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Abstract

The technology of land-based High Frequency (HF, 3–30 MHz) radar has the unique ca-
pability of continuously monitoring ocean surface parameters up to 200 km off the coast.
The HF radar system developed at the University of Hamburg can provide reliable surface
current and wave observations. Wind direction measurement is also possible, however, wind
speed measurement is still a problem. In the coastal area with a complex topography, the
atmospheric and oceanic conditions vary spatially and temporally. For example, the ther-
mal contrast between the land and the ocean produces the daily changing land-sea breeze,
and mountains at the coast affect the wind speed and direction significantly. All these
make the mesoscale weather systems and associated surface winds in the coastal region
complicated. HF radar can solve this problem due to its high resolution (300 m - 1500 m)
and it can be operated in real-time and at all weather conditions.

A large amount of ocean data is nowadays collected by remote sensing methods using
electromagnetic waves scattered from the rough sea surface. Various techniques for solving
inversion problems have been proposed over the last few decades. Among these, Artificial
Neural Network (ANN) is ideally suited for applications where the relationship of input
and output is either unknown or too complex to be described analytically. In this work,
the basic idea is to use the input-output pairs generated by the radar data and in-situ
measurements to train the network. This study therefore addresses the issue using a neural
network to tackle the complexity and non-linearity of both radar remote sensing and the
wind-wave relationship.

In order to investigate how wind acts on the sea surface in a controlled environment, the
HIPOCAS (HIndcast of dynamic Processes of the Ocean and Coastal AreaS) wave model
data is analyzed to get a better understanding of the relationship between the wind and
waves. As a result, new methods are proposed for wind inversion from HF radar backscatter.
In this dissertation, the wind inversion from HF radar remote sensing is verified by two
experiments: the Fedje experiment in Norway and the Ligurian Sea experiment in Italy. The
radar operates at a frequency of 27.68 MHz during the Fedje experiment, providing shorter
radar working range but higher range resolution. During the Ligurian Sea experiment, the
radar operates at 12-13 MHz, covering a range up to 120 kilometers. In-situ wind and wave
measurements are used to train the neural network. This dissertation presents the wind
wave and HF radar scattering theory as well as the wind inversion using neural networks
and conventional approaches.
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Chapter 1

Introduction

As the largest source of momentum at the ocean surface, wind affects the full range of ocean
motion – from individual surface waves to complete current systems. Winds at sea surface
modulate the coupling between atmosphere and oceans, which establishes and maintains
both global and regional climates, and more importantly, the heat and gas exchange at the
air-sea interface. The wind exerts a force or stress on the ocean surface, which produces
not just ocean waves but also injects momentum into surface layer of the ocean. As we
know the wind changes in strength and direction from place to place, which causes a
spatially variable Ekman transport and ocean surface wave field. Wind observations have
proven their significant impact on the forecasting of fast developing and severe weather
as well as the global wind driven current circulation. As a consequence, winds at the sea
surface are one of the most important sources data for the oceanographic research, and
wind observations can also be implemented for data assimilation within models.

Wind at sea has been measured for centuries. Recently, the National Oceanic and Atmo-
spheric Administration (NOAA) has collected and digitalized millions of observations going
back over a century. The bulk of wind data over the ocean is provided by ships. These data
nevertheless suffer from various sources of errors related to different anemometer heights,
effects of ship movement and other boundary layer processes. Surveying vessels and buoy
measurements can only provide point measurements and they can not be carried out in
severe weather conditions. In the last decades, more and more remote sensing techniques
have been implemented for wind measurements, which are based on actively illuminating
the sea surface with electromagnetic energy and detecting the corresponding reflection. The
sensors may be installed at the coast, on oil platforms or moving platforms (aircrafts or
satellites). Spaceborne scatterometer can cover a large area of measurements, but with a
coarse spatial resolution of 25∼50 km [1], and it can not provide real-time measurements.
More globally distributed wind data are inferred from cloud motions recorded by the geo-
stationary satellites, but these are not provided with a uniform spatial density and need to
be corrected from cloud level to the earth surface [2]. A shore-based HF radar can cover
a large area (up to 200 km offshore), at a high resolution (300 m - 1500 m) and it can be
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Chapter 1. Introduction

operated in real-time at all weather conditions. It is especially useful for the ocean current
and waves as well as wind observations in the coastal areas.

The variability and change in atmospheric, oceanic and topographic conditions in the
coastal areas complicate mesoscale weather systems and associated surface winds. Measure-
ments of the mesoscale structure of the wind field in coastal areas are required to improve
our understanding of the processes. Besides these, the wind observations could be exploited
for economic use. For example, over the last decade, the deployment of offshore wind farms
has received significant attention. The evaluation of wind fields is required to predict the
energy capture and machine power generation levels, and the real-time monitoring of the
wind field is also important for the maintenance of the turbines, for example, the turbines
must be adjusted to adapt the wind conditions for generating the power efficiently.

1.1 State of Research
The basic physics of backscattering of electromagnetic waves from a rough sea surface was
discovered by Crombie [3] in 1955. He found that the frequency shifts (Bragg peaks) in the
Doppler spectrum corresponded uniquely with the ocean waves, which have the wavelength
exactly half the radio wavelength, hence the mechanism was explained as “Bragg scattering”.
The Doppler spectrum of the backscattered radar signal is characterized by two strong peaks
which are caused by the Bragg-resonant scattering from the ocean surface. These peaks
are surrounded by a continuum due to the second-order scattering.

Because there is no HF electromagnetic waves reflection from the movement of the
atmosphere, the wind is measured indirectly, from the ocean wave parameters. For the wind
direction measurement from HF radar backscatter, it is assumed that the wind direction
is identical to the mean direction of the short waves, which are sensitive to the changes
of the local wind. Extraction of the wind direction from the first-order peaks has been
discussed for decades. In 1972, Long and Trizna [4] suggested using the amplitude of
the two first-order peaks to determine the wind direction. Harlen [5] used an empirical
approach finding a simple linear relationship between the power ratio of the first-order
peaks and wind direction. Stewart [6] suggested using a cardioid model to describe the
directional distribution of wind-waves. Several models are currently available for extracting
wind direction from HF radar backscatter. All require the power ratio of the two first-order
peaks, combined with an assumed directional distribution function for the Bragg resonant
waves. Although details of the techniques differ, the principle is now well established. The
main uncertainty lies in the dependency of the assumed wave directional distributions,
which is also related to the prior knowledge of wind speed [7]. Most of researchers simplify
the calculation by setting the directional spreading parameter to be a constant value. In
this work, the author proposes a new method for extracting the wind direction as well as
the directional spreading value of Bragg resonant waves.

Up to now, published work in this area presents solutions to estimate wind speed from
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the ocean wave power spectra, which is derived from the HF radar second-order backscatter.
In 1971, Hasselmann [8] first suggested that the amplitude of the second-order sidebands
ought to be proportional to the non-directional wave power spectrum. From the radar-
deduced wave parameters, Dexter et al. [7] proposed a method to invert wind speed using
the dependency of significant wave height and dominate wave frequency on wind speed and
fetch [9]. The basic principle is that, in a purely wind-driven sea, i.e., where the swell
is negligible, the development of the wave energy is a function of wind speed, fetch and
duration. The presence of swell leads to an overestimation of wind speed since it both
increases the wave height and mean period [10]. However, the measurement of the wave
spectrum requires a good Signal-to-Noise Ratio (SNR) of the second-order spectrum [11].
In case of low wind conditions, especially when the radar works at a lower frequency, the
SNR of the second-order spectrum might be quite low [12]. Sometimes the second-order
spectrum even can not be distinguished from radar background noise. The first-order
peaks present the dominating feature in the radar spectrum and the power of positive and
negative first-order peaks is proportional to the strength of the approaching and receding
Bragg resonant waves. In this work, the amplitude and the directional spreading of Bragg
waves are exploited for wind speed inversion using neural networks.

Estimating high quality geophysical parameters from remote sensing measurements is a
very important issue in geosciences. To solve such inversion problems, the number of neural
network applications increased steadily in the last decade. The rapid uptake of neural
approaches in remote sensing is mainly due to their widely demonstrated ability of learning
complex patterns, taking into account any non-linear complex relationship between the
explicative and the dependent variables [13]. Although some neural network methods have
been tried in HF radar signal processing [14, 15] and some other applications [16, 17, 18],
few works about the wind inversion using neural networks have been reported.

1.2 Scientific Goals

The aim of this work is to derive wind speed and direction from HF radar backscatter.
Based on different mechanisms of the radar first-order and second-order scattering as well
as the experimental conditions, this dissertation focuses on the following questions:

1. The conventional methods for the wind speed inversion are based on the radar second-
order backscatter. Could the first-order backscatter also be used for the inversion?

2. The power of the first-order peaks represents the energy scattered by the Bragg res-
onant waves along the radio beam. How could wind speed be inverted from the
amplitude and directional information of the Bragg waves?

3. The neural network is trained using the radar data and in-situ observations at the lo-
cation of in-situ data collection. How could the wind speed measurement be extended
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to the other locations within radar coverage?

4. If the Bragg resonant waves come to a state of saturation, the wind speed has to be
inverted from radar second-order backscatter. Could the neural network also be used
for this inversion?

With these goals, the study of wind inversion addresses the issue using the neural network
to tackle both the complexity of the radar remote sensing and wind-wave relationship.

1.3 Scope and Outline
This dissertation focuses on several aspects: wave model data analysis, HF radar remote
sensing and wind inversion from HF radar backscatter using neural networks. The content
of this dissertation is therefore arranged as follows:

Chapter 2 introduces the wind wave theory and principle of wind inversion from waves.
In order to investigate how the wind acts on the sea surface, HIPOCAS wave model data is
analyzed to get a better understanding of ocean surface waves. Based on the model results,
new methods are proposed for deriving wind speed from HF radar backscatter.

Chapter 3 takes a close look at the high frequency radio backscatter from the rough sea
surface and the theory of wind inversion from radar backscatter. When the radar operates
at different frequencies, the signatures of the radar Doppler spectra are also different. For
the wind direction inversion, the author proposes a new pattern fitting method, which
gives a unique solution for wind direction as well as the spreading parameter of the Bragg
resonant waves. The spreading parameter describes the directional distribution of resonant
waves, which could also be used for the wind speed inversion.

Chapter 4 presents the principle of neural networks and the wind inversion methods
using neural networks. The details of the network design are discussed. The wind inversion
from waves are based on two possible procedures: (1) the amplitude and directional response
of waves at a certain frequency to the changes of the local wind; (2) the wind speed inversion
from the wave spectra. The WAM model and in-situ buoy data are investigated for the
wind inversion, which leads to the ideas for the wind inversion from HF radar backscatter.

In Chapter 5, the wind inversion from HF radar backscatter is verified by two exper-
iments: the Fedje experiment from February to April 2000 in Norway and the Ligurian
Sea experiment from April to September 2009 in Italy. The radar operates at a frequency
of 27.68 MHz and 12-13 MHz respectively. Based on different scattering mechanisms and
experimental conditions, several neural networks are implemented for the wind inversion.
Details of the experiments and data analysis are presented.

Finally, Chapter 6 summarizes the principal findings and presents potential ideas which
could be investigated in the future.
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Chapter 2

Wind Wave Theory and Wave Models

In HF radar remote sensing, the wind conditions at the sea surface are inverted from the
signatures of the ocean surface waves. Wind generated waves are the most impressive
phenomena found at the sea surface, ranging from capillary waves to storm surges. Since
water moves easily because of its “fluid” nature, flat seas seldom occur and undisturbed
water surface is rarely found at sea. The rough sea surface is a superposition of waves with
different wavelengths and directions.

2.1 Wind waves at the sea surface

Ocean surface waves may be summarized as the interaction of different forces. First of all,
there must be some kind of generating forces, in form of pressure or stress from the atmo-
sphere (especially through the winds), which provides perturbations at the surface. When
the water surface is no longer flat, restoring forces bring back the surface to its equilibrium
state. The characteristics of the waves depend on the controlling forces and the waves
can be classified by their periods. The most common waves (gravity waves) have a period
between 1 s and 30 s are generated by the wind and restored by gravity. Wind-generated
gravity waves are almost always present at sea. The description of the wind effects at the
sea surface which has been used by mariners for observing the various intensities of the
wind. The criteria are the results of long experience and represent individually distinguish-
able steps on a specific scale. The Beaufort scale was recommended for international use
in 1874. Many studies have been made to determine wind speeds equivalent to the steps of
the Beaufort scale and probable wave height [19], details are given in Table 2.1.

2.1.1 Wave basic definition

The basic mathematical representation of an ocean wave is given by the sinusoidal curve:

η(x, t) = a sin(kx− ωt) (2.1)
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Specification and equivalent speeds

Beaufort Mean Wind Speed Limit Wind Speed Probable sea Sea

wind scale Knots m/s Knots m/s wave height states descriptive terms

0 0 0 <1 0-0.2 - 0 Calm (glassy)

1 2 0.8 1-3 0.3-1.5 0.1 1 Calm (ripple)

2 5 2.4 4-6 1.6-3.3 0.2 2 Smooth (wavelet)

3 9 4.3 7-10 3.4-5.4 0.6 3 Slight

4 13 6.7 11-16 5.5-7.9 1.0 3-4 Slight-Moderate

5 19 9.3 17-21 8.0-10.7 2.0 4 Moderate

6 24 12.3 22-27 10.8-13.8 3.0 5 Rough

7 30 15.5 28-33 13.9-17.1 4.0 5-6 Rough-Very rough

8 37 18.9 34-40 17.2-20.7 5.5 6-7 Very Rough-High

9 44 22.6 41-47 20.8-24.4 7.0 7 High

10 52 26.4 48-55 24.5-28.4 9.0 8 Very High

11 60 30.5 56-63 28.5-32.6 11.5 8 Very High

12 - - 64+ 32.7+ 14+ 9 Phenomenal

Table 2.1: Beaufort wind force and sea state scale

where k = 2π/λ is the wave number and λ is the wavelength, ω is the angular frequency
and a is the wave amplitude. Equation 2.1 contains both time (t) and space (x) coordinates.
For all types of truly periodic progressive waves, one can write:

λ = cpT (2.2)

where cp is the wave phase speed, from above we know that cp = ω/k. The variation of
wave speed with wavelength is called dispersion and the relation is given [20]:

cp = ω

k
= ±
√
g

k
tanh(kD) (2.3)

where g is gravitational acceleration and D is the water depth.

2.1.2 Ocean wave spectrum

Ocean surface waves can be expressed by a superposition of linear waves which are called
fundamental waves. Nonlinear processes are important for the interactions between funda-
mental waves.

2.1.2.1 Definition of wave spectrum

The three-dimensional (frequency and wave number vectors) wave spectrum for a stationary
and homogeneous wave field is defined by Y.Hisaki [21, 22] as follows:

X(ω, k) = 1
(2π)3

∫ +∞

−∞

∫ +∞

−∞
C(r, t) exp[−i(k · r − ωt)]dtdr (2.4)
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where C(r, t) = 〈η(r0, t0)η(r0+r, t0+t)〉 is the covariance of the sea surface displacement,
r is the spatial separation vector, t is the time separation and 〈·〉 denotes an ensemble
averaging. k is the vector wave number (k = (k cos θ, k sin θ)), θ is the wave propagating
direction. The wave spectra can be defined in the reduced forms as follows [21]:

• Wave number vector spectrum

S(k) = 2
∫ +∞

0
X(ω, k)dω (2.5)

• Directional angular frequency spectrum

G(ω, θ) = 2
∫ +∞

0
X(ω, k)kdk (2.6)

• Angular frequency spectrum

Ψ(ω) =
∫ +∞

−∞
G(ω, θ)dθ (2.7)

The spectra are expanded by perturbation series:

X = X1 +X2+, ...,

S = S1 + S2+, ...,

G = G1 + G2+, ...,

Ψ = Ψ1 + Ψ2+, ..., (2.8)

Subscript 1 denotes spectra composed of fundamental waves, subscript 2 denotes spec-
tra composed of bound waves, which are the product of non-linear combination of two
fundamental waves. In deep water, the first-order wave spectrum is expressed as:

X1(ω, k) = 1
2
∑
m=±1

S1(mk)δ(ω −m(gk)1/2) (2.9)

where δ is the Dirac-delta function, m represents the positive and negative wave spectra
in frequency domain. The second-order wave spectrum is expressed as:

X2(ω, k) = 1
2
∑

m1=±1

∑
m2=±1

∫ +∞

−∞

∫ +∞

−∞
Γ2
HS1(m1, k1)S1(m2, k2)

· δ[ω −m1(gk1)1/2 −m2(gk2)1/2]dpdq (2.10)

Here the fundamental waves, whose wave number vectors are k1 and k2, are coupled
non-linearly, satisfying the relation k = k1 + k2, where k1 = k/2 + κ and k2 = k/2 − κ

for κ = (p, q), here, the spatial vector p is defined to lie along the generated waves k, and
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q is perpendicular to vector p. mi = ±1 (i = 1, 2) gives four solutions for the wave-wave
coupling. In Equation 2.10, the coupling coefficient ΓH is written as follows:

ΓH = 1
2[k1 + k2 + (k1k2 − k1 · k2)

m1m2(k1k2)1/2 (gk + ω2

gk − ω2 )] (2.11)

2.1.2.2 Wave spectrum examples

A wave spectrum is commonly used for modeling the sea state. Models enable the spectrum
to be expressed as some functional forms, usually in terms of frequency. Here, some widely
used wave spectrum models are introduced.

• Pierson-Moskowitz (P-M) wave spectrum

The Pierson-Moskowitz spectrum Ψ(ω) is often used for a fully developed sea, which means
that the wind blows steadily for a long time over a large area, the waves would come
into equilibrium with the wind. To obtain a spectrum of fully developed sea, they used
measurements of waves made by accelerometers in the north Atlantic [23, 24].

Ψ(ω) = αPMg
2

ω5 exp[−βPM(ω0

ω
)4] (2.12)

where αPM = 8.1 × 10−3, βPM = 0.74, ω0 = g/U19.5 and U19.5 is the wind speed at a
height of 19.5 m above the sea surface, which is the height of anemometers on the weather
ships used in their experiments.

• JONSWAP wave spectrum

After analyzing data collected during the JOint North Sea WAve Project (JONSWAP),
Hasselmann et al. [25] found, that the wave spectrum is never fully developed. It continues
to develop through non-linear wave-wave interaction even for a very long time and distance.
They therefore proposed the spectrum Ψ(ω):

Ψ(ω) = αg2

ω5 exp[−5
4(ωp
ω

)4]γr (γ = 3.3) (2.13)

r = exp[−(ω − ωp)2

2σ2
Jω

2
p

]

Wave data collected during the JONSWAP experiment are used to determine α, ωp and
σJ in Equation 2.13:

α = 0.076(U2
10/g)0.22 (2.14)

ωp = 22[g2/(U10F )]1/3 (2.15)
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σJ =

0.07 ω ≤ ωp

0.09 ω > ωp
(2.16)

2.2 HIPOCAS WAM data analysis

In order to investigate how wind acts at sea surface in a controlled environment, the
HIPOCAS wave model data is analyzed to get a better understanding of the relation-
ship between the wind and ocean surface waves. HIPOCAS is a project to obtain a 40-year
hindcast of wind, wave, sea-level and current climatology for European waters and coastal
seas for the application in coastal and environmental processes. Circulation models are
used in the North Sea and some other regions of the north Atlantic ocean. The data is
processed with the horizontal resolution of 10 km and the temporal resolution of 3 hours.

2.2.1 HIPOCAS WAM mode introduction

In wave modeling, theoretical and observational knowledge on ocean surface waves are
combined and expressed mathematically. The wave spectrum is the most common way of
describing the wave condition at a certain location. Its evolution in time and space is often
calculated using the wave energy balance equation, expressed by

∂E

∂t
+∇ · (cgE) = STotal = Sin + Snl + Sds (2.17)

The evolution of the spectrum depends mainly on three source functions, wind input
(Sin), nonlinear interaction (Snl) and dissipation (Sds). Details of the WAM model are given
by G.J.Komen [2].

The wave models used in HIPOCAS project are based on WAM with nested grids in
order to produce high resolution data. In the North Sea, this model takes into account
tidal currents that influence the waves. Several points are analyzed as shown in Figure 2.1.
Each point contains the wind data (speed and direction) and the directional wave spectra.
The wave frequency range (0.0418-0.5476 Hz) is divided into 28 bins, the wave direction is
divided into 24 bins (every 15 degrees), so the total number of bins is 28× 24 = 672.

2.2.2 Spatial and directional analysis

In order to demonstrate the presence of swell and residual waves, an example of wave
spectra and wind data (speed and direction) is shown in Figure 2.2. The higher frequency
part are wind waves, which are forced by the local wind. In this example, the waves at
lower frequencies are definitely not generated by the local wind if their directions are with
a large deviation to wind direction. They might be swell traveling from far away or residual
waves. Figure 2.3a shows the wind records in previous days, the north-east wind and north
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Figure 2.1: Test points in the North Sea

wind have blown for nearly two days. After the wind changes its direction to south-west,
the energy of the longer waves still remains.

From the wind map demonstrated in Figure 2.3b, the wind at location B, E, F, G blows
from north-west and the swell travels from the E, F, G to the region C. The 2-D wave
spectra present the information of wave directions at different frequencies.
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Figure 2.2: Wind and Wave spectrum (HIPOCAS Data)

Figure 2.4 presents directional wave patterns at four frequencies. At the higher wave
frequencies, the directional spreading patterns are smoother, while at the lower frequencies,
the patterns are more or less disturbed by other effects, such as swell or residual waves (if
the wind turns its direction). The waves travel with a certain directional pattern which is
closely related to its frequency and surface wind conditions.
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Figure 2.4: Directional wave patterns at certain wave frequencies (Note that the scales of
the radial axis are different)

2.2.3 Temporal and frequency analysis

In order to analyze the time response of waves to the changes of wind speed, some data is
chosen from the wind record. As shown in Figure 2.5, at the beginning the wind is weak
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(less than 1 m/s). As time goes on, the speed increases and the wind almost blows from
a constant direction after the wind speed exceeds a certain value. The wind speed and
direction are shown in Figure 2.5.
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Figure 2.5: wind speed and direction varies with time

The wave growth with time in terms of wavelength is shown in Figure 2.6. Figure 2.6a
shows the wave growth curve of short waves (e.g., f = 0.5476 Hz). The short wave increases
quickly and gets saturated at a low wind speed. Regarding the long wave as shown in
Figure 2.6b (e.g., f = 0.1748 Hz), these take more time to get saturated. So the short
waves are more sensitive to change of the wind, which could be used to invert the local
wind conditions (especially wind direction).
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Figure 2.6: Wave growth with time at an increasing wind speed

In Section 2.1.2, in order to describe wave spectrum from different perspectives, several
forms of wave spectrum are given. Here, the frequency spectrum Ψ(f) in WAM model is

Ψ(f) =
N∑
n=1

G(f, θn) (∆θ = π

12 , N = 24) (2.18)
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2.2. HIPOCAS WAM data analysis

Where G(f, θ) is the wave directional spectra, the integrated wave power Ψ(fi) at wave
frequency fi is calculated by Equation 2.18. The data for a full year at location E is
analyzed, the growing curves of wave power versus wind speed are given in Figure 2.7.
Several wave frequencies are selected that coincide to Bragg frequencies often used in radar
measurements (Table 3.1). The wave energy increases due to the wind speed, the longer
waves need higher wind speed to get saturated. In Figure 2.7a, the saturation of waves even
can not be seen due to few wave records in extreme wind conditions, while the saturation of
short waves at a certain wind speed can be seen in Figure 2.7b and 2.7c. A linear regression
method is used to calculate the increasing rate (ki) for the wave energy before the turning
point of saturation.
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(b) k2 = 0.048
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(c) k3 = 0.0061
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(d) Wave energy vs. wind speed

Figure 2.7: Integrated wave energy at certain frequencies versus wind speed

The wave measurement at a certain frequency can be conducted by HF radar Bragg
scattering, and wind speed can be estimated from the wave power before the waves get
saturated (the directional spreading pattern at certain frequencies is also related to wind,
which will be discussed later).
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Chapter 2. Wind Wave Theory and Wave Models

2.3 Wind direction and wave directional distribution

The directional wave spectrum G(f, θ) describes how the wave energy is distributed over the
ranges of the frequency f and the angle θ. It is expressed as the product of the frequency
spectrum Ψ(f) and the directional spreading function G(f, θ) :

G(f, θ) = Ψ(f) ·G(f, θ) (2.19)

The directional spreading function indicates how a given energy density at each fre-
quency is spread over the directional angle and thus it is made dimensionless as follows:

∫ π

−π
G(f, θ)dθ = 1 (2.20)

There have been several proposals for the directional spreading functions. Here, two
widely used: half-cosine 2s-power and Hyperbolic secant-squared are discussed.

2.3.1 Half-cosine 2s-power type spreading function

The earliest directional spreading function is the cosine-squared type which was used by
Pierson, Neumann and James [26] in their spectral wave forecasting method. The function
is later evolved into the half-cosine 2s-power type by Loguet-Higgins and H.Mitsuyasu et
al. [27, 28]. The function is given:

G(f, θ) = A · cos 2s(θ2) (2.21)

A is a normalizing factor satisfying Equation 2.20, so we have:

A = 1
π

22s−1 Γ2(s+ 1)
Γ(2s+ 1) (2.22)

where Γ denotes the Gamma function. For example, by setting s = 4, A turns out to
be 0.5821 and the directional spreading function is depicted in Figure 2.8.

