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Abstract

Ambiguity is an inherent property of natural language. Its most prominent mani-
festations comprise syntactic ambiguity, lexical ambiguity, scope ambiguity and
referential ambiguity. Considering the high frequency with which ambiguity occurs
in unrestricted natural language, it is surprising how seldom ambiguity causes mis-
understandings. Most linguistic ambiguities in inter-human communication even
pass unnoticed, mainly because human cognition automatically and unconsciously
attempts to resolve ambiguity. A central contribution to this automatic and un-
conscious disambiguation is made by the integration of non-linguistic information
from cognitively readily available sources such as world knowledge, discourse context
or visual scene context. While a large body of behavioural investigations into the
interactions between vision and language has been accumulated, comparatively few
computational models of those interactions have been reported.

The focus of this thesis is to motivate, specify and validate a computational model
for the cross-modal influence of visual scene context upon natural language un-
derstanding and the process of syntactic parsing, in particular. We argue for a
computational model that establishes cross-modal referential links between words
in the linguistic input and entities in a visual scene context. Cross-modal referential
links are assigned on the basis of conceptual compatibility between the concepts
activated in the linguistic modality and the concepts instantiated in visual context.
The proposed model utilises the thematic relations in the visual scene context to
modulate attachments in the linguistic analysis.

In contrast to the majority of extant computational models for the interaction be-
tween vision and language, our model is motivated by an integrated theory of cog-
nition. We base our model architecture on the cognitive framework of Concep-
tual Semantics, an overarching theory of cognition and language processing by Ray
Jackendoff. In our model, we adopt the central tennet of Conceptual Semantics
that all cross-modal interactions of non-linguistic modalities with language are me-
diated by Conceptual Structure, a single, uniform representation of linguistic and
non-linguistic semantics. Conceptual Structure propagates the influence of the non-
linguistic modalities into syntactic representation via a syntax-semantics interface.
The purpose of this interface is to map between the syntactic and the semantic rep-
resentation by means of representational correspondence rules.

Our model implements central aspects of the cognitive architecture in Conceptual
Semantics. We encode the semantic information for all entities, be they linguistic or
non-linguistic in nature, on a single level of semantic representation. In particular,
the semantic part of linguistic analysis and visual scene information are included in
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viii Abstract

this representation. The semantic preferences arising from visual context constrain
the semantic part of linguistic analysis. The semantic part of linguistic analysis,
in turn, constrains syntactic analysis via the syntax-semantics interface. In this
way, our model achieves a semantically mediated propagation of non-linguistic vi-
sual scene information into syntactic representation.

We validate our model’s context integration behaviour under a range of experi-
mental conditions. The integration of visual scene context as a hard constraint
on linguistic analysis enforces an absolute dominance of visual context information
over linguistic analysis. As a result, hard integration can lead to a contextualised
linguistic analysis that violates linguistic well-formedness preferences in order to be
semantically compatible with the modelled visual context. Integrating visual con-
text information as a soft constraint on linguistic analysis affords cognitively more
plausible results. Soft integration permits to achieve a balance between conflicting
linguistic and contextual preferences based on the strength of the individual prefer-
ences. Under soft integration, our model also diagnoses which aspects of linguistic
analysis are in conflict with visual context information. Diagnosis constitutes an
important cognitive capability in the situated cognition of natural systems. The
ability to diagnose cognitive input permits the effective identification of which parts
of that input are incorrect, inconsistent or incompatible with pre-existing top-down
expectations and thus enables a more specific and adequate response to that input.
We further demonstrate our model’s robustness to conceptual underspecification in
the contextual representation. Our experiments show that the integration of con-
ceptually underspecified context representations still provides valuable information
to support the process of syntactic disambiguation. The capability of processing
conceptually underspecified semantic information is a relevant feature with regards
to the handling of perceptual uncertainty and perceptual ambiguity.

The implementation of our model centres around WCDG2, a weighted-constraint
dependency parser for German. We encode situation-invariant semantic knowledge
including semantic lexical knowledge and world knowledge in terms of concepts in
an OWL ontology (A-Box). Situation-specific visual scene information is encoded
in context models that assert instantiations of concepts from the ontology joined
by thematic relations. The contextual constraints upon the semantic part of lingu-
istic analysis are communicated to the parser in the form of score predictions for
semantic dependency assignments in the linguistic analysis. These score predictions
are computed by a predictor component prior to parse time and are accessed by
the parser at parse time. The predictor computes its prediction scores based on the
input sentence and the visual scene information in the context model. The primary
objective of the predictor component is to veto all semantic dependencies in the
input sentence that are incompatible with the asserted visual context information.
The implementation of our model for the cross-modal influence of visual scene con-
text upon linguistic processing is also subject to a number of significant limitations.
The most severe of these with regards to the objective of modelling vision-language
interaction are the unidirectionality of the implemented vision-language interaction,
our non-incremental approach to linguistic processing and the limited scope of the
semantic part of linguistic analysis. We discuss these limitations in detail and point
out directions for further research to address them.
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In summary, the model presented in this thesis is the result of an interdisciplinary
research effort whose main objective was to bring together a suitable theory of
cross-modal cognition and methods of natural language engineering. While this
work cannot claim to have bridged the gap between the disciplines in its entirety,
the presented results constitute an encouraging first step towards achieving the am-
bitious overall goal. The outcome of this research is a cognitively motivated model
implementation that achieves selective modulations of syntactic attachments based
on representations of visual scene context by mediation of a single shared represen-
tation of linguistic and non-linguistic semantics.
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Zusammenfassung

Ambiguitét ist eine inhédrente Eigenschaft natiirlicher Sprache, deren héufigste Aus-
priagungen syntaktische oder strukturelle Ambiguitdt, lexikalische Ambiguitét,
Scopus-Ambiguitit und referenzielle Ambiguitit umfassen. In Anbetracht der grofien
Héufigkeit, mit der Ambiguitét in natiirlicher Sprache vorkommt, ist es verwunder-
lich, wie selten Ambiguitéit tatsidchlich Missverstdndnisse verursacht. Die meisten
Ambiguitdten in menschlicher Kommunikation werden nicht einmal bemerkt, vor-
wiegend weil die menschliche Kognition automatisch und unbewusst versucht, Am-
biguitdten aufzulosen. Einen zentralen Beitrag zu dieser automatischen und unbe-
wussten Disambiguierung leistet die Integration von nicht-sprachlichen Informatio-
nen aus kognitiv zugénglichen Quellen wie Weltwissen, Diskurskontext oder visuel-
lem Szenenkontext. Wihrend eine Vielzahl von verhaltenspsychologischen Untersu-
chungen zu Interaktionen zwischen Sehen und Sprache vorliegen, wurde bisher nur
eine vergleichsweise geringe Zahl von computationellen Modellen beschrieben.

Der Kern dieser Arbeit beinhaltet die Motivation, Spezifizierung und Validierung ei-
nes computationellen Modells fiir den cross-modalen Einfluss von visuellem Szenen-
kontext auf das Verstehen natiirlicher Sprache im Allgemeinen — und den Prozess
des syntaktischen Parsings im Besonderen. Wir stellen ein computationelles Modell
vor, das cross-modale Referenzbeziehungen zwischen Worten im sprachlichen Input
und Entitdten im visuellen Kontext herstellt. Die cross-modalen Referenzbeziehun-
gen werden dabei zugewiesen basierend auf der Konzeptkompatibilitéit zwischen den
sprachlich aktivierten Konzepten und den Konzepten, die im visuellen Kontext in-
stanziiert wurden. Das vorgestellte Modell nutzt thematische Relationen im visuellen
Szenenkontext, um Anbindungen der sprachlichen Analyse zu beeinflussen.

Im Gegensatz zu der Mehrzahl der bestehenden computationellen Modelle ist unser
Modell durch eine umfassende Theorie der menschlichen Kognition motiviert. Die
Architektur unseres Modells basiert auf dem kognitiven Framework der Konzeptu-
ellen Semantik (Conceptual Semantics), einer weitreichenden Theorie zu Kognition
und Sprachverarbeitung von Ray Jackendoff. In unserem Modell folgen wir der zen-
tralen Annahme der Konzeptuellen Semantik, dass alle cross-modalen Interaktionen
von nicht-sprachlichen Modalitdten mit Sprache durch die Konzeptuelle Struktur
(Conceptual Structure) vermittelt werden. Bei der Konzeptuellen Struktur handelt
es sich um die zentrale Représentation sprachlicher und nicht-sprachlicher Semantik.
Die Konzeptuelle Struktur reicht den Einfluss der nicht-sprachlichen Modalitéten in
die syntaktische Représentation iiber eine Schnittstelle zwischen Syntax und Se-
mantik weiter. Die Aufgabe dieser Schnittstelle ist es, syntaktische und semantische
Reprisentationen iiber Korrespondenzbeziehungen aufeinander abzubilden.
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xii Zusammenfassung (German Abstract)

Unser Modell implementiert zentrale Aspekte der kognitiven Architektur aus der
Konzeptuellen Semantik. Wir reprasentieren die semantische Information aller En-
titédten, seien sie sprachlicher oder nicht-sprachlicher Natur, auf ein und derselben
Représentationsebene. Insbesondere werden der semantische Teil der sprachlichen
Analyse sowie visuelle Szeneninformationen in dieser Repréisentation abgebildet.
Die semantischen Préferenzen, die sich aus dem visuellen Kontext ergeben, be-
schrinken den semantischen Teil der sprachlichen Analyse. Der semantische Teil
der sprachlichen Analyse wiederum beschrankt die syntaktische Analyse iiber die
Syntax-Semantik-Schnittstelle. Auf diese Weise erzielt unser Modell die semantisch
vermittelte Propagation nicht-sprachlicher visueller Szeneninformation in die syn-
taktische Représentation.

Wir validieren das Verhalten des vorgestellten Modells hinsichtlich der Integration
von kontextueller Information unter verschiedenen experimentellen Bedingungen.
Die Integration von visuellem Szenenkontext als harte Beschrinkung der sprach-
lichen Analyse erzwingt eine absolute Dominanz der visuellen Kontextinformation
iiber die sprachliche Analyse. Wir beobachten, dass die harte Integration zu einer
kontextualisierten Analyse des sprachlichen Inputs fithren kann, die Regeln sprach-
licher Wohlgeformtheit verletzt, um semantische Kompatibilitdt mit dem model-
lierten visuellen Kontext zu erzielen. Die Integration von visueller Kontextinfor-
mation als weiche Beschrinkung der sprachlichen Analyse hingegen ergibt kognitiv
plausiblere Resultate. Weiche Integration gestattet konfligierende sprachliche und
kontextuelle Priferenzen basierend auf ihrer Gewichtung gegeneinander abzuwégen.
Weiche Integration eroffnet in unserem Modell auch die Moglichkeit der Diagnose,
um festzustellen, welche Aspekte der sprachlichen Analyse mit der visuellen Kon-
textinformation im Konflikt stehen. Die Fahigkeit zur Diagnose ist eine wichtige
kognitive Féahigkeit natiirlicher Systeme im Rahmen von kontextuell eingebundener
Wahrnehmung und Interaktion. Diagnose erméglicht zu erkennen, welche Teile eines
kognitiven Inputs inkorrekt, inkonsistent oder inkompatibel mit bestehenden Top-
Down-Erwartungen ist, und erméglicht so, angemessen und effektiv auf diesen Input
zu reagieren. Wir demonstrieren weiterhin die Robustheit unseres Modells gegeniiber
konzeptueller Unterspezifikation in der Représentation von visuellem Kontext. Un-
sere Experimente zeigen, dass die Integration von konzeptuell unterspezifizierten
Kontextreprisentationen dennoch wertvolle Informationen liefern kann, um den Pro-
zess der syntaktischen Disambiguierung zu unterstiitzen. Die Fahigkeit, konzeptuell
unterspezifizierte semantische Information verarbeiten zu kénnen, ist eine wichtige
Systemeigenschaft fiir die Modellierung von perzeptueller Unsicherheit und perzep-
tueller Mehrdeutigkeit.

Im Mittelpunkt der Implementierung des Modells steht WCDG2, ein Dependenz-
parser des Deutschen auf Basis eines gewichteten Constraint-Formalismus. Situa-
tionsunabhingiges semantisches Wissen wie semantisches lexikalisches Wissen und
Weltwissen sind durch Konzepte abgebildet, die die Konzepthierarchie einer OWL-
Ontologie definieren. Situationsspezifische Szeneninformation bilden wir in Kontext-
modellen ab, die Instanziierungen der Konzepte aus der Ontologie und themati-
sche Relationen zwischen diesen Konzeptinstanzen beinhalten. Die kontextuellen
Praferenzen, die sich aus dem modellierten visuellen Szenenkontext ergeben, werden
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dem Parser in Form von Bewertungsvorhersagen fiir die Zuweisung von semanti-
schen Dependenzen in der sprachlichen Analyse iibergeben. Diese Bewertungsvor-
hersagen werden von einer Pradiktor-Komponente vor der Parsezeit berechnet; der
Parser greift dann zur Parsezeit auf diese Bewertungsvorhersagen zu. Die Berech-
nung der Vorhersagen durch den Préadiktor erfolgt basierend auf dem eingegebenen
Satz und der visuellen Szeneninformation im Kontextmodell. Die Hauptaufgabe des
Pradiktors ist es dabei, all jene semantischen Dependenzen durch Vergabe schlechter
Bewertungen zu verbieten, die inkompatibel mit der visuellen Kontextinformation
sind.

Die Implementierung unseres Modells fiir den cross-modalen Einfluss von visuel-
lem Szenenkontext auf die sprachliche Verarbeitung unterliegt auch einer Vielzahl
von nicht unerheblichen Einschrénkungen. Aus unserer Sicht sind drei dieser Ein-
schrankungen hinsichtlich des Modellierungszieles besonders schwerwiegend: 1) die
Unidirektionalitdt der implementierten Sehen-Sprache-Interaktion, 2) das Fehlen
von Inkrementalitéit in der sprachlichen Verarbeitung und 3) die begrenzte sprach-
liche Abdeckung im semantischen Teil der sprachlichen Analyse. Wir diskutieren
diese Einschrankungen im Detail und zeigen Ansétze auf, diesen Einschrinkungen
im Rahmen weiterfithrender Forschungsansétze zu begegnen.

Zusammenfassend kann gesagt werden, dass diese Arbeit das Resultat eines inter-
disziplindren Forschungsansatzes darstellt, dessen Hauptziel es war, eine geeignete
Theorie der cross-modalen Kognition mit entsprechenden Methoden der Sprachtech-
nologie zusammen zu fithren. Auch wenn diese Arbeit nicht den Anspruch erhebt,
dieses Ziel in vollem Umfang erreicht zu haben, so sind die vorgestellten Ergebnisse
doch vielversprechende erste Schritte in Richtung der Erreichung dieses ehrgeizi-
gen Gesamtzieles. Das Ergebnis dieser Arbeit ist die Implementierung eines kognitiv
motivierten Modells, das anhand von visuellem Szenenkontext in der Lage ist, selek-
tiv syntaktische Anbindungen zu beeinflussen. Die Beeinflussung der syntaktischen
Verarbeitung erfolgt dabei durch Vermittlung einer zentralen Reprisentation von
sprachlicher und nicht-sprachlicher Semantik.
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Chapter 1

Introduction

A prominent feature of natural language is the occurrence of ambiguity. Ambi-
guity denotes the fact that a single linguistic entity gives rise to more than one
interpretation. The sources of ambiguity are manifold and comprise lexical ambigu-
ity, syntactic or structural ambiguity, referential ambiguity and scope ambiguity as
foremost representatives. Examples for these types of ambiguity are:

Lexical Ambiguity They read a book.
‘read’ can be either present or past tense.

Structural Ambiguity Flying planes can be dangerous.
‘planes’ can either be the direct object of ‘flying’ or the
subject of ‘can’.

Referential Ambiguity He is a friend of mine.
Without disambiguating context it is unknown which
entity in the real world ‘He’ is referring to.

Scope Ambiguity There was a name tag beside every plate.
The quantifier ‘every’ can take wide or narrow scope
such that there may have been a single name tag beside
all plates or a separate name tag beside each plate.

Linguistic enquiry leads to the realisation that ambiguity is an inherent property of
natural language rather than a defect; as such, it contributes to the linguistic norm
rather than constituting an exception to that norm. Despite the omnipresence of am-
biguity, language-mediated communication between humans is surprisingly success-
ful in general, even when ambiguities remain without explicit or conscious resolution.
We consider an ambiguity resolved if the number of its possible interpretations has
been reduced down to precisely one. Relative to the frequency of their occurrence,
misunderstandings resulting from the above types of ambiguity are quite rare. This
begs the question as to the nature of the cognitive processes that account for the
comparative robustness and effectiveness of human natural language understanding
in the presence of ambiguity.
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In principle, three approaches for processing linguistic ambiguity are conceivable:

1. Attempt ambiguity resolution and succeed.

In this case, disambiguation can be achieved either by adopting suitable de-
faults in linguistic decision making or by the automatic and unconscious in-
corporation of additional sources of information. Including the additional in-
formation permits to constrain utterance interpretation, which results in the
dismissal of invalid interpretations. Plausible candidates for such additional
sources of information are discourse context, world knowledge and immediate
visual scene context.

2. Attempt disambiguation and fail.

If disambiguation according to 1 failed and the resolution of the ambiguity
is indispensable for achieving a communicatively adequate level of utterance
understanding, linguistic processing must attract attention to signal for help
in disambiguation. In this case, the inability to arrive at a single uniform
interpretation blocks the process of understanding and may trigger appropriate
communicative strategies to resolve the ambiguity interactively. In contrast to
the other two options, the ambiguity has surfaced into consciousness in this
case.

3. Do not attempt disambiguation.
An ambiguity that still permits to attain a level of understanding which is ap-
propriate in the given communicative situation may remain unresolved. The
corresponding linguistic entity then continues to be processed in its semanti-
cally underspecified form and may be resolved at a later stage when sufficient
information is available for its disambiguation.

Findings from psycholinguistic suggest that human language understanding in fact
involves a mixture of the three strategies: Ambiguities whose resolution is not es-
sential for the overall comprehension of the utterance or the speech act may be left
unresolved and seem to be processed in their semantically underspecified, “good-
enough” form (Ferreira et al., 2002; Christianson et al., 2006; Ferreira and Patson,
2007). For ambiguities whose resolution is essential to the given communicative
situation, disambiguation is attempted by access to information from readily avail-
able sources such as discourse context, world knowledge or immediate visual scene
context. If successful, the resolution of these ambiguities proceeds automatically,
i.e., without any conscious effort. Finally, ambiguities essential for understanding
which cannot be resolved need to be addressed consciously. Typically, this involves
clarification strategies that are compatible with the pragmatic constraints of the
current communicative situation. The majority of linguistic ambiguities is handled
by strategies 1 and 3 such that the presence of ambiguity in human communication
is rarely even consciously noticed.

Given that the production and understanding of linguistic utterances by humans is
always embedded in some form of context (e.g., Crain and Steedman, 1985; Gee,
2001), the automatic integration of extra-sentential context information plays a sig-
nificant role in situated language comprehension. Yet, in the implementation of com-
putational language analysis systems, contextual influences upon linguistic analysis



and language understanding still constitute one of the most widely disregarded fac-
tors. As a result, the majority of parsers today still proceed sentence by sentence
and compute their linguistic analyses in complete contextual isolation.

The focus of this thesis therefore is on the modelling of linguistic ambiguity resolu-
tion as part of natural language understanding based on information from immediate
visual scene context as an extrasentential and non-linguistic source of information.
As an example for our modelling focus, consider Sentence 1.1, taken from Tanen-
haus et al. (1995). This syntactically ambiguous instruction can be parsed to afford
either of the structural representations 1.1.1.Syn or 1.1.2.Syn. Each of these struc-
tural representations corresponds to a semantically distinct interpretation which we
represent by the conjunction of predicates in 1.1.1.Sem and 1.1.2.Sem, respectively.
In the absence of a biasing context, both interpretations are equally acceptable; each
interpretation has a valid structural representation such that a decisive disambigua-
tion on syntactic grounds alone cannot be achieved. A purely syntactic parser needs
to incorporate additional information in order to arrive at a qualified structural
decision.

(1.1) Put the apple on the towel in the box.

(1.1.1.Sem)  put_on(Apple, Towel) A in(Towel, Box)
(1.1.1.Syn) [ Put [ the apple |yp on [ the towel [ in the box |pp |np |s-

(1.1.2.Sem)  put_in(Apple, Box) N on(Apple, Towel)
(1.1.2.Syn) [ Put [ [ the apple |xp [ on the towel |pp |yp in [ the box |np |s.

The integration of suitable context information can help constrain the linguistic
analysis of Sentence 1.1 to support the formation of interpretational preferences.
Context provides support to linguistic analysis if referential links between contex-
tual and linguistic entities are established; otherwise, the context is perceived as
unrelated to the utterance. Visual scene context can contribute to disambiguation
if words in the sentence are found to refer to entities in the visual scene. Tanenhaus
et al. (1995) observed that humans, when presented with an ambiguous sentence in
a visual scene context, automatically attempt to establish referential links between
linguistic and visual entities, i.e., humans assume that the sentence makes reference
to the co-present visual scene and hence attempt to match linguistic entities and
entities in visual context across modalities.

Once we know which words refer to which entities in the visual scene, the relations
between referents in the visual scene can enrich our knowledge of relations between
linguistic entities. Contextual support of disambiguation is achieved if the knowledge
from the visual scene imposes additional constraints on the set of acceptable lingu-
istic interpretations. Contextual constraints do not effect the complete dismissal of
an interpretation; rather, they influence the degree of an interpretation’s accept-
ability in the given context. Acceptability hence is a graded and context-dependent
phenomenon (Crain and Steedman, 1985).
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Interpreting Sentence 1.1 in the presence of a visual scene context containing a single
apple and a towel which is lying in a box will provide a strong bias in favour of Inter-
pretation 1.1.1.Sem. Conversely, a visual scene context containing an apple resting
on a towel beside an empty box will afford a preference for Interpretation 1.1.2.Sem.
The preferred sentence interpretation is the one which most closely aligns with the
visually perceived state of affairs. A modification to the visual scene context can
therefore modulate the linguistic interpretation and hence the corresponding syn-
tactic analysis. This is an evident example of the influence of non-linguistic visual
scene context upon linguistic decision making — and syntactic analysis, in particular.

Considering the importance of visual context in situated language understanding
it is surprising to see how few successful computational modelling approaches have
been reported for this phenomenon. In the extant models, the problem of integrating
cross-modal context into language processing is primarily perceived as an engineer-
ing challenge rather than as an issue of cognitive process modelling. Consequently,
the implementation focus of those models is on observational adequacy rather than
on the adequate modelling of cognitively plausible processes of human cognition and
natural language understanding. Nor do the existing models attempt to integrate
into the context of a more comprehensive theoretical framework of human cognition.
With the work presented in this thesis, it is our intention to make a first step towards
bridging the gap between cognitive theory and methods of natural language engi-
neering. We aspire to do so by deriving requirements for our computational model
from two sources: behavioural observations of cross-modal interactions in human
language processing and an integrated theory of human cognition. In approaching
the modelling challenge from a cognitive as well as from a language-engineering per-
spective, we aim to design and implement a model that — apart from exhibiting
observationally adequate behaviour — also meets important cognitive requirements
of natural systems and, as such, can be argued for within the framework of a general
theory of human cognition.

1.1 Line of Argument and Central Claims

From the large span of interaction phenomena between vision and language, we select
the influence of visual scene understanding upon linguistic processing as the topic of
this thesis. We use the term wvisual understanding in a broad sense to comprise the
entire process of visual perception from the initial stages of sensory processing to
the higher stages of visual processing and interpretation. We use the term linguistic
processing to denote the processes of semantic and syntactic analysis in the context
of natural language understanding. One of the central questions to be addressed in
this thesis is how inherently non-linguistic information from a visual scene context
can affect linguistic processing — and the resolution of syntactic ambiguity, in par-
ticular. The primary objective of this work is to motivate, implement and evaluate
a model for the influence of visual understanding upon linguistic processing based
on an existing syntax parser implementation. Our modelling approach is structured
into three main steps: 1) the identification of key findings from the literature and
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the derivation of suitable modelling requirements from those findings, 2) the integra-
tion of the collected requirements into a coherent and implementable computational
model, and 3) the critical evaluation of that computational model’s implementation.

The line of argument and the central claims in this thesis can be summarised as
follows: There is significant empirical evidence to suggest that visual and linguistic
processing proceed in parallel and strongly interact with each other in the course of
their progress (Cooper, 1974; Tanenhaus et al., 1995; Spivey et al., 2002). Experi-
mentally observed eye-movement patterns support the interpretation that humans
continually seek to establish reference between linguistic and visually perceived en-
tities (Tanenhaus et al.; 1995; Spivey et al., 2002). A critical factor in establishing
cross-modal reference is the degree of conceptual compatibility between the con-
cepts activated linguistically and concepts activated visually (Cooper, 1974; Huettig
et al., 2006). A cognitively motivated model of the cross-modal matching between
linguistic and visual entities must therefore link the representations of linguistic and
visually perceived entities to the corresponding concepts. Furthermore, the model
must permit to evaluate the conceptual compatibility between different concepts.
An integrated theoretical account of the interaction between non-linguistic infor-
mation and linguistic processing is provided by Jackendoff’s theory of Conceptual
Semantics which provides a representationalist account of cognition (Jackendoff,
1983). Each modality creates its own, domain-specifically encoded representation
such that modalities are informationally encapsulated and cannot directly interact
with each other (Jackendoff, 1996). For this reason, the representations resulting
from visual understanding and syntactic processing cannot interact with each other
directly. According to Conceptual Semantics, there are two indirect ways in which
modalities can interact with each other: either via an interface which maps be-
tween the modalities’ representational codes based on correspondence rules or via a
mediating shared level of representation which is constrained by the interacting rep-
resentations. Conceptual Semantics centres around the hypothesis that cross-modal
interactions with language are all mediated by a single, uniform level of semantic
representation which encodes concepts, concept instances and semantic relations
between concept instances (Conceptual Structure Hypothesis). This uniform rep-
resentation of semantics is constrained by syntax and visual understanding. The
representations of syntax and visual understanding interact with the mediating se-
mantic representation via representational interfaces.

Our model of linguistic processing seeks to implement this mediation between lingu-
istic and non-linguistic information via a shared semantic representation. In line
with Conceptual Semantics, our model treats visual context as a source of addi-
tional, non-linguistic information that gives rise to constraints on the set of accept-
able semantic interpretations of linguistic input. The constraints of visual context
propagate into syntax via the interface between the syntactic and semantic levels of
representation.
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Our model implementation centres around a constraint-based parser that permits
the integration of additional constraints — such as visual context compliance — into
its linguistic processing capabilities. We augment the parser’s syntactic processing
capabilities with a semantic level of representation that interfaces with the syntactic
level via correspondence rules. The semantic level of representation is constrained
to comply with both syntax and the semantic representation of visual context. The
representation of visual context consists of ontological concept instances between
which semantic relations have been defined. Contextual constraints enforce the
compliance of the shared semantic representation with visual context. We hence
achieve a semantically mediated propagation of visual context information into syn-
tax: visual context constrains the semantic representation of linguistic semantics
which, in turn, interacts with syntactic representation. To show the effectiveness of
our model, we evaluate its disambiguating capabilities under a number of different
contextual conditions.

1.2 Thesis Structure

The overall structure of this thesis reflects the structure of our approach and hence
breaks down into three main parts: the outline of the model motivation in Part I,
the detailed description of the proposed model and its computational implementa-
tion in Part II and the discussion of the experimental results from model validation
as well as the summary of the overall conclusions in Part III.

The model motivation in Part I begins with the introduction provided in this chapter
to delineate the thesis topic and to define the topical focus of the thesis. Chapter 2
reviews the state of the art, both in behavioural research and in computational
modelling. We present central publications from the current body of literature on
the interaction between vision and language and provide an overview over extant
modelling efforts. A small number of more recent modelling implementations are
discussed in detail.

An important constraint to our model is the requirement of its integrability into a
more general theory of cognition. To this end, Chapter 3 introduces Ray Jackendoft’s
Conceptual Semantics as a theoretical framework which offers an integrated account
of the cross-modal interaction between vision and language.

Chapter 4 motivates the use of WCDG, a weighted-constraint dependency-parser,
as the component for linguistic processing in our model. The chapter also outlines
the benefits and limitations of approaching natural language parsing as a constraint-
satisfaction problem. Chapter 4 concludes our model motivation and the collection
of modelling requirements.

Part II provides an in-depth description of our modelling decisions and the implemen-
tation-specific aspects of the proposed model. We begin with a detailed description
of the functional enhancements to the WCDG parser in Chapter 5. These functional
extensions were needed to enable the integration of visual context information into
linguistic processing.
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Another important aspect of our model is the representation of situation-invariant
semantic knowledge and situation-specific visual scene knowledge. We describe our
modelling decisions regarding the representation of these types of knowledge in
Chapter 6. The chapter also outlines the role of the reasoner in our model and
describes the types of inferences it draws.

The PPC is the central component in our model which enables the cross-modal
influence of visual context upon linguistic processing. We described it in detail
in Chapter 7. We outline how fundamental cognitive processes in the cross-modal
interaction between vision and language such as grounding and cross-modal match-
1ng are implemented in our model and how visual context information can exert an
effect upon linguistic processing.

In Part III, finally, we report the behaviour of our model under various experimental
conditions. The capability to perform semantic parsing constitutes a key prerequi-
site for our model implementation. Chapter 8 describes a pre-experiment in which
the coverage of the semantic extension to WCDG's standard grammar in our model
is evaluated on a corpus of unrestricted natural language.

Chapter 9 discusses the first application of our model implementation. The aim of
this experiment is to demonstrate that an influence of visual scene information upon
syntactic parsing can be enforced in our model. This chapter offers a discussion of
the results obtained from enforcing an absolute dominance of visual context over
linguistic analysis by integrating contextual information via hard integration con-
straints.

In the subsequent chapters we report successive refinements to the initial context
integration approach. The first improvement is provided by turning the context inte-
gration constraints into soft constraints on linguistic analysis. Constraint relaxation
permits to balance contextual against linguistic preferences such that the absolute
dominance of visual context over linguistic analysis is resolved. As a consequence of
constraint relaxation, our model can process and diagnose conflicts between lingu-
istic and contextual preferences. The effects of constraint relaxation upon linguistic
analysis and syntactic disambiguation are reported in Chapter 10.

Chapter 11 discusses the importance of grounding for the cross-modal influence of
visual context upon linguistic processing. In these experiments we release the as-
sumption that linguistic and visual modality provide information of the same degree
of conceptual specificity. In that chapter we investigate the effect upon syntactic
parsing that results from integrating conceptually underspecified representations of
visual scene context.

Part IIT of the thesis concludes with Chapter 12 which contains a summary of the
central findings and conclusions of this thesis as well as an outlook to future direc-
tions of research.

The appendix to this thesis provides additional material to complement the exam-
ples given in the argumentative parts of this thesis. Concretely, it contains the
list of all requirements collected, the concept hierarchy used in context modelling,
mathematical derivations of some of the more complex formulae quoted, the sen-
tences studied in the experimental runs as well as all the parse trees for the reported
experiments and the empirical data based on which the graphs were plotted.
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Chapter 2

Cross-Modal Interactions between
Vision and Language

The scientific investigation of cross-modal interactions between vision and language
has been intensifying continually since the report of the first linguistically rele-
vant studies in the 1970s (e.g., Cooper, 1974, 1976; McGurk and MacDonald, 1976,
1978). A comprehensive view of the spectrum of these interactions needs to inte-
grate insights from psycholinguistics, cognitive neuroscience, cognitive psychology,
linguistics and cognitive science. It is the purpose of this chapter to provide a phe-
nomenological overview over some of the central aspects of the cross-modal inter-
actions between vision and language. We cite influential empirical reports that form
a major source of motivation for the modelling attempt described in this thesis.
In the course of our discussion of the literature we identify relevant requirements
for the implementation of a computational model. The empirical observations pre-
sented in this chapter are intended to serve as a fact basis that an integrated theory
of cognition needs to account for. One such theory will be discussed in Chapter 3.

This chapter begins with establishing the distinction between the cross-modal inter-
actions in sensory and representational modalities in Section 2.1. From there we
proceed with a focus on the interaction between vision and language, and outline
cross-modal interaction phenomena at word and sub-word level in Section 2.2. Fol-
lowing the course of historical development in the field, we discuss the findings of
some very influential studies on the interaction between vision and language compre-
hension at the level of linguistically more complex units such as phrases and entire
sentences in Section 2.3. Section 2.4 reviews investigations aiming to illucidate the
nature of the mental representations underlying the cross-modal interaction with
language. Section 2.5 provides an overview of existing computational modelling
efforts for the cross-modal interaction between vision and language.

11
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2.1 Sensory versus Representational Modalities

For simple auditory-visual stimuli such as combinations of light flashes and beeps,
multisensory integration has been reported to commence as early as visual cortical
processing, about 46 ms after stimulus onset (Molholm et al., 2002). In comparison,
the cross-modal interactions with the cognitively higher levels of linguistic process-
ing such as language understanding occur at a much later period in time. EEG
studies reveal that specific brain responses to lexical, syntactic and semantic fea-
tures of linguistic input are observed in the order of magnitude of one to several
hundred milliseconds after stimulus onset. These latencies can be accounted for by
considering that the linguistic information must first be extracted and decoded from
the sensory input via which it has been received in the auditory, visual or haptic
modality. Interactions with language understanding hence build on the results of
sensory processing and consequently must be temporally posterior to the onset of
sensory processing in the sensory input modality.! Multisensory integration, on the
other hand, occurs during early and cognitively lower-level sensory processing. The
empirically observed and significant temporal differences in cross-modal integration
responses provide a first indication of the qualitative difference between the cross-
modal interactions of purely sensory and linguistic stimuli.

The categorisation of sensory stimulation is performed based on of the physical
parametrisation of its sensorially detectable properties such as brightness, loudness,
pressure, temperature, duration etc. If the information encoded in the stimulus is
non-symbolic in nature, stimulus categorisation results in the formation of a direct
link between the internal representation of the stimulus and the conceptual category
it activates. If, on the other hand, the stimulus encodes symbolic information, its
categorisation results in the identification of the encoded symbol. The retrieval of
the symbol’s meaning is a separate process. In contrast to the linguistic symbols
which do carry a meaning, non-symbolic percepts have no intrinsic meaning. It is
in this respect, that cognitive processing of a purely sensory stimulus differs from
that of a sensory stimulus which encodes symbols with an intrinsic meaning, such
as language. We refer to a modality that encodes and processes the latter type of
stimuli as a representational modality.Other, non-linguistic examples of representa-
tional modalities are spatial, musical or visual scene understanding. In all of these,
low-level sensory perception provides input which, upon categorisation of the en-
coded symbols, is processed further in higher cognitive processes. We henceforth
refer to a stimulus evoking purely sensory simulation that encodes exclusively non-
symbolic information as a sensory stimulus. A stimulus evoking sensory stimulation
which encodes symbolic information is referred to as a representational stimulus. A
special subset of representational stimuli are linguistic stimuli in which the encoded
information consists of linguistic symbols.

IThis is not to say, however, that sensory and linguistic processing occur in strict temporal succession;
nor do they proceed in complete isolation of each other.
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Processing a linguistic stimulus results in the categorisation of its sensory input as
consisting of discrete! linguistic building blocks or atoms in a temporal sequence.
For spoken language, these atoms are the identified phonemes; in reading and touch-
reading, they are the individual letters perceived. Combinations of these atoms form
arbitrary linguistic symbols, be they morphemes or words, that combine “rulefully”
(Harnad, 1990) to make up an utterance. Each of these arbitrary linguistic symbols
carries its own meaning that it contributes to the process of evaluating the utter-
ance’s overall meaning. The categorisation of a linguistic stimulus hence gives rise
to a discrete symbolic representation.

The diverse nature of the information encoded in different modalities — be they sen-
sory or representational in nature — begs the question of whether — and if so, how
— different modalities can interact with each other at all. An integrated account
of cross-modal interaction with language must be expected to provide an answer to
this question. The general theory of cognition discussed in Chapter 3 does indeed
offer an account of these phenomena.

In the further course of this thesis we refer to an early cross-modal interaction at
the stage of sensory processing as multisensory integration. We continue to use
the more general term cross-modal interaction for any type of interaction in which
two modalities mutually affect each other. For a strictly unidirectional effect of one
modality upon another we adopt the term cross-modal influence.

Both multisensory integration and cross-modal interactions between representa-
tional modalities serve the purpose of minimising the amount of incompatible in-
formation in cognition. How this goal is achieved, differs depending on the type of
modalities that interact.

In the sensory modalities, multisensory integration produces a single, information-
ally fused percept from multimodal sensory input whenever possible.?2. When the
information obtained from the different modalities is compatible with each other,
multisensory integration gives rise to superadditive neural response patterns and
produces a robust integrated percept of the different sensory inputs. This is ob-
served, for example, in cases where and auditory and a visual stimulus temporally
and spatially co-occur within well-defined temporal windows (e.g., Wallace et al.,
1998).

In cases in which the information in the modalities is cross-modally incompatible,
sensory processing still attempts to form a single, uniform percept from the sensory
input. The physical parameters of that percept are chosen such that the overall
perceptual conflict between the modalities is minimised. Interestingly, the percepts

1This holds true even if the sensory input via which language is received is encountered as a — more or
less — continuous stream of input. Typical examples are the continuity of human-generated speech or the
continuous flow of movements in the production of sign-language.

2A discussion of the boundary conditions under which multisensory integration occurs is beyond the
scope of this thesis. Suffice it to say here that certain spatio-temporal constraints apply in order for
multisensory integration to occur. Meredith et al. (1987), e.g., investigate the temporal constraints on
stimulus co-occurrence in order for multisensory integration to occur.
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thus generated do not truthfully represent the sensory input anymore; they are
indeed sensory illusions created by our brain to satisfy the overall cognitive goal of
reducing the perceptual conflict that arises from the incompatibility of the sensory
inputs. Classic examples for this type of cross-modal conflict resolution by multi-
sensory integration are visual capture phenomena such as the ventriloquist effect or
the Shams illusion. In the ventriloquist effect, the presence of a dominant visual
stimulus influences the spatial localisation of a co-occurring auditory stimulus (e.g.,
Bertelson and Aschersleben, 1998). In the Shams illusion, the perceived number of
visual stimuli is modulated by a co-occurring auditory stimulus (Shams et al., 2002).

In representational modalities, cross-modal integration effects do not occur as part of
sensory processing but during the subsequent stages of interpreting already classified
symbolic input. To achieve cross-modal integration, an interpretation is generated
in which the information from the different modalities is unified into a coherent
overall interpretation. As an example, consider a situation in which a deictic pro-
noun is used in the linguistic modality and a potential referent can be inferred from
a pointing gesture in the process of visual understanding. If the properties of the
identified referential candidate are compatible with the referent properties expected
based on the pronoun, then the integrated interpretation will treat the deictic pro-
noun and the pointing gesture as co-referential. If visual understanding provides
several referential candidates that give rise to equally acceptable interpretations,
further referential disambiguation may be required.

If the interpretation of the entities from visual and linguistic processing are incom-
patible, e.g., because of an apparent number or gender disagreement of the deictic
pronoun with the referential candidate pointed at, an alternative interpretation of
the multimodal information needs to be found which removes — or at least minimises
— these conflicts. Cognitive strategies for conflict resolution can be to initiate a vi-
sual search for an alternative referent or to re-analyse the linguistic input in search
of an alternative, compatible interpretation (e.g., Spivey et al., 2001).

If no acceptable interpretation can be found, alternative communicative or percep-
tual strategies may be triggered, depending on which modality’s input appears more
reliable. These alternative strategies can be an attempt to either disambiguate the
linguistic input, e.g., by means of clarification questions, or to improve the quality
of cross-modal perception, e.g., by modification of the visual perspective.

2.2 Cross-Modal Interaction at Word and Sub-Word Levels

One of the earliest reported — and presumably most widely known — examples for a
cross-modal interaction between vision and language is the Stroop effect which refers
to the interference between a word’s meaning and the time it takes to respond to
the colour in which the word is printed. In his very influential and frequently cited
study, Stroop (1935) investigated subjects’ performance on two tasks: the reading
aloud of colour words printed in coloured ink (Experiment 1) and the naming of the
ink colour in which colour words were printed (Experiment 2). Experiment 1 did
not produce any significant interference between reading speed and the colour in
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which the colour words were printed. Experiment 2, on the other hand, revealed a
substantial increase in response time on ink colour naming for words that denoted a
colour different from the ink colour they were printed in. Notably, this interference
persisted even with training on the task.

Modern cognitive psychology emphasises the role of attention in the Stroop effect
(MacLeod, 1991, p. 187). In the literature, the most common — though not
undisputed (MacLeod, 1991, p. 188) — explanation for the effect and its inher-
ent asymmetry is the relative-speed-of-processing account. According to this ac-
count, words are read and comprehended faster than colours are named. In the
Stroop experiments, the two processes compete with each other to trigger a re-
sponse (response-competition). The focus of attention determines which response is
desired. Hence, the observed interference between the two processes is larger when
the focus of attention is on the completion of the slower process: By the time colour
naming is performed, the result of the faster word reading process is already avail-
able. The response to its outcome needs to be suppressed in order to permit the
response of the attended-to slower process to come through. Clearly, this suppres-
sion is not required when attention is directed to the output of the faster process.
In that case, the attended process returns a result before the slower process has
completed, so no inhibition is required.

From the perspective of a cross-modal interaction between vision and language,
the relative-speed-of-processing account is somewhat unsatisfactory as it grounds
on the assumption that the two processes, word reading and colour naming, oc-
cur independently of each other and only differ in the time they require to trigger
a response. This account effectively adopts a modular view on processing in the
Fodorian sense.! The relative-speed-of-processing account also cannot explain two
important additional observations related to the Stroop effect:

1. The gradience effect of semantic distance upon the strength of the observed
Stroop interference reported by Dalrymple-Alford (1972): words that do not
denote a colour themselves but are associated with a colour, such as the word
sky, produce a stronger interference on the colour-naming task than words that
are completely colour-neutral. Their effect is not as strong, however, as that
of incongruent colour words proper.

2. Stroop facilitation as reported by Dunbar and MaclLeod (1984) and others:
when colour word and ink colour coincide, response times for ink-colour naming
are slightly faster than in the control conditions. The observed effect is smaller
than the response delays in the incongruent cases, but still has been shown to
be statistically significant.

!The modularity of the human language faculty goes back to Fodor (1983). Modules in the Fodorian
sense are informationally encapsulated cognitive units that process information individually and in parallel.
The interaction between modules is restricted to an interaction via their input and output, i.e., modules
cannot interact with each other in the course of their processing. Modules process their input bottom-up
in a strict feed-forward manner such that the higher-level cognitive functions, which Fodor labels central
processes, do not influence lower-level processing. Modules process their input automatically, fast and
domain-specifically. According to Fodor, each module is associated with a fixed neural architecture and
hence exhibits characteristic breakdown patterns.
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Successful attempts to model a large number of observations associated with the
Stroop effect computationally have been reported (e.g., Roelofs, 2003). However,
to date there is no unanimously accepted account of the effect that can explain all
related findings listed in MacLeod (1991)" and Roelofs (2003).

For the purpose of this thesis, suffice it to say that the Stroop effect is the result
of an only partly understood complex and asymmetric interaction of reading, visual
perception, attention and action at word-level. The interference, facilitation and
semantic gradience effect observed in the colour-naming task support the interpre-
tation that at some stage of visual and linguistic processing semantic representations
arising from different modalities are involved in the cross-modal interaction.

With the advent of eye tracking technology in the early 1970s, the interactions be-
tween vision and language have become considerably more accessible to scientific
enquiry. The first use of eye tracking technology to study interactions between vi-
sion and language was reported by Cooper (1974). Cooper used a camera to monitor
eye movements of subjects who were simultaneously exposed to visual stimuli in the
form of object depictions and auditory linguistic stimuli. This experimental pro-
cedure subsequently became known as the visual-world paradigm.? Cooper showed
that spoken word semantics influenced subjects’ fixation patterns on co-present vi-
sual stimuli. More specifically, Cooper found that from a selection of nine co-present
visual stimuli subjects preferably fixated those that were either direct depictions of
referents denoted by the words presented auditorily or depictions of items seman-
tically related to the words’ referents. Cooper concluded that the eye movement
patterns are a reflection of the on-line activation of word semantics from speech.

Huettig et al. (2006) point out that Cooper did not control for the type of se-
mantic interaction that gave rise to the observed cross-modal effect. The fixation
preference on the semantically related visual stimuli could have arisen from either
associative relatedness or genuine semantic similarity. While associative related-
ness (e.g., piano and practice)® does not necessarily link concepts from the same
semantic category, semantic similarity holds between members of the same semantic
category only (e.g., trumpet and piano)*. The challenge in conducting word-based
association task experiments is to disentangle associative relatedness from semantic
relatedness. This differentiation becomes important in the light of Huettig and Alt-
mann (2005)’s findings that the degree of conceptual relatedness between concepts
activated in vision and language has an effect upon the strength of the influence
of word semantics upon fixation patterns. Huettig and Altmann (2005) found that

!This milestone paper provides an extremely detailed and comprehensive review of the first five decades
of research on the Stroop effect.

2Cooper had the methodological foresight to realise that this novel technique constituted an experi-
mental paradigm whose “linguistic sensitivity (... ) together with its associated small latencies suggests its
use as a practical new research tool for the real-time investigation of perceptual and cognitive processes”.

3This example is taken from Nelson et al. (1998), a list of association norms for more than 5,000 English
word primes and their associated targets. The lists are based on the responses of over 6,000 participants.

4This is a carefully constructed example from Huettig et al. (2006) of a semantically related word pair
that is not associatively related according to Nelson et al. (1998).
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fixation patterns are influenced by semantically related stimuli — but not by as-
sociatively related stimuli. We therefore expect conceptual similarity to play an
important role in cross-modal matching as discussed in further detail in Section 3.7.
The findings of Cooper (1974) and Huettig and Altmann (2005) support the view
that the interaction between vision and language is mediated by a representation of
linguistic meaning. We formulate this as modelling requirement R1.

Requirement R1

In a model for the interaction between visual context and linguistic under-
standing, the cross-modal interaction must be mediated by a representation of
linguistic meaning.

Another famous and frequently cited interaction between vision and language is the
McGurk effect. We briefly discuss it here to make clear why we disregard it in the
collection of requirements for our model. In the McGurk effect, the visual perception
of lip movements and lip shapes interacts systematically with the auditory percep-
tion of concurrently presented phones (McGurk and MacDonald, 1976, 1978). In
their classical experiment, McGurk and MacDonald auditorily presented subjects
with the phone /ba/ dubbed onto a video of a mouth producing the phone /ga/.
Subjects reported to hear the phone /da/. The McGurk effect hence occurs at the
level of individual phones, i.e., at sub-word level. Exploiting the systematicity of
the cross-modal effect, Massaro and Stork (1998) report the illusion also to occur
for larger phonetic units such as an entire sentence: exposing subjects to /My bab
pop me poo brive/ auditorily and /My gag kok me koo grive/ visually induced
the auditory percept of My dad taught me to drive.! The perceived auditory percept
can simply be predicted on the basis of concatenating the individual cross-modal
interactions at phoneme level. The McGurk effect has been studied extensively and
is observed robustly over a wide range of languages and different conditions such as
speaker-gender incongruence between visual and auditory modalities and others.

The important difference between the McGurk effect and the interactions between
vision and language observed in Stroop’s experiments is that the McGurk effect
is based on an an early interaction between vision and the auditory perception of
speech. The McGurk interaction affects the perception of phones rather than any
later — and cognitively higher — stages of processing that involve language compre-
hension. This view is consistent with the observation that the McGurk effect also
occurs with single syllables, pseudo-words and non-words, none of which have a
meaning or semantic representation that could form the basis of this interaction.

The McGurk effect has widely been interpreted as a bottom-up integration of incon-
gruent cross-modal stimuli. More recent studies suggest, however, that top-down
effects in the form of sentence context and word semantics can also modulate the
strength of the effect (Windmann, 2004; Ali, 2007). The question whether the influ-
ence of vision upon audition in the McGurk effect is due to a bottom-up integration

!Massaro and Stork also showed that the corresponding unimodal stimuli on their own were unin-
telligible: The majority of the subjects gave an accurate phonemic description of the non-sensical audio
input and were unable to extract a meaning by lipreading the video when either stimulus was presented
in isolation.
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in stimulus identification or due to an expectation-modulated interaction in stimulus
discrimination — or a combination thereof — has not been answered conclusively.!
In analogy to the combination of bottom-up and top-down processes believed to op-
erate during visual object recognition, we hypothesise that the McGurk effect also
results from a convergence of bottom-up and top-down processes acting in parallel.
In the context of this thesis we classify the effect as a primarily sensory phenomenon
which can experience top-down modulation under special conditions. The robust-
ness of the effect in the absence of expectation- or knowledge-driven top-down effects
further supports the interpretation in terms of a bottom-up integration. As such,
we choose to exclude it from further consideration in our model of the influence of
visual context understanding upon linguistic processing.

Summarising the cross-modal interactions between vision and language at word
and sub-word levels, we can say that the Stroop effect and Cooper’s visual world
experiments provide convincing evidence for the involvement of a semantic repre-
sentation in the cross-modal interaction between visual and linguistic processing.
Cooper’s experiments suggest that the interaction between modalities is such that
visual processing aims to identify entities in visual context which are conceptually
related to the concepts activated linguistically. Huettig and Altmann refined this
view to show that only semantic relatedness gives rise to the effect. The observa-
tions of the Stroop effect suggest that the degree of conceptual overlap between the
concepts processed in each modality has an effect on the ease with which certain
tasks can be performed. For tasks exhibiting a Stroop effect, conceptual congruence
results in task facilitation and conceptual incompatibility results in an interference.

The following section investigates the effect of non-linguistic information obtained
from visual understanding upon the processing of more complex linguistic structures
such as phrases and entire sentences.

2.3 Cross-Modal Interaction at Phrase and Sentence Level

In another milestone investigation into the interactions between vision and language,
Tanenhaus et al. (1995) recorded subjects’ eye movements during the concurrent
auditory-visual presentation of syntactically ambiguous sentences in the presence of
visual scene depictions. Tanenhaus et al. found that subjects’ eye movements were
tightly time-locked with the unfolding of the linguistic stimulus, i.e., eye movements
progressed to linguistically relevant referents in strict temporal alignment with the
mentioning of the corresponding entities in the linguistic modality. The observed
latencies between word end and the fixation of the correct object were in the range of
145 ms when the visual scene contained no other object with a phonetically similar
name and around 230 ms when there was an object with a similar name. Previously,
Matin et al. (1993) had reported the average time needed to compute a saccadic eye
movement at around 200 ms. Tanenhaus et al. hence concluded that, when no

1See Section 3.6 for a discussion of the processes of discrimination and identification in the bottom-up
grounding of sensory perception.
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other object with a similar name was present, subjects must have integrated the
information from the auditory stimulus and the visual scene to accomplish object
identification prior to hearing the end of the word, i.e., prior to completing the
perception and processing of the respective auditory stimulus. Visual distractor ob-
jects which exhibited no referential connection to the linguistic stimulus — such as
a pencil for the sentence Put the apple on the towel in the box. — had no observable
effect upon fixation patterns.

In their central experiment, Tanenhaus et al. presented subjects with locally am-
biguous instructions of structure V NP PP;{PPy}. The prepositional phrase (PP;)
could be interpreted either as a modifier to the sentence initial verb (V) or to the
noun phrase object (NP). The local ambiguity was resolved either by the unfolding
of PPy, in which case PP; was interpreted as a modifier to NP, or by the end of the
sentence, in which case PP; was interpreted as a modifier to V.

If initial syntactic processing were modular in the Fodorian sense (see Footnote 1 on
page 15) — and as such informationally encapsulated against visual scene informa-
tion —, no effect of visual scene context on early syntactic processing and hence on
eye fixations should be observable. Tanenhaus et al. found, however, that subjects’
fixation patterns differed significantly depending on whether the visual scene con-
tained a single or two possible referents for the NP. In the case of a single potential
referent for NP in the visual scene, PP; was initially interpreted as a modifier to V.
This initial interpretation had to be revised when a PP, subsequently followed. In
the case of two potential referential candidates for NP in the visual scene, PP; was
always initially interpreted as a modifier for NP.

The authors interpret the observed eye movements as direct reflections of the progress
of syntactic processing. The different fixation behaviours induced by the difference
in visual contexts show that the same transient ambiguity of PP; can give rise to
different syntactic starting hypotheses. The authors interpret this as evidence for
an access to visual context information during the earliest moments of linguistic
processing. Their observations provide substantial support for the hypothesis of a
close and continual interaction between visual and linguistic processing. A continual
interaction between visual and linguistic processing is postulated by the proponents
of strongly interactive models of sentence processing that contrast with the modular
processing architecture suggested by Fodor.

From this most influential investigation we extract a number of modelling require-
ments related to the interplay between visual and linguistic processing. The obser-
vation of successive eye movements to linguistically relevant referents in synchrony
with the unfolding of the linguistic stimulus shows that linguistic processing pro-
gresses over time and is incremental.

Requirement R2

In a model for the interaction between visual context and linguistic understand-
ing, linguistic processing must be incremental.
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As revealed by the strong time correlation between eye fixations and linguistic pro-
cessing, the interactions between the two modalities occur in close temporal align-
ment.

Requirement R3

A model for the interaction between visual scene context and linguistic process-
ing must be based on temporally synchronised interactions between the visual
modality and linguistic processing.

The immediate interactions between visual and linguistic processing observed by
Tanenhaus et al. support a strongly interactive model of sentence processing based
on continual cross-modal interactions at parse time. These interactions enable what
Tanenhaus et al. refer to as the “rapid and nearly seemless integration of visual and
linguistic information”.

Requirement R4

A model for the interaction between visual scene context and linguistic processing
must be based on continual interactions between non-linguistic information and
linguistic processing.

Tanenhaus et al.’s experimental findings further support the view that the interaction
between visual and linguistic processing is bidirectional. We capture this as two
separate requirements, one for each direction of the interaction. Given the same
syntactic material in different visual scene contexts, fundamentally different fixa-
tion patterns were observed. This is clear evidence for the influence of visual scene
context upon the early stages of linguistic processing.

Requirement R5

A model for the interaction between visual scene context and linguistic processing
must include the influence of visual understanding upon linguistic processing.

The experiments also demonstrate the influence of linguistic upon visual processing;:
the mention of linguistic entities in the auditory input immediately directed eye
fixations to the corresponding referent in the visual scene.

Requirement R6

A model for the interaction between visual scene context and linguistic processing
must include the influence of linguistic processing upon visual understanding.

From the fact that referentially unrelated visual distractor objects had no observ-
able effect upon linguistic processing we conclude that referentially unrelated visual
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information remains neutral with respect to linguistic processing.

Requirement R7

In a model for the interaction between visual scene context and linguistic pro-
cessing, referentially unrelated visual context information must leave linguistic
processing unaffected.

2.4 Information in the Mind & Information in the World

Open to this point is what the mental substrate for the interaction between vision
and language might be. Interestingly, both Cooper and Tanenhaus et al. observed
anticipatory eye movements, i.e., eye movements to visually represented entities
prior to the complete unfolding of the corresponding linguistic stimulus. However,
neither author offers a discussion of which form of information may specify the
targets of these eye movements or in what form that driving infomation might be
encoded mentally. Based on the extremely fast eye movements to the depictions of
the visual scene, visual search can be excluded as a possible explanation for the an-
ticipatory eye movements. The speed and precision with which the eye movements
were executed in the setting of Tanenhaus et al. suggest that information about
the target position must already be available when planning the eye movement. It
is therefore likely that the anticipatory eye movements are driven by a mental —
and thus inherently internal — representation of visual scene information.’ Clearly,
the creation of this representation must have preceded the onset of the linguistic
stimulus and the corresponding eye movements in time.

Altmann (2004) reports experimental evidence in favour of such a mental representa-
tion as the basis for the interaction between vision and language. Altmann employed
the blank-screen paradigm, a variation of the visual-world paradigm in which after
an exposure of about 5 seconds the visual stimulus is removed shortly before the
onset of the linguistic stimulus. Given sufficiently small inter-stimulus intervals of
about 1 second, Altmann observed eye movements similar to those obtained in the
visual-world condition, even in the absence of the corresponding visual stimulus.
Altmann concludes that the observed eye movements result from an interaction be-
tween language and a stored mental representation of the visual scene. He argues
that eye movements are not based on the actual location of the item but on the
position of the item in the representation of the scene. This interpretation also per-
mits to explain the anticipatory eye movements observed by Cooper and Tanenhaus
et al. since the information of where a given entity is located in the visual field can
be encoded in the mental representation of the visual scene.?

"We expand further on the mental representations resulting from visual perception in Section 3.1.

In our view, additional experimental investigation is required for a full understanding of the nature
of the spatial references to the visual scene. The setup in Altmann (2004) does not clarify rigorously
whether the spatial references represented mentally encode the location of absolute points in space or just
their position relative to the perceiving subject. It remains open whether the spatial references to the
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Altmann’s findings support a representationalist view of visual scene perception and
provide evidence for the hypothesis that the cross-modal interaction with language
occurs based on the mental representation of the visual scene. We capture this as
requirement R8:

Requirement R8

In a model for the interaction between visual scene context and linguistic
processing, linguistic processing interacts with a representation of the visual
scene context.

Altmann (2004) argues for the existence of a mental representation of visual scene
context and proposes that subjects have access to the information about the location
of objects in that representation. The question arises which other information the
mental representation of the visual scene holds and how informationally rich that
representation is. Is every object perceived in the visual field also represented with
the totality of information known about it — or are there cognitive mechanisms at
work that strive to reduce the amount of internalised information in favour of ease
and efficiency of encoding and processing?

To gain further insight into the level of detail with which objects in the visual field
are represented mentally, some authors have consulted findings from change blind-
ness research (e.g., O'Regan, 1992; Spivey et al., 2004). Change blindness refers to
subjects’ inability to detect sudden changes to the visual field if these occur during
blinks (O'Regan et al., 2000) or saccades (McConkie and Currie, 1996) or are ac-
companied by minor visual distractors such as short image flickers (Rensink et al.,
1997). However, changes to the visual field that occur in the course of a fixation un-
interrupted by blinking or saccadic eye movements are noticed immediately (Yantis
and Jonides, 1990).

Spivey et al. (2004) attribute change blindness to the informational sparseness of
the mental representation of a visual scene. According to Spivey et al., the mental
representation of a visual scene only encodes a fraction of the information that can
be extracted from the visual scene itself, leaving a significant part of the information
in the outside world, waiting to be accessed if and when needed. Access to that in-
formation proceeds via spatial indices or pointers in the mental representation that
themselves are informationally poor but point to the spatial location of the object
in the visual scene from which the information can be retrieved via oculomotor ac-

presented objects are encoded in terms of egocentric or allocentric coordinates. In all studies discussed so
far, subjects remained in a constant spatial relation to the site of visual stimulus presentation throughout
the experiment. A discrimination between egocentric or allocentric spatial frames of reference could not
be achieved in that way. To achieve a clarification, it would be necessary to examine how eye movements
are affected in the blank-screen paradigm by systematic changes to the spatial relation of the site of
stimulus presentation to the subject (or vice versa) in the interstimulus interval. Based on evidence from
spontaneous eye movements in visual imagery as reported by Brandt and Stark (1997), Mast and Kosslyn
(2002) or Spivey and Geng (2001), we would expect spatial references to be encoded in terms of coordinates
in an egocentric frame of reference. If this is indeed the case, subjects’ fixation patterns should remain
unaffected by changes to the spatial relation between the site of stimulus presentation and the subject in
the interstimulus interval.
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tivity.! The concept of spatial indices goes back to Pylyshyn in the late 1980s (for
more recent accounts of spatial indices, see Pylyshyn, 2000, 2001). Spivey et al.’s
argument of sparse encoding means that the visual scene becomes an externalised
part of the individual’s memory which can be retrieved by moving the eye to the
corresponding pointer target.?

A spatial index minimally needs to contain information about the spatial location
of its reference object as well as basic labelling information on when and how to
access the reference object. Spivey et al. (2004, pp. 169) review a number of ex-
periments that are consistent with the interpretation that object attributes such as
colour are not encoded in the pointer information. This permits the conclusion that
the pointers to objects in the visual scene indeed are informationally sparse and
do not encode the full object information which readily is available from the visual
scene.

