition 3.14 imply the existence of a constant δ(ε) > 0 such that for all functions

ψ ∈ (W ∩H+
0 ) \ {0} with ‖ψ − P−1(ξ−)‖C1 < δ(ε) we have

distC1(xψs ,O
−) < ε

as 0 ≤ s ≤ z2(P
−1(ξ−)) + 1, and

|z2(ψ) − z2(ξ
−)| < 1.
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Choose j0 ≤ 0 with

‖P−1(ξj) − P−1(ξ−)‖C1 < δ(ε)

for all j ≤ j0, and fix t < sj0 . Then, from the monotonicity of the sequence

{sj}j∈Z\N, we find j1 < j0 with

sj1 ≤ t < sj1+1 ≤ sj0 ≤ 0.

As ‖P−1(ξj1 ) − P−1(ξ−)‖C1 < δ(ε) due to the choice of j1, we see that

distC1(xP
−1(ξj1 )

s ,O−) < ε

for all 0 ≤ s ≤ z2(P
−1(ξ−)) + 1 and

z2(P
−1(ξj1)) < z2(P

−1(ξ−)) + 1.

From

xϕ
sj1+1 = F (z2(P

−1(ξj1 )), xϕ
sj1

) = F (z2(P
−1(ξj1 )), P−1(ξj1 ))

we conclude

0 ≤ t− sj1 < sj1+1 − sj1 = z2(P
−1(ξj1)) < z2(P

−1(ξ−)) + 1.

Consequently, we obtain

distC1(xϕt ,O
−) = distC1(xP

−1

t−sj (ξj1),O−) < ε,

which completes the proof of our claim that xP
−1(ξ−) is a slowly oscillating periodic

solution of Equation (4.1) and that

α(ϕ) =
{
x
P−1(ξ−)
t

∣∣ t ∈ R

}
.

6. It remains to prove that for ϕ ∈ W \W the solution xϕ of Equation (4.1)

is periodic. For this purpose, consider the two periodic orbits O+ = ω(ϕ) and

O− = α(ϕ) and assume that O+ 6= O− in the following. Then the projected

trajectories

c+ :[0, z2(P
−1(ξ+))] ∋ t 7−→ P x

P−1(ξ+)
t ∈ P W

and

c− :[0, z2(P
−1(ξ−))] ∋ t 7−→ P x

P−1(ξ−)
t ∈ P W

of these two orbits are continuous and not intersecting in view of the uniqueness of

solutions and injectivity of P . The restriction of c− to the interval [0, z2(P
−1(ξ−)))

is injective, since z2(P
−1(ξ−)) is the minimal period of solution xP

−1(ξ−). Conse-

quently, c− is a simple closed curve from [0, z2(P
−1(ξ−))] into the two-dimensional

Banach space M . Applying the Jordan curve theorem, we conclude that the trace

|c−| = P O− of c− decomposes M into two connected components, a bounded one,

called the interior of c− and denoted by int (c−), and an unbounded one, called the

exterior of c− and denoted by ext (c−). By repeating the same arguments for c+

instead of c−, it follows that the trace |c+| = P O+ also decomposes M into two

connected components: int(c+) and ext(c+).

If O+ 6= O− is true, then either ‖ξ+‖C1 > ‖ξ−‖C1 or ‖ξ+‖C1 < ‖ξ−‖C1 .

Consider the situation ‖ξ+‖C1 > ‖ξ−‖C1 first. As ξ+ = p+ Φ0 and ξ− = p− Φ0 with

uniquely determined constants p+, p− ∈ (0,∞), the inequality ‖ξ+‖C1 > ‖ξ−‖C1

implies p+ > p−. From the fact

|c−| ∩ [0,∞)Φ0 = {ξ−} = {p− Φ0}
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we conclude that the ray (p−,∞)Φ0 is either contained in the interior int(c−) or

contained in the exterior ext(c−) of c−. But (p−,∞)Φ0 is unbounded and this

implies (p−,∞)Φ0 ⊂ ext(c−). Furthermore, since the trace |c+| of c+ is connected

as a continuous image of an interval and |c+|∩(p−,∞)Φ0 = {p+ Φ0}, |c+| ⊂ ext(c−).

