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Introduction

Motivation

This1 thesis contributes to the �eld of queueing networks (i.e., stochastic networks).

"Queueing networks have obtained their place in both theory and practice.
New technological developments such as the Internet and wireless communi-
cations, but also advancements in existing applications such as manufacturing
and production systems, public transportation, logistics, and health care, have
triggered many theoretical and practical results." [BD11, p. v]

Queueing networks have been standard models in the �eld of telecommunication networks
since the very beginning of mathematically based planning of telephone networks. In
early days, such networks were decomposed into single node components (e.g.,M/M/s/0,
M/M/s/∞) for which results on their performance already existed. A heuristically mo-
tivated composition of the results for these single node components has been successfully
used to assess the expected performance of these networks. The idea behind this was
the existence of a globally stable network, which was thought to be a system in a steady
state.
The steady state analysis for such stochastic networks experienced a breakthrough when
J.R. Jackson [Jac57] and W.J. Gordon and G.F. Newell [GN67] found their celebrated
steady state results. At least since the publication of [Kle64], these models are well
established in the area of performance analysis of communication and computer networks.
As can be seen for example in [BGMT98], it is common practice now to use the results
of Jackson or Gordon and Newell and the algorithms derived on the base of the explicit
steady state probabilities for network analysis and planning. A consequence of this
traditional approach is that strict requirements for the existence of a steady state in such
networks need to hold. [MD11, pp.99-100]

The motivation for this thesis is - in contrary of the steady state situation - the following:
In large and complex networks one may often observe that unstable subnetworks occur
due to local overload (i.e., the nodes experience a higher input rate than their service
capacity) or due to temporary non-availability of nodes. Nevertheless, at the same time
one may observe that co-existing regions seem in an obvious way to stabilize locally in
the long run. [MD09, p.1249] [MD11, p.100]

1Parts of this motivation cite the introductions of our papers [MD09] (pp.1249-1251) and [MD11] (pp.99-
100). The corresponding parts will be shortly marked at the end of their paragraphs.
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2 Introduction

As it is common practice in performance analysis, [BGMT98], we describe the evolution
of such networks over time by a Markov process. Within the framework of Markov
process theory, such a Markovian description of the state evolution cannot lead to settling
down in an equilibrium, if the network is not globally stable. In technical terms we will
say that the Markov process is not ergodic. [MD11, p.100]

Best to our knowledge, models for globally unstable networks were successfully in-
vestigated the �rst time by J.B. Goodman and W.A. Massey in [GM84]. From the
parameter settings of such a network only, they precisely identi�ed the regions of
instability. Moreover, they proved that in these unstable regions the local queue lengths
"degenerate" out of the state space in the long run, i.e., the state distribution of unstable
nodes converges in a precise meaning to a one-point distribution concentrated at in�nity.
For the regions of stability, they proved that the joint marginal queue lengths converge to
a classical proper product form distribution. This means that the limiting queue lengths
of stable nodes stay �nite with probability one. [MD09, p.1250] [MD11, p.100]

This thesis is concerned with the combination of two topics:

1. the investigation of globally unstable networks with unreliable nodes, i.e., with
breakdowns of nodes, and the analysis of their long-time behavior towards a lo-
cal stabilization and

2. the analysis of the local stabilization of globally unstable networks.

Ad 1. The analysis of globally unstable networks with breakdowns of nodes can be
motivated the following way:

There are many problems that require an integrated model to study the interplay of
performance and availability. Examples are network control and routing protocols in
case of link failures in IP networks, [MKC03], [NSB+03], the handling of catastrophic
events in mobile cellular networks, [KN03], or the investigation of unreliable machines in
�exible manufacturing systems (FMS) and the evaluation of system availability, [BSY94].
Most recent applications where nodes or links may be not available for some time are
mobile and ad-hoc networks or sensor networks. [MD09, pp.1249-1250]
As an example, wireless ad-hoc networks are built of varying sets of mobile users with
wireless communication capabilities without relying on a pre-existing infrastructure. The
emergence of wireless ad-hoc networks introduces problems concerning the availability
of transmission nodes next to a user. Furthermore, in such networks, overload arises
from too many users entering a region and applying for transmission. Thus, in these
networks, the required high quality of service for speech and data transmission has to be
guaranteed on the basis of not necessarily reliable network nodes. [SV03]
For a survey on analytical models for sensor networks see [WDW07]. A non-stationary
framework in wireless sensor networks which will lead in analytical studies to evanescent
networks is investigated in [WPTGG10].

Performability Theory was developed over twenty years to answer questions that arise
with respect to combined reliability and performance assessment which was motivated
by the needs of fault tolerant computer and communication systems, see [HMRT01].
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Our aim is to contribute to performability modeling and evaluation in the framework
of generalized Jackson networks, with an emphasis on situations where the global
network is not stable in the classical sense. We study the interaction of reliability
and performance in these networks and contribute to a better understanding of the be-
havior of networks that cannot settle down in a classical equilibrium state. [MD09, p.1250]

Classical product form theory for stochastic networks is concerned with stations (nodes)
which have completely reliable servers. Usually, when unreliable nodes were to be consid-
ered, the method of adjusted service rates was used:

(i) The reliability of the nodes was computed using reliability theoretical methods and
yielded the percentage of time the nodes are broken down.

(ii) The service speeds of the nodes were then decreased by this factor and the perfor-
mance evaluation methods for product form networks could be applied, see [CM96].

The disadvantage of this method is that the interaction of performance and reliability
cannot be studied in a uni�ed model. The predominant methods developed to study the
interaction of reliability and performance of complex systems in integrated models are
simulation and numerical evaluation. Many di�erent models and methods for integrated
investigation of reliability and performance of systems are collected under the heading of
performability in the survey [HMRT01]. [MD09, p.1250]

Our approach is di�erent from these methods: We start from results by C. Sauer and
H. Daduna in [SD03] on Jackson networks with unreliable nodes which have product form
equilibrium. But we do not assume that the global network is stable, which may be due to
breakdowns or overload of nodes. We describe the evolution of the network over time by a
Markov process. The states of this Markov process encompass the necessary information
about the availability of the nodes (up or down) and the queue lengths at the nodes. If
the network is not globally stable, its Markov process is not ergodic. We continue the
investigation of Goodman and Massey in [GM84] in the framework of Jackson networks
with unreliable nodes. Our main result is similar to that of Goodman and Massey:

(i) Their method applies in our framework including unreliability of (all) nodes as well
and allows to determine the regions of stability and instability.

(ii) The queue-length distributions of unstable nodes degenerate in the long run to one-
point distributions concentrated at in�nity.

(iii) In stability regions, the marginal distributions converge to a product form distri-
bution. The limiting product form distribution is a product with respect to the
availability component and the queue-length vector. Furthermore, the queue-length
vector exhibits internal product form over the nodes as classical Jackson networks
do.

Although we have obtained the limiting availability queue-length distribution (for the
general case that all nodes may be unreliable), no stationary distribution for the network
exists. Therefore, classical steady-state availability and performance evaluation, even for
the stable subnetwork is not possible. The results obtained suggest to assess the quality
of service inside the stabilizing part of the network in the long run by using the limiting
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distributions. We discuss this in detail for the limiting throughput, but a generalization
to other performance measures is obvious. Additionally, we prove that time averages
of cumulative rewards associated to the queue-length process of the stable subnetwork
can be approximated by state-space averages. In globally stable networks the evolution
of which is described by a Markov process, this is an immediate consequence of the
ergodic theorem for Markov processes. In the framework of our non-ergodic (not even
Markovian) process, we have to prove this from scratch. [MD09, p.1250]
Fortunately enough, this can be derived directly from the proofs of the main theorems in
Chapter 5. The results presented in this thesis provide performance indices in explicit
form for non-ergodic networks which look exactly like those derived by classical product
form steady-state distributions.

The product form steady states and the algorithms derived from them have been proven
to be an indispensable tool set for performance evaluation. Two procedures relying on
product form calculus are standard:

• If the necessary modeling assumptions for product form models can be validated,
the performance indices are directly obtained;

• if the necessary assumptions for product form models are violated, the algorithms
are used to obtain quick answers about main performance characteristics like the
throughput via approximation in a decomposition-aggregation procedure.

More details are given in [BGMT98, Chapter 7 and 8] for the case of exact models and in
[BGMT98, Chapter 10] for the case of approximating non-product form models by product
form algorithms. Nevertheless, there are many situations and models where additionally
(or instead) simulations or straight forward numerical algorithms have to be used.
It is common practice �rst to obtain some raw performance indices from (approximative)
product form algorithms and then additionally to perform �ne tuning via simulation
studies. [MD09, pp.1250-1251]

We expect that our results open a path to justifying similar methods for our class of
models: Either using the results directly when the assumptions of exponential times and
su�cient independence properties can be veri�ed from the model description, or using
the results in approximation procedures for decomposition-aggregation algorithms when
we cannot justify such assumptions but need raw results. [MD09, p.1251]
At least in the steady-state situation, the product form results turned out to be
astonishingly robust and insensitive to violations of the assumptions, as shown in the
recent paper [MAG06] where the steady-state results of [SD03] are used to analyze the
performance of a wireless sensor network.

Ad 2. The analysis of the local stabilization is motivated as follows:

As shown in [MD09] and in this thesis, assessment of the quality of service inside the
stabilizing part of a non-ergodic network can be done by using the obtained limiting
(product form) distributions, e.g., the limiting throughput as a performance index in the
long run. The asymptotic local performance indices for non-ergodic Jackson networks
look exactly like the steady-state performance indices obtained from the classical product
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form distributions as in [Kle76] or [BGMT98]. In the classical framework of ergodic
network processes these product form steady states and the algorithms derived from
them have been proven to be an indispensable tool set for performance evaluation, see
[BGMT98, Chapter 7 and 8].
The observed structural similarities of the asymptotic results for ergodic network
processes and for non-ergodic network processes (on the stable parts) naturally pose the
question whether there exist similar features for the stable subnetwork of the globally
unstable network which resemble the steady state properties of the ergodic network
processes which are expressed as product form calculus. [MD11, p.100]

In this context, we will analyze a possible invariance of the marginal probabilities of
the stable subnetwork process in �nite time. We do this with di�erent approaches
such as considering the classical invariance of the queue length probabilities of the
stable subnetwork over time (which will not succeed for more than one time step) and
analyzing some kind of quasi-stationary behavior of the stable part of the network process.

The term quasi-stationarity refers to properties and tools from epidemic models, which
describe in Markovian settings the evolution of, e.g., an epidemic development of
infectious disease [Bai75]. Such a disease is known to die out with probability one,
but in many cases seems to settle down in a state which strongly resembles stationary
behavior, because the time to extinction is of a much greater order of magnitude than
the observation horizon. We will reinterpret the de�nitions of quasi-stationarity used in
the literature to �t to our model. [MD11, p.100]

We will extend the analysis of the conditional probabilities by the use of stopping times.
At the end of the analysis, we will introduce an invariance-type called "stochastically
sub-invariant distribution" to describe the behavior of the marginal distribution of the
stable subnetwork process in �nite time.

Outline

This thesis has the following structure:

First of all, we de�ne the classical Jackson network, which is the basis of our research, in
Chapter 1. The Jackson network considered here has single servers at each node. The
well known steady state results of Jackson [Jac57] are reproduced and the asymptotics
for non-ergodic Jackson networks proved by Goodman and Massey [GM84] are delivered.
The therefore needed standard tra�c equations as well as the general tra�c equations are
deduced and an intuitive interpretation of their solutions as input rates in the systems
is given. For applications, we present an algorithm to decide which tra�c equation is
appropriate to calculate the input rates in a system.
In Section 1.4, we try to obtain assumptions for the non-ergodic Jackson network to
classify its states. We do this in a framework of a two-nodes system. In the �rst approach
we show how matrix geometrical methods may be used to obtain interesting facts about
the behavior of non-ergodic Jackson networks. For the second approach martingale
methods are used which yield assumptions in concrete terms for the non-ergodic network
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to be transient.

In Chapter 2, Jackson networks are generalized by incorporating breakdowns of nodes.
The model description follows [SD03]. The steady state results known from [SD03] are
of product form.

Chapter 3 deals with stabilization or destabilization of the network process due to
breakdowns. The results show that there is a need for side constraints in order to
maintain the stability situation in a network with breakdowns. A possible stabilization
of a globally unstable network by removing even stable nodes is discussed.

Chapter 4 is devoted to the study of Jackson network with bu�ers of an in�nite amount
of jobs at some nodes, as de�ned in [Wei05]. We prove steady-state results in case of
ergodic network processes and analyze the structure of these results. Then we state
and prove the asymptotics as well as partly steady-state results in case of non-ergodic
network processes. After incorporating breakdowns of nodes in an integrated model, we
prove similar results. The performance of such networks is presented.

In Chapter 5, we use the results of Chapter 2 and the previously worked out results of
Chapter 4 to prove the asymptotics of non-ergodic Jackson networks with breakdowns of
nodes. Since steady-state performance measures may not be used in such networks, an
alternative method using limiting performance measurements is presented and proved.

After comparing the similar asymptotics for ergodic and for non-ergodic Jackson network
processes on the stable parts, we analyze the local stability in �nite time in Chapter 6.
We analyze the non-ergodic network process by proceeding to its uniformization.
Di�erent possible invariance types of the marginal distribution for the stable subnetwork
(and methods to obtain them) are discussed and shown for one step. Di�culties in deriving
invariance of the stable marginal distributions for more than one step are described and we
point out open questions for possible further research. We conclude with a geometrically
distributed upper bound for the process of the stable subnetwork of an overall unstable
Jackson network established in two di�erent ways in Section 6.5 and, in this context,
describe the resulting behavior of the marginal distribution calling it "stochastically sub-
invariant distribution".

Notation

Throughout this thesis the following notation is used:

All random variables and stochastic processes are de�ned on an underlying probability
space (Ω,A, P ). We denote all stochastic processes X by (X(t) : t ≥ 0). Unless otherwise
expressly agreed all processes are de�ned on a continuous-time scale.

We assume all homogeneous Markov processes to be regular jump processes which means:

• the row sums of their Q-matrices is zero,

• all diagonal entries of their Q-matrices are �nite,
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• the processes are non-explosive (the sequence of jump times diverges almost surely),
and therefore

• they have cadlag (French "continue à droite, limitée à gauche") paths, i.e., each
path of a process is right-continuous and has left limits everywhere.

We denote by N := {0, 1, 2, ...} the set of all non-negative integers. We set N+ := N \ {0}
for all positive integers. The set of all real numbers is R, we write R+ := [0,∞) for all
non-negative real numbers.

∃ stands for "(there) exist(s)", ∃! means "(there) exists exactly one".

The Kronecker Delta δxy is de�ned by

δxy :=

{
1 if x = y,

0 if x 6= y,

and with a set A the indicator function 1A(·) is de�ned by

1A(x) :=

{
1 if x ∈ A,
0 if x /∈ A.

Empty sums are 0, empty products are 1. inf ∅ =∞ and sup ∅ = −∞.

The notation ⊆ between sets stands for "subset or equal", ⊂means "proper subset". For a
set A we denote by P(A) the set of all subsets of A and by |A| the number of elements in A.

The matrix I denotes the identity matrix of appropriate size, i.e., a square matrix with
ones on the main diagonal and zeros elsewhere. The vector e is a column vector of
appropriate size with all its components equal to one.

For a vector x = (xi : i ∈ C), C ⊆ N, and a subset A ⊆ C we de�ne xA := (xi : i ∈ A)
as restriction of the vector x to components from the set A. The components of xA
are ordered in the corresponding natural linear order. Similarly for subsets A,B ⊆ C,
XAB := (x(i, j) : i ∈ A, j ∈ B) is a restriction of the matrix X = (x(i, j) : i, j ∈ C) to the
components of A×B.

Applying the operator ∧ on vectors w, z ∈ NJ yields the component-wise minimum of
these vectors.
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Chapter 1

Classical Jackson networks

1.1 Introduction

Jackson networks were introduced by J.R. Jackson ([Jac57]) and are now well established
in the literature on queueing systems, e.g., in [Kle76], [Kel79], [Ser99], [CY01], [BB05],
[BD11]. We consider only Jackson networks with single-server stations, i.e., at each
service station there is one server.

Jackson networks are a special class of open stochastic networks.

Stochastic networks or networks of queues consist of a �nite number of nodes which are
service stations. These service stations are models for machines, workers, or computing
servers. Customers which may be, e.g., individuals, machines, data, messages, or orders,
move between those nodes. A customer who arrives at some node, waits there until he
gets service at that station and after some random service time he leaves the node and
randomly chooses where to go next.

A stochastic network is open, if customers enter the network from a source outside of
the network and after being served in the network they leave the network to a sink with
positive probability.

De�nition 1.1 (Jackson network). [Jac57] A Jackson network with J nodes, numbered
j ∈ {1, 2, ..., J} =: J̃ , is an open stochastic network with J ·/M/1/∞ nodes, i.e., for each
node j we have

• an external Poisson(λj)-arrival stream (
∑

j∈J̃ λj = λ > 0),

• a single server with exponential(µj) distributed service time,

• an in�nite waiting room,

• the �rst-come-�rst-served regime.

Customers are indistinguishable. All interarrival and service times constitute a set of
independent random variables.
Routing is Markovian: Given the departure node i the selection of the next node is inde-
pendent of the previous history. A customer departing from node i immediately proceeds

9



10 1 Classical Jackson networks

to node j with probability r(i, j) ≥ 0 and departs from the network with probability r(i, 0).
The arti�cial node 0 represents the outside, source and sink, of the network, r(0, 0) := 0,
r(0, i) := λi/λ. The routing matrix R = (r(i, j) : i, j ∈ {0, 1, ..., J}) is stochastic and
irreducible.

Let Xj(t) be a random variable which indicates that Xj(t) customers are present at node
j at time t, either in service or waiting. Then X(t) = (X1(t), ..., XJ(t)) is the vector of
queue lengths in the network at time t and X = (X(t) : t ∈ R+) the corresponding vector
process called queue length process. Because of the assumptions put on the system X is
a continuous-time homogeneous strong Markov process on (Ω,A, P ) with discrete state
space (NJ ,P(NJ)) and with transition rates matrix Q = (q(z, z′) : z, z′ ∈ NJ) de�ned by:
∀i, j ∈ J̃ , i 6= j

q(n1, ..., ni, ..., nJ ;n1, ..., ni + 1, ..., nJ) = λi,

q(n1, ..., ni, ..., nJ ;n1, ..., ni − 1, ..., nJ) = µir(i, 0)1N+(ni),

q(n1, ..., ni, ..., nj, ..., nJ ;n1, ..., ni − 1, ..., nj + 1, ..., nJ) = µir(i, j)1N+(ni),

q(n1, ..., nJ ;n1, ..., nJ) = −
∑
i∈J̃

λi −
∑
i∈J̃

µi(1− r(i, i))1N+(ni),

and q(z, z′) = 0 otherwise.

The following lemma holds for the routing matrix R of Jackson networks as de�ned in
De�nition 1.1.

Lemma 1.2. For any subset K ⊆ J̃ the inverse (I−RKK)−1 exists and is positive.

Proof. For the existence of (I − RKK)−1 it is su�cient to show that the spectral radius
of RKK is less than one: If σ(RKK) < 1 holds, then the Neumann series

∑∞
k=0R

k
KK with

R0
KK := I converges component-wise to (I − RKK)−1 (see [Heu06, Satz 12.4 and p.127]).

From the de�nition of the routing matrix we have
∑∞

k=0 R
k
KK > 0 component-wise, so if

the inverse exists, it is positive.

Since the routing matrix R is stochastic (so σ(R) = 1), RKK is a (sub-)stochastic matrix
and therefore for the spectral radius holds σ(RKK) ≤ 1, see [Bre99, p.198].
To show σ(RKK) < 1, suppose that σ(RKK) = 1. Then RKK has the maximal eigenvalue
1. From the Perron-Frobenius theorem (see [Sen81, Theorem 1.1, p.3]) it is known, that
for this eigenvalue 1 there are positive left and right eigenvectors which are unique to
constant multiples. Denote by L ⊆ K the indices where the left eigenvector x has non-
zero, positive entries. Then RLL is stochastic, because

xRKK = vx with v = 1 ⇒ xLRLL = xL ⇔
∑
i∈L

xir(i, j) = xj ∀ j ∈ L

⇒
∑
j∈L

∑
i∈L

xir(i, j) =
∑
j∈L

xj ⇔
∑
i∈L

xi
∑
j∈L

r(i, j) =
∑
j∈L

xj,

which yields
∑

j∈L r(i, j) = 1 for all i ∈ L. But if RLL is stochastic and L ⊆ K ⊆ J̃ ,

the routing matrix R is not irreducible because even in the case where L = K = J̃ , the
source and sink denoted by the node 0 is not accessible from nodes in L. R not being
irreducible is a contradiction to De�nition 1.1 of a Jackson network, so σ(RKK) < 1 holds
for all K ⊆ J̃ .
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1.2 The ergodic case

A Markov process, as it is the queue lengths process X, may - under certain conditions
- settle down in an equilibrium state. In this context, two terms to be considered are
limiting distributions and stationary distributions.

De�nition 1.3. Let X be a homogeneous Markov process with discrete state space E. X
has a limiting distribution if

lim
t→∞

P (X(t) = i) exists for all i ∈ E

and
∑

i∈E limt→∞ P (X(t) = i) = 1.

A stationary process is sometimes said to be a process in equilibrium. [Ser09, p.34] The
process is stationary, if the initial distribution is a stationary (also called: steady-state)
distribution. If the process is started with this distribution, it remains the same over
time.

De�nition and Remark 1.4. (e.g., [Bre99, pp.342-343])

• A homogeneous Markov process X = (X(t) : t ∈ R+) on (Ω,A, P ) with discrete
state space E is stationary, if for all m ∈ N+, 0 ≤ t1 < t2 < ... < tm, ti ∈ R+, and
for all states i1, ..., im holds

P (X(t1) = i1, ..., X(tm) = im) = P (X(t1 + s) = i1, ..., X(tm + s) = im) ∀s > 0,

i.e., (X(t) : t ∈ R+) and its time-shifted version (X(t+ s) : t ∈ R+) have the same
distribution.

• A non-negative vector π = (π(i) : i ∈ E) is an invariant measure for the continuous-
time X with transition matrix function p(t) = (p(t)(i, j) : i, j ∈ E), t ∈ R+, if

π = π · p(t) ∀t ≥ 0.

• If an invariant measure is a probability measure, then it is called a stationary dis-
tribution for X. If there exists a stationary distribution π for X and if the process
is started with this distribution PX0 = π, then X is stationary.

• Every stationary distribution π for X is an asymptotic distribution for X conditional
on PX0 = π.

To avoid the computational e�ort of solving in�nitely many equations π = π · p(t) (for all
t ∈ R+) to derive a stationary distribution, one may skip to an alternative formulation
with the Q-matrix if the Q-matrix exists: (Recall that all homogeneous Markov processes
in this thesis are assumed to be regular jump processes.)

Lemma 1.5. [Asm03, Theorems 4.2 and 4.3, pp.51-52] Let X = (X(t) : t ∈ R+) be
a homogeneous Markov process on a discrete state space E with transition rates matrix
Q = (q(i, j) : i, j ∈ E) which is irreducible and positive recurrent, i.e., ergodic. A
probability measure π is a stationary distribution for X if and only if it solves the global
balance equation

π ·Q = 0.
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If a Markov process is ergodic, then its stationary distribution is the limiting distribution,
which is positive. (e.g., [Ser09, p.40])
In this section, conditions for the process X of a Jackson network as in De�nition 1.1
being ergodic are given. Before doing this, the tra�c equations the solution of which is
utilized for Jackson's theorem later on must be de�ned �rst.

1.2.1 The tra�c equations

De�nition 1.6. [Jac57] The tra�c equations of a Jackson network are de�ned as

ηj = λj +
J∑
i=1

ηir(i, j), j ∈ J̃ . (1.1)

The classical tra�c equations of a Jackson network were derived by the global balance
equation of its (discrete-time) routing chain which is

η ·R = η ⇔ ηi =
J∑
j=0

ηjr(j, i) ∀i = 0, 1, ..., J. (1.2)

Because of the irreducibility of the routing matrix R, (1.2) have a solution η = (η0, ..., ηJ)
which is unique up to a factor. After normalizing the solution η = (η0, ..., ηJ), it is a
stochastic vector where ηi is the probability of a customer being located at station i, if
the routing process is in equilibrium.
Prescribing

η0 :=
∑
i∈J̃

λi = λ

in (1.2), we get

η0 = η0 r(0, 0)︸ ︷︷ ︸
=0

+
∑
i∈J̃

ηir(i, 0) ⇒
∑
i∈J̃

λi =
∑
i∈J̃

ηir(i, 0) (1.3)

and

ηi = λr(0, i)︸ ︷︷ ︸
=λi

+
∑
j∈J̃

ηjr(j, i) ∀i = 1, ..., J.

Because of the irreducibility of R, for the immediate feedback at nodes i ∈ J̃ holds
r(i, i) < 1, so these remaining equations have a unique solution determined by

ηi =
(
λi +

∑
j∈J̃\{i}

ηjr(j, i)
)
· (1− r(i, i))−1 ∀i = 1, ..., J. (1.4)

In general, η = (η1, ..., ηJ) given by (1.4) is not a stochastic vector.

Remark 1.7. Summing (1.1) on both sides over all j ∈ J̃ yields∑
j∈J̃

ηj =
∑
j∈J̃

λj +
∑
i∈J̃

ηi
∑
j∈J̃

r(i, j) ⇔
∑
j∈J̃

λj =
∑
j∈J̃

ηjr(j, 0)

which coincides with (1.3).
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De�nition 1.8 (Overall arrival rate). [Ser99, p.136] Denote by Ni(t) the number of ar-
rivals at node i ∈ J̃ in the time interval [0, t], then t−1Ni(t) is the average number of
arrivals per time unit in the time interval [0, t] at node i. Letting t tend to in�nity yields
limt→∞ t

−1Ni(t), the asymptotical average number of arrivals per time unit at node i which
is also called the (asymptotical) overall arrival rate at that node.

The overall arrival rate at a node i ∈ J̃ can be calculated from the sum of its external
arrival rate and of the expected number of arrivals coming from the other nodes. The
following remark shows when the tra�c equations (1.1) can be used to calculate the overall
arrival rates in the network.

Remark 1.9. In Theorem 1.10, we will see, that ergodicity of the queue length process X
depends on the solution of the tra�c equations (1.1): X is ergodic if and only if ηi < µi
holds for all nodes i ∈ J̃ . The intuition behind (1.1) under equilibrium conditions of X
is a rate balancing argument: ηj is in equilibrium the overall arrival rate at station j as
well as the overall departure rate there, [Ser99, Remark 1.16, p.16].
Note that due to R being irreducible, the tra�c equations have a unique solution indepen-
dent of whether X is ergodic or not.

1.2.2 Steady-state results

The following theorem was proved by J.R. Jackson (1957).

Theorem 1.10 (Jackson's theorem). [Jac57] If X from De�nition 1.1 is ergodic, then
the unique stationary and limiting distribution π on NJ is

π(n1, ..., nJ) = lim
t→∞

P (Xj(t) = nj : j ∈ J̃) =
J∏
j=1

(
1− ηj

µj

)(
ηj
µj

)nj
. (1.5)

X is ergodic if and only if ηj < µj holds for all j ∈ J̃ , where η = (ηj : j ∈ J̃) is the
solution of (1.1).

Remark 1.11. The stationary distribution (1.5) is a so-called product form distribution,
which means that the joint distribution for the network process π(n1, ..., nJ) is a product
of all one-dimensional marginal distributions

πi(ni) =
∑

(nj :j∈J̃\{i})∈NJ−1

π(n1, ..., nJ).

This product structure implies that the one-dimensional marginals of X in time have
independent coordinates in space. But, of course, the queue lengths at the nodes cannot be
independent of each other, since the queue lengths rely on the customers moving between
those nodes.
The product form also suggests that, in equilibrium, at a given �xed time the network
states behave like J independent (M/M/1/∞)-systems with Poisson(ηi) arrival streams
and exponential(µi) service times which have the (geometric) distribution

πi(ni) =

(
1− ηi

µi

)(
ηi
µi

)ni
, ni ∈ N,

as stationary distribution of the queue length process at node i. But the suggestion of
Poisson streams between the nodes is, in general, not true, as can be seen in [Mel79a].
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Such a product form of the stationary distribution is clearly desirable because common
performance measures of the network are then easy to compute, as can be seen in the
following subsection.

1.2.3 Performance measures

De�nition 1.12. Consider an ergodic Jackson network. Then the stationary throughput
THj of a node is

THj =
∑

(n1,...,nJ )∈NJ
π(n1, ..., nJ) · µj · 1N+(nj),

and the stationary throughput TH of the network is

TH =
∑

(n1,...,nJ )∈NJ
π(n1, ..., nJ) ·

∑
j∈J̃

1N+(nj)µjr(j, 0) =
∑
j∈J̃

THjr(j, 0).

The followingg result is obtained by direct computations.

Proposition 1.13. Consider an ergodic Jackson network. Then the stationary node-j
throughput is THj = ηj, and the stationary throughput of the network is TH = λ.

This result shows that, in equilibrium, the performance of Jackson networks is maximal:
At any time, the departure rate of the network to the sink equals the external arrival
rate into the network. Loosely speaking, what comes in comes out in average at a time
unit if the system is in equilibrium.

The next theorem exploits when empirical time averages converge to space averages under
the stationary and limiting distribution π.

Theorem 1.14 (Ergodic theorem). (e.g., [Bre99, Theorem 6.2]) Let X = (X(t) : t ∈ R+)
be an ergodic homogeneous Markov process (with state space (E,P(E))) with stationary
distribution π, and let f : E → R be such that

∑
i∈E |f(i)|π(i) <∞. Then for any initial

distribution P (X0) =: p0 holds Pp0-a.s.

lim
T→∞

1

T

∫ T

0

f(X(t))dt =
∑
i∈E

f(i)π(i).

Thus using the ergodic theorem, it is possible to estimate time averages of rewards or
costs.

Example 1.15. Let g : NJ → R denote a non-decreasing cost function which determines
costs associated with queue lengths. To assess the quality of a system it is often desirable
to predict the average accumulated cost over a time horizon [0, T ],

d(T ) =
1

T

∫ T

0

g(Xi(t), i ∈ J̃) dt.

Note, that this is an empirical measure which depends on the realized path of the system.
If X is ergodic with stationary distribution π as in Jackson's theorem (see Theorem 1.10)



1.3 The non-ergodic case 15

and if
∑

(ni:i∈J̃)∈NJ |g(n1, ..., nJ)|π(n1, ..., nJ) <∞, then the ergodic theorem (see Theorem

1.14) yields that for any initial distribution PX(0) holds PPX(0)-a.s.

lim
T→∞

1

T

∫ T

0

g(X1(t), ..., XJ(t))dt =
∑

(ni:i∈J̃)∈NJ

g(n1, ..., nJ)π(n1, ..., nJ).

This means that the path-wise evaluated time average converges to the state space average,
so path-wise evaluated time averages for a time horizon [0, T ] with large T can be estimated
by state space averages in ergodic Jackson networks:

1

T

∫ T

0

g(X1(t), ..., XJ(t))dt ≈
∑

(ni:i∈J̃)∈NJ

g(n1, ..., nJ)
J∏
j=1

(
1− ηj

µj

)(
ηj
µj

)nj
.

1.3 The non-ergodic case

In this section, Jackson networks are considered the state process of which is not ergodic.
This means that the ergodicity condition ηi < µi ∀i ∈ J̃ (see Theorem 1.10) is not ful�lled.
The asymptotic results of J.B. Goodman and W.A. Massey ([GM84]) will be presented
for which tra�c equations di�erent to those in Section 1.2 are valid.

1.3.1 The tra�c equations

De�nition 1.16. [GM84]

ηj = λj +
J∑
i=1

min(ηi, µi)r(i, j), j ∈ J̃ , (1.6)

are the general tra�c equations for Jackson networks.

These general tra�c equations are necessary to obtain the asymptotic results of Goodman
and Massey on non-ergodic Jackson networks which will be presented in the following
subsection. Similar to the interpretation of the solution of (1.1) as overall arrival rates,
an intuitive explanation of (1.6) can be given the following way:

The general tra�c equation arises from a more careful examination of Burke's theorem
for the M/M/1 system without immediate feedback (which means that the probability
to directly leave the system after service to the sink is 1) in [Bur56]: When the external
arrival rate λ is greater or equal to the service rate µ at the station, then the output of
the system is still Poisson for large time, not with rate λ (as in the ergodic case) but with
rate µ. To make an unconditional statement, the output process of an M/M/1 system
for large time is Poisson with rate min(λ, µ). [GM84, p.861]

Whenever the ergodicity condition is not full�lled, the network is said to have unstable
nodes.

De�nition 1.17. A node i is said to be stable if ηi determined by (1.6) is strictly less
than µi, otherwise the node is called unstable.
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For unstable nodes j the input rate is di�erent from the output rate which can be at
most µj. So if there is at least one unstable node in the network, in determining the
input rates we are no longer allowed to insert the same quantities in the tra�c equations
(1.1) on the right-hand side as on the left-hand side, the tra�c equations need to be
reformulated to (1.6).

Whenever there is more than one node for which ηi < µi does not hold (where ηi is deter-
mined by the classical tra�c equation (1.1)), this does not mean, that all of these nodes
where the condition does not hold are actually unstable. This is due to the interaction
of those nodes and the fact that too large departure rates were taken into account by
deriving the ηi's by (1.1). So the analysis of the stability of nodes is more complicated
and consists, in general, of more than just one step. This will be seen in the following
algorithms.

Algorithm 1.18. [GM84] To determine for a Jackson network with J nodes which nodes
are stable and which are unstable in the sense of De�nition 1.17.

(i) Assume that all nodes are unstable.
Based on this assumption, let (ηi(1) : i ∈ J̃) be the �rst estimate for the solution
(ηi : i ∈ J̃) of (1.6), i.e., (ηi(1) : i ∈ J̃) is the solution of the tra�c equations:

ηi(1) = λi +
J∑
j=1

µjr(j, i) ∀ i ∈ J̃ , (1.7)

which trivially exists and is unique, because all parameters at the right-hand side of
the equations are given. Comparing (1.6) and (1.7) and noticing min(ηi, µi) ≤ µi
implies ηi(1) ≥ ηi ∀i ∈ J̃ .

• If ηi(1) ≥ µi holds for all i ∈ J̃ , all nodes are unstable and for the �rst estimate
holds ηi = ηi(1) ∀ i ∈ J̃ . Stop here.

• If for at least one node i∗ ∈ J̃ holds ηi∗(1) < µi∗, then µi∗ > ηi∗ holds due
to ηi(1) ≥ ηi ∀ i ∈ J̃ , so this node i∗ is stable. But since ηi∗(1) is derived
under the assumption that all nodes are unstable, it holds ηi∗(1) ≥ ηi∗. Set
S(1) := {i : ηi(1) < µi} and proceed to the next step.

(ii) All nodes i ∈ S(1) will be eventually stable. Assume that all other nodes i ∈ J̃ \S(1)
are unstable.
Based on this assumption, let (ηi(2) : i ∈ J̃) be the second estimate for the solution
(ηi : i ∈ J̃) of (1.6), i.e., (ηi(2) : i ∈ J̃) is the solution of the tra�c equations

ηi(2) = λi +
∑

j∈J̃\S(1)

µjr(j, i) +
∑
j∈S(1)

ηj(2)r(j, i) ∀ i ∈ J̃ , (1.8)

which exists and is unique, see Lemma 1.19. Again, comparing (1.6) and (1.8) and
noticing min(ηi, µi) ≤ µi implies ηi(2) ≥ ηi ∀i ∈ J̃ , but the assumptions are more
conservative than those for (η1(1), ..., ηJ(1)). It holds: ηi ≤ ηi(2) ≤ ηi(1) ∀ i ∈ J̃
and ηi(2) < µi ∀ i ∈ S(1).



1.3 The non-ergodic case 17

• If S(1) = S(2) := {i : ηi(2) < µi}, then ηi(2) = ηi holds ∀ i ∈ J̃ . Stop here.

• If S(1) 6= S(2), then S(1) ⊂ S(2). In this case ηi∗(2) > ηi∗ holds for at least
one node i∗ ∈ J̃ . Iterate the second step with S(2) as new set of stable nodes.

Lemma 1.19. [GM84] The general tra�c equations (1.6) have a unique solution which
we denote by η = (ηj : j ∈ J̃).

Proof. The proof consists of three steps: First it is shown that the tra�c equations
(1.6) are solved by an algorithm which recursively builds a sequence of vectors η(n) =
(η1(n), ..., ηJ(n)), n ∈ N+, together with a sequence of sets S(n) := {i ∈ J̃ : ηi(n) < µi}
for which holds:

(i) S(0) := ∅,

(ii) S(n− 1) ⊆ S(n) ∀n ≥ 1,

(iii) ∃!0 < n∗ ≤ J : S(n∗ − 1) ⊂ S(n∗) = S(n∗ + 1),

(iv) η(n+ 1) solves the S(n)-partition of the tra�c equations

η(n+ 1)S(n) = λS(n) + η(n+ 1)S(n)RS(n)S(n) + µU(n)RU(n)S(n), (1.9)

η(n+ 1)U(n) = λU(n) + η(n+ 1)S(n)RS(n)U(n) + µU(n)RU(n)U(n), (1.10)

where U(n) := J̃ \S(n) and S(n) is the detected set of stable nodes in the nth step
of the algorithm.

It is shown that the sequence of vectors η(n), n ∈ N+, of such an algorithm converges
to the unique solution of the tra�c equations (1.6) in at most J iterations, if a unique
solution exists.
In the second step, the existence of a solution of the general tra�c equations is shown.
This is strongly related to the before mentioned algorithm: It has to be shown that for
every n ∈ J̃ the S(n)-partition of the tra�c equations, (1.9) and (1.10), has a solution.
Transforming (1.9) into

η(n+ 1)S(n) = (λS(n) + µU(n)RU(n)S(n))(I−RS(n)S(n))
−1

yields a solution of (1.9) and inserting this solution into (1.10) yields the solution of the
latter equation, but the transformation is only possible, if (I − RS(n)S(n))

−1 exists and is
positive. Because of the irreducibility of R, (I−RS(n)S(n))

−1 exists and is positive for all
n ∈ J̃ , see Lemma 1.2.
In the third step the uniqueness of a solution of (1.6) is proven straight forward. For more
details see the proof of Lemma 4.10 with V = ∅, pp.56-59.

Whenever a Jackson network is to be analyzed, it is important to know which nodes are
stable and which are unstable and therefore which tra�c equations are appropriate. The
following algorithm avoids the computational e�ort of Algorithm 1.18 which arises if there
is no or only one unstable node in the network. These two cases will be detected after one
step already. For all other cases, the following algorithm refers to Algorithm 1.18 which
is then worth the e�ort.
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Algorithm 1.20. To determine the set of stable nodes in a Jackson network.

(i) Solve the standard tra�c equations (1.1). Check if ηi < µi holds for all nodes i ∈ J̃ .

• If the condition holds for all nodes, then all nodes are stable and (1.1) are the
appropriate tra�c equations. Stop here.

• If there is only one node, i∗, for which the condition does not hold, then this
node is the only unstable node and the appropriate tra�c equations are

ηj = λj +
∑

i∈J̃\{i∗}

ηir(i, j) + µi∗r(i∗, j), j ∈ J̃ .

Stop here.

• If there are at least two nodes for which the condition does not hold, proceed to
the following step.

(ii) Run Algorithm 1.18 to solve the general tra�c equations (1.6). With the detected set
S := {i : ηi < µi} of stable nodes and U := J̃ \ S of unstable nodes the appropriate
tra�c equations are then

ηj = λj +
∑
i∈S

ηir(i, j) +
∑
i∈U

µir(i, j), j ∈ J̃ .

Remark 1.21. Let η = (ηj : j ∈ J̃) be the unique solution of (1.6). Nodes in S := {i ∈
J̃ : ηi < µi} are stable, U := J̃ \ S is the set of unstable nodes. Summing (1.6) on both
sides over all j ∈ J̃ yields

∑
j∈J̃

ηj =
∑
j∈J̃

λj +
∑
j∈J̃

J∑
i=1

min(ηi, µi)r(i, j)

⇔
∑
j∈J̃

ηj =
∑
j∈J̃

λj +
∑
j∈J̃

∑
i∈S

ηir(i, j) +
∑
j∈J̃

∑
i∈U

µir(i, j)

⇔
∑
j∈J̃

λj =
∑
j∈S

ηjr(j, 0) +
∑
j∈U

(ηj − µj(1− r(j, 0)))

⇔
∑
j∈J̃

λj =
∑
j∈S

ηjr(j, 0) +
∑
j∈U

µjr(j, 0) +
∑
j∈U

(ηj − µj)

⇔
∑
j∈J̃

λj =
∑
j∈J̃

min(ηj, µj)r(j, 0) +
∑
j∈U

(ηj − µj)

so the sum of the departure rates of the system into the sink is smaller than the external
arrival rate λ into the system if not all unstable nodes operate at full capacity (ηj = µj),
but at least one unstable node is overloaded (ηj > µj). This re�ects that the maximal
departure rate at each node is limited by the maximal capacity of its server.
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1.3.2 Long-time behavior

In the following theorem we assume that the ergodicity condition from Jackson's theorem
(Theorem 1.10) does not hold which means that there is at least one node which is
unstable. Although we know that the network process X will not settle down in an
equilibrium, Goodman and Massey showed that parts of the network process - on the
subset of stable nodes - do stabilize asymptotically.

Theorem 1.22. [GM84] Let X = (X(t) : t ∈ R+) denote the queue length process of a
Jackson network. X is a Markov process with state space NJ . Let η = (ηj : j ∈ J̃) be the
unique solution of the general tra�c equations (1.6). Denote by S = {i : ηi < µi} ⊆ J̃
the set of stable nodes in the network and by U := J̃ \ S the set of unstable nodes in the
network.
Then we have independent of the initial distribution for all nj ∈ N:

lim
t→∞

P (Xj(t) = nj : j ∈ S) =
∏
j∈S

(
1− ηj

µj

)(
ηj
µj

)nj
, (1.11)

lim
t→∞

P (Xj(t) = nj) = 0 ∀j ∈ U. (1.12)

The proof of Theorem 1.22 is left out here because it is a simpli�ed version (D = ∅) of
the proof of Theorem 5.10 in Chapter 5.

Remark 1.23. It is noteworthy that the marginal probability (1.11) has the same structure
as (1.5), but the marginal process on S is not Markovian. Also one should notice that
here the vector η = (η1, ..., ηJ) solves equations which are di�erent to those in the previous
section, (1.1), if there is at least one unstable node in the network.
Moreover, the limiting joint marginal distribution (1.11) of the queue lengths process on
the subnetwork S is of classical product form as it already occurred in Jackson's theorem.
This means that the limiting joint marginal distribution on S is the product of all limiting
one-dimensional marginal distributions of the nodes in S:

lim
t→∞

P (Xj(t) = nj) =

(
1− ηj

µj

)(
ηj
µj

)nj
∀ j ∈ S.

The limiting marginal queue length probability (1.12) being zero for all states implies that
the limiting queue length distribution for every unstable node is the degenerated one-point
distribution at {∞}. The result (1.12) also implies

lim
t→∞

P (Xj(t) = nj, j ∈ U) = 0 ∀nj ∈ N,

which can be proved similarly as (1.12), but this is a weaker result.

The asymptotic product form result (1.11) on S makes it easier to compute performance
measures, at least for the stable parts of the network, when one cannot take the classical
way and access steady state probabilities. This will be shown in Chapter 5, Section 5.4,
with D = ∅ for the classical Jackson network considered here.
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1.4 Classi�cation of states

In Section 1.2.2, conditions for the queue length process of a Jackson network to be ergodic
were presented: A Jackson network process is ergodic if and only if all of its nodes are
stable. If this ergodicity condition is not ful�lled for at least one node, the global network
process is not ergodic and the according Jackson network is called non-ergodic, too.
Ergodicity of a network process is strongly related to the classi�cation of its states.

De�nition 1.24 (Classi�cation of states). [Chu67, pp.12-21, pp.182-187] Let X = (X(t) :
t ∈ T ) be a homogeneous Markov process with discrete state space E and time parameter
set T ⊆ R.

• State j ∈ E is accessible from state i ∈ E if p(t)(i, j) > 0 for some t > 0.

• State j ∈ E communicates with state i ∈ E if j is accessible from i and vice versa.

• A state i ∈ E is transient, if

P (X(t) = i for some t > 0|X(0) = i) < 1,

i.e., the probability to return to the state in �nite time is less than one. Otherwise
i is recurrent.

• A recurrent state i ∈ E is positive recurrent, if the mean time to return to state i
for the �rst time is �nite. Otherwise i is null-recurrent.

A homogeneous Markov process is called irreducible if all states of its state space com-
municate with each other. If state i is recurrent and another state j is accessible from i,
then j is recurrent as well. So if a process is irreducible and its state i is recurrent, then
all other states of the state space are recurrent and the process is called recurrent. The
same holds for transience, positive recurrence, and null-recurrence.

De�nition 1.25. (e.g., [Ser09, p.259]) A discrete-time homogeneous Markov process is
ergodic if and only if it is irreducible, positive recurrent, and aperiodic.
A continuous-time homogeneous Markov process is ergodic if and only if it is irreducible
and positive recurrent.

The queue length process X of a Jackson network is an irreducible continuous-time
homogeneous Markov process. Thus, X is ergodic if and only if all states are positive
recurrent. Whenever X is not ergodic, the process cannot be positive recurrent. As a
consequence the non-ergodic queue length process of a Jackson network must be either
null-recurrent or transient.

In the literature, a non-ergodic network process is often called transient (see, e.g.,
[Wei05]), this does not automatically mean that the process actually is transient
according to the above de�nition. Best to our knowledge it is still an open question
under which conditions, in case of non-ergodic Jackson networks, the network process is
transient or null-recurrent.

Throughout this chapter we will refer to a two nodes system which is de�ned as follows.
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De�nition 1.26 (The two-node model). Consider a Jackson network with two nodes
where node 1 is stable and node 2 is unstable in the sense of De�nition 1.17. Denote by
η = (η1, η2) the unique solution of the general tra�c equations (1.6) which in this case
are

η1 = λ1 + η1r(1, 1) + µ2r(2, 1),

η2 = λ2 + η1r(1, 2) + µ2r(2, 2).

Denote by X = (X(t) = (X1(t), X2(t)) : t ≥ 0) the queue length process of the network on
the state space N2.

1.4.1 Matrix-geometrical approach

Matrix-geometric methods (see [Neu81]) are useful to analyze each level of a state space.
The set of {(i, n2) : i ∈ N} is called level n2 of a two-dimensional state space. Clearly,
considering the queue length process of a Jackson network as in De�nition 1.26, it is only
possible to move from some state (i, n2) to some state (j, n2 + k) of the state space N2

(−n2 ≤ k < ∞) by visiting all intermediate levels at least once. This property is also
referred to as skipfree to the left and to the right ([Kei65]) for levels. Within a level, this
property also holds in a Jackson network.

We consider the two-node model from De�nition 1.26. The generator Q̃ for level n2 is
then given by

n2 0 1 2 3 · · ·
0 B A0 0 0 · · ·
1 A2 A1 A0 0 · · ·
2 0 A2 A1 A0

. . .
...

...
. . . . . . . . . . . .

This tridiagonal matrix has the structure of an in�nitesimal generator of a quasi-birth-
death process, see [Neu81, p.82], because state changes occur only between adjacent levels.
Q̃ is level independent because the rates at which transitions occur do not depend on the
level. An overview on level-independent quasi-birth-death process is given in [Lat10].
The di�erence to the process presented in [Neu81] is that our processX has the state space
N2, so the square matrices B, A0, A1, and A2 have in�nitely many rows and columns:

B =

(0, 0) (1, 0) (2, 0) · · ·
(0, 0) −λ1 − λ2 λ1 0 · · ·
(1, 0) µ1r(1, 0) −λ1 − λ2 − µ1(1− r(1, 1)) λ1 · · ·
(2, 0) 0 µ1r(1, 0) −λ1 − λ2 − µ1(1− r(1, 1))

. . .
...

...
. . . . . . . . .

,

A0 =

(0, n2 + 1) (1, n2 + 1) (2, n2 + 1) · · ·
(0, n2) λ2 0 0 · · ·
(1, n2) µ1r(1, 2) λ2 0 · · ·
(2, n2) 0 µ1r(1, 2) λ2

. . .
...

...
. . . . . . . . .

,
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A2 =

(0, n2 − 1) (1, n2 − 1) (2, n2 − 1) (3, n2 − 1) · · ·
(0, n2) µ2r(2, 0) µ2r(2, 1) 0 0 · · ·
(1, n2) 0 µ2r(2, 0) µ2r(2, 1) 0 · · ·
(2, n2) 0 0 µ2r(2, 0) µ2r(2, 1)

. . .
...

...
. . . . . . . . . . . .

and, with γ := µ2(1− r(2, 2)) + λ1 + λ2, matrix A1 is

(0, n2) (1, n2) (2, n2) (3, n2) · · ·
(0, n2) −γ λ1 0 0 · · ·
(1, n2) µ1r(1, 0) −µ1(1− r(1, 1))− γ λ1 0 · · ·
(2, n2) 0 µ1r(1, 0) −µ1(1− r(1, 1))− γ λ1

. . .
...

...
. . . . . . . . . . . .

.

To analyze the process related to the generator Q̃, the matrix A is de�ned by the sum of
the describing matrices Ai, A := A0 + A1 + A2, which is with ν := λ1 + µ2r(2, 1):

A =

n1 0 1 2 3 · · ·
0 −ν ν 0 0 · · ·
1 µ1(1− r(1, 1)) −µ1(1− r(1, 1))− ν ν 0 · · ·
2 0 µ1(1− r(1, 1)) −µ1(1− r(1, 1))− ν ν · · ·
...

. . . . . . . . . . . .

.

The row sum of A is zero, so A is conservative.

An interpretation of A can be given the following way: A is the transition rates matrix
of a birth-death process where a birth means an increase of the queue length at node 1
and a death means a decrease of the queue length at node 1 regardlessly whether the
transition changes the queue length at node 2 (and therefore the level) or not. That is
why A is also called the inter-level generator matrix.

With η1 = λ1 + η1r(1, 1) + µ2r(2, 1) it holds A =


−η1(1− r(1, 1)) η1(1− r(1, 1)) 0 0 · · ·
µ1(1− r(1, 1)) −µ1(1− r(1, 1))− η1(1− r(1, 1)) η1(1− r(1, 1)) 0 · · ·

0 µ1(1− r(1, 1)) −µ1(1− r(1, 1))− η1(1− r(1, 1)) η1(1− r(1, 1))
...
. . . . . . . . . . . .


A is the Q-matrix of a birth-death process with birth rates η1(1−r(1, 1)) and death rates
µ1(1− r(1, 1)). Because η1 < µ1, the stationary distribution of this process is

π(n) =

(
1− η1

µ1

)
·
(
η1

µ1

)n
.

It is striking that the stationary distribution related to A is the same as the marginal
limiting distribution (1.11) for the stable node related to the Q-matrix of X.
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If A is in equilibrium, π ·A0 · e is the rate for a transition from some state (i, n2) to the
higher level n2 + 1 which is given by

π ·A0 · e =
∞∑
n=0

(
1− η1

µ1

)(
η1

µ1

)n
λ2 +

∞∑
n=0

(
1− η1

µ1

)(
η1

µ1

)n+1

µ1r(1, 2)

=
∞∑
n=0

(
1− η1

µ1

)(
η1

µ1

)n
(λ2 + η1r(1, 2)))

= η2 − µ2r(2, 2).

Analogously, if A is in equilibrium, π ·A2 · e is the rate for a transition from some state
(i, n2) to the lower level n2 − 1 (for n2 > 0) which is

π ·A2 · e =
∞∑
n=0

(
1− η1

µ1

)(
η1

µ1

)n
µ2r(2, 0) +

∞∑
n=1

(
1− η1

µ1

)(
η1

µ1

)n−1

µ2r(2, 1)

=
∞∑
n=0

(
1− η1

µ1

)(
η1

µ1

)n
µ2(1− r(2, 2))

= µ2(1− r(2, 2)).

The birth and death rates of the process generated by A are strictly positive because
r(1, 1) < 1 is implied by the irreducibility of the routing process, therefore the birth and
death process is irreducible.

In case that the matrices Ai would have a �nite amount of rows and columns, with the
irreducibility of A we would know from [Neu81, Theorem 1.7.1, p.32] that the process
generated by Q̃ is positive recurrent if and only if

π ·A2 · e > π ·A0 · e ⇔ µ2(1− r(2, 2)) > η2 − µ2r(2, 2) ⇔ µ2 > η2, (1.13)

which would be a contradiction to the assumption that node 2 is unstable in the two-node
model. Unfortunately enough, in our setting the matrices Ai have in�nitely many rows
and columns. According to G. Latouche and V. Ramaswami the "situation is more
involved, and not satisfactorily settled yet, if [the number of rows and columns of the
matrices Ai is] m = ∞"[LR99, p.147]. An approach for the case m = ∞ is given with
[LR99, Theorem 16.2.2, p.310] which is based on [Twe82, Theorem 5]: If A is irreducible
and if B = A1 + A2 holds, then (1.13) is a su�cient condition for the process generated
by Q̃ being positive recurrent. Unfortunately B = A1 + A2 does not hold in our setting.
Anyways, the process generated by Q̃ is not positive recurrent for the following reason:
Notice that the generator Q̃ is build only by restructuring the Q-matrix of the queue
length process X of the two-node model which is done only by structuring its state space
by the use of levels. But from the De�nition 1.26 of the two-node model we know that
its queue length process X is non-ergodic and therefore it is not positive recurrent.

Concluding this analysis via matrix-geometrical methods, there are interesting and strik-
ing remarks concerning analogies to our queue length process X:
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• The generator Q̃ is build only by restructuring the Q-matrix of X using levels.

• Although X is not ergodic and therefore does not have a stationary distribution, we
get a stationary distribution for the N-valued Markov process generated by A, the
inter-level generator matrix.

• This stationary distribution for the Markov process generated by A, which is a lim-
iting distribution for that process as well, equals the marginal limiting distribution
(1.11) for the stable part of non-ergodic networks and, even more, the stationary
distribution is obtained despite the assumption that node 2 is unstable. This is
remarkable and we do not know yet what it means.

1.4.2 Analysis via martingale criteria

Foster's theorem gives a su�cient condition with Lyapunov functions h for a homogeneous
Markov chain to be positive recurrent:

Theorem 1.27 (Foster's theorem). [Bre99, Chapter 5, Theorem 1.1] Let the transition
probability matrix P := (p(i, j) : i, j ∈ E) on the countable state space E be irreducible
and suppose that there exists a function h : E → R such that infi h(i) > −∞ and for
some �nite set F ⊆ E ∑

k∈E

p(i, k)h(k) <∞ for all i ∈ F,∑
k∈E

p(i, k)h(k) ≤ h(i)− ε for all i /∈ F,

for some ε > 0. Then the corresponding time-homogeneous Markov chain is positive
recurrent.

Similar criteria can be given for transience and null-recurrence. All of the following criteria
are referred to as martingale criteria, because they are proved with martingale theory, see
[Bre99, Chapter 5, Section 3.2]. Note that

∑
k∈E p(i, k)h(k) = E(h(X(n+ 1))|X(n) = i).

Theorem 1.28. [Bre99, Chapter 5, Theorem 3.4] A necessary and su�cient condition
for an irreducible time-homogeneous Markov chain to be transient is the existence of some
state conventionally called 0 and of a bounded function h : E → R, not identically null
and satisfying

h(j) =
∑
k 6=0

p(j, k)h(k) for all j 6= 0.

If we consider a non-ergodic Jackson network, the following recurrence criterion can be
used as a criterion for null-recurrence:

Theorem 1.29. [Bre99, Chapter 5, Theorem 3.5] Let the time-homogeneous Markov
chain with transition probability matrix P be irreducible, and suppose that there exists a
function h : E → R such that {i : h(i) < K} is �nite for all �nite K, and such that∑

k∈E

p(i, k)h(k) ≤ h(i) for all i /∈ F,

for some �nite subset F ⊂ E. Then the process is recurrent.
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The following theorem is an alternative to Theorem 1.28 as a criterion for transience.

Theorem 1.30. [Bre99, Chapter 5, Theorem 3.6] Let the time-homogeneous Markov
chain with transition probability matrix P be irreducible and let h : E → R be a bounded
function such that ∑

k∈E

p(i, k)h(k) ≤ h(i) for all i /∈ F, (1.14)

for some subset F ⊂ E, not necessarily �nite. Suppose, moreover, that there exists i /∈ F
such that

h(i) < h(j) for all j ∈ F. (1.15)

Then the process is transient.

All these criteria are for Markov chains, i.e., discrete-time Markov processes, while our
queue length process is a continuous-time Markov process. This inconformity can be
remedied by the method of uniformization, as de�ned in, e.g., [Kij97, p.195].

De�nition 1.31 (The two-node model with uniformized queue length process). Consider
the two-node model from De�nition 1.26. Since all entries in the main diagonal of the Q-
matrix are bounded, the queue length process X is uniformizable with some uniformization
constant ξ ≥ supz −q(z, z), z ∈ N2. With

ξ ≥
2∑
i=1

(λi + µi)

as the uniformization constant, a Poisson-clock with intensity ξ generates the jump times
of the uniformized process. The jump kernel of the uniformization is then given by

pu = I +
1

ξ
·Q.

The relationship of the original continuous-time process and the process after uniformiza-
tion can be expressed as follows: Let (Nξ(t) : t ≥ 0) denote a Poisson process with rate
ξ, then the processes (Xu(Nξ(t)) : t ≥ 0) and (X(t) : t ≥ 0) are equal in distribution, see
[Kij97, Theorem 4.19]. The advantage of the uniformization is that an analysis of the
continuous-time process X is possible with discrete time techniques. Thus, we can check
whether one of the above discrete-time criteria for recurrence or transience applies for
the non-ergodic X or not.

The following proposition shows how the criteria can be used to establish conditions under
which the non-ergodic process is - in this case - transient. Other conditions obtained in
the same manner are conceivable.

