
Self-Management Concepts for Relational
Database Systems

Dissertation

zur Erlangung des Doktorgrades
an der Fakultät für Mathematik, Informatik und Naturwissenschaften,

Fachbereich Informatik
der Universität Hamburg

vorgelegt von

Marc Holze

Hamburg, 2012

Erster Gutachter: Prof. Dr.-Ing. Norbert Ritter
Zweiter Gutachter: Prof. Dr.-Ing. Kai-Uwe Sattler

Tag der Disputation: 25.11.2011

i

Abstract

Self-managing (or autonomic) databases are intended to reduce the total cost of ownership
for a DBS by automatically adapting to evolving workloads and environments. To reach this
goal, commercial database management systems (DBMS) have recently been equipped with
self-management functions, which for example support the database administrator (DBA) in
identifying the appropriate indexes or in sizing the memory areas. However, existing techniques
suffer from several problems: First, they are often implemented as off-line tools that have to
be explicitly triggered by a DBA. Second, they strictly focus on automating one particular
administration task, without considering possible side-effects on other components. Third, their
execution causes additional overhead for the DBS. Fourth, they follow best-effort approaches,
which cannot be controlled by high-level goals (e.g. response time, throughput).
This work presents an alternative solution to the problem of DBS self-management, which

avoids the drawbacks of the existing self-management functions. Instead of extending a DBMS
with a set of component-specific self-management functions, the developed solution is designed
as one single self-management loop, which has a system-wide view on all configuration deci-
sions. As long as the workload of the system does not change and the goals are met, this
self-management loop only performs very light-weight monitoring operations on the workload,
performance, and state information. For this purpose, several workload shift detection solutions
are described and compared in this work. This work also comprises a workload classification
solution, that groups similar workload events in order to further reduce the monitoring over-
head. Furthermore, the workload information is analysed for cyclic patterns in order to predict
upcoming workload shifts.
Only when the system-wide self-management solution detects a workload shift or a violation

of the goals, it performs a heavy-weight reconfiguration analysis. Given the current workload
and state of the DBS, this reconfiguration analysis has to derive a new set of configuration pa-
rameter values that meet the goals in the best possible way. For this purpose the system-wide
self-management solution employs a system model, which quantitatively describes the behaviour
of the DBS using mathematical models. As creating a complete quantitative description of ex-
isting DBMS in a system model is a complex task, a graphical modelling approach (using the
SysML modelling language) that supports the evolutionary refinement of models is used. At
runtime, the system model is evaluated by the self-management logic using multi-objective op-
timization techniques, where the goal values are represented as constraints. With this approach
the system-wide reconfiguration analysis is performed in a single step, allowing the immediate
judgement of the side-effects on other components.

iii

Kurzfassung

Selbstverwaltende (oder autonome) Datenbanken sollen die Betriebskosten für Datenbanksys-
teme (DBS) reduzieren, indem sie sich automatisch an veränderliche Lastcharakteristiken und
Umgebungsbedingungen anpassen. Um dieses Ziel zu erreichen haben die Hersteller kom-
merzieller Datenbankverwaltungssysteme (DBVS) begonnen, ihre Produkte mit Selbstverwal-
tungsfunktionen auszustatten, die den Datenbankadministrator beispielsweise bei der Bestim-
mung geeigneter Indizes oder bei der Festlegung der Größen verschiedener Hauptspeicherbere-
iche unterstützen. Doch die existierenden Ansätze leiden heute noch an zahlreichen Problemen:
Zunächst sind diese oft als Offline-Werkzeuge konzipiert, die manuell durch den DBA gestartet
werden müssen. Außerdem fokussieren sich ihre Analysen oft auf eine einzige administrative
Aufgabe oder DBS-Komponente. Mögliche Seiteneffekte auf andere Komponenten werden nicht
berücksichtigt. Auch der zusätzliche Aufwand, der bei kontinuierlicher Ausführung der Selb-
stverwaltungsfunktionen auf dem DBS entsteht, stellt ein Problem dar. Weiterhin kann keine
der existierenden Selbstverwaltungsfunktionen Zielwerte für die Antwortzeit oder den Durch-
satz berücksichtigen.
Diese Arbeit präsentiert eine alternative Lösung für die Selbstverwaltung von DBS, welche

die Nachteile der existierenden Lösungen vermeidet. Anstatt das DBVS mit einer Vielzahl
komponenten-spezifischer Selbstverwaltungsfunktionen auszustatten ist das entwickelte Rah-
menwerk als eine einzige zentrale Selbstverwaltungslogik konzipiert, die über einen systemweiten
Blick auf alle Konfigurationsentscheidungen verfügt. Solange sich die Lastcharakteristik des
DBS nicht ändert und die Zielvorgaben eingehalten werden, führt diese Selbstverwaltungslogik
nur sehr leichtgewichtige Überwachungsfunktionen aus. Im Rahmen der Arbeit werden zu
diesem Zweck verschiedene Techniken zur Erkennung von Änderungen in der Lastcharakter-
istik eines DBS vorgestellt und miteinander verglichen. Weiterhin wird eine Technik für die
Klassifikation von DBS-Anfragen beschrieben, die ähnliche Anfragen gruppiert und so den
Überwachungsaufwand reduziert. Es wird außerdem gezeigt, wie zyklische Änderungen an der
Lastcharakteristik erkannt und vorhergesagt werden können.
Nur wenn die systemweite Selbstverwaltungslogik eine Änderung der Lastcharakteristik oder

eine Verletzung der Zielvorgaben erkennt führt diese eine schwergewichtige Rekonfigurations-
analyse durch. Ausgehend von der derzeitigen Nutzung des DBS und dessen aktuellem Zus-
tand bestimmt diese Rekonfigurationsanalyse neue Werte für die DBS-Konfiguration, so dass
dieses die Zielvorgaben so gut wie möglich erfüllt. Hierfür greift die systemweite Selbstverwal-
tungslogik auf ein Systemmodell zurück, welches das Verhalten des DBS in Abhängigkeit von
dessen Konfigurationen mittels mathematischer Modelle quantitativ beschreibt. Die Erstellung

iv Kurzfassung

einer vollständigen quantitativen Beschreibung des DBS-Verhaltens ist jedoch eine komplexe
Aufgabe. Daher wird in dieser Arbeit die Modellierungssprache (SysML) für die Definition
der Systemmodelle eingesetzt, die auf Grund ihrer graphischen Darstellung eine evolutionäre
Verfeinerung der Modelle erlaubt. Zur Laufzeit wird das Systemmodell von der systemweiten
Selbstverwaltungslogik mittels mehrkriterieller Optimierungstechniken ausgewertet, wobei die
Zielwerte als Randbedingungen definiert werden. Mit diesem Ansatz kann die Rekonfigura-
tionsanalyse in einem einzigen Schritt durchgeführt werden, so dass mögliche Seiteneffekte
einer Konfigurationsänderung unmittelbar berücksichtigt werden können.

v

Danksagung

Für die Unterstützung beim Verfassen dieser Arbeit danke ich:

meinem Doktorvater Professor Norbert Ritter für die wertvollen Diskussionen und Denkanstöße,

Professor Kai-Uwe Sattler für die Zweitbegutachtung,

Michael von Riegen für die großartige Zeit in F522 und die Unterstützung und notwendige
Ablenkung,

allen VSIS-Mitarbeitern für die immer freundschaftliche Zusammenarbeit und

Ulrike Ranger für die vielen wichtigen Hinweise und das Aufrechterhalten meiner Motivation
zur Anfertigung dieser Arbeit.

Contents vii

Contents

Abstract i

Kurzfassung iii

Danksagung v

1 Introduction 1
1.1 DBS Self-Management . 2
1.2 State of the Art . 3
1.3 Contributions . 5
1.4 Structure of Work . 8

2 DBS Self-Management 11
2.1 Autonomic Computing . 11
2.2 DBS Off-line Self-Management Tools . 14

2.2.1 IBM D2 Design Advisor . 14
2.2.2 Microsoft SQL Server Database Tuning Advisor 16
2.2.3 Oracle SQL Tuning Advisors . 19

2.3 DBS On-line Self-Management . 21
2.3.1 On-line Memory Management . 21
2.3.2 On-line Index Selection . 23
2.3.3 On-line Statistics Collection . 28

2.4 Open Challenges in Current Approaches . 29
2.4.1 Self-Optimization . 30
2.4.2 Goal-Independency . 31
2.4.3 Interdependency . 31
2.4.4 Overhead . 32
2.4.5 Workload-pattern Unawareness . 32
2.4.6 Overreaction . 33

3 Goal-Driven System-Wide Self-Management 35
3.1 Goal-Driven Self-management . 35
3.2 Workload Monitoring and Analysis . 41
3.3 DBS System Models . 43

viii Contents

3.4 Self-Management Logic . 44
3.5 Conclusions . 46

4 Workload Monitoring and Analysis 49
4.1 Workload Analysis Processing Model . 49

4.1.1 Processing Stages . 49
4.1.2 Solution Overview . 52

4.2 Workload Monitoring . 53
4.3 Feature Selection and Classification . 55

4.3.1 Classification Requirements . 55
4.3.2 Design . 57
4.3.3 Distance Function . 60

4.3.3.1 Feature Types . 60
4.3.3.2 Distance Metric . 61

4.3.4 Classification . 63
4.3.4.1 Classification Rules . 63
4.3.4.2 Classification Management . 66

4.4 Workload Shift Detection . 72
4.4.1 Workload Shift Detection Requirements 72
4.4.2 Design . 75

4.4.2.1 Frequency Modelling . 76
4.4.2.2 Behaviour Modelling . 78
4.4.2.3 Concept Modelling . 82

4.4.3 n-gram Workload Models . 83
4.4.3.1 Workload Modelling . 83
4.4.3.2 Workload Model Assessment . 85
4.4.3.3 Workload Shift Detection . 85

4.4.4 Two-Window Approaches . 92
4.4.4.1 Two-Window Workload Shift Detection 92
4.4.4.2 Similarity Metrics . 94

4.5 Workload Shift Prediction . 98
4.5.1 Workload Shift Prediction Requirements 100
4.5.2 Identification of Recurring Workloads . 101
4.5.3 Periodicity Detection . 103

4.5.3.1 Discrete Fourier Transform . 104
4.5.3.2 Model Interval Analysis . 106

4.5.4 Adaptation of Periodic Workload Patterns 107
4.6 Evaluation . 109

4.6.1 Workload Generator . 110

Contents ix

4.6.2 Workload Shift Detection Evaluation . 113
4.6.2.1 Implementation Aspects . 113
4.6.2.2 Functional Evaluation . 114
4.6.2.3 Overhead Tests . 126

4.6.3 Workload Classification Evaluation . 128
4.6.3.1 Functional Evaluation . 128
4.6.3.2 Overhead Tests . 130

4.6.4 Workload Shift Prediction Evaluation . 131
4.6.4.1 Functional Evaluation . 131
4.6.4.2 Overhead Tests . 132

4.6.5 Summary . 133
4.7 Related Work . 135

4.7.1 Workload Models and Workload Shift Detection 136
4.7.2 Workload Classification . 137
4.7.3 Workload Periodicity Anaylsis . 139

4.8 Conclusions . 139

5 Quantitative System Models for DBS 143
5.1 Running Example . 143
5.2 System Model Requirements . 147
5.3 System Modelling . 150
5.4 DB2 System Model . 157

5.4.1 Structural Description . 158
5.4.1.1 Connection Manager . 159
5.4.1.2 Relational Data Services . 160
5.4.1.3 Data Management Services . 163
5.4.1.4 Operating System Services . 165

5.4.2 Behavioural Description . 166
5.4.2.1 Overall Response Time Model 166
5.4.2.2 Buffer Management . 168
5.4.2.3 Sorting . 168
5.4.2.4 Connection Management . 170
5.4.2.5 Logging . 171
5.4.2.6 Optimizer . 175
5.4.2.7 Recompilation . 176

5.4.3 Experimental Evaluation . 177
5.4.3.1 Evaluation Framework . 177
5.4.3.2 Bufferpool Evaluation Results 178
5.4.3.3 Sorting Evaluation Results . 179
5.4.3.4 Connection Management Evaluation Results 181

x Contents

5.4.3.5 Logging Evaluation Results . 182
5.4.3.6 Optimizer Evaluation Results 184
5.4.3.7 Recompilation Evaluation Results 185
5.4.3.8 Overall Response Time Evaluation Results 188

5.5 Related Work . 189
5.6 Conclusions . 191

6 Goal-Driven Reconfiguration Analysis 195
6.1 Reconfiguration Analysis Requirements . 195
6.2 Design . 197
6.3 System Model Analysis . 200
6.4 Solution Selection . 205
6.5 Evaluation . 206
6.6 Related Work . 210
6.7 Conclusions . 211

7 Conclusions 213
7.1 Summary of Contributions . 213
7.2 Outlook . 216

Bibliography 219

List of Figures xi

List of Figures

1.1 Feedback Control Loop Design Pattern . 5
1.2 System-wide DBS Self-Management . 5

2.1 Autonomic Computing Architecture Blueprint [IBM05] 13
2.2 MAPE Loop [KC03] . 13
2.3 DB2 Index Advisor described in [VZZ+00] . 15
2.4 Microsoft SQL Server Database Tuning Advisor as described in [VZZ+00] 17
2.5 Oracle SQL Tuning Advisor as described in [DDD+04] 19
2.6 Benefit Estimation in the DB2 Self-Tuning Memeory Manager as described in

[SGAL+06] . 22
2.7 Illustration of the QUIET Framework described in [SGS03] 24
2.8 Illustration of the COLT Framework described in [SAMP07] 25
2.9 The LEarning Optmizer (LEO) as described in [SLMK01] 29

3.1 Layered DBMS proposed by [HR83] . 36
3.2 Hierarchy of Autonomic Managers . 38
3.3 System-wide DBS Self-Management . 39
3.4 Two-staged workload analysis . 42
3.5 Expected Hitratios for different Bufferpool Characteristics 44
3.6 Defintion of Goal Functions in the System Model 45
3.7 Parto-Optimal Configurations for a Minimization Problem with two Goal Functions 46
3.8 The Spectrum of Self-tuning as defined in [CW06] 47

4.1 Key challenges of workload shift detection . 50
4.2 Processing Models in Speech Recognition and DBS Workload Analysis 51
4.3 High-level Overview of the Workload Monitoring and Analysis Framework . . . 52
4.4 Overview of functional and non-functional workload classification requirements . 56
4.5 Illustration of Join and Meet Operators . 61
4.6 Quality loss caused by the classification of 1000 distinct feature vectors 66
4.7 Medoid Distance Classes . 70
4.8 Original and Additional Box Classes . 71
4.9 Overview of functional and non-functional workload shift detection requirements 73
4.10 Illustration of two-window approach . 76

xii List of Figures

4.11 Illustration of a discrete hidden markov model 80
4.12 Illustration of a markov chain model of order 1 81
4.13 Example for DBS-Workload modelled as Markov Chain of Order 1 84
4.14 Workload Model Lifecycle for DBS Workload Shift Detection 86
4.15 Perplexity Values for a Stable Workload depending on Transaction Concurrency 87
4.16 Computing the Number of Runs for a Perplexity Time Series 89
4.17 χ2 Conformance Indicator Values for a Stable Workload at different Transaction

Concurrency Levels . 96
4.18 Kullback-Leibler Divergence Conformance Indicator Values for a Stable Work-

load at different Transaction Concurrency Levels 98
4.19 Types of DBS workload periodicity . 100
4.20 Workload Shift Prediction Requirements Overview 101
4.21 Recurring Workload Model Identification and Periodicity Detection 102
4.22 Power Spectrum of a Fourier Transform . 104
4.23 Representation of Model Histories . 105
4.24 Illustration of Algorithm 4.8 for p = 4 in iteration k = 3 107
4.25 Example of a Periodic Pattern . 108
4.26 Adaptation of the Activation Intervals within Periodic Patterns 108
4.27 Load Specifications and Load Compositions in the Workload Generator 110
4.28 Screenshot of the graphical user interface designed for the workload generator,

workload classification and workload shift detection 111
4.29 Load Generation Threads at Runtime . 112
4.30 TC1 Results (Model Learning): Threshold-based Shift Detection 116
4.31 TC1 Results (Model Learning): Test-based Shift Detection 117
4.32 TC2 Results (Resilience to Noise) . 118
4.33 TC3 Results (Model Adaptation) . 119
4.34 TC4 Results (New Applications) . 120
4.35 TC5 Results (Obsolete Applications) . 121
4.36 TC6 Results (Modified Applications) . 122
4.37 TC7 Results (Usage Change) . 123
4.38 TC8 Results (Long-term Pattern) . 124
4.39 TC9 Results (Short-term Pattern) . 125
4.40 n-gram Computation Overhead . 126
4.41 Kullback-Leibler Divergence Computation Overhead 127
4.42 χ2 Test Statistic Computation Overhead . 127
4.43 Perplexity Values for Test Scenarios . 130
4.44 Workload Classification Overhead . 131
4.45 Effects of Fluctuations on pM1 . 132
4.46 Periodicity Detection Overhead Analysis . 133

List of Figures xiii

5.1 Multiple System Buffers in a DBS . 144
5.2 Expected Hitratios for different Segment Characteristics 145
5.3 System Model Requirements Overview . 148
5.4 Required Information in a System Model . 148
5.5 SysML Diagram Types [Wei08] . 151
5.6 Running Example: DBMS Structure Definition 152
5.7 Running Example: Sensor and Effector Definitions 153
5.8 Running Example: Touchpoint Specifications . 153
5.9 Running Example: Constraints . 154
5.10 Running Example: Parameter Specifications for the Constraints 154
5.11 Modelling Dependencies in Parameteric Diagrams 155
5.12 Running Example: Goal Functions . 156
5.13 Running Example: Parameter Specifications for the Goal Functions 157
5.14 Overview of the Structural Description for IBM DB2 159
5.15 Overall DB2 Response Time Model Constraint 167
5.16 Overall DB2 Response Time Model Constraint Parametrization 167
5.17 DB2 Bufferpool Response Time Model Constraint Definition 168
5.18 DB2 Bufferpool Response Time Model Constraint Parametrization 169
5.19 DB2 Sorting Response Time Model Constraint Definition 170
5.20 DB2 Sorting Response Time Model Constraint Parametrization 171
5.21 DB2 Connection Management Response Time Model Constraint Definition . . . 172
5.22 DB2 Connection Management Response Time Model Constraint Parametrization 172
5.23 DB2 Logging Response Time Model Constraint Definition 173
5.24 DB2 Logging Response Time Model Constraint Parametrization 174
5.25 DB2 Optimizer Response Time Model Constraint Definition 175
5.26 DB2 Optimizer Response Time Model Constraint Parametrization 175
5.27 DB2 Package Cache Response Time Model Constraint Definition 176
5.28 DB2 Package Cache Response Time Model Constraint Parametrization 177
5.29 System Model Evaluation Framework Overview 178
5.30 Bufferpool System Model Evaluation: Hitratio 179
5.31 Bufferpool System Model Evaluation: Response Time 180
5.32 Sorting System Model Evaluation: Overhead . 181
5.33 Sorting System Model Evaluation: Response Time 181
5.34 Connection Establishment Evaluation . 182
5.35 Logging System Model Evaluation: Logbuffer Full Probability 183
5.36 Logging System Model Evaluation: Response Time 184
5.37 Optimizer System Model Evaluation: Response Time 185
5.38 Recompilation System Model Evaluation: Compile Time 186
5.39 Recompilation System Model Evaluation: Package Cache Hitratios 187
5.40 Recompilation System Model Evaluation: Response Time 188

xiv List of Figures

6.1 Reconfiguration Analysis Requirements Overview 196
6.2 Single-Objective Optimization . 197
6.3 Evolutionary Algorithms Overview . 199
6.4 Two-staged goal function creation process . 200
6.5 System model definition and evaluation prototype 206
6.6 Parametric diagram for a response time goal function (running example) in TOP-

CASED . 207
6.7 Evaluation scenario overview . 208
6.8 Illustration of solution set for goals:

ResponseTime[Gold]<8ms; ResponseTime[Silver]<15ms;
ResourceCosts<5000pages . 208

6.9 Illustration of solution set for goals:
ResponseTime[Gold]<20ms; ResponseTime[Silver]<40ms;
ResourceCosts<2000pages . 209

6.10 Execution times for MOO-algorithms under different configurations 209

List of Tables xv

List of Tables

4.1 Feature Types Applicable to DBS Statement-Level Workload Information 60
4.2 Feature Selection for Workload Shift Detection 61
4.3 Illustration of Marginal Totals Computation . 95
4.4 Definition of Test Scenarios . 115
4.5 Workload Shift Detection Timestamps for different Quality Loss Thresholds . . 128
4.6 Number of Classes Added for before WSD . 130
4.7 Parameters of the Workload Monitoring and Analysis Framework 134
4.8 Workload Classification Requirements . 140
4.9 Workload Shift Detection Requirements . 141
4.10 Workload Periodicity Detection Requirements 142

5.1 Model Elements . 147
5.2 Response Time Factors for Optimizer Levels . 185
5.3 Compilation Time Factors for Optimizer Levels 186
5.4 Overall Response Time Prediction Results . 189
5.5 System Modelling Requirements . 192

6.1 Response Time Prediction Accuracy Validation 210
6.2 System Modelling Requirements . 212

1

1 Introduction

At its core, a database system (DBS) is supposed to be a reliable, data independent storage
system. With the advance of hardware and software development, the demands on these systems
have increased significantly. For example, increasing data volumes have required support for
sophisticated indexing techniques, which allow the adaptation of the physical design to the
customer’s needs. When later on Data Warehousing solutions were deployed, databases had to
be enhanced by OLAP-specific features like multi-dimensional indexing and analytic operators.
And even recently, databases have had to adapt to new evolving technologies and provide
integrated support for e.g. multimedia content and XML data.
Database vendors have reacted to the changing requirements by adding new features to their

systems with every release, using them as a selling pitch. As a consequence, today’s database
management systems (DBMS) have become overloaded with features. The result of this fea-
turism is an increasingly complex architecture of commercial database systems. However, there
has been considerably little attention on the development of administration interfaces and man-
ageability of the new features and the overall database system. Today’s enterprise-level DBMS
like IBM DB2, Oracle or Microsoft SQL Server have hundreds of configuration parameters and
many different physical design options, which have to be set-up carefully in each particular
environment. For these reasons, the administration of database systems is a challenging task,
which can only be performed by highly-skilled, scarce and thus expensive database adminis-
trators (DBAs). At the same time, there have been great improvements in disk capacity and
processing power at drastically reduced prices. Hence, it has been noticed ([ACK+04], [DD06],
[KLSW02]) that the total cost of ownership of database systems nowadays is no longer dom-
inated by hardware costs. Instead, the costs for the required skilled application developers,
DBAs and their training on new product versions are the driving factors.
As a way out of the increasing database maintenance costs, it is common sense in both

database industry and research that the principles of autonomic computing need to be applied
to database systems. The idea is to focus the research and development toward database
systems that are able to maintain themselves to a large extent and to automatically adapt to
changing usage patterns. In exceptional cases, where human interaction is required, they should
provide concrete action recommendations to the DBA. However, currently only a few individual
aspects of the DBS administration have been automated. Concepts for the coordination of the
coordination of these individual fields of self-management function are missing. Furthermore,
these functions typically do not consider the overall effects of their reconfiguration decision on
the response time, availability or throughput of the DBS.

2 1 Introduction

This work presents concepts and techniques for an integrated, system-wide view on DBS self-
management. These concepts allow an optimization of the overall operation of the DBS accord-
ing to high-level business goals. Section 1.1 first discusses the general characteristics of a self-
managing DBS. Afterwards Section 1.2 introduces the principles of existing self-management
technology in DBS and analyses their weaknesses. The contributions of this work are then
outlined in Section 1.3. Section 1.4 describes the structure of the following chapters, which
present the contributions of this work in detail.

1.1 DBS Self-Management
Currently there are several definitions in literature about the general characteristics that an
autonomic systems should provide. This work agrees with [GC03] and considers the following
properties to provide a good definition of the characteristics of autonomic systems:

Self-Configuration The notion of self-configuration describes the ability of a system to au-
tomatically adapt its configuration to changes in its hardware or software environment. All
required configuration changes must not disrupt the operation of the system, i.e. changes of
configuration parameters (knobs) have to be possible and take effect without shutting down the
system. In addition, it is expected that a self-configuring system automatically recognizes its
environment during installation and configures itself accordingly.

Self-Optimization In addition to the autonomic execution of configuration changes, which
are enforced by changes in the system’s environment, an autonomic system should also be able
to internally optimize its performance. For this, the system has to continuously monitor its own
performance and optimize it whenever necessary. In order to assess its current performance,
the autonomic system should be able to consider high-level performance-goals defined by the
end-user.

Self-Healing A system is self-healing if it is capable of recovering from failures. No matter
whether the error was caused from internal or external reasons, the system must be able to
detect it, analyse it and take appropriate recovery actions. For internal errors this means that
the autonomic system must be able to identify malfunctioning system components, and either
repair them or replace them with alternatives. Furthermore, advanced systems should also
be able to predict upcoming errors from exceptional situations in individual components and
trigger compensating actions, thus preventing a system-level failure. Again, all self-healing
actions should be performed without or at least minimal disruption of the system operation.

Self-Protection Self-protection of autonomic systems refers to the ability to detect attacks
from the outside world. Therefore, it is required to support authentication and authorization
across all components and resources. Intrusions should be automatically detected and their

1.2 State of the Art 3

impacts minimized by encryption mechanisms. Of course, to avoid manual configuration over-
head, the identity management of the autonomic system should seamlessly integrate with an
overall enterprise IT landscape security management. A self-protecting system should therefore
be able to import user identities and privileges from directory services, and to put high-level
security policies into action.

When comparing existing database systems with the properties of autonomic systems, it
becomes obvious that certain self-management aspects have been implemented for a long time.
For example, the existing recovery algorithms based on logging and backup are an impor-
tant self-healing feature. Crashes or media failures are automatically detected and the last
transaction-consistent state is restored. DBS therefore already meet the self-healing require-
ments to a large extent. Furthermore, existing DBS typically allow the definition of fine-grained
read/write privileges on the database objects. The rights for administrative changes to the DBS
can also be restricted, and the user identification can be integrated with the operating system.
Hence, most of the self-protection requirements are already met by DBS, too. In contrast,
very little attention has been paid to self-configuration and self-optimization of the DBS in
the past. Almost all performance-related configurations have to be set-up and adapted by the
DBA. Even though the query optimization of DBS can be considered a self-optimization fea-
ture, the required optimizer statistics and the adequate optimizer level have to be configured
manually, for example. Likewise, although the DBS automatically selects the most appropriate
access paths for retrieving data, the DBA has to analyse the workload and identify the most
appropriate indexes.
As self-protection and self-healing are already very well supported by existing DBS, the

recent development of autonomic DBS technology has concentrated on self-configuration and
self-optimization. Especially self-optimization of DBS is considered an important research
area, because it promises higher DBS performance at lower resource and administration costs.
For this reason most of the autonomic DBS functionality that has been developed recently is
directed at this area. The self-management concepts presented in this work are also directed
at the subject of self-optimization.

1.2 State of the Art

Over the past years database vendors have reacted to the high operation and maintenance
costs by integrating autonomic functions into their products. When comparing the existing
autonomic features, two general approaches can be distinguished:

Advisors Advisors are intended as administrative tools to provide the DBA with recommenda-
tions for performance improvements. Examples for advisors in commercial database systems are
IBM DB2 Design Advisor [ZRL+04], Microsoft SQL Server Database Tuning Advisor [ACK+04]

4 1 Introduction

and Oracle SQL Tuning Advisor [DDD+04]. The input to the advisors is the current workload
of the database and a set of constraints, e.g. the maximum space for indexes and the max-
imum computation time. Using expert knowledge in their heavy-weight analysis algorithms,
the advisors determine the set of indexes and materialized views that would provide the lowest
statement execution cost from this input. Another example for an advisor is a configuration
wizard [KLSW02] which helps the DBA to implement at setup-time for the configuration of
the DBS at set-up time has been developed ([KLSW02]). The configuration advisor presents a
sequence of questions about the future usage to the DBA and derives the appropriate setting
of configuration parameters from best practice information.
From the perspective of a DBA, the advisors may be helpful tools in order to reduce the

time required for DBS administration. Nevertheless, the advisors do not actually meet the
requirements of autonomic computing. They do not automatically report the need for config-
uration changes, but the DBA has to trigger their execution when he suspects the possibility
for a significant performance improvement. So the DBA still has to monitor the managed DBS
carefully in order to detect the appropriate points in time for a reconfiguration analysis. In
addition, the advisors are not able to consider high-level performance goals in their analysis
but can only be controlled by constraints like the maximum disk space that may be occupied
by additional indexes.

Feedback Control Loops The concept of feedback control loops origins from control theory
[DHP+05]. It describes a design template for autonomic features, which is illustrated in Fig-
ure 1.1. In a feedback control loop, a controller continuously monitors the performance of a
specific database component (the managed resource) via sensors. The sensors provide perfor-
mance information about the managed resource according to predefined metrics. When this
information indicates the need for re-tuning, the controller autonomically plans and executes
actions to adapt the managed resource to the new situation by using the resource’s effectors.
The effectors resemble the administrative interface of the managed DBS component, e.g. its
configuration parameters or maintenance functions. Whenever the controller changes the con-
figuration of the managed resource via the effectors, it directly monitors the effects on the
performance of the managed resource via the sensors again. This feedback on the effects of
effector changes is considered in the following reconfiguration decision. Thus, the configura-
tion is adapted in a loop with several small reconfiguration steps until a desired value for the
performance of the managed resource has been reached.
The application of the feedback control loop pattern to database systems suffers from several

problems: First, the latency of the effects of configuration changes can be large. If for instance
a maintenance function is executed to improve the state of the component, it may take several
hours before the positive effects become apparent. Not considering this feedback delay in the
controller may cause overreactions. Second, the tuning logic in the control loops is highly
specialized to a certain domain. Still its tuning decisions may have side-effects on other system
components that are managed by other control loops. But currently there is no concept to

1.3 Contributions 5

managed resource

sensorssensors

controller

sensors sensorssensorseffectors

Figure 1.1: Feedback Control Loop Design Pattern

database system

self-management logic

sensor

state

goals

system
modelknobsphys. design

workload

sensorsensor sensorsensorsensor sensorsensoreffector sensorsensoreffector

DBA

Figure 1.2: System-wide DBS Self-Management

manage the interaction of control loops. Third, all feedback control loops operate constantly,
even if there is no need for a reconfiguration. With an increasing number of autonomic functions
in a DBS, the required analysis effort may aggregate to a significant overhead. Fourth, to comply
with the principles of autonomic computing [GC03], the reconfiguration actions in autonomic
databases should be driven by the necessity to meet high-level business goals. But the feedback
control loops have a limited view on the behaviour of the managed resource only. They therefore
cannot take the effects of their reconfiguration decisions on the overall system performance into
account (goal-independency).

1.3 Contributions
This work describes a novel approach towards DBS self-management, which avoids the problems
of overreaction, interaction, overhead and goal-independency. An overview of the approach is
given in Figure 1.2. Instead of running a set of independent feedback control loops, the approach
is directed at maintaining a system-wide view on DBS self-management. It is based on a
centralized external DBS self-management logic, which controls all reconfiguration decisions in
the DBS.
There are two main factors that have to be monitored by the system-wide self-management

logic: The workload provides information on how a DBS is used in its particular environment
(e.g. in terms of CPU usage, the SQL trace, or page requests). It has major influence on many
configuration decisions in a DBS, as e.g. the access paths must be selected so that they optimally

6 1 Introduction

support the typical query structure, or the bufferpool sizes must be chosen according to it. The
workload must furthermore be monitored continuously, because changes in the workload may
lead to goal violations. Besides the workload, the self-management logic also has to consider
other DBS-internal characteristics, like the average response time, the physical fragmentation,
or the accuracy of optimizer statistics (state). The self-management logic must compare the
current state of the DBS to the goals (e.g. response times, throughput, CPU or disk space
usage, availability, operation cost) defined by a DBA, and start a reconfiguration analysis when
there is a risk of missing the goals.
For the decision on which reconfigurations will meet the goals under the current workload and

state, the self-management logic needs detailed knowledge about the DBS. This work refers to
this knowledge as the system model. The system model contains quantitative information about
the behaviour and performance of the DBS under specific configurations and usage scenarios.
From the system model the self-management can therefore decide how the computing resources
should be shared amongst the DBMS components and assess configuration alternatives (access
paths, number of bufferpools, tablespace design, ...) in a specific environment. It is the task of
a self-management logic to evaluate the knowledge stored in the system model and to decide
which reconfigurations are necessary to meet the goals for the current workload and state.
However, there will typically not only be a single set of goals in an enterprise, but different goal
values for every application or user. The requests processed by a DBS are therefore assigned to
service classes (e.g. by the DB2 Workload Manager [CCI+08]), where each service class may be
subject of a separate set of goals. So the self-management logic of a DBS should also be able
to consider different goal values for service classes.
With the system-wide view on DBS self-management the interaction of tuning actions can be

avoided, because the self-management logic acts as a central point of analysis. So in contrast to
the approach of independent feedback control loops, it can predict the effects of a reconfiguration
on all components of the DBS. Undesired side-effects therefore can already be determined
during the reconfiguration analysis processing stage. Furthermore, the system-wide view on
DBS self-management also provides a solution for the problem of goal-independency: On the
one hand the underlying system model enables the self-management logic to predict how well the
high-level goals will be met under a certain configuration and under a certain system workload
and state. On the other hand, all information about the current system workload and state
of the entire DBS is available to the self-management logic, because there is no separation of
duties as in independent feedback control loops. Thus, the self-management logic has all the
required information to select the most appropriate action (or actions) to meet the goals and
optimize the resource usage. Moreover, the quantitative information in the system model can be
used to quantitatively predict the effects of a particular reconfiguration action. In contrast, the
feedback control loops rely on the feedback of reconfigurations to adjust the managed resource
to certain goal value in several small steps. Given that the system model is accurate, the
solution therefore avoids overeactions even when the delay between the reconfiguration and the
observable effects is long.

1.3 Contributions 7

Finally, the centralized self-management approach can also reduce the overhead induced by
self-management: With the set of feedback control loops in the DBS, all controller components
simultaneously monitor and analyse the performance metrics provided by their managed re-
source, respectively. But in a typical enterprise scenario the usage of a DBS is almost constant
over time, because the SQL queries are determined by the set of applications that access the
database. These applications usually comprise a number of hard-coded SQL statements or
statement templates and expose typical usage patterns. As long as the usage of a DBS does
not change significantly, the usage of each of its components will most probably be constant,
too. Thus, most of the analysis overhead for possible reconfiguration actions is dispensable
while the workload of the overall DBS does not change. With the centralized self-management
this unnecessary analysis overhead can be avoided by restricting the reconfiguration analysis
to situations where either the workload changes significantly, or the state of a DBS component
demands a maintenance operation, or there is a risk of missing user-defined goals.
The contributions of this work to the area of DBS self-management can be summarized as

follows:

• System-wide Self-Management: The work describes novel concepts for DBS self-manage-
ment based upon a central self-management logic with a system-wide view on all recon-
figuration decisions.

• Lightweight Workload Analysis: The work develops a novel analysis framework for the
workload of relational DBS. This framework allows the lightweight monitoring of the
workload for significant changes. It therefore allows the quick adaptation of the DBS
configuration to workload changes, while it restricts the analysis overhead for stable work-
loads to a minimum.

• System Model Definition and Evaluation Framework: The work proposes a framework
(including tools and methods) for the development of systems models for existing DBS.
It identifies the required information in the model and selects an appropriate modelling
language (SysML) and environment. Furthermore, multi-objective optimization is identi-
fied as an appropriate method for the automatic deduction of optimal DBS configurations
from the system model.

• Coarse-grained DB2 System Model: To illustrate the applicability of the self-management
concepts, the work includes the definition of a coarse-grained system model for the IBM
DB2. The DB2 model quantitatively estimates the response time of the DBS depending
on its configuration and workload.

All contributions of this work are especially designed to be applied to existing DBMS. Conse-
quently, the self-management logic is based on the existing administrative interface of DBMS,
i.e. it does not require the re-implementation of DBMS components and does not have to be

8 1 Introduction

integrated into the DBMS core. Likewise, the workload analysis is designed to operate on the
standardized SQL interface of relational database systems.
Considering the system-wide self-management approach illustrated in Figure 1.2, there are

also aspects which are not the subject of this work: First, the monitoring of the DBS-internal
state information, i.e. of metrics like physical fragmentation or quality of optimizer statistics
which may downgrade system performance without a change in the workload, is not examined.
Second, a reliable guarantee for meeting the user-defined goals like response-time or throughput
would require a sophisticated monitoring of the key performance indicators. Possible goal
violations would have to be identified as early as possible, e.g. by performing a trend analysis.
However, this work considers the goal value as a simple threshold, and triggers a reconfiguration
analysis only when the threshold is exceeded. Third, only a coarse-grained system model for
the IBM DB2 is developed. This model serves as a proof of concept, and therefore considers
the most important stages of DBS statement processing only. Furthermore, it only comprises
predictions of the response time, and it does not include the physical design alternatives. A
more fine-grained DB2 model and a general evaluation of the most adequate granularity for
system models will require additional extensive experimental evaluations and must be examined
in future works.

1.4 Structure of Work

The following chapters describe the concepts and techniques developed for system-wide DBS
self-management in detail. Chapter 2 first presents the existing approaches towards DBS self-
management in detail. For this purpose it first introduces the general concepts of autonomic
computing. Afterwards, it selects a set of representative off-line and on-line autonomic functions
from commercial DBMS and describes their mode of operation. By comparing the functionality
of the existing approaches to the goals of autonomic computing, the open challenges for a truly
autonomic DBS are identified.
Chapter 3 surveys the possible solutions to the open challenges of autonomic DBS. From

the alternatives, it identifies the centralized self-management logic with a system-wide view
on the self-management decisions (as shown in Figure 1.2) as the most adequate approach.
Afterwards, the requirements and basic design principles for the workload analysis, system
models and self-management logic are introduced. Chapter 3 therefore serves as a solution
overview, whereas details of the solution’s conceptual and technical challenges are discussed in
the following chapters 4, 5, and 6.
In order to support a lightweight continuous adaptation of the DBS to its current workload,

this work follows the approach of a lightweight detection of significant shifts in the workload.
The concepts developed for this workload shift detection are presented in Chapter 4. First, an
appropriate processing model comprising the stages monitoring, preprocessing, classification
and analysis is developed. For each of these stages the realization alternatives, algorithms and

1.4 Structure of Work 9

related work are discussed in detail. Furthermore, an overview of the evaluation results is given.
Chapter 5 presents the concepts for the definition of system models. After discussing the

necessary contents and usage requirements of the model, the graphical language SysML is iden-
tified as the appropriate modelling technique. Using this language, the chapter describes the
exemplary coarse-grained system model for the IBM DB2. The required quantitative descrip-
tions of the DB2 behaviour in the model are derived from experimental evaluations, whose
results are also given in this chapter.
The evaluation of the system models in the self-management logic is the subject of Chapter 6.

It describes how the required information can be extracted from the system model, and how
goal functions can be constructed from it. Afterwards, the automatic deduction of appropriate
DBS configurations using multi-objective optimization is described. An experimental evaluation
finally illustrates the application of the self-management logic to the exemplary DB2 system
model.
Chapter 7 concludes the work with a summary of the results and an outlook on future work.

11

2 DBS Self-Management

As discussed in Section 1.2, the problem of high maintenance costs has been recognized by both
DBMS vendors and researchers. In order to decrease these costs, they follow the principles of
autonomic computing, i.e. they develop self-management functions for DBS. The following sec-
tions summarize the mode of operation of important existing DBS self-management functions,
where the focus is on self-management functions that are already available in commercial DBS.
However, a complete survey of autonomic functions in today’s DBS is not in the focus of this
work (see [MRHA09], [MRHA08], [EPBM03], [WMHZ02] instead, for example). In order to
provide an outlook on self-management functions that are likely to be integrated into commer-
cial DBMS in the future, some promising research approaches are presented in this section, too.
A comprehensive discussion of other current academic approaches is given in the related work
sections of the chapters that describe the contributions of this work (Sections 4.7, 5.5, and 6.6).
In the following, Section 2.1 first introduces the basic characteristics of autonomic systems

and architectural guidelines for building them. The off-line and on-line self-management func-
tions of autonomic DBS are then presented in Sections 2.2 and 2.3. Section 2.4 compares the
existing self-management functions to the goals of autonomic computing and thus identifies the
open challenges.

2.1 Autonomic Computing

The research area of autonomic computing has been established in 2001 with the Autonomic
Computing Manifesto [Hor01] published by IBM. This manifesto highlights the problem of the
increasing complexity of IT infrastructures. It argues that the trend for increasing intercon-
nection and integration between information systems has lead to IT infrastructures which are
increasingly difficult to operate and maintain. As a consequence, many highly skilled and ex-
pensive administrators are required. The probability of administrative mistakes increases with
the complexity of the IT infrastructure, too. [Hor01] argues that due to the IT complexity, the
IT infrastructures may cause enormous costs and become un-manageable in the future. As a
solution to this problem, IBM proposes the integration of self-management logic into the IT
infrastructure. Like the autonomic nervous system of the human body, this self-management
logic is intended to adjust the system to varying environments. Thus, the goal of autonomic
computing is not to reduce the complexity of the IT systems, but to reduce the perceived
complexity for administration and operation.

12 2 DBS Self-Management

Autonomic computing in [Hor01] is labelled a holistic vision, which does not only refer to the
local self-management of individual systems, but to the self-management of entire computer
networks. In order to control the complex self-management decisions in the network, the
interface between the human operator and the self-managing infrastructure is supposed to be
as simple as possible. Hence, the autonomic computing manifesto demands the usage of high-
level business policies (goals) for this purpose. In addition, it defines the characteristics of
an autonomic system, which (besides others) comprise the self-configuration, self-optimization,
self-healing, and self-protection (see Section 1.1) . These four properties have been identified as
the most relevant properties of autonomic systems in later publications (e.g. [KC03], [GC03]),
too, and are commonly referred to as the self-* properties.
IBM has also published a set of guidelines and concepts for the realization of autonomic sys-

tems in the architectural blueprint [IBM05]. This blueprint organizes an autonomic system into
several layers as illustrated in Figure 2.1. The lowest layer comprises the managed resources in
the IT infrastructure that are controlled by the self-management logic, e.g. servers, databases,
applications and services. Each of these resources may contain local self-management function-
ality (illustrated as a circled arrow in Figure 2.1), which may or may not be visible externally.
On the second layer touchpoints provide a standardized interface to the manageability of the
underlying managed resources. Thus, the resource-specific sensors and effectors (e.g. log files,
APIs, commands, ...) can be accessed in a standardized way. Based upon these standardized
interfaces, touchpoint autonomic managers perform the self-management for a single resource
or a group of resources. They are responsible for the implementation of the self-* properties
for the managed resources they control. Their decisions are controlled by goals or policies. In
addition, touchpoint autonomic managers again expose a standardized touchpoint, which can
be used to control their behaviour. These touchpoints are used by the orchestrating autonomic
managers on the next higher layer in order to realize system-wide self-management. As an ex-
ample for an orchestrating manager [IBM05] identifies a workload manager, which has to adapt
all computing resources of the IT infrastructure to the current workload. The orchestrating
managers again are controlled by the high-level goals defined by the IT infrastructure operator
using manual managers.
In order to perform their self-management tasks, the autonomic managers require detailed

knowledge about the system they manage. For example, they may require historical information
about system events in order to identify the source for a system error, or rules which allow the
prediction of the effects of configuration changes. Hence, the architectural blueprint [IBM05]
designs knowledge sources that are available across all layers of the autonomic system. These
knowledge sources are intended to hold three types knowledge: solution topology knowledge
(describing the structure of the system), policy knowledge (goals and constraints that have to
be met), and problem determination knowledge (historical information and reasoning rules).
Like [KC03], the blueprint [IBM05] proposes a four-staged processing for the implementation

of autonomic managers, which is shown in Figure 2.2. In the first stage monitor, the autonomic
manager collects information about the current state of the managed resources (its configu-

2.1 Autonomic Computing 13

managed
resources

touchpoints

touchpoint
autonomic
managers

orchestrating
autonomic
managers

manual
managers

knowledge
sources

s e s e s e s e

Figure 2.1: Autonomic Computing Architecture Blueprint [IBM05]

knowledgemonitor

analyse plan

execute

sensors effectors

Figure 2.2: MAPE Loop [KC03]

ration, offered capacity, performance metrics and throughput) via touchpoints and correlates
this information. The following stage analyze observes the sensor information and determines
whether or not a change to the managed resources configuration should be made, e.g. because
one of the goals is currently missed. In this case it passes the desired configuration change to
the subsequent processing stage plan. This stage creates an execution plan for implementing
the required configuration change in the managed resource, e.g. a simple command or a multi-
step workflow. The scheduling of the configuration change plan and its actual execution are
performed in the final stage execute of the autonomic function.

The autonomic computing concepts described above constitute the foundation of the develop-
ment of self-managing DBS technology. Although the autonomic computing concepts are very
general, the four stages of the autonomic function implementation, for example, have served
as a blueprint for many autonomic functions in DBS. Likewise, the hierarchical structure of
autonomic functions has often been referred to as a possible solution to undesired interaction
problems between multiple independent DBS self-management functions.

14 2 DBS Self-Management

2.2 DBS Off-line Self-Management Tools

Choosing the best set of indexes is a difficult problem for a DBA, because in-depth knowledge
about the workload of the DBS is required for this purpose. Nevertheless, the available indexes
have significant influence on the costs of query execution and therefore on the overall perfor-
mance of the DBS. Thus, the first approaches towards DBS self-management have focused on
the problem of index selection. Heavy-weight algorithms have been developed for this purpose,
which today are available as index wizard tools in most commercial DBMS. The following Sec-
tions 2.2.1 and 2.2.2 describe two exemplary index selection tools (IBM DB2 Design Advisor
and Microsoft Database Tuning Advisor). In addition, the Oracle self-management architecture
is outlined in Section 2.2.3.

2.2.1 IBM D2 Design Advisor

Although often referred to as an autonomic feature, the first index advisor in IBM DB2 has
been shipped with IBM DB2 V6.1 and described in 2000 in [VZZ+00], i.e. long before the
autonomic computing manifesto has been published. The first academic approaches have even
been published as early as 1988 in [FST88]. As illustrated in Figure 2.3, the DB2 Index Advisor
is an administrative tool that operates outside the database engine. From the perspective of the
DBA it operates as a black box, which takes a set of SQL statements as workload information
and constraints as input parameters, and produces a set of recommended indexes, i.e. additional
indexes that should be created by the DBA. The DB2 Index Advisor supports two types of
constraints: the maximum disk space that may be used for additional indexes (e.g. 10 GB)
and the maximum computation time of the index advisors (e.g. 10 minutes). It is the task of
the DBA to actually implement the recommended indexes.
In contrast to previous approaches like [FST88], the DB2 Index Advisor utilizes the cost

model of the DBS-internal optimizer in order to judge the benefit of an additional index. For
this purpose it uses several extensions of the optimizer: In a first step (determine costs) it
determines the execution costs of each of the SQL statements in the workload by using an
explain mode of the optimizer. In the explain mode, the DB2 optimizer does not actually
execute a given SQL statement, but only determines it’s execution plan and execution costs.
The second step get candidates then uses the recommend functionality of the DB2 optimizer,
which for every statement returns the indexes which would optimally support the statement’s
execution. For this purpose the optimizer analyses the columns referenced in the predicates as
well as the ordering or grouping requirements. It then uses the heuristic described in [VZZ+00]
in order to determine a set of promising column combinations for indexes. Each of these column
combinations is then added as a virtual index, i.e. as an index which only appears to exist for
the optimizer, but is not actually physically present. In the third step try candidates, the index
advisor triggers a re-computation of the execution plans for every statement using the evaluate
mode of the optimizer. Like the explain mode, the evaluate mode does not actually execute the

2.2 DBS Off-line Self-Management Tools 15

workload

Index Advisor

constraints

optimizer

recommend

evaluate

explain

DB2

determine costs

workload

get candidates

try candidates

DBA

recomm.
indexes

constraints

Figure 2.3: DB2 Index Advisor described in [VZZ+00]

SQL statements, and it additionally considers the virtual indexes. All virtual indexes that are
used in the resulting execution plans are returned as the result to the index advisor together
with the estimated execution costs. By comparing original execution costs with the costs using
the virtual indexes, the index advisor selects the set of indexes that provides the highest overall
benefit using a knapsack algorithm in the final step select candidates.
The algorithms in the DB2 Index Advisor have some limitations. Most importantly, they do

not consider negative benefits from indexes in case of data modification operations, and they
incorrectly assume independency between the selected indexes. For this reason the final pro-
cessing step select candidates additionally performs random replacements in the set of candidate
indexes and then re-computes the overall execution costs for the given workload until the time
limit is reached. This heuristic is assumed to compensate the limitations of the algorithms.
The DB2 Index Advisor described in [VZZ+00] focuses on recommending a set of appropriate

indexes only, whereas all other physical design options are ignored. Thus, IBM has developed
the DB2 Design Advisor, which also considers materialized views (MQTs), multi-dimensional
clustering (MDC) and partitioning. As for the indexes, for each of these techniques an in-
dependent self-management solution had been developed ([ZZL+04], [LB04], [RZML02]). The
design advisor described in [ZRL+04] integrates these individual solutions to an overall physical
design recommendation tool. For this purpose the design advisor first defines different levels of
dependencies between the physical design options (strong, weak, none). For example, there is
a strong dependency between indexes and MQTs, because the selection of an MQT can make
an index useless, and because an MQT might require an index to be useful. In contrast, the

16 2 DBS Self-Management

dependency between indexes and partitionings is considered as weak, because the partitioning
should be selected in a way that minimizes intermediate result sizes and not by the available
indexes. However, the available indexes can influence the join methods in the execution plan,
and therefore affect the selection of the partitioning (for details see [ZRL+04]).
In order to determine the adequate physical design, i.e. the optimal set of indexes, MQTs,

partitioning, and MDC decisions, the DB2 Design Advisor employs a hybrid approach: For
strong dependencies new self-management components have been built, which cover the joint
search space of the dependent physical design options at the same time (integrative approach).
For dependencies of type “weak” or “none”, an iterative solution is taken, i.e. each physical
design option is optimized separately using the existing self-management techniques.
The implementation of the DB2 Design Advisor follows the approach of the DB2 Index Ad-

visor. It extends the existing recommend and evaluate modes for indexes by corresponding
self-management-logics for MQTs, MDCs and partitionings. In principle, all modes can be
activated independently from each other. For example, the mode evaluate indexes can be com-
bined with mode recommend partitioning. With this configuration, the DB2 Design Advisor
recommends a partitioning while assuming that the indexes suggested from a previous itera-
tion are actually present. Following its dependency definitions, there are three components in
the DB2 Design Advisor: An IM component recommends Indexes and MQTs, C recommends
MDCs and P partitionings. The implementation of these components corresponds to the solu-
tions described in [ZZL+04], [LB04], and [RZML02]. A detailed description of the DB2 Design
Advisor algorithm is given in [ZRL+04].
As stated in [ZRL+04], the optimization time in index advisors typically grows exponentially

with the workload size. In order to keep the analysis overhead reasonable, the DB2 design
advisor therefore comprises a workload compression functionality. The selected approach retains
only the top k most expensive queries in the workload, whose total cost is smaller then X% of
the original workload cost. When executing the DB2 design advisor, the DBA is then offered
three different levels of compression: low (X = 60%), medium (X = 25%), and high (X = 5%)
The experimental results given in [ZRL+04] show that for a TPC-H benchmark [Tra08]

database with all 22 queries the design recommendations were retrieved after 10 minutes. The
physical design analysis in this scenario had covered indexes, MQTs, MDCs, and a partitioning.
After implementing the recommended design, the response time had improved by 84%. In
addition, the experiments described in [ZRL+04] show that the medium workload compression
level can reduce the analysis time by factors 2 to 10 (depending on the workload size).

2.2.2 Microsoft SQL Server Database Tuning Advisor

Like the DB2 Design Advisor, the Microsoft SQL Server Database Tuning Advisor is based on
an index selection tool [CN97] built long before the autonomic computing manifesto has been
published. The mode of operation of the original index selection tool is similar to the DB2
Index Advisor. Most importantly, it also uses the DBS-internal optimizer in a “what-if” mode,

2.2 DBS Off-line Self-Management Tools 17

workload

Database Tuning Advisor

constraints

optimizer

MS SQL Server
column group restriction

candidate selection

merging

DBA

recommended
physical design

enumeration

Figure 2.4: Microsoft SQL Server Database Tuning Advisor as described in [VZZ+00]

i.e. in a mode that determines the costs of query execution considering virtual indexes. [CN98]
describes the “what-if” mode of the SQL Server optimizer in detail. The index advisor of
the SQL Server afterwards has been extended by support for recommendations of materialized
views [ACN00] and horizontal and vertical partitioning [ANY04].
The Database Tuning Advisor comprises the physical design recommendation techniques for

indexes, materialized views and partitioning. Its architecture, which is described in [ACK+04]
and [ABCN06], is illustrated in Figure 2.4. Like the DB2 Design Advisor, the Database Tuning
Advisor takes a set of SQL statements as workload information and a set of user-defined con-
straints as parameters. The constraints may refer to the disk space, computation time, and the
horizontal partitioning options. From this information the Database Tuning Advisor computes
the recommended physical design in four processing stages:
In the first stage column group restriction, interesting column-groups are extracted from the

workload. A column-group is a set of columns which is referenced by at least one of the queries
in the workload. As the number of possible column groups grows exponentially with the number
of tables and columns in the database, the Database Tuning Advisor performs a pruning on the
column groups. For this pruning operation the column groups are first attributed with column
group costs, which are defined as the fraction of the costs of all queries in the workload that
reference the column group. All column groups whose column group costs do not exceed a
given threshold are excluded from further processing. A detailed example for the computation
of column group costs is given in [ANY04].
In the candidate selection stage, the interesting column-groups are used in order to determine

18 2 DBS Self-Management

the partitioning, materialized views and indexes. This stage is executed on a per-query-basis,
i.e. for every query the effectiveness of a partitioning, materialized view and index is evaluated
independently. Only the interesting column groups are considered as the basis for the physical
design options in this stage. In order to the estimate the benefits of a particular configuration
option, the optimizer of the DBS is used in the “what-if” mode. As a result, the candidate
selection stage produces a large set of configurations, which on the one hand would optimally
support the queries in the workload, but on the other hand may be over-specialized for the
DBS workload, may require too much disk space, and may slow down updates.
The task of the merging stage is the augmentation of the initial candidates with additional

physical design options. These additional configurations have a more general characteristic
than the initial configurations, and therefore can serve multiple queries in the workload. The
merging technique used in the Database Tuning Advisor is described in [ANY04] in detail.
The final stage of the physical design recommendation (enumeration) chooses a set of phys-

ical design options from the candidate configurations created by the merging stage. For the
choice of the candidates to be added to the final configuration, a simple heuristic is used: For
a small fraction of the available disk space, the optimal set of physical design options is deter-
mined by building all possible subsets and computing the combination with the least execution
costs for the given workload. Based on this “seed”, the other configuration options are added
incrementally, where in each step only one option is added (the one which provides the greatest
benefit). Thus, the enumeration stage provides a trade-off between accuracy and performance.
Like the DB2 Design Advisor, the Database Tuning Advisor in the Microsoft SQL Server also

provides a workload compression technique in order to scale to large workloads. However, a
different approach is taken in this case: Instead of retaining the most expensive queries only, a
clustering is performed in order to identify similar queries in the workload. The SQL statements
in the given workload are compared to each other using a distance function for this purpose.
The mode of operation of the Database Tuning Advisor is similar to the DB2 Design Advisor.

Although there are minor differences, e.g. the location of the candidate generation (DBS-internal
optimizer vs. external advisor tool), the general processing steps are identical. However, it
is important to note that – in contrast to the DB2 Design Advisor – the Database Tuning
Advisor strictly follows an integrated approach for deriving the physical design options. Thus,
as described in [ACK+04] and [ANY04], the dependencies between indexes, materialized views
and partitioning are considered during candidate selection. This makes the approach less flexible
with respect to the extension for further physical design options in the future.
As described in [ACK+04], the effectiveness of the Database Tuning Advisor has been evalu-

ated for both real-world workloads and benchmark workloads. For the real-world workloads, the
produced recommendations have caused a performance increase of up to 50% when compared
to a manually-tuned DBS. For a previously un-tuned TPC-H [Tra08] database, the observed
improvement in the benchmark execution time has even been 83%. The reported workload
analysis times without workload compression are significant: The analysis of a workload with
15.000 statements took 35 minutes, whereas for a workload with 176.000 statements more than

2.2 DBS Off-line Self-Management Tools 19

workload

DBA

Oracle

ADDM

tuning candidates

recommendations

AWR

STS

SQL tuning advisor

regular
snapshots

optimizer

automatic tuning optimizer

access path analysis

statistics analysis

SQL profiling

SQL structure analysis

Figure 2.5: Oracle SQL Tuning Advisor as described in [DDD+04]

15 hours were required, for example. Using the workload compression, the efforts could be
reduced by factors ranging from 0 to 43.

2.2.3 Oracle SQL Tuning Advisors

Compared to the solutions in IBM DB2 and Microsoft SQL Server, the SQL Tuning Advisor
[DDD+04] in the Oracle DBMS takes a more general approach. Instead of focusing on the
recommendation of a physical design only, the Oracle SQL Tuning Advisor also identifies missing
statistics, sophisticated persistent execution plans (SQL profiles), and more efficient ways of
query formulation.
Figure 2.5 illustrates how the Oracle SQL Tuning Advisor is embedded into the overall

self-management architecture of the Oracle DBMS. As shown in the figure, the Oracle self-
management framework takes regular snapshots of the DBMS and stores them in the Automatic
Workload Repository (AWR). The snapshot interval is usually set to one hour. These snapshots
contain detailed statistical information about the time spent in particular database functions,
information on the active sessions and system configuration data. A detailed discussion of the
snapshot contents is given in [DRS+05].
Whenever a new snapshot has been taken and stored in the AWR, the Automatic Database

Diagnostic Monitor (ADDM) investigates the snapshots for performance issues. For this pur-
pose ADDM analyses the time consumption from two different points of view: On the one
hand, it analyses the time spent at the various phases of statement processing, e.g. connection
establishment, statement optimization, statement execution. On the other hand, it analyses
the overall times spent waiting for system resources like CPU, I/O, or locks. As described

20 2 DBS Self-Management

in [DD06], ADDM employs a graph that distinguishes symptoms from root causes in order to
determine the reasons for performance problems. Depending on the cause, ADDM may execute
additional advisors like the Memory Advisor, Segment Advisor, and the SQL Tuning Advisor.
If ADDM detects that particular SQL statements consume excessive resources, it recommends

the execution of the SQL Tuning Advisor for these high-load statements. ADDM stores the
corresponding statements in the SQL Tuning Set (STS) for this purpose, which comprises the
SQL statement, its execution statistics (e.g. CPU time, disk reads, ...) and its execution context
(e.g. compilation parameters, variable bind values, ...). The STS may not only be filled from
the AWR contents, but the DBA may also provide the SQL statements manually.
For the statements stored in the STS the Oracle SQL Tuning Advisor can perform four

different types of analyses: SQL profiling, access path analysis, statistics analysis, and SQL
structure analysis. These analysis functions are implemented in an extension of the Oracle
optimizer which is referred to as the automatic tuning optimizer. The SQL tuning advisor
acts as a front-end, which passes the SQL statements to the automatic tuning optimizer in the
DBMS and presents the results to the user.
The subject of the access path analysis function is the identification of indexes that would

minimize the execution time of a given SQL statement. This task comprises two steps in the
automatic tuning optimizer: In the first step, candidate indexes are identified by analysing
the equality predicates, range predicates, and ordering clauses in the SQL statements. The
effectiveness of each index candidate is then evaluated by using the Oracle optimizer in a “what-
if” mode, i.e. the estimated costs of executing the SQL statement are determined assuming that
the candidate index would be present. Being a prerequisite for accurate optimizer results, the
required table and column statistics are determined prior to the “what-if” analysis. Whenever
the automatic tuning optimizer finds that the execution of the statement using one or more of
the candidate indexes is by factors faster than without the candidate indexes, it suggests the
creation of these indexes.
It is important to note that the access path analysis function in the Oracle SQL tuning

advisor only considers one statement at a time. Thus, the overall effects of an index on the
entire workload are not considered. As indexes may impose significant overhead in the case
of frequent modifications to the indexed data, the recommended indexes have to be checked
precisely by the DBA. In addition, the SQL Tuning Advisor recommends the execution of the
SQL Access Advisor. This additional tool collects the recommendations for each individual
statement and consolidates them into a global recommendation [DDD+04]. Furthermore, the
SQL access advisor also recommends materialized views. Unfortunately, only the usage of the
SQL access advisor is documented [Hob03], whereas its underlying concepts and implementation
are not.
This section has outlined the Oracle SQL Tuning Advisor and illustrated how it is integrated

into the overall self-management architecture of the Oracle DBMS. In particular, the mode of
operation of the access path analysis has been explained. Details on the three other analysis
functions (SQL profiling, statistics analysis, SQL structure analysis) are given in [DDD+04].

2.3 DBS On-line Self-Management 21

As a result it can be stated that the Oracle SQL Tuning Advisor – like the DB2 Design Advisor
and the Microsoft SQL Server Database Tuning Advisor – is a maintenance tool that has
to be executed and supervised by a DBA. To overcome this limitation, Oracle has enhanced
its self-management architecture by a technique for the autonomic detection and installation
of reconfigurations in its latest release (Oracle 11g). However, as described in [BDDY09],
the automatic adaptation of the SQL Tuning Advisor analysis results is only possible for the
SQL profiling functionality, whereas the three other analysis function results still require the
validation and implementation by the DBA.

2.3 DBS On-line Self-Management
The off-line tools described in Section 2.2 are helpful to a DBA, because they reduce the time re-
quired to tune the DBS properly. However, the DBA still remains responsible for identifying the
points in time when the execution of these off-line tools is advisable. Thus, these tools do not yet
meet the goals of autonomic computing, which require an automatic adaptation of the system
to changing environmental conditions (self-configuration, self-optimization). Current industrial
and research approaches are therefore directed at creating on-line DBS self-management func-
tions. The major challenge of creating on-line self-management functions is the design of light-
weight analysis algorithms. Section 2.3.1 presents the on-line self-management functions for the
database memory in IBM DB2. Two research approaches for on-line index self-management
are afterwards presented in Section 2.3.2. Self-tuning optimizer statistics are introduced in
Section 2.3.3.

2.3.1 On-line Memory Management

A DBS typically distinguishes multiple memory areas, each serving a specific purpose. For
example, the system buffer caches the pages that have recently been accessed, because there
often is a high probability that these pages will be requested again in the near future. Similarly,
there are usually dedicated memory areas for sorting records, caching execution plans and
storing the locks on database objects. In the past, it has been a challenging tuning task for
the DBA to assign the available physical memory to these memory areas, because the optimal
setting is highly workload-specific. The vendors have therefore equipped their DBMS products
with autonomic memory management functions, which continuously adapt the memory area
sizings to the current workload. Although apparently autonomic memory management has been
realized in Oracle [LNK+03], IBM DB2 [SGAL+06] and Microsoft SQL Server [Cor10], only
IBM has published the implementation details. The following paragraphs therefore describe
the automatic memory management in DB2 only.
The Self-Tuning Memory Manager (STMM) in IBM DB2 continuously adapts the sizes of

the system buffer segments (referred to as bufferpools in DB2), the sorting area, the compiled
statement cache, and the lock list. Its decisions on which areas have to be extended or shrinked

22 2 DBS Self-Management

IBM DB2

bufferpool

page request (X)

A B C D E F

simulated bufferpool
extension

G

H I J K L M N

O P Q R S T U

UX

Figure 2.6: Benefit Estimation in the DB2 Self-Tuning Memeory Manager as described in
[SGAL+06]

are based on a cost-benefit analysis for every memory area. In order to compare the benefits
in the managed memory areas, the STMM defines the saved system time per unit memory as
a common metric. Thus, the STMM can compare the benefit generated by the reduced CPU
usage (larger statement cache) to the benefit of the reduced I/O requests (larger bufferpools).
The calculation of the costs and benefits in the STMM is specific to every memory area.

