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Dr. K. Petermann

Vorsitzender des Promotionsausschusses:

Prof. Dr. J. Bartels

Leiterin des Departments Physik:

Prof. Dr. D. Pfannkuche

Dekan der MIN-Fakultät:

Prof. Dr. H. Graener



A grating interferometer for materials science imaging
at a second-generation synchrotron radiation source

Julia Herzen

Abstract

X-ray phase-contrast radiography and tomography enables to increase contrast for weakly
absorbing materials. Recently, x-ray grating interferometers were developed which extend
the possibility of phase-contrast imaging from highly brilliant radiation sources like third-
generation synchrotron to non-coherent conventional x-ray tube sources. During this work an
x-ray grating interferometer was designed and installed at low-coherence wiggler source at the
GKSS beamline W2 (HARWI II) of the second-generation synchrotron storage ring DORIS
at the Deutsches Elektronen-Synchrotron (DESY, Hamburg, Germany). The beamline is
dedicated to imaging in materials science. Equipped with the grating interferometer, it is the
first synchrotron radiation beamline with a three-grating setup combining the advantages of
phase-contrast imaging with monochromatic radiation with very high flux and a sufficiently
large field of view for centimetre sized objects. A simple method was implemented to reliably
determine the spatial resolution of the grating-based setup. Furthermore, the quantitative-
ness of the setup was analysed by a tomography scan of a specially constructed phantom
consisting of chemically well defined fluids. The results of this scan using the new setup are
compared to a similar scan carried out using a grating interferometer with a conventional
laboratory x-ray tube source. Both measurements demonstrate the accurate determination
of the complex refractive index of the different fluids in three dimensions. Examples of radio-
graphy on laser-welded aluminium and magnesium joints are presented to demonstrate the
high potential of the new grating-based setup in the field of materials science. In addition,
the results of tomographic scans of biological soft tissue samples like the brain and heart of
a mouse are presented.



Zusammenfassung

Phasenkontrastradiographie und -tomographie mit Röntgenstrahlung wird sehr erfolgreich
eingesetzt, um den Kontrast für schwach absorbierende Materialien zu erhöhen. Vor Kurzem
wurden Gitterinterferometer entwickelt, die die Phasenkontrastbildgebung von hoch brillanten
Strahlungsquellen wie die Synchrotron Quellen der dritten Generation auf nicht kohärente
konventionelle Röntgenröhren ausweiten. Während dieser Arbeit wurde ein Röntgengitter-
interferometer für den GKSS Wiggler-Messplatz W2 (HARWI II) mit sehr geringer Kohärenz
am Speicherring der zweiten Generation DORIS am Deutschen Elektronen Synchrotron (DESY,
Hamburg, Deutschland) entworfen und aufgebaut. Der Messplatz ist optimiert für Bildge-
bung im Bereich der Materialforschung. Ausgestattet mit einem Röntgengitterinterferometer
stellt er den ersten Synchrotronmessplatz dar, der einen Drei-Gitter-Interferometer verwen-
det, um die Vorteile der Phasenkontrastbildgebung mit monochromatischer Strahlung und
hohem Fluss mit einem großen Sichtfeld zur Untersuchung von Objekten mit Kantenlängen
im Zentimeterbereich zu kombinieren. Ein einfaches Verfahren wurde implementiert, das
eine verlässliche Angabe der erreichten Ortsauflösung des Gitterinterferometers ermöglicht.
Darüberhinaus wurde die Quantitativität des Aufbaus mit Hilfe einer tomographischen Unter-
suchung eines selbst-entwickelten Phantoms demonstriert, das aus verschiedenen chemisch gut
definierten Flüssigkeiten besteht. Die Ergebnisse dieser Messung am neuen Aufbau wurden
mit einer ähnlichen Messung verglichen, die an einer konventionellen Röntgenröhre aufgenom-
men wurde. Beide Messungen zeigen eindrucksvoll, wie präzise mit diesem Verfahren der
komplexe Brechungsindex der unterschiedlichen Flüssigkeiten in drei Dimensionen bestimmt
werden kann. Beispiele von Radiographieaufnahmen von Laser-geschweißten Aluminium- und
Magnesiumschweißnähten werden präsentiert, um das Potenzial des neuen Gitter-basierten
Aufbaus auf dem Feld der Materialforschung zu demonstrieren. Zusätzlich werden die Ergeb-
nisse von Tomographieaufnahmen von biologischen Weichgewebeproben, wie Gehirn und Herz
einer Maus, präsentiert.
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Dose, Astrid Haibel, Thomas Lippmann, and Stefan Riekehr for your help and support during
my work. Without you the ”chauvi box” would never contain enough money for a barbecue
and I had never learned the ”real men’s barbecue”! I’m deeply grateful for the wonderful
atmosphere that all of you together with the other colleagues from GKSS and DESY created
at the DESY campus.

Furthermore, I would like to thank the colleagues from PSI, Christian David, Oliver Bunk,
Martin Bech, Marco Stampanoni and Franz Pfeiffer, who welcomed me warmly during my
stay in Switzerland, and introduced me to phase contrast. Thank you very much for your
kindness and your help. I’d like to express my special thanks to Franz for agreeing to be a
referee of this work and for giving me the opportunity to continue my work in his group at the
TU München. Thanks a lot to Martin, who is now my colleague in Munich, for proof-reading
of this work.

In particular I want to thank my family, my parents and my sisters Katharina, Elena, and
Anna for their support. Thank you so much that you are always there when I need you!

Most of all I want to thank my husband Volker for his patience and support. You are the
most important part of my life! I love you!

iii





Contents

1. Introduction 1

2. Instruments and methods 5
2.1. X-ray imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Absorption contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2. Phase contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2. Tomographical principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1. Radon transform and Fourier slice theorem . . . . . . . . . . . . . . . 9
2.2.2. Backprojection of filtered projections . . . . . . . . . . . . . . . . . . . 10

2.3. X-ray sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1. X-ray tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2. Synchrotron radiation sources . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3. Beamline W2 (HARWI II) . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. X-ray detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. Grating-based interferometry 19
3.1. Principle of grating-based imaging . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1. The Talbot self-imaging effect . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2. Grating interferometer formulas for a phase grating . . . . . . . . . . 20
3.1.3. Phase scanning and processing . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4. Tomographic reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.5. The case of incoherent illumination - The Lau effect . . . . . . . . . . 27
3.1.6. Achromaticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2. Experimental implementation of the interferometer . . . . . . . . . . . . . . . 29
3.2.1. Interferometer geometries . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2. Mechanical components . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3. Influence of an extended, distant wiggler source . . . . . . . . . . . . . . . . . 32
3.3.1. Wavefield propagation formulas . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2. Simulations of visibility . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3. Measurement of visibility . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4. Spatial resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.1. MTF and spatial resolution . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2. MTF calculation using a silicon cuboid . . . . . . . . . . . . . . . . . . 39

4. Quantitative phase-contrast computed tomography of a liquid phantom 45
4.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2. Calculation of the liquid signals from tabulated data . . . . . . . . . . . . . . 45
4.3. Measurement at a synchrotron radiation source . . . . . . . . . . . . . . . . . 47

4.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2. Methods and materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



Contents

4.3.3. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.4. Contrast-to-noise ratios . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4. Measurement at a conventional x-ray tube . . . . . . . . . . . . . . . . . . . . 55
4.4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.2. Methods and materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.3. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5. Applications 63
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2. Imaging of welded materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1. Imaging laser-welded T-joints in absorption mode . . . . . . . . . . . . 63
5.2.2. Imaging laser-welded butt-joints in phase-contrast mode . . . . . . . . 67

5.3. Phase-contast tomography of biological samples . . . . . . . . . . . . . . . . . 71
5.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.2. Tomography of mouse heart and brain . . . . . . . . . . . . . . . . . . 72

5.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6. Summary and outlook 77

A. Huygens-Fresnel principle and Talbot images 79

B. Alignment procedure 81

C. Grating production 83

D. Publications related to the work 89

Bibliography 91

List of Publications 99

vi



1. Introduction

Synchrotron radiation based x-ray micro computed tomography (SRµCT) in conventional
absorption mode is an established 3-dimensional x-ray imaging method yielding excellent
spatial and density resolution in a wide field of applications. In this mode good contrast
between different materials inside an object for photon energies greater than 20 keV can only
be achieved for highly absorbing elements. To image materials consisting of weakly absorbing
elements, especially organic materials, different contrast media or staining procedures are of-
ten required. However, such treatments are time consuming, difficult, and in some cases may
not be possible or cause structural changes. Detecting the changes in the x-ray wave front
caused by the object, in so-called phase-contrast imaging, the contrast for weakly absorbing
materials can be significantly enhanced using the phase shift introduced to the x-ray wave by
the object as a contrast mechanism in the same energy range.

Since no phase information is contained in the measured intensities, different methods
have been developed to determine the x-ray phase-shift. The phase-shift information can
then be used for 3-dimensional phase-contrast tomographic reconstructions. For a long time,
these methods have been practically limited to highly brilliant radiation as it is available at
e. g. third generation synchrotron radiation sources. Recently, the development of grating
interferometers extend x-ray phase-contrast imaging even to conventional x-ray tube sources.
Therefore, grating-based x-ray phase-contrast imaging became feasible also at the second
generation synchrotron radiation sources like the storage ring DORIS at DESY (Hamburg,
Germany). DORIS provides several orders of magnitude more flux than conventional x-ray
tubes of a much lower brilliance than third generation sources (PETRA III). But unlike these
sources the beam size is suitable for characterising centimetre sized objects using monochro-
matic radiation.

The aim of this work was to design and setup a grating interferometer at the materials
science beamline W2 operated by GKSS Research Centre Geesthacht at DORIS. In coopera-
tion with PSI, TU München and Karlsruhe Institute of Technology (KIT) the three-grating
interferometer for the beamline W2 was built and its functionality was demonstrated. This
is the first grating interferometer setup at a second generation synchrotron storage ring util-
ising three gratings and serves as proof of principle of this geometry using a large and distant
source point.

Various examples of different studies will be presented demonstrating the performance of
the new setup. In the following, a review of different phase-contrast methods will give the
reader a short overview of the existing techniques.

1



1. Introduction

Review of phase-contrast imaging

Since the discovery of x-rays by Röntgen in 1895 their power to non-destructively penetrate
objects has been used in many fields including medicine, biology and engineering materials
science. The first attempts to expand the optical methods known from the visible light regime
to the x-ray regime started with microscopic applications in 1896 as described by J. Kirz et

al. [55]. Since the 1950’s optical components like mirrors or lenses for x-rays have been de-
signed [54] and enhanced that pushed the spatial resolution of x-ray microscopy to below one
micrometre. Both, absorption-contrast and phase-contrast imaging methods were developed
during the following decades. In 1965 Bonse and Hart succeeded in recording phase-contrast
projections using a silicon mono-crystal interferometer [17]. Despite of proof-of-principle ex-
periments with tube sources, for a long time x-ray phase-contrast computed microtomography
(PCµCT) practically was limited to highly brilliant synchrotron radiation sources as reported
by Momose et al. [70, 71], Beckmann et al. [13], Cloetens et al. [21], Gureyev et al. [40],
and Weitkamp et al [96]. Quantitative phase-contrast measurements1 were only possible
using synchrotron radiation, and reported by Bonse et al. [16] and Momose et al. [69] and
verified in a few cases for example in combination with diffraction enhanced imaging (DEI)
by Dilmanian et al. [27], propagation-based phase-contrast imaging by Nugent et al. [76],
and phase-contrast microscopy using zone plates by Koyama et al. [59], and by McMahon et

al. [68].

Only a few years ago, the use of low-brilliance x-ray sources like laboratory x-ray tubes
for phase-contrast imaging has become feasible and the grating interferometer approach by
Pfeiffer et al. [80, 82, 83], by Engelhardt et al. [29], and by Kottler et al. [58] has been demon-
strated to provide excellent results for macroscopic specimens.

A review article by Momose [71] gives a detailed overview of all common phase-contrast
imaging methods and the recent developments in x-ray phase imaging. Here, a short overview
of the methods is presented divided into three main groups: (1.) the direct methods measuring
the phase shift (Bonse-Hart interferometer), (2.) the propagation based methods measuring
the 2nd derivative of the phase shift, and (3.) the differential methods measuring the 1st

derivative of the phase shift by using e.g. the grating-based or the analyser-based method.

The principal of the crystal interferometer as used by Bonse and Hart [17] is to separate
the incoming beam into two different beams with spatially separated paths. One of the beams
penetrates the investigated object and the second serves as a reference beam. By joining both
coherent beams behind the sample an interference pattern is produced that can be observed
with a detector. By shifting the phase of the reference beam several times by a defined value
and analysing the interference pattern in the detector plane, information about the absolute
phase-shift of the beam caused by the sample can be obtained. The Bonse-Hart crystal in-
terferometer consists of three parallel lamellae of a fixed spacing cut out from one silicon
single crystal. The high sensitivity of this method to phase shifts was demonstrated on sev-
eral biological specimens [8, 9, 69, 70] visualising density changes of down to about 1 mg/cm3.

1Meaning quantitative measurement: precise determination of the object-induced phase shift of the x-ray
wave front.
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This high sensitivity limits the possible applications to only very weakly absorbing materi-
als and at the same time it demands a very high mechanical stability. The sample size is also
limited by the separation of the beam paths. Since the silicon crystals serve as monochro-
mators, the flux is significantly reduced, as only a narrow spectral width is selected by the
crystals. Thus, the crystal interferometer can only be efficiently used in combination with a
synchrotron radiation source providing a high enough beam brilliance.

Propagation-based imaging relies on the fact, that under spatially coherent illumina-
tion Fresnel or Fraunhofer diffraction occurs as the beam propagates from the object to the
detector [20, 76, 92, 97]. The detector is placed in an increased distance from the object, in
contrast to most other kinds of imaging, in which one tries to minimize this distance to avoid
blur. Propagation-based methods do not use any optical components, which makes image
acquisition very simple.

A simple projection recorded in a certain distance downstream the object gives a so-called
edge-enhanced image that contains information about the phase gradient, but not a com-
plete phase map of the object [20]. For a complete phase map, several images at varying
object-to-detector distances are required from which the phase in each point can be retrieved.
Quantitative results from this technique called holotomography were reported by Cloetens et
al. [21]. Holotomography demands spatially coherent illumination and, therefore, is only suit-
able for third generation synchrotron radiation sources like e. g. the ESRF (Grenoble, France)
or PETRA III (Hamburg, Germany).

Analyser-based imaging (ABI) as the name implies makes use of an analyser crystal to
generate the contrast. The x-ray beam has to be parallel, which is achieved by collimating
it with a crystal using Bragg diffraction condition. Illuminating the sample with the parallel
beam the refracted part of it is reflected by the analyser crystal onto the detector. By scan-
ning the analyser crystal different refraction angles can be analysed. The measured refraction
angle α is related to the first derivative of the phase front [26]. Additionally, a signal related
to the small-angle scattering signal can be extracted from the data [100].

Dilmanian et al. [27] presented the tomographic reconstruction of both ABI signals, the
first derivative of the phase front and the small-angle scattering signal. The method shows a
high phase sensitivity and the potential to provide good contrast even at high x-ray energies
(60-90 keV) using the small-angle scattering signal. But this method suffers from the same
effect already mentioned in the case of crystal interferometry, which is that the flux is sig-
nificantly reduced by the monochromatising crystals. Thus, sufficiently short exposure times
can only be achieved at a synchrotron radiation source.

The grating interferometer method applied in this work uses a beam-splitter grating
and an analyser grating to detect the x-ray refraction in the sample. The refraction angle
is related to the first derivative of the x-ray phase shift produced by the sample. Like the
analyser-based method it additionally provides information that is related to the small-angle
scattering signal.

In the case of sufficiently coherent illumination (criteria described by Weitkamp et al. [95])
the beam-splitter grating splits the incoming x-ray beam into spatially not separated, over-

3



1. Introduction

lapping diffraction orders. This overlap leads to interference and causes a periodic intensity
pattern in certain distances downstream the beam-splitter grating. A sample refracts the
beam producing a transverse shift of the interference pattern perpendicular to the beam di-
rection. This pattern can be detected directly with a high resolution detector or indirectly
using an analyser grating.

Recently, a method was developed to expand the use of the grating-based phase-contrast
method to polychromatic radiation sources like x-ray tubes or low-brilliance radiation sources
like second generation synchrotron sources. By utilising an additional attenuation grating the
incoming beam is divided in many small sources of higher transverse coherence as described
by Pfeiffer et al. [82]. The grating interferometer provides less phase sensitivity than the one
of the crystal interferometer, which is advantageous in many cases.

The quantitativeness of the method was demonstrated by a measurement of a specially con-
structed fluid phantom using the newly design setup. A similar measurement was performed
with a conventional x-ray tube source during a three-month research stay at the Laboratory
for Micro- and Nanotechnology at Paul Scherrer Institut (PSI) in Switzerland, where the
grating-based phase-contrast method was studied on laboratory radiation sources. An ap-
proach demonstrating the quantitativeness of the grating-based method in combination with
laboratory x-ray tubes was published during this work [49]. As examples, two studies are pre-
sented to demonstrate the performance of the new setup: 1. on aluminium and magnesium
joints produced by laser welding, representing an important research topic studied at GKSS,
and 2. on biological samples being an other important class of specimens characterised using
x-ray imaging.

Several SRµCT studies in absorption mode on different materials were performed at the
beamlines W2 and BW2 at DORIS during user support of GKSS internal and external re-
search groups. A selection of publications in reviewed journals, several selected conference
proceedings based on these studies, and HASYLAB reports will be presented in the Appendix
D and as a list of publications without the reports in the end of the bibliography.

4



2. Instruments and methods

In the present chapter the theoretical background required for the discussions in the following
chapters is presented. For details concerning those aspects which are only discussed very
briefly or left out completely, the reader will be referred to the according literature. The
first section deals with the basics of imaging including the image formation in absorption
and phase-contrast imaging and the explanation of the tomographical principle. The second
section of this chapter presents the two different x-ray sources used during this work, the
second-generation synchrotron radiation source DORIS at DESY (Hamburg, Germany), and a
laboratory x-ray tube at Paul Scherrer Institut (Villigen-PSI, Switzerland). The implications
of the two source types for x-ray imaging will be discussed in detail.

2.1. X-ray imaging

In general, x-ray imaging means making the structure of an object visible using x-rays and
different contrast mechanisms. As the electromagnetic wave is influenced on its way through
the object, the changes can be detected and used for imaging. Measuring the transmitted
intensity detects the amplitude decrease of the electromagnetic wave. This is used as con-
trast mechanism in case of conventional absorption contrast imaging. With interferometric
techniques the phase shift can also be detected and used as signal for phase-contrast imaging.
Looking to the object’s complex refractive index

n = 1− δ + iβ (2.1)

the absorption is related to the imaginary part β and the phase shift to the real part δ. In
the following two sections the signal formation of the two contrasts is explained and the last
section deals with the generally valid tomographical principle.

2.1.1. Absorption contrast

Total linear attenuation coefficient

Absorption contrast is based on the fact that the x-ray photons interact with electrons as
they propagate through matter. The relation of the linear attenuation coefficient µ to the
imaginary part β of the complex refractive index n is given by

µ =
4π

λ
β , (2.2)

with λ representing the wave length. In the energy range between 10 keV and 100 keV used in
this work there are two main effects contributing to the attenuation: the photoelectric effect,
and Compton scattering. They linearly contribute to the total linear attenuation coefficient
µtot

µtot = µPE + µC , (2.3)

5



2. Instruments and methods

with µPE representing the attenuation coefficient related to the photoelectric effect and µC to
Compton scattering. The influence of the two effects scales strongly with the photon energy.
Two additional effects contribute to the total linear attenuation coefficient: the pair produc-
tion and the coherent (or elastic) scattering. While the coherent scattering can be neglected
at photon energies up to 30 keV the pair production does not occur below 1 MeV and only
becomes important for the imaging in MeV range.

Assumption of small sample size and influence of scattering

The relative importance of the photoelectric effect and Compton scattering as competing in-
teractions for tomographic imaging in absorption contrast mode has been discussed by many
authors [8, 28, 34, 53]. In the PhD works by Beckmann [8, Chapter 2.4] and by Donath [28,
Appendix A] the significance of each effect for imaging in the photon energy range from 10-30
keV is discussed. Both came to the conclusion that for small samples (about 1 cm thick)1 the
photoelectric effect is the dominant effect. Thus, they considered the attenuation coefficient
to be approximately equivalent to the photoelectric coefficient (µ = µtot ≈ µPE).

As the samples investigated in this work were in the range of 1-6 cm (in the photon energy
range from 22 to 30 keV) we should discuss whether the assumption made by Beckmann
and Donath is still valid for our approach. Compton scattering is the dominant interaction
of x-rays especially in soft tissue. The interacting photon transfers a part of its energy to
a scattering electron and leaves the object in a different angle to the incident direction. In
comparison to the photoelectric effect the scattered photons do not contain any ’useful’ infor-
mation about the specimen but decrease the image contrast (by increasing the background
signal) when hitting the detector [4].

In the book by Barrett and Swindell [4] the authors describe the influence of scattering
on the signal of transmitted intensity projected on the detector. They mention the following
parameters, that influence the amount of Compton scattering hitting the detector (see [4,
Chapter 11.4]):

1. The Compton scattering increases with sample size, as multiple scattering increases
with the sample size

2. It increases with the photon energy

3. It decreases with sufficient collimation of the incident beam, as the incoming beam can
already scatter on air and the collimation can stop the scattered part from hitting the
detector

4. It decreases with the increasing distance between sample and detector, since x-rays scat-
tered at higher angles (e.g. from multiple scattering) do not hit the detector anymore.

The grating interferometer setup is described in detail in Chapter 3. Its three main differences
to the conventional absorption contrast setup described by Beckmann and Donath [8, 28] are

1The sample thickness influences both, the required photon energy - the thicker the sample, the higher the
energy to penetrate it, and the amount of multiple scattering - more material produces more scattering.

6



2.1. X-ray imaging

larger specimens, the larger distance between sample and detector due to the distance re-
quirements of the Talbot distance, and an absorbing grating in front of the detector acting
as anti-scatter grid. Thus, in the case of specimen sizes of d ≤ 1 cm we should have even
less Compton scatter hitting the detector than considered by Beckmann and Donath. Ac-
cording to Barrett and Swindell [4], for increasing sample diameter L (up to 60 mm) the
large sample-to-detector distance s in our setup (about 40 cm) will decrease the amount of
scattered photons reaching the detector by a factor of 1/(s+L/2)2. Using this argument and
the fact that an absorbing anti-scatter grid is used in front of the detector, we can conclude
that most of the direction-changing scatter will not hit the detector. Therefore this scatter
can also be neglected for the grating interferometer setup. The reader is referred to the work
by Yao et al. [99], who observed the effects of radiation field size, air gap, thickness of the
layer of scattering medium and x-ray energy on the amount of scattering.

Neglecting scattering, we can relate the sample composition to the image formed on the
detector. In the following we will consider the attenuation coefficient to be approximately
equivalent to the photoelectric coefficient (µ = µtot ≈ µPE).

An experimentally determined dependence of the photoelectric part of the linear attenua-
tion coefficient µPE on photon energy E and atomic number of the material Z outside the
absorption edges in the energy range from 10 to 100 keV is

µPE ≈ K
ρ

mat

Z4

E3
, (2.4)

where K is a constant depending on the atomic shell, ρ the material density, and mat the
atomic mass [4].

