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I shall certainly admit a system as

empirical or scienti�c only if it is

capable of being tested by

experience. These considerations

suggest that not the veri�ability

but the falsi�ability of a system is

to be taken as a criterion of

demarcation ... It must be possible

for an empirical scienti�c system to

be refuted by experience.

The Logic of Scienti�c Discovery

(1934)

Karl Popper

If your experiment needs statistics,

you ought to have done a better

experiment.

The Mathematical Approach to

Biology and Medicine (Norman

T.J. Bailey, 1967)

Ernest Rutherford
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Chapter 1

Introduction

Statistical inference is used in empirical studies to draw conclusions from data that

are subject to random variation. Statistical inference about population quantities of

interest requires assumptions about the process which generated the data, or Data

Generating Process (DGP). When empirical studies are a�ected by missing data,

as is often the case, analysts also need to make assumptions about the process that

caused the missing data, or Missing Data Mechanism (MDM), either explicitly by

extending the Data Generating Process to formalize knowledge about the MDM, or

implicitly by omitting such speci�cation1. Statistical inference based on incomplete

data is only valid when the speci�ed DGP, including the MDM, is su�ciently in

concordance with the unknown true DGP. The term valid is used loosely here, and

will be de�ned more precise with respect to several modes of inference later on.

A multitude of methods of varying complexity have been proposed to perform statis-

tical inference when the data set is a�icted by missing values, ranging from simple

ad hoc methods to techniques with sophisticated statistical underpinnings. Some

commonly used strategies for tackling the missing data problem are brie�y discussed

in Section 1.1, after which the method of primary focus of this work, multiple im-

putation, is reviewed in Section 1.2. All techniques are illustrated by applying them

to the problem of estimating the average weight of a female population when a con-

siderable number of sampled women refuse to be weighted. Finally, in Section 1.3,

a number of problems and open questions with respect to how Multiple Imputa-

tion (MI) is currently used are identi�ed; these questions will serve as the point of

departure of this work.

1Applied researchers are often not fully aware that omitting the speci�cation of a Missing Data
Mechanism e�ectuates a "default" MDM; this default MDM is not necessarily equal to the unknown
true MDM.
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1.1 Methods for handling missing data

1.1.1 Complete Case Analysis

One simple and widely used technique is Complete Case Analysis (CCA), or listwise

deletion. After removal of all units with at least one missing datum, the Data

Analysis Procedure (DAP) is performed unmodi�ed as if there are no missing values:

the MDM is assumed to be �neutral�, and is ignored. It is important to realize

that the ability to ignore the MDM, or ignorability, is not solely a property of the

unknown true MDM, but also depends on the Data Analysis Procedure; a MDM

might be ignorable for a maximum likelihood estimator, but not ignorable for a

GEE-estimator (generalized estimating equation, see Zeger & Liang (1986)). Two

major advantages of CCA are that it allows the use of standard statistical software

which the user is familiar with, and that no additional modeling e�ort is required:

therefore, when applicable, CCA is the method of choice. Conditions for ignorability

will be discussed in Section 2.3.3 with respect to the DAP of interest in this work.

With respect to the weighting of females, suppose we correctly assume that the

probability of a missing value is the same for all sampled females, and therefore

independent of weight itself. It can be trivially shown that this MDM is ignorable

with respect to the sample mean, so CCA is our procedure of choice: we calculate

the sample mean after removing all units with a missing value.

1.1.2 Maximum Likelihood

A more generally applicable and sophisticated approach is likelihood-based infer-

ence with incomplete data (ML). Given all available data, which typically includes

the observed part of units with one or more missing values, a likelihood function

derived from the speci�ed DGP, which might include a MDM, is maximized over

parameters of the DGP. The DGP is typically extended to random variables which

were previously conditioned upon or marginalized over; for example, in a regression

setting with missing values in a predictor, the full joint likelihood needs to be speci-

�ed, instead of formulating the conditional likelihood of the response variable given

the predictor. Because the speci�ed DGP often contains external information which

is speci�c to the situation at hand, there might be no o�-the-shelf Data Analysis

Procedure available. Compared to CCA, ML is more general, since it can be used

with any MDM, and not just ignorable ones; further, ML uses all the data that is

available, since it allows for the use of the observed part of units with one or more

missing values.
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In our example, the researcher suspect that his data are truncated such that all

sampled obese females over 90 kg refuse to be weighted. Therefore, he speci�es that

the data follow a log-normal distribution truncated from the right at 90 kg, and

estimates the parameters of this distribution using ML to obtain an estimate of the

population mean. It should be emphasized that the inference is highly sensitive to

the assumed truncation point.

1.1.3 Weighting

Another sophisticated and arguably general approach to the missing data problem is

Inverse Probability Weighting (IPW), where the data of a unit is weighted according

to the inverse of the estimated or known2 probability of observing that particular

unit. In our example, the analyst believes that the probability of non-response

increases monotone as a function of weight; therefore, he assigns larger sampling

weights to heavy females. IPW is generally applicable; a large class of Data Analysis

Procedures allows for the speci�cation of sampling weights.

Just as CCA, IPW can be relatively ine�cient compared to other approaches, since

the observed part of units with one or more missing values is also discarded (Car-

penter & Kenward, 2006). This e�ciency problem can be alleviated by using doubly

robust estimators, which require both the speci�cation and estimation of (a) a para-

metric model for the response probabilities and (b) a parametric model for the

observed and missing data. Doubly robust estimators have the advantageous prop-

erty that they are robust against misspeci�cation of either model (a) or (b), but

not both: at least one of the models needs to be correct. A disadvantage of IPW

and doubly robust estimators is possible instability of the estimator when the prob-

ability of observing some units approaches zero, and the corresponding sampling

weights approach in�nity; however, the estimators recently proposed by Tan (2008)

have desirable properties in boundedness even if the inverse probability weights are

highly variable.

1.2 Multiple imputation

MI (Rubin, 1987) is envisioned as a statistical mode of inference to draw conclusions

from incomplete data sets. It involves generating plausible values, called imputa-

tions, for each missing datum in the data set. These imputations are generated

by an Imputation Method (IM), and are based on the incomplete data set and as-

sumptions formulated in a separate DGP, called the IDGP. The resulting Imputed

2Paradoxically, it is more e�cient to use estimated than true probabilities (Robins, 1995).
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Data Sets (IMDSs), which are free of missing data, combined with the DGP neces-

sary for analysis, called ADGP from now on, are used to perform an Imputed Data

Analysis (IDA) for the parameters of scienti�c interest. Thus, the IDGP contains

assumptions necessary for generating imputations, and the ADGP contains assump-

tions necessary for performing the Imputed Data Analysis. In the MI framework, an

analyst is never confronted with incomplete data, and always speci�es the ADGP

as if there are no missing data: the MDM is ignored for analysis. Likewise, the IDA

equals the Data Analysis Procedure which would be applied to completely observed

data. Although the MDM is always ignorable for the Imputed Data Analysis, the

IDGP might contain the explicit speci�cation of a hypothesized MDM; more often,

the MDM is also ignored for imputation.

In our example, the IDA estimator equals the sample mean, and the ADGP consists

of the assumption that the observations are i.i.d., and the assumption that the �rst

moment of the random variable weight exists. In the IDGP, the imputer posits a

log-normal distribution for the missing and observed weights, where the median of

the missing weights is shifted to the right by 20 kg with respected to the log-normal

distribution of the observed weights. After estimating the parameters of the log-

normal distribution of the observed weights, imputations for the unobserved weights

are then drawn from a log-normal distribution whose median is shifted to the right

by 20 kg with respect to the distribution �tted to the observed data. Then, the

analyst can consistently estimate the mean weight by computing the sample mean

from the IMDS.

Unfortunately, treating observed and imputed data on equal footing generally leads

to invalid inference, since the analysis does not take into account the additional

uncertainty about the imputed data. MI is designed to solve this de�cit; in contrast

with single imputation, MI requires the imputation and analysis step to be performed

at least two times, after which the resulting IDAs are aggregated or �pooled� to

form the �nal Multiple Imputation Inference (MII) using certain rules; a schematic

overview of the procedure is depicted in Figure 1.1 on page 5. Because the multiple

imputations are not deterministic predictions, but consist of random draws from

the predictive distribution implied by the speci�ed IDGP, the point estimates of

the IDAs vary; this variance between the multiple point estimates represents the

uncertainty about the imputed data, and is incorporated into the MII by the pooling

rules.

MI was originally conceived for inference within a survey context, where a design-

based perspective is prevalent. This perspective comprises of a concrete population

consisting of a �nite number of units with properties represented by �xed variables;

randomness is induced by drawing a sample with known sampling probability from

4



Figure 1.1: Overview of the MI procedure.

this population. However, DAPs used in the social sciences are often based on the

linear model, where the sample originates from an in�nite hypothetical population,

and the properties of the population units are realizations of random variables;

assumptions about the unknown properties of these random variables and their

relations are formalized in the DGP. Nevertheless, there are no theoretical objections

to application of MI outside survey contexts (Rubin, 1987), and in this work MI will

be investigated and evaluated from a frequentist model-based perspective.

The principal merit of MI is the separation of the missing data problem from the

DAP. As a consequence, the entity which produces the Imputed Data Sets, called

imputer, and the entity which analyzes the IMDSs, called analyst, need not be the

same. Data analysts who lack the necessary skills and knowledge to correctly handle

the missing data problem themselves can thus continue to perform the DAP using

the methods and computer programs they are familiar with. One minor caveat is the

need to combine the Imputed Data Analyses; fortunately, there also exists software

which handles this quite conveniently either by combining the provided collection

of IDAs, or encapsulating calculation and pooling of the IDAs given the IMDSs.

Previous concerns stemming from the increased computational burden and storage

costs associated with imputing and analyzing the data multiple times have been

rendered void with the technological advances commonly available nowadays.

MI e�ectively delegates the task of solving the missing data problem to the imputer,

who needs to specify an IDGP. The IDGP contains a speci�cation of the proper-

ties of the random variables with missing values, including their relation with other

variables, and may contain a hypothesized MDM. Given that the Data Analysis

Procedure has favorable frequentist properties if there are no missing data, a neces-

sary condition for validity of the MII is compatibility of the IDGP with the Imputed
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Data Analysis. More speci�cally, the IDGP is compatible when the imputed random

variables have the properties necessary for obtaining favorable frequentist properties

of certain aggregates of the IDAs. The astute reader will remark that compatibility

of an IDGP is de�ned with respect to an Imputed Data Analysis, and not with

respect to an ADGP; an IDGP might not be compatible with every IDA associated

with an ADGP (see Nielsen (2003) for examples).

Although the missing data problem is separated from the IDA at the procedural

level, it remains tightly coupled with the IDA at the modeling level because com-

patibility of the IDGP depends on the IDA chosen by the analyst. Incompatibility

of the IDGP typically arises when the analyst and imputer insu�ciently commu-

nicate. It also occurs when the same set of IMDSs is analyzed multiple times by

possibly di�erent analysts to obtain unique MIIs, each with an own IDA; this is an

intended usage scenario of MI. In this case, the MIIs are valid only when the IDGP

is compatible with all IDAs. Absolutely speaking, there exists no regular paramet-

ric IDGP which encapsulates the collection of all parametric ADGPs. On the other

hand, nonparametric methods su�er from the curse of dimensionality, and typically

exhibit poorer �nite-sample performance. Creating the ultimate IM which produces

valid MII for all ADGPs is therefore likely to be an impossible goal.

It is also possible that the CCA and MII are both valid, but di�er in e�ciency3

because the imputer uses less or more information than the analyst; this is a special

form of what Meng (1994) calls uncongeniality. When the imputer correctly uses

more information than the analyst, the MII is supere�cient (Meng, 1994). A super-

e�cient MII is characterized by con�dence intervals which are narrower than those

of the CCA, but feature at least nominal coverage. On the other hand, when the

imputer uses less information than the analyst, MII might be less precise compared

to the CCA. Although this special case of uncongeniality (the remaining cases are

caused by incompatibility of the IDGP) has gained a lot of attention in the literature

and is technically interesting, it does not lead to invalid MII, and is considered to

be of secondary importance.

1.3 Research Goals

Summarizing, MI can potentially be used in conjunction with a wide range of existing

IDAs4, while relieving the analyst from the burden of missing values by separating

3The e�ciency comparisons are made asymptotically, as the number of imputations goes to
in�nity.

4The IDA should be self-e�cient (Meng, 1994): the e�ciency of the estimator used in the IDA
should decreases when there is less data available.
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the procedure for handling the missing data from the data analysis, and delegating

the task of solving the missing data problem to the imputer. In most applications

of MI in the social sciences, the MDM is ignored for imputation, and the role of

imputer is played by aforementioned imputation software which automagically [sic]

renders the imputations, without using substantial background knowledge about the

incomplete data set. Most certainly, these software packages made MI in the eyes of

many practitioners an attractive solution to the missing data problem. The practice

of applying canned solutions to statistical problems certainly is not new, as apparent

in the wide distribution of easy to use statistical software such as SPSS within the

academic world; in fact, MI routines have recently been incorporated in SPSS. In

itself, delegating calculation of an estimator to a computer program is bona �de;

however, users are often unaware of the assumptions accompanying such automated

procedures. Analogue to this ritualized use of software, users of MI packages are

often enticed to ignore the IDGP underlying the implemented IM. To their defense,

the documentation of IMs often does not clearly state the IDGP, and even when

the IDGP is speci�ed, deducing the class of compatible IDAs remains di�cult. In

practice, MII tends to be untransparent compared to ML inference with missing

data, because ML inference keeps the missing data problem and the DAP uni�ed.

When the IDGP is in fact known, the posited assumptions are rarely completely met,

as is the case with most statistical applications; a natural concern is the robustness

of MII to violations of the assumptions posited in the IDGP.

Existing research on the robustness of MII has primarily focused on IDAs based on

marginal statistics such as the sample mean (Schenker, 1996; Little & An, 2004);

perhaps the insistence on marginal statistics stems from the survey context from

which MI originates, where most inference procedures are about such population

quantities. In the social sciences, the parameters of scienti�c interest are often the

regression coe�cients of a Linear Model (LM); these coe�cients can also represent

treatment e�ects in simple experimental designs, and are predominantly estimated

using the Ordinary Least Squares (OLS) estimator. Both the LM and the OLS

estimator will be described in detail in Chapter 2. The main goal of this work is

to assess the robustness of MII with respect to the parameters of the linear model

using Monte Carlo Statistical Simulation (MCSS); existing research to this end

will be brie�y reviewed in Section 5.2. Of course, the robustness of MII depends

on the used IM; to safeguard scienti�c reproducibility, transparency, and practical

relevancy, IMs under consideration are those implemented and made available for the

open-source statistical environment and programming language R (R Development

Core Team, 2011). Further, in an attempt to improve upon existing IMs, a new

semiparametric IM is proposed in Section 4.5; an implementation of this method is

7



written for the R environment, and a program listing is given in Chapter A5. Note

that in this work, the MDM is always assumed ignorable for imputation.

Research objective: To assess the robustness of MII � as based on currently

available and widely used IMs � with respect to parameters of the LM, and to

improve upon existing IMs.

Below, several research questions are listed which serve as a point of departure for

reaching the research objective stated above.

Research question 1 When is MI bene�cial? (Chapter 2)

After de�ning the ADGP, DAP, CCA, and IDA, it will be investigated when the

MDM is ignorable with respect to the CCA. All possible MDMs are classi�ed,

and related to the nomenclature introduced by Rubin (1976). For each class of

MDM, a recommendation of either MI or CCA will be given after carefully weighting

the advantages and disadvantages of both approaches with respect to validity and

e�ciency.

Research question 2 When is an IM compatible with the OLS estimator? (Chap-

ter 3)

After de�ning the MI estimator, the compatibility of an important class of IMs will

be investigated with respect to the IDA previously de�ned in Chapter 2. In partic-

ular, it is investigated how to properly impute transformations and interactions of

predictor variables.

Research question 3 Which IMs are currently available, and what are their IDGPs?

(Chapter 4)

Some widely used and freely available IM will be classi�ed and described. Also, pos-

sible incompatibilities between their IDGPs and the OLS estimator are indicated.

Research question 4 How can existing IMs be improved? (Chapter 4)

A new semiparametric robust IM will be proposed, which models the parameters

of a speci�ed conditional distribution of the variable to be imputed using smooth

functions of predictor variables.

Research question 5 How do IMs perform empirically? (Chapter 5)

After providing an overview of MCSS, extensive simulation studies will be performed

which allows for a comparison of the performance (robustness) of some of the IMs

listed in Chapter 4, including the proposed one, under a variety of scenarios.

5This work is a result of the DFG �nanced project �Robust and e�cient multiple imputation of
complex data sets�, which stated more ambitious goals. During the project, it became clear that
those goals are hard to obtain; see Chapter 6 for a detailed account.
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Finally, all research �ndings will be summarized and re�ected upon in Chapter

6, including retrospective contemplations about the goal of the project, followed

methodological approach, and encountered hurdles. Areas of future research are

indicated, and recommendations for future researchers and practitioners are given.

9



Chapter 2

The Analyst

In this chapter, those parts of the Multiple Imputation Inference (MII) procedure

are described which principally involve the analyst, starting in 2.1 with a speci�ca-

tion and discussion of the Linear Model (LM), which is the ADGP to which this

work is constrained. Secondly, the Complete Case Analysis (CCA) and Imputed

Data Analysis (IDA) will be de�ned in 2.2; both consists of the Ordinary Least

Squares (OLS) estimator and associated variance estimator. Thirdly, the Missing

Data Mechanism (MDM) will be formalized in Section 2.3, along with a taxonomy

of MDMs. Also, it will be indicated when a MDM is ignorable for the CCA and MII.

Since the analyst always ignores the MDM in a Multiple Imputation (MI) setting,

and formulating the MDM is a task of the imputer, discussion of the MDM might

seem misplaced in this chapter. However, it is the analyst who must ultimately

assess if the acquired Imputed Data Sets are indeed bene�cial for the analysis at

hand: some MDMs are ignorable for a CCA, but not ignorable for MII, in which case

the imputations are better discarded. Therefore, for all identi�ed classes of MDM,

a recommendation of either MI or CCA will be given after carefully weighting the

advantages and disadvantages of both approaches with respect to validity, and to a

lesser extent, e�ciency. Key assumptions and limitations of the IDA are discussed

in 2.1.2 and 2.3.5.

10



2.1 ADGP

2.1.1 Population model

In the LM, the response variable y follows the following population regression func-

tion:

y = E (y|x, s) + u (2.1)

= α + xTβ + u

where y is the response variable, α is the intercept, x is a k× 1 column vector with

predictors, β is a k×1 vector with the associated regression coe�cients, u is a latent

error variable with E (u) = 0, and s is a selection indicator with s = 1 indicating

that {x, y} is observed, and s = 0 indicating that at least one element of x or y has

a missing value. It is assumed the observations are i.i.d. (independent and identi-

cally distributed); therefore, the index enumerating the units of the population is

suppressed. Notationally, no di�erence is made between random variables and their

realizations. Note that we make explicit the often implicit assumption that the

conditional expectation for units with missing values (s = 0) equals the conditional

expectation for units without missing values (s = 1): the MDM is ignored. More-

over, since we are solely interested in features of the distribution of y conditional

on x, properties of x are omitted from the model speci�cation. The parameter of

scienti�c interest is β, where each βi represents the expected change in y when the

corresponding predictor xi has increased with one unit.

In the social sciences, measurement form at best interval1 scales which are con-

structed by adding an unknown constant c to a ratio scale, as opposed to interval

scales such as Celsius for which c is known; therefore, α has typically no structural

interpretation, and is scienti�cally meaningless, although estimating α for the pur-

pose of prediction is legitimate. Even when the outcome measure is a ratio scale

such as response time, the marginal mean is seldom of interest.

The assumption that (2.1) is the true model implies that the errors are mean inde-

pendent of the predictors and the selection indicator:

E (u|x, s) = E (y − E (y|x, s) |x, s) (2.2)

= α + xTβ − α− xTβ

= 0;

1The social sciences lack a solid measurement-theoretic foundation; Steven's theory of scales of
measurement acts as a surrogate (Michell, 2008). This theory proposes that measurements can be
classi�ed into four di�erent types of scales: nominal, ordinal, interval, and ratio.
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this is the the key condition su�cient for obtaining consistency of the estimator of

β as described in Section 2.2.

2.1.2 Discussion of assumptions

The model (2.1) speci�es that the linear relationship between x and y is identical

for all units in the population. When the relationship between x and y is linear for

all population units, but not identical, β can only be interpreted as the expected

population-averaged change in y for a one unit increase of x. No other family of

functions has the property that an average of several members from the family is

also in the family (Luce, 1997). For example, while the linear relationships between

the grades and IQ scores of the n students equal

gradei = αi + IQiβi + ui for all i ∈ {1, . . . , n}, (2.3)

the population averaged regression equals as implied by (2.1)

gradei = ᾱ + IQiβ̄ + ui for all i ∈ {1, . . . , n}, (2.4)

where ᾱ and β̄ are population-averaged regression coe�cients. Thus, (2.4) indicates

that a one point increase in IQ leads to an expected grade increase of β̄ = 2 units;

however, it does not necessarily hold that for pupil i the expected grade increases

with βi = 2 points2.

