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Zusammenfassung

Traditionelle Ansätze des strukturbasierten virtuellen Screenings arbeiten

sequentiell: Jedes Molekül einer Bibliothek wird einzeln für das Zielprotein

untersucht und die zu erwartende Bindungsgaffinität berechnet.

In dieser Arbeit wird ein Verfahren namensTrixX BMI vorgestellt, welches

diesen sequentiellen Prozess umgeht. Der Ansatz basiert auf einem inno-

vativen Deskriptor, welcher physikochemische Eigenschaften von Proteinen

und Wirkstoffen kodiert. Der Deskriptor wird in einem Vorverarbeitungss-

chritt für alle Liganden unter Berücksichtigung ihrer Flexibilität berechnet

und indiziert gespeichert. Mit Hilfe komplementärer, auf dem aktiven Zen-

trum beruhenden Anfragedeskriptoren, ist es möglich Ligandplatzierungen

innerhalb des Proteins zu identifizieren. Sowohl chemische, als auch räum-

liche Komplementarität wird bereits auf der abstrakten Deskriptorebene

behandelt. Moleküle für die kein passender Anfragedeskriptor vorliegt wer-

den von weiteren Berechnungen ausgeschlossen. Dieser nicht-sequentielle

Zugriff auf die Molekülbibliothek beschleunigt das virtuelle Screening im

Vergleich zu anderen Methoden um eine Größenordnung, ohne dass ein sig-

nifikanter Qualitätsverlust der Resultate auftritt. Weiterhin ist es möglich

pharmakophore Eigenschaften, die ein bevorzugtes Interaktionsmuster des

Proteins darstellen, als Bestandteil der Deskriptoranfrage zu verwenden. In

diesem Fall wird das Verfahren um eine weitere Größenordnung beschleu-

nigt.

TrixX BMI kann in parallelen Rechnerumgebungen eingesetzt werden und

das System skaliert mit der Anzahl an verfügbaren Rechenkernen. Somit

können virtuelle Hochdurchsatzexperimente mit TrixX BMI durchgeführt

werden.
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Abstract

The standard approach to structure-based high-throughput virtual screen-

ing is a sequential procedure: Each molecule of a given library is evaluated

against the target protein, eventually generating a ranked list of molecules.

A new approach, TrixX BMI, avoiding the sequential screening pipeline

is presented in this thesis. It is based on a novel descriptor that encodes

physicochemical properties of small molecules and proteins. The descriptor

is calculated as part of a preprocessing step for all molecules in a compound

library. Compound flexibility is accounted for using pre-enumerated confor-

mational ensembles and the descriptors are stored in an indexed database.

Complementary site descriptors of the protein are used to identify match-

ing compounds and possible placements within the active site. Chemical

and shape complementarity is evaluated solely on the descriptor level. Dur-

ing this process, molecules that are not part of any descriptor match are

discarded. This non-sequential access to the compound library results in

a speed-up of one order of magnitude compared to competing approaches

while yielding results of comparable quality. Furthermore, TrixX BMI can

incorporate requests for a certain pharmacophore interaction pattern to the

protein. In this scenario, the speed-up increases to two orders of magnitude.

TrixX BMI can be deployed in a parallel computing environment and

scales with the number of available cores. Thus, it is suited for virtual

high-throughput experiments.
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1
Introduction

1.1. Background

Over the last decades virtual screening (VS) has become an integral part of modern

drug discovery. The increase in computational power, detailed theoretical models, and

the large number of available molecular structures, provides researchers with valuable

information during early stages of the drug discovery pipeline.

In contrast to VS, automated experimental technologies like high-throughput screen-

ing (HTS) require the availability of library compounds as well as target proteins. In

practice, identifying initial hits or lead structures in silico is both faster and more

economical compared to solely experimental approaches. VS can be seen as a comple-

mentary approach, helping to identify drug candidates for the protein of interest. In

combination, experimental and virtual techniques play an essential role in the process

of drug discovery as recent success stories demonstrate [1, 2].

Among the most commonly used tools for virtual screening are molecular docking

methods. Numerous approaches using different models and methodologies have been

implemented so far. Nevertheless, the increasing requirements from academia and

industry still leave many open questions and room for optimization. Some aspects of

protein-ligand recognition have yet not been modeled and implemented well enough to

deploy them automatically in a large-scale virtual screening campaign. To name a few:

Protein flexibility, entropic effects, the role of water and changes in protonation states.

This and the fact that standard docking methodology is an iterative process which

docks compounds individually into the target protein leads to an increase in runtime

requirements. Therefore, fundamentally new docking concepts and efforts to parallelize

existing approaches are necessary.

1



1. Introduction

1.2. Research Goal

In contrast to the iterative screening paradigm of most docking algorithms, the aim

of this thesis is to develop and validate a hierarchical screening pipeline able to access

compounds by usage of modern descriptor and indexing technology. The purpose of

this nonsequential workflow is the rapid identification of drug candidates. These can

then be subject to more detailed and time consuming postoptimization routines. In

the following, a more detailed requirement analysis is presented:

• The fast prediction of binding molecules in the compound library is vital for the

overall process. The average runtime for each compound in the library should

decrease significantly in comparison to other tools, even for nonselective target

proteins.

• The descriptor to be developed should enable highly selective queries. This en-

sures that the initial filtering step produces only few hits and that the above

mentioned runtime requirements hold. Furthermore, each attribute of the de-

scriptor should be accessible using index structures.

• The final result needs to be a ranked hitlist including pose predictions in three-

dimensional space. This means that not only an activity value should be predicted

but also the corresponding binding mode of the compound.

• The overall quality of the resulting predictions should be comparable with those

of competing approaches. A gain in runtime is worthless if the predictions are

error prone. Therefore, a comparable prediction quality in terms of root mean

square deviation (RMSD) to cocrystallized structures, as well as capability to

enrich known active compounds, must be achieved.

• A-priori knowledge like pharmacophore information and molecular properties of

known binders should be incorporated into the docking engine.

• The models to be generated should have the potential to integrate concepts of

protein flexibility.

• The overall approach should be deployable in a parallel computing environment as

most pharmaceutical research institutes have access to large compute clusters. A

2



1.3. Structure of the Thesis

nonparallel methodology, which does not scale with the available infrastructure,

would otherwise miss the aim of runtime reduction in a general setting.

The development to be presented is based on two components. First, the FlexX

[3] library that supplies basic models, data structures, and algorithms for molecular

docking. Second, the TrixX [4] approach which demonstrates that a descriptor-based

index of physicochemical properties, like pharmacophore information and shape, suffices

to identify drug candidates within large compound libraries.

1.3. Structure of the Thesis

In the following chapters a new molecular docking tool named TrixX BMI [5] is

presented. It differs from the original TrixX approach in fundamental aspects: Its

basic docking strategy, the prediction of molecular coordinates compared to just filtering

compounds, and a high-dimensional description of shape which necessitates the usage

of a specialized indexing system. Currently, there is no other structure-based molecular

docking tool, that generates pose predictions of library compounds based on queries to

indexed descriptor data.

Chapter 2 summarizes the history of drug design and especially VS. The focus of

this chapter is on a general introduction to different methods and applications of VS

screening and emphasizes its importance to the field of drug discovery.

Chapter 3 provides an in-depth overview of the field of structure-based virtual screen-

ing. Underlying concepts, basic models and algorithms, as well as the state of the art

of structure-based tools, are presented. General problems and challenges are outlined

and motivate the development of TrixX BMI.

Chapter 4 focuses on data organization, especially index structures that can be used

to support multi-dimensional descriptor queries.

Chapter 5 spotlights the direct prerequisites of TrixX BMI. A detailed introduction

into FlexX and TrixX is given. In addition, the underlying indexing technology to

search in a database of molecular descriptors is presented.

Chapter 6 provides information about the TrixX BMI approach to molecular dock-

ing and highlights its differences to the previously introduced methods. The concept

of the TrixX BMI descriptor and details of the overall workflow are shown. This

3



1. Introduction

includes compound fragmentation, the handling of compound flexibility via conforma-

tional sampling using the TrixX Conformer Generator (TCG), descriptor index-

ing, index-based identification of pose predictions, and postprocessing routines.

Chapter 7 supplies the validation of TrixX BMI. First, a general introduction to

different evaluation methodologies like redocking accuracy and enrichment experiments

is given, followed by the actual results and their discussion.

As a conclusion, Chapter 8 summarizes the thesis and provides an outlook concerning

future challenges and extensions of TrixX BMI.
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2
Drug Discovery

2.1. Historic Background

Based on Fischer’s principle of lock and key [6], which describes complementary physic-

ochemical and steric fit of an enzyme and its substrate, the concept of drugs binding

selectively to a receptor was developed by Ehrlich at the end of the nineteenth cen-

tury. It was extended in 1905 by Langley [7] who postulated the idea of a receptor as

molecular switch that can be activated and deactivated. During the evolution of drug

discovery, other disciplines like chemistry, pharmacology, microbiology, and biochem-

istry have helped to raise it to a level where drugs are no longer discovered by chance or

as a result of a chemists imagination but from cooperations of interdisciplinary research

teams.

The discovery of x-ray crystallography in 1913 by W.L. Bragg [8] and nuclear mag-

netic resonance spectroscopy by Purcell and Bloch [9, 10] supplied scientists with the

foundations to elucidate molecular structures on atomic detail level. In the begin-

ning, this technique could only be applied to rather simple and symmetric structures.

However, over the last decades improvements in experimental and also computational

methods made it feasible to deduce atomic positions at high resolution for complex

molecular structures.

Due to the growing number of discovered target proteins and their structural elucida-

tion, pharmaceutical research shifted its focus to rational or semi-rational approaches

to identify bioactive compounds. Starting in the 1980s, experimental high-throughput

screening and combinatorial chemistry were developed. Improvements in robotics, con-

trol software, and data processing led to large scale automated screening platforms

which were expected to increase the number of novel lead candidates and thus the

5



2. Drug Discovery

Figure 2.1.: The drug discovery pipeline

number of available drugs. These expectation could not be fulfilled. In many cases

initial HTS hits could not be validated or optimized into actual leads. High error rates

[11, 12] and low ligand efficiency [13, 14] were observed.

In order to cope with the significant expenses and hit rates below expectations,

alternative techniques needed to be developed. This led to the implementation of new

computer-aided approaches that are nowadays an essential part of the drug discovery

pipeline.

2.2. The Drug Discovery Pipeline

The modern drug discovery pipeline (see Figure 2.1) is a complex multi-stage process

involving in silico, in vitro, and in vivo technologies.

• Target identification

The first stage involves the identification of a potential therapeutic target, its

function, and an understanding of its role in the disease. If the target is an

enzyme, catalytic activity and downstream substrates also need to be analyzed.

In addition, structural elucidation using x-ray crystallography, NMR spectroscopy

or protein homology modeling is applied.

• Target validation

After the identification of a drug target, it must be verified that modulating

the targets activity actually causes the desired therapeutic effect. This can be

achieved by substituting the natural ligand, a small molecule responsible for the

proteins mode of action, with a different ligand in the corresponding binding site.

This ligand can either increase the level of activation (an agonist) or decrease it

(an antagonist). The validation is usually done using in vitro and in vivo studies.
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At the end of this stage, sufficient models to develop assays for experimental HTS

need to be available.

• Hit identification

In this stage, VS methods are frequently applied. They can be used to gener-

ate and filter large compound libraries or to predict preferred binding modes in

order to identify essential interactions and features (pharmacophores) that trig-

ger biological activity. Since current in silico approaches lack accuracy especially

concerning bound water, affinity prediction, and protein flexibility, subsequent

experimental screening experiments are performed. This results in a number of

ligands likely to bind: The initial hits. Eventually, these hits are validated via

further screening experiments to identify false positives and to reduce the risks

of off-target effects.

• Lead generation and optimization

The optimization of hit candidates regarding potency, selectivity, and ADMET

(absorption, metabolism, excretion, and toxicology) properties is of central im-

portance in the process of drug discovery [15]. Lack of efficacy (29%) and low

bioavailability and toxicity (39%) account for the majority of failing drug candi-

dates [15, 16]. This stage is often supported using docking techniques, for instance

binding mode analysis and in silico ADMET prediction.

2.3. Virtual Screening

According to the International Union of Pure and Applied Chemistry (IUPAC), VS

is defined as the ”selection of compounds by evaluating their desirability in a com-

putational model” [17]. This rather general definition is reflected by a wide range of

methods. The most important applications of VS are library design and compound

screening, whereas the methodology can be split into four different categories each

requiring different information as input [18].

• Substructure search can be performed if substructures common to some actives

are available. It is based on the hypothesis that such a ”privileged scaffold” is

associated with activity and a compound sharing this scaffold is also likely to be

active [19].
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• QSAR (quantitative structure-activity relationship) methods try to link chemical

structure with biological activity and express this relation quantitatively [20].

This kind of analysis can only be performed if experimental data for active ligands

is available. It is based on the following assumption: Activity can be expressed

as a function of chemical and structural properties. This means that similar

structures have similar activities.

The above mentioned methodologies are beyond the scope of this thesis. The remaining

ones are now introduced in more detail.

2.3.1. Ligand-based virtual screening

In the absence of structural information of the target protein, ligand-based techniques

are the method of choice. Their focus is on molecular similarity searching with ac-

tive molecules as search templates. It is based on the assumption that compounds

that are globally similar to known binders are likely to also show biological activity.

Subsequently, different ligand-based methodologies are presented.

Descriptor-based similarity

In order to encode the properties of a compound a special index value or binary feature

vectors (fingerprints) are used as descriptors. The actual search is performed using crite-

ria like Tanimoto similarity for bit strings [21]. On a finer grain, these descriptors can

be grouped into one-dimensional (1D), two-dimensional (2D), and three-dimensional

(3D) approaches:

• 1D methods are based on properties that can either be derived from the struc-

tural formula of a compound like molecular weight, number of rotatable bonds,

and number of hydrogen bond acceptors/donors or approximated by summation

of atomic contributions, for instance the logP value to estimate the membrane

permeability of a compound. Combinations of these numeric properties can then

be applied as a filter which selects only compounds within certain ranges. Ex-

amples for filtering based on 1D descriptors are Lipinski’s rule of five [16] and

Oprea’s lead-like criteria [22].
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• 2D methods use descriptors derived from the covalent bonding pattern of a

molecule. Since this topology is conformation independent, 3D atomic coordi-

nates of a flexible compound do not influence the resulting descriptor. Prominent

examples of 2D methods are the Wiener index [23] and Daylight fingerprints [24].

In general, index values encode similar properties as fingerprints and are easier

to generate but harder to interpret.

• 3D methods rely on atomic coordinates and are therefore conformation depen-

dent. Due to the flexible nature of organic molecules they can adopt different

states in 3D space. These so called conformers share the same topology but differ

in their geometric arrangement. The problem of molecular flexibility can either be

addressed by pre-enumeration or by an alignment procedure that adapts the coor-

dinates as needed (for details see 3.5). Examples for 3D descriptors are numerical

values like van der Waals volume, molecular-, and polar surface area. More so-

phisticated 3D similarity methodologies include shape matching [25], shape-based

fingerprints [26], and molecular field descriptors [27].

Small molecule alignment

These methods use molecular superpositioning algorithms to calculate similarity based

on a 3D alignment between a template ligand and the ligand to be evaluated. The

actual alignment can be calculated using different methods, for instance RMSD-fitting,

geometric hashing, genetic algorithms, and Gaussian overlap optimization. Numerous

methods differing widely in their underlying algorithmic concept, employed similarity

criteria, superposition, and optimization have been developed [28]. Since these calcu-

lations are based on 3D coordinates, molecular flexibility needs to be addressed. Some

approaches regard the reference ligand as rigid: The superpositioning is performed

using either a flexible alignment [29] or by solid-body optimization based on precom-

puted conformer databases [25]. Details concerning the generation of these databases

is discussed in Section 3.5. Other approaches perform fully flexible alignments, again

significantly differing in the underlying methodology [30, 31, 32].

Since ligand-based methods are not in the main focus of this thesis, please refer to

[33, 34] for a comprehensive review of the field.
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2.3.2. Structure-based virtual screening

For structure-based approaches, the prediction of protein-ligand complex geometries

and binding affinities are at the center of attention. Therefore, structural information

on atomic detail level or models based on protein homology must be available.

The most prevalent structure-based methodology is molecular docking: In a first

step, small molecules are placed into the active site of the protein. This is a complex

task since it involves a continuous search space including many degrees of freedom like

translation, rotation, and molecular flexibility of the ligand as well as the target protein.

In a second step, the experimental binding affinity is estimated using so called scoring

functions for each of the resulting pose predictions of a ligand. Since TrixX BMI is

a structure-based approach, models for search space discretization, as well as different

approaches to molecular docking and scoring are presented in more detail later (see

Chapter 3).

2.3.3. Pharmacophores

Pharmacophores can be used in ligand-based as well as structure-based scenarios. The

concept was introduced already in 1909 by Ehrlich as ”a molecular framework that

carries the essential features responsible for a drug’s biological activity” [35]. It is

independent of computational methods and has been successfully applied already before

computers were used in chemistry [36, 37].

Since then the definition has not changed much, according to IUPAC, ”a pharma-

cophore is supposed to represent electronic and steric features necessary to trigger or

block a compounds biological response” [17]. This fuzzy definition demands an abstract

perception of pharmacophoric features: A pharmacophore encodes chemical function-

ality rather than specific functional groups, for instance: Hydrogen bond interactions,

aromatic interactions, and lipophilic area. It can be derived based on superpositioning

of active ligands as part of a ligand-based search or by analyzing complementarities be-

tween a ligand and its position in the protein as part of a structure-based analysis. The

extracted pharmacophore information can then be encoded using adequate descriptors

and used as input to a similarity search. Again, 3D descriptor methods are conforma-

tion dependent and rely on handling of molecular flexibility. A more detailed overview
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of pharmacophore type constraints that are used in structure-based VS is presented in

Section 3.4.

2.3.4. Applications of virtual screening

The modern drug discovery process uses VS methods during two of its four different

development stages: Hit identification as well as lead generation and optimization both

use computer-aided methodologies to support and complement wetlab experiments.

Library design

At the start of a virtual screening campaign, a library of compounds needs to be

generated. This process, called library design, can be split in two phases. Phase one

— library generation — can be performed using two opposing objectives [38]:

• Diversity oriented libraries aim at covering the chemical space in a representative

way. The ideal diversity oriented library would be with no voids, no redundancy,

and an even distribution with regard to a given chemical space. These libraries

are searched using multiple targets in order to discover novel, unexpected hits.

• Target libraries are generated with the focus on a specific protein target or target

family. Thus, chemical properties believed to be of importance for biologically

active compounds of the current target are overrepresented. Here, all compounds

are designed to be similar to already known hit or lead structures.

On the algorithmic side, the design process is often supported using clustering, classi-

fication approaches as well as (dis)similarity analysis [39].

During phase two — library filtering — compounds with unfavorable ADMET prop-

erties are identified using for instance molecular property filters [40]. The applied

filtering rules and models are based on property ranges derived from known drugs.

Prominent example are Lipinski’s rule of five and Oprea’s more detailed lead-like cri-

teria. Both filters rely on basic molecular properties like molecular weight, number of

hydrogen bond acceptors/donors, lipophilicity (logP), and in case of Oprea’s criteria

number of rings and their flexibility. Compounds exceeding Lipinki’s filter values tend

to have solubility and permeability problems which would lead to poor oral bioavail-

ability.
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Compound screening and optimization

The screening of library compounds is the second major application of VS technol-

ogy. Based on previously generated libraries, compound screening methods try to

subselect compounds which are likely to show biological activity with the protein of

interest. Thus, a subset of the original library is identified as suitable for downstream

experimental screening experiments. Furthermore, if molecular docking approaches are

employed, knowledge about the preferred binding modes or scaffolds can be extracted

and deployed as part of further screening experiments aiming at optimizing initial hits.
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Structure-Based Virtual Screening

For structure-based VS approaches, the prediction of protein-ligand complex geometries

and their respective binding affinities are at the center of attention. Thus, two separate

problems need to be solved:

First, the ligand’s binding mode within the active site of the protein needs to be

predicted. A so-called pose must imply a reasonable steric fit and must form favorable

protein-ligand interactions. This reflects the previously mentioned complementarity of

”lock and key”. Therefore, the first part of this chapter focuses on basic principles and

methodologies for binding mode prediction. This is a computationally expensive task,

with an infinite number of valid placements; starting from any valid initial placement an

infinite number of transformations can be applied. Since there are high-energy barriers

between different local minima of the search space efficient gradient search methods to

”dock” a compound into the protein active site cannot be applied. Thus, the search

space needs to be discretized via means of simplification and placement constraints.

Second, for each resulting pose, the experimental binding affinity needs to be esti-

mated. The binding affinity reflects the energy difference between the unbound apo

structure of protein and ligand, compared to the energy of the protein-ligand complex.

Since an exact calculation of this difference is computationally expensive and thus not

suited for high-throughput docking approaches, different approximative methods, so

called scoring functions, are introduced.

The next part focuses on the state of the art of existing docking technology. Since

pharmacophores can also be used within a structure-based VS campaign, the next

section summarizes this field. Since some of the previous approaches depend on the

generation of conformational ensembles to handle molecular flexibility, this research
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area is outlined next. Eventually, the last section summarizes the current challenges of

structure-based VS.

3.1. Models for Molecular Docking

3.1.1. Search space

The intuitive representation of molecules is in form of a graph, using atoms as nodes

and bonds as edges between them. Based on this graph representation, chemical and

steric properties of molecules can be described. Unfortunately, the number of possible

placements of protein and ligand is infinite. Thus, further discretization and limitation

of the search space is inevitable: The structural information needs to be reduced and

the law of parsimony should be applied.

Simplified molecular representations

Instead of the complete molecular graph of atoms and bonds, a molecule can be rep-

resented using surface descriptors, physicochemical descriptors, or a 3D grid represen-

tation of its interaction potential. In all cases, individual atom types can be neglected

and represented in a reduced form [41]. Thus, a coarser model based on the molecules

functional groups like hydrogen bond donors/acceptors, hydrophobic groups, charged

groups, and metal coordination sites can be used instead [42]. This model can be ap-

plied to both protein and ligand, if the definition of compatible interaction groups is

adjusted accordingly.

The calculation of discretized molecular properties in order to generate a reduced

molecular representation can be done in a multitude of ways:

• Sphere-based reduction approaches place atom sized spheres into the binding site,

thus trying to describe the protein surface and to identify possible anchor points

for the placement of compound functional groups [43].

• As part of an empiric analysis of known protein-ligand complexes, each functional

group of the protein can be assigned with preferred interaction geometries. Based

on these geometries, discretized interaction patches can be generated and used as

physicochemical descriptors [44].
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• Probe-based methods place small molecular fragments into the binding site, thus

capturing not only its geometric but also chemical properties. Subsequently, a

mapping of each derived property to a corresponding grid point can be applied

[45, 46].

All of the above approaches can be employed using different levels of granularity, de-

pending on the desired level of accuracy and the employed docking algorithm.

Placement constraints

One of the most efficient ways to limit the search space is the introduction of placement

constraints. A-priori knowledge about the binding site, e.g. the binding mode, can be

used to limit the search to certain regions of the protein and to neglect poses which do

not meet the desired criteria.

The active site covers only a rather small part of the entire protein, thus the search

radius should be restricted. Usually, this is done by selecting only amino acids within 5

to 10 Ångström (Å) around the atoms of a cocrystallized ligand. If no ligand is available,

active site specification must be performed by visual inspection of the protein or by

detection algorithms based on geometric and energetic type information [47, 48]. This

restriction on the active site of the protein prevents unfavorable placements outside

the region of interest. For instance, large convex areas of the protein, offer numerous

possible placements which do not contribute to the proteins mode of action and can

often be neglected.

An even more restrictive constraint is the request for a certain interaction pattern

each pose has to obey in order to be a valid placement. These so-called pharmacophore

type constraints require knowledge about the preferred binding mode and describe

chemical and steric constraints like hydrogen bonds, hydrophobic contacts, and spatial

arrangements. If multiple binding modes are known, they can be combined into a

pharmacophore by boolean combination. Since one objective of VS is the generation of

novel lead candidates, pharmacophores should be applied with great care; their usage

can increase the performance of VS significantly but also bears the risk of generating

a nondiverse set of solutions.
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3.1.2. Search methodologies

Due to the discretization of the search space, superpositioning algorithms can be used

to identify physicochemically complementary placements of the compound within the

active site of the target protein. Assuming protein and ligand to be inflexible, rigid body

transformations can be used to search for reasonable placements [49]. However, protein-

ligand complexation is much more dynamic in nature. Neither lock (the protein) nor

key (the ligand) can be considered as rigid. Koshland postulated already in 1958 [50] his

induced fit theory which states that protein and ligand adapt their conformation upon

binding. Thus, molecular flexibility is not only a result of inter- but also intramolecular

interactions.

Ligand flexibility

The classic approach to docking is to keep the protein target rigid and only consider

the flexibility of the ligand to be docked. According to Brooijmans [51] the treatment

of ligand flexibility can be divided into three basic categories.

• Systematic search methods use a set of values for each formal degree of freedom

and explore these in a combinatorial fashion. As the computational complexity

increases exponentially with the number of degrees of freedom, cut-off criteria

need to be introduced. Examples for systematic search methods are incremental

construction, placement and linking, and multi-conformer algorithms.

• Random or stochastic methods apply random changes, usually changing one de-

gree of freedom at a time. A concern is the uncertainty of convergence that can

be improved by performing multiple, independent runs of the same experiment.

Examples of stochastic searching are Monte Carlo (MC) methods and approaches

using a genetic algorithm (GA).

• Deterministic methods always end up in exactly the same result state if multiple

runs on the same system are performed. Each state determines the move to the

next state that is less or equal in energy. A common problem of these methods

is the tendency to get trapped in local minima due to the inability to cross

energy barriers. An example for deterministic search is force-field based energy

minimization.
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Some of the above methods can only be applied as online procedure during the search,

others can also incorporate a preprocessing step. Since all of them are implemented in

widely used docking programs, a detailed presentation is given in Section 3.3 where the

state of the art of docking tools is presented.

Protein flexibility

The treatment of protein flexibility is less advanced than that of ligand flexibility.

Various models have been developed to represent either just side chains movements or

alternatively, a fully flexible protein including backbone movements.

The different methods can be categorized according to the type of binding event they

are modeling:

• Kohslands’s induced fit effect that is based on the assumption that the binding

site adapts its conformation upon ligand binding.

• The hypothesis of conformational selection [52] that is based on the co-existence

of multiple protein conformers and thus the believe that conformational change

happens prior to protein-ligand complexation.

Algorithmically, different implementations again use systematic, random, and deter-

ministic approaches.

Induced fit approaches One way to treat flexibility is according to the theory of

induced fit : Structural changes of protein and ligand are considered as consequence

of the binding event, thus are handled online during docking. These changes can be

computed either consecutively or simultaneously.

Examples for consecutive methods are soft-docking approaches: These allow signif-

icant steric overlaps for initial, rather coarse placements [53]. In order to refine these

initial poses, postoptimization routines for conformational adaptation need to be ap-

plied [54].

Quasi-simultaneous conformational search is often restricted to approximative cal-

culations since computationally expensive simulation methods need to be performed.

Often, these approaches are restricted to side-chain flexibility using rotamer libraries

based on experimentally observed orientations. Analog to the problem of covering
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ligand flexibility, these algorithms need to avoid combinatorial explosion. First im-

plementations of this approach are the A*-based search of Leach [55] and Sternberg’s

self-consistent mean field [56]. More sophisticated methods which also cover backbone

flexibility are often based on principal component analysis or normal mode detection

[57, 58].

Conformational selection Another way of treating protein flexibility is to use en-

sembles of protein conformations as target for docking. These ensembles are able to

represent not only side-chain but also backbone flexibility. They can either be used in

a sequential manner by standard docking tools or by novel approaches which handle

conformational ensembles in a single docking run. For this purpose heuristics can be

used to select the correct protein conformation [59, 60]. Alternatively, a united protein

structure to identify common rigid protein regions [61, 62], or 3D grids to map pre-

calculated protein contributions can be employed to speed up the search and energy

evaluation [63, 64].

Of course, combinations of the above mentioned methodologies for conformational

selection and induced fit can also be followed [65]. One of the main challenges in the

context of flexible receptor docking is the estimation of binding affinity using multiple

protein structures. Since a detailed view on protein flexibility is beyond the scope of

this thesis, please refer to [66, 67] for more details.

