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Chapter 1

Introduction

1.1 Basic notions

The syntax of programming languages is usually expressed using context free
grammars.

The known membership problem for a context free language (given by a
context free grammar) includes a recognition side (syntactic analysis). The
parser yields not only a yes or no answer, but also a parse tree, which describes
the whole history of the (possible) acceptance.

The theory of recognition and parsing for context free grammars dates back
to the sixties. Existing literature can be grouped into at least two areas: theo-
retical complexity of recognition and parsing and parsing of programming lan-

guages.

The main concern of the �rst area is the space and time complexity of
recognition and parsing. The underlying machine model is an abstract device
such as a pushdown automaton or a Turing machine ([AhU72, ASU86, Har78,
HoU79, Sal73, WaG84]). The class of context free grammars under consideration
may be considerably large (deterministic, unambiguous, or even general context
free grammars) or particularly small (bracket or input-driven grammars).

The parsers are used as parts of compilers. Therefore, they must be eÆcient.
Most parsing algorithms are of linear time and space complexity. This however
requires a severe restriction on the class of possible input context free grammars.
This has led to a wide variety of grammar subclasses, such as LL(k), LR(k),
LC(k), precedence grammars, etc. ([AhU72]). Generally, a parser is built for
one speci�c context free (class of) grammar(s), rather than for all possible ones.
Thus, a context free grammar may also be seen as a speci�cation of a parser and
parsers can be often automatically derived from given context free grammars
by means of a parser generator.

There exists a generally advocated and well understood theory for sequential
parsing of programming languages. In sequential parsing, eÆciency generally
implies linear time complexity. Parallel algorithms - even they may not decrease
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2 CHAPTER 1. INTRODUCTION

the eÆciency of the given algorithms - are useful for a clear understanding of the
underlying problem. Anyway, in order to have better results, our bidirectional
approach is a good and necessary step.

1.2 The structure of the thesis

This thesis deals with parallel algorithms for parsing and attribute evaluation.
We describe some subclasses of context free grammars for which a parallel ap-
proach useful for solving the membership problem is de�ned. More precisely,
we have combined the classical type of parser attached to a grammar G with
a \mirror" one. We have called what we get a bidirectional parser because it
analyses the input word from both sides using two processors.

The �rst section of Chapter 2 presents basic notions about context free
grammars (de�nitions, notations, properties, important subclasses) taken from
[HoU79] and [Sal73].. The next section does the same for attribute grammars
([Alb91a, And97]). The transitive (and re
exive) closure of a graph has also
been presented in this chapter.The last section is an introduction to models of
parallel (SISD, MISD, SIMD, MIMD) computers and to the analysis of parallel
algorithms ([Akl97]).

Chapter 3, called Linear-time bidirectional parsing for a subclass of lin-

ear languages, describes new subclasses of linear grammars, denoted by
LLin(m;n); m; n 2 N ([AnK98, AnK99a]). These are similar to the classi-
cal LL(k), k 2 N ([AhU72, LeS68]) grammars. Intuitively, looking ahead to the
next m terminal symbols and looking back to the previous n terminal symbols
suÆces to uniquely determine the production which has to be applied. The
membership problem for LLin(m;n) grammars can be solved using a linear
time complexity algorithm.

Chapter 4 (Left and right bidirectional parsing for context free grammars)
presents left and right bidirectional parser for general (and some subclasses
of) context free languages ([AnK99b]). Deterministic subclasses of context free
grammars (such as RR(k), RL(k), SIP grammars) are used for obtaining ten
combinations of new subclasses. The membership problem for all these types
of grammars can be solved with a parallel algorithm in linear time using two
processors.

In Chapter 5 (Up-to-up bidirectional parsing for context free grammars),
we introduce the up-to-up bidirectional parser ([AGK99]). It combines
the deterministic subclasses (LR(k), RL(k)) with the up-to-up bidirectional
strategy. The membership problem can now be solved in linear time complexity
with a parallel two processors algorithm.

Chapter 6, called Bidirectional attribute evaluation, describes a parallel two
processors algorithm for evaluating the attribute instances of an attributed
derivation tree. We have called this strategy the bidirectional attribute

evaluation ([AKM99]).

Final conclusions (Chapter 7) and the Bibliography end this thesis.
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Chapter 2

Preliminaries

This chapter presents basic notions (de�nitions, notations, properties, impor-
tant subclasses) about context free grammars, attribute grammars, closure of a
graph, models of parallel computers and analysis of parallel algorithms.

Let us �x some notations to express lower and upper bounds of the number of
steps required for solving a problem in the worst case. Let f and g be functions
from the positive integers to the positive reals:

(i) the function g(n) is said to be of order at least f(n), denoted 
(f(n));
if there are positive constants c and n0 such that g(n) � c � f(n) for all
n � n0;

(ii) the function g(n) is said to be of order at most f(n), denoted O(f(n));
if there are positive constants c and n0 such that g(n) � c � f(n) for all
n � n0.

2.1 Context free grammars

2.1.1 De�nitions and notations

The term grammar was �rstly used by the linguist and philosopher Noam
Chomsky for de�ning the generating systems ([Cho56, Cho59]). Context free
grammars are one of the basic notions in compiling theory.

De�nition 2.1.1 An alphabet is a nonempty, �nite set (of symbols). A
word over an alphabet V is an application p : f1; 2; :::; ng ! V , n = jpj
(n 2 N) being the length of the word p:

Notation 2.1.1 We denote by V n = fp j p : f1; 2; :::; ng ! V g the set of
all words over V of length n. The empty word (of length 0) is denoted by �:
Furthermore, we denote V � =

S
n�0

V n and V + =
S
n�1

V n.

5



6 CHAPTER 2. PRELIMINARIES

De�nition 2.1.2 G = (V ; E; s; d) is an oriented graph if V is a nonempty
set of vertices, E is a nonempty set of edges and s : E ! V, d : E ! V are
the source and the destination functions. If s(e) = v and d(e) = v0; then the

edge e will be denoted e : v ! v0 or v
e
! v0, or simply (v; v0) if the name is not

important (i.e. there exists - at least - one edge from v to v0).

For any v 2 V , let E(v) = fe j s(e) = vg and S(v) = fv0 j 9 e 2 E such that

v
e
! v0g.

De�nition 2.1.3 For an oriented graph G = (V ; E; s; d), if V and E are �nite,
then G is a �nite oriented graph. If for any v 2 V ; E(v) is a �nite set, then
G is called a locally (oriented) �nite graph (or, simply, simply oriented
graph).

For any locally oriented �nite graph G = (V ; E; s; d) the set of all arcs having
source v, E =

S
v2V

E(v), can be denoted in the following way:

E(v) = f< v; 1 >;< v; 2 >; :::; < v; kv >g

Consequently, the set of all sons of v, i.e. S(v) = fv1; v2; :::; vkvg, can be viewed
as an ordered set. From now on we shall work only with �nite ordered oriented
graphs. The local ordering on the sons of a given vertex induces a total left-to-
right order on leaves.

A path of length n in G from v to v0 is a word p 2 E�, p = e1e2:::en, n � 1;
where:

v = v0
e1! v1

e2! v2:::vn�1
en! vn = v0

Note. We shall suppose that for any node v there exists a path of length
0 (from v to v) denoted by �: We suppose the reader familiar with other basic
notions concerning connectivity, preorder traversal, depth �rst search, breadth
search corresponding to trees and graphs ([CLR91]).

Example 2.1.1 Let us consider the following ordered oriented graph (tree)

T = (f1; 2; :::; 11g; f< 1; 1 >; < 1; 2 >; < 1; 3 >; < 3; 1 >; < 3; 2 >; < 4; 1 >;
< 4; 2 >; < 4; 3 >; < 5; 1 >; < 5; 2 >g; s; d); where

s(< 1; 1 >) = 1 s(< 1; 2 >) = 1 s(< 1; 3 >) = 1 s(< 3; 1 >) = 3
s(< 3; 2 >) = 3 s(< 4; 1 >) = 4 s(< 4; 2 >) = 4 s(< 4; 3 >) = 4
s(< 5; 1 >) = 5 s(< 5; 2 >) = 5 d(< 1; 1 >) = 2 d(< 1; 2 >) = 3
d(< 1; 3 >) = 4 d(< 3; 1 >) = 5 d(< 3; 2 >) = 6 d(< 4; 1 >) = 7
d(< 4; 2 >) = 8 d(< 4; 3 >) = 9 d(< 5; 1 >) = 10 d(< 5; 2 >) = 11

T may have the following graphical representation
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1

2

5 6

43

7 8 9

10 11

Figure 2.1.

The preorder (depth �rst) traversal is given by: 1,2,3,5,10,11,6,4,7,8,9.

Fundamental (needed) notions of formal languages are now presented.

De�nition 2.1.4 A grammar is a 4-tuple G = (VN ; VT ; Z; P ), where VN is
the alphabet of nonterminal symbols (variables), VT is the alphabet of terminal
symbols, V = VN [ VT is the alphabet of symbols (VN \ VT = ;), Z is the start
symbol, P � V � � VN � V � � V � is the set of productions (or generation rules).
The production (�; �) will be denoted by �! �:

De�nition 2.1.5 (Chomsky hierarchy)
A grammar G = (VN ; VT ; Z; P ) is called:

� phrase structure (type 0) if no restrictions on the productions of G are
imposed;

� context sensitive (type 1) if the productions are of the form ux v !
u r v, where u; v 2 V �; x 2 VN , r 2 V + or Z ! � and Z does not occur
in the right hand side of any production from P:

� context free (type 2) if P � VN � V �;

� linear if P � VN � (V �
T (VNV

�
T [ f�g));

� right linear (type 3) if P � VN � V �
T (VN [ f�g): Analogously, G is

called left linear if P � VN � (VN [ f�g)V �
T : Both are (called) regular

grammars.

For context free grammars (and (right) linear, of course), a pair (A; �) 2 P is
called an A�production (denoted by A ! �). The productions A ! �1; A !
�2; :::; A ! �k will be denoted sometimes by A ! �1 j�2 j ::: j�k. A null
production is of the form A! �:

De�nition 2.1.6 Let G = (VN ; VT ; Z; P ) be an arbitrary grammar. We call
derivation in G the binary relation (denoted by =)

G
� V � � V �) in this way:
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(�; �) 2=)
G

(i.e. � =)
G

�) i� 9 �0 ! �0 2 P such that � = �1�
0�2 and

� = �1�
0�2: The transitive (and re
exive) closure of the relation =)

G
is denoted

by
+
=)
G

(
�

=)
G

respectively).

De�nition 2.1.7 The set of all sentential forms of the grammar G =
(VN ; VT ; Z; P ) is SF (G) = f� 2 V � j 9Z

�
=)
G

�g: The language generated

by G is L(G) = fw 2 V �
T j 9 Z

�
=)
G

wg (in fact, L(G) = SF (G) \ V �
T );

A language L is said to be of type j 2 f0; 1; 2; 3g if there exists a grammar
G of type j for which L = L(G) (L is generated by G).

For context free (and linear) grammars (De�nition 2.1.6) the word �0 is in
fact a nonterminal symbol. From now on, we shall consider only context free
(or linear) grammars.

De�nition 2.1.8 A derivation is called left most (denoted =)
lm

) if in every

sentential form of the derivation, the �rst occurrence of a nonterminal symbol
is replaced. Similarly, a derivation is called right most (denoted =)

rm
) if in

every sentential form of the derivation, the last occurrence of a nonterminal
symbol is replaced.

De�nition 2.1.9 A context-free grammar G is called ambiguous if there ex-
ists a word w 2 V �

T for which there exist at least two distinct (left most) deriva-

tions S
�

=)
G

w. G is an unambiguous grammar if it is not ambiguous.

De�nition 2.1.10 Let G = (VN ; VT ; Z; P ) be a context free grammar.

� X 2 V is an accessible symbol in G if there exists a derivation S
�

=)
G

�X�; �; � 2 V �;

� A 2 VN is a productive symbol if there exists a derivation A
�

=)
G

u;

with u 2 V �
T (otherwise, A is called useless);

� G is a reduced grammar if all symbols from V are accessible and all
nonterminal symbols are productive.

De�nition 2.1.11 Let G = (VN ; VT ; Z; P ) be a context free grammar. A 2 VN
is a left-recursive symbol (right-recursive, respectively) if there exists a

derivation A
+
=)
G

A�; � 2 V + (A
+
=)
G

� A; � 2 V +). G is called left (right)

recursive grammar if there exists a left (right) recursive symbol A 2 VN .

De�nition 2.1.12 If � = �1 �2 ::: �k is a word over V , �i 2 V; then e� =
�k ::: �2 �1 is called the reverse (mirror) of �. Let G = (VN ; VT ; S; P ) be a

context-free grammar. Then we denote by eG = (VN ; VT ; S; eP ), where eP = fA!e� j A! � 2 Pg; the reverse (mirror) grammar of G.
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Notations:

� nonterminal symbols: S (start symbol), A, B, ...

� terminal symbols: a, b, c, ...

� symbols (terminal or nonterminal): X , Y , ...

� terminal words: u, v, x, y, w, ...

� words (terminal or nonterminal): �, �, 
 ...

� productions: r = no(A ! �) means that the production A ! � is the
r�th one from the list of productions;

� derivations:
r

=)
G

means that the production named r was applied in G;

�
=)
G

refers to a sequence of productions � (syntactic analysis);
0

=)
G

means

that no production has been applied, i.e. �
0

=)
G

�;

� let � = �1 �2 ::: �k be a word over V . Then

{ (m)� =
n
�1 �2 ::: �m if m � k
� otherwise

{ �(n) =
n
�k�n+1 �k�n+2 ::: �k if n � k
� otherwise

� N denotes the set of natural numbers,N+ denotes the set of strict positive
natural numbers.

Example 2.1.2 Let us consider the linear grammar G = (fZg; fa; bg; Z; fZ !
a b j aZ bg). The language generated by G is L(G) = fan bn j n � 1g: This can
be immediately prove by showing (for instance, by induction on k) that

f� j � 2 fZ; a; bg�; 9Z
k;�
=)
G

�g = fak Z bk; ak bkg

2.1.2 Some properties of context free and linear languages

De�nition 2.1.13 A derivation tree T = (V ; E; s; d) in a context free gram-
mar G = (VN ; VT ; Z; P ) is a node labeled �nite ordered oriented tree. The labels
of the nodes are given by a function f : V ! VN [ VT [ f�g:

For any v 2 V, with S(v) = fv1; v2; :::; vkg, if f(v) = X; f(v1) = Y1,
f(v2) = Y2, ..., f(vk) = Yk, then G contains the production X ! Y1Y2:::Yk.

If f(v) = X (v being the root) and the word w = v1v2:::vn is formed by the
(ordered) labels of the leaves, we say that T describes the word w generated
from X. If X = Z and w 2 V �

T , then the corresponding derivation tree T
describes a word of L(G).
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Theorem 2.1.1 (Locality property for context free languages, [HoU79], [Sal73])

Let G = (VN ; VT ; Z; P ) be a context free grammar and let Y1:::Yn
�

=)
G

�

be an arbitrary derivation. Then there exists �1 2 V �, ..., �n 2 V � so that
� = �1:::�n and Yi

�
=)
G

�i; 8 i = 1; n:

Theorem 2.1.2 (Pumping Lemma for Linear Languages, [Sal73])
For every linear language L � V �

T , there exists a natural number N , depend-
ing only on L, such that if z 2 L with jzj > N then there exist u; v; w; x; y 2 V �

T

for which the following conditions are ful�lled:

(a) z = u v w x y;

(b) jv xj > 0;

(c) ju v x yj � N ;

(d) 8 i � 0 : u vi w xi y 2 L:

In the following, we give the de�nitions of some most important subclasses
of context free languages, for which the membership problem can be determin-
istically solved in linear time on the length of the input word.

The class of TD(k) grammars has been introduced in 1968 by P. M. Lewis
and R. E. Stearns ([LeS68]). Later, this was recalled LL(k). The name TD(k)
comes from Top-Down analysis of the input word using k lookahead symbols
and the name LL(k) comes from Left to right scanning of the input constructing
a Leftmost derivation, using k lookahead symbols.

De�nition 2.1.14 We say that G = (VN ; VT ; S; P ) is a LL(k) grammar (where
k � 0) if for any two distinct derivations of the form:

S
�

=)
lm

uA� =)
lm

u�1 �
�

=)
lm

u v1

S
�

=)
lm

uA� =)
lm

u�2 �
�

=)
lm

u v2

(k)v1 =
(k) v2

then �1 = �2.

In 1965, D. E. Knuth introduced the class of LR(k) grammars ([Knu65]).
The name LR(k) comes from: Left to right scanning of the input constructing
a Rightmost derivation, using k lookahead symbols.

De�nition 2.1.15 We say that G = (VN ; VT ; S; P ) is a LR(k) grammar (where
k � 0) if for any two distinct derivations of the form:

S
�

=)
rm

�Au =)
rm

�� u

S
�

=)
rm

�0 A0 u0 =)
rm

�0 �0 u0 = �� v

(k)u =(k) v

then � = �0, A = A0 and � = �0.
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The precedence grammars were invented in 1963 by R. W. Floyd ([Flo63]).
Next, N. Wirth described in 1965 an algorithm for \�nding" the precedence
functions ([Wir65]). Later, in 1966, N. Wirth and H. Weber have provided
(using precedence grammars) a formal de�nition for the language Euler - a
generalization of ALGOL ([WiW66]). In 1968, N. Wirth gave a grammar for
PL360 ([Wir68]).

De�nition 2.1.16 Let G = (VN ; VT ; S; P ) be a context free grammar without
null productions. We consider the following binary relations < �;

:
= � V � V

and �> � V � VT :

� X< �Y if there exists a production A! �X B � 2 P and B
+
=) Y 
;

� X
:
=Y if there exists a production A! �X Y � 2 P ;

� X �>a if there exists a production A ! �B Y � 2 P , B
+
=) 
 X and

Y
�

=) a Æ.

De�nition 2.1.17 A context free grammar G without null productions in which
the binary relations < �;

:
=, �> are disjoint, is called a precedence grammar.

G is called invertible grammar if the statement holds:

8 A! � 2 P; 8A! �0 2 P =) A = A0

G is called a simple precedence grammar (SP grammar) if it is a precedence
and invertible grammar.

The above de�ned subclasses of grammars may be combined using a mir-
roring process such that bidirectional parsers may be derived for recognizing an
input word (Chapters 4 and 5).

2.2 Attribute grammars

We present a uni�ed theoretical approach for attribute grammars. The cir-
cularity problem for these grammars is treated in detail ([Knu68], [Alb91a],
[And97],[ASU86]).

Attribute grammars have proved to be a useful formalism for specifying the
context sensitive syntax and the semantics of programming languages, as well
as for implementing editors, compilers and compiler-writing systems.

Attribute grammars are extensions of context free grammars in the sense
that the information associated with programming languages constructs may be
attached to grammar symbols representing these constructs, named attributes.
Each attribute has a (possibly in�nite) set of possible values. Attribute values
are de�ned by attribute evaluation rules associated with the productions of the
context free grammar. These rules specify how to compute the values of certain
attribute occurrences as a function of other attribute occurrences.
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The attributes associated with a grammar symbol are divided into two dis-
joint classes, the synthesized attributes and the inherited attributes. The at-
tribute evaluation rules associated with a grammar production de�ne the syn-
thesized attributes attached to the grammar symbol on the left hand side and
the inherited attributes attached to the grammar symbols on the right hand
side of the production.

In a context free grammar, a tree structure to each sentence may be assigned.
One could think of the nodes (grammar symbols) in a parse tree as records with
�elds for holding information, whose names correspond to attributes. The values
of the synthesized attributes in a parse tree node and the inherited attributes
in its immediate descendants are de�ned by the attribute evaluation rules as-
sociated with the production applied for that node. The value of a synthesized
attribute of a parent is computed from the values of the attributes of its children
and (possibly) other attributes of the parent itself. The values of an inherited
attribute of a child are computed from the values of the attributes of its parent
and its siblings and (possibly) attributes of the child itself.

Generally speaking, a synthesized attribute attached to a tree node con-
tains information concerning the subtree originating at that node. Inherited
attributes are convenient for expressing the dependence of a programming lan-
guage construct of the context in which it occurs.

Several (di�erent) de�nitions of attribute grammars are now used. In Section
2.2.1, we give only one of them which we think that it is the most appropriate
for describing in a formal way the link with programming languages.

2.2.1 De�nitions, notations, examples

De�nition 2.2.1 An attribute grammar ([Alb91a]) is a �ve-tuple

AG = (G;SD;AD;R;C);

de�ned as follows:

(1) G = (VN ; VT ; Z; P ) is a (the underlying) context free grammar (G is as-
sumed to be reduced).

(1.1) VN and VT denote the alphabets of nonterminal and, respectively,
terminal symbols, and form the vocabulary V = VN[VT ; VN\VT = ;;

(1.2) P is the �nite set of productions; a production p 2 P will be denoted
as p : Xp0 ! Xp1 ::: Xpnp ; where np � 0; Xp0 2 VN and Xpk 2 V for
1 � k � np;

(1.3) Z 2 VN is the start symbol, which does not occur on the right hand
side of any production.

(2) SD = (TY PE � SET; FUNC � SET ) is a semantic domain.

(2.1) TY PE � SET is a �nite set of sets;
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(2.2) FUNC � SET is a �nite set of total functions of type

type1 � :::� typen ! type0; where n � 0 and typei 2 TY PE � SET
(0 � i � n):

(3) AD = (A; I; S; TY PE) is a description of attributes.

(3.1) For each symbol X 2 V there exists a set A(X) of attributes which
can be partitioned into two disjoint subsets I(X) and S(X) of inher-
ited and synthesized attributes, respectively;

(3.2) The set of all attributes will be denoted by A, i.e. A =
S

X2V

A(X):

(3.3) Attributes associated with di�erent symbols are considered as di�er-
ent, i.e. A(X) \ A(Y ) = ; if X 6= Y: If necessary, an attribute a of
symbol X will be denoted by X:a;

(3.4) For a2 A; TY PE(a) 2 TY PE � SET is the set of possible values
of a.

(4) R(p) is a �nite set of attribute evaluation rules (semantic rules) associated
with the production p 2 P .

(4.1) Production p : Xp0 ! Xp1 ::: Xpnp is said to have the attribute
occurrence (a; p; k) if a 2 A(Xpk);

(4.2) The set of all attribute occurrences of production p will be denoted by
AO(p);

(4.3) The set AO(p) can be partitioned into two disjoint subsets of de�ned
occurrences and used occurrences denoted by DO(p) and UO(p);
respectively:

DO(p)=f(s; p; 0) j s 2 S(Xp0)g [ f(i; p; k) j i 2 I(Xpk) ^ 1 � k � npg

UO(p)=f(i; p; 0) j s 2 I(Xp0)g [ f(s; p; k) j i 2 S(Xpk) ^ 1 � k � npg

The attribute evaluation rules of R(p) specify how to compute the
values of the attribute occurrences in DO(p) as a function depending
on the values of certain other attribute occurrences in AO(p): The
evaluation rule de�ning the attribute occurrence (a; p; k) has the form

(a; p; k) := f((a1; p; k1); :::; (am; p; km))

(a; p; k) 2 DO(p); f : TY PE(a1)� ::: � TY PE(am)! TY PE(a);

f 2 FUNC � SET and (ai; p; ki) 2 AO(p) for 1 � k � m: We say
that (a; p; k) depends on (ai; p; ki), for 1 � i � m:

(5) C(p) is a �nite set of semantic conditions associated with the production
p: These conditions are predicates of the form

�((a1; p; k1); :::; (am; p; km))

� : TY PE(a1) � ::: � TY PE(am) ! ftrue; falseg; � 2 FUNC � SET;
and (ai; p; ki) 2 AO(p) for 1 � i � m:
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Semantic conditions allow the speci�cation of a subset of the language de-
�ned by the underlying context free grammar. A sentence that is generated by
G is a sentence of the language speci�ed by AG if the semantic conditions yield
true. Traditionally, the de�nitions of attribute grammars require that both the
start symbol and the terminal symbols to have no inherited attributes. We do
not assume this restriction.

We have been so far concerned with the syntax of attribute grammars. Let
us describe their semantics.

An unambiguous context free grammar assigns a single derivation tree to
each of its sentences. The nodes of a derivation tree are labeled with symbols
from V: For each interior node there exists a productionXp0 ! Xp1 ::: Xpnp ; such
that the node is labeled with Xp0 and its np sons are labeled with Xp1; :::; Xpnp ;
respectively. We say that p is the production (applied) at that node.

De�nition 2.2.2 A derivation tree is complete if it has only terminal symbols
(or the empty string) as labels of its leaves and the start symbol as the label of
its root.

Unless otherwise stated our derivation trees will be assumed to be complete.

De�nition 2.2.3 Given a derivation tree in an attribute grammar AG =
(G;SD;AD;R;C); instances of attributes are attached to the nodes in the fol-
lowing way: if node N is labeled with grammar symbol X; then for each attribute
\a" 2 A(X) an instance of \a" is attached to node N: We say that the deriva-
tion tree has the attribute instance N:a. Let N0 be a node, p a production at
N0 and N1; :::; Nnp the sons of N0 in the given order (De�nition 2.1.13). An
attribute evaluation instruction

Nk:a := f(Nk1 :a1; :::; Nkm :am)

is associated with attribute instance Nk:a if the attribute evaluation rule

(a; p; k) := f((a1; p; k1); :::; (am; p; km))

is associated with production p: We say that the attribute instance Nk:a depends
on the attribute instance Nki :ai for 1 � i � m: If all the values are known and
satisfy all attribute evaluation rules then we say that the attributed derivation
tree is consistent.

De�nition 2.2.4 A decorated (or attributed) derivation tree is a deriva-
tion tree in which all attribute instances have a value (which is not necessarily
consistent). A consistently decorated (attributed) derivation tree is a
derivation tree in which all attribute instances are de�ned according to their as-
sociated attribute evaluation instructions, i.e. the \execution" of any evaluation
instruction does not change the values of the attribute associated with a tree
node (as described in De�nition 2.2.3).
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In this way, in an attribute grammar a (consistently) decorated derivation
tree may be assigned to each of its sentences.

De�nition 2.2.5 For each derivation tree T a dependency graph D(T ) can
be de�ned by taking the attribute instances of T as its vertices. The directed arc
(Ni:a;Nj :b) is contained in the graph if and only if the attribute instance Nj :b
depends on the attribute instance Ni:a. A path in a dependency graph will be
called a dependency path. For n > 0; dp[N1:a1; N2:a2; :::; Nn:an] stands for
a path with arcs (N1:a1; N2:a2); (N2:a2; N3:a3); :::; (Nn�1:an�1; Nn:an): A path
dp[N1:a1; N2:a2; :::; Nn:an; N1:a1] will be called a circular dependency path.
An attribute grammar is circular if it has a derivation tree whose dependency
graph contains a circular dependency graph. An attribute grammar is called
non-circular (well de�ned) if it is not circular. The class of all well de�ned
grammars is denoted by WAG.

The task of an attribute evaluator is to compute the values of all attribute
instances attached to a derivation tree, by executing the attribute evaluation
instructions associated with these attribute instances. Generally, the order of
the evaluation is not important. The only restriction may be that an attribute
evaluation instruction cannot be executed before its arguments are available.
An attribute instance is available if its value is de�ned, otherwise it is unavail-
able. At the beginning, all attribute instances attached to a derivation tree are
unavailable, with the exception of the inherited attribute instances attached to
the root (containing information concerning the environment) and the synthe-
sized attribute instances attached to the leaves (determined by the parser). At
each step an attribute instance whose value can be computed is chosen. The
evaluation process continues until all attribute instances in the tree are de�ned
or until none of the remaining attribute instances can be evaluated.

For a traditional attribute evaluator (as described above) it is impossible to
evaluate attribute instances involved in a circular dependency path.

Example 2.2.1 Let AG1 = (G1; SD1; AD1; R1; C1) be the following attribute
grammar:

(1) G1 = (fZ;Ag; fa; bg; P1; Z1) the underlying context free grammar and P1
given below;

(2) SD1 = (fintegerg; FUNC � SET1), where FUNC � SET1 is described
below (it contains the identity function, constant function, add function,
etc.);

(3) AD1 = (A1; I1; S1; TY PE1); where

(3.1) A1 = fi; sg;

(3.2) I1(Z) = I1(A) = fig;

(3.3) S1(Z) = S1(A) = fsg;

(3.4) TY PE1(i) = TY PE1(s) = fintegerg;
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(4) the set R1 of attribute evaluation rules is described below;

(5) the set C1 is also presented below together with P1 and R1:

Because a production (e.g. second production of G1) might contain an occur-
rence of the same nonterminal symbol X in the attribute evaluation rule, X will
have an index (starting from 1 to the last occurrence). In the following, the sets
P1; R1 and C1 are presented.

Production 1:
Z ! A

Attribute evaluation rules:
Z:i := 1; Z:s := A:s A:i := Z:i

Production 2:
A! aA

Attribute evaluation rules:
A2:i := A1:i+ 1; A1:s := A2:s+ 1;

Production 3:
A! b

Attribute evaluation rule:
if A:i > 10 then A:s := 0 else A:s := 1

Let us consider the word w = aab. Figure 2.2 pictures the corresponding
derivation tree T and the dependency graph D(T ).

Z

a A

a A

b

T:

Z

a

a

D(T):

A

A

i s

i s

i s

b
Figure 2.2.

In the following example ([ASU86]) we construct an attribute grammar for
\keeping track" the moves of the robot (and providing the �nal position). Sup-
pose that a robot can be instructed to move one step east, north, west, or south
from its current position.

Example 2.2.2 Let AG2 = (G2; SD2; AD2; R2; C2) be the following attribute
grammar:

(1) G2 = (fseq; instrg; fbegin; east; north; west; southg; P2; seq), where the
productions P2 will be given below;
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(2) SD2 = (fintegerg; FUNC � SET2); where the set of total functions
FUNC � SET2 are presented below (the constant functions, sum etc.);

(3) AD2 = (fx; y; dx; dyg; ;; S2; TY PE2), where:

S2(seq) = fx; yg;

S2(instr) = fdx; dyg;

TY PE2(x) = TY PE2(y) = TY PE2(dx) = TY PE2(dy) = integer
(we may write TY PE2(dx) = TY PE2(dy) = f�1; 0; 1g);

(4) R2 is described below together with the productions P2;

(5) C2 = ;:

In the following, the sets P2 and R2 are presented.

Production 1: Production 2:
seq ! begin seq1 ! seq2 instr

Attribute evaluation rules: Attribute evaluation rules:
seq:x := 0; seq1:x := seq2:x+ instr:dx;
seq:y := 0 seq1:y := seq2:y + instr:dy

Production 3: Production 4:
instr ! east instr ! north

Attribute evaluation rules: Attribute evaluation rules:
instr:dx := 1; instr:dx := 0;
instr:dy := 0 instr:dy := 1

Production 5: Production 6:
instr ! west instr ! south

Attribute evaluation rules: Attribute evaluation rules:
instr:dx := �1; instr:dx := 0;
instr:dy := 0 instr:dy := �1

The abbreviations for the attributes, as the pair (x; y), mean that x and y
are the number of steps to the east and north, respectively, from the starting
position (if x is negative, then the robot is to the west of the starting position;
similarly, if y is negative, then the robot is to the south of the starting position).

In the following example ([And97]), we present a more natural attribute
grammar using both synthesized and inherited attributes which describe the
same language.

Example 2.2.3 Let AG3 = (G3; SD3; AD3; R3; C3) be the following attribute
grammar:

(1) G3 = (fZ; seqg; feast; north; west; southg; P3; Z), where the productions
P3 will be given below;
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(2) SD3 = (fintegerg; FUNC � SET3); where the set of total functions
FUNC � SET3 are presented below (the constant functions, sum etc.);

(3) AD3 = (fx; y; newx; newyg; I3; S3; TY PE3), where:

S3(Z) = fnewx; newyg;

S3(seq) = fnewx; newyg;

I3(seq) = fx; yg;

TY PE3(x) = TY PE3(y) = TY PE3(newx) = TY PE3(newy) =
integer;

(4) R3 is described below together with the productions P3;

(5) C3 = ;:

In the following, the sets P3 and R3 are presented.

Production 1: Production 2:
Z ! seq seq1 ! east seq2

Attribute evaluation rules: Attribute evaluation rules:
Z:newx := seq:newx; seq1:newx := seq2:newx;
Z:newy := seq:newy; seq1:newy := seq2:newy;
seq:x := 0; seq2:x := seq1:x+ 1;
seq:y := 0 seq2:y := seq1:y

Production 3: Production 4:
seq1 ! north seq2 seq1 ! west seq2

Attribute evaluation rules: Attribute evaluation rules:
seq1:newx := seq2:newx; seq1:newx := seq2:newx;
seq1:newy := seq2:newy; seq1:newy := seq2:newy;
seq2:x := seq1:x; seq2:x := seq1:x� 1;
seq2:y := seq1:y + 1 seq2:y := seq1:y

Production 5: Production 6:
seq1 ! south seq2 seq ! �

Attribute evaluation rules: Attribute evaluation rules:
seq1:newx := seq2:newx; seq:newx := seq:x;
seq1:newy := seq2:newy; seq:newy := seq:y
seq2:x := seq1:x;
seq2:y := seq1:y � 1

In [Knu68] an important subclass of attribute grammars (the so called purely
synthesized AG's (SAG)) has been de�ned. In the same paper, it was proved
that SAG's have the same recognizing power as Turing machines. We can con-
clude that the power of attribute grammars is the same as that of the Turing
machines.
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2.2.2 The circularity problem

For any derivation tree T , we can de�ne (De�nition 2.2.5) a dependency graph
D(T ) whose arcs specify the dependency relations. These relations express the
fact that certain attribute instances must be computed before others. Clearly,
the attribute evaluation rules are well de�ned if and only if no dependency graph
contains an oriented cycle.

De�nition 2.2.6 An attribute grammar is said to be noncircular (well de-
�ned) if for any derivation tree T the dependency graph D(T ) contains no
oriented cycle.

For any dependency graph D(T ) of a noncircular attribute grammar AG a
\topological sorting algorithm" can be applied to produce a linear list

(N1:a1; N2:a2; :::; Nn:an)

of its vertices. The sequence of vertices in the list is such that for any arc
(Ni:ai; Nj :aj) in D(T ) we have i < j: This implies that a vertex Nj :aj can
never precede a vertex Ni:ai in the list if Nj :aj depends on Ni:ai. I.e., if
the attribute instances are evaluated in the order of the occurrences of their
associated vertices in the list, then the required arguments of their evaluation
instructions have already been evaluated.