Proposition 1.32. Consider the two-node model with uniformized queue length process
X on the state space N2 and jump kernel pu from De�nition 1.31. Let for the parameters
of the unstable node 2 hold

µ2(1− r(2, 2)) ≤ 1

3
· λ2, (1.16)

then the Markov chain is transient.
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Proof. We de�ne the function h : N2 → R by

h(n1, n2) :=
1

1 + n2

.

h is bounded, because for all possible states (n1, n2) ∈ N2 holds 0 < h(n1, n2) ≤ 1.
Furthermore we de�ne F := N × {0} and show that with these de�nitions the require-
ments (1.14) and (1.15) of Theorem 1.30 are ful�lled:

For all (i1, i2) ∈ N+ × N+ ⊂ F c holds

∑
(k1,k2)∈N2

pu(i1, i2; k1, k2)h(k1, k2) =
∞∑
k1=0

∞∑
k2=0

pu(i1, i2; k1, k2)
1

1 + k2

=

i1+1∑
k1=i1−1

i2+1∑
k2=i2−1

pu(i1, i2; k1, k2)
1

1 + k2

=
1

1 + i2 − 1
·
(
µ2r(2, 0)

ξ
+
µ2r(2, 1)

ξ

)
+

1

1 + i2 + 1
·
(
λ2

ξ
+
µ1r(1, 2)

ξ

)
+

+
1

1 + i2
·
(
λ1

ξ
+
µ1r(1, 0)

ξ
+
ξ − λ1 − λ2 − µ1(1− r(1, 1))− µ2(1− r(2, 2))

ξ

)
=

1

1 + i2 − 1
· µ2(1− r(2, 2))

ξ
+

1

1 + i2 + 1
· λ2 + µ1r(1, 2)

ξ
+

+
1

1 + i2
·
(

1− λ2 + µ1r(1, 2)

ξ
− µ2(1− r(2, 2))

ξ

)
=

1

1 + i2
+
λ2 + µ1r(1, 2)

ξ

(
1

2 + i2
− 1

1 + i2

)
+
µ2(1− r(2, 2))

ξ

(
1

i2
− 1

1 + i2

)
=

1

1 + i2
+
λ2 + µ1r(1, 2)

ξ
· 1 + i2 − 2− i2

(1 + i2)(2 + i2)
+
µ2(1− r(2, 2))

ξ
· 1 + i2 − i2
i2(1 + i2)

=
1

1 + i2
+
µ2(1− r(2, 2))

ξ
· 1

i2(1 + i2)
− λ2 + µ1r(1, 2)

ξ
· 1

(1 + i2)(2 + i2)

=
1

1 + i2
+

1

ξi2(1 + i2)

(
µ2(1− r(2, 2))− (λ2 + µ1r(1, 2)) · i2

2 + i2

)
(1.16)

≤ 1

1 + i2
+

1

ξi2(1 + i2)

(
1

3
λ2 − (λ2 + µ1r(1, 2)) · i2

2 + i2

)
︸ ︷︷ ︸

≤0, since
i2

2+i2
∈[ 1

3
,1]

≤ 1

1 + i2
= h(i1, i2).
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For all (0, i2) ∈ {0} × N+ ⊂ F c holds

∑
(k1,k2)∈N2

pu(0, i2; k1, k2)h(k1, k2) =
∞∑
k1=0

∞∑
k2=0

pu(0, i2; k1, k2)
1

1 + k2

=
1∑

k1=0

i2+1∑
k2=i2−1

pu(0, i2; k1, k2)
1

1 + k2

=
1

1 + i2 − 1
·
(
µ2r(2, 0)

ξ
+
µ2r(2, 1)

ξ

)
+

1

1 + i2 + 1
· λ2

ξ
+

+
1

1 + i2
·
(
λ1

ξ
+
ξ − λ1 − λ2 − µ2(1− r(2, 2))

ξ

)
=

1

1 + i2 − 1
· µ2(1− r(2, 2))

ξ
+

1

1 + i2 + 1
· λ2

ξ
+

1

1 + i2
·
(

1− λ2

ξ
− µ2(1− r(2, 2))

ξ

)
=

1

1 + i2
+
λ2

ξ

(
1

2 + i2
− 1

1 + i2

)
+
µ2(1− r(2, 2))

ξ

(
1

i2
− 1

1 + i2

)
=

1

1 + i2
+
µ2(1− r(2, 2))

ξ
· 1

i2(1 + i2)
− λ2

ξ
· 1

(1 + i2)(2 + i2)

=
1

1 + i2
+

1

ξi2(1 + i2)

(
µ2(1− r(2, 2))− λ2 ·

i2
2 + i2

)
(1.16)

≤ 1

1 + i2
+

1

ξi2(1 + i2)

(
1

3
λ2 − λ2 ·

i2
2 + i2

)
︸ ︷︷ ︸
≤0, since

i2
2+i2

∈[ 1
3
,1]

≤ 1

1 + i2
= h(0, i2).

Thus (1.14) is valid. It remains to show (1.15): For all (i1, i2) ∈ F c = N× N+ holds

h(i1, i2) =
1

1 + i2
< 1 =

1

1 + 0
= h(j1, 0) = h(j1, j2) ∀(j1, j2) ∈ F = N× {0}.
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Chapter 2

Jackson networks with breakdowns:

The ergodic case

2.1 Introduction

In2 complex networks, nodes may be not accessible for some time because, e.g.,

• the server is broken down and under repair,

• the (mobile) station has left the network and is replaced sometime later by some
other station,

• the server is serving customers from another network, etc.

Such nodes are called unreliable. The theory of such networks with unreliable nodes
is part of performability theory which provides us with a tool set of well established
methods and algorithms for an integrated approach to performance analysis and reli-
ability with availability. For an overview see [HMRT01]. Our description here is with
reliability arguments: We describe an integrated model for performance analysis and
reliability/availability of Jackson networks with unreliable nodes, the description follows
[SD03], more details can be found in [Sau06]. [MD09, p.1252]

We start from a classical Jackson network as described in De�nition 1.1. We supplement
the state space NJ for the joint queue lengths by an additional coordinate which describes
the availability of the stations. If stations in D ⊆ J̃ can break down, the availability
information is of a generic form

I ⊆ D ⊆ J̃

which indicates that the stations in I are not available (under repair), while stations in
J̃ \I are available and can serve customers. The joint queue-lengths vector combined with
this knowledge will provide us with su�cient information for a Markovian description of
the system. Let P(D) denote the set of all subsets of D ⊆ J̃ . Then the states of our
Markov process are of the form

(I;n1, n2, ..., nJ) ∈ P(D)× NJ ,

2Section 2.1 with its subsections 2.1.1-2.1.2 quote the pages 1252-1254 of our paper [MD09] which will be
shortly marked after the corresponding paragraphs. The only di�erence to the paper is the de�nition of
the set D of unreliable nodes.

29
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and P(D) × NJ will serve as state space for the joint availability�queue-length process
(Y,X). The process Y on P(D) indicates the availability status of the network and X on
NJ the queue lengths in the network. [MD09, p.1252]

Remark 2.1. Unlike the description in, e.g., [SD03] where all nodes may be unreliable,
we denote the set of unreliable nodes by D which may be also equal to the node set J̃ . For
this chapter it does not make any di�erence but in the following Chapters 4 and 5 this
de�nition of the set D of unreliable nodes in the network enables us to be more precise
with side constraints which, as can be seen later on, must hold for unreliable nodes only.

2.1.1 Breakdown and repair rates

Incorporating the availability status of the network into the Markovian description we
have to specify transition rates for jumps of Y out of a state I into a successor state I ′.
Two cases have to be considered for generic transitions I → I ′ :

• I increases by breakdown of nodes outside of I, and

• I decreases by successful repair of nodes inside of I.

Increase and decrease of I are with respect to set-inclusion. In general, the transition
rates for increase and decrease of I will depend on the load (≡ queue lengths) of the
nodes in I, possibly even of neighboring nodes.
As an introductory example we describe a rather general situation where breakdown and
repair are independent of the load. A �rst approach to specify the rates for the set-valued
process Y is suggested by noticing that we can encode the sets I ∈ P(D) by vectors from
{0, 1}D. The bijection is given by

[(xj : j ∈ D) ∈ {0, 1}D ⇔ I ∈ P(D)]⇐⇒ [xi = 1⇔ i ∈ I].

Having this in mind we can represent the process Y as a multi-dimensional birth-and-death
process on {0, 1}D with concurrent births and concurrent deaths. The theory of multi-
dimensional birth-and-death processes will provide us with intensities for changing the
I-coordinate of the network process. Because we are interested in closed-form solutions
for the equilibrium probabilities, we seek for birth and death intensities with steady
states that can be given in closed form. An astonishing simple recipe from birth-and-
death processes (transformed to our situation) can be described in terms of the set-valued
process Y as follows. [MD09, pp.1252-1253]

Example 2.2. [SD03, Example 8(a)] Take any pair of non-negative functions

A : P(D)→ [0,∞) and B : P(D)→ [0,∞),

subject to A(∅) = 1 and B(∅) = 1 and for all K ⊆ D ⊆ J̃ (recall 0/0 = 0)

A(K ∪G)

A(K)
<∞ ∀K ∩G = ∅ and

B(K)

B(K \H)
<∞ ∀H ⊆ K.

With these functions we can de�ne breakdown rates (death rates) α(·, ·) and repair rates
(birth rates) β(·, ·) as follows:
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For all subsets of down nodes K ⊆ D we set

α(K,K ∪G) =
A(K ∪G)

A(K)
, K ∩G = ∅, and β(K,K \H) =

B(K)

B(K \H)
, H ⊆ K.

By inspection we see that

π :=

(
π(K) :=

A(K)

B(K)
, K ∈ P(D)

)
ful�lls

π(K) · α(K,K ∪G) = π(K ∪G) · β(K ∪G,K)

for all K,G ∈ P(D) which implies that, after normalization, π is the steady state of the
breakdown and repair process. Even more, we have proved that the process Y is reversible.
A statistical procedure to derive the rates α(·, ·), β(·, ·) and to verify whether they are of
the functional form is as follows:
α(·), β(·) are intensities for the process Y which is in this form a Markov process for its
own. Therefore we can estimate the rates with standard methods of statistics for stochastic
processes.
By estimating for any K ⊆ D

α(∅, K) =
A(K)

A(∅)
=
A(K)

1
, β(K, ∅) =

B(K)

B(∅)
=
B(K)

1
,

we obtain the candidates for the functions A(·), B(·), and are then in a position by
estimating the intensities α(K,K ∪G) and β(K,K \H) for all combinations K,G,H to
test whether the functional form of this example is relevant for the system under investiga-
tion. (A similar approach is possible for the more complicated functions of De�nition 2.3.)

Note that the (simple) structure of the intensities in this example already allows very
general correlations between nodes in the breakdown and repair process.
Further special intensities for multi-dimensional birth-and-death processes are provided
by Serfozo [Ser93, Table 1]. These can be incorporated into our breakdown and repair
processes in a similar procedure.

Breakdown and repair intensities in Example 2.2 may depend on the interaction of nodes
but not on their load.
Breakdown and repair rates which depend on the load of the nodes can be constructed
following the advice given by the recipe which is behind Example 2.2 in [SD03].

De�nition 2.3. Assume that stations in the set K ∈ P(D) are down and under repair.
Then the breakdown intensity (rate) of a non-void subset G ⊆ D \K is

α(K,K ∪G, ni : i ∈ J̃) :=
A(K ∪G, ni : i ∈ K ∪G)

A(K,ni : i ∈ K)
.

In the same availability status K of the network the repair intensity of a non-void subset
H ⊆ K is

β(K,K \H,ni : i ∈ J̃) :=
B(K,ni : i ∈ K)

B(K \H,ni : i ∈ K \H)
.
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Here A and B are non-negative functions

A,B :
⋃
I⊆D

({I} × N|I|)→ [0,∞),

with A(∅, ni : i ∈ ∅) := B(∅, ni : i ∈ ∅) := 1.
We require all intensities α(K,K ∪G, ni : i ∈ J̃) and β(K,K \H,ni : i ∈ J̃) to be �nite.

Some further special cases:

Example 2.4 (Locally determined breakdown and repair rates). [SD03, Example 7] This
is an example where breakdowns and repairs are locally determined and the local intensities
depend on the local queue length of a station only.
For any node i ∈ J̃ we specify non-negative functions

ai : N→ [0,∞) and bi : N→ [0,∞).

We assume intensities are of product form and set for all combinations of nodes K ⊆
D ⊆ J̃

α(K,K ∪G, ni : i ∈ J̃) =
∏
i∈G

ai(ni), K ∩G = ∅, G ⊆ D,

β(K,K \H,ni : i ∈ J̃) =
∏
i∈H

bi(ni), H ⊆ K.

In the setting of De�nition 2.3 we take

A(I;n1, . . . , nJ) =
∏
i∈I

ai(ni) and B(I;n1, . . . , nJ) =
∏
i∈I

bi(ni),

which leads to the given α(·, ·) and β(·, ·). The necessary restrictions are automatically
ful�lled.

Example 2.5 (Vacation system). [SD03, Example 8(b)] A breakdown at a station only
occurs if the node is empty, i.e., there is no customer waiting or in service at this station.
The breakdown and repair rates in such so-called vacation systems are for all G,K ⊆ D,
K ∩G = ∅ and H ⊆ K

α(K,K ∪G, ni : i ∈ J̃) =
A(K ∪G)

∏
i∈K∪G δ0ni

A(K)
∏

i∈K δ0ni

,

β(K,K \H,ni : i ∈ J̃) =
B(K)

∏
i∈K δ0ni

B(K \H)
∏

i∈K\H δ0ni

.

2.1.2 Rerouting in case of breakdowns

In case of broken down nodes we have to impose additional regulations on the movement
of customers. We assume that at down nodes

• no service is provided,
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• customers which are present at a node when this node breaks down are frozen and
stay there, waiting for service until the node is repaired,

• no new customers are admitted, customers who want to visit a down node are
rerouted according to one of the following rules,

• when a broken down node is repaired, service of the �rst customer in line is resumed
with the residual service time the customer had reached when being interrupted.

De�nition 2.6 (Stalling). [SD03, p.180] Whenever a node breaks down the system is
frozen, i.e., all arrival processes are interrupted and the service anywhere in the network
is stopped. Thus every movement of customers inside the network and arrivals to the
network from the outside are stopped until all broken down nodes are repaired again, i.e.,
if nodes in I 6= ∅ are broken down then for all i ∈ J̃ holds λIi = µIi = 0. We assume that
the stopped nodes which are in up status are waiting in warm standby, i.e., they can break
down although they are stalled.

Stalling as a reaction on detected failure is implemented in many complex production
systems to guarantee high quality of production, e.g., in automotive industry. A successful
adaption of the stalling regime in case of failures can be found in the Toyota Production
System where workers on the assembly line are able to interrupt the whole production
process whenever a defective or low-quality product is found, see [Shi89, p.74].

De�nition 2.7 (Skipping). [SD03, p.183] Customers are not allowed to enter down nodes
and have to skip these nodes. I.e., if the next destination of a customer is a down node,
the customer jumps to this node spending no time there and immediately performs the
next jump according to his routing regime until he arrives at a node in up status or leaves
the network. Whenever a breakdown of a subset I ⊆ D occurs, customers are rerouted
according to the following routing matrix RI = (rI(i, j) : i, j ∈ {0} ∪ J̃ \ I):

rI(j, k) = r(j, k) +
∑
i∈I

r(j, i)rI(i, k) for k, j ∈ {0} ∪ J̃ \ I (2.1)

with

rI(i, k) = r(i, k) +
∑
l∈I

r(i, l)rI(l, k) for i ∈ I, k ∈ {0} ∪ J̃ \ I. (2.2)

The external arrival rates during a breakdown of I are

λIj = λj +
∑
i∈I

λir
I(i, j) for j ∈ J̃ \ I (2.3)

and λIk = 0 for k ∈ I. The service intensities are

µIi =

{
µi, i ∈ J̃ \ I,
0, otherwise.

Skipping is a typical reaction in routing processes on graphs when a vertex has disap-
peared. In Markov chain theory it emerges when taboo sets occur in the state space of
the chain. [MD09, p.1254]
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De�nition 2.8 (Blocking rs-rd). [SD03, p.176] Broken down stations are blocked. A
customer whose next destination is a down node stays at his present node to obtain another
service there. After the repeated service (rs) the customer chooses his next destination
anew according to his routing matrix (random destination (rd)). Whenever a breakdown
of a subset I ⊆ D occurs, customers are rerouted according to the following routing matrix
RI = (rI(i, j) : i, j ∈ {0} ∪ J̃ \ I) with

rI(i, j) =

{
r(i, j), i, j ∈ {0} ∪ J̃ \ I, i 6= j,

r(i, j) +
∑

k∈I r(i, k), i ∈ {0} ∪ J̃ \ I, i = j.
(2.4)

The external arrival rates during a breakdown of I are λIj = λj for j ∈ J̃ \ I and λIj = 0
otherwise as well as the service intensities are

µIi =

{
µi, i ∈ J̃ \ I,
0, otherwise.

Repeated service in case of a blocked departure from some node due to full bu�er at the
destination node is used in models for telecommunications systems. There are several
other blocking regimes in the literature like rejection blocking, retransmission, repeat
blocking. More details can be found in [BDO01, Section 2.2].
When blocking rs-rd was used in modeling a protocol for resolving blocking, it was ob-
served that in the Jackson networks under consideration the routing had to be reversible
when a product form modeling was required. The same structural requirement turned out
to be essential in the investigations of unreliable Jackson networks described in [SD03].
[MD09, p.1254]

2.1.3 The model

De�nition 2.9 (Jackson network with unreliable nodes). Consider a Jackson network
with node set J̃ = {1, ..., J}, i.e., for each node j we have

• external Poisson(λj)-arrival streams (
∑

j∈J̃ λj = λ > 0),

• single servers with exponential(µj) distributed service time,

• in�nite waiting room,

• �rst-come-�rst-served regime.

Customers are indistinguishable. All interarrival and service times constitute a set of in-
dependent random variables.
Routing is Markovian: Given the departure node i the selection of the next node is inde-
pendent of the previous history. A customer departing from node i immediately proceeds
to node j with probability r(i, j) ≥ 0 and departs from the network with probability r(i, 0)
(the arti�cial node 0 represents the outside, source and sink, of the network, r(0, 0) := 0,
r(0, i) := λi/λ). The routing matrix R = (r(i, j) : i, j ∈ {0, 1, ..., J}) is stochastic and
irreducible.
Nodes from the set D ⊆ J̃ are unreliable and break down randomly with intensities pre-
scribed by De�nition 2.3 and are repaired with the intensities de�ned there. Customers
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are rerouted according to either stalling, skipping, or blocking rs-rd as in De�nitions 2.6
- 2.8.
Then the joint availability-queue lengths process is described by the Markov process

(Y,X) = ((Y (t);X1(t), ..., XJ(t)) : t ∈ R+) on the state space P(D)× NJ

with transition rates matrix Q = (q(z, z′) : z, z′ ∈ P(D)× NJ) which is de�ned in depen-
dence on the according rerouting regime by:
For all i, j ∈ J̃ , i 6= j:

q(∅, n1, ..., ni, ..., nJ ; ∅, n1, ..., ni + 1, ..., nJ) = λi,

q(∅, n1, ..., ni, ..., nJ ; ∅, n1, ..., ni − 1, ..., nJ) = µir(i, 0)1N+(ni),

q(∅, n1, ..., ni, ..., nj, ..., nJ ; ∅, n1, ..., ni − 1, ..., nj + 1, ..., nJ) = µir(i, j)1N+(ni),

q(∅, n1, ..., nJ ; ∅, n1, ..., nJ) = −
∑
i∈J̃

λi −
∑
i∈J̃

µi(1− r(i, i))1N+(ni)

−
∑
I⊆D

α(∅, n1, ..., nJ ; I, n1, ..., nJ),

q(∅, n1, ..., nJ ; I, n1, ..., nJ) = α(∅, n1, ..., nJ ; I, n1, ..., nJ), I ⊆ D,

and for all ∅ 6= I ⊆ D, i, j ∈ J̃ \ I, i 6= j:

q(I, n1, ..., ni, ..., nJ ; I, n1, ..., ni + 1, ..., nJ) = λIi ,

q(I, n1, ..., ni, ..., nJ ; I, n1, ..., ni − 1, ..., nJ) = µIi r
I(i, 0)1N+(ni),

q(I, n1, ..., ni, ..., nj, ..., nJ ; I, n1, ..., ni − 1, ..., nj + 1, ..., nJ) = µIi r
I(i, j)1N+(ni),

q(I, n1, ..., nJ ; I, n1, ..., nJ) = −
∑
i∈J̃\I

λIi −
∑
i∈J̃\I

µIi (1− rI(i, i))1N+(ni)

−
∑

I⊂H⊆D

α(I, n1, ..., nJ ;H,n1, ..., nJ)

−
∑

K⊂I⊆D

β(I, n1, ..., nJ ;K,n1, ..., nJ),

q(I, n1, ..., nJ ;H,n1, ..., nJ) = α(I, n1, ..., nJ ;H,n1, ..., nJ), I ⊂ H ⊆ D,

q(I, n1, ..., nJ ;K,n1, ..., nJ) = β(I, n1, ..., nJ ;K,n1, ..., nJ), K ⊂ I ⊆ D,

and q(z, z′) = 0 otherwise.

2.2 The tra�c equations

De�nition 2.10. The tra�c equations for unreliable Jackson networks are:

• In case of stalling:

ηi = λi +
∑
j∈J̃

ηjr(j, i), i ∈ J̃ , (2.5)

as long as all nodes are in up status (I = ∅). Otherwise ηIi = 0 for all i ∈ J̃ . (Note
that (2.5) equals (1.1).)
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• In case of rerouting according to blocking rs-rd or skipping:

ηIi = λIi +
∑
j∈J̃\I

ηIj r
I(j, i), i ∈ J̃ \ I, (2.6)

for all I ⊆ D. If I = ∅ the tra�c equations (2.6) are equal to (1.1).

In general, a solution of such tra�c equations, if it exists, does not reveal the overall
arrival rates in the system since the tra�c equations for some I remain in force only
as long as the availability status is unchanged. Whenever the availability status of the
system changes, the tra�c equations are adapted according to the new set of broken down
nodes. Thus each tra�c equation (2.6) may have di�erent solutions for di�erent I. The
following two lemmata show when the solution of the tra�c equation (2.6) remains the
same for all I ⊆ D.

Lemma 2.11. [SD03, Proof of Theorem 5.2, p.179] Consider a Jackson network where
nodes in D ⊆ J̃ are unreliable. Let for all nodes hold ηi < µi where (ηi : i ∈ J̃) is the
unique solution of (1.1). In case of breakdowns of nodes we assume that customers are
rerouted according to the blocking rs-rd regime. If the following reversibility constraints
hold:

ηir(i, j) = ηjr(j, i) ∀i, j ∈ J̃ , (2.7)

then for all nodes i ∈ J̃ \ I holds that the solution ηIi of the tra�c equation (2.6) for all
I ⊆ D, I 6= ∅, equals ηi.

Proof. We make the ansatz ηi = ηIi for all i ∈ J̃ \ I and all I ⊆ D in (2.6). We then
obtain with the solution ηi of the tra�c equations (1.1) for any I ⊆ D: ∀i ∈ J̃ \ I

ηi = λIi +
∑
j∈J̃\I

ηjr
I(j, i)

(2.4)
= λi + ηi

(
r(i, i) +

∑
k∈I

r(i, k)
)

+
∑

j∈J̃\I,j 6=i

ηjr(j, i)

= λi +
∑
k∈I

ηir(i, k)︸ ︷︷ ︸
(2.7)
= ηkr(k,i)

+
∑
j∈J̃\I

ηjr(j, i) = λi +
∑
j∈J̃

ηjr(j, i) = (1.1).

Remark 2.12. The reversibility constraints (2.7) are the local balance equations of the
routing process.

Lemma 2.13. [SD03, Proof of Theorem 6.4, p.184] Consider a Jackson network where
nodes in D ⊆ J̃ are unreliable. Let for all nodes i ∈ J̃ hold ηi < µi where (ηi : i ∈ J̃) is
the unique solution of (1.1). In case of breakdowns of nodes we assume that customers
are rerouted according to the skipping regime. Then for all nodes i ∈ J̃ \ I holds that
the solution ηIi of the tra�c equation (2.6) for all I ⊆ D, I 6= ∅, equals ηi.

Proof. We make the ansatz ηi = ηIi for all i ∈ J̃ \ I and all I ⊆ D in (2.6). We then
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obtain with the solution ηi of the tra�c equations (1.1) for any I ⊆ D: ∀i ∈ J̃ \ I

λIi +
∑
j∈J̃\I

ηjr
I(j, i)

(Def. 2.7)
= λi +

∑
k∈I

λkr
I(k, i) +

∑
j∈J̃\I

ηj

(
r(j, i) +

∑
k∈I

r(j, k)rI(k, i)
)

= λi +
∑
j∈J̃\I

ηjr(j, i)︸ ︷︷ ︸
(1.1)
= ηi−

∑
j∈I ηjr(j,i)

+
∑
k∈I

rI(k, i)
(
λk +

∑
j∈J̃\I

ηjr(j, k)

︸ ︷︷ ︸
(1.1)
= ηk−

∑
j∈I ηjr(j,k)

)

= ηi −
∑
j∈I

ηjr(j, i) +
∑
k∈I

ηkr
I(k, i)−

∑
k∈I

rI(k, i)
∑
j∈I

ηjr(j, k)

= ηi −
∑
j∈I

ηj

(
r(j, i) +

∑
k∈I

r(j, k)rI(k, i)︸ ︷︷ ︸
(2.1)
= rI(j,i)

)
+
∑
k∈I

ηkr
I(k, i) = ηi.

2.3 Steady-state results

Theorem 2.14. [SD03, Theorems 5.2, 5.5, and 6.4] Consider a Jackson network with
unreliable nodes as in De�nition 2.9, where the set with unreliable nodes is denoted by
D ⊆ J̃ . Let η = (η1, ..., ηJ) be the solution of the tra�c equation (1.1).
In case of breakdown of nodes we assume either that stalling is applied or that the skipping
regime is in force or that the blocking rs-rd regime is in force. In case of blocking rs-rd,
we require that routing ful�lls the reversibility condition (2.7).
If the availability�queue-lengths process (Y,X) is ergodic, it has a unique stationary and
limiting distribution:
For all (I;n1, ..., nJ) ∈ P(D)× NJ

π(I;n1, ..., nJ) = C−1 A(I, ni : i ∈ I)

B(I, ni : i ∈ I)

J∏
j=1

(
ηj
µj

)nj
. (2.8)

(Y,X) is ergodic if and only if for the normalization constant holds

C =
∑

(n1,...,nJ )∈NJ

(
J∏
j=1

(
ηj
µj

)nj ∑
I⊆D

A(I, ni : i ∈ I)

B(I, ni : i ∈ I)

)
<∞. (2.9)

Remark 2.15. The stationary distribution (2.8) is of product form similar to the classical
Jackson's result. This is even more explicit for load-independent breakdown and repair
rates as in Example 2.2: For all I ⊆ D and (n1, ..., nJ) ∈ NJ holds

π(I;n1, ..., nJ) = π(I) · π(n1, ..., nJ) = π(I) ·
J∏
i=1

πi(ni),

where with a little abuse of notation (π has di�erent meanings which are clear from the
context)

π(I) :=
∑

(n1,...,nJ )∈NJ
π(I;n1, ..., nJ) =

(∑
K⊆D

A(K)

B(K)

)−1

· A(I)

B(I)
,
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and

π(n1, ..., nJ) :=
∑
I⊆D

π(I;n1, ..., nJ) =
J∏
i=1

(
1− ηi

µi

)(
ηi
µi

)ni
=

J∏
i=1

πi(ni),

where

πi(ni) :=
∑
I⊆D

∑
(nj :j∈J̃\{i})∈NJ−1

π(I;n1, ..., nJ) =

(
1− ηi

µi

)(
ηi
µi

)ni
.

Hence the components for the performance and the reliability factorize and, even more,
the queue-lengths distribution is of the well known Jackson network structure.
It should be noted that, in general, neither X nor Y is Markovian for its own. This is
because, in general, the breakdown and repair rates depend on the load (queue length) of
the nodes, and service to customers can be delivered only when a node is up.

De�nition 2.16. The condition ηj < µj is called local stability criterion for node j.

2.4 Computation of availability and performance mea-

sures

When the breakdown and repair rates depend on the interaction of nodes but not on their
load, as in Example 2.2, the availability process Y is an ergodic Markov process for its
own, which has the unique limiting and stationary distribution

π(I) =

(∑
K⊆D

A(K)

B(K)

)−1

· A(I)

B(I)
∀I ⊆ D, (2.10)

see Example 2.2.

Remark 2.17. As mentioned after De�nition 2.10, the determination of the overall ar-
rival rates in a system with breakdowns is slightly di�erent to an ergodic system without
breakdowns (see Remark 1.9). Assuming load-independent breakdown and repair rates as
in Example 2.2 we provide the following approach:
If nodes in I were not available and never be repaired and if no more nodes were unreli-
able, then we would have an ergodic Jackson network process with J − |I| nodes and from
[Ser99, Remark 1.16, p.16] the solutions (ηIi : i ∈ J̃ \I) of the tra�c equations (2.6) would
be the overall arrival rates in the system in equilibrium. Since the process in Theorem 2.14
jumps from one availability status to another, we need to consider the probability to be in
each availability status to calculate the overall arrival rate.

• The rerouting regimes skipping and blocking rs-rd lead to an identical result, if we
require the reversibility constraint (2.7) to hold in case of blocking rs-rd. If the
system is in equilibrium, the overall arrival rate at a node j is with the solution ηIj
of the tra�c equation (2.6) and with π(I) from (2.10)∑

I⊆D,j /∈I

ηIj︸︷︷︸
(∗)
= ηj

·π(I) = ηj ·
∑

I⊆D,j /∈I

π(I) ≤ ηj,
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where (∗) holds with Lemma 2.11 in case of blocking rs-rd and Lemma 2.13 in case
of skipping. Note that for all i /∈ D the overall arrival rate is∑

I⊆D

ηIi︸︷︷︸
(∗)
= ηi

·π(I) = ηi ·
∑
I⊆D

π(I)︸ ︷︷ ︸
=1

= ηi.

• In case of stalling, the overall arrival rate at a node j is with the solution ηj of the
tra�c equation (2.5) and with π(I) from (2.10)

ηj · π(∅) = ηj

(∑
I⊆D

A(I)

B(I)

)−1

if the system is in equilibrium, because customers arrive at a node only if all nodes
are in up status. Thus in case of the stalling regime, the overall arrival rates are for
all nodes less than in a reliable ergodic system which is intuitively obvious.

The following proposition shows how the point availability of a Jackson network with
unreliable nodes may be computed:

Proposition 2.18. [SD03, p.185] Consider a Jackson network with unreliable nodes as in
Theorem 2.14 with load-independent breakdown and repair rates as in Example 2.2. Then
the stationary joint point availability at time t ≥ 0 for the subnetwork H ⊆ D is

PA(H)(t) :=
∑

K⊆D\H

π(K),

where π(I) is the probability that exactly the nodes in set I ⊆ D are under repair, given
by (2.10).

The following example shows how the stationary distribution of the availability process
may be used to estimate costs involved with breakdowns of nodes.

Example 2.19. Let

f : P(D)→ R

denote a cost function which determines costs associated with shortages in service due to
breakdown and with repair. To assess the quality of a system with unreliable components
one often uses the time average of the accumulated cost over a time horizon [0, T ]

c(T ) =
1

T

∫ T

0

f(Y (t)) dt.

Note, that this is an empirical measure which depends on the realized path of the system.
Since Y is an ergodic Markov process of its own, we can apply the ergodic theorem for
Markov processes (see Theorem 1.14) to approximate for large T

c(T ) ≈
∑
I⊆D

f(I) · π(I) =
∑
I⊆D

f(I)
A(I)

B(I)

(∑
K⊆D

A(K)

B(K)

)−1

.

This approximation holds almost surely for any path of the system.
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The probably most important performance measure for open networks is the throughput.
The throughput of a network is the e�ective departure rate to the sink. The performance
of a network - with �xed parameters - is maximal if the throughput equals the external
arrival rate from the source into the network, as in case of ergodic Jackson networks with
completely reliable nodes, see Proposition 1.13.

De�nition 2.20. Consider an ergodic Jackson network with unreliable nodes as in Def-
inition 2.9, where the set with unreliable nodes is denoted by D ⊆ J̃ . If nodes in
I ⊆ D are broken down, let µIj denote the service rate at nodes j ∈ J̃ \ I and let

RI = (rI(i, j) : i, j ∈ {0} ∪ J̃ \ I) be the rerouting matrix which are determined by
some rerouting strategy to be speci�ed.
Then the stationary throughput THj of a node j ∈ J̃ is

THj =
∑

(I;n1,...,nJ )∈P(D)×NJ
π(I;n1, ..., nJ) · µIj · 1N+(nj) · 1J̃\I(j), (2.11)

and the stationary throughput TH of the network is

TH =
∑

(I;n1,...,nJ )∈P(D)×NJ
π(I;n1, ..., nJ) ·

∑
j∈J̃\I

1N+(nj)µ
I
jr
I(j, 0)

=
∑
j∈J̃\I

THj · rI(j, 0). (2.12)

Proposition 2.21. [SD03, Proposition 7.3, p.189] Consider an ergodic Jackson network
with unreliable nodes as in De�nition 2.9, where the set with unreliable nodes is denoted
by D ⊆ J̃ and the breakdown and repair rates are load-independent as in Example 2.2.

(i) If the rerouting regime stalling is in force, the stationary throughput at a node j is
THj = ηj · π(∅) and the stationary throughput of the network is TH = π(∅) · λ.

(ii) If the rerouting is according to blocking rs-rd and the reversibility constraints (2.7)
hold, the stationary throughput at a node j is THj = ηj ·

∑
I⊆D,j /∈I π(I) and the

stationary throughput of the network is

TH =
∑
I⊆D

π(I) ·
∑
j∈J̃\I

λj.

(iii) If the rerouting is according to skipping, the stationary throughput at a node j is
THj = ηj ·

∑
I⊆D,j /∈I π(I) and the stationary throughput of the network is

TH =
∑
I⊆D

π(I) · λ
∑
j∈J̃\I

rI(0, j).

Example 2.22. Let
g : NJ → R,

denote a non-decreasing cost function which determines costs associated with storage. To
assess the quality of a system with unreliable components it is often desirable to predict
the average accumulated cost over a time horizon [0, T ],

d(T ) =
1

T

∫ T

0

g(Xi(t), i ∈ J̃) dt.



2.4 Computation of availability and performance measures 41

Note, that this is an empirical measure which depends on the realized path of the system.
Since X is not a Markov process of its own, we cannot apply the ergodic theorem for
Markov processes (see Theorem 1.14) directly.
Now consider a cost function

g : P(D)× NJ → R.

Then for T →∞ from the ergodic theorem for Markov processes follows for (Y,X)

1

T

∫ T

0

g(Y (t), Xi(t) : i ∈ J̃) dt→
∑

(I,ni:i∈J̃)∈P(D)×NJ

g(I, ni : i ∈ J̃)π(I, ni : i ∈ J̃).

This holds almost surely for all paths of the process. So we have for almost all paths of
(Y,X) for large T

1

T

∫ T

0

g(Y (t), Xi(t) : i ∈ J̃) dt ≈
∑

(I,ni:i∈J̃)∈P(D)×NJ

g(I, ni : i ∈ J̃)π(I, ni : i ∈ J̃).

This means that we can estimate the path-wise evaluated time average d(T ) by a state-
space average (the phase-space average) for almost all paths.
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Chapter 3

Change of the stability behavior due to

breakdowns

3.1 Introduction

This chapter is dedicated to the study of the stability in networks with breakdowns.
Starting with an ergodic system of reliable nodes (no breakdown and repair) we investigate
the problem of maintaining stability when (some of) the nodes become unreliable and have
to be repaired. First we analyze the ergodicity criterion (2.9) presented in Theorem 2.14.
In a system which would be ergodic in case that all nodes are reliable, we answer the
question whether the ergodicity criterion (2.9) may be not ful�lled in a system where all
nodes are locally stable according to De�nition 2.16, which means they experience a tra�c
intensity less than one. While the results in Section 3.2 deal with the form and structure
of breakdown and repair intensities, we study possible changes of tra�c intensities at
nodes due to rerouting in Section 3.3.

3.2 Destabilization of the network process due to

breakdown and repair

For3 classical Jackson networks the ergodicity criterion ηj < µj ∀j ∈ J̃ has a rate in-
terpretation which guarantees the normalization constant of the stationary distribution
to be �nite. The re�nement by Goodman and Massey, Theorem 1.22, towards stabiliza-
tion criteria for subnets in non-ergodic networks exploits again a locally determined rate
criterion. Such a local interpretation is, in general, no longer possible for the ergodicity
condition (2.9) in networks with unreliable stations. Due to the rather general model
structure in Theorem 2.14 a direct simple ergodicity criterion seems to be out of reach.
Intuition, nevertheless, suggests that a stable Jackson network may lose stability if some
nodes become unreliable. We describe an example. [MD09, p.1255]

Proposition 3.1. [MD09, Proposition 12, p.1255] Consider an ergodic Jackson network
of reliable nodes with η = (η1, ..., ηJ) as the solution of the standard tra�c equation (1.1)
such that ηj < µj holds for all j. Assume that the reliable stations become unreliable with

3This section covers parts of our paper [MD09, p.1255].

43
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locally determined breakdown and repair rates according to Example 2.4. The rerouting
regime follows one of the requirements in Theorem 2.14.
Then the network process (Y,X) is ergodic if and only if in the original network with
reliable stations for all j ∈ J̃ the stationary mean value of the function

fj : N→ [0,∞), n 7→ aj(n)

bj(n)
,

is �nite, i.e., for all j = 1, . . . , J holds
∞∑
n=0

(
1− ηj

µj

)(
ηj
µj

)n
fj(n) <∞. (3.1)

Proof. The joint availability�queue-length process is ergodic if C <∞, see (2.9). We have

C =
∑

(n1,...,nJ )∈NJ

(
J∏
j=1

(
ηj
µj

)nj ( J∏
i=1

[
1 +

ai(ni)

bi(ni)

]))

=
J∏
j=1

(
∞∑
n=0

(
ηj
µj

)n [
1 +

aj(n)

bj(n)

])
,

and this is �nite, if and only if (3.1) holds for all j ∈ J̃ .

Note that in the situation of Proposition 3.1 the availability process Y is a Markov process
for its own, but X is not Markovian.

Example 3.2. [MD09, Example 13, p.1255] Under the conditions of Proposition 3.1 let
for some node i and ai, bi > 0 the function fi be

fi(n) =
ani
bni
, n ∈ N.

Then (3.1) holds if and only if ηi ·ai < µi ·bi, which seems to be a natural condition, because
the factors ai and bi scale the arrival rate and the service rate in a way that the arriving
load ηi ·(ai/(ai+bi)) at node i remains below the maximal service capacity µi ·(bi/(ai+bi))
delivered by that node.

Adding random noise to systems may stabilize the system under certain conditions. An
example from population dynamics is discussed in [MMR02]. It is therefore an interesting
question whether under special parameter choices for the breakdown and repair rates
a non-ergodic network may become ergodic. The reason would be that the additional
randomness due to breakdown and repair can smooth the system's behavior. The answer
to this question is still open. But in the situation of Proposition 3.1, it is visible that the
answer is negative, because, e.g., for ηj ≥ µj and any choice of the aj(n), bj(n) > 0 the
sum

∞∑
n=0

(
ηj
µj

)n [
1 +

aj(n)

bj(n)

]
diverges. [MD09, p.1255]

In Chapter 4 and Chapter 5, we shall utilize the following fact: Load-independent break-
down and repair rates cannot destabilize a stable network. This becomes clear by the
following
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Example 3.3. [MD09, Example 14, p.1255] Consider an unreliable Jackson network with
stable nodes according to De�nition 1.17 and load-independent breakdown and repair rates
as in Example 2.2. The ergodicity criterion for the joint availability�queue-length process
is

C =
∑

(n1,...,nJ )∈NJ

J∏
j=1

(
ηj
µj

)nj∑
I⊆J̃

A(I)

B(I)
<∞. (3.2)

C is �nite irrespectively of the choice of the breakdown and repair rate parameters, as long
as the associated network with reliable nodes is ergodic.

It is remarkable that convergence of the normalization constant C in (3.2) does not depend
on the breakdown and repair rates: For unstable nodes i with ηi ≥ µi their instability
cannot be compensated by such random smoothing. [MD09, p.1255]

3.3 Possible stabilization and destabilization of nodes

due to rerouting

The4 following proposition shows that a stable node may become unstable if some other
node breaks down and is never repaired and if rerouting is according to the blocking rs-rd
regime.

Proposition 3.4. [Myl08, pp.54-55] Consider a reliable Jackson network with two nodes
where node 2 is stable in the sense of De�nition 1.17. Assume that node 1 may break down.
Once broken down it will never be repaired, i.e., the repair time is in�nite. Rerouting is
according to blocking rs-rd.
If r(2, 0) > 0 and

λ2 ≥ µ2r(2, 0), (3.3)

then for node 2 holds
η
{1}
2 ≥ µ2.

This result holds independent of node 1 being stable or unstable.

Proof. When node 1 breaks down, i.e., I = {1}, routing of customers is as follows:

rI(0, 2) = r(0, 2), rI(2, 0) = r(2, 0), rI(2, 2) = r(2, 2) + r(2, 1), rI(0, 1) = 0,

and all other routing probabilities inside of the network equal zero. Thus the standard
tra�c equation is

ηI2 = λI2 + ηI2r
I(2, 2) = λ2 + ηI2(r(2, 2) + r(2, 1)),

which has the solution

ηI2 =
λ2

r(2, 0)
.

4This section covers parts of the author's diploma thesis [Myl08, Chapter 5, Section 5.2].
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According to Algorithm 1.20(i), we have to check whether ηI2 < µ2 holds:

ηI2 < µ2 ⇔ λ2 < µ2r(2, 0).

This contradicts assumption (3.3). The general tra�c equation (1.6) reduces in the present
situation to:

ηI2 = λI2 + µI2r
I(2, 2) = λ2 + µ2(r(2, 2) + r(2, 1)),

and it holds ηI2 ≥ µ2, because

λ2 + µ2(r(2, 2) + r(2, 1)) ≥ µ2 ⇔ λ2 ≥ µ2r(2, 0).

A breakdown of some node may also lead to a stabilization of an unstable node, if rerouting
is according to the blocking rs-rd regime:

Proposition 3.5. [Myl08, pp.51-53] Consider a reliable Jackson network with two nodes
where node 2 is unstable in the sense of De�nition 1.17. Assume that node 1 may break
down. Once broken down it will never be repaired, i.e., the repair time is in�nite. Rerout-
ing is according to blocking rs-rd.
If r(2, 0) > 0 and

λ2 < µ2r(2, 0),

then for node 2 holds

η
{1}
2 < µ2.

This result holds independent of node 1 being stable or unstable.

Proof. When node 1 breaks down, i.e., I = {1}, routing of customers is as follows:

rI(0, 2) = r(0, 2), rI(2, 0) = r(2, 0), rI(2, 2) = r(2, 2) + r(2, 1), rI(0, 1) = 0,

and all other routing probabilities inside of the network equal zero. Thus the standard
tra�c equation is

ηI2 = λI2 + ηI2r
I(2, 2) = λ2 + ηI2(r(2, 2) + r(2, 1)),

which has the solution

ηI2 =
λ2

r(2, 0)
.

According to Algorithm 1.20(i) applied to the network after breakdown of node 1, we
need to check whether ηI2 < µ2 holds:

ηI2 < µ2 ⇔ λ2 < µ2r(2, 0),

which was assumed.
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Remark 3.6. Consider the framework of Proposition 3.4. In the situation that both nodes
are stable in a reliable network, we have the tra�c equations

η1 = λ1 + η1r(1, 1) + η2r(2, 1),

η2 = λ2 + η1r(1, 2) + η2r(2, 2),

which have the unique solutions (recall λi = λr(0, i)):

η1 = λ
r(2, 1) + r(2, 0)r(0, 1)

r(1, 0)[r(2, 0) + r(2, 1)] + r(1, 2)r(2, 0)
,

η2 = λ
r(1, 2) + r(1, 0)r(0, 2)

r(1, 0)[r(2, 0) + r(2, 1)] + r(1, 2)r(2, 0)
. (3.4)

Equation (3.4) with η2 < µ2 and the assumption λ2 ≥ µ2r(2, 0) yield

λ
r(0, 2)

r(2, 0)
≥ µ2 > λ

r(1, 2) + r(1, 0)r(0, 2)

r(1, 0)[r(2, 0) + r(2, 1)] + r(1, 2)r(2, 0)

⇒r(0, 2)

r(2, 0)
>

r(1, 2) + r(1, 0)r(0, 2)

r(1, 0)[r(2, 0) + r(2, 1)] + r(1, 2)r(2, 0)

⇔r(0, 2)r(1, 0)[r(2, 0) + r(2, 1)]+r(0, 2)r(1, 2)r(2, 0) > r(1, 2)r(2, 0)+r(1, 0)r(0, 2)r(2, 0)

⇔r(0, 2)r(2, 1)r(1, 0) > (1− r(0, 2))r(1, 2)r(2, 0)

⇔r(0, 1)r(1, 2)r(2, 0) < r(0, 2)r(2, 1)r(1, 0),

i.e., the probability of a customer route from the outside entering node 2, transition to
node 1 and leaving the network thereafter must be greater than the route the other way
around.
In case of Proposition 3.5, the assumption λ2 < µ2r(2, 0) yields with similar computations
the opposite inequality:

r(0, 1)r(1, 2)r(2, 0) > r(0, 2)r(2, 1)r(1, 0).

More details concerning these implications can be found in [Myl08, Chapter 5].
One should note, that

r(0, 1)r(1, 2)r(2, 0) = r(0, 2)r(2, 1)r(1, 0)

means that the routing process is reversible.

Proposition 3.5 o�ers ways to optimize networks by removing nodes causing global insta-
bility. In the light of Proposition 3.5, it might be pro�table to remove a node, even a
stable one, in order to obtain a globally stable network, if customers are rerouted then
according to the blocking rs-rd regime.
A similar result of a stabilization of an unstable node due to a breakdown and rerouting
according to the skipping regime is not possible.

Proposition 3.7. [Myl08, pp.59-61] Consider a reliable Jackson network with two nodes
where node 2 is unstable in the sense of De�nition 1.17. Assume that node 1 may break
down. Once broken down it will never be repaired, i.e., the repair time is in�nite. Rerout-
ing is according to skipping. Then it holds

η
{1}
2 ≥ µ2.
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This result holds independent of node 1 being stable or unstable.

Proof. If node 1 is unstable, we know that

η1 = λ1 + µ1r(1, 1) + µ2r(2, 1) ≥ µ1 ⇒ µ2 ≥
µ1(1− r(1, 1))− λ1

r(2, 1)
(3.5)

η2 = λ2 + µ1r(1, 2) + µ2r(2, 2) ≥ µ2 ⇒
λ2 + µ1r(1, 2)

1− r(2, 2)
≥ µ2. (3.6)

(3.5) with (3.6) yields

λr(0, 2) + µ1r(1, 2)

1− r(2, 2)
≥ µ1(1− r(1, 1))− λr(0, 1)

r(2, 1)

⇔ λr(0, 2)r(2, 1) + µ1r(1, 2)r(2, 1) ≥ µ1(1− r(1, 1))(1− r(2, 2))− λr(0, 1)(1− r(2, 2))

⇔ λ(r(0, 2)r(2, 1) + r(0, 1)(1− r(2, 2))) ≥ µ1((1− r(1, 1))(1− r(2, 2))− r(1, 2)r(2, 1))

⇔ λ

µ1

≥ (1− r(1, 1))(1− r(2, 2))− r(1, 2)r(2, 1)

r(0, 2)r(2, 1) + r(0, 1)(1− r(2, 2))
. (3.7)

If node 1 is stable, we have

η1 = λ1 + η1r(1, 1) + µ2r(2, 1) ⇔ η1 =
λ1 + µ2r(2, 1)

1− r(1, 1)
, (3.8)

η2 = λ2 + η1r(1, 2) + µ2r(2, 2)
(3.8)
= λ2 +

λ1 + µ2r(2, 1)

1− r(1, 1)
r(1, 2) + µ2r(2, 2) ≥ µ2

⇒ λr(0, 2) + λ
r(0, 1)r(1, 2)

1− r(1, 1)
+ µ2

r(2, 1)r(1, 2)

1− r(1, 1)
≥ µ2(1− r(2, 2))

⇔ λ
r(0, 2)(1− r(1, 1)) + r(0, 1)r(1, 2)

1− r(1, 1)
≥ µ2

(1− r(2, 2))(1− r(1, 1))− r(2, 1)r(1, 2)

1− r(1, 1)

⇔ λ
r(0, 2)r(1, 0) + r(1, 2)

r(2, 0)r(1, 0) + r(2, 0)r(1, 2) + r(2, 1)r(1, 0)
≥ µ2. (3.9)

When node 1 breaks down, i.e., I = {1}, routing of customers is as follows:

rI(0, 2) = r(0, 2) +
r(0, 1)r(1, 2)

1− r(1, 1)
, rI(2, 0) = r(2, 0) +

r(2, 1)r(1, 0)

1− r(1, 1)
,

rI(2, 2) = r(2, 2) +
r(2, 1)r(1, 2)

1− r(1, 1)
,

and all other routing probabilities inside of the network equal zero. Thus the standard
tra�c equation is given by

ηI2 = λI2 + ηI2r
I(2, 2)

= λ
(
r(0, 2) +

r(0, 1)r(1, 2)

1− r(1, 1)

)
+ ηI2

(
r(2, 2) +

r(2, 1)r(1, 2)

1− r(1, 1)

)
,

which has the solution

ηI2 = λ
r(0, 2)(1− r(1, 1)) + r(0, 1)r(1, 2)

(1− r(2, 2))(1− r(1, 1))− r(2, 1)r(1, 2)
(3.10)

= λ
r(0, 2)r(1, 0) + r(1, 2)

r(2, 0)r(1, 0) + r(2, 0)r(1, 2) + r(2, 1)r(1, 0)
.
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Supposing ηI2 < µ2 leads to an obvious contradiction to (3.9). Assumption (3.6) and
(3.10) with ηI2 < µ2 yield:

λ2 + µ1r(1, 2)

1− r(2, 2)
≥ µ2 > λ

r(0, 2)(1− r(1, 1)) + r(0, 1)r(1, 2)

(1− r(2, 2))(1− r(1, 1))− r(2, 1)r(1, 2)

⇒λr(0, 2) + µ1r(1, 2)

1− r(2, 2)
> λ

r(0, 2)(1− r(1, 1)) + r(0, 1)r(1, 2)

(1− r(2, 2))(1− r(1, 1))− r(2, 1)r(1, 2)
(3.11)

⇔
(
λr(0, 2) + µ1r(1, 2)

)(
(1− r(2, 2))(1− r(1, 1))− r(2, 1)r(1, 2)

)
>

> λ
(
r(0, 2)(1− r(1, 1)) + r(0, 1)r(1, 2)

)
(1− r(2, 2))

⇔µ1r(1, 2)
(

(1− r(2, 2))(1− r(1, 1))− r(2, 1)r(1, 2)
)
>

> λ
(

(r(0, 2)(1− r(1, 1)) + r(0, 1)r(1, 2))(1− r(2, 2))

− r(0, 2)((1− r(2, 2))(1− r(1, 1))− r(2, 1)r(1, 2))
)

⇔µ1

(
(1− r(2, 2))(1− r(1, 1))− r(2, 1)r(1, 2)

)
> λ

(
r(0, 1)(1− r(2, 2)) + r(0, 2)r(2, 1)

)
⇔(1− r(2, 2))(1− r(1, 1))− r(2, 1)r(1, 2)

r(0, 1)(1− r(2, 2)) + r(0, 2)r(2, 1)
>

λ

µ1

,

which is a contradiction to (3.7). Thus, whether node 1 is stable or unstable, it holds
ηI2 ≥ µ2.

Destabilization of a stable node due to a breakdown and rerouting according to skipping
is not possible, if the tra�c intensity at the unreliable node is less than or equal to one.

Proposition 3.8. [Myl08, pp.62-63] Consider a reliable Jackson network with two nodes
where node 1 is either stable, i.e., η1 < µ1, or unstable with η1 = µ1, and node 2 is stable,
i.e., η2 < µ2.
Assume that the network is modi�ed by node 1 being unreliable. Once broken down it
will never be repaired, i.e., the repair time is in�nite. Rerouting is according to skipping.
Then it holds

η
{1}
2 < µ2.

Proof. In case that node 1 is stable which means that both nodes are stable, η{1}2 < µ2

follows from Lemma 2.13.
If node 1 is unstable, we know that

η1 = λ1 + µ1r(1, 1) + η2r(2, 1) ≥ µ1 ⇒ µ1(1− r(1, 1)) ≤ λ1 + η2r(2, 1) (3.12)

η2 = λ2 + µ1r(1, 2) + η2r(2, 2) < µ2 ⇔ η2 =
λ2 + µ1r(1, 2)

1− r(2, 2)
< µ2. (3.13)
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(3.13) in (3.12) yields

µ1(1− r(1, 1)) ≤ λr(0, 1) +
λr(0, 2) + µ1r(1, 2)

1− r(2, 2)
r(2, 1)

⇔ µ1(1− r(1, 1))(1− r(2, 2)) ≤ λ
(
r(0, 1)(1− r(2, 2)) + r(0, 2)r(2, 1)

)
+ µ1r(1, 2)r(2, 1)

⇔ µ1

(
(1− r(1, 1))(1− r(2, 2))− r(1, 2)r(2, 1)

)
≤ λ

(
r(0, 1)(1− r(2, 2)) + r(0, 2)r(2, 1)

)
⇔ (1− r(1, 1))(1− r(2, 2))− r(1, 2)r(2, 1)

r(0, 1)(1− r(2, 2)) + r(0, 2)r(2, 1)
≤ λ

µ1

. (3.14)

Note that equality in (3.14) holds if and only if equality holds in (3.12), i.e., η1 = µ1.
When node 1 breaks down, i.e., I = {1}, routing of customers is as follows:

rI(0, 2) = r(0, 2) +
r(0, 1)r(1, 2)

1− r(1, 1)
, rI(2, 0) = r(2, 0) +

r(2, 1)r(1, 0)

1− r(1, 1)
,

rI(2, 2) = r(2, 2) +
r(2, 1)r(1, 2)

1− r(1, 1)
,

and all other routing probabilities inside of the network equal zero. Thus the standard
tra�c equation is

ηI2 = λI2 + ηI2r
I(2, 2)

= λ
(
r(0, 2) +

r(0, 1)r(1, 2)

1− r(1, 1)

)
+ ηI2

(
r(2, 2) +

r(2, 1)r(1, 2)

1− r(1, 1)

)
,

which has the solution

ηI2 = λ
r(0, 2)(1− r(1, 1)) + r(0, 1)r(1, 2)

(1− r(2, 2))(1− r(1, 1))− r(2, 1)r(1, 2)
(3.15)

= λ
r(0, 2)r(1, 0) + r(1, 2)

r(2, 0)r(1, 0) + r(2, 0)r(1, 2) + r(2, 1)r(1, 0)
.

Assumption (3.13) and (3.15) with ηI2 ≥ µ2 yield

λ
r(0, 2)(1− r(1, 1)) + r(0, 1)r(1, 2)

(1− r(2, 2))(1− r(1, 1))− r(2, 1)r(1, 2)
>
λ2 + µ1r(1, 2)

1− r(2, 2)

which is (3.11) with an opposite inequality. The same transformations as done for (3.11)
yield

(1− r(2, 2))(1− r(1, 1))− r(2, 1)r(1, 2)

r(0, 1)(1− r(2, 2)) + r(0, 2)r(2, 1)
<

λ

µ1

which is a contradiction to (3.14) if η1 = µ1.

As a consequence of the proof of Proposition 3.8, it follows directly

Proposition 3.9. [Myl08, p.62] Consider a reliable Jackson network with two nodes where
node 1 is unstable with η1 > µ1, and node 2 is stable, i.e., η2 < µ2.
Assume that node 1 may break down. Once broken down it will never be repaired, i.e.,
the repair time is in�nite. Rerouting is according to skipping. Then node 2 may become
unstable in the sense of

η
{1}
2 ≥ µ2.

The results concerning rerouting according to the skipping regime show that this rerouting
concept may cause a destabilization but not a stabilization of nodes.



Chapter 4

Jackson networks with in�nite supply

4.1 Introduction

Jackson networks with in�nite supply of work as de�ned by G. Weiss in [Wei05] are a
special class of multi-class queueing networks with virtual in�nite bu�ers, introduced
in [KW02] and [AW06]. A multi-class queueing network consists of K classes of jobs
(customers) and J stations. Jobs of class k ∈ {1, ..., K} queue up in bu�er k and are
served by a server sk(i) at station i ∈ {1, ..., J}. In general, a station can serve several
classes of jobs that is why such networks are called multi-class networks.

For Jackson networks with in�nite supply only jobs of two classes, a class of lower priority
and a class of higher priority jobs, are considered and there is only one server at each
station which can serve both classes of jobs. Jobs moving between the stations are of one
class (higher priority), the in�nite bu�er at some stations is �lled only with jobs of lower
priority, the other class of jobs. Once completely served at their �rst station the lower
priority jobs turn into higher priority jobs on their path through the network.

The idea of an in�nite supply of lower-priority work is used frequently, e.g., in [LY75] in
an (M/G/1) queueing system to utilize idle times. Recent works using this concept of
in�nite supply are, e.g., [Guo08] where generalized Jackson networks are considered or
[KNW09] where a push-pull network is provided with in�nite supply.

Implementing an in�nite supply at some nodes has the aim to utilize capacities to the
fullest, avoid idle times completely and therefore enhance productivity.

The principle of an in�nite supply of work at a node is the following:

• Whenever all jobs queued at the node have departed and the node is idle, a job from
the in�nite supply depot is served there. After completed service, the job departs
and is routed according to the routing matrix of the network.

• If during the service of a job from the in�nite supply a regular job (not coming
directly from the in�nite supply depot) arrives at that node, this new job has pre-
emptive priority and the job from the in�nite supply depot is sent back to the depot
immediately.
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• Thus jobs from the in�nite supply storage have lower priority. But after its initial
service, a low priority job turns into a high priority job as all others in the system.

• Nodes with in�nite supply are busy all the time, hence their service capacity is fully
utilized.

• As long as a job has low priority, it is not counted in the state space as a queued
job, so the state description of the node does not change with its arrival.

The principle of not counting the extra arrivals (here from the in�nite supply) at some
node i to its state but the arrivals of these at (other) nodes after departing from i is also
used in [CHT01].

The terms "preemptive"/"high" and "low" priority indicate possible utilization of a net-
work with in�nite supply to model for example communication networks where messages
in transit have preemptive priority over newly generated messages at a station: If only
messages in transit are counted as congestion, this model �ts. A particular computer com-
munication system that works in this way is MAN (metropolitan area network) Ethernet
RPR (resilient packet ring), in which ring tra�c has priority over the tra�c generated at
nodes, [Wei05].

De�nition 4.1 (Jackson network with in�nite supply). [Wei05] Consider a Jackson net-
work with node set J̃ = {1, ..., J}, i.e., for each node j we have

• external Poisson(λj)-arrival streams (
∑

j∈J̃ λj = λ > 0),

• single servers with exponential(µj) distributed service time,

• in�nite waiting room,

• �rst-come-�rst-served (FCFS) regime.

Customers (jobs) are indistinguishable. All interarrival and service times constitute a set
of independent random variables.
Routing is Markovian: Given the departure node i the selection of the next node is inde-
pendent of the previous history. A customer departing from node i immediately proceeds
to node j with probability r(i, j) ≥ 0 and departs from the network with probability r(i, 0)
(the arti�cial node 0 represents the outside, source and sink, of the network, r(0, 0) := 0,
r(0, i) := λi/λ). The routing matrix R = (r(i, j) : i, j ∈ {0, 1, ..., J}) is stochastic and
irreducible.
Let V := {i ∈ J̃ : i has in�nite supply} denote the subset of nodes with an in�nite supply
of work and W := J̃ \ V the subset of nodes without an in�nite supply of work.
Then the queue length process X = ((X1(t), ..., XJ(t)) : t ∈ R+) is a Markov process on
NJ with transition rates matrix Q = (q(z, z′) : z, z′ ∈ NJ) which is de�ned by:
For all i, j ∈ J̃ , i 6= j:

q(n1, ..., ni, ..., nJ ;n1, ..., ni + 1, ..., nJ) = λi +
∑
j∈V

µjr(j, i)1{0}(nj),

q(n1, ..., ni, ..., nJ ;n1, ..., ni − 1, ..., nJ) = µir(i, 0)1N+(ni),

q(n1, ..., ni, ..., nj, ..., nJ ;n1, ..., ni − 1, ..., nj + 1, ..., nJ) = µir(i, j)1N+(ni),

q(n1, ..., nJ ;n1, ..., nJ) = −
∑
i∈J̃

λi −
∑
i∈J̃

∑
j∈V

µjr(j, i)1{0}(nj)−
∑
i∈J̃

µi(1− r(i, i))1N+(ni),
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and q(z, z′) = 0 otherwise.

Remark 4.2. Since the routing matrix R in De�nition 4.1 is stochastic and irreducible
as in De�nition 1.1, Lemma 1.2 applies here as well.