On the other hand, we claim that the bounded ray [0, p−)Φ0 is contained in

the interior int(c−) of the trace |c−|. In order to see this, observe that by Corollary

4.9 the projected trajectory c− can be represented by

c−(t) = xP
−1(ξ−)(t− 1)Φ0 + xP

−1(ξ−)(t)Φ−1

for all t ∈ [0, z2(P
−1(ξ−)]. In particular, c− is continuously differentiable and

( d
dt
c−)(0) = ẋP

−1(ξ−)(−1)Φ0 + ẋP
−1(ξ−)(0)Φ−1.

Now, 0 is a simple zero of the solution xP
−1(ξ−) of Equation (4.1) and therefore we

have ẋP
−1(ξ−)(0) 6= 0. This implies that ( d

dt
c−)(0) and Φ0 are linearly independent.

Hence, it follows that there is ε > 0 with
(
p− − ε, p−)Φ0 =

(
xP

−1(ξ−)(−1) − ε, xP
−1(ξ−)(−1)

)
Φ0 ⊂ int(c−).

As [0, p−)Φ0 is connected, the above leads to [0, p−)Φ0 ⊂ int(c−), which was our

claim.

Due to the compactness of (int c− ∪ |c−|) and the inequality ‖ξ+‖C1 > ‖ξ−‖C1

assumed above, we find an open neighborhood U ⊂ M of the point ξ+ such that

U ∩ |c−| = U ∩ int(c−) = ∅. Since we have ξ+ ∈ P W \ P W and P W is open as

shown in Corollary 5.12, we find a point ξ ∈ U ∩ P W . In particular, ξ ∈ ext(c−).

Consider the solution xP
−1(ξ) : R −→ [−2a, 2a] of Equation (4.1). This solution is

slowly oscillating and its segments converge to 0 as t → −∞ due to Corollary 5.1.

Consequently, P x
P−1(ξ)
t → 0 ∈M as t→ −∞. But

P x
P−1(ξ)
0 = ξ ∈ ext(c−)

and 0 ∈ int(c−), so there would exist some T ≤ 0 with P x
P−(ξ)
T ∈ |c−|, in contra-

diction to the uniqueness of solutions.

By assuming ‖ξ+‖C1 < ‖ξ−‖C1 and reversing the roles of c− and c+, the same

arguments as above leads to a contradiction. We conclude that ‖ξ+‖C1 = ‖ξ−‖C1

holds and thus the both equalities ξ+ = ξ− and O+ = O−. But, in view of

the equality ξ+ = ξ−, the monotonicity property of the sequence {ξj}j∈Z implies

ξj = ξ+ for all j ∈ Z. This finally shows xϕ = xP
−1(ξ+) and completes the proof. �

The preceding proposition ensures the existence of a slowly oscillating periodic

orbit for Equation (4.1), and we are thus led to the main result of the second part

of this work.

Theorem 5.20. The set W\W is the orbit O := {pt| t ∈ R} of a slowly

oscillating periodic solution p : R → R of Equation (4.1) whose minimal period is

given by three consecutive zeros of p. Furthermore,

int(P O) = P W,

and for every ϕ ∈W\{0} we have

distC1(F (t, ϕ),O) → 0

as t→ ∞.



4. A SLOWLY OSCILLATING PERIODIC ORBIT 143

Proof. Fix any element ϕ ∈ (W ∩H+
0 )\{0} and define the sequence {ξj}∞J⋆(ϕ)

in P (W ∩H+
0 ) and its limit ξ+ as in the proof of the last proposition. Then the

function p : R → R given by p(t) = xP
−1(ξ+)(t), t ∈ R, clearly forms a slowly

oscillating periodic solution of Equation (4.1) with p(0) = 0, P p0 ∈ (0,∞)Φ0 and

minimal period z2(P
−1(ξ+)). Denote by

O :=
{
pt| t ∈ R

}

the orbit and by

σ : [0, z2(P
−1(ξ+))] ∋ t 7−→ pt ∈ C1

the trajectory of p. Then the projected trajectory

c : [0, z2(P
−1(ξ+))] ∋ t 7−→ P pt ∈ P W

is continuous and its restriction to the interval [0, z2(P
−1(ξ+))) is injective, since

z2(P
−1(ξ+)) is the minimal period of the solution xϕ. Hence, c is a simple closed

curve from [0, z2(P
−1(ξ+))] into the two-dimensional Banach space M . Application

of the Jordan curve theorem shows that the trace |c| = |P σ| = P O of c decomposes