Beer’s law

In case of monochromatic photons the attenuation of a one-dimensional beam in a homoge-
neous medium follows Beer’s law

I = I0 · exp[−µd] , (2.5)

with I representing the intensity behind a sample of thickness d, I0 the incoming intensity,
and µ the linear attenuation coefficient of the homogeneous medium in [mm−1]. Real sam-
ples usually are not homogeneous, so the attenuation coefficient µ(y′) may vary along the
beam trajectory through the medium in y-direction and the resulting flux will be given by
integration:

I(y) = I0 · exp

[

−

∫ y

0
µ(y′)dy′

]

. (2.6)

The projected attenuation is then the integral in the exponential function

a =

∫ d

0
µ(y′)dy′ , (2.7)

and when fulfilling the condition a ≈ 2 the optimum contrast in tomographic reconstructions
[37, 38] is reached.
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nmedium

n =10

αin

αout

Figure 2.1.: X-ray refraction of an incident beam at a surface of a medium. The refractive
index n0 in free space is unity. The refracted angle αout is for x-rays smaller than
the incident angle αin.

2.1.2. Phase contrast

As explained in the introductory chapter the phase-contrast imaging relies on the phase shift
caused by a medium, which can be detected indirectly using interferometric methods. No
direct measurement of the phase shift of a wave field is possible, because only intensities can
be directly detected, and the phase information is lost.

Neglecting the absorption, the phase shift of the electro-magnetic wave traveling though a
medium is given by

∆Φ =
2πδd

λ
, (2.8)

where δ is the refractive index decrement of the complex refractive index n of the medium and
d the wave traveling distance. Note that this is the real part of the complex refractive index
as explained in the beginning of the Section 2.1. The refractive index decrement δ depends
on the x-ray wavelength λ and on the density of the sample as described in the book by J.

Als-Nielsen [2]:

δ =
reλ

2ρaf
0

2π
, (2.9)

where re = 2.82 · 10−15m is the classical electron radius, ρa is the atomic density and f0 is
the real part of the atomic scattering factor in the forward direction. Equation 2.9 is valid
far enough from absorption edges (near the absorption edges a dispersion correction f ′ has
to be taken into account, as is described in [2]).

Knowing the incidence angle αin = 45◦ of the incident x-ray beam to the surface of the
medium and its refractive index nmedium for x-rays the refraction angle αr of a non-absorbing
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phase object is given by Snell’s law as

nmedium sin(αin) = n0 sin(αout) (2.10)

nmedium sin(αin) = sin(αout)

arcsin(nmedium sin(αin)) = αout

αr = αout − αin

αr = arcsin(nmedium sin(αin))− αin

with n0 = 1 in vacuum (nair ≈ 1) and nmedium = 1−δ for a pure phase object (see Figure 2.1).
With δ being in the range of 10−8 for x-ray wave lengths of about 0.05 nm the refracted angles
αr are in the range of −1 ·10−5 rad. The refraction angles of x-rays are negative, as the index
of refraction is less than one. In phase-contrast imaging these refracted angles are detected
using interferometric techniques. In our case an x-ray grating interferometer is used.

2.2. Tomographical principle

The principle of tomographical reconstruction from projections is treated in detail by many
authors (see e.g. in the book by Kak and Slaney [53], or more mathematically in the book
by Natterer [73]). Using the nomenclature from Kak and Slaney2 the theoretical background
of tomographical reconstruction will be briefly presented here. Please note that all functions
written with small letters will represent functions in the real space and the ones with capital
letters will describe the Fourier transforms of the real space functions.

2.2.1. Radon transform and Fourier slice theorem

In x-ray computed tomography three-dimensional images of the inner structure of an object
are generated from a series of x-ray projections taken from different directions through the
rotating object. In case of a synchrotron radiation source the beam can be assumed to be
parallel, hence, only the reconstruction for parallel-beam geometry will be explained here (for
the case of fan-beam geometry see [53]). The projections are recorded by a two-dimensional x-
ray detector as an intensity distribution representing some physical property of the object (e.g.
the object’s attenuation coefficient for x-rays). This projection is mathematically a Radon
transform of the two-dimensional object’s function f(x, y). A one-dimensional projection of
the function f(x, y) for a certain projection angle Θ can be defined by

pΘ(t) =

∫

(Θ,t)line
f(x, y)ds, (2.11)

where Θ is the projected angle and the line integrals are evaluated along constant

t = x cosΘ + y sinΘ. (2.12)

2The constant factors resulting from the Fourier transform (i.e. 1/2π) will be omitted to simplify the equations.
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2. Instruments and methods

Using a delta function pΘ(t) can be rewritten as

pΘ(t) =

∫ +∞

−∞

∫ +∞

−∞

f(x, y)δ(x cos Θ + y sinΘ− t)dxdy, (2.13)

that is known as the Radon transform of the function f(x, y).

Now using the Fourier Slice Theorem the Fourier transform of a projection pΘ(t) can be
related to the Fourier transform of the object along a radial line (compare Figure 2.2). The
two-dimensional Fourier transform of the object function is given as

F (u, v) =

∫ +∞

−∞

∫ +∞

−∞

f(x, y)e−j2π(ux+vy)dxdy, (2.14)

and the one-dimensional Fourier transform of the projection pΘ(t) at an angle Θ as

PΘ(ω) =

∫ +∞

−∞

pΘ(t)e
−j2πωtdt, (2.15)

where (Θ, ω) are the representation of the coordinates (u, v) after the transform in polar co-
ordinates by (u, v) = (ω cosΘ, ω sinΘ).

The Fourier slice theorem relates now the projection pΘ(t) and the function f(x, y) in
Fourier space:

PΘ(ω) = F (ω cosΘ, ω sinΘ), (2.16)

that means that the Fourier transform PΘ(ω) at the angle Θ is equivalent to F (u, v) along a
line through the origin, which is rotated by the angle Θ with respect to the x-axis.

The object function f(x, y) can be reconstructed when projections over the angles Θ in
the range of π are known. The one-dimensional Fourier transform given by Eq. 2.15 leads to
the Fourier transform of the projections PΘ(ω), that according to the Fourier slice theorem is
related with lines of the two-dimensional Fourier representation of the object function F (u, v)
in Eq. 2.14. The object function f(x, y) is given by the inverse Fourier transform:

f(x, y) =

∫ +∞

−∞

∫ +∞

−∞

F (u, v)ej2π(ux+vy)dudv. (2.17)

2.2.2. Backprojection of filtered projections

One possible implementation of the reconstruction of the object’s function f(x, y) from the
projections is the backprojection of filtered projections. The term ’filtered’ means that the
projections (i.e. the Fourier representations of f(x, y)) are filtered by a filter function in the
frequency domain before the inverse Fourier transform in Equation (2.17) that can be rewrit-
ten in polar coordinates using the substitution t = x cosΘ+ y sinΘ as:

f(x, y) =

∫ π

0

∫ +∞

−∞

|ω|PΘ(ω)e
j2πωtdωdΘ, (2.18)
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Figure 2.2.: Scheme of a tomographic measurement and reconstruction of a 2-dimensional
object. The Fourier Slice Theorem relates the Fourier transform of a projection
to the Fourier transform of the object along a radial line (adapted from [53,
Chapter 3.2]).

where the frequency filter |ω| is the essential part of the reconstruction. The inner integral
represents the filtered projection, and the outer integral is the so called backprojection. Algo-
rithms based on this equation are called filtered backprojection algorithm as also used in this
work.

Different filters were used for the reconstruction of the projections from different contrasts
obtained with a grating interferometer, respectively. The filters used for reconstructions in this
work will be explained in detail in Chapter 3. In the following the reconstruction according
to the Equation (2.18) will be simplified written as:

f(x, y) =

∫ π

0
F−1 [Q(ω)PΘ(ω)] dΘ, (2.19)

with the general filter Q(ω). In the standard reconstruction using the backprojection al-
gorithm filter functions are used consisting of two parts: the frequency filter |ω| and an
additional function that suppresses the higher frequencies during the reconstruction.

2.3. X-ray sources

In this work two different x-ray sources were used for imaging purposes, a conventional labora-
tory x-ray tube and a synchrotron radiation source. In the present section the characteristics
of the both x-ray sources are described, and their implications for x-ray imaging explained.
In the last part the GKSS materials science beamline W2 (HARWI II) is introduced, at which
an x-ray grating interferometer was designed and set up during this work.
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2.3.1. X-ray tube
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Figure 2.3.: (a) A schematic of a wiggler and (b) of a conventional x-ray tube,3(c) shows the
photon flux of the wiggler W2 for 0.1% of the total bandwidth at the sample plane
48 m downstream the beam direction calculated using XOP and the values listed
in the Table 2.1, and (d) shows the plot of the photon flux of 1 keV bandwidth at 1
m distance from the source for a 100 kV x-ray tube with tungsten as target. Note
that even the band limited synchrotron wiggler flux is ≈ 7 order of magnitudes
higher than the x-ray tube flux, the total wiggler flux is about 1000 magnitudes
higher than the one of an x-ray tube.

In Figure 2.3(a) a synchrotron radiation insertion device named wiggler, and in Figure 2.3(b)
a conventional x-ray tube source are schematically shown. It consists of a cathode that emits
electrons and an anode that acts as a target. The electrons are accelerated by the elec-
tric field towards the anode and being sharply stopped at the anode produce the so-called
bremsstrahlung in the x-ray regime. Additionally, the characteristic peaks resulting from the
fluorescence lines of the target material overlap the broad bremsstrahlung spectrum. In Fig-
ure 2.3(d) the photon flux of 1 keV bandwidth at 1 m distance from the source for a 100 kV
x-ray tube with a tungsten target is plotted. Note that the flux of an x-ray tube is about
seven magnitudes less than the flux of a wiggler of a synchrotron radiation source for 0.1 %
of the total bandwidth at the sample plane 48 m downstream the beam direction as plotted
in Figure 2.3(c). The total wiggler flux is about 1000 magnitudes higher than the one of an

3Both schematics were adapted from the web pages: http://sls.web.psi.ch/view.php/-
about/whatis/description/whatis/LightTube1.jpg and http://sls.web.psi.ch/-
view.php/about/whatis/description/whatis/LightRing1.jpg [visited November, 30th 2009]
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x-ray tube. For this reason x-ray tubes are often not practical for monochromatic imaging
applications, because the monochromatic flux of the beam is too low. In case of imaging with
polychromatic radiation, the projections suffer from polychromatic artifacts [53], due to the
wavelength dependent attenuation coefficients.

Modern x-ray tubes are well established in many fields of application such as medical and
biological morphology studies. Their advantages are the easy availability of the sources and
the high spatial resolution that can be achieved by minimising the focus size on the target.
The spatial resolution in tomograms produced using tube sources is similar to what can be
achieved at second generation synchrotron radiation sources (compare the work by Brunke et
al. [18]). In case of high demands on the density resolution the x-ray tube cannot compete
with the high photon flux at the synchrotron sources that is mandatory to improve statistics
in the projections.

During this work measurements were performed using a commercially available Seifert ID
3000 x-ray generator at the Laboratory for Micro- and Nanotechnology at Paul Scherrer In-
stitut. The Seifert x-ray generator was operated at 40 kV and 25 mA with a tungsten (W)
line focus tube (DX-W8 × 0.4-L). The target was inclined with respect to the optical axis
of 6◦, thus the effective source size was 0.8 (horizontal)× 0.4 (vertical) mm2. The grating
interferometer used in combination with the x-ray tube is introduced in Section 4.4.

2.3.2. Synchrotron radiation sources

Charged particles like electrons or positrons emit electromagnetic radiation when accelerated.
This sort of radiation is called synchrotron radiation, when it is produced by a particle-storage
ring4. In such a ring the particles (electrons or equivalently positrons) are guided by magnetic
fields along a circular path. They move in several packages called bunches around the storage
ring reaching almost the speed of light. Particle-storage rings were initially only built for
particle-physics experiments and the synchrotron radiation was an unwanted effect of energy
loss, limiting the maximum particle energy. Nowadays dedicated storage rings have been con-
structed only to produce as much as possible of this sort of radiation. The photons emitted
are very focussed in forward direction, making these rings the most brilliant artificial x-ray
photon sources currently available. X-ray free-electron lasers (XFEL) in hard and soft x-ray
regime, which will provide several orders of magnitude more flux than the synchrotron storage
rings, are already available now. As the name implies, for the first time they produce very
short-pulsed laser light in the x-ray regime.

Several parameters are used to characterise synchrotron radiation storage rings, of which
only the most important are mentioned here. More details can be found in the book by
Wille [98].

As shown schematically in Figure 2.3(a) the synchrotron radiation is emitted as an ex-
tremely forward-focussed cone due to an effect of relativity (compare [98, Chapter 2.2]), that
can be characterized by its opening angle in the horizontal plane by 2νx and vertical plane

4The name synchrotron came from the particle accelerator rings that worked with magnetic fields synchronised
with the particle acceleration.
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by 2νz. The two parameters can be approximately given by

νx ≈ γ−1 (2.20)

νz ≈ 0.565γ−1(
λ

λc
)0.425 (for 0.2 <

λ

λc
< 100), (2.21)

where γ = Ee/mec
2 is the Lorentz factor with Ee the energy of the electrons in the storage

ring andmec
2 = 511 keV the rest energy of the electrons. λc is the critical wavelength dividing

the photon spectrum in two parts of equal power and is given by

λc[
◦

A] = 5.59
R[m]

Ee[GeV]
, (2.22)

with R being the radius of the storage ring given in meters. The half opening angle in the

horizontal plane of the photon beam of a 4 GeV storage ring with a γ = 4·106[keV]

511[keV]
≈ 7828

amounts to 0.12 mrad = 0.007◦. The small divergence of the photon beam makes the syn-
chrotron radiation the brightest x-ray source and thus desirable for many fields of applications.

The intensity of the synchrotron radiation can be further amplified by using so-called
insertion devices like wigglers or undulators. These devices are periodic magnetic structures
that cause oscillations of the electron (or positron) beam when placed in straight sections of
the storage ring. They are described by a dimensionless quantity K as

K =
λ0B0e

2πmec
, (2.23)

where λ0[mm] is the field period of the magnetic field and B0[T] the maximum magnetic flux.
The maximum angle of the motion of the particle during its oscillation around the electron
orbit is given by

νω = Kγ−1. (2.24)

The distinction between wigglers and undulators is made using the parameter K. Devices
with K > 1 are called wigglers, and those with K < 1 undulators. That means that the
divergence of the photon beam is higher when using a wiggler. The advantage of a higher
divergence for imaging is the resultant larger maximum beam size that allows the imaging of
centimetre sized objects.

Undulators emit partially coherent radiation with a narrow energy spectrum due to the only
weak oscillation of the particles in the magnetic field. In contrast, wigglers produce a broad
energy spectrum, where coherency is lost due to the higher νω. Typically a small energy band
is selected from the spectrum by single crystals using Bragg diffraction. The monochromator
principle and the characteristics of the wiggler beamline W2 used in this work are presented
in Section 2.3.3. Figure 2.3(c) shows a plot of the photon flux of the wiggler W2 at the sample
position through an aperture of 1mm× 1mm calculated using the software XOP 5. For more
details to the calculations see Section 2.3.3.

5XOP 2.3 - X-ray Oriented Programs. The software is available online at:
http://ftp.esrf.eu/pub/scisoft/xop2.3/ [visited January, 17th 2010] and the parameters
are listed in Table 2.1
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The measurements performed at a synchrotron radiation source and presented in this work
were carried out at the second generation storage ring DORIS III at the Deutsches Elektronen-
Synchrotron (DESY, Hamburg, Germany). It is operated with positrons (e+) of energy 4.45
GeV in usually 5 bunches circulating in a ring with a circumference of approx. 300 m and
a ring current decaying exponentially from 140 mA to 90 mA within one runtime of about 8
hours.

2.3.3. Beamline W2 (HARWI II)

The beamline W2 is the wiggler beamline that has been equipped with a grating interfer-
ometer during this work. It is situated at the storage ring DORIS III and operated by the
GKSS Research Centre Geesthacht (GKSS) in cooperation with DESY since 2006 as a high
energy materials science beamline. The technical details of the beamline have been published
by Beckmann et al. [14, 11] and in the book by Reimers, Pyzalla, Schreyer, and Clemens [86].
Figure 2.4 shows a schematic of the beamline consisting of the wiggler, an optics hutch with
the monochromator tank, the 1st experimental hutch with the setups of tomography and
diffraction experiments, the 2nd experimental hutch with a high pressure cell operated by the
Geoforschungszentrum Postdam (GFZ), and the control hutch.

optics hutch

wiggler

1st experimental hutch2nd experimental
hutch

control hutch

tomography

diffraction

5 m

Figure 2.4.: Schematic of the beamline W2 consisting of the wiggler, optics hutch with the
monochromator tank, the 1st experimental hutch with tomography and diffrac-
tion setups, and the 2nd experimental hutch with a high pressure cell operated
by Geoforschungszentrum Potsdam. The red line represents the beam path.

Two monochromator setups, one with horizontal and one with vertical beam reflection,
are installed at W2. The horizontal monochromator is used for diffraction applications. The
vertical one provides a wide beam up to 70 (horizontal) x 8 (vertical) mm2 making it par-
ticularly suitable for tomographic imaging. Different pairs of crystals are used in Laue-Laue
and Laue-Bragg geometry to vary the photon energy [50, 66]. The monochromator concept
of the beamline W2 is presented in detail by Beckmann et al. [10].

The main characteristics of the beamline W2 are listed in the Table 2.16, which are used for
the spectrum calculation shown in Figure 2.3(c). The only optical components considered in

6Values from HASYLAB homepage, visited January, 19th 2010
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Table 2.1.: Source characteristics of the beamline W2.
Parameter Unit

DORIS III

Positron Energy GeV 4.45
Positron Current mA 140-70
Source size (hor.) σx mm 1.797
Source size (vert.) σz mm 0.514
Wiggler W2

Total length m 4
Period length mm 110
Number of periods 35
Minimal gap mm 14
Peak field B0 T 1.98
K 20.3
Critical energy keV 26.7
Filters

Carbon mm 3(permanent)/7 (variable)
Copper mm 1.0/2.0
Monochromator

Total length double-crystal Si-111 (bent Laue) and Si-111 (Bragg),
in vacuum

Beam size (max.) mm 70 (horizotal) x 4 (vertical)
Energy range keV 16 - 150
Integrated flux 7 ph/s/mm2 2.2× 1015

Flux at 20 keV7,8 ph/s/mm2/(0.1%BW) 1.6× 1010

Flux at 30 keV7,8 ph/s/mm2/(0.1%BW) 7.5× 1010

the plot were the monochromator crystals. Due to the Laue geometry the two 0.7 mm thick
silicon (111) crystals diminish each the flux by a factor of 0.5, when assuming no bending.
By bending the crystals significantly more flux can be provided as the energy bandwidth
increases with larger crystal curvature. All the additional influences that strongly depend
on the photon energy were not considered in the plot. The carbon filters (10 mm in total)
reduce the transmitted flux by a factor of 0.4 at 20 kev and by 0.6 at 30 keV (this is the
photon energy range used during this work). As the last effect the absorption inside the
monochromator silicon crystals can be considered with a factor of 0.25 at 20 keV and 0.5 at
30 keV to the transmitted flux. The flux for 20 keV and for 30 keV is separately calculated
using these values and then listed in the Table 2.1.

As the wiggler beamline W2 operates at the second-generation storage ring DORIS III,
its source divergence is much larger compared to that of newer third-generation synchrotron
radiation sources like PETRA III with undulator sources. This fact, and the millimetre-sized
source point in the wiggler, have two important consequences: 1.) It makes the beamline
extremely interesting for applications on centimetre-sized objects, and 2.) it leads to a very
low spatial coherence in the x-ray beam, that makes direct phase-contrast imaging (compare
the phase-contrast review in the introductory chapter) practically impossible. The beamline
can be treated like an extended incoherent x-ray source (like a conventional x-ray tube) and
phase-contrast methods designed for this type of sources can be considered for W2. The
phase-contrast method using a three-grating interferometer has been used with incoherent
sources (x-ray tubes and neutrons [30, 39, 82, 95]) and was redesigned for the beamline W2,

7Calculated with XOP (see text).
8Flux at sample position through a 1× 1mm2 aperture at 100 mA ring current and a wiggler gap of 20 mm.
Influence of additional optical components is considered (for details see text).
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meaning that the grating geometries had to be adjusted to the beamline. Additionally, due to
the large source point a compromise between a high sensitivity of the interferometer at high
intergrating distances and the image blur by the beam divergence at larger sample-to-detector
distances had to be found. This fact will be discussed in detail in Chapter 3.

2.4. X-ray detector

The same x-ray detector was used as for the conventional absorption-contrast imaging at the
beamline W2. The x-ray camera consisted of a luminescence screen, a commercial Nikon lens,
and a Finger Lake Instruments PLO9000 CCD camera.

As a luminescence screen CdWO4 crystal 587 µm thick and covered by a black lacquer (see
[28] for more details) was used. Commercial Nikon lenses operated in retro-focus position
(facing the luminescence screen with the side, that is normally facing the CCD chip) with
focal lengths of 50 mm or of 35 mm were used for different magnifications. The amount of
light and the resolution can be controlled by the aperture inside the lens.

A Finger Lake Instruments PLO9000 CCD camera with an active area of 3056x3056 pixels
with a pixel size of 12 µm was used. The CCD camera uses an internal iris shutter to protect
the CCD from illumination during the read out. The CCD is cooled down to -15◦ by an
internal Peltier element during the operation. In full frame operation the CCD digitalises
with 16 bit at 10 MHz (true dynamic range ≈ 13 bit). The lowest exposure time can be
chosen to 0.05 seconds, lower exposure times cannot be achieved, since the iris shutter is
too slow. The typical exposure times were between 0.1 and 15.0 seconds with a full frame
read-out time of 1 second. Figure 2.5(a) shows a schematic of the x-ray detector consisting
of a luminescence screen (CdWO4), a lens (Nikon, 50 mm) and a CCD detector (Fingerlake
Instruments PLO9000). Figure 2.5(b) shows a plot of a quantum efficiency of the CCD chip
of the FLI camera and the emitted intensity of the luminescence screen plotted against the
wavelength in the visible light regime with a peak quantum efficiency of of the CCD at about
68% at ≈ 550 nm wavelength and a peak of the emitted intensity of the CdWO4 screen of
about 48% at ≈ 470 nm. This two peaks fit well in the range of 500 nm.
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2. Instruments and methods

Figure 2.5.: (a) Schematic of the x-ray detector consisting of a luminescence screen (CdWO4) that
converts x-rays into visible light, a lens that projects the object on the CCD detector (FLI
PLO9000). (b) The quantum efficiency for the visible spectrum of the CCD chip KAF-
09000 used in the Finger Lake Instruments PLO9000 CCD camera and the emission
intensity of the luminescence screen CdWO4. The curves were reproduced from the
manufacturer homepages.
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3. Grating-based interferometry

This chapter describes the grating interferometer for phase-contrast imaging that was designed
and set up at the beamline W2 during this work. Section 3.1 gives a general introduction into
the principle of grating-based interferometry. The Talbot self-imaging effect being the main
phenomenon behind the grating-based phase-contrast imaging, the signal-formation and the
image-acquisition process are explained in detail. Additionally, the image processing chain for
calculating a projection and the 3D reconstruction of the three different signals (absorption,
phase-contrast, and dark-field signal) from projections using filtered backprojection algorithms

are described. In Section 3.2 the experimental implementation of the interferometer designed
during this work is presented showing all mechanical components. Section 3.3 points out
the difference of this setup at the 2nd generation storage ring DORIS to the setups at 3rd

generation synchrotron radiation sources and at laboratory x-ray tubes. In the last Section 3.4
a new method is introduced to determine the spatial resolution in the absorption and phase-
contrast projections recorded with the interferometer setup by calculating the Modulation

Transfer Function (MTF) of the edge of a silicon cuboid.