Mitsuyasu et al. [28] presented a reasonable comprehensive set of estimates for s using
measurements obtained from a cloverleaf buoy. The directional spreading function has the
features that the parameter s represents the degree of directional energy concentration.
The directional spreading of wave energy is narrowest around the spectral peak energy, the
original proposal of Mitsuyasu relates the spreading parameter s to the wind speed. Goda
and Suzuki [29] have given the original equation into the following form by introducing the
peak value of s, denoted as Smax:

s =

(f/fp)5 · Smax : f 6 fp,

(f/fp)−2.5 · Smax : f > fp.
(2.23)

The degree of directional spreading of wave energy greatly affects the extent of wave
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2.3. Wind direction and wave directional distribution
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Figure 2.8: Examples of directional spreading function

refraction and diffraction. Thus, the estimation of the value of the parameter Smax is
important. The observation by Mitsuyasu et al. showed that the peak value increases as
the parameter 2πfpU10/g, which represents the state of wind wave growth. They introduced
the relation [30]

Smax = 11.5(2πfpU10/g)−2.5 (2.24)

Based on the argument that the primarily non-linear processes determine the wave
spectrum. Hasselmann et al. [31] suggested that s depends mainly on f/fp for f > fp. As a
referee [32] has pointed out, the spreading parameter smight be expected to depend both on
U10/cp and f/fp even if the directional distribution is mainly governed by nonlinear transfer,
where cp is the phase speed at peak frequency fp. The peak enhancement parameter γ and
the “constant” α for the JONSWAP spectrum [25] depend on U10/cp. Nevertheless, the
general tendency should be as follows: If the spectral shape is entirely governed by input
from the wind, the relation s = s(U10/cp; f/fp) should degenerate into s = s(U10/cp); If, on
the other hand, the spectral shape is governed by non-linear interactions, we should expect
s to depend mainly on f/fp with a slight dependency on U10/cp. Hasselmann presented the
spreading parameter as follows:

s =

9.77(f/fp)(−2.33−1.45(U10/cp−1.17)) f ≥ fp

6.97(f/fp)4.06 f < fp
(2.25)

2.3.2 Hyperbolic secant-squared type spreading function

In 1985, M.A.Donelan et al. [32] proposed hyperbolic secant function based on the ob-
servations of wind and water surface elevation by 14 wave staffs in Lake Ontario and a
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Chapter 2. Wind Wave Theory and Wave Models

large laboratory tank. The directional spectrum of wind-generated waves in deep water is
determined using a modification of Barber’s method [33]. The angular spreading is given:

G(f, θ) = 0.5βsech2(β · θ) (2.26)

where β is the spreading parameter. The three-dimensional evolution of freely propa-
gating, second-order Stokes gravity wave groups [34, 35] indicates that an envelope soliton
group propagating around the main wave direction is described by a hyperbolic secant
(sech2(βθ)). The width of the spectral spread is determined by the parameter β. Several
examples of the spreading functions are given in Figure 2.9:
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Figure 2.9: Directional spreading function for different β values

M.L.Banner [36] presented the parameter β based on the wave frequency spectral tech-
niques with an improved angular resolution pitch-and-roll buoy. Using an extension of the
wave gauge array technique to higher wave numbers, it shows a continuous increase in
spreading beyond f/fp > 2.56 with a spreading cutoff at much shorter scales, consistent
with the broad directional distribution observed by Banner et al. [37] at higher f/fp. On
this basis, the spreading distribution is given:

β =

2.28(f/fp)−0.65 for 0.97 < f/fp < 2.56

10−0.4+0.8393 exp[−0.567 ln(f/fp)] for f/fp > 2.56
(2.27)

2.4 Wind speed inversion from wave spectrum
In an attempt to describe the relationship between wave and wind, a number of empiri-
cal/theoretical equations have been formulated in the past thirty years. In a purely wind-
driven sea, the state of development of the wave spectra is a function of wind speed (U10),
fetch (F ) and duration (T ). In particular, such gross sea parameters as total wave energy
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2.4. Wind speed inversion from wave spectrum

E (or significant wave height HS) and peak wave frequency fp are functions of both F

and U10. Thus, for a given measurement of E, a variety of solutions of F and U10 are
possible. To simplify this further, since the two parameters (F and U10) are unknown (the
duration T could be involved in F as given in Equation 2.29), it is possible to derive these
quantities from simultaneous measurements of such two parameters with some appropriate
theoretical/empirical relationships.

2.4.1 Dimensionless parameters

The wave power spectrum S(k) at a wind-generated sea is a function (F) of surface wind
speed U10, fetch F , duration T and gravitational acceleration g:

S(k) = F(g, U10, F, T ) (2.28)

In practical applications, the four parameters are often reduced to three by expressing
the duration t in terms of an equivalent fetch Feq. Considering that at time t, the waves
have traveled a distance cgt along wind direction since the wind started to blow (cg is the
group velocity of the wave component). So Feq could be given with an integrand [38]:

Feq =
∫ T

0
cg,peak(t)dt (2.29)

where cg,peak is the group velocity of the evolving peak frequency. With Equation 2.29,
the number of parameters can be reduced from four (F, T, U10, g) to three (F,U10, g), which
can be combined into one dimensionless parameter, the dimensionless fetch F ∗:

F ∗ = gF

U2
10

(2.30)

Besides the dimensionless fetch, there are also many other dimensionless parameters for
wave growth which have been derived from large data sets. These formulas make no attempt
to separate the physical processes involved. They simplify computation if the variables are
all made dimensionless [39].

• Peak frequency f ∗p = U10fp/g

• Duration T ∗ = gT/U10

• Height H∗S = gHS/U
2
10

2.4.2 SMB curves for wind speed inversion

By far, the most widely used is the equation first developed by Sverdrup and Munk [40, 41]
and later modified by Bretschneider [42], the so-called SMB curves [9, 43]. Despite some
criticism of their lack of a proper theoretical basis and simplistic description of the sea
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Chapter 2. Wind Wave Theory and Wave Models

surface [9], they continue to find wide application in both coastal engineering and wave
forecasting [44, 45]. Most researchers have fitted the following function to their observations
[38]:

H∗ = H∗∞tanh[k1(F ∗)M ] (2.31)

where k1 and M are constant values, H∗∞ is the dimensionless H∗ for F ∗ =∞. Pierson
and Moskowitz [24] analyzed the observations of such fully developed waves in the North
Atlantic. Since the fetch is not relevant in such cases, the significant wave height and
period depend only on the local wind speed. This implies that, under these fully developed
conditions, the dimensionless significant wave height and period are universal constants,
and they gave the value of H∗∞ = 0.24. The dimensionless wave height H∗ is depicted in
Figure 2.10.

Figure 2.10: Dimensionless wave height as a function of dimensionless fetch (Holthuĳsen,
2008)

Dexter [7] gave in the principal relationship of significant wave heights HS, fetch F and
wind speed U10:

gHS

U2
10

= 0.26 · tanh[ 1
102 ( gF

U2
10

)1/2] (2.32)

In JONSWAP project, Hasselmann presented the relationship between dimensionless
fetch F ∗ and dimensionless spectral peak frequency f ∗p [30]:

f ∗p = 3.5(F ∗)−1/3 (2.33)

where f ∗p = fp · U10/g and F ∗ = F · g/U2
10. Thus in terms of wave period Tp at the

spectral peak, Equation 2.33 becomes

Tp
U10

= 1
3.5g ( gF

U10
)1/3 (2.34)
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2.4. Wind speed inversion from wave spectrum

Equation 2.32 and 2.34 are sufficient to allow a unique evaluation of U10 in terms of the
radar measured HS and Tp. An algebraic manipulation is given:

gHS

U2
10

= 0.26 tanh[( Tp
U10

)3/2 (3.5g)3/2

102 ] (2.35)

In HF radar remote sensing, the extraction of wave parameters (significant wave height
HS and the wave peak frequency fp) from radar second-order backscatter is presented in
Section 3.4.
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Chapter 3

HF Radar Remote Sensing and Wind
Inversion

3.1 Introduction to HF radar remote sensing
Sea echoes at HF have been observed by radars since World War II. In 1955, Crombie [3]
found that the discrete frequency shifts (the first-order peaks) above and below the carrier
frequency observed in the Doppler spectrum corresponded uniquely with the ocean waves,
which have the wavelength exactly half the radio wavelength (grazing incidence) moving
towards or away from the radar site. These waves are called “Bragg waves”. Wait [46]
analytically verified Crombie’s observation by examining the reflection of electromagnetic
waves from a gently rippled surface. Barrick and Peake [47] confirmed the effect of the res-
onant phenomena by examining the scatter from slightly rough sea surface. The boundary
conditions proposed by Rice [48] involved a perturbation approach to examine the problem
of radio wave scattering from rough surfaces. Based on Rice’s theory, Barrick [49] derived a
model for the first-order cross section of the ocean surface that is consistent with Crombie’s
observations. Ward [50] suggested that the continuum surrounding the first-order peaks is
due to higher order interactions.

Figure 3.1: Sketch of HF surface wave radar( c©IFM, University of Hamburg)

The high frequency radio band covers frequencies between 3 and 30 MHz with wave-
lengths of 100-10 m, which is in the same order as the wavelengths of ocean waves, so
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Chapter 3. HF Radar Remote Sensing and Wind Inversion

the Bragg scattering theory is applicable. The signal therefore interacts with the ocean
surface waves and the back-scatter echo contains a wealth of information about the sea
state. Figure 3.1 gives the sketch of HF radar remote sensing, in which, the wavelength of
electromagnetic wave is λr = 10 m, so the wavelength of the resonant ocean wave is λw = 5
m.

The roughness of the ocean surface is the combination of waves of different wavelengths
and directions. When the radar works at different frequencies, the corresponding Bragg
wave frequency (wavelength) varies as well. The Bragg wave frequency is given as follows:

fB = cBragg

λw
=
√

g

2πλw
=
√
gFr
2πc (3.1)

where cBragg is the phase velocity of Bragg waves, λw is the wavelength of Bragg waves
and Fr is the radar frequency. Table 3.1 gives a list of often used radar frequencies and the
corresponding Bragg wavelengths and frequencies. The property of wave growth rate and
directional spreading is quite different due to their wavelengths. This relationship can be
used to derive wind information.

Radar frequency (MHz) “Bragg” wave frequency (Hz) “Bragg” wave length (m)
5 0.228 30
7.5 0.279 20
12 0.3534 12.5

27.68 0.5368 5.419

Table 3.1: Radar operating frequencies and Bragg wave properties

Figure 3.2 shows a typical HF radar Doppler spectrum, which contains dominant peaks
due to first-order (Bragg) scattering and a structured continuum due to higher-order scatter
(mainly second-order spectrum).
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3.1. Introduction to HF radar remote sensing

3.1.1 WERA system

Researchers of the University of Hamburg started working on HF radars in 1980. WERA
(WEllen RAdar) has been developed within the European project - Surface Current And
Wave Variability Experiment (SCAWVEX). Information on the WERA system design is
presented by Gurgel [51]. One advantage of the system is the ability to use different
configurations of receive antennas. With a linear array, information about the sea state
can be obtained via second-order spectra bands [52]. Another advantage is the flexibility
in range resolution between 0.3 km and 3 km by using Frequency-Modulated Continuous
Wave (FMCW), which can simply be achieved by reconfiguring the bandwidth of the chirp.
In addition, this technique avoids the blind range in front of the radar because there is no
transmit to receive switching involved. The transmit antenna array is designed to make
sure that the null produced in the antenna pattern points towards the receive antennas to
reduce the energy transmitted on the direct path from the transmit to the receive antenna.

Beam forming is a signal processing technique used in sensor arrays for directional signal
transmission or reception. Information from different antennas is combined in such a way
that the expected pattern of radiation is preferentially observed. The advantage of beam
forming is that the beams can be steered to achieve a particular area coverage which may be
located around a buoy (which is mainly implemented in this dissertation). Beam forming
generally increases the antenna gain which also increases the signal-to-noise ratio of the
echoes received. Each antenna element in the array has its own receiver and A/D converter
and beams are formed by digital processing all the outputs. The system is flexible and
beams can be recalculated for further processing, different weight (window) functions can
be applied to control the antenna side lobes [53].

(a) Principle of beam forming (b) Receive antenna array

Figure 3.3: Principle of beam forming (a) and photo of receiving antenna array (b)

As described in Figure 3.3a, a wave front from direction θ arrives at antenna 1 first.
Then after traveling an additional path distance ∆l, it arrives at antenna 2, and we have
∆l = d sin θ. The path difference results in a phase difference ∆ϕ between the signals from
the two antennas:
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Chapter 3. HF Radar Remote Sensing and Wind Inversion

∆ϕ = 2π∆l/λr = 2πd sin θ/λr (3.2)

Figure 3.3a shows a simple example of 2-element beam forming. When the number of
elements increases, the side lobes become smaller and the central beam becomes narrower.
During the WERA experiments in Norway and Italy, a 16-element antenna is used. One
photo of receive antenna array is shown in Figure 3.3b.

The grid is defined within radar coverage, for example, during the Fedje experiment,
a 60 × 50 grid is defined. According to the longitude and latitude of the grid points, the
distance from the grid point to each antenna is calculated in WGS84 coordinates [54], and
the distance between each adjacent antenna element is less than half of radio wavelength
(d < λ/2). So the phase difference ∆ϕi (i is the number of antenna) is determined. The
size of cell is determined by the azimuth resolution ∆φ (beam-width at -3dB) and the
range resolution ∆R. Two typical antenna directional patterns pointing to 0◦ and 45◦ are
presented in Figure 3.4.

(a) steering direction φ = 0◦

(b) steering direction φ = 45◦

Figure 3.4: Antenna directional beam patterns (d = 0.45λ, provided by Gurgel)

3.1.2 Physical scattering model and radar cross section

The earliest approach to the problem of the scattering of electromagnetic waves from the
rough surface is “perturbation”, initiated by Lord Rayleigh in 1896 [55], and implemented
by Rice [48]. Following Rice, many investigators, including Wait [56], Barrick [49, 57, 58, 59]
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3.1. Introduction to HF radar remote sensing

and later J. Walsh [60] and E. Gill et al. [61, 62] gave the contribution to the scattering
theory. The basic requirements in the application of the perturbation method are that (1)
the surface profile variations are small compared to the radio wavelength; (2) the surface
slopes are much smaller than unity; (3) the impedance of the surface medium is small in
terms of the free space wave impedance. The three requirements must be satisfied for the
applications of scattering theory in HF radar remote sensing.

3.1.2.1 HF radio propagating on conductive ocean surface

For the radio wave propagation at sea surface from a vertically polarized transmit antenna,
the high conductivity of the sea water results in a low attenuation. The performance of
the radar detecting and characteristics of propagating channel as well as “target” (ocean
waves) determine the signature of radar echoes. The sea surface has a scattering capability
described by the backscatter coefficient σ0, the echoing area per unit area, which is usually
expressed in dB. The expression for the received power (mono-static condition) is:

PR = PTGTGRλ
2
rF

4(d)
4π3d3 · σ0∆d∆φ (3.3)

Here PT , PR are transmitted and received power, λr is the radio wavelength, GT and
GR are the gain factors of transmit and receive antennas relative to isotropic, F (d) is the
Norton field attenuation factor over sea, d is the detecting range and ∆d, ∆φ are the
range and angular extent of spatial resolution cell. Figure 3.5 shows the results of received
power against ranges at different radar frequencies. The figure also indicates the additional
attenuation due to the high sea state, the solid curves are the received power at a smooth
sea, while the dashed curves show the extra two-way loss for sea state 6 on Douglas sea
scale [63]. The increase in the attenuation is due to the roughness at sea surface and the
range (two way loss). For example, for curve a, the offset between solid and dashed line are
larger at 200 km than that at 100 km.

Figure 3.5: Curves of received power against ranges at different operating radar frequencies:
a - 7.5, b - 15 and c - 30 MHz, the transmitted power is 250 W, the solid curves are at a
smooth sea state and the dashed curves are at a high sea state. (Shearman,1983)
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In the use of HF radar remote sensing, the weaker second-order scattering mechanism is
used to deduce the wave height and direction. Normally, the range coverage of second-order
spectrum is nearly half of the first-order Bragg peaks. Of course, it also depends on the
radar frequency, sea state and the noise level outside the radar. Figure 3.6 and Figure 3.7
present the example of range Doppler spectra during the Fedje experiment (Fr = 27.68
MHz) and Ligurian Sea experiment (Fr = 12.254 MHz) in nearly same sea state (wind
speed) respectively. Doppler spectra at certain distances are also given. From the two
range-Doppler spectra, it is obvious that the propagating distance at a lower frequency is
much farther than that at a higher frequency. Besides the attenuation of the first-order
peak power along the distance, the signature of the power attenuation of the second-order
continuum is also different. Details will be discussed in Section 3.2.

Figure 3.6: Range-Doppler spectra at Fedje site during the Fedje experiment

Figure 3.7: Range-Doppler spectra at Palmaria site during the Ligurian Sea experiment
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3.1.2.2 Radar cross section and backscatter modeling

When radiowaves are backscattered from the sea surface, the Doppler spectral density is
proportional to the radar cross section per unit frequency σ(ωD), where ωD is the Doppler
angular frequency. The Bragg scattering at a grazing incidence is caused by the wave
component whose wave number vector is ±2k0 (radio wave number vector k0). The radar
cross section σ(ωD) is proportional to the energy of the wave component whose frequency
is ωD and the wave number vector is 2k0. That is

σ(ωD) ∝ X(ωD, 2k0) (3.4)

In addition to the second-order scattering by the contribution of hydrodynamic effect,
there is a double Bragg scattering. A pair of fundamental waves whose wave number vectors
sum to ±2k0 causes double Bragg scattering. Barrick [49] presented the first-order and the
second-order Cross Section (CS) in the following form:

σCS,1(ωD) = 26πk4
0
∑
m=±1

S(−2mk0)δ(ωD −mωB) (3.5)

σCS,2(ωD) = 26πk4
0
∑

m1=±1

∑
m2=±1

∫ +∞

−∞

∫ +∞

−∞
|ΓE − iΓH |2S(m1k1)S(m2k2)

· δ(ωD −m1

√
gk1 −m2

√
gk2)dpdq (3.6)

where ωB =
√

2gk0 is the Bragg angular frequency, S(·) is the directional wave number
spectrum and (p, d) is the Cartesian coordinate as shown in Figure 3.8. The electromagnetic
coupling coefficient ΓE represents double Bragg scattering and it is expressed as:

ΓE = 1
2[(k1 · k0)(k2 · k0)/k2

0 − 2k1k2

(k1 · k2)1/2 − k0∆
] (3.7)

where ∆ is a normalized surface impedance. When the radar works at HF band, the
impedance is approximate to ∆ = 0.011− i(0.012) [64]. In Equation 3.6, the spatial wave
number p is defined to lie along the radio beam, with q perpendicular to p. In the second-
order scattering process, a first set of waves of wave number k1 interacts with the incident
radar wave to produce a scattered wave −→km. A second interaction with waves of wave vector
k2 takes the incident intermediate wave and scatters it back toward the radar site. The
scattering wave vector k1 and k2 are defined by

k1 = (p− k0, q) k2 = (−(p+ k0),−q) (3.8)

as illustrated in Figure 3.8, and hence they obey the constraint:

k1 + k2 = −2k0 (3.9)
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Figure 3.8: Illustration of the second-order interaction process (Lipa 1986)

As introduced above, S(k, θ) is the directional wave number spectrum. In Lipa’s scat-
tering model, Pierson-Moskowitz (P-M) non-directional spectrum and a cardioid directional
spreading function are used. We set s = 1, so

S(k, θ) = 4
3π

0.005 exp(−0.74(kc/k)2)
k4 · cos2(φ− θ2 ) (3.10)

P-M spectrum describes the characteristic falloff of saturated waves above a cutoff region
defined by wave number kc, which is related to wind speed, U10 =

√
g/kc, and φ is the

radio beam direction, θ is the mean wind-wave direction. HF radar backscatter modeling
is based on the first-order and second-order backscatter cross section combining with the
given wave spectrum S(k, θ). The first-order peak can be easily calculated, while the second-
order backscatter is based on the non-linear integral equation (Equation 3.6), obeying the
constraint given by Equation 3.9 and k1 · k2 = 0 for electromagnetic coupling component.

3.2 Wind direction and radar backscatter echoes

The ocean surface wind determines the directional spreading distribution of ocean waves.
Once the radio beam direction φ is given, the wind (speed and direction) at selected grid
point and the directional spreading pattern of the Bragg waves determine the strength of
receding and approaching wave components to the radar site. To derive information about
wind field by observing sea-wave spectrum, the spectral power density of Bragg waves is
proportional to the scattering cross section [65]:

R = σ1(fB)/σ1(−fB) = S(−2k0)/S(2k0) (3.11)

Figure 3.9 shows the sketch of the radar map and wind direction: three examples of
wind direction and wave directional spreading patterns are illustrated, the red cardioid
patterns represent the directional distribution of Bragg waves. The line A-O-B is the radio
beam passing through the directional pattern, line O-B represents the approaching wave
component, which generates the first-order (Bragg) backscatter on the positive side of the
Doppler spectrum, while line O-A represents the wave component receding from the radar
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3.2. Wind direction and radar backscatter echoes

site, which generates the corresponding Bragg peak appears on the negative side of the
spectrum. The length of O-A and O-B represents the relative strength of the two wave
components. As shown in the figure, if the wind changes its direction, the strength of wave
components O-A and O-B changes as well.

Figure 3.9: Schematics of wind directions (red arrow), wave directional patterns and radio
beam direction

Assuming φ is the azimuth of the radio beam and θ is the azimuth of the wind vector,
the power ratio of Bragg peaks is related to wind direction θ (at the fixed grid point, φ is
a constant value):

R (θ, φ) = σ1(fB)
σ1(−fB) = G (π + φ− θ)

G (φ− θ) (3.12)

In order to simplify the calculation, φ is set to 0◦, so

R(θ) = σ1(fB)
σ1(−fB) = G(π − θ)

G(−θ) (3.13)

If the half-cosine 2s-power spreading function G(θ) = A · cos2s(θ/2) is used, we have

R(θ) = G(π − θ)
G(−θ) =

cos2s(π−θ2 )
cos2s(−θ2 )

= tan2s(θ/2) (3.14)

Equation 3.14 is depicted in Figure 3.11a and the spreading parameter s is defined to
be s1 = 1, s2 = 2 and s3 = 4 for comparison. Actually, while θ = π or θ = −π, the ratio
R→ +∞, and while θ = 0◦, the ratio R→ −∞. So in the figure, the θ is defined close to
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Chapter 3. HF Radar Remote Sensing and Wind Inversion

±π and 0 but not equal to.

If the azimuth of the radio beam φ is considered, we have the wind direction

θ = φ± 2 arctan(R1/2s) (3.15)

M.A.Donelan [32] suggested using the hyperbolic secant squared function G(θ) = 0.5 ·
βsech2(β · θ). Wyatt implemented it in HF radar experiment with the conclusion of having
a better fit than half-cosine 2s-power type spreading [66]. The difference between these
two functions is that: For the half-cosine 2s-power function, when θ = π and θ = −π,
the spreading value G(θ) = 0, as shown in Figure 2.8. For the hyperbolic secant squared
function, when θ = π and θ = −π, the spreading value G(θ) > 0, as shown in Figure 2.9.
That is to say, the hyperbolic secant function allows some energy to propagate opposite to
the wind direction. In HF radar measurements, if the wind blows along the radio beam
direction, the measured approaching wave component (which is proportional to positive
first-order peak power) is never equal to zero, and even in the buoy measurement accom-
plished by M.A.Donelan, there is some minor wave components propagating against the
wind direction.
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Figure 3.10: Half-cosine 2s-power spreading function is a periodic function, while the hy-
perbolic secant squared function is a non-periodic function

Another important difference is, that the half cosine 2s-power function is periodic func-
tion, but the hyperbolic secant function is not. Figure 3.10 gives the half-cosine type and
hyperbolic type at the angle of θ ∈ [−2π, 2π]. For the hyperbolic secant function, if the
angle θ exceeds the range of [−π, π], it still gives some value of the ratio because of the
non-periodicity, but this makes no sense for the wind direction inversion.

If the hyperbolic secant function is used for calculating the ratio of approaching and
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3.2. Wind direction and radar backscatter echoes

receding wave components, the direction range should be separated into two cases:

R(θ) = G(−π − θ)
G(−θ) = [ eβ·(−θ) + e−β·(−θ)

eβ·(−π−θ) + e−β·(−π−θ)
]2 (−π ≤ θ ≤ 0) (3.16)

R(θ) = G(π − θ)
G(−θ) = [ e

β·(−θ) + e−β·(−θ)

eβ·(π−θ) + e−β·(π−θ)
]2 ( 0 ≤ θ ≤ π) (3.17)

Figure 3.11b demonstrates the ratio R and the wind direction θ, in which, the spreading
parameter β is set to be: β = (0.6, 0.8 , 1.0, 1.4) for comparison. Inversely, the wind
direction θ can be derived from the ratio R (for φ = 0◦):

θ = 1
2β ln |1−R

1/2 · e−β·π

R1/2 · eβ·π − 1 | (−π ≤ θ < 0) (3.18)

θ = 1
2β ln | 1−R

1/2 · eβ·π

R1/2 · e−β·π − 1 | ( 0 ≤ θ < π) (3.19)

and we have

1
2β ln |1−R

1/2 · e−β·π

R1/2 · eβ·π − 1 | = −
1
2β ln | 1−R

1/2 · eβ·π

R1/2 · e−β·π − 1 | (3.20)

In this work, piecewise processing is implemented to get the whole direction range
θ ∈ [−π, π], and to simplify the calculation, only Equation 3.18 is used. For θ ∈ [0, π],
based on Equation 3.20, it can be easily calculated.
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Figure 3.11: Comparison of ratio as a function of wind direction (radio beam φ = 0◦)

Equation 3.18 and 3.19 are depicted in Figure 3.12a. The solid curve is for Equation 3.18
and the dashed is for Equation 3.19. The cross point of these two curves is the lower limit of
the ratio making the angle θ = 0◦, it means that the wind direction is identical to the radio
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beam direction. In this example, if we set β = 0.8, the lower limit value is R1 = 0.0251,
which makes

± 1
2β ln |1−R

1/2
1 · e−β·π

R
1/2
1 eβ·π − 1

| = 0 (3.21)

The upper limit of the ratio is the value making θ = 180◦ or θ = −180◦. In this
example, the upper limit value of R2 is 39.81. The value of lower and upper limit of R
also depends on the spreading parameter β. Figure 3.12b shows the curves with different
spreading parameters β1, β2, β3, and the corresponding lower limit ratio R(β1), R(β2) and
R(β3) are also given in the figure. Discussion of a varying β for extracting wind direction
is discussed in Section 3.3.3.2.
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Figure 3.12: Wind direction derived from the ratio of approaching and receding wave
components (φ = 0◦)

3.3 Wind direction determination with two radars

The principle of wind direction inversion from the radar first-order backscatter has been
introduced above. The uncertainty of the wind direction is mainly due to the ambiguity
and the directional spreading pattern as well as the spreading parameter. In Equation 3.15,
there are two possible wind directions matching the ratio of approaching and receding
wave components, the “±” sign is due to the mathematical ambiguity which can not be
solved using a single beam azimuth. Figure 3.13 shows the diagram of the wind direction
ambiguity.

