Etablierung eines lentiviralen Display-Systems mit Hilfe eines auf einer HI-viralen Verpackungszelllinie basierenden Vektorsystems: Proof of concept anhand des HIV-1 Hüllproteins

Dissertation

Zur Erlangung der Würde des Doktors der Naturwissenschaften des Fachbereichs Biologie, der Fakultät für Mathematik, Informatik und Naturwissenschaften, der Universität Hamburg

> vorgelegt von Kristina Anna Schilling aus Bamberg

> > Hamburg 2011

Genehmigt vom Fachbereich Biologie der Fakultät für Mathematik, Informatik und Naturwissenschaften an der Universität Hamburg auf Antrag von Herrn Prof. Dr. T. DOBNER Weiterer Gutachter der Dissertation: Prof. Dr. R. WAGNER Tag der Disputation: 20. Mai 2011

Hamburg, den 05. Mai 2011

A, 1+ mmill

Professor Dr. Axel Temming Leiter des Fachbereichs Biologie

1 Zusammenfassung	1
2 Einleitung	3
2.1 Das Humane Immundefizienz-Virus Typ 1 (HIV-1)	3
2.2 HIV-1-Vakzine-Entwicklung	7
2.3 Neuartige Konzepte zur HIV-1-Vakzine-Entwicklung	. 10
2.4 Zielsetzung	16
3 Ergebnisse	18
3.1 Prinzip des lentiviralen transkomplementären Vektoren- Systems	18
3.2 Etablierung des lentiviralen transkomplementären Vektoren- Systems	. 19
3.3 Etablierung der stabilen HI-viralen Verpackungszelllinie	. 34
3.4 Charakterisierung der stabilen HI-viralen Verpackungszelllinie	. 39
3.5 "Proof of concept": "Panning" durch breit neutralisierende Antikörper	. 56
4 Diskussion	57
4.1 Das Design des lentiviralen transkomplementären Verpackungssystems gewährleistet die	
effiziente Produktion von infektiösen Viruspartikeln	. 57
4.2 Durch zufällige Rekombination des Verpackungskonstrukts in das Zellgenom und antibiotische	e
Selektion mit Puromycin kann eine stabile HI-virale Zelllinie generiert werden	. 59
4.3 Die Transfektion der stabilen Zelllinie mit dem Transfervektor pshuttle und die Induktion der	
VSVG-Expression führt zur Produktion von infektiösen Viruspartikeln	. 61
4.4 Das HI-virale Env-Protein wird effizient auf der Oberfläche der Viruspartikel präsentiert	. 63
4.5 Durchführung eines Antikörper-basierten "Pannings" unter Verwendung des generierten	
lentiviralen Displaysystems	. 63
4.6 Zusammenfassung und Ausblick	. 64
5 Material	66
5.1 Organismen	. 66
5.2 Plasmide	. 67
5.3 Medien	. 68
5.4 Puffer und Lösungen	. 68
5.5 Kommerzielle Kits	. 70
5.6 Oligonukleotide	. 71
5.7 Chemikalien, Enzyme, Materialien	. 72

5.8 Geräte und Verbrauchsmaterialien	
6 Methoden	73
6.1 Molekularbiologische Methoden	73
6.2 Kultivierung von Zellen	
6.3 Generierung einer stabilen HI-viralen Verpackungszelllinie	80
6.4 Generierung infektiöser HI-viraler Partikel durch die stabile Zelllinie	
6.5 Proteinbiochemische Methoden	
6.6 "Enzyme-linked Immunosorbent Assay" (ELISA)	
6.7 "Panning" von lentiviralen Viruspartikeln über Festphase-gekoppelte Antikörper	85
6.8 Durchflusszytometrie (FACS)	
6.9 Enzymbasierte Nachweismethoden	
7 Anhang	88
7.1 Sequenz pTNpack Puro	88
7.2 Sequenz pshuttle	
8 Abkürzungsverzeichnis	96
9 Literaturverzeichnis	98
10 Danksagung	110

1 Zusammenfassung

Im Kampf gegen das Humane Immundefizienz-Virus Typ 1 (HIV-1) ist die Entwicklung potenten und breitwirkenden Vakzine langfristig einer von entscheidender Bedeutung. Nach Rückschlägen bei rationalen Immunogendesigns bedarf es deswegen innovativer Konzepte, die auf randomisierten Immunogenen und deren Selektion beruhen. Im Laufe dieser Arbeit sollte ein lentivirales "Panning" entwickelt werden, das die Selektion von Env-Immunogenen mit Hilfe von bekannten breit neutralisierenden Antikörpern auf Basis der Bindungsstärke ermöglicht. Im Zuge dieses Verfahrens werden durch Mutagenese generierte Env-Varianten auf der Oberfläche von HI-viralen Partikeln präsentiert. Nach der Selektion durch immobilisierte breit neutralisierende Antikörper werden die jeweiligen Virus-Varianten durch die Infektion von Zellen amplifiziert. Die selektionierten Env-Varianten sollen anschließend als Vakzine verwendet werden und in vivo schützende breit neutralisierende Antikörper desselben Typs induzieren, der für das "Panning" hochaffiner Binder verwendet wurde.

Um eine effiziente Präsentation von trimeren Env-Molekülen auf der Virusoberfläche zu gewährleisten, wurde ein komplementäres Expressionssystem aus HI-viralem induzierbarem Volllänge-Verpackungskonstrukt und Env-kodierendem Transfervektor entwickelt. Weiterhin wurde unter Verwendung des Verpackungsvektors eine HIvirale stabile Verpackungszelllinie generiert und charakterisiert. Die produzierten Viruspartikel waren nach Pseudotypisierung mit dem Vesikulären-Stomatitis-Virus-(VSVG) infektiös, wobei durch Glykoprotein Optimierung der Virusproduktionsparameter Infektiöse Titer von bis zu 2x10⁴ IU/ml erreicht werden konnten. Weiterhin konnte gezeigt werden, dass eine hohe Env-Moleküldichte auf der Virionenoberfläche vorliegt. "Proof of concept-Panning"-Versuche zeigten jedoch, dass aufgrund der ungenügenden Titer der stabilen Verpackungszelllinie und einer ineffizienten Immobilisierung der Virionen kein lentivirales "Panning" etabliert werden konnte.

Trotzdem stellt die Selektion von randomisierten Env-Varianten durch breit neutralisierende Antikörper generell ein vielfältiges Werkzeug zur Charakterisierung

der Interaktion zwischen Immunogen und Antikörper sowie zur Vakzine-Entwicklung dar.

2 Einleitung

2.1 Das Humane Immundefizienz-Virus Typ 1 (HIV-1)

2.1.1 Weltweite Bedeutung von HIV-1

"We hope to have a vaccine [against AIDS] ready for testing in about two years." Margaret Heckler, Gesundheitsministerin der Vereinigten Staaten von Amerika, 23.April 1984

1981 wurde bei einer Gruppe homosexueller Männer die Häufung schwerer opportunistischer Infektionen beschrieben. Als deren Ursache erwies sich eine erworbene Immunschwäche, die als AIDS ("acquired immunodeficiency syndrome") bezeichnet wurde. Zwei Jahre später wurde durch Luc Montagnier und Françoise Barré-Sinoussi am Pasteur-Institut in Paris erstmals das Humane Immundefizienz-Virus Typ 1 (HIV-1) aus Patientenproben isoliert und mit AIDS in Verbindung gebracht ¹. Seitdem hat sich HIV-1 pandemisch auf der gesamten Erde ausgebreitet. Nach einer Schätzung der Organisation UNAIDS waren im Jahr 2009 weltweit insgesamt 33,3 Millionen Menschen mit dem HI-Virus infiziert, 22,5 Millionen davon allein im südlichen Afrika. AIDS ist heutzutage in einigen Entwicklungsländern eine der häufigsten Todesursachen. So starben 2009 in den am stärksten betroffenen Regionen 1,3 Millionen Menschen an den Folgen von AIDS (siehe Abb. 1)².

Total: 33.3 million [31.4 million – 35.3 million]

Abb. 1: Weltweite Verbreitung von HIV-1 im Jahr 2009. Groß geschriebene Zahlen stellen die Mittelwerte dar, während die Werte in Klammern die minimal und maximal geschätzen Zahlen wiedergeben (nach ²).

Der Verlauf der HIV-1-Infektion im Patienten lässt sich in drei Phasen einteilen. Die erste Phase, auch Primärinfektion genannt, verläuft meist inapparent bzw. in ca. 20% der Fälle mit grippeähnlichen Symptomen. Nach einer anfangs sehr hohen Konzentration von Virus im Serum sinkt diese nach einigen Wochen wieder ab, und es schliesst sich ein symptomloses Latenzstadium an. Diese Phase kann je nach Kontrolle der Viruslast durch den Patienten einige Jahre bzw. Jahrzehnte andauern. In der dritten Phase sinkt die Zahl der CD4⁺-T-Zellen rapide ab. Aufgrund der massiven Schädigung des Immunsystems entwickelt der Patient vermehrt opportunistische Erkrankungen wie Pilz-, Herpes- oder Mykobakterien-Infektionenen. Die Patienten erliegen ohne Therapie meist diesen lebensbedrohenden Keimen³. Die AIDS-Erkrankung kann durch die sogenannte "Highly Active Anti-Retroviral Therapy" (HAART-Therapie) effizient behandelt werden. Dabei werden Mischungen von meist drei anti-viralen Wirkstoffen eingesetzt. Dank HAART erreicht die Lebenserwartung eines HIV-Patienten heutzutage die eines gesunden Menschen, jedoch sind die Medikamente teilweise schlecht verträglich. So leiden HIV-Patienten unter HAART-Therapie vermehrt an gastrointestinalen Nebenwirkungen, Leberschädigungen oder Herz-Kreislauf-Krankheiten. Zudem wird die Viruslast zwar bis an die Nachweisgrenze gesenkt, jedoch kann das Virus nicht vollständig aus dem Körper der Patienten entfernt werden⁴. Da sich vorwiegend bei Patienten, die die antiretroviralen Medikamente nicht korrekt einnehmen, unter HAART langfristig Resistenzen ausbilden können, wird in der medizinischen Forschung kontinuierlich nach neuen Wirkstoffen aus den bekannten Substanzklassen und nach Arzneistoffen mit neuen Wirkmechanismen gegen HIV gesucht. Diese neuen Substanzen erweitern die Therapiemöglichkeiten von HI-Viren mit Resistenzen gegen zuvor eingenommene antiretrovirale Stoffe. Trotz dieser Fortschritte besteht jedoch weiterhin Bedarf an neuen Medikamenten ⁵.

2.1.2 Struktureller Aufbau und Replikation von HIV-1

Das Humane Immundefizienz-Virus-1 wird systematisch in die Familie der Retroviren eingeordnet. Es zeichnet sich durch das für diese Gruppe charakteristische Enzym Reverse Transkriptase (RT) aus, das die virale RNA in DNA umschreibt. Aufgrund der Fähigkeit, sein Genom aktiv durch die Kernmembran in den Zellkern transportieren zu können, wird HIV-1 zudem der Untergruppe der Lentiviren

zugeordnet. Das Genom von HIV-1 besteht aus 2 Kopien einer 9,2 kBp großen RNA, die für 9 offene Leserahmen kodiert, wobei Leserastersprünge, alternatives Spleißen und Prozessierungen zur Bildung der 15 unterschiedlichen Proteine führen (siehe Abb.2).

Abb. 2: Oben: Aufbau des HIV-1-Genoms und Anordnung der 9 Leserahmen. Unten: Strukureller Aufbau des HIV-1-Virions. Abkürzungen siehe Text. (modifiziert nach ⁶).

Der gesamte Bereich wird von zwei "long-terminal-repeats" (LTR) flankiert, die nach der reversen Transkription die Integration des Provirus in das Genom der Zielzelle vermitteln und zudem den HI-viralen Promotor zur Transkription des Volllänge-Genoms enthalten. Der reife Viruspartikel ist etwa 100 nm groß und besteht hauptsächlich aus einem konischen Kapsid, das von dem Kapsidprotein CA (p24) gebildet wird. CA ist Teil des Vorläuferproteins Gag (Pr55), das durch die virale Protease PR in das Matrixprotein MA, das Nukleokapsidprotein NC, das Protein p6 und CA gespalten wird. Das Kapsid ist von einer Membran umgeben, in der die viralen Hüll- oder "envelope"-Proteine (Env) als Trimer verankert sind. Während der Prozessierung der viralen Proteine wird Env durch eine zelluläre Furinprotease in das membranständige Protein TM (gp41) und das nicht-kovalent gebundene Oberflächenprotein SU (gp120) gespalten. Zusätzlich kodiert das virale Genom für Proteine, die entweder enzymatische (Protease PR, Reverse Transkriptase RT,

Integrase IN), regulatorische (Rev: "Regulator of Virion", Tat: "Transactivator of Transcription") bzw. akzessorische Aufgaben (Vpu: "Viral protein u", Vpr: "Viral protein r", Vif: "Viral infectivity factor", Nef: "Negative factor") ausüben.

HI-virale Partikel werden hauptsächlich durch Einschluss in Endosomen in die Zelle aufgenommen ⁷. Über das Oberflächenprotein gp120 bindet das HI-Virus an den CD4-Rezeptor der Wirtszelle. Nach einer zusätzlichen Assoziation mit den Chemokinrezeptoren CCR5 oder CXCR4 wird die Fusion der Virushülle mit der Membran vermittelt ⁸. Der HIV-1 Nukleoproteinkomplex ("core") gelangt in das Cytoplasma und entlässt unter anderem die zwei RNA-Moleküle und die Reverse Transkriptase, die anschließend das einzelsträngige RNA-Genom in doppelsträngige DNA umschreibt. Der Präintegrationskomplex (PIC) bestehend aus viraler DNA, RT, IN, und Vpr gelangt in den Zellkern, wo die HI-virale DNA, vermittelt durch die Integrase (IN)-Aktivität, über die beiden LTR in das Wirtsgenom integriert ³.

An den LTR wird zudem die Transkription der viralen Gene durch zelluläre Polymerasen initialisiert, wobei das 14 kDa große regulatorische Protein Tat, das bereits früh in der Infektion exprimiert wird, einen wichtigen Faktor darstellt. Für eine effiziente Transkription ist die Bindung von Tat an das sog. TAR-Element im 5'LTR Sekundärstrukturen auszeichnet⁹. nötig. das sich durch ausgeprägte DieTranskriptionssteigerung wird durch die Tat-abhängige Bindung von einer Reihe von Transkriptionsfaktoren, wie des Elongationsfaktors pTEFb, vermittelt ¹⁰, der die C-terminale Domäne der RNA Polymerase II phosphoryliert, und so die Prozessivität der Polymerase steigert¹¹. Durch Rekrutierung von Acetyltransferasen, wie der CREB-Bindeprotein (CBP)/p300-Komplex, wird zudem die Chromatinstruktur des LTR-Promotors modifiziert, und somit eine effiziente Transkription erleichtert ¹². Somit ist Tat essentiell für die Expression der Virusgene, die Replikation und die Infektiösität ^{13,14}. Zudem wird es in das extrazelluläre Milieu abgegeben und von Nachbarzellen aufgenommen, wo es zelluläre Funktionen und die Virusinfektiösität beeinflussen kann ^{15,16}. Immunsystem-modulierende Funktionen führen zur Inhibition der Interleukin-12-Produktion¹⁷ oder zur Induktion der HIV-1 Korezeptor-Expression ¹⁸. Nach der Transkription wird die virale RNA in das Cytoplasma transportiert und entweder an freien Ribosomen (Gag) oder an Ribosomen im rauhen Endoplasmatischen Reticulum (Env) translatiert. Anschließend assemblieren die verschiedenen Proteinkomponenten und RNA-Genome zwei an der

Wirtszellmembran und führen zur Abschnürung der neu gebildeten Virionen von der Zelle.

2.2 HIV-1-Vakzine-Entwicklung

2.2.1 Aktueller Stand der HIV-1-Vakzine-Entwicklung

Mit der HAART-Therapie lassen sich die Symptome einer HIV-Infektion effizient behandeln (siehe 2.1.1), um jedoch langfristig und effizient Neuinfektionen zu verhindern, bedarf es einer potenten, breitwirkenden und sicheren Vakzine. Trotz 25 Jahre intensiver Forschung auf diesem Gebiet konnte bisher kein hochwirksamer Impfstoff entwickelt werden. Ein grosses Hindernis bei der Entwicklung jeder Art von HIV-Vakzine ist die hohe Variabilität des Virus. Während der Umschreibung des viralen RNA-Genoms in DNA durch das Enzym Reverse Transkriptase (siehe 2.1.2) entstehen bis zu 2,2x10⁻⁵ Mutationen pro Base und Zyklus, was zu hohen Sequenzvarianzen im Lauf einer Infektion führt¹⁹ und ständig neue Virus-Varianten entstehen lässt, die sich dem Immunsystem entziehen. Man ist überein gekommen, dass es bei der Entwicklung einer Vakzine gegen HIV für die Entstehung einer schützenden Immunreaktion sowohl der Induktion von zytotoxischen T-Zellen als auch von neutralisierenden Antikörpern bedarf 20-22. So sind zytotoxische T-Zellen, die z.B. gegen Gag gerichtet sind, nach einer HIV-Infektion befähigt, eine initiale Vermehrung des Virus zu kontrollieren ^{23,138}. Zudem kann durch genetische Studien eine klare Verbindung zwischen bestimmten HLA-Allelen, wie B57, und den HIV-1-RNA Leveln in infizierten Patienten hergestellt werden 24,138. In Rhesusaffen-Modellen erlaubt eine induzierte zellvermittelte Antwort zwar die Kontrolle der Viruslast ^{25,26}, jedoch verhindert sie weder die Infektion noch erreicht sie die Eradikation des Virus. Eine passive Immunisierung mit breit neutralisierenden Antikörpern kann im Tiermodell bereits an der Eintrittsstelle die Infektion von Zellen verhindern^{27,28}. Jedoch erweist sich die Induktion von neutralisierenden Antikörpern als äußerst schwierig, da das HI-Virus einige Mechanismen entwickelt hat, um dem Wirts-Immunsystem zu entgehen (siehe 2.2.2).

Erst drei HIV-Impfstoff-Kandidaten erreichten klinische Studien zur Untersuchung der Effizienz. Ein Konzept basierte auf monomerem gp120 mit dem Ziel, virusspezifische Antikörper zu induzieren. Die Phase III-Studie dieses Kandidaten im Jahr 2003, bekannt als AIDSVAX, zeigte jedoch, dass keine neutralisierenden Antikörper

hervorgerufen werden konnten²⁹. Das zweite Konzept beinhaltete rekombinante Adenovirus-Vektoren zur Expression von Gag, Pol und Nef und wurde als trivalente Mischung von Plasmid-DNA verabreicht. Obwohl in Phase I-Studien die Induktion einer zellulären Immunantwort nachgewiesen werden konnte, wurde die Phase IIb-Studie, bekannt als STEP-Studie, im September 2007 abgebrochen ³⁰. In der Gruppe von Studienteilnehmern, die bereits vor der Studie seropositiv für Adenoviren waren, war es zu einer erhöhten Anzahl von HIV-Infektionen gekommen. Es wurde vermutet, dass es zur Bildung von Immunkomplexen gekommen war, die eine Infektion mit dem HI-Virus erleichterten ³¹. Die genauen Umstände sind jedoch noch nicht geklärt. Das dritte Vakzine-Konzept bestand aus einer konzertierten Gabe von zwei bereits entwickelten HIV-Impfstoffen. In der Hoffnung, mit diesem Konzept sowohl zelluläre als auch humorale Immunantworten hervorrufen zu können, folgte nach anfänglicher Gabe eines HIV-Kanarienpocken-Vektor (HIV-ALVAC; "prime") die Verabreichung des auf gp120-Protein-basierenden Impfstoffs AIDSVAX B/E ("boost") ³². Im Dezember 2009 wurden Daten dieser unter dem Namen "Thai-Trial" bekannten Studie veröffentlicht, die zeigten, dass dieses Vakzinierungskonzept über einen Zeitraum von einem Jahr nach der letzten Immunisierung zu einem 30%-igen Schutz vor einer HIV-Infektion führte³³.

2.2.2 Bedeutung des Oberflächenproteins Env als Immunogen

Aufgrund seiner Oberflächenpräsentation (siehe 2.1.2) ist Env für das Immunsystem frei zugänglich und stellt prinzipiell ein vielversprechendes Zielantigen für neutralisierende Antikörper dar. Während der Infektion führt die Bindung von Env an CD4 und den Korezeptor CCR5 bzw. CXCR4 (siehe Abb. 3A) zu gravierenden Konformationsänderungen von gp120 und gp41 (siehe Abb. 3B), die auch die Präsentation einer Fusionsdomäne beinhalten. Diese verankert sich in der zellulären Membran. Weitere Konformationsänderungen bringen die virale und zelluläre Membran in unmittelbare Nähe, was zur Verschmelzung führt ³⁴. Ziel eines Envbasierenden Impfstoffs ist es folglich, durch Antikörper die Fusion des Virus mit der Zellmembran zu verhindern, und so eine sterile Immunität zu vermitteln. Bisher konnte durch Impfstudien mit Primaten gezeigt werden, dass eine Env-gerichtete Immunantwort für die Kontrolle eines "Challenge"-Virus von entscheidender Bedeutung ist ³⁷. Die meisten Informationen zur Immunogenität von Env basieren auf

monomeren, monovalenten Env-Immunogenen. Diese Monomere wurden entweder im Rahmen von rekombinanten Pockenviren ³⁸ oder als rekombinantes Glykoprotein gemeinsam mit Adjuvantien ^{39,40} verabreicht. Wie durch Yang *et al.* gezeigt wurde, stellen trimere Formen des Env-Proteins jedoch ein besseres Ziel für das Immunsystem dar als monomere ⁴¹.

Abb. 3: **(A)** Darstellung des HI-viralen Hüllproteins (Env) nach Bindung an den zellulären CD4-Rezeptor und den Korezeptor CCR5. Ein Env-"spike" besteht je aus drei Env-Molekülen, die jeweils aus gp120 (blau) und gp41 (braun) aufgebaut sind. CD4 ist in rot, CCR5 in grün dargestellt. (nach ³⁵) **(B)** Fusion von Zell- und Virusmembran nach Bindung an CD4. Formationsänderungen des Env-Trimers führen zur Verschmelzung der beiden Membranen (nach ³⁶).

Mit "virus-like-particles" (VLPs)-basierenden Impfstoff-Kandidaten, in denen Env auf der Oberfläche der Partikel präsentiert wird, konnte zudem der steigernde Einfluss einer Env-Präsentation in Membranumgebung auf die Immunogenität verdeutlicht werden ⁴². Trotzdem erweist sich die Induktion von neutralisierenden Antikörpern durch Env-Immunogene als schwierig. So ist das Oberflächenprotein Env stark glykosyliert ⁴³, was zur Verringerung der Immunogenität durch Verdeckung mancher Epitope in gp120 führt ⁴⁴. Eine hohe Sequenz- und Konformationsvarianz in den

variablen Domänen V1-5 führt zudem zu "Escape"-Mutanten, die einer Bindung durch neutralisierende Antikörper entgehen⁴⁵. Desweiteren scheinen bestimmte Epitope in gp120 und gp41, wie z.B. die Korezeptor-Bindestelle oder die äußere membranproximale Region (MPER) nur in bestimmten kurzzeitigen Übergangsstadien der Rezeptorbindung oder der Membranfusion zugänglich zu sein ⁴⁶. Vielfach wurden rationale Immunogen-Design verwendet, um u.a. eine Stabilisierung des Env-Trimers durch Disulfitbrücken⁴⁷ oder Zipper zu erreichen, und so die Immunogenität zu erhöhen^{41,48}. Weitere Ansätze verfolgten die Deletion von variablen Schleifen⁴⁹ oder die Entfernung von Polysacchariden⁵⁰. Damit kann in gewissem Maß eine Freilegung von Epitopen erreicht werden. Eine dritte Kategorie von optimierten Immunogenen besteht in Env-Analoga, die konformationelle Übergangsstadien abbilden. So werden dauerhaft Epitope präsentiert, die normalerweise nur während einer kurzen Zeitspanne während der CD4-Bindung und der Fusion zugänglich sind ⁵¹. Letztendlich konnten mit den entwickelten Env-Immunogenen in Tiermodellen zwar neutralisierende Antikörper induziert werden, allerdings war die Wirkung nur auf einige Virustypen beschränkt ⁵²⁻⁵⁴.

2.3 Neuartige Konzepte zur HIV-1-Vakzine-Entwicklung

2.3.1 Breit neutralisierende Antikörper

Die Entdeckung von breit neutralisierenden Antikörpern im Serum von vereinzelten HIV-infizierten Patienten betont im starken Maß die Bedeutung des Env-Proteins als Antigen. Diese Antikörper binden Env-Moleküle verschiedener HIV-Stämme und führen zur effizienten Neutralisierung der Virionen. Patienten mit breit neutralisierenden Antikörpern sind in der Regel auch "long-term-nonprogressors" (LTNP), bei denen der Krankheitsverlauf stark verzögert stattfindet ³⁵.

Bisher wurden nur wenige dieser Antikörper beschrieben. Die bekanntesten unter ihnen sind 2G12, 2F5 und 4E10 (siehe Abb. 4). 2G12 bindet Oligomannose-Kohlenhydrate auf der Oberfläche des Env-Trimers ^{56,57}, während 2F5 und 4E10 jeweils konservierte Epitope in der äußeren membran-proximalen Region (MPER) von gp41 binden (2F5: aa662-668/ELDKWAS; 4E10: aa671-676/NWFDIT) ^{58,59}. Beide Epitope befinden sich in unmittelbarer Nähe zur Virusmembran, und es konnte gezeigt werden, dass beide Antikörper mit der Membran interagieren ^{60,61}.

Abb. 4: Modell eines HIV-1 Env-"spike" mit den Epitopen, die durch bekannte breit neutralisierende Antikörper erkannt werden. Gp120 ist in blau dargestellt, während gp41 schematisch in braun abgebildet ist. Beschreibung der Epitope im Text (modifiziert durch J. Henney nach ⁵⁵).

Weitere bereits beschriebene Antikörper binden die variable Schleife V3 (447-52D⁶² und HGN 194⁶³), Epitope, die mit der CD4-Bindestelle überlappen (HJ16⁶³. A12⁶⁴. D7⁶⁴, VRC01⁶⁵ und b12⁶⁶), oder Epitope in der Nähe der CD4-Bindungsstelle (17b ⁶⁷, X5⁶⁸), die erst nach Bindung des Rezeptors zugänglich werden (siehe Abb. 4). PG9 und PG16 binden trimer-spezifische Epitope, die innerhalb der variablen Schleifen V1, V2 und V3 liegen 69. Durch Baba et al. (2000) 70 konnte gezeigt werden, dass eine Mischung der Antikörper 2G12, 2F5 und eines weiteren Immunglobulins Rhesusaffen vor einer Infektion mit einer HIV/SIV-Chimäre (SHIV) schützen kann. Die Chimäre basierte dabei auf einem SIV-Genom, in dem das SIV-Env inklusive flankierender Bereiche mit Anteilen regulatorischer Leserahmen gegen ein HIV-Env ausgetauscht worden war. Für einen wirksamen Schutz mussten allerdings große Mengen der Antikörper verabreicht werden, was die passive Immunisierung von Menschen mit breit neutralisierenden Antikörpern uneffizient macht. Erklärtes Ziel einer aktiven Vakzine gegen HIV ist also die Induktion von breit neutralisierenden Antikörpern durch Env-Immunogene. Breit neutralisierende Antikörper treten jedoch sehr spät nach Infektion und nur unter bestimmten molekularen Bedingungen auf. So war es bislang nicht möglich, den Antikörper 2F5 mit einfachen Epitop-Immunogenen *in vivo* zu induzieren ⁷¹. Strukturaufklärungen zeigten, dass die Epitope für 2F5 und 4E10 sterisch schwer zugänglich sind und nur

nach Konformationsänderungen während der Fusion präsentiert werden ⁶⁰. Rationale Immunogendesigns (siehe 2.2.2) beinhalten deswegen hauptsächlich konformationsstabilisierte Env-Varianten, mit denen man sich erhofft, 4E10- und 2F5ähnliche Antikörper hervorrufen zu können ^{72,73}. Neben den rationalen Designs versucht man vermehrt, über Mutationsvarianten des Oberflächenproteins Env-Immunogene zu finden, die in der Lage sind, effizient breit neutralisierende Antikörper zu induzieren. Zur Identifizierung potenter Env-Varianten werden sogenannte Displayverfahren verwendet.

2.3.2 Displayverfahren zur Identifizierung von Oberflächenproteinen

Das Verfahren eines Protein-Displays besteht prinzipiell aus vier Schritten: 1) Die Generierung von Gen-Bibliotheken des Zielproteins 2) Die Präsentation der Protein-Varianten auf einer zellulären oder viralen Oberfläche 3) Die Selektion durch einen bekannten Bindungspartner und 4) Die anschließende genetische Amplifikation der selektierten Proteine. Derartige "Display"-und "Panning"-Verfahren wurden bereits für verschiedene Parameter beschrieben, die auf diese Weise für ihre Bindungspartner optimiert wurden und stellen eine vielfältige Technologie für die Charakterisierung von Protein-Protein-Interaktionen dar. Aufgrund seiner Simplizität und Vielseitigkeit wurde in der Vergangenheit vorwiegend das "Phage display" verwendet, in dem der Bakteriophage M13 für die Präsentation der Proteinkomponente benutzt wird ⁷⁴. Die Amplifizierung findet in dem Phagen-Wirtsorganismus *E.coli* mit Generationszeiten von ca. 20 min statt. Allerdings stellt das Verfahren für die Expression komplexer eukaryontischer Proteine, wie z.B. Antikörper Limitationen dar, da in E.coli Chaperone und andere eukaryontische Genprodukte fehlen, die für die Faltung und posttranslationale Modifizierung einiger Proteine unabdingbar sind. Aus diesem Grund wurden Display-Verfahren entwickelt, die auf Hefezellen basieren ⁷⁵. Aufgrund der ähnlichen Mechanismen der Proteinfaltung, Glykosylierung und Sekretion zwischen Hefezellen und Säugerzellen werden Proteine korrekt prozessiert und so eine Expression entweder erst ermöglicht oder gesteigert. Desweiteren ermöglicht ein Hefe-basiertes "Panning"-Verfahren eine Bewertung und Selektion von Bindungspartnern durch die FACS-Technologie ⁷⁶ und garantiert dank der relativ kurzen Generationszeiten von Hefezellen (ca. 2h) schnelle Amplifizierungszyklen. Aufgrund der Eigenschaften von membran-assoziierten Oberflächenproteinen bedarf es eines Display-Systems, das alle posttranslationalen Modifikationen ausführt und die Proteine in der Umgebung einer Säugerzell-Membran präsentiert. Ein auf Säugerzellen-basierendes virales Display stellt hier das Verfahren der Wahl dar. Mit Hilfe des Murinen-Leukämie-Virus (MuLV) konnten bereits mehrfach nicht-virale Polypeptid-Bibliotheken in einem retroviralen Rahmen präsentiert werden ⁷⁷. Zudem wurde ein auf das Aviäre Leukose-Virus (ALV) basierendes Verfahren etabliert ⁷⁸. In den letzten Jahren rückt jedoch immer mehr die Verwendung von Lentiviren in den Vordergrund. Vorteil dieses Verfahrens gegenüber Retroviren ist die Fähigkeit der Lentiviren, auch ruhende Zellen zu infizieren. Bisher wurden lentivirale Displays zur Präsentation von z.B. Peptiden ⁷⁹, Zytokinen ⁸⁰ oder Antikörpern ⁸¹ verwendet. Die Grundlage eines lentiviralen Displays stellen lentivirale Vektoren dar, die das Hauptstrukturprotein Gag exprimieren und so in Säugerzellen zur Produktion von lentiviralen Partikeln führen.

2.3.3 Lentivirale Vektoren

2.3.3.1 Bedeutung von lentiviralen Vektoren

Die Geschichte von lentiviralen Vektoren hat ihren Ursprung in der Gentherapie. Die Vektoren zeichnen sich durch den effizienten Transfer eines Fremdgens in ruhende Zellen und die stabile Integration in das Zellgenom aus ⁸², was eine Langzeit-Expression des eingebrachten Gens ermöglicht ^{83,84}. Um die Breite der Zielzellen und die Effizienz der Infektion zu erhöhen, wurde bereits früh die Pseudotypisierung der HI-viralen Viruspartikel mit heterologen Fusionsproteinen untersucht. Das am besten charakterisierte Protein ist wohl das Glykoprotein des Vesikulären Stomatitis Virus (VSVG). Es ermöglicht hohe Infektiöse Titer und führt zu einer erhöhten Stabilität der generierten viralen Partikel ^{85,86}. So konnte demonstriert werden, dass mit VSVG-pseudotypisierten HI-viralen Partikeln eine Transduktion von neuronalen Zellen *in vivo* erreicht werden kann ^{87,88}.

2.3.3.2 Verpackungskonstrukte und Verpackungszelllinien

Um die Kapazität für die genetische Information von Fremdgenen zu erhöhen⁸⁹ und um zudem die Sicherheit der lentiviralen Vektoren zu steigern⁹⁰, wurden Verpackungssysteme entwickelt, bei denen die viralen Verpackungskomponenten und das Fremdgen auf zwei getrennten Vektoren kodiert sind⁸⁸. Grundsätzlich werden Verpackungskonstrukte durch Modifikation der psi(Ψ)-Sequenz generiert. Sie ist im HIV-RNA-Genom 3' des 5'LTR lokalisiert und vermittelt durch Bindung an Zink-Finger-Motife im Nukleokapsidprotein die Verpackung der viralen RNA in die Virionen ^{91,92}. psi ist aus vier RNA-Schleifen (SL1-SL4) aufgebaut, die über relativ kurze Linker miteinander verbunden sind (siehe Abb. 5) ⁹³. Für SL1 wurde gezeigt, dass es eine Sequenzfolge enthält, die über das sogenannte "kissing dimer"-Intermediat die Dimerisierung der zwei RNA-Kopien vermittelt ⁹⁴. SL2 enthält die Haupt-Spleißdonor-Stelle, die an den Spleißvorgängen aller viralen RNAs beteiligt ist ⁹⁵. Durch die Überlappung des Verpackungssignals und der Haupt-Spleißdonor-Stelle wird gewährleistet, dass nur ungespleißte RNA in die Viruspartikel verpackt wird ⁹⁶.

Abb. 5: Schematische Darstellung der HI-viralen Verpackungssequenz Ψ . Ψ ist aus den 4 Sekundärstrukturschleifen SL1-SL4 aufgebaut. SL1 enthält eine Dimerisierungsdomäne, die die Verpackung von 2 Kopien der genomischen RNA bewirkt, SL2 enthält die Haupt-Spleißdonor-Stelle, SL4 kodiert für das Startkodon des offenen Leserahmen gag (nach ⁹⁷).

Durch Mutationsexperimente konnte gezeigt werden, dass die Deletion der Schleifen 1 und 3 zu Verpackungsdefekten führt ^{95,98,99}. Durch Entfernung dieser Bereiche im Verpackungskonstrukt und Insertion einer psi-Sequenz im Transfervektor wird eine ausschließliche Verpackung von Transfer-Vektor-RNA in die Viruspartikel bewirkt ⁸⁸. Derart einfache Systeme werden als Verpackungssysteme der ersten Generation bezeichnet. Trotz deren Vorteile bestanden jedoch seither Sicherheitsbedenken bezüglich der Entstehung von replikationskompetenten Viruspartikeln (RCL) durch Rekombination zwischen Verpackungsvektor und Transferkonstrukt. Um Rekombinationsereignisse zwischen homologen LTR-Sequenzen zu minimieren, wurde zunächst der 3'LTR des Verpackungskonstrukts durch die BGH ("bovine growth hormone") - Polyadenylierungssequenz (BGHpA) ersetzt ^{100–102}. Mit dem Ziel, eine Replikation in primären Zellen zu verhindern, wurden alle akzessorischen Proteine aus den Verpackungskonstrukten entfernt (Zweite Generation ^{103,104}). Eine weitere Maßnahme bestand in der Aufteilung der Verpackungskomponenten auf drei und mehr Vektoren, die die Entstehung von RCL unterbinden sollte (Dritte Generation ^{105,106}). Seit Anfang der 90er Jahre werden analog zu den Verpackungskonstrukten der ersten, zweiten und dritten Generation stabile HI-virale Verpackungszelllinien generiert. Die Verpackungskonstrukte werden hierzu stabil in das Genom einer Zelllinie integriert, die nach Transfektion des Transfervektors infektiöse Viruspartikel produziert (siehe Abb. 6).