A considerable limitation of the LM is that all parameters are forced to enter the

model linearly. It is possible to add transformations of variables to the model; this

nevertheless presupposes that the modeler knows the true functional relationship

between the predictors and y. Unfortunately, most theories in the social sciences do

not explicitly state functional relationships. In fact, most applications of the LM in

the social sciences have the primary goal of accumulating evidence in favor of the

obvious and trivial fact that β 6= 0. Further, the null hypothesis β = 0 is often

falsely interpreted as the absence of any type of relationship, while more statistically

versed researchers keep �improving� the model by selecting suitable transformations

by trial and error, jeopardizing the validity of statistical tests.

A necessary condition for (2.2) to hold is that either all relevant predictors are

included in the model, or that the excluded but relevant predictors are mean in-

dependent of x and s. This condition is ful�lled in randomized experiments for

2In this particular example, the relationship between IQ and grade cannot be causal on the
student level since IQ is an attribute; a student is not potentially exposable to all possible levels
of IQ (Holland, 1986).
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estimation of the treatment e�ect, since possible confounding e�ects of excluded

predictors are neutralized through the random assignment of units to experimental

conditions. However, if in a quasi-experimental research setting there are auxiliary

predictors z such that in truth

E (y|x, z, s) = α + xβ + zγ, (2.5)

but these predictors are excluded from the model, then a necessary condition for

(2.2) to hold is that

E (z|x, s) = E (z) . (2.6)

To see this, observe that upon exclusion the e�ect of the auxiliary predictor zγ is

�absorbed� by the augmented error term u∗ = zγ + u such that

E (u∗|x, s) = E (z|x, s)γ + E (u|x, s) . (2.7)

= E (z)γ + 0

= E (u∗) .

An often overlooked asymmetry in the LM is that in contrast to y, which includes the

random error component u, the predictors x are assumed to be free of measurement

error; violation of this assumption may lead to attenuated estimates of β3. Finally,

it is implicitly assumed that there is no feedback from the response variable to the

predictors; this seems overly simplistic given the dynamic nature of human behavior.

For instance, given the relation between the grade on a test y and fear of failure x,

an increased fear of failure leads to lower grades, which in turn leads to an increased

fear of failure; when an ADGP with a single equation is assumed, estimates of β

will in this case be biased towards zero.

In quasi-experimental settings, the maintenance of the liberal and strong assump-

tions of the LM decreases the credibility of statistical inference. When (2.2) does

not hold due to misspeci�cation of the functional form, omission of relevant pre-

dictors, measurement error in the predictors, feedback from the response variable

to the predictors, or non ignorability of the MDM, any causal interpretation is no

longer possible, and the estimates can only be interpreted as a linear projection.

However, linear projections typically exhibit lackluster predictive power; if predic-

tion is the primary objective, there are superior alternatives available which are

3Although in some applications the relationship between the response quantity and contami-
nated predictor is of legitimate interest, such as the relationship between the perceived number of
alcoholic consumptions x and drunkenness y (although in this example there is probably also a
feedback e�ect).
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not hampered by the linearity assumption, and are therefore better at tracking the

data. At best, the LM is used as a mathematically convenient approximation to the

analysis of variance of simple experimental designs (for more involved designs such

as the split-plot or hierarchical designs, LM fails to give the right answer (Gelman,

2005)). Nevertheless, due to its prevalence in applied research, (2.1) is the ADGP

under consideration in this work.

2.2 Imputed Data Analysis

In this section we de�ne the IDA the analyst is assumed to use, which consists of an

estimator of β, and a measure of the precision of this estimator. Suppose a random

sample of size N is drawn where all {xi, yi, si}Ni=1 are independent and identically

distributed (i.i.d.) according to some joint distribution such that (2.1) holds. The

sample is described by the following random variables:

X =


xT
1 − x̄T

xT
2 − x̄T

...

xT
N − x̄T

 y =


y1 − ȳ
y2 − ȳ

...

yN − ȳ

 s =


s1

s2
...

sN

 , (2.8)

where X and y are demeaned. The observations are set in deviations from the sample

mean because the intercept α is often of little scienti�c interest (as explained in 2.1).

Further, of the N units in the sample, the number of completely observed units is

de�ned as nobs =
∑N

i=1 si, and the number of cases with at least one missing value

as nmis = N − nobs .

The estimator of β is the OLS-estimator:

β̂OLS(X,y, s) = Ψ−1(XTCy), (2.9)

where

Ψ = (XTCX) (2.10)

C = diag s,

with C being the selection matrix. Provided that 2.2 holds, it can be shown that

β̂OLS is consistent and unbiased (Cameron & Trivedi, 2005).

For estimating the precision of β̂OLS, the ADGP is extended with the assumption
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that the errors u in (2.1) are homoscedastic:

Var(u|x, s) = σ2. (2.11)

Assumptions (2.2) and (2.11) can be summarized as

E
(
ul|x, s

)
= E

(
ul
)

l ∈ {1, 2}. (2.12)

When (2.12) holds, the limit distribution of β̂OLS is

√
N(β̂OLSN

− β)
D−→ (plimN−1ΨN)−1(dlim

1√
N

XT
NCNuN) (2.13)

= N (0, (plimN−1ΨN)−1σ2),

where dlim denotes convergence in distribution.

The variance of the errors σ2 can be consistently estimated using

σ̂2 = (nobs − k − 1)−1yTC(IN −CXΨ−1XTC)y, (2.14)

such that the asymptotic variance of β̂OLS can be consistently estimated as

V̂OLS(X,y, s) = σ̂2Ψ−1. (2.15)

Both the CCA and IDA, and also the Data Analysis Procedure (DAP), are based

on the OLS estimator:

β̂CCA(X,y, s) = β̂OLS(X,y, s)

V̂CCA(X,y, s) = V̂OLS(X,y, s)

}
(2.16)

β̂IDA(X̃, ỹ) = β̂OLS(X̃, ỹ,1)

V̂IDA(X̃, ỹ) = V̂OLS(X̃, ỹ,1)

}
(2.17)

where {X̃, ỹ} is an Imputed Data Set (IMDS). Since there are no missing values

left after imputation, s is �xed at 1 for the IDA4. Both the CCA and IDA are

valid when their limit distribution equals (2.13); a su�cient condition for validity

is (2.12). Note that the �nal Multiple Imputation Inference is a function of several

IDAs.

4As will be discussed in 2.3, it is actually recommended to exclude cases with missing values in
y from the IDA.
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2.3 Missing Data Mechanism

2.3.1 Missing at Random and Friends

The MDM is formalized by assigning a conditional distribution to s. Below, several

types of MDMs are de�ned and illustrated using the problem of estimating the

average weight of a female population, which was already discussed in Chapter 1.

Suppose an i.i.d. sample of size N is drawn from the target population of females,

where the random variable y represents the weights in kg, and si indicates if yi

is observed or missing. However, some females refuse to be weighted, and y is

consequently a�icted by missing values. We denote the random variables which are

observed by yobs = (yi)i∈1,...,N :si=1, and the variables whose values are missing by

ymis = (yi)i∈1,...,N :si=0. The MDMs below are ordered, starting with those which are

most restrictive with respect to the DAP.

Missing Not At Random (MNAR)

The selection indicator is dependent on ymis. For example, consider the fol-

lowing MDM, which is a deterministic function of y

p(s|y) =
N∏
i=1

I(yi < a)siI(yi ≥ a)1−si a > 0, (2.18)

where I(·) is the indicator function, and our measurement device critically fails

for females heavier than a. It is trivial to show that the expected value of the

truncated sample does not equal the expected value of the sample; the MDM

is therefore not ignorable for any mode of inference.

Missing At Random Locally (MAR-L)

The selection indicator only depends on yobs. It is important to note that this

assumption is only made for the realized value of s, and is therefore called

a local assumption (Jaeger, 2005). It can be shown that, conditional on s,

this restriction is su�cient for consistency of a maximum likelihood estimate

of the mean. However, the MDM is not ignorable for the distribution of the

maximum likelihood estimator (Nielsen, 1997).

Missing At Random Globally (MAR-G)

The distribution of the selection indicator only depends on yobs for all possible

realizations of s5. The global MAR assumption and some technical conditions

are su�cient to completely ignore the MDM for a maximum likelihood estima-

tor of the mean of y. In our example, the sensitive nature of the study makes

5See Nielsen (1997) for a more precise de�nition.
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it unlikely that the probability of a missing weight for a female depends only

on the observed weights of other females. Moreover, allowing the missingness

of weight for a female to depend on the weight of other females contradicts

the i.i.d. assumption about each observation {yi, si}.

Missing Completely at Random Locally (MCAR-L)

The selection indicator is independent of y. It is important to note that this

assumption is only made for the realized value of s, and is therefore called a

local assumption (Jaeger, 2005). Rubin (1976) shows that, when the missing

values are MCAR-L, the MDM is ignorable for inference which is conditional

on s and based on the sample distribution of y. Thus, inference based on

for example the sample mean of yobs is valid given the realized value of s,

but not necessarily for other realizations of s; therefore, this inference is of

questionable worth, at least from a frequentist perspective.

Missing Completely at Random Globally (MCAR-G)

The selection indicator is independent of y for all possible realizations of s.

This implies that the units for which y is observed are a simple random sub-

sample of the original sample. Therefore, this MDM is unconditionally ignor-

able for all modes of inference. For example, inference based on the sample

mean of yobs is valid for all possible realizations of s.

2.3.2 Missings in Multiple Variables

When there are missings in multiple columns of the N × k matrix X, the selection

indicator s is no longer suited, and the following observed data indicator matrix is

used instead:

R =
N∑
i=1

k∑
j=1

IA(Xij)Eij, (2.19)

where IA(a) indicates if a is observed, and E is theN×k matrix with Eij = 1, and all

other elements zero. All observed cases of X are indicated with Xobs = (Xij)i,j:Rij=1,

and all missing values of X by Xmis = (Xij)i,j:Rij=0 .

The relationship between the selection indicator and observed data indicator matrix

is

s =
N∑
i=1

ei

k∏
j=1

Rij,

where ei is the nobs× 1 vector with a one in the ith component, and zero elsewhere.

For a multivariate MDM involving two variables x and y and an observed data
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indicator R =
[
rx ry

]
, the missing data are MAR when for all i

p(Ri|xi,yi) =



p1 if Ri =
[
0 0

]
g01(yi) if Ri =

[
0 1

]
g10(xi) if Ri =

[
1 0

]
1− g01(yi)− g10(xi)− p1 if Ri =

[
1 1

] , (2.20)

where the probability of missing values does not depend on xi when xi is missing,

and where the probability of missing values does not depend on yi when yi is

missing, and p1 is a constant (Little & Rubin, 2002). The MDM (2.20) is therefore

perhaps unrealistic, and becomes more implausible when the number of components

of X that is a�ected by missing values increases. On the other hand, whereas the

univariate MAR conditions discussed in 2.3 allowed the observed data indicator for

a unit to depend on the observed values of other units, (2.20) respects the i.i.d.

nature of the Data Generating Process (DGP) (2.1).

2.3.3 Ignorability

A su�cient condition for ignorability of the MDM with respect to the CCA is that

the selection indicator is conditionally independent of y given X:

p(s|X,y) =
N∏
i=1

p(si|Xi). (2.21)

When (2.21) holds, the MDM is ignorable for the CCA, since s ⊥ y|X⇒ u ⊥ s|X.

The MDM is ignorable for imputation when condition (2.20) holds; a rationale will

be given in Section 3.3.1.

2.3.4 CCA or MII

Confusingly, the mapping between the three types of MDMs, namely MCAR, MAR,

and MNAR, and validity of the CCA is not injective; therefore, in Table 2.1 on

page 19 it is indicated for all possible types of MDMs if the CCA is valid, and

when imputation is recommended, with e�ciency being of secondary concern. The

di�erent classes of MDMs de�ned in are discussed below:
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Class Missings in p(s|·) Rubin's term CCA valid Imputea

1 y X MCARb, MAR Yes No
2 y y MNAR No No
3 X Xobs MCARb, MAR Yes No
4 X Xmis MNAR Yes No
5 X y,Xobs MAR No Yes

Table 2.1: Table exhaustively categorizing all classes of MDMs in terms of the
nomenclature in Rubin (1976). For each class it is indicated if the CCA is valid with
respect to β, or that an alternative strategy such as imputation is recommended,
e�ciency considerations aside.

aWithout using external information, and ignoring e�ciency considerations.
bWhen p(s|y,X) = p(s)

Class 1

Missing values in y are MAR or MCAR, which implies that the MDM is conditionally

independent of y given X, and ignorable with respect to the CCA. In general,

imputation is not recommended in this case, since the units with missing y have

zero information. To see this, a likelihood-based perspective is adopted, where the

conditional likelihood is given by

L(θ|X,y) = f(y|X;θ), (2.22)

and θ = {β, σ2}. Further, let Xmis represent the rows (units) of X for which the

corresponding element of y is missing; Xmis itself is observed! Von Hippel (2007)

shows that when the marginal likelihood of the observed data is calculated

L(θ|Xobs,yobs) = L(θ|Xobs,yobs)

ˆ
f(ymis|Xmis;θ)dymis

= L(θ|Xobs,yobs)× 1,

the likelihood of the cases with y missing is 1. Although we already know the answer,

which is one, MII estimates this part of the likelihood by approximating the integral

using simulation; imputation will thus only result in unnecessary estimation error.

Further, there is the risk of imputing using an incompatible IDGP, which may lead

to invalid MII.

One exception to the argument above occurs when the imputer uses information

external to the analyst to produce "supere�cient" MII (Meng, 1994), a subject which

was already brie�y touched in Section 1.2. The leading example is when the imputer

uses fully observed auxiliary variables Z, which are excluded from the ADGP but

are nevertheless predictive for y, to increase the precision of the imputations. When
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the IDGP includes auxiliary predictors z, and the following conditions are satis�ed:

1. (2.6) holds; otherwise, β̂OLS is inconsistent,

2. the number of imputations is �large enough�,

then MII is supere�cient. Con�dence intervals of β as produced by the MII will

have nominal or larger coverage, but are narrower and thus considered "better"

than those of the CCA. However, condition 1 is rather stringent, and 2 may be

computationally prohibitive.

Class 2

The selection indicator is dependent on y, and therefore the MDM is not ignorable

for the CCA. Further, the missing values in y are MNAR, which violates (2.20), and

implies that the MDM is also not ignorable for imputation: the IDGP must include

a hypothesized MDM. In this work, only MDMs which are ignorable for imputation

are considered.

Class 3

Missing values are in X and the MDM is dependent on Xobs, and the CCA is valid,

albeit ine�cient. It is true that the loss of information su�ered by CCA can become

quite large when multiple predictors are a�icted by missing data. However, as we

will see in Section 3.2 and Chapter 5, producing imputations which lead to valid MII

is a very hard problem, where inadequate solutions easily lead to invalid MII. When

the MDM is known to be independent of y, analysts are therefore advised to count

their blessings, discard any imputed values, and proceed with a CCA. On the other

hand, when the analyst is relatively certain that the assumptions of the documented

imputation model are met, MII may lead to considerable gains in e�ciency.

Class 4

Missing values are in X and the MDM is dependent on Xmis; the MDM is not

ignorable for imputation. However, since s is (conditionally) independent of y, the

MDM is ignorable for the CCA, which is often overlooked.

Class 5

Missing values are in X and the MDM is dependent on y, which implies that the

CCA is invalid. However, since s is (conditionally) independent of Xmis, the MDM
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is ignorable for imputation; moreover, MI tends to produce "better" estimates than

CCA for this class of MDMs, even if the IDGP is slightly misspeci�ed. Therefore,

we recommend the use of MI in this case, and will focus on this class of MDMs in

this work.

2.3.5 Discussion of assumptions

It should now be clear that given ADGP (2.1), MI without the availability of relevant

auxiliary predictors and without specifying a MDM seems only purposeful when X

is a�icted by missing data, which corresponds to Class 5 and Class 3. Imputation

does not improve precision if missing values are con�ned to the outcome, and if

there are no relevant auxiliary predictors of y available.

Generating imputations for Xmis while ignoring the MDM requires the assumption

that the missing data in X are MAR or MCAR. Unfortunately, by its very de�nition,

the validity of the MAR assumption cannot be tested without information external

to the data set. The MDM may in fact be MNAR, in which case an Imputation

Method (IM) which ignores the MDM will lead to invalid MII. Schafer (1997)

argues that including additional predictors Z in the imputation model for Xmis

can make the MAR assumption more plausible when these variables explain when

Xmis is missing. Moreover, credibility in the MII can be increased by performing

a sensitivity analysis; this requires that the imputer produces multiple imputations

under a series of hypothesized MDMs, each resulting in a MII. Analysts typically

lack the knowledge and skills to interpret the results of such an analysis.

When the selection indicator is independent of y, the CCA is consistent and is the

easiest way out. Unfortunately, there is no silver bullet; neither CCA nor MII is

valid for all identi�ed classes of MDMs, and the choice between the two depends

on often unveri�able assumptions about the MDM. Because an ignorable MDM is

speci�ed by omitting it from the DGP, care must be taken to make this implicit

assumption explicit by means of documentation.

It is important to realize that although MI seeks to separate the missing data prob-

lem from the DAP, the responsibility for the MII ultimately lays with the analyst.

Because the IMDSs give little clue about the IDGP assumed by the imputer, it is

paramount that the analyst procures the documentation describing the IDGP, and

assesses if the IDGP is compatible with the IDA; this is also necessary when the

IMDSs are generated by the analyst himself using a computer program.
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Chapter 3

The Imputer

After de�ning the MI estimator, the compatibility of an import class of IMs will

be investigated with respect to IDA (2.17). In particular, it is investigated how

to properly impute transformations and interactions of predictor variables. Finally,

strategies for imputing missings in multiple variables will be compared and con-

trasted in 3.4.

3.1 Pooling

The core of MI theory (Rubin, 1987) consists of the rules necessary to combine the

IDAs into a MII. More formally, these rules de�ne an estimator β̂MI and associ-

ated variance estimator V̂ar(β̂MI), which are functions of the IDAs, and together

constitute the MII. Although compatibility of the IDGP with the IDA is de�ned

in Section 3.2 from a frequentist perspective, the MI estimators are justi�ed from

a Bayesian perspective, where the Bayesian random counterpart to the parameter

β is denoted by β̇. The posterior distribution given only the observed data can

be found by averaging the imputed data posterior f(β̇|Xobs,Xmis,yobs,ymis,R) over

the multiple imputations as drawn from the posterior predictive distribution of the

missing values f(Xmis,ymis|Xobs,yobs,R):

f(β̇|Xobs,yobs,R) =
x

f(β̇|Xobs,Xmis,yobs,ymis,R)

× f(Xmis,ymis|Xobs,yobs,R)dXmisdymis. (3.1)
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By centering f(β̇|Xobs,Xmis,yobs,ymis,R) at the estimator of β in the hypothetical

case that all data are observed (which is the estimator used in the DAP):

E
(
β̇|Xobs,Xmis,yobs,ymis,R

)
= β̂OLS(X,y,1) (3.2)

Var(β̇|Xobs,Xmis,yobs,ymis,R) = V̂OLS(X,y,1),

the posterior mean marginalized over the missing data equals

E
(
β̇|Xobs,yobs,R

)
= E

(
E
(
β̇|Xobs,Xmis,yobs,ymis,R

)
|Xobs,yobs,R

)
(3.3)

= E
(
β̂OLS|Xobs,yobs,R

)
,

where β̂OLS is shorthand for β̂OLS(X,y,1). The marginal posterior variance equals

Var(β̇|Xobs,yobs,R) = E
(

Var(β̇|Xobs,Xmis,yobs,ymis,R)|Xobs,yobs,R
)

(3.4)

+ Var(E
(
β̇|Xobs,Xmis,yobs,ymis,R

)
|Xobs,yobs,R)

= E
(
V̂OLS|Xobs,yobs,R

)
+ Var(β̂OLS|Xobs,yobs,R).