3.1. Principle of grating-based imaging

3.1.1. The Talbot self-imaging effect

In the early 19th century Henry Talbot observed a phenomenon of visible light passing through
periodic structures like gratings that he described in his work Facts relating to optical sci-

ence. [93]. The periodically modulated light wave seemed to repeat itself at certain distances
behind the grating in the propagation direction. The phenomenon is known as the Talbot

self-imaging effect and is described in case of visible light in more detail for example by Tal-
bot himself [93], and by Patorski [78].

Simply speaking, when a periodical object, like for example a silicon grating of a certain
pitch, is illuminated by coherent light, the wave front will be changed by this object. These
changes will lead to interference pattern in discrete distances downstream the beam which
can be measured as a variation of intensity of the same periodicity as the object that pro-
duced them, in our case the silicon grating. So, the Talbot self-imaging effect is based on the
Huygens-Fresnel principle1 and the wave propagation through free space, and can be observed
at any coherent light source with any periodic structure changing the wave front.

In general, self-imaging means image formation without any lens or other optical compo-
nent between the object and its image. Strictly speaking, only the case of self-imaging of
monochromatic, coherent plane-wave illumination of a periodic object is called the Talbot

1The Huygens-Fresnel principle states that a wave front can be at any point considered as a sum of spherical
waves, which can be integrated to a resulting wave front.
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effect. The discrete distances between the periodic structure and the images are the Talbot

length dT , or an integer multiple of it

dT = 2mp2/λ , (3.1)

with the period of the one-dimensional periodic object p, the wavelength λ, and an integer
m = 1, 2, 3... . It can be shown that the discrete Talbot lengths can be calculated using the
Huygens-Fresnel principle by propagating a periodically modulated wave front as is shown in
Appendix A. In 1967 Montgomery [72] found that the classical Talbot effect is only a special
case in a larger class of self-imaging effects. The Talbot effect demands a periodic object,
while Montgomery showed that quasi-periodic structures also produce self-images. In the
work by Lohmann et al. [65] it is discussed in detail that the Talbot images represent only a
subset of the Montgomery images, and two cases of self-images were presented: The images
at distances d = mdT , (m is an integer) that we call classical Talbot images, and self-images
occurring at distances d = (m/n)dT , wherem and n are small integers, e.g. (m/n) = 1/2, 1/4,
2/3. These images are called fractional Talbot images and enormously increase the number
of usable self-image planes for different applications. The image does not replicate the object
(here a periodic grating) at every fractional Talbot distance - it strongly depends on the shape
and the kind of the grating, as well as on the fraction (m/n). For example, self-images of the
object with a doubled period can be observed at certain conditions, that also can be used
as a fractional Talbot image for interferometric purposes. A series of fractional Talbot (or
fractional Montgomery) distances are listed in the work by Lohmann et al. [65].

So far, we only looked at coherently illuminated periodic or quasi-periodic structures. The
self-imaging effect under incoherent illumination is first described by Lau [63] in 1948 in case
of visible light. He used an additional absorption grating that he placed in proper distance
in front of a periodic structure. This additional grating produced an array of mutually inco-
herent thin line sources out of one extended incoherent source, that caused an overlap of the
interference patterns produced by two neighbor line sources illuminating the periodic struc-
ture. This overlap increased the total intensity in the self-image plane.

The self-imaging effect using incoherent illumination got the name Lau effect and is used
in many different applications, e.g. in imaging with a grating interferometer at low-coherence
sources as in the present work. A very thorough literature review of the historical background
of the Talbot effect (classical and fractional), and of the Lau effect giving an overview over
the preceding publications can be found in the review of the self-imaging phenomenons by
K. Patorski [78]. For the sake of simplicity, the general principle of the grating-based phase-
contrast imaging will be introduced using the example of the fractional Montgomery effect in
Section 3.1.2, i.e. the case of coherently illuminated phase gratings. The more complicated
case of the Lau interferometry at fractional Talbot distances, i.e. the case of non-coherently
illuminated phase grating, as used in this work, will be explained later in the Section 3.1.5.

3.1.2. Grating interferometer formulas for a phase grating

Plane wave case Compared to the previous section, where the Talbot effect in general was
explained, this part deals with a very specific case of the self images downstream a phase
grating. For the following explanations an ideal phase grating is assumed with a duty cycle
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of 0.5, i.e. only the half of the grating period produces a phase shift and the other half does
not change the incoming wave.

In case of a monochromatic parallel-beam illumination and for a phase grating G1 with a
period p1, self images are produced at the fractional Talbot distances

Dn = n
p21,e
2λ

, (3.2)

with the Talbot orders n = 1, 2, ... and the period of intensity modulation p1,e behind G1, we
refer to as the effective period of grating G1, and which is given by

p1,e = p1/η, with

{

η = 1, for an absorption grating or a (π/2)-shifting phase grating

η = 2, for a π-shifting phase grating as considered here.

(3.3)
The phase gratings are produced such that the stages introduce a phase shift of π to the
incoming wave front at a certain wavelength (for more details see the Appendix C) splitting
the incoming beam into the ± 1st diffraction orders. For all other wavelengths the phase
shift deviates from π. The consequences of this effect on the self images are discussed in
Section 3.1.6. When the beam propagates from the grating G1 to the detector, interference
pattern can be observed at the Talbot distances.

For a phase grating, the self images occur at odd fractional Talbot orders (n = 1, 3, 5, ...)
and at even fractional Talbot orders (n = 2, 4, ...) for an absorbing grating. Due to the simi-
larity to the beam-splitting crystal interferometer the grating G1 is also called beam-splitter

grating as it splits the incoming beam into diffraction orders.

To detect the phase shift introduced by the sample to the incoming wave the transverse
changes of the intensity pattern of the self image have to be detected. A non-absorbing phase
object introduces a phase shift to the incoming plane wave front. This change means a de-
viation of the wave front propagation direction by an angle α. The interference pattern is
shifted transversely by αDn, with the intergrating distance Dn.

Working with a π-shifting phase grating the intensity pattern behind the G1 has the period
p1,e, that is half of the period p1 (see Eq. 3.3). A typical phase grating has the period p1 = 4
µm that leads to a period p1,e = 2 µm of the resulting interference pattern. To detect changes
in a 2 µm pattern one can either use a very high-resolving detector or an additional grating
in combination with a phase-stepping technique and a standard CCD detector. The second
grating G2 must be an absorbing grating that matches the period of the observed pattern

p2 =
p1
2

= p1,e . (3.4)

Spherical wave case The parallel-beam geometry is never achieved in a real experiment as
we always deal with sources of a finite distance. For the calculation of the grating geometries
the magnification factor must be taken into account when designing the grating periods (see
Figure 3.1 showing a spherical two-grating setup). Thus, in case of spherical waves the
fractional Talbot distances rescale with a magnification factor M , which can be calculated
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from the source-to-G1 distance l, and the G1-to-G2 distance Dn by

M =
l +Dn

l
. (3.5)

Here should be mentioned that we neglect the local curvature of the wave front and consider
it as a plane wave scaled by the magnification factor M . The rescaled Talbot distances dn
are determined by

dn = M Dn , (3.6)

representing a geometrically magnified projection of G1 onto G2 illuminated by a source focal
point. In the following the distance dn will be simply denoted as d, and the subscript n will
only be used in cases, where the meaning of d is not clear.

The period p2 of the absorbing analyser grating G2, which is chosen to match the period of
the resulting interference pattern produced by the phase grating must be equal to the period
of the self images, which also has to be scaled by the magnification factor M

p2 = p1,e = M
p1
η

. (3.7)

By means of a phase-stepping scan a precise detection of the interference pattern can be
achieved, i.e. either the grating G2 or the grating G1 is shifted in several steps parallel to the
other grating and images are recorded at each position.

l d

source

G1
G2

Figure 3.1.: Schematic of a spherical wave grating interferometer setup. G1: phase grating, G2:
analyser grating.

3.1.3. Phase scanning and processing

The changes in the interference pattern are analysed for each detector pixel separately. The
intensity oscillations during a phase-stepping scan in each detector pixel (χx, χy) can be
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written as a Fourier series

I(χx, χy, xg) =

∞
∑

m=0

am(χx, χy) cos (mkxg + φm(χx, χy)) , (3.8)

with the amplitude coefficients am, the corresponding phase coefficients φm, with k = 2π/p2,
the period p2 of the grating G2, and xg the grating position during the phase-stepping scan.
The first order cosine from Eq. 3.8 is a good approximation of the intensity oscillations in our
case.

I(χx, χy, xg) = a0(χx, χy) + a1(χx, χy) cos

(

2πxg
p2

+ φ1(χx, χy)

)

, (3.9)

with a0 representing the averaged value of the cosine function, φ1 the transverse shift, and a1
the amplitude of the first order cosine. In the case of very small source sizes possibly higher
order cosines have to be taken into account (for more details see [6, Chapter 2.4]).

To determine the coefficients a0, a1 and φ1 one can fit a cosine function using a least square
fitting function. But the more convenient way is to use a Fast Fourier Transform (FFT)
algorithm for discrete Fourier analysis, as also done during this work.

The quality of a grating interferometer is described by the visibility of the interference
pattern. The visibility is defined by

V =
(Imax − Imin)

Imean
. (3.10)

As we calculate the Fourier coefficients for the signal processing, we use the ratio of these
coefficients to determine the visibility as

V =
2a1
a0

. (3.11)

In real measurements the beam profile is never absolutely homogenous and can change over
time. To correct for that, a reference phase-stepping scan is performed without the sample
in the beam. From analysis of the data from the reference scan, in the same way as de-
scribed above, one obtains the coefficients ar0, a

r
1 and φr

1 denoted with the superscript ′r′ for
the reference image. The coefficients obtained from sample images will be marked with the
superscript ′s′.

The transmission through the sample is given by the averaged intensities a0 by

T =
as0
ar0

. (3.12)

The transverse shift of the interference pattern is proportional to the phase shift of the first
Fourier component

φ1 = φs
1 − φr

1 . (3.13)

As the last signal, the so-called dark-field signal described by the change in visibility from
Equation 3.10, here defined as the ratio of the first order amplitude a1 relative to the average
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value a0, is given by

V =
V s

V r
=

ar0
as0

as1
ar1

. (3.14)

Figure 3.2 shows the intensity in one pixel during a phase-stepping scan with and without the
sample. The Fourier coefficients obtained from a FFT of the signal provide the three signals
described above. More details on the image processing chain can be found in the works by
Pfeiffer et al. [79], Weitkamp et al. [95], and in the PhD thesis by M. Bech [6].

a0
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a 0
r

grating position [µm]
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Figure 3.2.: The signal of one pixel during a phase-stepping scan. (red) Intensity without a sample
and (blue) intensity with sample. From the quantities ar0, a

s
0, a

r
1, a

s
1, and φr

1 and φs
1

represent the zeroth and first order Fourier coefficients, that are used to calculate the
three different signals of the grating interferometer.

Relation of the projection signals The signal in Eq. 3.12 is the conventional x-ray atten-
uation which is associated with the imaginary part of the complex refractive index β and is
measured in form of the linear attenuation coefficient µ of the object. A combination of the
Radon transform of the object with Beer’s law describes the transmission projection in the
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plane z = z0 (see the Equation (2.15) )

TΘ(x′) = exp

[

−

∫ d

0

4π

λ
β(x′, y′)dy′

]

= exp

[

−

∫ d

0
µ(x′, y′)dy′

]

, (3.15)

where µ(x′, y′) = 4π/λ · β(x′, y′) is the linear attenuation coefficient from Equation (2.6) ex-
panded to two dimensions, λ is the x-ray wavelength, and (x′,y′,z) belong to a coordinate
system, which is defined by rotating the system (x,y,z) around the z-axis by the projection
angle Θ. Integration is carried out along the x-ray path over the extension of the sample of
diameter d. Note that the variable z was omitted to simplify the writing. The quantity a0
from Equation 3.12 corresponds to the transmitted projection as one would measure it with
a standard x-ray radiography in absorption mode.

The signal in Eq. 3.13 is the phase shift Φ(x, y) introduced by the object to the incoming
wave field and resulting in a refraction of the beam by an angle α. This angle is correlated
with the first derivative of the phase shift ∂Φ/∂x by

α =
λ

2π

∂Φ

∂x
, (3.16)

with the x-ray wavelength λ. The transverse shift φ1 ∈]− π, π] from Equation 3.13 is related
to the lateral shift of the interference pattern in a given pixel by

S(χx, χy) = φ1(χx, χy)
p2
2π

, (3.17)

and to the angular refraction by

α(χx, χy) =
S(χx, χy)

d
=

φ1(χx, χy)

d

p2
2π

. (3.18)

Analog to the absorption-contrast projection in Eq. 3.15, we measure the differential phase-
contrast projection of refraction angles [77]

αΘ(x′) =
λ

2π

∂ΦΘ(x′)

∂x′
=

∫ d

0

∂δ(x′, y′)

∂x′
dy′, (3.19)

where ΦΘ(x′) = 2π/λ
∫ d
0 δ(x′, y′)dy′ is the spatially dependent, total relative phase shift of

the x-ray wave front during its propagation through the sample.

Using the Equation 3.16 the differential phase shift can be written as

∂Φ(χx, χy)

∂x
=

2π

λ
α(χx, χy) =

p2
λ

φ1(χx, χy)

d
. (3.20)

The total phase shift Φ can be determined by integration. In the following, the image formed
by φ1 will be called differential phase-contrast image.

The signal in Eq. 3.14 is described in detail by Pfeiffer et al. [79], and by M. Bech [6] as
a reduction of the visibility of the interference fringes caused by a beam spread from small
angle scattering in the sample and is related to the visibility obtained from Equation 3.10.
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This spread is connected to a material specific linear diffusion coefficient ǫ, depending on the
total scattering width σ and the sample thickness ∆y

ǫ =
σ2

∆y
. (3.21)

After integration, the scattering width along the beam path through the sample is given by

σ2 =

∫ d

0
ǫdy′, (3.22)

and the visibility of the interference fringes at the projection angle Θ can be written as a
function of the linear diffusion coefficient ǫ(x′, y′) as

V Θ(x′) = exp

[

−
2π2d2

p22

∫ d

0
ǫ(x′, y′)dy′

]

, (3.23)

with p2 the period of the interference pattern and d the distance between the phase grating
G1 and the analysing grating G2. In the following the images formed by the reduction of the
visibility will be denoted as dark-field image similar to the dark-field contrast in the visible
light regime.

3.1.4. Tomographic reconstruction

For the reconstruction of the object’s original complex refractive index distribution, or more
explicitly of µ(x, y) and δ(x, y), and of the distribution of the linear diffusion coefficient ǫ(x, y)
from the three sets of projection images TΘ(x′) and αΘ(x′), and V Θ(x′), respectively, a filtered
backprojection algorithm as described in Section 2.2 was applied.

Transmission projections For the reconstruction of the attenuation coefficients µ(x, y) from
the transmission projections TΘ(x′) in Eq. 3.15 the corresponding filtered backprojection
reconstruction from the Equation 2.19 is used

µ(x, y) = −

∫ π

0
F−1

[

τΘ(ω) ·K(ω)
]

dΘ, (3.24)

where τΘ(ω) represents the Fourier transform of the logarithm of the normalized transmis-
sion projection, F−1 denotes the inverse Fourier transform operator, and K(ω) ≡ |ω| is the
frequency filter for line projection integrals.

Differential phase-contrast projections The reconstruction of δ(x, y) from the differential
phase-contrast projections αΘ(x′) in Eq. 3.19 is achieved as

δ(x, y) =

∫ π

0
F−1

[

AΘ(ω) ·H(ω)
]

dΘ, (3.25)

where AΘ(ω) represents the Fourier transform of the projections of the measured deflection
angles and H(ω) = i · sgn(ω)/(2π) is the imaginary filter for gradient projections, where here
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sgn(ω) is the sign function. It should be noted that this kind of filtering is a Hilbert transform
in real space (for more details see [31, 82]).

Dark-field projections The reconstruction of ǫ(x, y) from the dark-field projections V Θ(x′)
in Eq. 3.23 is performed as:

ǫ(x, y) = −
p22

2π2d2

∫ π

0
F−1

[

ΓΘ(ω) ·K(ω)
]

dΘ, (3.26)

where ΓΘ(ω) = F [−log(V )] represents the Fourier transform of the logarithm of the normal-
ized visibility projection in Eq. 3.14, and K(ω) is the same frequency filter as in Equation
3.24. This reconstruction assumes the dark-field signal to be independent on the sample ro-
tation angle. This is true for homogeneous specimens, but it is also a good approximation for
many other samples without a preferred orientation of the inner structures.

3.1.5. The case of incoherent illumination - The Lau effect

As already mentioned in the Section 3.1.1, a certain amount of transverse coherence is required
to observe interference patterns in the self-image plane of the grating G1. The maximum
width of the source point, up to that interference patterns can still be observed, is given as
[6, Chapter 2.3.3, Eq. 2.33]

s =
p2l

2d
, (3.27)

where l is the distance between the source and the beam-splitter grating G1, and d the G1-
to-G2 distance, i.e. the fractional Talbot distance. The transverse coherence length, that is
defined as [2]

ξc =
λl

s
, (3.28)

with wavelength λ, is too short at larger source sizes to observe interference patterns in the
plane of G2 [81]. To overcome this problem an additional highly absorbing grating in the
following called G0 can be used in front of the beam-splitter grating G1. This additional
grating divides the extended source focal point into many thin line sources and thus, creates
an array of mutually incoherent virtual sources. The experimental proof of this principle for
x-ray interferometry was first reported in [83].

This three-grating setup is known as Talbot-Lau interferometer, that allows for using the
grating interferometer in combination with large sized sources. The mutually incoherent line
sources add up incoherently in the plane of the analyser grating G2, when the period is chosen
such, that the space between the interference patterns from two neighboring line sources is
exactly one or an integer multiple of one period of the pattern, i.e. the so called in registry

condition must be fulfilled [78]. This condition is fulfilled if the period p0 of the grating G0

is chosen to be

p0 =
l

d
p2 , (3.29)

where d corresponds to the Talbot distance G1-G2 and p2 is the period of the analyser grating
G2.
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The total size of the source is not giving the effective coherence length anymore, i.e. the
visibility of the interference fringes, but the size of the individual virtual sources. An example
should demonstrate the enhancement of the transverse coherence in a Talbot-Lau setup: For
a photon energy of 20 keV (λ ≈ 6.2× 10−2 nm), a typical horizontal source size of a 3rd gen-
eration synchrotron undulator source of 50 µm, and a distance l = 40 m between the source
and G1 gives a transverse coherence length ξc ≈ 50 µm. Good images with the grating-based
setup can be achieved at 3rd generation synchrotron radiation sources that means that the
transverse coherence of the used radiation should be in the same range. For a similar setup
at a conventional x-ray tube with a source size of 0.25 mm and a distance l = 2 m from
the source to G1 the transverse coherence length is ξc ≈ 0.5 µm. Now, we calculate the
transverse coherence length in the presence of a source grating G0 with a typical period of
p0 = 25 µm and a duty cycle (DC) of 0.5 directly behind the source. A DC of 0.5 means that
the bar-width is exactly the half of the period2. The corresponding size of the virtual sources
is p0/2 = 12.5 µm and ξc ≈ 10 µm, that is a factor of 20 higher than the ξc of the x-ray tube
radiation without a G0.

According to Pfeiffer et al. [83] and Weitkamp et al. [95] this setup decouples the property
of transverse coherence from the total size of the source. However, the spatial resolution
remains unaffected and is influenced by the source size, and the distances between source,
sample and detector in the same way as it would be without the grating interferometer.

3.1.6. Achromaticity

The grating interferometer is highly achromatic as it even can efficiently be used with poly-
chromatic laboratory x-ray sources. Since the Talbot distances depend on the wavelength, for
polychromatic radiation the interference patterns for the Talbot distance at corresponding
wavelength will be superimposed and blurred in the beam propagation direction. In the work
by Engelhardt et al. [30] simulations of both polychromatic point sources and larger sources
were presented. According to his work no limit for the acceptable bandwidth ∆λ/λ could be
found, but a strong dependence on the increasing source size destroying the fringe-visibility
when no G0 is used.

The other effect of polychromaticity on the performance of the grating-based setup is
the decreasing efficiency of the gratings, especially of the beam splitter grating, when the
wavelength deviates from the design value (i.e. grating G1 shifts the phase by π only at the
design energy). At shorter wavelength (as the design value for the gold thickness) the efficiency
of the gold gratings will significantly go down and decrease the fringe visibility. However, an
acceptable bandwidth of 10% is reported by Weitkamp et al. [96]. The measurements of fringe
visibility for changing monochromatic wavelength obtained at the beamline W2, which will
be presented in the Section 3.3 confirm these results.

2Definition duty cycle: DC = bar-width/period.
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3.2. Experimental implementation of the interferometer

In this section the experimental implementation of the new grating interferometer for the
beamline W2 is presented, including all grating parameters, the experimental setup, and the
x-ray detector, as well as the special design of the interferometer. Due to the geometrical
constraints of the setup it works with a fixed geometry by changing the Talbot orders by in-
creasing or decreasing the x-ray energy but not the distances. In addition, the detector used
for the measurements is introduced. A detailed description of the image acquisition process
is given in the Appendix B, explaining the complete image acquisition chain, including the
correct alignment of the gratings before the measurement. The grating-production process is
explained in Appendix C.

3.2.1. Interferometer geometries

As described in the previous Section 3.1.5 the x-ray source size should not exceed a certain
size s, else the visibility of the interference fringes behind the beam-splitter grating G1 (see
Eq. 3.27) diminishes. The horizontal source size in the wiggler of the beamline W2 is given
as σx = 1.7 mm (see Table 2.1) and using Eq. 3.28 we can calculate the transverse coherence
length ξW2

c for a photon energy of 20 keV to

ξW2
c =

λl

s
=

6.2× 10−11m× 48m

1.7 × 10−3m
= 1.75µm . (3.30)

The result shows that the transverse coherence length of the wiggler beamline W2 is in the
range of a conventional x-ray tube (calculated in the previous section to be ≈ 0.25 µm for 20
keV). Hence, the transverse coherence length is not sufficiently long for a two grating setup
as it is used at 3rd generation synchrotron sources. To overcome this problem, the Lau effect
as described in Section 3.1.5 can be used by placing an absorbing source grating G0 upstream
of the beam-splitting grating G1.

Figure 3.3(a) shows a schematic of the x-ray grating interferometer designed for the low-
coherence beamline W2 consisting of three gratings: an absorbing source grating G0 (Au), a
beam-splitter grating G1 (Si, phase shift of π), and an absorbing analyser grating G2 (Au).
The principle of such an interferometer is explained in the previous section and schematically
illustrated in Figure 3.3(b).