In contrast, Simons and Ambinder (2005) argue that the observation of change
blindness as such does not warrant the conclusion of representational sparseness.
According to Simons and Ambinder, change detection to the visual environment
requires a comparison of the present state of the visual scene with a mental rep-
resentation of the preceding state and the identification of differences between the
two. Simons and Rensink (2005) describe this comparison as comprising the follow-
ing steps: encoding the preceding state, retaining that representation, perceiving
the current state, accessing the representation of the preceding state and comparing
the current state with the representation of the preceding state. An overall failure
to detect change may therefore arise from a failure at any one of these steps. Simons
and Rensink point out that, before valid conclusions can be drawn from the change
blindness experiments, a number of experimental conditions still need to be con-
trolled for to ascertain change blindness indeed results from the effects that Spivey
et al. attribute it to. We hence cannot draw final conclusions on the granularity of
visual scene representation and hence choose not to formulate any requirements on
this aspect of modelling.

2.5 Extant Computational Models

With the availability of eye tracking, the interaction between vision and language
understanding has been studied empirically in extenso for some decades now. Given
the large body of behavioural findings, it is quite surprising that only a compara-
tively small number of computational models of the interaction between vision and
language have been reported. Maybe less surprisingly, none of the extant models
cover the full scope of interactions between vision and language that is known from

1Spivey et al.’s definition of spatial indices only addresses pointers to concrete physical objects in the
visual scene. This definition leaves unanswered the question of the granularity of reference. Furthermore,
Spivey et al. do not discuss whether — and if so, how — references to higher aggregates of individual objects
or more abstract correlations between objects are represented, accessed and processed internally.

2The philosophical implications of this argument in the context of the mind-brain dualism are that the
mind does indeed have access to more information than the brain physically holds.
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the behavioural investigations.

According to Roy and Mukherjee (2005), models of vision-language interactions can
be categorised qualitatively by the type of information provided by the visual modal-
ity: intention-related and situation-related information. Intention-related visual in-
formation conveys sender intention in the act of producing the linguistic signal, be
it lip movements in speech production, or gestures in sign language. This type of
visual information is exploited as visual input to systems for audio-visual speech
or gesture recognition. Situation-related visual information, on the other hand, is
information about the immediate visual scene in which the linguistic stimulus is pro-
duced and typically contains references to entities or situations in the visual scene.
Roy and Mukherjee point out that visual context comprises both intention-related
and situation-related visual information. Since we focus on situation-related visual
information in the context of this thesis, we limit our discussion to extant model
implementations which incorporate situation-related visual information.!

2.5.1 Historical Overview

Historically one of the first systems ever to combine natural language understand-
ing with different levels of non-linguistic representation was Winograd’s SHRDLU
reported in Winograd (1971).2 SHRDLU was a dialogue system for English ca-
pable of answering questions and executing commands in a blocks world based on
knowledge representations of semantic information and context. A heuristic un-
derstanding component combined syntactic analysis with context information and
world-knowledge to determine actual sentence meaning. While the system did not in-
corporate computer vision as such, it was capable of manipulating internal knowledge
representations of the spatial arrangement of different objects.

André et al. (1988) describe the implementation of SOCCER, a system for the genera-
tion of natural language descriptions for dynamically evolving visual football scenes.
The linguistic descriptions arise from the recognition of situation instances in the vi-
sual scene. In contrast to earlier work, SOCCER generates its descriptions n parallel
to the incremental processing of the visual scene rather than in retrospect. Retro-
spective generation essentially is a sequential process of the linguistic re-encoding
of previously extracted visual information. SOCCER performs linguistic planning
while the process of visual extraction is still ongoing. As a result, changes in the
output of visual recognition can still have a limited effect upon language generation.
The extent to which changes in visual information dynamically influence language
generation cannot be assessed based on the information given in André et al. (1988).

! Another classifications of computational models for the integration of linguistic and visual information
is provided in the review article Srihari (1995). Here, systems are classified into those accepting only
unimodal and those that accepting bimodal input. For a historical review of extant modelling efforts, we
consider this classification less helpful.

2His PhD thesis was subsequently re-published with minor changes as Winograd (1972).
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The system XTRACK reported in Koller et al. (1991) adopts a similar approach in
the automated characterisation of motion trajectories in traffic scenes captured by
a stationary camera. The central achievement of this implementation lies in its
extraction of characteristic scene features and the subsequent mapping of detected
motion trajectories onto one of approximately ninety different motion verbs.
Brown et al. (1992)’s speech activated manipulator SAM is a robotic system with
sensory capabilities that is controlled via natural spoken language. SAM obtains
world information from two sensors and from conversation and fuses that input to
perform actions in a blocks world. The robot understands about 1041 semanti-
cally meaningful English natural language sentences with a vocabulary of about 200
words. Speech recognition is constrained by a finite state grammar and augmented
with a domain-specific semantic analysis to arrive at a single interpretation for the
linguistic utterance. Integration of linguistic and sensory information such as object
shape, height, size, location and colour is performed when both processing streams
are complete. Information fusion is additive across modalities. Conflicting informa-
tion is resolved interactively with the human controller of the system.

Srihari and Burhans (1994) describes PICTON, a system for extracting linguistic
information from image captions to guide a computer vision system in image un-
derstanding. PICTON employs a natural-language-processing module to generate
constraints for subsequent in image understanding. A language-image interface then
fuses the information from the encapsulated processes of natural language and image
processing by applying the constraints from linguistic processing upon the hypothe-
ses generated by the image-understanding module. The system is applied to the
domain of face recognition in newspaper articles.

For the model implementations that have been reported in the last decade we now
provide somewhat more detailed discussions.

Model 1. A Bayesian network implementation for the integration of speech and
image understanding: Socher et al. (1996); Socher (1997); Wachsmuth
et al. (1999); Socher et al. (2000)

Model 2. A model implementation of visual context priming achieved via an online
influence of visual context upon the language model underlying speech
recognition: Roy and Mukherjee (2005)

Model 3. A connectionist model for the anticipation and assignment of thematic
roles in a visual world context: Mayberry et al. (2005a,b, 2006)

Model 4. A robotic system for incremental language processing with tight perceptual
and motor integration: Brick and Scheutz (2007)

We briefly introduce these models now and discuss their strengths and weaknesses.
Aspects for discussion include the implementation’s suitability to our task of mod-
elling the influence of immediate visual scene context upon linguistic processing,
the model’s scalability, the generality of the context representations employed, the
mechanistic transparency of vision-language integration and the model’s integrabil-
ity into a more general theory of cross-modal cognition.



26 Cross-Modal Interactions between Vision and Language

2.5.2 Model 1: A Bayesian Network Implementation for the Integration
of Speech and Image Understanding

Socher et al. (2000) report a model for image understanding based on three compo-
nents: speech understanding, image understanding and a Bayesian network as inte-
grating inference machine. The system fuses visual information from a 3D-camera
with linguistic information from the automated recognition of spoken instructions to
identify objects in the visual scene and to carry out simple instructions. The domain
is limited to manipulations performed on objects from a wooden toy construction
kit. Typical instructions are ‘Give me the X.” or ‘Take the X.” where X is the spec-
ification of a domain object. Visually, objects are identified based on their type,
colour and spatial relations to other objects. Visual object recognition results from
a hybrid approach in which a neural network generates object hypotheses which are
then either confirmed or rejected based on information from a semantic network.
To model uncertainty and errors in the sensor input, Socher et al. enrich the quali-
tative object representations with probabilistic information that expresses the reli-
ability of the hypothesised object properties. The system achieves a translation of
numerical, sensory input into qualitative, symbolically encoded object information
that is accessible to reasoning under uncertainty in the Bayesian network. Com-
bining the input from vision and speech, the Bayesian network computes the most
plausible overall interpretation of the situated natural language instruction and per-
forms the according action. Vision-language integration in this model is late in the
sense that both signals are first processed individually and then fused into an inte-
grated cross-modal percept.

The accuracy of the system for real data is reported at 92.5% when using idealised,
i.e. recognition-error-free, input data. In more realistic scenarios in which both
visual and linguistic modalities are afflicted with sensory error, the rates for object
identification vary between 70% and 86.3%.%

Socher et al.’s Model 1 achieves a convincing late integration of modularly processed
visual and linguistic information for image understanding. Visual object recognition
works well in the modelled domain but requires a more generalised knowledge base
representation of object attributes to ensure scalability and applicability to other
domains. The two most salient limitations of the approach with regards to our
modelling objective are the limitation of visual information to object recognition and
the late integration of vision and language. While establishing object co-reference
between modalities is an important part of modelling the cross-modal interaction
between vision and language, the recognition of situations and thematic roles of
the participants in a scene is another significant output of visual understanding.
Since the domain selected for this model only comprises static spatial relationships

!Details about this approach are given in Socher (1997).
2Result precisions are quoted as reported in the original article.

3Further extensions to this system have been reported by Bauckhage et al. (2002) and others. However,
the mechanisms of cross-modal integration in these extensions do not differ substantially from those in the
implementation described here.
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of objects this aspect of vision-language interaction has not been considered. Most
relevantly from the point of view of linguistic processing, the interaction between
vision and language does not occur interactively at parse time. The processes of
linguistic and visual processing exhibit no interaction prior to their integration in
the Bayesian network.

As for the mechanistic transparency of the cross-modal integration, the Bayesian
network behaves like a black box whose associations are formed during training. The
model is not argued for in the context of a general theory of cross-modal cognition.

2.5.3 Model 2: A Model for the Effect of Visual Attention upon Speech
Recognition

With rFUSE, Roy and Mukherjee (2005) report the successful modelling of the effect
of visual attention upon speech recognition. The reported model consists of four
main components: a speech decoder, a visual scene analyser, a language-driven vi-
sual attention module and a language model driven by visual context. The model
is applied to a constrained scene description task in which Lego® blocks of specific
colour and size have to be identified given visual and linguistic input.

As with most automated speech recognition systems today, the output of the speech
decoder depends on a statistical language model. Typically, these language models
are invariant to cross-modal context and hence result in modular, contextually en-
capsulated processing of the speech input. In this model, however, the likelihoods
expressed for word recognition in the language model vary with the input provided
by the visual scene analyser and the visual attention component. Furthermore, vi-
sual attention is directed to those elements in the visual scene which have been
extracted during the early stages of speech recognition. The result is a system in
which speech recognition drives visual attention, visual attention dynamically in-
fluences the language model and the language model enhances the expectation for
the recognition of certain words or combinations of words based on visual context.
This cycle of propagated influences can be interpreted as an implementation of a
bi-directional interaction between vision and language via 1) a top-down influence
of visual attention upon speech recognition and 2) a top-down influence of speech
recognition upon visual attention.

The average speech recognition error is defined as the percentage of words that are
classified incorrectly in the auditory modality. In the absence of a visual context,
the system achieves a speech recognition error of 24.3%. The introduction of a visual
context effects an improvement of 31% and reduces the average speech recognition
error down to 16.7%. The average error rates for object recognition improve by
41% from 24.4% in the absence of a visual context down to 14.3% in the presence of
a visual context. The bottom line for random identification was an error rate of 90%.

In view of the reported reductions in speech and object recognition, the system per-
forms rather well. More impressive, in our view, than the numerical results of this
model’s reported speech and object recognition accuracies is its cognitively plausible
architecture which allows to integrate a top-down influence of speech upon vision
and of vision upon speech into incremental linguistic processing. The immediate
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influence of both modalities upon each other at the time of processing is highly sig-
nificant in that it constitutes the first computational model of an early, non-modular
integration of vision and language.

Based on the information provided in Roy and Mukherjee (2005) it is difficult to
judge whether the system can scale up. To be able to maintain the central benefit
of this model — namely the mutual influence of the two modalities upon each other
at the time of processing — it needs to be ensured that the effect of information
extracted from the visual domain can be propagated into the language model at the
time of linguistic processing. Otherwise, the cyclic effect of speech recognition upon
visual attention upon the language model upon speech recognition breaks down. It
remains questionable whether this can be achieved when removing the strong domain
restrictions of this model and extending its linguistic scope to unrestricted natural
language input. Especially the trained statistical component for enhancing the prob-
ability of certain word combinations in the language model may not scale arbitrarily.

This model’s major limitation with regards to our modelling objective, which it
shares with all the other models discussed here, is its limitation of visual un-
derstanding to the level of object recognition and inter-object spatial relations.
In contrast with some of the earlier work described in the historical overview in
Section 2.5.1, no situation recognition is performed. Furthermore, and in marked
contrast with Model 1, the system provides no reasoning capabilities for handling
possible conflicts between the results of visual and linguistic understanding. While
capable of replicating significant behavioural properties of natural systems in vision-
language integration, the model itself is not argued for in the context of a specific
theory of cross-modal cognition.

2.5.4 Model 3: A Connectionist Model of Anticipation in Visual Worlds

Mayberry et al. (2005a) present a simple recurrent artificial neural network that
is capable of making highly accurate thematic role assignments in the course of
incremental sentence processing given an input sentence as well as visual scene in-
formation. A simple recurrent network is chosen because it exhibits three attractive
properties: automatic development of expectations prior to the completion of pro-
cessing, seamless integration of input from multiple sources and instances of non-
monotonic hypothesis revision that are reminiscent of human re-analysis behaviour
during incremental linguistic processing.

Two different implementations of the network are evaluated on input material which
previously was studied in eye-tracking experiments with human subjects. Input to
the network are the sentence as well as the visual context information. The repre-
sentation of visual context encodes AGENT and THEME relations for all participants
in the visual scene but no grammatical information such as case or gender. The
network’s output indicates which of the two nouns in the input sentence of limited
structural variance is predicted to be the AGENT and which one the THEME. The
network was trained on 1,000 sentences over 15,000 epochs, which is reported to
have taken about two weeks on a regular PC. Input sentences are generated from a
lexicon of 326 words on which a number of morphological and lexical simplifications
have been imposed to facilitate training and testing.
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The first version of the model displays imperfect anticipation rates of 96% and 95%
for two sets of unambiguous sentences. The error is attributed to incorrect token
identification. On two other sets of ambiguous sentences, the model reaches disam-
biguation accuracies of 100% and 98%, respectively. Most relevant with regards to
our modelling objective, however, is the model’s performance in the fifth experiment,
in which visual scene information was set to dominate in case of conflicting lingu-
istic and visual inputs. The best results for this condition exceed 99% accuracy in
thematic role anticipation during incremental sentence processing and reaches 100%
at sentence end.

Model 3 makes highly accurate predictions on the assignment of thematic roles given
visual scene information and a relatively short German input sentences built from a
lexicon of toy size. In addition to using incremental sentence processing, the system
provides very accurate thematic role anticipations during sentence processing as
hypothesised by various models of incremental sentence processing.

In the studied examples, the assignment of thematic roles was a binary syntactic
structural decision. While the thematic role anticipation and final assignments are
performed with high accuracy, the complexity of the linguistic task is substantially
lower than that of building up full syntactic and semantic representations for an
input of initially unknown structure. Given the long training time of two weeks for
the comparatively small number of sentences of moderate lexical and syntactic com-
plexity, it seems exceedingly unlikely that this model scales up to be able to process
arbitrary representations of visual scene contexts in combination with unrestricted
natural language input.

The context representations used were non-declarative and encoded thematic rela-
tions between entities in terms of weights in the network’s hidden layers. The use
of the connectionist approach results in a loss of mechanistic transparency for the
process of cross-modal integration. Since the internal representation of the model is
purely activation-based, the system cannot perform any symbolic reasoning opera-
tions. It hence remains unclear how the performance of this model — which, for the
reported domain, unquestionably is impressive — generalises and integrates into a
more comprehensive cognitive account of the cross-modal integration for vision and
language in natural systems.

2.5.5 Model 4: A Model of Incremental Sentence Processing with Tight
Perceptual and Motor Integration

Brick and Scheutz (2007) report RISE, a robotic system capable of integrating sen-
sory information from binocular camera vision into the processing of spoken natural
language instructions at parse time. The system performs incremental syntactic and
semantic parsing in parallel and additionally integrates visual scene information from
a block world to constrain the set of sentence interpretations. Furthermore, prag-
matic constraints are imposed to guide syntactic decisions of phrase closure.

A notable feature of RISE is that it can anticipate the selection of referents and their
communicative function before the completion of linguistic processing, e.g., it can
decide whether a referent is the operand or the destination of movement while still
processing a given move-instruction. Brick and Scheutz use a set-based approach to
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determine the number of possible referents for an identified word in visual context.
Unambiguous reference is established when the referent set size is unity. When un-
ambiguous cross-modal reference has been established, syntactic phrase closure is
effected based on the pragmatic consideration that referential overspecification is
similarly undesirable as in human-to-human communication. Any additional modi-
fiers detected in speech are interpreted as referring to a new referent.

While the performance of the system has not been evaluated formally, the exam-
ples discussed make a convincing case for the online integration of referential cross-
modal information into incremental natural language understanding. This model
performs an early identification of referents based on visual information and ele-
mentary reasoning. The coupling of linguistic and visual understanding with action
allows the system to effect actions and so-called back-channel responses such as im-
mediate changes of gaze to unambiguously identified referents, prior to completing
the analysis of the linguistic input.

With its link between cross-modal processing and action this model goes one step
further than Model 2 in that the results of incremental linguistic and visual process-
ing do not only influence each other but can even trigger new, externally perceivable
system actions. This approximates human behaviour during verbal communication
which comprises continual responses on various levels to the incrementally processed
linguistic input. We consequently consider Model 4 a prime candidate for an attempt
to model the closely time-locked influence of vision upon language during incremen-
tal processing as reported by Tanenhaus et al. (see Section 2.3).

Brick and Scheutz (2007) leave open to what extent the model supports the reverse
direction of the interaction between vision and language, i.e., the attention-mediated
influence of language upon vision. None of the quoted examples show a revision of
visual processing based on linguistic input which nurtures the suspicion that visual
processing in this model is still modular.

From the quoted system outputs we conclude that the influence of linguistic process-
ing upon vision is implemented in terms of triggered actions such as visual system
queries to verify or disambiguate linguistic information. The system’s remarkable
benefit of identifying referents prior to their complete linguistic specification can only
be maintained if these queries are performed in a time frame that still permits the
subsequent back integration into incremental linguistic processing. While, at first
glance, this appears to be more of an engineering than a conceptual challenge, it
may have significant influence on the system’s capability to scale up. In the absence
of definitive time scale information for the system outputs, however, no factually
substantiated prediction can be made here.

In summary we can say that the historical development of the model implemen-
tations for the interaction between vision and language as discussed in this section
reflects the level of understanding of the cross-modal interaction: while early models
were based on a predominantly modular view of visual and linguistic processing with
late integration of modalities encapsulated in the Fodorian sense, more recent models
shift towards increasingly interactive realisations that incorporate an integration of
vision and language during the earlier stages of processing. The driving force behind
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this trend is the insight that human language processing is inherently incremental
and highly interactive already during the early stages of linguistic processing as
demonstrated by Tanenhaus et al.

The implementations discussed here only work for a restricted domain and have an
uncertain potential for upward scalability. More importantly, the extant models are
limited in their use of the information they extract from the visual modality: So far,
visual information is only used to establish cross-modal co-reference at object-level
and for the extraction of the spatial relations that these objects engage in. While
some earlier computational models address the recognition and categorisation of
situations from visual scenes, none of the more recent models discussed here incor-
porate these aspects.

2.6 Chapter Summary

In this chapter we have presented a number of significant experimental findings
that permit important conclusions as to the interaction between the processing of
visual stimuli and linguistic processing in the context of natural language under-
standing. The Stroop effect demonstrated that the interaction between vision and
language was automatic and mediated by lexical semantics. Cooper’s visual world
experiments provided further evidence for a semantic mediation in the interaction
between vision and linguistic processing. By careful control of experimental stimuli,
Huettig et al. refined our understanding as to which kind of semantic interaction
leads to cross-modal interaction with language: cross-modal interaction with language
is mediated by semantic category similarity rather than by associative relatedness.
Tanenhaus et al. argue convincingly for a bidirectional, incremental and closely
time-locked interaction between vision and language. Finally, Altmann provides ex-
perimental support for a representational view of the cross-modal interaction with
language. All of these findings have been formulated as requirements for our model
of cross-modal interaction of vision with language.

This chapter has also provided an overview over extant historical and more re-
cent computational implementations of the interaction between vision and language.
Socher et al. use a Bayesian network to achieve reasoning capabilities in late cross-
modal integration. Roy and Mukherjee report a successful implementation of visual
priming in speech recognition during incremental parsing. Mayberry et al. describe
a successful — but presumably not scalable — connectionist system for anticipating
binary thematic role assignment decisions during incremental sentence processing.
Finally, Brick and Scheutz provide a remarkable account of coupling robot action
with incremental and contextually aware sentence processing. All of the discussed
models, however, restrict themselves to the extraction of object information and
spatial relations. They fail to utilise visual context to extract information about
the thematic roles that the recognised entities take in the context of an observed
situation. As for visual understanding, this constitutes another, higher level of com-
plexity which is still to be integrated into modelling. Furthermore, none of the
reported models are motivated by or integrated into a general, implementation-
independent theory of cross-modal cognition.
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In the next chapter, we set out to discuss a general theory of cognition that attempts
to account for the mechanisms that enable a cross-modal interaction between non-
linguistic and linguistic modalities. We intend to base the specification of our model
upon requirements from these three sources: 1) the body of experimental findings
presented in this chapter, 2) the discussion of extant models in this chapter and
3) the cognitive theory to be presented in the following chapter.



Chapter 3

Conceptual Semantics — An
Integrated Theory of Cognition

The interaction of non-linguistic modalities with language is a mental process that
occurs quite effortlessly in our brains. We therefore know the effects of cross-modal
interaction from our own experience. Yet, we are mostly unaware of the mechanisms
that underly this interaction. The preceding chapter has provided important exper-
imental findings about the interaction between vision and language. What we are
missing to this point is a unified cognitive theory capable of providing an integrated
account of the observed phenomena.

In this chapter we outline Ray Jackendoft’s theory of Conceptual Semantics in as far
it pertains to the cross-modal interaction of non-linguistic modalities with language.
Conceptual Semantics takes a representationalist view of cognition and offers a per-
spective on the interaction between non-linguistic modalities and language.

We begin this chapter with an argument in favour of representationalism as a pre-
requisite to the discussion of Conceptual Semantics. In Section 3.2 we introduce
important constituents of the cognitive architecture Jackendoff develops in the con-
text of his theory of Conceptual Semantics. Section 3.3 discusses to what extent
encoding is representation-specific. Sections 3.4 and 3.5 describe the elements for
semantic representations by addressing Conceptual Structure and thematic rela-
tions. Sections 3.6 and 3.7 outline the fundamental issues of grounding and cross-
modal matching in the interaction between linguistic and non-linguistic modalities.
Throughout the course of our discussion, we continue to identify further modelling
requirements, now from the perspective of an overarching theory of cognition.

3.1 Representationalism

The questions whether our senses show us reality or just a filtered projection thereof
has intrigued philosophers since antiquity. The systematic study of perceptual illu-
sions has been used extensively to gain insight into how perception is represented
and processed in our minds. In cognitive psychology, a large number of visual illu-
sions are known that induce multistable or even apparently dynamic visual percepts
as the result of visual ambiguity. Famous representatives from this class of visual

33
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(a) The Necker cube. (b) Jastrow’s duck-rabbit. (c) Apparently rotating circles.

Figure 3.1: Examples of visual illusions in which a constant visual stimulus results in a multistable
or even dynamic visual percept.

illusions are the Necker cube in Figure 3.1 (a), Jastrow’s duck-rabbit illusion' in
Figure 3.1 (b), or the apparently rotating circles in Figure 3.1 (c). All of these illu-
sions have in common that a temporally invariant, static visual stimulus produces
a non-static visual percept.

The occurrence of perceptual illusions as such — and the observed perceptual dy-
namics resulting from a static stimulus in particular — are important arguments
to support the view that we do not actually perceive the world as it is but only
the way that our senses tell us about this world. This characterisation of cogni-
tion is advocated by the school of representationalism. Its central tennet is that
human cognition and consciousness are based on internal mental representations
of the world in the mind of the perceiver rather than the real world itself. While
causally connected, the real world and its mental representation clearly are distinct
from each other.

Mental representations are construed based on input from the sensory modalities
in combination with the results of subsequent processing by the higher cognitive
faculties. Cognitively experienceable in the view of representationalism is only what
has been mentally represented before.

Other well-known, though not necessarily fully understood, cognitive phenomena
providing support for a representationalist view of cognition are visual mental im-
agery, dreams and hallucinations. For all of these, subjects report mental states
that are very similar — if not identical — to the states that result from the regular
sensory perception of the corresponding external stimuli. The mental image of one’s
office chair, for example, is largely congruent with the actual visual percept attained
when looking at that chair in the real world. Representationalism holds that the
information about this chair is encoded as a mental representation. It is the very
same representation that is activated irrespective of whether we are visually per-
ceiving or just imagining that very chair.

"Wittgenstein (1953, p. 22) also discusses this illusion, albeit on the basis of a graphically somewhat
simplified version. For this reason, some sources in the literature, e.g. Jackendoff (1983, p. 25), refer to
the illusion as Wittgenstein’s duck-rabbit.
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In the subsequent development of our model for the interaction between non-linguistic
modalities and linguistic processing we follow Jackendoff (and many others) in
adopting a representationalist view of cognition. We consequently treat the rep-
resentations of linguistic and visual understanding as representational modalities.

3.2 Levels of Representation

Any theory for the interaction of non-linguistic modalities with linguistic process-
ing will need to account for how the different levels of linguistic description interact
with non-linguistic levels of representation. Jackendoff (1983)’s theory of Conceptual
Semantics is a representationalist approach to such an integrated account of cogni-
tion and language processing. We now outline the central elements of Jackendoff’s
theory in as far as they pertain to our modelling objectives. We also identify further
modelling requirements for the interaction between non-linguistic modalities and
language that arise from Conceptual Semantics.

Jackendoff (1983) proposes two distinct — though connected — levels of mental rep-
resentation for syntax and semantics. This proposal is in fulfilment of the general
requirement for a semantic theory identified by Katz and Fodor (1963) which stipu-
lates that the description of a language shall be split into two distinct levels of
description, namely syntax and semantics. We adopt this as a requirement for our
model of the cross-modal interaction with language:

Requirement R9

A model for the interaction between non-linguistic modalities and linguistic
understanding based on Conceptual Semantics must contain distinct levels of
representation for syntax and semantics.

Katz and Fodor make a point about excluding phonology from consideration in
their treatment of the requirements for a comprehensive description of a language.’
Jackendoff, however, in his description of the linguistic system, includes a phono-
logical level of representation which can act as an input channel to syntactic rep-
resentation. Since the overall objective of this thesis is to argue for a model of the
cross-modal interaction with language — and the syntactic level of representation
in particular — we henceforth limit our description of Conceptual Semantics to
the interaction between syntactic representation and non-linguistic modalities. We
consequently disregard the interaction between the phonological and syntactic lev-
els of representation in the discussion of Jackendoft’s theory and follow Jackendoff
in assuming that the contents of syntactic representation are independent of the
modality from which the represented input has been obtained. A syntactically rele-
vant piece of information will therefore be represented in the same way syntactically,
irrespective of whether it has been received from the processing of speech, text, sign
language or a non-linguistic modality.

"Katz and Fodor (1963, p. 172) mark the difference between a full description of a language, which
comprises syntax and semantics, and a full theory of speech. Katz and Fodor argue that the latter must
also cover phonological aspects in order to be able to account for speech production and recognition.
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Jackendoff argues that every mental representation must comply with a finite set
of representation-specific well-formedness rules (WFRs), which he assumes to be
universal and innate (Jackendoff, 1983, p. 17). We capture the representational
constraint on the well-formedness rules as requirement R10:

Requirement R10

In a model for the interaction between non-linguistic modalities and linguistic
understanding based on Conceptual Semantics, the set of permissible repre-
sentations on a given level of representation must be defined by a finite set of
well-formedness rules.

3.3 Representational Modularity

Jackendoff (1992, p. 4) argues that every level of mental representation is encoded
in its own “language of the mind”. Since representations are dedicated to a spe-
cific cognitive domain such as syntaxr or semantics, they are domain-specific. As a
result, most of their representational primitives cannot be shared with other levels
of representation. For encoding and processing, the mind therefore dedicates a sep-
arate module to each representation. Since each level of representation is encoded
uniquely, it is informationally encapsulated in the Fodorian sense (Fodor, 1983). For
two distinct cognitive modules M4 and Mg, cognitive module M, can only decode
and process information from representation R4 — but not from Mp’s representa-
tion RB.

The key difference between Jackendoft’s and Fodor’s notion of modules is, that
Jackendoft’s representational modules are characterised by the distinctness of the
representation they process whereas Fodor’s modules are characterised by the cogni-
tive function the modules provide. The latter implies that the cognitive functions
themselves are modular, which makes them inaccessible to online interaction dur-
ing processing. The modularity of cognitive functions cannot account for the ob-
served immediate and incremental cross-modal interaction phenomena described in
Section 2.3.

Representational modularity does permit interactions between representations in
the course of processing. Levels of representation can interact with each other via
representational interfaces that translate between different representational encod-
ings. This translation process is governed by correspondence rules that stipulate
which information from a given source representation is encoded in its target repre-
sentation and how. Fodorian modules do not permit such an online-interaction since
they are strict input/output modules: a new input is only accepted once processing
of the previous input has completed. We summarise these aspects of representational
modularity in the following modelling requirements.
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According to Jackendoff, cognitively different information is encoded in different
languages of the mind that give rise to different, domain-specific representations.

Requirement R11

In a model for the interaction between non-linguistic modalities and linguistic
understanding based on Conceptual Semantics, the encoding of each representa-
tional level is domain-specific.

Each individual representation is domain-specific and hence processed by a separate
module. As input, this module only accepts the one representation that it specialises
on.

Requirement R12

In a model for the interaction between non-linguistic modalities and linguistic
understanding based on Conceptual Semantics, the processing on each level of
representation is representationally encapsulated.

Since every module is encoded in its own language of the mind it can only inter-
act with another module by mapping the different representations onto each other
according to correspondence rules.

Requirement R13

In a model for the interaction between non-linguistic modalities and linguistic
understanding based on Conceptual Semantics, the mapping between represen-
tations is achieved by correspondence rules.

In the view of Conceptual Semantics, two different levels of representation can only
interact via the interface between them. It is in this interface that the correspon-
dence rules between the representations are applied.

Requirement R14

In a model for the interaction between non-linguistic modalities and linguistic
understanding based on Conceptual Semantics, the interaction of levels of
representation via representational interfaces occurs online, i.e., at the time of
linguistic processing.

As for the cross-modal interaction with language, two important questions arise at
this point:

Q1. Do non-linguistic representations interact directly with the linguistic levels of
representation or is their interaction mediated by intervening levels of repre-
sentation?

Q2. Do representational modalities interact with the linguistic levels of representa-
tion via the same mechanisms as sensory modalities do?
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Jackendoft’s theory provides an answer to these questions by introducing an addi-
tional level of mental representation, Conceptual Structure. Conceptual Structure
is a complex and highly expressive mental level of representation through which
all non-linguistic modalities, both sensory and representational, can interact with
language. We describe Jackendoff’s notion of Conceptual Structure in more detail
in the following Section.

3.4 Conceptual Structure

Humans are very well capable of speaking about their sensory perception and of con-
verting verbal instructions into motor action. Jackendoff (1983, pp. 16) attributes
this capability to the existence of a single level of mental representation at which
the information conveyed by language interacts with both information from other
peripheral sensory systems as well as with information subsequently conveyed to
the motor system. Jackendoff (1983, p. 17) states this in his Conceptual Structure
Hypothesis.

Jackendoff’s Conceptual Structure Hypothesis

“There is a single level of mental representation, conceptual structure, at which

linguistic, sensory and motor information are compatible”.!

Jackendoff does not provide a conclusive argument for why the interaction between
non-linguistic and linguistic modalities be mediated by a single and unified level
of representation. While this claim is both plausible and attractive from the point
of view of representational efficiency, other representational architectures involving
more than one level of semantic representation are indeed conceiveable. Jackendoff
himself concedes that “there is no logical necessity for the existence of such a unified
level—as there is for the existence of individual interfaces between modalities. At
worst, however, the Conceptual Structure Hypothesis is a plausible idealisation; at
best, it is a strong unifying hypothesis about the structure of the mind” (Jackendoff,
1983, p. 17). Jackendoff continues to maintain his view of Conceptual Structure as
the single unified level of semantic representation in his later work, but admits that
this view is not uncontended (Jackendoff, 1996).

If we accept Conceptual Structure as the single, uniform level of semantic represen-
tation, the question arises what information precisely is encoded in it such that an
interaction between non-linguistic and linguistic representations can occur. Based
on extensive linguistic evidence, mainly from the unsatisfactory mapping of first
order logic expressions of simple sentences like ‘The book is lying on the table.” to
syntax and a detailed linguistic discussion of categorisation judgements, Jackendoff
(1983, Chapters 4-6) concludes that Conceptual Structure must encode information
about types, i.e. concepts, and tokens, i.e. individuals, about taxonomic concept
relations, relational predicates between concepts and between concepts and indivi-

The textual emphasis is Jackendoff’s.
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duals. Moreover, Conceptual Structure must provide the capability to evaluate the
truthfulness of entailment between propositions it encodes as well as the consistency
between concepts. We adopt this as a single, complex modelling requirement:

Requirement R15

A model of Conceptual Structure must encode information about concepts,
individuals, taxonomic concept relations and relational predicates such as
concept-to-concept and concept-to-individual relations. It must also provide
the capability to evaluate the truthfulness of entailment between encoded
propositions as well as the consistency between concepts.

Jackendoff (1996, pp. 6) specifies further that Conceptual Structure must capture
all non-sensory distinctions of meaning and hence extends the list of information
encoded in Conceptual Structure: pointers to representations in the sensory modal-
ities to be able to access encodings of sensory information. These pointers are re-
quired, for example, when re-evaluating sensory input based on top-down influences.
Observe that this requirement for pointers to sensory information is compatible
with Spivey et al. (2004)’s argument for spatial indices presented in Section 2.4.
Jackendoff further requires the expressivity of Conceptual Structure representations
to comprise quantification and quantifier scope, abstract representations of actions
and acting entities, social predicates and modal predicates to express semantic no-
tions such as negation or conditionality. The requirement for the representation of
social predicates as part of Conceptual Structure arises from the fact that languages
like Thai or Japanese express aspects of social relation to the addressee syntactically.
Jackendoff argues that — since Conceptual Structure is assumed to be universal and
innate — there is no need for an additional language-specific level of representation
in-between Conceptual Structure and syntax (Jackendoff, 1996, p. 8). As social
predicates encode linguistically relevant information in some languages, they must
form a part of Conceptual Structure for all of humanity. We hence add the above
extensions to the notion of Conceptual Structure as individual modelling require-
ments:

Requirement R16

A model of Conceptual Structure must contain pointers to the representation of
sensory information.

Requirement R17
A model of Conceptual Structure must encode quantification and quantifier scope.

Requirement R18

A model of Conceptual Structure must provide abstract representations of
actions and acting entities.

Requirement R19
A model of Conceptual Structure must provide social predicates.
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Requirement R20

A model of Conceptual Structure must provide modal predicates to express
semantic notions such as negation or conditionality.

Given this degree of expressivity of Conceptual Structure representations, the ques-
tion arises whether the need for a separate representation of linguistic semantics
can still be maintained at all. If every information encoded in the representation of
linguistic semantics is expressable as an informationally equivalent representation in
Conceptual Structure there is no need for a distinct representation of linguistic se-
mantics anymore. Based on the identity of the inferences drawn in visual perception
and semantic representation, Jackendoff (1983, chapter 6) concludes that the repre-
sentation of linguistic semantics does not encode any information that cannot also
be expressed representationally in Conceptual Structure. The set of representations
of linguistic semantics hence forms a subset of the set of the conceptual structures
expressible in Conceptual Structure. Jackendoff argues that, for reasons of represen-
tational economy, a separate level of mental representation for linguistic semantics
is superfluous. He postulates that consequently the representation of linguistic se-
mantics is included as part of Conceptual Structure. We capture this as modelling
requirement R21:

Requirement R21

A model of Conceptual Structure must encode the semantic part of linguistic
representation within Conceptual Structure.

On the basis of this assumption we can further clarify how the interaction between
non-linguistic modalities and language needs to be modelled: the representations
produced by the non-linguistic modalities interface with Conceptual Structure. The
correspondence rules in their interface with Conceptual Structure translate these
representations into well-formed correspondences in Conceptual Structure. This
process results in a projection of the percepts from the individual modalities into
Conceptual Structure. According to the well-formedness rules of Conceptual Struc-
ture, the projected semantic representations interact with the semantic represen-
tation of language which is also encoded in Conceptual Structure. The result is a
well-formed, semantically integrated Conceptual Structure representation that in-
teracts with syntax via the representational syntax-semantics interface.

This interaction provides the answer to Question Q1 raised on page 37: non-linguistic
representations engage in a direct interaction with the semantic — not the syntactic
— level of linguistic representation. This account provides a plausible explanation
for the observed semantic mediation in the cross-modal interaction with language
as described in Sections 2.2 and 2.3. A schematic rendition of the cognitive archi-
tecture according to Jackendoff (1983) is given in Figure 3.2. Special emphasis is on
the fact that there is no separate representation of linguistic semantics since this is
fully included in Conceptual Structure.
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Figure 3.2: The cognitive architecture for the interaction between the linguistic system and the
sensory modalities according to Jackendoff (1983).

For the purpose of modelling cross-modal interaction with language we adopt Jacken-
doft’s Conceptual Structure hypothesis as modelling requirement R22:

Requirement R22

A model for the interaction between non-linguistic modalities and linguistic
understanding based on Conceptual Semantics must contain a single, uniform
level of semantic representation. This level interfaces with the syntactic level
of representation and constitutes the central representation of linguistic and
non-linguistic semantics. Meaning-based interactions between non-linguistic
modalities and language must be mediated by this level of representation.

While in his earlier work Jackendoff describes Conceptual Structure as the single
level of semantic representation into which all sensory modalities project, this view
is slightly modified in his later work: (Jackendoff, 1992, Chapter 6) and Jackendoff
(1996) include an interface of Conceptual Structure to Spatial Representation, an-
other level of representation resulting from the higher cognitive faculties of spatial
cognition. Spatial Representation acts as a similarly central representation for spa-
tial information as Conceptual Structure is for semantic and conceptual information.
A valid cognitive architecture needs to incorporate the fact that not all sensory
modalities seem to project directly into Conceptual Structure. Jackendoff points
out that there are indeed different kinds of auditory perception which he refers to
as general-purpose (g-p) audition and auditory localisation. While general-purpose
audition focuses on the perception of an auditory stimulus with the aim of interpret-
ing it, auditory localisation is used to support spatial reasoning by means of spatial
localisation of the sound source. Jackendoff argues that general-purpose audition
projects into Conceptual Structure while auditory localisation projects into Spatial
Representation.
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Figure 3.3: The relation between Spatial Representation and Conceptual Structure according to
Jackendoff (1996).

An additional amendment to Jackendoff’s cognitive architecture in Figure 3.2 is ne-
cessitated by the fact that linguistically triggered top-down effects are insufficiently
represented. Cooper (1974) showed that the semantics of linguistic stimuli can
indeed interact with oculomotor activity (see Section 2.2). The interaction between
Conceptual Structure and non-linguistic modalities hence needs to be bidirectional
rather than just unidirectional. Jackendoff includes these aspects in the 1996 version
of his cognitive architecture given in Figure 3.3 (Jackendoff, 1996, p. 3).

An apparent difference between Jackendoff’s architecture in Figure 3.2 and his mod-
ified architecture in Figure 3.3 worthy of discussion is the positioning of Conceptual
Structure. In his earlier architecture, Conceptual Structure was explicitly marked
as outside of the linguistic system. The juxtaposition of Conceptual Structure on
the upper line alongside with syntax and phonology in the later version of his archi-
tecture seems to suggest that Conceptual Structure is now actually considered to be
inside of the linguistic system. This difference can be reconciled by considering that,
even in his later, work Jackendoff continues to argue that Conceptual Structure is
a “language-independent and universal” level of representation (Jackendoff, 1996,
p. 8). This view would clearly be incompatible with the inclusion of Conceptual
Structure into the linguistic system, despite what Figure 3.3 suggests. We hence
conclude that even in his later work Jackendoff continues to position Conceptual
Structure outside of the linguistic system.

According to Jackendoff (1996) Conceptual Structure is the only level of represen-
tation that integrates input from sensory modalities in a direct interaction with
language. It is, however, not the only level of representation which integrates sen-
sory input from different modalities. Further, since Conceptual Structure receives
input from both sensory and representational modalities, we can provide an answer
to Question Q2 on page 37: Despite the different nature of the information encoded
in sensory and representational modalities, their interaction with syntax proceeds
along the same pathway, namely via the interface between Conceptual Structure
and syntax.
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3.5 Thematic Roles and Situation Representations

So far, we have mainly addressed the conceptual entities contained in a Conceptual
Structure representation and have dedicated very little attention to the semantic
relations assigned to hold between those entities. To build propositional seman-
tic representations of more complex utterances we need to relate projected concept
instances by semantic relations in Conceptual Structure. For verb-centred represen-
tations these semantic relations define the participants’ thematic roles and allow us
to specify who did what to whom.

Thematic roles as introduced by Gruber (1965) and later by Fillmore (1968) ini-
tially were intuitive linguistic abstractions to distinguish and classify the different,
semantically unique participant functions in an utterace. While the use of thematic
roles is not limited to words from a specific lexical category, thematic roles most
frequently are defined for verbs where they mark the different semantic functions of
each verbal argument, not just in the form of a syntactically motivated label but
with a genuine semantic commitment (Dowty, 1989). Clearly, the ability to gener-
alise over verbal argument structures is linguistically desirable.

Historically, however, the extensive and diverse debate of thematic roles in the liter-
ature has shown that a precise delineation of thematic roles is extremely difficult, if
not impossible, to achieve and invariably depends on the granularity of the approach
chosen.? While some theories only differentiate between the two basic roles PROTO-
AGENT and PROTO-PATIENT (e.g., Dowty, 1989), other theories such as HPSG (e.g.,
Pollard and Sag, 1994) adopt a strongly lexicalised view of thematic roles, which
results in a set of semantically highly differentiated, but largely verb-specific roles.?
Despite the enormous spectrum of approaches to thematic roles, according to Lobner
(2003) there appears to be a consensus on the definition of a few, central thematic
roles such as AGENT, THEME/PATIENT, EXPERIENCER, INSTRUMENT, LOCATION,
GOAL, and PATH. We define the set of thematic roles used in our work in Section 5.3.
Whether or not thematic roles also constitute a psycholinguistic and cognitive reality
has been widely debated. Ferretti et al. (2001) conducted four single-word priming
studies that provide substantial support for the hypothesis that access to verbs in
the mental lexicon immediately makes available typical schema information centred
around the verb. In their study Ferretti et al. tested whether the auditory presen-
tation of verbs primed other AGENTS, PATIENTS, PATIENT features, INSTRUMENTS,
or LOCATIONs that had previously been identified as typical for the stimulus verb.
A priming effect of the verb-centred thematic roles would be expected if the entire
situation information associated with the verb is made available immediately upon
processing the verb prime.

Ferretti et al. indeed observed that priming occurred for typical fillers of the AGENT
and PATIENT roles. A narrow range of typical INSTRUMENT fillers was also primed
while LOCATION fillers were not. Associative relatedness was excluded as possible

' A good introduction into the different approaches to thematic roles can be found in Dowty (1989).

2The ability to abstract semantic relations beyond the level of single lexemes, which constituted one
of the initial motivations for the introduction of thematic roles, tends to be lost in strongly lexicalised
approaches.
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cause for the observed priming effects. The authors conclude that thematic role
information is indeed closely intertwined with the verb’s definition of meaning in
the mental lexicon and that activation of the verb also activates the verb’s thematic
roles.

Jackendoff’s treatment of lexical semantics proceeds along the same lines (Jackendoff,
1990, pp. 45): A verb’s entry in the mental lexicon contains argument slots, each of
which carries specific requirements about the Conceptual Structure categories from
which its filler candidates may be selected. Since human language permits the delib-
erate use of such selection criteria, e.g. in metaphoric or ironic usage, we conclude
that this selection criteria are not absolute hard rules but simply express degrees
of preference. We interpret this as a Conceptual-Structure equivalent of traditional
sortal constraints and capture this notion as modelling requirement R23:

Requirement R23

In a model for the interaction between non-linguistic modalities and linguistic
understanding based on Conceptual Semantics, a verb’s lexical entry must
indicate for each argument slot from which conceptual categories the argument
fillers may preferably be selected.

Jackendoff further argues that thematic roles are “relational notions defined struc-
turally over Conceptual Structure”. In Jackendoft’s view, a thematic role is nothing
more than a specific label on a prominent semantic relation between an argument in-
dex in the verb’s lexical Conceptual Structure representation and the corresponding
argument slot. Jackendoff does not elaborate on how, mechanistically, the mapping
between the semantic and the syntactic representations of the verb’s argument slots
is achieved. Since both are encoded on different levels of linguistic representation,
we conclude that the mapping needs to be performed by the interface between those
two levels of representation. The syntax-semantics interface must hence also contain
correspondence rules that are capable of performing this specific mapping.

Kako (2006) reports consistent interpretations of nonsensical verbs and verbal ar-
guments used in syntactically well-formed frames. These findings support the view
that the mapping between syntactic structure and thematic roles is generic rather
than lexically specific. This finding is also in line with our expectation that a sep-
arate mapping rule for every lexeme would be representationally highly inefficient.
Irrespective of the actual mechanism via which the mapping is achieved in human
language processing, we can add Requirement R24 for lexical representation:

Requirement R24

In a model for the interaction between non-linguistic modalities and linguistic
understanding, a verb’s thematic roles must be relateable to its syntactic
argument structure via correspondence rules in the syntax-semantics interface.

Combining these verb-centred functional representations with the projections of role
filling entities discussed in Section 3.4, we now have a sufficiently expressive in-
ventory at hand to represent the semantic structure of propositions in Conceptual
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AGENT THEME
KISS ( [ BENNET }, [ LINNEA | )

HUMAN HUMAN
EVENT

Figure 3.4: Conceptual Structure representation for the proposition Bennet is kissing Linnea.

Structure: They are complex function-argument representations in which thematic
relations hold between an instance of a situation concept as lexicalised by a verb and
instances of entity concepts that act as role fillers. An example for a representation
of a simple proposition is given in Figure 3.4.

An assumption in Jackendoff (1990) with substantial cognitive and philosophical
implication is that every concept instance represented in Conceptual Structure
carries information about the conceptual category it instantiates, such as SITUATION,
EVENT or HUMAN. This presupposes that the cognition of an entity has resulted in
its categorisation as the member of a certain class prior to its projection into Concep-
tual Structure. We hence assume that every projected instance instantiates at least
one concept from the concept hierarchy and add this as a modelling requirement for
our Conceptual Structure representations:

Requirement R25

In a model for the interaction between non-linguistic modalities and linguistic
understanding based on Conceptual Semantics, every concept instance must
instantiate at least one concept from the concept hierarchy.

Conceptual Semantics makes another, similarly fundamental assumption about the
representation of propositional knowledge in Conceptual Structure, namely that
propositional representations in Conceptual Structure are inherently verb-centric.!
Since this view is compatible with our largely syntax-inspired view of semantic verb-
argument structure, we include it as an additional modelling requirement for our
model based on Conceptual Semantics.

Requirement R26

In a model for the interaction between non-linguistic modalities and linguistic
understanding based on Conceptual Semantics, Conceptual Structure represen-
tations are verb-centric.

!An in-depth discussion of this assumption is beyond the scope of this thesis. Since Jackendoff’s
Conceptual Semantics sets out to be a universal account of cognition, a rigorous, linguistically universal
justification for this claim would be required. As far as we are aware, Jackendoff does not provide such an
argument. For a more detailed description of the nature of Conceptual Structure representations, refer to
Jackendoff (1983, Chapter 4).
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3.6 Grounding

Conceptual Structure as proposed by Jackendoff is a symbolic encoding of semantic
information. His theory of Conceptual Semantics clearly provides a computational-
ist approach to cognition. Computationalism maintains that cognition is the result
of the manipulation of intrinsically meaningless symbols as exemplified by Fodor
(1975): “The mind is a symbol system and cognition is symbol manipulation.”

An opposing and largely incompatible view is provided by connectionism which
holds that cognition does not arise from symbol manipulation but from dynamic
patterns of activity in a multi-layered network of nodes with weighted interconnec-
tions. Activation patterns change according to the applied external stimuli and the
internal network constraints. The primary appeal of connectionism lies in the su-
perficial — and certainly not undisputed — parallelism between the structure of the
artificial parallel processing networks and the structure of the human brain (Rogers
and McClelland, 2004).

Today, it is widely accepted that the higher cognitive functions such as language and
image understanding, spatio-temporal reasoning and mathematical thinking result
from symbolic operations of the human mind.! However, systems that are sym-
bolic at all levels of processing face the challenge of having to attribute intrinsic
meaning to the symbols they manipulate. This is one of the fundamental challenges
in the design of artificial autonomous cognitive systems — and for computational
modelling in general: the symbol grounding problem, i.e., the challenge of relating
intrinsically meaningless symbols manipulated solely on the basis of their arbitrary
shapes to non-symbolic representations of their significata in the real world. Since
the symbolic processes of cognition receive non-symbolic input from bottom-up sen-
sory perception, there must be a stage in the process of cognition at which sensory
— or in Harnad’s words: “iconic” — representations connect with their symbolic
correlates.

Harnad (1990) argues that in natural systems the grounding of symbols in sensory
perception comprises two distinct capabilities that are executed independently of
each other: discrimination and identification. Discrimination is the capability to
discern whether the iconic representations of two sensory inputs differ and, if so,
to what degree they differ. Discrimination, hence, is a relative judgement between
two iconic representations. This capability does not require stimulus categorisation
or interpretation and can therefore be performed at a purely sensory level prior to
conceptual categorisation of the sensory stimulus. Identification, on the other hand,
denotes the process of categorising a representatum in a non-symbolic representation
as belonging to a given conceptual category. Identification according to Harnad is
performed based on a non-symbolic categorical representation which is a reduction
of the corresponding iconic representation down to the level of its invariant features.
These invariant features permit to decide whether the represented entity is a mem-
ber of a given category or not.

'Fodor and Pylyshyn (1988) and Harnad (1990) are prominent proponents in favour of this position.
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Both tasks of discrimination and identification can be performed convincingly by
a suitably trained connectionist system. What is missing in a purely connectionist
system is the capability to transfer the systematic properties arising from category
membership to the non-symbolic level of representation. A connectionist system
may well be capable of associating a given sensor input in the form of an iconic
representation with a conceptual category, e.g. HORSE.! A connectionist system,
however, cannot assign the systematic properties of the category HORSE as inherited
in a hierarchy of concepts to the iconic representation of an instantiation HORSE_01.
In order to achieve such a rule-governed transfer of systematic properties, we re-
quire a symbolic representation of the conceptual category that permits rule-based
operations of symbol manipulation. A purely connectionist system has no symbolic
level of representation and hence offers no such symbolic operations.

This discussion of the fundamental capabilities and limitations of symbolic and
connectionist systems shows that both connectionist and symbolic systems can con-
tribute important aspects to the complex tasks of grounding and systematic symbol
manipulation — but neither of them can perform discrimination, identification and
symbolic manipulations all on its own.

Harnad proposes to resolve the strict dichotomy between symbolic and connectionist
systems by means of a hybrid architecture that combines a symbolic and a connec-
tionist component to complement each other such as to compensate for the individual
weaknesses. The suggested framework first processes sensory input in a connection-
ist component such as an artificial neural network to discriminate and identify the
sensory input. Systematic symbolic manipulation is then performed as a rule-based
combination of grounded elementary categories. The result of these two steps is a
systematically manipulable symbolic system grounded in sensory perception. Saf-
fiotti and LeBlanc (2000), Coradeschi and Saffiotti (2001, 2003a,b), and Chella et al.
(2004) report successful implementations that ground symbolic representations in
the sensory representations of real-world objects based on Harnad-like hybrid archi-
tectures.

It is worth mentioning that, in the literature, the term symbol grounding is used
primarily to denote the process of associating an abstract symbol with the sensory
representation of a corresponding entity in the real world. The term anchoring, as
formalised by Coradeschi and Saffiotti (2003a), is used in a similar fashion to denote
the association of an abstract symbol with the representation of the corresponding
real-world object over time. In principle, the association process between the real-
world object’s sensory representation and its symbolic representation can procede
bottom-up, top-down or in a hybrid fashion. In this thesis, we follow Harnad (1990)
in his view that “there is really only one viable route from sense to symbols: from the
ground up”. We adopt Harnad’s term bottom-up grounding to denote the process
of grounding in which a sensory stimulus is linked to its corresponding symbolic
representation by bottom-up processing of the sensory input.

"We henceforth adopt the convention of representing concepts in small capitals such EXAMPLE, and
concept instances by their indexed category label such as EXAMPLE_O1.
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In summary, grounding representations of sensory perception requires two capabil-
ities, namely discrimination and identification. Discrimination permits to evaluate
the degree of similarity between two iconic sensory representations. Identification
reduces iconic representations down to the corresponding categorical representations
of distinctive and invariant features based on which the representatum can be cat-
egorised as a member of a particular conceptual category. Once identification has
been accomplished, the sensory stimulus is said to ground the corresponding con-
ceptual category. In terms of Conceptual Semantics, the stimulus can now project
into Conceptual Structure as an instance of the identified conceptual category.

For our model of the cross-modal interaction between vision and language, we re-
quire the capability of discrimination. In the visual modality, discrimination allows
us to distinguish between the iconic representations of visual perception. In the
linguistic modality, discrimination permits us to distinguish between the different
tokens in linguistic input. Our model also requires the capability to perform iden-
tification in order to achieve classification of entities in linguistic and visual input
as belonging to one or more conceptual categories. We capture these aspects as
modelling requirements R27 and R28:

Requirement R27

A model for the interaction between non-linguistic modalities and linguistic
understanding must have the capability to discriminate individuating features of
visual and linguistic input at sensory level.

Requirement R28

A model for the interaction between non-linguistic modalities and linguistic
understanding must be capable of categorising sensory input in conceptual
categories based on a set of individuating features.

With respect to our focus on the cross-modal interaction of representational modal-
ities it is important to note the difference between assigning a meaning to tokens of
natural language and the bottom-up grounding of a sensory stimulus representation.
For language, the categorisation of the initial sensory stimulus — be it auditory, vi-
sual or haptic — results in the identification of a particular word. This word is an
arbitrary linguistic symbol and has a range of associated lexical properties, one of
them being the representation of word meaning as defined in the mental lexicon. Ac-
cording to Jackendoff, word meaning is represented in terms of semantic structures
of concepts and predicates in Conceptual Structure. In contrast to the processing
of a sensory stimulus, an identified word does not project into Conceptual Structure
directly. Rather, the meaning of the word first needs to be retrieved as a property
associated with the identified symbol. As Lobner (2003, Chapter 2) describes it,
the retrieved word meaning is a conceptual expression that denotes a set of possible
instantiations. It it this conceptual expression that is instantiated in Conceptual
Structure. The processing of the representational modality hence includes an addi-
tional decoding step in which the meaning of the arbitrary symbol is decoded. In
essence, however, both processes result in the assignment of meaning to a sensory
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Figure 3.5: The difference between grounding concepts in sensory and linguistic stimuli.

stimulus. We therefore will refer to the process of assigning meaning to a sensory
stimulus encoding linguistic symbols as linguistic grounding while we refer to the
process of grounding in sensory stimuli as sensory grounding. The difference be-
tween processing a categorical representation in sensory grounding and in linguistic
grounding is summarised in Figure 3.5.

3.7 Cross-Modal Matching

In the previous section we have described how sensory and linguistic input projects
into a common level of mental representation: Conceptual Structure. In order for
those representations to interact with each other, we require an additional step
which Bushnell (1994) refers to as cross-modal matching or cross-modal transfer.
In this step, the various bits of information obtained from different modalities are
interconnected by establishing co-reference. Propositional information on instances
from a non-linguistic modality can interact with propositional information on in-
stances from language if the instances projected from the non-linguistic modality
can be matched to one or more instances projected from the linguistic modality.
Establishing referential coherence between individual propositions has been shown
to be an integral part of unimodal language understanding (Kintsch and van Dijk,
1978).! We hypothesise that referential coherence is also established in the process of
cross-modal comprehension, not only between concept instances from the linguistic
modality but between all concept instances projected into Conceptual Structure.
The modality from which an instance has projected should have no influence upon
that process. Recent investigations into cross-modal graph comprehension support
this view (Acartiirk et al., 2008; Habel and Acartiirk, 2009).

The simplest case of a cross-modal matching is token identity in which both modali-
ties independently project the same concept instance into Conceptual Structure, e.g.,
when watching a visual scene and simultaneously receiving a linguistic description
of a situation in that scene. Parsing the utterance ‘A green car is passing by.” while
watching a green car drive past, will typically cause a human listener and speaker
of English to interpret the utterance as making reference to precisely that green car

'Kintsch and van Dijk argue that language understanding involves the establishment of referential
coherence at two levels of discourse: at the microlevel within the utterance being processed and at the
macrolevel within the larger discourse unit that was encountered prior to the currently processed utterance.
Due to the focus of this work on single sentence parsing we shall ignore the higher level discourse structures
in this discussion.
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in his or her visual field. As a result, the utterance is perceived as referring to the
car that is being seen, heard and smelt at the time of utterance interpretation. To
achieve this uniform and integrated percept of the situation, concept instances pro-
jected from non-linguistic modalities and language need to be projected, recognised
as mutually compatible and subsequently treated as co-indexical.!

The cognitive benefit of cross-modal matching is an integration of initially disparate
information arriving from different modalities. The consolidated information can
then be linked to the same entity in the subject’s perception of the real world re-
sulting in a uniform cross-modal percept of that entity. The precise mechanisms
of how the integration of information from different modalities is achieved in the
human brain are still unknown and continue to attract intense research attention.
While significant advances have been made in the neurophysiological investigation
of multisensory integration, i.e., information fusion at sensory level (cf. Section 2.1),
comparatively little is known about how information from different representational
modalities is integrated by the higher cognitive functions.

An important factor in the integration of cross-modal information is the compati-
bility of the information obtained from the different modalities. In cases where two
modalities provide compatible information, an accumulation mechanism appears
plausible in which the information from both modalities is simply combined into a
joined representation in Conceptual Structure. Since different modalities may exert
a different degree of dominance, e.g., due to differing degrees of perceptual certainty,
it is likely that the contributions of the individual modalities are weighted. Vision,
e.g., has been known to dominate strongly over other modalities in humans. Congru-
ence of information between different modalities is likely to result in a reinforcement
of the representation of that information. The reinforcement of a representation by
different modalities should increase the confidence in the reliability of its represen-
tata. If the mechanisms for cross-modal integration with language are analogous to
those observed at sensory level?, the independent projection of identical information
from different modalities should result in superadditive responses of neural activity
for the processing of cross-modally congruent representational stimuli.

Given the large amount of different — and oftentimes conflicting — stimuli we are
exposed to, the processing of conflicting information across different modalities will
also play an important role in our modelling. Whether or not cross-modal infor-
mation is consistent and coherent can only be identified when the representations
arising from different modalities are brought together in the process of cross-modal
matching. We hence formulate the need for cross-modal matching as an essential

!Several effects of representational consolidation upon multiple tokens representing the same real-
world are conceivable: (1) All tokens continue to co-exist in Conceptual Structure joined by an additional
relation marking their co-indexation. (2) Alternatively, all but one of the multiple tokens are removed
and the relations they engage in are redirected to the last remaining of tokens. (3) Multiple tokens are
replaced by a common index which points to a single instance of that token. A discussion of how these
options could be expressed in terms of Conceptual Structure representations is beyond the scope of this
work. Jackendoff (1990, Chapter 3.2) provides some examples of co-indexation in Conceptual Structure
representations.

2See the discussion of multisensory integration in Section 2.1.
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part of a cross-modal interaction as modelling requirements R29 and R30.

Requirement R29

A model for the interaction between non-linguistic modalities and linguistic
understanding needs to provide a mechanism for establishing cross-modal
referential links by matching entities from the linguistic modality with concept
instances from the interacting non-linguistic modalities.

Requirement R30

A model for the interaction between non-linguistic modalities and linguistic
understanding needs to provide a mechanism for establishing cross-modal
referential links by matching concept instances from the non-linguistic modalities
with entities from the linguistic modality.

Bushnell (1994) argues for two different strategies to accomplish cross-modal match-
ing. Matching by analysis is the approach in which salient object features detected
in the first modality are tested for their correspondence in the second modality.
This approach predominates for unknown items. Matching by recognition is an al-
ternative approach when object perception from one modality is strong enough as
to project into the second modality, e.g., when the haptic impression of an object
presented under a blanket is strong enough to conjure up an image of a potato in
front of the subject’s inner eye. The subject then needs to compare his or her in-
ternal image against the actual visual perception of the visually presented object
to judge whether they coincide. This latter strategy is employed when objects are
very familiar. According to Bushnell, matching by recognition is analogous to word
recognition in which an auditory linguistic stimulus activates a concept in another
representational modality. The analytic and holistic methods of visual pattern per-
ception as described by Cooper (1976) and other researchers can also be considered
instances of matching by recognition.