Up to now, we have considered the dependencies between attribute instances
in complete derivation trees. From now on we shall be also interested in depen-
dencies between attribute instances in subtrees of complete derivation trees. A
subtree of a complete derivation tree has (as usual) only terminal symbols as
labels of its leaves, but is allowed to have any symbol of V (not only the start
symbol Z) as the label of its root. We can de�ne a dependency graph D(T ) for
a subtree T in a similar way to the de�nition of a complete derivation tree.

De�nition 2.2.7 Let p : Xp0 ! Xp1:::Xpnp be an arbitrary production in G.
We associate a dependency graph DGp as follows:

� the vertices of DGp are the attribute occurrences of the production p (i.e.
the attribute occurrences of Xp0; Xp1; :::; Xpnp);

� for every pair of the attribute occurrences (a; p; j) and (b; p; k) of the pro-
duction p there exists a (directed) arc from (a; p; j) to (b; p; k) in DGp if
and only if (b; p; k) depends on (a; p; j).

If T has a terminal symbol as the label of its root, D(T ) may have vertices,
but no arcs. If the root of T is labeled with a nonterminal symbol, then T has
the form:

Xp0

. &
T1 . . . Tnp

Figure 2.3
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for some production p : Xp0 ! Xp1:::Xpnp applied to the root of T; where Tj is
a derivation tree with Xpj labeling its root, for 1 � j � np: D(T ) is obtained
from DGp; D(T1); :::; D(Tnp) by identifying the vertices for the attribute
occurrences of Xpj in DGp with the corresponding vertices for the attribute
instances attached to the root of Tj in D(Tj) (1 � j � np).

We now concentrate on the problem of �nding oriented cycles in dependency
graphs, i.e. to establish the (non)circularity of an attribute grammar (De�ni-
tion 2.2.6). Consider a complete derivation tree T which includes an oriented
cycle. Let T0 be the smallest subtree of T containing this cycle and let T0 be
constructed from production p and subtrees T1; :::; Tnp (Figure 2.3). The fact
that T0 is the smallest subtree which includes the cycle implies that the cycle
runs through DGp. With respect to the subtrees Tj (1 � j � np) we are not
interested in the details of their dependency paths, but just in the fact that
a dependency path runs from an inherited attribute instance of the root to a
synthesized instance of the root.

Notation 2.2.1 Let T be a complete derivation tree. A subtree of T with root
N will be denoted by T=N:

De�nition 2.2.8 Let T be a complete derivation tree. With each subtree T=N
we can associate a directed graph IS(T=N), representing its i�to�s behavior
at N as follows:

� the vertices of IS(T=N) are the attributes of X; where X is the label of
N ;

� for each pair of inherited and synthesized attributes X:i, X:s, respectively,
an arc from X:i to X:s is included in IS(T=N) if and only if there is an
oriented path between the corresponding vertices N:i and N:s in D(T=N):

We do not restrict our computations to a single derivation tree and a single
node of this tree (we consider any node of any possible derivation tree). For
every X 2 V we need to compute the dependency graphs (with vertices from
A(X)). These show how the synthesized attributes ofX depend on the inherited
attributes of X (denoted by i�to�s attribute dependency for subtrees whose
root is labeled X). This set of graphs will be called IS�SET (X) and is de�ned
as follows.

De�nition 2.2.9 For each X 2 V; IS�SET (X) = fIS(T=N) j T is a deriva-
tion tree and N is a node of T labeled Xg:

Note that for each X 2 V; IS � SET (X) is �nite since A(X) is �nite. The
elements of IS � SET (X) will be called the is�graphs of X:

In a similar way we can de�ne graphs \showing" how the inherited attributes
associated with a grammar symbolX may depend on the synthesized attributes.

Notation 2.2.2 Consider a derivation tree T whose subtree with root N has
been deleted, excluding N itself. Such an (incomplete) derivation tree will be
denoted by T � T=N:
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De�nition 2.2.10 Let T be a complete derivation tree. With each tree T �
T=N we can associate a directed graph SI(T � T=N), representing the s�to�i
behavior at N as follows:

� the vertices of SI(T � T=N) are the attributes of X, where X is the label
of N ;

� for each pair of synthesized and inherited attributes X:s; X:i, respectively,
an arc from X:s to X:i is included in SI(T � T=N) if and only if there
exists an oriented path between N:s and N:i in D(T � T=N):

The set of graphs, expressing the di�erent s�to�i attribute dependency
patterns at X , of trees whose subtree with root labeled X has been deleted, will
be called SI � SET (X) and is de�ned as follows.

De�nition 2.2.11 For each X 2 V; SI � SET (X) = fSI(T � T=N) j T is a
derivation tree and N is a node of T labeled Xg:

The elements of SI � SET (X) will be called the si�graphs of X:

For each production pwe have already de�ned a dependency graphDGp: The
following notation is needed to express the combination between the dependency
information of a production and its context.

Notation 2.2.3 Let p be a production p : X0 ! Xp1:::Xpnp and let Di; for
0 � i � np; be a directed graph with vertices A(Xpi): Then DGp[D0; D1; :::; Dnp ]
is the directed graph obtained from DGp by adding an arc from the attribute
occurrence (a; p; i) to (b; p; i) whenever there exists an arc from the attribute
Xpi :a to the attribute Xpi :b in Di (0 � i � np).

For the case where D0 is an si�graph from SI�SET (Xp0) and Di (1 � i �
np) an is�graph from IS � SET (Xpi) (1 � n � np); DGp[D0; D1; :::; Dnp ] de-
scribes the (indirect) dependencies between attribute instances of an application
of production p within a derivation tree.

To compute the set IS�SET (X); we isolate the subtrees with root N from
the surrounding trees, and to compute the set SI � SET (X) we consider the
incomplete derivation trees from which a subtree with root N has been deleted.
Hence, we need to consider the case of a \hole" in the context of a production.

Notation 2.2.4 Given a production p : Xp0 ! Xp1:::Xpnp and the directed
graphs Di (0 � i � np) with vertices A(Xpi); then

DGp � k[D0; D1; :::; Dk�1; Dk+1; :::; Dnp ] = DGp[D0; D1; :::; Dnp ]; 0 � k � np

To directly express the indirect dependencies directly we denoteDGp�k[:::]�;
that is the transitive closure ofDGp�k[:::] (for simplicity, the explicit arguments
of DGp � k have been indicated by dots). From DGp � k[:::]�; a new directed
graph DGp � k�[:::] can be constructed as follows.
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De�nition 2.2.12 The vertices of DGp � k�[:::] are the attributes of A(Xpk).
For each pair of attributes Xpk:a, Xpk:b, an arc from Xpk:a to Xpk:b is included
in DGp � k�[:::] if and only if there exists an arc from (a; p; k) to (b; p; k) in
DGp � k[:::]�:

DGp � 0�[:::] can be used to characterize the is�graphs as follows.

Lemma 2.2.1 For each X 2 VT ; IS � SET (X) represents the set consisting
of the single graph with vertices A(X) and no arcs. For each X 2 VN ;

IS � SET (X) = fDGp � 0�[D1; :::; Dnp ] j p 2 P; Xp0 = X;

Di 2 IS � SET (Xpi) (1 � i � np)g:

In fact, IS �SET (X) are the smallest sets of graphs satisfying the above equa-
tions.

Proof Following [And97].

From Lemma 2.2.1 (the recursive characterization of IS�SET (X)) the following
algorithm ([Knu68],[Alb91a],[And97]) can be derived.

Algorithm 3.1. Computation of the sets IS � SET (X)

Input: An arbitrary attribute grammar AG;
Output: The sets IS � SET (X) for all X 2 V:
Method:
begin

for (all X 2 VN ) do IS � SET (X) := ;;
for (all X 2 VT ) do
IS�SET (X) := the set consisting of the single graph with vertices A(X)
and no arcs;

repeat ffor all X 2 VN : add further graphs to the set IS � SET (X)g
choose a production p : Xp0 ! Xp1:::Xpnp for which
none of the sets IS � SET (Xpi) (1 � i � n) is empty;
for (1 � i � np) do choose a graph Di in IS � SET (Xpi);
if (graph DGp � 0�[D1; :::; Dnp ] is not in IS � SET (Xp0) then
add this graph to IS � SET (Xp0)

until no further graphs can be added to any set IS � SET (X)
end.

Note that for all X 2 V; IS�SET (X) is non-empty. This follows immediately
from the fact that the underlying context free grammar of AG is reduced.

We can also formulate a related, recursive, characterization for the sets SI�
SET (X); based on the graphs DGp � k�[:::] (k 6= 0):

Lemma 2.2.2 SI � SET (Z) represents the set consisting of the single graph
with vertices A(Z) and no arcs. For each X 2 V such that X 6= Z;

SI�SET (X) = fDGp�k
�[D0; D1; :::; Dk�1; Dk+1; :::; Dnp ] j p 2 P; 1 � k � np;
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Xpk = X; D0 2 SI�SET (Xp0); Di 2 IS�SET (Xpi) (1 � i � np; i 6= k)g:

In fact, the SI � SET (X) are the smallest sets of graphs satisfying the above
equations.

Proof In [And97].

This characterization leads to the following algorithm ([Alb91a, And97]).

Algorithm 3.2. Computation of the sets SI � SET (X)

Input: An arbitrary attribute grammar AG and the sets IS � SET (X) for all
X 2 V ;
Output: The sets SI � SET (X) for all X 2 V:
Method:
begin

SI � SET (Z) := the set consisting of the single graph with vertices A(Z)
and no arcs;
for (all X 2 V; X 6= Z) do SI � SET (X) := ;;
repeat ffor all X 2 V : add further graphs to the set SI � SET (X)g
choose a production p : Xp0 ! Xp1:::Xpnp

choose a graph D0 in SI � SET (Xp0)
choose an integer k (1 � k � np)
for (1 � i � np) do choose a graph Di in IS � SET (Xpi);
if (graph DGp � k�[D0; D1; :::Dk�1; Dk+1; :::; Dnp ] =2 SI � SET (Xpk))
then add this graph to SI � SET (Xpk)

until no further graphs can be added to any set SI � SET (Xpk)
end.

Having the sets IS � SET (X) for all X 2 V , the circularity test is straightfor-
ward.

Algorithm 3.3. Circularity test

Input: An arbitrary attribute grammar AG and the sets IS � SET (X) for all
X 2 V ;
Output: The graphs DGp � 0[:::] containing an oriented cycle.
Method:
begin

for (every production p : Xp0 ! Xp1:::Xpnp) do
for (each combination [D1; :::; Dnp ], where Di 2 IS � SET (Xpi)
(1 � i � np)) do
if (graph DGp � 0[D1; D2; :::; Dnp ] contains an oriented cycle)
then output this graph

end.

Theorem 2.2.1 The attribute grammar AG is noncircular if and only if DGp�
0[D1; :::; Dnp ] contains no oriented cycle, for any p : Xp0 ! Xp1:::Xpnp 2
P; Di 2 IS � SET (Xpi) (1 � i � np):
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Proof In [And97].

Algorithms 3.1 and 3.3 form together Knuth's algorithm for testing the cir-
cularity of attribute grammars ([Knu71]). M. Jazayeri, W. F. Ogden and W.
C. Rounds ([JOR75a], [JOR75b], [Jaz81]) showed that the time complexity of
the circularity test is inherently exponential. However, the only exponential
factor in the complexity of the algorithm is the number of graphs in the set
IS � SET (X) constructed for each nonterminal symbol. K. L. R�aih�a and M.
Saarinen [RaS77] found that for \practical" grammars this number is very small
(at most 4) and discussed techniques to improve the implementation of the al-
gorithm to compute the sets IS �SET (X): Their experiments showed that for
practical grammars the computation of the dependencies is feasible. Implemen-
tation aspects of the circularity test are also considered by B. Lorho and C.
Pair [LoP85], K. S. Chebotar [Che81], P. Deransart, M. Jourdan and B. Lorho
[DJL84].

Much more, there exists an hierarchy of important subclasses of attribute
grammars.

WAG � ANCAG � PAG � OAG � LAG � SAG;

where the suÆx \AG" comes from attribute grammars, and the others from
\W" - well de�ned, \ANC" - absolutely non-circular, \PAG" - partitioned, \O"
- ordered, \L" - left and \S" - synthesized.

To evaluate the attribute values in the subclasses WAG [Knu68], ANCAG
[KeW76] (sometimes called SNCAG = strongly non-circular attribute gram-
mars, [Jou84], [JPJ90]), PAG [WaG84], OAG [Kas80] the structure tree must
be kept in memory. This is not the case for the subclasses LAG, SAG [LRS74]
and consequently there exists polynomial algorithms for evaluating all the at-
tribute values for them. Unfortunately, the former subclasses are too small for
describing the dependency between the attributes of the practical programming
languages.

2.2.3 Transitive and re
exive closure

In this section, we shall present some algorithms for computing the transitive
closure of a binary relation (or, for a directed graph).

De�nition 2.2.13 A (binary) relation R on the set X is a collection of
ordered pairs of elements of X, i.e. R � X � X. If (xi; xj) 2 R; where
xi; xj 2 X then we say that xi and xj are in the relation R (this can also be
denoted by xi Rxj).

A convenient way of representing a binary relation R on a set X is to use a
directed graph, the vertices of which stand for the elements of X and the arcs
stand for the ordered pairs of elements of X de�ning the relation R:

De�nition 2.2.14 Consider a set X and a relation R on X: Then:
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1. R is re
exive if every element xi 2 X is in relation R to itself; that is,
for every xi; xi Rxi;

2. R is symmetric if xi Rxj implies xj Rxi;

3. R is transitive if xi Rxj and xj Rxk imply xi Rxk ;

4. R is an equivalence relation if it is re
exive, symmetric, and transitive.
If R is an equivalence relation de�ned on a set S; then S can be uniquely
partitioned into subsets S1; S2; ::: such that two elements x and y of S
belong to Si if and only if xR y: The subsets S1; S2; ::: are called the
equivalence classes induced by the relation R on the set S:

De�nition 2.2.15 The directed graph representing a re
exive relation is called
the re
exive directed graph. Symmetric and transitive directed graph
may be de�ned in a similar way.

Remark 2.2.1

1. In a re
exive directed graph, there exists a (self-)loop at each vertex.

2. In a symmetric directed graph, there exist two oppositely oriented arcs
between any two adjacent vertices. Therefore an undirected graph can be
considered as representing a symmetric relation if we identify any two
oppositely oriented arcs with an arc.

3. The arc (v1; v2) also occurs in a transitive graph G if there exists a directed
path in G from v1 to v2:

De�nition 2.2.16 The transitive closure of a binary relation R is a relation
R+ de�ned as follows: xR+ y if and only if there exists a sequence

x0 = x; x1; x2; :::; xk = y

such that k > 0 and x0 Rx1; x1Rx2, ..., xk�1 Rxk:

Clearly, if xR y, then xR+ y: Hence R � R+: Further, it can be easily shown
that R+ is transitive. In fact, it is the smallest transitive relation containing R:
So if R is transitive, then R+ = R:

De�nition 2.2.17 Suppose that G is the directed graph representing a relation
R. The directed graph G+ representing the transitive closure R+ of R is called
the transitive closure of G:

It follows from the de�nition of R+ that the arc (x; y); x 6= y, is in G+ if
and only if there exists in G a directed path from the vertex x to the vertex y:
Similarly the self-loop (x; x) at vertex x is in G+ if and only if there exists in
G a directed circuit containing x:
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De�nition 2.2.18 The adjacency matrix of an n�vertex directed graph G
is an n � n (0; 1) matrix in which the (i; j) entry is equal to 1 if and only if
there exists a directed arc from vertex i to vertex j when i 6= j:

The reachability matrix of an n�vertex directed graph G is an n�n (0; 1)
matrix in which the (i; j) entry is equal to 1 if and only if there exists a directed
path from vertex i to vertex j when i 6= j; or a directed circuit containing vertex
i when i = j:

In other words, the (i; j) entry of the reachability matrix is equal to 1 if and
only if vertex j is reachable from vertex i through a sequence of directed arcs.
It is easy to see that the adjacency matrix of G+ is the same as the reachability
matrix of G:

The problem of constructing the transitive closure of a directed graph arises
in several applications concerning compilers and attribute grammars. In this
section, we point out only;

� an elegant and computationally eÆcient algorithm due to S. Warshall
([War62]) for computing the transitive closure;

� a variation of Warshall's algorithm given by H. S. Warren ([War75]).

Let G be an n�vertex directed graph with its vertices denoted by the integers
1; 2; :::; n: Let G0 = G:Warshall's algorithm constructs a sequence of graphs so
that Gi � Gi+1; 0 � i � n�1; and Gn is the transitive closure of G: The graph
Gi; i � 1, is obtained from Gi�1 by \processing" vertex i in Gi�1. Processing
the vertex i in Gi�1 involves the addition of new edges to Gi�1 as described
below.

Let the arcs (i; k); (i; l); (i;m); ::: of Gi�1 be (outer) incident with the
vertex i: Then for each arc (j; i) inner incident with the vertex i; add to Gi�1

the arcs (j; k); (j; l); (j;m); ::: if these arcs are not already present in Gi�1.
The resulting graph (after the vertex i is processed) is denoted as Gi: It is clear
that Gi � Gi+1; 8 i � 0: To show that Gn is the transitive closure of G we need
to prove the following result.

Theorem 2.2.2 1. Suppose that, for any two vertices s and t, there exists
in G a directed path P from vertex s to vertex t such that all its vertices
other than s and t are from the set f1; 2; :::; ig: Then Gi contains the
arc (s; t):

2. Suppose that, for any vertex s, there exists in G a directed circuit C con-
taining vertex s such that all its vertices other than vertex s are from the
set f1; 2; :::; ig: Then Gi contains the self-loop (s; s):

Proof Following [ThS92].

As an immediate consequence of this theorem we get the following.

Corollary 2.2.1 Gn is the transitive closure of G.
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We give now a formal description of Warshall's algorithm. In this description
the graph G is represented by its adjacency matrixM and the symbol _ stands
for Boolean addition (a _ b = 1 () a = 1 or b = 1).

Algorithm (TC1). Transitive Closure (S. Warshall)

Input: M; the adjacency matrix of a graph G;

Output: M+, the reachability matrix of G;

Method:

begin

for i := 1 to n do

for j := 1 to n do

if M(j; i) = 1 then

for k := 1 to n do

M(j; k) :=M(j; k) _M(i; k)

M+ =M

end.

Note that the matrix M (when the algorithm begins to execute the statement
for j := 1 to n do with i = p) is the adjacency matrix of Gi�1: Further, on
processing a diagonal entry does not result in adding new nonzero entries.

Let us note that:

1. Warshall's algorithm transforms the adjacency matrixM of a graphG into
the adjacency matrix of the transitive closure of G by suitable overwriting
on M . For this reason we say that the algorithm works \in place".

2. The algorithm processes all the arcs incident into a vertex before it be-
gins to process the next vertex. In other words it processes the matrix
M \column-wise". Warshall's algorithm may be thus seen as column-
oriented.

3. While processing a vertex, no new arc (i.e., an arc that does not exists
when the processing of that vertex begins) inner incident to the vertex is
added to the graph. This means during the processing of a vertex we can
choose the arcs inner incident to that vertex in an arbitrary order.

4. Suppose that the arc (j; i) inner incident into the vertex i during the
processing of the vertex i and it is added in a further step, during the
processing some vertex k; k > i: Clearly this arc is not processed during
the processing of the vertex i: Neither will it be processed later since no
vertex is processed more than once. In fact, such an arc will not result in
adding any new arcs.

5. Warshall's algorithm is said to work in one pass since each vertex is pro-
cessed exactly once.
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Suppose that we wish to modify Warshall's algorithm so that it becomes
row-oriented. In a row-oriented algorithm, during processing a vertex, all the
arcs outer incident to that vertex are to be processed. The processing of the
arc (i; j) introduces the arcs (i; k) for every arc (j; k) outer incident to the
vertex j: Therefore new arcs outer incident to a vertex may be added during the
processing of a vertex \row-wise". Some of these newly added arcs may not be
processed before the processing of the vertex under consideration is completed.
If the processing of these arcs is necessary for the computation of the transitive
closure, then such a processing can be done only in a second pass. Thus, a row-
oriented algorithm may require more than one pass to compute the transitive
closure.

H. S. Warren ([War75]) proved that only two passes in the row-oriented
algorithm are really needed. During the processing of vertex i, in the �rst pass
only arcs connected to vertices less than i are processed, and in the second pass
only arcs connected to vertices greater than i are processed. In other words, the
algorithm transforms the adjacency matrix of G+ by processing in the �rst pass
only entries below the main diagonal of M and in the second pass only entries
above the main diagonal. Thus during each pass at most n(n � 1)=2 arcs are
processed.

Algorithm (TC2). Transitive Closure (Warren)

Input: M; the adjacency matrix of a graph G;
Output: M+; the reachability matrix of G;
Method:
begin f Part 1 g

for i := 2 to n do
for j := 1 to i� 1 do
if M(i; j) = 1 then
for k := 1 to n do
M(i; k) :=M(i; k) _M(j; k)

f Part 2 g
for i := 1 to n� 1 do
for j := i+ 1 to n do
if M(i; j) = 1 then
for k := 1 to n do
M(i; k) :=M(i; k) _M(j; k)

M+ =M
end.

The proof of the correctness of Warren's algorithm is based on the following
lemma.

Lemma 2.2.3 Suppose that, for any two vertices s and t, there exists in G a
directed path P from s to t: Then the graph that results after processing vertex
s in the �rst pass (the statements included in Part 1) of Warren's algorithm
contains an arc (s; r), where r is a successor of s on P and either r > s or
r = t:
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Proof Following [ThS92].

Theorem 2.2.3 Warren's algorithm computes the transitive closure of a graph
G.

Proof Following [ThS92].
Both Warshall's and Warren's algorithms have the (worst-case) complexity

O(n3); where n is the cardinality of X . Other row-oriented algorithms may be
found in [War75].

2.3 Parallel computers

A parallel computer is a computer with many processing units (processors).
A parallel algorithm is a solution method for a given problem destinate to be
solved (performed) on a parallel computer.

2.3.1 Models of (parallel) computation

Any computer, whether sequential or parallel, operates by executing instructions
on data. A stream of instructions (the algorithm) tells the computer what to do
at each step. A stream of data (the input of the algorithm) is a�ected by these
instructions. Depending on whether there is one or several of these streams, we
can distinguish among four classes of computers (type of computations):

1. Single Instruction stream, Single Data stream (SISD)

2. Multiple Instruction stream, Single Data stream (MISD)

3. Single Instruction stream, Multiple Data stream (SIMD)

4. Multiple Instruction stream, Multiple Data stream (MIMD)

2.3.1.1 SISD computers

A computer in this class consists of a single processing unit receiving a single
stream of instructions that operates on a single stream of data. At each step
during the computation the control unit emits one instruction that operates
on a datum obtained from the memory unit. Such an instruction may tell the
processor, for example, to perform some arithmetic or logic operation on the
datum and then put it back into the memory.

The overwhelming majority of computers today adhere to this model in-
vented by John von Neumann and his collaborators in the late 1940's. An
algorithm for a computer in this class is said to be sequential (or serial).

Example 2.3.1 In order to compute the sum of n numbers, the unique proces-
sor needs to gain access to the memory n consecutive units of time at each time
receiving one number. There are also n� 1 additions involved that are executed
in sequence. Therefore, this computation requires O(n) operations.
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2.3.1.2 MISD computers

In this case, N processors (each with its own control unit) share a common
memory unit where data reside. There exist N streams of instructions and one
stream of data. At each step, one datum received from memory is operated
upon by all the processors simultaneously, each according to the instruction it
receives from its control. Thus, parallelism is achieved by letting the processors
do di�erent things at the same time on the same datum. This class of computers
lends itself naturally to those computations requiring an input to be subjected
to several operations, each receiving the input in its original form.

Example 2.3.2 It is required to determine whether a given positive integer z
has no divisors except 1 and itself. The obvious solution to this problem is to
try all possible divisors of z. If none of these succeeds in dividing z, then z is
said to be prime; otherwise z is said to be composite.

We can implement this solution as a parallel algorithm on an MISD com-
puter. The idea is to split the job of testing potential divisors among processors.
Assume that there are as many processors on the parallel computer as there are
potential divisors of z: All processors take z as input, then each tries to divide it
by its associated potential divisor and issues an appropriate output based on the
result. Thus it is possible to determine in one step whether z is prime. More
realistically, if there are fewer processors than potential divisors, then each pro-
cessor can be given the job of testing a di�erent subset of these divisors. In either
case, a substantial speedup is obtained over a purely sequential implementation.

Although more eÆcient solutions to the problem of primality testing exist,
we have chosen the simplest one.

Example 2.3.2 shows that the class of MISD computers could be extremely
useful in many applications. It is also apparent that the kind of computations
that can be carried out eÆciently on these computers are of a rather specialized
nature. For most applications, MISD computers would be rather awkward to
use. We shall see that SIMD and MIMD are more suitable for a wide range of
problems.

2.3.1.3 SIMD computers

A parallel computer in this class consists of N identical processors, as shown in
Figure 2.4.
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Figure 2.4. SIMD Computer

Each of the N processors possesses its own local memory where it can store
both programs and data. All processors operate under the control of a single in-
struction stream issued by a central control unit. Equivalently, the N processors
may be assumed to hold identical copies of a single program, each processor's
copy being stored in its local memory. There are N data streams, one per each
processor.

The processors operate synchronously. At each step, all processors execute
the same instruction, each on a di�erent datum. The instruction could be a
simple one (such as adding or comparing two numbers) or a complex one (such
as merging two lists of numbers). Similarly, the datum may be simple (one
number) or complex (several numbers). Sometimes, it may be necessary to
have only a subset of the processors executing an instruction. This information
can be encoded in the instruction itself, thereby telling a processor whether
it should be active (and execute the instruction) or inactive (and wait for the
next instruction). There is a mechanism, such as a global clock, that ensures
lock-step operation. Thus processors that are inactive during an instruction or
those that complete the execution of the instruction before others may stay idle
until the next instruction is issued. The time interval between two instructions
may be �xed or may depend on the instruction being executed.

In most interesting problems that we wish to solve on an SIMD computer, it
is desirable for the processors to be able to communicate among themselves dur-
ing the computation in order to exchange data or intermediate results. This can
be achieved in two ways, giving rise to two subclasses: SIMD computers where
communication is through a shared memory and those where communication is
done via an interconnection network.

Shared-Memory (SM) SIMD computers

This class is also known in the literature as the Parallel Random-Access Machine
(PRAM) model. When two processors wish to communicate, they do so through
the shared memory. Say processor i wishes to pass a number to processor j:
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This is done in two steps. First, processor i writes the number in the shared
memory at a given location known to processor j. Then, processor j reads the
number from that location.

During the execution of a parallel algorithm, the N processors gain access to
the shared memory for reading input data, for reading or writing intermediate
results, and for writing �nal results. The basic model allows all processors to
gain access to the shared memory simultaneously if and only if the memory
locations they are trying to read from or write into are di�erent. However,
the class of shared-memory SIMD computers can be further divided into four
subclasses, according to whether two or more processors can gain access to the
same memory location simultaneously:

(i) Exclusive-Read, Exclusive-Write (EREW) SM SIMD Comput-
ers. Access to memory locations is exclusive. In other words, no two
processors are allowed simultaneously to read from or write into the same
memory location.

(ii) Concurrent-Read, Exclusive-Write (CREW) SM SIMD Com-
puters. Multiple processors are allowed to read from the same memory
location but the right to write is still exclusive.

(iii) Exclusive-Read, Concurrent-Write (ERCW) SM SIMD Com-
puters. Multiple processors are allowed to write into the same memory
location but read accesses remain exclusive.

(iv) Concurrent-Read, Concurrent-Write (CRCW) SM SIMD Com-
puters. Both multiple-read and multiple-write privileges are granted.

Allowing multiple-read accesses to the same address in memory generates
no problems (except perhaps some technological ones to be discussed later).
Conceptually, each of the several processors reading from that location makes a
copy of the location's contents and stores it in its own local memory.

With multiple-write accesses, however, diÆculties arise. If several processors
are attempting simultaneously to store (potentially di�erent) data at a given
address, which one of them should succeed ? In other words, there should be
a deterministic way of specifying the contents of that address after the write
operation. Several policies have been proposed to resolve such write con
icts,
thus further subdividing classes (iii) and (iv). Some of these policies are:

(a) the smallest-numbered processor is allowed to write, and access is denied
to all other processors;

(b) all processors are allowed to write provided that the quantities they are
attempting to store are equal, otherwise access is denied to all processors;

(c) the sum of all quantities that the processors are attempting to write is
stored.
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Interconnection-Network SIMD computers

There exists a lot of interconnection possibilities between processors for a SIMD
computer. One of the simplest interconnection is that where every pair of pro-
cessors are connected by a two-way line, i.e. a structure of a complete graph.
Unfortunately, this model is not at all convenient in practice, because:

(i) Price. What is the price paid to fully interconnect N processors ? There

are N � 1 lines leaving each processor for a total of N(N�1)
2 . Clearly, such

a network is too expensive, especially for large values of N:

(ii) Feasibility. Even if we could a�ord such a high price, the model is un-
realistic in practice, again for large values of N: Indeed, there is a limit
on the number of lines that can be connected to one processor, and that
limit is dictated by the actual physical size of the processor itself.

Other possibilities for interconnecting processors are: linear array, two-
dimensional array, tree connection, perfect shu�e connection, cube connection.

Example 2.3.3 Assume that the sum of n numbers x1, x2, ..., xn needs to
be computed. There exist n � 1 additions involved in this computation, and a
sequential algorithm running on a conventional (i.e. SISD) computer will require
n steps to complete it. Using a tree-connected SIMD computer with logn levels
and n

2 leaves, the job can be accomplished in logn steps (Figure 2.5.) for n = 8.

P7P5P4

P2 P3

P6

x3 x4 x6 x8x7x5x2x1

P1

INPUT

OUTPUT

Figure 2.5. Adding eight numbers on a processor tree

The original input is received at the leaves, two numbers per leaf. Each leaf
adds its inputs and sends the result to its parent. The process is now repeated
at each subsequent level: Each processor receives two inputs from its children,
computes their sum, and sends it to its parents. The �nal result is eventually
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produced by the root. Since at each level all the processors operate in parallel,
the sum is computed in logn steps.

The speed improvement is even more dramatic when m sets, each of n num-
bers, are available and the sum of each set is to be computed. A conventional
(sequential) machine requires m � n steps in this case. A trivial application of
the parallel algorithm produces the m sums in m(logn) steps. Through a process
known as pipelining, however, we can do it signi�cantly better. Notice that once
a set has been processed by the leaves, these are free to receive the next one. The
same observation applies to all processors at the higher levels. Hence each of the
m� 1 sets that follow the initial one can be inputed to the leaves one step after
their predecessor. Once the �rst sum exits from the root, a new sum is produced
in the next step. The entire process therefore takes logn+ (m� 1) steps.

2.3.1.4 MIMD computers

This class of computers is the most general and the most powerful. A MIMD
computer has N processors, N streams of instructions, and N streams of data.
The processors here are of the type used inMISD computer in the sense that each
possesses its own control unit in addition to its local memory and arithmetical
and logical units. This makes these processors more powerful than the ones
used for SIMD computers.

Each processor operates under the control of an instruction stream issued by
its control unit. Thus the processors are (potentially all) executing di�erent pro-
grams on di�erent data while solving di�erent subproblems of a single problem.
This means that the processors typically operate asynchronously. As with SIMD
computers, communication between processors is performed through a shared
memory or an interconnection network. MIMD computers sharing a common
memory are often referred to as multiprocessors (or tightly coupled machines)
while those with an interconnection network are known as multicomputers (or
loosely coupled machines).

Since all the processors on a multiprocessor computer share a common mem-
ory, the discussion in section 2.3.1.3 regarding the various ways of concurrent
memory access applies here as well. Indeed, two or more processors executing
an (asynchronous) algorithm may, by accident or by design, wish to gain access
to the same memory location. We can therefore talk of EREW, CREW, ERCW,
and CRCW SM MIMD computers and algorithms, and various methods should
be established for solving memory access con
icts in models that disallow them.

Computers in the MIMD class are used to solve those problems that lack
the regular structure required by the SIMD model. This generality does not
come for free, that is asynchronous algorithms are diÆcult to design, evaluate,
and implement. In order to appreciate the complexity involved in program-
ming MIMD computers, it is important to distinguish between the notion of
a process and that of a processor. An asynchronous algorithm is a collection
of processes some or all of which are executed simultaneously on a number of
(available) processors. At the beginning (at the beginning of the execution),
all the processors are free. The parallel algorithm starts its execution on an
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arbitrarily chosen processor(s). Shortly thereafter it creates a number of com-
putational tasks (processes) to be performed. A process thus corresponds to a
section of the algorithm: There may be several processes associated with the
same algorithm section, each with a di�erent parameter.

Once a process is created, it must be executed on a processor. If a free
processor is available, the process is assigned to the processor that performs
the computations speci�ed by the process. Otherwise (if no free processor is
available), the process is queued and waits for a processor to be free.

When a processor completes execution of a process, it becomes free. If a
process is waiting to be executed, then it can be assigned to the processor just
freed. Otherwise (if no process is waiting), the processor is queued and waits
for a process to be created.

The order in which processes are executed by processors can obey any policy
that assigns, e.g., priorities to processes. For example, processes can be executed
in a �rst-in-�rst-out or in a last-in-�rst-out order. Also, the availability of
a processor is sometimes not suÆcient for the processor to be assigned to a
waiting process. An additional condition may have to be satis�ed before the
process starts. Similarly, if a processor has already been assigned a process and
an unsatis�ed condition is encountered during execution, then the processor is
freed. When the condition for resumption of that process is later satis�ed, a
processor (not necessarily the original one) is assigned to it. These are only
a few of the scheduling problems that may characterize the programming of
multiprocessors. Finding eÆcient solutions to these problems is important if
MIMD computers are to be considered useful. Note that none of these scheduling
problems arise on the less 
exible but easier to program SIMD computers.

2.3.2 Analyzing algorithms

Related to the analysis of parallel algorithms, the most important measure is the
running time, i.e. the time elapsed between the time when the �rst processor
starts computing and the moment the last processor ends its computation. The
running time of a parallel algorithm is usually obtained by counting two kinds
of steps: computational steps and routing steps. A computational step is an
arithmetic or logic operation performed on a datum within a processor. In a
routing step, on the other hand, a datum travels from one processor to another
via the shared memory or through the communication network. For a problem of
size n; the parallel worst-case running time of an algorithm, a function of n; will
be denoted by t(n): Strictly speaking, the running time is also a function of the
number of processors. Computational steps and routing steps do not necessarily
require the same number of time units. A routing step usually depends on the
distance between the processors and typically takes a little longer to execute
than a computational step.