The periods and the depths of the gratings for the setup at the beamline W2 are listed in
Table 3.1. To switch between the different fractional Talbot orders the photon energy has to
be changed while the inter-grating distances are kept fixed. So, we should derive the Talbot

wave lengths instead of the distances for our grating interferometer. From the Equations 3.2
and 3.6 we can calculate the Talbot wavelengths as

λn = nM
p21,e
2dn

, (3.31)

where n is the odd fractional Talbot order (n = 1, 3, 5, 7, 9, ...), corresponding to x-ray wave-
lengths of 0.8, 2.4, 4.0, 5.6, 7.2, ... ×10−11 m or photon energies of 152, 51.4, 30.8, 22.0, 17.1,
... keV, p1,e is the effective period of the phase grating G1, and dn is the fractional Talbot
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Figure 3.3.: (a) A schematic of the grating interferometer setup at the beamline W2 consisting of
three gratings - the source grating G0, the phase grating G1 and the analyser grating
G2 with the intergrating distances l = 3.00 m and d = 0.32 m. (b) The schematic
illustrates how the interferometer works at a non-coherent x-ray source. The source gold
grating G0 produces many small partially coherent line sources, the partially coherent
beams penetrate the sample, are refracted and cause a shift in the interference pattern
produced by the phase grating G1. This interference pattern is analysed by the analyser
gold grating G2 and projected onto the detector pixels.

distance scaled by the magnification factor according to Eq. 3.6. These photon energies are
theoretically calculated and represent the expected energies with high contrast that can be
used for imaging with the interferometer. Experimentally usable photon energies are strongly
influenced by the beam-splitter grating, which is designed for only one energy and decrease
the visibility of the interference pattern for all other energies. The design energy of a grating
depends on its height that deviates due to the production process from one grating to the
next. The Table 3.1 lists the heights of the four different phase gratings and the energies,
which arise from these heights.

Now we should calculate the transverse coherence length for the beamline W2 with the
source grating G0 and a duty cycle (DC) of 0.7. We can use the Equation 3.30 and replace

3The height was determined to be 54 µm during the production, but the experimental results show that the
grating must have similar height as the G1#4. The height was not tried to be measured, as the G1#2
showed the highest visibility and such a measurement would put it at risk.

30



3.2. Experimental implementation of the interferometer

Table 3.1.: Grating properties
The list of the grating geometries designed for the beamline W2. The two gold gratings G0 and G2

are usable in the energy range below the given energy (absorption of 90 % at the given energy) and
the four phase gratings G1 are optimized for the design energies. Above the design energy of the gold
gratings the interference pattern visibility decreases, as the grating absorption becomes insufficient.
The use of the phase grating G1 at its design energy increases the visibility, since then the phase
shift induced by the grating is almost π. The source grating G0 consists of two areas: one with a

duty cycle 0.7 to increase visibility and the other with 0.5 to have more photon flux.
Grating design energy period height duty cycle

Eph p h DC ± std
[keV ] [µm] [µm]

phase grating G1#1 27.3 4.33 35 0.42 ± 0.02
phase grating G1#2 32.7 4.33 423 0.54 ± 0.04
phase grating G1#3 25.7 4.33 33 0.40 ± 0.02
phase grating G1#4 32.7 4.33 42 0.49 ± 0.06
source grating G0 30 22.29 45-50 0.7/0.5
analyser grating G2 25 2.4 30.8 0.5

the wiggler source size s by the period p0 scaled with the DC of the source grating G0 and
the distance l by the distance ξ01 between the source and the beam-splitter grating:

ξG0
c =

λl01
(1− 0.7)p0

=
6.2 × 10−11m× 3m

22.3 × 10−6m0.3
= 27.8µm , (3.32)

that is one order of magnitude larger than ξW2
c . Using the G0 instead of a narrow slit has

the advantage that the loss of intensity is smaller and due to the short distance from the
slit system at the beamline W2 of about 10 m, the field of view would be very limited when
working with a single slit. A larger distance l01 would increase the transverse coherence but
the chosen distances are the maximum possible at the beamline W2.

3.2.2. Mechanical components

The grating-based imaging system consists of an x-ray detector, an air beared high precision
rotation axis and the motorized grating holder. The Figure 3.5(a) and (b) show the motorized
grating holder (6 motors for alignment and 1 piezo for stepping the beam-splitter grating G1),
(b) the source grating placed on the diffractometer providing many degrees of freedom for
adjusting the G0 in respect to the other two gratings. The Figure 3.4 shows a schematic of
the motorised parts of the interferometer showing the degrees of freedom, which are needed
to align the gratings. Not shown are the adjustment possibilities of the source grating G0,
which is mounted inside a goniometer with motorised adjustments in all possible directions.

The absorbing gold grating G0 and the phase grating G1 were fabricated by C. Grünzweig
and C. David at the Paul Scherrer Institut (Villigen/PSI) in Switzerland. Both these gratings
were produced on 4 inch silicon wafers in a fabrication process involving photolithography,
deep etching into silicon and for the absorption grating G0 electroplating of gold. The fabri-
cation process of these two gratings is described in detail by David et al. [25] and is presented
in the Appendix C. The analyser gold grating G2 is produced by E. Reznikova and J. Mohr
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3. Grating-based interferometry

Figure 3.4.: A scheme of the adjustment motors showing 6 motors for the grating alignment of G1

and G2 and a piezo to step the phase grating G1 (the grating on the right).

from Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. It is more critical, as the
same height is required as for the source grating G0 but the period is one order of magnitude
smaller. The fabrication process of this grating is also explained in the Appendix C.

3.3. Influence of an extended, distant wiggler source

The three-grating interferometer method was transferred for the first time from a tube source
to a low-coherence wiggler beamline source at the 2nd generation synchrotron storage ring.
The influence of an extended and distant source point in combination with a beam-splitter
grating G0 to the Talbot effect has not been studied before.
The calculation from the previous section showed that the coherence conditions at the beam-
line W2 are comparable with those of a conventional x-ray tube. Hence, a source grating is
used, which produces a virtual source with a higher transverse coherence length in the plane of
G0. In this Section it will be shown that a source grating decouples the property of transverse
coherence from the total size of the wiggler source as already stated by F. Pfeiffer et al. [83]
and T. Weitkamp et al. [95]. Thus, all grating geometries and the Talbot wavelengths can be
calculated with the assumption of a source in the G0 plane. Simulated as well as experimental
results will be shown proving this assumption and demonstrating that after the installation
of the source grating G0 its plane can be considered as a new source for the self-imaging effect.

3.3.1. Wavefield propagation formulas

Wave field propagation calculations are used to reconstruct the amplitude and the phase
changes of a wave front propagating through free space and through several objects from
the source to the detector plane. The free-space propagation can be calculated using the
Huygens-Fresnel principle, i.e. by the superposition of the spherical waves starting from each
point in the source plane. According to this principle, the wave field of a monochromatic
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Figure 3.5.: The grating interferometer setup at the beamline W2. (a) The part downstream of
the sample, which is mounted hanging down from the rotation stage into a water bath,
consists of the phase grating G1, the analysing absorbing grating G2, and the detector
including the lens system and the blackened luminescence screen. (b) The source gold
grating G0 is mounted 3.0 m upstream of the grating G1.

radiation source propagating from the plane z1 to z2 starting with the amplitude E1(x, y)
results in a wave field amplitude E2(x, y) as [35]

E2(x, y) =
1

iλ

∫ ∫

E1(x
′, y′)

eikr

r
cosα dx′dy′ , (3.33)
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This equation is known as the Fresnel-Kirchhoff equation, with r representing the distance
between the points in z1 and z2 and is given by

r =
√

(x− x′)2 + (y − y′)2 + (z1 − z2)2 . (3.34)

The Fresnel-Kirchhoff Equation 3.33 can be simplified by replacing r in the denominator of
Equation 3.33 by the beam direction z and taking it out of the integral. In addition, using
the paraxial approximation4 the r in the exponent ikr can be approximated by the first terms
of a binomial expansion as [35]

r ≈ z +
(x− x′)2 + (y − y′)2

2z
. (3.35)

With this approximation the Fresnel-Kirchhoff equation can be written as (the factor cosα ≈ 1
for small angles and can be neglected)

E2(x, y) =
eikz

iλz

∫ ∫

E1(x
′, y′) exp

(

ik
(x− x′)2 + (y − y′)2

2z

)

dx′dy′ . (3.36)

Now, with the definition of a propagator kernel

hz(x, y) =
eikz

iλz
e

ik
2z

(x2+y2) , (3.37)

the Equation 3.36 can be written as a convolution of the incident wave front E1(x, y) with
the kernel:

E2(x, y) =

∫ ∫

E1(x
′, y′)hz(x− x′, y − y′)dx′dy′ . (3.38)

The convolution in real space is a simple multiplication in Fourier space

E2(x, y) = F−1 (F(E1)×F(hz)) . (3.39)

The use of the Fresnel-Kirchhoff equation in Fourier space and of the paraxial approxi-
mation allows fast simulations of an x-ray imaging setup. This sort of simulations does not
consider any partial coherence in case of a finite source size or energy bandwidth. In this case,
the resulting intensities in the observation plane have to be calculated using the Equation
(3.38) for monochromatic point sources and integrated over the transverse cross section of
the source and the frequency range (see [35, 94] for more details).

3.3.2. Simulations of visibility

In this work the simple approach was chosen, without taking the partial coherence of the
wiggler source into account. All calculations were made assuming a monochromatic incoming
plane wave at the sample position. This assumption is valid, as the distance between the
source focal point in the wiggler and the sample plane is large (48 m). The extension to a
spherical setup can also be easily made by considering the magnification factor from Equation
3.5. The simulation then consists of the following steps:

4The paraxial approximation assumes only small refraction angles.
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1. The complex plane wave front is multiplied with the phase shift introduced by the
beam-splitter grating G1.

2. This plane wave front is propagated to the observation plane with the analyser gold
grating G2. The propagation is performed using Equation 3.39 in Fourier space and the
result is transformed back to the space domain.

3. The resulting complex wave front is multiplied in Fourier space by the Fourier represen-
tation of the G0 and the G2 described by the corresponding transmission of gold at the
desired energy. This multiplication corresponds to a convolution with the shape of G0

and G2 in space domain. To simulate grating imperfections the shape of the gratings
have been smoothed with a smoothing factor of 20 %.

4. The visibility of the interference fringes is calculated using Equation 3.11 and the Fourier
coefficients a0 and a1.

In other words, we describe our setup with a radiation source situated in the G0 plane
and producing a monochromatic, plane wave front that is shifted in phase by G1 exactly by
a factor of π5 and producing a Talbot self image in the plane of G2. The calculations of
the visibility were performed for different x-ray energies for the setup at the beamline W2
using Matlab. The simulated results were compared to the measured visibility values for the
corresponding energies (see next section).

3.3.3. Measurement of visibility

The visibility of the interference pattern in the plane of G2 was measured for different x-ray
energies. It was calculated as described in the Section 3.1 according to the classic definition
in Equations 3.14 and using the first order amplitude a1 relative to the average value a0
according to Equation 3.11 for each single detector pixel.

The setup at the beamline W2 consists of the source grating G0 with a duty cycle of 0.7, an
analyser grating G2, an x-ray detector and a phase grating G1, that was changed to test all
available phase gratings (G1 #1, #2, #3, and #4 all listed in the Table 3.1). For the phase
gratings #1 and #2 the x-ray energy was varied from 16 to 60 keV in 0.5 keV steps and for
the other two phase gratings the steps were chosen to 1 keV for a faster measurement. At
each energy a phase scan with 16 phase steps over 2 periods of the interference pattern was
performed, taking images at each step. The exposure times varied during the energy scan to
avoid overexposure of the detector at higher x-ray energies with higher photon flux. During
further data analysis the mean value of visibility averaged over 200×100 pixels in the middle
part of the projections was calculated and plotted together with the simulated values against
the corresponding x-ray energy as shown in Figures 3.6 (a)-(d).

The plots in Figure 3.6 show the same shape for the measured and the simulated visibility.
The phase gratings G1 #1 and #3 show three significant visibility peaks: 7th fractional Talbot
order at 22 kev, 6th fractional Talbot order at 25 kev, and 5th fractional Talbot order at 30
kev. The other two phase gratings #2 and #4 do not show the 6th fractional Talbot order

5The phase shift is only exactly pi at the design energy of the grating G1
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peak at 25 kev, which is produced by a duty cycle deviating from the optimum value of 0.5 as
could be seen in simulations. The height of the phase grating G1#1 was determined during
the production to be 54 µm. If this was correct, the measured visibility peak at 22 keV (see
Figure 3.6 (a)) would disappear, since it would shift the phase of the incoming x-ray beam
by 2π at 22 keV. The measurement showed that the height was not correctly determined.
But, the measured curve showed the same shape as the one of the grating G1#4, thus, the
same height as the grating G1#4 was used for the visibility simulations. The height was not
measured again, as any measurement procedure would put the grating at risk that is the best
of the phase gratings showing the best performance. The absolute values at the peak energies
in the simulations deviate slightly from the measured values, since the calculations were made
for ideal gratings and a plane wave field setup, which were smoothed by a smoothing factor of
20 %. In the plots in Figure 3.6 (b) and (d) the calculated visibility between the two maxima
is lower than the measured one. This deviation can be explained by the high dependence of
the calculations on the duty cycle of the phase grating G1 as can be seen from the plots in (a)
and (c) of the same figure. The DC deviation of all phase gratings is in the range of several
percent but it leads to an addition visibility peak for the gratings G1 #1 and #3.

The Talbot energies were correctly calculated with the assumption of a source in the G0

plane. If the source focal point in the wiggler affected the Talbot orders, they would be
at significantly different x-ray energies: the 7th fractional Talbot order at 24.2 keV, the 6th

fractional Talbot order at 28.4 keV, and the 5th fractional Talbot order at 33.9 keV. As the
measurement matched the simulated visibility peak positions very well, it clearly demon-
strates that the approximations made for the calculations before were correct.

The question, if the amount of partial coherence resulting from the long travel distance of
the beam from the wiggler to the sample plane (about 48 m) does affect the visibility, was
experimentally analysed. For this measurement a phase scan was performed at 7th fractional
Talbot order and 22 keV with rotating sheets of paper directly in front of the source grating
G0. The rotating paper consisting of 6 sheets of standard printer paper (80 g/cm2) acted as
a coherence diffuser. The phase grating G1#2 was used for this measurement. The measured
visibility was averaged over 500×500 pixels in the middle region of the projection and com-
pared to the averaged visibility measured without paper in the beam. No significant influence
of the partial coherence of the x-ray wave field in front of G0 could be found. The averaged
visibility with coherence diffuser was found to be 28.8 % ± 1.5 % and the one without diffuser
28.2 % ± 1.5 %.

The experimental results as well as the simulations showed that the influence of the distant
wiggler source to the Talbot self-imaging effect can be neglected. Only in the case of spatial
resolution the wiggler source does influence the performance of the grating setup. This influ-
ence will be analysed in detail in the following section.

3.4. Spatial resolution

For the imaging applications in absorption mode at the beamline W2 the spatial resolution
of the imaging system is determined by means of a horizontal edge of a highly absorbing
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Figure 3.6.: Measured and calculated visibility for different beam-splitter gratings G1 from the Table
3.1 plotted against photon energy. Plots (a) and (c) show additional visibility maxima
due to the DC that is deviating stronger from 0.5. The grating G1#2 and 4 from the
plots in (b) and (d) do not show the additional peak as their DC matches better the
value of 0.5. Please mind the different scaling of (a),(c) and (b),(d).

material (Densimet) prior to the measurement. This approach is based on the works by N.
J. Schneiders [91], F. Beckmann [7] and F. Busch [19], and T. Donath [28]. It obtains objec-
tive values for the spatial resolution achievable with an imaging system compared to other
methods that determine the spatial resolution by imaging very fine structures like Siemens

stars. The further development of the method using an edge was made by T. Donath, who
described it in detail in his PhD thesis [28]. The procedure also used in this work determines
the spatial resolution using a highly absorbing edge and is briefly presented below. As the
spatial resolution strongly depends on the source size, the vertical and the horizontal spatial
resolution at the beamline W2 is not the same, since the source size in horizontal is larger
than in the vertical direction (see Chapter 2). In case of conventional absorption-mode ap-
plications, where the detector is as close as possible to the sample, the difference is found to
be negligible (see [28, Appendix D.7]). In our case of grating-based phase-contrast imaging
this difference cannot be neglected, as the sample-to-detector distance is 0.32 m. In addition,
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the grating interferometer provides a signal only perpendicular to the grating structures that
is in our case the horizontal direction. Hence, the difference between the vertical and the
horizontal spatial resolution is of great interest for our method.

Here, an approach is shown to determine the spatial resolution from an edge produced by
a silicon 90 degrees edge in both interferometer signals: the absorption and the differential-
phase contrast. When rotating the edge by 45 degrees it produces a wedge, which increases
linearly the phase shift with the material thickness. The measured signal shows an edge
function starting at zero, as the first derivative of the phase-shift is measured. From this
edge function a modulation transfer function can be calculated, that describes the spatial
resolution of our system in horizontal direction. By rotating the silicon edge back it produces
an edge function in the absorption contrast of the interferometer that can be used to calculate
the MTF for the absorption-contrast signal.

3.4.1. MTF and spatial resolution

The response of an imaging system, that is assumed to be linear and shift invariant, can
be calculated by a convolution of the input signal with the system’s point spread function

(PSF), which fully characterizes the spatial response of the system. Determining the modula-

tion transfer function (MTF) related to the PSF from measured data allows for quantifying
the spatial resolution in the obtained images.

The approach to determine the spatial resolution in projections used for the microtomog-
raphy applications in absorption-contrast mode at the beamline W2 prior to each application
will be briefly presented here. A modification of this approach was used in this work. The
approach is based on the measurement of the edge spread function (ESF), produced by a
strongly absorbing material causing a sharp edge in the detected signal. One cannot measure
the PSF directly, as the PSF describes the system’s response to a delta-peak shaped signal
that could only be produced by a point-like source.

The measured image i(x, y) in microtomography is given by a two dimensional convolution
of the object function o(x, y) and the point spread function s(x, y) (PSF) as

i(x, y) = s(x, y) ∗ ∗o(x, y) =

∫

∞

−∞

∫

∞

−∞

s(x− x′, y − y′)o(x′, y′)dx′dy′ , (3.40)

where ∗∗ represents a two-dimensional convolution. As we measure intensities, all functions
in real space are real functions. The point spread function is usually defind to be normalized
to unity as

∫

∞

−∞

∫

∞

−∞

s(x, y)dxdy = 1 . (3.41)

This normalization has the consequence that the integral intensity in the images is not changed
by the convolution.

A convolution in real space is a simple multiplication in the Fourier space. Applying the
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Fourier transform to Equation 3.40 leads to

F(i) = I(u, v) = S(u, v)O(u, v) , (3.42)

with a complex function S(u, v) representing the Fourier transform of the point spread func-
tion, also called optical transfer function (OTF). The modulation transfer function (MTF)
can be derived from the OTF by

M(u, v) =
|S(u, v)|

S(0, 0)
= |S(u, v)| , (3.43)

which holds only for the normalized PSF giving S(0, 0) = 1.

A line spread function (LSF) is the response to a line-shaped input signal, and an edge
spread function (ESF) is the corresponding response for an edge-shaped signal. It can be
shown that the LSF is the derivative of the ESF, and that the LSF is the projection of the
PSF of the system6.

In terms of simplicity we omit the second dimension y without loosing generality. In the
case of a real PSF, that we assume here, the one-dimensional ESF(x) determines the line
spread function LSF(x) by

d

dx
ESF(x) = LSF(x) . (3.44)

From the LSF(x) the OTF S(u) from Equation 3.42 can be calculated by an one-dimensional
Fourier transform of the LSF(x)

S(u) = F [LSF(x)] . (3.45)

This Equation 3.43 will be used to determine the MTF from a single edge profile. The
steps to measure the MTF are described by T. Donath in [28, Chapter 2.4, Appendix D.1] as
follows

1. Measurement of an edge spread function ESF(x),

2. calculating the line spread function LSF(x) by derivation of ESF(x),

3. calculation of the MTF(u) by a one-dimensional Fourier transform of LSF(x).

As a resolution parameter the spatial frequency f10 is used, at which the MTF of the system
falls below 10 %. The characteristic length to calculate the resolution the value a10 is given
as

a10 =
1

2f10
. (3.46)

The quantity a10 will be given as the spatial resolution of the imaging system.

3.4.2. MTF calculation using a silicon cuboid

The standard procedure at the beamline W2 is to determine the spatial resolution param-
eter a10 as defined in Equation 3.46 for every different setup by calculating the MTF of

6The derivation can be found e.g. in the work by T. Donath [28]
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a horizontal, highly absorbing edge (material: Densimet) placed in the sample plane. For
absorption-contrast, where the detector is placed as close as possible downstream the sample,
the spatial resolution in vertical and horizontal direction is almost the same, although the
source focal point dimensions in vertical and horizontal direction differ very strongly.

In our case, the distance between the sample plane and the detector is at least 40 cm, as
the grating holder for the phase grating G1 and the analyser grating G2 has to fit between
the sample and the detector. In addition, the gratings itself introduce more blur to the im-
ages. Therefore, we expect that the spatial resolution in horizontal direction will significantly
deviate from that in vertical direction. First, the spatial resolution was determined using
the standard procedure with a Densimet edge in horizontal and vertical direction. This was
done with the grating holder inside but without the gratings in the beam. Then the spatial
resolution was measured with the grating-based setup using a silicon wedge in two different
configurations (see Figure 3.8) for the absorption and the phase contrast respectively. Both
measurements with the Densimet edge and the silicon cuboid were carried out at 30 keV
that corresponds to the 5th fractional Talbot order of the interferometer and with an effective
pixel size of 3.2 µm. The calculation of the MTF from the projections taken with the grating
interferometer setup was performed following the same procedure as described above. The
silicon edge produced a strong signal in both, absorption and phase-contrast projections that
is important to hold the normalisation in Equation 3.41.

In Figure 3.7 the MTFs are plotted measured in horizontal and vertical direction as they
were determined using the standard focussing procedure at the beamline W2. For this mea-
surement the same distance between the object and the detector is chosen like in the grating-
based setup. The spatial resolution is given by the value a10, where the MTF signal decreases
to 10 %. According to the expectations the spatial resolutions in horizontal ahorizontal10 = 33.8
µm and vertical avertical10 = 5.8 µm direction deviate strongly from each other due to the large
difference in the source size dimensions in these two directions. This deviation in the spatial
resolution in vertical and horizontal direction is strongly dependent on the source size and
shape. Radiation sources with much higher brilliance like the third generation synchrotron
radiation sources provide radiation with a much lower divergence. Thus, with the same ge-
ometry sources with high brilliance will provide a much better spatial resolution. For the
conventional x-ray tube sources the spatial resolution depends in the same way on the source
point parameters, but in the most cases it is limited by the detector resolution. The spatial
resolution using the conventional tube source at PSI is estimated in the Section 4.4 to be lim-
ited by the detector pixel size of 172 µm. For more details see the work by M. Bech [6] who
compared different x-ray radiation sources and their pros and cons in terms of grating-based
phase contrast.

The monochromator with a vertical beam shift also influences the divergence of the beam.
It reduces the divergence in the vertical direction, but does not influence the divergence in
the horizontal direction, which is given by the wiggler source. These facts become important
when measuring with the grating interferometer setup. To compare the results of the stan-
dard procedure to calculate the MTF of an edge we also would like to determine the MTF
out of the signals measured with the grating-based setup.