However, only the benefit computation methods for bufferpools and for the compiled statement
cache have been published [SGAL+06]. The benefit calculation for bufferpools is illustrated in
Figure 2.6. In order to determine the system time that could be saved if the bufferpool was
larger than it currently is, the STMM uses a simulated bufferpool extension. Whenever a page
has to be removed from the actual bufferpool because the buffer pool is completely filled and
a new page request arrives (page X in the example in Figure 2.6), the ID of the removed page
(page U in Figure 2.6) is stored in the simulated bufferpool extension. For all page requests
that are found in the simulated bufferpool extension, but not in the bufferpool itself, the time
required for the removal of the old page and the reading of the requested page is tracked. The
sum of all these page read times is considered as the cumulative saved time if the bufferpool was
extended by the size of the simulated bufferpool extension. The cumulative saved time is then
divided by the number of pages in the simulated bufferpool extension in order to determine the
saved system time per unit memory (i.e. page) metric. The calculation of this metric for the
compiled statement cache is given in [SGAL+06].
The cost/benefit-metrics of memory areas are evaluated by a multi-input multi-output con-

troller. The controller uses a model, which for every memory area describes the expected

2.3 DBS On-line Self-Management 23

cost/benefit for the case that its size is increased or decreased. A regression technique (least
squares) is employed in order to fit a curve through the 40 most recent size/benefit observations.
After the model has been built, an accuracy test is performed on the model: First, a statistical
test (F-Test; [Tri04]) is performed on the data in order to ensure the significance of the model
for the past observations. Second, the slope of the model is checked to be negative. A positive
slope would indicate that giving more memory to the consumer would increase the system time
spent in this component, which is not a reasonable result.
If the model has passed the accuracy test, it is used by the controller to compute the memory

area’s target size. The STMM employs the integral control law for this purpose (for details see
[SGAL+06]), which in control theory is usually used to adapt an observed output of a system
to some predefined reference value. As for tuning the memory area sizes the benefit values of
the optimal sizes are not known, an artificial output is computed as the difference between the
average benefit of all memory consumers and the individual memory area’s benefit.
After the target memory sizes have been computed, the STMM re-distributes the memory

using a greedy algorithm. First the memory areas are divided into two groups: areas with an
expected benefit greater than the average (group B) and areas with a benefit value smaller than
the average (group C). Pages are then taken from the areas in group C (starting with the areas
with the least costs) and donated to the areas in group B (starting with the areas with the
largest expected benefit). This process is continued until no further memory can be transferred,
either because there are no more pages to take away from the members in group C, or the areas
in group B have reached their target sizes. To avoid misconfigurations, the STMM additionally
places memory transfer limits on the areas: every area may be increased by at most 50% and
decreased by at most 20% during a reconfiguration step. Thus, the strategy of the STMM is
not to find an optimal setting of the memory areas in a single step, but to achieve convergence
after several tuning steps.
The experimental results for the STMM reported in [SGAL+06] show that – compared to an

out-of-the-box configuration – the STMM can improve the performance of a DBS for a standard
benchmark workload by 300%. STMM has required about 90 minutes to achieve this result.
Furthermore, it is reported that the resulting performance was within 1,4% of a hand-tuned
DBS.

2.3.2 On-line Index Selection

Unlike memory management, the on-line index selection approaches have not yet been inte-
grated into commercial DBMS products. The following paragraphs therefore outline three
prominent research approaches: the QUIET framework, the COLT framework, and the ap-
proach by Bruno and Chaudhuri.
The QUIET framework [SGS03] has been the earliest on-line index selection solution. Its

goal is the automatic creation and removal of indexes, while considering a DBA-defined space
limit for the index data. QUIET runs outside of the DBS, where – as illustrated in Figure 2.7

24 2 DBS Self-Management

query
execution

proxy

QUIET

DB2

application

index pool

DB2 optimizer

statistic
gatherer

explain
tables

index
statistics

configuration
manager

Figure 2.7: Illustration of the QUIET Framework described in [SGS03]

– it acts as a proxy intercepting the queries submitted to the DBS. The QUIET framework
has been implemented on top of IBM DB2. Every single query that is executed by an appli-
cation is intercepted by the query execution proxy and then forwarded to both the DBS and
the statistics gatherer component of the QUIET framework. In order to determine the most
adequate set of indexes, QUIET employs the DB2 optimizer extensions that have been devel-
oped for the DB2 Index Advisor (see Section 2.2.1): For each query the benefits of additional
indexes are computed by first estimating the execution costs with the current set of indexes
(explain mode), then deriving a set of useful additional index candidates (recommend mode),
and finally re-estimating the query execution costs assuming that the additional indexes were
present (evaluate mode). Details for how the index benefits are derived from the overall query
execution time reduction are given in [SSG04].
The benefits that the statistics gatherer has computed for all indexes (i.e. both virtual and

materialized indexes) are stored and maintained in the index statistics tables. In addition to
continuously updating the index benefit statistics for the recent queries, the statistics gatherer
applies an ageing strategy to older index statistics. Thus, it is ensured that the current workload
of the DBS is more important for index selection than historic workload. The index statistics are
evaluated by the configuration manager component of the QUIET framework. This component
employs a greedy algorithm (for details see [SSG04]) to select and materialize those indexes that
provide the highest overall benefit. In order to avoid thrashing, reconfigurations are performed
only when the aggregate benefit of the index configuration changes exceeds a given threshold.
Due to the index recommendation for every query and the DBS-external implementation

of QUIET, the overhead caused by this on-line index selection is significant. As reported in

2.3 DBS On-line Self-Management 25

Perf. Statistics profiler

query optimizer

s1,s1,s3,s1,s2,s1

epochh

...

epoch1

s4,s1,s2,s1,s2,s2

sampling
budget

self-organizer

DBS

what-if
requestsindex statistics

(materialized/hot/cand.)

indexes
(materialized/hot/cand.)

update

analyse

adjust

adjust

workload

Figure 2.8: Illustration of the COLT Framework described in [SAMP07]

[SSG04], the overhead caused by the index selection solution is approximately one second per
query. In order to reduce the overhead of the framework, it has been enhanced in two direction
in [LSSS07]: On the one hand, the index analysis components have been integrated into the
DBS-core of PostgreSQL, thus allowing a tight coupling with the optimizer. On the other
hand, the overhead for building the indexes has been minimized by introducing the concept of
deferred indexes. When deferred indexes are created they are empty and therefore not usable
for query processing at first. Instead they are built up in an opportunistic way, i.e. only when
a query that requires a tablescan to the base table of the index has to be executed upon user-
request anyway. In this case, the tablescan operators in the execution plan are replaced with
new plan operators that implement the required piggy-back index creation. In addition to the
performance optimizations, [LSSS07] also introduces the concept of soft indexes. This type of
index identifies all indexes that are managed by the on-line index selection framework. Thus,
physical design decisions that have been made by a DBA are not affected by the self-tuning
decisions.

Although the functionality of the COLT framework [SAMP07] is similar to QUIET to a large
extent, the focus of the COLT design is the self-regulation of the induced overhead. Figure 2.8
provides an overview of the COLT framework. As can be seen from the figure, COLT also
divides the workload of the DBS into equally-sized windows referred to as epochs and limits the
number of epochs to a size h. For all statements in the considered windows COLT maintains a
set of candidate indexes, which are derived from the predicates in the SQL statements. For all
of these indexes the profiler continuously updates the statistics, i.e. the information about the
benefits expected from materializing an index.

In order to keep the continuous analysis overhead small, COLT distinguishes three subsets
of the candidate indexes: candidate, hot, and materialized. For the candidates, i.e. the indexes

26 2 DBS Self-Management

which are not in the hot or materialized sets, only very coarse but cheap statistics are computed.
These statistics express the difference in query execution costs when executing the queries either
using a table scan or an index. Standard cost formulas are employed for this purpose, i.e. no
“what-if” call to the optimizer is executed. In contrast, the execution costs with the indexes
in the hot index set are determined by an appropriate “what-if” call to the optimizer. But in
order to reduce the overhead, not all queries are selected for a “what-if” analysis. The profiler
instead has a sampling budget, which defines the probability of a “what-if” analysis for a query.
In addition, COLT performs a clustering of the incoming queries: all queries accessing the same
tables, having the same join predicates, and the same selection predicates are assigned to one
cluster. A “what-if” optimization call is then performed only once per cluster. The statistics
for the materialized indexes are computed in same way as the statistics for the hot indexes.
The key difference is of course, that the “what-if” analysis in the optimizer must pretend that
the given index is not present.

At the end of each epoch the self-organizer is invoked, which performs a reorganization of the
indexes and a re-budgeting of the sampling budget. The self-organizer analyses the statistics of
the indexes and computes the benefit of materializing the indexes, assuming that the workload
for the next h epochs remains the same as in the past h epochs. For indexes that are not in
the materialized index set, it also takes into account the materialization costs. It is important
to note that candidate indexes are never materialized directly. If the self-organizer determines
that a candidate was helpful, it moves the index to the hot index set first, allowing the profiler
to collect detailed statistics for it in the following epoch. During the re-budgeting phase, the
self-organizer updates the sampling budget of the profiler. Its goal is to increase the sampling
budget in case it suspects a change in workload and to decrease it when the workload has
not changed. For this goal the self-organizer assumes a best-case scenario for the usefulness of
the hot indexes and re-computes the new materialized indexes. If there are major differences
between this “optimistic” materialized set and the “normal” materialized set, the self-organizer
increases the sampling budget. Details on the self-organization rules are given in [SAMP07].

The evaluation results reported for COLT show that for a stable workload the query execution
performance using the on-line tuning approach becomes almost the same as the performance
of a DBS that has been optimized with an off-line tuning tool after some time. Of course,
the on-line approach requires some time in the beginning to derive the correct physical design.
For a changing workload, the performance of the DBS managed by COLT even exceeds the
performance of the design resulting from the off-line tool design. The reason for this observation
is that COLT can adapt the design to changes in the workload, whereas the off-line tool is
executed only once for the entire workload and therefore has to choose an intermediate design.
While the evaluation in [SAMP07] shows that the number of “what-if” calls is effectively reduced
when the workload does not change, the overall relative overhead caused by COLT is not
reported.

2.3 DBS On-line Self-Management 27

Bruno and Chaudhuri have described a solution [BC07] to the on-line index selection prob-
lem, which is fully integrated with the query optimizer of the Microsoft SQL Server. However,
the article also describes a research prototype that has not (yet) been integrated into the SQL
Server product. The focus of the described solution is to realize on-line index selection with
as little overhead as possible. In particular, the goal of the authors is to avoid any additional
calls to the optimizer, i.e. they do not use the “what-if” functionality of the optimizer. Instead,
only the information that can be retrieved from the optimizer during normal query processing
is analysed in order to identify the need for additional indexes. For this purpose the authors
employ a technique developed in [BC06], which allows the tagging of the queries’ execution
plans with index requests. Index requests resemble cost estimations for the usage of alterna-
tive index structures, which were considered but not used by the optimizer when building the
execution plan. Based on the actual execution plans and the taggings representing the alterna-
tives, the on-line index selection solution can estimate the effect of alternative physical designs,
e.g. the creation of an additional index. This approach allows the on-line indexing solution the
generation of a locally-optimum execution plan. Obviously, the creation of globally-optimum
execution plans, which also considers different join orders under a hypothetical physical design
is not possible.
Based on the observations about the benefits of additional indexes that can be derived from

the execution plans, the on-line index selection described by Bruno and Chaudhuri has to decide
which indexes actually to create. The basic idea of their approach is to evaluate whether or
not the cost of the index creation is smaller than the benefit from this index in the future. Of
course, this question is impossible to decide for an on-line index selection, because the future
workload is unknown. Hence, the solution described in [BC07] takes an approach where the
index creation conceptually “lags behind” the current workload: An index is created only when
the self-management logic discovers that – considering the past – the creation of the index would
have been beneficial some time ago, because since then the benefit for the observed workload
would have exceeded the index creation costs. Thus, the on-line index selection makes the
assumption that the workload observed in the past remains stable, at least in the near future.
To account for index interactions, the on-line index selection assigns usefulness levels to every

index candidate. The usefulness of an index I1 with respect to another index I2 is defined as
follows: it takes the value −1 if the I1 columns do not include any I2 columns, the value 0 if
the I1 columns include I2 columns, the value 1 if additionally the leading column of I2 agrees
with I1’s, and the value 2 if additionally I2 is a prefix of I1. Whenever the index selection
algorithm decides to add or drop an index, it adapts the current benefit statistics for all other
index candidates by computing and comparing their usefulness levels. In addition to index
interactions, the on-line index selection algorithm also takes into account storage constraints
and prevents the oscillation of physical design decision. The details of the implementation are
given in [BC07].
The on-line index selection algorithm by Bruno and Chaudhuri makes some assumptions and

approximations. Nevertheless, the reported evaluation results show that the costs of executing

28 2 DBS Self-Management

a workload using the on-line algorithms are close to the costs when the entire workload is
known in advance and the physical design is created accordingly. Compared to the usage of the
off-line SQL Server Database Tuning Advisor in advance, the on-line solution of course exhibits
longer execution times at the beginning of the workload. However, with time the execution
costs become almost identical. In the presence of significant changes in the workload the on-line
variant even achieves smaller execution times, because the physical design is adapted to the
changes in the workload over time. The reported overhead caused by the on-line index selection
is only 1.7%.

2.3.3 On-line Statistics Collection

In a DBS, the task of the optimizer is to create procedural execution plans for declarative
queries. Hence, the optimizer has to determine the most efficient way of executing a query
submitted by an end-user. To achieve this goal, the optimizer requires detailed statistics about
the data, especially the cardinality of the base tables and the selectivity of predicates, because
this information is necessary to estimate the size of intermediate results. In order to keep the
overhead reasonable, optimizers typically make a number of assumptions, e.g. uniformly dis-
tributed data values, statistical independence of predicates, and the correctness of the statistics.
If any of the assumptions is incorrect, sub-optimal execution plans will be created, causing large
processing overheads. Traditionally, it has been the task of the DBA to provide the relevant
and accurate statistics for the optimizer. As the selection of the correct statistics is a chal-
lenging task for the DBA, solutions for the autonomic maintenance of optimizer statistics have
been developed. The following paragraphs introduce the LEarning Optmizer (LEO) [MLR03]
developed as a research project by IBM. Another example for self-managing statistics are the
self-tuning histograms, which are described in [ABCN06].
An overview of the LEO architecture is given in Figure 2.9. The left part of the figure illus-

trates the usual query processing stages in IBM DB2: An incoming query is first transformed
into a query execution plan. A query execution plan is a tree structure, where the leafs represent
base table access (e.g. table scans, index access) and the inner nodes represent operators on the
data (e.g. selections, joins, groupings). The edges in the query execution plan are attributed
with cardinality estimations of the data sets passed between the operators. LEO stores these
cardinality estimations for every query execution plan that is produced by the optimizer. For
this purpose the code generator has been extended by a component which stores the query exe-
cution plan information into a dedicated file. The code generator then produces an executable
program, which is executed in the runtime system. The runtime system also has been extended
for LEO in order to store the actual cardinalities, i.e. rows actually processed by the operators.
The main component of LEO is the cardinality analyser. It runs outside the DB2 optimizer as

a separate process. For every query execution found in the actual cardinalities storage area, the
analysis component first identifies the corresponding query execution plan. By comparing the
estimated and the actual cardinalities it calculates adjustments, which are stored as additional

2.4 Open Challenges in Current Approaches 29

actual cardinalities

query execution plan

optimizer

code generator

runtime system

executable program

query result

SQL query

estimated cardinalities

LEO analysis
component

adjustments

Figure 2.9: The LEarning Optmizer (LEO) as described in [SLMK01]

knowledge for the optimizer. To avoid a large number of insignificant adjustment factors,
LEO only calculates the adjustments for cardinality deviations larger than 5%. Details on
the adjustment factor calculation rules for different types of predicates (e.g. equality, join,
start/stop key, ...) are given in [SLMK01].
It is important to note that these adjustment factors constitute an additional input to the

optimizer, i.e. they are not used to modify the base statistics directly. For base table statistics,
the optimizer for example applies this factor to the number of pages, which is usually used
in order to estimate the I/O overhead of performing a tablescan. Furthermore, it computes
corrected statistics for the indexes, i.e. the number of leaf/non-leaf pages. The rules for applying
the adjustment factors to single-table predicates, join-predicates and correlated predicates are
also given in [SLMK01].
As reported in [MLR03], the monitoring overhead of LEO is below 4% of the total query

execution time. However, the experimental evaluation in [SLMK01] has shown that the usage
of the adjustment factors in the optimizer has resulted in execution plans that were 14 times
as fast as the original execution plans.

2.4 Open Challenges in Current Approaches

With the index advisors and the on-line memory management, the previous sections have pre-
sented the most important self-management features that currently exist in DBMS. In addition,
other on-line self-management functions like an on-line index selection and statistics collection
have been discussed, which are still in the status of research prototypes. These autonomic func-
tions will probably be integrated into the commercial products in the future. However, when

30 2 DBS Self-Management

comparing these selected examples of DBS self-management to the characteristics of truly au-
tonomic systems (see Section 2.1), it becomes obvious that DBS today do not yet meet the
goals of autonomic computing. The following paragraphs discuss the deficiencies of the existing
self-management solutions with respect to the goals of autonomic computing in detail.

2.4.1 Self-Optimization

One of the central aspects of autonomic computing is the self-optimization of a system when
changes in its environment occur. Considering database systems, this environment is especially
determined by the workload of a DBS, because the workload determines how the out-of-the-box
product is actually used.
The off-line index advisors described in Section 2.2, which are currently shipped with com-

mercial DBMS products, fail to meet this requirement. They do not automatically adapt the
physical design of the DBS to changes in the workload. Instead, their execution has to be
triggered manually by the DBA. IBM DB2 and the Microsoft SQL Server do not even alert the
DBA when their index advisors should be executed. The DBA has to continuously monitor
the workload and performance of the DBS and manually trigger the execution of the advisor
when he suspects it reasonable. Continuously executing these advisors is not possible because
of their heavy-weight analysis algorithms. Furthermore, it is the task of the DBA to validate
the results of the advisors and to implement the recommended changes. Using its Automatic
Workload Repository to store regular performance snapshots, the Oracle self-management ar-
chitecture in contrast can at least detect SQL statements that consume excessive resources.
For these statements it then recommends the execution of the SQL Tuning Advisor. Although
in its latest release the Oracle self-management architecture [BDDY09] even automatically ex-
ecutes the SQL Tuning Advisor for these statements, the results still have to be validated and
applied by the DBA. The reason for this limitation is that the Oracle SQL Tuning Advisor
does not consider the overall DBS workload in its analysis, but only individual statements. In
Oracle this task is subject of the SQL Access Advisor, which also suffers from the problem of
a heavy-weight analysis algorithm, i.e. it cannot be executed continuously.
The on-line index selection solutions that have been described in Section 2.3 are explicitly

designed for a continuous operation. Each of the existing solutions focuses on one particu-
lar administration task that arises if the workload changes, e.g. index adaptation, memory
management, and additional statistics collection. Considering that a commercial DBMS to-
day typically offers hundreds of configuration parameters, it becomes obvious that the existing
solutions can cover only a small fraction of the total DBS configuration. Furthermore, many
autonomic functions for DBS only exist as research prototypes and have not yet been inte-
grated into commercial products (like LEO for DB2 and the on-line index selection for the SQL
Server). To keep the overhead reasonable, the algorithms that are used to detect the neces-
sity of a reconfiguration are very specific for the particular administration task. The on-line
index selection by Bruno and Chaudhuri described in Section 2.3.2, for example, only evaluates

2.4 Open Challenges in Current Approaches 31

whether or not creating an additional index would have reduced the execution costs. The result
of this analysis cannot be used in order to judge whether or not there has been a general change
in the workload. So the results of their analysis cannot be used to infer the necessity of other
configuration changes (e.g. the optimizer level).
As a result it can be stated that meeting the goals of autonomic computing requires on-line

self-management functions within DBS. Research and development in this area has started some
years ago, but still only a small fraction of the overall configuration parameters is covered by
self-management functions. Thus, the self-optimization of the overall DBS in case of workload
changes is an open challenge.

2.4.2 Goal-Independency

Following the metaphor of the autonomic nervous system, every autonomic system should
locally perform configuration changes whenever they are necessary without user interaction.
However, the holistic vision expressed in [Hor01] requires all systems in an enterprise to auto-
matically adapt to high-level goals and policies that are defined by an administrator.
None of the existing self-management solutions in current DBMS is capable of considering

goals in their analysis. The off-line index advisors, for example, recommend indexes based
on the reduction of the overall query execution costs. They are not able to consider different
response time or throughput goals for specific user groups during their analysis. In the presence
of space constraints, for example, the index advisors would dismiss an index frequently accessed
by a high-priority user group in favour an index for a table accessed by a best-effort user group,
if it found that this would reduce the overall costs. Likewise, the on-line memory functions
also do not consider any goal definitions. For example, it could be required to size bufferpools
according to the response time goals of the users that access their data. As an another example,
it might be reasonable to reduce the size of the bufferpools (as long as the response time goals
are met), and to increase the size of the memory area for locks to meet throughput goals, even
though this might increase the overall query execution costs. Thus, considering high-level goals
for the self-management decisions is an open challenge to autonomic functions in DBS.

2.4.3 Interdependency

The current solutions to DBS self-management are highly specific to a particular DBS com-
ponent or administration task. The index advisors, for example, only considers the effects
of creating an index, while the memory self-management functions only consider the memory
areas. If now the DBA discovered a performance problem, he would probably start the design
advisor to identify missing indexes. At the same time, the memory manager would probably
increase the size of the affected system buffer, because a missing index requires the storage of
many additional pages for performing scan operations. This example shows that two different
reconfiguration actions may be taken for the same problem. The creation of the index would

32 2 DBS Self-Management

have a (positive) side-effect on the system buffer, because less scan operations would have to
be performed. Like the positive side effects of physical design decisions on the processing ef-
fort, there may as well be negative side-effects. For example, increasing the system buffer size
will increase the local performance, i.e. the buffer hitratio, thus reducing the response time
of the DBS. However, the increase of the buffer size might also have negative impact on the
throughput, if the lock list size has to be reduced accordingly.
Above examples illustrate that the complexity of DBMSs makes it hard to even predict the

system-wide effects of changing a single configuration parameter or a physical design decision.
Hence, today’s feedback control loops monitor and analyse the performance and workload re-
lated to one configuration parameter of one system component only. Neither do they consider
possible side-effects on other components, nor are they able to coordinate their tuning decisions
with other feedback control loops. Concepts for describing the interdependencies between con-
figuration parameters and the expected behaviour of system components are currently missing.

2.4.4 Overhead

As discussed in Section 2.4.1, only on-line self-management functions can meet the goals of
autonomic computing. Every on-line self-management function continuously monitors some
particular sensor information, analyses this information and initiates appropriate reconfigu-
ration actions when required. However, currently many aspects of DBS configuration and
maintenance are not yet under the control of on-line self-management functions. Thus, both
researchers and vendors are developing additional on-line self-management functions, which
will be integrated into DBMS products in the future. While on the one hand these autonomic
functions will reduce the maintenance overhead for the DBA, they will on the other hand con-
tribute additional processing overhead to the DBS. The limitation of the overhead induced by
on-line self-management functions therefore is an open challenge to DBS self-management.

2.4.5 Workload-pattern Unawareness

Current on-line self-management functions continuously analyse the appropriate sensor infor-
mation from the DBS and perform reconfigurations when appropriate. The memory self-
management, for example, extends the system buffer size when it discovers that during the
past observation interval a greater system buffer would have been beneficial. Likewise, the
existing on-line index selection algorithms (COLT, Bruno and Chaudhuri) create a new index
when they discover that in the past the index would have decreased the overall query execu-
tion costs. Thus, the on-line self-management functions make their tuning decisions based on
the assumption that the workload remains stable in the future. In many real-world scenarios,
however, this assumption may be incorrect. For example, there may be major differences in the
DBS during day-time, when the DBS is used in an on-line transaction processing (OLTP) mode,
and night-time, when complex reports are generated for the following business day. If now a

2.4 Open Challenges in Current Approaches 33

self-management function decides to change the configuration shortly before the workload is
about to change, then the resulting configuration might be inadequate for the following work-
load. This is especially a problem when the reconfiguration actions are expensive, e.g. changes
to the physical design. Hence, the self-management functions should refrain from reconfigura-
tions when a workload change is expected in the near future. However, there are no concepts
for considering periodic workload changes in current DBS self-management solutions.

2.4.6 Overreaction

Some configuration actions within a DBS can take some time before they take effect. If the lock
list size is increased, for example, the full effects on the throughput of the system can only be
monitored after all transactions already running have completed and returned their (possibly
escalated) locks. When these creation times are disregarded in the analysis algorithms, then
there is a risk of overreaction, because the tuning parameter value may be further increased
before the full effects have become obvious.
A second risk for overreaction are self-management functions that do not have precise knowl-

edge of the quantitative effects of configuration parameter changes. While this is not the case
for the on-line self-management functions presented in Section 2.3, many approaches imple-
ment rule-of-thumb algorithms (cf. [WMHZ02]). Changing a configuration parameter without
being able to predict the effects of the change is of course a risk for the overall system perfor-
mance. For this reason the configuration parameters are typically changed in very small steps,
i.e. the self-management functions accept long adaptation intervals to avoid overreactions. This
method is also employed by the DB2 self-tuning memory manager [SGAL+06], but only before
it has learned a dependable model for the effects of memory area size changes. The challenge for
the design of new self-management solutions therefore is the development of precise quantita-
tive models, which allow the prediction of the (system-wide) effects of configuration parameter
changes.

35

3 Goal-Driven System-Wide
Self-Management

The review of the current DBS self-management technology in Section 2 has shown that the
existing concepts do not yet meet the requirements towards truly autonomic systems. In par-
ticular, the DBS can not yet be controlled by high-level goals. Section 3.1 discusses the general
approaches that might be followed towards meeting goals in DBS processing and identifies
system-wide self-management as the most appropriate solution. The following sections then
outline the general concepts that have been developed for the challenges faced when creating
a system-wide self-management framework: Section 3.2 presents an approach for a lightweight
workload analysis, Section 3.3 analyses the required contents of a knowledge base for DBS
self-management, and Section 3.4 discusses the tasks of the self-management logic in detail.
Conclusions are discussed in Section 3.5.

3.1 Goal-Driven Self-management

As discussed in Section 2.4, the existing solutions for DBS self-management focus on one par-
ticular administration task only. They do not consider side-effects caused by resource sharing
or processing dependencies and cannot consider high-level goals in their analysis. The following
paragraphs discuss several approaches to overcome these limitations.

RISC-style DBMS Architecture The implementation of database management systems has
been dominated by layered approaches for a long time. Structuring the DBMS into layers pro-
vides several advantages, e.g. an easier implementation of higher layers because of a higher level
of abstraction, and an increased robustness against implementation changes within the layers.
Figure 3.1 illustrates the five-layer architecture of a DBMS proposed by Härder and Reuter in
[HR83]. Weikum et al. have discussed in [WMHZ02] that the current DBMS architecture is not
suitable for fully autonomic databases. Even in a strictly layered architecture, there are plenty
of implicit interdependencies between the system components. On the one hand these depen-
dencies are caused by resource sharing between the layers. On the other hand interdependencies
are caused by interferences of the data processing mechanisms across the layers.
In order to reduce the complexity of self-management, Weikum et al. advocate a radical

departure towards a DBS that is based on RISC-style components [WMHZ02]. Each component

36 3 Goal-Driven System-Wide Self-Management

query translation
access path optimization

management of cursors
currency indicators

record management

propagation control

file management

physical copy
of the database

block allocation
structures

page allocation
structures

storage
structures

logical access
paths

logical data
structures

Figure 3.1: Layered DBMS proposed by [HR83]

is supposed to have a limited functionality, making it possible to predict the component’s
performance using mathematical models. [WMHZ02] proposes that the mathematical model
is defined at the same time as the implementation of the RISC component itself, because all
internal dependencies are known at implementation time. The resulting model is supposed to
quantitatively predict the behaviour of the RISC component under all possible configurations
and workload characteristics. By evaluating its mathematical model, every RISC-component
could therefore perform a dependable self-optimization.

The proposed architecture uses rather coarse-grained components intended as building blocks
for enterprise applications. In particular, the authors propose to create a select-project-join
engine, which could either be used directly by an application, or upon which a multidimensional
query engine could be plugged. To reduce the interaction complexity when multiple RISC
components are combined, the interfaces of the RISC components should be designed as narrow
as possible. To simplify self-configuration and -optimization, even SQL is proposed to be
replaced by a narrow component API.

[WMHZ02] sketches the problem of meeting high-level business goals only very briefly. It
demands that the mathematical performance models of the individual data processing compo-
nents should be composed to an overall model. However, how this challenge could be solved is
not described.

The RISC-style architecture demands a re-implementation of the entire DBMS. Moreover,
even the DBS applications would have to be re-designed to operate on the RISC components
with specific APIs instead of querying a single DBS via SQL. It can therefore only be consid-
ered as a long-term solution, which cannot be applied to the high number of existing DBS in
enterprises.

3.1 Goal-Driven Self-management 37

Prioritization The RISC-style architecture requires a novel, component-oriented realization
of DBMS, where the characteristics of each component have to be defined as a mathematical
model. A solution that avoids such a radical departure from the existing DBS architecture is
the prioritization of queries according to their service class (defined by e.g. the DB2 Workload
Manager [CCI+08]). With this approach the DBMS could internally consider the goals of the
service class at every stage of statement processing. Simple solutions can employ admission
control techniques for this purpose. The framework described by Niu et al. [NMP+06] for
instance intercepts all arriving queries before they are executed in the DBS. It then decides
which of the intercepted queries are allowed to execute at a certain point in time based on the
estimated costs for their execution. However, more sophisticated solutions could also assign
resources to queries based on their service class, e.g. the amount of memory in the system buffer
that they may occupy or the priority of disk reads.
Simple admission control techniques on the one hand have the advantage that they can be

easily plugged on to existing DBMS. On the other hand they completely ignore the possibility of
configuration changes in order to meet performance goals. For example, the admission control
might prevent the execution of best-effort service class queries due to the risk of violating the
response time goal for more important service classes, although one additional index could easily
solve the performance problem for all classes. In contrast, considering the service classes’ goals
throughout the query processing chain would allow a very fine-grained assignment of computing
resources to every individual query. This resource assignment would be much more specific than
with the existing administration possibilities. On the downside, this prioritization would require
a re-implementation of most of the DBS components, and it only covers performance goals like
response time and throughput and is not usable for cost goals or availability goals. Furthermore,
the prioritization is only reasonable if there actually is a number of distinct service classes with
corresponding performance goals.

Context-Aware Autonomic Functions As discussed above, the RISC-style DBMS architec-
ture and prioritization approaches both require a re-implementation of today’s technically ma-
ture DBMS. For this is not a reasonable approach for existing DBMS, the vendors have instead
designed a set of autonomic managers which all automatize a particular administration task or
DBS component, and suffer from the problems discussed in Section 2.4.
To overcome these problems, the currently independent autonomic managers would have to

become aware of their environment, i.e. of the context in which they operate. For all reconfigu-
ration actions that may cause side-effects, they have to make agreements with those autonomic
functions that may be affected by the reconfiguration. The autonomic computing blueprint
[IBM05] proposes a hierarchical structure as shown in Figure 3.2 for this purpose. This hierar-
chical structure corresponds with the typical layered implementation of DBMS (see Figure 3.1).
With the hierarchical structure every autonomic function is controlled by its immediate super-
ordinate. For this purpose it must offer an appropriate touchpoint. This touchpoint has to
provide a description of the autonomic function’s constraints and the environmental resources

38 3 Goal-Driven System-Wide Self-Management

autonomic
database touchpoint description

autonomic
function

autonomic
function

autonomic
function

autonomic
function

autonomic
function

autonomic
function

model

constraints resources

autonomic function implementation

controller

DBS component
sensor effector

Figure 3.2: Hierarchy of Autonomic Managers

upon which it depends. Based on this information the description should contain a model,
which quantitatively predicts the behaviour of the managed resource. The implementation of
every autonomic function is required to strictly adhere to the assigned constraints. This way,
the consequences of resource sharing amongst the DBS components will be predictable and
controllable throughout the system hierarchy.
Although the autonomic computing blueprint recommends a hierarchical structure for the

autonomic functions, the topology of the communication between the autonomic functions in
principle can be organized randomly in general. For example, the autonomic functions could
employ economic models to trade resource usage. Nevertheless, detailed knowledge about the
system-wide effects of particular reconfiguration actions is required.
The advantage of the usage of a set of autonomic functions is that many of the existing

autonomic functions could be re-used. New autonomic functions could be easily developed and
integrated into the DBMS over time. Still, while it is widely accepted that a coordination
of autonomic functions is necessary in order to avoid interaction problems (e.g. [WMHZ02],
[IBM05], [Rab09]), no actual solutions have been developed towards this goal. One reason for
this fact is that the composition of the separated autonomic function descriptions to an overall
performance model is a task that is hard to solve in general. A second reason is that the
quantitative models of the performance are limited to one particular DBS component. Thus,
side-effects on other components (e.g. creating an index or changing the optimizer level) could
be not be modelled intuitively.

System-Wide Self-Management The major challenge faced by the approach of context-
aware autonomic function is the definition and resolution of dependencies between the auto-
nomic managers. The approach of system-wide self-management [HR07] avoids these problems
by designing a single centralized self-management logic, which has an integrated view on all
self-management decisions in the DBS. Figure 3.3 illustrates this approach, where a single
self-management logic monitors the sensor information provided by the DBS. The sensor in-
formation is compared to the goals defined by the DBA. Whenever the sensor information
demands a reconfiguration of the DBS, the self-management logic performs a heavy-weight re-

3.1 Goal-Driven Self-management 39

database system

self-management logic

sensor

state

goals

system
modelknobsphys. design

workload

sensorsensor sensorsensorsensor sensorsensoreffector sensorsensoreffector

DBA

Figure 3.3: System-wide DBS Self-Management

configuration analysis, which determines the optimal effector settings – considering the current
state, workload and goal definitions. During the reconfiguration analysis the self-management
logic has to consider all dependencies between the possible configuration changes. Following the
autonomic computing blueprint [IBM05], the information about the dependencies is assumed
to be given in a knowledge base referred to as the system model.
Like the context-aware autonomic functions, the system-wide self-management can be built

outside of the DBMS core, i.e. it is not required to re-implement or extend the existing DBMS
components. Instead, the self-management logic can be based on the existing sensors and ef-
fectors of the DBS. Furthermore, the system-wide effects of reconfigurations do not have to be
agreed upon by several independent autonomic functions, but the centralized self-management
functions can judge the overall costs and benefits directly. As the self-management logic oper-
ates on a system-wide level, it can also connect the individual effector settings to the prediction
of how well the high-level goals like response time, throughput, resource costs and availability
will be met. So the problems of interaction and goal-independency can both be resolved with
a centralized, system-wide self-management approach. In addition, the system model can be
used to store quantitative, mathematical models of the behaviour of the DBS in order to avoid
overreactions. So although the design of the system-wide self-management approach shown in
Figure 3.3 resembles the general feedback control loop design, it does not operate as one. It
is instead intended to find the adequate configuration settings in a single (yet heavy-weight)
analysis run.

It is important to note that all of the self-management architectures discussed above are
valid approaches towards the goal of a truly autonomic DBMS. However, as discussed above,
the general design of the system-wide self-management approach inherently avoids the problems
of interaction, overreaction and goal-independency. It has therefore been chosen as the guideline
for the DBS self-management concepts developed in this work. But even with this guideline,
many open challenges still have to be solved in order to create an autonomic DBS that meets
the requirements towards truly autonomic systems:

40 3 Goal-Driven System-Wide Self-Management

• Lightweight Workload Monitoring: The workload has major influence on the required
DBS configuration. To avoid latencies and unnecessary resource usage costs, it would be
required to permanently check whether or not the current configuration is still appropriate
for the current workload. However, with the heavy-weight reconfiguration analysis this
permanent analysis would cause an unacceptable overhead. For this reason a lightweight
solution for the adaptation of the DBS configuration to the workload is required.

• Anticipatory State Monitoring: Even when the workload of a DBS is constant, the in-
ternal state of some components may require administrative actions. For example, the
fragmentation of the data over time may require a reorganization, the statistics of the
optimizer may have to be updated, or old data may have to be archived because of disk
capacity problems. The state will typically show a trend over time, which should be
observed by the self-management logic. Upcoming maintenance operations should then
be scheduled in time before problems actually appear and for time periods when little
workload is expected on the DBS.

• Reliable Service-Level Management: The goals for the different service classes defined
by the DBA should be met by the DBS under all conditions. Not only should the self-
management logic therefore consider the goals as thresholds and start a reconfiguration
analysis when the thresholds are exceeded, but it should try to detect possible goal vi-
olations as early as possible. Only then the reconfigurations can be triggered in time in
order to avoid goal violations.

• System Model Definition: The system model is supposed to provide all the information
about the performance of the DBS under all possible configurations. Furthermore the
model has to consider the workload situation. In order to build such a model, the precise
requirements about the contents of the model have to be identified. Furthermore, an
approach for actually deriving the quantitative behavioural information from a particular
DBS must be developed, and a solution for mapping the behaviour to overall goal values
has to be found.

• System Model Evaluation: At runtime the system model has to be evaluated in order to
derive DBS configurations that meet the goals defined by the DBA for the current work-
load and state. Ideally, the self-management logic should not just find any configuration
that meets the goals, but the configuration that exceeds the goals as far as possible while
minimizing the resource usage.

This work focuses on the challenges Lightweight Workload Monitoring, System Model Defini-
tion, and System Model Evaluation, because these impose the most interesting research ques-
tions. The requirements and the general design principles for these components are described
in the following Sections 3.2, 3.3, and 3.4. The subject of state monitoring is excluded from
this work, because the execution of maintenance functions is a regular task for a DBA, which

3.2 Workload Monitoring and Analysis 41

(unlike the workload) does not require a continuous monitoring activity. Goal definitions are
seen as simple thresholds in this work, i.e. no anticipations about possible future goal violations
are made. This approach allows the development of fully functional solutions for the system
model definition and evaluation, whereas techniques for the reliable service-level-management
can be examined in the future.

3.2 Workload Monitoring and Analysis

The DBS workload, which provides information on how a particular DBMS is actually used
in its environment, has major influence on almost all reconfiguration decisions in a DBS. For
example, the access paths should optimally support the typical query structure, and tablespaces
of frequently accessed tables should be adequately partitioned across multiple physical devices.
In addition to these physical design decisions, many values of configuration parameters also
depend on the workload. The bufferpool size should match the working set of the application,
the optimizer level should be set according to the application type (OLTP or online analytical
processing (OLAP)), and the number of concurrent transactions must be limited to avoid lock
contention for update-intensive workloads, for example. Additionally, maintenance operations
like backups and statistic updates should be scheduled for periods when there are only few
other activities. So there is a strong need for an autonomic database to continuously adapt the
DBS configuration to the workload.
The straight-forward approach for the continuous adaptation to the workload is to continu-

ously execute a reconfiguration analysis in the self-management logic for the current workload.
Whenever the result of the reconfiguration analysis would mandate a configuration change, then
the new configuration could be set-up immediately. Although possible, this straight-forward
approach would cause an unreasonable overhead, because the reconfiguration analysis is a com-
plex task that may take a significant time to complete. For instance, the approaches to index
selection in today’s DBMS ([ZZL+04], [DDD+04], [ACK+04]) are based on a workload analysis.
The required analysis is so heavy-weight that they cannot be used for continuous analysis, but
must be explicitly triggered as an offline-tool by the DBA when he expects it to be necessary.
This work therefore has developed a different approach for adapting the DBS configuration

to the workload. It is based on the observation that the workload presented to an enterprise
database is not random, but determined by the applications that are using this database in the
company’s IT landscape. Especially OLTP and reporting applications typically operate on a
fixed set of static SQL or statement templates. Thus, the structures for DQL and DML opera-
tions are fixed and only parametrized with the actual attribute values at runtime. Although for
OLAP applications this is not the case (because the SQL statements directly depend on the user
navigation through the data cube) it is likely that users will prefer certain evaluation directions.
Hence, in an enterprise database scenario, the database workload typically is composed of a
large set of fixed SQL statements that only differ in the actual attribute values, and a small set

42 3 Goal-Driven System-Wide Self-Management

database system
workload p.-design

workload shift
detection

reconfiguration
analysis

workload model

conf.-p.

Figure 3.4: Two-staged workload analysis

of statements that are user-generated. As long as the composition of this workload is fix, there
is no need for a database to perform extensive analysis for re-configuration possibilities. The
situation where the fluctuations in the workload are small and do not require self-management
activities are referred to as a stable workload. For a database that is well-tuned for its current
workload, it is only important to know when there is a change in the workload. A significant
change in the workload that could possibly require re-configuration is referred to as a workload
shift.
The resulting two-staged workload analysis is illustrated in Figure 3.4. The first stage only

performs a light-weight workload shift detection. For this purpose it maintains a workload
model, which provides a description of the typical workload of the DBS. The workload model
represents the workload that the current configuration has been determined for. Only when a
shift actually is detected, a heavy-weight reconfiguration analysis actually needs to be performed
to determine the benefit of possible re-configuration actions. After a workload shift has been
detected, the workload model is replaced with a new model.
Ideally, the lightweight workload shift detection stage should detect exactly those usage

change scenarios that actually do require a configuration change. However, in order to decide
whether or not a configuration change is required the most appropriate configuration for the
current workload would have to be determined and compared to the current configuration of the
DBS. So the required analysis overhead would be the same as the overhead for the heavy-weight
reconfiguration analysis itself. Hence, the first lightweight workload shift detection stage can
only detect usage changes that might require a reconfiguration of the DBS.
In order to define the requirements of which usage changes should be detected as potential

workload shifts, a pragmatic approach has been selected: the scenarios which should be detected
are all those scenarios which would usually cause a DBA to check the configuration of the DBS.
In particular, the installation of a new client application, the deployment of a new application
version (with a changed set of SQL statements), and obsolete applications should trigger a
workload shift alarm. Also a usage change of an application can impose a significant shift to
the composition of the overall database workload, e.g. if the number of users for an application
increases by a magnitude. In addition to these single event shifts, also periodic shift scenarios
should be identified: in a Data Warehousing application for example, the workload during

3.3 DBS System Models 43

daytime is typically made up of complex query statements, whereas at night it consists of mass
update operations. Or, as an example for a longer-term periodic workload-shift, the end-of-
month reporting of an OTLP application database will generate a totally different workload
than the usual operation. Of course, the entire workload shift detection mechanism must
be sufficiently robust against minor fluctuations in the workload to reduce the probability of
false alarms. The concepts and techniques that have been developed for detecting these usage
changes are described in Section 4 in detail.

3.3 DBS System Models

The system model is supposed to serve as a knowledge base for the system-wide self-management
logic. On the one hand, this knowledge should include a structural description of the managed
DBS, e.g. its available sensors and effectors and the way they can be accessed. Maintaining
this structural information about the DBS in the system model has the advantage that the
self-management knowledge itself does not have to be adapted with every new release of the
DBMS that adds a relevant sensor or effector. On the other hand – and more importantly – the
system model must allow to predict the performance of a DBS under a particular configuration
and its current workload. Chaudhuri and Weikum state this problem as the ability to predict

workload× config → performance (3.1)

in [CW06]. With the ability to predict the performance from a given workload and configura-
tion, the self-management logic has the required knowledge to find an adequate configuration
for a certain performance goal.
In order to provide solutions to the problem of type 3.1, quantitative behavioural descriptions

of the DBS are required. Thus, the system model must comprise adequate mathematical models
for this purpose. An example for this kind of model is given in [BK09]. To approximate the
response time of a DBS, the authors predict the sum of I/O time caused by all cache misses.
The number of cache misses is derived from the estimated hitratio of the DBS system buffer,
which is modelled as:

hitratiobuff (x) = 1− echarbuff ·x (3.2)

where x denotes the size of the system buffer and charbuff refers to the characteristic of the
system buffer. The characteristic of a bufferpool reflects the locality of the workload and can be
determined by observing the hitratio for particular bufferpool sizes. The predicted hitratios for
different values of charbuff are illustrated in Figure 3.5. With the mathematical description in
Equation 3.2 and the observed workload characteristic, a self-management logic could predict
the hitratio (and therefore the performance) of the system buffer component for different sizes.
The above example has illustrated the use of a quantitative model to predict the performance

of a DBS component. Still, in order to predict the performance of the overall DBS, many

44 3 Goal-Driven System-Wide Self-Management

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

charbp = -0.01
charbp = -0.001

charbp = -0.0001

Figure 3.5: Expected Hitratios for different Bufferpool Characteristics

models are required. These models have to be appropriately interconnected to represent the
interdependencies that exist in the DBS, e.g. caused by resource sharing. But due to the
complexity of DBS architecture, an exact system model that precisely describes the performance
of a DBS under all possible configurations and workload conditions will never be attainable.
However, as noted in [WMHZ02], even an approximate, coarse-grained model would provide
great benefits over the existing trial-and-error approaches of feedback control loops without
models of their managed resource.
Because of the huge analysis effort for modelling the behaviour of a DBS, the selected ap-

proach towards creating a system model for autonomic DBS is to create a separate model
outside of the self-management logic. The rationale behind this approach is that in a first step
a very coarse-grained model can be created and tested. This model can be restricted to the
most important components, a subset of their actual sensors and effectors, and an approxi-
mated quantification of their behaviour. Only after this model has proven to sufficiently well
predict the system behaviour under different configurations and workloads, it can be refined in-
crementally without having to adapt the self-management logic itself. Thus, the system model
approach provides an excellent basis for investigating the adequate level of detail knowledge
that has to be available in the self-management logic. In order to support this incremental
refinement of the system model a graphical modelling language (SysML) has been selected for
defining the system models. Chapter 5 illustrates the usage of SysML for creating a system
model for IBM DB2. It also proposes an approach for deriving a mathematical model using
experimental evaluations.

3.4 Self-Management Logic
The behavioural descriptions in the system model describe the performance of the DBS under
particular configurations and workloads. It is the task of the self-management logic to evaluate
these descriptions in order to determine DBS configurations that meet high-level goals set-up
by the DBA. A prerequisite for this task is that the information in the system model relates the
sensors, effectors and behavioural descriptions to the expected goal values. This work therefore

3.4 Self-Management Logic 45

DBS

gf1

gf2

sensor1 sensor2 effector1 effector2sensor3

bd

Figure 3.6: Defintion of Goal Functions in the System Model

defines the notion of goal functions, whose result values correspond with the high-level goals
that may be defined, e.g. response time, throughput and costs. The variables in the body of
the goal functions must be mapped to either terminal values, i.e. sensors and effectors, or to
other behavioural descriptions that are finally mapped to terminal values again. Figure 3.6
illustrates this composition of goal functions as an abstract example with two goal functions
gf1 and gf2. As can bee seen from the figure, the values of gf2 depends on the value of sensor3
and effector2, whereas gf1 depends on the result of the behavioural description bd (which again
depends on sensor1 and sensor2), and on both effectors. From the model shown in Figure 3.6
the self-management logic therefore can easily determine that chaning effector2 would have
effect on both goal functions.
At runtime, the self-management logic has to evaluate the goal functions by parametrizing

them with the current values of the DBS sensors. For this purpose it has to extract all the
required information about the (possibly composed) goal functions from the system model. Hav-
ing composed and parametrized the goal functions, the self-management has to find values for
the effectors referenced in the functions which meet the goal values. Moreover, to avoid unnec-
essary reconfiguration runs, the self-management logic should find effector settings which meet
the goals in the best possible way. Thus, the problem of finding the appropriate DBS configura-
tion is an optimization problem, where the function values have to be minimized (e.g. response
time, operation cost) or maximized (throughput, availability). It is important to note that
these goal functions may be opposing: using additional disks may reduce the response time,
whereas it increases the operation cost, for example. Similarly, the execution of a reorganization
maintenance function may increase the overall throughput, whereas it reduces the availability
of the system. So the challenge for the self-management logic is to find an optimal set of effector
values for several, possibly opposing, goal functions. Generally speaking, it has to determine an
optimal configuration vector x for an objective vector F (x) = (f1(x), f2(x), . . . fk(x)), where
f1(x) to fk(x) each define one goal functions. In addition, it also has to take into account the

46 3 Goal-Driven System-Wide Self-Management

O
pe

ra
tio

n
Co

st
s

Response Time

Non-Pareto-Optimal
Configuration

Pareto-Optimal
Configuration

Figure 3.7: Parto-Optimal Configurations for a Minimization Problem with two Goal Functions

set of constraints E(x) = (e1(x), e2(x), . . . ek(x)), which may be defined on the effector values,
i.e. on the allowed values for x.
Finding a solution to this type of problem is the subject of multi-objective optimization

(MOO; e.g. [CVL07]). Techniques of this research area typically determine a Pareto-Optimum
P ∗, which is a set of optimal trade-offs between the functions in the goal vector F (x). A trade-
off is considered as optimal when the value of one goal function cannot be enhanced without
harming the value of at least one other goal function, i.e.

P ∗ = {x|¬∃x ′ : F (x ′) ≤ F (x)} (3.3)

where F (x ′) ≤ F (x) iff ∀i ∈ 1..k : fi(x ′) ≤ fi(x) for all objective functions to be minimized and
∀i ∈ 1..k : fi(x ′) ≥ fi(x) for all objective functions to be maximized (dominance). Figure 3.7
illustrates the Pareto-Optimum for two goal functions (operation costs and response time),
where the values of both functions should be minimized. Each rectangle in the plot represents
a possible configuration x of the DBS. The Pareto-Optimum is formed by the configurations
shaded in dark-grey, because they are not dominated by any of the other configurations.
Chapter 6 discusses the application of multi-objective optimization to the problem of DBS

self-management in detail. This includes an introduction to multi-objective optimization tech-
niques, algorithms for extracting and composing goal functions from a system model, and the
support for service classes, i.e. for multiple goal values for service classes.

3.5 Conclusions

On the one hand, the system-wide self-management approach followed in this work elegantly
avoids the problems of interaction and overreaction by implementing a centralized reconfigura-
tion logic. In addition, only configurations that meet the high-level goals set up by the DBA
are derived by the self-management logic. Thus, it also provides a solution to the problem of

3.5 Conclusions 47

physical DB
design

time horizon

integration
into DBMS

automated
statistics

maintenance memory
management

LRU(k)
prefetching

occasional
recomputation

longer-term
decisions

near real-time
decisions

real-time
decisions

external
feedback loop

system
managed
triggering

self-tuning
algorithm

Figure 3.8: The Spectrum of Self-tuning as defined in [CW06]

goal-independency of the existing self-management solutions. On the other hand, the selected
system-wide self-management approach comes at the cost of a heavy-weight MOO analysis in
order to derive configuration changes for individual components. It is therefore not suitable for
self-optimization tasks that require very fast reactions.
In order to asses the self-tuning problem domains for which the selected system-wide self-

management approach is adequate it has been compared to the spectrum of self-tuning tasks
described by Weikum and Chaudhuri in [CW06]. As shown in Figure 3.8, this spectrum clas-
sifies self-tuning tasks by two dimensions: In the time dimension, it distinguishes long-term
decisions, occasional recomputations, near real-time decisions and real-time decisions. The sec-
ond dimension is the required level integration of the self-tuning algorithms into the DBMS.
Figure 3.8 also provides examples for the classification of existing self-tuning solutions according
to this spectrum.
When comparing the system-wide self-management approach to the spectrum in Figure 3.8,

it becomes obvious that in the dimension integration into DBMS self-tuning tasks that require
a full integration into the DBMS, i.e. a self-tuning request processing algorithm, can not be cov-
ered. In contrast, all tasks that can be solved by heavy-weight external analysis algorithms (like
physical design tuning), can of course be solved by the centralized self-management-logic, too.
Considering the objective of goal-driven DBS self-management, the level system managed trig-
gering in the spectrum becomes obsolete: Instead of performing uncoordinated reconfiguration
actions to individual DBS components, the reconfiguration analysis should only be triggered
when the self-management logic itself detects that goals are missed or that the workload or
state has changed significantly.
Similar to the DBMS integration dimension, the level real-time decisions can be not be

covered by the system-wide self-management approach in the time dimension. In order to
assess the applicability of the selected approach for the other levels, the overhead caused by
the reconfiguration analysis algorithms has to be known. As will be shown in Section 6.5, the

48 3 Goal-Driven System-Wide Self-Management

typical runtime of the MOO algorithms can be limited to one minute. Given an implementation
of an anticipatory state monitoring and a reliable service-level management (cf. Section3.1), the
system-wide self-management approach therefore can be applied to self-management tasks at
all other levels of the time dimension, i.e. up to and including the level near real-time decisions.
Although the self-management logic in principle can derive configuration changes from the

first three levels at the same time, it might be reasonable to distinguish these problem classes.
The reason is that the long-term decisions in Figure 3.8 cover those reconfiguration decisions
that cause large reconfiguration costs. The creation of an index, for example, typically is an
expensive operation. Thus, when the self-management logic detects that its high-level goals are
likely to be missed, it should perform those reconfiguration that imply the lowest configuration
change costs. Only if the goals can not be reached, more expensive reconfiguration actions
should be taken into account. A discussion of the possible solution selection strategies is given
in Section 6.4.

49

4 Workload Monitoring and Analysis

As discussed in Chapter 3, the DBS workload has major influence on many configuration deci-
sions for a DBS. Following the goal of a self-managing database, the DBS configuration must
therefore be adapted automatically to significant changes in the workload. However, a contin-
uous reconfiguration analysis for the currently observed workload would cause an unacceptable
analysis overhead. For this reason the following sections present a solution for the lightweight
identification of shifts in the DBS workload. Only when a significant change in the workload is
detected, a heavyweight reconfiguration analysis must be executed.
Section 4.1 first outlines the overall processing model selected for the identification of work-

load shifts. The individual stages Monitoring, Classification, and Shift Detection of this pro-
cessing model are then discussed in the following Sections 4.2, 4.3 and 4.4. Afterwards,
Section 4.5 describes how the knowledge about the DBS workload gathered during workload
shift detection can be exploited in order to predict future changes in the workload. All concepts
are evaluated in Section 4.6 and related work is discussed in Section 4.7.

4.1 Workload Analysis Processing Model
The following sections provide an overview of the design of the lightweight workload monitoring
and analysis solution. Section 4.1.1 first analyses the key challenges and derives the main
processing stages from them. In order to the comprehensibility of the subsequent sections of
this chapter, Section 4.1.2 then gives a high-level overview on the overall solution.

4.1.1 Processing Stages

The approach towards building a lightweight workload shift detection component is based on
maintaining a workload model in the self-management logic (cf. 3.2). This model is intended
to permanently store an abstract representation of the database workload. In order to avoid
any effort for the DBA, the self-management logic has to create and maintain this model
autonomically by monitoring the workload of the database.
For the construction and maintenance of the workload model a set of key challenges can

be identified (see Figure 4.1): First, a workload monitoring source has to be selected, which
provides the relevant DBS workload information. From this workload information, a workload
model has to be built (model creation), which describes the workload that has usually been
observed for the DBS in the near past (typical workload). Of course, the model must be as

50 4 Workload Monitoring and Analysis

workload monitoring

application 1 application 2 application 3

DBS

model
creation

workload
classification

similarity
assessment

model
adaptation

workload model

Figure 4.1: Key challenges of workload shift detection

compact as possible to enable a lightweight comparison with the current load, and it should
abstract from specific details to provide robustness against minor fluctuations. Hence, an
workload abstraction should be applied to the workload information before storing it as a
workload model. After the model has been created, the current workload can be continuously
compared to it in order to detect workload shifts. For this purpose, the self-management logic
has to judge how well the currently observed workload matches the workload model (similarity
assessment). Whenever significant deviations between the actual workload and the workload
are detected, a model adaptation has to be performed in order to reflect the changes in the
workload.
For finding solutions to the above key challenges, a survey of other research areas in computer

science has been performed. As a result, the challenges in pattern recognition, especially
in speech recognition, have shown to be comparable. Like workload shift detection, speech
recognition also requires the assessment of measured data (spoken voice) with the help of
(language) models. Hence, the applicability of the well-established processing model developed
by this discipline has been investigated for the purpose of workload shift detection [HGR08].
Figure 4.2 provides an overview of the speech recognition processing model as described in
[Fin08] and the adaptations that have been developed for DBS workload analysis in this work.
The remainder of this section describes the individual stages of this processing model in detail.
The first stage of the speech recognition processing model is the monitoring of the raw data.

In this stage the continuous input signal is sampled in regular intervals and passed on for
further processing in terms of discrete measurands. For workload shift detection, there are
many possibilities for monitoring the DBS workload, e.g. operating system metrics or DBS-
internal load characteristics. Thus, the first task for realizing a workload shift detection is the
selection of an appropriate workload information source. This aspect is discussed in Section 4.2.
In the speech recognition processing model, the monitored information is then preprocessed,

e.g. filtered and described in terms of multi-dimensional feature vectors. Preprocessing the DBS
workload is also reasonable for workload shift detection in order to filter certain types of SQL

4.1 Workload Analysis Processing Model 51

monitoring

preprocessing

segmentation

classification

analysis

measurands

feature vectors

segmented feature vectors

classes

Speech Recognition

monitoring

preprocessing

classification

analysis

measurands

feature vectors

classes

Workload Shift Detection

Figure 4.2: Processing Models in Speech Recognition and DBS Workload Analysis

which should not be considered in the model, e.g. DDL statements. The selection of appropriate
features from the DBS workload is a more complex task, which is discussed in Section 4.3.

On the stream of preprocessed feature vectors the speech recognition processing model next
performs a segmentation into meaningful sections, i.e. splitting at the word boundaries. How-
ever, for DBS workload the feature vectors already represent the meaningful units of observa-
tion, so the segmentation stage can be omitted.

Classification refers to the placing of individual observations into groups according to certain
characteristics. For speech, this stage maps the property vector segments to a symbolic repre-
sentation of the spoken words. Only some characteristics of the recorded speech are evaluated
for this purpose (thus allowing the same word to be pronounced/spoken in different ways).
Classification is also required for DBS workload in order to fulfil the requirement of a compact
workload model. Otherwise every distinct feature vector ever observed would have to be repre-
sented in the workload model. However, as classification always entails the loss of information,
it is the task of the classification method to keep this loss as small as possible. A solution for
the classification of DBS workload is presented in Section 4.3

The last stage of the processing model is the analysis of the classified information. In the
context of speech recognition this typically is language understanding. For the detection of
workload shifts this last stage comprises the comparison of the classified DBS workload with the
workload model. Furthermore the entire lifecycle of the model, i.e its creation and adaptation,
must be maintained in this stage. The workload modelling techniques and model management
concepts that have been developed for this purpose are described in Section 4.4.

52 4 Workload Monitoring and Analysis

DBS
feature

extraction

cluster
assignment

monitoring

clustering

conformance
monitoring

workload class IDs

feature vectors

workload
clusters

SQL
stmts

workload
model

model
construction

learning
stable

workload classification

workload shift detection

learning
stable

workload shift prediction

model
pool

model
identification

active model

periodicity
detection

model IDs

SQL

workload monitoring

activation
history

self-management logic /
DBA

workload
shift alerts

workload shift
predictions

reconfigurations

Figure 4.3: High-level Overview of the Workload Monitoring and Analysis Framework

4.1.2 Solution Overview

An overview of the overall workload monitoring and analysis framework is shown in Figure 4.3.
Each of the design decisions that lead to the depicted architecture are discussed in detail in the
subsequent sections of this chapter. Thus, this overview serves as high-level description of the
data flow and is intended to increase the comprehensibility of the following sections.
As shown in the figure, a monitoring component of the workload monitoring stage continu-

ously observes the workload from the DBS in terms of the SQL statements (see Section 4.2).
The feature extraction then extracts a set of relevant features from the workload events, e.g. the
operation type, the tables accessed, and the grouping requirements (see Section 4.3).
The resulting feature vectors are then passed to the workload classification, where similar

workload events are grouped (see Section 4.3). Clustering techniques are employed in order to

4.2 Workload Monitoring 53

derive these groups in a learning phase. Once the clusters do not change anymore, they are
frozen and used for the classification of observed workload events (cluster assignment).
The workload class information is then passed to the workload shift detection component,

which identifies significant changes in the workload (see Section 4.4). For this purpose, it creates
a model from the workload classes observed in its learning phase (model construction). This
model constitutes a statistical description of the typical workload composition. Section 4.4
investigates the applicability of several statistical techniques for this purpose, and it describes
the usage of n-gram models and two-window models for this purpose in detail. After the
workload model sufficiently well describes the typical workload, the currently observed workload
of the DBS is compared to this model in a conformance monitoring stage. Whenever the current
workload of the DBS does not match the model any more, the workload model is discarded
and a new model is learned from the changed workload. In addition, a workload shift alert is
raised, which triggers the self-management-logic (or the DBA) to identify a more appropriate
DBS configuration for the changed workload.
After a new workload model has been learned, the new model is passed to the workload

shift prediction component. This component analyses the workload of the DBS for periodic
patterns (see Section 4.5). For this purpose it maintains a model pool, which assigns IDs to
all workload models that have been observed in the past. Thus, recurring workload models
can be identified, and a periodicity detection can be performed on the activation times of the
models in the pool. The information about the periodicity of workload models is provided to
the self-management-logic (or the DBA) of the DBS, where it can be exploited to optimize
the configuration of the DBS. For example, the self-management logic or DBA could associate
particular DBS configurations with periodic workloads and apply them to the DBS without
any analysis effort when the expected workload change is observed.

4.2 Workload Monitoring

An analysis of the existing self-management functions for DBS has shown that various workload
information sources are used: Some autonomic features like the IBM DB2 Utility Throttling
[PRD+04] analyse the CPU usage, memory usage or I/O activity operating system metrics.
Others monitor database-internal metrics of specific sub-components, like the buffer pool hit
ratios or optimizer cost estimations. Autonomic memory management ([LNK+03], [SGAL+06])
for example observes the bufferpool hit ratios, and the autonomic statistics collection mech-
anisms [AHL+04] rely on optimizer metrics. A third type of DBS workload information is
the set of SQL statements that is submitted to the DBS. This workload information is typ-
ically evaluated by automatic index selection self-management functions, e.g. [ZRL+04] and
[ACK+04].
Considering the shift scenarios that have to be identified (e.g. installation of new application,

obsolete applications, usage changes; cf. Section 3.2), monitoring at the statement level is

54 4 Workload Monitoring and Analysis

considered as most appropriate. At this level, the requests submitted by the applications can
be observed directly. Whenever a new application is installed or an application is modified,
the new statement templates will cause a new set of SQL statements. If instead internal DBS
metrics from particular DBMS components were used, the presence of a usage change of the
DBS would have to be inferred indirectly. Furthermore, the load of the DBMS-components
directly depends on the set of observed SQL statements and the centralized monitoring at the
statement level imposes less overhead than monitoring several independent sources. The same
limitations would exist if the workload was monitored in terms of CPU, memory and I/O-
usage. In addition, the analysis results in this case could further be biased by other application
processes or maintenance operations running on the same server.
When monitoring the DBS workload at the statement level, every measurement represents

one request to the DBS. So the available workload information on the one hand includes all the
information that can be extracted from the observed SQL statement texts, e.g. tables accessed,
search predicates, and sorting and grouping requirements. On the other hand, also the char-
acteristics about the internal execution of the SQL statements could be considered, especially
the information from the execution plans, like the table scan operations, index access, and car-
dinality estimations. The advantage of taking into account these internal load characteristics
for classification is that the resulting workload classes would also depend on the internal state
of the DBS. For example, different execution strategies chosen for an SQL query due to data
skew or optimizer statistic changes could be distinguished. Furthermore, syntactically different
but semantically identical SQL statements could be mapped to the same class by comparing
the execution plans.
Despite the advantages, the usage of the internal execution characteristics as workload infor-

mation is not appropriate for workload shift detection. Instead, only the information that can
be observed at the SQL API of the DBS is considered. There are three reasons for this deci-
sion: First, the objective of workload shift detection is the identification of significant changes
in the usage of the DBS. However, considering internal execution characteristics would result in
two different workload events for an identical SQL statement, only because the optimizer has
changed the access plan (e.g. table scan instead of index access because of updated distribution
statistics). Although a changed execution plan definitely affects the effort within the DBS, it
does not reflect any change in the usage of the DBS. For this reason the internal state of the
DBS should be regarded separately from the workload. Second, in a real-world DBS the work-
load is not generated randomly. Instead, there typically is a fixed set of database applications,
which work with a fixed set of statement templates or static SQL. Hence, the identification
of semantically equivalent but syntactically different SQL statements is of minor relevance.
Third, by monitoring at the SQL API only the observed workload information conforms to the
standardized SQL language. The entire workload shift detection approach is therefore easily
applicable to all relational DBS.
Despite the fact that monitoring at the SQL API is the appropriate choice for workload

shift detection, the subsequent steps of the processing model are designed to also support other

4.3 Feature Selection and Classification 55

internal characteristics. Thus, the workload monitoring and analysis approach can also be
applied to scenarios where additional information about internal execution characteristics are
required.

4.3 Feature Selection and Classification

The representation of all observed SQL statements with distinct statement texts in the workload
model would cause an unacceptable model size. For a database with one single table of 100,000
customers that are accessed by their ID, the workload model would comprise 100,000 different
SQL statements, for example. Those extensive model sizes on the one hand would thwart
the goals of a lightweight workload monitoring and analysis. On the other hand, it would
make the workload shift detection sensitive to minor fluctuations or evolutions in the workload,
because every minor difference statement text (e.g. a query for a new customer ID) would be
considered as a new workload event. Following the workload analysis procedure, all observed
workload events are therefore classified, i.e. they are assigned to groups according to certain
characteristics [HGR09].
This section describes an approach for the classification of statement-level DBS workload

events. For this purpose, it first identifies the requirements to a workload classification in
Section 4.3.1. By analysing these requirements, clustering techniques are identified as the most
appropriate method for deriving the classification rules in Section 4.3.2. Section 4.3.3 then
analyses the features that may be extracted from DBS statement-level workload information and
selects an appropriate distance function for them. Using this distance function, Section 4.3.4
finally describes the usage of clustering techniques for the identification of classification rules
and the required rule management algorithms.