Equation (3.3) and (3.4) suggest a simple numerical procedure for simulating the

posterior mean and variance of β̇, which was already described in (1.2). First, m

independent imputations are drawn from f(Xmis,ymis|Xobs,yobs,R), after which m

IMDSs {X̃i, ỹi}mi=1 are assembled. From each IMDS an IDA is calculated, resulting

in m simulations {β̂
i

IDA, V̂
i
IDA}mi=1 of certain features of the posterior distribution of

β̇ such that for an in�nite number of independent imputations, the average of the

m IDAs

β̂MI = m−1
m∑
i=1

β̂IDA(X̃i, ỹi). (3.5)

is a consistent estimator of the (marginalized) posterior mean of β̇:

plim
m→∞

m−1
m∑
i=1

β̂IDA(X̃i, ỹ) = E
(
β̂OLS|Xobs,yobs,R

)
= E

(
β̇|Xobs,yobs,R

)
. (3.6)

Further,

ΩW,∞ = plim
m→∞

m−1
m∑
i=1

V̂ i
IDA = E

(
V̂OLS|Xobs,yobs,R

)
ΩB,∞ = plim

m→∞
m−1

m∑
i=1

(β̂
i

IDA − β̂MI)(β̂
i

IDA − β̂MI)
T = Var(β̂OLS|Xobs,yobs,R)

are the within-imputation variance and between-imputation variance, such that the
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posterior variance of β̇ equals

Var(β|Xobs,yobs,R) = ΩW,∞ + ΩB,∞.

Rubin (1987) motivates that for a �nite number of imputations, the posterior vari-

ance can be estimated as the sum of the estimated within-imputation variance and

estimated between-imputation variance:

V̂MI = Ω̂W,m + (1 +
1

m
)Ω̂B,m (3.7)

= m−1
m∑
i=1

V̂ar(β̂
i

IDA) + (1 +
1

m
)(m− 1)−1

m∑
i=1

(β̂
i

IDA − β̂MI)(β̂
i

IDA − β̂MI)
T,

where the factor 1 + 1
m

is a correction for the �nite number of imputations.

Robins & Wang (2000) propose an alternative estimator which is more e�cient, but

also more complicated to compute; in applied work, (3.7) is predominantly used.

Therefore, only V̂MI is considered in this work.

3.2 Compatibility

Now that the MII {β̂MI, V̂MI} is de�ned, it will be investigated which requirements

must be ful�lled for an IDGP to be compatible with the IDA de�ned in (2.17). More

formally, an IDGP is compatible when:

1. The MI estimator β̂MI is a consistent estimator for β as n→∞, and

2. The MI variance estimator V̂MI is a consistent estimator for Var(β̂MI).

Note that in contrast with (3.6), which given an asymptotic Bayesian justi�cation

for using β̂MI as an estimator of the DAP estimator β̂OLS marginalized over the

missing data as m→∞ and with n �xed, the compatibility conditions stated above

concern the asymptotic frequentist properties of β̂MI as an estimator of the true

parameter β as n→∞ and with m �xed.

For analytical tractability, compatibility will only be investigated in the case of

a single predictor a�ected by missing values, which is denoted by X(1) (the �rst

column of X); the completely observed predictors are denoted by X(−1) (all columns

of X except the �rst one). Further, it is assumed that the MDM is ignorable for

imputation, which is satis�ed when the missing values in X(1) are MAR such that

f(s|X(1),W) =
N∏
i=1

f(si|Wi), (3.8)
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where W =
[
y X(−1)

]
; in Section 3.3.1 it is shown that this MDM is ignorable

for imputation.

Naturally, consistency of β̂MI requires consistency of β̂IDA. It is useful to partition

(2.17) in terms of cases which had a missing value in X(1), and cases which were

already fully observed:

β̂IDA =
(
XT

obsXobs + X̃T
misX̃mis

)−1 (
XT

obsyobs + X̃T
misymis

)
, (3.9)

where X̃mis =
[

X̃mis,1 Xmis,−1

]
, and the index denoting the imputation number

is suppressed. Note that X̃ and ỹ are demeaned as in (2.8) after imputation, not

before. In the hypothetical case that the missing data are in fact observed, β̂OLS

can be written similar to (3.9):

β̂OLS =
(
XT

obsXobs + XT
misXmis

)−1 (
XT

obsyobs + XT
misymis

)
. (3.10)

When the IM produces imputations such that

plimN−1X̃T
misX̃mis = plimN−1XT

misXmis (3.11)

plimN−1X̃T
misymis = plimN−1XT

misymis

it follows from (3.9) and (3.10) that

plim β̂IDA(X̃,y) = plim β̂OLS(X,y,1) = β. (3.12)

Note that to demean X̃(1) correctly, it is also necessary that

plimN−1X̃mis = plimN−1Xmis.

From (3.11) it becomes clear that a su�cient condition for consistency of β̂MI is that

the �rst two asymptotic sample moments of the imputed variable match the �rst

two asymptotic sample moments of the variable with missings, and the asymptotic

sample covariance between the imputed variable and the other variables X(−1) and

y should match the asymptotic sample covariance between the variable with miss-

ings and the other variables. Thus, it is not necessary that the distribution of the

imputed variable conditional on the other variables fully matches the corresponding

conditional distribution of the variable with missings. This also implies that with

respect to consistency of β̂MI, there are no statistical objections to imputing �unreal-

istic� values, a point which will be discussed in more detail in Section 3.3.4. Further,

all variables referenced in the estimator β̂OLS should be included as predictors in

the IDGP. Although it might be believed that incorporating y in the imputation
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model will arti�cially strengthen the relationship between X(1) and y, (3.11) shows

that actually the converse is true: omitting y will attenuate the linear relationship

between X(1) and y.

3.3 Imputation by reverse regression

Since (2.1) is a regression model, a natural idea is to impute Xmis,1 using a �reverse

regression� IDGP where X(1) and y swap roles. Indeed, the majority of IMs under

consideration are special cases of this model, which will be described in detail in

Section 3.3.1. Further, it will be attempted to verify if imputations produced by this

model satisfy conditions (3.11), which is a necessary condition for compatibility as

de�ned in Section 3.2. In 3.3.4, it will be investigated how to impute transformations

of predictor variables. Finally, assumptions necessary for the application of IMs

based on this model will be discussed in Section 3.3.5.

3.3.1 The IDGP

The variables with missing values follow the following population regression function:

x1 = E (x1|w) + σ(w)v, (3.13)

where (3.13) pertains to a single observation, E (v|w) = 0, and σ2(w) is the scedastic

function. In contrast with the error term in (2.1), the variance of x1 is not assumed to

be homoscedastic for reasons which will be made clear in Section 3.3.3. A special case

of (3.13) is the reverse linear regression imputation model with a linear conditional

expectation and constant scedastic function.

The conditional expectation E (x1|w) and conditional variance Var(x1|w) are esti-

mated using the observed data {Xobs,1,Wobs}, which is valid when (3.8) holds such

that v ⊥ s|w. Let µ̂(·) and σ̂2(·) be estimates of E (x1|w) and σ2(·), respectively.
Imputations for x1 are then generated as

x̃1 = µ̂(w) + σ̂(w)ṽ, (3.14)

where ṽ follows some distribution with E (ν̃) = 0 and Var(ν̃) = 1. Unfortunately, the

ADGP as de�ned in Section 2.1 does not contain assumptions about the conditional

distributions of x1; out of convenience, ṽ is often taken to be distributed standard

normal. Algorithm 3.1 gives a condensed description of the necessary steps required

for generating imputation according to (3.13).
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Algorithm 3.1 Imputation by reverse regression

1. Estimate the parameters of µ̂(·) and σ̂2(·) using the observed cases:
η̂µ = η̂µ(X1,obs,Wobs) and η̂σ2 = η̂σ2(X1,obs,Wobs)

2. Simulate
(
η̇µ, η̇σ2

)
from the (approximated) posterior distribution of

(
η̂µ, η̂σ2

)
3. Predict the conditional mean and conditional variance for the units with miss-

ing values:
m̂ = µ̂(Wmis|η̇µ) and ŝ = σ̂2(Wmis|η̇σ2)

4. Draw nmis imputations X̃mis,1 ∼ N (m̂, diag ŝ)

5. Repeat steps 2 through 4 m independent times, where m is the number of
desired imputations

3.3.2 Compatibility check

It will now be veri�ed if imputations generated according to model (3.13) satisfy

condition (3.11). Note that the imputations X̃(1) as generated from (3.14) are not

independently distributed because they are dependent on the observed cases through

the estimates µ̂(·) and σ̂2(·). However, given the observed cases and selection in-

dicator s, the imputations are i.i.d, which allows for analysis of the conditional

asymptotic behavior of
√
N(β̂IDA−β). Let b := x1 and b̃ := x̃1. Because the impu-

tations depend on the estimators µ̂(·) and σ̂2(·) which change with sample size, the

imputed values are entries in the following triangular array as N →∞:

b̃1,1 = µ̂1(W1) + σ̂1(W1)ṽ1

b̃2,1 = µ̂2(W1) + σ̂2(W1)ṽ1 b̃2,2

· · · · · · · · ·
b̃N,1 = µ̂N(W1) + σ̂N(W1)ṽ1 · · · b̃N,N = µ̂N(WN) + σ̂N(WN)ṽN

,

where the entries are row-wise i.i.d. conditional on OD = {X1,obs,Wobs, s}. Further,
the following assumptions are made:

Assumption 1 The estimators µ̂(·) and σ̂(·) are consistent, such that for all i ∈ mis

plim b̃N,i = E (x1|Wi) + σ(Wi)ṽi. (3.15)

Assumption 2 b̃ is bounded.

Assumption 3 nobs

nmis
= λ as n→∞, where 0 < λ <∞.
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Using the �rst two assumptions, the dominated convergence theorem gives:

lim E
(
b̃2N,i

)
= E

(
plim b̃2N,i

)
(3.16)

= E
(
[E (x1|Wi) + σ(Wi)ṽi]

2)
= E (E (x1|Wi))

2 + Var(E (x1|Wi)) + E
(
σ2(Wi)

)
= E

(
b2i
)

for all i ∈ mis. Further,

lim E
(
b̃N,iWi

)
= E

(
plim b̃N,iWi

)
(3.17)

= E (E (x1|Wi) Wi)

= E (biWi)

for all i ∈ mis. Applying a weak law of large numbers for triangular arrays using

(3.17) and (3.16) gives

plimN−1X̃T
misX̃mis = (1 + λ)−1E

(
XT

misXmis

)
(3.18)

plimN−1X̃T
misymis = (1 + λ)−1E

(
XT

misymis

)
,

which shows that imputations generated according to model (3.3.1) lead to consistent

estimation of β̂MI conditional on OD.

The conditional asymptotic behavior is only of secondary importance, and thus a

device is needed to infer the unconditional statistical properties of the MII from the

derived conditional asymptotic behavior. An often employed technique in the litera-

ture (see for example Aerts et al. (2002)) is to derive conditional on OD the asymp-

totic distribution of β̂IDA centered around a consistent estimator β̂OD = h(OD),

which is solely based on the observed cases, such that

√
N(β̂IDA − β̂OD)

D−→ N (0,Σ1) given OD for almost every OD. (3.19)

When unconditionally √
N(β̂OD − β)

D−→ N (0,Σ2),

lemma 1 of either Schenker & Welsh (1988) or Nielsen (2003) states that

√
N(β̂IDA − β)

D−→ N (0,Σ1 + Σ2), (3.20)

unconditionally. There are several possible choices for the �centering estimator�.

Letting β̂OD = β̂CCA restricts the compatibility of (3.13) to those situations in Table

2.1 on page 19 where the complete case analysis is consistent and the sole motivation
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for MI is increased e�ciency. However, under the posited MDM (3.8), β̂CCA is

inconsistent, and the only consistent OLS estimator is β̂OLS(X,y,1), which is based

in part on unobserved missing cases. Unfortunately, (3.20) does not hold when

β̂OD = β̂OLS(X,y,1), because conditioning on OD does not reduce β̂OLS(X,y,1)

to a non-random constant.

The correct application of (3.20) requires that the centering estimator reduces to a

constant when conditioning on the observed data. If the probabilities of observing

a unit are known, β can be consistently estimated using an Inverse Probability

Weighting estimator based on OD; such an estimator can then be successfully used

as centering estimator for β̂IDA. When the response probabilities are unknown

but (3.8) holds, the corresponding sampling weights can be obtained by estimating

a speci�ed model p(s|w); analogue to (3.19), β̂IDA can then be centered around

the Inverse Probability Weighting estimator using the estimated sampling weights

while conditioning on {W,Xobs,1}, after which (3.20) can be applied. However,

this implies that data analysts cannot consistently estimate the variance of β̂IDA by

(2.17), which is the estimator commonly used in the Data Analysis Procedure when

there are no missing data; instead, estimating the variance involves estimation of

the model p(s|w) by for example logistic regression. Since the solution described

above does not allow for the use of IDA (2.17), and since no alternative solutions

could be found, the analysis ends here.

3.3.3 Reverse Linear Regression

When the observations are independent and distributed multivariate normal then

E (x1|w) is linear and Var(x1|w) is homoscedastic such that

E (x1|w) = α̃ +wβ̃ (3.21)

Var(x1|w) = σ̃2.

The linearity and homoscedasticity of both the direct and reverse regression only

hold when x1 and y are distributed bivariate normal given x−1 (Spanos, 1995). We

illustrate the consequences of non-linearity with an example where k = 1. Further,

we take x ∼ SN (α), where SN (α) is the Skew-Normal distribution (Azzalini, 2005)

with skewness parameter α:

f(x;α) = 2φ(x)Φ(αx), x ∈ R (3.22)

and y follows (2.1). See Figure 5.1 on page 55 for a plot of the Skew-Normal

density. Note that when α = 0, (3.22) reduces to the standard normal density. If
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Figure 3.1: Conditional density plot of x|y with α = 5, σ2 = Var(x) = 1− 2α2

π(α2+1)
,

such that the coe�cient of determination R2 = Var(x)
Var(x)+σ2 = 0.5.

we take u ∼ N (0, σ2), the conditional distribution Figure 3.1 on page 30 of x given

y is depicted in (3.1); the non-linearity of the expectation violates the linearity

assumption of (3.21), and may lead to invalid MII.

In the special case that the missing data are MCAR such that f(x, y|s = 1) =

f(x, y|s = 0), the fully observed cases {Xobs,yobs} can be considered a simple

random sub-sample from {X,y}. Therefore, instead of condition (3.11),

plimn−1misX̃
T
misX̃mis = plimn−1obsX

T
obsXobs (3.23)

plimn−1misX̃
T
misymis = plimn−1obsX

T
obsyobs

is su�cient for consistency of β̂MI. This suggests that the linear imputation model

or any method which generates imputations according to a consistent estimate of the

covariance matrix of the observed data is valid if the missing data are MCAR, even if

the reverse regression E (X|W) is non-linear; this will be demonstrated empirically

in 5.4.3. However, if the MDM equals (3.8), then (3.23) is insu�cient, and condition

(3.11) must hold instead.

3.3.4 Transformations

As mentioned in 2.1.2, one can model non-linear relationships between variables us-

ing the LM by transforming either or both the response and predictor variables. For

example, in economics, often the log of income is modeled. It is also possible that
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both the original and transformed predictor variable enter model (2.1). When X1 is

a�icted by missing values and simultaneously transformed, there are two alternative

imputation strategies: �rst impute and then transform, and �rst transform and then

impute (von Hippel, 2009). First imputing the original variable and then transform-

ing the original using the imputed original variable seems an attractive strategy, as

it preserves the relationship between the original variable and transformed variable;

there is no chance for any inconsistencies. Analogue to (3.17), lim E
(
g(b̃N,i)Wi

)
should equal E (g(bN,i)Wi), where g(·) is the transformation function. However,

when �rst imputing and then transforming,

lim E
(
g(b̃N,i)

TWi

)
= E

(
plim g(b̃N,i)

TWi

)
(3.24)

= E
(
g (E (x1|w) + σ(Wi)ν̃i)

TWi

)
6= E (E (g(x1)|w) Wi) in general

= E (g(bN,i)Wi) ;

thus, the �rst impute and then transform strategy is fundamentally �awed.

The �rst impute and then transform technique is often called passive imputation

because the values of the transformed variable are not actively imputed, but instead

calculated from the imputed original variable. Passive imputation is implemented

in several software packages because some imputers desire to assess the quality of

imputations using a plausibility criterion (Kuchler & Spiess, 2009); a plausibility

criterion de�nes the set of imputed values which are deemed realistic, and prohibits

inconsistencies between the original variable and transformed variable. The statisti-

cally relevant criterion, however, is the consistency of β̂MI, and the requirements for

consistency of the MI inference are postulated in (3.11); any other criterion is irrele-

vant to the validity of the inference. Thus, transformed variables a�icted by missing

values should be treated as any other variable with missing values, and should be

imputed separately from the original variables, at least when using a reverse regres-

sion imputation model. In the case of (3.13), this involves estimating E (g(x1)|w)

and Var(g(x1)|w). These remarks also apply to transformations involving multiple

predictors, for example interaction e�ects.

3.3.5 Discussion of assumptions

Imputation by reverse regression de�nes a functional relationship between x1 and

w via the conditional expectation operator. However, this might fail to capture

the essential relation between predictor and response. For example, in the following
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Figure 3.2: Plot of the direct and reverse regression of y = x2

population regression function the predictor x1 enters the model non-linearly:

y = α + g(x1)β + xT
−1γ + u,

where g(·) is not one-to-one such as g(x) = x2 with x1 ∈ R. Then, the reverse

relation (3.13) of x1 given w is multivalued, in which case the conditional expec-

tation might blur important features of the data. Figure 3.2 on page 32 illustrates

the case g(x) = x2, where imputations of x1 generated according to (3.13) will

be concentrated around the conditional expectation, which is depicted by the red

horizontal line. Without knowledge of which of the two branches in Figure 3.2 on

page 32 the observations with missing values belong, imputation will attenuate the

relationship between g(x1) and y; this seems to be a fundamental problem of the

reverse regression approach.

A possible solution to the above problem, and one that incidentally also allows

for the impute-transform strategy, is to use a IMs which estimate the full condi-

tional distribution of x1, and not just the conditional mean and variance. If the

IM produces imputations which weakly converge to the variable with missing val-

ues such that (X̃1,mis|Wmis)
D−→ (X1,mis|Wmis), and g : R→ R is continuous, then

(g(X̃1,mis)|Wmis)
D−→ (g(X1,mis)|Wmis) also.

3.4 Multivariate missing data

Imputation by reverse regression as discussed in Section 3.3 is a class of IM capable of

imputing missing values in a single predictor variable; in practice, multiple predictor

variables are a�icted by missing values1. There are two main approaches available

for dealing with missings in multiple variables: Joint Modeling (JM) and Fully

Conditional Speci�cation (FCS).

1As discussed in Section 2.3.4, discarding observations with a missing value in the response
variable is a viable strategy.
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3.4.1 Joint Modeling

JM involves specifying a joint distribution for all variables in the data set, including

the response indicator:

g(X,y,R;η,φ) = f(X,y;η)p(R|X,y;φ), (3.25)

where η are the parameters of the imputation model, and φ are the parameters of the

posited missing data mechanism. Since the focus of this work is on ignorable missing

data mechanisms, (3.25) reduces to f(X,y;η). Provided that the DAP and IDA

employ maximum likelihood estimators derived from the speci�ed joint distribution

(3.25), Nielsen (2003) proofs consistency of the MII and shows that the associated

variance estimator (3.7) is weakly unbiased. Schafer (1997) and Little & Rubin

(2002) developed IMs based on the multivariate normal or general location model

which are capable of imputing missing values in multiple variables for general missing

data patterns using the Expectation Maximization algorithm or Gibbs sampler as

described in Algorithm 3.2. The presentation used in Algorithm 3.2 is taken from

Liu et al. (2012) to illuminate the relation to an alternative approach discussed next.

Algorithm 3.2 Gibbs sampler JM

Step 1 (a) Draw η from f(η|y,X1,obs,X−1)

(b) Draw X̃1,mis from g(X1,mis|y,X1,obs,X−1,η)
...

Step k (a) Draw η from f(η|y,Xk,obs,X−k)

(b) Draw X̃k,mis from g(Xk,mis|y,Xk,obs,X−k,η)

Step k + 1 (a) Draw η from f(η|yobs,X)

(b) Draw ỹmis from g(ymis|yobs,X,η)

3.4.2 Fully Conditional Speci�cation

An alternative modeling approach for specifying the IDGP which has become in-

creasingly popular in recent years is MI by sequential regression models (Raghu-

nathan et al., 2001), which is also known under the name Fully Conditional Spec-

i�cation (?). This approach was conceived primarily due to a lack of joint models

(distributions) when facing missing values in a mix of categorical, continuous, and

count data. With the FCS approach, the imputer does not specify a joint distribu-

tion (3.25); rather, for each variable with missing data a distribution conditional on
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other variables in the data set is speci�ed:

fi(Xi|y,X−i;ηi,φi). (3.26)

FCS implementations typically employ the Markov Chain described in Algorithm

3.3. This involves visiting each variable with missing values, and drawing impu-

tations from the posterior predictive distribution corresponding to the speci�ed

conditional model. Note that all other variables besides the currently visited are

already rendered complete due to previous iterations, or assigned starting imputa-

tions. These starting values are often draws from the marginal distribution of the

variable with missing values. Tables 3.1 through 3.3 on the following page illustrate

the algorithm iterating through two variables with missings.