To determine the MTF of the differential-phase signal the highly absorbing Densimet edge
could not be used, as it did not produce a proper edge function but an unwanted phase-
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Figure 3.7.: The MTFs determined using the standard focussing procedure at the beamline W2 with
a Densimet edge in horizontal (red solid line) and vertical (blue dashed line) direction
measured at 30 keV with an effective pixel size of 3.2 µm. The horizontal black dashed
line marks the 10 % value of the MTF that is significantly higher for the vertical direction
85.2 lp/mm than that in horizontal direction 14.5 lp/mm that corresponds to the spatial
resolutions of avertical

10
= 5.8 µm and ahorizontal

10
= 33.8 µm.

wrapping at the edge due to a very high phase shift compared to that of the background (in
this case air). The idea is to use a wedge with a very sharp edge. A wedge is a structure
with linearly increasing thickness, which will produce an edge function in the differential-
phase signal that corresponds the first derivative of the phase shift. Silicon was chosen as the
material that provides very sharp edges when cut along defined directions. In our case a 90
degree angle was cut into a piece of silicon with an edge length of 1 cm. Figure 3.8 shows
the measuring procedure for both signals, the absorption and the differential-phase signal.
For the absorption contrast measurement [Fig. 3.8(a)] the silicon cuboid was placed with a
frontal area to the detector to produce an edge function in the transmission signal. The same
silicon cuboid as used for the absorption projection was rotated by 45 degrees to produce an
edge function in the differential-phase signal [Fig. 3.8(b)]. Figures 3.8 (c) and (d) show the
respective transmission and differential-phase projection of the silicon edge measured with
the grating interferometer. In the red marked regions the signal was averaged over 200 rows
resulting in the profiles shown in Figure 3.8 (e) and (f), which were used for the MTF calcu-
lations. During the averaging process the inclination of the edge was taken into account.

Figure 3.9 shows a plot of the MTF determined from the signals in absorption (black
solid line) and in differential-phase contrast (red dashed line) using the silicon edge. The
black dashed line marks the 10 % MTF signal used to quantify the spatial resolution. The
MTF of both signals, the transmission signal and the differential-phase signal falls to 10 %
of its maximum value at 13.5 lp/mm, which corresponds to a spatial resolution of a10 = 37µm.

The values determined using the silicon edge are slightly higher than those measured with
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Figure 3.8.: Procedure for measuring the MTF for absorption and differential-phase contrast. (a) The
silicon cubiod is placed with a frontal area to the detector to produce an edge function in
the transmission signal. (b) The same silicon cubiod used in (a) is rotated by 45 degrees
to produce an edge function in the differential-phase signal. (c) A transmission, and (d) a
differential-phase projection of the silicon edge measured with the grating interferometer.
The red marked regions were used for MTF calculations. (e) and (f) show the profiles
used for MTF calculations obtained by averaging the red marked regions in (c) and (d)
over 200 rows.

the standard MTF procedure with a Densimet edge giving a slightly worse spatial resolution
in horizontal direction. This result corresponds to the expectations as the gratings cannot
enhance the spatial resolution but introduce more blur. The spatial resolution in this di-
mension is limited by the horizontal source focal point that is much larger than the one in
vertical direction. The spatial resolution in both signals, absorption and differential-phase
contrast was found to be the same. As the spatial resolution strongly depends on the setup,
the MTF calculation with the silicon edge should be repeated after any change of the settings
like sample-to-detector distance, photon energy, fractional Talbot, or magnification.
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This result means that the spatial resolution is limited by the source size of the wiggler
source producing a divergent beam. Using the third generation synchrotron sources the limit
for the spatial resolution will be the grating period of the beam-splitter grating, as the beam
divergence at these sources is very small.
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Figure 3.9.: The MTFs of an edge from the transmission and the differential-phase signal both carried
out at 30 keV, at the 5th fractional Talbot order of the interferometer, and with an
effective pixel size of 3.2 µm. The MTF is plotted against spatial frequency in lp/mm.
The black dashed line marks the 10 % of the maximum. The MTF from the differential-
phase signal (red dashed line) falls to 10 % at 13.5 lp/mm that corresponds to a spatial
resolution of a10 = 37 µm. The MTF of the transmission signal (black solid line) falls to
10 % at the same value.

The silicon wedge allows to determine the MTF in both signals, absorption and phase-
contrast, and gives reliable values for the spatial resolution achievable in the projections.
Thus, in terms of spatial resolution the tomographic projections obtained with the grating-
based setup become comparable to those obtained with the conventional absorption contrast
setup at the beamline W2, although it is worse than the resolution with the standard micro-
tomography setup in absorption mode that achieve spatial resolutions down to 2 or 3 µm (due
to the small distances between the specimens and the detector). This simple MTF measure-
ment procedure can be performed at any other grating-based setup to get consistent numbers
for the spatial resolution achieved in the tomographic scans.
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4. Quantitative phase-contrast computed
tomography of a liquid phantom

4.1. Motivation

In this chapter the results of a phase-contrast computed tomography study (PC-CT) on self-
made liquid phantoms are presented. The liquid phantoms consisted of several small plastic
tubes filled with chemically well-defined liquids, which were measured in PC-CT. The mea-
sured attenuation coefficients and the refractive index decrements of the liquids were compared
to the theoretical values. Measurements were made using the x-ray grating interferometer
with a synchrotron radiation source at the beamline W2, and with a polychromatic x-ray
tube at the Paul Scherrer Institut.

The primary aim of the measurements was to verify the simultaneous, quantitative determi-
nation of the attenuation coefficient (µ) and the refractive index decrement (δ) distribution
inside an object in three dimensions for both source types. In addition, as the measured
values were compared to the theoretically calculated values, the measurement was used to
demonstrate the accuracy of the newly designed and constructed grating interferometer setup
at the synchrotron wiggler source. The sensitivity of the synchrotron setup is compared for
two different photon energies and Talbot orders by using the contrast-to-noise ratios (CNR)
of the different investigated fluids. The results from the polychromatic x-ray tube were pro-
duced during a three-month research stay at the Laboratory for Micro- and Nanotechnology
at Paul Scherrer Institut. With this study we would like to show the quantitativeness of the
grating-based PC-CT, even when using a polychromatic x-ray source.

Here, only two signals provided by the x-ray grating interferometer will be analysed: the
conventional attenuation-contrast and the phase-contrast signals. The third signal - the dark-
field signal - is not taken into account, as this study deals with imaging of fluid phantoms
with no inner structures that could contribute to small-angle scattering.

The results obtained at a conventional x-ray tube were published in Herzen et al. ’Quanti-

tative phase-contrast tomography of a liquid phantom using a conventional x-ray tube source’,
Optics Express Vol. 17, No. 12, 2009 [49], those from the synchrotron radiation source are
published here for the first time.

4.2. Calculation of the liquid signals from tabulated data

As already explained in Chapter 2 the refractive index of a three-dimensional object can be
described by its complex refractive index distribution n(x, y, z) = 1 − δ(x, y, z) + iβ(x, y, z),
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4. Quantitative phase-contrast computed tomography of a liquid phantom

where x, y, and z describe the coordinate system of the sample. In conventional absorption-
contrast CT the imaginary part β is measured in the form of the linear attenuation coefficient µ
of the x-rays. The Equation (3.15) in Section 3.1 describes the transmission projection T θ(x′)
that is related to the attenuation coefficient µ(x′, y′). The mass attenuation coefficient (µ/ρ)
is defined by the ratio of the linear attenuation coefficient µ and density ρ. For substances
(subst.) that consist of a mixture of I components, each with mass attenuation coefficient
(µ/ρ)i, with i = 1, ..., I, the resulting mass attenuation coefficient is given by

(

µ

ρ

)

subst

=

I
∑

i=1

(

µ

ρ

)

i

Wi, (4.1)

where Wi is the weight fraction of the i-th component and the resulting linear attenuation
coefficient simply is µsubst = (µ/ρ)subst · ρsubst, with the density of the substance ρsubst.

In differential phase-contrast imaging, the variations in the real part of the refractive index
1−δ of the object are detected by analyzing the slight refraction of x-rays caused by the object.
In addition to the absorption-contrast projection in Eq. (3.15), we measure the differential
phase-contrast projection of refraction angles αΘ(x′) like described in Equation (3.19) in
Section 3.1. The refractive index decrement δsubst of a mixture can be derived as a function
of the x-ray wavelength λ and the density of the sample from the description in the book by
J. Als-Nielsen [2] as

δsubst =
reλ

2

2π

I
∑

i=1

Nif
0
i , (4.2)

where re = 2.82 · 10−15m is the classical electron radius, Ni is the atomic density of type i
atoms given as atoms per unit volume, and f0

i is the real part of their atomic scattering factor
in the forward direction. If the photon energy of the incident x-ray radiation lies consider-
ably above the absorption edges, we may use the approximation f0

i = Zi, with Zi being the
total number of electrons in the atom. The sum in Eq. (4.2) describes the overall electron
density inside the sample. For mixtures with elemental weight fractions Wi, we substitute
Ni = (Wi ·NA/Ai)ρsubst, with the atomic mass Ai of atom i and the Avogadro’s number NA,
into Eq. (4.2).

The reconstruction of µ(x, y) and δ(x, y) was performed using the filtered backprojection
algorithm as described in detail in Section 3.1.4 implemented in Matlab.

In a fan-beam setup the sensitivity of the grating interferometer is reduced by the factor
r1/l [29, Eq. 8], where r1 is the source-to-sample distance and l is the source-to-G1 distance.
To correct for this effect, the recorded phase projections were rescaled by multiplication by
(r1/l)

−1 prior to reconstruction.

We will use the contrast between two fluids in the absorption and the phase-contrast signal
as a criterion for the sensitivity of the setup. Contrast can be described by the contrast-to-
noise ratio

CNR =
|Sa − Sb|

σS
, (4.3)

where Sa and Sb represent the measured signals ∆µ (or ∆δ) of fluids a and b, respectively,
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4.3. Measurement at a synchrotron radiation source

and σS = (σ2
a + σ2

b )
1/2 is the standard deviation of the signal difference |Sa − Sb|, with the

standard deviation σa and σb of the respective signals.

4.3. Measurement at a synchrotron radiation source

4.3.1. Introduction

Quantitative PC-CT measurements using different imaging methods have been reported by
many authors [27, 59, 76, 68]. In the PhD work by T. Donath [28] the requirements needed
for accurate quantitative computed tomography results are described in detail for a CT in
absorption-contrast mode. Such measurements make a great demand on the accuracy of the
whole imaging system. Demonstrating the quantitativeness of a PC-CT measurement is an
important indication of the accuracy of the instrument.

Here, the results of a tomographic measurement of a self-made fluid phantom using a
grating interferometer at the low-coherence synchrotron radiation wiggler beamline W2 are
presented. The aim of the measurement was to use the tomographic reconstructions of the
complex refractive index of well defined fluids to characterize the newly designed three-grating
setup. The results of the tomographic measurements at two different photon energies (22 keV
and 30 keV) will be presented. The contrast-to-noise ratios between different fluids at these
photon energies will be used as a criterion for the sensitivity of the setup. The sensitivity at
both energies will be compared and the results will be discussed.

4.3.2. Methods and materials

These measurements were carried out at the synchrotron radiation wiggler source of the
beamline W2 (Section 2.3) using the x-ray grating interferometer setup introduced in Sec-
tion 3. Two tomographic scans in a water tank (made of PMMA, 45 mm thickness of water
in the beam direction) filled with demineralised water were performed at room temperature
using the photon energies and Talbot orders giving the maximum visibility of the interference
fringes as shown in Section 3.3.3:

1. 22 keV and the 7th Talbot order

2. 30 keV and the 5th Talbot order.

The fluid phantom constructed for this experiment consisted of five small cone-shaped low-
density polyethylene (PE-LD) Eppendorf tubes with an outer diameter of about 5 mm in the
scanned region. The fluids ethanol, water, glycerol, and two solutions of NaCl in water with
different concentrations were used for the measurements described in this section (compare
Table 4.1). For the measurement at 30 keV the Eppendorf tube filled with glycerol had to be
removed, since air bubbles were produced by radiation damage during the tomographic scan.
This phenomenon was not observed at 22 keV.1

1A possible explanation for the absence of the degasing effect at 22 keV is the significantly lower flux at this
photon energy. Several strategies to reduce the gas-generation problem are discussed in Chapter 5.
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4. Quantitative phase-contrast computed tomography of a liquid phantom

Figure 4.1 shows the fluid phantom that was suspended in the water bath from above,
in front of the G1 grating with the Eppendorf tubes of the phantom roughly parallel to the
rotation axis z. For the tomographic scan 361 projections at 22 keV and 451 projections at 30
keV were taken for projection angles from θ = 0◦ to 360◦. For each projection 8 phase steps
over two periods of the grating G2 were recorded with a variable exposure time starting with
5 seconds at 22 keV and 0.3 seconds at 30 keV per image and increasing during the scan to
compensate the decreasing synchrotron storage ring current. Please note that the exposure
time is reduced by one magnitude from 22 keV to 30 keV due to the increasing photon flux at
higher energies at this beamline, and the lower x-ray attenuation of the water tank at higher
photon energies. After each image a reference image without the sample was taken to correct
for any beam instabilities. Usually, the reference images are not taken after each image to
make the measurement faster. But in this case we are interested in quantitative results and
take as many reference images as possible. The number of projections at 30 keV was increased
to enhance the statistics in the reconstruction as the visibility of the interference fringes falls
to 15 % of those in the 22 keV configuration (see Chapter 3). At both photon energies the
measurement was carried out with an on-chip binning of a factor two to reduce the read-out
time of the CCD detector and the projections were binned by a factor of two prior to recon-
struction to enhance the statistics in the reconstructions. The unbinned effective pixel size
for both measurements was determined to be 6.3 µm using an automatic focussing procedure
by means of an MTF calculation of a sharp strongly absorbing edge. Thus the resulting pixel
size in the reconstructions was 25.2 µm.

Figure 3.3 in Chapter 3 shows a schematic of the x-ray grating interferometer setup used for
differential phase-contrast x-ray imaging at the low-coherence wiggler beamline W2 at DESY.
The interferometer consists of an absorption source grating G0, a phase grating G1, and an
analyzer absorption grating G2. The interferometer parameters are listed in Section 3.2. The
phase grating G1 #1 was used for these measurements. The x-ray detector used in the ex-
periments at the synchrotron source is described in Section 2.4.

In this approach we worked with a monochromatic beam (∆E/E ≈ 10−3 using a bent
Laue monochromator crystal) and with a large distance from the source in the wiggler to
the grating G1. In the absence of the source grating G0 (i.e. in the case of brilliant x-ray
sources with sufficient inherent coherency) the geometric correction factor r1/l of the grating
interferometer is almost unity and can be neglected (again, r1 represents the source-to-sample
distance and l the source-to-G1 distance). Moreover, the use of a grating G0 only 3 m dis-
tant from the phase grating G1 leads to a reduction in the angular sensitivity of the setup
by the correction factor described in Section 4.2. Thus, the recorded phase projections were
rescaled by multiplication with (r1/l)

−1 = [(3.0 m - 0.055 m)/(3.0 m)]−1 = 1.01868 prior to
reconstruction.

The density of each fluid at room temperature [64] and their elemental weight fractions are
listed in Table 4.1. These values were used for the calculation of the theoretical values for
µ and δ. The calculated values will be denoted by the subscript ’c’ e.g. as µc and δc. For
the dilution series of NaCl in water the density as a function of salt concentration was used
in the calculation. The values of δc were calculated using the tabulated data of Kissel [84].
Please note that these measurements were carried out in a water tank, i.e. relative to water,
thus the theoretical values are given relative to those of water as ∆µc = µc − µc(H2O) and
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4.3. Measurement at a synchrotron radiation source

Figure 4.1.: Picture of the fluid phantom constructed for the measurements at the synchrotron
radiation source. The bottom region of the phantom was scanned, where the outer
diameters of the tubes are ≈ 5 mm.

∆δc = δc− δc(H2O) for comparison with the experimental results. The measurement in water
tank had two important advantages: 1. The surrounded water avoided phase jumps at the
edges of the tubes, which would distort the quantitative analysis, and 2. It will provide results
comparable to the well known Hounsfield Units in the conventional medical CT in absorption
mode, which are also defined relatively to water.

Table 4.1.: Density and elemental composition of the fluids used at the synchrotron radiation
source at room temperature (T = 20 ◦C). These values were used in the calculation
of ∆µc and ∆δc listed in the Tables 4.2 and 4.3.

Elemental weight fraction Wi

Solution Identifier Density H O C Na Cl
[wt.%] [g/cm3] [wt.%] [wt.%] [wt.%] [wt.%] [wt.%]
H2O (demineralised) H2O 0.9982 11.19 88.81 – – –
glycerol (85% pure) Gly 1.2192 9.06 57.65 33.29 – –
ethanol (99.9% pure) EtOH 0.7894 13.13 34.73 52.14 – –
H2O+NaCl 2.5% H2O-NaCl2.5 1.0160 10.91 86.59 – 0.98 1.52
H2O+NaCl 5% H2O-NaCl5 1.0340 10.63 84.37 – 1.97 3.03

4.3.3. Results and Discussion

Figures 4.2(a) and 4.2(b), show the reconstructions of ∆µ and ∆δ respectively, from the same
slice of the fluid phantom measured at 22 keV at the synchrotron radiation source. In Figures
4.3(a) and 4.3(b) the reconstructions for 30 keV are presented. For both figures (Fig. 4.2 and
Fig. 4.3) and for the determination of measured values 20 tomographic slices were averaged
along the z-axis to enhance the signal-to-noise ratio in the reconstructed slices. From these
reconstructions experimental values for ∆µ and ∆δ were determined from the mean value
over a circular averaging region of 100 pixels diameter containing 7857 voxels within each
tube (in total 7857 × 20 voxels). Also the standard deviations σµ and σδ over all pixels were
determined. Note that the given deviations represent the error of the mean value, which is
a factor of (number of pixels)−1/2 smaller than the standard deviation of one pixel (refer to
[36]). The measured values together with the mean-value deviations for the measurements

49



4. Quantitative phase-contrast computed tomography of a liquid phantom

at 22 keV and 30 keV are given in Tables 4.2 and 4.3, respectively. The scatter plots in
Figure 4.4 and 4.5 compare the measured ∆µ and ∆δ values to the calculated ∆µc and ∆δc
values for each photon energies, respectively.

The Eppendorf tube filled with demineralised water serves as a control of the zero value
and should be measured as zero in both refractive index and attenuation coefficient measure-
ments. For both photon energies the values for water coincide within one standard deviation
with zero, as expected. The values for ethanol and the NaCl2.5 dilution in water match the
calculated values also within one standard deviation for both energies. But the values for
the NaCl5 solution and especially glycerol measured at 22 keV show strong deviations in
µ and δ. Furthermore, the deviation of the δ values increases for the lower photon energy.
One possible reason is the fact that these fluids produce a strong contrast in both signals,
especially compared to the enclosing polyethylene tube. At such sharp interfaces between
materials scattering occurs and leads to a decrease in the visibility of the Talbot fringes and
an error in the absolute values of µ and δ. This error increases with lower photon energy
since the setup becomes more sensitive when increasing the Talbot order and decreasing the
energy. The reason for the strong deviations of the measured µ values for glycerol from the
calculated values can be the slightly wrong purity of the glycerol. The theoretical values are
calculated for an 85 % pure glycerol, as for the purity of the commercial available glycerol
the worse value was declared on the container. This means, that the purity of the glycerol
might be higher that would lead to higher measured µ values.

Table 4.2.: Measured and calculated attenuation coefficients ∆µ and refractive index decre-
ments ∆δ for the fluids in the phantom (relative to water) for a photon energy of
22 keV at room temperature (T = 20 ◦C). The given deviations σµ and σδ were de-
termined for each averaging region describing the variation about the mean value.
The calculated ∆µc and ∆δc values were determined for the photon energies of 22
keV. The data is plotted in Fig. 4.4.

Identifier ∆µ± σµ ∆µc ∆δ ± σδ ∆δc
[10−2/mm] [10−2/mm] [10−8] [10−8]

H2O 0.03 ± 0.06 0 0.005 ± 0.05 0
Gly 0.41 ± 0.06 0.24 10.15 ± 0.08 9.44
EtOH -2.57± 0.06 -2.58 -8.59 ± 0.07 -9.33
H2O-NaCl2.5 1.05 ± 0.07 1.01 0.68 ± 0.08 0.69
H2O-NaCl5 1.93 ± 0.06 2.06 1.22 ± 0.05 1.37

4.3.4. Contrast-to-noise ratios

We can compare the performance of the setup at two different photon energies using these
measurements. The contrast between the measured refractive indices of two fluids in the
absorption and the phase-contrast signal, described by the contrast-to-noise ratio (CNR) in
Eq. 4.3, is used as parameter for the comparison. The CNR for different fluids at both energies
are listed in Table 4.4.

The comparison of the contrast-to-noise ratios at different energies shows the expected be-
havior: The CNRµ and CNRδ for 22 keV are significantly higher than those for 30 keV. The
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Figure 4.2.: Tomographic reconstructions from the same slice of the phantom at 22 keV show-
ing (a) the attenuation coefficient ∆µ(x, y) and (b) the refractive index decre-
ment ∆δ(x, y) measured at the synchrotron radiation source. The images are win-
dowed (from black to white) between the range of -2.1 ·10−2 to 0.6 ·10−2 mm−1

in (a) and from -8.2 ·10−8 to 0.2 ·10−8 in (b). The fluids in the five polyethylene
tubes of the phantom have been labelled with their identifiers according to the
fluid descriptions in Table 4.1. A centred, circular averaging region, as shown
for one tube in (b), was defined for each tube to obtain the experimental values
given in Table 4.2.

Table 4.3.: Measured and calculated attenuation coefficients ∆µ and refractive index decre-
ments ∆δ for the fluids in the phantom (relative to water) for a photon energy
of 30 keV at room temperature (T = 20 ◦C). The calculated ∆µc and ∆δc values
were determined for the photon energies of 30 keV. The data is plotted in Fig. 4.5.

Identifier ∆µ± σµ ∆µc ∆δ ± σδ ∆δc
[10−2/mm] [10−2/mm] [10−8] [10−8]

H2O -0.003 ± 0.06 0 0.006 ± 0.04 0
EtOH -1.18 ± 0.05 -1.23 -4.66 ± 0.04 -5.01
H2O-NaCl2.5 0.43 ± 0.06 0.41 0.39 ± 0.04 0.37
H2O-NaCl5 0.78 ± 0.05 0.84 0.68 ± 0.04 0.74

Table 4.4.: Signal-to-noise ratios CNRµ and CNRδ for the photon energies 22 keV and 30
keV of the synchrotron setup. The data is calculated from the values in Tables 4.2
and 4.3.

Fluids CNRµ(22keV ) CNRδ(22keV ) CNRµ(30keV ) CNRδ(30keV )
H2O/EtOH 30.64 99.91 15.1 82.5
H2O/H2O-NaCl2.5 11.1 7.2 4.7 6.8
H2O/H2O-NaCl5 22.4 17.2 10.0 11.9
EtOH/H2O-NaCl2.5 40.7 87.2 20.6 88.2
EtOH/H2O-NaCl5 53.0 114.0 27.7 94.4
H2O/Gly 4.5 107.5 - -
EtOH/Gly 35.1 176.3 - -
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Figure 4.3.: Tomographic reconstructions from the same slice of the phantom at 30 keV show-
ing (a) the attenuation coefficient ∆µ(x, y) and (b) the refractive index decre-
ment ∆δ(x, y) measured at the synchrotron radiation source. The images are
windowed (from black to white) between the range of -1.56 ·10−2 to 0.26 ·10−2

mm−1 in (a) and from -3.5 ·10−8 to 0.6 ·10−8 in (b). The fluid phantom contains
only 4 polyethylene tubes as the tube with glycerol had to be removed. The
tubes have been labelled with their identifiers according to the fluid description
in Table 4.1. A centred, circular averaging region, as shown for one tube in (b),
was defined for each tube to obtain the experimental values given in Table 4.3.