3.8 Chapter Summary

In this chapter we have achieved a significant objective in the preparation of the
detailed description of our model: we have identified Conceptual Semantics as a
general theory of cognition which provides an integrated account for the cross-
modal interaction between non-linguistic modalities and language. Based on the
description of Conceptual Semantics we have formulated further requirements for
our model.

Conceptual Semantics is based on a cognitive architecture in which non-linguistic
modalities and language interact at a representational level. The interaction of
non-linguistic modalities with syntax is mediated by Conceptual Structure, a single
and uniform level of mental representation that encodes both conceptual knowledge
and linguistic semantics. Conceptual Structure interfaces with the representations
of non-linguistic modalities as well as with syntax. All of these representations are
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representationally encapsulated and project into Conceptual Structure via modality-
specific interfaces. The role of these interfaces is to translate between the encodings
of the different representational levels by applying a finite set of correspondence
rules.

We have further outlined the view of Conceptual Semantics on the significance of
thematic roles. According to Jackendoff, thematic roles mark prominent argument
slots in the Conceptual Structure representation of verbal concepts. Our discussion
of grounding has led us to the insight that discrimination and identification are im-
portant tasks to achieve conceptual grounding in our model. Finally, cross-modal
matching was introduced as the process by which cross-modal referential links be-
tween concept instances are established between concept instances from different
modalities. As such, it constitutes an indispensable cognitive process for cross-modal
interaction. We have argued that the compatibility of the concepts instantiated in
different modalities is a key requirement for establishing cross-modal co-reference.

In the following chapter we shift our focus to language processing. We present
symbolic constraint-based parsing as a suitable formalism for the integration of non-
linguistic contextual constraints upon syntactic parsing and motivate an existing
parser implementation as a suitable candidate for the natural language processing
component in our model.



Chapter 4

Constraint-Based Analysis of
Natural Language with WCDG

A model for the influence of cross-modal context upon syntactic parsing requires a
parser that is capable of receiving and processing external context information in
some form or another. The majority of syntax parsers today, however, are informa-
tionally encapsulated in the sense that they only accept linguistic input which they
process based on their intrinsic linguistic resources. Those parsers that do permit
to impose additional constraints on linguistic analysis typically employ unfication
such that the additional constraints are added as hard constraints on linguistic
analysis rather than as biasing preferences. The weighted-constraint dependency
parser WCDG constitutes a notable exception in this respect. It comes with a
generic interface that permits the inclusion of parser-external non-linguistic infor-
mation into linguistic processing. WCDG is an attractive candidate for the parsing
component in our model because its interface permits to influence linguistic decision
making by introducing external, possibly non-linguistic information into the parsing
process. WCDG is also based on weighted or graded constraints which, as we shall
see, are highly suited for modelling linguistic and contextual preferences.

This chapter provides an introduction to WCDG and its approach to the analysis of
natural language as a symbolic constraint satisfaction problem. While the preceding
chapters focused on the development of the cognitive requirements for our model,
this chapter sets out to identify further, more implementation-related requirements.
The primary focus in this chapter is on the derivation of the technical requirements
for the parser component in the context of our modelling framework.

Section 4.1 begins with an outline of the major differences between generation-rule-
based and weighted-constraint parsers to motivate the use of WCDG in our model.
Section 4.2 describes WCDG’s relevant standard capabilities. Section 4.3 offers a
discussion of why some of the central limitations of WCDG’s standard implemen-
tation necessitate modifications to the implementation in order to meet our specific
modelling objectives. Section 4.4 summarises the central points in this chapter and
lists the resulting conclusions. This chapter concludes Part I of this thesis, and with
it, the requirements collection process for our computational model.
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4.1 Generation Rules vs. Constraints

Approaches to natural language analysis can be broadly categorised into two funda-
mentally different classes, depending on their method for defining the set of accept-
able solution structures: generation-rule-based approaches and constraint-based
approaches. The majority of the existing parser implementations follow a generation-
rule-based approach. Generation-rule-based systems span open the space of well-
formed sentences based on a set of generation rules.

Constraint-based systems, on the other hand, constrain the set of all possible struc-
tures by excluding ungrammatical structures, leaving only the set of desired solu-
tions. Importantly, therefore, the set of constraint-based systems not only comprises
connectionist, i.e. non-symbolic, approaches but also symbolic constraint parsers.
Symbolic constraint parsers encode syntactic properties in variables and constrain
the assignment of values to these variables by means of suitable constraints. In the
following, we mean symbolic constraint parsers when we refer to ‘constraint-based
systems’.

4.1.1 Generation-Rule-Based Parsers

A generation-rule-based parser tries to assess whether a given input can be gen-
erated from a set of generation rules that stipulate the procedures for generating
well-formed sentences. The result of the parser’s analysis is a Boolean decision on
the grammaticality of the input with respect to the set of generation rules. If the
input is classified as grammatical, the input’s syntactic structure resulting from the
successful procedural application the generation rules is known as well.

Effectively, a generation-rule-based parser acts as a theorem prover attempting to
prove if the input theorem can be derived from a set of axioms stated in the for-
mal system constituted by its grammar rules and the additional information in the
lexicon. If the input is generable from the rules, it is rated as grammatical, otherwise
as ungrammatical.

In contrast with this binary decision on grammaticality, the human analysis of
natural language also comprises the central ability to discern preferences of accept-
ability, be they syntactic, semantic or pragmatic. It is this capability that lets
humans accept a given construct as perfectly grammatical in one context while re-
jecting it as ungrammatical in another context (Crain and Steedman, 1985).

A natural language analysis application designed with the intent to model human
language processing behaviour should therefore include the capability to discern de-
grees of acceptability rather than just to categorise solution candidates as correct or
incorrect. In a generation-rule-based system, however, the inability to derive a given
input from the grammar and the lexicon cannot always be attributed to the violation
of a specific grammatical axiom; the input simply cannot be deduced from the for-
mal system constituted by the grammar and the lexicon as a whole. Consequently,
a generation-rule-based system cannot provide detailed diagnostic information on
specifically which property of the input was responsible for its classification as un-
grammatical.
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Another limitation of the generation-rule-based approach is its handling of unknown
input. Even the largest of today’s grammars and lexicons are inevitably limited
in their modelling scope and hence do not cover the totality of natural language
expressiveness. To a generation-rule-based parser ‘outside of modelling scope’ is
equivalent to ‘ungrammatical’. However, not every input that cannot be gener-
ated by the formal system must necessarily be ungrammatical; unrestricted natural
language abounds with multi-word expressions, metaphors, creative word or ex-
pression formations whose underlying formation patterns are not always easy to
predict. In rejecting input beyond the boundaries of the known as ungrammatical,
generation-rule-based parsers are limited in their capability of handling unknown
input robustly. Given the high productivity of natural language, the constructive
handling unknown input is a key feature for the robust processing of unrestricted
natural language input.

4.1.2 Symbolic Constraint-Based Parsers

Symbolic constraint-based systems approach the task of parsing as a constraint-
satisfaction problem over the assignment of values to variables representing syntac-
tic properties. The degree of complexity of the represented features depends on the
formalism. In the case of WCDG, the words in the input sentence form the nodes of
a constraint net whose edges correspond to the dependencies between words. Every
node and every edge corresponds to a variable in the constraint system to which a
value needs to be assigned. Well-formedness rules define the permissible relations
between words hence act as constraints upon the values that can populate the edges
in the constraint net. Edge values violating constraints are removed from the con-
straint net until no further restrictions can be imposed. The remaining edge values
in the constraint net describe the set of structures classified as grammatical with
respect to the constraint set. This approach was first described by Maruyama (1990).

In analogy to the ancient Roman legal guideline Nulla pena sine lege' a constraint-
based parser will admit every solution candidate as correct unless it violates a well-
formedness rule in the grammar. The set of constraints therefore needs to be specific
enough such as to admit only grammatical sentences and general enough such as
not to exclude acceptable structures from the solution set. A major advantage of
this approach is the system’s robustness to unknown input. Every structure, includ-
ing those which have not been considered by the grammar-writer, can pass as an
acceptable solution as long as it does not violate a given structural constraint.

A significant difference compared with generation-rule-based systems for language
analysis is that constraint-based parsers can also provide very specific feedback on
which constraints in its grammar are being violated by a given input structure. Be-
cause of this, constraint-based systems are good candidates for providing diagnostic
support in language analysis.

1“No penalty without a [corresponding] law’
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Finally, the constraints defined in the grammar all apply to a solution candidate
simultaneously rather than sequentially. This aspect makes the evaluation of con-
straint satisfaction in constraint-based systems amenable to parallel processing.
Harper and Helzermann (1995, p. 199) review a number of implementation efforts
aimed at parallelising constraint-dependency parsing.

An important refinement to the constraint-based approach outlined so far is moti-
vated by the insight that the well-formedness rules do not all contribute equally to
the acceptability of the overall solution structure. The constraint-based systems de-
scribed so far cannot yet express degrees of preference amongst solution candidates.
Graded acceptability assessments can be incorporated by expressing the severity of
a violated well-formedness rule as a numerical weight. In case of a constraint vi-
olation, rather than removing the structural candidate from the set of acceptable
solutions altogether, we can retain the candidate structure as a potential solution
and assign it a penalty score for each constraint that it violates. As an example, a
sentence may well contain a determiner-noun incongruence and still be acceptable
overall while the absence of a full verb may result in a much more severe degrada-
tion of its grammatical acceptability. A weighted constraint formalism is capable of
expressing such graded acceptability ratings.

Weighted constraint-based parsers typically define a measure for the overall accept-
ability of a solution candidate as a function of the constraint-violation penalties
it incurs. This overall measure allows the system to rank solutions and compare
their acceptability against each other. The most preferred solution is the one with
the best overall acceptability rating. To identify the most preferable, i.e. the least
penalised, solution candidate in the potentially very large search space, we require
a search algorithm that provides complete coverage of the search space. In case
a complete search is infeasible due to the sheer size of the search space, we need
to employ an efficient search heuristic to identify a local optimum as our preferred
solution candidate.

4.2 The WCDG Parser

The weighted-constraint dependency parser WCDG is an implementation of the
WCDG formalism and can be obtained in its standard release from the WCDG
Download (2009). With an overall syntactic parsing accuracy of 92.5%, WCDG is
the system with the highest reported accuracy for unrestricted German text to date
(Foth, 2006).! By integrating the powerful MSTParser (McDonald, 2006; McDon-
ald et al., 2006) as a predictor to WCDG, Khmylko (2007) even achieved a parsing
accuracy of 93.9% under conditions comparable with those used by Foth.

Apart from its constraint-based processing WCDG also offers a generic interface for
the integration of parser-external, non-linguistic information into the parsing pro-
cess (cf. Section 4.2.5). For this reason WCDG was chosen as a suitable language
processing component in our model of cross-modal integration into language. As
will become apparent in the course of this chapter, a number of processing require-

IThe evaluations of parsing results for WCDG in the literature cite accuracies. Unless otherwise stated,
these are identical to the standard measures of precision, recall and the resulting fi-measure.
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<Lexicon Entry> = <Lexeme> ‘:=[" <Feature List > ‘];’

<Lexeme> BES { STRING | INTEGER }

<Feature List> = <Attribute-Value Pair> { ¢, <Attribute-Value Pair> }
<Attribute-Value Pair> = <Attribute> “:’ <Value>

<Attribute> = { STRING | INTEGER }

<Value> = { STRING | INTEGER }

Figure 4.1: The form of a WCDGI1 lexicon entry (EBNF).

ments necessitate implementation extensions to WCDG. In our model we therefore
employ a selectively enhanced version of WCDG. We refer to the standard version of
WCDG as WCDG1 and to our extended version as WCDG2. By WCDG we hence-
forth refer to the common core of these implementations, i.e. the WCDG system in
general, irrespective of its implementation version.

The following sections provide a brief overview over WCDG1’s components and
motivate the extensions realised in WCDG2. For a comprehensive description of
WCDGI, see Schroder (2002).

4.2.1 Lexicon

WCDG uses a semi-automatically generated full-form lexicon with approximately
931,000 individual entries for WCDG1.! A lexicon entry consists of an assignment of
comma-separated attribute-value pairs to a lexical full-form as shown in Figure 4.1.
The set of attributes comprises part of speech (cat)?, lexical base form (base),
syntactic valence (valence), morphosyntactic features (case, number, person etc.)
and others.

An example for a typical lexicon entry is shown in Figure 4.2. For economy of rep-
resentation and processing, WCDG permits to assign underspecified feature values.
case = bot, e.g., is an underspecified case feature that corresponds to the assign-
ment of any possible case. Assigning the underspecified feature has the advantage
of needing to represent and process only one single form rather than four individual
forms as would be the case with the assignment of case = (nom | gen | dat | acc).

kaufen:=[base:kaufen,cat:VVINF,perfect:haben,valence:’a?+d?’,avz:allowed];

Figure 4.2: WCDG1’s lexicon entry for ‘kaufen’/VVINF

!See Foth (2006) for a detailed explanation of the generation of the lexicon files.

2For the specification of the cat feature, WCDG uses the standard tags from the Stuttgart-Tiibingen
part of speech tag set (STTS) for German as documented in STTS Tag Set (2009). We follow this practice
and use this tag set in our notation of part of speech throughout this document.
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Lexical Entry kaufen:=[base:kaufen,cat:VVINF,perfect:haben,
valence:’a?+d?’ ,avz:allowed] ;

Actual Valence 1 valence = -

Actual Valence 2 valence = a

Actual Valence 3 valence = a+d

WCDG1 Valence valence = a?+d?

Valence Expansion valence = (- | a | d | a+d )

Overgenerated Valence valence = d

Figure 4.3: Syntactic valence expansion for the verb ‘kaufen’ to buy as an example for the over-
generation of syntactic valence alternatives in WCDGI1.

Of particular importance to a verb’s syntactic behaviour is its feature valence which
specifies the range of syntactic dependencies that the verb may entertain as a regent.
Consider the infinitive of the verb ‘kaufen’ to buy which can act as an intransitive,
a transitive or a ditransitive verb and hence has several syntactic valences. While
the different syntactic behaviours of the infinitives would warrant separate entries
in the full-form lexicon, the verb’s WCDG1-representation contracts all three verb
forms into a single lexical entry with the underspecified syntactic valence a?+d?.
This syntactic valence indicates that ‘kaufen’ must subcategorise either an optional
accusative/direct object (a?) or an optional dative/indirect object (d?) or a com-
bination of these (+).

Since the syntax for specifying syntactic valences in WCDG is limited in its power
to express optionality, expanding underspecified syntactic valences may lead to over-
generation of valence alternatives (Foth, 2006, p. 172). An example for an invalid
syntactic valence option generated from an underspecified valence representation is
given in Figure 4.3. WCDGT1’s lexical entries do not contain semantic valence in-
formation such as subcategorised thematic roles. For semantic text processing with
WCDG, semantic lexical information hence needs to be added to the lexicon. We
henceforth use the term semantic valence to denote the set of thematic relations a
verb can engage in. For reasons to be outlined in Section 5.7, we limit our use of
the term to the mandatory thematic relations a verb needs to entertain in order to
be semantically well-formed.

4.2.2 Grammar

WCDG’s grammar primarily contains a collection of the constraints defined on the
space of permissible parse structures. Each constraint ¢ is weighted by a penalty
score ¢(c) where ¢ is a function

(4.1) ¢:C s [0,1]

that assigns each constraint from the set of all constraints C' its penalty.
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When a solution candidate SC' violates a given constraint ¢;, the resulting constraint
penalty ¢(c;) is aggregated into the candidate’s overall score ®(SC'). In WCDG, the
aggregation function ® is multiplicative and a candidate’s overall score is defined as
the product of the penalties associated with the constraints it violates.

(4.2) o(SC) = [ é(e)

The violation of a constraint with a penalty score of 0 results in the rejection of the
corresponding solution candidate as unacceptable. Constraints with a penalty score
of 0 are referred to as hard constraints. All other constraints can, in principle, be
violated by an acceptable solution candidate and are referred to as soft constraints.
Observe that the violation of constraints ¢; with weight ¢; = 1.0 has no effect upon
the overall score of the solution candidate ®(SC). Such constraints hence effectively
do not constrain the space of acceptable solutions and should, strictly speaking, not
be referred to as constraints. For simplicity, however, we will use the term constraint
to denote every well-formedness rule in the grammar, irrespective of its numerical
penalty score.

For each input sentence WCDG creates a directed acyclic graph of labelled depen-
dency edges joining each dependant with its regent. With the exception of the ROOT
node, every node in a WCDG dependency graph represents a word in the input sen-
tence. Dependencies are assigned between nodes. In contrast to phrase-structure
formalisms, dependency parsing requires that higher syntactic structures such as
prepositional phrases be modelled by assigning the corresponding dependency to a
particular node. With the exception of the S-node a dependency tree hence has
no internal nodes that do not map to a word in the input sentence. This property
constitutes the most significant representational difference between dependency and
phrase-structure grammars.

Each dependant can only have one regent per level of analysis. For some aspects
of linguistic analysis such as syntax, relative clause reference or semantics, it can
be helpful to build up separate dependency structures for the same input sentence.
WCDG achieves this by defining a separate level of analysis for each one of these
structures. Attachment rules are defined individually for each level. In a constraint
definition we therefore need to declare explicitly which level of analysis the con-
straint body refers to. WCDGI1 provides two levels of analysis, the SYN level for the
assignment of syntactic dependencies and the REF level for reference resolution of
relative pronouns. WCDG1 does not provide any levels — and thus no constraints —
for semantic analysis.

Constraints on the properties of a single edge are referred to as unary while con-
straints on the properties of two edges are referred to as binary. As will be discussed
further in Section 5.6, the edge properties checked for in a constraint may indeed be
complex. An example for a more complex edge property is its adjacency to other

'For a comprehensive and rigorous description of the WCDG formalism cf. Schroder (2002).
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edges with specific properties. The constraint that an edge X be above another edge
with label PP, say, is still considered a unary constraint — even if the reach of the
constraint has effectively been extended and the properties of two edges need to be
evaluated in order to assess the satisfaction of this constraint. In the view of WCDG,
the adjacency condition is still considered a property of edge X. Observe that this
view also effects a shift of blame for constraint violations. Since the constraint is
formulated as a property of X, X is also responsible for violating the above adjacency
constraint, even if the violation occurs because of an edge below X that does not
bear the required PP label.

In first approximation, solving a constraint satisfaction problem in WCDG breaks
down into three major steps, namely:

1. the application of unary constraints to individual dependency edges,

2. the application of binary constraints to larger dependency structures com-
prising more than one edge,

3. the search for the optimal solution.

Let us attempt to formulate an expression to describe the time complexity of this
parsing problem. As we have just seen, dividing constraint evaluation into the
application of unary and binary constraints is a simplification (cf. Section 4.2.4).
Certain unary constraints also need to be evaluated on dependencies that extend over
more than one edge and — analogously to binary constraints — need to be applied to
larger dependency structures. Such constraints are referred to as context-sensitive.
For the purpose of this derivation, however, we neglect the differentiation between
context-sensitive and non-context-sensitive constraints. We make the simplifying
assumption that every n-ary constraint contributes equally to the time complexity
of n-ary constraint evaluation, regardless of whether it is context-sensitive or not.
The time complexity of unary constraint evaluation then depends on the number
of constraint evaluations that need to be performed, which is equal to the product
of the number of constraints and the total number of edge constellations to be
evaluated for a given sentence. An upper bound for the number of unary constraint
evaluations, Ay,qry, i given by Equation (4.3). A brief derivation of Equation (4.3)
is given in Appendix III.1.

(43) f/%mary = ‘Cunary‘ : n?nax ’ 82 ) Z Ai

where

Cunary 18 the set of all unary constraints in the grammar,

Nonaz is the maximum number of homonyms per slot in the sentence,
S is the number of slots in the sentence, and

Yy is the number of dependency labels on level of analysis .
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For binary constraint evaluation, constraint application is typically combined with
search such as to avoid computation of the entire hypothesis space .7#°. With this
approach, binary constraints are not applied to solution structures that lie in pruned
sections of 7. For reasons of processing efficiency — especially with longer sentences
as are typically encountered in unrestricted natural language input — no WCDG
search heuristic in practical use evaluates binary constraints for the entire hypo-
thesis space. In cases where binary constraint evaluation and search are combined,
time complexity for the combined step depends on the size of 7 and the algorithm
employed to search it. Due to the strong dependency on the efficiency of search, no
implementation-independent prediction of time complexity is possible in this case.
If all binary constraints were to be evaluated prior to the search on J#, the time
complexity of binary constraint evaluation would be proportional to the number of
constraint evaluations. The upper bound for the number of binary constraint evalu-
ations, hpinary, 1S given by Equation (4.4). For a brief derivation of Equation (4.4)
see Appendix III1.2.

2
(44) </Vbz'nary = |Cbz’nary| : nfnax : 34 . [ Z /\z :|

In practice, the actual number of binary constraints evaluated is less than Ag;ary
since WCDG does not evaluate binary constraints in solution candidates that con-
tain edges which violate a hard unary constraint. The number of solution candidates
violating one or more hard unary constraints, however, depends on the actual formu-
lation of the unary constraints and thus cannot be predicted by an implementation-
independent expression.

In summary we conclude that in WCDG the number of constraints in the grammar,
the number of homonyms in each slot, the number of slots in the sentence and the
number of labels in the grammar have a bearing on the number of constraint evalu-
ations and thus on processing time. An understanding of the factors that influence
the number of constraint evaluations will become important when trying to assess
the effect of implementation changes between WCDG1 an WCDG2 upon processing
time (cf. Section 5.7).

After this brief excursus into the computational complexity of the constraint satis-
faction problem, let us return to the overview over WCDG’s grammar. In addition
to the constraint and level definitions outlined so far, the grammar also may con-
tain some further information most of which, however, is of lesser importance in the
context of modelling cross-modal interaction:
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Pragmas

Pragmas permit to define macros on the basis of WCDG commands. A pragma
is executed when WCDG loads the file containing the pragma into memory.
The main use of pragmas is to set parameters for the current WCDG session.

Hierarchies

Named hierarchies provide a simple way of defining subsumption relations be-
tween hierarchically structured symbols in WCDG.

Word Templates

To improve WCDG’s robustness to unknown input the grammar contains tem-
plates describing typical word-formation patterns in a regular expression syn-
tax. These patterns are effectively functions that assign a set of lexical features
to any matching string. They are extremely useful for recognising systemati-
cally generated words which are either too specific or too infrequent to warrant
their inclusion as a full-form entry into the lexicon. One of these templates,
e.g., recognises all words of the family n-fold such as ‘zwolffach’ twelvefold.

Datamaps

WCDG provides a limited number of functions and predicates most of which
take a fixed number of input arguments. Datamaps permit to map an arbi-
trary number of input arguments n to a single return value. They have been
employed to model subsumption hierarchies of lexical and syntactic features
and as a work-around to extend the number of input arguments in WCDG
functions and predicates. By including the return value of a datamap as an ar-
gument into an existing function, the number of input arguments of a function
can formally be maintained while, effectively, extending its number of input
arguments by n-1. In terms of data structures, a datamap can be considered a
hash table which takes the concatenation of the input argument strings as key
and returns a hash value.

4.2.3 Constraint Syntax

A WCDG constraint defines a well-formedness rule for a dependency structure or a
part of it. A constraint consists of a constraint header and an all-quantified logical
formula (Schulz et al., 2003, pp. 43). The logical formula is evaluated for every de-
pendency structure that satisfies the restrictions formulated in the constraint header.
A penalty score is imposed on the overall score of the structure if the truth value of
the logical formula evaluates to false.

The majority of constraints in WCDG’s standard grammar of German contain
a logical formula which consists of a precondition and a postcondition joined by
logical implication written as ‘=>’. Constraint satisfaction can be achieved in two
ways: Either the dependency structure satisfies both the precondition and the post-
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condition or the precondition evaluates to false.! An example of a typical WCDG
constraint containing pre- and postcondition joined by logical implication is given
in Figure 4.4.

{X!SYN} : ’PP-attachment’ : stat : [ predict(X@id, PP, X"from) ]
X.label = PP | X.label = KOM
-> (X@word = um | X@word = als) & X"degree = comparative

| predict(Xeid, PP, X"from) = 1;

Figure 4.4: A WCDG constraint with constraint header, precondition, implication, postcondition
and dynamic constraint weighting.

The constraint header defines:

1.

. optionally, structural restrictions for the referenced edges.

arbitrary variables to denote the edge references in the constraint’s logical
formula (X in Figure 4.4)

. optionally, a restriction of the level of analysis on which each of the referenced

edges is to be evaluated (SYN in Figure 4.4)

(|7

in Figure 4.4
indicates that X must not attach to the ROOT node.

a unique constraint name (’PP-attachment’ in Figure 4.4)

. an optional indication of the constraint group to permit selective activation or

deactivation of entire constraint groups (in Figure 4.4: stat)

an optional constraint weight. Constraint weights can either be declared
by a static number from the closed interval between 0 and 1 or by a dy-
namically evaluated function. Missing weight declarations default to 0. In
the example in Figure 4.4, the constraint weight is given by the expression
[ predict(X@id, PP, X“from) ] which evaluates dynamically to the return
value of the predict () function with the given input parameters.

The precondition in Figure 4.4 is satisfied by any edge X whose label is either PP
or KOM.? The postcondition is met if the lower word of X is either ‘um’ or ‘als’ and
the upper word of X is a comparative form or, alternatively, if the prediction value
of the PP-attachment predictor for X is 1. A comprehensive coverage of WCDG’s
constraint syntax is provided in Schulz et al. (2003).

! According to the rules of formal logic, the evaluation of an implication’s precondition to false results
in the evaluation of the implication to true overall (ex falso sequitur quod libet).

“The complete set of WCDG edge labels is documented in Foth (2006).
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In its present form of implementation, WCDG only supports unary and binary con-
straints. As a result of this, a single constraint cannot relate more than two different
dependency edges with each other. These limitations become particularly restrictive
in the definition of constraints integrating features across levels of analysis. Syntac-
tic extensions to constraint expressivity based on the use of additional predicates
and ancillary constraints without modifications to WCDG’s processing algorithms
have been reported in McCrae et al. (2008). Baumgértner (2009) reports an exten-
sion of WCDG’s processing algorithms to include ternary constraints. A discussion
of how expressivity challenges resulting from the limitation to unary and binary
constraints have been overcome in our model is given in Section 5.6.

As an aside it might be added that a significant challenge for the WCDG grammar
author is provided by the fact that — at the time of writing — there is no rigorous or
consistent approach to assigning constraint weights systematically. For grammars
complex enough to handle unrestricted German language input, the complex inter-
actions between different constraints and constraint weights are virtually impossible
to predict for a human grammar writer.

In a first attempt to address this issue, Schroder et al. (2001, 2002) report ex-
periments for learning constraint weights using genetic algorithms. The approach
was based on a toy grammar and a relatively small training corpus of 220 Verbmobil
sentences. After mutations over a few hundred generations, small improvements in
f-measure and processing time were observed for grammars with hand-selected start-
ing values for the constraint weights. Starting with grammars containing randomly
assigned constraint weights failed to produce better results than manual constraint
weight selection. The approach was not pursued further due to the significant com-
putational effort involved in the optimisation process.

Apart from this machine learning approach, no heuristics or formal approaches to
assist weighted constraint grammar writers is available and manual constraint weight
assignment largely and regrettably remains a matter of linguistic intuition and trial-
and-error.

4.2.4 Processing Fundamentals

Knowing how constraint-based parsing has been implemented in WCDG will provide
a better understanding of some of the technical limitations encountered when trying
to employ WCDG for the task of integrating external, non-linguistic context. Pars-
ing in WCDG is a multi-step process which can be decomposed into Pre-Processing,
Predictor Integration, Unary Constraint Evaluation and Search. The application of
the binary and context-sensitive constraints is performed in the context of Search.!

Pre-Processing starts with the input of the sentence to parse. A tokenizer and the
T'n’T part-of-speech (POS) tagger are applied to the input to obtain individual to-
kens and their most probable POS tag. Each token occupies a position or slot in the
sentence and will subsequently be referred to as slot string. WCDG then retrieves

LA description of all steps, which is more detailed than required for the argument put forward here, is
given in Menzel and Schréder (1998).
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the lexical entries that match each slot string. Due to lexical ambiguity each slot
string may map to a number of unique lexical entries. These unique lexical entries
will subsequently be referred to as homonyms of the slot string.

WCDG submits the list of slot strings together with their most probable part of
speech tag according to T'n’T to all registered external predictors. Each predictor
processes the input and returns its prediction results via WCDG’s predictor inter-
face. The prediction results are then accessible in the parsing process via the use
of the predict() function in WCDG’s grammar. A more detailed description of
predictor integration is given in Section 4.2.5 below.

With the Unary Constraint Evaluation, WCDG starts the actual parsing process
by applying the non-context-sensitive unary constraints to every single edge. Non-
context-sensitive constraints are those which can be evaluated without the use of
adjacency conditions, i.e.: without the use of the WCDG-predicates is() or has()
which access the properties of the edge or edges above or below. Evaluated edges
receive a score equal to the product of the penalties associated with the constraints
they violate (see Equation (4.2)). Valid structural solutions for the parsing problem
must not contain edges that violate a hard constraint. We can therefore exclude
any edges that do violate a hard constraint from the set of potential constituents of
a valid solution at this early stage of the process.

Having scored all edges that connect word pairs by applying the non-context-sensitive
unary constraints, WCDG now needs to integrate these fragments into dependency
structures spanning the entire input sentence. Only when these larger structures
have been assembled, binary and context-sensitive constraints can be applied and
the best, i.e. least penalised, parse structure overall will be searched for.

WCDG offers a number of different search algorithms to do so. For performance
reasons, they all combine the application of binary and context-sensitive constraints
with the search for an optimum such that the binary and context-sensitive con-
straints are not evaluated on all structures in the hypothesis space. We briefly
describe the two most common search methods here: complete search and frobbing.

Ideally, search should identify the globally optimal solution structure, i.e. the solu-
tion candidate SC,,; with the best — and in our case: highest —score ®(SC,,;) overall.
To ascertain global optimality, the entire solution space needs to be searched. To
this end, WCDG offers the option of complete search. For the sentence lengths en-
countered in the parsing of unrestricted natural language, however, complete search
is undesirable since its completeness comes at the cost of extremely long processing
times. For sentence lengths greater than 30 words, which are encountered frequently
in unrestricted German input, complete search typically incurs processing times in
the order of hours for a single sentence on standard hardware. This is not surprising
since the evaluation of the binary and context-sensitive constraints on all possible
solution tree structures incurs an enormous computational effort. On longer sen-
tences the size of the hypothesis space can easily reach 10'% candidates and more;
for practical parsing purposes, the computational effort of complete search is there-
fore best avoided.
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Moreover, even this supposedly “complete” search applies pruning heuristics to re-
duce the size of its search space. The pruning heuristics have the undesirable side
effect that even the “complete” search can miss the global optimum as the result of
imperfect pruning in some cases. Despite what its name suggests, WCDG’s com-
plete search therefore is not truly complete.

The most common search method employed in WCDG — and also the one we have
used in the experiments described in Part III of this thesis — is frobbing (Foth
et al., 2000; Foth, 2007), a highly effective transformation-based search method.
Frobbing frequently — though unfortunately not always — detects the global opti-
mum within seconds to minutes on standard hardware, depending primarily on the
length of the input sentence. In its search for the best solution structure, frobbing
builds one complete solution candidate from the edges scored in the application of
non-context-sensitive unary constraints and then applies the context-sensitive and
binary constraints to it. Frobbing continually makes local modifications to the initial
structural hypothesis and attempts to resolve its most severe constraint violations
first. Frobbing iteratively proceeds along a path of continually improving solution
candidates to a local optimum until no further improvements can be effected. In this
optimisation, frobbing operates on a dependency structure spanning the entire input
sentence and, without further amendments, excludes the aspect of incrementality
as observed in human sentence processing.! A detailed description of the complex
algorithm underlying frobbing is given in Foth (2007, p. 36).

4.2.5 Predictor Integration

WCDGT1 provides a generic interface for the integration of parser-external informa-
tion prior to the commencement of the parsing process. Invariably, this external
information is provided by a specialised application that delivers additional infor-
mation pertaining to the input sentence. As the integrated application provides its
information prior to parse time, it cannot build on knowledge about the final parse
structure of the input sentence and therefore is referred to as a predictor.

While the interface is subject to a number of limitations to be outlined below, it
constitutes a highly useful option for incorporating external, possibly non-linguistic
information to influence the process of parsing. For this reason, the interface is of
particular interest to our endeavour of integrating non-linguistic context information
into the process of parsing. In line with WCDG's constraint-based approach, predic-
tors can only influence dependency decisions in the parser by providing information
that further constrains dependency assignments. A predictor can be employed as a
veto component whose judgement is based on parser-external information, i.e., on
information residing outside of WCDG’s lexicon and grammar.

Predictors are being used extensively in WCDG to improve the quality of parsing
further. Foth (2007) demonstrated that the integration of a combination of differ-
ent predictor components in a hybrid parsing approach improved WCDG1'’s overall

!Beuck (2009) has recently reported successful modifications to WCDG’s core processing algorithms to
allow incremental sentence processing in WCDG. One of the reported modifications includes the repetitive
invocation of frobbing on sentence fragments of increasing length.
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parsing accuracy significantly. Based on these findings, the T'n"T POS tagger and
a statistical predictor for PP-attachment have been included into the standard con-
figuration of WCDG1.! Khmylko (2007) reports further improvements to WCDG1’s
parsing accuracy by integrating Ryan McDonald’s MSTParser (McDonald, 2006;
McDonald et al., 2006) as a predictor. The integration increased parsing accuracy
t0 93.9% for structural and 91.8% for labelled accuracy.

Predictors influence the parse process via the following mechanism: After tokeniza-
tion and POS tagging, but still prior to parsing, WCDG1 requests predictions for
dependency scores between words (sic/) in the input sentence. With the request
WCDG submits the list of slot strings in the input sentence as well as their — based on
the relative frequencies in the training corpora — most probable POS tag according
to the T'n’T POS tagger to the predictor. The predictor processes its input, gener-
ates predictions and returns a line of attribute-value pairs for each slot in the input
sentence. The PP-attachment predictor, for example, returns a line of attribute-
value pairs for each slot string in the input sentence.? Each attribute-value pair
contains the regent slot number as attribute and the predicted dependency score for
assigning a PP-dependency between the two words as its value.

WCDGT1 reads the predictions into memory and has access to them via the grammar’s
predict () function. With this function, integration constraints can be formulated
to assign predictor-based dependency scores. Attributes for which the predictor has
not returned a prediction value do not contribute information based on which a
predictor-based score penalty can be imposed. WCDG hence treats missing predic-
tor information as equivalent to receiving a permissive prediction score of 1.

The constraint for integrating PP-attachment predictions to influence the overall
scoring of a solution candidate is given in Figure 4.4. This constraint stipulates that
any edge X on the SYN level which does not attach to the ROOT node and bears the
label PP or KOM has to meet at least one of the following two conditions: Either the
word on its lower node is ‘um’ or ‘als’ and the word on its upper node is a com-
parative or the score predicted by the PP-attachment predictor for X is equal to 1.
Observe that this constraint will be violated by any edge for which the predictor pro-
vides a prediction value lower than 1. In that case, the constraint inflicts a dynamic
penalty on the overall parse tree which is equal to the value of the PP-attachment
prediction for that edge. The closer the prediction value is to 0, the harder the
veto on the assignment of the PP label to that edge (cf. the definitions of constraint
weights in Equation (4.1) and of WCDG's overall scoring function in Equation (4.2)).

'To be precise, the T'n’T POS tagger does not integrate via WCDG1’s standard predictor interface
for historical reasons. Also, the POS tagger takes a somewhat special position since it is invoked with the
input sentence only. Its output is then included as part of the prediction request to all the other predictors.
We can still consider the POS tagger a predictor since its output is made available to WCDG prior to the
commencement of parsing — just as if it were generated by a regular predictor.

2Foth and Menzel (2006a) provide a detailed description of the PP-attachment predictor.



68

Constraint-Based Analysis of Natural Language with WCDG

4.3

Limitations of WCDG’s Standard Implementation

With regards to our modelling objectives, the implementation of predictor integra-
tion in WCDGT1 is subject to limitations in two important respects:

L1

L2

Underspecified Prediction Request

As input to the predictor prior to parsing, WCDGI1 hands over the list of all
slot strings in the input sentence, each of which with an assigned POS tag.
The POS tag handed-over for each homonym is the most probable one for the
respective slot string according to the T'n’T POS tagger. The predictor hence
does not receive all possible POS tags for a given slot string.

In many cases, however, the different readings of a slot string exhibit funda-
mentally different syntactic and semantic behaviour. A capitalised sentence-
initial word like ‘Fragen’—which translates to either Ask or Questions—can
be lexically ambiguous with a variety of readings, the most probable of which
with POS classifications NN (regular noun), VVINF (verbal infinitive) or VVFIN
(finite verb). All of these differ significantly in their syntactic and semantic
behaviour. Yet, WCDGI1 predictors only receive the most probable of these
homonyms as input for making their predictions.

The decision of which of these homonyms is to appear in the final parse struc-
ture is only taken at parse time — and may well result in the selection of a
form other than the one bearing the most probable POS tag. When gener-
ating predictions for structurally relevant features prior to parsing, we need
to be able to assign different prediction values to different homonyms. This
capability requires that the lexical information which homonyms are available
for the given slot be made available at the time of predictor invocation.

Slot-Based Prediction Encoding and Retrieval

Predictions are externally assigned additional properties of tokens in the input
sentence. For WCDG, a general prediction can be represented as a quadruplet
(t,n,a,v) where t is the identifier of the token for which the prediction is being
made, n the predictor name, a the prediction attribute and v the prediction
value.! An example of how such a prediction quadruplet maps onto actual
parameters is given for WCDG’s PP-attachment predictor in Figure 4.5.
Predictions can be encoded and retrieved homonym-specifically, if ¢ is specific
enough to reference individual homonyms. In WCDG1, however, predictions
have been modelled as a slot property. The internal representation of ¢ therefore
points to a slot rather than to a homonym. Consequently, homonym-specific
prediction encoding cannot be achieved. The standard implementation of pre-
diction retrieval in WCDG1 via the predict () function matches this modelling
view and only offers slot-based prediction retrieval.?

1For predictors that compute only a single attribute, the information encoded in n and a is redundant
and can be collapsed into a single parameter. In those cases, predictions can be represented as a prediction
triplet (t,n,v).

%In this regard, the syntax of the predict() function belies the implementation in WCDG1. The first
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X@id, i.e., the slot identifier of X’s lower node,
PP, i.e., the predictor name,

X~from, i.e., the slot number of X’s upper node,

LT

SEERSEEESEEE S

the actual prediction value.

Figure 4.5: Mapping a prediction quadruplet to parameters of the PP-attachment predictor.

To overcome limitation L1, we add modelling requirement R31.

Requirement R31

A WCDG predictor for scoring meaning-related dependencies must be able to
differentiate between different readings of a slot string and must be capable of
generating separate, homonym-specific predictions for those readings.

To overcome limitation L2, we add modelling requirement R32.

Requirement R32

To enable the processing of different external predictions for the readings of a
slot string, WCDG2 must provide homonym-specific encoding and retrieval of
predictions.

4.4 Chapter Summary

In this chapter we have provided an introduction into the treatment of parsing as
a constraint satisfaction problem. Weighted-constraints have been presented as a
particularly useful refinement to the formalism of symbolic constraint-based parsing.
The main advantages of a symbolic parser operating with weighted constraints rather
than generation-rules lie in its capability to a) model graded preferences rather than
simply to categorise as grammatical or ungrammatical, b) provide analytic feedback,
and c¢) react more robustly to unknown input.

We have outlined the benefits of WCDG’s dependency formalism and its relational
representation. Its disadvantage lies in the limitation that it expresses linguistic de-
pendencies between individual words rather than between bracketed, more complex
linguistic entities such as phrases.

We have also provided a detailed description of the system capabilities of WCDGTI,
an implementation of a weighted-constraint dependency parser. WCDGT1 is of par-
ticular interest to our modelling challenge because of its generic predictor interface.
Within clearly defined limitations, this interface permits to integrate parser-external,
non-linguistic information into the parsing process. Access to the predictions is
achieved via suitably formulated integration constraints in the grammar that are
processed at parse time.

argument to the predict() function is X@id, which normally references a specific homonym in the input

sentence unambiguously. However, at code level, the predict () function has been implemented such that
the homonym-specific reference X@id is abstracted into a reference to the homonym’s slot only.
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Additional modelling requirements based on WCDG1’s capabilities and limitations
have been motivated in order to achieve the integration of cross-modal context into
the parsing process. The application-focused requirements identified in this chapter
complement the collection of modelling requirements from the preceding Chapters 2
and 3 and conclude the process of requirements collection in this thesis.

It needs to be noted that the list of collected requirements cannot make a claim
to completeness, nor are the requirements structurally homogeneous or uniform in
granularity. The main use of the requirements will be as a benchmark for the func-
tional scope of the model we intend to argue for in Part II of this thesis. The com-
pilation of a comprehensive, uniform and homogeneous collection of requirements
for the interaction between vision and language certainly requires further rigorous
investigation and warrants to undertake a separate research effort in its own right.

In the following part of this thesis, we describe in detail our model implementation
which was designed with the intention to achieve maximum coverage of the iden-
tified requirements while ensuring actual implementability of the specified system.
We also engage in a discussion to what extent our model meets the identified mod-
elling requirements. For ease of revision, the list of all 32 modelling requirements is
given in Appendix I.
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Chapter 5

The WCDG2 Parser

The implementation of our model for the interaction of non-linguistic modalities with
language centres around WCDG2, a functionally enhanced version of the weighted-
constraint dependency parser WCDG1 described in Chapter 4. This chapter outlines
WCDG2’s functional enhancements over WCDG1 and discusses the parser’s inter-
actions with the other components in our model.

As a general guideline in the design and specification of WCDG2, we have kept the
number and extent of functional changes over WCDG1 to a minimum. Modifica-
tions were only made in cases where WCDG1’s features made the implementation of
vital aspects of our model difficult or impossible. Another guideline was to leave the
syntactic processing of WCDG1 unchanged. Any additional capabilities included in
WCDG2 are add-ons to WCDG1's existing functionality.

The enhancements implemented in WCDG2 comprise semantic extensions to the
constraint base and the lexicon, modifications to the predictor interface and an ex-
pansion of the argument structure for prediction access in the grammar. In line
with our second design guideline, no changes were made to WCDG’s central con-
straint satisfaction algorithms nor to the heuristic search routines of frobbing (cf.
Section 4.2.4). In our model implementation, we build on WCDG1’s large-coverage
grammar of German and leave its constraints for syntactic processing unchanged.

5.1 Architectural Overview

After loading an extended lexicon and a semantically enhanced grammar, WCDG2
receives its input sentence. In the preprocessing phase, WCDG2 integrates a plau-
sibility predictor component (PPC) via an extended version of WCDG1’s predictor
interface (cf. Section 4.2.5). The purpose of the PPC is to score semantic dependen-
cies in the input sentence based on a representation of visual context information.
To this end, the PPC establishes communication with a reasoner component. The
reasoner accesses a knowledge representation of visual context. The knowledge rep-
resentation is made up of two components: a situation-invariant ontology containing
hierarchical lexical and world knowledge (the T-Boz) and a situation-specific repre-
sentation of situation information (the A-Boz).

73
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Figure 5.1: Components and their interaction in the Context Integration Architecture (CIA).

Based on this context information, the PPC computes score predictions for semantic
dependencies between words in the input sentence and returns them to the parser
for access at parse time. The PPC’s score predictions are based on semantic con-
text information and directly affect the assignment of the semantic dependencies
in WCDG2’s semantic representation of the input sentence. Syntactic analysis is
affected indirectly by these predictions via the correspondence rules between se-
mantic and syntactic representation as specified in the syntax-semantics interface in
WCDG2’s enhanced grammar. The syntax-semantics interface contains correspon-
dence rules between the representations of syntax and semantics which ensure that
semantic and syntactic representations align. Thus, the contextual influence upon
semantic representation is propagated into syntactic analysis with semantic medi-
ation. WCDG?2 optimises the semantic and syntactic dependency structures by a
heuristic search for the minimum of the severities of all constraint violations.

We refer to this entire framework as our Context Integration Architecture (CIA).
A schematic overview over the CIA is given in Figure 5.1. The CIA components
and their interaction with each other will now be outlined in detail in the following
sections.
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5.2 The Role-Assigning Grammar

As outlined in Section 4.2.2, WCDG1 comes with a robust grammar for syntac-
tic parsing of unrestricted German text input. Requirement R1 demands that the
interaction between non-linguistic modalities and language be mediated by a se-
mantic representation of linguistic meaning. To meet this requirement, we include
a semantic representation in WCDG2.

WCDG'’s implementation builds on the hard-wired! unique-regency constraint which
stipulates that on a given level of analysis every dependant may have precisely one
regent. A number of semantic constellations are known, however, in which a single
dependant needs to depend on more than one semantic regent in the same sentence.
An example of a sentence in which a single dependant takes two different semantic
regents is given in Figure 5.2.

To be able to model such semantic constellations, the implementation of the seman-
tic representation in WCDG2 had to be spread out over separate levels of analysis.
Despite this distributed implementation, we consider our model to meet modelling
Requirement R22 which demands a single, unified representation of meaning. In
our model, this representation can be realised as an abstraction by projecting the
results of all semantic levels of analysis in WCDG?2 into a single plane. The additive
projection of all semantic levels of analysis in WCDG2 constitutes an equivalent of
Conceptual Structure in Conceptual Semantics. We emphasise that from a modelling
perspective these different technical realisations do not constitute separate levels of
semantic representation. They merely are different technical realisations of the same
semantic representation in the sense of Conceptual Semantics (cf. Section 3.2).

For terminological clarity we refer to the levels of analysis on which WCDG2 per-
forms semantic processing as semantic levels of analysis. We reserve the term seman-
tic representation for the integrated, uniform representation of meaning as required
by Conceptual Semantics and captured in Requirement R22.

The constraints for the semantic levels of analysis are contained in a separate
grammar which we refer to as WCDG2’s role-assigning grammar. For parsing,
WCDG?2 uses the extended grammar which consists of the union of WCDG1’s syn-
tactic grammar and the role-assigning semantic grammar. Since the two constraint
sets are disjoint, WCDG2 can process their union without any conflicts.?

!By ‘hard-wired’ we mean that this is not a grammar-based constraint but a hard-coded restriction
arising from how the constraint-dependency formalism has been implemented in WCDG.

2In case of multiply defined constraints by the same name, WCDG resolves the conflict by overwrit-
ing previously loaded constraint definitions with the subsequently loaded constraints by the same name.
Conflicts that cannot be resolved in this way cause WCDG to reject the input grammars.
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SUBJ OBJI
OBJA I

sie hort ihn singen

S AN

AGENT THEME AGENT

Figure 5.2: She hears him singing. Sentence in which the word ‘ihn’ him takes two thematic roles
AGENT and THEME and hence requires a different semantic regent for each dependency.

The constraints in the role-assigning grammar can be divided into three disjoint
subsets:

1. Constraints that act on semantic levels only and exclusively use information
from WCDG2-internal resources such as the extended lexicon.

2. Integration constraints that act on semantic levels only and integrate the
WCDG2-external predictor information.

3. Constraints that act on a combination of syntactic and semantic levels. These
constraints define correspondence rules between the syntactic and the semantic
representations.

Taken together, the constraints in the first two subsets define the structural proper-
ties of permissible thematic role dependency structures on the semantic levels of
analysis. The constraints in the second subset propagate the contextual information
from the non-linguistic representations into the semantic representation of language
in WCDG2. Access to the WCDG2-external non-linguistic information is achieved
via the prediction scores that the PPC returns to WCDG2. The third set of con-
straints governs the interaction between the semantic and the non-semantic levels
of analysis in WCDG2. The non-semantic levels are the syntactic SYN level and
the REF level. The constraints in this third set define WCDG2’s syntax-semantics
interface, a representational interface in the Jackendoffian sense (see Section 3.3).

The well-formedness rules for the non-semantic levels of representation are defined
in WCDG’s standard grammar for German. The well-formedness for the semantic
part of linguistic analysis in WCDG2 are provided by constraint subsets 1 and 2
above. We consequently consider the requirement that every level of representation
have its own finite set of well-formedness rules, Requirement R10, fully implemented



Thematic Role Representations 77

in our model.! Also, the semantic part of linguistic representation is fully included
in the single, shared level of semantic representation. We hence consider Require-
ment R21 fully implemented by our model.

Since each representation uses its own set of edge labels that are specific to the levels
of analysis in WCDG?2, we consider the syntactic and semantic representations in
our model as informationally encapsulated. This constitutes a fulfilment of Require-
ment R11.

The following sections explain in detail which role each of these three constraint
categories play in our model. Implementation specifics will only be given where
required for the in-depth understanding of the model realisation.

5.3 Thematic Role Representations

We base the definition of the thematic roles supported in our model implementation
on the lists of thematic roles in Dowty (1989, p. 69) and Lobner (2003, p. 174).
We deliberately avoid a discussion of the granularity and appropriateness of these
thematic roles by choosing comparatively general definitions for a set of roles that
is widely accepted as standard (cf. also Ferretti et al., 2001). The purpose of
our model implementation is not to demonstrate the correctness or appropriate-
ness of specific thematic role definitions. Rather, we wish to show with our model
that inherently semantic generalisations over verbal argument slots can be used as
constituents of semantic representations that mediate the cross-modal interaction
between non-linguistic and linguistic modalities. We acknowledge that the thematic
role definitions in Table 5.1 are to some extent arbitrary and not sharply delineated
— as are all thematic role definitions that attempt to capture semantic generalisa-
tions over verbal arguments. As long as the assumption that underlies the concept
of thematic roles remains unchallenged, namely that semantic generalisations over
verbal argument structures are indeed possible, the precise semantic delineation of
these roles or the labels attached to them have no fundamental impact on the va-
lidity of our model.?

These role definitions deserve a few further comments: Our role definitions do not
build on a differentiation between events, actions, states or processes. Instead, we
adopt the more embracing term situation as used in the situation semantics of
Barwise and Perry (1983, pp. 7) to subsume all of the aforementioned notions. A
situation type or concept hence is taken to denote an abstract constellation by which
participating individuals with certain properties are related to each other. An ex-
ample of a situation concept is BARK which only involves a barker as participant.

Strictly, the well-formedness rules for context model representations also contribute to the fulfilment
of this requirement. These are described in Section 6.4.

2Clearly, the choice of thematic roles considered does correlate with the constraints defined in the
role-assigning grammar. A more fine-grained differentiation in role definition will also require more finely
differentiated role-assigning constraints in the grammar. This aspect, however, does not question the
validity of our model as such.
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AGENT

THEME

RECIPIENT

INSTRUMENT

OWNER

COMITATIVE

The participant specified as doing, causing, having, being or
experiencing something in a situation.

Example: He is eating an apple.

is L, AGENT _for

He eat

The participant that something is happening to in the situation
or that is immediately affected by the situation.

Example: He is eating an apple.

is.THEME_for
eat

apple

The participant that the result of the situation is directed to.
Example: She gave him a book.

is.RECIPIENT _for .
he give

The entity enabling or facilitating the occurrence or progress
of a situation.

Example: He opened the door with a key.

is INSTRUMENT _for
key open

The entity extending any sort of ownership or belonging
relation towards another participant.

Example: She has Kirsa’s book.

is_.OWNER_for book

Kirsa

The entity that physically or figuratively accompanies another
participant.

Example: He went to the cinema with her.

is . COMITATIVE_ for

she he

Table 5.1: Overview over the thematic role definitions in our model.

The situation in which a participant is barked at involves an enity barked-at in addi-
tion to the barker and thus constitutes a related, yet different, situation BARK.AT.
Barwise and Perry consider the instances of barking observed in the real world to
be instantiations of the abstract situation types BARK and BARK.AT.
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By including the component of experience in the role definition of AGENT, we incor-
porate the aspects which Dowty (1989) lists for the separate role of EXPERIENCER
into the role definition of AGENT. Our definition of THEME is in line with that of
Lobner (2003) and treats the roles THEME and PATIENT as semantically equivalent.!
For terminological clarity, we henceforth differentiate between entities and partici-
pants. By the term ‘entity’ we denote anything that takes a thematic role in the
context of a situation. We use the term ‘participant’ to refer specifically to those
entities in a situation that engage in a direct and semantically mandatory thematic
relation with an instance of the situation concept. We therefore denote entities
taking an AGENT, RECIPIENT or THEME role as participants while entities taking an
OWNER, COMITATIVE or INSTRUMENT role are considered situation entities but not
participants.

We limit our modelling scope to these thematic roles since they are sufficient for
the study of a number of interesting and notoriously difficult-to-parse syntactic
phenomena such as PP-attachment or subject-object ambiguity of German plural
nouns. Also, this set of thematic roles results in a manageable number and complex-
ity of hand-written constraints in the role-assigning grammar. The role-assigning
grammar used in the experimental runs reported in Chapters 8 to 11 contains about
140 individual constraints — as opposed to approximately 1050 active constraints
in WCDG1’s large-coverage syntactic grammar for German.

In principle, our model permits to extend or modify the list of supported thematic
roles. Any extension or modification that is not simply a reduction of the set of
thematic roles supported may, however, incur the need to add or change constraints
in the role-assigning grammar.? Thematic role assignment in our model is subject
to the following modelling decisions and constraints:

e Thematic dependencies originate from the role filler.
e The AGENT dependency is assigned on its own level of analysis.
e The THEME dependency is assigned on its own level of analysis.

e The dependencies RECIPIENT, OWNER, INSTRUMENT and COMITATIVE are modelled
as mutually exclusive and are assigned on a separate level of analysis.

e Thematic dependencies under the same regent are unique.

e The verb-centred semantic dependencies AGENT, THEME and RECIPIENT can only
be assigned to verb forms that have a corresponding semantic valence.

! Jackendoff (1990, p. 129) vehemently argues against this practice. Given the widely acknowledged
fuzziness in defining thematic roles, we choose to disagree with his point of view.

2An arbitrarily large extension of the list clearly is not possible in our model. Every implementation
is limited, not only by its algorithmic design, but also by the capabilities of the hardware on which it is
executed. Unless stated otherwise, we assume that limitations arising from the hardware environment can
be neglected in the assessment of the validity of our model.
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e A verb’s semantic valence must be saturated by the assignment of the cor-
responding semantic dependencies.

e Attachment restrictions for the semantic dependencies have been formulated
based on the dependant’s and regent’s part of speech rather than based on
genuinely semantic criteria. The role-assigning grammar imposes no selectional
restrictions as a function of the role fillers’ conceptual category. Our model
hence fails to meet Requirement R23 which demands meaning-based selectional
restrictions for thematic role fillers.

5.4 The Extended Predictor Interface

To achieve an interaction between parser-external information and linguistic deci-
sion making in the process of parsing, WCDG2 integrates the PPC as a predictor
component and communicates with it prior to parsing. WCDG2’s predictor inter-
face provides functional extensions over WCDG1’s interface for both out-bound and
in-bound communication.

To overcome the limitation of underspecified predictor requests in WCDG1’s out-
bound communication (see Limitation L1 on page 68), two design approaches are
conceivable: either WCDG2 is modified such that it hands over more detailed in-
formation to the predictor or the predictor is enabled to procure the more detailed
information independently.

In an early design phase we tested if modifications to WCDG’s predictor interface
could be avoided by non-invasively leaving the task of homonym collection to the ex-
ternal predictor. This approach turned out to be infeasible for performance reasons.
To obtain the complete homonym information available to WCDG, the predictor has
to perform two tasks: 1) search all lexical entries in the full-form lexicon with more
than 1.01 - 10° entries and 2) check every slot string for matches with the templates
for unknown words that have been defined in the grammar. One of the reasons for
the observed performance issues is that this design replicates the task of homonym
collection. Internally, WCDG already collects the complete homonym information
for every slot of the input sentence.

We therefore chose to extend the predictor interface in the parser. WCDG2 now
hands over the input sentence with the complete list of homonyms in the input sen-
tence — rather than just the slot strings. For each homonym, WCDG2 provides the
slot string, the slot number, an identifier that uniquely identifies the homonym in its
slot and all of the homonym’s lexical features. The list of lexical features is obtained
either from the homonym'’s lexical entry or from the word templates it matches. A
typical input line handed over to the PPC is shown in Figure 5.3.

Der 1 Der_ART_pl cat ART case gen number pl gender bot definite yes

Figure 5.3: A PPC input line as received from WCDG2 via the extended predictor interface.



Context Integration 81

The PPC now has access to the full lexical information for each homonym in all
the sentence slots rather than just the slot string’s most frequent POS tag as is
the case for WCDGI predictors (cf. Section 4.2.5). This allows the predictor to
compute dependency score predictions between individual homonyms rather than
just between slots. In order for homonym-specific prediction results to be process-
able by the parser, WCDG2’s in-bound predictor communication also needed to be
enhanced. Multiple homonym-specific predictions for a given dependant-regent pair
can now be read in and accessed via suitable predicates in WCDG2’s grammar (cf.
Section 5.5).

Since the PPC typically returns multiple semantic-dependency predictions for each
pair of homonyms that receive a prediction, the size of its output can be significantly
larger than for WCDG1 predictors which only return a single dependency prediction
between two slots. As a result, the extension of the predictor interface also requires
that sufficient memory be allocated in WCDG2 to read in the entire PPC input.*

5.5 Context Integration

An essential aspect of our model implementation is its capability to integrate non-
linguistic information into the process of parsing — and the construction of a cross-
modally integrated semantic representation of sentence meaning in particular. This
representation is created on the semantic levels of analysis in the parser. Contrary to
natural systems in which the semantic representation of visual scene context is built
up incrementally shortly before — or in some cases even in parallel to — linguistic
processing, our model acquires its complete contextual information as a completed
knowledge representation of visual context.? The complete semantic representation
of visual context is analysed by the PPC which, based on the semantic context
information and the input sentence, calculates its score predictions for semantic de-
pendency edges. Integration into the process of parsing is achieved the integration
constraints (see the categorisation of constraints in the role-assigning grammar on
page 76). The purpose of an integration constraint is to check whether the PPC
has made a score prediction for a given dependency edge and, if so, to assign the
predicted score to that dependency edge. We use this mechanism to penalise depen-
dency edges in the semantic representation based on WCDG-external information.

Technically, the propagation of the dependency score prediction into the parser is
achieved by a class of dynamically weighted constraints whose constraint body de-
clares that if the dependency edge bears a specific thematic role label, the edge must
have a score prediction of 1. This constraint is violated by all dependency edges
with the correct label that have a PPC prediction score less than 1.> In case of

'In one of our early experimental runs on a longer input sentence the reserved buffer was too small to
contain the entire predictor input. The cause for this problem was the static buffer size allocation inherited
from WCDGI1. This problem was remedied in WCDG2 by implementing dynamic buffer sizing for reading
in the predictor input.

2We discuss the assumptions underlying this modelling decision in detail in Section 6.4.

3The algorithm by which the PPC computes its prediction scores will be discussed in Section 7.4.
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// ROLEhood as predicted by the PPC.

{X'LEVEL} : ’ROLE Integration’: [ predict( X@id, PPC, ROLE, X"id ) 1]
X.label = ROLE

-> predict( X@id, PPC, ROLE, X"id ) = 1;

Figure 5.4: Generic cross-modal integration constraint for the thematic dependency ROLE.

a constraint violation, the constraint weight is set dynamically to the PPC’s pre-
diction value for the thematic dependency. The class of integration constraints is
represented by the generic constraint in Figure 5.4. In that constraint, the semantic
dependency ROLE! is from the set of supported thematic roles in the model imple-
mentation and LEVEL is the level of analysis in WCDG2 on which ROLE is assigned.
To be able to constrain the assignment of every supported semantic dependencies,
the role-assigning grammar contains one integration constraint of this form for every
supported thematic role. AGENT dependencies, e.g., are restricted by an integration
constraint checking for X.label = ROLE on the AGNT level of analysis. Owing to
WCDG’s scoring policy, the best contextual support a thematic dependency assign-
ment can obtain from the PPC is a prediction score of 1 (cf. Section 4.2.5). This
means that the PPC has either found positive contextual evidence for the assign-
ment of this role or was unable to derive contextual evidence against it.

The PPC’s prediction value for the semantic dependency is accessed at parse time via
an extended, four-place predict () function. Its input arguments are the unique ID
of the dependant homonym, the predictor name, the edge label and the unique ID of
the regent homonym. With the fourth argument for prediction access, WCDG2 can
now retrieve homonym-specific predictions for multiple dependencies between the
same pair of dependant and regent homonyms. This could not be done in WCDGI.
This WCDG2 capability overcomes the WCDG1 limitation of slot-based prediction
encoding and retrieval (cf. Limitation L2 on p. 68) and meets Requirement R32.