4.3.1 Classification Requirements

The classification of DBS workload for workload-aware autonomic functions has to regard a
number of requirements. Figure 4.4 gives an overview of these functional and non-functional
requirements.

Classification The goal of workload classification is the reduction of distinct workload events
by placing the events into groups according to certain characteristics. For this purpose it
must define classification rules for SQL statements, which assign every statement to exactly
one class. To hide the diversity of events in the observed DBS workload from the workload
shift detection, only the class information must be passed on. A reasonable label should be
chosen for the classes, which characterizes the SQL statements assigned to it. This reduction
of DBS workload diversity is valuable not only for workload shift detection, but would lead
to a significant reduction of the analysis effort for other workload-aware functions, too. For

56 4 Workload Monitoring and Analysis

statement 1

statement 2

statement 3

statement 4

statement n

...

class 1

class 2

class m

...

classification

varying statement
characteristics

controllable loss
of qualityclass limitation

SQL statement information

workload classes

workload classification

self-
management

stream-based
processing

consistency

lightweight
operation

Figure 4.4: Overview of functional and non-functional workload classification requirements

example, the identification of the relevant statistics for the optimizer or the index structure,
which support the typical queries in the best possible way, could be accelerated1.

Varying Statement Characteristics In order to make the workload classification applicable
for both internal and SQL-level characteristics, it must be possible to consider different charac-
teristics of the statements and their processing details. Hence, the workload classification must
support all types of features that may be selected from this information.

Controllable Loss of Quality Classifying the workload refers to placing the observed SQL
statements into groups by considering some characteristics but ignoring others. The information
on the ignored characteristics is not available to the subsequent workload analysis function.
This missing information necessarily affects the quality of the workload analysis and may even
prevent the detection of workload shifts. So to assure that the functionality of the analysis
function is not harmed, the acceptable loss of quality must be definable. A measure for the loss
of quality induced by the workload classification is therefore required. The acceptable loss of
quality should be exploited as far as possible to reduce the analysis overhead.

Class Limitation The workload shift detection requires an upper limit for the number of
classes to restrict the analysis overhead. Obviously, the class limitation is relevant only when

1In fact, there has been related work on the compression of SQL workload [CGN02] by Chaudhuri et al., which
strictly focuses on the purpose of index selection; see Section 4.7 for a detailed discussion.

4.3 Feature Selection and Classification 57

the loss of quality goal demands more classes than the class limit. Otherwise as little classes
as necessary to meet the quality loss goal should be used.

Self-Management Workload classification reduces the diversity of the workload to ensure a
lightweight analysis for workload shifts. As such, it is part of a self-management functionality
for DBS, which is intended to reduce the maintenance overhead for DBS. So the workload
classification may not impose additional effort for the DBAs again, but must itself be completely
self-managing.

Stream-based Processing The workload of a DBS is created continuously by the database
applications. In order to quickly adapt the DBS configuration to a workload shift, this workload
information has to be observed and analysed continuously. So from a workload classification
perspective, the workload can be seen as a stream of incoming events, which have to be assigned
to classes and passed on to the subsequent workload analysis function. However, the workload
shift detection and other autonomic functions typically are executed in parallel to DBS query
processing. However, there are no real-time processing requirements so that minor delays (up
to several minutes) are acceptable.

Consistency As the workload classification hides the diversity of the original workload, the
subsequent workload analysis has no information of the original statements which have been
mapped to a class. All analysis is based on the class information only. For this reason, the
workload classification must assure the consistency of classification results, i.e. statements of the
same type must be mapped to the same class throughout the overall lifetime of the classification.
In particular, all changes to the classification rules must be agreed upon with the workload
analysis function. Otherwise false workload shifts could be detected, for example.

Lightweight Classification The assignment of observed DBS workload to a class must be
lightweight, because it is performed continuously for every SQL statement processed by the
DBS. The additional effort caused by the classification should be small in comparison to the
effort in the workload analysis function. So most importantly the computation of the classifi-
cation rules must be feasible for large workloads in reasonable time.

4.3.2 Design

The basic task of the workload classification is to reduce the workload diversity by assigning
similar DBS requests to the same class. One option for performing this classification would be
the assignment of statements to classes based on the load they cause on the DBS (DBS-load
classification). For example, all statements resulting in a tablescan operation on a particular
table could be assigned to one class. However, as discussed in Section 4.2, the internal load
characteristics would mix the usage characteristics of the DBS with its internal state. The

58 4 Workload Monitoring and Analysis

DBS-load classification is therefore not appropriate for the detection of significant changes
in the usage of the DBS. Considering the workload shift scenarios that have to be identified
(application modifications, usage changes), a more semantic view should be applied instead:
similar actions in the application programs should be classified into the same class (semantic
classification). Unfortunately, an automatic derivation of the required classification rules is not
possible, but the DBA would have to manually define the rules instead. The resulting effort
would contradict the Self-Management requirement for workload classification. For this reason
a statement text classification has been developed, which assigns statements to classes based
on the similarity of the characteristics available from the SQL statement texts.
For realizing the statement text classification, a number of classification techniques can be

found in the literature which support the automatic deduction of classification rules, like Bayes
classifiers or decision trees ([HK06]). These techniques always require a set of classified training
data, from which the classification rules can be derived. To provide the training data, the
DBA would have to define workload classes and assign them to a representative set of sample
statements manually. The usual classification techniques therefore would entail additional
effort for DBAs and are therefore not appropriate for workload classification. In order to
support the requirement of self-management, the workload classification rules must be deduced
automatically by analysing the available statement information.
In order to classify the workload events based only on the statement texts two approaches

have been developed. The first approach, signature classification, classifies the SQL statements
by replacing all concrete parameter values in the statement text with a wildcard-character.
If a class that represents the resulting un-parametrized string already exists, then the SQL
statement is assigned to this class. Otherwise, a new class is dynamically created. This simple
signature classification has the advantages of being inexpensive and not requiring any DBA con-
figuration effort. On the downside, the number of classes and therefore the resulting workload
analysis overhead cannot be known or limited in advance.
In contrast to signature classification, the second approach is directed at allowing a strict

limitation of the number of workload classes. As this approach is based on clustering the events
based on selected features for identifying the workload classes, it is referred to as feature classifi-
cation. Clustering techniques place similar objects into groups by calculating a distance measure
between the data objects. The resulting groups depend on the (previously unknown) structure
of the observed data only. The identification of the clusters can be performed automatically.
Furthermore, the number of clusters can be limited in advance.
Accoding to the the general discussion in [JMF99], the following challenges have to be taken

into account for clustering DBS workload:

• Data Representation: Definition of the number, type and scale of the properties (features)
of the observed statements.

• Distance Measure: Definition of a distance function, which quantifies the similarity be-
tween two statements based on the vectors of their relevant features.

4.3 Feature Selection and Classification 59

• Clustering: Selection of a clustering algorithm, which assigns statements to classes ac-
cording to their similarities.

• Data Abstraction: Determination of a compact description for the statements assigned to
each class, i.e. definition of class labels.

• Cluster Assessment: Assessment of the clustering result by an application-specific quality
criterion.

From the above steps, two major challenges can be identified: the definition of a distance
function for SQL statements, and the design of a stream-oriented clustering solution. In order
to quantify the distance between two SQL statements, the distance function cannot apply
usual distance metrics like the euclidean distance. The reason is that many features of SQL
statements have non-numerical values (like table names, column names, ...). But for the design
of the distance function it is important to consider all features, which can possibly be derived
from SQL statements. Otherwise the workload classification would not be applicable for a wide
variety of workload-aware autonomic functions. Furthermore, not all features may be equally
relevant for the distance calculation and so the distance function should allow the definition of
weights for the individual features. For example, the tables accessed will be more relevant for
index selection than the projection columns.
With an appropriate distance function, the clustering approaches from the literature can

be used to identify clusters in the set of SQL statements. These clustering approaches typi-
cally expect the total number of clusters (i.e. classes) as an input parameter. Considering the
Controllable Loss of Quality requirement, this approach is not feasible for DBS workload clas-
sification. Instead, the appropriate number of classes must be automatically chosen so that the
loss of quality matches the requirement of the subsequent workload analysis function, and the
Class Limitation is regarded. Furthermore, the usual clustering techniques expect the entire
set of data objects as input in order to determine the clusters. However, for DBS workload
classification, it is necessary to support stream-oriented processing, which continuously assigns
the observed SQL statements to classes. In particular, the total set of data objects is not known
completely at any time for workload classification, because the DBS workload may evolve. As
long as a previously unobserved statement is similar to an existing class, it must be assigned to
that class. But for autonomic functions it is especially interesting to recognize new workload
types, because this new workload might require reconfigurations. So the clustering must also
be able to create new classes, which represent statements that are significantly different from
the statements in existing classes. Despite the additional classes the clustering must assure the
Consistency of the classification.
As the realization of a signature classification is straight-forward, the following sections focus

on solutions to the challenges faced by the feature classification approach only: A distance func-
tion for assessing the similarity of SQL statements is developed in Section 4.3.3. Section 4.3.4
afterwards presents the concepts developed for stream-oriented classification of DBS workload.

60 4 Workload Monitoring and Analysis

Table 4.1: Feature Types Applicable to DBS Statement-Level Workload Information
Feature
Type

Description Feature Type Value Examples

nominal-
qualitative

values can be
distinguished, but not
ordered; arithmetic
operations are not
applicable

atomic: string
value

statement type (SELECT,
INSERT, UPDATE,
DELETE)

complex: set of
string values

relation/column names
referenced in a query

ordinal-
qualitative

values can be
distinguished and
ordered; arithmetic
operations are not
applicable

atomic: string
values

isolation level (RC, RU, ...)

complex: interval
of (ordered) string
values

table locks acquired (S,
IX, X)

discrete-
quantitative

discrete numerical
values; arithmetic
operations are permitted

atomic: numeric no. of page requests, no.
of predicates

complex: closed
interval

lower/upper bound of
range queries

continuous-
quantitative

continuous numerical
values; arithmetic
operations are permitted

atomic: numeric CPU usage
interval: closed
interval

statement execution period

4.3.3 Distance Function

In order to quantify the similarity of SQL statements, a distance metric for their feature vectors
is required. Section 4.3.3.1 first analyses the feature types that can be derived from DBS
statements. Section 4.3.3.2 then describes a general distance function which is applicable for
these types.

4.3.3.1 Feature Types

A general-purpose workload classification must support all different features that may be ex-
tracted from DBS workload events. In particular, it must be possible to use non-numerical,
i.e. nominal and ordinal, feature types, which are present in SQL statement texts, for example.
Table 4.1 provides an overview of the different feature types that are distinguished in [IY94].
For every feature type it additionally gives a short description and an example. As these feature
types may not only occur as atomic values, the column feature type value defines the types of
their complex values.
As discussed in [JMF99], the selection of features heavily depends on the analysis goal and

should be subject of an experimental evaluation. Hence, a complete list of all possible features
for DBS workload events cannot be given. Instead, the examples in Table 4.1 illustrate that all
these feature types must be considered in the distance metric, because there might be features
of these types. An overview of various characteristics that might be selected as features for
SQL statements is given in [YCHL92]. In the following the selection of workload event features

4.3 Feature Selection and Classification 61

Table 4.2: Feature Selection for Workload Shift Detection
Feature F.-Type Value Weight
relation names nom.-qual. set 0.50
selection columns nom.-qual. set 0.25
projection columns nom.-qual. set 0.13
statement type nom.-qual. atomic 0.06
no. of subqueries disc.-quant. atomic 0.03
aggregate functions nom.-qual. set 0.01
grouping nominal-qual. set 0.02

nominal-qualitative
features

ordinal-qualitative / quantitative
features

BkAk Bk
Ak Bk

Ak

BkAk

BkAk
BkAkBkAk

BkAkBkAk

Figure 4.5: Illustration of Join and Meet Operators

for the workload shift detection is discussed. An overview of the SQL statement text features
that have provided good results in the experimental evaluation of the workload shift detection
solution (see Section 4.6.2) is given in Table 4.2.

4.3.3.2 Distance Metric

Usual distance metrics like the Euclidean distance cannot be used on the nominal and ordinal
feature types of the DBS statement-level workload information, because arithmetic operations
cannot be applied. Hence, the generalized Minkowski metric by Ichino and Yaguchi [IY94]
is used instead. It is based on the cartesian space model (U (d),�,�), where U (d) defines a
d-dimensional feature space for all feature types described in Table 4.1. Nominal-qualitative
feature type values are generally represented as sets, whereas the other feature types values are
intervals.
The distance metric on the events in U (d) is based on the two operators � (“join”) and �

(“meet”). For two events A and B, the result of the join Ak�Bk of their feature values depends
on the type of the features: For quantitative and ordinal-qualitative feature types, it computes
the closed interval Ak �Bk = [min(Akl

, Bkl
);max(Aku , Bku)], where Akl

and Bkl
are the lower

bounds of the intervals and Aku and Bku their upper bounds. For nominal-qualitative feature
types, it computes the union of the feature values, i.e. Ak � Bk = Ak ∪ Bk. The � operator
calculates the intersection of the feature values, i.e. Ak � Bk = Ak ∩ Bk for all feature types.
Figure 4.5 illustrates the semantics of the � and � operators by giving examples for the feature
types.

62 4 Workload Monitoring and Analysis

Based on the operators � and �, [IY94] defines the distance φ between two nominal-
qualitative features Ak and Bk as

φ(Ak, Bk) = |Ak �Bk| − |Ak �Bk| (4.1)

where |Ak�Bk| and |Ak�Bk| denote the number of elements in the sets. The value of φ(Ak, Bk)
therefore is the number of elements, which Ak and Bk do not have in common. For quantitative
and ordinal-qualitative features, the distance definition in Equation 4.1 would only consider the
outer distance of intervals. Hence, the distance for these feature types is defined as

φ(Ak, Bk) =|Ak �Bk| − |Ak �Bk|+
γ(2|Ak �Bk| − |Ak| − |Bk|) (4.2)

where γ is the weight for the inner distance of intervals in the distance and may be chosen
between 0 and 0.5.
Using φ(Ak, Bk), [IY94] defines the generalized Minkowski distance dp for two events A and

B as

dp(A,B) =
[

d∑
k=1

(
ck

(
φ(Ak, Bk)
|Uk|

))p] 1
p

(4.3)

where |Uk| denotes the number of possible values of the feature k (the interval length for
continuous-quantitative features). Dividing the feature distance φ(Ak, Bk) by |Uk| normalizes
the feature values. This avoids an implicit weighting of the features by choosing different
dimensions (e.g. hours instead of seconds). Thus, the feature distances are normalized to the
interval [0; 1]. The normalized, dimensionless feature distances may instead be weighted by
the weight coefficient ck, where

∑d
k=1 ck = 1. As for the usual Minkowski metric, parameter p

defines the order of the metric.
The generalized Minkowski metric for mixed feature-types builds a sound basis for the quan-

tification of DBS workload event similarity, because it supports all relevant feature types from
Table 4.1. It therefore fulfils the requirement of Varying Workload Characteristics. However, in
order to be used for workload classification, it is also necessary to meet the other requirements
defined in Section 4.3.1: Self-Management, Stream-Based Processing, Consistency.
The Self-Management requirement demands that all configuration parameters of the distance

metric must be either set automatically or to a fixed value. All parameters, i.e. the feature
dimensions k = 1..d, the feature weights wk, and the Minkowski order p depend on the goal
of the workload analysis only, but not on a particular DBS environment. Hence, they can be
set to fixed values. In Section 4.6 a concrete parametrization for workload shift detection is
proposed.
To avoid implicit weighting, the feature distance φ(Ak, Bk) is divided by the size of the

feature domain |Uk| in Equation 4.3. However, due to the Stream-based Processing, the size of
the feature domain may vary over time. The domain size of a feature representing the names

4.3 Feature Selection and Classification 63

of the relations, for example, is affected by new relations. Hence, the distance calculation could
determine different distance values for SQL statements in this case and so could violate the
Consistency.
A simple solution to ensure Consistency while supporting Stream-Based Processing would

be to store the distance values between known feature vectors. The domain size could then be
changed without affecting the consistency of previous distance calculations. But as an enlarged
feature domain size will lead to smaller normalized distance values for previously unobserved
feature vectors, the validity of the triangle inequality for the distance metric could not be en-
sured with this solution. For this reason, the value of the domain sizes |Uk| may not be changed
during workload classification. A simple lifecycle model for the workload classification has been
designed for this reason, which freezes all |Uk| after a learning phase (see Section 4.3.4.2). How-
ever, an evolving workload may still may cause feature distances φ(Ak, Bk) greater than the
original Uk. So the dilemma of conflicting requirements for consistency and stream-based pro-
cessing enforces a weakened definition of the normalization constraint, which usually assures
distance values in the interval [0; 1]. For stream-based workload classification these distance val-
ues can only be assured during the learning phase, and may be exceeded afterwards. However,
the increased distance values will actually favour the identification of new workload classes.
Hence, the increased distances for new SQL statements may be considered as an advantage
rather than a drawback.

4.3.4 Classification

Using the distance function described in Sec 4.3.3, clustering techniques can be employed to
perform self-managing workload classification. Section 4.3.4.1 describes the clustering algorithm
selected, and the quality criterion for the adequate number of classes. The management of the
classification rules for stream-based operation is the subject of Section 4.3.4.2.

4.3.4.1 Classification Rules

Partitional clustering algorithms are best suited for DBS workload events, because they can be
efficiently implemented and identify isotropic clusters (cf. [JMF99]). In contrast, hierarchical
clustering techniques also identify chain-like or concentric clusters and can be used to identify
streets or structures in an image, for example. Density-based clustering requires a partitioning
of the feature space, which is not possible for the nominal feature types of DBS workload events.
Partitional clustering techniques determine the centroid of a predefined number of clusters.

A centroid is the representative of a cluster, which is computed as the arithmetic mean of all
data items within the cluster. But the mixed-type feature vectors of DBS workload events do
not allow the computation of a centroid, because arithmetic operations are not possible on all
feature types. Instead, an alternative representative, the medoid, has to be chosen from the
events in the cluster. A medoid is the event with the lowest distance to all other elements in
the cluster.

64 4 Workload Monitoring and Analysis

Algorithm 4.1: Classification Rule Learning
Algorithm: LloydCluster
Input: Workload W , Number of Classes k (1 ≤ k ≤ |W |)
Output: Classes C

1 Mcurrent ← selectRandomVectors (W , k);
2 repeat
3 forall the vectors vi ∈ W do
4 mnearest ← getNearestMedoid (vi, Mcurrent);
5 assign (vi, mnearest);
6 end
7 Mold ← Mcurrent;
8 Mcurrent ← ∅;
9 forall the medoids mi ∈ Mold do

10 Vi ← getAssignedVectors (mi);
11 mi ← recalculateMedoid (Vi);
12 addMedoid (Mcurrent, mi);
13 end
14 until medoids = oldMedoids for two consecutive loops;
15 return C ← Mcurrent;

Because of its attractive time and space complexity, the k-Means algorithm is the most
popular partitional clustering algorithm. The original k-means algorithm by MacQueen [Mac67]
selects the first k events as cluster centroids. Each following event is assigned to the nearest
cluster, and afterwards the cluster centroid is recalculated. Despite its efficiency (it passes over
the events only once) this approach cannot be used for workload classification, because it may
violate the Consistency requirement: Due to the recalculation of centroids, a workload event
after some time may be assigned to a different workload class than before. The iterative variant
of the k-Means algorithm described by Lloyd [Llo82] for workload classification has been chosen
instead. An overview of the Lloyd-algorithm applied to DBS workload feature vectors is given
in Algorithm 4.1. It randomly selects k events from the workload W and uses them as the
initial medoids of clusters (1). Every event is then assigned to the medoid with the shortest
distance (3-6), where the distance is calculated according to Equation 4.3. Afterwards, the
medoids are recalculated for every cluster (9-13). The latter two steps are repeated until the
medoids are stable (14).
The clusters derived by Algorithm 4.1 constitute the workload classes. Every workload class is

characterized by the feature vector of its medoid. All incoming feature vectors can be classified
by determining the closest medoid, i.e. the closest class. Together with the distance function,
the resulting medoids therefore unambiguously define classification rules.
Like every partitional clustering algorithm, the algorithm by Lloyd requires the number of

classes k as a parameter. Several constraints apply to the selection of k: First, the number of
classes must be derived automatically (Self-Management). Second, the decision on the class

4.3 Feature Selection and Classification 65

Algorithm 4.2: Number of Workload Classes
Algorithm: Classification
Input: Workload W , Maximum Quality Loss δ (0 ≤ δ ≤ 1), Class Limit kmax
Output: Classes C

1 if |W | ≥ COMPR_RATIO ∗ kmax then
2 C ← LloydCluster(W , kmax);
3 if qnorm(W , C) ≥ δ then /* see Equ.4.5 */
4 return C;
5

6

7 kmin ← 1;
8 kmax ← min(kmax, |W |);
9 while kmin < kmax do

10 k ← (kmin + kmax)/2;
11 C ← LloydCluster(W , k);
12 if qnorm(W , C) ≤ δ then /* see Equ.4.5 */
13 kmax ← k − 1;
14 else kmin ← k + 1;
15 end
16 return C

number must consider the acceptable Loss of Quality. Third, the Class Limit must be regarded.
The prerequisite for choosing the right number of classes is a measure for the quality loss

caused by the classification. This loss of quality is caused by assigning the workload events
to clusters, where the medoids then represent all events in the clusters. So the loss of quality
depends on the dissimilarity between the classified event vi and its medoid mi, which can be
quantified by the distance function dp in Equ. 4.3. Hence, the overall loss of quality qlmse,
which is caused by the classification C of a workload W using k classes, can be computed as
the mean squared error

qlmse (C (W,k)) = 1
n

n∑
i=1

dp (vi,mi)2 . (4.4)

The quality loss measure qlmse could be used to define a threshold δ for the maximum quality
loss allowed. Due to the definition of dp, the range of values for qlmse depends on the order p
chosen for the Minkowski metric: During the learning phase the normalized feature distances
take values in the interval [0; 1], and the sum of the feature weights is also 1. Hence, assuming
the maximum normalized distance value 1 for every feature, the maximum distance for two
events is (∑d

k=1 c
p
k)1/p. For example, the maximum event distance for order 2 and ten equally

weighted features is ≈ 0, 32. So the quality loss measure is normalized to the maximum event
distance

qlnorm (C (W,k)) = qlmse

(∑d
k=1 c

p
k)1/p . (4.5)

66 4 Workload Monitoring and Analysis

0

0.05

0.1

0.15

0.2

0.25

0 100

200

300

400

500

600

700

800

900

1000

number of classes

quality loss

Figure 4.6: Quality loss caused by the classification of 1000 distinct feature vectors

Using qlnorm, the acceptable quality loss δ for a workload analysis function can be defined
independently from the order of the Minkowski metric. The workload classification then has to
find the minimum class number k such that qlnorm(C(W,k)) ≤ δ. For this task the approach
described in [CGN02] is employed by performing the binary search described in lines 7-15
of Algorithm 4.2. It uses the heuristic that the quality loss decreases monotonously with an
increasing class number. Figure 4.6 shows a sample plot for the normalized quality loss induced
by the workload classification depending on the number of classes (for the classification of 1000
distinct feature vectors). A cluster analysis is performed for the current number of classes in
every loop (11). Afterwards, the quality loss qlnorm for the clustering is compared to δ, and
the class number is increased or decreased accordingly. For large workloads it is likely that the
quality loss is exceeded even when the class limit is reached. To avoid the effort for a binary
search in this case, the algorithm has been extended with an optimization for large workloads
(1-4). When the workload is by factors (COMPR_RATIO) larger than the class limit, then a
clustering is performed with kmax first.

4.3.4.2 Classification Management

The algorithms in Section 4.3.4.1 expect a fixed list of workload events as parameters. They
make no provisions for a self-managed, stream-based workload classification with consistent
results. To achieve this goal, a lifecycle for the workload classification has been designed:
It is initialized in state learning, where the classification rules are learned from the observed
workload. Afterwards, the workload classification switches to state stable. In this state no
changes are made to the classes anymore, i.e. the medoids are frozen. Each element from the
continuous stream of events is assigned to the cluster (class) with the nearest medoid. In order
to ensure consistency, the workload classification must not switch back from state stable to
state learning on its own account.

4.3 Feature Selection and Classification 67

Rule Learning

The task of the learning phase is to find a classification for the DBS workload. This includes
the decision on the adequate number of classes, and the identification of the cluster medoids,
which represent the workload classes. Furthermore, the sizes of the feature domains (cf. Sec-
tion 4.3.3.2) must be determined. During the learning phase, the observed workload information
is not passed on to the subsequent workload analysis function. The major challenge regarding
the learning phase is the detection of its end. The goal is to freeze the classification rules as soon
as the classification reflects the DBS workload sufficiently well. The obvious solution would be
to execute the cluster analysis in short intervals, ending the learning phase when there are no
or only little changes in the results. This would cause significant overhead, because each run
would require the binary search for the class number.
The approach developed in this work for the detection of the end of the learning phase (see

Algorithm 4.3) is based on workload characteristics that can be obtained with less overhead.
First (lines 1-5), the workload is read in regular check intervals ci and buffered for the duration
t, where t can be used to define a minimum duration for the learning period. In every interval,
the total number of distinct feature vectors observed by then is stored (4). After the minimum
learning interval t, the algorithm regularly checks the ratio of new feature vectors, which have
been added to the observed workload during the last period t (6-13). For this purpose, it
compares the most current number of known distinct feature vectors (12) with the oldest
element in the ring buffer (11), which holds the number of vectors known time t ago. If the
value is above a threshold β, e.g. 5%, the workload observation continues until the ratio drops
below β (7). Otherwise, the learning phase of the classification rules ends, and the buffered
workload is analysed to settle the feature domain sizes. Afterwards, the classification rules are
derived from the observed workload using Algorithm 4.2 (15), and the classified events are
passed on. Thus, the classification rules must be computed only once.

Medoid Distance Classification

After the classification rules have been determined in the learning phase, the workload classi-
fication switches to the stable state. In this state, all incoming feature vectors are classified
by assigning them to the cluster with the nearest medoid. The classification is performed until
the workload classification receives an external order to start a new learning phase because of
a workload shift. An overview of the classification of feature vectors is given in Algorithm 4.4.
It shows that the class of an observed feature vector vobs is determined as the medoid with the
shortest distance in the set of medoids C (3). Only the medoid information is passed on to the
subsequent workload analysis function (17), whereas the original feature vector is discarded.
Even in the stable phase new feature vectors, which are significantly dissimilar from the

existing classes, may be observed because of an evolving workload. Assigning these dissimilar
vectors to existing classes would bias the classification result, because they would simply cause
a more frequent appearance of the existing classes. But the workload shift detection has a

68 4 Workload Monitoring and Analysis

Algorithm 4.3: Learning Phase
Algorithm: LearningPhase
Input: Minimum Learning Period t, Check Interval ci, New Statement Threshold β

(0 ≤ β)
1 l ← t / ci ; /* ring-buffer length */
2 for i = 0 to l − 1 do
3 W ← W ∪ observeWorkload(ci);
4 buffer [i] ← countDistinctFeatVectors(W);
5 end
6 n1 ← buffer [0]; n2 ← buffer [i];
7 while n2 > (n1 · (1 + β)) do
8 W ← W ∪ observeWorkload(ci);
9 i ++;

10 buffer [i mod l] = countDistinctFeatVectors(W);
11 n1 ← buffer [(i+ 1) mod l];
12 n2 ← buffer [i mod l];
13 end
14 settleFeatureDomainSizes (W);
15 Classification(W , δ, kmax) ; /* see Alg.4.2 */

particular interest on new workload types to detect changes (see Section 4.4). So even in the
stable phase, it must be possible to add classes in order to reflect new workload event types.
When creating new classes, the requirements of Consistency and Class Limit must be con-

sidered. To obey the class limit, a parameter kinc has been introduced that defines the limit for
additional classes in the stable phase (5). Ensuring the consistency of the classification is more
complex, as the cluster limits are not described explicitly, but only by the existing medoids.
For new classes it must be ensured that the feature vectors of other clusters will not suddenly
be assigned to the new class (stolen), because the distance to the new medoid is smaller. In
other words, it must be assured that the distance of all events assigned to the existing clusters
is smaller than to the medoid of the new cluster.
In order to guarantee the consistency of the classification results, the maximum distance

of all feature vectors that have been assigned to the medoid in the past has been stored as
the radius of each medoid in a first solution. Given the triangle inequality property of the
generalized Minkowski metric, the consistency of classification results can be guaranteed when
the distance between the new class and all other classes is at least twice as large as the other
classes’ radiuses. However, the experiments have shown that this condition is too restrictive,
because it fails whenever a new class might steal vectors from the exiting classes. Figure 4.7
illustrates this behaviour: No new class can be added for the vector v1 in this case, although
it would neither steal vectors from A nor B. The reason is that the distance to the medoid of
class A is not twice as large as A’s radius.
To overcome this problem the solution shown in Algorithm 4.4 has been developed. It focuses

4.3 Feature Selection and Classification 69

Algorithm 4.4: Classification using Medoid Distances
Algorithm: DistanceClassification
Input: Statement vobs, Classification Rules C, Class Limit kmax, Additional Classes

Allowed kinc
Output: ID of Statement Class

1 if mnearest ← lookup (vobs) then
2 return mnearest

3

4 mnearest ← getMedoid(vobs, C) ;
5 dist ← dp(vobs, mnearest) ;
6 if numberOfClasses(C) < (kmax + kinc) then
7 if 0 < getRadius(mnearest) < dist then
8 if ∀mi ∈ C :
9 ∀ vi ∈ mi :

10 dp(vi, lookup (vobs)) < dp(vi, vobs) then
11 mnew ← addClass(C, vobs) ;
12 updateRadius(mnew, 0) ;
13 storeStmt(vobs, mnew);
14 return getId(mnew);
15

16

17

18 if getRadius(mnearest) < dist then
19 updateRadius(mnearest, dist)
20 storeStmt(vobs, mnew);
21 return getId(mnearest) ;

on the identification of situations where a new class actually would steal vectors from other
classes. To make this decision, it is required to store all classified vectors and the medoid that
they are assigned to (13, 20). Before adding new classes it is then required to check whether the
new class would steal a previously classified vector from its medoid. As validating the distance
of all previously classified feature vectors for every new feature vector may cause significant
overhead, the radius of each class is also stored (12, 19). The prerequisite for creating a new
class is that the distance to the medoid, which the observed event would be assigned to, must
be at least as large as the radius of the nearest medoid (7). Only if this condition holds, the
distance to all other events is validated (8-10). If it passes the validation, the observed vector
is added as a new class (11-14). Hence, in the example in Figure 4.7, only the distance between
v1 and class B’s medoid would be compared to class B’s radius. As the validation then would
show that no vectors would be stolen from other classes, a new class could be created for vector
v1. Although this solution on the one hand comes at the cost of storing all classified vectors,
it on the other hand allows a quick classification of known incoming vectors by performing a
quick lookup against a hash map (1-2).

70 4 Workload Monitoring and Analysis

×

dimension 1

A

class radius
× medoid

feature vector
di

m
en

si
on

 2

×

v1

B
×

C

Figure 4.7: Medoid Distance Classes

Bounding Box Classification

In cases where a small memory footprint is required, the medoid distance classification described
above may not be an adequate solution, because it requires the storage of all classified feature
vectors in order to guarantee consistency. Hence, a second classification algorithm has been
developed, which on the one hand requires more maintenance overhead, but on the other hand
does not require the storage of all classified vectors. This algorithm is referred to as the bounding
box classification, because it does not assign feature vectors to classes based on the distance to
the closest medoid, but based on the bounding box that encloses the vector. In cases where
the vector is not enclosed by a bounding box, the bounding box of the nearest class either is
extended or a new class is created.
The bounding boxes of the classes are initially computed at the end of the classification

learning phase. However, settling the bounding boxes by determining the maximum and mini-
mum values along every dimension for the vectors in a class is not possible for DBS workload
events, because nominal feature type values cannot be ordered. Instead, the bounding box of
a class k is defined as a set of maximum distance values bki

, i = 1..d from the medoid along
every dimension. The distance values for every dimension can be calculated as the weighted,
normalized feature distances

bki
= max

v∈Vk

(
ck
φ(v,mk)
|Uk|

)
(4.6)

wheremk denotes the medoid of class k, Vk is the set of vectors assigned tomk during clustering,
and φ is computed according to Equ. 4.1. So due to nominal feature types, only the maximum
distance from the medoid can be calculated, but not the direction. This is illustrated in
Figure 4.8, where the bounding box size is symmetric for every dimension.
Knowing the bounding boxes of the classes, the classification algorithm can assign the ob-

served feature vectors to classes. Unfortunately, the bounding boxes of the initial classes identi-
fied in the learning phase may overlap in some cases. An example for this scenario is illustrated
in Figure 4.8, where the two initial classes A and B overlap. However, in these cases the classes
of the feature vectors are still unambiguously defined by the distances to the closest medoid.
So in cases where a vector is enclosed by more than one bounding box, the distances to the
medoids also have to be computed.

4.3 Feature Selection and Classification 71

×

×

×

×

×

dimension 1
di

m
en

si
on

 2

A

B

C

D

E v1

v2 initial class
added class

× medoid
feature vector

×
F

Figure 4.8: Original and Additional Box Classes

Algorithm 4.5: Classification using Bounding Boxes
Algorithm: BoxClassification
Input: Statement vobs, Classification Rules Corig, Add. Classification Rules Cadd, Class

Limit kmax, Add. Classes Allowed kinc, Bounds Increase Allowed binc, Blacklist B
Output: ID of Statement Class

1 if size(B) >= size(Corig) + size(Cadd) then
2 mnew ← addClass(Cadd, vobs, avgBnds());
3 return getId(mnew);
4

5 mnearest ← getClosestBoxMedoid(vobs, Corig, B);
6 if exceedsBounds(vobs, Corig) then
7 mnearest ← getClosestBoxMedoid(vobs, Cadd, B);
8

9 if exceedsBounds(vobs, mnearest) then
10 if numberOfClasses(Corig) < (kmax + kinc) and
11 growthLimitExceeded(vobs,mnearest, binc) then
12 add (B, mnearest);
13 return BoxClassification (vobs, Corig, Cadd, kmax, kinc, binc, B);
14

15 if overlapsIfAdded(mnearest, vobs, Cadd) then
16 add (B, mnearest);
17 return BoxClassification (vobs, Corig, Cadd, kmax, kinc, binc, B);
18

19 updateBounds(vobs, mnearest);
20

21 return getId(mnearest);

By using bounding boxes, ensuring consistency is easier than using the medoid distance
classification: As long as the classes do not overlap each other, stealing of vectors is impossible.
Thus, the consistency can be guaranteed by two constraints: new classes must not overlap any
other class, and extended classes must not overlap any class added in the stable phase.
An overview of the bounding box classification algorithm is given in Algorithm 4.5. For every

vector vobs, the closest bounding box from the set of the original classes Corig is determined first

72 4 Workload Monitoring and Analysis

(5). If this class does not enclose vobs, then also the classes added in the stable phase Cadd are
searched (6-7). If the vector is enclosed by any of the classes’ bounding boxes, then this class
is returned as the result (21). Otherwise, it has to be checked whether an existing class must
be extended or a new class must be created. A new class is created when the class limit has not
yet been reached (10), and none of the existing classes may be extended far enough to enclose
vobs (11)2. To check the latter condition, the classification algorithm is called recursively (13)
with the current class added to the blacklist B (12). When all classes have been marked as
unsuitable, a new class is created (1-3).
In case the bounding box of mnearest can be extended to cover vobs, it must be checked that

the extension would not cause an overlapping with any of the additional classes Cadd (15). An
example for this situation is illustrated in Figure 4.8: the closest class for vector v1 is E, but an
extension of the class would cause an overlapping with D. In this case, E would be added to the
blacklist and D (the second-closest class) could be successfully extended in the next iteration.
In some rare cases, none of the existing classes may be extended in order to enclose vobs. This
scenario is also illustrated in Figure 4.8: neither D nor E can be extended to cover v2, and also
A cannot be extended because it would overlap F. For these rare cases the algorithm has to
add a new class (1-3), even though this decision might violate the class limit. However, it is
essential in order to obey the consistency requirement.

4.4 Workload Shift Detection
Using the workload classification concepts described in Section 4.3 the diversity of the DBS
workload events (i.e. SQL statements) can be effectively reduced. The reduced diversity enables
the creation of a workload model, which describes the typical composition of the DBS workload.
Thus, workload shifts can be detected by comparing the currently observed workload to the
model.
This section describes concepts for the realization of a workload shift detection component.

For this purpose it first discusses the functional and non-functional requirements towards a
workload shift detection component in detail (Section 4.4.1). Afterwards, existing techniques
from various research areas are surveyed for their applicablility to DBS workload shift detec-
tion in Section 4.4.2. The application of the two most promising techniques (n-gram models
and two-window methods) to the problem of workload shift detection is then discussed in
Sections 4.4.3 and 4.4.4.

4.4.1 Workload Shift Detection Requirements

An overview of the requirements towards the detection of workload shifts for the purpose of
self-managing databases is illustrated in Figure 4.4. The following paragraphs discuss these
requirements in detail:

2The growth limit binc defines the maximum increase of the classes’ original bounds (e.g. 20%).

4.4 Workload Shift Detection 73

permanent change
detection

workload classes

workload shift alarms

workload shift detection self-
management

stream-based
processing

resiliance to
noise

compact
description

workload model

periodic change
provisons

comprehen-
sibility

high specificity
and sensitivity

observed workload

Figure 4.9: Overview of functional and non-functional workload shift detection requirements

Permanent Change Detection As discussed in Section 3.2, the decision of whether or not
a particular change in the workload does require a change in the DBS configuration is equiva-
lent to computing the required configuration change itself. As this computation is by far too
expensive to be performed continuously, the objective for workload shift detection has to be
weakened: the shift detection mechanism may identify all usage changes which might require a
DBS reconfiguration. In particular, the usage changes that should be detected are all those sce-
narios, which usually require a DBA to re-analyse the configuration of a DBS. So the following
scenarios must be detected as permanent workload shifts, because they lead to a permanent
change in the database usage:

• New Applications: When new database applications are deployed, they will cause addi-
tional workload on the DBS. To meet the performance requirements of all applications it
may be necessary to perform DBS reconfigurations. For example, it may be necessary to
choose a different set of indexes or to adapt the sizes of bufferpools.

• Obsolete Applications: A workload that does no longer occur may also require DBS
reconfigurations. If for example one database application was undeployed, some physical
access structures or bufferpools could become obsolete. Also, the system resources can
probably be re-distributed to better support the remaining applications.

• Modified Applications: With the installation of new releases, the functionality of enterprise
applications usually evolves over time. The resulting workload may change significantly
in every release.

74 4 Workload Monitoring and Analysis

• Application Usage Changes: Even with a constant number and type of database applica-
tions, the DBS workload may change due to the user behaviour. These changes can be
caused by the way the database applications are used by the end users. If for example the
number of users of a reporting tool doubled, the composition of the overall DBS workload
could shift significantly.

Periodic change provisions In addition to permanent shift scenarios, databases often also
face periodic workload shifts. Periodic shifts occur when a certain type of database usage
occurs in regular intervals. For the workload shift detection, it is important to distinguish
between two types of periodic shifts: Short-term patterns refer to periodic workload shifts where
the interval between the usage changes is small, e.g. batch updates in an 15 minutes interval
or hourly reports. In this case, the periodic reconfiguration analysis and execution effort is
likely to exceed the resulting benefit. Hence, short-term patterns must not be detected as a
workload shift. In contrast, the period length of long-term patterns justifies the reconfiguration
analysis effort. An example is a Data Warehouse (DWH) scenario, where the DBS is loaded at
night, and queried at daytime. These two distinct workloads require completely different DBS
configurations. Every change of the workload should therefore be detected as a workload shift.

Stream-based processing The input to the workload shift detection is a continuous stream of
workload classes which is produced by the workload classification component. In order to keep
the DBS configuration up-to-date when the workload changes, this stream of workload classes
should be analysed for shifts near-real-time. However, as for the workload classification there are
no strict real-time constraints, because the workload analysis can be performed independently
from the actual query processing.

Self-Management The workload shift detection is supposed to reduce the monitoring effort
for DBAs by automatically triggering a reconfiguration analysis when the workload of the DBS
changes. Hence, the workload shift detection must of course not impose additional administra-
tion overhead for the DBAs again, but must itself be completely self-managing.

Resilience to Noise The workload of a DBS can never be expected to be completely uniform.
In practice, there will always be minor fluctuations in the workload over time, e.g. because
of some exceptional maintenance operations. However, as the workload model holds valuable
knowledge about the typical workload over a potentially long period of time, these fluctuations
must not immediately cause the workload model to be replaced by a new model. The workload
model management must instead provide an adequate resilience to noise.

Compact Description For a lightweight shift detection, the typical workload on the one
hand should be represented in a compact model. It should therefore employ approximations

4.4 Workload Shift Detection 75

and abstractions to reduce the model size, and not simply maintain a complete history of all
workload classes ever observed.

Comprehensibility One of the lessons learned from the first autonomic features in commercial
DBMSs was that users do not trust in autonomic functionality [LLH+06]. For this reason the
workload model should be easily comprehensible to a DBA.

Adaptability The duration and intensity of fluctuations may vary for every DBS environment.
It must therefore be possible to adapt the threshold for workload shift alarms to a particular
environment. Ideally, the workload shift detection thresholds should be adapted automatically.

4.4.2 Design

For workload shift detection, the workload class instances are compared to a model of the typical
DBS workload. The following list summarizes the key aspects that have to be addressed for
workload shift detection.

• Model Learning: A model describing the typical workload has to be automatically learned.
An appropriate, comprehensible modelling technique has to be chosen for this purpose.

• Workload Assessment: The actual DBS workload must be continuously compared against
the learned model. Metrics must be found that can be used to describe how well the
observed workload matches the model. These metrics have to be assessed in a way that
on the one hand reliably detects the usage change scenarios, and on the other hand assures
resilience to noise.

• Model Adaptation: Whenever a significant workload shift has been detected, an alarm
should be raised which triggers the DBS reconfiguration. Afterwards, the workload model
must be automatically adapted in order to represent the changed workload.

Considering the shift scenarios that have to be detected, it is not required to recognize a
single new statement in the workload. Instead, significant changes in the overall composition
of statements must be recognized efficiently. Hence, statistical methods are applicable for
this task. In order to identify appropriate modelling and shift identification techniques from
this area, two distinct viewpoints can be taken: On the one hand, the workload events can
be considered as statistically independent, i.e. only the relative frequency of the individual
workload events is considered. The design of a solution from this viewpoint is discussed in
Section 4.4.2.1. On the other hand, also the context of workload events can be considered
(Section 4.4.2.2). The workload events are seen as statistically dependent in this case. This
viewpoint takes into account the behaviour of the applications, e.g. the typical order of SQL
statements in the transactions.

76 4 Workload Monitoring and Analysis

reference window

current window

Figure 4.10: Illustration of two-window approach

The statistical approaches outlined above are based on assessing the probability of individual
workload events. Concept shift detection techniques in contrast are based on characterizing the
typical features of events that belong to a data stream. The applicability of this technique for
DBS workload shift detection is discussed in Section 4.4.2.3.

4.4.2.1 Frequency Modelling

When considering the workload classes as a sequence of statistically independent events X =
(x1, x2, ..., xn), the problem of detecting workload shifts can be generalized to the problem of
change point detection. This well-known statistical problem is defined as the task of identifying
the point in time t1, when the distribution pθ of a sequence of independent variables X =
(x1, x2, ..., xn) changes from θ = 0 to θ = 1 and θ is a parametrization of the probability
distribution p [BN93]. By observing the occurrences of workload classes, knowledge about the
relative frequency of the individual workload classes can be gained (p1). Thus, the historic
workload information can be seen as a a probability distribution function of the database
workload. In order to detect workload shifts, this distribution can therefore be compared to
some reference probability distribution p0 describing the typical usage of the DBS.
A prerequisite for the detection of workload shifts using the distribution comparison is the

definition of the reference probability. Simply using the entire workload history for this purpose
on the one hand would cause overhead and on the other hand would not account for possible
workload evolutions over time. Instead, the usage of the two-window approach is appropriate,
which has successfully been employed in other change point detection scenarios (e.g. [SG07] and
[LS08]). With this approach, only the distributions within two sub-sequences of the workload
history are compared (see Figure 4.10). The workload in the first window (reference window)
describes the typical workload of the DBS, i.e. the workload model. Its position on the workload
information remains fixed until a workload shift is detected. In contrast, the current window is
constantly moved over the workload as new workload events occur. Both windows must have
the same size. From each of these windows a probability distribution can be computed by
counting the occurrences of the workload events.
Using the two-window technique, a workload shift can be detected by comparing the prob-

ability distribution in the current workload window with the probability distribution in the
reference window. In the statistical literature, a number of techniques for testing observed
data against reference distributions can be found [HEK09]. These tests typically compute a

4.4 Workload Shift Detection 77

test statistic, which quantifies the similarity of the distributions. However, many of these tests
are designed for comparing an observation against a standard distribution like the binomial
distribution or normal distribution (e.g. binomial test, χ2 goodness-of-fit test, t-Test). Oth-
ers, which support the comparison of arbitrary distributions, require continuously-scaled or
ordinal variables and are therefore not appropriate for the nominal workload classes (e.g. the
Wilcoxon-Mann-Whitney-Test). From the popular tests, only the χ2 homogeneity test allows
the comparison of arbitrary distributions for nominally-scaled variables. The usage of the χ2

homogeneity test for DBS workload shift detection is discussed in Section 4.4.4.

Other measures for the similarity of two distributions can be found in the area of information
theory. These measures are based on the entropy H(X) of an information source X, which de-
fines the average information content of the generated events. The mutual information I(X;Y),
for instance, is used to quantify the dependence between two information sources X and Y .
It is usually employed in order to represent the information obtained through a possibly noisy
channel by observing the output [HAH01], and is defined as

I(X;Y) = H(X)−H(X|Y)

=
∑
X

∑
Y

p(xi, yi)log2
p(xi, yi)
p(xi)p(yi)

. (4.7)

The term p(xi, yi) in Equation 4.7 refers to the joint distribution function of X and Y , which
is computed as p(xi, yi) = p(yi|xi)p(xi).

If for the purpose of workload shift detection the workload model (first window) was consid-
ered as X and the currently observed workload (second window) as Y , the mutual information
could be used to quantify their difference. A value of H(X) for the mutual information would
then indicate that the probability distributions are identical, whereas a value of 0 would indi-
cate independence between X and Y . Unfortunately, the calculation of the joint probability
function p(xi, yi) requires knowledge about the conditional probability p(yi|xi). This probabil-
ity can neither be observed nor computed for the DBS workload information and the workload
model, because the occurrence of an individual event can in no way be related to an event in
the reference window.

For the reasons given above, the mutual information cannot be used for workload shift
detection. But with the Kullback-Leibler divergence and the cross-entropy, information theory
provides two other distance measures. In contrast to the mutual information, these distance
measures are intended to compare two probability distributions p and q of only one information
sourceX. The cross entropy measures the average number of bits required for encoding an event
if the coding scheme is based on a distribution q instead of the true distribution p [HAH01]. It
is defined as

H(p; q) = H(p) +DKL(p||q) , (4.8)

78 4 Workload Monitoring and Analysis

where DKL(p||q) refers to the Kullback-Leibler divergence [KL51], which in turn is defined as

DKL(p||q) =
∑
X

p(xi)log2
p(xi)
q(xi)

. (4.9)

Thus, the cross entropy and Kullback-Leibler divergence differ only by the entropy H(p), which
is added to DKL(p||q) in Equation 4.8. For the purpose of workload shift detection, p repre-
sents the “true” distribution of the data, i.e. the observations of the current DBS workload,
whereas q reflects the workload model. So the entropy H(p) does not provide any additional
information on the similarity of the observations to the workload model and can be omitted.
Hence, Section 4.4.4 focuses on the usage of the Kullback-Leibler divergence for workload shift
detection only.

4.4.2.2 Behaviour Modelling

The approaches described in Section 4.4.2.1 assume that the workload events are statistically
independent. However, in real-world enterprise scenarios, the SQL statements are issued by a
fixed set of database applications. These applications implement a number of database trans-
actions, which are composed from a fixed number of statement templates or static SQL. The
probability of a workload event therefore may depend upon the events that have occurred
before. So the context in which a statement appears can also be taken into account for the
description of the typical DBS workload, i.e., the workload events can be considered as statisti-
cally dependent. Considering conditional probabilities in the approaches selected for frequency
modelling in Section 4.4.2.1 could be seen as one solution for this goal. But the problem that
arises in this case is that the probabilities of events might potentially depend on the entire
history of previous events. As finding the exactly the correct history length is a challenging
task, existing techniques for this purpose have been surveyed. It has been found that two dis-
tinct general approaches are commonly taken for solving this problem: On the one hand, time
series analysis (Section 4.4.2.2) offers techniques for identifying models of a complete history
of events by finding correlations between its values. On the other hand, there are techniques
which make simplifying assumptions and limit the history of events. This approach is often
used for language models (Section 4.4.2.2), which create approximate statistical descriptions of
events with conditional probabilities.

Time Series Analysis

A time series is an ordered sequence of data points measured at discrete points in time. Usually
these data points represent the values of a single observed data source, e.g. temperature data
observed by a sensor in regular intervals, stock quotes or company earnings. These types of time
series are characterized by a correlation between adjacent data points, i.e., their values are not
statistically independent. The primary objective of a time series analysis is the identification
of mathematical models that describe the observed time series data [SS00]. These models serve

4.4 Workload Shift Detection 79

the purpose of identifying trends in the data, and periodic or permanent changes in the data
over time. In particular, this knowledge is used in order to predict the future values of the time
series.
Several analysis techniques have been developed for the purpose of time series analysis.

These techniques can be distinguished into techniques that can be applied to the time-domain
representation of the time series, and into techniques for the frequency-domain representation.
The time-domain techniques describe the correlation between data points by identifying the
dependency of current values on past values in the time series. For stationary time series (where
the mean value function is constant and the auto-covariance does not depend on the absolute
time), the auto-correlation function exhibits linear correlations at specific time lags. Plots of
this autocorrelation function can be used to build auto-regression (AR) models and moving
average (MA) models of the time series. AR models express the dependency of the current
value on the past values, whereas MA models describe the effects of white noise (i.e. values of a
gaussian random variable with mean 0 and a constant variance) observed in the past. In order
to apply these analysis techniques to non-stationary time series additional transformations like
de-trending or differencing are required [SS00]. The combination of AR and MA models with
differencing are referred to as ARIMA models [BJR08].
Time series analysis in the frequency-domain does not analyse the source data directly, but

its decomposition into a linear combination of sine and cosine functions. The amplitudes of the
frequencies of the sine and cosine functions can be computed using Discrete Fourier Transforms
(DFT). Typically, a spectral analysis is performed on the resulting power spectrum in order to
identify the dominant frequencies. An analysis in the frequency-domain is especially suited to
examine the periodic nature of time series. However, as discussed in [SS00], similar results can
be retrieved both in the time-domain and in the frequency domain.
From a self-management point of view, mathematical models describing the workload of the

DBS are of course desirable. The typical workload then could be described in a very compact
way using AR and MA models and a trend function, for example. These models would not only
allow the detection of changes in the workload, but even the prediction of the future workload.
Unfortunately, the established time series analysis techniques described above cannot be used
for workload shift detection. The reason is that the existing time series analysis techniques all
require interval-scaled data items in the time series. They cannot be applied to the stream of
DBS workload events, because the DBS workload information is categorical data. The workload
classes (or the set of SQL statements that they resemble) can not even be ordered: for instance,
workload class 3 cannot said to be “smaller” or “greater” than class 10.
In addition to the classical time-series analysis for interval-scaled data, there has also been

research on categorical time series analysis; an overview is given in [Wei09]. However, most of
the proposed approaches are adaptations of the classical ARMA model, which require expert
knowledge for the identification and parametrization of the models. Their use would therefore
violate the self-management requirement of workload shift detection. [Wei09] also proposes the
use of markov models for categorical time series, which are subject of the following section.

80 4 Workload Monitoring and Analysis

s1

s2 s3

a12

a21

a31

a13

a32

a23

a11

a33
a22

b11 b12 b13 b14

b21 b22 b23 b24 b31 b32 b33

Figure 4.11: Illustration of a discrete hidden markov model

Language Models

The behaviour modelling approach intends to model the workload events issued by the DBS
applications and the context in which they appear. This approach could also be considered as
modelling the “language” that the applications “speak” towards the DBS. Hence, the concepts
available in the area of speech recognition and understanding have been surveyed. In this area
models are used in order to recognize and understand spoken voice. One modelling technique
commonly used for speech recognition are hidden markov models [Fin08]. A hidden markov
model, which is illustrated in Figure 4.11, consists of two layers: The first layer is a set of states
S = {si|i ≤ N}, for which transition probabilities A = {aij = P (sj|si)} are known. Hence, this
layer models a stochastic process, where the behaviour of the process depends on the previous
state only. In a second layer, the hidden markov models describe emissions O = {ok} that may
be generated in each of the states. The emission probabilities depend on the current state only
and not on previous states or emissions. Thus, for discrete emissions, the emission probabilities
can be described as a set B = {bjk = P (ok|sj)}.
Hidden markov models can be used to model stochastic processes which emit events according

to individual probabilities. For a given hidden markov model, the probability of a sequence of
observations O can be calculated. In addition, it is possible to infer the internal state changes
in the stochastic process. This fact is exploited in speech recognition to perform a classification
and segmentation at the same time, because it allows the identification of phoneme and word
boundaries. For this reason hidden markov models are commonly used to define acoustic
models, i.e. models which allow the identification of phonemes and words from a sequence of
measured feature vectors.
If the hidden markov models were used for the workload model, the probability of creating

a sequence of workload events from the model could be calculated. In other words, it could be
judged how likely it is to see the observed workload if the applications behaved as described in
the model. Thus, deviations from the typical behaviour (workload shifts) could be detected.
However, there is currently no algorithm that can automatically infer a hidden markov model

4.4 Workload Shift Detection 81

s1

s2 s3

a12

a21

a31

a13

a32

a23

a11

a33
a22

Figure 4.12: Illustration of a markov chain model of order 1

from a training probe [Fin08]. Hence, a basic model describing the typical behaviour of the
applications would have to be created by a DBA manually. This manual effort of course
violates the requirement of self-management and prevents the usage of hidden markov models.
Furthermore, the unique ability of performing segmentation and classification at the same time
is not required for DBS workload analysis, because the workload information already has a
symbolic representation in terms of workload classes.
Instead of hidden markov models, the usage of n-gram models appears much more appropriate

for creating a workload model. In speech recognition, n-gram models are used to create language
models, i.e. models describing the grammar of a language. The n-gram models are based on
markov chains, which can be used to model the behaviour of an event source behaving according
to a stochastic process. It is assumed that this stochastic process generates a sequence of events
X = (x1, x2, ..., xt : t ∈ T) in time space T , where each event X takes a value of the state space
S = (s1, s2, ..., sn : n ∈ N). For the stochastic process to be a markov chain it must fulfil the
markov property:

P (xi = si | x1 = s1, ..., xi−1 = si−1) =
P (xi = si | xi−m = si−m, ..., xi−1 = si−1) . (4.10)

So the markov property defines that the probability of events does not depend on the entire
history of previous events, but only on a limited history of length m, which is referred to as the
order of the markov chain. Markov chains of order 1 are often illustrated as a graph, where
the nodes represent the states S and the edges are attributed with the transition probabilities
between the states (see Figure 4.12).
The modelling of an exact markov chain model for a DBS workload model would of course

require thorough knowledge about the internal processing within the applications. For this
reason n-gram models consider the markov property only as an approximation, i.e.

P (xi = si | x1 = s1, ..., xi−1 = si−1) ≈
P (xi = si | xi−m = si−m, ..., xi−1 = si−1) . (4.11)

With n-gram models, the order of the markov chains in the n-gram models determines how

82 4 Workload Monitoring and Analysis

well the model approximates the underlying process. In contrast to hidden markov models
and markov chain models, n-gram models are therefore automatically learnable and adaptable,
i.e., they are adequate for meeting the self-management requirement of DBS workload shift
detection. Section 4.4.3 investigates the usage of n-gram models for workload shift detection in
detail.

4.4.2.3 Concept Modelling

As discussed in [Rei09], the detection of concept changes [YWZ06] is a research area in machine
learning and data mining, which has similar goals as workload shift detection: The detection
of changes in a stream of data. For this purpose a concept of the data is learned from a set
of training data. The training data consists of a set of data items, which are classified into
two classes “fitting” and “unfitting”. From this training data, the concept identifies selected
feature values which cause the data item to belong to one of these classes. For instance, all
data items with the features temperature = ’high’ ∧ clouds = ’low’ might be classified
as fitting. Thus, the concept is a classifier that assigns the incoming data items to exactly two
classes based on their feature values.
In order to detect changes in incoming data, most concept change detection approaches

examine the ratio of misclassified data items. For this purpose the class of the data item
suggested by the learned concept is compared to the real class of the data item. As long as the
concept of the data has not changed, the number of misclassifications will be small, and it will
increase when there are significant changes in the stream of data items. The approach presented
in [NY07], for example, uses statistical tests on the misclassifications to detect concept changes.
In contrast, [FHWY04] does not detect misclassifications continuously, but only observes the
average number of data items per class over time. Only when there are changes the real class
of the classified data items has to be determined.
Applying the approach of concept shift detection to the detection of workload shifts requires

the learning of a corresponding concept in the first step. But providing training data with ap-
propriate examples for “fitting” and “unfitting” workload events would impose a huge overhead
for the DBA. Hence, the concept can only be learned from the observable workload, which
resembles positive examples only. Afterwards, the learned concept can be used in order to
classify the actual workload of the DBS and to compute the misclassification rate. However,
to compute the misclassification rate it is required to know the correct class of each workload
event. For DBS workload shift detection this means that every workload event has to be la-
belled as either fitting or unfitting before the classification. As this is not possible for DBS
workload events, the concept shift detection techniques based on misclassification rate analysis
are not appropriate for workload shift detection.
In addition to the analysis of the misclassification approaches there are also some concept

shift detection approaches which operate on time windows. Their goal is to select a subset of
the history of data items that represents the current concept of the data stream as precisely

4.4 Workload Shift Detection 83

as possible. For this purpose they select weighted examples (e.g. [MM00]) or time windows of
varying size [KJ00]. These history subsets are constantly adapted to the evolving data stream.
Obviously, this behaviour is not adequate for workload shift detection, where it is the goal to
detect significant deviations from a reference model (not a continuous adaptation of the model).

4.4.3 n-gram Workload Models

This section details on the detection of workload shifts using n-gram models [HR08], which
have been identified as a promising technique in Section 4.4.2. It first describes the creation
of DBS workload models using n-gram models and afterwards describes the required lifecycle
management for the workload model.

4.4.3.1 Workload Modelling

From the perspective of the workload shift detection, the database applications can be consid-
ered as a stochastic process generating a workload W . The workload consists of a sequence of
workload classes (w1, w2, ..., wT) (cf. Section 4.3). As described in Section 4.4.2, n-gram mod-
els model events xt generated by a stochastic process, which takes values from a state space
S = (s1, s2, ..., sn : n ∈ N). Considering the goals of workload shift detection, these states si
can be seen as the representation of the internal state of the application when generating the
corresponding SQL statement at time t. For the mapping between W and the events X (whose
values are represented in the workload model) two possible approaches have been identified:

• Inference of Transactions: All workload events that were caused in the same type of
transaction are mapped to the same model state, i.e. each model state represents one
transaction type in the application programs. The transition probabilities between the
states express the user behaviour. This approach requires that the transaction-IDs are
passed on together with the workload class information by all previous processing steps.

• Statement Dependencies: In this approach each workload event is directly mapped to a
model state. The transition probabilities between workload events are computed accord-
ing to their order in W . Thus, they mainly express the dependency of SQL statements
within transactions (this depends on the markov chain length and the transaction lengths).

The inference of transactions has the advantage of resulting in a compact workload model with
a small number of states. However, there is usually no information about the type of transaction
in the workload W itself. It is instead necessary to identify the different transaction types by
analysing the transaction-IDs in historical workload traces. While this is straight-forward for all
transactions that consist of a fixed sequence of statements, it is a complex task for procedurally
controlled transactions, where the number and type of SQL statements varies depending on
loop- and branch-conditions. Yao et al. discuss the challenges of this problem and propose
a solution using heavyweight algorithms in [YAH05]. The resulting overhead for transaction

84 4 Workload Monitoring and Analysis

WorkloadClass1
[SELECT, customer, login]

WorkloadClass3
[INSERT, customer]

WorkloadClass4
[INSERT, orders]

WorkloadClass5
[UPADTE, stock, prodId]

80%

70%

15%

5% 30%100%

100%

WorkloadClass2
[SELECT, products, name]

Figure 4.13: Example for DBS-Workload modelled as Markov Chain of Order 1

inference would violate the goal of a lightweight workload monitoring solution that can be
executed continuously. Furthermore, the changes in the sequences and probabilities of the
transactions that could be additionally detected with this approach are of minor relevance for
workload shift detection. More important are the probabilities of SQL statement occurrences,
which cause the actual load on a DBS. For these reasons the advantages of mapping the workload
events to model states directly prevail, although this approach results in models with more
states. Hence, W and X are considered as identical in the following and the workload W

directly takes the values of the model states S. Figure 4.13 shows an illustration of such a
markov chain workload model using the statement dependencies mapping. In the example
shown a markov chain length of 1 is assumed, i.e. the probability of an event depends on its
immediate predecessor only. Each state represents a workload class, which is identified by a
unique number. The feature vector that each workload class stands for is illustrated, too.

As described in Section 4.4.2, n-gram models consider the markov property as an approxi-
mation only. Being aware of the approximation, n-gram models can automatically be learned
from training data by counting the occurrences of events:

P (xt | xt−n, ..., xt−1) = count(xt−n, ..., xt−1, xt)
count(xt−n, ..., xt−1)

(4.12)

For the creation and analysis of n-gram models, only sub-sequences with the length n of the
events X are considered (n-gram models result in markov chains of order n − 1). The quality
of the model is mainly determined by the choice of n for the n-gram size, which is a trade-off
between efficiency and accuracy.

As n-gram models are only an approximation of the real world process, every analysis on the
model faces the problem of unseen events. Unseen events are events that have not been observed
before, either because the event xt has not occurred yet at all, or because it has not been seen
with the history (xt−n, ..., xt−1) yet. To prevent these unseen events from being evaluated to a
probability of 0, there are a number of techniques described in the literature [Fin08]. For the
purpose of workload shift detection a combination of absolute discounting [Kat87] and backing
off [JM80] has been chosen, because it can be efficiently implemented and has been successfully
applied to other problem domains before (e.g. speech recognition [Fin99]).

4.4 Workload Shift Detection 85

4.4.3.2 Workload Model Assessment

For the detection of DBS workload shifts it is essential to assess how well the observed DBS
workload is described by the workload model. In statistics, the metric commonly used to
assess the quality of a probability model is the perplexity. For an observed workload Wobs, the
perplexity PP of an DBS workload n-gram model can be computed as:

PP (Wobs) = (P (wobs1 , ..., wobsT
))− 1

T

=
(

T∏
t=1

P (wobst | wobst−n ...wobst−1)
)− 1

T

(4.13)

For the computation of the perplexity, the probabilities of the individual SQL statements
P (Wobst) are taken from the workload model. Informally, the perplexity describes how “sur-
prised” the model is by the observed workload. Low values indicate that the observed workload
matches the model well, whereas high values are retrieved when there is a significant deviation.
Hence, the perplexity is suitable as a conformance indicator, which quantifies the similarity
between the workload model and the actual workload. Section 4.6 shows the perplexity values
for DBS workload models in various experimental results.
It is important to note that the perplexity definition only implicitly considers obsolete work-

load: The perplexity of a workload has the same result, even if a considerable number of
statements no longer occurs in the workload. However, removing the obsolete states from
the model and re-calculating the perplexity could lead to significantly smaller perplexity val-
ues. The workload shift detection mechanism described in the following therefore has to make
special provisions for this purpose.

4.4.3.3 Workload Shift Detection

Having introduced the basic concepts of n-gram model creation and assessment, now the man-
agement of the model for the purpose of workload shift detection is described. The workload
shift detection manages the workload model according to the lifecycle illustrated in Figure 4.14.
As the goal of autonomic databases is the reduction of the maintenance costs, the approach of
creating an initial workload model from a set of manually created training data is not suitable.
Instead, the workload model must be learned automatically. The shift detection logic therefore
always creates a new workload model in state “learning”, which indicates that the model must
still be trained in order to correctly describe the typical DBS workload. After the model has
learned the typical DBS workload it is switched to state “stable”, where it stays as long as
the fluctuations in the DBS workload are small. When a significant change is detected the
workload model switches to state “adapting”. In this state, it cannot be used for workload shift
detections, but must be trained for the changed workload.
The management of the model’s lifecycle is in the responsibility of the workload shift detection

logic. Considering the power of the selected n-gram modelling approach, there are three main

86 4 Workload Monitoring and Analysis

learning

stable adapting

Figure 4.14: Workload Model Lifecycle for DBS Workload Shift Detection

challenges that must be addressed in this logic:

• A noise-resilient workload shift detection technique based on the perplexity measure.