Example 2.3.4 The sorting problem is de�ned as follows: A set of n (real)
numbers is given has to be sorted in the nondecreasing order. Note that there
exist n! possible permutations of the input and logn! (i.e. O(n logn)) bits are
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needed to distinguish among them. Therefore, in the worst case, any sequential
algorithm for sorting requires on O(n logn) steps to recognize a particular output
(as described below).

Example 2.3.5 Say that we want to compute the product of two n�n matrices.
Since the resulting matrix has also n2 entries, at least n2 steps are needed by
any matrix multiplication algorithm simply to produce the output. Up to now,
no algorithm is known for multiplying two n � n matrices in n2 steps. The
standard textbook algorithm requires O(n3) operations.

For parallel algorithms, two additional factors (apart of the lower and upper
bounds) have to be taken into consideration:

(i) the model of parallel computation used;

(ii) the number of processors involved.

To evaluate a parallel algorithm for a given problem, it is quite natural to
do it in terms of the best available sequential algorithm for that problem. A
good indication of the quality of a parallel algorithm is the speedup it produces.
This is de�ned as

Speedup =
worst�case running time of the fastest known sequential algorithm for the problem

worst�case running time of the parallel algorithm

Clearly, the larger the speedup, the better the parallel algorithm.

Example 2.3.6 The problem of adding n numbers discussed in Example 2.3.3
is solved in O(logn) time on a tree-connected parallel computer using n � 1
processors. Here the speedup is O(n= logn) since the best possible sequential
algorithm requires O(n) additions. This speedup is far from the ideal n� 1 and
it is due to the fact that the n numbers were input at the leaves and the sum
outputs at the root. Any algorithm for such a model necessarily requires 
(logn)
time, that is, the time required for a single datum to propagate from input to
output through all levels of the tree.

The second important criterion in evaluating a parallel algorithm is the num-
ber of processors it requires to solve a problem. The larger the number of
processors an algorithm uses to solve a problem, the more expensive the solu-
tion becomes to be obtained. For a problem of size n, the number of processors
required by an algorithm, a function of n, will be denoted by p(n) (sometimes
the number of processors may be a constant independent of n).

The cost of a parallel algorithm is de�ned as

Cost = parallel running time� number of processors used:

In other words, the cost equals the number of steps executed simultaneously by
all processors in solving a problem in the worst case. This de�nition assumes
that all processors execute the same number of steps. If it is not the case,
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then the cost is an upper bound on the total number of steps executed. For a
problem of size n, the cost of a parallel algorithm will be denoted by c(n) (i.e.
c(n) = t(n)� p(n)).

Assume that a lower bound on the number of sequential operations required
in the worst case to solve a problem is known. If the cost of a parallel algorithm
for that problem matches this lower bound to within a constant multiplicative
factor, then the algorithm is said to be cost optimal. This is because any
parallel algorithm can be simulated on a sequential computer. If the total
number of steps executed during the simulation is equal to the lower bound,
then this means that, when it comes to cost, this parallel algorithm cannot be
improved upon as it executes the minimum number of possible steps. It may
be however possible, of course, to reduce the running time of a cost-optimal
parallel algorithm by using more processors. Similarly, we may be able to use
fewer processors, while retaining cost optimality, if we are willing to settle for a
higher running time.

A parallel algorithm is not cost optimal if a sequential algorithm exists whose
running time is smaller than the parallel algorithm's cost.

Example 2.3.7 In Example 2.3.3, the size of the tree depends on n; the number
of terms to be added, and p(n) = n � 1: The cost of adding n numbers on an
(n � 1)-processor tree is (n � 1) � O(logn): This cost is not optimal since we
know how to add n numbers optimally using O(n) sequential additions.

Let 
(T (n)) be a lower bound on the number of sequential steps required
to solve a problem of size n: Then 
(T (n)=N) is a lower bound on the running
time of any parallel algorithm that uses N processors to solve that problem.

Remark 2.3.1 Since 
(n logn) steps is a lower bound on any sequential sort-
ing algorithm, the equivalent lower bound on any parallel algorithm using n
processors is 
(logn):

When no optimal sequential algorithm is known for solving a problem, the
eÆciency of a parallel algorithm for that problem is used to evaluate its cost.
This is de�ned as follows:

EÆciency =
worst�case running time of fastest known sequential algorithm for the problem

cost of parallel algorithm

Usually, the eÆciency has to be less than or equal to 1; otherwise a faster
sequential algorithm can be obtained !

Example 2.3.8 Let the worst-case running time of the fastest sequential algo-
rithm for multiplying two n�n matrices be O(n2:5) (as known). The eÆciency
of a parallel algorithm that uses n2 processors to solve the problem in O(n) time
is O(n2:5)=O(n3):
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Chapter 3

Linear-time bidirectional

parsing for a subclass of

linear grammars

This chapter is the �rst original one from this paper. It was prepared using the
papers [AnK98] and [AnK99b].

New classes of linear grammars,LLin(m;n),m;n 2 N - similar to the LL(k),
k 2 N ([AhU72], [LeS68]) grammars - were introduced ([AnK98, AnK99b]).
Intuitively, \looking ahead" to the next m terminal symbols and \looking back"
to the previous n terminal symbols suÆces to uniquely determine the production
which has to be applied. The membership problem for LLin(m;n) grammars
can be solved using a linear time complexity algorithm.

In the �rst section we give some general properties of the mentioned gram-
mars, such as unambiguity, recursiveness and closure properties. A comparison
with LL(k) grammars and an \internal" hierarchy is also provided. Let us note
that there exist m;n 2 N such that LLin(m;n) are strictly between determin-
istic context free languages and context free languages.

In the second section, a characterization theorem for LLin(m;n) grammars
is presented. We also describe a bidirectional parser for LLin(m;n) grammars.

The third section treats LLin(1; 1) grammars. One of the main point is that
the auxiliary function first last can be computed in polynomial time. In this
way, we can easily decide whether or not a linear grammar is LLin(1; 1):

3.1 De�nitions and general properties

In this chapter we introduce a new subclass of linear languages for which the
membership problem can be solved in linear time (sequential) complexity. For
the general class of linear languages, it is known that an arbitrary word w with
length n can be parsed in time proportional to n2 ([Har78]). We know that

39
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every sentential form of a linear grammar contains at most one nonterminal
symbol. Using this property, our subclass of linear grammars can be view as a
generalization of LL(k) grammars. The di�erence is that for the new subclass
the parsing is simultaneously done from both sides of the word.

De�nition 3.1.1 Let G = (VN ; VT ; S; P ) be a linear grammar. We say that G
is LLin(m;n); m; n 2 N, if for any two derivations of the form

S
�

=)
G

uAv =)
G

u�1 v
�

=)
G

ux v

S
�

=)
G

uAv =)
G

u�2 v
�

=)
G

u y v

with u; v; x; y 2 V �

T , for which x(n) = y(n) and (m)x = (m)y, then �1 = �2:

Intuitively: Given an arbitrary sentential form, if we \look back" to the
previous n terminal symbols and if we \look ahead" to the next m terminal
symbols, we can uniquely decide which production has to be applied (Figure
3.1) (the overlapping of symbols is allowed).

De�nition 3.1.2 We say that the language L � V �

T is LLin(m;n) if there
exists a LLin(m;n) grammar G for which L = L(G):

A

S

u
v

x

m symbols n symbols

Figure 3.1
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In the next example we give some representative linear languages which can
be expressed using LLin(m;n) grammars.

Example 3.1.1

� G1 = (fSg; fa; b; cg; S; fS ! aS a j b S b j cg) is LLin(1; 1) and, of course,
L(G1) = fw c ew j w 2 fa; bg�g;

� G2 = (fSg; fa; b; cg; S; fS ! aS a j aS b j b S a j b S b j cg) is LLin(1; 1) and
L(G2) = fw1 cw2 j w 2 fa; bg�; jw1j = jw2jg;

� G3 = (fSg; fa; b; cg; S; fS ! a aS a a j a b S a b j a b S b a j b a S a b j b a S b a j

b b S b b j cg) is LLin(2; 2) and L(G3) = fw1 cw2 j w 2 fa; bg�; jw1j =
jw2j = even; Nw1

(a) = Nw2
(a) and Nw1

(b) = Nw2
(b)g, where Nw1

(a)
denotes the number of symbols 'a' from w1;

� G4 = (fS;Ag; fa; bg; S; fS ! aS jAb; A ! Ab j�g) is LLin(1; 1) and
L(G4) = fan bm j n � 0; m � 1g;

� G5 = (fS;Ag; fa; b; cg; S; fS ! aS a jA; A! bA b j cg) is LLin(1; 1) and
L(G5) = fan bm c bm an j n; m � 1g;

� G6 = (fS;A;Bg; fa; bg; S; fS ! Ac jB; A ! aA b b j a b b; B !
aB b j a bg) is LLin(2; 1) and L(G6) = fan b2n c; an bn j n � 1g;

A linear grammar may be ambiguous. For example, let us consider the linear
grammar G given by the productions:

1. S ! aS

2. S ! S a

3. S ! a

For the word w = a a a; there exist two left most (or right most) derivations:

S =)
G

aS =)
G

aS a =)
G

a a a

S =)
G

S a =)
G

aS a =)
G

a a a

Hence G is an ambiguous linear grammar.

We shall show that the subclass LLin(m;n) contains only unambiguous
grammars.

Theorem 3.1.1 Every LLin(m;n) grammar is unambiguous.

Proof Let G = (VN ; VT ; S; P ) be an LLin(m;n) grammar and suppose that
it is ambiguous. Then there exists a word w 2 L(G) such that we can construct
two distinct derivations (in G):

S = �0 =)
lm

�1 =)
lm

�2 =)
G

::: =)
lm

�k = w
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S = �0 =)
lm

�1 =)
lm

�2 =)
G

::: =)
lm

�k0 = w

We shall show by induction on i that �i = �i; 8 i � 0: The basis of induction
(i = 0) is immediate.

Let us suppose that �j = �j ; 8 0 � j � i:We have to prove that �i+1 = �i+1:
Because G is a linear grammar (all the derivations are left most and also right
most), we can rewrite the previous derivation as:

S
�

=)
G

�i = uAv =)
G

u 
1 v
�

=)
G

ux v = w

S
�

=)
G

�i = uAv =)
G

u 
2 v
�

=)
G

u y v = w

From ux v = w and u y v = w, it follows that x = y: Therefore, (m)x =(m) y
and x(n) = y(n). Thus 
1 = 
2; so �i+1 = u 
1 v = u 
2 v = �i+1: Hence,
�i = �i; 8 0 � i � min(k; k0): But �k = �k0 = w; so k = k0: Therefore the
assumption that G is ambiguous is false.

We shall denote the set of LL(k) linear grammars by LLin(k):We may easily
observe that the class of LLin(1; 1) grammars is larger than the class of LLin(1)
grammars. For instance, G2 (Example 3.1.1) is LLin(1; 1), but not LLin(1):

Lemma 3.1.1 Every LLin(k) grammar is a LLin(k; k0) grammar, 8 k0 � 0:

Proof Directly from the de�nitions.

Lemma 3.1.2 If G is a LLin(m;n) grammar, then G is a LLin(m0; n0) gram-
mar, where m0 � m; n0 � n:

Proof Directly from the de�nitions.

Theorem 3.1.2 For all m;n � 0; the class LLin(m;n) is properly included in
the class LLin(m0; n0); 8 m0 � m; 8n0 � n:

Proof The fact that LLin(m;n) is included in LLin(m0; n0) is obvious, where
m0 � m; n0 � n (Lemma 3.1.2). It remains to show that the inclusion is proper.

Let us consider the following linear grammar:

G : S ! am bn j am
0

bn
0

(m0 � m; n0 � n)

It is obvious that G is LLin(m0; n0); but not LLin(m;n) (of course, we have
(m0 �m)2 + (n0 � n)2 6= 0).

Theorem 3.1.3 There exist linear languages which are not LLin(m;n); for
any m; n 2 N:

Proof Let us consider the linear language L = L1 [ L2, where

L1 = fak c bk j k � 1g and L2 = fak d b2k j k � 1g:

For instance, L can be generated by the linear grammar G3:
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� S ! A jB

� A! aA b j c

� B ! aB b b j d

Let us suppose, on the contrary, that there exist m;n 2 N and G 2
LLin(m;n) such as L(G) = L: Let us denote i = max(m;n) and the words
w1 = ai c bi; w2 = ai d b2i which belong to L1, respectively L2: Because
L = L(G); then there exist the derivations:

S
�

=)
G

ai c bi

S
�

=)
G

ai d b2i

It is obvious that (m)w1 =(m) w2 and w
(n)
1 = w

(n)
2 . This means that the last

production applied in the above derivations is the same. Let ak Abj be the last
sentential form for which:

S
�

=)
G

ak Abj =)
G

ak �1 b
j �

=)
G

ak ai�k c bi�j bj = w1

S
�

=)
G

ak Abj =)
G

ak �2 b
j �

=)
G

ak ai�k d b2i�j bj = w2

and (m)ai�k c bi�j =(m) ai�k d b2i�j ; ai�k c bi�j
(n)

= ai�k d b2i�j
(n)

: Because
G is LLin(m;n) it follows that �1 = �2: During the derivation ak Abj

�

=)
G

ak ai�k c bi�j bj only productions corresponding to w1 will be applied (which
are distinct from productions corresponding to w2; w1 6= w2). So, we obtain
a contradiction because A ! �1 = A ! �2: Therefore G is not a LLin(m;n)
grammar.

Corollary 3.1.1 The following facts hold:

� G is LLin(m;n) i� eG is LLin(n;m) (the class of LLin(m;n) grammars
is closed under mirror image, 8 m � 0; n � 0);

� G is LLin(m; 0) i� G is LLin(m);

� G is LLin(0; n) i� eG is LLin(n).

Proof Directly from the de�nitions and the fact that eG is also linear if G is a
linear grammar.

It is known that a left-recursive grammar cannot be LL(k) ([Knu65],
[Knu71]), for any k � 0: However, there exist some procedures to transform
left-recursion into right-recursion. On the contrary, there exist LLin(m;n)
left-recursive (even right-recursive, see G4, Example 3.1.1) grammars. If a
LLin(m;n) grammar is both left and right recursive, this cannot come from
the existence of the same left (right) recursive symbol.
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Theorem 3.1.4 If the reduced linear grammar G contains a (simultane-
ously) left and right recursive nonterminal symbol A, then G cannot be
LLin(m;n); 8 m;n 2 N:

Proof Let A be a left and right recursive (in the same time) symbol in G.
Because G is linear, this means that there exist the derivations:

A
+
=)
G

Av0; A
+
=)
G

u0A; u0; v0 2 V +
T :

Without loss of generality, we may suppose that the �rst distinct productions
applied in the above derivations are:

A! B v1 and respectively A! u1C

Now, because G is also a reduced linear grammar, it follows that there exists a
derivation:

S
�

=)
G

uAv

Now suppose that there exist m;n 2 N such as G is LLin(m;n). Continuing
the above derivation, we may write:

S
�

=)
G

uAv =)
G

ux v1 v
�

=)
G

uAv0 v
+
=)
G

uu0Av0 v
+
=)
G

:::
+
=)
G

u (u0)mA(v0)n v

S
�

=)
G

uAv =)
G

uu1 y v
�

=)
G

uu0Av
+
=)
G

uu0Av0 v
+
=)
G

::
+
=)
G

u(u0)m+1A(v0)n+1v

But (m) ((u0)mA (v0)n) =(m)
�
(u0)m+1 A (v0)n+1

�
and ((u0)mA (v0)n)

(n)
=

=
�
(u0)m+1A (v0)n+1

�(n)
: Using the fact that G is LLin(m;n), it follows that

A! B v1 coincides with A! u1 C (a contradiction !).
Therefore G cannot be LLin(m;n); 8 m;n 2 N:

The elements of LLin(m;n) can generate some classical non-deterministic
languages ([Knu65]), such as L = fan b2n c; an bn j n � 1g: For instance, G6

(Example 3.1.1) can generate this language.

Theorem 3.1.5 (closure properties) LLin(m;n) are not closed under:

(i) union

(ii) intersection

(iii) catenation

(iv) homomorphism

Proof

(i) LetG1 = (fSg; fa; b; cg; S; fS! aS b j cg) andG2 = (fSg; fa; b; dg; S; fS!
aS b b j dg) be two LLin(1; 0) grammars. We have L(G1) = fak c bk j k �
1g and L(G2) = fak d b2k j k � 1g. The language L(G1) [ L(G2) is not a
linear language (proof of Theorem 3.1.3);
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(ii) Consider G1 = (fS;Ag; fa; b; cg; S; fS ! S c jA; A ! aA b j a bg) and
G2 = (fS;Ag; fa; b; cg; S; fS ! aS jA; A! bA c j b cg) be two LLin(0; 2)
and LLin(2; 0) grammars, respectively. So L(G1) = fan bn cm j m;n �
1g and L(G2) = fam bn cn j m;n � 1g. Then the intersection of these
languages L(G1) \ L(G2) = fan bn cn j n � 1g is not a context free (or
linear) language ([Har78], [HoU79], [JuA97]);

(iii) Let G = (fSg; fa; bg; S; fS ! aS b j a bg) be a LLin(2; 0) grammar. Cer-
tainly L(G) = fan bn j n � 1g. We shall prove that the language
L = L(G) � L(G) = fan bn am bm j m; n � 1g is not linear. Sup-
pose, by contrary, that L is a linear language. From the pumping
lemma for linear languages (Theorem 2.1.2), we can choose the word
z = aN bN aN bN 2 L;N 2 N. Then u v 2 fag� and x y 2 fbg�. This
implies that there exist i1; i2; i3; i4 2 N; i2 + i3 � 1 such that:

u = ai1 ; v = ai2 ; w = aN�i1�i2 bN aN bN�i3�i4 ; x = bi3 ; y = bi4 :

Choosing, for instance, i = 0; we obtain that uw y 2 L, i.e.
aN�i2 bN aN bN�i3 2 L: Since i2 + i3 � 1; we get neither N � i2 6= N ,
nor N � i3 6= N: Therefore aN�i2 bN aN bN�i3 cannot belong to L:

(iv) Let G = (fS;A;Bg; fa; b; c; d; e; fg; S; fS ! A jB; A ! aA b j c; B !
eB f f j dg) be a LLin(1; 0) grammar. The language generated by is
L(G) = fak c bk; dk e f2k j k � 1g. Consider the literal homomorphism
de�ned by h(a) = a; h(b) = b, h(c) = c, h(d) = a, h(e) = d, h(f) = b.
This implies that h(L(G)) is the language used in the proof of Theorem
3.1.3. Therefore LLin(m;n) is not closed under homomorphism.

3.2 A bidirectional parser for LLin(m;n) gram-

mars

In this section, a characterization theorem for LLin(m;n) grammars and a
bidirectional parser for them will be presented.

De�nition 3.2.1 Let G = (VN ; VT ; S; P ) be a linear grammar, � 2 V �; # a
new terminal symbol and m;n 2 N+. We de�ne firstm lastn(�) as the union
of the following sets of pairs of words corresponding to �; m; n so that:

� (u; v) if 9 �
�

=)
G

ux v; u; x; v 2 V �

T ; juj = m; jvj = n;

� (x v#; v) if 9 �
�

=)
G

x v; x; v 2 V �

T ; jx vj = k < m; k � n; jvj = n;

� (u;#ux) if 9 �
�

=)
G

ux; u; x 2 V �

T ; juxj = k < n; k � m; juj = m;
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� (x#;#x) if 9 �
�

=)
G

x; x 2 V �

T ; jxj = k; k < m; k < n:

Theorem 3.2.1 (characterization of LLin(m;n) grammars)
Let G = (VN ; VT ; S; P ) be a reduced linear grammar. Then G is LLin(m;n)

grammar i� the following condition holds:

(1) firstm lastn(�1)\firstm lastn(�2) = ;; 8A! �1; A! �2 2 P; �1 6= �2:

Proof

(=)) Let us suppose that G does not satisfy condition (1). This means that
there exist two distinct productions A ! �1; A ! �2 such that the following
relation holds:

firstm lastn(�1) \ firstm lastn(�2) 6= ;:

According to the De�nition 3.2.1, there exist four cases (# is a new terminal
symbol):

1) (u0; v0) 2 firstm lastn(�1) \ firstm lastn(�2). Then there exist the
derivations (ju0j = m; jv0j = n):

�1
�

=)
G

u0 x v0; x 2 V �

T ;

�2
�

=)
G

u0 y v0; y 2 V �

T :

Because G is a reduced grammar, it follows that A is an accessible non-
terminal, so we obtain the derivations:

S
�

=)
G

uAv =)
G

u�1 v
�

=)
G

uu0 x v0 v

S
�

=)
G

uAv =)
G

u�2 v
�

=)
G

uu0 y v0 v

According to De�nition 3.1.1, it follows that �1 = �2: Contradiction !

2) (x v0#; v0) 2 firstm lastn(�1)\firstm lastn(�2): Then according to Def-
inition 3.2.1, there exist the derivations (jx v0j = k < m; jv0j = n � k):

�1
�

=)
G

x v0; x 2 V �

T ;

�2
�

=)
G

x v0:

So, we obtain again the derivations:

S
�

=)
G

uAv =)
G

u�1 v
�

=)
G

ux v0 v

S
�

=)
G

uAv =)
G

u�2 v
�

=)
G

ux v0 v

According to De�nition 3.1.1, it follows that �1 = �2: Contradiction !
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The remaining two cases can be treated in an similar way.

((=) Let us suppose that G is not a LLin(m;n) grammar. Then there exist
two distinct derivations:

S
�

=)
G

uAv =)
G

u�1 v
�

=)
G

ux v

S
�

=)
G

uAv =)
G

u�2 v
�

=)
G

u y v

such as x(n) = y(n) and (m)x =(m) y: Then there exist u0; v0 2 V �

T such as
ju0j = m; jv0j = n and x = u0 z1 v

0; y = u0 z2 v
0: This implies that the pair

(u0; v0) 2 firstm lastn(�1) \ firstm lastn(�2). But A ! �1 and A ! �2 are
distinct productions (i.e. �1 6= �2) inG, so we obtain a contradiction (G satis�es
the condition (1)).

Corollary 3.2.1 Given a linear grammar G = (VN ; VT ; S; P ) and two integers
m and n; one can decide if the grammar is LLin(m;n):

Proof Directly from Theorem 3.2.1 and because the sets firstm lastn can be
computed (with an algorithm).

In the following, we shall de�ne a device similar with a deterministic push-
down \transducer". This will be called a bidirectional parser (syntactic ana-
lyzer, Figure 3.2) and it will be attached to a LLin(m;n) grammar G. It scans
an \input string", one or/and two strings at a time, from left to right or right
to left. It can push or pop strings in the double ended queue (deque) from both
sides. In the output tape, it provides the result of the syntactic analysis. It
returns the values \ACC" or \ERR" depending on whether the input string is
accepted or not.

Control Double ended

queue

Output tape

Figure 3.2. LLin(m,n) style bidirectional parser

Input tape
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De�nition 3.2.2 Let G = (VN ; VT ; S; P ) be a LLin(m;n) grammar. We de-
note by C � #V �

T# � V � � f1; 2; :::; jP jg� the set of possible con�gura-

tions, where # is a special character (a new terminal symbol). The bidirec-
tional parser (denoted by BPm;n(G)) consists of the pair (C0;`), where the
set C0 = f(#w#; S; �) j w 2 V �

T g � C is called the set of initial con�gura-
tions, and `� C � C is the transition binary relation (sometimes denoted
by

BPm;n(G)

) between con�gurations is given by:

10. Expand transition:

(#u#; A; �) ` (#u#; �; �r) if r = no(A! �) for which the pair

((m)u#;#u(n)) 2 firstm lastn(�)

20. Reduce transitions:

a) (#v1 u#; v1A; �) ` (#u#; A; �); 8 v1 2 V +
T

b) (#u v2#; A v2; �) ` (#u#; A; �); 8 v2 2 V +
T

c) (#v1 u v2#; v1Av2; �) ` (#u#; A; �); 8v1; 8v2 2 V +
T

30. Acceptance transition:

(##; �; �) ` ACC

40. Rejection transition:

(#u#; �; �) ` ERR if no transitions of type 10; 20; 30 can be applied.

We denote by
+

` (
�

`) the transitive (re
exive) closure of the above binary
relation ` : Sometimes, for a given grammar G, we will denote these closures

by
+

BPm;n(G)

(
�

BPm;n(G)

respectively).

It is obvious that the bidirectional parser BPm;n(G) is deterministic, i.e. for
any arbitrary con�guration at most one con�guration may be \reached". But

the condition ((m)(u#) ; (#u)
(n)

) 2 firstm lastn(�) ensures the uniqueness of
the production A! � because G is a LLin(m;n) grammar.

Lemma 3.2.1 Let G be a LLin(m;n) grammar. Then, the following implica-
tions are true:

(i) if (#v1 u v2#; S; �)
�

BPm;n(G)

(#u#; X; �0) then S
�0

=)
G

v1X v2;

(ii) if (#w#; S; �)
�

BPm;n(G)

(##; �; �) then S
�

=)
G

w:
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Proof

(i) By induction on the length of �0.

Basis: j�0j = 0: Thus v1 = v2 = �; A = S; and then S
�

=)
G

S:

Inductive Step: Let �0 = �01 r; where r = no(B ! �) is the associated
number of the last applied production. Denoting v1 = v11 v12 and v2 = v21 v22
we obtain:

(#v1 u v2#; S; �) = (#v11 v12 u v21 v22#; S; �)
�

` (#v12 u v21#; B; �
0

1):

From the inductive hypothesis, it follows that S
�0

1=)
G

v11B v22: Then from

10 (De�nition 3.2.2), we obtain the con�guration (#v12 u v21#; �; �1 r), where

((m)v12 u v21#;# v12 u v
(n)
21 ) 2 firstm lastn(�): The next transitions

(#v12 u v21#; �; �
0

1 r)
�

`
BPm;n(G)

(#u#; X; �0)

could be only reduce transitions. So � = v12X v21 (2
0 a),b),c), De�nition 3.2.2).

We may then have the derivation:

S
�0

1=)
G

v11 B v22
r

=)
G

v11 � v22 = v11 v12X v21 v22 = v1X v2

(ii) Take u = �, X = �, v1 v2 = w, �0 = � in (i) .

Lemma 3.2.2 Let G be a LLin(m;n) grammar. Then, the following implica-
tions hold:

(i) S
�0

=)
G

v1X v2 implies (#v1 u v2#; S; �)
�

BPm;n(G)

(#u#; X; �0);

(ii) S
�

=)
G

w implies (#w#; S; �)
�

BPm;n(G)

(##; �; �);

Proof

(i) By induction on the length of �0.
Basis: j�0j = 0: Thus v1 = v2 = �; A = S; and following transitions hold:

(#u#; S; �)
�

`
BPm;n(G)

(#u#; S; �):

Inductive Step: Let �0 = �01 r, where r = no(B ! �) be associated number
of the last applied production which generates the sentential form v1X v2: The
above derivation may be written as:

S
�0

1=)
G

v11B v22
r

=)
G

v11 v12X v21 v22 = v1X v2
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Applying the inductive hypothesis for �01, we obtain

(#v11 v12 u v21 v22#; S; �)
�

BPm;n(G)

(#v12 u v21#; B; �
0

1):

Now, we may continue with expand transition, obtaining the con�guration
(#v12 u v21#; v12X v21; �

0

1 r): Then we apply the reduce transitions a),b),c) and
obtain the con�guration (#u#; X; �01 r) = (#u#; X; �0):

(ii) Take u = �, X = �, v1 v2 = w, �0 = � in (i).

Theorem 3.2.2 (correctness and complexity of BPm;n(G))
Let G be a LLin(m;n) grammar. Then

(#w#; S; �)
�

BPm;n(G)

(##; �; �)
BPm;n(G)

ACC i� S
�

=)
G

w:

On the other hand, (#w#; S; �)
�

BPm;n(G)

ERR i� w =2 L(G): The number of

transitions of BPm;n(G) is k � jwj, where w is the input word and k is a positive
integer constant.

Proof Both implications directly follow from Lemmas 3.2.1 (ii) and 3.2.2
(ii), respectively. The time complexity results from the fact that BPm;n(G) is
de�ned over a �nite structure (grammar G) and BPm;n(G) is deterministic (i.e.
for any given con�guration, at most one transition could be applied).

The next section will be dedicated to another practical bidirectional parser,
for LLin(1; 1) grammars (the sets first1 last1 can be computed in polynomial
time related to the dimension of the input grammar).

3.3 Bidirectional parsing for LLin(1; 1) gram-

mars

The LLin(0; 0) grammars have the property that there exists no nonterminal
symbol which may be in the left hand side of a production. Obviously, for a
reduced LLin(0; 0) grammar, its language is �nite.

We also do not consider LLin(1; 0) or LLin(0; 1) grammars because they co-
incide with LLin(1) grammars or reverse (mirror) LLin(1) grammars (Corollary
3.1.1).

De�nition 3.3.1 Let G = (VN ; VT ; S; P ) be a linear grammar, � 2 V �: Then

first last(�) = f(a; b) j 9�
�

=)
G

a v b; v 2 V �

T ; a; b 2 VT g[

[f(a; a) j 9�
�

=)
G

a; a 2 VT g [ f(#;#) j �
�

=)
G

�g

Theorem 3.2.1 becomes:
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Theorem 3.3.1 G is LLin(1; 1) grammar i� first last(�1)\ first last(�2) =
;; 8 A! �1 2 P; 8 A! �2 2 P; �1 6= �2:

The bidirectional parser BP1;1(G) (denoted simply by BP (G)) can also be
reformulated (we present only the transition relation, # being a new nonterminal
symbol):

10 Expand transition:

(#u#; A; �) ` (#u#; �; � r) if r = no(A! �) and the pair

((1)u#;#u(1)) 2 first last(�)

20. Reduce transitions:

a) (#v1 u#; v1A; �) ` (#u#; A; �); v1 2 V +
T

b) (#u v2#; A v2; �) ` (#u#; A; �); v2 2 V +
T

c) (#v1 u v2#; v1 Av2; �) ` (#u#; A; �); v1; v2 2 V +
T

30. Acceptance transition:

(##; �; �) ` ACC

40. Rejection transition:

(#u#; �; �) ` ERR if no transitions of type 10; 20; 30 can be applied.

BP (G) may be used in practical compiler applications. For instance the
computation of the sets first last(�) (� being right hand side of a production)
can be done in polynomial time on the dimension of input linear grammar G:

Example 3.3.1 Let us review the grammar G4 from Example 3.1.1.

1. S ! aS

2. S ! Ab

3. A! Ab

4. A! �

We can easily \compute" the sets:

� first last(aS) = f(a; b)g;

� first last(Ab) = f(b; b)g;

� first last(�) = f(#;#)g;
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According to Theorem 3.3.1, it follows that G4 is a LLin(1; 1) grammar. Let
us now consider the word w = a a b b b: In BP (G4) we have:

(#a a b b b#; S; �) ` (#a a b b b#; a S; [1]) ` (#a b b b#; S; [1]) `

` (#a b b b#; a S; [1; 1]) ` (#b b b#; S; [1; 1]) ` (#b b b#; A b; [1; 1; 2]) `

` (#b b#; A; [1; 1; 2]) ` (#b b#; A b; [1; 1; 2; 3]) ` (#b#; A; [1; 1; 2; 3]) `

(#b#; A b; [1; 1; 2; 3; 3]) ` (##; A; [1; 1; 2; 3; 3]) ` (##; �; [1; 1; 2; 3; 3; 4]) ` ACC

So, w is \accepted" by BP (G4). According to Theorem 3.2.2, it follows that
w 2 L(G4):

Two additional functions and two additional binary relations are needed for
determining the sets first last(�); where � is a right hand side of a production
of G:

These are first; last : VN ! P(VT )[f�g and begin; end � V �VN given
by:

� a 2 first(A) i� there exists a derivation A
�

=)
G

a�;

� a 2 last(A) i� there exists a derivation A
�

=)
G

�a;

� � 2 first(A) (or last(A)) i� there exists a derivation A
�

=)
G

�;

� X beginA i� there exist a production A! � X v and a production �
�

=)
G

�, where � 2 VN [ f�g;

� X endA i� there exist a production A! uX � and a production �
�

=)
G

�,

where � 2 VN [ f�g.

The following lemma suggests a procedure for obtaining the relations begin
and end.

Lemma 3.3.1

1) If Y beginnX then there exists m; m � n such that X
m
=)
G

Y �;

2) If X
n

=)
G

Y � then there exists m; m � n such that Y beginmX;

3) a begin�A i� there exists a derivation A
�

=)
G

a�;

4) If Y endnX then there exists m; m � n such that X
m
=)
G

�Y ;

5) If X
n

=)
G

�Y then there exists m; m � n such that Y endmX;
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6) a end�A i� there exists a derivation A
�

=)
G

�a.

Proof By induction on m and n.

According to Lemma 3.3.1, it is obvious that:

� a 2 first(A) i� a begin�A;

� a 2 last(A) i� a end�A:

The computation of first last may be given as the value returned of the
following self-explanatory recursive function.

Input: The linear grammar G = (VN ; VT ; S; P )
Output: first last(�); � 2 V �:

function first last(�);
begin

if (� = �) then first last(�) := f(#;#)g;
if (� = a; a 2 VT ) then first last(�) := f(a; a)g;
if (� = a � b; a; b 2 VT ) then first last(�) := f(a; b)g;
if (� = Au b; A 2 VN ; u 2 V �

T ; b 2 VT ) then begin

first last(�) := f(a; b) j a 2 first(A)� f�gg;
if (� 2 first(A)) then add to first last(�) the pair ( (1)u b; b);

end ;
if (� = a uA; a 2 VT ; u 2 V �

T ; A 2 VN ) then begin

first last(�) := f(a; b) j a 2 last(A)� f�gg;
if (� 2 last(A)) then add to first last(�) the pair (a; a u(1));

end ;
if (� = A; A 2 VN ) then begin

set chain(A) := fB j A
�

=)
G

B; B 2 VNg;

set fst snd := ;;
for (any A! � 2 P; B 2 set chain(A)) do
if (� =2 VN ) then set fst snd := set fst snd [ first last(�);

first last(�) := set fst snd
end

end .

The previous algorithm (for computing the function first last) has polyno-
mial time complexity (on the dimension of G) because it describes (in a recursive
manner) the transitive closure of the derivation relation for linear grammars.