It is important to stress that the context integration with WCDG2’s predictor in-
terface constrains the semantic representation of linguistic analysis based on given
visual context information. As such, it incorporates a unidirectional influence of
visual context upon linguistic processing. This fulfils Requirement R5.

A substantial limitation of the present form of our model lies in the fact that it does
not offer any mechanism for propagating linguistic information into the opposite
direction, i.e., from the linguistic to the non-linguistic modalities. This limitation
arises from the fact that WCDG does not — as yet — provide an interface to access
parser-external components at parse time. So far, WCDG’s access at parse time is
limited to its internal data structures containing information from parser-external
components that was acquired prior to parse time.?2 Our model hence fails to meet
Requirement R6.

1We henceforth use the string ROLE as a generic placeholder for an arbitrary thematic role and denote
the corresponding semantic dependency that is supported in our model by ROLE.

2We wish to acknowledge that at the time of writing, a project to extend the functional scope of
WCDG?2 with the aim to remove this limitation is ongoing at the University of Hamburg’s Department of
Informatics.
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In humans, the influence of language upon non-linguistic modalities, mostly medi-
ated by attention, gives rise to effects such as the language-driven anticipatory eye
movements observed by Tanenhaus et al. (see Section 2.3), visual search and active
vision (Henderson, 2003). In the subsequent discussion of our model, we restrict
ourselves to the unidirectional influence of non-linguistic context upon language.
The implementation of a bidirectional interaction constitutes a significant challenge
for modelling and implementation and is strongly encouraged as a target of future
research.

5.6 The Syntax-Semantics Interface

The objective of our implementation is to achieve an interaction between non-
linguistic information and syntactic parsing via a single, shared level of semantic
representation. So far, our implementation description has covered how WCDG2-
external prediction information is propagated into the cross-modally integrated se-
mantic representation of sentence meaning. We now outline how WCDG2’s semantic
representation interacts with the syntactic representation in the course of parsing.
In WCDG, the representations for dependency structures are level-specific in the
sense that each structure uses its own set of edge lables. As a result, the processing
on different levels of analysis is informationally encapsulated, i.e., structural changes
on a level L; do not affect the structures on another level L, unless there is an ex-
plicitly defined constraint in the grammar that requires such a correspondence. We
hence consider Requirement R12 for the representational encapsulation of represen-
tations to be fulfilled by the syntactic and semantic representations in our model.
The only way that two dependency structures from L; and L. can interact with
each other is via the structural correspondence rules defined in the interface be-
tween those levels of representation. In our model, such a rule typically is a binary
constraint relating two edges X and Y such that X is from L; and Y is from L.

WCDG2's syntax-semantics interface establishes correspondence relations between
syntactic structural constellations and their semantic correlates. The interface be-
tween syntax and semantics enables an immediate and bidirectional interaction be-
tween the two representations such that changes in semantic representation directly
affect syntactic analysis and vice versa. We consider this a model feature in fulfil-
ment of Requirement R4 for representational interfaces.

Our model makes contextual information available at the point in time of syntactic
decision making at which they are needed. This way, syntactic candidate structures
are assessed for their contextual compliance at the time of their creation rather than
subsequently. As we acknowledged previously, WCDG does not provide the capabil-
ity of incremental sentence processing yet (cf. Section 4.2.4, p. 83). Requirements
R2 and R3 hence cannot be fulfilled in our model implementation. Still, the im-
mediate correspondence between syntactic analysis and the contextually-informed
semantic representation enables an immediate unidirectional influence of contextual
information upon syntactic processing. We consider this a fulfilment of Require-
ment R4 which demands the online interaction between non-linguistic modalities
and language at parse time.
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The syntax-semantics interface propagates the influence of non-linguistic context
upon semantics on to syntactic representation via the following mechanism: The
integration constraints propagate non-linguistic context information into the seman-
tic representation via context integration constraints. Simultaneously, the linguistic
part of semantic analysis interacts with syntactic representation via the correspon-
dence constraints in the syntax-semantics interface. The influence of non-linguistic
context upon syntactic representation is hence mediated by the semantic repre-
sentation as demanded by Requirement R1. In fulfilment of Requirement R13,
this mediating effect is achieved by the correspondence rules between the syntactic
and semantic representations. Since this correspondence interaction is evaluated at
parse time, our model also meets Requirement R14. As there is only one level of
semantic representation and this level of representation mediates the meaning-based
cross-modal influence of visual context upon syntactic processing, our model meets
Requirement R22 for a single and unified semantic representation as well.

With approximately 40 constraints in the syntax-semantics interface spanning more
than 400 lines of constraint code!, a comprehensive list of correspondences between
the syntactic and semantic levels of analysis is beyond the scope of this work. To
provide at least a qualitative impression of the kind of correspondences captured in
the syntax-semantics interface, the following list gives a brief overview over some of
the more important modelling rules we have implemented.

In an active-voice sentence,
the verb’s AGENT is also the
subject SUBJ if the verb’s se-

mantic valence admits an AGENT. SUBJ LDV
Conversely, the SUBJ in an

active-voice sentence is also the sie schreibt gerne
AGENT.

Example: ‘Sie schreibt gerne’ \/

She likes to write. AGENT

!This number includes all active lines of code in a constraint. In the absence of a suitable formal
measure for the informational complexity of constraint dependency grammars we resort to the purely
quantitative measure of expressing the size of the syntax-semantics interface in lines of code. An absolute
measure of constraint-dependency grammar expressivity would be desireable for it would permit to compare
the informational complexity of different grammars objectively.
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In an active-voice sentence,
the THEME is the accusative or
direct object OBJA if the verb’s
semantic valence admits a THEME.
Conversely, in an active-voice
sentence, the verb’s 0BJA is also
the THEME.

Example:
‘Er isst einen Apfel.’
He is eating an apple.

In a passive-voice sentence, the
verb’s THEME is the subject SUBJ
if the verb’s semantic valence
admits a THEME. Conversely, in a
passive-voice sentence, the THEME
is also the SUBJ.

Example:
‘Der Apfel wird gegessen.’
The apple is being eaten.

In a passive-voice sentence, the
verb’s AGENT is the prepositional
complement PN in the preposi-
tional phrase PP modifying the
full-verb if the verb’s seman-
tic valence admits an AGENT.
Conversely, in a passive-voice
sentence, the PN of a full-verb-
modifying PP is the AGENT.

Example:
‘Der Apfel wird von ihm
gegessen.’
The apple is being eaten by him.

der

OBJA

SUBJ

DET

er isst einen Apfel

\S o 7

AGENT THEME

SUBJ
AUX
Apfel wird gegessen

THEME

der

Apfel wird von ihm gegessen

AGENT

\/

THEME
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The verb’s RECIPIENT is its
dative or indirect object 0BJD
if the verb’s semantic valence
admits a RECIPIENT. Conversely,
the OBJD is the RECIPIENT if the
verb’s semantic valence permits.

Example:
‘Sie gab ihm ein Buch.’
She gave him a book.

The OWNER of a syntactically
modified entity is its genitive
modifier GMOD. Conversely, any
GMQD is also an OWNER.

Example:
‘Sie haben Kirsas Buch.’
They have Kirsa’s book.

In a passive-voice sentence,
the verb’s INSTRUMENT is the
prepositional complement PN in a
full-verb modifying ‘mit’ with or
‘durch’ by prepositional phrase
PP. Conversely, in a passive-voice
sentence, the PN originates from
the INSTRUMENT if the PN is part
of a full-verb modifying ‘mit’ or
‘durch’ PP.

Example:

‘Er offnete die Tir mit einem
Schliissel.’

He opened the door with a key.

sie gab ihm ein Buch

AGENT THEME
RECIPIENT
OBJA
SuBJ
GMOD I
sie haben Kirsas Buch
AGENT THEME

N\

OWNER

er offnete die Tar mit einem Schlussel

INSTRUMENT
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In a passive-voice sentence,
the COMITATIVE is the prepo-
sitional complement PN in a
‘mit’ with prepositional phrase
PP that modifies a non-verbal
constituent.  Conversely, in a
passive-voice sentence, the PN of
a ‘mit’ PP modifying a non-verbal
constituent must originate from
the COMITATIVE.

er sieht die Frau mit ihrer Freundin

Example:

‘Er sieht die Frau mit ihrer \S S~
Freundin . 7 AGENT THEME COMITATIVE

He s seeing the woman with her

friend.

We concede that from a semantic point of view these syntax-semantics correspon-
dences are not unduly restrictive. Our experimental results reported in Chapters 9,
10, and 11 illustrate, however, that even with these semantically rather loosely cut
correspondences very selective syntactic modulations can be effected under cross-
modal context integration.

With the use of the extended grammar WCDG2 applies more constraints to its lingu-
istic input than WCDG1. One would therefore expect that the quality of analysis in
WCDG?2 be higher. An aspect counteracting the benefit from the addition of further
constraints is that more levels of analysis produce a larger search space. Whether or
not the globally optimal dependency structure is found depends on the effectiveness
of the frobbing procedure. Guided by the design principle to leave the central pro-
cessing mechanisms in WCDG - including frobbing — untouched, WCDG2 operates
under these two competing and counteracting influences.

In practice, we find that the majority of the cases in which WCDG2’s syntactic
analysis incorrectly deviates from the WCDG1 analysis is due to frobbing not find-
ing the correct solution rather than due to incorrect grammar modelling. The cause
for failure to produce the correct syntactic analysis can be tested for in WCDG: A
deviant analysis can be modified manually in WCDG. Constraint violations are re-
evaluated after every manipulation. If WCDG2 hence scores a manually corrected
structure better than the solution found by frobbing, then the obtained structural
deviation is due to a search rather than a modelling error. For a more detailed
discussion of the extended grammar’s performance on unrestricted input and the
challenge of evaluation, see Chapter 8.

From a modelling perspective, the definition of certain syntax-semantics correlations
in WCDG2’s grammar presented a significant challenge, in particular when resulting
from expressivity limitations in WCDG’s grammar. Limitations encountered were
twofold: First, WCDG only permits a maximum constraint arity of two, i.e., a single
constraint can only evaluate properties of up to two edges in the dependency tree.
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er hatte gefragt haben kénnen . er hatte gefragt werden kénnen

~N_ 7 ~_ 7

AGENT THEME

(a) He could have (have) asked. (b) He could have been asked.

Figure 5.5: Two sentences illustrating that the check for active/passive voice may involve the
evaluation of several dependency edges.

Second, the range of features that can be checked for in a constraint is primarily
focused on properties of individual edges. Important supra-local properties, such as
active and passive voice in a sentence, often manifest themselves on more than one
edge and can even span the entire dependency tree.

One constraint in the syntax-semantics interface defines the subject of an agentive
active verb in an active-voice sentence to be the verb’s AGENT. In order for this
constraint to be evaluated, the global sentence property of active or passive voice
needs to be checked for, which may require the evaluation of multi-edge dependency
constellations. Figure 5.5 illustrates an example in which the multi-edge dependency
constellations of active and passive voice only differ in a single auxiliary (‘haben’
have versus ‘werden’ been).

In our model implementation’s syntax-semantics interface we overcome this challenge
by employing a novel method for capturing global and supra-local sentence properties
in WCDG. Our method is based on calls to ancillary constraints that check for com-
plex edge properties. A complex property is encoded as a separate constraint. If the
property constraints are too complex to be expressed in a single WCDG constraint,
ancillary constraints can be constructed that call further ancillary constraints that
check for sub-aspects of the complex property and thus effectively decompose the
complex property into less complex features that can easily be checked for with
WCDG’s standard predicates.

As explained in Section 4.2.4, a WCDG constraint can only evaluate the properties
of up to two edges as well as their direct neighbours above and below. We extend
constraint expressivity by evaluating further ancillary constraints on the neighbour-
ing edges and their neighbours. These consecutive calls of ancillary constraints help
extend the reach to neighbouring edge properties of the initial constraint by one
edge with each ancillary constraint call.

A simple example is to check whether an edge has label AUX and the edge below
it also bears the AUX label. This check can still be achieved in a single constraint.
Once the property of the conditions on the edge below get more complex than just
checking for its label, we need to encode the check as a separate ancillary constraint,
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{X!SYN} : ’AUX above AUX’ : main : 1
X.label = AUX
& has( X@id, AUX )

I

{X!ISYN} : ’AUX above edge above AUX’ : main : 1
X.label = AUX
& has( X@id, ’Is above AUX’ )

b

{X!SYN} : ’Is above AUX’ : ancillary : 1
has( X@id, AUX )

I

Figure 5.6: Constraints extending their reach to their immediate edge neighbour (’AUX above
AUX?) and to the neighbour’s neighbour (’AUX above edge above AUX’ in combination with ’Is
above AUX’).

e.g.: Check that the edge label is AUX and the edge below it lies above another edge
that lies above edge with label AUX. The constraints for these checks are exemplified
in Figure 5.6.

One limitation this approach has not been able to overcome is that ancillary con-
straints must be unary and can only be applied on the level of analysis of the calling
edge. WCDG’s limitation that constraints can only be defined for edges on a maxi-
mum of two levels of analysis thus remains. In our model, this did not impose any
fundamental modelling restrictions.!

In summary, we can evaluate global sentence properties for trains of contiguous
dependency edges on the same level of analysis by consecutive calls to ancillary
constraints. More details on our approach of checking global sentence properties
with localised constraints are given in McCrae et al. (2008).

5.7 The Extended Lexicon

Semantic processing in WCDG2 requires additional lexical information beyond the
information provided in WCDG’s standard lexicon. Most notably, a verb requires
a semantic valence that expresses which verb-centred thematic relations it must en-
gage in.

!The only constraint which could not be expressed even with the use of ancillary constraints was the
precedence preference on participants in an active sentence (AGENT > RECIPIENT > THEME). Our
modelling options were 1) to model this prefence pairwise for the semantic levels of analysis irrespective of
active/passive voice or 2) to omit a constraint for this preference altogether. We decided for the first option
which has the downside that regular word order in passive sentences violates this soft constraint. Despite
the slight reduction of the overall sentence score, this effect had no adverse influence on the correctness of
the overall dependency structure for the passive-voice sentences studied with our model.
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WCDG's standard lexicon contains syntactic valence definitions for all verbs. Ini-
tially, it therefore appeared attractive to derive semantic valence definitions from
those existing syntactic valences and simply map them onto each other by a set of
correspondence rules. Doing so would bind semantics to syntax and thereby would
reduce semantic representation to a mere derivative of syntactic representation. We
opted against this approach in order to enable a genuinely bidirectional interaction
between the semantic and syntactic levels of representation. Both levels need to
build up their own representations that are based on as much independently defined
information as possible. If one level of representation were simply a correspondence
projection of the other, that level would not contribute any new information to
the solution of the constraint satisfaction problem. In fact, the additional level of
representation would be nothing more than a rule-based encoding of the original
level causing a processing overhead without an actual gain of information.

An important question — both from the perspective of modelling and cognition — is
which of a verb’s thematic role relations are required for the definition of its core
meaning and hence should be included in a lexeme’s semantic valence representa-
tion. From a modelling perspective, the verb needs to entertain enough thematic
relations to permit the mapping of its syntactic arguments to the thematic roles
— as required by R24. From a cognitive perspective, only those thematic relations
should be included that are semantically integral to the definition of the verb’s core
meaning. Thematic roles like LOCATION and COMITATIVE, for example, can easily be
omitted without violating the semantic completeness of the verb’s meaning. These
roles may well be part of a situation description centred around an instantiation
of the concept activated by the verb — but they are not an integral component
of the verb’s representation of meaning. On the other hand, the omission of roles
such as AGENT or THEME is either semantically completely unacceptable or leads to
a significant distortion of the original verb meaning.'?

Ferretti et al. (2001) found that situation verbs prime their typical role fillers for the
AGENT and THEME roles. Since these thematic roles typically find their syntactic re-
alisation in the mandatory verbal arguments of subject and direct object, we include
them in our list of required verb-centred thematic roles. While not tested for by
Ferretti et al., we also treat the role RECIPIENT as essential to verb meaning for situ-
ation verbs. Encoding the participant that the result of the situation is directed to
(cf. Table 5.1) is an essential aspect of a situation description, which is also reflected

'From our constraint-based perspective on language processing this begs the question how hard these
semantic constraints actually are. One challenge in answering this question lies in the difficulty of observing
such semantic constraint violations in isolation, i.e., unaccompanied by a constraint violation on another
level of linguistic analysis. In natural language, likely candidates for hard semantic constraint violations,
such as the omission of an AGENT on an agentive verb, always seem to be accompanied by the violation
of a similarly hard syntactic constraint.

2Many cases of humour, metaphor, or figurative usage derive their communicative effect from the
deliberate violation of soft semantic constraints. A constraint violation binds some of the interlocutor’s
cognitive resources in the effort to find an alternative utterance interpretation that results in the removal
of the constraint violation or its replacement by a lesser constraint violation.
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in the typical realisation as a mandatory indirect object.! We choose to exclude the
role of INSTRUMENT from the semantic valence definitions. The reason for doing so is
that the robust priming effect reported in Ferretti et al. (2001) for this thematic role
only pertains to a small set verbs that describe actions which are closely associated
with the corresponding INSTRUMENT. Ferretti et al.’s findings support the view that
for this group of verbs the INSTRUMENT information does indeed contribute to their
generalised representation of meaning. It is unclear, however, how these findings
generalise to verbs that describe situation types that are not actions and do not ex-
hibit a close semantic tie with an INSTRUMENT. Also, Ferretti et al.’s do not permit
conclusions as to whether a situation verb mandatorily needs to be accompanied by
a role filler for the INSTRUMENT role. Sentences containing situation verbs that prime
typical INSTRUMENTS, e.g. to stir — spoon or to paint — brush, are semantically
perfectly acceptable even in the absence of an explicit mention of the INSTRUMENT.
Our decision to exclude the role of INSTRUMENT from semantic valence definitions is
supported by earlier findings on the strength of inferences from situation verb mean-
ing to its corresponding INSTRUMENT as discussed in Ferretti et al. (2001, pp. 524).2

From an implementation point of view, we now need to decide which is the most suit-
able way to represent semantic valences in the lexicon. As shown in Equations 4.3
and 4.4, increasing the number of homonyms in a slot also increases the overall
number of unary and binary constraint evaluations for the corresponding sentence.
Decisions regarding lexical representation in WCDG may hence directly affect pro-
cessing time. One of these decisions is how a verb’s semantic valences shall be
matched against the corresponding syntactic valences.

WCDGT1’s underspecified syntactic valence representation collapses several valences
into a single valence representation that is assigned to a single lexical entry. This con-
densed representation has the advantage of reducing the number of homonyms for a
given slot string (cf. Section 4.2.1). The disadvantage of the WCDG1-representation
of semantic valence is that it potentially overgenerates invalid syntactic valence al-
ternatives as shown in Figure 4.3. If semantic valences were to be represented by
similarly condensed — but overgenerating — representations, the number of overgen-
erated invalid lexical forms would increase multiplicatively (see Figure 5.7 for an
example). If, on the other hand, we choose to represent every semantic valence
combination explicitly, we increase the number of homonyms to be considered in
parsing — without exact prior knowledge on how strongly this increase might affect
processing times.

'We realise that quoting syntactic evidence in support of our semantic modelling decisions may expose
us to Jackendoff’s criticism against thematic roles as a “thinly disquised wild card to meet the exigencies of
syntaz.” (Jackendoff, 1990, p. 46). We stand up to this criticism by emphasising that our model permits
full control over the degree to which syntactic decisions can influence semantic role assignments. In our
model semantic processing proceeds on separate levels of analysis according to independently formulated
semantic WFRs. The interaction between syntactic and semantic processing is bidirectional and fully open
to control via the explicitly stated constraints in the syntax-semantics interface.

2This modelling decision proved to be adequate for the majority of verbs studied. A notable exception
was provided by the verb ‘erliegen’ to succumb to which, in German, takes a mandatory Dative object
that acts as an INSTRUMENT. As a result of our modelling decision, the CIA in its present form does
not support semantic processing for sentences containing this verb.
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Lexical Entry bezahlen:=[base:bezahlen,cat:VVINF,stress:
unstressed,perfect:haben,sem_val:ag_re?_th?,
valence:’a?+d?’ ,avz:allowed] ;

Underspecified valence:a?+d?
Syntactic Valence

Correct Syntactic valence:- | valence:a | valence:a+d
Valences
Overgenerated valence:d

Syntactic Valence

Underspecified sem_val:ag re?_th?
Semantic Valence

Correct Semantic sem val:ag | semval:ag th | semval:ag re_th
Valences
Overgenerated sem_val:ag re

Semantic Valences

Valid Valence sem_val:ag & valence:- |
Combinations sem val:ag th & valence:a |
sem val:ag re th & valence:a+d |

Overgenerated sem_val:ag & valence:a |

Valence Combinations sem_val:ag & valence:d |
sem_val:ag & valence:a+d |
sem_val:ag th & valence:- |
sem_val:ag th & valence:d |
sem val:ag th & valence:a+d |
sem_val:ag re th & valence:- |
sem_val:ag re th & valence:a |
sem_val:ag re_th & valence:d

Figure 5.7: Example for the multiplicative increase of overgenerated invalid combinations of syn-
tactic and semantic valences for ‘bezahlen’ to pay as produced by systematic expansion of under-
specified syntactic and semantic valence representations.

In our modelling effort, performance aspects play a subordinate role to the demon-
stration of the conceptual feasibility of the context integration. We therefore assign
a higher priority to the accuracy and correctness of the lexical representation and
the parses resulting from it than to an improved performance of the implementa-
tion. Based on this guideline we choose to define a separate lexical entry for each
combination of syntactic and semantic valences. For each verb included in the scope
of our implementation, we unambiguously specify the permissible combinations of
their syntactic and a semantic valences. All other verbs continue to use their lexical
representation from WCDGI.
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SUBJ AUX I

er will singen

NS

AGENT

Figure 5.8: The correct semantic analysis according to our semantic modelling approach in which
the auxiliary has semantic valence null and does not participate in a semantic dependency.

For verbs with multiple syntactic valences this approach counteracts the reduction
in lexicon size achieved by the underspecified syntactic valences. At the same time,
it eliminates the potentially large number of invalid syntactic and semantic valence
combinations resulting from overgeneration. The example in Figure 5.7 shows that
for the verb ‘bezahlen’ to pay three individual lexicon entries need to be added
to the lexicon. While the condensed representation would only add one entry, it
would also give rise to nine invalid valence combinations. This example illustrates
how the addition of several lexical entries containing the separate semantic valence
specifications can in fact be more economic with respect to the generation of valid
homonyms than the addition of a single, underspecified entry.

Semantic valences were hand-annotated and have been included into the lexicon as
values for the feature sem_val for a subset of 1,063 unique verbs.! These are the
verbs for which thematic role assignments can be performed in the CIA.

Each semantic valence references a verb’s mandatory thematic roles by their initial
two letters in lowercase. Multiple two-letter references occur in alphabetical order
and are separated by an underscore. An exception to this nomenclature is provided
by the semantic valence null which is assigned to auxiliaries and modals that have
been modelled such as not to participate in any semantic dependencies. Figure 5.8
provides the correct semantic analysis according to this modelling approach for the
sentence ‘Er will singen.” He wants to sing. In this example, ‘will” wants has semantic
valence null and ‘singen’ sing has semantic valence ag.

Exemplary size effects for extending WCDG2's lexicon according to our approach for
representing semantic valence are shown in Table 5.3. The additions to the lexicon
primarily result from enriching the lexical entries of verbs with the corresponding

nitial attempts to automate the process of semantic valence specification were not pursued further.
Semantic valences were extracted from the annotated verb frames in the SALSA Corpus (Burchardt et al.,
2006; SALSA Corpus Homepage, 2009), a semantically annotated extension of the TIGER 1.0 Corpus
(Brants et al., 2002; TIGER Corpus Homepage, 2009). The approach had to be abandoned due to sub-
stantial difficulties in trying to define general rules for mapping the strongly lexicalised roles in the corpus
to the more generalised thematic roles in our model implementation.
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Category Unique Entity Counted WCDG1 WCDG2 Change

Verb Infinitives  Semantic Valence 8,750 9,321 +6.53%
VVFIN, VAFIN, VMFIN

Adjectives Lexical Baseform 9,158 9,164 + 0.07%
ADJA, ADJD

Nouns Lexical Baseform 27,473 27,485 + 0.04%
NN

Proper Names Lexical Baseform 30,881 30,884 + 0.01%
NE

All Lexical Entry 1,014,864 1,054,451  + 3.90%

Table 5.3: Size comparison of lexicon components for WCDG1 and WCDG2 based on entity counts
in the generated full-form lexicons.

semantic valence information. While the figures in Table 5.3 are implementation
specific, they document the predicted increase in lexicon size as a result of the cho-
sen semantic valence representation. The change in lexicon size is mainly due to the
addition of new lexical entries for verbs. Observe that the addition of a semantically
annotated verb forms to the full-form lexicon adds more than just the single line for
the verbal infinitive since, in the process of semi-automatic lexicon generation, the
infinitive is expanded into its potentially large set of corresponding inflected forms,
each of which is added as a separate entry. Also note that, strictly speaking, the se-
mantically annotated infinitives were not added to the existing lexicon. Rather, they
replaced the corresponding entries that did not carry semantic valence information.

5.8 Chapter Summary

With the implementation of the functional enhancements described in this chap-
ter, WCDG as the central component in the CIA has been prepared for cross-
modal interaction. The integration of cross-modal context information as provided
by the PPC proceeds via WCDG2’s extended predictor interface. WCDG2 sub-
mits its homonym-specific input to the PPC and — once the computation of the
contextually-informed prediction scores is complete — also receives the PPC’s pre-
dictions via this interface.

To meet Requirements 1 and 22, WCDG2’s interaction with cross-modal context
is mediated by a semantic representation involving a set of semantic dependencies.
The assignment of these dependencies is constrained by rules in the role-assigning
grammar. The role-assigning grammar comprises correspondence constraints from
the syntax-semantics interface and context-integration constraints. The latter con-
strain the assignment of semantic dependencies by propagating the cross-modal
prediction scores provided by the PPC into WCDG2’s semantic levels of analysis.
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The enablement of semantic processing in WCDG2 further necessitated changes to
the lexical representations of verb valences. The potentially overgenerating and am-
biguous valence representations in WCDG1 were replaced. The improved accuracy
in semantic valence representation comes at the price of an increase in the number
of homonyms per verb form that need to be evaluated in parsing. Compared with
WCDGTI, parsing in WCDG2 involves processing more constraints on more levels
of analysis with more dependencies and more verbal homonyms for the same slot
string. We hence expect the total of these changes to increase the overall processing

time in WCDG2.
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Chapter 6

Knowledge Representation and
Reasoning

The primary objective of this research project is to design and implement a cogni-
tively motivated model in which two distinct and representationally encapsulated
symbolic representations, namely those of visual understanding and syntax, are
brought to interact with each other. Conceptual Semantics postulates that any
cross-modal interaction with syntax is mediated by a shared, uniform level of se-
mantic representation. This representation employs a hierarchy of concepts and
their instantiations to encode both, entities represented syntactically as well as enti-
ties projected from visual understanding. It is the purpose of the present chapter to
outline how the notions of concept and concept instance, which form the foundation
of the model of cognition and cross-modal interaction in Conceptual Semantics, have
been realised in our model.

We begin this chapter with an overview over the components required for the
representation of semantic knowledge and provide a description of how they in-
teract with each other. Section 6.2 describes how we represent situation-invariant
semantic knowledge and world knowledge. Section 6.3 explains which inferences can
be drawn in our model and which role these inferences play in the context of cross-
modal interaction. Finally, Section 6.4 describes in detail what kind of information
we include in our representations of cross-modal context and how we encode that
information.

6.1 Overview

As discussed in Section 3.4, semantic representation in the view of Conceptual Se-
mantics comprises two related but distinct aspects: a largely situation-invariant
hierarchical representation of conceptual knowledge that, broadly speaking, cor-
responds to semantic memory and a situation-dependent representation of experi-
ence which represents episodic aspects of memory and cross-modal perception. The
situation-dependent episodic representation instantiates concepts from the concep-
tual hierarchy as activated by perception.

Our model implements this distinction by representing cross-modal context in a bi-
partite declarative knowledge representation. This representation consists of an on-

97
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tology as the knowledge base of situation-invariant semantic knowledge, the T-Box,
and a situation-dependent context model, the A-Boz, which contains indexed in-
stantiations of T-Box concepts as well as assertions of thematic relations between
those concept instantiations.

The reasoner provides inference information about the A-Box and the T-Box which
may reveal additional information that has not been asserted explicitly. The PPC
establishes communication with the reasoner via a generic application programming
interface (API), the Reasoner API that permits to query for asserted and inferable
information in the A-Box and the T-Box.

6.2 Representing Situation-Invariant Semantic Knowledge

The T-Box is a knowledge representation intended to contain the entire situation-
invariant semantic knowledge of the system. In our model, it consists of a hand-
crafted OWL ontology that defines a hierarchy of concepts or classes as well as
concept instances or individuals. Between these entities, a number of relations with
well-defined semantics have been asserted.

We use the terms ‘concept’ and ‘class’ interchangeably in the following.! The sub-
sequent sections describe these ontology constituents in further detail.

6.2.1 The Concept Hierarchy

The concept hierarchy in the T-Box is established by successive assertions of sub-
sumption relations which we denote by is_a. The assertions of subsumption relations
also comprises the assertion of disjoint classes.? The result of defining all concepts,
concept instances and relations in the T-Box is an ontology proper with the typi-
cal ontological properties such as inheritance between a class and its superclass(es).
Apart from its significance for the mechanisms of inference, inheritance has the ad-
vantage of representational economy: inherited information only needs to be asserted
once, namely for the most general superclass, in order to apply to all subclasses that
inherit from it.

To avoid confusion between the name of a concept and its lexicalisations, the latter
being invariably German strings in our model, we assign every entity concept an
English name. In cases where the English concept name does not reflect the unam-
biguous gender marking of the concept’s German lexicalisation, the gender marking
suffix *.M’ for ‘male’ and ‘.F’ for ‘female’ is appended to the concept name for disam-
biguation. The corresponding super-concept with underspecified gender definition
has been defined in most cases and bears the gender marking suffix *.M.F’.

As for the naming of situation concepts, it turned out to be virtually impossible
to find precise translation matches for all German situation verbs in English. We

“While the term ‘concept’ is used with preference in the domain of description logic, ‘class’ is predom-
inantly used in the OWL community with focus on ontology-based implementations. The same analogy
applies for the terms ‘concept instance’ and ‘individual’.

2 Asserting that two classes A and B are disjoint can also be expressed equivalently in terms of the
subsumption relations A C (T M—=B) and B C (T M-A).
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Lexicalisation Concept Type Situation Arity Concept Name

‘Mann’ Lexicalised - MAN
Entity Concept

‘Student’ Lexicalised — STUDENT.M
Entity Concept

‘Studentin’ Lexicalised — STUDENT.F
Entity Concept

— Non-Lexicalised — STUDENT.M.F
Structure Concept

‘geben’ Lexicalised Unary NULL.GEBEN
Situation Concept

‘geben’ Lexicalised Binary ETW.GEBEN
Situation Concept

‘geben’ Lexicalised Ternary JMD.ETW.GEBEN
Situation Concept

Figure 6.1: Concept naming exemplified for selected entity and situation concepts in the T-Box.

therefore adopt a different approach in the naming of situation concepts: The name
of a situation concept consists of the infinitive form of the German verb that acti-
vates the concept. The infinitive is preceded by placeholders for the verb’s syntactic
arguments. Examples for this concept naming convention are shown in Figure 6.1.

The T-Box contains four types of non-trivial concepts®: entity concepts, structure
concepts, helper concepts and situation concepts. Entity concepts determine concrete
or abstract entities in the real world and have a specific lexicalisation in the German
language, e.g. MANN or FRAU. Structure concepts have been introduced to improve
the representational structure and transparency of the ontology’s concept hierarchy.
In most cases, structure concepts do not have a concrete lexicalisation in German.
The four concept types just listed have been implemented as structure concepts
in the ontology: ENTITY.CONCEPT, STRUCTURE.CONCEPT, HELPER.CONCEPT and
SITUATION.CONCEPT. Helper concepts have been introduced in the ontology for
purely technical reasons, e.g., to contain a well-defined subset of classes from the
T-Box after classification by the reasoner. The content of classes representing these
helper concepts in the ontology can conveniently be queried by the PPC via the
Reasoner API. Helper concepts can be considered selective filters over the totality
of concepts in the ontology. As an example for a helper concept, consider the class
LEXICALISED.CONCEPT which contains all concepts for which a lexicalisation has
been asserted in the T-Box.

We refer to T and L as trivial concepts of an ontology. All other concepts are considered non-trivial.
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6.2.2 Relations

We define a set of 14 relations in the T-Box. Some of these relations hold between
concept individuals, e.g. 1s_AGENT_for, and some between concepts and individuals,
e.g. has_Lezicalisation. The complete list of modelled relations is given in Figure 6.2.
In addition, the specification of the concept hierarchy and the individuals associated
with it require the relations #s_a, which holds between concepts, and is_instance_of,
which holds between an individual and the concept it instantiates. The latter two
relations are provided by the OWL formalism. The social predicates demanded by
Requirement R19 have not been included as they were not needed for our modelling
purposes.

We have adopted the modelling convention that has_x relations are used for asser-
tions in the T-Box and is_Y relations are used for assertions in the A-Box. A-Box
assertions are discussed in Section 6.4.

Forward Relation Function Inverse Relation
has_AGENT Relates a situation concept isS_AGENT_for
instance to its AGENT.

has_COMITATIVE Relates an accompanied entity 1S_COMITATIVE_for
to its COMITATIVE.

has_INSTRUMENT Relates a situation concept 1S_INSTRUMENT _for
instance to to its INSTRUMENT.

has_LEXICALISATION Relates a concept to its lexical- is_Lezicalisation_for
isation.

has_OWNER Relates an owned entity to its 1S_OWNER_for
OWNER.

has_RECIPIENT Relates a situation concept 1S_RECIPIENT _for

instance to its RECIPIENT.

has_THEME Relates a situation concept is_THEME_for
instance to its THEME.

Figure 6.2: The set of relations defined in the T-Box.

A concept C'in the ontology can be assigned a lexicalisation \; by asserting the rela-
tion has_Lexicalisation between C' and an instance of the concept LEXICALISATION.
The relation can be asserted as the triplet (has_Lexicalisation, C, A;). Our model
permits to assert multiple lexicalisations for a concept: ( has_Lexicalisation, C', Ay ),
(has_Lezicalisation, C, Xy ), ... ( has_Lexicalisation, C'; A, ). Like this, we can model
synonymy, homonymy and polysemy:
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Synonymy
(has_Lexicalisation, C, A1) A ( has_Lexicalisation, C, o) N A1 # Ao

Homonymy and Polysemy
(has_Lezicalisation, C, Ay ) N (‘has_Lexicalisation, D,Ay) N C # D

For clarity and economy of representation, the T-Box contains structure classes
that group concepts which share certain properties or engage in the same type of
relations. As a modelling convenience we assign these shared properties to the super-
ordinate structure class. In our model, the structure classes of situation concepts,
for instance, all bear cardinality restrictions on the thematic relations they must
engage in.! These restrictions are passed on to all the members of the structure
class by inheritance. For the structure class TAKES.AGENT.THEME, e.g., a sub-
class of BINARY.SITUATION (see Appendix II, page 230), the following cardinality
restrictions are imposed: Members of this class must not engage in a has_RECIPIENT
relation and must have exactly one has_AGENT relation to an ENTITY.CONCEPT and
exactly one has_THEME relation to an ENTITY.CONCEPT. Analogous cardinality re-
strictions apply to other situation concepts in the T-Box. In the subsequent course
of this thesis, we frequently refer to two important properties of situation concepts:
situation valence and situation arity. The thematic relation restrictions imposed
upon a class determine its situation valence. In our model, situation valence is la-
belled in complete analogy to the semantic valence of verbs (cf. Section 5.7). The
class TAKES.AGENT.THEME, hence, is assigned the situation valence ag_th.

In contrast, we take the more general term ‘situation arity’ to denote the number
of mandatory thematic relations that instances of a certain concept must engage in.
The class BINARY.SITUATION, e.g., contains all situation concepts of binary situation
arity, i.e., all situation concepts that engage in precisely two mandatory thematic
relations.

6.2.3 Modelling Domain and Domain Modelling

The modelling domain of the T-Box is based on the concepts activated by the con-
tent words in the set of structurally ambiguous sentences for which the influence
of cross-modal context upon linguistic processing has been studied. A detailed de-
scription of the sentences and the sources from which they have been extracted is
provided in Section 8.2.

"We adopt this procedure as a general design guideline for restricting the use of relations in the
T-Box: Rather than to impose a global domain or range restriction on a relation, we restrict the use of
the relation via class-specific properties and hence localise the effect of the restriction. In this manner,
we can formulate class properties that, for the members of this class, have the same effect as a global
domain restriction on the corresponding relation. For instance, in asserting the cardinality restriction
(has exactly 1, property, CONCEPT ) as a class property, we achieve that members of this class must engage
in exactly one property relation with a member from the class CONCEPT. As a result, members of the
restricted class cannot enter a property relation with a member of any other class — just as if a global range
restriction had been imposed upon the property relation.
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VK-011 ‘Er wusste, dass die Magd der Bauerin den Korb suchte.’

‘Er’ gives rise to the concept HUMAN.M.

‘wusste’ gives rise to the concept ETW.WISSENag th.

‘Magd’ gives rise to the concept MAID.

‘Bauerin’ gives rise to the concept FARMER.F.

‘Korb’ gives rise to the concept BASKET.

‘suchte’ gives rise to the concepts NULL.SUCHENgag, ETW.SUCHENag tn, and

JMD.ETW.SUCHEN g re th-

Figure 6.3: The selection of content words for conceptualisation in the T-Box (underlined) from
one of the studied globally ambiguous sentences.

We have conceptualised content words such as verbs and nouns as well as function
words such as personal pronouns in the input sentences by the corresponding situ-
ation and entity concepts in the T-Box. An illustration of this process is given in
Figure 6.3. Instantiations of these T-Box concepts are modelled in the situation-
specific A-Boxes to represent a disambiguating cross-modal context. A detailed
description of situation modelling is provided in Section 6.4. At the time of writing,
the T-Box contains 427 classes, 310 individuals, and 14 relations. A representation
of the asserted concept hierarchy in the T-Box is given in Appendix II.

On the first hierarchy level, the T-Box contains four structure concepts that cate-
gorise entity concepts, helper concepts, meta data and situation concepts. The class
ENTITY.CONCEPT subsumes all concepts that can act as an argument to the rela-
tion is_ROLE_for.! The class HELPER.CONCEPT subsumes LEXICALISED.CONCEPT
which, in turn, subsumes all concepts that have been assigned a lexicalisation in the
T-Box.

The class SITUATION.CONCEPT is disjoint from the class ENTITY.CONCEPT and sub-
divides into classes containing the unary, binary and ternary situation concepts of
our model implementation. Each of these subclasses further subdivides into classes
that contain situation concepts of the same situation valence only.

META.DATA subsumes the abstract concepts GRAMMATICAL.NUMBER and GENDER.
The latter have been introduced to facilitate the adequate modelling of syntac-
tically relevant information. The inclusion of these concepts permits a more ac-
curate semantic representation of visual scenes and thereby increases the speci-
ficity of reference formation during cross-modal matching. Without the concepts
SINGULAR and PLURAL as subsumed by GRAMMATICAL.NUMBER, concept instan-
tiations would always be underspecified with respect to grammatical number as
illustrated in Figure 6.4 (a).

The interpretation of 6.4 (a) shows that the omission of grammatical number from
the representation of visual scene context results in a rather crude approximation of
the visual scene contents. Cognitively, it is virtually impossible to conceive a scenario
in which the accuracy of visual perception is so strongly degraded that information

In A 244" . B we refer to A as the relation argument and B as the relation value.
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is_instance_of

(a) MAN.01 ——————— MAN

is_instance_of

(b) MAN_02 ——————— MAN [1 SINGULAR

is_instance_of
(¢) MAN_.03 ———————— MAN 1 PLURAL

Figure 6.4: Concept instantiations in our model representing (a) an unspecified positive number
of men, (b) precisely one man and (c¢) several men.

about the grammatical — not the actual — number of concept instances observed can-
not be extracted from the visual modality.! Such unusual conditions may, perhaps,
be encountered in the presence of extremely poor lighting or in extreme physical
distance to the observed scene. At any rate, these are fringe phenomena of marginal
importance to a general model for the interaction between visual understanding and
linguistic processing. Even if we admit such percepts as possible — which in our
model, we do — without incurring undesirable consequences for the more specific
representations of visual scene context, it remains questionable how accurate the
classification of individuals could be under such limited visibility conditions. As dis-
crimination temporally precedes classification in perceptual bottom-up grounding
(cf. Section 3.6), it is plausible that the grammatical number of participants can be
assessed prior to their conceptual categorisation.

The reverse, i.e., the classification of participants without a precise knowledge of
their grammatical number, seems improbable since grammatical number could, in
principle, always be inferred from the number of concept instantiations that have
projected into Conceptual Structure during classification. The representations in
Figure 6.4 (b) and (c) illustrate how the concepts SINGULAR and PLURAL can be
employed to specify concept instances of well-defined grammatical number.

In our model, the expression of quantification and quantifier scope for concept def-
inition is determined by the expressivity of the OWL language. For our modelling
purposes, we express quantification as conjuncts of entity concepts with concepts
from the class GRAMMATICAL.NUMBER. Presently, this class only containts the
subclasses SINGULAR and PLURAL. Other types of quantification cannot be ex-
pressed conceptually in the current version of our model. We consider Requirement
R17, which demands the capability to express quantification and quantifier scope,
partially implemented in our model. A comprehensive coverage of all facets of quan-
tification is likely to require an extensive elaboration of the model.

Whilst the list of concepts subsumed by META.DATA clearly is incomplete (cf. Foot-
note 4 on page 117), the inclusion of these concepts into the T-Box forms an im-
portant first step towards a more precise representation of referentially relevant

'Due to the very restricted range of values that grammatical number can adopt in most languages,
the perception of the grammatical number of concept instances clearly is considerably easier than the
perception of the actual number. In German, the perception of grammatical number only requires the
cognitive discrimination between none, one, and many.
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information in models of visual context. GRAMMATICAL.NUMBER is an obvious
candidate for inclusion in the T-Box since its manifestation is overtly detectable
by sensory perception. As far as cross-modal reference to people is concerned, this
argument can also be extended to GENDER in most cases. The experimental findings
for context integration with sentence SO-9681 in Experiment 3.4 (to be discussed in
Section 10.5) also support the view that the inclusion of meta-data such as GENDER
can further improve the specificity of bottom-up grounding and cross-modal match-
ing. An analogous argument can be developed for GRAMMATICAL.NUMBER.'

6.3 Reasoning and Inferences

The use of declarative knowledge representations without the capability to reason
over those representations would be severely limited in a number of respects. Most
significantly, without reasoning every piece of knowledge needs to be asserted ex-
plicitly. Even for relatively small knowledge bases, the explicit assertion of all rele-
vant relations that do and that do not hold true between the represented concepts
and individuals would be an arduous and time-consuming task. Worse still, with
increasing ontology size, the complexity of the endeavour grows dramatically and
soon exceeds the limits of the manageable.

From a representational point of view, it is therefore much more economical to
assert a smaller number of independent relations and then to infer further implicit
knowledge from reasoning over the representation. Given the well-defined semantics
of the relations in an OWL ontology, we can draw inferences based on the system-
atic behaviour of these relations. The is_a relation, e.g., is transitive and hence
permits us to infer (is_a, A,C') from (is_a, A, B) and (is_a, B,C"). In our model,
we use a reasoner that draws inferences over the T-Box and the A-Box and com-
municates with the PPC via the Reasoner API. The PPC utilises this API to query
the ontology.

6.3.1 The Reasoner

In the implementation of our model we use the FaCT++ description logic reasoner
(FaCT-PlusPlus Download Page, 2009) to draw inferences over the T-Box and the
A-Box. From the many description logic reasoners available, FaCT++ was chosen
as most suitable for our needs because it offers a convenient and stable API, sup-
ports the decidable OWL description logic dialect OWL DL and also supports the
forthcoming description logic standard OWL 2.2 The latter standard also includes
the assertion of cardinality restrictions, which we also employ in a number of class
definitions in our T-Box, e.g. for the definition of the class TAKES.AGENT.THEME
(cf. Section 6.2.2).

"We would go as far as to speculate that the cognitive prominence of these features accounts for the
fact that ‘number’ and ‘gender’ are grammatical features which undergo marking in most — if not all —
natural languages of the world.

*We report the use of a different reasoner with an earlier version of our model in McCrae (2007).
Reasoning in this earlier version was subject to a number of technical and representational limitations, all
of which could be overcome with the inclusion of the FaCT++ reasoner.
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6.3.2 Inferences

In our model, the reasoner computes two important types of inference on the asserted
concept hierarchy of the T-Box: concept subsumption and concept satisfiability. The
check for subsumption permits to detect class-subclass relationships in the ontology
that have not been asserted explicitly. This is particularly useful in large and com-
plex ontologies where this kind of relation may not be apparent from inspection of
the class hierarchy any more. The test for subsumption can also be used to obtain
the set of all concepts subsumed by a given superconcept. We use this method to
retrieve the contents of suitably defined helper classes.

The test for concept satisfiability evaluates whether the addition of a given concept
to the knowledge base maintains consistency of the knowledge representation.! Of
particular importance in the context of our model is that the check for satisfiability
also allows us to check for concept compatibility. A pair of concepts A and B from
the T-Box is mutually compatible if and only if A B is satisfiable in the T-Box. The
importance of concept compatibility for the cross-modal influence of visual context
upon linguistic processing in our model will be discussed in Section 7.3.

6.3.3 The Reasoner API

The PPC sends queries to the reasoner and obtains reasoning results from it via the
Java OWL API (OWL API Homepage, 2009). This API provides a large number
of classes and methods that permit to query for almost all ontology properties of
relevance to our modelling objective. The API also permits to trigger some of the
reasoning operations such as the classification of the asserted hierarchy to afford the
inferred hierarchy.

The only case in which we needed to extend the querying capabilities provided by
the Reasoner API was for the query about all individuals in the ontology and the
classes they instantiate. We use this query to obtain the set of all concept instances
asserted in the A-Box. Due to the lack of a convenience method for this information
in the Reasoner API, we have added the corresponding query capabilities in the
PPC. It now includes a method that parses the assertions of all OWL individuals
in a given ontology and extracts the information about which class each of them
instantiates.

6.4 Representing Situation-Dependent Visual Context

Following the fundamental tenets of Conceptual Semantics, we assume in our model
that situation-dependent percepts are encoded in terms of concept instances joined
by thematic relations. We consider the description of the cognitive processes that
lead to the generation of these mental representations out of scope of our modelling
effort.

! An inconsistent ontology may produce inconsistent inferences (‘Ex contradictione sequitur quodlibet’).
The overall consistency of the ontology is therefore a prerequisite for correct and consistent reasoning.
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We hence represent the entities that are perceived as participating in the visual
scene as well as the thematic relations between them in a context model. We fur-
ther assume that the cross-modal influence of the visual modality upon linguistic
processing occurs due to the represented visual scene being co-present with the lingu-
istic stimulus in the input sentence. Such a co-occurrence is given, for instance, when
an individual is exposed to a visual scene context and simultaneously is exposed to
the input sentence as an auditory linguistic stimulus. It is the resulting cross-modal
influence of visual context upon linguistic processing in such scenarios that we are
trying to approximate with our model implementation. In terms of Conceptual Se-
mantics, the A-Box can be seen to contain the projections of entities and thematic
relations as identified in the process of visual understanding.

6.4.1 The Contents of Visual Scene Representations

The amount of information that can potentially be extracted from a visual scene
is enormous. A number of cognitive top-down processes such as visual attention
and context-based expectation, however, help to reduce this large amount of infor-
mation down to a cognitively manageable set of salient features that are extracted
from the visual scene for further processing. Strohner et al. (2000) report a num-
ber of experiments that illustrate the strong influence of attentional focus upon
cross-modal reference formation in ambiguous cross-modal matching situations. As
we deliberately exclude the complexity of these top-down processes from considera-
tion in our model, we need to make appropriate assumptions about the effect that
these processes have upon the representation of visual percepts. For our model, we
assume that top-down cognitive processes have already effected a pre-selection of
entities from visual context. Precisely these entities will be represented and shall
be modelled to interact with linguistic processing. In our context models we encode
exactly this selected visual scene information. The selection processes that lead to
the decision which part of visual context shall be focussed on are considered outside
of the present scope of our model.

Visual scenes offering several situations for extraction can be studied with our model
by designing a separate context model for each of those situations. Each situation
then gives rise to a separate cross-modal interaction with language. Each cross-
modal interaction requires a separate parse run with a distinct context model. Our
model can therefore only approximate the effect of multistable visual percepts (see
Section 3.1) upon linguistic analysis. As the context representations in our model
are inherently static, each of the multistable states needs to be represented as a
distinct context model that gives rise to a separate cross-modal interaction with
linguistic processing.

In order for linguistic processing to be influenced by visual understanding, the rep-
resentation of visual understanding must contain the linguistically relevant entities
and relations. Our context models intend to represent the output of the process of
visual understanding. As such, they primarily represent the entities observed in a
visual scene, the situation that binds these entities together and the thematic rela-
tions that relate the entities to each other. We also include information beyond the
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visually perceivable when this information is likely to be known or inferable from
prior knowledge or world knowledge. An example for this is the visual perception
of entities that are identified by their relation to other entities which themselves are
not part of the visual scene. Consider the context representation resulting from the
visual perception of Dominik’s son. Prior knowledge identifies the visually perceived
person as Dominik’s son, even if Dominik is not part of the visual scene. Our con-
text model of this visual scene will hence include a representation of both entities,
SON_01 and DOMINIK 01.

Some thematic roles may be easier to observe visually than others. AGENT and
THEME, for example, are generally quite easy to extract from a visual scene, espe-
cially, if dynamic rather than static visual scene information is available. The role
OWNER, on the other hand, is an example of a role that is more difficult — if not
even impossible in some cases — to extract from inspection of a visual scene. For
our model, we assume that additional knowledge about the entities perceived in the
situation is also incorporated in the process of visual understanding. It is additional
knowledge in the form of prior context and world knowledge that permits the assign-
ment of the visually less accessible thematic role OWNER.

As an example, consider Figure 6.5, where one participant has been identified as
a PhD student.! If we assume that this participant is already known as ‘the re-
searcher’s PhD student’, the recognition of the entity PHD.STUDENT.F.01 in the
visual scene permits the inclusion of the additional, visually inaccessible thematic
relation in the output representation of visual understanding. An implication of
this argument is that the output representation of visual understanding can, in
some cases, include entities that are not even physically present in the observed vi-
sual scene. In the example in Figure 6.5, prior knowledge about PHD.STUDENT.F_01
can warrant the inclusion of the is_OWNER_for relation with RESEARCHER.F_01 in
the context model, even if the latter entity physically is not present in or detectable
from the scene. This argument is in line with our approach to use the visual context
model as a representation of all linguistically relevant entities and relations identi-
fied in the process of visual understanding.

Refinements to the semantic representation of visual scene context such as modal
aspects or negation are demanded by Requirement R20. These aspects have not
been incorporated into our representation of visual context to limit the modelling
complexity in the interaction with linguistic analysis. We hypothesise that modals
and negations differ in their effect on linguistic analysis from factual assertions and
hence require different modelling with regards to their effect on the assignment of se-
mantic dependencies in the linguistic analysis. An appropriate modelling approach
for these contextual aspects may presumably require different types of inferences
and, possibly, even a different logic. We recommend that a systematic investigation
into these phenomena be undertaken in the context of future research.

We omit the indication of German gender marking in the English translation of German sentence
material, unless it is essential for the argument.
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Binary Visual Scene Context:

VK-274 ‘..., dass die (Doktorandin der Forscherin) den Beweis lieferte.’

... that the researcher’s PhD student delivered the evidence.

Class Assertions in Cross-Modal Context:

is_instance_of
PHD.STUDENT.F.01 ——— PHD.STUDENT.F [l SINGULAR

is_instance_of

RESEARCHER.F_01 ——— RESEARCHER.F [1 SINGULAR

is_instance_of

EVIDENCE_01 ——  EVIDENCE [1 SINGULAR
is_instance_of
ETW.LIEFERN_01 ——— ETW.LIEFERNag tn

Object Property Assertions in Cross-Modal Context:

is, AGENT _for
PHD.STUDENT.F.01 ————— ETW.LIEFERN_01

is.THEME _for
EVIDENCE_01 ——— ETW.LIEFERN_01

is_.OWNER_for
RESEARCHER.F_01 —— PHD.STUDENT.F_01

Figure 6.5: The inclusion of the thematic role OWNER into the representation of visual context to
reflect the contribution of contextual and world knowledge.

According to Jackendoff’s Conceptual Semantics, only the entities that have pro-
jected into Conceptual Structure subsequently have the potential to interact with
syntactic representation. An entity needs to have been cognised, or — in terms of
Conceptual Semantics — must have projected into Conceptual Structure in order to
be able to affect linguistic processing (Jackendoff, 1983, p. 35). We consequently re-
quire that only those entities may exert an influence upon linguistic processing that
have been represented in the context model. Effectively, this assumption provides
a closure on the default open-world assumption of OWL reasoning. As our model
centres around a constraint-based linguistic processor, we need to make this closed-
world assumption to be able to derive constraints on linguistic analyses that do not
receive the support of positive evidence in visual context. A purely OWL-based for-
malism does not provide closed-world inference mechanisms. We hence implement
these inferences in the PPC at a process stage posterior to communication with the
OWL reasoner. A detailed description of the inferences resulting from this closure
is provided in the description of the PPC’s scoring algorithm in Section 7.4.

A mental representation of cross-modal context according to Conceptual Semantics
is a representation of cognised entities, encoded as concept instances and thematic
relations between them. The creation of such a representation presupposes the iden-
tification of perceived entities and hence can only be populated by the process of
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Visual scene context:

A man is giving a woman a book.

Context Model Class Assertions:

is-instance_of

MAN_0O1 ——— MAN [1 SINGULAR
is_instance_of

BOOK_01 — BOOK [1 SINGULAR
is_instance_of

WOMAN_01 — =  WOMAN ['1 SINGULAR

is-_instance_of
JMD.ETW.GEBEN_.01 ————— JMD.ETW.GEBENgg re_th

Context Model Property Assertions:

is L AGENT _for

MAN_0O1 e JMD.ETW.GEBEN_01
is . THEME _for

BOOK_01 — JMD.ETW.GEBEN_01
is_.RECIPIENT _for

WOMAN_01 JMD.ETW.GEBEN_01

Figure 6.6: Typical assertions contained in a context model.

visual understanding. We also expect a representation of the output of visual un-
derstanding to comprise additional cognitively relevant information such as spatial,
temporal or causal relations. In the current form of the model, however, this type
of information is not captured in our representation of visual context. Due to the
absence of spatial information in our context models, our representation of visual
context in its current form also fails to meet Requirement R16 for pointers to sen-
sory representations.

The contents of a context model comprise instances of acting entities or, more gener-
ally, situation entities, instances of actions or, more generally, situation concepts and
thematic relation assertions between those instances. As such, our knowledge repre-
sentation of visual context satisfies Requirement R18 for the abstract representation
of actions and acting entities. Typical context model assertions are exemplified in
Figure 6.6.

To achieve a further reduction of the modelling complexity in the interaction be-
tween visual understanding and linguistic processing, we make another assumption:
The representation of cross-modal context as provided by the A-Box remains valid
throughout the course of sentence processing. We hence assume that the visual scene
information provided at the onset of linguistic processing is static and remains un-
changed by the interim and final results of linguistic processing. This assumption
hence excludes the possibility that linguistic processing influences the process of
visual understanding. In natural systems, the latter kind of interaction is observed
frequently, for example, in cases where local syntactic or referential ambiguities are
resolved by means of visual information in the course of incremental sentence pro-
cessing. In those cases, the disambiguated linguistic information is found to have a
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directing effect on the course of eye fixations in a co-present visual scene (Tanenhaus
et al., 1995, Ambiguous conditions of Experiments 1 and 2). A full model of the
cross-modal interaction between vision and language — as opposed to a model of
the cross-modal influence of vision upon language — will need to incorporate such
bidirectional cross-modal interactions. Their exclusion from the scope of our model
results from a technical limitation of the parser’s predictor interface: the predictor
interface only permits the unidirectional integration of non-linguistic information.
A bidirectional interaction at parse time is currently not possible.!

Assuming that the representation of visual context is static over parse time justifies
the use of a predictor for the computation of thematic relation scores prior to parse
time. If the contextual representation remains unaffected by the course of linguistic
processing it makes no difference whether we query that representation prior to or
during the process of parsing.

A criticism that has been raised against our format of context representation is that
the influence of the visual context upon linguistic processing is not cross-modal in
nature anymore.? We argue against this view for two reasons: First, our model does
indeed influence the processing of one representational modality based on informa-
tion contained in another representational modality: the semantic representation of
visual context modulates linguistic analysis on the syntactic level of representation.
Importantly, both of these representational modalities are independent of each other
and are representationally encapsulated in the sense of Jackendoff (1996). Second,
the information encoded in the representation of visual context is an adequate ap-
proximation of some of the non-linguistic information that is readily available from
inspection of a visual scene. As none of the entities or relations used to encode visual
context information have linguistic properties, the nature of this representation as
well as the information it encodes are genuinely non-linguistic.

6.4.2 Representing Situation Entities and Participants

Every entity in visual context is encoded as an instantiation of a single concept that
has been asserted in the T-Box. For technical reasons, instantiations of multiple
or anonymous classes® are not possible in the current implementation: While OWL
and the reasoner permit the assertion of concept instances of anonymous classes
in principle, the axioms resulting from this kind of instantiation cannot be parsed
by the current version of the PPC. This technical limitation can be circumvented
simply by asserting an additional class in the T-Box that has the properties of the
desired anonymous class. This new class can then conveniently be instantiated in
the context model.

Tt is currently planned to overcome this limitation in the context of a separate research project
dedicated to the extension of the parser’s capabilities to enable online access to contextual information at
parse time.

2This criticism was voiced by an anonymous reviewer of McCrae (2009).

3 An anonymous class is a class that has not been asserted explicitly but can be expressed by a descrip-
tion logic expression of asserted classes which is satisfiable in the T-Box.
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Since every concept instance in the A-Box grounds precisely one asserted concept in
the T-Box, Requirement R25 is met. This requirement demands that every concept
instance must instantiate at least one concept from the concept hierarchy. In combi-
nation with the technical limitation of the current PPC version, this requirement has
the representational consequences we have just outlined. It is important to stress,
however, that this requirement does not constitute a limitation on which concept
instances can be expressed in a context model. In principle, any concept can be
instantiated in an A-Box provided it has been asserted in the T-Box beforehand.
Missing concepts can simply be added to the T-Box, as long as they are expressible
in the OWL description logic.

An analogous approach can be taken to model conceptual uncertainty in visual per-
ception. In cases where visual perception is ambiguous, the visual percept can be
defined as an instantiation of a class with sufficiently vague class definition. For ex-
ample, if a situation participant was observed and it could not be discerned whether
the person was a man or a woman, this person could be represented in the context
model as an instantiation of the asserted T-Box concept PERSON defined in 6.1:

(6.1) PERSON = MAN LI WOMAN

Analogously, the ambiguous visual percept of an entity categorisable as instanti-
ating either of the two mutually exclusive concepts A or B can be represented as
instantiating concept ¢ defined according to 6.2.1

(6.2) c=(AMN-B) U (-AMB)

Another representational implication arising from the implementation is that for
every individual it should be asserted which class it instantiates. While OWL and
the reasoner in principle permit the assertion of OWL individuals without an ex-
plicit class assertion, the reasoner treats such individuals as belonging to the class
OWL:THING by default.

6.4.3 Representing Thematic Roles

A fundamental assumption underlying our modelling approach is that the thematic
relations between situation entities in a visual scene can be extracted from a visual
scene and are a part of the output of visual understanding. We hence assume that an
observer arrives at an interpretation of a visual scene in which each of the observed
entities is assigned a thematic role.

Thematic role assignments to entities in visual context are represented as assertions
of an is_ROLE_for thematic relation between two concept instances. Depending on
the type of thematic relation asserted, the relation can hold between instances of
two entity concepts or between instances of a participant and a situation concept.
The set of thematic relations supported in our model is given in Figure 6.2. In

!Note that the assertion of ¢ in 6.2 defines a conceptual underspecification that is diachronically
invariant. This type of ambiguity is different from the type of concept assertion that would be required to
express a bistable visual percept that oscillates over time between instantiations of concepts CONCEPT.A
and CONCEPT.B.
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fulfilment of Requirement R26 our situation representations are always verb-centric
in the sense that they centre around an instance of a situation concept which, in
German, typically are lexicalised by a verb. As the assignment of thematic relations
to entities in visual context is situation specific, such assertions are represented in
the A-Box.