Algorithm 3.3 Markov Chain FCS

Step 1 (a) Draw η1 from f(η1|y,X1,obs,X−1)

(b) Draw X̃1,mis from f1(X1,mis|y,X1,obs,X−1,η1)

Step k (a) Draw ηk from f(ηk|y,Xk,obs,X−k)

(b) Draw X̃k,mis from fk(Xk,mis|y,Xk,obs,X−k,ηk)

Step k + 1 (a) Draw ηk+1 from f(ηi|yobs,X)

(b) Draw ỹmis from fk+1(ymis|yobs,X,ηk+1)

The main di�erence between Algorithm 3.2 and Algorithm 3.3 is that in each step the

JM approach updates all parameters of the joint imputation model (3.25), while the

FCS only updates the set of imputation parameters associated with the conditional

distribution (3.26) of the current step. The FCS framework splits a possibly high

dimensional imputation model into multiple one-dimensional problems, which allows

for the application of a wealth of existing univariate statistical models. For example,

a reverse regression model conditional on the other variables could be speci�ed for

each predictor with missing values. Additionally, frameworks implementing FCS

can be easily extended with custom IMs, such as the methods based on reverse

regression.

Unfortunately, the great �exibility of the FCS approach allows for the possibility

that there does not exists a joint distribution (3.25) such that fj(Xj|X−j,y,ηj) =

g(Xj|X−j,y,η) for all j and fk+1(y|X,ηk+1) = g(y|X,η) (Liu et al., 2012). The

speci�ed conditional models are compatible when the implied joint distribution does

exist, and incompatibility when it does not. An example of a compatible model is

when all conditional distributions are normal with the conditional mean linearly
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y x

.36 A
A .98

A .12

.81 A
...

...

Table 3.1: Initial state; general miss-
ing data pattern in two variables.

⇓
y x

.36 .55

A .98

A .12
.81 .18
...

...

Table 3.2: Start of �rst iteration,
�rst variable is being imputed. Miss-
ing values in the second variable have
been replaced with starting values,
which are often drawn from the cor-
responding marginal distribution.

⇓
y x

.36 A

.87 .98

.86 .12

.81 A
...

...

Table 3.3: First variable is imputed
using the speci�ed model conditional
on the second variable; second vari-
able is about to be imputed.

⇓
y x

.36 .35

A .98

A .12
.81 .47
...

...

Table 3.4: Second variable is imputed
using the speci�ed model conditional
on the �rst variable; the algorithm
keeps iterating until a stopping crite-
rion is ful�lled.
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dependent on all other variables, which implies a multivariate normal distribution.

Incompatible models may arise easily due to the great �exibility when specifying

the conditional models, especially when these vary in complexity and richness. Up

until recently, the limited simulation study of van Buuren et al. (2006) provided the

only insight into the consequences of incompatibility. However, recently work of Liu

et al. (2012) attempted to �ll the theoretical void and provides an analysis of the

characteristics of the Markov Chain when the conditional models are compatible and

when they are incompatible. Liu et al. (2012) also prove consistency of the Multiple

Imputation Inference for a special class of incompatible conditional distributions;

however, consistency of the variance estimator could not be proven.

3.5 Conclusion

IMs based on the reverse regression IDGP de�ned in 3.13 are ubiquitous. However,

in the highly simpli�ed case of missing values in a single predictor variable and a

MDMwhich is MAR, obtaining compatibility of the reverse regression IDGP without

making distributional assumptions requires the consistent estimation of a model for

the selection indicator conditional on the observed data; thus, data analysts cannot

use the OLS variance estimator described in 2.2. From a frequentist perspective,

no theoretical justi�cation can be given for the application of existing and new

IMs based on this IDGP for the purpose of Multiple Imputation Inference under

a Missing Data Mechanism belonging to Class 5 (see Table 2.1 on page 19) while

using the OLS estimator as Imputed Data Analysis. Further, the passive imputation

method for imputing transformed variables is found to be �awed, which con�rms

the analysis presented by von Hippel (2009). Finally, a fundamental problem of the

reverse regression method 3.13 arises when the reverse relation is multivalued.
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Chapter 4

Imputation Methods

In this chapter both existing and experimental IMs are described; most of these

methods are compared empirically in the simulation studies in Chapter 5. Exper-

imental IMs are the nonparametric Local Linear Regression (LLR) and GAMLSS

Imputation Methods described in Section 4.4 and Section 4.5, respectively. A fairly

complete list of FCS frameworks which are available as add-on package to the R soft-

ware environment for statistical computing is given in table 4.1; implementations of

the IMs Global Linear Regression, Predictive Mean Matching, and aregImpute are

provided there. The proposed GAMLSS method is made available as a plug-in to

mice with a code listing and documentation given in appendix B.

Table 4.1 lists contributed add-on packages of FCS implementations together with

version information. The IMs implemented in the listed software packages, and the

two newly proposed IMs, are all in one way or another based on the reverse regression

IDGP discussed in 3.3. While the GLR IM equals the reverse linear regression

method already described in 3.3.3, the GGLR method as presented in (4.1) is based

on the Generalized Linear Model (GLM), and allows for the imputation of non-

continuous data. The Predictive Mean Matching (PMM) discussed in 4.2 can be

seen as a type of random k-nearest-neighbor method, with the distance between the

linear predictors of the reverse linear regression as (pseudo)metric. In 4.4 the LLR

is proposed, which seeks to relax the linearity restriction of the GLR method. The

method described in 4.3 is a combination between PMM and LLR, which also draws

imputations from the k-nearest-neighbors, but uses a more involved metric. Finally,

the newly proposed GAMLSS IM models both the mean and dispersion parameters

of a speci�ed distribution using generalized additive models.
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R Package Tested Version

mice (van Buuren & Groothuis-Oudshoorn, 2010) 2.10

mi (Gelman et al., 2010) 0.09-14

Hmisc (Harrell, 2010) 3.9-0

BaBooN (Meinfelder, 2011) 0.1-6

Table 4.1: Exhaustive list of FCS implementations in R, along with tested version
number.

4.1 Global Linear Regression (GLR) and General-

ized Global Linear Regression (GGLR)

The GLR is the most basic member of the imputation by reverse regression class

of methods, and is already discussed in Section 3.3.3. It is designated �Global� to

distinguish it from Local Linear Regression. Although elementary, this method is

implemented in all imputation software, and together with 4.2 remains one of the

most widely used method for the imputation of continuous data. Apart from avail-

ability, another advantage is the relative numerical robustness of the IM, especially

when the algorithm employs regularization techniques such as ridge regression to

alleviate possible problems with multicollinearity.

A generalization of the GLR is the GGLR, which is based on a �exible generalization

of the LM called the GLM (McCullagh & Nelder, 1989), where the response variable

x1 is assumed to be generated from a (conditional) distribution in the exponential

family. The conditional expectation and variance of x1 are related to the linear

predictor through the inverse of a link function g(·):

E (x1|w) = g−1(α̃ +wβ̃) (4.1)

Var(x1|w) = v(g−1(α̃ +wβ̃)),

where v(·) is the scedastic function mapping the predicted mean to the conditional

variance; its form follows from the speci�ed distribution and link function.

The GGLR requires speci�cation of a conditional distribution for x1 and link func-

tion g(·), where the choice of link function is somewhat arbitrary. The speci�cation

of f(x1|w) is typically based on the observed range of values of x1, where it is

implicitly assumed that the marginal distribution f(x1) belongs to the same family

as the conditional distributions f(x1|w); however, this is only true in some special

cases. One example is when the data are distributed multivariate normal, in which

case g(x) = x and v(x) = σ2, which corresponds to the GLR method for imputing
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continuous data. Another case is

x ∼ Bernoulli(p)

y|x ∼ N (α + xβ, σ2),

which implies that x|y ∼ Bernoulli( eα̃+xβ̃

1+eα̃+xβ̃
) (Efron, 1975). However, suppose x ∼

Poisson(λ). Then,

E (x) = Var(x) (4.2)

= Var(E (x|y)) + E (Var(x|y)) .

mi provides an IM based on a GLM with a conditional Poisson distribution for x,

and Kleinke et al. (2012) propose a GGLR with a Negative Binomial distribution,

which is frequently used for modeling over-dispersed count data. However, specifying

a GGLR with x|y ∼ Poisson(eα̃+xβ̃) or an over-dispersed distribution implies that

Var(x|y) = E (x|y) for all y, which in turn implies that

E (Var(x|y)) = E (E (x|y)) = E (x) , (4.3)

which contradicts (4.2) in general: ironically, the imputation model for x should

allow for under-dispersion instead of over-dispersion, such that Var(x|y) < E (x|y)

for all y .

Although elementary, GGLRs are implemented in almost all imputation software,

and together with PMM remain one of the most widely used IMs. A disadvantage

of the method is the restrictions on the functional form of the conditional mean

and variance of x1, which may lead to inconsistent estimation of the conditional

expectation and variance, and ultimately to invalid MII.

4.2 Predictive Mean Matching

PMM was �rst proposed in the seminal book of Rubin (1987) and in Little (1988). A

comparison with the GLR method when estimating the marginal mean and marginal

distribution of a variable with missing values was undertaken in a simulation study

by Schenker & Welsh (1988). None of the articles mentioned above derived the

large-sample properties of the method, and only Schenker & Welsh (1988) tested

the method empirically, although with respect to marginal statistics. Despite lack

of theoretical and empirical support, the method is currently adopted as the standard

method in the widely used mice package for MII with respect to β.
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PMM can be seen as a type of random k-nearest-neighbor method. Given a metric

d : R2k → R and a query point for which x1 is missing, the p nearest neighbors of the

query point are sought to obtain a set of p donor values from which an imputation

is randomly drawn. What di�erentiates PMM from nearest neighbor methods is the

metric used, which is de�ned in terms of the linear predictor of the reverse linear

regression:

dPMM(a, b) = |aβ̇ − bβ̇| = |(a− b)β̇|, (4.4)

where a and b are realizations of w, and β̇ are (approximated) draws from the pos-

terior distribution of the parameters of the reverse linear regression. Since matching

is done using the linear predictor and imputed values are �live� or observed, the

method can also be used for the imputation of non-continuous data without the

need for iterative maximum likelihood �tting. Algorithm 4.1 describes the method

more formally.

Assuming (a) the distance function d is topologically equivalent to Euclidean dis-

tance, and (b) the size of the donor pool increases with the sample size as p(n) =
√
n,

Dahl (2007) shows that

(X̃1,mis|Wmis)
D−→ (X1,mis|Wmis). (4.5)

Further, an upper bound of the correlation between an imputed value X̃1,i with

i ∈ mis, and any measurable function f(·) of the observed cases (W,X1,obs) is given

as

|Cor
(
X̃1,i, f(W,X1,obs)

)
| ≤ n−

1
4 . (4.6)

Thus, when condition (a) and condition (b) are ful�lled, nearest neighbor impu-

tation methods produce imputations which are (asymptotically) independent over

observations, and have the correct conditional distribution. However, all implemen-

tations of PMM listed in Table 4.1 on page 38 set p(n) = c, where c is typically 5 or

10, and thus violate condition (b) because the number of nearest neighbors does not

increase with sample size. Further, the use of metric (4.4) and W having multiple

columns violates condition (a), since then d(a, b) can be zero even if a 6= b. Thus, the

asymptotic properties described above are no longer guaranteed, and it is unknown

if current implementations of PMM produces imputations which are asymptotically

independent over observations, and have the correct conditional distribution.

Problems may occur when regions of the sample space are sparsely populated, pos-

sibly due to the MDM. For example, in Figure 4.1 on page 41 the area between

−.1 < y < .3 has a lot of missing values in x. Because of the low number of ob-

served values of x, the same donors are considered for each missing value, which

might result in underestimation of V̂MI. Further, PMM is unable to extrapolate cor-
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Figure 4.1: PMM with a sparsely populated region between −.1 < y < .3, and
truncation at y < −.3. The circles are observed values, and the horizontal bars
imputed values. The black line depicts the regression slope based on the observed
and missing values, and the dashed line is based on the observed and imputed values.

rectly from the observed values to the truncated region y < −.3, leading to a biased

estimate of the regression slope. Although often heralded for imputing �realistic�

values, the resulting inability to properly inter- and extrapolate can be a serious

weakness of the method, especially when the MDM is selective.

The PMM implementation of the mice package version draws from the three closest

donors. However, it features the following unusual distance function,

dMICE(a, b) = |aβ̇ − bβ̃|,

where β̃ are the posterior means of the parameters of the reverse regression model,

and β̇ are draws from the corresponding posterior distribution. According to the

changelog �le of the mice package, this distance function is supposed to �add

between imputation variability in the case of a single predictor�; no theoretical

justi�cation is given in the package documentation.

4.3 aregImpute

The function aregImpute in the package Hmisc is another readily available alterna-

tive for end users. This IM has not been published: there are no large-sample results

available, and the method has not been evaluated using simulations. The only source

of information, apart from the program code itself, is the (rather sparse) documen-
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Algorithm 4.1 PMM (taken in part from Dahl (2007))

1. Fit model (3.21) to (x1,W)

2. Draw α̇ , β̇, and σ̇2 from their respective (approximated) posterior distribu-
tions

3. For each q ∈ mis

(a) For each i ∈ obs
di = dPMM(Wq,Wi)

(b) Let I ⊂ obs so that |I|=k and (i ∈ I, j /∈ I)⇒ di ≤ dj

(c) Let l be a random element of I

(d) Let the imputed value be equal to X1,l

4. Repeat steps 2 through 3 m independent times, where m is the number of
desired imputations

tation contained in Harrell (2010). Therefore, we cannot describe the method in

much detail, and the package remains somewhat of a "black box".

First, the algorithm �nds those transformations of the predictors fj(W(j)) which

lead to optimal prediction of a linear transformation of X(1) in the following additive

model:

c̃+ X(1)d̃ = α̃ +
J∑
j=1

fj(W(j))β̃j + ν, (4.7)

where the fj(·) are restricted cubic spline basis functions with a user speci�ed �xed

number of knots. After estimation of (4.7), a variant of PMM using weighted prob-

ability sampling of donor values is used to generate imputations, where the weights

are inversely proportional to the following distance function:

dareg(a, b) =
J∑
j=1

|(fj(aj)− (fj(bj))β̃j|, (4.8)

and where a and b are realizations of w. Te method uses the simple non-parametric

bootstrap to approximate draws from the Bayesian posterior distribution of the

parameters of the imputation model. Since the �nal imputed values are produced

using PMM, aregImpute can also be used for the imputation of non-continuous

data.
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4.4 Local Linear Regression

As described in 3.3.5, E (x1|w) is non-linear when x1 and y are not distributed

bivariate normal given x−1. The GGLR method imposes restrictions to the func-

tional form of the conditional mean and variance of x1, and may therefore fail to

consistently estimate (3.13). Further, nearest neighbor methods such as PMM may

run into problems when regions of the sample space are sparsely populated. To be

robust against possible non-linearities, a non-parametric technique such as local lin-

ear regression can be used to estimate E (x1|w). The IM we propose in this section

uses a form of locally weighted learning, where for each missing datum a query is

put forward. Each query is answered by �tting a local model to the data points

near the query point. The local model used is a linear regression, where the data

are inversely weighted according to their distance to the query point. This local

linear estimator is minimax e�cient and is one of the best known approaches for

boundary correction (Li & Racine, 2004).

It is a common belief in the local learning literature that the �nal performance

of the local model is most sensitive to the bandwidth and to the distance metric

used (Atkeson et al., 1997). As a starting point, we use a global distance metric.

However, the bandwidth is selected locally on a query-by-query basis. This allows

for a better adaptation to the local characteristics of the data. After the structural

and parametrical identi�cation of the local model, the query is answered by drawing

an imputation from the approximated posterior predictive distribution of the local

linear model.

Given a query point Wq, the parameters α̃ and β̃ of a local linear approximation

of f(·) in a neighborhood of Wq can be obtained by solving the local polynomial

regression

∑
i∈obs

{(
X1,i − (α̃ + Wiβ̃)

)2
K

(
d(Wi,Wq)

h

)}
, (4.9)

where K(·) is the weight function, and d(Wi,Wq) is the distance function in pre-

dictor space from the query point Wq to the ith data point Wi (Bontempi et al.,

2000). In the literature, no substantial empirical di�erences have been found with

regard to the choice of weight function (Atkeson et al., 1997). However, when the

uniform weighting kernel

K

(
d(Wi,Wq)

h

)
=

1 if d(Wi,Wq) ≤ h

0 otherwise
(4.10)

is adopted, the optimization of the bandwidth h can be conveniently reduced to the
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optimization of the number of neighbors p to which a unitary weight is assigned in

the local regression evaluation. The distance between the query point Wq and an

input Wi is computed using the weighted Euclidean distance

d(Wi,Wq) =
√

(Wi −Wq)M(Wi −Wq)T, (4.11)

where M is determined by the global relative linear in�uence of the predictors. More

speci�cally, M is a diagonal matrix with

Mjj =

√
γ̂2
j∑k

i=1 γ̂
2
i

, (4.12)

where γ̂j is the jth of k standardized regression coe�cients as estimated by least-

squares on the whole training set, excluding the intercept.

To �nd the local model with the optimum number of neighbors p, pmax−pmin models

are �tted, where pmin and pmax are tuning parameters and control the maximum

and minimum number of neighbors to use, respectively. We set pmin = 3k and

pmax = nobs. For each �tted model, the mean squared error

MSE(p) ≈ 1

p

∑
i∈S

(
ecvi (p)2

)
(4.13)

is evaluated, where S is the set containing the p nearest neighbors of Wq, and ecv(p)

contains the leave-one-out (l-o-o) errors associated with the model with p number

of neighbors:

ecvi (p) = X1 −WT
i β̃−i(p)− α̃, (4.14)

where β̃−i(p) are the parameter estimates of the local linear model without using

the ith datum. Cross-validation by means of the l-o-o errors is used as a model

selection criterion, because it allows for signi�cant computational shortcuts during

model �tting and validation using the Prediction Sum of Squares (PRESS) statistic

(Allen, 1974). The model p̂ with the smallest MSE(p) is then selected to answer the

query, where a �nal prediction is obtained as follows:

X̃1,q(Wq) = α̃ + WT
q β̃(p̂) (4.15)

The mean squared error of the selected model is used as an estimate of the local

error variance:

σ̂2(Wq) = MSE(p̂) (4.16)

The implementation of the IM is largely based on the R package lazy (Birattari &

Bontempi, 2003).
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Unfortunately, the package lazy does not support Bayesian inference. Therefore, it

is impossible to obtain multiple imputations by drawing from the posterior predictive

distribution. To nevertheless incorporate the added variance due to non-response

into the MII, the posterior predictive distribution of the missing values (3.1) is

approximated by the bootstrap predictive distribution (Harris, 1989) as described

in 4.5.2.

Although experimenting with LLR helped to explore the possibilities of using non-

parametric techniques as imputation models, the method has been discarded in favor

of the GAMLSS method described in 4.5, because GAMLSS generalizes more easily

to non-continuous data, and o�ers improved estimation of the conditional variance

of x1.

4.5 GAMLSS

In the literature, several methods are available which jointly model the conditional

expectation and conditional variance, and iteratively estimate both using nonpara-

metric techniques. For example, Yu & Jones (2004) propose a local linear regression

method with estimators based on the local normal likelihood. Rigby & Stasinopou-

los (1996) propose a similar idea using semi-parametric additive models based on

the penalized normal likelihood. Both approaches involve �rst �tting the conditional

mean using local linear regression or a smoother while holding the conditional vari-

ance �xed, and then �tting the conditional variance using local linear regression or

smoother while holding the conditional mean �xed. Rigby & Stasinopoulos (2005)

propose the GAMLSS model, which allows for relaxation of the normality assump-

tion and the speci�cation of arbitrary families of conditional distributions for x1,

even ones outside of the exponential family.

4.5.1 The IDGP

In the IDGP of the GAMLSS IM, at least the mean and dispersion parameters of a

speci�ed distribution D are modeled using additive terms:

g1(µ) =α̃(1) +
k∑
j=1

h1j(W(j)) (4.17)

g2(σ) =α̃(2) +
k∑
j=1

h2j(W(j)),
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where gi(·) are monotonic link functions which relate the parameters η of the con-

ditional distribution D to the predictor variables w, and hij are smoother terms

(Rigby & Stasinopoulos, 1996, 2005). The distribution, which we denote by D, de-
faults to normal for continuous data, but alternatives can be chosen from a broad

range of alternatives. This enables users in combination with a suitable link func-

tion to restrict the drawn imputations to a certain range by specifying for example

a truncated normal distribution, and allows for easy generalization of the method

to discrete and count data. An improvement over the predecessor method described

in 4.4 is that the conditional variance is also estimated using an additive model,

which allows for better adaptation to local heteroscedasticity. The downside of the

necessity of specifying D is of course that misspeci�cation can lead to invalid MII;

this will be illustrated in 5.4.6. This problem is aggravated by the fact that there

are often no theoretical considerations for choosing a distribution, since theory is

typically focused on the ADGP, and not on aspects of the scienti�cally uninteresting

IDGP.

