THE SEGAL MODEL AS A RING
COMPLETION AND A TENSOR PRODUCT
OF PERMUTATIVE CATEGORIES

DISSERTATION
ZUR ERLANGUNG DES DOKTORGRADES
DER FAKULTAT FUR MATHEMATIK, INFORMATIK

UND NATURWISSENSCHAFTEN

DER UNIVERSITAT HAMBURG

vorgelegt
im Fachbereich Mathematik

von

Hannah Konig

aus Disseldorf

Hamburg 2011



Als Dissertation angenommen vom Fachbereich

Mathematik der Universitat Hamburg

Auf Grund der Gutachten von Prof. Dr. Birgit Richter
und Prof. Dr. Oliver Rondigs

Hamburg, den 09. Februar 2011

Prof. Dr. Vicente Cortés
Leiter des Fachbereichs Mathematik



Contents

[Introduction|

Bimonoidal categories|

Algebraic K-theory|

13

A multiplicative group completion|

[3.1 Graded categories| . . . . . . . . ...

[3.2  Definition of the Segal model K*R and first properties| . . . . . ... . ..

[3.3  K°*R is an I-graded category|. . . . . . . . . ... ... L.

[3.3.1  Multiplicative structure| . . . . . . ... .. ... . L.

3.3.2 Induced functors K™K — K™Kl . . . . . . . . . .. ... ... ...

A tensor product of permutative categories|

4.1 Quotient categories| . . . . . . . . . ...

4.2  The tensor product| . . . . . . . ... ...

11

17
17
20

23
23
27
37
38
42
46
o4

57
57
61
71
72

75






Introduction

Classically, algebraic K-theory of rings is the study of modules over a ring R and their

automorphisms. This study started with the definition of functors
K, : Rings — Groups, n=0,1,2

around the sixties of the 20th century. There are various applications connecting these
groups to invariants in many fields of mathematics. For instance, K of a Dedekind domain
R is isomorphic to Z @ CI(R) where CI(R) denotes the ideal class group of R and K5 of
a field F' is related to the Brauer group of F' which classifies central simple F-algebras.
Moreover, given a nice enough manifold M with fundamental group w, the Whitehead
group Wh(m), a quotient of K;(Zm), classifies h-cobordisms built on M.

There were several results, such as the existence of a product and an exact sequence in
nice cases, suggesting that these groups should be part of a more general theory. Around

1970, Daniel Quillen succeeded in constructing a space K R such that
m(KR)=K,(R), n=0,1,2. (0.1)

The higher K-groups of R were consequently defined as the higher homotopy groups of
K R. Other constructions of a space satisfying followed (e.g. [QuiT2a], [Wal85]) and
were shown to be equivalent to Quillen’s original one. The study of these spaces is now
called higher algebraic K -theory.

Higher algebraic K-theory is important in many branches of mathematics. One of the most
prominent conjectures involving higher K-theory is the Farrell-Jones Conjecture. Given
a group G, it relates K-theory of the group ring RG to equivariant homology of certain

classifying spaces.

Comparing the different constructions of the K-theory space K R in retrospect, the main

idea bonding them is taking a symmetric monoidal category C and associating to it another



symmetric monoidal category C’ such that its classifying space BC’ is the group completion
of the space BC. (In fact, this concept was used to show that the different constructions
are equivalent, cf. e.g. [Gra76].) In this sense, we can talk about algebraic K-theory of
symmetric monoidal categories. There are again several constructions of the category C’
and a unified way to describe them is to associate to a given category C a connective
Q-spectrum Spt(C). Then, algebraic K-theory of C can be defined as

K,(C) = m(Spt(C)) = m(Spt(C)o).

Robert Thomason gave an axiomatic description of the functor Spt in [Tho82]. In partic-

ular, the zeroth space of the spectrum Spt(C), Spt(C)o, is the group completion of BC.

In the last decades, the theory was extended to other "ringlike” objects such as ring
spectra (cf. [Wal78]) and strictly bimonoidal categories (cf. [BDR04]). Recently, Nils Baas,
Bjorn Dundas, Birgit Richter and John Rognes showed that algebraic K-theory of strictly
bimonoidal categories is equivalent to K-theory of the associated ring spectra (cf. [BDRRD],
Theorem 1.1). This establishes a connection between cohomology theories (spectra) and
geometric interpretation (categories). For instance, their motivating example is the cate-
gory of finite dimensional complex vector spaces V. The space | BGL, (V)| classifies 2-vector
bundles of rank n and K (V) is the algebraic K-theory of the 2-category of 2-vector spaces
(cf. [BDRO4]). Their theorem establishes an equivalence between K (V) and K (ku) where
ku is the connective complex K-theory spectrum with 7. (ku) = Zu], |u| = 2.

A keypoint in the proof of this theorem is the notion of a multiplicative group completion.
To construct this, the above-named use a version of the Grayson-Quillen model which re-
quires certain conditions on the category they are working with. We present a different

model of a multiplicative group completion that does not require these conditions.

Algebraic K-theory is very hard to compute. One way to do it is to make use of a so
called trace map from K-theory to (topological) Hochschild homology. Having established
a good algebraic K-theory of strictly bimonoidal categories, one is tempted to ask for a
model of Hochschild homology of strictly bimonoidal categories that would simplify trace
map-calculations. To be more precise: We have a trace map in mind that models the
classical one for rings in appropriate cases and is more accessible than the existing ones
(see for example [BHM93] and [Dun0Q0)]).

However, when working on this we were missing a key ingredient: a tensor product of



permutative categories. People have been thinking about it for quite a while (cf. [Tho95],
Introduction and [EMO6], Introduction), but to our knowledge there is no elaborate treat-
ment of this subject in the literature. John Gray’s tensor product of 2-categories does apply
to strict monoidal categories but his construction is not very explicit and many questions
remain unanswered. Regrettably, the tensor product we construct does not help to define

Hochschild homology since it does not support a reasonable multiplicative structure.

Outline
The first chapter is the theoretical foundation of this thesis. We explain monoidal and
bimonoidal categories and examples we will refer to later on. The concept of a free per-
mutative category (Definition will be very important in our definition of the tensor
product of permutative categories. Furthermore, we establish notation we use throughout
this thesis.

In chapter two, we specify most of what we mentioned in the introduction. Algebraic
K-theory of monoidal and strictly bimonoidal categories is explained, the Grayson-Quillen
model in particular. Moreover, we define the term group completion (Definition [2.2)).
We end the chapter with citing the theorem of Baas, Dundas, Richter and Rognes, that
connects K-theory of strictly bimonoidal categories with K-theory of ring spectra.

Chapter three is dedicated to the Segal model. In the first section, we explain the idea
of a graded category which is vital to the notion of a multiplicative group completion. In
section two and three, we define the model and prove its main properties. Finally, section
four contains the proof that the Segal model defines a multiplicative group completion
(Theorem . Moreover, we show that it is equivalent to the Grayson-Quillen model in
appropriate cases (Prop. [3.24)).

The tensor product of permutative categories is developed in the fourth chapter. We
start with a discussion of quotient categories which are crucial in the construction of the
tensor product. In the second section, we define the tensor product and prove its main
properties. In particular, the tensor product fulfills a universal property with respect
to certain bifunctors (Prop. [4.12)). This universal property discloses the main flaws of
the tensor product (cf. discussion after Prop. . We continue with a comparison of
our tensor product to those defined by John Gray and Anthony Elmendorf and Michael
Mandell respectively. The conclusion at the end of the chapter comprehends a proposal

for an alternative ansatz.
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1 Bimonoidal categories

Monoidal and bimonoidal categories are the basis of all constructions in this thesis and thus
this first chapter serves to recall their main features and to establish notation. Moreover,
we explain examples which we will refer to in the sequel. The important definition of the
free permutative category on a category C can be found at the end of this chapter.

The main source are sections VII and XI in [Mac98], others are stated explicitly.

Conventions: Throughout this thesis, all categories are assumed to be small - unless

blatantly otherwise - and for an object ¢ in a category C we often use the notation ¢ € C.

Definition 1.1. A monoidal category is a category C together with a bifunctor O: CxC —

C, an object e € C and three natural isomorphisms

a = Qgpe: ad(b0c) = (a0b)Oc,

A= eda=a, p=p,:alde=a
for all a, b, c € C such that the pentagonal diagram

a0(b0O(cOd)) — (aOb)O(cOd) — ((«0b)Oc)0Od

idaﬂal Tal]idd

ad((b8Oc)Od) B (aO(b0c))Od

and the triangular diagram
aO(eOc) —= (aOe)Oc

idg D/\\L ipDidc

allc =——=qalc

commute for all a, b, ¢,d € C and such that A\, = p.: eQe Z e.

Definition 1.2. A monoidal category C is called symmetric if it is equipped with natural

11



1 Bimonoidal categories

isomorphisms

Y = Yap: ab = b0a

for all a,b € C such that v, 0 1.0 = idpoe, Po = b © Ve D0e = b and the diagram

a0(b0¢) —%> (a00b)Oc 2% ¢0(aIb)
idaD'Yb,cl o

aO(cOb) —~ (aDc)vaﬂb(cDa)Db

commutes for all a, b, ¢ € C. These conditions imply that « and  are coherent (cf. [Mac63],

section 4).

Definition 1.3. A lax monoidal functor is a functor F': C — C’ between monoidal cate-

gories together with morphisms
6 = Gup: F(a)OF(h) — F(ab), : o — Flec)

in C’ that are natural in a,b € C and such that the diagrams

eOF (a) 2% F(e)OF (a)

)| |+

Fla) <2 p(eda),

(F(a)OF(b)OF(¢) 22% F(amb)OF(¢) —2= F((aDb)0c)

y o

Fla)O(F(0)OF(c) 2% F(a)0F(00c) —2~ F(aO(bOc))

commute for all a,b,c € C. We call F a strong (strict) monoidal functor if ¢ and 1 are

isomorphisms (identities).

Definition 1.4. A lax (strong, strict) symmetric monoidal functor is a lax (strong, strict)

monoidal functor F': C — C’ such that in addition the diagram

F(a)OF(b) —2> F(a0b)

| e

F(b)OF(a) —*~ F(b0a)

12



commutes for all a,b € C.

Definition 1.5. A symmetric monoidal natural transformation n: F' — G of lax symmetric
monoidal functors is a natural transformation such that the following diagrams commute
for all a,b € C:
F(a)OF(b) —~ F(a0b) F(e)
L
nﬂnl in e Ln
N
G@)DGH) —>GaDb), g,

Proposition 1.6 ([Seg74], sections 14-2.). The monoidal structure on a symmetric monoidal
category C induces a continous map BC x BC — BC that turns its classifying space into a

homotopy-associative and homotopy-commutative H -space.

Definition 1.7. A permutative category is a symmetric monoidal category C with o = id,
i.e. aO(bOc) = (adb)dc (strict associativity) and A = p = id, i.e. eda = ale = a (strict
unit) such that the diagrams

YaOb,c

abe — = ~eOa, qOp0c cOaOb
\ / idm %db
aOcOb

commute for all a,b,c € C.

Any symmetric monoidal category is naturally equivalent to a permutative one (see
[May77], VI, Prop. 3.2).

We denote the category of permutative categories and lax/strong/strict symmetric monoidal

functors with Perm/Strong/Strict.

Example 1.8. We consider two categories of finite sets: I and X. In both cases, the objects

are given by [0] = () and finite sets [n] = {1,2,...,n} without basepoint. Morphisms are
e injective maps in I and

X m=n,
e permutations in ¥, i.e. X([m], [n]) =
) otherwise.

13



1 Bimonoidal categories

The permutative structure is given by disjoint union, that is [m]@® [n] = [m + n], with unit
[0] and twist
, n+t 1<m,
Youm = X"(1) = ¢ ,
i—m i>m.
Definition 1.9. A strictly bimonoidal category is a permutative category (R,®,0,7)

together with a second strict monoidal structure (R, ®, 1), natural identities
A=A 0®a=0, pr=p:a®@0=0
for all a € R and natural distributivity maps

01 = Olape: (a®b) B (a®c) — a® (bDc),
O = Orape: (R C) D (b®c) — (a®Db)@c

for all a, b, ¢ € R which we require to be an isomorphism in case of §; and an identity in case
of §,. Morevover, these maps are subject to appropriate coherence conditions which can
be taken from Definition in the case of a x-graded category with * being the one-point

category.

Definition 1.10. A symmetric bimonoidal category is a symmetric monoidal category
(R, ®,0,7%) together with a second symmetric monoidal structure (R, ®,1,~7%), natural
isomorphisms \*, p* and natural distributivity isomorphisms d;,d, which are subject to

several coherence conditions spelled out in [Lap72], pp. 31 — 35.

Definition 1.11. A bipermutative category is a permutative category (R,®,0,7%) to-
gether with a second permutative structure (R, ®, 1,+4%) such that there are natural iden-
tities 0®a = 0 = a®0 for all a € R, right distributivity holds strictly and left distributivity
is defined by use of the following diagram:

@@ ®b®e) L2 (c0a)® (c®b) (1.1)
Or o
(adb)®c " c® (adb).

The necessary coherence conditions can be taken from Definiton |3.1| in the case of a *-

graded category.

14



Unless the twist map is an identity, the definiton of §; in terms of 9, = id and ~ implies

that d; is usually not an identitity map.

Any symmetric bimonoidal category is equivalent to a bipermutative one (see [May77],
VI, Prop. 3.5).

Example 1.12. Let X be the category of finite sets and permutations with permutative
structure given by (&, [0],7%®) as above. There is a second permutative structure given by
[m] ® [n] = [mn] with unit [1] and twist

T (i =D +35) =G —m+i, VO<i<m, 1 <j<n,
Permutations o ® 7: [mn] — [mn] are defined as
(c@n)((i=Dn+j)= (@) -n+7(j), VO<i<m, 1 <j<n,

which corresponds to (i,j7) +— (o(i),7(j)) if we think of the object [mn] as
{(1,1),....(L,n),...,(m,1),...,(m,n)}.

Example 1.13. The (topological) bipermutative category of finite dimensional complex
vector spaces, Vg, is defined as follows: Objects are given by the set N = {0,1,2,...} with
d € N interpreted as the complex vector space C¢. Morphisms from d to e are given by
the space

Ud) ifd=e,

Vc(d, 6) =

0 otherwise.
The sum functor @ takes (d, ) to d+ e and embeds U(d) x U(e) into U(d+ e) by the block
sum of matrices. The tensor functor @ takes (d, e) to de and maps U(d) x U(e) to U(de)
via the tensor product of matrices by identifying {1,...,d} x{1,...,e} with {1,...,de} by

means of the left lexicographic ordering. The zero and unit objects are 0 and 1 respectively.