• The decision on the end of the learning/adaptation phase.

• The detection of outdated states and transitions in the model.

The solutions that have been developed for each of these challenges are discussed in the
following paragraphs.

Perplexity Monitoring for Workload Shift Detection

Using the perplexity metric, the similarity between the current workload of the DBS and the
workload model can be quantified. In order to decide when a workload shift actually is reported,
the perplexity value has to be monitored and analysed for significant changes continuously.
The first approach that has been evaluated for this purpose is a simple threshold-based analysis
technique. It exploits the fact that the value of the perplexity is meaningful with respect to the
number of events (i.e. workload classes) represented in the model (cf. Equation 4.13): If the
order of events is completely fixed according to the model and the observed workload adheres
to this fixed order, then the perplexity value is 0. If the events are completely random and this
randomness is perfectly reflected in the model, then the perplexity takes a value that is equal
to the number of events in the model. In the case of previously unseen events or event histories
the perplexity value exceeds this value significantly. Hence, the detection of workload changes
can be achieved by defining a threshold for the maximum allowed perplexity value.
The challenge faced by the threshold-based workload shift detection is to choose an adequate

threshold value. For a stable DBS workload that is created from the execution of a fixed
number of transactions, the perplexity values might be assumed to be close to 0, because the
sequence of statements within the transactions typically allows only little variation. However,
this assumption is only valid when there are only small numbers of users or large think times
between the transactions. When there are many concurrent transactions running on the DBS,
the sequence of events in the workload may become more random, i.e., the perplexity values tend
to take higher values. In addition, the events that are observed during the learning phase more
probably do not reflect some possible event histories. Figure 4.15 plots the perplexity values
that have been observed for the same stable DBS workload for different levels of transaction
concurrency. The workload has been created from a pool of 100 structurally distinct SQL

4.4 Workload Shift Detection 87

0

100

200

300

400

500

600

700

800

10
0

40
0

70
0
1.

00
0
1.

30
0
1.

60
0
1.

90
0
2.

20
0
2.

50
0
2.

80
0
3.

10
0
3.

40
0
3.

70
0
4.

00
0
4.

30
0
4.

60
0
4.

90
0
5.

20
0
5.

50
0
5.

80
0
6.

10
0

3 Users; 10 Stmts/s

10 Users; 50 Stmts/s

3 Users; 50 Stmts/s

10 Users; 10 Stmts/s

Perplexity

#Stmts

Figure 4.15: Perplexity Values for a Stable Workload depending on Transaction Concurrency

statements (mapped to 65 classes), which have been composed to a set of transactions with 1
up to 10 statementsper transaction. These transactions have then been executed by 3 and 10
users in parallel, where each user has created a load of 10 and 50 statements per second. It can
be seen that the average perplexity value increases with the number of parallel users and with
the number of statements per second.
By choosing a threshold for the perplexity, deviations from the usual perplexity values can

be detected. A threshold value of 1.5 times the number of workload classes has proven suitable
in the experimental evaluation (see Section 4.6.2), for example. However, as can be seen
from Figure 4.15, the perplexity curves typically exhibit spikes due to minor fluctuations in
the workload. Considering the resilience to noise requirement, a single value exceeding the
threshold should not immediately cause a workload shift alert. For this reason a workload shift
is reported only when a certain ratio (e.g. 30%) of perplexity values has exceeded the threshold.
The period considered to calculate this ratio is the duration of the short-term patterns.

While the threshold-based shift detection approach allows a simple and fast detection of
changes to the perplexity values, it depends on the characteristics of the typical DBS workload:
The higher the degree of randomness in the workload, the higher the threshold has to be chosen.
In order to avoid this effort for the DBA an alternative solution has been developed, which is
based on comparing the distribution Sreference of the perplexity values that have been observed
during the learning phase to the current perplexity value distribution Scurrent. The length of
these two periods again is determined by the length of the short-term pattern interval.
For the identification of significant deviations between these two distributions statistical tests

are an adequate measure. In the literature [Tri04], several tests for comparing distributions

88 4 Workload Monitoring and Analysis

can be found, e.g. the t-Test, the Welch-Test, the F-Test, and the Wilcoxon-Mann-Whitney-
Test. However – except the latter – all of these tests are parametric tests, i.e., they require
the two distributions to be normally distributed. For the purpose of workload shift detection
they are therefore not suitable, because a normal distribution cannot be assumed for these two
distributions in general. Especially the current sample, which may exhibit a clear trend away
from the previous mean value, may violate this assumption. The Wilcoxon-Mann-Whitney-Test
([Wil45], [MW47]) in contrast is a non-parametric test, i.e., it makes no assumptions about the
underlying probability distributions of the compared samples. For this reason, it has been
chosen in order to detect workload shifts from a history of perplexity values.
The null hypothesis of the Wilcoxon-Mann-Whitney-Test is that the two samples have the

same distribution, whereas the alternative is that they do not. In order to decide whether or
not the null hypothesis can be rejected, a test statistic U is computed from the rank sums of
the two samples. For this purpose the perplexity values from both of the samples are then
sorted according to their values, and each value is annotated with its rank in the merged list.
Afterwards, the rank sums Rreference and Rcurrent for both samples are computed by summing
up all ranks of their perplexity values. From the rank sums, the test statistic U is determined
as

U = min(U1, U2) (4.14)

where U1 and U2 are computed as

Ui = n1 ∗ n2 + ((ni ∗ (ni + 1))/2)−Ri (4.15)

and n1 refers to the number of perplexity values in the Sreference, n2 to the number of values in
Scurrent, and R1 and R2 refer to Rreference and Rcurrent, respectively. For sufficiently large sample
sizes (n1+n2 >= 20) the U test statistic is known to approximatively have a normal distribution
with mean µ = n1n2

2 and standard deviation σ =
√
n1n2

n1+n2+1
12 . Given a significance level α,

a critical value c can be easily determined from the cumulative distribution function of the
normal distribution. If the absolute value of U exceeds the critical value c, the difference in the
distribution of Sreference and Scurrent is considered significant. Hence, a workload shift alert is
raised in this case. A smoothing of the perplexity values as in the threshold-based approach
is not required in this case, because the compared samples already cover an entire short-term
pattern interval.

End of Learning Phase Detection

The decision on the end of the “learning” phase for a workload model can also be made by mon-
itoring the perplexity values. One possible solution is again based on comparing the perplexity
values against a threshold. If the perplexity does not exceeded the threshold for a certain period
of time during the learning phase, the model can assumed to be stable. Like before, the length
of this period is determined by the maximum length of short-term patterns: As according to the

4.4 Workload Shift Detection 89

time

perplexity

median

0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1

dichotomization

Runs R1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4.16: Computing the Number of Runs for a Perplexity Time Series

requirements identified in Section 4.4.1 these patterns must not be detected as workload shifts,
they must be represented in the model. So after the workload has matched the model for this
timespan, short-term patterns are part of the model. Like in the stable phase, the perplexity
values in the learning phase may of course also show spikes caused by natural fluctuations in
the workload. So to avoid unnecessary long learning periods, it is considered to be sufficient if
only a certain ratio (e.g. 70%) of perplexity values does not exceed the threshold.
The threshold-based end-of-learning-phase detection has the disadvantage that the adequate

threshold value has to be chosen depending on the workload characteristics of a particular
DBS. A solution which meets the self-management requirements should instead automatically
identify the perplexity level which represents the “stable” workload. In other words, it should
be automatically detected when the perplexity time series data becomes stationary, i.e., when
there is no trend in the perplexity data any more. For the purpose of identifying stationary
time series data the Runs-Test [WW40] is applicable. Like the Wilcoxon-Mann-Whitney-Test
the Runs-Test is a non-parametric test. It maps the problem of detecting a stationary time
series to the problem of detecting randomness in dichotomous data. Hence, the perplexity data
has to be dichotomised in a first step. This task is performed by computing the median of all
perplexity values in the analysis interval. All values greater than the median are labelled as 1,
whereas all smaller values are labelled as 0. Afterwards, the number of runs R is determined,
where a run is defined as a sequence of data points with equal values (either 0 or 1). Figure 4.16
illustrates the computation of the number of runs.
The null hypothesis of the Runs-Test is that the data is randomly distributed around the

median value, i.e. the time series is stationary. For this assumption to be valid, the number of
runs must not be small or too high. In order to determine the critical number of runs which
lead to a rejection of the null hypothesis, again an approximation of the R test statistic to a
normal distribution is used. The R test statistic is approximately normally distributed with
mean µ = 2c0c1

c0+c1
and standard deviation σ =

√
2c0c1(2c0c1−c)

c2(c−1) [Tri04], where c0 denotes the number

90 4 Workload Monitoring and Analysis

of values labelled with 0, c1 the number of values labelled with 1 and c the total number of
values. So the critical value for the rejection of the null hypothesis can be computed using
the cumulative probability function of the normal distribution with the given parameters µ
and σ and the significance level α. Examples for the detection of the learning phase using the
Runs-Test are given in Section 4.6.2.

Detection of Outdated Model Elements

While the perplexity metric provides a good indicator for new events or a different event compo-
sition, it is not meaningful in case of obsolete events (see Section 4.4.3.2). Hence, the following
ageing mechanism has been incorporated into the workload model management: Every transi-
tion in the model is attributed with a timestamp, which indicates the most recent observation
of the transition. When the age of a transition has exceeded a certain age, its information is
removed from the model. For a consistent assessment of deviations from the workload changes,
again the perplexity metric is utilized: an artificial sample probe is generated from the workload
model before the removal of model elements, and then the perplexity for this sample probe is
computed against the new, reduced model. If the perplexity value exceeds the threshold, a
workload shift due to obsolete workload has occurred.

Workload Shift Detection Algorithm

Algorithm 4.6 summarises the overall threshold-based workload shift detection logic using n-
gram models. The test-based workload shift detection is performed analogously. In a first step,
the shift detection logic converts the observed workload Wobs to n-grams (1). Every n-gram
consists of the observed event (workload class) and the history of n−1 preceding events, where
n − 1 is given as a predefined value CHAIN_LENGTH. Based on these n-grams, it computes the
perplexity for the current model according to Equation 4.13 (2). The subsequent actions depend
on the state of the model: If the model is in state “learning” or “adapting”, then the transition
probabilities in the model are recalculated according to Equation 4.12 (27), and new states are
added to the model for previously unknown statements in this step. Afterwards the workload
shift detection logic checks whether the model may be switched to state “stable”. For this
purpose it evaluates whether or not the workload has been observed for at least the duration of
the short-term pattern STP and the ratio of perplexity values that have exceeded the threshold
THRESH (19-20). If the ratio is below the configured stability factor STAB_FACTOR, the model is
set to state “stable” (23). An alarm is raised in this case only if the model has previously been
in state “adapting”, because now the DBS workload is assumed to have reached a stability level
again, and a DBS reconfiguration analysis is reasonable (22).
In contrast, if the model is in state “stable”, then the model is not changed at all. That is,

even if there are minor differences between the observed workload and the model, the transition
probabilities and states are not updated. The workload shift detection logic solely checks the
ratio of perplexity values that have exceeded the threshold during the last short-term pattern

4.4 Workload Shift Detection 91

Algorithm 4.6: Workload Shift Detection with n-Gram Models
Algorithm: detectShift
Input: observed workload Wobs, workload model model

1 nGrams ← convertToNGrams (Wobs, CHAIN_LENGTH);
2 pp ← model.computePerplexity (nGrams);
3 ppHistory.add (pp);
4 if model.state = ”stable” then
5 if ppHistory.getLatest(STP).getRatioAbove(THRESH) > STAB_FACTOR then
6 model.state ← ”adapting”;
7 model.clear ();
8 else
9 if model.hasOutdatedStatesAndTransitions (2 · STP) then

10 probeNGrams ← model.generateProbe ();
11 model.removeOutdatedStatesAndTransitions (STP);
12 if model.computePerplexity(probeNGrams) > THRESH then
13 raiseAlert ("DBS Workload Shift. Analysis required.");
14

15

16

17

18 if model.state = ”learning” or model.state = ”adapting” then
19 if ppHistory.length() > STP then
20 if ppHistory.getLatest(STP).getRatioAbove(THRESH) < STAB_FACTOR then
21 if model.state = ”adapting” then
22 raiseAlert ("DBS Workload Shift. Analysis required.");
23 model.state ← ”stable”;
24 return;
25

26

27 model.learnFrom (nGrams);
28 if model.state = ”adapting” then
29 model.removeOutdatedStatesAndTransitions (STP);
30

31

interval, and changes the model state to “adapting” if necessary (5-7). Afterwards, the ageing
mechanism described above is applied to the model (9-13). For a good estimation of the effects
of the deletion of model elements, it is essential to always remove all elements of a past time
period in one step. In order to be consistent with the existing concepts, the length of this past
time period is also set to STP. If the changes performed in this step have been considered as
significant, an alarm must immediately be raised to trigger appropriate reconfigurations.

92 4 Workload Monitoring and Analysis

Advanced Workload Modelling Concepts

The presented concepts for workload shift detection using n-gram models can be easily extended
to suit different requirements: The workload management concepts of IBM DB2 [CCI+08], for
example, allow to distinguish between a set of workload event origins (users, applications). So
if a DBA requires the identification of changes in the behaviour of a single application, then
the model can be restricted to consider this particular set of statements. In the same manner it
is of course be possible to build multiple application-specific or user-specific workload models.
This allows a more fine-grained detection of workload changes. However, a self-management
logic controlled by high-level goals always has to consider the system-wide effects of possible
reconfiguration actions. A single overall workload model therefore is considered sufficient for
this purpose, because even if the change can be restricted to a single application or user,
a-system wide analysis has to be performed anyway.
Like the application-specific workload models, it is also possible to build timeslot-specific

models. If for instance the DBA knows that the workload of the DBS differs significantly
between daytime and nighttime, separate models can be learned for them. But as this approach
would require a deep understanding of the DBS workload by the DBA, an automated detection
of these periodic workload scenarios is more appropriate. A solution to this problem is described
in Section 4.5.

4.4.4 Two-Window Approaches

The n-gram modelling technique described in Section 4.4.3 creates approximate statistical de-
scriptions of the dependence between workload events. On the one hand this approach rep-
resents the behaviour of the application programs in the model, but on the other hand it
also causes long learning intervals and spikes in the conformance indicator due to previously
unseen event histories. Section 4.4.2 therefore has identified two-window approaches, which
consider the events as statistically independent, as an alternative solution. In the following,
Section 4.4.4.1 first details the basic two-window analysis algorithm, before Section 4.4.4.2
presents two different similarity measures for the distributions in the windows.

4.4.4.1 Two-Window Workload Shift Detection

As introduced in Section 4.4.2, the two-window approaches are based on maintaining two
windows on the observed workload data. The first window (reference window) defines the
model of the workload, i.e. the section of the workload data which defines the typical workload
of the DBS. This window remains fixed while the workload is stable. The second window
(current window) defines the current workload of the system and is therefore shifted over the
data as new workload information arrives (cf. Figure 4.10). Both windows have the same size.
In order to meet the self-management requirement, the reference window must of course

be learned automatically (and not be provided by a DBA). For this reason the two-window

4.4 Workload Shift Detection 93

Algorithm 4.7: Workload Shift Detection with Two-Window Models
Algorithm: detectShiftTW
Input: observed workload Wobs, the current model state state

1 currentWindow.appendTrailing (Wobs);
2 currentWindow.removeLeading (Wobs.size ());
3 currentDistribution ← currentWindow.countAbsClassFreq ();
4 ci ← currentDistribution.compare (referenceDistribution);
5 ciHistory.add (ci);
6 if state = ”stable” then
7 if ciHistory.getLatest(STP).getRatioAbove(THRESH) > STABILITY_FACTOR then
8 state ← "adapting";
9 currentWindow.clear ();

10 referenceWindow.clear ();
11

12

13 if state = ”learning” or state = ”adapting” then
14 if ciHistory.length() > STP then
15 if ciHistory.getLatest(STP).getRatioAbove(THRESH) < STABILITY_FACTOR then
16 if state = ”adapting” then
17 raiseAlert ("DBS Workload Shift. Analysis required.");
18 state ← "stable";
19 return;
20

21

22 referenceWindow.appendTrailing (Wobs);
23 referenceDistribution ← referenceWindow.countAbsClassFreq ();
24

approaches require a similar lifecycle management as the n-gram models: The shift detection
logic creates a new two-window model in state “learning”. In this phase the observed workload
is recorded and added to the reference window. After the reference window sufficiently well
describes the workload, the two-window model is switched to the state “stable”. In this state
the reference window remains fixed and the current window starts to slide over the incoming
workload information. These two windows are then compared in regular intervals. If there is
a significant deviation between the event distributions, the workload model is changed to state
“adapting”, where a new reference window is built up and a workload shift is reported.
The overall workload shift detection algorithm for two-window models is given in pseudo

code in Algorithm 4.7. For every incoming probe of workload information Wobs the workload
events are appended to the current window. At the same time the corresponding number
of oldest, i.e. leading, elements is removed from the current window (1-2). Afterwards the
probability distribution of the current window is determined by counting the occurrences of the
events in this window. The algorithm computes a conformance indicator ci from the resulting

94 4 Workload Monitoring and Analysis

distribution by comparing it to the distribution of the events in the reference window (3-4).
The two comparison techniques that have been evaluated for this purpose are described in the
following Section 4.4.4.2.
The subsequent processing steps depend on the state of the model: If the model is in state

“learning” or “adapting”, the reference window is also extended by the observed workload
information and its distribution information is adapted accordingly (22-23). In addition, the
algorithm checks whether or not the learning phase may be ended (13-19). Algorithm 4.7 for
this purpose employs the same threshold-based check as used by Algorithm 4.6 for the n-gram
models. However, also the Runs-Test on the history of conformance indicators ciHistory could
be used. If the model is in state “stable”, then the history of conformance indicators has to be
analysed for a workload shift. Again, either the threshold-based approach used in Algorithm 4.7
(7-10) or the Wilcoxon-Mann-Whitney-Test can be applied for this purpose.

4.4.4.2 Similarity Metrics

The two-window workload shift detection requires a metric for the similarity of the probability
distributions of the events in the reference window and the current window. Section 4.4.2 has
identified two adequate techniques for this purpose: the χ2 homogeneity test and the Kullback-
Leibler-Divergence. The usage of these techniques for workload shift detection is detailed in
the following paragraphs.

χ2 homogeneity test

The χ2 homogeneity test calculates a test statistic, which quantifies the probability that several
samples of event observations adhere to the same probability distribution. In contrast to other
tests the χ2 homogeneity test is especially suited for DBS workload shift detection, because
it does not require the comparison to a theoretical distribution but can directly compare two
arbitrary distributions given by samples. In the case of two-window models, the samples that
have to be compared are the reference window and the current window. The null hypothesis is
that both windows adhere to the same distribution. By comparing the resulting test statistic
of the χ2 homogeneity test with the χ2 distribution, the conformance indicator required by the
two-window workload shift detection algorithm can be easily computed. As the χ2 homogeneity
test is suitable for categorical, i.e. nominally-scaled, data, it is applicable to the workload class
information that constitutes the input stream for workload shift detection.
The calculation rule for the test statistic of the χ2 homogeneity test is defined as

χ2 =
k∑
j=1

m∑
i=1

(nij − Eij)2

Eij
(4.16)

where j denotes the sample, i identifies the event type, nij refers to the number of observations
of event i in sample j, and Eij denotes the expected number of observations given that the null

4.4 Workload Shift Detection 95

Table 4.3: Illustration of Marginal Totals Computation
Class 1 Class 2 Class 3 Totals

j = 1 (Reference Window) n11 = 5 n21 = 1 n31 = 3 n∗1 = 9
j = 2 (Current Window) n12 = 4 n22 = 2 n32 = 3 n∗2 = 9
Totals n1∗ = 9 n2∗ = 3 n3∗ = 6 n∗∗ = 18

hypothesis holds. The expected values are calculated as

Eij = ni∗n∗j
n∗∗

(4.17)

where ni∗, n∗j, and n∗∗ denote the marginal totals of the observations.
Table 4.3 shows an example which illustrates the calculation of the values described above for

the two-window workload shift detection scenario. In the example, only three workload classes
are distinguished. For every class the table cells report the absolute number of observations in
the samples. It is important to note that the number of samples which have to be compared is
always exactly two, i.e. j ∈ {1; 2}, where j = 1 refers to the reference window and j = 2 to the
current window. Furthermore, the sizes of the two windows are identical, so that n∗1 = n∗2.
Both n∗1 and n∗2 obviously take the value of the window size (and the value of n∗∗ is always
twice the window size). Considering this equality of n∗j for all j and the calculation rules for
the expected values Eij in Equation 4.17, the values of Eij do not depend on j anymore but
only on i. Thus, Equation 4.16 can be simplified to

χ2 =
m∑
i=1

(ni1 − Ei)2

Ei
+

m∑
i=1

(ni2 − Ei)2

Ei
(4.18)

=
m∑
i=1

(ni1 − Ei)2 + (ni2 − Ei)2

Ei
(4.19)

for the two-window scenario.
For sufficiently large samples (n > 30), the derived test statistic χ2 is known to have a χ2-

distribution with (k − 1)(m− 1) degrees of freedom. So in order to decide whether or not the
samples adhere to the same distribution, χ2 is usually directly compared to the critical value
of the χ2-distribution with (k − 1)(m − 1) degrees of freedom and the given significance level
α. The critical value is the point where –according to the χ2-distribution – 100(1 − α)% of
the events are expected to have a smaller value than the test statistic. If the value of the test
statistic exceeds the critical value, the null hypothesis is usually immediately rejected.
In order to increase the resilience to noise and to fit the requirements of the two-window

model, the χ2 homogeneity test methodology has been modified for the purpose of workload
shift detection. Instead of directly comparing the test statistic against the critical value, the
cumulative probability function of the χ2-distribution with (k − 1)(m− 1) degrees of freedom
is evaluated at the position of the test statistic value. The result quantifies the probability

96 4 Workload Monitoring and Analysis

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

10
0

40
0

70
0
1.0

00
1.3

00
1.6

00
1.9

00
2.2

00
2.5

00
2.8

00
3.1

00
3.4

00
3.7

00
4.0

00
4.3

00
4.6

00
4.9

00
5.2

00
5.5

00
5.8

00
6.1

00

3 Users; 10 Stmts/s
10 Users; 50 Stmts/s
3 Users; 50 Stmts/s
10 Users; 10 Stmts/s

Conformance Indicator

#Stmts

Figure 4.17: χ2 Conformance Indicator Values for a Stable Workload at different Transaction
Concurrency Levels

that the χ2-distribution with (k − 1)(m− 1) degrees of freedom takes a value smaller than the
test statistic. The smaller this value is, the more similar are the compared samples, i.e. the
reference window and the current window.
As illustrated in Figure 4.17, the conformance indicator remains at a low level (with minor

disturbances) for a stable workload. The number and amplitude of spikes and fluctuations are
much smaller than those of the n-gram models. Except the beginning of the learning phase,
the level of the conformance indicator values of the χ2 homogeneity test does not depend
on the concurrency of the transaction executions. Hence, a threshold can be defined much
more easily than with the n-gram workload shift detection. Considering the semantics of the
conformance indicator, the threshold expresses the probability for the incorrect rejection of
the null hypothesis (type I error). In other words, the threshold defines the probability of
incorrectly assuming that the reference window and the current window do not adhere to the
same distribution, while in fact they do. The experimental results shown in Section 4.6.2
illustrate that the commonly used significance level of 5%, i.e. a threshold of 0.95 yields a
robust workload shift detection in most scenarios.

Kullback-Leibler Divergence

In addition to the χ2 homogeneity test statistic Section 4.4.2 has identified the Kullback-Leibler
divergence [KL51] as appropriate for comparing the two probability distributions that can be
observed in the workload windows. Being a measure from information theory, the Kullback-
Leibler divergence computes the expected number of additional bits which are required to
encode events when a code based on q instead of the true distribution p. It is usually cal-

4.4 Workload Shift Detection 97

culated according to Equation 4.9. The larger the value of the Kullback-Leibler divergence,
the less similar are the probability distributions. In contrast to the χ2 homogeneity test, the
Kullback-Leibler divergence is limited to the comparison of exactly two probability distribu-
tions. However, for detecting workload shifts with the two-window approach this limitation
is not relevant, because there are only exactly two probability distributions which have to be
compared (the one obtained from the reference window, the other one from the current window).

The definition of the Kullback-Leibler divergence in Equation 4.9 is not symmetric, i.e., its
value changes when the two probability distributions p and q are swapped. A symmetric form
of the Kullback-Leibler divergence, the Jenson-Shannon divergence [Lin91], is therefore used
instead. The Jenson-Shannon divergence is computed as

DJS(p||q) = 1
2

(∑
X

p(xi)log2
p(xi)
q(xi)

+
∑
X

q(xi)log2
q(xi)
p(xi)

)
. (4.20)

The Jenson-Shannon divergence DJS(p||q) therefore computes the average value of the two
Kullback-Leibler divergences d(p||q) and d(q||p).

For DBS workload shift detection the probability distributions p and q are derived from the
relative frequencies of the workload events in the reference window and current window. As the
windows only cover a subset of the entire workload generated by the DBS applications, there
is the possibility of events which can be observed in one of the two windows only. Hence, its
corresponding relative frequency in the other window would be computed to 0. Considering
the definition of the Jenson-Shannon divergence in Equation 4.20, these cases can cause the
following anomalies: If an event xi has been observed in the current window but not in the
reference window, i.e. p(xi) = 0, then the fraction q(xi)

p(xi) in the second summand is undefined,
whereas the value of the first summand is 0. If an event xi has been observed in the reference
window but not in the current window, i.e. q(xi) = 0, then the fraction p(xi)

q(xi) in the first
summand is undefined, whereas the value of the second summand is 0. So in both cases
the Jenson-Shannon divergence is undefined. Even assuming a value of 0 for the undefined
summands in these cases does not help, because then the overall contribution of event xi to
DJS(p||q) is 0. Hence, the probability distributions p and q would appear to be more similar,
although in fact they are not. For these reason p and q are not computed as the simple relative
frequencies, but according to the definition of Krichevsky and Trofimov [KT81]:

p(xi) = Nrw(xi) + 0.5
n+ |X|/2 , q(xi) = Ncw(xi) + 0.5

n+ |X|/2 , (4.21)

where Nrw(xi) refers to the number of observations of xi in the reference window, Ncw(xi) to
its observations in the current window, n to the window size and |X| to the number of distinct
events. The definition of Krichevsky and Trofimov thus causes a redistribution of probability
mass, which serves the purpose of avoiding undefined or 0-valued summands for the divergence
calculation.

98 4 Workload Monitoring and Analysis

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

10
0

40
0

70
0

1.
00

0

1.
30

0

1.
60

0

1.
90

0

2.
20

0

2.
50

0

2.
80

0

3.
10

0

3.
40

0

3.
70

0

4.
00

0

4.
30

0

4.
60

0

4.
90

0

5.
20

0

5.
50

0

5.
80

0

6.
10

0

6.
40

0

3 Users; 10 Stmts/s
10 Users; 50 Stmts/s
3 Users; 50 Stmts/s
10 Users; 10 Stmts/s

Conformance Indicator

#Stmts

Figure 4.18: Kullback-Leibler Divergence Conformance Indicator Values for a Stable Workload
at different Transaction Concurrency Levels

With the corrections by Jenson and Shannon and by Krichevsky and Trofimov the Kullback-
Leibler divergence can be directly used as a conformance indicator for the two-window model
workload shift detection. Figure 4.18 illustrates that this conformance indicator remains at a
low level for a stable workload. Like the χ2 conformance indicator, its level does not depend
on the concurrency of the transaction executions. However, the values of the conformance
depend on the number |X| of distinct events in the windows. The larger the number of distinct
events, the larger the value of the Kullback-Leibler divergence. A threshold-based workload
shift detection therefore has to consider |X| when deciding on a value for the shift detection
threshold. Experiments have shown that a threshold of

tKLD = 0.1log(|X|) (4.22)

ensures a reliable detection of workload shifts and provides sufficient resilience to minor fluctu-
ations in a stable workload. The experimental results for various evaluation scenarios are given
in Section 4.6.2.

4.5 Workload Shift Prediction
The workload shift detection concepts described so far focus on recognizing permanent changes
in the DBS workload, e.g. because of new DBS applications, or changes in the number or
behaviour of the application users. In addition to these irregular, permanent changes to the
workload, DBS often also face (long-term) periodic changes to the workload. For example,
the workload in a DBS used for data warehousing significantly differs between daytime, when

4.5 Workload Shift Prediction 99

complex queries are processed, and nighttime, when bulk-updates are executed. In this case,
the DBS performance would significantly benefit from two distinct configurations: indexes,
large sort areas, and a high optimization level at daytime, and no indexes, utility function
heap space and a low number of parallel users at nighttime. Of course, the periodic patterns
may also be more complex. For example, there may be OLTP workloads in the morning and
afternoon hours, whereas reporting queries are executed at noon and in the evening, and batch
updates at night. Furthermore, there may be long-term patterns in the workload like monthly
or quarterly reports.

The concepts for workload shift detection discussed so far are perfectly suitable to detect these
changes in the workload. Every periodic workload change is reported as a change to a new,
previously unknown workload which requires an expensive reconfiguration analysis to detect
possible reconfiguration actions. However, if the new workload is almost identical to a previously
observed workload, the overhead for the reconfiguration analysis can be avoided. Instead of
re-computing the appropriate DBS configuration after every periodic change, the appropriate
DBS configuration for a particular workload profile can be stored and immediately applied
when the workload reappears. Thus, it is possible to set-up a near-optimal DBS configuration
without any reconfiguration analysis overhead immediately after a workload change. Moreover,
the appropriate DBS configuration could even be applied pro-actively when a periodic workload
change is due.

Existing DBS self-management functions do not currently consider periodic workload changes
explicitly. Off-line tools like index advisors [DDD+04],[ZZL+04] or configuration advisors
[KLS+03] do not consider changes in the workload at all, but the DBA has to manually
re-execute them when he suspects a benefit. In contrast, on-line self-management functions
automatically adapt the DBS to usage changes. Many of these functions (e.g. automated mem-
ory managers [DZ02], [SGAL+06]) learn a model of the observed system behaviour. As this
model is valid for a specific workload only, it produces incorrect results when the workload
changes. Hence, several hours may be required to learn a new model and to adapt the DBS to
it. By then, the workload may already have changed back to the old pattern again. Although
the adaptation to workload changes in other on-line self-management functions may be faster
(e.g. index selection [BC07]), they do not consider workload periodicity explicitly. Hence, they
may for example trigger the costly creation of a new index, although the current workload will
most probably be replaced soon.

The following sections therefore describe the design of a novel analysis framework [HHR10]
that identifies periodic workloads based on the workload shift detection concepts. Section 4.5.1
first identifies the key requirements. Section 4.5.2 then describes how recurring workloads can
be identified, before Section 4.5.3 discusses the identification of periodicities. The prediction of
future workload changes is discussed in Section 4.5.4.

100 4 Workload Monitoring and Analysis

Monday
06:00

Monday
18:00

Tuesday
06:00

Tuesday
18:00

time

regular workload

interval workload

pattern workload

Figure 4.19: Types of DBS workload periodicity

4.5.1 Workload Shift Prediction Requirements

The goal of the identification and prediction of periodic changes or patterns in the DBS is the
fast reactive or even pro-active adaptation of the DBS configuration to these changes. For this
purpose, it must meet the following requirements:

Recurring Workload Detection – A prerequisite for the detection of periodicities in the
workload is the identification of recurring workloads. Hence, it is necessary to store historic
information that characterizes the workloads that have been observed in the past. Workloads
that are sufficiently similar to workloads in the history must be identified as the same workloads.

Periodic Pattern Detection – From the workload history all types of periodicity in the
workloads must be identified. Figure 4.19 illustrates the types of periodicity that can be dis-
tinguished: Regular workloads are workloads that can be seen at specific timestamps, e.g. every
morning from 8 AM to 10 AM. Interval workloads in contrast appear in regular intervals,
e.g. every 10 hours. Finally, pattern workloads refer to workloads whose appearance follows a
certain pattern, e.g. repeatedly every 2 and 4 hours.

Pattern Adaptation – As the workload and the periodicities might evolve over time, the
accuracy of the predictions must be continuously validated and adapted.

Dependability – Incorrect configurations for a DBS may cause a high processing overhead
and – due to unavailability – even business losses. The predictions made about future workload
changes must therefore be highly dependable. Hence, it must be possible for the DBA to define
a minimum number of repetitions of the periodic workload, before periodicity is assumed.

Robustness – In real-world DBS, periodic workloads will be subject to fluctuations. On the
one hand, the starting time and the duration of workloads may vary slightly for every appear-
ance of the workload. On the other hand, there may be exceptions to the usual periodicity,
e.g. due to server downtimes. The workload shift prediction must provide robustness to these
fluctuations. However, the limits for the accepted fluctuations should be definable.

Self-Management – Like the other processing stages of the workload analysis, the workload
shift prediction should not impose any additional configuration overhead on the DBA.
As described in the Recurring Workload Detection requirement, the prerequisite for the pre-

diction of periodic workloads is the identification of workloads that have been observed in the

4.5 Workload Shift Prediction 101

active workload
models

workload shift alarms

workload shift prediction

self-
management

recurring
workload
detection

workload shift detection

periodicity information

self-management logic

workload model
workload model

workload model

workload history

active workload
model

dependability

robustness

periodic pattern
detection

pattern
adaptation

Figure 4.20: Workload Shift Prediction Requirements Overview

past. Hence, a precise characterization of observed workloads must be recorded and stored in a
workload history. This characterization is already provided by the workload models that serve
as a description of the typical workload of the DBS for workload shift detection. Thus, the
information about the currently active workload model has to be passed to the workload shift
prediction analysis component whenever a new workload model has been learned. Figure 4.20
illustrates this relationship of the workload shift prediction to the workload shift detection and
the requirements discussed above.
With the periodicity analysis of DBS workloads based upon the workload models created in

the workload shift detection component, the major challenges for predicting periodic workload
changes can be summarized as follows: A concept for the comparison of workload models to
identify recurring workloads (Section 4.5.2), a periodicity detection based on the activation
timestamps of workload models (Section 4.5.3), and the adaptation of the periodic patterns at
runtime (Section 4.5.4).

4.5.2 Identification of Recurring Workloads

As described in Section 4.5.1, the detection of recurring workloads is a prerequisite for the
detection of periodicities. So instead of simply discarding the outdated workload model in case
of a workload shift, the framework must store the workload model for future reference. Hence,
a set of historic workload models must be maintained by the workload shift prediction solution.

102 4 Workload Monitoring and Analysis

workload shift
detection

DBS

model identification
active
models

Mn

model pool

M2M1

Mact

periodicity analysis

workload history

monitoring

M1

M2

start end model

M1

08:0018:00
08:0006:00

02:00 06:00

model identifiers

model history

M1

periodicity
detection validation

periodic
pattern

08:0002:0008:1502:00...

W1

Wact
Wn

Figure 4.21: Recurring Workload Model Identification and Periodicity Detection

These historic workload models are illustrated as a model pool in Figure 4.21.
Whenever a workload shift occurs and a workload model Mact is activated, the model must

be compared to the set of existing models M1 to Mn. If a similar workload has not been
observed before, Mact is added to the pool with a new model identifier Mn+1. If there already
is a similar modelMi in the pool, thenMact may be discarded. In either case only the identifier
of the model (Mi or Mn+1) is necessary for the subsequent periodicity detection stage (see
Section 4.5.3).
The appropriate technique for comparing workload models depends on the types of the work-

load models. For the two-window approach described in Section 4.4.4, a workload model is
defined by the reference window. Hence, the models can easily be compared to each other by
employing the selected distance metric (Kullback-Leibler divergence or χ2 homogeneity test
statistic), because these metrics are symmetric. Every workload model Mi (i.e. reference win-
dow) from the model history is then compared to the currently activated model Mact (which
then resembles the current window). If the resulting conformance indicator is below the thresh-
old, then the models are considered identical. As this approach requires the compared windows
to have an equal size, the larger window may have to be truncated.
If instead of a two-window model an n-gram model is used, the identification of similar

models is more complex. A straight-forward approach for the comparison of n-gram models can
exploit the fact that the underlying n-gram models of the workload models are approximations
of markov chains. Hence, each workload model can be represented as a matrix, where the
matrix values describe the transition probabilities between the workload classes. Comparing the
workload models thus could be performed by comparing the matrixes. However, this approach
suffers from two drawbacks: First, the size of the matrixes increases exponentially with the
length of the markov chains. For the tri-gram models used in workload models (which resemble
a chain length 2), the matrix size is n2 ∗n, i.e., it grows cubically with the number of workload
classes. Second, even almost identical DBS workloads will lead to minor differences in the

4.5 Workload Shift Prediction 103

models because of natural fluctuations in the application users’ behaviour. Hence, an exact
comparison of the matrix elements is not appropriate, but a new measure for the “similarity”
of two matrixes is required.
For the above reasons a different approach for the comparison of workload models has been

realized, which integrates seamlessly with the n-gram workload shift detection concepts. As
described in Section 4.4.3.2, the existing decision on whether or not an observed DBS workload
matches the current workload model is based on the perplexity computation. This approach can
also be generalized for the comparison of two workload models Mact and Mi. For this purpose,
the perplexity of the workloadWact, that has been used to learnMact, can be compared to model
Mi. If the perplexity value is below the threshold used by the workload shift detection, then the
model Mact can be seen as similar to Mi. However, this similarity measure is not symmetric: if
the model Mi comprises a large number of workload classes, but the model Mact contains only
a small subset, then the perplexity values may still be small. Hence, also the workloadWi, that
has been used to create Mi, must be compared to model Mact. This bi-directional comparison
is also illustrated in Figure 4.21.
While the described model comparison techniques integrate seamlessly with the workload

shift detection techniques, there are also two limitations which apply to their usage in the
overall workload monitoring and analysis framework: First, the comparison of the models can
only be based on a threshold for the compliance indicator or perplexity value. A usage of
the Wilcoxon-Mann-Whitney-Test is not possible, because only a single conformance value is
determined. Second, the comparison techniques assume that the semantics of the workload
classes do not change. However, when there is a workload shift and the feature classification is
activated, then a new clustering will be performed on the observed workload information. The
clustering identifies new medoids as workload classes so that the workload models cannot be
compared to each other. For this reason the described model comparison techniques can only be
used for the signature classification introduced in Section 4.3.2. As the signature classification
exhibits some limitations compared to the feature classification (e.g. the lacking support for
a strict class limit), the model comparison technique in the future should be extended by a
possibility to preserve class identities when a re-clustering is performed. However, even with
the signature classification the periodicity detection significantly reduces the reconfiguration
analysis overhead in enterprise scenarios with periodic workloads.

4.5.3 Periodicity Detection

As illustrated in Figure 4.21, the workload history comprises the model identifiers along with
their begin and end timestamps. To detect periodicities in this type of histories Fourier trans-
forms are typically used (Section 4.5.3.1). However, as this technique does not meet all of the
requirements of a workload shift prediction solution, an alternative custom solution is described
in Section 4.5.3.2.

104 4 Workload Monitoring and Analysis

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-3 -2 -1 0 1 2 3

Original
K=1
K=3
K=5

(a) Approximation of a periodic triangular
signal with Fourier transforms

0

0.1

0.2

0.3

0.4

0.5

0.6

0ω 1ω 2ω 3ω 4ω 5ω
frequency

amplitude

(b) Amplitude spectrum of the fourier transform
with K=5

Figure 4.22: Power Spectrum of a Fourier Transform

4.5.3.1 Discrete Fourier Transform

Fourier series describe periodic signals as a linear combination of sine and cosine functions,
whose frequencies are multiples of a fundamental frequency. Hence, a time-based periodic signal
can be described as an amplitude spectrum, which denotes the amplitudes of the combined
trigonometric functions. As outlined in Figures 4.22a and 4.22b, only multiples of a fundamental
frequency will show amplitudes. Using a Discrete Fourier Transform (DFT), any discrete (non-
)periodic signal can be represented in terms of an amplitude spectrum with a real and an
imaginary component. To avoid having to distinguish both of these components, usually the
power spectrum is computed (which is defined as the squared magnitude of the complex value;
see [But06]). If the signal is periodic, this power spectrum shows energy at integral multiples of
some fundamental frequency only. This characteristic is exploited by many existing periodicity
detection approaches (e.g. [PN93] , [Buc09], [GRCK07]).
In order to apply the DFT to a history of DBS workload models, the model history must

be converted into a discrete signal. The first step towards this goal is to separate the models
by their identifiers, leading to individual model histories. Each model history defines when a
particular model has been active (see Figure 4.21). Thus, the workload periodicity detection
is simplified to detecting periodicities for single models. In the second step, each model his-
tory is converted into a time-discrete signal. For this purpose several approaches have been
investigated, the most appropriate of which has been to add a data point to the signal for
every activation of the model, where the value of the data point is the duration since its last
activation (see Figure 4.23a). Two activations are always separated by a data point with the
value 0. However, due to the characteristics of the DFT calculation, the transformation results
are more accurate if every data point is inserted twice.
With the model history converted to a time-discrete signal, the DFT can be used to compute

the power spectrum. If only the fundamental peak and its multiples have amplitudes, then

4.5 Workload Shift Prediction 105

M3 activation
timestamps

Mon, 08:00-12:00
Tue, 08:15-12:00
Wed, 08:00-12:15
Thu, 08:00-12:00

...

24h

12h

Activation
Interval

ActivationCount
1 2 3 4 5 6 8 9 10 111270

(a) Workload Signal

Amplitude

0 1 2 3 4 5 6 8 9 10 117 Frequency
(b) Power Spectrum

Figure 4.23: Representation of Model Histories

the signal is periodic. However, for DBS workload periodicity detection the robustness require-
ments demands that minor fluctuations must be allowed. In particular, a limit for the allowed
deviations from the period must be definable. Hence, a periodicity measure p is defined, which
describes the degree of periodicity of a workload model Mi as

pMi
=

K∑
i=1

Fiω/
∑
i

Fi (4.23)

where ω denotes the fundamental frequency and Fiω denotes the amplitude of iω. So as
in [Buc09] and [PN93], pMi

is computed as the ratio between the energy in the fundamental
frequency and its multiples, and the total energy in the power spectrum. A value of 1 indicates
perfect periodicity, and the value drops with increasing non-periodicity. In the example in
Figure 4.23b almost all energy is at multiples of the fundamental frequency (i=3, i=6, i=9).

The detection of ω, which is a hard problem in general, can be solved in a straight-forward
manner for the analysis of workload models: Due to the dependability, a minimum number
of repetitions rmin must have been observed before a workload pattern is confirmed as being
periodic. Whenever a new model is activated, the model history is checked for a pattern that
shows exactly rmin repetitions. So pMi

is calculated with ω = rmin, and if the value is above a
certain threshold the model is marked as periodic. It is important to note that this approach
requires an immediate check for periodicity for all activated models Mi that have not yet been
marked as periodic. Otherwise, it could be incorrectly identified as non-periodic just because
there are more than rmin repetitions in the history.

Using DFT, the pMi
measure provides an elegant solution to the problem of quantifying

the periodicity of regular, interval and pattern workloads. However, as will be shown in Sec-
tion 4.6.4, the responsiveness of pMi

to non-periodicity depends on the period length. Defining
a total threshold for the fluctuations of the model (e.g. 30 minutes) is not possible. Thus, a sec-
ond solution model interval analysis has been designed for detecting DBS workload periodicity
with absolute thresholds.

106 4 Workload Monitoring and Analysis

Algorithm 4.8: IntervalAnalysis
Input: IntervalList Ii, Min. Periods rmin (rmin ≥ 2), Max. Fluctuation maxFluct
Output: Periodic pattern Pi

1 for k ← 1 to k ∗ rmin > Ii.length do
/* check range: [0;k ∗ rmin − 1] */

2 for i← 1 to rmin do
3 for j ← 0 to k − 1 do
4 sl[j].add(Ii[((i− 1) ∗ k)) + j]);
5 end
6 end
7 for j ← 0 to k − 1 do
8 if max(sl[j])− min(sl[j]) > maxFluct then
9 range is aperiodic; continue outer loop;

10

11 end
12 for j ← 0 to k − 1 do
13 Pi[j]← avg(sl[j]);
14 end
15 k ← k + 1;
16 end
17 return Pi

4.5.3.2 Model Interval Analysis

Like the Fourier-based approach, the model interval analysis considers only the activation
timestamps of workload models. In contrast, the duration of the model activations is not
considered, because it is only relevant for the self-management function and for the detection
of periodic workload changes. Furthermore, it also analyses the history of each workload model
separately and is designed to operate continuously.
The model interval analysis “manually” analyses the intervals between the activations of a

workload model Mi, which are stored in an activation interval list Ii. Each activation interval
Iij in this list is computed as the difference between two subsequent activations Aij−1 and Aij
of Mi. From Ii, the model interval analysis then has to detect the three types of periodic
patterns (periodic, interval and pattern workloads). The detection of interval workloads is
straight-forward: all intervals in Ii must be identical. The detection of periodic and pattern
workloads in contrast requires a more complex analysis. If, for example, a periodic workload
is activated daily at 08:00 and 14:00, then this results in the following activation intervals:
[6h;18h;6h;18h;...]. Hence, the patterns in Ii may comprise several intervals (6h; 18h in this
case).
To detect all required patterns, the model interval analysis algorithm (Algorithm 4.8) analyses

the activation interval list from the most recent interval Ii[0] to the past. In iteration k, the
interval list is analysed from the most recent time Ii[0] to Ii[k ∗ rmin− 1]. The rationale of this

4.5 Workload Shift Prediction 107

sublist 0
sublist 1
sublist 2

pattern 0pattern 1pattern 2pattern 3

Ii[0]Ii[1]Ii[2]Ii[3]Ii[4]Ii[5]Ii[6]Ii[7]Ii[8]Ii[9]Ii[10]Ii[11]

Figure 4.24: Illustration of Algorithm 4.8 for p = 4 in iteration k = 3

approach is that for k = 1 the interval list is analysed for rmin identical subsequent intervals,
for k = 2 it is analysed for rmin pattern occurrences consisting of two intervals, for k = 3 for
rmin pattern occurrences consisting of three intervals, and so on. Figure 4.24 illustrates the
analysis of an interval list for k = 3. The interval values are assigned to k sub-lists sl, where
the j-th interval value of each chunk is assigned to the same sub-list sl[j] (2-6). Thus, the
periodicity of the interval values can be judged by comparing the entries within each sub-list:
if they are identical, then the interval values are periodic with pattern length k. The intervals
between the workload model activations are computed as the average of all the observed values
in each sub-list (11-14). As can be seen from the pseudo-code in Algorithm 4.8, the analysis
of the interval list does not stop when the first periodic pattern has been found. Instead, it is
continued until the entire activation interval list has been covered, because even longer patterns
might be found in the interval list. Comparing the interval values for equality in the sub-lists
is too strict because it does not not allow for any fluctuations (robustness). For this reason the
decision on whether or not a given list of interval values is periodic is controlled by a parameter
maxFluct (e.g. 30 minutes). Only if the difference of the maximum and minimum interval
values of all sub-lists is smaller than maxFluct, the range is considered to be periodic (7-10).
The model interval analysis described in Algorithm 4.8 reliably detects the periodic, interval

and pattern workloads. In contrast to the Fourier-based approach described in Section 4.5.3.1,
it allows the definition of an absolute value for fluctuations.

4.5.4 Adaptation of Periodic Workload Patterns

As illustrated in Figure 4.21, the task of the validation step is to evaluate the periodic patterns
identified by the periodicity detection step, estimate future workload changes from these, and
validate whether the actual workload changes match the predictions. As in the periodicity
detection step, the appearances of each workload are evaluated separately for this purpose.
Thus, a workload change is predicted whenever a workload model is likely to appear according
to its periodic pattern. An example for a periodic pattern P1 of a workload model M1 is given
in Figure 4.25. According to the approaches described in Section 4.5.3, this pattern consists of
the intervals between the model activations only. So P1 is a list with the values [4h, 12h, 8h].
The future appearances of a model are easy to compute by evaluating the individual period-

icity patterns provided as a result of the periodicity detection step. However, due to occasional
irregularities in the workload, it may happen that the workload does not appear when it is ex-

108 4 Workload Monitoring and Analysis

P1[1] = 4h P1[2] = 12h

P1[3] = 8h

Model M1 Activation

Figure 4.25: Example of a Periodic Pattern

previous
activation Texp Treal

maxFluct

t

Pi[j]old

Pi[j]new

Figure 4.26: Adaptation of the Activation Intervals within Periodic Patterns

pected to. Furthermore, the intervals in the periodic pattern may evolve over time, or the entire
periodic pattern may even become invalid. Thus, the actual appearances must continuously be
compared to the expected appearances of the model.
Completely discarding the knowledge about periodic patterns as soon as there is a single

exception to the expected appearance is not adequate (robustness). The knowledge about the
periodicities instead has to be adapted over time, considering singular events as exceptions.
The validation of the periodic patterns is described in Algorithm 4.9, which validates whether
the activation of a workload model Mi at timestamp Treal conforms to the activation intervals
defined in its periodic pattern Pi. It requires the starting time Tstart of the current period and
the counter j of previous model activations in the current period as parameters. From this
information, the expected activation time Texp of the workload model is computed by summing
up the intervals (up to the current activation counter) (1-4). Afterwards, it is checked whether
or not the model was activated within the expected time period (considering maxFluct 5).
If so, then the interval knowledge in Pi[j] is adapted to potential fluctuations by replacing
it with the average of the expected interval and the actually observed interval (6-8). This
adaptation of the pattern is also illustrated in Figure 4.26. If the activation is premature, then
it is considered as an occasional singular event and is ignored (15). If the activation is late,
a (persistent) failure counter missing is increased. If this counter exceeds a given threshold
maxFail, the periodic pattern is discarded and a new pattern must be identified using the
concepts described in Section 4.5.3 (11-12). Otherwise the workload model activation counter
j is increased by 1, and the validation function is called recursively (14).

4.6 Evaluation 109

Algorithm 4.9: Pattern Validation and Adaptation
Algorithm: ActivationValidation
Input: Pattern Pi, Period Start Tstart, Activation No. j (0 ≤ j < Pi.length), Activation

Treal, Max. Fluctuation maxFluct, Max. Failures maxFail
Output: true/false

1 Texp ← Tstart;
2 for i← 0 to j do
3 Texp ← Texp + Pi[i];
4 end
5 if |Texp − Treal| < maxFluct then
6 Iobs ← Treal − (Texp − Pi[j]);
7 Pi[j].set((Pi[j] + Iobs)/2);
8 return true;
9 else

10 if Treal > Texp then
11 if ++missed > maxFail then
12 return false;
13 else
14 return ActivationValidation(Pi, Tstart, j + 1, Treal, maxFluct, maxFail);
15

16 return true;
17

With the described approach it is possible to compare the activations of a workload model
against the periodic patterns. So periodic patterns can be adapted to evolutions in the workload,
and severe deviations may even cause the re-analysis of the workload model’s history.

4.6 Evaluation

The following sections present the results of the experimental evaluation of the workload mon-
itoring and analysis framework. All concepts developed for workload classification, workload
shift detection and workload shift prediction have been evaluated with respect to their func-
tional properties and the analysis overhead they cause. Section 4.6.1 introduces the workload
generator used to evaluate the workload monitoring and analysis framework. Section 4.6.2 then
compares the characteristics of the described workload shift detection techniques. The effects
of the workload classification concepts on the workload shift detection are presented in Sec-
tion 4.6.3. Section 4.6.4 describes the experimental evaluation of the workload shift detection
approaches, before Section 4.6.5 gives a summary of the evaluation results.

110 4 Workload Monitoring and Analysis

workload generator

workload composition

workload specification

0 120 1 100% 10 10

from to load-ID weight ramp-up fade-out

110 480 2 100% 10 0

240 300 1 20% 0 0

load-ID:

frequency:

type:

TX-length:

users:

1

10 /s

TX-like

10

10

statement pool

pool size
table prefix

#selection columns
#projection columns
#relations

#tables
column prefix

Figure 4.27: Load Specifications and Load Compositions in the Workload Generator

4.6.1 Workload Generator

The functional evaluation of the workload shift detection approaches must be based on the
requirements defined in Section 4.4.1. For instance, it has to be evaluated whether or not
the framework detects workload changes due to new applications, obsolete applications and
usage changes. In order to create these evaluation scenarios, a workload generator has been
implemented, which distinguishes workload specifications and workload compositions.
A workload specification simulates the load issued by a single DBS application. As illustrated

in Figure 4.27, the workload specification comprises two parts: the description of the statement
pool and the information on how the workload is generated from the statement pool. The
statement pool represents the SQL statements that are issued by an application. It can either
be retrieved from a trace file, or a synthetic pool can be generated. In the latter case, informa-
tion on the characteristics of the statement pool must be provided (the pool size, the number
#tables of relations accessed by the application, a table prefix and column prefix to distinguish
the statements from other loads, and the ranges #selection columns and #projection columns
restricting the number of columns in the select and where clauses).
The generated or predefined statement pool is used by the workload generator to compose a

synthetic application workload. For this purpose it starts a number of threads, which indepen-
dently select statements from the statement pool and thus compose an overall workload. The
number of threads therefore represents the number of users using a DBS application. Each of
the users accounts for a certain number of statements, which has to be given as the workloads
frequency (in statements per second). For the selection of statements from the statement pool
three options are available. First, the statements can be selected randomly. This option sim-
ulates a workload with no or very little correlation between a workload event and its history.
Second, the statements can be selected in order. This option simulates a workload where every
event is determined by its immediate predecessor. Third, a transaction-like workload can be
generated. In this case the statement pool is segmented into a number of transactions, where
every transaction comprises 1 to TX-length statements. The thread simulating the application
user then randomly selects one of the transactions and executes the transaction in sequence.

4.6 Evaluation 111

Figure 4.28: Screenshot of the graphical user interface designed for the workload generator,
workload classification and workload shift detection

The think times between the selection of the statements are calculated from the frequency
information. In case of a random selection of sequential processing, the think times are evenly
distributed in order to meet the frequency requirement. For transaction-like processing, the
think times between the statements within a transaction can be configured to be smaller than
the average think time, e.g. only 5%. In this case the think time between the transactions is
increased accordingly to meet the overall workload frequency requirements.
To simulate the workload shift scenarios required for the functional evaluation, the specified

workloads can be composed to evaluation scenarios. These scenarios are defined using workload
compositions. A workload composition allows the specification of start-times and end-times
for workloads. As shown in the example illustrated in Figure 4.27, every workload may be
used several times within a workload composition. Every usage of a load may furthermore
be attributed with a weight, which applies to the frequency of the referenced workload. In
the example in Figure 4.27, the third line in the workload composition refers to workload
specification 1 with a weight of 20%. Thus, the frequency of the load is not the predefined 10
statements per second, but only 2 statements per second. To allow smooth or long-running
transitions between the workloads, ramp-up and fade-out periods can additionally be defined.
The left part of the screenshot in Figure 4.28 shows the graphical user interface that has been
developed for controlling the parameters of the workload generator.
At runtime, the workload generator first creates or loads the statement pools defined by

the workload specifications. For every time a workload specification is referenced in the work-

112 4 Workload Monitoring and Analysis

workload generator

workload instance 1

thread 1.1

next sleep interval

end-TS

ramp-up end-TS
fade-out-start-TS

default sleep interval
start-TS

statement pool
workload 2

SELECT col1 FROM Rel ...

statement pool
workload 1

SELECT * FROM Tab ...

12:02:00

12:00:10
12:01:50

100ms
12:00:00

inTransaction
5ms
true

workload instance 3

end-TS

ramp-up end-TS
fade-out-start-TS

default sleep interval
start-TS

12:03:00

12:02:00
12:03:00

500ms
12:02:00

workload instance 2

end-TS

ramp-up end-TS
fade-out-start-TS

default sleep interval
start-TS

12:04:00

12:02:00
12:03:50

50ms
12:01:50

thread 3.1

next sleep interval
inTransaction

25ms
true

thread 2.1

next sleep interval
inTransaction

2.5ms
true

workload analysis

monitoring preprocessing classification shift detection

next statement next statementnext statement

Figure 4.29: Load Generation Threads at Runtime

load composition, a separate workload instance is created. However, as shown in Figure 4.29,
instances of the same workload specification use the same statement pool. Each workload
instance creates the number of threads defined by the number of users in the workload speci-
fication. These threads share the same activation and deactivation timestamps, ramp-up and
fade-out-information and the average think time between two generated workload events (de-
fault sleep interval). The default sleep interval is calculated from the frequency information
in the workload specification and the particular weight definition in the workload composi-
tion. Every thread in a thread group acts as an individual user. Hence, it holds a pointer to
the next statement and has a thread-specific sleep interval. For sequential and random work-
loads the thread-specific sleep interval matches the default sleep interval, whereas it changes
for transaction-like workload generations depending on whether the user currently executes a
transaction or not (inTransaction). All statements selected by the workload generator threads
are added to one common workload queue. The workload monitoring and analysis framework
polls the workload information from this queue in regular intervals.

It is important to note that the workload generator used for the implementation does not
actually execute the statements on a DBS. Thus, problems with statement executions, e.g. due

4.6 Evaluation 113

to primary key or foreign key constraints, are avoided. This approach is valid because the
usage of any internal execution information for the statements would not be reasonable for
detecting usage changes of a DBS (cf. Section 4.2). If the statements in a statement pool are
generated statements, then these statements furthermore do not actually match a particular
schema. Instead, a hypothetical schema with #tables relations is assumed, and the structure of
the SQL statements (number of projection columns, number of relations in from clause, number
and type of predicates in the where clause, usage of sub-queries) is randomly composed. This
simplification still fits the requirements for evaluating the described workload analysis concepts,
because it is only important to distinguish different workload events, and this difference can be
ensured by defining unique prefixes for the table names and column names in every workload
specification.

4.6.2 Workload Shift Detection Evaluation

The following sections describe the functional evaluation results and the overhead induced
by the workload shift techniques. Section 4.6.2.1 first discusses some efficiency aspects of
the implementation of the n-gram models and two-window models. Section 4.6.2.2 afterwards
describes the functional test scenarios and their corresponding results. Section 4.6.2.3 compares
the efficiency of the different workload shift detection techniques.

4.6.2.1 Implementation Aspects

For the evaluation of the workload shift detection all three techniques presented in Section 4.4
have been implemented (n-gram models and two-window models with the χ2 metric and the
Kullback-Leibler divergence). In order to achieve an efficient implementation of the n-gram
model in the shift detection component, the solution proposed in [Fin08] has been followed:
Storing the transition probabilities in a transition matrix would require storage all events with
all possible histories, even if they have never been observed. Instead, a suffix tree which only
stores the events and histories actually seen has been used to store the transition probabilities.
The root node of the tree holds a table with the relative probabilities for every observed state-
ment type. Each child of the root node represents a certain history of the statement and stores
the conditional probabilities for this particular history. Thus, the depth of the suffix tree is
equal to the value n chosen for the n-gram models. A combination of the absolute discounting
and backing off techniques [Kat87] prevents that the probability of an event takes a value of 0
for previously unseen events.
The two-window model implementation is based on two lists of workload events, where the

first list represents the reference window and the second list the current window. To compute
the Kullback-Leibler divergence between these windows Equation 4.20 must be applied to them.
Every time the current window is moved because of the arrival of a new probe workload events,
the Kullback-Leibler divergence has to be recalculated. However, if the size of the probe is
small compared to the window size, the frequency of many workload event classes xi does not

114 4 Workload Monitoring and Analysis

change, because they are neither present in the added leading part of the window nor in the
trailing removed part of the window. Hence, the calculation of the Kullback-Leibler divergence
can be optimized by restricting the recalculation of the summands to those workload classes xi
whose frequency is actually affected by the sliding of the current window.
A similar optimization as for the Kullback-Leibler divergence can be applied to the calculation

of the χ2 test statistic. This value depends on the expected value Ei (cf. Equation 4.19), which
is calculated from the marginal totals ni∗, n∗j, and n∗∗ as shown in Equation 4.17. For the
values of n∗j and n∗∗ are constants (n∗j is the window size, n∗∗ is twice the window size), Ei
only changes when ni∗ changes. Furthermore, ni1 refers to the absolute frequency of class xi in
the reference window, and therefore does not change when the current window slides forwards.
So the expected values Ei only depend on ni2, i.e. the absolute frequency of class xi in the
current window. Hence, they only have to be adapted when the workload class xi is present in
either the added class observations or in the removed class observations.

4.6.2.2 Functional Evaluation

In order to evaluate the workload shift detection approaches against the requirements identi-
fied in Section 4.4.1, a number of testcases has been defined. These testcases cover the shift
scenarios (New Applications, Obsolete Applications, Modified Applications, Application Usage
Changes, Long-Term-Patterns) and the requirements of resilience to noise, short-term patterns
and automatic learning/adapting. The design of all testcases is described in Table 4.4. For
every testcase, the table lists the most important parameters of the workload specifications and
the corresponding information on the workload composition. All workloads have been defined
with a Transaction-like workload generation with a transaction length varying between 1 and
10 statements. The short-term pattern has been set to 20 probes for all testcases, and the probe
size has been set to 100 workload events. Although the actual workload in real-world systems
may of course be different, the testcases therefore resemble the types of workload changes that
can be expected in real-world systems. The following paragraphs discuss the design of the
testcases and their evaluation results in detail.

Testcase TC1 The subject of testcase TC1 is the validation of the automatic learning of a
workload model from a stream of DBS workload information. Hence, TC1 generates a stable
workload in a transaction-like manner, where the workload events are chosen from a pool of
1000 statements. The statements in the pool all are distinct with respect to their structure,
i.e. they do not just differ in parameter values. In order to evaluate the effects of different
levels of concurrency, the tests have been performed for 2 users (TC1.1), 5 users (TC1.2) and
10 users (TC1.3).
The experimental evaluation for TC1 has been performed with both the threshold-based

stability detection and with the test-based stability detection. The experimental results for the
threshold-based execution of TC1.1, TC1.2, and TC1.3 are illustrated in Figure 4.30. It can be

4.6 Evaluation 115

Testcase Description Composition Load Specification
From To Weight ID Users Freq. Pool

TC1.1 Model Learning 0 480 100% 1 2 10 1000
TC1.2 Model Learning 0 480 100% 1 5 4 1000
TC1.3 Model Learning 0 480 100% 1 10 2 1000

TC2 Resilience to Noise 0 240 100% 1 3 10 100
120 180 100% 2 1 5 100

TC3 Model Adaptation 0 120 100% 1 3 20 100
120 240 100% 2 2 50 100

TC4 New Applications 0 240 100% 1 3 20 100
120 240 100% 2 3 20 100

TC5 Obsolete Applications 0 240 100% 1 3 10 100
0 120 100% 2 3 10 100

TC6 Modified Applications

0 120 100% 1 3 10 100
0 360 100% 2 3 10 100
120 360 80% 1 3 10 100
120 360 20% 3 3 10 20

TC7 Usage Change
0 240 100% 1 3 10 100
0 120 30% 2 3 10 100
120 240 100% 2 3 10 100

TC8 Long-term Pattern

0 120 100% 1 3 20 100
120 240 100% 2 3 20 100
240 360 100% 1 3 20 100
360 480 100% 2 3 20 100
480 600 100% 1 3 20 100
600 720 100% 2 3 20 100

TC9 Short-term Pattern

0 20 100% 1 3 10 100
20 40 100% 2 3 10 100
40 60 100% 1 3 10 100
60 80 100% 2 3 10 100
...
200 220 100% 1 3 10 100
220 240 100% 2 3 10 100

Table 4.4: Definition of Test Scenarios

seen that for all techniques and for all levels of concurrency a workload model is created and
the stability of the workload is detected. However, the learning period of the n-gram model is
heavily influenced by the level of concurrency: While for 2 users the model appropriately reflects
the workload at the end of the short-term pattern – i.e. after the minimum learning interval of
2000 events – the learning period increases to 3100 events for 5 users and to 7600 events for 10
users. In contrast, the Kullback-Leibler divergence-based approach and the χ2-based approach
do not exhibit this behaviour. These two techniques are characterised by smooth runs of the
conformance indicator values. Especially the χ2 test statistic remains at a constant value of 0
in all scenarios. The Kullback-Leibler divergence shows a trend-like behaviour which is caused

116 4 Workload Monitoring and Analysis

0

200

400

600

800

1000

1200

1400

1600

100

600

1.100

1.600

2.100

2.600

3.100

3.600

4.100

4.600

5.100

5.600

6.100

6.600

7.100

7.600

8.100

8.600

nGram 2 Users

nGram 5Users

nGram 10Users

Threshold

conformance
indicator

#stmts

st
ab

le
 (

2
us

er
s)

st
ab

le
 (

5
us

er
s)

st
ab

le
 (

10
 u

se
rs

)

(a) TC1 with n-gram Models (threshold-based)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

100

500

900

1.300

1.700

2.100

2.500

2.900

3.300

3.700

4.100

4.500

4.900

5.300

5.700

6.100

6.500

6.900

KLD_2Users

KLD_5Users

KLD_10Users

Threshold

conformance
indicator

#stmts

st
ab

le
 (

2,
 5

, a
nd

 1
0

us
er

s)

(b) TC1 with KL-divergence (threshold-based)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

100

500

900

1.300

1.700

2.100

2.500

2.900

3.300

3.700

4.100

4.500

4.900

5.300

5.700

6.100

6.500

6.900

Chi² 2Users

Chi² 5Users

Chi² 10Users

Threshold

conformance
indicator

#stmts

st
ab

le
 (

2,
 5

, a
nd

 1
0

us
er

s)

(c) TC1 with χ2 (threshold-based)

Figure 4.30: TC1 Results (Model Learning): Threshold-based Shift Detection

by the large windows which are compared to each other. The perplexity of the n-gram models
in contrast compares only the latest probe to the model, which results in random fluctuations
around a mean value.
These observations on the characteristics of the conformance indicators have important im-

plications on the usability of the test-based workload shift detection and end-of-learning phase
detection techniques: The Runs-Test effectively tests for a random distribution of the values
around a mean value. On the one hand it of course avoids the necessity of defining an absolute
threshold value. On the other hand, it may cause unnecessarily long learning periods, because
the values typically show a decreasing trend during the learning period. The Wilcoxon-Mann-
Whitney-Test compares the rank sums of the values of the compared distributions. So even
very small monotonous trends may cause the detection of workload shifts. Hence, it is not
suitable for the smooth, long-running trends observed for the two-window models. Figure 4.31
illustrates these observations for the test-based workload shift detection. The Kullback-Leibler
divergence in Figure 4.31b exhibits a long learning period for TC1.3, and furthermore a work-
load shift is detected due to a small monotonous increase in the stable phase. In contrast, the
perplexity shows the characteristics of white noise and therefore no incorrect workload shift
detection. For this reason the test-based workload shift detection is only evaluated for n-gram
models but not for two-window models.