CNRµ increases by a factor of 2, while the CNRδ is enhanced by an average factor of 1.2.
Several effects should be considered in this comparison. As shown in Chapter 3, the visibility
of the interference fringes changes from 32 % at 22 keV to 15 % at 30 keV. This seems to be
the main contribution to the decrease in the contrast-to-noise ratio and is due to the higher
effectiveness of the gold gratings at lower photon energies.

There are three other effects influencing the CNR of the measurements that have to be
mentioned here: 1.) At lower photon energies both the attenuation and the phase shift in-
crease, but this is offset by the decreasing flux at 22 keV due to the increased self-absorption
in the monochromator crystals and in the water tank. 2.) Furthermore, at 30 keV the photon
flux is higher, but the gold grating G2 starts to become transparent to the x-rays. Thus, the
fringe-visibility decreases towards higher photon energies. 3.) For the tomography scan at
30 keV more projections were recorded, taking advantage of the shorter exposure times, to
compensate for the decreasing visibility.

All these effects make a direct comparison difficult, but nevertheless, the results are repre-
sentative for a measurement with corresponding settings. Thus, they can be used to find the
optimum settings for the object under investigation, as they characterise the imaging system
at the corresponding photon energy.
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Figure 4.4.: Plot of measured and calculated attenuation coefficients ∆µ, ∆µc and refractive
index decrements ∆δ, ∆δc for 22 keV. Black crosses represent the measured and
blue squares the calculated values for 22 keV. The data to the plot is given in the
table 4.2.

4.3.5. Conclusions

The results obtained at the synchrotron radiation source show that at both photon energies
(22 keV and 30 keV) the measured mean complex refractive index values for almost all fluids
were in good agreement with the theoretical values. The deviations in measured values for
ethanol and NaCl5 solution in water at both photon energies could be explained by the pres-
ence of scattering at the container interfaces decreasing the fringe visibility and leading to
errors in the measurement of absolute values.The reason for the high deviation of the µ value
for glycerol measured at 22 keV can be the slightly wrong purity of the glycerol. Such errors
are not easy to correct for. Beside these deviations, both measurements demonstrated the
accuracy of the grating-based phase-contrast tomography as a quantitative imaging method.

The contrast-to-noise ratios between the measured refractive indices for different fluids
were calculated for both measurements. This allowed the accuracy and sensitivity of the
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Figure 4.5.: Plot of measured and calculated attenuation coefficients ∆µ, ∆µc and refractive
index decrements ∆δ, ∆δc for 30 keV. Red crosses represent the measured and
black circles the calculated values for 30 keV. The data to the plot is given in the
table 4.3.

setup at the corresponding photon energies to be characterised. Although the measurements
of the fluid phantom were performed with the same imaging system, various effects discussed
above make the direct comparison using the CNRs difficult. We came to the conclusion that
nevertheless the results represent the performance of the grating-based synchrotron setup at
different photon energies and can be used for choosing the optimum settings for further in-
vestigations. According to that, one should choose the lower photon energies for very weakly
absorbing samples to achieve enough contrast in the phase-signal. When studying metal al-
loys, like aluminium or magnesium alloys, the higher photon energy should be chosen. In this
way samples producing very strong phase shifts, can also be investigated with PC imaging,
that would lead to phase-wrapping artifacts at a lower photon energy with higher sensitivity.
The ability to choose the photon energy from a number of available energies to achieve the best
conditions for every object investigated with PC-CT and to image it without polychromatic
artifacts with high spatial resolution makes the grating interferometer at the synchrotron
radiation source a powerful method.
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4.4. Measurement at a conventional x-ray tube

4.4.1. Introduction

A research stay of three months at the Laboratory for Micro- and Nanotechnology at the
Paul Scherrer Institut (PSI, Villigen, Switzerland) was a part of this work. During this stay
the grating-based phase-contrast method at low-brilliance x-ray sources was studied. Subse-
quently, the grating interferometer described in this work was designed and installed at the
low-brilliance synchrotron wiggler source W2 in cooperation with PSI, TU München and KIT
Karlsruhe.

The aim of the work at PSI was to demonstrate the simultaneous determination of the
attenuation coefficient and the refractive index decrement distribution inside an object in three
dimensions using a grating interferometer with a polychromatic low-brilliance x-ray tube.
Here the experimental results of the investigation on the quantitativeness and accuracy of this
method are presented. These results were published in Herzen et al. ’Quantitative phase-

contrast tomography of a liquid phantom using a conventional x-ray tube source’, OPTICS
EXPRESS Vol. 17, No. 12, 2009 [49]. For this study, a similar phantom as described in
previous section consisting of several tubes filled with chemically well-defined liquids was
built and measured in PC-CT. The study was largely motivated by the fact that modern
medical CT applications increasingly rely on quantitative interpretation of the tomographic
gray-scale images, e.g. in the assessment of bone density in the context of osteoporosis.

4.4.2. Methods and materials

For the reconstruction of the object’s µ(x, y) and δ(x, y), from the two sets of projections
TΘ(x′) and αΘ(x′) respectively, a filtered back-projection reconstruction algorithm was ap-
plied as described in detail in Chapter 2, Section 2.1. In this approach we worked with a
fan-beam setup, where the sensitivity of the grating interferometer is reduced as mentioned
in the previous section. To correct for this effect, the recorded phase projections were multi-
plied with the factor (r1/l)

−1 = [(1.4 m - 0.078 m)/(1.4 m)]−1 = 1.059 prior to reconstruction.

Figure 4.6 shows the self-built phantom consisting of thirteen small cylindrical low-density
polyethylene (PE-LD) tubes with outer diameters of 8 mm and volumes of 0.5 ml that were
filled with fluids of well defined chemical composition (see Table 4.5). To cover a wide range
of attenuation coefficients and refractive index decrements, we mixed different pure liquids
(ethanol, water, glycerol) and salts (NaI, NaCl).

Differential phase-contrast x-ray imaging and CT were carried out using an x-ray grating
interferometer as shown schematically in Fig. 4.7 and described in Section 2.3.1. The inter-
ferometer consists of a source grating G0, a phase grating G1, and an analyzer absorption
grating G2. The source grating G0, which is placed close to the x-ray tube anode, allows the
use of x-ray sources with square-millimetre-sized focal points [83]. The signal is formed by the
two gratings G1 and G2 due to the Talbot self-imaging effect [77]. The interferometer that
was used here was designed for an x-ray energy of 28 keV and consisted of three gratings with
respective periods of p0 = 14.2 µm, p1 = 3.5 µm, and p2 = 2.0 µm and respective structure

55



4. Quantitative phase-contrast computed tomography of a liquid phantom

Figure 4.6.: Picture of the self-made fluid phantom used for the measurements with the x-
ray tube. The phantom consists of 13 cylindrical polyethylene tubes with outer
diameters of 8 mm filled with the fluids listed in Table 4.5.

Table 4.5.: Density and elemental composition of the fluids. These values were used in the
calculation of ∆µc and ∆δc listed in Table 4.6.

Elemental weight fraction Wi

Solution Identifier Density H O C Na Cl I
[wt.%] [g/cm3] [wt.%] [wt.%] [wt.%] [wt.%] [wt.%] [wt.%]
H2O (demineralized) H2O 0.9982 11.19 88.81 – – – –
glycerol (99.5%) Gly 1.26 8.76 52.12 39.13 – – –
ethanol (p.a. 99.9%) EtOH 0.7894 13.13 34.73 52.14 – – –
H2O+NaCl 1.25% H2O-NaCl1.25 1.0072 11.05 87.70 – 0.49 0.76 –
H2O+NaCl 2.5% H2O-NaCl2.5 1.0160 10.91 86.59 – 0.98 1.52 –
H2O+NaCl 5% H2O-NaCl5 1.0340 10.63 84.37 – 1.97 3.03 –
H2O+NaCl 10% H2O-NaCl10 1.0707 10.07 79.93 – 3.93 6.07 –
ethanol+NaI 1.25% EtOH-NaI1.25 – 12.96 34.29 51.49 0.19 – 1.06
ethanol+NaI 2.5% EtOH-NaI2.5 – 12.80 33.86 50.84 0.38 – 2.12
ethanol+NaI 5% EtOH-NaI5 – 12.47 32.99 49.54 0.77 – 4.23
ethanol (75%) + glycerol (25%) EtOH75-Gly25 – – – – – – –
ethanol (50%) + glycerol (50%) EtOH50-Gly50 – – – – – – –
ethanol (25%) + glycerol (75%) EtOH25-Gly75 – – – – – – –

heights of h0 = 42 µm, h1 = 36 µm, and h2 = 26 µm. The distance between G0 and G1 was
1.40 m and the distance between G1 and G2 was 0.198 m, corresponding to the fifth fractional
Talbot distance. The gratings were produced on 4 inch silicon wafers in a fabrication process
involving photolithography, deep etching into silicon, and (for the absorption gratings G0 and
G2) electroplating of gold [25].

As x-ray source we used a Seifert ID 3000 x-ray generator operated at 40 kV and 25 mA
with a tungsten (W) line focus tube (DX-W8 × 0.4-L) producing a typical bremsstrahlungs
spectrum overlaid with the fluorescence Kα line of tungsten at 59 keV. The influence of the
polychromatic illumination on the performance of the grating interferometer is discussed in
Chapter 3. Due to the inclination of the target with respect to the optical axis of 6◦, the
effective source size was 0.8 (h)× 0.4 (v)mm2. A PILATUS 100K pixel detector consisting
of an array of 487×195 pixels with a pixel size of 0.172 × 0.172 mm2 was used to record
images. Its detection efficiency, determined by the probability of absorbing an x-ray in the
320 µm-thick Si sensor, is ≈10% at 28 keV.
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4.4. Measurement at a conventional x-ray tube

Figure 4.7.: X-ray grating interferometer for differential phase-contrast imaging with an x-
ray tube. A phase object in the beam path causes a slight deflection of x-rays
changing the locally transmitted intensity through the arrangement formed by
the gratings G1 and G2. The sample is placed on a tomographic rotation stage.

The measurements were carried out at room temperature in a water tank (made of PMMA,
50 mm thickness of water in the beam direction) filled with demineralised water. The sta-
tionary water tank was placed in front of the G1 grating. The fluid phantom was mounted
on the rotation stage with the cylindrical tubes of the phantom parallel to the rotation axis
z (see Fig. 4.7) and immersed in the tank. For the tomographic scan, 361 projections were
taken for projection angles from Θ = 0◦ to 360◦. For each projection 16 phase steps covering
two periods of the analyser grating G2 were recorded with an exposure time of 10 seconds per
image. The visibility of the interference pattern behind a 50 mm PMMA water tank with a
wall thickness of 3 mm was determined to 8%.

To obtain the phase-contrast and the conventional projection, a set of raw images was
recorded for different positions of the grating G1. From this so-called phase-stepping scan
(described in more detail in Chapter 3) both projections were computed. These projections
can be used directly as input for the filtered back-projection reconstruction algorithms, i.e.,
numerical implementations of Eqs. 3.24 and 3.25 as explained in Section 2.1.

The calculation of theoretical values for µ and δ for each fluid was performed using their
density at room temperature [64] and their elemental weight fractions, both listed in Ta-
ble 4.5. In the following we denote calculated values by a subscript ’c’ e.g. as µc and δc. For
the dilution series of NaCl in water, the density as a function of salt concentration was used
in the calculation. Since we could not find tabulated data for the density of the dilution
series of NaI in ethanol and for the ethanol-glycerol mixtures, we did not calculate theoretical
values for these mixtures. To calculate δc we used the tabulated data of Kissel 2 and for
the calculation of µc, we used the data of Plechaty et al. [84]. Since our measurements were
carried out in a water tank, i.e. relative to water, we give all measured and theoretical values
relative to those of water as ∆µc = µc − µc(H2O) and ∆δc = δc − δc(H2O).

Both µ and δ strongly depend on the x-ray energy. For the comparison of measured and

2For the calculation of δc the values of f1 for elastic photon-atom scattering, anomalous scattering factors,
tabulated by L. Kissel were taken from the file f1f2 asf Kissel.dat of the DABAX library [1].
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4. Quantitative phase-contrast computed tomography of a liquid phantom

calculated values we thus have to select an effective photon energy, for which we calculate
the theoretical data. The measurement of µ and δ is generally carried out with two differ-
ent effective x-ray energies due to two main reasons: 1.) The image formation processes of
the conventional and the phase-contrast data are intrinsically different, and 2.) the specific
energy-dependent efficiency of the x-ray gratings leads to a different weighting of the initial
energy spectrum (for more details, see [3, 30]). Thus, we use two different effective x-ray en-
ergies Eµ and Eδ, which we determine from the measured data of ethanol as described below.
It should be noted that this approach is necessary since a non-energy dispersive detector was
used.

4.4.3. Results and Discussion
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Figure 4.8.: Tomographic reconstructions from the same slice of the phantom showing (a) the
attenuation coefficient ∆µ(x, y) and (b) the refractive index decrement ∆δ(x, y)
measured at the x-ray tube. The colour bar (from black to white) ranges from
-2.0 ·10−2 to 3.0 ·10−2 mm−1 in (a) and from -7.5 ·10−8 to 11.3 ·10−8 in (b).
The fluids in the 13 polyethylene tubes of the phantom have been labelled with
their identifiers according to the fluid description in Table 4.5. A centred, circular
averaging region, as shown for one tube in (b), was defined for each tube to obtain
the experimental values given in Table 4.6.

Reconstructions of ∆µ and ∆δ from the same slice of the phantom are shown in Figs. 4.8(a)
and 4.8(b), respectively. For the specific reconstructions shown in Fig. 4.8, 55 tomographic
slices were averaged (along the z-direction) to increase the signal-to-noise ratio. From these
reconstructions experimental values for ∆µ and ∆δ were determined from the mean value
over a circular averaging region of 30 pixels diameter containing 709 voxels within each tube
(in total 709 × 55 voxels). Also the standard deviations σµ and σδ over all pixels were de-
termined. Note that the given deviations represent the error of the mean value, which is a
factor of (number of pixels)−1/2 smaller than the deviation of one pixel (refer to [36]). The
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4.4. Measurement at a conventional x-ray tube

Table 4.6.: Measured and calculated attenuation coefficients ∆µ and refractive index decre-
ments ∆δ for all fluids in the phantom (relative to water). The deviations σµ
and σδ describe the error of the mean value within each averaging region. The
calculated ∆µc and ∆δc values were determined for effective photon energies of
Eµ = 30.1 keV and Eδ = 28.3 keV, respectively, as discussed in the text. The
data is plotted in Fig. 4.9.

Identifier ∆µ± σµ ∆µc(Eµ) ∆δ ± σδ ∆δc(Eδ)
[10−2/mm] [10−2/mm] [10−8] [10−8]

H2O 0.023 ± 0.019 0 -0.015 ± 0.049 0
Gly 0.358 ± 0.022 0.382 5.831 ± 0.077 6.736
EtOH -1.220± 0.054 -1.219 -5.632 ± 0.076 -5.634
H2O-NaCl1.25 0.247 ± 0.028 0.201 0.122 ± 0.053 0.208
H2O-NaCl2.5 0.467 ± 0.022 0.406 0.486 ± 0.022 0.413
H2O-NaCl5 0.878 ± 0.028 0.827 0.662 ± 0.028 0.829
H2O-NaCl10 1.796 ± 0.018 1.707 1.388 ± 0.028 1.670
EtOH-NaI1.25 0.065 ± 0.022 – -5.183 ± 0.055 –
EtOH-NaI2.5 1.272 ± 0.028 – -5.013 ± 0.045 –
EtOH-NaI5 3.539 ± 0.038 – -4.782 ± 0.038 –
EtOH75-Gly25 -0.906 ± 0.027 – -3.361 ± 0.066 –
EtOH50-Gly50 -0.540 ± 0.025 – -0.340 ± 0.042 –
EtOH25-Gly75 -0.115 ± 0.017 – 2.767 ± 0.044 –

measured values together with the standard deviations are given in Table 4.6. Figure 4.9
shows a scatter plot of the measured values ∆µ and ∆δ.

The tube with demineralised water in the phantom serves as a control of the zero value.
Water should be measured as zero, as the measurement was carried out in a water tank,
i.e. relative to water. We found that the measured values for water ∆µ = 0.023 ± 0.019 ·
10−2mm−1 and ∆δ = −0.015± 0.049 · 10−8 coincide within one standard deviation with zero.
A second very important result is the fact that the measured values for ∆µ and ∆δ change
in the correct proportion depending on the concentration for all three fluid series H2O-NaCl,
EtOH-NaI, and EtOH-Gly which is not self-evident for a measurement with a polychromatic
x-ray source. In the case of a wide photon-energy spectrum, the influence on the measured
values may vary with the salt concentration in the fluids.

Effective energies for the µ and the δ measurements were determined by matching the mea-
sured and the calculated data for ethanol, which has comparatively large signals in both µ
and δ. The effective energies were determined to be Eµ = 30.1 keV and Eδ = 28.3 keV, both
determined with 0.1 keV resolution. Note that both effective energies and especially Eδ are
close to the interferometer design energy of 28 keV. Using these effective energies we observe
that the measured values closely match the theoretically calculated values for most fluids.
Only the fluids with high µ and δ values (H2O-NaCl5, H2O-NaCl10 and Gly) show a trend of
having overly low δ values in the measurement. This might be attributed to beam-hardening
effects or to a slightly wrong effective energy Eδ due to errors in the ethanol measurement
that was used for the determination of the effective energies. One possible source of error
(sub-pixel) in the values for the µ and the δ for ethanol might be the vicinity of the ethanol
tube to the centre of rotation and a small error in the determination of the centre of rotation.
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4. Quantitative phase-contrast computed tomography of a liquid phantom

As discussed in the PhD thesis of T. Donath [28, Chapter (5)], even very small errors in
determination of the centre of rotation lead to systematic errors in the tomographic recon-
struction. In our case the centre of rotation was determined with one pixel resolution.

The contrast between two fluids in the absorption and the phase-contrast signal can be
described by the contrast-to-noise ratio in Eq. 4.3. From the reconstructions in Fig. 4.8 and
the plot in Fig. 4.9 it is obvious that fluids can be much better distinguished by using both
complementary signals instead of only one.

For example for the fluids H2O-NaCl1.25 and glycerol (Gly) we find CNRµ = (0.358-
0.247)/(0.0222+0.0282)1/2 = 3.12 looking at the attenuation coefficients, but looking at the
refractive index decrements instead, we find a much higher contrast-to-noise ratio of CNRδ =
(5.831-0.122)/(0.0772+0.0532)1/2 = 61.07. Similarly, we find for the fluids H2O and EtOH-
NaI1.25 contrast-to-noise ratios of CNRµ = 1.44 and CNRδ = 70.16. These substances can
thus hardly be distinguished by their attenuation coefficients alone, but easily by looking at
their refractive index decrements. Conversely, the fluids EtOH and EtOH-NaI1.25 show less
contrast for the refractive index decrement (CNRδ = 4.79), but can be easily distinguished
by looking at the complementary attenuation coefficient (CNRµ = 22.04).

4.4.4. Conclusions

The results clearly illustrate that PC-CT, by simultaneously yielding phase-contrast and
attenuation-contrast images, provides significantly more information than standard labora-
tory CT. It has particularly been shown that the approach can yield quantitative volume
information of the distribution of the refractive index decrement δ and the attenuation co-
efficient µ. By exploiting both the absorption and the phase-contrast signal it is possible
to distinguish substances with weak contrast in either one of the signal channels, and to
generally improve the specificity of the measurement by using PC-CT. The presented exper-
imental results obtained from a fluid phantom agree well with the theoretical expectations.
The quantitativeness of the results, obtained with a conventional polychromatic x-ray tube
source, makes this method of great interest for a wide range of quantitative x-ray CT ap-
plications, including future medical diagnostics, industrial non-destructive testing, and other
research areas.

The limited spatial resolution (here limited by the pixel size of 172 µm) and the effects of
polychromatic radiation are compensated by the most important advantage of this method
- the availability of x-ray tube sources even for small laboratories. Thus, the method is use-
ful for applications with high throughput like medical imaging or industrial non-destructive
testing. Here, radiation dose or cost considerations demand precise detection of diseases or
defects with the most efficient x-ray measurement.

4.5. Summary

Tomography measurements of a self-made fluid phantom using the grating interferometer at
a low-coherence synchrotron wiggler source have been made using two different photon ener-
gies (22 keV, 7th Talbot order; 30 keV, 5th Talbot order). The results show a high accuracy
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Figure 4.9.: Scatter plot of measured and calculated attenuation coefficients ∆µ, ∆µc and
refractive index decrements ∆δ, ∆δc. The plot shows the data given in Table 4.6.

in providing reliable quantitative information about the distribution of the refractive index
decrement δ and the attenuation coefficient µ. The small deviations from the theoretic values
could be explained by the presence of increased scattering at the plastic container interfaces
decreasing the fringe visibility and leading to an error in the determination of absolute values.

Furthermore, the contrast-to-noise ratios (CNRs) of different fluids measured with the syn-
chrotron setup at different photon energies could be used to quantify the performance of the
setup at both energies. Although, a range of effects discussed have an influence on the CNRs
of the measurements, the CNRs are representative of the measurement at the corresponding
settings. Thus, the CNRs can be used to characterise the sensitivity of the synchrotron setup
helping to choose the optimum parameters for further investigations.

The results obtained during a research stay at the Laboratory for Micro- and Nanotechnol-
ogy at the Paul Scherrer Institut in Switzerland, using the grating interferometer setup with
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4. Quantitative phase-contrast computed tomography of a liquid phantom

a polychromatic x-ray tube have also been presented. The measured attenuation coefficients
µ and the refractive index decrements δ of the liquids agree well with the calculated theo-
retical values. The small deviations could be explained by polychromatic artifacts and an
error in determination of the centre of rotation. By combining both the absorption and the
phase-contrast signals, substances with weak contrast in either one of the signal channels can
be easily distinguished. The accuracy of the results despite using polychromatic illumination
with low flux, and the high availability of x-ray tube sources for small laboratories makes this
method very interesting for a large field of applications.
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5. Applications

5.1. Introduction

In this chapter selected applications are presented using the imaging setup at the beamline
W2 in both modes, the absorption and the newly designed phase-contrast mode. The Section
5.2 of this Chapter deals with imaging of laser-welded materials presenting the results of a
tomographic characterisation of a laser-welded aluminium alloy T-joint in absorption-contrast
mode [47]. The assets and drawbacks of this method for imaging of such materials are pointed
out. In addition, projections of aluminium and magnesium alloy laser-welds are presented
using the grating-based phase-contrast setup. The projections include three different informa-
tion simultaneously and demonstrate the high potential of the grating-based imaging method
in the field of materials characterisation.

In the Section 5.3 tomographic reconstructions of biological soft tissue are presented using
the new grating-based setup. Furthermore, the power of the method for analysing centimetre-
sized unstained weakly absorbing samples in fluid environment is discussed.

5.2. Imaging of welded materials

5.2.1. Imaging laser-welded T-joints in absorption mode

Motivation

New advanced joining techniques like laser beam welding (LBW) and friction stir welding
(FSW) have a high potential for light weight structures of automotive and aircraft industries
[12]. Using LBW in fabrication of metallic airframe components could reduce fabrication cost
and fuel consumption during the operation significantly due to the weight reduction com-
pared to riveting (see Figure 5.1). Currently, only a limited number of fuselage parts of civil
aircrafts are welded due to stringent damage tolerance requirements. In order to enhance the
use of laser-welded parts in the fuselage of new generation aircrafts, such as the A380, there is
the need for better understanding of the crack propagation in the vicinity of the weld joints.
Additionally, there is the need to improve the understanding on the interaction between dam-
age development and existing weld imperfections, such as porosity within the weld zone. It
is known that like all fusion welding processes, LBW is prone to porosity development and
hence the effect of porosity on the growing crack should be studied using modern analytical
methods and tools.