3.2. Scoring Functions

The evaluation and ranking of ligand pose predictions is a crucial aspect of structure-

based VS. Even if binding conformations are correctly predicted, VS ultimately cannot

succeed if it is not able to correctly differentiate ”true” binders from non-binders.

3.2.1. Introduction

The basic physical principles in molecular recognition are governed by thermodynam-

ics. The binding affinity of ligand and protein can be estimated based on the fun-

damental thermodynamic equation that relates changes in inner enthalpy (ΔH) and
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entropy (ΔS) in combination with temperature (T ) to a change of the Gibbs free en-

ergy (ΔG)

ΔG = ΔH − TΔS (3.1)

A reaction occurs spontaneously if the resulting change in free energy is negative and the

system reaches a level of lower energy. Thus, the quantity of interest is the difference in

free energy between the complexed state of protein and ligand (GPL) and their unbound

states (GP and GL).

ΔGPL = GPL − (GP +GL) (3.2)

The exact calculation of the free energy of binding is currently not feasible. Most

approaches estimating the binding free energy make various assumptions, simplifica-

tions, and do not fully account for all physical phenomena of molecular recognition.

Therefore, many so-called scoring functions factor the problem into independent com-

ponents.

• Non-covalent interactions contribute favorably to enthalpy, e.g. hydrogen bonds,

metal coordination, and hydrophic interactions, which account for the stabilizing

effects of aggregated hydrocarbons in solvent [68, 69, 70]. Hydrogen bonds are

of special importance for protein-ligand complexation and molecular docking.

Typically a hydrogen bond (H-bond) describes an interaction between two electro-

negative atoms, e.g. oxygen and nitrogen, one of which is bound to a hydrogen

atom. In this constellation, the hydrogen can no longer be clearly allocated to

one of the hetero atoms. Non-classic H-bonds also involve CH groups, sulfur,

fluorine, and pi-electrons. Since H-bonds contribute significantly to the overall

enthalpy and have specific geometric preferences concerning atom-atom distance

and angle of interaction, they are of high importance in molecular docking. Their

energy contribution ranges from 4–15 kJ mol−1 for classic H-bonds up to 60–170

kJ mol−1 for strong/charged H-bonds [71]. Ligand atoms coordinating a metal

ion of the protein have a similar stabilizing effect.

• Further enthalpic contributions are van der Waals forces. The energy is favorable

if two molecules fit closely and no significant atom-atom overlaps occur.[70, 72]
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• Desolvation effects represent the influence of the solvent on the overall energy.

On the one hand, desolvation can lead to an unfavorable change in enthalpy due

to the breaking of H-bonds between hydrophilic molecules and solvent. Here, the

enthalpic change usually outweighs the increase in entropy of the solvent. On

the other hand, in case of hydrophobic molecules, the H-bond network of the

surrounding solvent is destabilized, which leads to an increase in entropy. In this

scenario, desolvation results in a favorable energy contribution, since no H-bonds

between hydrophobic molecules and solvent are broken upon complexation.[73, 74]

• Complex formation often entails additional constraints on rotatable single bonds

and thus reduced transformational and rotational freedom. This reflects a loss in

entropy and thus an unfavorable energy contribution.[75]

Essentially, three basic types or classes of scoring functions are currently applied:

Force-field based, empirical and knowledge-based scoring functions. Additionally, a

combination of these approaches can be employed. Details are discussed in the follow-

ing.

3.2.2. Force-field based scoring

Force fields usually quantify the sum of two energies, the protein-ligand interaction

energy and internal ligand energy based on classic potentials. Since binding affinity

is influenced by entropy and force fields do not accommodate for it, they are often

applied in combination with molecular dynamics or MC simulations. Here, solvent

can either be explicitly simulated or is part of an implicit calculation based on the

Poisson-Boltzmann model [76]. Since these simulations are computationally expensive,

force-field terms can alternatively be combined with empirical terms to account for

solvation and ligand entropy [77]. Most force-field scoring functions only consider a

single protein conformation, which allows to omit the calculation of internal protein

energy, and thus simplify scoring.

3.2.3. Empirical scoring

Empirical scoring functions are fit to reproduce experimental data. Their design is

based on the idea that binding energies can be approximated by a sum of individual

uncorrelated energy terms. The coefficients ΔG of the individual terms are obtained
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from statistical analysis of experimentally determined binding energies and structural

information. Binding energies are calculated as a sum of these terms, each of these

terms represents a different physicochemical property. An example of empirical socring

is the FlexX scoring function, an adaptation of Böhm’s function from 1994 [78]:

ΔGbinding = ΔG0

+ΔGrotNrot

+ΔGhb

∑

hb

f(ΔR,Δα)

+ ΔGio

∑

io

f(ΔR,Δα)

+ ΔGaro

∑

aro

f(ΔR,Δα)

+ ΔGlipof
∗(ΔR)

(3.3)

Here, the Gibbs free energy is estimated by the sum of contributions of H-bonds ΔGhb,

ionic interactions ΔGio, pi-interactions ΔGaro, hydrophobic contacts ΔGlipo between

protein and ligand, and a term ΔGrot for rotatable bonds. Each individual contribution

is scaled using the distance R and, in case of directed interactions, the angle α between

the corresponding functional groups. The remaining constant term ΔG0 describes the

loss of entropy due to reduced transformational freedom after complex formation. A

problem of empirical scoring functions is that the ΔG terms are derived from exper-

imental data and thus stable complexes. This means that destabilizing contributions

are inadequately represented.

3.2.4. Knowledge-based scoring

In knowledge-based functions, protein-ligand complexes are evaluated using relatively

simple interaction-pair potentials. The corresponding energy contributions are based on

the frequency of actual pairwise atom contacts in crystallized protein-ligand complexes.

The fundamental hypothesis is that the experimentally determined crystal structure

corresponds to the energetically optimal structure. Thus, the usage of a Boltzmann

statistic on distance distributions yields pairwise atom potentials, which are used as a

scaling factor during summation of all relevant atom pairs as in the PMF score [79].

Another prominent example using an additional term describing desolvation effects is
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Gohlke’s DrugScore function [80]. Since the pair potentials are derived using a Boltz-

mann distribution a common problem of these methods is the choice of the reference

system: If it does not represent the entire space of stable protein-ligand complexes, the

resulting potentials are inherently affected and do not comprise information about the

missing states.

3.2.5. Consensus scoring

Given the imperfections of current general purpose scoring functions, consensus scoring

schemes are often employed. Consensus scoring combines information from different

scores to balance errors in single scores and reduces the probability of outliers. Nev-

ertheless, a consensus score also includes the weaknesses of the individual members,

thus cannot compete with a scoring function ideally suited for the target of interest.

However, if no or no sufficient knowledge about the protein is available, and thus no

suited scoring approach can be identified [81, 82, 83], consensus scoring often yields the

best results.

3.3. Molecular Docking Implementations

This section covers existing docking implementations and is grouped into systematic,

random, and simulation methods. Furthermore, combinations of these approaches are

presented. Since the focus of this thesis is on high-throughput molecular docking,

computationally expensive methods to solve problems like protein flexibility and energy

minimization during postoptimization are only discussed briefly. For more details on

these methods please refer to [84, 66, 67].

Table 3.1 gives an overview of the presented methodologies and their different imple-

mentations. Since a full summary of the entire field cannot be given as part of this work,

please refer to the following reviews for more details on methodology, implementations,

and comparative studies [77, 85, 86].

3.3.1. Systematic methods

Incremental construction

Docking programs based on the incremental construction approach build up the ligand

on the fly as first proposed by Leach and Kuntz [87]. Initially, the ligand is split into
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Systematic methods

Incremental construction Dock 4.0, HammerHead, FlexX

Placement and linking eHITS, Surflex

Multi-Conformer approaches
Slide, Flog, FTDock,

Fred, ShapeSignatures

Cluster-Based approaches PHDock, TrixX

Random methods

Monte Carlo ICM, QXP

Genetic algorithms Gold, AutoDock, MolDock

Others Pro Leads, Plants

Simulation methods not presented

Multistep methods HierVls, Glide

Table 3.1.: Different docking methodologies and implementations.

fragments, before an anchor fragment, a small part of the compound, is placed into the

active site using matching algorithms. Adjacent parts are added incrementally, often

relying on libraries of preferred torsional angles. This strategy, also called ”anchor and

grow”, is efficient for small compounds and relies on the hypothesis that a protein-ligand

complex can be reconstructed via placement of a characteristic substructure. Since the

search space is still potentially exponential, larger and extremely flexible compounds

lead to a significant increase of computational costs.

DOCK4.0 The original version of Dock [43] was one of the first developments for

molecular docking. Introduced by Kuntz in 1982, it uses spheres as protein descriptors

and performs 4-point superpositioning between the sphere centers and ligand atoms.

This first approach regards both, protein and ligand, as rigid. In 1998 Dock intro-

duced ligand flexibility [88]. Ligand conformations are precalculated, such that each

conformer shares a common rigid fragment with all other conformations. These con-

formers are then docked as a group into the receptor binding site. The latest major

release [89] features an incremental construction routine: The compound is divided

into rigid overlapping fragments. By default the largest of these fragments is chosen as

anchor. The initial orientation of the anchor fragment is then computed using a geo-

metric matching protocol. Subsequently, nonoverlapping fragments that are connected
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via rotatable bonds are generated. These fragments are iteratively added using bond

type specific torsional angles. After each construction step, score and diversity filters

are applied. Only a reasonable number of partial solutions remains for further calcula-

tions. The scoring function, which is not only used for evaluating final pose predictions,

but also to guide intermediate search stages, is based on precomputed AMBER [90]

force-field terms combined with intra-molecular energies like Lennard-Jones potentials

for clash detection.

HAMMERHEAD developed by Welsh in 1996 [91] uses a probe-based method to

describe the favorable interaction spots of the protein active site. The compound is

split into fragments, these are conformationally sampled and aligned to the protein by

matching fragment atoms with probe atoms. The highest scoring fragment placements

are retained as anchors (head placements). The remaining fragments are aligned itera-

tively into the probe neighborhood next to the end of the current head. Each successful

fragment placement is then merged with the head using gradient-descent methods to

optimize the alignment and to reduce steric clashes. This fragment chaining procedure

is repeated until the full ligand is rebuilt. The search process and the final scoring is

performed using an empirically derived scoring function [92].

FlexX has been developed by Rarey et al. since 1996 [3]. The work to be pre-

sented in this thesis is based on the models and algorithms of FlexX: Please refer

to Section (5.1) which introduces the underlying molecular models and the employed

incremental construction algorithm in detail.

Placement and linking

Another variation is docking of all fragments followed by fragment reconnection instead

of incrementally constructing the ligand starting with anchor placements. A problem

with placement and linking approaches is the risk of not finding reasonable fragment

poses. If only one fragment cannot be docked correctly, the regeneration of the bioactive

pose will eventually fail.
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eHITS employs a classic placement and linking scheme: In a first step the ligand is

split into fragments. Then, each fragment is docked into the active site using clique

detection based on a so-called ”Geometric Shape and Chemical Feature Graph”. This

graph description is used for both, protein cavity and ligand, and represents the essential

functional features of a molecule. Based on these fragment poses all possible pose sets

are enumerated. A pose set is defined as a set of fragment poses (one for each fragment)

that are ”distance compatible”. This means, capable of reforming the input ligand.

Based on an empirical scoring function the most promising pose sets are retained for

further processing and optimization. Thus, also fragments with poor individual scores

can be part of a high-scoring pose set and thus part of a final pose prediction.[93]

SURFLEX uses the same binding site definition (so-called protomols) as Hammer-

Head. The compound to be docked is fragmented and each fragment is aligned with the

protomol based on molecular similarity. In contrast to HammerHead, corresponding

transformations are applied to the complete molecule, not only the current fragment.

The resulting putative poses are scored using theHammerhead scoring function, which

also serves as an objective function for local optimization. Flexible docking proceeds

by linking pieces of initial pose predictions, such that the resulting solutions possibly

consist of fragments from different initial fragment predictions.[94, 95]

Multi-conformer docking

These algorithms use pregenerated libraries (see 3.5) of likely conformations of library

compounds to model ligand flexibility. The actual docking is performed using rigid-

body methods based on either superpositioning and scoring or shape complementarity.

The major strength of these approaches is speed, while their predictive power is con-

strained to the explicit conformations in the library. This makes it difficult for the

assignment of an accurate score. However, the usage of postprocessing routines can be

used to address this issue.

SLIDE uses a multi-level hash index based on triplets of functional groups. The index

captures basic properties like the interaction types of the triangle as well as conforma-

tion dependent properties, e.g. perimeter, longest and shortest side of the triangle.

The different conformations of the compounds are taken from crystal structures of the
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Cambridge Structural Database (CSD) [96] or from rule-derived models of the NCI

database [97]. In addition, the database can be enriched by a series of computationally

generated low-energy conformers. During the search, a grid-based representation of the

receptor is employed to generate complementary triplets of functional groups, which

are used as input to a geometric hashing algorithm. This algorithm identifies initial

compound placements within the binding site based on the hash index. Single bonds

connected to these anchor groups are considered as rotatable and can be adapted to

improve the initial fit of the ligand. Furthermore, Slide also models protein side chains

as flexible, thus the active site can adapt towards the docked ligand according to the

induced fit paradigm. The resulting predictions can be postprocessed using mean-field

optimization and an empirical scoring function. Another innovative feature of Slide

is the incorporation of water particles into the binding site. These can either be dis-

placed, if they clash with the ligand placement, or be evaluated considering enthalpic

and entropic effects as part of the score.[98]

FLOG searches over so-called Flexibases using an approach similar to the original

version of DOCK. A Flexibase stores a small, yet diverse set of conformations for

each ligand in the library. On average it stores 8 and at most 25 conformations per

compound. Steric and geometric filters are applied to increase the diversity of the

conformations. During the search, clique detection algorithms are used to generate

trial orientations which are then scored based on a grid representation of molecular

properties. Eventually, the resulting placements are postprocessed using a simplex-

based optimizer.[99]

FTDOCK is a shape-based approach. The original field of application is protein-

protein docking, but it has also been applied to protein-ligand complexes. The shape

is represented by a simple numerical grid for protein and solvent, and ligand and sol-

vent. Each grid point is assigned with a value determining whether it is part of the

molecular surface, of the core, or it is space that is occupied by solvent. Complemen-

tary values are used for protein and ligand. Additionally, each grid node holds a value

representing the local electric field. It performs a global search of translational and ro-

tational space followed by refinement of the best pose predictions. Potential complexes
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are scored on the basis of shape complementarity and favorable electrostatic interac-

tions. FTDock, in its original version does not reflect flexibility and does not produce

3D coordinates for the resulting complex, it only produces the correlation score for a

similarity analysis.[100]

FRED uses Gaussian functions to represent molecular shape of the protein active site

as well as the ligand. First, a precalculated set of conformers is randomly positioned into

the binding site. These initial poses are then scored and iteratively optimized using

a fast Gaussian overlap function and systematic solid body optimization. Since the

employed docking function is strictly shaped-based, multiple empirical scoring functions

can be applied either individually or as a consensus score to produce the final rank order.

Optionally, force-field optimization can be performed as postprocessing step.[101]

ShapeSignatures describes the shape of molecules using distance histograms based

on a ray tracing approach: Starting from a random position, a ray is casted. For each

reflection point the length of the previous ray and the electrostatic property of the

reflection point on the Connolly surface [102] are annotated and stored in a histogram.

In case of ligands, the rays are casted and reflected inside of the molecule. In case

of proteins, the ray initiation and reflections are calculated using the outside of the

molecule starting within the active site of the protein. Thus, complementary histograms

for ligand and protein are generated that can be compared using simple metrics. Just

like FTDock, this approach does not yield a valid superposition, it only returns a

similarity value.[103]

Cluster-based methods

Cluster-based screening approaches exploit redundancies in compound libraries by

grouping compounds, fragments, or pharmacophores into clusters.

PHDOCK employsmulti-conformer docking similar toDOCK 3.5 and is implemented

using Dock 4.0. The authors introduce a reduced active site representation. Instead

of representing the site using Dock’s sphere description, chemically labeled site points

are generated using randomly distributed molecular probes. These are then energy

minimized and clustered. Instead of docking individual compounds, pharmacophores
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are docked into the active site. Pharmacophores represent basic functional groups and

are derived for each conformation of the library compounds. The resulting set of phar-

macophores is clustered, thus identifying redundancies within the set. After docking

the pharmacophores, each successfully placed pharmacophore is replaced with its as-

sociated compound in the respective conformation and scored. The authors report

a speed-up of a factor 5 − 8 while the resulting enrichment factors and poses are of

comparable quality to the regular Dock results.[104, 105]

TrixX was published by Schellhammer and Rarey in 2007 and is the direct predecessor

of the work presented in this thesis. Based on queries to a molecular index, which iden-

tifies redundancies in molecular fragments, initial fragment placements are generated

and recombined according to the placement and linking paradigm. The TrixX concept

of searching a structure-based molecular index, some of its descriptor properties, and

its active site representation are reused in the TrixX BMI approach. Details are given

in Section (5.2).[4]

3.3.2. Random methods

These algorithms (also called stochastic methods) operate by making random changes

to either a single compound or a population of compounds. A newly obtained molecule

is evaluated on the basis of a fitness function which guides the search. This function

needs to be able to cross energy barriers in order to explore the full search space of

the protein’s binding site. Furthermore it needs to be sensitive to minor changes in

order to optimize an already useful pose. Different models like MC methods, GA,

tabu search, and ant colony optimization meet these criteria. An advantage of random

searching is the independence of a characteristically binding anchor fragment. Thus,

large and rather hydrophobic molecules can often be docked successfully using random

approaches. However, they can get stuck in local minima and do not reward a-priori

knowledge about specific geometric preferences of known binders. Also, limited repro-

ducibility and convergence are connected to their stochastic foundation [51].

Monte Carlo methods

In MC implementations, the molecule is considered as a whole and random changes

are made to adapt the translation and rotation of the compound, as well as its torsion
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angles. After each move, the structure is minimized, and the energy of the new structure

is determined.

ICM implements so-called biased probability MC. Translational and rotational de-

grees of freedom are sampled by pseudo-Brownian motion, while torsion angles are

sampled using biased probability moves. These probabilities can be derived from known

structures. Thus, the resulting moves likely sample regions of high probability. Before

the fitness function is evaluated, local energy minimization is performed. The search is

guided using the following selection criteria: A surface-based solvation energy, an en-

tropy calculation, and the energy from the minimization. The sum of the three energy

terms determines whether the new structure is accepted or rejected.[106]

QXP initially uses MC procedures to explore the torsional conformation space com-

pound. This is followed by rigid body rotations and translations to align the compound

onto ”guide atoms” within the active site. These guides are atoms in van der Waals

contact with atoms of the protein active site. The resulting poses are optimized us-

ing MC calculations based only on rigid body rotations and translations. Eventually,

QXP uses a combination of conjugate-gradient minimization and MC for optimization

of torsion angles. [107]

Genetic algorithms

GAs try to mimic the process of evolution during their search for the global energy

minimum. Abstract representations (chromosomes) of possible solutions (phenotypes)

need to be generated and are the foundation for the search process. Evolutionary algo-

rithms demand that only the fittest phenotypes are carried on to the next generation.

Each generation is created based on random or biased mutations, which are applied

to increase genetic diversity, and prevent early convergence. Crossover, a process that

swaps large regions of the ”parents”, is permitted in GAs. In general, minimization of

the phenotypes is not applied until convergence is reached.

GOLD was introduced in 1995 by Jones et al. [108] and is still one of the most widely

used docking tools. It uses multiple subpopulations of the molecule, rather than a

single large population, and manipulates these simultaneously. Migration of members
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from one subpopulation to another can occur, which increases the efficiency of the GA.

The poses are represented as chromosomes. In each step, a classic GA operation like

mutation and crossover is applied. Each chromosome encodes torsional angles, pro-

tein side-chain bonds, and integer values describing hydrogen bonding. The operation

and the parent chromosome are both chosen using a roulette-wheel mechanism. The

resulting new chromosome then replaces the least fit member of the current subpop-

ulation. In 1997, support for metal coordination, partial ring-system flexibility, and

better handling of small, rather hydrophobic molecules was introduced [109]. Since

2003, an adaptation of the empirical scoring function ChemScore [110] is used to guide

the search: In addition to the weighted sum of H-bond energies, van der Waals contact

energy and intra-molecular energy of the original scoring function, terms for H-bond

geometries and entropy loss due to limited conformational freedom of the compound

are employed [111].

AUTODOCK employs a Lamarckian genetic algorithm that incorporates local min-

imization of a certain fraction of the population. The program switches between a

”genotypic” phase for global conformational and translational search and a ”pheno-

typic” phase with an adaptive local energy minimization based on a force-field energy

function. Phenotypic changes due to the energy minimization are mapped back onto

the genes via updating the explicit coordinate representation in the chromosome.[112]

MOLDOCK applies a differential evolution [113] approach towards molecular docking.

First, all individuals are initialized and evaluated according to the fitness function,

which is an extension of the PLP [114] scoring function including new hydrogen bonding

and electrostatic terms. Afterwards, the following process is iteratively applied until the

termination condition is fulfilled. The novel idea in differential evolution approaches is

to create an individual of the next generation using a weighted difference of all possible

parent solutions in combination with a specific parent. This parent is replaced by the

new individual only if the newly generated one is fitter according to the scoring function.

The termination condition is enforced if a maximum number of evaluations has been

performed or the variance within the solution set drops below a certain threshold.[115]
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Other approaches

PRO LEADS implements a ”Tabu search”, similar to MC. It also uses random moves

to explore conformational and translational space. Furthermore, it maintains a list of

tabu conformations that represents previously accepted pose predictions. A new solu-

tion, lower in energy, is only kept if it is dissimilar to anything in the ”tabu” list. This

procedure stimulates sampling of space that has not been sampled before. A modified

version of ChemScore is applied as scoring function . Eventually, a local minimization

is applied to the lowest energy conformations as postoptimization step.[116]

PLANTS is based on stochastic optimization algorithms called ant colony optimiza-

tion [117]. These algorithms are inspired by the behavior of real ants, which try to find

a shortest path between a food source and their nest. Pheromone trails mark the best

paths and are used as means of communication. In the context of VS, the artificial

ant colony is employed to find the lowest energy conformation of a compound within

the binding site. The solution space consists of different ”pheromone trails”, each de-

scribing different rotational and transformational settings. The trails are iteratively

modified to increase the probability of generating low energy conformations. Interme-

diate solutions are improved using a local simplex search algorithm. Then, diversity

filters are applied. After a certain number of iterations, depending on the size of the

ant colony, the flexibility of the molecule, and the number of heavy atoms, the search

concludes. The remaining solutions are ranked using an empirical scoring function

based on combination of Gold’s ChemScore and PLP scoring.[118, 119]

3.3.3. Simulation methods

The most popular simulation method is currently molecular dynamics (MD). This ap-

proach tries to approximate known physics by modeling individual atom movements.

However, MD simulations are often unable to cross high-energy barriers within feasi-

ble simulation time. Therefore, one might only retrieve molecules within local minima

of the energy surface. Two strategies can be applied to solve this issue: On the one

hand, searching can be started at different temperatures. On the other hand, multiple

molecular dynamics calculations starting from different positions can be executed.
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In contrast to molecular dynamics simulation, energy minimization approaches are

rarely used as stand-alone search, since they only reach local energy minima. Instead,

energy minimization often complements other search methods aiming at refining initial,

rather coarse pose predictions during postoptimization steps.

Since simulation methods are computationally expensive and thus not suited for

high-throughput VS, details and implementations are beyond the scope of this thesis.

3.3.4. Multistep methods

These methods use hierarchical combinations of different methodologies. Starting from

rather coarse, but fast approaches they continue to increase the granularity and thus

the computational complexity in a stepwise manner. Thus, these approaches are often

suited for high-throughput VS: Initially, fast filtering methods are applied yielding a

low false negative rate but still filter out significant parts of the viable search space.

The question of false positives is then addressed during subsequent processing steps.

Generally speaking, most available VS tools can be applied in a meaningful hierarchical

order. However, a successful screening pipeline needs to be parametrized and executed

in an adjusted way, such that known weaknesses of the single methods are addressed

and thus corrected by the downstream ones.

HIERVLS starts with a coarse grain conformational search. The up to 300 resulting

conformers are docked into the active site using Dock 4.0 with 25% reduced van der

Waals radii. After this first phase, close protein-ligand contacts are still accepted. The

50 best scoring placements according to the grid-based Dock 4.0 score are handed

over to the next phase. Here, the buried surface area is evaluated and poses with a

value below 30% are filtered. Within the next stage, the remaining top five poses

are subject to energy minimization. This also includes solvent- and protein side-chain

movements. Eventually, the lowest energy solution is rescored explicitly accounting for

solvation/desolvation effects.[120]

GLIDE is currently one of the most successful and widely used docking tools. It com-

bines coarse multi-conformer docking with subsequent gradient-descent methods and

MC optimization. Initially, the conformers are clustered and the resulting representa-

tives are docked into the binding site which is represented as an equally spaced grid.
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A cluster representative is defined by a rigid core region and flexible side chains. The

actual docking uses histograms that encode the protein and ligand shape as either the

distances of grid points to the receptor surface or distances from the ligand center to

the ligand surface. If the histograms match sufficiently the corresponding conformer is

placed using a number of predefined orientations. Glide uses 20% reduced van der

Waals radii to account for minor readjustments during complexation. The resulting

poses are scored using a grid adaptation of the ChemScore function. Then, the top

5000 poses are subjected to refinement and are subsequently rescored. In the next

phase, force-field minimization and scoring is applied using the 400 previously best

scored poses. Here, the scoring function is evaluated on a grid-based discretization of

van der Waals and electrostatic energy. During the last phase, MC optimization is

applied to the six best scoring poses in order to adapt nearby torsional minima and

orientations of peripheral groups of the ligand.[121]

3.4. Pharmacophore Search

Apart from molecular docking, similarity search methods from ligand-based VS can be

adapted, such that structure-based searching can be performed. In this scenario, phar-

macophore models (see 2.3.3) derived from protein structure by determining comple-

mentarities between a ligand and the corresponding binding site are employed [122, 123].

Since structure-based VS aims at the prediction of protein-ligand complex geometries

the following methods are based on pharmacophore alignment. In this field two differ-

ent approaches can be distinguished. While most approaches use point-based methods

relying on chemical features, property-based approaches representing molecular field

descriptors are also feasible [123]. As in molecular docking, the question of molecular

flexibility must be addressed. This is done by either pre-enumeration or via online sam-

pling algorithms. Different algorithmic approaches again rely on systematic, random,

or simulation methods. In the following, a brief introduction to successful implemen-

tations and their underlying methodology is presented.

Gasp [124, 30] and Galahad [125, 126] are genetic algorithms, which both handle

molecular flexibility online during the search process. A chromosome represents all bond

angles and all feature mappings between pharmacophore and the reference compound.

A new offspring is created by applying random movements in torsion space. Both
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tools differ concerning their employed fitness function and the fact that Galahad also

allows the usage of pregenerated conformations as base for torsion updates. This bears

a significant speed advantage.

Most other tools rely on conformational ensembles and employ rigid body docking

combined with maximum common substructure searching for the minimum pharma-

cophoric requirements. Most applications, e.g. Discovery Studio [127], Ligand

Scout [128], Phase [129], and Unity [130], explicitly model steric constraints using

inclusion and exclusion volumes. This representation of shape, however, reduces the

computational efficiency, since it necessitates frequent checks for ligand clashes as part

of a postprocessing routine. A variant of these tools is Shape4 [131] which generates

a negative image of the active site and employs a modified search based on the OE

Shape Toolkit [132]. This approach incorporates shape in form of Gaussian functions

into the pharmacophore description. During the search only compounds with matching

substructure and a reasonable shape fit are selected for postprocessing.

For more details concerning this field of research please refer to [133, 34].

3.5. Conformational Sampling

Already during the 1970s, conformational ensembles were used to represent flexibility

of small molecules. Back then, ensemble generation was based on experimentally de-

termined crystal structures [134]. During the 1980s, first knowledge-based approaches

were published that addressed the computational generation of a single low energy

conformer for a given input ligand, e.g. Corina [135] and Concord [136].