Theorem 4.3. [Wei05, Proposition 1(iii)] Consider a Jackson network where nodes in
V ⊆ J̃ have an in�nite supply of work. Then the departure streams from nodes j ∈ V with
in�nite supply are independent Poisson streams with rates µj and therefore the departure
stream from j ∈ V to i ∈ J̃ is Poisson with rate µjr(j, i).

Proof. All departure times from node j ∈ V

• are independent of the state of the node due to the in�nite supply,

• and therefore the independent times are identically exponentially distributed with
rate µj like the service times of the node.

Thus, the departure stream of node j ∈ V is a Poisson process with rate µj. Hence for node
i ∈ J̃ , the arrival stream from node j ∈ V is a Poisson process with rate µjr(j, i), because
a portion of r(j, i) of the departure stream is directed to node i ∈ J̃ (decomposition of a
Poisson process by some probability independent of the process and of its times of events,
see [Ser09, Proposition 41, p.197]).

4.2 The tra�c equations

De�nition 4.4. [Wei05] The tra�c equations of a Jackson network with in�nite supply
as de�ned in De�nition 4.1 are

ηi = λi +
∑
j∈W

ηjr(j, i) +
∑
j∈V

µjr(j, i), i ∈ J̃ . (4.1)

This de�nition is di�erent from the classical De�nition 1.6 due to the in�nite supply: A
node i ∈ V has an in�nite supply of work which is activated whenever this node is empty.
The additional customers from the in�nite supply depot are not counted in the state
space as regular customers to the queue length until they leave the node after completed
service. Assuming that, on average, all nodes are neither fully loaded nor overloaded, the
input rate of high priority customers at a node with in�nite supply is less than its output
rate of high priority customers. From Theorem 4.3 we know that node i ∈ V with in�nite
supply generates a Poisson departure stream with rate µi. Therefore the output rate in
the tra�c equation (4.1) has to be µi for all nodes with in�nite supply instead of ηi which
in this case is the input rate.

Remark 4.5. Summing (4.1) on both sides over all i ∈ J̃ yields:∑
i∈J̃

ηi =
∑
i∈J̃

λi +
∑
i∈J̃

∑
j∈W

ηjr(j, i) +
∑
i∈J̃

∑
j∈V

µjr(j, i)

⇔
∑
i∈J̃

λi =
∑
i∈W

ηir(i, 0) +
∑
i∈V

µir(i, 0)︸ ︷︷ ︸
(∗)

+
∑
i∈V

(ηi − µi),
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so the sum of the departure rates to the sink is greater than the sum of the external arrival
rates, λ, if

∑
i∈V (ηi − µi) < 0 which holds for example if ηi < µi ∀ i ∈ V . This re�ects

the additional customer input from the in�nite supply depot. Note, that in (∗) customers
from the in�nite supply which immediately depart after completed service are counted as
proper customers.

Lemma 4.6. [Wei05] The tra�c equations (4.1) have a unique solution η = (η1, ..., ηJ).

Proof. In order to solve (4.1), consider the tra�c equations in matrix notation partitioned
according to the sets V and W :

ηW = λW + ηWRWW + µVRVW , (4.2)

ηV = λV + ηWRWV + µVRV V . (4.3)

Because of the irreducibility of R, (I − RWW )−1 exists and is positive (see Lemma 1.2).
Therefore (4.2) may be transformed into

ηW = (λW + µVRVW )(I−RWW )−1, (4.4)

which is the unique solution of (4.2) and yields after inserting into (4.3) the unique solution
of this equation, too.

As in the classical Jackson network, we need to de�ne general tra�c equations for the
case that there are nodes which, on average, are fully loaded or overloaded due to the
arrival intensity of high priority customers.

De�nition 4.7.

ηi = λi +
∑
j∈W

min(ηj, µj)r(j, i) +
∑
j∈V

µjr(j, i), i ∈ J̃ , (4.5)

are the general tra�c equations for Jackson networks with in�nite supply.

These tra�c equations are motivated as follows:

De�nition 4.8. Consider a Jackson network with in�nite supply. A node i is stable if ηi
determined by (4.5) is strictly less than its service rate µi, otherwise the node is unstable.

For a node j ∈ V with in�nite supply the input rate is already di�erent from its output
rate: The low priority customers arriving from the in�nite supply depot are not counted
as arriving customers at that node but they lead to an output rate of proper customers
equal to the service rate there. Thus, if only nodes with in�nite supply are unstable, the
input rates are still determined by (4.1). The only di�erence is, that an unstable node
with in�nite supply is less often feeded with low priority customers (from the in�nite
supply depot) than if it is stable.
For an unstable node j ∈ W without in�nite supply the input rate ηj is di�erent from its
overall maximal departure rate which can be at most µj. So in determining the input rates
we are no longer allowed to insert the same quantities in the tra�c equations (4.1) on the
right-hand side as on the left-hand side, the tra�c equations need to be reformulated to
(4.5).
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Remark 4.9. Let S := {i ∈ J̃ : ηi < µi} denote the set of stable nodes and U := J̃ \ S
the set of unstable nodes according to De�nition 4.8. Summing (4.5) on both sides over
all i ∈ J̃ yields:∑

i∈J̃

ηi =
∑
i∈J̃

λi +
∑
i∈J̃

∑
j∈W

min(ηj, µj)r(j, i) +
∑
i∈J̃

∑
j∈V

µjr(j, i)

⇔
∑
i∈J̃

λi =
∑
i∈W

min(ηi, µi)r(i, 0) +
∑
i∈V

µir(i, 0) +
∑
i∈U∪V

(ηi − µi),

so the sum of the departure rates to the sink is less than the sum of the external arrival
rates λ, if all nodes with in�nite supply (in V ) are unstable. Otherwise the sum of the
departure rates to the sink may be also equal to or even greater than λ, depending on the
sizes of ηi and µi of nodes i ∈ U ∪ V . This re�ects the additional customer input from
the in�nite supply depot as well as the bottlenecks arising at unstable nodes.

Lemma 4.10. The general tra�c equations (4.5) have a unique solution which we denote
by η = (η1, ..., ηJ).

In the proof of Lemma 4.10, the main argument is the existence of an algorithm with
which the unique solution of (4.5) may be determined in at most J steps. This algorithm
is presented here:

Algorithm 4.11. Consider a Jackson network with J nodes where nodes in V have an
in�nite supply of work. Nodes in W := J̃ \V work without in�nite supply. It is not known
which nodes are stable and which are unstable.

(i) Assume that all nodes are unstable.
Based on this assumption, let (ηi(1) : i ∈ J̃) be the �rst estimate for the solution
(ηi : i ∈ J̃) of the tra�c equations (4.5), i.e., (ηi(1) : i ∈ J̃) is the solution of the
tra�c equations:

ηi(1) = λi +
J∑
j=1

µjr(j, i) ∀ i ∈ J̃ ,

which trivially exists and is unique, because all parameters at the right-hand side of
the equations are given. Since the departure rate at each node i ∈ W without in�nite
supply is min(ηi, µi), the estimate ηi(1) is at most overestimated, so ηi(1) ≥ ηi holds
for all i ∈ J̃ .

• If ηi(1) ≥ µi holds for all i ∈ J̃ , all nodes are unstable and for the �rst estimate
holds ηi = ηi(1) ∀ i ∈ J̃ . Stop here.

• If ηi(1) ≥ µi holds for all i ∈ W , then all nodes in W are unstable. If ηi∗(1) <
µi∗ holds for some nodes i∗ ∈ V , then µi∗ > ηi∗ holds due to ηi(1) ≥ ηi ∀ i ∈ J̃ ,
so these nodes i∗ are stable. But due to the in�nite supply at these nodes,
the tra�c equations do not change with this information, so ηi = ηi(1) holds
∀ i ∈ J̃ and the set of stable nodes is identi�ed as S(1) := {i : ηi(1) < µi} ⊆ V .
Stop here.
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• If for at least one node i∗ ∈ W holds ηi∗(1) < µi∗, then µi∗ > ηi∗ holds due
to ηi(1) ≥ ηi ∀ i ∈ J̃ , so this node i∗ is stable. But since ηi∗(1) is derived
under the assumption that all nodes are unstable, it holds ηi∗(1) ≥ ηi∗. Set
S(1) := {i : ηi(1) < µi} and proceed to the next step.

(ii) All nodes i ∈ S(1) will eventually be stable. Assume that all other nodes i ∈ J̃ \S(1)
are unstable.
Based on this assumption, let (ηi(2) : i ∈ J̃) be the second estimate for (ηi : i ∈ J̃),
i.e., (ηi(2) : i ∈ J̃) is the solution of the tra�c equations (with U(1) = J̃ \ S(1)):

ηi(2) = λi +
∑

j∈U(1)∪V

µjr(j, i) +
∑

j∈S(1)∩W

ηj(2)r(j, i) ∀ i ∈ J̃

which exists and is unique, see Proof of Lemma 4.10. Again, (η1(2), ..., ηJ(2)) is at
most an overestimation, but the assumptions are more conservative than those for
(ηi(1) : i ∈ J̃). It holds: ηi ≤ ηi(2) ≤ ηi(1) ∀ i ∈ J̃ and ηi(2) < µi ∀ i ∈ S(1).

• If S(1) = S(2) := {i : ηi(2) < µi}, then ηi(2) = ηi holds ∀ i ∈ J̃ . Stop here.

• If S(1) 6= S(2) (so S(1) ⊂ S(2)) and (S(2) \ S(1)) ∩W = ∅, then ηi(2) = ηi
holds ∀ i ∈ J̃ , but S(2) is the true set of stable nodes. Stop here.

• If S(1) 6= S(2) (so S(1) ⊂ S(2)) and (S(2) \ S(1)) ∩W 6= ∅, then ηi∗(2) > ηi∗
holds for at least one node i∗ ∈ J̃ . Iterate (ii) with S(2) as new set of stable
nodes.

Remark 4.12. Setting V = ∅ in Algorithm 4.11 yields Algorithm 1.18.

Proof of Lemma 4.10. The tra�c equations (4.5) are solved by an algorithm which re-
cursively builds a sequence of vectors η(n) = (η1(n), ..., ηJ(n)), n ∈ N+, together with a
sequence of sets S(n) := {i : ηi(n) < µi} of nodes, which are detected within the �rst n
steps as being stable, for which holds:

(i) S(0) := ∅,

(ii) S(n− 1) ⊆ S(n) ∀n ≥ 1,

(iii) ∃!0 < n∗ ≤ J : S(n∗ − 1) ⊂ S(n∗) = S(n∗ + 1),

(iv) η(n+ 1) solves the following S(n)∩W -partition of tra�c equations (recall U(n) :=
J̃ \ S(n))

η(n+ 1)S(n)∩W =λS(n)∩W + η(n+ 1)S(n)∩WRS(n)∩W S(n)∩W + µU(n)∪VRU(n)∪V S(n)∩W ,
(4.6)

η(n+ 1)U(n)∪V =λU(n)∪V + η(n+ 1)S(n)∩WRS(n)∩W U(n)∪V + µU(n)∪VRU(n)∪V U(n)∪V .
(4.7)

We show that the sequence η(n) delivered by that algorithm converges to the unique
solution η of the tra�c equations (4.5) in at most J iterations, if a unique solution exists
(which will be shown in this proof later on):
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If S(n) ⊆ S(n+ 1) holds for all n ∈ J̃ , then there exists n∗ ≤ J with S(n∗) = S(n∗ + 1),
so the set of stable nodes will be found in at most J iterations and η(n∗) = η will be the
solution of the tra�c equations.

We therefore show:

a) ∀n ∈ N: ηi(n) ≥ ηi(n+ 1) ∀ i ∈ J̃ ⇒ S(n) ⊆ S(n+ 1),

b) ηi(n) ≥ ηi(n+ 1) holds for all i ∈ J̃ , n ∈ N+.

Proof of a): For all i ∈ S(n) holds by de�nition ηi(n) < µi. From µi > ηi(n) ≥ ηi(n + 1)
follows i ∈ S(n+ 1) and therefore S(n) ⊆ S(n+ 1) holds for all n ∈ N.

Proof of b): By induction over n.
1. Basis (n = 1):

η(1) = λ+ µRJ̃ J̃ = λ+ µS(1)∩WRS(1)∩W J̃ + µU(1)∪VRU(1)∪V J̃ , (4.8)

η(2) = λ+ η(2)S(1)∩WRS(1)∩W J̃ + µU(1)∪VRU(1)∪V J̃ , (4.9)

so η(1) ≥ η(2) (component-wise) is equivalent to

µS(1)∩WRS(1)∩W J̃ ≥ η(2)S(1)∩WRS(1)∩W J̃ .

Note that if S(1) = ∅ then η(1) = η(2) follows directly. We therefore consider S(1) 6= ∅
for the remainder of the induction basis.
With (4.8) and (4.9) we have

η(1) = η(2) + µS(1)∩WRS(1)∩W J̃ − η(2)S(1)∩WRS(1)∩W J̃

and from de�nition µS(1) > η(1)S(1) holds component-wise, so µS(1)∩W > η(1)S(1)∩W and

µS(1)∩W > η(2)S(1)∩W + µS(1)∩WRS(1)∩W S(1)∩W − η(2)S(1)∩WRS(1)∩W S(1)∩W

⇔ µS(1)∩W (I−RS(1)∩W S(1)∩W ) > η(2)S(1)(I−RS(1)∩W S(1)∩W )

Multiplying both sides of the last inequality from the right side with (I−RS(1)∩W S(1)∩W )−1

(which exists and is positive, see Lemma 1.2) yields

µS(1)∩W > η(2)S(1)∩W ⇒ µS(1)∩WRS(1)∩W J̃ ≥ η(2)S(1)∩WRS(1)∩W J̃ .

2. Inductive step (ny n+ 1):
Induction hypothesis: For some n ∈ N+ holds η(n− 1) ≥ η(n) (⇒ S(n− 1) ⊆ S(n)).
We show that η(n) ≥ η(n+ 1) holds under the induction hypothesis.
With S ′ := S(n) \ S(n− 1) we have

η(n) = λ+ η(n)S(n−1)∩WRS(n−1)∩W J̃ + µU(n−1)∪VRU(n−1)∪V J̃

= λ+ η(n)S(n−1)∩WRS(n−1)∩W J̃ + µS′∩WRS′∩W J̃ + µU(n)∪VRU(n)∪V J̃ (4.10)

η(n+ 1) = λ+ η(n+ 1)S(n)∩WRS(n)∩W J̃ + µU(n)∪VRU(n)∪V J̃

= λ+ η(n+ 1)S(n−1)∩WRS(n−1)∩W J̃ + η(n+ 1)S′∩WRS′∩W J̃ + µU(n)∪VRU(n)∪V J̃

(4.11)
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so η(n) ≥ η(n+ 1) (component-wise) is equivalent to

η(n)S(n−1)∩WRS(n−1)∩W J̃ + µS′∩WRS′∩W J̃ ≥ η(n+ 1)S(n)∩WRS(n)∩W J̃ . (4.12)

Note that if S ′ = ∅ (i.e., S(n − 1) = S(n)) then η(n) = η(n + 1) follows directly. We
therefore consider the case S ′ 6= ∅ for the remainder of the induction step.
From (4.10) we have

η(n)S(n−1)∩W = λS(n−1)∩W + η(n)S(n−1)∩WRS(n−1)∩W S(n−1)∩W+

+ µS′∩WRS′∩W S(n−1)∩W + µU(n)∪VRU(n)∪V S(n−1)∩W ,

and

η(n)S′∩W = λS′∩W + η(n)S(n−1)∩WRS(n−1)∩W S′∩W+

+ µS′∩WRS′∩W S′∩W + µU(n)∪VRU(n)∪V S′∩W

⇔ µS′∩W = λS′∩W + η(n)S(n−1)∩WRS(n−1)∩W S′∩W+

+ µS′∩WRS′∩W S′∩W + µU(n)∪VRU(n)∪V S′∩W + µS′∩W − η(n)S′∩W .

With η∗(n)S(n)∩W := (η(n)S(n−1)∩W , µS′∩W ) and

λ∗S(n)∩W := (λS(n−1)∩W , λS′∩W + µS′∩W − η(n)S′∩W )

we have

η∗(n)S(n)∩W = λ∗S(n)∩W + η∗(n)S(n)∩WRS(n)∩W S(n)∩W + µU(n)∪VRU(n)∪V S(n)∩W

and with the existence and positivity of (I−RS(n)∩W S(n)∩W )−1 (see Lemma 1.2) we get

η∗(n)S(n)∩W = (λ∗S(n)∩W + µU(n)∪VRU(n)∪V S(n)∩W )(I−RS(n)∩W S(n)∩W )−1.

Similarly we get the solution of

η(n+ 1)S(n)∩W
(4.11)
= λS(n)∩W + η(n+ 1)S(n)∩WRS(n)∩W S(n)∩W + µU(n)∪VRU(n)∪V S(n)∩W

as

η(n+ 1)S(n)∩W = (λS(n)∩W + µU(n)∪VRU(n)∪V S(n)∩W )(I−RS(n)∩W S(n)∩W )−1.

From de�nition it holds µS′ > η(n)S′ , so µS′∩W > η(n)S′∩W and therefore λ∗S(n)∩W ≥
λS(n)∩W holds. Thus

η∗(n)S(n)∩W ≥ η(n+ 1)S(n)∩W

⇔ (η(n)S(n−1)∩W , µS′∩W ) ≥ (η(n+ 1)S(n−1)∩W , η(n+ 1)S′∩W )

⇔ η(n)S(n−1)∩W ≥ η(n+ 1)S(n−1)∩W ∧ µS′∩W ≥ η(n+ 1)S′∩W

⇒ η(n)S(n−1)∩WRS(n−1)∩W J̃ ≥ η(n+ 1)S(n−1)∩WRS(n−1)∩W J̃

∧ µS′∩WRS′∩W J̃ ≥ η(n+ 1)S′∩WRS′∩W J̃

which yields (4.12).
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Existence of a solution of (4.5):
For the existence of a solution of the general tra�c equations we need to show for all
n ∈ J̃ that the S(n)∩W -partition of the tra�c equations, (4.6) and (4.7), has a solution.
Transforming (4.6) into

η(n+ 1)S(n)∩W = (λS(n)∩W + µU(n)∪VRU(n)∪V S(n)∩W )(I−RS(n)∩W S(n)∩W )−1

yields the unique solution of (4.6) and inserting this solution into equation (4.7)
yields the unique solution of (4.7), but the transformation is possible if and only
if (I − RS(n)∩W S(n)∩W )−1 exists and is positive. Because of the irreducibility of R,
(I−RS(n)∩W S(n)∩W )−1 exists and is positive for all n ∈ J̃ , see Lemma 1.2.

Uniqueness of a solution of (4.5):
Suppose η and η̂ are both solutions of (4.5). Then for all nodes i ∈ J̃ holds

ηi − η̂i = λi − λi +
∑
j∈W

(min(ηj, µj)−min(η̂j, µj))r(j, i) +
∑
j∈V

(µjr(j, i)− µjr(j, i))

⇒ |ηi − η̂i| =

∣∣∣∣∣∑
j∈W

(min(ηj, µj)−min(η̂j, µj))r(j, i)

∣∣∣∣∣ .
Summing over all i ∈ W yields:∑

i∈W

|ηi − η̂i| =
∑
i∈W

∣∣∣∣∣∑
j∈W

(min(ηj, µj)−min(η̂j, µj))r(j, i)

∣∣∣∣∣
(∗1)

≤
∑
i∈W

∑
j∈W

|(min(ηj, µj)−min(η̂j, µj))| · |r(j, i)|

=
∑
j∈W

|(min(ηj, µj)−min(η̂j, µj))| ·
∑
i∈W

|r(j, i)|︸ ︷︷ ︸
=1−r(j,0)−

∑
i∈V r(j,i)

≤
∑
j∈W

|(min(ηj, µj)−min(η̂j, µj))|

≤
∑
j∈W

|ηj − η̂j|, (4.13)

where (∗1) holds because of the triangle inequality. (4.13) yields∑
i∈W

|ηi − η̂i| =
∑
i∈W

|(min(ηi, µi)−min(η̂i, µi))|

⇔ |ηi − η̂i| = |(min(ηi, µi)−min(η̂i, µi))| ∀ i ∈ W,

because in any case |ηi − η̂i| ≥ |(min(ηi, µi)−min(η̂i, µi))| ∀ i ∈ W .
So {i ∈ W : ηi < µi} = {i ∈ W : η̂i < µi} =: S ∩ W and therefore η and η̂ are the
solutions of the same S∩W -partition of the tra�c equation (which has a unique solution,
see above), which means η = η̂.

Whenever analyzing a Jackson network with in�nite supply, it is important to know
which nodes are stable and which are unstable and therefore which tra�c equations are
appropriate.
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Algorithm 4.13. To determine which nodes are stable and which nodes are unstable and
the appropriate tra�c equations in a Jackson network with in�nite supply at nodes in V .
Let W := J̃ \ V denote the set of nodes without in�nite supply.

(i) Solve the standard tra�c equations (4.1). Check if ηi < µi holds for all nodes i ∈ J̃ .

• If ηi < µi holds for all nodes i ∈ J̃ , then all nodes are stable and (4.1) are the
appropriate tra�c equations.

• If the condition holds for all nodes in W and if the condition does not hold
for at least one node with in�nite supply (∈ V ), then all nodes in W are
stable, but those nodes in V for which the condition does not hold are unstable.
Nevertheless (4.1) are the appropriate tra�c equations.

• If there is only one node in W , say i∗, for which the condition does not hold,
this node is unstable and the appropriate tra�c equations are given by:

ηj = λj +
∑

i∈W\{i∗}

ηir(i, j) +
∑

i∈V ∪{i∗}

µir(i, j), j ∈ J̃ .

• If there is more than only one node in W for which the condition does not hold,
proceed to the following step.

(ii) Run Algorithm 4.11 to solve the general tra�c equations (4.5). With the detected set
S := {i : ηi < µi} of stable nodes and U := J̃ \ S of unstable nodes the appropriate
tra�c equations are then given by

ηj = λj +
∑

i∈S∩W

ηir(i, j) +
∑
i∈U∪V

µir(i, j), j ∈ J̃ .

Remark 4.14. If the network is expected to be on average overloaded at almost all nodes,
one may skip the �rst task of Algorithm 4.13 and start with Algorithm 4.11 right away. But
in general, Algorithm 4.13 reduces the computational e�ort to determine the appropriate
tra�c equation, because in many cases running Algorithm 4.11 is avoided.

4.3 The ergodic case

Main parts of the next theorem were proved in [Wei05] for ergodic Jackson networks with
in�nite supply where nodes show no immediate feedback. The proof is sketched there
only. To �t to our later needs, we generalize and prove similar statements for Jackson
networks with possible immediate feedback at all nodes.

Theorem 4.15. Consider a Jackson network where nodes in V ⊆ J̃ have an in�nite
supply of work as in De�nition 4.1. Nodes in W := J̃ \ V operate without in�nite supply.
Assume that ηi < µi holds for all nodes i ∈ J̃ where η = (η1, ..., ηJ) is the unique solution
of the tra�c equations (4.1). Denote by X = ((X1(t), ..., XJ(t)) : t ≥ 0) the queue-length
process on NJ .
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(i) For nodes without in�nite supply, the joint marginal limiting distribution is of prod-
uct form:

lim
t→∞

P (Xi(t) = ni : i ∈ W ) =
∏
i∈W

(
1− ηi

µi

)(
ηi
µi

)ni
, (4.14)

for all (ni : i ∈ W ) ∈ N|W | and this is a stationary distribution for the subset W as
well.

(ii) If the system is started with an initial distribution which has (4.14) as marginal
joint queue lengths distribution on W , the arrival stream at i ∈ V from j ∈ W is a
Poisson stream with rate ηjr(j, i).

(iii) If the system is started with an initial distribution which has (4.14) as marginal
joint queue lengths distribution on W , then the marginal limiting distribution for a
node i ∈ V with in�nite supply which has no immediate feedback, i.e., r(i, i) = 0, is

lim
t→∞

P (Xi(t) = ni) =

(
1− ηi

µi

)(
ηi
µi

)ni
, (4.15)

for all ni ∈ N and this is a one-dimensional stationary distribution as well.

Remark 4.16. The main di�erence of Theorem 4.15 to Proposition 1 of Weiss in [Wei05]
is the explicite condition "If the system is started with an initial distribution which has
(4.14) as marginal joint queue lengths distribution on W" which is needed in (ii) as well
as in (iii). Weiss implicitly uses this condition in his sketch of the proof. The point is
that without this assumption customer streams from the subset W into the subset V , in
general, are not Poisson. This will be evident in the following proof.

Proof of Theorem 4.15. (i): Consider the subset W of nodes without in�nite supply. We
have the following information about the subnetwork W :

• All service times are exponentially distributed and the service discipline at all nodes
is FCFS.

• Routing of customers is Markovian: A customer completing service at node i ∈ W
will either move to some node j ∈ W with probability r(i, j) or leave the subnetwork
with probability 1−

∑
j∈W r(i, j), which is non-zero for at least one i ∈ W because

of the routing matrix being irreducible for the global network on J̃ .

• At each node i ∈ W , we have external Poisson arrival streams with rate λi ≥ 0.
Furthermore all streams from nodes j ∈ V with in�nite supply into nodes i ∈ W
are Poisson streams with rate µjr(j, i), see Theorem 4.3.
All (inter-)arrival times from the source and from nodes in V into node i ∈ W
constitute a set of independent random variables. Thus all arrival streams from the
outside of the subnetwork W into each node i ∈ W constitute independent Poisson
processes with rate λi +

∑
j∈V µjr(j, i).

• All service and inter-arrival times constitute a set of independent random variables.
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All these properties guarantee that the subnetworkW develops as a Jackson network with
|W | nodes where the source and sink is represented by {0} ∪ V , see De�nition 1.1.
The corresponding queueing process

X̃ := ((X̃i(t) : i ∈ W ) : t ∈ R+)

is a Markov process of its own. The tra�c equations of the described subnetwork W are
given by

η̃i = λ̃i +
∑
j∈W

η̃jr(j, i), i ∈ W,

where

λ̃i := λi +
∑
j∈V

µjr(j, i),

so ηi = η̃i holds for all i ∈ W .
According to Jackson's theorem (see Theorem 1.10), X̃ has the unique stationary and
limiting distribution (4.14) because ηi < µi for all i ∈ W holds by assumption.
Thus, even if the subnetwork V of nodes with in�nite supply is not in equilibrium, the
equilibrium on the subnetwork W of nodes without in�nite supply is preserved, if the
initial distribution has the joint marginal (4.14).

An interesting alternative way to prove (i) is as follows: If the network process is ergodic,
there is a unique solution of the global balance equations πQ = 0, i.e., ∀(n1, ..., nJ) ∈ NJ :

π(n1, ..., nJ) ·
(∑
i∈J̃

λi +
∑
i∈J̃

∑
j∈V

µjr(j, i) · 1{0}(nj) +
∑
i∈J̃

µir(i, 0) · 1N+(ni)+

+
∑
i∈J̃

∑
j∈J̃\{i}

µir(i, j) · 1N+(ni)
)

=
∑
i∈W

π(n1, ..., ni − 1, ..., nJ) ·
(
λi +

∑
j∈V

µjr(j, i) · 1{0}(nj)
)
· 1N+(ni)+

+
∑
i∈V

π(n1, ..., ni − 1, ..., nJ)·

·
(
λi +

∑
j∈V \{i}

µjr(j, i) · 1{0}(nj) + µir(i, i)1{0}(ni − 1)
)
· 1N+(ni)+

+
∑
i∈J̃

π(n1, ..., ni + 1, ..., nJ) · µir(i, 0)+

+
∑
i∈J̃

∑
j∈J̃\{i}

π(n1, ..., ni + 1, ..., nj − 1, ..., nJ) · µir(i, j) · 1N+(nj) (4.16)
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Summing over all (nk : k ∈ V ) ∈ N|V | yields:

∑
(nk:k∈V )∈N|V |

π(n1, ..., nJ) ·
(∑
i∈J̃

λi +
∑
i∈J̃

∑
j∈V

µjr(j, i) · 1{0}(nj) +
∑
i∈J̃

µir(i, 0) · 1N+(ni)+

+
∑
i∈J̃

∑
j∈J̃\{i}

µir(i, j) · 1N+(ni)
)

=
∑

(nk:k∈V )∈N|V |

∑
i∈W

π(n1, ..., ni − 1, ..., nJ) ·
(
λi +

∑
j∈V

µjr(j, i) · 1{0}(nj)
)
· 1N+(ni)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈V

π(n1, ..., ni − 1, ..., nJ) ·
(
λi +

∑
j∈V \{i}

µjr(j, i) · 1{0}(nj)
)
· 1N+(ni)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈V

π(n1, ..., ni − 1, ..., nJ) · µir(i, i) · 1{0}(ni − 1) · 1N+(ni)︸ ︷︷ ︸
=1{1}∩N+ (ni)=1{1}(ni)=1{0}(ni−1)

+

+
∑

(nk:k∈V )∈N|V |

∑
i∈J̃

π(n1, ..., ni + 1, ..., nJ) · µir(i, 0)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈J̃

∑
j∈J̃\{i}

π(n1, ..., ni + 1, ..., nj − 1, ..., nJ) · µir(i, j) · 1N+(nj)

⇔
∑

(nk:k∈V )∈N|V |
π(n1, ..., nJ) ·

(∑
i∈J̃

λi +
∑
i∈J̃

∑
j∈V

µjr(j, i) · 1{0}(nj)+

+
∑
i∈J̃

µir(i, 0) · 1N+(ni) +
∑
i∈J̃

∑
j∈J̃\{i}

µir(i, j) · 1N+(ni)
)

=
∑

(nk:k∈V )∈N|V |

∑
i∈W

π(n1, ..., ni − 1, ..., nJ) ·
(
λi +

∑
j∈V

µjr(j, i) · 1{0}(nj)
)
· 1N+(ni)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈V

π(n1, ..., ni, ..., nJ) ·
(
λi +

∑
j∈V \{i}

µjr(j, i) · 1{0}(nj)
)

+

+
∑

(nk:k∈V )∈N|V |

∑
i∈V

π(n1, ..., ni, ..., nJ) · µir(i, i) · 1{0}(ni)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈W

π(n1, ..., ni + 1, ..., nJ) · µir(i, 0)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈V

π(n1, ..., ni, ..., nJ) · µir(i, 0) · 1N+(ni)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈W

∑
j∈W\{i}

π(n1, ..., ni + 1, ..., nj − 1, ..., nJ) · µir(i, j) · 1N+(nj)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈W

∑
j∈V

π(n1, ..., ni + 1, ..., nj, ..., nJ) · µir(i, j)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈V

∑
j∈W

π(n1, ..., ni, ..., nj − 1, ..., nJ) · µir(i, j) · 1N+(nj) · 1N+(ni)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈V

∑
j∈V \{i}

π(n1, ..., ni, ..., nj, ..., nJ) · µir(i, j) · 1N+(ni)
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⇔
∑

(nk:k∈V )∈N|V |
π(n1, ..., nJ)·

(∑
i∈J̃

(
λi +

∑
j∈V

µjr(j, i) · 1{0}(nj)
)
−
∑
i∈V

(
λi +

∑
j∈V

µjr(j, i) · 1{0}(nj)
)

+

+
∑
i∈J̃

µir(i, 0) · 1N+(ni)−
∑
i∈V

µir(i, 0) · 1N+(ni)+

+
∑
i∈J̃

∑
j∈J̃\{i}

µir(i, j) · 1N+(ni)−
∑
i∈V

∑
j∈V \{i}

µir(i, j) · 1N+(ni)
)

=
∑

(nk:k∈V )∈N|V |

∑
i∈W

π(n1, ..., ni − 1, ..., nJ) ·
(
λi +

∑
j∈V

µjr(j, i) · 1{0}(nj)
)
· 1N+(ni)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈W

π(n1, ..., ni + 1, ..., nJ) · µir(i, 0)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈W

∑
j∈W\{i}

π(n1, ..., ni + 1, ..., nj − 1, ..., nJ) · µir(i, j) · 1N+(nj)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈W

∑
j∈V

π(n1, ..., ni + 1, ..., nj, ..., nJ) · µir(i, j)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈V

∑
j∈W

π(n1, ..., ni, ..., nj − 1, ..., nJ) · µir(i, j) · 1N+(nj) · 1N+(ni)

⇔
∑

(nk:k∈V )∈N|V |
π(n1, ..., nJ)·

(∑
i∈W

λi +
∑
i∈W

∑
j∈V

µjr(j, i) · 1{0}(nj) +
∑
i∈V

∑
j∈W

µir(i, j) · 1N+(ni)︸ ︷︷ ︸
=
∑
i∈W

∑
j∈V µjr(j,i)

+

+
∑
i∈W

µir(i, 0) · 1N+(ni) +
∑
i∈W

∑
j∈J̃\{i}

µir(i, j) · 1N+(ni)︸ ︷︷ ︸
=
∑
i∈W µi(1−r(i,i))·1N+ (ni)

)

=
∑
i∈W

∑
(nk:k∈V )∈N|V |

π(n1, ..., ni − 1, ..., nJ) ·
(
λi +

∑
j∈V

µjr(j, i)
)
· 1N+(ni)+

+
∑
i∈W

∑
(nk:k∈V )∈N|V |

π(n1, ..., ni + 1, ..., nJ) · µi
(
r(i, 0) +

∑
j∈V

r(i, j)︸ ︷︷ ︸
=1−

∑
j∈W r(i,j)

)
+

+
∑
i∈W

∑
j∈W\{i}

∑
(nk:k∈V )∈N|V |

π(n1, ..., ni + 1, ..., nj − 1, ..., nJ) · µir(i, j) · 1N+(nj)

With πW (nk : k ∈ W ) :=
∑

(nk:k∈V )∈N|V | π(n1, ..., nJ), these equations are equivalent to:
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∀(ni : i ∈ W ) ∈ N|W |:

πW (nk : k ∈ W ) ·
(∑
i∈W

(
λi +

∑
j∈V

µjr(j, i)
)

+
∑
i∈W

µi(1− r(i, i)) · 1N+(ni)
)

=
∑
i∈W

πW (nk : k ∈ W \ {i}, ni − 1) ·
(
λi +

∑
j∈V

µjr(j, i)
)
· 1N+(ni)+

+
∑
i∈W

πW (nk : k ∈ W \ {i}, ni + 1) · µi
(

1−
∑
j∈W

r(i, j)
)

+

+
∑
i∈W

∑
j∈W\{i}

πW (nk : k ∈ W \ {i, j}, ni + 1, nj − 1) · µir(i, j) · 1N+(nj).

These equations are the global balance equations of a Jackson network with |W | stable
nodes and with the following characteristics: External arrival streams at nodes i ∈ W
are Poisson processes with rate λ̃i := λi +

∑
j∈V µjr(j, i) and the service times at nodes

i ∈ W are exponentially distributed with rate µi. All inter-arrival and service times
constitute a set of independent random variables. The routing matrix is the same as
the original one where transitions to the subset V are handled as transitions to the
sink. In this situation these equations are known to have a unique probability solution,
which is the stationary distribution (4.14). So if the global network process is started
with its stationary distribution, its marginal distribution can only be (4.14) which is the
stationary distribution of the subnet on W .

(ii): It is well known that ergodic Jackson networks with Poisson arrival streams from
the source to node i with rate λ̃i have, in equilibrium, Poisson departure streams from
node i to the sink with some rate η̃ir̃(i, 0), see [Mel79b, Example 7.1]. From the proof of
(i), we know that the subset W behaves like an ergodic Jackson network for its own with
λ̃i := λi +

∑
j∈V µjr(j, i) and

η̃ir̃(i, 0) = ηi

(
1−

∑
j∈W

r(i, j)
)

= ηi

(
r(i, 0) +

∑
j∈V

r(i, j)
)
.

Hence, if the global network process is started with an initial distribution which has the
marginal (4.14) on W , departures to the sink from nodes i ∈ W are Poisson streams
with rate ηir(i, 0) and departures to any node j ∈ V are also Poisson streams with
rate ηir(i, j), because a portion r(i,j)

r(i,0)+
∑
j∈V r(i,j)

of the departure stream η̃ir̃(i, 0) from

node i ∈ W is directed to j ∈ V . This holds even if the subnetwork V is not in equilibrium.

(iii): Consider a node i ∈ V with in�nite supply and without immediate feedback (i.e.,
r(i, i) = 0):

• The node has exponential-µi distributed service, the service discipline is FCFS.

• Routing of customers is Markovian: A customer arriving at node i, waits in the line
until he gets service, after the service he proceeds to another node j ∈ J̃ \ {i} with
probability r(i, j) or leaves the network with probability r(i, 0). Thus, the customer
leaves node i after service is completed with probability

r(i, 0) +
∑

j∈J̃\{i}

r(i, j) = 1− r(i, i) = 1.
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• The external arrival stream is Poisson with rate λi ≥ 0. From (ii) it follows directly
that, if the global network process is started with an initial distribution which has
the marginal (4.14) on W , the arrival streams at node i ∈ V from nodes j ∈
W are Poisson with rate ηjr(j, i). Arrival streams from nodes j ∈ V \ {i} are
Poisson streams with rate µjr(j, i), see Theorem 4.3. All these Poisson streams are
independent of each other. Thus the arrival stream at node i ∈ V is a Poisson
process with rate

λ̂i := λi +
∑
j∈W

ηjr(j, i) +
∑

j∈V \{i}

µjr(j, i).

• All service and inter-arrival times constitute a set of independent random variables.

Thus, if the subnetworkW is in equilibrium and if r(i, i) = 0 holds, node i ∈ V behaves as
an (M/M/1)− system of its own. The corresponding queue length process X̂ is a Markov
process on the state space N. Customers who arrive from the in�nite supply storage of
this node are not counted as waiting customers. The tra�c equation is then given by

η̂i = λ̂i = λi +
∑
j∈W

ηjr(j, i) +
∑

j∈V \{i}

µjr(j, i),

thus η̂i = ηi holds, see (4.1) with r(i, i) = 0.
If the balance equations of X̂ have a probability solution, then this solution is the unique
stationary and limiting distribution of X̂. The balance equations are for all n ∈ N

πi(n)(λ̂i + µi1N+(n)) = πi(n− 1)λ̂i1N+(n) + πi(n+ 1)µi

⇔ πi(n)(ηi + µi1N+(n)) = πi(n− 1)ηi1N+(n) + πi(n+ 1)µi,

which are solved by πi(n) =
(
ηi
µi

)n
. Normalizing the solution to

πi(n) =

(
1− ηi

µi

)(
ηi
µi

)n
yields a probability measure if and only if ηi < µi holds, which was assumed.

The proof of Theorem 4.15(i) veri�es the following

Corollary 4.17. In the setting of Theorem 4.15, the process XW := (Xi : i ∈ W ) is an
ergodic homogeneous Markov process of its own.

Remark 4.18. Note that in Theorem 4.15 in (i) and (ii) immediate feedback is allowed
at all nodes. Only in (iii) we required that nodes with in�nite supply have no immediate
feedback. This is due to the arising balance equations, as can be seen as follows:
Consider a node i ∈ V as in Theorem 4.15, but allow immediate feedback at all nodes.
Then all facts of the proof of (iii) hold except for:

• If the subnetwork W is in equilibrium, node i ∈ V behaves as an (M/M/1)− system
with in�nite supply and with immediate feedback of its own.
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• The tra�c equation is then given by

η̂i = λi +
∑
j∈W

ηjr(j, i) +
∑
j∈V

µjr(j, i), (4.17)

thus η̂i = ηi holds, see (4.1).

• The balance equations of X̂ are for all n ∈ N

πi(n)
(
λi +

∑
j∈W

ηjr(j, i) +
∑

j∈V \{i}

µjr(j, i) + µir(i, i)1{0}(n) + µi(1− r(i, i))1N+(n)
)

= πi(n− 1)
(
λi +

∑
j∈W

ηjr(j, i) +
∑

j∈V \{i}

µjr(j, i)
)

1N+(n)+

+ πi(n− 1)µir(i, i)1{1}(n) + πi(n+ 1)µi(1− r(i, i)). (4.18)

Plugging (4.17) into (4.18) yields

πi(n)
(
ηi − µir(i, i) + µir(i, i)1{0}(n) + µi(1− r(i, i))1N+(n)

)
= πi(n− 1)(ηi − µir(i, i))1N+(n) + πi(n− 1)µir(i, i)1{1}(n) + πi(n+ 1)µi(1− r(i, i)).

With πi(n) =
(
ηi
µi

)n
this is equivalent to

ηi − µir(i, i) + µir(i, i)1{0}(n) + µi(1− r(i, i))1N+(n)

=
µi
ηi

(ηi − µir(i, i))1N+(n) +
µi
ηi
µir(i, i)1{1}(n) +

ηi
µi
µi(1− r(i, i))

⇔− µir(i, i) + µir(i, i)1{0}(n)− µir(i, i)1N+(n)

= −µi
ηi
µir(i, i)1N+(n) +

µi
ηi
µir(i, i)1{1}(n)− ηir(i, i)

⇔ (ηi − µi)r(i, i) + µir(i, i)
(

1{0}(n)− µi
ηi

1{1}(n)
)

=
(

1− µi
ηi

)
µir(i, i)1N+(n).

With r(i, i) > 0 the last equation holds if and only if

ηi − µi + µi

(
1{0}(n)− µi

ηi
1{1}(n)

)
=
(

1− µi
ηi

)
µi1N+(n). (4.19)

• In case of n = 0 equation (4.19) is reduced to ηi − µi + µi = 0 ⇔ ηi = 0.

• In case of n = 1 equation (4.19) reduces to ηi−µi−µi µiηi =
(

1− µi
ηi

)
µi ⇔ ηi = 2µi.

• In case of n ≥ 2 equation (4.19) is reduced to ηi − µi =
(

1− µi
ηi

)
µi ⇔ ηi = µi.

Thus, equation (4.19) holds if and only if µi = 0 holds for i ∈ V which is a contradiction
to the assumptions in De�nition 4.1 of a Jackson network with in�nite supply.
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Remark 4.19. In general, except for a special network described below in Corollary 4.20,
an ergodic Jackson network with in�nite supply of work (without immediate feedback at
nodes with in�nite supply) does not have a stationary distribution of product form.
This means that in general, in equilibrium, the queue lengths of the nodes with an in�nite
supply of work (i ∈ V ) are at a �xed time instant neither independent of each other
nor independent of the queue lengths of the nodes without in�nite supply, although all
�ows between the nodes with in�nite supply are Poisson. In contrast, the product form
of (4.14) implies that in equilibrium the queue length processes of the subnetwork W at a
�xed time instant are independent of each other, although the �ows between these nodes
are, in general, not Poisson.

The statement of Remark 4.19 can be seen by plugging

π(n1, ..., nJ) =
∏
i∈J̃

(
1− ηi

µi

)(
ηi
µi

)ni

into the global balance equations (4.16) of the network process with r(i, i) = 0 ∀i ∈ V ,
which yields:∑

i∈J̃

λi +
∑
i∈J̃

∑
j∈V

µjr(j, i)1{0}(nj) +
∑
i∈J̃

µi(1− r(i, i))1N+(ni)

=
∑
i∈J̃

µi
ηi

(
λi +

∑
j∈V

µjr(j, i)1{0}(nj)
)

1N+(ni) +
∑
i∈J̃

ηi
µi
µir(i, 0)+

+
∑
i∈J̃

∑
j∈J̃\{i}

µj
ηj

ηi
µi
µir(i, j)1N+(nj)

⇔
∑
i∈J̃

λi +
∑
i∈J̃

∑
j∈V

µjr(j, i)1{0}(nj) +
∑
i∈J̃

µi(1− r(i, i))1N+(ni)

=
∑
i∈J̃

µi
ηi

(
λi +

∑
j∈V

µjr(j, i)1{0}(nj) +
∑

j∈J̃\{i}

ηjr(j, i)︸ ︷︷ ︸
(∗2)
= ηi(1−r(i,i))−

∑
j∈V µjr(j,i)1N+ (nj)+

∑
j∈V ηjr(j,i)

)
1N+(ni) +

∑
i∈J̃

ηir(i, 0)

⇔
∑
i∈J̃

λi +
∑
i∈J̃

∑
j∈V

µjr(j, i)1{0}(nj)

=
∑
i∈J̃

µi
ηi

∑
j∈V

r(j, i)(ηj − µj1N+(nj))1N+(ni) +
∑
i∈J̃

ηir(i, 0), (4.20)

where (∗2) holds because of (4.1) and r(i, i) = 0 ∀i ∈ V . With∑
i∈J̃

λi =
∑
i∈W

ηir(i, 0) +
∑
i∈V

µir(i, 0) +
∑
i∈V

(ηi − µi)
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(see Remark 4.5), (4.20) is equivalent to∑
i∈V

µir(i, 0) +
∑
i∈V

(ηi − µi) +
∑
i∈J̃

∑
j∈V

µjr(j, i)1{0}(nj)

=
∑
i∈J̃

µi
ηi

∑
j∈V

r(j, i)(ηj − µj1N+(nj))1N+(ni) +
∑
i∈V

ηir(i, 0)

⇔
∑
i∈V

(ηi − µi) (1− r(i, 0))︸ ︷︷ ︸
=
∑
j∈J̃ r(i,j)

+
∑
i∈J̃

∑
j∈V

µjr(j, i)1{0}(nj)

=
∑
i∈J̃

µi
ηi

∑
j∈V

r(j, i)(ηj − µj1N+(nj))1N+(ni)

⇔
∑
i∈V

(ηi − µi1N+(ni))
∑
j∈J̃

r(i, j) =
∑
i∈J̃

µi
ηi

∑
j∈V

r(j, i)(ηj − µj1N+(nj))1N+(ni)

⇔
∑
i∈V

(ηi − µi1N+(ni))
∑
j∈J̃

r(i, j)

(
1− µj

ηj
1N+(nj)

)
= 0.

The last equation is valid only if r(i, j) = 0 holds for all i ∈ V and j ∈ J̃ . This justi�es
the following

Corollary 4.20. The only class of Jackson networks with in�nite supply where the sta-
tionary queue lengths distribution is of product form is characterized by the following
property: Customers departing from a node i ∈ V with in�nite supply leave the network
directly to the sink with probability 1, i.e., r(i, 0) = 1 ∀i ∈ V .

In other words, independence of the queue lengths in the system at a �xed time instant
in equilibrium is maintained only if the nodes with in�nite supply do not interact with
each other at all and if there are only streams from the subset W without in�nite supply
to nodes in V with in�nite supply but not the other way around. It is intriguing that
all these interrupted departures from nodes with in�nite supply are Poisson streams
and exactly these seem to be the source of the dependence structure in equilibrium.
The low priority customers from the in�nite supply depot are then directed to the sink
immediately after their �rst service and therefore they do not in�uence any arrival rate
in the network.

The loss of independence due to the interaction of nodes with in�nite supply can be
observed in the following example analyzed by I.J.B.F. Adan and G. Weiss in [AW05]:

Example 4.21. [AW05] Consider a two-node Jackson network with in�nite supply as in
De�nition 4.1. Let W = ∅, so both nodes have in�nite supply. Furthermore let r(i, i) = 0
for i = 1, 2 hold, thus there is no immediate feedback in the system. Now - unlike a
Jackson network - assume that there is no exogeneous input, i.e., λ = 0. The tra�c
equations are then given by

η1 = µ2r(2, 1),

η2 = µ1r(1, 2).
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If ηi < µi holds for i = 1, 2, then the queue length process X = ((X1(t), X2(t)) : t ∈ R+)
on the state space N2 has the unique stationary and limiting distribution

π(n1, n2) =
∞∑
k=1

(−1)k+1[(1− αk)αn1
k (1− βk+1)βn2

k+1 + (1− αk+1)αn1
k+1(1− βk)βn2

k ]

where for k ≥ 1

α−1
k+1 =

µ1 + µ2

µ2r(2, 1)
β−1
k − α

−1
k−1 −

r(2, 0)

r(2, 1)
, β−1

k+1 =
µ1 + µ2

µ1r(1, 2)
α−1
k − β

−1
k−1 −

r(1, 0)

r(1, 2)
,

with initially α0 = β0 = 1, α1 = η1
µ1
, β1 = η2

µ2
.

The joint stationary distribution is not of product form, it holds

π(n1, n2) 6= π1(n1) · π2(n2) ∀(n1, n2) ∈ N2,

where πi(ni) = (1− ηi
µi

)( ηi
µi

)ni, i = 1, 2.
Moreover, Adan and Weiss proved that there is a negative correlation between the queue
lengths at the nodes, if ηi < µi holds for i = 1, 2, so even if the system is in equilibrium:

Corr(X1, X2) < 0.

In the following example of a two-node Jackson network with in�nite supply of the general
type, the events {X1(t) = 0} and {X2(t) = n} with any n ∈ N are, in equilibrium, at all
times t ≥ 0 independent of each other, if the �rst coordinate represents the queue length
of a node without in�nite supply and the second is the queue length of a node with in�nite
supply.

Example 4.22. Consider a Jackson network of two nodes, where node 2 has in�nite
supply but no immediate feedback. Let r(1, 2) > 0 and r(2, 1) > 0, so we do not have a
product form network with in�nite supply from Corollary 4.20. Then the tra�c equations
are given by

η1 = λ1 + η1r(1, 1) + µ2r(2, 1) (4.21)

η2 = λ2 + η1r(1, 2). (4.22)

Let ηi < µi hold for i = 1, 2. The queue length process X = ((X1(t), X2(t)) : t ∈ R+) is a
Markov process on the state space N2. From Theorem 4.15 we know that for all n1 ∈ N
holds

π1(n1) =
∑
n2∈N

π(n1, n2) =

(
1− η1

µ1

)(
η1

µ1

)n1

, (4.23)

we additionally assume that we start the system with an initial distribution which has
the marginal (4.23), so for all n2 ∈ N holds under this condition for the limiting and
stationary distribution

π2(n2) =
∑
n1∈N

π(n1, n2) =

(
1− η2

µ2

)(
η2

µ2

)n2

. (4.24)
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The global balance equations are ∀(n1, n2) ∈ N2:

π(n1, n2) · (λ1 + λ2 + µ2r(2, 1)1{0}(n2) + µ1(1− r(1, 1))1N+(n1) + µ21N+(n2))

= π(n1 − 1, n2) · (λ1 + µ2r(2, 1)1{0}(n2))1N+(n1) + π(n1, n2 − 1) · λ21N+(n2)+

+ π(n1 + 1, n2) · µ1r(1, 0) + π(n1, n2 + 1) · µ2r(2, 0)+

+ π(n1 + 1, n2 − 1) · µ1r(1, 2)1N+(n2) + π(n1 − 1, n2 + 1) · µ2r(2, 1)1N+(n1).

Summing over all n1 ∈ N on both sides yields∑
n1∈N

π(n1, n2) · (λ1 + λ2 + µ2r(2, 1)1{0}(n2) + µ1(1− r(1, 1))1N+(n1) + µ21N+(n2))

=
∑
n1∈N

π(n1, n2) · (λ1 + µ2r(2, 1)1{0}(n2)) +
∑
n1∈N

π(n1, n2 − 1) · λ21N+(n2)+

+
∑
n1∈N

π(n1, n2) · µ1r(1, 0)1N+(n1) +
∑
n1∈N

π(n1, n2 + 1) · µ2r(2, 0)+

+
∑
n1∈N

π(n1, n2 − 1) · µ1r(1, 2)1N+(n1)1N+(n2) +
∑
n1∈N

π(n1, n2 + 1) · µ2r(2, 1)

⇔
∑
n1∈N

π(n1, n2)(λ2 + µ1r(1, 2) + µ21N+(n2))− π(0, n2)µ1r(1, 2)

=
∑
n1∈N

π(n1, n2 − 1)(λ2 + µ1r(1, 2))1N+(n2) +
∑
n1∈N

π(n1, n2 + 1)µ2

− π(0, n2 − 1)µ1r(1, 2)1N+(n2)

⇔ π2(n2)(λ2 + µ1r(1, 2) + µ21N+(n2))− π(0, n2)µ1r(1, 2)

= π2(n2 − 1)(λ2 + µ1r(1, 2))1N+(n2) + π2(n2 + 1)µ2 − π(0, n2 − 1)µ1r(1, 2)1N+(n2)

(4.24)⇒ π2(n2)
(
λ2 + µ1r(1, 2) + µ21N+(n2)− µ2

η2

(λ2 + µ1r(1, 2))1N+(n2)− η2

µ2

µ2

)
= π(0, n2)µ1r(1, 2)− π(0, n2 − 1)µ1r(1, 2)1N+(n2)

⇔ π2(n2)
(

λ2 − η2︸ ︷︷ ︸
(4.22)

= −η1r(1,2)

+µ1r(1, 2) + µ21N+(n2)− µ2

η2

( λ2︸︷︷︸
(4.22)

= η2−η1r(1,2)

+µ1r(1, 2))1N+(n2)
)

= π(0, n2)µ1r(1, 2)− π(0, n2 − 1)µ1r(1, 2)1N+(n2)

⇔ π2(n2)
(
−η1r(1, 2) + µ1r(1, 2)− µ2

η2

(−η1r(1, 2) + µ1r(1, 2))1N+(n2)
)

= π(0, n2)µ1r(1, 2)− π(0, n2 − 1)µ1r(1, 2)1N+(n2)

(4.23)⇒ π2(n2)
(
π1(0)µ1r(1, 2)− µ2

η2

π1(0)µ1r(1, 2)1N+(n2)
)

= π(0, n2)µ1r(1, 2)− π(0, n2 − 1)µ1r(1, 2)1N+(n2)
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⇔ π2(n2)π1(0)
(

1− µ2

η2

1N+(n2)
)

= π(0, n2)− π(0, n2 − 1)1N+(n2). (4.25)

It follows directly from (4.25) that π(0, 0) = π1(0) · π2(0) holds and, since (4.25) is a
recursive equation, by induction

π(0, n2) = π1(0) · π2(n2) ∀n2 ∈ N.

Thus, in equilibrium, the events {X1(t) = 0} and {X2(t) = n2} are independent of each
other for all n2 ∈ N.

This examples motivates:

Proposition 4.23. Consider a Jackson network where nodes in V ⊆ J̃ have an in�nite
supply of work as in De�nition 4.1. Nodes in W := J̃ \ V operate without in�nite supply.
Let |W | = 1, so there is only one node, say node 1, without in�nite supply. We assume
that there is no immediate feedback at nodes with in�nite supply, i.e., r(i, i) = 0 for all
i ∈ V , and that all nodes are immediately accessible, i.e., r(i, j) > 0 for all i 6= j. Let
ηi < µi hold for all nodes i ∈ J̃ where η = (η1, ..., ηJ) is the unique solution of the tra�c
equations (4.1):

ηi = λi + η1r(1, i) +
∑
j∈V

µjr(j, i), i ∈ J̃ . (4.26)

Denote by X = ((X1(t), ..., XJ(t)) : t ≥ 0) the queue-length process on NJ and by
π(n1, ..., nJ) the stationary distribution of X. If the system is started with an initial
distribution which has the marginal

P (X1(0) = n1) := π1(n1) =

(
1− η1

µ1

)(
η1

µ1

)n1

∀n1 ∈ N, (4.27)

then for the joint marginal π{1,i}(0, ni) :=
∑

(nk:k∈J̃\{1,i})∈NJ−2 π(0, ..., ni, ..., nJ) of the sta-
tionary distribution of X holds

π{1,i}(0, ni) = π1(0) · πi(ni) ∀i ∈ V ∀ni ∈ N, (4.28)

where πi(ni) is the one-dimensional marginal queue length distribution for node i ∈ V

πi(ni) =

(
1− ηi

µi

)(
ηi
µi

)ni
∀ni ∈ N. (4.29)

Proposition 4.23 states that there is a class of Jackson networks with in�nite supply and
with an arbitrary �nite number, say J , of nodes for which, in equilibrium, the following
events are independent of each other:

• The sole node without in�nite supply (i ∈ W ) is empty at time t.

• A node with in�nite supply (j ∈ V ) has a queue length n at time t.
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Proof of Proposition 4.23. From Theorem 4.15 we know that if we start the system with
an initial distribution which has the marginal (4.27), the marginal for any node i ∈ V is
(4.29). The global balance equations of X are for all (n1, ..., nJ) ∈ NJ :

π(n1, ..., nJ) ·
(∑
i∈J̃

λi +
∑
i∈J̃

∑
j∈V

µjr(j, i)1{0}(nj) +
∑
i∈J̃

µi(1− r(i, i))1N+(ni)
)

=
∑
i∈J̃

π(n1, ..., ni − 1, ..., nJ) ·
(
λi +

∑
j∈V

µjr(j, i)1{0}(nj)
)
· 1N+(ni)

+
∑
i∈J̃

π(n1, ..., ni + 1, ..., nJ) · µir(i, 0)

+
∑
i∈J̃

∑
j∈J̃\{i}

π(n1, ..., ni − 1, ..., nj + 1, ..., nJ)µjr(j, i)1N+(ni).