The following example proves that first last(�) is properly included in
first(�)� last(�):

Example 3.3.2 Let G = (fS;Ag; fa; b; cg; S; fS ! A; A ! aA b j bA a j cg)
be a linear grammar. we have first last(A) = f(a; b); (b; a); (c; c)g. On the
other hand, first(A) = fa; b; cg and last(A) = fa; b; cg: It results that G is a
LLin(1; 0) (or LLin(0; 1)) grammar.
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3.4 Conclusions

Following the stated results related to LLin(m;n) grammars, the following \in-
clusion" diagram holds:

unambiguous grammars

LL(k) grammars

linear grammars

context-free grammars

LLin(m,n) grammars

Figure 3.3

Without loss of generality, we allow - from now on - three modi�cations of
the bidirectional parser for testing the power of the device given in De�nition
3.2.2:

(i) reading (and/or replacing) of two consecutive symbols (at the ends of the
deque);

(ii) interchanging the contents of the mentioned two ends of the deque;

(iii) removing the third component, i.e. the syntactic analysis.

Accordingly, we can now present an example of a bidirectional parser which
can analyze the context sensitive language L = fan bn cn j n � 1g. In fact,
we shall simulate the monotone grammar given by the following productions:
1. A! aAB c 2. A! a b c 3. cB ! B c 4. bB ! b b
As the initial con�guration, we take (#w#; A), where w 2 fa; b; cg� is the

input word. Assuming that the notations w and 
 stand for words (of any
length) over fa; b; cg, and fa; b; c; A;Bg respectively, the transitions will be the
following:

1. (#a aw c#; A 
) ` (#a aw c#; aAB c 
)

2. (#aw c#; a 
 c) ` (#w#; 
)

3. (#aw#; a 
 B) ` (#w#; 
 B)

4. (#a bw#; A 
) ` (#a bw#; a b c 
)
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5. (#bw c#; b 
 B) ` (#w c#; 
 B)

6. (#bw c#; c 
 cB) ` (#bw c#; c 
 B c)

7. (#bw c#; c B 
 c) ` (#bw c#; B c 
 c)

8. (#bw#; B 
) ` (#bw#; b 
)

9. (#bw c#; b 
 c) ` (#w#; 
)

10. (#b bw c c#; c c 
 B B) ` (#b bw c c#; B c 
 B c)

11. (#b c#; c B) ` (#b c#; B c)

12. (##; �) ` ACC

13. (�; �) ` ERR - in the other cases.

The above bidirectional parser is deterministic because at each step at most
one transition may be applied. We may say that the parser is of type (3; 3)
because at the transition 11, we need to read three symbols from the left, and
right, respectively.

We conclude that the subclasses of LLin(m;n) languages are more \power-
ful" than some deterministic context-free languages, \keeping" the linear time
complexity of the associated algorithms for solving the membership problem.
Known closure properties are generally not preserved.

Open-problems: Are the LLin(m;n) languages closed under complemen-
tation, intersection with regular languages and inverse homomorphism ?
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Chapter 4

Left and right bidirectional

parsing for context free

grammars

In this chapter we describe some subclasses of context-free grammars for which
a parallel approach useful for solving the membership problem will be de�ned
([AnK99a]). More precisely, we will combine the classical type of parser attached
to a grammar G with a \mirror" process for G. They simultaneously analyze
the input word from both sides, using - ideally - two processors.

In the �rst section, we present the (general) left and right bidirectional
parsers which use a nondeterministic device for any context free language.

In the second section, a general SIMD model for describing bidirectional
parsing is introduced. It - mainly - contains two algorithms which use a back-
tracking method to describe the nondeterministic behavior of the (general) left
and right bidirectional model.

The third section treats some deterministic subclasses of context free gram-
mars, such as RR(k), RL(k) and SIP grammars. The idea is \to put in a
reverse view" the classical deterministic subclasses of context free grammars.

The fourth section points out the application of the (general) left and right
bidirectional parser to the deterministic subclasses described in the previous
section. Ten new classes of grammars obtained by combining the previous ones
are de�ned, using descendant and ascendant strategies. The membership prob-
lem for all these types of grammars can be solved with a parallel algorithm in
linear time.

4.1 Left and right bidirectional parsers

We de�ne two parsers which have the main goal to accept context free languages.
The idea is similar - but more general - to that of [AnK98]. The input word

57
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is still analyzed from both sides, but the given algorithm \works" (having two
\heads" which operate independently) not only for the class of linear grammars,
but for context free grammars.

Before giving the description of a new kind of parsers for context free gram-
mars, a list of speci�c de�nitions and notations are in order.

Firstly a device similar to a nondeterministic pushdown \transducer" is
needed. This will be called the general bidirectional parser attached to

the context free grammar G. It scans two \input strings" from left to right
or right to left. It can push or pop strings in two stacks. The output tapes pro-
vide the syntactical analysis. It returns the value \ACC" or \REJ" depending
on whether the input string is accepted or rejected.

In Section 4.4, we shall \see" how a deterministic bidirectional parser can
be designed (for some particular subclasses of context free languages).

Let G be an arbitrary context free grammar and eG its reverse. Depending
on how we visit the derivation tree associated to a frontier word, w 2 V �

T , we
may distinguish two strategies:

(a) a descendant left to right strategy for G and (combined with) a right to

left ascendant strategy for eG;
(b) an ascendant left to right strategy for G and a right to left descendant

strategy for eG.
These two strategies can be depicted as:

(a) (b)

Figure 4.1. Strategies for left and right bidirectional parsing

We shall present in the following - in a formal manner - only the situation
(a).

De�nition 4.1.1 Let G = (VN ; VT ; S; P ) be a context free grammar. Let
C�fs1; s2g�f1; 2; :::; jP jg��V �#�#V �

T#�V
�#�f1; 2; :::; jP jg�[fACC;REJg be

the set of all possible con�gurations, where # is a new special character (a ter-
minal symbol). The general left bidirectional parser (denoted by GBPl(G))
is the pair (C0;`), where C0 = f(s1; �; S#;#w#;#; �) j w 2 V �

T g � C is called



THE LEFT AND RIGHT BIDIRECTIONAL PARSERS 59

the set of initial con�gurations. The �rst component is a state, the second
and the last components of a con�guration store the partial syntactic analysis.
The third and the �fth components represent the working stacks (each of which
having at the bottom the marker #). The fourth component represents the cur-
rent content of the input word (enclosed by the two markers). The transition
relation (`� C � C, sometimes denoted by

GBPl(G)

) between con�gurations is

given by:

10 Expand-Shift: (s1; �1; A�#;#u b#; �#; �2)`(s1; �1r; Æ�#;#u#; b�#; �2),
where r = no(A! Æ);

20 Expand-Reduce: (s1; �1; A�#;#u#; "�#; �2)` (s1; �1r1; Æ�#;#u#; B�#;

r2�2), where r1 = no(A! Æ) and r2 = no(B ! ");

30 Reduce-Shift: (s1; �1; a �#;#a u b#; �#; �2)` (s1; �1; �#;#u#; b �#; �2);

40 Reduce-Reduce: (s1; �1; a �#;#a u#; " �#; �2) ` (s1; �1; �#;#u#; B �#;

r�2), where r = no(B ! ");

50 Expand-Stay: (s1; �1; A�#;#u#; �#; �2) ` (s1; �1r; Æ �#;#u#; �#; �2),
where r = no(A! Æ);

60 Reduce-Stay: (s1; �1; a �#;#a u#; �#; �2) ` (s1; �1; �#;#u#; �#; �2);

70 Stay-Shift: (s1; �1; �#;#u b#; �#; �2) ` (s1; �1; �#;#u#; b �#; �2);

80 Stay-Reduce: (s1; �1; �#;#u#; " �#; �2) ` (s1; �1; �#;#u#; B �#; r�2),
where r = no(B ! ");

90 Possible-accept: (s1; �1; 
1#;##; 
2#; �2) ` (s2; �1; 
1#;##; 
2#; �2);

100 Parallel-reduce: (s2; �1; X
1#;##; X
2#; �2)`(s2; �1; 
1#;##; 
2#; �2);

110 Accept: (s2; �1;#;##;#; �2) ` ACC;

120 Reject: (s1; �1; �#;#u#; �#; �2) ` REJ and (s2; �1; �#;##; �#; �2) `
REJ if no transitions of type 10, 20, ..., 110 can be applied.

The deterministic two-stack machine ([HoU79]), which is a deterministic
Turing machine with a read-only input tape and two storage tapes is known
to have the same power as the usual Turing machines. If a head moves left on
either tape, a blank is printed on that tape. In [HoU79], there exists Lemma
7.3:

An arbitrary single-tape Turing machine can be simulated by a deterministic
two-stack machine.

Another model equivalent to Turing machine is the two-counter machine,
which is o�-line Turing machine whose storage is semi-in�nite (e.g. on the right),
and whose alphabets contain only two symbols, Z and B (blank). Furthermore,
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the symbol Z, which denoted the bottom of the stack, occurs initial on the cell
scanned by the tape head and may never appear on any other cell. An integer i
can be stored by moving the tape head i cells to the right of Z: A stored number
can be incremented or decremented by moving the tape head right or left. A
two-counter machine can test whether a number is zero by checking whether Z
is scanned by the head, but it cannot directly test whether two numbers are
equal. In [HoU79] there exists Theorem 7.9:

A two-counter machine can simulate an arbitrary Turing machine.

Our model is in fact a two-stack machine. The di�erences consist in the
existence of two heads (instead of only one) which may read the input tape,
and of two output tapes which can be accessed only in write style, and has only
two states. According to the results presented above, our model can simulate a
Turing machine.

This model can be depicted as:

..

.

... .. .

...

.

.

Control

Stack1

Input tape

Stack2

Output tape2Output tape1

Figure 4.2. General Left and Right Bidirectional Parser Style

Lemma 4.1.1 Let G be a context free grammar. If

(1) (s1; �; S#;#u1 u2 u3#;#; �)
�

GBPl(G)

(s1; �1; �#;#u2#; �#; �2)

then S
�1=)

G;lm
u1 � and �

�2=)
G;lm

u3.

Proof We proceed by induction on the number of applied transitions (de-
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noted by t) during the computation (1).
t;�

GBPl(G)

and
10

GBPl(G)

will mean that t

transitions, respectively that transition number 10 have been applied.
Basis: t = 1. Starting from the initial con�guration, we can successively apply
the transitions 10, 50 and 70. Supposing that we apply 10. Then we obtain:

(s1; �; S#;#u1 u2 u3#;#; �)
10

GBPl(G)

(s1; r; �#;#u1 u2 u
0
3#; a#; �);

where r = S ! � 2 P and u3 = u03 a: Therefore S
r

=)
G;lm

� and a
0

=)
G;lm

a: The

remaining cases (50, 70) can be treated in a similar way.
Inductive Step: Suppose that relation (1) is true for at most t transitions and
prove it for t+ 1 (applied) transitions. We know that:

(2) (s1; �; S#;#u1 u2 u3#;#; �)
t+1;�

GBPl(G)

(s1; �1; �#;#u2#; �#; �2)

We have to prove that S
�1=)

G;lm
u1 � and �

�2=)
G;lm

u3. The last transition in (2)

may be of one of the types 10, 20, ..., 80.
I: Suppose that the last transition in (2) is expand-shift. We may rewrite (2)
as:

(s1; �; S#;#u1 u2 u3#;#; �)
t;�

GBPl(G)

(s1; �
0
1; A�2#;#u2 b#; �

0#; �2)

10

GBPl(G)

(s1; �1; �#;#u2#; �#; �2); where r = no(A! �1); �
0r = �1;

�1 �2 = �; b �0 = �: According to the inductive hypothesis, we obtain:

S
�0

1=)
G;lm

u1A�2 and b �0 = �
�2=)

G;lm
u3:

But A! �1 is the r�th production from P , and so:

S
�0

1=)
G;lm

u1A�2
r

=)
G;lm

u1 �1 �2 = u1 �:

II: Suppose that the last transition in (2) is expand-reduce. We can rewrite the
initial transition as:

(s1; �; S#;#u1 u2 u3#;#; �)
t;�

GBPl(G)

(s1; �
0
1; A�2#;#u2#; " �

0#; �2)

20

GBPl(G)

(s1; �1; �#;#u2#; �#; �2) where r1 = no(A! �1); �
0
1r1 = �1;

�1 �2 = �; r2 = no(B ! "); B �0 = �; r2�
0
2 = �2: According again to the

inductive hypothesis, we get:

S
�0

1=)
G;lm

u1A�2 and " �
0 �0

2=)
G;lm

u3:
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But A ! �1 and B ! " are the r1-th, respectively r2-th, productions from P ,
and then

S
�0

1=)
G;lm

u1A�2
r1=)

G;lm
u1 �1 �2 = u1 � and � = B�0

r2=)
G;lm

" �0
�0

2=)
G;lm

u3

III: Suppose that the last transition in (2) is reduce-shift. The initial transition
may be rewritten as:

(s1; �; S#;#u1 u2 u3#;#; �)
t;�

GBPl(G)

(s1; �
0
1; a �2#;#a u2 b#; �

0#; �2)

30

GBPl(G)

(�1; �#;#u2#; �#; �2) where b �
0 = �. Following the inductive hy-

pothesis, we obtain:
S

�1=)
G;lm

u01 a� and �0
�2=)

G;lm
u03

where u01 a = u1 and b u
0
3 = u3: Therefore

S
�1=)

G;lm
u1 a� = u1 � and � = b�0

�2=)
G;lm

b u03 = u3:

IV: Suppose that the last transition in (2) is reduce-reduce. The initial transi-
tions become:

(s1; �; S#;#u1 u2 u3#;#; �)
t;�

GBPl(G)

(s1; �1; a �#;#a u2#; Æ �
0#; �02)

40

GBPl(G)

(s1; �1; �#;#u2#; �#; �2) where r = no(B ! Æ); B �0 = �; r�02 = �2:

According to the inductive hypothesis, we get:

S
�1=)

G;lm
u1 a� and Æ �0

�0

2=)
G;lm

u3:

where u01 a = u1:
Therefore

S
�1=)

G;lm
u1 a� = u1 � and � = B�0

r
=)
G;lm

Æ �0
�0

2=)
G;lm

u3

The other cases (expand-stay, reduce-stay, stay-shift, stay-reduce) may be sim-
ilarly treated.

Lemma 4.1.2 Let G be a context free grammar. If S
�1=)

G;lm
u1 � and �

�2=)
G;lm

u3,

where (1)� 2 VN or � = �, then

(s1; �; S#;#u1 u2 u3#;#; �)
�

GBPl(G)

(s1; �1; �#;#u2#; �#; �2)

Proof By induction on t = j�1j+ j�2j.

Basis:
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� t = 0. In fact j�1j = 0 and j�2j = 0. Then the hypothesis may be

written as S
0

=)
G;lm

S, u3
0

=)
G;lm

u3 and � = u3: Therefore � = S and u1 = �.

Applying successively a number of ju3j stay - shift transitions to the initial
con�guration, we obtain:

(s1; �; S#;#u1 u2 u3#;#; �)
70;�

GBPl(G)

(s1; �; �#;#u2; �#;#; �)

� t = 1. We suppose j�1j = 1 and j�2j = 0. Then the hypothesis may be

rewritten as S
�

=)
G;lm

u1 � and u3
0

=)
G;lm

u3. Therefore u3 = �. Applying an

expand - stay transition, to the initial con�guration, we get:

(s1; �; S#;#u1 u2 u3#;#; �)
50

GBPl(G)

(s1; r; u1 �#;#u1 u2 u3#;#; �)

Two cases may distinguished:

{ ju1j � ju3j. Then the con�guration may be continued with a number
of ju1j transitions of the form reduce - shift (�nally) obtaining the
con�guration:

(s1; r; �#;#u2 u
0
3#; u

00
3#; �); where u

0
3 u

00
3 = u3:

Now, we may apply ju03j transitions of the form stay - shift to get the
�nal con�guration:

(s1; r; �#;#u2#; �#; �);

{ ju1j < ju3j. We may continue with ju3j transitions of the form reduce
- shift to obtain the con�guration:

(s1; r; u
0
1 �#;#u

0
1 u2#; u3#; �):

Now, we apply ju01j transitions of the form reduce - stay and we obtain
the �nal con�guration:

(s1; r; �#;#u2#; �#; �):

� t = 1. We suppose j�1j = 0 and j�2j = 1. Then the hypothesis may be

written as S
0

=)
G;lm

S and �
r

=)
G;lm

u3. Therefore � = S, u1 = �, � 2 VN and

u3 2 V �
T . It follows that we have to apply a number of ju3j transitions of

the type stay - shift to obtain:

(s1; �; S#;#u2#; u3#; �):

Now, we may apply a transition of the type stay - reduce, to get the �nal
con�guration:

(s1; �; �#;#u2#; �#; r):
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Inductive Step: We have to prove that P (t)! P (t+1), where P is the (obvi-
ous) logical predicate equivalent to our implication. We thus have to distinguish
two cases (I: �1 = �01 r1 and �2 = �02) and (II: �1 = �01 and �2 = r2 �

0
2).

I: Let A! Æ be the last applied production (numbered by r1) in the derivation

S
�1=)

G;lm
u1 �. We have

S
�0

1=)
G;lm

u01 �
0 = u01A�01

r1=)
G;lm

u01 Æ �
0
1 = u1 �;

where Æ = u001 �
00
1 , �

00
1 �

0
1 = �; u01 u

00
1 = u1. Because

(1)�0 2 VN ; we can apply the
inductive hypothesis:

(s1; �; S#;#u1 u2 u3#;#; �)
�

GBPl(G)

(s1; �
0
1; �

0#;#u001 u2#; �#; �
0
2) =

= (s1; �
0
1; A�01#;#u

00
1 u2#; �#; �

0
2)

50

GBPl(G)

(s1; �
0
1 r1; Æ �

0
1#;#u

00
1 u2#; �#; �

0
2)=

= (s1; �1; u
00
1 �

00
1 �

0
1#;#u

00
1 u2#; �#; �

0
2):

Now, by applying ju001 j transitions of type 60, we obtain the con�guration
(�001 �

0
1 = � and �02 = �2):

(s1; �1; �#;#u2#; �#; �2):

II: Let B ! " be the last applied production (numbered by r2) in the derivation

�
�2=)

G;lm
u3: Therefore, we have

� = u03B �0
r2=)

G;lm
u03 " �

0 �0

2=)
G;lm

u3

So, because u3 = u03 u
00
3 ; we can consider the derivation " �0

�0

2=)
G;lm

u003 . Now,

applying the inductive hypothesis, we get:

(s1; �; S#;#u1 u2 u3#;#; �)
�

GBPl(G)

(s1; �
0
1; �#;#u2 u

0
3#; " �

0#; �02)

80

GBPl(G)

(s1; �
0
1; �#;#u2 u

0
3#; B �0#; r2 �

0
2): Continuing with ju

0
3j transitions of

type 70, we obtain the con�guration (�01 = �1, r2 �
0
2 = �2 and u03B �0 = �):

(s1; �1; �#;#u2#; �#; �2):

Theorem 4.1.1 Let G be a context free grammar. Then

a) (s1; �; S#;#w#;#; �)
�

GBPl(G)

(s1; �1; 
#;##; 
#; �2) i� S
�1=)

G;lm



�2=)
G;lm

w;

b) (s1; �; S#;#w#;#; �)
�

GBPl(G)

(s2; �1;#;##;#; �2)
110

GBPl(G)

ACC i�

S
�1�2=)
G;lm

w:
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Proof

a) Simply take u1 = u2 = �, u3 = w; � = � = 
 in Lemmas 4.1.1 and 4.1.2,
b) The unique transition for which we can obtain an ACC answer is 110.

(=)) Because from state s2 it is impossible to return to state s1, it fol-

lows that there exists a 
 2 V � for which (s1; �; S#;#w#;#; �)
�

GBPl(G)

(s2; �1; 
#;##; 
#; �2). According to a), it follows that S
�1�2=)
G;lm

w:

((=) Since S
�1�2=)
G;lm

w, it follows that there exists 
 2 V � for which

S
�1=)

G;lm



�2=)
G;lm

w:

According to a), we get

(s1; �; S#;#w#;#; �)
�

GBPl(G)

(s1; �1; 
#;##; 
#; �2):

Now, applying transition 90, followed by j
j transitions of type 100, and
�nally by 110, we obtain the conclusion.

For (b) from Figure 4.1, we have just to \reverse" the general left bidirec-
tional parser (by switching the �rst two components with the last two compo-
nents of the given con�gurations).

De�nition 4.1.2 Let G = (VN ; VT ; S; P ) be a context free grammar. Let
C � fs1; s2g � f1; 2; :::; jP jg� � #V � � #V �

T# � #V � � f1; 2; :::; jP jg� [
fACC;REJg be the set of all possible con�gurations, where # is a new spe-
cial character (a terminal symbol). The general right bidirectional parser
(GBPr(G)) is given by a pair (C0;`), where C0 = f(�;#;#w#;#S; �) j w 2
V �
T g � C is called the set of initial con�gurations, and `� C �C is the tran-
sition relation (sometimes denoted by

GBPr(G)

) between con�gurations given

by:

10 Shift-Expand: (s1; �1;#�;#b u#;#�A; �2)`(s1; �1;#�b;#u#;#� Æ; �2r),
where r = no(A! Æ);

20 Reduce-Expand: (s1; �1;#�";#u#;#�A; �2) ` (s1; r1�1;#� B;#u#;#� Æ;

�2r2), where r1 = no(B ! ") and r2 = no(A! Æ);

30 Shift-Reduce: (s1; �1;#�;#b u a#;#�a; �2) ` (s1; �1;#� b;#u#;#�; �2);

40 Reduce-Reduce: (s1; �1;#�";#u a#;#�a; �2) `(s1; r�1;#� B;#u#;#�;

�2), where r = no(B ! ");

50 Shift-Stay: (s1; �1;#�;#b u#;#�; �2) ` (s1; �1;#� b;#u#;#�; �2);
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60 Reduce-Stay: (s1; �1;#� ";#u#;#�; �2) ` (s1; r�1;#� B;#u#;#�; �2);

70 Stay-Expand: (s1; �1;#�;#u#;#�A; �2) ` (s1; �1;#�;#u#;#� Æ; �2r),
where r = no(A! Æ);

80 Stay-Reduce: (s1; �1;#�;#u a#;#�a; �2) ` (s1; �1;#�;#u#;#�; �2);

90 Possible-accept: (s1; �1;#
1;##;#
2; �2) ` (s2; �1;#
1;##;#
2; �2);

100 Parallel-reduce: (s2; �1;#
1X;##;#
2X; �2)`(s2; �1;#
1;##;#
2; �2);

110 Accept: (s2; �1;#;##;#; �2) ` ACC;

120 Reject: (fs1; s2g; �1;#�;#u#;#�; �2) ` REJ if no transitions of type
10, 20, ..., 110 can be applied.

We shall show the relation between the right general bidirectional parser
associated to a grammar G and the right most derivations in G.

Lemma 4.1.3 Let G be a context free grammar. If

(3) (s1; �;#;#u1 u2 u3#;#S; �)
�

GBPr(G)

(s1; �1;#�;#u2#;#�; �2)

then �
�1=)

G;rm
u1 and S

�2=)
G;rm

�u3.

Proof Analogous to the proof of Lemma 4.1.1 (using induction on the number
of transitions).

Lemma 4.1.4 Let G be a context free grammar. If �
�1=)

G;rm
u1 and S

�2=)
G;rm

�u3,

where �(1) 2 VN or � = �, then

(s1; �;#;#u1 u2 u3#;#S; �)
�

GBPr(G)

(s1; �1;#�;#u2#;#�; �2):

Proof Analogous to the proof of Lemma 4.1.2, (by induction on j�1j+ j�2j).

Theorem 4.1.2 Let G be a context free grammar. Then

a) (s1; �;#;#w#;#S; �)
�

GBPr(G)

(s1; �1;#
;##;#
; �2) i� S
�2=)

G;rm



�1=)
G;rm

w;

b) (s1; �;#;#w#;#S; �)
�

GBPr(G)

ACC i� S
�

=)
G;rm

w:

Proof By taking u1 = w; u2 = u3 = �; � = � = 
 in Lemmas 4.1.3 and 4.1.4.
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Example 4.1.1 Let us consider the context free grammar given by the produc-
tions 1: A ! aAB b 2: A ! c d 3: B ! BC e 4: B ! f 5: C ! g, and the
word w = a c d f g e b: We shall see how GBPl(G) and GBPr(G) can work on
the input the word w (above the sign \`" the associated transition number may
be indicated).

For GBPl(G) we obtain:

(s1; �; A#;#a c d f g e b#;#; �)
10

` (s1; [1]; aAB b#;#a c d f g e#; b#; �)
30

`

(s1; [1]; AB b#;#c d f g#; e b#; �)
10

` (s1; [1; 2]; c dB b#;#c d f#; g e b#; �)
40

`

(s1; [1; 2]; dB b#;#d f#; C e b#; [5])
30

` (s1; [1; 2]; B b#;##; f C e b#; [5])
80

`

(s1; [1; 2]; B b#;##; B C e b#; [4; 5])
80

` (s1; [1; 2]; B b#;##; B b#; [3; 4; 5])
90

`

(s2; [1; 2]; B b#;##; B b#; [3; 4; 5])
100

` (s2; [1; 2]; b#;##; b#; [3; 4; 5])
100

`

(s2; [1; 2];#;##;#; [3; 4; 5])
110

` ACC
Denoting by �lm the left most derivation obtained by concatenating the lists

[1; 2] and [3; 4; 5], we can conclude that w 2 L(G) and S
�lm=)
G

w:

For GBPr(G) we successively obtain:

(s1; �;#;#a c d f g e b#;#A; �)
10

` (s1; �;#a;#c d f g e b#;#aAB b; [1])
30

`

(s1; �;#a c;#d f g e#;#aAB; [1])
10

` (s1; �;#acd;#fge#;#aABCe; [1; 3])
40

`

(s1; [2];#aA;#fg#;#aABC; [1; 3])
10

` (s1; [2];#aAf;#g#;#aABg; [1; 3; 5])
40

`

(s1; [2; 4];#aAB;##;#aAB; [1; 3; 5])
90

` (s2; [2; 4];#aAB;##;#aAB; [1; 3; 5])
100

` (s2; [2; 4];#aA;##;#aA; [1; 3; 5])
100

` (s2; [2; 4];#a;##;#a; [1; 3; 5])
100

`

(s2; [2; 4];#;##;#; [1; 3; 5])
110

` ACC
Denoting by �rm the right most derivation obtained by concatenating the lists

[1; 3; 5] and [2; 4], we can conclude that w 2 L(G) and S
�rm=)
G

w:

It is obvious that the parsers GBPl(G) and GBPr(G) are nondeterministic.
For example, if G would contain the production C ! BC e; then GBPl(G)
\has to backtrack" into the con�guration (s1; [1; 2]; B �#;##; B C e b#; [4; 5]).

The same can be \said" about GBPr(G). If G contains, for example, the
production C ! f; then we need a backtracking step at the con�guration
(s1; [2];#aAf;#g#;#aAB g; [1; 3; 5]).

We shall see in sections 4.3, 4.4 how we can avoid these backtracking steps by
de�ning special subclasses of context free languages (for which we can present
deterministic algorithms). Furthermore, these subclasses (RL(k), RR(k), SIP
and the \Cartesian product combinations") are large enough for describing the
behavior for practical compilers.

Example 4.1.2 In order to test the power of the bidirectional parser models
(De�nitions 4.1.1 and 4.1.2), we shall allow the simultaneously reading of two
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terminal symbols from the input tape (for the left part). Using this additional
property, we shall design a deterministic bidirectional parser which can analyze
the context sensitive language L = fan bn cn j n � 1g: In fact, we shall simulate
the monotone grammar given by the following productions ([JuA97]):

1. A! aAB c 2. A! a b c 3. cB ! B c 4. bB ! b b

As the initial con�guration we take (A#;#w#;#), where w 2 fa; b; cg� is
the input word. Assuming that the notations u and �; � stand for words (of
any length) over fa; b; cg; and fa; b; c; A;Bg respectively, the transitions will be
of the following forms:

10 (A�#;#a a u#; �#) ` (aAB c�#;#a a u#; �#)

20 (A�#;#a b u#; �#) ` (a b c �#;#a b u#; �#)

30 (a�#;#a u c#; �#) ` (�#;#u#; c �#)

40 (b �#;#b u#; �#) ` (�#;#u#; �#)

50 (c �#;#u#; c �#) ` (�#;#u#; �#)

60 (B �#;#b u#; �#) ` (b �#;#u#; �#)

70 (#;##;#) ` ACC

80 (�#;#u#; �#) ` REJ if no transitions of type 10, ..., 70 can be applied.

The above bidirectional parser is deterministic because for each con�guration
at most one transition may be applied.

Theorem 4.1.3 The following statement holds:

(A#;#w#;#)
�

` ACC i� 9 n 2 N+ and w = an bn cn such that A
�

=) w:

Proof

((=) We have to show that (A#;#an bn cn#;#)
�

` ACC.
If n = 1 then

(A#;#an bn cn#;#)
20

` (a b c#;#a b c#;#)
30

` (b c#;#b#; c#)
40

`

(c#;##; c#)
50

` (#;##;#)
70

` ACC

If n > 1 we have

(A#;#an bn cn#;#)
10

` (aAB c#;#an bn cn#;#)
30

`

(AB c#;#an�1 bn cn�1#; c#)
(10;30)�

` (A (B c)n�1#;#a bn c#; cn�1#)
20

`

(a b c (B c)n�1#;#a bn c#; cn�1#)
30

` (b c (B c)n�1#;#bn#; cn#)
40

`

(c (B c)n�1#;#bn�1#; cn#)
50

` ((B c)n�1#;#bn�1#; cn�1#)
60

`
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(b c (B c)n�2#;#bn�1#; cn�1#)
(40;50;60)�

(#;##;#)
70

` ACC

(=)) We know that (A#;#w#;#)
�

` ACC and we have to show that there

exists n 2 N+; w = an bn cn and A
�

=) w:
Beginning with the initial con�guration, we can apply only transitions of

type 10 or 20.

If we apply 20; then w = a b u, and we reach the con�guration (a b c#;#a b u#;#).
Now only 30, i.e. u = u1 c, may be applied. We get the con�guration
(b c#;#b u0#; c#). Applying the transition 40, we obtain (c#;#u0#; c#). The
only possibility to obtain ACC is to apply 50 and get (#;#u0#;#); it is obvious
that u0 = � and therefore w = a b c (n = 1).

If we apply 10; then w = a a u, and we obtain (aAB c#;#a a u#;#). Again,
only a type 30 transition is applicable, i.e. u = u1 c: We get the con�guration
(AB c#;#a u1#; c#). Only transitions 10 and 20 may now be applied. If we
apply 20, then we cannot apply 10 and 20 anymore. So, the general con�guration
will be (after (n� 2) applications of transitions of type 10 and 30, n � 2):

(a b c (B c)n�1#;#a u0#; cn�1#); u1 = an�2 u0 cn�2

Because the only transition which can be applied is 30; it follows that u0 = u1 c
and the next con�guration is:

(b c (B c)n�1#;#u0#; cn#):

It follows - applying 40 - that u01 = b v1 and the next con�guration is:

(c (B c)n�1#;#v1#; c
n#):

The only possibility is - at this moment - to apply 50: We get:

((B c)n�1#;#v1#; c
n�1#):

Now, we can apply only 60: We get the con�guration:

(b c (B c)n�2#;#v1#; c
n�1#):

Continuing in the same manner as above, we �nally obtain:

(#;#v01#;#); where v1 = bn�1 v01:

Now, the only possibility to get ACC is to have v01 = �:
Then

w = a a u = a a u1 c = a a an�2 u0 cn�2 c = an u01 c
n =

= an b v1 c
n = an bn v01 c

n = an bn cn (n � 2)
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4.2 A parallel approach for (general) bidirec-
tional parsing

In this section we present a parallel approach which is very convenient for de-
scribing the general left and right bidirectional parsing strategies (Figure 4.3).

.. ..
unit1

Stack1

and logic

Arithmetic

Output tape1

Control

Unit

i1 i2

Common memory

Processor P2Processor P1

Input tape

.. ..

Arithmetic

unit2

and logic

Stack2 Output tape2

Figure 4.3. General SIMD Model for Left and Right Bidirectional Parsing

Following [Akl97], our model is a SIMD (simple instruction stream, multiple
data stream) computer. This means, in fact, that these two processors P1 and
P2 operate under the control of a single instruction stream issued by a central
control unit. They share a common memory.

We shall present a parallel algorithm which describes the general left bidi-
rectional parsing strategy. Our algorithm (denoted (PAR LEFT)) uses the
following variables:

� w 2 V �
T is the input word; w can be also stored into the local memories of

the two processors; in that case, the only global variables (belonging to
the common memory) are i1 and i2;

� n is the length of w;

� i1, i2 are two counters indicating the (current) positions of the pointers



A PARALLEL APPROACH FOR (GENERAL) ... 71

to w;

� is_no_over is a boolean variable which takes the value true if processor
P2 performs a reduce action;

� accept is a boolean variable which takes the value true i� w 2 L(G);

� Stack1, Stack2 are the two working stacks for P1 and P2;

� Output_tape1, Output_tape2 are the output tapes of P1 and P2 and will
be used for storing the syntactic analysis of the input word;

� exit is a boolean variable which is true i� P1 or P2 detect the non-
acceptance situation for the input word.

We shall use also some prede�ned procedures, such as:

� pop(Stack,top) - the value of top will be set to the value of the �rst
symbol from Stack; after that, the top of Stack will be removed;

� push(Stack,�) - push into the top of Stack the values � = �1�2:::�k
(� 2 V �; k = j�j); �1 will be the new top of Stack;

� push(Output_tape,r) - push into the top of Output_tape the value of r.

Supposing that the context free grammar G = (VN ; VT ; S; P ) is already
given, the method of (PAR LEFT)is listed below:

begin

read(n); read(w); i1:=1; i2:=n; push(Stack1, S);

accept:=false; exit:=false;

repeat in parallel

if (i1<=i2) then action1(P1);

action2(P2);

until (i1>=i2) or (exit=true);

if (i1>=i2) and (exit=false) then begin

is_no_over:=false;

while (is_no_over=false) and (exit=false) do

if (Stack1=Stack2) then begin

is_no_over:=true;

accept:=true

end

else

action2(P2)

end;

if (accept=true) then begin

write('w is accepted and has the left hand syntactic analysis ');
write(Output_tape1, Output_tape2);
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end

else write('w is not accepted.');
end;

It remains to list the procedures action1(P1) and action2(P2).

procedure action1(P1);

begin

pop(Stack1,top);

case top of

(top2 VT ) and (top=w[i1]):
/* reduce action */

if (i1<i2) then i1:=i1+1;

top2 VN : begin
/* expand action */

�nd a production top! � 2 P , where r = no(top! �);
if (there exists an r of this form) then begin

push(Stack1,�);
push(Output_tape1,r);

end

end

otherwise: begin

backtrack step is needed;
if (all the backtracking steps ended) and
(still no reduce or expand action could be performed)

then exit:=true

end

end;

procedure action2(P2);

begin

case

if (9 r= no(B ! �); � is in Stack2 starting from top) then begin

/* reduce action */

pop(Stack2, �);
push(Stack2, B);
push(Output_tape2,r);

end;

if (i2>i1) then begin

/* shift action */

push(Stack2,w[i2]);
i2:=i2-1;

end;

otherwise: begin

backtrack step is needed;
if (all the backtracking steps ended) and
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(still no reduce or expand action could be performed)
then exit:=true

end

end;

Theorem 4.2.1 (termination of the Algorithm (PAR LEFT))
The Algorithm (PAR LEFT) performs a �nite number of steps until it ter-

minates its execution.