There is another variant of V¢ with

GLy(C) ifd=e,
VC(d> 6) =
0 otherwise.

Since BU(d) ~ BGL4(C), both versions are equivalent.

15



1 Bimonoidal categories

The following definition is taken from [Tho82].

Definition 1.14. Let C be a small category. The free permutative category on C, PC, has

as objects all entities n[cy, ..., ¢,] where n is a natural number and ¢y, ..., ¢, are objects
of C. A morphism nfe, ..., ¢, — n'[c], ..., c,] exists only if n = n’ and then is specified
as olfi,..., fn] where o € 3, and each f;: ¢; — c’U(i) is a morphism in C. Composition is

induced by composition in C and ,,. Thus, there is the formula
Tfi - fuleolf,. o fal = Tolfowy fi o fomy fal:
PC is a permutative category with O = + given by
nler, .., cn) Fk[dy o dyl = (n+E)|er, ..o en,dy, . dy]
and unit element 0 |. The twist map
yinler, ... cn) +k[dy . dg] =, kldy, ... dp] +nler, ... el

is x(n, k)[id, ..., id] where x(n,k): [n + k] — [n + k] is the permutation that shuffles the

first n elements to the last n and the last k elements to the first k.

One word on notation: We think of n[ | as the n-ary operation which is built up by
iterated +’s in a permutative category and of n[cy, ..., ¢,] as the result of applying this op-
eration to the objects ¢; = 1[c1], ..., ¢, = 1[¢,]. In different words, we think of nfcq, ..., ¢,]

as a finite sum and this is why we use +.

Note that there is a canonical embedding j: C — PC sending an object ¢ to 1[c]. This

embedding induces a bijection
Strict(PC,D) = Cat(C,UD), F — Foj.

Hence, the functor P: Cat — Strict, sending a category C to PC, is left adjoint to the
forgetful functor U. In particular, the composite U P is a monad on Cat with Strict being
equivalent to the category of U P-algebras (cf. [Tho82] and [Mac98], VI, for an introduction

to monads in a category).

16



2 Algebraic K-theory

We give a short overview of the beginning of algebraic K-theory and then concentrate on

a recent development, algebraic K-theory of strictly bimonoidal categories.

2.1 Classical constructions
Throughout this section, R is an associative ring with unit.

Definition 2.1. Let M be a commutative semi-group and consider M x M with coordinate-
wise addition. Define the Grothendieck group GrM = M x M/ ~ where (my, ms) ~ (ny,n2)
if for some k € M, m; + no + k = mg + ny + k. Thus, the identity element is of the form

(m, m) and the inverse of (mq,ms) is (mg, my).

The Grothendieck group fulfills a universal property: There exists a monoid homomor-
phism ¢: M — GrM such that for any monoid homomorphism f: M — A from the
commutative monoid M to an abelian group A, there is a unique group homomorphism
g: GrM — A such that f = gi.

Consider the monoid Proj(R) of isomorphism classes of finitely generated projective R-
modules, together with direct sum and identity 0. Then Ky(R) is the Grothendieck group
of this monoid,

Ko(R) = Gr(Proj(R), ®).

For ¢ = 1,2, the groups K; study the automorphism group of such modules. The first
K-group
Ki(R) = GL(R)/E(R),

is the abelianisation of GL(R) where E(R) denotes the commutator subgroup of GL(R)
which is generated by the elementary matrices. The group F(R) has a universal cen-

tral extension, the Steinberg Group, St(R), together with a surjective homomorphism

17



2 Algebraic K-theory

¢: St(R) — E(R). The second K-group is given by the kernel of this map,
Ky(R) = kery,
and consists of the non-trivial relations between elementary matrices.

As mentioned in the introduction, there are different constructions of the algebraic K-
theory space associated to R. We present the one that serves best to motivate the upcoming
definition of algebraic K-theory of strictly bimonoidal categories. It is based on the notion
of the group completion of an H-space which is a generalization of the concept of the
universal group associated to a monoid.

Michael G. Barratt and Stewart Priddy introduced the following concept of group com-
pletion in [BP72]. It was generalized and developed further by many authors (e.g. [May74])

and the following formulation is taken from [Wei.

Definition 2.2. Let X be a homotopy-commutative, homotopy-associative H-space. A
group completion of X is an H-space Y together with an H-space map X — Y, such
that mo(Y) = Grmp(X) and the homology ring H.(Y; k) is isomorphic to the localization
mo(X) T H. (X k) of H (X k) by mo(X) — Ho(X;Z) = Zlno(X)] — Ho(X;k) for all

commutative rings k.

Theorem 2.3. Let M be a homotopy-commutative topological monoid. Then the map of
H-spaces
t: M — QBM

is a group completion. If mo(M) is a group, the map v is a homotopy equivalence.

(Cf. [Aus01] or - for a full discussion - [Ada78], §3.2.)

Consequently, M is its own group completion if it is group-like (i.e., mo(M) is a group).

If the classifying space of a symmetric monoidal category S is group-like, we call S group

complete.

The first definition of higher K-theory of rings is due to Quillen (cf. [Qui72b]). The
following is a reformulation of his definition and §3.2 in [Ada7§| contains a nice discussion
of why both formulations are equivalent.

Consider the following category: The objects are given by based free R-modules

18



2.1 Classical constructions

{0,R,R?,...,R",...}. There are no morphisms R™ — R" for m # n and the self-maps
of R™ are given by GL,(R). The classifying space of this symmetric monoidal category is
equivalent to [[,-, BGL.(R).

Definition 2.4. The algebraic K-theory space of R is the group completion of the monoid
ano BGL,(R) and its K-groups are the homotopy groups of this space:

KR =mQB [ BGL.(R).

n>0

Note that this definition gives a different KyR than the one we defined in the beginning.
Here, KoR = Grmo(]],~c BGL,(R)) = Z for all rings R. The higher homotopy groups
agree with those defined above.

As explained in the introduction, this concept of taking a symmetric monoidal category
C and associating to it another category C’ such that BC’ is the group completion of BC
developed into what we now call algebraic K-theory of symmetric monoidal categories.
There are different constructions of the category C’. The one we present was written down
by Daniel Grayson and inspired by Daniel Quillen (cf. [Gra76]). Hence, we refer to it as
the Grayson-Quillen model.

Definition 2.5. Let (C,®,0) be a symmetric monoidal category. Then (—C)C is defined
to be the category whose objects are pairs (a,b) of objects in C and whose morphisms

(a,b) — (c,d) are equivalence classes (s, «, 3) consisting of an object s € C and morphisms
a:aPs—c B:bHs—d.

Two morphisms (s, a, 3), (s',a/, f") are equivalent if and only if there is an isomorphism

~v: s — & in C such that the following diagrams commute:

a®s bd s 5
RN N
ida®y c, idy @y d.

a®s b s

The composition of (s,«, 3): (a,b) — (¢,d) and (¢,7,9): (¢,d) — (e, f) is given by

(S@ta ’yo(a@idt)a 5O(ﬁ@ldt))

19



2 Algebraic K-theory

There is a functor i: C — (—C)C given by i(a) = (0, a) on objects and i(«) = (0, po, @0 p,)

on morphisms.

Proposition 2.6. Let C be a symmetric monoidal category such that every morphism is
an isomorphism and the translation functor x @ _: C — C is faithful for every object x € C.
Then i: C — (—C)C induces a group completion BC — B(—C)C.

We now proceed with algebraic K-theory of strictly bimonoidal categories.

2.2 K-theory of strictly bimonoidal categories

In [BDRO4], Baas, Dundas and Rognes give a definition of the K-theory of a strictly bi-
monoidal category. The following presentation is taken from [BDRRD].

Let R be a strictly bimonoidal category.

Definition 2.7. The category of n x n-matrices over R, M,(R), is defined as follows.
The objects of M, (R) are matrices X = (X; ;)
X = (X )ij= to Y = (Yi;)7;—, are matrices f = (f;;)7;—; where each f;; is a morphism
in R from X;; to Y ;.

ij=1 of objects of R and morphisms from

Lemma 2.8. For a strictly bimonoidal category (R, ®,0r, s, ®, 1z) the category M, (R)

1s a monoidal category with respect to the matrix multiplication bifunctor

Mn(R) X Mo(R) — Mn(R), (Xij)ijmr - (Yig)i, (Zij)i,

ij=1" =1 = i.j=1

with .
Zi,j - @X@j &® Yk,j-
k=1

The unit of this structure is given by the unit matriz object E, which has 1 € R as

diagonal entries and Or in all other places.

The property of R being bimonoidal gives myR the structure of a ring without negative

elements and its additive group completion Gr(myR) is a ring.

Definition 2.9. The weakly invertible n x n-matrices over myR, G L, (moR), are defined as

the n X n-matrices over myR that are invertible as matrices over Gr(myR). In other words,

20



2.2 K-theory of strictly bimonoidal categories

GL,(mR) can be defined by the pullback square

GL,(moR) — GL,(Gr(mR))

! |

M, (moR) — M, (Gr(mR)).

Definition 2.10. The category of weakly invertible n x n-matrices over R, GL,(R), is
the full subcategory of M, (R) with objects all matrices X = (X;;)i';—; € M,(R) whose

matrix of mp-classes | X| = (|.X;;|)}'j=; is contained in GL,(moR).

The category GL,(R) inherits a monoidal structure from M,(R) since matrix multipli-

cation is compatible with the property of being weakly invertible.

There is a canonical stabilization functor GL,(R) — GL,1(R) which is induced by
taking the block sum with F; € GL;(R). Let GL(R) be the sequential colimit of the
categories GL,(R).

Definition 2.11. Let (C,-,1) be a monoidal category. The bar construction B,C is a
simplicial category [¢] — B,C. The category B,C has objects consisting of

e an object ¢ € C for each 0 < i < j < g,

e an isomorphism ¢¥*: ¢ . ¢7% — ¢* in C for each 0 < i < j < k < ¢, such that for

a: (- IRy . K=, ¢ (k. K1) the diagram

LI L e R 0 L
¢“’“~idi iid(pjkl
' Hikl Pl v
Czk i Ckl Czl i . C]l

commutes for all i < 7 < k <.

A morphism f: {c,¢} — {d,¥} of B,C consists of morphisms f¥: ¢¥ — d“ in C for
0 <i < j < g such that 9% o (fi7 . fik) = fik o ¢iik,

For ¢: [q] — [p] € A, the functor B,C — B,C is obtained by precomposing with ¢. For
instance, d;(c) is gotten by deleting all entries with indices containing 1 from the data
giving c. In order to allow for degenary maps s;, we use the convention that all objects
of the form ¢; are the unit of the monoidal structure and all isomorphisms of the form

¢iik’ (bzkk are identities.
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2 Algebraic K-theory

The following is a corollary of Lemma 3.3 in [BDRRD].

Lemma 2.12. For each q there is an equivalence of categories between B,C and the product
category C? where the map B,C — C? is given by sending an object c € B,C to the diagonal

(Ot el i),

Definition 2.13. Let R be a strictly bimonoidal category. The algebraic K-theory space
of R is defined as
K(R) = QB(] [ IB.GL.(R)]).
n>0
The coproduct [],,~, [B«G L, (R)| is a topological monoid, where the monoidal structure
is induced by the block sum of matrices GL,(R) X GL;,(R) — GL;1m(R). The looped

bar construction provides a group completion of this topological monoid.

Given a strictly bimonoidal category R, the associated spectrum Spt(R) is in fact a
strict ring spectrum. To be precise, there is a model of the functor Spt such that this
statement is true. Main references are [EMO06], [May77] and [May09].

Theorem 2.14 (Theorem 1.1 in [BDRRD]). The K-theory space of a small topological
strictly bimonoidal category R, defined as above, is equivalent to the K-theory space of the
ring spectrum Spt(R), i.e.

K(R) ~ K(Spt(R))

provided that R is a groupoid and the translation functor X @& () is faithful for every object
XeR.

This theorem provides possible geometric interpretations for cohomology theories which

are highly desired.

A key point in the proof of this theorem is the notion of a multiplicative group completion.
For a long time, it has been an open problem if there was a group completion that does
not destroy an existing multiplication. Supposed solutions based on the Grayson-Quillen
model turned out to be wrong (cf. [Tho8(]).

In [BDRRal, Baas, Dundas, Richter and Rognes give a solution to this problem. The main
idea is to consider a category that is graded in a certain sense. In the next chapter, we

will explain this concept and give an example of a multiplicative group completion.
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3 A multiplicative group completion

3.1 Graded categories
The following definitions are taken from [BDRRa], section 2. We suggest to think of a
graded ring if one has not seen these definitions of graded categories before.

Definition 3.1. Let (J,+,0, x) be a small permutative category. A J-graded bipermuta-
tive category is a functor X from J to the category Strict of small permutative categories
and strict symmetric monoidal functors, together with the following data and subject to the

following conditions where we denote the permutative structure of X () by (X (i), @, 0;,7s):
1. A functor ®: X (i) x X(j) — X (i + j) such that for any pair of morphisms ¢: i —
k, ¥: 7 — [ in J the following diagram commutes:
X(i) x X(j) == X(i + )
X(¢)xX(¥) lxww)

X (k) x X(I) 2= X (k+1).

2. Anobject 1 of X (0) such that composition of the inclusion {1} x X (j) — X (0) x X (j)
followed by ®: X (0) x X(j) — X(0+ j) = X(j) equals the projection isomorphism
{1} x X(j) = X(j). Likewise for X (j) x {1}.

3. Natural isomorphisms
8 a®b— X b@a)

in X(i+j) for all a € X (i) and b € X (j) such that
X(p+ ¢)(”Yf§b) — ,ng)(a),XW)(b)

for any pair ¢, as above. We require that X (x%)(72%) ov&" is equal to the identity

on a ® b and fygl and fyga agree with the identity morphism on a for all objects a.
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3 A multiplicative group completion

4. The composition ® is strictly associative and the diagram

a®b,c
T®

a®Rb®c X(x*H) (c®a®b)
id@ngl lX(x’“viH)(vg“@m)

X(id+x")(a®c®b) == X)X (x"* +id)(a® c® D)

commutes for all objects a, b, c.

5. For each i € J the zero object 0; annihilates everything multiplicatively, i.e., {0;} x
X(j) — X(i) x X(j) — X(i + j) is the constant map to 0,4,;. Likewise for the

composite functor from X (z) x {0;}.

6. Right distributivity holds strictly, that is the diagram

P xid

(X (i) x X(3)) x X(j) X (i) x X(j)
Y
(X(3) x X(j)) x (X(i) x X(5)) ®
®><®i
X(i+35)x X(i +§) & X(i+ )

commutes, where @ is the monoidal structure in X (i) and X (i + j) respectively and
A is the diagonal on X (j) combined with the identity on X (i) x X (¢), followed by a

twist. We denote these instances of identities by d,..