Summing over all n1 ∈ N yields (recall J̃ = {1} ∪ V )

∑
n1∈N

π(n1, ..., nJ) ·
(
λ1 +

∑
i∈V

λi +
∑
j∈V

µjr(j, 1)1{0}(nj) +
∑
i∈V

∑
j∈V

µjr(j, i)1{0}(nj)+

+ µ1(1− r(1, 1))1N+(n1) +
∑
i∈V

µi1N+(ni)
)

=
∑
n1∈N

π(n1 − 1, n2, ..., nJ) ·
(
λ1 +

∑
j∈V

µjr(j, 1)1{0}(nj)
)
· 1N+(n1)

+
∑
n1∈N

∑
i∈V

π(n1, ..., ni − 1, ..., nJ) ·
(
λi +

∑
j∈V

µjr(j, i)1{0}(nj)
)
· 1N+(ni)

+
∑
n1∈N

π(n1 + 1, n2, ..., nJ) · µ1r(1, 0)

+
∑
n1∈N

∑
i∈V

π(n1, ..., ni + 1, ..., nJ) · µir(i, 0)

+
∑
n1∈N

∑
j∈V

π(n1 − 1, ..., nj + 1, ..., nJ)µjr(j, 1)1N+(n1)

+
∑
n1∈N

∑
i∈V

π(n1 + 1, ..., ni − 1, ..., nJ)µ1r(1, i)1N+(ni)

+
∑
n1∈N

∑
i∈V

∑
j∈V \{i}

π(n1, ..., ni − 1, ..., nj + 1, ..., nJ)µjr(j, i)1N+(ni)
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⇔

∑
n1∈N

π(n1, ..., nJ) ·
(
λ1 +

∑
i∈V

λi +
∑
j∈V

µjr(j, 1)1{0}(nj) +
∑
i∈V

∑
j∈V

µjr(j, i)1{0}(nj)+

+ µ1(1− r(1, 1))1N+(n1) +
∑
i∈V

µi1N+(ni)
)

=
∑
n1∈N

π(n1, ..., nJ) ·
(
λ1 +

∑
j∈V

µjr(j, 1)1{0}(nj)
)

+
∑
n1∈N

∑
i∈V

π(n1, ..., ni − 1, ..., nJ) ·
(
λi +

∑
j∈V

µjr(j, i)1{0}(nj)
)
· 1N+(ni)

+
∑
n1∈N

π(n1, ..., nJ) · µ1r(1, 0)1N+(n1)

+
∑
n1∈N

∑
i∈V

π(n1, ..., ni + 1, ..., nJ) · µir(i, 0)

+
∑
n1∈N

∑
j∈V

π(n1, ..., nj + 1, ..., nJ)µjr(j, 1)

+
∑
n1∈N

∑
i∈V

π(n1, ..., ni − 1, ..., nJ)µ1r(1, i)1N+(ni)1N+(n1)

+
∑
n1∈N

∑
i∈V

∑
j∈V \{i}

π(n1, ..., ni − 1, ..., nj + 1, ..., nJ)µjr(j, i)1N+(ni)

⇔

∑
n1∈N

π(n1, ..., nJ) ·
(∑
i∈V

λi +
∑
i∈V

∑
j∈V

µjr(j, i)1{0}(nj)+

+ µ1 (1− r(1, 1)− r(1, 0))︸ ︷︷ ︸
=
∑
i∈V r(1,i)

1N+(n1) +
∑
i∈V

µi1N+(ni)
)

=
∑
n1∈N

∑
i∈V

π(n1, ..., ni − 1, ..., nJ)·

·
(
λi +

∑
j∈V

µjr(j, i)1{0}(nj) + µ1r(1, i)1N+(n1)
)
· 1N+(ni)

+
∑
n1∈N

∑
i∈V

π(n1, ..., ni + 1, ..., nJ) · µi(r(i, 0) + r(i, 1))

+
∑
n1∈N

∑
i∈V

∑
j∈V \{i}

π(n1, ..., ni − 1, ..., nj + 1, ..., nJ)µjr(j, i)1N+(ni). (4.30)

Summing over all (n2, ..., nJ−1) ∈ NJ−2 yields for �xed nJ ∈ N:
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∑
(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ) ·
(
λJ +

∑
i∈V \{J}

λi +
∑
j∈V

µjr(j, J)1{0}(nj) +
∑

i∈V \{J}

∑
j∈V

µjr(j, i)1{0}(nj)

+ µ1

∑
i∈V \{J}

r(1, i)1N+(n1) + µ1r(1, J)1N+(n1) + µJ1N+(nJ) +
∑

i∈V \{J}

µi1N+(ni)
)

=
∑

(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ−1, nJ − 1)·
(
λJ +

∑
j∈V

µjr(j, J)1{0}(nj) + µ1r(1, J)1N+(n1)
)
·1N+(nJ)

+
∑

(n1,...,nJ−1)∈NJ−1

∑
i∈V \{J}

π(n1, ..., ni − 1, ..., nJ)·

·
(
λi +

∑
j∈V

µjr(j, i)1{0}(nj) + µ1r(1, i)1N+(n1)
)
· 1N+(ni)

+
∑

(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ−1, nJ + 1) · µJ(r(J, 0) + r(J, 1))

+
∑

(n1,...,nJ−1)∈NJ−1

∑
i∈V \{J}

π(n1, ..., ni + 1, ..., nJ) · µi(r(i, 0) + r(i, 1))

+
∑

(n1,...,nJ−1)∈NJ−1

∑
j∈V \{J}

π(n1..., nj + 1, ..., nJ − 1)µjr(j, J)1N+(nJ)

+
∑

(n1,...,nJ−1)∈NJ−1

∑
j∈V \{J}

π(n1, ..., nj − 1, ..., nJ + 1)µJr(J, j)1N+(nj)

+
∑

(n1,...,nJ−1)∈NJ−1

∑
i∈V \{J}

∑
j∈V \{J,i}

π(n1, ..., ni − 1, ..., nj + 1, ..., nJ)µjr(j, i)1N+(ni)

⇔
∑

(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ) ·
[
λJ +

∑
j∈V

µjr(j, J)1{0}(nj) +
∑

i∈V \{J}

(
λi +

∑
j∈V

µjr(j, i)1{0}(nj)
)

+ µ1

∑
i∈V \{J}

r(1, i)1N+(n1) + µ1r(1, J)1N+(n1) + µJ1N+(nJ) +
∑

i∈V \{J}

µi1N+(ni)
]

=
∑

(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ−1, nJ − 1)·
(
λJ +

∑
j∈V

µjr(j, J)1{0}(nj) + µ1r(1, J)1N+(n1)
)
·1N+(nJ)

+
∑

(n1,...,nJ−1)∈NJ−1

∑
i∈V \{J}

π(n1, ..., nJ) ·
(
λi +

∑
j∈V

µjr(j, i)1{0}(nj) + µ1r(1, i)1N+(n1)
)

+
∑

(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ−1, nJ + 1) · µJ(r(J, 0) + r(J, 1))

+
∑

(n1,...,nJ−1)∈NJ−1

∑
i∈V \{J}

π(n1, ..., nJ) · µi(r(i, 0) + r(i, 1))1N+(ni)

+
∑

(n1,...,nJ−1)∈NJ−1

∑
j∈V \{J}

π(n1, ..., nJ − 1)µjr(j, J)1N+(nJ)1N+(nj)

+
∑

(n1,...,nJ−1)∈NJ−1

∑
j∈V \{J}

π(n1, ..., nJ + 1)µJr(J, j)

+
∑

(n1,...,nJ−1)∈NJ−1

∑
i∈V \{J}

∑
j∈V \{J,i}

π(n1, ..., nJ)µjr(j, i)1N+(nj)
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⇔
∑

(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ)·

·
(
λJ +

∑
j∈V

µjr(j, J)1{0}(nj) + µ1r(1, J)1N+(n1) + µJ1N+(nJ) +
∑

i∈V \{J}

µi1N+(ni)

−
∑

i∈V \{J}

µi(r(i, 0) + r(i, 1))1N+(ni)−
∑

i∈V \{J}

∑
j∈V \{J,i}

µjr(j, i)1N+(nj)︸ ︷︷ ︸
=−

∑
i∈V \{J} µi(1−r(i,J))1N+ (ni), since r(i,i)=0 for i∈V.

)

=
∑

(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ−1, nJ − 1)·

·
(
λJ +

∑
j∈V

µjr(j, J) + µ1r(1, J)1N+(n1)
)
· 1N+(nJ)

+
∑

(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ−1, nJ + 1) · µJ
(
r(J, 0) + r(J, 1) +

∑
j∈V \{J}

r(J, j)︸ ︷︷ ︸
=1, since r(J,J)=0.

)

⇔
∑

(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ) ·
(
λJ +

∑
j∈V

µjr(j, J)1{0}(nj) +
∑

i∈V \{J}

µir(i, J)1N+(ni)︸ ︷︷ ︸
=
∑
j∈V µjr(j,J), since r(J,J)=0.

+

+ µ1r(1, J)1N+(n1) + µJ1N+(nJ)
)

=
∑

(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ−1, nJ − 1)·

·
(
λJ +

∑
j∈V

µjr(j, J) + µ1r(1, J)1N+(n1)
)
· 1N+(nJ)

+
∑

(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ−1, nJ + 1) · µJ

⇔
∑

(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ) ·
(
λJ +

∑
j∈V

µjr(j, J) + µ1r(1, J) + µJ1N+(nJ)
)

−
∑

(n2,...,nJ−1)∈NJ−2

π(0, n2, ..., nJ)µ1r(1, J)

=
∑

(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ − 1) ·
(
λJ +

∑
j∈V

µjr(j, J) + µ1r(1, J)
)
· 1N+(nJ)

−
∑

(n2,...,nJ−1)∈NJ−2

π(0, n2, ..., nJ − 1)µ1r(1, J)1N+(nJ)

+
∑

(n1,...,nJ−1)∈NJ−1

π(n1, ..., nJ + 1) · µJ .

With π{1,J}(0, nJ) :=
∑

(n2,...,nJ−1)∈NJ−2 π(0, n2, ..., nJ) and
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πJ(nJ) :=
∑

(n1,...,nJ−1)∈NJ−1 π(n1, ..., nJ) this is equivalent to

πJ(nJ) ·
(
λJ +

∑
j∈V

µjr(j, J)︸ ︷︷ ︸
(4.26)

= ηJ−η1r(1,J)

+µ1r(1, J) + µJ1N+(nJ)
)
− π{1,J}(0, nJ)µ1r(1, J)

= πJ(nJ − 1) ·
(
λJ +

∑
j∈V

µjr(j, J) + µ1r(1, J)
)
· 1N+(nJ) + πJ(nJ + 1) · µJ

− π{1,J}(0, nJ − 1)µ1r(1, J)1N+(nJ).

(4.29) implies

πJ(nJ) ·
(
ηJ − η1r(1, J) + µ1r(1, J) + µJ1N+(nJ)

− µJ
ηJ

(
ηJ − η1r(1, J) + µ1r(1, J)

)
1N+(nJ)− ηJ

µJ
µJ

)
= π{1,J}(0, nJ)µ1r(1, J)− π{1,J}(0, nJ − 1)µ1r(1, J)1N+(nJ)

⇔ πJ(nJ) ·
(

(µ1 − η1)r(1, J)− µJ
ηJ

(µ1 − η1)r(1, J)1N+(nJ)
)

= (π{1,J}(0, nJ)− π{1,J}(0, nJ − 1)1N+(nJ))µ1r(1, J)

⇔ πJ(nJ) ·
(

1− η1

µ1︸ ︷︷ ︸
(4.27)

= π1(0)

)(
1− µJ

ηJ
1N+(nJ)

)
µ1r(1, J)

= (π{1,J}(0, nJ)− π{1,J}(0, nJ − 1)1N+(nJ))µ1r(1, J).

Since r(1, J) > 0 is assumed, it remains

πJ(nJ) · π1(0)
(

1− µJ
ηJ

1N+(nJ)
)

= π{1,J}(0, nJ)− π{1,J}(0, nJ − 1)1N+(nJ). (4.31)

The solution of the recursion (4.31) is

π{1,J}(0, nJ) = π1(0) · πJ(nJ) ∀nJ ∈ N, (4.32)

as proved by induction over nJ : The basis (nJ = 0) is trivial.
Induction hypothesis (IH): (4.32) is true for some (nJ − 1) ∈ N+. For the inductive step
we have to show that (4.32) also holds for nJ .

(4.31)⇔ π{1,J}(0, nJ) = πJ(nJ) · π1(0)
(

1− µJ
ηJ

1N+(nJ)
)

+ π{1,J}(0, nJ − 1)︸ ︷︷ ︸
(IH)
= π1(0)·πJ (nJ−1)

1N+(nJ)

= πJ(nJ) · π1(0)
(

1− µJ
ηJ

1N+(nJ)
)

+ π1(0) · πJ(nJ − 1)︸ ︷︷ ︸
(4.29)

=
µJ
ηJ
π(nJ )

1N+(nJ)

= πJ(nJ) · π1(0).

For deriving (4.32), J ∈ V was selected for easy notation. The proof for arbitrary i ∈ V
is similar. Hence (4.28) follows.
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The following example shows that independence of events similar to Proposition 4.23 is
not possible in general, if |W | > 1, i.e., there are several nodes without in�nite supply.

Example 4.24. Consider a Jackson network of three nodes, where W = {1, 2} and node
3 has in�nite supply but no immediate feedback. Let r(3, 0) < 1, so we are not in the
framework of Corollary 4.20. Then the tra�c equations are

ηi = λi +
2∑
j=1

ηjr(j, i) + µ3r(3, i), i = 1, 2, (4.33)

η3 = λ3 +
2∑
j=1

ηjr(j, i). (4.34)

Let ηi < µi hold for i = 1, 2, 3. For the queue length process X = ((X1(t), X2(t), X3(t)) :
t ∈ R+) we know from Theorem 4.15 that for all n1, n2 ∈ N holds

πW (n1, n2) =
∑
n3∈N

π(n1, n2, n3) =
2∏
i=1

(
1− ηi

µi

)(
ηi
µi

)ni
. (4.35)

We start the system with an initial distribution which has the marginal (4.35), so for all
n3 ∈ N holds

π3(n3) =
∑

(n1,n2)∈N2

π(n1, n2, n3) =

(
1− η3

µ3

)(
η3

µ3

)n3

. (4.36)

The global balance equations are ∀(n1, n2, n3) ∈ N3:

π(n1, n2, n3) ·
( 3∑
i=1

λi +
2∑
i=1

µ3r(3, i)1{0}(n3) +
2∑
i=1

µi(1− r(i, i))1N+(ni) + µ31N+(n3)
)

=
2∑
i=1

π(nk : k ∈ W \ {i}, ni − 1, n3) · (λi + µ3r(3, i)1{0}(n3))1N+(ni)+

+ π(n1, n2, n3 − 1) · λ31N+(n3)+

+
3∑
i=1

π(nk : k ∈ {1, 2, 3} \ {i}, ni + 1) · µir(i, 0)+

+ π(n1 + 1, n2 − 1, n3) · µ1r(1, 2)1N+(n2) + π(n1 − 1, n2 + 1, n3) · µ2r(2, 1)1N+(n1)+

+ π(n1 + 1, n2, n3 − 1) · µ1r(1, 3)1N+(n3) + π(n1 − 1, n2, n3 + 1) · µ3r(3, 1)1N+(n1)+

+ π(n1, n2 + 1, n3 − 1) · µ2r(2, 3)1N+(n3) + π(n1, n2 − 1, n3 + 1) · µ3r(3, 2)1N+(n2).
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Summing over all (n1, n2) ∈ N2 on both sides and shifting indices yields for �xed n3 ∈ N

∑
(n1,n2)∈N2

π(n1, n2, n3)·

·
( 3∑
i=1

λi +
2∑
i=1

µ3r(3, i)1{0}(n3) +
2∑
i=1

µi(1− r(i, i))1N+(ni) + µ31N+(n3)
)

=
∑

(n1,n2)∈N2

2∑
i=1

π(n1, n2, n3) · (λi + µ3r(3, i)1{0}(n3))+

+
∑

(n1,n2)∈N2

π(n1, n2, n3 − 1) · λ31N+(n3)+

+
∑

(n1,n2)∈N2

2∑
i=1

π(n1, n2, n3) · µir(i, 0)1N+(ni)+

+
∑

(n1,n2)∈N2

π(n1, n2, n3 + 1) · µ3r(3, 0)+

+
∑

(n1,n2)∈N2

π(n1, n2, n3) · µ1r(1, 2)1N+(n1)+

+
∑

(n1,n2)∈N2

π(n1, n2, n3) · µ2r(2, 1)1N+(n2)+

+
∑

(n1,n2)∈N2

π(n1, n2, n3 − 1) · µ1r(1, 3)1N+(n3)1N+(n1)+

+
∑

(n1,n2)∈N2

π(n1, n2, n3 + 1) · µ3r(3, 1)+

+
∑

(n1,n2)∈N2

π(n1, n2, n3 − 1) · µ2r(2, 3)1N+(n3)1N+(n2)+

+
∑

(n1,n2)∈N2

π(n1, n2, n3 + 1) · µ3r(3, 2)

⇔

∑
(n1,n2)∈N2

π(n1, n2, n3) ·
(
λ3 +

2∑
i=1

µir(i, 3)1N+(ni) + µ31N+(n3)
)

=
∑

(n1,n2)∈N2

π(n1, n2, n3 − 1) ·
(
λ3 +

2∑
i=1

µir(i, 3)1N+(ni)
)

1N+(n3)+

+
∑

(n1,n2)∈N2

π(n1, n2, n3 + 1) · µ3
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⇔
∑

(n1,n2)∈N2

π(n1, n2, n3)︸ ︷︷ ︸
=π3(n3)

·
(
λ3 +

2∑
i=1

µir(i, 3) + µ31N+(n3)
)

−
∑
n2∈N

π(0, n2, n3)µ1r(1, 3)−
∑
n1∈N

π(n1, 0, n3)µ2r(2, 3)

=
∑

(n1,n2)∈N2

π(n1, n2, n3 − 1)︸ ︷︷ ︸
=π3(n3−1)

·
(
λ3 +

2∑
i=1

µir(i, 3)
)

1N+(n3)+

−
∑
n2∈N

π(0, n2, n3 − 1)µ1r(1, 3)1N+(n3)−
∑
n1∈N

π(n1, 0, n3 − 1)µ2r(2, 3)1N+(n3)

+
∑

(n1,n2)∈N2

π(n1, n2, n3 + 1)︸ ︷︷ ︸
=π3(n3+1)

·µ3.

With π{1,3}(0, n3) :=
∑

n2∈N π(0, n2, n3) and π{2,3}(0, n3) :=
∑

n1∈N π(n1, 0, n3) this is
equivalent to

π3(n3) ·
(
λ3 +

2∑
i=1

µir(i, 3) + µ31N+(n3)
)
− π{1,3}(0, n3)µ1r(1, 3)− π{2,3}(0, n3)µ2r(2, 3)

= π3(n3 − 1) ·
(
λ3 +

2∑
i=1

µir(i, 3)
)

1N+(n3) + π3(n3 + 1) · µ3

− π{1,3}(0, n3 − 1)µ1r(1, 3)1N+(n3)− π{2,3}(0, n3 − 1)µ2r(2, 3)1N+(n3).

Plugging in (4.36) yields

π3(n3) ·
(

λ3︸︷︷︸
=η3−

∑2
i=1 ηir(i,3)

+
2∑
i=1

µir(i, 3) + µ31N+(n3)

− η3

µ3

µ3 −
µ3

η3

·
(
λ3 +

2∑
i=1

µir(i, 3)
)

1N+(n3)
)

= µ1r(1, 3)(π{1,3}(0, n3)− π{1,3}(0, n3 − 1)1N+(n3))+

+ µ2r(2, 3)(π{2,3}(0, n3)− π{2,3}(0, n3 − 1)1N+(n3))

⇔ π3(n3) ·
( 2∑
i=1

(µi − ηi)r(i, 3)− µ3

η3

2∑
i=1

(µi − ηi)r(i, 3)1N+(n3)
)

= µ1r(1, 3)(π{1,3}(0, n3)− π{1,3}(0, n3 − 1)1N+(n3))+

+ µ2r(2, 3)(π{2,3}(0, n3)− π{2,3}(0, n3 − 1)1N+(n3))
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⇔ π3(n3) ·
(

1− µ3

η3

1N+(n3)
) 2∑
i=1

(
1− ηi

µi︸ ︷︷ ︸
=πi(0)

)
µir(i, 3)

= µ1r(1, 3)(π{1,3}(0, n3)− π{1,3}(0, n3 − 1)1N+(n3))+

+ µ2r(2, 3)(π{2,3}(0, n3)− π{2,3}(0, n3 − 1)1N+(n3))

⇔ π3(n3) ·
(

1− µ3

η3

1N+(n3)
)

(π1(0)µ1r(1, 3) + π2(0)µ2r(2, 3))

= µ1r(1, 3)(π{1,3}(0, n3)− π{1,3}(0, n3 − 1)1N+(n3))+

+ µ2r(2, 3)(π{2,3}(0, n3)− π{2,3}(0, n3 − 1)1N+(n3)). (4.37)

Consider the case n3 = 0, then (4.37) reduces to

π3(0) · (π1(0)µ1r(1, 3) + π2(0)µ2r(2, 3)) = µ1r(1, 3)π{1,3}(0, 0) + µ2r(2, 3)π{2,3}(0, 0),

and this equation is valid if π{i,3}(0, 0) = πi(0) · π3(0) for i = 1, 2.
If r(i, 3) = 0 holds for one node i ∈ {1, 2}, node 3 with in�nite supply is only directly
accessible from W over node 3− i and it follows analogously as in Example 4.22 that

π{3−i,3}(0, n) = π3−i(0) · π3(n)

holds for all n ∈ N.

This example motivates:

Proposition 4.25. Consider a Jackson network where nodes in V ⊆ J̃ have an in�nite
supply of work as in De�nition 4.1. Nodes in W := J̃ \ V operate without in�nite supply.
Let the subset V be directly accessible from the subset W only via one node, say node
1 ∈ W , so

∑
j∈V r(1, j) > 0 and r(i, j) = 0 for all i ∈ W \ {1} and j ∈ V . We assume

that there is no immediate feedback at nodes with in�nite supply, i.e., r(i, i) = 0 for all
i ∈ V , and that all nodes are immediately accessible from nodes in i ∈ V , i.e., r(i, j) > 0
for all j ∈ J̃ . Let ηi < µi hold for all nodes i ∈ J̃ where η = (η1, ..., ηJ) is the unique
solution of the tra�c equations (4.1):

ηi = λi +
∑
j∈W

ηjr(j, i) +
∑
j∈V

µjr(j, i), i ∈ J̃ . (4.38)

Denote by X = ((X1(t), ..., XJ(t)) : t ≥ 0) the queue-length process on NJ and by
π(n1, ..., nJ) the stationary distribution of X. If the system is started with an initial
distribution which has the marginal

P (Xi(0) = ni : i ∈ W ) := πW (ni : i ∈ W ) =
∏
i∈W

(
1− ηi

µi

)(
ηi
µi

)ni
∀(ni : i ∈ W ) ∈ N|W |,

(4.39)

then for the joint marginal π{1,i}(0, n) :=
∑

(nk:k∈J̃\{1,i})∈NJ−2 π(n1, ..., nJ) of the stationary
distribution of X holds

π{1,i}(0, ni) = π1(0) · πi(ni) ∀i ∈ V ∀ni ∈ N, (4.40)
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where πi(ni) is the one-dimensional marginal queue length distribution for node i ∈ V

πi(ni) =

(
1− ηi

µi

)(
ηi
µi

)ni
∀ni ∈ N. (4.41)

Proof. From Theorem 4.15 we know that if we start the system with an initial distribution
which has the marginal (4.39), the marginal for any node i ∈ V is (4.41). The global
balance equations of X are for all (n1, ..., nJ) ∈ NJ :

π(n1, ..., nJ) ·
(∑
i∈J̃

λi +
∑
i∈J̃

∑
j∈V

µjr(j, i)1{0}(nj) +
∑
i∈J̃

µi(1− r(i, i))1N+(ni)
)

=
∑
i∈J̃

π(n1, ..., ni − 1, ..., nJ) ·
(
λi +

∑
j∈V

µjr(j, i)1{0}(nj)
)
· 1N+(ni)

+
∑
i∈J̃

π(n1, ..., ni + 1, ..., nJ) · µir(i, 0)

+
∑
i∈J̃

∑
j∈J̃\{i}

π(n1, ..., ni − 1, ..., nj + 1, ..., nJ)µjr(j, i)1N+(ni).

Summing over all (ni : i ∈ W ) ∈ N|W | yields

∑
(ni:i∈W )∈N|W |

π(n1, ..., nJ) ·
(∑
i∈J̃

λi +
∑
i∈J̃

∑
j∈V

µjr(j, i)1{0}(nj) +
∑
i∈J̃

µi(1− r(i, i))1N+(ni)
)

=
∑

(ni:i∈W )∈N|W |

∑
i∈J̃

π(n1, ..., ni − 1, ..., nJ) ·
(
λi +

∑
j∈V

µjr(j, i)1{0}(nj)
)
· 1N+(ni)

+
∑

(ni:i∈W )∈N|W |

∑
i∈J̃

π(n1, ..., ni + 1, ..., nJ) · µir(i, 0)

+
∑

(ni:i∈W )∈N|W |

∑
i∈J̃

∑
j∈J̃\{i}

π(n1, ..., ni − 1, ..., nj + 1, ..., nJ)µjr(j, i)1N+(ni)
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⇔ ∑
(ni:i∈W )∈N|W |

π(n1, ..., nJ) ·
(∑
i∈W

λi +
∑
i∈V

λi +
∑
i∈W

∑
j∈V

µjr(j, i)1{0}(nj)+

+
∑
i∈V

∑
j∈V

µjr(j, i)1{0}(nj) +
∑
i∈W

µi(1− r(i, i))1N+(ni) +
∑
i∈V

µi1N+(ni)
)

=
∑

(ni:i∈W )∈N|W |

∑
i∈W

π(n1, ..., ni, ..., nJ) ·
(
λi +

∑
j∈V

µjr(j, i)1{0}(nj)
)

+
∑

(ni:i∈W )∈N|W |

∑
i∈V

π(n1, ..., ni − 1, ..., nJ) ·
(
λi +

∑
j∈V

µjr(j, i)1{0}(nj)
)
· 1N+(ni)

+
∑

(ni:i∈W )∈N|W |

∑
i∈W

π(n1, ..., ni, ..., nJ) · µir(i, 0)1N+(ni)

+
∑

(ni:i∈W )∈N|W |

∑
i∈V

π(n1, ..., ni + 1, ..., nJ) · µir(i, 0)

+
∑

(ni:i∈W )∈N|W |

∑
i∈W

∑
j∈W\{i}

π(n1, ..., ni, ..., nj, ..., nJ)µjr(j, i)1N+(nj)

+
∑

(ni:i∈W )∈N|W |

∑
i∈W

∑
j∈V

π(n1, ..., ni, ..., nj + 1, ..., nJ)µjr(j, i)

+
∑

(ni:i∈W )∈N|W |

∑
i∈V

∑
j∈W

π(n1, ..., ni − 1, ..., nj, ..., nJ)µjr(j, i)1N+(ni)1N+(nj)

+
∑

(ni:i∈W )∈N|W |

∑
i∈V

∑
j∈V \{i}

π(n1, ..., ni − 1, ..., nj + 1, ..., nJ)µjr(j, i)1N+(ni)

⇔ ∑
(ni:i∈W )∈N|W |

π(n1, ..., nJ) ·
(∑
i∈V

λi +
∑
i∈V

∑
j∈V

µjr(j, i)1{0}(nj)+

+
∑
i∈W

µi
∑
j∈V

r(i, j)1N+(ni) +
∑
i∈V

µi1N+(ni)
)

=
∑

(ni:i∈W )∈N|W |

∑
i∈V

π(n1, ..., ni − 1, ..., nJ)·

·
(
λi +

∑
j∈V

µjr(j, i)1{0}(nj) +
∑
j∈W

µjr(j, i)1N+(nj)
)
· 1N+(ni)

+
∑

(ni:i∈W )∈N|W |

∑
i∈V

π(n1, ..., ni + 1, ..., nJ) · µi
(

1−
∑
j∈V

r(i, j)
)

+
∑

(ni:i∈W )∈N|W |

∑
i∈V

∑
j∈V \{i}

π(n1, ..., ni − 1, ..., nj + 1, ..., nJ)µjr(j, i)1N+(ni).

Now we select one node in V , �x its state, and sum over all possible states of the remaining
nodes in V . Let for readability node J have in�nite supply, i.e., J ∈ V . Summing over
all (nj : j ∈ V \ {J}) ∈ N|V |−1 yields for �xed nJ ∈ N:
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∑
(ni:i∈J̃\{J})∈NJ−1

π(n1, ..., nJ)·

·
(
λJ +

∑
i∈V \{J}

λi +
∑
j∈V

µjr(j, J)1{0}(nj) +
∑

i∈V \{J}

∑
j∈V

µjr(j, i)1{0}(nj)+

+
∑
i∈W

µir(i, J)1N+(ni) +
∑
i∈W

µi
∑

j∈V \{J}

r(i, j)1N+(ni) + µJ1N+(nJ) +
∑

i∈V \{J}

µi1N+(ni)
)

=
∑

(ni:i∈J̃\{J})∈NJ−1

π(n1, ..., nJ−1, nJ − 1)·

·
(
λJ +

∑
j∈V

µjr(j, J)1{0}(nj) +
∑
j∈W

µjr(j, J)1N+(nj)
)
· 1N+(nJ)

+
∑

(ni:i∈J̃\{J})∈NJ−1

∑
i∈V \{J}

π(n1, ..., ni − 1, ..., nJ)·

·
(
λi +

∑
j∈V

µjr(j, i)1{0}(nj) +
∑
j∈W

µjr(j, i)1N+(nj)
)
· 1N+(ni)

+
∑

(ni:i∈J̃\{J})∈NJ−1

π(n1, ..., nJ−1, nJ + 1) · µJ
(

1−
∑
j∈V

r(J, j)
)

+
∑

(ni:i∈J̃\{J})∈NJ−1

∑
i∈V \{J}

π(n1, ..., ni + 1, ..., nJ) · µi
(

1−
∑
j∈V

r(i, j)
)

+
∑

(ni:i∈J̃\{J})∈Nj1

∑
j∈V \{J}

π(n1, ..., nj + 1, ..., nJ − 1)µjr(j, J)1N+(nJ)

+
∑

(ni:i∈J̃\{J})∈Nj1

∑
i∈V \{J}

π(n1, ..., ni − 1, ..., nJ + 1)µJr(J, i)1N+(ni)

+
∑

(ni:i∈J̃\{J})∈Nj1

∑
i∈V \{J}

∑
j∈V \{i,J}

π(n1, ..., ni − 1, ..., nj + 1, ..., nJ)µjr(j, i)1N+(ni)
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⇔
∑

(ni:i∈J̃\{J})∈NJ−1

π(n1, ..., nJ)·

·
(
λJ +

∑
i∈V \{J}

λi +
∑
j∈V

µjr(j, J)1{0}(nj) +
∑

i∈V \{J}

∑
j∈V

µjr(j, i)1{0}(nj)+

+
∑
i∈W

µir(i, J)1N+(ni) +
∑
i∈W

µi
∑

j∈V \{J}

r(i, j)1N+(ni) + µJ1N+(nJ) +
∑

i∈V \{J}

µi1N+(ni)
)

=
∑

(ni:i∈J̃\{J})∈NJ−1

π(n1, ..., nJ−1, nJ − 1)·

·
(
λJ +

∑
j∈V

µjr(j, J)1{0}(nj) +
∑
j∈W

µjr(j, J)1N+(nj)
)
· 1N+(nJ)

+
∑

(ni:i∈J̃\{J})∈NJ−1

∑
i∈V \{J}

π(n1, ..., nJ)·

·
(
λi +

∑
j∈V

µjr(j, i)1{0}(nj) +
∑
j∈W

µjr(j, i)1N+(nj)
)

+
∑

(ni:i∈J̃\{J})∈NJ−1

π(n1, ..., nJ−1, nJ + 1) · µJ
(

1−
∑
j∈V

r(J, j)
)

+
∑

(ni:i∈J̃\{J})∈NJ−1

∑
i∈V \{J}

π(n1, ..., nJ) · µi
(

1−
∑
j∈V

r(i, j)
)
· 1N+(ni)

+
∑

(ni:i∈J̃\{J})∈NJ−1

∑
j∈V \{J}

π(n1, ..., nJ − 1)µjr(j, J)1N+(nJ)1N+(nj)

+
∑

(ni:i∈J̃\{J})∈NJ−1

∑
i∈V \{J}

π(n1, ..., nJ + 1)µJr(J, i)

+
∑

(ni:i∈J̃\{J})∈NJ−1

∑
i∈V \{J}

∑
j∈V \{i,J}

π(n1, ..., nJ)µjr(j, i)1N+(nj)

⇔

∑
(ni:i∈J̃\{J})∈NJ−1

π(n1, ..., nJ) ·
(
λJ +

∑
j∈V

µjr(j, J) +
∑
i∈W

µir(i, J)1N+(ni) + µJ1N+(nJ)
)

=
∑

(ni:i∈J̃\{J})∈NJ−1

π(n1, ..., nJ−1, nJ − 1)·

·
(
λJ +

∑
j∈V

µjr(j, J) +
∑
j∈W

µjr(j, J)1N+(nj)
)
· 1N+(nJ)

+
∑

(ni:i∈J̃\{J})∈NJ−1

π(n1, ..., nJ−1, nJ + 1) · µJ .

With π{i,J}(0, nJ) :=
∑

(ni:i∈J̃\{J,i})∈NJ−2 π(ni : i ∈ J̃ \ {i}, 0) and
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πj(nj) :=
∑

(ni:i∈J̃\{j})∈NJ−1 π(n1, ..., nJ) this is equivalent to

πJ(nJ) ·
(
λJ +

∑
j∈V

µjr(j, J)︸ ︷︷ ︸
(4.38)

= ηJ−
∑
j∈W ηjr(j,J)

+
∑
i∈W

µir(i, J) + µJ1N+(nJ)
)
−
∑
i∈W

π{i,J}(0, nJ)µir(i, J)

= πJ(nJ − 1) ·
(
λJ +

∑
j∈V

µjr(j, J) +
∑
j∈W

µjr(j, J)
)
· 1N+(nJ) + πJ(nJ + 1) · µJ

−
∑
j∈W

π{i,J}(0, nJ − 1)µjr(j, J) · 1N+(nJ).

(4.41) implies

πJ(nJ) ·
(
ηJ −

∑
j∈W

ηjr(j, J) +
∑
i∈W

µir(i, J) + µJ1N+(nJ)

− µJ
ηJ
·
[
ηJ −

∑
j∈W

ηjr(j, J) +
∑
j∈W

µjr(j, J)
]
· 1N+(nJ)− ηJ

µJ
µJ

)
=
∑
i∈W

π{i,J}(0, nJ)µir(i, J)−
∑
j∈W

π{i,J}(0, nJ − 1)µjr(j, J) · 1N+(nJ)

⇔

πJ(nJ) ·
(
−
∑
j∈W

ηjr(j, J) +
∑
j∈W

µjr(j, J)

− µJ
ηJ
·
[
−
∑
j∈W

ηjr(j, J) +
∑
j∈W

µjr(j, J)
]
· 1N+(nJ)

)
=
∑
i∈W

π{i,J}(0, nJ)µir(i, J)−
∑
j∈W

π{i,J}(0, nJ − 1)µjr(j, J) · 1N+(nJ)

⇔

πJ(nJ) ·
(

1− µJ
ηJ
· 1N+(nJ)

)∑
j∈W

(µj − ηj)r(j, J)

=
∑
i∈W

(π{i,J}(0, nJ)− π{i,J}(0, nJ − 1) · 1N+(nJ))µjr(j, J).

With the assumptions r(1, J) > 0 and
∑

j∈W\{1} r(j, J) = 0, it follows directly

πJ(nJ) ·
(

1− µJ
ηJ
· 1N+(nJ)

)
(µ1 − η1)r(1, J)

= (π{1,J}(0, nJ)− π{1,J}(0, nJ − 1) · 1N+(nJ))µ1r(1, J)

⇔ πJ(nJ) ·
(

1− µJ
ηJ
· 1N+(nJ)

)(
1− η1

µ1

)
︸ ︷︷ ︸
(4.39)

= π1(0)

= π{1,J}(0, nJ)− π{1,J}(0, nJ − 1) · 1N+(nJ).

The solution of the recursion is

π{1,J}(0, nJ) = π1(0) · πJ(nJ) ∀nJ ∈ N, (4.42)
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as proved by induction over nJ , see the end of Proof of Proposition 4.23, p.77. For deriving
(4.42), J ∈ V was selected for easy notation. The proof for arbitrary j ∈ V is similar.
Hence (4.40) follows.

The analysis of the structure of the stationary and limiting distribution which in general
is not of product form led to the following observation on independence in space:
Whenever a Jackson network with in�nite supply features a subset of nodes without
in�nite supply where there is only one node, say node i∗, from which customers are
transfered directly to the subset V of nodes with in�nite supply (which have no immediate
feedback) with positive probability, then in equilibrium the two events

• node i∗ is empty at a time t,

• node j ∈ V has a queue length of n customers at time t,

are independent of each other, although it holds for the routing probability r(j, i∗) > 0
for all j ∈ V .
We do not know whether this observation is an artifact only but it is striking that in case
of a product form stationary and limiting distribution the independence of these events
is part of the independence structure in space at a given �xed time instant.

4.4 The non-ergodic case

It is known from Chapter 1 that classical Jackson networks which have at least one unsta-
ble node cannot be ergodic, so there cannot exist a steady-state distribution for the global
network process. The next theorem shows that under certain conditions, the marginal
limiting distribution for the stable nodes is a stationary distribution.

Theorem 4.26. Consider a Jackson network where nodes in V ⊆ J̃ have an in�nite
supply of work as in De�nition 4.1. Nodes in W := J̃ \ V operate without in�nite supply.
Denote by η = (η1, ..., ηJ) the unique solution of the tra�c equations (4.5).
S := {i ∈ J̃ : ηi < µi} is the set of stable nodes, nodes in U := J̃ \ S are unstable. We
assume that all nodes without in�nite supply of work are stable, i.e., W ∩ U = ∅. In this
situation the tra�c equations (4.5) reduce to

ηi = λi +
∑
j∈W

ηjr(j, i) +
∑
j∈V

µjr(j, i), i ∈ J̃ . (4.43)

Denote by X = ((X1(t), ..., XJ(t)) : t ≥ 0) the queue-length process on NJ .

(i) For nodes without in�nite supply, the joint marginal limiting distribution is of prod-
uct form:

lim
t→∞

P (Xi(t) = ni : i ∈ W ) =
∏
i∈W

(
1− ηi

µi

)(
ηi
µi

)ni
, (4.44)

for all (ni, i ∈ W ) ∈ N|W |, and this is a one-dimensional stationary distribution on
W as well.
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(ii) If the system is started with an initial distribution which has (4.44) as marginal
joint queue lengths distribution on W , the arrival stream from j ∈ W to i ∈ V is
Poisson with rate ηjr(j, i). All these Poisson streams are independent.

(iii) If the system is started with an initial distribution which has (4.44) as marginal joint
queue lengths distribution on W , then for a stable node i ∈ V ∩S with in�nite supply
and without immediate feedback (i.e., r(i, i) = 0) the marginal limiting distribution
is

lim
t→∞

P (Xi(t) = ni) =

(
1− ηi

µi

)(
ηi
µi

)ni
, (4.45)

for all ni ∈ N, and this is a one-dimensional stationary distribution as well.

(iv) If the system is started with an initial distribution which has (4.44) as marginal
joint queue lengths distribution on W , then for unstable nodes with in�nite supply,
i ∈ U ⊆ V , and without immediate feedback the limit of the marginal queue length
probability is

lim
t→∞

P (Xi(t) = ni) = 0 (4.46)

for all ni ∈ N.

Proof. (i): Consider the subsetW of nodes without in�nite supply. We have the following
information about the subnetwork:

• All service times are exponentially distributed and the service discipline at all nodes
is FCFS.

• Routing of customers is Markovian: A customer completing service at node i ∈ W
will either move to some node j ∈ W with probability r(i, j) or leave the subnetwork
with probability 1−

∑
j∈W r(i, j) =: r̃(i, 0), which is non-zero for some i ∈ W because

of the routing matrix being irreducible for the global network on J̃ .

• At each node i ∈ W , we have an external Poisson arrival stream from the source
with rate λi ≥ 0. Furthermore all streams from nodes j ∈ V with in�nite supply into
nodes i ∈ W are Poisson streams with rate µjr(j, i), see Theorem 4.3. All (inter-)
arrival times from the source and from nodes in V into node i ∈ W constitute a
set of independent random variables. So these Poisson processes are independent
of each other. Thus all arrival streams from the outside of the subnetwork into
each node i ∈ W are a Poisson process with rate λi +

∑
j∈V µjr(j, i), and these

superpositions are independent over i ∈ W .

• All service and inter-arrival times constitute a set of independent random variables.

All these properties guarantee that the subnetwork W acts as a Jackson network with
|W | nodes where the source and sink is denoted by {0} ∪ V , see De�nition 1.1. The
corresponding queueing process X̃ := ((X̃i(t) : i ∈ W ) : t ∈ R+) is a Markov process of
its own. The tra�c equations of the described subnetwork W are given by

η̃i = λ̃i +
∑
j∈W

η̃jr(j, i), i ∈ W,
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where λ̃i := λi +
∑

j∈V µjr(j, i), so ηi = η̃i holds for all i ∈ W , see (4.43). According

to Jackson's theorem (see Theorem 1.10), X̃ has the unique stationary and limiting
distribution (4.44) if and only if η̃i < µi holds for all i ∈ W . This condition is equivalent
to ηi < µi for all i ∈ W which was assumed.
So the subnetwork on W is in equilibrium, if and only if the global network process on J̃
is started with an initial distribution which has the marginal (4.44).

(ii): It is well known that ergodic Jackson networks with Poisson arrival streams from the
source to node i with some rate λ̃i have, in equilibrium, Poisson departure streams from
node i to the sink with some rate η̃ir̃(i, 0), see [Mel79b, Example 7.1]. From the proof of
(i), we know that the subset W behaves like an ergodic Jackson network of its own with
λ̃i := λi +

∑
j∈V µjr(j, i) and

η̃ir̃(i, 0) = ηi

(
1−

∑
j∈W

r(i, j)
)

= ηi

(
r(i, 0) +

∑
j∈V

r(i, j)
)
.

Hence, if the subnetwork W is in equilibrium, departures to the sink from node i ∈ W
are a Poisson stream with rate ηir(i, 0) and departures to any node j ∈ V are also a
Poisson stream with rate ηir(i, j), because a portion r(i,j)

r(i,0)+
∑
j∈V r(i,j)

of the departure

stream η̃ir̃(i, 0) from node i ∈ W is directed to j ∈ V .

(iii)-(iv): Consider some �xed node i ∈ V with in�nite supply and without immediate
feedback, i.e., r(i, i) = 0:

• The node has exponential-µi distributed service, the service discipline is FCFS.

• Routing of customers is Markovian: A customer arriving at node i, waits in the line
until he gets service, after the service he proceeds to another node j ∈ J̃ \ {i} with
probability r(i, j) or leaves the network with probability r(i, 0). Thus, the customer
leaves node i after complete service with probability

r(i, 0) +
∑

j∈J̃\{i}

r(i, j) = 1− r(i, i) = 1.

• The external arrival stream is Poisson with rate λi ≥ 0. From (ii) it follows directly
that, if the global network process is started with an initial distribution which has
the marginal (4.44) on W , the arrival streams at node i ∈ V from nodes j ∈ W
are Poisson streams with rate ηjr(j, i). Arrival streams from nodes j ∈ V \ {i} are
Poisson streams with rate µjr(j, i), see Theorem 4.3. All these Poisson streams are
independent from each other. Thus the arrival stream at node i ∈ V is a Poisson
process with rate

λ̂i := λi +
∑
j∈W

ηjr(j, i) +
∑

j∈V \{i}

µjr(j, i).

• All service and inter-arrival times constitute a set of independent random variables.
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Thus, if the subnetwork W is in equilibrium and if r(i, i) = 0 holds for all i ∈ V , node
i ∈ V behaves like an (M/M/1)− system of its own. The corresponding queue length
process X̂ is a Markov process on the state space N. Customers who arrive from the
in�nite supply storage of this node are not counted as waiting customers. The tra�c
equation is then given by

η̂i = λ̂i = λi +
∑
j∈W

ηjr(j, i) +
∑

j∈V \{i}

µjr(j, i),

thus η̂i = ηi holds (see (4.43) with r(i, i) = 0 ∀i ∈ V ).
If the balance equations of X̂ have a probability solution, then this solution is the unique
stationary and limiting distribution of X̂. The balance equations are for all n ∈ N

πi(n)(λ̂i + µi1N+(n)) = πi(n− 1)λ̂i1N+(n) + πi(n+ 1)µi

⇔ πi(n)(ηi + µi1N+(n)) = πi(n− 1)ηi1N+(n) + πi(n+ 1)µi,

which are solved by πi(n) =
(
ηi
µi

)n
. Normalizing the solution to

πi(n) =

(
1− ηi

µi

)(
ηi
µi

)n
yields a probability measure if and only if ηi < µi holds. If this condition does not hold,
the node is unstable and the according network process of the (M/M/1)− system is not
ergodic, so the limit of the queue length probabilities are zero for all states in N and
therefore the limiting queue length distribution degenerates to a one-point distribution in
∞.

With the proof of Theorem 4.26(i) the following corollary is veri�ed:

Corollary 4.27. In the setting of Theorem 4.26, the process XW := (Xi : i ∈ W ) is an
ergodic homogeneous Markov process of its own.

Theorem 4.28. Consider a Jackson network where nodes in V have an in�nite supply
of work as in De�nition 4.1. Nodes in W := J̃ \ V operate without in�nite supply.
Denote by η = (η1, ..., ηJ) the unique solution of the tra�c equations (4.5).
S := {i ∈ J̃ : ηi < µi} is the set of stable nodes, nodes in U := J̃ \S are unstable. Denote
by X = ((X1(t), ..., XJ(t)) : t ≥ 0) the queue-length process on NJ .
Then we have independent of the initial distribution for all ni ∈ N:

lim
t→∞

P (Xi(t) = ni : i ∈ S ∩W ) =
∏

i∈S∩W

(
1− ηi

µi

)(
ηi
µi

)ni
, (4.47)

lim
t→∞

P (Xi(t) = ni) = 0 ∀i ∈ U ∩W. (4.48)

Proof. Consider the subset W of nodes without in�nite supply. We have the following
information about the subnetwork:

• All service times are exponentially distributed and the service discipline at all nodes
is FCFS.
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• Routing of customers is Markovian: A customer completing service at node i ∈ W
will either move to some node j ∈ W with probability r(i, j) or leave the subnetwork
with probability 1−

∑
j∈W r(i, j), which is non-zero for some subset of W because

of the routing matrix being irreducible for the global network on J̃ .

• At each node i ∈ W , we have external arrival streams from the source which are
Poisson streams with rate λi ≥ 0. Furthermore all streams from nodes j ∈ V
with in�nite supply into nodes i ∈ W are Poisson streams with rate µjr(j, i), see
Theorem 4.3. All (inter-)arrival times from the source and from nodes in V into node
i ∈ W constitute a set of independent random variables. So the Poisson processes
are independent of each other. Thus all arrival streams from the outside of the
subnetwork into each node i ∈ W are a Poisson process with rate λi+

∑
j∈V µjr(j, i).

• All service and inter-arrival times at each node are independent of each other.

All these properties guarantee that the subnetwork W acts as a Jackson network with
|W | nodes where the source and sink is denoted by {0} ∪ V , see De�nition 1.1. The
corresponding queueing process X̃ := ((X̃i(t) : i ∈ W ) : t ∈ R+) is a Markov process of
its own. The tra�c equations of the described subnetwork W are given by

η̃i = λ̃i +
∑
j∈W

min(η̃j, µj)r(j, i), i ∈ W,

where λ̃i := λi +
∑

j∈V µjr(j, i), so ηi = η̃i holds for all i ∈ W , see (4.5). According

to Theorem 1.22, X̃ has the limiting marginal joint queue length distribution (4.47) on
S∩W and the limiting marginal queue length probabilities (4.48) for nodes in U ∩W .

Remark 4.29. In the general situation of Theorem 4.28 we cannot prove a statement
about the marginal limiting distribution like (4.45) for stable nodes with in�nite supply
(∈ S ∩ V ). If U ∩W 6= ∅ holds, the queue length process of the subnetwork W is not
ergodic, so the argument of Poisson departure streams from W into nodes in V does not
apply. If U ∩W = ∅ holds, Theorem 4.26 applies.

4.5 Performance measures

The computation of the throughput is a little bit di�erent compared to Chapter 1, Section
1.2.3, due to the in�nite supply.

De�nition 4.30. Consider an ergodic Jackson network with in�nite supply. The station-
ary throughput THi of a node i ∈ W without in�nite supply is

THi =
∑

(n1,...,nJ )∈NJ
π(n1, ..., nJ)µi1N+(ni),

the stationary throughput THj of a node j ∈ V with in�nite supply is

THj =
∑

(n1,...,nJ )∈NJ
π(n1, ..., nJ)µj.
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The stationary throughput TH of the network is

TH =
∑
i∈W

THir(i, 0) +
∑
j∈V

THjr(j, 0).

Proposition 4.31. Consider a Jackson network where nodes in V ⊆ J̃ have an in�nite
supply of work as in De�nition 4.1. Nodes in W := J̃ \ V operate without in�nite supply.
Let for all nodes i ∈ J̃ hold ηi < µi where η = (η1, ..., ηJ) is the unique solution of the
tra�c equations (4.1).
Then the stationary throughput of nodes i ∈ W without in�nite supply is THi = ηi. Let
r(j, j) = 0 hold for all j ∈ V , then the stationary throughput of nodes j ∈ V with in�nite
supply is THj = µj and the stationary throughput of the system is

TH = λ−
∑
i∈V

(ηi − µi) > λ.

Proof. The proof uses the results of Theorem 4.15. For i ∈ W we get

THi =
∑

(n1,...,nJ )∈NJ
π(n1, ..., nJ)µi1N+(ni) =

∑
(nj :j∈W )∈N|W |

µi1N+(ni)
∑

(nj :j∈V )∈N|V |
π(n1, ..., nJ)

︸ ︷︷ ︸
=πW (nj :j∈W )

=
∑

(nj :j∈W )∈N|W |
µi1N+(ni)

∏
k∈W

(
1− ηk

µk

)(
ηk
µk

)nk
=
∑
ni∈N

(
1− ηi

µi

)(
ηi
µi

)ni
µi1N+(ni)

=
∑
ni∈N

(
1− ηi

µi

)(
ηi
µi

)ni+1

µi = ηi,

and for j ∈ V :

THj =
∑

(n1,...,nJ )∈NJ
π(n1, ..., nJ)µj = µj

∑
(n1,...,nJ )∈NJ

π(n1, ..., nJ)

︸ ︷︷ ︸
=
∑
nj∈N

πj(nj)=1

= µj.

The throughput of the system is

TH =
∑
j∈J̃

THjr(j, 0) =
∑
j∈W

THjr(j, 0) +
∑
j∈V

THjr(j, 0)

=
∑
j∈W

ηjr(j, 0) +
∑
j∈V

µjr(j, 0)
Remark 4.5

= λ−
∑
j∈V

(ηj − µj︸ ︷︷ ︸
<1

) > λ.

Example 4.32. Let g : NJ → R denote a non-decreasing cost function which determines
costs associated with queue lengths. The quality of a system is often measured by the
average accumulated cost over a time horizon [0, T ],

d(T ) =
1

T

∫ T

0

g(Xi(t), i ∈ J̃) dt.
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Note, that this is an empirical measure which depends on the realized path of the system.
If X is ergodic with stationary distribution π as in Corollary 4.20 and if∑

(ni:i∈J̃)∈NJ

|g(n1, ..., nJ)|π(n1, ..., nJ) <∞,

then the ergodic theorem (see Theorem 1.14) yields that for any initial distribution PX(0)

holds PPX(0)-a.s.

lim
T→∞

1

T

∫ T

0

g(X1(t), ..., XJ(t))dt =
∑

(ni:i∈J̃)∈NJ

g(n1, ..., nJ)π(n1, ..., nJ).

This means that the path-wise evaluated time average converges to the state space average
in equilibrium, so path-wise evaluated time averages for a time horizon [0, T ] with large T
can be estimated by state space averages in ergodic Jackson networks:

1

T

∫ T

0

g(X1(t), ..., XJ(t))dt ≈
∑

(ni:i∈J̃)∈NJ

g(n1, ..., nJ)
J∏
j=1

(
1− ηj

µj

)(
ηj
µj

)nj
.

But also if the Jackson network with in�nite supply has no product form stationary queue
length distribution, one may predict the average accumulated cost over a time horizon.

Example 4.33. Let
gi : N→ R

denote a non-decreasing cost function which determines costs associated with a queue
length at some node i ∈ V with in�nite supply and

gW : N|W | → R

denote a non-decreasing cost function which determines costs associated with a queue
length at nodes i ∈ W without in�nite supply. The average accumulated cost of the
system over a time horizon [0, T ] is

d(T ) =
∑
i∈V

1

T

∫ T

0

gi(Xi(t)) dt+
1

T

∫ T

0

gW (Xi(t) : i ∈ W ) dt.

If ηi < µi holds for all i ∈ J̃ and if
∑

(ni:i∈W )∈N|W | |gW (ni : i ∈ W )|πW (ni : i ∈ W ) < ∞,
then the ergodic theorem (see Theorem 1.14) yields that almost surely holds under any
initial distribution

lim
T→∞

1

T

∫ T

0

gW (Xi(t) : i ∈ W )dt =
∑

(ni:i∈W )∈N|W |
gW (ni : i ∈ W )πW (ni : i ∈ W ).

If ηi < µi holds for all i ∈ J̃ and r(i, i) = 0 for all i ∈ V , and if
∑

ni∈N |gi(ni)|πi(ni) <∞
for all i ∈ V , then the ergodic theorem yields that almost surely holds under any initial
distribution

lim
T→∞

1

T

∫ T

0

gi(Xi(t)) dt =
∑
ni∈N

gi(ni)πi(ni) ∀i ∈ V.
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So the path-wise evaluated time averages for a time horizon [0, T ] with large T can be
estimated by state space averages in ergodic Jackson networks with in�nite supply:

d(T ) ≈
∑
i∈V

∑
ni∈N

gi(ni)

(
1− ηi

µi

)(
ηi
µi

)ni
+

∑
(ni:i∈W )∈N|W |

gW (ni : i ∈ W )
∏
i∈W

(
1− ηi

µi

)(
ηi
µi

)ni
.

For non-ergodic Jackson networks with in�nite supply, we use the properties described in
Theorem 4.26 and Corollary 4.27 to de�ne the stationary throughput the following way:

De�nition 4.34. Consider a Jackson network with in�nite supply where nodes without
in�nite supply are stable. The stationary throughput THi of a node i ∈ W without in�nite
supply is

THi =
∑

(nj :j∈W )∈N|W |
πW (nj : j ∈ W )µi1N+(ni),

the stationary throughput THj of a stable node j ∈ V with in�nite supply is

THj =
∑
nj∈N

πj(nj)µj.

The stationary throughput THS of the subnetwork of stable nodes is

THS =
∑
i∈W

THir(i, 0) +
∑
j∈V ∩S

THjr(j, 0).

Proposition 4.35. Consider a Jackson network where nodes in V ⊆ J̃ have an in�nite
supply of work as in De�nition 4.1. Nodes in W := J̃ \ V operate without in�nite supply.
Denote by η = (η1, ..., ηJ) the unique solution of the tra�c equations (4.5).
S := {i ∈ J̃ : ηi < µi} is the set of stable nodes, nodes in U := J̃ \ S are unstable. We
assume that all nodes without in�nite supply of work are stable, i.e., W ∩ U = ∅. In this
situation the tra�c equations (4.5) reduce to (4.1).
Then the stationary throughput of nodes i ∈ W without in�nite supply is THi = ηi.
Let r(j, j) = 0 hold for all j ∈ V ∩ S, then the stationary throughput of nodes j ∈ V ∩ S
with in�nite supply is THj = µj and the throughput of the stable subnetwork is

THS = λ−
∑
i∈V

(ηi − µi)−
∑

j∈V ∩U

µjr(j, 0).

Proof. The proof uses the results of Theorem 4.26. For i ∈ W we get

THi =
∑

(nj :j∈W )∈N|W |
πW (nj : j ∈ W )µi1N+(ni) =

∑
ni∈N

πi(ni)µi1N+(ni)

=
∑
ni∈N

πi(ni + 1)µi =
∑
ni∈N

(
1− ηi

µi

)(
ηi
µi

)ni+1

µi = ηi,

and for j ∈ V ∩ S:

THj =
∑
nj∈N

πj(nj)︸ ︷︷ ︸
=1

µj = µj.
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The throughput of the subnetwork S is

THS =
∑
i∈W

THir(i, 0) +
∑
j∈V ∩S

THjr(j, 0) =
∑
i∈W

ηir(i, 0) +
∑
j∈V ∩S

µjr(j, 0)

Remark 4.5
= λ−

∑
j∈V

(ηj − µj)−
∑

j∈V ∩U

µjr(j, 0).

Example 4.36. Let
gW : N|W | → R

denote a non-decreasing cost function which determines costs associated with a queue
length at nodes i ∈ W without in�nite supply. In case of non-ergodic Jackson networks
with in�nite supply we cannot apply the ergodic theorem to assess average costs in general.
In case W ∩ U = ∅, at least the average accumulated costs of the subsystem W over a
time horizon [0, T ] may be predicted:

d(T ) =
1

T

∫ T

0

gW (Xi(t) : i ∈ W ) dt.

If
∑

(ni:i∈W )∈N|W | |gW (ni : i ∈ W )|πW (ni : i ∈ W ) < ∞, then the ergodic theorem (see
Theorem 1.14) yields for the ergodic homogeneous Markov process XW (see Corollary
4.27) that almost surely holds

lim
T→∞

1

T

∫ T

0

gW (Xi(t) : i ∈ W )dt =
∑

(ni:i∈W )∈N|W |
gW (ni : i ∈ W )πW (ni : i ∈ W ).

So, even in non-ergodic Jackson networks with in�nite supply, the path-wise evaluated
time averages on the subnet W for a time horizon [0, T ] with large T can be estimated by
state space averages:

d(T ) ≈
∑

(ni:i∈W )∈N|W |
gW (ni : i ∈ W )

∏
i∈W

(
1− ηi

µi

)(
ηi
µi

)ni
.

4.6 Breakdowns of nodes

4.6.1 Introduction

In this section, we consider Jackson networks with in�nite supply of work at some nodes
where some nodes break down randomly and are repaired thereafter. Breakdowns of
nodes without in�nite supply of work were already investigated in Chapter 2 and parts
of the techniques are adapted here. It turns out that breakdowns of nodes with in�nite
supply require a more speci�c regime to control breakdown and repair behavior.

A breakdown of a node with in�nite supply is handled as follows:
Whenever a node with in�nite supply breaks down, the server of this node is broken
down and does not serve any customers. This means that this station serves neither
customers queued in the line, nor low priority customers from the storage of the in�nite
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supply of work (which only appear if the node is empty). Thus as already de�ned in
Chapter 2, there are no departures from broken down nodes. Since an in�nite supply
is unambiguously allocated to a node, the low priority customers are not subject to
rerouting if the according node breaks down.

So, all together, in case of broken down stations we assume that at down nodes

• no service is provided,

• customers which are present at a station when this station breaks down are frozen
and stay there, waiting for service until the station is repaired,

• no new customers are admitted, customers who want to visit a down node are
rerouted according to the already de�ned rules: stalling (see De�nition 2.6), skipping
(see De�nition 2.7) or blocking rs-rd (see De�nition 2.8),

• low priority customers from an in�nite supply at a down node i ∈ V ∩ I (if nodes
in I are broken down) are also frozen and wait until the station is repaired, so they
are not subject to rerouting.

Breakdown and repair intensities are de�ned as in Example 2.2, so the breakdown and
repair rates may depend on the interaction of nodes but not on their queue length nor on
the in�nite supply. Since the low priority customers from the in�nite supply at a node
do not count as queued customers - even if one of them is in service -, they would not
directly in�uence load-dependent breakdown and repair intensities.

De�nition 4.37 (Jackson network with unreliable nodes and in�nite supply). Consider
a Jackson network with unreliable nodes with node set J̃ = {1, ..., J}. Denote by D ⊆ J̃
the subset of unreliable nodes. V ⊆ J̃ is the set of nodes with an in�nite supply of work,
nodes in W = J̃ \ V operate without in�nite supply.
The breakdown and repair intensities may depend on the interaction of nodes but not on
their load, as in Example 2.2. Rerouting regime is either stalling, skipping, or blocking
rs-rd according to the De�nitions 2.6 - 2.8.
Then the joint availability-queue length process is described by the Markov process (Y,X) =
((Y (t);X1(t), ..., XJ(t)) : t ∈ R+) on the state space P(D)×NJ with transition rates matrix
Q = (q(z, z′) : z, z′ ∈ P(D)× NJ) given by:
For all i, j ∈ J̃ , i 6= j:

q(∅, n1, ..., ni, ..., nJ ; ∅, n1, ..., ni + 1, ..., nJ) = λi +
∑
k∈V

µkr(k, i)1{0}(nk),

q(∅, n1, ..., ni, ..., nJ ; ∅, n1, ..., ni − 1, ..., nJ) = µir(i, 0)1N+(ni),

q(∅, n1, ..., ni, ..., nj, ..., nJ ; ∅, n1, ..., ni − 1, ..., nj + 1, ..., nJ) = µir(i, j)1N+(ni),

q(∅, n1, ..., nJ ;H,n1, ..., nJ) = α(∅, H) = A(H), ∅ ⊂ H ⊆ D,

q(∅, n1, ..., nJ ; ∅, n1, ..., nJ) = −
∑
i∈J̃

λi −
∑
i∈J̃

∑
k∈V

µkr(k, i)1{0}(nk)

−
∑
i∈J̃

µi(1− r(i, i))1N+(ni)−
∑
∅⊂H⊆D

α(∅, H),
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and for all I ⊆ D, I 6= ∅, i, j ∈ J̃ \ I, i 6= j:

q(I, n1, ..., ni, ..., nJ ; I, n1, ..., ni + 1, ..., nJ) = λIi +
∑
k∈V \I

µIkr
I(k, i)1{0}(nk),

q(I, n1, ..., ni, ..., nJ ; I, n1, ..., ni − 1, ..., nJ) = µIi r
I(i, 0)1N+(ni),

q(I, n1, ..., ni, ..., nj, ..., nJ ; I, n1, ..., ni − 1, ..., nj + 1, ..., nJ) = µIi r
I(i, j)1N+(ni),

q(I, n1, ..., nJ ;H,n1, ..., nJ) = α(I,H) =
A(H)

A(I)
, I ⊂ H ⊆ D,

q(I, n1, ..., nJ ;K,n1, ..., nJ) = β(I,K) =
B(I)

B(K)
, K ⊂ I ⊆ D,

q(I, n1, ..., nJ ; I, n1, ..., nJ) = −
∑
i∈J̃\I

λIi −
∑
i∈J̃\I

∑
k∈V \I

µIkr
I(k, i)1{0}(nk)

−
∑
i∈J̃\I

µIi (1− rI(i, i))1N+(ni)−
∑

I⊂H⊆D

α(I,H)−
∑

K⊂I⊆D

β(I,K),

and q(z, z′) = 0 otherwise.