Proof Because the input grammar G has a �nite number of productions, the
number of possible expand actions for P1 and reduce actions for P2 is �nite. For
the other actions (i.e. reduce for P1 and shift for P2) only one character from w

is read. Because w is a �nite word it follows that the statement repeat-until
from (PAR LEFT) performs a �nite number of iterations (both processors P1
and P2 terminate their execution after a �nite number of steps). Therefore, the
Algorithm (PAR LEFT) performs a �nite number of steps until terminating its
execution.

Theorem 4.2.2 (correctness of the Algorithm (PAR LEFT))
For a given G = (VN ; VT ; S; P ) and w 2 V �

T as its input, the Algorithm
(PAR LEFT) gives the answer 'w is accepted' if w 2 L(G) and 'w is not ac-
cepted.' otherwise.

Proof We present an informal proof, Algorithm (PAR LEFT) being in fact
a pseudo-code description of GBPl(G) (according to De�nition 4.1.1). More
precisely, for showing the correctness of the parallel Algorithm (PAR LEFT),
it suÆces to note that (PAR LEFT) is \equivalent" to the sequential algorithm
associated to the transitions of the general left bidirectional parser. The only
case which is not obviously true corresponds to the case i1 = i2 (only one
letter from the input word remains to be read). Then P1 could perform only
expand actions, while P2 could perform both operations, i.e. reduce and shift.
This restriction was imposed in order to eliminate the (possible) errors and the
deadlock. Deadlock in the algorithm is understood in the following sense: both
processors wait one each other to \read" the letter. Some errors come from the
fact that both processors actually \read" the letter (i.e. P1 performs i1:=i1+1,
and P2 performs i2:=i2-1) and thus the content of the two stacks could not
be equal, even for words which belong to the language of the input grammar.

Consider now the following cases:

(i) P1 works, P2 works

(ii) P1 stays, P2 works

(iii) P1 works, P2 stays

It is obvious that situation (i) for which action1(P1) and action2(P2) are
called and executed in parallel, is described in an \equivalent" way in general
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left bidirectional parser by the transitions: expand - shift, expand - reduce,
reduce - shift, reduce - reduce. The situation (ii) corresponds to stay - shift and
stay - reduce and the situation (iii) corresponds to expand - stay and reduce
- stay. Finally, one of the processors will perform the transitions of accepting
and rejecting the input word. The nondeterministic behavior of the general left
bidirectional parser is realized in the parallel algorithm by introducing those
backtracking points in action1(P1) and action2(P2). If no backtracking step
can be performed, then the variable exit is set to true, so the input word is not
accepted by the parser (and of course, this is not contained into the language
of the input grammar).

So, (PAR LEFT) is correct.

We may note that it is possible to store into the local memories of P1 and
P2 the input word (and deleting it from the common memory). This does not
change the original implementation issues because w is accessed in a read style.
In this case the only variables which stored into the common memory are i1

and i2.
Another possible modi�cation is to replace the variables i1, i2 from the

common memory, and make a direct link from P1 to P2 (and vice-versa, of
course). In that case, we can just send to the other processor the value of i1,
respectively i2.

We may describe another parallel algorithm which implements the general
right bidirectional parsing strategy. Because it is similar to the general
left bidirectional parsing strategy, we shall describe only the di�erent parts.

The parallel algorithm (PAR RIGHT) corresponding to the \right" model
is (G = (VN ; VT ; S; P ) is the input context free grammar):

begin

read(n); read(w); i1:=1; i2:=n; push(Stack2,S);

accept:=false; exit:=false;

repeat in parallel

action1(P1);

if (i2>=i1) then action2(P2);

until (i1>=i2) or (exit=true);

if (i1>=i2) and (exit=false) then begin

is_no_over:=false;

while (is_no_over=false) and (exit=false) do

if (Stack1=Stack2) then begin

is_no_over:=true;

accept:=true

end

else

action1(P1)

end;

if (accept=true) then begin
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write('w is accepted and has the left hand syntactic analysis ');
write(Output_tape2, Output_tape1);

end

else write('w is not accepted.');
end;

The procedures action1(P1) and action2(P2) are:

procedure action1(P1);

begin

case

if (9 r= no(B ! �); � is in Stack1 beginning with the top) then begin

/* reduce action */

pop(Stack1,�);
push(Stack1,B);
push(Output_tape1, r);

end

if (i1<i2) then begin

/* shift action */

i1:=i1+1;

push(Stack1,w[i1]);

end

otherwise: begin

backtracking step is needed;
if (all the backtracking steps ended) and
(still no reduce or expand action could be performed)

then exit:=true

end

end;

procedure action2(P2);

begin

pop(Stack2,top);

case top of

(top2 VT ) and (top=w[i2]):

/* reduce action */

if (i2>i1) then i2:=i2-1;

top2 VN: begin

/* expand action */

�nd a production top! � 2 P , where r = no(top! �);
if (there exists an r of this form) then begin

push(Stack2,�);
push(Output_tape2,r);

end

end;
otherwise: begin
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backtracking step is needed;
if (all the backtracking steps ended) and
(still no reduce or expand action could be performed)

then exit:=true

end

end;

Similar results - as for PAR LEFT - related to the termination and correct-
ness of the above Algorithm (PAR RIGHT) can be stated and proved.

4.3 Deterministic subclasses of context free
grammars

In this section we present some important subclasses of context free grammars
for which there exist deterministic algorithms for solving the membership prob-
lem, in O(n) time complexity (n being the length of the input word).

We start by giving an important result which establishes the relation between
a context free grammar G and its reversed version eG:
Theorem 4.3.1 Let G = (VN ; VT ; S; P ) be a context free grammar and let eG =

(VN ; VT ; S; eP ) be its reverse. Then, for any A 2 VN , and any derivation � 2
f1; 2; :::; jP jg�, we have:

A
�

=)
G;lm

w 
 i� A
�

=)eG;rm e
 ew
for any w 2 V �

T ; 
 2 VN � V � [ f�g:

Proof We shall proceed by induction on j�j. The basis (j�j = 1) is obviously
true.

We shall show only the direct implication of the equivalence.
Inductive Step: Let A

�
=)
G;lm

w 
 be the left most derivation �, (j�j � 1),

where w 2 V �
T , 
 2 VN � V � [ f�g: j�j � 1 means that there exists a production

numbered by r in G such that � = �1r: Now, we may rewrite the derivation as:

A
�1=)

G;lm
w1 B 
2

r
=)
G;lm

w 
; where r = no(B ! w2) 
1; w1 w2 = w; 
1 
2 = 
:

But j�1j < j�j, so we can apply the inductive hypothesis to get:

A
�1=)

G;lm
e
2 w e
1

Now, because fw1 2 V �
T ; we may continue with a right by derivation applying ineG the production r = B ! e
1 fw2:

A
�1=)eG;rm e
2B fw1

r
=)eG;rm e
2 e
1 fw2 fw1 = e
 ew:

The other implication may be similarly obtained.
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4.3.1 RR(k) grammars

The name RR(k) is a shorthand for Right to left scanning of the input con-
structing a Rightmost derivation in reverse, using k symbols of lookahead (see
also De�nition 2.1.14).

De�nition 4.3.1 Let G be a context free grammar and k be a natural number.
We say that G is RR(k) if eG is a LL(k) grammar. A language L is RR(k) if
there exists a RR(k) grammar which generates L.

As a remark, ifG = (VN ; VT ; S; P ) is a RR(0) grammar (respectively reduced
grammar), then for any A 2 VN , there exists (respectively exactly) at most
one production of the form A ! � 2 P: Certainly, if G is a reduced RR(0)
grammar, then its language is �nite. That is why these grammars have no
practical interest.

In [LeS68] it is pointed out that RR(k) grammars \may be obtained from
LL(k) by reversing the roles of left and right", but no formal de�nition was
given.

In order to de�ne a parser for RR(k) grammars, we shall give - for the
beginning - some de�nitions and results which are \dually" obtained from similar
ones for LL(k) grammars.

Theorem 4.3.2 Any RR(k) grammar is unambiguous.

Proof Using De�nition 4.3.1 and a corresponding result from ([LeS68]).

Theorem 4.3.3 If G is a right recursive grammar, then there exists no natural
number k such as G be a RR(k) grammar.

Proof From De�nitions 2.1.14 and 4.3.1.

Theorem 4.3.4 The RR(k) languages form a strict in�nite hierarchy:

RR(0) � RR(1) � RR(2) � ::: � RR(k) � RR(k + 1) � :::

Proof From De�nitions 2.1.14, 4.3.1 and the strict inclusion \LL(k) � LL(k+
1) ([[LeS68]]).

Lemma 4.3.1 There exist context free languages which are not RR(k) for any
natural number k.

Proof For example, L = fan c bn; a2n d bn j n � 1g cannot be RR(k), for
any natural number k. The proof can be done using a similar procedure as in
Theorem 3.1.3.

In the following, we shall de�ne a subclass of RR(k) grammars (called
SRR(k)) for which there exists an eÆcient algorithm for solving the problem
'G is a SRR(k) grammar'. Furthermore, the subclass SRR(1) coincides with
RR(1): We need also few auxiliary sets of words useful for de�ning the class of
SRR(k) grammars.
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De�nition 4.3.2 Let G = (VN ; VT ; S; P ) be a context free grammar, � 2 V +,
A 2 VN and k 2 N+: Then

LASTk(�)=fu 2 V �
T j juj = k; �

�
=)
G

v u; v 2 V �
T g[fu 2 V �

T j juj < k; �
�

=)
G

ug

PREV IOUSk(A) = fu 2 V �
T j S

�
=)
G

�A� and u 2 LASTk(�)g:

We have to notice that for a given nonterminal symbol A; the set
PREV IOUSk(A) represents the set of all terminal words of length less than
k which may occur in sentential forms, before of the occurrence of A: We can
extend the sets LASTk to sets of words:

if L � V � then LASTk(L) =
[
�2L

LASTk(�):

Furthermore, if � 2 V + and L � V +; we put �L = f�x j x 2 Lg:

De�nition 4.3.3 A context free grammar G = (VN ; VT ; S; P ) is SRR(k) if for
any A 2 VN and any two (di�erent) productions A! �1, A! �2 the following
statement holds:

LASTk(PREV IOUSk(A) � �1) \ LASTk(PREV IOUSk(A) � �2) = ;

The associated deterministic parser for this subclass of grammars can now
be given. We have to mention that it has only one state, so we shall not consider
the set of states as a basic component.

De�nition 4.3.4 Let G = (VN ; VT ; S; P ) be a SRR(k) grammar, where k 2 N:
Let C � #V �

T �#V
��f1; 2; :::; jP jg� [fACC;REJg be the set of all possible con-

�gurations, where # is a new character (a terminal symbol). The PSRRk(G)
parser is given by the pair (C0;`); where C0 = f(#w;#S; �) j w 2 V �

T g � C is
called the set of initial con�gurations, and `� C � C is the transition re-

lation (sometimes denoted by
PSRRk(G)

) between con�gurations and it is given

by:

10 Expand: (#u;#
 A; �) ` (#u;#
 �; � r) if r = no(A! �) and

#u(k) 2 LASTk(#PREV IOUSk(A) � �);

20 Reduce: (#u a;#
 a; �) ` (#u;#
; �)

30 Accept: (#;#; �) ` ACC;

40 Rejection: (#u;#
; �) ` REJ if no transitions of type 10; 20 and 30 can
be applied.

Theorem 4.3.5 Let G be a SRR(k) grammar. Then the parser PSRRk(G)
is deterministic, i.e. for any given con�guration at most one transition can be
applied.
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Proof The expand transitions are deterministic according to De�nition 4.3.3,
i.e. for an arbitrary con�guration there exists at only one transition which can
be applied. The rest of the transitions are deterministic, too.

Theorem 4.3.6 For any k 2 N+ the class of SRR(k) grammars is strictly
included in the class of SRR(k + 1) grammars.

Proof The fact that every SRR(k) grammar is also a SRR(k + 1) grammar
is obvious. On the other hand, the grammar G = (fSg; fag; S; fS ! ak j ak+1g)
is a SRR(k+1) grammar, but not a SRR(k) grammar (according to De�nition
4.3.3).

Similar results as for RR(k) grammars could be designed for SRR(k) gram-
mars. For instance, any SRR(k) grammar (k 2 N) is unambiguous, and a right
recursive grammar is not a SRR(k) grammar, for any k 2 N+. A similar result
is:

Let G = (VN ; VT ; S; P ) be a reduced context free grammar and k 2 N+:
Then G is a right recursive grammar i� there exists w 2 V �

T for which the
parser PSRRk(G) has an in�nite number of con�gurations.

4.3.1.1 RR(1) grammars

RR(1) grammars proved to be useful in practice because - for them - the auxil-
iary sets LAST1, PREV IOUS1 (simply denoted, from now on, by LAST and
PREV IOUS) may be computed in polynomial time. According to De�nition
4.3.2, we can rewrite LAST and PREV IOUS as follows (� 2 V + and A 2 VN ):

LAST (�) = fa j a 2 VT ; �
�

=) u ag [ f� j �
�

=) �g;

PREV IOUS(A) = fa j a 2 VT [ f�g; S
�

=) �A�; a 2 LAST (�)g:

The next result establishes the \equivalence" between SRR(1) and RR(1) gram-
mars.

Theorem 4.3.7 A context free grammar G = (VN ; VT ; S; P ) is RR(1) i� for
any A 2 VN and any two distinct productions A ! �1 j�2 the following state-
ment is true:

LAST (PREV IOUS(A) � �1) \ LAST (PREV IOUS(A) � �2) = ;:

Proof According to De�nition 4.3.1 and [LeS68] which proved a similar result
for LL(1) grammars.

For computing actually the sets LAST and PREV IOUS, we need �rst to
de�ne some binary relations over V � V:

De�nition 4.3.5 Let G be a context free grammar. Then:

1. X begin A i� 9 A! �X � 2 P and �
�

=) �;



80 CHAPTER 4. LEFT AND RIGHT BIDIRECTIONAL PARSING ...

2. X end A i� 9 A! �X � 2 P and �
�

=) �;

3. X followed_by Y i� 9 A! �X � Y 
 2 P and �
�

=) �;

4. X terminal Y i� X; Y 2 VT and X = Y ;

5. X nonterminal Y i� X; Y 2 VN and X = Y ;

6. last=terminal Æend� Æ nonterminal;

7. previous=terminal Æend� Æ followed_by Æ(begin�)�1 Æ nonterminal.

Theorem 4.3.8 Let G = (VN ; VT ; S; P ) be a reduced context free grammar and
a 2 VT ; X 2 VN : Then the following statements hold true:

(i) a 2 LAST (X) i� a lastX ; � 2 LAST (X) i� X
�

=) �;

(ii) a 2 PREV IOUS(X) i� a previousX ; � 2 PREV IOUS(X) i�
X begin� S.

Proof According to De�nitions 4.3.2 and 4.3.5.

Example 4.3.1 Let us consider the grammar given by the following produc-
tions:

1. S ! E 2. S ! B 3. E ! � 4. B ! a
5. B ! bC S e 6. C ! � 7. C ! C S ;

In order to check if this grammar is LL(1), we compute the null nonterminal

symbols, (X 2 VN is a null symbol if 9 X
�

=) �). For our grammar the set of
null symbols is fS;E;Cg: We then compute the auxiliary binary relations:

end= f(E; S); (B;S); (a;B); (e;B); (; ; C)g;
end� = idV [ end[f(a; S); (e; S)g;
last= f(a;B); (e;B); (; ; C); (a; S); (e; S)g;

So, the sets LAST for the nonterminal symbols are:

X S E B C
LAST fa; e; �g f�g fa; eg f; ; �g

We continue with the rest of our (last introduced) relations:

begin�1 = f(S;E); (S;B); (B; a); (B; b); (C;C); (C; S); (C; ; )g;
(begin�1)� Æ nonterminal= idVN [ f(S;E); (S;B); (C; S); (C;E); (C;B)g;
followed_by= f(b; C); (b; S); (b; e); (C; S); (C; e); (S; e); (C; ; ); (S; ; )g;
previous= f(b; C); (b; S); (b; E); (b; B); (; ; S); (; ; E); (; ; B)g:

Hence, the sets PREV IOUS corresponding to the nonterminal symbols are:

X S E B C
PREV IOUS fb; ; ; �g fb; ; ; �g fb; ; g fb; �g

According to Theorem 4.3.7, we check if our grammar is RR(1):

LAST (PREV IOUS(S) � E) = fb; ; ; ; �g;
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LAST (PREV IOUS(S) � B) = fa; eg;
LAST (PREV IOUS(B) � a) = fag;
LAST (PREV IOUS(B) � bC S e) = feg;
LAST (PREV IOUS(C) � �) = fb; �g;
LAST (PREV IOUS(C) � C S ; ) = f; g;

Therefore, G is a RR(1) grammar.

It is the time to de�ne the parser attached to a RR(1) grammar.

De�nition 4.3.6 Let G = (VN ; VT ; S; P ) be a RR(1) grammar and LAST ,
PREV IOUS the corresponding sets of words de�ned above. We denote by
C � #V �

T �#V
��f1; 2; :::; jP jg� [fACC;REJg the set of all possible con�gura-

tions, where # is a new character (a terminal symbol). The PRR1(G) parser
consists of the pair (C0;`); where C0 = f(#w;#S; �) j w 2 V �

T g � C is called
the set of initial con�gurations, and `� C � C is the transition relation

(sometimes denoted by
PRR1(G)

) between con�gurations given by:

10 Expand: (#u;#
 A; �) ` (#u;#
 �; � r) if r = no(A! �) and

#u(1) 2 LAST (#PREV IOUS(A) � �);

20 Reduce: (#u a;#
 a; �) ` (#u;#
; �);

30 Accept: (#;#; �) ` ACC;

40 Rejection: (#u;#
; �) ` REJ if no transitions of type 10; 20 and 30 can
be applied.

Stack

Control

a1 an#

. . r

.

.

Input tape

Output tape

Figure 4.4. The PRR1(G) parser
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The parser PRR1(G) is similar to a LL(1) parser, but the di�erence is that
it scans the input word beginning from the end to its start. It can push or pop
strings in the stack. The output tape will contain the right hand syntactical
analysis. It returns \ACC" or \REJ" depending on whether the input word is
accepted or not. Again our parser has only one state.

In the following we shall present a parsing algorithm for RR(1) grammars.

The Algorithm (Parsing-RR(1))

Input: Any RR(1) grammar G = (VN ; VT ; S; P ), the sets LAST; PREV IOUS
corresponding to the nonterminal symbols and a word w 2 V �

T ;
Output: The right hand syntactical analysis if w 2 L(G); otherwise the mes-
sage: 'w is not accepted'.
Method: Assume that we have at our disposal the following procedures:

� pop(stack,top) - as a result, the value of top will coincide with the value
of the �rst symbol from stack;

� push(stack,X) - pushes in the top of stack the value of X;

� push(Output_tape,r) - pushes in the top of Output_tape the value of r.

Then the main program is:

begin

read(w); push(stack,\#S"); i:= jwj+1;
accept:=false; is_over:=false;

put into the input tape the string \#w";
repeat

pop(stack,top);

remove the top of the stack;
if (top2 VN) then begin

/* expand action */

�nd r= no(top! �) such that w[i]2 LAST (PREV IOUS(top)�);
if (does not exist such a production) then

is_over:=true; /* reject action */

else begin

push(stack,�);
push(Output_tape,r);

end

end

else if (top=w[i] and i>1) then

/* reduce action */

i:=i-1;

else begin

is_over:=true;

if (top=#) and (i=1) then

/* accept action */



DETERMINISTIC SUBCLASSES OF CONTEXT ... 83

accept:=true

end;

until (is_over=true);

if (accept=true) then

write('w is accepted and has right hand syntactic analysis ',Output_tape)
else write('w is not accepted.')

end.

Theorem 4.3.9 (correctness and complexity of Algorithm (Parsing-RR(1)))
Algorithm (Parsing-RR(1)) is correct and has the time complexity O(jwj);

where w is the input word.

Proof The correctness follows directly from De�nition 4.3.1 and [LeS68]. The
number of iterations of the loop \repeat... until" is O(m � jwj), where m is
a constant depending on G: During an iteration, Algorithm (Parsing-RR(1))
makes an expand or a reduce action. The number of consecutively expand
actions is �nite because the input grammar is �nite. Any reduce action implies
the reading of one letter from w: Therefore the time complexity of Algorithm
(Parsing-RL(0)) is O(jwj):

Example 4.3.2 We reconsider the grammar of Example 4.3.1. Let w = b a ; e
be the input word for Algorithm (Parsing-RR(1)). We obtain:

(#b a ; e;#S; �)
10

` (#b a ; e;#B; [2])
10

` (#b a ; e;#bC S e; [2; 5])
20

`

(#b a ; ;#bC S; [2; 5])
10

` (#b a ; ;#bC E; [2; 5; 1])
10

` (#b a ; ;#bC; [2; 5; 1; 3])
10

`

(#b a ; ;#bC S ; ; [2; 5; 1; 3; 7])
20

` (#b a;#bC S; [2; 5; 1; 3; 7])
10

`

(#b a;#bC B; [2; 5; 1; 3; 7; 2])
10

` (#b a;#bC a; [2; 5; 1; 3; 7; 2; 4])
20

`

(#b;#bC; [2; 5; 1; 3; 7; 2; 4])
10

` (#b;#b; [2; 5; 1; 3; 7; 2; 4; 6])
20

`

(#b;#b; [2; 5; 1; 3; 7; 2; 4; 6])
30

` ACC.
Therefore, w 2 L(G) and the right hand syntactic analysis for it is

� = [2; 5; 1; 3; 7; 2; 4; 6]: The notation for the terminal symbols of this grammar
\comes" from:

b - begin, e - end, a - statement and ; - end of statement.

4.3.2 RL(k) grammars

The name RL(k) is a shorthand forRight to left scanning of the input construct-
ing a Leftmost derivation in reverse, using k symbols of lookahead (De�nition
2.1.15).

De�nition 4.3.7 Let G be a context free grammar and k be a natural number.
We say that G is an RL(k) grammar if eG is an LR(k) grammar. A language
L is RL(k) if there exists an RL(k) grammar generating L.
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An example of an RL(0) grammar can be found in [Knu65], but the only
\de�nition" for RL(0) grammars was that these are obtained from LR(0) by
an \asymmetric property". Later ([Knu71]) the author has referred again to
RL(k) and RR(k) grammars in an informal way too.

In order to de�ne a parser for RL(k) grammars we also need �rst some
de�nitions and results which are \dual" to similar ones for LR(k) grammars.

Theorem 4.3.10 Any RL(k) grammar is unambiguous.

Proof Using De�nition 4.3.7 and a similar result for LR(k) grammars
([Knu65]).

Theorem 4.3.11 ([Knu65]) There exist RL(0) languages which cannot be
LR(k), 8 k 2 N.

Proof Let G be the grammar:

S ! Ac jB A! aA b b j a b b B ! aB b j a b

Obviously G is a RL(0) grammar because eG is a LR(0) grammar. Note that
L(G) = fan b2n c; an bn j n � 1g is not a deterministic context free language. In
([Knu65]), it was proved that a language is deterministic context free language
i� it can be generated by a LR(k) grammar So, we cannot �nd an equivalent
LR(k) grammar to G:

4.3.2.1 RL(0) grammars

De�nition 4.3.8 Let G = (VN ; VT ; S; P ) be a context free grammar and =2 V
a new symbol (called point). An RL(0) item for G is a construction A !
�1 �2; where A! �1�2 2 P . The set of all items of G is denoted by I(G):

Example 4.3.3 For the production S ! x1 x2 ::: xn there exist n+ 1 items:

S ! x1 x2 ::: xn ; S ! x1 x2 ::: xn�1 xn; ::: S ! x1 x2 ::: xn

De�nition 4.3.9 An RL(0) item of the form A! � is called complete (the
point is at the beginning of the production).

De�nition 4.3.10 A viable suÆx for G is a word 
 2 V � for which there
exists a derivation S

�
=)
lm

uA� =)
lm

u��, and 
 is a suÆx for � � (i.e. there

exists 
0 2 V � such that � � = 
0 
).

Example 4.3.4 Let us consider the left hand derivation:

A =) aAB =) a c dB

According to De�nition 4.3.10, the viable suÆxes for a c dB are �; B, dB, c dB
and a c dB:
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De�nition 4.3.11 An item A! �1 �2 is valid for the viable suÆx 
 if there
exists a derivation:

S
�

=)
lm

uA� =)
lm

u�1 �2 � and 
 = �2 �

The set of all valid items for the viable suÆx 
 is denoted by I(
).

Example 4.3.5 Let us consider the grammar A! aAB j c d B ! b e j f

For the suÆx \�", there are several valid items, such as:

A! aAB ; A! c d ; B ! b e ; B ! f

For the suÆx \d", there is only one valid item: A! c d:
For the suÆx \b e", there is only one valid item, too: B ! b e:

Theorem 4.3.12 (characterization of RL(0) grammars)
A reduced grammar G = (VN ; VT ; S; P ) (and in which S does not occur in the

right hand side of the productions) is RL(0) if and only if for all viable suÆxes

; the set of all valid items for 
 (denoted by I(
)) satis�es the conditions:

(i) I(
) contains no two (or more than two) distinct complete items;

(ii) if A ! � 2 I(
) then I(
) contains no item of the form B ! �1 a �2;
a 2 VT :

Proof Similar to the corresponding proof for LR(0) grammars ([Knu65]).

Theorem 4.3.13 Let G be a reduced context free grammar. The set of all viable
suÆxes of the grammar G (generally an in�nite set) is a regular language.

Proof Similar to the corresponding proof for LR(0) grammars [Knu65]. We
think that some hints of that proof may be useful for what follows. Starting
from the reduced context free grammar G = (VN ; VT ; S; P ), a nondeterministic
�nite automaton with ��transitions can be derived which accepts the set of all
viable suÆxes. Let M = (I; V; Æ; q0; I) be such an automaton where:

� I = fq0g [ fA! �1 �2 j A! �1�2 2 Pg

� Æ is de�ned as follows:

(i) Æ(A! �1B �2; �) = fB ! � j B ! � 2 Pg;

(ii) Æ(A! �1X �2; X) = fA! �1 X �2g;

(iii) Æ(A! �a �; �) = Æ(A! �X �; Y ) = ;; Y 2 VN ; X 6= Y; a 2 VT :

q0 is the initial state, that is the item S0 ! S . Here S0 is a new symbol and
S0 ! S is a new production. Sometimes, if S does not occur on the right hand
side of the grammar productions, we may choose S0 = S (in that case, the
\initial state" will be a set of items of the form S ! � ; where S ! � 2 P ).
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Example 4.3.6 Let us consider the context free grammar G given by the pro-
ductions:

S ! aAd j bAB; A! cA j c; B ! b

We shall construct the equivalent automaton M (with ��transitions). Then we
check if G is a RL(0) grammar using Theorem 4.3.12. The two conditions from
Theorem 4.3.12 may be \translated" into the automaton graph as:

(i) the automaton graph does not contain two vertices A ! �; B ! �
(A ! � 6= B ! �), such as the paths from q0 to these vertices be labeled
with the same word;

(ii) the automaton graph does not contain two vertices A! �; B ! �1 a �2;
a 2 VT such as the paths from q0 to these vertices be labeled with the same
word.

S'!S. S!bAB. B!b.S!aAd.

S!aA.d S'!.S S!bA.B B!.b

S!a.Ad A!cA. A!c. S!b.AB

S!.aAd A!c.A A!.c S!.bAB

a

A

b

A!.cA

�

d S B

A

c

c b

A

� �

�

�

�

�

�
�

Figure 4.5. The automaton with �-transitions of viable suÆxes

Let us note that the graph for the automaton M satis�es the previous con-
ditions (i) and (ii). Hence G is a RL(0) grammar.

However, the conditions considered in Example 4.3.6 are hard to check on
this automaton with ��transitions. For each M , we may attach an equivalent
(i.e. L(M) = L(M 0)) deterministic automaton M 0 = (T; V; Æ0; t0; T ), where
T � 2I (one state fromM 0 corresponds to a subset of items fromM), t0 contains
all items accessible from q0 = S0 ! S using ��transitions, and Æ0 : T �V ! T
is partially de�ned.

We know that M accepts the set of all viable suÆxes and A ! �1 �2 2
Æ(qo; 
) if and only if A! �1 �2 is valid for 
: This implies (inM 0) that a state
t 2 T contains exactly all valid items for a certain viable suÆx. Therefore, the
two conditions above (for deciding if G is a RL(0) grammar) can be rewritten
as:
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(i) any state t 2 T contains at most a complete item;

(ii) for any state t 2 T which contains a complete item, t must contain no
item in which a terminal symbol is followed by .

These two conditions may be easily checked for M 0. In the following, we
shall indicate the way of constructing M 0 (called the RL(0) automaton of a
grammar G) starting from G. The function closure has as input a set of items
t and returns as output all the states (sets of items) accessible from t through
��paths.

The Algorithm (Closure)

Input: G = (VN ; VT ; S; P ) any context free grammar and t � I any set of
items;
Output: closure(t) = ft00 2 I j Æ(t; �) = t00g;
Method:

function closure(t):T;
(� T is a notation for a subset of I �);
begin

t':=t; flag:=true;

while (flag=true) do begin

flag:=false;

for (all A! �B � 2t') do

for (all B ! 
 2 P) do

if (B ! 
 =2t') then begin

t':=t'[fB ! 
 g;
flag:=true

end

end;

return(t');

end;

Lemma 4.3.2 LetM = (I; V; Æ; q0; I) be the automaton containing ��transitions
associated to grammar G and let t � I be a set of items. Then, using Algorithm
(Closure) we obtain as output closure(t) = ft00 2 I j Æ(t; �) = t00g:

Now, we are ready to give an algorithm for constructing the RL(0) automa-
ton for grammar G:

The Algorithm (RL(0)-Automaton)

Input: G = (VN ; VT ; S; P ), any context free grammar (augmented with the
production S0 ! S);
Output: M 0 = (T; V; Æ0; t0; T ) a deterministic automaton equivalent to M ;
Method:
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begin

t0:=closure(S
0 ! S ); T:= ft0g; marcat[t0]:=false;

while (9t 2 T and not(marcat[t])) do begin

for (all X 2 V ) do begin

t0:=;;
for (all A! �X � 2 t) do t0:=t0 [ fA! � X�g;
if (t0 6= ;) then begin

t0:=closure(t0);

if (t0 =2 T) then begin

T:=T [ ft0g;
marcat[t0]:=false;

end;

Æ0(t;X):=t0;

end

end;

marcat[t]:=true;

end

end;

Lemma 4.3.3 The Algorithm (RL(0)-Automaton) is correct, i.e. M 0 is a de-
terministic automaton equivalent to M (i.e. L(M 0) = L(M)).

Example 4.3.7 Consider the same grammar as in Example 4.3.6. Using Algo-
rithm (RL(0)-Automaton) we shall construct the deterministic automaton M 0

(the numbering of states in M 0 will be done in a breadth �rst search manner):

t0

S'!.S

t1

t2

t4

t3

t5

t6

t7

t8

t9

t10

b
B

d

S

A

c

c

A b

c

c

a

S'!S.

S!aAd.

S!bAb.

B!b.

B!.b

S!aA.d

A!cA.

A!c.

A!bA.B

A!cA.

S!a.Ad

A!c.A

A!.c

S!b.AB

A!c.A

S!.aAd

A!.cA

S!.bABA!c.

Figure 4.6. The deterministic automaton M'
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Now, after checking the associated conditions for M 0; we get that G is a
RL(0) grammar.

Example 4.3.8 Let us consider the grammar

G = (fS;Ag; fag; S; fS ! A; A! Aa j ag):

The deterministic automaton M 0 corresponding to G is given by:

S!A.

A!Aa.

A!a.

t0

S!.A

t1

A!A.a

A!.a

A!Aa.

A!a.

t2

A!.Aa

A

a

A

a

t3

Figure 4.7. The deterministic automaton M'

We can see that the state t2 does not satis�es the conditions imposed for
RL(0) grammars because it contains the complete item A ! a and the item
A! Aa in which the terminal a is followed by .

We can adapt the LR(0) language characterization theorem to characterize
RL(0) languages.

Theorem 4.3.14 (RL(0) language characterization theorem)
Let L � ��; where � is an arbitrary alphabet. The following four statements

are equivalent:

a) L is an RL(0) language;

b) eL � �� is a deterministic context free language and for all x 2 �+;

w; y 2 ��; if w 2 eL; wx 2 eL, and y 2 eL; then yx 2 eL;
c) there exists a deterministic pushdown automaton A=(Q;�;�; Æ; q0; Z0; F ),

where F = fqfg and there exists Zf 2 � such that

eL = T (A;Zf ) = T (A;�) = fw 2 �� j (q0; w; Z0)
�

` (qf ; �; Zf )g;

d) there exist strict deterministic languages L0 and L1 such that eL = L0L
�
1:
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Proof From Theorem 13.3.1, [Har78].

The parser attached to a RL(0) grammar may now be introduced.

De�nition 4.3.12 Let G = (VN ; VT ; S; P ) be a RL(0) grammar and M 0 =
(T; V; Æ0; t0; T ) be the corresponding deterministic automaton. We denote by
C � #V �

T �(T �VT )�t0�f1; 2; :::; jP jg� [fACC;REJg the set of all possible con-
�gurations, where # is a new character (a terminal symbol). The RL(0) parser
(denoted by PRL0(G)) is given by (C0;`); where the set C0 = f(#w; t0; �) j w 2
V �
T g � C is called the set of initial con�gurations, and `� C �C is the tran-
sition relation (sometimes denoted by

PRL0(G)

) between con�gurations and it

is given by:

10 Shift: (#u a; t �; �) ` (#u; t0 a t �; �) if Æ0(t; a) = t0;

20 Reduce: (#u; t0 � t �; �) ` (#u; t00A t �; r �) if A ! � 2 t0; j�0 t0j = j�j;
r = no(A! �); t00 = Æ0(t; A);

30 Accept: (#; �; �) ` ACC if S0 ! A 2 t1;

40 Reject: (#u; �; �) ` REJ if no transitions of type 10; 20 and 30 can be
applied.

The parser PRL0(G) is similar to the LR(0) parser. The main di�erence
is that it scans the input word from the end to its start. It can push or pop
strings in the stack using Æ0. The output tape will contain the left hand syntactic
analysis. It returns \ACC" or \REJ" depending on whether the input word is
accepted or not.