1F.S. Bayraktar and P.Staron and M. Kocak and A. Schreyer, Residual Stress and Fatigue Crack Growth

Analysis of Laser Welded T-Joints of Aerospace Al-Alloys, Oral presentation at the PNAM Intermediate
Meeting, 2007.
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Figure 5.1.: Schematic comparing conventional riveting and welding in civil aircraft produc-
tion. (a) Conventional riveted frame and welded frame with laser-welding as
used in some parts of the Airbus A380. (b) Comparison between riveting and
laser-beam welding (LBW) or friction-stir welding (FSW) concerning the weight
reduction (Source of figures1).

Two imaging methods are presented here as analytical methods to study the structure of
welded materials: the synchrotron radiation based micro computed tomography in absorp-
tion mode (SRµCT) and the grating-based phase-contrast radiography (PCR). The SRµCT
combines the advantages of a non-destructive 3D visualisation with high spatial resolution
and a very high density resolution due to the high-intensity monochromatic synchrotron radi-
ation that is used for testing2. With this technique also in-situ fatigue and fracture toughness
tests on small scale specimens are possible studying for example the crack propagation within
laser-welded aluminium and magnesium alloy joints. The second method - PCR - is a 2D
imaging method, but it provides three different signals simultaneously, which otherwise only
could be obtained from three different analysing methods (radiography, phase-contrast, and
small-angle scattering). Using the synchrotron radiation a high spatial resolution at very
short exposure times can be achieved. By using a 2D imaging method it was intended to
match the real conditions of the quality assurance procedure during the welding process in
industrial applications, where only x-ray radiography is used that is fast and non-destructive.
But the conventional x-ray radiography suffers from low contrast in the single projections,
such that the position and the size of the pores and precipitates inside the welded regions can
hardly be defined. The problem can be solved by performing a whole tomography scan of the

2Imaging with monochromatic radiation avoids polychromatic artifacts, that are caused when lower photon
energies were stronger absorbed than the higher. This effect leads to an energy shift to higher energies and
reduces the dynamic range of the imaging system
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5.2. Imaging of welded materials

specimens, where the reconstructions would show a high density and spatial resolution. As
this is very time consuming (several hundreds of images are necessary for a whole tomogra-
phy), the 2D PCR can close the gap between a fast measurement and a high detection rate
of the inner structures by combining the different contrasts. An important advantage of this
technique is that it can be easily applied during the welding process visualising in-situ the
changes inside the welded material. For a 2D PCR only a small amount of additional images
is needed compared to the conventional radiation (while one image in the conventional radio-
graphy in absorption mode is needed, at least four images in grating-based phase contrast is
required).

Absorption-contrast tomography

Sample preparation All measurements were performed at the beamline W2 described in
detail in Chapter 2. Figure 5.1(a) shows the structure of a partly welded airframe used
in some parts of the new Airbus A380. In this study we concentrate on the laser-welded
aluminum T-joints representing ”clips”, which connect the skin to the frame as shown in
Figure 5.1(a).

Figure 5.2.: (a) A 2 mm thick aluminum alloy 6013 T6 clip welded by laser to a 3 mm thick
skin of aluminum alloy B226 T3. The length of the clip is about 100 mm and
the skin area is 600 x 400 mm. Residual stress analysis was performed on such
samples using synchrotron radiation and by putting cyclic load the stability of
the welded region is tested under high load. (b) A miniaturized laser-welded clip
(clip: AA6013 T6; skin: AA2139 T3 (same as B226 T3)) for a microtomography
study using synchrotron radiation. A small cut was introduced as a notch near
the weld and the two holes were used for the testing machine to put cyclic load on
the sample to propagate the crack. The marker shows the welded region that was
cut cylindrically (30 mm long and 6 mm diameter) for the absorption-contrast
SRµCT measurement.

The GKSS Research Center runs an Nd:YAG laser with a 400 µm fiber, a focal length of
200 mm and a laser power of 3 kW. Helium is used as shielding gas during the welding process
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and the angle between the skin and the laser beam can be altered. However, some amount of
small pores (due to for example entrapment of oxygen) may occur within the molten metal.
No artificial attempt was made to produce porous weld metal. By varying the welding speed
and the welding angle the properties of the produced laser weld can be influenced. Also the
porosity within the weld strongly depends on the process parameters as well as alloy compo-
sition.
Residual stresses inside the laser-welded aluminium alloy T-joints (sample shown in Figure
5.2(a)) were studied at GKSS before [5, 67]. The samples consisted of a 2 mm thick aluminum
alloy AA6013 T6 clip welded by laser to a 3 mm thick skin of aluminum alloy B226 T3. The
length of the clip was about 100 mm and the skin area was 600 x 400 mm. Such samples were
produced using the Nd:YAG laser and a silicon wire (Si 4047) and residual stress analysis was
performed by means of x-ray and neutron scattering techniques. Such specimens were used
at GKSS to study crack propagation along the weld seam.

For the microtomography analysis the laser-welded T-joints had to be downsized (materi-
als: clip AA6013 T6; skin AA2139 T3 (same as B226 T3)), since the spatial resolution of the
tomogram depends on the sample size. The aluminium alloys used in the T-joints contain a
small amount of copper, tin, titanium and iron and thus, a microtomographic measurement
with high density resolution is a challenge. The absorption of the whole sample is quite high,
so that a high x-ray energy would be required for the measurement (70 keV) to penetrate the
sample. Because of the decreasing efficiency of the imaging setup3 and the contrast at higher
energies, high density resolution imaging is very difficult to achieve. Therefore, a small sample
(30 mm long and 6 mm diameter) was prepared by cutting the welded region cylindrically
out of the T-joint as marked in Figure 5.2(b) and scanned using a photon energy of 40 keV.

Measurement The microtomography station at the high energy beamline W2 is designed
for materials science applications using hard x-rays. The fixed-exit monochromator provides
a highly intense monochromatic x-ray beam in the range of 20-200 keV. The possibility to use
monochromatic radiation for imaging allows to choose the optimum energy for each object
and to avoid unwanted effects such as beam hardening caused by polychromatic radiation.
The tomography setup consists of a high precision rotation stage, which allows us to mount
the sample hanging from above, and an x-ray detector. In the detector a fluorescent screen
(CdWO4 single crystal, 500 µm thick) converts the x-rays into visible light that is magnified
by a lens (Nikkor, focal length 50 mm or 35 mm) and detected by a CCD camera (KX2,
Apogee Instruments, Inc., 14 bit @ 1.25 MHz).

For a complete tomographic scan 720 radiographic projections of the sample were taken in
equidistant rotation steps of 0.25 degree in the angular range from 0◦ to 180◦. Each 2 degrees
the sample was moved out of the beam and an image is taken, which is used for flat field
correction. The maximum field of view of the detector was 25 mm × 8 mm and an energy of
40 keV was used. An effective pixel size of 6.83 µm and a spatial resolution of 10.45 µm were
determined by means of a modulation transfer function for this measurement.

3The photon flux decreases with higher photon energies as the energy range of the wiggler W2 with the
maximum flux is around the critical energy of 27 keV. A high flux is mandatory to achieve a high density
resolution. In addition, the efficiency of the 500 µm luminescent screen decreases with higher energies.
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To reconstruct the 3D structure from the projections the filtered back projection algo-
rithm for absorption contrast was used. The projections with the sample were normalized by
the reference projections without the sample, so that the obtained projections represent the
absorption of the sample at different angles. The reconstruction then provided volumetric
information about the absorption of the sample in 3D. The reconstructed data was stored as a
floating point volume and processed by VGStudio Max (Volume Graphics GmbH, Heidelberg,
Germany) to a volume rendering dataset.

Results Figure 5.3 presents the result of the high resolution tomography measurement of
the laser weld cut cylindrically out of the T-joint. The tomogram shows an excellent density
resolution and all different aluminium alloys used in the weld could be clearly separated, even
though the density difference between the aluminium alloy used in the clip ((3) top of the
weld) and the alloy used in the skin ((1) bottom region of the weld) was below 5 % (alloy
densities: (3) AA6013 2.7 g/cm3; (1): AA2139 2.8 g/cm3)4 and produced only a weak relative
absorption contrast at 40 keV. Even the weld region itself could be separated from the base
material. It is displayed as transparent to make the different types of pores visible (blue
structures). This result demonstrates the advantage of using synchrotron radiation for imag-
ing: As the optimum photon energy can be chosen for each material, it is possible to visualise
highly absorbing samples almost free of artifacts with high density and spatial resolution in
absorption mode. It is a very unique result, as it is very hard to achieve such a high density
resolution using high x-ray energies.

5.2.2. Imaging laser-welded butt-joints in phase-contrast mode

Phase-contrast radiography

Sample preparation Butt-joints welded by the same laser-welding method described above
were imaged using the phase-contrast radiography (PCR). Figure 5.4 shows the two speci-
mens used for this study: (a) the magnesium alloy joint (2.5 mm thick; material AZ31, 3%
aluminium, 1% zinc, density: 1.8 g/cm3) and (b) the aluminium alloy joint (2.8 mm thick;
material: AA6156, 95-98% almuminium, 1% magnesium, 1% copper, density: 2.7 g/cm3).
From both samples, small specimens were cut out in the marked region and glued to a sample
holder, which was placed on the CT-rotation axis of the grating-based imaging setup intro-
duced in Chapter 3. To simplify the measurement a small part of the sample was cut out
from the welded region. However, also the whole joint could be put into the beam without
destroying it.

As laser-beam welding melts the basic material in the region of the weld, not only the
characteristics of the alloys are changed (strength and flexibility) but also precipitations of
different compound materials present in the alloy can occur and porosity can be introduced
by e.g. entrapment of oxygen. The welding process can be optimised by changing the alloy
composition or welding parameters like laser-beam speed and incident angle. In industrial
laser-beam welding the welds are checked directly after welding using x-ray radiography with

4data source: http://www.matweb.com
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Figure 5.3.: Picture of the T-joint and the volumetric rendering of the tomogram of the cylin-
drically cut aluminum alloy laser weld. The tomography scan of the 6 mm weld
was performed using 40 keV and the absorption mode setup. The different gray
values represent the absorption of different alloys used in the weld ((1): AA2139
T3, (2) welded region containing pores, (3): AA6013 T6). The weld itself is
shown as transparent to make the pores visible that are coloured blue (spatial
resolution: 10.45 µm, effective pixel size: 6.83 µm).

an x-ray tube and a detector.
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Figure 5.4.: Picture of laser-welded butt-joints imaged using grating-based phase-contrast ra-
diography (PCR). (a) magnesium alloy joint (2.5 mm thick; material AZ31, 3%
aluminium, 1% zinc, density: 1.8 g/cm3) and (b) aluminium alloy joint (2.8 mm
thick; material: AA6156, 95-98% almuminium, 1% magnesium, 1% copper, den-
sity: 2.7 g/cm3). From both samples small specimens were cut out in the marked
regions and glued to a sample holder.

Measurement For both specimens the projections were recorded using the grating interfer-
ometer in the 5th Talbot order at 30 keV. The beam-splitter grating G1 #1 was used for the
measurements (see Chapter 3 for more details). To obtain one projection a phase-stepping
scan with 8 phase steps over two periods of the grating G2 was performed with the specimen
in the beam and without the specimen, to obtain flat field correction images (exposure time:
0.5 s per image). From the intensity changes during the phase-stepping scan three different
contrast projections were calculated by means of a Fast Fourier Transform (FFT) as explained
in Chapter 3 using Matlab.

Results and discussion Figure 5.5 shows the results of the PCR measurement of the mag-
nesium-alloy (a)-(c) and aluminium-alloy (d)-(f) butt-joints. Figures 5.5(a) and (d) show the
transmission pictures of both specimens similar to that, one would obtain using a conventional
absorption-contrast mode. In the welded region marked in the Figure, only weak contrast of
inner structure of the weld can be seen (here: porosity and precipitations), while the base
material (bottom part of the specimens) absorbs homogeneously. Although the specimens
were measured in air, this setup should produce enough contrast due to the large density
difference of air and magnesium or aluminium (ρair = 0.0012 g/cm3 and ρMg = 1.74 g/cm3,
ρAl = 2.7 g/cm3). But in the projections one can hardly define the position and the size of
the pores and precipitates inside the welded regions. The problem can be solved by perform-
ing a whole tomography scan of the specimens, rotating it over 180 degrees and recording
projections from many different angles. The reconstructions would show a high density and
spatial resolution, thus, the localisation of porosity and precipitates would be easily possible.
But as already mentioned a whole tomography often is too time-consuming and destructive
as the sample has to be downsized, since the spatial resolution depends on the total sample
size. Thus it would not match the real conditions of the quality assurance procedure during
the welding process in industrial applications.

Looking at the other two signals provided by the grating interferometer, one can clearly
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Figure 5.5.: (a)-(c) Projections of a magnesium-alloy laser weld (material: AZ31; 30 keV,
5th Talbot order, field of view: 4x6 mm2). (a) The transmission (b) the differ-
ential phase contrast and (c) the dark-field contrast of the same region of the
sample. The dark-field and the differential phase-contrast signals show better
contrast in the welded region, while the transmission shows only poor contrast
for inner structures. (d)-(f) Projections of an aluminum-alloy laser weld (ma-
terial: AA6156; 30 keV, 5th Talbot order, field of view: 4x6 mm2). (d) X-ray
transmission, (e) the differential phase contrast, and (f) the dark-field contrast.
The differential phase contrast and the dark-field signals increase in the welded
region, while the transmission is almost the same.

distinguish between the welded region and the basic material (see Figure 5.5(b) and (e) for
differential phase contrast and (c) and (f) for dark-field contrast. Both signals rise at each
edge inside and outside the specimens, so the borders of the samples produce a very high
signal in both contrasts. In the differential phase contrast ’phase-wrapping’ can be seen at
the edges of the sample. This effect occurs when the amount of phase-shift exceeds several
times π due to the large difference between the complex refractive index decrements δ of the
air and the material. Phase-wrapping would produce strong artifacts in tomographic recon-
structions and should be removed by an adequate algorithm prior to reconstructions, but
it is not important for our purpose, as we were only interested in radiographic projections.
Nevertheless, using the differential phase contrast the welded region of both specimens can
be clearly localised.

The dark-field signal clearly shows the changes in the welded regions of the specimens com-
pared to the basic material. Since this signal is similar to the small-angle scattering signal,
the structure of the material was changed by laser-beam welding in such a way, that small-
angle scattering signal rises. As the interferometer is sensitive only to structures in the range
of few µm, such structures must appear in the weld. The basic material of the magnesium
sample seems not to produce a dark-field signal, thus, only the porosity inside the weld can
be seen. In the aluminium specimen the basic material also produces dark-field signals, but it
increases in the welded region, as precipitations appear after welding increasing the dark-field
signal.

70



5.3. Phase-contast tomography of biological samples

Conclusions

The results from the two approaches, the tomography in absorption mode (SRµCT) and the
radiography in phase-contrast mode (PCR), demonstrate the power of the methods to give
unique insights into the inner structure of the materials and changes caused by welding pro-
cesses. Especially the SRµCT can be used to study the porosity inside the welds and can
help to improve the welding processes by characterising the welds in 3D.

The special assets of the PCR are its ability to provide three different contrast simulta-
neously allowing to judge the quality of the weld from simple projections by combination of
the information from the signals. Using the synchrotron radiation beamline W2 very short
exposure times (due to high flux) and high spatial resolution at large field of view sizes com-
pared to other synchrotron beamlines (now: 6 mm × 30 mm; in future: 6 mm × 60 mm)
can be achieved in PCR projections. As a possible future task, the PCR at the beamline
W2 can be expanded to imaging other welding processes like Friction Stir Welding (FSW).
It can even be used for in-situ imaging to visualise the changes in the welded region on the
fly in combination with the in-situ welding machine FlexiStir [32, 89], as an 2D PCR can be
performed in several seconds.

This approach can also be adopted to the standard quality assurance procedure for welding
as known from industrial applications by equipping the x-ray tube and the detector with a
propriate grating interferometer. It would loose the high flux, the spatial resolution, and
the ability to adjust the x-ray energy to the analysed material, but it profit from the high
availability of the x-ray tubes for a high throughput.

An analysis of those welds in three dimensions using phase-contrast tomography is not
shown here, as a reconstruction of the images shows in all signals many strong artifacts due
to strong phase wrapping at the edges of the specimen. Such phase jumps could be avoided
by scanning the sample in an environment with similar refractive index like the one of the
metal joints, for example some kind of oil. But such analysis would take too long to be used
as a standard quality assurance method and it would be far away from realistic conditions,
since the metal joints are hardly put into oils or other fluid environment.

5.3. Phase-contast tomography of biological samples

5.3.1. Introduction

Imaging weakly absorbing materials with x-rays in absorption mode is possible using lower
photon energies (in the range of 7-10 keV) and sample preparation techniques like staining,
freeze-drying, and embedding into resin. Excellent results were reported using the micro to-
mography setup in absorption mode operated by GKSS at the DESY beamline BW2 using
low energies on ceacilians [56], sponges [43, 75], and on insects in the report [33].
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The complicated sample preparation is mandatory to stabilize the sample for a micro to-
mography scan, which can take up to two hours. By staining the samples or parts of it the
contrast in the tomogram is increased. All these preparation methods are very time consum-
ing and strongly change the soft tissue e.g. by freeze-drying. Thus, many unique and valuable
specimens cannot be analysed, as the preparation would destroy them (for example very old
ceacilian species from museums). The same problem occurs when analysing human or animal
soft tissue. Such specimens need to be measured in fluid environment, but in this case the
absorption of the fluid (and also of the specimen itself, when it is not cut down to a few
millimetres) would absorb too strongly at lower energies. The grating-based phase-contrast
imaging method installed at the beamline W2 can close this gap, as it works at higher pho-
ton energies (in the range between 22-30 keV) and allows for measuring samples of several
centimetres in fluid environment.
As an example phase-contrast tomographical reconstructions of mouse heart and brain are
presented in this Section. Whole organs (≈ 10 mm diameter, specimens from TU München)
embedded in formalin were scanned in a water bath using the new grating-based setup at the
beamline W2 demonstrating the achievable contrast in the soft tissue.

5.3.2. Tomography of mouse heart and brain

Sample preparation and measurement

Both specimens were embedded in a formalin solution (4 % formalin as used in medicine) in
a polyethylene Eppendorf tube of 12 mm outer diameter. The formalin solution was degased
for two days under a low-pressure cap to avoid gas bubble formation produced by radiation
damage during the scan. The Eppendorf tube with the specimen was glued to a sample
holder and mounted on the CT-rotation axis hanging from above into a 25 mm thick water
container filled with demineralised water. The water serves as background for the measure-
ment to match the complex refractive index of the specimen to that of the background to
avoid ’phase-wrapping’ at the edges of the sample container in the phase-contrast signal.

The measurements were carried out using the grating interferometer at the beamline W2
(see Section 3 for more details about the setup). For the tomography scan 451 projections
over 360 degrees were recorded with 8 phase-steps over two periods of the grating G2 for each
projection. The exposure time was in the range of 5 seconds per image, changing during
the scan to correct for the decreasing ring current of DORIS. The images were taken with
a binning factor of 2. After every projection a reference projection was recorded by moving
the sample vertically out of the water tank. The reference projections were used to correct
for beam instabilities. The effective pixel size was determined by an automated focussing
procedure to be 6.3 µm, the spatial resolution is estimated to ≈ 15-20 µm (limited by the
source size and the sample-to-detector distance).

The reconstruction was performed using the filtered back projection algorithm as described
in Chapter 3 implemented in Matlab. The reconstructed slices were stored as floating point
data and windowed to the given gray values before image export. To obtain absolute values
of measured data, the reconstructed values had to be corrected for the reduced sensitivity
of the grating interferometer as described in Chapter 4, the recorded phase projections were
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renormalized by multiplication with (r1/l)
−1 = [(3.0 m - 0.055 m)/(3.0 m)]−1 = 1.01868 prior

to reconstruction.

Results and conclusions

In the Figures 5.6 and 5.7 the tomographic reconstructions of the mouse heart and brain are
shown. The parts (a) of both figures show the attenuation coefficient µ, (b) the real part of
the complex refractive index decrement δ measured relatively to water. Whereas the attenua-
tion (a) shows almost no structures, the phase-contrast provides a detailed information about
the inner structure of the samples. In the heart tissue as well as in the brain tissue, different
structures can be distinguished. The reconstructions of the dark-field signal are not shown
here, as similarly to the absorption contrast it do not show any information about the sample.

Figure 5.6.: Tomographic reconstructions of a mouse heart. (a) Attenuation coefficient , (b)
real part of the complex refractive index decrement δ, measured in water bath at
7th Talbot order and 22 keV, binning factor 2, spatial resolution ≈ 15-20 µm.

The results of the phase-contrast tomography scan of a mouse heart and brain demon-
strated high sensitivity to phase shifts providing good contrast of weakly absorbing materials
in fluid environment. No information of these specimens could be gained from the absorption
and the dark-field contrasts.

Using the grating-based imaging method soft tissue can be measured without complicated
and time-consuming sample preparation procedures. Even imaging of unique and very valu-
able samples can be done by this method without destroying or changing its structure. In
future tasks, soft tissue can be analysed in sodium-chloride solution (NaCl) to avoid changes
through the formalin or alcohol in the tissue.
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Figure 5.7.: Tomographic reconstructions of a mouse brain. (a) Attenuation coefficient , (b)
real part of the complex refractive index decrement δ, measured in water bath at
7th Talbot order and 22 keV, binning factor 2, spatial resolution ≈ 15-20 µm.

These measurements clearly demonstrate the power of the new grating-based setup to im-
age centimetre-sized soft-tissue samples in fluid environment. It benefits from the ability to
choose the optimum photon energy for each specimen (from the range of 22-30 keV) and from
the high photon flux, keeping the exposure times short. In addition, it makes quantitative
measurements easier, as the reconstructions do not suffer from polychromatic artifacts.

Imaging structures inside the biological soft tissue like human or animal brain or heart
tissue is hardly possible using the conventional absorption contrast. Fixation like the freeze
drying or the contrast enhancement with different staining methods change the morphological
and chemical structure of this tissue. The future aim should be to image such tissues in its
natural fluid environment. When doing so, no conventional imaging in absorption mode can
be used, as the lower energies, which would provide acceptable contrast for the tissue, are
completely absorbed by the sample and the fluid around it.

For the first time, biological soft tissue of several centimetres diameter can be analysed at
the beamline W2 without complicated staining or drying procedures with very high contrast
using the grating-based setup. The achievable resolution of about 40 µm for objects of about
30 mm in diameter is much higher than what can be achieved with methods like Magnetic
Resonance Tomography (MRT) showing comparable contrast for soft tissue but a much worse
spatial resolution (in the range of several hundreds of µm).

5.4. Summary

In this Chapter the results of selected applications of imaging laser-beam welded materials
and biological soft tissue were presented, using the grating-based setup installed at the beam-
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line W2. As example for the potential of the micro tomography setup in absorption mode a
tomographic reconstruction of an aluminium-alloy laser weld was shown, demonstrating high
density and spatial resolution in imaging of highly absorbing materials. The shown density
resolution could only be achieved using monochromatic synchrotron radiation with high flux
and would not be possible at a conventional x-ray tube setup. This mode of tomography can
be used to improve the understanding of damage processes inside the welds, helping estab-
lishing the laser-beam welding as a joining technique for example in civil aircraft production.