M into two connected components int(c) and ext(c) as already described in the

proof of the foregoing proposition.

1. The proof of P W ⊂ int(P O). By Corollaries 5.11 and 5.12, P W forms

an open neighborhood of the origin in M . Furthermore, for every ψ ∈ W we

have P W ∋ P xψt → 0 as t → −∞ in view of the definition of W and Corollary

5.1. This implies that P W is arcwise connected. From O ⊂ W \ W we see

P W ∩ P O = ∅. Hence, either P W ⊂ int(P O) or P W ⊂ ext(P O). Arguing as

in part 6 of the proof of Proposition 5.19, we conclude 0 ∈ int(P O). Therefore, we

have 0 ∈ P W ∩ int(P O) and P W ⊂ int(P O) follows.

2. The proof of P W ⊃ int(P O). Assuming the assertion int(P O) ⊂ P W is

false, we find a point χ ∈ int(P O)\P W and an associated path

γ : [0, 1] −→ int(P O)

from γ(0) = 0 ∈ P W to γ(1) = χ ∈ int(P O)\P W . Define

s̃ := inf
{
0 ≤ s ≤ 1 | γ(s) 6∈ P W

}
.

As by Corollaries 5.11 and 5.12, the set P W is an open neighborhood of 0 ∈ M ,

0 < s̃ ≤ 1. Furthermore, we have γ(s̃) 6= 0 since γ([0, s̃)) ⊂ P W and

γ(s̃) ∈ P W\P W = P W\P W = P (W\W ).

Hence, ψ := P−1(γ(s̃)) ∈ W\W , and xψ is a slowly oscillating periodic solution of

Equation (4.1) due to the last proposition. Since P ψ = γ(s̃) ∈ int(P O) holds, we

have ψ 6∈ O and thus xψt 6∈ O for all t ∈ R. In particular, this implies P xψt 6∈ P O

as t ∈ R. Now, by Corollary 5.15, the slowly oscillating periodic solution xψ has

a zero z > 0 with P xψz ∈ (0,∞)Φ0. Let c1, c2 > 0 be defined by c1 Φ0 = ξ+ and

c2 Φ0 = P xψz . Using the arguments contained in part 6 of the proof of the last

proposition, we find [0, c1)Φ0 ⊂ int(P O), (c1,∞)Φ0 ⊂ ext(P O) and analogously

[0, c2)Φ0 ⊂ int(P Ô), (c2,∞)Φ0 ⊂ ext(P Ô) where

Ô :=
{
xψt
∣∣ t ∈ R

}
.
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From P O ∩ P Ô = ∅ and P xψ0 = P ψ = γ(s̃) ∈ int(P O) ∩ P Ô we conclude that

P Ô ⊂ int(P O). In particular, it follows that

{c2 Φ0} = {P xψz } = P Ô ∩ [0,∞)Φ0 ⊂ int(P O) ∩ [0,∞)Φ0 = [0, c1)Φ0

and thus

‖ξ+‖C1 = ‖c1 Φ0‖C1 = c1‖Φ0‖C1 > c2‖Φ0‖C1 = ‖c2 Φ0‖C1 = ‖Pxψz ‖C1 .

Therefore, the convergence

ξj → ξ+ = P x
P−1(ξ+)
0 = P p0 ∈ P O

as j → ∞ shows the existence of an integer j0 ≥ J⋆(ϕ) with

‖ξj0‖C1 > ‖P xψz ‖C1 = c2‖Φ0‖C1

and hence,

ξj0 ∈ P (W ∩H+
0 ) \ (P Ô ∪ int(P Ô)) = P (W ∩H+

0 ) ∩ ext(P Ô).