Stack

Control
M 0

a1 an#

tm

t0

r

.

.

. .

. .

Input tape

Output tape

Figure 4.8. The RL(0) parser
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The parsing algorithm for RL(0) grammars.

The Algorithm (Parsing-RL(0))

Input: Any RL(0) grammar G = (VN ; VT ; S; P ), the corresponding automaton
M 0 = (T; V; Æ0; t0; T ), and a word w 2 V �

T ;
Output: The left hand syntactic analysis if w 2 L(G); otherwise the message:
'w is not accepted'.
Method: We shall use the following prede�ned procedures:

� pop(stack,top) - the computed value of top equals the value of the �rst
symbol of stack (without removing the top of the stack);

� push(stack,X) - push into the top of the stack the value of X;

� push(Output_tape,r) - push into the top of Output_tape the value of r.

The main program is:

begin

read(w);push(stack,t0);i:=jw j+1;
accept:=false;is_over:=false;

the input tape contains the string \#w";
repeat

pop(stack,t);

if (Æ0(t,w[i])6= ; then begin

/* shift action */

push(stack,w[i]);

push(stack,Æ0(t,w[i]));
i:=i-1;

end

else

if (A! X1X2 ::: Xm 2t) then begin

if (A = S0) then begin

/* accept action */

push(Output_tape,no(S0! X1X2 ::: Xn));
is_over:=true;

accept:=true

end;

else begin

/* reduce action */

remove the �rst 2 �m symbols from the stack;
pop(stack,t');

t":=Æ0(t',A);
push(stack,A);
push(stack,t");

push(Output_tape,no(A! X1X2 ::: Xn))
end
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end

else is_over:=true /* reject action */

until (is_over=true);

if (accept=true) then

write('w is accepted and has left hand syntactic analysis ', Output_tape)

else write('w is not accepted.')
end.

Theorem 4.3.15 (correctness and complexity of Algorithm (Parsing-RL(0)))
Algorithm (Parsing-RL(0)) is correct and has the time complexity O(jwj);

where w is the input word.

Proof The correctness follows directly from De�nition 4.3.7 and [Knu65]. The
number of iterations of the loop \repeat... until" is O(m � jwj), where m
is a constant depending of G: During an iteration, Algorithm (Parsing-RL(0))
performs a shift or a reduce action. The number of consecutively reduce actions
is �nite because the input grammar is �nite. A shift action implies the reading
of one letter from w: So the time complexity of Algorithm (Parsing-RL(0)) is
O(jwj):

Example 4.3.9 Reconsider the grammar in Examples 4.3.6 and 4.3.7. Let
w = b c c b be the input word for Algorithm (Parsing-RL(0)). We have:

(#b c c b; t0; �)
10

` (#b c c; t4 b t0; �)
20

` (#b c c; t3B t0; [5])
10

` (#b c; t6 c t3B t0; [5])
20

`

(#b c; t7A t3B t0; [4; 5])
10

` (#b; t9 c t7A t3B t0; [4; 5])
20

` (#b; t7A t3 B t0; [3; 4; 5])
10

` (#; t10 b t7A t3B t0; [3; 4; 5])
20

` (#; t1 S t0; [2; 3; 4; 5])
30

` ACC
Therefore, w 2 L(G) and the left hand syntactic analysis for it is � = [2; 3; 4; 5]:

4.3.2.2 SRL(1) grammars

There exist practical cases where, for a given context free grammar G which is
not an RL(0) grammar, the con
icts reduce - reduce, reduce - shift (of the cor-
responding RL(0) automaton) can be solved. Simple RL(1) grammars (denoted
by SLR(1)) are needed.

De�nition 4.3.13 The context free grammar G = (VN ; VT ; S; P ) is SRL(1) if
for any state t 2 T of the RL(0) automaton M 0 = (T; V; Æ; t0; T ) de�ned as the
output of Algorithm (RL(0)-Automaton), the following statements hold true:

(i) if A! � 2 t and B ! � 2 t then

PREV IOUS(A) \ PREV IOUS(B) = ;;

(ii) if A! � 2 t and B ! � a 
 2 t then a =2 PREV IOUS(A):

Next, we shall de�ne a relation ACTION : T ! VT [f#g (sometimes called
an SRL(1)-table), which will be used to remove the con
icts reduce - reduce,
reduce - shift. This relation is constructed using the RL(0) (corresponding)
automaton and the sets PREV IOUS:
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The Algorithm SRL(1)-table:

Input: Any context free grammarG = (VN ; VT ; S; P ), the RL(0) corresponding
automaton M 0 = (T; V; Æ; t0; T ), the sets PREV IOUS(A); 8 A 2 VN :
Output: The relation ACTION(t; a); 8 t 2 T; 8 a 2 VT [ f#g:
Method:

begin

for (all t 2 T ) do begin

for (all A! � 2 t and A 6= S0) do begin

for (a 2 PREV IOUS(A)) do
ACTION(t; a):=reducer; where r = no(A! �);

if (� 2 PREV IOUS(A)) then
ACTION(t;#):=reducer; where r = no(A! �)

end;

for (all B ! � a 
 2 t; a 2 VT ) do
ACTION(t; a):=shiftk; where tk = Æ(t; a);

if (S0 ! S 2 t) then
ACTION(t;#):=ACCr ; where r = no(S0 ! S)

end

end.

If the relation ACTION is well de�ned, i.e. jACTION(t; a)j � 1; 8 t 2
T; 8 a 2 VT , then the two conditions of De�nition 4.3.13 hold and then G is a
SRL(1) grammar (and vice-versa).

In the following, we present the SRL(1) parsing algorithm. Because it is
similar to (Parsing-RL(0)) Algorithm, we list only the main program:

The Algorithm (Parsing-SRL(1))

begin

read(w);push(stack,t0);i:=jw j+1;
accept:=false;is_over:=false;

the input tape contains the string \#w";
repeat

pop(stack,t);

if (ACTION(t,w[i])= ACCr) then begin

/* accept action */

push(Output_tape,r);

is_over:=true;

accept:=true

end

else

if (ACTION(t,w[i])= shiftk then begin

/* shift action */

push(stack,t_k);

i:=i-1;



94 CHAPTER 4. LEFT AND RIGHT BIDIRECTIONAL PARSING ...

end

else

if (ACTION(t,w[i])= reducer then begin

/* reduce action */

let A! � be the r-th production;
remove the �rst j�j symbols from the stack;
pop(stack,t');

push(stack,Æ(t0; A));
push(Output_tape,r)

end

else is_over:=true /* reject action */

until (is_over=true);

if (accept=true) then

write('w is accepted and has left hand syntactic analysis ', Output_tape)

else write('w is not accepted.')
end.

Theorem 4.3.16 (correctness and complexity of Algorithm (Parsing-SRL(1)))
Algorithm (Parsing-SRL(1)) is correct and has the time complexity O(jwj);

where w is the input word.

Proof Using De�nition 4.3.13, the construction of ACTION and following
the same procedure as in the proof of Theorem 4.3.15.

Example 4.3.10 Let us consider the context free grammar G which generates
all the arithmetic expressions (over +; �):

E0 ! E E ! T + E jT T ! F � T jF F ! (E ) j id

It can be checked that G is not an RL(0) grammar, but it is an SRL(1) grammar
([AnG95]).

4.3.2.3 RL(1) grammars

De�nition 4.3.14 Let G = (VN ; VT ; S; P ) be a context free grammar. An
RL(1) item for G is a pair (a;A ! � �), where A ! � � is an RL(0) item,
and a 2 PREV IOUS(A) (if � 2 PREV IOUS(A); then a = #).

De�nition 4.3.15 A viable suÆx for G is a word 
 2 V � for which there
exists a derivation S

�
=)
lm

uA� =)
lm

u�1 �2 �; 
 being a suÆx for �1 �2 �: The

item (a;A ! �1 �2) is called valid for the viable suÆx �2 � if a = u(1) (if
u = � then a = #). The set of all valid items for 
 is denoted by I(
).

Theorem 4.3.17 (characterization of RL(1) grammars)
A reduced context free grammar G = (VN ; VT ; S; P ) is a RL(1) grammar if

and only if for any viable suÆx 
; there exist no two distinct LR(1) items valid
for 
 of the form:

(a;A! �); (b; B ! �1 �2 
) where �
(1)
1 =2 VN and a 2 LAST (b �1)
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Proof According to De�nition 4.3.7, the proof is similar to the corresponding
result for LR(1) grammars ([Knu65]).

For describing the so calledRL(1) automaton, the function called closure(I)
needs to be described. This computes all the valid items for the same suÆx 

(starting from a given set of valid items).

function closure(I):T; /* T is a notation for a subset of valid items */
begin

I':=I; flag:=true;

while (flag=true) do begin

flag:=false;

for (all (a;A! �B �) 2 I 0) do

for (all B ! 
 2 P ) do
for (all b 2 LAST (a�)) do

if ((b; B ! 
 ) =2 I 0) do begin

I 0:=I 0 [ f(B ! 
 ; b)g;
flag:=true

end

end;

return(I');

end.

Now we are ready to present an algorithm for constructing the RL(1) au-
tomaton for a given grammar G:

The Algorithm (RL(1)-Automaton)

Input: G = (VN ; VT ; S
0; P [ S0 ! S), a context free grammar;

Output: M = (T; V; Æ; t0; T ), the RL(1) deterministic automaton associated to
G;
Method:

begin

t0:=closure((#; S
0 ! S )); T:= ft0g; marcat[t0]:=false;

while (9t 2 T and not(marcat[t])) do begin

for (all X 2 V ) do begin

t0:=;;
for (all (a;A! �X �) 2 t) do t0:=t0 [ f(a;A! � X�)g;
if (t0 6= ;) then begin

t0:=closure(t0);
if (t0 =2 T) then begin

T:=T [ ft0g;
marcat[t0]:=false;

end;

Æ0(t;X):=t0;
end

end;

marcat[t]:=true;
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end

end;

Lemma 4.3.4 The automatonM (the output of Algorithm (RL(1)-Automaton))
is deterministic and accepts the set of viable suÆxes of the input grammar G:
Furthermore, for any 
 viable suÆx, Æ(to; 
) represents the set of all valid RL(1)
items for 
:

Proof According to De�nition 4.3.7, the proof is similar to the corresponding
result for LR(1) grammars ([Knu65]).

Example 4.3.11 The context free grammar given by the productions

S ! R = L jR; L! R � j a;R! L

is not a SRL(1) grammar, but it is a RL(1) grammar ([AnG95]).

The way of constructing the RL(1)-table is the only possible di�erence be-
tween RL(1) and SRL(1).

The Algorithm RL(1)-table:

Input: Any context free grammar G = (VN ; VT ; S; P ), the RL(1) equivalent
automaton M = (T; V; Æ; t0; T );

Output: The relation ACTION(t; a); 8 t 2 T; 8 a 2 VT [ f#g:
Method:

begin

for (t 2 T ) do begin

if ((b; A! �a �) 2 t) then

ACTION(t; a):=shiftk; where tk = Æ(t; a);

if ((a;A! �) 2 t) then

ACTION(t; a):=reducer; where r = no(A! �);

if ((#; A! �) 2 t and A 6= S0) then

ACTION(t;#):=reducer; where r = no(A! �);

if ((#; S0 ! S) 2 t) then

ACTION(t;#):=ACCr ; where r = no(S0 ! S);

for (all a 2 VT [ f#g) do
if (ACTION(t; a) = ;) then ACTION(t; a) = REJ

end

end.

In the next subsection we shall see how is it possible that the number of states
of the corresponding automaton of the input grammar will be the same as the
number of states of the RL(0)-automaton. This subclass is called LARL(1)
grammars (Look Ahead RL(1)).
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4.3.2.4 LARL(1) grammars

For an RL(1) automaton it may happen that some states have the same \values"
on the �rst component of RL(1) items. These states are somehow \equivalent".

De�nition 4.3.16 Let t be a state in an RL(1) automaton corresponding to a
context free grammar G: The kernel of this state (denoted by Ker(t)) is the set
of RL(0) items which \corresponds" to the �rst component of t, i.e.
Ker(t) = fA! �1 �2 j 9 (a;A! �1 �2) 2 tg:

Example 4.3.12 Ker(f(a;A ! �1 �2); (b; A ! �1 �2); (c; B ! �1 �2)g)
equals fA! �1 �2; B ! �1 �2g:

De�nition 4.3.17 Two states t1; t2 of an RL(1) automaton corresponding to
a context free grammar G are called equivalent if they have the same kernel,
i.e. Ker(t1) = Ker(t2).

Because every state of an RL(1) automaton is a set of RL(1) items, we may
de�ne the \union" of two states.

De�nition 4.3.18 Let t1 = f(M1;K1)g and t2 = fM2;K2)g be two equivalent
states of an RL(1) automaton, i.e. K1 = K2. Then we denote t1 [ t2 =
f(M1 [M2;K1)g:

Example 4.3.13 Let t1 = f(fa; bg; A ! �1 �2)g and t2 = f(a;A ! �1 �2)g
be two states. Obviously t1[ t2 = t1 (because t2 � t1). If t3 = f(b; A! �1 �2)g
then t2 [ t3 = t1:

De�nition 4.3.19 Let G = (VN ; VT ; S; P ) be an RL(1) grammar and let
M = (T; V; Æ; t0; T ) be the corresponding RL(1) automaton. We say that G is an
LARL(1) grammar if for any pair of equivalent states (t1; t2), where t1; t2 2 T ,
the state t1 [ t2 does not contain con
icts (i.e. reduce - reduce, reduce - shift
in the sense of De�nition 4.3.13).

The algorithms related to LARL(1) grammars are similar to the correspond-
ing algorithms concerning RL(1) grammars. The main di�erence concerns the
algorithm for constructing the LARL(1) automaton for the input grammar G.

First, we compute the RL(1) automaton M = (T; V; Æ; t0; T ) for the RL(1)
grammar G = (VN ; VT ; S; P ). Let us denote T = ft0; t1; :::; tng: Then we de-
termine the equivalent states (in the sense of De�nition 4.3.17). According to
De�nition 4.3.18, for the equivalent states, the union operation is made. Thus,
we obtain a new set of states, denoted by T 0 = fs0; s1; :::; smg; where m � n:
Now, if T 0 contains states with con
icts (in the sense of De�nition 4.3.13), then
we say that G is not a LARL(1) grammar (De�nition 4.3.18). Otherwise, we
compute the automaton M 0 = (T 0; V; Æ0; s0; T

0) in this way:
Let s be an arbitrary state which belongs to T 0: Then:

� if s 2 T then Æ0(s;X) = Æ(s;X); 8 X 2 V ;
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� otherwise (s 2 T 0 � T ), s = t1 [ t2 [ ::: [ tk (k � 2) then 8 X 2 V; the
states Æ(t1; X); Æ(t2; X); ..., Æ(tk; X) have the same kernel because t1; t2;
..., tk have the same kernel. Let s0 2 T 0 be the state which has the same
kernel as Æ(t1; X). Now, we de�ne Æ0(s;X) = s0:

The LARL(1) table can now be computed with Algorithm RL(1)-table, but
of course, replacing Æ with Æ0:

4.3.3 SIP grammars

In this section, we present formal de�nition for SIP grammars, which can be
viewed as \mirroring" the precedence grammars (see De�nitions 2.1.16 and
2.1.17).

De�nition 4.3.20 We say that a context free grammar G is an inverse prece-
dence grammar if eG is a precedence grammar. If G is invertible, then G is
called a simple inverse precedence grammar (denoted by SIP grammar).

De�nition 4.3.21 For any G = (VN ; VT ; S; P ) context free grammar without
null productions the following relations (called inverse precedence relations)
<< � � VT � V and

:
�; �>> � V � V are:

� a<< �X i� there exists a production A ! �B C � 2 P; B
�

=) 
 a and

C
+
=) X Æ;

� X
:
�Y i� there exists a production A! �X Y � 2 P ;

� X �>>Y i� there exists a production A! �B Y � 2 P and B
+
=) 
 X;

Let # be a new terminal symbol. We extend the previous binary relations
to that symbol such as:

#<< �X i� 9 S
+
=) X � and X �>># i� 9 S

+
=) �X:

According to De�nitions 2.1.16, 4.3.20 and 4.3.21, the following statements
immediately hold:

� X< �Y in G i� Y �>>X in eG;
� X

:
=Y in G i� Y

:
�X in eG (egal coincides to

:
�);

� X �>Y in G i� Y << �X in eG:
Therefore, a context free grammar G without null productions, in which the

binary relations<< �,
:
�, �>> are disjoint, may be called an inverse precedence

grammar.

Theorem 4.3.18 Let G = (VN ; VT ; S; P ) be a reduced context free grammar
without null productions and let

#S#
�

=)
lm

u1 u2 ::: uk AX1X2 ::: Xn =)
lm

u1 u2 ::: uk Y1 Y2 ::: YmX1X2 ::: Xn

be an arbitrary derivation for which u1 = #; u2; :::; uk 2 VT ; Xn = #: Then
the following statements hold true:
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1. uk<< �Y1;

2. Yk
:
�Yk+1; 8 k = 1;m� 1;

3. Ym�>>X1;

4. Xk�>>Xk+1 or Xk

:
�Xk+1, 8 k = 1; n� 1:

Proof By induction on the number of derivation steps.

De�nition 4.3.22 Let G = (VN ; VT ; S; P ) be an inverse precedence grammar
and let << �,

:
�, and �>> be the corresponding inverse precedence relations.

We denote by C � #V �
T � V �# � f1; 2; :::; jP jg� [fACC;REJg the set of all

possible con�gurations, where # is a new character (a terminal symbol). The
simple inverse precedence parser (denoted by SIPP (G)) is de�ned by the
pair (C0;`); where the set C0 = f(#w;#; �) j w 2 V �

T g � C is called the set of
initial con�gurations, and `� C � C is the transition relation (sometimes
denoted by

SIPP (G)

) between con�gurations, it is given by:

10 Shift: (#u a; 
#; �) ` (#u; a 
#; �) if a�>>(1)
 or a
:
�
(1)

;

20 Reduce: (#u; � 
#; �) ` (#u;A 
#; r �) if � = �1 ::: �m, u(1)<< ��1,
�k

:
��k+1; 8 k = 1;m� 1; �m�>>(1)
; r = no(A! �);

30 Accept: (#; S#; �) ` ACC;

40 Reject: (#u; 
#; �) ` REJ if no transitions of type 10; 20 and 30 can be
applied.

The parser SIPP (G) resembles the parser PRL0(G). It only has auxiliary
parsing informations (the relations << �,

:
�, �>>).

Example 4.3.14 Let G be a context free grammar given by:

S ! aS S b j c

We have

� << � = f(#; a); (#; c); (a; a); (a; c); (b; c); (b; a); (c; a); (c; c)g;

�
:
� = f(a; S); (S; S); (S; b)g;

� �>> = f(b;#); (c;#); (b; b); (b; S); (c; b); (c; S)g:

Therefore (<< �,
:
�, �>> are disjoint) G is an inverse precedence grammar.

Because it is invertible too, G is a simple inverse precedence grammar.
Now, let w = a a c c b c b be a input word for the parser SIPP (G): We derive

the transition sequence:

(#a a c c b c b;#; �)
10

` (#a a c c b c; b#; �)
10

` (#a a c c b; c b#; �)
20

`
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(#a a c c b; S b#; [2])
10

` (#a a c c; b S b#; [2])
10

` (#a a c; c b S b#; [2])
20

`

(#a a c; S b S b#; [2; 2])
10

` (#a a; c S b S b#; [2; 2])
20

` (#a a; S S b S b#; [2; 2; 2])
10

`

(#a; a S S b S b#; [2; 2; 2])
20

` (#a; S S b#; [1; 2; 2; 2])
10

` (#; a S S b#; [1; 2; 2; 2])
20

`

(#; S#; [1; 1; 2; 2; 2])
30

` ACC:

Therefore w 2 L(G), and w has the left hand syntactic analysis �l = [1; 1; 2; 2; 2]:

The parsing algorithm for simple inverse precedence grammar below uses
the prede�ned procedures pop, push already known.

The Algorithm (Parsing-SIP )

Input: Any SIP grammar G = (VN ; VT ; S; P ), the binary relations << �;
:
�,

�>> and a word w 2 V �
T ;

Output: The left hand syntactic analysis if w 2 L(G); otherwise the message:
'w is not accepted'.
Method:

begin

read(w);push(stack,#);i:=jw j+1;
accept:=false;is_over:=false;

put into the input tape the string \#w";
repeat

pop(stack,Y1);
if (i>1) and ((w[i]�>>Y1) or (w[i]

:
�Y1 )) then begin

/* shift action */

push(stack,w[i]);

i:=i-1;

end

else

if (i=1) then begin

if (stack="#") then

/* accept action */

accept:=true

else /* reject action */

is_over:=true;

end

else

if (w[i]<< �Y1) then begin

let Y1 Y2 ::: YmX1 be the string in stack for which:
Yk

:
�Yk+1; 8 i = 1;m� 1; Ym

:
�X1;

�nd a production of the form r= no(A! Y1 Y2 ::: Ym);
if (there does not exist such a production) then

/* reject action */
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else is_over:=true

end

else begin

/* reduce action */

/* r is unique because G is invertible */
remove the string Y1 Y2 ::: Ym from the stack;
push(stack,A);
push(Output_tape,r)

end

end

else is_over:=true /* reject action */

until (is_over=true);

if (accept=true) then

write('w is accepted and has left hand syntactic analysis ', Output_tape)

else write('w is not accepted.')
end.

Theorem 4.3.19 (correctness and complexity of Algorithm (Parsing-SIP ))
Algorithm (Parsing-SIP ) is correct and has the time complexity of O(jwj);

where w is the input word.

Proof Follows the same lines as the proof of Theorem 4.3.15.

4.4 Deterministic bidirectional parsing for con-
text free languages

In this section we shall present several ways in which some subclasses of context
free grammars may be combined such as to obtain deterministic (and linear)
parallel algorithms for solving the corresponding membership problem.

The deterministic bidirectional parsers may use the same device as the gen-
eral model, the only di�erence being the way for choosing the uniqueness of the
production r from the set of productions of the input grammar.

De�nition 4.4.1 Let G be a context free grammar and k 2 N. We say that:

1. G is a LL(k)�RL(0) grammar if G is an LL(k) and an RL(0) grammar;

2. G is a LL(k)�SRL(1) grammar if G is an LL(k) and an SRL(1) gram-
mar;

3. G is a LL(k)�RL(1) grammar if G is an LL(k) and an RL(1) grammar;

4. G is a LL(k) � LARL(1) grammar if G is an LL(k) and an LARL(1)
grammar;

5. G is a LL(k)� SIP grammar if G is an LL(k) and an SIP grammar;
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6. G is a LR(0)�RR(k) grammar if G is an LR(0) and an RR(k) grammar;

7. G is a SLR(1)�RR(k) grammar if G is an SLR(1) and an RR(k) gram-
mar;

8. G is a LR(1)�RR(k) grammar if G is an LR(1) and an RR(k) grammar;

9. G is a LALR(1) � RR(k) grammar if G is an LALR(1) and an RR(k)
grammar;

10. G is a SP �RR(k) grammar if G is an SP and an RR(k) grammar.

We can easily extend the above de�nition to the languages. For instance,
we say that L is a LL(k) � RL(0) language if there exists k 2 N and G a
LL(k)�RL(0) grammar such that L = L(G).

Corollary 4.4.1 The following statements hold true:

1. G is an LL(k)�RL(0) grammar i� eG is an LR(0)�RR(k) grammar;

2. G is an LL(k)�SRL(1) grammar i� eG is an SLR(1)�RR(k) grammar;

3. G is an LL(k)�RL(1) grammar i� eG is an LR(1)�RR(k) grammar;

4. G is an LL(k)�LARL(1) grammar i� eG is an LALR(1)�RR(k) gram-
mar;

5. G is an LL(k)� SIP grammar i� eG is an SP �RR(k) grammar;

Proof Directly from De�nitions 4.3.1, 4.3.7, 4.3.20 and 4.4.1.

It is obvious that all the languages associated to the grammars in De�nition
4.4.1 are deterministic context free languages. Using a \mirroring" strategy,
we can easily extend some known results ([AhU72], [Har78], [HoU79], [Sal73])
concerning e.g. inclusions and hierarchies for classical subclasses of deterministic
context free languages. Therefore, the following relations hold (8 k 2 N):

� RL(k) = RL(1), RR(k) � RL(k), SIP � RL(1), RR(k) � RR(k + 1);
� LL(k)�RL(0) � LL(k)� SRL(1) � LL(k)�RL(1);
� LL(k)�RL(0) � LL(k)� LARL(1) � LL(k)�RL(1);
� LR(0)�RR(k) � SLR(1)�RR(k) � LR(1)�RR(k);
� LR(0)�RR(k) � LALR(1)�RR(k) � LR(1)� RR(k).

Note that the �rst �ve classes of grammars (De�nition 4.4.1) \use" a left
hand bidirectional strategy and the last �ve \use" a right hand bidirectional
strategy.

This deterministic parallel approach is similar to the general parallel ap-
proach, the only di�erence being the absence of the backtracking steps. Thus
the \kernel" of the parallel iteration corresponding to the left hand bidirectional
strategy is (we use the same considerations as for Algorithm (PAR LEFT)):

repeat in parallel
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if (i1<=i2) then action1(P1);

action2(P2);

until (i1>=i2) or (exit=true);

where action1, respectively action2, are procedures related to the correspond-
ing sequential algorithms for syntactic analysis (i.e. associated to the classical
subclasses of grammars and to the subclasses described in Section 4.3, such as
Algorithms Parsing-RR(1), Parsing-RL(0), Parsing-SLR(1), Parsing-SIP). This
time, instead of exponential sequential running time, we have a linear running
time for the procedures action1 and action2, because backtracking steps are
not necessary. The linear time complexity follows directly from Theorems 4.3.9,
4.3.15, 4.3.16, 4.3.19 and from known classical results.

The correctness of the deterministic parallel algorithms is ensured by the
correctness of the general parallel algorithm and the correctness of each of the
sequential syntactic analyzers for the speci�c subclasses of context free gram-
mars.

Theorem 4.4.1 (the complexity of the deterministic parallel algorithms)
Let us denote by T1(n); T2(n) the running time of the sequential syntactic

analyzers from Section 4.3, where n is the length of the input word. Then the
parallel running time t(n) satis�es the relations:

� minfT1(n);T2(n)g
2 +K � t(n) � maxfT1(n); T2(n)g (we have supposed that

the time routing is zero and K is a constant, not depending on n);

� t(n) 2 O(n):

Proof The inequality t(n) � maxfT1(n); T2(n)g can be obtained by supposing
that one processor stays. For instance, if P1 stays, then t(n) = T2(n) (time
routing is zero).

The other inequality can be obtained by supposing that both processors work

until i1 = i2: This means a running time of minfT1(n);T2(n)g
2 . Then one processor

stays and the other (possibly) performs some constant number of iterations.
The fact that t(n) is linear follows from the linear complexity of the deter-

ministic parsers associated to the considered subclasses of grammars.

Example 4.4.1 Let G = (fS0; S; B;Cg; fa; b; e; ; g; S0; P ) be a context free
grammar, where the set of productions P is:

1. S0 ! S 2. S ! � 3. S ! B 4. B ! a
5. B ! b S C e 6. C ! � 7. C !; S C

We shall prove that G is a LL(1)� LARL(1) grammar. Compute �rst the
following sets:

X S0 S B C
FIRST fa; b; �g fa; b; �g fa; bg f; ; �g

FOLLOW f�g fe; ; ; �g fe; ; g feg

Now, we compute the sets of \lookahead" symbols and thus we can check
whether G is a LL(1) grammar or not:
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� FIRST (FOLLOW (S)) = fe; ; ; �g, FIRST (BFOLLOW (S)) = fa; bg;

� FIRST (aFOLLOW (B)) = fag, FIRST (b S C eFOLLOW (B)) = fbg;

� FIRST (FOLLOW (C)) = feg, FIRST (; S C FOLLOW (C)) = f; g:

Because any two of these sets are disjoint, it follows that G is a LL(1) gram-
mar. For testing the LARL(1) property, we need some auxiliary informations,
such as the sets LAST and those given by the RL(1) automaton attached to G.

X S0 S B C
LAST fa; e; �g fa; e; �g fa; eg fa; e; ; ; �g

Now, we are ready to construct the RL(1) automaton for G:

(f#g; S0 ! S:)

(f#g; S ! :)

(f#g; S ! B:)

(f#g; B ! a:)

(f#g; B ! bSCe:)

t0

(f#g; B ! bSC:e)

(fa; b; ; g; C ! :)

(fa; b; ; g; C !;SC:)

(fa; e; ; g; C ! :)

(fa; b; ; g; C !;SC:)

t4

t1

(f#g; S0 ! :S)

(f#g; S ! :B)

t2

(f#g; B ! :a)

t3

(fb; ; g; S ! :B)

t7

(fb; ; g; B ! :a)

t8

t10

(fa; b; e; ; g;

t11

(f#g:

C ! :;SC)B ! :bSCe)

(f#g; B ! bS:Ce)

(fa; b; e; ; g; C !;S:C)

(fb; ; g; S ! :)

(fb; ; g; S ! B:)

(fb; ; g; B ! a:)

(fb; ; g; B ! bSCe:)

t5

(f#g; B ! b:SCe)

(fa; b; e; ; g; C !; :SC)

t6

(fb; ; g; B ! bS:Ce)

(fa; b; e; ; g; C !;S:C)

(fb; ; g; S ! :)

(fb; ; g; S ! B:)

(fb; ; g; B ! a:)

(fb; ; g; B ! bSCe:)

t12

(fb; ; g; B ! b:SCe)

(fa; b; e; ; g; C !; :SC)

t13

(fb; ; g; B ! b:SCe)

t14

t11 t7 t8

B

a

e

S

B

a

e

;

b

;

e

b

(fb; ; g; B ! bSC:e)

(fa; b; eg; C ! :)

(fa; b; eg; C !;SC:)

(fa; e; ; g; C ! :)

(fa; e; ; g; C !;SC:)

t9

C

C

aB

S

S

Figure 4.9. RL(1) automaton for G
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In Figure 4.9, the arcs (t12; t7); (t12; t8) and (t13; t11) are depicted di�erently
only because of the picture size.

It can be checked looking at the RL(1) automaton that G is a RL(1) grammar
(Theorem 4.3.17). Furthermore, the following pairs of states are equivalent
(De�nition 4.3.17):

(t2; t7); (t3; t8); (t4; t9); (t5; t12); (t6; t13); (t10; t14)

Therefore, the LARL(1) automaton will have only 9 states, i.e. the set of states
will be ft0; t1; t2; t3; t4; t5; t6; t10; t11g. Because the LARL(1) automaton has no
con
icts in its states, we conclude that G is a LARL(1) grammar. Denoting
reducer by Rr and shiftk by Sk, the associated LARL(1) table will be:

ACTION # a b e ; Æ S B C
t0 R2 S3 S4 t0 t1 t2
t1 R1 t1
t2 R3 R3 R3 t2
t3 R4 R4 R4 t3
t4 R6 R6 R6 R6 t4 t5
t5 S3 R2 S4 R2 t5 t6 t2
t6 S10 S11 t6
t10 R5 R5 R5 t10
t11 R7 R7 R7 R7 t11

The empty places in the above table represents a REJ con�guration, i.e. the
rejection of the input word.

Let us consider the input word w = b a ; b a e e: We shall present the tran-
sitions for the deterministic left hand bidirectional parser of the corresponding
LL(1) � LARL(1) grammar. In the following, we shall suppose that the pro-
cessors operate in a synchronous way, i.e. the processor P1 waits for the ter-
mination of the operations from P2, and vice-versa. In that case, we present a
possible parallel running of that two processors.

Step Action1 Output_tape1 Stack1 i1

0. Initial � S0 1
1. Expand [1] S 1
2. Expand [1; 3] B 1
3. Expand [1; 3; 5] b S C e 1
4. Reduce [1; 3; 5] S C e 2
5. Expand [1; 3; 5; 3] BC e 2
6. Expand [1; 3; 5; 3; 4] aC e 2
7. Reduce [1; 3; 5; 3; 4] C e 3
8. Expand [1; 3; 5; 3; 4; 7] ; S C e 3
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Step Action2 i2 Stack2 Output_tape2

0. Initial 7 t0 �
1. Shift 6 t4 e t0 �
2. Reduce 6 t5 C t4 e t0 [6]
3. Shift 5 t4 e t5C t4 e t0 [6]
4. Reduce 5 t5 C t4 e t5C t4 e t0 [6; 6]
5. Shift 4 t3 a t5 C t4 e t5C t4 e t0 [6; 6]
6. Reduce 4 t2B t5 C t4 e t5C t4 e t0 [4; 6; 6]
7. Reduce 4 t6 S t5 C t4 e t5C t4 e t0 [3; 4; 6; 6]
8. Shift 3 t10 b t6 S t5 C t4 e t5C t4 e t0 [3; 4; 6; 6]
9. Reduce 3 t2B t5 C t4 e t0 [5; 3; 4; 6; 6]
10. Reduce 3 t2 S t5 C t4 e t0 [3; 5; 3; 4; 6; 6]
11. Shift 2 t11 ; t2 S t5 C t4 e t0 [3; 5; 3; 4; 6; 6]

The processor P1 is waiting until the last three steps of the processor P2 are
executed. The test \if (Stack1=Stack2) then" from the general left bidirec-
tional algorithm (PAR LEFT) has to be view as \if (Stack1=h(Stack2)) then",
where h1 : V [ T ! V given by:

h1(X) =
n
X if X 2 V
� otherwise

We can extend h1 to words of arbitrary length using the function h : (V [T )� !
V �, given by:

h(�) = �; h(X1 ::: Xn) = h1(X1) � ::: � h1(Xn):

We remind the reader that T is the set of states of the RL(1) automaton. Now,
it is obvious that

h(Stack2) = h(t11 ; t2 S t5 C t4 e t0) =; S C e = Stack1

Therefore, the word w is accepted by the parallel algorithm and has the left
hand syntactic analysis [1; 3; 5; 3; 4; 7; 3; 5; 3; 4; 6; 6]:

4.5 Conclusions

We think that the concept of bidirectional parsing for context free grammars
described here may contribute to a new view for describing compilers on com-
puters with two processors.