Theorem 4.38. Consider a Jackson network with unreliable nodes where nodes in V have
an in�nite supply of work as in De�nition 4.37. Nodes in W := J̃ \ V operate without
in�nite supply. If at time t all nodes are in up-status, i.e., Y (t) = ∅, then the departure
streams from node j ∈ V which has an in�nite supply of work is a Poisson process with
rate µj. Thus the departure stream from j ∈ V to i ∈ J̃ is Poisson with rate µjr(j, i).
Whenever nodes in I 6= ∅ are broken down and either skipping or blocking rs-rd is in
force, the departure stream of node j ∈ V \ I with in�nite supply in up-status is Poisson
with rate µj. The departure stream from j ∈ V \ I to i ∈ J̃ \ I is Poisson with rate
µjr

I(j, i), where rI(j, i) is determined by the rerouting regime in force. If a node k ∈ V
with in�nite supply is broken down, i.e., k ∈ V ∩ I, the Poisson departure stream of this
node is interrupted until its server is repaired.
In case of stalling, all Poisson arrival streams stop whenever a breakdown occurs (I 6= ∅),
and the Poisson streams are reactivated when all nodes recur to the up-status.

Proof. Consider the network in its di�erent availability states of nodes:

• If all nodes are in up-status (I = ∅), all departure times from node j ∈ V

� are independent of the state of the node due to the in�nite supply,

� and therefore have independent and identically exponentially distributed in-
terdeparture times with rate µj, the service rate of the node.

Thus, the departure stream of node j ∈ V is a Poisson process with rate µj. Hence
for node i ∈ J̃ , the arrival stream from node j ∈ V is a Poisson process with rate
µjr(j, i), because a portion of r(j, i) of the departure stream is directed to node
i ∈ J̃ (decomposition of a Poisson process by some probability independent of the
process and of its times of events).

• If nodes in I 6= ∅ are broken down and rerouting is according to blocking rs-rd or
skipping, all departure times from node j ∈ V \ I
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� are independent of the state of the node due to the in�nite supply,

� and therefore have independent and identically exponentially distributed in-
terdeparture times with rate µj, the service rate of the node.

Therefore the departure stream of node j ∈ V is a Poisson process with rate µj.
Thus, for node i ∈ J̃ \ I, the arrival stream from node j ∈ V \ I is a Poisson
process with rate µjrI(j, i), because a portion of rI(j, i) of the departure stream is
directed to node i ∈ J̃ \ I (decomposition of a Poisson process by some probability
independent of all the process and of its times of events). This holds for all states
I ⊆ D of the availability process Y which means that whenever a node with in�nite
supply breaks down, its Poisson departure stream is interrupted until the node is
repaired.

• If nodes in I 6= ∅ are broken down and stalling occurs, all network processes - except
for the breakdown and repair processes - are frozen, i.e., no service is provided in
the network and there is no arrival stream. Thus, as long as not all nodes are in up
status, there are no arrival streams in the network.

4.6.2 The tra�c equations

For the results on the long-time behavior of such networks, the following tra�c equations
are needed. The de�nition of the appropriate tra�c equations is established analogously
to De�nition 4.4.

De�nition 4.39. The tra�c equations for unreliable Jackson networks with in�nite sup-
ply are:

• In case of stalling:

ηi = λi +
∑
j∈W

ηjr(j, i) +
∑
j∈V

µjr(j, i), i ∈ J̃ , (4.49)

as long as all nodes are in up status (I = ∅). Otherwise ηIi = 0 for all i ∈ J̃ . (Note
that (4.49) equals (4.1).)

• In case of rerouting according to blocking rs-rd or skipping:

ηIi = λIi +
∑
j∈W\I

ηIj r
I(j, i) +

∑
j∈V \I

µIjr
I(j, i), i ∈ J̃ \ I, (4.50)

for all I ⊆ D. If I = ∅ the tra�c equations (4.50) are equal to (4.1).

The tra�c equations for some I ⊆ D remain valid only as long as the availability status is
unchanged. Whenever the availability status of the system changes, the tra�c equations
are adapted according to the new set of broken down nodes. Thus each tra�c equation
(4.50) may have di�erent solutions for di�erent I. The following two lemmata show under
which constraints the solution of the tra�c equation (4.50) remains the same for all I ⊆ D.
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Lemma 4.40. Consider a Jackson network where nodes in D ⊆ J̃ are unreliable and
nodes in V ⊆ J̃ have an in�nite supply of work. W := J̃ \ V is the set of nodes without
in�nite supply. Let for all nodes i ∈ W without in�nite supply hold ηi < µi where
(ηi : i ∈ J̃) is the unique solution of (4.1). In case of breakdowns of nodes we assume
that customers are rerouted according to the blocking rs-rd regime.

(i) If the following reversibility constraints hold:

ηir(i, j) = ηjr(j, i) ∀i, j ∈ W, (4.51)

ηir(i, j) = µjr(j, i) ∀i ∈ W, j ∈ V, (4.52)

then for all nodes i ∈ W \ I holds that the solution ηIi of the tra�c equation (4.50)
for all I ⊆ D, I 6= ∅, equals ηi.

(ii) Let (4.51) and (4.52) hold. If we additionally require the reversibility constraint

µir(i, j) = µjr(j, i) ∀i, j ∈ V, (4.53)

then for the solution of (4.50) holds ηIi = ηi for all i ∈ V \ I and all I ⊆ D, as well.

Proof. (i): We make the ansatz ηi = ηIi for all i ∈ W \ I and all I ⊆ D. We then obtain
with the solution ηi of the tra�c equations (4.1) for any I ⊆ D: ∀i ∈ W \ I

ηi = λIi +
∑
j∈W\I

ηjr
I(j, i) +

∑
j∈V \I

µjr
I(j, i)

Def. 2.8
= λi + ηi

(
r(i, i) +

∑
k∈I

r(i, k)
)

+
∑

j∈W\I,j 6=i

ηjr(j, i) +
∑
j∈V \I

µjr(j, i)

= λi +
∑

k∈I∩W

ηir(i, k)︸ ︷︷ ︸
(4.51)

= ηkr(k,i)

+
∑
k∈I∩V

ηir(i, k)︸ ︷︷ ︸
(4.52)

= µkr(k,i)

+
∑
j∈W\I

ηjr(j, i) +
∑
j∈V \I

µjr(j, i)

= λi +
∑
j∈W

ηjr(j, i) +
∑
j∈V

µjr(j, i) = (4.1).

(ii): For any I ⊆ D holds ∀i ∈ V \ I:

ηIi
(4.50)
= λIi +

∑
j∈W\I

ηIj︸︷︷︸
(i)
=ηj

rI(j, i) +
∑
j∈V \I

µjr
I(j, i)

Def. 2.8
= λi +

∑
j∈W\I

ηjr(j, i) + µi

(
r(i, i) +

∑
k∈I

r(i, k)
)

+
∑

j∈V \I,j 6=i

µjr(j, i)

= λi +
∑
j∈W\I

ηjr(j, i) +
∑

k∈I∩W

µir(i, k)︸ ︷︷ ︸
(4.52)

= ηkr(k,i)

+
∑
k∈I∩V

µir(i, k)︸ ︷︷ ︸
(4.53)

= µkr(k,i)

+
∑
j∈V \I

µjr(j, i)

= λi +
∑
j∈W

ηjr(j, i) +
∑
j∈V

µjr(j, i)
(4.1)
= ηi.
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Remark 4.41. The reversibility constraints (4.51), (4.52) and (4.53) are di�erent from
the classical reversibility constraints (2.7) which are the local balance equations of the
routing process. But the interpretation of (4.51), (4.52) and (4.53) is the same as for
(2.7): The departure rate from one node multiplied with the routing probability to another
node has to be equal to the according �ow rate of the opposite direction.

In the following example the reversibility constraints (4.51), (4.52) and (4.53) are com-
patible with the de�nition of a Jackson network with in�nite supply.

Example 4.42. Consider a Jackson network with two nodes where node 2 has an in�nite
supply of work. Both nodes may break down. Let η1 < µ1 hold. Then the tra�c equations
in case of all nodes in up status are

η1 = λ1 + η1r(1, 1) + µ2r(2, 1) (4.54)

η2 = λ2 + η1r(1, 2) + µ2r(2, 2). (4.55)

Since 1− r(1, 1) > 0 equation (4.54) is equivalent to

η1 =
λ1 + µ2r(2, 1)

1− r(1, 1)
. (4.56)

Let the following reversibility constraint

η1r(1, 2) = µ2r(2, 1) (4.57)

hold. This constraint leads to the following structural consequences for the Jackson net-
work:

• If r(2, 1) = 0 then either r(1, 2) = 0 or λ1 = 0, i.e., if r(2, 1) = 0 holds then either
the two nodes must be two separate M/M/1/∞ systems (where one has in�nite
supply) or node 1 has no input at all.

• If r(1, 2) = 0 then r(2, 1) = 0, i.e., if r(1, 2) = 0 holds then the two nodes must be
two separate M/M/1/∞ systems (where one has in�nite supply).

• It remains to analyze the case r(1, 2) 6= 0 6= r(2, 1). Then the constraint (4.57) is
equivalent to

λ1 + µ2r(2, 1)

1− r(1, 1)
r(1, 2) = µ2r(2, 1)

⇔ λ1r(1, 2) + µ2r(2, 1)r(1, 2) = µ2r(2, 1)( 1− r(1, 1)︸ ︷︷ ︸
=r(1,0)+r(1,2)

)

⇔ λ1r(1, 2) = µ2r(2, 1)r(1, 0).

Thus, r(1, 0) = 0 if and only if λ1 = 0. Let r(1, 0) > 0 then we get

µ2r(2, 1) = λ1
r(1, 2)

r(1, 0)
⇔ µ2 = λ1

r(1, 2)

r(2, 1)r(1, 0)
> 0.

Plugging this information into (4.56) yields

η1 =
λ1(1 + r(1,2)

r(1,0)
)

1− r(1, 1)
=

λ1

r(1, 0)
= λ

r(0, 1)

r(1, 0)
> 0.

So if r(1, 2) 6= 0 6= r(2, 1) and r(1, 0) > 0, then λ1 > 0. Thus constraint (4.57) has
in�uence on the parameters of the network, but it does not lead to contradictions.
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Lemma 4.43. Consider a Jackson network where nodes in D ⊆ J̃ are unreliable and
nodes in V ⊆ J̃ have an in�nite supply of work. W := J̃ \ V is the set of nodes without
in�nite supply. Let for all nodes i ∈ W without in�nite supply hold ηi < µi where
(ηi : i ∈ J̃) is the unique solution of (4.1). In case of breakdowns of nodes we assume
that customers are rerouted according to the skipping regime. Let the following side
constraint hold:

ηi = µi ∀i ∈ V ∩D. (4.58)

Then for all nodes i ∈ J̃ \ I holds that the solution ηIi of the tra�c equation (4.50) for all
I ⊆ D, I 6= ∅, equals ηi.

Proof. We make the ansatz ηi = ηIi for all i ∈ W \ I and all I ⊆ D. We then obtain with
the solution ηi of the tra�c equations (4.1) for any I ⊆ D: ∀i ∈ W \ I

λIi +
∑
j∈W\I

ηjr
I(j, i) +

∑
j∈V \I

µjr
I(j, i)

(Def. 2.7)
= λi +

∑
k∈I

λkr
I(k, i) +

∑
j∈W\I

ηj

(
r(j, i) +

∑
k∈I

r(j, k)rI(k, i)
)

+

+
∑
j∈V \I

µj

(
r(j, i) +

∑
k∈I

r(j, k)rI(k, i)
)

= λi +
∑
j∈W\I

ηjr(j, i) +
∑
j∈V \I

µj(r(j, i)︸ ︷︷ ︸
(4.1)
= ηi−

∑
j∈I∩W ηjr(j,i)−

∑
j∈I∩V µjr(j,i)

+

+
∑
k∈I

rI(k, i)
(
λk +

∑
j∈W\I

ηjr(j, k) +
∑
j∈V \I

µjr(j, k)︸ ︷︷ ︸
(4.1)
= ηk−

∑
j∈I∩W ηjr(j,k)−

∑
j∈I∩V µjr(j,k)

)

= ηi −
∑

j∈I∩W

ηjr(j, i)−
∑
j∈I∩V

µjr(j, i)+

+
∑
k∈I

ηkr
I(k, i)−

∑
k∈I

rI(k, i)
∑

j∈I∩W

ηjr(j, k)−
∑
k∈I

rI(k, i)
∑
j∈I∩V

µjr(j, k)

= ηi −
∑

j∈I∩W

ηj

(
r(j, i) +

∑
k∈I

r(j, k)rI(k, i)︸ ︷︷ ︸
(2.2)
= rI(j,i)

)
+

+
∑
k∈I

ηkr
I(k, i)−

∑
j∈I∩V

µj

(
r(j, i) +

∑
k∈I

r(j, k)rI(k, i)︸ ︷︷ ︸
(2.2)
= rI(j,i)

)

= ηi +
∑

k∈I∩W

ηkr
I(k, i)−

∑
j∈I∩W

ηjr
I(j, i) +

∑
k∈I∩V

ηkr
I(k, i)−

∑
j∈I∩V

µjr
I(j, i)

= ηi +
∑
k∈I∩V

(ηk − µk)︸ ︷︷ ︸
(4.58)

= 0

rI(k, i) = ηi. (4.59)
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Since ηIj = ηi holds for all j ∈ W \ I and all I ⊆ D, it follows for all i ∈ V \ I and I ⊆ D:

ηIi = λIi +
∑
j∈W\I

ηIj r
I(j, i) +

∑
j∈V \I

µjr
I(j, i)

= λIi +
∑
j∈W\I

ηjr
I(j, i) +

∑
j∈V \I

µjr
I(j, i)

which is the very left side of (4.59) with i ∈ V \ I. The above computations in (4.59) are
valid for all i ∈ J̃ \ I, hence it follows ηIi = ηi for all i ∈ V \ I and I ⊆ D, too.

Remark 4.44. The constraint (4.58) means that nodes with in�nite supply which may
break down, on average, are fully loaded by customers of preemptive priority. So there are
less low priority customers from the in�nite supply served at that node than if ηk < µk
holds for this node k ∈ V ∩D.

In the following example it can be seen that constraint (4.58) is compatible with the
de�nition of a Jackson network with in�nite supply.

Example 4.45. Consider a Jackson network with two nodes where node 2 has an in�nite
supply of work. Both nodes may break down. Let η1 < µ1 and η2 = µ2 hold. Then the
tra�c equations in case of all nodes in up status are

η1 = λ1 + η1r(1, 1) + µ2r(2, 1) (4.60)

η2 = λ2 + η1r(1, 2) + µ2r(2, 2). (4.61)

Since 1− r(1, 1) > 0 equation (4.60) is equivalent to

η1 =
λ1 + µ2r(2, 1)

1− r(1, 1)
.

Plugging this into (4.61) yields

η2 = λ2 +
λ1 + µ2r(2, 1)

1− r(1, 1)
r(1, 2) + µ2r(2, 2).

With η2 = µ2 we get

µ2 = λ2 +
λ1 + µ2r(2, 1)

1− r(1, 1)
r(1, 2) + µ2r(2, 2)

⇔ µ2(1− r(2, 2)) = λ2 +
λ1r(1, 2)

1− r(1, 1)
+
µ2r(2, 1)r(1, 2)

1− r(1, 1)

⇔ µ2

(
1− r(2, 2)− r(2, 1)r(1, 2)

1− r(1, 1)

)
= λ2 +

λ1r(1, 2)

1− r(1, 1)

⇔ µ2

(
(1− r(1, 1))(1− r(2, 2))− r(2, 1)r(1, 2)︸ ︷︷ ︸

=r(1,0)(1−r(2,2))+r(1,2)r(2,0)>0

)
= λ2(1− r(1, 1)) + λ1r(1, 2)

⇔ µ2(r(2, 0)(1− r(1, 1)) + r(2, 1)r(1, 0)) = λ2(1− r(1, 1)) + λ1r(1, 2).
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So if we require η1 < µ1 and η2 = µ2 to hold, µ2 is

µ2 = λ2
1− r(1, 1)

r(2, 0)(1− r(1, 1)) + r(2, 1)r(1, 0)︸ ︷︷ ︸
>0

+λ1
r(1, 2)

r(2, 0)(1− r(1, 1)) + r(2, 1)r(1, 0)︸ ︷︷ ︸
>0

.

Because of the irreducibility of the routing process, λi > 0 holds for at least one node,
so the right-hand side of the equation is greater than zero. Thus constraint (4.58) is
compatible with the de�nition of a two-node Jackson network with in�nite supply.

4.6.3 Long-time behavior

Theorem 4.46. Consider a Jackson network with unreliable nodes where nodes in V ⊆ J̃
have an in�nite supply of work as described in De�nition 4.37. Nodes in W := J̃ \ V
operate without in�nite supply. Nodes in S are stable, U = J̃ \ S is the set of unstable
nodes. Let W ∩ U = ∅, so all nodes without in�nite supply are stable. Denote by η =
(η1, ..., ηJ) the unique solution of the tra�c equations (4.1).
Nodes of the set D ⊆ J̃ may break down. In case of breakdowns customers are rerouted
according to the stalling regime. The availability-queue lengths process (Y,X) is the
global network process.

(i) For nodes without in�nite supply, the joint marginal limiting distribution is:

lim
t→∞

P (Y (t) = I;Xi(t) = ni : i ∈ W ) =

=

(∑
K⊆D

A(K)

B(K)

)−1
A(I)

B(I)

∏
i∈W

(
1− ηi

µi

)(
ηi
µi

)ni
, (4.62)

for all I ⊆ D and all (ni : i ∈ W ) ∈ N|W |, and this is a stationary distribution on
W as well.

(ii) If the global network process is started with an initial distribution which has the
marginal (4.62) on W , the arrival stream from i ∈ W to j ∈ V is Poisson with rate
ηir(i, j) whenever all nodes are in up status. And these streams are independent
given the nodes are up.

(iii) If the global network process is started with an initial distribution which has the
marginal (4.62) on W , then the marginal limiting distribution for a stable node
i ∈ V with in�nite supply and without immediate feedback (i.e., r(i, i) = 0) is:

lim
t→∞

P (Y (t) = I;Xi(t) = ni) =

(∑
K⊆D

A(K)

B(K)

)−1
A(I)

B(I)

(
1− ηi

µi

)(
ηi
µi

)ni
, (4.63)

for all I ⊆ D and all ni ∈ N, if and only if ηi < µi, and this is a one-dimensional
stationary distribution as well.
If ηi ≥ µi holds for this node i ∈ V , then for its limiting probability holds for all
I ⊆ D and all ni ∈ N:

lim
t→∞

P (Y (t) = I;Xi(t) = ni) = 0, (4.64)

if the global network process is started with an initial distribution which has the
marginal (4.62) on W .
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In the following proof of Proposition 4.46(iii), showing the limiting probability (4.64) for
unstable nodes with in�nite supply is skipped, because it will be validated (implicitly) by
the proof of Theorem 5.10 later on in Chapter 5, see p.121 for the theorem and pp.127-131
for its proof.

Proof of Proposition 4.46. (i): Consider the subset W of nodes without in�nite supply.
As long as all nodes are in up status (I = ∅), we have the following information about
the subnetwork:

• All service times are exponentially distributed and the service discipline at all nodes
is FCFS.

• Routing of customers is Markovian: A customer completing service at node i ∈ W
will either move to some node j ∈ W with probability r(i, j) or leave the subnetwork
with probability 1−

∑
j∈W r(i, j), which is non-zero for some i ∈ W because of the

routing matrix being irreducible for the global network on J̃ .

• At each node i ∈ W , we have external arrivals from the source which is a Poisson
stream with rate λi ≥ 0. Furthermore all arrivals from nodes j ∈ V with in�nite
supply into nodes i ∈ W are a Poisson stream with rate µjr(j, i), see Theorem 4.3.
The sum of independent Poisson streams is a Poisson stream, hence all arrivals from
the outside of the subset W into each node i ∈ W are a Poisson arrival stream with
rate λi +

∑
j∈V µjr(j, i).

• All service and inter-arrival times at all nodes are independent of each other.

All these properties guarantee that the subnetwork W acts as a Jackson network with
|W | nodes where the source and sink is denoted by {0} ∪ V , see De�nition 1.1. The
queue length process for the subnetworkW is denoted by X̃. This queue length process is
coupled with an availability process Y which only depends on the interaction of the nodes
in D ⊆ J̃ but not on their load. Whenever a node in D breaks down, stalling occurs, so
all nodes go into a warm standby and all arrivals and services are interrupted until all
nodes recur to the up status.
The network process (Y, X̃) is a Markov process on the state space P(D) × N|W |. The
balance equations for the subnetwork W are given by

π(∅, nk : k ∈ W )

∑
i∈W

(
λi +

∑
j∈V

µjr(j, i)
)

+
∑
i∈W

µi(1− r(i, i))1N+(ni) +
∑
∅6=I⊆D

α(∅, I)


=
∑
i∈W

π(∅, nk : k ∈ W \ {i}, ni − 1) ·
(
λi +

∑
j∈V

µjr(j, i)
)
· 1N+(ni)+

+
∑
i∈W

π(∅, nk : k ∈ W \ {i}, ni + 1) · µi
(

1−
∑
j∈W

r(i, j)
)

+

+
∑
i∈W

∑
j∈W\{i}

π(∅, nk ∈ W \ {i, j}, ni + 1, nj − 1) · µir(i, j) · 1N+(nj)

+
∑
∅6=I⊆D

π(I, nk : k ∈ W ) · β(I, ∅) (4.65)
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for all (∅, nk : k ∈ W ) ∈ {∅} × N|W | and

π(I, nk : k ∈ W )

 ∑
I⊂H⊆D

α(I,H) +
∑
∅6=K⊂I

β(I,K)


=
∑
∅6=K⊂I

π(K,nk : k ∈ W ) · α(K, I) +
∑

I⊂H⊆D

π(H,nk : k ∈ W ) · β(H, I) (4.66)

for all (I, nk : k ∈ W ) ∈ P(D)× N|W | with I 6= ∅.

We have to show, that (4.62) solves these equations. In the following we denote

π̂(I, nk : k ∈ W ) :=
A(I)

B(I)

∏
i∈W

(
ηi
µi

)ni
for all (I, nk : k ∈ W ) ∈ P(D) × N|W |, which is (4.62) before normalization, and plug it
into the above balance equations for π(I, nk : k ∈ W ).

In the �rst equation (4.65) the term

π̂(∅, nk : k ∈ W )α(∅, I) = π̂(∅, nk : k ∈ W )A(I) = π̂(I, nk : k ∈ W )B(I)

on the left-hand side is equal to the term π̂(I, nk : k ∈ W )β(I, ∅) = π̂(I, nk : k ∈ W )B(I)
on the right-hand side for each ∅ 6= I ⊆ D. The remainder of (4.65) is the global balance
equation of a classical Jackson network which has the solution

π̂(∅, nk : k ∈ W ) := π̂(nk : k ∈ W ) =
∏
i∈W

(
ηi
µi

)ni
,

see Theorem 1.10.

Consider the second equation (4.66) for some �xed I 6= ∅. For any K ⊂ I, K 6= ∅, the
term

π̂(I, nk : k ∈ W )β(I,K) = π̂(I, nk : k ∈ W )
B(I)

B(K)
= π̂(∅, nk : k ∈ W )

A(I)

B(K)

on the left-hand side is equal to the term on the right-hand side

π̂(K,nk : k ∈ W )α(K, I) = π̂(K,nk : k ∈ W )
A(I)

A(K)
= π̂(∅, nk : k ∈ W )

A(I)

B(K)
.

Moreover, for any I ⊂ H ⊆ D the term

π̂(I, nk : k ∈ W )α(I,H) = π̂(I, nk : k ∈ W )
A(H)

A(I)
= π̂(∅, nk : k ∈ W )

A(H)

B(I)

on the left-hand side is equal to the term

π̂(H,nk : k ∈ W )β(H, I) = π̂(H,nk : k ∈ W )
B(H)

B(I)
= π̂(∅, nk : k ∈ W )

A(H)

B(I)
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on the right-hand side.

The last step of the proof of (i) is done by de�ning the normalizing constant as(∑
K⊆D

A(K)

B(K)

) ∑
(ni:i∈W )∈N|W |

∏
i∈W

(
ηi
µi

)ni
,

which is �nite, because ηi < µi holds for all i ∈ W .

(ii): It is well known that ergodic Jackson networks have, in equilibrium, Poisson departure
streams from node i to the sink with some rate η̃ir̃(i, 0), see [Mel79b, Example 7.1]. From
the proof of (i), we know that the subset W behaves like an ergodic Jackson network with
unreliable nodes of its own with λ̃i := λi +

∑
j∈V µjr(j, i) and

η̃ir̃(i, 0) = ηi

(
1−

∑
j∈W

r(i, j)
)

= ηi

(
r(i, 0) +

∑
j∈V

r(i, j)
)
.

Hence, if the subnetwork W is in equilibrium, as long as all nodes are in up status,
departures to the sink from nodes i ∈ W are Poisson streams with rate ηir(i, 0) and
departures from i ∈ W to any node j ∈ V are also Poisson streams with rate ηir(i, j),
because a portion of r(i,j)

r(i,0)+
∑
j∈V r(i,j)

of the departure stream from node i ∈ W is directed

to j ∈ V .

(iii): Consider some �xed node i ∈ V with in�nite supply and without immediate feedback
(i.e., r(i, i) = 0). As long as all nodes j ∈ J̃ are in up status, we have the following
information about the node:

• Service times are exponentially distributed with rate µi, the service discipline is
FCFS.

• Routing of customers is Markovian: A customer arriving at node i, waits in the line
until he gets service, after the service he proceeds to another node j ∈ J̃ \ {i} with
probability r(i, j) or leaves the network with probability r(i, 0). Thus, the customer
leaves node i after completed service with probability

r(i, 0) +
∑

j∈J̃\{i}

r(i, j) = 1− r(i, i) = 1.

• External arrivals (from the arti�cial node 0) are Poisson with rate λi ≥ 0. From
(ii) it follows directly that, if the global network process is started with an initial
distribution which has the marginal (4.62) on W , the arrival streams at node i ∈ V
from nodes j ∈ W are Poisson with rate ηjr(j, i). Arrival streams from nodes
j ∈ V \ {i} are Poisson streams with rate µjr(j, i), see Theorem 4.38. All these
Poisson streams are independent from each other, so the arrival stream at node
i ∈ V is a Poisson process with rate

λ̂i := λi +
∑
j∈W

ηjr(j, i) +
∑

j∈V \{i}

µjr(j, i).
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• All service and inter-arrival times constitute a set of independent random variables.

Thus, if the global network process is started with an initial distribution which has the
marginal (4.14) on W , node i ∈ V is an (M/M/1)− system of its own. Let X̂ denote the
queue length process of i ∈ V . Then the tra�c equation is

η̂i = λ̂i = λi +
∑
j∈W

ηjr(j, i) +
∑

j∈V \{i}

µjr(j, i),

so η̂i = ηi holds, see (4.1) with r(i, i) = 0. The queue length process is coupled with
an availability process Y on P(D), D ⊆ J̃ , where breakdown and repair of nodes only
depend on the interaction of the nodes but not on their queue length. Whenever a node
in D breaks down, stalling occurs, so all nodes go into a warm standby and all arrivals
and services are interrupted until all nodes recur to the up status.
The network process (Y, X̂) is a Markov process on the state space P(D)×N. The balance
equations are

πi(∅, ni)
(
λ̂i + µi1N+(ni) +

∑
∅6=I⊆D

α(∅, I)
)

= πi(∅, ni − 1) · λ̂i · 1N+(ni) + πi(∅, ni + 1) · µi +
∑
∅6=I⊆D

πi(I, ni) · β(I, ∅) (4.67)

for all (∅, ni) ∈ {∅} × N and

πi(I, ni)
( ∑
I⊂H⊆D

α(I,H) +
∑
∅6=K⊂I

β(I,K)
)

=
∑
∅6=K⊂I

πi(K,ni) · α(K, I) +
∑

I⊂H⊆D

πi(H,ni) · β(H, I) (4.68)

for all (I, ni) ∈ P(D)× N with I 6= ∅.

We have to show, that (4.63) solves these equations. In the following we set

π̂i(I, ni) :=
A(I)

B(I)

(
ηi
µi

)ni
for all (I, ni) ∈ P(D)× N as the nonnormalized proposed solution density.

In the �rst equation (4.67) the term

π̂i(∅, ni)α(∅, I) = π̂i(∅, ni)A(I) = π̂i(I, ni)B(I)

on the left-hand side is equal to the term π̂i(I, ni)β(I, ∅) = π̂i(I, ni)B(I) on the right-hand
side for each ∅ 6= I ⊆ D. The remainder of (4.67) is the global balance equation of an
(M/M/1) system which has the solution

π̂i(∅, ni) := π̂i(ni) =

(
ηi
µi

)ni
,

since λ̂i = ηi holds.
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Consider the second equation (4.68) for some �xed I 6= ∅. For any K ⊂ I, K 6= ∅, the
term

π̂i(I, ni)β(I,K) = π̂i(I, ni)
B(I)

B(K)
= π̂i(∅, ni)

A(I)

B(K)

on the left-hand side is equal to the term on the right-hand side

π̂i(K,ni)α(K, I) = π̂i(K,ni)
A(I)

A(K)
= π̂i(∅, ni)

A(I)

B(K)
.

Moreover, for any I ⊂ H ⊆ D the term

π̂i(I, ni)α(I,H) = π̂i(I, ni)
A(H)

A(I)
= π̂i(∅, ni)

A(H)

B(I)

on the left-hand side is equal to the term

π̂i(H,ni)β(H, I) = π̂i(H,ni)
B(H)

B(I)
= π̂i(∅, ni)

A(H)

B(I)

on the right-hand side.

The last step of the proof of (iii) is done by de�ning the normalizing constant as(∑
K⊆D

A(K)

B(K)

)∑
n∈N

(
ηi
µi

)n
,

then the solution is a probability measure, if and only if ηi < µi holds.

Theorem 4.47. Consider a Jackson network with unreliable nodes where nodes in V ⊆ J̃
have an in�nite supply of work as described in De�nition 4.37. Nodes in W := J̃ \ V
operate without in�nite supply. Nodes in S are stable, U = J̃ \ S is the set of unstable
nodes. Let W ∩ U = ∅, so all nodes without in�nite supply are stable. Denote by η =
(η1, ..., ηJ) the unique solution of the tra�c equations (4.1).
Nodes of the set D ⊆ J̃ may break down. In case of breakdowns customers are rerouted
according to the blocking rs-rd regime or the skipping regime. If blocking rs-rd is in
force we require the reversibility-constraints (4.51) and (4.52). If skipping is in force, let
(4.58) hold.
The availability-queue lengths process (Y,X) is the global network process. For nodes
without in�nite supply, the joint marginal limiting distribution is:

lim
t→∞

P (Y (t) = I;Xi(t) = ni : i ∈ W ) =

=

(∑
K⊆D

A(K)

B(K)

)−1
A(I)

B(I)

∏
i∈W

(
1− ηi

µi

)(
ηi
µi

)ni
, (4.69)

for all I ⊆ D and all (ni : i ∈ W ) ∈ N|W |, and this is a stationary distribution on W as
well.
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Proof. Consider the subset W of nodes without in�nite supply. For any subset I ⊆ D
of broken down nodes, we have the following facts for the subset W \ I which remain in
force as long as I is unchanged:

• All service times of all up-nodes are exponentially distributed and the service disci-
pline at all nodes is FCFS.

• Routing of customers is Markovian: A customer completing service at node i ∈ W \I
will either move to some node j ∈ W \ I with probability rI(i, j) or leave the
subnetwork with probability 1−

∑
j∈W\I r

I(i, j).

• At each node i ∈ W \ I, we have external arrivals from the source which are in-
dependent Poisson streams with rate λIi ≥ 0. Furthermore all arrivals from nodes
j ∈ V \ I with in�nite supply into nodes i ∈ W \ I are independent Poisson streams
at rate µjrI(j, i), see Theorem 4.38. The sum of independent Poisson streams is a
Poisson stream, hence the arrival stream from the outside of the subset W \ I into
each node i ∈ W \ I is a Poisson process with rate λIi +

∑
j∈V \I µjr

I(j, i).

• All service times and all interarrival times are independent of each other.

Let X̃ := ((X̃i(t) : i ∈ W \ I) : t ∈ R+) be the queueing process of this subnetwork. The
process is supplemented with a Markov process Y = (Y (t) : t ∈ R+) which describes the
availability status of the nodes and therefore gives information on how long the network
process on the subnet W \ I lives until it jumps to the next Markov process on some
randomly chosen subnet W \ K, K ⊆ D. Rerouting is according to the blocking rs-rd
regime (skipping, resp.).
The joint availability-queue length process (Y, X̃i : i ∈ W ) has the balance equations

π(I, nk : k ∈ W ) ·
( ∑
i∈W\I

(
λIi +

∑
j∈V \I

µjr
I(j, i)

)
+

+
∑
i∈W\I

µi(1− rI(i, i)) · 1N+(ni) +
∑

I⊂H⊆D

α(I,H) +
∑

K⊂I⊆D

β(I,K)
)

=
∑
i∈W\I

π(I, nk : k ∈ W \ {i}, ni − 1) ·
(
λIi +

∑
j∈V \I

µjr
I(j, i)

)
·1N+(ni)

+
∑
i∈W\I

π(I, nk : k ∈ W \ {i}, ni + 1) · µi
(

1−
∑
j∈W\I

rI(i, j)
)

+

+
∑
i∈W\I

∑
j∈W\I,j 6=i

π(I, nk : k ∈ W \ {i, j}, ni + 1, nj − 1) · µirI(i, j) · 1N+(nj)

+
∑

K⊂I⊆D

π(K,nk : k ∈ W ) · α(K, I)

+
∑

I⊂H⊆D

π(H,nk : k ∈ W ) · β(H, I) (4.70)

for all (I, ni : i ∈ W ) ∈ P(D)× N|W |.
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We have to show that the distribution given by (4.69) solves equation (4.70) for all (ni :
i ∈ W ) ∈ N|W | and all I ⊆ D. In the following we set

π̂(I, nk : k ∈ W ) :=
A(I)

B(I)

∏
i∈W

(
ηi
µi

)ni
for all (ni : i ∈ W ) ∈ N|W | and all I ⊆ D, and consider equation (4.70) for some �xed
I ⊆ D.

For any K ⊂ I, K 6= ∅, the term

π̂(I, nk : k ∈ W )β(I,K) = π̂(I, nk : k ∈ W )
B(I)

B(K)
= π̂(∅, nk : k ∈ W )

A(I)

B(K)

on the left-hand side is equal to the term on the right-hand side

π̂(K,nk : k ∈ W )α(K, I) = π̂(K,nk : k ∈ W )
A(I)

A(K)
= π̂(∅, nk : k ∈ W )

A(I)

B(K)
.

Moreover, for any I ⊂ H ⊆ D the term

π̂(I, nk : k ∈ W )α(I,H) = π̂(I, nk : k ∈ W )
A(H)

A(I)
= π̂(∅, nk : k ∈ W )

A(H)

B(I)

on the left-hand side is equal to the term

π̂(H,nk : k ∈ W )β(H, I) = π̂(H,nk : k ∈ W )
B(H)

B(I)
= π̂(∅, nk : k ∈ W )

A(H)

B(I)

on the right-hand side. The remainder of (4.70) is

π̂(I, nk : k ∈ W ) ·
( ∑
i∈W\I

(
λIi +

∑
j∈V \I

µjr
I(j, i)

)
+
∑
i∈W\I

µi(1− rI(i, i)) · 1N+(ni)
)

=
∑
i∈W\I

π̂(I, nk : k ∈ W \ {i}, ni − 1) ·
(
λIi +

∑
j∈V \I

µjr
I(j, i)

)
·1N+(ni)+

+
∑
i∈W\I

π̂(I, nk : k ∈ W \ {i}, ni + 1) · µi
(

1−
∑
j∈W\I

rI(i, j)
)

+

+
∑
i∈W\I

∑
j∈W\I,j 6=i

π̂(I, nk : k ∈ W \ {i, j}, ni + 1, nj − 1) · µirI(i, j) · 1N+(nj). (4.71)

With ηIi = λIi +
∑

j∈W\I η
I
j r
I(j, i) +

∑
j∈V \I µjr

I(j, i) (see (4.50)) this is equivalent to

π̂(I, nk : k ∈ W ) ·
( ∑
i∈W\I

(
ηIi −

∑
j∈W\I

ηIj r
I(j, i)

)
+
∑
i∈W\I

µi(1− rI(i, i)) · 1N+(ni)
)

=
∑
i∈W\I

π̂(I, nk : k ∈ W \ {i}, ni − 1) ·
(
ηIi −

∑
j∈W\I

ηIj r
I(j, i)

)
·1N+(ni)+

+
∑
i∈W\I

π̂(I, nk : k ∈ W \ {i}, ni + 1) · µi
(

1−
∑
j∈W\I

rI(i, j)
)

+

+
∑
i∈W\I

∑
j∈W\I,j 6=i

π̂(I, nk : k ∈ W \ {i, j}, ni + 1, nj − 1) · µirI(i, j) · 1N+(nj).
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Under the required condition of either (4.51) and (4.52) in case of blocking rs-rd or (4.58)
in case of skipping holds ηi = ηIi for all i ∈ W \ I and all I ⊆ D for the respective
reduced tra�c equations. Therefore from Lemma 4.40 or Lemma 4.43 respectively this is
equivalent to

π̂(I, nk : k ∈ W ) ·
( ∑
i∈W\I

(
ηi −

∑
j∈W\I

ηjr
I(j, i)

)
+
∑
i∈W\I

µi(1− rI(i, i)) · 1N+(ni)
)

=
∑
i∈W\I

π̂(I, nk : k ∈ W \ {i}, ni − 1) ·
(
ηi −

∑
j∈W\I

ηjr
I(j, i)

)
·1N+(ni)+

+
∑
i∈W\I

π̂(I, nk : k ∈ W \ {i}, ni + 1) · µi
(

1−
∑
j∈W\I

rI(i, j)
)

+

+
∑
i∈W\I

∑
j∈W\I,j 6=i

π̂(I, nk : k ∈ W \ {i, j}, ni + 1, nj − 1) · µirI(i, j) · 1N+(nj).

Plugging in π̂(I, nk : k ∈ W ) = A(I)
B(I)

∏
i∈W

(
ηi
µi

)ni
yields

∑
i∈W\I

(
ηi −

∑
j∈W\I

ηjr
I(j, i)

)
+
∑
i∈W\I

µi(1− rI(i, i)) · 1N+(ni)

=
∑
i∈W\I

µi
ηi
·
(
ηi −

∑
j∈W\I

ηjr
I(j, i)

)
·1N+(ni) +

∑
i∈W\I

ηi
µi
· µi
(

1−
∑
j∈W\I

rI(i, j)
)

+

+
∑
i∈W\I

∑
j∈W\I,j 6=i

ηi
µi

µj
ηj
µir

I(i, j) · 1N+(nj)

⇔ 0 = −
∑
i∈W\I

µi
ηi
·
∑

j∈W\I,j 6=i

ηjr
I(j, i) · 1N+(ni) +

∑
i∈W\I

∑
j∈W\I,j 6=i

µj
ηj
ηir

I(i, j) · 1N+(nj).

Thus

π̂(I, nk : k ∈ W ) =
A(I)

B(I)

∏
i∈W

(
ηi
µi

)ni
solves the balance equations (4.70). The last step of proving (i) is by de�ning the nor-
malizing constant as ∑

K⊆D

A(K)

B(K)

∑
(ni:i∈W )∈N|W |

∏
i∈W

(
ηi
µi

)ni
,

which makes the solution a probability solution because ηi < µi holds for all i ∈ W .

The proofs of Theorem 4.46(i) and Theorem 4.47 justify the following

Corollary 4.48. In the settings of Theorem 4.46 and Theorem 4.47, the process

(Y,XW ) := (Y,Xi : i ∈ W )

is an ergodic homogeneous Markov process of its own.
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Remark 4.49. In the setting of Theorem 4.47 a statement as in Theorem 4.46(iii) cannot
be proved. This is due to the de�nitions of rerouting according to skipping and blocking rs-
rd (De�nition 2.7 and 2.8). Whenever nodes in I 6= ∅ are broken down, immediate feedback
may emerge at nodes with in�nite supply (where r(i, i) = 0) because of the rerouting
regime, i.e., rI(i, i) > 0 at nodes i ∈ V \ I, if r(i, j) > 0 for at least one j ∈ I. But
immediate feedback at nodes with in�nite supply leads to a situation discussed in Remark
4.18.

4.6.4 Computation of availability and performance measures

Due to the load-independent breakdown and repair rates as in Example 2.2, the avail-
ability process Y in Theorem 4.46 and Theorem 4.47 is an ergodic Markov process of its
own, which has the unique limiting and stationary distribution (2.10), as it was already
shown in Chapter 2, Section 2.4. Here Proposition 2.18 applies to compute stationary
point-availability and Example 2.19 to estimate costs involved with breakdowns of nodes,
as well.

The computation of the throughput is a little bit di�erent compared to the Chapter 2,
Section 2.4, due to the in�nite supply. We therefore de�ne the stationary throughput of
a subnetwork.

De�nition 4.50. Consider a Jackson network with in�nite supply where nodes without
in�nite supply are stable and nodes in D ⊆ J̃ are unreliable. The stationary throughput
THi of a node i ∈ W without in�nite supply is

THi =
∑

(I,nj :j∈W )∈P(D)×N|W |
πW (I, nj : j ∈ W )µIi 1N+(ni),

the stationary throughput THj of a stable node j ∈ V with in�nite supply is

THj =
∑

(I,nj)∈P(D)×N

πj(I, nj)µ
I
i .

The stationary throughput THW of the subnetwork of nodes without in�nite supply is

THW =
∑
I⊆D

∑
i∈W\I

THir
I(i, 0)

and the stationary throughput THS of the subnetwork of stable nodes is

THS = THW +
∑
I⊆D

∑
j∈(V ∩S)\I

THjr
I(j, 0).

Proposition 4.51. Consider a Jackson network where nodes in V ⊆ J̃ have an in�nite
supply of work and where nodes in D ⊆ J̃ are unreliable as in Def. 4.37. Denote by
η = (η1, ..., ηJ) the unique solution of the tra�c equations (4.5). S := {i ∈ J̃ : ηi < µi}
is the set of stable nodes, nodes in U := J̃ \ S are unstable. We assume that all nodes
without in�nite supply of work are stable, i.e., W ∩U = ∅. So in this situation the tra�c
equations (4.5) reduce to (4.1).
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In case of breakdowns stalling occurs according to De�nition 2.6. Then the stationary
throughput at nodes i ∈ W without in�nite supply is THi = ηi · π(∅). Let r(i, i) = 0 hold
for all i ∈ V ∩ S then the stationary throughput at stable nodes i ∈ V ∩ S with in�nite
supply is THi = µi · π(∅) and the throughput of the stable subnetwork is

THS = π(∅) ·
(
λ−

∑
i∈V

(ηi − µi)−
∑

j∈V ∩U

µjr(j, 0)
)
.

Proof. The proof uses the results of Theorem 4.46. For i ∈ W we get

THi =
∑

(I,nj :j∈W )∈P(D)×N|W |
πW (I, nj : j ∈ W ) µIi︸︷︷︸

=0 if I 6=∅

1N+(ni) =
∑
ni∈N

πi(∅, ni)µi1N+(ni)

=
∑
ni∈N

πi(∅, ni + 1)µi =
∑
ni∈N

π(∅)
(

1− ηi
µi

)(
ηi
µi

)ni+1

µi = ηi · π(∅),

and for j ∈ V ∩ S:

THj =
∑

(I,nj)∈P(D)×N

πj(I, nj) µIi︸︷︷︸
=0 if I 6=∅

=
∑
nj∈N

πj(∅, nj)︸ ︷︷ ︸
=π(∅)

µi = µi · π(∅).

The throughput of the stable subnetwork is

THS =
∑
i∈S

THir(i, 0) =
∑
i∈W

ηir(i, 0) · π(∅) +
∑
j∈V ∩S

µjr(j, 0) · π(∅)

(Remark 4.5)
=

(
λ−

∑
i∈V

(ηi − µi)−
∑

j∈V ∩U

µjr(j, 0)
)
· π(∅).

Proposition 4.52. Consider a Jackson network where nodes in V ⊆ J̃ have an in�nite
supply of work and where nodes in D ⊆ J̃ are unreliable as in Def. 4.37. Denote by
η = (η1, ..., ηJ) the unique solution of the tra�c equations (4.5). S := {i ∈ J̃ : ηi < µi}
is the set of stable nodes, nodes in U := J̃ \ S are unstable. We assume that all nodes
without in�nite supply of work are stable, i.e., W ∩ U = ∅. So in this situation (4.5)
reduces to (4.1).

(i) If the rerouting is according to blocking rs-rd and if (4.51), (4.52) and (4.53)
hold, the stationary throughput at a node j ∈ W is THj = ηj ·

∑
I⊆D,j /∈I π(I) and

the stationary throughput of the subnetwork W is

THW =
∑
I⊆D

π(I) ·
(∑
i∈J̃\I

λi −
∑
i∈V \I

µir(i, 0)−
∑
i∈V \I

(ηi − µi)
)
.

(ii) If the rerouting is according to skipping and if (4.58) holds, the stationary through-
put at a node j ∈ W is THj = ηj ·

∑
I⊆D,j /∈I π(I) and the stationary throughput of

the subnetwork W is

THW =
∑
I⊆D

π(I) ·
(
λ(1− rI(0, 0))−

∑
i∈V \I

µir
I(i, 0)−

∑
i∈V \I

(ηi − µi)
)
.
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Proof. The proof uses the results of Theorem 4.47. For nodes i ∈ W we get

THi =
∑

(I,nj :j∈W )∈P(D)×N|W |
πW (I, nj : j ∈ W )µIi 1N+(ni)

=
∑

(I,ni)∈P(D)×N

πi(I, ni) µIi︸︷︷︸
=µi if i/∈I

1N+(ni) =
∑

I⊆D,i/∈I

∑
ni∈N

πi(I, ni + 1)µi

=
∑

I⊆D,i/∈I

π(I)
∑
ni∈N

(
1− ηi

µi

)(
ηi
µi

)ni+1

µi = ηi ·
∑

I⊆D,i/∈I

π(I),

The throughput of the subnetwork W is

THW =
∑
I⊆D

∑
i∈W\I

THir
I(i, 0) =

∑
I⊆D

π(I)
∑
i∈W\I

ηir
I(i, 0).

Since ηi = ηIi holds for all i ∈ J̃ \ I and I ⊆ D (see Lemma 4.40 or Lemma 4.43 resp.), ηi
solves

ηi = λIi +
∑
j∈W\I

ηjr
I(j, i) +

∑
j∈V \I

µjr
I(j, i).

Summing over all i ∈ J̃ \ I on both sides yields∑
i∈J̃\I

ηi =
∑
i∈J̃\I

λIi +
∑
i∈J̃\I

∑
j∈W\I

ηjr
I(j, i) +

∑
i∈J̃\I

∑
j∈V \I

µjr
I(j, i)

⇔
∑
i∈J̃\I

λIi =
∑
i∈W\I

ηir
I(i, 0) +

∑
i∈V \I

µir
I(i, 0) +

∑
i∈V \I

(ηi − µi)

⇔
∑
i∈W\I

ηir
I(i, 0) =

∑
i∈J̃\I

λIi −
∑
i∈V \I

µir
I(i, 0)−

∑
i∈V \I

(ηi − µi). (4.72)

In case of (i) equation (4.72) is equivalent to∑
i∈W\I

ηir
I(i, 0) =

∑
i∈J̃\I

λi −
∑
i∈V \I

µir(i, 0)−
∑
i∈V \I

(ηi − µi).

In case of (ii) equation (4.72) is equivalent to∑
i∈W\I

ηir
I(i, 0) = λ

∑
i∈J̃\I

rI(0, i)

︸ ︷︷ ︸
=(1−rI(0,0))

−
∑
i∈V \I

µir
I(i, 0)−

∑
i∈V \I

(ηi − µi).



Chapter 5

Jackson networks with breakdowns:

The non-ergodic case

5.1 Introduction

Our aim is to study Jackson networks with unreliable stations which are not ergodic due
to overload at some stations: Is it possible that in such a network subnetworks stabilize?
We shall prove that the answer is positive.

Our setting is described in De�nition 2.9. We here assume that the network process
(Y,X) is not ergodic and that instability of nodes results from overload as described and
investigated in Section 1.3 in the sense of [GM84].

For maintaining tractability of the model we additionally assume that breakdown and
repair rates are load-independent. Although it would be desirable to weaken this assump-
tion we note that there is a great variety of correlation structures for the breakdown and
repair process included in this class of transition rates.

5.2 The tra�c equations

As in the previous chapters we have to de�ne the general tra�c equations for each avail-
ability status of the availability�queue-length process �rst. The following de�nition is
established analogously to (1.6).

De�nition 5.1. The general tra�c equations for Jackson networks with unreliable nodes
as in De�nition 2.9 are:

• In case of stalling according to De�nition 2.6:

ηi = λi +
∑
j∈J̃

min(ηj, µj)r(j, i), i ∈ J̃ , (5.1)

as long as all nodes are in up status (I = ∅). Otherwise ηIi = 0 for all i ∈ J̃ . (Note
that (5.1) is (1.6) but is valid only when no repair is ongoing.)

115
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• In case of rerouting according to skipping as in De�nition 2.7 or to blocking rs-rd
as in De�nition 2.8:

ηIi = λIi +
∑
j∈J̃\I

min(ηIj , µ
I
j )r

I(j, i), i ∈ J̃ \ I, (5.2)

for all I ⊆ D. If no node is under repair, i.e., I = ∅, the tra�c equations (5.2) are
(1.6).

The tra�c equations for some I ⊆ D remain valid only as long as the availability status is
unchanged. Whenever the availability status of the system changes, the tra�c equations
are adapted according to the new set of broken down nodes. Thus each tra�c equation
(5.2) may have di�erent solutions for di�erent I. The following two lemmata show under
which constraints the solution of the tra�c equation (5.2) remains the same for all I ⊆ D.
Lemma 5.2 and Lemma 5.5 resemble Lemma 4.40 and Lemma 4.43 for Jackson networks
with in�nite supply, this is due to the similarity of the tra�c equations. Therefore the
lemmata can be proved nearly the same way.

Lemma 5.2. Consider a Jackson network where nodes in D ⊆ J̃ are unreliable. Let
η = (ηj : j ∈ J̃) be the unique solution of the general tra�c equations (1.6). Denote by
S = {i : ηi < µi} ⊆ J̃ the set of stable nodes in the network and U := J̃ \ S the set of
unstable nodes in the network.
In case of breakdowns of nodes we assume that customers are rerouted according to the
blocking rs-rd regime. If the following reversibility constraints hold:

ηir(i, j) = ηjr(j, i) ∀i, j ∈ S, (5.3)

ηir(i, j) = µjr(j, i) ∀i ∈ S, j ∈ U, (5.4)

µir(i, j) = µjr(j, i) ∀i, j ∈ U, (5.5)

then for the solution ηI := (ηIi : i ∈ J̃ \ I) of (5.2) holds ηIi = ηi for all i ∈ J̃ \ I and all
I ⊆ D.

Proof. (i): We make the ansatz ηi = ηIi for all i ∈ S \ I and all I ⊆ D in (5.2). We then
obtain with the solution ηi of the tra�c equations (1.6) for any I ⊆ D: ∀i ∈ S \ I

ηi = λIi +
∑
j∈J̃\I

min(ηj, µj)r
I(j, i)

= λIi +
∑
j∈S\I

ηjr
I(j, i) +

∑
j∈U\I

µjr
I(j, i)

Def. 2.8
= λi + ηi

(
r(i, i) +

∑
k∈I

r(i, k)
)

+
∑

j∈S\I,j 6=i

ηjr(j, i) +
∑
j∈U\I

µjr(j, i)

= λi +
∑
k∈I∩S

ηir(i, k)︸ ︷︷ ︸
(5.3)
= ηkr(k,i)

+
∑
k∈I∩U

ηir(i, k)︸ ︷︷ ︸
(5.4)
= µkr(k,i)

+
∑
j∈S\I

ηjr(j, i) +
∑
j∈U\I

µjr(j, i)

= λi +
∑
j∈S

ηjr(j, i) +
∑
j∈U

µjr(j, i) = (1.6).
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(ii): For any I ⊆ D holds ∀i ∈ U \ I:

ηIi
(5.2)
= λIi +

∑
j∈S\I

ηIj︸︷︷︸
(i)
=ηj

rI(j, i) +
∑
j∈U\I

µjr
I(j, i)

Def. 2.8
= λi +

∑
j∈S\I

ηjr(j, i) + µi

(
r(i, i) +

∑
k∈I

r(i, k)
)

+
∑

j∈U\I,j 6=i

µjr(j, i)

= λi +
∑
j∈S\I

ηjr(j, i) +
∑
k∈I∩S

µir(i, k)︸ ︷︷ ︸
(5.4)
= ηkr(k,i)

+
∑
k∈I∩U

µir(i, k)︸ ︷︷ ︸
(5.5)
= µkr(k,i)

+
∑
j∈U\I

µjr(j, i)

= λi +
∑
j∈S

ηjr(j, i) +
∑
j∈U

µjr(j, i)
(1.6)
= ηi.

Remark 5.3. The reversibility constraints (5.3), (5.4) and (5.5) are di�erent to the
classical reversibility constraints (2.7) which are the local balance equations of the routing
process. But the interpretation of (5.3), (5.4) and (5.5) is the same as for (2.7): The
departure rate from one node multiplied with the routing probability to another node has
to be equal to the according �ow rate of the opposite direction.

The following example shows that the reversibility constraints (5.3), (5.4) and (5.5) are
compatible with the de�nition of a Jackson network. Clearly, these reversibility analogues
put structural restrictions on the network. But these do not lead to contradictions.

Example 5.4. Consider a Jackson network with two nodes. Both nodes may break down.
Let η1 < µ1 and η2 ≥ µ2 hold. Then the tra�c equations in case of all nodes in up status
are

η1 = λ1 + η1r(1, 1) + µ2r(2, 1),

η2 = λ2 + η1r(1, 2) + µ2r(2, 2).

Since routing is irreducible, r(1, 1) < 1 holds and therefore 1− r(1, 1) > 0. Thus the �rst
equation is equivalent to

η1 =
λ1 + µ2r(2, 1)

1− r(1, 1)
. (5.6)

Let the reversibility constraint (5.4) hold which is

η1r(1, 2) = µ2r(2, 1). (5.7)

This constraint leads to the following structural consequences for the Jackson network:

• If r(2, 1) = 0 then either r(1, 2) = 0 or λ1 = 0, i.e., if r(2, 1) = 0 holds then either
the two nodes must be two separate M/M/1/∞ systems or node 1 has no input at
all.

• If r(1, 2) = 0 then r(2, 1) = 0, i.e., r(1, 2) = 0 holds then the two nodes must be two
separate M/M/1/∞ systems.
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• It remains to analyze the case r(1, 2) 6= 0 6= r(2, 1). Then the required constraint
(5.7) is with (5.6) equivalent to

λ1 + µ2r(2, 1)

1− r(1, 1)
r(1, 2) = µ2r(2, 1)

⇔ λ1r(1, 2) + µ2r(2, 1)r(1, 2) = µ2r(2, 1)( 1− r(1, 1)︸ ︷︷ ︸
=r(1,0)+r(1,2)

)

⇔ λ1r(1, 2) = µ2r(2, 1)r(1, 0).

Thus, r(1, 0) = 0 if and only if λ1 = 0. Let r(1, 0) > 0 hold, then we get

µ2r(2, 1) = λ1
r(1, 2)

r(1, 0)
⇔ µ2 = λ1

r(1, 2)

r(2, 1)r(1, 0)
> 0.

Plugging this information into (5.6) yields

η1 =
λ1(1 + r(1,2)

r(1,0)
)

1− r(1, 1)
=

λ1

r(1, 0)
= λ

r(0, 1)

r(1, 0)
> 0.

So if r(1, 2) 6= 0 6= r(2, 1) and r(1, 0) > 0, then λ1 > 0. Thus constraint (5.7) has
in�uence on the parameters of the network, but it does not lead to contradictions.

Lemma 5.5. Consider a Jackson network where nodes in D ⊆ J̃ are unreliable. Let
η = (ηj : j ∈ J̃) be the unique solution of the general tra�c equations (1.6). Denote by
S = {i : ηi < µi} ⊆ J̃ the set of stable nodes in the network and by U := J̃ \ S the set of
unstable nodes in the network.
In case of breakdowns of nodes we assume that customers are rerouted according to the
skipping regime. Let the following side constraint hold:

ηi = µi ∀i ∈ U ∩D. (5.8)

Then for all nodes i ∈ J̃ \ I holds that the solution ηIi of the tra�c equation (5.2) for all
I ⊆ D, I 6= ∅, equals ηi.

Proof. We make the ansatz ηi = ηIi for all i ∈ S \ I and all I ⊆ D in (5.2). We then
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obtain with the solution ηi of the tra�c equations (1.6) for any I ⊆ D: ∀i ∈ S \ I

λIi +
∑
j∈S\I

ηjr
I(j, i) +

∑
j∈U\I

µjr
I(j, i)

(Def. 2.7)
= λi +

∑
k∈I

λkr
I(k, i) +

∑
j∈S\I

ηj

(
r(j, i) +

∑
k∈I

r(j, k)rI(k, i)
)

+

+
∑
j∈U\I

µj

(
r(j, i) +

∑
k∈I

r(j, k)rI(k, i)
)

= λi +
∑
j∈S\I

ηjr(j, i) +
∑
j∈U\I

µjr(j, i)︸ ︷︷ ︸
(1.6)
= ηi−

∑
j∈I∩S ηjr(j,i)−

∑
j∈I∩U µjr(j,i)

+

+
∑
k∈I

rI(k, i)
(
λk +

∑
j∈S\I

ηjr(j, k) +
∑
j∈U\I

µjr(j, k)︸ ︷︷ ︸
(1.6)
= ηk−

∑
j∈I∩S ηjr(j,k)−

∑
j∈I∩U µjr(j,k)

)

= ηi −
∑
j∈I∩S

ηjr(j, i)−
∑
j∈I∩U

µjr(j, i)+

+
∑
k∈I

ηkr
I(k, i)−

∑
k∈I

rI(k, i)
∑
j∈I∩S

ηjr(j, k)−
∑
k∈I

rI(k, i)
∑
j∈I∩U

µjr(j, k)

= ηi −
∑
j∈I∩S

ηj

(
r(j, i) +

∑
k∈I

r(j, k)rI(k, i)︸ ︷︷ ︸
(2.1)
= rI(j,i)

)
+

+
∑
k∈I

ηkr
I(k, i)−

∑
j∈I∩U

µj

(
r(j, i) +

∑
k∈I

r(j, k)rI(k, i)︸ ︷︷ ︸
(2.1)
= rI(j,i)

)

= ηi +
∑
k∈I∩S

ηkr
I(k, i)−

∑
j∈I∩S

ηjr
I(j, i) +

∑
k∈I∩U

ηkr
I(k, i)−

∑
j∈I∩U

µjr
I(j, i)

= ηi +
∑
k∈I∩U

(ηk − µk)︸ ︷︷ ︸
(5.8)
= 0

rI(k, i) = ηi. (5.9)

Since ηIj = ηj holds for all j ∈ S \ I and all I ⊆ D, it follows for all i ∈ U \ I and I ⊆ D:

ηIi = λIi +
∑
j∈S\I

ηIj r
I(j, i) +

∑
j∈U\I

µjr
I(j, i)

= λIi +
∑
j∈S\I

ηjr
I(j, i) +

∑
j∈U\I

µjr
I(j, i)

which is the very left side of (5.9) with i ∈ U \ I. The above computations in (5.9) are
valid for all i ∈ J̃ \ I, hence it follows ηIi = ηi for all i ∈ U \ I and I ⊆ D, too.