In order to remove the wind direction ambiguity, a variety of methods have been at-
tempted, including: (1) general wind circulation information on the maps of air pressure;
(2) Least Square Minimum method (LSM) to get the best fit to wind-wave pattern [67];
(3) one radar switching radio beam direction [65, 68]. Besides the methods above, in this
dissertation, a new pattern fitting method with varying spreading parameter is proposed.
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3.3. Wind direction determination with two radars

Figure 3.13: Diagram of wind wave pattern and radio beam direction

The use of air-pressure maps is somehow subjective and maps are often of insufficient
quality [69]. In most cases, geometric one or two radar mapping methods are used to
determine the unique wind direction. Details are introduced in the section.

3.3.1 Least Square Minimum (LSM) method

Gurgel proposed a unique solution for the direction determination by means of Least Square
Minimum (LSM) principle [67]:

LSM(θi) = [R1 −
G(φ1 − θi + π)
G(φ1 − θi)

]2 + [R2 −
G(φ2 − θi + π)
G(φ2 − θi)

]2 (3.22)

where R1 and R2 are the power ratios of Bragg peaks at two radar sites. θi is the
variable, which is the direction of wind-wave. In the estimation, θi ∈ [0 ∼ 360◦], i.e., the
wind-wave directional pattern rotates a complete circle. The wind direction θ′i could be
decided by giving the minimum value of Equation 3.22. Figure 3.14a shows an example
of estimation of wind direction using LSM method, in which, the radio beam direction
φ1 = 215.5◦, φ2 = 305.5◦ and the ratio R1 = 2, R2 = 0.8. In the figure, the wind-wave
direction is decided by the minimum of the variance sum (indicated by one red circle). In
[67], the function cos2s(θ/2) is suggested with the spreading parameter s = 1 or s = 2.
Hyperbolic secant function could also be implemented with a predefined β value, a value
of β = 0.8 is suggested based on the range of Bragg peak power ratio. All these direction
patterns assume a fixed spreading parameter. In reality, the spreading of wind-wave pattern
varies with wind speed and wave age. Although the method can find the minimum error for
the wind direction estimation, in some cases (e.g., R1 ≈ R2), there might be two minima.
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Chapter 3. HF Radar Remote Sensing and Wind Inversion

(a) Wind direction estimation (LSM) (b) Multi-beam method

Figure 3.14: Conventional methods for wind direction determination

3.3.2 Multi-beam method using one radar site

The ambiguity removal by switching radio beam direction relies on the assumption of an
approximately uniform wind direction over the area of ocean being observed. This method
is proposed by M.Heron [65] and later discussed by Huang [69]. In their work, the ambiguity
is solved by a spatial analysis using the ability of the radar system to steer the beam to
different azimuths and sample the ocean over a short period of time (about 30 min). As
shown in Figure 3.14b, within the area of interest, the surface wind directions are assumed
to be uniform for stable sea state. This means that there is a continuity in the wind
direction between closely spaced radio scatter points and the sum of the differences of the
real wind directions in neighboring cells ought to be zero or near to zero. In M.Heron’s
work [65], he gave the idea that, if the radio beams φA and φB are steered to two cells at the
surface from one radar station, the radio beam directions are determined. The power ratio
R can be calculated from the radar Doppler spectrum, so the wind direction is the function
of wind-wave spreading parameter s (cos2s(θ/2) is used), so s can be predefined s ∈ [0, 10],
and wind direction θ can be given as a function of s by assuming that the wind direction at
these cells are identical. As a result, one value of s can be determined. But it is complicated
to calculate and there might be more than one solution for s. In this case, a third beam
direction is needed. In Huang’s work [69], he states that: the wind direction at these cells
doesn’t need to be identical, it can be determined by the minimizing the difference at these
cells. In the Figure 3.14b, three cells A, B and C are in three neighboring radio beam
directions, there are two possible wind directions on each cell. There are labeled as θAWi,
θBWi and θCWi (i=1,2). The sum of the differences of the wind direction in cell B from its
two neighboring cells is defined by

∆θijk = |θBWi − θAWj|+ |θBWi − θCWk| (i, j, k = 1, 2) (3.23)

The value of θBWi that minimizes ∆θijk is chosen as the true wind direction on cell B.
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3.3. Wind direction determination with two radars

In this manner, the wind direction on cell C can also be found by using cells B and D (D
doesn’t appear in the figure) and for subsequent cells. This technique is applied sequentially
to the whole field of view of the radar starting with nearest cells. In Huang’s calculation,
a choice of s = 1 is used for the spreading parameter throughout the experiment [69].

3.3.3 Pattern fitting with a varying spreading parameter

Various techniques have been introduced for extracting wind direction from HF radar
backscatter. All require essentially the power ratio of the two first-order peaks, combined
with an assumed directional distribution functional form of the resonant ocean waves. Al-
though the details of the techniques differ, the principle is now well established. The main
uncertainty lies in the dependency of the assumed wave directional distribution, implying
a dependency of measured wind direction on the prior knowledge of wind speed [7]. In this
dissertation, the author proposes a novel method for removing the wind direction ambiguity.
The wind direction can be written as:

θi = φi ±Θ(Ri) (i = 1, 2) (3.24)

where the subscript 1, 2 represent the two beams starting from the two radar sites to
the grid point, identifying a small patch at the sea surface. As illustrated within radar
coverage in Figure 3.15, the red star is the location where the wave buoy is deployed. Θ(R)
is the angle between radio beam direction and wind direction. In this example, φ1 = 215.5◦,
φ2 = 305.5◦.

3.3.3.1 Half-cosine 2s− power spreading function

If cos2s(θ/2) is used, Equation 3.24 can be rewritten as

θ±i = φi ± 2 arctan(R1/2s
i ) (for i = 1 and 2) (3.25)

In Figure 3.15, the site Fedje locates at a higher latitude and both sites face to the
west, so we have φ2 > φ1 and 0 < φ1 < φ2 < π. We take the radar beam direction φ1 as
an example and define R = [0.2, 0.8, 1, 2, 8], the wind direction curves θ±1 are illustrated
Figure 3.16a.

Regarding the two pairs of wind direction curves calculated from two radar sites, curves
θ±1 and θ±2 are a function of s value and the ratios are set to R1 = 0.1 and R2 = 4 in this
example. The results are given in Figure 3.16b. The wind direction curves θ±2 start at
direction θ+

2,s→0 = φ2 + π and θ−2,s→0 = φ2 − π, the curves θ±1 start at φ1. All the values at
the start points θ±i,s→0 are determined by the ratio R. Details are given in Table 3.2

The discussion of the possible number of cross points for these four curves (θ±1 and θ±2 )
are given in Appendix A.1. In some cases, they give more than one cross point, which
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Figure 3.15: Radio beams during the Fedje experiment

Ratio R Wind direction at s→ 0 Wind direction at s→∞
R > 1 θ = φ± π θ = φ± π/2
R < 1 θ = φ θ = φ± π/2
R = 1 θ = φ± π/2 θ = φ± π/2

Table 3.2: Wind direction θ and ratio R

also brings some ambiguity to wind direction inversion. In the next section, the hyperbolic
secant-squared function is discussed.

3.3.3.2 Hyperbolic secant squared spreading function

As introduced in Equation 3.24, if the hyperbolic secant-squared function is used, the wind
direction can be written as:

θ±i = φi ±
1
2β ln |1−R

1/2
i e−β·π

R
1/2
i eβ·π − 1

| (3.26)

As shown in Figure 3.10, the sech2(β · θ) is not a periodic function. We must define
that the angle between radio beam direction and wind direction θ − φ is in the range of
[−π, π]. Figure 3.11b gives the range of ratios when the β value is known, and if the ratio
R is known, the spreading value β has a lower limit value βmin. For example, if Ri < 1,
in order to cover all the direction range [−π, π], we need to make sure that: when θ = 0◦
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Figure 3.16: Direction curves and cross point for half-cosine 2s-power function

(here, φ is set to 0◦), the spreading parameter β has a lower limit, which makes:

sech2(βi,min · π)
sech2(βi,min · 0)

= Ri (3.27)

Hence

β±
i,min = 1

π
ln[( 1

Ri

)1/2 ± ( 1
Ri

− 1)1/2] (3.28)

If Ri > 1, from Figure 3.11b, we also need to make sure the direction covers range
(−π, π), so when θ = π (or − π)

sech2(βi,min · 0)
sech2(βi,min · π)

= Ri (3.29)

Hence

β±i,min = 1
π

ln[R1/2
i ± (Ri − 1)1/2] (3.30)

Considering that

R1/2 − (R− 1)1/2 = 1
R1/2 + (R− 1)1/2 < 1 for (R > 1) (3.31)

Therefore β−i,min < 0, we just consider the condition of β > 0, so

βi,min = 1
π

ln[( 1
Ri

)1/2 + ( 1
Ri

− 1)1/2] (Ri < 1) (3.32)

βi,min = 1
π

ln[R1/2
i + (Ri − 1)1/2] (Ri > 1) (3.33)
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Figure 3.17a shows the results of θ±i , without the lower limit of βmin, that is to say, with
the given value of ratio Ri, not only the direction in the range [−π, π] can be satisfied, but
also the angle exceeding the range of [−π, π]. Due to the non-periodicity of sech2(β · θ),
the lower-limit of the spreading parameter β is computed according to Equation 3.32 and
3.33. The direction curves are given in Figure 3.17b.
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Figure 3.17: Wind direction θ as a function of β and given values of R1 and R2

The cross point of two pairs of curves (θ±1 and θ±2 ) defines the value of β and the wind
direction θ. As indicated in Figure 3.17b, β = 0.5732 and wind direction θ = 188.3◦.

When the ratio Ri ≥ 1, the wind direction at βi,min is given by:

θi,βmin = 1
2βi,min

ln |1−R
1/2
i e−βi,min·π

R
1/2
i eβi,min·π − 1

| (φi = 0)

=


−π (Ri > 1)

0 (Ri < 1)

−π/2 (Ri = 1)

(3.34)

Figure 3.18 shows the wind direction derived from the ratio R1 and R2 (R1 < 1, R2 > 1),
and it gives the cross point (β = 0.9788, θ = 142.6◦).

The pattern fitting method is tested using the hyperbolic secant function and half-cosine
2s-power function. For the hyperbolic secant function, the curves θ±1 and θ±2 start from the
spreading parameter value β1,min and β2,min respectively, which are also related to the ratio
R1 and R2. Table 3.3 gives the values of β1,min, β2,min and wind-wave direction at the start
point θi,βi,min .
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Figure 3.18: Wind direction as a function of spreading parameter β and given value of R1
(R1 < 1) and R2 (R2 > 1)

Ratio R1 Ratio R2 spreading parameter βi,min Wind direction θi,βmin

R1 > 1 R2 > 1 β1,min ≥ β2,min (R1 ≥ R2)
β1,min < β2,min (R1 < R2)

θ±1 = φ1 ± π,
θ±2 = φ2 ± π

R1 < 1 R2 > 1 β1,min ≥ β2,min (R−1
1 ≥ R2)

β1,min < β2,min (R−1
1 < R2)

θ1 = φ1,
θ±2 = φ2 ± π

R1 > 1 R2 < 1 β1,min ≥ β2,min (R1 ≥ R−1
2 )

β1,min < β2,min (R1 < R−1
2 )

θ±1 = φ1 ± π,
θ2 = φ2

R1 < 1 R2 < 1 β1,min ≤ β2,min (R1 ≥ R2)
β1,min > β2,min (R1 < R2)

θ1 = φ1,
θ2 = φ2

R1 = 1 R2 = 1 β1,min = β2,min = 0 θ±1 ≡ φ1 ± π/2
θ±2 ≡ φ2 ± π/2

Table 3.3: The start point of direction curve (βi,min, θi,βmin) and the power ratio of the
first-order peaks R1 and R2

Another important difference is: for hyperbolic secant squared function, the direction
curves of θ±1 and θ±2 give only one cross point by limiting the range of spreading parameter
βi ≥ βi,min, which makes the cross point (β0, θ0) unique. For example, one direction curve
θ−2 could only have one cross point with curve θ+

1 or with the curve θ−1 , because the start
point of direction curve βi,min is not fixed at the value of zero. βi,min also changes with the
ratio Ri. Proof is given in Appendix A.2. So with the hyperbolic secant-squared function,
the wind direction could be determined as well as the spreading parameter β.
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Chapter 3. HF Radar Remote Sensing and Wind Inversion

3.4 Wind speed and radar backscatter echoes
The traditional methods for deriving wind speed from radar echoes are based on the second-
order spectrum. The second-order continuum is normalized by the power of first-order
peaks to cancel unknown factors, such as path loss and system gains [8]. Normally, the
SNR of the second-order sidebands is nearly 20 ∼ 40 dB (depends on wind conditions and
radar operating frequency) below the first-order peaks. Once the distance and azimuth
of radio beam are determined, the SNR of second-order spectrum depends on the ocean
surface roughness at the patch (∆d,∆φ) of interest. In Lipa’s backscatter numerical model
[70], P-M wave spectrum is implemented to give the simulated wave information from the
predefined wind speed. For example, we set the wind speed U1 = 4 m/s and U2 = 12
m/s respectively, radar operating frequency is 25 MHz, the SNR is set to 50 dB (Ratio of
stronger first-order peak to noise level). In these examples, at different wind speeds, the
simulated Doppler spectra are demonstrated in Figure 3.19.
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Figure 3.19: Doppler spectra at different wind speed (simulated Doppler spectra at 25
MHz)

The signature of radar second-order spectra is also related to radar frequencies. Barrick
gives a basic relationship between the normalized second-order spectra and radio wave
number [12]:

σ2(ωD)
σ1(ωD) ∝ k2

0 (3.35)

where ωD is the Doppler angular frequency, k0 is the radio wave number, σ1(ωD) gives the
power of the first-order peaks, σ2(ωD) is the second-order continuum around the first-order
peaks. In Equation 3.35, the second-order continuum σ2(ωD) is divided by the adjacent
first-order peak power. So at the same wind speed, the ratio of second-order continuum
to the first-order peak is proportional to the square of radio wave number k0. Figure 3.20
illustrates the simulated Doppler spectra at the radar frequencies of 13 MHz and 25 MHz.
The higher operating frequency gives a higher ratio of second-order continuum to the first-
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3.4. Wind speed and radar backscatter echoes

order peaks.
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Figure 3.20: Simulated Doppler spectrum at different operating frequencies

Two examples of HF radar range-Doppler spectra are shown in Figure 3.6 and 3.7. In
order to demonstrate the SNR of both first and second-order backscatter varies with the
radar range, Figure 3.21a gives the SNR of the first-order peak and the second-order spectra
during the Fedje experiment (27.68 MHz), and in the figure a line of 5 dB is also depicted,
which gives the SNR threshold for extracting wave spectrum from the radar spectrum.
As seen in this example, the range coverage of the second-order spectrum is only half
that of first-order peak (see the cross points of power curves and threshold). But when
radar is operated at a lower frequency (Lugrian Sea experiment, 12.254 MHz), as shown in
Figure 3.21b, the second-order spectra only covers nearly one-third of the distance covered
by the first-order peak. So at the same sea state, the SNR of the back-scattered second-
order spectra are lower when the radar operates at a lower frequency, which brings some
difficulties for extracting waves from the second-order spectrum.
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Figure 3.21: An example of the SNR of first-order peaks and second-order spectra during
the Fedje and Ligurian Sea experiment
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3.4.1 Wind speed inversion from HF echoes

In principle, the first-order peaks could be used to determine the ocean wave power spectrum
if the radar frequency could be varied at will. Unfortunately this can seldom be carried out
due to the practical limitations on radar design and strong radio interference. Hasselmann
[8] first suggested that the second-order Doppler sidebands ought to be proportional to
the non-directional wave height spectrum. The wave spectrum can be estimated from
the Doppler spectrum by solving a nonlinear integral equation, which relates the second-
order sidebands to the wave spectrum [71]. Dexter et al. [7] proposed a method using
the dependency of significant wave height and dominant wave frequency to estimate a
wind speed, which employs the Sverdrup, Munk and Bretschneider [43] (SMB) curves.
The algorithm overestimates wind speed because of the presence of swell. To develop this
idea further, it is necessary to partition the full two dimensional spectrum [10]. However,
the extraction of the wave spectrum requires a good signal-to-noise ratio of the second-
order spectrum [11]. In case of low wind conditions, especially when the radar works at
a lower operating frequency, the SNR of second-order spectrum is quite low [12]. The
first-order backscatter gives the dominant feature in Doppler spectrum and its strength is
proportional to the heights of the corresponding Bragg waves [46, 72]. Some researchers (Y.
Hisaki [11, 73], L.Wyatt [74]) use Bragg waves backscatter to derive short-wave directional
distribution. However, the method of deriving wind speed from first-order peaks hasn’t
been applied until recently.

3.4.2 Wind speed inversion from the first-order peaks

The first-order backscatter energy is proportional to that of the Bragg waves along the
radio beam. The wind direction and the shape of wind-wave (Bragg wave) directional
pattern determine the ratio of the first-order peak power. Both wave height and directional
spreading pattern of Bragg wave could be used to invert wind speed at sea surface, the
wind speed can be expressed as follow:

U10 = F [σ1(fB), σ1(−fB), G(fB, θ), φ] (3.36)

where F(·) is the function for inverting wind speed from the signature of first-order
peaks, which is a function of the positive and negative Bragg peak power σ1(±fB), the
directional spreading pattern of Bragg waves G(fB, θ) and the radio beam direction φ. If
the radar measurement is fixed to one certain grid point at the sea surface, the radio beam
direction is a constant value, which is an independent variable in Equation 3.36.

As shown in Figure 3.9, the radio beam goes through an area cell (rectangle in the
radio beam) with a direction range (φ′1 ∼ φ′2) and we define the averaged beam direction
φ′0 = (φ′1+φ′2)/2. In Figure 3.22a, the radio beam boundary line φ′1 and φ′2 can be parallelly
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3.4. Wind speed and radar backscatter echoes

shifted to the center of polar coordinate. In this example, we assume that the wind blows
from west and the spreading function is a half-cosine 2s-power spreading function with
s = 1. From the sector covered by the direction range φ ∈ (φ′1, φ′2) and the opposite
component φ ∈ (φ′1 + π, φ′2 + π), the wave components in these two opposite sectors give
the positive and negative Bragg backscatter.
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Figure 3.22: Wind wave pattern and wave energy along radio beam

Because of the narrow radio beam width (normally, φ′2 − φ′1 ≤ 15◦), the curve G(θ)
at θ ∈ [φ′1, φ′2] could be in proximity to a straight line. So the approximation is given as
follows:

∫ φ′2

φ′1

G(φ− θ)dφ ≈ G(φ′0 − θ) · (φ′2 − φ′1) (3.37)

Equation 3.13 can be written as:

R(θ, φ) = σ1(fB)
σ1(−fB) =

∫ φ′2+π
φ′1+π G(π + φ− θ)dφ∫ φ′2

φ′1
G(φ− θ)dφ

= G(π + φ′0 − θ)
G(φ′0 − θ)

(3.38)

where φ′0 = (φ′1 + φ′2)/2. The integral in Equation 3.38 could be demonstrated in Fig-
ure 3.22b, in which, the shadow regions give the integral value. According to Equation 3.13
and the discussion above, the amplitude of Bragg peaks in the Doppler spectrum can be
given:

σ1(−fB) = κ · E(fB) ·
∫ φ′2
φ′1
G(φ− θ)dφ

σ1(fB) = κ · E(fB) ·
∫ φ′2+π
φ′1+π G(π + φ− θ)dφ

(3.39)

where κ is a constant value based on Equation 3.11, E(fB) is the wave energy integrated
over direction at Bragg frequency.

In the example above, the directional spreading function is cos2s(θ/2) with a given value
of s = 1. But in HF radar remote sensing, the directional pattern might not be as regular
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as given in the figure, and the spreading parameter is also related to the wind speed. For
the inversion of wind speed from the first-order peaks, both the wave energy at Bragg
frequency and the directional spreading of Bragg waves are used. This method is valid
before the saturation of Bragg waves (including the wave height and directional spreading).
The saturation of directional spreading parameter and the method of using neural network
to help the wind speed inversion will be discussed in Chapter 4.

3.4.3 Wind speed inversion from the second-order sidebands

As discussed above, the wind speed might be derived from the radar first-order backscatter,
which is a new approach proposed in the dissertation. In case of strong wind conditions, the
Bragg waves are saturated and the SNR of second-order sidebands is sufficient for deriving
wind speed. Many researchers have investigated the methods for extracting wind speed
from ocean wave parameters such as significant wave height HS and peak frequency of
wave spectra fp. All these methods are based on the second-order backscatter effect.

3.4.3.1 Theoretical wave inversion method

Barrick [49, 72] showed that the second-order continuum of energy in HF radar backscat-
ter is produced by the combination of hydrodynamic non-linearity and a double scattering
mechanism. He derived an inversion technique for obtaining the wave height non-directional
spectrum [12, 75]. Approximations are used in the derivation and the technique is accept-
able for k0h∗ > 0.2, where k0 is the radar wave number and h∗ is the rms wave height. He
employed one of the stronger second-order Doppler sidebands and divides it by a parame-
terless, dimensionless weighting function w(ν) and then divides this result by the adjacent
first-order spectral energy. The non-directional wave height spectrum St(ω)

St(ωB|ν − 1|) = 4σ2(ωBν)/w(ν)
k2

0
∫+∞
0 σ1(ωd)dωd

(3.40)

where ν is the normalized frequency, ν = ωd/ωB, w(ν) is the weighting function of the
Doppler shift scaled by the Bragg frequency ωB. The coupling coefficients ΓH and ΓE are
for the sea wave height and electromagnetic scatter respectively. Barrick [12] removed the
coupling factors from the integral as a constant value, and the rms wave height is also given
[75]:

h2
∗ = 2

∫+∞
−∞ σ2(ωBν)/w(ν)dωd
k2

0
∫+∞
−∞ σ1(ωd)dωd

(3.41)

The weight is assumed to be invariant with the directional wave spectrum (0.5 < ν <

1.5). Barrick pointed out that the error associated with this assumption is dominated by
the angle between the wind direction and that of radar beam [76].
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The significant wave height HS can be calculated by

HS = 4× h∗ (3.42)

After Barrick proposed the method for extracting the non-directional wave spectrum.
Lipa [77, 78] showed that directional information can be derived from the pair of second-
order sidebands, she expressed the ocean wave spectrum as:

S(−→k ) = F (k)G(θ) (3.43)

The spectrum term in Equation 3.6 becomes a quartic function:

S(−→k1)S(−→k2) = F (k1)G(θ1)F (k2)G(θ2) (3.44)

in which, F (k) is the Pierson-Moskowitz model for the amplitude spectrum, and G(θ)
is the spreading function (half-cosine type is used)1

(a) Wind/radio direction (1)0◦ (2)60◦ (3)90◦ (b) Spreading 2s∗ = 8; 2s∗=4; 2s∗=2

Figure 3.23: Simulated second-order spectra (a) for different wind directions. Radar fre-
quency: 30 MHz, Wind speed: 22 knots, directional spreading factor: s∗ = 2; (b) for
different wave spreading parameter at radar frequency: 30 MHz, wind speed: 22 knots,
wind/radio angle (figures from Lipa 1977)

In Lipa’s method, the amplitude spectrum and the directional factor are separately
estimated using two regions of the spectrum, region 1 is for |ν − 1| > 0.4, where the two
scattering waves are saturated, the integrated waves could be represented by PM spectra,
Equation 3.44 can be written as:

S(−→k1)S(−→k2) ∝ G(θ1)G(θ2)/(k4
1k

4
2) (3.45)

This is linearized by the substitution of a trial function for G(θ2). The integral equation
1In Lipa’s paper, the spreading parameter s is used instead of 2s, so the s value here is the half value of

Lipa’s original value(for example, in Figure 3.23a the s value in Lipa is s = 4)
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is converted using numerical quadrature to a matrix equation which solved for a new esti-
mation of G. This process is repeated until convergence occurs. At the completion of this
step, the directional factor and the wind-wave direction are known. Second, treating the
frequency spectrum in the region |ν − 1| ≤ 0.4 and substituting the parameters derived for
G and the saturated amplitude spectrum for F (k2), as k2 always corresponds to a saturated
waves, reducing Equation 3.44 to a linear function of F :

S(−→k1)S(−→k2) = [G(θ1)G(θ2)/k4
2]F (k1) (3.46)

With the assumption of separability, it is assumed that all ocean wavelengths have
the same directional characteristics. The nature of the equation allows the directional
characteristics and the long-wave amplitude spectrum to be calculated separately. She
based the numerical technique on a regularization method developed by Phillips [79] and
Towmey [80]. The approximations made are reasonable for wind-driven seas, but it would
not be applicable if there is a well component propagating at a finite angle to the wind
direction [81].