If besides location and scale D has up to two shape parameters {ν, τ} and the

sample size is relatively large, we can extend (4.17) by modeling these parameters

additively:

g3(ν) =α̃(3) +
k∑
j=1

h3j(W(j)) (4.18)

g4(τ ) =α̃(4) +
k∑
j=1

h4j(W(j))

Since this extended model portrays the conditional distribution f(x1|w) more accu-

rately, the resulting imputations may be of higher quality compared to those whose

IDGP solely consists of (4.17).

4.5.2 Implementation

The R implementation of the IM, whose code listing is given in Chapter A, uses

the gamlss package (Rigby & Stasinopoulos, 2005) to �t model (4.17). Rigby &

Stasinopoulos (2005) provide a description of the algorithms used by this package;

however, no large sample properties are derived. Implemented smoothing terms hij

include cubic smoothing splines, penalized splines, and local regression. In princi-

ple, any smoother can be used; however, penalized B-splines Eilers & Marx (1996)

proved to be computationally the most stable. More speci�cally, the smoother used

in the simulation studies in Chapter 5 consists of a penalized B-spline with 20 knots,

a piecewise polynomial of the second degree with a second order penalty, and au-
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Algorithm 4.2 GAMLSS imputation

1. Fit Model (4.17), possibly extended to (4.18), using the observed data
{X1,obs,Wobs}.

2. Resample X1,obs as follows:

X∗1,obs ∼ D(µ̂, σ̂, ν̂, τ̂ )

De�ne a bootstrap sample B :=
{
X∗1,obs,Wobs

}
3. Re�t model (4.17) or (4.17) and (4.18) using B. Draw nmis imputations for

X1,mis as follows:
X̃1,mis ∼ D(µ̇, σ̇, ν̇, τ̇ )

4. Repeat step (2) and (3) m independent times, where m is the number of
imputations.

tomatic selection of the smoothing parameter using the Local Maximum Likelihood

criterion. For high amounts of smoothing, the �t of this smoother approaches lin-

earity.

Unfortunately, the package gamlss does not support Bayesian inference. There-

fore, it is impossible to obtain multiple imputations by drawing from the posterior

predictive distribution. To nevertheless incorporate the added variance due to non-

response into the MII, the posterior predictive distribution of the missing values

(3.1) is approximated by the bootstrap predictive distribution (Harris, 1989):

f ∗(Xmis,1|Xobs,1,W) =

ˆ
f(Xmis,1|η̃,Wmis) (4.19)

× f(η̃|η̂(Xobs,1,Wobs))dη̃,

where η̃ denote the possible values of the imputation model parameters, η̂(Xobs,1,

Wobs) is the estimator of said parameters, and f(η̃|η̂(Xobs,1,Wobs) is the sampling

distribution of the imputation parameters evaluated at the estimated values of the

parameters. f(η̃|η̂(X1,obs,Wobs) is simulated by performing the parametric boot-

strap, and acts as a surrogate for the posterior distribution of the parameters of the

imputation model. A full description of the algorithm is given in Algorithm 4.2. An

advantages compared to a fully Bayesian approach is that no prior information �

which is typically lacking � needs to be speci�ed.

Even though the implementation of penalized smoothing splines in the package

gamlss is considered to be the most stable, it has been observed that the in some

cases Algorithm 4.2 may fail to converge. This is frequently traced to the algorithm

which selects the smoothing parameter. The implementation of the IM catches

47



such an occurrence, and then falls back to a cubic smoothing spline1 with a �xed

smoothing parameter consisting of one additional degrees of freedom on top of the

linear term, which indicates a very large amount of smoothing. Even with these

measures in place, GAMLSS may fail to converge in some scenarios, especially for

low sample sizes, as will become apparent in the simulation studies.

A di�erence between aregImpute and the proposed IM is that the former �xes the

number of knots of the transformations fj to a default �xed value, while GAMLSS

optimizes the smoothing parameter of hij using cross-validation; after all, the per-

formance of a smoother is extremely sensitive to the appropriateness of the chosen

smoothing parameter. Also, aregImpute draws by default imputations from the

observed values using PMM, while GAMLSS samples imputations from D using the

estimated parameter values.

4.5.3 Extension to multilevel models

Many research designs in the social sciences yield data that have a hierarchical,

nested or clustered structure. Examples include pupils within classes, children

within families, occasions within an individual, experiments within batches, tests

within laboratories, and so on. Classic statistical techniques, including the variance

estimator (2.15), fail to take into account that observations from the same cluster

are likely to be dependent on each other, and are therefore not suited to analyze

such data. Multilevel models have been developed as an alternative, and are often

used in the social sciences for the analysis of data with these complex patterns of

variability. An basic multilevel model is the following extensions of model (2.1):

y = α + xTβ + u+ bl, (4.20)

where l is a �xed index denoting to which of the L groups (classes, families, indi-

viduals) the observation belongs, and

b ∼ N (0, τ 2IL) and u ∼ N (0, σ2). (4.21)

Equations (4.20) and (4.21) together are called the random intercept model, with

bl being the random e�ects; this model can be estimated by for example Maximum

Likelihood. Note that (4.21) extends (2.2) to E (u|x, bl, s) = 0, and also implies that

E (bl|x, s) = 0; in economics, researchers are hesitant to make the latter assumption,

and prefer to use the �xed e�ects model, which will not be discussed here.

1The function cs in the GAMLSS package
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IDGPs which ignore the hierarchical structure of the data may lead to invalid Multi-

ple Imputation Inference; therefore, Schafer & Yucel (2002) present an IDGP based

on a generalization of model (4.20) within the Joint Modeling framework. De Jong

(2006) implemented an IM for the imputation of hierarchical dichotomous data

within the Fully Conditional Speci�cation framework. IDGP (4.17) can easily be

extended to a random intercept model by adding an additive term for the random

e�ects b; the GAMLSS package already supports this.

All multilevel IDGPs mentioned above assume that the random e�ects follow a nor-

mal distribution.Yucel & Demirtas (2010) investigated how robust the Imputation

Method proposed in Schafer & Yucel (2002) is to violations of this distributional as-

sumption. When the rate of missingness is relatively high and the true distribution

of the random e�ects deviates from normality, they found that the validity of the

MII is adversely a�ected, especially for parameters such as τ 2 which describe the

distribution of the random-e�ects. One possible solution would be to develop IMs

with less restrictive distributional assumptions about the random e�ects.

4.5.4 Discussion of Assumptions

When the IDGP contains many predictors, a problem non-parametric smoothers

face is the `curse of dimensionality', where the volume of predictor space grows so

fast that the available data becomes sparse; this generally leads to an explosion of

the variance of the non-parametric estimator, and computational problems. One

strategy to cope with the curse is to force predictors to enter the model additively

as in (4.17). Although the additivity assumption allows for the incorporation of

a moderate number of predictors in the imputation model, it cannot capture the

e�ects of potential interactions between the predictors of the imputations model.

When interaction terms need to be included in the model, they should be explicitly

speci�ed; even if the direct regression is additive, it is generally unknown if the

functional relationship relating the predictors of the IM to the parameters of the

speci�ed conditional distribution is also additive. Another possible limitation is that

the functions hij(·) to be estimated in (4.17) and (4.18) should be su�ciently smooth;

functions with pronounced discontinuities might lead to incompatible imputations.

Finally, estimating arbitrary smooth functions using �exible non-parametric estima-

tors requires more data than required for a linear regression, and the GAMLSS IM

might not be appropriate for small samples.
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Chapter 5

Simulation Experiments

In this chapter, the simulation experiments are described which were conducted to

investigate the performance of the Imputation Methods (IMs) listed in Chapter 4.

Firstly, an overview of Monte Carlo Statistical Simulation (MCSS) will be given in

5.1, along with a discussion of its limitations; in particular, MCSS will be compared

and contrasted with theoretical large-sample results, and it will be shown how the

two methods complement each other. A brief overview of existing work will be given

in 5.2. Then, the used experimental design will be described in detail in 5.3. Finally,

the results are presented and interpreted in 5.4; conclusions are deferred to Chapter

6.

5.1 The use of Monte Carlo Statistical Simulation

In the planning phase of the research project, simulation studies were decided to be

the main research instrument for gaining insight into the performance of existing

and the proposed IMs. Considering the important role this technique played in the

project and in light of the experiences gained, it seems prudent to describe how

Monte-Carlo experiments are used in this work and that of contemporary research.

Note that this section contains subjective statements and interpretations.

In statistical research, the advent of cheap and potent personal computers has cat-

apulted the �eld of computational statistics to new highs both in research and

teaching. Capitalizing on increased computational power, researchers in this �eld

often employ MCSS. These simulations experiments involve the repeated sampling

from a statistical model or Data Generating Process (DGP), and applying statistical

algorithms to the generated data sets. MCSSs can complement theoretical large-

sample results by providing insight into the �nite sample properties of statistical

methods; analytical �nite-sample properties are only available for a limited number
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of estimators. After the large sample properties of a proposed inference technique

has been rigorously investigated, MCSSs o�er some reassurance that the method

not only works �on paper�, but is also of practical worth. Also, the performance

of a number of estimators can be compared to each other. Finally, note that it

is entirely possible for an estimator to have good large-sample properties but poor

�nite-sample performance, and vice versa.

Exposing large-sample properties of an estimator is a key element of proper statisti-

cal research; for instance, consistency is usually considered a minimum requirement

for an inference procedure (Ser�ing, 2002). However, with the surge of compu-

tational statistics, it has become more common to propose statistical techniques

and methods without an accompanying analysis of their large-sample properties.

This phenomenon was especially prevalent in Multiple Imputation (MI) research,

where the complexity of the problem has hindered rigorous analysis; for example,

as described in 4.2, there are no asymptotic results supporting application of the

Predictive Mean Matching (PMM) method for multiple imputation inference about

β. With respect to deriving the statistical properties of the Fully Conditional Spec-

i�cation (FCS) framework, it seems that the development of the mathematical tools

necessary for obtaining analytical results strays behind the recent advancements

in computing technology. Statistical research has put less emphasis on theoreti-

cal results, and frequently employs MCSSs to show the alleged superiority of new

statistical contraptions.

Decreased emphasis on theory is arguably also a�ecting research in the social sci-

ences; for instance, the body of knowledge of Psychology is fragmented, with studies

often lacking embedment in a substantive overarching theoretical framework. With

the number of publications becoming the new academic currency, and the rise of the

publish-or-perish phenomenon (De Rond, 2005), researches are pressured to publish

frequently and fast, or forfeit their career. Developing interesting and creative the-

ories is too time-consuming, and reviewers might reject novel ideas when they run

counter to the majority view. Instead, a risk adverting strategy seems to work the

system, chase statistical signi�cance, and churn out formulaic and relatively risk free

papers.

When setting up a MCSS, a scenario needs to be speci�ed, which is de�ned in terms

of the values of the parameters which index the family of DGPs as described in (2.1).

Possible parameters are the distribution of the predictors, distribution of the missing

data indicator, sample size, and the true value of β. While the limiting behavior

obtained by asymptotic analysis typically generalizes to all possible scenarios of this

family � provided that the sample size is large enough1 � results of a simulation

1It is typically unknown at which sample size the asymptotic behavior �kicks in�; further, this
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study can strictly speaking only be extended to all possible sample originating from

a given scenario. Naturally, it is impossible to enumerate or simulate all possible

scenarios. Therefore, one can never prove on the basis of simulation studies that an

inference procedure performs favorable in general. On the contrary, MCSSs might

give misleading results when the performance of an estimator �uctuated strongly

with a change in simulation scenario.

Because it is unclear how to assign a measure to the simulation space, the average

performance of a method over all possible scenarios remains unknown. Researchers

are unable to randomly sample scenarios, and instead deliberately choose which

scenarios to simulate. Therefore, evaluating estimators using MCSSs fails to provide

an objective frame of reference. Since favorable simulation results are more likely

to be published, it is enticing for researchers to present the method in the most

favorable conditions; counter-examples where a proposed method fails are not sought

often enough. With these cautions in mind, the IMs described in Chapter 4 are now

compared using simulations.

5.2 Existing work

Parallel to the initial phase of the project, He & Raghunathan (2009) was published,

which investigates within the FCS framework the sensitivity of the Global Linear Re-

gression (GLR) and PMM IMs to di�erent conditional distributions of the variables

to be imputed. In a setting with three variables and missing data which are Missing

Completely at Random (MCAR), they demonstrate that with respect to the estima-

tion of regression coe�cients, currently used MI procedures can in fact give worse

performance than Complete Case Analysis (Complete Case Analysis (CCA)) under

seemingly innocuous deviations from standard (multivariate normality) simulation

conditions.

5.3 Design

5.3.1 Simple

First we will empirically investigate the performance of all the IMs described in

Chapter 4 in the context of a simple linear regression model following (2.1) with a

single predictor variable x. The true parameter values are α = 0 and β = 1; since as

discussed in Chapter 2 the intercept is of no scienti�c interest, only the regression

may depend on other simulation parameters.
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Imputed Data Analysis (IDA) IM

y Response Predictor
x Predictor Response

Table 5.1: Role of the variables in the Completed Data Inference (CDI) and Impu-
tation Model (IM) when there are missing values in x.

slope β is reported in the results. Thus, there is a single variable with missing values,

and the imputation model is limited to a single fully observed predictor variable y.

It is again important to realize that, just as in the theoretical discussion in 3.3, the

predictor x and response variable y swap roles in the imputation model, as depicted

in 5.1; experience has it that this crucial but confusing point is often misunderstood.

The general nature of MI typically means it is applied to large data sets. This

is also in aligned with current research practices in the social sciences, which often

feature data sets with few cases and a large number of variables. One could therefore

argue that this simulation study is severely limited and of little practical relevance.

However, constraining the scope of the experiments to a single variable with missing

values allows for the isolation of defects in the IMs from possible confounding issues

stemming from the FCS framework in which the IMs are ultimately embedded. A

further constraint is the limitation to a single predictor variable in the imputation

model. However, obtaining acceptable performance in this basic setting is not a

trivial task, and acceptable performance is a prerequisite for more involved scenarios.

Further, this basic scenario simpli�es experimenting with the distribution of the

predictor x and other parameters of the simulation, because computational cost is

less high than with multiple predictors. Finally, two simulation studies with multiple

predictor variables are presented in 5.3.2.

The three simulation parameters which are structurally varied are the distribution

of x, coe�cient of determination R2, and sample size N . All studies have 1000

replications and m = 10 imputations, and a normal distribution for the errors of

the complete data model (2.1). A very important factor is the distribution of the
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predictor x. The following continuous densities are considered:

Normal: f(x) =
1√
2π
e−

1
2
x2

Skew-Normal: f(x) = 2φ(x)Φ(λx),

Uniform: f(x) =

1 if 0 5 x 5 1

0 otherwise
(5.1)

Squared Uniform (Beta): f(x) =
x−

1
2 (1− x)

B(1
2
, 1)

Student T: f(x) =
Γ(v+1

2
)

√
vπΓ(v

2
)
(1 +

x2

v
)−

v+1
2 ,

where λ = 5 is the shape parameter, and v = 3 is the degrees of freedom. Figure

5.1 on page 55 features a plot of the continuous distributions used. Further, the

following non-continuous distributions are considered

Poisson: f(x) =
κx

x!
e−κ

Bernoulli: f(x) = px(1− p)1−x, (5.2)

with κ = 2. The study is performed for all combinations of the distributions listed

above and the factor levels R2 ∈ {.25, .50, .75} and N ∈ {200, 500, 1000}. Note

that the square of a standard uniform variable, denoted by Squared Uniform above,

equals the Beta distribution with parameters α = 1
2
and β = 1.

For all studies, the following Missing Data Mechanism (MDM) is imposed:

p(s|y) =

(ϕ1)
1−s(1− ϕ1)

s if y < ỹ

(ϕ2)
1−s(1− ϕ2)

s if y = ỹ,
(5.3)

where ỹ is the sample median. Setting ϕ1 = .1, ϕ2 = .7 results in 40% missing data

in x, where the chance of a missing datum in x is .1 when the corresponding value of

y is smaller than the sample median of y, and .7 when it is larger than the median;

note that this MDM corresponds with Class 5 in Table 2.1 on page 19. While

holding the MDM constant at (5.3), the coe�cient of determination determines the

extent to which the missing values are MAR, with R2 approaching 0 implying the

missing data are in fact MCAR and evenly spread, and a high value of R2 giving

rise to a strongly systematic MDM with the potential of thinning out select regions

of the sample space. To replicate parts of the study of He & Raghunathan (2009),

two simulation studies are conducted where 40% of the values of x1 are MCAR,

and f(x) is the normal or the Beta distribution; all other simulation parameters are

equal to those in the MAR experiments.
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Figure 5.1: Plots of the densities in (5.1), from left to right: Standard normal, Skew-
Normal with shape parameter λ = 5 , Uniform, Squared Uniform, and T with v = 3
degrees of freedom.
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Figure 5.2: Scatter plots of both the direct and reverse regression when the covariate
is distributed, from top to bottom, Standard Normal, Skew-Normal with shape
parameter λ = 5 , Uniform, Squared Uniform, and T with v = 3 degrees of freedom.
The red dots are missing values, and the blue dots are observed.
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The results of the simulation study are reported in tables which all share common

elements. The "Method" column identi�es the mode of inference, where "COM"

stands for the complete data analysis; this is the analysis on the complete data,

before any cases are deleted, and should be taken as the golden standard for �rst

moment accuracy of the estimator. The complete data analysis should not be con-

fused with the Complete Case Analysis denoted by CCA, which represents the anal-

ysis on the completely observed cases. All other entries are multiple imputation

inferences using the indicated IM. Of the methods listed in Table 4.1 on page 38,

BaBooN terminated with an error message. The author of the package was contacted

on April 14, 2011 with a detailed report of the error message and the circumstances

under which it occurred. On January 17, 2012, the date on which the simulation

studies were �nalized, the bug was not resolved; therefore, BaBooN is dropped from

this and all further simulation studies. Further, the output of the package mi is

suppressed in most scenarios since it performs very similar to mice; this comes as

no surprise, since the package is a reimplementation of mice with some additional

post-imputation diagnostic capabilities strapped on.

All IMs are assessed on four criteria:

• Number of simulations which failed due to computational problems, indicated

by the column headed by the skull symbol (A). Although a couple of failed

simulations are tolerated, a large number of failures (A > 10) is considered

problematic and indicative of structural weaknesses in the implementation of

the algorithm. Note however that nonparametric techniques often need more

observations to function properly.

• Bias, as can be calculated by comparing the third column headed by β̂ with

the true parameter value of 1. First-moment accuracy is a primary require-

ment of IMs, and is indicative of its ability to "track the available data". The

aggregated parameter estimate is calculated as the average of the 1000 simu-

lations of the parameter estimates; note that the parameter estimates in the

case of MI inference are aggregates of the IDAs.

• Coverage, as indicated by the �fth column denoted by COV (β̂). This col-

umn gives the proportion of replications where the true parameter lays inside

the 95% con�dence interval as produced by the Multiple Imputation Infer-

ence (MII); under-coverage occurs when coverages are lower than the nominal

level of 95%; the performance of a method can be regarded to be poor if its

coverage drops below 90% and hence leads to substantially increased Type-I

error rates. On the other hand, high coverage rates (approximately > 97%),

or over-coverage, may be the result of the overestimation of variances. Corre-
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spondingly, the estimates tend to be conservative and thus lead to increased

Type-II error rates.

• E�ciency, as indicated by the fourth column denoted by ŜD(β̂). Although bias

and coverage are considered primary requirements, IMs which are unbiased and

have nominal coverage might be considered unattractive when they sport large

standard errors. The standard errors are calculated by taking the average of

the square roots of the estimated variances of the estimator.

Method A β̂ ŜE(β̂) COV (β̂)

n = 200 r2 = 0.25

COM 0 0.996 0.123 0.949
CCA 0 0.865 0.152 0.833
GLR 0 0.980 0.155 0.949
PMM 0 0.974 0.154 0.896

AREGIMPUTE 0 0.974 0.141 0.882
GAMLSS 2 0.999 0.175 0.950

Table 5.3: Example results table

5.3.2 Multiple

Two simulation experiments were conducted with four jointly independent pre-

dictor variables, each having unit variance and associated regression coe�cients

β =
[
1,
√

2/3,
√

2/3,
√

2/3
]
, and unit residual variance. Note that also in these

experiments, only x1 is a�icted by missing values. Further, R2 is �xed at .75; the

regression coe�cients, residual variance, and covariance matrix of the predictor are

chosen such that the amount of variance explained by x1 equals R2
x1

= .50, which

is canonical in the sense that it is the middle value of the set of coe�cients of

determination {.25, .50, .75} in the simple experiments with only x1.