The main complexity result is Theorem 4.4.1 (see also Example 4.1.2).

Open problems:

� �nd new subclasses of deterministic parallel algorithms for bidirectional
parsing;

� estimate more precisely the running time of the deterministic parallel al-
gorithm presented in Section 4.4;

� �nd further closure properties of the subclasses for described languages.



Chapter 5

Up-to-up bidirectional

parsing for context free

grammars

In this chapter we describe some subclasses of context free grammar for which
there exists a parallel approach useful for solving the membership problem
([AGK99]). We combine the classical style of LR parsers attached to a grammar
G with a \mirror" process for G by analyzing the input word from both sides
and using two processors.

In the �rst section we present the general up-to-up bidirectional parser (it
can analyze any context free language) which has a nondeterministic nature.

A general SIMD model for describing the up-to-up bidirectional parsing is
presented in the next section.

Our general up-to-up bidirectional parser can be also used as a determin-
istic model for the known LR(k) and RL(k) parsers (the third section). The
membership problem may be solved in linear time complexity with a parallel
algorithm.

5.1 The general up-to-up bidirectional parser

In this section we de�ne a new parser for the class of context free languages.
The input word is analyzed from both sides (as in [AnK99a]), but the parse
strategy is view in an \up-to-up" manner (LR and RL styles are combined
for this parallel strategy). The associated derivation tree corresponding to the
input word w is down to up traversed by both processors, that is from the leaves
to its root in our view. Only one processor will be \strongly" active after the
parallel algorithm \meets" the \middle" of the input word:

107
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ST3

ST1 ST2

Figure 5.1. Strategy for up-to-up bidirectional parsing

The \derivation forests" ST1 and ST2 will be parsed in parallel and �nally,
the subtree ST3 - in a sequential way.

Our bidirectional parser will be based on the following de�nitions and nota-
tions.

Notation 5.1.1 Let G = (VN ; VT ; S; P ) be a context free grammar and V 0 be
the set VN �N�N: Let h : V [ V 0 ! V � be the function given by:

1. h(X) = X; 8 X 2 V ;

2. h(Xb;e) = X; 8 Xb;e 2 V 0;

This function can be easily extended to an homomorphism h : (V [V 0)� ! V �

such as:

1. h(�) = �;

2. h(X1X2:::Xn) = h(X1) � h(X2) � ::: � h(Xn); 8 X1; X2, ..., Xn 2 V [ V 0,

8 n � 2.

The notation of Ab;e signi�es that A is the label of the derivation subtree of
root v in the forests ST1 or ST2 (Figure 5.1), and also that the frontier has the
corresponding right most derivation [rb; rb+1; :::; re] (further details in Lemma
5.1.4 and Example 5.1.1).

De�nition 5.1.1 Let G = (VN ; VT ; S; P ) be a context free grammar. Let
C�fs1; s2g�f1; 2; :::; jP jg��#(V [V 0)��#V �

T#�(V [V 0)�#�f1; 2; :::; jP jg��
f1; 2; :::; jP jg� [ fACC;REJg be the set of all possible con�gurations, where
# is a new character (a terminal symbol). The general up-to-up bidi-

rectional parser (denoted by GuBP (G)) is given by the pair (C0;`), where
C0 = f(s1; �;#;#w#;#; �; �) j w 2 V �

T g � C is called the set of initial con-
�gurations. The �rst component is the state, the following, excepting the last
one component of a con�guration are used for storing the partial syntactic anal-
ysis. The last component is used for storing the �nal syntactic analysis. The
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third and the �fth components are the work - stacks (each of which has at the
bottom the marker #). The fourth component represents the current content of
the input word (with the two markers). The transition relation (`� C � C,
sometimes denoted by

GuBP (G)

) between con�gurations is given by:

10 Shift-Shift:

(s1; �1;#�;#a u b#; �#; �2; �) ` (s1; �1;#� a;#u#; b �#; �2; �);

20 Reduce-Shift:

(s1; �1;#��;#u b#; 
#; �2; �) ` (s1; r1�1;#�Ab0;e0 ;#u#; b 
#; �2; �),

r1 = no(A! h(�)), e0 = j�1j+1; b0 = minfj�1j+1;minfb00 j Cb00;e00 2 �gg:
If h(�) contains no nonterminal symbols, then b0 = j�1j+ 1;

30 Shift-Reduce:

(s1; �1;#�;#a u#; 
 �#; �2; �) ` (s1; �1;#� a;#u#; Bb;e �#; r2�2; �),

r2 = no(B ! h(
)); e = j�2j + 1; b = minfj�2j+ 1;minfb0 j Db0;e0 2 
gg:
If h(
) contains no nonterminal symbols, then b = j�2j+ 1;

40 Reduce-Reduce:

(s1; �1;#��;#u#; "
#; �2; �)`(s1; r1�1;#�Ab1;e1 ;#u#; Bb2;e2
#; r2�2; �),

where r1 = no(A! h(�)), r2 = no(B ! h(")), e1 = j�1j+1; e2 = j�2j+1;
b1 = minfj�1j+ 1;minfb01 j Cb01;e01 2 �gg and

b2 = minfj�2j+ 1;minfb02 j Db0
2
;e0
2
2 "gg;

50 Shift-Stay:

(s1; �1;#�;#a u#; �#; �2; �) ` (s1; �1;#�a;#u#; �#; �2; �);

60 Reduce-Stay:

(s1; �1;#��;#u#; 
#; �2; �) ` (s1; r1�1;#�Ab0;e0 ;#u#; 
#; �2; �),

r1 = no(A! h(�)), e0 = j�1j+1; b0 = minfj�1j+1;minfb00 j Cb00;e00 2 �gg;

70 Stay-Shift:

(s1; �1;#�;#u b#; �#; �2; �) ` (s1; �1; �;#u#; b �#; �2; �);

80 Stay-Reduce:

(s1; �1;#�;#u#; 
 �#; �2; �) ` (s1; �1;#�;#u#; Bb;e �#; r2�2; �),

r2 = no(B ! h(
)); e = j�2j+ 1; b = minfj�2j+ 1;minfb0 j Db0;e0 2 
gg;

90 Possible-accept:

(s1; �1;#�;##; �#; �2; �) ` (s2; �1;#�;##; �#; �2; �);

100 Shift-Terminal:

(s2; �1;#�;##; a �#; �2; �3) ` (s2; �1;#�a;##; �#; �2; �3);
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110 Shift-Nonterminal:

(s2; �1;#�;##; Ab;e �#; �
0
2�

00
2 ; �3) ` (s2; �1;#�A;##; �#; �

00
2 ; �

0
2�3), where

�02 = [rb; rb+1; :::; re] and j�02j = e� b+ 1;

120 Reduce:

(s2; �
0
1�

00
1 ;#��;##; 
#; �2; �3) ` (s2; �

00
1 ;#�A;##; 
#; �2; r1�3�

0
1),

where r1 = no(A ! h(�)); � = u1Bb;e ::: umCb0;e0 �
0; u1, ..., um 2 V �

T ,
j�01j = e0 � b+ 1;

130 Accept: (s2; �;#S;##;#; �; �) ` ACC;

140 Reject: (s1; �1;#�;#u#; �#; �2; �) ` REJ and also

(s2; �1;#�;##; �#; �2; �3) ` REJ if no transitions of type 10, 20, ...,
130 can be applied.

The deterministic two-stack machine, which is a deterministic Turing ma-
chine with a read-only input and two storage tapes is known to have the same
power as classical Turing machines ([HoU79]). If the heads moves left on ei-
ther tape, a blank is printed on that tape. In [HoU79] the following lemma
was proved: An arbitrary single-tape Turing machine can be simulated by a

deterministic two-stack machine.

Another computational model equivalent to Turing machines is the two-
counter machine, which is an o�-line Turing machine whose storage is semi-
in�nite, and whose alphabet contains only two symbols, Z (the bottom of stack)
and B (blank). An integer i can be \stored" by moving the tape head i cells to
the right of Z: A stored number can be incremented or decremented by moving
the tape head right or left. It can test whether a number is zero by checking
whether Z is scanned by the head, but it cannot directly test whether two
numbers are equal. A two-counter machine can simulate an arbitrary Turing

machine ([HoU79]).

Our model is in fact a two-stack machine. The di�erences (between our
model and the classical one) consist in the existence of two heads and two
output tapes. The heads can simultaneously read the input tape and the two
output tapes may be accessed only in write style. Only two states are used.
Therefore, our model (Figure 5.2) can simulate a Turing machine.
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..

.

... .. .

Output tape1 Output tape2

...

.

.

Control

Stack1

Input tape

Stack2

Figure 5.2. General Up-to-Up Bidirectional Parser Style

Lemma 5.1.1 Let G be a context free grammar. If

(1) (s1; �;#;#u1 u2 u3#;#; �; �)
�

GuBP (G)

(s1; �1;#�;#u2#; �#; �2; �)

then h(�)
�1=)

G;rm
u1 and h(�)

�2=)
G;rm

u3. (where h is presented in Notation 5.1.1)

Proof We proceed by induction on the number of transitions (denoted by t).

Some notations:
t;�

GuBP (G)

and
10

GuBP (G)

, mean that t transitions, respectively

the transition 10 have been applied.
Basis: t = 1. Starting from the initial con�guration, we can apply either of the
transitions 10, 50 and 70. For 10, we obtain:

(s1; �;#;#u1 u2 u3#;#; �; �)
10

GuBP (G)

(s1; �;#�;#u
0
1u2u

0
3#; �#; �; �);

where u1 = a u01 and u3 = u03 b: Of course, a
0

=)
G;rm

a and b
0

=)
G;rm

b. The other

cases (50 and 70) can be treated in a similar way.
Inductive Step: Suppose that the relation (1) is true for at most t transitions
and prove it for t+ 1 transitions. We know that:

(2) (s1; �;#;#u1 u2 u3#;#; �; �)
t+1;�

GuBP (G)

(s1; �1;#�;#u2#; �#; �2; �)
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We have to prove that h(�)
�1=)

G;rm
u1 and h(�)

�2=)
G;rm

u2: The last transition in

(2) may be of one of the types 10, 20, ..., 80.

I: Suppose that the last transition in (2) is of the form shift-shift. We may
rewrite (2) into:

(s1; �;#;#u1 u2 u3#;#; �; �)
t;�

GuBP (G)

(s1; �1;#�
0;#a u2 b#; �

0#; �2; �)

10

GuBP (G)

(s1; �1;#�;#u2#; �#; �2; �), where � = �0 a; � = b �0. According

to the inductive hypothesis, we obtain:

h(�0)
�1=)

G;rm
u01; u1 = u01 a and h(�0)

�2=)
G;rm

u03; u3 = b u03.

Therefore, h(�) = h(�0 a)
�1=)

G;rm
u01 a and h(�) = h(b �0)

�2=)
G;rm

b u03:

II: Suppose that the last transition in (2) is of the form reduce-shift. Rewrite
(2) into:

(s1; �;#;#u1 u2 u3#;#; �; �)
t;�

GuBP (G)

(s1; �
0
1;#�

0 �0;#u2 b#; 
#; �2; �)

20

GuBP (G)

(s1; �1;#�;#u2#; �#; �2; �), where r1 = no(A ! h(�0));

�0Ab0;e0 = �; e0 = j�01j+ 1; b0 = minfj�01j+ 1;minfb00 j Cb00;e00 2 �0gg, b 
0 = �;

r1�
0
1 = �1: According to the inductive hypothesis, we get:

h(�0 �0)
�01=)

G;rm
u1; and h(
0)

�2=)
G;rm

u03; u3 = b u03.

We have:

h(�) = h(�0 Ab0;e0)
r1=)

G;rm
h(�0 �0)

�01=)
G;rm

u1; so h(�)
�1=)

G;rm
u1 and

h(�) = h(b 
0) = b h(
0)
�2=)

G;rm
b u03 = u3; h(�)

�2=)
G;rm

u3.

III: Suppose that the last transition in (2) is of the form shift-reduce. Rewrite
(2) into:

(s1; �;#;#u1 u2 u3#;#; �; �)
t;�

GuBP (G)

(s1; �1;#�
0;#a u2#; 
 �

0#; �02; �)

30

GuBP (G)

(s1; �1;#�;#u2#; �#; �2; �), where �
0 a = �; r2 = no(B ! h(
));

� = Bb;e �
0; e = j�02j + 1; b = minfj�02j + 1;minfb0 j Db0;e0 2 
gg, r2�

0
2 = �2:

Applying the inductive hypothesis, we get:

h(�0)
�1=)

G;rm
u01; where u1 = u01 a; and h(
 �0)

�02=)
G;rm

u3:

It follows that:

h(�) = h(�0 a) = h(�0) a
�1=)

G;rm
u01 a = u1; so h(�)

�1=)
G;rm

u1 and

h(�) = h(Bb;e �
0)

r2=)
G;rm

h(
 �0)
�02=)

G;rm
u3; so h(�)

�2=)
G;rm

u3
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IV: Suppose that the last transition in (2) is of the form reduce-reduce. Rewrite
(2) as:

(s1; �;#;#u1 u2 u3#;#; �; �)
t;�

GuBP (G)

(s1; �
0
1;#�

0 �0;#u2#; "
0 
0#; �02; �)

40

GuBP (G)

(s1; �1;#�;#u2#; �#; �2; �), where r1 = no(A ! h(�0));

�0Ab1;e1 = �; r1�
0
1 = �1; e

0 = j�01j+1; b1 = minfj�01j+1;minfb01 j Cb01;e01 2 �0gg,
r2 = no(B ! h("0)); Bb2;e2 


0 = �; r2�
0
2 = �2; e2 = j�02j+ 1;

b2 = minfj�02j+1;minfb02 j Db0
2
;e0
2
2 "0gg. According to the inductive hypothesis,

we get:

h(�0 �0)
�01=)

G;rm
u1; and h("0 
0)

�02=)
G;rm

u3:

Now we have:

h(�) = h(�0Ab1;e1)
r1=)

G;rm
h(�0 �0)

�01=)
G;rm

u1; so h(�)
�1=)

G;rm
u1 and

h(�) = h(Bb2;e2 

0)

r2=)
G;rm

h("0 
0)
�02=)

G;rm
u3; so h(�)

�2=)
G;rm

u3.

Transitions 50, 60, 70, 80 can be treated in a similar way.

Lemma 5.1.2 Let G be a context free grammar. If h(�)
�1=)

G;rm
u1 and h(�)

�2=)
G;rm

u3 then

(s1; �;#;#u1 u2 u3#;#; �; �)
�

GuBP (G)

(s1; �1;#�;#u2#; �#; �2; �)

Proof By induction on t = j�1j+ j�2j:
Basis: t = 0.

This means j�1j = 0 and j�2j = 0: Then the hypothesis may be rewritten as

u1
0

=)
G;rm

u1 and u3
0

=)
G;rm

u3, where � = u1 and � = u3. Applying minfju1j; ju2jg

shift-shift transitions, and then ju1j � ju3j shift-stay or ju3j � ju1j stay-shift
transitions, (depending on whether ju1j > ju3j or not), consecutively, in this
order, we get the required relation.

Inductive Step: We have to prove that P (t)! P (t+ 1), where P is a logical
predicate equivalent to our implication. We have thus to distinguish two cases
(I: �1 = r1�

0
1 and �2 = �02) and (II: �1 = �01 and �2 = r2�

0
2).

Case I: Let r1 = no(A ! �1) be the last applied production in h(�)
�1=)

G;rm
u1:

Therefore, we have:

h(�) = h(�2)Au01
r1=)

G;rm
h(�2)�1 u

0
1

�01=)
G;rm

u1

Now, because u1 = u001 u
0
1, we have to treat the derivation h(�2 �1)

�01=)
G;rm

u001 :

Applying the inductive hypothesis, we get:
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(s1; �;#;#u1 u2 u3#;#; �; �)
�

GuBP (G)

(s1; �
0
1;#�2 �1;#u

0
1 u2#; �#; �2; �)

60

GuBP (G)

(s1; r1�
0
1;#�2 Ab0;e0 ;#u

0
1 u2#; �#; �2; �);

where e0 = j�01j+ 1; b0 = minfj�01j+ 1;minfb00 j Cb00;e00 2 �1gg: Continuing with
ju01j transitions of type 50 (�1 = r1�

0
1 and h(�2 Ab0;e0 u

0
1) = h(�)), we �nally

obtain the con�guration (s1; �1;#�;#u2#; �#; �2; �):

The case II can be solved analogously.

Lemma 5.1.3 Let G be a context free grammar. Let (3) be

(s2; �
0
1�

00
1 ;#�1�2;##; �1�2#; �

0
2�

00
2 ; �)

�

GuBP (G)

(s2; �
00
1 ;#�1
;##; �2#; �

00
2 ; �3);

where h(�2)
�01=)

G;rm
u1 and h(�1)

�02=)
G;rm

u3. Then h(
)
�3=)

G;rm
u1 u3:

Proof We proceed by induction on the number of (possible applied) transitions
(denoted by t).

Basis: t = 1. Starting from the initial con�guration the only applicable transi-
tions are 100, 110 and 120.

(i) For 100, we obtain:

(s2; �
0
1�

00
1 ;#�;##; a �#; �

0
2�

00
2 ; �)

GuBP (G)

(s2; �
0
1�

00
1 ;#� a;##; �#; �

0
2�

00
2 ; �).

Obviously, we have �1 = �; �2 = �; �1 = 
 = a; �2 = �; �01 = �; �02 = �,

thus h(�2) = �
0

=)
G;rm

� = u1 and h(�1) = 
 = a
0

=)
G;rm

a = u3: Then

h(
)
0

=)
G;rm

a = u1 u3:

(ii) For 110, we get:

(s2; �
0
1�

00
1 ;#�;##; Ab;e �#; �

0
2�

00
2 ; �)

GuBP (G)

(s2; �
0
1�

00
1 ;#�A;##; �#; �

00
2 ; �

0
2),

where j�02j = e� b+ 1: Obviously, we have �1 = �; �2 = �; �1 = Ab;e; �2 = �;


 = A; �01 = �: Thus h(�2) = �
0

=)
G;rm

� = u1 and h(�1) = A
�02=)

G;rm
u3: Then

h(
) = A
�02=)

G;rm
u3 = u1 u3:

(iii) In a similar way, for 120 we obtain:

(s2; �
0
1�

00
1 ;#�1 �2;##; 
#; �2; �)

GuBP (G)

(s2; �
00
1 ;#�1A;##; 
#; �2; r1�

0
1),

where r1 = no(A ! h(�2)); �2 = v1Bb;e ::: vm Cb0;e0 �
0
2, v1, ..., vm 2 V �

T and

j�01j = e0 � b+ 1: So, 
 = A; �1 = �; �02 = �; h(�2) = v1B :::vm C h(�02)
�01=)

G;lm
u1

and h(�1) = �
0

=)
G;rm

� = u3: Then h(
) = A
r1�

0

1=)
G;lm

u1 = u1 u3:
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Inductive Step: Suppose that relation (1) is true for at most t transitions and
prove it for t+ 1 transitions. We know that (4):

(s2; �
0
1�

00
1 ;#�1�2;##; �1�2#; �

0
2�

00
2 ; �)

t+1;�

GuBP (G)

(s2; �
00
1 ;#�1
;##; �2#; �

00
2 ; �3);

h(�2)
�01=)

G;rm
u1 and h(�1)

�02=)
G;rm

u3. We have to prove that h(
)
�3=)

G;lm
u1 u3: The

last transition in (4) may be of one of the types 100, 110 and 120.

I: Suppose that the last transition in (4) is of the form shift-terminal. This

means that �
(1)
1 2 VT (i.e. �1 = �01 a). Obviously, h(�01)

�02=)
G;rm

u03 (where

u3 = u03 a). Rewriting the transitions from (4), we obtain:

(s2; �
0
1�

00
1 ;#�1 �2;##; �1 �2#; �

0
2�

00
2 ; �)

t;�

GuBP (G)

(s2; �
00
1 ;#�1


0;##; a�2#; �
00
2 ; �

0
3)

100

GuBP (G)

(s2; �
00
1 ;#�1
;##; �2#; �

00
2 ; �3), where


 = 
0 a: Because h(�2)
�02=)

G;rm
u1 and h(�01)

�02=)
G;rm

u03, and applying the induction

hypothesis, we have h(
0)
�3=)

G;rm
u1 u

0
3. Now, h(
) = h(
0 a)

�3=)
G;rm

u1 u
0
3 a = u1 u3:

II: Suppose that the last transition in (4) is of the form shift-nonterminal.
Rewriting the transitions from (4), we get:

(s2; �
0
1�

00
1 ;#�1 �2;##; �

0
1Ab;e �2#; �

0
22�

00
21�

00
2 ; �)

t;�

GuBP (G)

(s2; �
00
1 ;#�1


0;##; Ab;e�2#; �
0
21�

00
2 ; �

0
3)

110

GuBP (G)

(s2; �
00
1 ;#�1
;##; �2#; �

00
2 ; �3),

where 
 = 
0A; �1 = �01Ab;e; �3 = �021�
0
3; j�

0
21j = e� b+ 1; (�02 = �022�

0
21). We

know that h(�2)
�01=)

G;rm
u1 and h(�1)

�02=)
G;rm

u3. Because h(�1)
�02=)

G;rm
u3, it follows

that h(�01)
�022=)
G;rm

u03 and h(A)
�021=)
G;rm

u003 , where u
0
3 u

00
3 = u3: Applying the inductive

hypothesis, we have h(
0)
�03=)

G;rm
u1 u

0
3. Now, we get

h(
) = h(
0A)
�021=)
G;rm

h(
0)u003
�03=)

G;rm
u1 u

0
3 u

00
3 = u1 u3

III: Suppose that the last transition in (4) is of the form reduce. Rewriting the
transitions from (4), we get:

(s2; �
0
11�

0
12�

00
1 ;#�1 �

0
21 �

0
23;##; �1 �2#; �

0
2�

00
2 ; �)

t;�

GuBP (G)

(s2; �
0
12�

00
1 ;#�1�

0
21�

0
22;##; �2#; �

00
2 ; �

0
3)

120

GuBP (G)

(s2; �
00
1 ;#�1
;##; �2#; �

00
2 ; �3),


 = A; r1 = no(A! h(�021 �
0
22)); �3 = r1�

0
3�

0
12; �

0
21�

0
22 = v1Bb;e ::: vm Cb0;e0 �

0;

v1; :::; vm 2 V �
T ; j�

0
1j = e0 � b+ 1; �01 = �011�

0
12; �2 = �021 �

0
23:
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We know that h(�2)
�01=)

G;rm
u1, h(�1)

�02=)
G;rm

u3 and we have to prove that

h(
)
�3=)

G;rm
u1 u3. But �2 = �021 �

0
23, so h(�2) = h(�021) � h(�

0
23)

�01=)
G;rm

u1. Using

the locality property for context free languages (Theorem 2.1.1), it follows that

h(�021)
�012=)
G;rm

u11, h(�
0
23)

�011=)
G;rm

u12 and u11 u12 = u1:

From the inductive hypothesis we obtain that h(�022)
�03=)

G;rm
u12 u3. Then:

h(
) =A
r1=)

G;rm
h(�02) = h(�021)h(�

0
22)

�03=)
G;rm

h(�021)u12u3
�012=)
G;rm

u11u12u3= u1 u3, i.e.

h(
)
�3=)

G;rm
u1 u3.

Lemma 5.1.4 Let G = (VN ; VT ; S; P ) be a context free grammar. If

A
�03=)

G;rm
h(v00n0Xb

n
0 ;e

n
0
vn0+1:::Xbn�1;kvn); A 2 VN ; n

0 � n and k = en�1 then

(s2; [rk ; rk�1; :::; r1];#v1Xb1;e1v2:::vn�1Xbn�1;kvn;##; �2#; �
00
2 ; �)

120;�

GuBP (G)

(s2; [rk0 ; ::; r1];#v1Xb1;e1v2::vn0�1Xb
n
0
�1;k

0v0n0A;##; �2#; �
00
2 ; �

0
3 � [rk; ::; rk0+1]);

where vn0 = v0n0 v
0
n00 and k0 = en0�1:

Proof We proceed by induction on t = j�3j > 0.

Basis: t = 1. The initial derivation corresponds to a production in G, i.e. there
exists the production r = no(A ! h(v00n0Xb

n
0 ;e

n
0
vn0+1:::Xbn�1;kvn)). According

to the transition 120, we obtain:

(s2; [rk ; rk�1; :::; r1];#v1Xb1;e1v2:::vn�1Xbn�1;kvn;##; �2#; �
00
2 ; �)

120

GuBP (G)

(s2; [rk0 ; rk0�1; ::; r1];#v1Xb1;e1v2::vn0�1Xb
n
0
�1;k

0v0nA;##; �2#; �
00
2 ; r�[rk ; ::; rk0+1]):

Inductive Step: t > 1: We denote �03 = r�003 ; where r = no(A ! h(�)):
Therefore, our derivation could be rewritten into:

A
r

=)
G;rm

h(�)
�003=)

G;rm
h(v00n0Xb0

n
;e0
n

vn0+1:::Xbn�1;kvn)

Because t > 1, it follows that j�003 j � 1: Due to the fact that we deal
only with right most derivations, it results that �(1) 2 VN and � =
v00n0Xb0

n
;e0
n

vn0+1:::Xb
n
00
�1;en00

v0n00B: Then we have

B
�003=)

G;rm
h(v00n00Xb

n
00+1;en00+1

vn00+1:::Xbn�1;kvn);

where vn00 = v0n00 v
00
n00 : According to the inductive hypothesis, we get:

(s2; [rk ; rk�1; :::; r1];#v1Xb1;e1v2:::vn�1Xbn�1;kvn;##; �2#; �
00
2 ; �)

120;�

GuBP (G)
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(s2; [rk00 ; rk00�1; :::; r1];#v1Xb1;e1v2:::vn00�1Xb
n
00
�1;k

00v0n00 B;##; �2#; �002 ; �003 �
[rk; :::; rk00+1]); where k00 = en00�1: This may be continued with a transition
of type 120, we �nally get the con�guration:
(s2; [rk0 ; rk0�1; :::; r1];#v1Xb1;e1v2:::vn0�1Xb

n
0
�1;k

0v0n0 A;##; �2#; �
00
2 ; r�

00
3 �

[rk; :::; rk00+1] �[rk00 ; :::; rk0+1]); where vn0 = v0n v
00
n; k

0 = en0�1:

Lemma 5.1.5 Let G be a context free grammar. If the following derivations
hold

h(
)
�3=)

G;rm
u1 u3; h(�2)

�01=)
G;rm

u1; h(�1)
�02=)

G;rm
u3; (and h(
)

�
=)
G;rm

h(�2 �1))

then (5)

(s2; �
0
1�

00
1 ;#�1 �2;##; �1 �2#; �

0
2�

00
2 ; �)

�

GuBP (G)

(s2; �
00
1 ;#�1 
;##; �2#; �

00
2 ; �3)

Proof By induction on t = j�1j:

Basis: t = 0. Thus �1 = �; u3 = � and �02 = �: We have h(
)
�3=)

G;rm
u1,

h(�2)
�01=)

G;rm
u1; (and h(
)

�
=)
G;rm

h(�2)). Therefore, starting from the initial

con�guration from (5), the GuBP (G) could make only transitions of type 120

and then 
 2 VN . We can consider the right most derivation: 
 = A0
r1=)

G;rm


1A1
r2=)

G;rm

1 
2A2:::

rn=)
G;rm


1 
2 ::: 
nAn = �2: Then �3 = [r1; r2; :::; rn] � �1 and

according to Lemma 5.1.4 we obtain (5).

Inductive Step: Suppose that the relation (5) is true for t, and prove for it
t+ 1. We distinguish two cases:

I: �1 = �01 a. Due to h(�1)
�02=)

G;rm
u3; it follows that h(�01)

�02=)
G;rm

u03; where

u03 a = u3: Because h(
)
�3=)

G;rm
u1 u

0
3 a; denoting the word 
0 so that 
 = 
0 a; it

follows that h(
0)
�3=)

G;rm
u1 u

0
3 (and h(
0)

�
=)
G;rm

h(�2 �
0
1)). Applying the inductive

hypothesis it results that

(s2; �
0
1�

00
1 ;#�1�2;##; �1�2#; �

0
2�

00
2 ; �)

�

GuBP (G)

(s2; �
00
1 ;#�1


0;##; a�2#; �
00
2 ; �3)

Now, we may apply transition 100 and �nally obtain the con�guration

(s2; �
00
1 ;#�1 
;##; �2#; �

00
2 ; �3):

II: �1 = �01Ab;e: We have h(�01Ab;e)
�02=)

G;rm
u3: Let �

000
2 be the right most deriva-

tion (j�0002 j = e � b + 1) for which h(Ab;e)
�0002=)
G;rm

u003 . Let us denote by �03 the

right most derivation for which h(�01)
�03=)

G;rm
u03: Obviously, u3 = u03 u

00
3 (because

h(
)
�

=)
G;rm

h(�2 �1)).



118 CHAPTER 5. UP-TO-UP BIDIRECTIONAL PARSING FOR ...

Let us denote 
0 such that 
 = 
0Ab;e: Because h(Ab;e)
�0002=)
G;rm

u003 and

h(
)
�3=)

G;rm
u1 u

0
3 u

00
3 ; it follows that h(


0)
�03=)

G;rm
u1 u

0
3 and �3 = �0002 �

0
3:

According to the inductive hypothesis:

(s2; �
0
1�

00
1 ;#�1�2;##; �1�2#; �

0
2�

00
2 ; �)

�

GuBP (G)
�

GuBP (G)

(s2; �
00
1 ;#�1


0;##; Ab;e�2#; �
000
2 �

00
2 ; �

0
3)

Now, we may apply the transition 110 and �nally obtain the con�guration

(s2; �
00
1 ;#�1 
;##; �2#; �

00
2 ; �3):

We present below the main result which ensures the correctness ofGuBP (G).

Theorem 5.1.1 Let G = (VN ; VT ; S; P ) be a context free grammar. Then

(6) (s1; �;#;#w#;#; �; �)
�

GuBP (G)

(s2; �;#S;##;#; �; �)
130

GuBP (G)

ACC

i� S
�
=)
G;rm

w:

Proof

(=)) Following transition 90; the transition (6) could be rewritten as:

(s1; �;#;#w#;#; �; �)
�

GuBP (G)

(s1; �1;#�;##; �#; �2; �)
90

GuBP (G)

(s2; �1;#�;##; �#; �2; �)
�

GuBP (G)

(s2; �;#S;##;#; �; �)
130

GuBP (G)

ACC

According to Lemma 5.1.1 (u2 = � and u1 u3 = w) we obtain h(�)
�1=)

G;rm
u1 and

h(�)
�2=)

G;rm
u3. Now, according to Lemma 5.1.3, and taking �1 = �2 = �; 
 = S;

�3 = �; we obtain S
�
=)
G;rm

u1 u3 = w:

((=) We know that S
�

=)
G;rm

w: So there exist u1; u3 2 V �
T ; �; � 2 V 0�, �1, �

0
2

(right most derivations) for which u1 u3 = w; h(�)
�1=)

G;rm
u1 and h(�)

�2=)
G;rm

u3.

According to Lemma 5.1.2, and taking u2 = �, it results that

(s1; �;#;#w#;#; �; �)
�

GuBP (G)

(s1; �1;#�;##; �#; �2; �):

From Lemma 5.1.5 and taking �1 = �1 = �; �001 = �002 = �; it follows that

(s2; �1;#�;##; �#; �2; �)
�

GuBP (G)

(s2; �;#S;##;#; �; �)
130

GuBP (G)

ACC:
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Example 5.1.1 Let G = (fA;B;Cg; fa; b; c; d; eg; A; P ) be a context free gram-
mar, where the set of productions P is given by:

1. A! aBAC b 2. A! dA 3. A! e 4. B ! bB c

5. B ! d 6. C ! cC 7. C ! d

Let w = a d a b d c d e d b c c d b be the input word for the parser GuBP (G). A
possible sequence of transitions performed by GuBP (G) could be:

(s1; �;#;#a d a b d c d e d b c c d b#;#; �; �)
10

GuBP (G)

(s1; �;#a;#d a b d c d e d b c c d#; b#; �; �)
10

GuBP (G)

(s1; �;#a d;#a b d c d e d b c c#; d b#; �; �)
40

GuBP (G)

(s1; [5];#aB1;1;#a b d c d e d b c c#; C1;1 b#; [7]; �)
10

GuBP (G)

(s1; [5];#aB1;1 a;#b d c d e d b c#; c C1;1 b#; [7]; �)
30

GuBP (G)

(s1; [5];#aB1;1 a b;#d c d e d b c#; C1;2 b#; [6; 7]; �)
10

GuBP (G)

(s1; [5];#aB1;1 a b d;#c d e d b#; c C1;2 b#; [6; 7]; �)
40

GuBP (G)

(s1; [5; 5];#aB1;1 a bB2;2;#c d e d b#; C1;3 b#; [6; 6; 7]; �)
10

GuBP (G)

(s1; [5; 5];#aB1;1 a bB2;2 c;#d e d#; b C1;3 b#; [6; 6; 7]; �)
20

GuBP (G)

(s1; [4; 5; 5];#aB1;1 aB2;3;#d e#; d bC1;3 b#; [6; 6; 7]; �)
30

GuBP (G)

(s1; [4; 5; 5];#aB1;1 aB2;3 e;#d#; C4;4 bC1;3 b#; [7; 6; 6; 7]; �)
50

GuBP (G)

(s1; [4; 5; 5];#aB1;1 aB2;3 d e;##; C4;4 bC1;3 b#; [7; 6; 6; 7]; �)
90

GuBP (G)

(s2; [4; 5; 5];#aB1;1 aB2;3 d e;##; C4;4 bC1;3 b#; [7; 6; 6; 7]; �)
120

GuBP (G)

(s2; [4; 5; 5];#aB1;1 aB2;3 dA;##; C4;4 bC1;3 b#; [7; 6; 6; 7]; [3])
120

GuBP (G)

(s2; [4; 5; 5];#aB1;1 aB2;3A;##; C4;4 bC1;3 b#; [7; 6; 6; 7]; [2; 3])
110

GuBP (G)
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(s2; [4; 5; 5];#aB1;1 aB2;3AC;##; b C1;3 b#; [6; 6; 7]; [7; 2; 3])
100

GuBP (G)

(s2; [4; 5; 5];#aB1;1 aB2;3AC b;##; C1;3 b#; [6; 6; 7]; [7; 2; 3])
120

GuBP (G)

(s2; [5];#aB1;1A;##; C1;3 b#; [6; 6; 7]; [1; 7; 2; 3; 4; 5])
110

GuBP (G)

(s2; [5];#aB1;1AC;##; b#; �; [6; 6; 7; 1; 7; 2; 3; 4; 5])
100

GuBP (G)

(s2; [5];#aB1;1AC b;##;#; �; [6; 6; 7; 1; 7; 2; 3; 4; 5])
120

GuBP (G)

(s2; �;#A;##;#; �; [1; 6; 6; 7; 1; 7; 2; 3; 4; 5; 5])
130

GuBP (G)

ACC

Therefore, w is accepted by GuBP (G), and the right most derivation is

�rm = [1; 6; 6; 7; 1; 7; 2; 3; 4; 5; 5]:

5.2 Parallel approach for general up-to-up bidi-

rectional parsing

In this section, we present a parallel approach convenient for describing the
general up-to-up bidirectional parsing strategy.