Remark 5.6. The constraint (5.8) means that unstable nodes which may break down, on
average, are fully loaded but not overloaded.
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In the following example it can be seen that constraint (5.8) is compatible with the
de�nition of a Jackson network.

Example 5.7. Consider a Jackson network with two nodes. Both nodes may break down.
Let η1 < µ1 and η2 = µ2 hold. Then the tra�c equations in case of all nodes in up status
are

η1 = λ1 + η1r(1, 1) + µ2r(2, 1),

η2 = λ2 + η1r(1, 2) + µ2r(2, 2). (5.10)

Since routing is irreducible, r(1, 1) < 1 holds and therefore 1− r(1, 1) > 0. Thus the �rst
equation is equivalent to

η1 =
λ1 + µ2r(2, 1)

1− r(1, 1)
.

Plugging this into (5.10) yields

η2 = λ2 +
λ1 + µ2r(2, 1)

1− r(1, 1)
r(1, 2) + µ2r(2, 2).

With η2 = µ2 we get

µ2 = λ2 +
λ1 + µ2r(2, 1)

1− r(1, 1)
r(1, 2) + µ2r(2, 2)

⇔ µ2(1− r(2, 2)) = λ2 +
λ1r(1, 2)

1− r(1, 1)
+
µ2r(2, 1)r(1, 2)

1− r(1, 1)

⇔ µ2

(
1− r(2, 2)− r(2, 1)r(1, 2)

1− r(1, 1)

)
= λ2 +

λ1r(1, 2)

1− r(1, 1)

⇔ µ2

(
(1− r(1, 1))(1− r(2, 2))− r(2, 1)r(1, 2)︸ ︷︷ ︸

=r(1,0)(1−r(2,2))+r(1,2)r(2,0)>0

)
= λ2(1− r(1, 1)) + λ1r(1, 2)

⇔ µ2(r(2, 0)(1− r(1, 1)) + r(2, 1)r(1, 0)) = λ2(1− r(1, 1)) + λ1r(1, 2).

So if we require η1 < µ1 and η2 = µ2 to hold, µ2 is

µ2 = λ2
1− r(1, 1)

r(2, 0)(1− r(1, 1)) + r(2, 1)r(1, 0)︸ ︷︷ ︸
>0

+λ1
r(1, 2)

r(2, 0)(1− r(1, 1)) + r(2, 1)r(1, 0)︸ ︷︷ ︸
>0

.

Because of the irreducibility of the routing process, λi > 0 holds for at least one node,
so the right-hand side of the last equation is greater than zero. Thus constraint (5.8) is
compatible with the de�nition of a Jackson network with two nodes.

5.3 Asymptotic results

In the theorems of this section the essential result is that the non-ergodic state process
(Y,X) on P(D)×NJ has - under certain conditions - a product form limiting joint marginal
distribution on the stable subnetwork and limiting marginal queue length probabilities for
each unstable node which represent the degenerated one-point distribution at in�nity.
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De�nition 5.8 (Framework for Chapter 5.3). Consider a Jackson network with unreliable
nodes according to De�nition 2.9. Nodes in D ⊆ J̃ are unreliabe and breakdowns and
repairs of the nodes are controlled by load-independent breakdown and repair intensities
as in Example 2.2. Let η = (η1, ..., ηJ) denote the unique solution of the general tra�c
equations (1.6). Denote by S = {i : ηi < µi} ⊆ J̃ the set of stable nodes in the network,
nodes in U := J̃ \ S are unstable. In case of broken down nodes rerouting follows one of
the regimes stalling, blocking rs-rd, or skipping. Let (Y,X) denote the availability-queue
lengths process (which is a Markov process) on the state space P(D)×NJ with Q-matrix
given in De�nition 2.9.

For the process (Y,X) we will prove in the framework of De�nition 5.8 that the following
limiting probabilities occur:

lim
t→∞

P (Y (t) = I;Xi(t) = ni : i ∈ S) =

(∑
K⊆D

A(K)

B(K)

)−1
A(I)

B(I)

∏
i∈S

(
1− ηi

µi

)(
ηi
µi

)ni
(5.11)

for (I, ni : i ∈ S) ∈ P(D)× N|S|, and for (I, nj) ∈ P(D)× N:

lim
t→∞

P (Y (t) = I;Xj(t) = nj) = 0 ∀j ∈ U. (5.12)

Remark 5.9. Whenever U is not empty, then the network process (Y,X) is not ergodic.
Nevertheless the limiting joint marginal process of the queue lengths in S is of product
form as it already occurred in Theorem 2.14 (see Remark 2.15).
(5.12) implies that the limiting marginal distribution for each unstable node is the degen-
erated one-point distribution at ∞. It also follows directly (and by the proof later on) that
for all states (I, nj : j ∈ U) ∈ P(D)× N|U | holds

lim
t→∞

P (Y (t) = I;Xj(t) = nj : j ∈ U) = 0. (5.13)

On the other hand, the availability process Y is an ergodic Markov process of its own and
its state distribution converges to its unique steady-state distribution.

The following theorems are extensions of the results in [MD09]. The limiting probabili-
ties (5.11) and (5.12) are proved in [MD09] under the restriction that only stable nodes
are unreliable. This restriction is removed here, which obviously covers more realistic
situations. We summarize the results.

Theorem 5.10. Consider a Jackson network with unreliable stations with non-ergodic
state process (Y,X) as described in De�nition 5.8. We assume that nodes in D ⊆ J̃ are
unreliable. In case of breakdown stalling is applied according to De�nition 2.6 (note that
servers are under warm stand-by, i.e., they can still break down and may be repaired).
Then the Markov process (Y,X) has the marginal limiting probabilities (5.11) and (5.12).

Theorem 5.11. Consider a Jackson network with unreliable stations with non-ergodic
state process (Y,X) as described in De�nition 5.8. We assume that nodes in D ⊆ J̃ are
unreliable. In case of breakdown customers are rerouted according to the skipping regime
as in De�nition 2.7. Let (5.8) hold:

ηi = µi ∀i ∈ U ∩D.

Then the Markov process (Y,X) has the marginal limiting probabilities (5.11) and (5.12).



122 5 Jackson networks with breakdowns: The non-ergodic case

Theorem 5.12. Consider a Jackson network with unreliable stations with non-ergodic
state process (Y,X) as described in De�nition 5.8. We assume that only nodes in D ⊆ J̃
are unreliable. In case of breakdown customers are rerouted according to the blocking
rs-rd regime as in De�nition 2.8. Let the reversibility constraints (5.3), (5.4) and (5.5)
hold:

ηir(i, j) = ηjr(j, i) ∀i, j ∈ S,
ηir(i, j) = µjr(j, i) ∀i ∈ S, j ∈ U,
µir(i, j) = µjr(j, i) ∀i, j ∈ U.

Then the Markov process (Y,X) has the marginal limiting probabilities (5.11) and (5.12).

5.3.1 Idea and outline of the proofs

Because the proofs of the three theorems are rather long, but have the same structure,
the idea and the layout used will be described �rst.

The problem of proving the marginal limiting probabilities is that we cannot apply
Theorem 2.14 to compute the limiting probabilities of (Y,XS), because the marginal
process (Y,XS) on P(D)× N|S| is not Markov.

Our approach to prove (5.11) (and (5.12) as well) follows the principles used by Goodman
and Massey [GM84] in case of reliable nodes. We additionally have to incorporate
breakdown and repair which makes the constructions much more complicated.

The idea is to use an upper bound and sequences of lower bounds for (Y,X) in the
sense of stochastic ordering and to show that these bounds converge. The bounding
processes will represent ergodic Jackson network processes with unreliable nodes and
Jackson networks with in�nite supply at the unstable nodes and with unreliable nodes,
so Theorem 2.14 and Theorem 4.46 or Theorem 4.47 (respective the considered rerouting
regime) will apply to the processes and generate limiting product form distributions. This
guarantees that on the subnetwork S a product form limiting distribution is established.

The order structure on P(D)× N|S| is the product of the ordered spaces (P(D),⊆) (the
inclusion order) and (N|S|,≤|S|) (the natural coordinate-wise order on N|S|). We shall
denote this order by

≺:= (⊆ × ≤|S|),
and the associated integral stochastic order on the set of probability measures on P(D)×
N|S| by

≺st .
The construction of the bounding processes will accomplish the following:

• For all bounding processes we take the breakdown and repair intensities as prescribed
by the original network. Recall that the availability process Y is Markov of its own.

• The sequence of network processes that serve as lower bounds is denoted by

((Y,X−(ε)) : ε→ 0)
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and represents a sequence of Jackson networks with unreliable nodes.

• As upper bound we use a network process (Y,X+) which represents a Jackson
network with in�nite supply at the unstable nodes in U and with unreliable nodes.

• The construction will guarantee that at any time t ≥ 0 and for all ε > 0 we have
for the availability status of the network and the queue lengths in the subnet S

(Y (t);X−i (ε)(t) : i ∈ S)

≺st (Y (t);Xi(t) : i ∈ S)

≺st (Y (t);X+
i (t) : i ∈ S), (5.14)

as well as for the availability status of the network and the queue lengths in the
subnet U

(Y (t);X−i (ε)(t) : i ∈ U) ≺st (Y (t);Xi(t) : i ∈ U). (5.15)

Outline of the proofs: We will perform the following tasks under the respective ad-
ditional assumptions of the theorems:

1. Construct the upper bound process (Y,X+).

2. Prove that (Y,X+
S ) := (Y,X+

i : i ∈ S) is an ergodic Markov process of its own:
Show that for the solution η+

i of the tra�c equations of (Y,X+) holds

• η+
i = ηi ,

• η+
i < µ+

i and

• η+
i = η+,I

i (in case of skipping and blocking rs-rd),

for all i ∈ S \I and I ⊆ D, where ηi is the solution of the tra�c equations of (Y,X).
Then with Corollary 4.48 it follows directly that (Y,X+

S ) is an ergodic homogeneous
Markov process of its own.

3. Construct the lower bound processes (Y,X−(ε)), ε > 0.

4. Prove that (Y,X−(ε)) is ergodic: Show that for the solution η−i (ε) of the tra�c
equations of (Y,X−(ε)) holds

• η−i (ε) < µ−i (ε),

• η−i (ε) = η−,Ii (ε) (in case of skipping and blocking rs-rd) and

• limε→0 η
−
i (ε) = ηi,

for all i ∈ J̃ and I ⊆ D, where ηi is the solution of the tra�c equations of (Y,X).
Moreover, it will hold limε→0 µ

−
i (ε) = µi ∀i ∈ S and limε→0 µ

−
i (ε) = ηi ∀i ∈ U .

5. Show the stochastic order (5.14) and (5.15) of the processes:
Construct ((Y,X−(ε)), (Y,X), (Y,X+)) for any ε > 0 on a common probability
space such that if the processes are started ω-wise ordered

(Y,X−(ε))(0, ω) ≺ (Y,X)(0, ω) ≺ (Y,X+)(0, ω),
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then over the time horizon [0,∞) the paths of the three processes ful�ll

(Y,X−(ε))(t, ω) ≺ (Y,X)(t, ω) ≺ (Y,X+)(t, ω) for all t.

Thus, these versions of the processes are (path-wise) ordered on the path space of
right continuous functions with left-hand limits. From Strassen's theorem follows
that the complete process distributions are stochastically ordered with respect to
the stochastic integral order generated by the product order ≺[0,∞) on the space of
functions (P(D)×N|S|)[0,∞) (restricted to the subspace of the right continuous func-
tions with left-hand limits), see [MS02, Theorem 2.6.3] or [KKO77]. This trivially
implies (5.14) and (5.15).

Remark 5.13. An intuitive explanation for the stochastic comparison of the processes
(Y,X) and (Y,X+) can be visualized by coloring

• all jobs in (Y,X) blue,

• all (high priority) jobs which originate from the external Poissonian arrival streams
in (Y,X+) blue as well, and

• all additional (low priority turning into high priority) jobs (from the in�nite supply)
in (Y,X+) red.

Letting the processes run one may observe the following: In both processes the queue
lengths at each node will have the same amount of blue jobs, but in case of (Y,X+) we
will additionally have red jobs in the queue lengths as well.

These tasks build the structure of the proofs. If all these tasks are done, then it follows
directly:

6. Consequences for the limiting probabilities:

Recall that (Y,X+) represents an unreliable Jackson network with in�nite supply at the
nodes in U which has according to Theorem 4.46 or Theorem 4.47, resp., a uniquely
de�ned limiting distribution in product form on the subnet W (≡ S by de�nition),
independent of the initial distribution. Also recall that all the (Y,X−(ε)), ε > 0,
are ergodic Jackson network processes with unreliable nodes which have according to
Theorem 2.14 a uniquely de�ned limiting distribution in product form, independent of
the initial distribution. Then the proof will be �nished by the observation that for ε→ 0
the limiting marginal distributions of ((Y,X−S (ε))(t) : t ≥ 0) converge to the limiting
marginal distributions of ((Y,X+

S )(t) : t ≥ 0).

For all ni ∈ N and I ⊆ D holds in case of stalling with Theorem 4.46(i), in case of skipping
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or blocking rs-rd with Theorem 4.47 by stochastic ordering:

lim inf
t→∞

P (Y (t) = I;Xi(t) < ni : i ∈ S)

≥ lim inf
t→∞

P (Y (t) = I;X+
i (t) < ni : i ∈ S)

= lim
t→∞

P (Y (t) = I;X+
i (t) < ni : i ∈ S)

=
∑

((si,i∈S):0≤si<ni∀i∈S)

lim
t→∞

P (Y (t) = I;X+
i (t) = si : i ∈ S)

=
∑

((si,i∈S):0≤si<ni∀i∈S)

(∑
K⊆D

A(K)

B(K)

)−1
A(I)

B(I)

∏
i∈S

(
ηi
µi

)si (
1− ηi

µi

)
.

For all ε > 0 and ni ∈ N and I ⊆ D holds with Theorem 2.14:

lim sup
t→∞

P (Y (t) = I;Xi(t) < ni : i ∈ S)

≤ lim sup
t→∞

P (Y (t) = I;X−i (ε)(t) < ni : i ∈ S)

= lim
t→∞

P (Y (t) = I;X−i (ε)(t) < ni : i ∈ S)

=
∑

((si,i∈S):0≤si<ni∀i∈S)

lim
t→∞

P (Y (t) = I;X−i (ε)(t) = si : i ∈ S)

=
∑

((si,i∈S):0≤si<ni∀i∈S)

(∑
K⊆D

A(K)

B(K)

)−1
A(I)

B(I)

∏
i∈S

(
η−i (ε)

µ−i (ε)

)si (
1− η−i (ε)

µ−i (ε)

)
.

Letting ε go zero yields from η−i (ε)

µ−i (ε)

ε↘0−→ ηi
µi
∀i ∈ S

lim sup
t→∞

P (Y (t) = I;Xi(t) < ni : i ∈ S)

≤
∑

((si,i∈S):0≤si<ni∀i∈S)

(∑
K⊆D

A(K)

B(K)

)−1
A(I)

B(I)

∏
i∈S

(
ηi
µi

)si (
1− ηi

µi

)
.

Thus, for all ni ∈ N and I ⊆ D∑
((si,i∈S):0≤si<ni∀i∈S)

(∑
K⊆D

A(K)

B(K)

)−1
A(I)

B(I)

∏
i∈S

(
ηi
µi

)si (
1− ηi

µi

)
≤ lim inf

t→∞
P (Y (t) = I;Xi(t) < ni : i ∈ S)

≤ lim sup
t→∞

P (Y (t) = I;Xi(t) < ni : i ∈ S)

≤
∑

((si,i∈S):0≤si<ni∀i∈S)

(∑
K⊆D

A(K)

B(K)

)−1
A(I)

B(I)

∏
i∈S

(
ηi
µi

)si (
1− ηi

µi

)
.

So (5.11) is proved by

lim
t→∞

P (Y (t) = I;Xi(t) < ni : i ∈ S)

=
∑

((si,i∈S):0≤si<ni∀i∈S)

(∑
K⊆D

A(K)

B(K)

)−1
A(I)

B(I)

∏
i∈S

(
ηi
µi

)si (
1− ηi

µi

)
.
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Finally, Theorem 2.14 implies for i ∈ U and for all ni ∈ N and I ⊆ D:

lim sup
t→∞

P (Y (t) = I;Xi(t) < ni : i ∈ U)

≤ lim sup
t→∞

P (Y (t) = I;X−i (ε)(t) < ni : i ∈ U)

=
∑

((si,i∈U):0≤si<ni∀i∈U)

(∑
K⊆D

A(K)

B(K)

)−1
A(I)

B(I)

∏
i∈U

(
η−i (ε)

µ−i (ε)

)si (
1− η−i (ε)

µ−i (ε)

)
.

With limε↘0
η−i (ε)

µ−i (ε)
= ηi

ηi
= 1 ∀ i ∈ U it follows directly for all I ⊆ D and ni ∈ N:

lim
t→∞

P (Y (t) = I;Xi(t) < ni : i ∈ U) = 0,

hence (5.13) is valid. Even more, Theorem 2.14 also implies for i ∈ U and for all ni ∈ N
and I ⊆ D:

lim sup
t→∞

P (Y (t) = I;Xi(t) < ni)

≤ lim sup
t→∞

P (Y (t) = I;X−i (ε)(t) < ni)

=
∑

(0≤si<ni)

(∑
K⊆D

A(K)

B(K)

)−1
A(I)

B(I)

(
η−i (ε)

µ−i (ε)

)si (
1− η−i (ε)

µ−i (ε)

)
.

With limε↘0
η−i (ε)

µ−i (ε)
= ηi

ηi
= 1 ∀ i ∈ U it follows directly for all I ⊆ D and ni ∈ N:

lim
t→∞

P (Y (t) = I;Xi(t) < ni) = 0,

i ∈ U , hence (5.12) is valid.

Remark 5.14. As mentioned before, the result in [GM84] considers reliable non-ergodic
networks only, while the results in our paper [MD09] cover the case that stable nodes are
unreliable but all unstable nodes are reliable. Still the lower process networks in case that
all nodes are in up status are constructed the same way in the proofs of the Theorems
5.10-5.12 as in [MD09] and in [GM84] as well. The structure of the proofs of the Theo-
rems 5.10-5.12 resembles the structure of the proof of Theorem 15 in our paper [MD09].
Apart from other di�erences to the proof in [MD09] in the details, the generalization in
Theorems 5.10-5.12 that all nodes may be unreliable requires the use of a di�erent up-
per bound process and therefore the theory of Jackson networks with in�nite supply, see
Chapter 4. Furthermore, especially in case of rerouting according to skipping, some more
technical computations are necessary here in order to proof the stochastic order of the
three processes.

5.3.2 Proofs

All proofs in this section will use the idea and layout described in the previous Section
5.3.1. For readability some arguments will be recapitulated.
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Proof of Theorem 5.10 (Rerouting according to stalling)

1. Construction of the upper bound: We derive (Y,X+) from (Y,X) as follows:

• The breakdown and repair processes are (stochastically) identical;

• the service rates at all nodes are the same as in the original network;

• all nodes in U are supplemented by an in�nite supply of work, this leads to Poisso-
nian departure processes from those nodes (see Theorem 4.3 and Theorem 4.38);

• the rerouting regime is selected as stalling, so whenever nodes of I ⊆ D break down,
the transition intensities are as in De�nition 4.37 with De�nition 2.6.

2. (Y,X+
S ) is an ergodic homogeneous Markov process of its own: (Y,X+) is the

Markov state process of a Jackson network with unreliable nodes where the nodes in U
have an in�nite supply of work, as in De�nition 4.37 with U = V and S = W . (η+

i : i ∈ J̃)
is the unique solution of the tra�c equations (4.1):

η+
i = λi +

∑
j∈W

η+
j r(j, i) +

∑
j∈V

µjr(j, i)

= λi +
∑
j∈S

η+
j r(j, i) +

∑
j∈U

µjr(j, i), ∀i ∈ J̃ ,

thus (η+
i : i ∈ J̃) solves the tra�c equations (1.6) of (Y,X). Therefore η+

i = ηi for all
i ∈ J̃ . Recalling S = {i : ηi < µi}, it follows directly that η+

i < µi holds for all i ∈ S. In
case of stalling it is trivial that this local stability criterion for nodes in S holds in any
availability status.

Since U∩W = ∅ and rerouting is according to stalling, Theorem 4.46 applies and provides
us with a product form stationary and limiting distribution for (Y,X+

S ) := (Y,X+
i : i ∈ S)

which is the restriction of the process (Y,X+) on the stable subnetwork. From Corollary
4.48 we know that (Y,X+

S ) is an ergodic homogeneous Markov process independent of the
behavior of the remaining nodes in the network. The last step of the argument is that
under load-independent breakdown and repair rates, an ergodic Jackson network remains
ergodic, see Example 3.3.

3. Construction of the lower bounds: We derive (Y,X−(ε)) from (Y,X) for ε > 0
as follows:

• The breakdown and repair processes are (stochastically) identical;

• the external arrival rates at all nodes are identical to those in the original network;

• the service rates at nodes in S are the same as in the original network, the service
rates at nodes in U are increased from µi to ηi + ε:

µ−i (ε) =

{
µi, i ∈ S,
ηi + ε, i ∈ U,

which guarantees that all nodes in the network are stable now, as will be shown in
the next step (4.) of the proof;
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• this generates additional customer �ows (at least) out of the nodes in U ; this addi-
tional load on the network is then reduced by increasing the probability for customers
to leave nodes in U directly to the external sink; we prescribe

r−(i, j)(ε) =

{
r(i, j), i ∈ S, j ∈ J̃ ,
µi
ηi+ε

r(i, j), i ∈ U, j ∈ J̃ ,

r−(i, 0)(ε) =

{
r(i, 0), i ∈ S,
µir(i,0)+ηi−µi+ε

ηi+ε
, i ∈ U ;

• the combination of adjusted service rates and new routing probabilities yields the
desired reproduction of �ows on S with

µ−i (ε)r−(i, j)(ε) = µir(i, j) ∀ i, j ∈ J̃ ,

µ−i (ε)r−(i, 0)(ε) =

{
µir(i, 0), i ∈ S,
µir(i, 0) + ηi − µi + ε, i ∈ U ;

(5.16)

• in case that nodes break down, the stalling regime according to De�nition 2.6 is in
force.

4. (Y,X−(ε)), ε > 0, is ergodic: Consider the network described above by the process
(Y,X−(ε)), ε > 0, with completely reliable nodes, which is just a classical Jackson network
with queue-length process X−(ε) and tra�c equations

η−i (ε) = λ−i (ε) +
∑
j∈J̃

min(η−j (ε), µ−j (ε))r−(j, i)(ε) ∀i ∈ J̃

⇔ η−(ε) = λ−(ε) + (η−(ε) ∧ µ−(ε))R−
J̃ J̃

(ε).

• For the solution ηi of the tra�c equation (1.6) holds ∀i ∈ J̃

ηi = λi +
∑
j∈S

ηjr(j, i) +
∑
j∈U

µjr(j, i)

= λ−i (0) +
∑
j∈S

ηjr
−(j, i)(0) +

∑
j∈U

ηjr
−(j, i)(0)

= λ−i (0) +
∑
j∈J̃

ηjr
−(j, i)(0),

thus η = (ηi : i ∈ J̃) solves the tra�c equation for the process (Y,X−(0)) (in matrix
notation)

η−(0) = λ−(0) + η−(0)R−
J̃ J̃

(0).

For all i ∈ S it holds η−i (0) = ηi < µi = µ−i (0) and for all i ∈ U we have η−i (0) =
ηi = ηi + 0 = µ−i (0). Therefore η = (ηi : i ∈ J̃) also solves the tra�c equation (in
matrix notation)

η−(0) = λ−(0) + (η−(0) ∧ µ−(0))R−
J̃ J̃

(0).
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• Now we show that η−i (ε) < µ−i (ε) holds for all i ∈ J̃ :

η−(ε) = λ+ (η−(ε) ∧ µ−(ε))R−
J̃ J̃

(ε)

≤ λ+ (η−(ε) ∧ µ−(ε))R−
J̃ J̃

(0)

≤ λ+ η−(ε)R−
J̃ J̃

(0)

⇒ η−(ε) ≤ λ
(
I−R−

J̃ J̃
(0)
)−1

= η−(0),

and furthermore η−U (0) = µ−U(0) < µ−U(ε) and η−S (0) = ηS < µS = µ−S (ε) holds
component-wise for ε > 0. So η−(ε) < µ−(ε) holds component-wise for all ε > 0
where η−(ε) is determined by

η−(ε) = λ
(
I−R−

J̃ J̃
(ε)
)−1

,

henceX−(ε) is ergodic. In case of stalling it is trivial that the local stability criterion
η−i (ε) < µ−i (ε) ∀i ∈ J̃ holds in any availability status and, under load-independent
breakdown and repair rates, an ergodic Jackson network remains ergodic, see Ex-
ample 3.3.

• It remains to show that limε→0 η
−
i (ε) = ηi holds for all i ∈ J̃ . Since η−(0) = η, we will

show that limε→0 η
−(ε) = η−(0). Recalling that X−(ε) is ergodic, |η−(ε)|1 < |µ−(ε)|1

holds for all ε > 0, so there is ε′ < ∞ such that {η−(ε) : 0 ≤ ε ≤ ε′} is a bounded
set of vectors in RJ . Hence there is a convergent subsequence (η−(εl) : l ≥ 0) for
liml→∞ εl = 0. Furthermore, it holds component-wise

lim
l→∞

R−
J̃ J̃

(εl) = R−
J̃ J̃

(0)

and the tra�c equations of X−(εl) are

η−(εl) = λ+ η−(εl)R
−
J̃ J̃

(εl)⇒ lim
l→∞

η−(εl) = lim
l→∞

(
λ+ η−(εl)R

−
J̃ J̃

(εl)
)

[Kön01, p.43]⇔ lim
l→∞

η−(εl) = lim
l→∞

λ+
(

lim
l→∞

η−(εl)
)(

lim
l→∞

R−
J̃ J̃

(εl)
)

⇔ lim
l→∞

η−(εl) = λ+
(

lim
l→∞

η−(εl)
)
R−
J̃ J̃

(0),

which is the tra�c equation of X−(0), so liml→∞ η
−(εl) = η−(0) holds for all con-

vergent subsequences (η−(εl) : l ≥ 0). Thus limε→0 η
−(ε) = η−(0) is valid.

5. Stochastic ordering of the processes: The joint construction of the processes
is a standard coupling construction and utilizes ideas of Goodman and Massey [GM84].
The special issue is to handle the breakdown and repair processes. We shall perform a
sequence of successive constructions each for a random time during which the availability
status of the networks stays invariant. Whenever the availability status of the networks
changes we switch to a new, suitably adapted, construction scheme. The construction
ensures that switching the construction mode for all involved processes happens at
exactly the same times.
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From the de�nition of the processes it will be immediately seen that all the Q-matrices
have bounded diagonals and therefore are uniformizable, i.e., they have a compound
Poisson representation: Let 0 < ζ < ∞ be an upper bound of the modulus of the
diagonal entries of all three processes to be compared. Then in a standard coupling the
processes are driven by a Poisson-ζ process, which determines the common jump times,
and three (di�erent) Markov chain jump matrices, which are coupled and determine the
direction of the jumps.

Our plan is not to use a single Poisson process to determine the common jump times,
but to use Poisson processes of di�erent intensities over random time intervals, and then
similarly di�erent jump matrices.

To start the system we assume that initially all networks are empty and all nodes are up.
Let us assume that at some (random) time τ a change of the availability status has
happened such that nodes in I are under repair and assume that (ω-wise)

(Y,X−(ε))(τ) ≺ (Y,X)(τ) ≺ (Y,X+)(τ)

holds. Now we describe the development of the processes until the next availability change
occurs at some (random) time τ ′. We run a Poisson process with rate

ζ(I) :=
∑
i∈J̃

λi +
∑
i∈J̃

µi +
∑
i∈U

(ηi − µi) + ε|U |+
∑

∅6=K⊆D\I

α(I, I ∪K) +
∑
∅6=H⊆I

β(I, I \H),

which generates the jump instants for the processes.

At each jump instant we select according to some probability law (to be speci�ed below)
an activity from the following set, which is performed for all the three processes jointly
unless otherwise indicated:

[Ai] Add a customer to node i.
[Bi] Delete a customer from node i if the queue length at i is positive,

otherwise do nothing.
[Cij] Transfer a customer from i to j if the queue length at i is positive,

otherwise do nothing.
[D] Do nothing.[

E(I,I∪K)

]
τ ′ occurs, deactivate nodes of the non-void subset K ⊆ D \ I, stop
the running Poisson process and start an independent new Poisson-
ζ(I ∪K) process.[

E(I,I\H)

]
τ ′ occurs, reactivate nodes of the non-void subset H ⊂ I, stop the
running Poisson process and start an independent new Poisson-
ζ(I \H) process.

The breakdown and repair activities are selected for all processes the same way according
to the following rules:

• With probability α(I, I ∪K)/ζ(I) select
[
E(I,I∪K)

]
;

• with probability β(I, I \H)/ζ(I) select
[
E(I,I\H)

]
.
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Note, that by these activities a ≺-order of the processes is maintained.

To perform the selection of queue-length activities only the case that all nodes are in
up status is interesting, because if at least one node is broken down all nodes are stalled
according to De�nition 2.6, which means that in any other availability status than I = ∅ no
queue-length activities may be selected with positive probability. That is why we assume
Y (τ) = ∅ and recall that the processes have cadlag paths, so the transition intensities are
�xed on [τ, τ ′). Whenever the Poisson process indicates a jump and no availability change
was selected by the randomization procedure, we utilize the intensities to select changes
in the queue lengths:

• For all i ∈ J̃ select with probability λi/ζ(∅):
[Ai] = Add a customer to node i;

• for all i ∈ J̃ with probability µir(i, 0)/ζ(∅) select:
[Bi] = Delete a customer from node i if the queue length at i is positive, otherwise
do nothing;

• for all i ∈ S, j ∈ J̃ , j 6= i, select with probability µir(i, j)/ζ(∅):
[Cij] = Transfer a customer from i to j if the queue length at i is positive, otherwise
do nothing;

• for all i ∈ U, j ∈ S, j 6= i, with probability µir(i, j)/ζ(∅) select
◦ for (Y,X+): [Aj] = Add a customer at node j if the queue length at i is zero,
◦ for (Y,X) and (Y,X−(ε)): [D] = Do nothing if the queue length at i is zero,
◦ for (Y,X+), (Y,X), and (Y,X−(ε)): [Cij] = Transfer a customer from i to j if the
queue length at i is positive;
(This re�ects the in�nite supply at the nodes in U in (Y,X+).)

• for all i ∈ U select with probability (ηi − µi + ε)/ζ(∅):
◦ for (Y,X−(ε)): [Bi] = Delete a customer from node i if the queue length at i is
positive, otherwise do nothing;
◦ for (Y,X) and (Y,X+): [D] = Do nothing.
(This re�ects the additional departure rates of (Y,X−(ε)) which compensate the
additional �ows generated by making the nodes in U stable, see (5.16).)

• For all i ∈ J̃ select with probability µir(i, i)/ζ(∅):
[D] = Do nothing.

Note, that by these activities a ≺-order of the processes is maintained.

We conclude that by starting the processes ≺st-ordered with the same I ⊆ D this order
will be maintained over time, so the equilibria of the bounding processes will still be
ordered and they bound the limiting distribution of the process (Y,X).

The last step of the proof is demonstrated by the consequences for the limiting probabil-
ities of (Y,X) which can be found in the outline of the proofs numbered as 6th task on
pages 124-126.
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Remark 5.15. As mentioned before in Chapter 4, the limiting probability (4.64) for un-
stable nodes with in�nite supply in Proposition 4.46(iii) follows from the proof of Theorem
5.10: If the global state process of the Jackson network with in�nite supply is started with
an initial distribution which has the marginal (4.62) on the subset W of nodes without
in�nite supply, then the availability�queue lengths process for each node i ∈ V (with in�-
nite supply) is a Markov process on its own (see the proof of Proposition 4.46) for which
a similar lower bound process (Y,X−) may be constructed as in the proof above.

Remark 5.16. With D = ∅, the proof of Theorem 5.10 serves as a proof for Theorem
1.22. Comparing the proof of Theorem 1.22 given by Goodman and Massey in [GM84]
with this one, our version is shorter, because the Jackson network with in�nite supply for
the upper bound is less complicated than Goodman and Massey's construction of an upper
bound process.

Proof of Theorem 5.11 (Rerouting according to skipping)

1. Construction of the upper bound: We derive (Y,X+) from (Y,X) as follows:

• The breakdown and repair processes are (stochastically) identical;

• the service rates at all nodes are the same as in the original network;

• all nodes in U are supplemented by an in�nite supply of work, this leads to Poisso-
nian departure processes from those nodes (see Theorem 4.3 and Theorem 4.38);

• the rerouting regime is selected as skipping, so whenever nodes of I ⊆ D break
down, the transition intensities are as in De�nition 4.37 with De�nition 2.7.

2. (Y,X+
S ) is an ergodic homogeneous Markov process of its own: (Y,X+) is the

Markov state process of a Jackson network with unreliable nodes where the nodes in U
have an in�nite supply of work, as in De�nition 4.37 with U = V and S = W . (η+

i : i ∈ J̃)
is the unique solution of the tra�c equations (4.1)

η+
i = λi +

∑
j∈W

η+
j r(j, i) +

∑
j∈V

µjr(j, i)

= λi +
∑
j∈S

η+
j r(j, i) +

∑
j∈U

µjr(j, i), ∀i ∈ J̃ ,

so η+
i = ηi for all i ∈ J̃ . Recalling S = {i : ηi < µi}, it follows directly that η+

i < µi holds
for all i ∈ S. This local stability criterion holds in any availability status, i.e., ηI,+i < µIi
∀i ∈ S \ I, I ⊆ J̃ , because with (5.8) (which yields η+

i = µi ∀i ∈ V ∩D) the solution of
the standard tra�c equations remains the same for nodes in up status, as can be seen in
Lemma 4.43.

Since W ∩ U = ∅, rerouting is according to skipping, and (5.8) yields η+
i = µi ∀i ∈

V ∩D, Theorem 4.47 applies and provides us with a product form stationary and limiting
distribution for the process (Y,X+

S ) := (Y,X+
i : i ∈ S). From Corollary 4.48 we know that

(Y,X+
S ) is ergodic independent of the behavior of the remaining nodes in the network.

The last step of the argument is that under load-independent breakdown and repair rates,
an ergodic Jackson network remains ergodic, see Example 3.3.
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3. Construction of the lower bounds: We derive (Y,X−(ε)) from (Y,X) for ε > 0
as follows:

• The breakdown and repair processes are (stochastically) identical;

• the external arrival rates at all nodes are identical to those in the original network;

• the service rates at nodes in S are the same as in the original network, the service
rates at nodes in J̃ \ S are increased from µi to

µ−i (ε) =

{
µi, i ∈ S,
ηi + ε, i ∈ U,

which guarantees that all nodes in the network are stable now, as will be shown in
the next step (4.) of the proof;

• this generates additional customer �ows (at least) out of the nodes in U ; this addi-
tional load on the network is then reduced by increasing the probability for customers
to leave nodes in U directly to the external sink; we prescribe

r−(i, j)(ε) =

{
r(i, j), i ∈ S, j ∈ J̃ ,
µi
ηi+ε

r(i, j), i ∈ U, j ∈ J̃ ,

r−(i, 0)(ε) =

{
r(i, 0), i ∈ S,
µir(i,0)+ηi−µi+ε

ηi+ε
, i ∈ U ;

• the combination of adjusted service rates and new routing probabilities yields the
desired reproduction of �ows on S with

µ−i (ε)r−(i, j)(ε) = µir(i, j) ∀ i, j ∈ J̃ ,

µ−i (ε)r−(i, 0)(ε) =

{
µir(i, 0), i ∈ S,
µir(i, 0) + ηi − µi + ε, i ∈ U ;

(5.17)

• the rerouting regime is selected as skipping, so whenever nodes in I ⊆ D break
down, the parameters are constructed in the standard way according to De�nition
2.7 (so rI,−(ε) exists and is unique):

rI,−(i, j)(ε) =


r(i, j) +

∑
k∈I r(i, k)rI,−(k, j)(ε), i ∈ S \ I, j ∈ J̃ \ I,

µi
ηi+ε

(
r(i, j) +

∑
k∈I r(i, k)rI,−(k, j)(ε)

)
, i ∈ U \ I, j ∈ J̃ \ I,

0, else,

rI,−(i, 0)(ε) =


r(i, 0) +

∑
k∈I r(i, k)rI,−(k, 0)(ε), i ∈ S \ I,

µir(i,0)+ηi−µi+ε
ηi+ε

+ µi
ηi+ε

∑
k∈I r(i, k)rI,−(k, 0)(ε), i ∈ U \ I,

0, i ∈ I,

µI,−i (ε) =


µi, i ∈ S \ I,
ηi + ε, i ∈ U \ I,
0, i ∈ I,
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and the transition intensities of the network process (Y,X−(ε)) are

λI,−i (ε) =

{
λi +

∑
k∈I λkr

I,−(k, i)(ε), i ∈ J̃ \ I,
0, i ∈ I,

µI,−i (ε)rI,−(i, j)(ε) =

{
µi
(
r(i, j) +

∑
k∈I r(i, k)rI,−(k, j)(ε)

)
, i, j ∈ J̃ \ I,

0, else,

µI,−i (ε)rI,−(i, 0)(ε) =


µi
(
r(i, 0) +

∑
k∈I r(i, k)rI,−(k, 0)(ε)

)
, i ∈ S \ I,

µi
(
r(i, 0) +

∑
k∈I r(i, k)rI,−(k, 0)(ε)

)
+ ηi − µi + ε, i ∈ U \ I,

0, i ∈ I.

4. (Y,X−(ε)), ε > 0, is ergodic: Consider the network described above by the process
(Y,X−(ε)), ε > 0, with completely reliable nodes, which is just a classical Jacksonian
network with queue-length process X−(ε) and tra�c equations

η−i (ε) = λ−i (ε) +
∑
j∈J̃

min(η−j (ε), µ−j (ε))r−(j, i)(ε) ∀i ∈ J̃

⇔ η−(ε) = λ−(ε) + (η−(ε) ∧ µ−(ε))R−
J̃ J̃

(ε).

• For the solution ηi of the tra�c equation (1.6) holds ∀i ∈ J̃

ηi = λi +
∑
j∈S

ηjr(j, i) +
∑
j∈U

µjr(j, i)

= λ−i (0) +
∑
j∈S

ηjr
−(j, i)(0) +

∑
j∈U

ηjr
−(j, i)(0)

= λ−i (0) +
∑
j∈J̃

ηjr
−(j, i)(0),

thus η = (ηi : i ∈ J̃) solves the tra�c equation for the process (Y,X−(0)) (in matrix
notation)

η−(0) = λ−(0) + η−(0)R−
J̃ J̃

(0).

For all i ∈ S it holds η−i (0) = ηi < µi = µ−i (0) and for all i ∈ U we have η−i (0) =
ηi = ηi + 0 = µ−i (0). Therefore η = (ηi : i ∈ J̃) also solves the tra�c equation (in
matrix notation)

η−(0) = λ−(0) + (η−(0) ∧ µ−(0))R−
J̃ J̃

(0).

• Now we show that η−i (ε) < µ−i (ε) holds for all i ∈ J̃ :

η−(ε) = λ+ (η−(ε) ∧ µ−(ε))R−
J̃ J̃

(ε)

≤ λ+ (η−(ε) ∧ µ−(ε))R−
J̃ J̃

(0)

≤ λ+ η−(ε)R−
J̃ J̃

(0)

⇒ η−(ε) ≤ λ
(
I−R−

J̃ J̃
(0)
)−1

= η−(0),
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and furthermore η−U (0) = µ−U(0) < µ−U(ε) and η−S (0) = ηS < µS = µ−S (ε) holds
component-wise for ε > 0. So η−(ε) < µ−(ε) holds component-wise for all ε > 0
where η−(ε) is determined by

η−(ε) = λ
(
I−R−

J̃ J̃
(ε)
)−1

,

hence X−(ε) is ergodic. The local stability criterion holds in any availability status,
i.e., ηI,−i (ε) < µI,−i (ε) ∀i ∈ J̃\I, I ⊆ D, see Lemma 2.13, and under load-independent
breakdown and repair rates, an ergodic Jackson network remains ergodic, see Ex-
ample 3.3.

• It remains to show that limε→0 η
−
i (ε) = ηi holds for all i ∈ J̃ . Since η−(0) = η, we will

show that limε→0 η
−(ε) = η−(0). Recalling that X−(ε) is ergodic, |η−(ε)|1 < |µ−(ε)|1

holds for all ε > 0, so there is ε′ < ∞ such that {η−(ε) : 0 ≤ ε ≤ ε′} is a bounded
set of vectors in RJ . Hence there is a convergent subsequence (η−(εl) : l ≥ 0) with
liml→∞ εl = 0. Then it holds component-wise

lim
l→∞

R−
J̃ J̃

(εl) = R−
J̃ J̃

(0)

and the tra�c equations of X−(εl) are

η−(εl) = λ+ η−(εl)R
−
J̃ J̃

(εl)⇒ lim
l→∞

η−(εl) = lim
l→∞

(
λ+ η−(εl)R

−
J̃ J̃

(εl)
)

[Kön01, p.43]⇔ lim
l→∞

η−(εl) = lim
l→∞

λ+
(

lim
l→∞

η−(εl)
)(

lim
l→∞

R−
J̃ J̃

(εl)
)

⇔ lim
l→∞

η−(εl) = λ+
(

lim
l→∞

η−(εl)
)
R−
J̃ J̃

(0),

which is the tra�c equation of X−(0), so liml→∞ η
−(εl) = η−(0) holds for all con-

vergent subsequences (η−(εl) : l ≥ 0). Thus limε→0 η
−(ε) = η−(0) is valid.

The following lemma will be used in the following task of showing the stochastic ordering
of the three processes.

Lemma 5.17. Consider the framework of the proof of Theorem 5.11.
(i) If nodes in I 6= ∅ are broken down and I ∩ U = ∅ (i.e., I ⊆ S), then the vectors

(rI(k, j) : k ∈ I, j ∈ {0} ∪ J̃ \ I), (rI,+(k, j) : k ∈ I, j ∈ {0} ∪ J̃ \ I),

and (rI,−(k, j)(ε) : k ∈ I, j ∈ {0} ∪ J̃ \ I)

are component-wise equal.
(ii) If for the set I of broken down nodes holds I ∩ U 6= ∅, only the vectors

(rI(k, j) : k ∈ I, j ∈ {0} ∪ J̃ \ I) and (rI,+(k, j) : k ∈ I, j ∈ {0} ∪ J̃ \ I)

are equal. For all k ∈ I holds:

rI,−(k, j)(ε) ≤ rI(k, j) ∀j ∈ J̃ \ I, ε > 0, (5.18)

rI,−(k, 0)(ε) ≥ rI(k, 0) ∀ε > 0. (5.19)

In case ε = 0 the parameters are equal.
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The proof of this lemma is rather technical and not essential for the further understanding
of the proof. For readability one may skip the proof of Lemma 5.17 and proceed to task
5.

Proof of Lemma 5.17. (i) If I ∩ U = ∅ (I ⊆ S) then the vectors (rI(k, j) : k ∈ I, j ∈
{0} ∪ J̃ \ I), (rI,+(k, j) : k ∈ I, j ∈ {0} ∪ J̃ \ I), and (rI,−(k, j)(ε) : k ∈ I, j ∈ {0} ∪ J̃ \ I)
are the unique solution of the equations

rI,∗(k, j) = r(k, j) +
∑
l∈I

r(k, l)rI,∗(l, j), k ∈ I, j ∈ J̃ \ I, (5.20)

rI,∗(k, 0) = r(k, 0) +
∑
l∈I

r(k, l)rI,∗(l, 0), k ∈ I, (5.21)

where rI,∗ is a representative for rI , rI,+ and rI,−(ε), for all ε ≥ 0, so the vectors are
component-wise equal.

(ii) If I∩U 6= ∅, only (rI(k, j) : k ∈ I, j ∈ {0}∪J̃ \I) and (rI,+(k, j) : k ∈ I, j ∈ {0}∪J̃ \I)
are the unique solutions of (5.20) and (5.21), so they are equal. In contrast, the vector
(rI,−(k, j)(ε) : k ∈ I, j ∈ {0} ∪ J̃ \ I) is the unique solution of the equations, where we
utilize (5.8) which is ηi = µi ∀i ∈ U ∩D,

rI,−(k, j)(ε) = r(k, j) +
∑
l∈I

r(k, l)rI,−(l, j)(ε), k ∈ I ∩ S, j ∈ J̃ \ I, (5.22)

rI,−(k, j)(ε) =
µk

µk + ε

(
r(k, j) +

∑
l∈I

r(k, l)rI,−(l, j)(ε)
)
, k ∈ I ∩ U, j ∈ J̃ \ I, (5.23)

rI,−(k, 0)(ε) = r(k, 0) +
∑
l∈I

r(k, l)rI,−(l, 0)(ε), k ∈ I ∩ S, (5.24)

rI,−(k, 0)(ε) =
µk

µk + ε

( ε
µk

+ r(k, 0) +
∑
l∈I

r(k, l)rI,−(l, 0)(ε)
)
, k ∈ I ∩ U, (5.25)

for all ε ≥ 0. In matrix notation we have:

(5.20) ⇒ RI
I J̃\I = RI J̃\I +RIIR

I
I J̃\I , (5.26)

(5.21) ⇒ RI
I {0} = RI {0} +RIIR

I
I {0}, (5.27)

(5.22) ⇔ RI,−
I∩S J̃\I(ε) = RI∩S J̃\I +RI∩S IR

I,−
I J̃\I(ε)

= RI∩S J̃\I +RI∩S I∩SR
I,−
I∩S J̃\I(ε) +RI∩S I∩UR

I,−
I∩U J̃\I(ε), (5.28)

(5.23) ⇔ RI,−
I∩U J̃\I(ε) = C(ε)

(
RI∩U J̃\I +RI∩U IR

I,−
I J̃\I(ε)

)
, (5.29)

(5.24) ⇔ RI,−
I∩S {0}(ε) = RI∩S {0} +RI∩S IR

I,−
I {0}(ε)

= RI∩S {0} +RI∩S I∩SR
I,−
I∩S {0}(ε) +RI∩S I∩UR

I,−
I∩U {0}(ε), (5.30)

(5.25) ⇔ RI,−
I∩U {0}(ε) = C(ε)

(
d(ε)> +RI∩U {0} +RI∩U IR

I,−
I {0}(ε)

)
, (5.31)

where C(ε) := (δij
µi
µi+ε

: i, j ∈ I ∩ U) and d(ε) := ( ε
µi

: i ∈ I ∩ U). And more detailed it
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holds:

(5.26) ⇒ RI
I∩S J̃\I = RI∩S J̃\I +RI∩S IR

I
I J̃\I , (5.32)

RI
I∩U J̃\I = RI∩U J̃\I +RI∩U IR

I
I J̃\I , (5.33)

(5.27) ⇒ RI
I∩S {0} = RI∩S {0} +RI∩S IR

I
I {0}, (5.34)

RI
I∩U {0} = RI∩U {0} +RI∩U IR

I
I {0}. (5.35)

Transforming and multiplying with the existing and positive inverse (I−RI∩S I∩S)−1 (see
Lemma 1.2) yields

(5.28)⇔ RI,−
I∩S J̃\I(ε) = (I−RI∩S I∩S)−1

(
RI∩S J̃\I +RI∩S I∩UR

I,−
I∩U J̃\I(ε)

)
, (5.36)

(5.30)⇔ RI,−
I∩S {0}(ε) = (I−RI∩S I∩S)−1

(
RI∩S {0} +RI∩S I∩UR

I,−
I∩U {0}(ε)

)
, (5.37)

(5.32)⇔ RI
I∩S J̃\I = (I−RI∩S I∩S)−1

(
RI∩S J̃\I +RI∩S I∩UR

I
I∩U J̃\I

)
, (5.38)

(5.34)⇔ RI
I∩S {0} = (I−RI∩S I∩S)−1

(
RI∩S {0} +RI∩S I∩UR

I
I∩U {0}

)
. (5.39)

Plugging these solutions into (5.29), (5.31), (5.33) and (5.35) implies:

(5.36) in (5.29)⇒ RI,−
I∩U J̃\I(ε) = C(ε)

(
RI∩U J̃\I +RI∩U I∩UR

I,−
I∩U J̃\I(ε)+

+RI∩U I∩S(I−RI∩S I∩S)−1
[
RI∩S J̃\I +RI∩S I∩UR

I,−
I∩U J̃\I(ε)

])
,

(5.40)

(5.37) in (5.31)⇒ RI,−
I∩U {0}(ε) = C(ε)

(
d(ε)> +RI∩U {0} +RI∩U I∩UR

I,−
I∩U {0}(ε)+

+RI∩U I∩S(I−RI∩S I∩S)−1
[
RI∩S {0} +RI∩S I∩UR

I,−
I∩U {0}(ε)

])
,

(5.41)

(5.38) in (5.33)⇒ RI
I∩U J̃\I = RI∩U J̃\I +RI∩U I∩UR

I
I∩U J̃\I+

+RI∩U I∩S(I−RI∩S I∩S)−1
(
RI∩S J̃\I +RI∩S I∩UR

I
I∩U J̃\I

)
, (5.42)

(5.39) in (5.35)⇒ RI
I∩U {0} = RI∩U {0} +RI∩U I∩UR

I
I∩U {0}+

+RI∩U I∩S(I−RI∩S I∩S)−1
(
RI∩S {0} +RI∩S I∩UR

I
I∩U {0}

)
. (5.43)

Transforming these equations yields

(5.40)⇔
(
I− C(ε)[RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)
RI,−
I∩U J̃\I(ε) =

= C(ε)
(
RI∩U J̃\I +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S J̃\I

)
, (5.44)

(5.41)⇔
(
I − C(ε)[RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)
RI,−
I∩U {0}(ε) =

= C(ε)
(
d(ε)> +RI∩U {0} +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S {0}

)
, (5.45)

(5.42)⇔
(
I− [RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)
RI
I∩U J̃\I =

= RI∩U J̃\I +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S J̃\I , (5.46)

(5.43)⇔
(
I− [RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)
RI
I∩U {0} =

= RI∩U {0} +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S {0}. (5.47)
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After multiplying from the left with C(ε)−1 on both sides of equation (5.44) and comparing
this with (5.46) yields

C(ε)−1
(
I− C(ε)[RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)
RI,−
I∩U J̃\I(ε) =

=
(
I− [RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)
RI
I∩U J̃\I

⇔
(
I− C(ε)[RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)
RI,−
I∩U J̃\I(ε) =

=
(
C(ε)I− C(ε)[RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)
RI
I∩U J̃\I

⇔ RI,−
I∩U J̃\I(ε) = RI

I∩U J̃\I+

+
(
I− C(ε)[RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)−1︸ ︷︷ ︸
(♠)

≥ 0

(C(ε)I− I)︸ ︷︷ ︸
<0

RI
I∩U J̃\I ,

thus RI,−
I∩U J̃\I(ε) ≤ RI

I∩U J̃\I holds component-wise for all ε > 0 and therefore (5.18) is
valid for all k ∈ I.
Analogously, it follows by comparison of (5.45) and (5.47):(
I− C(ε)[RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)
RI,−
I∩U {0}(ε)− C(ε)d(ε)> =

= C(ε)
(
I− [RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)
RI
I∩U {0}

⇔(
I− C(ε)[RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)
RI,−
I∩U {0}(ε) =

=
(
C(ε)I− C(ε)[RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)
RI
I∩U {0} + C(ε)d(ε)>

⇔
RI,−
I∩U {0}(ε) = RI

I∩U {0}+

+
(
I− C(ε)[RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)−1
(C(ε)I− I)RI

I∩U {0}+

+
(
I− C(ε)[RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)−1
C(ε)d(ε)>

⇔

RI,−
I∩U {0}(ε) = RI

I∩U {0} +
(
I− C(ε)[RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)−1︸ ︷︷ ︸
(♠)

≥ 0

·

· (C(ε)(RI
I∩U {0} + d(ε)>)−RI

I∩U {0}),

hence for all k ∈ I holds (5.19) for ε > 0 because C(ε)(RI
I∩U {0} + d(ε)>)− RI

I∩U {0} > 0
as can be seen component-wise for all i ∈ I ∩ U :

µi
µi + ε

(
r(i, 0) +

ε

µi

)
− r(i, 0) =

1

µi + ε
(µir(i, 0) + ε− µir(i, 0)− εr(i, 0))

=
1

µi + ε︸ ︷︷ ︸
>0

ε︸︷︷︸
≥0

(1− r(i, 0))︸ ︷︷ ︸
≥0

≥ 0.

It remains to show (♠): More precisely, we have to show that the inverse(
I− C(ε)[RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)−1
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exists and is entry-wise non-negative for every ε > 0. Recall that Cij(ε) ∈ (0, 1) for all
ε > 0 and all entries i, j ∈ I ∩ U and limε→0C(ε) = I.
We will therefore show that

R̃I∩U I∩U := RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U

is a substochastic routing matrix because then C(ε)R̃I∩U I∩U a fortiori is a strict
substochastic matrix, so its spectral radius is less than one (see [Bre99, p.198]). It follows
directly that the Neumann series

∑∞
k=0(C(ε)R̃I∩U I∩U)k with (C(ε)R̃I∩U I∩U)0 := I

converges component-wise to (I− C(ε)R̃I∩U I∩U)−1 (see [Heu06, Satz 12.4 and p.127]).

R̃I∩U I∩U has the structure of a routing matrix according to skipping, if exactly the nodes
in I ∩ S are broken down, see De�nition 2.7, and the sub-matrix on I ∩ U × I ∩ U is
considered. Since it is a routing matrix, R̃I∩U I∩U can be either stochastic or substochastic.

Suppose that R̃I∩U I∩U is stochastic. Then each row of the matrix sums to 1, i.e.,∑
j∈I∩U r̃(i, j) = 1 holds for all i ∈ I ∩ U . This implies that r̃(i, j) = 0 for all i ∈ I ∩ U

and all j ∈ {0} ∪ J̃ \ I, so I ∩ U is a closed set whenever nodes in I ∩ S are broken down
and rerouting is according to skipping. But I ∩U being a closed set is a contradiction to
the new routing matrix R̃ (after rerouting if nodes in I ∩ S are broken down) being ir-
reducible on {0}∪ J̃ \(I∩S), see [Sau06, Remark 1.2.18]. Thus R̃I∩U I∩U is substochastic.

Since R̃I∩U I∩U is a matrix of routing probabilities, all entries are non-negative, hence
C(ε)R̃I∩U I∩U is also entry-wise non-negative for every ε > 0, so

∑∞
k=0(C(ε)R̃I∩U I∩U)k ≥

0 holds which implies that the inverse(
I− C(ε)[RI∩U I∩U +RI∩U I∩S(I−RI∩S I∩S)−1RI∩S I∩U ]

)−1

is entry-wise non-negative, too.

5. Stochastic ordering of the processes: The joint construction of the processes
is a standard coupling construction and utilizes ideas of Goodman and Massey [GM84].
Again, the special issue is to handle the breakdown and repair processes. We shall
perform a sequence of successive constructions each for a random time during which the
availability status of the networks stays invariant. Whenever the availability status of
the networks changes we switch to a new, suitably adapted, construction scheme. The
construction ensures that switching the construction mode for all processes happens at
exactly the same times.

From the construction of the processes it will be immediately seen that all the Q-matrices
have bounded diagonals and therefore are uniformizable, i.e., they have a compound
Poisson representation: Let 0 < ζ < ∞ be an upper bound of the modulus of the
diagonal entries of all three processes to be compared. Then in a standard coupling the
processes are driven by a Poisson-ζ process, which determines the common jump times,
and three (di�erent) Markov chain jump matrices, which are coupled and determine the
direction of the jumps.
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Our plan is not to use a single Poisson process to determine the common jump times,
but to use Poisson processes of di�erent intensities over random time intervals, and then
similarly di�erent jump matrices.

To start the system we assume that initially all networks are empty and all nodes are up.
Let us assume that at some (random) time τ a change of the availability status has
happened such that nodes in I are under repair and assume that (ω-wise)

(Y,X−(ε))(τ) ≺ (Y,X)(τ) ≺ (Y,X+)(τ)

holds. Now we describe the development of the processes until the next availability change
occurs at some (random) time τ ′. We run a Poisson process with rate

ζ(I) :=
∑
i∈J̃

λi +
∑
i∈J̃\I

µi +
∑
j∈U\I

(ηj − µj) + ε|U \ I|+

+
∑

∅6=K⊆D\I

α(I, I ∪K) +
∑
∅6=H⊆I

β(I, I \H),

which generates the jump instants for the processes. At each jump instant we select
according to some probability law (to be speci�ed below) an activity from the following
set, which is performed for all the three processes jointly unless otherwise indicated:

[Ai] Add a customer to node i.
[Bi] Delete a customer from node i if the queue length at i is positive,

otherwise do nothing.
[Cij] Transfer a customer from i to j if the queue length at i is positive,

otherwise do nothing.
[D] Do nothing.[

E(I,I∪K)

]
τ ′ occurs, deactivate nodes of the non-void subset K ⊆ D \ I, stop
the running Poisson process and start an independent new Poisson-
ζ(I ∪K) process.[

E(I,I\H)

]
τ ′ occurs, reactivate nodes of the non-void subset H ⊂ I, stop the
running Poisson process and start an independent new Poisson-
ζ(I \H) process.

The breakdown and repair activities are selected for all processes the same way according
to the following rules:

• With probability α(I, I ∪K)/ζ(I) select
[
E(I,I∪K)

]
;

• with probability β(I, I \H)/ζ(I) select
[
E(I,I\H)

]
.

Note, that by these activities a ≺-order of the processes is maintained.

To perform the selection of queue-length activities under the skipping regime the transition
intensities after rerouting are utilized. Whenever nodes in I 6= ∅ are down, transition
intensities for (Y,X) are as in De�nition 2.7, for the bounding processes as de�ned above
in the construction. These intensities are �xed on [τ, τ ′).
Whenever the Poisson process indicates a jump and no availability change was selected
by the randomization procedure, we utilize the intensities to select changes in the queue
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lengths:
If nodes in I ⊆ D are broken down and I ∩ U = ∅, Lemma 5.17(i) applies:

• For all i ∈ J̃ \ I select with probability (λi +
∑

k∈I λkr
I(k, i))/ζ(I):

[Ai] = Add a customer to node i;

• for all i ∈ J̃ \ I with probability µi(r(i, 0) +
∑

k∈I r(i, k)rI(k, 0))/ζ(I):
[Bi] = Delete a customer from node i if the queue length at i is positive, otherwise
do nothing;

• for all i ∈ J̃\I, j ∈ J̃\I, j 6= i, with probability µi(r(i, j)+
∑

k∈I r(i, k)rI(k, j))/ζ(I):
[Cij] = Transfer a customer from i to j if the queue length at i is positive, otherwise
do nothing;

• for all i ∈ U, j ∈ J̃ \ I, select with probability µi(r(i, j) +
∑

k∈I r(i, k)rI(k, j))/ζ(I),
if the queue length at i is zero:
◦ for (Y,X+): [Aj] = Add a customer to node j,
◦ for (Y,X) and (Y,X−(ε)): [D] = Do nothing;
(This re�ects the in�nite supply at nodes in U in (Y,X+).)