There are other significant approaches to the problem of inverting the HF ocean backscat-
ter spectra to determine parameters of the directional ocean wave spectrum. For example, a
model-fitting technique to extract wave directional spectrum was presented by L.Wyatt [82],
which is an extension of Barrick and Lipa’s method [83] and extended the wave frequency
range that can be measured using radar frequencies in the lower HF band. Results of the
application to a wide variety of simulated radar spectra are presented in [82], which gave
some of the weakness as well as its strengths. The method predicted accurate estimates
of the long wave amplitude spectrum as long as wave components are propagating at an
angle which is not perpendicular to the beam, but there is an associated over-prediction in
amplitude. Except L.Wyatt’s method, Howell and Walsh [84, 85], Hisaki [71] gave solutions
for directional analysis but they lack the speed or robustness of one-parameter (significant
wave height) analysis based on Barrick’s approach.

3.4.3.2 Regression method

WERA group [67, 86] proposed an empirical method using the regression method dur-
ing EuroROSE project in 2000. The regression parameters are adjusted by in-situ buoy
measurements. With HF radar backscatter spectra measured at the same position by two
distinct sites, it is possible to determine the spectral amplitudes and the mean wave direc-
tion. After selecting the stronger first-order Bragg peak and normalizing the power of the
associated second-order sidebands by this first-order Bragg peak power, it is assumed that
the measured radar spectra Sk depends on the wave height spectrum measured by the wave
buoy Hk by
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αfSmk = HkG(φr − θk)

αfSpk = HkG(φr − θk + π)
(3.47)

where the indices m and p of S refer to minus (negative) and plus (positive) Doppler
shift relative to the first-order Bragg peak respectively, αf is the regression coefficients
at radar frequency f , k counts the spectral frequencies, e.g., k = 1, 2, ..., 21 (0.05 ∼
0.25 Hz with frequency step 0.01 Hz), G(·) is an angular spreading function and θk is the
wave direction at frequency k measured by the wave buoy and φr is the radio beam di-
rection. During the experiment, the buoy can give the wave measurement at the fre-
quency range of f ∈ [0.025 ∼ 0.58] Hz, but the radar measurement only gives an range of
f ∈ [0.05 ∼ 0.25] Hz, so the wave spectrum is preprocessed to the range which is same as
the radar derived wave spectrum.

The wave direction at different frequencies can be estimated from the ratio of second-
order sidebands. Lipa has given a basic relationship for the wind direction and the ratio
of second-order sidebands. In her model, the fully-developed wave model (P-M spectra)
and half cosine 2s-power directional model are implemented. Only the mean direction is
derived from the second-order amplitude ratio. Lipa [81] expressed that the long waves
may be derived from the second-order sea echo spectral peaks. This reversal results in
a closer examination of models of the radar Doppler spectrum produced by these waves.
In measured radar spectrum, the ratio of second-order spectrum is not a constant value,
because the shape of one side second-order spectrum is not a replica of other side.

With HF radar backscatter spectra measured at the same position by two distinct
sites, it is possible to determine the spectral amplitudes and the mean wave direction
with a resolution of e.g. 0.01Hz between 0.05 ∼ 0.25Hz. K.W.Gurgel gives the regression
coefficient αf0 as follow (f0 = 27.68 MHz) from the analysis of Fedje experiment:

αf0 =



0 0 < f 6 0.0125

23.75 + 500× (f − 0.06) 0.0125 < f 6 0.0825

35 0.0825 < f 6 0.09

31.25− 375× (f − 0.1) 0.09 < f 6 0.16

10.625− 21.875×
√
f − 0.16 f > 0.16

for f0 = 27.68MHz (3.48)

While the radar operates at other frequencies, according to Equation 3.35, the normal-
ized second-order sidebands are proportional to radio wave number k2

0 and radar frequency
(f0), so the regression coefficients can be used for other radar frequency if they are multiplied
by a factor

αf = (27.68× 106/f0)2αf0 (3.49)

47



Chapter 3. HF Radar Remote Sensing and Wind Inversion

The total wave energy is given by

< ξ2 >=
∫ ∞
0

Sk(f)df =
21∑
k=1

Sk(f)∆f (3.50)

where Sk(f) is the final wave spectrum derived from radar backscatter using regression
method and the significant wave height is given:

HS = 4 < ξ2 >1/2= 4(
21∑
k=1

Sk(f)∆f)1/2 (3.51)

The peak frequency of the spectrum could be given by making Sk(fp) = max. With the
SMB method (Equation 2.35), the wind speed could be derived from the radar second-order
spectrum.

3.5 Summary
In this chapter, the principle of the HF radar remote sensing and wind direction as well as
wind speed inversion from HF radar backscatter are presented.

When radar operates at different frequencies, the signature of backscatter spectra is
different as well. At a higher radio frequency, the radar range is shorter due to the higher
attenuation at the conductive ocean surface. Besides that, the roughness of the sea surface
brings some additional attenuation. In the radar Doppler spectrum, the SNR of the second-
order sidebands is quite lower than that of the first-order peaks. At the same wind condition,
the SNR of the second-order sidebands strongly depends on the radar frequency, at a
lower radar frequency, the SNR of second-order sidebands is lower, which brings some
difficulties for the wind speed inversion from radar second-order backscatter. But the first-
order backscatter gives a much higher SNR and covers a much larger area within radar
coverage than the second-order backscatter method.

From HF radar first-order backscatter, a new pattern fitting method is proposed for
the wind direction inversion as well as the directional spreading parameter (β) of Bragg
resonant waves. The method gives a unique solution for the wind direction. As introduced
in Chapter 2, at a certain wave frequency, the wave directional spreading parameter (s
or β) is closely related to the local wind conditions, so the spreading value β could be
implemented for the wind speed inversion.
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Chapter 4

Neural Network and Approaches of
Wind Inversion

4.1 Neural network and remote sensing

An Artificial Neural Network (ANN) can be defined as a highly connected array of ele-
mentary processors called neurons. The use of artificial neural networks for remote sensing
has been motivated by the realization that the human brain is very efficient at processing
vast quantities of data from a variety of different sources. Artificial neural networks do not
approach the complexity of the brain. There are, however, two key similarities between
biological and artificial neural networks. First, the building blocks of both networks are
simple computational devices that are highly interconnected. Second, the connections be-
tween neurons determine the function of the network [87]. A network can be trained to
perform a particular function by adjusting the values of the connections (weights) between
the elements. Research in the field of neural networks has been attracting increasing atten-
tion in recent years [88, 89, 90]. ANN representations are capable of developing functional
relationships from discrete values of input-output quantities obtained from experimental re-
sults or complex computational approaches. The generalization property makes it possible
to train a network on a representative set of input-output examples and get good results
for new input without further training the network.

In order to estimate ocean wave parameters from wind speed and direction at ocean
surface, various wave models have been developed in the last half century. Wind at sea
surface acts as the main input energy source for wave growth. Besides the wind speed,
other parameters such as fetch, duration and even the temperature stability (temperature
difference between air and sea) make the wind inversion from waves complicated. In HF
radar remote sensing, the complexity of radar equation also makes it difficult to derive wave
and wind information [76]. ANNs are ideally suited for applications where input to output
relationship is either unknown or too complex to be described analytically. They simply re-
quire a sufficiently variable data set consisting of measurements of the input parameters and
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the corresponding output parameters. ANN can be trained to learn the mapping process
between the input and output. The basic idea is to use the input-output pairs generated by
the radar data and in-situ measurements to train the neural network. In this dissertation,
a back-propagation (BP) learning method is used for training the network. This algorithm
uses the gradient descent algorithm to get the best estimates of the interconnected weights:
the weights are adjusted after each iteration. The iteration stops when a minimum of the
difference between the desired and the actual output is reached. After training, the networks
can automatically process the radar data and derive the wind data. This study therefore
addresses the issue using neural network to tackle the complexity and non-linearity of the
ocean waves scattering measurement by radar and the wind-wave relationship.

4.2 Principle of artificial neural network

An artificial neural network is a mathematical or computational model which consists of an
interconnected group of artificial neurons and processes information using a connectionism
approach. The neurons and the structure of neural network are introduced as follows:

4.2.1 Artificial neuron models and transfer functions

The fundamental processing element of a neural network is the neuron. An elementary
neuron with n inputs is shown below: each input is weighted with an appropriate wij (i
is the neuron node number in layer j). The sum of the weighted inputs and the threshold
θj (or bias bj = −θj) forms the input to the transfer function f(x). Neurons can use any
differentiable transfer function to generate their output. The neuron model can be written
as follow:

oj = fj(
n∑
i=1

wijxj − θj) = fj(WjXj − θj) (4.1)

where Wj = [w1j, w2j, ..., wnj], Xj = [x1j, x2j, ..., xnj]′ and fj is the transfer function in
the layer j. The structure of a neuron model is illustrated in Figure 4.1.

Figure 4.1: Structure of artificial neuron model (from Duch 1999 )
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The input of the transfer function is the sum of the weighted inputs and the bias.
Transfer functions should provide maximum flexibility of their contours with a small number
of adaptive parameters. Large networks with simple neurons may have the same power as a
small network with more complex neurons. The choice of transfer functions may influence
the complexity and performance of neural networks [91]. Here, several commonly used
transfer functions are introduced:

• Step function

f(x) =

1 x ≥ 0

0 x < 0
(4.2)

• Piecewise linear function

f(x) =


0 x ≤ x1

ax+ b x1 < x ≤ x2

1 x > x2

(a, b are constan values) (4.3)

• Logistic sigmoid function

f(x) = 1
1 + e−cx

(c is a constant value) (4.4)

• Tangential sigmoid function

f(x) = tanh(x) = ex − e−x

ex + e−x
(4.5)

4.2.2 Neural network structures

A network may have several layers, each layer has a weight matrix Wj, a threshold vector
θj (or bias vector −bj) and an output vector oj. To distinguish between the weight ma-
trices, output vectors, etc., for each of these layers, the number of the layer is appended
as a superscript to the variable of interest. For example, a three layer neural network1 is
illustrated in Figure 4.2.

In the multi-layer network, one of the output oi2 can be written as

oi2 = f2(W2 · f1(W1 ·X + θ1) + θi2) (4.6)

Multi-layer networks are quite powerful, for instance, a network of three layers, where
the second layer uses sigmoid function and the third layer uses linear function, it can be
trained to approximate any function arbitrarily well.

1Some authors refer to the inputs is not a layer, this work does not use that designation.
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Figure 4.2: Example of multi-layer neural network (from Demuth 2009 )

The structure of artificial neural network can be separated into two basic types: feed-
forward and feedback network. Feed-forward ANNs allow signal to travel one way only:
from input to output, there is no feedback (loops) i.e., the output of any layer doesn’t
affect the same layer. It tends to be straight forward networks that associate inputs with
outputs. Each input neuron is connected to all neurons in the hidden layer and each hidden
neuron is connected to all neurons in the output layer. Feedback networks can have signals
traveling in both directions by introducing loops and allowing connections between input
and output neurons and between hidden and other hidden neurons [92].

The neuron model and the architecture of a neural network describe how a network
transforms its input to output, this transformation can be viewed as a computation. Each
processing element is interconnected to others following a specific interconnect scheme.
The feed-forward neural network is the most popular and widely used model in many
applications. The earliest neural network is a single-layer perceptron network. The multi-
layer perceptron is a modification of the standard linear perceptron in that it uses three
or more layers of neurons with nonlinear transfer functions. It uses a variety of learning
techniques, the most popular is back-propagation. Here, the output values are compared
with the correct answer to compute the value of some predefined error-function. By various
techniques, the error is then fed back through the network. Using this information, the
algorithm adjusts the weights of each connection in order to reduce the value of error
function by some small amount. After repeating this process for a sufficiently large number
of training cycles, the network will usually converge to some state where the error is small
enough. In this case, the network has learned a certain target function. To adjust weights
properly, one applies a general method for non-linear optimization that is called gradient
descent. From this derivation of the error function, the network weights are calculated
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4.2. Principle of artificial neural network

and the weights are then changed so that the error decreases. For this reason, the back-
propagation can only be applied on networks with differentiable transfer function.

4.2.3 Introduction to back-propagation network

Error Back Propagation (BP) neural network is the most widely used neural network, which
is used by different research communities in different contexts. It was proposed in 1969 [93]
and rediscovered in 1985 [94]. The aim of the technique is to train the network so that
the response to a given set of inputs corresponds as closely as possible to a desired output.
There are two distinct steps in the back-propagation algorithm. The first step is calculating
the transformations of both the hidden layer(s) and the output layer units with respect to
the summarized weighted input variables in the network model called forward propagation.
It comes up with a predicted value and checks to see how well it compares to the observed
value by calculating the error. The second step is evaluating the derivatives based on the
error function with respect to network weights. Therefore, the algorithm then evaluates
the derivative of the error function by back-propagation the error terms backwards through
the network by performing the descent algorithm with corresponding adjustments made to
the weight estimates. This process continues until a best fit is achieved, that is, when the
vector of errors are all zero or when any one of the convergence criterion values are met.

4.2.3.1 Supervised learning

BP neural network is a supervised learning method and it requires a teacher who knows
the outputs for any given input. The sketch of supervised learning is given in Figure 4.3.

Supervisor

Network ∑
Error signal

Network output

Desired output

+

-

Network input

Figure 4.3: Sketch of supervised learning (from Demuth 2009 )

4.2.3.2 Differentiable transfer functions

BP requires that the transfer function used by artificial neurons is differentiable. The error
propagates backwards from output nodes to inner nodes. So technically speaking, back-
propagation is used to calculate the gradient of the error of the network with respect to the
network’s modifiable weights. This gradient is then used in a simple stochastic gradient
descent algorithm to find weights that minimize the error. Back-propagation usually allows
quick convergence on satisfactory local minima of error in the kind of networks to which

53



Chapter 4. Neural Network and Approaches of Wind Inversion

it is suited. Since this method requires computation of the gradient of the error function
at each iteration step, we must guarantee the continuity and differentiability of the error
function. Obviously sigmoid functions are suitable for the transfer function.

1. Logistic sigmoid (R → (0, 1))– also called logsig, defined by the Equation 4.4, the
function logsig generates output between 0 and 1 as the neuron’s net input goes from
negative to positive infinity. The constant c can be selected arbitrarily. The shape of
the sigmoid changes according to the value of c. Higher values of c bring the shape
of the sigmoid closer to that of step function. Here, c is set to 1, which is often used
in BP network

2. Tangential sigmoid (R → (−1, 1)) – also called tansig, this is derived from the hy-
perbolic tangent, defined by Equation 4.5. It has advantages over the logsig of being
able to deal directly with negative numbers. The function tansig generates output
between -1 and 1 as the neuron’s net input goes from negative to positive infinity

3. Linear function – occasionally, the linear transfer function purelin is also used in BP
neural network. If the last layer of a multilayer network has sigmoid neurons, then
the outputs of the network are limited to a small range. If linear output neuron is
implemented, the network outputs can be any value.

In back-propagation, it is important to be able to calculate the derivatives of any transfer
functions used. Each of the transfer functions above, logsig, tansig and purelin, can
calculate its own derivative. The three transfer functions described here are the most
commonly used transfer functions for back-propagation, but other differentiable transfer
functions can also be created and used if desired.

4.2.3.3 Error back-propagation and weight updating

Consider a feed-forward network with n input and m output units. It can consist of any
number of hidden units and can exhibit any desired feed-forward connection pattern. We
are also given a training set ({x1, t1},...,{xp, tp}) consisting of p pairs of n andm dimensional
vectors, which are called the input and output patterns. Let the primitive functions at each
node of the network be continuous and differentiable. The weights are randomly selected.
When the input pattern xi from the training set is presented to this network, it produces
an output oi,j different in general from the target ti,j. What we want is to make oi,j and
ti,j identical for i = 1, 2, ..., p, j = 1, 2, ...,m, so we have:

Ei,j = 1
2(oi,j − ti,j)2 (4.7)

The back-propagation algorithm is to find a local minimum of the error function, the
network is initialized with randomly chosen weights. The gradient of the error function is
computed and used to correct the initial weights. The first step is the minimization process
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of extending the network, so that it computes the error function automatically. Figure 4.4
shows the sketch of the structure. Every one of the j output units of the network is
connected to a node which evaluates the function 1

2(oij − tij)
2, where oij and tij denote the

j-th component of the output vector oi and of the target ti.

Network

( )2

1 1

1

2 i io t−

( )2

2 2

1

2 i io t−

( )21

2 im imo t−

iE+

Figure 4.4: Extended network for the computation of the error function (from Rojas 1996
)

We now have a network capable of calculating the total error for a given training error
for a given training set. The weight in the network is the only parameter that can be
modified to make the quadratic error E as low as possible. Because E is calculated by the
extended network exclusively through composition of the node functions, it is a continuous
and differentiable function of the ` weights w1, w2, ..., w` in the network. We can thus
minimize the E by using an iterative process of gradient descent, for which we need to
calculate the gradient

OE = ( ∂E
∂w1

,
∂E

∂w2
, ...,

∂E

∂w`
) (4.8)

Each weight is updated using the increment

4wi = −γ ∂E
∂wi

for i =1,2,...,` (4.9)

where γ represents a learning constant, i.e., a proportionality parameter which defines
the step length of each iteration in the negative gradient direction, the minus (−) sign
indicates a down-hill direction towards a minimum. Now, by the steepest descent (gradient)
procedure, we have that

ωij(k + 1) = ωij(k) + ∆ωij(k) (4.10)

The correction step is needed to transform the back-propagation algorithm into a learn-
ing method for neural networks. After choosing the first weights of the network randomly,
the back-propagation algorithm is used to compute the necessary corrections. The algo-
rithm can be decomposed in the following four steps [95]:

1. Feed-forward computation

2. Calculation of output error
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3. Error back-propagation

4. Weight updates

These four steps are conducted as a loop, and the algorithm will be stopped when the value
of the error function has become sufficiently small (a predefined small value).

4.2.3.4 Learning and training algorithms

Learning and training are fundamental for all neural networks. Training is an external
process. It is the procedure by which the network learns. Learning is the result that takes
place internal to the network. It is the process by which a neural network modifies its weights
in response to external inputs. Weights are changed when the output(s) are not what is
expected [96]. Training can take place in three distinct ways: supervised, reinforcement and
unsupervised. In the supervised training, the network is provided with an input stimulus
pattern along with the corresponding desired output pattern. The learning law for such
a network typically computes an error, that is, how far from the desired output network’s
actual output really is. This error is then used to modify the weights on the interconnections.

At present, researchers on NN mostly focus on how to get an efficient learning algorithm
and optimize the architecture. Traditional BP learning algorithm adopts a gradient descent
algorithm, which converges slowly and tends to trap into local minima. These defects lead
to weak learning abilities. To solve a nonlinear discrete problem, choosing a suitable train-
ing algorithm is critical to enhance the training speed and accuracy of the results [97, 98].
Many methods have been proposed subsequently and they mainly focus on the following
two ways: (1) Heuristic algorithm, including adding momentum terms, adopting adaptive
learning rate and spring-back algorithm; (2) Numerical optimization algorithms, includ-
ing Newton algorithm, conjugate gradient algorithm and Levenberg-Marquardt algorithm.
Among these methods, the Newton algorithm processes a second-order convergence prop-
erty. But for its high computation cost, the Newton algorithm often fails in applications.
As one of the improved Newton algorithms, the Levenberg-Marquardt (L-M) is the most
widely used algorithm which can maintain high convergence rate and good practicability.
It outperforms simple gradient descent and other conjugate gradient methods in a wide
variety of problems. L-M [99, 100] method provides a stepwise weight modification formula
that can be incorporated into a network training. The basic idea is to reduce the gradient
to zero which can be envisioned as making jumps directly toward the closest minimum on
the error surface. The weight modification formula is

∆w = −(Hd + γI)−1g (4.11)

where Hd is the diagonal approximation of the Hessian matrix with second-order error
derivations, g is the gradient vector, and γ is the regularization parameter, I is the unit
matrix. The diagonal elements of the Hessian can also be written in terms of the Jacobian
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matrix entries of the derivatives of the output with respect to the weights:

[Hd]ij =
N∑
n=1

[J ]i,n[J ]j,n (4.12)

where [J ]i,n = ∂P (xn)/∂wi. Having this correspondence is useful for rewriting of the
training algorithm in a more useful format. Details of Hessian and Jacobian matrix are
given in [101].

The Levenberg-Marquardt training rule is expressed using the elements of the Jacobian
is given alternatively by matrix equations:

∆w = −(JTJ + γI)−1g (4.13)

where g and J can be obtained by back-propagation. In order to gain efficiency the
diagonal approximation of the Hessian is adopted, which can be easily computed when
back-propagating the error, and to avoid numerical computation instabilities it includes
a regularization factor. When the regularization parameter goes to infinity, i.e., γ → ∞,
Equation 4.13 approaches the generalized delta rule for gradient descent learning. The L-M
method has an advantage over these methods as it is less sensitive to the ill-posedness of
the Hessian matrix due to the use of regularization.

Use of the L-M algorithm is recommended for training neural network in batch mode.
Alternatively, it can be used in incremental mode with the formula [102]:

∆wn = −( 1
[J ]in[J ]j,n + γI)gn (4.14)

where i and j are the weight vector indices.

4.2.3.5 Mean square error and flat spot

Once the network weights and biases are initialized, the network is ready for training. The
performance function for the feed-forward networks is MSE, which is the error calculated
by determining the Mean Square Error (MSE) between the network outputs o1, o2, ..., oN

and the targets t1, t2, ...tN (N is the number of output note):

MSE = 1
N

N∑
j=1

(oj − tj)2 (4.15)

During the network training, the value of the MSE decreases, as shown in Figure 4.5,
which is a typical MSE curve in the network training. The weight updating is done by
using the first derivation of the error index function with respect to the weights, because
the transfer functions are non-linear in general, the phenomenon of “flat spots” may appear
[103]. The derivative of the error index function with respect to the weights approaches
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to zero, which makes the weight update nearly equal to zero. This phenomenon is called
“fake saturation” or “flat spot” [104]. The flat phenomenon is formed by the total input
of neurons getting into the saturation region of neuron transfer functions. During the
training, if a unit in a multilayer network receives a weighted signal with a large magnitude,
it outputs a value close to one of the saturation levels of its transfer function, while the
corresponding target value is substantially different from that of the saturated unit, the unit
is incorrectly saturated. When this happens, the step of the weight updating will be very
small, even though the error is relatively large, and it will take an excessively long time for
such incorrectly saturated units to reverse their states [105]. The method to avoid the “flat
spot” should be considered by decreasing the total input of neurons and the appropriate
choice of transfer functions. The total input of neuron transfer functions is the weighted sum
of neuron outputs in the front layer. The bigger the number of total input of neurons is, the
more possible the neurons go into the saturation state. Therefore, the neuron outputs and
the amplitude of weights in the front layer must be limited. The investigations of transfer
functions for eliminating the “flat spot” in multi-layer feed-forward networks are discussed
in [106, 107]. The neurons in the output layer using the linear function and the neurons in
the hidden layer using the sigmoidal function can be used to approximate any non-linear
function. Obviously, if the linear transfer functions are used in output layer, the neurons
have no saturation state. Therefore there is no “flat spot” in the output layer and the
convergence speed of BP algorithm can be increased. Of course, some other improvements
have been developed to solve the “flat-spot” and speed up the BP convergence [108].
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Figure 4.5: Mean square error of the ANN during the training (from Demuth 2009 )

4.2.3.6 Generalization capability

From a biological perspective, generalization is very important for our creation of models
of the world. Think of generalization according to the following example. If you just
memorize some specific facts about the world instead of trying to extract some simple
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essential regularity underlying these facts, then you would be in trouble when dealing with
the novel situations where none of the specifics appear [109].

The generalization ability of neural networks is also considered as an important perfor-
mance criterion. In the BP network, not only a training set is needed, but also a testing
net is necessary for evaluating the performance of the network working on the new patterns
that have not been used in the network training process. Generalization is measured by
the ability of a trained network to generate the correct output for a new randomly chosen
input drawn from the same probability density governing the training set. Several factors
affect the capabilities of the neural network to generalize, that is, the ability of the neural
network to interpolate and extrapolate to data that it has not seen before. These include:
(1)Number of nodes and architecture. If a large number of simple processing elements
are used, the mathematical structure can be made very flexible and the neural network can
be used for a wide range of applications. This may be not necessary for all applications.
For example, very simple topologies using a small number of data points have been inves-
tigated. In general terms, the larger the number of nodes in hidden layer(s), the better
the neural network is able to represent the training data, but at the expense of the ability
to generalize; (2) Size of training set. The data set used must be representative of the
entire distribution of values likely to be associated with a particular class. If the extent of
the distribution of the data in feature space is not covered adequately the network may fail
to classify new data accurately. A consequence of this is that large quantities of data are
often required for training and researchers are often concerned with finding the minimum
size of data set necessary [110]; (3) Training time. The time taken for training also affects
the generalizing capabilities of the network. The longer a network is trained on a specific
data set, the more accurately it will be able to classify those data, but at the expense of
the ability to classify previously unseen data. In particular, it is possible to over-train a
network so that it is able to memorize the training data, but it is not able to generalize when
it is applied to different data [111]. Researchers have been making an effort to promote
the generalization ability and presented several methods, for example, early stopping [112],
regularization [113], fuzzification of input vector [114], neural network ensembles [115, 116],
etc.

4.3 Neural network design

In order to select an appropriate neural network configuration to perform wind inversion
from HF radar echoes, many major factors need to be considered.