4.6 Evaluation 117

0

100

200

300

400

500

600

700

800

900

1000

100

500

900

1.300

1.700

2.100

2.500

2.900

3.300

3.700

4.100

4.500

4.900

5.300

5.700

6.100

6.500

6.900

7.300

nGram_10Users

conformance
indicator

#stmts

st
ab

le

(a) TC1.3 with n-gram Models (test-based)

KLD_10Users

0

0,1

0,2

0,3

0,4

0,5

0,6

100

500

900

1.300

1.700

2.100

2.500

2.900

3.300

3.700

4.100

4.500

4.900

5.300

5.700

6.100

6.500

6.900

7.300

KLD_10Users

conformance
indicator

#stmts

st
ab

le

ad
ap

tin
g

(b) TC1.3 with KL-divergence (test-based)

Figure 4.31: TC1 Results (Model Learning): Test-based Shift Detection

Testcase TC2 The design of the second testcase TC2 evaluates the reaction of the workload
shift detection techniques to noise. As shown in Table 4.4, the test scenario therefore on the one
hand executes a stable load (ID 1) over the entire test period (with 3 users, 10 Stmts/sec each).
In addition, a second load (ID 2) is added temporarily in the period [120s; 180s], i.e., after the
workload model has been learned, with only 1 user at 5 statements per second. As the second
load is only a temporary load and accounts only for a small amount of the entire DBS workload,
it can be considered as noise and should not cause the workload model to be rejected.
The results of the TC2 testcase for the different workload shift detection techniques are

illustrated in Figure 4.32. The n-gram workload shift detection (Figures 4.32a and 4.32b)
perplexity plots clearly show the influence of the noise in the interval [3000; 5000]. But neither
the threshold-based nor the test-based shift detection report a shift for this scenario, because
the deviations from the usual values are not significant. Likewise, the Kullback-Leibler diver-
gence shift detection does not report a significant workload change. The conformance indicator
remains clearly under the threshold in this case. In contrast, the χ2 test statistic exhibits a
heavy reaction to the temporary noise. All conformance indicator values after the additional
workload exceed the threshold, causing a workload shift to be detected. The TC2 scenario
therefore shows that the χ2 test statistic provides little resilience to noise. Choosing a higher
threshold to compensate this behaviour is hardly possible, because the conformance indicator
already takes values very close to the maximum value 1.

Testcase TC3 TC3 evaluates the ability of the workload shift detection to adapt to a changed
workload. For this purpose TC3 comprises two distinct workload specifications. The workload
with ID1 is executed in the period [0s;120s] with 3 users at 20 statements per second. Hence,
this workload exceeds the short term pattern length and allows a workload model to be learned
for it. Afterwards, the second workload is executed in the period [120s;240s] with 2 users at
50 statements per second. Again, the execution period is longer than the defined short term
pattern length, i.e., a workload shift should be detected and a new model should be learned.
The conformance indicator values for TC3 are shown in Figure 4.33. It can be seen from

118 4 Workload Monitoring and Analysis

0

50

100

150

200

250

100

500

900

1.300

1.700

2.100

2.500

2.900

3.300

3.700

4.100

4.500

4.900

5.300

5.700

6.100

nGram

Threshold

conformance
indicator

#stmts

st
ab

le

(a) TC2 with n-gram Models (threshold-based)

0

50

100

150

200

250

300
100

500

900

1.300

1.700

2.100

2.500

2.900

3.300

3.700

4.100

4.500

4.900

5.300

5.700

6.100

nGram

conformance
indicator

#stmts

st
ab

le

(b) TC2 with n-gram Models (test-based)

0

0,2

0,4

0,6

0,8

1

1,2

100

500

900

1.300

1.700

2.100

2.500

2.900

3.300

3.700

4.100

4.500

4.900

5.300

5.700

6.100

Chi²

Threshold

ad
ap

tin
g

st
ab

le

conformance
indicator

#stmts

(c) TC2 with χ2 (threshold-based)

0

0,1

0,2

0,3

0,4

0,5

0,6

100

500

900

1.300

1.700

2.100

2.500

2.900

3.300

3.700

4.100

4.500

4.900

5.300

5.700

6.100

KLD

Threshold

st
ab

le

conformance
indicator

#stmts

(d) TC2 with KL-divergence (threshold-based)

Figure 4.32: TC2 Results (Resilience to Noise)

4.6 Evaluation 119

0

50

100

150

200

250

300

100

700

1.300

1.900

2.500

3.100

3.700

4.300

4.900

5.500

6.100

6.700

7.300

7.900

8.500

9.100

9.700

10.300

nGram

Threshold
st

ab
le

conformance
indicator

#stmts

ad
ap

tin
g

st
ab

le

(a) TC3 with n-gram Models (threshold-based)

0

50

100

150

200

250

300

100

700

1.300

1.900

2.500

3.100

3.700

4.300

4.900

5.500

6.100

6.700

7.300

7.900

8.500

9.100

9.700

10.300

10.900

nGram

conformance
indicator

#stmts

st
ab

le

ad
ap

tin
g

st
ab

le

(b) TC3 with n-gram Models (test-based)

0

0,2

0,4

0,6

0,8

1

1,2

100

700

1.300

1.900

2.500

3.100

3.700

4.300

4.900

5.500

6.100

6.700

7.300

7.900

8.500

9.100

9.700

10.300

Chi²

Threshold

st
ab

le

conformance
indicator

#stmts

ad
ap

tin
g

st
ab

le

(c) TC3 with χ2 (threshold-based)

0

0,2

0,4

0,6

0,8

1

1,2
100

700

1.300

1.900

2.500

3.100

3.700

4.300

4.900

5.500

6.100

6.700

7.300

7.900

8.500

9.100

9.700

10.300

10.900

KLD

Threshold

st
ab

le

conformance
indicator

#stmts

ad
ap

tin
g

st
ab

le

(d) TC3 with KL-divergence (threshold-based)

Figure 4.33: TC3 Results (Model Adaptation)

the plots that all workload shift detection techniques reliably detect the change between the
workload. After the change has been detected, a new workload model is automatically learned
from the changed workload and the state of the workload shift detection is changed back to
stable.

Testcase TC4 As discussed in Section 4.4.1, one of the scenarios that have to be detected as
a workload shift is the deployment of new applications. TC4 simulates this case by executing a
stable workload (ID 1) over the entire test-interval. After the workload model has been learned
from this workload and a stable state has been reached, a second workload representing the new
application is added (cf. Table 4.4). The evaluation results for TC4 are plotted in Figure 4.34.
As shown in the figures, all workload shift detection techniques recognize this scenario as a
workload shift. While the Kullback-Leibler divergence and χ2 based approach quickly learn
the new model, this is not the case for the threshold-based n-gram approach. The test-based
n-gram approach in contrast more quickly recognizes the stationariness of the perplexity time
series and switches the model state back to the stable state.

Testcase TC5 TC5 evaluates the recognition of obsolete workloads. The test scenario for
this purpose executes two distinct workloads in parallel in the interval [0s; 120s]. A model is

120 4 Workload Monitoring and Analysis

0

200

400

600

800

1000

1200

1400

1600

100

800

1.500

2.200

2.900

3.600

4.300

5.000

5.700

6.400

7.100

7.800

8.500

9.200

9.900

10.600

11.300

12.000

nGram

Threshold

st
ab

le

conformance
indicator

#stmts

ad
ap

tin
g

(a) TC4 with n-gram Models (threshold-based)

0

200

400

600

800

1000

1200

1400

1600

1800
100

800

1.500

2.200

2.900

3.600

4.300

5.000

5.700

6.400

7.100

7.800

8.500

9.200

9.900

10.600

11.300

12.000

nGram

conformance
indicator

#stmts

st
ab

le

ad
ap

tin
g

st
ab

le

(b) TC4 with n-gram Models (test-based)

0

0,2

0,4

0,6

0,8

1

1,2

100

800

1.500

2.200

2.900

3.600

4.300

5.000

5.700

6.400

7.100

7.800

8.500

9.200

9.900

10.600

11.300

12.000

Chi²

Threshold

st
ab

le

conformance
indicator

#stmts

ad
ap

tin
g

st
ab

le

(c) TC4 with χ2 (threshold-based)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

100

800

1.500

2.200

2.900

3.600

4.300

5.000

5.700

6.400

7.100

7.800

8.500

9.200

9.900

10.600

11.300

12.000

KLD

Threshold

st
ab

le

conformance
indicator

#stmts

ad
ap

tin
g

st
ab

le

(d) TC4 with KL-divergence (threshold-based)

Figure 4.34: TC4 Results (New Applications)

4.6 Evaluation 121

0

50

100

150

200

250

300

350

400

450

500

10
0

50
0

90
0

1.
30

0

1.
70

0

2.
10

0

2.
50

0

2.
90

0

3.
30

0

3.
70

0

4.
10

0

4.
50

0

4.
90

0

5.
30

0

5.
70

0

6.
10

0

6.
50

0

6.
90

0

7.
30

0

7.
70

0

nGram

Threshold

st
ab

le

conformance
indicator

#stmts

ad
ap

tin
g

(a) TC5 with n-gram Models without check for out-
dated elements (threshold-based)

0

100

200

300

400

500

600

10
0

50
0

90
0

1.
30

0

1.
70

0

2.
10

0

2.
50

0

2.
90

0

3.
30

0

3.
70

0

4.
10

0

4.
50

0

4.
90

0

5.
30

0

5.
70

0

6.
10

0

6.
50

0

6.
90

0

7.
30

0

7.
70

0

nGram

Threshold

st
ab

le

conformance
indicator

#stmts

(b) TC5 with n-gram Models with check for out-
dated elements (threshold-based)

0

0,2

0,4

0,6

0,8

1

1,2

100

500

900

1.300

1.700

2.100

2.500

2.900

3.300

3.700

4.100

4.500

4.900

5.300

5.700

6.100

6.500

Chi²

Threshold

st
ab

le

conformance
indicator

#stmts

ad
ap

tin
g

(c) TC5 with χ2 (threshold-based)

0

0,2

0,4

0,6

0,8

1

1,2

1,4
100

500

900

1.300

1.700

2.100

2.500

2.900

3.300

3.700

4.100

4.500

4.900

5.300

5.700

6.100

6.500

6.900

7.300

KLD

Threshold

st
ab

le

conformance
indicator

#stmts

ad
ap

tin
g

(d) TC5 with KL-divergence (threshold-based)

Figure 4.35: TC5 Results (Obsolete Applications)

learned for these workloads. Afterwards, only one of these workloads is continued in the interval
[120s; 240s]. Figure 4.35 shows that this scenario is successfully detected as a workload shift
by the Kullback-Leibler divergence (Figure 4.35d) and χ2 (Figure 4.35c) approaches. However,
as discussed in Section 4.4.3.3, the n-gram workload shift detection does not detect obsolete
workloads without an additional check for outdated model elements (Figure 4.35a). Only with
this additional check the workload change is detected (Figure 4.35b).

Testcase TC6 In addition to new applications and obsolete applications also modifications
or extensions to existing applications may require a reconfiguration of a DBS. For this reason
also these changes should be detected as workload shifts. TC6 simulates a modified application
by defining three different workloads: The workload with ID 1 represents the original workload
of an application before it is extended with new functionality. It is executed with a weight of
100% in the interval [0s; 120s]. After this interval (and after the model has been learned) the
extension of the workload causes an additional workload (ID 3) to be executed at a weight of
20%, whereas the workload with ID 1 is executed at 80% only. The workload with ID 2 simulates
another DBS application which is not affected by the extension and therefore produces a stable
workload over the entire evaluation interval [0s; 240s]. The results of the experiments for TC6
are shown in Figure 4.36. As can be seen from the plots, only the threshold-based workload

122 4 Workload Monitoring and Analysis

0

100

200

300

400

500

600

700

800

100

700

1.300

1.900

2.500

3.100

3.700

4.300

4.900

5.500

6.100

6.700

7.300

7.900

8.500

9.100

9.700

10.300

10.900

nGram

Threshold

st
ab

le

conformance
indicator

#stmts

ad
ap

tin
g

(a) TC6 with n-gram Models (threshold-based)

0

100

200

300

400

500

600

700

800

900

1000

100

800

1.500

2.200

2.900

3.600

4.300

5.000

5.700

6.400

7.100

7.800

8.500

9.200

9.900

10.600

11.300

12.000

12.700

13.400

nGram

conformance
indicator

#stmts

st
ab

le

(b) TC6 with n-gram Models (test-based)

0

0,2

0,4

0,6

0,8

1

1,2

100

700

1.300

1.900

2.500

3.100

3.700

4.300

4.900

5.500

6.100

6.700

7.300

7.900

8.500

9.100

9.700

10.300

10.900

Chi²

Threshold

st
ab

le

conformance
indicator

#stmts

ad
ap

tin
g

st
ab

le

(c) TC6 with χ2 (threshold-based)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8
100

700

1.300

1.900

2.500

3.100

3.700

4.300

4.900

5.500

6.100

6.700

7.300

7.900

8.500

9.100

9.700

10.300

10.900

KLD

Threshold

st
ab

le

conformance
indicator

#stmts

(d) TC6 with KL-divergence (threshold-based)

Figure 4.36: TC6 Results (Modified Applications)

shift detection and the χ2 test detect this test scenario as a workload shift. Although the
Kullback-Leibler divergence shows an increase in the conformance indicator value, it does not
reach the threshold. Likewise, the perplexity values of the test-based workload shift detection
do not cause a significant deviation between the distributions in the learning interval and the
most recent short-term pattern interval.

Testcase TC7 As discussed in Section 4.4.1, also usage changes of the DBS may cause a
substantial change to the overall workload composition and therefore require reconfigurations.
In particular, an increased weight of one particular application load may benefit from additional
indexes or a different memory assignment. The testcase TC7 simulates a usage change in the
following way: It specifies two distinct workloads, where the first workload (ID 1) represents a
constant load over the entire evaluation period [0s; 240s]. In contrast, the weight of the second
load (ID 2) is only 30% when the model is learned [0s; 120s] and increased to 100% afterwards.
The conformance indicators for testcase TC7 are plotted in Figure 4.37. The plots show that
the n-gram model-based workload shift detection (both with thresholds and tests) and the χ2

test detect this scenario as a workload shift. Only the Kullback-Leibler divergence conformance
indicator does not exceed the defined threshold.

4.6 Evaluation 123

0

100

200

300

400

500

600

700

800

100

600

1.100

1.600

2.100

2.600

3.100

3.600

4.100

4.600

5.100

5.600

6.100

6.600

7.100

7.600

8.100

8.600

9.100

9.600

nGram

Threshold

st
ab

le

conformance
indicator

#stmts

ad
ap

tin
g

(a) TC7 with n-gram Models (threshold-based)

0

100

200

300

400

500

600

700

800

900

1000
100

600

1.100

1.600

2.100

2.600

3.100

3.600

4.100

4.600

5.100

5.600

6.100

6.600

7.100

7.600

8.100

8.600

9.100

9.600

nGram

conformance
indicator

#stmts

st
ab

le

ad
ap

tin
g

(b) TC7 with n-gram Models (test-based)

0

0,2

0,4

0,6

0,8

1

1,2

100

600

1.100

1.600

2.100

2.600

3.100

3.600

4.100

4.600

5.100

5.600

6.100

6.600

7.100

7.600

8.100

8.600

9.100

9.600

Chi²

Threshold

st
ab

le

conformance
indicator

#stmts

ad
ap

tin
g

st
ab

le

(c) TC7 with χ2 (threshold-based)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

100

600

1.100

1.600

2.100

2.600

3.100

3.600

4.100

4.600

5.100

5.600

6.100

6.600

7.100

7.600

8.100

8.600

9.100

9.600

KLD

Threshold

st
ab

le

conformance
indicator

#stmts

(d) TC7 with KL-divergence (threshold-based)

Figure 4.37: TC7 Results (Usage Change)

124 4 Workload Monitoring and Analysis

0

500

1000

1500

2000

2500

100

1.400

2.700

4.000

5.300

6.600

7.900

9.200

10.500

11.800

13.100

14.400

15.700

17.000

18.300

19.600

20.900

22.200

23.500

nGram

Threshold

conformance
indicator

#stmts

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

(a) TC8 with n-gram Models (threshold-based)

0

500

1000

1500

2000

2500

100

1.400

2.700

4.000

5.300

6.600

7.900

9.200

10.500

11.800

13.100

14.400

15.700

17.000

18.300

19.600

20.900

22.200

23.500

nGram

conformance
indicator

#stmts

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

(b) TC8 with n-gram Models (test-based)

0

0,2

0,4

0,6

0,8

1

1,2

100

1.300

2.500

3.700

4.900

6.100

7.300

8.500

9.700

10.900

12.100

13.300

14.500

15.700

16.900

18.100

19.300

20.500

21.700

22.900

24.100

Chi²

Threshold

conformance
indicator

#stmts

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

(c) TC8 with χ2 (threshold-based)

0

0,5

1

1,5

2

2,5

3
100

1.300

2.500

3.700

4.900

6.100

7.300

8.500

9.700

10.900

12.100

13.300

14.500

15.700

16.900

18.100

19.300

20.500

21.700

22.900

24.100

KLD

Threshold

st
ab

le

conformance
indicator

#stmts
ad

ap
tin

g

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

st
ab

le

ad
ap

tin
g

(d) TC8 with KL-divergence (threshold-based)

Figure 4.38: TC8 Results (Long-term Pattern)

Testcase TC8 Testcase TC8 evaluates the reaction of the workload shift detection approaches
to long-term patterns. It defines two distinct workloads which are executed in turns. The length
of each execution period of the workloads exceeds the length of the short-term pattern. Thus,
a workload shift is supposed to be detected for every change between these two workloads.
Figure 4.38 illustrates that this actually is the case for all workload shift detection techniques.
However, after every change the workload shift detection learns a new model, despite the fact
that the same workload has been observed before (see Section 4.6.4 for the evaluation of the
workload shift prediction).

Testcase TC9 The short-term pattern has been defined as the minimum time period where
the overhead for the reconfiguration analysis and the implementation of the new configuration
exceeds the expected benefits. Hence, periodic workload changes which are smaller than the
short-term pattern length must not be identified as a workload shift. Instead, the periodic
workload changes must be represented in the workload model. TC9 executes this kind of
periodic workload with a short period length. As in TC8, its two workloads are executed in
turns, but only for a period (20s) that is smaller than the short-term pattern, which has been
extended to 30 probes (i.e. 3000 workload events) for this testcase. Considering the number
of users (3) and their statement generation frequency (10 stmts/s), the short-term pattern

4.6 Evaluation 125

0

50

100

150

200

250

300

100

400

700

1.000

1.300

1.600

1.900

2.200

2.500

2.800

3.100

3.400

3.700

4.000

4.300

4.600

4.900

5.200

5.500

5.800

nGram

Threshold

st
ab

le

conformance
indicator

#stmts

(a) TC9 with n-gram Models (threshold-based)

0

20

40

60

80

100

120

140

160

180

100

400

700

1.000

1.300

1.600

1.900

2.200

2.500

2.800

3.100

3.400

3.700

4.000

4.300

4.600

4.900

5.200

5.500

5.800

nGram

conformance
indicator

#stmts

st
ab

le

(b) TC9 with n-gram Models (test-based)

0

0,2

0,4

0,6

0,8

1

1,2

100

400

700

1.000

1.300

1.600

1.900

2.200

2.500

2.800

3.100

3.400

3.700

4.000

4.300

4.600

4.900

5.200

5.500

5.800

Chi²

Threshold

st
ab

le

conformance
indicator

#stmts

(c) TC9 with χ2 (threshold-based)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8
100

400

700

1.000

1.300

1.600

1.900

2.200

2.500

2.800

3.100

3.400

3.700

4.000

4.300

4.600

4.900

5.200

5.500

5.800

KLD

Threshold

st
ab

le

conformance
indicator

#stmts

(d) TC9 with KL-divergence (threshold-based)

Figure 4.39: TC9 Results (Short-term Pattern)

therefore spans a time period of 100 seconds. The results in Figure 4.39 show that all of the
techniques correctly do not report a workload shift, because both application workloads are
represented in their models.

Conclusions As a result from the testcases TC1-TC9, it can be recognized that the χ2 test
statistic reacts too sensitive to minor changes in the workload. This characteristic of the
χ2 test statistic has become obvious in TC2, where it has reported a workload shift for a
temporary fluctuation. The evaluations for TC1 on the one hand have shown that the test-
based workload shift detection is only appropriate for monitoring perplexity values of n-gram
models. On the other hand, the evaluation of other testcases (TC4, TC6, TC7) has shown that
the average perplexity value depends on the characteristics of the workload. Hence, choosing
a threshold may be difficult for this approach. This makes a test-based detection of stability
and workload shifts the more appropriate solution for n-gram models. The Kullback-Leibler
divergence-based shift detection reacts to workload changes more smoothly and slowly than
the perplexity for n-gram models. TC6 and TC7 are not detected as workload shifts by the
Kullback-Leibler divergence, whereas they are by the n-gram model. The learning period for
the Kullback-Leibler divergence shift detection is typically shorter than for n-gram models. So
the choice of the adequate technique for workload shift detection depends on the specific DBS

126 4 Workload Monitoring and Analysis

0

10

20

30

40

50

20 100 500 1000 3000

m=2
m=3
m=4
m=5
m=10

ms

#classes

(a) Perplexity Computation

0
100
200
300
400
500
600
700
800
900

1000

20 100 500 1000 3000

m=2
m=3
m=4
m=5
m=10

ms

#classes

(b) Model Adaptation

Figure 4.40: n-gram Computation Overhead

environment: If the workload is characterized by a high level of concurrency and fluctuations,
then the Kullback-Leibler divergence is adequate. Otherwise, n-gram models more quickly
identify changes in the workload and are more sensitive to usage changes.

4.6.2.3 Overhead Tests

The computation times for the perplexity of a probe and for the adaptation of a probe depend
on the probe size, the number of statement classes and the markov chain length. Figure 4.40
illustrates the computation times on a desktop workstation (clock cycle: 3 GHz/ memory:1 GB)
for different chain lengthsm. As the probe size forms a scaling constant only (cf. Equation 4.13),
it has been set to a fixed value of 100. The results show that the proposed workload shift
detection is very efficient while the model is stable, because even with a long chain length
m = 10 the computation of the perplexity is always less than 50ms. The adaptation of a model
in the “learning” or “adapting” states requires more overhead, but these adaptations will be
necessary only very rarely.
For the two-window models, the computation time for the conformance indicator in general

depends on the window size. However, with the implementation described in Section 4.6.2.1,
the Kullback-Leibler divergence can be computed with less effort: Its re-computation is not nec-
essary for the entire windows, but only for those classes whose absolute frequency has actually
changed by sliding the current window. For every changed class the corresponding summand
of Equation 4.20 has to be recalculated. As the calculation effort for the summand is constant
(given that the relative frequencies of the classes are managed in a hash-table), the overall
overhead depends on the average number of workload classes that changes per workload probe.
For this reason the overhead for computing the Kullback-Leibler divergence of a workload probe
depends on the number of changed classes only, but not on the window size. The number of
changed classes again depends on the probe size and the number of distinct workload classes.
Of these, the probe size can be considered as a configurable constant (it only defines the interval
when the computation effort will appear). The number of workload classes in contrast is an
important configuration parameter for the workload shift detection, which requires a trade-off

4.6 Evaluation 127

0

1

2

3

4

5

6

7

8

9

10

100

500

900

1.300

1.700

2.100

2.500

2.900

3.300

3.700

4.100

4.500

4.900

5.300

5.700

6.100

6.500

6.900

7.300

7.700

8.100

Window Size 1000

Window Size 5000

Window Size 500

ms

#stmts

(a) Kullback-Leibler Divergence Computation Ef-
fort Depending on the Window Size

0

1

2

3

4

5

6

7

8

9

10

100

500

900

1.300

1.700

2.100

2.500

2.900

3.300

3.700

4.100

4.500

4.900

5.300

5.700

6.100

6.500

6.900

7.300

7.700

8.100

100 Stmts (65 Classes)

500 Stmts (142 Classes)

1000 Stmts (312 Classes)

ms

#stmts

(b) Kullback-Leibler Divergence Computation Ef-
fort Depending on the Number of Classes

Figure 4.41: Kullback-Leibler Divergence Computation Overhead

0

1

2

3

4

5

6

7

8

9

10

100

500

900

1.300

1.700

2.100

2.500

2.900

3.300

3.700

4.100

4.500

4.900

5.300

5.700

6.100

6.500

6.900

7.300

7.700

8.100
Window Size 1000

Window Size 5000

Window Size 500

ms

#stmts

(a) χ2 Test Statistic Computation Effort Depending
on the Window Size

0

1

2

3

4

5

6

7

8

9

10

100

500

900

1.300

1.700

2.100

2.500

2.900

3.300

3.700

4.100

4.500

4.900

5.300

5.700

6.100

6.500

6.900

7.300

7.700

8.100

100 Stmts (65 Classes)

500 Stmts (142 Classes)

1000 Stmts (312 Classes)

ms

#stmts

(b) χ2 Test Statistic Computation Effort Depending
on the Number of Classes

Figure 4.42: χ2 Test Statistic Computation Overhead

between overhead and accuracy. The computation of the Kullback-Leibler divergence according
to Equation 4.20 requires the aggregation of all class-specific difference values. Hence, there is
a linear dependency between the computation overhead and the number of classes. Figure 4.41
illustrates the characteristics of the Kullback-Leibler divergence computation by giving the
computation times per workload probe. All overhead characteristics have been derived using
testcase TC1.2 and a probe size of 100 events. Figure 4.41a shows that the overhead of comput-
ing this conformance indicator for different window sizes does not change. Figure 4.41b shows
the linear dependency between the number of workload classes and the computation overhead.
Like the Kullback-Leibler divergence, the overhead of computing the χ2 test statistic depends

on the number of classes but not on the window size. The reason is that the marginal totals
and the expected values only have to be recomputed for those classes whose absolute frequency
has actually changed. As can be seen from Equation 4.19, a linear dependency between the
class number and the computation overhead exists. Figure 4.42 shows the observed computa-
tion overhead for the experimental evaluations. These overhead characteristics have also been
derived using testcase TC1.2 and a probe size of 100 events.

128 4 Workload Monitoring and Analysis

Table 4.5: Workload Shift Detection Timestamps for different Quality Loss Thresholds
Custom TPC-C/H TPC-W

δ #Classes WSD #Classes WSD #Classes WSD
- - 4200 - 3100 - 7700
0 200 3800 44 3100 38 7700
0.02 192 3800 40 3100 37 7700
0.04 186 3800 43 3100 31 7700
0.06 132 4000 28 3100 26 7700
0.08 123 3800 24 3100 13 8400
0.10 79 3800 14 3000 13 7800
0.12 48 3700 9 3600 7 7800
0.13 41 3700 9 3800 7 7900
0.14 23 3600 6 3800 7 7800
0.16 19 3600 3 - 6 7800
0.18 7 3400 3 - 2 -
0.20 4 - 2 - 2 -
0.22 4 - 2 - 2 -
0.24 1 - 2 - 2 -

4.6.3 Workload Classification Evaluation

The evaluation results of the workload shift detection techniques have shown that the overhead
for computing the conformance indicators of the two-window models is affected by the number
of workload classes. For the n-gram models, the model adaptation overhead in the learning
phase is also influenced by this parameter. The workload classification therefore on the one
hand reduces the required workload shift detection overhead. On the other hand, grouping
similar workload events to classes also reduces the information available to the workload shift
detection and may affect the accuracy of the detection results. Hence, the effects of workload
classification on the workload shift detection are evaluated in Section 4.6.3.1. The overhead
caused by the workload classification is determined in Section 4.6.3.2.

4.6.3.1 Functional Evaluation

For the experimental evaluation, the workload classification prototype first converts the ob-
served SQL statements into feature vectors by extracting the features described in Table 4.2
from the statement texts. Afterwards, the feature vectors are classified according to the con-
cepts described in Section 4.3.4. Both the medoid distance classification and the bounding
box classification have been implemented. All components are based upon an implementation
of the distance function described in Section 4.3.3.2. After classification, the information on
the observed workload classes is passed on to the workload shift detection module. For the
evaluation the n-gram based workload shift technique has been selected, because it has proven
suitable in Section 4.6.2.

4.6 Evaluation 129

The investigation of the effects of the workload configuration on the subsequent workload shift
detection has been the focus of the functional evaluation. In particular, it has been examined
which configurations of the classification still allow the reliable detection of workload shifts. For
this purpose, various workload shift scenarios have been simulated: The TPC-C/H workload
shift scenario starts with a workload that is composed of 70% TPC-C statements [Tra07] and
30% TPC-H statements [Tra08], and then slowly shifts to a different workload which is com-
posed of 30% TPC-C statements and 70% TPC-H statements. The TPC-C workload [Tra07]
is a workload from a standardized DBS benchmark, which simulates an OLTP workload on
the DBS. In contrast, the TPC-H workload [Tra08] simulates an OLAP load on the DBS with
long-running, complex queries. In a second scenario (TPC-W), the workload that starts with
the SQL statements from the TPC-W [Tra02] Browsing Mix, then slowly shifts to the TPC-W
Shopping Mix, and finally changes to the TPC-W Ordering Mix. TPC-W [Tra02] is a standard
for the evaluation of database-backed web servers, which defines browsing, shopping, and or-
dering loads on the web server. In addition to the workload shift scenarios from standardized
benchmarks, several Custom workloads with large numbers of distinct statements have been
generated.
These workloads have been processed and evaluated with different workload classification

configurations. The Tables 4.5 and 4.6 provide an overview of the results of the experiments.
Table 4.5 reports when the workload shifts have been detected (WSD) and how many classes
have been created (#Classes) for different quality loss thresholds δ. To ensure comparability,
all results in Table 4.5 have been obtained using the medoid distance classification. The results
show that for small δ values (0.08 ≤ δ ≤ 0.14) the number of workload classes is effectively
reduced, while the workload shifts are still detected. However, the timestamp of the shift
detection may slightly deviate from the original shift detection.
Figure 4.43a-4.43c illustrate the perplexity values in the WSD component for the three work-

load shift scenarios Custom, TPC-C/H, and TPC-W. In the Figures 4.43a- 4.43c the perplex-
ity values without classification, with a quality loss threshold of 0.13, and with a quality loss
threshold of 0.20 are plotted. Figure 4.43c shows that for the TPC-W workload only the change
towards the TPC-W Ordering Mix makes the perplexity exceed the shift detection threshold.
The reason is that the DBS workloads, which result from the TPC-W Browsing and TPC-W
Shopping load specifications, are very similar. However, by adjusting the perplexity threshold
also this minor workload change could be detected.
In addition to the shift detection timestamps, it has been evaluated how many classes are

added under different configurations of the workload classification. For this purpose a large
test representing a smooth shift between two custom workloads has been processed, where each
workload was composed by using statements from a distinct statement pool (1000 distinct state-
ments in each pool). Table 4.6 describes for different values of δ, how many initial classes have
been created (#Cl.), how many classes have been added using the bounding box classification
(#Add. Cl. Bounding Box), and how many classes have been added using the medoid distance
classification (#Add. Cl. Medoid). For the bounding box classification, the adding of classes

130 4 Workload Monitoring and Analysis

0

0,5

1

1,5

2

2,5

3

3,5

4

1.000

1.500

2.000

2.500

3.000

3.500

4.000

no classifcation

delta = 0,13

delta = 0,20

perplexity(norm.)

sec

workload 1 workload 2

perplexity threshold

(a) Custom Workload

0

0,5

1

1,5

2

2,5

3

3,5

4

1000

1300

1600

1900

2200

2500

2800

3100

3400

3700

4000

4300

4600

4900

no classification

delta=0.13

delta=0.20

perplexity(norm.)

sec

perplexity threshold

30% TPC-C
70% TPC-H

70% TPC-C
30% TPC-H

(b) TPC-C/H Workload

0

0,5

1

1,5

2

2,5

3

3,5

4

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

no classification
delta=0.13
delta=0.20

perplexity(norm.)

sec

perplexity threshold

TPC-W
Browsing

TPC-W
Shopping

TPC-W
Ordering

(c) TPC-W Workload

Figure 4.43: Perplexity Values for Test Scenarios

Table 4.6: Number of Classes Added for before WSD

δ #Cl. #Add. Cl. Bounding Box #Add.
dinc = 0.0 dinc = 0.3 dinc = 0.5 dinc = 1.0 dinc = 2.0 Cl. Medoid

0.05 478 101 93 25 2 0 110
0.08 249 35 23 23 0 0 63
0.10 126 32 20 13 0 0 32
0.13 27 19 5 0 0 0 7
0.20 9 5 3 0 0 0 3

also depends on the growth limit for the boxes dinc. The results show that the total number of
new classes that are added mainly depends on the size of the initial classes, and therefore on
the acceptable quality loss δ. The influence of the growth limit also depends on δ: while for the
many small classes at δ = 0.05 the growth limit dinc = 0.5 (i.e. the bounds may be extended by
50% of the original size in every dimension) does not affect the class creation, the same value
entirely prevents the creation of classes for the few large classes at δ = 0.13.
For the workload shift detection with n-gram models the following configuration settings have

provided good results: The Minkowski order p has been set to the value 2, which resembles the
Euclidean distance. The class limit has been set to 1000 (kmax = 800 and kinc = 200). The
classification learning phase ends when less than 5% new statements are observed (β = 0.05).
The feature weights for the distance function have been set as shown in Table 4.2. For the
quality loss threshold δ the value 0.13 has proven as an adequate value.

4.6.3.2 Overhead Tests

The effort analysis has shown that the assignment of classes in the stable phase is fast. As
plotted in Figure 4.44a, the classification effort mainly depends on the number of classes. For
a workload resulting in 1000 distinct feature vectors (1K DFVs) and 100 classes, the average
classification time per vector was 0.09 ms for medoid distance classification (Med), and 0.73
ms for bounding box classification (Box), for example. For medoid distance classification,
Figure 4.44a also distinguishes between cases where the distinct feature vectors have been
classified before (kDFVs), and where only 50% of the DFVs have been classified before (uDFVs).

4.6 Evaluation 131

0

2

4

6

8

10

12

14

16

18

10 50 100

200

500

750

1000

2500

5000

7500

10000

Box; 1K DFVs
Box; 10K DFVs
Med; 1K kDFVs
Med; 10K kDFVs
Med; 1K uDFVs
Med; 10K uDFVs

class. time [ms]

#classes

(a) Classification Time per Vector depending on the
Number of Classes

0

60

120

180

240

0 5000 10000 15000 20000

with distance caching

w/o distance caching

sec

distinct feature vectors

(b) Computation Time of Cluster Analysis

Figure 4.44: Workload Classification Overhead

The results show that medoid distance classification is faster than bounding box classification,
although of course it requires more memory to store all classified feature vectors. All tests were
executed on a PC with 2.2 GHz and 2 GB memory.
Significant overhead is only caused by the cluster analysis at the end of the learning phase.

Figure 4.44b illustrates the clustering effort depending on the number of different feature vec-
tors. The effort reduction at 3000 feature vectors is caused by the optimization that avoids
the binary search for the adequate class number for large workloads (see Section 4.3.4). As
the distance calculation is called very often during the clustering, the clustering algorithm has
been enhanced with a caching functionality for statement distances. Figure 4.44b shows that
this optimization significantly reduces the computation time.

4.6.4 Workload Shift Prediction Evaluation

As for the shift detection and classification, the evaluation of the workload shift prediction is
separated into functional evaluation (Section 4.6.4.1) and overhead analysis (Section 4.6.4.2).

4.6.4.1 Functional Evaluation

The subject of the functional evaluation has been the reaction of the periodicity measure p of
the Fourier-based approach (see Section 4.5.3.1) to fluctuations of the workload history. For
this purpose the workload scenario S1 described in Figure 4.45 has been designed: Starting
September 1st, the workload model M1 in this scenario appears in regular intervals of six hours
(the duration of the model is not relevant for the periodicity measure value). In order to
evaluate the responsiveness of the periodicity measure to fluctuations in this model history, the
start timestamp of the fourth appearance of the model has been iteratively increased by an
offset x. For each offset x the periodicity measure pMi

has been re-calculated for rmin = 3. As
illustrated in Figure 4.45, the periodicity measure in this case constantly drops from a value of
1 at the offset 0 to below 0.8 for the offset 100.

132 4 Workload Monitoring and Analysis

scen. M1 start time

01/09/09 06:00

01/09/09 12:00

01/09/09 18:00
02/09/09 00:00+x

01/09/09 06:00

08/09/09 12:00

15/09/09 18:00
22/09/09 00:00+x

S1

S2

50
55
60
65
70
75
80
85
90
95

100

0 10 20 30 40 50 60 70 80 90 100

scenario S1
scenario S2

offset x

pM1

Figure 4.45: Effects of Fluctuations on pM1

In scenario S2 the activation intervals of the modelM1 have then been increased to one week.
The values pMi

for different offset values of the fourth activation have then been re-calculated.
Figure 4.45 shows that in this scenario pMi

decreases far slower than in S1. So the value pMi

is relative to the period length of workload pattern. Hence, the Fourier-based approach only
supports the definition of fluctuation thresholds that are relative to the period length. While
this may be the desired behaviour in some cases, it does not allow the definition of a fixed time
limit for acceptable fluctuations. If this functionality is required, the model interval analysis
approach (see Section 4.5.3.2) can be used instead, which reliably detects periodic patterns
with absolute time limits.

4.6.4.2 Overhead Tests

To assess the overhead caused by the Fourier-based approach and by the model interval analysis,
both of them have been applied to a sample workload history (length 250). The workload
histories had to be analysed for five repetitions (rmin = 5) of a workload pattern of increasing
length. Figure 4.46 illustrates the computation times of both approaches. It can be seen that
although the overhead of both approaches increases with an increasing pattern length, the
model interval analysis periodicity detection is always more efficient than the Fourier-based
approach using the FFT algorithm [CT65]. Still, the absolute values of the periodicity are in
both cases very small (less than 10 ms for a pattern with 40 model activations).
The overhead for the identification of recurring workloads is determined by the effort for

the perplexity computation. The evaluation in Section 4.6.2.3 has shown that this value can
be efficiently calculated: for a probe of 100 workload events and a n-gram length of 3, the
computation takes less than 5ms on an average (independent from the model size). Due to the
bi-directional comparison of workload models (cf. Section 4.5.2), the comparison of an outdated
model Mold with a model from the pool would therefore take less than 10 ms for this probe
size. Considering that this overhead would be caused only a few times a day (only when there
is a workload change), this overhead is considered acceptable.

4.6 Evaluation 133

0

2

4

6

8

10

12

14

16

18

3 10 17 24 31 38 45

model interval analysis
Fourier-based approach

pattern length

ms

Figure 4.46: Periodicity Detection Overhead Analysis

4.6.5 Summary

The previous sections have presented the functional and overhead evaluation results for the
workload monitoring and analysis concepts developed in this work. From the results of the
functional evaluation of the workload shift detection it has become clear that not all combi-
nations of the investigated concepts are reasonable: First, the small (but long-running) trends
that can be observed in the conformance indicator values of the two-window solutions prevent
the usage of the test-based shift detection techniques for them. So a two-window model has to
be combined with a threshold-based shift detection instead. Second, the threshold-based shift
detection is difficult for n-gram models, because the base-level of the perplexity value depends
on the transaction concurrency. For n-gram models the shift detection therefore should be test-
based. Third, a comparison of the χ2 test statistic and the Kullback-Leibler divergence has
shown that the Kullback-Leibler divergence is a better similarity measure for the two-window
models, because the χ2 test statistic is very sensitive to minor changes in the workload.
So as a result from the evaluations, two possible layouts for the workload shift detection

can be identified: either an n-gram model with a test-based detection of the end-of-learning-
phase and shift detection, or a two-window model with the Kullback-Leibler similarity metric
and a threshold-based state change detection. The latter option on the one hand exhibits
shorter learning periods (because it assumes statistical independence between the workload
events), whereas on the other hand it reacts slowly to usage changes. The n-gram model
option in contrast can detect usage changes more quickly. However, for workloads with a
high number of distinct events and a high number of concurrent transactions it requires long
learning intervals. So if the workload is characterized by a high level of concurrency and
fluctuations, then the Kullback-Leibler divergence is adequate. Otherwise, n-gram models more
quickly identify changes in the workload. As shown in Table 4.7, a different set of configuration
parameters has to be set for these two techniques: For n-gram models the chain length n and the

134 4 Workload Monitoring and Analysis

Table 4.7: Parameters of the Workload Monitoring and Analysis Framework
Component Technique Parameter Env. Spec. Default Value

Monitoring Signature Cl. - -
Feature Cl. Features see Table 4.2

Classification

Signature Cl. - -

Feature Cl.

Feature Weights see Table 4.2
Minkowski Order 2
γ 0
δ X 0.13
kmax 800
kinc 200
binc 20%
Check Interval 10sec
Min. Learning X STP

Shift Detection

all STP X 10min

n-gram n 3
α 2

two-window threshold 0.1log(|X|)
stab. factor 0,08

Shift Prediction all

threshold like shift detection
rmin X 3
Max. Fluct. X 10 min
Max. Errors X 3

significance level α for the test-based shift detection have to be selected. Two-window models in
contrast require the definition of a threshold and a stability factor (see Section 4.4.4). However,
the values of these parameters are not environment-specific, but depend on the analysis goal.
Hence, reasonable default values have been determined in the evaluation, which are also given
in Table 4.7. The only parameter that is heavily environment specific is the short-term pattern
length (STP), i.e. the time period that necessarily has to be represented in the workload model
and therefore defines the minimum learning interval. This parameter should be selected by the
DBA for both workload shift detection techniques.

The overhead evaluation results have shown that for both types of workload models the effort
depends on the number of classes: For two-window models the computation of the similarity
metric grows linearly with the number of classes. For n-gram models the perplexity computation
overhead is constant for a certain history length, but the model adaptation overhead grows
non-linearly with the number of classes in this case. So in order to limit the overhead for both
model types, the number of distinct workload events should be restricted using the workload
classification component with the feature classification technique. The functional evaluation of
this component has shown that the quality loss induced by the quality loss can be conveniently
controlled using a single configuration parameter (δ). As given in Table 4.7, this parameter is
environment-specific and therefore should be set up by the DBA. For all other parameters of

4.7 Related Work 135

the workload classification component (Feature Weights, Minkowski Order, γ, kmax, kinc, binc,
Check Interval) adequate default values have been identified during the evaluation. Although
the minimum learning period is also environment specific in principle, it should simply be set
to the same value as the STP parameter of the workload shift detection component.
The overhead tests show that classification is fast for previously observed events (which is

the usual expected case). For 10,000 distinct feature vectors that are assigned to 1000 classes
the classification overhead is 0.8ms per vector, for example. From the linear dependency of
the Kullback-Leibler divergence computation overhead on the number of workload events the
overhead per vector can be expected to be 1.3ms for 10,000 distinct vectors, whereas this over-
head would be 0.13ms for 1,000 distinct vectors only. So for large workloads the classification
overhead is justified, because it reduces workload shift detection overhead significantly. Due to
the non-linear overhead increase for the model adaptation of n-gram models, the classification
overhead here is reasonable even for comparatively small workloads.
After a new model has been learned from the DBS workload, the model information is

passed to the workload shift prediction component. With the Fourier-based approach and the
model interval analysis two techniques have been examined for this purpose. Their functional
evaluation in Section 4.6.4 has shown that the the Fourier-based approach judges fluctuations
in the periodicity relative to the period length. The model interval analysis in contrast allows
the definition of absolute limits for the fluctuations. Considering the rare executions of the
periodicity detection analysis functions, the analysis overheads of less than 20ms are neglectable
in both cases. However, as described in Section 4.5.2 there currently is one important limitation:
Due to the re-assignment of workload class IDs during the re-clustering of the workload events
in the feature classification, the workload shift prediction can only be combined with signature
classification. Otherwise recurring workload models could not be identified. In order to exploit
the full power of the workload monitoring and analysis framework, this limitation should be
eliminated in future work.
The workload shift prediction component requires the definition of a threshold value. As

shown in Table 4.7, this parameter should be set to the same value as for the workload shift
detection. In addition, the following parameters have to be set up adequately for a particular
environment: the minimum number of repetitions rmin, the maximum allowed deviation from
strict periodicity, and the maximum number of prediction mistakes that is accepted before the
periodicity pattern knowledge is discarded.

4.7 Related Work

Before the conclusions from the design and evaluation results of the developed workload analysis
concepts are summarized in Section 4.8, an overview of related work is given in the following
first. In general, prior work on the analysis of database workloads can be classified into offline
tools and online analysis. While the online analysis techniques are just currently emerging,

136 4 Workload Monitoring and Analysis

the offline tools have a longer history. The following sections discuss related online and offline
approaches in the areas of workload shift detection (Section 4.7.1), workload classification
(Section 4.7.2) and workload periodicity detection (Section 4.7.3).

4.7.1 Workload Models and Workload Shift Detection

An early work that has identified the need for a deeper understanding of the database workload
is REDWAR [YCHL92]. Designed as an offline-tool, it provides a characterization of the SQL
trace, like structural information on the processed statements and runtime statistics. The
REDWAR analysis results are presented as a report, which can be used to build a benchmark
workload or to plan the physical design. Hence, REDWAR is neither built for continuous
operation, nor can it identify significant changes in the workload over time automatically. Still,
it has identified the criteria of SQL statements that affect DBS behaviour and performance.
Like REDWAR, the physical design advisors shipped by the database vendors ([ACK+04],

[DDD+04], [ZZL+04]) are offline tools. They recommend physical design structures for a given
workload based on heavyweight algorithms (e.g. knapsack) and expert knowledge. The DBA has
to provide a set of SQL statements that represents the typical DBS workload either manually
or by recording an actual workload for a certain period of time. As the workload is considered
as a "flat" set of statements, the advisors cannot exploit possible performance benefits from
patterns in the workload as done by the n-gram workload shift detection. Furthermore, they
do not consider periodic behaviour of the DBS workload.
The only work so far which has identified the possible benefits from exploiting the order of

statements in the workload is [ACN06]. In contrast to the advisors’ set-based computations,
this approach may adapt the physical design of the database for every statement (or set of
statements). The authors describe algorithms that compute the physical designs which impose
the least execution costs. These costs include the estimated costs for both statement processing
and access path creation. The proposed approach suffers from the problem that the physical
design can only be determined if the entire workload is known in advance. Even if it is assumed
that the database workload is cyclic and consists of only one sequence that repeats continuously,
a minor shift in the workload would make the analysis results unusable.
An early work on online workload monitoring and analysis is COLT [SAMP07]. It continu-

ously determines the possible benefit of all possible additional indexes by using the database
optimizer in a “what-if-mode”, i.e. the optimizer determines the statement execution costs as-
suming the indexes were present. To reduce its own overhead, COLT self-regulates the sampling
rate with which it selects statements to be evaluated. The sampling rate is increased when a
workload shift is assumed. In contrast to the workload shift detection technique described in
this work, COLT does not maintain an explicit model of the workload. Instead, it stores a
history of the processed statements to assess the current physical design. A shift is not identi-
fied by a significant deviation from a model, but from the estimated benefits from additional
indexes. Hence, only workload changes that require changes to the physical design can be de-

4.7 Related Work 137

tected, whereas all other possible configuration changes to the DBS are not considered. As it
lacks an explicit workload model, COLT is furthermore not able to predict periodic workload
shifts.
Like COLT, the online tuning approach [BC07] developed by Bruno and Chaudhuri con-

tinuously monitors the workload and adapts the physical design accordingly. This approach
gathers information about the execution plan from the optimizer during query processing, and
then uses a technique described in [BC06] to derive the execution costs for alternative physical
designs from it. Thus, it reduces the overhead by not having to issue additional optimizer
calls. Furthermore, it also takes into account index interactions and can avoid the problem
of oscillation between physical designs. Compared to the workload analysis presented in this
work, the online tuning proposed by Bruno and Chaudhuri is strictly focused on the efficient
adaptation of the physical design. Other changes to the configuration of the DBS, which may
also be caused by workload shifts, are not considered. And as it does not store a model of the
workload, it is not able to identify patterns in the workload in order to predict workload shifts.
The Psychic-Sceptic Prediction Framework (PSP) [EM04] is a work by Elnaffar and Martin

which has analysed the detection and prediction of shifts from decision support (DSS) to OLTP
workloads. Analytical methods are applied to historical workload models offline in order to
estimate the time interval for expected shifts. Only during this interval the framework actually
performs an online-analysis of workload samples to detect the shift. The PSP does not build a
model of the SQL workload, but maintains a list of “DSSness” indicators only. Thus, it is limited
to the domain of OLTP to DSS shift detection. Later [MEW06], the authors have identified the
general need for both exploratory models (models of the monitored workload) and confirmatory
models (models used by the self-management logic). Martin et al. describe in [MEW06] that
exploratory models should be used to provide a compact representation of the DBS workload.
These models are supposed to be created by unsupervised learning, e.g. clustering, but concepts
for actually building these models for DBS workload are not given. However, only the need for
these models is motivated, whereas a general approach for building them is not given.
n-gram models have also been used in [YAH05] for creating a statistical model of database

workload. This work is directed at the inference of user sessions from SQL statement traces.
Heavyweight analysis algorithms are applied on these models in order to identify and cluster
procedurally controlled sessions. The information about the user sessions is intended to be used
for the prediction of queries based on the queries already submitted, e.g. to optimize the cache
replacement strategies.

4.7.2 Workload Classification

Chaudhuri et al. present an approach for the compression of SQL workload in [CGN02]. Their
goal is the reduction of workload anaylsis overhead in autonomic DBS functions. For this
purpose, they also use clustering techniques and have developed the binary search algorithm
that has been extended in Section 4.3.4.1. In contrast to the approach described in this work

138 4 Workload Monitoring and Analysis

Chaudhuri et al. do not give a general distance function for workload events, but strictly
focus on the subjects index selection and approximate answering of aggregation queries. They
furthermore assume that the entire workload is known in advance, i.e. there are no provisions
for stream-oriented processing for on-line self-management functions. The approach also does
not actually perform a classification of the observed workload before passing it on, but removes
statements from the workload that are considered dispensable.

An approach for a stream-oriented compression of SQL workloads has been reported in
[Kol08]. Like [CGN02], it does not use a general distance metric but strictly focuses on a
distance function for index selection. Hence, it considers the selectivity of a query as the
only possible feature. Though stream-oriented, the approach in [Kol08] does not guarantee
consistency of classification results, and it does not support the definition of a class limit.
The workload compression again is achieved by retaining only some of the SQL statements in
the original workload, which makes the solution unsuitable for workload shift detection, for
example.

Several approaches have been developed for the clustering of data streams. Some of these
approaches, like [OMM+02] and [OO08], employ on-line versions of the k-Means algorithm.
However, the existing on-line k-means approaches are not suitable for DBS self-management
functions, because they continuously adapt the centroids to the observed events, and therefore
violate the consistency requirement. More advanced approaches like [CT07] and [AHWY03]
follow a two-phase scheme: While the current stream is mapped to a micro-clustering or grid in
an on-line-component, an off-line component identifies clusters considering the evolution of the
stream based on historical information. The tasks for the identification of the nearest clusters
and the creation of new clusters in the on-line component are to some extent similar to the
approach in this work. However, the described concepts cannot be used because they lack
support for consistency, do not support the definition of a quality loss limit, and are not suited
for nominal features.

Like clustering techniques, also classification techniques have been adapted to data streams
in the past, e.g. [AHWY04] and [FTARS06]. But also these existing data stream classification
solutions are not applicable, because they require the availability of a separate training stream
containing already classified events, which is not appropriate for DBS workload events.

The approach described in [EMSL08] classifies database workload into decision support (DSS)
and OLTP workload. The authors for this purpose take performance snapshots of the DBS and
extract the relevant attribute values from this information (e.g. queries ratio, number of sorts,
throughput). In order to assign one of the two classes DSS or OLTP to a workload, a decision
tree is used as a classifier. The decision tree is learned from classified training data. In contrast
to the workload classification described in this work, the classification in [EMSL08] is restricted
to the two classes DSS and OLTP. As the approach is based on classification techniques it
cannot be generalized to arbitrary workload classes, because this would require the DBA to
manually identify these classes and provide the corresponding training data.

4.8 Conclusions 139

4.7.3 Workload Periodicity Anaylsis

[Buc09] identifies periodicities in the number of SQL statements submitted to the DBS. For this
purpose the authors also identify the fundamental peaks and harmonics in the Fourier trans-
forms and calculate a periodicity metric on this information. Unlike the periodicity analysis
presented in this work, [Buc09] does not allow the identification of periodicities between differ-
ent types of workloads. Instead, only periodic structures in the processing costs caused by the
statements submitted to the DBS can be identified. So no conclusions about the appropriate
DBS configuration from the workload type is possible. Furthermore the approach described
in [Buc09] does not support the definition of a minimum number of pattern repetitions, or an
absolute limit for the length of the acceptable fluctuations.
Today’s commercial DBMS also offer the storage of historic workload information, e.g. the

AWR [DRS+05] in Oracle or the Workload Manager and Event Monitor [CCI+08] in DB2.
Although the statistical and usage information of these repositories is exploited for various
self-management tasks, it is not yet analysed for recurring workload situations or periodicity.
Following the goal of server capacity management, [GRCK07] detects periodic patterns in

CPU or memory demands of enterprise applications. The pattern analysis is performed using
Fourier transforms and autoregression. The degree of periodicity is then judged by a combi-
nation of the deviation in the time domain and in the value domain. Although the described
periodicity detection are in some parts similar, there are some major differences: [GRCK07]
assumes that the workload information is a continuous signal, which is not the case for the dis-
crete activation of DBS workload models. Furthermore, the acceptance of fluctuations in the
value domain are not suitable for the periodicity detection scenario, and there are no concepts
for providing strict limits for the acceptable fluctuations.
The prediction of the workload in a mainframe operating system is discussed in [BBR+07].

In contrast to the approach described in this work, the authors do not analyse the workload
for periodicity explicitly, but train neural networks from historic workloads. The results show
that this method is applicable for short-term predictions only. [WHYZnt] presents a technique
for predicting the workload in terms of CPU utilization in grids. Like [BBR+07], this approach
does not focus on identifying long-term periodicity, but predicts the expected short-term grid
utilization using time series analysis.

4.8 Conclusions

The workload of a DBS has significant influence on the required DBS configuration, because
the workload represents the way the DBS is used in its particular environment. For this reason
the DBS configuration should continuously be adapted to the workload. However, as discussed
in Section 3, the resulting analysis for a continuous reconfiguration analysis for the entire DBS
would be far too expensive. For this reason this section has presented concepts for a lightweight
detection of significant changes in a DBS workload. The developed approach is based on the

140 4 Workload Monitoring and Analysis

Table 4.8: Workload Classification Requirements
Requirement Feature Cl. Signature Cl.
Classification X X
Varying Statement Characteristics X -
Controllable Loss of Quality X -
Class Limitation X -
Self-Management (X) X
Stream-based Processing X X
Consistency X X
Lightweight Classification (X) X

observation that a lightweight shift detection cannot detect situations that definitely require a
reconfiguration, because this decision again would require a reconfiguration analysis. Instead,
it detects situations where a reconfiguration might be required. This analysis can be performed
with much less overhead.
The processing model for the workload shift detection has been derived from the speech

recognition approach, because the key challenges are comparable. The processing model for
workload shift detection therefore comprises the stages monitoring, preprocessing, classification
and analysis. Considering shift scenarios that should be detected (new applications, obsolete
applications, usage changes, modified applications, periodically changing workloads), the SQL
statement text has been identified appropriate workload information observed in the monitor-
ing stage. The preprocessing then filters the SQL statement texts and – depending on the
classification type – may convert the statements to feature vectors. In order to reduce the
workload diversity and therefore the workload analysis overhead two classification techniques
(signature classification and feature classification) have been developed. Finally the classified
workload information is analysed for significant workload shifts, using either the n-gram mod-
elling technique or the two-window approach. But as these techniques alone are not able to
detect periodic patterns in the workload, an additional periodicity detection for the workload
model activation has been developed. The following paragraphs discuss which of the require-
ments are met by the workload classification, workload shift detection and periodicity detection
techniques that have been developed in this work.
The requirements towards a workload classification solution have been identified and dis-

cussed in Section 4.3.1. Table 4.8 lists these requirements and shows whether or not they are
met by the signature classification and feature classification solutions. Both approaches ob-
viously perform a classification, i.e. they assign the incoming SQL statements to exactly one
class. In contrast, the requirement for varying statement characteristics is only met by the fea-
ture classification, because it allows the selection of adequate features for similarity calculation.
The usage of the statement structure for signature classification in contrast cannot be changed.
Also, the loss of quality cannot be measured or configured for signature classification, and no
class limit can be defined. In contrast, the correct number of classes for a given quality loss and

4.8 Conclusions 141

Table 4.9: Workload Shift Detection Requirements
Requirement n-gram Models Two-Window Models
Permanent Change Detection X X
Periodic Change Provisions - -
Stream-based Processing X X
Self-Management X (X)
Resilience to Noise X X
Compact Description X X
Comprehensibility (X) X
Adaptability X (X)

class limit is automatically derived by the feature classification. The self-management require-
ment is met by both solutions. However, although good default values could be determined
for the feature classification configuration parameters in the evaluation (Section 4.6.3), there is
a risk that they are sub-optimal in some other environments. Both approaches fully support
a stream-based processing and the consistency of classification results over time. Furthermore,
the evaluation has shown that the classification of the SQL statements is lightweight. However,
the simple elimination of the actual parameter values of the SQL statements by the signature
classification is of course faster.
Table 4.9 lists how well the workload shift detection requirements are met by the different

workload shift detection approaches. It can be seen that both the n-gram models and the
two-window model are suitable to detect permanent changes to the workload. Still, both solu-
tions do not consider long-term periodic changes in the workload. Every long-term periodic is
identified as a new permanent change. Short-term periodic patterns in contrast are represented
in the model and therefore do not cause frequent workload shift alerts. By employing a simple
lifecycle model with learning and stable phases, both solutions are fully capable of stream-based
processing. The self-management requirement is also met by both the n-gram models and the
two-window models. However, the n-gram models allow the usage of test-based workload shift
detection, whereas the two-window models require the definition of a threshold. Both solutions
also provide an appropriate resilience to noise, and can be described and stored in a compact
way. The two-window models, which are characterized as a set of relative frequencies of the
workload classes in the model, are more easily comprehensible than the n-gram models (espe-
cially if m ≥ 2). The Adaptability requirement demands that the thresholds are adapted to
the particular environment automatically. This automatic adaptation to the environment is
possible only for the test-based workload shift detection of n-gram models, whereas it has to
be performed manually for the two-window models.
As shown in Table 4.10, the periodicity detection solution for workload model activations

meets all the requirements identified in Section 4.5.1: Recurring workloads can be detected
by exploiting the existing similarity measures (perplexity or conformance indicators), all peri-
odic patterns are detected by either the Fourier-based approach or the model interval analysis

142 4 Workload Monitoring and Analysis

Table 4.10: Workload Periodicity Detection Requirements
Requirement Status
Recurring Workload Detection X
Periodic Pattern Detection X
Pattern Adaptation X
Dependability X
Robustness X
Self-Management (X)

algorithm, and an algorithm for the adaptation of the periodic patterns over time has been
developed. Moreover, the periodic pattern knowledge is managed in a robust way, which avoids
discarding the pattern after a single exception to it. The dependability of the predicted work-
load changes depends on the configured minimum number of periodic cycles before periodicity
is assumed. Finally, the solution works in a self-managing way. Except the setting of the
minimum number of repetitions and the acceptable fluctuations no maintenance overhead is
caused for the DBA.
As a summary it can be stated that almost all requirements are fully met by the described

workload shift detection and prediction solution. However, there still are some parameters of
the approach which should be controlled at set-up time by a DBA to ensure that the solu-
tion meets the characteristics of the particular DBS environment (especially the workload shift
detection threshold, the short-term pattern length, and the minimum number of repetitions
for periodic workload). Nevertheless, it is assumed that the overall benefit of an automatic
information about significant changes in the workload prevails for a DBA: Most significantly,
the information about changes in workload frees the DBA from having to observe the workload
manually. Furthermore, the workload models that are created for the purpose of workload
shift detection also provide a compact description of the typical workload of the DBS. This
information is valuable to a DBA whenever manual reconfiguration decisions have to be made.
By comparing the model against the models that have been active in the past, the workload
prediction component builds a model history. In addition to the prediction of upcoming work-
load shifts, this information will also be useful to a DBA, as it for example can be used to
schedule maintenance tasks or to optimize the capacity planning for the DBS server. Finally,
the workload shift detection can of course be coupled with the autonomic, goal-driven DBS
self-management logic described in the following section.

143

5 Quantitative System Models for DBS

Whenever a workload shift has been detected or there is a risk of missing the high-level goals for
key performance indicators like response time, throughput and availability, a reconfiguration
analysis has to be performed by the self-management logic. During the reconfiguration analysis,
the most appropriate DBS configuration for the current workload, state and goal values has to
be found. Hence, the self-management logic requires detailed knowledge about the behaviour
of the overall DBS under different configurations.
As discussed in Section 3.3, this work follows the proposal in [IBM05] and stores the knowl-

edge required for the reconfiguration analysis in an external knowledge base. This knowledge
base is referred to as a system model. In contrast to implementing the knowledge about the
system structure and behaviour directly in the self-management logic, placing it in a separate
model has the advantage that it can be easily extended, refined and adapted.
The following sections describe the concepts and techniques that have been developed [HR09]

for the definition of DBS system models. Section 5.1 first describes a running example, which
will be used in the following sections to illustrate and validate the modelling concepts. From this
example the requirements towards the contents of a system model are identified in Section 5.2.
Section 5.3 afterwards selects an appropriate modelling technique that allows the straight-
forward representation of the required contents. This selected modelling technique is afterwards
used to define a coarse-grained system model of the IBM DB2 in Section 5.4. Related work is
discussed in Section 5.5.

5.1 Running Example

Ideally, an appropriate, ready-made system model of a DBS would be required in order to
develop reasonable modelling concepts for DBS in general. If such a model existed, the required
contents and therefore the expressiveness of the modelling technique could be derived from it.
Furthermore, it could be used to validate the modelling concepts by re-building the model with
the selected approach. Unfortunately, such a complete model does not currently exist for any
DBMS. Hence, an appropriate substitute is required.
The substitute model has to meet a number of requirements in order to be applicable to

derive the requirements and be used for the illustration and validation of the system modelling
concepts: Determining mathematical models for DBMS components is a difficult task, which
requires extensive experimental evaluations. Hence, the exemplary model on the one hand has

144 5 Quantitative System Models for DBS

sy
st

em
 b

uf
fe

rs

page requests

disks

physical I/O

Figure 5.1: Multiple System Buffers in a DBS

to require mathematical models for a small part of the entire DBMS only, i.e. it has to be as
compact as possible. On the other hand the model has to comprise all aspects of a complete
system model, like sensors, effectors and behavioural descriptions. In particular, it must be
possible to link at least one key performance indicator of the overall DBS to its mathematical
model. In order to meet these requirements, a simple response time model for a DBS has been
developed, which quantifies the response time depending on the configuration of the system
buffer component only. Consequently, the model is based on a mathematical model of the
system buffer component, whereas all other components of the DBMS are ignored.
Whenever a transaction program reads or updates a record in the database, the system

buffer (see Figure 5.1) is responsible for mapping the page that the record is stored in to
memory. Pages that already reside in memory are accessible to the transaction programs
almost immediately. All other pages have to be read from the physical disks first, i.e., an I/O
operation is required, which is by magnitudes more expensive than main memory access [HR83].
The ratio of page requests to the system buffer which can be served without an I/O operation
is referred to as the hitratio. Obviously, a larger size of the system buffer increases the hitratio,
and therefore decrease the average response time. In order to support different access patterns
of the transaction programs the system buffer usually can be segmented or partitioned. The
IBM DB2 DBMS for example allows the creation of a set of bufferpools [Int06], where for every
bufferpool the data that is mapped to it can be defined.
The goal of the system buffer tuning is to minimize the overall data read costs of the DBS.