In our representations of visual context, only one thematic relation assertion can
be processed for a given pair of individuals. The model does not support uncertain
or ambiguous role assignments. To model the effect of a visual scene in which it is
unclear whether an individual A 01 engages in an is_AGENT_for or an iS_THEME_for
relation with an instance of situation concept SITUATION.CONCEPT_01, we need to
model each visual context in a separate context model.

6.5 Chapter Summary

In this chapter we have argued for a bipartite knowledge representation to encode
the linguistically relevant aspects from the outcome of visual understanding. The
representational division into a situation-invariant T-Box and a situation-dependent
A-Box reflects the representational requirements of Conceptual Semantics. In our
model, the T-Box corresponds to semantic memory and encodes temporally invari-
ant lexical knowledge in a hierarchy of concepts, a hierarchy of thematic relations
and a set of situation-invariant concept instances. The A-Box encodes episodic as-
pects of visual understanding and contains situation-specific instantiations of T-Box
concepts joined by thematic relations from the T-Box.

The hierarchy of concepts results from multiple assertions of is_a relations between
concepts. Thematic relations are asserted betwen individuals from the classes in the
conceptual hierarchy. In addition, the T-Box specifies relations between individuals
and concepts, such as the is_instance_of relation, and between concepts and indi-
viduals such as the has_Lexicalisation relation. The inclusion of a reasoner permits
to check whether a given proposition is consistent with the asserted hierarchy and
the set of defined relations and individuals. As such, the form of knowlege repre-
sentation and reasoning we choose for our model meets Requirement R15 for such
reasoning capabilities.

We argue for the adoption of a closed-world assumption for the cross-modal influ-
ence of visual context upon linguistic processing. Our modelling approach is based
on the premise that both positive and negative evidence from a visual scene context
can influence linguistic processing. We further stress the importance of reasoning
for the efficient extraction of implicit knowledge from a knowledge representation as
well as for the economy in the representation of semantic knowledge in general.

The next chapter discusses in detail how the PPC uses the information in the T-Box
and the A-Box in combination with the closed-world assumption to compute depen-
dency score predictions for the semantic dependencies between homonyms in the
input sentence. We illustrate in detail how our model utilises the reasoning opera-
tions of concept subsumption and concept satisfiability that were introduced in this
chapter to compute dependency score predictions for linguistic processing.
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Chapter 7

The PPC — A Cross-Modal
Predictor Component

The PPC is the central component in our model. It computes the semantic de-
pendency scores based on which parser-external non-linguistic context information
influences linguistic processing in WCDG2. With its scores, the PPC determines
which effect a semantic relation asserted in the representation of visual context shall
have upon linguistic processing.

This chapter describes in detail the steps performed by the PPC, from process-
ing the initial sentence input to the eventual return of a homonym-specific list of
contextually-informed dependency scores to WCDG2. The detailed understanding
of the PPC’s decision processes in computing semantic dependency scores will also be
essential for an appreciation of the experimental results discussed in Chapters 9, 10
and 11.

Section 7.1 describes how the predictor receives its input information from WCDG2.
Section 7.2 explains how we achieve linguistic grounding of the words in the input
sentence in our model. Section 7.3 addresses the decision process implemented in the
PPC for matching words from the input sentence to assertions of concept instances
in the context model. Section 7.4 provides a detailed discussion of the PPC’s scoring
algorithm. In Section 7.5 we outline how different effects of perceptual uncertainty
have been incorporated in our model. Section 7.6 describes how the PPC commu-
nicates its score predictions back to WCDG2 and makes them accessible at parse
time.

7.1 Predictor Invocation

The integration of non-linguistic context information begins with the invocation of
the PPC predictor by WCDG2. Resulting from the extensions to the predictor inter-
face (cf. Section 5.4), WCDG2 provides the predictor with the list of all homonyms
in the input sentence as well as their full lexicon information. The limitation of un-
specific predictor request, Limitation L1 in Section 4.2.5, has thus been overcome.

According to Requirement R22, the cross-modal interaction between non-linguistic
context and linguistic processing must be semantic in nature. At the point in time
when the PPC receives the input from WCDG2 via the extended predictor inter-
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face, the homonyms have not been assigned a conceptualisation yet. In terms of
linguistic grounding, their linguistic symbol has been identified but the symbol’s
meaning has not been assigned yet. The PPC converts the inherently meaningless
representation of lexically specified homonyms into symbolic representations, which
are linked to an intrinsic representation of meaning (cf. Section 5.4). In order for
a homonym’s symbolic representation to be linked to a representation of meaning,
it must have one or more conceptualisations. The next important processing step
in our model therefore is to establish the link between the homonyms as arbitrary
linguistic symbols and concepts in the ontology. We describe this process in detail
in the following section.

7.2 Linguistic Grounding

The grounding of conceptual categories in sensory perception in natural systems is
a complex, bidirectional process during which bottom-up and top-down processes
converge to produce a link between one or more conceptual categories and the sen-
sory representation of the input stimulus. As discussed in Section 3.6, the processes
for grounding in sensory and representational modalities differ. In representational
modalities, the sensory stimulus, e.g. the sound wave pattern conveying a spoken
word, encodes a symbol rather than a real world entity or situation. The word itself
cannot be grounded in the sensory stimulus since the word is an arbitrary symbol
and, as such, intrinsically meaningless. To assign a meaning to the sensory stimu-
lus an additional step is required: the word’s meaning needs to be accessed in the
mental lexicon (see Figure 3.5).

A model for the interaction between visual and linguistic understanding must per-
form the grounding process in both modalities. In our model we assume that the
instantiation of concepts in the context model already has occurred; the percepts
in the visual modality are therefore already grounded. In the linguistic modality,
WCDG?2 identifies different homonyms that have been matched against their cor-
responding lexical entries. These homonyms result from successful discrimination
and identification of the linguistic input in Harnad’s sense. Since our model does not
include analogous processes for the visual modality, Requirements R27 and R28 for
the discrimination and identification of sensory input are fulfilled by the linguistic
modality only. We consequently rate these requirements as partially fulfilled by our
model. Complete fulfilment of these requirements can only be achieved by a model
with full sensory processing in both modalities.

According to our definition in Section 3.6, linguistic grounding is complete when the
identified symbols in the linguistic modality have been assigned a meaning. In our
model, we approximate the assignment of meaning to a word by a bottom-up process
based on lexical properties. This modelling decision implements Harnad’s bottom-
up grounding discussed in Section 3.6 and arises from the fact that our model does
not incorporate top-down effects such as the influence of context-based expectations
or world knowledge in the assignment of concepts to words. For a given word, we
refer to a concept representing the word’s meaning as its conceptualisation. The set
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of concepts available in our model is represented in the T-Box.! In our model, a
word is mapped to its set of conceptualisations based on the three lexical features
normalisation, semantic valence and grammatical number. The internal representa-
tion of these lexical features form a categorical representation of the linguistic input
in the sense of Harnad (1990).

The normalisation is computed for every homonym in the input sentence. It can be
thought of as a generalised lexical base form that is available for all homonyms —
in contrast to the extant feature lexical baseform in WCDG which remains un-
defined for all input words that are not contained in the lexicon, have not matched
an existing word template or bear the POS tag NE for proper names. Depending
on which lexical template? an unknown word matches, its lexical baseform takes
the uninformative value ‘unknown’ or ‘-’. For a homonym that has an informa-
tive lexical baseform listed in its lexicon entry, the normalisation is set to its lexical
baseform. For a homonym that has no or no informative lexical baseform listed, the
normalisation is set to the its surface string. To eliminate encoding issues in the
course of this process, German special characters (umlauts and ‘) are transliterated
into their two-letter equivalents during normalisation.® In our model, a word maps
to a concept if and only if the following three conditions are met:*

1. The conceptualisation has the homonym’s normalisation as one of its asserted
lexicalisations.”

2. The conceptualisation has a situation valence equal to the homonym’s semantic

valence (if defined).

3. The conceptualisation is compatible with the homonym’s grammatical number
(if defined).

The effect of applying these criteria in linguistic bottom-up grounding is illustrated
in Figure 7.1 for different homonyms of the same transitive verb. As can be seen,
the application of these grounding criteria ensures that every homonym is mapped
to another conceptual expression. In some cases, a homonym in the input sentence
of course may also be mapped to an empty set of conceptualisations by the end of
that process. This happens if no concept in the T-Box meets all three conditions for
that homonym. The experimental findings reported in Part III of this thesis show,

LA detailed description of the T-Box is provided in Section 6.2. The full list of concepts asserted in
the T-Box is given in Appendix II.

2WCDG’s lexical templates were introduced in the list of grammar elements on page 62.
3The conventional mappings apply: ‘4’ — ‘ae’, ‘¢’ — ‘o€’, ‘i’ — ‘ue’ and ‘B’ — ‘ss’.

4 From the perspective of cognitive linguistics, the list of lexical constraints imposed is clearly incom-
plete. We expect lexical and semantic features such as gender, person or animacy to influence the process
of word understanding as well. However, the results reported in Part III will demonstrate, that the three
selected lexical features above permit to obtain convincing results.

In word interpretation, the PPC only considers a concept’s asserted lexicalisations. The fact that a
concept may also inherit lexicalisations from its superclasses in the ontology remains inconsequential in
our implementation of bottom-up grounding.
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that a contextual influence can be exerted upon syntactic analysis even if conceptu-
alisations are not available for all homonyms in the input sentence. Note that the
failure to assign a homonym its conceptualisation also propagates into cross-modal
matching for that homonym (cf. Section 7.3): a homonym which does not map to
a concept from the T-Box also cannot be matched with a concept instance in the
representation of visual context.

A salient feature of our model is that a single homonym can map to a whole set
of conceptualisations rather than just a single conceptualisation. This set-based
one-to-n mapping permits to model linguistic phenomena such as homophony and
lexical ambiguity robustly (see Section 6.2.2). The unweighted representation of
word meaning as a set of conceptualisations suggests that all conceptualisations
contribute to the meaning of a homonym to an equal extent. Such a uniform se-
mantic representation of word meaning is in discord with notion of multi-facetted
word meanings as deducible from human preferences in lexical semantics. Moreover,
human preferences are dynamic and can be influenced by factors such as discourse
context or world knowledge (e.g., Crain and Steedman, 1985). In lexical disam-
biguation, for instance, different readings of an utterance are adopted with different
degrees of preference. Stronger preferences have precedence but may be dropped
in favour of alternative readings once other, even stronger semantic factors enforce
an alternative analysis. To achieve a more adequate representation of observable
semantic saliencies in word meaning, the ability to represent gradients of semantic
preference in the mapping of homonyms to conceptualisations should be included in
future extensions of our model.!

With the successful mapping of a homonym to a set of conceptualisations from the
T-Box the linguistic bottom-up grounding process for that homonym is complete.
This step has attributed one or more conceptualisations to the linguistic symbol of
a homonym in the input sentence. These conceptualisations are given by concepts
in the T-Box. In order for the homonym’s semantic representation to interact with
cross-modal context in the A-Box, it must now be matched to the representational
entities in the model of cross-modal context. This mapping is achieved in the process
of cross-modal matching which will be discussed in the following section.

7.3 Cross-Modal Matching

Cross-modal matching in natural systems as introduced in Section 3.7 refers to the
establishment of co-reference between representational entities from different modal-
ities. In our model, we face the challenge of matching homonyms, whose meaning
is expressed in terms of concepts in the concept hierarchy, with sets of concept in-
stances in the representation of visual context. Effectively, this process results in the
creation of cross-modal referential links between entities in the linguistic modality

'In first approximation, semantic preferences could be modelled by the inclusion of normalised weights
that reflect the contribution of each conceptualisation. Ideally, these weights should be context-sensitive
rather than static.
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Homonyms
H; schenkt:=[base:schenken,cat:VVFIN,...,person:third,
number:sg,...,sem val:ag re th,valence:’a+d’,...];
H, schenkt:=[base:schenken,cat:VVFIN,...,person:second,
number:pl,...,sem val:ag re_th,valence:’a+d’,...];
Hj; schenkt:=[base:schenken,cat:VVFIN,... ,person:third,
number:sg,...,sem val:ag th,valence:a,...];
Hy schenkt:=[base:schenken,cat:VVFIN,...,person:second,
number:pl,...,sem val:ag th,valence:a,...];
Concepts
Cﬁ ETW.SCHENKEN [1 SINGULAR
has lexicalisation:schenken, situation valence:ag_th,
Cb JMD.ETW.SCHENKEN [1 SINGULAR
has lexicalisation:schenken, situation valence:ag re_th
C% ETW.SCHENKEN [1 PLURAL
has_lexicalisation:schenken, situation valence:ag_th,
Cﬁ JMD.ETW.SCHENKEN ['1 PLURAL

has_lexicalisation:schenken,

Cross-Modal Matching

H,

normalises to

l

schenken
{C1,Cs,C3,Cy}

compatible valence

l

ag.re_th
{C2,Ca}

compatible number

l

SINGULAR

{C2}

Hs

normalises to

l

schenken

{C1,C2,C3,C4}
|

compatible valence

l

ag.re_th
{C2,Ca}

compatible number

l

PLURAL

{Ca}

Hsj

normalises to

l

schenken
{C1,Cs,C3,Cy}

compatible valence

l

ag_th
{C1,C3}

compatible number

|

SINGULAR

{C1}

situation valence:ag re_th

H,

normalises to

l

schenken
{C1,Cs,C3,Cy}

compatible valence

l

ag_th
{C1,C3}

compatible number

|

PLURAL

{Cs}

Figure 7.1: The effect of the three implemented criteria in linguistic bottom-up grounding for the
present tense indicative VVFIN homonyms of ‘schenkt’ give(s).
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to entities in the visual modality. The underlying idea of our model architecture is
that the process of assigning semantic dependencies in linguistic processing shall be
influenced by cross-modal context information if the homonyms to be scored in the
linguistic analysis have a cross-modal match in visual context.

Similarly to grounding, cross-modal matching in natural systems is a bidirectional
process susceptible to bottom-up and top-down influences. Top-down influences
such as expectations arising from a percept in one modality will influence likely
matching candidates in the other modality. For example, hearing the noise of a loud
diesel engine approach when attempting to cross a road will trigger visual search
for the corresponding large vehicle; the perceived auditory stimulus will not be at-
tributed to the bicycle seen passing at the same time. Conversely, noticing a heavy
truck approach without hearing the corresponding motor noise would give rise to an
extremely bewildering percept.’

In our model implementation we reduce the complexity of the cross-modal match-
ing process down to a single criterion: concept compatibility. A linguistic entity is
modelled to be co-referent with an entity in visual scene context if its conceptual-
isation is compatible with the concept instantiated by the visually observed entity
or entities. This, clearly, is a simplification in several respects. First of all, we
assume that the given utterance is about the visual scene thus and makes reference
to the entities or situations in the visual scene. Roy and Mukherjee (2005) refer to
this approach as the assumption of immediate reference. We hence assume that the
natural language utterance refers to the immediate visual scene context represented
in the context model. This assumption may not hold for all cross-modal interactions
between vision and language since not all situated utterances actually make refer-
ence to entities in the scene in which they are being uttered.

Secondly, we assume that cross-modal reference is established between entities that
activate concepts which are semantically consistent or compatible with each other.
While, in first approximation, this assumption is plausible for descriptive utterances,
there are a number of linguistic devices such as irony or sarcasm which may not
obey this rule.

Thirdly, conceptual compatibility is a weaker criterion than actual co-reference.
Concept compatibility is a necessary but not a sufficient criterion for co-reference.
An illustration of this point is given in Figure 7.2: The presupposition arising from
the use of the definite article in ‘der Mann’ the man results in a strong preference
for the interpretation that ‘der Mann’ and ‘der Schauspieler’ the actor do not refer
to the same male individual, despite the fact that these words have conceptually
compatible conceptualisations.

!The deliberate violation of such cross-modal top-down expectations based on world-knowledge has
occasionally been used for artistic effect, e.g. in the deliberately bewildering cinematographic art of the
French Nouwvelle Vague director Alain Resnais (*1922).
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Input Sentence:

‘Der Mann sieht den Schauspieler in einem Kinofilm.’
The man is seeing the actor in a mouie.

From the T-Box:

( is_satisfiable, MAN 1 ACTOR, T-Box ) = true

Preferred Interpretation:

refers to

‘der Mann’ ——— MANLJ1

refers to

A ‘der Schauspieler’ ——— ACTOR.01
A MAN_01 # ACTOR_01

Figure 7.2: In the majority of cases, concept compatibility is a necessary — but not a sufficient —
criterion for co-reference.

A homonym may have several meanings, each of which can be compatible with a
different concept instance in the representation of visual context. As a result, a
homonym can match an entire set of entities in visual context. The mapping from
homonym to concept instances hence need not be injective (one-to-one) or surjective
(onto-mapping), let alone bijective (both one-to-one and onto-mapping). All of the
matched entities, however, must instantiate a concept compatible with at least one
of homonym’s conceptualisations.

The cross-modal matching example in Figure 7.3 illustrates a case in which no
homonym matches more than one instance in visual context, which actually is a
special case. Due to the comparative looseness of the applied cross-modal match-
ing criterion of concept compatibility the mapping turns out to be non-injective in
the majority of cases. In particular, semantically underspecified word classes such
as pronouns tend to map to several entities in visual context. In analogy to the
uni-modal linguistic bottom-up grounding of homonyms, our set-based approach
permits the robust handling of the influence of lexical ambiguity and homophony
upon cross-modal matching as well. Words that have several distinct meanings also
have the potential to refer to different entities in a visual scene context.

In fulfilment of Requirement R1 our model implements the process of cross-modal
matching as mediated by a representation of word meaning. The experimental find-
ings by Cooper (1974) and Huettig and Altmann (2005) presented in Section 2.2
further support this modelling decision. With our model’s focus on the influence
of visual context upon linguistic processing this realisation of cross-modal matching
maps entities from the linguistic input to concept instantiations in the represen-
tation of visual context. It therefore fulfils Requirement R29 for the formation of
cross-modal referential links from the linguistic to the non-linguistic modalities. As
we have excluded the cross-modal interaction in the reverse direction from the mod-
elling scope, our model does not meet Requirement R30 for establishing cross-modal
referential links in the reverse direction.
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Input Sentence:

‘Er hort die Ménner singen.’
He hears the men sing.

Class Assertions in Cross-Modal Context:

is_instance_of

MAN_01 _— MAN [1 SINGULAR
is_instance_of

MAN_02 _— MAN [1 PLURAL
is_instance_of

ETW.HOEREN (01 ——F—7— ETW.HOERENag th
is_instance_of

NULL.SINGEN_01 _— NULL.SINGENag

Object Property Assertions in Cross-Modal Context:

is T AGENT _for

MAN_01 ETW.HOEREN_01
is.THEME _for

MAN_02 ETW.HOEREN_01
iscTAGENT _for

MAN_02 NULL.SINGEN_0O1

Bottom-Up Linguistic Grounding:

is_conceptualised_by

‘Er’ He {MALE I SINGULAR}
.. is_conceptualised_b

‘hort’ hears d Y {ETW.HOEREN,g ¢n }
. is_conceptualised_b

‘die’ the P L0

is_conceptualised_by

‘Ménner’ men {MAN I PLURAL}

is_conceptualised_by

‘singen’ sing {NULL.SINGEN,g }

Cross-Modal Matching:

‘Er’ He Tmatches, {maAN_O1}

‘hort’ hears [matches, {ETW.HOEREN,g tn 01}
‘die’ the matches {}

‘Méanner’ men Imatches, {MAN_02}

‘singen’ sing Tmatches, {NULL.SINGEN,g_01}

Figure 7.3: An example of cross-modal matching based on concept compatibility.

Concept compatibility depends on the semantic properties asserted for that concept
in the T-Box. The concept’s position in the T-Box conceptual hierarchy as well
as its list of disjoint classes determine which other concepts it is compatible with.
An illustration of cross-modal matching based on concept compatibility is given in
Figure 7.3.

The implicit assumption that all members of the set of cross-modal matches are
equally likely cross-modal referents of a given homonym clearly constitutes a sim-
plification. In humans, the preference for one lexical reading over another one is
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expected to propagate from linguistic grounding into cross-modal matching (cf.
Section 7.2): a preference for one specific conceptualisation of a homonym should
also result in a preference of the homonym’s cross-modal match. Future extension
of our model should incorporate the ability to propagate semantic saliencies from
homonym grounding into the process of cross-modal matching.

As outlined above, cross-modal matching on the basis of conceptual compatibility
may result in cross-modal matching ambiguity in cases in which the mapping from
homonym to concept instance is not injective. Since this seems to be the norm rather
than the exception, natural systems apply additional criteria to reduce ambiguity in
cross-modal matching. One factor to establish cross-modal matching preferences is
the degree of conceptual fit: a homonym that matches several context entities will
preferentially match that entity which exhibits the largest conceptual overlap with
the homonym’s preferred conceptualisation. An implementation of this notion in
our model would require a gradable measure of conceptual overlap in addition to a
weighted representation of word meaning. At the level of implementation described
in this work, neither of these has been included.

We finally need to explicate the minimal conditions under which our model can
produce a cross-modal influence of visual context upon linguistic processing. Our
model is based on the notion that only those semantic relations in visual context
can give rise to dependency score predictions which have been asserted between
entities that match homonyms in the input sentence. Our model thus requires at
least two homonyms from different slots to have different cross-modal matches in
order for the context model to be able to affect linguistic processing. Otherwise, the
PPC cannot make a context-based prediction and all context-based predictions for
semantic dependencies will default to unity. We now give a complete description of
the PPC’s scoring algorithm in the following section.

7.4 Relation Scoring

The scoring of thematic role dependencies between homonyms is the central mecha-
nism via which the PPC influences the subsequent parsing process in WCDG2. The
fundamental idea is that the assertion of a thematic relation in the representation
of visual context can affect semantic dependency assignments in linguistic process-
ing. A thematic relation assertion between two entities £; and FE, in the context
model can have an influence upon linguistic processing if and only if the homonyms
between which a semantic dependency is to be assigned have F; and FEs as cross-
modal matches. This is to say: a semantic dependency between a dependant and a
regent will be affected by visual context if the visual context contains entities that
are identified as cross-modal referents of the dependant and the regent, respectively.
If this is the case, the PPC admits the semantic dependency that corresponds to the
thematic relation asserted in visual context by assigning it a score of 1. We refer
to this admission based on thematic relation assertions as an influence by positive
evidence.
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As discussed in Section 4.2.5, a predictor influences the dependency assignment in
the parser by penalising certain dependencies. Assigning an acceptance score of 1
as such does not have a constraining effect on the assignment of dependencies in
the parser. To be able to derive constraints from visual context information, we
need to adopt the closed-world assumption as introduced in Section 6.4.1. Imposing
a closure on information that has not been asserted in the representation of vi-
sual context enables us to derive constraints from positive and negative evidence in
the context model. As an example, consider two homonyms that match contextual
entities between which no thematic relations have been asserted. The open-world
assumption that normally applies in OWL reasoning does not permit to draw any
constraining conclusions as long as no explicit negative evidence is available. Under
the closed-world assumption, we can now infer that all semantic dependencies must
be penalised between those homonyms. The closed-world assumption implies that
the admission of a semantic dependency in linguistic processing is only possible
based on the explicit assertion of the corresponding thematic relation in the con-
text model. Conversely, we can infer from the absence of such an assertion that
the thematic relation is not detected in the visual scene. The absence in the visual
scene consequently motivates the veto of the corresponding semantic dependency in
linguistic processing.

Situations evolve over time, and so does the perception of them. It is therefore a
common occurrence that our knowledge of a visual scene increases or changes over
time. In this context the question arises how the closed-world assumption is com-
patible with incremental changes to the representation of visual context. There is
no immediately apparent reason why a visual scene containing a number of partici-
pants — say a person buying a book, which involves an AGENT and a THEME for
the binary buying situation ETW.KAUFEN — should not be expandable by another
participant such as a RECIPIENT, at a later stage of observation. The later inclusion
of an additional participant into the situation changes the the situation arity from
binary to ternary. We fully acknowledge the cognitive reality of such incremental
expansions of visual scene interpretations and their corresponding mental represen-
tations. The point is that the addition of further participants to the interpretation of
the visual scene gives rise to a semantically different scene interpretation and hence
a different scene representation in its own right. In our model, a binary situation
concept is treated as genuinely distinct from the corresponding ternary situation
concept, even if both of them are lexicalised by the same verb.! Conceptually, they
differ because they describe situations of different situation valence, i.e., situations
involving different sets of participants with a different number of mandatory ar-
guments in their syntactic and semantic representations. This semantic difference
is reflected in the concepts’ different syntactic realisations: Higher situation arity
is typically realised syntactically in the subcategorisation of additional arguments
on the situation verb. We expect that the instantiation of these different situation
concepts in visual context should also give rise to different cross-modal interactions
with linguistic processing.

IThe lexicographic discussion of whether the transitive and the ditransitive form of a verb are indeed
manifestations of the same verb or of two distinct verbs is outside of the scope of this thesis.
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The CTA permits to model such extensions of situation valence over time, e.g., from
ag_th to ag_re_th as in the example above. However, it is not possible to model
this extension as a single interaction between visual scene context and linguistic
processing. Instead, we need to render the two different visual contexts as discrete
and distinct representations. Each context model can then engage in a separate —
and potentially different — cross-modal interaction with linguistic processing in the
course of a separate parse run. Admittedly, this is a work-around since the change
in contextual information does not effect a re-analysis of an existing parse in our
model as would be the case in a natural system; rather, the effect of the temporally
posterior context model upon linguistic processing is modelled as a completely new
cross-modal interaction in an independent ab initio parse run. Chapter 11 discusses
our empirical investigations of the effect of situation arity in the visual scene upon
the interaction between context and linguistic processing.

In conclusion, our model is based on the assumption that context models are infor-
mationally complete representations of the output of visual scene comprehension.
By ‘informationally complete’ we mean that all semantic information required for
the cross-modal interaction with linguistic processing is encoded in the represen-
tation of visual context. Clearly, this is a modelling idealisation since real-world
perception may be subject to uncertainty.

Entities and relations that have been represented can participate in a cross-modal
interaction with linguistic processing while those that have not been represented
cannot. Imposing the closed-world assumption on the representation of visual con-
text permits us to formulate constraints on linguistic analysis based on both positive
and negative evidence from visual context. Based on the closed-world assumption
we can exclude any information outside of the context model from consideration in
the cross-modal interaction with linguistic processing.

Given this general overview over the PPC’s use of positive and negative contextual
evidence, we now provide a more detailed discussion of the complete set of inferences
and underlying assumptions used in the PPC’s computation of score predictions
between two homonyms. We then integrate the declarative description of the scoring
process into a procedural context and describe the PPC’s scoring algorithm in its
entirety. In our description we use the following symbols:
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S; the i-th slot in the sentence,

H; the j-th homonym in S,

t an arbitrary thematic relation in the modelling scope of
WCDG2’s context models,

€ the empty, non-thematic relation which is assumed to
hold between two entities in the context model for which
no thematic relation ¢ has been asserted,

T the set of all thematic relations ¢t in WCDG2,

T, the set of all thematic relations ¢ in WCDG2’s modelling
scope extended by the empty relation e,

d(t) the semantic dependency in WCDG2 that corresponds to
the thematic relation ¢ in the context model,

P(H; j, Hypn, 0()) the PPC’s score prediction for the dependency d(t) be-
tween dependant H;; and regent H,, ,

v(0(t)) the penalty score assigned in WCDG2 for the semantic
dependency §(t),

M(H, ;) the set of all concept instances in the context model that
match H; ; cross-modally,

M(H, ;) an arbitrary element of M(H, ;), and

O(M(H;;), M(H,.)) athematic or empty relation that holds between M (H; ;)
and M(H,,,) in the context model.

As discussed in Section 3.4, a major postulate of Conceptual Semantics — and a
direct consequence of Jackendoff’s Conceptual Structure Hypothesis (cf. p. 38) — is
that representationally d(¢) and ¢ are the same type of relation, namely semantic re-
lations in Conceptual Structure assigned on the single and uniform level of semantic
representation for both linguistic and non-linguistic input. In the description of our
model we deliberately list them as separate entities since the two relation types are
assigned in different technical components of the model: t-relations are asserted in
the A-Box while 0(t)-relations are assigned on the semantic levels of analysis in the
parser. The assertion in different technical components, however, does not permit
the conclusion that the assigned relations represent conceptually different relation
types in our model. The fact that they are assigned in different components is the
result of purely technical constraints in the implementation. The identity of these
relations is encoded in our model; without this identity a cross-modal interaction
between visual context and linguistic processing could not be achieved. We exploit
the identity of these relations when assigning 0(¢)-dependencies in the parser: The
assignment is made based on PPC score predictions that reflect the result of queries
to a context model containing only ¢-type relations. Consulting ¢-relation scores for
the assignment of d-relations is a meaningful procedure if and only if we assume ¢-
and J-relations to be of the same nature. This is the technical realisation of the
central tennet of Conceptual Semantics, namely that cross-modal context and the
semantic part of linguistic analysis project into the same semantic representation
and consequently also make use of the same type of semantic relations between pro-
jected entities.
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Given 0 € T, such that § = 6(M(H,;), M(H,,,)), the PPC draws the following
inferences to compute its score predictions:

Inference 1.

Veto all unscored semantic dependencies for this dependant-regent pair.

These dependency vetoes are based on the fact that only those seman-
tic dependencies shall be admitted for which positive evidence has been
asserted in visual context. If a given thematic relation from T has not
been asserted in the context model, we veto its corresponding semantic
dependency in the linguistic analysis, provided that dependency has
not been scored yet. This inference applies regardless of whether 6 is
a thematic or the empty relation. If visual context provides positive
evidence for a thematic relation, this pre-assigned veto will be over-
written in Inference 2. If no positive evidence is found to overrule this
pre-assigned veto, the veto persists.

VteT: p(H;j, Hpn, 0(t)) = NULL
= p(H;j, Hyn,0(t)) «— v(0(2))

If a non-empty thematic relation has been asserted in the context model between
M(H; ;) and M(H,,), continue with the following inferences:

Inference 2.

Inference 3.

Admit the semantic dependency that corresponds to the contextually
asserted thematic relation.

The central idea of the PPC’s scoring policy is to admit those seman-
tic dependencies for which positive evidence in the form of an asserted
thematic relation from T could be found in visual context. Note that
the admission of positive evidence in this step is performed regardless
of whether any scores have been assigned to 6(6) before. Previously
assigned vetoes will thus be overwritten.

0eT

Veto the reverse direction of the admitted semantic dependency, pro-
vided it has not been scored yet.

This dependency veto is based on the fact that our semantic depen-
dencies are unique in a given situation, i.e., a dependency can only be
admitted once per situation. Admitting the semantic dependency in
the forward direction in Inference 2 therefore permits us to exclude the
admittance of the same dependency in the reverse direction.

0T AN p(Hpn, Hij,0(0)) =NULL
= p(Hpn, Hij,0(0)) «— v((0))
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Inference 4. Veto all unscored semantic dependencies for dependants from the same
dependant slot.

Only those semantic dependencies for the dependant slot can be ad-
mitted for which positive evidence is found in the context model. All
other semantic dependencies for the dependant slot are vetoed.

0eTVt#0,Vk#jVoVp: p(H H,p d(t)) =NULL
= p(Hik, Hop, (1)) — v(0(t))

Inference 5. Veto all unscored semantic dependencies for regents from the same
regent slot.

Only those semantic dependencies with the regent slot can be admitted
for which positive evidence is found in the context model. All other
semantic dependencies with the regent slot are vetoed.

0eT,Vt#0,Yk#nNYoVp: p(Hyp Hnk, () = NULL
— p(Ho.pa Hm.k7 5(t)) — 1}(5(25))

The veto scores from Inference 2 to Inference 5 are inferred whenever a pair of
homonyms has cross-modal matches between which a thematic relation has been
asserted in the context model. The complete PPC scoring algorithm is given as
pseudocode in Algorithm 1. Note that the inferred vetoes on the semantic depen-
dencies can only be imposed because of the closed-world assumption. Essentially,
we are using the positive evidence for # to infer a whole range of other semantic de-
pendency scores. With these inferences in place, our model meets Requirement R8
which demands that the cross-modal interaction between visual context and lingu-
istic processing be based on a representation of the visual context information.

A point worth discussing is the scope of the vetoing we apply. Inference 4 and
Inference 5 impose specific vetoes that allow the context model to have a powerful
yet selective influence upon linguistic processing. Concretely, these two inferences
leave p(H,; j, Hyn,0(t)) untouched and veto all other semantic dependencies that
originate from a dependant homonym in S; or that are directed towards a regent
homonym in .S,,.

An alternative approach would have been to extend vetoing to all homonyms in
the entire sentence such that only those semantic dependencies would be admitted
for which a corresponding thematic relation has been asserted in visual context.
A crucial effect of this approach is that semantic dependencies are vetoed between
homonyms which refer to entities entirely unrelated to the situation encoded in the
context model. This constitutes a significant challenge when multiple situations
are expressed in a single sentence, as frequently is the case in unrestricted natural
language. A simple example is shown in Figure 7.4. If vetoes were applied to all se-
mantic dependencies across the entire sentence, a thematic relation asserted between
SHE_ 01 and NULL.TANZEN_01 would have an effect upon the dependency assignment
between ‘Er’ he and ‘beobachten’ observe.
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Algorithm 1 The PPC scoring algorithm for semantic dependency scores.

Require: Sentence
1: for i = 1 to number of slots do

2
3
4
5
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38: end for

for 7 = 1 to number of homonyms in dependant slot S; do
for m = 1, m # i to number of slots do
for n = 1 to number of homonyms in regent slot .S,,, do

if M(H; ;) # {} and M(H,,,,) # {} then

for all ¢t € T do
if p(H; ;, Hm.n,0(t)) = NULL then
P(Hij, Hmn, 6(t)) «— v(d(t))
end if
end for
for all D € M(H, ;),R € M(H,,.,) do
0 — 0(D,R)
if 8 € T then
p(Hij, Hpn,6(0) «— 1
if p(Hp.n, Hij,6(0)) = NULL then
p(Hmn, Hij, 0(0)) —— v(5(0))
end if
for all H, ), in the sentence do
for all ¢t € T do
for all H’Lk 7& Hz] in Sz do
if p(H;k, Hop, d(t)) = NULL then
p(Hik, Hop, 6(t)) < v(6())
end if
end for
for all H,, . # Hp., in S, do
if p(Hop, Hi.k, 0(t)) = NULL then
P(Hop, Hm.k, 0(t)) «— v(6(2))
end if
end for
end for
end for
end if
end for

end if
end for
end for

// Inference 1

// Inference 2

// Inference 3

// Inference 4

// Inference 5

In principle there are two ways to address this challenge: We can limit the scope
of the vetoes applied or we can choose to represent all situations expressed lingu-

istically in the context model.

The latter is undesirable for two reasons: 1) A

sentence may express situations that are inaccessible to visual perception or that do
not refer to the co-present visual context. 2) We do not wish to impose constraints
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on the amount of visual context to be represented. In some cases, the visual infor-
mation available at the time of sentence processing may be limited to one specific
situation; in other cases, visual context may provide a plethora of visually accessible
information with a multitude of observed thematic relations. In either case, visual
information should only affect semantic dependencies between those homonyms that
are directly or indirectly related to the entities between which the thematic relation
is being observed. By direct relation we mean a cross-modal reference relation based
on concept compatibility, by indirect relation we refer to a connection via the infer-
ence mechanisms just outlined.

For our model this means that the effect of cross-modal context must remain neutral
with respect to linguistic processing unless the asserted thematic relation ¢ holds
between two concept instances D and R, respectively, such that D € M(H, ;) and
R € M(H,,.,). The example in Figure 7.4 illustrates that there is no reason why the
vetoes resulting from the AGENT-relation between SHE 01 and NULL.TANZEN_01 as
asserted in the context model should give rise to a veto on the AGENT-dependency
between ‘Er’ He and ‘beobachtet’ observes in the introductory main clause. The
restriction of vetoing scope is hence a modelling decision of particular relevance to
the processing of longer sentences. The latter are frequently encountered in unre-
stricted natural language input and typically contain several verb forms, each of
which require independent semantic dependency assignment.

7.5 Perceptual Uncertainty

Every sensory perception is afflicted with a degree of perceptual error. This inherent
uncertainty of sensory perception propagates into the representational level as well.
If the identifying features of an instance — be it an object instance or a word token
— are perceived with an accuracy of 70%, say, we cannot expect the categorisation
performed on the basis of these discerning features to be free of error. The challen-
ges resulting from uncertainty affect representation and processing. We expect that
the representations arising from sensory input also include information about the
degree of perceptual certainty of its representata. Further, processing of uncertain
information needs to comprise the systematic propagation of uncertainties. Most
importantly, perceptual uncertainty is not a unidimensional phenomenon but can
affect various aspects of perception. Consider the processes of sensory perception
and subsequent understanding of a visual scene. Uncertainty may affect the percep-
tion of spatial and temporal relations. Uncertainty may also affect other dimensions
of visual perception such as the conceptual categorisation of the situation instance,
the identity of the entities participating in it or the thematic relations that are per-
ceived to hold between those entities. The integration of all facets of uncertainty
into a model of cross-modal interaction thus introduces additional levels of complex-
ity, both in representation and processing.

In an attempt to reduce modelling complexity, we largely exclude the effects of un-
certainty from consideration in our model. We make the simplifying assumption that
the discrimination and categorisation of word tokens in text input is achieved with
absolute certainty. We further assume that the class assertions for concept instances
in the context model are free of error. We do, however, incorporate categorisation
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Input Sentence:

‘Er beobachtet, wie sie tanzt.’
He observes how she is dancing.

Class Assertions:

is_instance_of

SHE_01 T SINGULAR 'l FEMALE
is_instance_of
NULL.TANZEN.O1 ———— NULL.TANZEN

Object Property Assertions in Cross-Modal Context:

iscTAGENT _for
SHE_01 ——— NULL.TANZEN_O1

er beobachtet , wie sie tanzt
AGENT THEME AGENT

Figure 7.4: The importance of veto scope limitation as illustrated by the assignment of AGENT-
dependencies in multiple-situation sentences.

uncertainty and ambiguity of visually perceived entities. These types of uncertainty
are represented by underspecified entity and situation concepts as illustrated by the
expressions in Equations 6.1 and 6.2 on page 111. We provide a validation of our
model’s ability to process conceptually underspecified concept instances in Experi-
ment 4 reported in Chapter 11.

We further expect that in a natural system the perceptual certainty of one modality
has an influence upon the strength with which it can influence other modalities in
cross-modal interaction. The more reliable the percept in one modality is, the more
difficult it should be to overrule the information it provides with conflicting informa-
tion from another modality. This compensatory effect of cross-modal interactions
has been shown for numerous modalities. A frequently cited example is the support-
ing effect of lip reading on phoneme categorisation in audio-visual speech recognition
under different signal-to-noise ratios in the auditory channel (see Potamianos et al.,
2001, 2004, e.g., for detailed comparisons of the performance of natural and artificial
systems).
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In our model, the dominance of the visual modality can be achieved by adjusting
the numeric value of the veto score assigned to §(¢). The model permits to specify a
separate value of v(4(t)) for each semantic dependency. v(d(t)) is the WCDG2 pre-
diction score assigned in the absence of positive evidence for ¢t in the context model
and hence also the numerical value of the score penalty incurred by a dependency
edge in the linguistic analysis that violates the integration constraint for §(¢) depen-
dencies. The harder the integration constraint, the more strongly the compliance of
d(t) dependencies is enforced with the assertions of ¢ relations in the context model.
We chose to model v(6(t)) in a linear relation with context compliance -y, the extent
to which a semantic dependency assignment is enforced to align with the assertion
of the corresponding thematic relation ¢ in the context model. The parameter ~
thus effectively models the strength of the influence of visual context upon linguistic
processing. The implemented relation between v and v(d(¢)) in our model is given
in Equation 7.2.

(7.1) v € [0,1]

(7.2) o(8() = 1 -7

7.6 Result Communication

The PPC returns to WCDG?2 the list of homonyms from the input sentence. For
each homonym, the PPC quotes its slot string, the slot number, the identifier that
uniquely identifies the homonym in its slot and a set of attribute-value pairs. Each
attribute-value pair consists of an attribute identifier that uniquely denotes the
scored semantic relation in the sentence and a prediction score as the correspond-
ing value. The semantic dependency identifier consists of a semicolon-separated
concatenation of the semantic dependency label, the regent slot number and the
regent-homonym’s identifier. The beginning of a typical line of PPC output re-
turned to WCDG?2 is shown in Figure 7.5.

Beide 1 beide_PIDAT_acc RECIPIENT;3;drédngten_ VVFIN_first_past_- 0.1 ...

Figure 7.5: The beginning of a single line of PPC output as received via WCDG2’s extended
predictor interface.

The unique dependency identifier in combination with the slot number permits the
unambiguous encoding of all homonym-specific dependency predictions in a sen-
tence. This encoding of homonym-specific predictions fulfils Requirement R31 for
the homonym-specific generation of predictions. WCDG2’s four-place predict ()-
function (cf. Section 5.5) maps its input parameters to this identifier and can thus
retrieve the corresponding homonym-specific prediction score for all homonyms in
the input sentence.



Chapter Summary 133

7.7 Chapter Summary

This chapter concludes the description of the individual components making up the
CIA. We have provided a comprehensive description of how the PPC, as the central
component in the CIA, uses non-linguistic information from the semantic repre-
sentation of cross-modal context to compute its contextually-informed dependency
score predictions.

PPC processing starts with the pre-processing of the linguistic input received from
WCDG2. Based on the three lexical features normalisation, semantic valence and
number, homonyms from the input sentence are assigned a set of conceptualisations
from the T-Box. In the subsequent process of cross-modal matching, the PPC maps
each homonym in the input sentence to a set of concept instances asserted in the
context model. A cross-modal match is established if and only if at least one of the
homonym’s conceptualisations is conceptually compatible with the concept instan-
tiated in the context model. The overall flow of cross-modal matching in the PPC
is summarised diagrammatically in Figure 7.6.

Conceptual Structure

;- anchor() -

Concepts, Concepts}.
instanc

instance_of
check_compatibility{)
Concept, 4, Concept; 5, Concepty _SH

Concepty ;, Concept, », Concept, 5 n
check_compatibility()

instance_of

l instance_of

Concept,, Concepty

Figure 7.6: Overall process flow in the PPC.

Prediction scoring is triggered if both dependant and regent homonyms have cross-
modal matches. For homonym pairs in which both the dependant and the regent
have a cross-modal match, the PPC admits the semantic dependency that cor-
responds to the thematic relation asserted between the cross-modal matches in the
context model. Based on the closed-world assumption, all other semantic dependen-
cies originating from the same dependant slot or directed towards the same regent
slot are vetoed. When the dependency score predictions have been computed for
all eligible homonym pairs, the PPC returns these predictions to WCDG2 where
they can be accessed homonym-specifically by the integration constraints in the
role-assigning grammar.
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A significant strength of our model is that the steps in the process of establishing
cross-modal referential links between words and concept instances in visual context
are essentially language-independent. Language-independence is also a central claim
that Jackendoff makes for Conceptual Structure. While the individual features used
in linguistic grounding may be language specific in our model, the overall process
which connects input words to conceptualisations via linguistic bottom-up ground-
ing and checks these concepts for compatibility with the concepts instantiated in
visual context, generalises to languages other than German.
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Model Validation and Conclusions

135






137

The argument for our model of the cross-modal influence of visual scene context
upon linguistic processing presented in this thesis is structured into three main
parts: Part I was dedicated to the identification and formulation of modelling re-
quirements. Part II served the purpose of providing a detailed specification of the
model as well as an in-depth discussion of the extent to which the requirements from
Part I have been met by our model implementation. The third part of the thesis
now addresses the empirical investigation and validation of the implemented model
and discusses the model’s behaviour under different experimental conditions.

Each of the subsequent chapters has a specific experimental focus. Chapters 9, 10
and 11 build upon each other in that each subsequent chapter releases one simplify-
ing assumption that was maintined in the preceding chapter or chapters. Chapter 8
describes a pre-experiment to the actual study of our model’s behaviour. As con-
text integration is mediated by the semantic level of analysis, the model’s integration
success crucially depends on the quality of semantic analysis. We therefore evaluate
the effect that adding a semantic level of analysis has upon the quality of syntactic
analysis in WCDG in the absence of any contextual information. Chapter 9 reports
the first actual integration experiment with the CIA: We demonstrate the technical
feasibility of context-driven syntactic modulations by enforcing an absolute dom-
inance of visual context over linguistic analysis. This is achieved by integrating
visual context information into linguistic analysis via hard integration constraints.
Chapter 10 discusses the effect of relaxing the integration constraints while leaving
all other experimental conditions unchanged. In Chapter 11 we remove the sim-
plifying assumption that visual and linguistic representations be of the same level
of conceptual specificity. The chapter examines how conceptually underspecified
representations of visual percepts can still contribute to syntactic disambiguation in
the linguistic analysis. We also discuss an experimental investigation into how con-
cept instantiations of different conceptual specificity vary in their ability to induce
syntactic modulations under context integration. Chapter 12, finally, concludes this
thesis with a summary of the central claims, a collection of the conclusions we draw
and an outlook to future directions of research that arise from the work presented
here.
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Chapter 8

Semantic Grammar Evaluation

This chapter describes two pre-experiments in preparation of the actual study of
our model’s context integration behaviour. We evaluate the effect that the addition
of semantic levels of analysis in WCDG2’s extended grammar has upon the quality
of syntactic parsing. We also evaluate the extended grammar on two other corpora
and select sentences for the subsequent study of context integration phenomena. As
regards the overall line of argument for our model, this chapter takes a preparatory
function to motivate the selection of the studied linguistic material in the forth-
coming context integration experiments.

This chapter is structured into two main sections that correspond to the evalu-
ations of the extended grammar we conducted: Section 8.1 describes the extended
grammar evaluation on 1,000 sentences from the NEGRA corpus. Section 8.2 reports
the evaluation of the extended grammar on three smaller sets of globally ambiguous
sentences that were extracted from a psycholinguistic examination and the SALSA
corpus.

8.1 Evaluation on the NEGRA Corpus

8.1.1 Experimental Motivation

In the preceding chapters, we have argued extensively for a context-integration
model based on the propagation of non-linguistic context information into syntactic
analysis via a shared semantic representation. The interaction between the semantic
and the syntactic representations in this model is enabled by correspondence rules in
the syntax-semantics interface. Ideally, this interface should propagate referentially
relevant context information into syntactic representation while remaining neutral
with respect to syntactic analysis in case of referentially unrelated contextual asser-
tions. These modelling aspects have previously been captured as Requirements R5
and R7. Before we set out to study the effect of non-empty context models on
syntactic analysis in the following chapters, we need to understand whether the ad-
dition of semantic processing has an influence on syntactic analysis in the absence
of a contextual bias.
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8.1.2 Approach

To see whether the addition of the semantic levels of analysis in WCDG2 has an in-
fluence on syntactic analysis, we compare the syntactic parsing accuracy of WCDG2
under integration of an empty context model with the results obtained for WCDG1
on the same corpus. An empty context model contains no assertions of concept
instances or thematic relations.! We refer to the WCDG2 parse runs as Experi-
ment 1.1. For convenience of expression, we use the general term accuracy to denote
parsing quality which, more accurately, is quoted in terms of the standard measures
precision, recall and their resulting fi-measure. For our evaluations, we parse sen-
tences from the NEGRA corpus (Skut et al.,; 1997; NEGRA Homepage, 2006). The
NEGRA corpus is a standard corpus of German which has been used extensively
for parsing evaluations of WCDG1 on previous occasions. We compare our results
against the accuracies reported by Foth and Menzel (2006b) and Khmylko et al.
(2009) for WCDG1 evaluations on the same set of sentences.

8.1.3 Setup

We parse sentences 18,602 to 19,601 from the NEGRA corpus. This set of sen-
tences was also used in the reference evaluations of WCDG1 by Foth and Menzel
and Khmylko et al. The sentences are parsed with WCDG2’s extended grammar
under integration of an empty context model. Evaluations are performed against
a manually corrected version of the gold standard annotations. Manual correction
removed some known orthographic mistakes and amended a few obvious annotation
inconsistencies. Following the practice adopted in the cited prior work, we report the
structural and the labelled measures precision, recall and fi-measure. The structural
measures refer to edges that have been structurally correctly attached, irrespective of
whether they have been labelled correctly. The labelled measures refer to edges that
have been correctly attached and correctly labelled. We evaluate parsing accuracy
on all sentences with and without punctuation marks to ensure the comparability
of our results with prior work. While Foth and Menzel reports parsing accuracy for
all edges including those originating from punctuation marks, Khmylko et al. ex-
clude those edges from their evaluation. The latter approach is becoming standard
evaluation practice nowadays.

8.1.4 Results

Of the 1,000 sentences in the parsed corpus subset, WCDG2 was found to pro-
cess only 865 sentences to completion. For the remaining 135 sentences, the parser
aborted processing for technical reasons prior to completion. An analysis of the num-
ber of the tokens per sentence reveals a clear trend: with an average of 34.8 tokens

Note that the effect of integrating an empty context model with respect to the context-driven mod-
ulation of syntactic dependencies is equivalent to parsing with the extended grammar without invoking
the PPC at all. An empty context model contains no potential referents for the homonyms in the input
sentence. Consequently, an empty context model offers no cross-modal match candidates and hence does
not give rise to any constraining PPC predictions.
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Figure 8.1: A plot of sentences processed against the number of tokens per sentence for the studied
1,000 NEGRA sentences under empty context integration.

per sentence!, the sentences that were not processed to completion were considerably
longer than the average sentence in the studied corpus subset with 16.4 tokens. The
average length of the 865 sentences that did process to completion was 13.9 tokens.
The plot in Figure 8.1 clearly illustrates the increasing tendency of WCDG2 to fail
for sentences longer than approximately 20 tokens. The graph plots the sentence
counts against the number of tokens for the 1,000 sentences processed. Colour-
coding distinguishes between sentences that were processed to completion (green)
and sentences that were not processed to completion (red).

We suspect that processing for the latter sentences requires more working memory
than was available on the standard hardware used. Another possibility might be
that the implementation of WCDG2 contains a memory leak whose adverse effect
remains unnoticed for sentences requiring moderate processing effort but becomes
noticeable in more complex analyses. The system errors received for the sentences
that did not process to completion did not permit to determine the exact cause.
Further investigation is warranted here to determine the exact cause of WCDG2’s
failure to process these sentences to completion.

We report precision, recall and fi;-measure for the 1,000 NEGRA sentences in
Table 8.1. The WCDG1 evaluation results including punctuation marks are quoted
from Foth and Menzel (2006b), evaluation results excluding punctuation marks are
quoted from Khmylko et al. (2009).

L All measures quoted here include punctuation marks as tokens.
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WCDG1 WCDG2
Punctuation + Punctuation — Punctuation + Punctuation —
str 1bl str Ibl str 1bl str Ibl
Recall [%] 92.5 91.1 91.3 90.0 65.0 63.1 63.8 61.6
Precision [%] 92.5 91.1 91.3 90.0 90.4 87.8 88.8 85.9
fi-Measure 92.5 91.1 91.3 90.0 75.6 73.5 74.2 71.7

Table 8.1: The structural (str) and labelled (Ibl) results for 1,000 Negra sentences with WCDG1’s
standard grammar and WCDG2’s extended grammar. Evaluation results including and excluding
punctuation marks are listed separately (Punctuation 4+ and Punctuation —, respectively).

8.1.5 Discussion

Compared with WCDG1’s syntax-only analysis, the extended grammar results in
an overall degradation of syntactic parsing quality both with regards to precision
and recall. The drop in recall to a value substantially lower than for the standard
grammar in WCDGT1 is drastic but not surprising in view of the fact that WCDG2
did not complete processing for 135 longer-than-average sentences. A comparison
of the parsing precisions for syntactic analysis in Table 8.1 shows that the addition
of semantic to the syntactic analysis only reduces precision by 2.1% to 4.1%.

Considering that no attempt has been made in this research project to optimise the
role-assigning grammar for full coverage of unrestricted input, we consider these pre-
cision values on unrestricted text encouraging, even if they fail to meet the overall
expectation of matching or superceding the challenging baseline set by WCDGI1. It
should be kept in mind that the role-assigning grammar has been developed with the
objective to ensure correct syntactic and semantic analysis for a small set of specific
sentences, typically considerably less complex than most of the Negra sentences stud-
ied in this evaluation. WCDG1’s standard grammar, in contrast, has been improved
continually over a period of years with the express goal of achieving a substantial
coverage of German. The large differences between the good precision values and the
disappointing recalls are an accurate reflection of the extended grammar’s history:
the grammar achieves good grammatical precision but suffers from limited coverage.

In conclusion, this evaluation has shown that the addition of the semantic levels of
analysis in WCDG2 results in an overall degradation of syntactic analysis quality
compared with WCDG1. With good to very good precisions that almost reach the
level of the standard grammar, and a significantly lower recall, the primary issue
to address in our model’s grammar for full compliance with Requirement R7 is the
extended grammar’s coverage. To achieve the required improvements, significant
further grammar modelling effort is needed. We estimate the additional modelling
effort to be in the order of magnitude of one to three person years.

To achieve robust and wide coverage of German at a level comparable to that of
the syntactic analysis of WCDGI1, any effort to improve the grammar also needs to
include a systematic validation of WCDG2’s implementation integrity. Specifically,



Evaluation on Three Sets of Ambiguous Sentences 143

it needs to be ensured that the inability to complete the 135 sentences, most of
which longer than the average in the corpus subset, was not caused by a memory
leak as this could nullify the benefits expected from further grammar development.

With respect to the selection of linguistic stimuli for the further study of our model’s
context-integration behaviour, we conclude that the selection of arbitrary linguistic
stimuli from a corpus of unrestricted natural language is not a viable option with
the present version of the role-assigning grammar. To be able to predict and analyse
our model’s context integration behaviour systematically, we hence need to study
context integration on sentences for which correct syntactic and semantic analysis
has been ensured prior to context integration. The following section discusses the
selection of suitable linguistic input for our context integration investigations in the
subsequent chapters.

8.2 Evaluation on Three Sets of Ambiguous Sentences

8.2.1 Experimental Motivation

In order for a systematic prediction and analysis of our model’s context integration
behaviour to be possible, we need to ensure that context integration is studied on
sentences that are analysed correctly, both syntactically and semantically, by the
extended grammar prior to context integration. The evaluation on the NEGRA
corpus reported in Section 8.1 illustrates that the extended grammar has not yet
reached a maturity level — both in coverage and precision — to afford results
superior to the baseline established by WCDG1’s syntax-only analysis. For the
investigation of our model’s context integration behaviour we therefore need to select
globally ambiguous sentences that are analysed correctly by the current version of
WCDG2’s extended grammar in the absence of contextual information.

8.2.2 Approach

We extract three types of globally ambiguous sentences from two sources. The
syntactic ambiguities selected for extraction are genitive-dative ambiguity, subject-
object ambiguity and PP-attachment ambiguity in German. Examples for each these
ambiguities are given in Figure 8.2. Extraction was performed from the following
two sources:

1. the SALSA corpus (Burchardt et al., 2006; SALSA Corpus Homepage, 2009),
a semantically annotated subset of the TIGER corpus (Brants et al., 2002;
TIGER Corpus Homepage, 2009). We performed two extractions, one of sen-
tences containing subject-object ambiguities and one of sentences containing
‘mit’-PPs with an INSTRUMENT-COMITATIVE ambiguity.

2. the psycholinguistic study van Kampen (2001) which focuses on ambiguity
effects invoked by genitive-dative-ambiguous feminine nouns in German sub-
clauses. From that work, we extracted sentences containing an introductory
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main clause and a subclause. In a subset of the extracted sentences the sub-
clause contained a global genitive-dative ambiguity. With our focus on context-
induced resolution of syntactic ambiguity, we normalised the introductory main
clauses to be the same in all sentences. Normalisation of the introductory main
clauses resulted in a reduction of the total number of unique sentences after
the removal of duplicate sentences.

VK-274  ‘Er wusste, dass die Doktorandin der Forscherin den Beweis lieferte.’

the researcher’s PhD student delivered the evidence.
He knew that

the PhD student delivered the evidence to the researcher.

SYN:GMOD, INST:OWNER .
Doktorandin

Genitive Reading  Forscherin
SYN:0BJD, INST:RECIPIENT

Dative Reading Forscherin lieferte

S0O-9792  ‘Sie vertritt die Gesellschaft, und ihr obliegt die Geschaftsfithrung.’
{ She represents the association,

and management is her responsibility.
It is her that the association represents,

Subject-Object Reading  sie SYN:SUBY, AGNTAGENT G0ttt

SYN:0BJA, THME : THEME
Gesellschaft :

vertritt

Object-Subject Reading  sie SYN:OBJA, THMETHEME G ortritt

SYN:SUBJ, AGNT:AGENT
Gesellschaft :

vertritt

PP-7177  ‘Insgesamt werden Braunkohlemeiler mit zusammen 8500 Megawatt (MW)
abgeschaltet.’

o with a total of 8,500 megawatts (MW) will be switched off.
Owverall, lignite-fired plants

will be switched off by a total of 8,500 megawatts (MW).

INSTRUMENT Reading Megawattﬂ mit e abgeschaltet

INST:INSTRUMENT

Megawatt abgeschaltet

COMITATIVE Reading Megawattﬂ mit —2**, Braunkohlemeiler

INST:COMITATIVE

Megawatt Braunkohlemeiler

Figure 8.2: Examples for the ambiguity types selected for study under context integration.
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The selected sentences are parsed with WCDG2’s extended grammar under inte-
gration of an empty context model (genitive-dative ambiguity in Experiment 1.2,
subject-object ambiguity in Experiment 1.3, and PP-attachment ambiguity in FEx-
periment 1.4). We test which of the extracted sentences are assigned a correct
syntactic and semantic analysis by WCDG2’s extended grammar. ‘Correct’ in this
context does not necessarily mean that the default analysis also represents the pre-
ferred reading that human linguistic intuition would favour. Rather, ‘correct’ in this
case expresses that the analysis of the sentence permits to construct a context in
which the analysis represents a plausible reading of the sentence.

From the set of correctly analysed sentences we select three subsets of 10 sentences
each for use in the subsequent context integration experiments. The selection cri-
terion for the sentences in the subsets is that at least one of the two readings of
the syntactic ambiguity, preferably even both, should correspond to a visually per-
ceivable situation. Due to the extensive use of figurative language, especially in the
newspaper articles of the SALSA corpus, this criterion turned out to be surprisingly
difficult to fulfil. The three sets of selected sentences are listed in Appendices IV.1,
IV.2, and IV.3, respectively. We henceforth refer to the parses obtained under inte-
gration of an empty context model as default parses.

8.2.3 Results

Ten subject-object-ambiguous sentences were selected from a set of 1,813 sentences
extracted from the SALSA corpus. The ten sentences with PP-attachment ambigu-
ity were picked from an extract of 152 sentences that contained a ‘mit’-PP. From
the cited psycholinguistic investigation we extracted 427 sentences. Normalisation
of the introductory main clauses and subsequent removal of the resulting duplicate
sentences reduced the number of sentences down to 337. A subset of these sen-
tences exhibited global genitive-dative ambiguity from which we randomly selected
ten sentences.

As a consequence of the selection criteria, all of the sentences in the three sub-
sets had a syntactically and semantically ‘correct’ analysis in the sense laid out in
Section 8.2.2. The genitive-dative ambiguous sentences all received the same struc-
tural analysis which corresponds to the dative-reading and involves the ternary verb
form. The corresponding generic tree structure is shown in Figure 8.3. The full
list of parse trees for the genitive-dative-ambiguous sentences in the absence of a
contextual bias is given in Appendix VI.1.1. The analyses for the sentences con-
taining subject-object ambiguity and PP-attachment ambiguity do not exhibit a
uniform preference pattern within each set. The parse trees for subject-object and
PP-attachment ambiguities are listed in Appendices VI.2.1 and VI1.3.1, respectively.