4.3.1 Layers and number of neurons

In this work, a multi-layer structure is used for wind inversion. The number of layers can
be set to three (with one hidden layer) or four (with two hidden layers) or more, which
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depends on the complexity of the inversion. The number of nodes in the input and output
layers corresponds to the number of input arguments and desired outputs, which are easy
to determine. The number of nodes in hidden layer(s) affect both the network accuracy and
the time required for the training. If the number of nodes in the hidden layers is too small,
the internal structure of the data even can not be identified and therefore produces low
accuracies, and if the number is too large, it is likely to over-fit the training data and make
the computation too complicated. The selection of node numbers in the hidden layer(s)
can be determined by the designer’s tests and experiences. Some rules could be used as a
reference [117]:

• n1 =
√
n+m+ a, where n1 is the number of nodes in the hidden layer, n and m are

the numbers of the node in the input and output layer respectively, a is a constant
ranged from 1 to 10.

• n1 = log2 n, where n is the number of input nodes.

4.3.2 Training, validation and test data

In the application of a BP neural network, initially, each weight wi is set to some arbitrary
small random value. The process then goes through an iteration using the back-propagation
convergence technique with the training data set. Depending on the nature of the problem,
the neural network may be designed to approximate a function describing the training data,
or may learn relationships between input and output data within the training set. Training
sets can be significant in size with several thousand training examples. After each iteration,
the learning algorithm continues to adjust the network weight coefficients. The goal of
the training is that, after training the network to some stage, the internal neural network
parameters are developed to satisfy the designed requirements. Optimization procedures are
used to evaluate the derivatives of the error function with respect to the weight estimates.
But, none of the convergence algorithms guarantees a global minimum. The reason is that
the nonlinear error surfaces might consist of a number of minima. Adding more input layer
units and hidden layer units increases the propability of occurance of the multi-minima.
The validation data set is used to prevent over-fitting in monitoring the error in the iterative
process. The process uses the training data set to drive the gradient-descent grid search
and then uses the validation data set to produce the smallest squared error in minimizing
the objective function. Therefore, the process continues until a minimum error is reached in
the validation data set. The split sample procedure works best when there is enough data
allocated to the validation data set. Conversely, over-fitting can occur with a small sample
size of the training data set. Fitting a model to an enormous amount of data eliminates
over-fitting. There are no general rules for the precise allocation of the original data or the
input data set in the neural network. The allocation schema used in partitioning each one
of the data sets depends on both the amount of the available cases from the input data set
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and the noise level in the underlying data set.
In the Matlab neural network toolbox, early stopping is the default method for improv-

ing generalization, which is automatically provided for all of the supervised networks. In
this technique, the available data is divided into three subsets: the training data set, the
validation set and the test set. The training data set is used for computing the gradient
and updating the network weights and biases. The error on the validation set is monitored
during the training process. The validation error normally decreases during the initial phase
of training, as does the training set error. However, when the network begins to over-fit
the data, the error on the validation set typically begins to rise. When the validation error
increases for a specified number of iterations, the training is stopped, and the weights and
biases at the minimum of the validation error are returned. The test set error is not used
during the training, but it is used to compare different models (architectures) [118]. If the
error in the test set reaches a minimum at a significantly different iteration number than
the validation set error, this might indicate a poor division of the data set. Matlab also
provides four functions for dividing data into training, validation and test sets. They are
dividerand (Random Data Division), divideblock (Block Data Division), divideint (Inter-
leave Data Division) and divideind (Index Data Division). For example, the Random Data
Division divides the input data randomly, 60% of the samples are assigned to the training
set, 20% to the validation set and 20% to the test set. The other functions are introduced
in Matlab neural network documentation [119].

An example of validation performance and the training state are given in Figure 4.6,
which is one result of wind speed inversion from radar first-order backscatter during the
Fedje experiment. The network input and output data set as well as the network config-
uration will be introduced in Section 5.4. During the training, the “max fail” number is
set to 20, which means the training stops when the validation error continuously increases
for 20 iterations starting from the best validation performance, which is the minimum of
the MSE. In this example, the training stops at the 48th iteration, that means, the 28th
iteration gives the best validation performance, as shown in Figure 4.6a. The training state
is illustrated in Figure 4.6b, in which there is local minimum starting from 17th epoch, but
after several training epochs, the network jumps out of the local minimum. Besides the val-
idation check state, the intermediate parameter’s gradient value and Marquardt adjustment
parameter (mu) are also given [119].

4.3.3 Dependent variables selection for neural network

During the training, the selection of data set from radar echoes is very important. In prin-
ciple, only the wind or wave dependent variables should be used for the training, although
the noise in the radar Doppler spectrum is the independent variable, the noise could not be
suppressed easily and it strongly affects the performance of the neural network, especially
when the SNR of the input data set is low. Figure 4.7 shows a sketch of data selection for
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Figure 4.6: Network performance and training state (net.trainParam.max_fail = 20) in
wind data inversion from radar first-order backscatter during the Fedje experiment (details
of the network configuration are given in Section 5.4)

the neural network.

Another important issue that needs to be considered is, that for different applications of
the neural network, the selection of “dependent” variables for the input data is also different.
For example, the power of the first-order peaks depends on the directional distribution
of Bragg waves and the radio beam direction as well as the radar range. For the wind
inversion from radar first-order backscatter at the buoy location, the radio beam direction
and the radar range are constant values, which are not used as the input data set for the
network. But for the wind speed inversion at the other locations (also from radar first-order
backscatter), the radio beam direction and radar range are not constant values any more.
So they must be taken into consideration for the wind speed map inversion.

Radar Doppler 
spectrum 

and 
Experimental 
parameters

 (e.g. radio beam 
directions) 

(wind ) dependent 
variables

(wind) independent 
variables and

noise Neural network 
for wind 
inversion 

Figure 4.7: Sketch of data set selection for neural network
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4.4 Methodology of wind inversion from waves and
radar remote sensing

For many years, in order to meet the growing requirements for wave information, oceanog-
raphers have been developing models to predict ocean waves from measurement of wind
data. In all these models, wind speed is an important input parameter, which determines
the growth and decay of waves. Besides the wind speed, there are some other parameters
such as wind fetch, duration and intermediate parameters (wave age, friction velocity, etc.).
All these contribute to the waves and make the wind inversion very complicated. In HF
radar remote sensing, the motion of atmosphere could not give any reflection of electro-
magnetic waves. The only way for deriving wind is from the signature of waves, which can
also be derived from the radar backscatter echoes. During the experiments, an in-situ buoy
and an anemometer give the wave and wind measurements at the sea surface (anemometer
is installed at the lighthouse at Fedje). So the in-situ measurements could be used as the
target data for the network training and give the solution of wind at sea surface. The
Bragg scattering gives the signature of ocean waves at a certain frequency (fB). As we
have intensively discussed, the integrated Bragg wave energy and the directional spreading
parameter are closely related the local wind conditions. The second-order backscatter gives
the ocean wave spectra measurement at a wider frequency range f ∈ [0.05 ∼ 0.25] Hz.
So from both first-order and second-order backscatter, the wind speed could be inverted.
Besides the wind speed, with the help of directional waverider buoy and neural network,
the directional wave spectra could also be inverted from the radar backscatter.

At the buoy location, the in-situ wind and wave measurements provide the target data
for training the neural network. After a successful training, the network can process the
radar data automatically and invert wind data independently. For example, the meteorolog-
ical buoy is deployed at the grid point A for several days and moved to the other locations
within radar coverage B or C, etc. If at the location A, the buoy has already acquired
sufficient variables for the training, so after the buoy is moved away, the radar could still
invert the wind data using the trained the network. The same process is also conducted at
the grid point B and C, etc. Or during the experiment, if there are several meteorological
buoys deployed at the sea surface and measure the wind simultaneously, using the in-situ
measured wind data, the networks netA, netB and netC could be trained. When the buoys
are moved away, these networks could be used to calculate the wind direction and speed
at these gird points. Finally, the wind map could be depicted from the discrete measuring
points at the sea surface. The sketch of network application is given in Figure 4.8.

Because the first-order peak power and second-order sidebands strongly depend on the
radio beam direction, especially the power ratio of first-order peaks is directly related to
the angle between the radio beam direction and wind-wave direction. So when calculating
the wind speed within radar coverage, the power of the first-order peaks or the second-
order spectra can not be used to give the wind measurements at the other locations within
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Figure 4.8: Sketch of network application for wind inversion at the same grid point

radar coverage except the buoy location. In this work, some beam direction and radar
range independent parameters are tried in the neural network for the wind field. Before
introducing that, the wind derivation at the buoy location is discussed as follows:

4.4.1 Wind inversion from waves at certain frequencies

Both directional spreading pattern and wave power density of Bragg resonant waves give
the information on ocean surface wind. A radar could measure the resonant waves along
the direction of the radio beam, including the approaching and receding wave components.
In the HIPOCAS WAM model data, the complete wave directional patterns are given at
different wind conditions. Before inverting the wind speed from HF radar backscatter, the
HIPOCAS WAM model data is analyzed to find the relationship between Bragg waves
and ocean surface wind. In WAM data, we could not give the exact same value of Bragg
frequency due to the discrete wave frequency steps, but the waves of adjacent frequencies
are analyzed.

As introduced in Section 2.3, the spreading parameter of wave directional pattern de-
pends on the wind speed. The WAM model data gives the two-dimensional wave directional
spectra as well as the wave directional pattern at certain frequencies. In Chapter 2, some of
the WAM data is selected as shown in Figure 2.5. In this example, the wind speed increases
almost linearly and the wind direction becomes stable. The waves at the Bragg frequency
of 0.54764 Hz are taken as an example and the wave directional patterns at three different
wind speeds are illustrated in Figure 4.9.

In the WAMmodel data, there are 24 direction bins. The power density at each direction
bin is S(θi), where θi (θi = π·i

12 , i = 1, 2, .., 24). The power density S(θi) is a function of
wind speed and direction. If the parametric methods are used for the wind inversion from
the directional pattern and the power at each direction bin, 24 equations are needed and
it is difficult to invert wind speed from such equations. Here, a neural network method is
implemented to invert the wind speed from S(θ1), S(θ2), ..., S(θ24).

The wave directional spreading pattern and the power density at each direction bin are
used as the input data, the wind speed of WAM data is used for the target data, the sketch
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Figure 4.9: Wave directional patterns at frequency of 0.5476Hz

is given in Figure 4.10.

( )1S θ ( )2S θ ( )24S θ( )3S θ

windU

Figure 4.10: Sketch of neural network for inversion wind speed from Bragg waves using
WAM model data

In the network, the WAM model data at location E in the whole year of 2004 is analyzed
and the number of input neuron is 24, which is the number of direction bins. The scatter
plots of wind speed of WAM data and the neural network output are shown in Figure 4.11.
Two wave frequencies are selected based on the two corresponding radar frequencies used in
the experiments dissertation. Comparing with the integrated wave results in Figure 2.7, the
saturation of waves is not obvious, although the tendency of the saturation could also be
observed in Figure 4.11a. The reason is that the directional spreading pattern of resonant
waves is involved in the wind speed inversion, which might give a wider range of possible
wind speed inversion than that just using the integrated wave power density.

4.4.2 Method of wind inversion from radar first-order backscatter

Two radars are used during the radar experiments. The sketch of two radio beams and
wind-wave pattern is given in Figure 4.12. The shadow and dark regions indicate the
wave components which give the Bragg scattering to the radar sites respectively. HF radar
measurement could only give the measurements of four wave components on this Bragg
resonant wave directional distribution, and each beam sector is with a directional range of
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Scatter plot of wind speed(WAM) and neural network output at 0.54764Hz
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(a) at 0.54764 Hz (radar frequency: 28.83 MHz)
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Scatter plot of wind speed(WAM) and neural network output at 0.34Hz

CC = 0.9662

(b) at 0.34Hz (radar frequency: 11.1 MHz)

Figure 4.11: Scatter plot of wind speed inversion from waves at certain frequencies
(HIPOCAS WAM data)

φw. Although there is no complete wave directional pattern used for the inversion, with
the help of neural network, wind speed and direction could also be inverted from radar
first-order backscatter.
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Figure 4.12: Derivation of wind data from the radar first-order backscatter

The first-order peaks are the dominant feature in the radar Doppler spectrum and the
SNR (Signal to Noise Ratio) is much higher. σ1(fB), σ1(−fB) are the positive and negative
first-order peak power. Once one grid point is selected within radar coverage, the radio beam
directions are determined as well as the beam width φw. As shown in Figure 4.12, the two
pairs of first-order peak power σ1(fB), σ1(−fB) (at radar site 1) and σ′1(fB), σ′1(−fB) (at
radar site 2) are used as the input data set and the anemometer wind speed and direction
are used as the target data for training the neural network. The wind direction inversion
has been proved to be reliable with the pattern fitting method (hyperbolic secant function)
proposed in this dissertation, but still the neural network method is also tested. Details of
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the inversion and results are presented in Section 5.4.

4.4.3 Wind inversion from wave spectra

In Chapter 2, the method of wind speed inversion from the wave parameters such as signif-
icant wave height Hs and wave peak frequency fp is introduced, but in case of the presence
of swell or residual wave components, the wind speed will be overestimated. But if there is
a large deviation for the wave direction of the long waves and the wind waves, the swell or
residual wave components might be suppressed. The Bragg resonant waves are located at
the tail of the wave power spectrum, which are sensitive to the variability of wind direction,
so the wind direction inversion is only based on the first-order method. Here, only the wind
speed is inverted from the wave spectra. As shown in Figure 4.13, the input of the network
is the wave frequency spectrum and direction. The waverider buoy and the WAM model
data could give both wave direction and frequency spectrum. Regarding to the wind speed
inversion from the HF radar backscatter, the normalized pairs of second-order sidebands
are used as the input data set, which gives the information of wave amplitude and direction.
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Figure 4.13: Sketch of wind speed inversion from wave power density and direction

4.4.3.1 Wind speed inversion from wave buoy measurements

During the Fedje and Ligurian Sea experiments, the waverider buoy measures the wave
power density and direction. The wind data is collected by an anemometer. Both the wave
power density and direction are used as the input for the network, the anemometer wind
speed is used as the target data. After the training, the results of wind speed inversion from
wave buoy during the two experiments are given in Figure 4.14. Here, the scatter plots of
wind speed during the Fedje and Ligurian Sea experiments are presented respectively. At
the Norwegian Sea, the result of the network gives a better result than that at the Ligurian
Sea because the wind speed is relatively high. The statistics of the wind conditions is
presented in Section 5.1.3.1.
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Figure 4.14: Wind speed inversion from the wave spectrum measured by wave buoy

4.4.3.2 Wind speed inversion from WAM model data

The wave power density spectra and wave direction of the HIPOCAS WAM data are shown
in Figure 4.15, which are used as the input data set. The wind speed of WAM data is the
target data set. After the network training, the scatter plot of network result and wind
speed in WAM data is shown in Figure 4.16. The wave direction in Figure 4.15b gives the
information of wave direction at each frequency bin, which helps the network to identify
the possible swell or residual wave components and suppress them if the wave direction at
lower wave frequencies has a great deviation to that at higher frequencies.

(a) Wave power density spectra (b) Mean wave direction

Figure 4.15: Wave data at Location E in 2004
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Figure 4.16: Wind speed inversion from wave power density spectra and direction (WAM
model data)

4.4.4 Method of wind inversion from radar second-order effects

In Barrick’s second-order backscatter equation, both the non-linear wave-wave interaction
and the double scattering contribute to the second-order sidebands. The two dimensional
integral equations make the calculation complicated. Here, a new inversion method is used
with the help of neural network. The wind speed measured by anemometer is used as
the target data. In this inversion, the input data set is different from that used for wind
inversion from the first-order backscatter. At one radar site, the pair of sidebands of higher
signal-to-noise ratio is used as the input. The offset frequency range of the second-order
sidebands to the adjacent Bragg peak is from 0.05 to 0.25 Hz with a step frequency of
0.01 Hz (21 frequency points), so each sideband contains 21 spectra points. One radar site
gives an input matrix of 21×2, the two radar sites give an input matrix of 21×4. The pair
of second-order spectra at one site is written as σ2(fDi), σ2(−fDi), (i = 1, 2, ..., 21), at the
other site, they are written as σ′2(fDi), σ′2(−fDi), (i = 1, 2, ..., 21). The sketch of the wind
speed inversion is illustrated in Figure 4.17, at Fedje site, the pair of second-order sidebands
(VM(1) and VP(1)) around the negative Bragg peak are with higher signal-to-noise ratio,
while at Lyngoy site, the pair of the second-order sidebands (VM(2) and VP(2)) around
the positive Bragg peak are with higher signal-to-noise ratio.

4.4.5 Method of directional wave spectra inversion from radar
second-order backscatter

The second-order sidebands surrounding the first-order peaks give the information of direc-
tional wave spectra, the regression method has been successfully implemented for the wave
height inversion during the EuroROSE project [67]. But the wave direction inversion is also
based on the assumed spreading function (cos2(θ/2)). However, as the spreading pattern
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Figure 4.17: Wind speed inversion from the second-order sidebands

at lower wave frequencies is not regular, the mathematical description of the pattern might
be very complicated. Here, a neural network is used to invert directional wave spectra
from the second-order sidebands. The sketch of directional wave spectra inversion from the
second-order sidebands is illustrated in Figure 4.18. The target data is the wave power den-
sity spectrum and wave direction given by the waverider buoy. During the experiment, the
buoy can give the wave measurement at the frequency range of f ∈ [0.025 ∼ 0.58] Hz, but
the radar measurement only gives a frequency range of f ∈ [0.05 ∼ 0.25] Hz, so the wave
spectrum is preprocessed to the range which is same as the radar second-order sidebands.
The output of the network contains the wave power density spectrum and wave direction.
Details of the inversion will be discussed in Section 5.6.
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Figure 4.18: Wave power spectrum and direction inversion from the second-order sidebands
using neural network
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4.5 Extension of the wind measurements to the other
locations within radar coverage

The wind or wave inversion methods introduced earlier were designed for radar measure-
ments at the grid point where the buoy is deployed. The radio beam directions from the
radar sites to the buoy and the radar range are constant values. But regarding to the other
locations within radar coverage, the radio beam directions are definitely changed, and the
radio beam-width also changes slightly, which affects the backscattered first-order peak
power as introduced in Section 3.4.2 (two radio beams steering at the direction of 0◦ and
45◦ are presented in Figure 3.4). During the radar experiment, even if the wind speed and
direction are constant on the radar coverage, the power of the first-order peaks strongly
depends on the angle between wind direction and radio beam direction (φ− θ), which will
change if the radio beam is steered to some the other locations within radar coverage. An
example of radio beams pointing to three grid points within radar coverage is given in Fig-
ure 4.19. On the map, the wind direction at the grid point 1,2 and 3 are identical (θ0). φi
(i = 1, 2, 3) is the radio beam direction from the radar site to the grid point 1,2 and 3. We
assume that the point 2 is the location where the buoy is deployed and the beam direction
is φ2 = φ0, and the other two direction beam directions are φ1 = φ0 + ∆φ, φ3 = φ0 −∆φ.

Figure 4.19: Schematic of wind directions (red arrow), wave directional patterns at three
grid points and radio beam directions (φ1, φ2, φ3)

When training the neural network at the buoy location, the radio beam direction is
an independent argument for the wind inversion. But if we apply the trained network
to the other locations within radar coverage, the power of the backscattered first-order
peaks depends on the radio beam direction and the radar range. So some compensation
factors need to be used to “normalize” the radar echoes at other locations to the buoy
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location (azimuth and range compensation factors). For example, when the wind at the sea
surface is homogeneous, the Bragg wave heights are nearly at the same level. As shown in
Figure 4.19, although these three grid points are with the same distance off the radar site,
the backscattered first-order peak power is redistributed by the angle between the radio
beam and wind direction (φ− θ), and the power ratio of the first-order peaks changes with
the radio beam direction as well. In Figure 4.19, at each grid point, the wave component
OB and OA give the positive and negative first-order peak power respectively, and not only
the power ratio of the first-order peaks is different, but also the total power of the positive
and negative peaks (the length of line AB at the grid points are different). But in case
of the homogeneous wind field, the integrated Bragg wave energy E(fB) (integrated Bragg
wave energy over all directions) at these grid points is assumed to be constant.

In this work, the hyperbolic secant spreading function 0.5βsech2(β · θ) is used, as given
in Equation 3.37 and Figure 3.22. The wave component OB at grid point 2 is given as an
example:

S(fB2) = E(fB) ·
∫ φ0+∆φ2/2+π

φ0−∆φ2/2+π
0.5β2sech2[β2 · (π + φ− θ2)]dφ

≈ 0.5β2E(fB) · sech2[β2 · (π + φ0 − θ2)] ·∆φ2 (4.16)

where β2 and θ2 are the values of the spreading parameter and wind direction derived
by the pattern fitting method at the grid point 2. ∆φ2 is the beam-width of the radio beam
pointing to the grid point 2.

At grid point 1, the wave component OB S(fB1) is:

S(fB1) = E(fB) ·
∫ φ0+∆φ+∆φ1/2+π

φ0+∆φ−∆φ1/2+π
0.5β1sech2[β1 · (π + φ− θ1)]dφ

≈ 0.5β1E(fB) · sech2[β1 · (π + φ0 − θ1)] ·∆φ1 (4.17)

where β1 and θ1 are the values of the spreading parameter and wind direction derived
by the pattern fitting method at the grid point 1, ∆φ1 is the beam-width of the radio beam
pointing to the point 1.

As has been introduced in Equation 3.39, the positive first-order peak power σ1(fB2) at
the grid point 2 is:

σ1(fB2) = κ · S(fB2) = κ · 0.5β2E(fB) · sech2[β2 · (π + φ0 − θ2)] ·∆φ2 (4.18)

So we have:
E(fB) = σ1(fB2)

κ·0.5 · β2sech2[β2 · (π + φ0 − θ2)] ·∆φ2
(4.19)

Substituting E(fB) to the positive first-order peak power σ1(fB1):
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σ1(fB1) = κ · S(fB1) = β1sech2[β1 · (π + φ0 + ∆φ− θ1)]
β2sech2[β2 · (π + φ0 − θ2)]

· ∆φ1

∆φ2
· σ1(fB2) (4.20)

In order to generalize the application of the neural network trained at the buoy lo-
cation to the other locations on the map, for example, to the grid point 1, the azimuth
compensation factor for the positive first-order peak power is:

∆σ1(fB,∆φ) = σ1(fB2)
σ1(fB1)

= β2sech2[β2 · (π + φ0 − θ2)]
β1sech2[β1 · (π + φ0 + ∆φ− θ1)]

· ∆φ2

∆φ1
(4.21)

As shown in Figure 4.20, for the grid points on the range circle 1, the radio beam
azimuth compensation factor is used to normalize the first-order peak power to the grid
point where the buoy is deployed. But this is only valid for the grid points with the same
distance to the radar site (same path loss and attenuation). During the radar experiments,
two radars are placed at the coast. The azimuth compensation factor could not be used
in the case of two radars. For example, at the grid points on the circle 1, the power of
the first-order peaks at the site 1 can be normalized to that at the buoy location by the
azimuth compensation factor. But for the radar site 2, the azimuth compensation factor is
invalid, because the grid points on the circle 1 are not with the same distance to the site 2
(except for the other cross point).

Figure 4.20: Schematic of range circles of two radar sites for azimuth compensation factor

Besides the variance of radio beam direction, the compensation of the radar range needs
to be considered. The attenuation of the radio wave propagating at the sea surface also
plays an important part in the radar first-order peak power. The propagation of electro-
magnetic waves at a conductive sea surface has been briefly introduced in Section 3.1.2.1.
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In Figure 3.5, the received power decreases with the radar range, and the roughness of
the sea surface also increases some additional attenuation. This effect has been explained
by Shearmann [63]. At a high wind speed, the roughness of sea surface increases, which
increases some more path loss and decreases the radar range. That means, if there is a
target at the sea surface, e.g., a ship, the backscattered echoes are of a lower power (not
significant) due to the increased dual path loss between the radar site and the target. But
if the target is the Bragg resonant wave, the wave height increases with the wind speed. So
there are two factors acting on the backscattered first-order peak power due to the wind
speed: (1) the increasing wind speed increases the resonant wave height; (2) the increas-
ing roughness also brings additional attenuation due to the path loss, which decreases the
power level of the first-order peaks.

The power of the echoes scattered by the resonant waves are expressed by the negative
and positive first-order peaks, which depends on the angle between radio beam and wind
direction. So only with the empirical attenuation curves, the range compensation factor
could not easily to be calculated for the positive and negative Bragg peaks. All these factors
make it difficult to extend the wind speed measurement to the other locations using the
network trained at the buoy location.

The neural network can track all these variation of Bragg peak power and wind speed
at the buoy location with sufficient large of samples, but at the other locations within radar
coverage, we have no in-situ measurements to train the network. So we have to find some
parameters which are independent of the azimuth of the radio beams and radar range. In
this dissertation, the spreading parameter β, which is derived by the pattern fitting method,
is used to calculate wind speed at the other locations. During the experiment, the pair of
spreading parameter and wind direction (β, θ′) are derived at the buoy location, which are
used as the input data, and the in-situ measurements of wind speed and direction (U, θ) are
used as the target data. The network is trained along the time series. With the extension of
the trained network to the other locations, the wind map could be calculated. The sketch
of wind inversion within the radar coverage using neural network is given in Figure 4.21
and details are discussed in Section 5.4.3.

Network network (all input and 
target data are direction 

independent )
Trained Network

Spreading parameter and wind 
direction calculated using pattern 
fitting method at buoy location

Wind speed and direction given 
by the anemometer at buoy 

location

Target data

Training performance

Spreading parameter and wind 
direction calculated using pattern 
fitting method at other grid points

net

Wind speed and direction on the 
radar map

Figure 4.21: Sketch of network application for wind inversion within radar coverage
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4.6 Summary
This chapter presents the neural network design and the methodology of wind inversion
from HF radar backscatter.