Thus, the sizes of the individual system buffer segments have to be configured in a way that
the overall data read costs are minimal. A prerequisite for the decision of how the available
memory has to be distributed between the segments is the ability to predict the hitratio for

5.1 Running Example 145

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

charbp = -0.01
charbp = -0.001

charbp = -0.0001

Figure 5.2: Expected Hitratios for different Segment Characteristics

particular sizes of the segments. However, depending on the access patterns of the transactions
programs working on the data in the individual segments, the hitratio may react differently to
buffer size modifications. In order to predict hitratio given a particular segment depending on
its size, a mathematical model has been developed in [BK09]:

hitratioseg(xseg) = 1− echarseg ·x (5.1)

where charseg denotes the characteristic of the segment, which reflects the locality of the work-
load in that segment. The expected hitratios for different segment characteristics are given in
Figure 5.2 (identical to Figure 3.5). The characteristic of a segment can only be determined by
observing the hitratio for particular segment sizes over time.
With the mathematical model for the expected hitratio, it is also possible to approximate

the overall data read costs. Using a strong simplification, [BK09] even estimates the average
response time of the overall DBS from the hitratios of the system buffer segments as

RespT (x) =
∑
seg

(1− hitratioseg(xseg)) · avgPageReqseg · syncIOseg (5.2)

where xseg denotes the sizes of the system buffer segments seg, avgPageReqseg is the average
number of page requests to a segment, and syncIOseg is the average I/O time for that segment
(the I/O may vary as the segments may hold data from different disks). Thus, the response
time is approximated as the sum of I/O time caused by all cache misses. The time for accessing
pages that already reside in the system buffer and for all other statement execution stages (e.g.
access plan generation, sorting, ...) is neglected.
Despite being a simplification, the response time model from [BK09] comprises many im-

portant aspects of a system model. The elements covered by the model are summarized
in Table 5.1. First, the model of course requires a set of sensors, which provide the in-
formation about the workload and state of the DBS. These sensors include the information
about the synchronous I/O time (syncIOSensor[seg]) and the average number of page re-
quests per query (avgPageRequestsSensor[seg]) of a system buffer segment. Like the others,

146 5 Quantitative System Models for DBS

these sensor types have to return values that are specific to a particular system buffer seg-
ment. As the number of these segments is not pre-defined, a sensor segmentsSensor returning
the IDs of the system buffer segments is needed. In addition, the model requires a sensor
bufferCharacteristicSensor[seg] for the characteristic charseg of the system buffer segments.
However, charseg is a parameter that is specific to the mathematical model for the expected
hitratio given in Equation 5.1. Thus, charseg cannot be directly observed from the DBS, but
has to be computed from the current hitratio and segment size by rewriting Equation 5.1 to

charseg = 1
x
· ln(1− hitratioseg) . (5.3)

The characteristic of a system buffer segment therefore can be computed from the current size
and the observed hitratio. As the hitratio again is defined as the ratio of logical reads and
physical reads, two additional sensors logicalReadsSensor[seg] and physicalReadsSensor[seg]
are required. In contrast to the sensors, only one type of effector is covered in the model: the
bufferSizeEffector[seg] controls the size of the system buffer segments. The mathematical
model for the expected hitratio constitutes the only behavioural description hitratio[seg, size]
in the system model. The approximation in Equation 5.2 links this behavioural description
to the high-level response time goal that may be defined by a DBA. Equation 5.2 therefore
constitutes a goal function for the overall DBS.

With sensors, effectors, behavioural descriptions and goal functions the above model com-
prises all important structural components of a system model. However, there are two limita-
tions that might downgrade its usefulness as a running example: First, there is only one type of
effector and one DBMS component (the system buffer) which is described by a mathematical
model. Nevertheless, by considering several independent system buffer segments, the depen-
dencies between DBMS components still can be expressed with this model: With this approach
increasing the size of one segment requires the reduction of the size of another segment, causing
an interdependency between the configuration decisions. Second, the model comprises only
one goal function that models the response time and therefore should be minimized. But as
discussed in Section 3.4, a system model typically comprises several goal function with oppos-
ing objectives. As shown in Table 5.1, the model has therefore been extended with a second
goal function ResourceUsage, which is intended to limit the memory usage and therefore the
operation costs. The goal function is defined as

ResourceU(x) =
∑
seg

xseg (5.4)

where xseg refers to the sizes of the system buffer segments. Extended in this way, the system
buffer model comprises the important aspects of a system model and serves as a substitute for
a complete system model in the following investigations.

5.2 System Model Requirements 147

Table 5.1: Model Elements
Model Element
Type

Name Description

Sensors

segmentsSensor Returns the IDs of the different
system buffer segments.

syncIOSensor[seg] Returns the average synchronous
I/O-time for physical reads of the
given system buffer segment seg.

avgPageRequestsSensor[seg] Returns the average number of
logical reads to the system buffer
segment seg per query.

bufferCharacteristicSensor[seg] Returns the current characteristic of
the system buffer segment seg.

logicalReadsSensor[seg] Returns the total logical read
operations to system buffer segment
seg.

physicalReadsSensor[seg] Returns the total physical read
operations caused by page requests
to system buffer segment seg.

Effectors bufferSizeEffector[seg] Sets the size of the system buffer
segment seg.

Behavioural De-
scription

hitratio[seg, size] Estimates the hitratio of system
buffer segment seg for the new size
size using Equation 5.1

Goal Functions ResponseTime Overall average response time for
queries to the DBS.

ResourceUsage Overall memory usage by the system
buffer.

5.2 System Model Requirements

Before a modelling technique for creating DBS system models is developed, the most important
requirements for the model contents have to be identified. The following paragraphs discuss
these requirements based on the system buffer model introduced in Section 5.1. An overview
of the functional requirements towards the system model is given in Figure 5.3.

Refineability As discussed in Section 3.3, the definition of a complete DBS system model
from scratch is prevented by the complexity of today’s DBMS. Instead, a simplified model
which focuses on a small set of components (like the running example) may be created in a
first step only. Hence, the system modelling technique must allow the incremental refinement
of the system model over time.

Hierarchical Structure When analysing the information in the system buffer model example,
it becomes obvious that the model elements refer to different hierarchy levels of the DBS. While
the goal functions are defined at the overall DBS-level, the segmentsSensor can be clearly as-

148 5 Quantitative System Models for DBS

hierarchical
structure

self-management logic system model

goals

workload

state

configuration

performance

configuration

refineability

quantitative
behavioural
description

touchpoint
specification
touchpoint

specification

hardware model

goal functionsgoal functions

constraints

Figure 5.3: System Model Requirements Overview

server

CPU memorydiscs I/Onetwork

hardware model

DBMS

... lock mgr system
buffer

lock list deadlock
detector...

DBMS model

effectors
changeability
type

sensors
availablility
semantics
type

constraints
domains
dependencies

Figure 5.4: Required Information in a System Model

signed to the system buffer only. The logicalReadsSensor[seg] and physicalReadsSensor[seg],
for example, reside at an even lower hierarchy level, because their values are specific to one
system buffer segment. To allow a straight-forward development, maintenance and refinement
of the system model, it is therefore reasonable to reflect this hierarchical structure in the system
model. As shown in Figure 5.4, the hierarchical structural description of the DBMS can be
built with the DBMS as the root node. Every level in the model then can refine the structural
composition of the DBMS (Figure 5.4 is explained in greater detail in the following).

Touchpoint Specification The components that are modelled in the structural system model
hierarchy will typically offer a set of configuration options and monitoring information about
their performance, workload and state. In the system buffer model example, the size of each

5.2 System Model Requirements 149

system buffer segment can be configured and the number of logical and physical read opera-
tions can be monitored, for instance. Hence, the system model must allow the definition of
touchpoints, i.e. sensors and effectors, at every level of the model hierarchy.
To allow an easy refinement and extension of the model, the touchpoint specifications has to

contain precise information on the accessibility and meaning of the sensors and effectors. As
shown in Figure 5.4, the model must describe how the sensor value can be retrieved (avail-
ability, e.g. from system catalogue or from an analysis function). Furthermore, the meaning
of the sensor information (semantic, e.g. counter, high water mark, or current value), and its
type (workload or state) need to be defined. For effectors it is necessary to describe their type
(e.g. configuration parameter, physical design, maintenance function) and whether they can be
manipulated online or offline (changeability). As in some cases reconfigurations may be associ-
ated with severe overhead, the changeability information must also provide information on the
expected costs of using an effector, and the time expected until the effects of the reconfiguration
are observable.

Constraints The effector values of DBMS components in many cases may not or must not be
changed arbitrarily but are subject to constraints. For example, the size of the system buffer
segments typically requires a minimum size, e.g. 100 pages. These simple constraints on the
effector values also have to be stored in the system model and are referred to as domains. In
addition to the domain restrictions, which are specific to a single effector, there may also be
cross-effector dependencies. The sum of the sizes of the system buffer segments in the running
example, for instance, are limited by the overall amount of available memory. Likewise, the
administration manuals of DBMS often describe rules for the values between parameters of
several effectors (e.g. "if parameter A is 0 then parameter B must be 1").

Behavioural Description The essential type of constraints for the automatic deduction of
reconfiguration actions is the description of the expected behaviour of the component. The ex-
pected behaviour must be described in terms of a mathematical model of the component, which
quantifies the performance of the component depending on its sensor and effector values. Only
then it will be possible for the self-management logic to predict the effects of reconfigurations.
An important insight for creating the behavioural description is that only the observable

behaviour of a component can influence the components behaviour. All other possible influences
necessarily have to be neglected. The prediction of the hitratio of a system buffer segment in the
running example only depends on the sensor and effector values, but not on any DBS-internal
factors that can not be observed by the self-management logic. Thus, a behavioural description
is defined as the prediction of the values of performance values based on sensor and effector
values.

Goal Functions As illustrated in the running example, the sensors, effectors and behavioural
descriptions all serve the purpose of predicting the overall DBS behaviour under different con-

150 5 Quantitative System Models for DBS

figurations. Hence, the system model has to comprise goal functions which define the prediction
rules for the high-level goal values that may be set by the DBA. These goal functions must link
the goals to the behavioural descriptions, sensors and effectors of the system model.

Hardware Model Although the system catalogue of today’s DBMSs usually also contains a
description of the available hardware, there is a clear need to maintain a separate hardware
model. The reason is that the information in the system catalogue does not provide information
on the performance characteristics and costs of using a particular piece of hardware. This
information will be required by the self-management logic in order to minimize the computation
costs, while assuring the performance goals. Furthermore, a separate hardware model allows
to explicitly represent resource competition between DBMS components. For example, the
performance of both the lock list and the system buffer depend on the amount of memory
assigned to it (illustrated as dotted arrows in Figure 5.4).

It is important to note that the description of the logical and physical design of a DBS is
not part of the DBS system model. This information is instead available from the system
catalogue. The logical and physical design are factors that influence the performance of the
DBS. So from a system model point of view, the logical and physical design will be described as
information available via a sensor (that will access the system catalogue), and can be adapted
via appropriate effectors.

5.3 System Modelling

The greatest challenge for the development of system models is the complexity of today’s
DBMS. As a solution to this challenge the requirements analysis in Section 5.2 has identified
the refineability and hierarchical structure as one of the key requirements to a system modelling
approach. These requirements are most naturally supported by a visual modelling language,
which allows the system modeller to only define the most important components at the top-level.
More detailed descriptions can be viewed or added by stepping down into the components and
sub-components. Thus, a system model may abstract from structural and behavioural details
in a first step and add the missing information later where required.
Different visual modelling languages have been compared for the purpose of creating DBS

system models in [Kar09]. In particular, the Common Information Model (CIM, [Dis08]) and
the System Modelling Language (SysML, [Obj08]) have been investigated for their applicability
according to general and use-case-specific criteria. The modelling language that has been
selected for the definition of DBS system models is SysML. SysML has been designed to support
the specification, analysis, design, and validation of a broad range of systems and systems-of-
systems, including hardware and software aspects [Obj08]. As illustrated in Figure 5.5, SysML
extends and redefines the UML2 language. To support a general systems engineering, the

5.3 System Modelling 151

SysMLUML2

SysML diagram

structure behaviour cross-cutting

block
definition

internal block

parametric

activity

state
maschine

sequence

use case

requirements

package

Figure 5.5: SysML Diagram Types [Wei08]

SysML for example redefines the UML class diagram as a block diagram. So the contents in
a block definition diagram refer to the structural blocks of a system, and not to classes of an
object-oriented application. Likewise, the UML composite structure diagram has been redefined
as internal block diagram and is used to define the internal structure of a block, i.e. its parts
and their connections.
The general modelling approach followed by SysML – a visual definition of hierarchically

structured systems – matches the hierarchical structure and refineability requirements of DBS
system models. In addition, there are special provisions for representing the available hardware
in the block diagrams and for assigning the functional blocks of the system to hardware com-
ponents (for details see [Wei08]). However, the most important reason for the selection of the
SysML language is the new parametric diagram. The parametric diagram allows the connection
of particular model elements via constraints. Constraints are defined as specialized blocks and
comprise mathematical descriptions of system-wide invariants. In a parametric diagram, the
parameters of constraints then can be connected to model elements at any level of the structural
hierarchy. So by using constraint blocks for the definition of the behavioural descriptions of a
DBS model, the system-wide dependencies in a DBS can be modelled in a visual and intuitive
way. In the following, the usage of SysML for DBS system models is described in detail. The
running example is modelled with SysML for this purpose.
The basis for all descriptions in the system model is a structural description of the DBMS and

the available hardware. As the running example only covers the buffer pool, the most important

152 5 Quantitative System Models for DBS

bdd DBS Model [Structural Composition]

«block»
QueryTranslation

«block»
OperatorExecution

«block»
RecordManagement

«block»
PageManagement

«block»
FileManagement

: SystemBuffer

«block»
DBMS

: BufferSegment [1..*]

Figure 5.6: Running Example: DBMS Structure Definition

components of the overall DBS are modelled according to the general layered DBS architecture
described in [HR83] (see Figure 3.1). As shown in Figure 5.6, a SysML block definition diagram
is used to model the DBMS according to the layered architecture. Aggregation associations are
used to express the composition of an overall DBMS from the layers defined in [HR83]. The
page management layer, whose structure is more precisely defined by the running example, is
extended with an internal block diagram description. It shows that the page management layer
contains a system buffer, which again contains one or more system buffer segments.
The block definition diagram in Figure 5.6 is well suited to depict the structural composition

of a DBMS. Every block in this diagram can furthermore be extended with compartments
for the definition of the corresponding sensors and effectors. However, to increase readability
when more blocks are added, also an additional block definition diagram can be created for
this purpose. Figure 5.7 illustrates this separate definition of the sensors and effectors from the
running example: The block buffer segment is extended with all segment-specific sensors from
Table 5.1. In addition, the bufferSizeEffector is assigned to this block. The segmentsSensor,
which returns the IDs of the available segments, in contrast must be a part of the overall system
buffer. The goal functions in the running example refer to the overall DBS response time
and resource usage. Hence, appropriate sensors (ResponseTimeSensor, ResourceUsageSensor)
at the DBS-level are required which allow the monitoring of these values for possible goal
violations.
It is important to note that in Figure 5.7, the sensors and effectors in the structural definition

diagrams all refer to specific types. Hence, every sensor and effector has to be represented by

5.3 System Modelling 153

bdd DBS Model [Sensors and Effectors]

«block»
DBMS

«block»
System Buffer

rts : ResponseTimeSensor
rus : ResourceUsageSensor

ss : SegmentsSensor

«block»
Buffer Segment

sios : SyncIOSensor
aprs : AvgPageRequetsSensor
bcs : BufferCharacteristicSensor
lrs : LogicalReadsSensor
prs : PhysicalReadsSensor
bss : BufferSizeSensor
bse : BufferSizeEffector

Figure 5.7: Running Example: Sensor and Effector Definitions

bdd DBS Model [Touchpoints]

«block»
ResponseTimeSensor

«block»
SegementsSensor

source : Availablility = SystemMonitor
meaning : SensorValue = CurrentValue
type : SensorType = State
accessInfo : String = “...“

«block»
LogicalReadsSensor

«block»
ResourceUsageSensor

«block»
AvgPageRequestsSensor

«block»
BufferCharacteristicSensor

«block»
LogicalReadsSensor

«block»
PhysicalReadsSensor

«block»
BufferSizeEffector

type : EffectorType = Parameter
changeability : ChangeType = Online
costs : ChangeCost = 0
min : Double = 100
max : Doube = MAX
accessInfo : String = “...“

source : Availablility = SystemCatalog
meaning : SensorValue = CurrentValue
type : SensorType = State
accessInfo : String = “...“

source : Availablility = SystemMonitor
meaning : SensorValue = Counter
type : SensorType = Workload
accessInfo : String = “...“

Figure 5.8: Running Example: Touchpoint Specifications

a separate Block in the model, as specific characteristics must be stored in order to provide
the necessary touchpoint specification. The required touchpoint information is illustrated in
Figure 5.8 (the full information is illustrated only for the first four types). For every sensor its
source, meaning, and type has to be defined. Furthermore, specific access information like a
command string or parameter value may be required, and minimum and maximum values for
effectors. In order to assure that the self-management logic can interpret the parameters at
runtime, the source, and meaning parameter values must be chosen from a predefined list (e.g.
Counter, HighWaterMark, and CurrentValue for meaning).
In addition to the structural information about DBMS components, the DBMS model has to

describe the effectors’ dependencies and the components’ behaviours. For these purposes the
ConstraintBlock element is used to define standard mathematical expressions as Constraint-
Rules. Figure 5.9 illustrates the representation of the behavioural description hitratio[seg,size]

154 5 Quantitative System Models for DBS

bdd DB2 Model [Behavioural Descriptions]

hitratio : Double
char : Double
Size : Integer

{hitratio = 1 - EXP(char * size)}

«constraint»
HitratioPrediction

char : Double
physicalR : Integer
logicalR : Integer
size : Integer

{char = LN(1-physicalR/logicalR) / size}

«constraint»
BufferCharacteristic

Figure 5.9: Running Example: Constraints

par DBS Constraints

bse prs

bss

lrs
: BufferCharacteristic: HitratioPrediction

logicalR

physicalR

size

size

hitratio

char

char

Figure 5.10: Running Example: Parameter Specifications for the Constraints

as defined in the running example in a SysML ConstraintBlock HitratioPrediction. The
ConstraintBlock defines both the mathematical expression and the types of its parameters.
The calculation rule for the bufferpool characteristic (see Equation 5.3) is also defined in a
ConstraintBlock in Figure 5.9. As described above, the SysML parametric diagram is used
to link the parameters of the constraints to the sensors and effectors of the structural DBMS
model. The parametric diagram for the hitratio prediction constraint is given in Figure 5.10.
The rounded rectangles in this diagram refer to instances of the constraints defined in Fig-
ure 5.9. The parameters of the constraints are referred to as ConstraintProperties by the
SysML standard and depicted as little white squares within the constraint instances. For every
parameter the constraint instances either define a link to a sensor or effector of the model,
or they connect it to the result parameter of another constraint instance (as shown for the
buffer characteristic char in the example). It is important to note that the size of the buffer
segments is used in two ways in the example: on the one hand it is used as a sensor value by the
BufferCharacteristic constraint instance, while on the other hand it is used as an effector by the
hitratio prediction constraint. This distinction is important because effectors mark variables
whose values may be optimized by the self-management logic. As in case of the BufferCharac-
teristic constraint its value must not be modified, but only the current value has to be read, it
has to be modelled as a sensor.

5.3 System Modelling 155

par DB2 Constraints

bse prs

bss

lrs
: BufferCharacteristic: HitratioPrediction

logicalR

physicalR

size

size

hitratio

char

char

: DBSMemory

...

sortHeapSize : SortTimePrediction

... ...

buffer

sort size

...

Figure 5.11: Modelling Dependencies in Parameteric Diagrams

Using the parametric diagram, dependencies between the different DBS components can be
modelled in a straight-forward manner: The side effects of effectors can be easily defined by
connecting the effectors to all relevant constraint instances. An extension to the running ex-
ample which illustrates the definition of dependencies is shown in Figure 5.11. In this example
the buffer size effector (bse) has additionally been linked to a constraint instance which defines
resources competing for DBS memory. Besides others, also the sort area requires DBS mem-
ory. A self-management logic evaluating the exemplary model therefore can determine that by
increasing the buffer size the hitratio can be increased. However, it can also see that the sort
area size has to be reduced at the same time, which would increase the predicted sort time.
As discussed in Section 5.2, the description of the system behaviour must be related to the

goal definitions in order to decide whether or not the goals defined by a DBA will be met.
Hence, the system model is extended with goal functions. These are modelled as additional
ConstraintBlocks and represent the high-level goals that may be set by a DBA. Typically these
goals will refer to properties such as response time, throughput, resource usage, availability and
operation costs. Considering the visual modelling approach, other goal functions may be added
on demand, of course. Each of the goal functions must quantitatively describe how its value
depends on the DBS configuration. Two examples for quantitative goal functions have been
given for the response time and resource usage in the running example in Equations 5.2 and
5.4. Figure 5.12 illustrates how these functions can be defined in SysML using ContraintBlock
model elements in a block definition diagram.
Unlike the previous constraint definitions, the goal functions in Figure 5.12 refer to a set of

DBMS components: the number of system buffer segments is not known at modelling time and

156 5 Quantitative System Models for DBS

bdd DBS Model [Goals]

«constraint»
ResponseTime

{respT = SUM[seg]((1-hitratio) * avgPageReq * syncIO) }

respT : Double
seg : Integer [1..*]
hitratio : Double
avgPageReq : Integer
syncIO : Double

«constraint»
ResourceUsage

{resU = SUM[seg](size)}

resU : Integer
seg : Integer [1..*]
size : Integer

Figure 5.12: Running Example: Goal Functions

may be changed via configuration. Hence, the goal functions define an aggregation function
SUM to summarize the values of all existing system buffer segments. For this reason the
standard expressions are typically supported in the ConstraintRules of ConstraintBlocks with
aggregation functions. The corresponding syntax is

AGG[aggVar](<expression>) ,

where AGG denotes the aggregation function (e.g. SUM, AVG), aggVar denotes a (multi-
valued) variable that defines the identifiers of the instances, and <expression> defines the
expression that has to be aggregated. For the example in Figure 5.12 the aggregation variables
in the expressions (seg) refer to the IDs of the system buffer segments. The suffix [1..*] marks
this parameter as multi-valued.
In order to be able to actually predict the goal values, these goal functions must be linked

to corresponding sensor and effector values of the structural DBMS model. For this purpose
again the SysML parametric diagram is used. To avoid having to refine the goal functions
down to individual sensors and effectors, the goal functions can be added to existing parametric
diagrams for the behavioural descriptions. Thus, the result values of existing constraints can be
employed in order to define the goal function mappings. These goal function mappings are given
in Figure 5.13. The avgPageReq, syncIO, seg, and size parameters of the ResponseTime and
ResourceUsage constraints here are linked to the corresponding sensors of the DBMS model.
In contrast, the hitratio parameter of the ResponseTime constraint is simply linked to the
result value of the HitratioPrediction constraint instance. Thus, a self-management logic can
determine that the response time can be optimized by modifying the buffer size effector of the
buffer segments. As shown in the figure, the goal functions always must constitute the top
of the constraint hierarchy, whereas the leafs must be sensors and effectors. It is important
to note that the SystemBuffer.ss sensor that returns the set of system buffer segment IDs is
linked to the constraint parameters like any other single-valued sensor. A self-management
logic therefore has to correctly expand the aggregation functions and query the sensor values
several times (once for every value in the multi-valued sensor’s result).

5.4 DB2 System Model 157

par DBS Constraints

BufferSegment.bse BufferSegment.prs

BufferSegment.bss

BufferSegment.lrs
: BufferCharacteristic: HitratioPrediction

logicalR

physicalR

size

size

hitratio

char

char

: ResponseTime : ResourceUsage

hitratio

BufferSegment.aprs BufferSegment.sios

SystemBuffer.ss

avgPageReq syncIO

respT

seg seg

resU

size

Figure 5.13: Running Example: Parameter Specifications for the Goal Functions

To allow a straight-forward declaration of goals with distinct values for specific service classes,
the following rule syntax in the ConstraintBlocks has been chosen: The name of a goal
function may be followed by a service class name in squared brackets. For example, the rule in
Figure 5.12 can be rewritten as

respT [sc] = SUM [seg](1− hitratio) ∗ avgPageReq ∗ syncIO .

The corresponding constraint parameter sc in this case of course also has to be connected to an
element that returns the names of the service classes. The name of the service class property is
then implicitly available as a parameter in all those sensors and effectors, which are (transitively)
connected to the goal function constraint. For example, the sensor BufferSegment.lrs could
consider the sc parameter to be able to return service-class-specific numbers of logical reads to
the buffer segments.

5.4 DB2 System Model

After the general system modelling techniques have been introduced using the running example,
this section describes the definition of a concrete system model for IBM DB2. The resulting
system model comprises both a structural and behavioural description of DB2. The goal of the
creation of the system model is two-fold: on the one hand it is intended as a proof of concept

158 5 Quantitative System Models for DBS

to show that the system modelling techniques described in Section 5.3 can be applied for a
concrete DBMS, and on the other hand the approach selected for creating the system model is
intended to serve as a blueprint for other system models in the future.
As discussed in Section 3.3, the creation of a complete and exact system model is a challenging

task that can only be attained by an iterative refinement of an initial coarse-grained model.
This kind of coarse-grained initial model is constructed in the course of this section. The
procedure for the creation of the model has been based on the selection of one key performance
indicator (KPI) of the overall DBS, whose dependency on the DBS configuration is supposed
to be described. The selected KPI is the response time, whereas all other possible KPIs like
availability, throughput, or operation costs are not considered. After the selection of the KPI,
a detailed analysis of the DB2 manuals ([Int06], [AFG+04], [Int09]) has been performed in
order to identify the most important structural components of the DB2. For each of the
components the configuration parameters with considerable impact on the response time KPI
have been determined. Together with the required sensor information, these components build
the coarse-grained structural system model, which is described in Section 5.4.1.
Following the identification of the major structural components, a quantitative mathematical

model for the dependency of the KPI on the configuration of the components has been derived.
The approach selected for this purpose is similar to the approach for the structural description,
because the mathematical models are also built based on the theoretical descriptions given in
the DB2 manuals (Section 5.4.2). These hypothetical models predict the share of the overall
response time of every component in the structural model based on its sensor and effector
values. The models have then been validated by performing experimental evaluations of the
observable behaviour under different workloads and states. The evaluation framework that
has been developed for this purpose and the corresponding evaluation results are described in
Section 5.4.3.
The DB2 system model that is constructed in the following sections serves the purpose of a

proof of concept. However, the results of the experimental evaluation in Section 5.4.3 show that
– despite the simplifications and approximations that are made during the construction of the
system model – quantitative predictions for the DBS performance are possible. Furthermore
the resulting model serves as a basis for future refinements, and as a blueprint for system models
for other DBMS.

5.4.1 Structural Description

The overall structure of IBM DB2 has been derived from the DB2 manuals. In particular,
the Performance Guide for High Performance OLTP and BI [AFG+04] provides a detailed
description of the DB2 components, their interaction, and their important tuning knobs. An
overview of the resulting structural model is shown in Figure 5.14. The following subsections
discuss the functionality and properties of the blocks in the model. For every component the
most important effectors and sensors are given, too.

5.4 DB2 System Model 159

bdd DB2 Model [Structural Composition]

«block»
Relational Data Services

«block»
Data Management Services

: Catalogue : Optimizer

: Table/Index Mgr

: Lock Mgr : Logging

«block»
Operating System Services

«block»
Connection Mgr

: Agent [1..*]

: AgentPool

: Run-Time Interpreter

: Sort

: Data Protection Services

: PackageCache

: Bufferpool [1..*]

: Bufferpools

Figure 5.14: Overview of the Structural Description for IBM DB2

5.4.1.1 Connection Manager

The connection manager (ConnectionMgr) handles the connections and communication be-
tween the DBS and the client applications. For every application that establishes a connection
to DB2 an Agent is created on the server-side. The agent is responsible for the execution of
the client requests on the DBS and for returning the results back to the client. According to
[Int06] the creation of the required agent is an expensive operation, which should be executed
as rarely as possible. To avoid these costs for most connections, DB2 manages a pool of agents
(AgentPool). Whenever an application requests a connection, one of the spare agents in the
pool – if present – is assigned. An agent is returned to the pool as soon as the client connection
is closed. Thus, new agents only have to be created when there are no spare agents available
in the pool.

Effectors The most important configuration option for the connection management perfor-
mance is the size of the agent pool (NUM_POOLAGENTS). The larger the pool is, the smaller
is the probability that an agent has to be created and the smaller is the share of the response
time caused by the connection. However, every agent requires a certain amount of memory,
which is not available for other components then. Thus, increasing the pool size may increase
the share of response time caused by other components.

160 5 Quantitative System Models for DBS

Sensors The objective of agent pool size tuning is the minimization of the average connection
establishment duration (AVG_CON_DUR). As this information cannot be directly retrieved
via one sensor in DB2, it has to be calculated from two other monitoring elements: DB2
supports the monitoring of the connection request time (appl_con_time) and the timestamp
of the connection establishment (conn_complete_time). The average connection establishment
duration therefore has to be calculated as the average value of the difference of these two
monitor elements. Another important sensor of the connection management is the total number
of connections (TOTAL_CONS), which can be directly retrieved from the DB2.

Dependencies The performance of the connection management depends on the available
memory for agents in the pool. Although memory is required by every component, the largest
effects of resource competition can be expected with the system buffer and the sorting compo-
nent.
In addition to the dependencies on other components there are also two configuration op-

tions specific to connection management, which have a significant impact on the behaviour, but
which are not considered in this coarse-grained model: First, the behaviour of the connection
management depends on whether or not the DB2 connection concentrator is activated. If the
concentrator is activated multiple connections can share one agent. The concentrator is acti-
vated if the value of the effector max_connections is larger than the value max_coord_agents.
In this model the connection concentrator is assumed to be deactivated. Second, the number
of agents initially available in the pool can also be configured (num_initagents), which may be
smaller than the actual pool size. Thus, up to NUM_POOLAGENTS agents are created only
when they are required. To keep the model simple, the number of initial agents is assumed to
be the same as the pool size.

5.4.1.2 Relational Data Services

The block RelationalDataServices covers the functionality of the two uppermost layers of the
layered DBMS model described in [HR83]. On the one hand it comprises the Optimizer com-
ponent, which creates efficient execution plans for the queries issued by the applications. On
the other hand it also executes the generated plans in the RunTimeInterpreter, and comprises
the meta-data Catalogue. The effectors and sensors of these components are discussed in the
following.

Optimizer

The DBS optimizer is responsible for creating procedural execution plans for the descriptive
SQL queries submitted by the client applications. The procedural execution plans consist of
plan operators like table scans, index access, sorts, and aggregations. The implementations of
these plan operators are provided by the Run-Time Interpreter of IBM DB2. In order to find
execution plans that are as efficient as possible, the optimizer performs both a syntactical and

5.4 DB2 System Model 161

cost-based optimization. The overhead that the optimizer is allowed to cause for evaluating
different query execution strategies can be controlled by the DBA.

Effectors The configuration parameter DFT_QUERYOPT defines the default optimizer level
that is used for creating the execution plans. The higher the optimizer level, the more effort
is spent on the optimization of the queries, because a larger set of heuristics and operator
implementations are considered as alternatives for the execution plan generation. Thus, a
high optimization class may cause more compilation overhead, but reduce the actual execution
time (and therfore the overall response time). Consequently, the IBM DB2 documentation
recommends the usage of low optimizer levels for OLTP environments and high optimizer
levels for OLAP/DSS workloads, where the complex queries and large data volumes may cause
very large statement execution times.

Sensors In order to assess the current configuration of the optimizer, two sensors are required:
a sensor for the average compilation time (AVG_COMPILE_T) and a sensor for the average
statement execution time (AVG_EXEC_T). These two sensor values can be calculated from
the two DB2 monitor elements prep_time_worst and total_exec_time.

Dependencies The execution plans generated by the optimizer are stored in the package cache
until they have to be replaced by another execution plan. Hence, a larger package cache may
compensate the additional compilation times of larger optimizer levels, because the probability
of execution plan re-uses are increased.

Sorts

Complex SQL queries often require the sorting of the underlying data. The most important
factor of sorting is whether or not the sorting can be executed in memory. If the sorting cannot
be performed in memory, an external sorting mechanism has to be used, i.e. intermediate results
have to be written to disk.

Effectors Due to the significant overhead for writing intermediate sort results to disk, the
choice of the sort heap size is a critical factor for the overall response time. The sort heap size
is configured with the effector SORTHEAP and determines the amount of memory that may
be used for sorting by every agent.

Sensors The important sensors that provide information about the performance of the sorting
component are the total time spent for sorting (TOTAL_SORT_TIME) and the total execution
time of all statements (TOTAL_EXEC_TIME). These two sensors can be directly retrieved
from DB2 monitoring elements.

162 5 Quantitative System Models for DBS

Dependencies As the performance of the sorting component mainly depends on the available
memory, it obviously a depends on all other components that require memory. In particular, the
system buffer performance will be degraded if the sort area is increased. But additional writes
to disk for intermediate results may also affect the performance of read and write operations
for the physical database or the logging data.
In addition to the dependencies on other components, the effects of changing the SORTHEAP

effector also depends on whether or not shared sorts are activated. However, shared sorts are not
considered in the coarse-grained DB2 model developed in this work and are therefore assumed
to be switched off.

Package Cache

Being part of the Run-time Interpreter, the package cache is a memory area that caches ex-
ecution plans for SQL statements. Whenever a SQL query is submitted to the DBS and the
agent finds an appropriate execution plan for the query in the package cache, the query does
not have to be re-compiled again.

Effectors The effect of the package cache on the overall response time is determined by its
size, which is controlled by the DB2 parameter PCKCACHESZ. The larger the size of the
package cache, the more execution plans can be stored and possibly re-used, and the more
compilation time can be saved on an average.

Sensors The sensor that provides the important information for assessing the performance of
the package cache is its hitratio PCK_CACHE_HITRATIO. As the DB2 does not provide a
monitor element that directly reports this value, it has to be calculated as the ratio of the pack-
age cache inserts (pkg_cache_inserts) and the package cache lookups (pkg_cache_lookups).

Dependencies The benefit caused by a larger package cache depends on the actual compi-
lation times for SQL queries: The greater the compilation times, the greater the benefit of
an increased package cache size. Thus, there is a dependency between the package cache size
and the optimizer level. In addition, there is of course a dependency to all other DB2 compo-
nents whose performance depends on the available memory, e.g. the sorting and bufferpool
components.

Catalogue

The system catalogue stores the meta data about the database. It is mainly required by the
optimizer component for the compilation of queries and for checking authorization information.
The persistent system catalogue information is cached by the DB2 in memory, and the size of
the cache is subject to configuration. However, as the effects on the overall response time of

5.4 DB2 System Model 163

the catalogue cache size are considered small in comparison to the other system components,
the catalogue cache size is not modelled in this coarse-grained DB2 model.

5.4.1.3 Data Management Services

The execution plans for SQL queries that are executed in the Run-Time Interpreter are based
on the implementation of operators like index access and table scans. These operators provide
access to the data stored in the DBS by retrieving individual records from the Data Management
Services component. The Table/Index Manager component in the Data Management Services is
responsible for offering the required record retrieval and storage functionality to these operators.
It is therefore the task of the Table/Index Manager to extract the records from the physical
pages stored in the system buffer. The system buffer may be split into multiple segments in
DB2. These segments are referred to as Bufferpools. In order to provide the transactional
properties of isolation and atomicity, the Data Management Services also comprise a Locking
and a Logging component, which are grouped together as the Data Protection Services. The
effectors, sensors, and dependencies of the components in the Data Management Services are
discussed in the following paragraphs.

Table/Index Manager

The Table/Index Manager retrieves the data pages from the bufferpools and extracts the re-
quested records from them. In addition, it applies any "sargable" predicates to them, i.e. all
predicates which can be evaluated from checking the field values of the current record only (for
details see [AFG+04]). The most important configuration option of the Table/Index Manager
is the decision of which indexes would provide the most benefit for the current workload. As
indexes are one of the most important measures for improving the performance of a DBS, the
development of automatic indexing techniques has been in the focus of self-managing DBS
research for a long time. Many approaches for this purpose have been published in the past
(see Chapter 2). Due to this large amount of existing solutions to this problem, the modelling
of an index benefit model has been excluded from the coarse-grained DB2 model in this work.
However, the existing approaches could serve as a sound basis for the refinement of the DB2
system model in the future.

Bufferpools

The bufferpools component implements the DB2 system buffer. The functionality of this com-
ponent has been described in detail in Section 5.1.

Effectors The size of the system buffer is one of the most important configuration parameters
of a DBS. In DB2, there typically is a set of bufferpools, i.e. buffer segments, whose sizes
can be controlled individually. Consequently, the sizes of the bufferpools are not set via a

164 5 Quantitative System Models for DBS

single configuration parameter, but via a special DB2 command (alter bufferpool). In the
following this effector is referred to as BP_SIZE.

Sensors The sensor which provides the information about the current performance of the
bufferpool is its hitratio (TOTAL_HIT_RATIO_PERCENT). This value is directly available
as a DB monitor element. In order to assess the impact of a bufferpool size change on the
overall response time of the DBS it is furthermore important to know the number of logical
references to the particular bufferpool. This information is provided by the POOL_L_READS
sensor, which can be easily calculated from the pool_data_l_reads and pool_index_l_reads
monitor elements. Furthermore, DB2 allows to assign particular data partitions to each of
the bufferpools. Hence, the observed latencies for retrieving a data page from disk may vary
between the bufferpools. The average synchronous I/O time for each bufferpool is returned by
the sensor AVERAGE_READ_TIME_MS, which is available from the DB2 monitor element
of the same name. As the number of bufferpools in a DB2 depends upon configuration, a sensor
BUFFERPOOL_IDS that returns the IDs of the existing bufferpools is also required, of course.

Dependencies The bufferpool performance mainly depends on the available memory, i.e., its
reconfiguration decisions interact with all other DBS components that require memory. How-
ever, there are also many other dependencies: if for example an index was created that avoids
many scans of a large table, then the hitratio of the bufferpool might improve drastically. Like-
wise, the re-assignment of the data to a faster disk reduces the synchronous I/O time for that
bufferpool and therefore reduces the overall response time. Also choosing a higher optimizer
level might lead to more efficient execution plans, which again increase the hitratio because no
data is read unnecessarily.

Logging

For performance reasons modifications of the data in a DBS are usually not forced into the
physical database immediately at the commit of a transaction. Instead, the modifications are
first cached in a logbuffer, and sequentially written to a logfile upon commit of a transaction.
In case of a system crash it may therefore be required to restore the last transaction-consistent
state of the DBS using a recovery mechanism.

Effectors Considering the goal function to be modelled (response time), the most relevant
effector is the logbuffer size LOGBUFSZ. The greater the logbuffer, the less often its contents
have to be flushed to disk before a transaction actually has issued a commit. For other goals
of course other effectors are relevant, too, e.g. the frequency of logfile backups for availability
or the logfile size for throughput.

Sensors In order to assess the performance of the logging component, the information on the
number of times the logbuffer had to be flushed because it was full is most relevant. This

5.4 DB2 System Model 165

information is available via the NUM_LOG_BUFFER_FULL sensor, which can be directly
retrieved from the corresponding DB2 monitor value. Furthermore, the total number of written
log pages (LOG_WRITES), the total number of update operations (NUM_UPD_STMTS)
and the time spent for writing the log pages (LOG_WRITE_TIME) are important sensor
information for tuning the logbuffer size.

Dependencies As for the other components that require memory, the tuning decisions for the
logging component interact with all other memory-dependent components. Furthermore, the
group-commit-option is an important configuration option, which allows to delay the flushing of
the logbuffer for a certain period of time in order to wait for other transactions to commit. For
the sake of simplicity, this option is assumed to be switched off for the DB2 model constructed
in this work.

Lock Manager

The locking component of the data protection services is responsible for the synchronisation
of concurrent transactions. It manages the locks set on data objects and grants or denies the
read/write operations of the transactions. As the effects on the response time can be assumed
to be constant as long as the system is not congested, it is not considered in the DB2 model.
In contrast, this component would be of highest importance for modelling the throughput of
the system, because it has a significant influence on query concurrency.

5.4.1.4 Operating System Services

The operating system services are responsible for the persistent storage of the data in files and
the access to the files using the operating system facilities. Hence, the many physical design
options offered by DB2 (like data partitioning, assignment of data files to disks, clustered storage
of the data, reorganisation) form the configuration decisions for this component. However, due
to the complexity of these decisions a quantitative prediction model has not been investigated in
this work. The operating system services component is therefore not part of the coarse-grained
DB2 model.
By omitting the operating systems services configuration from the model, the underlying

physical design is assumed to be constant. From the perspective of a self-management logic,
this reduces the number of configuration options, i.e. the number of effectors. Hence, the parti-
tioning, disk assignment, and clustering of the data cannot be changed by the self-management,
because these DB2 configuration options are “hidden”. However, given that this physical design
is not changed externally, the models for the other components form an overall model which is
perfectly valid for a self-management logic.

166 5 Quantitative System Models for DBS

5.4.2 Behavioural Description

As discussed above, the system model in this work focuses on the prediction of the response
time as the only goal function. The following sections therefore describe quantitative models
for predicting the response time depending on the workload, state and configuration. Only the
components identified as relevant in the previous Section 5.4.1 are investigated for this purpose.
Section 5.4.2.1 first develops a model for predicting the overall DBS response time. The

Sections 5.4.2.2-5.4.2.7 afterwards discuss quantitative response time models for every relevant
DB2 component in detail.

5.4.2.1 Overall Response Time Model

The basic assumption for creating an overall response time model is that each of the DB2
components adds a certain delay to the query processing time. Hence, the overall response time
function shown in Figure 5.15 models the response time as the sum of the response times caused
by the DB2 components that have been identified as relevant for the structural model. That is,
the delays caused by the connection management (RT_CON), bufferpools (RT_BUF), sorting
(RT_SOR), logging (RT_LOG), and re-compilations due to package cache misses (RT_PKG)
are summed up in order to estimate the overall response time of the DBS (RT_DBS). The
optimizer level in this response time model has a special role: As the optimizer level determines
the efficiency of the execution plans, it also determines how much effort is spent at the lower
levels for actually processing a query. Thus, in the coarse-grained DB2 model, the optimizer
level affects the overhead caused in the bufferpool, sorting and package cache components. In
contrast, the delays caused by the connection management and logging components are not
influenced by the optimizer level: While the connection management delay in the processing
chain is caused before the optimizer level becomes relevant, the logging component causes
overhead only for insert, update, and delete operations. In order to model the influence of
the optimizer configuration on the overall response time, the quantitative model in Figure 5.15
therefore considers the optimizer level RDS as a factor that is applied to the delays of the
affected components.
As described previously, the system model has to map the parameters of the goal functions

to sensors and effectors in the structural system model. For the response time model, the
parameters RT_CON, RT_BUF, RT_SOR, RT_LOG, and RT_PKG therefore have to be
mapped to the sensors and effectors described in Section 5.4.1. But as performing this mapping
in a single step is a complex task and the resulting model would be difficult to maintain,
the mapping is instead performed in layers. Each of the following sections therefore analyses
the behaviour of only one of the components in detail and describes a quantitative model
that predicts the components’s behaviour depending on the sensor and effector values. Every
component-specific model provides one top-level constraint, whose “return value” matches the
parameter required by the overall response time goal function. Figure 5.16 illustrates the
parametrization of the response time goal function in a SysML parametric diagram.

5.4 DB2 System Model 167

bdd DB2 Model [Goal Functions]

RT_DBS : Double
RT_CON : Double
RDS : Double
RT_BUF : Double
RT_SOR : Double
RT_LOG : Double
RT_PKG : Double

{RT_DBS = RT_CON + RDS * (RT_BUF + RT_SOR) +
RT_LOG + RT_PKG }

«constraint»
ResponseTimePrediction

Figure 5.15: Overall DB2 Response Time Model Constraint

par DB2 Response Time

: Connection_RTS

: ResponseTime

RT_CON

R
T_

LO
G

RT_DBS

: Optimization : Bufferpool_RT

: Sorting_RT : Logging_RT : Recompile_RT

RT
_S

O
R

R
D

S

RT
_B

U
F

RT_PKG

Figure 5.16: Overall DB2 Response Time Model Constraint Parametrization

168 5 Quantitative System Models for DBS

bdd DB2 Model [Bufferpool Constraints]

«constraint»
Bufferpool_RT

{RT_BUF = SUM[bp](
(1-hitratio) *
(logicalR/numStmts) *
syncIO

) }

RT_BUF : Double
bp : Integer [1..*]
hitratio : Double
logicalR : Integer
numStmts : Integer
syncIO : Double

hitratio : Double
char : Double
Size : Integer

{hitratio = 1 - EXP(char * size)}

«constraint»
HitratioPrediction

char : Double
hitratio : Integer
size : Integer

{char = LN(1-hitratio) / size}

«constraint»
BufferCharacteristic

Figure 5.17: DB2 Bufferpool Response Time Model Constraint Definition

5.4.2.2 Buffer Management

The patent [BK09], which has been used as the source for the running example in Section 5.1,
is owned by IBM. Hence, this existing quantitative model for estimating the response time
share of the bufferpool is also used for the DB2 model. It approximates the response time
as the sum of synchronous read times caused by cache misses in the bufferpool. As all other
components of the DBMS are ignored, it perfectly suits the requirements of a bufferpool-specific
overhead model. Figures 5.17 and 5.18 illustrate the adaptation of the corresponding constraint
definitions for the DB2-specific sensors and effectors. One major difference is that DB2 offers a
monitor element that directly allows the monitoring of the bufferpool hitratio. In addition, the
average number of page requests in DB2 cannot be monitored directly, but has to be calculated
from the number of statements and the total number of page requests.

5.4.2.3 Sorting

The quantitative model for the prediction of the sorting delay based on the DBS’s workload
and state is a simplified version of the model described in [DZ02]. It assumes that the sorting
overhead decreases exponentially with the size of the available memory. As a simplification
it therefore ignores the range of memory where sort operations can be executed with a one-
pass technique. Furthermore, the sort time is assumed to be 0 when the sort can be executed
entirely in memory. This approach is taken because DB2 reports only the overall sort time.
Thus, the overhead from sorting in memory cannot be distinguished from the time spent for
writing/reading intermediate results to/from disk and merging operations.
Due to the monitoring limitations in DB2, the entire sorting time that can be observed via

the DB2 sensor is considered as overhead, which could be avoided if the sort was executed in

5.4 DB2 System Model 169

par DB2 Model [Bufferpool]

Bufferpool.
BP_SIZE

Bufferpool.
TOTAL_HITRATIO_PERCENT

Bufferpool.
BP_SIZE

: BufferCharacteristic: HitratioPrediction

hitratio

size

size

hitratio

char

char

: Bufferpool_RT

hitratio

DBS.NUM_STMTS
Bufferpool.

AVERAGE_READ_TIME_MS

Bufferpools.
BUFFERPOOL_IDS

numStmts syncIO

respT

bp
Bufferpool.

POOL_L_READS

Figure 5.18: DB2 Bufferpool Response Time Model Constraint Parametrization

memory. Thus, the sorting overhead which could be avoided can be calculated as the ratio

overhead = sumSort

sumExec
, (5.5)

where sumSort refers to the overall sort time and sumExec to the overall execution time of
the statements. Increasing the size of the sort area reduces the sort time by a certain amount
z and therefore the execution time as well. So the new overhead can be defined as

overheadnew = sumSort− z
sumExec− z

. (5.6)

By rewriting this equation the time benefit z can be quantified as

z = overheadnew · sumExec− sumSort
overheadnew − 1 , (5.7)

where overheadnew depends on change of the sort area size. In order to estimate the changes
of the response time the difference of z and the current sort time can be calculated, i.e.

sumSortnew = sumSort− z (5.8)

= sumSort− overheadnew · sumExec− sumSort
overheadnew − 1 (5.9)

= overheadnew(sumSort− sumExec)
overheadnew − 1 (5.10)

170 5 Quantitative System Models for DBS

bdd DB2 Model [Sorting Constraints]

«constraint»
Sorting_RT

{RT_SOR = (overhead * (sumSort - sumExec)) / (overhead -1) *
(1 / numStmts) }

RT_SOR : Double
sumExec : Integer
sumSort : Integer
numStmts : Integer

overhead : Double
char : Double
Size : Integer

{overhead = EXP(char * size)}

«constraint»
SortingPrediction

char : Double
hitratio : Integer
size : Integer

{char = LN(sumSort/sumExec) / size}

«constraint»
SortingCharacteristic

Figure 5.19: DB2 Sorting Response Time Model Constraint Definition

The resulting response time share estimation Sorting_RT per statement is shown in Figure 5.19.
This figure also shows that for estimating the overhead reduction by increasing the sort area
size the same exponential function as for the bufferpool hitratio is used (SortingPrediction).
Of course, its concrete parametrization depends on the characteristics of the workload. The
ConstraintBlock SortingCharacteristic therefore defines the calculation of the workload charac-
teristics parameter. This rule has been formed by rewriting the rule from the SortingPrediction
and replacing the overhead with its calculation rule from Equation 5.5. The parametrization
of these constraints with the DB2-specific sensors and effectors is illustrated in Figure 5.20.

5.4.2.4 Connection Management

The basic rationale for the connection management model is that the most expensive operation
is the creation of an agent. Hence, the agent creation time is assumed to account for the most
significant share of response time in the connection management. The model of connection
management therefore estimates the probability for the case that an agent has to be created
because no agent is available in the pool.
Figure 5.21 defines the quantitative response time model of connection management in SysML

ConstraintBlock elements. The probability poolProb that an agent is available in the pool
is calculated as the ratio of the size of the agent pool (poolSize) and the average number
of parallel connections (parallelCons) in the constraint PoolAgentProbability. The number of
parallel connections is an important workload characterization of the DBS, which is expected to
be low for OLAP environments and high for OLTP workloads, for example. From the poolProb
information the constraint ConnPrediction approximates the average connection establishment

5.4 DB2 System Model 171

par DB2 Model [Sorting]

Sort.
SORTHEAP

Sort.
SORTHEAP

: SortingCharacteristic: SortingPrediction

sumSort

sizesize

overhead

char

char

: Sorting_RT

overhead

SORT.
TOTAL_EXEC_TIMEDBS.NUM_STMTS

SORT.
TOTAL_SORT_TIME

numStmts sumExec

RT_SOR

sumSort

sumExec

Figure 5.20: DB2 Sorting Response Time Model Constraint Parametrization

time by multiplying the time for creating an agent (agentCrtTime) with the probability that no
pool agent is available. For the connection only has to be established once, but many statements
may be issued via the connection, the connection establishment delay must be averaged over
all statements of the connection (see top-level constraint Connection_RT). Figure 5.22 defines
the mapping of the parameters to the DB2 sensors and effectors.

5.4.2.5 Logging

The quantitative model of the logging component has to predict the time that is required for
logging the changes of update, insert and delete statements to disk. The basic assumption of
the model is that for every modifying statement the costs appear at least once upon commit,
i.e. group commits are not considered in the model. When statements modify a lot of records
in the database and the log buffer is too small, then it may be necessary to flush the log buffer
more than once, i.e. , additional overhead is caused. In this case the model approximates the
logging costs to double (even if three or more log flushes are necessary). In addition, the model
makes the simplifying assumption that insert, update, and delete operations are immediately
committed. The evaluation results in Section 5.4.3.5 show that the predictions made from the
model are reasonable despite these limitations. However, by refining the model in the future
it should investigated whether or not more precise predictions can be retrieved for the logging
overhead without these simplifications.
As shown in Figure 5.23, the response time share added by the logging component is modelled

as average logging time logTime, which is doubled with a certain probability logFullProb. Of

172 5 Quantitative System Models for DBS

bdd DB2 Model [Connection Constraints]

«constraint»
Connection_RT

{RT_CON = avgConnEst / (numStmts / numCons) }

RT_CON : Double
avgConnEst : Integer
numStmts : Integer
numCons : Integer

avgConnEst : Double
poolProb : Double
agentCrtTime : Integer

{avgConnEst = (1 - poolProb) * agentCrtTime }

«constraint»
ConnPrediction

poolProb : Double
poolSize : Integer
size : Integer

{poolProb = poolSize / parallelCons}

«constraint»
PoolAgentProbability

Figure 5.21: DB2 Connection Management Response Time Model Constraint Definition

par DB2 Model [Connection Management]

AgentPool.
AVG_CON_DUR

AgentPool.
NUM_POOLAGENTS

: PoolAgentProbability: ConnPrediction

sizeagentCrtTime

poolProb

poolProb
: Connection_RT

avgConnEst

DBS.NUM_STMTS

DBS.
AVG_PARALLEL_CONS

numStmts

RT_CON parallelCons

avgConnEst

DBS.TOTAL_CONS

numCons

Figure 5.22: DB2 Connection Management Response Time Model Constraint Parametrization

5.4 DB2 System Model 173

bdd DB2 Model [Logging Constraints]

«constraint»
Logging_RT

{RT_LOG = (numUpdStmts / numStmts) *
(logTime + logFullProb * logTime) }

RT_LOG : Double
numUpdStmts : Integer
numStmts : Integer
logTime : Double
logFullProb : Double

logTime : Double
totalLogTime : Integer
numUpdStmts : Integer

{logTime = totalLogTime / numUpdStmts }

«constraint»
LoggingTime

logFullRatio : Double
numFullEvents : Integer
numUpdStmts : Integer

{logFullRatio = numFullEvents / numUpdStmts}

«constraint»
LogFullRatio

logFullProb : Double
logFullRatio : Double
size : Integer
currentSize : Integer
char : Double (Workload characteristic)

{logFullProb = (- logFullRatio * (size - currentSize)) /
(char – currentSize) +
logFullRatio }

«constraint»
LogFullPrediction

char : Double
pageWrites : Integer
numCons : Integer
numUpdStmts : Integer

{char = (pageWrites / numUpdStmts)
numCons }

«constraint»
WorkloadCharacteristic

Figure 5.23: DB2 Logging Response Time Model Constraint Definition

course, the log overhead is only added for non-read operations. The average logging time
per statement can be easily determined from the total log time and the number of non-read
statements (as shown in constraint LoggingTime). The probability for log buffer overruns is
more difficult to estimate. A linear approach has been chosen for this purpose, which determines
the probability as a straight line defined by two points: The first point is the current state,
which is defined by the current size of the log buffer currentSize and the ratio of log buffer
full events (logFullRatio, see constraint LogFullRatio). The second point is the point where
the ratio of log full events can be expected to be 0. This point depends on the workload of
the system and is therefore referred to as the workload characteristic char. As shown in the
WorkloadCharacteristic constraint, this characteristic is estimated by calculating the average
number of log page writes (pageWrites) per non-read statement. To assure that the log buffer is
sufficient for multiple applications operating in parallel, this value is multiplied with the average
number of connections numCons. The parametrization of the constraints for the logging model
is shown in Figure 5.24.

174 5 Quantitative System Models for DBS

: WorkloadCharacteristic

par DB2 Model [Connection Management]

Logging.
LOG_WRITES

Logging.
LOG_WRITE_TIME

: LoggingTime

: LogFullPrediction

totalLogTime

numCons

logTime

: Logging_RTDBS.NUM_STMTS
numStmts

RT_LOG

numUpdStmts

pageWrites

DBS.TOTAL_CONS

logFullProb

logFullProb

: LogFullRatioLogging.
LOGBUFSZ

size

char

char

DBS.
NUM_UPD_STMTSnumUpdStmts

logFullRatio

logFullRatio

numUpdStmts

logTime

numUpdStmts

Figure 5.24: DB2 Logging Response Time Model Constraint Parametrization

5.4 DB2 System Model 175

bdd DB2 Model [Optimizer Constraints]

«constraint»
Optimization

{RDS = rdsFac(optLevel) }

RDS : Double
rdsFac : Double
optLevel : Integer

Figure 5.25: DB2 Optimizer Response Time Model Constraint Definition

par DB2 Model [Optimizer]

Optmizer.
RDS_FACTOR

: OptimizationOptimizer.
DFT_QUERY_OPT

optLevel

RDS

rdsFac

Figure 5.26: DB2 Optimizer Response Time Model Constraint Parametrization

5.4.2.6 Optimizer

In contrast to the other components, the goal of the optimizer model is not the quantification
of the response time caused by this component. Instead, a factor that quantifies the effects
of a particular optimization level on the performance of the affected components has to be
determined. It can be assumed that the higher the optimizer level is chosen, the more efficient
plans are generated and the less overhead is caused in the data processing components. The
components that are affected by this factor in the DB2 model are the bufferpool and the sorting
component. The effects of the optimizer level on the package cache response time implications
are instead directly considered in the package cache model (see Section 5.4.2.6).

Due to the complexity of the optimizer decision, finding a theoretical model for the effects
of the optimizer level on the response times of the bufferpool and sorting components is a very
complex task or even impossible. It is assumed that there is a sensor that "knows" the factors
for all optimizer levels. This sensor could either learn the correct factor over time by trying
different optimization levels and monitoring the effects. Alternatively, it could be equipped
with a set of standard-factors that are derived from experimental evaluations of DB2 under
different workloads. This approach is investigated in detail in Section 5.4.3.6.

The constraint for this simple optimizer model is illustrated in Figure 5.25. It shows that
the factor that represents the effects of the optimizer level is returned by a custom function
labelled rdsFac. This function takes the optimizer level optLevel as a parameter. The parametric
diagram in Figure 5.26 shows that this function is expected to be implemented as a sensor.

176 5 Quantitative System Models for DBS

bdd DB2 Model [Package Cache Constraints]

«constraint»
Recompile_RT

{RT_PKG = (1-hitratio) * compileTime(optLevel) }

RT_PKG : Double
hitratio : Double
compileTime : Double
optLevel : Integer

hitratio : Double
char : Double
Size : Integer

{hitratio = 1 - EXP(char * size)}

«constraint»
HitratioPrediction

char : Double
hitratio : Integer
size : Integer

{char = LN(1-hitratio) / size}

«constraint»
BufferCharacteristic

Figure 5.27: DB2 Package Cache Response Time Model Constraint Definition

5.4.2.7 Recompilation

As described in Section 5.4.1, the package cache buffers the execution plans generated by
the optimizer for future use. If the package cache is large, there is a high probability that
the execution plan for a submitted query can be found in the cache and does not have to
be recompiled. Thus, the response time share added by the package cache is the average
recompilation effort that is required due to package misses. To predict the number of package
misses, again the exponential cache model already used for modelling the bufferpool and sorting
behaviour can be employed.

The constraint definitions for the package cache model are given in Figure 5.27. It shows
that to compute the response time share in constraint Recompile_RT the average compilation
time for statements is required. However, this value depends on the current optimizer level,
because a higher optimizer level implies a higher compilation time. As for the execution time,
defining a theoretical model for the dependency of the compilation time is a very complex task.
The package cache model therefore follows the same approach as the optimizer and assumes
that there is a sensor (compileTime) which returns the required information. An experimental
evaluation in order to determine the typical compilation time for different workloads is subject
of Section 5.4.3.7. The remaining constraints HitratioPrediction and BufferCharacteristic are
equal to those of the bufferpool and sorting models. Figure 5.28 illustrates the parametrization
of the constraints with the sensors and effectors from the DB2 structural model. It is impor-
tant to note that the Recompile_RT constraint depends on the DFT_QUERY_OPT effector
setting, thus modelling the dependency to the optimizer configuration.

5.4 DB2 System Model 177

par DB2 Model [Package Cache]

PackageCache.
PCKCACHESZ

PackageCache.
PCK_CACHE_HITRATIO

PackageCache.
PCKCACHESZ

: BufferCharacteristic: HitratioPrediction

hitratio

size

size

hitratio

char

char
: Recompile_RT hitratio

Optimizer.
COMPILE_TIME

compileTime

RT_PKG

Optimizer.
DFT_QUERY_OPT

optLevel

Figure 5.28: DB2 Package Cache Response Time Model Constraint Parametrization

5.4.3 Experimental Evaluation

The previous sections have developed a system model of IBM DB2. The model has been defined
based on the information provided in DB2 manuals and research papers, and on general theo-
retical considerations about the mode of operation of the components. In this section the pre-
dictions of the DB2 system model are evaluated with respect to their accuracy. Section 5.4.3.1
introduces the evaluation framework developed for this purpose. Afterwards, Sections 5.4.3.2-
5.4.3.7 present the evaluation results for each of the model components. Section 5.4.3.8 finally
discusses the accuracy of the overall DBS response time prediction.

5.4.3.1 Evaluation Framework

The basic idea for evaluating the system model is to measure the effects of every single effector
on the overall response time of DB2. In every test-run only one effector value is changed and
the response time reaction on this change is examined. To ensure comparability the DBS is
re-set to a standard configuration after each test-run. The effects of the test-run are compared
to the predictions of the individual model components in order to judge their accuracy. To
avoid biased results due to a workload dependency, the effects of each effector are evaluated for
several workloads with different characteristics.
For the experimental evaluation of the system model the evaluation framework illustrated

in Figure 5.29 has been created. The evaluation control implements the main evaluation func-
tionality: It first sets the tested IBM DB2 to a standard configuration, which includes the
installation of a standard image of the physical database (DB backups) and standard values for
all parameter values. Afterwards, it changes one of the effectors from the system model to a
new value and executes one of the standardized workloads on the system. While the workload
is executed, the values of the relevant sensors and the response time are monitored and logged
in regular intervals by the results logger.
To ensure that the evaluation results are valid for different workload scenarios, the evaluation

is repeated for four different standardized workloads: TPC-C, TPC-H, TPC-W and DS2. As

178 5 Quantitative System Models for DBS

IBM DB2

workload

sensors effectors

DB Backups

TPC-C TPC-H

TPC-W DS2

workloads
results
logging

systematic
configuration setup

evaluation control

Figure 5.29: System Model Evaluation Framework Overview

described in Section 4.6.3.1, the TPC-C workload [Tra07] is a workload from a standardized
DBS benchmark, which simulates an OLTP workload on the DBS. The TPC-H workload [Tra08]
in contrast simulates an OLAP load on the DBS with long-running, complex queries. TPC-W
[Tra02] is a standard for the evaluation of database-backed web servers, which defines browsing,
shopping, and ordering loads on the web server. DS2 is a benchmark by Bell Laboratories
[Lab08], which also evaluates the performance of web servers built upon a DBS. For both TPC-
W and DS2 only the load caused on the DBS is relevant, whereas the workload on the web
server is ignored.
All tests have been performed on a IBM DB2 Version 9.5 on an Windows XP operating

system. The used hardware was a PC with a 4-Core CPU and 4 GB of physical memory. The
load for the DS2 and TPC-H workloads has been generated using Apache JMeter [Pro10] with
appropriate load specification. The TPC-C and TPC-W workloads have instead been generated
using existing Java implementations of the benchmark specifications ([jTP09] and [Uni09]).

5.4.3.2 Bufferpool Evaluation Results

The bufferpool model predicts two important values: the hitratio for a given bufferpool size
and the response time for the estimated hitratio. Figure 5.30 plots the observed hitratios for
different bufferpool sizes in the test-runs. In addition, several predicted hitratios based on
the workload characteristic calculated at a specific point in time are given in the plots. For
example, the curve Prediction 3000 represents the bufferpool hitratio estimation derived from
the hitratio observed at a bufferpool size of 3000 pages. The plots show that in general the
actual hitratio can be predicted quite well – while of course there are errors. The errors are large
especially for predictions from small bufferpool sizes, e.g. the Prediction 100 for the TPC-C
workload. Using this estimation, the hitratio is assumed to be almost 100% for a bufferpool size
of 1000 pages, although in fact it is around 50% only. These errors can be reduced by refining
the model in a way that it considers more than one data point for calculating the workload
characteristic.

5.4 DB2 System Model 179

TPC-C

H
it

ra
ti

o
[%

]

0

20

40

60

80

100

Bufferpool Size [Pages]
5.000 1e+04 1,5e+04 2e+04

TPC-W

H
it

ra
ti

o
 [

%
]

0

20

40

60

80

100

Bufferpool Size [Pages]
0 200 400 600 800 1.000

TPC-H

H
it

ra
ti

o
 [

%
]

0

20

40

60

80

100

Bufferpool Size [Pages]
0 1.000 2.000 3.000 4.000 5.000 6.000

DS2

H
it

ra
ti

o
[%

]

0

20

40

60

80

100

Bufferpool Size [Pages]
0 1.000 2.000 3.000 4.000 5.000 6.000

Figure 5.30: Bufferpool System Model Evaluation: Hitratio

The estimated and observed response times for different bufferpool sizes are given in Fig-
ure 5.31. It is important to note that in this figure only the response time has been estimated,
whereas the actually observed hitratio has been used. From a theoretical point of view the
model for the prediction is reasonable, because it estimates the response time from the product
of the page misses and the average I/O time. However, as can be seen from the figure, the
deviations of the actual response time from the estimated response time share can be large. The
factor by which the actual response time is missed in the TPC-C, TPC-W, and DS2 scenarios
is up to 2-5, and for the TPC-H scenario the factor is even around 13. However, it can also be
seen that the general trend is well reflected by the predicted values.