Since molecular docking of conformational ensembles depends on a representative

sampling of the entire space of bioactive conformations [137, 138, 139], tools which

generate multiple low energy compound conformations needed to be developed. This

led to the development of stand-alone tools likeOmega [140], Catalyst [141], Rotate

[142], and the TrixX Conformer Generator [143].

Omega utilizes fragment template libraries and histograms to represent torsion-angle

energies. First, exhaustive sampling of molecular fragments with up to five rotatable

bonds is performed. Then, the molecule is reassembled by successively choosing frag-

ments with lowest energy. The search terminates if no more conformations can be built,
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a predefined number of conformers is reached, or if a global energy cut-off is reached.

Eventually, diversity filters are applied. [144].

Catalyst starts with a coarse but fast conformational sampling of the molecule

[145, 146]. Subsequently, conformational diversity is introduced to the ensemble via

energy minimization using a regular molecular force field with one additional term.

This term penalizes similar conformers and forces them to diverge [147]. In order to

speed up calculations a fragment library can be applied.

Rotate uses a depth-first search based on a tree representation of molecular frag-

ments using the central fragment as root. For large and flexible molecules only the most

central bonds can be processed. This reflects the strong influence of the corresponding

bond angles on the overall shape of a molecule. During the search, each bond is rotated

in 30 degree increments. In each step, only the six best-scoring angles according to an

empirical energy potential are retained. Geometry optimizations, energy cut-offs, and

diversity filters are applied to the final result set.

The TCG is used as conformer generator within the TrixX BMI workflow. It uses

a tree representation of the molecule and traverses it using a best-first search guided

by force-field energies. Details of the conformational sampling algorithm are presented

in Section 6.4.1.

3.6. General Problems

Today, VS based on 3D structural information of the protein target provides an op-

portunity for identification of novel lead candidates. Yet, certain challenges remain:

85% of the about 60.000 proteins in the protein databank (PDB) [148], the worldwide

repository for 3D macromolecules, contain one to three flexible side chains [149]. This

seems to be a small number, but in context of docking a small adjustment can have

a tremendous impact. Thus, protein flexibility is of central importance, particularly

when it comes to scoring pose predictions in different protein conformations. Also, the

presence or absence of water molecules within the active site needs to be addressed in

more detail. Water particles have significant energetic contributions and are of high

importance for the reliable prediction of ligand binding. Furthermore, entropy and sol-

vation effects play a key role in the further development of accurate docking and scoring

methods. Another issue is connected to the coverage of conformational space. The
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right balance between accuracy and speed, between coarse conformational ensembles

and a full molecular dynamics approach, needs to be determined since computational

resources are limited.
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Data Indexing

Searching in a database of molecular descriptors can be a computationally expensive

task. In order to avoid a sequential scan over the whole data set, index structures

must be applied. Different kinds of queries and data environments call for specialized

indexing systems appropriate for the data to be searched. In general, index structures

can be classified into hash-based and interval-based structures. The former use a hash

function to map descriptors to certain hash bins. Thus, a search corresponds to a

look-up in the respective hash bin. Subsequently, the resulting candidates need to be

checked, since hash functions are not bijective. Interval-based index structures, for

example the B-Tree [150] and kd-Tree [151], organize the data hierarchically.

The data volume to be analyzed in high-throughput VS approaches is not suitable for

main memory structures. Therefore, the next section focuses on index structures that

consider the effects of secondary storage persistence. These indices aim at minimizing

I/O operations and thus the access to disk pages.

4.1. Index Structures

Different index structures and their associated algorithms support different types of

data and queries. Point-access methods usually perform well if the application primarily

searches for points in multi-dimensional space. In contrast, space-access methods are

optimized to support efficient spatial selection, for instance range queries on spatial

objects. In order to enable efficient data access, it is essential to analyze the data to

be indexed regarding its properties. This means that the performance of an indexing

system depends on the dimensionality of the data, its distribution, and its frequency of

change as well as the query type that is predominantly used when searching the data.
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In the following, some widely used indexing approaches and their strengths and

weaknesses are presented [152, 153].

B-Trees are balanced search trees optimized for storing and searching 1D data. A

node of a B-Tree is usually mapped to a disk page. If a page overflows, the data

needs to be split based on a total ordering of the keys. Insertions, deletions, and

updates of data can be performed in O(logk(n)), with n being the number of search

keys and k the maximum number of keys in one page. In order to support different

types of queries efficiently, several B-Tree like structures can be employed. B+-Trees

solely store data on leaf level. This increases the fan-out of the inner nodes and thus

reduces the height of the tree. Range queries are efficiently supported by linking each

leaf with its predecessor and successor. Multi-key data can be accessed and stored

efficiently using kdb-Trees [154] that combine the balanced structure of a B-Tree with

the multidimensional features of the kd-Tree. However, this index structure is only

suited for point data [155].

R-Trees [155] are a multidimensional generalization of the B+-Tree and thus also map

data to disk pages. In contrast to B+-Trees that use 1D intervals to structure the data,

the R-tree uses multidimensional rectangles, which allow efficient handling of spatial

objects. All nodes store a minimum bounding rectangle of its children, which is used to

guide the search. Similar to the B+-Tree, data is only stored in leaf nodes. In case of a

page overflow, a split needs to be made aiming at the minimization of rectangle overlap

and future page overflows. A simple heuristic for this is to minimize the area of the

two resulting rectangles. Since the original R-Tree contains overlapping rectangles, it

cannot guarantee a logarithmic worst-case performance. Applications like the R∗-Tree

[156] overcome this problem by usage of sophisticated insertion and split strategies.

However, in higher dimensional spaces the overlaps tend to affect the majority of the

data. One possible way to solve this problem is to use so-called supernodes as employed

by the X-Tree [157]. These nodes can exceed the usual page size, and the index reverts

to a linear data scan. Supernodes exceed the usual page size and are generated in cases

where only overlapping splits are possible. The data in these nodes is linearized, and

the index accesses it sequentially.
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Figure 4.1.: Example query on a table holding 2D data that is indexed by Bitmap Indices.

The type information is encoded using equality encoding, whereas the index

on the length dimension utilizes range encoding.

Grid Files [158] use a multi-dimensional hashing scheme. The underlying data is

partitioned with a k-dimensional grid using nonuniform scales for each dimension. On

top of the grid, a k-dimensional dynamic array — the grid directory — is used to

map each grid cell to a specific disk page. Different grid cells can be combined to

regions, which are mapped onto the same page if the covered region is convex in k-

dimensional space. Over- and underflowing pages require split and merge strategies.

These strategies must preserve the convexity of all regions in the grid directory.

A Grid File can efficiently answer fully qualified point queries with just two disk ac-

cesses. Furthermore, the convexity of the directory regions allow efficient k-dimensional

range queries. A disadvantage of Grid Files is the superlinear growth of the grid direc-

tory. Adaptations, like the Two-Level Grid File [159], introduce a second layer Grid

File to handle the grid directory itself.

Bitmap Indices [160] are often used to answer complex queries in read-mostly envi-

ronments. A Bitmap Index builds one index for each dimension A. Each index consists

of |A| bitmaps. Bit value 1 in row i of bitmap j of the index then represents the value

of rowi[A] = j. Multi-dimensional queries can be answered efficiently by boolean com-

binations of the corresponding bitmap vectors. Furthermore, it is possible to adjust the

bit encoding to support different types of queries [161], for example range encoding. In

this case a set bit in row i in bitmap j represents rowi[A] ≤ j. The choice for a specific

encoding scheme decreases the number of bitmaps to be evaluated significantly. If a

dimension is queried predominantly using range conditions, its corresponding bitmaps

should be encoded accordingly. In case of range encoding, a range query can be an-

swered using a single bitmap. For equality encoded bitmaps, a range query needs to
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combine all bitmaps within this range using a logical OR operation. This resuls in |A|
2

bitmap combinations in the worst case. An example query using two dimensions (type

and length), as well as different encoding schemes (equality and range), is illustrated

in Figure 4.1.

Bitmap Indices can efficiently answer multi-dimensional queries and are especially

useful for ad-hoc queries where the involved data dimensions are previously unknown.

Depending on the cardinality of an indexed dimension, bitmap indexing can be space

consuming. Binning and compression techniques can be used to approach this problem.

Furthermore, insert and update operations are more expensive than they are for tree-

based structures.
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Background Overview

In this chapter prerequisites and predecessors of TrixX BMI are presented. First,

the molecular docking program FlexX is introduced which supplies basic routines for

molecule I/O, molecule initialization, scoring, and an incremental construction proce-

dure. Furthermore, TrixX BMI employs some concepts of TrixX, a tool for prefilter-

ing large compound collections. This includes its model of the active site and parts of

the TrixX molecular descriptor. To conclude this chapter, the indexing system used

to search in high-dimensional descriptor space and the database to organize descriptor

matches is introduced.

5.1. FlexX

FlexX employs a systematic approach to protein-ligand docking. According to Chap-

ter 3, such a docking algorithm is based on three components: A model for the search

space, a search algorithm, and a scoring function to evaluate the resulting predictions.

• The search space is represented using an empirical interaction model as described

in 3.1.1.

• The search for protein-ligand poses is performed systematically by an incremental

construction algorithm (see 3.1.2).

• Intermediate and final poses generated by FlexX are evaluated using an empirical

scoring function as presented in 3.2.3.

In the following, each of these components is presented in more detail.
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Figure 5.1.: (a) Different interaction geometries of FlexX. (b) Favorable superposition

of two opposing chemical groups

Figure 5.2.: Three steps of the FlexX incremental construction algorithm.

Interactions FlexX represents the protein active site using a modified version of the

empirical interaction model of Böhm [44], later adapted by Klebe [162]. It consists of

a set of rules describing preferred interaction geometries for H-bonds and hydrophobic

contacts between functional groups of protein and ligand. These rules result from a

statistical analysis of nonbonded protein-ligand contacts in complexes of the CSD. Each

interacting group of a molecule is assigned with a specific geometry. This geometry

is defined by an interaction center, a radius, and an interaction surface as shown in

Figure 5.1 (a). Depending on the interaction type of the functional group, different

surface radii and surface shapes are used [3]. An interaction is formed if the involved

interaction types are complementary and the interaction center of both groups is located

approximately on the interaction surface of the counter group (see Figure 5.1 (b)).

For computational reasons, the interaction surfaces of protein functional groups are

discretized resulting in a finite set of so-called interaction dots.
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Docking The docking algorithm of FlexX consists of three different phases, which

are illustrated in Figure 5.2.

• Initially, a base selection routine identifies one or more possible anchor fragments.

This is done using selection criteria like rigidity and hydrophilicity and results in

up to ten base fragments. For each of these anchors, the remaining compound

is further fragmented at each acyclic rotatable bond yielding a set of fragments

to be used during incremental construction. These fragments consist of either

ring systems or rigid components. Eventually, base fragments and flexible ring

systems are conformationally sampled.[163]

• During base placement, FlexX tries to identify high-affinity placements for the

anchor fragments. First, all triplets of interaction groups within the individ-

ual base fragments are identified. Second, triangle geometries for the different

fragmentations are generated. Then, an efficient pose clustering [164] algorithm

generates matches between these compound triangles and triangles derived from

protein interaction centers. Each of the resulting matches corresponds to a trans-

formation of a base fragment into the active site and thus yields an initial anchor

placement. Subsequently, all valid placements concerning interaction directions

and clashes are clustered using RMSD of atom coordinates as diversity measure

[165]. After an optimization step to merge members within each cluster, clashing

placements are discarded. The remaining ones are scored using a heuristic term

to represent the maximal possible energy contribution of the nonplaced parts of

the compound.

• The anchor placements serve as starting point for the incremental construction

routine that uses a k-greedy heuristic. Starting with the k best base placements,

only the k best scored placements resulting from each iterative construction step

are retained for further processing. In each construction step, the algorithm places

all conformers of the next component using a set of predefined torsion angles of

the connecting bond. The resulting set of partial solutions is optimized using a

weighted superpositioning scheme, and similar placements are clustered. Then,

the resulting placements are subject to a clash test. After scoring, the k best

ranked solutions are further processed. This process continues until all fragments

are added.
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Figure 5.3.: Three steps of the TrixX placement and linking algorithm.

Scoring The empirical scoring function of FlexX, as presented in Section 3.3, is

tightly coupled to the interaction model: The optimal alignment of two compatible

groups is associated to a value that estimates its contribution to the binding free en-

ergy according to the empirical analysis it is based on. Deviations from this optimal

alignment are penalized using distance and angle deviations. The remaining entropic

contributions to the binding free energy is estimated based on pairwise atom-atom dis-

tances to account for the hydrophobic effect. Since all parameters and geometry spec-

ifications are user configurable, different empirical models like ChemScore and PLP

score can also be employed during a FlexX docking run.

5.2. TrixX

In 2007 Schellhammer and Rarey published TrixX, a new method for molecular dock-

ing based on the fundamental models of FlexX and the placement and linking dock-

ing paradigm (see Figure 5.3). Its unique contribution towards molecular docking is

its search strategy for initial fragment placements: TrixX uses relational database

techniques to access molecular descriptors and exploits redundancies within the data

set.

As illustrated in Figure 5.4, the TrixX workflow can be split into five phases.

• Phase one (compound cataloging) is independent of the protein target and needs

to be performed only once. Based on functional groups of the molecule, so-called

compound interaction center (CIAC), are identified (see Figure 5.5). It then de-

composes the compound into partially overlapping fragments and stores these in a
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Figure 5.4.: Workflow of the TrixX docking algorithm.

Figure 5.5.: A compound (left) and the corresponding CIAC assignments (right).

relational database system. Since TrixX fragments are rather small, consisting of

only up to five rotatable bonds, a duplicate check is performed. New fragments

are conformationally sampled and registered. Duplicates are annotated at the

corresponding fragment. Thus, fragment redundancies in the compound library

are exploited. Then, TrixX molecular descriptors are generated. Each descrip-

tor is assigned to a specific fragment and represents a conformation dependent

triangle between functional groups of a compound. A TrixX descriptor encodes

the following molecular properties: The types of the involved interaction centers,

their interaction direction as Euler angles, their pairwise distances, and a repre-

sentation of nearby steric properties of the fragment. Eventually, the descriptors

are also stored in the compound database.
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• During phase two (site analysis), TrixX generates favorable interaction spots,

so-called site interaction center (SIAC), based on type dependent clustering of

FlexX interaction dots of the protein. The resulting SIACs represent favorable

positions for CIAC placements. Then, triplets of SIACs are used to generate

TrixX descriptors for the protein active site. These site descriptors are com-

plementary to the compound descriptors and are also stored in a table of the

database.

• In phase three (query execution), the previously stored TrixX site descriptors are

used to query the table of compound descriptors in the compound database. Each

descriptor match describes a valid transformation of the annotated fragment into

the active site of the protein. Two descriptors match if the involved interaction

types are compatible (see Table 5.1), the pairwise interaction distances and inter-

action directions are equal within certain thresholds, and the TrixX description

of bulk yields a reasonable steric fit.

• The next phase (fragment placing) performs the actual transformation of each

fragment into the active site using the conformation and transformation iden-

tified via the corresponding descriptor match. After clash testing the resulting

fragment placements, TrixX employs a coarse scoring function that evaluates the

superposition of CIACs and SIACs. The highest scoring placements are stored in

fragment-specific priority queues.

• Within the final phase (fragment linking), TrixX tries to link fragment place-

ments to compound placements. Therefore, each fragment placement is expanded

with its associated compound fragments as stored in the compound database.

Fragment placements of the same compound are merged if they are distance and

overlap compatible. The resulting compound placements are again checked for

clashes. Then, TrixX searches for additional interactions that are not part of

initial descriptor matches. Finally, the resulting placements are sorted into com-

pound specific priority queues. These are used to generate the final hitlist of the

current target protein.

TrixX uses distance and overlap criteria to merge fragment placements to pose

predictions. These criteria are rather coarse, and the resulting superpositions often
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Interaction type CIAC type SIAC type

Hydrogen bond H-Acceptor H-Donor

H-Donor H-Acceptor

Metal coordination H-Acceptor Metal

Hydrophobic contact Phenyl ring, methyl, ethyl, halogen Hydrophobic spot

Table 5.1.: TrixX main interaction types between functional groups of a compound

(CIACs) and of a receptor (SIACs).

result in chemically nonvalid bond lengths and angles. Therefore, TrixX should only

be applied as a prefilter to more accurate docking tools.

5.3. Descriptor Indexing

As already mentioned, TrixX uses a relational database system to identify initial frag-

ment placements and exploits redundancies within the library. Its descriptor consists

of only few individual attributes since the representation of steric bulk is stored in a

single bitmask. The evaluation of steric fit is performed within a postprocessing step

as part of the database query is not supported by any index structures.

TrixX BMI uses an entirely new concept for the description of molecular shape.

It employs an 80-dimensional shape representation that is supported using indices.

The index structure to be used must be able to cope with high-dimensional queries.

Furthermore, the descriptor data is part of a read-mostly environment where data is

changed only infrequently. Since all these criteria are met by Bitmap Indices (see 4.1),

TrixX BMI employs the FastBit [166] system.

5.3.1. FastBit

FastBit is a stand-alone Bitmap Index system. Bitmap Indices are well suited in read-

mostly scenarios of high-dimensional data but have certain drawbacks concerning space

overhead for attributes of high cardinality. FastBit addresses the issue of high cardinal-

ity attributes by applying a binning scheme, such that the index is generated based on

a coarser representation of the data. The bin boundaries can either be user-defined or

derived using a statistical analysis of the data. FastBit generates candidates using the

Bitmap Indices. These candidates are then checked individually: The system reverts
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Figure 5.6.: Example of the WAH compression using a CPU word size of 8 bit.

to the raw data to decide whether a candidate fulfills the query condition or not. This

scheme can also be applied in a two-level hierarchy to increase the grain of the index

and to reduce the number of candidates.

Another aspect of Bitmap Indices is the possibility to compress each bitmap. Dur-

ing query processing, bitmaps are logically combined using boolean operations as for

instance AND, OR, and NOT. Regular central processing unit (CPU) operations are

not applicable to compressed bitmaps. Thus, standard compression algorithms lead to

an increase in runtime since each involved bitmap needs to be decompressed in order

to answer a query. However, FastBit uses a special compression method called Word-

Aligned Hybrid (WAH) code [167]. This adaptation of run-length encoding enables the

usage of standard operations without the need to decompress the bitmaps. The main

idea of WAH is to compress bits in groups of CPU-wordsize−1, for example 31 bits on a

32 bit CPU. In combination with an additional bit flag, each group fits exactly into one

word of the CPU: A compressed group consists of a leading 1 indicating compression,

followed by the bit value that is compressed, and the number of compressed words. Un-

compressed groups are stored literally, prepended with a 0 bit. Due to this alignment,

standard bitwise operations can be executed efficiently [168, 169]. An example of the

WAH compression is given in Figure 5.6.

Another feature of FastBit is the availability of different bitmap encoding schemes

(see Section 4.1 and Figure 4.1 for details), for instance equality- and range encoding

which can be employed to speed up corresponding query types. Furthermore, FastBit
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enables the user to supply fixed memory boundaries: The maximum memory usage can

be restricted by assigning a global cache limit.

5.3.2. SQLite

As a result of FastBit queries, descriptor matches need to be stored and organized. This

task is handled by SQLite [170] that offers a transactional database engine accessible

via the structured query language (SQL).

SQLite is an embedded SQL database engine that does not have a separate server

process. Instead, it directly accesses regular disk files. A single file includes a database

with multiple tables, indices, triggers, and views. The database file format is imple-

mented for different platforms. It should not be used as a replacement for a grown

database management system but can be used to structure and search data efficiently.

Similar to FastBit, SQLite allows the definition of fixed memory boundaries: Cache

sizes and thus memory consumption can be adapted and constrained during runtime.

49





6
Methods

In this chapter the ideas behind TrixX BMI are presented. It restates the aims of this

project and summarizes the drawbacks of previously developed tools. Subsequently, the

concepts and methods of TrixX BMI are described. This includes the introduction

of the novel TrixX BMI descriptor, the hierarchical docking pipeline, details about

individual phases of the overall workflow, and the TrixX Conformer Generator

that handles large parts of compound flexibility. Eventually, the TrixX BMI approach

to parallelization is presented.

6.1. Motivation and Goals

Nowadays, VS is a sequential procedure. Only few molecular docking tools deviate from

the concept of iteratively placing each compound into the binding site. Cluster-based

approaches exist, but these do not result in significant improvements of runtime and

often do not produce results of comparable prediction quality. For instance, the original

TrixX version is not suited for molecular docking and should only be used to prefilter

large compound libraries. VS tools from the field of structure-based pharmacophore

search also follow the iterative screening paradigm. Furthermore, these tools do not

generate 3D placements but only rank the library compounds.

Most importantly, none of these methods employs a 3D shape matching routine

that uses a molecular descriptor which is accessible using modern indexing technology.

Therefore, the goal of the TrixX BMI development is to achieve the following:

• Fast prediction of binding molecules based on a selective molecular descriptor that

incorporates physicochemical information, especially a canonical representation
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Figure 6.1.: TrixX BMI workflow: The preprocessing phase on the left and the virtual

screening part on the right.

of molecular shape. Each descriptor attribute should be accessible using index

structures.

• Accurate 3D pose prediction and significant enrichment of active compounds. The

results should be of comparable prediction quality to state-of-the-art approaches.

• Incorporation of a-priori knowledge into the docking engine, this means, pharma-

cophore information and molecular properties of known binders.

• The models to be generated must have the potential to integrate concepts of

protein flexibility.

• Scalability in a parallel computing environment.

To achieve these goals, TrixX BMI is modeled as a hierarchical screening pipeline

that employs and extends techniques of previously developed tools: It uses the scoring

scheme and incremental construction algorithm of FlexX, it adapts and extends the

molecular description of TrixX, and incorporates a sophisticated indexing system.

6.2. Workflow

The TrixX BMI workflow, presented in Figure 6.1, can be split into two disjoint phases.

• Preprocessing

The information computed in the first phase is independent of the actual target

protein and thus needs to be calculated only once. In this preprocessing step, all

library compounds are analyzed to identify their physicochemical features and to

generate TrixX BMI compound descriptors. These are stored in the so-called
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compound database which uses an indexing system optimized for retrieval of high-

dimensional data. The problem of conformational flexibility is addressed by using

TCG which creates conformational ensembles of the library compounds.

• Virtual screening

In the second phase, structure-based VS is performed. TrixX BMI compound

descriptors, generated in the preprocessing step, and target dependent site de-

scriptors are utilized to rapidly identify candidate compounds and corresponding

3D pose predictions. These initial poses are then analyzed in more detail, and

flexible, nonleadlike compounds are subject to an incremental construction algo-

rithm.

The central concept connecting these two parts of the workflow is the TrixX BMI

descriptor. This novel methodology of modeling molecular properties separates TrixX

BMI from other docking approaches: Molecular compounds can be directly accessed

and 3D properties can be compared solely on the abstract descriptor level. SQL queries,

based on site descriptors, are utilized in combination with modern indexing technology

to discard incompatible compounds and identify likely binding molecules. Since only

compounds identified by descriptor matches are subject to docking calculations, TrixX

BMI breaks the iterative screening paradigm.

6.3. TrixX BMI Descriptors

The most prominent concept used in TrixX BMI is the descriptor that is shown as

compound and site descriptor in Figure 6.2. The motivation for its development is the

idea, that an abstract representation suffices to identify reasonable pose predictions

and to discard unlikely binders. Thus, the descriptor is modeled to resemble a three-

point pharmacophore of interactions between functional groups. It captures steric and

electronic features of a ligand or a protein active site, respectively.

A descriptor is based on an ordered triplet of interaction centers: For a compound,

this triplet consists of CIACs (c1, c2, c3) of compound functional groups. For a protein

active site, the descriptor is based on SIACs (s1, s2, s3), interaction spots which dis-

cretize the interaction geometries of a protein. For details about the CIAC/SIAC model

of functional groups, please refer to Section 5.2. The corresponding interaction types
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Figure 6.2.: TrixX BMI descriptor of a compound (left) and a protein active site (right).

Three interaction centers (red, green, and white spheres), their interaction

direction (orange arrows), and 40 of the 80 rays representing shape relative

to the triangle (red rays).

of the ordered triplet are encoded into a type attribute t ∈ {1, ..., 10}. For example,

the type t = 0 corresponds to a descriptor based on three H-bond donor SIACs.

Pairwise Euclidean distances between SIAC coordinates are stored as (l1, l2, l3),

li ∈ R. Shape is modeled using a novel 80-dimensional distance vector (b1, ..., b80),

bj ∈ R and the individual interaction directions are stored as (dir1, dir2, dir3), diri ∈ R
3.

Furthermore, each descriptor can be identified using a unique identifier id∈ N.

TrixX BMI descriptors for compounds and protein active site both employ this basic

descriptor but differ regarding the calculation of individual descriptor attributes. Indi-

vidual properties are encoded complementary, most notably regarding the description

of shape: TrixX BMI uses a distinct alignment based on local descriptor properties

in order to describe the global shape of a compound or an active site, respectively.

Furthermore, compound descriptors are augmented with additional attributes which

are necessary to transfer a descriptor match into a 3D pose prediction.

6.3.1. Modeling of 3D properties

In the following, the models for the description of 3D properties of TrixX BMI descrip-

tors are presented. In contrast to competing approaches, TrixX BMI exploits these

properties already on the descriptor level by formulation of highly selective, descriptor-

based queries. This is realized using translationally and rotationally invariant models

to represent molecular shape and directional interaction constraints.
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Figure 6.3.: Example of the icosahedron refinement and the generation of the 80 rays

which are used for shape description. (a) Basic icosahedron consisting of 20

triangle faces. Its center is depicted as green sphere. (b) Subdivision of each

triangle into four subtriangles. (c) Eight rays of the 80-dimensional shape

description of TrixX BMI.

Steric bulk

The average depth of a drug-binding cavity is in between 6.8–11.4 Å, and the maximum

depth is in the range of 13.0–22.9 Å [48]. In order to identify valid poses, TrixX

BMI needs to consider the global shape of the protein active site and the ligand. At

the same time, constraints on descriptor size have to be regarded. Most importanly,

the description of shape should enable a descriptor based detection of protein-ligand

overlap.

TrixX BMI approaches this problem with an 80-dimensional distance vector which

is locally aligned to the descriptor geometry. The description includes all atoms within

a radius of 7.5 Å around the geometric center of the descriptor and thus covers 15 Å in

diameter. As shown later, the choice for this boundary allows a compact representation

using just one byte for each dimension and still allows detailed overlap predictions.

The description of steric bulk is based on a refined icosahedron, which consists of

80 triangle faces. Each of the 20 regular icosahedron triangles is subdivided into four

subtriangles using the center points of the original triangle edges as additional corner

points. Based on these three and the original triangle corners, four nonoverlapping

subtriangles are generated (see Figure 6.3). The resulting triangles are then used to

generate 80 different direction vectors, so-called rays rj , for later shape calculations: All

rj originate from the center of the icosahedron. Their individual direction is determined

by the direction from this origin to the geometric center of the different triangle faces.
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Figure 6.4.: Example alignment of the bulk descriptor rays into the triangle geometry of

a TrixX BMI descriptor.

These rays are used to generate a representation of global shape relative to the cur-

rent descriptor. For a shape description that is invariant to translation and rotation,

a unique descriptor alignment based on local descriptor properties is necessary: First,

the origin of the rays is translated into the geometric center of the descriptor. Then, a

rotation α is determined that positions the first ray r1 into the descriptor plane, such

that it coincides with the first corner of the descriptor triangle as given by the canon-

ical order, e.g. c1 in case of a compound descriptor and its ordered CIACs (c1, c2, c3).

In more detail: α is the angle between vector r1 and the vector from the descriptor

origin to corner c1 using the cross product of the two involved vectors as rotation axis

(see Figure 6.4 (a)). After applying α to each rj , the alignment is fixed by determining

a second rotation β around r1 as rotation axis that causes r2 to be in the plane of

the descriptor triangle and to be directed towards the edge between (c1, c2) (see Fig-

ure 6.4 (b)). Eventually, β is applied to each rj . The final result of this alignment is

shown in Figure 6.4 (c). SIACs are used instead of CIACs if the rays rj are aligned to

a site descriptor.
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Figure 6.5.: Alignment of a descriptor into the local reference system according to

CIAC c1.