In the wind inversion, the in-situ measurements are achieved by the anemometers on
the meteorological buoy or the lighthouse, which are used as the target data for the network
training. The wind could be inverted from the signatures of waves at a certain frequency
(amplitude and directional distribution) and the wave frequency spectra, which are related
to the radar first-order and second-order backscatter mechanisms respectively. In this chap-
ter, in order to verify the neural network methods for the wind inversion, the WAM model
data and the in-situ wave measurements are used as the input data and the correspond-
ing wind records are used as the target data. Several examples are given to illustrate the
functional performance of the networks. For example, for the wind speed inversion from
waves at a certain frequency, the WAM model data provides the complete information of
the wave amplitude and the directional distribution. Although the radar backscatter could
not give the exact same data structure as the WAM data or the wave buoy data, with two
radar sites at different locations, the two pairs of first-order backscatter peaks are used as
the input in the network, and power of the four first-order peaks is the echo scattered by
the four Bragg wave components along the two radio beam directions. Besides the method-
ology of wind inversion from radar first-order backscatter, the methods of wind speed and
directional wave spectra inversion from radar second-order backscatter are introduced.

The wind speed inversion at the other locations within radar coverage using neural
network is discussed. In the application of neural networks, the selection of the input data
set depends on the networks and the experimental conditions. For example, the power of
radar first-order peaks is related to the wind direction, radio beam direction and the radar
range. But at the buoy location, the radio beam direction and radar range are constant
values, so these variables are not used in the inversion. While at the other locations within
radar coverage, the radio beam directions and radar range should be considered. In order to
normalize the first-order peaks from the other locations to the buoy location, the calculation
of the azimuth and range compensation factors is discussed. But they are too complicated
and can not be applied. So the idea of using the radio beam direction and radar range
independent variable is proposed. In this work, for the calculation of the wind speed at the
other locations, the directional spreading parameter of the Bragg resonant waves is used,
which is derived by the new pattern fitting method. The spreading value (β) is independent
of radio beam direction and radar range and it is only related to the wind conditions at the
sea surface.
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Chapter 5

Radar Experiments and Results of
Inversion

5.1 Radar experiments and in-situ measurements

Data from two HF (WERA) radar experiments are used for wind speed and direction
inversion. One experiment was the Fedje experiment within the EuroROSE (European
Radar Ocean SEnsing) project, which was carried out in Norway (Fedje and Lyngoy) from
February to April in 2000. The radar operating frequency was 27.68 MHz. The other
experiment was carried out at the Ligurian Sea coast. The radar sites were located at
Palmaria and Rossore in Italy and the experiment took place from May to September 2009
and the radar operating frequency was 12∼13 MHz.

5.1.1 Fedje experiment

EuroROSE was an EU-funded project which demonstrated the possible advantage in op-
erational oceanography by combining area covering radar measurements with fine-scale
numerical models using advanced data assimilation techniques. The project was organized
in close cooperation with Vessel Traffic Service (VTS) operators in Fedje, Norway. Within
the EuroROSE Fedje experiment, surface current and wave measurements by HF radar were
obtained from two sites (Fedje and Lyngoy) at the Norwegian coast. The Fedje experiment
took place from February 8 to April 3, 2000. Radar frequency was 27.68 MHz and the
coverage area was approximately 40× 40 km2. The measuring period was 9 minutes and in
order to avoid interference, the two sites were operated successively and repeated every 20
minutes. Both WERA systems were configured to use a 16-element linear receive antenna
array. Azimuthal resolution was achieved by beam-forming techniques, allowing access to
the second-order sidebands in the Doppler spectrum. Each radar covered a sector of 120◦

as shown in Figure 5.1. The circles show the ranges of 25 km and 40 km respectively, the
grid on the map is the cells with a size of 1.2× 1.2 km.
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Figure 5.1: Radar coverage during the Fedje experiment 2000

Time: 2000.03.16 14:00
Significant wave height HS(m) 1.96
Peak period Tp (s) 10.53
total mean wave direction (◦) 64.98
total directional spread (◦) 42.52
Wave frequency spectra (0.025 ∼ 0.58Hz) 1× 64
Mean wave direction (direction at each frequency bin) 1× 64

Table 5.1: Example of wave parameters provided by waverider at the Norwegian Sea

In-situ wave measurements were provided by a waverider buoy, which was deployed
nearly 8 km offshore as shown in Figure 5.1. The buoy acquired wave data every half
hour. The buoy grid location within radar coverage is shown as a star. The in-situ buoy
measurement is used to verify the wave inversion from radar data. One example of wave
measurements is given in Table 5.1. The wave power density spectrum and mean wave
direction at each frequency bin are shown in Figure 5.2.

Unfortunately, there was no in-situ wind measurements at the sea surface, but there was
an anemometer installed on a lighthouse, located close to the Fedje radar site. Figure 5.3
shows the observed wind speed and direction at the lighthouse.
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5.1. Radar experiments and in-situ measurements

(a) Wave spectral density (b) Mean wave direction

Figure 5.2: waverider measurements during the Fedje experiment
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Figure 5.3: Wind speed and direction measured by the anemometer at Fedje

5.1.2 Ligurian Sea experiment

The Ligurian Sea experiment was used to investigate HF radar wind inversion in Italy
from April to September 2009. The radars were placed at Palmaria and Rossore within
a distance of 50 km from each other. The interface of radar data processing is shown in
Figure 5.4. A meteorological buoy and a waverider buoy were deployed between radar sites
about 30 km offshore ([43.876N, 9.873E]). The meteorological buoy provided in-situ wind
direction and speed measurements at sea surface and the waverider buoy provided in-situ
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Chapter 5. Radar Experiments and Results of Inversion

wave power density and wave direction measurements. As shown in Figure 5.4, the two
buoys are deployed closer to the Palmaria radar site. The maximum range of the radar
coverage can reach 120 km, which is much farther than that during the Fedje experiment
due to a lower radar frequency.

Figure 5.4: Interface of radar data analysis during the Ligurian Sea experiment

During the Ligurian Sea experiment, the waverider buoy collected wave data for a
period of 30 days on a half an hour interval, as shown in Figure 5.5. Compared to the wave
conditions during the Fedje experiment, the wave power density and the peak frequencies
of the spectra are quite different. The wave amplitude during Ligurian Sea experiment is
relatively lower and the peak frequencies are relatively higher. The meteorological buoy
provided wind speed and direction information for 68 days, acquiring wind data every 10
minutes. The time series of the wind speed and direction are shown in Figure 5.6.

(a) Wave power density spectra (waverider) (b) Mean wave direction (waverider)

Figure 5.5: Wave measurements by waverider during the Ligurian sea experiment
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Figure 5.6: Wind speed and direction measured by the anemometer at the Ligurian Sea

5.1.3 Wind and resonant waves

During the two experiments, the radar operating frequencies were different as well as the
corresponding wavelength of Bragg resonant waves, so the responses of the Bragg resonant
waves to the wind acting on the sea surface are also different.

5.1.3.1 Statistics of the wind speed during two experiments

The statistics of the wind speed are shown in Figure 5.7. The wind speed at the Norwegian
Sea is higher than that at the Ligurian Sea: 67.4% of the wind records are higher than 5
m/s. During the Ligurian Sea experiment, only 18.9% of the wind records exceed 5 m/s.
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Figure 5.7: Statistics of wind speed measurements by the anemometer
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5.1.3.2 Integrated Bragg resonant wave energy vs. wind speed

The waverider buoy measures the integrated wave power spectra over all directions, so the
wave power at a certain frequency can be extracted from it. Considering the two radar
frequencies (12 ∼ 13 MHz and 27.68 MHz), the corresponding Bragg wave frequencies are
given. In the wave spectrum measured by the waverider, the wave frequencies which are
close to the Bragg wave frequencies are selected for analysis. Figure 5.8 shows the power
of Bragg waves increases with the wind speed at two frequencies. Comparing these results
with the WAM data (Figure 2.7), the scatter plots are less clustered, because the number of
samples is not as many as that in the WAM data, and during the Ligurian sea experiment,
the wind speed is quite low.
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Figure 5.8: Wave energy at certain frequencies (two Bragg wave frequencies corresponding
to the two radar frequencies) vs. wind speed (anemometer measurement) during the two
experiments

5.1.3.3 Wind direction and mean wave direction at Bragg frequencies

The waverider gives the mean wave direction measurement at each frequency bin. Regarding
the two radar frequencies, the comparison of the mean wave direction at corresponding
Bragg frequencies and the anemometer measured wind direction are presented in Figure 5.9.
As seen in these figures, the wind direction and the mean direction of Bragg resonant waves
are not always identical, especially when radar operates at a lower frequency (longer Bragg
resonant waves). Besides that, the wind speed is also an important factor. During the
Fedje experiment, the wind speed is high and the mean wave direction agrees with the
wind direction well, but during the Ligurian Sea experiment, the wind speed is low and the
wind direction measurement is unreliable.

82



5.2. Wind inversion from radar first-order peaks using new pattern fitting method

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

Anemometer Measurement [o](Fedje 2000, 02/16 - 04/03)

M
ea

n 
w

av
e 

di
re

ct
io

n 
at

 0
.5

4H
z 

[o
]

Scatter plot of wave and wind direction (Freq =0.54Hz)
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(b) fBragg =0.36Hz (fradar=12.5MHz, Ligurian Sea)

Figure 5.9: Mean wave direction at Bragg frequencies (waverider) vs. wind direction
(anemometer) during two experiments

5.2 Wind inversion from radar first-order peaks using
new pattern fitting method

Several conventional methods for wind direction inversion have been described in Chapter 3.
Because the wind direction inversion from one radar is ambiguous, two radars are used
during the Fedje and Ligurian Sea experiments. In this work, the new pattern fitting
method and the hyperbolic secant function (0.5βsech2(β · θ)) are used for the wind direction
inversion, which give a unique solution for wind direction θ and the directional spreading
parameter β of the Bragg resonant waves.

5.2.1 Wind direction inversion during the Fedje experiment

During the Fedje experiment, the scatter plot of wind direction is shown in Figure 5.10a1.
Besides the wind direction measurement given by the pattern fitting method, the Least
Square Minimum (LSM) method is also tested with the directional function cos2s(θ/2) (s =
1). The result is given in Figure 5.10b. The pattern fitting method improves the direction
measurement (not significantly), because the spreading parameter is not predefined to a
constant value during the wind direction inversion. In reality, the spreading parameter
varies with the wind conditions at the sea surface. Many researchers simplify the spreading
parameter (s or β) to a constant value, because the spreading parameter is difficult to
calculate. In the forward method (i.e., wave model), the wind speed is a prior known

1Here, “RMSE” is the RMS (Root Mean Square) Error of wind direction measurement (U > 3 m/s,
a criteria for wind direction measurement). During the RMS error calculation, if the angular difference
between radar measurement and the anemometer data is larger than 180◦, the system will automatically
reprocess the data and make sure the difference is less than 180◦ (by adding 360◦ to the smaller value).
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Chapter 5. Radar Experiments and Results of Inversion

parameter, which determines the wave peak frequency (fp) and wave age (cp/U10), which
are used to calculate the spreading. But in the wind inversion from the remote sensing
data, the wind speed is unknown. So in this work, the spreading parameter (β) has been
determined using the pattern fitting method.
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(a) Pattern fitting method
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(b) LSM method (data provided by Gurgel)

Figure 5.10: Comparison of wind direction measured by radar using pattern fitting method
and LSM method during the Fedje experiment

The error of the wind direction measurement also depends on the wind speed and the
radar-derived wind direction is the mean direction of Bragg resonant waves. At a high
wind speed, the mean wave direction agrees well with the wind direction. At a low wind
speed, especially when the wind speed is near to zero, the wind direction measurement is
meaningless. The RMS error of the wind direction measurements using the pattern fitting
and LSM method is presented in Table 5.2, which illustrates the error analysis for the two
methods at different wind conditions.

RMS Error for wind direction measurement (◦)
Comparison of Wind speed (m/s) Different wind speed range (m/s)

inversion methods U > 3 0 < U ≤ 3 3 < U ≤ 10 U > 10
Pattern fitting method 23.2 72.5 25.8 12.5

LSM method 26.6 75.9 29.5 14.8

Table 5.2: Comparison of the RMS Error of wind direction related to wind speeds using
the pattern fitting method and the conventional LSM method during the Fedje experiment

In this dissertation, the pattern fitting method is proposed not only to invert the wind
direction, but also provides the directional spreading parameter of the Bragg resonant
waves. The spreading parameter increases with the wind speed, as shown in Figure 5.11.
It indicates that the resonant waves are more directive at a higher wind speed (the value β
is larger).
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Figure 5.11: Spreading parameter β vs. wind speed using the pattern fitting method
(sech2(β · θ)) during the Fedje experiment

Regarding to the other locations within radar coverage, the pattern fitting method is
also used and the lower limit for SNR of the first-order peak is set to 3 dB. One example
of wind direction map during the Fedje experiment is shown in Figure 5.12.

Figure 5.12: Wind direction map using pattern fitting method during the Fedje experiment
(radar measurement: wind direction at the buoy location is 331◦)
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5.2.2 Wind direction inversion during the Ligurian experiment

During the Ligurian Sea experiment, the radar frequency is 12 ∼ 13 MHz, the wavelength of
Bragg waves is 12 m (when the radar operates at 12.5 MHz) and the Bragg wave frequency
is 0.3607 Hz. The wavelength of the Bragg waves is nearly twice of that during the Fedje
experiment. For longer Bragg waves, the directional spreading pattern might not be as
regular as that of the short waves, and the wave response (time and amplitude) to the
changes of the wind is different as well. The scatter plot of wind direction measurements
using the pattern fitting method is shown in Figure 5.13a2.
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(a) Radar vs. in-situ wind measurement
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Figure 5.13: Scatter plots of wind (mean wave) direction during the Ligurian Sea experiment

From the in-situ wind and wave direction measurements (Figure 5.9), we know that the
wind direction and the mean wave direction of the Bragg waves does not agree well. So
another comparison between the radar measurement and the mean wave direction by the
waverider is shown in Figure 5.13b. From which, it is clear that the radar measurement has
a better agreement to the mean wave direction given by the waverider buoy, that is because
the radar could not measure the wind direction directly, so the mean wave direction at
Bragg frequency is used as an approximation for the wind direction.

The RMS error analysis is presented in Table 5.3. As seen in the table, the radar
measured wind direction is in a better agreement with the mean wave direction at the Bragg
frequency and at a higher wind speed, the wind direction measurement is more reliable. The
RMS error of the wind direction is larger than that during the Fedje experiment. The reason
is: In the wind direction inversion from HF radar backscatter, there is a hypothesis that the
wind direction is identical to the short wave direction. As shown in Figure 5.9, the mean

2Although the radar and meteorological buoy measure the wind every 10 minutes, the waverider measure
the mean wave direction every 30 minutes. In order to consistent with the waverider buoy measurements,
for the wind direction measurement by the radar and meteorological buoy, the results are averaged to one
observation every 30 minutes.
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5.2. Wind inversion from radar first-order peaks using new pattern fitting method

wave direction at the frequency of 0.54 Hz is in a good agreement with the wind direction,
however, at a lower Bragg frequency (0.36 Hz), it gives a larger deviation. Besides that,
the wind speed is low at the Ligurian Sea, which makes the wind direction measurement
not so reliable. So the result of wind direction during the Ligurian Sea experiment is more
scattered. Another possible reason is, that the wave directional spreading pattern at a lower
frequency is not as regular as that of the waves at a higher frequency. The wind direction
inversion using the hyperbolic secant function is based on the mathematical function. The
function is in a good agreement with the directional wave pattern at higher frequencies,
but at the relatively lower wave frequencies, the directional spreading pattern might be
disturbed by the possible swell or residual wave components due to the difference in the
wave direction.

RMS Error for wind (wave) direction measurement (◦)
Comparison of wind speed (m/s) Different wind speed range (m/s)
measurements U > 3 0 < U ≤ 3 3 < U < 10 U > 10

Radar – wind direction (meteo buoy) 57.2 80.3 57.6 20.4
Radar – wave direction (fB ,waverider) 46.7 50.9 47.1 10.7

Table 5.3: Comparison of the RMS Error of wind direction related to wind speeds for the
radar and the in-situ meteorological buoy as well as the mean wave direction measurements
during the Ligurian Sea experiment

The spreading parameter β vs. the wind speed is presented in Figure 5.14. Compared
to the spreading parameter increases with the wind speed during the Fedje experiment
(fB = 0.54Hz, Figure 5.11), the increasing rate of β during the Ligurian Sea experiment
(fB = 0.36 Hz) is higher. This is due to the difference between the two Bragg frequencies.
At a lower wave frequency, the increasing rate is higher.
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Figure 5.14: Spreading parameter β vs. wind speed using the pattern fitting method
(sech2(β · θ)) during the Ligurian Sea experiment
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One example of the wind direction map during the Ligurian sea experiment is presented
in Figure 5.15, the lower limit for SNR of the first-order peak is 3 dB. Each radar covers
a sector of 120◦. For Palmaria site, the coverage is φ ∈ [150◦ ∼ 270◦], for Rossore site,
the coverage is φ ∈ [222.4◦ ∼ 342.4◦]. The wind direction is calculated in the overlapped
covering area. At the buoy location, the wind direction derived from radar first-order peaks
using the pattern fitting method is 119◦, and at this moment, the in-situ wind direction
measurement given by the meteorological buoy is 128◦.

Figure 5.15: Wind direction map derived from the first-order backscatter using pattern
fitting method at the Ligurian sea (radar measurement: wind direction at the buoy location
is 119◦)

5.3 Wind speed inversion from radar second-order us-
ing the conventional method

Besides the radar first-order peaks, the second-order sidebands also give the information
on the ocean wave spectra. From the radar-deduced wave spectra, the wind speed could be
derived from the wave parameters (i.e., significant wave height and wave peak frequency)
using the SMB method. During the Fedje experiment in the EuroROSE (European Radar
Ocean SEnsing) project, Gurgel proposed a regression method to calculate the significant
wave height from the second-order sidebands.
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5.3. Wind inversion from second-order sidebands using conventional methods

5.3.1 SNR of the second-order sidebands

As introduced before, the SNR of the second-order sidebands depends on the wind con-
ditions and the radar frequency. The radar works at a higher frequency during the Fedje
experiment and the wind speed is high. As shown in Figure 5.16, we take the SNR of the
second-order sideband on the left side of negative Bragg peak during the two experiments
as an example. During the Fedje experiment, most of the second-order sidebands are with
a SNR higher than 5 dB. But during the Ligurian Sea experiment, the radar operates at
a lower frequency and the wind speed during the experiment is quite low. So the SNR of
second-order sidebands is also low. In Figure 5.16c and d, the SNR of the second-order
sidebands is much lower (note that the illustrated examples are the SNR of one sideband in
the two pairs of sidebands). So during the Ligurian Sea experiment, only the second-order
sidebands with the SNR above 5 dB are used for the wind and wave inversion.
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Figure 5.16: SNR of the second-order left sideband around the negative Bragg peak during
the Fedje and Ligurian Sea experiment
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5.3.2 Wind speed inversion from radar second-order spectra

If the wind speed is inverted from the wave parameters (significant wave height and wave
peak frequency), which are derived from radar second-order sidebands, it will be overesti-
mated in case of the presence of possible swell or residual wave components. Figure 5.17
presents the scatter plots of the wind speed between radar data and anemometer measure-
ment during the Fedje and Ligurian Sea experiment respectively. The regression coefficient
is derived based on the wave height measurement during the EuroROSE project, but the
measured waves are not pure wind-waves, so the results don’t agree with the anemometer
measurement very well.
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Figure 5.17: Scatter plots of wind speed derived from radar second-order sidebands using
the SMB method and anemometer measurements during the two experiments

The wind speed measurement based on the second-order method covers an area which
is much smaller than that given by the first-order method. The wind (speed and direction)
map during the Fedje and Ligurian Sea experiments are shown in Figure 5.18 and 5.19
respectively. The wind direction is derived using the pattern fitting method (hyperbolic
secant squared function). The wind speed is derived from the second-order sidebands
using the conventional method (regression method and SMB method). As shown in the
figures, the wind speed coverage based on the second-order method is smaller than the
wind direction map, and the wind speed during the two experiments is overestimated. For
example, during the Fedje experiment in Figure 5.18, at the buoy location, the inverted wind
speed is 9.03 m/s, while the wind speed measured by the anemometer is 7.2 m/s. During
the Ligurian Sea experiment in Figure 5.19, at the buoy location, the wave speed derived
from the radar data is 6.08 m/s, while the wind speed measured by the meteorological buoy
is 4.9 m/s.
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5.3. Wind inversion from second-order sidebands using conventional methods

Figure 5.18: Wind speed (from second-order sidebands using SMB method) and direction
(from the first-order peaks) map during the Fedje experiment (radar measurement at buoy
location: wind speed = 9.03 m/s, direction = 331◦)

Figure 5.19: Wind speed (from second-order sidebands using SMB method) and direction
(from the first-order peaks) map during the Ligurian experiment (radar measurement at
buoy location: wind speed = 6.08 m/s, direction = 119◦)
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5.4 Wind inversion from radar first-order peaks using
neural networks

Although the wind-wave directional spreading functions such as half-cosine 2s-power and
hyperbolic secant squared function have been widely used for wind direction inversion, the
investigation of wave spreading function is still under development. Some further researches
are conducted to find a better description of directional distribution of ocean waves. For ex-
ample, in finite-depth water or fetch-limited condition, the wave directional pattern is even
more complicated [120]. The conventional methods based on half-cosine type or hyperbolic
secant type could give a good agreement when the radar operates at a higher frequency
(shorter Bragg resonant waves). But if the radar works at a lower frequency and the corre-
sponding Bragg waves are with a longer wavelength and the directional spreading pattern
is not as regular as that of the shorter waves. So in this case, the irregular directional
spreading pattern brings some uncertainty for the wind inversion.

The neural network doesn’t need to know the functional form of the directional spreading
pattern. With the pairs of the input and target data, after the training, the network will
automatically generate a “function” for wind inversion. The sketch of wind inversion from
radar first-order peaks has been introduced in Figure 4.12. During the two experiments,
the radar data at the buoy location is intensively investigated. At this point, the radio
beam directions φ1 and φ2 are constant values, which are the independent variables in the
wind inversion, so they are not used as the input data. Only the two pairs of the first-
order peak power (two radar sites) are used as the input data. Wind speed and direction
measured by an anemometer are used as the target data set. The wind direction is the
angular degree (0◦ ∼ 360◦), so in the network, the sinusoidal component (y-component)
and cosine component (x-component) are used instead of one single value of the angular
degree, so the three elements (U, cos θ, sin θ) are used as target. The structure of data set
for wind inversion is shown in Figure 5.20, in which, σ1(±fB) and σ′1(±fB) are the two
pairs of the first-order peak power at two radar sites. The network output data is the wind
speed U ′ and the direction (cos θ′, sin θ′). Finally, the wind direction can be calculated from
the output of neural network:

θ′ = atan2(sin θ′, cos θ′) (5.1)

The specification of a three-layer neural network is given in Table 5.4. Error back-
propagation principle is implemented in the network. The number of input and output
neurons depends on the variables of the system, and the number of neurons in hidden layer
is based on some rules as given in Section 4.3.1. Some network parameter definitions are
also given in the table.
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Figure 5.20: Structure of data set for wind inversion from radar first-order backscatter

Network type BP network

Number of hidden layers 1
Number of Neuron of each layer 4-12-3

Net.trainParam.epoch (Maximum number of epochs to train) 1000
Net.trainParam.goal (Performance goal) 5e-3

Net.trainParam.lr (Learning rate) 0.1
Net.trainParam.max_fail (maximum failure number for validation) 20

Net.trainParam.mu (Marquardt adjustment parameter) 0.05
transfer function tansig (2nd), purelin (3rd)
train algorithm Levenberg-Marquardt

Table 5.4: Specification of neural network for wind inversion from the first-order backscatter

5.4.1 Wind inversion during the Fedje experiment

After the training, validation and testing, the scatter plots of the wind direction and speed
during the Fedje experiment are shown in Figure 5.21. Compared to the pattern fitting
method and LSM method given in Figure 5.10, the neural network gives a better result.
Besides the wind direction, the wind speed could also be inverted from the radar first-order
backscatter, the result is presented in Figure 5.21b. In WAM model data analysis, the inte-
grated wave energy increases with the wind speed at certain wave frequencies, which gives
one-dimensional description of wave growth. In Section 4.4.2, not only the integrated wave
energy, but also the wave directional spreading pattern is considered, the two-dimensional
information of the Bragg waves are used to invert wind speed, which contains more infor-
mation and makes the wind speed inversion more accurate. Besides that, the threshold for
Bragg wave saturation is higher if both amplitude and direction information are used for
the wind speed inversion. For example, the wind speed inverted from the two-dimensional
WAM data (Figure 4.11a) and radar first-order peaks (Figure 5.21b) shows a higher sat-
uration value than if only the integrated Bragg wave energy is used (Figure 2.7c), which
means, it will give a wider range for wind speed inversion if both Bragg wave amplitude
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and directional spreading information are used. In Figure 5.21b, at a higher wind speed,
more results of wind speed are located below the line y = x. That means if the wind speed
is increasing beyond the saturation limit, the Bragg waves will come to a state of saturation
(including integrated wave energy and the wave directional spreading pattern). In this case,
the wind speed could no longer be inverted from radar first-order backscatter.
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Figure 5.21: Wind direction and speed derived from radar first-order backscatter using
neural network and the anemometer wind measurement during the Fedje experiment
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Figure 5.22: Comparison of wind speed derived from the first-order backscatter using neural
network and the anemometer measurement during the Fedje experiment

The comparison of wind speed is demonstrated in Figure 5.22. The wind speed derived
from radar first-order peaks using neural network can cover the low wind speed measure-
ment. For example, from the data record 800 to 900, the radar measurements agree with
the anemometer measurements very well, which is an advantage of the method using first-
order peak power, because the Bragg resonant waves are sensitive to the change of the
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5.4. Wind inversion from radar first-order peaks using neural networks

wind speed. But for wind speed inversion from radar second-order sidebands, there is a
disadvantage, because the sea surface could not calm down immediately when the wind
becomes weak, the residual waves still remain. As a result, the wind inverted from the
waves (significant wave height and peak wave frequency) is overestimated.