Abb. 6: Schematische Darstellung eines Verpackungssystems, das auf einer stabilen Verpackungszelllinie basiert. Nach Transfektion eines retroviralen Transfervektors, der das Zielgen enthält, erfolgt die Integration des Vektors in das Zellgenom. Die von der Verpackungszelllinie zur Verfügung gestellten Virusproteine führen über das Ψ - Signal zur Verpackung von transkribierter Transfervektor-RNA in Virionen (nach ¹⁰⁷).

Neben den Sicherheitsaspekten war die Effizienz von Verpackungzelllinien seit jeher ein wichtiger Punkt. Die ersten Zelllinien mit autologen LTR-Promotoren erreichten bei weitem nicht die Titer, die nach transienter Transfektion des Verpackungskonstrukts produziert werden konnten ^{108,109}. Zur Steigerung der

Infektiösen Titer wurde deswegen der autologe LTR-Promotor durch konstitutive heterologe Promotoren, wie den unmittelbar frühen Promotor des Cytomegalie-Virus ersetzt ^{110,111}. Allerdings zeigte sich, dass eine hohe und konstitutive Expression einiger Viruskomponenten, wie die Protease, cytotoxisch wirkte und die Selektion von stabilen Zelllinien verhinderte. Induzierbare heterologe Expressionssysteme, wie das Tet on/Tet off- oder ein Ecdyson-reguliertes System zeigten hier Auswege auf ^{106,112–117}

2.4 Zielsetzung

Die Induktion von breit neutralisierenden Antikörpern durch Env-Immunogene stellt ein erklärtes Ziel auf dem Feld der HIV-Vakzineentwicklung dar. Bislang war es jedoch nicht möglich, durch rationale Designansätze eine effiziente und breit wirksame, Env-basierte Vakzine gegen HIV-1 zu entwickeln. Ein neuartiger Ansatz ist die Generierung von randomisierten Env-Bibliotheken und deren Affinitäts-"Screening" durch bereits beschriebene und neu identifizierte breit neutralisierende Antikörper. Selektionierte Env-Varianten sollen schließlich als Immunogen in einer Vakzinierung verwendet werden, mit dem Ziel, breit neutralisierende Antikörper.

In der vorliegenden Arbeit soll daher für die Präsentation und Selektion von Env-Bibliotheken ein autologes HI-virales Display entwickelt werden. Ziel ist, Env in einem Kontext zu exprimieren, der alle posttranslationellen Modifikationen und eine Oligomerisierung der Env-Varianten zulässt. Die Env-Trimere sollen ein optimales Immunogen für die Selektion mit breit neutralisierenden Antikörpern darstellen.

Hierzu wird ein Verpackungssystem generiert, das aus einer HI-viralen Verpackungszelllinie und einem Env-kodierenden Transfervektor besteht. Das Verpackungskonstrukt exprimiert neben den Verpackungskomponenten Gag und Pol auch die akzessorischen Proteine Vpu, Vpr, Nef und Vif und gewährleistet so die korrekte Prozessierung und Faltung der Env-Proteine¹¹⁸ sowie eine effiziente Produktion von Viruspartikeln^{119–122}. Schon mehrfach wurde beschrieben, dass einige HI-virale Genprodukte bei konstitutiver Expression zytotoxisch wirken und so die Etablierung einer stabilen HI-viralen Verpackungszelllinie verhindern ^{102,111,113,123,124}. Deshalb soll das Verpackungssystem regulierbar gestaltet werden. Nach Expression und Präsentation der Env-Proteinbibliothek auf der Virusoberfläche

kann eine Antikörper-vermittelte Selektion erfolgen, in der gute Binder von schlechten Bindern unterschieden werden. Durch Verpackung der genetischen Information der Env-Varianten in die Viruspartikel wird zudem eine Phänotyp-Genotyp-Kopplung erreicht. Mittels Reinfektion von Verpackungszellen mit den selektionierten Virus-Varianten erfolgt eine Amplifikation von guten Bindern. Durch mehrere Runden dieses neuartigen Verfahrens des "lentiviral panning" sollen schließlich Env-Varianten angereichert werden, die mit starker Affinität an die bereits in der Literatur beschriebenen breit neutralisierenden Antikörper binden.

3 Ergebnisse

3.1 Prinzip des lentiviralen transkomplementären Vektoren- Systems

In der vorliegenden Arbeit wurde ein lentivirales Vektoren-System zur Produktion von HI-viralen Partikeln entwickelt, in dem zwei Vektoren, das Verpackungskonstrukt pTNpack und der lentivirale Transfervektor pshuttle, ein komplementäres und stark regulierbares Expressions-System bildeten. Die Induzierbarkeit des Systems wurde über die Transaktivierung des HI-viralen 5'LTR-Promotors durch das Tat-Protein erreicht. Um fehleranfällige sowie zeit- und arbeitsaufwendige Kotransfektionen zu vermeiden. wurde unter Verwendung des Tat-defizienten pTNpack eine Verpackungszelllinie generiert. Das von pshuttle exprimierte Tat-GFP-Fusionsprotein führt nach Transfektion in die Verpackungszelllinie zur Aktivierung des LTR-Promotors und zur Expression sämtlicher Viruskomponenten, was wiederum die Verpackung des pshuttle-RNA-Genoms in die Viruspartikel ermöglicht. Zusätzlich erfolgt die Expression von HI-viralen Env-Oberflächenproteinen, kodiert von pshuttle, was die Phänotyp-Genotyp-Kopplung der produzierten Virionen gewährleistet (siehe Abb. 7). Zur Produktion von infektiösen Viruspartikeln wurde als Ausgangszelllinie eine Flp-In T-Rex 293-TO-VSVG-Zelllinie verwendet, die nach Induktion mit Doxycyclin das Fusionsprotein VSVG des Vesikulären-Stomatitis Virus exprimierte (freundlicherweise zur Verfügung gestellt von Dr. Alexander Kliche, siehe Material 5.1.1). Durch die Komplementarität des Zwei-Vektoren-Systems konnte die Produktion von infektiösen Viruspartikeln folglich induzierbar und somit effizient gestaltet werden.

Abb. 7: Schematische Darstellung des auf pTNpack und pshuttle basierenden transkomplementären Vektoren-Systems

3.2 Etablierung des lentiviralen transkomplementären Vektoren- Systems

Um das Tat-abhängige transkomplementäre Vektoren-System zu entwickeln, musste zunächst ein HI-viraler Vektor genetisch derart modifiziert werden, dass er als Tatdefizientes Verpackungskonstrukt bei der Generierung der Verpackungszelllinie verwendet werden konnte (siehe 3.2.1). Als Ausgangsvektor diente pTN7 stop (freundlicherweise bereitgestellt von Dr. M. Dittmar, Universität Heidelberg, siehe Material 5.2), der sich durch einen Env-Leserahmen mit vorzeitigem Stop-Kodon und die Expression einer Renilla-Luciferase (RLuc) aus dem ehemaligen, deletierten Nef-Leserahmen auszeichnet. Jede Modifizierung wurde verifiziert und charakterisiert (siehe 3.2.3). Desweiteren wurde der Tat kodierende Vektor pshuttle verwendet, der zudem HI-virales Env exprimiert und im Abschnitt 3.2.2 beschrieben wird. Alle weiteren verwendeten Konstrukte sind im Abschnitt Material 5.2 beschrieben.

3.2.1 Klonierung der Verpackungsvektoren

Bei der Generierung HI-viraler Verpackungsvektoren wurden bereits mehrfach BGH-Polyadenylierungssignale (BGHpA) verwendet (siehe Einleitung 2.3.3.2). Die Transkriptionstermination retroviraler Genome erfolgt prinzipiell an einem Polyadenylierungssignal im 3'LTR, das sich in den meisten Fällen jedoch als schwach erweist. Dies kann in unvollständiger Polyadenylierung und somit fehlender oder falscher Termination der RNA-Synthese resultieren ¹²⁵, mit der Folge von niedrigen Infektiösen Titern. Starke eukaryontische Polyadenylierungssignale vermitteln sowohl eine Stabilisierung von RNA-Molekülen sowie gesteigerte Export-126 **Translations-Raten** und So konnte demonstriert werden, dass die Polyadenylierungssequenz des "bovine growth hormone" (BGHpA) zu erhöhten RNA-Halbwertszeiten und Expressionsraten von eukaryontischen Genen führt ¹²⁷. Mit dem Ziel, in erster Linie die Partikelproduktion der Verpackungskonstrukte zu erhöhen, wurde der HI-virale 3'LTR durch eine BGHpA-Sequenz ersetzt. Hierzu wurde die Sequenz für das BGH-Polyadenylierungsignal durch PCR mit den Oligonukleotiden Xmal-BGH fwd. und Pacl-BGH rev. aus pcDNA3.1(+) amplifiziert. Durch Fusions-PCR mit den Oligonukleotiden Ncol-delta-LTR fwd., Pacl-delta-LTR fwd., Pacl-Xmal-delta-LTR rev. und Pacl-BGH rev. wurde der 3'LTR aus pTN7 stop (siehe Abb. 8a) entfernt, und anschließend das BGH-PCR-Amplifikat eingefügt. Der entstandene Vektor wurde mit pTN7/BGH bezeichnet (siehe Abb. 8b).

Ergebnisse

Grundsätzlich bedarf die Generierung eines HI-viralen Verpackungskonstrukts die Modifikation der Verpackungssequenz ψ. Dies wird durch die vollständige Deletion der Sekundärstruktur-Schleifen 1 und 3 in ψ erreicht (siehe Einleitung 2.3.3.2). Die resultierende eingeschränkte Interaktion des Verpackungssignals mit dem Strukturprotein Gag führt zum Verlust der Verpackung des autologen RNA-Genoms. Hierzu wurde zunächst der ψ-Sequenzbereich durch PCR mit den Oligonukleotiden *Xhol*-psi fwd. und *Apal*-psi rev. aus dem HI-viralen Vektor pTN7 stop amplifiziert und in den Vektor pCRScript subkloniert. Die Deletionen von Stammschleife 3 und 1 wurden nacheinander durch Fusions-PCRs mit den Oligonukleotiden Xhol-psi fwd., Apal-psi rev., SL3-mut fwd. und SL3-mut rev. bzw. Xhol-psi fwd., Apal-psi rev., SL1-mut fwd. und SL1-mut rev. eingeführt. Anschließend wurde die modifizierte Sequenz über die Restriktionschnittstellen *Nar*I und *Sph*I in pTN7 stop zurückgeführt. Die entstandenen Vektoren wurden pTN7/delta SL3 und pTN7/delta SL1/3 genannt (siehe Abb. 8c und d).

Um das Verpackungskonstrukt induzierbar zu gestalten, wurde die autologe HI-virale Tat-Transaktivierungsfunktion (siehe Einleitung 2.1.2) genutzt. Dies setzte die Zerstörung des Tat-Leserahmens im Ausgangsvektor pTN7 stop voraus. Der gesamte Tat-Leserahmen wurde durch PCR mit den Oligonukleotiden *Xho*I-Tat fwd. und *Apa*I-Tat rev. aus pTN7 stop amplifiziert und in den Vektor pcDNA3.1(+) subkloniert. Durch eine Fusions-PCR mit den Oligonukleotiden *Xho*I-Tat fwd., *Apa*I-Tat rev., Tat-mut. fwd. und Tat-mut. rev. wurde 111 Basen nach dem Start-Kodon ein Leserastersprung eingeführt, was zur Expression einer Stop-Kodon-Variante führte. Die modifizierte Sequenz wurde über die Restriktionschnittstellen *Sal*I und *Nco*I in den Ausgangsvektor pTN7 stop zurückgeführt.

Um nach Transfektion des Verpackungskonstrukts die Zellen zu selektionieren, in die das Verpackungskonstrukt stabil integriert worden war, wurden mehrere Selektionsmarker getestet, deren Expression aus dem ehemaligen Nef-Leserahmen von pTN7 stop erfolgte. Mit dem Oberflächenprotein LNGFR ("Low-Affinity Nerve Growth Factor Receptor") war eine Selektion über das MACS ("Magnetic Activated Cell Sorting")-System möglich, wohingegen mit Zeocin, Neomycin oder Puromycin eine antibiotische Selektion durchgeführt wurde. Im Allgemeinen war für Klonierungen im ehemaligen Nef-Leserahmen die Mutation einer *Kpn*l-Restriktionsschnittstelle im Ausgangsvektor pTN7 stop nötig, die über die

sogenannte "combined-chain-reaction" (CCR) und mit Hilfe des Oligonukleotids *Kpnl*mut. fwd. generiert wurde. Die Sequenz für LNGFR wurde gemeinsam mit dem 5' heterologen CMV-Promotor und der 3' Polyadenylierungsstelle (BGH) durch PCR mit den Oligonukleotiden *Ncol*-CMV-LNGFR fwd. und *Kpnl*-poly-A-LNGFR rev. aus pMACS LNGFR amplifiziert und in den Nef-Leserahmen von pTN7 stop kloniert. Zusätzlich musste für die Klonierung der Sequenz-Kassette CMV-LNGFR-BGH eine *Kpnl*-Stelle im CMV Promotor durch CCR und mit Hilfe des Oligonukleotids CMV-*Ncol* mut. fwd. entfernt werden.

Durch die Kombination aller oben beschriebenen Modifikationen entstand das Tatdefiziente Verpackungskonstrukt pTNpack LNGFR (siehe Abb. 8e). Die Sequenz für das Antibiotika-Resistenzgen Zeocin wurde durch PCR mit den Oligonukleotiden *Rsr*II-Zeo fwd. und *Xba*I-Zeo rev. aus pcDNA3.1(+)/Zeo amplifiziert und ersetzte in pTNpack LNGFR die LNGFR-Kassette, wodurch pTNpack Zeo entstand (siehe Abb. 8f). Die Sequenzen für die Antibiotika-Resistenzgene Neomycin und Puromycin mussten per PCR mit den Oligonukleotiden *PpuM*I-Neo fwd. und *Xba*I-Neo rev. bzw. *Ppu*MI-Puro fwd. und *Xba*I-Puro rev. aus pcDNA3.1(+) (Neomycin) bzw. pBabePuro (Puromycin) amplifiziert werden und ersetzten unter Zerstörung der *Rsr*II-Schnittstelle in pTNpack LNGFR die LNGFR-Kassette, wodurch pTNpack Neo (siehe Abb. 8g) bzw. pTNpack Puro (siehe Abb. 8h) entstanden.

Als Kontrollvektoren für die Charakterisierung der Verpackungskonstrukte wurden desweiteren die Vektoren pTNpack Tat (siehe Abb. 8i) mit einem intakten Tat-Leserahmen und pTNpsi (siehe Abb. 8k) mit einem vollständigen Verpackungssignal Ψ kloniert. Um zudem die Effizienz des generierten Verpackungssystems beurteilen zu können, wurden die Verpackungsvektoren mit dem kommerziellen Verpackungskonstrukt psPax2 verglichen, das in Abb. 8l dargestellt ist. Es zeichnet sich durch einen konstitutiven CMV Promotor, einen Gag-Leserahmen mit artifiziellem Intron als auch durch trunkierte Vpu- und Env-Leserahmen aus.

а

Ergebnisse

Ergebnisse

Abb. 8: Schematische Darstellung der lentiviralen Ausgangsplasmide, der generierten Verpackungsvektoren und des verwendeten kommerziellen Verpackungskonstrukts psPax2. LTR: "long terminal repeat"; BGH: Polyadenylierungssignal; ΔSL3: Deletion von SL3; ΔΨ: Deletion von SL1 und SL3; CMV: CMV-Promotor; tatSTOP: Stop-Mutante von Tat; LNGFR: "Low-Affinity Nerve Growth Factor Receptor"; Zeo: Zeocin; Neo: Neomycin; Puro: Puromycin; CMV enh: CMV "enhancer"; CA: Kapsidprotein; dvpu/denv: jeweils trunkierte Varianten der Proteine Vpu und Env; FRT: "flipase recognition target"; Hygro: Hygromycin

Für die Etablierung einer stabilen Verpackungszelllinie auf Basis des FRT-Rekombinations-Systems von Invitrogen wurde in das bakterielle Rückgrat des Verpackungkonstrukts pTNpack Puro eine FRT-Hygromycin-polyA–Kassette eingefügt (pTNpack Puro FRT; siehe Abb. 8m). Dazu wurde die Sequenz für die FRT-Hygro-poly A-Kassette durch PCR mit den Oligonukleotiden *Pac*I-FRT-HygropA fwd. und *Pac*I-FRT-Hygro-pA rev. aus pcDNA5 FRT amplifiziert und in das mit *Pac*I geschnittene Verpackungskonstrukt pTNpack Puro kloniert.

Um eine stabile Zelllinie mittels Infektion mit HI-viralen Partikeln zu generieren, musste der 3'LTR wiederhergestellt werden. Hierzu wurde das *Kpnl/Not*I -Fragment, das den 3'LTR enthält, aus pTN7 stop ausgeschnitten und entsprechend in pTNpack Puro eingesetzt. Der entstandene Vektor wurde mit pTNpack Puro LTR (siehe Abb. 8n) bezeichnet.

3.2.2 Beschreibung des Transaktivierungsvektors pshuttle und des VSVGkodierenden Plasmids pcDNA/VSVG

Bei pshuttle handelt es sich um einen lentiviralen Vektor mit zwei flankierenden LTR. Hinter einem konstitutiven EF1a-Promoter trägt das Plasmid eine syntatGFP-IRES-Env-Genkassette, die zur Expression eines synthetischen Kodon-optimierten Tat führt. Die synthetische Tat-Sequenz verhindert dabei Rekombinationen zwischen Verpackungskonstrukt und Transfervektor. Mit dem Ziel der Visualisierung von transfizierten oder infizierten Zellen wurde C-terminal an Tat das "green-fluorescentprotein" (GFP) fusioniert (siehe Abb. 9a, freundlicherweise zur Verfügung gestellt von Dr. Alexander Kliche, siehe Material 5.2). Gleichzeitig wird ausgehend von demselben Transkript eine HI-virale Env-Variante translatiert. Somit sind Expression von Tat und Env streng gekoppelt. Zur Expressionskontrolle von Env wurde das pshuttle-Analogon pshuttle LNGFR generiert, das anstelle der Env- eine LNGFR-Genkassette trägt (siehe Abb. 9b, freundlicherweise zur Verfügung gestellt von Dr. Alexander Kliche, siehe Material 5.2). In pcDNA/Env wird das HI-virale Oberflächenprotein von einem konstitutiven CMV-Promotor exprimiert (siehe Abb. 9c, freundlicherweise zur Verfügung gestellt von Dr. Alexander Kliche, siehe Material 5.2). Desweiteren wurde das Plasmid pcDNA/Tat verwendet, das den gesamten Wildtyp-Tat-Leserahmen von pTN7 stop unter der Kontrolle eines konstitutiven CMV Promotors enthält (siehe Abb. 9d). pcDNA/Tat mut. führte zur Expression einer Tat-Stop-Mutante und diente somit als Negativkontrolle bei der Transaktivierung des Verpackungskonstrukts (siehe Abb. 9e).

Abb. 9: Schematische Darstellung der lentiviralen Vektoren pshuttle und pshuttle LNGFR und der pcDNA-basierten Vektoren pcDNA/Env, pcDNA/Tat, pcDNA/Tat mut. und pcDNA/VSVG. EF1α: EF1α-Promotor; syntatGFP: Kodon-optimiertes Tat-GFP-Fusionsprotein; IRES: "internal ribosome entry site"; CMV: CMV-Promotor; VSVG: Glykoprotein des Vesikulären-Stomatitis-Virus

Für die transiente Charakterisierung des Verpackungssystems wurde das Konstrukt pcDNA/VSVG verwendet, das unter der Kontrolle eines konstitutiven CMV-Promotors das Fusionsprotein VSVG des Vesikulären-Stomatitis Virus exprimiert (siehe Abb. 9f, freundlicherweise zur Verfügung gestellt von Dr. Simon Bredl, siehe Material 5.2).

3.2.3 Transiente Charakterisierung des transkomplementären Vektorensystems

Nach Fertigstellung der Verpackungskonstrukte wurden alle Modifizierungen in transienten Transfektionsund Infektionsexperimenten charakterisiert. Dies beinhaltete sowohl den Einfluss der inserierten BGH-Sequenz auf die Virusproduktion als auch die Transaktivierung der Tat-defizienten Verpackungskonstrukte durch exogenes Tat. Desweiteren wurden die Verpackung von autologer und heterologer RNA durch das Verpackungskonstrukt und die verwendeten Selektionsmarker beurteilt.

3.2.3.1 Charakterisierung der 3' BGH-Verpackungsvektoren

Nach Austausch des 3'LTR gegen eine polyA-Sequenz wurde das resultierende Konstrukt pTN7/BGH charakterisiert, indem die Partikelproduktion und die Rekombinationsfähigkeit des pTN7/BGH-Provirus mit dem Zellgenom mithilfe des Renilla-Luciferase-Reporters bestimmt wurden. Hierzu wurden 293T-Zellen entweder mit pTN7 stop und pcDNA/VSVG oder mit pTN7/BGH und pcDNA/VSVG in einem molaren Verhältnis von 2:1 kotransfiziert. Beide lentiviralen Vektoren exprimieren das Enzym Renilla Luciferase aus dem ehemaligen Nef-Leserahmen. Zur Kontrolle wurde pTN7 stop alleine bzw. pcDNA3.1(+), und zum DNA-Mengenausgleich pcDNA3.1(+) transfiziert. Nach 48h wurden die produzierten Virusüberstände im p24-ELISA vermessen. Wie in Abb. 10A dargestellt, erhöhte eine 3'BGH-Seite die Partikelproduktion nach Kotransfektion des pcDNA/VSVG-Konstrukts um circa 74%. Weiterhin zeigte sich, dass eine Kotransfektion des VSVG-kodierenden Konstrukts zu einer Senkung der Partikelmenge führte (pTN7 stop im Vergleich zu pTN7 stop + pcDNA/VSVG).

Abb. 10: Einfluss einer polyA-BGH Stelle auf die Partikelproduktion und die Integrationsfähigkeit eines lentiviralen Vektors.**(A)** 293T-Zellen wurden wie angegeben transfiziert, und die produzierten Viruspartikel nach 48h im p24-ELISA vermessen. **(B)** 293T-Zellen wurden jeweils mit 200ng p24 der in (A) produzierten Virusüberstände infiziert und nach 48h mit Hilfe des Luciferase-Assays (siehe Methoden 6.9.1) analysiert.

Zur Charakterisierung der Integrationsfähigkeit wurden 293T-Zellen mit einem Virusüberstandsvolumen, dem jeweils 200ng p24 entsprachen, infiziert und nach 48h

im Luciferase-Assay (siehe Methoden 6.9.1) ausgelesen (siehe Abb. 10B). Es zeigte sich, dass im Gegensatz zu pTN7 stop basierten Viren pTN/BGH basierte Viren zum Verlust der Luciferase-Aktivität auf Hintergrund-Level führen. Als Hintergrund-Level wurden hierbei Luciferase-Aktivitäten bezeichnet, die auch von Viren hervorgerufen wurde, die nicht mit VSVG pseudotypisiert waren. Die Insertion einer 3' BGH-Stelle verhinderte vermutlich also die virale Integration des pTN7/BGH-Konstrukts in das Zell-Genom und somit die Expression der Luciferase.

3.2.3.2 Transaktivierung der Tat-defizienten Verpackungskonstrukte

Um zunächst im Rahmen eines β-Galactosidase-Reportersystems die Induktion der LTR-abhängigen Transkription durch die verschiedenen Transaktivierungsvektoren (siehe Abb. 9a,d,e) zu zeigen, wurde pcDNA/Tat mut., pcDNA/Tat bzw. pshuttle im MAGI ("Multinuclear activation of galactosidase indicator") -Assay (siehe Methoden 6.9.2) untersucht.

Abb. 11: Transaktivierung des β -Galactosidase-Reportergens durch pcDNA/Tat und pshuttle (A) MAGI Zellen wurden wie angegeben transfiziert und 72h später über das Magi-Färbeverfahren (siehe Methoden 6.9.2) analysiert. (B) Quantitative Auswertung der Abbildungen in (A).

Es zeigte sich, dass die Mutation des Tat-Leserahmens in pcDNA/Tat mut. zur vollständigen Zerstörung der Tat-Expression und somit dem Verlust der Tat-Transaktivierung führte (siehe Abb. 11). pcDNA/Tat als auch pshuttle waren im Stande, die Expression des β -Galactosidase-Reportergens in vergleichbarem Maße zu induzieren. Bei Expression von pshuttle war zudem auffällig, dass es durch Expression von Env zu einer Bildung von Synzytien kommt. Die fusionierten Zellen zeigen sich durch vergrößerte Dots im MAGI-Assay. (siehe Abb. 11, pshuttle) Nach Fertigstellung der Verpackungskonstrukte wurde die Transaktivierung aller Tatdefizienten Konstrukte (siehe Abb. 8) durch pcDNA/Tat bzw. pshuttle im p24-ELISA untersucht. Abb. 12 zeigt exemplarisch die Charakterisierung für pTNpack Puro.

A 125 + pcDNA/VSVG - pcDNA/VSVG 100 024(ng/ml) 75 50 2 orwest Purt population PINPECK PUO * PODMATE DTWP8d Puro * panute PEDMAITSI pshuttle PCDWA В С - vin the second 2.0×104 + × OCOMP pcDNA/VSVG pcDNA/VSVG IU/mI 1.0×10 Pr55 PTNPRCK PUCK PODMATS MUL PINPAR PUR PORTPONUME ,* PEDNAITat PEDMAITat PCDNP pshuttle p24 pTNpacl Tat pTNpack Puro

Abb. 12: Produktion von HI-viralen Partikeln nach Kotransfektion von pTNpack Puro mit pcDNA/Tat und pshuttle in 293T-Zellen. **(A)** 293T-Zellen wurden wie angegeben transfiziert, und die produzierten Viruspartikel nach 48h im p24-ELISA vermessen. **(B)** 293T-Zellen wurden jeweils mit dem gesamten in (A) produzierten Virusüberstand infiziert. Nach 48h wurde der Anteil infizierter Zellen im FACS bestimmt. Daraus ließen sich die Infektiösen Titer der Virusüberstände errechnen. **(C)** 293T-Zellen wurden wie angegeben transfiziert. Nach 48h wurden die Virusüberstande in der Ultrazentrifuge aufkonzentriert und im Western Blot unter Verwendung eines α -p24-Antikörpers analysiert.

Hierzu wurde pTNpack Puro mit pcDNA/Tat bzw. pshuttle im einem molaren Verhältnis von 2:1 in 293T-Zellen kotransfiziert. Als Positivkontrolle wurde pTNpack Tat verwendet, während als Negativkontrollen pTNpack Puro gemeinsam mit pcDNA/Tat mut., pcDNA/Tat bzw. pshuttle alleine und pcDNA3.1(+) transfiziert wurden. Zum Ausgleich der transfizierten DNA-Mengen wurde pcDNA3.1(+) verwendet. Um die Infektiösität des produzierten Virus nach Pseudotypisierung mit VSVG zu untersuchen, wurde jeder Ansatz zusätzlich mit dem Konstrukt pcDNA/VSVG im Verhältnis 2:1:1 kotransfiziert.

Nach 48h Kultivierung wurden die Zellüberstände mittels p24-ELISA analysiert. Wie in Abb. 12A gezeigt, erfolgte eine vergleichbar hohe Transaktivierung des Tatdefizienten pTNpack Puro durch exogenes pcDNA/Tat bzw. pshuttle. Eine vollständige Transaktivierung auf das Level des Wildtyp-Tat in pTNpack Tat konnte allerdings nicht erreicht werden. Weiterhin zeigte sich, dass eine Kotransfektion des VSVG-kodierenden Konstrukts zu einer Senkung der Partikelmenge führte. Zur Bestimmung der Infektiösen Titer wurden 293T-Zellen mit den Virusüberständen infiziert. Nach 48h wurde der Anteil der infizierten Zellen über das TatGFP-Signal im FACS bestimmt und die Infektiösen Titer der Virusüberstände errechnet (siehe Abb. 12B). So konnte gezeigt werden, dass es nur nach Kotransfektion von pcDNA/VSVG zur Produktion von infektiösen Viruspartikeln kam. Für Western Blot-Analysen wurden 293T-Zellen mit pTNpack Puro und pcDNA/Tat mut., pcDNA/Tat oder pshuttle transfiziert. Zur Kontrolle wurde pTNpack Tat transfiziert, während zum Ausgleich der transfizierten DNA-Mengen pcDNA3.1(+) verwendet wurde. Nach 48h wurden die Zellkulturüberstände in der Ultrazentrifuge (63000g, 2,5h, 4°C) aufkonzentriert. Um eine starke Kreuzreaktion der verwendeten Antikörper mit fötalem Kälberserum (FKS) zu vermeiden, war dem Kultivierungsmedium zuvor nur 3% FKS zugesetzt worden. Jeweils ein 50µl-Aligot der Virussuspension wurde über ein 10%-iges SDS-PA-Gel aufgetrennt. Nach dem elektrischen Transfer aller Proteine auf eine Membran mit einer Porengrösse von 0,45µm konnte das Pr55-Vorläuferprotein und das prozessierte p24 durch Inkubation der Membran mit dem Maus-α-p24(13/5)-Antikörper und dem sekundären α-Maus-HRP-Antikörper (siehe Methoden 6.5.3) identifiziert werden. Wie in Abb. 12C zu sehen ist, entstand nach Kotransfektion von pTNpack Puro und pcDNA/Tat bzw. pshuttle vollständig prozessiertes p24 und somit reife Viruspartikel.

3.2.3.3 Verpackung von heterologer pshuttle-Vektor-RNA

Nach Umklonierung der Sequenzbereiche mit der SL3-Deletion bzw. der SL1/3-Deletion in den pTN7 stop-Kontext (pTN7/delta SL3 bzw. pTN7/delta SL1/3; siehe Abb. 8) wurden beide Mutanten bezüglich der autologen Verpackungskapazität Renilla-Luciferase im analysiert. Hierzu wurde die Nef-Leserahmen des Ausgangsvektors pTN7 stop als Reporter benutzt. Beide Konstrukte und pTN7 stop als Kontrolle wurden gemeinsam mit pcDNA/VSVG in einem molaren Verhältnis von 2:1 in 293T-Zellen transfiziert. Als weitere Kontrolle und zum DNA-Mengenausgleich wurde zeigte pcDNA3.1(+) verwendet. Es sich. dass abhängig vom Manipulationsgrad der psi-Sequenz eine Senkung der Partikelproduktion eintritt (siehe Abb.13A).

Abb. 13: Einfluss einer Deletion der HI-viralen Verpackungssequenz Ψ auf die Verpackung autologer RNA Genome. **(A)** 293T-Zellen wurden wie angegeben transfiziert, und nach 48h die produzierten Viruspartikel im p24-ELISA vermessen. **(B)** 293T-Zellen wurden jeweils mit 500ng p24 der in (A) produzierten Virusüberstände infiziert und nach 72h mit Hilfe des Luciferase-Assays analysiert.

Nach 48 Stunden wurden die Viruspartikel in den Zellüberständen im p24-ELISA vermessen, und 293T-Zellen mit jeweils 500ng p24 infiziert. 72h später wurde das Luciferase-Signal in den infizierten Zellen gemessen (siehe Abb. 13B). Bei Zellen, die mit Virus infiziert wurden, welches durch pTN7/delta SL3 generiert worden war, konnte ein leicht gesenktes Luciferase-Signal im Vergleich zu pTN7 stop detektiert

werden (92% bezüglich pTN7 stop), während bei pTN7/delta SL1/3 das Luciferase-Signal stark vermindert war (14 % bezüglich pTN7 stop).

А

В

Abb. 14: Einfluss einer Deletion der HI-viralen Verpackungssequenz Ψ auf die Verpackung heterologer RNA Genome. (A) 293T-Zellen wurden transfiziert, und nach 48h die produzierten Viruspartikel im p24-ELISA vermessen. (B) 293T-Zellen wurden jeweils mit 90ng p24 der in (A) produzierten Virusüberstände infiziert, und nach 72h der Anteil infizierter Zellen per FACS analysiert.

Nach Fertigstellung der Verpackungskonstrukte wurde für pTNpack Puro exemplarisch die trans-Verpackungskapazität der Verpackungskonstrukte analysiert

(siehe Abb. 14). Das von pshuttle kodierte Tat-GFP-Fusionsprotein wurde als Reporter verwendet. pTNpack Puro bzw. das *Y*-intakte Analogon pTNpsi wurde mit pshuttle und pcDNA/VSVG in einem molaren Verhältnis von 2:1:1 in 293T-Zellen kotransfiziert. Um das generierte Verpackungssystem mit einem kommerziellem Konstrukt zu vergleichen, wurde psPax2 mit pshuttle und dem VSVG-kodierenden Plasmid kotransfiziert. Zur Kontrolle wurden sowohl pshuttle alleine als auch alle Ansätze jeweils ohne pcDNA/VSVG pipettiert. Als weitere Kontrolle und zum DNA-Mengenausgleich diente pcDNA3.1(+). Nach 48 Stunden wurden die Viruspartikel in den Zellüberständen im p24-ELISA vermessen. Wie in Abb. 14A zu sehen, wird nach Transfektion von pTNpack Puro, pTNpsi bzw. psPax2 etwa gleich viel Virus produziert. Nach Kotransfektion des pcDNA/VSVG-Konstrukts bleibt die Expression von psPax2 konstant, während bei pTNpack Puro und pTNpsi eine Senkung der Virusmenge eintritt. 293T-Zellen wurden mit jeweils 90ng p24 infiziert. Nach 72h wurde das GFP-Signal in den infizierten Zellen gemessen. Wie in Abb. 14B gezeigt, führte mit pTNpack Puro generiertes Virus zu einer höheren Anzahl GFP-positiver Zellen (22%) als mit pTNpsi generiertes Virus (3%). Die Infektion mit psPAX2generiertem Virus resultierte in 20% GFP-positiver Zellen. Desweiteren konnte mit Viren, die nicht mit VSVG pseudotypisiert waren, keine Infektion nachgewiesen werden.

3.2.3.4 Beurteilung der verschiedenen Selektionsverfahren

Für die Selektion positiver Zellklone nach Generierung der stabilen Zelllinien wurde sowohl das Verfahren der Aufreinigung über magnetische Beads als auch der antibiotischen Selektion getestet. Im Rahmen der Selektion über magnetische Beads wurde pTNpack LNGFR verwendet, in dem das Oberflächenprotein LNGFR in den ehemaligen Nef-Leserahmen des Ausgangskonstrukts kloniert worden war. Ab 72h nach Transfektion des Konstrukts in die Flp-In T-Rex 293-TO-VSVG-Zelllinie wurde die vorliegende polyklonale Zellmischung regelmäßig über das MACS Verfahren sortiert (siehe Methoden 6.3.4). Die Effizienz der Sortierung wurde jeweils durch Färbung LNGFR-positiver Zellen mit dem Antikörper α -CD271 (LNGFR)-PE vor und nach der Selektion im FACS überprüft (siehe Methoden 6.8). Zur Kontrolle wurden untransfizierte Flp-In T-Rex 293-TO-VSVG-Zellen im FACS analysiert. So war es durch eine einmalige Anwendung des Verfahrens möglich, die Anzahl LNGFR-
positiver Zellen in der Mischpopulation von z.B 8% auf über 39% positiver Zellen zu heben (siehe Abb. 15).

Abb. 15: Selektion von stabilen Flp-In T-REx 293-TO-VSVG pTNpack LNGFR-Zellen über das MACS System an Tag 34 und 48 nach der Transfektion des pTN pack LNGFR Konstrukts (Darstellung eines repräsentativen Experiments).