7. The left distributivity transformation, d;, is given in terms of d, and s, as

d=7g0d, 0 (78 ®Vg)-

(Here we suppress the twist X () from the notation.) More explicitly, for all ¢,j € J
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3.1 Graded categories

and a € X (i), b,b' € X(j) the following diagram defines d;:

a®@b®al iors” X (b®@a)® X)) @ a)
‘
a® (bpt) X()b@adl @ a)
- , J/X(xj’i)(dr):id
XX ()@@ (b6 b)) < X (309 (b 1) @ a).

8. The diagram
@b @ @) 202 (bab)

e l J{id@m

@) ®(a®b)—2=a® (¥ ©b)

commutes for all objects. The analogous diagram for d, also commutes. Due to

the definition of d; in terms of 5 and the identity d,., it suffices to demand that
Yo © (Yo ® Vo) = (Ve ®V8) © e and (e ®id) 0y = g o (Id ® 7s).

9. The distributivity transformations are associative, i.e., the diagram

(aRbRc)®(a®b® )

dll \

a®((b2c)®bad) 2% 42b® (ca )

commutes for all objects.
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3 A multiplicative group completion

10. The following pentagon diagram commutes

(a@(beV)®(d e (bal))

y

(a2b) @ (@) ® (@b ®(d V) r
idye ®id (add)@(baY)
(a®@b) @ (d@b) @ (a@)® (V) o

m

(a®d)@b) @ ((add)@1)

for all objects a,a’ € X (i) and b,0' € X(j).

Definition 3.2. A J-graded strictly bimonoidal category is a functor X : J — Strict to
the category of permutative categories and strict symmetric monoidal functors satisfying
the same conditions as a J-graded bipermutative category except for the existence of a
natural isomorphism ~g. The left distributivity isomorphism d; is thus not given in terms
of d,. Instead, the distributivity isomorphisms d; and d, are subject to the condition that
the diagram

a®b®c@a®b’®ci>(a®b@a®b’)®c

d l \Ldl®id

a®(bRcdb ®c) 2T a0 (baY)®c

commutes for all objects.
In the case of a J-graded bipermutative category, this condition follows from the other

axioms.

Let Perm"™ denote the category of permutative categories without zero object and lax

symmetric monoidal functors. The adjoint pair of functors
U: Perm — Perm™, F:Perm"* — Perm

where U is the forgetful functor and F is given by F(C) = Cy, i.e., adding a disjoint zero

object, defines a simplicial resolution Z (cf. [Wei94], section 8.6, for further information on
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3.2 Definition of the Segal model K*R and first properties

simplicial resolutions).
For a definition of the homotopy colimit see [Tho82], section 3. The derived version of the
homotopy colimit is necessary to fix the ”zero problem” (see section 4.2 of [BDRRa]). It

makes use of the simplicial resolution Z.

Lemma 3.3 (Lemma 4.11 in [BDRRal). Let [m] be an object of the category I of finite
sets and injections. If X: I — Perm is a functor such that any ¢: [m] — [n] in I is sent

to an unstable (resp. stable) equivalence X (¢): X ([m]) — X ([n]), then the canonical chain
X([m]) <~ ZX(|m]) — DhocolimX

is an unstable (resp. stable) equivalence.

Proposition 3.4 (Proposition 5.1 in [BDRRal). Let J be a permutative category and C* a
J-graded bipermutative (or strictly bimonoidal) category. Then Dhocolim;C® is a simplicial

bipermutative (strictly bimonoidal) category and
Cc® <& 7z¢° — DhocolimC*

are maps of simplicial bipermutative (strictly bimonoidal) categories. Furthermore, for

each j € J, the canonical maps
C’ <& ZC’ — Dhocolim C*
are maps of ZC°-modules.

In the following, we present a model of a multiplicative group completion that might

provide an alternative proof of Theorem [2.14]

3.2 Definition of the Segal model K*R and first

properties

Given a permutative category R, we define simplicial permutative categories K*R. If R
is strictly bimonoidal, these will provide an I-graded strictly bimonoidal category, with I

being the category of finite sets and injective maps.

27



3 A multiplicative group completion

The following construction is based on an idea of Graeme Segal ([Seg74], chapter 2) and
was developed further by Nobuo Shimada and Kazuhisa Shimakawa ([SST9], chapter 2).
Our presentation resembles the version of Elmendorf and Mandell ([EMO6], chapter 4),

only that we require the structure maps pc to be isomorphisms as in [SS79].

Definition 3.5. Let (R, ®, 0, cg) be a small permutative category.
For finite pointed sets X1,..., X", HR(X1,...,X") is the category whose objects are the
systems {C.g~, pc(< S >;4,T,U)} with:

o < S>=(5,...,S5,) runs through all n-tupels of basepoint-free subsets S; C X* and
e the C'_g~ are objects of R.

o Let < S;4, T > denote (S1,...,5;-1,T,Sit1,...,S,) for some subset T C S;. Then
the po(< S >;4,T,U) are isomorphisms from C.g;rs> @ Ccgips to Cegs for i =
1,...,nand T, U C S; being disjoint subsets with T UU = S,.

The objects {C-g~, po(< S >;4,T,U)} satisfy the following properties:
o If S; =0 forie{l,...,n}, then C.g~ = Og.
e If one of the S;, T, U is empty, then po(< S >;4,T,U) = id.
e The isomorphisms pc(< S >;4,T,U) are compatible with the additive twist:

po(< S >0, T.U) = pc(< S >4, U, T) o cq.
e The po(< S >;i,T,U) are associative, that is for all < .S >, i and pairwise disjoint
T,U,V CS; with TUUUYV = §5; the diagram

pc (<S5, TUU >3, T,U)Pid
C’<S;i,TUU> ) C’<S;i,V>

C<S;i,T> S C1<S;i,U> S C(<S;i,V>

id@pc (<8;i,UUV >34,U,V) pc<S>;i, TUU,V)

pc (<S>, T,UUV)

Cesiirs> ® Cesivuvs Ces>

commutes.
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3.2 Definition of the Segal model K*R and first properties

e The p(< S >;i,T,U) satisfy the pentagon rule, that is for i # j and T,U C
Si, VW CS; with TNU =0 =V NW the following diagram commutes:

Cesijvs @ Cosyjws

p(<S33, V>3, T U)@p(<S35,W>3i,T,U)
/ (<S>3,V,IV)

Cesirigvs © Cesivgvs © Cesiirgws © Cesiivgws
idEBC@@idi C1<S>

Cesirigyvs © Cesiryws © Cesiivijvs © Casivgws

\\ (<S>, T,U)
p(<S356,T>:5,V,W)®p(<S;i,U>;5,V,W)

Cesir> ® Ccsiivs

Let us try to visualize the objects. If X is a finite pointed set, an object {Cys, pc(S;T,U)}
of HR(X,) is a collection of objects Cs of R for each basepoint-free subset S C X, and
isomorphisms po(S;T,U) for each T,U C S with TUU = S and TNU = . If, for
example, X, = [2], = {0, 1,2}, where 0 denotes the basepoint, then an object of HR(X)

may be thought of as a square

Ciy

Ct12}

with p({1,2}; {1}, {2}): Cpyy & Cpzy = Cuay.
For X' = [3]; ={0,1,2,3}, an object of HR(X’,) may be visualized as a cube

Cy Cp =0r (3.1)
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3 A multiplicative group completion

with, amongst others,

p({1,2,3};{1},{2,3}): Cpuy ® Cpozy — Cpaay,
p({1,2,3};{1,3},{2}): Cli3y ® Cpay — C123),
p({1,2}: {1}, {2}): Cpy @ Cpoy — Chagy.

To shorten notation, we write po(< S >) or simply pe instead of po(< S >;4,T,U) if

we do not need all the details.

Morphisms in this category are fairly easy. A morphism f: {Ccg~, pc(< S >;4,T,U)} —
{D.s~,pp(< S >;i,T,U)} consists of morphisms f.g~: Ccgs — Dog~ in R which com-
mute with the structure maps p(< S >;i,7,U) and that are the identity if any of the S;
is empty.

Let ¢: X1 — X2 be a map of finite pointed sets. The induced functor ¢,: HR(X1) —
HR(X?2) is defined such that an object {Cr, po(T'; Uy, Uz) } is sent to {¢.Cs, d.pc(S; U7, Us)},
S C X2 basepoint-free, where ¢,Cyg := Cg-1(s) and the structure maps ¢.pc are given by

0Cs,ury @ 0+Crsun)

Clo-1(sy01))) ® Clo-1()0-113)

pc(¢~ ()¢~ (UD),0~ 1 (U3))

C(¢_1(5);¢_1(U{)U¢—1(Ué)) = ¢,Cs.

A morphism f = {fs} is mapped to ¢, f := {fs-1()}. This implies, that isomorphisms are

mapped to isomorphisms.

Going back to the above example, consider the map ¢: [3]4 — [2]; with ¢(0) = ¢(1) =
0,¢(2) = 1 and ¢(3) = 2. Then, for example, ¢.Cy 93 = Cy231 and the cube in (3.1]) would
be mapped to

C2}
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3.2 Definition of the Segal model K*R and first properties

The category H R(X1,...,X") can be endowed with the structure of a permutative
category which is induced by the permutative structure of R. We define {Ccs~,pc} &
{D<ss,pp} = {(C @ D)cs>, pcep} with (C @ D)cgs = Cegs Or Degs and pogp =
(pc @r pp) o (id Br cg Br id) (we will omit the subscript R in the following). The unit
is given by the zero cube, i.e., the object {Ccgs,po(< S >;4,T,U)} with Cegs = Og
and po(< S >;4,T,U) =1id for all < S >= (51,...,5,) and T,U € S; with the according
properties. The structure maps a, A, p (cf. Deﬁnition and the additive twist are induced
by the respective maps in R and the required diagrams commute because they commute
in R.

Lemma 3.6. The functor HR is a functor from the n-fold product of the category of
finite pointed sets to the category of permutative categories and strict symmetric monoidal

functors.

Proof. We want to point out that o, A and p are indeed identity maps. In case of A, p this
is clear due to the definition of the unit. Let Cyy denote C'cgs.; y~. We know that

a: (Cy ® Dy) ® By — Cy @ (Dy @ Ey)

is an identity map for all Cy, Dy, By € R. To see that pcepyer = pca(per) consider the

following diagram:

(CUEBDU)EBEU@(Ov@Dv)@EviOU@(DU@EU)EBCv@(DvEBEV)

(Cu® Dy)® (Cy & Dy)® Ey @ Ey Cuo®Cy @ (Dy @ Ey) ® (Dy @ Ey)

Cuv@(Cy ®Dy)® Dy @ Ey® By ==Cy ®Cy ® Dy & (Dy ® Ey) @ By

(Cess> ®Degs) @ Ecgs Ces> ® (Degs @ Ecgs),

where the horizontal identities are given by the associativity map in R. The left hand side

of the diagram is the map

pcener: [(Cu ® Dy) ® Ey] ® [(Cv @ Dy) ® Ey] — (Ccgs @ Degs) @ Ecgs.
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3 A multiplicative group completion

The right hand side is the map
poapar): [Cu @ (Dy @ Ey)] @ [Cv © (Dy © Ey)] — Ccss © (Dess @ Ecss).

The diagram commutes since o and cg are coherent and for this reason we have pcepjer =

PCH(DSE)- Thus,
{(C<S> D D<S>> ® Ecss, P(C@D)@E} — {C<S> D (D<S> D E<S>); PC@(D@E)}-

Nothing else remains to be done than to prove that the induced functors from above are in
fact strict symmetric monoidal. Let ¢;: X! — Xi, 1 < i < n, be maps of finite pointed
sets and let ¢~1(< S >) denote (¢ (S1),...,#,1(S,)). An easy calculation gives

{¢*C<S>a Cb*PC} @ {¢*D<S>7 Cb*PD} = {(Cb*c S% ¢*D)<S>7 (¢*pC b Cb*pD) o) (ld D Cop ) ld)}
with

(¢*C S ¢*D)<S> = (¢*C)<S> ©® (¢*D)<S>
- C’¢ 1(<S>) D qu L(<S>) ¢*(C S D)<S>

and (p.pc @ ¢«pp) 0o (id ® cg B id) = dupogp. This last statement is true since ¢.pogp is
defined as

d) (C@D)<51U>@¢* CEBD)<SzV>

(Co1(<s5,05) D Dy-1(<s5,05)) @ (Co1(<s5i,v>) © Dg-1(<5:i,v>))
iid@C@id
(Co-1(<8:i,0>) D Cp1(<8i,v>)) ® (Dp-1(<s5,05) B Dp-1(<55,v>))

ipc ©pD

Cop1(<55) @ Dy-1(<55) = $(C D D) s>

where pc @ pp stands for

pe(@™! <8 >0, ¢ (U)o (V) ® pp(¢™" < S >14,¢7 (U), 67 (V).
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3.2 Definition of the Segal model K*R and first properties

Thus
{¢*C<S>> ¢*p0} D {¢*D<S>v ¢*pD} = {Qb* (C S D)<S>7 ¢*pC®D}-

The zero cube is of course mapped to the zero cube and all other conditions follow from
the strictness in R. O

Let I'? be the skeleton of the following category of finite pointed sets and based set
maps: There is one object [n];. = {0,1,...,n} with basepoint 0 for each non-negative
integer n and morphisms are maps of sets that map 0 to 0. This category is equivalent to
the opposite of Segal’s category I' in [Seg74]. A T-category is a covariant functor C' from
[P to Cat such that C'({0}) is equivalent to the category with a single morphism.

The functor HR is a I'-category. To see that HR is indeed covariant, note that for maps
of finite pointed sets ¢1: X1 — X2, ¢o: X2 — X3 an object ¢, (¢1,0)s, S C X2, is
defined as C' 67 (651 ())" The structure maps pc and morphisms are defined analogously.

In particular, HR is a very special I'-category in the following sense:

Lemma 3.7 (Lemma 2.2 in [SS7T9]). For k € [m]; let ix: [m]y — [1]4+ be the map

. L j=k,
Zk(]>:
0 j#Ek.

The canonical map

induced by the maps 15, is an equivalence of categories.

The functor HR can be extended to a functor on the n-fold product of the category of
pointed simplicial sets in the obvious way: Let Y7,...,Y,, be pointed simplicial sets. We

define HR(Y1,...,Y,) to be the n-simplicial permutative category with

AR, Y )ty = HR((Y1)1s -, (Y1)

.....

for [; € A. This means that HR(Y3,...,Y,) is a functor from (A%)*" to the category of
permutative categories.