The network randomly divides the input and target vectors into three sets: 60% are
used for training; 20% are used to validate that the network is generalizing and to stop
training before over-fitting; The last 20% are used as a completely independent test of
network generalization. The correlation coefficients of the training, validation and testing
are given in Figure 5.23 as well as the correlation coefficient of the total data set. The
illustrated example in Section 4.3.2 is the result of the network used in this application
(Figure 4.6). The network output tracks the targets very well for training, validation and
testing, the CC-value (Correlation Coefficient) is higher than 0.85 for the total data set.
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Figure 5.23: Correlation coefficients of training, validation and testing data for wind speed
inversion from radar first-order peaks during the Fedje experiment

During the training of the network, the network automatically verifies its performances.
For the application of the network, the trained network is used independently (only the new
input data is used). So the capability of the generalization is an important issue. In order
to verify the trained network, we manually select some data for testing. In the anemometer
measurement, we have 929 valid wind records. The first 200 wind records are selected for
manual testing and the last 729 data for the network training, validation and testing. The
729 data wind records consist of high and low wind speeds, which are sufficient and variable
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for the network training. Figure 5.24 shows the time series of the wind record.
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Figure 5.24: Records for manual testing and the network training

The scatter plot of the network output and the anemometer measurement for the 729
samples is given in Figure 5.25a, which gives a correlation coefficient of 0.8484. After the
training, the network net1 is generated and saved. We use the first 200 samples as the
input data for the network net1, they are the new input data. The scatter plot of the
network output and anemometer measurement for the manual selected testing data is given
in Figure 5.25b, the correlation coefficient value is 0.8366, which is acceptable for wind
speed inversion.
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(a) Scatter plot of last 729 samples
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Figure 5.25: Scatter plots of the wind speed, (a) is the result of network training, (b) is the
result using the trained network for the new data set.
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5.4. Wind inversion from radar first-order peaks using neural networks

5.4.2 Wind inversion during the Ligurian Sea experiment

The wind speed during the Ligurian Sea experiment is quite low. More than 85% of
wind records are lower than 5 m/s. The results of wind direction and speed inversion
during the Ligurian Sea experiment are shown in Figure 5.263. Although the RMSE of
the wind direction inversion is 49.8◦, it gives a better result than the conventional method
(Figure 5.13a). In the wind direction inversion, neither the pattern fitting method nor the
neural network method could give a result as good as that during the Fedje experiment.
This is because the wind speed is quite low, which makes the wind direction measurement
unreliable. Another reason is that the directional distribution of the Bragg resonant waves
is irregular due to the longer wavelength (double of that during the Fedje experiment). The
neural network can tackle the complexity of the Bragg wave directional distribution, but if
the directional distribution is very irregular (or unstable) due to the influence of the swell or
other effects, the network could not find the inversion “function” easily. If the relationship
of the nonlinear mapping is stable, although it is complicated, the neural network still
can accomplish the inversion successfully. But if the relationship is unstable (the swell or
residual wave direction is uncertain), the result of wind direction at the Ligurian Sea is not
as good as that at the Norwegian Sea.

The wind speed is also derived from radar first-order backscatter based on the neural
network method. The scatter plot of wind speed measurement is presented in Figure 5.26b.
From which, it is obvious to find that, most of wind records are clustered at the low wind
speed region, and the result using neural network is much better than that using SMB
method given in Figure 5.17b.
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Figure 5.26: Scatter plots of wind direction and speed derived from radar first-order
backscatter (neural network output) and in-situ wind at the Ligurian Sea

3In order to compare to the conventional method in Figure 5.13a, the result of wind direction is averaged
into one observation every 30 minutes. The wind speed measurement for radar and meteorological buoy is
every 10 minutes, so this result presents the original value of the wind speed (every 10 minutes).
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5.4.3 Extension the wind measurements to the other locations
within radar coverage using neural network

The conventional solution for wind speed inversion is based on the second-order method,
but the SNR of the second-order sidebands is much lower than that of the first-order peaks.
Especially when the radar operates at lower frequencies or the wind at sea surface is quite
low, the wind speed measurement by the first-order method could give a larger coverage
within radar coverage than the second-order method.

The power of radar first-order (positive and negative) peaks is related to the resonant
wave height, the roughness of the sea surface and the angle between radio beam and wind
direction. As introduced in Section 3.1.2.1, the roughness of the sea surface (due to surface
wind speed) brings some additional attenuation for the dual pass loss (radiation and reflec-
tion). Although the neural network can track all these variations of Bragg peak power and
wind speed at the buoy location with sufficient large of samples, for the other locations on
radar map, we have no in-situ measurements to train the network. The radar first-order
peak power is related to the angle between the radio beam and the wind direction. In these
cases, the spreading parameter β of the Bragg resonant waves is used to calculate wind
speed within radar coverage. The spreading value β vs. wind speed during two experi-
ments are presented in Figure 5.11 and 5.14. Both indicate that the spreading parameter β
at the corresponding Bragg frequencies increases with the wind speed before the saturation.
Besides the spreading parameter β, the mean direction of Bragg waves derived by the pat-
tern fitting method is also used, because it is also important for the directional pattern of
the resonant waves. For example, in Section 4.5, the wind direction at the three grid points
are used for calculating the azimuth compensation factors. The directional distribution of
the Bragg resonant waves is described by the spreading value and the wind direction.
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Figure 5.27: Sketch of wind speed inversion from the direction spreading information of
Bragg waves
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5.4. Wind inversion from radar first-order peaks using neural networks

In the network training, the Bragg wave directional spreading parameter and its mean
wave direction at the buoy location are used as the input data set (β, sin θ′, cos θ′). The
wind measured by the anemometer is used as the target data (U, sin θ, cos θ). The network
is trained along the time series. After training, the trained network is extended to the other
locations. The spreading β and wind direction θ′ at other grids points are used as the new
input data for the trained neural network. After the processing, the wind speed map is
presented. This is called the “spatial extension” for the application of the neural network.

The specification of a three-layer neural network is given in Table 5.5. Error back-
propagation principle is implemented in the network. The number of input and output
neurons depends on the variables of the system.

Network type BP network

Number of hidden layers 1
Number of Neuron of each layer 3-10-3

Net.trainParam.epoch 1000
Net.trainParam.goal 5e-3
Net.trainParam.lr 0.1

Net.trainParam.max_fail 20
Net.trainParam.mu 0.05
transfer function tansig (2nd), purelin (3rd)
train algorithm Levenberg-Marquardt

Table 5.5: Specification of neural network for wind inversion from the spreading information
of Bragg waves
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Figure 5.28: Scatter plots of the wind speed derived for spreading parameter using neural
network and the wind speed measured by anemometer during the Fedje and Ligurian Sea
experiments
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Figure 5.28 shows the scatter plots of the wind speed inverted from the spreading pa-
rameter and mean wave direction at the Bragg wave frequency. In Figure 5.28a, there is a
tendency of the saturation, which means that at the Bragg wave frequency, when the wind
speed increases up to some level, the directional spreading pattern of the Bragg waves comes
to a state of saturation. In this case, the wind speed could no longer be inverted from the
directional spreading of Bragg waves. Unlike the wind speed inversion from the first-order
peak power presented in Figure 5.21b, for the other locations within radar coverage, only
the wave directional information including spreading and mean wave direction at Bragg fre-
quency are used for the wind speed inversion instead of both the Bragg wave amplitude and
the directional spreading information, the directional spreading information contains less
information than both wave amplitude and directional spreading for wind speed inversion.
So the threshold for the saturation of Bragg wave directional spreading might be lower.
For example, during the development of Bragg waves, the response of directional spreading
at a certain frequency might be different from that of wave amplitude. The saturation of
Bragg waves for wind speed inversion from their directional spreading infomation appears
in Figure 5.28a.

During the Ligurian Sea experiment, the Bragg wave frequency is lower and the waves
need higher wind speed to get saturated, but the wind speed during the experiment is
quite low. Therefore, the threshold for the saturation is higher than that during the Fedje
experiment, and due to few high wind records, the tendency of saturation is not obvious
in Figure 5.28b. If the wind speed exceeds the threshold of the saturation, the wind speed
could no longer be derived from the directional spreading information of Bragg waves. So
this method is only valid before the saturation of directional spreading of Bragg waves.

An example of a wind map (speed and direction) during the Fedje experiment is shown
in Figure 5.29. Because the wind speed is derived from radar first-order backscatter using
the neural network method, it gives a larger coverage than that derived from the radar
second-order backscatter. The wind speed measurement covers an area as large as the
wind direction map (the threshold for the SNR of the first-order peaks is 3 dB). The wind
speed and direction map during the Ligurian sea experiment is shown in Figure 5.30. In
both figures, the anemometer measured wind speed and direction are given as well. For
example, during the Fedje experiment, the wind speed derived from radar data at the wave
buoy location is 7.05 m/s and the anemometer measured wind speed is 7.2 m/s. During
the Ligurian Sea experiment, the wind speed derived from radar data at the meteorological
buoy is 5.1 m/s and the anemometer measured wind speed is 4.9 m/s. Because at the Bragg
wave frequency, the resonant waves are not easily affected by the possible swell and residual
wave components, the results of the wind speed are much better than that calculated from
the radar second-order sidebands using the conventional method (as shown in Figure 5.18
and 5.19).
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Figure 5.29: Wind map (direction and speed) derived from first-order peaks using neural
network at the Norwegian Sea (at buoy location: wind speed = 7.05 m/s, direction = 331◦)

Figure 5.30: Wind map (direction and speed) derived from first-order peaks using neural
network at the Ligurian Sea (at buoy location: wind speed = 5.1 m/s, direction = 119◦)
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5.5 Wind speed inversion from HF radar second-order
backscatter using neural network

The wind speed inversion from the radar second-order spectra using the conventional
method has been presented in Section 5.3. The wave inversion from the second-order
spectrum contains the possible swell or residual wave components, which overestimates the
wind speed measurement. Here, a neural network method is introduced, which has the
advantage to tackle the issue of the complex non-linear mapping and suppress the possi-
ble swell or residual wave components if the wave directions at lower frequencies have a
large deviation to that at higher frequencies. The network is trained at the buoy location
and two pairs of the second-order sidebands (four sidebands from two radar sites, the pair
of sidebands with higher SNR is selected) are used as the input. The target data is the
wind speed U given by the anemometer. All data sets are shown in Figure 5.31, in which,
σ2(±fBi) and σ′2(±fBi) (i = 1, 2, ..., 21) are the selected pair of second-order sidebands of
the two radar sites respectively. The sketch of wind speed inversion from the second-order
sidebands has been introduced in Figure 4.17 and the specification of the network is given
in Table 5.6.

U

Neural 
Network

1

n

Target data

1

n

Network output

Network input

n

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 2 1 2 1 2 1

2 2 2 2 2 2 2 2

2 3 2 3 2 3 2 3

2 21 2 21 2 21 2 21

, , ,

, , ,

, , ,

                             

, , ,

B B B B

B B B B

B B B B

B B B B

f f f f

f f f f

f f f f

f f f f

σ σ σ σ
σ σ σ σ
σ σ σ σ

σ σ σ σ

′ ′− −
′ ′− −

′ ′− −

′ ′− −
M

2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 2 1 2 1 2 1

2 2 2 2 2 2 2 2

2 3 2 3 2 3 2 3

2 21 2 21 2 21 2 21

, , ,

, , ,

, , ,

                             

, , ,

B B B B

B B B B

B B B B

B B B B

f f f f

f f f f

f f f f

f f f f

σ σ σ σ
σ σ σ σ
σ σ σ σ

σ σ σ σ

′ ′− −

′ ′− −

′ ′− −

′ ′− −
M

1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 2 1 2 1 2 1

2 2 2 2 2 2 2 2

2 3 2 3 2 3 2 3

2 21 2 21 2 21 2 21

, , ,

, , ,

, , ,

                             

, , ,

B B B B

B B B B

B B B B

B B B B

f f f f

f f f f

f f f f

f f f f

σ σ σ σ
σ σ σ σ
σ σ σ σ

σ σ σ σ

′ ′− −
′ ′− −
′ ′− −

′ ′− −
M U ′

2

U2

U

U ′

U ′

Figure 5.31: Structure of data set for wind speed inversion from radar second-order side-
bands

5.5.1 Wind speed inversion from second-order sidebands during
the Fedje experiment

During the Fedje experiment, the results of the wind speed inversion are shown in Fig-
ure 5.32. As presented in the wind speed comparison (Figure 5.32b), the wind speed de-
rived from the second-order radar backscatter could not track the weak wind (data record
590∼610). That is because at the low wind conditions, the wind speed decreases almost
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Network type BP network

Number of hidden layers 2
Number of Neuron of each layer 21-16-12-1

Net.trainParam.epoch 1000
Net.trainParam.goal 5e-3
Net.trainParam.lr 0.1

Net.trainParam.max_fail 20
Net.trainParam.mu 0.05
transfer function tansig(2nd), tansig (3rd), purelin (4th)
train algorithm Levenberg-Marquardt

Table 5.6: Specification of neural network for wind speed inversion from the second-order
backscatter (at the buoy location)

to zero, but the wave energy still remains, which overestimates the wind speed. But if the
wind speed is inverted from the first-order backscatter, which can track the weak wind con-
ditions, that is because the short waves (Bragg resonant waves) are sensitive to the change
of the local wind conditions.
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Figure 5.32: Comparison of the wind speed inversion from radar second-order backscatter
using neural network during the Fedje experiment

5.5.2 Wind speed inversion from second-order sidebands during
the Ligurian Sea experiment

The SNR of radar second-order sidebands depends on the radar frequency and wind condi-
tions. During the Ligurian Sea experiment, the wind speed is quite low as well as the radar
working frequency, so the SNR of the second-order sidebands is also low. In this case, for
the wind speed inversion from the second-order sidebands, only the second-order sidebands
with a SNR higher than 5 dB are used, and the comparison of wind speed given by the
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radar and anemometer measurements are shown in Figure 5.33.
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Figure 5.33: Comparison of the wind speed inversion from radar second-order backscatter
using neural network during the Ligurian Sea experiment

Because the wind speed is inverted from the radar second-order sidebands, at the low
wind conditions, the wind speed is overestimated. As shown in Figure 5.33b, when wind
speed is lower than 2 m/s, the wind speed derived from radar second-order sidebands is
relatively higher than the in-situ wind data. At high wind speeds, the method could present
a good agreement.

5.5.3 Discussion of the wind speed inversion at the other loca-
tions within radar coverage using the second-order side-
bands and NN

The extension of wind speed measurement from the radar first-order backscatter using a
neural network has been successfully implemented to cover the whole radar map (cf. 5.4.3).
But the extension of wind speed measurement to the other locations within radar coverage
from the second-order sidebands is much more difficult, which is not applied in this work.

When second-order sidebands are used for wind speed inversion, they are normalized
by the adjacent first-order peak power. The power ratio of the second-order sideband
pair around the first-order peaks depends on the angle between the radio beam and wave
directions. The azimuth compensation factor for the first-order peaks has been introduced
in Section 4.5, in which the spreading parameter β and mean direction of the Bragg resonant
waves are used. For the waves at higher frequencies, the directional spreading pattern is
more regular, the result of the directional spreading parameter of the Bragg resonant waves
is calculated based on the hyperbolic secant function. This method is available on the
premise that the directional spreading pattern can be approximately described using the
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5.6. Wave inversion from radar second-order backscatter using neural network

mathematical functions. But the waves at lower frequencies are not easy to be described
using some mathematically functions and they might have nothing to do with the local
wind. In the radar Doppler spectrum, the frequency range for the second-order sidebands
is f ∈ [0.05 ∼ 0.25] Hz. The presence of swell and residual wave components make the
directional pattern more irregular. Besides that, in the wind speed inversion within radar
coverage from radar first-order backscatter, the spreading parameter β is calculated from
the power radio of the first-order peaks, the SNR of which is much higher than that of the
second-order sidebands. Especially at the lower and higher frequency end of the second-
order sidebands, the SNR is quite low and the spectra might smear into the background
noise. In this case, the power ratio of the second-order sidebands are somehow not reliable
when the SNR is low. Considering all factors above, the network trained at the buoy location
based on the second-order backscatter is not used to extend the wind speed measurement
to the other locations within radar coverage.

5.6 Wave inversion from radar second-order backscat-
ter using neural network

The methodology of directional wave spectra inversion has been introduced in Section 4.4.5.
In the inversion, the two pairs of second-order sidebands (two radars) are used as the input
data set, the wave power density spectra and wave direction given by waverider buoy are
used as the target data. The in-situ buoy measures the wave spectra at the frequency
of f ∈ [0.025 ∼ 0.58] Hz, but the radar second-order sideband only gives an range of
f ∈ [0.05 ∼ 0.25] Hz with the frequency step 0.01 Hz, so the in-situ wave measurements
are processed to be consistent with the radar second-order sidebands (wave power spectra:
S(fn) and wave direction θn(n = 1, 2, ..., 21)). The direction θn is represented by sin θn and
cos θn. The input data is a matrix of 21× 4 and the target data is a matrix of 21× 3. All
data sets are shown in Figure 5.34.
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Figure 5.34: Structure of data set for directional wave spectra inversion from radar second-
order sidebands

During the Fedje experiment, the SNR of the radar second-order sidebands is high,
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and during the Ligurian Sea experiment, there is some strong radio interference located
at the frequency range of the second-order sidebands. Some methods have been tried for
the suppression of the interference, but still, the shape of the second-order spectra is still
somehow polluted by the interference. So we just take the Fedje data as the example. The
wave power density of the target data (buoy data) and the output of the neural network are
given in Figure 5.35. As shown in the figure, some of the buoy measured wave spectra are
with a higher amplitude than the neural network output. Barrick’s first-order and second-
order scattering theory is available on the premise of three requirements as introduced
in Section 3.1.2. During a storm within the Fedje experiment, the wave height was not
small in terms of the radio wavelength and the surface slope was not small any more, so
the preconditions of the scattering theory have been vidated in this case. Besides that, the
second-order sidebands might increase to a value higher than the first-order peaks and make
it difficult to normalize the second-order sidebands. As a result, the amplitude of second-
order sidebands is underestimated in storm conditions. The comparison of wave direction
is presented in Figure 5.36. At the lower frequencies, there are some sudden changes in the
wave direction, which may due to the plotting in degree.

(a) In-situ wave power spectra measurement (b) Wave power spectra given by neural network

Figure 5.35: Comparison of wave power spectrum given by the in-situ buoy measurement
and neural network during the Fedje experiment

The training performance could not be easily expressed in these three-dimensional data
sets, so some example is given for the comparison. As seen in Figure 5.37, one buoy-
measured spectrum and the output of the neural network are given. We can find that both
the wave power spectrum and wave direction agree well with the in-situ measurements.

The RMS error for wave power density and wave direction is presented in Table 5.7. In
the wave inversion, significant wave height HS is normally used to describe the strength of
wave power. So the RMS error of the significant wave height is also given. Considering the
wave power spectra shape, the wave power dominates around the wave peak frequencies.
At the tail of the wave power spectra, the value of the power density is quite smaller than
that at the peak of the spectra . So the frequency range is separated into three frequency
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5.6. Wave inversion from radar second-order backscatter using neural network

(a) In-situ wave direction measurement (b) Wave direction given by the neural network

Figure 5.36: Comparison of wave direction given by the in-situ buoy measurement and
neural network during the Fedje experiment
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Figure 5.37: An example of wave comparison for the network output and buoy measurement

ranges: 0.08-0.14 Hz is the frequency range where the peaks of spectra are normally located;
0.15-0.20 Hz is the transcation frequency range for the short waves growing into long waves;
0.21-0.25 Hz is the tail of the spectra. Besides the absolute value of the RMS error, the
relative RMS error is also presented, which is the averaged error of the wave power density
(or wave height) divided by the corresponding averaged wave power density (or wave height).
At the frequency range 0.15-0.20 Hz, the RMS error of the wave power density and the wave
direction is smaller than the RMS error at the other two frequency ranges, because at the
lower frequency range, the wave power density is underestimated due to the strong wind
conditions and the limitation of the first-order and second-order scattering theory. At the
higher frequency range, the spectra amplitude is low, which might be smeared into the
background noise. The wave direction is also presented in the table. In the frequency range
0.15-0.20 Hz, the direction measurement is relative more accurate.
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RMS error for wave power density and direction inversion using NN
Frequency range (Hz) wave height Hs (m) power density (m2 · s)1 wave direction (◦)

0.08-0.252 0.52 13.2% 0.93 57.6% 22.5
0.08-0.14 2.01 59.9% 22.3
0.15-0.20 / 0.44 48.1% 19.0
0.21-0.25 0.21 61.2% 26.8

1. the percentage is the relative RMS error of the wave power density spectra
2. at the lower boundary of the frequency range, the power density might be influenced by the broadening
first-order peaks in the Doppler backscatter spectra, so the starting frequency is 0.08 Hz in the calculation

Table 5.7: RMS error for the wave power density and direction inversion during the Fedje
experiment

5.7 Summary

This chapter presents the two radar experiments and the results of wind and wave inversion.
The wind direction inversion using the new pattern fitting method is presented and it gives a
better result than traditional methods, and at a higher radar frequency (Fedje experiment),
the result of wind direction is in better agreement with the in-situ measurement.

For the wind speed inversion from radar backscatter, based on the different mechanisms
of the first-order and second-order scattering as well as the experimental conditions, three
neural networks are implemented for the inversion:

• The network using radar first-order backscatter as the input. At the buoy
location, the power of the two pairs of first-order peaks (two radars) is used as the
input data and the in-situ wind data is used as the target data. The input data
represents the four wave components along the two radio beams, which give the
information of the wave directional distribution and strength of Bragg resonant waves.
The results prove that the neural network is suited for the wind inversion from radar
first-order backscatter. After training, if the buoy is moved away, the network could
continue to process the radar first-order peaks and calculate the wind speed and
direction. This is called “time extension” for the application of the network.

• The network using the spreading parameter of resonant waves as the input.
The power of the first-order peaks is radio beam direction and radar range dependent.
If we want to invert the wind speed within radar coverage, the training data set at
the buoy location must be radio beam and radar range independent. In this case, the
Bragg wave directional information (spreading parameter and mean wave direction)
derived by the pattern fitting method and the in-situ wind measurements are used
for the training. With the network trained at the buoy location, the wind speed map
is covered by extending the network to the other locations. This is called “spatial
extension” for the application of the network. Besides that, the wind speed map
covers the same area as the wind direction map, because both are derived from radar
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first-order backscatter. So the wind speed map using neural network covers a larger
area than that derived from the second-order method using the conventional method.

• The network using the second-order backscatter as the input. In the former
two neural networks, the signature of the Bragg resonant waves is used for the wind
speed inversion, which is valid before the Bragg waves get saturated. If the Bragg
waves are saturated, the wind speed could not be derived from the first-order peaks
any more. In this case, the wind speed has to be inverted from the second-order
backscatter. The two pairs of second-order sidebands at two radar sites are used as
the input data, and the wind speed given by the meteorological buoy is used as the
target data. After training, the network can process the second-order sidebands and
derive the wind speed at the buoy location. This is also called “time extension” for
the neural network.

In this chapter, several neural networks and conventional methods are used for the wind
speed inversion. In order to compare the performance of these methods, the error analysis
of the wind speed at different wind conditions during the two experiment are presented in
Table 5.8.

RMS Error for wind speed inversion using different methods (m/s)
Experimental conditions Inversion methods

Radar Wind speed NN NN NN Conventional
experiments U (m/s) method11 method22 method33 method4

Fedje U > 3 1.85 2.45 1.77 3.52

Sea 0.1 < U ≤ 3 8.2% 1.98 2.19 2.18 5.88

(27.68MHz) 3 < U ≤ 10 66.5% 1.70 2.06 1.67 3.63

U > 10 23.5% 2.27 3.34 2.01 3.07

Ligurian U > 3 1.36 1.47 1.49 2.21

Sea5 0.1 < U ≤ 3 46.3% 1.13 1.29 1.99 3.64

(12-13MHz) 3 < U ≤ 10 50.2% 1.34 1.46 1.45 2.16

U > 10 1.67% 2.13 2.086 2.23 4.19

Table 5.8: RMS error analysis for wind speed inversion using different methods
1. NN method1: wind speed inversion from radar first-order peak power using neural network
2. NN method2: wind speed inversion from the directional spreading information of the Bragg waves using neural network
3. NN method3: wind speed inversion from radar second-order sidebands using neural network
4. Conventional method: wind speed inversion from radar second-order sidebands using regression and SMB method
5. For wind speed inversion from radar second-order backscatter during the Ligurian Sea experiment, only the spectra with
the SNR higher than 5 dB are used for the inversion.

6. There is an exception for wind speed higher than 10 m/s during the Ligurian Sea experiment, because there is only few

high wind speed record, 1.67% of record is higher than 10 m/s, so in this case, it is not statistically significant

As shown in the table, the network using the power of the first-order peaks (NN
method1) presents more accurate results than that using the directional spreading pa-
rameter (NN method2), because both the amplitude and directional distribution of Bragg
resonant waves are used for the wind speed inversion. But the NN method1 is only valid for
the wind speed measurement at the buoy location, while the NN method2 is designed for
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the wind speed inversion within radar coverage. It covers the same area as the wind direc-
tion field map. In case of the saturation of the Bragg resonant waves, the wind speed can
be inverted from the second-order backscatter. The neural network method (NN method
3) also provides better results than the conventional method.