As in the first step, we see x
P−1(ξj0 )
t → 0 and thus, P x

P−1(ξj0 )
t → 0 ∈ int(P Ô) as

t → −∞. Consequently, we find a T ≤ 0 with P x
P−1(ξj0 )
T ∈ P Ô, in contradiction

to the uniqueness of solutions in view of the injectivity of P on W .

3. The proof of W\W = O. Using Proposition 5.10 stating P W = P W and

the relation O ⊂W\W , we see

P W = P W

= int(P O)

= int(P O) ∪ ∂(int(P O))

⊂ P W ∪ P O

= P (W ∪ O) ⊂ P W,

which yields W = W ∪ O.

4. Given any function ψ ∈ W \ {0}, Proposition 5.19 yields that the segments

xψt of the associated solution for Equation (4.1) converge to an orbit of a slowly

oscillating periodic solution in W as t → ∞. Since the set O = W\W is the only

orbit of a slowly oscillating periodic solution in W , we see xψt → O as t → ∞,

which completes the proof of the theorem. �

Remark 5.21. In case of constant delay r ≡ 1, that is, in the situation of

Equation (3.2), the theorem above has been shown by Brunovský et al. in [3].
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22. Oskar Perron, Über Stabilität und asymptotisches Verhalten der Integrale von Differential-

gleichungssystemen, Mathematische Zeitschrift 29 (1928), 129–160.

23. Redouane Qesmi and Hans-Otto Walther, Center-stable manifolds for differential equations

with state-dependent delays, Discrete and Continuous Dynamical Systems 23 (2009), no. 3,

1009–1033.

24. Hans-Otto Walther, Differentiable semiflows for differential equations with state-dependent

delays, Universitatis Iagellonicae Acta Mathematica 41 (2003), 57–66.

25. , The solution manifold and C1-smoothness for differential equations with state-

dependent delay, Journal of Differential Equations 195 (2003), no. 1, 46–65.

26. , Smoothness properties of semiflows for differential equations with state-dependent

delays, Journal of Mathematical Sciences 124 (2004), no. 4, 5193–5207 (English. Russian

original).

27. , Convergence to square waves for a price model with delay, Discrete and Continuous

Dynamical Systems 13 (2005), no. 5, 1325–1342.

28. , Bifurcation of periodic solution with large periods for a delay differential equation,

Annali di Matematica Pura ed Applicata 185 (2006), no. 4, 577–611(35).

29. Edward M. Wright, A non-linear difference-differential equation, Journal für die reine und

angewandte Mathematik 194 (1955), 66–87.



Index and Notations

α-limit set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

⊙-reflexivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ω-limit set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

(DF 1) - (DF 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

(DF 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

(S 1) – (S 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

adjoint operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

autonomous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 f

center manifold reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

center space Cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 96

center-unstable space Ccu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

characteristic equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

constant K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 25

constant Ka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

constants cu, cc, cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15, 25

decomposition of C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 22

decomposition of C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

decomposition of C⊙∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

decomposition of the tangent space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 23

delay function r (in Part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

dual space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

exponential trichotomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 25

first return map W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

functions η0, ηd, ηκ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

functions Φ0, Φ−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

functions r⊙∗
i , i = 1, . . . , n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

generators G, Ge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 f, 22, 93

global attractor A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

global center-unstable manifold W η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

hyperplanes H−1, H0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

initial value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

initial value problem – IVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Landau symbol o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

149



150 INDEX AND NOTATIONS

linear extension Def(ϕ) of Df(ϕ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 10

linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12, 92

local center manifold Wc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 f

local center-unstable manifold Wcu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23, 41, 52, 109

local unstable manifold Wu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

Lyapunov functional V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

map Gη . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

map Kη . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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Abstract

The main issue of this dissertation is the question whether periodic orbits of a

delay differential equation still exist if a state-dependent delay is assumed instead

of a constant one. Motivated by a mathematical model to describe short term

fluctuations of exchange rates, a one-parameter family of scalar delay differential

equations is studied, where the positive parameter involved represents a kind of

sensitivity to price changes. In the case of a constant delay, this family of equations

was analyzed in different works in the last years, and so it is well known that at

a certain critical parameter the single non-hyperbolic equilibrium solution loses its

stability and is connected to a periodic orbit by a global center-unstable manifold.