For the studies with multiple predictors, the following MDM is imposed:

p(s|lp) =

(ϕ1)
1−s(1− ϕ1)

s if lp < l̃p

(ϕ2)
1−s(1− ϕ2)

s if lp = l̃p,
(5.4)

where

lp = −.4x2 − .4x3 − .4x4 + .50y (5.5)

is an approximation of the reverse linear predictor, and l̃p is the sample median of

lp. Again, setting ϕ1 = .1 and ϕ2 = .7 results in 40% missing data in x1.
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5.4 Results

5.4.1 Normal

The �rst simulation scenario features a normal distribution for the predictor variable

x, which implies that x and y are distributed bivariate normal; this is a standard

simulation condition for assessing the performance of IMs. Results of the simulation

study are presented in Table 5.4 on page 61. Since the missing data are MAR, the

CCA is biased, which leads to under-coverage. The under-coverage of CCA seems

una�ected by the coe�cient of determination, but becomes worse with increasing

sample size. The fact that there are better alternatives available than MI in this

simple scenario, such as Maximum Likelihood (ML) with incomplete data, does not

detract from the requirement that all IMs perform adequate.

Since x and y are distributed bivariate normal, both the direct and reverse regres-

sion are linear, and the GLR method is expected to be perfectly adequate; in fact,

when the missing values are MAR, the use of GLR is only warranted when the ob-

served data are distributed according to a multivariate normal distribution. This is

con�rmed in the simulation results, where the GLR is virtually unbiased and has

nominal coverage. As is to be expected, the aggregated standard errors are larger

than those of the golden standard set by the complete data analysis. This loss of

precision is due to the missing values; MI does not make up data.

Given the linearity of the reverse regression, PMM is more �exible than needed in

this scenario, and may potentially su�er from the theoretical issues described in 4.2.

However, the MDM does not truncate the sample space, although Figure 5.2 on

page 56 shows thinning of the sample space for large values of y. Surprisingly, the

method su�ers from mild to moderate under-coverage, with coverage rates ranging

between .892 and .922. With respect to bias, PMM performs roughly equal to

GLR, which means very limited empirical bias. On the other hand, the standard

errors are slightly smaller than those of the GLR model, which is counter-intuitive

since PMM is more �exible and uses less information external to the data than the

GLR method; more speci�cally, it does not use the information that the errors are

normally distributed. The unsatisfactory performance of PMM did not arise in the

simulation studies of He & Raghunathan (2009), probably because they simulated a

MCAR MDM which does not attrite the sample space as selectively as MDM (5.3).

Indeed, if the missing values in x are MCAR instead of MAR, and all other scenario

parameters are held constant, the coverages rates of PMM as presented in Table 5.5

on page 62 are acceptable and range from .921 to .940.

The performance of aregImpute is comparable or slightly worse than that of PMM,
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with coverages ranging between the .866-.916 interval. A possible explanation is that

aregImpute as described in Algorithm 4.1 also performs a predictive mean matching

step, and thereby su�ers from the same problem as the mice implementation of

the PMM algorithm. Although no reference to the poor performance of PMM

and aregImpute has been found in the literature, the aregImpute documentation

nevertheless states that:

�When match="closest", predictive mean matching does not work

well when fewer than 3 variables are used to predict the target variable,

because many of the multiple imputations for an observation will be iden-

tical. In the extreme case of one right-hand-side variable and assuming

that only monotonic transformations of left and right-side variables are

allowed, every bootstrap resample will give predicted values of the target

variable that are monotonically related to predicted values from every

other bootstrap resample. This causes predictive mean matching to al-

ways match on the same donor observation.�

This excerpt suggests that the problematic performance of PMM and aregImpute

is related to the number of predictors used in the imputation model; if this is the

case, then PMM and aregImpute should perform better in the simulation studies

with four predictors described in Table 5.6 on page 65. When the IDGP features

multiple predictors and with a R2
x1

= .50, the coverages of PMM for β1 range from

.892 to .904, and the coverages of aregImpute range from .909 to .924; although the

coverages are slightly better than in the single predictor study, they are still clearly

below the nominal level. Another argument against the explanation cited above is

that aregImpute was con�gured not to impute the value of the closest donor, but to

perform weighted multinomial probability sampling of the donor values. Moreover,

the PMM implementation in mice imputes a value from the nearest �ve neighbors,

each having an equal probability of being selected. Thus, both methods are pre-

vented from matching the same donor observation for every multiple imputation of

a missing datum. As the results in Table 5.5 on page 62 show, aregImpute and

PMM performs better when the missing values in x are MCAR; this o�ers support

for the explanation given in Section 4.2.

GAMLSS is expected to give unbiased results, albeit with some loss of e�ciency

compared to GLR. The conditional distributionD is speci�ed to be normal. Looking

at the results in Table 5.4 on page 61 and Table 5.5 on page 62, bias is comparable to

that of GLR and thus negligible, although the standard errors are moderately larger

than those of GLR; this is the price to pay for the greater �exibility of the model.

However, for larger sample sizes, the di�erence in e�ciency diminishes. GAMLSS
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unfortunately fails to converge in a total of three cases for the lowest sample size

condition; however, in the larger sample conditions no problems arise.

Lastly, the performance of GAMLSS in the study with multiple predictors (see Table

5.6 on page 65) is comparable to the study with a single predictor; this indicates

that if the additivity assumption is correct, GAMLSS successfully circumvents the

curse of dimensionality, at least for a moderate amount of predictor variables.

Table 5.4: Normal distribution

Method A β̂ ŜD(β̂) COV (β̂)

n = 200 r2 = 0.25

COM 0 0.996 0.123 0.949

CCA 0 0.865 0.152 0.833

GLR 0 0.980 0.155 0.949

PMM 0 0.974 0.154 0.896

AREGIMPUTE 0 0.974 0.141 0.882

GAMLSS 2 0.999 0.175 0.950

n = 200 r2 = 0.50

COM 0 1.002 0.071 0.951

CCA 0 0.912 0.092 0.839

GLR 0 0.995 0.085 0.955

PMM 0 1.001 0.082 0.905

AREGIMPUTE 0 0.988 0.080 0.866

GAMLSS 1 1.008 0.099 0.944

n = 200 r2 = 0.75

COM 0 1.001 0.041 0.964

CCA 0 0.956 0.056 0.867

GLR 0 1.001 0.051 0.950

PMM 0 1.011 0.049 0.892

AREGIMPUTE 0 0.994 0.048 0.868

GAMLSS 0 1.006 0.062 0.948

n = 500 r2 = 0.25

COM 0 1.002 0.078 0.940

CCA 0 0.874 0.096 0.717

GLR 0 0.993 0.097 0.943

PMM 0 0.992 0.094 0.903

AREGIMPUTE 0 0.996 0.088 0.899

GAMLSS 0 1.003 0.106 0.944

n = 500 r2 = 0.50

COM 0 1.001 0.045 0.941

CCA 0 0.912 0.058 0.649

GLR 0 0.998 0.053 0.953

PMM 0 1.000 0.050 0.912

AREGIMPUTE 0 0.995 0.050 0.904

GAMLSS 0 1.005 0.059 0.939
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Table 5.4: Continuation of table on previous page

Method A β̂ ŜD(β̂) COV (β̂)

n = 500 r2 = 0.75

COM 0 1.000 0.026 0.952

CCA 0 0.954 0.035 0.732

GLR 0 0.999 0.032 0.957

PMM 0 1.005 0.031 0.922

AREGIMPUTE 0 0.999 0.030 0.881

GAMLSS 0 1.002 0.035 0.953

n = 1000 r2 = 0.25

COM 0 0.999 0.055 0.947

CCA 0 0.871 0.068 0.525

GLR 0 0.994 0.068 0.956

PMM 0 0.995 0.066 0.910

AREGIMPUTE 0 0.993 0.062 0.896

GAMLSS 0 1.000 0.072 0.950

n = 1000 r2 = 0.50

COM 0 1.000 0.032 0.949

CCA 0 0.913 0.041 0.431

GLR 0 0.998 0.037 0.941

PMM 0 1.000 0.035 0.904

AREGIMPUTE 0 0.998 0.035 0.916

GAMLSS 0 1.002 0.040 0.948

n = 1000 r2 = 0.75

COM 0 1.000 0.018 0.952

CCA 0 0.955 0.025 0.544

GLR 0 1.000 0.023 0.944

PMM 0 1.003 0.022 0.915

AREGIMPUTE 0 1.000 0.021 0.901

GAMLSS 0 1.002 0.024 0.944

Table 5.5: Normal distribution, MCAR

Method A β̂ ŜD(β̂) COV (β̂)

n = 200 r2 = 0.250

COM 0 1.001 0.123 0.942

CCA 0 1.002 0.159 0.939

GLR 0 0.996 0.149 0.938

PMM 0 0.996 0.144 0.921

AREGIMPUTE 0 0.991 0.139 0.916

GAMLSS 0 1.011 0.159 0.938
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Table 5.5: Continuation of table on previous page

Method A β̂ ŜD(β̂) COV (β̂)

n = 200 r2 = 0.500

COM 0 1.001 0.071 0.948

CCA 0 1.002 0.093 0.944

GLR 0 0.999 0.084 0.957

PMM 0 1.002 0.080 0.940

AREGIMPUTE 0 0.997 0.080 0.923

GAMLSS 0 1.009 0.091 0.951

n = 200 r2 = 0.750

COM 0 1.000 0.041 0.949

CCA 0 1.002 0.053 0.944

GLR 0 1.001 0.050 0.938

PMM 0 1.009 0.048 0.922

AREGIMPUTE 0 1.001 0.047 0.918

GAMLSS 0 1.005 0.055 0.942

n = 500 r2 = 0.250

COM 0 0.999 0.077 0.944

CCA 0 1.001 0.100 0.943

GLR 0 0.997 0.094 0.942

PMM 0 0.997 0.090 0.939

AREGIMPUTE 0 0.995 0.087 0.923

GAMLSS 0 1.005 0.095 0.947

n = 500 r2 = 0.500

COM 0 1.001 0.045 0.959

CCA 0 1.000 0.058 0.958

GLR 0 0.999 0.053 0.956

PMM 0 1.001 0.050 0.933

AREGIMPUTE 0 0.998 0.050 0.940

GAMLSS 0 1.004 0.053 0.951

n = 500 r2 = 0.750

COM 0 0.999 0.026 0.948

CCA 0 1.000 0.034 0.951

GLR 0 0.999 0.031 0.950

PMM 0 1.002 0.030 0.938

AREGIMPUTE 0 1.000 0.030 0.929

GAMLSS 0 1.002 0.032 0.950

n = 1000 r2 = 0.250

COM 0 1.002 0.055 0.957

CCA 0 1.002 0.071 0.956

GLR 0 1.002 0.066 0.954

PMM 0 1.002 0.064 0.939

AREGIMPUTE 0 0.998 0.062 0.933

GAMLSS 0 1.006 0.066 0.939
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Table 5.5: Continuation of table on previous page

Method A β̂ ŜD(β̂) COV (β̂)

n = 1000 r2 = 0.500

COM 0 1.001 0.032 0.948

CCA 0 1.001 0.041 0.945

GLR 0 1.000 0.037 0.944

PMM 0 1.001 0.035 0.926

AREGIMPUTE 0 0.999 0.035 0.931

GAMLSS 0 1.003 0.037 0.950

n = 1000 r2 = 0.750

COM 0 1.000 0.018 0.938

CCA 0 1.000 0.024 0.938

GLR 0 1.000 0.022 0.947

PMM 0 1.001 0.021 0.937

AREGIMPUTE 0 1.001 0.021 0.924

GAMLSS 0 1.001 0.022 0.938

5.4.2 Skew-Normal and Uniform

The second and third simulation study feature a marginal skew-normal and uniform

distribution for the predictor variable x, respectively. Judging from Figure 3.1 on

page 30, which features a non-linear conditional expectation of x given y and het-

eroscedastic conditional variance, the GLR method is expected to fail. Indeed, as

the results in Table 5.7 on page 66 indicate, the GLR method breaks down with

coverages ranging between 0.472 and 0.916. The under-coverage seems primarily

due to substantial empirical biases ranging from .051 to .075, which are compara-

ble to those of the CCA. Although PMM and aregImpute have negligible bias,

their coverage rates are equal to those of the normal study, and remain poor. The

performance of PMM and aregImpute continues to be substandard irrespective of

the conditional distribution of x, and will not be addressed in the discussion of the

remaining studies with a single predictor.

For the GAMLSS approach, the conditional distributionD of x is speci�ed as normal.

Since u is simulated from a normal distribution, the assumption that D is distributed

normal corresponds with the assumption that x and y are distributed multivariate

normal. However, this implies that the conditional expectation of x given y is linear,

which is not true. Despite this logical inconsistency, Figure 3.1 on page 30 shows

that the conditional distributions given y are roughly symmetrical in form, and

(3.11) implies that only the �rst two moments need to be correct for consistent MII.

Moreover, the Skew-Normal distribution has full support, so there is no need to
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Ŝ
E
(β̂

3
)

Ŝ
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restrict the imputed values via the conditional distribution; all in all, the normal

distribution does not seem an unreasonable choice.

Table 5.7: Skew-Normal distribution

Method A β̂ ŜD(β̂) COV (β̂)

n = 200 r2 = 0.250

COM 0 1.004 0.123 0.954

CCA 0 0.925 0.163 0.892

GLR 0 1.061 0.170 0.916

PMM 0 0.984 0.158 0.901

AREGIMPUTE 0 0.968 0.143 0.868

GAMLSS 3 0.974 0.201 0.956

n = 200 r2 = 0.500

COM 0 1.000 0.071 0.948

CCA 0 0.951 0.099 0.896

GLR 0 1.067 0.092 0.861

PMM 0 1.003 0.087 0.866

AREGIMPUTE 0 0.984 0.083 0.863

GAMLSS 5 1.004 0.119 0.940

n = 200 r2 = 0.750

COM 0 0.999 0.041 0.953

CCA 0 0.973 0.060 0.911

GLR 0 1.051 0.055 0.834

PMM 0 1.020 0.054 0.870

AREGIMPUTE 0 0.993 0.051 0.841

GAMLSS 11 1.019 0.068 0.916

n = 500 r2 = 0.250

COM 0 1.000 0.078 0.950

CCA 0 0.922 0.103 0.851

GLR 0 1.065 0.105 0.885

PMM 0 0.991 0.094 0.907

AREGIMPUTE 0 0.988 0.088 0.881

GAMLSS 0 0.971 0.122 0.960

n = 500 r2 = 0.500

COM 0 1.000 0.045 0.946

CCA 0 0.958 0.062 0.873

GLR 0 1.075 0.057 0.745

PMM 0 1.008 0.052 0.884

AREGIMPUTE 0 0.994 0.051 0.873

GAMLSS 3 1.012 0.068 0.934
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Table 5.7: Continuation of table on previous page

Method A β̂ ŜD(β̂) COV (β̂)

n = 500 r2 = 0.750

COM 0 1.001 0.026 0.959

CCA 0 0.977 0.037 0.906

GLR 0 1.053 0.034 0.694

PMM 0 1.012 0.033 0.884

AREGIMPUTE 0 0.999 0.031 0.862

GAMLSS 9 1.013 0.040 0.928

n = 1000 r2 = 0.250

COM 0 1.000 0.055 0.943

CCA 0 0.925 0.072 0.796

GLR 0 1.068 0.074 0.828

PMM 0 0.998 0.066 0.917

AREGIMPUTE 0 0.990 0.062 0.882

GAMLSS 0 0.981 0.085 0.952

n = 1000 r2 = 0.500

COM 0 1.000 0.032 0.949

CCA 0 0.955 0.044 0.804

GLR 0 1.074 0.040 0.550

PMM 0 1.002 0.037 0.885

AREGIMPUTE 0 0.997 0.036 0.887

GAMLSS 0 1.006 0.045 0.941

n = 1000 r2 = 0.750

COM 0 1.000 0.018 0.951

CCA 0 0.977 0.026 0.853

GLR 0 1.051 0.024 0.472

PMM 0 1.005 0.024 0.893

AREGIMPUTE 0 1.001 0.022 0.883

GAMLSS 0 1.007 0.027 0.950

Since the conditional mean is not restricted to be a linear function of the predic-

tors, and the conditional variance is not restricted to be constant, the GAMLSS

approach is expected to o�er robust performance in the skew-normal scenario. Gen-

erally speaking, these expectations are ful�lled: only the case with n = 200 and

r2 = 0.75 features slight undercoverage. Since GAMLSS is the only method with

adequate coverages, any comparison of con�dence interval lengths is meaningless.

More troubling are the 11 failed simulations where the GAMLSS algorithm failed to

converge, which is deemed unacceptable. For n = 500 and r2 = 0.75 the coverage is

good, but the number of failures is again high. Part of the problem is the automatic

method for selecting the bandwidth of the penalized B-spline, as indicated by this

except from the documentation of the GAMLSS package:
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�Note that the local (or performance iterations) methods can occasionally

make the convergence of gamlss less stable compared to models where

the degrees of freedom are �xed.�

However, as described in Section 4.5, when the penalized B-spline fails to �t, the

imputation algorithm falls back to a cubic smoothing spline with a �xed smoothing

parameter; even with this fallback mechanism in place, the implementation of the

GAMLSS estimator su�ers from general numerical stability problems, not unlike other

user contributed packages (see Chapter 6).

A simulation experiment has also been conducted with x1 distributed skew-normal

with a standardized third cumulant of .85, and x−1 distributed standard normal,

with all predictors jointly independent. The results of the study are presented in

Table 5.8 on page 71; GAMLSS performs comparable to the study with a single

predictor.

In the case of x having a standard uniform distribution, it may be desirable to restrict

the imputed values to lay between zero and one; this can be accomplished by letting

D be the Beta distribution. The more �exible Generalized Beta distribution (Rigby

& Stasinopoulos, 2005) is also tested, which is endowed with two additional shape

parameters. Finally, we test the normal distribution, denoted by GAMLSS (normal)

in the table, even though this choice of D leads to the imputation of potentially

unrealistic values.