Allerdings konnte durch das Verfahren der MACS-Selektionierung keine 100%-ige Anreicherung von stabilen Zellen erreicht werden. Zudem war es nötig, die Selektionierung in kurzen Zeitabständen zu wiederholen, um den Anteil LNGFRpositiver Zellen zu erhalten. Aufgrund dieser Zeit- als auch Kostenintensität wurde als Alternative die antibiotische Selektion bevorzugt. Nach Charakterisierung der Antibiotika Zeocin, Neomycin und Puromycin, die eine Titration der richtigen Antibiotika-Konzentration bei Kontrollzellen als auch bei Verpackungszellen beinhaltete (Zeocin: 500µg/ml; Neomycin: 700µg/ml), wurde Puromycin zur Selektion der stabilen Zelllinien gewählt. Bereits nach einigen Tagen unter Zugabe von 2µg/ml Puromycin war ein Erfolg der Selektion durch Bestimmung der Zellzahl bemerkbar und erste resistente Zellklon-Foci unter dem Mikroskop sichtbar.

Die über das FRT-Rekombinationssystem von Invitrogen generierte Zelllinie wurde nach Angaben des Herstellers durch Gabe von 100µg/ml Hygromycin selektioniert.

3.3 Etablierung der stabilen HI-viralen Verpackungszelllinie

Nach Charakterisierung der Verpackungskonstrukte erfolgte die Etablierung von stabilen Verpackungszelllinien unter Verwendung der Vektoren pTNpack Puro, pTNpack Puro FRT und pTNpack Puro LTR. Dies geschah über drei verschiedene Ansätze: 1) Zufällige Integration (siehe 3.3.2.1) 2) Gerichtete Rekombination über FRT-Seiten (siehe 3.3.2.2) und 3) Infektion und virale Integrase-vermittelte Integration (siehe 3.3.2.3).

3.3.1 Verwendung des Proteaseinhibitors Saquinavir

Schon mehrfach wurde beschrieben, dass es bei der Generierung einer HI-viralen stabilen Zelllinie zu einer Negativ-Selektion von Zellklonen kam, auch wenn sie nur geringe Level der viralen Proteine exprimierten. Ursache hierfür war die HI-virale Protease, die zelltoxisch wirkte. Deshalb wurde trotz der Induzierbarkeit der stabilen Zelllinien bei der Selektion Saquinavir, ein potenter Hemmstoff der Protease, verwendet. Zunächst wurde in transienten Expressionsanalysen der Einfluss steigender Mengen von Saquinavir auf das Prozessierungsmuster von Gag untersucht.

Abb. 16: Einfluss von Saquinavir auf die Prozessierungsaktivität der HI-viralen Protease. 293T-Zellen wurden wie angegeben transfiziert und unter Zugabe ansteigender Mengen an Saquinavir kultiviert. Nach 48h wurden die Virusüberstände durch Ultrazentrifugation aufkonzentriert und durch Western Blot analysiert.

Hierzu wurden 293T-Zellen mit pTNpack Puro und pcDNA/Tat in einem molaren Verhältnis von 2:1 kotransfiziert und unter Zugabe von 1,5µM, 3µM, 6µM, 12µM und 24µM Saquinavir für 48 Stunden kultiviert. Die Zellüberstände wurden in der Ultrazentrifuge aufkonzentriert (63000g, 4°C, 2,5h) und anschließend mittels Western Blot durch den primären Antikörper Maus- α -p24 (13/5) und den sekundären Antikörper α -Maus-HRP (siehe Methoden 6.5.3) analysiert. Es zeigte sich, dass bereits bei einer Konzentration von 1,5µM Saquinavir kein vollständig prozessiertes p24 im Zellüberstand mehr nachgewiesen werden konnte. Bei einer Konzentration von 24µM war die Prozessierung des Gag-Vorläuferproteins vollständig unterbunden (siehe Abb. 16).

Basierend auf den oben dargestellten transienten Ergebnissen wurden alle stabilen Zelllinien unter Zugabe von Saquinavir generiert.

3.3.2 Darstellung der verschiedenen Verfahren zur Herstellung der stabilen Zelllinie

3.3.2.1 Zufällige Rekombination

Als methodisch einfachste Art, eine HI-virale Verpackungszelllinie zu generieren, wurde die Transfektion des linearisierten Verpackungskonstrukts durchgeführt. Die Verpackungszellinie wurde auf Basis einer 293T-Zellinie generiert, die stabil und induzierbar VSVG exprimierte (Flp-In T-REx 293-TO-VSVG). Diese Zelle war mithilfe des FRT-Rekombinationssystems von Invitrogen hergestellt worden, indem über homologe FRT-Seiten im Zellgenom und im Transgenvektor die Gensequenz für VSVG in die DNA der Zielzelle eingefügt wurde. Eine Induktion der VSVG-Expression ließ sich aufgrund von Tetracyclin-responsiven Seguenzelementen im Promotorbereich durch Doxycyclin erreichen. 72h nach Transfektion des linearisierten pTNpack Puro-Konstrukts in Flp-In T-REx 293-TO-VSVG -Zellen wurde dem Kulturmedium Puromycin in einer Konzentration von 2 µg/ml zugesetzt, um die Zellen zu selektionieren, in denen zufällige Integration des Verpackungskonstrukts in das Zellgenom stattgefunden hatte. Die Generierung der Zelllinie wurde unter Zugabe von 6 µM, 12 µM und 24 µM Saquinavir ausgeführt. Durch "Limited Dilution" (siehe Methoden 6.3.7) wurden 84 Puromycin-resistente Einzelklone generiert, die nachfolgend untersucht wurden. Hierzu wurden alle Zellklone mit pcDNA/Tat transfiziert und 48 Stunden kultiviert. Im p24-ELISA wurde anschließend die Konzentration an p24 im Zellüberstand gemessen (siehe Abb. 17 A).

A

В

Abb. 17: Einfluss von Saquinavir auf die Partikelproduktion selektionierter Zellklone. (A) 84 stabile Zellklone wurden mit pcDNA/Tat transfiziert, und die produzierten Viruspartikel nach 48h im p24-ELISA vermessen. (B) Ausgewählte Zellklone wurden mit pcDNA/Tat transfiziert, und die produzierten Viruspartikel nach 48h im p24-ELISA vermessen. Zusätzlich wurden alle Überstände durch Zugabe von exogener HI-viraler Protease nachprozessiert.

Es zeigte sich, dass mit steigender Konzentration an zugesetztem Saquinavir Zellklone auftraten, die nach Transaktivierung durch pcDNA/Tat erhöhte Mengen an p24 produzierten. Allerdings waren die Level an p24 im Vergleich zur transienten Kotransfektion des Verpackungskonstrukts mit pcDNA/Tat stark gesenkt (Vergleich Abb. 17 A und 12 A).

Ergebnisse

Grundsätzlich wurde nach der Transfektion der Zellen mit pcDNA/Tat dem Kulturmedium kein Saquinavir mehr zugesetzt, um die vollständige Prozessierung des Gag-Vorläuferproteins in p24 und somit die genaue Auswertung der p24-Werte im p24-ELISA nach Transfektion zu ermöglichen. Eine Nachprozessierung der Viruspartikel mit einer exogenen HI-viralen Protease verifizierte, dass 48 Stunden nach Transfektion ein Großteil des Gag-Proteins vollständig zu p24 gespalten war (siehe Abb. 17 B). Als Paralellansätze wurden weitere Zielzellen (293T, Flp-In T-REx 293, Flp-In T-REx 293-TO-wtgp64, siehe Material 5.1.1.) zur Generierung der Verpackungszelllinien verwendet, um den Einfluss der Basiszelllinie auf die Produktion von Viruspartikeln zu untersuchen. Ebenfalls wurden andere Selektionssysteme (pTNpack LNGFR über MACS, pTNpack Zeo, pTNpack Neo) getestet. Mit allen Zelllinien und Konstrukten wurde wie oben beschrieben verfahren. Jedoch führte keine der Alternativen zu einer Steigerung der Partikelproduktion.

3.3.2.2 FRT-Rekombination

Wie in 3.3.2.1 dargestellt, führte die Methode der zufälligen Integration zwar zu einer HI-viralen Verpackungszelllinie, jedoch erreichte die Partikelproduktion nach Transaktivierung des integrierten Konstrukts keine zufriedenstellenden p24-Werte. Dies führte zu der Überlegung, auf das FRT-Rekombinationssystem der Firma Invitrogen zur Generierung stabiler Zelllinien zurückzugreifen, mit dem das Verpackungskonstrukt in eine definierte Stelle des Zellgenoms integriert wird, und so konstant hohe Expressionslevel verspricht. Wie unter 3.2.1 beschrieben, wurde in das Vektorrückgrat des Verpackungskonstrukts pTNpack Puro eine FRT-Hygro-poly A-Kassette eingefügt, die die Generierung einer stabilen Zelllinie über homologe Rekombination zwischen der FRT-Seite im Verpackungskonstrukt und der homologen bereits inserierten Sequenz im Zielzellgenom einer Flp-In 293-Zelle (siehe Material 5.1.1) erlaubte. 48 Stunden nach Transfektion des zirkulären Verpackungskonstrukts gemeinsam mit dem Konstrukt pOG44 (siehe Material 5.2), das die notwendige Rekombinase kodierte, erfolgte die Selektion rekombinanter Flp-In 293 Zellen unter Zugabe von 24µM Saguinavir und 100µg/ml Hygromycin. Das entsprechende Resistenzgen wurde vom Verpackungskonstrukt kodiert und erhielt erst nach stattgefundener Rekombination ein Startkodon. Überraschenderweise ließen sich mit dem FRT-Verfahren keine stabilen Zellklone selektionieren.

3.3.2.3 Integrase-vermittelte Rekombination

Bei der Generierung einer stabilen Verpackungszelllinie sowohl über zufällige Rekombination als auch über homologe FRT-vermittelte Rekombination musste ausgegangen werden, dass nur eine bzw. wenige davon Kopien des Verpackungskonstrukts pro Zelle integriert wurden. Mit dem Ziel, viele Kopien in eine Zelle zu integrieren und somit die Virusproduktion nach Transaktivierung zu erhöhen, wurde die Etablierung einer stabilen HI-viralen Verpackungszelllinie über Infektion von Zielzellen erprobt. Da selbst ein Ψ -deletiertes Verpackungskonstrukt eine Verpackung des eigenen RNA-Genoms in geringem Ausmass erlaubte (siehe 3.2.3.3), wurden so nach transienter Kotransfektion eines Verpackungskonstrukts mit pcDNA/Tat ausreichend Partikel gebildet, die eine Kopie des Verpackungskonstrukts trugen. Zudem wurde ein Verpackungskonstrukt gewählt, das anstatt der 3'BGH-Seite (pTNpack Puro) einen intakten 3'LTR besaß (pTNpack Puro LTR), um nach der Infektion eine HIV-1 Integrase-vermittelte Integration des Verpackungskonstrukts in das Zellgenom zu vermitteln. pTNpack Puro LTR, pcDNA/Tat und das VSVG kodierende Konstrukt pcDNA/VSVG wurden hierzu in einem molaren Verhältnis von 2:1:1 in 293T-Zellen kotransfiziert. Nach 48 Stunden wurde der virushaltige Zellüberstand abgenommen und im p24-ELISA vermessen. Anschließend wurden Flp-In T-REx 293-Zellen mit 50ng p24 und unter Zugabe von 8µg/ml Polybrene infiziert. Die Wahl von Flp-In T-REx 293-Zellen sollte eine spätere Einbringung einer Oberflächenprotein-Pseudotypisierung, wie z.B. VSVG über das FRT-Rekombinationssystem, ermöglichen. 72h der Infektion nach wurde das Zellkulturmedium mit 2µg/ml Puromycin versetzt, um Zellen zu selektionieren, in denen das Verpackungskonstrukt ins Zellgenom integriert hatte. Zusätzlich wurde 24µM Saquinavir zugegeben. Um die Virusproduktion nach Transaktivierung des integrierten Verpackungskonstrukts zu erfassen, wurden die selektionierten Zellen mit pcDNA/Tat bzw. pcDNA/Tat mut. transfiziert. Nach 48 Stunden wurde die Virusmenge im Zellüberstand im p24-ELISA vermessen. Wie in Abb. 18 gezeigt, konnten jedoch auch mit der Methode der Integrase-vermittelten Generierung einer Verpackungszellinie keine ausreichenden p24-Level erreicht werden.

Abb. 18: Produktion von Viruspartikeln durch die stabile Zelllinie Flp-In T-REx 293 pTNpack Puro LTR. Die stabile Zelllinie wurde transfiziert, und die produzierten Viruspartikel nach 48h im p24-ELISA vermessen.

Zusammenfassend konnte mit der FRT-Methode keine stabile Verpackungszelllinie generiert werden, während die Etablierung einer stabilen Zelllinie mittels zufälliger Rekombination oder Infektion zu Zelllinien mit vergleichbarer Virusproduktion führte. Da die Wahl der Integrase-vermittelten Zelllinie eine Durchführung aller Experimente unter S3-Sicherheitsbedingungen erfordern würde (Produktion von integrationsfähigen Virionen), wurde die mit pTNpack Puro über zufällige Rekombination generierte Verpackungszelllinie für alle weiteren Experimente gewählt.

3.4 Charakterisierung der stabilen HI-viralen Verpackungszelllinie

3.4.1 Genetische Verifizierung

Die durch "Limited Dilution" erhaltenen Einzelklone (siehe 3.3.2.1) wurden zunächst durch Nachweis des in die genomische DNA integrierten Verpackungskonstrukts pTNpack Puro charakterisiert. Hierzu wurde genomische DNA aus ausgewählten Einzelklonzellen isoliert und anschließend in eine PCR gemeinsam mit Oligonukleotiden eingesetzt, die im Gag-Bereich des HIV-Genoms binden (siehe Abb. 19, Oligonukleotid-Paar a, pTN7/13 fwd./pTN7/16 rev.). Zum Ausschluss von rezirkularisierten und somit episomalen Formen des Verpackungskonstruktes pTNpack Puro wurden Oligonukleotide gewählt, die 5' bzw. 3' der

Linearisierungsschnittstelle *Nae*l liegen (siehe Abb. 19, Oligonukleotid-Paar b, pTN7/7 fwd./pTN7/12 rev.). Zur Kontrolle wurde pTNpack Puro-Plasmid-DNA verwendet. Von sechs untersuchten Klonen lag das Konstrukt nur in einem Fall episomal vor, während bei fünf Klonen pTNpack Puro stabil in das Genom der Flp-In T-REx 293 -TO-VSVG-Zelle integriert war (siehe Abb. 19).

Abb. 19: Verifizierung stabiler Verpackungszellklone durch den Nachweis von integriertem pTNpack Puro-Vektor. Die genomische DNA von 6 ausgewählten stabilen Zellklonen wurde isoliert und mit pTNpack Puro spezifischen Oligonukleotiden amplifiziert. Zur Kontrolle wurde zirkuläres Plasmid amplifiziert. Zur Größenabschätzung wurde ein 1kb Größenstandard verwendet.

Für die stabilen Zellklone 42-9 und 42-32 wurde zusätzlich die vorliegende Kopienzahl des Verpackungskonstrukts durch Real-time-PCR-Analysen bestimmt (dargestellt für Klon 42-9, siehe Abb. 20). Zur Kontrolle wurden Flp-In T-REx 293-TO-VSVG-Zellen verwendet. Hierzu wurde genomische DNA isoliert und ein 200bp großer Sequenzbereich mit pTNpack Puro spezifischen Oligonukleotiden (pTN7/19 fwd., pTN7/20 rev.) amplifiziert. Als Referenzgen diente β-2-Mikroglobulin, das im Genom von 293T-basierten Zellen in genau 2 Kopien vorliegt. Zum Ausschluss von Artefakten wurde das Gen über zwei verschiedene spezifische Oligonukleotid-Paare (β-2-Mikroglobulin 1 fwd./ β-2-Mikroglobulin 1 rev. und β-2-Mikroglobulin 2 fwd./ β-2-Mikroglobulin 2 fwd./ β-2-Mikroglobulin 2 rev.) amplifiziert. Mit Hilfe der in der Real-time-PCR ermittelten CP-

Werte für beide Amplifikate wurde schließlich ein relatives Verhältnis zwischen pTNpack Puro-Kopien und Mikroglobulin-Kopien errechnet. Mit einem relativen Verhältnis von ca. 2 ergab sich so eine Kopienzahl von 1 sowohl für den stabilen Zellklon 42-9 als auch für den Klon 42-32.

Abb. 20: Bestimmung der Kopienzahl von Klon 42-9 durch Real-time-PCR-Analysen. Genomische DNA wurde isoliert und mit pTNpack Puro spezifischen Oligonukleotiden amplifiziert. Zur Bestimmung eines relativen Verhältnisses bezüglich der Kopienzahl wurde β -2-Mikroglobulin mit spezifischen Oligonukleotiden amplifiziert.

Aufgrund der geringen Partikelproduktion nach Transaktivierung mit pcDNA/Tat wurde bei Klon 42-9 und 42-32 außerdem die Sequenz-Integrität des 5'LTR-

Promotors und des GagPol-Leserahmens durch Sequenzierung überprüft. Hierzu wurde genomische DNA isoliert und mit den Oligonukleotiden *Nae*l-Test fwd. und pTN7/20 rev. amplifiziert. Die Sequenzierung des Amplifikats zeigte, dass sowohl der Promotor als auch der Leserahmen des Haupt-Strukturproteins Gag und der Leserahmen für die HI-virale Protease korrekt waren.

Als weiterer Faktor der geringen Partikelproduktion durch die stabile Verpackungszelllinie wurde "Silencing" Zelllinie ein der durch chromatinmodifizierende Prozesse diskutiert ¹²⁸. Um diese Fragestellung zu klären, wurde versucht, die Chromatinstruktur durch Zugabe von Natriumbutyrat zu beeinflussen. Natriumbutyrat ist als Hemmstoff der Histondeacetylasen bekannt und kann so eine Hemmung der Transkription am HIV 5'LTR aufheben. Dazu wurden drei ausgewählte Zellklone nach Transfektion mit pcDNA/Tat unter Zugabe von 10 mM Natriumbutyrat kultiviert. 48 Stunden nach der Transfektion wurden die Zellüberstände im p24-ELISA vermessen (siehe Abb. 21). Es zeigte sich, dass auch mit Gabe von Natriumbutyrat keine weitere Steigerung der Virusproduktion erreicht werden konnte. Ein "Silencing" durch Histonacetylierungen konnte somit ausgeschlossen werden.

Abb. 21: Einfluss von Natriumbutyrat auf die Virusproduktion ausgewählter Verpackungszellklone. Die Zellklone wurden mit pcDNA/Tat transfiziert und unter Zugabe von 10 mM Natriumbutyrat (NaBu) kultiviert. Nach 48h wurden die produzierten Viruspartikel im p24-ELISA vermessen.

Für die weitere Charakterisierung der stabilen Zelllinie wurde der Zellklon 42-9 gewählt.

3.4.2 Expression des VSVG Fusionsproteins durch den Zellklon 42-9

Zunächst wurden 42-9-Zellen bezüglich der Expression von VSVG analysiert. Zur Induktion der VSVG-Expression sollte dem Medium, nach Angaben der Firma Invitrogen, Doxycyclin in einer Endkonzentration von 1 µg/ml zugegeben werden. Aufgrund der Zelltoxizität von VSVG¹²⁹ wurde untersucht, inwiefern auch geringere Doxycyclin-Konzentrationen zum einen die VSVG-Expression induzieren können und zum anderen eine hohe Partikelproduktion und Infektiöse Titer erlauben.

Abb. 22: Einfluss verschiedener Konzentrationen von Doxycyclin auf die Expression von VSVG und die Produktion infektiöser Viruspartikel durch den stabilen Zellklon 42-9. 42-9-Zellen wurden mit pshuttle transfiziert und unter Zugabe verschiedener Mengen an Doxycyclin (Dox) kultiviert. **(A)** Nach 120h wurde die Anzahl VSVG-positiver Zellen im FACS und **(B)** die Produktion von Viruspartikeln im p24-ELISA bestimmt. **(C)** 293T-Zellen wurden mit den in (B) generierten Virusüberständen infiziert. Nach 48h wurde die Anzahl infizierter Zellen im FACS bestimmt. Daraus ließen sich die Infektiösen Titer der Virusüberstände errechnen.

42-9-Zellen wurden mit pshuttle-DNA transfiziert und unter Zugabe von entweder 1µg/ml, 0,1µg/ml oder 0,01µg/ml Doxycyclin kultiviert. Nach 5 Tagen erfolgte die

Analyse von VSVG-positiven Zellen im FACS mit dem primären Maus- α -VSVG- und dem sekundären α -Maus IgG1-PE-Antikörper (siehe Abb. 22, siehe Methoden 6.5.3). Wie in Abb. 22A dargestellt, konnte mit allen Konzentrationen eine ähnliche Anzahl VSVG-positiver Zellen erreicht werden. Die produzierten Virusüberstände wurden im p24-ELISA vermessen (siehe Abb. 22B). Zusätzlich wurden 293T-Zellen mit den Virusüberstände ninfiziert und nach 48h im FACS analysiert, um die Infektiösen Titer der Überstände zu bestimmen (siehe Abb. 22C). Bezüglich dieser beiden Parameter ergaben sich starke Unterschiede zwischen den verschiedenen Doxycyclin-Konzentrationen. So konnten 5 Tage nach Transfektion von pshuttle und Induktion mit 0,1 μ g/ml oder 0,01 μ g/ml Doxycyclin. Die Analyse infizierter 293T-Zellen zeigte, dass durch Induktion mit 0,1 μ g/ml und 0,01 μ g/ml Doxycyclin zudem höhere Infektiöse Titer erreicht werden konnten als mit 1 μ g/ml Doxycyclin.

Abb. 23: Vergleich der Zelllinien Flp-In T-REx 293-TO-VSVG und 42-9 bezüglich der VSVG-Expression nach Induktion mit Doxycyclin. 293T-, Flp-In T-REx 293-TO-VSVG- und 42-9-Zellen wurden mit pshuttle transfiziert und unter Zugabe von 0,01µg/ml Doxycyclin (Dox) kultiviert. Nach 5 Tagen wurde die Anzahl der VSVG-positiven Zellen im FACS bestimmt.

Zum Vergleich der Verpackungszelllinie 42-9 mit der Ausgangszelllinie Flp-In T-REx 293-TO-VSVG wurden 42-9-Zellen mit pshuttle transfiziert und unter Zugabe von 0,01µg/ml Doxycyclin kultiviert. Mit Flp-In T-REx 293-TO-VSVG-Zellen und 293T-Zellen wurde gleichermaßen verfahren. Die Expression des VSVG-

Oberflächenproteins wurde 5 Tage nach Transfektion durch FACS-Analysen untersucht (siehe Abb. 23). Hierbei zeigte sich, dass sich die VSVG-Expression in der Zelllinie 42-9 durch Induktion mit 0,01µg/ml Doxycyclin in gleichem Maße induzieren ließ wie in der Basis-Zelllinie Flp-In T-REx 293-TO-VSVG. Zusätzlich schien die Transfektion von pshuttle keinen signifikanten Effekt auf die Expression von VSVG zu haben.

3.4.3 Produktion von infektiösen Viruspartikeln durch den Zellklon 42-9

Um eine maximale Partikelausbeute durch die stabile HI-virale Verpackungszelllinie 42-9 zu gewährleisten, sollte der optimale Zeitpunkt nach Transfektion von pshuttle für die Ernte der Viruspartikel ermittelt werden. Zusätzlich wurde der Einfluss von verschiedenen Mengen an pshuttle-DNA auf die Virusproduktion untersucht.

А

В

Abb. 24: Expressionskinetik von TatGFP und p24 durch den stabilen Zellklon 42-9 nach Transfektion von pshuttle. 42-9-Zellen wurden mit unterschiedlichen Mengen pshuttle transfiziert und für 8 Tage kultiviert. Im Abstand von 24h wurde (A) die Anzahl GFP-positiver und (B) die Anzahl p24-positiver Zellen im FACS analysiert.

Ergebnisse

 $5x10^5$ 42-9 Zellen wurden hierzu mit 0,5µg, 1µg oder 2µg pshuttle DNA transfiziert und unter Zugabe von 0,01µg/ml Doxycyclin kultiviert (siehe Abb. 24). An 8 folgenden Tagen wurde jeweils durch FACS Analysen der prozentuale Anteil TatGFP-positiver Zellen (siehe Abb. 24A, siehe Methoden 6.8) bestimmt. Durch Permeabilisierung mit Saponin und Inkubation der Zellen mit dem α -p24-RD1-Antikörper wurden p24-positive Zellen angefärbt (siehe Abb. 24B).Es zeigte sich, dass der Anteil der TatGFP-positiven Zellen der Kinetik einer transienten Transfektion folgt und dementsprechend am Tag 2 nach Transfektion die höchsten Werte erreichte und dann stetig sank. Eine Transfektion mit 1µg pshuttle lieferte die besten Ergebnisse. Die Kinetik der p24-Expression ergab ein differentes Bild. Der Anteil der p24-positiven Zellen stieg bis Tag 5, um dann wieder abzufallen. Dies ließ sich durch die Transaktivierung des Verpackungsvektors durch das pshuttle-Konstrukt erklären, die verzögert nach Expression des TatGFP-Fusionsproteins eintrat. Mit 1µg DNA konnten hier ebenfalls die besten Werte erreicht werden.

Die Viruspartikel, die im Zeitraum von 24h vor Ernte produziert worden waren, wurden im p24-ELISA vermessen (siehe Abb. 25A). Die Partikelproduktion bei der Transfektion der stabilen Zelllinie 42-9 folgte einem bivalenten Verlauf. Zunächst stieg die Virusproduktion stark an, um dann ab Tag 4 nur noch leicht zu steigen (siehe Abb 25A). Dieses Ergebnis lässt sich gut mit den in Abb. 24B dargestellten FACS-Daten in Einklang bringen. Mit 0,5µg und 1µg transfiziertem pshuttle konnte der höchste Wert an Virus im Zellüberstand erreicht werden, während Transfektion von 2µg Vektor zu niedrigeren p24-Werten führte. Die Transfektion von hohen Mengen an Transaktivierungsvektor führte folglich sogar zur Inhibition der Virusproduktion. Die Infektiösen Titer wurden durch Infektion von 2µg bestimmt (siehe Abb. 25B). Es zeigte sich, dass die Transfektion von 1µg bzw. 2µg Vektor zu den höchsten Infektiösen Titern führte. Die Transfektion von 2µg pshuttle resultierte folglich im Vergleich zu einer Transfektion mit 0,5µg DNA in einem höheren Anteil infektiöser Viren.

Abb. 25: Kinetik der Produktion von infektiösen Viruspartikeln durch den Zellklon 42-9 nach Transfektion von pshuttle. 42-9-Zellen wurden mit verschiedenen Mengen pshuttle transfiziert und für 8 Tage kultiviert. (A) Im Abstand von 24h wurde die Produktion von Viruspartikeln im p24-ELISA vermessen. (B) 293T-Zellen wurden mit den in (A) generierten Virusüberständen infiziert. Nach jeweils 48h wurde die Anzahl infizierter Zellen im FACS bestimmt. Daraus ließen sich die Infektiösen Titer der Virusüberstände errechnen.

Zum Nachweis der Komplementarität zwischen der Verpackungszelllinie 42-9, dem Transaktivierungsvektor pshuttle und der induzierbaren VSVG-Expression wurden die optimierten Parameter bezüglich der Menge an transfiziertem pshuttle-Vektor, der Doxycyclin-Menge und des Zeitpunkts für die Virusernte zur Produktion von infektiösen Viruspartikeln verwendet. Hierzu wurden 5x10⁵ 42-9-Zellen mit 1µg pshuttle transfiziert und unter Zugabe von 0,01µg/ml Doxycyclin kultiviert (siehe Abb 26). Zur Kontrolle wurden pcDNA/Tat mut., pcDNA/Tat und pcDNA/Env verwendet. Zudem wurden 42-9-Zellen mit allen Ansätzen transfiziert, ohne mit Doxycyclin

induziert zu werden. 5 Tage nach Transfektion wurden die produzierten Überstände im p24-ELISA vermessen. Die Infektiösen Titer wurden durch Infektion von 293T-Zellen und FACS-Analyse nach 48h bestimmt.

Abb. 26: Komplementarität zwischen Verpackungszelllinie 42-9, pshuttle und VSVG-Expression. 42-9-Zellen wurden transfiziert und unter Zugabe von 0,01µg/ml Doxycyclin (Dox) 5 Tage kultiviert. (A) Produzierte Viruspartikel wurden im p24-ELISA vermessen. (B) 293T-Zellen wurden mit den in (A) generierten Virusüberständen infiziert. Nach 48h wurde die Anzahl infizierter Zellen im FACS bestimmt. Daraus ließen sich die Infektiösen Titer der Virusüberstände errechnen. (C) 42-9-Zellen wurden transfiziert. Nach 5 Tagen wurden die Virusüberstande in der Ultrazentrifuge aufkonzentriert und im Western Blot analysiert.

Wie in Abb. 26A zu sehen ist, entstanden nach Transfektion von pcDNA/Tat und pshuttle Virionen, während die Analyse von infizierten 293T-Zellen in Abb. 26B zeigte, dass nur nach Induktion der VSVG-Expression mit Doxycyclin infektiöse Viren produziert wurden.

Für Western Blot-Analysen wurden 42-9-Zellen mit pcDNA/Tat mut., pcDNA/Tat oder pshuttle transfiziert. Nach 5 Tagen wurden die Zellkulturüberstände in der Ultrazentrifuge (63000g, 2,5h, 4°C) aufkonzentriert. Um eine starke Kreuzreaktion der verwendeten Antikörper mit fötalem Kälberserum (FKS) zu vermeiden, war dem Kultivierungsmedium zuvor nur 3% FKS zugesetzt worden. Jeweils ein 30µl-Aliqot der Virussuspension wurde über ein 10%-iges SDS-PA-Gel aufgetrennt. Nach dem elektrischen Transfer aller Proteine auf eine Membran mit einer Porengrösse von 0,45µm konnte das Pr55-Vorläuferprotein und das prozessierte p24 durch Inkubation der Membran mit dem Maus-α-p24 (13/5)-Antikörper und dem sekundären α-Maus-HRP-Antikörper identifiziert werden (siehe Methoden 6.5.3). Wie in Abb. 26C zu sehen, entstand nach Transfektion von 42-9-Zellen mit pcDNA/Tat und pshuttle vollständig prozessiertes p24 und somit reife Viruspartikel.

3.4.4 Präsentation von HIV-1 Env auf 42-9-entstammenden Viruspartikeln

Wie unter 3.1 beschrieben, sollten die mit der stabilen Verpackungszelllinie generierten Viruspartikel für ein lentivirales Display verwendet werden, in dem eine HIV-1 Env-Hüllprotein-Bibliothek in dem natürlichen Kontext der Virusmembran präsentiert wird. Hierbei ist die effiziente Expression und Inkorporierung der Hüllproteine in die Virushülle von entscheidender Bedeutung. Zur Charakterisierung der Env-Expressionskinetik nach Transfektion von verschiedenen Mengen an pshuttle wurden $5x10^5$ 42-9-Verpackungszellen mit 0,5µg, 1µg und 2µg pshuttle transfiziert und unter Zugabe von 0,01µg/ml Doxycyclin für 8 Tage kultiviert. Durch FACS Analysen mit dem Antikörper α -Env-Alexa Fluor 647 wurde an Tag 1 bis 8 der prozentuale Anteil Env-positiver Zellen bestimmt (siehe Methoden 6.8). Wie in Abb. 27 gezeigt, konnte Env gp145 auf der Zelloberfläche detektiert werden, was nahe legt, dass translatiertes Env korrekt prozessiert und ohne Komplikationen durch den Golgi-Apparat auf die Zelloberfläche gelangen kann. Zudem konnte gezeigt werden, dass die Kinetik der Env-Expression stark mit der Kinetik der TatGFP-Expression von

pshuttle (siehe Abb. 24A) verknüpft ist. Eine Transfektion mit 1µg pshuttle lieferte die besten Ergebnisse.

Abb. 27: Expressionskinetik von Env durch den stabilen Zellklon 42-9 nach Transfektion von pshuttle. 42-9-Zellen wurden mit verschiedenen Mengen pshuttle transfiziert und für 8 Tage kultiviert. Im Abstand von 24h wurde die Anzahl Env-positiver Zellen im FACS analysiert.

Um schließlich die Integration der Env-Hüllproteine in die Virionen zu demonstrieren, wurden 42-9-Zellen mit pshuttle transfiziert und mit 0,01µg/ml Doxycyclin kultiviert. Die virushaltigen Zellüberstände wurden 5 Tage nach Transfektion bei 63000g und 4°C für 2,5h in der Ultrazentrifuge pelletiert. Um eine starke Kreuzreaktion der verwendeten Antikörper mit fötalem Kälberserum (FKS) zu vermeiden, war dem Kultivierungsmedium zuvor nur 3% FKS zugesetzt worden. Ein Virus-Suspensionsvolumen entsprechend 50µg Gesamtprotein wurde über ein 7,5%iges SDS-PA-Gel aufgetrennt. Nach dem elektrischen Transfer aller Proteine auf eine Membran mit einer Porengrösse von 0,45µm konnte das gp145-B-Clade-Hüllprotein bzw. das pNL4-3 gp160 durch Inkubation der Membran mit dem Maus- α -p120 (9301)-Antikörper und dem sekundären α -Maus-HRP-Antikörper nachgewiesen werden (siehe Methoden 6.5.3).

Abb. 28: Inkorporierung von gp145-Env-Molekülen in die Virionen. (A) 42-9-Zellen wurden transfiziert und 5 Tage unter Zugabe von 0,01µg/ml Doxycyclin kultiviert. Die Virusüberstände wurden in der Ultrazentrifuge aufkonzentriert und im Western Blot analysiert. (B) Schematische Darstellung der produzierten Virionen.

Zusammenfassend Transfektion ließ sich feststellen, dass durch der Verpackungszelllinie 42-9 durch pshuttle eine hohe Expression des Oberflächenproteins Env erreicht werden konnte, das zudem effizient in die Virushülle inkorporiert wurde.

3.4.5 Kotransfektion des Verpackungskonstrukts pTNpack Puro

Mit der Absicht, die Menge an produziertem Virus weiter zu erhöhen, wurde die Verpackungszelllinie 42-9 zusätzlich zu pshuttle mit dem Verpackungskonstrukt pTNpack Puro im Verhältnis 1:1 kotransfiziert. Die Ergebnisse wurden anschließend mit den Resultaten verglichen, die nach alleiniger Transfektion von pshuttle erhalten wurden. In FACS-Analysen wurde die intrazelluläre Gag-Expression quantifiziert. Hierzu wurden die Zellen nach der Permeabilisierung mit 4% Saponin mit dem α-Gag-RD1-Antikörper inkubiert (siehe Methoden 6.8). Es zeigte sich, dass im Fall der mit pshuttle transfizierten Zellen nur in circa 40% der TatGFP-positiven Zellen p24 nachgewiesen werden konnte (siehe Abb. 29). Im Fall der mit pshuttle und pTNpack Puro kotransfizierten Zellen ließ sich in circa 60% der TatGFP-positiven Zellen p24 detektieren. Zusätzlich wurde die Env-Expression untersucht. Hierzu wurden die

kultivierten Zellen mit dem α -Env-Alexa Fluor 647-Antikörper inkubiert (siehe Methoden 6.8) und im FACS ausgelesen (siehe Abb. 29).

Abb. 29: Vergleich der p24-und Env-Expression nach Transfektion von 42-9-Zellen mit pshuttle bzw. pshuttle und pTNpack Puro. 42-9-Zellen wurden transfiziert und nach 96h im FACS analysiert. Dargestellt sind die Prozentsätze positiver Zellen bezogen auf die TatGFP-positiven Zellen.

Durch den Vergleich mit Zellen, die allein mit pshuttle transfiziert wurden, konnte gezeigt werden, dass die Kotransfektion von pTNpack Puro zu einer Senkung der Env-Expression führte. Auf 93% der pshuttle-transfizierten Zellen konnte gp145 auf der Zelloberfläche nachgewiesen werden, während bei pTNpack Puro und pshuttle-transfizierten Zellen der Prozentsatz Env-präsentierender Zellen 78% betrug.