5.4.3.3 Sorting Evaluation Results

The prediction of the response time share is performed with two models: In a first stage,
the sorting overhead caused by insufficient sorting memory is estimated using an exponential
function. From this overhead, the average sorting response time is approximated from the
currently observed total execution and sorting times. For the evaluation of these models not
the entire workloads defined in the evaluation framework have been used. Instead, only two
queries requiring a significant amount of sorting have been selected (TPC-H query 13 and a
reporting query on the DS2 database). Due to the large amount of data that has to be sorted

180 5 Quantitative System Models for DBS

TPC-C

R
es

po
ns

e
Ti

m
e

[m
s]

0

2.000

4.000

6.000

8.000

1e+04

1,2e+04

Bufferpool Size [Pages]
0 5.000 1e+04 1,5e+04 2e+04

TPC-W

R
es

po
ns

e
T

im
e

[m
s]

0

5

10

15

20

25

30

35

40

Bufferpool Size [Pages]
0 200 400 600 800 1.000 1.200

TPC-H

R
es

po
ns

e
T

im
e

[m
s]

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

Bufferpool Size [Pages]
1.000 2.000 3.000 4.000 5.000

DS2

R
es

po
ns

e
Ti

m
e

[m
s]

0

50

100

150

200

Bufferpool Size [Pages]
0 1.000 2.000 3.000 4.000 5.000 6.000

Figure 5.31: Bufferpool System Model Evaluation: Response Time

in these queries, the queries cause sort area overruns and thus flushing of intermediate results
to disk.
The observed sorting overhead ratios for these two queries for different sort-heap sizes are

illustrated in Figure 5.32. In addition, three exemplary predictions for the overhead are given.
The Prediction 1000, for example, refers to the overheads predicted from the observations at a
sort-heap size of 1000 pages. From the plots one issue of the overhead prediction model becomes
obvious immediately: The model does not reflect the base sorting time that is required even
when the sorts can be executed in memory completely. However, missing sensor information
in the DB2 about the duration of internal sorting does not allow the identification of this base
line. In addition, [DZ02] describes that the sorting area must have a certain minimum size
before performance improvements can be observed. This knowledge is also not yet considered
in the model.
The observed sorting times for the two queries are plotted in Figure 5.33. This figure also plots

two sort time predictions for each query type. The predictions represent the sorting response
times that would be estimated for the sorting characteristics (sort time, total execution time,
overhead prediction) that have been observed at the indicated sort-heap sizes (1000/160000 and
100/500 pages). It can be seen that the predictions that are based on characteristics derived in
the area where the sort-heap increases actually lead to an improvement of the sorting overhead
are more precise (1000 pages for the TPC-H query and 100 pages for the DS2 query). This

5.4 DB2 System Model 181

TPC-H Query 13

S
or

t
O

ve
rh

ea
d

%

0

0,2

0,4

0,6

0,8

1

Sortheap Size [Pages]
0 5.000 1e+04 1,5e+04 2e+04 2,5e+04 3e+04

DS2 Report 2

So
rt

 O
v

er
he

ad
 %

0

0,2

0,4

0,6

0,8

1

Sortheap Size [Pages]
0 200 400 600 800 1.000 1.200

Figure 5.32: Sorting System Model Evaluation: Overhead

TPC-H Query 13

So
rt

 T
im

e
[s

]

0

10

20

30

40

50

Sortheap Size [Pages]
0 5.000 1e+04 1,5e+04 2e+04 2,5e+04 3e+04

DS2 Report 2

So
rt

 T
im

e
[s

]

0

10

20

30

40

50

60

70

Sortheap Size [Pages]
0 200 400 600 800 1.000 1.200

Figure 5.33: Sorting System Model Evaluation: Response Time

is caused by the fact that the base-line of sorting time is not considered in the model for the
overhead prediction.

5.4.3.4 Connection Management Evaluation Results

The goal of the system model for the connection management component is the prediction of
the effects of the agent pool size on the response time. According to the DB2 documenta-
tion [Int09], the creation of an agent causes a significant overhead, which should be avoided
by maintaining an appropriately sized agent pool (especially for OLTP environments). For
investigating the effect of the agent pool size on the observable response times, the evaluation
framework described in Section 5.4.3.1 has been employed in a first step. However, for none of
the workloads any effect of the agent pool size on the response times could be observed.
It has been assumed that the natural fluctuations in the processing times of the TPC-C, TPC-

182 5 Quantitative System Models for DBS

10 Threads

A
ve

ra
ge

 C
on

ne
ct

io
n

 E
st

ab
lis

hm
e

n
t

Ti
m

e
 [

m
s]

0

200

400

600

800

1.000

1.200

Agent Pool Size
0 2 4 6 8 10 12 14 16

100 Threads

A
ve

ra
ge

 C
on

ne
ct

io
n

 E
st

ab
lis

hm
e

n
t

Ti
m

e
 [

m
s]

0

200

400

600

800

1.000

1.200

Agent Pool Size
0 20 40 60 80 100 120 140 160

Figure 5.34: Connection Establishment Evaluation

H, TPC-W and DS2 workloads obscure the effects of the agent pool size on the response time.
Hence, a second specialized test has been designed for evaluating the connection management:
A Java application has been created which instantiates a configurable number of threads. Each
thread then creates a separate connection to the DB2 and monitors the time for establishing
the connection. The results of this test are given in Figure 5.34. It plots the average connection
establishment times against the agent pool size for 10 and 100 parallel connections. As can
be seen from the figures, a clear trend for lower connection establishment times with larger
pool sizes can not be identified at all. Hence, the predictions of the connection management
model developed in Section 5.4.2.4 do not have to be evaluated. The connection management
component is instead excluded from the DB2 response time system model, because no effects
on the response time could be observed in the experimental evaluation.

5.4.3.5 Logging Evaluation Results

The system model for predicting the logging overhead is based on predicting the probability
of situations where the log buffer is too small to hold all pages modified within a transaction
depending on the logbuffer size (see Section 5.4.2.5). From this probability it estimates the
average logging time per statement, i.e. the response time share added by the logging compo-
nent. For this purpose it multiplies the logbuffer overrun probability with the average log write
time. In order to validate the precision of this model, only the TPC-C and DS2 workloads
have been used. The TPC-H contains only queries and therefore does not cause any logging
overhead, whereas the modifications from the TPC-W workload affect a very small number of
records only, so that no logbuffer overruns are caused even for the smallest possible logbuffer
size configuration.
For each of the TPC-C and DS2 workloads, two sample predictions of the logbuffer overrun

probability are shown in Figure 5.35. For the TPC-C workload, the predictions made from

5.4 DB2 System Model 183

TPC-C

Lo
gb

uf
fe

r
Fu

ll
Pr

ob
ab

ili
ty

 %

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

Logbuffer Size [Pages]
0 20 40 60 80 100 120

DS2

Lo
gb

uf
fe

r
Fu

ll
Pr

ob
ab

ili
ty

 %

0

0,01

0,02

0,03

0,04

Logbuffer Size [Pages]
0 50 100 150 200 250 300

Figure 5.35: Logging System Model Evaluation: Logbuffer Full Probability

the DBS state that could be observed as a logbuffer size of 4 and 8 pages are shown. The
intersections of the linear prediction with the x-axis represent the points where no overruns
are expected for the current workload of the system. These logbuffer sizes are calculated as
the workload characteristic according to the rules given in Section 5.4.2.5. However, as can
be seen from the figures, the actually observed overrun probabilities do not follow the linear
dependencies suggested by the model. Still, the approximations of the model are close to the
actual probabilities and do not fail by orders of magnitude. The amount of memory that
would be allocated unnecessarily in the TPC-C scenario in order to completely avoid logbuffer
overruns would be less than 30 pages, i.e. typically less than 120KB.

The observed logging times for the TPC-C and DS2 workloads are plotted in Figure 5.35.
This figure also plots two logging time (i.e. response time share) predictions for each of these
workloads. The predictions represent the logging response times that would be estimated for
the logging characteristics observed at the indicated logbuffer sizes (4/8 and 4/16 pages). The
TPC-C figure shows that the estimated logging time from Prediction 8 is much higher than
the estimations derived from the characteristics derived from the observations that have been
made at a logbuffer size of 4 pages. These higher values are caused by a higher average log
time (42.7ms instead of 28.8ms) that have been observed for this logbuffer size. In addition,
it can be seen from the figure that the logging time decrease estimated from the model is too
small. This underestimation shows that the simplifying assumption made in Section 5.4.2.5 –
that the logging costs are at most doubled when there is a logbuffer overrun – is too restrictive.
Except for the outlier at a logbuffer size of 400 the same observations hold true in the DS2
scenario. However, the absolute values of the average logging overhead is much smaller in this
case, because the ratio of modifying statements is much smaller (≈ 3% modifications for DS2
compared to ≈ 50% for TPC-C).

184 5 Quantitative System Models for DBS

TPC-C

A
vg

. L
og

gi
ng

 T
im

e
[m

s]

0

5

10

15

20

25

Logbuffer Size [Pages]
0 100 200 300 400 500

DS2

A
vg

. L
og

gi
ng

 T
im

e
[m

s]

0

0,05

0,1

0,15

0,2

0,25

0,3

Logbuffer Size [Pages]
0 100 200 300 400 500

Figure 5.36: Logging System Model Evaluation: Response Time

5.4.3.6 Optimizer Evaluation Results

The approach that has been taken for modelling the effects of the optimizer differs significantly
from the other components: Instead of creating a model for the added response time share, a
factor that affects the response times estimated at the lower query processing layers has been
modelled. As finding a theoretical model for this factor is prevented by the complexity of
the optimizer decisions, an experimental approach has been chosen in Section 5.4.2.6. Hence,
the effects of the possible optimization classes (0,1,2,3,5,7,9) on the response time had to be
determined for each of the workloads in the evaluation framework. From these observations a
response time factor has been calculated. For 5 is the default optimization level in DB2, this
optimization class is defined as factor 1. In theory, smaller optimization classes should yield
larger response time factors and vice versa.

The observed response times for the evaluation workloads are plotted in Figure 5.37. The
figure shows that the observed response times do not support the theoretic assumptions in
general. For TPC-H there is at least a significant decrease in the response times starting from
optimizer level 3. All other workloads do not follow this pattern. The TPC-C workload even
exposes a significant increase in the response time at optimizer level 9. As the effects of the
optimization class largely depend on the workload, it is obvious that finding a fixed set of
factors that is valid for any workload is not possible. Instead, the factor has to be determined
for every particular DBS workload separately. The resulting optimization factors for each of the
evaluation workloads are given in Table 5.2 (the TPC-H workload at optimizer level 0 caused
too large response times and therefore did not complete within a reasonable time period).

5.4 DB2 System Model 185

TPC-C, TPC-W, DS2

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

[m
s]

0

200

400

600

800

1.000

1.200

1.400

1.600

Optimizer Level
0 2 4 6 8 10

TPC-H

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

[m
s]

0

1e+04

2e+04

3e+04

4e+04

5e+04

6e+04

7e+04

8e+04

Optimizer Level
0 2 4 6 8 10

Figure 5.37: Optimizer System Model Evaluation: Response Time

Table 5.2: Response Time Factors for Optimizer Levels
Optimizer Level TPC-C TPC-W DS2 TPC-H

0 1.00 1.17 1.82 -
1 1.00 1.13 1.57 7.17
2 0.97 1.08 1.38 7.31
3 0.99 0.98 1.01 0.80
5 1.00 1.00 1.00 1.00
7 1.02 1.06 1.12 0.82
9 1.82 1.08 1.32 0.78

5.4.3.7 Recompilation Evaluation Results

The model for the recompilation overhead discussed in Section 5.4.2.7 comprises two impor-
tant aspects: On the one hand it predicts the number of package cache misses depending on
the package cache size, and on the other hand it estimates the recompilation effort depending
on the optimizer level. As for the optimizer level’s influence on the data processing at the
lower layers, its influence on the response time is also modelled as a factor which has to be
determined in an experimental way. Hence, the effects of the optimizer level on the average
compilation times have been determined for each of the workloads defined in the evaluation
framework. Theoretically, the compilation times should increase with the optimizer level. How-
ever, as shown in Figure 5.38, this theoretical assumption could not be observed for the sample
workloads. Consequently, the resulting compilation time factors listed in Table 5.3 (the default
optimizer level 5 is defined as factor 1 again) also do not match the expected behaviour. As for
the optimizer’s response time factor, these results show that the compilation time factors have
to be determined experimentally for every environment and workload.

186 5 Quantitative System Models for DBS

TPC-C, TPC-W, TPC-H, DS2

Su
m

 o
f S

ta
te

m
en

t
Co

m
pi

le
 T

im
es

 [
m

s]

0

500

1.000

1.500

2.000

Optimizer Level
0 2 4 6 8 10

Figure 5.38: Recompilation System Model Evaluation: Compile Time

Table 5.3: Compilation Time Factors for Optimizer Levels
Optimizer Level TPC-C TPC-W DS2 TPC-H

0 0.78 1.20 1.36 -
1 2.94 1.04 1.01 3.09
2 1.51 0.95 0.98 1.67
3 4.05 0.97 0.74 0.81
5 1.00 1.00 1.00 1.00
7 1.76 1.03 1.00 1.23
9 2.05 1.06 1.05 1.36

In order to evaluate the model for the prediction of the hitratio in the package cache, the
DS2, TPC-W and TPC-C implementations have been used. The TPC-H workload has been
omitted because in its implementation in the evaluation framework every query is executed
only once in every testrun. Hence, the probability of finding the execution plans for the queries
in the package cache is necessarily 0. The observed package cache hitratios for the workloads
are given in Figure 5.39. For every workload also three predictions from the observations
at particular package cache sizes are plotted. The Prediction 32, for instance, illustrates the
predicted hitratios derived when executing the workloads with a package cache size of 32 pages.
From the plots in Figure 5.39 it can be seen that the predictions for the DS2 and TPC-W

workloads are close to the actual observations. However, also two weaknesses of the model
can be identified: First, the predictions from larger package cache sizes (Prediction 2048)
cause larger errors than the predictions from smaller package cache sizes. Second, although
the observed hitratios do not exceed a value of 90% even for large package cache sizes, the
predictions always assume that is possible to achieve a hitratio of 100%. This second problem
becomes especially apparent for the TPC-C workload. For this workload the package cache
hitratio that can be observed does not exceed 29%, even if the package cache size is set to the

5.4 DB2 System Model 187

DS2

Pa
ck

ag
e

Ca
ch

e
H

it
ra

ti
o

[%
]

0

20

40

60

80

100

Package Cache Size [Pages]
0 500 1.000 1.500 2.000 2.500

TPC-W

Pa
ck

ag
e

Ca
ch

e
H

it
ra

ti
o

[%
]

0

20

40

60

80

100

Package Cache Size [Pages]
0 500 1.000 1.500 2.000 2.500

TPC-C

Pa
ck

ag
e

Ca
ch

e
H

it
ra

ti
o

[%
]

0

20

40

60

80

100

Package Cache Size [Pages]
0 2e+04 4e+04 6e+04 8e+04 1e+05 1,2e+05

Figure 5.39: Recompilation System Model Evaluation: Package Cache Hitratios

maximum size allowed by DB2 (128000 pages). Hence, the predictions for this workload are
imprecise.

In order to estimate the response time share added by the recompilation overhead due to
package cache misses, the model developed in Section 5.4.2.7 multiplies the expected ratio of
package misses with the average compile time for the selected optimizer level. The ranges of
average compile times that have been observed from the DB2 sensors across all optimizer levels
have been [1.0ms;1.2ms] for TPC-C, [6.0ms;6.2ms] for DS2, and [10.5ms;16.0ms] for TPC-W.
Figure 5.40 in contrast shows the changes in the overall response time that has been observed
for different package cache sizes. These response time plots show that the absolute values of the
compile times are much too small. For the DS2 workload, for instance, the response time may
decrease by more than 300ms, whereas the reported compilation times are around 6ms. Hence,
the model from Section 5.4.2.7 for the effects of the package cache size does not fully explain
the observed behaviour. The experimental results instead hint that there must be other effects
of the package cache size on the response time, which have not been considered satisfactorily.

188 5 Quantitative System Models for DBS

TPC-C

R
es

po
ns

e
Ti

m
e

[m
s]

1.000

1.200

Package Cache Size [Pages]
0 2.000 4.000 6.000 8.000 1e+04

TPC-W

R
es

po
ns

e
Ti

m
e

[m
s]

3,5

4

4,5

5

5,5

6

6,5

7

7,5

Package Cache Size [Pages]
0 2.000 4.000 6.000 8.000 1e+04

DS2

R
es

po
ns

e
T

im
e

[m
s]

400

500

600

700

800

Package Cache Size [Pages]
0 2.000 4.000 6.000 8.000 1e+04

Figure 5.40: Recompilation System Model Evaluation: Response Time

5.4.3.8 Overall Response Time Evaluation Results

The previous sections have evaluated the precision of the behavioural descriptions and response
time models for six selected components of the IBM DB2 DBMS. The results have shown that
some of the models are already suitable to predict the response time implications of the DBS
configurations. In particular, the bufferpool, sorting, and logging models have shown to predict
response times that resemble the actual behaviour of the system quite well. However, it has also
become obvious that it is not sufficient to evaluate these models based on a single observation
of its behaviour. The evaluation should instead consider multiple performance observations
from the past in its analysis. In contrast to the bufferpool, sorting, and logging models the
recompilation model has exhibited some deficiencies and therefore requires refinement in the
future. Although for the connection management a sound theoretical model has been found,
no actual effects of the agent pool size on the response times of the DBS could be observed in
the experimental evaluation. Hence, the corresponding DBMS component might be completely
omitted from the system model. The decisions of the optimizer component are so complex
that the definition of a mathematical model has been considered as impossible. Instead, an
experimental approach has been selected for this component, whose evaluation has shown that
the effects of the optimizer configuration largely depend on the workload.

5.5 Related Work 189

Table 5.4: Overall Response Time Prediction Results
TPC-C TPC-W DS2 TPC-H

Observed Response Time 3585ms 9.9ms 412ms 814ms
Predicted Response Time 8377ms 3.56ms 279ms 7070ms

Despite the flaws of the presented system model, also an evaluation of the overall response
time model has been performed. For this purpose, the overall response time predicted by the
system model has been compared to the actual response times for the TPC-C, TPC-W, TPC-
H and DS2 workloads. However, as only some of the component models currently provide
predictions that are sufficiently precise, it has not been the goal to cover a broad range of DBS
configurations in the evaluations. Instead, the evaluation has been intended to test whether
or not the magnitude of the predicted response times matches the actual observations. Hence,
only a single configuration with the default DB2 parameter settings has been used (bufferpool
size: 1000 pages; optimizer level: 5; sortheap size: 250 pages; logbuffer size: 8 pages; package
cache size: 1024 pages; agent pool size: 100 agents). The observed and predicted response
times for this configuration are given in Table 5.4. The results on the one hand show that at
least the order of magnitude of the predictions for the TPC-C, TPC-W and DS2 workloads
matches the actually observed response times. On the other hand, the precision of the DB2
model is not yet sufficient to provide guarantees that performance goals will be met. Further
evaluations and model refinements will be necessary for this purpose in the future.

5.5 Related Work

Research in the area of self-managing database systems focuses on the automation of individual
administration tasks like memory management [SGAL+06] or index selection [BC07]. These
functions do not consider relationships to other autonomic managers, side effects or high-
level goals. In contrast, the system model described in this section allows the modelling of all
(important) DBS components. The interdependencies between them can be modelled intuitively
by applying multiple constraints to effectors. Recently, also works on meeting response-time
goals for multiple service classes in DBS have been published ([KSA+08], [NMP+06]). These
approaches strictly focus on admission control for queries. The described system model solution
in contrast aims at implementing the right DBS configuration to meet the goals rather than
delaying the execution of queries with a lower importance level.
Models with quantitative descriptions of the managed resource behaviour by now have mainly

been used for bufferpool management in DBS. These models are used to predict the bufferpool
hit ratio ([THTT08], [CFW+95]) or even the DBS response time ([BK09], [BCL96]) depending
on the bufferpool size. These models are helpful preliminary works for creating the behavioural
descriptions and response time models of individual DBMS components. They can be used as a
first step towards a full DBS model, which serves as a knowledge base for DBS self-management.

190 5 Quantitative System Models for DBS

With the described approach, it is possible to describe and refine these models in a graphical
way. Thus, they can be extended to also cover other configuration and physical design options.
A quantitative model for an entire DBS is proposed in [NTA05]. The model provides pre-

dictions for both the throughput and the response time of a DBS depending on the amount
of memory and the CPU power that are assigned to the DBS. Both predictions are based on
simple models of the CPU and I/O usage. The I/O usage is estimated by a model of the
bufferpool, which estimates the page misses under a LFU page replacement strategy. This
bufferpool model is combined with a storage model approximating the disk seek and read times
for cache misses. The CPU model simply assumes a linear dependency between performance
and clock cycle. In contrast to the DB2 model described in this work, the DBS model in
[NTA05] is based on custom sensor information, which has been integrated into the Microsoft
SQL Server. This additional sensor information logs transaction-specific information, allowing
the identification of transaction traces (an example for a transaction trace is given in [NTA06]).
The evaluation results of the model show that precise predictions for the response time and
throughput under different resource-assignments are possible for a TPC-C workload. However,
the model proposed in [NTA05] exclusively focuses on the assignment of resources to the DBS.
The adaptation of configuration parameters for meeting the SLAs is not considered.
A different approach towards DBS system models describes [Sch09]. The author plans to iden-

tify functional groups within the DBMS, which are intended to perform a local self-optimization.
The local results are then planned to be propagated to find a global optimum. However, concrete
methods for describing the system models and a technique for the evaluation of the functional
groups and their interdependencies have not been presented yet. The solution followed in this
work in contrast describes all dependencies within a single system model. Thus, the need
to consolidate component-specific results is avoided, because the self-management logic can
consider all dependencies directly in its decisions.
The Common Information Model [Dis08] provides standardized management of IT systems,

independent from the manufacturer and technology. Among others, CIM defines an abstract
model for database systems. However, the CIM database system model only describes general
information about the DBS, like the instance name, version, the responsible DBA, and the cur-
rent values of configuration parameters. The internal structure of the DBMS and a quantitative
description of the system behaviour are not part of the model. Although of course the CIM
database model could be extended in this way by using the UML mechanisms, CIM currently
could only be considered as an alternative modelling solution to using SysML.
The IBM Autonomic Computing Toolkit (ACT) [JLHY04] stores information about the

resource managed by an autonomic manager in a resource model. This resource model defines
the properties of resources, and stores additional information like check cycles, thresholds,
and dependencies. However, reconfigurations cannot be automatically derived from the model.
Instead, a decision tree script must be provided, which implements this knowledge. The reason
for this limitation is that the resource model does not provide a mathematical model of the
behaviour of the resource under different configurations.

5.6 Conclusions 191

Experimental approaches for determining the behaviour of a DBS have recently been pub-
lished in [DTB09] and [BBD+09]. These approaches employ systematic methods to select DBS
configurations that might improve the performance of the DBS configurations. For each of the
selected configurations a performance test is executed, and the results of the test are exploited
in order to determine the next candidate configuration. The algorithms for selecting the tested
configurations are designed to cover a broad range of the DBS configuration space. Due to the
overhead caused by the required performance tests, the described approaches assume that there
is a spare standby-system, which may be used for the performance tests exclusively. Similarly,
[TBA10] and [GKD+09] use an experimental approach to determine the expected system loads
for specific queries and query combinations from the DBS workload. However, all of these
approaches have in common that they do not employ mathematical models for describing the
performance implications of DBS configurations. Hence, the experimental evaluations have to
be re-executed in every particular DBS environment, although the general behaviour of the
DBMS components does not change (only its parametrization). Instead, the system model ap-
proach described in this work is based on the paradigm of using general mathematical models
wherever possible. Only when the definition of a mathematical model is not possible (e.g. for
the optimizer level effects on the response time), an experimental solution is chosen.

5.6 Conclusions
This section has presented an approach for creating a system model as a knowledge base for
DBS self-management. Following the approach by Chaudhuri and Weikum [CW06], the system
model predicts the performance of the DBS under all possible configurations and workloads.
In particular, it provides solutions to the problem

workload× config → performance

by defining mathematical models for the DBS behaviour. However, due to the complexity
of today’s DBMS the definition of a system model that completely and precisely predicts
the system performance under all possible configurations will not be attainable. The system
modelling solution presented in this section therefore supports the incremental system model
development by following a graphical modelling approach. Thus, approximate, coarse-grained
models can be created in a first step and then refined afterwards.
The requirements towards a system modelling solution have been identified in Section 5.2.

Table 5.5 lists these requirements and shows that all of these requirements are met by the
described approach. The refineability requirement is met by choosing the graphical SysML
modelling language. As SysML is an extension of the well-known UML language, existing
models can be easily understood by DBMS experts and refined with little overhead. Also
the representation of the hierarchical structure of the DBMS is naturally supported by the
package concepts and aggregation relationships of the SysML language. Furthermore, SysML

192 5 Quantitative System Models for DBS

Table 5.5: System Modelling Requirements
Requirement Status
Refineability X
Hierarchical Structure X
Touchpoint Specification X
Constraints X
Goal Functions X
Hardware Model (X)

modelling tools like TOPCASED (http://www.topcased.org) allow to control the presented
modelling details by zooming into or out of model components. As shown in Figure 5.8 on page
153, the touchpoint specifications can be created using the SysML model elements, too. Thus,
the system model comprises all the information that is required by a self-management logic for
accessing the sensors and effectors. In addition, also constraints on the effector values can be
defined. Using the SysML ConstraintBlock element, restrictions on the effectors (like domain
restrictions or dependencies on other model elements) can be defined in terms of mathematical
expressions. With the parametric diagram SysML provides an intuitive way to connect the
parameters of these expressions to the model elements. As shown in Figures 5.12 and 5.13
(page 156), the same mechanism can be used to represent goal functions in the model. Although
it has not explicitly been investigated in this section, the modelling technique could also be
used to create a hardware model. Every hardware component would have to be represented as a
separate SysML Block, where the attribute values describe the characteristics of the component
(e.g. average I/O time of disks).
Based on the developed system modelling technique, this section has also presented an ap-

proach for creating concrete DBS system models. In particular, a system model for the response
time of the IBM DB2 has been developed. The classical scientific method has been employed
for this purpose: In a first step, models have been created for the effects of selected DB2 compo-
nents on the response time by taking into account the descriptions in the manuals, theoretical
assumptions, observations, and previous publications. Afterwards, the models have been vali-
dated by a comparison of the predictions to the actual behaviour of the DB2 under different
configurations and workloads.
The results have shown that the performance of some of the components (bufferpool, sort-

ing, logging) is already approximated quite well, while for others (recompilation, optimizer)
additional experimental evaluations and model refinements would be necessary. From these
results it could be concluded that the modelling and evaluation for DBMS components on the
lower layers of the DBMS (see Section 3.1) is easier than for components on the higher layers.
However, with the small number of experimental evaluations performed so far this can only be
stated as an assumption. Much more detailed and extensive evaluations would be necessary to
prove this assumption in the future.
The evaluation of the models has also shown that it will be important to extend the number

5.6 Conclusions 193

of observations that represent the DBS workload and state information during the analysis. In
other words, it will not be sufficient to parametrize the model with the current sensor value
only. Instead, a history of sensor values should be considered during the model evaluation in
order to increase the quality of the predictions.
Despite the remaining problems, the definition of the DB2 response time model has shown

three important aspects: First, the selected modelling approach provides all the required con-
cepts for defining a concrete system model. Second, the approximation of the DBS behaviour
using mathematical models is possible. Third, in order to completely predict the overall per-
formance of a DBS, extensive experimental evaluations under different workloads and system
environments are required.
In the future the DB2 model has to be refined and extended by additional components that

have been excluded for the coarse-grained model developed in this section. Every refinement
in the model has to be thoroughly tested for its effect on the accuracy of the response time
prediction. Only then it will be possible to judge the required level of detail that has to be
represented in the DB2 response time model. The interesting question of whether or not the
required level of detail in a system model can be defined in general can only be answered by
furthermore extending the DB2 model to other key performance indicators, and by creating
models for other DBMS, too.

195

6 Goal-Driven Reconfiguration Analysis

With the modelling technique described in Chapter 5, it is possible to easily develop and re-
fine DBS system models. Whenever a workload shift is detected or there is a risk of missing
user-defined high-level goals, the information in the system model should be evaluated in order
to determine a new optimal DBS configuration. This section presents an approach for auto-
matically deriving optimal configurations from the knowledge stored in a DBS system model
[HR11]. It discusses how the required information is extracted from the knowledge base, how
it is parametrized with the current sensor information, and how appropriate effector settings
are automatically derived. The solution is designed so that changes to the system model do
not require an adaptation of the self-management logic. Thus, evolutions or refinements of the
system model can be made without having to adapt the self-management logic.
Section 6.1 discusses the most important requirements towards an automatic reconfiguration

analysis. From these requirements, Section 6.2 identifies Multi-Objective Optimization (MOO)
techniques as an adequate approach for deriving the DBS configurations. The construction
of the necessary objective functions from the information in the system model is the subject
of Section 6.3. Choosing an actual DBS configuration from the solution sets returned by the
MOO algorithms is discussed in Section 6.4. Evaluation results for the running example (see
Section 5.1) are presented in Section 6.5. Related work is discussed in Section 6.6 before
Section 6.7 concludes with a summary.

6.1 Reconfiguration Analysis Requirements

The following paragraphs discuss the most important requirements towards a self-management
logic based on a system model. An overview of these requirements is given in Figure 6.1.

Extraction The self-management logic has to extract all the required self-tuning information
from the system model. Thus, it has to determine the goal functions, constraints, and effectors
and sensors without prior knowledge of the managed DBS. In order to allow the easy integration
of new sensors and effectors into the system model, the access information for them has to be
derived from the system model, too.

Hierarchical Structure One of the most important characteristics of the system modelling
approach described in Section 5 is its support for hierarchically structured models. While this

196 6 Goal-Driven Reconfiguration Analysis

hierarchical
structure

system model

goals

configuration

extraction

configuration
determination

parametrization

DBS

self-management logic

parametrization goal function
composition

Figure 6.1: Reconfiguration Analysis Requirements Overview

hierarchical structure on the one hand makes it easy for the DBMS expert to create and refine
the system model, it on the other hand requires the self-management logic to descend into all
levels and compose an overall model from the information.

Goal Functions As described in Section 5.3, goal functions in a system model predict the
values of the high-level goals depending on the sensor and effector values. However, in order to
allow an easy definition of the goal functions, they may be composed from existing behavioural
descriptions in the system model. Hence, the parameters of the goal functions have to be
replaced with the corresponding behavioural descriptions.

Parameterization The goal functions refer to sensors and effectors in order to express the
workload-dependency and configuration-dependency of the model. In order to derive a concrete
configuration (i.e. effector settings) for a DBS at runtime, the sensor parameters have to be
replaced with the current values of the sensors. Furthermore, as discussed in Section 3.5, a
history of sensor values should be considered during the model evaluation in order to increase
the quality of the predictions.

Configuration Determination The main functional requirement towards the reconfiguration
analysis in the self-management logic is the determination of a DBS configuration that meets the
high-level goals in the best possible way. Considering the system modelling approach followed
in this work, this task can be re-phrased as the task of finding settings for all effectors in the
system model, given the current values of the sensors.

Service Classes In many real-world DBS usage scenarios, there is not a single goal value
for goals like the response time or the throughput, but there are separate values for different

6.2 Design 197

f(x1,x2)

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

Figure 6.2: Single-Objective Optimization

user groups or applications. The definition of service-class-specific goal functions has been
previously described in Section 5.3. The self-management logic has to take into account these
service-specific goals during the reconfiguration analysis.

6.2 Design

As described in Section 6.1, the main functional requirement towards a self-management logic
is to determine a configuration for the DBS that meets the high-level goals in the best possible
way. For this task, the values of the goal functions have to be either minimized (response
time, costs, ...) or maximized (throughput, availability, ...). The sensors referenced in the goal
functions have to be replaced with the current sensor values, i.e. they become constants in the
goal functions that have to be optimized. The referenced effectors in contrast constitute the
parameters in the goal functions. Thus, every goal function is a function f(x) where x is an
n-dimensional decision vector x = (x1, x2, ..., xn) and every xi represents an effector that is
referenced in the body of the goal function.
Figure 6.2 illustrates the surface of an exemplary goal function (f(x1, x2) = (x2

1 + 3x2
2 −

x2) · e1−(x2
1+x2

2)). The task of optimizing a goal function f(x) is the task of finding a global
maximum (or minimum, respectively) for the function. As can be seen from Figure 6.2, the
function f(x1, x2) exhibits one global maximum and a local maximum. For finding a solution to
such an optimization problem, several algorithms have been developed (see [CVL07]). A simple
heuristic is the hill climbing algorithm, for example. This algorithms starts at a random point
of the goal function surface and determines the highest function value in the neighbourhood,
which is then selected as the next starting point. This is continued until no higher function
value is found in the neighbourhood anymore. Thus, the hill climbing algorithm often only
finds local optima. Other algorithms like tabu search [Glo89] therefore continue searching for
other, possibly superior optima even after they have found an optimum. To avoid excessive
computation times, the number of steps in tabu search is typically limited.
Unlike the single-objective optimization problem discussed above, the reconfiguration analysis

in the self-management logic has to consider multiple independent goal functions. A set of

198 6 Goal-Driven Reconfiguration Analysis

effector settings that optimizes one of the goal functions will therefore usually not also be
the optimal setting for the other goal functions. In particular, the goal functions may even
be opposing, i.e., improving the value of one goal function may cause another goal function
value to downgrade. For example, adding more memory to a DBS server will on the one hand
decrease the response time, while on the other hand it increases the operation costs. Hence,
the reconfiguration logic has to consider multiple, possibly opposing goal functions at the same
time and find an optimal tradeoff that meets all high-level goals.
As outlined in Section 3.4, the set of goal functions that the reconfiguration logic has to

take into account constitutes an objective vector F (x) = (f1(x), . . . fk(x)) of goal functions
f1(x) to fk(x). In addition, the reconfiguration analysis has to consider the set of constraints
E(x) = (e1(x), . . . ek(x)) defined in the system model. The set of optimal tradeoff solutions for
this problem is referred to as the Pareto optimum P ∗. A solution x is a member of the Pareto
optimum if F (x) is not dominated by any other F (x’) for a solution x’ . For a minimization
problem, the dominance of an objective vector F (x’) over another objective vector F (x) is
defined as

F (x’) � F (x) := ∀i : fi(x) ≤ fi(x’) ∧ ∃i : fi(x) < fi(x’) . (6.1)

For a maximization problem, the Pareto dominance is defined accordingly as

F (x’) � F (x) := ∀i : fi(x) ≥ fi(x’) ∧ ∃i : fi(x) > fi(x’) . (6.2)

Thus, a solution dominates another solution if all of the goal function values are at least as
good as the ones of the competitor, and at least one of its goal function values is strictly better.
Formally, the Pareto optimum P ∗ for a minimization problem therefore can be defined as

P ∗ := {x|¬x’ : F (x’) � F (x)} . (6.3)

An example for a Pareto optimum for two goal functions has been given in Figure 3.7 on page
46.
Due to the large search space, a complete search for all possible configurations for the

Pareto optimum is usually impossible for multi-objective optimization problems. Instead,
meta-heuristics like multi-objective evolutionary algorithms, particle swarms or multi-objective
simulated annealing are used. As the largest number of algorithms has been developed for
multi-objective evolutionary algorithms, this technique has been selected for deriving the Pareto
optimal DBS configurations during the reconfiguration analysis. Introductions to evolutionary
algorithms are given in [SD08] and [CVL07], for example. Evolutionary algorithms operate on
a set of individuals, where every individual represents a solution to the optimization problem.
The chromosome of each individual is encoded from the values of the decision variables repre-
sented by the individual. For every individual a fitness function can be used to quantify how well
the solution represented by the individual fits the problem requirements. In order to determine
the individuals of the Pareto optimum, evolutionary algorithms resemble the process of natural

6.2 Design 199

selection

mutation & crossover

initial population

parents

child

next generation
population

selection

Figure 6.3: Evolutionary Algorithms Overview

selection in evolution theory: From a set of randomly selected initial individuals, they choose
two parents and create a new individual by combining their chromosomes. In order to generate
solutions that have a high probability of providing a good fitness value, the parents for every
new generation of individuals are not selected randomly. Instead, only parents which are not
dominated by other individuals are considered as parents. From these, the individuals with the
highest fitness values are determined with techniques like binary tournament or probabilistic
binary tournament (see [SD08]). After the parents of a new individual have been selected, their
chromosomes have to be combined to form a new individual in the next generation. For this
purpose usually first a random mutation of selected genes of the parents’ chromosomes is per-
formed. Afterwards, a combination of the parents’ chromosomes is performed using techniques
like single-point crossover or uniform crossover (see [SD08]).
An overview of the mode of operation of multi-objective evolutionary algorithms is given in

Figure 6.3. The figure shows that evolutionary algorithms create the individuals in generations,
i.e. a predefined number of individuals is created from an existing population in each step. Ev-
ery member of the next generation is created using the discussed parent selection and crossover
operations (the chromosomes of the parents and the child are illustrated as a set of squares
in the figure). The creation of new generations is continued until either a threshold for the
maximum number of generations has been reached, or until a convergence of the solutions can
be observed. The individuals in the final generation then represent the (approximated) Pareto
optimum. For DBS self-management they therefore represent a set of possible DBS configura-
tions, which all meet the high-level goals and which represent an optimal tradeoff between the
goal functions. From these solutions the self-management logic then has to choose one.

200 6 Goal-Driven Reconfiguration Analysis

constrained block
identification system

model

hierarchical goal rules
extraction

flat goal rules
composition

goal function
instantiation DBS

configuration

sensor
values

multi-objective
optimization

Set of optimal DBS
configurations

ru
le

 e
xt

ra
ct

io
n

st
ag

e
go

al
 f

un
ct

io
n

ev
al

ua
tio

n
st

ag
e

Figure 6.4: Two-staged goal function creation process

There is a rich set of existing algorithms (e.g. NSGAII, PAES, SPEA2; see [CVL07]) and
frameworks (e.g. ParadisEo, EvA2, jMetal) that can be employed to derive solutions to MOO
problems. However, these frameworks and algorithms all expect a set of "flat" mathematical
expressions as input objective functions and constraint definitions. In contrast, the objective
functions in the DBS system model are hierarchically structured in order to keep the modelling
complexity manageable. The tasks of deriving the required expressions from the system model,
enriching them with the current sensor values, and instantiating them for the applicable service
classes are the subject of the following Section 6.3. Section 6.4 discusses the selection of a
concrete DBS configuration from the solution set.

6.3 System Model Analysis
In order to apply MOO techniques to the hierarchically structured SysML model, a two-staged
transformation process has been designed, which is illustrated in Figure 6.4. The first stage
of this goal-function creation process comprises the extraction of the relevant goal calculation
rules from the SysML model. It only has to be performed once for a particular SysML model. In
the second stage, the actual goal functions are instantiated from these rules and enriched with
the current sensor and configuration values. In the following, the individual processing steps
of these two stages are described in detail. For the sake of clarity, all model validation checks
(e.g. for cycles in the rule definitions) are excluded from these descriptions. Furthermore, only
the more complex task of extracting and instantiating the goal functions is described, whereas
effector constraints are omitted.
The first step constrained block identification of the rule extraction stage is the identification

of all goal values that have been applied to a SysML Block in the model. For this purpose, all

6.3 System Model Analysis 201

Algorithm 6.1: Determine relevant Goal Functions
Input: SysML model M
Output: Set of goal functions gf

1 goalParam ← getConfig(M , ConfType.Goal);
2 forall the goals g ∈ goalParam do
3 constrainedBlocks ← getConstrainedBlocks(g);
4 forall the blocks b ∈ constrainedBlocks do
5 goalAttribute ← b.getGoalAttr(g);
6 constraintProperty ← goalAttribute.getOtherConnectorEnd();
7 constraintBlock ← constraintProperty.getContainer();
8 nestedRule ← createRule(b, constraintBlock, null, null);
9 flatRule ← nestedRule.flatten();

10 gf .add (flatRule);
11 end
12 end
13 return gf

goal configuration elements (defined in a designated SysML package) are located. Afterwards,
all those ConstraintBlock elements in the model are identified, which have a Property with a
type equal to one of these configured goals (goal attributes). For each of these goal attributes, the
calculation rule must have been defined using the goal function declaration technique described
in Section 5.3. Hence, these Properties must have a Connector to a ContraintProperty in
a SysML ConstraintBlock. This ConstraintBlock, which defines the top-level rule of the
objective function, is passed on to the second step.
In the hierarchical goal rules extraction step the calculation rule of a particular goal at-

tribute is extracted from the SysML model. The extraction algorithm that has been developed
for these hierarchical rule definitions is shown in Algorithm 6.2. After extracting the rule
string from the ConstraintBlock (line 1), this algorithm investigates its properties. For every
ConstraintProperty in the block, it determines the model element that it is connected to
(2-3). If the element is a terminal value, i.e. a sensor, effector or configuration value, then this
property and its access information is extracted from the model and stored as the value of the
property (10-11). If the connected element is a ConstraintProperty in a ConstraintBlock,
then the value of the property is again a rule, which is created by recursively calling Algo-
rithm 6.2 (6-8). No return value is assigned to properties which resemble return values of
nested rules. These return values are identified by a connection to the parent element, which is
passed as a parameter to this algorithm (4-5). In all cases, the property information is added
to the rule object(12).
After all the required information has been extracted from the SysML model, flat mathe-

matical expressions are created in the flat goal rules composition step. Furthermore, this step
connects the variable names in the rule string to the rule properties. The processing in this
step is described in Algorithm 6.3. For each token in the rule string this algorithm determines

202 6 Goal-Driven Reconfiguration Analysis

Algorithm 6.2: Extract Rule Information from SysML model
Input: Block constrainedBlock, ConstraintBlock constraintBlock, Property parent
Output: Nested rule rule

1 rule.setRuleString(constraintBlock.getOwnedRule());
2 forall the properties p ∈ constraintBlock do
3 otherEnd ← constrainedBlock.getConnectedElement (p);
4 if otherEnd = parent then
5 p.setType(NESTED_RESULT);
6 else if otherEnd.getContainer().isConstraintBlock() then
7 p.setType(RULE);
8 p.setValue(ExtractRule(constrainedBlock, otherEnd.getContainer(), p));
9 else

10 p.setType(TERMINAL);
11 p.setValue(otherEnd.getTerminalInfo());
12 rule.add(p);
13 end
14 return rule

whether it is a number, an operator, an aggregation function or a property. In the former two
cases, the value is simply added to a sorted list of rule components (ruleComponents; 2-3). For
aggregation functions, the aggregation rules cannot be applied to the rule string at this stage of
processing yet, because the values of the aggregation variable (e.g. the number of bufferpools)
are only available at runtime. Hence, only the aggregation information (aggregation variable,
aggregation function, start token, end token) is added to the resulting flatRule (4-5). For
properties, the processing rules depend on the type of property: References to rules must be
replaced by the contents of the other rule, so Algorithm 6.3 is called recursively. This approach
ensures that the contents of the nested rule are added before the processing of the current rule
is continued (10-11). Result values in nested rules are not required for rule composition and
may be skipped (8-9). If the property is a terminal (i.e. sensor, effector or configuration value),
then it is first checked whether or not it resembles a goal attribute. If so, the optimization
operator (< or >) and a possible service class property, which must be stored for future ref-
erence, are determined (14-17). Otherwise, the property is simply added to the overall list of
rule components (its value is determined at runtime). However, as the same property names
may have been used in sub-rules, the original property name must be replaced with a unique
name (19-20).

In order to derive appropriate DBS configurations from the flat goal rules, the self-manage-
ment logic has to fill in the actual sensor and configuration values at runtime in the goal
function instantiation step. This stage has to take into account service-class-specific goal func-
tions (see Section 5.3), because there may be multiple goal values for different user groups or
applications. In order to consider these different goal values during the optimization process,
the self-management function has to create a separate goal function instance for every service

6.3 System Model Analysis 203

Algorithm 6.3: Conversion of Nested Rule to Flat Rule Representation
Input: Nested rule rule, Flat rule flatRule

1 forall the tokens token ∈ rule.getRuleString() do
2 if isNumber(token) or isOperator(token) then
3 flatRule.ruleComponents.add(token);
4 else if isAggregationFunction (token) then
5 flatRule.ruleComponents.getAggType(getAggStart(token), getAggEnd(token),

getAggFunction(token), getAggProperty(token));
6 else
7 property ← rule.getProperty (token);
8 if property.getType() = NESTED_RESULT then
9 skipOperator();

10 else if property.getType() = RULE then
11 FlattenRule(property.getValue(), flatRule);
12 else if property.getType() = TERMINAL then
13 if property.isGoal() then
14 if property.isScConstrained() then
15 scPropName ← property.getScPropertyName();
16 flatRule.setScProperty(rule.getProperty(scPropName));
17 flatRule.setoptOperator (nextToken());
18 else
19 property.setUniqueName();
20 flatRule.ruleComponents.add(property);
21

22

23

24 end

class. In each instance the sensor values then reflect the values for this particular service class.
The MOO thus derives a configuration that meets all goal functions, i.e. all goal values for all
service classes.
In addition to service classes, the goal function instantiation step also has to consider the

aggregation functions. As described above, only the aggregation information (aggregation vari-
able, aggregation function, start token, end token) is determined in the static rule extraction
stage. The value of the aggregation variable may depend on a runtime sensor (e.g. the IDs of
the bufferpools existing in the DBS). Hence, this information has to be determined at runtime
in the goal function instantiation step, and the aggregation function then has to be expanded
accordingly. For example, the sum of all pages in all existing bufferpools has to be calculated
by adding the sensor value for the size of every existing bufferpool.
Algorithm 6.4 summarizes the instantiation of a flat rule for a particular service class. For

every rule component rc the algorithm checks its type: If it is an aggregation, then all rule com-
ponents in the aggregation range have to be appended once for every value of the aggregation
variable (5), and concatenated according to the aggregation function (6, e.g. summarized for a

204 6 Goal-Driven Reconfiguration Analysis

Algorithm 6.4: Instantiation of Goal Functions.
Input: Service class name serviceClass, Rule components ruleComponents, Map of

aggregation variables aggV ars, Result string result
1 pos ← 0;
2 while pos < ruleComponents.size() do
3 rc ← ruleComponents[pos];
4 if rc is Aggregation then
5 forall the values v of rc.getAggProperty() do
6 concatenateAgg();
7 aggV ars.put (rc.getAggPropName(), v);
8 InstantiateRule(serviceClass,

ruleComponents.getRange(rc.getAggStart(), rc.getAggEnd()), aggV ars,
result);

9 end
10 aggV ars.remove (rc.getAggPropName());
11 pos ← rc.getAggEnd();
12 else if rc is Property then
13 if rc.isSensor() or rc.isConfiguration() then
14 result.append (getValue (rc, serviceClass, aggV ars));
15 else if rc.isEffector() then
16 rc.setEffectorIncarnationName(aggV ars);
17 storeEffectorIncarnation(rc, aggV ars);
18 result.append(rc.getEffectorIncarnationName());
19 pos ++;
20 else
21 result.append(rc);
22 pos ++;
23

24 end

SUM function). Hence, Algorithm 6.4 is called recursively on the aggregation range in this case
(8). The current value of the aggregation variable also has to be passed as a parameter (7). If
rc is not an aggregation but a sensor or configuration then its value can simply be read and
appended to the resulting mathematical expression result (13-14). It is important to note that
these values may depend on both the current service class and the set of aggregation variables.
If rc refers to an effector, then this effector name has to be added to the result and marked as
a decision variable (17-18). However, as an effector may depend on the current values of the
aggregation variables, unique names must be constructed beforehand (16; e.g. sizes of buffer-
pools: "Size_BP1", "Size_BP2", ...). All numbers and operators in the rule components may
simply be added to the resulting mathematical expression (20-22).
With the described two-staged approach the constraints from the SysML model only have

to be extracted and converted to flat rules once, whereas at runtime these flat rules can be
quickly instantiated. After their instantiation, the goal functions are passed to the MOO

6.4 Solution Selection 205

algorithm, which automatically determines a set of optimal solutions to these functions (the
Pareto optimum). However, the goal functions extracted from the system model only constitute
the objective vector F (x) = (f1(x, . . . fk(x)) of the multi-objective optimization problem. The
set of constraints E(x) = (e1(x), . . . ek(x)), which also has to be taken into account by the
self-management logic, has to be extracted from the system model accordingly. In order to
indicate that a particular solution does not satisfy the constraints, a value of 0 can be passed
to the MOO algorithm as the fitness value, for instance. Thus, solutions that violate domain
restrictions on effectors or dependency rules between the effector values are excluded from the
solution set.

6.4 Solution Selection

Section 6.3 has described an approach for deriving a set of goal functions F (x) and a set of
constraints E(x) from a hierarchical SysML system model. The effectors of the DBS constitute
the parameters x of these goal functions and constraints, whereas all references to sensors are
replaced with constant values. By passing these goal functions to an MOO algorithm, e.g. a
multi-objective evolutionary algorithm, a set of optimal trade-off solutions can automatically
be derived. All of these solutions (i.e. DBS configurations) meet the high-level goals defined by
a DBA and they are members of the Pareto optimum.
Although all of these DBS configurations are optimal, only one of them can be selected for

the implementation in the DBS. Hence, a strategy is required for selecting a solution from the
solution set. As all of the solutions are optimal, it would of course be possible to randomly
choose one of the configurations. However, changing the configuration of a DBS often causes
change costs. For instance, changes to the physical design may require long-running index
creation tasks. Changes to configuration parameters may even require a shutdown and restart
of the DBS to become effective.
Due to the overhead that may be caused by changes to effectors, the selection of a configu-

ration from the solution set determined by the MOO algorithm should not be made randomly.
Instead, the expected change costs of the various solutions should be compared. A simple
approach is the comparison of the candidate configurations to the current configuration of the
DBS. The configuration that requires the smallest number of effector changes could then be
chosen as the result of the reconfiguration analysis. Although this approach will significantly
reduce the number of required effector changes, it does not consider the fact that the change
costs between the effectors differ largely. Some changes, e.g. to online-adaptable configuration
parameters, may not cause any change costs at all. Hence, the system model should con-
tain information about the expected change costs for every effector. Thus, the reconfiguration
analysis could easily compare the expected change costs for all solutions and choose the DBS
configuration that causes the least expected overhead.

206 6 Goal-Driven Reconfiguration Analysis

SysML
modelling tool

(topcased) system
modelling DBMS

expert

rule
extraction

system model
(XMI)

DBS

function evaluation
multi-objective
optimization

(jMetal)

self-management logic

DBA

workload

solution set

state configuration

solution
selection

goals
goal

definition

Figure 6.5: System model definition and evaluation prototype

6.5 Evaluation

For the evaluation of the reconfiguration analysis concepts the infrastructure illustrated in
Figure 6.5 has been created. The system model is supposed to be created by a DBMS expert
with in-depth knowledge of a particular DBMS. For system modelling the open source tool
TOPCASED (http://www.topcased.org) is used, which natively supports the SysML modelling
language. This tool can store an SysML model as a XMI file, which serves as an excellent basis
for the extraction of the flat goal rules according to the first stage described in Section 6.3. The
– unparametrized – flat goal rules are then passed to the function evaluation stage of the self-
management logic. Here the flat goal rules are used to re-instantiate the goal functions in every
reconfiguration analysis run, including their parametrization with the workload and state of the
DBS (IBM DB2) and DBA-defined goal information. Afterwards, the goal functions are passed
to the MOO, which derives a set of Pareto optimal solutions (i.e. effector values) for them. For
performing the MOO, the jMetal framework ([DNL+06]) has been chosen, because it provides
a rich set of MOO algorithm implementations. It is then the tasks of the self-management logic
to select one of the DBS configurations from the solution set.
The running example introduced in Section 5.1 has been used to evaluate the functional and

non-functional properties of the described reconfiguration analysis approach. Thus, a system
model has been created, which predicts the response time of a DBS based on the size of the
system buffer. To be able to compare the predictions to the real results of an existing DBS, IBM
DB2 has been used in the evaluation environment. Consequently, the created system model
reflects the structure, sensors and effectors of IBM DB2, and it comprises all the required system
model contents identified in Section 5.2. In particular, it has been defined using a hierarchical
structural approach (similar to Figure 5.6 on page 152), and it defines all required sensor and
effector information. SysML constraints have been used to store the knowledge about the
estimated hitratios according to Equation 5.1 (similar to Figures 5.9 and 5.10). Furthermore,
two goal functions have been defined: ResponseTime estimates the response time according to

6.5 Evaluation 207

Figure 6.6: Parametric diagram for a response time goal function (running example) in TOP-
CASED

Equation 5.2, and ResourceCosts summarizes the bufferpool sizes according to Equation 5.4.
An overview of the response time parametric diagram for the running example in TOPCASED
is shown in Figure 6.6.
In order to evaluate the functionality and performance of the described reconfiguration anal-

ysis approach, the testbed shown in Figure 6.7 has been set up. Two distinct applications have
been simulated with load generators. The workload manager [CCI+08] of IBM DB2 Version
9.7 has been configured to automatically assign all workloads to two service classes (gold and
silver). As shown in Figure 6.7, the load of these two service classes has resulted in unevenly
distributed access to the two bufferpools BP1 and BP2. Each of the bufferpools had been
configured to serve one tablespace, where tablespace1 had only 60% of the amount of data in
tablespace2.
Applying the system model to the evaluation scenario results in three goal function in-

stances: One response time goal function for each service class (gold and silver), and one
resource costs goal function for the overall memory usage. Exemplary solutions sets that have
been determined by the prototype for these goal functions are depicted in Figure 6.8 and
Figure 6.9. All results were produced using the NSGAII algorithm [DPAM02] with a popu-
lation size of 100 and a maximum of 25000 generations, because the NSGAII algorithm has
shown to provide good results for the running example scenario. A detailed analysis of the re-
sults of various MOO algorithms has been performed in [Pog09]. The results in Figure 6.8
were computed for the goal values ResponseTime[Gold]<8ms, ResponseTime[Silver]<15ms

208 6 Goal-Driven Reconfiguration Analysis

BP1 BP2

tablespace1 tablespace2

load
generator

„gold“

load
generator
„silver“

70% 30% 20% 80%

DBS

Figure 6.7: Evaluation scenario overview

 800
 900
 1000

 1100
 1200

 1300
 1400

 1500
 1600 1500

 2000
 2500

 3000
 3500

 4000

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8

ResponseTime[Gold]

Size BP1

Size BP2

ResponseTime[Gold]

(a) ResponseTime(Gold) estimations

 0

 5

 10

 15

 20 0
 5

 10
 15

 20
 25

 30
 35

 40

 2500
 3000
 3500
 4000
 4500
 5000
ResourceCosts

ResponeTime[Gold]

ResponeTime[Silver]

ResourceCosts

(b) Pareto-front

Figure 6.8: Illustration of solution set for goals:
ResponseTime[Gold]<8ms; ResponseTime[Silver]<15ms;
ResourceCosts<5000pages

and ResourceCosts<5000pages. Figure 6.8a shows the expected response time for service
class gold depending on the sizes of BP1 and BP2. Figure 6.8b depicts the corresponding
Pareto optimum, where each data point resembles a combination of the effectors Size_BP1
and Size_BP2. Figure 6.9 shows the same information as Figure 6.8, but for the goal values
ResponseTime[Gold]<20ms, ResponseTime[Silver]<40ms, and ResourceCosts<2000.
The reconfiguration analysis for a DBS is a complex and expensive task, which must not be

executed continuously, but only when goals are missed or when there is a workload shift. With
the described reconfiguration analysis approach, the reconfiguration analysis time is the sum
of the time required for instantiating the goal functions and the execution time of the multi-
objective optimization. For the system model of the running example, the goal instantiation
(including the 27 DBS queries for filling in the sensor values) took 0.6s on an average. The
execution time of the MOO-algorithm depends on the selected algorithm and its configuration.
Figure 6.10 shows the execution times for some MOO-algorithms that have been observed for
different population sizes and numbers of generations. The extraction of the system model
from the XMI file (only required after system model changes) took 0.7s on an average. All
experiments were made on a single-core PC (CPU cycle: 3GHz, Memory: 3GB).

6.5 Evaluation 209

 550 600 650 700 750 800 850 900 950 1000 1050 600
 700

 800
 900

 1000
 1100

 1200
 1300

 1400

 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

ResponseTime[Gold]

Size BP1 Size BP2

ResponseTime[Gold]

(a) ResponseTime(Gold) estimations

 0

 5

 10

 15

 20 0 5 10 15 20 25 30 35 40

 1300
 1400
 1500
 1600
 1700
 1800
 1900
 2000

ResourceCosts

ResponeTime[Gold]

ResponeTime[Silver]

ResourceCosts

(b) Pareto-front

Figure 6.9: Illustration of solution set for goals:
ResponseTime[Gold]<20ms; ResponseTime[Silver]<40ms;
ResourceCosts<2000pages

0

20

40

60

80

100

120

140

160

50 100 200 500

NSGAII; 25K Generations

NSGAII; 100K Generations

PAES; 25K Generations

PAES;100K Generations

SPEAII; 25K Generations

SPEAII; 100K Generations

sec

popu-
lation

Figure 6.10: Execution times for MOO-algorithms under different configurations

In order to validate the quality of the configurations in the solution sets, the computed DBS
configurations have been implemented in the IBM DB2. Afterwards, the predicted response
times have been compared to the actual response times when re-executing the evaluation work-
loads. A set of sample results is shown in Table 6.1. The first four columns show the response
times for gold (RTg) and and silver (RTs) requests observed for a given initial configuration
(bufferpool sizes BP1 and BP2). From the characteristics observed with this configuration,
reconfiguration analysis have been performed for different response time goals (Gg for gold; Gs

for silver) and allowed resource costs (Gres). For each goal, Table 6.1 reports three exemplary
solutions from the solution set in columns 8 to 11 (RTg and RTs here denote the estimated re-
sponse times). The final two columns report the actual response times that have been observed
after implementing the corresponding configuration in the DBS (all solutions have been derived
using the NSGAII algorithm with a population of 100 and 25000 generations). The results show
that despite the simplistic system model the response time can be predicted sufficiently well.
For the response time of the gold workload, for example, the average absolute difference between

210 6 Goal-Driven Reconfiguration Analysis

Table 6.1: Response Time Prediction Accuracy Validation
Initial Configuration Goal Definitions Solutions Observed RTs

BP1 BP2 RTg RTs Gg Gs Gres BP1 BP2 RTg RTs RTg RTs

350 350 40 73

10 20 5000
765 1144 10 18 12 14
1008 1249 8 15 9 13
1514 3485 4 4 3 4

20 40 2000
582 616 19 40 13 18
542 1052 17 23 12 15
872 1127 9 18 11 13

500 500 30 46

10 20 5000
948 1246 10 20 10 12
1026 2033 7 10 6 7
1503 3496 4 5 4 4

20 40 2000
648 590 20 40 15 20
831 915 12 26 11 15
910 1003 11 23 11 14

750 750 12 15

10 20 5000
1012 665 10 17 11 15
873 875 10 11 11 15
1151 1567 5 5 7 9

20 40 2000
736 419 20 37 29 51
756 622 15 21 17 19
1034 898 8 10 10 14

the estimated and the actual response time is 2ms (the average relative difference is 18%). Of
course, the system model needs to be extended in the future to also predict the effects of other
important configuration changes, e.g. to the physical design, sorting, logging, and optimizer.

6.6 Related Work

Using multi-objective optimization for the self-optimization of a DBS is a novel approach,
which (to the best of knowledge) has not been published in other works before. Previously,
this subject in database systems has only been seen from the query processing point of view,
i.e. as the retrieval of Pareto-optimal result sets from a DBS (skyline queries; e.g. [KRR02],
[BG04]). The focus in these works has been on creating efficient query processing algorithms in
the DBS, not the application of multi-objective optimization techniques for self-management.
Likewise, there are no known sources on extracting and composing objective functions from a
DBS system model. The lack of related work in this area is caused by the fact that – except
the position paper [Sch09] by Schmidt – no other approaches for creating a quantitative DBS
system model are known.
In the area of complex IT infrastructure management, rule-based frameworks like Accord

[LP06] have been developed. Like the Autonomic Computing Toolkit described in Section 5.5,
these frameworks require the administrator to define a set of actions and the conditions under
which they are fired (ECA-rules). The same approach is taken in policy management frame-

6.7 Conclusions 211

works like [BGJ+04]. So the decision about the necessary reconfigurations to meet business
goals is not derived from a quantitative description of the behaviour, but has to be predefined
for specific scenarios by an administrator. To overcome this limitation the Accord framework
has been extended with a Limited-Look-Ahead-Controller [BPL+06]. However, the controller
is limited to the optimization of a single objective function.
In the area of web service composition there has been research on the usage of multi-objective

optimization in order to meet SLAs, e.g. in [WCSO08] and [CWC05]. Depending on the QoS
requirements, multiple concrete web services are composed to realize an abstract business pro-
cess. Compared to databases, the objective functions for web service composition are rather
simple and the configuration alternatives are limited. Thus, they do not allow the graphical
modelling of a hierarchically structured system model, which is essential to keep the modelling
complexity manageable for database systems. Instead, the objective functions are expected to
be predefined and hard-coded into the self-management logic.

6.7 Conclusions

This section has presented an approach for automatically deriving DBS configurations that meet
high-level goals from a DBS system model. As multiple, possibly opposing goal functions may
be defined for a DBS, MOO techniques have been identified as an appropriate solution for this
purpose. These heuristics determine a set of Pareto optimal solutions for a given set of objective
functions. By considering the high-level goals as constraints, configurations that would not meet
the goals are automatically excluded from the solution set. Employing the MOO techniques,
the major challenges for the evaluation of DBS system models in the reconfiguration analysis
have been reduced to deriving the objective functions from a DBS system model, instantiating
them at runtime, and selecting one of the solutions from the solution set. Solutions to these
challenges have been presented in Sections 6.3 and 6.4.
Section 6.1 has discussed the requirements towards a reconfiguration analysis solution in de-

tail. Table 6.2 lists these requirements and shows that all of these requirements are met by
the described approach. The extraction requirement demands that all information required
for self-management is extracted from the system model, without prior knowledge about the
DBS. The algorithms described in Section 6.3 perform exactly this task: they first determine
the goals that have been defined for the DBS, and then extract all the necessary rules and
touchpoint specifications. In particular, they are able to descend into the hierarchical struc-
ture of the system model and derive all rules, sensor and effector information from the lower
levels, too. Parameters in the rules that do not refer to terminal values (i.e. sensors or effec-
tors) but to behavioural descriptions are replaced accordingly. Thus, flat goal functions are
composed, which refer to sensor values and effectors only. While the effectors represent the de-
cision variables of the optimization problem, the references to sensors in the goal functions are
replaced with their current values. After this parametrization they appear as constant values

212 6 Goal-Driven Reconfiguration Analysis

Table 6.2: System Modelling Requirements
Requirement Status
Extraction X
Hierarchical Structure X
Goal Functions X
Parametrization (X)
Configuration Determination (X)
Service Classes X

in the goal functions. It is important to note that the current self-management solution only
supports single values for the parametrization, whereas the evaluation of the system model in
Section 5.4.3 has shown that precise prediction results can only be achieved by considering an
entire history of sensor values. The extension of the parametrization concepts for this purpose
therefore should be examined in the future. The parametrized goal functions are then passed to
the actual configuration determination algorithm. Existing implementations of multi-objective
optimization algorithms are used for this purpose. However, these algorithms do not determine
a single solution, but a set of Pareto optimal solutions, which all represent optimal tradeoffs
between the goal functions. Possible strategies for choosing one of these solutions have been
discussed in Section 6.4. Choosing the configuration that causes the least change costs has
been identified as the most appropriate strategy. However, an analysis of the change costs for
all effectors, their representation in the system model and an algorithm for their comparison is
still missing. Different goals for service classes in contrast are fully supported by the described
algorithms. This requirement is met by instantiating the service-class-specific goal functions
once for every service class.
Using multi-objective optimization techniques for deriving configurations in a self-managing

DBS is a novel approach that (to the best of knowledge) has not been followed in other works
before. In contrast to existing solutions it has several advantages: First, it does not require
the specification of fixed plans, which are executed under certain conditions (like ECA-rules in
policy-controlled frameworks, for example). Second, the implementation of the reconfiguration
analysis does not have to be adapted when the system model changes. All algorithms designed
in this solution are generic, i.e., they can be applied to any SysML system model that follows
the system modelling technique described in Chapter 5. Third, the reconfiguration analysis
is not limited to a particular DBMS component. Instead, all components are considered as
long as their effect on the goal values is quantified in the system model. Fourth, the result
of the reconfiguration analysis is not only a set of optimal solutions, but also the set of the
expected values for each of the goal functions. The developed reconfiguration analysis solution
therefore is an excellent basis for the development of system models in the future, because DBS
configurations can be immediately derived from these models. By implementing the resulting
configurations and comparing the goal values to the predictions, the accuracy of models can be
judged very quickly.