Interaction directions

In order to generate a translational and rotational invariant representation of interaction

directions, the descriptor is aligned to a local reference system for each of its three

interactions individually. In case of a compound descriptor and one of its CIACs ci,

this is done as follows: The CIAC ci is translated into the coordinate origin, such that

the descriptor center lies on the negative x-axis. Then, the descriptor is rotated around

this axis until the next corner according to the canonical order is positioned in the

x-z plane with z > 0. Finally, the main direction of the current interaction ci is stored

using its coordinate values. The result of this alignment process exemplified for CIAC

c1 is depicted in Figure 6.5. Again, SIACs are used instead of CIACs if a site descriptor

is aligned.

6.3.2. Compound descriptors

For each compound in the library, TrixX BMI compound descriptors are calculated,

each based on a triplet of CIACs. TrixX BMI uses solely topological information to

subselect these triplets: Two CIACs need to be at least two bonds apart, no more than

two CIACs reside in the same ring system, and at least one of them is hydrophilic.

This reduces the number of descriptors that are derived from a single ringsystem and

removes entirely hydrophobic, thus unspecific, descriptors. If a compound consists of

only one ring system and all CIACs are within this system, the corresponding constraint

is not enforced. No additional heuristics are utilized. Then, a canonical order scheme is

employed that reorders the involved interactions depending on their type and pairwise
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Euclidean distances in 3D space. This routine results in the descriptor base order

(c1, c2, c3) that is used to calculate the following descriptor properties.

• Interaction type

The types of the involved CIACs are encoded into a single number. Since a

descriptor is based on three interactions and there are four different types (H-

donor, H-acceptor, hydrophobic, and metal), this results in
(
6
3

)
= 20 possible

arrangements. Metal CIACs are in general not part of leadlike compounds, thus

there are actually just ten different interaction types for compound descriptors

(t ∈ {1, ..., 10}).

• Side length

The side length attribute depends on the conformation of a compound but not

on its position in 3D space. Depending on the compound’s current conformation

and the descriptor’s base order (c1, c2, c3), pairwise Euclidean distances d(c1, c2),

d(c2, c3), and d(c3, c1) are calculated and stored.

• Steric bulk

The descriptor values (b1, ..., b80) are computed using the previously described

alignment of the 80 rays rj and the current compound descriptor (see 6.3.1):

Each bj encodes a so-called exit distance that represents the extension of the

molecule with respect to the descriptor. Starting from the center of the descriptor,

the distance in direction of ray rj is measured until this ray exits and leaves

the interior of the compound. A 2D example using three arbitrary rays of the

icosahedron is illustrated in Figure 6.6.

• Interaction direction

For each CIAC in the ordered triplet (c1, c2, c3) of the descriptor, the alignment

scheme for interaction directions (see 6.3.1) is applied. The resulting interaction

direction of CIAC ci is stored using 3D coordinates in diri.

• Reconstruction data

Since each compound descriptor is linked to a specific molecule, fragmentation,

and conformation, the basic descriptor is augmented with a compound identifier

mid ∈ N, a compound fragmentation fid ∈ N, and a specific conformation cid ∈ N.
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Figure 6.6.: 2D example of descriptor bulk generation using three arbitrary directions for

ligand (left) and site descriptor (right).

In combination with a unique compound specific descriptor identifier, this data

is later used for reconstructing 3D placements, so-called descriptor poses, from

matching site- and compound descriptors.

Flexible CIACs

Molecular flexibility involves terminal rotatable bonds, as for instance in hydroxyl

groups. These groups are not considered during conformational sampling. Since RMSD

clustering usually accounts only for heavy atom distances, a rotation of such a bond

does not increase the diversity and is therefore discarded. However, descriptor poses

rely on correct orientations of hydrogen atoms since donor CIACs are registered at

these atoms.

TrixX BMI approaches this problem by applying an orientation independent repre-

sentation for flexible hydrogen donors. For compound descriptors the model is adapted

as follows: Donor CIACs are not assigned with an interaction direction if they belong

to a terminal flexible group. Instead, they are marked with a special value indicating

flexibility. Furthermore, the calculation of triangle side lengths is adjusted and is now

based on the mean of all possible CIAC positions. Further adjustments are made during

molecular docking as presented in 6.5.1.

6.3.3. Site descriptors

Site descriptors are generated analogously to compound descriptors and are also based

on the basic TrixX BMI descriptor. Individual attributes are calculated complemen-
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tary to enable the comparison of 3D properties solely based on the descriptor level.

Instead of CIACs (c1, c2, c3), site descriptors are based on SIACs (s1, s2, s3) which are

ordered according to the same scheme. The basic descriptor attributes are calculated

as follows:

• Interaction type

The interaction type t of a site descriptor is encoded using its complementary

interaction type as given in Table 5.1. A Metal SIAC is encoded as an H-Acceptor,

and again only ten different values — as for the interaction type of a compound

descriptor — can occur.

• Side length

The generation of the side length attributes (l1, l2, l3) remains unchanged. Pair-

wise Euclidean distances d(s1, s2), d(s2, s3), and d(s3, s1) are calculated and

stored.

• Steric bulk

Site descriptors also employ the alignment procedure as described in 6.3.1. The

calculation of the shape values (b1, ..., b80) is adapted in order to describe shape

complementarity to a compound descriptor. A site descriptor represents the cav-

ity relative to the descriptor. Each bj encodes a so-called clash distance that

represents the empty space between the center of the descriptor and the protein

surface. The value of bj is calculated by identifying the closest active site atom in

direction of rj and encoding the corresponding distance. Figure 6.6 illustrates the

complementary approach of exit and clash distances to model molecular shape

for compound) and site descriptors.

• Interaction direction

For each SIAC in the ordered triplet (s1, s2, s3) of the descriptor, the alignment

scheme for interaction directions (see 6.3.1) is applied. In order to enable a

direct comparison of compound and site descriptors, a site descriptor stores the

direction from a SIAC to its corresponding heavy atom. This inversion of the

interaction direction and the usage of the same reference system yields comparable

interaction coordinates for compound and site descriptors. In case of perfectly

aligned functional groups the coordinates in the reference system, thus the vectors
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diri, are identical. Protein flexible groups are not modeled in TrixX BMI, and

there is no adaptation towards flexible SIACs associated to terminal rotatable

groups of the active site.

TrixX BMI site descriptors reside in main memory and are associated to the current

protein target in its given conformation. Therefore, site descriptors are not augmented

with additional attributes and the standard TrixX BMI descriptor suffices.

The selection algorithm choosing the triplets of SIACs for descriptor generation reuses

the original constraints of TrixX: A minimum and maximum SIAC–SIAC distance be-

tween 1 Å and 9.5 Å and a constraint describing the pocket environment of a descriptor

triangle. A descriptor must not clash with the protein. Thus, site descriptors cover

only concave parts of the protein.

6.3.4. Descriptor size and binning

Since a large number of descriptors are necessary to represent a single compound,

descriptor size is an important factor concerning disk space in general and I/O load

during VS. Especially, the storage requirements of a Bitmap Index depend on the

cardinality of the attribute to be indexed. Thus, continuous descriptor attributes should

be subjected to binning (see Table 6.1). However, the granularity of the scheme should

not be to coarse.

• The type attribute, which is already discrete and has only ten distinct values, is

not binned and is stored using 1 byte.

• Interaction directions are binned using 100 equidistant 0.1 Å buckets to represent

their coordinate values in the interval [−5.0, 5.0]. In total, 18 bytes are necessary,

6 bytes for each interaction direction, respectively 2 bytes for each coordinate.

• The side length attribute is also binned into equidistant 0.1 Å buckets. Here,

85 buckets are used to cover the minimum/maximum range of site descriptors

li ∈ [1.0, 9.5]. Thus, 1 bytes for each side and in total 3 bytes are necessary.

• The steric bulk description is 80-dimensional and represents the majority of the

descriptor data. A lower granularity of 15 equidistant buckets of size 0.5 Å is

selected to map the individual bj ∈ [0, 7.5]. Thus, 1 byte suffices for each of the

80 dimensions.
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Furthermore, there is the reconstruction data consisting of molecule identifier (4 bytes),

fragmentation number (1 byte), conformation number (2 bytes), and descriptor identi-

fier (2 bytes) adding up to 9 bytes. This leads to a total of 111 bytes storage require-

ments for each descriptor.

A compound library of 1 million ligands, having 10 conformations on average and

about 100 descriptors each, needs about 100 gigabyte (GB) to store the raw descriptor

data. The Bitmap Index description based on the binned data requires about twice

the space of the original data, such that the on disk requirements of such a compound

database are about 300 GB.

Adapting the resolution of the binning scheme would alter space requirements, es-

pecially in case of the shape description. In the current settings, the descriptor range

of 7.5 Å covers large parts of the protein active site and only one byte suffices to store

a single attribute. Most importantly, the 0.5 Å bin sizes still allow for detailed query

formulation.

6.3.5. Index encoding

For Bitmap Indices different encoding schemes can be selected to efficiently support the

predominant query type (e.g. equality or range) to be used on the attribute (for details,

please refer to Section 4.1). It is essential to select the appropriate bitmap encoding

in order to efficiently access descriptor data on the basis of Bitmap Indices. In case of

TrixX BMI, no ad-hoc queries are executed. Thus, each Bitmap Index can be encoded

as it is necessary for descriptor matching (see 6.3.6).

All attributes of a TrixX BMI descriptors are predominantly queried using one

specific condition. Steric bulk, interaction directions, and side length are primarily

used in range or interval conditions. Therefore, these are stored using range encoding.

This encoding suffices to answer a range query on a specific attribute by reading a

single bitmap. Since an interval query (min ≤ x ≤ max) for discretized descriptor

data can be rewritten as ((¬(x < min)) ∧ (x ≤ max)), two bitmaps suffice to answer

this kind of query. The remaining type attribute is equality encoded. A summary of

encoding types is given in Table 6.1.
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Descriptor attribute Encoding Bucket size #Buckets Tolerance

Interaction type equality n.a. 10 n.a.

Side length range 0.1 Å 85 ±1.2 Å

Interaction direction range 0.1 Å 100 ±1.5 Å

Steric bulk range 0.5 Å 15 +0.5 or +1.0 Å

Table 6.1.: Bitmap encoding, bucket size, number of buckets, and query tolerances of the

descriptor attributes.

6.3.6. Descriptor matching

Based on the TrixX BMI descriptor model, compounds can be directly accessed by

their chemical- and shape complementarity to a given protein active site. In contrast

to descriptor models applied by other approaches (see 3.3.1, 3.4), the TrixX BMI de-

scription of shape is aligned via a reference system based on local descriptor properties.

This distinct alignment yields an automatically derived structure-based pharmacophore

that includes a global description of shape and can be used to identify complementary

compound descriptors.

Since all descriptor properties are calculated invariant to translation and rotation,

they can be assessed as part of the database query. For each site descriptor a query can

be formulated, such that a descriptor match implies a reasonable 3D pose prediction.

Noncompatible, clashing compounds are discarded early during the search. Within

a query, the interaction type is tested for equality. The remaining attributes are not

checked for exact matches but use certain thresholds to model imperfect placements and

to account for the discrete model of molecular flexibility: Side lengths and interaction

directions of a compound and a site descriptor have to be within a certain tolerance

interval (see Table 6.1), whereas the compound’s exit distances must be smaller than

the corresponding active site’s clash distances. The tolerance values for steric bulk

depend on the length of the current clash distance: Small distances (≤ 4 Å) employ a

tolerance of 0.5 Å, whereas larger distances use a tolerance of 1.0 Å.

The query tolerances of each attribute are mapped on the corresponding binning

scheme (see Table 6.1). Thus, the bin boundaries for each attribute are exactly met

during the query phase: The index alone suffices to answer each query. No candi-

date check needs to be performed since all descriptor matches are already described in

sufficient detail by the index itself.
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A match mds,dc of a site descriptor ds and a compound descriptor dc must therefore

meet the following condition:

∀i,j,k t[ds] = t[dc]

∧ (diri[ds][k]−Δdir ≤ diri[dc][k] ≤ diri[ds][k] + Δdir

∨ diri[dc][k] = FLEX)

∧ li[ds]−Δl ≤ li[dc] ≤ li[ds] + Δl

∧ bj [dc] ≤ bj [ds] + Δb,

i, k ∈ {1, 2, 3}, j ∈ {1, ..., 80}

The term diri[dc][k] denotes the coordinate value of the k
th dimension of the interaction

direction i of a descriptor dc. Thus, the condition for a single interaction direction diri

can be depicted as a box query around its 3D coordinate.

The case of flexible donors, for instance the donor CIAC on a hydroxyl group, is

handled separately. The interaction directions of these groups are rather unspecific

and eventually determined during protein-ligand complexation. Such an interaction is

marked as flexible (diri[dc][k] = FLEX) and is not suited for filtering.

Molecular flexibility and imperfect matching entail another drawback concerning the

representation of the active site: A strict canonical order of a site descriptor potentially

misses reasonable descriptor matches. If a site descriptor does not have pairwise dis-

similar interaction types, a strict canonical order of a site descriptor does not suffice.

There can be more than one reasonable superposition with a corresponding compound

descriptor. Due to molecular flexibility and thus thresholds as part of the query condi-

tion, a strict canonical order misses matching descriptors, e.g. for an almost isosceles

triangle of identical interaction types. In such ambiguous cases, where the canoni-

cal order is almost arbitrary and a small shift in the compounds conformation results

in a different base order, all possible orders are used for descriptor calculation. For

example, a triangle consisting of three identical interaction types yields six possible

superpositions.

To illustrate the overall process of matching a 2D example is given in Figure 6.7.

Part (a) depicts a compound and a protein active site as well as corresponding CIACs

and SIACs. The SIACs {s1, s2, s3} yield two valid site descriptors differing only in their

base ordering. These two site descriptors and their superposition with the compound
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Figure 6.7.: Multiple descriptor alignments and steric clash detection in 2D using the

TrixX BMI descriptor. (a) Triangle descriptor and three corresponding

bulk directions for ligand and site descriptor. (b) The two possible align-

ments and the TrixX BMI steric bulk comparison on the abstract descrip-

tor level. (c) The corresponding poses demonstrate the correctness of the

clash prediction.

descriptor (c1, c2, c3) are shown in Part (b). Additionally, the corresponding clash pre-

dictions based on the TrixX BMI description of shape is illustrated. The resulting

protein-ligand complexes in Part (c) reveal that the descriptor accepts the nonclashing

and discards the clashing pose. The filter decision is already made on the descriptor

level by simply comparing corresponding clash and exit distances.

6.3.7. Data handling

TrixX BMIminimizes recurring operations by grouping and sorting descriptor matches.

For example, each compound is loaded and initialized only once. To achieve this, all

descriptor matches are inserted into a temporary database during the query phase and

later, during the actual docking, extracted in an appropriate order. Each descriptor
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Figure 6.8.: Entity relationship diagram of the storage model for descriptor matches

which are returned by the indexing system.

match entails a molecule identifier mid, a fragmentation identifier fid, a conformation

identifier cid, and an identifier for the compound descriptor itself iddc . In addition, there

is the identifier of the matched site descriptor idds . This data is stored persistently us-

ing a simple relational schema. A table fragment placements storing the attributes iddc

and idds is linked using a foreign key constraint to a specific conformation cid in a table

fragment conformations. Each entry in this table is associated to an fid in the table

fragments that is connected to a molecular compound via mid in the table molecules.

The corresponding entity relationship diagram is depicted in Figure 6.8. Eventually,

all primary and foreign key constraints in these tables are indexed using regular B-

Trees to decrease the complexity of joining and sorting the tables during later docking

calculations.

6.4. Preprocessing

As already mentioned, the preprocessing phase is target independent and performed

only once for a given compound library. The molecules within that library are re-

presented by the TrixX BMI compound database in the compound index. This index

holds the information necessary to perform molecular docking. An essential aspect of

this descriptor representation is that it is based on conformational ensembles. Thus,

compound flexibility is handled largely within the preprocessing phase.
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6.4.1. Compound flexibility

Before the calculation of compound descriptors commences, TrixX BMI analyses a

compound regarding its flexibility. In cases violating a certain flexibility threshold, a

fragmentation routine splits the compound into large fragments. Fragments of non-

leadlike compounds and leadlike compounds are then sampled individually.

Compound analysis

Before a compound is passed to the conformational sampling phase, its flexibility ex-

pressed as number of rotatable bonds (RTB) is estimated using the flexibility definition

of Oprea [22]:

RTB = Nnt +
∑

i

(ni − 4− RGBi + ShBi) (6.1)

In this formula Nnt is the number of nonterminal freely rotatable bonds, excluding

single bonds in groups like sulfonamides or esters. Within the sum, ni is the number of

single bonds in a nonaromatic ring i of six or more bonds. RGBi and ShBi represent

the number of rigid, respectively shared bonds in ring i. This measure of flexibility

incorporates ring bonds, e.g. macrocycles, into the flexibility estimation and neglects

terminal rotatable bonds that do not influence the overall shape of a compound.

Compound fragmentation

The default value that triggers compound fragmentation is an RTB of ten. This reflects

the maximal size of leadlike structures according to Oprea’s analysis [22]. The frag-

mentation routine then chooses base fragments of seven rotatable bonds. This is done

by enumerating all connected subtrees of the so-called component tree that is generated

by splitting a compound at each acyclic, nonterminal rotatable bond according to the

FlexX model. Each of these subtrees is evaluated using a scoring function to assess

its adequacy to serve as base fragment. This score is based on two criteria.

• First, the algorithm chooses those fragments that cover the most components of

the compound which are currently not present in any of the previously chosen

base fragments.
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• Second, these candidates are evaluated concerning their interaction potential by

scoring their covered interactions using a weighting scheme rewarding hydrophilic-

ity, analogous to the base selection routine of FlexX.

This process is continued until the compound’s components are all covered by base

fragments, or else a maximum number (the default value is four) of base fragments is

selected. Leadlike compounds, respectively corresponding base fragments of nonleadlike

compounds, are then handed over to the next phase of preprocessing.

There is no process for identification and registration of fragment redundancies.

TrixX BMI fragments consist of up to seven rotatable bonds, which means that

identical fragments occurring in multiple compounds are unlikely. Furthermore, the

TrixX concept of dummy CIACs to identify reconnection points between fragments is

discarded. TrixX BMI uses incremental construction in case of compound fragmen-

tation and thus, individual fragment placements do not need to be merged.

Conformational sampling

After compound analysis, the actual conformational sampling is performed using TCG1.

TCG also treats molecules according to the FlexX model for molecular flexibility and

is based on the same data structure, the component tree, which is used during compound

fragmentation. Each node of this tree consists of either rigidly connected atoms or all

atoms of a ring system. The bonds connecting molecular components are used as edges.

Search space TCG combines the component tree with the Mimumba model [171] for

torsion angles: Each bond of the component tree is assigned with the preferred torsions

depending on the bond’s specific molecular environment. The resulting structure —

1TCG is a joint project of Axel Griewel and the author of this thesis, Jochen Schlosser. It is

based on the diploma thesis of Ole Kayser which was supervised by the author. The original version

featured a best-first search augmented by static depth probes. During further development, flexibility

dependent thresholds were incorporated that limit the explored search space size and require a minimum

number of conformations. In addition, different quality settings were introduced. The scientific focus

of Jochen Schlosser was on adequate sampling of leadlike compounds as necessary for the TrixX BMI

screening pipeline: The resulting ensembles should comprise only few conformations, and the individual

conformers should resemble bioactive structures. The result of this work, the high-throughput sampling

mode of TCG (quality level one), is used as default setting for conformational sampling in TrixX BMI.
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Figure 6.9.: The conformation tree and its traversal for an example molecule during the

course of the TCG build-up algorithm.

the TCG conformation tree — describes the conformational degrees of freedom of a

molecular compound: If component Ci is connected via bond b with n torsion angles to

component Cj , this results in n edges from node Ci to n nodes Cj,k (1 ≤ k ≤ n). In case

of flexible ring systems, ring conformations are generated and are also considered while

expanding the search. Thus, each Cj,k represents a different conformation of a (partial)

molecule in 3D space. Leaf nodes represent conformations of a complete molecule and

thereby valid solutions, inner nodes correspond to partially built-up molecules. The

actual conformation of a (partial) molecule represented by a node of the conformation

tree can be determined by traversing the path from that node to the root node and

collecting the specific torsion angles of the edges on this path.

Search strategy The actual sampling algorithm of TCG traverses this tree, guided

by a force-field energy function [172], in a best first manner. In order to account for

nonplaced parts of a compound, the force field is augmented with an additional heuris-

tic term: Rigid components account with their internal energy, for ring components

the energy of the lowest energy conformation is selected. Starting from the molecule’s

central component as root, one component after another is added using the previously

assigned torsion angles and the pregenerated conformations for ring components. Sim-

ilar to the strategy of the A∗-based sampling algorithm by Leach [173], TCG selects

the currently best ranked solution for further expansion. The traversal continues un-
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Quality level (q) 1 2 3 4 5

bq 2 3 4 6 8

Table 6.2.: Base exponent of the quality levels bq used in fESS(k, q) to determine the

amount of search space to be explored (see Equation 6.2).

til thresholds depending on the compound’s flexibility and a user-defined quality level

are reached. These thresholds include limits on the amount of explored search space

(ESS) in the conformation tree and the minimum number of conformations (MNC) to

be produced.

While expanding the conformation tree, TCG employs so-called depth-probes to gen-

erate fully built-up molecules from various starting points during the search. With a

depth-probe frequency (DPF), also depending on molecular flexibility, the best-first-

search is converted to a depth-first-search: The currently best scored partial solution

is expanded in a depth-first-manner until either a clash occurs or a complete molecule

is generated. Subsequently, TCG reverts to the best-first strategy. An example for the

traversal of the conformation tree is given in Figure 6.9.

Search boundaries The idea behind the ESS constraint is based on the exponential

growth of the total search space. Depending on the number of rotatable bonds k of the

compound and a user-defined quality level q, it is calculated according to Equation 6.2.

During the search, at most fESS(k, q) nodes of the conformation tree are expanded. The

base bq of the exponential function is dependent on the desired quality level q: Larger

quality levels are associated with larger values of bq (see Table 6.2) and thus control

the granularity of the sampling. In addition, a minimum ESS of 2k+5 is guaranteed as

lower bound.

fESS(k, q) = min{2q+14,max{bkq , 2k+5}} (6.2)

fMNC(k, q) = min{2k+2, 2q+4} (6.3)

The MNC limit, which also depends on quality level q and the compound’s flexibility k,

guarantees a minimum number of conformations to be generated before the ESS con-

straint is enforced. It is calculated according to Equation 6.3. The resulting boundaries

for ESS and MNC are depicted in Figure 6.10.
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Figure 6.10.: Explored search space (ESS) as a function of a molecule’s flexibility and

quality level (QL) (left). Quality level one (QL1) is used as a lower bound.

Minimum number of conformations (MNC) as a function of a molecule’s

flexibility and quality level before clustering (right).

Figure 6.11.: Flowchart of the TCG conformational sampling algorithm.
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In cases where the conformation tree is fully traversed and the ESS and MNC limits

cannot be reached, TCG returns the conformations that have been found so far.

Clustering During the entire search process, an RMSD clustering routine is employed

within a sliding window of fixed size. Besides a reduction of memory and runtime

requirements, this intermediate online clustering procedure ensures a reasonably sized

and diverse conformer set that is clustered as a whole once the algorithm concludes.

The overall sampling strategy of TCG including search boundaries, depth probing,

and clustering module is illustrated as a flowchart in Figure 6.11.

6.4.2. Descriptor indexing

During the last phase of preprocessing, TrixX BMI descriptors are generated for each

conformation in the library. TrixX BMI uses two layers of partitions — descriptor-

and type partitions — to limit main memory requirements and to speed up descriptor

matching. The corresponding partitioning scheme is illustrated in Figure 6.12.

Descriptor partitioning As part of descriptor matching, Bitmap Indices are loaded

into memory, descriptor-based queries are executed, and the resulting matches are

stored in a database. TrixX BMI partitions the descriptor data horizontally in order

to reduce memory requirements of these calculations, and to generate pose predictions

early during VS. The default number of descriptors that causes descriptor partitioning

is 2 million. It corresponds to roughly 2000 leadlike molecules with an average of

100 compound descriptors and 10 conformations. Descriptor partitioning yields smaller

Figure 6.12.: TrixX BMI internal partitioning scheme using descriptor- and type parti-

tions.
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Figure 6.13.: Flowchart for the preprocessing phase including conformational sampling

and compound indexing.

individual indices and thus reduced memory requirements. Furthermore, only a subset

of the total number of descriptor matches needs to be handled within each partition.

This reduces the requirements of organizing these matches.

Type partitioning The descriptor type attribute has only ten distinct values. It is not

stored explicitly but is used to split the data again horizontally. Instead of creating

one Bitmap Index for each of the 93 descriptor attributes, TrixX BMI partitions the

data by descriptor type: Each attribute index is split into 10 smaller subindices, one

for each type. Thus, a descriptor match no longer needs to explicitly check the equality

of the type attribute. The query is directly posed to the corresponding subindex of the

current attribute. This subindex stores only descriptors of matching type. I/O load

and the number of CPU operations to logically combine the individual Bitmap Indices

are reduced.
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6.4.3. Synopsis

The flowchart in Figure 6.13 summarizes the preprocessing phase of TrixX BMI.

First, the compound is loaded and, if necessary, fragmented. Subsequently, TCG is

used to generate molecular ensembles of the compound or its corresponding fragments.

Based on these ensembles, TrixX BMI generates compound descriptors, which are

then passed to the indexing module. Then, a descriptor partition of the compound

index is selected for appending the data. Molecule identifier and molecular properties

of the compound are stored. For each descriptor type, the corresponding descriptors are

selected and stored in the type partition. Subsequently, the WAH compressed Bitmap

Indices are updated.

6.5. TrixX BMI Virtual Screening

The second phase of the TrixX BMI workflow is target dependent. It relies on the

pregenerated compound index and the associated compound conformations of phase

one.

• At the start of each experiment the target protein is analyzed. Then, the active

site is selected and prepared manually. Favorable interaction spots are identified

automatically using the models of FlexX and TrixX (see Section (5.1) and 5.2).

• Site descriptors are generated and translated into SQL queries to the database

holding TrixX BMI compound descriptors. Matching site and compound de-

scriptors are identified as described in Section 6.3.6 — individual compounds are

not loaded within this phase. The resulting candidates are stored in a candidate

database.

• The matches within the candidate database are handed over to the TrixX BMI

docking engine. Only compounds that are identified by an mid of a corresponding

descriptor match are subject to actual docking calculations.

6.5.1. TrixX BMI docking engine

The docking phase itself also consists of different subphases, which first generate de-

scriptor poses, then TrixX BMI poses, and (optionally) optimized poses.
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The docking engine uses the set of all matches Mds,dc of site and compound descrip-

tors to generate descriptor poses. Each match mds,dc = (iddc ,mid, fid, cid, idds) in the

set Mds,dc is extracted from the database as described in 6.3.7. Each molecule, each

fragmentation, and conformation that is part of any descriptor match mds,dc is loaded

and initialized only once. This is achieved via sorting and grouping the data using

SQL, first by molecule, then fragmentation, and eventually fragment conformation.

Descriptor poses

Starting with a coarse grid-based scoring and clashing scheme, the initial descriptor

matches are used to generate descriptor poses. Each descriptor match implies a tri-

angle superposition using the associated SIACs (s1, s2, s3) given by idds and CIACs

(c1, c2, c3) identified by iddc of the compound mid. In addition, a compound fragmen-

tation and a fragment conformation are given via fid and cid. Thus, 3D coordinates for

the involved molecules are available and a triangle superposition can be performed. The

current compound is initialized using all conformations from pregenerated conformer

files that are part of at least one match. Then, each match mds,dc of this compound

is used to transform the conformation cid into the active site according to the RMSD

optimal superposition of the SIAC, CIAC coordinate pairs (s1, c1), (s2, c2), and (s3, c3).

Thus, the results returned by the query engine already suffice to perform rigid body

docking of leadlike compounds or to place anchor fragments in case of large, fragmented

compounds.

As already mentioned, TrixX BMI models flexible donor CIACs as unspecific. Dur-

ing superpositioning, these CIACs are not located at the corresponding hydrogen as

regular donors, but at the connected heavy atom. Therefore, the superpositioning rou-

tine is adapted: Instead of superposing donor CIAC and acceptor SIAC coordinates,

the routine translates the acceptor SIAC by 1 Å along its associated main direction.