Table 5.9: Uniform distribution

Method A β̂ ŜD(β̂) COV (β̂)

n = 200 r2 = 0.25

COM 0 1.002 0.123 0.937

CCA 0 0.871 0.152 0.855

GLR 0 0.985 0.155 0.951

PMM 0 0.992 0.154 0.894

AREGIMPUTE 0 0.977 0.139 0.880

GAMLSS (Normal) 12 1.002 0.165 0.950

GAMLSS (Beta) 0 0.989 0.162 0.936

GAMLSS (Gen. Beta) 2 1.009 0.164 0.930
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Table 5.9: Continuation of table on previous page

Method A β̂ ŜD(β̂) COV (β̂)

n = 200 r2 = 0.50

COM 0 1.001 0.071 0.960

CCA 0 0.911 0.092 0.838

GLR 0 0.997 0.085 0.966

PMM 0 1.002 0.078 0.931

AREGIMPUTE 0 0.993 0.077 0.880

GAMLSS (Normal) 29 1.014 0.094 0.961

GAMLSS (Beta) 3 1.000 0.088 0.947

GAMLSS (Gen. Beta) 1 1.001 0.088 0.961

n = 200 r2 = 0.75

COM 0 1.000 0.041 0.944

CCA 0 0.957 0.056 0.872

GLR 0 1.006 0.052 0.949

PMM 0 1.003 0.045 0.903

AREGIMPUTE 0 0.999 0.045 0.877

GAMLSS (Normal) 18 1.017 0.054 0.944

GAMLSS (Beta) 3 1.000 0.049 0.948

GAMLSS (Gen. Beta) 0 0.997 0.050 0.943

n = 500 r2 = 0.25

COM 0 0.998 0.078 0.955

CCA 0 0.867 0.096 0.705

GLR 0 0.988 0.097 0.946

PMM 0 0.992 0.095 0.913

AREGIMPUTE 0 0.998 0.087 0.905

GAMLSS (Normal) 3 1.001 0.101 0.956

GAMLSS (Beta) 0 0.979 0.101 0.941

GAMLSS (Gen. Beta) 1 0.995 0.101 0.943

n = 500 r2 = 0.50

COM 0 0.999 0.045 0.947

CCA 0 0.909 0.058 0.651

GLR 0 0.997 0.053 0.949

PMM 0 0.998 0.049 0.900

AREGIMPUTE 0 0.997 0.049 0.899

GAMLSS (Normal) 6 1.012 0.057 0.951

GAMLSS (Beta) 0 0.991 0.054 0.953

GAMLSS (Gen. Beta) 0 0.993 0.054 0.948
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Table 5.9: Continuation of table on previous page

Method A β̂ ŜD(β̂) COV (β̂)

n = 500 r2 = 0.75

COM 0 0.997 0.026 0.944

CCA 0 0.954 0.036 0.740

GLR 0 1.005 0.033 0.953

PMM 0 0.998 0.029 0.917

AREGIMPUTE 0 1.000 0.028 0.910

GAMLSS (Normal) 8 1.009 0.033 0.958

GAMLSS (Beta) 1 0.997 0.030 0.954

GAMLSS (Gen. Beta) 3 0.992 0.031 0.933

n = 1000 r2 = 0.25

COM 0 1.002 0.055 0.959

CCA 0 0.874 0.068 0.534

GLR 0 0.996 0.068 0.950

PMM 0 1.001 0.067 0.920

AREGIMPUTE 0 0.995 0.062 0.902

GAMLSS (Normal) 2 1.001 0.071 0.950

GAMLSS (Beta) 0 0.981 0.071 0.943

GAMLSS (Gen. Beta) 0 0.998 0.070 0.947

n = 1000 r2 = 0.50

COM 0 0.999 0.032 0.948

CCA 0 0.909 0.041 0.416

GLR 0 0.998 0.038 0.956

PMM 0 0.999 0.035 0.900

AREGIMPUTE 0 0.997 0.034 0.910

GAMLSS (Normal) 2 1.009 0.040 0.954

GAMLSS (Beta) 0 0.993 0.038 0.955

GAMLSS (Gen. Beta) 0 0.992 0.038 0.943

n = 1000 r2 = 0.75

COM 0 1.000 0.018 0.945

CCA 0 0.957 0.025 0.582

GLR 0 1.008 0.023 0.936

PMM 0 1.001 0.020 0.893

AREGIMPUTE 0 1.002 0.020 0.922

GAMLSS (Normal) 1 1.006 0.023 0.943

GAMLSS (Beta) 0 0.994 0.022 0.932

GAMLSS (Gen. Beta) 0 0.993 0.022 0.928

The results of the GAMLSS IM in Table 5.9 on page 68 when x has the uniform

distribution indicate that imputing under the Normal, Beta, and Generalized Beta

distribution gives comparable and adequate results. The Beta distribution seems to

capture the features of the conditional distribution quite well, and the additional
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�exibility of the Generalized Beta Distribution provided by the two additional pa-

rameters seems super�uous. Imputation under the normal model also gives negligible

empirical bias, demonstrating that, apart from the �rst two moments, imputations

for x do not need to match the exact shape of the conditional distribution f(x|y).

Finally, the good performance of imputations under the Beta distribution demon-

strates that the goals of generating plausible imputations and consistent imputations

as discussed in Section 3.3.4 are not necessarily incompatible with each other.

To address the stability issues of GAMLSS, some parameters of the optimization

algorithm used by the gamlss function have been tweaked; for the remaining simu-

lations, this �enhanced� version is used.

5.4.3 Uniform Squared (Beta)

This simulation study can be interpreted as a assessment of the transform, then

impute strategy as described in Section 3.3.4 and von Hippel (2009), where the

predictor x is created by taking the square of the original predictor variable z,

and where z is standard uniformly distributed. As the scatter plot of the reverse

regression in Figure 5.2 on page 56 shows, the conditional expectation of x given

y deviates signi�cantly from linearity; moreover, there are outliers visible caused

by the skewness of the conditional distribution of x given y for large values of y.

Arguably, this scenario features a conditional distribution whose features are di�cult

to estimate, with the attrition of the MDM further exacerbating the situation. Also

note that if the support of z would extend to negative values, the reverse regression

approach would break down as discussed in 3.3.5. Given that the values of x lay in

the (0, 1) interval, one might want to impute only realistic values; therefore, D is

chooses to be a generalized beta distribution as in 5.4.2.

Table 5.10: Beta distribution

Method A β̂ ŜD(β̂) COV (β̂)

n = 200 r2 = 0.250

COM 0 0.990 0.123 0.942

CCA 0 0.907 0.162 0.876

GLR 0 1.039 0.167 0.925

PMM 0 0.964 0.155 0.902

AREGIMPUTE 0 0.960 0.139 0.854

GAMLSS2 (Gen. Beta) 3 0.976 0.168 0.960

GAMLSS2 (Normal) 0 0.972 0.190 0.959

2Enhanced
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Table 5.10: Continuation of table on previous page

Method A β̂ ŜD(β̂) COV (β̂)

n = 200 r2 = 0.500

CCA 0 0.968 0.100 0.922

GLR 0 1.085 0.093 0.824

PMM 0 0.998 0.081 0.895

AREGIMPUTE 0 0.985 0.079 0.858

GAMLSS2 (Gen. Beta) 3 0.990 0.095 0.947

GAMLSS2 (Normal) 0 1.017 0.109 0.934

n = 200 r2 = 0.750

COM 0 0.997 0.041 0.943

CCA 0 0.992 0.060 0.932

GLR 0 1.069 0.056 0.779

PMM 0 1.003 0.049 0.889

AREGIMPUTE 0 0.993 0.047 0.845

GAMLSS2 (Gen. Beta) 0 0.983 0.057 0.934

GAMLSS2 (Normal) 0 1.025 0.060 0.944

n = 500 r2 = 0.250

COM 0 1.001 0.078 0.947

CCA 0 0.922 0.103 0.874

GLR 0 1.059 0.105 0.882

PMM 0 0.993 0.096 0.914

AREGIMPUTE 0 0.990 0.087 0.876

GAMLSS2 (Gen. Beta) 1 0.984 0.102 0.951

GAMLSS2 (Normal) 0 0.980 0.117 0.948

n = 500 r2 = 0.500

COM 0 1.000 0.045 0.944

CCA 0 0.971 0.063 0.900

GLR 0 1.089 0.058 0.661

PMM 0 1.001 0.050 0.900

AREGIMPUTE 0 0.997 0.050 0.904

GAMLSS2 (Gen. Beta) 2 0.987 0.057 0.943

GAMLSS2 (Normal) 0 1.021 0.065 0.933

n = 500 r2 = 0.750

COM 0 0.999 0.026 0.936

CCA 0 0.992 0.038 0.934

GLR 0 1.070 0.035 0.504

PMM 0 1.002 0.031 0.891

AREGIMPUTE 0 0.999 0.029 0.866

GAMLSS2 (Gen. Beta) 0 0.980 0.035 0.906

GAMLSS2 (Normal) 0 1.021 0.037 0.938
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Table 5.10: Continuation of table on previous page

Method A β̂ ŜD(β̂) COV (β̂)

n = 1000 r2 = 0.250

COM 0 0.998 0.055 0.956

CCA 0 0.918 0.072 0.785

GLR 0 1.059 0.073 0.866

PMM 0 0.994 0.067 0.919

AREGIMPUTE 0 0.990 0.061 0.905

GAMLSS2 (Gen. Beta) 1 0.977 0.072 0.946

GAMLSS2 (Normal) 0 0.993 0.080 0.940

n = 1000 r2 = 0.500

COM 0 1.001 0.032 0.960

CCA 0 0.974 0.044 0.897

GLR 0 1.091 0.040 0.403

PMM 0 1.001 0.035 0.896

AREGIMPUTE 0 0.999 0.035 0.909

GAMLSS2 (Gen. Beta) 0 0.986 0.040 0.935

GAMLSS2 (Normal) 0 1.018 0.045 0.940

n = 1000 r2 = 0.750

COM 0 1.000 0.018 0.947

CCA 0 0.994 0.027 0.938

GLR 0 1.071 0.025 0.174

PMM 0 1.000 0.022 0.905

AREGIMPUTE 0 1.000 0.021 0.897

GAMLSS2 (Gen. Beta) 0 0.980 0.024 0.860

GAMLSS2 (Normal) 0 1.011 0.026 0.948

Unfortunately, GAMLSS with a generalized Beta distribution breaks down for high

values of the coe�cient of determination. When r2 = .75 there is moderate un-

dercoverage, which becomes worse for larger sample sizes. Apparently, for smaller

sample sizes, the larger standard errors camou�age the empirical bias. The results

might indicate that for this scenario, the IDGP (4.17) is estimated inconsistently.

Performance might improve with a varying bandwidth; unfortunately, this feature

has not been implemented yet in the GAMLSS package. Despite producing potential

unrealistic values in the form of negative imputations, GAMLSS with a normal dis-

tribution is on target, with the empirical bias being quite acceptable. Therefore,

based on these simulation results, it is recommended to specify a conditional normal

distribution for continuous variables with missing data when using the GAMLSS

imputation method, even if this means that the resulting imputations are unrealis-

tic.

To empirically support the claim that a imputation by reverse linear regression
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is consistent when the MDM is MCAR, we repeat the previous simulation study

under a MCAR mechanism. As predicted, the GLR method performs adequately.

However, contrary to what von Hippel (2009) suggests, it is inadvisable to impute x

using linear reverse regression for the more general MAR mechanism, as indicated

by the results in tables 5.7, 5.9, and 5.10. For larger sample sizes, the empirical

bias of GAMLSS with a Normal distribution dominates the bias of GAMLSS with

a Generalized Beta distribution.

Table 5.11: Beta distribution - missing values are MCAR

Method A β̂ ŜD(β̂) COV (β̂)

n = 200 r2 = 0.250

COM 0 0.996 0.123 0.954

CCA 0 0.994 0.159 0.954

GLR 0 0.987 0.150 0.954

PMM 0 0.989 0.144 0.940

AREGIMPUTE 0 0.984 0.138 0.921

GAMLSS (Gen. Beta) 0 0.994 0.149 0.951

GAMLSS (Normal) 0 1.012 0.154 0.938

n = 200 r2 = 0.500

COM 0 1.001 0.071 0.945

CCA 0 1.000 0.092 0.948

GLR 0 0.997 0.084 0.949

PMM 0 1.002 0.077 0.936

AREGIMPUTE 0 0.998 0.077 0.928

GAMLSS (Gen. Beta) 0 0.994 0.083 0.954

GAMLSS (Normal) 0 1.021 0.087 0.949

n = 200 r2 = 0.750

COM 0 1.001 0.041 0.951

CCA 0 1.000 0.053 0.954

GLR 0 0.999 0.050 0.958

PMM 0 1.003 0.045 0.938

AREGIMPUTE 0 1.000 0.045 0.946

GAMLSS (Gen. Beta) 0 0.989 0.048 0.952

GAMLSS (Normal) 0 1.020 0.049 0.929

n = 500 r2 = 0.250

COM 0 1.004 0.078 0.946

CCA 0 1.007 0.100 0.951

GLR 0 1.004 0.094 0.949

PMM 0 1.003 0.090 0.944

AREGIMPUTE 0 1.000 0.087 0.936

GAMLSS (Gen. Beta) 0 0.999 0.093 0.958

GAMLSS (Normal) 0 1.004 0.094 0.944
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Table 5.11: Continuation of table on previous page

Method A β̂ ŜD(β̂) COV (β̂)

n = 500 r2 = 0.500

COM 0 1.000 0.045 0.950

CCA 0 1.003 0.058 0.945

GLR 0 1.000 0.052 0.952

PMM 0 1.002 0.049 0.936

AREGIMPUTE 0 0.999 0.049 0.941

GAMLSS (Gen. Beta) 0 0.989 0.051 0.942

GAMLSS (Normal) 0 1.011 0.053 0.954

n = 500 r2 = 0.750

COM 0 1.000 0.026 0.941

CCA 0 0.998 0.033 0.938

GLR 0 0.999 0.031 0.942

PMM 0 1.000 0.028 0.925

AREGIMPUTE 0 0.999 0.028 0.931

GAMLSS (Gen. Beta) 0 0.985 0.030 0.913

GAMLSS (Normal) 0 1.011 0.031 0.941

n = 1000 r2 = 0.250

COM 0 1.000 0.055 0.954

CCA 0 1.000 0.071 0.945

GLR 0 1.000 0.066 0.951

PMM 0 1.000 0.063 0.932

AREGIMPUTE 0 0.996 0.061 0.932

GAMLSS (Gen. Beta) 0 0.991 0.065 0.944

GAMLSS (Normal) 0 1.001 0.066 0.949

n = 1000 r2 = 0.500

COM 0 0.999 0.032 0.953

CCA 0 0.997 0.041 0.956

GLR 0 0.997 0.037 0.958

PMM 0 0.999 0.034 0.944

AREGIMPUTE 0 0.996 0.034 0.940

GAMLSS (Gen. Beta) 0 0.983 0.036 0.923

GAMLSS (Normal) 0 1.007 0.038 0.952

n = 1000 r2 = 0.750

COM 0 0.999 0.018 0.951

CCA 0 0.998 0.024 0.955

GLR 0 0.998 0.022 0.959

PMM 0 0.999 0.020 0.947

AREGIMPUTE 0 0.998 0.020 0.945

GAMLSS (Gen. Beta) 0 0.983 0.021 0.895

GAMLSS (Normal) 0 1.006 0.022 0.956
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5.4.4 Student's T

The fourth simulation study feature a marginal T distribution with three degrees of

freedom for the predictor variable x. For the GAMLSS method, D is speci�ed to be

normal. In the simulation study of He & Raghunathan (2009), all tested IMs broke

down when the distribution of x was strongly heavy tailed. Unfortunately, as the

results in Table 5.12 on page 77 indicate, this is also true for the GAMLSS method,

which features biases which are systematically bigger than the GLR method, and

coverages rates ranging between .893 and .943. The results of this study suggest that

the GAMLSS method, despite its �exibility, is unsuitable for imputation when x has

a heavy tailed distributions. While of all methods the coverage rates of GAMLSS

are closest to normal, this seems largely due to in�ated standard errors.

Table 5.12: T distribution

Method A β̂ ŜD(β̂) COV (β̂)

n = 200 r2 = 0.250

COM 0 1.001 0.129 0.947

CCA 0 0.892 0.161 0.892

GLR 0 1.012 0.166 0.933

PMM 0 0.992 0.168 0.935

AREGIMPUTE 0 0.962 0.168 0.914

GAMLSS 0 1.032 0.206 0.939

n = 200 r2 = 0.500

COM 0 0.997 0.075 0.951

CCA 0 0.917 0.096 0.838

GLR 0 1.002 0.090 0.904

PMM 0 1.008 0.096 0.908

AREGIMPUTE 0 0.976 0.097 0.903

GAMLSS 2 1.024 0.127 0.924

n = 200 r2 = 0.750

COM 0 1.000 0.044 0.950

CCA 0 0.950 0.058 0.866

GLR 0 0.999 0.054 0.888

PMM 0 1.032 0.060 0.885

AREGIMPUTE 0 0.986 0.060 0.896

GAMLSS 1 1.017 0.085 0.911

n = 500 r2 = 0.250

COM 0 0.998 0.081 0.961

CCA 0 0.889 0.100 0.798

GLR 0 1.011 0.101 0.932

PMM 0 0.992 0.102 0.921

AREGIMPUTE 0 0.970 0.102 0.911

GAMLSS 1 1.016 0.134 0.943
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Table 5.12: Continuation of table on previous page

Method A β̂ ŜD(β̂) COV (β̂)

n = 500 r2 = 0.500

COM 0 1.002 0.047 0.954

CCA 0 0.921 0.059 0.717

GLR 0 1.006 0.054 0.891

PMM 0 1.014 0.058 0.902

AREGIMPUTE 0 0.992 0.057 0.925

GAMLSS 1 1.020 0.085 0.913

n = 500 r2 = 0.750

COM 0 1.001 0.027 0.952

CCA 0 0.955 0.035 0.745

GLR 0 0.999 0.033 0.850

PMM 0 1.030 0.036 0.824

AREGIMPUTE 0 0.999 0.035 0.875

GAMLSS 3 1.013 0.055 0.904

n = 1000 r2 = 0.250

COM 0 1.000 0.056 0.950

CCA 0 0.893 0.069 0.649

GLR 0 1.013 0.070 0.912

PMM 0 1.000 0.069 0.878

AREGIMPUTE 0 0.984 0.070 0.891

GAMLSS 8 1.013 0.097 0.940

n = 1000 r2 = 0.500

COM 0 1.000 0.032 0.946

CCA 0 0.926 0.041 0.548

GLR 0 1.007 0.037 0.848

PMM 0 1.016 0.040 0.854

AREGIMPUTE 0 0.996 0.039 0.888

GAMLSS 4 1.010 0.068 0.893

n = 1000 r2 = 0.750

COM 0 0.999 0.019 0.945

CCA 0 0.955 0.025 0.546

GLR 0 0.995 0.023 0.812

PMM 0 1.023 0.025 0.797

AREGIMPUTE 0 0.998 0.024 0.890

GAMLSS 10 1.003 0.042 0.923

5.4.5 Bernoulli

For the simulation study where x is binary with a Bernoulli distribution, the co-

e�cient of determination is not manipulated, but held �xed at .25; rather, the

proportion p of �successes� as de�ned in (5.2) is manipulated, with p ∈ {.1, .5, .9}.
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Instead of GLR, which is ill suited for binary data, the Generalized Global Linear

Regression (GGLR) implementation of mice is tested, which features a Generalized

Linear Model (GLM) with logit link. GGLR is expected to perform good, since the

true conditional distribution f(x|y) is the Bernoulli distribution with the logistic

function linking the linear predictor to the parameter p (see Efron, 1975). As noted

in Section 4.2, PMM can be used without modi�cation for the imputation of binary

data.

The results of this simulation study are summarized in Table 5.13 on page 79,

and con�rm that GGLR has good performance. The performance of GAMLSS is

acceptable except when p = .1 for small sample sizes, as apparent by the high

number of failed simulations, bias, and under coverage. This is because the relative

small number of �successes�, which is further reduced by the MDM since it creates

more missing values when y is large, can lead to the well known problem of perfect

separation where x = 1 always when y > c. The mice implementation safeguards

against this by placing a mildly informative prior on the regression coe�cients,

which shrinks the estimates and preventing them from going �o� the chart�; this

�x can also be incorporated into the GAMLSS imputation method by augmenting

the data set with data points which represent a su�ciently informative prior. This

phenomenon illustrates the computational problems that need to be dealt with due

to the demand of executing statistical methods without user supervision.

Table 5.13: Bernoulli distribution

Method A β̂ ŜD(β̂) COV (β̂)

n = 200 p = 0.1

COM 0 1.002 0.124 0.950

CCA 0 1.119 0.193 0.847

GGLR 0 0.955 0.159 0.974

PMM 0 0.968 0.157 0.911

AREGIMPUTE 0 0.969 0.142 0.872

GAMLSS2 159 0.913 0.192 0.906

n = 200 p = 0.5

COM 0 1.001 0.071 0.939

CCA 0 0.907 0.094 0.827

GGLR 0 0.993 0.083 0.957

PMM 0 1.000 0.078 0.935

AREGIMPUTE 0 0.990 0.075 0.916

GAMLSS2 0 0.999 0.085 0.952
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Table 5.13: Continuation of table on previous page

Method A β̂ ŜD(β̂) COV (β̂)

n = 200 p = 0.9

COM 0 0.996 0.125 0.937

CCA 0 0.811 0.128 0.694

GGLR 0 0.965 0.148 0.957

PMM 0 1.000 0.134 0.933

AREGIMPUTE 0 0.941 0.160 0.956

GAMLSS2 0 0.973 0.166 0.953

n = 500 p = 0.1

COM 0 1.004 0.078 0.953

CCA 0 1.118 0.124 0.785

GGLR 0 0.984 0.099 0.964

PMM 0 0.992 0.094 0.887

AREGIMPUTE 0 0.993 0.089 0.882

GAMLSS2 0 0.964 0.129 0.963

n = 500 p = 0.5

COM 0 0.998 0.045 0.956

CCA 0 0.903 0.059 0.626

GGLR 0 0.995 0.051 0.948

PMM 0 0.998 0.049 0.930

AREGIMPUTE 0 0.994 0.047 0.916

GAMLSS2 0 0.996 0.053 0.946

n = 500 p = 0.9

COM 0 0.998 0.078 0.935

CCA 0 0.810 0.080 0.359

GGLR 0 0.987 0.089 0.944

PMM 0 1.001 0.084 0.922

AREGIMPUTE 0 0.944 0.101 0.934

GAMLSS2 0 0.991 0.097 0.946

n = 1000 p = 0.1

COM 0 0.997 0.055 0.955

CCA 0 1.117 0.087 0.679

GGLR 0 0.990 0.069 0.955

PMM 0 0.996 0.065 0.896

AREGIMPUTE 0 0.997 0.063 0.876

GAMLSS2 0 0.992 0.076 0.954

n = 1000 p = 0.5

COM 0 1.002 0.032 0.953

CCA 0 0.909 0.042 0.416

GGLR 0 1.000 0.036 0.959

PMM 0 1.001 0.035 0.931

AREGIMPUTE 0 0.999 0.034 0.932

GAMLSS2 0 1.000 0.037 0.960
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Table 5.13: Continuation of table on previous page

Method A β̂ ŜD(β̂) COV (β̂)

n = 1000 p = 0.9

COM 0 1.000 0.055 0.954

CCA 0 0.813 0.056 0.080

GGLR 0 0.996 0.062 0.961

PMM 0 1.001 0.060 0.935

AREGIMPUTE 0 0.945 0.071 0.909

GAMLSS2 0 0.995 0.070 0.964

5.4.6 Poisson

The Poisson simulation study features the mi package, which o�ers an implementa-

tion of the GGLR method where the conditional distribution of x is speci�ed to be a

Poisson distribution. mice provides a GGLR where x has a conditional categorical

distribution; this IDGP is also known as polytomous regression. In 4.1 it was shown

that the true conditional distribution of f(x|y) is an under-dispersed count distri-

bution; mi is therefore expected to fail. Because GAMLSS only implements a Poisson

distribution and overdispersed count distributions, D is choosen to be Normal, which

results in the imputation of �unrealistic� values.