213

7 Conclusions

This work has presented concepts for the self-management of relational database systems. The
following Section 7.1 provides a summary of the contributions. Section 7.2 gives an outlook on
future studies.

7.1 Summary of Contributions
In a nutshell, the contributions of this work to the area of DBS self-management are as follows:

• System-wide Self-Management: A novel framework for the self-management of DBS has
been developed. In contrast to existing approaches this framework allows a system-wide
view on all configuration decisions in the DBS. Using a system model as an external knowl-
edge base, the self-management framework is highly flexible and can be easily adapted to
a concrete DBMS.

• System Model Definition: The work has described a highly intuitive method for the def-
inition of system models. It has identified the necessary system model contents and
illustrated the usage of the graphical modelling language SysML for system model defi-
nitions.

• DB2 System Model: To illustrate the applicability of the system modelling concepts, a
coarse-grained system model for IBM DB2 has been developed. The DB2 model predicts
the response time of DB2 depending on its configuration and workload. Experimental
evaluations have shown the applicability of the approach.

• Goal-Driven Reconfiguration Analysis: A set of generic algorithms for the evaluation of
system models has been developed. Using these algorithms, any DBS system model can
be used in order to derive DBS configuration that meet high-level goals. Multi-objective
optimization techniques are employed for this purpose.

• Lightweight Workload Analysis: In order to detect the points in time when a reconfig-
uration analysis is required for a DBS, the work has developed an analysis framework
for the workload of relational DBS. This framework allows the lightweight monitoring
of the workload for significant changes. It therefore allows the quick adaptation of the
DBS configuration to workload changes, while it restricts the analysis overhead for stable
workloads to a minimum.

214 7 Conclusions

The following paragraphs discuss how these contributions solve for the open challenges in
DBS self-management, which have been identified in Section 2.4:

Self-Optimization When comparing the traditional DBMS technology with the characteris-
tics of an autonomic system, then self-optimization is the most important challenge for research
and development. In particular, self-optimization requires a continuous adaptation of the DBS
configuration to changes in the workload. An analysis of the existing self-management functions
has shown that off-line maintenance tools are not an adequate means to reach this goal, be-
cause the DBA has to know when their execution advisable. Instead, on-line self-management
functions are required, which continuously monitor some sensor information from the DBS in
order to immediately identify benefits of possible reconfigurations. However, currently only a
small fraction of the DBS configuration is under control of on-line self-management functions.
This work has presented a self-management approach that significantly differs from the exist-

ing solutions. Instead of developing further component-specific or administration-task-specific
on-line self-management functions, an integrated, system-wide approach towards DBS self-
management is followed. This integrated approach has been designed with only a single self-
management loop, which monitors and analyses the workload and state of the overall DBS.
Whenever it detects the need for a reconfiguration, the self-management logic automatically
triggers the execution of a multi-objective optimization algorithm, which determines a new
optimal configuration of the DBS. This optimization is based on a system model, which quan-
titatively predicts the behaviour of the DBS under different configurations and environmental
conditions. By giving a first coarse-grained model for the IBM DB2, Section 5 has shown that
the prediction of the DBS performance using a system model is possible.
In order to extend the self-optimization capabilities to other DBS components, the proposed

solution does not require the development of additional on-line self-management functions. It
is only necessary to integrate a quantitative description of their behaviour into the system
model. All other aspects of self-management are automatically provided by the framework: the
identification of the points in time when a reconfiguration analysis is required (workload shift
detection), the parametrization of the model with the current sensor values, the computation of
optimal configuration values for the DBS components, the consideration of side effects on other
components, and the implementation of the new values in the DBS configuration. In order to
make the required extensions of the system model as intuitive as possible, a graphical modelling
language is supported by the framework. Thus, it is expected that the developed framework
will greatly simplify the development of new self-management functionality for DBS.

Goal-Independency The vision of autonomic computing demands all systems in an enterprise
to automatically adapt to high-level goals and policies that are defined by an administrator.
However, none of the existing DBS self-management solutions is capable of considering goal
values for response time, throughput, or costs in its analysis. Instead, all of them perform a
best-effort performance optimization.

7.1 Summary of Contributions 215

The integrated self-management framework described in this work is explicitly designed to
be goal-driven: On the one hand, a reconfiguration analysis is supposed to be triggered when
goal values are missed. On the other hand, every new configuration meets the goal values in
the best possible way. The support for goal values integrates naturally with the multi-objective
optimization approach chosen for deriving the DBS configurations from the system model,
because goal functions can be easily integrated into the system model as constraints. These
goal functions then form the subjects of the optimization, where the parameters of the goal
functions represent configuration parameter settings. Thus, only solutions that meet the goal
values will be identified by the self-management logic as possible DBS configurations.

Interdependency Today’s DBMS are complex systems with lots of interdependencies between
their components. Hence, changes to the configuration of one component may have side effects
on other components, especially if the parameters affect the usage of a shared resource. How-
ever, considering all side effects of a reconfiguration would cause a high overhead. Today’s
on-line self-management functions therefore analyse the performance and workload related to
one configuration parameter or one system component only, without regarding side-effects.
With the system-wide self-management framework described in this work, the challenge of

considering side-effects during the reconfiguration analysis can be solved easily. All parameters
that influence the behaviour of a component can be represented in the system model in a intu-
itive way. Of course, a quantitative model of the effects of these parameters on the components
behaviour has to be defined as a prerequisite. Thus, the influence of a single parameter on
the performance of multiple components can be directly derived from the system model by
following its connections to performance constraints. The reconfiguration analysis therefore
can easily determine the system-wide effects of changing the parameter’s value.

Overhead With existing solutions every single on-line self-management function separately
monitors some particular sensor information, analyses this information and initiates appropriate
reconfiguration actions when required. Thus, every on-line self-management function causes
overhead, which adds to the usual statement execution time. Most of the time this analysis
overhead will be wasted, because the usage and state of the DBS are almost constant, and
therefore no changes to the configuration are required.
Using the workload shift detection approach, the analysis overhead for possible reconfigura-

tions can be restricted to situations where there actually is a strong hint that the usage of the
DBS has changed. While the workload is stable (and the goals are met), only the workload
shift detection algorithm has to be executed. The experimental evaluations have shown that
the workload shift detection concepts developed in this work can be executed continuously with
very little overhead. Of course, the reconfiguration analysis that is performed when a workload
shift has been detected employs heavy-weight optimization algorithms. But as workload shifts
are expected only rarely, the usual statement processing will not be affected by this overhead.
Furthermore, the fact that a workload shift has been detected indicates that the result of the

216 7 Conclusions

reconfiguration analysis is likely to find a new configuration resulting in an increased DBS
performance.

Workload-pattern Unawareness Current on-line self-management functions in DBS make
their reconfiguration decisions based on the past observations, i.e. they assume that the work-
load remains identical in the future. But in the presence of periodic workload changes, e.g. be-
tween day-time and night-time, the self-management functions could anticipate upcoming
changes and refrain from reconfigurations shortly before a workload change. However, there are
currently no concepts for considering periodic workload changes in the existing self-management
solutions.
By storing all workload models, the workload shift prediction solution developed in this

work maintains a knowledge base of historic workloads. Based on this knowledge periodicity
detection techniques have been designed and evaluated, which allow the prediction of upcoming
periodic workload changes. This information provides a valuable input to the self-management
logic. Furthermore, the knowledge about re-occurring workloads in the future may be used
to assign concrete DBS configurations to the workload models, thus avoiding the need for an
expensive reconfiguration analysis.

Overreaction As discussed in Section 2.4.6, on-line self-management functions in DBS often
lack a precise model of their managed component. They implement rules-of-thumb algorithms
instead. If the rules-of-thumb assumptions are incorrect in certain environments, then the
self-management functions may overreact. As a result, the performance of the DBS may even
downgrade after the tuning decision.
With the approach presented in this work, quantitative models of the managed components

are mandatory. For every goal function it must be precisely defined how the expected value
depends on the sensor and effector values. Thus, overreactions due to incorrect rules-of-thumb
assumptions are avoided. The self-management framework furthermore supports the develop-
ment of the required models by allowing an immediate testing of the model evaluation results.

7.2 Outlook
The goal-driven, system-wide self-management framework developed in this work provides the
necessary concepts to overcome the issues faced with traditional DBS self-management so-
lutions. Currently the framework of course exists only in the status of a research prototype.
There are many areas where additional studies and experimental evaluations are required before
the self-management framework may be considered sufficiently mature for usage in production
systems.

Reliable Service-Level Management Section 3.1 has identified five challenges that have to be
considered when creating the integrated, system-wide self-management framework developed

7.2 Outlook 217

in this work. While the challenges Lightweight Workload Monitoring, System Model Definition,
and System Model Evaluation have been investigated in detail in this work, the challenge of
Reliable Service-Level Management has been excluded from the studies. The subject of this
challenge is to reliably ensure that the high-level goals defined by the DBA will be met under
all conditions. Thus, it is important to detect possible goal violations as early as possible,
because only then the reconfigurations can be triggered in time to avoid goal violations. The
goal value monitoring component therefore could employ trend detection or other time series
analysis techniques. A reliable service-level management should be thoroughly designed in a
future work.

Anticipatory State Monitoring In addition to the Reliable Service-Level Management, also
the challenge Anticipatory State Monitoring has been excluded from the investigations in this
work. This challenge requires a continuous lightweight monitoring of internal DBS state infor-
mation of components which may demand administrative actions even though the workload is
stable. The fragmentation of the data over time, for example, may require a reorganization
of the data without any changes in the workload. State information will typically not change
dramatically within a short period of time, but it will show a trend over time, which should
be observed by the self-management logic. Upcoming maintenance operations should then be
scheduled in time before problems actually appear, and for time periods when little workload
is expected on the DBS. The identification of the internal state information that has to be
monitored by the self-management logic and the design of an appropriate monitoring technique
should be investigated in the future.

Model extension and refinement The system model for IBM DB2 presented in Section 5.4
is a coarse-grained model, which considers the most important components and configuration
parameters only. The evaluation results for this exemplary model have shown that some as-
pects of the behaviour are described sufficiently well, whereas other parts obviously still need
refinement. It has shown that in order to precisely predict key performance indicators like the
response time or throughput extensive experimental evaluations of the DBMS with varying
workloads will be required in the future. As a result of these evaluations the model has to be
refined and extended where appropriate. The groundwork for these experimental evaluations
has been developed in this work: First, a testbed has been created, which provides a basic set of
benchmark and custom workloads on different database schemas. Second, the self-management
logic can be used in order to derive configurations from candidate models, together with the
estimated goal values. Thus, candidate models can be easily validated by implementing the
configurations and comparing the estimated performance values against the actual observations.
Nevertheless, the experimental evaluation will require a large amount of time for the iterative
refinement of the model.

218 7 Conclusions

Goal/Policy-Framework Integration As illustrated in Section 2.1, the vision of autonomic
computing is larger than the self-management of an individual computing resource like a DBS.
It rather demands that the entire IT-infrastructure of an enterprise should be self-managing
according to a set of high-level business goals. To keep the complexity of breaking down the
enterprise-level goals to configuration parameter values manageable, a hierarchical structure is
proposed in [IBM05], which refines the goals at every level. Finally, the managed resources at
the leaf-node level will have to accept resource-specific goal definitions and autonomically find
configurations that meet these goal values. So the DBS should be able to exchange goal defini-
tions and performance reports with other self-management components in the IT-infrastructure.
As the current solution only accepts a set of goal values from a flat configuration file, a future
work should examine existing policy- or goal-definition frameworks for their applicability to the
integrated self-management solution developed in this work.

Capacity Planning for DBS An important challenge for the management of data centres is
the capacity planning. Given a set of SLA definitions by the customer, the operators of a data
centre have to choose the correct physical hardware for an application or infrastructure service.
For DBS, it is expected that the concepts developed in this work will greatly support this task:
On the one hand the workload model histories provide the operators with a detailed description
of the load of the DBS, and with the time intervals when this workload usually occurs. On
the other hand, the system model allows the prediction of the performance of the DBS under
different configurations. Thus, the operator can predict how well the given SLAs will be met
on a particular hardware. The application of the developed techniques for capacity planning
should be investigated in the future.

219

Bibliography

[ABCN06] Agrawal, Sanjay ; Bruno, Nicolas ; Chaudhuri, Surajit ; Narasayya,
Vivek R.: AutoAdmin: Self-Tuning Database SystemsTechnology. In: IEEE Data
Engineering Bulletin 29 (2006), Nr. 3, S. 7–15

[ACK+04] Agrawal, Sanjay ; Chaudhuri, Surajit ; Kollár, Lubor ; Marathe, Arun-
prasad P. ; Narasayya, Vivek R. ; Syamala, Manoj: Database Tuning Advisor
for Microsoft SQL Server 2005. In: [NÖK+04], S. 1110–1121

[ACN00] Agrawal, Sanjay ; Chaudhuri, Surajit ; Narasayya, Vivek R.: Automated
Selection of Materialized Views and Indexes in SQL Databases. In: Abbadi,
Amr E. (Hrsg.) ; Brodie, Michael L. (Hrsg.) ; Chakravarthy, Sharma (Hrsg.) ;
Dayal, Umeshwar (Hrsg.) ; Kamel, Nabil (Hrsg.) ; Schlageter, Gunter (Hrsg.)
; Whang, Kyu-Young (Hrsg.): Proceedings of 26th International Conference on
Very Large Data Bases. San Francisco, CA, USA : Morgan Kaufmann Publishers
Inc., 2000. – ISBN 1558607153, S. 496–505

[ACN06] Agrawal, Sanjay ; Chu, Eric ; Narasayya, Vivek: Automatic physical design
tuning: workload as a sequence. In: Chaudhuri, Surajit (Hrsg.) ; Hristidis,
Vagelis (Hrsg.) ; Polyzotis, Neoklis (Hrsg.): Proceedings of the ACM SIGMOD
International Conference on Management of Data. New York, NY, USA : ACM
Press, 2006. – ISBN 1595932569, S. 683–694

[AFG+04] Alur, Nagraj ; Farrell, Peter ; Gunning, Philip ; Mohseni, Saeid ; Ra-
jagopalan, Swaminaathan ; International Business Machines Corpora-
tion (Hrsg.): DB2 UDB ESE V8 non-DPF Performance Guide for High Per-
formance OLTP and BI. 1. Armonk, NY, USA: International Business Machines
Corporation, 2004. – Redbook

[AHL+04] Aboulnaga, Ashraf ; Haas, Peter J. ; Lightstone, Sam ; Lohman, Guy M. ;
Markl, Volker ; Popivanov, Ivan ; Raman, Vijayshankar: Automated Statistics
Collection in DB2 UDB. In: [NÖK+04], S. 1146–1157

[AHWY03] Aggarwal, Charu C. ; Han, Jiawei ; Wang, Jianyong ; Yu, Philip S.: A
Framework for Clustering Evolving Data Streams. In: [FLA+03], S. 81–92

220 Bibliography

[AHWY04] Aggarwal, Charu C. ; Han, Jiawei ; Wang, Jianyong ; Yu, Philip S.: On
Demand Classification of Data Streams. In: Kim, Won (Hrsg.) ; Kohavi, Ron
(Hrsg.) ; Gehrke, Johannes (Hrsg.) ; DuMouchel, William (Hrsg.): Proceedings
of the 10th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. New York, NY, USA : ACM Press, 2004. – ISBN 1581138881, S.
503–508

[ANY04] Agrawal, Sanjay ; Narasayya, Vivek R. ; Yang, Beverly: Integrating Ver-
tical and Horizontal Partitioning Into Automated Physical Database Design. In:
Weikum, Gerhard (Hrsg.) ; König, Arnd C. (Hrsg.) ; Deßloch, Stefan (Hrsg.):
Proceedings of the ACM SIGMOD International Conference on Management of
Data. New York, NY, USA : ACM Press, 2004. – ISBN 1581138598, S. 359–370

[BBD+09] Babu, Shivnath ; Borisov, Nedyalko ; Duan, Songyun ; Herodotou, Herodotos
; Thummala, Vamsidhar: Automated Experiment-Driven Management of
(Database) Systems. In: Fox, Armando (Hrsg.): Proceedings of the 12th Workshop
on Hot Topics in Operating Systems, Online Proceedings, 2009

[BBR+07] Bensch, Michael ; Brugger, Dominik ; Rosenstiel, Wolfgang ; Bogdan, Mar-
tin ; Spruth, Wilhelm G. ; Baeuerle, Peter: Self-Learning Prediction System
for Optimisation of Workload Management in a Mainframe Operating System.
In: Cardoso, Jorge (Hrsg.) ; Cordeiro, José (Hrsg.) ; Filipe, Joaquim (Hrsg.):
Proceedings of the 9th International Conference on Enterprise Information Systems
Bd. AIDSS, 2007. – ISBN 9728865894, S. 212–218

[BC06] Bruno, Nicolas ; Chaudhuri, Surajit: To tune or not to tune?: a lightweight
physical design alerter. In: [DWL+06], S. 499–510

[BC07] Bruno, Nicolas ; Chaudhuri, Surajit: An Online Approach to Physical Design
Tuning. In: Proceedings of the 23rd International Conference on Data Engineering.
Los Alamitos, CA, USA : IEEE Computer Society Press, 2007. – ISBN 1424408032,
S. 826–835

[BCL96] Brown, Kurt P. ; Carey, Michael J. ; Livny, Miron: Goal-Oriented Buffer Man-
agement Revisited. In: Jagadish, H. V. (Hrsg.) ; Mumick, Inderpal S. (Hrsg.):
Proceedings of the ACM SIGMOD International Conference on Management of
Data. New York, NY, USA : ACM Press, 1996. – ISBN 0897917944, S. 353–364

[BDDY09] Belknap, Peter ; Dageville, Benoît ; Dias, Karl ; Yagoub, Khaled: Self-
Tuning for SQL Performance in Oracle Database 11g. In: Proceedings of the 25th

International Conference on Data Engineering[con09], S. 1694–1700

[BG04] Balke, Wolf-Tilo ; Güntzer, Ulrich: Multi-objective Query Processing for
Database Systems. In: [NÖK+04], S. 936–947

Bibliography 221

[BGJ+04] Bhide, Manish ; Gupta, Ajay ; Joshi, Mukul ; Mohania, Mukesh ; Raman,
Shree: Policy Framework for Autonomic Data Management. In: Proceedings of
the 1st International Conference on Autonomic Computing[con04], S. 336–337

[BJR08] Box, George E. ; Jenkins, Gwylim M. ; Reinsel, Gregory C.: Time Series
Analysis - Forecasting and Control. 4. Heidelberg/Berlin, Germany : Springer-
Verlag, 2008. – ISBN 9780470272848

[BK09] Bildhäuser, Hans-Jürgen ; Karn, Holger: System and Method to Improve Pro-
cessing Time of Databases by Cache Optimization. 03 2009

[BLR02] Bernstein, Philip A. (Hrsg.) ; Loannidis, Yannis E. (Hrsg.) ; Ramakrishnan,
Raghu (Hrsg.): Proceedings of 28th International Conference on Very Large Data
Bases. San Francisco, CA, USA : Morgan Kaufmann Publishers Inc., 2002 . –
ISBN 1558608699

[BN93] Basseville, Michèle ; Nikiforov, Igor: Detection of abrupt changes: theory
and application. 1. Engelwood Cliffs, NJ, USA : Prentice Hall, 1993. – ISBN
0131267809

[BPL+06] Bhat, Viraj ; Parashar, Manish ; Liu, Hua ; Khandekar, Mohit ; Kan-
dasamy, Nagarajan ; Abdelwahed, Sherif: Enabling Self-Managing Applications
using Model-based Online Control Strategies. In: Proceedings of the 3rd IEEE In-
ternational Conference on Autonomic Computing. Los Alamitos, CA, USA : IEEE
Computer Society Press, 2006. – ISBN 1424401755, S. 15–24

[Buc09] Buckler, Andrew D.: Workload Periodicity Analyzer for Autonomic Database
Components. 03 2009 Patent US 7,509,336 B2

[But06] Butz, Tilman: Fourier Transformation for Pedestrians. 1. Heidelberg/Berlin,
Germany : Springer-Verlag, 2006. – ISBN 354023165X

[CCI+08] Chen, Whei-Jen ; Comeau, Bill ; Ichikawa, Tomoko ; Kumar, Sadish ; Miski-
men, Marcia ; Morgan, H T. ; Pay, Larry ; Väättänenn, Tapio: DB2 Workload
Manager for Linux, UNIX, and Windows. 1. International Business Machines Cor-
poration, 2008. – ISBN 0738485381

[CFW+95] Chung, Jen-Yao ; Ferguson, Donald ; Wang, George ; Nikolaou, Christos ;
Teng, Jim: Goal-oriented dynamic buffer pool management for data base systems.
In: Proceedings of the 1st International Conference on Engineering of Complex
Systems. Los Alamitos, CA, USA : IEEE Computer Society Press, 1995. – ISBN
0818671238, S. 191–198

[CGN02] Chaudhuri, Surajit ; Gupta, Ashish K. ; Narasayya, Vivek: Compressing SQL
workloads. In: [FMA02], S. 488–499

222 Bibliography

[CN97] Chaudhuri, Surajit ; Narasayya, Vivek R.: An Efficient, Cost-Driven Index
Selection Tool for Microsoft SQL Server. In: Jarke, Matthias (Hrsg.) ; Carey,
Michael J. (Hrsg.) ; Dittrich, Klaus R. (Hrsg.) ; Lochovsky, Frederick H.
(Hrsg.) ; Loucopoulos, Pericles (Hrsg.) ; Jeusfeld, Manfred A. (Hrsg.): Pro-
ceedings of 23rd International Conference on Very Large Data Bases. San Fran-
cisco, CA, USA : Morgan Kaufmann Publishers Inc., 1997. – ISBN 1558604707, S.
146–155

[CN98] Chaudhuri, Surajit ; Narasayya, Vivek R.: AutoAdmin ’What-if’ Index Anal-
ysis Utility. In: Haas, Laura M. (Hrsg.) ; Tiwary, Ashutosh (Hrsg.): Proceedings
ACM SIGMOD International Conference on Management of Data. New York, NY,
USA : ACM Press, 1998. – ISBN 0897919955, S. 367–378

[con04] Proceedings of the 1st International Conference on Autonomic Computing. Los
Alamitos, CA, USA : IEEE Computer Society Press, 2004 . – ISBN 0769521142

[con07] Proceedings of the 23rd International Conference on Data Engineering Workshops.
Los Alamitos, CA, USA : IEEE Computer Society Press, 2007 . – ISBN 1424408320

[con09] Proceedings of the 25th International Conference on Data Engineering. Los Alami-
tos, CA, USA : IEEE Computer Society Press, 2009 . – ISBN 9780769535456

[Cor10] Corporation, Microsoft: Memory Management Architecture. 2010. –
http://msdn.microsoft.com/en-us/library/cc280359.aspx; Online; 28.11.2010

[CT65] Cooley, James ; Tukey, John: An Algorithm for the Machine Calculation of
Complex Fourier Series. In: Mathematics of Computation 19 (1965), Nr. 90, S.
297–301

[CT07] Chen, Yixin ; Tu, Li: Density-Based Clustering for Real-Time Stream Data.
In: Berkhin, Pavel (Hrsg.) ; Caruana, Rich (Hrsg.) ; Wu, Xindong (Hrsg.):
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York, NY, USA : ACM Press, 2007. – ISBN
1595936097, S. 133–142

[CVL07] Coello, Carlos ; Veldhuizen, David V. ; Lamont, Gary: Evolutionary Al-
gorithms for Solving Multi-Objective Problems. 2. Heidelberg/Berlin, Germany :
Springer-Verlag, 2007. – ISBN 0306467623

[CW06] Chaudhuri, Surajit ; Weikum, Gerhard: Foundations of Automated Database
Tuning. In: Liu, Ling (Hrsg.) ; Reuter, Andreas (Hrsg.) ; Whang, Kyu-Young
(Hrsg.) ; Zhang, Jianjun (Hrsg.): Proceedings of the 22nd International Conference
on Data Engineering. Los Alamitos, CA, USA : IEEE Computer Society Press,
2006. – ISBN 0769525709, S. 104

Bibliography 223

[CWC05] Chang, Wei-Chun ; Wu, Ching-Seh ; Chang, Chun: Optimizing Dynamic
Web Service Component Composition by Using Evolutionary Algorithms. In:
Skowron, Andrzej (Hrsg.) ; Agrawal, Rakesh (Hrsg.) ; Luck, Michael (Hrsg.)
; Yamaguchi, Takahira (Hrsg.) ; Morizet-Mahoudeaux, Pierre (Hrsg.) ; Liu,
Jiming (Hrsg.) ; Zhong, Ning (Hrsg.): Proceedings of the IEEE/WIC/ACM Inter-
national Conference on Web Intelligence. Los Alamitos, CA, USA : IEEE Computer
Society Press, 2005. – ISBN 076952415X, S. 708–711

[DD06] Dageville, Benoit ; Dias, Karl: Oracle’s Self-Tuning Architecture and Solutions.
In: IEEE Data Engineering Bulletin 29 (2006), Nr. 3, S. 24–31

[DDD+04] Dageville, Benoît ; Das, Dinesh ; Dias, Karl ; Yagoub, Khaled ; Zaït,
Mohamed ; Ziauddin, Mohamed: Automatic SQL Tuning in Oracle 10g. In:
[NÖK+04], S. 1098–1109

[DHP+05] Diao, Yixin ; Hellerstein, Joseph L. ; Parekh, Sujay ; Griffith, Rean ;
Kaiser, Gail ; Phung, Dan: Self-Managing Systems: A Control Theory Foun-
dation. In: Proceedings of the 12th International Conference on the Engineering
of Computer-Based Systems. Los Alamitos, CA, USA : IEEE Computer Society
Press, 2005. – ISBN 0769523080, S. 441–448

[Dis08] Distributed Management Task Force (Hrsg.): Common Information Model
(CIM) Infrastructure. 2.5.0a. Portland, OR, USA: Distributed Management Task
Force, 2008. – Specification

[DNL+06] Durillo, Juan J. ; Nebro, Antonio J. ; Luna, Francisco ; Dorronsoro, Bern-
abé ; Alba, Enrique: jMetal: A Java Framework for Developing Multi-Objective
Optimization Metaheuristics / Departamento de Lenguajes y Ciencias de la Com-
putación, University of Málaga. 2006 (ITI-2006-10). – Forschungsbericht. – Tech-
nical Report

[DPAM02] Deb, Kalyanmoy ; Pratap, Amrit ; Agarwal, Sameer ; Meyarivan, T.: A Fast
and Elitist Multiobjective Genetic Algorithm: NSGA-II. In: IEEE Transactions
on Evolutionary Computation 6 (2002), Nr. 2, S. 182–197

[DRS+05] Dias, Karl ; Ramacher, Mark ; Shaft, Uri ; Venkataramani, Venkateshwaran
; Wood, Graham: Automatic Performance Diagnosis and Tuning in Oracle. In:
Proceedings of the 2nd Biennial Conference on Innovative Data Systems Research,
Online Proceedings, 2005, S. 84–94

[DTB09] Duan, Songyun ; Thummala, Vamsidhar ; Babu, Shivnath: Tuning Database
Configuration Parameters with iTuned. In: Proceedings of the VLDB Edowment 2
(2009), Nr. 1, S. 1246–1257

224 Bibliography

[DWL+06] Dayal, Umeshwar (Hrsg.) ; Whang, Kyu-Young (Hrsg.) ; Lomet, David B.
(Hrsg.) ; Alonso, Gustavo (Hrsg.) ; Lohman, Guy M. (Hrsg.) ; Kersten, Mar-
tin L. (Hrsg.) ; Cha, Sang K. (Hrsg.) ; Kim, Young-Kuk (Hrsg.): Proceedings of
the 32nd International Conference on Very Large Data Bases. New York, NY, USA
: ACM Press, 2006 . – ISBN 1595933859

[DZ02] Dageville, Benoît ; Zaït, Mohamed: SQL Memory Management in Oracle9i.
In: [BLR02], S. 962–973

[EM04] Elnaffar, Said S. ; Martin, Patrick: An Intelligent Framework for Predict-
ing Shifts in the Workloads of Autonomic Database Management Systems. In:
Proceedings of International Conference on Advances in Intelligent Systems. Los
Alamitos, CA, USA : IEEE Computer Society Press, 2004. – ISBN 2959977688, S.
1–8

[EMSL08] Elnaffar, Said ; Martin, Patrick ; Schiefer, Berni ; Lightstone, Sam: Is it
DSS or OLTP: automatically identifying DBMS workloads. In: Journal of Intelli-
gent Information Systems 30 (2008), Nr. 3, S. 249–271. – ISSN 0925–9902

[EPBM03] Elnaffar, Said ; Powley, Wendy ; Benoit, Darcy ; Martin, Patrick: Today’s
DBMSs: How autonomic are they? In: Proceedings of the 14th International
Workshop on Database and Expert Systems Applications, IEEE Computer Society
Press, 2003. – ISBN 0769519938, S. 651–655

[FHWY04] Fan, Wei ; Huang, Yi an ; Wang, Haixun ; Yu, Philip S.: Active Mining of Data
Streams. In: Berry, Michael W. (Hrsg.) ; Dayal, Umeshwar (Hrsg.) ; Kamath,
Chandrika (Hrsg.) ; Skillicorn, David B. (Hrsg.): Proceedings of the 4th SIAM
International Conference on Data Mining. Philadelphia, PA, USA : Society for
Industrial and Applied Mathematics, 2004. – ISBN 0898715687, S. 457–461

[Fin99] Fink, Gernot A.: Developing HMM-Based Recognizers with ESMERALDA. In:
Matousek, Václav (Hrsg.) ; Mautner, Pavel (Hrsg.) ; Ocelíková, Jana (Hrsg.)
; Sojka, Petr (Hrsg.): Proceedings of the 2nd International Workshop on Text,
Speech and Dialogue Bd. 1692. Heidelberg/Berlin, Germany : Springer-Verlag,
1999 (Lecture Notes in Computer Science). – ISBN 3540664947, S. 229–234

[Fin08] Fink, Gernot: Markov Models for Pattern Recognition. 1. Heidelberg/Berlin,
Germany : Springer-Verlag, 2008. – ISBN 3540717668

[FLA+03] Freytag, Johann C. (Hrsg.) ; Lockemann, Peter C. (Hrsg.) ; Abiteboul, Serge
(Hrsg.) ; Carey, Michael J. (Hrsg.) ; Selinger, Patricia G. (Hrsg.) ; Heuer,
Andreas (Hrsg.): Proceedings of 29th International Conference on Very Large Data
Bases. San Francisco, CA, USA : Morgan Kaufmann Publishers Inc., 2003 . – ISBN
0127224424

Bibliography 225

[FMA02] Franklin, Michael J. (Hrsg.) ; Moon, Bongki (Hrsg.) ; Ailamaki, Anastassia
(Hrsg.): Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data. New York, NY, USA : ACM Press, 2002 . – ISBN 1581134975

[FST88] Finkelstein, Sheldon J. ; Schkolnick, Mario ; Tiberio, Paolo: Physical
Database Design for Relational Databases. In: ACM Transactions on Database
Systems 13 (1988), Nr. 1, S. 91–128

[FTARS06] Ferrer-Troyano, Francisco J. ; Aguilar-Ruiz, Jesús S. ; Santos, José
Cristóbal Riquelme: Data Streams Classification by Incremental Rule Learning
with Parameterized Generalization. In: Haddad, Hisham (Hrsg.): Proceedings of
the 2006 ACM Symposium on Applied Computing. New York, NY, USA : ACM
Press, 2006. – ISBN 1595931082, S. 657–661

[GC03] Ganek, Alan G. ; Corbi, Thomas A.: The dawning of the autonomic computing
era. In: IBM Systems Journal 42 (2003), Nr. 1, S. 5–18. – ISSN 0018–8670

[GKD+09] Ganapathi, Archana ; Kuno, Harumi A. ; Dayal, Umeshwar ; Wiener, Janet L.
; Fox, Armando ; Jordan, Michael I. ; Patterson, David A.: Predicting
Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning. In:
Proceedings of the 25th International Conference on Data Engineering[con09], S.
592–603

[Glo89] Glover, Fred: Tabu Search–Part I. In: Journal on Computing 1 (1989), Nr. 3,
S. 190–206

[GRCK07] Gmach, Daniel ; Rolia, Jerry ; Cherkasova, Ludmila ; Kemper, Alfons: Work-
load Analysis and Demand Prediction of Enterprise Data Center Applications. In:
Proceedings of the 10th IEEE Workload Characterization Symposium. Los Alamitos,
CA, USA : IEEE Computer Society Press, 2007. – ISBN 1424415618, S. 171–180

[HAH01] Huang, Xuedong ; Acerno, Alex ; Hon, Hsiao-Wuen: Spoken Language Process-
ing. 1. Upper Saddle River, NJ, USA : Prentice Hall, 2001. – ISBN 0130226165

[HEK09] Hartung, Joachim ; Elpelt, Bärbel ; Klösener, Karl-Heinz: Statistik: Lehr-
und Handbuch der angewandten Statistik. 15. München, Germany : R. Oldenbourg
Verlag, 2009. – ISBN 9783486590289

[HGR08] Holze, Marc ; Gaidies, Claas ; Ritter, Norbert: Erkennung signifikanter
Laständerungen für autonome Datenbanksysteme. In: Datenbank Spektrum 8
(2008), Nr. 27, S. 27–36. – ISSN 1618–2162

[HGR09] Holze, Marc ; Gaidies, Claas ; Ritter, Norbert: Consistent On-Line Classifica-
tion of DBSWorkload Events. In: Cheung, David Wai-Lok (Hrsg.) ; Song, Il-Yeol

226 Bibliography

(Hrsg.) ; Chu, Wesley W. (Hrsg.) ; Hu, Xiaohua (Hrsg.) ; Lin, Jimmy J. (Hrsg.):
Proceedings of the 18th International Conference on Information and Knowledge
Management. New York, NY, USA : ACM Press, 2009. – ISBN 9781605585123, S.
1641–1644

[HHR10] Holze, Marc ; Haschimi, Ali ; Ritter, Norbert: Towards workload-aware self-
management: Predicting significant workload shifts. In: Workshop Proceedings of
the 26th International Conference on Data Engineering. Los Alamitos, CA, USA :
IEEE Computer Society Press, 2010. – ISBN 9781424454440, S. 111–116

[HK06] Han, J. ; Kamber, M.: Data Mining: Concepts and Techniques. 2. San Francisco,
CA, USA : Morgan Kaufmann Publishers Inc., 2006. – ISBN 1558609016

[Hob03] Hobbs, Lilian: Performance Tuning using the SQLAccess Advisor. 1. Redwood
Shores, CA, USA, 2003. – White Paper

[Hor01] Horn, Paul: Autonomic Computing: IBM’s Perspective on the State of In-
formation Technology / International Business Machines Corporation. 2001. –
Forschungsbericht

[HR83] Härder, T. ; Reuter, A.: Concepts for Implementing a Centralized Database
Management System. In: Schneider, H.J. (Hrsg.): Proceedings International
Computing Symposium on Application Systems Development Bd. 13. Stuttgart,
Germany : B.G. Teubner, 1983 (Berichte des German Chapter of the ACM). –
ISBN 3519024322, S. 28–59

[HR07] Holze, Marc ; Ritter, Norbert: Towards Workload Shift Detection and Predic-
tion for Autonomic Databases. In: Varde, Aparna S. (Hrsg.) ; Pei, Jian (Hrsg.):
Proceedings of the First Ph.D. Workshop in the 16th ACM Conference on Infor-
mation and Knowledge Management. New York, NY, USA : ACM Press, 2007. –
ISBN 1595938329, S. 109–116

[HR08] Holze, Marc ; Ritter, Norbert: Autonomic Databases: Detection of Workload
Shifts with n-Gram-Models. In: Atzeni, Paolo (Hrsg.) ; Caplinskas, Alber-
tas (Hrsg.) ; Jaakkola, Hannu (Hrsg.): Proceedings of the 12th East European
Conference on Advances in Databases and Information Systems Bd. 5207. Heidel-
berg/Berlin, Germany : Springer-Verlag, 2008 (Lecture Notes in Computer Sci-
ence). – ISBN 3540857129, S. 127–142

[HR09] Holze, Marc ; Ritter, Norbert: System Models for Goal-Driven Self-
management in Autonomic Databases. In: Velásquez, Juan D. (Hrsg.) ; Ríos,
Sebastián A. (Hrsg.) ; Howlett, Robert J. (Hrsg.) ; Jain, Lakhmi C. (Hrsg.):

Bibliography 227

Proceedings of the 13th International Conference on Knowledge-Based and Intelli-
gent Information and Engineering Bd. 5712, Springer-Verlag, 2009 (Lecture Notes
in Artificial Intelligence). – ISBN 9783642045912, S. 82–90

[HR11] Holze, Marc ; Ritter, Norbert: System Models for Goal-Driven Self-
management in Autonomic Databases. In: Data & Knowledge Engineer-
ing (2011). http://dx.doi.org/10.1016/j.datak.2011.03.001. – DOI
10.1016/j.datak.2011.03.001. – ISSN 0169–023X. – in press

[IBM05] IBM: An architectural blueprint for autonomic computing. 2005

[Int06] International Business Machines Corporation (Hrsg.): DB2 Version 9 for
Linux, UNIX, Windows - Performance Guide. 1. Armonk, NY, USA: International
Business Machines Corporation, 2006. – Manual

[Int09] International Business Machines Corporation (Hrsg.): DB2 Version 9.5
for Linux, UNIX, and Windows - WindowsSystem Monitor Guide and Reference. 1.
Armonk, NY, USA: International Business Machines Corporation, 2009. – Manual

[IY94] Ichino, Manabu ; Yaguchi, Hiroyuki: Generalized Minkowski Metrics for Mixed
Feature-Type Data Analysis. In: IEEE Transactions on Systems, Man, and Cy-
bernetics 24 (1994), Nr. 4, S. 698–708. – ISSN 0018–9472

[JLHY04] Jacob, Bart ; Lanyon-Hogg, Richard ; Yassin, Devaprasad Nadgirand A. ;
International Business Machines Corporation (Hrsg.): A Practical Guide
to the IBM Autonomic Computing Toolkit. 1. Armonk, NY, USA: International
Business Machines Corporation, 2004. – Redbook

[JM80] Jelinek, Frederick ; Mercer, Robert L.: Interpolated Estimation of Markov
Source Parameters from Sparse Data. In: Gelsema, Edzard S. (Hrsg.) ; Kanal,
Laveen N. (Hrsg.): Proceedings of the International Workshop on Pattern Recogni-
tion in Practic. Amsterdam, The Netherlands : North-Holland Pub. Co., 1980. –
ISBN 0444861157, S. 381–397

[JMF99] Jain, A. ; Murty, M. ; Flynn, P.: Data Clustering: A Review. In: ACM
Computing Surveys 31 (1999), Nr. 3, S. 264–323. – ISSN 0360–0300

[jTP09] jTPCC: jTPCC - Open Source Java implementation of the TPC-C benchmark.
http://jtpcc.sourceforge.net/. Version: 2009. – accessed 2009-08-01

[Kar09] Karakaya, Okan: Evaluierung von Modellierungssprachen zur Realisierung eines
Systemmodells für Autonome Datenbanksysteme, Universität Hamburg, Diplomar-
beit, 2009

http://dx.doi.org/10.1016/j.datak.2011.03.001
http://jtpcc.sourceforge.net/

228 Bibliography

[Kat87] Katz, Slava: Estimation of Probablilities from Sparse Data for the Language
Model Component of a Speech Recognizer. In: IEEE Transations on Acoustics,
Speech, and Signal Processing 35 (1987), Nr. 3, S. 400–401. – ISSN 1053–587X

[KC03] Kephart, Jeffrey O. ; Chess, David M.: The Vision of Autonomic Computing.
In: IEEE Computer 36 (2003), Nr. 1, S. 41–50

[KJ00] Klinkenberg, Ralf ; Joachims, Thorsten: Detecting Concept Drift with Support
Vector Machines. In: Langley, Pat (Hrsg.): Proceedings of the 17th International
Conference on Machine Learning. San Francisco, CA, USA : Morgan Kaufmann
Publishers Inc., 2000. – ISBN 1558607072, S. 487–494

[KL51] Kullback, Solomon ; Leibler, Richard: On Information and Sufficiency. In:
The Annals of Mathematical Statistics 22 (1951), Nr. 1, S. 79–86

[KLS+03] Kwan, Eva ; Lightstone, Sam ; Schiefer, K. B. ; Storm, Adam J. ; Wu,
Leanne: Automatic Configuration for IBM DB2 Universal Database. In: Weikum,
Gerhard (Hrsg.) ; Schöning, Harald (Hrsg.) ; Rahm, Erhard (Hrsg.): Tagungs-
band der 10. Konferenz für Datenbanksysteme für Business, Technologie und Web
Bd. 26, Gesellschaft für Informatik, 2003 (Lecture Notes in Informatics). – ISBN
3885793555, S. 620–629

[KLSW02] Kwan, Eva ; Lightstone, Sam ; Storm, Adam ; Wu, Leanne: Automatic
Configuration for IBM DB2 Universal Database. 1. Armonk, NY, USA, 01 2002.
– Performance Technical Report

[Kol08] Kolaczkowski, Piotr: Compressing Very Large Database Workloads for Con-
tinuous Online Index Selection. In: Bhowmick, Sourav S. (Hrsg.) ; Küng, Josef
(Hrsg.) ; Wagner, Roland (Hrsg.): Proceedings of the 19th International Confer-
ence on Database and Expert Systems Applications Bd. 5181. Heidelberg/Berlin,
Germany : Springer-Verlag, 2008 (Lecture Notes in Computer Science). – ISBN
3540856535, S. 791–799

[KRR02] Kossmann, Donald ; Ramsak, Frank ; Rost, Steffen: Shooting Stars in the Sky:
An Online Algorithm for Skyline Queries. In: [BLR02], S. 275–286

[KSA+08] Krompass, Stefan ; Scholz, Andreas ; Albutiu, Martina-Cezara ; Kuno,
Harumi A. ; Wiener, Janet L. ; Dayal, Umeshwar ; Kemper, Alfons: Quality of
Service-enabled Management of Database Workloads. In: IEEE Data Engineering
Bulletin 31 (2008), Nr. 1, S. 20–27

[KT81] Krichevsky, Raphail E. ; Trofimov, Victor K.: The Perfromance of Universal
Encoding. In: IEEE Transactions on Information Theory 27 (1981), Nr. 2, S.
199–207

Bibliography 229

[Lab08] Laboratoies, Dell: Dell DVD Store Database Test Suite. http://linux.dell.
com/dvdstore/. Version: 2008. – accessed 2008-03-03

[LB04] Lightstone, Sam ; Bhattacharjee, Bishwaranjan: Automated design of multi-
dimensional clustering tables in relational databases. In: [NÖK+04], S. 1170–1181

[Lin91] Lin, Jianhua: Divergence Measures Based on the Shannon Entropy. In: IEEE
Transactions on Information Theory 37 (1991), Nr. 1, S. 145–151

[LLH+06] Lightstone, Sam ; Lohman, Guy M. ; Haas, Peter J. ; Markl, Volker ; Rao,
Jun ; Storm, Adam ; Surendra, Maheswaran ; Zilio, Daniel C.: Making DB2
Products Self-Managing: Strategies and Experiences. In: IEEE Data Engineering
Bulletin 29 (2006), Nr. 3, S. 16–23

[Llo82] Lloyd, Stuart: Least Squares Quantization in PCM. In: IEEE Transactions on
Information Theory 28 (1982), Nr. 2, S. 129–137. – ISSN 0018–9448

[LNK+03] Lahiri, Tirthankar ; Nithrkashyap, Arvind ; Kumar, Sushil ; Hirano, Brian
; Kant Pate and, Poojan K.: The Self-Managing Database: Automatic SGA
Memory Management. 1. Redwood Shores, CA, USA, 2003. – White Paper

[LP06] Liu, Hua ; Parashar, Manish: Accord: a programming framework for autonomic
applications. In: IEEE Transactions on Systems, Man, and Cybernetics 36 (2006),
Nr. 3, S. 341–352. – ISSN 0018–9472

[LS08] Leeuwen, Matthijs van ; Siebes, Arno: StreamKrimp: Detecting Change in Data
Streams. In: Daelemans, Walter (Hrsg.) ; Goethals, Bart (Hrsg.) ; Morik,
Katharina (Hrsg.): Proceedings of the European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, Part I Bd. 5211. Heidelberg/Berlin,
Germany : Springer-Verlag, 2008 (Lecture Notes in Computer Science). – ISBN
9783540874782, S. 672–687

[LSSS07] Lühring, Martin ; Sattler, Kai-Uwe ; Schmidt, Karsten ; Schallehn, Eike:
Autonomous Management of Soft Indexes. In: Proceedings of the 23rd International
Conference on Data Engineering Workshops[con07], S. 450–458

[Mac67] MacQueen, James: Some Methods for Classification and Analysis of Multivariate
Observations. In: Cam, Lucien M. L. (Hrsg.) ; Neyman, Jerzey (Hrsg.): Proceed-
ings of the 5th Berkeley Symposium Mathematical Statistics and Probability Bd. 1.
Berkley/Los Angeles, CA, USA : University of Claifornia Press, 1967, S. 281–297

[MEW06] Martin, Patrick ; Elnaffar, Said ; Wasserman, Ted: Workload Models for Au-
tonomic Database Management Systems. In: Dini, Petre (Hrsg.) ; Ayed, Dhouha
(Hrsg.) ; Dini, Cosmin (Hrsg.) ; Berbers, Yolande (Hrsg.): Proceedings of the

http://linux.dell.com/dvdstore/
http://linux.dell.com/dvdstore/

230 Bibliography

International Conference on Autonomic and Autonomous Systems. Los Alamitos,
CA, USA : IEEE Computer Society Press, 2006. – ISBN 0769526535, S. 10

[MLR03] Markl, Volker ; Lohman, Guy M. ; Raman, Vijayshankar: LEO: An autonomic
query optimizer for DB2. In: IBM Systems Journal 42 (2003), Nr. 1, S. 98–106

[MM00] Maloof, Marcus A. ; Michalski, Ryszard S.: Selecting Examples for Partial
Memory Learning. In: Maschine Learning 41 (2000), Nr. 1, S. 27–52

[MRHA08] Mateen, Abdul ; Raza, Basit ; Hussain, Tauqeer ; Awais, Mian M.: Autonomic
Computing in SQL Server. In: Lee, Roger Y. (Hrsg.): Proceedings of the 7th

IEEE/ACIS International Conference on Computer and Information Science. Los
Alamitos, CA, USA : IEEE Computer Society Press, 2008. – ISBN 9780769531311,
S. 113–118

[MRHA09] Mateen, Abdul ; Raza, Basit ; Hussain, Tauqeer ; Awais, Mian M.: Auto-
nomicity in Universal Database DB2. In: Miao, Huaikou (Hrsg.) ; Hu, Gongzhu
(Hrsg.): Proceedings of the 8th IEEE/ACIS International Conference on Computer
and Information Science. Los Alamitos, CA, USA : IEEE Computer Society Press,
2009. – ISBN 9780769536415, S. 445–450

[MW47] Mann, Henry B. ; Whitney, Donald R.: Individual Comparisons by Ranking
Methods. In: The Annals of Mathematical Statistics 18 (1947), Nr. 1, S. 50–60

[NMP+06] Niu, Baoning ; Martin, Patrick ; Powley, Wendy ; Horman, Randy ; Bird,
Paul: Workload adaptation in autonomic DBMSs. In: Erdogmus, Hakan (Hrsg.)
; Stroulia, Eleni (Hrsg.) ; Stewart, Darlene A. (Hrsg.): Proceedings of the
2006 conference of the Center for Advanced Studies on Collaborative Research.
Indianapolis, IN, USA : IBM Press, 2006, S. 13

[NÖK+04] Nascimento, Mario A. (Hrsg.) ; Özsu, M. T. (Hrsg.) ; Kossmann, Donald
(Hrsg.) ; Miller, Renée J. (Hrsg.) ; Blakeley, José A. (Hrsg.) ; Schiefer,
K. B. (Hrsg.): Proceedings of the 30th International Conference on Very Large
Data Bases. San Francisco, CA, USA : Morgan Kaufmann Publishers Inc., 2004 .
– ISBN 0120884690

[NTA05] Narayanan, Dushyanth ; Thereska, Eno ; Ailamaki, Anastassia: Continu-
ous Resource Monitoring for Self-Predicting DBMS. In: Proceedings of the 13th

International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems. Los Alamitos, CA, USA : IEEE Computer Society
Press, 2005. – ISBN 0769524583, S. 239–248

Bibliography 231

[NTA06] Narayanan, Dushyanth ; Thereska, Eno ; Ailamaki, Anastassia: Challenges
in building a DBMS Resource Advisor. In: IEEE Data Engineering Bulletin 29
(2006), Nr. 3, S. 40–46

[NY07] Nishida, Kyosuke ; Yamauchi, Koichiro: Detecting Concept Drift Using Sta-
tistical Testing. In: Corruble, Vincent (Hrsg.) ; Takeda, Masayuki (Hrsg.)
; Suzuki, Einoshin (Hrsg.): Proceedings of the 10th International Conference on
Discovery Science Bd. 4755. Heidelberg/Berlin, Germany : Springer-Verlag, 2007
(Lecture Notes in Artificial Intelligence). – ISBN 9783540754879, S. 264–269

[Obj08] Object Management Group (Hrsg.): Systems Modeling Language. 1.1. Need-
ham, MA, USA: Object Management Group, 2008. – Specification

[OMM+02] O’Callaghan, Liadan ; Meyerson, Adam ; Motwani, Rajeev ; Mishra, Nina
; Guha, Sudipto: Streaming-Data Algorithms for High-Quality Clustering. In:
Agrawal, Rakesh (Hrsg.) ; Dittrich, Klaus (Hrsg.) ; Ngu, Anne H. (Hrsg.):
Proceedings of the 18th International Conference on Data Engineering. Los Alami-
tos, CA, USA : IEEE Computer Society Press, 2002. – ISBN 0769515312, S.
685–694

[OO08] Ordonez, Carlos ; Omiecinski, Edward: FREM: Fast and Robust EM Clustering
for Large Data Sets. In: Nicholas, Charles (Hrsg.) ; Grossman, David (Hrsg.)
; Kalpakis, Konstantinos (Hrsg.) ; Qureshi, Sajda (Hrsg.) ; Dissel, Han van
(Hrsg.) ; Seligman, Len (Hrsg.): Proceedings of the 11th International Conference
on Information and Knowledge Management. New York, NY, USA : ACM Press,
2008. – ISBN 1581134924, S. 590–599

[PN93] Polana, Ramprasad ; Nelson, Randal: Detecting Activities. In: Proceedings of
the International Conference on Computer Vision and Pattern Recognition. Los
Alamitos, CA, USA : IEEE Computer Society Press, 1993. – ISBN 081863880X,
S. 2–7

[Pog09] Poggensee, Sven: Systemmodelle zur Bestimmung optimaler Konfigurationen für
Autonome DBS mittels evolutionärer Algorithmen, Universität Hamburg, Diplo-
marbeit, 2009

[PRD+04] Parekh, Sujay ; Rose, Kevin ; Diao, Yixin ; Chang, Victor ; Hellerstein,
Joseph ; Lightstone, Sam ; Huras, Matthew: Throttling Utilities in the IBM
DB2 Universal Database Server. In: Proceedings of the 2004 American Control
Conference Bd. 3. Los Alamitos, CA, USA : IEEE Computer Society Press, 2004.
– ISBN 0780383354, S. 1986–1991

[Pro10] Project, The Apache J.: Apache JMeter. http://jakarta.apache.org/
jmeter/. Version: 2010. – accessed 2010-08-10

http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/

232 Bibliography

[Rab09] Rabinovitch, Gennadi: Policy-Based Coordination of Best-Practice Oriented
Autonomic Database Tuning. In: Dini, Petre (Hrsg.) ; Gentzsch, Wolfgang
(Hrsg.) ; Geraci, Paul (Hrsg.) ; Lorenz, Pascal (Hrsg.) ; Singh, Krishna (Hrsg.):
Proceedings of the Computation World: Future Computing, Service Computation,
Cognitive, Adaptive, Content, Patterns. Los Alamitos, CA, USA : IEEE Computer
Society Press, 2009. – ISBN 9781424451661, S. 55 –60

[Rei09] Reinhardt, Stephan: Entwicklung und Untersuchung verschiedener Methoden
zur Erkennung von Laständerungen in Datenbanksystemen, Universität Hamburg,
Diplomarbeit, 2009

[RZML02] Rao, Jun ; Zhang, Chun ; Megiddo, Nimrod ; Lohman, Guy: Automating
physical database design in a parallel database. In: [FMA02], S. 558–569

[SAMP07] Schnaitter, Karl ; Abiteboul, Serge ; Milo, Tova ; Polyzotis, Neoklis:
On-Line Index Selection for Shifting Workloads. In: Proceedings of the 23rd Inter-
national Conference on Data Engineering Workshops[con07], S. 459–468

[Sch09] Schmidt, Karsten: Goal-Driven Autonomous Database Tuning Supported by a
System Model. In: Proceedings of the SIGMOD Workshop on Innovative Database
Research, 2009, S. 708–711

[SD08] Sivanandam, S. ; Deepa, S.: Introduction to Genetic Algorithms. 1. New York,
NY, USA : Springer US, 2008. – ISBN 9783540731894

[SG07] Sebastião, Raquel ; Gama, João: Change Detection in Learning Histograms
from Data Streams. In: Neves, José (Hrsg.) ; Santos, Manuel F. (Hrsg.) ;
Machado, José (Hrsg.): Workshop Proceedings of the 13th Portuguese Conference
on Aritficial Intelligence Bd. 4874. Heidelberg/Berlin, Germany : Springer-Verlag,
2007 (Lecture Notes in Computer Science). – ISBN 9783540770008, S. 112–123

[SGAL+06] Storm, Adam J. ; Garcia-Arellano, Christian ; Lightstone, Sam S. ; Diao,
Yixin ; Surendra, M.: Adaptive Self-Tuning Memory in DB2. In: [DWL+06], S.
1081–1092

[SGS03] Sattler, Kai-Uwe ; Geist, Ingolf ; Schallehn, Eike: QUIET: Continuous
Query-driven Index Tuning. In: [FLA+03], S. 1129–1132

[SLMK01] Stillger, Michael ; Lohman, Guy M. ; Markl, Volker ; Kandil, Mokhtar:
LEO - DB2’s Learning Optimizer. In: Apers, Peter M. G. (Hrsg.) ; Atzeni,
Paolo (Hrsg.) ; Ceri, Stefano (Hrsg.) ; Paraboschi, Stefano (Hrsg.) ; Ramamo-
hanarao, Kotagiri (Hrsg.) ; Snodgrass, Richard T. (Hrsg.): Proceedings of 27th

International Conference on Very Large Data Bases. San Francisco, CA, USA :
Morgan Kaufmann Publishers Inc., 2001. – ISBN 1558608044, S. 19–28

Bibliography 233

[SS00] Shumway, Robert H. ; Stoffer, David S.: Time Series Analysis and Its Appli-
cations. 1. New York, NY, USA : Springer-Verlag, 2000. – ISBN 0378989501

[SSG04] Sattler, Kai-Uwe ; Schallehn, Eike ; Geist, Ingolf: Autonomous Query-driven
Index Tuning. In: Proceedings of the 8th International Database Engineering and
Applications Symposium. Los Alamitos, CA, USA : IEEE Computer Society Press,
2004. – ISBN 0769521681, S. 439–448

[TBA10] Tozer, Sean ; Brecht, Tim ; Aboulnaga, Ashraf: Q-Cop: Avoiding Bad Query
Mixes to Minimize Client Timeouts under Heavy Loads. In: Li, Feifei (Hrsg.) ;
Moro, Mirella M. (Hrsg.) ; Ghandeharizadeh, Shahram (Hrsg.) ; Haritsa,
Jayant R. (Hrsg.) ; Weikum, Gerhard (Hrsg.) ; Carey, Michael J. (Hrsg.) ;
Casati, Fabio (Hrsg.) ; Chang, Edward Y. (Hrsg.) ; Manolescu, Ioana (Hrsg.)
; Mehrotra, Sharad (Hrsg.) ; Dayal, Umeshwar (Hrsg.) ; Tsotras, Vassilis J.
(Hrsg.): Proceedings of the 26th International Conference on Data Engineering. Los
Alamitos, CA, USA : IEEE Computer Society Press, 2010. – ISBN 9781424454440,
S. 397–408

[THTT08] Tran, Dinh N. ; Huynh, Phung C. ; Tay, Yong C. ; Tung, Anthony K. H.: A
new approach to dynamic self-tuning of database buffers. In: ACM Transactions
on Storage 4 (2008), Nr. 1, S. 1–25. – ISSN 1553–3077

[Tra02] Transaction Processing Performance Council (Hrsg.): TPC BENCH-
MARK W (Web Commerce) Specification. 1.8. San Jose, CA, USA: Transaction
Processing Performance Council, 2002. – Specification

[Tra07] Transaction Processing Performance Council (Hrsg.): TPC BENCH-
MARK C Standard Specification. 5.9. San Jose, CA, USA: Transaction Processing
Performance Council, 2007. – Specification

[Tra08] Transaction Processing Performance Council (Hrsg.): TPC BENCH-
MARK H (Decision Support) Standard Specification. 2.8.0. San Jose, CA, USA:
Transaction Processing Performance Council, 2008. – Specification

[Tri04] Triola, Mario F.: Elementary Statistics. 1. USA : Pearson Education, 2004. –
ISBN 0321181964

[Uni09] University of Wisconsin: TPC-W Java Implementation. http://tpcw.
deadpixel.de/. Version: 2009. – accessed 2009-08-01

[VZZ+00] Valentin, Gary ; Zuliani, Michael ; Zilio, Daniel C. ; Lohman, Guy M. ;
Skelley, Alan: DB2 Advisor: An Optimizer Smart Enough to Recommend
Its Own Indexes. In: Proceedings of the 16th International Conference on Data

http://tpcw.deadpixel.de/
http://tpcw.deadpixel.de/

234 Bibliography

Engineering. Los Alamitos, CA, USA : IEEE Computer Society Press, 2000, S.
101–110

[WCSO08] Wada, Hiroshi ; Champrasert, Paskorn ; Suzuki, Junichi ; Oba, Katsuya:
Multiobjective Optimization of SLA-aware Service Composition. In: Proceedings
of the 2008 IEEE Congress on Services - Part I. Los Alamitos, CA, USA : IEEE
Computer Society Press, 2008. – ISBN 0769532868, S. 368–375

[Wei08] Weilkiens, Tim: Systems Engineering with SysML/UML. 1. San Francisco, CA,
USA : Morgan Kaufmann Publishers Inc., 2008. – ISBN 0123742749

[Wei09] Weiß, Christian H.: Categorical Time Series Analysis and Applications in Sta-
tistical Quality Control. 1. Berlin, Germany : dissertation.de – Verlag im Internet
GmbH, 2009. – ISBN 9783866244429

[WHYZnt] Wu, Yongwei ; Hwang, Kai ; Yuan, Yulai ; Zheng, Weiming: Adaptive Work-
load Prediction of Grid Performance in Confidence Windows. In: IEEE Transac-
tions on Parallel and Distributed Systems (preprint). – ISSN 1045–9219

[Wil45] Wilcoxon, Frank: Individual Comparisons by Ranking Methods. In: Biometrics
Bulletin 1 (1945), Nr. 6, S. 80–83

[WMHZ02] Weikum, Gerhard ; Mönkeberg, Axel ; Hasse, Christof ; Zabback, Peter: Self-
tuning Database Technology and Information Services: from Wishful Thinking to
Viable Engineering. In: [BLR02], S. 20–31

[WW40] Wald, Abraham ; Wolfowitz, Jacob: On a Test Whether Two Samples are
from the Same Population. In: The Annals of Mathematical Statistics 11 (1940),
Nr. 2, S. 147–162

[YAH05] Yao, Qingsong ; An, Aijun ; Huang, Xiangji: Finding and Analyzing Database
User Sessions. In: Zhou, Lizhu (Hrsg.) ; Ooi, Beng C. (Hrsg.) ; Meng, Xiaofeng
(Hrsg.): Proceedings of the 10th International Conference on Database Systems for
Advanced Applications Bd. 3453. Heidelberg/Berlin, Germany : Springer-Verlag,
2005 (Lecture Notes in Computer Science). – ISBN 3540253343, S. 851–862

[YCHL92] Yu, P.S. ; Chen, M.-S. ; Heiss, H.-U. ; Lee, S.: On Workload Characteriza-
tion of Relational Database Environments. In: IEEE Transactions on Software
Engineering 18 (1992), Nr. 4, S. 347–355. – ISSN 0098–5589

[YWZ06] Yang, Ying ; Wu, Xindong ; Zhu, Xingquan: Mining in Anticipation for Concept
Change: Proactive-Reactive Prediction in Data Streams. In: Data Mining and
Knowledge Discovery 13 (2006), Nr. 3, S. 261–289

Bibliography 235

[ZRL+04] Zilio, Daniel C. ; Rao, Jun ; Lightstone, Sam ; Lohman, Guy M. ; Storm,
Adam ; Garcia-Arellano, Christian ; Fadden, Scott: DB2 Design Advisor:
Integrated Automatic Physical Database Design. In: [NÖK+04], S. 1087–1097

[ZZL+04] Zilio, Daniel C. ; Zuzarte, Calisto ; Lightstone, Sam ; Ma, Wenbin ; Lohman,
Guy M. ; Cochrane, Roberta J. ; Pirahesh, Hamid ; Colby, Latha ; Gryz,
Jarek ; Alton, Eric ; Liang, Dongming ; Valentin, Gary: Recommending
Materialized Views and Indexes with IBM DB2 Design Advisor. In: Proceedings
of the 1st International Conference on Autonomic Computing[con04], S. 180–188

	Abstract
	Kurzfassung
	Danksagung
	Introduction
	DBS Self-Management
	State of the Art
	Contributions
	Structure of Work

	DBS Self-Management
	Autonomic Computing
	DBS Off-line Self-Management Tools
	IBM D2 Design Advisor
	Microsoft SQL Server Database Tuning Advisor
	Oracle SQL Tuning Advisors

	DBS On-line Self-Management
	On-line Memory Management
	On-line Index Selection
	On-line Statistics Collection

	Open Challenges in Current Approaches
	Self-Optimization
	Goal-Independency
	Interdependency
	Overhead
	Workload-pattern Unawareness
	Overreaction

	Goal-Driven System-Wide Self-Management
	Goal-Driven Self-management
	Workload Monitoring and Analysis
	DBS System Models
	Self-Management Logic
	Conclusions

	Workload Monitoring and Analysis
	Workload Analysis Processing Model
	Processing Stages
	Solution Overview

	Workload Monitoring
	Feature Selection and Classification
	Classification Requirements
	Design
	Distance Function
	Feature Types
	Distance Metric

	Classification
	Classification Rules
	Classification Management

	Workload Shift Detection
	Workload Shift Detection Requirements
	Design
	Frequency Modelling
	Behaviour Modelling
	Concept Modelling

	n-gram Workload Models
	Workload Modelling
	Workload Model Assessment
	Workload Shift Detection

	Two-Window Approaches
	Two-Window Workload Shift Detection
	Similarity Metrics

	Workload Shift Prediction
	Workload Shift Prediction Requirements
	Identification of Recurring Workloads
	Periodicity Detection
	Discrete Fourier Transform
	Model Interval Analysis

	Adaptation of Periodic Workload Patterns

	Evaluation
	Workload Generator
	Workload Shift Detection Evaluation
	Implementation Aspects
	Functional Evaluation
	Overhead Tests

	Workload Classification Evaluation
	Functional Evaluation
	Overhead Tests

	Workload Shift Prediction Evaluation
	Functional Evaluation
	Overhead Tests

	Summary

	Related Work
	Workload Models and Workload Shift Detection
	Workload Classification
	Workload Periodicity Anaylsis

	Conclusions

	Quantitative System Models for DBS
	Running Example
	System Model Requirements
	System Modelling
	DB2 System Model
	Structural Description
	Connection Manager
	Relational Data Services
	Data Management Services
	Operating System Services

	Behavioural Description
	Overall Response Time Model
	Buffer Management
	Sorting
	Connection Management
	Logging
	Optimizer
	Recompilation

	Experimental Evaluation
	Evaluation Framework
	Bufferpool Evaluation Results
	Sorting Evaluation Results
	Connection Management Evaluation Results
	Logging Evaluation Results
	Optimizer Evaluation Results
	Recompilation Evaluation Results
	Overall Response Time Evaluation Results

	Related Work
	Conclusions

	Goal-Driven Reconfiguration Analysis
	Reconfiguration Analysis Requirements
	Design
	System Model Analysis
	Solution Selection
	Evaluation
	Related Work
	Conclusions

	Conclusions
	Summary of Contributions
	Outlook

	Bibliography