8.2.4 Discussion

The selected globally ambiguous sentences largely afford analyses in WCDG2 that
also represent the reading favoured by human linguistic intuition. However, some of
the solutions, though formally correct, represent a reading that differs from human
linguistic intuition in the absence of a biasing context. As an example, consider
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Er wusste , dass Slot.5 Slot.6 Slot.7 Slot.8 Slot.9 Slot.10 Slot.11
AGENT THEME AGENT

RECIPIENT

Figure 8.3: Generic parse tree structure for the extracted genitive-dative-ambiguous sentences
under integration of an empty visual context model (default analysis).

sentence SO-10744 ‘Beide Kriegsparteien dréangten sie, an den Verhandlungstisch
zuriickzukehren.” It was both war parties that they urged to return to the negotiat-
ing table. This sentence parses as the subject-object analysis by default: Both war
parties urged them to return to the megotiating table. While this analysis is clearly
possible, it is certainly the less likely reading in the absence of a biasing context.
Based on world-knowledge we know that negotiations can be an alternative means
of conflict resolution for warring parties; we hence would assume that it was the
war parties that were urged to return to the negotiating table. Since the analyses of
the sentences in this experiment have been obtained under integration of an empty
context model, i.e., in the absence of a visual context bias, they are a direct reflec-
tion of the linguistic preferences encoded in the extended grammar. In this case,
the preference of the subject-before-object word order dominated the entire analysis.

The evaluation of the semantic grammar on the 1,000 NEGRA sentences in Ex-
periment 1.1 showed that the extended grammar fails to meet Requirement R7 for
the neutrality of referentially unrelated visual context on unrestricted input. The
selection of the sentences in Experiments 1.2 to 1.4 was made to ensure that our
model meets Requirement R7 at least for the selected sentences. We hence rate
Requirement R7 as partially fulfilled by our model. As illustrated by the low recall
values obtained in the validation of the extended grammar on unrestricted input in
Experiment 1.1, the full satisfaction of this requirement necessitates a substantial
extension of the grammar’s coverage.
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8.3 Conclusions

With precisions of 88.8% and 85.9% (structural and labelled, respectively) for the
syntactic analysis of unrestricted input, WCDG2’s extended grammar achieves re-
sults within reach of the basline established by WCDG1’s standard grammar. We
have demonstrated that the extended grammar performs well, both syntactically
and semantically, on sentences of moderate length spanning up to 20 or 30 words.
For longer and syntactically more complex sentences, as are frequently encountered
in unrestricted German language input, the parsing quality drops off significantly
or fails to process to completion altogether. The extended grammar’s present scope
limitations in the analysis of larger and more complex sentences impose restrictions
on the generalisability of our model to arbitrary input of German.

We re-emphasise that the primary focus of the research described in this thesis is
on the motivation, development and validation of a feasible model for the influence
of visual context upon syntactic processing — rather than on the scaling of such
a model to large or full coverage of German. With this focus in mind, we have
selected three subsets of sentences containing 10 sentences each for further study.
For all of the selected sentences we ensured that the extended grammar affords a
correct syntactic and semantic analysis in the absence of a contextual bias. We will
use these sentences in the following chapters for the systematic investigation of the
CIA’s capacity to effect context-driven syntactic disambiguation.
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Chapter 9

Syntactic Attachment Modulation
by Hard Integration

In the preceding chapter we have established the neutrality of the semantic grammar
with respect to parsing accuracy under integration of an empty visual context for
three corpus subsets of 10 sentences each. We will use these subsets throughout the
experimental part of this thesis to study the behaviour of the CIA in further detail.
This chapter contains a discussion of Experiment 2, the first experiment in which
non-empty cross-modal context information is integrated into the process of syn-
tactic parsing. In first approximation to the effects of cross-modal integration in
natural systems, we investigate the case of cross-modal context integration via hard
integration constraints. The discussion of the experimental observations in this chap-
ter includes a detailed analysis of how the model achieves contextually modulated
syntactic analyses. We study hard context integration on the set of genitive-dative-
ambiguous sentences.

9.1 Experimental Motivation

While the detailed functional specifications of our model have been presented in
Part II of this thesis, the empirical evidence is still pending that the implemented
features indeed suffice to drive the parser’s syntactic attachments towards a con-
textually modulated syntactic analysis that is consistent with the integrated visual
context information. A prediction of the CIA’s behaviour based on the feature
descriptions in Part II is complicated by two factors: the complexity of how the
different constraints will interact for a given input sentence and the complexity of
WCDG's heuristic search algorithm frobbing that we employ to locate the optimal
solution.

Experiment 2 reported in this chapter illustrates how the integration of cross-modal
context information can be enforced by making the integration constraints hard
constraints. As a result of this, the parser will only consider solutions whose seman-
tic representation is compatible with the semantic representation of the integrated
visual context. We consider two semantic representations R; and Ry compatible
with each other if and only if the semantic relations they assert between coreferen-
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tial entities agree with each other.! As an example consider the semantic analysis
in the parser R; and the semantic representation in a context model Ry: The two
representations are incompatible with each other if a level of semantic analysis in
the parser R; asserts a semantic dependency 0(t) between H, ; and H,,, while the
context model Ry asserts a thematic relation 6 between M (H; ;) and M (H,,,) such
that t # 6.

9.2 Approach

Experiment 2 comprises two parts. In Experiment 2.1 we study 10 genitive-dative-
ambiguous sentences under integration of context models that describe the cor-
responding binary situation with three entities. The context models include an in-
stance of a binary situation concept with two participants relating to the situation
concept instance via thematic is_AGENT_for and is_THEME_for relations, respec-
tively. Additionally, the context models include a third entity in an is_OWNER_for
relation with the situation’s AGENT.

We can interpret the represented binary visual scenes as situations in which two
participants, the AGENT and the THEME, interact with each other while the third
entity, the OWNER, need not necessarily be physically present in the scene. Consider
sentence VK-011 as an example: ‘Er wusste, dass die Magd der Bauerin den Korb
suchte.” He knew that {the farmer’s maid was looking for the basket | the maid was
looking for a basket for the farmer}. Based on the linguistic representation alone, we
cannot make a conclusive statement about whether the farmer is actually co-present
in the described scene or not. The same holds true for the representation of visual
context: We consider the OWNER relation asserted in the context model the result of
the process of visual understanding which associates the visually perceived AGENT
with another, potentially not co-present, entity. The cases in which the OWNER is
not co-present in the visually perceived scene are situations in which visual under-
standing has recognised the AGENT to be a specific AGENT, namely the AGENT which
entertains an ¢s_OWNER_for with the OWNER in that context.

In Experiment 2.2 we repeat the conditions of Experiment 2.1 with a different set of
context models. Here, we use visual context models for the corresponding ternary
situations involving three participants, i.e., a context model containing an instance
of a verb-specific ternary situation concept with the participants AGENT, THEME,
and RECIPIENT. The analyses obtained under hard integration of the binary and
ternary visual contexts are compared with the parses obtained under integration of
an empty visual context (see Experiment 1.2 discussed in Chapter 8).

! An exception to this notion of compatibility is provided by the case that no relation has been asserted
between two contextual entities. Note that in our model we do not have an explicit semantic NULL relation
to assert that no semantic relation exists between to entities of a semantic representation. Consequently,
our model cannot differentiate between the express assertion of an absence of semantic relations and the
case in which simply no assertion about the relation between two entities has been made. In our model,
these two cases are equivalent and all relations are considered compatible in case no relation has been
asserted.
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For all of the parses in both parts of the experiment we record three measures:
the average processing time required for frobbing to find the optimal solution, the
number of structural candidates in the hypothesis space prior to frobbing as reported
by WCDG2, and the number of unary and binary constraint evaluations performed
in the course of parsing. The average processing times reported are average values
based on 10 individual measurements for each sentence. All processing times were
recorded on the same machine with no other applications running.

We record the number of structural candidates prior to frobbing. This is necessary in
order to obtain the actual size of the hypothesis space after the removal of structures
that violate hard, unary, non-context-sensitive constraints. The number of structural
candidates quoted by WCDG after frobbing typically is smaller than this value. This
is because in the course of frobbing, WCDG performs additional pruning operations
to eliminate further candidates from the hypothesis space. As our focus is on the
effect of the unary integration constraints upon the size of the hypothesis space, we
report the number of structural candidates prior to frobbing such as to eliminate
the effect of pruning during frobbing.

9.3 Setup

The parse runs are performed with the parameter settings shown in Table 9.1. The
quoted slot indices for the homonyms in that table refer to the word slots in the
normalised sentences with genitive-dative ambiguity. All of those sentences follow
the pattern illustrated at the top of the table. The asserted binary and ternary
situation context models for those sentences are given in Appendices V.1.1 and
V.1.2, respectively.

9.4 Results

The parses obtained under hard integration of a binary visual context containing
three entities all conform to the generic structure shown in Figure 9.1. For con-
venience, we refer to these parses as binary situation parses in the subsequent dis-
cussion of this experiment. The complete list of the binary situation parse trees is
given in Appendix VI.1.2.

The binary situation parses differ from their corresponding default parses, which are
represented by the generic tree structure in Figure 8.3, both on the syntactic and the
semantic levels of analysis. The structural differences between the binary situation
parses in this experiment and the default parses are summarised in Table 9.2.

The parses obtained under hard integration of a ternary visual context with three
participants all instantiate the generic tree structure shown in Figure 9.2. For the
complete list of parse trees obtained refer to Appendix VI.1.3. The only observed
structural difference between the ternary situation parses and their corresponding
default parses is the absence of context integration.
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Pattern Er wusste , dass  ART NN ART NN ART NN VVFIN .

N I o |
Slot 1 2 34 5 6 78 9 10 11 12

Example Er wusste , dass  die Magd  der Bauerin  den Korb  suchte .

Experiment 2.1

Context Compliance Context Model Scheme
is T AGENT _
AGENT 1.0 M(Hg;) —— for M(Hy1,)
is.OWNER_
OWNER 1.0 M(Hg;) — for M (Hg,,)
RECIPIENT 1.0
is.THEME _
THEME 1.0 M(Hy,) — for M (Hi1p)
INSTRUMENT 1.0
COMITATIVE 1.0
Experiment 2.2
Context Compliance Context Model Scheme
is L AGENT _
AGENT 1.0 M(Hg;) ——AGENTJor M (Hi1)
OWNER 1.0
is - RECIPIENT _
RECIPIENT 1.0 M(Hg;) —=HEC Tor M(Hyp)
is. THEME _
THEME 1.0 M(Hy ) —= for M (Hyyp)
INSTRUMENT 1.0
COMITATIVE 1.0

Table 9.1: Parameter settings for Experiments 2.1 and 2.2.

Default P Bi P
Level of Analysis Dependant clatit Tarse faty barse
Regent Label Regent Label
SYN Slot.8 Slot.11 0BJD Slot.6 GMOD
INST Slot.8 Slot.11 RECIPIENT Slot.6 OWNER
AGNT Slot.1 Slot.2 AGENT ROOT none

Table 9.2: The structural differences between the generic parse trees for the default and the binary
analyses of sentences with genitive-dative ambiguity.
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er wusste s dass Slot.5 Slot.6 Slot.7 Slot.8 Slot.9 Slot.10 Slot.11
THEME AGENT
OWNER THEME

Figure 9.1: Generic parse tree structure for the hard integration of a binary visual context con-
taining three entities, two of which participants.

er wusste s dass Slot.5 Slot.6 Slot.7 Slot.8 Slot.9 Slot.10 Slot.11
THEME AGENT

NS

THEME

\/

RECIPIENT

Figure 9.2: Generic parse tree structure for the hard integration of a ternary visual context con-
taining three entities, all of which participants.
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Averape Processing Times for Hard Integration
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Figure 9.3: The average processing time per sentence for hard context integration.

A plot of the average processing times for the sentences is shown in Figure 9.3.
The corresponding numerical values are listed in Table 12, Appendix VIL.1. In
both cases, the average processing time for hard integration of a non-empty context
exceeded — or at best matched — the corresponding processing time under default
conditions. The graph also shows that processing under binary context integration
in this experiment took systematically longer than under ternary context integration.

The measures for the number of structural candidates reported by WCDG2 for each
of the parses are plotted in Figure 9.4. The exact values are given in Table 13,
Appendix VII.1. From the plot two observations are immediately obvious: First,
the number of structural candidates under hard integration of a non-empty context is
about 10 orders of magnitude smaller than the number of candidates for the default
parse. Second, the difference between the number of structural candidates for the
binary and the ternary situation parses under hard integration is comparatively
small. Inspection of Table 13 reveals that the number of candidates for binary
context integration marginally exceeds that for ternary context integration.

The plot in Figure 9.5 contrasts the number of constraint evaluations performed
in the course of Experiment 2 with the values for the default parses. The detailed
values are listed in Table 14, Appendix VII.1. Constraint evaluations performed
during the same parse are shown in the same colour. The graph shows that binary
context integration results in the largest number of unary and binary constraint
evaluations on every sentence in this experiment.
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Number of Structural Candidates (log scale plot)
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Figure 9.4: Log scale plot of the number of structural candidates prior to frobbing under hard
integration as reported by WCDG2.

Number of Constraint Ewvaluations for Hard Integration {log scale plot)
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Figure 9.5: The number of unary and binary constraint evaluations under hard integration plotted
for each sentence.
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9.5 Discussion

As the parse structures for the hard integration of binary and ternary visual con-
texts illustrate, the CIA has succeeded in propagating the propositional semantic
information from the context model into syntactic structure via WCDG2’s syntax-
semantics interface. According to Figure 8.3, the default parses for the genitive-
dative-ambiguous sentences coincide with the results for ternary context integration
— at least with regards to the structurally ambiguous subclause. This shows that
context integration indeed results in a confirmation of the structural default analysis
when visual context is compatible with the default reading. This setup models the
real world scenario in which a sentence is uttered and its preferred reading is en-
dorsed by the co-present visual context.

More interesting from the point of view of context integration is the case in which
the default reading is incongruent with the information provided by visual context.
In humans, it is by no means obvious which source, linguistic analysis or context in-
formation, will dominate the final utterance interpretation. The different degrees of
reliability of the modalities involved, e.g., due to adverse visibility or error-afflicted
linguistic input, motivate the hypothesis that in natural systems the weight with
which each modality is integrated is dynamically adjusted based on the cognitive
and communicative conditions of the given situation.

Under the conditions of hard context integration in this experiment, we can be sure
that any structural hypothesis whose semantic representation is incompatible with
the semantic representation of visual context will cause the violation of a hard in-
tegration constraint. As a result, the parser will reject such a solution candidate as
invalid. With visual context information providing a uni-directional hard constraint
on syntactic analysis in our model, we hence expect to observe a precedence of visual
context information over linguistic default preferences.

This expectation is confirmed by experimental observation: The hard integration
of a binary visual context succeeds in overriding the syntactic default analysis of
a three-argument verb subcategorising a dative object (0BJD). Instead, the parser
favours an analysis with a two-argument verb and an additional genitive modifier
(GMOD) to the verb’s subject (SUBJ). These syntactic modulations are driven by the
corresponding modulations on the semantic level of analysis, concretely the change
from RECIPIENT to OWNER dependencies between Slot.8 and Slot.6.

Under binary context integration, the parser selects the transitive verb form over the
ditransitive form because visual context instantiates a situation concept from the
class TAKES.AGENT.THEME. The asserted thematic relations consequently authorise
the semantic dependencies to the transitive verb of semantic valence ag_th while all
other dependencies, including those to the ditransitive verb forms, are all vetoed.
In terms of ambiguity resolution, we can thus confirm that, under hard context in-
tegration, the CIA achieves disambiguation in line with the information provided
in the visual context model. These modulations are precisely the effect we had
hoped to observe: the thematic relations and situation arity asserted for the visual
scene constrain the dependencies assigned in the parser’s semantic analysis. The
syntax-semantics interface then propagates these semantic dependencies into the
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syntactic level of analysis via correspondence rules. In summary, this experiment
has shown for the CIA that propositional semantic context information effects syn-
tactic modulations mediated by a shared level of semantic representation.

Apart from these structural modulations affecting verb valence, Table 9.2 lists an-
other structural difference as a result of context integration: the systematic absence
of the AGENT dependency between Slot.1 and Slot.2 in the context-integrated struc-
tures. The reason for this is also a direct consequence of context integration via
hard constraints, albeit a somewhat less obvious — and, in terms of the integrity of
the semantic analysis, a less desirable one.

The observation shows that context integration has an adverse effect on the semantic
analysis of the introductory main clause for which no information had been included
in the context model. The absence of the incoming AGENT dependency on the verb
with semantic valence ag_th may appear surprising at first glance. Firstly, it seems
easy to fix, namely by just assigning the missing AGENT dependency between Slot.1
and Slot.2. Secondly, the absence incurs a comparatively hard constraint violation
penalty of 0.1 which persists unremedied throughout all binary and ternary situ-
ation parses.

Still, the parser curiously prefers not to assign the missing AGENT dependency. The
only plausible explanation for this observation is that the assignment of the de-
pendency would give rise to an even more severe constraint violation. Indeed, the
observed preference arises from the fact that the inclusion of an AGENT dependency
would cause a hard constraint violation on the AGENT integration constraint. This
hard constraint violation results from the PPC veto on this specific relation which,
in turn, has been assigned on the basis of information in the context model. The
mechanism via which this veto is imposed is as follows: The word ‘er’ he in Slot.1
grounds the concept HE which has been modelled as a rather general concept in the
ontology:

HE = PERSONAL.PRONOUN [ MALE 'l SINGULAR

For most concepts in our ontology no assignment of natural gender or number has
been made. Nor have any superclasses corresponding to gender or number been
defined for the classes instantiated in the context models (see Appendix V.1 for the
detailed context models used in this experiment). Since personal pronouns can refer
to any type of entity, be it concrete or abstract, animate or inanimate, we have
not defined any disjoint classes in the ontology for the class PERSONAL.PRONOUN.
This conceptual underspecification is responsible for the fact that in most sentences
personal pronouns have several cross-modal matches in the context model, some of
which less obvious than others. Once a thematic relation has been asserted for one
of those matches, the PPC imposes a veto on all other thematic relations.! This is
a general property of our model: A dependant in the input sentence can only engage
i those semantic dependencies which are equivalent to the thematic relations that
have been asserted for its cross-modal matches. All other semantic dependencies
for that dependant are vetoed by the PPC. The fact that the AGENT dependency

!See Sections 7.3 and 7.4 for details on the PPC’s algorithm for cross-modal matching and relation
scoring, respectively.
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between Slot.1 and Slot.2 is missing throughout the context-integrated parses is a
direct consequence of the fact that a cross-modal match for ‘er’ was found in every
context model. We have confirmed the successful cross-modal matching of ‘er’ he
by diagnostic output from the PPC.

As regards the number of structural candidates in WCDG2’s hypothesis space,
Figure 9.4 shows that the PPC’s introduction of hard penalties on a number of
semantic dependencies effects a drastic reduction of the size of the hypothesis space.
This is in line with expectation for hard integration since WCDG does not include
candidate structures in the hypothesis space that give rise to a violatation of hard
integration constraints. The hypothesis space for empty context integration, which
we list for comparison, reflects the size of the hypothesis space in the absence of
contextual influences.

We further observe that both binary and ternary contexts give rise to a similar num-
ber of structural candidates. In our view this is due to the relatively large similarity
of the context models integrated. In our model, the number of structural candidates
that are eliminated from the hypothesis space as a result of hard context integration
depends on the following factors:

1. The number of cross-modal matches for each word
2. The number of words with cross-modal matches in the sentence
3. The number of thematic relations asserted in the context model

Despite the drastic size reduction of the hypothesis space, Figure 9.3 shows that
the average processing times under hard context integration were longer than under
default conditions — which, at first sight, may seem counterintuitive. It may seem
more reasonable to expect that a smaller hypothesis space should also make it easier,
i.e.: faster, to locate the optimal solution.

Since both the default and the context-integrated parses are evaluated on the same
constraint set, a difference in the constraint base upon which the evaluation is per-
formed in the different conditions can be ruled out as a possible cause for the obser-
vation. Figure 9.4 shows that — in line with longer processing times — the number
of constraint evaluations also increased under context integration, i.e., WCDG2 had
to evaluate more structural candidates in order to arrive at the global optimum.
With solution candidates removed from the hypothesis space due to their violating
a hard constraint, transformation pathways to the optimal solution can become ob-
structed — or in some cases even blocked completely. As outlined in Section 4.2.4
frobbing gradually modifies the best known solution in its search for the global opti-
mum. In the course of this process, frobbing only attempts those transformations
that do not incur excessively severe constraint violations. Frobbing will therefore
not be able to progress to the global optimum directly when the best known solu-
tion candidate is separated from that optimum by interim transformation structures
that are unacceptably bad. While the global optimum may still be reached via other
round-about pathways through the hypothesis space, longer processing times are
required to compute the additional interim structures along those alternative path-
ways. In some cases frobbing may even fail to find the global optimum altogether.
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Moreover, there is another way in which hard integration affects the progress of
frobbing: Frobbing always attempts to remove the most severe containt violation
in a solution candidate first (see Section 4.2.4). The list of constraint violations
therefore provides important guiding information for the direction that the frobbing
process takes through the hypothesis space. As WCDG rejects structures that vio-
late hard constraints as invalid, none of the interim structures in frobbing will contain
hard constraint violations. Consequently, frobbing under hard integration faces the
challenge that none of the interim structures may violate an integration constraint.
Under hard integration frobbing hence has to proceed without the guiding infor-
mation of which integration constraints were violated and thus may take longer to
locate the local optimum.

The presented experimental evidence supports the view that hard context integra-
tion forces frobbing to perform additional structural transformations — and hence
constraint evaluations — in order to find the global optimum. As a result, pro-
cessing times increase under hard integration, despite the reduction in size of the
hypothesis space. The default analysis reflects preferences arising from the entire
constraint base. In order to arrive at the non-default analysis, some of these prefer-
ences need to be overridden by the integration constraints.

The reason for why binary context integration takes longer to process than ternary
context integration is because the default context for the studied sentences is struc-
turally almost identical with the parse obtained from ternary context integration.
It is therefore likely that the interim structures evaluated during ternary context
integration are very similar to those for the default analysis. Binary context integra-
tion, in contrast, produces a parse output that is structurally significantly different
from the default parse such that different interim structural candidates need to be
evaluated by frobbing.

To wrap up this discussion, let us briefly address the degree of conceptual specificity
with which the context models in the experiment have been designed. We acknowl-
edge that it is a significant idealisation to assume that the output of the process
of visual understanding will be a representation that contains instances of concepts
which precisely correspond to the concepts activated by the linguistic input. In our
view it is indeed highly unlikely in most cases that visual understanding can provide
representations that are conceptually so fine-grained as to differentiate between very
similar situation instances in the same way that language can. This holds true in
particular for cases in which there are no top-down expectations regarding the classi-
fication of the observed visual scene. As an example, consider the ternary visual
context models for sentences VK-151 and VK-306 in Figure 9.6.

These context models contain instantiations of the concepts JMD.ETW.SCHICKEN
and JMD.ETW.SENDEN, respectively. In the ontology, these concepts are modelled
as disjoint. Semantically, however, these concepts are so closely related that they are
even rendered by the same verb in the English translations. It is highly unlikely in
any case that a visual observer would be able to tell a JMD.ETW.SCHICKEN situation
from a JMD.ETW.SENDEN situation by visual inspection alone.
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VK-151 ‘Er wusste, dass die Bergsteiger der Referentin die Warnung schickten.’

He knew that the mountaineers sent the speaker the warning.

is T AGENT _for

MOUNTAINEER.M_01 JMD.ETW.SCHICKEN_01
is_.RECIPIENT _for

SPEAKER.F_01 JMD.ETW.SCHICKEN_01
is.THEME _for

WARNING_01 JMD.ETW.SCHICKEN_01

VK-306 ‘Er wusste, dass die Managerin der Unternehmerin den Vertreter sendete.’

He knew that the manager sent the entrepreneur the sales rep.

iscT AGENT _for

MANAGER.F_01 JMD.ETW.SENDEN_01
is_.RECIPIENT _for

ENTREPRENEUR.F_01 JMD.ETW.SENDEN_01
is.THEME _for

SALES.REP.M_01 JMD.ETW.SENDEN_01

Figure 9.6: Ternary context models representing the scenes described in the sentences VK-151 and
VK-306, respectively.

A more realistic approach to modelling the representations from visual understand-
ing, in our view, must accommodate concept generalisation and perceptual uncer-
tainty. Our model permits to approach this modelling challenge by instantiating
conceptually underspecified concepts as illustrated in Section 6.4.2. An experimen-
tal validation of this approach is given in Chapter 11 which addresses the influence
of grounding and conceptual specificity upon our model’s capability to achieve syn-
tactic disambiguation. Suffice it to say for now that our model is indeed capable
of exploiting the ontological properties of the concepts involved such that context-
modulated syntactic disambiguation can be achieved, even under integration of con-
ceptually underspecified context models. We will see in due course that the type
of syntactic ambiguity to resolve determines the degree of permissible conceptual
generalisation that we may adopt in the representation of visual context. For the
contextual resolution of ambiguities affecting verb valence, such as the genitive-
dative ambiguity, situation arity is vital information to be extracted from visual
context. Syntactic disambiguation can be achieved as long as this information is
provided.

As a final remark we need to comment on the cognitive plausibility of hard context
integration in this experiment. As outlined above, a context compliance of 1.0
in this experiment enforces that any solution acceptable to the parser must have a
semantic representation which is compatible with the context model. This is another
way of saying that a context compliance of 1.0 enforces an absolute dominance of
visual context information upon the semantic analysis in the linguistic modality.

We can, of course, easily conceive a number of situations in which visual context
information should be subordinate to linguistic interpretation. Typical examples
would be conditions of limited visibility, the presence of unknown or unidentifiable
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entities in the visual scene or cases of visual ambiguity, such as in a snapshot of a
dynamic, potentially bi-directional event which makes it impossible to tell in which
direction the scene is evolving. It would be cognitively highly ineffective if humans
always integrated visual information with the same strength at all times. More
to the point, the degree to which humans rely on visual information to support
their linguistic processing is dynamic and adjusts situation-specifically. With the
introduction of the modelling parameter context compliance, we have incorporated
precisely this aspect as an important feature in our model.

9.6 Conclusions

This experiment has shown that the CIA successfully integrates propositional se-
mantic information from ontology-based representations of visual scene context
into the process of syntactic parsing. The outcome of hard context integration
is a linguistic analysis whose semantic representation is enforced to be compatible
with the parser-external representation of visual scene context. This contextually
compatible semantic analysis drives the corresponding syntactic structure via the
model’s syntax-semantics interface. A minor corruption to the semantic analysis
of the context-integrated structures has highlighted the challenge arising from the
conceptual underspecification of personal pronoun concepts in the ontology.

We have further shown that, compared to the default parse, the successful integra-
tion of non-linguistic context information comes at the price of longer processing
times. Our analysis revealed that despite a drastic reduction in the number of
structural candidates an increase in the number of constraint evaluations caused an
overall increase in processing time. The experimental data support our hypothesis
that the observed increases in processing time under context integration are due
to a reduced accessibility of transition structures in the process of transformational
search as well as missing guidance information from violated integration constraints.

Having established the feasibility of context integration with our model in this exper-
iment we now continue to study the model’s behaviour with respect to central issues
of cross-modal integration in natural systems. The following chapter is dedicated to
the discussion of constraint relaxation in the integration constraints and discusses
the benefits of softer visual context integration in general. It describes the model’s
response to conflicting visual and linguistic information and discusses the benefits of
softer context integration. Chapter 11 then elaborates on the model’s robustness to
conceptual underspecification in the representations of visual context as may arise
from perceptual uncertainty.
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Chapter 10

Syntactic Attachment Modulation
by Soft Integration

Experiment 2 in the preceding chapter showed that the CIA successfully performs
the integration of propositional semantic context information into the process of
syntactic parsing. The hard integration scenario discussed effectively models an
absolute dominance of the visual modality over linguistic processing. In most real-
world situations, however, visual understanding is subject to challenges such as
uncertainty, conflicting information or perceptual ambiguity. It is therefore implau-
sible to assume that the integration of visual information into linguistic processing
is always performed with the same strength. More realistically, humans dynamically
adjust the strength with which they integrate the semantic information from visual
context into linguistic processing. In some cases visual information will have a strong
effect upon linguistic processing while in other cases it will remain inconsequential.
The ability to perform dynamic adjustments of integration strength can suitably
be modelled in the CIA based on the WCDG’s capability to process weighted con-
straints. In this chapter, we investigate the results of context integration via soft
constraints as a viable alternative to the previously studied hard integration. Our
experimental findings show that soft integration provides a number of benefits over
hard integration such as context integration without a damage to contextually unre-
lated syntactic and semantic dependencies, the accommodation of conflicting visual
and linguistic information in a uniform linguistic representation as well as diagnostic
capabilities to highlight semantic dependencies in discord with the modelled con-
textual information. The capability of a cognitive system to perform diagnosis of
which parts of a given input violate context-driven expectations is highly impor-
tant in contextualised cognition. Rather than just to say that a given sentence is
inconsistent with contextual expectations diagnosis permits to say which aspects of
linguistic analysis are in conflict with context-based expectations. In natural sys-
tems, the ability to perform such diagnostics enables a more specific and effective
response to and interaction with the environment.

163
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10.1 Experimental Motivation

The detailed analysis of the experimental findings in Experiment 2 reported in
Section 9.5 revealed that hard context integration can have the undesirable side
effect of modulating semantic dependencies in referentially unrelated parts of the
input sentence that should remain unaffected by the give visual context information.
Concretely, we observed that the semantic analysis of the main clause, for which no
context representation was available, was modulated by the integration of visual
context information related to the subclause.

While the system of constraint weights is robust enough to leave the syntactic
analysis unaffected, the hard integration constraints on the semantic levels of analysis
enforce partial defects on the semantic analysis of the introductory main clause. As
a result, all hard-integration structures were missing a specific semantic dependency
that should have been present.

It would be desirable to achieve context integration that affects only those areas
of the sentence that the visual context actually refers to. Ideally, context inte-
gration should be selective such as to leave all other aspects of linguistic analysis
unchanged. For this reason, soft integration is an attractive option: It permits to
adjust the strength with which contextual influences are enforced upon linguistic
analysis.

In Experiment 3 it is our aim to find an appropriate weighting for the strength of
context integration: On the one hand, visual context integration should be strong
enough to drive linguistic analysis in line with the visual scene information; on the
other hand, context integration must be soft enough such as not to enforce linguistic
structures that violate any of the harder constraints in the grammar. An example for
one of these constraints is the semantic valence constraint with a constraint weight
of 0.1 which was violated under hard integration by the absence of the AGENT de-
pendency in the context-integrated structures (see Section 9.5).

With soft context integration we expect the hypothesis space to take the same size
as for empty context integration. This is because visual context does not impose any
hard constraints on the linguistic analysis anymore. The violation of the integration
constraints now does not result in the exclusion of a structural candidate from the
hypothesis space anymore. The hypothesis space hence contains more structural
candidates and it should also be easier for frobbing to progress towards the opti-
mal solution. We therefore expect processing times and the number of constraint
evaluations to go down for the integration of non-empty context models.

10.2 Approach

In Experiment 3 we repeat the parses from Experiment 2 with a smaller, i.e., weaker
or softer, value of context compliance. Binary context integration is investigated
in Experiment 3.1, ternary context integration in Experiment 3.2. We compare
the outcome of soft context integration with the parse results obtained under hard
integration for both of these experiments. We also record the average processing
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times, number of structural candidates and number of constraint evaluations for
comparison. As in Experiment 2, the number of structural candidates recorded is
the size of the hypothesis space prior to frobbing.

Experiments 3.3 and 3.4 are aimed at demonstrating the generalisability of our
soft-integration results. We set out to verify our previous observations on a small
subset of subject-object-ambiguous sentences taken from the SALSA Corpus (see
Section 8.2.2 for details). In Experiment 3.3 we parse the subject-object-ambiguous
sentences with a visual context that describes a scene in line with the syntactic SUBJ-
OBJA analysis. In Experiment 3.4, we integrate a visual context that is consistent
with the syntactic 0BJA-SUBJ analysis.

10.3 Setup

The parameter settings for the parse runs are listed in Table 10.1. The context
models for Experiments 3.1 and 3.2 are the same as those used in Experiment 2 (see
Appendices V.1.1 and V.1.2, respectively). The context models for Experiments 3.3
and 3.4 are given in Appendices V.2.1 and V.2.2, respectively. The latter two ex-
periments are also conducted with a context compliance of 0.8. We chose this value
because context integration with a hardness of 0.2 (see Equation (7.2)) was found
to strike a good balance between contextual alignment and grammar-driven lingu-
istic analysis. 0.2 is a good value because dependencies arising from the harder
constraints in the syntax-semantic interface do not get overwritten. Typically, the
harder constraint in the grammar bear weights that fall in the interval between 0
and 0.2. As these are harder than the integration constraint, WCDG2 will rather
violate the integration constraint than one of these constraints. At the same time, a
weight of 0.2 still makes the integration constraint hard enough to drive the overall
sentence structure towards a compliance with visual context information.

10.4 Results

The structures obtained from soft context integration for genitive-dative ambiguity
follow the structural paradigms in Figure 10.1 for the binary and Figure 10.2 for
the ternary contexts. The complete list of parse trees obtained is given in Appen-
dices VI.1.4 and VI.1.5, respectively. In contrast to the generic structures obtained
under hard integration (see Figures 9.1 and 9.2), all of these trees contain the AGENT-
dependency from Slot.1 to Slot.2 that should be contained in the correct semantic
analysis of the introductory main clause. What cannot be seen from the parse trees
is that WCDG2 also reports a violation of the AGENT integration constraint by the
dependency between Slot.1 and Slot.2 for all of these parses. Despite the penalty of
0.2 incurred by these structures, frobbing identifies them as optimal.

The recorded average processing times, the number of structural candidates and the
number of constraint evaluations are given in Figures 10.3, 10.4 and 10.5, respec-
tively. The numerical values are listed in Tables 15 through 18, Appendix VII.2.
A comparison between soft and hard integration shows that processing times are
systematically shorter for soft integration, both under binary and ternary context
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Pattern Er wusste , dass  ART NN ART NN ART NN VVFIN .

I [ R R I
Slot 1 2 3 4 5 6 78 9 10 11 12

Example FEr wusste , dass  die Magd  der Bauerin den Korb suchte .

Experiment 3.1

Context Compliance Context Model Scheme
is, AGENT _
AGENT 0.8 M(Hg;) = GENT.for M(Hi1 )
is.OWNER_
OWNER 0.8 M(Hg;) = for M (Hg )
RECIPIENT 0.8
is. THEME _
THEME 0.8 M(Hlo,j) 2 for M(Hll,n)
INSTRUMENT 0.8
COMITATIVE 0.8
Experiment 3.2
Context Compliance Context Model Scheme
is., AGENT _
AGENT 0.8 M(Hg;) = GENT.for M(Hi1 )
OWNER 0.8
is . RECIPIENT _
RECIPIENT 0.8 M(Hg;) = Tor M(Hip)
is. THEME _
THEME 0.8 M(Hy ) —= for M (Hi1,)
INSTRUMENT 0.8
COMITATIVE 0.8

Table 10.1: Parameter settings for Experiments 3.1 and 3.2.

integration (see Table 10.2). Interestingly, the processing times for the integration
of a non-empty ternary context are also shorter than for the integration of an empty
context. Figure 10.3 also reveals that — just as for hard integration — the processing
times for soft binary context integration are the longest on all runs.

Figure 10.4 shows that for soft integration of the non-empty contexts, the number
of structural candidates is the same as for the integration of an empty context.
The number of unary and binary constraint evaluations under soft integration of
binary and ternary contexts is found to be smaller than for hard integration (see
Figure 10.5).

Soft context integration on unrestricted language input also resulted in the success-
ful syntactic modulation based on contextual information. With the exception of
sentence SO-9681, all sentences studied exhibited the desired syntactic modulation
to integrate the visual context information. A detailed analysis of the reasons why
context integration failed for sentence SO-9681 is provided in the following section.
The parse trees obtained under soft integration in Experiments 3.3 and 3.4 are given
in Appendices VI.2.2 and VI.2.3, respectively.
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er wusste s dass Slot.5 Slot.6 Slot.7 Slot.8 Slot.9 Slot.10 Slot.11
AGENT THEME AGENT
OWNER THEME

Figure 10.1: Generic parse tree structure for the soft integration of a binary visual context con-
taining three entities, two of which participants (context compliance = 0.8).

er wusste , dass Slot.5 Slot.6 Slot.7 Slot.8 Slot.9 Slot.10 Slot.11
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Figure 10.2: Generic parse tree structure for the soft integration of a ternary visual context con-
taining three participants (context compliance = 0.8).
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Figure 10.3: The average processing time per sentence for soft integration with a context compliance

of 0.8.
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Figure 10.4: Log scale plot of the number of structural candidates under soft integration as reported
by WCDG2 (context compliance = 0.8).
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Number of Constraint Evaluations for Soft Integration (log scale plot)

4e+07

Empty Context. Binary Constraints
Binary Context, Binary Constraints
Ternary Context,. Binary Constraints
3et+0’ Empty Context. Unary Constraints
Binary Context. Unary Constraints
Ternary Context,. Unary Constraints

il

2e+07 - I [
1.8et+07 - M u 0
1.6e+07 - i I

1.4e+07 1
1.2e+07
let+07
Be+06 -
Bet06 -
7et06 -

Bet06 -

Number of Constraint Evaluations

Se+06 -

4e+06 -

3et+06
s011 s100 s111 s151 s226 s233 s247 s263 s274 s306

Sentence ID

Figure 10.5: The number of unary and binary constraint evaluations under soft integration (context
compliance = 0.8).

10.5 Discussion

The main purpose of soft context integration in Experiment 3 was to incorporate
visual context information into syntactic analysis in a way that permits to drive
contextually relevant parts of linguistic analysis while leaving contextually unrelated
parts unaffected. In soft integration we achieve this goal by reducing the hardness of
the integration constraints such that their violation becomes more acceptable than
the violation of any of the harder structural constraints in WCDG2’s grammar.
One of the advantages of using a weighted constraint-based parser for linguistic
analysis is that — given a suitably adjusted set of constraint weights — it can iden-
tify a solution as optimal even if that solution violates one or more of the less severe
constraints. The concept of correctness of a linguistic analysis is hence relativised
from an absolute judgement of true or false to a relative one, which permits to ex-
press and compare degrees of acceptability. By reducing the weight of the integration
constraints to 0.2 in this set of experiments, we penalise a semantic misalignment
with context less weakly than a large number of important structural properties in
WCDG2’s grammar.

The parse trees obtained for the sentences with genitive-dative ambiguity in Ex-
periments 3.1 and 3.2 confirm the success of this approach: All of the soft-integration
structures are semantically and syntactically well-formed according to our model’s
grammar. They also all contain the AGENT dependency from Slot.1 to Slot.2 which
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Ratios of Average Processing Times

Tord T
Sentence 1D Binary Ternary Binary Ternary
VK-011 0.720 0.622 1.229 0.857
VK-100 0.802 0.893 1.076 0.868
VK-111 0.797 0.897 1.265 1.001
VK-151 0.764 0.896 1.137 0.893
VK-226 0.743 0.726 1.043 0.831
VK-233 0.784 0.710 1.139 0.808
VK-247 0.826 0.762 1.109 0.799
VK-263 0.808 0.732 1.292 0.907
VK-274 0.758 0.728 1.216 0.830
VK-306 0.784 0.695 1.365 0.911

Table 10.2: The ratios of average processing time for soft over hard and empty context integration
of binary and ternary contexts (context compliance = 0.8).

was missing in the hard-integration structures obtained in Experiment 2. The
AGENT dependency is assigned although there is no positive evidence for it in vi-
sual context. WCDG2 assigns it based on the structural well-formedness rules in
the syntax-semantics interface. The dependency hence is linguistically driven rather
than contextually. Precisely for this reason, the observed structures cause a con-
straint violation on the AGENT integration constraint. The violation arises from the
fact that a semantic dependency has been assigned in the linguistic analysis which
is not expressly endorsed by a corresponding assertion in the context model. Still,
WCDG?2 identifies the resulting parse tree as the preferred overall solution.

It constitutes a significant strength of our model that a solution candidate can be-
come the preferred structure overall, even if it violates an integration constraint. The
softer integration constraint weights used in this experiment permit to accommodate
conflicting linguistic and contextual preferences in a single solution structure: while
the context model expresses a preference for the removal of the AGENT dependency at
the cost of a 0.2 penalty, the syntax-semantics interface expresses an even stronger
preference in favour of retaining that AGENT dependency, thus avoiding to incur an
even harder penalty of 0.1.!

'Recall that the weight of a constraint is incurred as a penalty for violating the constraint. The penalty
affects the overall score of the solution structure multiplicatively. Hence, harder constraints have constraint
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The observed systematic reduction in processing times and the number of constraint
evaluations compared to hard integration is consistent with our argument regarding
the accessibility of interim transformation structures in the hypothesis space (see
Section 9.5): soft integration does not cause the removal of structural candidates
from the hypothesis space. Hence, frobbing can traverse the hypothesis space more
directly towards the optimal solution, which results in shorter processing times. An-
other reason for the reduced processing times is that soft integration leads to the
retention of structural candidates in the hypothesis space which violate integration
constraints. Their constraint violations provide valuable guiding information for
the direction that the structural transformations in frobbing will take through the
hypothesis space.

Of particular interest with regards to cross-modal integration is the effect on pro-
cessing times observed for soft integration of a visual context that confirms the
linguistic default structure: processing under these conditions is found to be faster
than for the integration of an empty visual context model. The constraining infor-
mation provided by visual context hence improves the effectiveness of localising the
optimal structure in the hypothesis space. In analogy to the reduction in processing
times observed for temporally and spatially aligned sensory stimuli, we interpret this
observation as an instance of cross-modal facilitation, i.e., a measurable processing
improvement in one modality based on information provided by another modality.
Due to the structural identity of the sentences studied, caution needs to be applied
not to generalise this observeration without further scrutiny. To make the general
claim that our model reproduces cross-modal facilitation under integration of vi-
sual contexts that confirm the linguistic default analysis, a systematic investigation
of processing times across a large number of structurally diverse sentences is re-
quired. The pattern observed for the number of structural candidates is in line
with expectation: since visual context is integrated via soft constraints, no struc-
tural candidates are removed from the hypothesis space. As a result, the number
of pre-frobbing structural candidates observed should be the same for all integrated
contexts, be they empty or non-empty. This is precisely what we find in Figure 10.4.

Looking at the outcome of Experiments 3.3 and 3.4 we can say that the integration
of contextual information successfully achieves the desired syntactic modulations.
However, two aspects deserve further elaboration: The syntactic modulation under
context integration for sentence SO-360 requires specific context modelling to yield
the correct linguistic analysis. Furthermore, for reasons not immediately apparent,
syntactic modulation is not observed for sentence SO-9681 under the given experi-
mental conditions. We will now discuss both of these points in detail.

Let us address the analysis of sentence SO-360 first. The list of context models in
Appendices V.2.1 and V.2.2 shows that — in contrast to the other context models
— the context models defined for sentence SO-360 contain more information than
just the assertion of the is_AGENT_for and is_THEME_for relations. An additional

weights with smaller numerical values. See Section 4.2.2.
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zehntausende Demonstranten trugen die Bahren der " Martyrer " durch die StralRen der Zweimillionen-Stadt

AGENT THEME OWNER

(a) SUBJ-OBJA context.

D trugen die Bahren der = Martyrer = durch die StraRen der Zweimillionen-Stadt

THEME AGENT OWNER

(b) 0BJA-SUBJ context.

Figure 10.6: Incorrect analyses obtained for sentence SO-360 under soft integration of a context
model asserting AGENT and THEME dependencies only.

1S_OWNER_for relation is asserted because otherwise the parser’s linguistic prefer-
ences do not result in the assignment of SYN:GMOD and INST:0WNER dependencies
for this sentence. Instead, WCDG2’s grammar defaults into the assignment of an
incorrect apposition dependency APP on the syntactic level with empty semantic
dependencies pointing to ROOT on the INST level.! The effect of these structural
assignments is such that frobbing fails to locate the absolute optimum and returns
the incorrect structures in Figures 10.6 (a) and (b).

These structures illustrate that for this sentence the assertion of an is_AGENT_for
and an ¢s_THEME_for relation in visual context leads to a situation in which the
system’s linguistic and contextual preferences conflict. In this case, linguistic pref-
erences dominate — but, alas, yield an incorrect overall analysis.

The problem can be fixed in two ways: either the linguistic preferences are adjusted
or the constraining effect of visual context is increased. We chose to provide a more
constraining visual context to override the underlying linguistic preferences. Our

"'We have observed the tendency of WCDG’s standard grammar for German to assign APP labels
too readily on a number of unrelated occasions. We recommend a systematic review of the grammar’s
apposition-handling constraints to correct a potential overgeneration of APP-labels.
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zehntausende Demonstranten trugen die Bahren der Martyrer durch die Stralen der Zweimillionen-Stadt

-

THEME AGENT OWNER OWNER

Figure 10.7: The syntactically and semantically correct non-default analysis of sentence SO-360
obtained by integrating a 0BJA-SUBJ context model that also includes an is_.OWNER_for assertion.

decision is motivated by the consideration that humans tend to re-examine visual
context for additional information rather than to question their linguistic prefer-
ences in cases where the integration of visual context yields an unsuitable analysis.
For sentence SO-360, the assertion of the additional i¢s_OWNER_for relation in the
context models disfavoured the APP assignment originating from Slot.8 and drove
the correct assignments of the SYN:GMOD and INST:OWNER dependencies, instead.
This yielded the correct overall analyses, of which the non-default analysis is shown
in Figure 10.7.

Summarisingly we can say that this context modelling exception is a direct conse-
quence of the linguistic preferences in the grammar. This example has shown that
soft context integration can give rise to conflicting linguistic and contextual prefer-
ences in some input sentences. The balance between these preferences can be shifted
by modification of the visual context information or the adjustment of the linguistic
preferences.

We now turn to the discussion of sentence SO-9681. For this sentence we obtain the
SUBJ-0BJA-analysis shown in Figure 10.8 for both contexts. This analysis is afforded
despite the bias provided by the 0BJA-SUBJ context model; in that context model we
instantiate the concept HUMAN.F rather than the more general concept HUMAN.M.F
(see Appendix II). The latter would actually be a more adequate categorisation of
the visually perceivable entities referred to by the gender-underspecified personal
pronoun ‘sie’, she or they, in the linguistic input. The incorrect analysis is still ob-
tained for the 0BJA-SUBJ context, despite the integration of a context representation
that is more restrictive than the level of detail provided by the linguistic input. We
shall now illucidate why this is the case.
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Let us investigate the influence that the context models with different instantiations
of HUMAN.M.F and its subconcepts will have: First, consider the context model with
the instantiation of the more general concept HUMAN.M.F:

s, AGENT.
SO-9681 ADVERTISER.M.01 — for ETW.SCHICKEN_01

is. THEME _for
HUMAN.M.F_01 ETW.SCHICKEN_01

The first step in cross-modal matching is the grounding of concepts from the ontology
in words of the input sentence. This step is independent of the integrated context
model. The critical word in this sentence is the word ‘Werber’ advertiser(s) in
Slot.5 whose homonyms all are assigned the conceptualisation ADVERTISER.M as
the following excerpt from diagnostic PPC output shows:

d t

Werber NN_pl —“*“>. ADVERTISER.M
denot

Werber ADJA %%, ADVERTISER.M
d t

Werber_FM e, ADVERTISER.M
denotes

Werber_NE ——— ADVERTISER.M

Werber NN_sg %', ADVERTISER.M
Due to its underspecification with respect to number and gender, the concept
HUMAN.M.F exhibits gender and number compatibility with all entity concepts in
the ontology. In particular, ADVERTISER.M is compatible with HUMAN.M.F which
also has an instantiation in the context model. As a result of this compatibility, the
PPC assigns the word ‘Werber’ two cross-modal matches, namely HUMAN.M.F_01
and ADVERTISER.M 01.

In our model, the permissible semantic dependencies of a homonym are deter-
mined by the semantic relations asserted for the homonym’s cross-modal matches.
The context model asserts an is_THEME_for relation for ADVERTISER.M_01 and an
1S_AGENT_for relation for HUMAN.M.F_01. The corresponding semantic dependen-
cies AGENT and THEME therefore both are permissible dependencies for the homonyms
of ‘Werber’. By the same argument, the two relevant homonyms of ‘sie’, namely
sie PPER pl_acc and sie PPER _pl nom, also map to the contextually asserted indi-
viduals ADVERTISER.M_01 and HUMAN.M.F_01 such that the words ‘Werber’ and ‘sie’
can engage in an AGENT or a THEME dependency with ‘schicken’. Effectively, a visual
context containing HUMAN.M.F_01 as an AGENT or THEME for ETW.SCHICKEN_01 hence
has no constraining effect on the linguistic analysis of SO-9681, which is why 0BJA-
SUBJ context integration defaults back to the SUBJ-0BJA reading for that sentence.

Our goal was to show that the model for the integration of semantic context infor-
mation into syntactic parsing also works for unrestricted German language input.
To achieve this goal for SO-9681, we investigated how that sentence’s context rep-
resentation needed to be modified such that the desired syntactic modulation would
occur. To block the default SUBJ-0BJA reading, we need a visual context that can
effect a veto on the AGENT dependency from ‘Werber’ to ‘schicken’ or on the THEME
dependency from ‘sie’ to ‘schicken” — or both.
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statt dessen schicken sie Werber von Haus zu Haus

"

AGENT

~__

THEME

Figure 10.8: The SUBJ-0BJA analysis obtained for sentence SO-9681 in both contexts: under inte-
gration of the SUBJ-0BJA and of the OBJA-SUBJ context.

It was our hope to achieve this by enforcing an incompatibility between the con-
cept ADVERTISER.M and the concept instantiated by the instance in visual context.
One way to achieve this was to interpret the personal pronoun ‘sie’ as a reference
to HUMAN.F.01, i.e. an unspecified number of female persons.!. The introduc-
tion of the feminine gender specification then results in an in incompatibility with
ADVERTISER.M defined as ADVERTISER.M = ADVERTISER.M.F 1 MALE.

The resulting context model
is. AGENT.
SO-9681 ADVERTISER.M.01 — for ETW.SCHICKEN_01

is . THEME _for
HUMAN.M.F_01 ETW.SCHICKEN_01

was the one used in the parses of Experiment 3. Integrating this context model
should suffice to induce the 0BJA-SUBJ reading on SO-9681: due to a gender con-
straint on ‘Werber’, this word now only has one cross-modal match, namely the
individual ADVERTISER.M_01. Following from this, THEME dependencies are vetoed
for the dependant ‘Werber’ such that the parser assigns it an AGENT dependency,
leaving ‘sie’ with the THEME dependency. But why, then, is this behaviour not ob-
served for this context model and SO-9681 under the conditions of Experiment 37

The answer to this question lies in the realisation that, so far, we have only con-
sidered concept compatibilities in our argument — and according to those, the de-
scribed context model should indeed have effected the 0BJA-SUBJ analysis. However,
we have not yet questioned whether the vetoes resulting from context integration
with a context compliance of 0.8 are indeed strong enough to override the linguistic
preferences.

!Note that in line with the other context models we have used so far, we omit the modelling of number.
While the CIA supports the inclusion of number, so far, the number of entities instantiated in the context
model was not needed as relevant information in cross-modal matching.
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statt dessen schicken sie Werber von Haus zZu Haus

THEME

Figure 10.9: Raising context compliance to 0.9 effects the correct linguistic analysis for sentence
S0-9681 with the non-default 0BJA-SUBJ context model.

To pursue this point further, we investigated for SO-9681 how strong visual context
integration needs to be enforced in order to override the default analysis, i.e., we
studied to which value of context compliance the non-default reading is obtained
when integrating the non-default context. To do so, we employed 15 iterations of
simple interval bisection on [0, 1], the interval of possible context compliance values.
The switch value for SO-9681 was found to be 0.89, i.e.. WCDG2 returns the de-
fault parse for context compliance values below 0.89. Since in Experiment 3 context
integration was performed with a context compliance of 0.8, we now understand
why the default parse was received despite expecting the contrary based on con-
cept compatibility considerations: The weight of the integration constraints of 0.2
is simply not hard enough to enforce the non-default reading against the pressure
created by the linguistic preferences. When we re-parse SO-9681 with the HUMAN.F-
based context model and a stronger context compliance of 0.9, indeed the desired
non-default 0BJA-SUBJ reading in Figure 10.9 is received.

We can summarise the discussion of Experiment 3.4 with the central insight that
the successful context-based modulation of linguistic dependencies requires a careful
balancing of linguistic and contextual preferences. The effect of the visual contex-
tual preferences upon linguistic analysis largely depends on two factors, namely on
the concept compatibilities between the concepts activated in the linguistic and non-
linguistic modalities and the hardness with which visual context is integrated into
linguistic processing.
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10.6 Conclusions

The experimental results presented in this chapter illustrate the effect of soft con-
text integration upon linguistic processing in our model. By integrating contextual
information via soft constraints, visual context loses the absolute dominance over
linguistic analysis that it had under the experimental conditions of hard integra-
tion. Soft integration allows for contextual preferences to be overruled by linguistic
preferences if and when the latter are stronger. Major benefits of our model are
its capability to incorporate conflicting linguistic and contextual information in a
uniform linguistic representation, the ability to diagnose which linguistic and con-
textual preferences are in conflict with a given structural analysis, and the possibility
to adjust the strength with which contextual information is integrated.

Experiments 3.1 and 3.2 showed that soft integration permits to incorporate con-
textual information with the potential of avoiding an adverse effect on the linguistic
analysis of contextually unrelated sentence parts. Whether or not context integra-
tion indeed maintains the structural integrity of unrelated sentence sections depends
on the delicate balance between linguistic and contextual constraints for the given
sentence. Soft context integration can only override linguistic constraints that are
softer than the integration constraint. Conversely, a linguistic constraint needs to
be harder than the integration constraint in order for the linguistic preference to
override the contextual preference.

In comparison with hard integration, we observed a decrease in processing times
and the number of constraint evaluations as well as an increase in the number of
structural candidates for soft integration of non-empty context models. We have
advanced an argument to account for this observation based on the notion that the
retention of candidate structures in the hypothesis space has two beneficial effects
with regards to processing time: it results in easier structural transitions between
the interim transformation structures and provides frobbing with better directional
guidance for the structural transformations to attempt next.

The results of Experiments 3.3 and 3.4 demonstrate that our model of context inte-
gration can also be applied successfully to unrestricted language input. Our obser-
vations support the view that the preferred linguistic analysis is afforded by a careful
balancing act between linguistic and contextual preferences. We have highlighted
the importance of concept compatibility in the process of cross-modal matching and
discuss some of the challenges that result for context modelling.

In the following chapter we will expand further on the effect of grounding upon con-
text integration in our model. Concretely, we will discuss how different degrees of
concept specificity in grounding affect context integration. We explain in detail how
our model exploits ontological properties of the concepts instantiated in a context
model and illustrate the power of the resulting inferences.
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Chapter 11

The Effect of Grounding on
Cross-Modal Matching

In the experiments discussed so far, we have modelled situations in which the visual
modality instantiated precisely those concepts that were also activated in the lingu-
istic modality. While this might be an acceptable approximation in a closed domain
or under strong top-down expectations, it is unrealistic to assume that bottom-up
visual processing will always be able to identify instantiations of object or situation
concepts unambiguously. To grasp the gist of a situation, it is not necessary to
perform a complete classification of the participating entities and the situation in-
volved.

In this chapter we hence investigate how conceptual underspecification in the repre-
sentation of visual context affects linguistic processing in our model. As we will see,
our model is capable of accommodating uncertainty arising from the grounding of
underspecified concepts. In exploiting the ontological properties of underspecified
concepts instantiated in the visual modality, cross-modal integration in our model
exhibits robustness against grounding uncertainties of visual perception.

11.1 Experimental Motivation

A critical review of the context models employed in the experiments reported in the
preceding two chapters confirms that the tokens in the visual modality instantiate
precisely those concepts that are also activated in the linguistic modality. As an
example, consider the binary and ternary context models for sentence VK-011 that
were integrated in Experiments 2 and 3 and are shown in Figure 11.1.

The concept instance BASKET_01 is modelled to represent the visual percept of an
object referred to as ‘Korb’ basket in the linguistic input. Since the lexicalisation of
the concept BASKET is ‘Korb’, this concept is also activated by the word ‘Korb’ in
the linguistic modality. The setup in these experiments hence models a scenario in
which the objects and situation concepts in the visual scene are perceived to instan-
tiate precisely the same categories that are also activated in the linguistic modality.
Since our model does not include a bidirectional interaction between vision and
language, we cannot justify the instantiation of exactly the same concepts in both
modalities by top-down expectations induced from the linguistic modality. While
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VK-011 ‘Er wusste, dass die Magd der Bauerin den Korb suchte.’

He knew that the farmer’s maid was looking for the basket.
iscTAGENT _for

MAID_01 ETW.SUCHEN_O1
is_.OWNER_for

FARMER.F_01 MAID_01
is.THEME _for

BASKET_01 ETW.SUCHEN_O1

He knew that the maid was looking for the basket for the farmer.
is, AGENT _for

MAID_01 JMD.ETW.SUCHEN_01
is-RECIPIENT _for

FARMER.F_01 JMD.ETW.SUCHEN_01
is. THEME _for

BASKET_01 JMD.ETW.SUCHEN_01

Figure 11.1: The binary and ternary context models for sentence VK-011 as used in Experiments 2
and 3.

top-down expectations do exist in natural systems, they cannot be modelled with
the current level of implementation in our Context Integration Architecture. In-
stead, we need to challenge the tacit assumption in our context modelling so far
that visual and linguistic modalities activate precisely the same concepts.

The instantiation of exactly the same concept in the visual modality as the result
of pure bottom-up processing is unlikely for three reasons: First, visual perception
is typically subject to uncertainty as arises from factors such as insufficient lighting,
full or partial occlusion, visual ambiguity and others. Nonetheless, humans integrate
such underspecified visual scene information into linguistic processing without any
difficulty. Second, natural language exhibits synonymy, i.e., different words can be
used to denote the same or a very similar concept. The integration of visual context
information yields the same result, irrespective of which of these synonyms has been
chosen in the linguistic description of the visual scene. Third, it is impossible to
make a general prediction as to which modality is going to provide the conceptually
more specific information, vision or language. In principle, either modality could
be conceptually more specific than the other one such that in some cases the visual
modality may add specific information to the linguistic situation description while in
other cases the linguistic input provides a more specific description of the situation.
Of course, mixed cases may also arise in which one modality is more specific than
the other with respect to one referent, but less specific than the other modality with
regards to another referent.

Important for our argument is that we assume the underlying cognitive processes
that perform the integration of visual context information into linguistic processing
to be the same, irrespective of which modality is conceptually more specific. Based
on this assumption, these cognitive processes must also comprise the capability to
match up more general information from one modality with conceptually more spe-
cific information from the other modality.
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In addition, we consider the capability to process instantiations of generalised con-
cepts a way to model categorisation uncertainty and categorisation ambiguity in
visual perception. Uncertainty in the categorisation of perceived entities can be
modelled via the instantiation of concepts general enough to include all of the
categorisations that are consistent with the visual percept. Categorisation ambigu-
ity, for example, can be modelled by instantiating the union of the distinct concepts
that represent possible categorisations of the perceived entity or situation.

11.2 Approach

Experiment 4 reported in this chapter examines the effect of visual context infor-
mation that is less specific than the given linguistic information. Concretely, we
integrate context models instantiating concepts that are higher up in the T-Box’s
conceptual hierarchy — and hence are more general — than the concepts activated
by the linguistic input. Concept generalisations have been selected based on the
following guidelines: Concepts denoting concrete entities are generalised to the next
higher visually perceivable superclass, e.g., MAID is generalised to HUMAN.F and
SON to HUMAN.M. Abstract concepts such as MOOD or ADDRESS are represented by
their next higher superclass in the ontology, ABSTRACT in this case. Verb-specific
concepts are generalised to the most general concept of the same situation arity.
At this level, verb-specific properties such as lexicalisation and situation valence
are lost. Hence, instances of all binary situation concepts are taken to instantiate
the concept BINARY.SITUATION, and ternary situation concepts are abstracted to
instantiate TERNARY.SITUATION.

In Experiments 4.1 and 4.2, we integrate generalisations of the context models used
in Experiments 3.1 and 3.2 based on the guidelines just outlined. All instantiated
situation concepts are generalisations of the verb-specific situation concepts inte-
grated in the previous experiments.

Critical inspection of the binary context models in Experiment 4.1 raises the question
to what extent the information represented in the context models is really attainable
from inspection of a visual scene. In Section 9.2 we argued that a binary context
model represents a visual scene in which the physical presence of the OWNER is not
mandatory. While the ¢s_OWNER_for relation as such is not visually perceivable, it
can still be the part of the representation resulting from the process of visual under-
standing. Entity recognition in combination with world knowledge can produce a
mental representation that includes an is_OWNER_for relation between two entities.
In the example of VK-011, it is not just an arbitrary maid that has been identified
but a very specific maid, namely the farmer’s maid.