In the extension to the simplicial setting, we want the S;’s in {Cg~, po(< S >4, V, W)}
to be subfunctors of the Y;’s. We remove the basepoint of (S;),, for all £ € A. Furthermore,

we require V, W to be subfunctors of .S; with levelwise disjoint image and V;, UW;, = .5,.
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3 A multiplicative group completion

For convenience, we will denote this again with V,W C S; and VW =0, VUW = S;.

Recall the small model of the simplicial one sphere, namely S} = [n], = {0,1,...,n}

with 0 as basepoint and face and degeneracy maps d;: S}, — S},_;, s;: S, — S}, defined

as .
J J <t
i =i <n, k k<,
d;(j) = J and s;(k) =
0 i=j=n, k+1 k>i.
-1 i>4

The simplicial path space of S is defined as the simplicial set (PS'), with (PS'), =S},
and d, = d;+1,5; = s;+1. The renumbering of face and degeneracy maps leaves simplicial
maps dy, sg: (PS'), — S!.

For the sake of readability, we omit the parentheses and write PS} for (PS'),,.

As a corollary of Lemma we get that the simplicial map dy: PS! — S! induces a

strict symmetric monoidal functor of simplicial permutative categories
do,: HR(PS!) — HR(S}).

By this we mean a simplicial functor that is a strict symmetric monoidal functor of per-

mutative categories in each simplicial degree.

The following definition is due to Baas, Dundas, Richter and Rognes. However, since it
is based on an idea of Graeme Segal we call it the Segal model. A similar construction can
be found in [Tho79], section 4.

Definition 3.8. Let J be the category with objects 0,1,2 and non-trivial morphisms
2 —- 0, 1 — 0. For a permutative category R we define KR to be the n-simplicial
permutative category that is the n-fold limit of the diagram HR(Y;,,...,Y;,) in sStrict

with i; € J, Y =S!,Y; = Y, = PS! and dy: PS! — SL.
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3.2 Definition of the Segal model K*R and first properties

Example 3.9. K!R is the pullback of

AR(PSY)

ld()*

AR(PS!) —2~ AR(SL)
and K2R is the limit of

AR(PSL, PSL) 2= AR(PSL,SL) <2 AR(PS!, PS)

\LdO* ldO* idﬂ*

dO*

HR(SL, PSL) —~ HR(SL,S!) <"~ HR(S}, PS})

Tdo* Tdo* Tdo*

do* do«

HR(PS!, PSY) —> HR(PS!,S!) <—— HR(PS!, PS}).

Note that a limit in a functor category Fun(C, .A) exists if it exists for every object ¢ € C

and is then computed pointwise. This means that K ;R is the pullback of

HR(PSY)

ldO*

HR(PS!) —“*~ AR(S})
(cf. [Bor94], 2.15). Furthermore, keep in mind that

lim AR(Y;,,Y:,) = limlim HR(Y;,,Y:,).
IxJ J J

This follows from the universal property of the limit by use of the isomorphism of functor
categories [J x J, Strict] = [J, [J, Strict]].

We now turn to the question of group completeness and start with analyzing the category
K, R: It consists of objects ({Cs, pc}, {Ds, pp}) and morphisms (f, g) with Cs = Dg and
fs =gsforall S C dy'([q]). Since the preimage of [¢] = {1,...,q} under dy: [g+1]y — [q]+
is{2,...,q+1}, {Cs,pc} and {Dg, pp} only differ in S = {1} (and thus every S C [¢+ 1]
containing {1}).

In degree zero, KR is isomorphic to R X R as a permutative category: Since PS} = {0, 1},
it is obvious that HR(PS}) = R. Moreover, HR(S}) = 0r which makes dy, the trivial
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3 A multiplicative group completion

map on 0-simplices.

We denote objects of HR(PS?) by Cy12y = Cy1y @ Cyzy where the isomorphism is given by
pc({1,2};{1},{2}). Elements of K{R are pairs (Cy12y = Cp1y®Clay, Doy = Dy @ Dyay)
with C{Q} = D{Q}.

There are two maps dy, d}: KR — K}R, induced by the face maps dj,, d;: PS} — PS}:

dy: (0{1,2} = Oy @ Cpay, Doy = Diay @ Dygy) — (Cri2y, Dinay),s
di: (Cpy = Cpy @ Cpay, Dy = Dy @ Dygy) — (Cay, Dyy)-

Let X = (C{Lg} = 0{1} D C{Q}, D{LQ} = D{l} D D{Q}) € KllR By use of the isomorphisms
pc and pp, we have dj(X) = d|(X) @ (Cjay, Dy2y) as elements in KjR.

As usual, TyK}lR = mo| NKIR| = mo(diagN K!R) where N denotes the nerve functor.
This means, ToK!R = NgKjR/ ~= (R X R)/ ~ with ~ being induced by the face maps
on the nerve and K!R. More precisely, (C,D) ~ (C', D) if and only if there exists a
1-simplex

({057 pC’}’ {DS; pD}) — ({C,/SW pC’}? {ng PD/})

in Ny K{R such that

do({Cs, pc};{Ds,pp}) = (C12y, Dpugy) = (C, D)

and
dll({c,,s‘: IOC”}7 {D:S” PD’}) = (CE1}7 D%l}) = (0,7 D/)

with d}: K{R — K}R as above. Providing oK} R with addition by components, we see
Lemma 3.10. The set of path components 1o K'R is an abelian group. More precisely,
1 KIR = GrrgR.

Proof. The basic idea is that the face maps on the nerve induce the restriction to path com-
ponents in R and the face maps d; on K!R induce the Grothendieck group structure. To
understand the first statement, consider a map ({Cs, pc'},{Ds, pp}) — ({C%, pcr },{DYs, pp' })
with (Cpay, Diay) = (Clyy. Diyy) = (0r,0%).  Then (Cpioy, Dpgy) = (Cpay, Dyy),
(Clioy Digy) = (Cyy, DYyy) and the relation explained above translates into (C, D) ~
(C', D) if there is map (C, D) — (C’,D’). We turn to the second statement. Obviously,

36



3.3 K*R is an I-graded category

(Og,0%) is the neutral element. We want to show: (C,C) ~ (0g,0x) for all C' € R. Since
diag(HR(PS}) x HR(PS})) C KR, there is an object ({Cs, pc}, {Cs, pc}) € KI'R with

dé({csapc}, {Csmc}) = (0{1,2}; 0{1,2}) = (C> C)

and
dy({Cs, pc}, {Cs, pc}) = (Clyy, Cfyy) = (O, 0R)

for every C' € R. Considering the identity map on this object gives (C,C) ~ (0, 0z) and
this implies that (C, Cy) is the inverse of (Cy, Ch). O

In [Tho79], section 4, Thomason describes functors S = WS which are equivalent to

our HR. Notably, Proposition 4.3.2 implies:

Proposition 3.11. The canonical functor R — K}R defined as

c—(c,0), fr—(f,ido).

induces a group completion map BR — BK!R.

Proof. To see that Thomason’s proof applies to KR, recall that
INA? [ KIR| ~ |hocolimN K R| ~ |diagN K, R|

where A% [ KR is the Grothendieck construction on K!R. The first equivalence holds
because of Theorem 1.2 in [Tho79] and the second holds because the homotopy colimit in

the category of bisimplicial sets is homotopy equivalent to the diagonal (cf. [BK72], XII,
4.3). O

3.3 K*R is an l-graded category

From now on, let R = (R, ®, 0, ¢s, ®, 1z, 0., ;) be a strictly bimonoidal category unless

stated otherwise.
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3 A multiplicative group completion

3.3.1 Multiplicative structure

Let X' be finite pointed sets. The multiplication in R induces a pairing

pr HR(XY, X7 x HR(X7, . X7 — HR(XL, .. X7, X0+ Xmm)

({C<s>,pc(<S>)}{D<r>,pp(<T>)}) — {(C®D)<s,T>.pceD(<S,T>)}
with < S, T >= (S1,..., 5, Tht1,- -, Tym) and

(O ® D)(Sl ----- Sn7Tn+1 ----- Tn+m) = C(Sl ----- Sn) ® D(Tn+1 ----- Tn+m)

Forl1 <i<nandS;=VUW, VAW =0andn+1<j<n+mandT; =
V'UW’, VN W' = () respectively, the corresponding isomorphisms are defined as

pcep(< S, T >0, VW) = (pe(< S >;i,V,W)®idp_,.) 0 d, and
peep(< S, T >; 5,V W') = (idc_s. ® pp(< T >;5, V', W')) 04,

respectively.
To see how this works, consider the following example:

Let UUV =S and U'UV' =T withUNV =0, U' NV’ = 0. Then

pcep((S,T); 1, V,W): (C®D)wr @ (C® D)wr (Cy @ Dr) & (Cw ® Dr)

Js

(Cy & Cw) ® Dr
\LPC@idD

03®DT

and

pC®D((Sa T); 2, V/, W’): (C & D)(S,V’) () (C & D)(S,W’) (CS X DV/) ) (CS X DW/)

:
CS X (DV’ ) DW’)
lidc'@ﬂp

05®DT
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3.3 K*R is an I-graded category

Recall that we defined ¢§; in terms of d, and cg and that it is usually not an identity
morphism! These structure isomorphisms satisfy the requirements spelled out in Definition
. In particular, they are associative: Let n+1 < j <n+mand UUV UW = T}. Then
the diagram

(C®D)<s,1,j,w>®(COD) c5.15,U>B(COD) < 5,75, v> LU (C®D) <5,1:5,w>B(Ccs>®(Dar;ju>®Darijvs))
§®id ide(ide_ 4. ®pp)
(Ces>®(D<r;j,w>®Dcr;j,us))B(CRD) < 5,135, v> (C®D)<s,13,w>B(COD) <5,1;5,U0V >
(ide_ g ®pp)@id 8
(C®D)<s,1;j,wnu>S(CRD)<5,1:5,v> Ccs5>®(D<ryj,w>DD<Tij,Uu0v>)
] ido_g. ®pD
ido_ g, ®pp

Ccs>Q(Deryjwuus>®Deryjvs) (C®D)<s,T>

commutes since ¢; is natural and associative and the additive structure isomorphisms pp
are associative. In particular, (id ® (pp @id)) 0 d; = d,0 (id ® (pp B id)) since §; is natural.
An analogous diagram for 1 < ¢ <n and S; = U’ UV’ UW' commutes as well. Note that
it makes use of the strict distributivity ¢, and the additive structure isomorphisms pe.

Furthermore, the structure isomorphisms satisfy the pentagon rule. Consult the next page

for the diagram. We apologize for the missing details due to technical constraints.

In case of a bipermutative category R = (R, ®, 0, ¢a, ®, 1z, ¢g, 0, 0;), we define the

multiplicative twist
Yoo HR(X L, .., X X0 X)) — HR(XIH, . X X X
as

VP {(C® D)csrs, peont — {(ce(C @ D)) crss, pecon) (< S, T >; x™"(i), V, W)}
= {(D & C><T7S>7PD®C<< S7T >’X77’L,TZ(,L)’ ‘/’ W)}

Wlth < S, T >= (Sl, ey STL7TTL+17 e ,Tn+m) and < T’ S >= (Tn+1, ‘e ,Tn+m, Sl, ey STL)
This is a natural isomorphism for all C, D € R since the twist cg and the distributivity
maps 0., 0; are natural in R. Note that 74 entails an exchange of the involved distributivity

maps. Since §; o (cg @ cg) = Cg © d,, this does not cause any problems.
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3 A multiplicative group completion

Let UUV = 8, U' UV =T},
We use the abbreviations (U,U’) :=< S,T;i,U;5,U" >, < S;U" >:=< S,T;j,U" > and < T;U >=< S,T;i,U >.
Furthermore,

(1) = ((pe(< S, T >;i,U,V)®1idp) @ (pc(< S, T >;i,U, V) ®idp)) o (6, & J,),

(2) = ((de ® pp(< 8, T >;5,U, V")) & (ide ® pp(< 8, T >;5,U", V")) o (6 @ &)

We get the following diagram:

(CRD) c5,u1>B(COD) L gp7
(1)

ido®pp (<S,T>;5,U",V"))od
(CRD)(y,uy®(CRD) v,y &(CRD) vy ®(COD) (v, vr) (desrol ! Joo

id®cg ®id (C®D)<s,T>

(C®D) s ®(C®D) n®(C®D) n®(C®D) ’
e o e o (po(<S,T>3UV)@idp)os,

(2)
(CO®D)<T,u>®(CRD)<T,v >

The naturality of the distributivity maps implies

510 ((po(< S, T >;i,U,V)®@idp) @ (po(< S, T >;i,U, V) ®@idp)) = ((pc(< S, T >;i,U,V) @ idpap) o
o, 0 ((ide ® pp(< S, T >;5,U", V") @ (ide ® pp(< S, T >;5,U", V")) = (idcac @ pp(< S, T >;5,U", V")) 0 6,.

That is, we can assort the distributivity maps at the ”left hand side” of the diagram. Finally, the diagram commutes since
910 (8, ®9,) 0 (id® cqp ®id) = d, 0 (§; @ ;) (cf. Definiton 3.1, condition 10, for J = *) and the product in R is natural.
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3.3 K*R is an I-graded category

Now let Yi,..., Y, be pointed simplicial sets. Similar to the one above, we get a

pairing

ILL: HR(K, 7YTL) X HR(YH+1,...,Yn+m) — ﬁR(m,...,Yn,Yn+1,.. .,Yn+m)

({Ccs>.pc(<S>)}{Dar>,pp(<T>)}) — {(C®D)<s.1>,p00D(<ST>)}
where we define (C'® D).gr> to be the (n 4+ m)-simplicial object

(C ® D)<57T>(11 lngm) C((Sl)zly---,(sn)ln) ® D((Tn+1)ln+17---a(Tn+m)z,,L+m) €R.

.....

The isomorphisms pogp are defined analogously to the ones above and two morphisms

f<s>,g<r> are mapped to (f ® g)<sr> = f<s> @ g<r>.
For a bipermutative category R, the multiplicative twist is defined as above.

Note that p is natural, meaning that the following diagram commutes:

C,D
({Ces5p0 (<83} ADars pp(<T>)}) ——— > {(C®D) s 75 (pc®pp)(<ST>)}

f<s>:9<T> (f®9)<s,1>

C/,D/
({CLgs et (<S>} ADL 1y ppr (KT>)})

{(C"®D") <57 (pcr®@ppr )(<S,T>)} .