Durch p24-ELISA-Analysen wurde die Partikelproduktion nach Transfektion bestimmt (siehe Abb. 30A). Basierend auf den Kinetikanalysen von Zellen nach transienter Transfektion bzw. von stabilen Verpackungszellen wurden die mit pTNpack Puro und pshuttle produzierten Überstände 72h und die mit pshuttle produzierten Überstände 120h nach Transfektion abgenommen. Die Überstände wurden in der Ultrazentrifuge aufkonzentriert (63000g, 2,5h, 4°C) und im p24-ELISA quantifiziert. Nach Kotransfektion von pshuttle und pTNpack Puro konnte lediglich eine geringe Steigerung der Partikelproduktion im Vergleich zur alleinigen Transfektion von pshuttle beobachtet werden (siehe Abb. 30A). Durch Titration der Virusüberstände auf 293T-Zellen zeigte sich zudem, dass eine Kotransfektion von pshuttle und

pTNpack Puro im Vergleich zur alleinigen Transfektion von pshuttle zu Infektiösen Titern führt, die um den Faktor 6 vermindert waren (siehe Abb. 30B).

Abb. 30: Vergleich der Partikelproduktion und der Infektiösen Titer nach Transfektion von 42-9-Zellen mit pshuttle bzw. pshuttle und pTNpack Puro. (A) 42-9-Zellen wurden transfiziert und 96h bzw. 120h kultiviert. Die Virusüberstände wurden in der Ultrazentrifuge aufkonzentriert und im p24-ELISA vermessen. (B) 293T-Zellen wurden mit den in (A) generierten Virusüberständen infiziert. Nach 48h wurde die Anzahl infizierter Zellen im FACS bestimmt. Daraus ließen sich die Infektiösen Titer der Virusüberstände errechnen.

Um die Integration der Env-Hüllproteine in die Virionen zu analysieren, wurden die virushaltigen Zellüberstände 72h bzw. 120h nach Transfektion bei 63000g und 4°C für 2,5h in der Ultrazentrifuge pelletiert. Um eine starke Kreuzreaktion der verwendeten Antikörper mit fötalem Kälberserum (FKS) zu vermeiden, war dem Kultivierungsmedium zuvor nur 3% FKS zugesetzt worden. Ein Virus-Suspensionsvolumen entsprechend 50µg Gesamtprotein wurde über ein 7,5%iges SDS-PA-Gel aufgetrennt. Nach dem elektrischen Transfer aller Proteine auf eine Membran mit einer Porengrösse von 0,45µm konnte das gp145-B-Clade-Hüllprotein bzw. das pNL4-3 gp160 durch Inkubation der Membran mit dem Maus-α-p120 werden (siehe Methoden 6.5.3). Durch Nachweis des Hauptstrukturproteins Gag durch den Maus-α-p24 (13/5)-Antikörper und den sekundären α-Maus-HRP-Antikörper (siehe Methoden 6.5.3) konnte die Integration des Env-Hüllproteins in die Virusmembran verifiziert werden (siehe Abb. 31A).

Abb. 31: Quantifizierung der Env-Inkorporation in Virionen nach Transfektion der 42-9-Zelllinie mit pshuttle bzw. pshuttle und pTNpack Puro. (A) 42-9-Zellen wurden transfiziert und 3 bzw. 5 Tage unter Zugabe von 0,01µg/ml Doxycyclin kultiviert. Die Virusüberstände wurden in der Ultrazentrifuge aufkonzentriert und im Western Blot analysiert. (B) Quantitative Auswertung des Western Blot in (A).

Für eine guantitative Auswertung der Env-Inkorporation in Virionen wurden die Western Blots densitometrisch ausgewertet. Die Stärke des Gag-Signals wurde hierbei als interne Kalibrierung verwendet. Zum Vergleich diente aufkonzentriertes pNL4-3-Virus. Die Quantifizierung führte zu dem Ergebnis, dass nach Kotransfektion von pshuttle und pTNpack Puro eine geringere Anzahl von Env-Molekülen auf der Virusmembran präsentiert wurde als nach Transfektion von pshuttle alleine. Der Vergleich von pNL4-3-Virionen und Virionen, die durch die stabile Verpackungszellinie generiert wurden, zeigte, dass auf den von der Zellinie stammenden Viruspartikeln 2,5x mehr Env-Moleküle inkorporiert waren als auf den pNL4-3-Partikeln (siehe Abb. 31B).

3.4.6 Replikation

Im Prozess des "Pannings" über mehrere Infektionsrunden ist es Vorraussetzung, dass das durch die Verpackungszellinie generierte Virus infiziert und in der infizierten Verpackungszelle auch repliziert, um wiederum infektiöse Viren zu bilden. Deshalb wurden 42-9-Zellen mit pshuttle transfiziert und 120h unter Zugabe von

0,01µg/ml Doxycyclin kultiviert. Der Virusüberstand wurde in der Ultrazentrifuge aufkonzentriert (63000g, 2,5h, 4°C). 293T-Zellen, Flp-In T-Rex 293-TO-VSVG-Zellen und 42-9-Zellen wurden mit jeweils einem 3µl-Aliqot infiziert und entweder mit oder ohne Zugabe von 0,01µg/ml Doxycyclin für 7 Tage kultiviert (siehe Abb. 32).

Abb. 32: Replikation des Virus nach Infektion von 42-9-Zellen und Induktion der VSVG-Expression durch Doxycyclin. Durch Transfektion von 42-9-Zellen mit pshuttle und Zugabe von 0,01µg/ml Doxycyclin wurden Viruspartikel produziert, die in der Ultrazentrifuge aufkonzentriert wurden. 293T-Zellen, Flp-In T-REx 293-TO-VSVG-Zellen und 42-9-Zellen wurden infiziert und 7 Tage mit bzw. ohne Zugabe von 0,01µg/ml Doxycyclin (Dox) kultiviert. Die Anzahl infizierter Zellen wurde an Tag 2, 5 bzw. 7 durch FACS-Analysen bestimmt.

Anhand von FACS-Analysen wurde über den gesamten Zeitverlauf nach Infektion die Anzahl GFP-positiver Zellen untersucht. Es zeigte sich, dass über die Zeitspannne von 7 Tagen der Anteil GFP-positiver Zellen nur in den VSVG-exprimierenden 42-9-Zellen anstieg. Diese Resultate führen zu der Schlussfolgerung, dass das nach Transaktivierung der stabilen Verpackungszelllinie produzierte Virus infektiös ist und zudem in der Verpackungszelllinie ohne weitere Transfektion von pTNpack Puro repliziert.

3.5 "Proof of concept": "Panning" durch breit neutralisierende Antikörper

Nach Entwicklung des transkomplementären Verpackungssystems wurde ein Panning durch breit neutralisierende Antikörper versucht (siehe Methoden 6.7). Hierzu wurden 42-9-Zellen mit pshuttle bzw. pshuttle LNGFR transfiziert und 120h unter Zugabe von 0,01µg/ml Doxycyclin kultiviert. Die Virusüberstände wurden in der Ultrazentrifuge aufkonzentriert (63000g, 2,5h, 4°C), und jeweils 20-50 ng des Konzentrats auf den immobilisierten Antikörper (2G12) gegeben. Ungebundenes Virus wurde durch Waschen entfernt, wohingegen gebundenes Virus lysiert und anschließend mittels p24-ELISA quantifiziert wurde.

Abb. 33: Panning von Viruspartikeln durch breit neutralisierende Antikörper. Durch Transfektion von 42-9-Zellen mit pshuttle bzw. pshuttle LNGFR und unter Zugabe von 0,01µg/ml Doxycyclin wurden Viruspartikel produziert, die in der Ultrazentrifuge aufkonzentriert wurden. 20ng Viruspartikel wurden auf immobilisierten 2G12 gegeben. Gebundenes Virus wurde nach Lyse im p24-ELISA vermessen.

Wie in Abb. 33 zu sehen, konnte durch das Antikörper-Panning eine Anreicherung Env-tragender Virionen erreicht werden. Allerdings sind die gebundenen Virus-Mengen mit ca. 1% der eingesetzten Virus-Menge relativ niedrig.

Parallel zum Lyse-Experiment wurden 42-9-Verpackungszellen auf das immobilisierte Virus gegeben. Nach 48h wurde der Anteil infizierter Zellen im FACS bestimmt. Es zeigte sich, dass die gebundene Virusmenge zu gering war, um Verpackungszellen erneut zu infizieren.

4 Diskussion

4.1 Das Design des lentiviralen transkomplementären Verpackungssystems gewährleistet die effiziente Produktion von infektiösen Viruspartikeln

4.1.1 Eine 3'Polyadenylierungssequenz erhöht die Partikelproduktion und ermöglicht die Generierung einer genetisch stabilen HI-viralen Verpackungszelllinie

Mit dem Ziel, die Partikelproduktion nach transienter Transfektion der Verpackungskonstrukte und im Kontext der generierten stabilen Verpackungszelllinie zu steigern, wurde der HI-virale 3'LTR durch eine BGH Polyadenylierungsseguenz ersetzt. Wie unter Ergebnisse 3.2.3.1 gezeigt, konnte durch die Insertion dieser Sequenz in das Verpackungskonstrukt die Partikelproduktion annähernd verdoppelt werden (siehe Abb. 10A). Diese Ergebnisse sind im Einklang mit in der Literatur die beschriebenen Daten, die zeigen, dass Insertion BGH einer ^{130,131}. Bei der Polyadenylierungsseguenz zur Expressionssteigerung führt Generierung des Verpackungskonstrukts vermindert die Insertion einer 3'BGH-Sequenz zudem das Risiko einer Rekombination zwischen den beiden LTR^{132–134} oder mit homologen Zellgenomsequenzen (siehe Abb. 10B). Dies hat zur Konsequenz, dass im Gegensatz zu Verpackungszelllinien, die unter Verwendung eines Verpackungskonstrukt mit beiden LTR generiert wurden, eine genetische Stabilität der stabilen Zelllinie erreicht werden kann. Dadurch wird einerseits die "Screening"-Phase von stabilen Verpackungszellklonen verkürzt und andererseits die Dauer einer effizienten Expression durch einen isolierten Zellklon verlängert. Im Kontext von arbeitssicherheitstechnischen Fragen wird durch die Insertion einer BGHpolyA-Sequenz außerdem die Sicherheit der HI-viralen Verpackungszelllinie erhöht. Zusätzlich zu anderen Modifizierungen des Verpackungskonstrukts, wie die Mutation des Tat-Leserahmens und die Deletion des Verpackungssignals gewährleistet das etablierte HI-virale Expressions- und Verpackungssystem molekularbiologische und zellkulturtechnische Arbeiten unter Sicherheitsstufe 2 Bedingungen.

4.1.2 Die Interaktion zwischen dem Verpackungskonstrukt und dem Transfervektor ermöglicht die Generierung eines transkomplementären Expressionsystems

Mit dem Ziel, Env-Varianten in einem molekularen und physiologischen Kontext auf der Virushülle zu präsentieren, der möglichst einer natürlichen Infektion entspricht, wurde für das Vektordesign der autologe LTR-Promotor verwendet. Um die Expression der Viruskomponenten induzierbar zu gestalten, und um die Produzentenzelllinie nicht übermäßig zu belasten und so hohe Virusausbeuten zu gewährleisten, wurde ein Tat-reguliertes Expressionssystem verwendet. Wie unter Ergebnisse 3.2.3.2 dargestellt, konnte durch Insertion einer Leserastermutation in das Verpackungskonstrukt die Expression des autologen biologisch aktiven Tat-Proteins vollständig unterbunden werden (siehe Abb. 11). Zur Transaktivierung in trans wurde sowohl Wildtyp-Tat als auch der Transfervektor pshuttle verwendet, der unter der Kontrolle eines starken eukaryontischen EF1α-Promotors ein synthetisches TatGFP-Fusionsprotein exprimiert. Es konnte gezeigt werden, dass in trans sowohl Wildtyp-Tat als auch das Fusionsprotein TatGFP in gleichem Maß in der Lage ist, die Produktion von Viruspartikeln zu induzieren (siehe Abb. 12A). Auf diese Weise konnte durch die Trennung der Transkriptionseinheit und der Tat-Genkassette auf zwei unterschiedlichen Vektoren eine induzierbare Produktion von Viruspartikeln erreicht werden. Überraschenderweise war die Transaktivierung durch die Tat oder synTat kodierenden Plasmide nicht mit der Transaktivierung durch das autologe Tat in pTNpack Tat vergleichbar. Zwar konnten durch Transfektion verschiedener Mengen an Tat-kodierender DNA Unterschiede in der Partikelproduktion beobachtet werden, die Transaktivierung war jedoch nie vollständig. Die Ursache für diesen Effekt liegt vermutlich in der Kotransfektion begründet, da wahrscheinlich nur ein Bruchteil der Zellen mit beiden Konstrukten transfiziert wird.

Trotzdem konnte durch Western Blot Analysen gezeigt werden, dass das Gag-Vorläuferprotein Pr55 der produzierten Virionen vollständig zu p24 prozessiert wird und somit die Viruspartikel vollständig reifen (siehe Abb. 12C). Die reifen Partikel sind nach Pseudotypisierung mit dem Fusionsprotein VSVG zudem in der Lage, humane Zellen zu infizieren (siehe Abb. 12B). Jedoch äußert sich die Zelltoxizität des VSVG-Fusionproteins¹²⁹ in verminderten Virusmengen (siehe Abb. 12A).

4.1.3 Die Deletion der Sekundärschleifen 1 und 3 innerhalb des Verpackungssignals Ψ führt zur effizienten Verpackung heterologer RNA

Die durch Luban et al. postulierten psi-Sekundärschleifen, die für die Verpackung von RNA in die Viruspartikel als obligat beschrieben werden ⁹⁸, wurden für die Generierung der Verpackungskonstrukte deletiert. Wie unter Ergebnisse 3.2.3.3 gezeigt, ließen sich bereits nach Transfektion der graduell manipulierten Konstrukte Unterschiede ausmachen. Entweder beeinträchtigen die psi-Mutationen die Expression des Gag-Leserahmens oder die Fähigkeit von psi-intakten Virionen, weitere Zellen zu infizieren, führt zu höheren p24-Leveln (siehe Abb. 13A). Nach Infektion führte die Entfernung dieser Sequenzen im Luciferase-Assay zu einer Senkung des Reportersignals um 78% (siehe Abb. 13B). Dies bestätigte, dass die Verpackungskapazität der Ψ deletierten Verpackungsvektoren für autologe RNA stark eingeschränkt ist. Die Quantifizierung der verpackten heterologen RNA zeigte, dass pTNpack Puro hauptsächlich pshuttle-RNA verpackt, während bei Kotransfektion von pshuttle mit pTNpsi die pshuttle-RNA mit dem pTNpsi-Genom um Verpackung kompetitiert (siehe Abb. 14B). Durch Vergleich der Verpackungseffizienz zwischen dem kommerziellen konstitutiven Konstrukt psPax2 und pTNpack Puro konnte gezeigt werden, dass die in dieser Arbeit generierten induzierbaren Konstrukte eine *trans*-Verpackungskapazität vergleichbar mit kommerziellen Verpackungssystemen besitzen. Dies gewährleistet die Etablierung eines effizienten transkomplementären Verpackungszellsystems und eine zuverlässige Phänotyp-Genotyp-Kopplung, die während der Selektion von Env-Varianten von höchster Bedeutung ist.

4.2 Durch zufällige Rekombination des Verpackungskonstrukts in das Zellgenom und antibiotische Selektion mit Puromycin kann eine stabile HIvirale Zelllinie generiert werden.

In der Vergangenheit erwies sich die Generierung einer effizienten stabilen HI-viralen Verpackungszelllinie stets als schwierig. Gründe hierfür waren sowohl die Toxizität einiger viraler Genprodukte als auch die geringe Partikelausbeute, die mit derartigen Zelllinien erreicht werden konnte ^{102,111,113,123,124}.

Wie unter Ergebnisse 3.3 beschrieben, wurde zunächst durch Linearisierung des Verpackungskonstrukts und zufällige Rekombination in das Genom der Zielzelle eine

Diskussion

stabile Zelllinie generiert. Hauptsächlich die virale Protease wirkt in Säugetierzellen cytotoxisch, da sie neben dem eigenen Prozessierungssubstrat auch zelleigene 135 Proteine spaltet Zellklone, die aufgrund einer Integration des Verpackungskonstrukts in einen aktiven Chromatin-Bereich große Mengen an HIviraler Protease produzieren, gehen vermutlich in Apoptose und werden so bei der Selektion von Einzelklonen verloren. Durch Verwendung des Proteaseinhibitors Saguinavir während des Selektionsprozesses der Zelllinie konnte dieser negative Selektionsprozess teilweise verhindert werden. Zunächst wurden verschiedene des Hemmstoffs in transienten Transfektionsexperimenten Konzentrationen analysiert. Bereits ab einer Konzentration von 1,5 µM Saquinavir war die Prozessierungsaktivität der HI-viralen Protease stark eingeschränkt (siehe Abb. 16). Die Zugabe des Proteasehemmers während des Selektionsprozesses der stabilen Zelllinie ermöglichte konzentrationsabhängig die Selektion von Zellklonen mit erhöhter Expression der HI-viralen Verpackungskomponenten nach Transaktivierung durch Tat (siehe Abb. 17A). Die nur leicht erhöhten p24-Werte legen jedoch die Vermutung nahe, dass die Toxizität der Protease nicht der einzige Faktor ist, der die Partikelproduktion nach Transaktivierung der Verpackungszelllinie einschränkt. Desweiteren wäre es möglich, dass "Silencing"-Ereignisse am LTR-Promotor die Expressionslevel vermindern ¹³⁸. Mit Hilfe von Natriumbutyrat wurde versucht, hemmende Chromatinacytylierungen am Promotor zu entfernen (siehe Abb. 21). Obwohl dies zu keiner Erhöhung der produzierten Virusmenge führte, kann nicht ausgeschlossen werden, dass andere chromatinmodifizierende Prozesse am LTR-Promotor stattfinden.

Mit dem Ziel, die Effizienz der Partikelproduktion zu erhöhen, wurden zwei Alternativen zur Generierung einer stabilen Zelllinie versucht. (1) Real-time-Analysen dass in der bereits etablierten Zellinie nur eine Kopie zeigten, des Verpackungskonstrukts pro Zelle vorliegt (siehe Abb. 20). Um die Kopienzahl zu erhöhen, wurde die Zelllinie über Infektion durch HI-virale Partikel generiert. (2) Bei der zufälligen Integration des Verpackungskonstrukts ist die Chromatinlokalisation 136 entscheidender Bedeutung Deswegen wurde mit dem FRTvon Rekombinationssystem versucht, eine Zelllinie herzustellen, die aufgrund einer Integration des Verpackungskonstrukts in eine aktive Chromatinstruktur hohe Expressionsraten liefert. Mit keinem der Verfahren konnte eine Steigerung der

Partikelproduktion erreicht werden. Bezüglich der Altenative (2) stellt vermutlich die Größe des Verpackungskonstrukts mit zusätzlicher FRT-Hygromycin-Kassette ein Problem dar, da die Rekombinationswahrscheinlichkeit mit der Basenpaaranzahl des zu integrierenden Vektors sinkt. Desweiteren wäre denkbar, dass es an der äußerst aktiven Chromatinstelle, an der die FRT-Stelle lokalisiert ist, zu einer starken konstitutiven und somit cytotoxischen Expression der HI-viralen Proteine kommt.

Zur Isolierung der Verpackungszellklone wurden verschiedene Verfahren verwendet. Dabei war eine positive Selektion über das MACS System mit Hilfe des Oberflächenproteins LNGFR wenig effizient (siehe Abb. 15). Vielmehr sank der Anteil positiver Zellklone in der heterologen Zellpopulation über die Zeit. Mögliche Ursachen sind verlängerte Generationszeiten der Verpackungszellklone oder das "Silencing" bzw. der Verlust der Verpackungskassette. Eine negative antibiotische Selektion über Puromycin war somit vielfach praktikabler und effizienter.

Um zusätzlich zur Selektion von stabilen Zellklonen eine Erhöhung der Kopienzahl in den selektionierten Klonen zu erreichen, wäre als Alternative zu Puromycin die Verwendung eines DHFR ("dihydrofolate reductase")-basierten Systems denkbar¹³⁹.

4.3 Die Transfektion der stabilen Zelllinie mit dem Transfervektor pshuttle und die Induktion der VSVG-Expression führt zur Produktion von infektiösen Viruspartikeln

Aufgrund der geringen Partikelausbeuten wurde versucht, die Infektiösen Titer der durch zufälligen Rekombination generierten stabilen Verpackungszelllinie durch Variierung der Transfektionsparameter zu optimieren. Dies geschah, wie unter Ergebnisse 3.4.2 und 3.4.3 dargestellt, 1) über Variierung der transfizierten pshuttle DNA-Menge, 2) über Modulierung der VSVG-Expression durch verschiedene Mengen an Doxycyclin und 3) über Zeitpunktoptimierung der Virusernte. Die Menge der transfizierten DNA erwies sich als äußerst kritisch, da zur effizienten Bildung infektiöser Viren eine ausreichende Menge an verpackbarer pshuttle-RNA benötigt wird. Zu hohe DNA-Mengen wirken aufgrund der mit der Transfektion einhergehenden hohen PEI-Mengen zelltoxisch ¹³⁷. Durch Titration der DNA-Mengen konnte eine optimale pshuttle DNA-Menge von 1 µg für die Transfektion von 5x10⁵ Verpackungszellen identifiziert werden (siehe Abb. 25A und 25B). Prinzipiell ließen FACS-Daten jedoch darauf schließen, dass die Transfektionsraten mit ca. 50%

Diskussion

erreichter Zellen verhältnismäßig schlecht waren (siehe Abb. 24A). Vermutlich ist hier die Größe des pshuttle-Vektors bei der Transfektion der limitierende Faktor. Desweiteren ist die Transaktivierung der Virusproduktion mit ca. 40% aller transfizierten TatGFP-positiven Zellen sehr ineffizient (siehe Abb. 29, pshuttle). Ein möglicher Grund könnte hier eine unvollständige Selektion der stabilen Zelllinie sein. Dies scheint jedoch sehr unwahrscheinlich, da es sich um eine durch "limited dilution" generierte monoklonale Zelllinie handelt. Hierbei werden durch Verdünnung Einzelzellen isoliert, mikroskopisch kontrolliert und anschließend kultiviert. Desweiteren wäre als mögliche Ursache der scheinbar ineffizienten Transaktivierung eine unvollständige Permeabilisierung der Zellen vor der FACS-Färbung denkbar, so dass nur bei einem Teil der Zellen das intrazelluläre p24 detektiert werden konnte.

Aufgrund der Zytotoxizität von VSVG¹³⁹ bedarf es bei der Induktion der VSVG-Expression ebenfalls einer Titration. Dadurch konnte eine optimale Doxycyclin-Konzentration von 0,01 µg/ml bestimmt werden. Sowohl höhere als auch geringere Doxycyclin-Mengen führten zu verringerten Infektiösen Titern (siehe Abb. 22).

Im Gegensatz zu einer transienten Transfektion folgt die Virusproduktion durch die stabile Zellinie einer verzögerten Kinetik. Die FACS-Daten aus Abbildung 24A und 27 zeigen, dass nach Transfektion von pshuttle TatGFP und Env zeitgleich exprimiert werden. Zeitverzögert setzt die Expression von p24 ein (siehe Abb. 24B). Dies lässt sich durch die Transaktivierung der Virusproduktion durch das von pshuttle exprimierte TatGFP erklären. Daraus resultierend wurde der optimale Zeitpunkt zur Abnahme des Virusüberstands mit Tag 5 nach Transfektion bestimmt.

Durch die Optimierung der oben dargestellten Parameter konnten Infektiöse Titer von $7x10^3 - 2x10^4$ IU/ml erreicht werden. Durch Ultrazentrifugation der Virusüberstände wurden Infektiöse Titer von ca. $9x10^6$ IU/ml erzielt. Somit ist die Leistung der in dieser Arbeit generierten stabilen HI-viralen Verpackungszelllinie mit der von Verpackungszelllinien der ersten Generation vergleichbar ¹⁰⁰⁻¹⁰². Titer, die mit modernen Verpackungszelllinien der dritten Generation möglich sind ^{105,106}, konnten nicht erreicht werden. Dies wurde jedoch bereits im Vorfeld durch Wahl eines Vollllänge-Verpackungskonstrukts im Hinblick auf die möglichst korrekte Präsentation des Env-Oberflächenprotein als Kompromiss akzeptiert.

Überraschenderweise führte eine Kotransfektion des Verpackungskonstrukts pTNpack Puro (siehe Ergebnisse 3.4.5) zwar zu einer leicht erhöhten Produktion von

Viruspartikeln, jedoch waren die Infektiösen Titer stark erniedrigt (siehe Abb. 30). Diese Ergebnisse lassen sich bis zum jetzigen Zeitpunkt nicht erklären. Eine Leistungssteigerung im Hinblick auf das lentivirale "Panning" konnte somit aber mit Hilfe von Kotransfektion von pTNpack Puro nicht erreicht werden.

4.4 Das HI-virale Env-Protein wird effizient auf der Oberfläche der Viruspartikel präsentiert

Voraussetzung für ein lentivirales "Panning" von Env-Varianten ist die effiziente Präsentation von Env-Molekülen auf der viralen Oberfläche. Durch das etablierte lentivirale Vektorensystem erfolgte eine effiziente Expression und Inkorporierung von Env (siehe Ergebnisse 3.4.4). Dabei trugen am Tag 2 nach Transfektion von pshuttle bis zu 93% der transfizierten Zellen Env auf der Oberfläche (siehe Abb. 29, pshuttle). Weiterhin konnte durch Quantifizierung von Western Blot-Analysen gezeigt werden, dass im Vergleich zu pNL4-3-Virionen mehr als 2mal soviel Env-Moleküle auf der Oberfläche präsentiert werden (siehe Abb. 31).

Nach Kotransfektion von pTNpack Puro konnte eine Erniedrigung der Env-Präsentation auf Zellen (siehe Abb. 29) und auf der Virionenoberfläche beobachtet werden (siehe Abb. 31). Zusätzlich zu den erniedrigten Infektiösen Titern nach Kotransfektion des Verpackungskonstrukts unterstreicht dies den fehlenden Nutzen einer Kotransfektion von pTNpack Puro.

4.5 Durchführung eines Antikörper-basierten "Pannings" unter Verwendung des generierten lentiviralen Displaysystems

Nach Etablierung und Optimierung des lentiviralen Display-Systems wurde als "proof-of-concept" ein "Panning" mit dem breit neutralisierenden Antikörper 2G12 durchgeführt (siehe Ergebnisse 3.5). Es konnte zwar eine selektive Anreicherung von Env-tragenden Viruspartikeln erreicht werden, jedoch waren die Mengen des gebundenen Virus zu gering, um eine Infektion von Verpackungszellen und somit eine weitere Runde in dem Selektionsprozess zu erreichen (siehe Ergebnisse 3.5). Gründe hierfür waren hauptsächlich die ungenügende Virusproduktion der Verpackungszelllinie und vermutlich auch eine ineffiziente Immobilisierung der Viruspartikel an den Mikrotiterplatten.

Diskussion

Die geringe Virusproduktion durch die stabile Zelllinie ist auf mehrere Ursachen zurückzuführen. Wie durch Real-time-Analysen gezeigt (siehe Abb. 20), wurde nur eine Kopie des Verpackungskonstrukts in das Genom der Basiszelle integriert. Somit ergeben sich im Vergleich zu einer transienten Transfektion, bei der viele Kopien des Konstrukts in die Zelle gelangen, grundsätzlich niedrigere Titer. Durch die transiente Kotransfektion von pTNpack Puro konnte zwar, wie beschrieben, eine Steigerung der Partikelmenge erreicht werden, jedoch waren die Infektiösen Titer bei Kotransfektion stark gesenkt. Weiterhin war die Transfektionseffizienz durch den Transfervektor pshuttle mit ca. 50% sehr gering. Wie bereits beschrieben, lässt sich dies vermutlich auf die Größe des Konstrukts zurückführen. Bemühungen, die Transfektionseffizienz durch Steigerung der pshuttle-DNA-Menge zu erhöhen, führten aufgrund der PEI Zelltoxizität von zu keiner Optimierung. Neben der aeringen Transfektionseffizienz war die Transaktivierung der Viruskomponenten durch pshuttle äußerst schlecht. So exprimierten von den durchschnittlich 50% TatGFP positiven Zellen lediglich 40%, und somit nur maximal 20% aller Zellen, Gag.

Von den 20ng applizierter Viruspartikel wurden lediglich 200 pg an den Mikrotiterplatten gebunden. Die ineffiziente Immobilisierung der Viruspartikel kann in zwei Ursachen begründet liegen: Eine unvollständige Bindung der Antikörper an die Mikrotiterplatte oder eine schwache Bindung der Virionen an die Antikörper unter den gegebenen "Panning"-Bedingungen. Eine Optimierung der "Panning"-Bedingungen wurde im Rahmen dieses Teilprojektes nicht durchgeführt.

4.6 Zusammenfassung und Ausblick

Durch die Modifizierung eines lentiviralen Vektors konnte ein Verpackungskonstrukt generiert werden, dass gemeinsam mit dem Transfervektor pshuttle ein komplementäres und effizientes Expressionssystem bildet. Unter Verwendung des Verpackungsvektors wurde weiterhin eine HI-virale stabile Verpackungszelllinie generiert und charakterisiert. Durch Optimierung der Virusproduktionsparameter konnten Infektiöse Titer von bis zu 2x10⁴ IU/mI erreicht werden. Die Expression des HI-viralen Oberflächenproteins ermöglicht zudem die Etablierung eines HI-viralen "Display"-Systems, in dem das HI-virale Oberflächenprotein Env effizient auf der Oberfläche der Virionen präsentiert wird. Bis zum Abschluß des Projektes erwies

sich ein lentivirales "Panning" auf Basis der generierten stabilen Zelllinie jedoch als schwierig.

Parallel zu dem Ansatz der stabilen Verpackungszelllinie wurde durch Dr. Alexander Kliche und Thomas Benen versucht, das lentivirale Display und "Panning" durch transiente Transfektion von lentiviralen Vektoren zu realisieren. Die Limitation der geringen Virusmenge konnte mit diesem Ansatz zwar erfolgreich umgangen werden, jedoch war die ineffiziente Selektion von "guten Bindern" bei Abgabe problematisch.

Als Alternative zum lentiviralen Display-Verfahren wurde durch Tim-Henrik Bruun das lenti-zelluläre Display entwickelt. In diesem Ansatz werden die HI-viralen Env-Varianten nach "low moi" Infektion mit Lentiviren auf der Oberfläche von Säugerzellen präsentiert. Der "Panning"-Prozess mit breit neutralisierenden Antikörpern erfolgt entweder über ein MACS- oder FACS-basiertes Verfahren.

Somit wurde im Rahmen des VDC-Projektes der "Bill and Melinda Gates Foundation" eine vielfältige "Tool-Box" geschaffen, um ein "Panning" von randomisierten Env-Bibliotheken mit Hilfe von breitnautralisierenden Antikörpern zu verwirklichen. Im Hinblick auf die bisherigen Rückschläge in der HIV-Vakzine-Forschung und mit der Hoffnung, eine Vakzine auf der Basis von breit neutralisierenden Antikörpern zu verwirklichen, ist dies von entscheidender Bedeutung.

5 Material

5.1 Organismen

5.1.1 Eukaryontische Zelllinien

Bezeichnung	Organismus	Beschreibung
293T	Homo sapiens	Ad5/SV40 (T) transformierte
		Nierenepithelzellen (ATCC: CRL-11268)
Flp-In 293	Homo sapiens	Invitrogen (Darmstadt):Cat. No. R75007
Flp-In T-REx 293	Homo sapiens	Invitrogen (Darmstadt):Cat. No. R78007
Flp-In T-REx 293 -TO- VSVG	Homo sapiens	basierend auf Flp-In T-REx 293 Zellinie; Expression von VSVG durch Gabe von Doxycyclin induzierbar
Flp-In T-REx 293 -TO- wtgp64	Homo sapiens	basierend auf Flp-In T-REx 293 Zellinie; Expression von Baculovirus-gp64 durch Gabe von Doxycyclin induzierbar
HeLa	Homo sapiens	Zervixkarzinom-Epithelzellen (ATCC: CCL-2)
MAGI	Homo sapiens	basierend auf HeLa Zelllinie; LTR-β- Galaktosidase-Reportergen integriert, exprimiert CD4 und CCR5

5.1.2 Bakterienstämme

Bezeichnung	Beschreibung
OmniMAX 2T1 R	F' {proAB+ laclq lacZ Δ M15 Tn10(TetR) Δ (ccdAB)} mcrA Δ (mrr-hsdRMS-
	mcrBC) Φ80lacZΔM15 Δ(lacZYA-argF) U169 endA1 recA1 supE44 thi-1
	gyrA96 relA1 tonA panD (Invitrogen, Darmstadt; Cat. No. C8540-03)
DH5a	f- supE44 ΔlacU169 (φ80 lacZΔM15) hsdR1 recA1 endA1 gyrA96 thi1 relA1) ¹⁴⁰

GM2163F-ara-14leuB6fhuA31lacY1tsx78glnV44galK2galT22mcrAdcm-6hisG4rfbD1rpsL136(StrR)dam13::Tn9(CamR)xylA5mtl-1thi-1mcrB1hsdR2(Fermentas, St. Leon-Rot; Cat. No. M0099)

5.2 Plasmide

Bezeichnung	Bezugsquelle	Beschreibung
pTN7 stop	PD Dr. M. Dittmar	HI-virales Volllängegenom, Insertion
	Department für Infektiologie	eines STOP-Kodons in den Env
	Universität Heidelberg	ORF, Insertion einer Renilla
		Luciferase in den Nef-ORF
pcDNA3.1(+)	Invitrogen (Darmstadt)	
	Cat. No. V790-20	
pCR Script Amp	Stratagene (Waldbronn)	
	Cat. No. 211188	
pMACS LNGFR	Miltenyi Biotec (Bergisch-Gladbach)	
	Cat. No. 130-091-890	
pcDNA3.1(+)/Zeo	Invitrogen (Darmstadt)	
	Cat. No. V860-20	
pBabePuro	Addgene (Cambridge/USA)	
	Plasmid No. 1764/ Weinberg <i>et al.</i>	
pcDNA5 FRT	Invitrogen (Darmstadt)	
	Cat. No. V6010-20	
pcDNA/VSVG		basierend auf pcDNA5 FRT,
		Expression von VSVG
pOG44	Invitrogen (Darmstadt)	
	Cat. No. V6005-20	
psPax2	Addgene (Cambridge/USA)	
	Plasmid No. 12260/ Trono <i>et al.</i>	
pshuttle		Transferkonstrukt zur
		Transaktivierung von pTNpack Puro,
		Expression von Env

Transferkonstrukt zur	
Transaktivierung von pTNpack Puro,	
Expression von LNGFR	
basierend auf pcDNA3.1(+);	
Insertion einer Env 89.6-Gen-	
kassette (codon-optimiert)	

5.3 Medien

Bezeichnung	Beschreibung
LB₀ (Luria Bertani)	1% Bacto-Trypton
	0,5% Hefe-Extrakt
	1% NaCl
	Mit NaOH ad pH 7,0 , autoklavieren
LB _{Amp}	100 μ g/ml Ampicillin in sterilem LB $_0$
Plattenmedium	jeweiliges Medium mit 1,5% Agar
Zellkulturmedium	DMEM (Invitrogen, Darmstadt)
	10% Fötales Kälberserum (Invitrogen, Darmstadt)
	1% Penicillin-Streptomycin (PAN, Heidenheim)
	Additive für Selektionsmedien:
	Hygromycin (Invivogen; San Diego, USA)
	Puromycin (Invivogen; San Diego, USA)
	Neomycin (Gibco/Invitrogen; Darmstadt)
	Zeocin (Invitrogen; Darmstadt)

5.4 Puffer und Lösungen

Bezeichnung	Zusammensetzung	Verwendung
APS	10% Ammoniumperoxidsulfat (w/v)	SDS-PAGE
Blockierlösung	5% Milchpulver in TTBS (w/v)	Western Blot
"Coating" Puffer	1M NaHCO₃	ELISA/Panning von
	0,3M Na ₂ CO ₃	lentiviralen
	рН 9,5	Partikeln
"Cytofix/Cytoperm"-Lösung	4% Paraformaldehyd (w/v)	FACS
	1% Saponin (w/v)	
	in PBS	
DNA-Probenpuffer (10x)	0,25% Bromphenolblau (w/v) 0,25% Xylencyanol (w/v) 30% Glycerin (v/v)	Auftrennung von DNA in Agarose- Gelen
------------------------	---	---
ECL-Gebrauchslösung	1:1-Mischung der ECL-Lösungen 1 und 2	Western Blot
ECL-Lösung 1	2,5mM Luminol in DMSO 0,4mM p-Coumaric Acid in DMSO 0,1M TrisHCl pH 8,5	Western Blot
ECL-Lösung 2	0,1M TrisHCl pH 8,5 0,02% H ₂ O ₂ (v/v)	Western Blot
FACS-Puffer	1% FKS (v/v) 0,1% NaN₃ (w/v) in PBS	FACS
Fixierlösung	1% Formaldehyd (v/v) 0,2% Glytaraldehyd (v/v) in PBS	MAGI-Assay
Laufpuffer (10x)	0,25M Tris 1,92M Glycin 1% SDS (w/v)	SDS-PAGE
PBS	7mM Na₂HPO₄ 3mM NaH₂PO₄ 130mM NaCl	allgemein
PBS-T	0,5% Triton X-100 (v/v) in PBS	Panning von lentiviralen Partikeln
"Perm/Wash"-Lösung	0,1% Saponin (w/v) in PBS	FACS
Ponceau-S-Lösung	2% Ponceaurot (w/v) 3% Trichloressigsäure (v/v)	Western Blot

Probenpuffer nach Laemmli (5x)	312mM Tris 5% SDS (w/v) 2,5mM EDTA 25% Mercaptoethanol (v/v) Bromphenolblau pH 6,8	SDS-PAGE
TBE-Puffer (10x)	1M Tris 1M Borsäure 20mM EDTA pH 8,0	Auftrennung von DNA in Agarose- Gelen
TBS	150mM NaCl 50mM Tris/HCl pH 7,5	allgemein
TMB-Substrat- Gebrauchslösung	20:1-Mischung der TMB-Lösungen 1 und 2	ELISA
TMB-Lösung1	30mM tri-Kaliumcitrat-Monohydrat pH 4,1	ELISA
TMB-Lösung 2	10mM Tetramethylbenzidin 10% Aceton (v/v) 90% Ethanol (v/v) 0,3% H ₂ O ₂ (v/v)	ELISA
Transferpuffer (10x)	25mM Tris 150mM Glycin 10% Methanol (v/v)	Western Blot
Trypanblau-Lösung	0,5% Trypanblau (w/v)	Zellzahlbestimmung
TTBS	0,05% Tween-20 (v/v) in TBS	Western Blot
X-Gal-Färbelösung	4mM Ferricyanid 4mM Ferrocyanid 2mM MgCl ₂ 10% X-Gal in DMSO (v/v)	MAGI-Assay

5.5 Kommerzielle Kits

Bezeichnung	Verwendung	Bezugsquelle
Qiagen DNA Midi Kit	Isolierung von pDNA	Qiagen (Hilden)
Qiagen DNA Maxi Kit	Isolierung von pDNA	Qiagen (Hilden)

QIAamp DNA Mini Kit	Isolierung von gDNA	Qiagen (Hilden)
QIAquick Gel Extraction Kit	Isolierung von DNA aus Agarose	Qiagen (Hilden)
QIAquick PCR Purification Kit	Aufreinigung von DNA nach PCR	Qiagen (Hilden)

5.6 Oligonukleotide

Alle Oligonukleotide wurden entweder von Invitrogen (Darmstadt) oder Biomers (UIm) bezogen.