Entity recognition presupposes that the object in question has been uniquely iden-
tified. Our context models, however, only contain instances of more general classes,
which makes unique identification in an open domain impossible. For this reason,
a context representation such as the following would be cognitively implausible for
VK-011:
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is, AGENT _for

WOMAN_01 SITUATION.CONCEPT 01
is.OWNER_for

WOMAN_02 WOMAN_01
is. THEME _for

PHYSICAL.OBJECT_01 SITUATION.CONCEPT_01

If the visual information is so uncertain that is does not permit the identifica-
tion of WOMAN 01 as MAID 01, then the world-knowledge-based association with
FARMER.F 01 or the more general concept instance HUMAN.F 01 via an i¢S_OWNER_for
relation cannot plausibly occur, either.

Based on this argument, we conduct Experiment 4.3 in which we repeat the parse
runs of Experiment 4.1 with modified binary context models. We now use the binary
context representations from which the OWNER assertion has been removed. These
contexts are cognitively more plausible because they only contain information that
can be extracted from the visual scene under the assumed level of perceptual un-
certainty. We investigate whether the information provided in this reduced context
model is still sufficient to constrain the parser to the non-default binary analysis.
Note that there is no need to perform an analogous modification to the ternary
context models from Experiment 4.2 since all relations asserted in those contexts
denote a situation partipant and hence should, in principle, be visually perceivable.

In Experiment 4.4 we examine how strongly the situation information of a visual
scene can be generalised in order to still afford the non-default linguistic analysis. We
study if visual contexts instantiating SITUATION.CONCEPT, the most general situ-
ation concept possible, are still restrictive enough to drive the syntactic modulations
required for the non-default binary analysis. Note that the situation information
integrated in this experiment is so general that all verb-specific information of the
observed visual scene, including lexicalisation, situation valence and situation arity,
is lost.

Our expectation is that with the loss of situation arity information visual context
can no longer constrain the parser’s selection of the correct transitive or ditransitive
verb form. We therefore expect to see no more context-induced modulation towards
the binary analysis for contexts instantiating SITUATION.CONCEPT.

Experiments 4.5 and 4.6, finally, validate our model’s handling of conceptually
generalised context models on a set of PP-ambiguous sentences from a corpus of
unrestricted natural language. For some of the visual contexts it is difficult to argue
how the information they represent can be extracted from a visual scene. However,
each of the context models integrated represents a distinct contextual state of affairs
— be it visually perceivable or not — which corresponds to a unique syntactic analysis
of the PP-attachment ambiguity. As such, we expect the context model to be able
to bias the parser towards one or the other attachment constellation.
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11.3 Setup

In Experiments 4.1 and 4.2 we re-parse the sentences from Experiments 3.1 and
3.2 with generalised three-participant context models centring around instances of
BINARY.SITUATION and TERNARY.SITUATION, respectively. The detailed context
models for these parse runs are given in Appendices V.1.3 and V.1.4.

In Experiment 4.3, the sentences with genitive-dative ambiguity are re-parsed under
soft integration of two-entity contexts centred around an instantiation of the con-
cept BINARY.SITUATION. These context models only contain the assertions of the
1S_AGENT_for and the is_THEME_for relations. The complete list of context asser-
tions is given in Appendix V.1.5.

Experiment 4.4 is performed under integration of the three-entity context models
centring around an instance of SITUATION.CONCEPT. The complete list of con-
text models is provided in Appendix V.1.6. The experimental parameters for the
genitive-dative parses of Experiments 4.1 through 4.4 are summarised in Table 11.1.
Experiments 4.5 and 4.6, finally, are performed on the PP-ambiguous sentences under
integration of the generalised COMITATIVE and INSTRUMENT contexts as given in
Appendices V.3.1 and V.3.2, respectively.

11.4 Results

The parse trees obtained in Experiment 4.1 all comply with the structural scheme
in Figure 11.2. The complete list of parse trees is given in Appendix VI.1.6. Struc-
turally, the trees for integration of the generalised contexts are identical with those
obtained under soft integration of the conceptually specific contexts in Experi-
ment 3.1 (see Section 10.4).

Structural identity with the parse results for the corresponding conceptually specific
contexts under soft integration (see Experiment 3.2 in Section 10.4) is also observed
for the generalised ternary contexts in Experiment 4.2: all sentences comply with
the structural paradigm in Figure 11.3. The complete list of parses is given in
Appendix VI.1.7.

The reduction of the context models in Experiment 4.3 was found to have no ad-
verse effect on the induction of the non-default binary analysis: all afforded parse
trees were compliant with the structural scheme in Figure 11.2. For completeness
of documentation, the full list of parses is given in Appendix VI.1.8.

The analyses obtained for Experiment 4.4 exhibit a pattern, the cause for which
will be discussed in the following section. The majority of the parse trees follow the
structural scheme in Figure 11.3; however, three of the sentences, namely VK-100,
VK-111 and VK-151, follow the structural scheme in Figure 11.2. Using WCDG’s ca-
pability to score manually modified parse trees, we were able to exclude search errors
as a possible cause for the difference in analyses: for sentences VK-100, VK-111 and
VK-151, the binary analysis does indeed receive a better overall score than the
ternary analysis. We list the individual parse trees obtained in Appendix VI.1.9.
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Pattern  Er wusste , dass

I .
Slot 1 2 34

Example Er wusste , dass

ART NN ART NN ART NN VVFIN

[ N B . |
5 6 78 9 10 11 12

die Magd  der Bauerin den Korb  suchte .

Context Compliance

Experiment 4.1
Context Model Scheme

is T AGENT _for

AGENT 0.8 M (Hg ;) BINARY.SITUATION_01
OWNER 0.8 M (Hsg;) is-OWNER-for M (Hg.)

RECIPIENT 0.8

THEME 0.8 M (Hio,5) i THEME Jor BINARY.SITUATION_01
INSTRUMENT 0.8

COMITATIVE 0.8

Context Compliance

Experiment 4.2
Context Model Scheme

is T AGENT _for

AGENT 0.8 M (Hs ;) TERNARY.SITUATION_01
OWNER 0.8
RECIPIENT 0.8 M (Hsg ;) is-RECIPIENT-Jor | 1 p NARY.SITUATION 01
THEME 0.8 M (Hy ;) —sTHEME Jor TERNARY.SITUATION 01
INSTRUMENT 0.8
COMITATIVE 0.8

Context Compliance

Experiment 4.3
Context Model Scheme
is T AGENT _for

AGENT 0.8 M (Hs ;) BINARY.SITUATION_01

RECIPIENT 0.8

is.THEME _for

THEME 0.8 M (Hyo,5) BINARY.SITUATION_01

INSTRUMENT 0.8
COMITATIVE 0.8

Context Compliance

Experiment 4.4
Context Model Scheme
is T AGENT _for

AGENT 0.8 M (Hs ;) SITUATION.CONCEPT_01

RECIPIENT 0.8

is . THEME _for

THEME 0.8 M (Hyo,5) SITUATION.CONCEPT_01

INSTRUMENT 0.8
COMITATIVE 0.8

Table 11.1: Parameter settings for Experiments 4.1, 4.2, 4.3, and 4.4.
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er wusste s dass Slot.5 Slot.6 Slot.7 Slot.8 Slot.9 Slot.10 Slot.11
AGENT THEME AGENT
OWNER THEME

Figure 11.2: Generic parse tree structure for the soft integration of a visual context containing
three generalised entities, two of which participants (context compliance = 0.8).

The verification on unrestricted natural language input yielded the following re-
sults: Integration of PP-directing contexts containing instances of generalised con-
cepts effected the desired syntactic modulations in almost all cases. All sentences
with the exception of PP-3839 in the COMITATIVE case exhibited the desired syntac-
tic PP-attachment modulation.

Of the sentences that displayed successful context integration some yielded a syn-
tactically or semantically incorrect overall analysis. This was the case for sen-
tence PP-17512 in the COMITATIVE case and for sentences PP-3025, PP-17512 and
PP-31611 in the INSTRUMENT case. An analysis of the causes is provided towards the
end of the following section. The resulting parse trees are listed in Appendices VI1.3.2
and VI.3.3, respectively.

11.5 Discussion

The results of Experiments 4.1 and 4.2 clearly show that the CIA successfully inte-
grates conceptually underspecified context models to achieve syntactic disambigua-
tion in the course of linguistic processing. These experiments model the scenario in
which neither the situation entities nor the kind of interaction in which they engage
with each other can be categorised precisely. The only situation information that
the visual scene context can provide in these cases is the arity of the interaction
between the observed entities. Under integration of the binary visual context, this
results in the dismissal of the ternary verb forms as possible readings. Accordingly,
integration of the ternary context penalises the selection of the binary verb forms.
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er wusste , dass Slot.5 Slot.6 Slot.7 Slot.8 Slot.9 Slot.10 Slot.11
AGENT THEME AGENT

RECIPIENT

Figure 11.3: Generic parse tree structure for the soft integration of a visual context containing
three generalised entities, all of which participants (context compliance = 0.8).

In contrast to the other syntactic ambiguities studied in this thesis, genitive-dative
ambiguity has an effect on verb valence: the GMOD/OWNER reading requires the bi-
nary verb form while the 0BJD/RECIPIENT reading needs the ternary verb form. We
expect visual context to lose its constraining effect upon the resolution of genitive-
dative ambiguities when the instantiated situation concepts become so general that
their situation arity information is lost. They will then fail to restrict the selection
of homonyms with the appropriate valence in the parser.

Increasing the generality of concepts instantiated in visual context typically has two
effects: both the number of cross-modal matches per homonym and the number
of homonyms receiving a cross-modal match increase. The less specific a modelled
visual percept is conceptually, the less constraining its effect upon linguistic pro-
cessing will be.

Table 11.2 juxtaposes the cross-modal matches assigned by the PPC for sentence
VK-011 under soft integration of visual contexts that instantiate concepts of increas-
ing generality. In that table, concept generality increases across columns from left
to right. It is plain to see that the instantiation of more general concepts results
in a tendency towards more cross-modal matches per homonym and towards more
homonyms receiving cross-modal matches.

The cross-modal matches in Table 11.2 also illustrate why the integration of a con-
text model centred around an instance of BINARY.SITUATION succeeds in enforcing
the non-default analysis in the same way as the conceptually specific context: both
contexts assign cross-modal matches to the binary verb forms. All other homonyms
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from the same slot are left without cross-modal matches. Those homonyms con-
sequently receive no predictions and are subject to PPC vetoing, which leads the
parser to prefer the homonyms that have a cross-modal match. As can be seen from
the table, cross-modal matching assigns the same cross-modal matches, irrespective
of whether we integrate a conceptually specific or an underspecified situation con-
text. For this reason, both the situation-specific and the conceptually underspecified
situation context have the same effect on linguistic analysis. Experimentally, this
was confirmed in Experiment 4.1.

The results of Experiment 4.2 can be argued for on the same grounds, the only differ-
ence being that the instantiation of TERNARY.SITUATION favours the ternary verb
forms rather than the binary ones and imposes vetoes on all other verb homonyms
of Slot.11 in that sentence.

The explanation for the outcome of Experiment 4.3 follows the same rationale: The
contextual influence of BINARY.SITUATION_01 favours the selection of a binary verb
form in the parser. A ternary analysis would incur penalties from the integration
constraints of all three participant roles as the context model only asserts an in-
stance of BINARY.SITUATION. The binary analysis, on the other hand, incurs only
one contextual penalty, namely for the OWNER dependency. Since the latter has not
been asserted in the reduced context model, its assignment in the linguistic analysis
gives rise to an integration constraint violation. With just one integration constraint
violation as opposed to three — as would result from the selection of a ternary verb
form in linguistic analysis —, the parser favours the binary analysis under integration
of the two-entity binary context.

Extending this line of argument, we expect the disambiguating effect of visual con-
text to break down once the context model instantiates SITUATION.CONCEPT, the
most general situation concept available. In contrast to all other situation concepts
in the ontology, this concept carries no situation arity information.

As expected, the integration of the two-entity contexts that centre around the in-
stance SITUATION.CONCEPT.01 fails to induce the binary analysis consistently. Most
of the structures afforded follow the structural paradigm of the ternary situation
analysis and thus comply with the linguistic default preferences.

The question remains: If the hypothesis is correct that contexts instantiating in-
stances of SITUATION.CONCEPT cannot drive the binary analysis, why then do not
all sentences in Experiment 4.4 afford the ternary analysis? The reason for this
becomes apparent when we consider the integration constraints that are violated by
the individual solution structures selected by WCDG2. Their constraint violations
are listed in Table 11.3.
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ETW.SUCHEN_01,

Cross-Modal Matches in Visual Context

BINARY.SITUATION_O1,

SITUATION.CONCEPT_01,

Homonym MAID_01, FARMER.F_01, HUMAN.F_01, HUMAN.F_02, HUMAN.F_01, HUMAN.F_02,
BASKET_01 PHYSICAL.OBJECT-01 PHYSICAL.OBJECT_01
er_PPER {BASKET_01} {PHYSICAL.OBJECT_01} {PHYSICAL.OBJECT_01}
er_FM {BASKET_01} {PHYSICAL.OBJECT_01} {PHYSICAL.OBJECT_01}
er_NE {BASKET_01} {PHYSICAL.OBJECT_01} {PHYSICAL.OBJECT-01}

wusste VVFIN first
wusste _VVFIN_third

Magd_NN
Magd_FM
Magd_NE

Bauerin NN
Bauerin_FM
Bauerin_NE

Korb_NN
Korb_FM
Korb_NE

suchte VVFIN_first_past_-—
suchte VVFIN_first_past_aip
suchte VVFIN first_past_aip+d
suchte VVFIN first_present_-
suchte VVFIN first_present_aip
suchte VVFIN first_present_aip+d
suchte VVFIN_third_past_-
suchte VVFIN_third past_aip
suchte_VVFIN_third_past_aip+d
suchte VVFIN_third present_-
suchte_VVFIN_third_present_aip
suchte_VVFIN_third present_aip+d

{}
{}

{MAID_01}
{MAID_01}
{MAID_01}

{FARMER.F_01}
{FARMER.F_01}
{FARMER.F_01}

{BASKET-01}
{BASKET_01}
{BASKET_01}

{
{ETW.SUCHEN_01}
{}
{
{ETW.SUCHEN_01}
{
{
{ETW.SUCHEN_01}
{}
{

{ETW.SUCHEN_01}

{

{BINARY.SITUATION_01}
{BINARY.SITUATION_01}

{HUMAN.F_01, HUMAN.F_02}
{HUMAN.F_01, HUMAN.F_02}
{HUMAN.F_01, HUMAN.F_02}

{HUMAN.F_01, HUMAN.F_02}
{HUMAN.F_01, HUMAN.F_02}
{HUMAN.F_01, HUMAN.F_02}

{PHYSICAL.OBJECT-01}
{PHYSICAL.OBJECT_01}
{PHYSICAL.OBJECT_01}

{
{BINARY.SITUATION_01}
{}
{
{BINARY.SITUATION_01}
{
{}
{BINARY.SITUATION_01}
{}
{

{BINARY.SITUATION_01}

{

{SITUATION.CONCEPT_01}
{SITUATION.CONCEPT_01}

{HUMAN.F_01, HUMAN.F_02}
{HUMAN.F_01, HUMAN.F_02}
{HUMAN.F_01, HUMAN.F_02}

{HUMAN.F_01, HUMAN.F_02}
{HUMAN.F_01, HUMAN.F_02}
{HUMAN.F_01, HUMAN.F_02}

{PHYSICAL.OBJECT-01}
{PHYSICAL.OBJECT_01}
{PHYSICAL.OBJECT_01}

{SITUATION.CONCEPT_01}
{SITUATION.CONCEPT_01}
{SITUATION.CONCEPT_01}
{SITUATION.CONCEPT_01}
{SITUATION.CONCEPT_01}
{SITUATION.CONCEPT_01}
{SITUATION.CONCEPT_01}
{SITUATION.CONCEPT_01}
{SITUATION.CONCEPT_01}
{SITUATION.CONCEPT_01}
{SITUATION.CONCEPT_01}
{SITUATION.CONCEPT_01}

Table 11.2: The cross-modal matches assigned for context models instantiating concepts of different degrees of specificity.
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Dependencies that violate

Sentence ID an integration constraint Dependant Regent
VK-011 AGENT Slot.1 Slot.2
THEME Slot.4 Slot.2

RECIPIENT Slot.8 Slot.11

VK-226 AGENT Slot.1 Slot.2
THEME Slot.4 Slot.2

RECIPIENT Slot.8 Slot.11

VK-233 AGENT Slot.1 Slot.2
THEME Slot.4 Slot.2

RECIPIENT Slot.8 Slot.11

VK-247 AGENT Slot.1 Slot.2
THEME Slot.4 Slot.2

RECIPIENT Slot.8 Slot.11
VK-263 AGENT Slot.1 Slot.2
THEME Slot.4 Slot.2

RECIPIENT Slot.8 Slot.11
VK-274 AGENT Slot.1 Slot.2
THEME Slot.4 Slot.2

RECIPIENT Slot.8 Slot.11
VK-306 AGENT Slot.1 Slot.2
THEME Slot.4 Slot.2

RECIPIENT Slot.8 Slot.11
VK-100 THEME Slot.4 Slot.2
VK-111 THEME Slot.4 Slot.2
VK-151 THEME Slot.4 Slot.2

Table 11.3: Integration constraint violations for the parse trees in Experiment 4.4.
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In contrast to the majority of the sentences in Experiment 4.4, the context models for
VK-100, VK-111 and VK-151 assert the entity HUMAN.M_01 as an AGENT. This entity
instantiates a concept that is incompatible with any concept subsumed by FEMALE.
Consequently, HUMAN.M_01 becomes the cross-modal match for the homonyms in
Slot.1 and Slot.6. Furthermore, SITUATION.CONCEPT.01 is identified as the cross-
modal match for the verb form in Slot.2. With the contextual assertion of

is T AGENT _for
HUMAN.M_01 SITUATION.CONCEPT_01

the PPC admits the AGENT dependency from Slot.1 to Slot.2. The parse trees for
VK-100, VK-111 and VK-151 therefore do not violate the integration constraint for
the AGENT dependency. For these sentences, the parser resolves the genitive-dative
ambiguity in favour of the binary analysis because the OWNER dependency can be
assigned without causing the violation of an integration constraint: The context
models for VK-100, VK-111 and VK-151 contain no assertion of an entity that
would be compatible with the concept activated by the dependant of the OWNER de-
pendency in Slot.8. In VK-100, e.g., ‘Schauspielerin’ actress in Slot.8 activates the
concept ACTRESS which is conceptually incompatible with all other entities asserted
in the context model. As a result, none of the homonyms in this slot have cross-
modal matches, no predictions are made and no vetos are imposed for dependencies
with Slot.8 as their dependant.

We emphasise that the parser favours the binary analysis for VK-100, VK-111 and
VK-111 not because of a constraining influence of the asserted situation concept’s
arity in the context model. This was the mechanism by which the genitive-dative
ambiguities were resolved in the previous cases where situation arity information
was available for the contextually instantiated situation concept. In the case of Ex-
periment 4.4, the binary analysis is afforded because it represents the more plausible
interpretation of the input sentence given the high level of generality of the concepts
instantiated in visual context.

A final comment is owed to the cognitive plausibility of visual contexts centring
around instances of SITUATION.CONCEPT. FEffectively, these context models repre-
sent percepts of visual contexts in which the information contained is so general that
neither the nature of the interaction between the observed entities nor the arity of
the interaction are known. In our view it is highly questionable whether the instan-
tiation of such concepts can serve a cognitive purpose — and hence whether such
percepts can arise in natural systems at all. We may rephrase this doubt as the
question whether SITUATION.CONCEPT is encoded in the human cognitive system at
all. A substantial amount of further investigation in the area of cognitive psychology
and cognitive science will be needed to answer this question conclusively.

For our model, we conclude that the generalisation of the central situation concept
to a degree at which situation arity information is lost, results in the breakdown of
its power to effect the systematic disambiguation in verb-related syntactic ambigu-
ities such as genitive-dative ambiguity.
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WCDG2 Score

Sentence ID Context

Frobbing Manually Corrected
PP-3839 COMITATIVE 3.984-1073 4.121-1073
PP-17512 COMITATIVE 6.882-107! 7.061-1072
PP-3025 INSTRUMENT 1.638-1073 5.460-1073
PP-17512 INSTRUMENT  2.750-1072 2.821-1073
PP-31611 INSTRUMENT  4.245-10~4 1.024-1073

Table 11.4: Comparison of scores for the best scored — but incorrect — candidate as found by
WCDG2’s frobbing and the parse tree obtained from manual correction of that solution.

We now turn to the discussion of Experiments 4.5 and 4.6. The integration of
generalised COMITATIVE and INSTRUMENT contexts to direct PP-attachment were
successful in the majority of cases. We provide a causal analysis of those cases
where an incorrect overall analysis was obtained.

The reason for the incorrect overall analysis of sentences PP-3839, PP-3025, and
PP-31611 is a search error in WCDG2. Using WCDG’s manual tree manipulation,
we were able to establish that the best solution scores found by WCDG2 were be-
low the scores for the structurally correct trees. WCDG2 hence failed to locate the
correct tree structures as optimal even though the modelled grammar scores them
higher than the best solutions found by frobbing. The comparison of the numerical
scores found by WCDG2 and those obtained after manual correction of the parse
trees in WCDG2 is given in Table 11.4.

The analyses obtained for sentence PP-17512 under COMITATIVE and INSTRUMENT
context integration are incorrect in a part of the sentence that is unrelated to the
integration of visual context information. While the integration of the PP-directing
contexts as such was successful for this sentence, an incorrect overall analysis was
obtained. The score comparison in Table 11.4 shows that the incorrect analysis was
not the result of a search error in frobbing for this sentence.

The semantically incorrect assignment of the AGENT and THEME dependencies in
PP-17512, combined with the resulting incorrect SUBJ and 0BJA dependency assign-
ments on the syntactic level, result from the standard grammar’s strong preference
for subject-object word order. Syntactically, ‘Renditen’ returns and ‘Agenturen’
agencies in sentence PP-17512 can be labelled as either SUBJ or OBJA. The structure
favoured by WCDG2 is therefore syntactically acceptable — but must be rejected
as semantically unacceptable based on world knowledge.
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The score comparison in Table 11.4 shows that the present form of the grammar
disfavours object-first word order for SUBJ-0BJA ambiguous sentences in the absence
of an additional semantic bias. Such a semantic bias can, of course, be introduced
in the form of additional visual context information. Integrating the representations

is,AGENT _for

GROUP_01 BINARY.SITUATION_0O1
is - THEME _for
ABSTRACT._01 BINARY.SITUATION_O1
is.COMITATIVE_for
HUMAN.M.F_01 ABSTRACT_01
and

is, AGENT _for

GROUP_01 BINARY.SITUATION_O1
is . THEME _for

ABSTRACT._01 BINARY.SITUATION_0O1
is INSTRUMENT _for

HUMAN.M.F_01 BINARY.SITUATION_0O1

as augmented context modes for PP-17512, we do indeed obtain the syntactically
and semantically correct analyses shown in Appendix VI.3.4. These structures ex-
hibit all the desired context-driven syntactic modulations for the SUBJ-0BJA and the
PP-attachment ambiguities.

In summary we can say that the integration of generalised visual contexts suc-
cessfully achieved the desired syntactic modulations for the large majority of PP-
attachment sentences of unrestricted natural language input. The observed errors in
structural analysis were caused by search errors in WCDG2 or by the unavailability
of contextual preferences for the resolution of global ambiguities. While these prob-
lems are caused by factors outside of our model, they do result in a degradation of
the overall quality of analysis under context integration. We conclude that further
grammar modelling effort is needed to improve the detectability of the actual global
optimum by WCDG2. The present state of the role-assigning grammar is capable
of scoring the correct structures higher than those suggested by WCDG2 as global
optima but fails to enable WCDG2 to detect these global optima.

11.6 Conclusions

As Experiment 4 has shown the question how strongly we can generalise the con-
cepts instantiated in visual context in order to still achieve the desired syntactic
modulations cannot be answered in full generality. The degree of permissible concept
generalisation depends on the type of syntactic ambiguity in the input sentence as
well as on the concept properties modelled in the T-Box. For an ambiguity affecting
verb valence, we saw that reliable syntactic disambiguation requires the induction of
situation arity information from visual context. The resolution of syntactic ambigu-
ities that do not affect verb valence, such as PP-attachment, can be achieved with
visual contexts that are specific enough to yield different attachment predictions for
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the constituents in question. A visual context that is so general as to effect the same
predictions for all words in the sentence, e.g. a context instantiating only instances
of THING, i.e. T, loses all of its potential to constrain linguistic analysis.

While this chapter has extensively investigated the effect of concept underspecifi-
cation on context integration in our model, the underspecification of the relations
between the contextual entities has been left untouched so far. It may well be the
case that the perception of a visual scene results in the instantiation of entities joined
by thematic relations that are more general or more ambiguous than the relations
considered so far. We encourage the investigation of this field as part of future work,
both from the perspective of cognitive science and as a potential extension to our
framework’s modelling capabilities.
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Chapter 12

Conclusions

In the preceding 193 pages we have argued extensively for a computational model of
the influence of cross-modal context upon syntactic parsing. Starting with the model
motivation, we collected a set of 32 requirements for the model implementation in
Part T of this thesis. Part II provided detailed model specifications and an in-
depth description of the model implementation. Part III focused on the empirical
validation of the implementation.

This chapter rounds off the thesis with a summary of the overall line of argument
and the central conclusions that result from it. The thesis summary in Section 12.1
is given in the form of an annotated list of the central tenets in this document.
We then draw our final conclusions in Section 12.2. Section 12.3, eventually, is
motivated by the realisation that much more work remains to be done; it closes
with an outlook to future directions of research that arise from and relate to the
work presented in this thesis.

12.1 Thesis Summary

Tenet 1: Ambiguity is an inherent property and a ubiquitous feature of
natural language.

While linguists have a tendency to view ambiguity as a defective or undesirable fea-
ture of natural language, the study of unrestricted natural language in vivo leads to
the insight that natural language abounds with ambiguity. The causes of ambiguity
are manifold and comprise lexical, syntactic, referential and scope ambiguities as
most frequent representatives. In most cases of human communication, ambiguity
is as abundant as it is harmless in the sense that it does not cause critical misunder-
standings. Most linguistic ambiguities pass unnoticed or only become apparent
upon subsequent review, mainly for two reasons: humans either perform automatic
and unconscious disambiguation based on prior knowledge or access to additional
sources of external information; or they simply leave ambiguities unresolved of their
resolution is not strictly required in the given communicative context. The latter
cognitive strategy has been discussed in the literature under the label ‘Good-Enough
Approach’. An important source of external information to support automatic and
unconscious disambiguation is visual scene context.

195
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Tenet 2: One of the human cognitive strategies to support the resolu-
tion of inherent linguistic ambiguity is to access non-linguistic sources
of information such as visual scene context.

In contrast to the majority of artificial systems, humans are capable of processing
language input contextually. This capability allows the enrichment of the purely
linguistic input by additional, possibly non-linguistic information to support dis-
ambiguation. Humans automatically access and integrate their knowledge of the
world, the discourse context, the speaker or author, the domain and many other
factors in order to constrain the set of possible interpretations of a given linguistic
utterance. In the absence of other contextualisations, a listener will try to estab-
lish cross-modal referential links between the linguistic input and entities in the
co-present visual scene.

Tanenhaus et al. used eye-tracking to study the effect of visual scene information
on the processing of syntactically ambiguous sentences. They observed that fixa-
tions in the visual scene closely align with the linguistic stimulus unfolding over
time. Their conclusion was that visual and linguistic processing operate in close
temporal interlock. More importantly, they found that different visual scenes re-
sulted in different patterns of anticipatory eye movements for the same structurally
ambiguous sentence. These findings provide compelling empirical evidence that
linguistic processing and visual context information interact with each other from
the earliest processing stages onwards. Section 2.3 addresses the implications of
these experiments in detail.

Tenet 3: The interaction between visual scene understanding and syn-
tactic processing constitutes a cross-modal interaction of representa-
tional modalities; it is therefore fundamentally different from cross-
modal interactions at sensory level.

Research into multisensory integration has produced a number of remarkable find-
ings over the last three decades. Most notably, the neural substrate for certain types
of cross-modal processing has been identified. It was shown to exhibit superaddi-
tive responses in neuronal activity when processing temporally concurrent bimodal
stimuli. For these cases of cross-modal processing a direct correspondence between
the multimodal stimulus and the neuronal activity has been established. Impor-
tantly, the incoming stimuli are strictly sensory in nature, i.e., they do not convey
a meaning beyond the sensory stimulation they invoke. Processing these stimuli,
typically light flashes and sound beeps, does not require higher cognitive functions
such as the analysis of linguistic meaning or symbolic reasoning.

When we consider the interaction between visual scene perception and language un-
derstanding, we are concerned with cognitively higher and — in terms of processing
— temporally later processes. For a linguistic stimulus to give rise to a semantic
cross-modal interaction with visual understanding, it must first have been perceived
sensorially and then have been decoded semantically. The same holds true for the
interpretation of a visual scene: understanding a visual scene requires the sensory
discrimination of the scene, the categorisation of the entities and situations perceived



Thesis Summary 197

as well as an extraction of the relations identified between those cognised entities.
A semantic cross-modal interaction between vision and language takes place dur-
ing these later processing stages. In contrast to sensory stimuli, visual scenes and
language do carry a meaning beyond the level of the mere sensory stimulation they
invoke. Representationalists argue that they give rise to higher-level symbolic rather
than sensory mental representations. These representations are informationally en-
capsulated in that they have a representational encoding of their own. It is for these
reasons that we consider visual scene perception and language understanding to be
representational modalities. We extensively argue this point in Section 2.1

Tenet 4: The interaction between vision and language 1s mediated by a
shared level of semantic representation.

Sections 2.1 to 2.4 discuss a range of interaction phenomena between visual and
linguistic processing. Both the Stroop effect (Stroop, 1935) and the findings of
Cooper (1974) provide strong empirical support for the claim that the interaction
between visual and linguistic processing is mediated by semantics. In the Stroop
effect, the meaning of a word exhibits a clear modulating effect on the response times
for naming the colour in which the word is printed. Cooper, on the other hand, found
that object fixations in humans are significantly influenced by the meaning of au-
ditory linguistic stimuli presented during fixations. Subjects were much more likely
to fixate those objects that were semantically related to the meaning of the audi-
torily presented linguistic stimulus. These findings were corroborated by Huettig
et al. (2006) who showed that the influence of the linguistic stimulus results from
conceptual rather than associative relatedness.

These empirical observations integrate well into the framework of Jackendoft’s Con-
ceptual Semantics. Specifically, they are consistent with Jackendoff’s Conceptual
Structure Hypothesis (Jackendoff, 1983) which postulates a single, uniform level of
semantic representation as the mediating representation for all cross-modal inter-
actions involving language. We adopt Jackendoff’s cognitive architecture resulting
from Conceptual Semantics as the basis of our computational model. A detailed
discussion of Conceptual Semantics is provided in Chapter 3.

Tenet 5: There are no extant computational models for the influence of
visual scene context upon linguistic processing that mediate the contex-
tual influence upon linguistic processing via a shared level of semantic
representation.

Over the last two to three decades a number of computational models have been re-
ported that successfully model the interaction between vision and language to some
extent. We discuss the more recent ones in Section 2.5.

All of these models apply to a limited domain and are subject to limitations in their
potential to scale up, both with regards to their linguistic and their visual process-
ing scope. Applications arising in the robotics domain exhibit a strong focus on
language in the form of speech and are used primarily for object identification and
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spatial reasoning. The more linguistically motivated implementation efforts such
as Mayberry et al. (2005a,b, 2006) are connectionist approaches that suffer from an
evident lack of linguistic upward scalability. None of the models reported so far have
been derived from an established, comprehensive theory of human cognition. What
was missing, hence, is a model for the influence of visual context upon linguistic
processing that has large or even unrestricted linguistic scope and is not confined
mechanistically to a particular domain. Ideally, this model should be cognitively
motivated with an architecture that can be argued for in the context of an estab-
lished cognitive framework.

Tenet 6: Our computational model implements the semantic mediation
for the influence of visual context upon linguistic processing as hypo-
thesised in Jackendoff’s Conceptual Semantics.

According to Jackendoff’s Conceptual Semantics (Jackendoff, 1983), all sensory
modalities project into Conceptual Structure as the central level of semantic rep-
resentation. The modalities interact with this level of semantic representation via
interfaces that map between the informationally encapsulated representations. Con-
ceptual Structure, in turn, interacts with the syntactic level of representation via
correspondence rules in the syntax-semantics interface. Sensory modalities such as
vision can thus exert an influence upon syntactic processing via Conceptual Struc-
ture as the mediating level of representation.

In our model, we implement precisely this flow of information: Starting from the
assumption that a projection of the visual percept into Conceptual Structure has
already occurred, we propagate the asserted visual context information into syntac-
tic processing. The distinct and informationally encapsulated levels of syntactic and
semantic representation interact via constraints in the syntax-semantics interface.
These constraints act as correspondence rules between the syntactic and the seman-
tic representations.

Tenet 7: The mechanism of assigning cross-modal referential links be-
tween linguistic and contextual entities can be approximated by match-
ing linguistic and contextual entities based on the compatibility of the
concepts they instantiate.

Our model performs the process of cross-modal matching, i.e., the assignment of
cross-modal referential links, based on the compatibility of the concepts activated in
the linguistic modality and the concepts instantiated in the situation-specific repre-
sentation of visual context. As the decision process is based on intrinsic properties of
the activated concepts, it generalises to languages other than German. The Boolean
decision of concept compatibility permits the decision of which entities in visual con-
text are potential referents of a given word in the input sentence and which ones are
not. The detailed description of how homonyms in the input sentence are mapped
to a set of concept instances in visual context is given in Chapter 7.
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With conceptual compatibility as the deciding criterion, our model is even capable
of establishing cross-modal referential links in cases for which the concepts activated
in the two modalities are of different degrees of conceptual specificity. An experi-
mental validation of this capability is reported in Chapter 11.

A short-coming of the implemented Boolean decision criterion is that referential
preferences based on different degrees of conceptual overlap cannot be expressed.
A more realistic model of cross-modal matching should include the capability of
expressing weighted representations of lexical meaning and a graded measure of
conceptual similarity.

Tenet 8: The proposed model achieves selective syntactic modulations
based on the integration of non-linguistic propositional information rep-
resenting entities and their thematic relations in a visual scene context.

We use non-linguistic propositional representations to model the entities observed in
a visual scene context. Entities are related to each other by thematic relations. This
contextual information is propagated into syntactic analysis via a shared level of se-
mantic representation equivalent of Jackendoff’s Conceptual Structure. The PPC
assigns penalties for certain semantic dependencies based on the context model: de-
pendencies compliant with the assertions in visual context are admitted while other
dependencies are penalised. Details of the algorithm are described in Section 7.4.
The integration constraints in the role-assigning grammar use these penalties to
constrain the shared semantic representation. The asserted visual context can thus
exert a direct influence on semantic representation. Correspondence rules in the
syntax-semantics interface propagate the imposed semantic constraints into syn-
tactic representation by ensuring that the syntactic representation of the sentence
always is consistent with the shared semantic representation.

In summary, the representation of visual context information gives rise to con-
straints on the shared level of semantic representation. The semantic representation
modulates attachments in the syntactic representation via the correspondence rules
in the syntax-semantics interface. Overall, the syntactic modulations based on vi-
sual scene context are achieved with semantic mediation.

Tenet 9: The proposed model for the influence of visual context upon
syntactic processing is capable of diagnosing which aspects of linguistic
analysis conflict with contextual preferences.

Human cognition is very well adapted to the processing of a multitude of diverse
cross-modal stimuli. In particular, human cognition can still arrive at a consistent
interpretation of a linguistic input even if the visual scene context is in semantic
conflict with that analysis. Moreover, human cognition is not only able to iden-
tify that a conflict between linguistic analysis and contextual expectation exists,
human cognition can also specify concretely which aspects of linguistic analysis con-
flict with contextual expectations. Noteably, our model also provides this capability.
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With hard integration, conflicts between linguistic and contextual preferences cause
hard constraint violations and hence result in the dismissal of the corresponding
structure from the hypothesis space. Hard context integration, therefore, does not
allow any conflicts between linguistic and contextual preferences to arise. To exploit
WCDG2’s diagnostic capabilities for conflicting contextual and linguistic preferences
we need to study soft context integration.

Whether or not a given conflict is resolved in favour of the contextual or the linguistic
preference depends on the hardness of the preferences involved. WCDG2 will always
attempt to satisfy the harder constraint. In cases where the linguistic preference is
harder than the contextual one, WCDG?2 satisfies the linguistic constraint at the cost
of incurring a violation of the corresponding integration constraint. In Experiment 3
we observed this behaviour for the semantic dependency assignments that were not
endorsed by visual context. The violated integration constraint then appears in the
list of constraints violated by the given solution candidate to highlight a mismatch
between the assigned linguistic analysis and the contextual preferences. WCDG2's
list of violated constraints can hence be used as a diagnostic tool to detect conflicts
between the linguistic analysis and the contextual assertions in the context model.

12.2 Conclusions

In this thesis we have provided a comprehensive description of a fully operational
computational model for the influence of cross-modal context upon syntactic parsing.
Our model integrates propositional, non-linguistic information from a representation
of visual scene context into the parsing process of a syntax parser. The model is
the result of an interdisciplinary research effort in the fields of informatics, cognitive
science and linguistics.

The proposed Context Integration Architecture comprises the following components:
1. WCDG2, a weighted-constraint dependency parser, for linguistic processing,
2. the T-Box as an ontology to represent situation-invariant semantic knowledge,
3. an A-Box or context model to represent situation-specific semantic information,
4. FaCT++ as an OWL description logic reasoner over A-Box and T-Box, and

5. the PPC as a scoring component that computes and communicates depen-
dency score predictions to the parser based on A-Box and T-Box queries with
the reasoner.

The model uses WCDG2’s extended predictor interface to establish a communica-
tion between the parser and the PPC. The PPC computes homonym-specific de-
pendency score predictions prior to parse time. These score predictions express
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the acceptability of a given semantic dependency in the linguistic analysis in view
of the modelled visual context information. The dependency score predictions are
accessed at parse time and constrain the shared semantic representation. The se-
mantic representation further constrains the syntactic representation by means of
the correspondence rules in the syntax-semantics interface. These rules stipulate
correspondences between semantic and syntactic dependency constellations.

To compute score predictions, the model establishes cross-modal referential links in a
sequence of two steps. In contrast to other existing implementations, especially con-
nectionist approaches, these steps are mechanistically transparent and predictable:
First, bottom-up grounding in the linguistic modality assigns each word a set of
concepts from the T-Box that denote its meaning. This set-based approach allows
the robust modelling of lexical polysemy. In the second step referred to as cross-
modal matching, the words in the input sentence are assigned to referents in the
visual scene context. A context entity that instantiates a concept which is com-
patible with at least one of the concepts activated by a given word will be assigned
as a cross-modal match. The model attempts to assign cross-modal matches for all
words that have a concept-based meaning representation, including verb forms that
denote situation rather than object concepts. Most extant models, especially from
the robotic domain, restrict their cross-modal matching to linguistic entities denot-
ing physical objects in visual context. We argue that assigning cross-modal matches
based on the criterion of conceptual compatibility is a language-independent process
that supports the generalisation of our model to languages other than German.
With the use of the weighted constraints in WCDG2, our context integration archi-
tecture is capable of expressing degrees of linguistic acceptability. We have shown
how soft context integration permits the integration of contextual information that
conflicts with the linguistic default preferences. The list of violated constraints pro-
vides valuable diagnostic feedback about the identified mismatches between lingu-
istic and contextual preferences in those cases.

We highlight that our model architecture implements central aspects of Jackendoft’s
Conceptual Semantics; all cross-modal interactions with the syntactic level of repre-
sentation are mediated by Conceptual Structure as the single, unified level of seman-
tic representation. Conceptual Structure interfaces with both the visual modality
and the representation of syntax. Interfaces containing modality-specific correspon-
dence rules map between these informationally encapsulated levels of representation.
In our model, we make the assumption that the visual modality already has projected
its percept into Conceptual Structure. Our representations of visual context hence
reflect the outcome of the process of visual understanding. As such, context models
contain visually perceived information that may be enriched by world-knowledge
and the results of elementary symbolic reasoning.

We have successfully employed our model for the context-driven disambiguation of
three types of global syntactic ambiguities in German: genitive-dative ambiguity in
feminine singular nouns, subject-object ambiguity and PP-attachment. Following
the evaluation of the extended grammar and the selection of linguistic material to
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study (Experiment 1), we investigated the model’s behaviour with regards to hard
integration (Experiment 2), soft integration (Experiment 3) and conceptual under-
specification (Experiment 4). The grammar evaluation revealed its good to very
good precisions for the syntactic analysis of unrestricted text in combination with
strong limitations in coverage. Hard context integration demonstrated the general
technical feasibility of propagating contextual information into linguistic analysis.
Hard integration successfully enforces full compliance of the linguistic analysis with
visual context. This strong compliance comes at the price of potentially adverse
effects on the quality of the semantic analysis in referentially unrelated parts of the
input sentence.

Soft context integration resulted in an overall improvement of the model’s integra-
tion behaviour. Under soft integration, contextual information influences linguistic
analysis as a graded preference that can be overridden by sufficiently strong linguistic
preferences in the parser’s grammar. The result is a more realistic model of vision-
language interaction in which contextual preferences are strong enough to influence
the process of linguistic analysis but still weak enough to be overruled by harder
linguistic preferences. This balance produces a semantically and syntactically well-
formed linguistic analysis that is compliant with the asserted context information.
In case of conflicting preferences, the list of violated constraints provides valuable
diagnostic information about the semantic dependencies that have been assigned in
the linguistic analysis but are inconsistent with visual context.

When assigning cross-modal referential links, the presented model can exploit the
world-knowledge encoded in the T-Box’s conceptual hierarchy. In doing so, cross-
modal matches can even be assigned in cases in which the conceptual specificity
between visual and linguistic modality differ. This behaviour is in line with our
expectation that cross-modal interactions should result in a support of the percep-
tually less specific modality by the perceptually more specific modality.

We have emphasised that concept generalisation can be utilised to model uncertainty
and ambiguity in the categorisation of visual percepts. Our findings show that — de-
spite the system’s robust handling of conceptual underspecification — visual context
does need to maintain a certain degree of conceptual specificity in order to main-
tain its disambiguating power. As would be expected, the concepts instantiated in
visual context have to exhibit a sufficient degree of conceptual specificity to be able
to exert a biasing effect upon linguistic analysis.

While our model is reasonably successful at integrating visual context information
into syntactic parsing, it is also subject to a number of important limitations. De-
spite the ample empirical evidence for a bidirectional interaction between vision
and language, our model is technically confined to a unidirectional influence of vi-
sion upon linguistic processing. Effects such as language-driven visual behaviour
as in visual attention shifting or visual search are outside the scope of the present
implementation of the model. The model is primarily constrained by the techni-
cal limitations of the predictor architecture. The use of this architecture is based
on the assumption that the visual context remains unchanged during parse time.
This constitutes a significant simplification, especially in highly dynamic visual en-
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vironments where visual contexts change rapidly as the linguistic stimulus unfolds.
Our model furthermore employs a simplified approach to the representation of word
meaning: a word is mapped to a set of concepts, each of which is taken to con-
tribute equally to the word’s meaning. This approach does not permit to express
referential preferences in case two words can refer to the same entity in visual con-
text. Another limitation of the model arises from the limited linguistic scope of its
role-assigning grammar. As a result of the semantic mediation of the contextual
influence on syntactic parsing, context integration can only succeed for sentences
within the linguistic scope of the role-assigning grammar. The corpus studies per-
formed on unrestricted German language input suggest that further modelling effort
is required in order for WCDG2’s grammar to reach full coverage of German.

We see the model’s primary contribution to the scientific community in the following
three aspects:

1. The Context Integration Architecture is the first working implementation of
visual context integration centred around a symbolic constraint-based parser.

2. The model is scalable, has a substantial linguistic scope and can be applied to
arbitrary domains.

3. The model architecture is cognitively motivated and realises central aspects
of Conceptual Semantics, an established and comprehensive theory of human
cognition.

12.3 Directions for Future Research

The model presented in this thesis achieves the integration of propositional semantic
context into the process of syntactic parsing in a weighted-constraint dependency
parser. Contextual information is propagated into the syntactic level of analysis
via the syntax-semantics interface which specifies correspondence rules between the
syntactic and semantic representations. Visual contexts are asserted as concept
instantiations joined by thematic relations. The model’s capabilities to integrate
contextual information under a number of experimental conditions such as hard and
soft integration have been discussed in extenso.

We have also highlighted that the model is subject to a number of significant limita-
tions. These limitations offer perspectives for further scientific enquiry. The follow-
ing list addresses some of the central issues associated with our model and points
out directions for further study in the computational modelling of vision-language
interactions.
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1. Graded Conceptual Representations

While context integration can be performed successfully with the model in its
current form, the underlying mechanisms are based on a number of simplifica-
tions that may be remedied in the context of future investigations. To begin
with, the concept grounding of words in the input sentence is presently set-
based; an input word can either activate a given concept or not. Clearly, equal
activation of all concepts contained in that set is a somewhat crude approx-
imation of word meaning. More realistic would be a weighted representation
of concept activation such that more salient aspects of meaning could be em-
phasised over less important ones. A suitable internal representation of the
different degrees of concept activation may be in the form of fuzzy sets.

The inability to express conceptual preferences in our model carries over into
the process of cross-modal matching. Whether or not a word is assigned a
cross-modal match is currently a purely Boolean decision based on concept
compatibility. For words with several cross-modal matches, our model offers
no way to express a preference for one of those cross-modal matches based
on word meaning. Similarly, two words in the input sentence may indeed be
assigned the same cross-modal match. It would therefore be desirable to be
able to express degrees of preference with which entities in the input sentence
establish reference to the entities in cross-modal context. Incorporating these
nuances into the process of score prediction would result in a more differen-
tiated and cognitively more plausible influence of visual scene context upon
linguistic processing.

. Automated Context Model Generation

In its present form, our model integrates context models that are generated
manually using an ontology editor. This approach defies scalability and pre-
vents the processing of larger text segments with visual context integration.
It would be desirable to be able to generate context models automatically,
e.g., based on input from computer vision. This would require techniques for
image and visual scene understanding. While both of these are in the focus
of extensive research activity, the scientific challenges involved are substantial,
especially in open domains.

Alternatively, our model may be extended to integrate contexts other than
cross-modal context. In principle, the context representations can also be
adapted to represent the semantic analysis of preceding discourse. A high-
level sketch of how incremental context model generation from discourse could
be approached is given in McCrae and Menzel (2007, Section Future Work)
where we propose to build up a representation of discourse context based on
the incremental addition of semantic analyses of sentences in the discourse. We
see the main challenge of this approach in devising a suitable heuristic for the
integration and fusion of new discourse information into an existing context
representation.
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3. Perceptual Uncertainty at Relation Level

The inclusion of the modelling parameter context compliance was a first step
towards accommodating the fact that visual perception — and in fact all sen-
sory perception — is subject to degrees of uncertainty. Our model is capable of
handling conceptual underspecification as the result of perceptual uncertainty
or ambiguity. So far, however, our model does not permit the modelling of
uncertainty in the perception of thematic relations between perceived entities.
It may well be the case that two entities A and B are perceived but that the
perceiver is uncertain as to which thematic relation these entities entertain
with each other. Possible routes towards the processing of uncertain thematic
relations may be the introduction of new roles to represent certain types of
uncertainty or the support for asserting several thematic roles between two en-
tities. In both cases an extension to the model’s scoring and vetoing algorithm
as well as the role-assigning grammar would be required.

4. Bidirectional Vision-Language Interaction

All studies of vision-language interactions at sentence level in humans suggest
that the interaction between the two modalities is bidirectional. As a direct
consequence of the predictor architecture, our model presently implements a
unidirectional influence of vision upon language processing. We further assume
that each context model only represents a single situation and thus reflects the
perceiver’s focus of attention in the visual scene. This excludes a number of
important vision-language interaction phenomena from the modelling scope.
Shifts in visual attention, the perception of multi-situation contexts, the inte-
gration of visual contexts that change at parse time, the inclusion of language-
initiated top-down effects that give rise to expectation-driven behaviour, as in
active vision or visual search, are all outside of our model’s scope. For a cog-
nitively more plausible modelling of vision-language interactions, these factors
would need to be included.

A direct implication of attempting to model a bidirectional vision-language
interaction must be the dismissal of the predictor architecture in favour of an
online-access to contextual information. If the state of linguistic processing at
a given point in time affects the information represented in the context model,
an online communication between the parser and the context model must be
established at that point.

With an online communication between parser and context model in place,
another limitation of the model could be improved, namely the cross-modal
matching of words as isolated units. This limitation is a direct consequence
of the predictor architecture which is forced to generate score predictions at a
point in time when no syntactic information is yet available. Given an online
access, syntactic information accumulated at some point in parse time could
be utilised for more specific access to contextual information. As an example,
consider a sentence about two cars, a green one (car 1) and a red one (car 2).
When syntactic processing has identified the adjectives as dependants of the
corresponding nouns, entity-specific context information could be extracted
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for each one of them, i.e., it would be possible to assign different contextual
integration scores for the semantic dependencies of car 1 and car 2. This
differentiation cannot be achieved with cross-modal matching at word level in
the present implementation of the model.

. Incremental Processing

An important feature of human cognition in general and linguistic processing
in particular is that they evolve over time. Linguistic processing proceeds in
close temporal alignment with the unfolding of the linguistic stimulus. WCDG2
as used in our implementation, however, processes complete sentences in its
search for the optimal solution candidate. With the functional extension of
Beuck (2009), a WCDG derivative is available that can also parse input sen-
tences incrementally. Adding one slot of the input sentence per time increment,
this version of WCDG evaluates sentence fragments of growing size until the
entire sentence has been parsed.

In our view, the inclusion of incrementality into linguistic processing in com-
bination with an implementation of a bidirectional interaction between vision
and language offers the most promising perspective for future research that
arises from our model. Modelling predictions that include incremental and
bidirectional language-vision interactions can readily be evaluated against ac-
tual behavioural results such as eye-tracking evidence from psycholinguistic
experiments or EEG-data from neurophysiological measurements.

Model Coverage

While the extension of model coverage is not primarily a scientific question, it
poses challenges in language engineering. Seeing that the implementation of
this model also involved a significant part of natural language engineering, we
consider it valid to include this aspect in the list of future directions.

Scaling the model — preferably to the level that unrestricted natural language
input can be processed without the need for further modifications to the
lexicon, the grammar or the T-Box — requires further extensions to the se-
mantic language processing capabilities of the system. At present, the latter
are primarily limited by the scope of the semantically annotated lexicon, the
T-Box and the role-assigning grammar. While manual extensions to these
resources are conceivable, the overall effort involved in doing so may be sub-
stantial. We estimate the additional effort to achieve this goal between one
and three person years.

In view of this substantial grammar modelling effort it may be of interest to
consider extension approaches based on existing linguistic resources such as
semantic lexical networks, large-scale general purpose ontologies etc. Alterna-
tive approaches to this challenge could comprise the automated extraction of
the required information from semantically annotated corpora.
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At the time of writing, we are aware of intense research activity regarding some of
these aspects. It is our sincere hope that some of the research questions put forward
in this section might help to inspire present or future research endeavours related
to this work.
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Appendix

I List of Requirements

The following table lists all the requirements identified in Part I of this thesis. For
each requirement the table lists the requirement ID, the requirement body, the page
on which the requirement has been identified, the requirement’s implementation sta-
tus in the model and the page on which the implementation-related information is
provided in this document.

1D Modelling Requirement Page Status Feature

R1 | In a model for the interaction between | p. 17 Fully p- 84
visual context and linguistic under- implemented.
standing, the cross-modal interaction
must be mediated by a representation
of linguistic meaning.

R2 | In a model for the interaction between | p. 19 Not p- 83
visual context and linguistic under- implemented.
standing, linguistic processing must be Fundamental
incremental. extension.

R3 | A model for the interaction between | p. 20 Not p- 83
visual scene context and linguistic implemented.
processing must be based on tempo- Fundamental
rally synchronised interactions between extension.
the wvisual modality and linguistic
processing.

R4 | A model for the interaction between | p. 20 Fully p- 83
visual scene context and linguistic implemented.
processing must be based on continual
interactions between non-linguistic
information and linguistic processing.
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R5 | A model for the interaction between | p. 20 Fully p. 82
visual scene context and linguistic implemented.
processing must include the influence
of visual understanding upon linguistic
processing.

R6 | A model for the interaction between | p. 20 Not p. 82
visual scene context and linguistic implemented.
processing must include the influence Fundamental
of linguistic processing upon visual extension.
understanding.

R7 | In a model for the interaction between | p. 21 Partially p. 146
visual scene context and linguistic implemented.
processing,  referentially  unrelated Completion
visual context information must leave constitutes
linguistic processing unaffected. substantial

extension.

R8 | In a model for the interaction between | p. 22 Fully p- 128
visual scene context and linguistic pro- implemented.
cessing, linguistic processing interacts
with a representation of the visual
scene context.

R9 | A model for the interaction between | p. 35 Fully p. 75
non-linguistic modalities and linguistic implemented.
understanding based on Conceptual
Semantics must contain distinct levels
of representation for syntax and se-
mantics.

R10 | In a model for the interaction be- | p. 36 Fully p. 77
tween non-linguistic modalities and implemented.
linguistic understanding based on
Conceptual Semantics, the set of
permissible representations on a given
level of representation must be defined
by a finite set of well-formedness rules.

R11 | In a model for the interaction be- | p. 37 Fully p. 77
tween non-linguistic modalities and implemented.
linguistic understanding based on
Conceptual Semantics, the encoding of
each representational level is domain-
specific.
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R12 | In a model for the interaction between | p. 37 Fully p- 83
non-linguistic modalities and linguistic implemented.
understanding based on Conceptual
Semantics, the processing on each level
of representation is representationally
encapsulated.

R13 | In a model for the interaction be- | p. 37 Fully p. 84
tween non-linguistic modalities and implemented.
linguistic understanding based on
Conceptual Semantics, the mapping
between representations is achieved by
correspondence rules.

R14 | In a model for the interaction between | p. 37 Fully p. 84
non-linguistic modalities and linguistic implemented.
understanding based on Conceptual
Semantics, the interaction of levels
of representation via representational
interfaces occurs online, i.e., at the
time of linguistic processing.

R15 | A model of Conceptual Structure must | p. 39 Fully p- 112
encode information about concepts, implemented.
individuals, taxonomic concept rela-
tions and relational predicates such
as concept-to-concept and concept-
to-individual relations. It must also
provide the capability to evaluate the
truthfulness of entailment between
encoded propositions as well as the
consistency between concepts.

R16 | A model of Conceptual Structure must | p. 39 Not p. 109
contain pointers to the representation implemented.
of sensory information. Fundamental

extension.

R17 | A model of Conceptual Structure must | p. 39 Partially p. 103
encode quantification and quantifier implemented.
scope. Fundamental

extension.

R18 | A model of Conceptual Structure must | p. 39 Fully p. 109
provide abstract representations of implemented.
actions and acting entities.
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R19 | A model of Conceptual Structure must | p. 39 Not p- 100
provide social predicates. implemented.

Minor
extension.

R20 | A model of Conceptual Structure must | p. 40 Not p- 107
provide modal predicates to express implemented.
semantic notions such as negation or Major
conditionality. extension.

R21 | A model of Conceptual Structure must | p. 40 Fully p. 77
encode the semantic part of linguistic implemented.
representation  within ~ Conceptual
Structure.

R22 | A model for the interaction between | p. 41 Fully p. 84

non-linguistic modalities and linguistic implemented.
understanding based on Conceptual
Semantics must contain a single, uni-
form level of semantic representation.
This level interfaces with the syntactic
level of representation and constitutes
the central representation of lingu-
istic and non-linguistic semantics.
Meaning-based interactions between
non-linguistic modalities and language
must be mediated by this level of
representation.

R23 | In a model for the interaction between | p. 44 Not p. 80
non-linguistic modalities and linguistic implemented.
understanding based on Conceptual Major
Semantics, a verb’s lexical entry must extension.
indicate for each argument slot from
which conceptual categories the argu-
ment fillers may preferably be selected.

R24 | In a model for the interaction between | p. 44 Not p. 80
non-linguistic modalities and linguistic implemented.
understanding, a verb’s thematic roles Minor
must be relateable to its syntactic extension.
argument structure via correspondence
rules in the syntax-semantics interface.
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R25 | In a model for the interaction between | p. 45 Fully p. 111
non-linguistic modalities and linguistic implemented.
understanding based on Conceptual
Semantics, every concept instance must
instantiate at least one concept from
the concept hierarchy.

R26 | In a model for the interaction between | p. 45 Fully p. 112
non-linguistic modalities and linguistic implemented.
understanding based on Conceptual
Semantics, Conceptual Structure rep-
resentations are verb-centric.

R27 | A model for the interaction between | p. 48 Partially p- 116
non-linguistic modalities and linguistic implemented.
understanding must have the capability Fundamental
to discriminate individuating features extension.
of visual and linguistic input at sensory
level.

R28 | A model for the interaction between | p. 48 Partially p- 116
non-linguistic modalities and linguistic implemented.
understanding must be capable of Fundamental
categorising sensory input in con- extension.
ceptual categories based on a set of
individuating features.

R29 | A model for the interaction between | p. 51 Fully p. 121
non-linguistic modalities and lingu- implemented.
istic understanding needs to provide a
mechanism for establishing cross-modal
referential links by matching entities
from the linguistic modality with
concept instances from the interacting
non-linguistic modalities.