The functor p induces a functor K (u): KR x KI"R — K!*"™R and we will now explain
how this works exactly. For simplicity, we restrict to the case n =m = 1.
First of all, we want to point out what we mean with the product of diagrams HR(Y;,) x
HR(Y;,). Recall that HR(Y;;) is a functor J — sStrict. Its product is a functor J* —
sStrict® that maps an object (i1,45) € J* to (HR(Y;,), HR(Y;,)) € sStrict®. On the other
hand, HR(Y;,,Y;,) is a functor J* — sStrict. Thus, the multiplication

p: HR(Y)) x HR(Y) — HR(%:,Y))
induces a map of diagrams

17
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3 A multiplicative group completion

by application on each vertex. Finally, the universal property of the limit provides the

functor

K(p): limlim (HR(Y;,), HR(Y;,)) — limlim HR(Y;,,Y;,) = lim HR(Y;,, Y;,).
R | N IxJ

3.3.2 Induced functors KR — K"R

Let I be the skeleton of the category of finite sets and injective maps as in Definition
For each injective map ¢: [m] — [n] we want to define a functor ¢.: KR — K"R. Our

construction is inspired by the presentation in [EMO6], section 4.

Definition 3.12. Let ¢: [m] — [n] be an arbitrary morphism in I. We define

¢o: HR(Y1, .., Y) — HR(Y?, ..., Y,?) = HR(Ys-101)s- - -, Yo1(m)

with Yy-1;) = [1]4, the constant simplicial set on [1]4, if ¢'(i) = 0, to be the follow-
ing functor: An object {Cg>,pc(< S >;1,T,U)} is mapped to {C$<S>,pc¢(gb < S >
;¢_1(i),T, U)} with C$<S> = C¢<S>, ¢ < S >= (S¢—1(1), Ceey S¢—1(n)) and S¢—1(i) C [1] if

¢~ (i) = 0. The structure isomorphisms pcs are given by

pe(dp < S >1¢71(i), T.U) ¢ (i) # 0
id gbil(i) = @ and S¢*1(i) C [1]

Y

pC¢(¢ <S8 >;¢71(Z’)7T7 U) =

A morphism f = {f.g-} is mapped to f¢ = {f$<s>} = {fo<s>}-

The superscript ¢ only serves to indicate that we understand the respective object as an
image under ¢,

To make evident that the functor ¢, is well-defined, we discuss some special cases.

Let 0 € ¥,,. In particular, ¢ is an injective map [n] — [n]. By definition,
oo HR(Y1,...,Y,) = HR(Y,-11), -+ Yom1(m))

sends an object {Cg~,po(< S >0, T,U)} to {C g, pee(oc < S >;07i), T,U)} with
g<s> - CO’<S>a o< S >= (So-fl(l)7 ey So-fl(n)) and

poo(0c < S >;07i),T,U) = po(oc < S >;071(i),T,U).
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3.3 K*R is an I-graded category

On morphisms, o, sends {fcgs} to {fI g} with fI_¢. = focss.

That is, o, only permutes the simplicial sets Y;.

Lemma 3.13. The functor o,: HR(Y3,...,Y,) — ﬁR(Ya—l(l), o Yo10m)) i an isomor-

phism of permutative categories.

Proof. Given an object C = {C.s~,pc} € HR(Y1,...,Y,), the identity morphism on C
is given by {idc_g.}. The functor o, maps this morphism to {idcg<s>} = {ids,(c_)}-
Thus, 0. (id¢) = id,, (). Furthermore, 0.(f o g) = 0.(f) 0 0.(g), since

o.(fog) ={(fog)scs=t ={[ocs> 0 Gncsst = {focs=t o {0g<ss} = 0u(f) 0 0.(9).

Evidently, o, is a bijection on objects and morphisms and thus an isomorphism of cate-

gories. To see that o, is in fact an isomorphism of permutative categories, consider

{Og<s>7 pos} & {Dg<s>a ppo} = {(C7 D D?)ocss, poeape }
since on both sides objects and structure maps are given by

C’cr<5'> S DU<S>

and
(Co(<siivs) @ Do(<siivs)) @ (Co(essivs) @ Do(<siiv>))
iid@c@id
(CU(<S;Z',U>) S CU(<S;1',V>)) D (Da(<S;i,U>) S DU(<S;i,V>))
iﬂc@pp

Ca(<S>) S Da(<S>)

respectively. Thereby, o(< S;4,U >) = (S,-1(1), - - -, Se=1(n); 0 *(2),U). The zero cube is

mapped to the zero cube and all other conditions follow from the strictness in R. O
Example 3.14. Let 0 € Y5 be given by 1+ 2,2+ 3,3 +— 1. Then

Oy HR(Yla }/27 }/3) — HR(%? Y17 }/2)
{0(51752,53)7/70} — {0(053,51,5’2)7 pC"}»

g
f(ShSQySS) f(S3,Sl,S2)'
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3 A multiplicative group completion

Lemma 3.15. Let 0,7 € ¥,,. Then (0 07), =0.0T,.

Proof. We observe:

(0’ o 7')*2 I:IR(}/I, ce ,Yn) —>HR(Y’(UOT)71(1), R ,Yv(goq.)fl(n))
HR(YT—l(O.—l(I)), R ,YT—1(0—1(H)))

and the latter is the image of HR(Y7,...,Y;) under o, o 7,. O
Let ¢: [n] — [n+1] be the standard inclusion missing the last element n+1. We consider
HR(Y3,...,Y,, [1]4) as an n-simplicial category via