5.6.1 Oligonukleotide für Klonierungsarbeiten

Bezeichnung	Sequenz (5'-3')
<i>Apa</i> l-psi rev.	GGGGCCCGTACTAGTAGTTCCTGCTATG
Apal-Tat rev.	CGCGGGCCCCCAGTGATCATGCGTTTG
CMV-Ncol-mut fwd.	GTATTAGTCATCGCTATTACGATGGTGATGCGGTTTTG
<i>Kpn</i> I-mut fwd.	CCGTCTATTATGGGCTACCTGTGTG
Kpnl-poly-A-LNGFR rev.	GCGGGTACCAACTTGTTTATTGCAGCTTATAATG
Ncol-CMV-LNGFR fwd.	GCGCCATGGGTTGACATTGATTATTGAC
Ncol-delta-LTR fwd.	GCTATAAGCCATGGCTTCCAAGGTGTACGACCC
Notl-delta-LTR rev.	CAGCTAGAGCGGCCGCCACCGCG
Pacl-BGH rev.	GGCTTAATTAACCATAGAGCCCACCGCATC
Pacl-delta-LTR fwd.	GGCTTAATTAACTCTAGCACCTAGGAAAAGCCGAATTCCAG
PacI-FRT-Hygro-pA fwd.	GCGCTTAATTAAGAAGTTCCTATTCCGAAGTTCCTATT
Pacl-FRT-Hygro-pA rev.	GCGCTTAATTAACAGACATGATAAGATACATTGATGAGTTTG
Pacl-Xmal-delta-LTR rev.	GTGCTAGAGTTAATTAATATAATATCCCGGGGTCCCCCC
<i>PpuM</i> I-Neo fwd.	GATATTAGGACCTATGATTGAACAAGATG
<i>PpuM</i> I-Puro fwd.	GATATTAGGACCTATGACCGAGTACAAG
<i>Rsr</i> II-Zeo fwd.	GCGCGGACCGATGGCCAAGTTG
SL1-mut fwd.	GGGCGGCGACTGGTGAGTACGCCA
SL1-mut rev.	CAGTCGCCGCCCTCCTGCGTCG
SL3-mut fwd.	AAGGAGAGAGATGGGTGCGAGAGCGTCG
SL3-mut rev.	GCACCCATCTCTCCTTTCAAAATTTTTGGCGTAC
Tat-mut fwd.	TTCATGACAAAAGCCTTAGGCATCTCCTATGGC
Tat-mut rev.	CTTTTGTCATGAACCACAAACTTGGCAATGAAAG
<i>Xba</i> l-Neo rev.	GAGTCTAGATCAGAAGAACTCGTCAAGAAGG
Xbal-Puro rev.	GAGTCTAGATCAGGCACCGGGCTT
Xbal-Zeo rev.	GCGTCTAGATCAGTCCTGCTCCTCGGCC

Xhol-psi fwd.	GCTCGAGCTAGCAGTGGCGCC
Xhol-Tat fwd.	GGGCTCGAGCTTGGGCAGGAGTGGAAGCC
Xmal-BGH fwd.	GGCCCCGGGCTGTGCCTTCTAG

5.6.2 Oligonukleotide für die Real-time-PCR-Analyse

Bezeichnung	Sequenz (5'-3')
β-2-Mikroglobulin 1 fwd.	CCAGCAGAGAATGGAAAGTC
β-2-Mikroglobulin 1 rev.	GATATGACTACTCATACACAACTTTCAG
β-2-Mikroglobulin 2 fwd.	CACCCCCACTGAAAAAGATGA
β-2-Mikroglobulin 2 rev.	GTATATGTATTTGTGCAAGTGCTG
pTN7/19 fwd.	GTAATATGGGGAAAGACTCCTAAAT
pTN7/20 rev.	GATTTGTTGTGTCCGTTAGGGGG

5.6.3 Oligonukleotide für die Amplifikation von genomischer DNA

Bezeichnung	Sequenz (5'-3')
pTN7/13 fwd.	GAAGGAGCCACCCACAAGA
pTN7/16 rev.	GTGCAGCCAATCTGAGTCAACAG
pTN7/7 fwd.	CCCAACGATCAAGGCGAGTT
pTN7/12 rev.	CTTTCAAGTCCCTGTTCGGGC
Nael Test fwd.	CAAGCTCTAAATCGGGGGC
pTN7/20 rev.	GATTTGTTGTGTCCGTTAGGGGG

5.7 Chemikalien, Enzyme, Materialien

Alle Chemikalien wurden, soweit nicht anders angegeben, von Sigma (Deisenhofen), Fluka Chemie (Buchs, Schweiz), Roth (Karlsruhe) oder Merck (Darmstadt) in der Reinheitsstufe pro analysis bezogen. Alle Enzyme und zugehörigen Puffer und Additive sowie DNA-Größenmarker wurden von NEB (Schwalbach) bezogen. Abweichende Herstellerfirmen verwendeter Reagenzien, Enzyme und Chemikalien werden an entsprechender Stelle genannt.

5.8 Geräte und Verbrauchsmaterialien

Die verwendeten Geräte und Verbrauchsmaterialien mit den entsprechenden Herstellern sind an den jeweiligen Stellen im Text vermerkt.

6 Methoden

6.1 Molekularbiologische Methoden

6.1.1 Plasmidpräparation aus Escherichia coli

Plasmide wurden volumenabhängig entweder über das Verfahren der Alkalischen Schnelllyse und Fällung nach Birnboim & Doly¹⁴¹ oder über ein Plasmidpräparations-Kit der Firma Qiagen nach Angaben des Herstellers aus *Escherichia coli* Zellen aufgereinigt.

6.1.2 Isolierung genomischer DNA aus Säuger-Zellen

Für die Isolierung genomischer DNA aus 293T-basierten Zelllinien wurde das "QIAamp DNA Mini Kit" von Qiagen nach Angaben des Herstellers verwendet.

6.1.3 Photometrische Konzentrationsbestimmung der DNA

Die Quantität und Qualität von Plasmid-oder Genom-DNA wurde nach Aufreinigung im Nanodrop (Peqlab, Erlangen) vermessen. Hierzu wurden 1,5µl der in H₂O_{bidest} aufgenommenen DNA auf das optische Podest des Geräts pipettiert, das vorher mit H₂O_{bidest} kalibriert wurde. Die Software des Gerätes berechnet Konzentration und Qualitätsparameter der DNA. Das Verhältnis OD_{260 nm}/OD_{280 nm} sollte zwischen 1,8 und 2,0 liegen.

6.1.4 Restriktionsverdau von DNA

Je nach Ansatz wurden 1-10µg DNA mit 10-20 Einheiten (U) Enzym/µg DNA behandelt. Zusätzlich wurde dem Ansatz ein zum Enzym passender 10x Puffer und H₂O_{bidest} zum Volumenausgleich auf 20-50µl zugegeben. Um die Religation eines mit Restriktionsenzymen linearisierten Vektors weitgehend zu minimieren, wurde die DNA mit 1U Alkalischer Phosphatase/µg DNA für 1h bei 37°C behandelt. Unerwünschte DNA-Fragmente bis zu einer Größe von 100 Basenpaaren und Nukleotide wurden mit dem "QIAquick PCR Purification Kit" von Qiagen nach Angaben des Herstellers entfernt.

6.1.5 Gelelektrophorese von DNA

Die analytische und präparative Auftrennung von DNA-Molekülen unterschiedlicher Größe erfolgte in 1-2%igen Agarosegelen, die mit 0,5mg/l Ethidiumbromid versetzt wurden. Für den Lauf wurde die Gelkammer mit TBE-Puffer gefüllt. Die Proben wurden mit 10x DNA-Probenpuffer versetzt und wie der Größenmarker bei einer konstanten Spannung von 100 Volt aufgetrennt. Die Detektion der DNA erfolgte durch UV-Licht-induzierte Fluoreszenz. Fragmente wurden aus dem Agarosegel ausgeschnitten und mit Hilfe des "QIAquick Gel Extraction Kit" von Qiagen nach Angaben des Herstellers aufgereinigt.

6.1.6 Polymerase-Kettenreaktion (PCR)

Amplifikationen (pDNA und gDNA) ¹⁴² wurden im "iCycler" der Firma Biorad (München), im "Mastercycler gradient" der Firma Eppendorf (Hamburg) oder im "GeneAmp PCR System 2400" der Firma Perkin Elmer (Rodgau) durchgeführt. Die PCR-Reaktionsansätze wurden in sterilen 0,2ml PCR-Softtubes der Firma Biozym (Hess. Oldendorf) nach folgendem Schema angesetzt:

Volumen	Komponente
100-500ng	Template-DNA
1µl	10mM dNTP (Qbiogene, Heidelberg)
1µl	10µM forward-Oligonukleotid
1µI	10µM reverse-Oligonukleotid
2-5µl	10x Thermopol-Puffer
2U	Deep-Vent DNA-Polymerase
ad 20-50µl	H ₂ O _{bidest}

Die Amplifikation der DNA fand mittels des angegebenen Fünf-Schritt-Temperaturprogrammes statt, das den Bedürfnissen der jeweiligen Oligonukleotide und des zu amplifizierenden DNA-Fragments angepasst wurde.

Schritt	Temperatur	Dauer	Zyklusanzahl
Denaturierung	95°C	5/10min	1
Denaturierung	95°C	30s	
Annealing	x°C	30s	30-40
Elongation	72°C	60s/kb	
Elongation	72°C	7min	1

6.1.7 Kombinierte Kettenreaktion (CCR)

Die CCR vereint eine PCR zur Mutagenese von DNA-Bereichen mit der Verwendung einer hitzestabilen Ligase in einem Ansatz (nach Bi & Stambrook ¹⁴³). Hierbei werden durch die Verwendung von zwei externen Oligonukleotiden und einem internen Mutagenese-Oligonukleotid DNA-Fragmente generiert, die durch die Ligase miteinander verbunden werden. Das Mutagenese-Oligonukleotid wurde durch eine Phosphorylierungsreaktion für 1h bei 37°C wie folgt vorbereitet:

Volumen	Komponente
5µl	100µM Mutagenese-Oligonukleotid
2μΙ	T4-Ligase Puffer
1µI	Polynukleotid-Kinase
ad 20µl	H ₂ O _{bidest}

Die CCR-Reaktionen wurden in sterilen 0,2ml PCR-Softtubes der Firma Biozym nach folgendem Schema angesetzt und anschließend im "iCycler" der Firma Biorad durchgeführt:

Volumen	Komponente
100ng	Template-DNA
1µl	10mM dNTP (Qbiogene, Heidelberg)
1µI	10µM forward-Oligonukleotid
1µI	10µM reverse-Oligonukleotid
1µI	100µM Mutagenese-Oligonukleotid
2µI	10x Ampligase-Puffer (Biozym, Hess. Oldendorf)

2,5U	Pfu Polymerase (Stratagene, Waldbronn)
3U	Ampligase (Biozym, Hess. Oldendorf)
2µI	BSA
ad 20-50µl	H ₂ O _{bidest}

Die Amplifikation der DNA fand mittels des angegebenen Fünf-Schritt-Temperaturprogrammes statt, das den Bedürfnissen der jeweiligen Oligonukleotide und des zu amplifizierenden DNA-Fragments angepasst wurde.

Schritt	Temperatur	Dauer		Zyklusanzahl
Denaturierung	96°C	2min		1
Denaturierung	96°C	30s		
Annealing	x°C	30s	Y	30
Elongation	65°C	60s/kb	J	
Elongation	65°C	7min		1

6.1.8 Klonierung von DNA

Zur Ligation von DNA-Fragmenten wurde die DNA mit T4-DNA-Ligase inkubiert. Außer Vektor- und Fragment-DNA in einem molaren Verhältnis von 1:3 und 400 Einheiten (U) Ligase wurde dem Ansatz zusätzlich ein 10x T4-Ligase-Puffer und H_2O_{bidest} zum Volumenausgleich auf 20-50µl zugegeben. Der Ansatz wurde eine Stunde bei Raumtemperatur (RT) inkubiert und anschließend in kompetente *E. coli* Zellen transformiert.

6.1.9 Sequenzierung von DNA nach Sanger¹⁴⁴

Alle hergestellten Plasmide wurden durch Sequenzierung (Geneart AG, Regensburg) verifiziert. Hierzu wurden 200-300ng DNA mit 1μ l des 10μ M Sequenzierungsoligonukleotids versetzt und mit H₂O_{bidest} auf 8µl aufgefüllt.

6.1.10 Bestimmung von Kopienzahlen durch Real-time-PCR

Für die Durchführung der Real-time-PCR-Analysen wurde das Gerät "StepOne Real-Time PCR System" der Firma Applied Biosystems (Darmstadt) in Kombination mit dem "DyNAmo Flash SYBR Green qPCR Kit" (Finnzymes, Espoo, Finnland) verwendet. Prinzipiell erfolgt die Quantifizierung von Amplifikaten über die Detektion des Fluoreszenzfarbstoffes SYBR Green I, dessen Fluoreszenzintensität proportional zur Amplifikation der DNA zunimmt ¹⁴⁵. Quantitative Aussagen über die Menge des Ausgangstemplates können nur im Proportionalitätsbereich der Fluoreszenzmessung getroffen werden, welcher durch die logarithmisch-lineare Phase gekennzeichnet ist. eine Fluoreszenzintensität Der PCR-Zyklus, zu dem erstmalig im Proportionalitätsbereich gemessen wurde, wird als "crossing point" (CP) bezeichnet und lässt auf die Ausgangskonzentration des zugehörigen Amplikons schließen. Da SYBER Green I auch an unspezifische Produkte bindet, muss zusätzlich die spezifische Schmelztemperatur der einzelnen PCR-Produkte untersucht werden. Laut Herstellerangaben wurde ein Mastermix vorbereitet, wobei das Gesamtvolumen in den einzelnen Reaktionsgefäßen 10µl betrug. Als Negativkontrolle diente ein Ansatz, der anstelle der Probe H₂O_{bidest} enthielt.

Volumen	Komponente
5µl	SYBR Green PCR Mix
0,5µl	10µM forward-Oligonukleotid
0,5µl	10µM reverse-Oligonukleotid
1µI	Template-DNA/Template-cDNA
ad 10µl	H ₂ O _{bidest}

Schritt	Temperatur	Dauer		Zyklusanzahl
Denaturierung	95°C	10min		1
Denaturierung	95°C	15s	J	
Annealing	60 °C	20s	<pre>}</pre>	40
Elongation	72°C	10s	J	
Schmelzkurve	60-95°C			1

Um verschiedene Proben gleicher Länge mittels Real-time-PCR hinsichtlich ihrer Kopienzahl vergleichen zu können, muss für jede PCR-Reaktion die spezifische Effizienz ermittelt werden. Hierzu wurden verschiedene Verdünnungen der zu untersuchenden DNA-Probe hergestellt und in Real-time-Analysen eingesetzt. Anhand des crossing points und Verdünnungsstufen kann aus der sich ergebenden Regressionsgerade der so genannte "slope", die negative Steigung der Geraden, ermittelt werden. Die PCR-Effizienz E errechnet sich nach der Gesetzmäßigkeit:

$$E = \frac{10^{-1}}{slope}$$

Aufgrund der Kenntnis der Effizienz können im selben Lauf unterschiedliche Proben N relativ zueinander verglichen werden. Dabei gilt für das relative Verhältnis R¹⁴⁶:

$$R = \frac{E(N_A)^{Cp(N_A)}}{E(N_B)^{Cp(N_B)}}$$

6.2 Kultivierung von Zellen

6.2.1 Prokaryontische Zellen

6.2.1.1 Kulturhaltung von E.coli Zellen

Die Anzucht der Bakterien erfolgte bei 37°C auf LB₀-Agarplatten oder in LB₀-Flüssigmedium. Zur Selektion positiver Transformanten wurde dem Medium bzw. den Platten Ampicillin (100µg/ml) zugesetzt.

6.2.1.2 Transformation von E.coli Zellen

Zur Hitzeschocktransformation wurden 100 μ l-Aliquots chemisch kompetenter Bakterien auf Eis aufgetaut, mit dem gesamten Ligationsansatz versetzt und 30 min auf Eis inkubiert. Anschließend erfolgte für 45s ein Hitzeschock bei 42°C. Nach 10minütiger Inkubation bei 4°C wurden die Zellen für 2min abzentrifugiert (3000g), in 100 μ l LB aufgenommen und auf LB_{Amp}-Platten ausplattiert. Die Kultivierung erfolgte über Nacht bei 37°C. Positive Transformanten wurden mittels Kolonie-PCR und Restriktionsanalysen ermittelt.

6.2.1.3 Kolonie-PCR zur Identifizierung von korrekten Klonen

Die Kolonie-PCR dient der schnellen Analyse eventuell positiv transformierter *E.coli* Klone. Zu diesem Zweck wurde ein der Probenzahl entsprechendes Volumen des 2x "GoTaq Green Master Mix" (Promega, Mannheim) mit 1µM Oligonukleotiden und

H₂O_{bidest} versetzt und auf die PCR-Reaktionsgefäße (Biozym) verteilt. Anschließend wurde ein Teil der jeweiligen *E.coli* Kolonien mit einer Pipettenspitze von der Platte aufgenommen, auf einer neuen LB_{Amp}-Platte ausgestrichen, der Rest der Kolonie in das entsprechende Reaktionsgefäß überführt und im vorgelegten Reaktionsansatz resuspendiert.

6.2.2 Eukaryontische Zellen

6.2.2.1 Kulturhaltung von eukaryontischen Zelllinien

Sämtliche für die Kulturhaltung notwendigen Reagenzien wurden von PAN Biotech (Aidenbach) oder Invitrogen (Darmstadt) bezogen und waren auf Zellkultureignung getestet. Kulturgefäße für Zellen stammten von BD Biosciences (Heidelberg). Die verwendeten Zelllinien wurden in einem Inkubator bei 37°C und einer Atmosphäre von 5% CO₂ herangezogen. Für die Kultivierung aller Zelllinien wurde Dulbecco's Modified Eagle Medium (DMEM, Invitrogen, Darmstadt) mit 10% fötalem Kälberserum (Invitrogen, Darmstadt) und 1% Penicillin/Streptomycin-Lösung (PAN, Heidenheim) verwendet. Für die Subkultivierung wurden adhärente Zellen mit PBS gewaschen und anschließend durch Inkubation mit einer Trypsin-EDTA-Lösung (0,05% Trypsin, Invitrogen, Darmstadt) vom Boden der Kulturschale gelöst. Dieser Vorgang wurde durch die Zugabe von Serum-haltigem Medium gestoppt. Die Zellen wurden zentrifugiert (300g, 5min) und das Pellet in frischem Medium resuspendiert. Ein Zehntel dieser Suspension wurde in ein neues Kulturgefäß überführt und mit 0,25ml/cm² Medium versehen.

6.2.2.2 Bestimmung der Lebendzellzahl

Nach einer 1:10 Verdünnung von 10µl einer Zellsuspension mit 0,5% Trypanblau wurde die Anzahl vitaler Zellen unter Verwendung einer Neubauer-Zählkammer (Roth, Karlsruhe) bestimmt.

6.2.2.3 Transiente Transfektion

Zur transienten Transfektion von eukaryontischen Zellen wurden diese in Zellkulturplatten ausgesät, 24 h kultiviert und mit dem jeweiligen eukaryontischen Expressionsplasmid mittels des Transfektionreagenz Polyethylenimin (PEI, 25kDa, Polysciences, Eppelheim) transfiziert. Hierzu wurde DMEM-Medium ohne jegliche Zusätze vorgelegt und die DNA und PEI in einem Verhältnis von 1:4 zugegeben.

Nach einer Inkubation von 10min bei RT wurde der Transfektionsansatz gleichmäßig auf die Zellen gegeben. Das Medium wurde nach 4-6h abgesaugt und durch frisches Medium ersetzt. In der Regel wurden die Zellen bzw. der Zellkulturüberstand 48h nach Transfektion geerntet. Die unten dargestellte Tabelle zeigt die jeweile Zellzahl, die transfizierte Menge an Gesamt-DNA und das Gesamtvolumen des Ansatzes für unterschiedliche Kulturgefäße.

Kulturgefäß	Zellzahl	Menge DNA (µg)	Gesamtvolumen
12-well	1x10 ⁵	1	50µl
6-well	5x10 ⁵	2	100µl
6cm-Petrischale	5x10 ⁶	10	500µl
15cm-Petrischale	1x10 ⁷	30	1500µl

6.2.2.4 Behandlung von Zellkulturüberständen

Die Zellkulturüberstände wurden abgenommen und mittels Zentrifugation (500g, 5min) oder mittels Filtration durch einen 45µm Sterilfilter (Roth, Karlsruhe) von Zellen und Debris separiert. Für die Quantifizierung im p24-ELISA wurde die Überstände mit 0,5% Triton-X100 behandelt.

6.3 Generierung einer stabilen HI-viralen Verpackungszelllinie

Stabile HI-virale Verpackungsszelllinien wurden entweder über das Verfahren der zufälligen Rekombination, der FRT FIp-In-vermittelten Rekombination oder über Infektion generiert. Im folgenden werden alle Verfahren näher beschrieben.

6.3.1 Stabile Transfektion von Flp-In T-REx 293 -TO-VSVG-Zellen über das Verfahren der zufälligen Rekombination

Bei der Ausgangszelllinie handelt es sich um eine 293T-basierte Flp-In T-REx 293 -TO-VSVG - Zelllinie, die nach Induktion mit Doxycyclin das Fusionsprotein VSVG des Vesikuläre-Stomatitis-Virus (VSV) exprimiert. 2µg des jeweiligen Verpackungskonstrukts wurden mit 60U der Restriktionsendonuklease *Nae*I für 3h bei 37°C linearisiert, mit Hilfe des "QIAquick PCR Purification Kit" aufgereinigt und anschließend in Flp-In T-REx 293 -TO-VSVG - Zellen transfiziert, die zuvor im 6-well ausgesät worden waren. Die Rekombination erfolgt zufällig an DNA-Strangbrüchen im Genom.

6.3.2 Stabile Transfektion von Flp-In 293-Zellen über das FRT Flp-In-Verfahren

Bei der Ausgangszelllinie handelt es sich um eine 293T-basierte Flp-In 293-Zelllinie. 200ng des Verpackungskonstrukts pTNpack Puro FRT wurden gemeinsam mit 1,8µg des Rekombinase kodierenden Vektors pOG44 nach Angaben des Herstellers (Invitrogen, Darmstadt) in Flp-In T-REx 293-TO- Zellen transfiziert, die zuvor im 6well ausgesät worden waren. Die Rekombination erfolgt zielgerichtet an der FRT-Stelle im Genom.

6.3.3 Herstellung von stabilen Zelllinien über Infektion

Durch transiente Transfektion von 293T-Zellen mit pTNpack Puro LTR, pcDNA/Tat und pcDNA/VSVG im Verhältnis 2:1:1 wurden infektiöse Viruspartikel generiert (siehe 6.2.2.3) und anschließend im ELISA quantifiziert (siehe 6.6). Flp-In T-REx 293-TO- Zellen, die vorher im 6-well ausgesät worden waren, wurden unter Zugabe von 8ng/ml mit 200ng p24 infiziert. Die Rekombination wird durch die HI-virale Integrase vermittelt und erfolgt ungerichtet.

6.3.4 Selektion der stabilen Zelllinie über das MACS-Verfahren

72 Stunden nach der Transfektion wurde die Zellpopulation, die das Verpackungskonstrukt pTNpack LNGFR stabil integriert hat, nach Angaben des Herstellers über "MACS Cell Separation" (Miltenyi Biotec, Bergisch-Gladbach) selektioniert. Hierzu wurden magnetische Beads verwendet, an die ein Antikörper gegen LNGFR gekoppelt war. Die Selektion wurde alle 14 Tage wiederholt.

6.3.5 Antibiotische Selektion der stabilen Zelllinien

72 Stunden nach der Transfektion wurde mit der antibiotischen Selektion von stabilen Zellklonen begonnen, bei denen das Verpackungskonstrukt pTNpack Puro, pTNpack Zeo, pTNpack Neo, pTNpack Puro FRT bzw. pTNpack Puro LTR stabil in das Zellgenom integriert hat. Die verwendete Endkonzentration des jeweiligen Antibiotikums ist in der folgenden Tabelle dargestellt. Das Selektionsmedium wurde jeweils alle 2 bis 3 Tage gewechselt.

Antibiotikum	Verwendete Endkonzentration	Hersteller
Puromycin	2µg/ml	Invivogen (San Diego, USA)
Zeocin	500µg/ml	Invitrogen (Darmstadt)
Neomycin	700µg/ml	Gibco/Invitrogen (Darmstadt)
Hygromycin	100µg/ml	Invivogen (San Diego, USA)

6.3.6 Inhibition der Hi-viralen Protease durch Zugabe von Saquinavir

Zur Hemmung der zelltoxischen HI-viralen Protease wurde das Kultivierungsmedium mit Saquinavir (Roche, Mannheim) versetzt. Nach Titration verschiedener Konzentrationen des Hemmstoffs wurde eine optimale Konzentration von 12µM verwendet.

6.3.7 Isolierung von Zellklonen durch limited dilution

Einzelne Zellklone wurden durch das Verfahren der "limited dilution" isoliert. Hierzu wurde eine Zellsuspension verdünnt und in 96-well-Platten verteilt, so dass statistisch jede Zellkulturvertiefung eine einzelne Zelle enthält. Auf diese Weise wurden 84 Einzelklone generiert und anschließend charakterisiert.

6.4 Generierung infektiöser HI-viraler Partikel durch die stabile Zelllinie

6.4.1 Produktion von HI-viralen Viruspartikeln

Zur Produktion von infektiösen HI-viralen Viruspartikeln wurden Verpackungszellen (Klon 42-9) ausgesät und 24h kultiviert. Anschließend wurde gemäß dem Standard-Protokoll der transienten Transfektion pshuttle-Plasmid transfiziert. Zur Induktion der VSVG-Expression wurde dem Kultivierungsmedium während des Mediumwechsels nach 4h Doxycyclin (Sigma-Aldrich, München) zugegeben. 72h nach Transfektion wurde das Doxycyclin-haltige Kultivierungsmedium erneuert und weitere 48h auf den transfizierten Verpackungszellen belassen. Insgesamt 120h nach der Transfektion wurde der Zellkulturüberstand schließlich abgenommen und mittels Zentrifugation (500g, 5min) oder mittels Filtration durch einen 45µm Sterilfilter (Roth, Karlsruhe) von Zellen und Debris separiert. Für die Quantifizierung im p24-ELISA wurden die Überstände mit 0,5% Triton-X100 behandelt.

6.4.2 Aufreinigung von Viruspartikeln durch Ultrazentrifugation und Infektion von eukaryontischen Zellen

Zur Aufkonzentrierung der Viruspartikel wurden filtrierte Zellkulturüberstände über ein 30% Saccharose-Kissen in der Ultrazentrifuge (Beckman Coulter, Krefeld) aufgereinigt. Die Zentrifugationsparameter waren hierbei 63000g bei 4°C für 2,5h. Virushaltiger Zellkulturüberstand oder in der Ultrazentrifuge konzentrierter Virus wurde mit 8ng/ml Polybrene versetzt und auf die kultivierten Zellen gegeben. Nach 12h wurde der Überstand durch frisches DMEM-Medium ersetzt.

6.4.3 Nachprozessierung von Viruspartikeln durch exogene HI-virale Protease

Zur Kontrolle der Prozessierungseffizienz der durch das Verpackungskonstrukt kodierten Protease wurden HI-virale Partikel mit exogener Protease nachprozessiert. Hierzu wurden 450µl der produzierten Überstände mit 0,5% Triton-X in PBS inaktiviert und mit 0,1M NaAc, 0,5M NaCl, 4mM EDTA und 5mM DTT versetzt. Anschließend wurde der Ansatz für 2h bei 37°C mit 10µl Protease (Bachem, Weil am Rhein) inkubiert.

6.5 Proteinbiochemische Methoden

6.5.1 Gesamtproteinbestimmung durch Bradford

Die Bestimmung der Gesamtproteinmenge erfolgte nach der Methode von Bradford ¹⁴⁷ und wurde unter Verwendung des "Bio-Rad Protein Assay" Reagenz (Bio-Rad, München) nach Angaben des Herstellers durchgeführt. Die Proteinmenge wurde näherungsweise anhand einer BSA-Standardgeraden bestimmt.

6.5.2 SDS-PA-Gel-Elektrophorese

Zur Analyse der Expression von Proteinen wurden gleiche Mengen an Gesamtprotein mit 5x Lämmli-Probenpuffer versetzt und 5min bei 95°C erhitzt. Die Proteine der zu untersuchenden Proben wurden entsprechend ihrem Molekulargewicht über ein 7,5%-iges bis 12,5%-iges SDS-Polyacrylamidgel bei 100V konstanter Spannung aufgetrennt ¹⁴⁸. Die Konzentration des Sammelgels betrug stets 5%.

6.5.3 Western Blotting und Immunodetektion

Elektrophoretisch aufgetrennte Proteine wurden nach Standardverfahren und unter Verwendung einer "SemiDry-Blotting"-Apparatur nach Angaben des Herstellers (Bio-Rad, München) aus dem Gel auf eine Nitrocellulose-Membran (0,45µm) (Schleicher Schuell, Dassel) übertragen. Zur Kontrolle des Transfers wurden die Proteine reversibel mit Ponceau-S-Lösung (Applichem, Darmstadt) angefärbt. Die Absättigung unspezifischer Bindungsstellen erfolgte üN bei 4°C in Blockierlösung. Nach dreimaligem Waschen in TTBS für jeweils 10 Minuten wurde die Membran für 1h bei Raumtemperatur mit dem jeweiligen in TTBS-Puffer verdünnten Primär-Antikörper inkubiert. Die Inkubation des Blots mit dem "horseradish peroxidase" (HRP) konjugierten Sekundär-Antikörper erfolgte nach erneutem Waschen der Membran in TTBS (3x 15min) für 1h bei RT. Die Antikörper-Antigen-Komplexe auf der Membran wurden nach wiederholtem Waschen mit Hilfe einer ECL-Lösung und des Geldokumentationssystems ChemiLux Pro (Intas, Göttingen) detektiert und analysiert. In der folgenden Tabelle sind die verwendeten Primär- und Sekundär-Antikörper dargestellt.

Art des Antikörpers	Antikörper	Hersteller	Verdünnung
Primär	Maus-α-p24 (13/5)	149	1:1000
Primär	Maus-α-p120 (9301)	Perkin Elmer (Waltham, USA)	1:100
Sekundär	α-Maus-HRP	Dianova (Hamburg)	1:10000

6.6 "Enzyme-linked Immunosorbent Assay" (ELISA)

Zur Quantifizierung der p24-Konzentration in Zelllysaten und Zellkulturüberständen diente das ELISA-Verfahren. Zu Beginn wurden 96-well MaxiSorb-Mikrotiterplatten (Nunc, Wiesbaden) mit jeweils 100µl einer Lösung des p24-spezifischen "MO1"-Antikörpers (Polymun, Wien, Österreich: 1:4000 in "Coating"-Puffer) üN bei 4°C inkubiert. Für die Erstellung der Standardgeraden wurde ein p24-Standard, der durch Lyse von Virusüberstand durch 0,5% Triton-X100 hergestellt wurde, seriell 1:1 in Medium (DMEM, 10% FKS) verdünnt (5000–19,5 pg/ml). Kulturüberstände wurden in Doppelbestimmung 1:10, 1:100 bzw. 1:1000 in Medium verdünnt. Je 100µl aller

Verdünnungen wurden nach 3-maligem Waschen der Mikrotiterplatten mit TTBS aufgetragen und anschließend 1h bei 37°C inkubiert. Es wurde 6x gewaschen, anschließend je 100µl einer 1:100000 Verdünnung des biotinylierten "37G12"-Antikörpers (Polymun, Wien, Österreich) aufgetragen und eine weitere Stunde (RT) inkubiert. Nach weiteren zehn Waschschritten wurde eine 1:10000 Verdünnung des Streptavidin-HRP-Konjugats (Roche, Mannheim) zugegeben und für 30 min bei RT inkubiert. Die Antikörper-Antigen Komplexe wurden nach abschließendem 10maligem Waschen unter Verwendung von je 100µl TMB-Substratlösung detektiert. Nach Abstoppung der Reaktion mit 50µl 1M H₂SO₄ wurde die Adsorption mit einem Spektrophotometer (Biorad, Modell 680 Microplate Reader, München) bei einer Wellenlänge von 450nm bestimmt. Mit Hilfe der Standardgeraden wurde anschließend die p24-Konzentration bestimmt.