The distance of 1 Å approximates the length of a bond between a heavy atom and

its connected hydrogen(s) as for instance in terminal OH, NH2, and SH groups. The

subsequent superposition of the CIAC and the shifted SIAC position results in a rea-

sonable placement, independent of the position of the actual hydrogen donor in the

pregenerated conformation (see Figure 6.14).
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Figure 6.14.: Compound (left) with a hydroxyl group and the TrixX BMI superposition

independent of the orientation of this group (right).

The resulting poses are then tested for clashes and scored on a grid representation of

the active site. Finally, the best scored 200 pose predictions per compound are handed

over to the next stage of the docking engine.

TrixX BMI poses

In this stage, all descriptor poses are evaluated more thoroughly resulting in so-called

TrixX BMI pose predictions. The grid-based scoring of the previous phase is re-

placed with a more accurate empirical scoring function, as for instance the FlexX

score or any other available scoring function (see Section 5.1). Furthermore, the clash

calculations are refined by computing pairwise atom overlaps. So far, descriptor poses

are rigidly placed into the binding site and the protein environment is not considered.

Thus, interactions of descriptor poses are not optimally aligned with respect to protein

interaction geometries. These flexible interactions are locally optimized, and all poses

are rescored. If a compound is fragmented and thus a descriptor match only identifies

anchor placements, the compounds remaining fragments are added using the FlexX

incremental construction routine.

If no postoptimization of TrixX BMI poses is requested, which reflects the default

setting, the resulting predictions and their scores are written to a solution database.

The database scheme that is used to store these poses is shown in Figure 6.15. Here,

the pose coordinates are not stored in the same table as the remaining pose attributes,

i.e. the different energy contributions of the final score. The energy values are inserted

using standard prepared statements and a manual commit strategy. The insertion of
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Figure 6.15.: Entity relationship diagram for pose predictions and their associated scores.

coordinates as binary large object (BLOB) data — a variable number of atom coor-

dinates for each compound and pose needs to be stored — utilizes different internal

storage mappings. This yields a performance decrease in the employed database sys-

tem if the mapping procedure is called for each resulting pose. Thus, the storage of

coordinates is realized as a bulk load for all pose predictions of a compound at once in a

single BLOB. Within that BLOB, the coordinate sets are sorted by score, thus linking

the ith best pose to the ith coordinate set in the compound’s coordinate BLOB. Again,

all primary and foreign key attributes of the different tables are indexed using B-Trees

to speed up the generation of result lists or the visualization of pose predictions.

Optimized poses

An optional step of the Trixx BMI docking engine can be used to enhance the quality

of protein-ligand complex predictions. Applications like binding mode analysis for

lead optimization rely on highly accurate pose predictions that reflect the bioactive

binding mode. TrixX BMI poses can therefore be used as input to a multi-objective

optimization routine provided by FlexX. It performs a simplex-based optimization of

the FlexX score to refine interaction geometries, a Lennard-Jones potential to reduce

intra- and intermolecular clashes, and a term reflecting the torsional strain energy of

the compound.
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6.5.2. Pharmacophore type constraints

One of the goals for the development of TrixX BMI is the incorporation of pharma-

cophore information. In the following, the issue of how to handle this information and

how to filter the resulting poses is addressed.

Based on the FlexX-Pharm [174] interface, pharmacophore type constraints can

be formulated. Specific interactions, as well as spatial constraints using inclusion and

exclusion volumes can be required. In addition, spatial constraints can be associated to

certain molecular groups by using the SMARTS language [24] that supplies a notation

for describing molecular patterns and properties. Furthermore, boolean combinations

to combine alternative constraints into one pharmacophore description can be specified.

SinceTrixX BMI is integrated into the FlexX library and reuses some of its internal

data structures, it is possible to utilize the aforementioned pharmacophore module to

specify pharmacophore type constraints and to filter pose predictions. Thus, regular

pharmacophore type constraints are supported in TrixX BMI.

Apart from these filters, TrixX BMI allows the application of pharmacophores also

during an earlier part of its docking pipeline. Site descriptors are usually generated

for each triplet of SIACs that does not violate certain requirements. Pharmacophore

type constraints establish a reasonable possibility to select descriptors based on their

potential to fulfill these requirements. A pharmacophore P consisting of a set of direc-

tional constraints pd and spatial constraints ps can be used to deselect site descriptors

that are not likely to contribute to a pose fulfilling the constraints in P . Therefore,

each directed interaction in pd is mapped to its corresponding SIACs resulting in a set

Pd of SIACs. Furthermore, the inclusion volumes in ps are used to identify all protein

SIACs that are covered by these constraints resulting in a set Ps+. The calculations

can be performed accordingly for exclusion volumes which yields a set Ps−. Based on

these sets, the following condition is used as filter for each site descriptor ds and the

SIACs {s1, s2, s3} it is based on:

|{s1, s2, s3} ∩ (Pd ∪ Ps+)| ≥ 2 ∧ |{s1, s2, s3} ∩ Ps−| = 0

A site descriptor is valid only if this condition holds, otherwise it is discarded. Thus,

a site descriptor has to cover at least two SIACs associated to pharmacophore type

constraints and must not cover any SIACs within any of the exclusion volumes. In
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Molecular property Filter condition

Molecular weight ≤ 450

Number of H-bond acceptors ≤ 8

Number of H-bond donors ≤ 5

Number of rings ≤ 4

Number of rotatable bonds ≤ 10

logP [−3.5, 4.5]

Table 6.3.: Default values used for the TrixX BMI property filter.

cases where only one constraint |{Pd∪Ps+}| = 1 is given, the first part of the condition

must be relaxed, such that one covered interaction suffices. TrixX BMI also reverts

to this relaxed filter criterion in cases where no or only few descriptors (≤ 50) remain

after standard filtering.

6.5.3. Molecular property filters

Often, a compound library and thus the resulting index is designed with respect to

certain molecular properties of known binders. However, during a VS campaign new

knowledge might become available. Thus, the hypothesis used during the initial setup

of the library is not static and can change over time. Regular, sequential docking ap-

proaches target this issue by filtering the library according to the desired properties.

Only molecules that fulfill these properties are selected for the next sequential VS run.

A straightforward approach to solve this problem is to delete compounds that do not

fulfill the criteria. Depending on the number of affected compounds, this strategy can

be computationally expensive since TrixX BMI uses a precalculated index of molecu-

lar descriptors as basis for VS. Rather than updating the compound database in order

to meet the current filter properties, TrixX BMI follows an integrated approach. In

addition to the descriptor table D of compound descriptors, a second table holding

molecular properties is generated. Each library compound and its properties are in-

serted into this molecule table M using a primary key mid that is employed as foreign

key attribute mid in the descriptor table. In a relational database system, these tables

are naturally joined and can then be queried with the additional filter conditions. This

approach is not feasible using the FastBit system since it does not efficiently support

joins on large data sets. Instead, TrixX BMI employs a filtering approach using an
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additional filter bitmap F to identify descriptors that are derived from compounds

within the desired property ranges.

This filtering step works as follows: TrixX BMI inserts all primary keys mid of all

molecules in M matching the desired criteria into a set Mid. The keys in Mid are then

used to generate a set Did of bitmap identifiers. This set can later be used to construct

the aforementioned filter bitmap F . For a given compound descriptor dc the function

id(dc) uniquely identifies its position in a bitmap. Did is defined as:

Did = {id(dc) | mid[dc] ∈ Mid}

In the above set definition, mid[dc] denotes the access to the molecule identifier mid

of a descriptor dc. Thus, the set Did identifies the bitmap positions of all descriptors

that are derived from a molecule in the set Mid. Eventually, the filter bitmap F is

constructed: It has a set bit at position j for each j ∈ Did.

During querying, each regularTrixX BMI query is appended with F using a boolean

AND operation. Thus, the final set of descriptor matches comprises only compound

descriptors that match the current site descriptor and are also derived from compounds

that fulfill the desired properties. The default values used for property filtering, which

reflect the leadlikeness criteria of Oprea, are given in Table 6.3.

6.5.4. Synopsis

The flowchart in Figure 6.16 summarizes the virtual screening phase of TrixX BMI.

First, the protein active site is loaded and SIACs are generated. Optionally, a pharma-

cophore type constraint can be read. Then, TrixX BMI site descriptors are generated.

During the actual screening phase, each descriptor partition is handled individually.

TrixX BMI switches between descriptor matching and docking calculations. First,

the descriptor matching module generates matches between site- and compound de-

scriptors of the current descriptor partition. Then, the resulting matches are handed

over to the docking engine. This process continues until there are no further partitions.

During descriptor matching, type partitions and the optional molecular property filter

are handled. If filter criteria are supplied, the identifier of each molecule that fulfills

the criteria is added to a set of filterIds. The actual property filter is generated for each

type partition individually. It is implemented as a bitmap (bitMapFilter) that is used

as additional query dimension. The bitmapFilter identifies all descriptors in the current
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Figure 6.16.: Flowchart of the TrixX BMI virtual screening phase.

partition that are associated to the molecules in the set filterIds. Subsequently, FastBit

is used to identify actual descriptor matches. The resulting matches are stored in a

database. Before the descriptor matching of the current descriptor partition concludes,

the FastBit cache is freed.

The docking phase of TrixX BMI consists of three different stages. For each
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molecule in the result database, descriptor matches are extracted. Each match de-

scribes a fragmentation and conformation that is used to update the current molecule.

Then, descriptors are superposed. The resulting descriptor pose is checked for clashes

and scored on a grid. During the next stage, TrixX BMI poses are generated. It

involves reorientation of the compound’s flexible groups, the calculation of interaction

scores based on the FlexX interaction model, and a refined clash test on pairwise

atom-atom overlap. If pharmacophore information is available, it is used for filtering.

If a molecule is fragmented, incremental construction is performed as part of a post-

processing stage. Optionally, TrixX BMI poses can be optimized. Eventually, the

resulting poses are written to the result table.

6.6. Parallelization

TrixX BMI always searches the complete database of compound descriptors. Complex

operations like joins on multiple tables and attributes are not performed. Furthermore,

the read-mostly data of the compound database is updated infrequently: Updates can

be executed as a batch load. This suggests to parallelize TrixX BMI using a shared-

nothing architecture. It is defined as a system that does not share main memory or

peripheral storage among processors [175].

Figure 6.17 illustrates the partitioning schema employed by Trixx BMI. The schema

consists of four different levels:

• The original compound library consists of all compounds that are supposed to

be screened in a TrixX BMI VS experiment. Typically, a few thousand up to

several million compounds and their properties are stored in a regular database

system.

• The compute grid consists of n different nodes, each with distinct peripheral

storage and main memory.

• Each node consists of m cores. On current platforms, this number is in the range

of 1–24 and is likely to increase in the next years.

• Each of these cores is assigned with a unique compound index that uses the

internal partition scheme of TrixX BMI (see 6.4.2).

82



6.6. Parallelization

Figure 6.17.: TrixX BMI approach to parallelization using compound partitions.

Preprocessing In a first step, TrixX BMI splits the compound library into n · m
compound partitions. This process is currently performed in a random manner. The

resulting compound partitions are assigned to individual nodes and their cores using

the Sun Grid Engine (SGE) [176]. Each core executes the standard preprocessing phase

of TrixX BMI (conformational sampling and compound indexing). In total, 2 · n ·m
messages suffice to initiate the preprocessing phase and to collect the resulting log files.

Eventually, the resulting compound index is synchronized to other nodes in order to

increase its availability in the system. In the default setup, TrixX BMI distributes

each compound index to three different nodes.

Virtual screening The actual VS is executed analogously. The SGE is used to submit

n · m screening runs: For each compound partition, a job request is generated that

explicitly maps the task to the associated nodes of the partition. If all nodes associated

to a compound partition are occupied, an additional node is selected and the data

is synchronized. Each VS experiment runs independently. Only the mapping of the

individual hitlists of the compound partitions into a global hitlist of the entire VS

experiment needs to be coordinated. Again, 2 · n · m messages suffice to initiate the

experiment and to collect the results.
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Results and Discussion

TrixX BMI is a multiphase process and thus the evaluation is also split into multiple

parts. The first section discusses the experimental methodology used for this evaluation.

Then, results of conformational sampling using the TCG1 during the preprocessing

phase are presented. Subsequently, the redocking and virtual screening performance

of TrixX BMI is presented. The chapter concludes with results concerning runtime

and space requirements of TrixX BMI and its performance in a parallel computing

environment.

7.1. Experimental Methodology

There are two main applications of docking programs as part of the drug discovery

process: Binding mode prediction and VS experiments. For each of these, a different

measure is used to evaluate the performance of a docking algorithm.

7.1.1. Binding mode prediction

The ability of a particular program to predict the correct binding mode of a protein-

ligand complex is usually assessed based on the RMSD of the predicted ligand placement

to the structure of the cocrystallized ligand. A widely used standard in the field of

structure-based VS is a 2 Å cut-off for correctly docked poses, whereas poses between

1The evaluation of the TCG results was carried out in collaboration with Axel Griewel. The

author of this thesis focused on the results for quality level one that yields compact ensembles with

good accuracy. Axel Griewel performed the analyses concerning higher quality levels and the trade-off

between ensemble size and accuracy. He also generated the results on the CSD data and performed

the detailed case studies.
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2 Å and 3 Å are considered as partially docked. Predictions beyond 3 Å are considered

a docking failure.[177]

Due to an increasing number of crystallized complexes, large test sets are available

[178, 179] to evaluate a novel docking algorithm and compare it to state-of-the-art

approaches.

7.1.2. Virtual Screening

During the course of screening, a docking algorithm has to identify a small number of

active compounds in a database of mostly inactive compounds (decoys). The metric

used commonly to evaluate the success in virtual screening is the so-called enrichment

factor (EF). It is defined as:

EF =
a

A
∗ N

n
(7.1)

Here, a is the number of active compounds among the n best ranked compounds of

the database, and A is the total number of active compounds in the whole database

of N compounds. The EF thus compares the ratio of actives found to the ratio of the

database that is considered relevant for more detailed postprocessing routines or wet lab

experiments. The problem of the EF is that it becomes smaller if fewer decoy structures

are present in the data set. Enrichment does not only depend on the algorithm being

analyzed but also on the experimental data that is used: A certain EF cannot be

associated with a general quality of the docking algorithm, it only reflects the quality

concerning a specific experiment. Therefore, a comparison based on EF as evaluation

metric should be performed using a publicly available data set which provides a well

balanced ratio of actives to decoys.

The limited robustness of EF can be addressed by slightly adapting the above for-

mula. Instead of the fraction of all compounds, so-called ROC enrichment employs the

fraction of decoys, the so called false positive rate.

ROCEF =
a

A
∗ N −A

n− a
(7.2)

This adaptation makes enrichment more robust and independent of extensive quantities

for actives and decoys. [180]
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7.2. TrixX Conformer Generator

This chapter presents the evaluation results for the TCG. The results presented here,

focus on leadlike structures as they are employed in the TrixX BMI screening pipeline.

7.2.1. Sampling data

TCG is evaluated by calculating the accuracy in terms of RMSD to a biologically ac-

tive structure. Success and failure of the conformer sampling are discriminated by this

accuracy: Cases in which the accuracy of the ensemble is larger than 2 Å are generally

considered a failure. For molecules with an RMSD between 1.5 Å and 2.0 Å, the overall

structure of the conformer is usually close to the bioactive conformation while struc-

tural details may differ significantly. An RMSD below 1.5 Å indicates an acceptable

reproduction of the conformer, while an RMSD below 1.0 Å is considered a good fit

between generated and biologically active conformer. During all experiments, input

structures for TCG sampling are generated by Corina. This provides an unbiased

starting point since the sampling algorithm is not influenced by the conformation of

the crystal structure.

First, TCG’s capabilities to reproduce conformations found in the CSD [181] are

analyzed. For this purpose, a previously published subset [182] of the CSD, consisting

of approximately 71, 200 high quality structures, is utilized. These molecules contain

only H, C, N, O, S, and halogen atoms. Since TrixX BMI is based on conformational

ensembles of leadlike molecules and leadlike fragments of larger molecules, the original

test set is filtered using the leadlike criteria of Oprea [22]. The remaining set consists

of 43, 047 structures.

In a second experiment, TCG is compared to two widely used tools: Omega 2.0 and

Catalyst 4.11. A publicly available test set consisting of 778 druglike molecules bound

to their receptors from the PDB is used as benchmark [183]. This set is filtered retaining

only molecules with ≤ 11 rotatable bonds. This cut-off exceeds the default TrixX BMI

setting for fragmentation and is selected since it corresponds to the data in the original

publication. The corresponding distribution of molecular flexibility within this test set

of size 644 separated by the number of rotatable bonds is shown in Figure 7.1.
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Figure 7.1.: Comparative results of conformational sampling using TCG in differen qual-

ity levels (QL).

7.2.2. Conformational sampling

In order to show TCG’s ability to reproduce conformations found in the CSD within

small error boundaries, the default settings as used in the TrixX BMI pipeline are

employed: The quality level is set to one and the clustering threshold to 1.2 Å. The

resulting conformational ensembles have an average RMSD of less than 1.0 Å. This

demonstrates that TrixX BMI settings of the TCG produce high-quality conforma-

tions which can subsequently be used for molecular docking.

The comparative results to Omega and Catalyst are based on TCG quality levels

one, three, and five. All TCG settings employ a clustering threshold of 1.2 Å. In

this experiment, not only the accuracy in terms of RMSD but also the number of

conformers in the generated ensembles is analyzed. Both properties are separated by

the number of rotatable bonds. The results are given in Figure 7.1. As expected, the

average number of conformers as well as RMSD rise with the molecule’s flexibility. For

molecules with up to eight rotatable bonds, high-quality ensembles with an average

accuracy below 1.0 Å are generated for all three quality levels. In the high-throughput

setting of TCG (quality level one) an average of 15 conformations suffices to achieve

an average accuracy of 0.98 Å. For larger compounds with 9–11 rotatable bonds the

average accuracy is between 1.2 Å and 1.5 Å and thus reflects the overall structure of

the corresponding molecule.

The comparison to Omega and Catalyst shows that TCG produces ensembles

with similar accuracy. All tools are run using a high quality and a high-throughput

88



7.2. TrixX Conformer Generator

setting. In case of TCG, different objectives concerning accuracy versus the size of the

generated ensembles are followed by employing different quality settings. For each of

the presented tools, numerous more settings are available to better adapt to the user’s

objective. However, the experiments show that TCG performs well with respect to

the trade-off between the number of conformers per ensemble and resulting accuracy:

Already few TCG conformations suffice to generate accurate ensembles. This property

is essential for downstream virtual screening experiments such as the TrixX BMI

screening pipeline.

Case studies The quality of the generated conformers is studied in detail using two

ligands that occur in multiple PDB structures. The corresponding crystal structures

are selected as case studies. To ensure high structural quality, all complexes with a

resolution above 2 Å are discarded. Furthermore, a 0.5 Å RMSD filter is employed to

focus on conformationally different structures. Again, TCG experiments are performed

for quality settings one, two, and three. A clustering threshold of 0.8 Å is utilized.

The first ligand is 4-hydroxy-tamoxifen (OHT), which has eight rotatable bonds. It

is present in nine PDB structures that are filtered down to three using the previously

mentioned criteria. The corresponding PDB identifiers, the intrinsic RMSDs, and the

results of TCG sampling are presented in Table 7.1. For all examples in the test set,

a conformation with accuracy below 0.8 Å was found, making the ensemble a good

approximation of the experimentally determined conformers. In Figure 7.2 (a) a su-

perposition of the crystal structure from PDB entry 2gpu and the best conformation

from quality level one and five is depicted. The overall conformations align well already

in quality level one. Only the alignment of the aliphatic part of the molecule is less

precise. The alignment improves largely if higher quality levels are used: The RMSD

improves to 0.47 Å.

In a second case the binding modes of indomethacin (IMN) are investigated. This

molecule comprises four rotatable bonds and is contained in 11 PDB structures, re-

spectively four after diversity and quality filtering. Two of these are reproduced in

high quality below 0.5 Å RMSD in quality level one. The remaining structures are re-

produced reasonably with an RMSD of 1.2 Å respectively 1.5 Å. The resulting RMSDs

improve if higher quality levels are employed. Quality level three and five both yield

further improvements, such that finally all crystal structures can be reproduced at high
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OHT 2bj4 2gpu 3ert IMN 1s2a 2dm6 2zb8 3fo7

2bj4 0 1.17 1.02 1s2a 0 2.28 0.90 1.12

2gpu 0 1.33 2dm6 0 2.23 2.35

3ert 0 2zb8 0 1.13

3fo7 0

TCG QL1 0.76 0.61 0.75 0.46 1.51 0.89 1.21

TCG QL3 0.38 0.47 0.46 0.46 1.14 0.89 1.06

TCG QL5 0.38 0.47 0.55 0.46 0.52 0.69 0.65

Table 7.1.: RMSD between conformers in the case study test set and the RMSD between

these structures and TCG ensembles generated in quality level one, three, and

five.

quality with an RMSD below 1 Å. In Figure 7.2 (b) the alignment of the best conformer

from level one and five with the crystal structure from 2zb8 is shown. The overall align-

ment of the level one solution is already acceptable. However, the high-quality level

(green), yields a better alignment of structural details for the methoxy- and carboxylate

group of IMN.

Runtime The runtime of the TCG is assessed on single 2.4 GHz Xeon CPUs with

4 GB of main memory and is presented for the entire test set consisting of 778 druglike

molecules. It ranges from 5.2 s in the lowest quality setting to 201.6 s in the highest

quality setting. The increase in computing time is due to the enlarged search space.

The performance of Catalyst and Omega on the test set has been assessed on Intel

Pentium IV 2.8 GHz workstations with 1GB RAM [183]. The average run times of

Omega ranged from 6.0 s to 12.9 s, while those of Catalyst were reported to be in

the range of 1.5 s to 155.0 s. Taking similar setups into account, the runtime for TCG

is in the same range as that of Omega and Catalyst.

7.3. Redocking Experiments

7.3.1. Redocking data

First, the overall redocking performance using the Astex Diverse Set [179] is measured in

terms of RMSD to the cocrystallized ligand in order to compare TrixX BMI, FlexX,
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Figure 7.2.: TCG case studies for a tamoxifen derivate (OHT) and indomethacin in-

domethacin (IMN).

and Gold. This test set consists of 85 high resolution protein-ligand crystal structures

that have been retrieved from the PDB. The individual protein targets are manually

prepared by including essential metals, altering protonation states, and adapting tor-

sional angles in order to capture the binding mode of the cocrystallized ligand. The

set of ligands is energy minimized using Corina to create an unbiased conformation

to start the search.

7.3.2. Redocking performance

The redocking studies performed use different sets of ligand conformations to assess

the performance of TrixX BMI. In a first experiment, the bioactive conformation, as

found in the protein-ligand crystal structure, is redocked. This scenario reflects the

performance of the docking algorithm independent of the quality of the conformational

search. Subsequent experiments use ligand conformations produced by the TCG as

input. Three different settings of the TCG using an RMSD clustering threshold of

1.2 Å and different quality levels are employed. The results for different RMSD cut-
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RMSD[ Å] ≤
Best(x) quality 1.0 2.0 3.0

1 crystal 49 63 70

1 1 15 39 51

1 3 19 41 54

1 5 14 46 50

20 crystal 58 74 78

20 1 25 61 71

20 3 26 68 72

20 5 28 65 74

200 crystal 58 75 78

200 1 27 68 78

200 3 28 73 79

200 5 29 72 78

Table 7.2.: Redocking results of TrixX BMI on the Astex Diverse Set when looking at

the x best scored pose predictions using TCG ensembles of different quality q.

offs, which correspond to accurate predictions (≤ 1.0 Å), correct predictions (≤ 2.0 Å),

and partially correct predictions (≤ 3.0 Å), are shown in Table 7.2.

The usage of cocrystallized 3D structures clearly yields the best results when it comes

to overall prediction quality considering the top 200 ranks: 75 of 85 can be reproduced

correctly. Additional three complexes are partially redocked. Thus, TrixX BMI poses

of a known active conformation can be found for about 90% of the complexes in the

Astex Diverse Set if the effects of scoring and conformational flexibility are neglected;

The best ranked 200 poses of the redocked crystal structure are considered.

Since the eventually bioactive conformation of a ligand is not known at the start

of a VS campaign, this does not reflect a real world scenario. Further experiments

using different quality and cluster settings of the TCG demonstrate, that the overall

redocking rate of TrixX BMI based on conformational ensembles is at the same level

of about 90% of the data set. This obverservation only holds for (partially) correct

predictions. Accurate placements below 1 Å cannot be reproduced on the same level.

Based on the crystal structures, 58 complexes are reproduced accurately, compared to

27–29 if TCG ensembles are employed.
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In the following, the effect of rank ordering is also accounted for. If only the best rank

is considered, the usage of a bioactive conformation as input to TrixX BMI clearly

outperforms the experiments based on TCG conformations. In experiments redocking

the crystal structure, 49 complexes can be accurately docked and for 70 complexes the

best ranked pose is (partially) correct. The ensemble-based experiments are able to

place at most 19 ligands accurately and at most 54 ligands (partially) correct.

In a realistic redocking scenario, an application scientist checks the resulting predic-

tions by visual inspection. Therefore, not only the top ranked pose is used to gather

knowledge about the protein of interest. In the above experiments the analysis of

the top 20 poses does not significantly increase the performance considering accurate

pose predictions based on TCG performance: Accurate placements are found for 25–

28 compared to 58 if the bioactive conformation is used. However, the performance

concerning (partially) redocked poses significantly increases and 71–74 poses with an

RMSD below 3.0 Å can be found. Only four of the 78 partially correct pose predictions

of cocrystallized ligands are not found.

In order to compare TrixX BMI to FlexX and Gold, the following data is selected

in order to reflect publicly available results: The 20 best scored poses and only correct

placements with an RMSD of 2.0 Å or less are considered. The results (see Table 7.3)

show that for accurate placements below 1.0 Å FlexX outperforms TrixX BMI. Con-

cerning predictions within 2.0 Å RMSD, TrixX BMI is on a par with FlexX and

misses only two poses correctly predicted by Gold. At least partially correct pose

predictions below 3.0 Å are found for 71 ligands compared to 65 found by FlexX. As

further comparison the results for all 200 poses predicted by TrixX BMI are given.

These results demonstrate that ranking accounts for an 3% to 8% loss of precision

depending on the accuracy of the prediction.

All redocking experiments are performed using the standard FlexX score. Different

scoring functions lead to different predictions, although the overall picture stays the

same. The ScreenScore is able to rank further two poses below 2.0 Å in the top 20%.

In general though, the available scoring functions are on the same level and only minor

differences in ranking can be observed.
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RMSD[ Å] ≤
Tool Poses 1.0 1.5 2.0 3.0

Gold avg(20) n.a. n.a. 64[75] n.a.

FlexX top(20) 38[45] 53[62] 61[72] 65[76]

TrixX BMI top(20) 25[29] 47[55] 61[72] 71[84]

TrixX BMI top(200) 27[32] 53[62] 68[80] 78[92]

Table 7.3.: Number ([%]) of poses found (within the best n ranks) out of 85 protein-ligand

complexes using TCG conformational ensembles based on Corina structures

(TrixX BMI) respectively minimized Corina structures (Gold, FlexX) as

input.

RMSD[ Å] ≤
Best(x) q ≤ 1.0 Å ≤ 2.0 Å ≤ 3.0 Å

20 crystal 55(−3) 75(+1) 78(±0)

20 1 24(−1) 63(+2) 70(−1)

20 3 23(−3) 64(−4) 73(+1)

20 5 26(−2) 68(+3) 74(±0)

Table 7.4.: Redocking results of TrixX BMI on the Astex Diverse Set using the internal

optimization. The number in parenthesis indicates the change in overall accu-

racy of optimized poses compared to the corresponding nonoptimized poses.