HR(}/l’ o Yo, [1]+>(l1 ln) — H,R’(()/l)lm R (Yn>ln’ [1]-1—)'

~~~~~

Lemma 3.16. The map ¢: [n] — [n+1] induces an isomorphism of permutative categories
b HR(Y:,, ..., Y)) — HR(Y:,, ..., Y, [1]4).

Proof. The object {Ccgs, pc(< S >34, T,U)} is sent to {C! g, pee (¢ < S >34, T,U)} with

C(le ..... Sp,1) — Ccs>, C(le ..... Sn,0) — Or

and
pee((S1, ..., S, 1);4,T,U) = po(< S >;4,T,U) for i <n+1,

pce((S1,. ., Su, 1);n+ 1, T,U) = pee((S1, - -+, Sn, 0);4, T, U) = id.

The morphism f = {f<s>} is sent to the morphism f* = {f/_¢. } where

-----

The inverse is induced by dropping the {1} from (Si,..., S, 1).

Obviously, ¢, respects the permutative structure. O

The isomorphism ¢,: HR(Y,,...,Y:,) — HR(Y;,...,Y; ,[1];) induces a map from
KI'R to the limit of the system HR(Yj,,...,Y:,[1]s) (via the universal property of
lim HR(Y;,, ..., Y:,,[1]4)). The natural maps from [1], to PS} = [1]; and S} = {0}
then induce a map from the limit of the system HR(Y;,,...,Y;, ,[1]+) to KMTIR (via the

universal property of K'™R). Putting it all together, we get a functor of permutative
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3.3 K*R is an I-graded category

categories K"R — KR,

Similarly, each inclusion ¢;: [n] — [n + 1] which misses the element j induces an
isomorphism HR(Y1,...,Y,) — HR(Y1,...,Y,y1) with Y; = [1]; and thus a functor
K'R — KI'R.

Every order-preserving injective map i: [m| — [n] is a composition of standard inclusions ¢;.
This composition is not unique, but if ¢ = ¢, 0¢; = ¢ 0y, then ¢y, 005, = 14, 01y, for obvious

reasons. Thus, the above definition extends to the definiton of a functor i,: K]"R — K}'R.

The functor ¢, as in Definition is well-defined because of these isomorphisms.
Example 3.17. Let ¢: [2] — [4] be the injective map 1 — 4, 2+ 2. Then:

¢: HR(Y1,Ya) — HR(Y!, Y3, Yy, YY) = HR([1]4,Ya, [1]4, Y1)
(Cs1,52), P ((S1,92):8, T,U)) = (Cf g, 1.6, Peo (1,52, 1,81); 671 (i), T, U))

¢
fisi,52) = f1sp1.80)

where 1 is a subfunctor of the constant simplicial set [1].

We now want to apply these results on diagrams of categories. For each injective map
¢: [m] — [n] the functor ¢,: HR(Y:,...,Yy) — HR(Y?,...,Y?) induces a functor of
diagrams HR(Y;,,...,Y; ) — HR(Y

im Q10"

. ,Y;f) in sStrict by applying ¢, on each vertex.
We denote this functor of diagrams with ¢, as well.
One word on notation: {C(s, ..s,),pc} € HR(Y;,....Y,

..... in

S;, is a subfunctor of Y;, such that (S;j,)r does not contain the basepoint for all & € A.

J

Likewise, a morphism f in HR(Y;,,...,Y;,) is a diagram of morphisms f(si, 81, 1 we

OVt S e e A TR R in

) is a diagram of objects where

shorten notation we write again < S > instead of (S;,,...,S5;,).

The functor ¢, on HR induces a functor K(¢,): K™R — K"R via the universal prop-
erty:

K™R K (6:) e
HR(Y;,, .., Y,,) === HR(YY, . Y).

Since, (Yo @)™t =@ oyl we have 9, 0 ¢, = (¥ 0 ¢).. To sum up:
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3 A multiplicative group completion

Lemma 3.18. The assignment [n] — K"R defines a covariant functor K*R from I to the

category of simplicial objects in Strict.

3.3.3 Main theorem

The product and the functors induced by maps from I fit together in a very good way:

Example 3.19. Let ¢: [1] = [2], 1+—2and ¢ : [2] — [3], 1+ 3,2+ 1. Then:

HRO/Zl) X HR<Y Y; ) : HR(Y;nY}nY}Q)

Jir —J2

(qs*,w*)l J/m@w*
ﬁR([1]+7 }/;1) X H,R’O/}z? [1]+7 Y}l) L> ﬁR([l]Jru }/;'17 }/}27 [1]+7 Y}1)

On objects:

{Cs, pc ()} AD 1y 1), po(Th, T2) }) {Cs @ D1y 1), peep(S, T, To) }

l !

({Cas)a Pdc)(la S)} {DEATQ,LTl)J p%(T% 1L, T)}) — {CSS) ® DEZ)TQ,LTW pcogpv (1,5, 15,1, 1)}
where posgpe (1,5, T, 1,T7) is defined as
pesgps (1,8, To, 1, T1);4,U, V) = (pe((1,5);¢71(2), U, V) ®@idpy, , 1)) © 0
for i € {1,2} and
peowpe((1,9, Ty, 1,T1); 1, U, V') = (ide,, ) @ ppe (T2, 1, T1);47 (i), U, V') 0§,

for i € {3,4,5}.

On morphisms:

(fs, 9cr,m)) (f ®9)s1.m)

| |

(f(qi,S)7 gszg,l,Tl)) — (f?®¢")1.s,m11)
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3.3 K*R is an I-graded category

On limits:

K ()

— /

_ I _
HR(Yzl )XHR(YH 7YJ'2) - HR(YH Yy, 7Yj2)

K*R

K'R x K'R

(K (), K (¢)) (¢*7¢*)l lm@w* K (¢ )QK (1)

_ A [
HR([1}+aY;1)XHR()/jgv[l}-‘-vajl) - H,R‘([l]-FvailaY}Qv[l]‘F?}/jl)

/7 \
K*R x K*R < K°R

The outer maps exist (and the diagram commutes) because of the universal property of

the limit.

Proposition 3.20. Let R be a bipermutative category and (I, +,0,x) the skeleton of the
category of finite sets and injective maps. The assignment [n] — K"R with K°R given by
R turns K*R into an I-graded bipermutative category.

Proof. Basically, because of how the product and other structure maps are defined, all
conditions hold since we require the underlying category R to be bipermutative. The
numbering refers to Definition

1. We have already discussed the product and given an example indicating that the
product is natural in I. In fact, for ¢: [k] — [m| and ¥: [l] — [n] the following diagrams
commute for all objects {Ccgs, pc} € HR(Y;,,...,Y:,), {D<rs,pp} € HR(Y;,,...,Ys)
and morphisms f in HR(Y;,,...,Y;,), g in HR(Y,,...,Y;):

{C<S>> PC}a {D<T>7 PD} . {C<S> ® Ders, pc @ ,OD}

P, Vs D5 Qs
@ b [ @ Y
{C¢<S>v Pc¢}, {Dw<T>v pD*”} {C¢><S> ® Dw<T>7 PcseD¥ }a
m
fes>sg<r> f<s> @ gers
¢*7'¢1* ¢*®'¢'*

o] P H ] WP
focsss Gpars > focs> ® Gyers-

The commutativity is guaranteed by the naturality of ® in R. Regarding the structure
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3 A multiplicative group completion

maps p, recall that ¢, and ¢, only work on the simplicial sets Y;,, the structure maps
themselves remain the same.

This implies that the respective diagram for limits commutes as well (based on the uni-
versal property of the limit) (cf. the diagram on the next page). We point out that all

work is done on the level of diagrams HR(Y;,...,Y;, ). Commutative diagrams on this

19 ¢

level induce commutative diagramms on limits. We will therefore omit this last step in the

following.

2. The unit 1 is given by 1x € R and the multiplication

R x HR(Y,,....Y,

Then

(1,{Ccss, po(< 8 >4, T,U)}) - {1g @ Ccgs, (id, ® po(< S >34, T,U)) 0 &}
= {C<S>7PC(< S >;i7T7 U)}

3. We already defined the multiplicative twist. Evidently, 7 is natural since it is

induced by the twist cg in R. For the same reason, 75 o yg’D is the identity on

{(C ®D)<sr>, pcan}-
Moreover, the following diagram commutes for ¢: [k] — [n] and ¢: [I] — [m]:

CC’D
C<S> X D<T> ® D<T> ® C<S>
Bu @ V@i
¢ ¥ g " ¢
Cocss @ Dy rs Dyrs ®Chg-

since it is a diagram in R and the twist cg is natural in R. Regarding the structure maps p,

recall that all involved structure maps in R are natural and the maps p remain unchanged.

4. Let < S >= (Sl, . ,Sk), <T >= (TkJrl, . ,TkJrl) and < U >= (Uk+l+17 .. -aUk+l+m)-

48



3.3 K*R is an I-graded category

:+§VN

()@ (*P) 31

S LS X L
/ \
(07 SRR QU GRS —— (i x (G iul
*h@*d (*ps*p) ()1 (*9)31)
(g e g (O X (M )Ll
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49



3 A multiplicative group completion

For all {Ccss,pc} € HR(Y:,,....Yy,), {Ders,pp} € HR(Y;,,....,Y;,) and {Ecy~, pp} €
HR(Y; Y;

ey Y5 ), we know

(CR®(D®E))csrys> =Ccs> @ (Ders @ Ecys)
= (C<S> X D<T>) ® E<U> = ((O & D) ® E)<S,T,U>

since the product in R is strictly associative (same argument for morphisms). Moreover,
pcepee(< S, T,U >;1, VW) = pcamar) (< S,T,U >;i,V,W) since both are defined as

pC®D®E(< Su T7 U > ia ‘/7 W)

(pc ®idcgE) © 6, 1<i<k,
= (ide®pp®idg)o (6 ®idg)od, k+1<i<k-+I,
(idegp ® pE) o E+l+1<i<k+1l+m.

For k+1 <i < k+1, the map pegpge(< S,T,U >;i,V,W) could as well be defined as
(ide ® pp ®idg) o (ide ® §,) 0 &;. To see that both definitions agree recall that the diagram

]
(Ccs>®Dcriiv>®E<u>)P(Ces>®@Deryw>®E<ys) — Ccs>Q(Dariiv>®FEcu>®Der;iw>QFE<us)

or do_g, ®0r

W@dE
(Ccs5>®@Dcr;i v>®Ccas5>®D oty w>)RE Uu>

Ccs>®(Detyiv>®D<ri w>)OE<U>

is a diagram in R and commutes since R is bipermutative (cf. Definitions , for
J =x).

Fork+1<i<k+landk+1+1<i<k+I[+m, the structure maps make use of
the left distributivity map. Recall that ¢; = c¢g 0§, 0 (cg @ cg). Thus, in all three cases,
the structure map pegper(< S,T,U >;i,V,W) is defined as: Shuffle the objects which
you want to sum up (C, D or E) to the left (if necessary). Use ¢, = id. Shuffle it back (if
necessary). Apply the appopriate structure isomorphism (p¢, pp or pg) together with the

identity map on the other objects. Since the product is natural, the diagram

(Ecviyvs ® Ecvyiws) ® Cegs @ Deps > Cis®Ders ® (Ecviivs ® Ecviws)
pE®idi iid®pE

E s ® Cess @ Deps Ces> @ Ders @ Ecps
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3.3 K*R is an I-graded category

commutes. (So does the accordant one for kK + 1 < ¢ < k +[.) Hence, we can say that in

all cases, the structure maps are defined as: Shuffle the objects which you want to sum

up to the left (if necessary). Use 6, = id. Apply the appopriate structure isomorphism

together with the identity map on the other objects. Shuffle it back (if necessary). This

will be helpful when we now show that associativity is compatible with twists.

Let X1 = X(lvm)7x2 = X(k + l7m)7X3

= x(m, k) and consider the diagramm

Ces>@Der>®Ecus> X2+ E<v>®x2.Cc5>®x2. D> (32)
. . *
Ces>®(1dp®x1)«E<v>@(idp®x1)x D> —> X2.(X3.C<55)®x2. (X3, E<u>)®x2. D>
with
E =F
XQ* <U> (szil(l)’.“’UX;l(m))’
C =C
X2: <S> (ngl(mﬂ)""’sz‘l(m+k))’
D =D
X2+ <T> s omtrrny Tyg mghin)
idy, @ E ys =
( k Xl)* <U> (Uk+xfl(1)7“"U’€+X171(m>)’
idg © x1)«D<rs = D
( k Xl)* <T> (Tk+xl_1(m+1)""’Tk+x1_1(m+l))’
C =C
XQ*(X3* <S>) (SXQ_I(Xg_l(l))’“"ngl(xgl(k)))’
E =
x2. (s E<v>) Uz o ey Vg oz )’
D =D .
X2+ <T> (Txgl(m+k+1)""’Tx2_1(m+k+l))
The lower map (x) is the identity:
C E ® D
St og g o ) gz 1) YngLing L etm)) gt omsreny Ty Lmsrsn)
= E
(SX2_1(m+1),...,sz—l(m+k)) (ngl(l)""’ngl(W) (TX2—1(m+k+1)7~..,TX2_1(m+k+1))

=Cis>® E(Uk+l+1
=Cs> ® Eu

kix Ly U

k+x;1(m>)

----- Utigm) © D(Tk+17---7Tk+l)

(Tk+xf1(m+1)""’Tk+xf1(m+l))'
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3 A multiplicative group completion

Diagram commutes since it is a diagram in the bipermutative category R. We get

a commutative diagram of objects in HR(Y;,,...,Y; ), since the structure maps only

Uktl+m
differ in the order in which one shuffles the objects to be summed up to the left. However,

in a permutative category (here, we refer to (R, ®, c¢g)), it does not matter in which order
one permutes (cf. Definition [1.7]).

5. Recall that the zero object 0; € HR(Y;, . .. ,Y;,) is the zero cube, that is the cube
{Cess,pc(< S >;1,T,U)} with Ccg> = 0g and pe(< S >;4,T,U) = id for all < § >=
(S1,...,8;) and T, U € S; with the according properties. Then

(0]7 {O<S’>7PC(< S/ >;Z'7T7 U)}) &) {(O'R X C)<S,S’>7id ®p0<< S/ >;Z.)T7 U)}

= 0j4m

for all objects {Cegrs, po(< S >34, T,U)} € HR(Y;,, ..., Y;,).

6' Let {O<S>7pC’}a {D<S>710D} € HR(}/;N e aY;n) and {E<T>7 PE} € HR(}/;U cee 7}/;7”)-
We have to show that the right distributivity map d,. is the identity:

{(C®D)® E)csrs, (pcopyer)(< S, T >;4,U,V)}

{(C®E®D®E)csr>, pecopapep(< S, T >;i,U,V)}.

Since right distributivity is strict in R, we know that this is true on objects:

(C@‘D)(Sil ----- Sin )iy, ., ln)®E(Ti1 ----- Tiv ) (k... km)

for all (I, ..., 1)) € A", (ky, ..., kn) € A™.

Regarding the structure maps, we find

. (idcop @ pp) o i>n,
p(C@D)@E(< S? T >3, U7 V) =

(pC@D (059 ldE) ] (ST 1 <n
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3.3 K*R is an I-graded category

and

5, 0 (idoen ® p) 060 (8, @ 5,) i > n,

pespepep(< S, T >;1,U V) =
5’/‘ o (pC@DidE) o 57" © (5r S¥ 5r) [ S n

(idcep ® pp)odr i >n,

(pcop ®@idg)od, i<n

where the last equation is again valid since 9, is an identity map in R. To make this more

palpable, we write out the case ¢ > n:

(Ccs> @ E<riivs) © (D<s> @ Ecrivs)) ® ((Cas> ® Ecrivs) © (Dass> @ Ecrivs))
16, ® 6,
((C<s> ® Dess) @ Ecrivs) © ((C<s> © Dess) @ Ecrivs)
Lo
(Ccss> @ Dess) @ (E<rivs> © Ecrivs)

L idegp ® pE

(Cess @ Degs) @ Eops
L or

(Ccs> ® Ecrs) ® (Dess> @ Ecrs).

Furthermore, the same argument as for objects applies to morphisms f, gin HR(Y,, ..., Y;,)

and h in HR(Y;,,...,Y:,):

19

(f®g) @h)esrs = ((f ©h) & (9@ h))<sr>.
7. Left distributivity is defined as
di =Yg 0 dr 0 (Yo D Ve)-
8. The conditions g o (79 ® Yg) = (Yo D Ve) © Ve and (v ® id) 0 75 = g 0o (Id ® 7a)
hold, since the twists « are induced by the twists ¢ in R which satisfy these conditions.

Moreover, the structure maps are defined summandwise and are hence not affected by the

additive twists.

93



3 A multiplicative group completion

9. It is clear that the diagram

(CR®D®E)csru>®(CRD®E)cstu>

oo

id®6
C(<S> ® ((D ® E)<T,U> ¥ (D ® El><T,U>) % (C ® D)<S,T> X (E b El)<U>
commutes since it is a diagram of objects in the bipermutative category R. Concerning
the structure maps, recall that the product is strictly associative which in our case suffices

to see that the distributivity maps are associative with respect to structure maps.

10. The pentagon diagram commutes because the underlying diagrams commute in R.
Note that in all cases, the structure maps are defined as a composition of distributivity
maps and (pcsc’) ® (ppep’). The respective diagram commutes since the according one

for the distributivity maps in R commutes. O

Corollary 3.21. Let R be a strictly bimonoidal category and I as above. Then K*R is

an I-graded strictly bimonoidal category.

3.4 K*R defines a multiplicative group completion

Proposition 3.22. Let R be a strictly bimonoidal category. The canonical inclusion

t: [n] — [n+ 1] induces an unstable equivalence KI'R — KIYR forn > 1.

The outline of the following proof is due to Baas, Dundas, Richter and Rognes.

Proof. We know that K'R = lim HR(Y,,...,Y;,,[1]+) (induced by ¢, see Lemma [3.16]).

190 7}/;'717 {1]+>> is
a group by use of an anologous argument as for K!R. Thus, the H-space
|diagN lim HR(Y;,, ..., Yi,, [1].)] is group-like:

Since n is at least one and the limit can be taken iteratively, mo(im HR(Y;

|diagN lim HR(Y;,, . .., Y:,, [1]4)] ~ QB|diagN lim HR(Y;,, ..., Y;,, [1]4)].

By Proposition 2.1.3 in [Tho79],

QB|diagN lim HR(Y;,, ..., Y;,, [1]1) = Q|diagN lim HR(Y;,, ..., Yi,,St)|.
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3.4 K*R defines a multiplicative group completion

From [Tho79], Proposition 4.3.2 we deduce that
|diag N K!R| ~ Q|diagNHR(S?)|.

Since K'R = lim HR(Y;,, ..., Y:,,[1]4) is a permutative category, we get as well

n

Q|diagN lim HR(Y,,,...,Y;,,S!)| ~ |diagN KR

which finishes the proof. ]

We have proven so far that K*R is an I-graded bipermutative category such that any
[m] — [n] induces a stable equivalence K*R — KR and that for m,n > 1 any such map
induces an unstable equivalence K"R — KJR. Hence, Lemma and Proposition

yield that the canonical chain
KI'R «— ZK"R — Dhocolim; K*R

is a stable equivalence of ZR-modules for all [m] € I and an unstable equivalence for all

m] € I, m > 1. In particular, this gives an unstable equivalence
KR <& ZK!R — Dhocolim; K*R
and thus provides that DhocolimyK*R is group complete. Furthermore,
R «— ZR — Dhocolim;K*R

are maps of simplicial bipermutative categories. Consequently, the Segal model defines a

multiplicative group completion:

Theorem 3.23. Let R be a strictly bimonoidal (bipermutative) category, then
R = Dhocolim;K*R is a simplicial category such that myR is a (commutative) ring and
there are stable equivalences

REIR—TR (3.3)

of simplicial strictly bimonoidal (bipermutative) categories.

The main motivation of Theorem is the category of finite dimensional complex

vector spaces which is in particular a topological category. Thus, before establishing an
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3 A multiplicative group completion

equivalence between the Segal model and the model used by Baas, Dundas, Richter and
Rognes, we need to make sure that the above statements hold for topological categories
as well. Originally, Segal’s construction is a construction for topological categories. Fur-