6.7 "Panning" von lentiviralen Viruspartikeln über Festphase-gekoppelte Antikörper

Für die Selektion von HIV-1 Oberflächenproteinvarianten mit Hilfe von breit neutralisierenden Antikörpern wurden Breitneutralisierer an 96-well MaxiSorb-(Nunc, Mikrotiterplatten Wiesbaden) immobilisiert. Hierzu wurden die Antikörperlösungen (10mg/ml) 1:1000 in "Coating"-Puffer verdünnt und à 100 µl in die Vertiefungen von Mikrotiterplatten pipettiert. Die Platten wurden üN bei 4°C inkubiert. Nach einem dreimaligen Waschschritt mit PBS-T wurden die Vertiefungen mit 10% FKS für 2h bei RT inkubiert. Nach einem weiteren Waschschritt (3x PBS-T) wurden jeweils 20- 50 ng Virusüberstand appliziert und für 1h bei 37°C inkubiert. Nach dreimaligem Waschen mit PBS wurde der gebundene Virus mit 100 µl 0,5% Triton-X 100 lysiert und anschließend mit Hilfe des ELISA guantifiziert (siehe 6.6). Parallel dazu wurden auf den immobilisierten Antikörper 1x10⁴ Zellen gegeben und anschließend kultiviert. Nach 48h wurde der Anteil infizierter Zellen im FACS bestimmt (siehe 6.8).

6.8 Durchflusszytometrie (FACS)

Zur Charakterisierung der stabilen Zelllinien und zur Quantifizierung der Infektiösen Titer (IU/ml) wurden FACS Analysen verwendet. Um die Infektiösen Titer der produzierten Virusüberstände zu bestimmen, wurde das Fluoreszenzsignal des

Methoden

TatGFP-Fusionsproteins ausgelesen, das von pshuttle in infizierten Zellen exprimiert wird. Pro Ansatz wurden jeweils die Zellen eines 6-Wells oder 12-Wells geerntet. Hierzu wurden die Zellen mit PBS gewaschen und anschließend mit der Pipette von der Gefäßoberfläche gelöst. Nach einem Zentrifugationsschritt für 5min bei 300g wurde das Zellpellet in 500µl FACS-Puffer resuspendiert. Zur Messung intrazellulärer Parameter Zellen zusätzlich mit "Cytofix/Cytoperm"-Lösung wurden die permeabilisiert und fixiert. Waschschritte erfolgten hier mit "Perm-Wash"-Lösung. Alle FACS-Analysen wurden im "FACSCanto II" der Firma BD (Heidelberg) durchgeführt. Die Population lebender Einzelzellen wurde in einer Auftragung der Zell-Grösse gegen die Granularität (forward/side-scatter = FSC/SSC-Plot) dargestellt. Zur Messung der Anzahl positiver Zellen und der mittleren Fluoreszenzintensität wurden Auftragungen des jeweiligen Fluorochroms gegen die Zell-Grösse gewählt. Die Basislinie wurde so gelegt, dass die Anzahl positiver Zellen bei untransfizierten Zellen 0 betrug; es wurden 10 000 Events pro Ansatz analysiert. Sowohl die verwendeten Antikörper als auch die Anregung und Detektion der verschiedenen Fluorochrome zeigt die unten dargestellte Tabelle.

Vanuandatar Antikärnar	Elucrochrom	Anregungs-	Detektionswellenlänge/ Verwendeter Kanal	
verwendeter Antikorper	Fluorochrom	wellenlänge		
-	GFP	395-475nm	509nm/FITC	
α-p24-RD1	RD1	486-580nm	568-590nm/PE	
(Coulter Clone KC57-RD1				
Beckman Coulter, Cat. No. 6604667)				
α -Env-Alexa Fluor 647	Alexa-Fluor 647	650nm	668nm/APC	
(2G12-Alexa Fluor 647)				
α -CD271 (LNGFR)-PE	PE	488nm	533nm/PE	
(Miltenyi Biotec, Cat. No.130-				
091-885)				
Maus-α-VSVG	-	-	-	
(Sigma, Cat. No. V-5507)				
α -Maus IgG1-PE	PE	488nm	533nm/PE	
(BD, Cat. No. 550083)				

6.9 Enzymbasierte Nachweismethoden

6.9.1 Luciferase-Assay

Das Verfahren des enzymbasierten Luciferase-Assays (Promega, Mannheim) wurde für die Quantifizierung von infizierten Eukaryontenzellen verwendet. Hierzu wurde das Proviruskonstrukt pTN7 stop von Dr. M. Dittmar (Universität Heidelberg), das eine *Renilla* Luciferase im ehemaligen HI-viralen Nef-Leserahmen kodiert, als Reporter verwendet. Nach Produktion von infektiösen Viruspartikeln mit Hilfe von pTN7 stop- Varianten und einem VSVG-kodierenden Plasmid wurden Zielzellen mit dem jeweiligen Virusüberstand infiziert. Nach 48h wurden die Zellen lysiert und das Luciferase-spezifische Substrat Luciferin zugegeben. Die Enzymmenge in den Lysaten wurde schließlich durch Messung der Lichteinheiten RLU im Luminometer Lumat LB 9501 der Firma Berthold (Bad Wildbad) bestimmt und ließ Rückschlüsse auf den Anteil an infizierten Zellen in der Population zu.

6.9.2 Multinuclear activation of galactosidase indicator (MAGI)-Assay

Grundlage des MAGI-Assays, mit dem die Expression und Funktionalität des HIviralen Transaktivator-Proteins Tat nachgewiesen werden kann, ist die MAGI Zelle. Sie basiert auf einer HeLa-Zelllinie, in deren Genom eine LTR-β-Galaktosidase-Reporterkassette stabil integriert ist. Zusätzlich exprimiert die Zelllinie den CD4-Rezeptor und die Korezeptoren CCR5 und CXCR4, die für die Fusion des HI-viralen Env-Proteins mit der Zellmembran nötig sind. Zur Charakterisierung von verschiedenen Tat und Env kodierenden Vektoren wurden MAGI-Zellen mit den jeweiligen Plasmiden transfiziert. Nach 48h wurden die Zellen für 5min mit Fixierlösung inkubiert und anschließend für 2h bei 37°C mit X-Gal-Färbelösung gefärbt. In Zellen, in denen eine Tat Expression erfolgt, wird die LTR-Promotorabhängige Expression der Galaktosidase-Genkassette aktiviert. Die enzymabhängige Umwandlung des Substrats X-Gal zu einem blauen Farbstoff führt schließlich zu gefärbten Zellen, die im Lichtmikroskop ausgezählt werden können. Erfolgt zusätzlich die Expression eines fusogenen Env-Proteins, kann die Bildung blaugefärbter Synzytien beobachtet werden.

7 Anhang

7.1 Sequenz pTNpack Puro

1	CATGGGTTGA	CATTGATTAT	TGACTAGTTA	TTAATAGTAA	TCAATTACGG	GGTCATTAGT
61	TCATAGCCCA	TATATGGAGT	TCCGCGTTAC	ATAACTTACG	GTAAATGGCC	CGCCTGGCTG
121	ACCGCCCAAC	GACCCCCGCC	CATTGACGTC	AATAATGACG	TATGTTCCCA	TAGTAACGCC
181	AATAGGGACT	TTCCATTGAC	GTCAATGGGT	GGACTATTTA	CGGTAAACTG	CCCACTTGGC
241	AGTACATCAA	GTGTATCATA	TGCCAAGTAC	GCCCCCTATT	GACGTCAATG	ACGGTAAATG
301	GCCCGCCTGG	CATTATGCCC	AGTACATGAC	CTTATGGGAC	TTTCCTACTT	GGCAGTACAT
361	CTACGTATTA	GTCATCGCTA	TTACGATGGT	GATGCGGTTT	TGGCAGTACA	TCAATGGGCG
421	TGGATAGCGG	TTTGACTCAC	GGGGATTTCC	AAGTCTCCAC	CCCATTGACG	TCAATGGGAG
481	TTTGTTTTGG	CACCAAAATC	AACGGGACTT	TCCAAAATGT	CGTAACAACT	CCGCCCCATT
541	GACGCAAATG	GGCGGTAGGC	GTGTACGGTG	GGAGGTCTAT	ATAAGCAGAG	CTCTCTGGCT
601	AACTAGAGAA	CCCACTGCTT	AACTGGCTTA	TCGAAATTAA	TACGACTCAC	TATAGGGAGA
661	CCCAAGCTTC	CCCATCAGTC	CGCAAAGCGG	ACCTATGACC	GAGTACAAGC	CCACGGTGCG
721	CCTCGCCACC	CGCGACGACG	TCCCCAGGGC	CGTACGCACC	CTCGCCGCCG	CGTTCGCCGA
781	CTACCCCGCC	ACGCGCCACA	CCGTCGATCC	GGACCGCCAC	ATCGAGCGGG	TCACCGAGCT
841	GCAAGAACTC	TTCCTCACGC	GCGTCGGGCT	CGACATCGGC	AAGGTGTGGG	TCGCGGACGA
901	CGGCGCCGCG	GTGGCGGTCT	GGACCACGCC	GGAGAGCGTC	GAAGCGGGGG	CGGTGTTCGC
961	CGAGATCGGC	CCGCGCATGG	CCGAGTTGAG	CGGTTCCCGG	CTGGCCGCGC	AGCAACAGAT
1021	GGAAGGCCTC	CTGGCGCCGC	ACCGGCCCAA	GGAGCCCGCG	TGGTTCCTGG	CCACCGTCGG
1081	CGTCTCGCCC	GACCACCAGG	GCAAGGGTCT	GGGCAGCGCC	GTCGTGCTCC	CCGGAGTGGA
1141	GGCGGCCGAG	CGCGCCGGGG	TGCCCGCCTT	CCTGGAGACC	TCCGCGCCCC	GCAACCTCCC
1201	CTTCTACGAG	CGGCTCGGCT	TCACCGTCAC	CGCCGACGTC	GAGTGCCCGA	AGGACCGCGC
1261	GACCTGGTGC	ATGACCCGCA	AGCCCGGTGC	CTGATCTAGA	GCTTCGATCC	AGACATGATA
1321	AGATACATTG	ATGAGTTTGG	ACAAACCACA	ACTAGAATGC	AGTGAAAAAA	ATGCTTTATT
1381	TGTGAAATTT	GTGATGCTAT	TGCTTTATTT	GTAACCATTA	TAAGCTGCAA	TAAACAAGTT
1441	GGTACCTTTA	AGACCAATGA	CTTACAAGGC	AGCTGTAGAT	CTTAGCCACT	TTTTAAAAGA
1501	AAAGGGGGGA	CCCCGGGCTG	TGCCTTCTAG	TTGCCAGCCA	TCTGTTGTTT	GCCCCTCCCC
1561	CGTGCCTTCC	TTGACCCTGG	AAGGTGCCAC	TCCCACTGTC	CTTTCCTAAT	AAAATGAGGA
1621	AATTGCATCG	CATTGTCTGA	GTAGGTGTCA	TTCTATTCTG	GGGGGTGGGG	TGGGGCAGGA
1681	CAGCAAGGGG	GAGGATTGGG	AAGACAATAG	CAGGCATGCT	GGGGATGCGG	TGGGCTCTAT
1741	GGTTAATTAA	CTCTAGCACC	TAGGAAAAGC	CGAATTCCAG	CACACTGGCG	GCCGTTACTA
1801	GTGGATCCGA	GCTCGCCAGC	TTTTGTTCCC	TTTAGTGAGG	GTTAATTGCG	CGCTTGGCGT
1861	AATCATGGTC	ATAGCTGTTT	CCTGTGTGAA	ATTGTTATCC	GCTCACAATT	CCACACAACA
1921	TACGAGCCGG	AAGCATAAAG	TGTAAAGCCT	GGGGTGCCTA	ATGAGTGAGC	TAACTCACAT
1981	TAATTGCGTT	GCGCTCACTG	CCCGCTTTCC	AGTCGGGAAA	CCTGTCGTGC	CAGCTGCATT
2041	AATGAATCGG	CCAACGCGCG	GGGAGAGGCG	GTTTGCGTAT	TGGGCGCTCT	TCCGCTTCCT
2101	CGCTCACTGA	CTCGCTGCGC	TCGGTCGTTC	GGCTGCGGCG	AGCGGTATCA	GCTCACTCAA
2161	AGGCGGTAAT	ACGGTTATCC	ACAGAATCAG	GGGATAACGC	AGGAAAGAAC	ATGTGAGCAA
2221	AAGGCCAGCA	AAAGGCCAGG	AACCGTAAAA	AGGCCGCGTT	GCTGGCGTTT	TTCCATAGGC
2281	TTCGCCCCCC	TGACGAGCAT	CACAAAAATC	GACGCTCAAG	TCAGAGGTGG	CGAAACCCGA
2341	CAGGACTATA	AAGATACCAG	GCGTTTCCCC	CTGGAAGCTC	CCTCGTGCGC	TCTCCTGTTC
2401	CGACCCTGCC	GCTTACCGGA	TACCTGTCCG	CCTTTCTCCC	TTCGGGAAGC	GTGGCGCTTT
2461	CTCATAGCTC	ACGCTGTAGG	TATCTCAGTT	CGGTGTAGGT	CGTTCGCTCC	AAGCTGGGCT
2521	GTGTGCACGA	ACCCCCCGTT	CAGCCCGACC	GCTGCGCCTT	ATCCGGTAAC	TATCGTCTTG
2581	AGTCCAACCC	GGTAAGACAC	GACTTATCGC	CACTGGCAGC	AGCCACTGGT	AACAGGATTA
2641	GCAGAGCGAG	GTATGTAGGC	GGTGCTACAG	AGTTCTTGAA	GTGGTGGCCT	AACTACGGCT
2701	ACACTAGAAG	AACAGTATTT	GGTATCTGCG	CTCTGCTGAA	GCCAGTTACC	TTCGGAAAAA
2761	GAGTTGGTAG	CTCTTGATCC	GGCAAACAAA	CCACCGCTGG	TAGCGGTGGT	TTTTTTGTTT
2821	GCAAGCAGCA	GATTACGCGC	AGAAAAAAG	GATCTCAAGA	AGATCCTTTG	ATCTTTTCTA
2881	CGGGGTCTGA	CGCTCAGTGG	AACGAAAACT	CACGTTAAGG	GATTTTGGTC	ATGAGATTAT
2941	CAAAAAGGAT	CTTCACCTAG	ATCCTTTTAA	ATTAAAAATG	AAGTTTTAAA	TCAATCTAAA
3001	GTATATATGA	GTAAACTTGG	TCTGACAGTT	ACCAATGCTT	AATCAGTGAG	GCACCTATCT
3061	CAGCGATCTG	TCTATTTCGT	TCATCCATAG	TTGCCTGACT	CCCCGTCGTG	TAGATAACTA
3121	CGATACGGGA	GGGCTTACCA	TCTGGCCCCA	GTGCTGCAAT	GATACCGCGA	GACCCACGCT
3181	CACCGGCTCC	AGATTTATCA	GCAATAAACC	AGCCAGCCGG	AAGGGCCGAG	CGCAGAAGTG
3241	GTCCTGCAAC	TTTATCCGCC	TCCATCCAGT	CTATTAATTG	TTGCCGGGAA	GCTAGAGTAA
3301	GTAGTTCGCC	AGTTAATAGT	TTGCGCAACG	TTGTTGCCAT	TGCTACAGGC	ATCGTGGTGT

	ammmaamama		aamaaaamma		
SSOI CACGCICGIC	GITIGGIAIG	GUIICAIICA	GCICCGGIIC	CCAACGAICA	AGGCGAGIIA
3421 CATGATCCCC	CATGTTGTGC	AAAAAGCGG	TTAGCTCCTT	CGGTCCTCCG	ATCGTTGTCA
3481 GAAGTAAGTT	GGCCGCAGTG	TTATCACTCA	TGGTTATGGC	AGCACTGCAT	AATTCTCTTA
3541 CTGTCATGCC	ATCCGTAAGA	TGCTTTTCTG	TGACTGGTGA	GTACTCAACC	AAGTCATTCT
	TATCCCCCCA	CCCACTTCCT	CTTCCCCCCC	CTCN NTN CCC	CATAATACCC
					CATAATACCO
3661 CGCCACATAG	CAGAACITITA	AAAGIGCICA	TCATTGGAAA	ACGITICITICG	GGGCGAAAAC
3721 TCTCAAGGAT	CTTACCGCTG	TTGAGATCCA	GTTCGATGTA	ACCCACTCGT	GCACCCAACT
3781 GATCTTCAGC	ATCTTTTACT	TTCACCAGCG	TTTCTGGGTG	AGCAAAAACA	GGAAGGCAAA
3841 ATGCCGCAAA	AAAGGGAATA	AGGGCGACAC	GGAAATGTTG	AATACTCATA	CTCTTCCTTT
3901 നന്നമമനമന്നമ	тталасслтт	татсассстт	ՃͲͲሮͲሮͳሮϪͲ	CACCCCATAC	ፚ፹ፚ፹፹፹፫ርልፚ፹
S901 GIAIIIAGAA	AAATAAACAA	AIAGGGGIIC	CGCGCACATT	ICCCCGAAAA	GIGCCACCIG
4021 ACGCGCCCTG	TAGCGGCGCA	TTAAGCGCGG	CGGGTGTGTGGT	GGTTACGCGC	AGCGTGACCG
4081 CTACACTTGC	CAGCGCCCTA	GCGCCCGCTC	CTTTCGCTTT	CTTCCCTTCC	TTTCTCGCCA
4141 CGTTCGCCGG	CTTTCCCCGT	CAAGCTCTAA	ATCGGGGGCT	CCCTTTAGGG	TTCCGATTTA
4201 GTGCTTTACG	GCACCTCGAC	СССААААААС	TTGATTAGGG	TGATGGTTCA	CGTAGTGGGC
4261 CATCGCCCTG	ATAGACGGTT	тттссссстт	тсассттсса	GTCCACGTTC	ͲͲͲϪϪͲϪႺͲႺ
4321 GACICIIGII	CCAAACIGGA	ACAACACICA	ACCCTATCIC	GGICIAIICI	IIIGAIIIAI
4381 AAGGGA'I"I"I"I"	GCCGATTTCG	GCCTATTGGT	TAAAAAATGA	GCTGATTITAA	CAAAAA'I"I"I"I
4441 AAACGCGAAT	TTTAACAAAA	TATTAAACGC	TTACAATTTC	CATTCGCCAT	TCAGGCTGCG
4501 CAACTGTTGG	GAAGGGCGAT	CGGTGCGGGC	CTCTTCGCTA	TTACGCCAGC	TGGCGAAAGG
4561 GGGATGTGCT	GCAAGGCGAT	TAAGTTGGGT	AACGCCAGGG	ттттсссаст	CACGACGTTG
	CCCACTCACC	CCCCCCTAATA	CCACTCACTA	TACCCCANT	TCCACCTCCA
4021 TAAAACGACG	GCCAGIGAGC	GCGCGIAAIA	CGACICACIA	IAGGGCGAAI	IGGAGCICCA
4681 CCGCGGTGGC	GGCCGCTCTA	GCTGGAAGGG	CTAATTTGGT	CCCAAAAAAG	ACAAGAGATC
4741 CTTGATCTGT	GGATCTACCA	CACACAAGGC	TACTTCCCTG	ATTGGCAGAA	CTACACACCA
4801 GGGCCAGGGA	TCAGATATCC	ACTGACCTTT	GGATGGTGCT	TCAAGTTAGT	ACCAGTTGAA
4861 CCAGAGCAAG	TAGAAGAGGC	CAATGAAGGA	GAGAACAACA	GCTTGTTACA	CCCTATGAGC
	TCCACCACCC	CCACCCACAA	CTATTACT		СЛСССТССТЛ
4921 CAGCAIGGGA	IGGAGGACCC	DGAGGGAGAA	GIAIIAGIGI	GGAAGIIIGA	CAGCCICCIA
4981 GCATTICGTC	ACATGGCCCG	AGAGCTGCAT	CCGGAGTACT	ACAAAGACTG	CTGACATCGA
5041 GCTTTCTACA	AGGGACTTTC	CGCTGGGGAC	TTTCCAGGGA	GGTGTGGCCT	GGGCGGGACT
5101 GGGGAGTGGC	GAGCCCTCAG	ATGCTACATA	TAAGCAGCTG	CTTTTTGCCT	GTACTGGGTC
5161 TCTCTGGTTA	GACCAGATCT	GAGCCTGGGA	GCTCTCTGGC	TAACTAGGGA	ACCCACTGCT
5221 TAACCCTCAA	тааассттсс	CTTCACTCCT	CAAACTACTC	TATACCCCCTC	таттатата
5281 CICIGGIAAC	TAGAGATCCC	ICAGACCCII	IIAGICAGIG	IGGAAAAICI	CIAGCAGIGG
5341 CGCCCGAACA	GGGACTTGAA	AGCGAAAGTA	AAGCCAGAGG	AGATCTCTCG	ACGCAGGAGG
5401 GCGGCGACTG	GTGAGTACGC	CAAAAATTTT	GAAAGGAGAG	AGATGGGTGC	GAGAGCGTCG
5461 GTATTAAGCG	GGGGAGAATT	AGATAAATGG	GAAAAATTC	GGTTAAGGCC	AGGGGGAAAG
5521 AAACAATATA	AACTAAAACA	TATAGTATGG	GCAAGCAGGG	AGCTAGAACG	ATTCGCAGTT
		ATCACAACCC	тстасасааа	тастасала	CCTACAACCA
5581 AAICCIGGCC		AICAGAAGGC		IACIGGGACA	J GETACAACCA
5641 TCCCTTCAGA	CAGGATCAGA	AGAACTTAGA	TCATTATATA	ATACAATAGC	AGICCICIAI
5701 TGTGTGCATC	AAAGGATAGA	TGTAAAAGAC	ACCAAGGAAG	CCTTAGATAA	GATAGAGGAA
5761 GAGCAAAACA	AAAGTAAGAA	AAAGGCACAG	CAAGCAGCAG	CTGACACAGG	AAACAACAGC
5821 CAGGCCGAGC	AGAAGCTTAT	CAGCGAGGAG	GACCTGGCAG	TCAGCCAAAA	TTACCCTATA
5881 GTGCAGAACC	TCCAGGGGCA	аатсстасат	САССССАТАТ	САССТАСААС	тттааатсса
5941 IGGGIAAAAG	IAGIAGAAGA	GAAGGCIIIC	AGCCCAGAAG		GIIIICAGCA
6001 TTATCAGAAG	GAGCCACCCC	ACAAGATTTA	AATACCATGC	TAAACACAGT	GGGGGGACAT
6061 CAAGCAGCCA	TGCAAATGTT	AAAAGAGACC	ATCAATGAGG	AAGCTGCAGA	ATGGGATAGA
6121 TTGCATCCAG	TGCATGCAGG	GCCTATTGCA	CCAGGCCAGA	TGAGAGAACC	AAGGGGAAGT
6181 GACATAGCAG	GAACTACTAG	TACCCTTCAG	GAACAAATAG	GATGGATGAC	ACATAATCCA
6241 CCTATCCCAC	тассасааат	СТАТААААСА	таатаатас	таааттааа	таааатаста
			IGGAIAAICC	IGGGAIIAAA	
6301 AGAATGTATA	GCCCTACCAG	CATTCTGGAC	ATAAGACAAG	GACCAAAGGA	ACCCTTTAGA
6361 GACTATGTAG	ACCGATTCTA	TAAAACTCTA	AGAGCCGAGC	AAGCTTCACA	AGAGGTAAAA
6421 AATTGGATGA	CAGAAACCTT	GTTGGTCCAA	AATGCGAACC	CAGATTGTAA	GACTATTTTA
6481 AAAGCATTGG	GACCAGGAGC	GACACTAGAA	GAAATGATGA	CAGCATGTCA	GGGAGTGGGG
6541 GGACCCGCC	АТАААССААС	AGTTTTCC	GAAGCAATGA	GCCAAGTAAC	AAATCCACCT
			A A COA A A CA A		
CCC1 momono	IACAGAAAGG	CAALILIAGG	AACCAAAGAA	AGACIGIIAA	GIGITICAAT
DODI TGTGGCAAAG	AAGGGCACAT	AGCCAAAAAT	TGCAGGGCCC	CTAGGAAAAA	GGGCTGTTGG
			GATTGTACTG	AGAGACAGGC	TAATTTTTTA
6721 AAATGTGGAA	AGGAAGGACA	CCAAAIGAAA			
6721 AAATGTGGAA 6781 GGGAAGATCT	AGGAAGGACA GGCCTTCCCA	CAAGGGAAGG	CCAGGGAATT	TTCTTCAGAG	CAGACCAGAG
6721 AAATGTGGAA 6781 GGGAAGATCT 6841 CCAACAGCCC	AGGAAGGACA GGCCTTCCCA CACCAGAAGA	CAAGGGAAGG GAGCTTCAGG	CCAGGGAATT TTTGGGGAAG	TTCTTCAGAG AGACAACAAC	CAGACCAGAG TCCCTCTCAG
6721 AAATGTGGAA 6781 GGGAAGATCT 6841 CCAACAGCCC 6901 AACCACCACC	AGGAAGGACA GGCCTTCCCA CACCAGAAGA	CAAGGGAAGG GAGCTTCAGG	CCAGGGAATT TTTGGGGGAAG	TTCTTCAGAG AGACAACAAC	CAGACCAGAG TCCCTCTCAG
6721 AAATGTGGAA 6781 GGGAAGATCT 6841 CCAACAGCCC 6901 AAGCAGGAGC	AGGAAGGACA GGCCTTCCCA CACCAGAAGA CGATAGACAA	CAAGGGAAGG GAGCTTCAGG GGAACTGTAT	CCAGGGAATT TTTGGGGAAG CCTTTAGCTT	TTCTTCAGAG AGACAACAAC CCCTCAGATC	CAGACCAGAG TCCCTCTCAG ACTCTTTGGC
6721 AAATGTGGAA 6781 GGGAAGATCT 6841 CCAACAGCCC 6901 AAGCAGGAGC 6961 AGCGACCCCT	AGGAAGGACA GGCCTTCCCA CACCAGAAGA CGATAGACAA CGTCACAATA	CAAAGGGAAGG GAGCTTCAGG GGAACTGTAT AAGATAGGGG	CCAGGGAATT TTTGGGGAAG CCTTTAGCTT GGCAATTAAA	TTCTTCAGAG AGACAACAAC CCCTCAGATC GGAAGCTCTA	CAGACCAGAG TCCCTCTCAG ACTCTTTGGC TTAGATACAG
6721 AAATGTGGAA 6781 GGGAAGATCT 6841 CCAACAGCCC 6901 AAGCAGGAGC 6961 AGCGACCCCT 7021 GAGCAGATGA	AGGAAGGACA GGCCTTCCCA CACCAGAAGA CGATAGACAA CGTCACAATA TACAGTATTA	CAAGGGAAGG GAGCTTCAGG GGAACTGTAT AAGATAGGGG GAAGAAATGA	CCAGGGAATT TTTGGGGAAG CCTTTAGCTT GGCAATTAAA ATTTGCCAGG	TTCTTCAGAG AGACAACAAC CCCTCAGATC GGAAGCTCTA AAGATGGAAA	CAGACCAGAG TCCCTCTCAG ACTCTTTGGC TTAGATACAG CCAAAAATGA
6721 AAATGTGGAA 6781 GGGAAGATCT 6841 CCAACAGCCC 6901 AAGCAGGAGC 6961 AGCGACCCCT 7021 GAGCAGATGA 7081 TAGGGGGAAT	AGGAAGGACA GGCCTTCCCA CACCAGAAGA CGATAGACAA CGTCACAATA TACAGTATTA TGGAGGTTTT	CAAAGGGAAGG GAGCTTCAGG GGAACTGTAT AAGATAGGGG GAAGAAATGA ATCAAAGTAA	CCAGGGAATT TTTGGGGAAG CCTTTAGCTT GGCAATTAAA ATTTGCCAGG GACAGTATGA	TTCTTCAGAG AGACAACAAC CCCTCAGATC GGAAGCTCTA AAGATGGAAA TCAGATACTC	CAGACCAGAG TCCCTCTCAG ACTCTTTGGC TTAGATACAG CCAAAAATGA ATAGAAATCT

7201	GAAATCTGTT	GACTCAGATT	GGCTGCACTT	TAAATTTTCC	CATTAGTCCT	ATTGAGACTG
7261	TACCAGTAAA	ATTAAAGCCA	GGAATGGATG	GCCCAAAAGT	TAAACAATGG	CCATTGACAG
7321	AAGAAAAAAT	AAAAGCATTA	GTAGAAATTT	GTACAGAAAT	GGAAAAGGAA	GGAAAAATTT
7381	CAAAAATTGG	GCCTGAAAAT	CCATACAATA	CTCCAGTATT	TGCCATAAAG	AAAAAAGACA
7441	GTACTAAATG	GAGAAAATTA	GTAGATTTCA	GAGAACTTAA	TAAGAGAACT	CAAGATTTCT
7501	GGGAAGTTCA	ATTAGGAATA	CCACATCCTG	CAGGGTTAAA	ACAGAAAAAA	TCAGTAACAG
7561	ТАСТССАТСТ	GGGCGATGCA	ТАТТТТСАС	ттсссттаса	TAAAGACTTC	AGGAAGTATA
7621	СТССАТТТАС	Сатасстаст	ATAAACAATG	AGACACCAGG	Саттасатат	CAGTACAATG
7681	TCCTTCCACA	CCCATCCAAA	CCATCACCAC		CTCTACCATC	
7001	THETTCCACA	UGGAIGGAAA	JATCCACCAG		GIGIAGCAIG	
7001			AAICCAGACA	IAGICAICIA	ICAAIACAIG	GAIGAIIIGI
7061	AIGIAGGAIC		ATAGGGCAGC	AIAGAACAAA	AAIAGAGGAA	
7861	ATCTGTTGAG	GIGGGGATIT	ACCACACCAG		TCAGAAAGAA	CCTCCATTCC
7921	TTTGGATGGG	TTATGAACTC	CATCCTGATA	AATGGACAGT	ACAGCCTATA	GTGCTGCCAG
7981	AAAAGGACAG	CTGGACTGTC	AATGACATAC	AGAAATTAGT	GGGAAAA'T'T'G	AATTGGGCAA
8041	GTCAGAT'TTA	TGCAGGGATT	AAAGTAAGGC	AATTATGTAA	ACTTCTTAGG	GGAACCAAAG
8101	CACTAACAGA	AGTAGTACCA	CTAACAGAAG	AAGCAGAGCT	AGAACTGGCA	GAAAACAGGG
8161	AGATTCTAAA	AGAACCGGTA	CATGGAGTGT	ATTATGACCC	ATCAAAAGAC	TTAATAGCAG
8221	AAATACAGAA	GCAGGGGCAA	GGCCAATGGA	CATATCAAAT	TTATCAAGAG	CCATTTAAAA
8281	ATCTGAAAAC	AGGAAAGTAT	GCAAGAATGA	AGGGTGCCCA	CACTAATGAT	GTGAAACAAT
8341	TAACAGAGGC	AGTACAAAAA	ATAGCCACAG	AAAGCATAGT	AATATGGGGA	AAGACTCCTA
8401	AATTTAAATT	ACCCATACAA	AAGGAAACAT	GGGAAGCATG	GTGGACAGAG	TATTGGCAAG
8461	CCACCTGGAT	TCCTGAGTGG	GAGTTTGTCA	ATACCCCTCC	CTTAGTGAAG	TTATGGTATC
8521	AGTTAGAGAA	AGAACCCATA	ATAGGAGCAG	AAACTTTCTA	TGTAGATGGG	GCAGCCAATA
8581	GGGAAACTAA	ATTAGGAAAA	GCAGGATATG	TAACTGACAG	AGGAAGACAA	AAAGTTGTCC
8641	CCCTAACGGA	CACAACAAAT	CAGAAGACTG	AGTTACAAGC	AATTCATCTA	GCTTTGCAGG
8701	ATTCGGGATT	AGAAGTAAAC	ATAGTGACAG	ACTCACAATA	TGCATTGGGA	ATCATTCAAG
8761	CACAACCAGA	TAAGAGTGAA	TCAGAGTTAG	TCAGTCAAAT	AATAGAGCAG	ТТААТАААА
8821	AGGAAAAAGT	CTACCTGGCA	TGGGTCCAGC	ACACAAAGGA	ATTGGAGGAA	ATGAACAAGT
8881	AGATAAATTG	GTCAGTGCTG	GAATCAGGAA	AGTACTATTT	TTAGATGGAA	TAGATAAGGC
8941	CCAAGAAGAA	CATGAGAAAT	ATCACAGTAA	TTGGAGAGCA	ATGGCTAGTG	
9001		CTACCAAAAC	AAATAGTAGC	САССТСТСАТ	AAATGTCAGC	TAAAACCCCA
9061	ACCONTCONT	CCACAACTAC	ACTOTACCCC	ACCANTATCC		
0121	AGCCAIGCAI	CTTATCTTCC	TACCACTTCA	TCTACCACT	CCATATATAC	AACCACAACT
9121		GITAICIIGG	IAGCAGIICA	IGIAGCCAGI	GGAIAIAIAG	AAGCAGAAGI
9101	AATICCAGCA		AAGAAACAGC			CAGGAAGAIG
9241	GCCAGTAAAA	ACAGTACATA	CAGACAATGG		ACCAGTACTA	CAGITAAGGC
9301	CGCCTGTTGG	TGGGCGGGGA	TCAAGCAGGA	ATTIGGCATT	CCCTACAATC	CCCAAAGTCA
9361	AGGAGTAATA	GAATCTATGA	A'I'AAAGAA'I''I'	AAAGAAAA'I''I'	ATAGGACAGG	TAAGAGATCA
9421	GGCTGAACAT	CTTAAGACAG	CAGTACAAAT	GGCAGTATTC	ATCCACAATT	TTAAAAGAAA
9481	AGGGGGGATT	GGGGGGTACA	GTGCAGGGGA	AAGAATAGTA	GACATAATAG	CAACAGACAT
9541	АСАААСТААА	GAATTACAAA	AACAAATTAC	AAAAATTCAA	AATTTTCGGG	TTTATTACAG
9601	GGACAGCAGA	GATCCAGTTT	GGAAAGGACC	AGCAAAGCTC	CTCTGGAAAG	GTGAAGGGGC
9661	AGTAGTAATA	CAAGATAATA	GTGACATAAA	AGTAGTGCCA	AGAAGAAAAG	CAAAGATCAT
9721	CAGGGATTAT	GGAAAACAGA	TGGCAGGTGA	TGATTGTGTG	GCAAGTAGAC	AGGATGAGGA
9781	TTAACACATG	GAAAAGATTA	GTAAAACACC	ATATGTATAT	TTCAAGGAAA	GCTAAGGACT
9841	GGTTTTATAG	ACATCACTAT	GAAAGTACTA	ATCCAAAAAT	AAGTTCAGAA	GTACACATCC
9901	CACTAGGGGA	TGCTAAATTA	GTAATAACAA	CATATTGGGG	TCTGCATACA	GGAGAAAGAG
9961	ACTGGCATTT	GGGTCAGGGA	GTCTCCATAG	AATGGAGGAA	AAAGAGATAT	AGCACACAAG
10021	TAGACCCTGA	CCTAGCAGAC	CAACTAATTC	ATCTGCACTA	TTTTGATTGT	TTTTCAGAAT
10081	CTGCTATAAG	AAATACCATA	TTAGGACGTA	TAGTTAGTCC	TAGGTGTGAA	TATCAAGCAG
10141	GACATAACAA	GGTAGGATCT	CTACAGTACT	TGGCACTAGC	AGCATTAATA	AAACCAAAAC
10201	AGATAAAGCC	ACCTTTGCCT	AGTGTTAGGA	AACTGACAGA	GGACAGATGG	AACAAGCCCC
10261	AGAAGACCAA	GGGCCACAGA	GGGAGCCATA	CAATGAATGG	ACACTAGAGC	TTTTAGAGGA
10321	ACTTAAGAGT	GAAGCTGTTA	GACATTTTCC	TAGGATATGG	CTCCATAACT	TAGGACAACA
10381	ТАТСТАТСАА	ACTTACGGGG	ATACTTGGGC	AGGAGTGGAA	GCCATAATAA	GAATTCTGCA
10441	ACAACTGCTG	TTTATCCATT	TCAGAATTGG	GTGTCGACAT	AGCAGAATAG	GCGTTACTCG
10501		CCAACAAATC	CACCACTAC		AGAGCCCCTCC	
10561	CAACTCACCC	TAAAACTCCT	TGTACCASIAG		A A A GTGTTGG	
10601			J COOTTACCAALL	CATCHAILGIAA		TITCHIIGCC
10601	AAGIIIGIGG		AAGUUIIAGG		GGCAGGAAGA	
10741		GUICAICAGA				AGCAGIAAGI
10001	AGIACATGTA	AIGCAACCTA	TAATAGTAGC	AATAGTAGCA	TIAGTAGTAG	CAATAATAAT
10001	AGCAATAGTT	GIGIGGICCA	TAGTAATCAT	AGAATATAGG	AAAATATTAA	GACAAAGAAA
10861	AATAGACAGG	TTAATTGATA	GACTAATAGA	AAGAGCAGAA	GACAGTGGCA	ATGAGAGTGA
10921	AGGAGAAGTA	TCAGCACTTG	TGGAGATGGG	GGTGGAAATG	GGGCACCATG	CTCCTTGGGA
10981	TATTGATGAT	C'IGTAGTGCT	ACAGAAAAAT	TGTGGGTCAC	GTCACCGTCT	ATTATGGGCT