• for all i ∈ U with probability (ηi − µi + ε)/ζ(I) select
◦ for (Y,X−(ε)): [Bi] = Delete a customer from node i if the queue length at i is
positive, otherwise do nothing;
◦ for (Y,X) and (Y,X+): [D] = Do nothing.
(This re�ects the additional departure rates of (Y,X−(ε)) which compensate the
additional �ows generated by making the nodes in U stable, see (5.17).)

• For all i ∈ J̃ \ I select with probability µi(r(i, i) +
∑

k∈I r(i, k)rI(k, i))/ζ(I):
[D] = Do nothing.

If nodes in I ⊆ D are broken down and I ∩ U 6= ∅, for (Y,X) and (Y,X+) all proba-
bilities for the selection of activities are as above, whereas the rerouting probabilities for
(Y,X−(ε)) are now not the same as for the other processes, if ε > 0, because Lemma
5.17(ii) applies:

• For all i ∈ J̃ \ I select with probability (λi +
∑

k∈I λkr
I,−(k, i))/ζ(I):

[Ai] = Add a customer to node i;

• for all i ∈ J̃ \ I select with probability
∑

k∈I λk(r
I(k, i)− rI,−(k, i)(ε))/ζ(I):

◦ for (Y,X) and (Y,X+): [Ai] = Add a customer to node i;
◦ for (Y,X−(ε)): [D] = Do nothing.
(Note that rI(k, i)−rI,−(k, i)(ε) ≥ 0 holds for all k ∈ I, i ∈ J̃ \I, ε > 0, see Lemma
5.17(ii).)

• For all i ∈ J̃ \ I with probability µi(r(i, 0) +
∑

k∈I r(i, k)rI(k, 0))/ζ(I):
[Bi] = Delete a customer from node i if the queue length at i is positive, otherwise
do nothing;

• for all i ∈ J̃ \ I with probability µi
∑

k∈I r(i, k)(rI,−(k, 0)(ε)− rI(k, 0))/ζ(I):
◦ for (Y,X−(ε)): [Bi] = Delete a customer from node i if the queue length at i is
positive, otherwise do nothing;
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◦ for (Y,X) and (Y,X+): [D] = Do nothing.
(Note that rI,−(k, 0)(ε)−rI(k, 0) ≥ 0 holds for all k ∈ I, ε > 0, see Lemma 5.17(ii).)

• For all i ∈ J̃ \ I, j ∈ J̃ \ I, j 6= i, with probability
µi(r(i, j) +

∑
k∈I r(i, k)rI,−(k, j))/ζ(I):

[Cij] = Transfer a customer from i to j if the queue length at i is positive, otherwise
do nothing;

• for all i ∈ J̃ \ I, j ∈ J̃ \ I, j 6= i, select with probability
µi
∑

k∈I r(i, k)(rI(k, j)− rI,−(k, j)(ε))/ζ(I):
◦ for (Y,X) and (Y,X+): [Cij] = Transfer a customer from i to j if the queue length
at i is positive, otherwise do nothing;
◦ for (Y,X−(ε)): [D] = Do nothing.
(Note that rI(k, j) − rI,−(k, j)(ε) ≥ 0 holds for all k ∈ I, j ∈ J̃ \ I, ε > 0, see
Lemma 5.17(ii). This implies that the probability for a transition inside the network
including immediate feedback at up nodes is smaller for (Y,X−) than for (Y,X) and
(Y,X+) (or equal):

µi

(
r(i, j) +

∑
k∈I

r(i, k)rI,−(k, j)(ε)
) 1

ζ(I)
≤ µi

(
r(i, j) +

∑
k∈I

r(i, k)rI(k, j)
) 1

ζ(I)

holds for all i, j ∈ J̃ \ I (for i 6= j as well as for i = j).)

• For all i ∈ U, j ∈ J̃ \ I, select with probability µi(r(i, j) +
∑

k∈I r(i, k)rI(k, j))/ζ(I),
if the queue length at i is zero:
◦ for (Y,X+): [Aj] = Add a customer to node j;
◦ for (Y,X) and (Y,X−(ε)): [D] = Do nothing.
(This re�ects the in�nite supply at nodes in U in (Y,X+).)

• For all i ∈ U with probability (ηi − µi + ε)/ζ(I) select
◦ for (Y,X−(ε)): [Bi] = Delete a customer from node i if the queue length at i is
positive, otherwise do nothing;
◦ for (Y,X) and (Y,X+): [D] = Do nothing.
(This re�ects the additional departure rates of (Y,X−(ε)) which compensate the
additional �ows generated by making the nodes in U stable, see (5.17).)

Note, that by these activities a ≺-order of the processes is maintained.

We conclude that by starting the processes ≺st-ordered with the same I ⊆ D this order
will be maintained over time, so the equilibria of the bounding processes will still be
ordered and they bound the limiting distribution of the process (Y,X).

The last step of the proof is the conclusion of the limiting probabilities of (Y,X) which
can be found in the outline of the proofs numbered as 6th task on pages 124-126.

Proof of Theorem 5.12 (Rerouting according to blocking rs-rd)

1. Construction of the upper bound: We derive (Y,X+) from (Y,X) as follows:

• The breakdown and repair processes are (stochastically) identical;
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• the service rates at all nodes are the same as in the original network;

• all nodes in U are supplemented by an in�nite supply of work, this leads to Poisso-
nian departure processes from those nodes (see Theorem 4.3 and Theorem 4.38);

• the rerouting regime is selected as blocking rs-rd, so whenever nodes of I ⊆ D break
down, the transition intensities are as in De�nition 4.37 with De�nition 2.8.

2. (Y,X+
S ) is an ergodic homogeneous Markov process of its own: (Y,X+)

represents a Jackson network with unreliable nodes where the nodes in U have an in�nite
supply of work, as in De�nition 4.37 with U = V and S = W . (η+

i : i ∈ J̃) is the unique
solution of the tra�c equations (4.1)

η+
i = λi +

∑
j∈W

η+
j r(j, i) +

∑
j∈V

µjr(j, i)

= λi +
∑
j∈S

η+
j r(j, i) +

∑
j∈U

µjr(j, i), ∀i ∈ J̃ ,

so η+
i = ηi for all i ∈ J̃ . Recalling S = {i : ηi < µi}, it follows directly that η+

i < µi holds
for all i ∈ S. This local stability criterion holds in any availability status, because with
(5.3), (5.4) and (5.5) the solution of the standard tra�c equations remains the same for
nodes in up status, as can be seen in Lemma 4.40.

Since W ∩U = ∅, rerouting is according to blocking rs-rd and the reversibility contraints
(5.3), (5.4) and (5.5) hold, Theorem 4.47 applies and provides us with a product form
limiting distribution for the process (Y,X+

S ) := (Y,X+
i : i ∈ S). From Corollary 4.48

we know that (Y,X+
S ) is ergodic independent of the behavior of the remaining nodes in

the network. And again, the last step of the argument is that under load-independent
breakdown and repair rates, an ergodic Jackson network remains ergodic, see Example
3.3.

3. Construction of the lower bounds: We derive (Y,X−(ε)) from (Y,X) for ε > 0
as follows:

• The breakdown and repair processes are (stochastically) identical;

• the external arrival rates at all nodes are identical to those in the original network;

• the service rates at nodes in S are the same as in the original network, the service
rates at nodes in U are increased from µi to ηi + ε:

µ−i (ε) =

{
µi, i ∈ S,
ηi + ε, i ∈ U,

which guarantees that all nodes in the network are stable now, as will be shown in
the next step (4.) of the proof;
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• this generates additional customer �ows (at least) out of the nodes in U ; this addi-
tional load on the network is then reduced by increasing the probability for customers
to leave nodes in U directly to the external sink; we prescribe

r−(i, j)(ε) =

{
r(i, j), i ∈ S, j ∈ J̃ ,
µi
ηi+ε

r(i, j), i ∈ U, j ∈ J̃ ,

r−(i, 0)(ε) =

{
r(i, 0), i ∈ S,
µir(i,0)+ηi−µi+ε

ηi+ε
, i ∈ U ;

• the combination of adjusted service rates and new routing probabilities yields the
desired reproduction of �ows on S with

µ−i (ε)r−(i, j)(ε) = µir(i, j) ∀ i, j ∈ J̃ ,

µ−i (ε)r−(i, 0)(ε) =

{
µir(i, 0), i ∈ S,
µir(i, 0) + ηi − µi + ε, i ∈ U ;

(5.48)

• the rerouting regime is selected as blocking rs-rd, so whenever nodes in I ⊆ D break
down and because blocking rs-rd is in force, the parameters are

rI,−(i, j)(ε) =



r(i, j), i ∈ {0} ∪ S \ I, j ∈ J̃ \ I, i 6= j,

r(i, i) +
∑

k∈I r(i, k), i ∈ {0} ∪ S \ I, i = j,
µi
ηi+ε

r(i, j), i ∈ U \ I, j ∈ J̃ \ I, i 6= j,
µi
ηi+ε

(
r(i, i) +

∑
k∈I r(i, k)

)
, i ∈ U \ I, i = j,

0, else,

rI,−(i, 0)(ε) =


r(i, 0), i ∈ S \ I,
µir(i,0)+ηi−µi+ε

ηi+ε
, i ∈ U \ I,

0, i ∈ I,

µI,−i (ε) =


µi, i ∈ S \ I,
ηi + ε, i ∈ U \ I,
0, i ∈ I,

and the transition intensities of (Y,X−(ε)) for changes in the queue lengths are

λI,−i (ε) =

{
λi, i ∈ J̃ \ I,
0, i ∈ I,

µI,−i (ε)rI,−(i, j)(ε) =


µir(i, j), i, j ∈ J̃ \ I, i 6= j

µi
(
r(i, i) +

∑
k∈I r(i, k)

)
, i, j ∈ J̃ \ I, i = j

0, else,

µI,−i (ε)rI,−(i, 0)(ε) =


µir(i, 0), i ∈ S \ I,
µir(i, 0) + ηi − µi + ε, i ∈ U \ I,
0, else.
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4. (Y,X−(ε)), ε > 0, is ergodic: Consider the network described above by the process
(Y,X−(ε)), ε > 0, with completely reliable nodes, which is just a classical Jacksonian
network with queue-length process X−(ε) and tra�c equations

η−i (ε) = λ−i (ε) +
∑
j∈J̃

min(η−j (ε), µ−j (ε))r−(j, i)(ε) ∀i ∈ J̃

⇔ η−(ε) = λ−(ε) + (η−(ε) ∧ µ−(ε))R−
J̃ J̃

(ε).

• For the solution ηi of the tra�c equation (1.6) holds ∀i ∈ J̃

ηi = λi +
∑
j∈S

ηjr(j, i) +
∑
j∈U

µjr(j, i)

= λ−i (0) +
∑
j∈S

ηjr
−(j, i)(0) +

∑
j∈U

ηjr
−(j, i)(0)

= λ−i (0) +
∑
j∈J̃

ηjr
−(j, i)(0),

thus η = (ηi : i ∈ J̃) solves the tra�c equation for the process (Y,X−(0)) (in matrix
notation)

η−(0) = λ−(0) + η−(0)R−
J̃ J̃

(0).

For all i ∈ S it holds η−i (0) = ηi < µi = µ−i (0) and for all i ∈ U we have η−i (0) =
ηi = ηi + 0 = µ−i (0). Therefore η = (ηi : i ∈ J̃) also solves the tra�c equation (in
matrix notation)

η−(0) = λ−(0) + (η−(0) ∧ µ−(0))R−
J̃ J̃

(0).

• Now we show that η−i (ε) < µ−i (ε) holds for all i ∈ J̃ :

η−(ε) = λ+ (η−(ε) ∧ µ−(ε))R−
J̃ J̃

(ε)

≤ λ+ (η−(ε) ∧ µ−(ε))R−
J̃ J̃

(0)

≤ λ+ η−(ε)R−
J̃ J̃

(0)

⇒ η−(ε) ≤ λ
(
I−R−

J̃ J̃
(0)
)−1

= η−(0),

and furthermore η−U (0) = µ−U(0) < µ−U(ε) and η−S (0) = ηS < µS = µ−S (ε) holds
component-wise for ε > 0. So η−(ε) < µ−(ε) holds component-wise for all ε > 0
where η−(ε) is determined by

η−(ε) = λ
(
I−R−

J̃ J̃
(ε)
)−1

,

hence X−(ε) is ergodic. With (5.3), (5.4) and (5.5), which yields the reversibility
constraint

η−i (ε)r−(i, j)(ε) = η−j (ε)r−(j, i)(ε) ∀i, j ∈ J̃ ,

the local stability criterion holds in any availability status, i.e., ηI,−i (ε) < µI,−i (ε)
∀i ∈ J̃ \I, I ⊆ D, see Lemma 2.11. Furthermore under load-independent breakdown
and repair rates, an ergodic Jackson network remains ergodic, see Example 3.3.
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• It remains to show that limε→0 η
−
i (ε) = ηi holds for all i ∈ J̃ . Since η−(0) = η, we will

show that limε→0 η
−(ε) = η−(0). Recalling that X−(ε) is ergodic, |η−(ε)|1 < |µ−(ε)|1

holds for all ε > 0, so there is ε′ < ∞ such that {η−(ε) : 0 ≤ ε ≤ ε′} is a bounded
set of vectors in RJ . Hence there is a convergent subsequence (η−(εl) : l ≥ 0) with
liml→∞ εl = 0. Then it holds component-wise

lim
l→∞

R−
J̃ J̃

(εl) = R−
J̃ J̃

(0)

and the tra�c equations of X−(εl) are

η−(εl) = λ+ η−(εl)R
−
J̃ J̃

(εl)⇒ lim
l→∞

η−(εl) = lim
l→∞

(
λ+ η−(εl)R

−
J̃ J̃

(εl)
)

[Kön01, p.43]⇔ lim
l→∞

η−(εl) = lim
l→∞

λ+
(

lim
l→∞

η−(εl)
)(

lim
l→∞

R−
J̃ J̃

(εl)
)

⇔ lim
l→∞

η−(εl) = λ+
(

lim
l→∞

η−(εl)
)
R−
J̃ J̃

(0),

which is the tra�c equation of X−(0), so liml→∞ η
−(εl) = η−(0) holds for all con-

vergent subsequences (η−(εl) : l ≥ 0). Thus limε→0 η
−(ε) = η−(0) is valid.

5. Stochastic ordering of the processes: The joint construction of the processes
is a standard coupling construction and utilizes ideas of Goodman and Massey [GM84].
Again, the special issue is to handle the breakdown and repair processes. We shall
perform a sequence of successive constructions each for a random time during which the
availability status of the networks stays invariant. Whenever the availability status of
the networks changes we switch to a new, suitably adapted, construction scheme. The
construction ensures that switching the construction mode for all processes happens at
exactly the same times.

From the de�nition of the processes it is immediately seen that all the Q-matrices have
bounded diagonals and therefore are uniformizable, i.e., they have a compound Poisson
representation: Let 0 < ζ <∞ be an upper bound of the modulus of the diagonal entries
of all three processes to be compared. Then in a standard coupling the processes are driven
by a Poisson-ζ process, which determines the common jump times, and three (di�erent)
Markov chain jump matrices, which are coupled and determine the direction of the jumps.

Our plan is not to use a single Poisson process to determine the common jump times,
but to use Poisson processes of di�erent intensities over random time intervals, and then
similarly di�erent jump matrices.

To start the system we assume that initially all networks are empty and all nodes are up.
Let us assume that at some (random) time τ a change of the availability status has
happened such that nodes in I are under repair and assume that

(Y,X−(ε))(τ) ≺ (Y,X)(τ) ≺ (Y,X+)(τ)

holds. Now we describe the development of the processes until the next availability change
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occurs at some (random) time τ ′. We run a Poisson process with rate

ζ(I) :=
∑
i∈J̃

λi +
∑
i∈J̃\I

µi +
∑
j∈U\I

(ηj − µj) + ε|U \ I|+

+
∑

∅6=K⊆D\I

α(I, I ∪K) +
∑
∅6=H⊆I

β(I, I \H),

which generates the jump instants for the processes.
At each jump instant we select according to some probability law (to be speci�ed below)
an activity from the following set, which is performed for all the three processes jointly
unless otherwise indicated:

[Ai] Add a customer to node i.
[Bi] Delete a customer from node i if the queue length at i is positive,

otherwise do nothing.
[Cij] Transfer a customer from i to j if the queue length at i is positive,

otherwise do nothing.
[D] Do nothing.[

E(I,I∪K)

]
τ ′ occurs, deactivate nodes of the non-void subset K ⊆ D \ I, stop
the running Poisson process and start an independent new Poisson-
ζ(I ∪K) process.[

E(I,I\H)

]
τ ′ occurs, reactivate nodes of the non-void subset H ⊂ I, stop the
running Poisson process and start an independent new Poisson-
ζ(I \H) process.

The breakdown and repair activities are selected for all processes the same way according
to the following rules:

• With probability α(I, I ∪K)/ζ(I) select
[
E(I,I∪K)

]
;

• with probability β(I, I \H)/ζ(I) select
[
E(I,I\H)

]
.

Note, that by these activities a ≺-order of the processes is maintained.

To perform the selection of queue-length activities under the blocking rs-rd regime the
transition intensities after rerouting are utilized. These intensities are �xed on [τ, τ ′).
Whenever the Poisson process indicates a jump and no availability change was selected
by the randomization procedure, we utilize the intensities to select changes in the queue
lengths:

• For all i ∈ J̃ \ I with probability λi/ζ(I):
[Ai] = Add a customer to node i;

• for all i ∈ J̃ \ I with probability µir(i, 0)/ζ(I):
[Bi] = Delete a customer from node i if the queue length at i is positive, otherwise
do nothing;

• for all i ∈ J̃ \ I, j ∈ J̃ \ I, j 6= i, select with probability µir(i, j)/ζ(I):
[Cij] = Transfer a customer from i to j if the queue length at i is positive, otherwise
do nothing;
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• for all i ∈ U \ I, j ∈ J̃ \ I, select with probability µirI(i, j)/ζ(I) if the queue length
at i is zero:
◦ for (Y,X+): [Aj] = Add a customer at node j,
◦ for (Y,X), and (Y,X−(ε)): [D] = Do nothing;
(This re�ects the in�nite supply at the nodes in U in (Y,X+).)

• for all i ∈ U \ I with probability (ηi − µi + ε)/ζ(I) select
◦ for (Y,X−(ε)): [Bi] = Delete a customer from node i if the queue length at i is
positive, otherwise do nothing;
◦ for (Y,X) and (Y,X+): [D] = Do nothing.
(This re�ects the additional departure rates of (Y,X−(ε)) which compensate the
additional �ows generated by making the nodes in U stable, see (5.48).)

• For all i ∈ J̃ \ I select with probability µi(r(i, i) +
∑

k∈I r(i, k))/ζ(I):
[D] = Do nothing.

Note, that by these activities a ≺-order of the processes is maintained.

We conclude that by starting the processes ≺st-ordered with the same I ⊆ D this order
will be maintained over time, so the equilibria of the bounding processes will still be
ordered and they bound the limiting distribution of the process (Y,X).

The last step of the proof is the conclusion of the limiting probabilities of (Y,X) which
can be found in the outline of the proofs numbered as 6th task on pages 124-126.

5.4 Computation of availability and performance mea-

sures

Computing availability and performance measures of systems with non-stationary
processes is often an extremely di�cult task. Usually steady-state availability and
performance measures are computed to assess the quality of service in such complex
systems. This is not possible for networks with unstable nodes, because no steady
state exists for the globally unstable system. Our results suggest to apply instead of
steady-state analysis a limiting analysis - at least for those parts of the network process
which stabilize over time towards a limiting distribution. [MD09, pp.1259-1260]
Theorem 5.10, Theorem 5.11 and Theorem 5.12 provide us with the required limiting
marginal distributions for the queue lengths of the stable subnetwork S and for availabil-
ities in a non-ergodic unreliable Jackson network.

Recall that under the conditions of Theorems 5.10-5.12 the availability process Y is an
ergodic Markov process of its own, which has a unique limiting and stationary distribution.
It is easy to see that the availability component Y of (Y,X) must converge to this steady-
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state distribution, which is

π(I) := lim
t→∞

P (Y (t) = I) =
∑

(ni:i∈S)∈N|S|
lim
t→∞

P (Y (t) = I; {Xi = ni : i ∈ S})

=

(∑
K⊆D

A(K)

B(K)

)−1
A(I)

B(I)
, I ⊆ D,

where D ⊆ J̃ is the set of unreliable nodes. Consequently, we can even start the network
process (Y,X) with the availability component Y in its steady state, and we can then
consider the availability process as a stable environment process for the globally unstable
network process.
In this situation, we can compute steady-state point-availability to �nd at time t exactly
the nodes in the set K functioning. Exactly the nodes in D \K are down in steady-state
with probability

π(D \K) =

(∑
I⊆D

A(I)

B(I)

)−1
A(D \K)

B(D \K)
,

so this is the required probability for exactly the nodes in K being up at any time t, see
[MD09].

Remark 5.18. It is remarkable that, although the global network process is not ergodic,
we can compute the stationary point-availability to �nd exactly the nodes in K functioning
at some time t the same way as in the ergodic case, see Proposition 2.18. Example 2.19
applies here as well.

Computing a stationary throughput is not possible, if there is no stationary distribu-
tion. The following de�nition and theorem propose a possible approach to compute the
throughput of at least the stable subnetwork of a globally non-ergodic Jackson network
with unreliable nodes.

De�nition 5.19. Consider a Jackson network where nodes in D are unreliable. Let
S := {i : ηi < µi} denote the set of stable nodes and the breakdown and repair intensities
be load-independent as in Example 2.2.
The time-dependent throughput at time t for the stable subnetwork is

THS(t) =
∑

(I;ni:i∈S)∈P(D)×N|S|
P (Y (t) = I; {X(t) = ni : i ∈ S})

∑
j∈S\I

1N+(ni)µ
I
jr
I(j, 0).

Letting t→∞ yields the limiting throughput limt→∞ THS(t) of the stable subnetwork.

Theorem 5.20. Consider a Jackson network where nodes in D are unreliable. Let η =
(η1, ..., ηJ) be the unique solution of the general tra�c equations (1.6). Let S := {i : ηi <
µi} denote the set of stable nodes, nodes in U := J̃ \ S are unstable. Let the breakdown
and repair intensities be load-independent as in Example 2.2.

(i) In case of stalling, the limiting throughput equals

lim
t→∞

THS(t) = π(∅)
(∑
j∈J̃

λj −
∑
j∈U

µjr(j, 0)−
∑
j∈U

(ηj − µj)
)
.
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(ii) If skipping is in force and (5.8) holds, the limiting throughput is

lim
t→∞

THS(t) =
∑
I⊆D

π(I)
(
λ
∑
j∈J̃\I

rI(0, j)−
∑
j∈U\I

µjr
I(j, 0) +

∑
j∈U\D

(µj − ηj)
)
.

(iii) If rerouting is according to blocking rs-rd and if (5.3), (5.4), and (5.5) hold, the
limiting throughput is

lim
t→∞

THS(t) =
∑
I⊆D

π(I)
∑
j∈S\I

λj.

Proof. (i): With Theorem 5.10, we have

lim
t→∞

THS(t) =

(†1)
=

∑
(I;ni:i∈S)∈P(D)×N|S|

lim
t→∞

P (Y (t) = I; {X(t) = ni : i ∈ S})
∑
j∈S\I

1N+(nj) µIjr
I(j, 0)︸ ︷︷ ︸

Def. 2.6
= µjr(j,0)1{∅}(I)

=
∑

(I;ni:i∈S)∈{∅}×N|S|

(∑
K⊆D

A(K)

B(K)

)−1A(I)

B(I)

∏
i∈S

(
1− ηi

µi

)(
ηi
µi

)ni∑
j∈S

1N+(nj)µjr(j, 0)

=
(∑
K⊆D

A(K)

B(K)

)−1A(∅)
B(∅)︸ ︷︷ ︸

=π(∅)

∑
j∈S

∑
(ni:i∈S)∈N|S|

∏
i∈S

(
1− ηi

µi

)(
ηi
µi

)ni
︸ ︷︷ ︸

=1

ηjr(j, 0)

R. 1.21
= π(∅)

(∑
j∈J̃

λj −
∑
j∈U

µjr(j, 0)−
∑
j∈U

(ηj − µj)
)
.

Here
(†1)
= follows from the fact that the convergence in (5.11) is weak convergence and that

the throughput functions

(ni : i ∈ S \ I) 7→
∑
j∈S\I

1N+(ni)µ
I
jr
I(j, 0)

are bounded.

(ii)-(iii): With Theorem 5.11 and 5.12, resp., we have

lim
t→∞

THS(t) =

(†2)
=

∑
(I;ni:i∈S)∈P(D)×N|S|

lim
t→∞

P (Y (t) = I; {X(t) = ni : i ∈ S})
∑
j∈S\I

1N+(nj)µ
I
jr
I(j, 0)

=
∑

(I;ni:i∈S)∈P(D)×N|S|

(∑
K⊆D

A(K)

B(K)

)−1A(I)

B(I)

∏
i∈S

(
1− ηi

µi

)(
ηi
µi

)ni ∑
j∈S\I

1N+(nj)µjr
I(j, 0)

=
∑
I⊆D

(∑
K⊆D

A(K)

B(K)

)−1A(I)

B(I)︸ ︷︷ ︸
=π(I)

∑
j∈S\I

∑
(ni:i∈S)∈N|S|

∏
i∈S

(
1− ηi

µi

)(
ηi
µi

)ni
︸ ︷︷ ︸

=1

ηjr
I(j, 0).
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Here again
(†2)
= follows from the fact that the convergence in (5.11) is weak convergence

and that the throughput functions

(ni : i ∈ S \ I) 7→
∑
j∈S\I

1N+(ni)µ
I
jr
I(j, 0)

are bounded.

In case of skipping, it holds:∑
j∈J̃\I

ηj =
∑
j∈J̃\I

λIj +
∑
j∈J̃\I

∑
i∈S\I

ηir
I(i, j) +

∑
j∈J̃\I

∑
i∈U\I

µir
I(i, j)

⇔
∑
j∈S\I

ηj

(
1−

∑
i∈J̃\I

rI(j, i)

︸ ︷︷ ︸
=rI(j,0)

)
+
∑
j∈U\I

ηj =
∑
j∈J̃\I

λIj +
∑
j∈J̃\I

∑
i∈U\I

µir
I(i, j)

⇔
∑
j∈S\I

ηjr
I(j, 0) = λ

∑
j∈J̃\I

rI(0, j)−
∑
j∈U\I

µjr
I(j, 0) +

∑
j∈U\I

(µj − ηj)︸ ︷︷ ︸
(5.8)
=
∑
j∈U\D(µj−ηj)

,

thus (ii) follows.

In case of blocking rs-rd, for all j ∈ J̃ \ I, I ⊆ D, holds rI(j, 0) = r(j, 0) and for all
j ∈ S \ I holds:

ηj = λIj +
∑
i∈S\I

ηir
I(i, j) +

∑
i∈U

µir
I(i, j)

Def. 2.8
= λj +

∑
i∈S\I

ηir(i, j)︸ ︷︷ ︸
(5.3)
= ηjr(j,i)

+
∑
i∈I

ηjr(j, i) +
∑
i∈U

µir(i, j)︸ ︷︷ ︸
(5.4)
= ηjr(j,i)

= λj + ηj(1− r(j, 0)),

hence (iii) is valid.

Remark 5.21. It is noteworthy that, in the situation of load-independent breakdown
and repair rates, the limiting throughput of the stable subnet of the non-ergodic Jackson
network with unreliable nodes is under the blocking rs-rd regime the same as the steady-
state throughput of an ergodic Jackson network with unreliable nodes, see Proposition
2.21.

To compare the limiting throughput according to the three rerouting regimes, we require
the same constraints for all considered rerouting regimes:

Corollary 5.22. Consider a Jackson network with unreliable nodes. Let η = (η1, ..., ηJ)
be the unique solution of the general tra�c equations (1.6). Let S := {i : ηi < µi} denote
the set of stable nodes, nodes in U := J̃ \ S are unstable. Let the breakdown and repair
intensities be load-independent as in Example 2.2. Let the reversibility contraints (5.3),
(5.4), and (5.5) hold, and let ηi = µi hold for all i ∈ U .
Then the limiting throughput limt→∞ THS(t) of the stable subnetwork is
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(i) In case of stalling:

lim
t→∞

THS(t) = π(∅)
(∑
j∈J̃

λj −
∑
j∈U

µjr(j, 0)
)
,

(ii) in case of skipping:

lim
t→∞

THS(t) =
∑
I⊆D

π(I)
(
λ
∑
j∈J̃\I

rI(0, j)−
∑
j∈U\I

µjr
I(j, 0)

)
,

(iii) in case of blocking rs-rd:

lim
t→∞

THS(t) =
∑
I⊆D

π(I)
∑
j∈S\I

λj.

Example 5.23. The problem of estimating time averages of rewards or costs, determined
by a non-decreasing cost function

g : N|S| → R,
associated with the development of the queue lengths in the stable subnetwork over time
horizon [0, T ],

d(T ) =
1

T

∫ T

0

g(Xi(t), i ∈ S) dt,

is more complicated because we have no ergodicity, in fact not even the Markov property
for ((Xi(t) : i ∈ S) : t ≥ 0). So we cannot apply the ergodic theorem for Markov processes
to solve the problem. Because of the lack of stationarity, Birkho�'s ergodic theorem (e.g.,
[Bre92, Th. 6.21]) is neither applicable.
The solution to the problem follows from the path-wise construction in the proof of Theo-
rem 5.10, Theorem 5.11 or Theorem 5.12, see Section 5.3.2.
We consider g as a function

g : P(D)× N|S| → R.
Then for T → ∞ from the ergodic theorem for Markov processes follows for the upper
bound Markov process (Y,X+)

1

T

∫ T

0

g(Y (t), X+
i (t) : i ∈ S) dt → (5.49)

→
∑

(I,ni:i∈S)∈P(D)×N|S|
g(I, ni : i ∈ S) · A(I)

B(I)

(∑
K⊆D

A(K)

B(K)

)−1∏
i∈S

(
1− ηi

µi

)(
ηi
µi

)ni
.

Similarly we conclude that for T → ∞ for the lower bound Markov processes (Y,X−(ε))
holds (for all ε > 0)

1

T

∫ T

0

g(Y (t), X−i (ε)(t) : i ∈ S) dt → (5.50)

→
∑

(I,ni:i∈S)∈P(D)×N|S|
g(I, ni : i ∈ S) · A(I)

B(I)

(∑
K⊆D

A(K)

B(K)

)−1∏
i∈S

(
1− η−i (ε)

µi

)(
η−i (ε)

µi

)ni
 ε→0−−→

∑
(I,ni:i∈S)∈P(D)×N|S|

g(I, ni : i ∈ S) · A(I)

B(I)

(∑
K⊆D

A(K)

B(K)

)−1∏
i∈S

(
1− ηi

µi

)(
ηi
µi

)ni .
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We note that (5.49) and (5.50) hold almost surely for all paths of the upper bound process
and lower bound processes. From the coupling construction in the proof of Theorem 5.10,
Theorem 5.11 or Theorem 5.12, resp., and the non-decreasing property of g we see that
almost surely holds

1

T

∫ T

0

g(Y (t), X+
i (t) : i ∈ S) dt

≥ 1

T

∫ T

0

g(Y (t), Xi(t) : i ∈ S) dt

≥ 1

T

∫ T

0

g(Y (t), X−i (ε)(t) : i ∈ S) dt.

So we have for almost all paths of (Y,X) for large T

1

T

∫ T

0

g(Y (t), Xi(t) : i ∈ S) dt ≈ (5.51)

≈
∑

(I,ni:i∈S)∈P(D)×N|S|
g(I, ni : i ∈ S) · A(I)

B(I)

(∑
K⊆D

A(K)

B(K)

)−1∏
i∈S

(
1− ηi

µi

)(
ηi
µi

)ni
. (5.52)

This means that even in the case of the non-stationary process ((Y (t), Xi(t) : i ∈ S) :
t ≥ 0) on the state space P(D) × N|S|, which is not a Markov process, we can estimate
the path-wise evaluated time average d(T ) in (5.51) by the state-space average (5.52)
(the phase-space average) for almost all paths. This is the meaning of classical ergodic
theorems, see, e.g., [Bre92, pp.113-115].
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Chapter 6

Non-ergodic Jackson networks:

Analysis of the local stabilization

6.1 Introduction

The analysis in this chapter is motivated by a comparison of the long-time behavior of
ergodic and non-ergodic Jackson networks presented in Chapter 1.

From Theorem 1.22 on non-ergodic Jackson networks, the asymptotic joint distribution
(1.11) for the subset S of stable nodes is

lim
t→∞

P (Xj(t) = nj : j ∈ S) =
∏
j∈S

(
1− ηj

µj

)(
ηj
µj

)nj
,

whereas from Jackson's theorem (Theorem 1.10) on ergodic Jackson networks we have
the asymptotic joint distribution (1.5) for the set J̃ (of stable nodes only!)

lim
t→∞

P (Xj(t) = nj : j ∈ J̃) =
J∏
j=1

(
1− ηj

µj

)(
ηj
µj

)nj
.

There are several similarities of those asymptotic distributions:

• Both asymptotic joint distributions are of product form;

• all marginals are geometric distributions with parameter 1− ηj
µj
;

• the only information needed to calculate the distributions is the tra�c intensity
ηj/µj at each stable node j.

These obvious similarities motivated us to analyze possible further similarities which
might be in behind this �rst observation.

Indeed, one may only speak of similarities of the asymptotics presented above, because
ηj, j ∈ J̃ , is determined di�erently in those two cases:
In Jackson's theorem all nodes are stable, thus (ηj : j ∈ J̃) is the unique solution of the
(classical) tra�c equations (1.1). Whereas in the situation of Theorem 1.22, if at least

155
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one node is unstable, (ηj : j ∈ J̃) is the unique solution of the general tra�c equations
(1.6).

The main di�erence between the two results is that - contrary to the non-ergodic case
- the asymptotic distribution (1.5) for ergodic networks is a stationary distribution
as well. This information features that if the process is started with the asymptotic
distribution as initial distribution it remains invariant over time (see De�nition and
Remark 1.4).

The intuitive question arising is whether, starting a non-ergodic network process (S ⊂ J̃)
with an initial distribution which has the marginal (1.11), this marginal stays invariant
over time as in the ergodic case. Being more speci�c, are there conditions on how the
initial distribution must look like in order to obtain such an invariance of the stable
marginals?

We start our investigation with non-ergodic Jackson networks with only two nodes where
one of the nodes is stable and the other one is unstable in the sense of De�nition 1.17.

Throughout this chapter we will refer to the following two-nodes system for readability
and give the according results for networks of an arbitrary number of nodes if these are
at hand. As in Chapter 1, Section 1.4, we will consider a uniformization of the network
process.

De�nition 6.1 (The two-node model with uniformized queue length process). Consider
a Jackson network with two nodes where node 1 is stable and node 2 is unstable in the
sense of De�nition 1.17. Denote by η = (η1, η2) the unique solution of the general tra�c
equations (1.6) which in this case reduce to

η1 = λ1 + η1r(1, 1) + µ2r(2, 1), (6.1)

η2 = λ2 + η1r(1, 2) + µ2r(2, 2). (6.2)

Denote by X = (X(t) = (X1(t), X2(t)) : t ≥ 0) the queue length process of the network on
the state space N2 and denote by

P (X1(0),X2(0)) := P (X(0) = (n1, n2) : (n1, n2) ∈ N2)

the initial distribution.
Consider the uniformization of the queue length process: Since all entries in the main
diagonal of the Q-matrix are bounded, X is uniformizable. With

ξ ≥
2∑
i=1

(λi + µi)

as the uniformization constant, a Poisson-clock with intensity ξ generates the jump times
of the uniformized process. The jump kernel of the uniformization is then given by

pu = I +
1

ξ
·Q.

As the continuous-time process, the uniformized process has cadlag paths.

As mentioned in Section 1.4.2, the advantage of the uniformization is that an analysis of
the continuous-time process X is possible with discrete time techniques.
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6.2 One-step invariance of the marginal distribution

We5 start the non-ergodic network process of the two-node model with an initial distri-
bution such that the following holds:

• the unstable node 2 is busy (not idle) at time 0,

• the marginal probability for the stable node 1 is according to (1.11) for all n1 ∈ N

P (X1(0) = n1) = lim
t→∞

P (X1(t) = n1) =

(
1− η1

µ1

)(
η1

µ1

)n1

. (6.3)

The aim is to clarify whether the marginal distribution (6.3) can remain invariant over
time. Unfortunately enough, it turned out that this is in general (seemingly) not possible.
[MD11, p.103]

In course of the computations yielding this negative result we came across the following
observation: As long as we can guarantee that the unstable node 2 is not idle at the
beginning of the observation period, the desired invariance at the stable node 1 is main-
tained even right after the �rst jump. The astonishing fact is that this is independent of
the form of the initial distribution as long as the two requirements above are valid. This
leads to the following proposition. [MD11, p.103]

Proposition 6.2. [MD11, Proposition 7] Consider the two-node model of De�nition 6.1.
Assume that the initial distribution ful�lls the following conditions:
• the marginal for the stable part is the limiting probability (1.11) of Theorem 1.22, i.e.,

P (X1(0) = n1) =

(
1− η1

µ1

)(
η1

µ1

)n1

, n1 ∈ N, (6.4)

• the marginal for the unstable part is busy with probability 1, but carries no further
restriction, i.e.,

P (X2(0) = 0) = 0. (6.5)

Denote by t1 the (random) time of the �rst jump of the uniformized process X. Then for
all n1 ∈ N holds

P (X1(t1) = n1) =

(
1− η1

µ1

)(
η1

µ1

)n1

. (6.6)

Proof. Denote by pu the jump kernel of the uniformization with Poisson-ξ clock, where
ξ ≥

∑2
i=1(λi + µi), and compute directly for all (n1, n2) ∈ N2

5Since parts of this section are published in our paper [MD11] (pp.103-104), its introduction and some of
the comments cite the paper which is shortly marked at the end of the concerning paragraphs.
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P (X(t1) = (n1, n2)) =

=
∑

(m1,m2)∈N2

P (X(0) = (m1,m2)) · pu(m1,m2;n1, n2)

= P (X(0) = (n1 − 1, n2)) · λ1

ξ
· 1N+(n1) + P (X(0) = (n1, n2 − 1)) · λ2

ξ
· 1N+(n2)+

+ P (X(0) = (n1 + 1, n2)) · µ1r(1, 0)

ξ
+ P (X(0) = (n1, n2 + 1)) · µ2r(2, 0)

ξ
+

+ P (X(0) = (n1 + 1, n2 − 1)) · µ1r(1, 2)

ξ
· 1N+(n2)+

+ P (X(0) = (n1 − 1, n2 + 1)) · µ2r(2, 1)

ξ
· 1N+(n1)+

+ P (X(0) = (n1, n2)) · 1

ξ
·

· (ξ − λ1 − λ2 − µ1(1− r(1, 1))1N+(n1)− µ2(1− r(2, 2))1N+(n2))

Summing over all n2 ∈ N yields

P (X1(t1) = n1) =
∑
n2∈N

P (X(t1) = (n1, n2)) =

=
∑
n2∈N

P (X(0) = (n1 − 1, n2)) · λ1

ξ
· 1N+(n1) +

∑
n2∈N

P (X(0) = (n1, n2)) · λ2

ξ
+

+
∑
n2∈N

P (X(0) = (n1 + 1, n2)) · µ1r(1, 0)

ξ
+
∑
n2∈N+

P (X(0) = (n1, n2)) · µ2r(2, 0)

ξ
+

+
∑
n2∈N

P (X(0) = (n1 + 1, n2)) · µ1r(1, 2)

ξ
+

+
∑
n2∈N+

P (X(0) = (n1 − 1, n2)) · µ2r(2, 1)

ξ
· 1N+(n1)+

+
∑
n2∈N

P (X(0) = (n1, n2))·

· 1

ξ
· (ξ − λ1 − λ2 − µ1(1− r(1, 1))1N+(n1)− µ2(1− r(2, 2)) 1N+(n2)︸ ︷︷ ︸

(6.5)
= 1

).
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⇔

P (X1(t1) = n1) =

=
∑
n2∈N

P (X(0) = (n1 − 1, n2)) · λ1 + µ2r(2, 1)

ξ
· 1N+(n1)+

+
∑
n2∈N

P (X(0) = (n1 + 1, n2)) · µ1(1− r(1, 1))

ξ
+

+
∑
n2∈N

P (X(0) = (n1, n2)) · 1

ξ
· (ξ − λ1 − µ1(1− r(1, 1))1N+(n1)− µ2r(2, 1))

(6.1)
=

η1(1− r(1, 1))

ξ
· 1N+(n1)

∑
n2∈N

P (X(0) = (n1 − 1, n2))+

+
µ1(1− r(1, 1))

ξ

∑
n2∈N

P (X(0) = (n1 + 1, n2))+

+
1

ξ
· (ξ − λ1 − µ1(1− r(1, 1))1N+(n1)− µ2r(2, 1))

∑
n2∈N

P (X(0) = (n1, n2)).

Filling in (6.4) yields

P (X1(t1) = n1) =
η1(1− r(1, 1))

ξ
· 1N+(n1) ·

(
1− η1

µ1

)(
η1

µ1

)n1−1

+

+
µ1(1− r(1, 1))

ξ
·
(

1− η1

µ1

)(
η1

µ1

)n1+1

+

+
1

ξ
· (ξ − λ1 − µ1(1− r(1, 1))1N+(n1)− µ2r(2, 1)) ·

(
1− η1

µ1

)(
η1

µ1

)n1

=

(
1− η1

µ1

)(
η1

µ1

)n1

· 1

ξ
·
(
ξ − µ1(1− r(1, 1))1N+(n1)

− (λ1 + µ2r(2, 1))︸ ︷︷ ︸
(6.1)
= η1(1−r(1,1))

+
µ1

η1

η1(1− r(1, 1)) · 1N+(n1) +
η1

µ1

µ1(1− r(1, 1))
)

=

(
1− η1

µ1

)(
η1

µ1

)n1

.

In proving the proposition we observe that the product form structure at the stable node
1 holds also at the time when the unstable node becomes idle for the �rst time after
starting the process. Since we assume cadlag paths this property is also true at the time
right after the jump of X into the state (n1, 0), and until just before the next jump at
time t2, say. [MD11, p.104]

Even more, Proposition 6.2 implies that if we know of at least K > 0 customers waiting
at the unstable node 2 at the beginning (t = 0), then for K − 1 jumps we can guarantee
that the assumption (6.5) still holds. Therefore after K − 1 jumps the result of the
proposition applies and for at least K jumps the product form for the stable node 1 is
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maintained. If at time t = 0 a number of K customers are present at node 2, it follows
from the non-idling property of the service discipline that these customers are served
after an Erlang distributed time with K phases and shape parameter µ2. [MD11, p.104]

The following proposition is a generalization of Proposition 6.2: Even in Jackson networks
with J nodes which may be unreliable, the marginal distribution for the stable subnetwork
reproduces after one step as long as all unstable nodes are almost surely not empty at the
beginning.

Proposition 6.3. Consider a Jackson network with J nodes. Denote by η = (η1, ..., ηJ)
the unique solution of the general tra�c equations

ηi = λi +
∑
j∈J̄

min(ηj, µj)rji, i, j ∈ J̄ . (6.7)

Nodes of the subset S := {i : ηi < µi} are stable and nodes of the subset U := J̄ \ S are
unstable.
Assume that all nodes are unreliable (D = J̃). Breakdowns and repairs of the nodes are
controlled by load-independent breakdown and repair intensities as in Example 2.2. In
case of breakdowns, customers are rerouted according to the stalling regime, the skipping
regime or the blocking rs-rd regime. If skipping is in force, we assume

ηi = µi ∀i ∈ U. (6.8)

In case of the blocking rs-rd regime assume that the following reversibility constraints hold:

ηir(i, j) = ηjr(j, i) ∀i, j ∈ S, (6.9)

ηir(i, j) = µjr(j, i) ∀i ∈ S, j ∈ U, (6.10)

µir(i, j) = µjr(j, i) ∀i, j ∈ U. (6.11)

Denote by (Y,X) the Markovian availability-queue lengths process on the state space
P(J̃)× NJ and assume that the initial distribution

P (Y (0),X1(0),...,XJ (0)) := P ((Y,X)(0) = (I, n1, ..., nJ) : (I, n1, ..., nJ) ∈ P(J̃)× NJ)

ful�lls the following conditions:

P (Y (0) = I,Xi(0) = ni : i ∈ S) =

(∑
K⊆J̃

A(K)

B(K)

)−1
A(I)

B(I)

∏
i∈S

(
1− ηi

µi

)(
ηi
µi

)ni
(6.12)

for all ni ∈ N, I ⊆ J̃ , and
P (Xj(0) = 0) = 0 ∀j ∈ U. (6.13)

Consider the uniformization of (Y,X) with Poisson-clock with intensity

ξ ≥
J∑
i=1

(λi + µi) +
∑
I⊆J̃

∑
∅6=K⊆J̃\I

α(I, I ∪K) +
∑
I⊆J̃

∑
∅6=K⊆I

β(I, I \K),

and denote by t1 the (random) time of the �rst jump of the uniformized process X. Then
for all ni ∈ N and all I ⊆ J̃ holds

P (Y (t1) = I,Xi(t1) = ni : i ∈ S) =

(∑
K⊆J̃

A(K)

B(K)

)−1
A(I)

B(I)

∏
i∈S

(
1− ηi

µi

)(
ηi
µi

)ni
. (6.14)
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Proof. Consider the process uniformized with uniformization constant ξ, i.e., jumps of the
process are controlled with a Poisson-ξ clock. Denote by pu := I + 1

ξ
Q the jump kernel,

i.e., the entries of the kernel are the probabilities of a jump. We consider the rerouting
according to skipping and blocking rs-rd together, the case of stalling is a simpli�cation
of the following proof by setting I = ∅.
For all I ⊆ J̃ holds:

P (Y (t1) = I,X(t1) = (n1, ..., nJ)) =

=
∑

(m1,...,mJ )∈NJ

∑
H⊆J̃

P (Y (0) = H,X(0) = (m1, ...,mJ)) · pu(H,m1, ...,mJ ; I, n1, ..., nJ)

=
∑

H⊆J̃ ,H 6=I

P (Y (0) = H,X(0) = (n1, ..., nJ)) · pu(H,n1, ..., nJ ; I, n1, ..., nJ)+

+ P (Y (0) = I,X(0) = (n1, ..., nJ)) · pu(I, n1, ..., nJ ; I, n1, ..., nJ)+

+
∑
j∈J̃\I

P (Y (0) = I,X(0) = (n1, ..., nj − 1, ..., nJ))·

· pu(I, n1, ..., nj − 1, ..., nJ ; I, n1, ..., nj, ..., nJ) · 1N+(nj)+

+
∑
j∈J̃\I

P (Y (0) = I,X(0) = (n1, ..., nj + 1, ..., nJ))·

· pu(I, n1, ..., nj + 1, ..., nJ ; I, n1, ..., nj, ..., nJ)+

+
∑
i∈J̃\I

∑
j∈J̃\I,j 6=i

P (Y (0) = I,X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))·

· pu(I, n1, ..., ni + 1, ..., nj − 1, ..., nJ ; I, n1, ..., ni, ..., nj, ..., nJ) · 1N+(nj)

=
∑
H⊂I

P (Y (0) = H,X(0) = (n1, ..., nJ)) · α(H, I)

ξ
+

+
∑

I⊂K⊆J̃

P (Y (0) = K,X(0) = (n1, ..., nJ)) · β(K, I)

ξ
+

+ P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
(
ξ −

∑
i∈J̃\I

λIi −
∑
i∈J̃\I

µIi (1− rI(i, i)) · 1N+(ni)−
∑

I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)

+

+
∑
j∈J̃\I

P (Y (0) = I,X(0) = (n1, ..., nj − 1, ..., nJ)) ·
λIj
ξ
· 1N+(nj)+

+
∑
j∈J̃\I

P (Y (0) = I,X(0) = (n1, ..., nj + 1, ..., nJ)) ·
µIjr

I(j, 0)

ξ
+

+
∑
i∈J̃\I

∑
j∈J̃\I,j 6=i

P (Y (0) = I,X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))·

· µ
I
i r
I(i, j)

ξ
· 1N+(nj)

Summing over all (nk : k ∈ U) ∈ N|U | yields
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P (Y (t1) = I,Xi(t1) = ni : i ∈ S) =

=
∑

(nk:k∈U)∈N|U|
P (Y (t1) = I,X(t1) = (n1, ..., nJ)) =

=
∑

(nk:k∈U)∈N|U|

∑
H⊂I

P (Y (0) = H,X(0) = (n1, ..., nJ)) · α(H, I)

ξ
+

+
∑

(nk:k∈U)∈N|U|

∑
I⊂K⊆J̃

P (Y (0) = K,X(0) = (n1, ..., nJ)) · β(K, I)

ξ
+

+
∑

(nk:k∈U)∈N|U|
P (Y (0) = I,X(0) = (n1, ..., nJ))·

· 1

ξ
·
(
ξ −

∑
i∈J̃\I

λIi −
∑
i∈J̃\I

µIi (1− rI(i, i)) · 1N+(ni)

−
∑

I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)

+

+
∑

(nk:k∈U)∈N|U|

∑
j∈J̃\I

P (Y (0) = I,X(0) = (n1, ..., nj − 1, ..., nJ)) ·
λIj
ξ
· 1N+(nj)+

+
∑

(nk:k∈U)∈N|U|

∑
j∈J̃\I

P (Y (0) = I,X(0) = (n1, ..., nj + 1, ..., nJ)) ·
µIjr

I(j, 0)

ξ
+

+
∑

(nk:k∈U)∈N|U|

∑
i∈J̃\I

∑
j∈J̃\I,j 6=i

P (Y (0) = I,X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))·

· µ
I
i r
I(i, j)

ξ
· 1N+(nj)
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⇔ P (Y (t1) = I,Xi(t1) = ni : i ∈ S) =

=
∑

(nk:k∈U)∈N|U|

∑
H⊂I

P (Y (0) = H,X(0) = (n1, ..., nJ)) · α(H, I)

ξ
+

+
∑

(nk:k∈U)∈N|U|

∑
I⊂K⊆J̃

P (Y (0) = K,X(0) = (n1, ..., nJ)) · β(K, I)

ξ
+

+
∑

(nk:k∈U)∈N|U|
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
(
ξ −

∑
i∈J̃\I

λIi −
∑
i∈J̃\I

µIi (1− rI(i, i)) · 1N+(ni)−
∑

I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)

+

+
∑
j∈S\I

∑
(nk:k∈U)∈N|U|

P (Y (0) = I,X(0) = (n1, ..., nj − 1, ..., nJ)) ·
λIj
ξ
· 1N+(nj)+

+
∑
j∈U\I

∑
(nk:k∈U)∈N|U|

P (Y (0) = I,X(0) = (n1, ..., nj, ..., nJ)) ·
λIj
ξ

+

+
∑
j∈S\I

∑
(nk:k∈U)∈N|U|

P (Y (0) = I,X(0) = (n1, ..., nj + 1, ..., nJ)) ·
µIjr

I(j, 0)

ξ
+

+
∑
j∈U\I

∑
(nk:k∈U)∈N|U|

P (Y (0) = I,X(0) = (n1, ..., nj, ..., nJ)) ·
µIjr

I(j, 0)

ξ
· 1N+(nj)+

+
∑
i∈S\I

∑
j∈S\I,j 6=i

∑
(nk:k∈U)∈N|U|

P (Y (0) = I,X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))·

· µ
I
i r
I(i, j)

ξ
· 1N+(nj)

+
∑
i∈S\I

∑
j∈U\I

∑
(nk:k∈U)∈N|U|

P (Y (0) = I,X(0) = (n1, ..., ni + 1, ..., nj, ..., nJ))·

· µ
I
i r
I(i, j)

ξ

+
∑
i∈U\I

∑
j∈S\I

∑
(nk:k∈U)∈N|U|

P (Y (0) = I,X(0) = (n1, ..., ni, ..., nj − 1, ..., nJ))·

· µ
I
i r
I(i, j)

ξ
· 1N+(nj) · 1N+(ni)

+
∑
i∈U\I

∑
j∈U\I,j 6=i

∑
(nk:k∈U)∈N|U|

P (Y (0) = I,X(0) = (n1, ..., ni, ..., nj, ..., nJ))·

· µ
I
i r
I(i, j)

ξ
· 1N+(ni)
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⇔ P (Y (t1) = I,Xi(t1) = ni : i ∈ S) =

=
∑
H⊂I

∑
(nk:k∈U)∈N|U|

P (Y (0) = H,X(0) = (n1, ..., nJ))
A(I)

A(H)︸ ︷︷ ︸
(6.12)

=
∑

(nk:k∈U)∈N|U| P (Y (0)=I,X(0)=(n1,...,nJ ))
B(I)
B(H)

·1
ξ

+

+
∑

I⊂K⊆J̃

∑
(nk:k∈U)∈N|U|

P (Y (0) = K,X(0) = (n1, ..., nJ))
B(K)

B(I)︸ ︷︷ ︸
(6.12)

=
∑

(nk:k∈U)∈N|U| P (Y (0)=I,X(0)=(n1,...,nJ ))
A(K)
A(I)

·1
ξ

+

+
∑

(nk:k∈U)∈N|U|
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
(
ξ −

∑
i∈S\I

λIi −
∑
i∈S\I

µIi (1− rI(i, i)) · 1N+(ni)−
∑
i∈U\I

∑
j∈S\I

µIi r
I(i, j) · 1N+(ni)︸ ︷︷ ︸

(6.13)
= 1

−
∑

I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)

+

+
∑
j∈S\I

∑
(nk:k∈U)∈N|U|

P (Y (0) = I,X(0) = (n1, ..., nj − 1, ..., nJ))

︸ ︷︷ ︸
(6.12)

=
∑

(nk:k∈U)∈N|U| P (Y (0)=I,X(0)=(n1,...,nJ ))
µj
ηj

·1
ξ
·

·
(
λIj +

∑
i∈U\I

µIi r
I(i, j) · 1N+(ni)︸ ︷︷ ︸

(6.13)
= 1

)
· 1N+(nj)+

+
∑
j∈S\I

∑
(nk:k∈U)∈N|U|

P (Y (0) = I,X(0) = (n1, ..., nj + 1, ..., nJ))

︸ ︷︷ ︸
(6.12)

=
∑

(nk:k∈U)∈N|U| P (Y (0)=I,X(0)=(n1,...,nJ ))
ηj
µj

·1
ξ
·

· µIj
(
rI(j, 0) +

∑
i∈U\I

rI(j, i)
)

+

+
∑
i∈S\I

∑
j∈S\I,j 6=i

∑
(nk:k∈U)∈N|U|

P (Y (0) = I,X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))

︸ ︷︷ ︸
(6.12)

=
∑

(nk:k∈U)∈N|U| P (Y (0)=I,X(0)=(n1,...,nJ ))
ηi
µi

µj
ηj

·

· µ
I
i r
I(i, j)

ξ
· 1N+(nj)
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⇔

P (Y (t1) = I,Xi(t1) = ni : i ∈ S) =

=
∑

(nk:k∈U)∈N|U|
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
[
ξ −

∑
i∈S\I

λIi −
∑
i∈S\I

µIi (1− rI(i, i)) · 1N+(ni)−
∑
i∈U\I

∑
j∈S\I

µIi r
I(i, j)

−
∑

I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H) +
∑
H⊂I

β(I,H) +
∑

I⊂K⊆J̃

α(I,K)+

+
∑
j∈S\I

µj
ηj

(
λIj +

∑
i∈U\I

µIi r
I(i, j)

)
· 1N+(nj) +

∑
j∈S\I

ηj
µj
µIj

(
rI(j, 0) +

∑
i∈U\I

rI(j, i)
)

+

+
∑
i∈S\I

∑
j∈S\I,j 6=i

ηi
µi

µj
ηj

µIi r
I(i, j)

ξ
· 1N+(nj)

]
⇔

P (Y (t1) = I,Xi(t1) = ni : i ∈ S) =

=
∑

(nk:k∈U)∈N|U|
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
[
ξ −

∑
i∈S\I

λIi −
∑
i∈S\I

µIi (1− rI(i, i)) · 1N+(ni)−
∑
i∈U\I

∑
j∈S\I

µIi r
I(i, j)

+
∑
j∈S\I

µj
ηj

(
λIj +

∑
i∈U\I

µIi r
I(i, j)

)
· 1N+(nj) +

∑
j∈S\I

ηj
µj
µIj

(
rI(j, 0) +

∑
i∈U\I

rI(j, i)
)

+

+
∑
i∈S\I

∑
j∈S\I,j 6=i

ηi
µi

µj
ηj

µIi r
I(i, j)

ξ
· 1N+(nj)

]
.

In case of skipping and blocking rs-rd µIi = µi holds for all i ∈ J̃ \ I and with Lemma 5.2
and Lemma 5.5 we have ηIi = ηi for all i ∈ J̃ \ I. This yields

P (Y (t1) = I,Xi(t1) = ni : i ∈ S) =

=
∑

(nk:k∈U)∈N|U|
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
[
ξ −

∑
i∈S\I

λIi −
∑
i∈S\I

µIi (1− rI(i, i)) · 1N+(ni)−
∑
i∈U\I

∑
j∈S\I

µIi r
I(i, j)

+
∑
j∈S\I

µIj
ηIj

(
λIj +

∑
i∈U\I

µIi r
I(i, j)︸ ︷︷ ︸

(6.7)
= ηIj−

∑
i∈S\I η

I
i r
I(i,j)

)
· 1N+(nj) +

∑
j∈S\I

ηIj

(
1−

∑
i∈S\I

rI(j, i)
)

+

+
∑
i∈S\I

∑
j∈S\I,j 6=i

µIj
ηIj

ηIi r
I(i, j)

ξ
· 1N+(nj)

]
.
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⇔

P (Y (t1) = I,Xi(t1) = ni : i ∈ S) =

=
∑

(nk:k∈U)∈N|U|
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
[
ξ −

∑
i∈S\I

λIi −
∑
i∈S\I

µIi (1− rI(i, i)) · 1N+(ni)−
∑
i∈U\I

∑
j∈S\I

µIi r
I(i, j)

+
∑
j∈S\I

µj
ηj

(
ηIj (1− rI(j, j))−

∑
i∈S\I,i 6=j

ηIi r
I(i, j)

)
· 1N+(nj)+

+
∑
j∈S\I

ηIj

(
1−

∑
i∈S\I

rI(j, i)
)

+
∑
i∈S\I

∑
j∈S\I,j 6=i

µIj
ηIj

ηIi r
I(i, j)

ξ
· 1N+(nj)

]
=

∑
(nk:k∈U)∈N|U|

P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
[
ξ −

∑
i∈S\I

λIi −
∑
i∈S\I

µIi (1− rI(i, i)) · 1N+(ni)−
∑
i∈U\I

∑
j∈S\I

µIi r
I(i, j)

+
∑
j∈S\I

µIj
ηIj
ηIj (1− rI(j, j)) · 1N+(nj) +

∑
j∈S\I

ηIj

(
1−

∑
i∈S\I

rI(j, i)
)]

=
∑

(nk:k∈U)∈N|U|
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
[
ξ +

∑
j∈S\I

ηIj −
(∑
i∈S\I

λIi +
∑
i∈U\I

∑
j∈S\I

µIi r
I(i, j) +

∑
j∈S\I

∑
i∈S\I

ηIj r
I(j, i)︸ ︷︷ ︸

(6.7)
=
∑
j∈S\I η

I
j

)]

=
∑

(nk:k∈U)∈N|U|
P (Y (0) = I,X(0) = (n1, ..., nJ)).