thermore, we point out that the limit, frequently used in our constructions, preserves an
enrichment over Top since Top is complete. In addition, we need to check that the equiv-
alences in respect such an enrichment. In case of the equivalence ZR — R this is not
difficult since the resolution is defined via adding disjoint zeros. The derived homotopy
colimit makes use of the resolution Z and the homotopy colimit of Thomason. Morphisms
in Thomason’s homotopy colimit hocolimy K *R consist of triples of a surjection of sets, a
morphism in I and a morphism in K*R. Thus, given a topology on the morphisms of K*R
it can be trivially extended to define a topology on the morphisms of hocolimy K *R such

that the equivalence ZR — DhocolimyK*R is continuous in each degree.

Recall the Grayson-Quillen model (—R)R from Definition 2.5| Baas, Dundas, Richter
and Rognes use a version of this model to define a multiplicative group completion and
prove with it that — under mild restrictions on R — the K-theory space of a strictly bi-

monoidal category R is equivalent to the K-theory space of the associated ring spectrum
Spt(R).

Proposition 3.24. Let R be a small symmetric monoidal category. If in addition R is a
groupoid and the translation functor x & () is faithful for every object x € R, then there
are weak equivalences

KIR =5 KY{(~R)R <= (~R)R.

Proof. The right map is a weak equivalence, since stable equivalences between group com-
plete symmetric monoidal categories are weak equivalences. The left map being a weak
equivalence is a consequence of [MT78], Lemma 2.3, since R — (—R)R is a group com-

pletion. O

This statement says that the Grayson-Quillen model and the Segal model are equivalent
and thus the proof of [BDRRD] applies to the Segal model as well. Notably, this proof
only works if R is a groupoid and the translation functor x @ () is faithful for every object
x € R. This is due to the fact that in other cases the Grayson-Quillen model does not
provide a group completion. However, the Segal model does. Hence, the obvious question
is if theorem [2.14) holds in a more general context and if the Segal model could help proving
it.
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4 A tensor product of permutative

categories

The main obstacle in giving a definition of Hochschild homology of a strictly bimonoidal
category close to the original definition for rings is a definition of a suitable tensor product.
Apart from that, the question if there is a tensor product of permutative categories is
interesting by itself. Aiming for a tensor product in Strict, we give a construction that is
based on the construction of the tensor product of abelian groups. The key point in the
construction of the latter is the quotient group, thus we start with the definition and a
discussion of quotient categories. However, the use of quotient categories or rather the fact
that our tensor product has origin in a discrete setting already implies its main flaw: Many

desirable applications of the tensor product require that certain twist maps are strict (cf.

Prop. [4.12)).

4.1 Quotient categories

Given a small category, we construct a quotient category with respect to equivalence rela-
tions on its objects and morphisms. Our construction is inspired by the one by Schubert
in [Sch70], chapter 6.

Let C be a small category and R an equivalence relation on its objects. Let further K
be a relation on the morphisms of C such that s(f) ~gr s(f’) and t(f) ~g t(f’) for all
(f,f') € K. Given this data, we want to construct a quotient category, denoted Q(C)%,,
with objects given by equivalence classes of R and morphisms given by equivalence classes
of a certain equivalence relation K’ associated to K. This equivalence relation K’ has to
fulfill some requirements in order to ensure that Q(C)%, is well-defined:

We need to make sure that we get decent identity morphisms. Therefore, we add to K

the pairs (id.,idy) for all ¢ ~p ¢ and denote this extension by KY. Furthermore, the
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4 A tensor product of permutative categories

equivalence relation K’ has to be compatible with composition, i.e. f ~ f" and g ~ ¢
implies fog ~ f'og’ for composable morphisms f, g and f’, ¢’. This requirement is justified
by the following observation:
Let G be a group and let C be the category with one object and morphisms given by
elements of G. An equivalence relation K on morC that is compatible with composition
corresponds to a congruence on GG. The main theorem on congruences (see [Jac85], pp. 55)
then implies that [id] is a normal subgroup of G. On the other hand, the same theorem
states that if H is a normal subgroup and K is the relation given by a ~ b 1< ab™t € H,
then K is an equivalence relation on morC = G that is compatible with composition.
However, we admit that the requirement that f ~ f’ and g ~ ¢’ implies fog ~ f o ¢

is rather strong:

Example 4.1. Let C be the category with one object and morC = 3. Consider the
relation K given by
a~bsab! € {e o} 2X7/27.

This is an equivalence relation on the morphisms since {e, o1} is a group, but not com-
patible with composition. In particular, [e]x = {e,01} is not a normal subgroup of ¥s.
However, if K’ denotes the smallest equivalence relation compatible with composition gen-
erated by K, then [e]x has to be a normal subgroup and contain [e]x. Since Az is the
only non-trivial normal subgroup of X3 but does not contain [e]g, it is K’ = X3 x X3 and
ek = Xs.

Definition 4.2. Let C be a small category and let R, K and K° be as above. Let K’ be the
smallest equivalence relation generated by K° that is compatible with composition. We
define the quotient category Q(C)%, to be the category with objects given by all equivalence
classes of R. The morphisms of the quotient category are given by words [f,]...[fi] of
equivalence classes of K’ with t(f;) ~r s(fi+1). Composition is consequently defined as

juxtaposition, i.c., [f] o [g] = [f]g], and we require

[ids][f] = [f] = [f][ide] (4.1)

for all morphisms f: a — bin C.

To see that the use of words is necessary consider the following scenario: Let ¢ # ¢ € C
such that ¢ ~r ¢ but there does not exist a morphism ¢ — ¢. Then there might be
morphisms f, ¢ in C such that s[f] = ¢ ~g ¢ = t[g]. Thus, it makes sense to compose [f]

and [g] in Q(C), though f and g are not composable in C.
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4.1 Quotient categories

Proposition 4.3. The quotient category Q(C)%, from Deﬁm’tion 15 indeed a category.

Proof. Conveniently, the composition is associative by definition. We need to show that the
source and target maps are well-defined maps of sets morQ(C) — obQ(C), i.e. s[f] = [s(f)]
and t[f] = [t(f)]. We confine ourselves to discussing the source map, analogous statements
hold for the target map.

Let f ~g f'. This means there is a string of relations f = fi ~ -~ fi~ -~ f, =
such that either

[ ] fz ~ fi+1 1S given by fz ~ KO0 f/L'Jrl or
o fi=gro---ogiand fiy, =g,o---0g) with g; ~ko g} Vj.

In the first case, f; ~ko fiy1 implies s(f;) ~r s(fi+1) and in the second case, it is s(f;) =
s(g1) ~r s(g91) = s(fis1)-

For any [c] € Q(C), the identity morphism is given by [id.] and we made sure that this
morphism is well-defined and fulfills the required condition. Note that condition is

well-defined since we demanded that id, ~ id if ¢ ~ (. ]
Proposition 4.4. The quotient category is equipped with a projection functor w: C —
Q(C)R,, given by ¢ — [c], f — [f]. The functor m satisfies a universal property: Let

T:C — D be a functor and R, K, K" relations on C as above. If T'(¢) =T(c) for allc ~p
and T(f) = T(f') for all f ~x: [, then there exists a unique functor S: Q(C)%, — D such

that
C T D
Q(C)%

15 a commutative diagram of categories and functors.

Proof. The functor S is defined as S([c]) = T'(c) for all objects ¢ € C and S([f¥]...[f1]) =
T(fg) o---oT(f1) for all morphisms f; in C. Note that the latter is well defined since
T(s(fi+1)) = T(t(f:)) and we premised T'(f) = T(f’) for all f ~g f'. The fact that
S is unique is of course due to the commutativity condition: Let S’ be another functor
with T = w0 S = w0 S. Then S'([c]) = T(c) = S([¢]) for all objects ¢ € C and
S"([fe] - [f1])) =T (fx) o---oT(f1) = S([fx] - - - [f1]) for all morphisms f; in C. O
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4 A tensor product of permutative categories

Let (C,0,0) be a monoidal category. We call an equivalence relation on the objects of

C compatible with the monoidal structure if O preserves equivalences, i.e.
c~c and d ~ d' implies cOd ~ ¢Od'.

Note that as a consequence, ¢ ~g ¢ implies cOd ~r ¢Od and dOc ~ dO¢ for all d € C.
Analogously, an equivalence relation on the morphisms of C is called compatible with the

monoidal structure if
f~ f and g ~ ¢ implies fOg ~ f'Og'.

What we call compatible with a given monoidal structure is called congruence in the

context of monoids and groups.

Proposition 4.5. Let (C,0,0) be a monoidal category with relations R, K and K’ as
above. In addition, we require both equivalence relations to be compatible with the monoidal

structure. Then Q(C)%,, defined as above, is a monoidal category.

Proof. The monoidal structure on Q(C)%, is induced by the one on C. We define
[c]B]e] = [end], [f1D[g] = [fOg].

This is well-defined, since we required R and K’ to be compatible with the monoidal
structure. However, a priori we cannot make sense of ([f'][f])DO([¢'][g]). Therefore, we
define

([f e [fNBgT e lg)) == ([F1BlgD) © (IF1BIg))-

Now, O is defined on all morphisms. Words of different length are no problem:

1180y 1gl) = ([f1 e [dDB([gllg]) = ([f]1B[g']) o ([d]S[g])-

The unit is given by [0]. All structure isomorphisms are induced by the ones in C. They
are well defined since if f: ¢ — ¢ is an isomorphism in C, [f]: [¢] — [¢] is an isomorphism
in Q(C)&,. Commutativity of all required diagrams is induced by commutativity of the
respective diagrams in C since [a|O([b]O([¢]O[d])) = [aO(bO(cOd))] etc. O

Example 4.6. Let M be a monoid, considered as a discrete category. Let further = denote
a congruence on M. Then the monoid M/ =, as in [Jac85|, agrees with our definition of a

quotient category.
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Example 4.7. Let X denote the bipermutative category of finite sets and permutations
from Example[1.12 We construct the quotient category with respect to the relation K on
morphisms given by

o~k o & sgn(o) = sgn(a).

This relation is an equivalence relation and compatible with composition since sgn(coo’) =
sgn(o) - sgn(o’). Moreover, K is compatible with @& as sgn(o) = sgn(o’), sgn(7) = sgn(7’)
implies sgn(o & 7) = sgn(o’ @ 7’). Hence, the quotient category Q(X)x has the same

objects as ¥ and its morphisms are given by

Y. /A, m=n,
mor([m], [n]) = .
1] otherwise.

Let V¢ be the category of complex vector spaces from Example and L the category
with objects C,, for all integers n € Z and morphisms the linear automorphisms C} = C*,
compare [Kral, Definition 2.3. Let S: ¥ — V¢ be the functor that takes [n] to C" and
o € ¥y to (ex1),---,€sm)) € GLn(C). Note that S is covariant since (e(1),. .., €s(n)) is
the matrix (a;;) with a;; = 1 if i = o(j) and zero elsewhere. Thus, S(02) - S(01) = (¢i5)
with

1 i=o03(01(j)),

0 otherwise.

Cij =

Furthermore, let A: Vo — L be the functor that takes C" to C, and is the determinant
on morphisms. Then A oS =sgn, i.e., on morphisms we get (Ao S)(0) =1if 0 € A, and
(Ao S)(o)=—1if o € X, \ A,. Thus, Ao S factors through Q(X) in the sense that we
get a commutative diagram

D AoS r

Q) x

of permutative categories.

4.2 The tensor product

We are now turning towards the definition of the tensor product of permutative categories.

There are different requirements on a tensor product and we concentrate on two aspects:
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4 A tensor product of permutative categories

Universality with respect to a certain kind of multilinear functors and a monoidal structure
on the category Strict of permutative categories and strict symmetric monoidal functors.
However, once we identify the correct version of multilinear functors and establish the
appropriate universal property, it will be evident that our tensor product does not endow

the category Strict with a monoidal structure.

Let A, M be permutative categories and consider P(N x M), the free permutative
category on N x M (cf. Definition [1.14). We define R to be the equivalence relation on
objects generated by:

kl...,(n,m), (n,m),...] ~(k=1)[...,(n,m3m’),...],
kl...,(n,m),(n,m),...] ~(k—=1[...,(nOn",m),...],

and

for allm € N',m € M.

We can interpret a morphism
olfi, oy ful: Kl ..o k] — K[z, . o,

as
ofid, ..., id] oid[f1, ..., f]

with fi: z; — 2, () and olid, ...,id] is the morphism

k[x;(n, - ,x;(k)] — k[x’o__l(a(l)), . ,x;_l(a(k))} = k[z),...,z}].

Based on this, we define K to be the set of pairs of morphisms in P(N x M) containing

(d[...,(f.9),(fg) ... Lid[....(faf" g),...])
and (id[...,(f.9),(f.¢)...1,id[...,(f.¢Og)....]).
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Furthermore, we require that K contains the pairs

—

<J[...,(ideN,g),...],0'[...,(ideN,g),...]) and(a[...,(f ide,,), ...],U'[...,(me\M) ]),

with
. a(7) o(j) <o) . .
oaj)=9 " _ L #d,
o(j) =1 o(j) >a(i)
if (ide,, g) (resp. (f,id.,,)) is the i*" entry.
Note that R and K are compatible with the monoidal structure on P(N x M) and that
K =K°.

Definition 4.8. Let N/, M be permutative categories. We define the tensor product N @M
to be the quotient category of P(N x M) with regard to the equivalence relations R and K,

where K’ is the smallest equivalence relation generated by K that satisfies the conditions
of Definition 4.2

For the sake of lucidity, we denote objects of N'®@ M by k[(ni,m1), ..., (ng, mg)]. Keep

in mind that these are equivalence classes!

Proposition 4.9. The tensor product N' @ M inherits the structure of a permutative
category from PN x M).

Proof. The neutral element is given by the equivalence class of 0] |. We already know that
N ® M is a monoidal category. Since we defined the sum of equivalence classes to be the
equivalence class of the sum (see [4.5]), strictness is induced by the strictness in P(A x M).
The twist is induced by the twist in P(N x M): v = x(n, k)[id, . . .,id]. O

Note that we need N, M to be permutative so that R and K are well-defined. In

particular, we need identities like

(1[(n1, m)] + 1[(n2, m)]) + 1[(n3, m)]
[(n1Ox no)0pr ng, m)]
[(n18x (72D n3),m)]
[(n1,m)] + (1[(n2, m)] + 1[(ns, m)])

=3
3
1

and
1[(n, m)] + 1[(ex,m)] = 1[(nBx ex,m)] = 1[(n,m)]

63
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to hold in N ® M.
Proposition 4.10. The tensor product is a bifunctor ®: Strict x Strict — Strict.

Proof. We have already proven that for permutative categories N', M the tensor product
N ® M is a permutative category. Let now F: N — N’ G: M — M’ be strict symmetric
monoidal functors. Then F @ G: N @ M — N’ ® M’ is defined as

El(ny,my), ..., (ng,mg)] — k[(F(n1), G(my)), ..., (F(ng), G(my))],
ol(f1:91)s- s (frs gi)] ¥ o[(F(f1): G(91)), - (F(fk), G(g))]

on objects and morphisms respectively. Note that F' ® G is well-defined since

&

(F'@ G)(k[(ny,ma), ., (5, ma), (i, ma) -5 (g, me)])
(F(n1), Gm)), -, (F (1), G(ma)), (F(niga), Gma)), -, (F (), Glmy))]
(F'(n1), G(ma)), - - (F(na) By F(niga), Glma)), - ., (F(ng), Glmy))]
(F(n1), G(ma)), ..., (F(niBxnigr), Gmi)), -, (F(ng), Glmy))]
]

F @ G)(k[(ny,m1), ..., (niOnniir,mg), .., (g, my)])

ny),

I
™~ o

[
[
[

ni

Y

—~

and
(F @ G)(k[(n1,m1),...,(en,m;), ..., (g, mg)])
= k[(F(nl)a G(ml))a R (F(eN)a G(mz))7 RS ( ( )7 G( ))]
= (k= D[(F(n1), Gm)), ... (Flea), G(m)), ..., (F(ny), G(my)]
= (F & G)((k = Dna,ma), -, (ex,ma), -, (g, my)])-
There are analogous equations for (F®G)(k[(n1,m1), ..., (n;,m;), (ni, mix1), ..., (g, mg)])

and (F ® G)(k[(ny,m1),...,(ni,em), ..., (nk, mg)]). Be aware that we need F' and G to