Besides the wind inversion from the radar backscatter, the inversion of the directional
wave spectra from radar second-order backscatter is also given. The second-order sidebands
with higher SNR are used as the input data set and the waverider buoy measured wave
spectra are used as the target data. It gives a better result than the conventional method.
The network has the advantage to tackle the irregularity of the wave directional distribution
for the wave direction inversion and the complexity of two-dimensional non-linear integral
equations for the wave power spectra inversion.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

Estimating high quality ocean surface wind in coastal areas is an important issue for scien-
tific research and offshore resources investigation such as planning of offshore wind farms. A
land-based HF radar provides the unique capability to continuously monitor coastal ocean
surface dynamics at ranges up to 200 km. In HF radar remote sensing, the traditional
method for wind speed inversion is based on second-order backscatter measurements, but
the complexity of the nonlinear radar second-order integral equations makes it difficult to
derive waves as well as wind speed, and the SNR of the second-order sidebands is quite low.
In this dissertation, the HIPOCAS WAM data is analyzed to get a better understanding
of the wind acting on the ocean surface. As a result, new methods are proposed for wind
speed inversion from HF radar backscatter.

Referring to the goals in the introduction, the work accomplished in this dissertation
describes several new ideas for wind inversion from HF radar backscatter:

1. In former works, the Bragg resonant waves, which give the radar first-order backscat-
ter, are considered to be saturated due to the short wavelength. However, the
HIPOCAS WAM data shows that the resonant waves are not always saturated, espe-
cially when the radar operates at lower frequencies (longer resonant waves). In this
case, the amplitude and directional spreading of the resonant waves are related to
the local wind speed, so the wind speed can be inverted from HF radar first-order
backscatter.

2. In the radar backscatter Doppler spectrum, the power of the positive and negative
first-order peaks is proportional to the strength of the approaching and receding
Bragg resonant waves along the radio beam. To handle the uncertainty of both the
wave directional distribution at Bragg frequency and the complexity of the wind-wave
relationship, neural network methods are used for the wind inversion. The power of
the two pairs of the first-order peaks are used as the input data, and the in-situ wind
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measurements are used as the target data for the network training. The network
doesn’t need to know the functional form of the wave directional spreading. After the
training, the network automatically generates a “function” for the nonlinear mapping
between radar echoes and wind data.

3. A new pattern fitting method is proposed that gives a unique solution for both wind
direction and directional spreading parameter β of Bragg resonant waves. The spread-
ing value varies with the wind speed, which gives a new possibility for the wind speed
inversion. The network trained at the buoy location using the power of the first-order
peaks normally can not be extended to the other locations within radar coverage, be-
cause the first-order peak power is radio beam direction and radar range dependent.
But in this work, another neural network method using the directional spreading
information is presented. The spreading value of Bragg waves is independent of the
radio beam direction and the radar range. The network is trained using the spreading
parameter and the in-situ wind measurement at the buoy location. After training,
the trained network is extended to the other locations and the spreading parameter
β derived by the pattern fitting method is used as the new input for the wind speed
field inversion.

4. If the Bragg resonant waves come to a state of saturation, the wind speed could not
be inverted from the radar first-order backscatter any more. In this case, the second-
order backscatter has to be used. Although the conventional method for the wind
speed is also based on the radar second-order backscatter, it might overestimate the
wind speed in case of the presence of swell or residual waves. In this work, the neural
network method is investigated for the wind speed inversion from radar second-order
backscatter. Two pairs of second-order sidebands are used as the input data and
the in-situ wind speed measurement are used as the target data. After training, this
method gives a better result than the conventional method.

In the wind inversion from radar echoes, the wind speed derived from radar first-order
backscatter can cover the low and moderate wind speed conditions. Especially when the
radar works at a low frequency (long Bragg resonant waves), the first-order method can
be used over an extended wind speed range. At the buoy location, the network trained
using the first-order peak power gives a more accurate wind speed measurement, because
both the amplitude and the directional distribution of the Bragg resonant waves are used
for the inversion. But for the wind speed inversion at the other locations within radar
coverage, only the directional spreading information can be used, so the result is not as
accurate as that using both amplitude and directional spreading information. With the
help of the neural network, the wind speed measurement is also reliable. The wind speed
inversion from radar first-order peaks also has some limitations, in case of the saturation
of the Bragg resonant waves, the wind speed could not be inverted from the first-order
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backscatter any more, the second-order sidebands have to be used and the neural network
method is also implemented for the inversion.

The RMS Error analysis is presented in Table 5.8 comparing the performance of the
wind speed inversion using different methods. The neural network methods improve the
wind speed measurement, for wind speeds higher than 3 m/s, with the RMS error being
reduced by a factor of 1.5 to 2. Besides these, the wind speed field inverted from radar
first-order backscatter covers a much larger area than that inverted from radar second-
order backscatter, because the SNR of the first-order peaks is much higher than that of the
second-order sidebands.

For the wind direction measurement from HF radar backscatter, the accuracy strongly
depends on the radar frequency. When the radar works at a higher frequency, the wave-
length of the Bragg resonant waves is shorter, which leads to a better sensitivity for the
wind direction. Because the direction derived from the radar first-order backscatter is the
mean direction of the Bragg resonant waves, it is better to use a higher radar frequency for
the wind direction measurements.

6.2 Outlook
The amplitude of the radar first-order peaks depends on the radar range and the roughness
of the sea surface as well as the radar radio beam direction. In this work, the azimuth
compensation factor is calculated to normalize the first-order peaks at the other locations
to the buoy location (on the range circle where the buoy is located), but still, there are
some limitations. The range compensation factor is difficult to describe, not only the
electromagnetic wave attenuation at the sea surface, but also the roughness (sea state)
has to be considered. Besides that, the echoes of the resonant waves are split into the
positive and negative first-order peaks due to the Bragg wave directional distribution and
radio beam direction. But still, some statistical or empirical method could be tried for
the calculation of the compensation factors, or if we have several in-situ buoys deployed
at the sea surface, more target data could be used for the inversion. With all these future
investigations, we may find a way to use the first-order peak power for wind speed inversion
at all the grid points within radar coverage.

Concerning the relationship between the amplitude of the normalized second-order spec-
tra and the radar frequency (Equation 3.35), during the Fedje experiment, the wind speed
is high and the radar frequency is also high. During this high sea state, the second-order
sidebands might increase to a value higher than the first-order peaks, which brings some
trouble for the identification and normalization of the second-order spectra. In contrast,
the wind speed at the Ligurian Sea is quite low and the radar frequency is also low. During
the weak wind conditions, the second-order sidebands sometimes can not be distinguished
from the background noise. As a consequence, it is better to measure the higher wind speed
with a lower radar frequency and the lower wind speed with a higher radar frequency.
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Appendix A

Wind Direction and Power Ratio of
Radar First-order Peaks

A.1 Half-cosine 2s-power spreading function

In the wind direction from HF radar first-order backscatter, in order to remove the ambiguity of
the mathematical solution “±” and uncertainty of spreading parameter s, two radar sites are used
and the wind direction can be derived from each site:

θi = φi ± 2 arctan(R1/2s
i ) (i = 1, 2) (A.1)

where φi is the radio beam direction, Ri is the power ratio of the Bragg peaks, s is the
spreading parameter and θi is the wind direction measured by each site. Here, the author defines
that θ+

i = φi + 2 arctan(R1/2s
i ), θ−i = φi − 2 arctan(R1/2s

i ).
The wind direction θ and the directional spreading parameter s at the sea surface is unique.

That is to say, for all these four direction curves (θ±i , i = 1, 2), there should be one cross point,
or if they might have more than one cross points, but only one of these is true. The radar sites
are located on the coast facing to the west, and the author defines that the radar site at higher
latitude is site 1, the other one is site 2, so we have φ1 < φ2.

Considering different values of the R1 and R2, firstly, we take R1 < 1 and R2 < 1 as an
example. As introduced in Section 3.3.3, if R < 1, so


θi,s→0 = φi

θ+
i,s→∞ = φi + π/2

θ−i,s→∞ = φi − π/2

(A.2)

Note that 0 < φ2−φ1 < π, therefore, φ2− π/2 < φ1 + π/2. So there is one cross point for the
curves θ−2 and θ+

1 . For direction curves θ+
2 and θ−1 :

θ+
2 − θ

−
1 = φ2 + 2 arctan(R1/2s

2 )− (φ1 − 2 arctan(R1/2s
1 )) (A.3)

φ2 − φ1 < θ+
2 − θ

−
1 < φ2 − φ1 + π (A.4)
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Because 0 < φ2 − φ1 < π, hence, the direction curve θ+
2 and θ−1 don’t have a cross point.

With respect to the curves θ+
1 and θ+

2 , suppose there might be cross points satisfying the
following equality:

θ+
2 − θ

+
1 = (φ2 − φ1) + (2 arctan(R1/2s

2 )− 2 arctan(R1/2s
1 )) = 0 (A.5)

tan(φ2 − φ1
2

) = R
1/2s
1 −R1/2s

2

1 +R
1/2s
1 R

1/2s
2

(A.6)

Due to 0 < R1 < 1,0 < R2 < 1 and 0 < φ2 − φ1 < π, hence

0 < R
1/2s
1 −R1/2s

2

1 +R
1/2s
1 R

1/2s
2

< 1 (A.7)

In case of π/2 ≤ (φ2 − φ1) < π, tan(φ2−φ1
2 ) ≥ 1. Therefore, only when 0 < φ2 − φ1 < π/2,

there might exist cross point. From Equation A.6:

0 < R1 = [
tan(φ2−φ1

2 ) +R
1/2s
2

1−R1/2s
2 · tan(φ2−φ1

2 )
]2s < 1 (A.8)

0 < R2 = [
R

1/2s
1 − tan(φ2−φ1

2 )
1 +R

1/2s
1 · tan(φ2−φ1

2 )
]2s < 1 (A.9)

so we have the range of parameter s:

lnR1

2 ln(φ2−φ1
2 )

< s <
lnR2

2(ln[1− tan(φ2−φ1
2 )]− ln[1 + tan(φ2−φ1

2 )])
(A.10)

The variables (φ2 − φ1) and R2 can be determined during the experiment, s is uncertain
variable. So we define that:

R′1 = F[(φ2 − φ1), R2, s] = [
tan(φ2−φ1

2 ) +R
1/2s
2

1−R1/2s
2 · tan(φ2−φ1

2 )
]2s (A.11)

in which, s is a value in the range of Equation A.10. In the examples below, let R2 = 0.2,
φ1 = 205◦, φ2 = 250◦, with Equation A.11, the R′1 is depicted in Figure A.1a. The minimum value
of R′1 is 0.647. So the measured R1 is used to compare with the threshold (MinR′1), three cases
are discussed in Table A.1:

Number of cross points for θ+
1 and θ+

2 (K is the number)
R1, R2 and Min(R′1) (R′1:Equation A.11)

R1 R2 Min(R′1) = 0.647 Note K Note
0.4 0.2 R1 < Min(R′1) Figure A.1a 0 Figure A.1b
0.647 0.2 R1 = Min(R′1) Figure A.2a 1 Figure A.2b
0.8 0.2 R1 > Min(R′1) Figure A.3a 2 Figure A.3b

Table A.1: R1, R2 and number of the cross points for θ+
1 and θ+

2
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Figure A.1: No cross point for curve θ+
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Figure A.2: One cross point for curve θ+
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Regarding to the curves θ−1 and θ−2 , we have

θ−1 − θ
−
2 = φ1 − 2 arctan(R1/2s

1 ) = φ2 − 2 arctan(R1/2s
2 ) (A.12)

tan(φ2 − φ1
2

) = R
1/2s
2 −R1/2s

1

1 +R
1/2s
1 ·R1/2s

2
(A.13)

Note that tan(φ2−φ1
2 ) > 0 and 1 + R

1/2s
1 · R1/2s

2 > 0. So R1 < R2 and also R
1/2s
2 −R1/2s

1
1+R1/2s

1 ·R1/2s
2

< 1.
Therefore, only when 0 < φ2 − φ1 < π/2, they might exist cross point.

R
1/2s
1 =

R
1/2s
2 − tan(φ2−φ1

2 )
1 +R

1/2s
2 · tan(φ2−φ1

2 )
(A.14)

Since 0 < R
1/2s
1 < 1 and the denominator 1 + R

1/2s
2 · tan(φ2−φ1

2 ) > 1, in order to satisfy
Equation A.14, from Equation A.12, we also have

0 < R
1/2s
2 =

R
1/2s
1 + tan(φ2−φ1

2 )
1−R1/2s

1 · tan(φ2−φ1
2 )

< 1 (A.15)

0 < R
1/2s
1 =

R
1/2s
2 − tan(φ2−φ1

2 )
1 +R

1/2s
2 · tan(φ2−φ1

2 )
< 1 (A.16)

So we have the range of parameter s:

lnR2

2 ln(φ2−φ1
2 )

< s <
lnR1

2(ln[1− tan(φ2−φ1
2 )]− ln[1 + tan(φ2−φ1

2 )])
(A.17)

The variables (φ2−φ1) and R1 can be determined in the experiment, s is a variable, we define:

R′2 = F[(φ2 − φ1), R1, s] = [
tan(φ2−φ1

2 ) +R
1/2s
1

1−R1/2s
1 · tan(φ2−φ1

2 )
]2s (A.18)

In which, s is a value in the range of Equation A.17. In the example below, let R2 = 0.2,
φ1 = 205◦, φ2 = 250◦. With Equation A.18, the R′1 is depicted in Figure A.4a, the minimum value
of R′2 is 0.647. So the measured R2 is used to compare with the threshold (MinR′2), three cases
are discussed in Table A.2:

Number of cross points for θ−1 and θ−2 (K is the number)
R1, R2 and Min(R′2) (R′2:Equation A.18)

R1 R2 Min(R′2) = 0.647 Note K Note
0.2 0.6 R2 < Min(R′2) Figure A.4a 0 Figure A.4b
0.2 0.647 R2 = Min(R′2) Figure A.5a 1 Figure A.5b
0.2 0.7 R2 > Min(R′2) Figure A.6a 2 Figure A.6b

Table A.2: R1, R2 and number of the cross points for θ−1 and θ−2
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A.1. Half-cosine 2s-power spreading function
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Figure A.4: No cross point for curve θ−1 and θ−2 .
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The other cases are given in Table A.3, as shown in the table, in some cases, the pattern
fitting methods using the half-cosine 2s-power function presents more than one cross point
(solution) for the wind direction and the spreading parameter of the Bragg resonant waves.

R1, R2
curves having
cross points

∗condition

0 < φ2 − φ1 < π/2 R1 > R2 (θ+
1 ,θ−2 ) ; (θ+

1 , θ
+
2 )∗ R1 > [ tan(0.5·(φ2−φ1))+R1/2s

2
1−R1/2s

2 ·tan(0.5·(φ2−φ1))
]2s

R1 < 1, R2 < 1 0 < φ2 − φ1 < π/2 R1 < R2 (θ+
1 ,θ−2 ); (θ−1 , θ

−
2 )∗ R2 > [ tan(0.5·(φ2−φ1))+R1/2s

1
1−R1/2s

1 ·tan(0.5·(φ2−φ1))
]2s

π/2 < φ2 − φ1 < π / (θ+
1 ,θ−2 ) /

0 < φ2 − φ1 < π/2 / (θ+
1 , θ

+
2 ) /

R1 > 1, R2 < 1 π/2 < φ2 − φ1 < π R−1
1 < R2 (θ+

1 , θ
+
2 ); (θ−1 , θ

+
2 )∗ R2 > [ tan(0.5·(φ2−φ1))+R−1/2s

1
1−R−1/2s

1 ·tan(0.5·(φ2−φ1))
]2s

π/2 < φ2 − φ1 < π R−1
1 > R2 (θ+

1 , θ
+
2 ); (θ+

1 , θ
−
2 )∗ R1 < [ tan(0.5·(φ2−φ1))+R1/2s

2
1−R1/2s

2 ·tan(0.5·(φ2−φ1))
]−2s

0 < φ2 − φ1 < π/2 / (θ−1 , θ
−
2 ) /

R1 < 1, R2 > 1 π/2 < φ2 − φ1 < π R1 > R−1
2 (θ−1 , θ

−
2 ); (θ−1 , θ

+
2 )∗ R1 > [ tan(0.5·(φ2−φ1))+R−1/2s

2
1−R−1/2s

2 ·tan(0.5·(φ2−φ1))
]2s

π/2 < φ2 − φ1 < π R1 < R−1
2 (θ−1 , θ

−
2 ); (θ+

1 , θ
−
2 )∗ R2 < [ tan(0.5·(φ2−φ1))+R1/2s

1
1−R1/2s

1 ·tan(0.5·(φ2−φ1))
]−2s

0 < φ2 − φ1 < π/2 R1 < R2 (θ−1 , θ
+
2 ); (θ−1 , θ

−
2 )∗ R1 < [ tan(0.5·(φ2−φ1))+R−1/2s

2
1−R−1/2s

2 ·tan(0.5·(φ2−φ1))
]−2s

R1 > 1, R2 > 1 0 < φ2 − φ1 < π/2 R1 > R2 (θ−1 , θ
+
2 ); (θ+

1 , θ
+
2 )∗ R2 < [ tan(0.5·(φ2−φ1))+R−1/2s

1
1−R−1/2s

1 ·tan(0.5·(φ2−φ1))
]−2s

π/2 < φ2 − φ1 < π / (θ−1 , θ
+
2 ) /

*. Only when R1,R2 and (φ2 − φ1) meet these agreements, there could be cross point for the curves with
the star “*”

Table A.3: The possible cross points analysis for half cosine squared function

A.2 Hyperbolic secant squared spreading function

In Section A.1, the half-cosine function has been analyzed to find the possible cross points for
determining wind direction and spreading parameter. Here, hyperbolic secant spreading function
is also investigated to find whether the solution of wind direction θ and spreading parameter β is
unique or not.

We also take Ri < 1 as an example, and the radar beam direction is defined 0 < φ2 − φ1 < π,
on the premise of π/2 < φ2 − φ1 < π, the curve θ+

1,β→∞ = θ1 + π/2 < φ2, likewise, there is no
cross point for θ+

1 and θ+
2 either. If 0 < φ2 − φ1 < π/2, the curves θ+

1 and θ+
2 might exist cross

point, the analysis is given as follow:

φ1 + 1
2β

ln |1−R
1/2
1 exp(−β · π)

R
1/2
1 exp(β · π)− 1

| = φ2 + 1
2β

ln |1−R
1/2
2 exp(−β · π)

R
1/2
2 exp(β · π)− 1

| (A.19)

exp[2β(φ2 − φ1)] = [1− exp(βπ)R1/2
2 ][1− exp(−βπ)R1/2

1 ]
[1− exp(βπ)R1/2

1 ][1− exp(−βπ)R1/2
2 ]

(β ≥ max(β1,min, β2,min)) (A.20)
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A.2. Hyperbolic secant squared spreading function

∵ (φ2 − φ1) > 0 ∴ exp[2β(φ2 − φ1)] > 1
if R1 ≥ R2

[1− exp(βπ)R1/2
2 ][1− exp(−βπ)R1/2

1 ]
[1− exp(βπ)R1/2

1 ][1− exp(−βπ)R1/2
2 ]
≤ 1 (β ≥ β2,min) (A.21)

So there is no cross point when R1 ≥ R2, and there might be cross point when R1 < R2,
according to Table 3.3, we know that β1,min ≥ β2,min, so, max(β1,min, β2,min) = β1,min. Equa-
tion A.20 is complicated to find the solution, therefore, the monotonicity principle is analyzed as
follow:

We define that:

F1(β) = exp[2β(φ2 − φ1)] (A.22)

F2(β) = [1− exp(βπ)R1/2
2 ][1− exp(−βπ)R1/2

1 ]
[1− exp(βπ)R1/2

1 ][1− exp(−βπ)R1/2
2 ]

(A.23)

∂F1
∂β

= exp[2β(φ2 − φ1)] · 2(φ2 − φ1) > 0 (A.24)

∂F2
∂β

= [πR1/2
1 exp(−βπ)− πR1/2

2 exp(βπ)][1− exp(−βπ)R1/2
2 − exp(βπ)R1/2

1 + (R1R2)1/2]
[1− exp(βπ)R1/2

1 ]2[1− exp(−βπ)R1/2
2 ]2

− [πR1/2
2 exp(−βπ)− πR1/2

1 exp(βπ)][1− exp(−βπ)R1/2
1 − exp(βπ)R1/2

2 + (R1R2)1/2]
[1− exp(βπ)R1/2

1 ]2[1− exp(−βπ)R1/2
2 ]2

= π(R1/2
1 −R1/2

2 )[(1 +R
1/2
1 R

1/2
2 )(exp(−βπ) + exp(βπ))− 2(R1/2

1 +R
1/2
2 )]

[1− exp(βπ)R1/2
1 ]2[1− exp(−βπ)R1/2

2 ]2
(A.25)

∵ [1− exp(βπ)R1/2
1 ]2[1− exp(−βπ)R1/2

2 ]2 > 0 andR1 < R2

∴
π(R1/2

1 −R1/2
2 )

[1− exp(βπ)R1/2
1 ]2[1− exp(−βπ)R1/2

2 ]2
< 0 (A.26)

and

[exp(−βπ) + exp(βπ)] > 2 ( Hereβ 6= 0) (A.27)

(1 +R
1/2
1 R

1/2
2 )[exp(−βπ) + exp(βπ)]− 2(R1/2

1 +R
1/2
2 ) > 2[(1 +R

1/2
1 R

1/2
2 )−R1/2

1 −R1/2
2 ]

= 2[(1−R1/2
1 )(1−R1/2

2 )] > 0 (A.28)

Therefore

∂F2
∂β

= π(R1/2
1 −R1/2

2 )[(1 +R
1/2
1 R

1/2
2 )(exp(−βπ) + exp(βπ))− 2(R1/2

1 +R
1/2
2 )]

[1− exp(βπ)R1/2
1 ]2[1− exp(−βπ)R1/2

2 ]2
< 0 (A.29)

Note that, even though θ+
1 is monotone increasing and θ+

2 is monotone decreasing, but still
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Appendix A. Wind Direction and Power Ratio of Radar First-order Peaks

we can not prove that they will have a cross point. we also need to prove that F1,β→∞ > F2,β→∞

and F1,β1,min < F2,β1,min , only in these cases, they will have, and only have one cross point. From
Equation A.22 and Equation A.23, we know thatF1,β→∞ = +∞

F2,β→∞ = (R2/R1)1/2 < 1
(A.30)


F1,β1,min = exp{2(φ2−φ1)

π ln[( 1
R1

)1/2 + ( 1
R1
− 1)1/2]} = [( 1

R1
)1/2 + ( 1

R1
− 1)1/2]

2(φ2−φ1)
π

F2,β1,min = [1−exp(βπ)R1/2
2 ][1−exp(−βπ)R1/2

1 ]
[1−exp(βπ)R1/2

1 ][1−exp(−βπ)R1/2
2 ]

= (R2−R1)1/2−R1/2
2 −R1/2

1
(R2−R1)1/2+R1/2

2 −R1/2
1

(A.31)

if F1,β1,min = F2,β1,min , we have

R
1/2
2 = [(R1)−1/2 + (R−1

1 − 1)1/2]
2(φ2−φ1)

π + 1

[(R1)−1/2 + (R−1
1 − 1)1/2] + [(R1)−1/2 + (R−1

1 − 1)1/2]
2(φ2−φ1)

π
−1

(A.32)

For example, φ2 = 250.5◦, φ1 = 205.5◦, R1 = 0.3, from Equation A.32, we calculate the
threshold of R2,min = 0.5272. So we discuss the value of R2 and R2,min in three conditions:

If R2 = R2,min, the cross point will be at (β1,min, φ1), in Figure A.7a, the F1and F2 are given to
illustrate the monotone increasing of F1(β) = exp[2β(φ2−φ1)] and monotone decreasing of F2(β)
as given in Equation A.23, as discussed before, the β ≥ max(β1,min, β2,min), here βmin = β1,min,
Figure A.7b illustrates the cross point of curves θ+

1 and θ+
2 , the cross point locates at the start

point of curve of θ+
1 .

If R2 > R2,min, we define R2 = 0.7272, as shown in Figure A.8, the curves θ+
1 and θ+

2 will have,
but only have one cross point, Figure A.8a gives the curve of F1(β) and F2(β), because of the
characteristic of monotone-varying of F1(β) and F2(β), and we have proved at βmin, F1(βmin) <
F2(βmin), and when β → +∞, F1(β →∞) > F2(β →∞). So these two curves just have one cross
point. Figure A.8b shows the curves θ+

1 and θ+
2 and the cross point, we have β = 0.478 and the

wind wave direction is θ = 175◦.
If R2 < R2,min, we define R2 = 0.3272, as we seen in Figure A.9, the curves θ+

1 and θ+
2 will not

have a cross point, Figure A.9a gives the curve of F1(β) and F2(β), because of the characteristic
of monotone-varying of F1(β) and F2(β), and we have proved at βmin, F1(βmin) > F2(βmin), and
when β → +∞, F1(β → ∞) > F2(β → ∞). So these two curves just have no cross point.
Figure A.9b shows the curves θ+

1 and θ+
2 and the cross point is located at the curve θ−1 and θ+

2 ,
but not θ+

1 and θ+
2 , the cross point is also presented, we have β = 0.44 and the wind wave direction

θ = 226◦

Considering all conditions, the cross point for the two curves are detailed in Table A.4. From
which, we know that the pattern fitting method using the hyperbolic secant squared function gives
only one cross point for the wind direction and the spreading parameter of Bragg resonant waves.
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A.2. Hyperbolic secant squared spreading function
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Figure A.7: Threshold for R2 having a cross point of θ±1 and θ±2 (R2 = R2,min), the cross
point is (β1,min, φ1)
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Appendix A. Wind Direction and Power Ratio of Radar First-order Peaks
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Table A.4: The possible cross points analysis for hyperbolic secant squared function
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