The results in Table 5.14 on page 81 show horrendous coverages for the POIS method

as implemented in mi, which con�rms the analysis in 4.1. Also, imputing count data

as unordered categorical data can lead to invalid MII, as the bad results for the

POLY method as implemented in mice show. In contrast, the GAMLSS method

seems to o�ers good performance, although the empirical bias for the case when

r2 = .25 is somewhat disquieting.

Table 5.14: Poisson distribution

Method A β̂ ŜD(β̂) COV (β̂)

n = 200 r2 = 0.250

COM 0 0.998 0.123 0.962

CCA 0 0.907 0.162 0.896

POLY 0 0.547 0.181 0.218

PMM 0 0.976 0.157 0.915

AREGIMPUTE 0 0.966 0.143 0.855

POIS 0 0.860 0.146 0.933

GAMLSS 0 0.974 0.200 0.973
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Table 5.14: Continuation of table on previous page

Method A β̂ ŜD(β̂) COV (β̂)

n = 200 r2 = 0.500

COM 0 0.999 0.071 0.951

CCA 0 0.942 0.098 0.890

POLY 0 0.568 0.131 0.023

PMM 0 1.007 0.085 0.875

AREGIMPUTE 0 0.989 0.083 0.845

POIS 0 0.749 0.093 0.182

GAMLSS 0 1.007 0.115 0.942

n = 200 r2 = 0.750

COM 0 1.000 0.041 0.935

CCA 0 0.965 0.059 0.885

POLY 0 0.583 0.108 0.002

PMM 0 1.020 0.053 0.872

AREGIMPUTE 0 0.991 0.051 0.838

POIS 0 0.629 0.081 0.003

GAMLSS 0 1.015 0.068 0.924

n = 500 r2 = 0.250

COM 0 0.999 0.078 0.948

CCA 0 0.916 0.101 0.853

POLY 0 0.551 0.112 0.003

PMM 0 0.993 0.095 0.912

AREGIMPUTE 0 0.991 0.088 0.886

POIS 0 0.877 0.089 0.781

GAMLSS 0 0.978 0.119 0.955

n = 500 r2 = 0.500

COM 0 1.000 0.045 0.962

CCA 0 0.945 0.061 0.839

POLY 0 0.568 0.082 0.000

PMM 0 1.006 0.052 0.889

AREGIMPUTE 0 0.997 0.051 0.882

POIS 0 0.754 0.059 0.001

GAMLSS 0 1.007 0.065 0.952

n = 500 r2 = 0.750

COM 0 1.001 0.026 0.949

CCA 0 0.969 0.037 0.852

POLY 0 0.580 0.068 0.000

PMM 0 1.011 0.033 0.886

AREGIMPUTE 0 1.000 0.031 0.875

POIS 0 0.634 0.053 0.000

GAMLSS 0 1.009 0.038 0.940
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Table 5.14: Continuation of table on previous page

Method A β̂ ŜD(β̂) COV (β̂)

n = 1000 r2 = 0.250

COM 0 0.999 0.055 0.948

CCA 0 0.911 0.072 0.757

POLY 0 0.546 0.080 0.000

PMM 0 0.995 0.066 0.887

AREGIMPUTE 0 0.992 0.062 0.880

POIS 0 0.877 0.063 0.530

GAMLSS 0 0.980 0.082 0.956

n = 1000 r2 = 0.500

COM 0 1.000 0.032 0.952

CCA 0 0.944 0.043 0.744

POLY 0 0.566 0.057 0.000

PMM 0 1.004 0.036 0.889

AREGIMPUTE 0 1.000 0.036 0.904

POIS 0 0.757 0.041 0.000

GAMLSS 0 1.005 0.044 0.953

n = 1000 r2 = 0.750

COM 0 1.001 0.018 0.952

CCA 0 0.969 0.026 0.776

POLY 0 0.581 0.048 0.000

PMM 0 1.006 0.023 0.892

AREGIMPUTE 0 1.002 0.022 0.873

POIS 0 0.635 0.038 0.000

GAMLSS 0 1.005 0.026 0.944
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Chapter 6

Conclusion & Summary

In 6.1, the �ve research questions stated in Chapter 1 will be answered. Secondly,

6.2.1 will give recommendations for applied researchers who choose to use MI as a

solution to their missing data problem. Finally, suggestions and practical recom-

mendations are given on how to proceed with MI research in 6.2.2.

6.1 Research Questions

Research question 1 When is MI bene�cial?

In Chapter 2 it was shown that when the Data Analysis Procedure (DAP) equals

the Ordinary Least Squares (OLS) estimator, MI without the speci�cation of exter-

nal information (in the form of auxiliary predictor variables) is only applicable and

purposeful when predictors are a�icted by missing data; imputed values for the re-

sponse variable should generally be discarded to avoid unnecessary loss of e�ciency.

Imputing while ignoring the missing data mechanism requires the assumption that

the missing data in the predictors are at least MAR, that is, the probability of

a missing datum in a predictor should be conditionally independent of the datum

itself given the response variable and other predictors. Unfortunately, by its very

de�nition, the validity of the MAR assumption cannot be tested without informa-

tion external to the data set. Therefore, the robustness of the multiple imputation

inference to possible hypothesized violations of the MAR assumption should be in-

vestigated by performing a sensitivity analysis. Because an ignorable missing data

mechanism is speci�ed by omitting it from the DGP, care must be taken to make

this assumption explicit by means of documentation.

Although MI seeks to separate the missing data problem from the DAP, the respon-

sibility for the MII ultimately lays with the analyst. Because the imputed data sets

give little information about the IDGP assumed by the imputer, it is paramount

84



that the analyst procures the documentation describing the IDGP, and assesses if

the IDGP is compatible with the IDA; this is also necessary when the imputations

are generated by the analyst himself using a computer program.

Research question 2 When is an IM compatible with the OLS estimator?

In Chapter 3, consistency of the MI estimator (β̂MI) was de�ned as a necessary

condition for compatibility of the IDGP with the IDA. A su�cient condition for

consistency of the IDA estimator is that the �rst two (asymptotic sample) moments

of the imputed variable match the �rst two moments of the variable with missings,

and the covariance between the imputed variable and the other variables in the DGP

should match the covariance between the variable with missings and the other vari-

ables. This condition also applies to transformations of the variable with missing

data, and so it is generally incorrect to �rst impute and then transform variable with

missings; instead, transformations of variables with missing data should be imputed

separately from the original variable. Finally, there are no statistical objections to

imputing �unrealistic� values; plausibility criteria are irrelevant to the validity of the

Multiple Imputation Inference.

A natural approach to imputing missing data is the reverse regression IDGP. In the

case of missings in predictor variables and a MDM which is MAR, obtaining com-

patibility of the reverse regression IDGP without making distributional assumptions

requires the consistent estimation of a model for the selection indicator conditional

on the observed data. A fundamental problem of the reverse regression method

arises when the reverse relation is multivalued, in which case the conditional expec-

tation might blur important features of the data. For the imputation of missing

values in multiple variables, IMs based on reverse regression can be embedded into

the FCS framework, although the statistical properties of this framework are far

from fully explored.

Research question 3 Which IMs are currently available, and what are their IDGPs?

The majority of IM implemented in popular FCS implementations are either based

on the imputation by reverse regression IDGP, or a variant of PMM. PMM can be

seen as a type of random k-nearest-neighbor method with a distance function based

on the linear predictor of the reverse linear regression. Since imputed values are

�live� or observed, the method can also be used for the imputation of non-continuous

data. It is unknown if current implementations of PMM produces imputations which

are asymptotically independent over observations, and have the correct conditional

distribution. Because PMM can only impute observed values, problems may occur

when certain regions of the sample space are sparsely populated.

Research question 4 How can existing IMs be improved?

IMs based on the imputation by reverse regression IDGP, such as the GLR and
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GGLR, are parametric regression models and pose restrictions on the functional

form of the conditional mean and variance of the variable with missing values. These

restrictions may lead to inconsistent estimation of the parameters of the imputation

model, and ultimately to invalid MII; therefore, it is expected that IMs which jointly

estimate the conditional expectation and conditional variance using non-parametric

techniques o�er better performance. The proposed GAMLSS method models pa-

rameters of a speci�ed distribution D using additive smoother terms, which in com-

bination with a suitable link allows for easy generalization of the method to discrete

and count data. Imputations are drawn from the bootstrap predictive distribution,

which is an approximation to the posterior predictive distribution; tuning param-

eters of the method are selected using cross-validation. To cope with the curse of

dimensionality, GAMLSS forces predictors to enter the model additively, and will

not capture the e�ects of potential interactions between the predictors of the impu-

tations model.

Research question 5 How do IMs perform empirically?

Simulation studies have been performed where the ADGP consists of a linear re-

gression model with missing values in a single predictor variable, and a strongly

systematic MAR mechanism. Experimental conditions include the marginal distri-

bution of the predictor with missing values, the coe�cient of determination, and

sample size. Although the PMM and aregImpute IMs are virtually unbiased, they

su�er from mild to moderate under-coverage in all conducted experiments, includ-

ing the experiment where all variables are jointly normal distributed. The GLR

method performs excellent when the variables are jointly normal distributed, but

breaks down when the distribution of the predictor deviates from normality, and the

reverse regression becomes non-linear; performance is the worst when the coe�cient

of determination is high. Although the GGLR method performs well when the true

family of conditional distributions of the variable with missing values matches the

family of its marginal distribution, as is the case in the experiment with binary

data, the method breaks down when this is not the case, such as when the predictor

is marginally Poisson distributed. Summarizing, the GLR and GGLR are highly

sensitive to misspeci�cation of the imputation model, at least in the conducted sim-

ulation experiments.

In contrast, the GAMLSS method features better coverage than currently avail-

able methods, although the results are not entirely convincing. More speci�cally,

the experiment where the variable with missings is marginally t-distributed sug-

gests that the method copes poorly with heavy-tailed distributions. Further, the

implementation of the method su�ers from computational problems, which makes

it less suitable for unsupervised application. The method has been tested with up
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to four predictors, and performance remains stable. GAMLSS performs best when

the conditional distribution is speci�ed to be normal, even if the true conditional

distribution is discrete.

The majority view of the multiple imputation community seems to be that the

imputation problem has essentially been solved in the context of simple linear re-

gression models. It would therefore seem logical to move forward and expand on

the foundation provided by the fully conditional speci�cation framework, and de-

velop marginal imputation methods which are suitable for the imputation of com-

plex data sets. However, one of the major �ndings of this work is that imputation

methods frequently used in practice such as parametric regression models and predic-

tive mean matching exhibit poor performance under seemingly innocuous deviations

from �standard� (multivariate normality) simulation conditions; in fact, predictive

mean matching also su�ered from under-coverage in the experiment where all vari-

ables were distributed jointly normal. Thus, it seems premature to consider impu-

tation methods for complex hierarchical models when multiple imputations for a

simple data analysis model remains problematic.

Data sets can also be complex because they feature a lot of variables. Because

manual speci�cation of the imputation model can become tiresome, an automatic

predictor selection problem would be greatly bene�cial to the usability of software for

imputation. However, implementing such a mechanism would add another layer of

complexity to a method which is already quite brittle; although imputation methods

based on simple statistical models are generally robust and numerically stable, the

simulation experiments show that the estimation of state of the art non-parametric

models without user supervision can be problematic. Therefore, I am skeptical that

e�orts aimed at obtaining robust imputation with automatic variable selection will

be fruitful. Moreover, since simulation experiments involving non-parametric im-

putation methods are already very computationally demanding, rigorous validation

of automatic variable selection algorithms using simulation studies might become

computationally unfeasible.

Non-parametric imputation methods may not be applicable in small samples; for

example, in psychology, sample sizes below 100 are the rule rather than the ex-

ception. Without introducing external information by detailed model speci�cation

(transformations of predictor variables), imputation methods based on parametric

linear regression models are not �exible enough, as shown with theoretical arguments

and demonstrated empirically; on the other hand, the �exibility of non-parametric

methods comes at the expense of higher sample size requirements.
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6.2 Recommendations

6.2.1 MI Users

Based on the presented simulation experiments, and the lack of a solid theoreti-

cal foundation, users are advised to refrain from the mechanical application of the

imputation methods discussed in this work, including the proposed, experimental

methods. Although some imputation software such as mi and mice o�er diagnostic

plots of the �t of the imputation model and the generated imputations, it remains

to be seen if these experimental diagnostic tools truly facilitate visual assessment of

the degree in which imputations are compatible with the data analysis, especially

since the compatibility and the plausibility criteria do not necessarily overlap; nev-

ertheless, the end user or data analyst is at all times responsible for the multiple

imputation inference! On a positive note, the proposed GAMLSS method does o�ers

better performance in the investigated simulation conditions compared to existing

alternatives; a full listing of the implementation, together with bindings for mice, is

given in Chapter A and Chapter B.

6.2.2 MI Researchers

The missing data problem, and MI in particular, is arguably one of the most chal-

lenging and involved sub-�eld of statistics, certainly when viewed from a mathe-

matical perspective. The complexity of the problem makes it di�cult to obtain

analytical results. Further, large sample results say little about real world perfor-

mance. Therefore, during the planning phase of the research project, simulation

studies were decided to be the main research instrument for gaining insight into

the performance of existing and the proposed imputation method. Since conducting

simulation studies requires only a modest amount of knowledge about mathematical

statistics, restricting the research method to simulation studies made it feasible to

conduct the project by a research group primarily vested in applied statistics.

That simulation studies are no substitute for mathematical proofs was known from

the start of the project; however, it became clear that the performance of imputation

methods �uctuated strongly with changes in simulation scenario. For example, the

�rst year of the research project saw a lot of experimentation with the local linear

regression imputation method; due to insu�cient computing power, the coe�cient

of determination of the data analysis model was not manipulated systematically,

but �xed at a relatively high value. In this high signal-to-noise ratio, the method

performed excellent; however, when increased computational power allowed for more
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extensive simulation studies, it was discovered that the method unexpectedly per-

formed much worse for low signal to noise ratios due to over�tting. Further, in

previous research, the suitability of imputation methods based on parametric re-

gression models and predictive mean matching was also demonstrated using simu-

lation studies; however, this work shows that those methods tend to break down

relatively quickly when the distribution of the variable with missing data deviates

from normality.

Although simulation studies are a valuable tool to investigate the �nite sample prop-

erties of statistical methods, they can be misleading when considered in isolation.

Further, since it is impossible to enumerate and simulate all possible scenarios, they

tend to give inconclusive results. Therefore, I am convinced that the successful study

of multiple imputation requires that the body of evidence for new imputation meth-

ods and existing methods currently in use is bolstered with analytical large sample

results. Due to the complex nature of the missing data problem, I recommend that

candidate researchers in this �eld posses a master or equivalent degree in Mathe-

matics and/or a PhD in Mathematical Statistics, or are closely supervised by sta�

with these quali�cations; nevertheless, even a researcher with these quali�cations

will need a a considerable amount of time to become familiar with the subject of

missing data.

It is important to realize that simulation experiments involving non-parametric im-

putation methods require a lot of computational power; these demands should be

met at the start of the project. The enlistment of computer scientists has proven to

be helpful in engineering a system which distributes simulation studies over several

low-cost personal computers. Further, simulation studies concerned with investigat-

ing the performance of imputation methods are typically very complex due to the

necessity of varying the simulation conditions, managing the complete, incomplete,

and imputed data sets, and the pooling of the imputed data analyses; the potential

for errors is very high. Therefore, it is highly recommended to review and test any

simulation code independently by multiple team members who have a �rm under-

standing of the scenarios to be simulated. Because the simulation studies performed

in this work have not been veri�ed by an independent party, they should be repli-

cated using the detailed description in Chapter 5, and the code listing in Chapter

A.

Also, the problems associated with developing and testing imputation methods are

further exacerbated by a lack of large sample results. Because it is unknown what to

expect (in a statistical sense), it is di�cult to identify the source of poor performance

of an imputation method. On the one hand, there is always the possibility of a

programming error; on the other hand, there may be conceptual problems with the

89



imputation method. Analytical results would enable di�erentiating between these

two sources of error, at least for su�ciently large enough samples.

Lastly, the R Project for Statistical Computing has proven to be very useful for

the rapid development and testing of imputation methods. Nevertheless, the ex-

perienced numerical instability of some of the user contributed packages referenced

in this work, and an informal source code review lead me to the conclusion that

statistical researchers and data analysts should treat every user contributed pack-

age as untested and experimental; apparently, not every good statistician is a good

programmer.

90



Appendix A

Simulation Framework

Below, a source code listing is given of the simulation program used to conduct the

experiments described in Chapter 5. Listing 1 contains the main simulation function

imp.sim, whose parameters are mostly callback functions which are invoked inside

the simulation loop:

• dgp(n) is a function which generate the complete data set, where n is the

sample size. The function should return a data frame which contains the

complete data set. For example, the function dgp.additive in Listing 2 can be

used to simulate data from (2.1).

• .mdm(Data) is a function which implements the Missing Data Mechanism,

where Data is a data frame which contains the complete data set. The function

should return an observed data indicator matrix (2.19). For example, the

function univariate .mdm.mar.threshold in Listing 16 return a function which

implements (5.3).

• da(Data) is a function which perform the Data Analysis Procedure, Complete

Case Analysis, and Imputed Data Analysis, where Data is a data frame which

contains a complete, incomplete, or imputed data set. The function may return

anything. For example, the function da.lm in Listing 1 is a memory-e�cient

implementation of (2.16) and (2.17).

• The imp.methods is a list of imputation functions. Valid imputation functions

are of type imp.meth(incomplete, R, m, da), where

• incomplete is a data frame containing the incomplete data set

• R is the observed data indicator matrix

• m is the number of imputations
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• da is the IDA; for e�ciency reasons, imputed data sets are not retained;

instead, imputation methods should themselves perform the IDAs on the

imputed data sets and return a list with the results of m IDAs. For exam-

ple, the create .mice.method in Listing 8 returns an imputation function

which wraps an arbitrary marginal imputation method from the mice

package.

Imputation Method which draw imputations from a bootstrap predictive posterior

distribution (4.19) can be constructed using the function create .pbootstrap.method

in Listing 12, which takes a function �t (A,B), where

• A contains a training data frame which should be used to �t the parameters

of the imputation model

• B contains a data frame with observations for which predictions should be

generated

• The result should be a function pred() which generates predictions (with a

random component) for B using the training data in A

The GAMLSS method proposed in 4.5 is an example of a pbootstrap.method, and

is implemented in Listing 7.

imp.sim returns a list where each element represents one simulation, and each ele-

ment is a nested list consisting of the following elements:

• $"Before Deletion Analysis"

• $"Incomplete Data Analysis"

• $"Imputed Data Analysis", which contains a list where each elements con-

tains the result of the corresponding call to the imputation functions in imp.

methods.

In addition, the results as described above are saved to a �le with path save.path.

Statistics can be generated from the output of the imp.sim function using the

analysis function in Listing 5.
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Appendix B

GAMIMP

The function create .mice.gamlss(formula, family) in Listing B returns a wrapper

function for the GAMLSS IM which is compatible with mice:

• formula speci�es a formula compatible with the gamlss function; see the

gamlss package documentation for details. Note that the relevant variables

should also be selected in the mice predictor matrix.

• family speci�es a distribution compatible with the gamlss function; see the

gamlss package documentation for details.

Example:

# Data <− data . frame (y , x )

mice . impute . gamlss . y <− c r e a t e . mice . gamlss ( y~x , BI ( ) )

mice . impute . gamlss . x <− c r e a t e . mice . gamlss ( x~pb(y ) , NO( ) )

mice (Data , method = c ( " gamlss . y" , " gamlss . x" ) )
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