7.3.3. Optimization

As part of redocking experiments, a user can require highly accurate predictions for a

detailed analysis of the binding mode. Therefore, an optional step within the TrixX

BMI docking pipeline is the optimization of TrixX BMI poses. In the following,

experiments using this integrated optimization option are introduced. Furthermore,

experimental results of external optimizations based on Yasara [184] and energy min-

imization with the Amber [185] force field are presented. All poses that are input to

optimization are based on TrixX BMI pose predictions of TCG ensembles sampled

in quality level 1 with a clustering threshold of 1.2. Table 7.4 shows the results of

the internal optimization. Here, a clear trend cannot be observed. None of the ex-

periments shows a significant improvement after optimization. However, the resulting

poses are subject to a more restrictive clash test and minor clashes of TrixX BMI

poses are removed. The integration of the internal optimizer is not sufficiently tested.
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Figure 7.3.: Comparison of TrixX BMI poses and the corresponding optimizations using

Yasara and the Amber force field.

A parametrization focused on the removal of the aforementioned clashes and a sophis-

ticated force field is currently not available.

The optimization results of TrixX BMI poses using Yasara and Amber is visu-

alized in Figure 7.3. After optimization the number of accurate predictions increases

from 25 to 50 and from 61 to 66 for correctly docked poses. Highly accurate predictions

are generated that are suited for detailed binding mode analysis. This demonstrates the

potential of TrixX BMI poses for redocking. Further experiments suggest, that similar

results can be achieved for crossdocking a ligand into a different protein conformation.

7.4. Enrichment Experiments

7.4.1. Enrichment data

A common problem when setting up enrichment studies is how to choose a library

of inactive compounds to avoid an artificial enrichment of known actives. Therefore,

the DUD data set that supplies tailored sets for 40 different target proteins is used.

Each target has its own set of actives and decoys which are chosen with respect to

similar molecular properties but differing chemical structure. Thus, the DUD poses a

challenging test set. Furthermore, this data set is publicly available [186] and results

for widely used docking tools (Dock, FlexX, Glide, ICM, PhDock, and Surflex)

have been published by Cross et al. [187].

The active site is defined as all atoms within a radius of 6.5 Å around any atom of

the cocrystallized ligand. The protein targets are subjected to visual inspection, and
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Figure 7.4.: Property distributions of the used ligand sets (actives+decoys). Left: molec-

ular weight, center: number of rotatable bonds, right: logP. (CDK2: black,

DHFR: red, ER agonist: green, ER antagonist: blue, random set Z2 : yel-

low).

protonation states for histidine and conformations of the amino acids asparagine and

glutamine are adjusted. Apart from these, all heavy atoms remain fixed in their x-ray

positions and no energy minimization is performed. The actives and decoys are used

as provided by the DUD. No hand-crafted or computational adaptations are made.

Molecular ensembles for each molecule are built with TCG defaults for quality level

(one) and RMSD clustering threshold (1.2 Å) based on Corina generated structures.

For further analysis, four pharmaceutically relevant protein targets — Cyclin Depen-

dent Kinase 2 (PDB entry 1ckp), Dihydrofolate Reductase (3dfr), Estrogen Receptor

(ER) Agonist (1l2i), and ER Antagonist (3ert) — are chosen. These targets represent

different classes of interest in pharmaceutical research. In addition, pharmacophores

for these targets are available from the literature (see Table 7.6) and the corresponding

actives and decoys represent a diverse set of compounds with regards to molecular prop-

erties. Figure 7.4 shows property distributions of these sets compared to a random set

of 2000 leadlike molecules (Z2) from the ZINC database [188] of commercially available

compounds.

7.4.2. External data analysis

A problem that is common to most publications in the field of virtual high throughput

screening is the availability of detailed experimental data. This is also true for the

experiments of Cross et al. which are used to evaluate TrixX BMI’s enrichment

capabilities. The individual target proteins and their corresponding actives and decoys
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sets are publicly available as part of the DUD. However, the resulting hitlists and

thus the raw data of the experiments is not. Results are only presented as summary

data. Individual enrichment plots are not scaled logarithmically and the important

first percent of corresponding enrichment experiments can hardly be analyzed by visual

inspection.

Unfortunately, there seems to be a flaw in the evaluation of Cross’ enrichment data.

In cases where a compound cannot be docked into the active site, this is considered a

docking failure. However, the statistical analysis of the predictions must be based on the

entire data set of positives (P ) and negatives (N), not on the number of actually docked

compounds. ROC enrichment relates the true positive (TP ) rate with the false positive

(FP ) rate, the former is defined as TP/P , the latter as FP/N . Thus, a TP rate of

1.0 can only be reached, if all positives (actives) in the data set are correctly predicted.

The same holds true for the FP rate and the prediction of negatives (decoys). In VS

experiments this is often not the case, some of the actives/decoys cannot be docked

into the active site of interest. Cross et al. mention that they treat this problem by

appending the nonpredicted compounds by distributing actives and decoys evenly at

the bottom of the hitlist. Thus, each tool that cannot successfully dock all compounds

must have a corresponding quadrant in its plot that depicts this selection. Such a

distribution results in a diagonal across a rectangular area on the upper right part of

the ROC plot. This area corresponds to the fraction of actives (y-axis) and decoys

(x-axis) that cannot be docked. Cross’ analysis does not present plots that depict this

kind of distribution even though, docking tools like ICM and Glide produce numerous

docking failures. Therefore, it seems as though only docked compounds are used for

statistical evaluation. For instance the purine nucleoside phosphorylase (PNP), where

only 15.8% of all compounds are successfully docked with Glide, or the HIV protease

(HIVPR), where only 2.2% can be docked with ICM, should be associated with a ROC

plot that is in large parts evenly distributed.

Individual plots offer further evidence for errors in the statistical evaluation: Glide

is only able to dock 4 of 15 actives of the mineralocorticoid receptor (MR), in case of

PNP only 7 of 25 actives can be docked. In both plots, the number of docked actives

corresponds to the number of increments along the y-axis until the TP rate reaches

1.0. The same holds true for ICM and targets like the peroxisome proliferator acti-

vated receptor (PPAR) with 6 of 81 actives and the S-adenosyl-homocysteine hydrolase

97



7. Results and Discussion

(SAHH) with 3 of 33 actives. Since visual extraction of ROC enrichments at 5 and

10% FP rate corresponds to the available summary data in the publication, it is likely

that all results are based on the same data foundation. Unfortunately, the data is not

supplied in a fine enough grain to rescale the plots and generate the associated ROC

enrichments.

Surflex, which is able to predict poses for 100% of all compounds, is not affected

by this. For two of the six tools, the error should be small. Dock and FlexX are

able to successfully dock more than 95% of all compounds. The worst percentage of

docked compounds for a single target is 88% for Dock, 86% for FlexX, and the ratio

between nondocked actives and decoys is often close to one. Therefore, the averages

based on rescaled ROC plots are likely to yield similar enrichments for these tools.

The same does not hold for Glide, ICM, and PhDock. In case of the nuclear

hormone receptor family Glide is able to dock only 56% of the actives and 43% of

the decoys. For three of the DUD targets (glucocorticoid receptor, MR, PNP) the

success rate drops to less than 30% of the actives. For ICM, the serine proteases are

problematic with only 21% of actives and 20% of decoys that are successfully docked.

In total, more than six targets yield docking success for less than 30% (PPAR, factor

Xa (FXA), thrombin, trypsin, HIVPR, SAHH) of the actives, three of these even less

than 10%. PhDock is also not able to successfully dock into serine proteases. Only

63% actives and 61% decoys can be placed into the corresponding binding sites. FXA

with 35% and the P38 mitogen activated protein with 36% are most problematic.

The authors of the publication have yet not answered a request to supply detailed

data. Therefore, the published results are the only available source of information.

Since most other comparative studies are based on nonpublic data, the software of

other vendors is not publicly available, and the usage of DUD is widely spread in the

field of structure-based VS, evaluating the enrichment capabilities of TrixX BMI on

the DUD data set is nevertheless the best current practice.

7.4.3. Enrichment performance

Similar to the presentation of data in the study of Cross et al., the enrichment perfor-

mance of TrixX BMI is analyzed using multiple criteria.

98



7.4. Enrichment Experiments

• The overall docking success is evaluated by checking the percentages of success-

fully docked actives and decoys. If a compound could not be place into the binding

site, it is considered a docking failure and is either a true negative prediction in

case of a decoy structure or a false positive one if an active cannot be docked.

• ROC enrichments are presented for each protein family in the DUD data set

to evaluate the enrichment capability of TrixX BMI. Enrichment data for nu-

merous other tools is supplied in the publication of Cross et al. and is used for

comparison with TrixX BMI.

• Enrichment plots are presented to assess the performance on individual targets.

For these, also the performance of TrixX BMI in combination with pharma-

cophore constraints is presented. Compounds that failed to dock are not placed

randomly at the bottom of the hitlist. In such cases, the depicted enrichment

does not reach the 100% plateau for actives or decoys.

The overall docking success of TrixX BMI is close to 100 %. Averaged over all

targets, 99.8 % of the active compounds and 99.1 % of the decoys are successfully

docked. About 33 % of the failing compounds cannot be conformationally sampled

using TCG. The remaining ones cannot be placed during the course of TrixX BMI

docking.

The enrichment capabilities of TrixX BMI are summarized in Figure 7.5. It shows

the mean ROC enrichments at 0.5%, 1.0%, 2.0%, and 5% false positive rate for the

different protein families (nuclear hormone receptor (NHR), kinases, serine proteases,

metallo-, and folate enzymes) in the DUD and the overall performance on the entire

DUD, which includes 14 additional proteins that are not categorized. The data is

supplied for Dock, FlexX, Glide, ICM, PhDock, Surflex, and TrixX BMI.

In some cases a second scoring option of TrixX BMI apart from the ScreenScore is

presented. The results of the other docking tools are presented using their default

settings. As suggested in the original paper [187], the enrichment data of Surflex

with activated ring flexibility is considered as default setting.

In the following the enrichment results are presented in more detail. Table 7.5 pro-

vides ROC enrichments at 0.5%, 1.0%, 2.0%, and 5.0% of TrixX BMI for different

scoring functions (FlexX score, ChemScore, PLP score, and ScreenScore). The re-

sults are presented and discussed by protein family. This includes the performance of
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Figure 7.5.: ROC enrichments at 0.5%, 1.0%, 2.0%, and 5.0% false positive rate catego-

rized by individual protein families and the results on the entire DUD data

set.

different TrixX BMI scoring functions, especially in cases where the default option

ScreenScore does not yield the best results. In contrast to previous redocking experi-

ments, the choice of scoring function has a significant impact on the overall prediction

quality. Also, the comparison to other docking tools is presented.

100



7.4. Enrichment Experiments

Nuclear hormone receptor In case of the NHR protein family, the ChemScore func-

tion clearly shows the best performance. Its ROC enrichment is higher than that of all

other scoring functions for each observed false positive rate. The only other docking

tool that produces consistently higher enrichments for the NHR family is ICM whereas

PhDock outperforms TrixX BMI and ChemScore regarding the measurements at

0.5% and 1.0% but not at 2.0% and 5.0%. The performance of the other TrixX

BMI scoring options cannot compete on the same level. The ScreenScore is on par

with Dock and Surflex. TrixX BMI enrichment based on FlexX scoring is on the

performance level of Glide, and still better than the results of PLP scoring which still

outperforms FlexX.

Kinases For the kinase family ScreenScore and FlexX score yield almost identical

enrichments and are superior to PLP and ChemScore. Regarding the other tools,

only the program Dock outperforms TrixX BMI concerning early enrichment. The

remaining tools, with the exception of Glide that exhibits a similar performance at

0.5%, yield consistently lower ROC enrichments. At 5% false positive rate TrixX

BMI outperforms all competing approaches including Dock.

Serine proteases The TrixX BMI performance on serine proteases is again best for

ScreenScore and FlexX score. Concerning the competing approaches, FlexX and

Glide yield higher enrichments at all points of measurement. At 0.5% and 1.0%,

TrixX BMI, Dock, and Surflex perform comparably and follow the previously

mentioned tools. The situation shifts from there on, and PhDock and Surflex exhibit

similar results as the leading tools FlexX and Glide. The remaining tools, TrixX

BMI, Dock, and ICM yield lower but overall significant ROC enrichments of about 9

at 2% false positive rate.

Metalloenzymes In combination with metalloenzymes, TrixX BMI and the PLP

scoring option performs best for early enrichment, followed by similar results of FlexX

score and ScreenScore. At an FP rate of 2.0%, FlexX score and ScreenScore yield the

best performance closely followed by PLP scoring which again performs best at 5% FP

rate. In comparison to other tools, the PLP score has the highest overall enrichment

at 0.5%. At 1.0%, 2.0%, and 5.0% only Glide has better enrichments.
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The other scoring options also perform well: Again, ScreenScore and FlexX score

outperform ChemScore. Averaged over all points of measurement, TrixX BMI in com-

bination with ScreenScore or FlexX score yield results that are comparable to Dock

and Surflex. The enrichments are significantly higher than those of the remaining

approaches FlexX, ICM, and PhDock.

False positive rate [%]

Family Score 0.5 1.0 2.0 5.0

NHR

FX 17.7 12.8 10.4 6.1
CS 26.2 24.0 16.4 9.1
PLP 17.1 11.0 8.9 5.4
SCREEN 21.8 15.2 10.3 6.0

Kinases

FX 14.0 10.6 8.2 6.0
CS 7.3 6.7 6.0 4.2
PLP 10.9 7.7 6.0 4.0
SCREEN 14.1 10.7 8.3 6.0

Serine Proteases

FX 15.6 13.1 8.7 4.8
CS 9.1 4.8 4.8 2.9
PLP 0.5 2.1 1.7 1.9
SCREEN 14.2 13.1 8.8 4.9

Metalloenzymes

FX 9.1 9.0 10.4 5.7
CS 10.9 6.2 6.1 3.5
PLP 21.8 15.5 8.8 5.4
SCREEN 9.0 9.3 9.5 5.1

Folate Enzymes

FX 62.6 35.4 20.4 10.9
CS 22.2 15.5 10.1 6.1
PLP 47.0 29.5 22.2 11.4
SCREEN 62.8 35.6 20.4 11.1

All

FX 17.5 12.4 9.9 5.0
CS 14.0 12.0 9.0 5.3
PLP 15.8 10.2 7.9 5.2
SCREEN 18.2 12.9 9.8 5.0

Table 7.5.: Mean ROC enrichment at 0.5%, 1.0%, 2.0%, and 5.0% false positive rate for

protein families and the entire DUD data set. Furthermore, different scoring

functions are employed: FlexX score (FX), ChemScore (CS), PLP score

(PLP), and ScreenScore (Screen).
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Folate enzymes TrixX BMI performs well if used with folate enzymes. Again,

ScreenScore and FlexX scoring perform best, followed by PLP scoring with a slightly

diminished performance and eventually ChemScore. The comparison to other tools

shows that only ICM yields significantly higher early enrichments at 0.5% and 1.0%.

One has to keep in mind, that ICM is not able to dock any actives of the GART

protein and thus the reported enrichment is for DHFR only. Thus, the bars of ICM

performance on folates in Figure 7.5 are marked at 50 % to depict its performance on

both proteins within this family. In a DHFR-only scenario, TrixX BMI outperforms

ICM. The corresponding ROC enrichments are 115.6, 66.1, 37.1, and 16.3 at 0.5%,

1.0%, 2.0%, 5.0% FP rate.

TrixX BMI, FlexX, and Surflex perform best and are on a comparable level on

the entire folate family including GART. Although, Surflex moves ahead for later

points of measurement. Glide and Dock yield considerably lower enrichments, and

PhDock basically fails to enrich active compounds in this setup.

Entire DUD The overall best results are produced using ScreenScore, followed by

FlexX score. The remaining two options, PLP scoring and ChemScore, show a di-

minished overall performance, even though they are suited best for individual protein

families, metalloenzymes and nuclear hormone receptors, respectively. The comparison

to the state of the art of molecular docking tools reveals that only Surflex and Glide

outperform TrixX BMI on the DUD data set. Thus, TrixX BMI produces the third

best results followed by Dock which has a slightly higher mean enrichment at 0.5%

but falls behind from 1.0% FP rate on. Compared to the remaining tools, TrixX

BMI yields higher mean ROC enrichments for all points of measurement.

Furthermore, TrixX BMI yields a balanced performance over the different protein

families: Enrichment never drops below a factor of 8 at 2%. All other tools, with the

exception of Dock, have significantly lower enrichments (less than factor 6.1) at 2.0%

for at least one of the protein families.

It must be noted that the results of all tools but Surflex and TrixX BMI —

especially Glide and ICM — are associated with some uncertainty concerning the

current statistical evaluation. Manual rescaling of the plots and visual extraction of

ROC enrichments seems to suggest that the performance of these tools diminishes.

Especially, early enrichment is sensitive to small changes of true positive and false
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Target Type Detaila e/o b Pmin/Pmax
c Ref d

CDK2

hdon N LEU 83 e 1,2 [189]

hacc O LEU 83 o

hacc O GLU 81 o

DHFR

hacc OD2 ASP 26 e [174]

hacc O LEU 4 e

phencenter CG PHE 30 e

ER agonist

hdon NH2 ARG 394 e [189]

hacc OE1 GLU 353 e

spatial 1.4,−1.4,−3.4 (2.5 Å) e

ER agonist

hdon NH2 ARG 394 e [189]

hacc OE1 GLU 353 e

spatial 34.1, 0.5, 27.9 (2.5 Å) e

aFor interaction constraints, the name of the receptor atom (PDB nomenclature: atom name, amino

acid code, amino acid number) is given. For a spatial constraint, the coordinates and the sphere radius

are given. bDenotes an essential constraint, o an optional constraint. cPmin is the minimum number

of optional constraints allowed. Pmax is the maximum number of optional constraints allowed. dHere,

the literature reference is provided.

Table 7.6.: Pharmacophore type constraints of four chosen target from the DUD.

positive rate. Thus, a concluding examination, which re-examines the currently not

available original data, can hopefully be executed in the near future.

7.4.4. Pharmacophores

Four targets in the DUD — CDK2, DHFR, ER agonist, and ER antagonist — are

selected as case studies for a more detailed analysis. Pharmacophore type constraints

that describe the preferred binding mode in the active site and trigger biological activity

are extracted from the literature (see Table 7.6) for each target. TrixX BMI pose

predictions are provided in Figure 7.6: All targets are shown with the corresponding

pharmacophore, the cocrystallized ligand structure in orange, and the pose prediction

of the top ranked active in the final hitlist. The enrichment results are depicted in

Figure 7.7.
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CDK2 In case of CDK2 interactions to the flexible hinge region of the protein need

to be established. The central donor interaction is essential and at least one of the two

optional acceptors must be saturated. Changes in the hinge region can open or close

the cleft between two subdomains of the kinase for ATP binding. The kinase is either

activated or deactivated and thus regulates aspects of cell growth.

The enrichment plot shows that all four experiments select actives significantly over

decoys. The usage of pharmacophore constraints in TrixX BMI removes pose predic-

tions of active compounds. The current implementation does not differentiate between

optional and essential constraints during triangle subselection. Some of the CDK2 ac-

tives are placed using only SIACs of the essential interaction and none of the optional

ones. The corresponding descriptors are filtered and the placements are not found.

Therefore, early enrichment is actually better using TrixX BMI without constraints.

From 1% false positive rate on, the pharmacophore experiment yields the highest en-

richments. Furthermore, significantly more decoys than actives are removed using the

filter: About 80% of the actives but less than 50% of the decoys are placed. Compared

to FlexX and FlexX Pharm, TrixX BMI performs best concerning early enrich-

ment and TrixX BMI in pharmacophore mode best starting at 1.0% of the database.

DHFR The pharmacophore type constraint for DHFR is derived from the PDB en-

try 1rh3, which contains the protein cocrystallized with methotrexate. Two H-bonds

formed between protonated nitrogens of the ligand’s diaminopteridin ring system and

two hydrogen acceptors of the protein are essential. These acceptors are nested deep

within the active site. In addition, a hydrophobic interaction to a phenyl ring is re-

quired. The rather rigid scaffold of methotrexate or close analogs of it are found in

many DHFR inhibitors. DHFR reduces dihydrofolic acid, which is essential for rapidly

dividing cells to build the nucleobase thymine.

The enrichment behavior of all analyzed tools are almost perfect regarding the first

percent of the database. At approximately 2%, the constraint runs of TrixX BMI

and FlexX outperform the nonconstrained experiments. Again, the pharmacophore

filter works as expected: TrixX BMI Pharm finds predictions for almost all actives

but only 17% of the decoys.
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Figure 7.6.: TrixX BMI poses of the top ranked active of the target specific DUD actives

and decoys that obeys the pharmacophore (rank with | without constraint):
(a) CDK2 (1|9), (b) DHFR (1|2), (c) ER agonist (4|41), and (d) ER an-

tagonist (5|13). Donors are depicted in grey, acceptors in red and spatial

constraints as yellow sphere.

ER agonist The estrogen receptor used in the enrichment experiments is a nuclear

hormone receptor and regulates gene expression. These receptors have a rather hy-

drophobic pocket. Thus, the pharmacophore for ER agonists includes a spatial con-

straint that is introduced due to this nonspecific and for this protein also flexible part

of the pocket. The spatial constraint forces the ligands to be in a rather strained

conformation thus filling the entire active site. In addition, two hydrophilic anchor

interactions are employed.

The enrichment plot reveals that TrixX BMI in its basic version outperforms

FlexX significantly. In combination with pharmacophore constraints, both tools yield
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Figure 7.7.: Enrichment plots for CDK2, DHFR, and ER agonist/antagonist using

TrixX BMI and FlexX, both with and without usage of pharmacophore

type constraints. The plots of ER also includes the results based on Chem-

Score. The gray shaded areas represent maximal (top) and random enrich-

ment (bottom). The x-axis is scaled logarithmically to focus on the impor-

tant range of percentages.

a comparable performance. FlexX performs better concerning early enrichment below

0.5%. TrixX BMI yields higher enrichment from about 5.0% rate on. Furthermore,

TrixX BMI Pharm finds 76% of all actives but only 16% of the decoys.

Since the ChemScore scoring option shows the best performance on the nuclear re-

ceptors from the DUD, the corresponding results are also presented. The usage of

ChemScore yields significantly higher enrichments for TrixX BMI with and without

pharmacophore constraints. This is especially true for early enrichment.

ER antagonist The enrichment of the ER antagonist is evaluated to demonstrate that

TrixX BMI is also able to dock larger compounds that are not necessarily leadlike. The

pharmacophore is identical to the one used for the agonist. Since here only antagonists
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and similar decoys are searched, no further constraint is utilized. In a real world

scenario where scientist are explicitly looking for antagonists a second spatial constraint

is employed. This constraint is used to filter smaller compounds that cannot adopt the

typical T-shape of estrogen antagonists.

FlexX has slightly better performance compared to TrixX BMI if no constraints

are employed. Again, the ChemScore scoring function which exhibits the best results

for nuclear hormone receptors yields enrichments that are comparable to FlexX. If

pharmacophore type constraints are used, TrixX BMI clearly outperforms FlexX

independent of the scoring function being used. The filtered run yields pose predictions

for about 60% of the actives and less than 6% of the decoys.

All four protein targets have active compounds that cannot be placed using the

TrixX BMI Pharm approach. In some cases this might be due to a different binding

mode of the active ligands which means that the given pharmacophore cannot be obeyed

by all of them. Another aspect is the quality of the conformational ensembles. If none of

the conformations within an ensemble represents a conformation close to the bioactive

one, this can also prevent a correct pose prediction due to clashes or a wrong geometry

arrangement of the required pharmacophore interactions. However, FlexX Pharm is

also not able to place all actives. This suggests that different binding modes of these

ligands are more likely to be the reason for docking failures.

On average, TrixX BMI generates poses fulfilling the corresponding pharmacophore

type constraints for 78% of the actives and 35% of the decoys. This and the previous

analysis of the individual enrichment plots clearly demonstrate that pharmacophore fil-

tering in combination with the TrixX BMI subselection of site descriptors significantly

enriches actives over decoys.

7.5. Runtime and Space Requirements

This section analyzes the requirements of TrixX BMI concerning runtime and storage

space. First, some statistics about TrixX BMI descriptors for protein active sites as

well as molecular compounds from the DUD are shown. Then, runtime measurements

based on experiments using these targets and compounds are discussed. Based on these

numbers, the average selectivity of TrixX BMI descriptor queries, hard disk-, and
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actives no. of no. of no. of site descriptorsd

Target +decoysa conf.b descr.c without with constraints

CDK2 72+2069 21 147 10568 253

DHFR 410+8353 22 181 18895 898

ER agonist 67+2557 14 98 3010 260

ER antagonist 39+1446 48 155 15251 160

Astex set Z2 8 60 16067 n.a.

aNumber of actives and decoys of the target protein in the DUD. In case of the Astex Diverse Set

the Z2 set of leadlike compounds is used. bAverage number of conformations. cAverage number of

descriptors. dNumber of site descriptors with and without pharmacophore constraints. In case of the

Astex Diverse Set average values are presented.

Table 7.7.: Descriptor statistics of four selected DUD proteins and their compound sets.

In addition, average values for the Astex Diverse Set and 2000 leadlike com-

pounds.

memory requirements are analyzed. Finally, a large scale VS experiment is presented

to demonstrate the scalability of TrixX BMI.

7.5.1. Descriptor analysis

The overall runtime and space requirements are connected to the number of descrip-

tors in the compound index as well as the number of site descriptors used for querying.

Therefore, Table 7.7 gives some statistics on the chosen targets from the DUD and their

corresponding active and decoy set. Furthermore, average values for the random set of

2000 leadlike compounds from the ZINC database (Z2) are presented. As expected, the

average number of conformations depends on the flexibility of the compounds within

the target specific set of actives and decoys (see Figure 7.4). Additionally, the average

number of descriptors in the different sets of compounds is presented. If pharmacophore

information is available, the TrixX BMI subselection of site descriptors yields a sig-

nificant reduction: On average, only 4.2% of the site descriptors are retained as query

templates, the maximum being 8.6% for DHFR, the mimimum 1.0% for the ER an-

tagonist.

109



7. Results and Discussion

Runtime [s] on

DUD index Z2 index

Target TrixX BMI FlexX TrixX BMI FlexX

CDK2 0.48 (0.05) 6.4 (5.5) 0.25 (0.02) 5.4 (3.5)

DHFR 3.16 (0.13) 9.2 (14.4) 0.37 (0.04) 9.1 (3.2)

ER agonist 0.20 (0.06) 6.2 (6.2) 0.13 (0.04) 3.1 (3.3)

ER antagonist 1.84 (0.10) 16.6 (21.7) 0.32 (0.03) 6.8 (6.3)

Astex Diverse Set n.a. (n.a.) n.a. (n.a.) 0.24 (n.a.) 7.8 (n.a.)

Table 7.8.: Average runtimes of TrixX BMI and FlexX without (and with) pharma-

cophore constraints for each compound in the index.

7.5.2. Runtime requirements

Runtime experiments compare TrixX BMI to FlexX and FlexX Pharm. Average

runtimes for a set of 2000 leadlike compounds are shown. Furthermore, the runtime of

TrixX BMI is analyzed with respect to the number of queries and the I/O load of the

underlying system is evaluated.

In Table 7.8 the resulting runtime measurements are presented. It is obvious that

TrixX BMI offers a substantial speed-up over FlexX. The average runtime of all 85

targets in Astex Diverse Set is 0.24 s per compound compared to 7.8 s for FlexX. This

average speed-up of factor 32.5 and the individual runtime of the four DUD targets

on the Z2 compound index demonstrate that the descriptor-based look-up technology

yields an improvement in runtime of more than one order of magnitude to an iterative

screening approach like FlexX. The targets from the DUD show that TrixX BMI has

good runtime behavior on the given data sets even though these sets are not strictly

leadlike.

Pharmacophore mode

As already mentioned, the introduction of pharmacophore type constraints reduces the

number of site descriptors and thus queries significantly. In addition, pharmacophore

constraints tend to be nested deep in active site. This often results in higher descriptor

selectivity. Table 7.9 shows, that the selectivity of TrixX BMI pharmacophore queries

is considerably higher for all proteins with exception of the ER agonist. The estrogen
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Descriptor selectivity [0/00] on Z2

Target without with Factor

CDK2 0.13 0.014 8.7

DHFR 0.02 0.001 22.3

ER agonist 0.01 0.011 0.9

ER antagonist 0.02 0.009 1.8

Astex Diverse Set 0.17 n.a. n.a.