		CCACCACTCT	᠕ᡎᡎᡎᡎᡊᡎᢙᡆ᠕	TONONTOOT	<u>, , , , , , , , , , , , , , , , , , , </u>
	CATAATCTT	CCACCACICI	TCCCTCTCTA	CCCACACACC	CCAACCCACA
	TTCCTAATCITT	TCACACAAAA	TTTTAACATC	ТССЛЛЛЛЛТС	ACATCCTACA
	CACCATATA	ТСАСАСАЛАЛА	CCATCAAACC	CTAAACCAT	
11221 ACCOCACTO	TCTCTTACTT	TAAACTCCAC	TCATTTCAAC		
	AGAATGATAA	TGGAGAAAGG			тсаататсас
	AGAGATAAGG	TGCAGAAAGA			ттаататаат
	AATACCAGCT	ATAGGTTGAT	AAGTTGTAAC		TTACACAGGC
11521 CTGTCCAAAG	GTATCCTTTG	AGCCAATTCC	Сатасаттат	TGTGCCCCCGG	CTGGTTTTGC
11581 GATTCTAAAA	ТСТААТААТА	AGACGTTCAA	TGGAACAGGA	CCATGTACAA	ATGTCAGCAC
11641 AGTACAATGT	ACACATGGAA	TCAGGCCAGT	AGTATCAACT	CAACTGCTGT	TAAATGGCAG
11701 TCTAGCAGAA	GAAGATGTAG	TAATTAGATC	TGCCAATTTC	ACAGACAATG	CTAAAACCAT
11761 AATAGTACAG	CTGAACACAT	CTGTAGAAAT	ТААТТСТАСА	AGACCCAACA	ACAATACAAG
11821 AAAAAGTATC	CGTATCCAGA	GGGGACCAGG	GAGAGCATTT	GTTACAATAG	GAAAAATAGG
11881 AAATATGAGA	CAAGCACATT	GTAACATTAG	TAGAGCAAAA	TGGAATGCCA	CTTTAAAACA
11941 GATAGCTAGC	AAATTAAGAG	AACAATTTGG	AGATAATAAA	ACAATAATCT	TTAAGCAATC
12001 CTCAGGAGGG	GACCCAGAAA	TTGTAACGCA	CAGTTTTAAT	TGTGGAGGGG	AATTTTTCTA
12061 CTGTAATTCA	ACACAACTGT	TTAATAGTAC	TTGGTTTAAT	AGTACTTGGA	GTACTGAAGG
12121 GTCAAATAAC	ACTGAAGGAA	GTGACACAAT	CACACTCCCA	TGCAGAATAA	AACAATTTAT
12181 AAACATGTGG	CAGGAGGTAG	GAAAAGCAAT	GTATGCCCCT	CCCATCAGTG	GACAAATTAG
12241 ATGTTCACCA	AATATTACTG	GGCTGCTATT	AACAAGAGAT	GGTGGTAATA	ACAACAATGG
12301 GTCCGAGATC	TTCAGACCTG	GAGGAGGCGA	TATGAGGGAC	AATTGGAGGA	GTGAATTATA
12361 ТАААТАТААА	GTAGTAAAAA	TTGAACCATT	AGGAGTAGCA	CCCCAAAGAG	AAGAGTGGTG
12421 CAGAGAGAAA	AAAGAGCAGT	GGGAATAGGA	GCTTTGTTCC	TTGGGTTCTT	GGGAGCAGCA
12481 GGAAGCACTA	TGGGCGCAGC	GTCAATGACG	CTGACGGTAC	AGGCCAGACA	ATTATTGTCT
12541 GATATAGTGC	AGCAGCAGAA	CAATTTGCTG	AGGGCTATTG	AGGCGCAACA	GCATCTGTTG
12601 CAACTCACAG	TCTGGGGCAT	CAAACAGCTC	CAGGCAAGAA	TCCTGGCTGT	GGAAAGATAC
12661 CTAAAGGATC	AACAGCTCCT	GGGGATTTGG	GGTTGCTCTG	GAAAACTCAT	TTGCACCACT
12721 GCTGTGCCTT	GGAATGCTAG	TTGGAGTAAT	AAATCTCTGG	AACAGATTTG	GAATAACATG
12781 ACCTGGATGG	AGTGGGACAG	AGAAATTAAC	AATTACACAA	GCTTAATACA	CTCCTTAATT
12841 GAAGAATCGC	AAAACCAGCA	AGAAAAGAAT	GAACAAGAAT	TATTGGAATT	AGATAAATGG
12901 GCAAGTTTGT	GGAATTGGTT	TAACATAACA	AATTGGCTGT	GGTATATAAA	ATTATTCATA
12961 ATGATAGTAG	GAGGCTTGGT	AGGTTTAAGA	ATAGTTTTTG	CTGTACTTTC	TATAGTGAAT
13021 AGAGTTAGGC	AGGGATATTC	ACCATTATCG	TTTCAGACCC	ACCTCCCAAT	CCCGAGGGGA
13081 CCCGACAGGC	CCGAAGGAAT	AGAAGAAGAA	GGTGGAGAGA	GAGACAGAGA	CAGATCCATT
13141 CGATTAGTGA	ACGGATCCTT	AGCACTTATC	TGGGACGATC	TGCGGAGCCT	GTGCCTCTTC
13201 AGCTACCACC	GCTTGAGAGA	CTTACTCTTG	ATTGTAACGA	GGATTGTGGA	ACTTCTGGGA
13261 CGCAGGGGGT	GGGAAGCCCT	CAAATATTGG	TGGAATCTCC	TACAGTATTG	GAGTCAGGAA
13321 CTAAAGAATA	GTGCTGTTAA	CTTGCTCAAT	GCCACAGCCA	TAGCAGTAGC	TGAGGGGACA
13381 GATAGGGTTA	TAGAAGTATT	ACAAGCAGCT	TATAGAGCTA	TTCGCCACAT	ACCTAGGAGA
13441 ATAAGACAGG	GCTTGGAAAG	GATTTTGCTA	TAAGC		

7.2 Sequenz pshuttle

1	TTGGAAGGGC	TAATTCACTC	CCAAAGAAGA	CAAGATATCC	TTGATCTGTG	GATCTACCAC
61	ACACAAGGCT	ACTTCCCTGA	TTAGCAGAAC	TACACACCAG	GGCCAGGGGT	CAGATATCCA
121	CTGACCTTTG	GATGGTGCTA	CAAGCTAGTA	CCAGTTGAGC	CAGATAAGGT	AGAAGAGGCC
181	AATAAAGGAG	AGAACACCAG	CTTGTTACAC	CCTGTGAGCC	TGCATGGGAT	GGATGACCCG
241	GAGAGAGAAG	TGTTAGAGTG	GAGGTTTGAC	AGCCGCCTAG	CATTTCATCA	CGTGGCCCGA
301	GAGCTGCATC	CGGAGTACTT	CAAGAACTGC	TGATATCGAG	CTTGCTACAA	GGGACTTTCC
361	GCTGGGGACT	TTCCAGGGAG	GCGTGGCCTG	GGCGGGACTG	GGGAGTGGCG	AGCCCTCAGA
421	TCCTGCATAT	AAGCAGCTGC	TTTTTGCCTG	TACTGGGTCT	CTCTGGTTAG	ACCAGATCTG
481	AGCCTGGGAG	CTCTCTGGCT	AACTAGGGAA	CCCACTGCTT	AAGCCTCAAT	AAAGCTTGCC
541	TTGAGTGCTT	CAAGTAGTGT	GTGCCCGTCT	GTTGTGTGAC	TCTGGTAACT	AGAGATCCCT
601	CAGACCCTTT	TAGTCAGTGT	GGAAAATCTC	TAGCAGTGGC	GCCCGAACAG	GGACTTGAAA
661	GCGAAAGGGA	AACCAGAGGA	GCTCTCTCGA	CGCAGGACTC	GGCTTGCTGA	AGCGCGCACG
721	GCAAGAGGCG	AGGGGCGGCG	ACTGGTGAGT	ACGCCAAAAA	TTTTGACTAG	CGGAGGCTAG
781	AAGGAGAGAG	ATGGGTGCGA	GAGCGTCAGT	ATTAAGCGGG	GGAGAATTAG	ATCGCGATGG
841	GAAAAATTC	GGTTAAGGCC	AGGGGGAAAG	AAAAATATA	AATTAAAACA	TATAGTATGG
901	GCAAGCAGGG	AGCTAGAACG	ATTCGCAGTT	AATCCTGGCC	TGTTAGAAAC	ATCAGAAGGC
961	TGTAGACAAA	TACTGGGACA	GCTACAACCA	TCCCTTCAGA	CAGGATCAGA	AGAACTTAGA
1021	TCATTATATA	ATACAGTAGC	AACCCTCTAT	TGTGTGCATC	AAAGGATAGA	GATAAAAGAC

1081 ACCAAGGAAG	CTTTAGACAA	GATAGAGGAA	GAGCAAAACA	AAAGTAAGAC	CACCGCACAG
1141 CAAGCGGCCG	CTGATCTTCA	GACCTGGAGG	AGGAGATATG	AGGGACAATT	GGAGAAGTGA
1201 ATTATATAAA	TATAAAGTAG	TAAAAATTGA	ACCATTAGGA	GTAGCACCCA	CCAAGGCAAA
1261 GAGAAGAGTG	GTGCAGAGAG	AAAAAAGAGC	AGTGGGAATA	GGAGCTTTGT	TCCTTGGGTT
1321 CTTGGGAGCA	GCAGGAAGCA	CTATGGGCGC	AGCGTCAATG	ACGCTGACGG	TACAGGCCAG
1381 ACAATTATTG	TCTGGTATAG	TGCAGCAGCA	GAACAATTTG	CTGAGGGCTA	TTGAGGCGCA
1441 ACAGCATCTG	TTGCAACTCA	CAGTCTGGGG	CATCAAGCAG	CTCCAGGCAA	GAATCCTGGC
1501 TGTGGAAAGA	TACCTAAAGG	ATCAACAGCT	CCTGGGGATT	TGGGGTTGCT	CTGGAAAACT
1561 CATTTGCACC	ACTGCTGTGC	CTTGGAATGC	TAGTTGGAGT	AATAAATCTC	TGGAACAGAT
1621 TTGGAATCAC	ACGACCTGGA	TGGAGTGGGA	CAGAGAAATT	AACAATTACA	CAAGCTTAAT
1681 ACACTCCTTA	ATTGAAGAAT	CGCAAAACCA	GCAAGAAAAG	AATGAACAAG	AATTATTGGA
1741 ATTAGATAAA	TGGGCAAGTT	TGTGGAATTG	GTTTAACATA	ACAAATTGGC	TGTGGTATAT
1801 AAAATTATTC	ATAATGATAG	TAGGAGGCTT	GGTAGGTTTA	AGAATAGTTT	TTGCTGTACT
1861 TTCTATAGTG	AATAGAGTTA	GGCAGGGATA	TTCACCATTA	TCGTTTCAGA	CCCACCTCCC
1921 AACCCCGAGG	GGACCCGACA	GGCCCGAAGG	AATAGAAGAA	GAAGGTGGAG	AGAGAGACAG
1981 AGACAGATCC	ATTCGATTAG	TGAACGGATC	TCGACGGTAT	CGATGTCGAC	GATAAGCTTT
2041 GCAAAGATGG	ATAAAGTTTT	AAACAGAGAG	GAATCTTTGC	AGCTAATGGA	CCTTCTAGGT
2101 CTTGAAAGGA	GTGGGAATTG	GCTCCGGTGC	CCGTCAGTGG	GCAGAGCGCA	CATCGCCCAC
2161 AGTCCCCGAG	AAGTTGGGGG	GAGGGGTCGG	CAATTGAACC	GGTGCCTAGA	GAAGGTGGCG
2221 CGGGGTAAAC	TGGGAAAGTG	ATGTCGTGTA	CTGGCTCCGC	CTTTTTCCCG	AGGGTGGGGG
2281 AGAACCGTAT	ATAAGTGCAG	TAGTCGCCGT	GAACGTTCTT	TTTCGCAACG	GGTTTGCCGC
2341 CAGAACACAG	GTAAGTGCCG	TGTGTGGTTC	CCGCGGGGCCT	GGCCTCTTTA	CGGGTTATGG
2401 CCCTTGCGTG	CCTTGAATTA	CTTCCACTGG	CTGCAGTACG	TGATTCTTGA	TCCCGAGCTT
2461 CGGGTTGGAA	GTGGGTGGGA	GAGTTCGAGG	CCTTGCGCTT	AAGGAGCCCC	TTCGCCTCGT
2521 GCTTGAGTTG	AGGCCTGGCC	TGGGCGCTGG	GGCCGCCGCG	TGCGAATCTG	GTGGCACCTT
2581 CGCGCCTGTC	TCGCTGCTTT	CGATAAGTCT	CTAGCCATTT	AAAATTTTTG	ATGACCTGCT
2641 GCGACGCTTT	TTTTCTGGCA	AGATAGTCTT	GTAAATGCGG	GCCAAGATCT	GCACACTGGT
2701 ATTTCGGTTT	TTGGGGCCGC	GGGCGGCGAC	GGGGCCCGTG	CGTCCCAGCG	CACATGTTCG
2761 GCGAGGCGGG	GCCTGCGAGC	GCGGCCACCG	AGAATCGGAC	GGGGGTAGTC	TCAAGCTGGC
2821 CGGCCTGCTC	TGGTGCCTGG	CCTCGCGCCG	CCGTGTATCG	CCCCGCCCTG	GGCGGCAAGG
2881 CTGGCCCGGT	CGGCACCAGT	TGCGTGAGCG	GAAAGATGGC	CGCTTCCCGG	CCCTGCTGCA
2941 GGGAGCTCAA	AATGGAGGAC	GCGGCGCTCG	GGAGAGCGGG	CGGGTGAGTC	ACCCACACAA
3001 AGGAAAAGGG	CCTTTCCGTC	CTCAGCCGTC	GCTTCATGTG	ACTCCACGGA	GTACCGGGCG
3061 CCGTCCAGGC	ACCTCGATTA	GTTCTCGAGC	TTTTGGAGTA	CGTCGTCTTT	AGGTTGGGGG
3121 GAGGGGTTTT	ATGCGATGGA	GTTTCCCCAC	ACTGAGTGGG	TGGAGACTGA	AGTTAGGCCA
3181 GCTTGGCACT	TGATGTAATT	CTCCTTGGAA	TTTGCCCTTT	TTGAGTTTGG	ATCTTGGTTC
3241 ATTCTCAAGC	CTCAGACAGT	GGTTCAAAGT	TTTTTTTCTTC	CATTTCAGGT	GTCGTGAGGA
3301 ATTTCGACAT	TTAAATTTAA	TTAATCTCGA	CGGTATCGGT	TAACTTTTAA	AAGAAAAGGG
3361 GGGATTGGGG	GGTACAGTGC	AGGGGAAAGA	ATAGTAGACA	TAATAGCAAC	AGACATACAA
3421 ACTAAAGAAT	TACAAAAACA	AATTACAAAA	ATTCAAAATT	TTCCGATCAC	GAGACTAGCC
3481 TCGAGGTTTA	AACTCCCTAT	CAGTGATAGA	GATCTCCCTA	TCAGTGATAG	AGAGCCGCCA
3541 GCATGGAGCC	CGTGGACCCC	AGGCTGGAGC	CCTGGAAGCA	CCCCGGCAGC	CAGCCTAAGA
3601 CCGCCTGCAC	CAACTGCTAC	TGCAAGAAGT	GCTGCTTCCA	CTGCCAGGTG	TGCTTCATCA
3661 CCAAGGCCCT	GGGCATCAGC	TACGGCAGGA	AGAAGAGGAG	GCAGAGGAGG	AGGCCTCCCC
3721 AGGGCAGCCA	GACCCACCAG	GTGAGCCTGA	GCAAGCAGCC	CACCAGCCAG	AGCAGGGGCG
3781 ACCCCACCGG	CCCCAAGGAG	GCCATGGTGA	GCAAGGGCGA	GGAGCTGTTC	ACCGGGGTGG
3841 TGCCCATCCT	GGTCGAGCTG	GACGGCGACG	TAAACGGCCA	CAAGTTCAGC	GTGTCCGGCG
3901 AGGGCGAGGG	CGATGCCACC	TACGGCAAGC	TGACCCTGAA	GTTCATCTGC	ACCACCGGCA
3961 AGCTGCCCGT	GCCCTGGCCC	ACCCTCGTGA	CCACCTTCAC	CTACGGCGTG	CAGTGCTTCA
4021 GCCGCTACCC	CGACCACATG	AAGCAGCACG	ACTTCTTCAA	GTCCGCCATG	CCCGAAGGCT
4081 ACGTCCAGGA	GCGCACCATC	TTCTTCAAGG	ACGACGGCAA	CTACAAGACC	CGCGCCGAGG
4141 TGAAGTTCGA	GGGCGACACC	CTGGTGAACC	GCATCGAGCT	GAAGGGCATC	GACTTCAAGG
4201 AGGACGGCAA	CATCCTGGGG	CACAAGCTGG	AGTACAACTA	CAACAGCCAC	AACGTCTATA
4261 TCATGGCCGA	CAAGCAGAAG	AACGGCATCA	AGGTGAACTT	CAAGATCCGC	CACAACATCG
4321 AGGACGGCAG	CGTGCAGCTC	GCCGACCACT	ACCAGCAGAA	CACCCCCATC	GGCGACGGCC
4381 CCGTGCTGCT	GCCCGACAAC	CACTACCTGA	GCACCCAGTC	CGCCCTGAGC	AAAGACCCCA
4441 ACGAGAAGCG	CGATCACATG	GTCCTGCTGG	AGTTCGTGAC	CGCCGCCGGG	ATCACTCTCG
4501 GCATGGACGA	GCTGTACAAG	TAAAGGATCC	ACTAGTAACG	GCCGCCAGTG	TGCTGGAATT
4561 AATTCGCTGT	CTGCGAGGGC	CAGCTGTTGG	GGTGAGTACT	CCCTCTCAAA	AGCGGGCATG
4621 ACTTCTGCGC	TAAGATTGTC	AGTTTCCAAA	AACGAGGAGG	ATTTGATATT	CACCTGGCCC
4681 GCGGTGATGC	CTTTGAGGGT	GGCCGCGTCC	ATCTGGTCAG	AAAAGACAAT	CTTTTTGTTG
4741 TCAAGCTTGA	GGTGTGGCAG	GCTTGAGATC	TGGCCATACA	CTTGAGTGAC	AATGACATCC
4801 ACTTTGCCTT	TCTCTCCACA	GGTGTCCACT	CCCAGGTCCA	ACTGCAGGTC	GAGCATGCAT
4861 CTAGGGCGGC	CAATTCCGCC	CCTCTCCCTC	CCCCCCCCCT	AAAGTTACTG	GCCGAAGCCG

4921 CTTGGAATAA	GGCCGGTGTG	CGTTTGTCTA	TATGTTATTT	TCCACCATAT	TGCCGTCTTT
4981 TGGCAATGTG	AGGGCCCGGA	AACCTGGCCC	TGTCTTCTTG	ACGAGCATTC	CTAGGGGTCT
5041 TTCCCCTCTC	GCCAAAGGAA	TGCAAGGTCT	GTTGAATGTC	GTGAAGGAAG	CAGTTCCTCT
5101 GGAAGCTTCT	TGAAGACAAA	CAACGTCTGT	AGCGACCCTT	TGCAGGCAGC	GGAACCCCCC
5161 ACCTGGCGAC	AGGTGCCTCT	GCGGCCAAAA	GCCACGTGTA	TAAGATACAC	CTGCAAAGGC
5221 GGCACAACCC	CAGTGCCACG	TTGTGAGTTG	GATAGTTGTG	GAAAGAGTCA	AATGGCTCTC
5281 CTCAAGCGTA	TTCAACAAGG	GGCTGAAGGA	TGCCCAGAAG	GTACCCCATT	GTATGGGATC
5341 TGATCTGGGG	CCTCGGTGCA	CATGCTTTAC	ATGTGTTTAG	TCGAGGTTAA	AAAAACGTCT
5401 AGGCCCCCCG	AACCACGGGG	ACGTGGTTTT	CCTTTGAAAA	ACACGATGAT	AAGCTTGCCA
5461 CAACCCAATT	CGGGAAAGAC	GCAAGCCCAG	AGGCCCTGCC	ATTTCTAGCT	TCCCCATCAG
5521 TCCGCAAAGC	GGACCGCCAT	GGGGGTGAAG	GAGAAGTACC	AGCACCTGTG	GAGGTGGGGC
5581 TGGAGGTGGG	GCACAATGCT	GCTGGGAATG	CTGATGATCT	GCAGCGCCAC	CGAGAAGCTG
5641 TGGGTGACCG	TGTACTACGG	CGTGCCCGTG	TGGAGGGAGG	CCACCACCAC	CCTGTTCTGC
5701 GCCAGCGACG	CCAAAGCCTA	CGACACCGAG	GTGCACAACG	TGTGGGCCAC	CCACGCCTGC
5761 GTGCCCACCG	ACCCCAACCC	CCAGGAGGTG	GTGCTGGGCA	ACGTGACCGA	GAACTTCAAT
5821 ATGTGGAAGA	ACAACATGGT	GGACCAGATG	CACGAGGACA	TCATCAGCCT	GTGGGACGAG
5881 AGCCTGAAGC	CCTGCGTGAA	GCTGACCCCC	CTGTGCGTGA	CCCTGAACTG	CACCAACCTG
5941 AACATCACCA	AGAACACCAC	CAACCTGACC	AGCAGCAGCT	GGGGCATGAT	GGAGGAGGGC
6001 GAGATCAAGA	ACTGCAGCTT	CTACATCACC	ACCTCCATCA	GGAACAAGGT	GAAGAAGGAG
6061 TACGCCCTGT	TCAACAGGCT	GGACGTGGTG	CCCGTGAAGA	ACACCAGCAA	CACCAAGTAC
6121 AGGCTGATTA	GCTGCAACAC	CAGCGTGATT	ACCCAGGCCT	GCCCTAAAGT	GAGCTTCCAG
6181 CCCATCCCCA	TCCACTACTG	CGTGCCCGCC	GGCTTCGCCA	TCCTGAAGTG	CAACAACAAG
6241 ACCTTCAACG	GCAGCGGCCC	CTGCACCAAC	GTGAGCACCG	TGCAGTGCAC	CCACGGCATC
6301 AGGCCCGTGG	TGTCTACCCA	GCTGCTGCTG	AACGGCAGCC	TGGCCGAAGA	GGACATCGTG
6361 ATCAGGAGCG	AGGACTTCAC	CGACAACGTG	AAGACCATCA	TCGTGCAGCT	GAACGAGAGC
6421 GTGGTGATTA	ACTGCACCAG	GCCCAACAAC	AACACCAGGG	AGAGGCTGAG	CATCGGCCCC
6481 GGCAGGGCCT	TCTACGCCAG	GAGGAACATC	ATCGGCGACA	TCAGGCAGGC	CCACTGCAAC
6541 ATCAGCAGGG	CCAAGTGGAA	CAACACCCTG	CAGCAGATCG	TCATCAAGCT	GAGGGAGAAG
6601 TTCAGGAACA	AGACCATCGC	CTTCAACCAG	AGCAGCGGCG	GCGACCCCGA	GATCGTGATG
6661 CACAGCTTCA	ACTGCGGCGG	CGAGTTCTTC	TACTGCAACA	CCGCCCAGCT	GTTCAACAGC
6721 ACCTGGAACG	TGGCCGGCGG	CACCAACGGC	ACCGAGGGCA	ACGACATCAT	CACCCTGCAG
6781 TGCAGGATCA	AGCAGATCAT	CAACATGTGG	CAGAAGGTGG	GCAAGGCCAT	GTACGCCCCT
6841 CCCATCACCG	GCCAGATCAG	GTGCAGCAGC	AACATCACCG	GCCTGCTGCT	GACTCGCGAC
6901 GGCGGCAACA	GCACCGAGAC	CGAGACCGAG	ATCTTCAGGC	CCGGCGGCGG	CGACATGAGG
6961 GACAACTGGA	GGAGCGAGCT	GTACAAGTAC	AAGGTGGTGA	GGATCGAGCC	CATCGGCGTG
7021 GCCCCCACCA	GGGCCAAGAG	GAGGACCGTG	CAGAGGGAGA	AGAGGGCCGT	GGGCATCGGC
7081 GCCGTGTTCC	TGGGCTTCCT	GGGCGCCGCC	GGCAGCACAA	TGGGCGCCGC	CAGCGTGACC
7141 CTGACCGTGC	AGGCCAGGCT	GCTGCTGAGC	GGCATCGTGC	AGCAGCAGAA	CAACCTGCTG
7201 AGAGCCATCG	AGGCCCAGCA	GAATATGCTG	AGGC'T'GACCG	TGTGGGGCAT	CAAGCAGCTG
7261 CAGGCTAGGG	TGCTGGCCCT	GGAGAGATAC	CTGAGGGACC	AGCAGCTGAT	GGGCATTTTGG
7321 GGCTGCAGCG	GCAAGCTGAT	CTGCACCACC	AGCGTGCCTT	GGAACGTGAG	CTGGAGCAAC
7381 AAGAGCGTGG	ACGACATCTG	GAACAACATG	ACCIGGAIGG	AGTGGGAGAG	GGAGATCGAC
7441 AACTACACCG	ACTACATCTA	CGACCTGCTG	GAGAAGAGCC	AGACCCAGCA	GGAGAAGAAC
7501 GAGAAGGAGC	TGCTGGAGCT	GGACAAGTGG	GCTAGCCTGT	GGAACTGGTT	CGACATCACC
7561 AACTGGCTGT	GGTACATCAG	GCTGTTCATC	ATGATCGTGG	GCGGACTGAT	CGGCCTGAGG
7621 AICGIGIICG		CAICGIGAAC		AGGGCIACAG	
7081 TICCAGACCC			IACGACGIGC		
	TAIGAIAAI				
			GIGGAIACGC		
		GCITICATII		GIAIAAAICC	IGGIIGCIGI
7921 CICILIAIGA	GGAGIIGIGG		GGCAACGIGG		
	CCCCACIGGI	IGGGGCAIIG	GCACCACCIG		
		GCCACGGCGG	AACICAICGC		
	TCGGCIGIIG	GGCACIGACA	ALICCGIGGI	GIIGICGGGG	TCCTTCACGT
8221 ACCTCCTTG	GCTGCTCGCC	TGTGTTGCCA		CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCLICIGCI
			ACACCACTCC		
	GCGICIICGC		CTACATCTTA	GAICICCCII	TATAGACCACCI
8401 CCCCGCATCG	JICCCUTAIGG	TCACCCCCAGCI	JGDDGAICIIA		$\pi\pi\pi\pi\sigma$
8461 TACCACACAC	AAGGOTAOTT	СССТСАТТАС	CAGAACTACA		AGGGGGTCAGA
	COTTTCCATC	CTCCTOATIAG	CTACTACCAC	TTCACCCAGGCC	TAACATACAA
8581 GACCCOATA	AAGGAGAGAA	CACCACCTTC	ттасассад	TGAGCCTCCAGA	TUICAIAGAA
8641 GACCCGAGA	GAGAAGTGTT	AGAGTGGAGG	TTTGACAGCC	GCCTAGCATT	TCATCACGTC
8701 GCCCGAGAGC	TGCATCCGGA	GTACTTCAAG	AACTGCTGAC	ATCGAGCTTG	CTACAAGGGA

8761	CTTTCCGCTG	GGGACTTTCC	AGGGAGGCGT	GGCCTGGGCG	GGACTGGGGA	GTGGCGAGCC
8821	CTCAGATCCT	GCATATAAGC	AGCTGCTTTT	TGCCTGTACT	GGGTCTCTCT	GGTTAGACCA
8881	GATCTGAGCC	TGGGAGCTCT	CTGGCTAACT	AGGGAACCCA	CTGCTTAAGC	CTCAATAAAG
8941	CTTGCCTTGA	GTGCTTCAAG	TAGTGTGTGC	CCGTCTGTTG	TGTGACTCTG	GTAACTAGAG
9001	ATCCCTCAGA	CCCTTTTAGT	CAGTGTGGAA	AATCTCTAGC	ATCTAGAATT	AATTCCGTGT
9061	ATTCTATAGT	GTCACCTAAA	TCGTATGTGT	ATGATACATA	AGGTTATGTA	TTAATTGTAG
9121	CCGCGTTCTA	ACGACAATAT	GTACAAGCCT	AATTGTGTAG	CATCTGGCTT	ACTGAAGCAG
9181	ACCCTATCAT	CTCTCTCGTA	AACTGCCGTC	AGAGTCGGTT	TGGTTGGACG	AACCTTCTGA
9241	GTTTCTGGTA	ACGCCGTCCC	GCACCCGGAA	ATGGTCAGCG	AACCAATCAG	CAGGGTCATC
9301	GCTAGCCAGA	TCCTCTACGC	CGGACGCATC	GTGGCCGGCA	TCACCGGCGC	CACAGGTGCG
9361	GTTGCTGGCG	CCTATATCGC	CGACATCACC	GATGGGGAAG	ATCGGGCTCG	CCACTTCGGG
9421	CTCATGAGCG	CTTGTTTCGG	CGTGGGTATG	GTGGCAGGCC	CCGTGGCCGG	GGGACTGTTG
9481	GGCGCCATCT	CCTTGCATGC	ACCATTCCTT	GCGGCGGCGG	TGCTCAACGG	CCTCAACCTA
9541	CTACTGGGCT	GCTTCCTAAT	GCAGGAGTCG	CATAAGGGAG	AGCGTCGAAT	GGTGCACTCT
9601	CAGTACAATC	TGCTCTGATG	CCGCATAGTT	AAGCCAGCCC	CGACACCCGC	CAACACCCGC
9661	TGACGCGCCC	TGACGGGCTT	GTCTGCTCCC	GGCATCCGCT	TACAGACAAG	CTGTGACCGT
9721	CTCCGGGAGC	TGCATGTGTC	AGAGGTTTTC	ACCGTCATCA	CCGAAACGCG	CGAGACGAAA
9781	GGGCCTCGTG	ATACGCCTAT	TTTTATAGGT	TAATGTCATG	ATAATAATGG	TTTCTTAGAC
9841	GTCAGGTGGC	ACTTTTCGGG	GAAATGTGCG	CGGAACCCCT	ATTTGTTTAT	TTTTCTAAAT
9901	ACATTCAAAT	ATGTATCCGC	TCATGAGACA	ATAACCCTGA	TAAATGCTTC	AATAATATTG
9961	AAAAAGGAAG	AGTATGAGTA	TTCAACATTT	CCGTGTCGCC	CTTATTCCCT	TTTTTGCGGC
10021	ATTTTGCCTT	CCTGTTTTTG	CTCACCCAGA	AACGCTGGTG	AAAGTAAAAG	ATGCTGAAGA
10081	TCAGTTGGGT	GCACGAGTGG	GTTACATCGA	ACTGGATCTC	AACAGCGGTA	AGATCCTTGA
10141	GAGTTTTCGC	CCCGAAGAAC	GTTTTCCAAT	GATGAGCACT	TTTAAAGTTC	TGCTATGTGG
10201	CGCGGTATTA	TCCCGTATTG	ACGCCGGGCA	AGAGCAACTC	GGTCGCCGCA	TACACTATTC
10261	TCAGAATGAC	TTGGTTGAGT	ACTCACCAGT	CACAGAAAAG	CATCTTACGG	ATGGCATGAC
10321	AGTAAGAGAA	TTATGCAGTG	CTGCCATAAC	CATGAGTGAT	AACACTGCGG	CCAACTTACT
10381	TCTGACAACG	ATCGGAGGAC	CGAAGGAGCT	AACCGCTTTT	TTGCACAACA	TGGGGGATCA
10441	TGTAACTCGC	CTTGATCGTT	GGGAACCGGA	GCTGAATGAA	GCCATACCAA	ACGACGAGCG
10501	TGACACCACG	ATGCCTGTAG	CAATGGCAAC	AACGTTGCGC	AAACTATTAA	CTGGCGAACT
10561	ACTTACTCTA	GCTTCCCGGC	AACAATTAAT	AGACTGGATG	GAGGCGGATA	AAGTTGCAGG
10621	ACCACTTCTG	CGCTCGGCCC	TTCCGGCTGG	CTGGTTTATT	GCTGATAAAT	CTGGAGCCGG
10681	TGAGCGTGGG	TCTCGCGGTA	TCATTGCAGC	ACTGGGGCCA	GATGGTAAGC	CCTCCCGTAT
10741	CGTAGTTATC	TACACGACGG	GGAGTCAGGC	AACTATGGAT	GAACGAAATA	GACAGATCGC
10801	TGAGATAGGT	GCCTCACTGA	TTAAGCATTG	GTAACTGTCA	GACCAAGT"T	ACTCATATAT
10861	ACTTTAGATT	GATTTAAAAC	TTCATTTTTA	ATTTAAAAGG	ATCTAGGTGA	AGATCCTTTT
10921	TGATAATCTC	ATGACCAAAA	TCCCTTAACG	TGAGTTTTCG	TTCCACTGAG	CGTCAGACCC
11041	CGTAGAAAAG	ATCAAAGGAT	CITCITGAGA		CTGCGCGTAA	TCTGCTGCTT
11101	GCAAACAAAA	AAACCACCGC	TACCAGCGGT	GGTTTTGTTTG	CCGGATCAAG	AGCTACCAAC
11101		AAGGTAACTG	GCTTCAGCAG	AGCGCAGATA	CCAAATACTG	ACCITCIAGI
11221	GIAGCCGIAG		ACTICAAGAA			ACCICGCICI
11201	GUIAAICCIG	TIACCAGIGG	ATAACCCCCA	CCCCTCCCCC	TCAACCCCCC	CCGGGIIGGA
112/1	ACACCCCACC	TAGITACCGG	CCACCTACAC	CCAACTCACA	TGAACGGGGGG	GIICGIGCAC
11/01	ACAGCCCAGC	1 I GGAGCGAA	ACCCACAAA	CGAACIGAGA	TACCIACAGC	GIGAGCAIIG
11461	CCCAACACC	CACCCCACCA	CCCACCTTCC	ACCCCCAAC	CCCTCCTATC	TTTATACTCC
11521	TGTCGGGTTT	CCCCACCTCT	GACTTGAGCG	тссаттттс	TGATGCTCGT	CAGGGGGGGGGG
11581	GAGCCTATGG	AAAAACGCCA	GCAACGCGGC		TTCCTGCCCT	TTTGCTGGCC
11641	TTTTGCTCAC	ATGTTCTTTC	CTGCGTTATC	CCCTGATTCT	GTGGATAACC	GTATTACCGC
11701	CTTTGAGTGA	GCTGATACCG	CTCGCCGCAG	CCGAACGACC	GAGCGCAGCG	AGTCAGTGAG
11761	CGAGGAAGCG	GAAGAGCGCC	CAATACGCAA	ACCGCCTCTC	CCCGCGCGTT	GGCCGATTCA
11821	TTAATGCAGC	TGTGGAATGT	GTGTCAGTTA	GGGTGTGGAA	AGTCCCCAGG	CTCCCCAGCA
11881	GGCAGAAGTA	TGCAAAGCAT	GCATCTCAAT	TAGTCAGCAA	CCAGGTGTGG	AAAGTCCCCA
11941	GGCTCCCCAG	CAGGCAGAAG	TATGCAAAGC	ATGCATCTCA	ATTAGTCAGC	AACCATAGTC
12001	CCGCCCCTAA	CTCCGCCCAT	CCCGCCCCTA	ACTCCGCCCA	GTTCCGCCCA	TTCTCCGCCC
12061	CATGGCTGAC	TAATTTTTTT	TATTTATGCA	GAGGCCGAGG	CCGCCTCGGC	CTCTGAGCTA
12121	TTCCAGAAGT	AGTGAGGAGG	CTTTTTTGGA	GGCCTAGGCT	TTTGCAAAAA	GCTTGGACAC
12181	AAGACAGGCT	TGCGAGATAT	GTTTGAGAAT	ACCACTTTAT	CCCGCGTCAG	GGAGAGGCAG
12241	TGCGTAAAAA	GACGCGGACT	CATGTGAAAT	ACTGGTTTTT	AGTGCGCCAG	ATCTCTATAA
12301	TCTCGCGCAA	CCTATTTTCC	CCTCGAACAC	TTTTTAAGCC	GTAGATAAAC	AGGCTGGGAC
12361	ACTTCACATG	AGCGAAAAAT	ACATCGTCAC	CTGGGACATG	TTGCAGATCC	ATGCACGTAA
12421	ACTCGCAAGC	CGACTGATGC	CTTCTGAACA	ATGGAAAGGC	ATTATTGCCG	TAAGCCGTGG
12481	CGGTCTGTAC	CGGGTGCGTT	ACTGGCGCGT	GAACTGGGTA	TTCGTCATGT	CGATACCGTT
12541	TGTATTTCCA	GCTACGATCA	CGACAACCAG	CGCGAGCTTA	AAGTGCTGAA	ACGCGCAGAA