R30 | A model for the interaction between | p. 51 Not p. 121
non-linguistic modalities and lingu- implemented.
istic understanding needs to provide a Major
mechanism for establishing cross-modal extension.
referential links by matching concept
instances from the non-linguistic
modalities with entities from the lingu-
istic modality.
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R31

A WCDG predictor for scoring
meaning-related dependencies must be
able to differentiate between different
readings of a slot string and must
be capable of generating separate,
homonym-specific predictions for those
readings.

p- 51

Fully
implemented.

p. 132

R32

To enable the processing of different
external predictions for the readings
of a slot string, WCDG2 must pro-
vide homonym-specific encoding and
retrieval of predictions.

p- 68

Fully
implemented.

p. 82
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IT The Asserted T-Box Class Hierarchy

Thing

—  Entity.Concept

— Abstract

L e

l

Ll

l

L

Address
Application
Article
Clarity
Cogeneration
Comment
Commitment
Comparison
Compensation
Competition
Damage
Danger
Debts
Decision
Demand
Electricity
Every.Day.Life
Excursion
Extrapolation
Force

— Hit

— Kick

Geographic.Region

—  Mecklenburg-Western_Pomerania
—  Schleswig.Holstein.Concept

Group
— Agency
Commission
Company
Europe
Family
Government

Management
Nippon
Peoples.Party
Pool
Prosecutor
Tenthousand
Trade.Union
War.Party

L A

Hour
Idiom
Incident
Language
— English
— French
— German

Law
— Tax.Law

Leadership
Lexicalisation
Location
Market
Megawatt
Month
Mood
Negotiation
Night
Patience
Payment
Peace

Imperial. Armed.Forces
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e

—

Place

Police

Price

Promise

Proof

Representative

Restructure

Return

Saving

Sleep

Song

Source

Statement

Storm

Strike

Technology

Time

Warning

Weekday
— Friday

Monday

Saturday

Sunday

Thursday

Tuesday

Wednesday

LIl

— Concrete

Human.m.f
—  Adult
— Accuser.m.f
— Accuser.f
— Accuser.m

—  Admirer.m.f
—  Admirer.f
—  Admirer.m

— Aged.m.f
— Aged.f
— Aged.m

Boss

Consumer.m.f
— Consumer.f
— Consumer.m

bl

— Holidaymaker.m.f
— Holidaymaker.f
— Holidaymaker.m

— Man

— Man.pl

— Man.sg
— Mueller.Concept
— Rabin.Concept
— Schulz.Concept
— Soares.Concept

— Neighbour.m.f
— Neighbour.f
— Neighbour.m

— Parent.m.f
— Father
— Mother

— Professional.m.f

— Actor.m.f
— Actor
— Actress
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—

Ll

l

Advertiser.m.f
— Advertiser.f
— Advertiser.m

Author.m.f
— Author.f
— Author.m

Baker.m.f
— Baker.f
— Baker.m

Beggar.m.f
— Beggar.f
— DBeggar.m

Employee.m.f
—  Employee.f
— Employee.m

Entrepreneur.m.f
—  Entrepreneur.f
— Entrepreneur.m

Farmer.m.f
— Farmer.f
— Farmer.m

Gymnast.m.f
— Gymnast.f
— Gymnast.m

Hair.Dresser.m.f
— Hair.Dresser.f
— Hair.Dresser.m

Headmaster
Headmistress
Maid
Manager.m.f
— Manager.f
— Manager.m

Medical.Doctor.m.f
—  Medical.Doctor.f

— Medical.Doctor.m

Mountaineer.m.f
— Mountaineer.f
— Mountaineer.m

Nurse.m.f
— Nurse.f
— Nurse.m

Painter.m.f
— Painter.f
— Painter.m

Parson.m.f
— Parson.f
— Parson.m

Pharmacist.m.f
— Pharmacist.f
— Pharmacist.m

Police.Officer.m.f
— Police.Man
— Police. Woman

President.m.f
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|

! L

—

—

—

—

—

— President.f
— President.m

Professor.m.f
— Professor.f
— Professor.m

Publisher.m.f
— Publisher.f
— Publisher.m

Researcher.m.f
— Researcher.f
— Researcher.m

Sales.Assistent.m.f
— Sales.Assistent.f
— Sales.Assistent.m

Sales.Rep.m.f
— Sales.Rep.f
— Sales.Rep.m

Sociologist.m.f
— Sociologist.f
— Sociologist.m

— Speaker.m.f

— Speaker.f
— Speaker.m

Protester.m.f
— Protester.f
— Protester.m

Smoker.m.f
—  Smoker.f
—  Smoker.m

Student.m.f
— Student.f

— PhD.Student.f

— Student.m

— PhD.Student.m

Sufferer.m.f
—  Sufferer.f
—  Sufferer.m

Terrorist.m.f
— Terrorist.f
— Terrorist.m

— Woman

Cousin.m.f

— Movie.Diva,

— Cousin.f
— Cousin.m

Guest
Human.f
Human.m
Inhabitant.m.f

— Inhabitant.f
— Inhabitant.m

Martyr.m.f

— Martyr.f
— Martyr.m
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— Member

—  Offspring

— Child
— Boy
— Girl

— Daughter
— Son

— Patient.m.f
— Patient.f
— Patient.m

— Ruffian.m.f
— Ruffian.f
— Ruffian.m

— Visitor.m.f
— Visitor.f
— Visitor.m

—  Physical.Object
— Aeroplane
Airport
Award
Basket
Bier
Binocular
Book
— Diary

LIl

Bouquet
City

Clock
Coast
Diagnosis
Gas

Gun
Highwater
House
Letter
Newspaper
Plant
Prescription
Stick
Street

Sun

Table
Water
Wind

L e A

— Entity.Feature

— A
— Old
— Young
— Personal.Pronoun
— He
— It
— She
— They
— They.f
— They.m
— They.mixed

[0)<)
[¢]

— Helper.Concept
— Lexicalised.Concept
— Participant
— AGENT
— RECIPIENT
— THEME
— THEME_THEME
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— Situation

— Meta.Data

— Natural.Gender
— Female

— Male

— Mixed
— Neuter

— Number

— Plural
—  Singular

— Situation.Concept
— Binary.Situation

L e e e e

— Takes. AGENT.RECIPIENT

—

Jmd.Trauen

— Takes. AGENT.THEME

Etw.Abschalten
Etw.Abwehren
Etw.Aendern
Etw.Anbieten
Etw.Anrichten
Etw.Antreten
Etw.Argumentieren
Etw.Aufspueren
Etw.Aufsuchen
Etw.Bedienen
Etw.Belasten
Etw.Beobachten
Etw.Bitten
Etw.Daempfen
Etw.Draengen
Etw.Erwarten
Etw.Erwerben
Etw.Erwirtschaften
Etw.Fordern
Etw.Fragen
Etw.Greifen
Etw.Halten
Etw.Herausgreifen
Etw.Kaufen
Etw.Landen
Etw.Liefern
Etw.Malen
Etw.Nennen
Etw.Praesentieren
Etw.Richten
Etw.Schaffen
Etw.Schenken
Etw.Schicken
Etw.Schildern
Etw.Sehen
Etw.Sein
Etw.Senden
Etw.Sprechen
Etw.Spueren
Etw.Suchen
Etw.Tragen
Etw.Treffen
Etw.Treten
Etw.Trinken
Etw.Uebergeben
Etw.Uebermitteln
Etw.Verbieten
Etw.Verbringen
Etw.Verderben
Etw.Verkaufen
Etw.Verlangen
Etw.Versorgen
Etw.Vertreten
Etw.Vorsingen
Etw.Wissen
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Etw.Zeigen
Etw.Zurueckweisen
Fuer.Etw.Sorgen
Jmd.Auffordern
Jmd.Beschuldigen
Jmd.Bitten
Jmd.Richten
Jmd.Verdaechtigen

I A A

— Ternary.Situation

— Takes. AGENT.RECIPIENT. THEME
Jmd.Etw.Anbieten
Jmd.Etw.Geben
Jmd.Etw.Greifen
Jmd.Etw.Herausgreifen
Jmd.Etw.Kaufen
Jmd.Etw.Liefern
Jmd.Etw.Nennen
Jmd.Etw.Praesentieren
Jmd.Etw.Schenken
Jmd.Etw.Schicken
Jmd.Etw.Schildern
Jmd.Etw.Schulden
Jmd.Etw.Sein
Jmd.Etw.Senden
Jmd.Etw.Stehlen
Jmd.Etw.Suchen
Jmd.Etw.Tragen
Jmd.Etw.Uebergeben
Jmd.Etw.Verbieten
Jmd.Etw.Verderben
Jmd.Etw.Verkaufen
Jmd.Etw.Vertreten
Jmd.Etw.Vorsingen
Jmd.Etw.Zeigen

— Takes. AGENT.THEME.THEME
— Jmd.Etw.Fragen

R e

— Unary.Situation

— Takes. AGENT
Null.Abschalten
Null. Arbeiten
Null. Argumentieren
Null.Belasten
Null.Daempfen
Null.Fragen
Null.Landen
Null.Praesentieren
Null.Richten
Null.Schlafen
Null.Senden
Null.Sprechen
Null.Suchen
Null. Treffen
Null.Uebergeben
Null.Verderben
Null.Vorsingen
Null.Zurueckkehren
Null.wissen

Lol el il il
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IIT Derivations

Be
Np-ary the upper bound for the number of n-ary constraint evaluations,
Cunary the set of unary constraints in the grammar,

P the upper bound for the number of attachment possibilities
in a constellation of m labelled dependencies,

Nonaz the maximum number of homonyms per slot,
S the number of slots in the sentence, and

by the number of labels on level of analysis .

I1I.1 The Absolute Upper Bound for the Number of Unary Constraint
Evaluations as given in Equation (4.3)

Consider the number of possible combinations to attach a dependant homonym to
a corresponding regent homonym by an unlabelled dependency. Since no slot in
the input sentence contains more than n,,,, homonyms, the upper bound for the
number of homonyms in the sentence is given by s - 740

Since every dependant homonym connects to exactly one regent homonym, and we
include ROOT as a potential regent, the number of homonym-to-homonym attach-
ments in the sentence is bounded above by s? - n2 ..

Furthermore, a given edge can take ), \; labels across all levels of analysis i. The
number of labelled attachment possibilities for a single edge constellation (m = 1)
in the sentence &?; is therefore given by

.2 2 2
?l—nmw-s . )\z
)

The grammar contains |Clyqry| Unary constraints, all of which need to be evaluated
on all possible edge and labelled attachment combinations. The upper bound for
the number of unary constraint evaluations 4,4, is therefore given by

2 2 E :
%nary = ‘Cunary‘ Maz =S )\z )
i

which is Equation (4.3), as was to be shown.
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II1.2 The Absolute Upper Bound for the Number of Binary Constraint
Evaluations as given in Equation (4.4)

The derivation for the upper bound on the the number of binary constraint evalu-
ations is based on some of the results from the derivation of the upper bound for
the number of unary constraint evaluations in Appendix III.1.

For a constellation of two labelled dependency edges the number of possible labelled

attachments is the product of the number of possible labelled constellations &?; for
the participating edges. &5 is hence given by

2
yQ:nfnax'84'|:Z/\i:|

The grammar contains |Cyipgry| binary constraints, all of which need to be evaluated
on all possible labelled attachment combinations. The upper bound for the number
of binary constraint evaluations A4nqy is therefore given by

2
4 4
f/Vbinary = |Cb'mary| “Nopaz S |i E >\z ‘| )
)

which is Equation (4.4), as was to be shown.
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IV List of Studied Sentences

IV.1 Unified Sentences with Genitive-Dative Ambiguity

ID

VK-011
VK-100

VK-111
VK-151

VK-226
VK-233
VK-247
VK-263
VK-274
VK-306

Sentence

Er wusste, dass die Magd der Béauerin den Korb suchte.

Er wusste, dass der Verehrer der Schauspielerin den Blumenstraufl
schenkte.

Er wusste, dass der Sohn der Raucherin die Laune verdarb.

Er wusste, dass die Bergsteiger der Referentin die Warnung
schickten.

Er wusste, dass die Nachbarin der Rektorin die Adresse nannte.
Er wusste, dass die Cousine der Besucherin den Vorfall schilderte.
Er wusste, dass die Pflegerin der Greisin den Ausflug verbot.

Er wusste, dass die Verlegerin der Autorin den Artikel verkaufte.
Er wusste, dass die Doktorandin der Forscherin den Beweis lieferte.

Er wusste, dass die Managerin der Unternehmerin den Vertreter
sendete.
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IV.2 SALSA-Sentences with Subject-Object Ambiguity

ID

SO-360

SO-706
S0O-841

SO-1090

SO-4493

SO-6179

SO-9681
S0O-9792
SO-10744

SO-40722

Sentence

Zehntausende Demonstranten trugen die Bahren der “Mértyrer”
durch die Straflen der Zweimillionen-Stadt.

Markt & Technik fordert Geduld

Bis auf wenige Stunden Schlaf arbeiten diese Frauen rund um die
Uhr, weil sie zu Hause Mann und Kinder versorgen.

Japan bittet Europa um Geduld

Erhebliche Schéaden richteten Stiirme und Hochwasser am Samstag
in mehreren Stddten an der Kiiste von Schleswig-Holstein und
Mecklenburg-Vorpommern an.

Die mitregierende Volkspartei (OVP) wies seine Forderung als
“obszén” zuriick:

Statt dessen schicken sie Werber von Haus zu Haus.
Sie vertritt die Gesellschaft, und ihr obliegt die Geschéftsfiihrung.

Beide Kriegsparteien dréngten sie, an den Verhandlungstisch
zuriickzukehren.

Die Kommission fordert die Bundesregierung nun auf, binnen eines
Monats fiir Klarheit zu sorgen.
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IV.3 SALSA-Sentences with PP-Attachment Ambiguity

ID

PP-3025

PP-3277

PP-3839

PP-7177

PP-7650

PP-17512

PP-19569

PP-23135

PP-28600

PP-31611

Sentence

Dort griff die Polizei unter Gewaltanwendung einzelne Demon-
stranten heraus, wobei Tritte und Schldge mit dem Kniippel von
Polizisten beobachtet wurden.

Nach Darstellung der Nippon-Firma hatten Gewerkschaftsvertreter
Bezahlung fiir die Zeit verlangt, die sie wéhrend fritherer Streiks
in Verhandlungen mit der Unternehmensleitung verbrachten.

Staatschef Soares argumentiert, dafl die Regierung nicht einfach
Gesetze mit fritheren Laufbahnzusagen kurzfristig dndern kénne.

Insgesamt werden Braunkohlemeiler mit zusammen 8500 Megawatt
(MW) abgeschaltet.

Die ganze Nacht {iber landeten auf dem internationalen Ben-
Gurion-Flughafen Flugzeuge mit Trauergésten.

Die hochsten Renditen erwirtschafteten Agenturen in Haupt-
geschéftslagen von Orten mit 10000 bis 500000 Einwohnern.

Um Familien mit Kindern nicht zusétzlich zu belasten, wird eine
Neuordnung des Familienlastenausgleichs und des Steuerrechts
erwartet.

Vorrangig erwirbt der Pool Strom zu hoheren Preisen (Einspei-
severgiitung) aus regenerativen Quellen (Wind, Wasser, Sonne,
Biogas) und Anlagen mit Kraft-Warme-Kopplung.

“Wir richten uns nicht nach Miiller und Schulz”, wehrt er Verglei-
che mit der Konkurrenz ab.

Die Region ist offiziell zweisprachig, im Alltag sprechen die
Menschen aber {iberwiegend Deutsch mit bajuwarischem Idiom.
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V Context Models

V.1 Sentences with Genitive-Dative Ambiguity

V.1.1 Verb-Specific Binary Situation Contexts with Three Entities

VK-011

VK-100

VK-111

VK-151

VK-226

VK-233

VK-247

VK-263

MAID_01
FARMER.F_01

BASKET 01

ADMIRER.M_01
ACTRESS_01
BOUQUET._01

SON_01
SMOKER.F_01

MOOD_01

MOUNTAINEER.M_01
SPEAKER.F_01

WARNING_01

NEIGHBOUR.F_01
HEADMISTRESS_01
ADDRESS_01

COUSIN.F_01
VISITOR.F_01

INCIDENT_01

NURSE.F_01
AGED.F_01

EXCURSION_01

PUBLISHER.F_01
AUTHOR.F_01

ARTICLE_01

is, AGENT _for

is.OWNER_for

is.THEME _for

is T AGENT _for

is_.OWNER_for

is. THEME _for

is T AGENT _for

is.OWNER_for

is. THEME _for

iscAGENT _for

is.OWNER_for

is. THEME _for

is,AGENT _for

is . OWNER_for

is.THEME _for

is T AGENT _for

is_.OWNER_for

is. THEME _for

is T AGENT _for

is.OWNER_for

is. THEME _for

iscTAGENT _for

is.OWNER_for

is. THEME _for

ETW.SUCHEN_01
MAID_01

ETW.SUCHEN_01

ETW.SCHENKEN_01
ADMIRER.M_01
ETW.SCHENKEN_01

ETW.VERDERBEN_01
SON_01

ETW.VERDERBEN_01

ETW.SCHICKEN_01
MOUNTAINEER.M_01

ETW.SCHICKEN_01

ETW.NENNEN_01
NEIGHBOUR.F_01

ETW.NENNEN_01

ETW.SCHILDERN_01
COUSIN_01
ETW.SUCHEN_01

ETW.VERBIETEN_01
NURSE.F_01

ETW.VERBIETEN_01

ETW.VERKAUFEN_01
PUBLISHER.F_01

ETW.VERKAUFEN_01
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VK-274 PHD.STUDENT.F_01
RESEARCHER.F_01
PROOF_01
VK-306 MANAGER.F_01

ENTREPRENEUR.F_01

SALES.REP.M_01

is T AGENT _for

is . OWNER_for

is . THEME _for

is T AGENT _for

is.OWNER_for

is.THEME _for

ETW.LIEFERN_01
PHD.STUDENT.F_01

ETW.LIEFERN_01

ETW.SENDEN_01
MANAGER.F_01

ETW.SENDEN_01

V.1.2 Verb-Specific Ternary Situation Contexts with Three Participants

is. AGENT.
VK-011 MAID.01 —= for
CARMER.pof _-RECIPIENT.for
BASKET.OL is.THEME _for
;s AGENT.
VK-100 ADMIRER.M_01 — for
ACTRESS.01 is . RECIPIENT _for
BOUQUET.01 is. THEME _for
VK-111 sono1 A CETTe
SMOKER.F oL _*-RECIPIENT for
MOOD.01 is.THEME _for
is. AGENT.
VK-151 MOUNTAINEER.M.01 — for
SPEAKER.pof  _iS-FECIPIENT for
WARNING 01— THEME-for
is. AGENT.
VK-226 NEIGHBOUR.F.01 — for
HEADMISTRESS 01— BCIPIENT - for
ADDRESS.01 - HEME-for
;s AGENT.
VK-233 COUSIN.F.01 — for
VISITOR.F .01 is . RECIPIENT _for
INCIDENT.01 - HEME-for
s AGENT.
VK-247 NURSE.F.01 — for
AGED.pop  _iS-FECIPIENT for

EXCURSION_01

is . THEME _for

JMD

JMD.
JMD.

JMD.
JMD.

JMD.

JMD.
JMD.

JMD.

JMD.

JMD

JMD.

JMD.
JMD.
JMD.

JMD.
JMD.

JMD.

JMD.
JMD.

JMD.

.ETW.SUCHEN_01
ETW.SUCHEN_01
ETW.SUCHEN_01

ETW.SCHENKEN_01
ETW.SCHENKEN_01

ETW.SCHENKEN_01

ETW.VERDERBEN_01
ETW.VERDERBEN_01

ETW.VERDERBEN_01

ETW.SCHICKEN_01
.ETW.SCHICKEN_01
ETW.SCHICKEN_01

ETW.NENNEN_0O1
ETW.NENNEN_01

ETW.NENNEN_01

ETW.SCHILDERN_01
ETW.SCHILDERN_01

ETW.SCHILDERN_01

ETW.VERBIETEN_01
ETW.VERBIETEN_01

ETW.VERBIETEN_01
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VK-263

VK-274

VK-306

ENTREPRENEUR.F_01

PHD.STUDENT.F_01

RESEARCHER.F_01

PUBLISHER.F_01

is L, AGENT _for

is_.RECIPIENT _for

AUTHOR.F_01

ARTICLE_01

is . THEME _for

iscTAGENT _for

is_RECIPIENT _for

PROOF_01

is . THEME _for

MANAGER.F_01

is T AGENT _for

is.RECIPIENT _for

SALES.REP.M_01

is. THEME _for

JMD.ETW.VERKAUFEN_01
JMD.ETW.VERKAUFEN_01

JMD.ETW.VERKAUFEN_01

JMD.ETW.LIEFERN_01
JMD.ETW.LIEFERN_01

JMD.ETW.LIEFERN_01

JMD.ETW.SENDEN_01
JMD.ETW.SENDEN_01

JMD.ETW.SENDEN_01

V.1.3 Generalised Binary Situation Contexts with Three Entities

VK-011

VK-100

VK-111

VK-151

VK-226

HUMAN.F_01
HUMAN.F_02

PHYSICAL.OBJECT_01

HUMAN.M_01
HUMAN.F_01
PHYSICAL.OBJECT_01

HUMAN.M_01
HUMAN.F_02
ABSTRACT_01

HUMAN.M_01
HUMAN.F_02

ABSTRACT_01

HUMAN.F_01
HUMAN.F_02

ABSTRACT_01

is L, AGENT _for

is.OWNER_for

is.THEME _for

is T AGENT _for

is_.OWNER_for

is.THEME _for

is, AGENT _for

is_.OWNER_for

is. THEME _for

iscT AGENT _for

is . OWNER _for

is. THEME _for

is, AGENT _for

is.OWNER _for

is.THEME _for

BINARY.SITUATION_01
HUMAN.F_01

BINARY.SITUATION_01

BINARY.SITUATION_01
HUMAN.M_01
BINARY.SITUATION_01

BINARY.SITUATION_01
HUMAN.F_01
BINARY.SITUATION_01

BINARY.SITUATION_01
HUMAN.F_01

BINARY.SITUATION_0O1

BINARY.SITUATION_01
HUMAN.F_01

BINARY.SITUATION_01
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VK-233

VK-247

VK-263

VK-274

VK-306

HUMAN.F_01
HUMAN.F_02

ABSTRACT_01

HUMAN.F_01
HUMAN.F_02

ABSTRACT_01

HUMAN.F_01
HUMAN.F_02
ABSTRACT_01

HUMAN.F_01
HUMAN.F_02
ABSTRACT_01

HUMAN.F_01
HUMAN.F_02

HUMAN.M_01

is, AGENT _for

is.OWNER_for

is. THEME _for

is T AGENT _for

is.OWNER_for

is.THEME _for

is T AGENT _for

is_.OWNER_for

is.THEME _for

is, AGENT _for

is_.OWNER_for

is.THEME _for

is T AGENT _for

is.OWNER_for

is. THEME _for

BINARY.SITUATION_01
HUMAN.F_01

BINARY.SITUATION_01

BINARY.SITUATION_01
HUMAN.F_01

BINARY.SITUATION_0O1

BINARY.SITUATION_01
HUMAN.F_01
BINARY.SITUATION_01

BINARY.SITUATION_01
HUMAN.F_01
BINARY.SITUATION_01

BINARY.SITUATION_01
HUMAN.F_01

BINARY.SITUATION_01

V.1.4 Generalised Ternary Situation Contexts with Three Participants

VK-011

PHYSICAL.OBJECT_01

VK-100

PHYSICAL.OBJECT_01

VK-111

VK-151

HUMAN.F_01

HUMAN.F_02

HUMAN.M_01

HUMAN.F_02

HUMAN.M_01

HUMAN.F_02

ABSTRACT_.01

is T AGENT _for

is.RECIPIENT _for

is.THEME _for

is T AGENT _for

is.RECIPIENT _for

is.THEME _for

is T AGENT _for

is_.RECIPIENT _for

is. THEME _for
ABSTRACT.01
iscTAGENT _for
HUMAN.M_ 01
is . RECIPIENT _for
HUMAN.F_01

is. THEME _for

TERNARY.SITUATION_01
TERNARY.SITUATION_01
TERNARY.SITUATION_01

TERNARY.SITUATION_01
TERNARY.SITUATION_01
TERNARY.SITUATION_0O1

TERNARY.SITUATION_0O1
TERNARY.SITUATION_01

TERNARY.SITUATION_01

TERNARY.SITUATION_01
TERNARY.SITUATION_01

TERNARY.SITUATION_01
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VK-226

VK-233

VK-247

VK-263

VK-274

VK-306

is L, AGENT _for

HUMAN.F_01

HUMAN.F_02

is.RECIPIENT _for

ABSTRACT_01

is . THEME _for

HUMAN.F_01

is, AGENT _for

is_.RECIPIENT _for

HUMAN.F_02

ABSTRACT_01

is. THEME _for

HUMAN.F_01

is T AGENT _for

is.RECIPIENT _for

HUMAN.F_02
ABSTRACT_01

is. THEME _for

HUMAN.F_01

is ., AGENT _for

is_.RECIPIENT _for

HUMAN.F_02

is.THEME _for
ABSTRACT._01
is L, AGENT _for
HUMAN.F_01
is_.RECIPIENT _for
HUMAN.F_02

is . THEME _for

ABSTRACT_01

HUMAN.F_01

is T AGENT _for

HUMAN.F_02

is-RECIPIENT _for

is.THEMFE _for

HUMAN.M_01

TERNARY.SITUATION_01
TERNARY.SITUATION_01

TERNARY.SITUATION_01

TERNARY.SITUATION_01
TERNARY.SITUATION_01

TERNARY.SITUATION_01

TERNARY.SITUATION_01
TERNARY.SITUATION_01
TERNARY.SITUATION_01

TERNARY.SITUATION_01
TERNARY.SITUATION_01
TERNARY.SITUATION_01

TERNARY.SITUATION_01
TERNARY.SITUATION_01

TERNARY.SITUATION_01

TERNARY.SITUATION_01
TERNARY.SITUATION_01

TERNARY.SITUATION_01

V.1.5 Generalised Binary Situation Contexts with Two Entities

VK-011

VK-100

VK-111

VK-151

HUMAN.F_01

PHYSICAL.OBJECT_01

HUMAN.M_01
PHYSICAL.OBJECT_01

HUMAN.M_01

ABSTRACT_01

HUMAN.M_01
ABSTRACT_01

is T AGENT _for

is . THEME _for

is L AGENT _for

is . THEME _for

is T AGENT _for

is. THEME _for

is T AGENT _for

is. THEME _for

BINARY.SITUATION_01

BINARY.SITUATION_01

BINARY.SITUATION_01
BINARY.SITUATION_01

BINARY.SITUATION_0O1

BINARY.SITUATION_01

BINARY.SITUATION_01

BINARY.SITUATION_01
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VK-226

VK-233

VK-247

VK-263

VK-274

VK-306

V.1.6 Generalised Situation Contexts with Two Entities, all of which Par-

HUMAN.F_01

ABSTRACT_01

HUMAN.F_01
ABSTRACT.01

HUMAN.F_01

ABSTRACT_01

HUMAN.F_01
ABSTRACT_01

HUMAN.F_01

ABSTRACT_01

HUMAN.F_01
HUMAN.M_01

ticipants

VK-011

VK-100

VK-111

VK-151

VK-226

VK-233

HUMAN.F_01

PHYSICAL.OBJECT_01

HUMAN.M_01
PHYSICAL.OBJECT_01

HUMAN.M_01

ABSTRACT_01

HUMAN.M_01
ABSTRACT_01

HUMAN.F_01

ABSTRACT_01

HUMAN.F_01
ABSTRACT.01

is, AGENT _for

is.THEME _for

is T AGENT _for

is.THEME _for

is, AGENT _for

is. THEME _for

is, AGENT _for

is.THEME _for

is, AGENT _for

is. THEME _for

is, AGENT _for

is . THEME _for

iscTAGENT _for

is.THEME _for

is, AGENT _for

is.THEME _for

iscTAGENT _for

is.THEME _for

is T AGENT _for

is.THEME _for

is, AGENT _for

is.THEME _for

is T AGENT _for

is.THEME _for

BINARY.SITUATION_01

BINARY.SITUATION_0O1

BINARY.SITUATION_01
BINARY.SITUATION_01

BINARY.SITUATION_01

BINARY.SITUATION_0O1

BINARY.SITUATION_01
BINARY.SITUATION_01

BINARY.SITUATION_01

BINARY.SITUATION_01

BINARY.SITUATION_01
BINARY.SITUATION_01

SITUATION.CONCEPT_01

SITUATION.CONCEPT_01

SITUATION.CONCEPT_01
SITUATION.CONCEPT_01

SITUATION.CONCEPT_01

SITUATION.CONCEPT_01

SITUATION.CONCEPT_01
SITUATION.CONCEPT_01

SITUATION.CONCEPT_01

SITUATION.CONCEPT_01

SITUATION.CONCEPT_01
SITUATION.CONCEPT_01
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VK-247 HUMAN.F_01

ABSTRACT_01

VK-263 HUMAN.F_01
ABSTRACT_01

VK-274 HUMAN.F_01

ABSTRACT_01

VK-306 HUMAN.F_01
HUMAN.M 01

is, AGENT _for

is.THEME_for

is T AGENT _for

is.THEME _for

is, AGENT _for

is. THEME _for

is L AGENT _for

is.THEME _for

SITUATION.CONCEPT_01

SITUATION.CONCEPT_01

SITUATION.CONCEPT_01
SITUATION.CONCEPT_01

SITUATION.CONCEPT_01

SITUATION.CONCEPT_01

SITUATION.CONCEPT_01
SITUATION.CONCEPT_01

V.2 Sentences with Subject-Object Ambiguity

V.2.1 Verb-Specific SUBJ-0BJA Contexts

SO-360 PROTESTER.M_01
BIER_01

MARTYR.M_01

SO-706 MARKET_01
PATIENCE_01

SO-841 HUMAN.M.F_01
MAN_01

SO-1090 NIPPON_01
EUROPE_01

SO-4493 DAMAGE_01
STORM_01

SO-6179 PEOPLES.PARTY.01

DEMAND_01

SO-9681 HUMAN.F_01
ADVERTISER.M_01

is L, AGENT _for

is.THEME _for

is . OWNER_for

is T AGENT _for

is. THEME _for

is L, AGENT _for

is. THEME _for

is T AGENT _for

is. THEME _for

is T AGENT _for

is . THEME _for

is,AGENT _for

is.THEME_for

is . AGENT _for

is . THEME_for

ETW.TRAGEN_01
ETW.TRAGEN_01

BIER_01

ETW.FORDERN_01

ETW.FORDERN_01

ETW.VERSORGEN_01

ETW.VERSORGEN_01

JMD.BITTEN_01

JMD.BITTEN_01

ETW.ANRICHTEN_01

ETW.ANRICHTEN_01

ETW.ZURUECKWEISEN_01
ETW.ZURUECKWEISEN_01

ETW.SCHICKEN_01

ETW.SCHICKEN_01
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s AGENT.
S0-9792 HUMAN.F.01 — for ETW.VERTRETEN_01
is.THEMFE_for
COMPANY_01 ETW.VERTRETEN_01
s AGENT.
SO-10744 HUMAN.M.F.01 — for ETW.DRAENGEN_01
is.THEME _for
WAR.PARTY_01 ETW.DRAENGEN_01
s AGENT.
SO-40722 COMMISSION 01 — for JMD.AUFFORDERN_01

GOVERNMENT_01

is . THEME _for

V.2.2 Verb-Specific 0BJA-SUBJ Contexts

SO-360

SO-706

SO-841

SO-1090

S0O-4493

SO-6179

S0O-9681

S0O-9792

BIER_01
MARTYR.M_01

PROTESTER.M_01

PATIENCE_01

MARKET_01

MAN_01

HUMAN.M.F_01

EUROPE_01
NIPPON_O1

STORM_01

DAMAGE_01

DEMAND_01

PEOPLES.PARTY_01

ADVERTISER.M_01
HUMAN.F_01

COMPANY_01

HUMAN.F_01

iscTAGENT _for

is . OWNER_for

is . THEME_for

is L AGENT _for

is - THEME _for

is L, AGENT _for

is . THEME _for

is L AGENT _for

is - THEME _for

is ., AGENT _for

is . THEME _for

is T AGENT _for

is. THEME _for

is ., AGENT _for

is . THEME _for

iscTAGENT _for

is. THEME _for

JMD.AUFFORDERN_01

ETW.TRAGEN_01
BIER_01

ETW.TRAGEN_01

ETW.FORDERN_01
ETW.FORDERN_01

ETW.VERSORGEN_01

ETW.VERSORGEN_01

JMD.BITTEN_01

JMD.BITTEN_01

ETW.ANRICHTEN_01

ETW.ANRICHTEN_01

ETW.ZURUECKWEISEN_01

ETW.ZURUECKWEISEN_01

ETW.SCHICKEN_01
ETW.SCHICKEN_01

ETW.VERTRETEN_01

ETW.VERTRETEN_01
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SO-10744 WAR.PARTY_01

HUMAN.M.F_01

SO-40722 GOVERNMENT_01
COMMISSION_01

is L, AGENT _for

ETW.DRAENGEN_01
is. THEME _for

ETW.DRAENGEN_01

is T AGENT _for

JMD.AUFFORDERN_01
is. THEME _for

JMD.AUFFORDERN_01

V.3 Sentences with PP-Attachment Ambiguity

V.3.1 Generalised COMITATIVE Contexts

PP-3025 PHYSICAL.OBJECT_01

PP-3277 GROUP_01
PP-3839 ABSTRACT.01
PP-7177 ABSTRACT.01
PP-7650 HUMAN.M.F_01
PP-17512 HUMAN.M.F_01
PP-19569 HUMAN.M.F_01
PP-23135 ABSTRACT.01
PP-28600 ABSTRACT.02
PP-31611 ABSTRACT.01

is . COMITATIVE for

FORCE_01

is.COMITATIVE_ for

ABSTRACT_01

is.COMITATIVE _for

ABSTRACT_02

is . COMITATIVE for

PHYSICAL.OBJECT_01

is.COMITATIVE_for

PHYSICAL.OBJECT_01

is.COMITATIVE for

ABSTRACT_01

is.COMITATIVE for

GROUP_01

is.COMITATIVE_ for

PHYSICAL.OBJECT_01

is.COMITATIVE for

ABSTRACT_01

is.COMITATIVE _for

LANGUAGE_01

V.3.2 Generalised INSTRUMENT Contexts

PP-3025 PHYSICAL.OBJECT.01

PP-3277 GROUP_01

PP-3839 ABSTRACT_01

is INSTRUMENT _for

BINARY.SITUATION_01

is INSTRUMENT _for

BINARY.SITUATION_01

is INSTRUMENT _for

BINARY.SITUATION_01
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PP-7177

PP-7650

PP-17512

PP-19569

PP-23135

PP-28600

PP-31611

ABSTRACT_01

HUMAN.M.F_01

HUMAN.M.F_01

HUMAN.M.F_01

ABSTRACT_01

ABSTRACT_01

ABSTRACT_01

is INSTRUMENT _for

is INSTRUMENT _for

is_ INSTRUMENT _for

is INSTRUMENT _for

is INSTRUMENT _for

is_ INSTRUMENT _for

is INSTRUMENT _for

BINARY.SITUATION_01

UNARY.SITUATION_01

BINARY.SITUATION_01

BINARY.SITUATION_01

BINARY.SITUATION_01

BINARY.SITUATION_01

BINARY.SITUATION_01
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VI Parse Trees

VI.1 Sentences with GMOD-0BJD Ambiguity

VI.1.1 Integration of an Empty Visual Context

Sentence VK-011

er wusste s dass die Magd der Bauerin den Korb suchte
AGENT THEME AGENT

THEME

RECIPIENT

Sentence VK-100

er wusste s dass der Verehrer der Schauspielerin den Blumenstraufy schenkte
AGENT THEME AGENT

THEME

RECIPIENT
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Sentence VK-111

er wusste s dass der Sohn der Raucherin die Laune verdarb
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-151

er wusste s dass die Bergsteiger der Referentin die Warnung schickten
AGENT THEME AGENT

N

THEME

\/

RECIPIENT

Sentence VK-226

er wusste , dass die Nachbarin der Rektorin die Adresse nannte
AGENT THEME AGENT

NS

THEME

\_/

RECIPIENT
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Sentence VK-233

er wusste ) dass die Cousine der Besucherin den Vorfall schilderte
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-247

er wusste s dass die Pflegerin der Greisin den Ausflug verbot
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-263

er wusste s dass die Verlegerin der Autorin den Artikel verkaufte
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT
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Sentence VK-274

er wusste s dass die Doktorandin der Forscherin den Beweis lieferte
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-306

er wusste \ dass die Managerin der Unternehmerin den Vertreter sendete
AGENT THEME AGENT

N_S

THEME

\/

RECIPIENT
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VI.1.2 Hard Integration of Verb-Specific Binary Contexts with Three Enti-
ties, Two of which Participants

Sentence VK-011

er wusste s dass die Magd der Bauerin den Korb suchte
THEME AGENT
OWNER THEME

Sentence VK-100

er wusste s dass der Verehrer der Schauspielerin den Blumenstrauf schenkte
THEME AGENT

~_ N

OWNER THEME
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Sentence VK-111

er wusste s dass der Sohn der Raucherin die Laune verdarb
THEME AGENT
OWNER THEME

Sentence VK-151

er wusste s dass die Bergsteiger der Referentin die Warnung schickten
THEME AGENT
OWNER THEME

Sentence VK-226

er wusste s dass die Nachbarin der Rektorin die Adresse nannte
THEME AGENT

~—_ 7 NS

OWNER THEME
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Sentence VK-233

er wusste s dass die Cousine der Besucherin den Vorfall schilderte
THEME AGENT
OWNER THEME

Sentence VK-247

er wusste s dass die Pflegerin der Greisin den Ausflug verbot
THEME AGENT
OWNER THEME

Sentence VK-263

er wusste s dass die Verlegerin der Autorin den Artikel verkaufte

7 @ —

THEME AGENT

~_ N

OWNER THEME
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Sentence VK-274

er wusste s dass die Doktorandin der Forscherin den Beweis lieferte
THEME AGENT
OWNER THEME

Sentence VK-306

er wusste s dass die Managerin der Unternehmerin den Vertreter sendete
THEME AGENT

~—_ NS

OWNER THEME
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VI.1.3 Hard Integration of Verb-Specific Ternary Contexts with Three Enti-
ties, all of which Participants

Sentence VK-011

er wusste s dass die Magd der Béuerin den Korb suchte
THEME AGENT

N_S

THEME

\/

RECIPIENT

Sentence VK-100

er wusste s dass der Verehrer der Schauspielerin den Blumenstrauf schenkte
THEME AGENT

N

THEME

\/

RECIPIENT
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Sentence VK-111

er wusste s dass der Sohn der Raucherin die Laune verdarb
THEME AGENT

NS

THEME

\_/

RECIPIENT

Sentence VK-151

er wusste s dass die Bergsteiger der Referentin die Warnung schickten

THEME AGENT

THEME

\_/

RECIPIENT

Sentence VK-226

er wusste s dass die Nachbarin der Rektorin die Adresse nannte
THEME AGENT

N_S

THEME

\/

RECIPIENT
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Sentence VK-233

er wusste s dass die Cousine der Besucherin den Vorfall schilderte
THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-247

er wusste s dass die Pflegerin der Greisin den Ausflug verbot

THEME AGENT

THEME

\_/

RECIPIENT

Sentence VK-263

er wusste s dass die Verlegerin der Autorin den Artikel verkaufte

THEME AGENT

THEME

\_/

RECIPIENT
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Sentence VK-274

er wusste , dass die Doktorandin der Forscherin den Beweis lieferte
THEME AGENT

NS

THEME

\_/

RECIPIENT

Sentence VK-306

er wusste , dass die Managerin der Unternehmerin den Vertreter sendete
THEME AGENT

NS

THEME

\/

RECIPIENT
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VI.1.4 Soft Integration of Verb-Specific Binary Context with Three Entities,
Two of which Participants

Sentence VK-011

er wusste s dass die Magd der Bauerin den Korb suchte
AGENT THEME AGENT
OWNER THEME

Sentence VK-100

er wusste s dass der Verehrer der Schauspielerin den Blumenstrau schenkte
AGENT THEME AGENT

~_ N

OWNER THEME
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Sentence VK-111

er wusste s dass der Sohn der Raucherin die Laune verdarb
AGENT THEME AGENT
OWNER THEME

Sentence VK-151

er wusste s dass die Bergsteiger der Referentin die Warnung schickten
AGENT THEME AGENT
OWNER THEME

Sentence VK-226

er wusste s dass die Nachbarin der Rektorin die Adresse nannte
AGENT THEME AGENT

~_ 7 N_S

OWNER THEME
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Sentence VK-233

er wusste \ dass die Cousine der Besucherin den Vorfall schilderte
AGENT THEME AGENT
OWNER THEME

Sentence VK-247

er wusste s dass die Pflegerin der Greisin den Ausflug verbot
AGENT THEME AGENT
OWNER THEME

Sentence VK-263

er wusste s dass die Verlegerin der Autorin den Artikel verkaufte
AGENT THEME AGENT

~__ 7 N_

OWNER THEME
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Sentence VK-274

er wusste s dass die Doktorandin der Forscherin den Beweis lieferte
AGENT THEME AGENT
OWNER THEME

Sentence VK-306

er wusste s dass die Managerin der Unternehmerin den Vertreter sendete
AGENT THEME AGENT

~—_ NS

OWNER THEME
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VI.1.5 Soft Integration of Verb-Specific Ternary Contexts with Three Enti-
ties, All of which Participants

Sentence VK-011

er wusste ) dass die Magd der Bauerin den Korb suchte
AGENT THEME AGENT

N_

THEME

\_/

RECIPIENT

Sentence VK-100

er wusste s dass der Verehrer der Schauspielerin den Blumenstraufy schenkte
AGENT THEME AGENT

N

THEME

\/

RECIPIENT
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Sentence VK-111

er wusste s dass der Sohn der Raucherin die Laune verdarb
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-151

er wusste s dass die Bergsteiger der Referentin die Warnung schickten
AGENT THEME AGENT

N

THEME

\,/

RECIPIENT

Sentence VK-226

er wusste s dass die Nachbarin der Rektorin die Adresse nannte
AGENT THEME AGENT

N_S

THEME

\_/

RECIPIENT
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Sentence VK-233

er wusste ) dass die Cousine der Besucherin den Vorfall schilderte
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-247

er wusste s dass die Pflegerin der Greisin den Ausflug verbot
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-263

er wusste s dass die Verlegerin der Autorin den Artikel verkaufte
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT
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Sentence VK-274

er wusste s dass die Doktorandin der Forscherin den Beweis lieferte
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-306

er wusste \ dass die Managerin der Unternehmerin den Vertreter sendete
AGENT THEME AGENT

N_S

THEME

\/

RECIPIENT
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VI.1.6 Integration of Generalised Three-Entity Contexts Centred around an
Instance of BINARY.SITUATION

Sentence VK-011

er wusste s dass die Magd der Bauerin den Korb suchte
AGENT THEME AGENT
OWNER THEME

Sentence VK-100

er wusste , dass der Verehrer der Schauspielerin den Blumenstraul schenkte
AGENT THEME AGENT

~_ N

OWNER THEME
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Sentence VK-111

er wusste s dass der Sohn der Raucherin die Laune verdarb
AGENT THEME AGENT
OWNER THEME

Sentence VK-151

er wusste s dass die Bergsteiger der Referentin die Warnung schickten
AGENT THEME AGENT
OWNER THEME

Sentence VK-226

er wusste s dass die Nachbarin der Rektorin die Adresse nannte
AGENT THEME AGENT

~_ 7 N_S

OWNER THEME
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Sentence VK-233

er wusste \ dass die Cousine der Besucherin den Vorfall schilderte
AGENT THEME AGENT
OWNER THEME

Sentence VK-247

er wusste s dass die Pflegerin der Greisin den Ausflug verbot
AGENT THEME AGENT
OWNER THEME

Sentence VK-263

er wusste s dass die Verlegerin der Autorin den Artikel verkaufte
AGENT THEME AGENT

~__ 7 N_

OWNER THEME
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Sentence VK-274

er wusste s dass die Doktorandin der Forscherin den Beweis lieferte
AGENT THEME AGENT
OWNER THEME

Sentence VK-306

er wusste s dass die Managerin der Unternehmerin den Vertreter sendete
AGENT THEME AGENT

~—_ NS

OWNER THEME
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VI.1.7 Integration of Generalised Three-Entity Contexts Centred around an
Instance of TERNARY.SITUATION

Sentence VK-011

er wusste ) dass die Magd der Bauerin den Korb suchte
AGENT THEME AGENT

N_

THEME

\_/

RECIPIENT

Sentence VK-100

er wusste s dass der Verehrer der Schauspielerin den Blumenstraufy schenkte
AGENT THEME AGENT

N

THEME

\/

RECIPIENT
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Sentence VK-111

er wusste s dass der Sohn der Raucherin die Laune verdarb
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-151

er wusste s dass die Bergsteiger der Referentin die Warnung schickten
AGENT THEME AGENT

N

THEME

\,/

RECIPIENT

Sentence VK-226

er wusste s dass die Nachbarin der Rektorin die Adresse nannte
AGENT THEME AGENT

N_S

THEME

\_/

RECIPIENT
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Sentence VK-233

er wusste ) dass die Cousine der Besucherin den Vorfall schilderte
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-247

er wusste s dass die Pflegerin der Greisin den Ausflug verbot
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-263

er wusste s dass die Verlegerin der Autorin den Artikel verkaufte
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT
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Sentence VK-274

er wusste s dass die Doktorandin der Forscherin den Beweis lieferte
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-306

er wusste \ dass die Managerin der Unternehmerin den Vertreter sendete
AGENT THEME AGENT

N_S

THEME

\/

RECIPIENT
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VI.1.8 Integration of Generalised Two-Entity Contexts Centred around an
Instance of BINARY.SITUATION

Sentence VK-011

er wusste s dass die Magd der Bauerin den Korb suchte
AGENT THEME AGENT
OWNER THEME

Sentence VK-100

er wusste , dass der Verehrer der Schauspielerin den Blumenstraul schenkte
AGENT THEME AGENT

~_ N

OWNER THEME
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Sentence VK-111

er wusste s dass der Sohn der Raucherin die Laune verdarb
AGENT THEME AGENT
OWNER THEME

Sentence VK-151

er wusste s dass die Bergsteiger der Referentin die Warnung schickten
AGENT THEME AGENT
OWNER THEME

Sentence VK-226

er wusste s dass die Nachbarin der Rektorin die Adresse nannte
AGENT THEME AGENT

~_ 7 N_S

OWNER THEME
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Sentence VK-233

er wusste \ dass die Cousine der Besucherin den Vorfall schilderte
AGENT THEME AGENT
OWNER THEME

Sentence VK-247

er wusste s dass die Pflegerin der Greisin den Ausflug verbot
AGENT THEME AGENT
OWNER THEME

Sentence VK-263

er wusste s dass die Verlegerin der Autorin den Artikel verkaufte
AGENT THEME AGENT

~__ 7 N_

OWNER THEME
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Sentence VK-274

er wusste s dass die Doktorandin der Forscherin den Beweis lieferte
AGENT THEME AGENT
OWNER THEME

Sentence VK-306

er wusste s dass die Managerin der Unternehmerin den Vertreter sendete
AGENT THEME AGENT

~—_ NS

OWNER THEME
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VI.1.9 Integration of Generalised Two-Entity Contexts Centred around an
Instance of SITUATION.CONCEPT

Sentence VK-011

er wusste ) dass die Magd der Bauerin den Korb suchte
AGENT THEME AGENT

N_

THEME

\_/

RECIPIENT

Sentence VK-100

er wusste , dass der Verehrer der Schauspielerin den Blumenstraul schenkte
AGENT THEME AGENT

~_ N

OWNER THEME
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Sentence VK-111

er wusste s dass der Sohn der Raucherin die Laune verdarb
AGENT THEME AGENT
OWNER THEME

Sentence VK-151

er wusste s dass die Bergsteiger der Referentin die Warnung schickten
AGENT THEME AGENT
OWNER THEME

Sentence VK-226

er wusste s dass die Nachbarin der Rektorin die Adresse nannte
AGENT THEME AGENT

N_S

THEME

\_/

RECIPIENT
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Sentence VK-233

er wusste ) dass die Cousine der Besucherin den Vorfall schilderte
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-247

er wusste s dass die Pflegerin der Greisin den Ausflug verbot
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-263

er wusste s dass die Verlegerin der Autorin den Artikel verkaufte
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT
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Sentence VK-274

er wusste s dass die Doktorandin der Forscherin den Beweis lieferte
AGENT THEME AGENT

NS

THEME

\/

RECIPIENT

Sentence VK-306

er wusste \ dass die Managerin der Unternehmerin den Vertreter sendete
AGENT THEME AGENT

N_S

THEME

\/

RECIPIENT
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VI.2 Sentences with Subject-Object-Ambiguity
VI.2.1 Integration of an Empty Context Model
Sentence SO-360

zehntausende Demonstranten trugen die Bahren der " Martyrer " durch die Stralen der Zweimillionen-Stadt
AGENT THEME OWNER OWNER

Sentence SO-706

Markt & Technik fordert Geduld

bis auf wenige Stunden Schiaf arbeiten diese Frauen rund um die uhr L weil sie 2u Hause Mann und Kinder versorgen

AGENT AGENT

Sentence SO-1090

Japan bittet Europa um Geduld
AGENT THEME

\_/

THEME
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Sentence SO-6179

Sentence SO-4493
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Sentence SO-9681

statt dessen schicken sie Werber von Haus zu Haus
AGENT
THEME

Sentence SO-9792

sie vertritt die Gesellschaft f und ihr obliegt die Geschaftsfiihrung

AGENT THEME RECIPIENT AGENT

Sentence SO-10744

beide Kriegsparteien drangten sie , an den Verhandlungstisch zurtickzukehren
AGENT THEME AGENT

Sentence SO-40722

die Kommission fordert die Bundesregierung nun auf \ binnen eines Monats fur Klarheit zu sorgen
AGENT THEME AGENT

THEME



286 Appendix

VI1.2.2 Soft Integration of SUBJ-0BJA Contexts

Sentence SO-360

zehntausende Demonstranten trugen die Bahren der " Martyrer " durch die Stralen der Zweimillionen-Stadt
AGENT THEME OWNER OWNER

Sentence SO-706

Markt & Technik fordert Geduld
AGENT THEME

Sentence SO-841

bis auf wenige Stunden Schiaf arbeiten diese Frauen rund um die uhr . weil sie 1 Hause Mann und Kinder versorgen
AGENT AGENT

THEME

Sentence SO-1090

Japan bittet Europa um Geduld
AGENT THEME

\/

THEME
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Sentence SO-6179

Sentence SO-4493
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Sentence SO-9681

statt dessen schicken sie Werber von Haus zu Haus
AGENT
THEME

Sentence SO-9792

sie vertritt die Gesellschaft f und ihr obliegt die Geschaftsfiihrung

AGENT THEME RECIPIENT AGENT

Sentence SO-10744

beide Kriegsparteien drangten sie , an den Verhandlungstisch zurtickzukehren
AGENT THEME AGENT

Sentence SO-40722

die Kommission fordert die Bundesregierung nun auf \ binnen eines Monats fur Klarheit zu sorgen
AGENT THEME AGENT

THEME
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VI1.2.3 Soft Integration of 0BJA-SUBJ Contexts

Sentence SO-360

zehntausende Demonstranten trugen die Bahren der Martyrer durch die Stralen der Zweimillionen-Stadt
THEME AGENT OWNER OWNER

Sentence SO-706

Markt & Technik fordert Geduld
THEME AGENT

Sentence SO-841

bis auf wenige Stunden Schiaf arbeiten diese Frauen rund um die uhr . weil sie 2u Hause Mann und Kinder versorgen

AGENT

\—/

THEME

AGENT

Sentence SO-1090

Japan bittet Europa um Geduld
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Sentence SO-6179

Sentence SO-4493
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Sentence SO-9681

statt dessen schicken sie Werber von Haus zu Haus
AGENT
THEME

Sentence SO-9792

sie vertritt die Gesellschaft f und ihr obliegt d

e Geschaftsfihrung

THEME AGENT RECIPIENT AGENT

Sentence SO-10744

beide Kriegsparteien drangten sie . an den Verhandlungstisch zuriickzukehren
AGENT
THEME AGENT

Sentence SO-40722

die Kommission fordert die Bundesregierung nun auf B binnen eines Monats fair Klarheit zu sorgen

//

AGENT

THEME AGENT THEME
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iguity

V1.3 Sentences with PP-Attachment Amb

Integration of an Empty Context

VI1.3.1

Sentence PP-3025
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Sentence PP-3277
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Sentence PP-3839

0OBJC
KONJ
/ TB)
ADV
km/’
————+—AV oA
DET, BN
I ATTR I
Staatschef Soares argumentiert X daB die Regierung nicht einfach Gesetze mit friheren Laufbahnzusagen Kurzfristig andern kénne
AGENT THEME AGENT
THEME
INSTRUMENT

Sentence PP-7177

insgesamt werden Braunkohlemeiler mit zusammen 8500 Megawatt ( Mw ) abgeschaltet
THEME
COMITATIVE

Sentence PP-7650

ATTR

ATTR

die ganze Nacht uber landeten auf dem internationalen Ben-Gurion-Flughafen Flugzeuge mit Trauergéasten

e

AGENT COMITATIVE

Sentence PP-17512

die hochsten Renditen erwirl g in von Orten mit 10000 bis 500000 Einwohnern

\—/

AGENT THEME COMITATIVE
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Sentence PP-23135

Sentence PP-19569
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Sentence PP-28600

wir richten uns nicht nach Miiller und Schulz " . wehrt er Vergleiche mit der Konkurrenz ab
AGENT THEME AGENT COMITATIVE
THEME

Sentence PP-31611

die Region ist offiziell 2weisprachig im  Alltag sprechen die Menschen aber iberwiegend Deutsch mit bajuwarischem idiom
AGENT THEME AGENT
THEME

-—

INSTRUMENT
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VI.3.2 Soft Integration of Generalised Comitative Contexts

Sentence PP-3025
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Sentence PP-3277
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Sentence PP-3839

Staatschef Soares argumentiert . dap die  Regierung nicht einfach Gesetze mit frisheren Laufbahnzusagen kurzfristig andern kénne
AGENT AGENT
THEME

Sentence PP-7177

insgesamt werden Braunkohlemeiler mit zusammen 8500 Megawatt ( mw ) abgeschaltet
THEME
COMITATIVE

Sentence PP-7650

ATTR

ATTR

die ganze Nacht uber landeten auf dem internationalen Ben-Gurion-Flughafen Flugzeuge mit Trauergasten

R

AGENT COMITATIVE

Sentence PP-17512

in von Orten mit 10000 bis 500000 Einwohnern

\—/

AGENT THEME COMITATIVE

die hochsten Renditen rwir g
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Sentence PP-23135

Sentence PP-19569
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Sentence PP-28600

wir richten uns nicht nach Miiller und Schulz " . wehrt er Vergleiche mit der Konkurrenz ab
AGENT THEME AGENT COMITATIVE
THEME

Sentence PP-31611

die Region ist offiziell 2weisprachig . im Alltag sprechen die Menschen aber iberwiegend Deutsch mit bajuwarischem idiom

AGENT THEME AGENT COMITATIVE

\—//

THEME
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VI1.3.3 Soft Integration of Generalised Instrument Contexts

Sentence PP-3025
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Sentence PP-3277

Parse Trees
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Sentence PP-3839

NEB
KONJ
/ TB)
ADV
—
—— 70" v—oan
DET, BN
I ATTR I
. daB die nicht einfach Gesetze mit  friheren Laufbahnzusagen kurziristig andern konne

Staatschef Soares argumentiert

Regierung
AGENT AGENT
THEME

INSTRUMENT

Sentence PP-7177

mit zusammen 8500 Megawatt ¢ mw ) abgeschaltet

werden Braunkohlemeiler

insgesamt
THEME

INSTRUMENT

Sentence PP-7650

ATTR

DET
ATTR
Flugzeuge mit Trauergasten

auf dem internationalen Ben-Gurion-Flughafen

AGENT
INSTRUMENT

die ganze Nacht uber landeten

Sentence PP-17512

10000 bis 500000 Einwohnern

von Orten mit

héchsten Renditen erwir

AGENT THEME
INSTRUMENT

die
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Sentence PP-23135
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Sentence PP-28600

wir richten uns nicht nach Miiller und Schulz " B wehrt er Vergleiche mit der Konkurrenz ab
AGENT THEME AGENT
THEME

Sentence PP-31611 INSTRUMENT

die Region ist offiziell 2weisprachig . im  Alltag sprechen die Menschen aber iiberwiegend Deutsch mit bajuwarischem idiom

AGENT THEME AGENT

e ———

INSTRUMENT



307

Parse Trees

VI1.3.4 Soft Integration of Augmented Contexts for PP-17512

LNIANNYLSNI

wisuyomuig 00000S siq 0000T nw

Augmented Instrument Context

3AILVLINOD

\/

ulduyomuiz 000005 siq 0000T Hnw

Augmented Comitative Context

uslo

usuo

UuoA

uon

uabe|syeyosabidneH

usbe|syeyosabidneH

u

uaimuaby

ANIHL

U219} RYISLIMID

INIHL

usleleYISHIMID

ualpuay

usipusy

uaIsyoQy

ua1syaQy

alp

a1p




308

Appendix

VII Experimental Data

VII.1 Experiment 2

Sentence ID

Average Processig Time [in sec]

Empty Binary Ternary E;T;g %glpiryy
VK-011 12.067 20.586 16.630 1.706 1.378
VK-100 14.107 18.930 13.714 1.342 0.972
VK-111 10.723 17.031 11.963 1.588 1.116
VK-151 14.560 21.669 14.518 1.488 0.997
VK-226 12.561 17.641 14.375 1.404 1.144
VK-233 11.132 16.184 12.669 1.454 1.138
VK-247 10.472 14.053 10.988 1.342 1.049
VK-263 13.150 21.027 16.307 1.599 1.240
VK-274 11.921 19.123 13.595 1.604 1.140
VK-306 11.089 19.297 14.535 1.740 1.311

Table 12: Average processing times in seconds for hard context integration.
Sentence ID Number of Structural Candidates
Empty Binary Eg}zg Ternary T};;ln;];y

VK-011 1.001-10731  1.019-102'  1.018-107'° 1.019-10t2!  1.018.10710
VK-100 3.116-1072"  4.951-10t®  1.589-.107%  3.300-107'®  1.059-10~%
VK-111 4.844-10729  1.478-10720  3.051-10~'1° 9.856-10°  2.035-10710
VK-151 1.168-10t2%  1.855.10719  1.588.107%°  1.237.1071°  1.059.107%
VK-226 2.760-1072%  8.082-10t®  2.928.10710 3.592.10*'® 1.301-10710
VK-233 1.580-10t27  8.369-107'7  5.297.10"1° 8.369-10717  5.297.10710
VK-247 5.560-10726  2.945.10t17  5.297.10719 2.945.107'7  5.297.10710
VK-263 4.300-102%  4.374.10T  1.017-107'°  4.374.107  1.017-10710
VK-274 7.220-10130  4.421-10720  6.123-10711  2.948-10720  4.083-10~!!
VK-306 4.300-10%2%  4.374.10T  1.017-107°  4.374.107  1.017-10710

Table 13: The number of structural candidates prior to frobbing for hard context integration as
quoted by WCDG2.
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Number of Constraint Evaluations [in 10°]

Sentence ID Empty Context Binary Context Ternary Context

Unary Binary Unary Binary Unary Binary
VK-011 17.427 5.919 19.958 12.340 18.595 9.404
VK-100 16.584 8.714 17.721 12.494 15.910 8.484
VK-111 16.849 5.060 18.965 10.374 16.928 6.490
VK-151 21.692 7.193 23.596 12.863 20.907 7.192
VK-226 19.407 6.177 20.934 10.329 19.852 7.691
VK-233 15.980 5.863 17.615 9.971 16.419 7.162
VK-247 15.188 5.688 16.369 8.676 15.309 6.198
VK-263 21.406 5.768 23.520 11.477 21.930 7.871
VK-274 17.503 5.650 19.932 11.362 17.963 7.048
VK-306 17.515 5.245 19.925 11.477 18.336 7.871

Table 14: Number of unary and binary constraint evaluations under hard context integration.

VII.2 Experiment 3

—
Sentence ID Average Processig Time [in sec]

Empty Binary %m Ternary ’Er#m
VK-011 12.067 14.829 0.720 10.341 0.622
VK-100 14.107 15.176 0.802 12.244 0.893
VK-111 10.723 13.567 0.797 10.734 0.897
VK-151 14.560 16.559 0.764 13.006 0.896
VK-226 12.561 13.100 0.743 10.436 0.726
VK-233 11.132 12.684 0.784 8.996 0.710
VK-247 10.472 11.614 0.826 8.372 0.762
VK-263 13.150 16.990 0.808 11.932 0.732
VK-274 11.921 14.497 0.758 9.895 0.728
VK-306 11.089 15.136 0.784 10.107 0.695

Table 15: Average processing time in seconds for soft context integration and a context compliance
of 0.8.
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Sentence ID

Number Structural Candidates

Empty Binary Bzgfn;ﬁ;ﬁ Ternary %ﬁ;‘w
VK-011 1.001-10™31  1.001-10%31 1.000 1.001-10131 1.000
VK-100 3.116-10727  3.116-107%7 1.000 3.116 10727 1.000
VK-111 4.844.10129  4.844-107% 1.000 4.844 .10129 1.000
VK-151 1.168-1072®  1.168-10"28 1.000 1.168-10128 1.000
VK-226 2.760-1072%  2.760-10728 1.000 2.760-10128 1.000
VK-233 1.580-10727  1.580-10+27 1.000 1.580-10+27 1.000
VK-247 5.560-10726  5.560-10726 1.000 5.560 -10726 1.000
VK-263 4.300-1072%  4.300-107%° 1.000 4.300-10129 1.000
VK-274 7.220-10130  7.220.10130 1.000 7.220-10130 1.000
VK-306 4.300-1072  4.300-1072° 1.000 4.300-10129 1.000

Table 16: The number of structural candidates prior to frobbing as quoted by WCDG2 for soft
integration with a context compliance of 0.8.

Number of Constraint Evaluations [in 10°]

Empty Context

Binary Context

. Unar, ¢ . Binary, ¢4

Sentence 1D Unary Binary Unary UHT;,ZZJ’M Binary Wg}l;d
VK-011 17.427 5.919 18.150 0.909 7.696 0.624
VK-100 16.584 8.714 16.700 0.942 9.338 0.747
VK-111 16.849 5.060 17.881 0.943 7.361 0.710
VK-151 21.692 7.193 22.129 0.938 8.611 0.669
VK-226 19.407 6.177 19.300 0.922 6.471 0.626
VK-233 15.980 5.863 16.433 0.933 7.043 0.706
VK-247 15.188 5.688 15.519 0.948 6.565 0.757
VK-263 21.406 5.768 22.295 0.948 7.986 0.696
VK-274 17.503 5.650 18.448 0.926 7.491 0.659
VK-306 17.515 5.245 18.700 0.939 7.986 0.696

Table 17: The number of unary and binary constraint evaluations under soft integration of empty
and binary contexts (context compliance = 0.8).
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Number of Constraint Evaluations [in 10°]

Ternary Context

nar, . Binar
Sentence ID Unary &Tm Binary Wm
VK-011 16.333 0.878 4.080 0.434
VK-100 15.136 0.951 7.186 0.847
VK-111 16.524 0.976 5.147 0.793
VK-151 20.437 0.978 5.607 0.780
VK-226 18.222 0.918 4.179 0.543
VK-233 14.818 0.902 3.894 0.544
VK-247 14.021 0.916 3.708 0.598
VK-263 20.309 0.926 3.911 0.497
VK-274 16.474 0.917 3.693 0.524
VK-306 16.715 0.912 3.911 0.497

Table 18: The number of unary and binary constraint evaluations under soft integration of ternary
contexts (context compliance = 0.8).
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