Consequently, one may ask whether this is still true in the situation of a state-

dependent delay.

To address the above problem, the first part of this thesis is devoted to the dis-

cussion of a class of functional differential equations that was recently developed to

study differential equations with a state-dependent delay. Besides a brief summary

of some well-known facts, we establish the so-called principle of linearized insta-

bility and construct local center-unstable manifolds at stationary points for this

class of functional differential equations. Additionally, we prove the continuous

differentiability of the constructed manifolds.

The study of the introduced one-parameter family of delay differential equations

with a state-dependent delay is the main goal of the second part of this work.

Analyzing the structure of solutions and particularly their local behavior at the

single equilibrium solution, we finally generalize the result on existence of periodic

solutions in the situation of constant delay and prove that, under certain conditions

on the delay function and for parameter values above a critical one, a global two-

dimensional center-unstable manifold connects the equilibrium to a periodic orbit.
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Zusammenfassung

Das Hauptanliegen der vorliegenden Dissertation ist die Klärung der Frage,

ob eine spezielle verzögerte Differentialgleichung noch immer periodische Orbits

aufweist, wenn die involvierte Verzögerung nicht mehr als konstant, sondern als

zustandsabhängig angenommen wird. In der Arbeit wird eine 1-parametrige Familie

von skalaren verzögerten Differentialgleichungen, die ein mathematischen Modell

zur Beschreibung von kurzfristigen Schwankung von Wechselkursen repräsentiert,

studiert. Hierbei stellt der auftretende Parameter eine Art von Sensitivität dar,

mit der auf die Änderung von Kursen reagiert wird. Im Fall einer konstanten

Verzögerung wurde diese Familie von Differentialgleichungen in den letzten Jahren

sehr ausgiebig studiert und dabei insbesondere analytisch bewiesen, dass ab einem

gewissen kritischen Parameterwert das einzige auftretende Equilibrium, das zudem

nicht-hyperbolisch ist, seine Stabilität verliert und stattdessen durch Trajektorien

in einer globalen zentral-instabilen Mannigfaltigkeit mit einer periodischen Lösung

verbunden wird. Folglich stellt sich die Frage, ob dieses Szenario auch im Falle

einer zustandsabhängigen Verzögerung auftritt.

Zur Erörterung der oben beschriebenen Fragestellung beschäftigt sich der erste

Teil der vorliegenden Dissertation mit einer speziellen Klasse von Funktionaldifferen-

tialgleichungen, die in den letzten Jahren für die analytische Untersuchung von

Differentialgleichung mit zustandsabhängiger Verzögerung entwickelt worden ist.

Neben einem kurzen Überblick über einige bekannte Sachverhalte wird hier auch

das sogenannte Prinzip der linearisierten Instabilität und die Existenz von lokalen

zentral-instabilen Mannigfaltigkeiten an stationären Punkten für diese Klasse von

Funktionaldifferentialgleichungen bewiesen. Zusätzlich wird die C1-Glattheit dieser

Mannigfaltigkeiten gezeigt.

Der zweite Teil der Arbeit ist dann der Untersuchung der eingeführten 1-

parametrigen Familie von Differentialgleichungen mit zustandsabhängiger Verzö-

gerung gewidmet. Durch das Studium der Struktur von Lösungen und vor allem

deren lokalen Verhalten an dem einzigen auftretenden Equilibrium wird letztlich

das Resultat über die Existenz von periodischen Orbits in der Situation der kon-

stanten Verzögerung verallgemeinert und bewiesen, dass unter bestimmten Voraus-

setzungen an die Verzögerungsfunktion und im Falle eines über einem kritischen

Wert liegenden Parameters eine globale zweidimensionale zentral-instabile Mannig-

faltigkeit das Equilibrium mit einem periodischen Orbit verbindet.
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