12601	GGCGATGGCG	AAGGCTTCAT	CGTTATTGAT	GACCTGGTGG	ATACCGGTGG	TACTGCGGTT
12661	GCGATTCGTG	AAATGTATCC	AAAAGCGCAC	TTTGTCACCA	TCTTCGCAAA	ACCGGCTGGT
12721	CGTCCGCTGG	TTGATGACTA	TGTTGTTGAT	ATCCCGCAAG	ATACCTGGAT	TGAACAGCCG
12781	TGGGATATGG	GCGTCGTATT	CGTCCCGCCA	ATCTCCGGTC	GCTAATCTTT	TCAACGCCTG
12841	GCACTGCCGG	GCGTTGTTCT	TTTTAACTTC	AGGCGGGTTA	CAATAGTTTC	CAGTAAGTAT
12901	TCTGGAGGCT	GCATCCATGA	CACAGGCAAA	CCTGAGCGAA	ACCCTGTTCA	AACCCCGCTT
12961	TAAACATCCT	GAAACCTCGA	CGCTAGTCCG	CCGCTTTAAT	CACGGCGCAC	AACCGCCTGT
13021	GCAGTCGGCC	CTTGATGGTA	AAACCATCCC	TCACTGGTAT	CGCATGATTA	ACCGTCTGAT
13081	GTGGATCTGG	CGCGGCATTG	ACCCACGCGA	AATCCTCGAC	GTCCAGGCAC	GTATTGTGAT
13141	GAGCGATGCC	GAACGTACCG	ACGATGATTT	ATACGATACG	GTGATTGGCT	ACCGTGGCGG
13201	CAACTGGATT	TATGAGTGGG	CCCCGGATCT	TTGTGAAGGA	ACCTTACTTC	TGTGGTGTGA
13261	CATAATTGGA	CAAACTACCT	ACAGAGATTT	AAAGCTCTAA	GGTAAATATA	AAATTTTTAA
13321	GTGTATAATG	TGTTAAACTA	CTGATTCTAA	TTGTTTGTGT	ATTTTAGATT	CCAACCTATG
13381	GAACTGATGA	ATGGGAGCAG	TGGTGGAATG	CCTTTAATGA	GGAAAACCTG	TTTTGCTCAG
13441	AAGAAATGCC	ATCTAGTGAT	GATGAGGCTA	CTGCTGACTC	TCAACATTCT	ACTCCTCCAA
13501	AAAAGAAGAG	AAAGGTAGAA	GACCCCAAGG	ACTTTCCTTC	AGAATTGCTA	AGTTTTTTGA
13561	GTCATGCTGT	GTTTAGTAAT	AGAACTCTTG	CTTGCTTTGC	TATTTACACC	ACAAAGGAAA
13621	AAGCTGCACT	GCTATACAAG	AAAATTATGG	AAAAATATTC	TGTAACCTTT	ATAAGTAGGC
13681	ATAACAGTTA	TAATCATAAC	ATACTGTTTT	TTCTTACTCC	ACACAGGCAT	AGAGTGTCTG
13741	CTATTAATAA	CTATGCTCAA	AAATTGTGTA	CCTTTAGCTT	TTTAATTTGT	AAAGGGGTTA
13801	ATAAGGAATA	TTTGATGTAT	AGTGCCTTGA	CTAGAGATCA	TAATCAGCCA	TACCACATTT
13861	GTAGAGGTTT	TACTTGCTTT	AAAAAACCTC	CCACACCTCC	CCCTGAACCT	GAAACATAAA
13921	ATGAATGCAA	TTGTTGTTGT	TAACTTGTTT	ATTGCAGCTT	ATAATGGTTA	CAAATAAAGC
13981	AATAGCATCA	CAAATTTCAC	AAATAAAGCA	TTTTTTTCAC	TGCATTCTAG	TTGTGGTTTG
14041	TCCAAACTCA	TCAATGTATC	TTATCATGTC	TGGATCAACT	GGATAACTCA	AGCTAACCAA
14101	AATCATCCCA	AACTTCCCAC	CCCATACCCT	ATTACCACTG	CCAATTACCT	AGTGGTTTCA
14161	TTTACTCTAA	ACCTGTGATT	CCTCTGAATT	ATTTTCATTT	TAAAGAAATT	GTATTTGTTA
14221	AATATGTACT	ACAAACTTAG	TAG			

8 Abkürzungsverzeichnis

°C	Grad Celsius		
α	anti oder alpha		
β	beta		
μ	mikro (10 ⁻⁶)		
μg	Mikrogramm		
μΙ	Mikroliter		
μm	Mikrometer		
μM	Mikromolar		
A	Adenin		
Abb.	Abbildung		
Ad5	Adenovirus Typ 5		
Amp	Ampicillin		
APS	Ammoniumpersulfat		
bp	Basenpaar(e)		
BSA	Rinderserum-Albumin ("bovine serum albumine")		
bzw.	beziehungsweise		
CCR5	CC-Cytokinrezeptor 5		
CD4	"cluster of differentiation 4"		
CMV	Zytomegalie-Virus		
CP	"crossing point"		
CXCR4	CXC-Cytokinrezeptor 4		
C	Cytidin		
Da	Dalton		
DMSO	Dimethylsulfoxid		
DNA	Desoxyribonukleinsäure		
dNTP	Desoxyribonukleotidtriphosphat		
ECL	"enzymatic chemiluminescence"		
EDTA	Ethylendiamin-Tetraessigsäure (Titriplex III)		
EF1α	"elongation factor 1"		
FITC	Fluoresceinisothiocyanat		
fwd.	"forward", vorwärts		
g	Gramm oder Erdbeschleunigung		
Gal	Galaktose		
gDNA	genomische DNA		
gp	Glykoprotein		
G	Guanin		
GFP	"green-fluorescent-protein"		
h	Stunde		
H ₂ O _{bidest.}	zweifach destilliertes Wasser aus einer Millipore-Anlage		
his	Histidin		
HLA	"human leucocyte antigen"		
HRP Meerrettich-Peroxidase ("horse-radish peroxidase")			
lg Immunoglobulin			
IRES	"internal ribosome entry site"		
IU	"infectious unit"		
k	Kilo		

Kbp	Kilobasenpaare	
kDa	kDa Kilodalton	
L	L Liter	
LB ₀ -Medium	Luria Bertani-Medium	
m	milli (10 ⁻³)	
min	Minute	
ml	Milliliter	
mM	millimolar (Millimol pro Liter)	
mut	mutiert	
n	nano (10 ⁻⁹)	
ng	Nanogramm	
nM	nanomolar	
nm	Nanometer	
OD	optische Dichte	
ORF	"open reading frame"	
PBS	Phosphat-gepufferte Kochsalzlösung ("phosphate buffered saline")	
PBST	PBS mit 0,05% Tween 20	
PCR	Polymerase-Kettenreaktion ("polymerase chain reaction")	
р	Pico (10 ⁻¹²)	
pDNA	Plasmid-DNA	
PE	Phycoerythrin	
pg	Picogramm	
рН	Konzentration der H ⁺ -Ionen einer Lösung	
poly(A)	Kurzbezeichnung für polyadenyliertes 3´-Ende von RNA-	
	Transkripten	
rev.	"reverse", rückwärts	
RNA	Ribonukleinsäure	
rpm	"rounds per minute", Umdrehungszahl	
RT	Raumtemperatur	
S	Sekunde	
SDS	Natriumdodecylsulfat ("sodium dodecylsulfate")	
SIV	"Simian Immundeficiency Virus"	
SV40	"Simian Virus 40"	
syntat	auf Säugerzellen optimiertes tat-Gen	
Т	Tymin	
TBE	TBS mit EDTA	
TBS	Tris-Kochsalz-Puffer ("tris buffered saline")	
TEMED	N,N,N´,N´-Tetramethylethylendiamin	
TMB	Tetramethylbenzidin	
Tris	Trishydroxymethylaminomethan	
TTBS	TBS mit 0,05% Tween 20	
U	Enzymeinheit ("Unit")	
UV	ultraviolett	
w/v Gewichtseinheit pro Volumeneinheit ("weight per volume")		

9 Literaturverzeichnis

1. Barré-Sinoussi, F. *et al.* Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS), *Science* 220, 868–871 (1983).

2. UNAIDS. HIV Data. Report on the global AIDS epidemic. Available at http://www.unaids.org/en/KnowledgeCentre/HIVData/default.asp.

Modrow, S. Falke, D. & Truyen, U. *Molekulare Virologie. Spektrum Lehrbuch.* 2nd ed. (Spektrum Akademischer Verlag GmbH Heidelberg, Berlin, 2003).

4. Taiwo, B. O. AIDS-related primary CNS lymphoma: a brief review, *AIDS Read* 10, 486–491 (2000).

5. Deeks, S. G. Determinants of virological response to antiretroviral therapy: implications for long-term strategies, *Clin. Infect. Dis.* 30 Suppl 2, S177-84 (2000).

6. Frankel, A. D. & Young, J. A. HIV-1: fifteen proteins and an RNA, *Annu. Rev. Biochem.* 67, 1–25 (1998).

7. Miyauchi, K. Kim, Y. Latinovic, O. Morozov, V. & Melikyan, G. B. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes, *Cell* 137, 433–444 (2009).

8. Kowalski, M. *et al.* Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1, *Science* 237, 1351–1355 (1987).

9. Feng, S. & Holland, E. C. HIV-1 tat trans-activation requires the loop sequence within tar, *Nature* 334, 165–167 (1988).

10. Wei, P. Garber, M. E. Fang, S. M. Fischer, W. H. & Jones, K. A. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA, *Cell* 92, 451–462 (1998).

11. Parada, C. A. & Roeder, R. G. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain, *Nature* 384, 375–378 (1996).

12. Pumfery, A. *et al.* Chromatin remodeling and modification during HIV-1 Tatactivated transcription, *Curr. HIV Res.* 1, 343–362 (2003).

13. Arya, S. K. Guo, C. Josephs, S. F. & Wong-Staal, F. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III), *Science* 229, 69–73 (1985).

14. Chang, H. K. Gallo, R. C. & Ensoli, B. Regulation of Cellular Gene Expression and Function by the Human Immunodeficiency Virus Type 1 Tat Protein, *J. Biomed. Sci.* 2, 189–202 (1995).

15. Frankel, A. D. & Pabo, C. O. Cellular uptake of the tat protein from human immunodeficiency virus, *Cell* 55, 1189–1193 (1988).

16. Ensoli, B. *et al.* Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation, *J. Virol.* 67, 277–287 (1993).

17. Ito, M. *et al.* HIV type 1 Tat protein inhibits interleukin 12 production by human peripheral blood mononuclear cells, *AIDS Res. Hum. Retroviruses* 14, 845–849 (1998).

18. Secchiero, P. Zella, D. Capitani, S. Gallo, R. C. & Zauli, G. Extracellular HIV-1 tat protein up-regulates the expression of surface CXC-chemokine receptor 4 in resting CD4+ T cells, *J. Immunol.* 162, 2427–2431 (1999).

19. Huang, K. J. & Wooley, D. P. A new cell-based assay for measuring the forward mutation rate of HIV-1, *J. Virol. Methods* 124, 95–104 (2005).

20. Johnston, M. I. & Fauci, A. S. An HIV vaccine--evolving concepts, *N. Engl. J. Med.* 356, 2073–2081 (2007).

21. Barouch, D. H. Challenges in the development of an HIV-1 vaccine, *Nature* 455, 613–619 (2008).

22. Walker, B. D. & Burton, D. R. Toward an AIDS vaccine, *Science* 320, 760–764 (2008).

23. Koup, R. A. *et al.* Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome, *J. Virol.* 68, 4650–4655 (1994).

24. Fellay, J. *et al.* A whole-genome association study of major determinants for host control of HIV-1, *Science* 317, 944–947 (2007).

25. Schmitz, J. E. *et al.* Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes, *Science* 283, 857–860 (1999).

26. Liu, J. *et al.* Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys, *Nature* 457, 87–91 (2009).

27. Mascola, J. R. *et al.* Protection of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies, *J. Virol.* 73, 4009–4018 (1999).

28. Parren, P. W. *et al.* Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro, *J. Virol.* 75, 8340–8347 (2001).

29. Flynn, N. M. *et al.* Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection, *J. Infect. Dis.* 191, 654–665 (2005).

30. Buchbinder, S. P. *et al.* Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-ofconcept trial, *Lancet* 372, 1881–1893 (2008).

31. Perreau, M. Pantaleo, G. & Kremer, E. J. Activation of a dendritic cell-T cell axis by Ad5 immune complexes creates an improved environment for replication of HIV in T cells, *J. Exp. Med.* 205, 2717–2725 (2008).

32. Barouch, D. H. & Korber, B. HIV-1 vaccine development after STEP, *Annu. Rev. Med.* 61, 153–167 (2010).

33. Rerks-Ngarm, S. *et al.* Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand, *N. Engl. J. Med.* 361, 2209–2220 (2009).

34. Eckert, D. M. & Kim, P. S. Mechanisms of viral membrane fusion and its inhibition, *Annu. Rev. Biochem.* 70, 777–810 (2001).

35. Karlsson Hedestam, G. B. *et al.* The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus, *Nat. Rev. Microbiol.* 6, 143–155 (2008).

36. Kim, S. Pang, H.-B. & Kay, M. S. Peptide mimic of the HIV envelope gp120gp41 interface, *J. Mol. Biol.* 376, 786–797 (2008).

37. Amara, R. R. *et al.* Critical role for Env as well as Gag-Pol in control of a simian-human immunodeficiency virus 89.6P challenge by a DNA prime/recombinant modified vaccinia virus Ankara vaccine, *J. Virol.* 76, 6138–6146 (2002).

38. Graham, B. S. *et al.* Augmentation of human immunodeficiency virus type 1 neutralizing antibody by priming with gp160 recombinant vaccinia and boosting with rgp160 in vaccinia-naive adults. The NIAID AIDS Vaccine Clinical Trials Network, *J. Infect. Dis.* 167, 533–537 (1993).

39. Mascola, J. R. *et al.* Immunization with envelope subunit vaccine products elicits neutralizing antibodies against laboratory-adapted but not primary isolates of human immunodeficiency virus type 1. The National Institute of Allergy and Infectious Diseases AIDS Vaccine Evaluation Group, *J. Infect. Dis.* 173, 340–348 (1996).

40. Belshe, R. B. *et al.* Neutralizing antibodies to HIV-1 in seronegative volunteers immunized with recombinant gp120 from the MN strain of HIV-1. NIAID AIDS Vaccine Clinical Trials Network, *JAMA* 272, 475–480 (1994).

41. Yang, X. *et al.* Modifications that stabilize human immunodeficiency virus envelope glycoprotein trimers in solution, *J. Virol.* 74, 4746–4754 (2000).

42. Deml, L. Schirmbeck, R. Reimann, J. Wolf, H. & Wagner, R. Recombinant human immunodeficiency Pr55gag virus-like particles presenting chimeric envelope glycoproteins induce cytotoxic T-cells and neutralizing antibodies, *Virology* 235, 26–39 (1997).

43. Wyatt, R. *et al.* The antigenic structure of the HIV gp120 envelope glycoprotein, *Nature* 393, 705–711 (1998).

44. Wei, X. *et al.* Antibody neutralization and escape by HIV-1, *Nature* 422, 307–312 (2003).

45. Richman, D. D. Wrin, T. Little, S. J. & Petropoulos, C. J. Rapid evolution of the neutralizing antibody response to HIV type 1 infection, *Proc. Natl. Acad. Sci. U.S.A.* 100, 4144–4149 (2003).

46. Frey, G. *et al.* A fusion-intermediate state of HIV-1 gp41 targeted by broadly neutralizing antibodies, *Proc. Natl. Acad. Sci. U.S.A.* 105, 3739–3744 (2008).

47. Sanders, R. W. *et al.* Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1, *J. Virol.* 76, 8875–8889 (2002).

48. Yang, X. *et al.* Highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of T4 bacteriophage fibritin, *J. Virol.* 76, 4634–4642 (2002).

49. Barnett, S. W. *et al.* The ability of an oligomeric human immunodeficiency virus type 1 (HIV-1) envelope antigen to elicit neutralizing antibodies against primary HIV-1 isolates is improved following partial deletion of the second hypervariable region, *J. Virol.* 75, 5526–5540 (2001).

50. Bolmstedt, A. *et al.* Enhanced immunogenicity of a human immunodeficiency virus type 1 env DNA vaccine by manipulating N-glycosylation signals. Effects of elimination of the V3 N306 glycan, *Vaccine* 20, 397–405 (2001).

51. Fouts, T. R. *et al.* Expression and characterization of a single-chain polypeptide analogue of the human immunodeficiency virus type 1 gp120-CD4 receptor complex, *J. Virol.* 74, 11427–11436 (2000).

52. Beddows, S. *et al.* Evaluating the immunogenicity of a disulfide-stabilized, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1, *J. Virol.* 79, 8812–8827 (2005).

53. Yang, X. Wyatt, R. & Sodroski, J. Improved elicitation of neutralizing antibodies against primary human immunodeficiency viruses by soluble stabilized envelope glycoprotein trimers, *J. Virol.* 75, 1165–1171 (2001).

54. Varadarajan, R. *et al.* Characterization of gp120 and its single-chain derivatives, gp120-CD4D12 and gp120-M9: implications for targeting the CD4i epitope in human immunodeficiency virus vaccine design, *J. Virol.* 79, 1713–1723 (2005).

55. Burton, D. R. *et al.* HIV vaccine design and the neutralizing antibody problem, *Nat. Immunol.* 5, 233–236 (2004).

56. Trkola, A. *et al.* Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1, *J. Virol.* 70, 1100–1108 (1996).

57. Sanders, R. W. *et al.* The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120, *J. Virol.* 76, 7293–7305 (2002).

58. Muster, T. *et al.* A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1, *J. Virol.* 67, 6642–6647 (1993).

59. Zwick, M. B. *et al.* Broadly neutralizing antibodies targeted to the membraneproximal external region of human immunodeficiency virus type 1 glycoprotein gp41, *J. Virol.* 75, 10892–10905 (2001).

60. Ofek, G. *et al.* Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope, *J. Virol.* 78, 10724–10737 (2004).

61. Cardoso, R. M. F. *et al.* Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41, *Immunity* 22, 163–173 (2005).

62. Gorny, M. K. *et al.* Neutralization of diverse human immunodeficiency virus type 1 variants by an anti-V3 human monoclonal antibody, *J. Virol.* 66, 7538–7542 (1992).

63. Corti, D. *et al.* Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals, *PLoS ONE* 5, e8805 (2010).

64. Forsman, A. *et al.* Llama antibody fragments with cross-subtype human immunodeficiency virus type 1 (HIV-1)-neutralizing properties and high affinity for HIV-1 gp120, *J. Virol.* 82, 12069–12081 (2008).

65. Zhou, T. *et al.* Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01, *Science* 329, 811–817 (2010).

66. Burton, D. R. *et al.* Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody, *Science* 266, 1024–1027 (1994).

67. Thali, M. *et al.* Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding, *J. Virol.* 67, 3978–3988 (1993).

68. Moulard, M. *et al.* Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120-CD4-CCR5 complexes, *Proc. Natl. Acad. Sci. U.S.A.* 99, 6913–6918 (2002).

69. Walker, L. M. *et al.* Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target, *Science* 326, 285–289 (2009).

70. Baba, T. W. *et al.* Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection, *Nat. Med.* 6, 200–206 (2000).

71. Coëffier, E. *et al.* Antigenicity and immunogenicity of the HIV-1 gp41 epitope ELDKWA inserted into permissive sites of the MalE protein, *Vaccine* 19, 684–693 (2000).

72. McGaughey, G. B. *et al.* HIV-1 vaccine development: constrained peptide immunogens show improved binding to the anti-HIV-1 gp41 MAb, *Biochemistry* 42, 3214–3223 (2003).

73. Noronha, C. M. de *et al.* Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr, *Science* 294, 1105–1108 (2001).

74. Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface, *Science* 228, 1315–1317 (1985).

75. Boder, E. T. & Wittrup, K. D. Yeast surface display for screening combinatorial polypeptide libraries, *Nat. Biotechnol.* 15, 553–557 (1997).

76. Bowley, D. R. Labrijn, A. F. Zwick, M. B. & Burton, D. R. Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage, *Protein Eng. Des. Sel.* 20, 81–90 (2007).

77. Urban, J. H. *et al.* Selection of functional human antibodies from retroviral display libraries, *Nucleic Acids Res.* 33, e35 (2005).

78. Khare, P. D. Russell, S. J. & Federspiel, M. J. Avian leukosis virus is a versatile eukaryotic platform for polypeptide display, *Virology* 315, 303–312 (2003).

79. Markusic, D. M. Kanitz, A. Oude-Elferink, R. P. J. & Seppen, J. Preferential gene transfer of lentiviral vectors to liver-derived cells, using a hepatitis B peptide displayed on GP64, *Hum. Gene Ther.* 18, 673–679 (2007).

80. Verhoeyen, E. Nègre, D. & Cosset, F. L. Production of lentiviruses displaying "early-acting" cytokines for selective gene transfer into hematopoietic stem cells, *Methods Mol. Biol.* 434, 99–112 (2008).

81. Taube, R. *et al.* Lentivirus display: stable expression of human antibodies on the surface of human cells and virus particles, *PLoS ONE* 3, e3181 (2008).

82. Lewis, P. Hensel, M. & Emerman, M. Human immunodeficiency virus infection of cells arrested in the cell cycle, *EMBO J.* 11, 3053–3058 (1992).

83. Page, K. A. Landau, N. R. & Littman, D. R. Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity, *J. Virol.* 64, 5270–5276 (1990).

84. Poznansky, M. Lever, A. Bergeron, L. Haseltine, W. & Sodroski, J. Gene transfer into human lymphocytes by a defective human immunodeficiency virus type 1 vector, *J. Virol.* 65, 532–536 (1991).

85. Akkina, R. K. *et al.* High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G, *J. Virol.* 70, 2581–2585 (1996).
86. Reiser, J. *et al.* Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles, *Proc. Natl. Acad. Sci. U.S.A.* 93, 15266–15271 (1996).

87. Naldini, L. Blömer, U. Gage, F. H. Trono, D. & Verma, I. M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector, *Proc. Natl. Acad. Sci. U.S.A.* 93, 11382–11388 (1996).

88. Naldini, L. *et al.* In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector, *Science* 272, 263–267 (1996).

89. Kumar, M. Keller, B. Makalou, N. & Sutton, R. E. Systematic determination of the packaging limit of lentiviral vectors, *Hum. Gene Ther.* 12, 1893–1905 (2001).

90. Kappes, J. C. & Wu, X. Safety considerations in vector development, *Somat. Cell Mol. Genet.* 26, 147–158 (2001).

91. Lever, A. Gottlinger, H. Haseltine, W. & Sodroski, J. Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions, *J. Virol.* 63, 4085–4087 (1989).

92. Aldovini, A. & Young, R. A. Development of a BCG recombinant vehicle for candidate AIDS vaccines, *Int. Rev. Immunol.* 7, 79–83 (1990).

93. Harrison, G. P. & Lever, A. M. The human immunodeficiency virus type 1 packaging signal and major splice donor region have a conserved stable secondary structure, *J. Virol.* 66, 4144–4153 (1992).

94. Skripkin, E. Paillart, J. C. Marquet, R. Ehresmann, B. & Ehresmann, C. Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro, *Proc. Natl. Acad. Sci. U.S.A.* 91, 4945–4949 (1994).

95. McBride, M. S. & Panganiban, A. T. The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures, *J. Virol.* 70, 2963–2973 (1996).

96. Mann, R. & Baltimore, D. Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced and spliced RNAs, *J. Virol.* 54, 401–407 (1985).

97. Lawrence, D. C. Stover, C. C. Noznitsky, J. Wu, Z. & Summers, M. F. Structure of the intact stem and bulge of HIV-1 Psi-RNA stem-loop SL1, *J. Mol. Biol.* 326, 529–542 (2003).

105

98. Luban, J. & Goff, S. P. Mutational analysis of cis-acting packaging signals in human immunodeficiency virus type 1 RNA, *J. Virol.* 68, 3784–3793 (1994).

99. Clever, J. L. & Parslow, T. G. Mutant human immunodeficiency virus type 1 genomes with defects in RNA dimerization or encapsidation, *J. Virol.* 71, 3407–3414 (1997).

100. Haselhorst, D. Kaye, J. F. & Lever, A. M. Development of cell lines stably expressing human immunodeficiency virus type 1 proteins for studies in encapsidation and gene transfer, *J. Gen. Virol.* 79 (Pt 2), 231–237 (1998).

101. Poeschla, E. Corbeau, P. & Wong-Staal, F. Development of HIV vectors for anti-HIV gene therapy, *Proc. Natl. Acad. Sci. U.S.A.* 93, 11395–11399 (1996).

102. Carroll, R. *et al.* A human immunodeficiency virus type 1 (HIV-1)-based retroviral vector system utilizing stable HIV-1 packaging cell lines, *J. Virol.* 68, 6047–6051 (1994).

103. Zufferey, R. Nagy, D. Mandel, R. J. Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo, *Nat. Biotechnol.* 15, 871–875 (1997).

104. Kim, V. N. Mitrophanous, K. Kingsman, S. M. & Kingsman, A. J. Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1, *J. Virol.* 72, 811–816 (1998).

105. Dull, T. *et al.* A third-generation lentivirus vector with a conditional packaging system, *J. Virol.* 72, 8463–8471 (1998).

106. Klages, N. Zufferey, R. & Trono, D. A stable system for the high-titer production of multiply attenuated lentiviral vectors, *Mol. Ther.* 2, 170–176 (2000).

107. Clontech. Retrovirus Resource Site. Packaging Cell Lines Overview. Available at http://www.clontech.com/support/tools.asp?product_tool_id=54271&tool_id=154911.

108. Corbeau, P. Kraus, G. & Wong-Staal, F. Efficient gene transfer by a human immunodeficiency virus type 1 (HIV-1)-derived vector utilizing a stable HIV packaging cell line, *Proc. Natl. Acad. Sci. U.S.A.* 93, 14070–14075 (1996).

109. Buchschacher, G. L. & Panganiban, A. T. Human immunodeficiency virus vectors for inducible expression of foreign genes, *J. Virol.* 66, 2731–2739 (1992).

110. Wang, C. T. Li, J. J. Lai, H. Y. & Hu, B. S. A human cell line constitutively expressing HIV-1 Gag and Gag-Pol gene products, *J. Med. Virol.* 57, 17–24 (1999).

111. Srinivasakumar, N. *et al.* The effect of viral regulatory protein expression on gene delivery by human immunodeficiency virus type 1 vectors produced in stable packaging cell lines, *J. Virol.* 71, 5841–5848 (1997).

112. Kafri, T. van Praag, H. Ouyang, L. Gage, F. H. & Verma, I. M. A packaging cell line for lentivirus vectors, *J. Virol.* 73, 576–584 (1999).

113. Kaul, M. Yu, H. Ron, Y. & Dougherty, J. P. Regulated lentiviral packaging cell line devoid of most viral cis-acting sequences, *Virology* 249, 167–174 (1998).

114. Farson, D. *et al.* A new-generation stable inducible packaging cell line for lentiviral vectors, *Hum. Gene Ther.* 12, 981–997 (2001).

115. Yu, H. Rabson, A. B. Kaul, M. Ron, Y. & Dougherty, J. P. Inducible human immunodeficiency virus type 1 packaging cell lines, *J. Virol.* 70, 4530–4537 (1996).

116. Pacchia, A. L. Adelson, M. E. Kaul, M. Ron, Y. & Dougherty, J. P. An inducible packaging cell system for safe, efficient lentiviral vector production in the absence of HIV-1 accessory proteins, *Virology* 282, 77–86 (2001).

117. Sparacio, S. Pfeiffer, T. Schaal, H. & Bosch, V. Generation of a flexible cell line with regulatable, high-level expression of HIV Gag/Pol particles capable of packaging HIV-derived vectors, *Mol. Ther.* 3, 602–612 (2001).

118. van Damme, N. & Guatelli, J. HIV-1 Vpu inhibits accumulation of the envelope glycoprotein within clathrin-coated, Gag-containing endosomes, *Cell. Microbiol.* 10, 1040–1057 (2008).

119. Chowers, M. Y. *et al.* Optimal infectivity in vitro of human immunodeficiency virus type 1 requires an intact nef gene, *J. Virol.* 68, 2906–2914 (1994).

120. Popov, S. *et al.* Viral protein R regulates nuclear import of the HIV-1 preintegration complex, *EMBO J.* 17, 909–917 (1998).

121. Srinivasakumar, N. & Schuening, F. G. A lentivirus packaging system based on alternative RNA transport mechanisms to express helper and gene transfer vector RNAs and its use to study the requirement of accessory proteins for particle formation and gene delivery, *J. Virol.* 73, 9589–9598 (1999).

122. Emerman, M. & Malim, M. H. HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology, *Science* 280, 1880–1884 (1998).

123. Kaplan, A. H. & Swanstrom, R. Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments, *Proc. Natl. Acad. Sci. U.S.A.* 88, 4528–4532 (1991).

124. Konvalinka, J. *et al.* An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity, *J. Virol.* 69, 7180–7186 (1995).

125. Schambach, A. Galla, M. Maetzig, T. Loew, R. & Baum, C. Improving transcriptional termination of self-inactivating gamma-retroviral and lentiviral vectors, *Mol. Ther.* 15, 1167–1173 (2007).

126. Guhaniyogi, J. & Brewer, G. Regulation of mRNA stability in mammalian cells, *Gene* 265, 11–23 (2001).

127. Jackson, R. J. & Standart, N. Do the poly(A) tail and 3' untranslated region control mRNA translation?, *Cell* 62, 15–24 (1990).

128. Jaalouk, D. E. Crosato, M. Brodt, P. & Galipeau, J. Inhibition of histone deacetylation in 293GPG packaging cell line improves the production of self-inactivating MLV-derived retroviral vectors, *Virol. J.* 3, 27 (2006).

129. Ory, D. S. Neugeboren, B. A. & Mulligan, R. C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes, Proc. Natl. Acad. Sci. U.S.A. 93, 11400–11406 (1996).

130. Guhaniyogi, J. & Brewer, G. Regulation of mRNA stability in mammalian cells, Gene 265, 11–23 (2001).

131. Jackson, R. J. & Standart, N. Do the poly(A) tail and 3' untranslated region control mRNA translation?, Cell 62, 15–24 (1990).

132. Haselhorst, D. Kaye, J. F. & Lever, A. M. Development of cell lines stably expressing human immunodeficiency virus type 1 proteins for studies in encapsidation and gene transfer, J. Gen. Virol. 79 (Pt 2), 231–237 (1998).

133. Poeschla, E. Corbeau, P. & Wong-Staal, F. Development of HIV vectors for anti-HIV gene therapy, Proc. Natl. Acad. Sci. U.S.A. 93, 11395–11399 (1996).

134. Carroll, R. et al. A human immunodeficiency virus type 1 (HIV-1)-based retroviral vector system utilizing stable HIV-1 packaging cell lines, J. Virol. 68, 6047–6051 (1994).

135. Konvalinka, J. et al. An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity, J. Virol. 69, 7180–7186 (1995).

136. Jordan, A. Defechereux, P. & Verdin, E. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation, EMBO J. 20, 1726–1738 (2001).

137. Labat-Moleur, F. et al. An electron microscopy study into the mechanism of gene transfer with lipopolyamines, Gene Ther. 3, 1010–1017 (1996).

138. Gillespie, G. M. A. et al. Cross-reactive cytotoxic T lymphocytes against a HIV-1 p24 epitope in slow progressors with B*57, AIDS 16, 961–972 (2002).

139. Wernicke, D. & Will, H. Generation of recombinant CHO(dhfr-) cell lines by single selection for dhfr+ transformants, Anal. Biochem. 203, 146–150 (1992).

140. Hanahan, D. Studies on transformation of Escherichia coli with plasmids, *J. Mol. Biol.* 166, 557–580 (1983).

141. Birnboim, H. C. & Doly, J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA, Nucleic Acids Res. 7, 1513–1523 (1979).

142. Saiki, R. K. *et al.* Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase, *Science* 239, 487–491 (1988).

143. Bi, W. & Stambrook, P. J. Site-directed mutagenesis by combined chain reaction, *Anal. Biochem.* 256, 137–140 (1998).

144. Sanger, F. & Coulson, A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase, *J. Mol. Biol.* 94, 441–448 (1975).

145. Skeidsvoll, J. & Ueland, P. M. Analysis of double-stranded DNA by capillary electrophoresis with laser-induced fluorescence detection using the monomeric dye SYBR green I, *Anal. Biochem.* 231, 359–365 (1995).

146. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR, *Nucleic Acids Res.* 29, e45 (2001).

147. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, *Anal. Biochem.* 72, 248–254 (1976).

148. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4, *Nature* 227, 680–685 (1970).

149. Wolf, H. *et al.* Production, mapping and biological characterization of monoclonal antibodies against core protein (p24) of the human immunodeficiency virus.*AIFO*1990,16–18.

10 Danksagung

Vielen Dank an Herrn Prof. Dr. Ralf Wagner für die Überlassung des sehr interessanten Themas und dafür, dass er mir die Möglichkeit gegeben hat, die Promotionsarbeit in seiner Gruppe anzufertigen.

Ein großes Dankeschön auch an Herrn Prof. Dr. Thomas Dobner für die großzügige Betreuung meiner Doktorarbeit und das Interesse daran.

Bei Herrn Prof. Dr. Hans Wolf möchte ich mich für die Bereitstellung des Arbeitsplatzes am Institut für Medizinische Mikrobiologie und Hygiene am Universitätsklinikum Regensburg bedanken.

Vielen Dank an die gesamte AG Wagner für die schöne Zeit sowie für die sehr angenehme Arbeitsatmosphäre.

Dr. Alexander Kliche danke ich ganz herzlich für die Betreuung und die Korrektur dieser Arbeit.

Sabine, vielen Dank für Deine stete Unterstützung und Dein Einfühlungsvermögen.

Chicas, ich vermisse Euch! Vielen Dank für all die schönen Jahre. Das Lab 66 ist und bleibt legendär!

Der gesamten Regensburger Biologen-Truppe danke ich ganz herzlich für ihre Unterstützung und ihre Freundschaft.

Mein Schatz, vielen Dank für Deine Unterstützung und Deinen Glauben in mich!

Ganz besonders herzlich möchte ich meiner gesamten Familie für ihr Verständnis und ihre Unterstützung danken. Ihr habt mich stets bestärkt!