Our model is a SIMD (simple instruction stream, multiple data stream) com-
puter. We consider two processors P1 and P2 which operate simultaneously and
synchronously. Furthermore, our model shares a common memory. The no-
tions \running time" t(n), \computational steps", \routing steps", \speedup",
\cost", \eÆciency" for parallel algorithms are presented in Section 2.3.2.

We shall present a parallel algorithm which describes the general up-to-
up bidirectional parsing strategy. In fact, our parallel algorithm (denoted by
(PAR-UUBP)) may be clearly derived from De�nition 5.1.1 (general up-to-up
bidirectional parser).
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.. ..

unit1

Stack1

and logic

Arithmetic

Output tape1

Control

Unit

i1 i2

Processor P2Processor P1

.. ..

Arithmetic

unit2

and logic

Stack2 Output tape2

Input tape

Output tape Common

memory

Figure 5.3. General SIMD Model for Up-to-Up Bidirectional Parsing

Our algorithm uses the following variables:

� w2 V �
T contains the input word (stored in the common memory);

� n= jwj;

� i1, i2 are two counters used for indicating the positions of the pointers
to w (stored in the common memory);

� accept is a boolean variable which takes the value true i� w2 L(G) (stored
in the common memory);

� Stack1, Stack2 are two working stacks for P1 and P2;

� Output_tape1, Output_tape2 are the output tapes of P1 and P2 for stor-
ing the partial syntactic analysis of w;

� Output_tape is the output tape for storing the global syntactic analysis
of w (stored in the common memory);

� exit is a boolean variable which is true i� P1 or P2 detect the non-
acceptance of w (stored in the common memory).
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We have also use some prede�ned procedures, such as:

� pop(Stack,�) - the resulting value of � will be the string of length j�j
starting from the �rst symbol of Stack; after that, the string � is removed
from Stack;

� push_first(Stack,A) - adds the symbol A to the content of Stack; A will
be the new top of Stack;

� push_last(Stack,�) - adds the string � to the content of Stack, starting
from the last symbol of Stack; Stack will have the same top.

The method of parallel algorithm (PAR-UUBP) can now be pointed out.
Let the context free grammar G = (VN ; VT ; S; P ) be given. Then:

begin

read(n); read(w); i1 := 1; i2 := n;

accept := false; exit := false;

repeat in parallel

action1(P1);

action2(P2)

until (i1 > i2) or (exit = true);

if (exit = true) then accept := false

else

repeat

action3(P1,P2)

until (exit = true);

if (accept = true) then begin

write('w is accepted and has right hand syntactical analysis');

write(Output_tape)

end

else write('w is not accepted');

end.

It remains to describe the procedures action1(P1), action2(P2) and
action3(P1,P2).

procedure action1(P1);

begin

case

if (9 r1 =no( A! h(�)); � belongs to Stack1 starting from the top)

then begin

/* reduce action */

let � := u1Cb;e:::umDb0;e0 �
0, where u1; :::; um 2 V �

T ;
e00 := jOutput_tape1j + 1;
if (� does not contain any symbol from V 0� V ) then b00 := e00

else b00 := minfe00; bg;
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pop(Stack1,�);

push_first(Stack1,Ab00;e0);

push_first(Output_tape1, r1);

end;

if (i1 <= i2) then begin

/* shift action */

push_first(Stack1,w[i1]);

i1 := i1 + 1;

end

otherwise: begin

backtracking step is needed;

if (all the backtracking steps were terminated) and

(no reduce or shift action could be performed)

then exit := true;

end

end;

The description of procedure action2(P2) is similar to action1(P1).

procedure action2(P2);

begin

case

if (9 r2 =no( A! h(�)); � belongs to Stack1 starting from the top)

then begin

/* reduce action */

let � := u1 Cb;e:::umDb0;e0 �
0, where u1; :::; um 2 V �

T ;

e00 := jOutput_tape2j + 1;

if (� does not contain any symbol from V 0 � V ) then b00 := e00

else b00 := minfe00; bg;
pop(Stack2,�);

push_first(Stack2,Bb00;e0);

push_first(Output_tape2, r2);

end;

if (i1 < i2) then begin

/* shift action */

push_first(Stack2,w[i2]);

i2 := i2 - 1;

end

otherwise: begin

backtracking step is needed;

if (all the backtracking steps are over) and

(no reduce or shift action could be performed)

then exit := true;

end

end;
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Finally, we describe the procedure action3(P1,P2) in a sequential way.
The goal is to simulate the transitions 100, 110, 120 and 130 for GuBP (G) from
De�nition 5.1.1. The input tape is now empty, i.e. w has been already read (of
course, if exit has the value false). Next we read symbols from Stack2 (send
by processor P2) modifying the content of the Output_tape1 and Output_tape2

putting the results in Output_tape.

procedure action3(P1,P2);

begin

case

if (9 r1 = no( A! h(�)); � is in Stack1 starting from the top)

then begin

/* reduce action */

let � = u1 Cb;e ::: �
0Db0;e0�

00; where u 2 V �
T , �

00 2 V �, �0 2 (V [ V 0)�;
let �01 from Output_tape1 such that j�01j = e0 � b+ 1;

pop(Output_tape1,�01);

pop(Stack1,�);

push(Stack2,A);

push_first(Output_tape,r1);

push_last(Output_tape,�01);

end;

if (top of Stack2 is a terminal symbol) then begin

/* shift-terminal action */

pop(Stack2,a), where a2 VT ;
push_first(Stack1,a);

end;

if (top of Stack2 is from V') then begin

/* shift-nonterminal action */

pop(Stack2,Ab;e);

push_first(Stack1,A);

let �02 from Output_tape2 such that j�02j = e� b+ 1;

pop(Output_tape2,�02);

push_first(Output_tape,�02);

end;

if (Output_tape1 = ;) and (Output_tape2 = ;) and

(Stack1 = S) and (Stack2 = ;) then begin

accept := true; exit := true

end;

otherwise: begin

backtracking step is needed;

if (all the backtracking steps were terminated) and

(no reduce or shift action could be performed)

then exit := true

end;

end;
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Theorem 5.2.1 (termination of Algorithm (PAR-UUBP))
The Algorithm (PAR-UUBP) performs a �nite number of steps until termi-

nates its execution.

Proof Because the input grammar G has a �nite number of productions, the
number of reduce actions for processors P1 and P2 is �nite. For the shift actions
we read exactly one character from the input word w. Thus, because w is a �nite
word, it follows that the statement repeat in parallel ... until from the
main program of Algorithm (PAR-UUBP) has a �nite number of iterations (the
execution of procedures action1(P1) and action2(P2) has a �nite number of
iterations).

The size of work-stacks is �nite because w and G are �nite. The other
statement repeat ... until of the main program refers to action3(P1,P2).
The number of shift actions is �nite due to the �niteness of Stack2, and the
number of reduce actions is �nite due to the �nite number of productions of G:

Therefore, Algorithm (PAR-UUBP) performs a �nite number of steps until
terminates its execution.

Theorem 5.2.2 (correctness of Algorithm (PAR-UUBP))
For any given context free grammar G = (VN ; VT ; S; P ) and any w 2 V �

T , Al-
gorithm (PAR-UUBP) gives the answer "w is accepted and has right hand

syntactical analysis �" if S
�

=)
G;rm

w and \w is not accepted." otherwise.

Proof To show the correctness of Algorithm (PAR-UUBP), it suÆces to re-
mark that (PAR-UUBP) is \equivalent" to the sequential algorithm associated
to the transitions of the general up-to-up bidirectional parser (De�nition 5.1.1).
In fact, the procedures action1(P1) and action2(P2) correspond to the tran-
sitions 10�80 and action3(P1,P2) to the transitions 100�130. Obviously, the
transition 90 is realized by the main program of (PAR-UUBP).

The only situations for the parallel model in which the processors P1 and P2

work or wait (simultaneously) are:

(i) P1 works, P2 works

(ii) P1 waits, P2 works

(iii) P1 works, P2 waits

It is obvious that situation (i) (where action1(P1) and action2(P2)will be
called and executed in parallel) is described in an equivalent way in the general
up-to-up bidirectional parser by transitions 10 � 40 and 90; 100 (according to
De�nition 5.1.1).

Situation (ii) corresponds to transitions 70; 80 and situation (iii) corresponds
to transitions 50; 60; 120; 130:

The nondeterministic behavior of the general up-to-up bidirectional parser
is performed in the parallel algorithm by introducing these backtracking points
for action1(P1), action2(P2) and action3(P1,P2). If no backtracking step
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could be performed, then the variable exit is true. Then the input word is not
accepted by the parser GuBP (G) (and of course, it is not in the language of the
input grammar).

The parallel algorithm (PAR-UUBP) is then correct.

5.3 Deterministic up-to-up bidirectional parsing

for context free languages

Deterministic (and linear) parallel algorithms (viewed as particular cases of the
general up-to-up bidirectional parsing algorithm) for solving the membership
problem, can be derived for some \combinations" of subclasses of context free
languages. The deterministic up-to-up bidirectional parser has the same \de-
vice" as the general model. The only di�erence concerns the uniqueness of
choosing the production r from a set of given productions of the input grammar
(no backtracking steps are needed).

We have already presented the notions of LR(k) ([Knu65]) and RL(k)
([AnK99a]) grammars, k 2 N (De�nitions 2.1.15 and 4.3.7).

In a similar way, we can de�ne the \mirror" of some classical subclasses of
LR(k) grammars.

De�nition 5.3.1 Let G be a context free grammar.

� G is a SRL(1) (respectively LARL(1)) grammar if eG is a SLR(1) (re-
spectively LALR(1)) grammar;

� L is a SRL(1) (respectively LARL(1)) language if there exists a SRL(1)
grammar (respectively a LARL(1)) grammar which generates L:

Now, we shall \combine" the LR(k) and RL(k) styles in order to obtain the
deterministic up-to-up bidirectional parsing for context free languages.

De�nition 5.3.2 Let G be a context free grammar and k1, k2 2 N: We say
that G is a LR(k1)�RL(k2) grammar i� G is both an LR(k1) and an RL(k2)
grammar. A language L is called LR(k1)�RL(k2) if there exists G, an LR(k1)�
RL(k2) grammar for which L = L(G):

The class of LR(k) languages (k � 1) is the same as to the class of LR(1)
languages ([Knu65]). Then the above de�nition has a practical interest for k1;
k2 2 f0; 1g and for some subclasses of LR(1) grammars (such as, SLR(1) and
LALR(1)). According to De�nitions 5.3.1 and 5.3.2, we can easily derive all
the 16 combinations between LR(0), SLR(1), LALR(1), LR(1) and RL(0),
SRL(1), LARL(1), RL(1). For instance, G is a LR(0)�LARL(1) grammar i�
G is a LR(0) and LARL(1) grammar (Example 5.1.1).

We can also easily derive the relation between G and eG for all the 16
combinations. For example, G is a LR(0) � LARL(1) grammar i� eG is a
LALR(1)�RL(0) grammar. The proof is obvious (De�nitions 4.3.7, 5.3.1 and
5.3.2).
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According to the classical hierarchies for the subclasses of LR(1) languages,
we can de�ne some new hierarchies:

LR(0) � SLR(1) � LR(1) and LR(0) � LALR(1) � LR(1)

Note that:

RL(0) � SRL(1) � RL(1) and RL(0) � LARL(1) � RL(1)

These inclusions can be extended according to De�nition 5.3.2 so that the fol-
lowing (16) inclusions hold:

LR(0)�RL(0) � SLR(1)�RL(0) � LR(1)�RL(0)

LR(0)�RL(0) � LR(0)� SRL(0) � LR(0)�RL(1)

LR(0)�RL(0) � SLR(1)�RL(0) � SLR(1)� SRL(1)

: : : : :

We have introduced and studied some new subclasses of languages larger that
in Chapter 4 ([AnK99a]). For instance, the subclass LL(k)� RL(1) de�ned in
Chapter 5 (and [AnK99a]) is included in the subclass LR(1)�RL(1) (De�nition
5.3.2).

The deterministic up-to-up bidirectional parsing is similar to the general
parallel approach and, the only di�erence is the absence of the backtracking
steps. The procedures action1(P1) and action2(P2) are related to the clas-
sical sequential syntactical analysis algorithms for LR(1) (or for the subclasses
LR(0), SLR(1) and LALR(1)) and RL(1) (or for the subclassesRL(0), SRL(1),
LARL(1)). We also get a linear running time for the procedures action1(P1)
and action2(P2) instead of an exponential sequential running time. Obvi-
ously, the procedure action3(P1,P2) has no backtracking steps for the sub-
classes of grammars given in De�nition 5.3.2. Consequently, the procedure
action3(P1,P2) is deterministic and has a linear running time.

The correctness of the deterministic parallel algorithms is ensured by the
correctness of the general parallel algorithm and the correctness of each of the
sequential syntactic analyzers for the mentioned subclasses of context free gram-
mars (LR(0), SLR(1), LALR(1), LR(1), RL(0), SRL(1), LARL(1), RL(1)).

Theorem 5.3.1 (the complexity of the deterministic parallel algorithms)
Let us denote respectively T1(n); T2(n) and T3(n) the running times of the

sequential procedures action1(P1), action2(P2) and action3(P1,P2), where
n is the length of the input word. Suppose that the routing time is zero. Then
the parallel running time t(n) satis�es the relations:

� minfT1(n);T2(n)g
2 + T3(n) � t(n) � maxfT1(n); T2(n)g+ T3(n);

� t(n) 2 O(n):
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Proof

(i) The inequality t(n) � maxfT1(n); T2(n)g can be obtained by supposing
that one processor waits. For instance, if P2 waits, then t(n) = T1(n) + T3(n)
(time routing is zero).

The other inequality can be obtained by supposing that both processors

work until i1 = i2: This means a running time equal to minfT1(n);T2(n)g
2 . Then

processor P2 will send to processor P1 (when P1 has to perform a shift action)

a terminal or nonterminal symbol. Therefore minfT1(n);T2(n)g
2 + T3(n) � t(n):

(ii) Obviously, T1(n) 2 O(n) and T2(n) 2 O(n) following some classical
results related to subclasses of context free grammars (LR(0), RL(0), SLR(1),
SRL(1), ...). The local memories of P1 and P2 satisfy

� jStack1j 2 O(n); jStack2j 2 O(n); and

� jOutput_tape1j 2 O(n); jOutput_tape2j 2 O(n):

At every step of the parallel algorithm the size of the stacks (Stack1, Stack2,
Output_tape1 and Output_tape2) decrease. Furthermore, the procedure
action3(P1,P2) is deterministic. Therefore, it follows that T3(n) 2 O(n):
According to (i), it follows that t(n) 2 O(n):

Considering the context free grammar from Example 5.1.1, which is LR(0)�
LARL(1), we see that the presented transitions correspond to a possible deter-
ministic parallel running using our algorithm. Hence, a new example is not
needed.

5.4 Conclusions

Our up-to-up bidirectional parser model is in fact a two-stack machine ([HoU79])
and therefore it can simulate a Turing machine. An interesting example of a
bidirectional parser which can analyst a context sensitive language was pre-
sented in Example 4.1.2 and in [AnK99a]. The same may hold for the up-to-up
bidirectional parser.

Compared to Chapter 4, where LL(k), LR(k) and precedence grammars
styles have been combined, in Chapter 5 the bidirectional parsing uses only
LR(k) style (and its \mirror" RL(k) style). The classes of languages described
in this chapter are larger than the classes of languages de�ned in Chapter 4 (see
also [AnK99a]).

Open problems:

� get a more precise estimation of the running time of the deterministic
parallel algorithm presented in Section 5.3;

� �nd further closure properties (or local hierarchies) for subclasses of the
described languages.



Chapter 6

Bidirectional attribute

evaluation

In this chapter we describe a parallel algorithm (using two processors) for eval-
uating the attribute instances of an attributed derivation tree. It was prepared
using the papers [AKM99] and [And97].

Section 6.1 emphasizes two ways for representing the (ordered) oriented trees.
The speci�c bidirectional traversal is also pointed out.

Section 6.2 contains a new approach for evaluating the attribute instances
of an attributed derivation tree. We have called this strategy the bidirectional

attribute evaluation.

6.1 Data representations of trees and their bidi-

rectional traversal

In this section, we shall present two methods for representing the ordered ori-
ented trees. For the second one, a bidirectional traversal is presented.

First method of representation of ordered oriented trees.

Given the ordered oriented tree T = (V ; E; s; d), let m be the maximal
number of local sons (taking into account all vertices). For representing the
sons v1; v2; :::; vn of a father v, we shall use exactly m locations (even if n < m).
Consider now the array t : f1; 2; :::; pg ! V[fnullg, where p is a natural number
(which will be de�ned later). The array t (denoted by t[]) is de�ned in the
following way:

t[]= root v1:::v2 v11:::v1m v21:::v22 ::: v1m:::vmm:::vmm:::m
| {z }

m times

constructed by structural induction:

� if the root of T has the sons v1; :::; vn then t[1]= root, t[2]= v1, ..., t[n]= vn,
t[n+1]= null, ..., t[m]= null; where null is a special symbol;

129
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� let vwk 2 V (T ) have exactly the sons vwk1, vwk2, ..., vwkn and let t[s]= vwk,
where w 2 f1; 2; :::;mg�; k 2 f1; 2; :::;mg. Then t[s+(m-k)(m+1)+1]= vwk1,
t[s+(m-k)(m+1)+2]= vwk2, ..., t[s+(m-k)(m+1)+n]= vwkn, and the \null" el-
ements are t[s+(m-k)(m+1)+n+1]= null, ..., t[s+(m-k)(m+1)+m]= null.

This representation of an ordered oriented trees is especially useful for
breadth �rst search visits. We do not present in detail this method of traversing
ordered oriented trees, because this representation has a disadvantage related
to its size. That is, the number of elements of the array t[] is exponential in

m. In fact, p = 1+m+m2+ :::+mm = mm+1�1
m�1 (m 6= 1), although the number

of vertices of T could be \very" smaller when compared to this number.

The second method to represent ordered oriented trees.

Let T = (V ; E; s; d) be an ordered oriented tree. For representing the sons
v1; v2; ..., vn of a father v, we use exactly n locations. Now, the number of
locations of the corresponding vector will be the same as the cardinality of V :
Let m be the maximum number of sons (as before). Consider now the array
t : f1; 2; :::; sg ! (V ; f1; 2; :::;mg), where s = jVj: The informations contained in
t have the following meaning: t[i]= (v; d) i� v 2 V and d is the number of its
sons (i being the position in the depth �rst visit of T ).

Example 6.1.1 For the tree presented in Example 2.1.1 (Chapter 2), we have:

t[]=(1,3)(2,0)(3,2)(5,2)(10,0)(11,0)(6,0)(4,3)(7,0)(8,0)(9,0)

According to the (possible) huge number of \free cells" from the array t,
the �rst method for implementing ordered oriented trees, is not convenient for
deriving parallel algorithms. The second representation method (although it
provides no direct access) allows us to use a bidirectional parsing according to
the placement of leaves.

This representation of ordered oriented trees is useful for depth �rst search

visits. The input of the following bidirectional traversal algorithm is the ar-
ray t[] (i.e. the corresponding preorder representation of T ). In other words,
we shall describe an algorithm which use the second method for representing
ordered oriented trees. In fact, we present a parallel combination of the two
sequential strategies of up and down traversal. Furthermore, the down traver-
sal coincides with the depth �rst search strategy. We consider two processors
P1, P2 and two global variables i1, i2. Suppose also that we have a proce-
dure \halt(P)", which stops the running of the processor P. We shall call this
algorithm (BT) (i.e. bidirectional traversal).

We can say that our model is a SIMD (simple instruction stream, multiple
data stream) computer ([Akl97]). This means that these two processors P1 and
P2 operate synchronously. Furthermore, our model is of a multiprocessor type
because the processors P1, P2 share a common memory.
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Figure 6.1. General SIMD Model for Bidirectional Traversal

Algorithm (BT) is described using two procedures and a main program:

procedure visit_down(P1);

begin

if i1 <= i2 then begin

(v1,d) := t[i1];

{visit the vertex v1}

write("we have visited ", v1);

write(" and it has ", d, " sons");

i1 := i1 + 1;

visit_down(P1)

end

else halt(P1);

end;

The up traversal of the tree is quite similar.

procedure visit_up(P2);

begin

if i2 > i1 then begin
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(v2,d) := t[i2];

{visit the vertex v2}

write("we have visited ", v2);

write(" and it has ", d, " sons");

i2 := i2 - 1;

visit_up(P2)

end

else halt(P2);

end;

The main program is

begin

read(t[]); {read the tree}

i1 := 1; i2 := n; {n being the number of vertices of T}

repeat in parallel

visit_down(P1);

visit_up(P2)

until (i1>i2);

end.

Example 6.1.2 Let us reconsider the tree from Examples 2.1.1 and 6.1.1. We
shall simulate below the \parallel running" of Algorithm (BT).

Initial: i1 = 1 and i2 = 2.
Step 1: P1 ! we have visited 1 and it has 3 sons

P2 ! we have visited 9 and it has 0 sons

Step 2: P1 ! we have visited 2 and it has 0 sons

P2 ! we have visited 8 and it has 0 sons

Step 3: P1 ! we have visited 3 and it has 2 sons

P2 ! we have visited 7 and it has 0 sons

Step 4: P1 ! we have visited 5 and it has 2 sons

P2 ! we have visited 4 and it has 3 sons

Step 5: P1 ! we have visited 10 and it has 0 sons

P2 ! we have visited 6 and it has 0 sons

Step 6: P1 ! we have visited 11 and it has 0 sons

P2 ! halts

Compared to the classical preorder visit (which needs 11 steps), our bidirectional
traversal needs only 6 steps.

We saw in Example 6.1.2 that the processor P1 visits the tree in depth �rst
search manner (the order of visiting the vertices is f1; 2; 3; 5; 10; 11; 6; 4; 7; 8; 9g)
and P2 in the opposite manner to P1 (i.e. the order of visiting the vertices is
f9; 8; 7; 4; 6; 11; 10; 5; 3; 2; 1g). In fact, P2 visits all the sons from right to left and
�nally their root.
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Theorem 6.1.1 (correctness and completeness) Let T = (V ; E; s; d) be an or-
dered oriented tree represented by an array which contains its preorder repre-
sentation as the input of Algorithm (BT). Then:

a) After the execution of Algorithm (BT), all the vertices of T have been
visited.

b) Let us denote by T1(n), T2(n) the running times of the procedures
visit_down and visit_up, where n = jVj: Then the parallel running
time t(n) satis�es the relation (we have suppose that the routing time is
zero):

minfT1(n); T2(n)g

2
� t(n) � max fT1(n); T2(n)g

Proof

a) If i1 < i2 then each call of procedures visit_down and visit_up implies
the visit of two new vertices (which has not yet been visited). We know
that the array t contains in fact the preorder representation of T . The
procedures visit_down and visit_up read the array t cell by cell (because
of the statements i1 := i1 + 1 and i2 := i2 - 1). The cells t[i1]

and t[i2] contain informations about the current vertices v1 and v2,
respectively. So, v1, v2 have been visited at this parallel step.

b) The inequality t(n) � maxfT1(n); T2(n)g can be obtaining by supposing
that one processor waits. For instance, if P1 waits, then t(n) = T2(n)
(time routing is zero). The other inequality can be obtained by supposing
that both processors work until i1 = i2. This implies a running time of
minfT1(n);T2(n)g

2 .

Remark 6.1.1 Skipping the details, for constructing the initial tree using the
depth �rst representation, two auxiliary stacks must be available for the two
processors.

6.2 Bidirectional attribute evaluation

In [Alb91b], the 
exible and the rigid tree-walking strategies for traversing the
attributed decorated tree have been presented. A 
exible strategy is completely
determined by the attribute dependencies of the grammar concerned. Typical
example of attribute grammar classes with a 
exible tree traversal strategy are
the absolute non-circular (ANC) and the ordered attribute grammars.

A rigid strategy is independent of the attributed dependencies. A typical
example of a rigid strategy is to perform a number of passes over the derivation
tree, where a pass is de�ned to be a depth-�rst (left-to-right or right-to-left)
traversal of the derivation tree. An example of a strategy somewhere in between
the 
exible and the rigid strategies is the performance of attribute evaluation
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during a sequence of sweeps over the derivation tree. A sweep, as de�ned in
[EnF82], is a depth-�rst traversal of the derivation tree, without the restriction
of a left-to-right or a right-to-left order of succession, i.e. the visiting order of
the nodes is not restricted with the exception that every tree node is visited
exactly once.

Our approach refers to a rigid strategy which works for general non-circular
attributed grammars. We have called it bidirectional attribute grammars strat-
egy. Next, we present the attribute evaluation algorithm which \works" for a
well-de�ned attribute grammar (WAG). We call it bidirectional attribute eval-
uation algorithm, and it will be denoted by (BAE). Each vertex v of the input
attributed derivation tree has three components. The �rst component is the
label, i.e. the terminal or non-terminal symbol X , the other components being
respectively the set of instances of inherited and synthesized attributes of X .

The Algorithm (BAE):

Input: A well-de�ned attribute grammar AG and an attributed derivation tree
T = (V ; E) where only the inherited attribute instances of the start symbol and
the synthesized attribute instances of the terminal symbols are de�ned.
Output: An attributed derivation tree where all attribute instances are de�ned.
Method: Like in Algorithm (BT), we shall present two procedures for each
of the processors and a main program. Because each element of the array t[]

stores two informations namely the current vertex and the number of sons of
the current vertex (i.e. the pair (v,d)), we denote these by t[].one=v and
t[].two=d. Each of them contain two calls of procedure evaluate(X.a). This
procedure is in fact the corresponding attribute evaluation instruction of the
current production (according to De�nition 2.2.3).

procedure visit_down(P1);

begin

if i1 <=jVj then begin

(v1,d) := t[i1];

(Xp0,I(Xp0),S(Xp0)):=v;

for k := 1 to d do

/* t[i1+1], ..., t[i1+d] are sons of v1 */

(Xpk,I(Xpk),S(Xpk)) := t[i1+k].one;

for k := 1 to d do

for (all a2I(Xpk)) do

if (Xpk.a is undefined) and

(all argument instances of the evaluation instruction

for Xpk.a are defined)

then evaluate(Xpk.a);
for (all a2S(Xp0)) do

if (Xp0.a is undefined) and

(all argument instances of the evaluation instruction

for Xp0.a are defined)

then evaluate(Xp0.a);
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i1 := i1 + 1;

visit_down(P1)

end

else halt(P1);

end;

The up traversal of the tree is quite similar.

procedure visit_up(P2);

begin

if i2 >= 1 then begin

(v2,d) := t[i2];

(Xp0,I(Xp0),S(Xp0)):=v;

for k := 1 to d do

/* t[i2+1], ..., t[i2+d] are sons of v2 */

(Xpk,I(Xpk),S(Xpk)) := t[i2+k].one;

for k := 1 to d do

for (all a2I(Xpk)) do

if (Xpk.a is undefined) and

(all argument instances of the evaluation instruction

for Xpk.a are defined)

then evaluate(Xpk.a);
for (all a2S(Xp0)) do

if (Xp0.a is undefined) and

(all argument instances of the evaluation instruction

for Xp0.a are defined)

then evaluate(Xp0.a);

i2 := i2 - 1;

visit_up(P2)

end

else halt(P2);

end;

The main program is

begin

read(t[]); {read the attributed derivation tree}

i1 := 1; i2 := n;

{n being the number of vertices of the input tree}

repeat in parallel

visit_down(P1);

visit_up(P2)

until (all attribute instances are evaluated);

write(t[]);

{the attributed derivation tree is consistently decorated}

end.
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Remark 6.2.1 Every attribute instance is evaluated during the earliest possible
pass and the di�erent instances of the same attribute may be evaluated during
di�erent passes. In the classical model of evaluation, the attributed instances of
the attributed derivation tree depend in fact on the number of levels (depth) of
the input derivation tree. For instance, the synthesized attributed instances of
the root of T will be de�ned after at least m visits of the attributed derivation
tree, where m is the depth of it.

Using our bidirectional attribute evaluation algorithm, the synthesized at-
tribute instances of the root of T will be de�ned in one visit of the attributed
derivation tree, for the synthesized attributed instances of the terminal symbols.

Compared to [Alb91b], our bidirectional attribute evaluation algorithm has
\half" time running than the classical attribute evaluation algorithm.

Example 6.2.1 Let us consider the attribute grammar of Example 2.2.1. It
is easy to see that for w = aab, according to Algorithm (BAE), we need only
one down visit and one up visit for evaluating all the attribute instances of
the corresponding attributed derivation tree. On the other hand, using classical
methods (down visits), for evaluating the attribute instances, we need to visit
the attributed derivation tree three times (i.e. three down visits).

We can immediately generalize to the input word w = amb. In that case,
Algorithm (BAE) needs the same one down visit and one up visit, instead of
m+1 down visits in the classical method.

Theorem 6.2.1 (correctness and �niteness of Algorithm (BAE))
If the input attributed grammar AG is non-circular, then Algorithm (BAE)

will compute the attribute instances of the input attributed derivation tree in a
�nite number of steps. That is, the output of the Algorithm (BAE) will be a
consistently decorated attributed derivation tree.

Proof Let AG be a non-circular (well de�ned) attribute grammar. This means
that for any derivation tree T , the dependency graph D(T ) has no cycles. In
D(T ), the pair (Ni:a;Nj :b) is a directed arc i� attribute instance Nj :b depends
on attribute instance Ni:a. Because D(T ) is acyclic, its arcs specify a partial
ordering of the attribute instances. The existence of an arc (Ni:a;Nj :b) indicates
that the value of attribute instance Ni:a must be de�ned before the attribute
instance Nj :b can be computed.

The procedures visit_down(P1) and visit_up(P2) use the procedure
evaluate(X.a), which is in fact an attribute evaluation instruction. As a con-
sequence of the use of the loop repeat ... until (in the main program) it
follows that all the attributed instances of T will be computed. Because D(T )
has no cycles, it follows that the number of iterations of the above loop is �nite.

6.3 Conclusions

The complexity of Algorithm (BAE) applied to an attributed derivation tree is
related to the complexity of Algorithm (BT) applied to an ordinary tree. It is
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obvious that the number of visits for evaluating all the attribute instances of
the attributed derivation tree performed by Algorithm (BAE) is less than that
in the classical algorithm ([Alb91b]). As we saw in Example 6.2.1, there exist
situations for which our bidirectional evaluating strategy is independent of the
size of the input attributed derivation tree.

But, sometimes (due to the dependency graph) the processors have to wait
one each other and only one processor works. In that case, the parallel attribute
evaluation coincides with the classical one.

If the underlying context free grammar of the corresponding attribute gram-
mar is in Chomsky normal form, then any derivation tree will be binary tree. In
that case, the �rst method of representing ordered oriented trees is a convenient
data structure for Algorithm (BAE), too. Furthermore, any node of the tree
could be directly accessed (i.e. not sequentially, as it was used in the second
method of representing ordered oriented trees).

Open problem: In which cases (for what kinds of attribute grammars)
our bidirectional attribute evaluation is strictly (or two times) better than the
classical one ?
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Chapter 7

Final conclusions

7.1 Original contributions of this thesis

The main original results are contained in Chapters 3, 4, 5, 6. Our concern
was to derive parallel algorithms for parsing and attribute evaluation, at least
for some subclasses of context free grammars.

Chapter 3, entitled Linear-time bidirectional parsing for a subclass of lin-

ear grammars, introduces LLin(m;n) grammars (De�nition 3.1.1). They are
similar to the LL(k) grammars. Intuitively, instead of only looking ahead to
the next k terminal symbols, we have to look ahead to the next m terminal
symbols and to look back to the previous n terminal symbols. Thus, the unique
production which must be applied can be uniquely determined. Consequently,
the membership problem for LLin(m;n) grammars can be solved in linear time.
The bidirectional parser attached to a LLin(m;n) grammar is presented in Def-
inition 3.2.2. Theorems 3.2.1, 3.2.2 prove the correctness and termination of
the bidirectional parser. Theorem 3.1.5 is due to Prof. Dr. Manfred KUDLEK.
LLin(m;n) grammars are treated in detail.

Kernel bibliography: [AnK98, AnK99b, AnG95, JuA97].

Chapters 4 and 5 refer to bidirectional parsing for context free languages.
The classical type of parsing is extended by using a mirror process. To ana-
lyze an input word, we use two processors acting from both sides of that word.
More precisely, the parsing (derivation) tree is in one case (Chapter 4) tra-
versed up to down and left to right combined with down to up and right to left
(LL(k1) � RL(k2) grammars, De�nition 4.4.1). In the other case (Chapter 5),
the associated parsing tree is traversed down to up from both sides of the input
word using two processors (LR(k1) � RL(k2) grammars, De�nition 5.3.2). In
fact, only one processor will be strongly active after the middle of the input
word is found.

Kernel bibliography: [AGK99, AnK99a, AnG95, JuA97].

In Chapter 7, a strategy called bidirectional attributed evaluation is em-
phasizes. To be more precise, this new approach stands for the evaluation of the
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attribute instances of an attributed derivation tree. The corresponding (bidi-
rectional) parallel algorithm is also provided.

Kernel bibliography: [AKM99, And97].

7.2 Future work

We intend to:

1. solve the open problems listed at the end of Chapters 3,4,5,6;

2. prove that the power of the bidirectional parsers equals to the power of
the Turing machines;

3. �nd more properties about bidirectional deterministic languages;

4. create and implement a practical compiler generator based on the bidi-
rectional parsing for a two-processor computer (at least for the front-end
capability: lexical, syntactical, semantical analysis);

5. even a direct approach for N processors cannot be easily derived, this
can be done in a �rst stage for three and four processors (processes).

For instance, we may think that the context free grammars G and eG as
being in operator and double Greibach normal form ([Ros67]). Then the
point where the initial two processors will meet can be known from the
beginning, and one (or two) new processors may be (scalable) introduced.
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