be strict symmetric monoidal in order that all these equations hold.

From the definition, it is clear that F' ® G behaves well with composition of morphisms
and (F' ® G)(id) = id. Moreover, F'® G is strict symmetric monoidal by definition. O

Proposition 4.11. Let N, M be abelian groups, considered as discrete monoidal categories
Cn,Crr. Then the set of path components of the permutative category CnyQCyy is isomorphic
to N® M as a set.
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4.2 The tensor product

Proof. We recall the construction of N ® M. Consider the free abelian group with basis
the set of tupels (n,m) for n € N and m € M. The tensor product N ® M is the quotient
of this group by the following relations:

(n,m)+ (n,m') = (n,m+m'),

(n,m)+ (n',m) = (n+n',m).
As usual, we denote an equivalence class by n ® m. Every morphism in Cy ® Cy; is of the

form ofid, . ..,id], i.e. a morphism only commutes summands. Since N ® M is abelian and

does not distinguish permuted sums,
N@M — 1N oM), n@m— [1](n,m)]
is an isomorphism. Note that
1[(m, )] + 1[(=m,n)] = 1[(m + (=m),n)] = 1[(0,n)] = O[]

]

Recall that a bifunctor is a functor whose domain is a product category (of two cate-
gories). That is, a bifunctor is a functor F': C x D — & that associates to each object
(¢,d) € C x D an object F((c,d)) € € and to each morphism (f,g): (¢,d) — (¢,d') in
C x D a morphism F(f,g): F'((c,d)) — F((,d')) in € such that F(id(,q) = idp(c,a) and
F((f'.9') o (f,9) = F(f',9") o F(f,9).

We call a bifunctor of permutative categories lax (strong, strict) monoidal in the first
argument if F'(,d): C — £ is a lax (strong, strict) monoidal functor for every d € D. In
particular, the following diagram commutes for all ¢; € C, d € D and morphisms f;: ¢; — ¢,
inCandg:d— d in D:

F(c1,d)OF(cy,d) — F(c10co,d)
F(f1,9)0F(f2,9) F(f10f2,9)

F(c), d)BF(ch, d) —— F(0c, d').

We call a bifunctor of permutative categories lax (strong, strict) monoidal in the second

argument if F'(c, ): D — & satifies the corresponding properties. Finally, we call a bifunc-
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4 A tensor product of permutative categories

tor lax (strong, strict) bilinear if it is lax (strong, strict) monoidal in both arguments and

the following diagram commutes:

(F(er, d)OF (¢3,d))D(F(e1, do)OF (3, do)) % (F(er, d)OF (er, d))O(F (¢, ) OF (¢, )

|

F(c1Ocy, dy)BF (¢10cy, da) F(cy,d10dg)BF (2, d10dy)

\

F(Cl DCQ, d1 Ddg)

(4.2)
The map (*) is given by iddcnOid and the appropriate associativity identities.
Note that in the case of strict bilinear bifunctors, the above condition implies that the
map (*) is an identity map. Be aware that there are very few categories that fulfill this

condition, the main example being discrete categories.
The set of all bilinear bifunctors C x D — & is denoted by Bilin(C x D, E).

The universal property of the quotient category provides the following

Proposition 4.12. The tensor product N @ M is equipped with a universal bilinear bifunc-
torm: N x M — N ® M. Here, universal means that any bilinear bifunctor N x M — Z
factors uniquely through 7: N x M — N ® M. In particular,

®: Strict(N @ M, Z) — Strict Bilin(N x M, Z)
F+——Form

s a bijection.

Proof. First of all, the functor F o 7 is bilinear for all F' € Strict(N ® M, Z) because of

the tensor product relations. Note for example

(F"om)(ny, m)O(F o m)(ng, m) = F(1{(ny, m)])BF(1[(ng, m)])

& P(1[(n1,m)] + 1(ng, m)]) = F(1[(n10ng, m)))

where equation (x) holds since F' is strict symmetric monoidal.
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4.2 The tensor product

The inverse W: StrictBilin(N x M, Z) — Strict(N ® M, Z) is given by G — G with

é(lﬂ[(nl, mi), ..., (ng,mg)]) = G(ny,my)0. .. 0G(ng, my),
G(ol(f1,1)s- - (frr g6)] = v 0 (G(f1,91)0G(f2, g2)0 ... OG(fr, )

where v denotes the appropriate composition of structure isomorphisms. By this we mean
that a morphism ofid, ...,id] in N'® M is mapped to a morphism in Z that permutes
summands. However, permuting summands in a permutative category can be expressed by
a composition of twists (and associativity identities). In detail, this works as follows: Let
us start with a transposition 7 € Xy, of the form (7,7+1) and let [7] abbreviate 7[id, . .. ,id].
The image of [7] is to be the composition of the appropriate structure isomorphisms 7 (and
associativity identities). For example, let 7 € 35 denote the transposition that interchanges

positions 1 and 2 and consider

[7]: 2[(n1,m1), (n2, m2)] — 2[(n2, ma), (n1,m1)].

Then G([7]) is defined as
,}/G(nhml),G(ng,mg) : G(nh ml)DG(TLQ, m2) E— G(”Qa mQ)DG(TLl? ml)-

We need to check that

G(TQ o 7'1) = é(Tg) o G(Tl)

and

G([r)oid[(f1.91)s- - (fro gn)]) = G([7]) 0 SGA(f1.91), - (fis 90)]).

The first equation holds since we defined G([7]) as a composition of twists and the succes-
sion of these twists does not matter in the sense that in a permutative category all possible

diagrams of the kind

a0(b0c) (a0b)Oc —> cO(alb)
idaljfyi
aO(cOb) (aDc)Dbﬂg (cOa)Ob

commute. The second equation holds since G(id[(f1, 1), - - -, (fr, gr)]) is well-defined and
associativity is strict in the permutative category Z.
We know that each permutation ¢ € ¥, can be written as a product of transpositions

7, 0 -+ o7 but that there is no unique way to do this. However, since in a permutative
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4 A tensor product of permutative categories

category it does not matter in which order one permutes this does not cause a problem.
Hence, if 7,0 - - - o 7y is any decomposition of a given o € ¥, then G([o]) := G(r0---0m).
Note that in case of morphisms, the definition of G extends to words of equivalence classes
via

é(id[(fkagk)] - Ad[(f1,91)]) = G(fr, gr) 0 - 0 G(f1, gx)
where (f;, g;) denotes any morphism in N x M.
The universal property of the quotient category (Prop. yields that G is unique and it

is strict symmetric monoidal by definition. Note that we need commutativity of diagram
so that G is well-defined. In N’ ® M, we have

4(nyyma), (n1, ms), (02, m1), (n2y ma)] ~— " 4(ny, my), (nay my), (n4, ms), (ng, my)|

2[(%1, mq Dmg), (TLQ, ma Dmg)] 2[(711 DTLQ, m1)7 ni DTLQ, mg)]

|

1[(n10ng, miOmy)].

Hence, id(n, m,)+C(ny,ma),(nz,m1) +1d(ng,ms) is an identity map in @M. This does not imply
that 2[(ny, m1), (n2, ma)] — 2[(n2, ma), (n1, m1)] is the identity for all n;, € N',m; € M!
]

In the following, when defining a functor N'® M — Z of permutative categories, we
will restrict to defining the functor morphisms of length one. This functor is then defined

on all morphisms, i.e. words of any length, as long as it is well-defined.

Proposition [4.12 implies that there cannot be a unit object in Strict with respect to
®. Such a unit object is a permutative category £ together with natural isomorphisms
N®E— N and € @ M — M for all permutative categories N/, M. These natural iso-
morphisms have to be morphisms in Strict, that is strict symmetric monoidal functors.
In other words, A" x € — N has to be bilinear which requires diagram [£.2] to commute in N.

Given a strictly bimonoidal category (R, ®r, 0, ¢g, ®%, 1), Proposition furthermore
reveals that there is no well-defined functor R ® R — R. To be precise:

Proposition 4.13. Let R be a strictly bimonoidal category. The product @ in R does
not induce a functor R ® R — R where the tensor product R @ R is taken with respect to
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4.2 The tensor product

Dr.

At first glance, it seems self-evident to ask for a functor R ® R — R induced by ®zr
since a reasonable functor R ® R — ‘R should be compatible with the multiplication on
path components moR X myR — myR defined as [c], [d] — [c ®x d].

Consider the following diagram:

TR X TR TR c], [d] ——[c ®r d] (4.3)

i I

TH(RXR)——=m(R®R), [(c,d)]—[1[(c,d)]].

In order to induce a map on 7y such that diagram [4.3| commutes, the most obvious ansatz
is to define the functor R ® R — R as

k[(r1,81), .., (Tk, Sk)] 71 @R $1 DR -+ DR Tk OR Sk

However, as we will see now, this functor is not well-defined.

Proof of Prop. [4.13. Proposition gives Strict(R ® R, R) = StrictBilin(R x R, R).
Thus, it suffices to show that ®z : R x R — R is not bilinear. In fact, ®x fails to be strict

monoidal in the second argument due to the non-strict left distributivity:
rRQRSORT Ar S #r g (s®Br ).

]

We point out that this agrees with the a prediction of Elmendorf and Mandell in the
introduction of [EMO6]. There, they mention that ”permutative categories appear not to
support a symmetric monoidal structure consistent with a reasonable notion of multiplica-
tive structure”.

Of course, this is the reason why we were not able to define a Hochschild complex in this

setting.

Proposition 4.14. The tensor product is commutative in the sense that there are natural
strict symmetric monoidal isomorphisms of categories Yy p: N @ M — M @ N for all
N, M in Strict.
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4 A tensor product of permutative categories

Proof. Let 75 i N @ M — M @ N be defined as
N M

El(ni,my), ..., (ng,my)| — k[(mq,n1), ..., (mg, ng)],

ol(fr,91)s s (Frs g1)] 7= ol(g1, 1), - - (9k, fi)]

on objects and morphisms respectively. That is, a morphism

!/

0[(flagl)v ) (fk,gk:)] : k[(”laml)v LR (nk7mk>] - k[(nlla m/1)7 ) (n;w mk)]
is mapped to

0[(glvf1)v .- -v(gkvfk’)]: k[<m1’n1)7""(mk”nk>] - k[(mllvnll)vv(m;wn;c)]

with f;: n; — n’U(i), gi: m; — m;(i) in both cases.

The functor vy ,, is well-defined since

/7%,/\/1(2[(”7 ml)? (n> m2)]) = 2[(m1a n)v (mQa n)]
=1

[(m1Bma,n)] = 75 (1[(1, m1Omy)]
(analogously for 2[(ny,m), (n2, m)] = 1[(n10ngy, m)]) and

Y m(@l(n, ma), (n1, ma), (na, ma), (ng, me)))

(mlﬁ nl)’ (va nl)> (mb n2)> (m2> 77,2)]

(
(

A
1[(m10mg, n10Ony)]
Af

mi, n1), (M, n2), (Ma, n1), (Ma, n2)

Y (A[(n1,ma), (n2, ma), (n1, ma), (n2, ma)]).

Moreover,
and

Vbl (nyen), ) = vkl - (nyea), . ])-

Obviously, s is strict symmetric monoidal. Note that 4® is natural: For a functor AQB —
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N @ M we get the following commutative diagram:

k[(ah bl)v SRR (aka bk)] — k[(nla ml)v SRR (nk7 mk)]
7% 7%
k[(bla al)v SRR (bka ak)] — k[(mhnl)a SRR (mk)nk)]
Two-fold application of v® gives the identity. ]

4.3 Comparison to existing constructions

In [Gra74], John Gray presents a tensor product for 2-categories that induces a closed
monoidal category structure on the category of 2-categories. A strictly monoidal category
C defines a 2-category with one 0-cell, the objects and morphisms of C being the 1-cells and
2-cells respectively and composition of 1-cells being defined by the monoidal structure in C.
That way, Gray’s tensor product can be applied to permutative categories after forgetting
the symmetric structure. Our construction is then similar to his’ in the sense that we face
similar problems, e.g. equivalence classes, words of morphisms etc. The main difference is
that his construction gives a tensor product (as strictly monoidal category) with objects
consisting of equivalence classes of strings of pairs (a,b) with either a or b being the unit

in its origin category.

In [EMO09], Anthony Elmendorf and Michael Mandell construct a tensor product of
multicategories and show that this tensor product equips the category of based multi-
categories Mult, with a symmetric monoidal structure. In particular, Mult, is closed.
Every permutative category has an underlying based multicategory and the forgetful func-
tor Strict — Mult, is full and faithful. Conversely, the permutative structure can be
recovered from the multicategory structure. However, the strict isomorphism class of
a permutative category cannot be recovered from the isomorphism class of its underly-
ing multicategory (cf. [EM09], Example 3.5). Hence, their construction defines a tensor
product of permutative categories but it cannot distinguish between different permutative

structures in a strict sense.
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4 A tensor product of permutative categories

4.4 Conclusion

We have shown that the concept of bilinear functors in Strict — as we defined them — is
incompatible with a monoidal structure on Strict. At least, if this monoidal structure
should be induced by a bifunctor that is universal with respect to these bilinear functors.
There is another aspect suggesting that one should, in fact, not work in Strict. A further
criterion for a bifunctor that deserves the name ’tensor product’ is that it should be adjoint
to the hom functor. However, to our knowledge there is no internal morphism object
in Strict. The following construction which reveals the obstruction in defining such a

morphism object was kindly communicated to us by Bjgrn Dundas.

Lemma 4.15. Let B,C be permutative categories. The categories Strong(B,C) C
Perm(B,C) of strong/lax symmetric monoidal functors and transformations are them-

selves permutative categories.

Proof. Given two symmetric monoidal functors G and G’, their sum is the functor G + G’

which on a morphism f: b — b’ is given by
G(f)+G(f): G G'(b) — GU) @ G'(V).
Furthermore, this functor is equipped with natural transformations
(G+G)bY): (G+GYb) e (G+G)) — (G+G)(ba)

given by
(G+G)b)d(G+G)V)=—GDb) > G'(b) dGM) ® G'(V)
Gb) e G) e G'(b) & G'(V)
iG(b,b’)—o—G’(b,b’)

(G+GYb@ V) ————G(b+ V) @ G (b+ V).

Extending this to symmetric monoidal transformations and checking the relevant diagrams

gives the result. [

This implies that unless the twist 4® in C is the identity,

(G+GbaV)=(G+G)0b) & (G+G)Y)
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4.4 Conclusion

is never true. Thus, this construction does not apply to Strict(B,C).

Hence, we promote looking for a tensor product in Strong. It should be defined as the

left adjoint of the hom functor — if this left adjoint actually exists.
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Name: Hannah Konig
Titel: The Segal model as a ring completion and a tensor product of permutative categories
Jahr der Drucklegung: 2011

Zusammenfassung

Diese Arbeit ordnet sich in den Kontext algebraischer K-Theorie ein. Zentral in vie-
len Konstruktionen algebraischer K-Theorie ist der Begriff der Gruppenvervollstandigung.
Im Zuge der Verallgemeinerung von K-Theorie von Ringen auf ”ringahnliche” Objekte
wie Ringspektren und bimonoidale Kategorien stellte sich die Frage nach einer multi-
plikativen Gruppenvervollstindigung. Damit ist eine Vervollstindigung beziiglich einer
monoidalen Struktur gemeint, die eine existierende zweite monoidale Struktur respektiert.
Diese Frage ist offen, seit Thomason 1980 auf Fehler in vermeintlichen Losungen hinwies.
Nils Baas, Bjgrn Dundas, Birgit Richter und John Rognes préasentieren in ihrem Artikel
”Ring completion of rig categories” (wird demnéchst erscheinen) eine umfassende Losung
fiir dieses Problem. Neben allgemeingiiltigen theoretischen Betrachtungen konstruieren
sie eine konkrete multiplikative Gruppenvervollsténdigung. Allerdings existiert ihr Modell
nur fiir Gruppoide mit treuer Translation. In der vorliegenden Arbeit nutzen wir eine Idee
von Graeme Segal aus dem Jahre 1974 um eine multiplikative Gruppenvervollstandigung zu
konstruieren, die diese Anforderungen nicht stellt, sondern auf beliebige strikte bimonoidale
Kategorien anwendbar ist.

Des Weiteren konstruieren wir ein Tensorprodukt von permutativen Kategorien. Dies war
motiviert durch das Streben nach einer Spurabbildung, welche die Arbeit mit K-Theorie er-
leichtern konnte. Uber ein Tensorprodukt permutativer Kategorien existieren verschieden-
ste Mutmaflungen in der Literatur. Viele sind der Auffassung, dass es ein solches Tensorpro-
dukt nicht gibt, zumindest nicht mit guten multiplikativen Eigenschaften. Wir geben eine
konkrete Konstruktion und legen dar, wo Probleme entstehen und wo mogliche Auswege

ansetzen konnten.
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