Table 7.9.: TrixX BMI descriptor selectivity with and without pharmacophore type

constraints and the corresponding factor quantifying the increase in selectivity.

receptor with a bound agonist exhibits a closed and small pocket. There are no de-

scriptors that entail solvent exposed compound placements and as such yield numerous

possible compound placements. In such a scenario, the selectivity of TrixX BMI does

not increase if pharmacophore type constraints are employed.

Due to nonavailable pharmacophores only unconstrained runtimes against the Z2

are supplied for the Astex Diverse set. For the targets from the DUD, the reduction

of queries and the increase of selectivity results in decreasing runtime. TrixX BMI

needs 82 ms for each compound in the database averaged over all targets and their

target specific compound catalogs. In case of the leadlike Z2 compound index, 30 ms

suffice. This corresponds to a speed-up of another order of magnitude compared to the

nonconstrained experiments and results in a runtime that is two orders of magnitude

faster than FlexX and FlexX Pharm.

On average, TrixX BMI runtimes include an I/O overhead of 4% with a standard

deviation of 1.8%. The different phases of TrixX BMI virtual screening, the initial

identification of descriptor matches and the actual docking calculations, each account

for about 50% of the total runtime.

Contribution of FastBit

The FastBit indexing system speeds up descriptor matching by a factor of five. Thus,

reverting to a raw data scan yields an increase in total runtime by a factor of three since

the query phase accounts for about 50% of the overall TrixX BMI runtime. Without

FastBit, the average runtime on a library of leadlike compounds drops to 0.72 s. This
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TrixX BMI
a

FlexX
b

Target without with constraints without with constraints

CDK2 2:04 0:09 37:54 24:20

DHFR 9:43 0:05 58:20 17:06

ER (agonist) 0:53 0:27 43:45 28:36

ER (antagonist) 6:01 0:25 48:37 33:03

aMaximum runtime [h:min]. bRuntime [h:min] estimated based on representative results.

Table 7.10.: Total VS runtimes using the DUD targets and 1.7 million compounds on 48

cluster nodes.

demonstrates that FastBit is an important part of the TrixX BMI screening pipeline

and efficiently exploits the high selectivity of the TrixX BMI molecular descriptor.

7.5.3. Space requirements

Another important aspect is the time needed to build the compound indices. It is obvi-

ously correlated to the average number of conformations and the molecular properties of

the library compounds. For the Z2 data set the compound indexing phase takes about

0.5 s per compound. On average, this time is split in half between conformational

sampling and subsequent descriptor generation. Thus, the setup of a large compound

collection consisting of millions of individual compounds can be accomplished overnight

on a reasonable sized compute cluster. The space requirements correspond to the ap-

proximation presented in Section 6.3.4: A test on 1.7 million randomly chosen leadlike

compounds from the ZINC database yields a compound database of about 500 GB.

The main memory requirements are basically fixed by the cache sizes of the employed

indexing system and storage system. In the previous experiments each TrixX BMI

process is supplied with 2 GB of main memory. Thus, on each node at most 4 GB and

in total 192 GB are used.

7.5.4. Scalability

The last part demonstrates the scalability of TrixX BMI on a medium-sized com-

pute cluster. Again, the 1.7 million random leadlike ZINC compounds are used. The

corresponding compound indices are distributed on 48 cluster nodes of 2.4 GHz Dual
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Xenon CPUs with 4 GB of main memory on each node. According to the shared-

nothing paradigm of TrixX BMI parallelization, the compound library is split into

96 packages, one for each core. These packages are distributed to the individual nodes.

In order to reduce network load each package is assigned to two additional cores. Thus,

each node manages six different packages. This leads to about 30 GB on each nodes

local hard drive and adds up to about 1.5 terabyte (TB) on the whole compute cluster.

The resulting system is used to perform virtual high-throughput screening of the four

DUD targets that are also used in the enrichment studies.

Table 7.10 shows the maximum runtime for each target on 48 cluster nodes, respec-

tively the 96 cores. TrixX BMI is able to perform virtual screening of 1.7 million

ligands using four different target proteins in between 5 and 27 minutes with pharma-

cophore constraints. Without constraints it takes between 53 minutes and just below

10 hours. In comparison, a sequential docking tool like FlexX in the same parallel

setup needs at least 17 hours in the constraint search and up to more than 2.5 days in

the nonconstraint search.
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This thesis presents TrixX BMI, a new approach to structure-based VS. In the fol-

lowing, the main concepts and validation results are summarized. The first section

introduces key concepts of TrixX BMI. Then, the results of the validation experi-

ments are analyzed with respect to the original research goals and related to the results

of other docking tools. The next section focuses on limitations of the current TrixX

BMI version. Subsequently, the overall applicability of the approach is analyzed. The

last section shows future perspectives and describes possible extensions. This involves

new application scenarios as well as adaptations of the methodology.

8.1. Overview

Based on an innovative description of molecular properties, TrixX BMI implements

an index-driven approach to VS. The validation shows that the new approach repro-

duces protein-ligand complexes and successfully enriches known binders. Most notably,

TrixX BMI offers a speed-up of more than one order of magnitude compared to state-

of-the-art approaches. Pharmacophore information can be incorporated resulting in an

increase of enrichment and a speed-up that excels two orders of magnitude. Since the

system scales in a parallel computing environment, it is applicable to high-throughput

VS experiments.

Key components Trixx BMI is implemented as a hierarchical screening pipeline

based on a preprocessed database of descriptors. In the following, its key components

are highlighted:
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• The most prominent concept in TrixX BMI is the descriptor: It encodes physico-

chemical properties and can be generated for molecular compounds and protein

active sites. Individual descriptor properties are encoded complementarily in-

cluding a unique, high-dimensional model of molecular shape. A descriptor-based

alignment scheme enables TrixX BMI to identify reasonable placements solely

on the abstract descriptor level. All descriptor attributes are independent of the

target protein and are persistently stored on peripheral storage, and each de-

scriptor attribute can be accessed via fast Bitmap Indices. This unique feature of

TrixX BMI combined with high descriptor selectivity contributes significantly

to the overall performance.

• The TrixX Conformer Generator is used to handle large parts of molecular

flexibility by pre-enumeration of compound conformations. The resulting confor-

mations are of high quality, comprise only few conformations, and are basis for

the calculation of compound descriptors. The algorithm is based on a force-field

guided, best-first search that uses flexibility-dependent thresholds to constrain

the search space and to guarantee a reasonable coverage of conformational space.

• TrixX BMI employs a hierarchical docking pipeline to generate 3D pose predic-

tions. Initially, matching site and compound descriptors are generated. These are

transformed into descriptor poses using a grid-based clash- and scoring routine.

During the next stage, the best ranked descriptor poses are refined by reorienting

flexible groups of the compound, performing pairwise atom-atom clash tests, and

employing an empirical scoring function. This results in so-called TrixX BMI

poses that can optionally be handed over to the final stage of optimization.

• A multi-level partitioning scheme enables TrixX BMI to be used in a paral-

lel, shared-nothing computing environment. Three horizontal partitions — com-

pound partitions, descriptor partitions, and type partitions — are used to dis-

tribute library compounds to different cluster nodes, lower the main memory

requirements, and reduce CPU costs.

Accomplishments The validation of TrixX BMI shows that most of the original

research goals are reached.
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• The average runtime of TrixX BMI compared to other tools is improved by

more than one order of magnitude. Compared to FlexX, the runtime drops

by an average factor of 32.5. If pharmacophore information is employed, which

typically is the case in large-scale VS experiments, this factor increases to 141

averaged over the four proteins of the case studies.

• The quality of TrixX BMI’s results is comparable to that of competing ap-

proaches. The redocking accuracy, benchmarked on 85 high-quality complexes of

the Astex Diverse Set, is on par with Gold and FlexX. The same holds true for

the enrichment performance. It is evaluated on the publicly available DUD data

set that allows comparison to six other tools. Averaged over the entire set of 40

proteins, TrixX BMI ranks third overall, closely following the two top ranked

approaches.

• Scalability is validated on a compute cluster comprising 96 cores and a library

of 1.7 million leadlike compounds. VS of this library using TrixX BMI takes in

between 1 hours and 6 hours depending on the chosen target protein. If pharma-

cophore information is added, less than 30 minutes suffice for all case studies. As

comparison, FlexX runtimes are presented. These are in between 17 hours and

58 hours using the same target proteins and pharmacophores.

8.2. Limitations

Regarding the original research goals, TrixX BMI has only one limitation: The current

version does not incorporate protein flexibility. A minor weakness of the approach

concerns its ability to produce highly accurate poses for binding mode analysis. In the

following, these two aspects are discussed in more detail.

Protein flexibility The need to account for the dynamic behavior of proteins is a

deficiency of modern computational drug design. Most applications, including TrixX

BMI, assume the protein to be rigid.

A naive approach towards models for protein flexibility, sequential docking of multiple

protein conformations, is possible. However, a general solution needs to consider more

details: Even for a rigid protein, the problem of scoring and optimizing compound
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placements is not yet satisfactorily solved. For flexible-protein docking, the energetic

differences of each protein conformation need to be considered. A fast and reliable

scoring scheme is currently not available and remains a challenge for future research.

Binding mode prediction A minor weakness of TrixX BMI concerns its ability to

generate highly accurate predictions below 1 Å RMSD to the cocrystallized ligand.

TrixX BMI docks pre-enumerated conformations rigidly into the binding site and

reorients their flexible groups. The resulting placements correctly reflect the over-

all binding mode as validation experiments show. However, structural details of the

protein-ligand complex are not considered. Such details can obviously not be part

of precalculated conformational ensembles. Therefore, sophisticated postoptimization

routines need to be applied, for instance force-field optimization. The internal optimiza-

tion option of TrixX BMI is not able to generate highly accurate predictions. Clashes

are reliably resolved but the overall prediction accuracy does not improve. Therefore,

external optimization tools need to be employed.

8.3. Applicability

The validation experiments demonstrate thatTrixX BMI is suited for high throughput

VS experiments. The quality of the resulting placements and the enrichment factors of

active compounds are on par with industry-leading tools. The speed-up of two orders

of magnitude enables researchers to screen millions of compounds on a reasonably-sized

compute cluster within minutes, rather than days.

TrixX BMI does not include models for protein flexiblity. Since this aspect is not

part of any other approach suited for high-througput VS experiments, it does not im-

pact the overall applicability of TrixX BMI. As part of redocking and crossdocking

experiments, fewer compounds are subjected to docking calculations and more sophis-

ticated approaches are available. In this scenario, TrixX BMI can be pipelined with

an external optimization tool to account for the requirements of detailed binding mode

anlysis and also to incorporate protein flexibility.
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8.4. Outlook

The validation studies suggest that TrixX BMI is an efficient approach towards

structure-based VS. However, certain challenges remain. In the following, some ideas

on how to augment the descriptor and the overall docking methodology are presented.

Furthermore, the applicability of TrixX BMI descriptors in related fields is discussed.

Protein flexibility and postoptimization The overall approach of TrixX BMI is

highly suited for adaptations towards protein flexibility. Its tremendous speed offers a

path towards fully flexible VS in reasonable time.

In a first step, the descriptor could be augmented towards multiple protein conforma-

tions. Rigid parts of the protein would be captured using a single descriptor instance

while flexible sidechains could be handled separately. Each descriptor would thus be

associated to multiple conformations of the protein. Subsequently, the hierarchical

docking engine of TrixX BMI could be augmented with additional stages. Especially,

the clash, scoring, and postoptimization routines should be adapted. Clash calculations

would consider multiple protein conformation simultaneously. The same could be done

for scoring and postoptimization. Protein flexibility could be included on each level of

the screening pipeline. This would involve grid-based operations as well as calculations

on atomic coordinates.

Descriptor extensions The TrixX BMI descriptor as it is does not carry any elec-

trostatic information. Electrostatic potential could be mapped onto molecular surface

patches. The description of shape could then be augmented as follows: Each of the

80 rays describing the molecular shape could be attributed with an electrostatics value

describing the environment where it intersects with the surface. These new descrip-

tor attributes could either be used to prefilter compounds during descriptor matching

or to score descriptor matches using electrostatic compatibility. Thus, not only clash

predictions but also scoring could be performed already on the abstract descriptor level.

Application to other problems Generally speaking, any problem that involves physico-

chemical properties in 3D space can benefit from using TrixX BMI descriptors.
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Since the TrixX BMI descriptor is applicable to compounds and to the active site

of proteins, it can be used to handle problems closely related to protein-ligand docking

and VS:

• A tool for ligand-based VS has already been implemented as part of a diploma

thesis. A reference ligand is used to generate compound descriptors which then

serve as query templates. The corresponding query conditions need to be adapted

in order to accommodate for partial shape matches. The objective is no longer

the detection of clashes but the maximization of shape overlap.

• The comparison of protein active sites could be performed analogously to ligand-

based VS. Site descriptors would have to be used instead of compound descriptors.

• Another application is inverse docking. Here, multiple protein targets are screened

using a single compound in order to evaluate its selectivity and thus the risk

of side effects. To perform inverse docking, the overall TrixX BMI process

could be inverted: Site descriptors would be subject to indexing and compound

descriptors would serve as query templates. The remainder of the worfklow would

stay unchanged.

• TrixX BMI descriptors are also suited to support pharmacophore searching. In-

stead of generating query descriptors based on compounds or active sites, phar-

macophore models would be employed. Corresponding chemical feature points of

the pharmacophore could be used as basis for the descriptor geometry, and shape

would be handled as in the ligand-based VS scenario.

Tools for de-novo or focused library design often rely on the selection of appropriate

fragments from a large library of candidate fragments. This selection mechanism could

be efficiently supported using TrixX BMI descriptors. As part of library design,

the descriptors could also be used to evaluate diversity. Here, the set of all library

descriptors for a given library would be used to decide whether a new compound should

be added. Only if a compound’s descriptors introduces diversity to the library, meaning

that they differ significantly from the ones already in the set, the compound should be

added. Based on this criterion, optimization algorithms could be designed that focus

on the selection of an optimal subset of compounds with respect to chemical diversity.
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Figure 8.1.: ViSor 3D viewer (left) and result browser (right).

Technology TrixX BMI can be efficiently employed in a parallel computing envi-

ronment. However, the current implementation is based on scripts and needs super-

vision. Multi-user capabilities and automatic load-balancing routines which distribute

and share the data efficiently among the available compute nodes are not available.

These tasks are realized as part of an industry cooperation under the ViSoR project

[190]. ViSoR is a browser-based platform (see Figure 8.1) that offers an integrated

approach to knowledge management in the context of drug discovery. It includes ex-

perimental data, as well as computer-aided methods, for instance TrixX BMI as VS

application.

The concept of general-purpose computing on a graphics processing unit (GPU) can

be utilized to further reduce the runtime of TrixX BMI. Grid-based algorithms for

clash detection and scoring can be transformed to correspond to the single-instruction-

multiple-data paradigm of data level parallelism. Multiple poses need to be checked

for clashes and need to scored using one instance of a protein. The current version of

TrixX BMI performs these task iteratively, one pose at a time. Kernel functions for

GPU execution would be straightforward to develop and could provide a large speed-

up. This is especially true for unselective active sites which generate thousands of

descriptor poses for a single compound. In such a case, the identification of the most

promising descriptor poses for downstream processing could be accelerated enormously

by usage of GPU technology.
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A
Results

A.1. Enrichment Experiments

On the next pages, 40 individual enrichment plots of the experiments on the DUD are

illustrated. This includes results using four different scoring options: FlexX score (FX),

ChemScore (CS), PLP Score (PLP), and ScreenScore (SCREEN).
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A. Results

Figure A.1.: Invividual enrichment plots for all 40 targets of the DUD data set.
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A.2. Redocking Experiments

A.2. Redocking Experiments

Table A.1 presents detailed redocking results for the Astex Diverse Set based on TCG

ensembles of quality level one and a clustering threshold of 1.2 Å. Additionally, Table

A.2 supplies summary data for quality levels one, two, three, four, and five.

RMSD[ Å] ≤
PDB ID 0.5 1.0 1.5 2.0 2.5 3.0

1g9v 5.793 5.793 4.893 3.659 3.112 3.112
1gkc 3.586 3.257 2.296 2.296 2.296 1.843
1gm8 3.042 3.042 2.901 2.237 2.237 1.321
1gpk 1.355 1.355 1.355 1.355 0.796 0.796
1hnn 5.491 1.392 1.392 1.392 1.392 1.392
1hp0 1.949 0.733 0.733 0.607 0.607 0.607
1hq2 0.616 0.616 0.541 0.429 0.429 0.429
1hvy 11.162 2.778 2.296 2.140 1.439 1.439
1hwi 1.504 1.334 1.282 1.282 1.282 1.282
1hww 0.429 0.429 0.429 0.429 0.429 0.429
1ia1 1.490 0.985 0.681 0.681 0.681 0.681
1ig3 0.942 0.931 0.717 0.717 0.717 0.717
1j3j 0.376 0.317 0.317 0.317 0.317 0.317
1jd0 2.254 1.904 1.904 1.724 1.618 1.618
1jje 7.910 1.403 1.070 1.070 1.070 1.070
1jla 6.006 1.941 1.514 1.514 1.514 1.514
1k3u 1.594 1.485 1.485 1.485 1.485 1.485
1ke5 2.429 2.200 2.200 2.200 2.200 2.200
1kzk 9.270 8.787 8.787 8.787 8.787 8.787
1l2s 2.316 1.447 1.447 1.056 1.056 1.056
1l7f 0.613 0.613 0.425 0.425 0.425 0.425
1lpz 7.720 2.280 2.280 2.280 2.280 2.280
1lrh 4.370 3.578 3.578 3.578 3.578 3.578
1m2z 0.818 0.691 0.691 0.691 0.691 0.691
1meh 5.983 4.071 3.823 3.823 3.045 2.051
1mmv 4.155 3.827 3.827 2.911 2.888 2.629
1mzc 4.973 4.842 4.787 4.787 2.351 2.351
1n1m 0.840 0.598 0.598 0.598 0.577 0.577
1n2j 3.519 2.161 1.932 1.644 0.650 0.650
1n2v 2.446 2.412 2.412 1.275 1.147 1.147
1n46 1.377 1.377 1.377 1.377 1.377 1.377
1nav 14.948 14.948 14.948 14.948 14.948 14.948
1of1 0.731 0.731 0.731 0.731 0.731 0.731
1of6 0.803 0.803 0.803 0.710 0.710 0.686
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A. Results

RMSD[ Å] ≤
PDB ID 0.5 1.0 1.5 2.0 2.5 3.0

1opk 2.711 1.279 1.279 1.279 1.279 1.279
1oq5 5.043 4.570 3.419 3.419 2.624 2.624
1owe 2.189 1.719 1.391 1.135 1.135 1.135
1oyt 1.583 1.454 1.454 1.454 1.159 1.159
1p2y 5.001 4.606 4.216 4.137 3.985 3.444
1p62 1.474 0.664 0.486 0.486 0.486 0.486
1pmn 2.273 1.922 1.922 1.810 1.810 1.810
1q1g 5.673 1.094 1.094 1.094 1.094 1.094
1q41 0.600 0.600 0.600 0.600 0.600 0.600
1q4g 0.775 0.775 0.775 0.775 0.775 0.775
1r1h 1.047 0.962 0.962 0.962 0.962 0.962
1r55 2.564 2.558 2.558 2.169 1.986 1.774
1r58 2.187 1.635 1.341 1.341 1.189 1.189
1r9o 0.718 0.718 0.718 0.665 0.665 0.665
1s19 1.686 1.634 1.634 1.588 1.588 1.588
1s3v 5.135 0.982 0.982 0.982 0.982 0.982
1sg0 8.029 7.895 1.481 0.972 0.972 0.972
1sj0 4.682 4.682 4.666 3.841 2.879 2.643
1sq5 5.284 5.284 3.937 3.845 1.456 1.456
1sqn 0.850 0.850 0.850 0.850 0.850 0.850
1t40 2.893 2.773 2.773 2.773 2.773 2.252
1t46 6.081 6.081 6.081 6.081 6.081 6.081
1t9b 9.084 4.875 4.269 3.765 2.648 2.029
1tow 3.736 1.620 1.620 1.401 1.401 1.401
1tt1 1.306 1.306 1.306 1.306 1.306 1.187
1tz8 1.104 1.104 1.104 1.104 1.104 1.104
1u1c 1.956 1.041 1.041 0.998 0.998 0.998
1u4d 3.788 1.503 1.503 1.503 1.503 1.142
1uml 2.116 1.811 1.811 1.811 1.804 1.804
1unl 6.262 1.556 1.556 1.556 1.556 1.556
1uou 1.579 1.400 1.400 1.400 1.303 1.303
1v0p 1.138 1.138 1.138 1.138 1.138 1.138
1v48 1.764 1.185 1.185 1.185 1.185 1.185
1v4s 7.514 5.633 1.867 1.867 1.867 1.867
1vcj 1.878 1.653 1.653 1.589 1.589 1.589
1w1p 0.445 0.445 0.445 0.445 0.445 0.445
1w2g 1.388 1.388 1.264 0.973 0.973 0.973
1x8x 6.675 5.507 3.040 0.837 0.837 0.837
1xm6 3.607 1.601 1.601 1.601 1.526 1.225
1xoq 2.827 2.731 2.409 2.380 1.897 1.801
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A.2. Redocking Experiments

RMSD[ Å] ≤
PDB ID 0.5 1.0 1.5 2.0 2.5 3.0

1xoz 7.473 5.950 5.248 5.248 5.248 5.248
1y6b 7.753 2.237 2.237 2.237 2.237 1.639
1ygc 1.318 1.303 1.303 1.303 1.303 1.303
1yqy 1.541 0.979 0.979 0.979 0.979 0.979
1yv3 1.033 1.033 1.033 1.033 1.033 1.033
1yvf 3.603 3.097 3.097 3.097 3.071 2.551
1ywr 1.554 1.554 1.554 1.554 1.554 1.554
1z95 1.252 1.252 1.252 1.252 1.252 1.252
2bm2 3.815 2.340 2.340 1.905 1.905 1.905
2br1 1.678 1.678 1.583 1.569 1.569 1.516
2bsm 0.790 0.790 0.786 0.786 0.786 0.786

Table A.1.: Detailed TrixX BMI redocking results of the 85 protein-ligand complexes

in the Astex Diverse Set based on TCG ensemble using default setting of

quality level one and clustering threshold 1.2 Å.

RMSD[ Å] ≤
Best(x) quality 1.0 2.0 3.0

1 crystal 49 63 70

1 1 15 39 51
1 2 16 40 50
1 3 19 41 54
1 4 14 44 53
1 5 14 46 50

5 crystal 55 70 74

5 1 21 55 65
5 2 19 53 65
5 3 22 51 65
5 4 21 57 62
5 5 21 57 61

10 crystal 58 71 76

10 1 21 58 69
10 2 19 59 70
10 3 22 60 71
10 4 22 62 68
10 5 23 60 67
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RMSD[ Å] ≤
Best(x) quality 1.0 2.0 3.0

20 crystal 58 74 78

20 1 25 61 71
20 2 25 62 71
20 3 26 68 72
20 4 26 65 72
20 5 28 65 74

50 crystal 58 75 78

50 1 27 65 76
50 2 24 65 75
50 3 28 69 76
50 4 27 73 75
50 5 29 68 76

200 crystal 58 75 78

200 1 27 68 78
200 2 24 68 79
200 3 28 73 79
200 4 27 76 78
200 5 29 72 78

Table A.2.: Redocking results of TrixX BMI on the Astex Diverse Set when looking

at the x best scored pose predictions using TCG ensembles of different five

different qualities.
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B
Developer & User Information

In the first section, the implementation of TrixX BMI is summarized. This involves

individual modules and their tasks as well as a diagram that illustrates their usage.

The second section focuses on user information and on how to use TrixX BMI for VS.

B.1. Developer Information

Module File name Description

trixxBmiMenu menu screenin Menu command of TrixX BMI. All
TrixX BMI commands except pharma-
cophore and receptor specific routines are
called from here. This includes the TrixX

BMI sampling routine which includes com-
pound fragmentation.

dataHandling flex admin Routines for data management and initial-
ization.

descriptor screening data Module holding generic descriptor function-
ality which is not specific for site- and com-
pound descriptors.

decode Maps descriptor type attributes to triplets
of interaction centers.

siteDescr sitequery Implements routines specific for site de-
scriptors.

pharmacophore FlexX implementation of pharmacophore
type constraints augmented with TrixX

BMI specific routines for descriptor sub-
selection.

compDescr catalog Implements routines specific for compound
descriptors.
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Module File name Description

base select FlexX fragmentation module, extended
with TrixX BMI functionality.

compoundIdx trixx idx Implements a facade to the the TrixX

BMI compound index. It hides the internal
partitions. Cataloging and querying both
access the compound index using this mod-
ule.

trixx idx part Holds all algorithms that are executed in-
side of internal partitions, e.g. appending
descriptors, deleting descriptors, and gen-
erating Bitmap Indices.

trixx properties Encapsulates the property filter of TrixX

BMI.
interface fastbit Provides the interface to FastBit and trans-

forms descriptors into queries. This mech-
anism is already abstracted and allows the
incorporation of different query transfor-
mations, e.g. for ligand-based VS. Matches
are stored using the dataStorage module.

dataStorage trixx sql Interface to the SQLite storage system.
Prepares and binds statements, performs
transaction processing and regulates cache
usage.

dockingEngine trixx placement Implements the hierarchical docking
pipeline. This includes access to FlexX

internal routines for scoring and incremen-
tal construction using appropriate data
structures (dock entry, match entry). This
mechanism is also abstracted and allows
the usage of different docking routines.
Matches are extracted and results are
stored using the dataStorage module.

trixx optimize Interface to the internal optimization of
FlexX.

visualization trixx display Visualizes the resulting poses which are or-
ganized using the module dataStorage.

TcgMenu menu smacks Menu command of TCG. Stand-alone sam-
pling is called from here.

TcgSampling smacks milk Setup routines for TCG sampling.
smacks crunch Holds the TCG sampling algorithm.
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Module File name Description

smacks cluster TCG clustering module for online- and final
clustering.

Table B.1.: TrixX BMI and TCG modules.

In Table B.1 the different modules and corresponding source files are explained in de-

tail. First, the modules of TrixX BMI are presented, followed by the modules of the

TCG. Access to the compound index is controlled by the trixxIdx module which is im-

plemented as a facade to the indexing subsystem (see Figure B.1). Descriptor indexing

and descriptor matching do not call any functions from within the subsystem. Thus,

the implementation of the single components in the subsystem can easily be changed

without affecting the entire system. The interdependencies of the individual modules is

illustrated using arrows. The compound index (compoundIdx ) is made up of descriptor-

(descrPart) and type partitions (typePart). The type partitions have access to FastBit

and can initiate the generation of Bitmap Indices and the matching of descriptor at-

tributes. The resulting matches are stored and later forwarded to the dockingEnginge

using the dataStorage modul that is based on SQLite.

B.2. User Guide

On the next pages, the user guide of TrixX BMI is presented. This includes the

presentation of some FlexX commands necessary to intialize the protein target, read

the pharmacophore, and adapt general settings of the program.

Figure B.1.: Encapsulation of the compound index of TrixX BMI.
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1
Introduction

1.1 About TrixX BMI

TrixX BMI is a computer program tool for screening a virtual compound library against an
active site of a protein. The active site of the protein has to be specified; the compound
library also is provided by the user.
Sometimes additional information about a potential inhibitor or even the complex is known.
You can integrate this knowledge in the screening process with TrixX BMI by creating a
pharmacophore. This information will then be used when searching tlhe ligand space.
Before you start working with TrixX BMI, we would remind you that TrixX BMI is soft-
ware under steady and current development. We do test the program with a continuously
growing set of proteins and ligand spaces, but we are sure that TrixX BMI is not “error-free”.

To understand and interpret the results produced with TrixX BMI, it is necessary to know
something about the underlying models and algorithms. This topic is not covered in this
User Guide.

TrixX BMI originates from research done at the group for Computational Molecular Design
at the Center for Bioinformatics of the University of Hamburg, Germany. It is based on
the FlexX docking program and makes use of its functionality and of the incremental
construction algorithm in particular. In addition FlexX-Pharm functionality can be used.
For details refer to the following literature [1, 2, 4, 6, 8, 11, 9, 10].

Further development of the TrixX BMI system is carried out at the Center for Bioinformatics
of the University of Hamburg. The FlexX program is under steady development at
BiosolveIT GmbH.