The phase-contrast radiography (PCR) now available at the beamline W2 using the newly
installed grating interferometer is shown to be sufficient for fast structure analysis of both,
welded magnesium and aluminium alloys with high spatial resolution. It provided unique
information with only one projection and hence, allowed localising porosity and precipitates
inside the welded region from radiographic projections of laser-welded butt-joints by combi-
nation of the three signals gained simultaneously. The method benefits from the ability to
adjust the x-ray energy to the analysed material that is only possible using monochromatic
synchrotron radiation. This method can easily be extended to in-situ analysis of welding
processes (for example FlexiStir).

The phase-contrast tomography of animal soft tissue (mouse heart and brain) using the
grating interferometer showed a high sensitivity to phase-shifts. It provided detailed informa-
tion in phase-contrast signal, where as no contrast could be achieved with other signals. The
results demonstrate the power of the method to facilitate the imaging of soft tissue, making
sample drying and embedding in resin unnecessary.
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A three-grating interferometer technique was installed at a low-coherence wiggler beamline
source at the 2nd generation synchrotron storage ring DORIS at DESY. The x-ray grating
interferometer was designed and installed at the materials science wiggler beamline W2 dur-
ing this work. It allows for phase-contrast imaging using monochromatic radiation with high
flux and a sufficient large field of view for analysing centimetre sized objects. The possibility
to choose the optimum photon energy from a range between 22 and 30 keV and the ability to
image specimens with three different signals obtained simultaneously makes the newly avail-
able imaging method a unique tool in the field of materials science.

The influence of the large, distant wiggler source on the performance of the grating inter-
ferometer was analysed and found to be negligible. The presence of a virtual source in the
plane of the source gold grating used to increase the transverse coherence of the x-ray beam
has been shown. Thus, in terms of the Talbot self-imaging effect the setup at the beamline
W2 was found to be comparable to a setup at a conventional non-coherent x-ray tube. A
simple approach to reliably calculate the spatial resolution in the differential-phase and in the
absorption contrast is presented and successfully demonstrated by calculating the Modula-
tion Transfer Function (MTF) of a sharp edge produced in both signals by taking projections
of a silicon cuboid in different orientations. The spatial resolution of about 40 µ could be
demonstrated for objects of 30 mm in diameter that is not as good as at highly brilliant third
generation sources (about 5 µm for objects of few millimetres), but much higher than what
can be achieved with MRT with comparable contrast for soft tissue (about 200 µm for an
object size of 100 µm).

The results of a tomographic measurement of a fluid phantom are presented, which were
obtained at two different photon energies (22 keV, 7th Talbot order; 30 keV, 5th Talbot
order) with the synchrotron setup. The results show that the technique provides reliable
quantitative information about the distribution of the refractive index decrement δ and the
attenuation coefficient µ. Furthermore, the contrast of different fluids measured at different
photon energies has been used to quantify the performance of the setup at both energies. The
contrast-to-noise ratios (CNRs) were used to characterise the effectiveness of the synchrotron
setup helping to choose the optimum parameters for further investigations.

A similar tomography measurement of a fluid phantom was obtained during a research stay
at the Laboratory for Micro- and Nanotechnology at the Paul Scherrer Institut in Switzer-
land, using the grating interferometer setup with a polychromatic x-ray tube. The measured
attenuation coefficients µ and the refractive index decrements δ of the liquids agree well with
the calculated theoretical values. The visibility of the interference pattern at the tube setup
was significantly inferior to that of the synchrotron setup, and the exposure times were much
higher due to the low flux of the tube source. Nevertheless, the accuracy of the results despite
using polychromatic illumination with low flux combined with the high availability of x-ray
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tube sources for small laboratories makes this method very interesting for a large field of
applications.

Selected applications of imaging laser-beam welded materials and biological soft tissue, us-
ing the grating-based setup installed at the beamline W2 were presented. The strength of
microtomography in conventional absorption mode was shown for a tomographic reconstruc-
tion of an aluminium-alloy laser weld demonstrating high density and spatial resolution in
imaging of highly absorbing materials. The density resolution demonstrated could only be
achieved using monochromatic synchrotron radiation with high flux and would not be pos-
sible at a conventional x-ray tube setup. This mode of tomography can be used to improve
the understanding of damage processes inside the welds, helping to establish the laser-beam
welding as a joining technique for example in civil aircraft production.

The newly installed grating interferometer provides the possibility of phase-contrast radiog-
raphy at the beamline W2. This imaging method was shown to be sufficient for fast structure
analysis of both welded magnesium and aluminium alloys with high spatial resolution. It
provided unique information in a single projection, and allowed porosity and precipitates in-
side the welded region of laser-welded butt-joints to be localised by using a combination of
the three signals gained simultaneously. This method can easily be extended to the in-situ
analysis of welding processes (e.g. FlexiStir).

The phase-contrast tomography of animal soft tissue (mouse heart and brain) using the
grating interferometer showed a high contrast to phase-shifts. It provided detailed informa-
tion in the phase-contrast signal, whereas no contrast could be achieved with other signals.
The results demonstrate the power of the method to facilitate the imaging of soft tissue, mak-
ing additional sample preparation such as freeze-drying or embedding in resin as are needed
for other imaging methods unnecessary.

In conclusion, this work provides significant further advances in x-ray imaging methods for
a wide field of applications ranging from materials science to biomaterials.
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A. Huygens-Fresnel principle and Talbot
images

This Chapter deals with the derivation of the discrete Talbot image distances dT from the
Fresnel-Kirchhoff equation from Equation 3.36 using a wavefield propagation as described in
Section 3.3.1 with the propagator kernel hz(x, y) from Equation 3.37. It will be shown that
the only information needed about the wave front is its periodicity. The derivation is adopted
from the book by Goodman [35].

A periodically modulated wavefront can be described by a transmission function of e.g. a
sinusoidal amplitude grating as

tA(ξ, η) =
1

2
[1 +m cos(2πξ/p)] , (A.1)

with period p and the grating lines being parallel to the η axis. As we know from Section
3.3.1 the propagation of the wave front can be calculated in Fourier space as a multiplication
of the Fourier transform of the incident wave front tA(ξ, η) with the Fourier transform of the
propagation kernel hz(x, y)

Hz(fx, fy) = F (hz(x, y)) = eikze
iπλz

(f2x+f2y ) , (A.2)

where the constant term eikz will be omitted. The Fourier transform of a periodic function
is discrete with the following spatial frequency spectrum
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The discrete nature of the transmission function has also an influence on the propagator
kernel Hz(fx, fy). It has value unity at the origin and when evaluated at the frequencies
(fx, fy) = (±1/p, 0) it yields
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The propagation of a distance z is now performed as a multiplication of Equation A.3 and
Equation A.4 in Fourier space
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(A.5)
The field at distance y from the grating is given by an inverse Fourier transform as
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which can be simplified to

U(x, y) =
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The intensity distribution is than given by
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Now we should consider at least one interesting interpretation of the result. Suppose that
the distance z downstream the grating satisfies

πλz

p2
= 2nπ or z =

2np2

λ
, (A.9)

with n being an integer. Then the intensity downstream the grating will be described by

I(x, y) =
1

4

[

1 +m cos(
2πx

p
)

]2

(A.10)

that exactly reproduces the intensity distribution produced by the absorption grating. It is a
perfect image of the intensity modulated by the grating and is called Talbot self image. These
discrete Talbot distances z from Equation A.9 correspond to that introduced in Chapter 3
(see Equation 3.1). Please note that the only information used for the calculation of the self
image positions is the periodicity and the free-space propagation of a wave front.
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In this chapter the alignment procedure using the newly installed grating-based interferometer
at the beamline W2 is explained. The additional steps necessary for grating-based imaging
are based on the setting up procedure for the apparatus for conventional absorption-contrast
imaging that is explained in detail for our setup in the work by T. Donath [28, Appendix D].

When the camera optics is focussed using the automated focussing procedure calculating an
MTF function of a sharp edge using the standard procedure at the beamline W2, the align-
ment of the grating interferometer needs to be performed. For the alignment of the three
gratings a laser pointer can be used that should be adjustable in all directions x, y, and z.
First the laser pointer mounted on a holder that allows a stable and reproducible adjustment,
it has to be aligned parallel to the x-ray beam. By putting two absorbing structures (e.g.
lead needles) in a proper distance to each other (several meters) into the x-ray beam and by
overlapping them in the transmission picture taken with the camera one can determine the
approximate x-ray beam direction. Now aligning the beam from the laser pointer along these
two structures it is assured that the laser beam is parallel to the x-ray beam.

The intergrating distances are checked to be correct before the gratings were installed. The
movement along the beam direction for all three gratings is motorized and can be adjusted
for each grating independently and additionally for the gratings G1 and G2 as a set. Wrong
distances between the gratings lead to vertical moiré fringes due to the mismatched effective
grating periods.

The gratings are mounted to their holders beginning with the grating G2. A diffraction
pattern from the laser-pointer beam produced by the grating can be observed. By rotating
and tilting the grating the diffraction pattern can be oriented horizontally and the zeroth
diffraction order is placed to match the incident laser beam. Then the other two gratings are
mounted and adjusted using the same procedure as for the G2, allowing for aligning the in-
terferometer using visible light. Only small changes of the grating rotation are required after
such alignment. Usually, the grating G2 is rotated in steps of 0.01 degrees for fine-tuning.
When the gratings were rotated against each other, horizontal moiré fringes can be observed
B.1 (a). The G2 is rotated until only the vertical fringe component can be seen, then the
alignment is finished and the measurement can start. The vertical fringes in Figure B.1 (b)
are due to a slight mismatch of the three grating periods and could be removed by tilting the
gratings along the axis parallel to the grating stages. This would reduce the period of the
rotated grating.

81



B. Alignment procedure

Figure B.1.: Image of the moiré fringes before (a) and after (b) the alignment procedure. The field of
view is 30 (horizontal) × (vertical) 5 mm and the gray values scale from black to white
from 10 to 55 ×103 counts.
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C. Grating production

The grating interferometer designed during this work consists of three gratings, the source gold
grating G0, the beam splitter silicon grating G1, and the analyser gold grating G2. The periods
and the heights of the gratings, as well as the mechanism behind the grating interferometer
are described in Chapter 3. Here, the grating production is explained involving fabrication
processes like photolithography, anisotropic wet etching, and electroplating. The gratings G0

and G1 were produced by the Laboratory for Micro- and Nanotechnology (LMN) at PSI in
Switzerland using fabrication processes described by C. David et al. [25]. The grating G2 is
fabricated by the Karlsruhe Institute of Technology (KIT). Due to different requirements to
the grating performances for each of the three gratings a different fabrication process was
chosen.

Fabrication of the source grating G0

Typical periods of the source grating G0 are on the order 15-150 µm depending on the
geometry of the setup, that makes it easier to produce them. When placed directly in front
of the source it needs only to cover the area of the source. In our case, the G0 is placed 45 m
downstream the wiggler source, where it has to cover the whole field of view size of maximum
7 mm × 30 mm (height×width). The main requirement on the source grating is the height of
the gold structures that has to be high enough for corresponding x-ray energy for sufficient
absorption. For x-ray energies in the range of 22-30 keV as used in this work a height of
the gold structures of 40-45 µm is sufficient that corresponds to a transmission of only few
percent.

Figure C.1 is kindly provided by C. David (PSI, Switzerland) and shows schematically the
fabrication steps of the source grating G0. The same fabrication method as described by
C. David et al. [25] for the production of the analyser grating G2 was used for the source
grating production. A silicon grating with a period of 22.3 µm and a duty cycle1 of 0.5 on the
one half of the wafer and 0.7 on the other half is used as substrate. The two different DCs
of the source grating G0 allow for choosing between higher flux and higher fringe visibility.
The grating grooves were then filled with gold by electroplating. It is essential that the
filling starts only at the bottom of the grooves to ensure a complete, uniform filling. For this
purpose, a 200 nm thick sacrificial layer of aluminium is evaporated under a sloped angle with
respect to the grating structures (see Figure C.1(a)-(c)). Then the plating base consisting
of a 15 nm thick adhesive layer of chromium and a 50 nm thick layer of gold is evaporated
onto the sample under normal incidence (Figure C.1(d)). By etching away the aluminium in
phosphoric acid, the gold is removed from the ridges of the grating lines, whereas the plating
base remains on the bottom of the grooves. The gold structures with heights of 5̃0 µm are
plated onto the sample from a cyanide based plating bath (Autronex CC-AF-B by Enthone

1Duty cycle is the ratio between the widths of the stages and the grooves of a grating. The duty cycle can
change without changing the period of the structure.
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Omi) using a current density of 3.5 mA/cm2 (Figure C.1(e)-(f)). A picture and a scanning
electron micrograph of the resulting structures are shown in Figure C.2. This procedure was
successful for the fabrication of structures with aspect ratios2 up to 12, i.e. , a groove of 1 µm
can be filled with gold up to 12 µm.

a) Wet etched Si gratinga) Wet etched Si grating b) Evaporation of Al under 45ºb) Evaporation of Al under 45º c) 2nd evaporation of Al under 45ºc) 2nd evaporation of Al under 45º

e) Al etching, lift-offe) Al etching, lift-off f) Electroplating of Auf) Electroplating of Aud) Normal evaporation of Aud) Normal evaporation of Au

Figure C.1.: (a) The schematic of the fabrication process of the source gold grating G0 consisting of
six steps (a) wet etched silicon wafer, (b) evaporation of Al under 45◦, (c) 2nd evaporation
of 45◦, (d) normal evaporation of Au, (e) Al etching, lift-off, and (f) electroplating of
Au.

p0

h0

a b

Figure C.2.: (a) Picture of the source gold grating G0 produced on a silicon wafer (100 mm diameter).
b) A scanning electron micrograph of the gratingG0 showing the gold-filled silicon stages
of the period p1 = 22.3 µm and the height h1 ≈ 50 µm.

2Aspect ratio is the ratio between the groove width and the structure height. The smaller the groove size the
harder it is to achieve larger structure heights.
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Fabrication of the beam-splitter grating G1

The requirements for the beam splitter grating G1 are more challenging than those for the
source grating. It consists of low absorbing, phase shifting structures with a small period p1
of 4.33 µm. The best performance of the grating interferometer can be achieved when the
structures have a duty cycle of 0.5, and when the height is chosen such that they introduce
a phase shift of π at the design x-ray energy. Furthermore, the grating area has to cover
the field of view of the imaging device, that is in the range of several centimetres. A 100
mm < 110 > oriented and 280 µm thick silicon wafer with both sides polished is chosen as
substrates. The wafer size limits the area of the grating to 64 mm × 64 mm.

The grating fabrication process is shown schematically in Figure C.3(a)-(d) also kindly
provided by C. David (PSI, Switzerland). The grating structures are wet etched into the
silicon substrates. First, the photo resist pattern is transferred into a thin oxide layer (Figure
C.3(a)), which then after Reactive Ion Etching (RIE) serves as a mask for the anisotropic wet
etching process in 20 % aqueous KOH solution (Figure C.3(b)-(c)). At 76 ◦C an etch rate of
1.68 µm/min is obtained in the < 110 > direction. The etch rate along the < 111 > directions
is about 80 times slower, resulting in nearly perpendicular side walls of the structures that is
confirmed by an inspection of the structures. The oxide masking layer has been removed in
buffered oxide etch (BOE) before inspection (Figure C.3(d)). Figure C.4(a) shows picture of
the beam splitter grating G1 used at the new setup at the beamline W2 and with a structure
height of 35 µm, which corresponds to a phase shift of π for 27.3 keV x-ray energy. In Figure
C.4(b) an SEM image of the grating is shown.

b) CHF3 + O2 RIE

c) KOH wet etching

a) Photo lithography

120nm photo resist S1805

80nm SiO2

280mm Si

<111>

<110>

120nm photo resist S1805

80nm SiO2

280mm Si

<111>

<110>

d) Oxide removal (BOE)

Figure C.3.: (a) The schematic of the fabrication process of the beam-splitter grating G1 consisting
of four steps (a) photo lithography, (b)reactive ion etching (RIE) with gases CHF3 +
O2, (c)wet etching in 20 % aqueous KOH solution, and (d)removal of the oxide masking
layer in buffered oxide etch (BOE).
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C. Grating production

a b

p1

h1

Figure C.4.: (a) Picture of the beam-splitter grating G1 produced on a silicon wafer (100 mm diame-
ter). b) An SEM picture of the grating G1 showing the stages of the period p1 = 4.3 µm
and the height h1, which are different for every photon energy.

Fabrication of the analyser gold grating G2

The fabrication of the analyser grating G2 is the most challenging of the whole setup. As the
beam-splitter grating G1 produces an interference pattern with double the period of itself,
the grooves of 1.2 µm width have to be filled with sufficient height of gold. For the new setup
at the beamline W2 the analyser gold grating with a period of 2.4 µm and a structure height
of 30.8 µm was produced by KIT (Karlsruhe, Germany) using the LIGA process [87]. The
description of the fabrication process is provided by E. Reznikova (KIT, Germany).

The amplitude gratings were made of electroplated Au within SU-8 polymer matrix with
a period of 2.4 µm with aspect ratio of the grating lamellas up to 50. The quasi-solid SU-
8(10) epoxy mono- and multi-layers were structured using X-ray lithographic exposure at the
ANKA LITHO-1 station. For the x-ray lithography, a special x-ray mask was fabricated with
a 4 µm thickness of Au absorber and a polyimide photo-electron internal filter, providing
the proximity between the mask and the SU-8 layer close to zero. The sub-micron periodical
lamellar structures of solid SU-8 ester net-polymer are formed during post-exposure baking
process at lower temperature and gaseous pressure. The metal electroplating were done in
a 55 ◦C heated solution with stirring and with pulsed current for gold deposition. Figure
C.5(a) shows a picture of the analyser grating used in the setup at the beamline W2 with a
period p2 = 2.4 µm and height h2 = 30.8 µm, and (b) shows an SEM image of a similar gold
grating kindly provided by E. Reznikova (KIT).
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a

64 mm

Figure C.5.: (a) Picture of the absorbing analyser grating G2 produced on a silicon wafer (100 mm
diameter), the grating is the golden structure in the middle. b) An SEM picture of
the grating G2 showing the gold structures of the period p2 = 2.4 µm and height
h2 = 30.8 µm.
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D. Publications related to the work

This list presents a selection of publications coming out during the user support at the beam-
line W2 during this work. It contains not only the publications in peer-reviewed journals, but
also in conference proceedings and the HASYLAB user reports. The publications with the
author as coauthor including conference proceedings but without HASYLAB reports will be
presented as a list in the end of the bibliography.

A study on the quantitativeness of the grating-based phase-contrast tomography using a
conventional x-ray tube and a self-made fluid phantom, performed during the research stay
at PSI, was published in [49]. The results of the corresponding measurement using the new
grating setup at the synchrotron wiggler beamline W2 were published in the report [45].

Several SRµCT studies in absorption mode on different materials were performed at the
beamlines W2 and BW2 at DORIS during this work in collaboration with GKSS internal and
external research groups. The publications in reviewed journals or several selected conference
proceedings based on these studies will be listed here. The publications in HASYLAB annual
reports1 will be denoted as report.

The results of a region-of-interest SRµCT study of crack visualisation in laser-welded alu-
minium alloy T-joints in absorption-contrast mode, performed at the beamline W2 during
this work, were published in [47] and in reports [44, 48]. Another report [46] deals with the
characterisation of titanium/aluminium friction joints with SRµCT.

SRµCT studies on biological specimens included a study of sponges published by J. U.
Hammel et al. in [43], in the Proceedings of SPIE by M. Nickel et al. [75], and as reports
in [41, 42]. Other studies made on insects were published as reports in [61, 62], and on am-
phibians published in [56] and in several reports [57, 60]. Human specimens have also been
investigated. The results on determining the mineral distribution in flourotic teeth were pub-
lished by F. Neues et al. [74], and on visualising interfaces inside the teeth by M. Dalstra et

al. in [22]. Several reports treat the visualisation of human teeth in [23, 24] and bones in
[15, 51, 52].

The results of a microtomography study in absorption mode on normal and pathological
cranial sutures in children has been published recently in the Journal of Neurosurgery by
J. Regelsberger et al. in [85] and as a report in [90]. The microtomography results in com-
bination with ultra-small angle neutron scattering on hydroxyapatite microporous materials
intended for use for bone regeneration has been published by C. Ritzoulis et al. in [88].

1HASYLAB annual reports are available online at: http://hasylab.desy.de/annual report/. [visited
March, 2nd 2010]
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and W. Graeff. Double beam bent Laue monochromator for coronary angiography. Rev.
Sci. Instrum., 66(2):1379–1381, 1995.

[51] B.C. Johansson, J. Lindblad, H. Sarve, R. Bernhardt, F. Beckmann, J. Herzen, G. Borge-
fors, and D. Scharnweber. Improving the knowledge of integration of medical devices in
bone; a comparison of 3D SRµCT data to histomorphometrical data obtained on cut and
ground sections. HASYLAB annual report, 2007.

[52] C.B. Johansson, J. Lindblad, H. Sarve, R. Bernhardt, F. Beckmann, J. Herzen, G. Borge-
fors, and D. Scharnweber. Improving the knowledge of integration of medical devices in
bone; a comparison of 3D SRµCT data to histomorphometrical data obtained on cut and
ground sections. HASYLAB annual report, 2006.

94



Bibliography

[53] A. C. Kak and M. Slaney. Principles of Computerized Tomography. IEEE Press, New
York, 1987.

[54] P. Kirkpatrick and A.V. Baez. Formation of optical images by x-rays. J. Opt. Soc. Am.,
38:766–774, 1948.

[55] J Kirz and C Jacobsen. The history and future of x-ray microscopy. Journal of Physics:
Conference Series, 186(1):012001, 2009.

[56] T. Kleinteich, Beckmann, J. Herzen, A. P. Summers, and A. Haas. Applying X-ray
tomography in the field of vertebrate biology: form, function, and evolution of the skull
of caecilians (Lissamphibia: Gymnophiona). Proceedings of SPIE, 7078:7078D1–10, 2008.

[57] T. Kleinteich, F. Beckmann, J. Herzen, and A. Haas. SRµCT in comparative anatomy
and biomechanics of amphibian skulls. HASYLAB annual report, 2008.

[58] C. Kottler, F. Pfeiffer, O. Bunk, C. Grünzweig, J. Bruder, R. Kaufmann, T. Tlustos,
H. Walt, I. Briod, T. Weitkamp, and C. David. Phase contrast X-ray imaging of large
samples using an incoherent laboratory source. Physica Status Solidi A, 204:2728–2733,
2007.

[59] T. Koyama, H. Takano, Y. Tsusaka, and Y. Kagoshima. Tomographic quantitative
phase measurement by hard X-ray micro-interferometer with 250 nm spatial resolution.
Spectrochimica Acta B, 62:603–607, 2007.

[60] S. Kuehnel, J. Vetter, T. Kleinteich, J. Herzen, F. Beckmann, and A. Kupfer. Synchrotron
based high resolution X-ray computed microtomography of freeze dried amphibians and
evolutionary reproductive morphology. HASYLAB annual report, 2008.

[61] M. Kühbacher, B. Gruenewald, G. Falkenberg, E. Welter, J. Herzen, F. Beckmann,
and A. Kyriakopoulos. Chemical and morphological characterisation of insect brains.
HASYLAB annual report, 2007.
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