1.2 How to read this guide

The user interface of TrixX BMI is similar to those of the programs in the Flex* software
suite. If you are familiar with the protein-ligand docking program FlexX [7] or with the
feature-tree descriptor program FTrees [12] in particular, you should find it easy to learn to
use TrixX BMI.

Most commands and file formats are self-explanatory, there is no need to go through the
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whole User Guide in order to work with TrixX BMI. In this User Guide the focus is set on
commands and menu options that are important when performing a virtual screening run
with TrixX BMI, while other less important and basic FlexX commands are not explained in
detail. However, a detailed description of these can be found in the FlexX manual [7].
We have used the following styles or fonts to highlight specific parts of the text. The most
important style is the environment of examples, as follows:

Example

This is an example

The descriptions of commands and global parameters of TrixX BMI have a special list struc-
ture, which is self-explanatory. In the text, we use the following fonts: this is a command,
this is a <parameter>, and this is a filename, a path, or a program.
A syntax description looks like this:

command <parameter> ...

Parameters which occur only in special cases or which are optional are set in parentheses:
[<optional parameter>]. If the line ends with a \-character, the command line is continued
in the next line. Note that in TrixX BMI itself it is not possible to escape a carriage return
character by using a \-character.

1.3 Important program and documentation issues

As already mentioned earlier, TrixX BMI is based on the molecular docking program FlexX .
Because of this, most of the basic installation, the configuration steps and requirements also
hold for TrixX BMI. Therefore, the description of all the relevant FlexX program parameters,
the configuration data, the installation issues and so on are not described but can be found
in the FlexX User Guide [7].

1.4 Additional copyright notes

The following software/data can be used in/with TrixX BMI:

• Base software: Copyright c©2001 by Fraunhofer Gesellschaft (FhI-SCAI)

• getline library: Copyright c©1993 by Chris Thewalt

• SMARTSTM may be a registered trademark of Daylight Chemical Information Sys-
tems.

• The torsion angle data (torsion_standard.dat) is derived from the Cambridge Struc-
tural Database. The copyright c© of these file is shared by GMD – Forschungszentrum
Informationstechnik GmbH, the Cambridge Crystallographic Data Center (CCDC),
and BASF AG, Ludwigshafen.



2
Installation

2.1 Parts of TrixX BMI

After unpacking (tar -xzvf <file>) the TrixX BMI software package, you will have the
following files:

Filename Description
bat/ Batch script files
bin/ FlexV binary for architecture
example/ First examples of ligands, proteins, etc.
Fastbit/ Libraries for indexing
pharm/ Pharmacophore example
static_data/ Static data files of TrixX BMI
test_idx/ Standard TrixX BMI index directory
trixx_data/ Libraries and some shared data sources
tmp/ Standard TrixX BMI directory for temporary data

TrixX BMI is an executable. If it does not have the ’x’ flag, set it with chmod +x trixx.

2.2 License scheme

Our software is license key protected. Please be aware that you cannot run TrixX BMI under
any circumstances without a valid license. To obtain a valid license, please visit http:
//www.biosolveit.de/license/.
After receiving your license keys, you will need to edit the configuration file config.dat.
Enter the path and name of the license files containing the license keys after the keyword
@license_files.

2.3 Installing TrixX BMI

Various settings need to be set in the configuration file config.dat. The second entry in
the configuration file is the root directory. All paths specified further on are relative to this
path except those starting with / or ./. You can define default paths to various types of
data files in the @directories section. The @static_data section contains paths and
filenames of the static data files of TrixX BMI, and the @programs section contains paths
and filenames of executables.
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For a first in the current directory you can write the current path into the definition of the
root directory and just leave all the rest as it is. You can customize the configuration of TrixX
BMI later on, also individually for each user.

2.4 A first simple test

For a first simple test, go to the directory where you installed TrixX BMI and type ./trixx.
After displaying a startup message, TrixX BMI will read the configuration file and the static
data files.

Now you should see the TrixX BMI prompt (TRIXX>) that is waiting for your input. For
explicitly testing the TrixX BMI software (as it is built into the FlexX framework, you have
to go to a submenu to test TrixX BMI) type screenin, then you should see the prompt
TRIXX>SCREENIN>. Type quit to terminate TrixX BMI.

2.5 Essential Libraries

2.5.1 Fastbit

Fastbit (used for the indexing system) is supplied in binary form. The libraries
were compiled using GLIBCXX.3.4.9. If this version is not available on your
system, please add them or alternatively recompile the Fastbit sources from
https://codeforge.lbl.gov/projects/fastbit and copy the resulting libraries to
./trixx_data/library as target directory.

2.6 External programs and data

Some features of TrixX BMI are based on external data and software. Although TrixX BMI can
be used as a stand-alone program, we advise you to make the following facilities available
to TrixX BMI.

2.6.1 Graphics

TrixX BMI has no internal graphics. For visualization, TrixX BMI must be coupled with an
external program. Currently, interfaces to the following software are provided:
FlexV is an in-house visualization tool based on OpenGL. FlexV supports all graphic fea-
tures of TrixX BMI.

2.6.2 Torsion angles

The static data file torsion_standard.dat contains energetically favorable torsion an-
gles for specific molecular fragments.
The torsion data files in this software package have been derived by Gerhard Klebe [5] from
the Cambridge Structural Database (CSD), licensed by the Cambridge Crystallographic Data
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Centre (CCDC). The torsion data files are under copyright of GMD, BASF AG, and CCDC.
An end-user license for the torsion data files is included in the TrixX BMI software license.

2.6.3 Conformer Generation

TrixX BMI uses preprocessed conformations to perform its docking calculations. In order
to generate meaningfull conformers using the torsion driver TrixX Conformer Generator
(TCG), it is vital to supply it with an external program which generates ring conformations
and, if the molecules are supplied in SMILES format, also generates the initial 3d structures.

Flexible ring systems

The conformations of flexible ring systems can be computed by the 3D structure genera-
tor CORINA [3, 13]. Your CORINA version is suitable for use with TrixX BMI/TCG if the
driver option ’flexx’ is available (set the CORINA executable to your $path variable, then
type ’corina -h d’ to check). CORINA or CORINA-F can be obtained from Molecular Net-
works GmbH (see http://www.mol-net.de for detailed information). Alternatively, the
program CONFORT can be used. (Please contact Tripos Inc. for more information on this.)
If no ring conformation generator is available, the flag RING_MODE must be set to 0 in
the used configuration file. Again, this is only important if you are generating your own
conformations using TCG.

Conversion of SMILES strings

For the use of SMILES strings within TrixX BMI, an external program must be used that
is capable of converting the string to a 3D representation of the corresponding ligand or
fragment. This can be done by using, for example, CORINA, although a full version of the
program is required to do this in contrast to the computation of ring conformations.

2.6.4 Fastbit

Fastbit is a bitmap indexing system suited for high-dimensional data retrieval. For more
information concerning Fastbit see 2.5.1.

2.6.5 SQLite

SQLite is a software library that implements a self-contained, serverless, almost zero-
configuration, transactional SQL database engine. If you use LD_LIBRARY_PATH in your
system, please supply version 3.6.4 or above. The correct libraries are also supplied under
./trixx_data/library which is part of the trixx runpath.
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3
Getting started —
a tutorial introduction

This tutorial section is meant to be an introduction to the possibilities of virtual screening
with TrixX BMI. TrixX BMI is extremely flexible and configurable, and you will learn in the
later sections where to tune to get your desired screening results. With the help of two
example script files for TrixX BMI you first get to know the two-step process of the virtual
screening program. Afterwards you will get into the more sophisticated section of applying
the settings of the program for your own purpose.

3.1 Configuration

The most important thing to do before you start is to provide TrixX BMI with a config.dat file
in the working directory. This file tells TrixX BMI the location of files that it needs at runtime
and that are important for correct execution, e.g. template files for the receptor amino acids,
helper programs such as a graphic visualizer (e.g. FlexV , our free 3D graphics program
supplied with TrixX BMI), or a text editor of your choice.
Create a working directory where no valuable data can be destroyed and copy the example
config.dat file (located in <trixx_installation_dir>/config.dat) into this directory. Open the
config.dat file with a text editor of your choice. The file is separated into 9 subsections, each
one marked with a ’@’.Some oft hese have subitems, where you can for example specify the
location of your ligand files:

@LICENSE_FILES
@ROOTDIR
@DIRECTORIES
-PHARM
-RECEPTOR
-PDB
-SURFACE
-SITE
-LIGAND
-INDICES
-SCRIPT
-HELP
-PREDICT
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-TEMP
@STATIC_DATA
@PROGRAMS
@FLAGS
@ID_STRINGS
@ALIASES

These are explained in detail in section 4.1 of the FlexX User Guide [7]. In this tutorial,
we only need to tinker with @ROOTDIR and the linking of a library; we assume you have
already entered the information about the license file in @LICENSE_FILES (if you have any
problems with this, please refer to the FlexX User Guide [7]).

In order for TrixX BMI to find the important files for error-free execution, the @ROOTDIR can
point either to the directory where you installed the software or to your current working
directory if the TrixX BMI binary is linked here. Let’s assume that your installation directory
is /home/user. In this case, @ROOTDIR can be . or /home/user/trixx. In both
cases TrixX BMI needs to find the appropriate libraries, especially Fastbit which is most
likely not part of your basic installation. Fastbit libraries can be found in your installation
folder under trixx_data/library. In order to find these, TrixX BMI needs a soft link
named trixx_data in the installation folder (an alternative way is to set an appropriate
environment variable).

TrixX BMI should now find the location of static_data, objects, necessary libraries, etc.

In this tutorial we use FlexV as a molecular viewer, therefore you must make sure that
under @PROGRAMS the path points to its executable. Alternatively, you can create a link in
the <trixx_installation_dir>/bin to wherever you have installed FlexV , the path
to FlexV would then be the same as to TrixX BMI.

You should now have a readily configured config.dat for this tutorial.

Please note: TrixX BMI does not come with a 3D generator, so the path in @PROGRAMS
following RCGENERATOR, 3DGENERATOR and CONV_SMILES is not configured. You should
point these three variables to the location of your own 3D generator (e.g. CORINA,
CONFORD, CONCORD etc.) and SMILES conversion tool, respectively. Without this
information, TrixX BMI cannot convert SMILES strings to 3D-geometries and also cannot
generate ring conformations for those molecules.

3.2 Running a virtual screening

When you type trixx in your working directory, TrixX BMI will say HI, and the command
prompt will be waiting for your valuable input:
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______________________________________________________________________________

##
###### ## ##
# ## # ## ### ### ### ## ####
## ### # ## #### ##
## ## ## ## ##
## ## ## #### ####

#### #### ###### ## ### ## ##

Copyright Screening with indexing technology

BioSolveIT GmbH Version: 2.3.0 (pre) (30.10.08)
An der Ziegelei 75 Modules: [PHARM] [SCREEN]
53757 St. Augustin
Germany Original Author: Matthias Rarey
www.biosolveit.de Contact: flexx@biosolveit.de

______________________________________________________________________________

For information about additional contributors and copyright notes
please consult the user guide or type ’help about’.

>> Running on palermo (Linux 2.6.18.8-0.7-bigsmp) with 4 processors.
>> TrixX configuration file ’config.dat’ loaded.
>> FlexX_base license check (BioSolveIT keys): succeeded.
>> Licensed modules: TrixX [PHARM] [SCREEN]
>> SETTINGS = ’static_data/flexx_settings.dat’ loaded.
>> CHEMPAR = ’static_data/chempar.dat’ loaded.
>> CONTYPE = ’static_data/contype.dat’ loaded.
>> GEOMETRY = ’static_data/geometry.dat’ loaded.
>> AMINO = ’static_data/amino.dat’ loaded.
>> CHARGES = ’static_data/amino_pcharges.dat’ loaded.
>> TRANSFORM = ’static_data/transform.dat’ loaded.
>> FCHARGES = ’static_data/fcharges.dat’ loaded.
>> DELOC = ’static_data/delocalized.dat’ loaded.
>> CONTACT = ’static_data/contact.dat’ loaded.
>> TORSION = ’static_data/torsion_standard.dat’ loaded.
>> LOGP = ’static_data/logp.dat’ loaded.
>> GRAPHIC = ’static_data/graphic.dat’ loaded.

Process time used: 2.76 s. Current process size: 67712 kB.
TRIXX>

In the following, the two step process of virtual screening is described by running through
the basic routines with example script files. These are to be found in bat. First, a routine is
called to catalog ligands.

3.2.1 How to catalog ligands?

The script for this section can be found in bat/catalog.bat. The first step in the virtual
screening process is to catalog your ligands. Call the script with the following line from
your shell:

trixx -b bat/catalog.bat -a ’%{liglist}’=MY_LIG_LIST

This line means that you call the program TrixX BMI with the script bat/catalog.bat.
The variables in the script have to be substituted with real file names. Here, this means you
have to substitute MY_LIG_LIST with for example 1phd.list (provided for tutorial purposes)
or your own list of ligands.
You can also start the script from within TrixX BMI by using this command
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TRIXX> SCRIPT catalog %{liglist}= MY_LIG_LIST

from the main menu. Use a real name as ligand list as described above for MY_LIG_LIST.
However, before you start the cataloging step, make sure that the entry “INDICES” in
config.dat is set to an empty index directory!

Script file bat/catalog.bat:

set verbosity 1 Set the detail level of the output
SCREENIN Enter screenin menu
FOR_EACH $(n) IN $(liglist) Iterate over each ligand in the file
output $(n) Print ligand name
catalog $(n) Generate raw data

END_FOR
CREATEDB Generate meta data necessary to build indices
CREATIDX Build indices

Now you have an index-based catalog of your ligands. The output command dis-
plays which ligands you have cataloged and how much time was spent on this procedure.
The commands and options will be described in detail in section (4.2).

3.2.2 How to screen a target?

After having cataloged your ligands, you can start screening against your target. This sec-
tion exemplifies how to perform this second step of the actual virtual screening procedure.
The screening procedure is also described by an example script to be found at
bat/screen.bat. Call the script file from your shell with the following line:

trixx -b bat/screen.bat -a ’%{target}’=MY_TARGET

Furthermore, you can start the script from within TrixX BMI by typing

TRIXX> SCRIPT screen %{target}=MY_TARGET

Again, you have to substitute MY_TARGET with a real filename. For this tutorial you may
use 4dfr (valid pharmacophore provided for tutorial purpose). Before you start screening,
be sure that the entry “INDICES” in config.dat is set to an existing compound index
directory.

Script file bat/screen.bat:
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RECEPTOR Change to receptor menu
READ $(target) Read the receptor via rec/$(target).rdf
DRAW Draw receptor
SPOTS
GENERATE Generate interaction spots
PHARM Change to pharmacophore menu
READ $(target) Read in a pharmacophore (optional) from pharm/$(target).phm
DRAW Draw pharmacophore
SCREENIN Change to screenin menu
GETSTRI Get site descriptors
FASTBIT Start indexing
MATCH Postprocess matches
STATS Prints statistics about the screening run
LISTALL 20 Show the 20 or less highest scoring hits
DRAW 20 1 Draw top scored pose of the 20 highest scoring hits

Now you have performed a complete virtual screening experiment, and the best re-
sults have been reported to you. In the following sections, you get to know more about the
commands and how to prepare you target for screening.



160 CHAPTER 3. GETTING STARTED --- A TUTORIAL INTRODUCTION



4
Working with TrixX BMI

4.1 Starting TrixX BMI

4.1.1 Interactive mode

To start TrixX BMI in interactive mode you must enter trixx from the operating system
shell. You are then transferred to the TrixX BMI shell, i.e. you will see the TrixX BMI prompt
on the screen:

TRIXX>

Historically, command line options and filenames are linked with a colon, for example
-l:<logfile>. Because the filename extension mechanism does not work with this syn-
tax, TrixX BMI also allows blanks as a separator, i.e. -l <logfile>.

4.1.2 Arguments for batch processing (-a)

If TrixX BMI is started in batch mode (see -b, below), you can define an argument string for
the batch program. Variables in scripts are either an alphanumeric string or 0, 1, ..., 9.

4.1.3 Batch mode (-b)

For users experienced with scripts it may sometimes be desirable to start TrixX BMI in batch
mode. One advantage of this mode is that you can redirect the screen output of TrixX BMI
into a file. To start TrixX BMI in batch mode, type trixx -b:<script filename>. TrixX
BMI will then execute the script<script filename>. If TrixX BMI is started with the -b option,
it never waits for a keypress and terminates whenever an error occurs.

4.1.4 Specifying an alternative configuration file (-c)

When started, TrixX BMI normally tries to read config.dat from the current (startup)
directory or from the directory specified by the TrixX BMI home directory. It is possible to
tell TrixX BMI to use another configuration file. To do this, start TrixX BMI by typing trixx
-c:<filename>, and TrixX BMI will then use <filename.dat> as its configuration file.

4.1.5 Specifying the execution directory (-d)

In order to execute TrixX BMI in an alternative directory, TrixX BMI can be called with option
-d:<execute dir>.

161
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4.1.6 Help for command line options (-h, ?)

Type trixx -h to get a short help text about the command line options.

4.1.7 Output the processor ID or system ID (-i)

Type trixx -i to output the processor or system ID of the machine it is running on.

4.1.8 Logging the TrixX BMI session (-l)

If TrixX BMI is started with the -l:<logfile> option, all commands executed are written
with their parameters into a log file named logfile stored in the current directory.

4.1.9 Nice value (-n)

The TrixX BMI session can be started with a specific nice value given after the -n option.

4.1.10 Redirecting output (-o, -om)

By default TrixX BMI sends all text output to stdout and error messages to stderr. Start-
ing TrixX BMI with trixx -o:<outputfile> causes text output to be redirected to
outputfile and the error messages to be redirected to outputfile.err. The output
of stdout and stderr can be merged using the parameter -om instead of -o.

4.1.11 Interface options (-p, -r, -s)

The options -p, -r, and -s are interface options to control TrixX BMI behavior in combination
with calling programs and should therefore not be used as command line options.

4.1.12 Version information (-v)

Type trixx -v to get detailed information about the TrixX BMI version you are using.

4.2 The TrixX BMI shell

4.2.1 Menu navigation

When you see the TrixX BMI prompt on the screen, you can work with the TrixX BMI shell.
The TrixX BMI shell is menu-driven, and the menus are hierarchically organized in a tree
structure. In each menu you have specific valid commands (called menu commands). You
can execute these commands by typing their names. Entering a name of a submenu brings
you to the submenu, entering END to the parent menu. You can also directly go to a menu
available in a parent menu by typing its name. The TrixX BMI prompt will always reflect the
name and location of the current menu. There are some commands which are valid for all
menus. These are called global commands.
You can get a list of all global commands, menu commands, submenu and parent menu
names which are valid in a given menu by pressing the RETURN key after the prompt.
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4.2.2 Global commands

Here, the commands are only described with a short information sentence. For further,
detailed information, please refer to the command in the specified section of the FlexX User
Guide [7]. Additional information about parameters for the commands can also be found
there.

These commands are available in each menu.

Command Explanation Chapter in
FlexX Manual

MAIN Return to main Flexx menu from any submenu 6.2.2
END Return to the parent menu 6.2.3
QUIT End program, clear memory 6.2.1
! Execute a unix command 6.2.15
EDITCFG Open config.dat with the defined editor 6.2.7
RELOADCFG <filename> Load filename as the new configuration file 6.2.8
LIST <parameter> Lists environment variables and values of the

given parameter, e.g. list all
6.2.9

SET <variable> <value> Changes the environment variable to the new
value

6.2.10

SELOUTP <destination> Directs the output generated by the LIST,
LISTALL, LISTSOL, LISTMAT, QUERY and
INFO commands to <destination>.

6.2.11

EXEC Execute a unix command and store output in
$(UNIX_OUTP)

6.2.15

TOFLEXV <command> Send a command string to the graphic mode
FlexV

6.2.12

DISPLAY Displays objects previously produced with the
DRAW command in FlexV or other defined
viewer

6.2.13

ERASE <graphic object> Deletes the object with the next execution of
display

6.2.14

There are also some menu specific commands. The following can only be called from
the root menu.

Command Explanation Chapter in
FlexX Manual

SCRIPT Execute a bat script 6.3.3
DELALL Deletes everything from the memory of TrixX BMI 6.3.1

There are four submenus descending from the root menu: The LIGAND-, PHARM-,
RECEPTOR-, and SCREENIN menu. These can be called by simply typing their name. In
the following, the commands that are unique for each menu will be described.
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4.2.3 Submenu LIGAND

The submenu LIGAND is useful for reading a ligand, displaying it in a viewer, and com-
paring it to a reference ligand structure. The ligand or the reference ligand have to be
in one of the following formats: SYBYL MOL2, MOL, PDB, SDF, SMILES. For converting
SMILES to 3D coordinates, a program like CORINA is needed and has to be supplied in the
config.dat file. The following commands can be called from the LIGAND submenu:

Command Explanation Chapter in
FlexX Manual

READ Read a ligand into TrixX BMI
workspace

6.4.1

MINIMIZE Minimize the ligand fix coordinates 6.4.23
SELINIT Adjust the initialization levels 6.4.4
REINIT Clean up the structure after TRANS-

FORM command
6.4.5

FROMPDB Extract a ligand from a PDB file 6.4.3
READREF Read a reference ligand structure for

comparison
6.4.12

SETREF Set reference coordinates to the coordi-
nates from the input file that was read
with the READ command

6.4.14

MAPREF Match the reference structure to the
ligand structure

6.4.13

WRITE Write a set of ligand placements in a
file

6.4.10

DELETE Delete the loaded ligand from the
TrixX BMI workspace

6.4.11

INFO Display main characteristics of the
loaded ligand

6.4.6

MOLINF Display detailed information about
the ligand

6.4.6

EDIT Call editor with loaded ligand 6.4.7
SELADM Specify the graphics object number

and determine save modus of graphic
files

6.4.16

SELGRA Set specific default values for drawing
ligands

6.4.17

SELCOL Set color modes for molecule, molecu-
lar surface, and interaction geometries

6.4.18

Continued on next page
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Command Explanation Chapter in
FlexX Manual

SELLAB Select labels for drawing the ligand 6.4.1
DRAW Generate a graphic object of the ligand

which can be displayed by a viewer
6.4.20

GRAINF Output a list of all current graphic set-
tings for the ligand

6.4.22

4.2.4 Submenu RECEPTOR

The submenu receptor is essential for the second step during virtual screening (3.2.2). Here,
the receptor, which is supposed to be used for screening, is initialized. It has to be supplied
as a receptor description (RDF) file, a PDB file, or a MOL2 file.

Command Explanation Chapter in
FlexX Manual

PDBINFO Display contents of a PDB-file (chains, ligands, metals) 6.5.2
READ Read the receptor from a file 6.5.1
WRITE Write a protein in a file 6.5.5
DELETE Delete the receptor from the TrixX BMI workspace 6.5.6
INFO Display information about the receptor 6.5.8
ATLIST List all atoms of the active site and show the assigned prop-

erties
6.5.4

ACTIVE Select the atoms that belong to the active site 6.5.3
EDIT Edit the receptor input file 6.5.7
DEEPSITE Form a subpocket containing the deep part of the active site 6.5.10
CSGRID Build a clash-score info grid for the receptor
SELADM Specify the graphics object number and determine save

modus of graphic files
6.5.12

SELGRA Set specific default values for drawing 6.5.13
SELCOL Select colors for drawing the pharmacophore 6.5.14
SELLAB Selecting labels for drawing the receptor 6.5.15
DRAW Generate a graphic object of the receptor 6.5.16
GRAINF Output a list of all current graphic settings for the receptor 6.5.17

In the receptor menu you find another submenu: The SPOTS menu. This menu is
used for the generation of interaction spots of the receptor. First, you have to generate these
interaction spots before you can start the screening process.
In this menu you find the following commands:
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Command Explanation Chapter in
FlexX Manual

GENERATE Generate the interaction spots for the receptor 7.6.2.3
DRAW Draw the interaction spots to a graphic object 7.6.2.3
INFO Display information about the generated interaction spots 7.6.2.3
SELADM Specify the graphics object number and determine save

modus of graphic files
7.6.2.3

SELGRA Set specific default values for drawing 7.6.2.3
SELCOL Select colors for drawing the pharmacophore 7.6.2.3

4.2.5 Submenu PHARM

The submenu pharm is especially useful for performing virtual screening with TrixX BMI. If
you have a pharmacophore for your protein target, you load it here. It will later be used in
the in the screening procedure (see 3.2.2). Its usage speeds up TrixX BMI enormously: Many
ligands can be filtered and are thus excluded from time consuming docking calculations.
Again, the submenu commands will be listed here. For further information have a look at
the FlexX User Guide [7].

Command Explanation Chapter in
FlexX Manual

READ Read a set of pharmacophore constraints from a file 7.3.5
DELETE Delete the pharmacophore from the TrixX BMIworkspace 7.3.5
INFO Display information about the pharmacophore 7.3.5
EDIT Edit the pharmacophore input file 7.3.5
FILTER Test a set of docking solutions against the pharmacophore 7.3.5
DRAW Generate a graphic object of the pharmacophore compo-

nents
7.3.5

PICKPH Launch FlexV with the pharmacophore manager in order
to pick constraints

7.3.5

SELADM Specify the graphics object number and determine save
modus of graphic files

7.3.5

SELGRA Set specific default values for drawing 7.3.5
SELCOL Select colors for drawing the pharmacophore 7.3.5

4.2.6 Submenu SCREENIN

This submenu is used during preprocessing and virtual screening. In the following,
the commands are explained in detail, since this submenu is unique for TrixX BMI, the
commands cannot be found in the FlexX User Guide [7].

Catalog compound (CATALOG)

Syntax: CATALOG <id> <log_file>
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Description: The command CATALOG generates a library with the <id> and
writes information to the <log_file>. It can be used to create a compound index
for all your library compounds by applying it in a loop using a script file.

Draw the results of virtual screening (DRAW)

Syntax: DRAW <nof_hits> <nof_poses>
Description: After virtual screening, you can display the results in a viewer. The
first number specifies the number of the hits that are displayed. The second number
specifies the number of poses to be drawn for each hit.

Draw the results of a specific solution (DRAWONE)

Syntax: DRAWONE <use_ID> <ID_rank> <nof_poses>
Description: Similar to DRAW: It displays <nof_poses> many results for a spe-
cific solution in a viewer. This solution can be specified by either identifier (use_ID
= y) or rank (use_ID = n) and is supplied using <ID_rank>.

Delete a molecule from the index (DELMOL)

Syntax: DELMOL <id>
Description: Deletes <id> from the index.

Get site interaction triangles (GETSTRI)

Syntax: GETSTRI
Description: With this command site interaction triangles are created that are used
as descriptors. As first step in the screening process, the receptor has to be read and
the interaction spots have to be generated with the command GENERATE in the
menu SPOTS. Otherwise, site triangles cannot be computed.

List the results of virtual screening (LISTALL)

Syntax: LISTALL <nof_hits> <nof_poses>
Description: After virtual screening you can display the results with this com-
mand. The results are rank ordered, the highest scoring solutions are listed first.
The first number specifies how many solutions of the ranked hitlist are displayed.
The second number specifies the number of poses to be drawn for each hit.

List the results of a specific solution (LISTONE)

Syntax: LISTONE <rank_number> <nof_poses>
Description: Similar to LISTALL: It displays <nof_poses>many poses for the so-
lution on rank <rank_number>.
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Optimize the physical index structure (PURGE)

Syntax: PURGE
Description: If many compounds have been deleted from the index, its physical
structure should be reorganized. The associated routines are executed using this
command.

Prepare conformational ensembles (SAMPLE)

Syntax: SAMPLE <id> <path> <ens_name>
Description: This command performs conformational sampling of the library
compound <id>. It automatically fragments the compound if it has more than
10 rotatable bonds. The resulting ensemble(s) are stored in <path> and employ
<ens_name> as file name.

Output statistical information (STATS)

Syntax: STATS
Description: This command lists the following information of the screening run:
Name of the target, number of site descriptors used for querying, number of de-
scriptor matches, number of clashes, number of poses, and timings (query-, match-,
and total time).

Perform virtual screening (VHTS)

Syntax: VHTS <minimize> <filter_props>
Description: This command starts the actual virtual screening. The first parameter
<minimize> specifies whether the resulting solutions should be subjected to FlexX
minimization (<minimize> = y) or not (<minimize> = n). The second parame-
ter <filter_props> allows the usage of a molecular property filter and can also be
supplied as y or n value.
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