In case of stalling, setting I = ∅ in the beginning of the proof yields the same result. For
I 6= ∅ we have:

P (Y (t1) = I,X(t1) = (n1, ..., nJ)) =

=
∑
H⊂I

P (Y (0) = H,X(0) = (n1, ..., nJ)) · α(H, I)

ξ
+

+
∑

I⊂K⊆J̃

P (Y (0) = K,X(0) = (n1, ..., nJ)) · β(K, I)

ξ
+

+ P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·
(
ξ −

∑
I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)
.
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Summing over all (nk : k ∈ U) ∈ N|U | yields

P (Y (t1) = I,Xi(t1) = ni : i ∈ S) =

=
∑
H⊂I

∑
(nk:k∈U)∈N|U|

P (Y (0) = H,X(0) = (n1, ..., nJ)) · α(H, I)

ξ
+

+
∑

I⊂K⊆J̃

∑
(nk:k∈U)∈N|U|

P (Y (0) = K,X(0) = (n1, ..., nJ)) · β(K, I)

ξ
+

+
∑

(nk:k∈U)∈N|U|
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·
(
ξ −

∑
I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)

(6.12)
=

∑
H⊂I

α(H, I)

ξ
· P (Y (0) = I,Xi(0) = ni : i ∈ S) · A(H)

A(I)

B(I)

B(H)
+

+
∑

I⊂K⊆J̃

β(K, I)

ξ
· P (Y (0) = I,Xi(0) = ni : i ∈ S) · A(K)

A(I)

B(I)

B(K)
+

+ P (Y (0) = I,Xi(0) = ni : i ∈ S) · 1

ξ
·
(
ξ −

∑
I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)

= P (Y (0) = I,Xi(0) = ni : i ∈ S) · 1

ξ
·
(
ξ −

∑
I⊂K⊆J̃

A(K)

A(I)
−
∑
H⊂I

B(I)

B(H)
+

+
∑
H⊂I

A(I)

A(H)

A(H)

A(I)

B(I)

B(H)
+
∑

I⊂K⊆J̃

B(K)

B(I)

A(K)

A(I)

B(I)

B(K)

)
= P (Y (0) = I,Xi(0) = ni : i ∈ S).

The statement of Proposition 6.2 and its proof strongly relies on observing the uni-
formized process until just after the unstable node is empty the �rst time. The same
holds for Proposition 6.3 where there can be more than one unstable node. In case
of an ergodic network process, idling of nodes occurs as recurrent events and does
not disturb the equilibrium state of the system. In the setting of Theorem 1.22 this
seems to be di�erent. Our preliminary explanation is that, in the framework of our
two-node model, in the general tra�c equations (6.1) and (6.2) node 2 functions as a
Poisson-µ2 source, similar to the Poisson-λi sources, as long as it is not idle. [MD11, p.104]

This intuitive explanation by Poisson-sources coming from other nodes strongly reminds
of Jackson networks with in�nite supply de�ned previously in Chapter 4. The following
proposition shows that with Poisson departure streams from unstable nodes the stable
marginals are indeed reproduced for all jump times.

Proposition 6.4. Consider a Jackson network with J nodes where nodes in V ⊆ J̃ have
an in�nite supply of work as in De�nition 4.1. Nodes in W := J̃ \ V operate without
in�nite supply. Denote by η = (η1, ..., ηJ) the unique solution of the tra�c equations
(4.5). S := {i ∈ J̃ : ηi < µi} is the set of stable nodes, nodes in U := J̃ \ S are unstable.
We assume that all unstable nodes have an in�nite supply of work, i.e., U ⊆ V ⊆ J̃ . In
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this situation the tra�c equations (4.5) reduce to

ηi = λi +
∑
j∈W

ηjr(j, i) +
∑
j∈V

µjr(j, i), i ∈ J̃ . (6.15)

Denote by (X(t) = (X1(t), ..., XJ(t)) : t ≥ 0) the queue length process of the network and
assume that the initial distribution

P (X1(0),...,XJ (0)) := P (X(0) = (n1, ..., nJ) : (n1, ..., nJ) ∈ NJ)

ful�lls the following marginal product form property for the stable part without in�nite
supply:

P (Xi(0) = ni : i ∈ W ) =
∏
i∈W

(
1− ηi

µi

)(
ηi
µi

)ni
, ni ∈ N. (6.16)

Consider the uniformization of X with Poisson-clock with intensity

ξ ≥
J∑
i=1

(λi + µi),

and denote by tn the (random) time of the nth jump of the uniformized process X. Then
for all ni ∈ N holds for all n ∈ N

P (Xi(tn) = ni : i ∈ W ) =
∏
i∈W

(
1− ηi

µi

)(
ηi
µi

)ni
. (6.17)

Before proving Proposition 6.4, it should be pointed out that the resulting reproduction
of the marginal distribution on the stable part of the network is exactly what we tried
to achieve for non-ergodic Jackson networks without in�nite supply. In contrary to non-
ergodic Jackson networks without in�nite supply, here the reproduction for more than one
step holds without any further side constraints to be ful�lled. Indeed, the reproduction of
the marginal product form property (for the uniformized process) implies that stationarity
can be achieved at least on the stable part of the globally non-ergodic network process,
see Theorem 4.26.

Proof of Proposition 6.4. The proof consists of showing the reproduction of the marginal
after one jump (the �rst jump time will be denoted by t1), i.e., (6.17) with tn = t1. Since
the marginal distribution (6.16) is the only assumption on the initial distribution to hold,
the reproduction of this marginal distribution after one time step is su�cient for iterated
reproduction in the same manner, hence a reproduction after n jumps for any tn will be
proved.
Consider the process uniformized with uniformization constant ξ ≥

∑J
i=1(λi + µi), i.e.,

jumps of the process are controlled by a Poisson-ξ clock. Denote by pu := I + 1
ξ
Q the

jump kernel, i.e., the entries of the kernel are the probabilities of a jump, and denote by
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t1 the time of the �rst jump. Recall that we assume that X has cadlag paths.

P (X(t1) = (n1, ..., nJ)) =
∑

(m1,...,mJ )∈NJ
P (X(0) = (m1, ...,mJ)) · pu(m1, ...,mJ ;n1, ..., nJ)

= P (X(0) = (n1, ..., nJ)) · pu(n1, ..., nJ ;n1, ..., nJ)+

+
∑
j∈J̃

P (X(0) = (n1, ..., nj − 1, ..., nJ)) · pu(n1, ..., nj − 1, ..., nJ ;n1, ..., nj, ..., nJ)·1N+(nj)

+
∑
j∈J̃

P (X(0) = (n1, ..., nj + 1, ..., nJ)) · pu(n1, ..., nj + 1, ..., nJ ;n1, ..., nj, ..., nJ)

+
∑
i∈J̃

∑
j∈J̃ ,j 6=i

P (X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))·

· pu(n1, ..., ni + 1, ..., nj − 1, ..., nJ ;n1, ..., ni, ..., nj, ..., nJ) · 1N+(nj).

Plugging in the probabilities of the jump kernel yields

P (X(t1) = (n1, ..., nJ)) =

= P (X(0) = (n1, ..., nJ)) · 1

ξ
·
(
ξ −

∑
i∈J̃

λi −
∑
i∈J̃

∑
j∈V

µjr(j, i)1{0}(nj)+

−
∑
i∈J̃

µir(i, 0) · 1N+(ni)−
∑
i∈J̃

∑
j∈J̃\{i}

µir(i, j)1N+(ni)
)

+

+
∑
j∈W

P (X(0) = (n1, ..., nj − 1, ..., nJ)) · 1

ξ
·
(
λj +

∑
i∈V

µir(i, j)1{0}(ni)
)
· 1N+(nj)+

+
∑
j∈V

P (X(0) = (n1, ..., nj − 1, ..., nJ))·

· 1

ξ
·
(
λj +

∑
i∈V \{j}

µir(i, j)1{0}(ni) + µjr(j, j)1{0}(nj − 1)
)
· 1N+(nj)+

+
∑
j∈J̃

P (X(0) = (n1, ..., nj + 1, ..., nJ)) · µjr(j, 0)

ξ
+

+
∑
i∈J̃

∑
j∈J̃\{i}

P (X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ)) · µir(i, j)
ξ

· 1N+(nj).

Summing over all (nk : k ∈ V ) ∈ N|V | yields
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P (Xi(t1) = ni : i ∈ W ) =

=
∑

(nk:k∈V )∈N|V |
P (X(t1) = (n1, ..., nJ)) =

=
∑

(nk:k∈V )∈N|V |
P (X(0) = (n1, ..., nJ))·

· 1

ξ
·
(
ξ −

∑
i∈J̃

λi −
∑
i∈J̃

∑
j∈V

µjr(j, i)1{0}(nj)

−
∑
i∈J̃

µir(i, 0) · 1N+(ni)−
∑
i∈J̃

∑
j∈J̃\{i}

µir(i, j)1N+(ni)
)

+

+
∑

(nk:k∈V )∈N|V |

∑
j∈W

P (X(0) = (n1, ..., nj − 1, ..., nJ))·

· 1

ξ
·
(
λj +

∑
i∈V

µir(i, j)1{0}(ni)
)
· 1N+(nj)+

+
∑

(nk:k∈V )∈N|V |

∑
j∈V

P (X(0) = (n1, ..., nj − 1, ..., nJ))·

· 1

ξ
·
(
λj +

∑
i∈V \{j}

µir(i, j)1{0}(ni) + µjr(j, j)1{0}(nj − 1)
)
· 1N+(nj)+

+
∑

(nk:k∈V )∈N|V |

∑
j∈J̃

P (X(0) = (n1, ..., nj + 1, ..., nJ)) · µjr(j, 0)

ξ
+

+
∑

(nk:k∈V )∈N|V |

∑
i∈J̃

∑
j∈J̃\{i}

P (X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ)) · µir(i, j)
ξ

· 1N+(nj)
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⇔ P (Xi(t1) = ni : i ∈ W ) =

=
∑

(nk:k∈V )∈N|V |
P (X(0) = (n1, ..., nJ))·

· 1

ξ
·
(
ξ −

∑
i∈J̃

λi −
∑
i∈J̃

∑
j∈V

µjr(j, i)1{0}(nj)

−
∑
i∈J̃

µir(i, 0) · 1N+(ni)−
∑
i∈J̃

∑
j∈J̃\{i}

µir(i, j)1N+(ni)
)

+
∑

(nk:k∈V )∈N|V |

∑
j∈W

P (X(0) = (n1, ..., nj − 1, ..., nJ))·

· 1

ξ
·
(
λj +

∑
i∈V

µirij1{0}(ni)
)
· 1N+(nj)

+
∑

(nk:k∈V )∈N|V |

∑
j∈V

P (X(0) = (n1, ..., nj, ..., nJ))·

· 1

ξ
·
(
λj +

∑
i∈V

µir(i, j) · 1{0}(ni)
)

+
∑

(nk:k∈V )∈N|V |

∑
j∈W

P (X(0) = (n1, ..., nj + 1, ..., nJ)) · µjr(j, 0)

ξ

+
∑

(nk:k∈V )∈N|V |

∑
j∈V

P (X(0) = (n1, ..., nj, ..., nJ)) · µjr(j, 0)

ξ
· 1N+(nj)

+
∑

(nk:k∈V )∈N|V |

∑
i∈W

∑
j∈W\{i}

P (X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))·

· µir(i, j)
ξ

· 1N+(nj)

+
∑

(nk:k∈V )∈N|V |

∑
i∈W

∑
j∈V

P (X(0) = (n1, ..., ni + 1, ..., nj, ..., nJ)) · µir(i, j)
ξ

+
∑

(nk:k∈V )∈N|V |

∑
i∈V

∑
j∈W

P (X(0) = (n1, ..., ni, ..., nj − 1, ..., nJ))·

· µir(i, j)
ξ

· 1N+(nj) · 1N+(ni)

+
∑

(nk:k∈V )∈N|V |

∑
i∈V

∑
j∈V \{i}

P (X(0) = (n1, ..., ni, ..., nj, ..., nJ)) · µir(i, j)
ξ

· 1N+(ni)
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⇔ P (Xi(t1) = ni : i ∈ W ) =

=
∑

(nk:k∈V )∈N|V |
P (X(0) = (n1, ..., nJ))·

· 1

ξ
·
(
ξ −

∑
i∈J̃

λi −
∑
i∈J̃

∑
j∈V

µjr(j, i)1{0}(nj)

−
∑
i∈J̃

µir(i, 0) · 1N+(ni)−
∑
i∈J̃

∑
j∈J̃\{i}

µir(i, j)1N+(ni)
)

+
∑
j∈W

∑
(nk:k∈V )∈N|V |

P (X(0) = (n1, ..., nj − 1, ..., nJ))·

· 1

ξ
·
(
λj +

∑
i∈V

µir(i, j)1{0}(ni)
)
· 1N+(nj)

+
∑

(nk:k∈V )∈N|V |
P (X(0) = (n1, ..., nJ)) · 1

ξ
·
∑
j∈V

(
λj +

∑
i∈V

µir(i, j) · 1{0}(ni)
)

+
∑
j∈W

∑
(nk:k∈V )∈N|V |

P (X(0) = (n1, ..., nj + 1, ..., nJ)) · µjr(j, 0)

ξ

+
∑

(nk:k∈V )∈N|V |
P (X(0) = (n1, ..., nJ))

∑
j∈V

µjr(j, 0)

ξ
· 1N+(nj)

+
∑
i∈W

∑
j∈W\{i}

∑
(nk:k∈V )∈N|V |

P (X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))·

· µir(i, j)
ξ

· 1N+(nj)

+
∑
i∈W

∑
(nk:k∈V )∈N|V |

P (X(0) = (n1, ..., ni + 1, ..., nJ))
∑
j∈V

µir(i, j)

ξ

+
∑
j∈W

∑
(nk:k∈V )∈N|V |

P (X(0) = (n1, ..., nj − 1, ..., nJ))
∑
i∈V

µir(i, j)

ξ
· 1N+(nj) · 1N+(ni)

+
∑

(nk:k∈V )∈N|V |
P (X(0) = (n1, ..., nJ))

∑
i∈V

∑
j∈V \{i}

µir(i, j)

ξ
· 1N+(ni)
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⇔ P (Xi(t1) = ni : i ∈ W ) =

=
∑

(nk:k∈V )∈N|V |
P (X(0) = (n1, ..., nJ))·

· 1

ξ
·
(
ξ +

∑
j∈V

(
λj +

∑
i∈V

µir(i, j)1{0}(ni)
)
−
∑
i∈J̃

λi −
∑
i∈J̃

∑
j∈V

µjr(j, i)1{0}(nj)︸ ︷︷ ︸
=−

∑
i∈W λi−

∑
i∈W

∑
j∈V µjr(j,i)1{0}(nj)

+

+
∑
i∈V

∑
j∈V \{i}

µir(i, j)1N+(ni)−
∑
i∈J̃

∑
j∈J̃\{i}

µir(i, j)1N+(ni)︸ ︷︷ ︸
=−

∑
i∈W

∑
j∈J̃\{i} µir(i,j)1N+ (ni)−

∑
i∈V

∑
j∈W µir(i,j)1N+ (ni)

+

+
∑
j∈V

µjr(j, 0)1N+(nj)−
∑
i∈J̃

µir(i, 0)1N+(ni)︸ ︷︷ ︸
=−

∑
i∈W µir(i,0)1N+ (ni)

)
+

+
∑
j∈W

∑
(nk:k∈V )∈N|V |

P (X(0) = (n1, ..., nj − 1, ..., nJ))·

· 1

ξ
·
(
λj +

∑
i∈V

µir(i, j)
)
· 1N+(nj)+

+
∑
j∈W

∑
(nk:k∈V )∈N|V |

P (X(0) = (n1, ..., nj + 1, ..., nJ)) · 1

ξ
· µj

(
r(j, 0) +

∑
i∈V

r(j, i)
)

︸ ︷︷ ︸
=1−

∑
i∈W r(j,i)

+

+
∑
i∈W

∑
j∈W\{i}

∑
(nk:k∈V )∈N|V |

P (X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))·

· µir(i, j)
ξ

· 1N+(nj)

=
∑

(nk:k∈V )∈N|V |
P (X(0) = (n1, ..., nJ))·

· 1

ξ
·
(
ξ −

∑
i∈W

λi−
∑
i∈W

∑
j∈V

µjr(j, i)1{0}(nj)−
∑
i∈V

∑
j∈W

µir(i, j)1N+(ni)︸ ︷︷ ︸
=−

∑
i∈W

∑
j∈V µjr(j,i)

−
∑
i∈W

µir(i, 0)1N+(ni)−
∑
i∈W

∑
j∈J̃\{i}

µir(i, j)1N+(ni)
)

+
∑
j∈W

1

ξ
·
(
λj +

∑
i∈V

µir(i, j)
)

︸ ︷︷ ︸
(6.15)

= ηj−
∑
i∈W ηir(i,j)

·1N+(nj) ·
∑

(nk:k∈V )∈N|V |
P (X(0) = (n1, ..., nj − 1, ..., nJ))+

+
∑
j∈W

1

ξ
· µj
(

1−
∑
i∈W

r(j, i)
) ∑

(nk:k∈V )∈N|V |
P (X(0) = (n1, ..., nj + 1, ..., nJ))+

+
∑
i∈W

∑
j∈W\{i}

µir(i, j)

ξ
· 1N+(nj)

∑
(nk:k∈V )∈N|V |

P (X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))
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⇔ P (Xi(t1) = ni : i ∈ W ) =

=
1

ξ
·
(
ξ −

∑
i∈W

λi −
∑
i∈W

∑
j∈V

µjr(j, i)︸ ︷︷ ︸
(6.15)

= −
∑
i∈W ηi+

∑
i∈W

∑
j∈W ηjr(j,i)

+

−
∑
i∈W

µir(i, 0)1N+(ni)−
∑
i∈W

∑
j∈J̃\{i}

µir(i, j)1N+(ni)︸ ︷︷ ︸
=−

∑
i∈W µi(1−r(i,i))1N+ (ni)

)
·

·
∑

(nk:k∈V )∈N|V |
P (X(0) = (n1, ..., nJ))+

+
∑
j∈W

1

ξ
·
(
ηj −

∑
i∈W

ηir(i, j)
)
·1N+(nj)

∑
(nk:k∈V )∈N|V |

P (X(0) = (n1, ..., nj − 1, ..., nJ))+

+
∑
j∈W

1

ξ
·µj
(

1−
∑
i∈W

r(j, i)
) ∑

(nk:k∈V )∈N|V |
P (X(0) = (n1, ..., nj + 1, ..., nJ))+

+
∑
i∈W

∑
j∈W\{i}

µir(i, j)

ξ
·1N+(nj)

∑
(nk:k∈V )∈N|V |

P (X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))

(6.16)
=

1

ξ
·
(
ξ −

∑
i∈W

ηi +
∑
i∈W

∑
j∈W

ηjr(j, i)−
∑
i∈W

µi(1− r(i, i))1N+(ni)
)
·

·
∏
k∈W

(
1− ηk

µk

)(
ηk
µk

)nk
+
∑
j∈W

1

ξ
·
(
ηj(1− r(j, j))−

∑
i∈W\{j}

ηir(i, j)
)
· 1N+(nj) ·

µj
ηj

∏
k∈W

(
1− ηk

µk

)(
ηk
µk

)nk
+
∑
j∈W

1

ξ
· µj
(

1−
∑
i∈W

r(j, i)
) ηj
µj

∏
k∈W

(
1− ηk

µk

)(
ηk
µk

)nk
+
∑
i∈W

∑
j∈W\{i}

µir(i, j)

ξ
· 1N+(nj) ·

ηi
µi

µj
ηj

∏
k∈W

(
1− ηk

µk

)(
ηk
µk

)nk
=
∏
k∈W

(
1− ηk

µk

)(
ηk
µk

)nk
· 1

ξ
·

·
[
ξ −

∑
i∈W

ηi +
∑
i∈W

∑
j∈W

ηjr(j, i) +
∑
j∈W

ηj

(
1−

∑
i∈W

r(j, i)
)

+
∑
j∈W

µj(1− r(j, j)) · 1N+(nj)−
∑
i∈W

µi(1− r(i, i))1N+(ni)

+
∑
i∈W

∑
j∈W\{i}

ηir(i, j) · 1N+(nj) ·
µj
ηj
−
∑
j∈W

∑
i∈W\{j}

ηir(i, j) · 1N+(nj) ·
µj
ηj

]
=
∏
k∈W

(
1− ηk

µk

)(
ηk
µk

)nk
.
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A statement similar to Proposition 6.4 can be proven for Jackson networks with in�nite
supply and with unreliable nodes. Note that Proposition 6.4 where all nodes are reliable
is a special case of the following proposition.

Proposition 6.5. Consider a Jackson network with J nodes where nodes in V ⊆ J̃ have
an in�nite supply of work as in De�nition 4.1. Nodes in W := J̃ \ V operate without
in�nite supply. Denote by η = (η1, ..., ηJ) the unique solution of the tra�c equations
(4.5). S := {i ∈ J̃ : ηi < µi} is the set of stable nodes, nodes in U := J̃ \ S are unstable.
We assume that all unstable nodes have an in�nite supply of work, i.e., U ⊆ V ⊆ J̃ . In
this situation the tra�c equations (4.5) reduce to

ηi = λi +
∑
j∈W

ηjr(j, i) +
∑
j∈V

µjr(j, i), i ∈ J̃ . (6.18)

Assume that all nodes are unreliable. Breakdowns and repairs of the nodes are controlled
by load-independent breakdown and repair intensities as in Example 2.2. In case of break-
downs, customers are rerouted according to the stalling regime, the skipping regime or the
blocking rs-rd regime. If skipping is in force, we assume

ηi = µi ∀i ∈ V. (6.19)

In case of the blocking rs-rd regime assume that the following reversibility constraints hold:

ηir(i, j) = ηjr(j, i) ∀i, j ∈ W, (6.20)

ηir(i, j) = µjr(j, i) ∀i ∈ W, j ∈ V, (6.21)

µir(i, j) = µjr(j, i) ∀i, j ∈ V. (6.22)

Denote by (Y,X) the Markovian availability-queue lengths process on the state space
P(J̃)× NJ and assume that the initial distribution

P (Y (0),X1(0),...,XJ (0)) := P ((Y,X)(0) = (I, n1, ..., nJ) : (I, n1, ..., nJ) ∈ P(J̃)× NJ)

ful�lls the marginal product form property for the stable part without in�nite supply:

P (Y (0) = I,Xi(0) = ni : i ∈ W ) =

(∑
K⊆J̃

A(K)

B(K)

)−1
A(I)

B(I)

∏
i∈W

(
1− ηi

µi

)(
ηi
µi

)ni
(6.23)

for all ni ∈ N, I ⊆ J̃ .
Consider the uniformization of (Y,X) with Poisson-clock with intensity

ξ ≥
J∑
i=1

(λi + µi) +
∑
I⊆J̃

∑
∅6=K⊆J̃\I

α(I, I ∪K) +
∑
I⊆J̃

∑
∅6=K⊆I

β(I, I \K),

and denote by tn the (random) time of the nth jump of the uniformized process X. Then
for all ni ∈ N and all I ⊆ J̃ holds for all n ∈ N

P (Y (tn) = I,Xi(tn) = ni : i ∈ W ) =

(∑
K⊆J̃

A(K)

B(K)

)−1
A(I)

B(I)

∏
i∈W

(
1− ηi

µi

)(
ηi
µi

)ni
.

(6.24)
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Proof. The proof consists of showing the reproduction of the marginal after one jump
(the �rst jump time will be denoted by t1), i.e., (6.24) with tn = t1.

Since the marginal distribution (6.23) is the only assumption on the initial distribution
to hold, the reproduction of this marginal distribution after one time step is su�cient for
iterated reproduction in the same manner, hence a reproduction after n jumps for any tn
is proven.

Consider the process uniformized with uniformization constant ξ, i.e., jumps of the process
are controlled by a Poisson-ξ clock. Denote by pu := I + 1

ξ
Q the jump kernel, i.e., the

entries of the kernel are the probabilities of a jump, and denote by t1 the time of the �rst
jump.

We consider the rerouting according to skipping and blocking rs-rd together, the case of
stalling is a simpli�cation of the following proof by setting I = ∅.

Recall that we assume that X has cadlag paths.

For all I ⊆ J̃ holds:

P (Y (t1) = I,X(t1) = (n1, ..., nJ)) =

=
∑

(m1,...,mJ )∈NJ

∑
H⊆J̃

P (Y (0) = H,X(0) = (m1, ...,mJ)) · pu(H,m1, ...,mJ ; I, n1, ..., nJ)

=
∑

H⊆J̃ ,H 6=I

P (Y (0) = H,X(0) = (n1, ..., nJ)) · pu(H,n1, ..., nJ ; I, n1, ..., nJ)+

+ P (Y (0) = I,X(0) = (n1, ..., nJ)) · pu(I, n1, ..., nJ ; I, n1, ..., nJ)+

+
∑
j∈J̃\I

P (Y (0) = I,X(0) = (n1, ..., nj − 1, ..., nJ))·

· pu(I, n1, ..., nj − 1, ..., nJ ; I, n1, ..., nj, ..., nJ) · 1N+(nj)+

+
∑
j∈J̃\I

P (Y (0) = I,X(0) = (n1, ..., nj + 1, ..., nJ))·

· pu(I, n1, ..., nj + 1, ..., nJ ; I, n1, ..., nj, ..., nJ)+

+
∑
i∈J̃\I

∑
j∈J̃\I,j 6=i

P (Y (0) = I,X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))·

· pu(I, n1, ..., ni + 1, ..., nj − 1, ..., nJ ; I, n1, ..., ni, ..., nj, ..., nJ) · 1N+(nj).

Plugging in the probabilities of the jump kernel yields
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P (Y (t1) = I,X(t1) = (n1, ..., nJ)) =

=
∑
H⊂I

P (Y (0) = H,X(0) = (n1, ..., nJ)) · α(H, I)

ξ
+

+
∑

I⊂K⊆J̃

P (Y (0) = K,X(0) = (n1, ..., nJ)) · β(K, I)

ξ
+

+ P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
(
ξ −

∑
i∈J̃\I

λIi −
∑
i∈J̃\I

∑
j∈V \I

µIjr
I(j, i)1{0}(nj)−

∑
i∈J̃\I

µIi r
I(i, 0) · 1N+(ni)

−
∑
i∈J̃\I

∑
j∈J̃\I,j 6=i

µIi r
I(i, j)1N+(ni)−

∑
I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)

+

+
∑
j∈W\I

P (Y (0) = I,X(0) = (n1, ..., nj − 1, ..., nJ))·

· 1

ξ
·
(
λIj +

∑
i∈V \I

µIi r
I(i, j)1{0}(ni)

)
· 1N+(nj)+

+
∑
j∈V \I

P (Y (0) = I,X(0) = (n1, ..., nj − 1, ..., nJ))·

· 1

ξ
·
(
λIj +

∑
i∈V \I,i 6=j

µIi r
I(i, j)1{0}(ni) + µIjr

I(j, j)1{0}(nj − 1)
)
· 1N+(nj)+

+
∑
j∈J̃\I

P (Y (0) = I,X(0) = (n1, ..., nj + 1, ..., nJ)) ·
µIjr

I(j, 0)

ξ
+

+
∑
i∈J̃\I

∑
j∈J̃\I,j 6=i

P (Y (0) = I,X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))·

· µ
I
i r
I(i, j)

ξ
· 1N+(nj).

Summing over all (nk : k ∈ V ) ∈ N|V | yields
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P (Y (t1) = I,Xi(t1) = ni : i ∈ W ) =

=
∑

(nk:k∈V )∈N|V |
P (Y (t1) = I,X(t1) = (n1, ..., nJ)) =

=
∑

(nk:k∈V )∈N|V |

∑
H⊂I

P (Y (0) = H,X(0) = (n1, ..., nJ)) · α(H, I)

ξ
+

+
∑

(nk:k∈V )∈N|V |

∑
I⊂K⊆J̃

P (Y (0) = K,X(0) = (n1, ..., nJ)) · β(K, I)

ξ
+

+
∑

(nk:k∈V )∈N|V |
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
(
ξ −

∑
i∈J̃\I

λIi −
∑
i∈J̃\I

∑
j∈V \I

µIjr
I(j, i)1{0}(nj)−

∑
i∈J̃\I

µIi r
I(i, 0) · 1N+(ni)

−
∑
i∈J̃\I

∑
j∈J̃\I,j 6=i

µIi r
I(i, j)1N+(ni)−

∑
I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)

+

+
∑

(nk:k∈V )∈N|V |

∑
j∈W\I

P (Y (0) = I,X(0) = (n1, ..., nj − 1, ..., nJ))·

· 1

ξ
·
(
λIj +

∑
i∈V \I

µIi r
I(i, j)1{0}(ni)

)
· 1N+(nj)+

+
∑

(nk:k∈V )∈N|V |

∑
j∈V \I

P (Y (0) = I,X(0) = (n1, ..., nj − 1, ..., nJ))·

· 1

ξ
·
(
λIj +

∑
i∈V \I,i 6=j

µIi r
I(i, j)1{0}(ni) + µIjr

I(j, j)1{0}(nj − 1)
)
· 1N+(nj)+

+
∑

(nk:k∈V )∈N|V |

∑
j∈J̃\I

P (Y (0) = I,X(0) = (n1, ..., nj + 1, ..., nJ)) ·
µIjr

I(j, 0)

ξ
+

+
∑

(nk:k∈V )∈N|V |

∑
i∈J̃\I

∑
j∈J̃\I,j 6=i

P (Y (0) = I,X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))·

· µ
I
i r
I(i, j)

ξ
· 1N+(nj)
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⇔ P (Y (t1) = I,Xi(t1) = ni : i ∈ W ) =

=
∑

(nk:k∈V )∈N|V |

∑
H⊂I

P (Y (0) = H,X(0) = (n1, ..., nJ)) · α(H, I)

ξ
+

+
∑

(nk:k∈V )∈N|V |

∑
I⊂K⊆J̃

P (Y (0) = K,X(0) = (n1, ..., nJ)) · β(K, I)

ξ
+

+
∑

(nk:k∈V )∈N|V |
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
(
ξ −

∑
i∈J̃\I

λIi −
∑
i∈J̃\I

∑
j∈V \I

µIjr
I(j, i)1{0}(nj)−

∑
i∈J̃\I

µIi r
I(i, 0) · 1N+(ni)

−
∑
i∈J̃\I

∑
j∈J̃\I,j 6=i

µIi r
I(i, j)1N+(ni)−

∑
I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)

+

+
∑

(nk:k∈V )∈N|V |

∑
j∈W\I

P (Y (0) = I,X(0) = (n1, ..., nj − 1, ..., nJ))·

· 1

ξ
·
(
λIj +

∑
i∈V \I

µIi r
I(i, j)1{0}(ni)

)
· 1N+(nj)+

+
∑

(nk:k∈V )∈N|V |

∑
j∈V \I

P (Y (0) = I,X(0) = (n1, ..., nj, ..., nJ))·

· 1

ξ
·
(
λIj +

∑
i∈V \I

µIi r
I(i, j)1{0}(ni)

)
+

+
∑

(nk:k∈V )∈N|V |

∑
j∈W\I

P (Y (0) = I,X(0) = (n1, ..., nj + 1, ..., nJ)) ·
µIjr

I(j, 0)

ξ
+

+
∑

(nk:k∈V )∈N|V |

∑
j∈V \I

P (Y (0) = I,X(0) = (n1, ..., nj, ..., nJ)) ·
µIjr

I(j, 0)

ξ
· 1N+(nj)+

+
∑

(nk:k∈V )∈N|V |

∑
i∈W\I

∑
j∈W\I,j 6=i

P (Y (0) = I,X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))·

· µ
I
i r
I(i, j)

ξ
· 1N+(nj)

+
∑

(nk:k∈V )∈N|V |

∑
i∈W\I

∑
j∈V \I

P (Y (0) = I,X(0) = (n1, ..., ni + 1, ..., nj, ..., nJ))·

· µ
I
i r
I(i, j)

ξ

+
∑

(nk:k∈V )∈N|V |

∑
i∈V \I

∑
j∈W\I

P (Y (0) = I,X(0) = (n1, ..., ni, ..., nj − 1, ..., nJ))·

· µ
I
i r
I(i, j)

ξ
· 1N+(nj) · 1N+(ni)

+
∑

(nk:k∈V )∈N|V |

∑
i∈V \I

∑
j∈V \I,j 6=i

P (Y (0) = I,X(0) = (n1, ..., nJ)) · µ
I
i r
I(i, j)

ξ
· 1N+(ni)
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⇔ P (Y (t1) = I,Xi(t1) = ni : i ∈ W ) =

=
∑

(nk:k∈V )∈N|V |

∑
H⊂I

P (Y (0) = H,X(0) = (n1, ..., nJ)) · α(H, I)

ξ
+

+
∑

(nk:k∈V )∈N|V |

∑
I⊂K⊆J̃

P (Y (0) = H,X(0) = (n1, ..., nJ)) · β(K, I)

ξ
+

+
∑

(nk:k∈V )∈N|V |
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
(
ξ −

∑
i∈W\I

λIi −
∑
i∈W\I

∑
j∈V \I

µIjr
I(j, i)1{0}(nj)−

∑
i∈W\I

µIi r
I(i, 0) · 1N+(ni)

−
∑
i∈W\I

∑
j∈J̃\I,j 6=i

µIi r
I(i, j)1N+(ni)−

∑
i∈V \I

∑
j∈W\I

µIi r
I(i, j)1N+(ni)

−
∑

I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)

+

+
∑

(nk:k∈V )∈N|V |

∑
j∈W\I

P (Y (0) = I,X(0) = (n1, ..., nj − 1, ..., nJ))·

· 1

ξ
·
(
λIj +

∑
i∈V \I

µIi r
I(i, j)

)
· 1N+(nj)+

+
∑

(nk:k∈V )∈N|V |

∑
j∈W\I

P (Y (0) = I,X(0) = (n1, ..., nj + 1, ..., nJ))·

· 1

ξ
· µIj ·

(
rI(j, 0) +

∑
i∈V \I

rI(j, i)
)

+

+
∑

(nk:k∈V )∈N|V |

∑
i∈W\I

∑
j∈W\I,j 6=i

P (Y (0) = I,X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))·

· µ
I
i r
I(i, j)

ξ
· 1N+(nj)



6.2 One-step invariance of the marginal distribution 181

⇔ P (Y (t1) = I,Xi(t1) = ni : i ∈ W ) =

=
∑
H⊂I

∑
(nk:k∈V )∈N|V |

P (Y (0) = H,X(0) = (n1, ..., nJ)) · A(I)

A(H)︸ ︷︷ ︸
(6.23)

=
∑

(nk:k∈V )∈N|V | P (Y (0)=I,X(0)=(n1,...,nJ ))
B(I)
B(H)

·1
ξ

+

+
∑

I⊂K⊆J̃

∑
(nk:k∈V )∈N|V |

P (Y (0) = K,X(0) = (n1, ..., nJ)) · B(K)

B(I)︸ ︷︷ ︸
(6.23)

=
∑

(nk:k∈V )∈N|V | P (Y (0)=I,X(0)=(n1,...,nJ ))
A(K)
A(I)

·1
ξ

+

+
∑

(nk:k∈V )∈N|V |
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
(
ξ −

∑
i∈W\I

λIi −
∑
i∈W\I

∑
j∈V \I

µIjr
I(j, i)1{0}(nj)−

∑
i∈W\I

µIi r
I(i, 0) · 1N+(ni)

−
∑
i∈W\I

∑
j∈J̃\I,j 6=i

µIi r
I(i, j)1N+(ni)−

∑
i∈V \I

∑
j∈W\I

µIi r
I(i, j)1N+(ni)

−
∑

I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)

+

+
∑
j∈W\I

∑
(nk:k∈V )∈N|V |

P (Y (0) = I,X(0) = (n1, ..., nj − 1, ..., nJ))

︸ ︷︷ ︸
(6.23)

=
∑

(nk:k∈V )∈N|V | P (Y (0)=I,X(0)=(n1,...,nJ ))
µj
ηj

·

· 1

ξ
·
(
λIj +

∑
i∈V \I

µIi r
I(i, j)

)
· 1N+(nj)+

+
∑
j∈W\I

∑
(nk:k∈V )∈N|V |

P (Y (0) = I,X(0) = (n1, ..., nj + 1, ..., nJ))

︸ ︷︷ ︸
(6.23)

=
∑

(nk:k∈V )∈N|V | P (Y (0)=I,X(0)=(n1,...,nJ ))
ηj
µj

·

· 1

ξ
· µIj ·

(
rI(j, 0) +

∑
i∈V \I

rI(j, i)
)

+

+
∑
i∈W\I

∑
j∈W\I,j 6=i

∑
(nk:k∈V )∈N|V |

P (Y (0) = I,X(0) = (n1, ..., ni + 1, ..., nj − 1, ..., nJ))

︸ ︷︷ ︸
(6.23)

=
∑

(nk:k∈V )∈N|V | P (Y (0)=I,X(0)=(n1,...,nJ ))
ηi
µi

µj
ηj

·

· µ
I
i r
I(i, j)

ξ
· 1N+(nj)
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⇔ P (Y (t1) = I,Xi(t1) = ni : i ∈ W ) =

=
∑

(nk:k∈V )∈N|V |
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
[
ξ −

∑
i∈W\I

λIi −
∑
i∈W\I

∑
j∈V \I

µIjr
I(j, i)1{0}(nj)−

∑
i∈W\I

µIi r
I(i, 0) · 1N+(ni)

−
∑
i∈W\I

∑
j∈J̃\I,j 6=i

µIi r
I(i, j)1N+(ni)−

∑
i∈V \I

∑
j∈W\I

µIi r
I(i, j)1N+(ni)

−
∑

I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H) +
∑
H⊂I

β(I,H) +
∑

I⊂K⊆J̃

α(I,K)+

+
∑
j∈W\I

µj
ηj
·
(
λIj +

∑
i∈V \I

µIi r
I(i, j)

)
· 1N+(nj)+

+
∑
j∈W\I

ηj
µj
· µIj ·

(
rI(j, 0) +

∑
i∈V \I

rI(j, i)
)

+

+
∑
i∈W\I

∑
j∈W\I,j 6=i

ηi
µi

µj
ηj
· µIi rI(i, j) · 1N+(nj)

]
.

In case of skipping and blocking rs-rd µIi = µi holds for all i ∈ J̃ \ I and with Lemma 4.40
and Lemma 4.43 we have ηIi = ηi for all i ∈ J̃ \ I. This yields

P (Y (t1) = I,Xi(t1) = ni : i ∈ W ) =

=
∑

(nk:k∈V )∈N|V |
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·

·
[
ξ −

∑
i∈W\I

λIi −
∑
i∈W\I

∑
j∈V \I

µIjr
I(j, i)−

∑
i∈W\I

µIi r
I(i, 0) · 1N+(ni)

−
∑
i∈W\I

∑
j∈J̃\I,j 6=i

µIi r
I(i, j)1N+(ni) +

∑
j∈W\I

ηIj
µIj
· µIj ·

(
rI(j, 0) +

∑
i∈V \I

rI(j, i)
)

+

+
∑
j∈W\I

µIj
ηIj
·
(
λIj +

∑
i∈V \I

µIi r
I(i, j)

)
· 1N+(nj) +

∑
i∈W\I

∑
j∈W\I,j 6=i

ηIi
µIi

µIj
ηIj
· µIi rI(i, j) · 1N+(nj)

]
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⇔

P (Y (t1) = I,Xi(t1) = ni : i ∈ W ) =

=
∑

(nk:k∈V )∈N|V |
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·
[
ξ −

∑
i∈W\I

(
λIi +

∑
j∈V \I

µIjr
I(j, i)︸ ︷︷ ︸

(6.18)
= ηIi−

∑
j∈W\I η

I
j r
I(j,i)

)

−
∑
i∈W\I

µIi (1− rI(i, i)) · 1N+(ni) +
∑
j∈W\I

ηIj ·
(

1−
∑
i∈W\I

rI(j, i)
)

+
∑
j∈W\I

µIj
ηIj
·
(
λIj +

∑
i∈V \I

µIi r
I(i, j) +

∑
i∈W\I,i 6=j

ηIi r
I(i, j)︸ ︷︷ ︸

(6.18)
= ηIj (1−rI(j,j))

)
· 1N+(nj)

]

=
∑

(nk:k∈V )∈N|V |
P (Y (0) = I,X(0) = (n1, ..., nJ)).

In case of stalling, setting I = ∅ in the beginning of the proof yields the same result. For
I 6= ∅ we have:

P (Y (t1) = I,X(t1) = (n1, ..., nJ)) =

=
∑
H⊂I

P (Y (0) = H,X(0) = (n1, ..., nJ)) · α(H, I)

ξ
+

+
∑

I⊂K⊆J̃

P (Y (0) = K,X(0) = (n1, ..., nJ)) · β(K, I)

ξ
+

+ P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·
(
ξ −

∑
I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)
.
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Summing over all (nk : k ∈ V ) ∈ N|V | yields

P (Y (t1) = I,Xi(t1) = ni : i ∈ W ) =

=
∑
H⊂I

∑
(nk:k∈V )∈N|V |

P (Y (0) = H,X(0) = (n1, ..., nJ)) · α(H, I)

ξ
+

+
∑

I⊂K⊆J̃

∑
(nk:k∈V )∈N|V |

P (Y (0) = K,X(0) = (n1, ..., nJ)) · β(K, I)

ξ
+

+
∑

(nk:k∈V )∈N|V |
P (Y (0) = I,X(0) = (n1, ..., nJ)) · 1

ξ
·
(
ξ −

∑
I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)

(6.23)
=

∑
H⊂I

α(H, I)

ξ
· P (Y (0) = I,Xi(0) = ni : i ∈ W ) · A(H)

A(I)

B(I)

B(H)
+

+
∑

I⊂K⊆J̃

β(K, I)

ξ
· P (Y (0) = I,Xi(0) = ni : i ∈ W ) · A(K)

A(I)

B(I)

B(K)
+

+ P (Y (0) = I,Xi(0) = ni : i ∈ W ) · 1

ξ
·
(
ξ −

∑
I⊂K⊆J̃

α(I,K)−
∑
H⊂I

β(I,H)
)

= P (Y (0) = I,Xi(0) = ni : i ∈ W ) · 1

ξ
·
(
ξ −

∑
I⊂K⊆J̃

A(K)

A(I)
−
∑
H⊂I

B(I)

B(H)
+

+
∑
H⊂I

A(I)

A(H)

A(H)

A(I)

B(I)

B(H)
+
∑

I⊂K⊆J̃

B(K)

B(I)

A(K)

A(I)

B(I)

B(K)

)
= P (Y (0) = I,Xi(0) = ni : i ∈ W ).

6.3 One-step quasi-stationary marginal distribution

The6 observation of the previous section suggests that, in the two-node model, the time
instance right after the unstable node 2 becomes idle the �rst time is the critical time
point, and, saying it the other way round, the event that node 2 becomes idle is a critical
event for the system. In an obvious sense this event resembles the event of absorption in
the theory of quasi-stationary distributions of absorbing Markov processes:
An absorbing Markov process is a Markov process with at least one absorbing state.
A state i is absorbing if, once entered state i, remaining in state i has probability one.
Quasi-stationary distributions are distributions for absorbing processes which remain
invariant over time given that the process is not absorbed yet. [MD11, p.104]

Quasi-stationary distributions were introduced by M.S. Bartlett [Bar57], more informa-
tion is given in the book [Sen81] of E. Seneta. The following de�nition refers to a paper
of J.N. Darroch and E. Seneta in 1967.

6Since parts of this section are published in our paper [MD11](pp.104-106), its introduction and some of
the comments cite the paper which is shortly marked at the end of the concerning paragraphs.
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De�nition 6.6. [DS67] Let Z = (Z(t) : t ≥ 0) be an absorbing Markov process on a �nite
state space E = {0, 1, ..., n} where 0 is the sole absorbing state.
Denote by

di(t) =
P (Z(t) = i)

1− P (Z(t) = 0)
= P (Z(t) = i|Z(t) 6= 0)

the probability for the process to be in state i ∈ E \ {0} at time t under the condition that
the process is not absorbed yet.
If

di(t) = di ∀t ≥ 0

for all non-absorbing states i ∈ E \ {0} holds, then d = (di : i ∈ E \ {0}) is called a
quasi-stationary distribution for Z.

Of course, the queue length process X of our two-node model is not an absorbing process.
Our intention is to construct an analogue to this quasi-stationary distribution for the
marginal process on the stable part of the network as long as the critical event {X2(t) = 0}
does not occur. That is, starting the network with the relevant limiting distribution for
the stable node 1 we search for conditions which guarantee that this initial distribution
is maintained over time. A �rst attempt is the following proposition. [MD11, p.104]

Proposition 6.7. [MD11, Proposition 9] Consider the two-node model of De�nition 6.1
with r(2, 0) > 0 and µ1r(2, 1) < η1r(2, 0).
Assume that the initial distribution ful�lls the following conditions:

• the marginal for the stable part is the limiting probability (1.11) of Theorem 1.22,
i.e.,

P (X1(0) = n1) =

(
1− η1

µ1

)(
η1

µ1

)n1

, n1 ∈ N; (6.25)

• the marginal for the unstable part is busy with probability 1, but carries no further
restriction, i.e.,

P (X2(0) = 0) = 0; (6.26)

• the covariance structure of P (X1(0),X2(0)) ful�lls for all n1 ∈ N

P (X(0) = (n1, 1)) =

= P (X1(0) = n1) · P (X2(0) = 1) · 1− r(2, 2)

r(2, 0)

n1∑
k=0

(
−µ1r(2, 1)

η1r(2, 0)

)k
. (6.27)

Denote by t1 the (random) time of the �rst jump of the uniformized process X. Then for
all n1 ∈ N holds

∞∑
n2=1

P (X(t1) = (n1, n2)|X2(t1) 6= 0) =

(
1− η1

µ1

)(
η1

µ1

)n1

. (6.28)
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Proof. Denote by pu the jump kernel of the uniformization with Poisson-ξ clock, where
ξ ≥

∑2
i=1(λi + µi). The left side of (6.28) is

∞∑
n2=1

P (X(t1) = (n1, n2)|X2(t1) 6= 0) =

=
∞∑

n2=1

P (X(t1) = (n1, n2), X2(t1) 6= 0)

P (X2(t1) 6= 0)
=

∑∞
n2=1 P (X(t1) = (n1, n2))

P (X2(t1) 6= 0)

=

∑∞
n2=0 P (X(t1) = (n1, n2))− P (X(t1) = (n1, 0))

P (X2(t1) 6= 0)

=
1

1− P (X2(t1) = 0)
·
(
P (X1(t1) = n1)−

[
P (X(0) = (n1, 1)) · pu(n1, 1;n1, 0)+

+ 1N+(n1) · P (X(0) = (n1 − 1, 1)) · pu(n1 − 1, 1;n1, 0)
])

=
1

1− P (X2(t1) = 0)
·
(
P (X1(t1) = n1)︸ ︷︷ ︸
(6.6)
= P (X1(0)=n1)

−
[
P (X(0) = (n1, 1)) · µ2r(2, 0)

ξ
+

+ 1N+(n1) · P (X(0) = (n1 − 1, 1)) · µ2r(2, 1)

ξ

])
(6.27)
=

1

1− P (X2(t1) = 0)
·
(
P (X1(0) = n1)−

[
P (X1(0) = n1) · P (X2(0) = 1)·

· 1− r(2, 2)

r(2, 0)
·
n1∑
k=0

(
−µ1r(2, 1)

η1r(2, 0)

)k
· µ2r(2, 0)

ξ
+ 1N+(n1) · P (X1(0) = n1 − 1)·

· P (X2(0) = 1) · 1− r(2, 2)

r(2, 0)

n1−1∑
k=0

(
−µ1r(2, 1)

η1r(2, 0)

)k
· µ2r(2, 1)

ξ

])
=

1

1− P (X2(t1) = 0)
·
(
P (X1(0) = n1)− P (X2(0) = 1) · µ2(1− r(2, 2))

ξ
·

·
[
P (X1(0) = n1)

n1∑
k=0

(
−µ1r(2, 1)

η1r(2, 0)

)k
+

+ 1N+(n1)P (X1(0) = n1 − 1)︸ ︷︷ ︸
(6.25)

= P (X1(0)=n1)·µ1
η1

·r(2, 1)

r(2, 0)

n1−1∑
k=0

(
−µ1r(2, 1)

η1r(2, 0)

)k])

=
1

1− P (X2(t1) = 0)
P (X1(0) = n1)

(
1− P (X2(0) = 1) · µ2(1− r(2, 2))

ξ

)
.
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The proof is completed by observing

P (X2(t1) = 0) =

(6.26)
=

∑
n1∈N

∑
m1∈N

P (X(0) = (m1, 1)) · pu(m1, 1;n1, 0)

=
∑
n1∈N

P (X(0) = (n1, 1)) · µ2r(2, 0)

ξ
+
∑
n1∈N+

P (X(0) = (n1 − 1, 1)) · µ2r(2, 1)

ξ

=
µ2r(2, 0)

ξ

∑
n1∈N

P (X(0) = (n1, 1))︸ ︷︷ ︸
=P (X2(0)=1)

+
µ2r(2, 1)

ξ

∑
n1∈N+

P (X(0) = (n1 − 1, 1))︸ ︷︷ ︸
=P (X2(0)=1)

= P (X2(0) = 1) · µ2(1− r(2, 2))

ξ
(6.29)

and from (6.25).

Remark 6.8. [MD11, p.105]

• The result is not obvious, because from assuming cadlag paths we observe with
X(t1) = (n1, n2) the state of the system after the jump. Clearly, until just before
the second jump the property derived here is maintained.

• The side constraints on the initial distribution are seemingly rather weak. Neverthe-
less, it can be shown that for n1 ∈ N the probabilities P (X(t1) = (n1, 1)|X2(t1) 6= 0)
do not ful�ll the correlation property (6.27) without additional requirements for the
initial distribution.

• The marginal initial probability for the unstable node is restricted only by the re-
quirement that the node is busy with probability 1.
If P (X2(0) = 1) = 0, the requirement (6.27) is always ful�lled for any joint distri-
bution P (X1(0),X2(0)). So (similar to Proposition 6.2) if we know of at least K > 0
customers waiting at node 2 at the beginning (t = 0), then for K − 2 jumps we
can guarantee (6.27) still to hold. Thus after K − 2 jumps the result of Proposi-
tion 6.7 applies and for at least K − 1 jumps the product form (6.28) for node 1 is
maintained.

Remark 6.9. [MD11, p.105] The correlation property (6.27) can be given an appealing
interpretation resembling the concept of the squared coe�cient of variation of some non-
negative random variable X with E(X) > 0:

C2
X :=

V ar(X)

(E(X))2
.

Consider a two-dimensional random vector (X, Y ) with values in R2
+ and with

E(X) · E(Y ) > 0.

Then the analogue is
Cov(X, Y )

E(X) · E(Y )
=

E(X · Y )

E(X) · E(Y )
− 1.
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If we apply this to the random vectors

(X, Y ) := (1{n1}(X1(0)), 1{1}(X2(0))),

we obtain

Cov(X, Y )

E(X) · E(Y )
=

1− r(2, 2)

r(2, 0)

n1∑
k=0

(
−µ1r(2, 1)

η1r(2, 0)

)k
− 1.

The following example considers the special network class of tandems, where two nodes
are connected in series and there is only one way to pass through the network.

Example 6.10. Consider a tandem Jackson network without immediate feedback, i.e.,
r(0, 1) = r(1, 2) = r(2, 0) = 1. Let node 1 be stable and node 2 be unstable, then η1 =
η2 = λ and λ ≥ µ2. Let X be the queue length process on N2. Consider the uniformization
of X with uniformization constant ξ ≥ λ+ µ1 + µ2.
(a) Assume that the initial distribution ful�lls

P (X1(0) = n1) =

(
1− λ

µ1

)(
λ

µ1

)n1

, n1 ∈ N.

Denote by t1 the (random) time of the �rst jump of the uniformized process X. Then for
all n1 ∈ N holds
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P (X1(t1) = n1) =
∑
n2∈N

P (X(t1) = (n1, n2))

=
∑
n2∈N

∑
(m1,m2)∈N2

P (X(0) = (m1,m2))pu(m1,m2;n1, n2)

=
∑
n2∈N

(
P (X(0) = (n1, n2))pu(n1, n2;n1, n2)+

+ P (X(0) = (n1 − 1, n2))pu(n1 − 1, n2;n1, n2)1N+(n1)+

+ P (X(0) = (n1 + 1, n2 − 1))pu(n1 + 1, n2 − 1;n1, n2)1N+(n2)+

+ P (X(0) = (n1, n2 + 1))pu(n1, n2 + 1;n1, n2)
)

=
∑
n2∈N

(
P (X(0) = (n1, n2))

1

ξ
(ξ − λ− µ11N+(n1)− µ21N+(n2))+

+ P (X(0) = (n1 − 1, n2))
λ

ξ
1N+(n1)+

+ P (X(0) = (n1 + 1, n2 − 1))
µ1

ξ
1N+(n2) + P (X(0) = (n1, n2 + 1))

µ2

ξ

)
=
∑
n2∈N

(
P (X(0) = (n1, n2))

1

ξ
(ξ − λ− µ11N+(n1)− µ2)+

+ P (X(0) = (n1 − 1, n2))
λ

ξ
1N+(n1)

+ P (X(0) = (n1 + 1, n2))
µ1

ξ
+ P (X(0) = (n1, n2))

µ2

ξ

)
+ P (X(0) = (n1, 0))

µ2

ξ
− P (X(0) = (n1, 0))

µ2

ξ

=
∑
n2∈N

P (X(0) = (n1, n2))
1

ξ

(
ξ − λ− µ11N+(n1)− µ2 +

µ1

λ
λ1N+(n1) +

λ

µ1

µ1 + µ2

)
=
∑
n2∈N

P (X(0) = (n1, n2))
1

ξ

(
ξ − λ− µ11N+(n1)− µ2 + µ11N+(n1) + λ+ µ2

)
= P (X1(0) = n1). (6.30)

Iterating these computations leads to a reproduction of the marginal for all jump times
of the Poisson-ξ process. In this special case node 1 acts as an M/M/1/∞ system for
its own, where node 2 is de�ned as the sink. With this approach it is easy to see that
the marginal limiting distribution for the �rst and stable node is stationary even in
continuous time.

(b) Assume that the initial distribution ful�lls the following conditions:

P (X1(0) = n1) =

(
1− η1

µ1

)(
η1

µ1

)n1

, n1 ∈ N,

P (X2(0) = 0) = 0,
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and that the covariance structure of P (X1(0),X2(0)) ful�lls (6.27) for all n1 ∈ N, i.e., from
r(2, 1) = r(2, 2) = 0 we have

P (X(0) = (n1, 1)) = P (X1(0) = n1) · P (X2(0) = 1), (6.31)

which means that the events {X1(0) = n1} and {X2(0) = 1} are independent of each
other.
Denote by t1 the (random) time of the �rst jump of the uniformized process X. Then for
all n1 ∈ N holds by Proposition 6.7

∞∑
n2=1

P (X(t1) = (n1, n2)|X2(t1) 6= 0) =
P (X1(t1) = n1)− P (X(t1) = (n1, 0))

1− P (X2(t1) = 0)

(6.29)(6.30)
=

P (X1(0) = n1)− P (X(0) = (n1, 1)) · µ2
ξ

1− P (X2(0) = 1) · µ2
ξ

(6.31)
= P (X1(0) = n1).

In the next example, a stability situation the other way around than in Example 6.10 is
considered. The �rst node is unstable and the second is stable. The �rst node has only
external Poisson input and from this node's point of view, again, the second node can be
regarded as the sink already. But for the second node, assumed to be stable, the queue
length distribution strongly depends on what is happening at the �rst node. Therefore
stationarity of the marginal for the stable node, as in the previous example, cannot be
expected in general.

Example 6.11. Consider a tandem Jackson network without immediate feedback, i.e.,
r(0, 1) = r(1, 2) = r(2, 0) = 1. Let node 1 be unstable and node 2 be stable, then
η1 = λ ≥ µ1 and η2 = µ1 < µ2. Note that with these assumptions together with the
routing probabilities the assumptions of Proposition 6.7 are not full�lled.
Let X be the queue length process on N2. Consider the uniformization of X with uni-
formization constant ξ ≥ λ+ µ1 + µ2.
Assume that the initial distribution ful�lls the following conditions:

P (X2(0) = n2) =

(
1− η2

µ2

)(
η2

µ2

)n2

, n2 ∈ N,

and

P (X1(0) = 0) = 0.

(a) Denote by t1 the (random) time of the �rst jump of the uniformized process X. Then
it follows directly from Proposition 6.2 that for all n2 ∈ N holds

P (X2(t1) = n2) = P (X2(0) = n2). (6.32)

(b) Assume that furthermore for all n2 ∈ N holds

P (X(0) = (1, n2 − 1)) · 1N+(n2) = P (X1(0) = 1) · P (X2(0) = n2), (6.33)
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i.e., by case di�erentiation it holds for all n2 > 0

P (X(0) = (1, n2 − 1)) = P (X1(0) = 1) · P (X2(0) = n2)

and for n2 = 0

0 = P (X1(0) = 1) · P (X2(0) = 0) = P (X1(0) = 1) ·
(

1− η2

µ2

)
⇒ P (X1(0) = 1) = 0.

Denote by t1 the time of the �rst jump of the uniformized process X. Then for all n2 ∈ N
holds

∞∑
n1=1

P (X(t1) = (n1, n2)|X1(t1) 6= 0)

=
P (X2(t1) = n2)− P (X(t1) = (0, n2))

1− P (X1(t1) = 0)

(6.29)(6.32)
=

P (X2(0) = n2)− P (X(0) = (1, n2 − 1)) · µ1
ξ
· 1N+(n2)

1− P (X1(0) = 1) · µ1
ξ

(6.33)
= P (X2(0) = n2).

Both examples are extreme cases of possible non-ergodic Jackson networks with two nodes
where one may be interested in the marginal limiting distribution of the stable part of
the network. In both special cases we obtain (under certain assumptions) the expected
results, as proven before for the general non-ergodic case, the two-node model.
In case of Example 6.10 we even get more than a one-step invariance of the marginal
distribution, the desired stationarity of the marginal is achieved. This is due to the �rst
and stable node acting like an ergodic M/M/1/∞ system of its own.
In terms of the one-step quasi-stationary marginal distribution, again a covariance prop-
erty is required to be ful�lled. But the assumed covariance property (6.27) in Proposition
6.7 looks slightly di�erent to the properties assumed in (b) of both examples. This is due
to the speci�c structure of the routing matrix in a tandem network.

6.4 One-step invariance of the marginal distribution

before and after stopping times

The following approach to the problem of local stationarity is motivated by a paper of
S.D. Jacka and G.O. Roberts, [JR95], where continuous-time Markov chains on a count-
able state space conditioned on not to hit an absorbing barrier before time T are analyzed
with regard to weak convergence as T tends to ∞.
Of course, our queue length process of the two-node model is not an absorbing process,
but the idea of using stopping times will be incorporated into our analysis as well.

De�nition 6.12. Let Y = (Y (n) : n ∈ N) be a discrete-time homogeneous Markov process
on a discrete state space E. Denote by F a subset of the state space. Then

τ := inf{n ≥ 0 : Y (n) ∈ F}
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is the time of the �rst entrance of Y into F and

σ := sup{n ≥ 0 : Y (n) ∈ F}

is the time of its last exit out of F into F c := E \ F .

As already mentioned, the critical event for not reproducing the marginal product form
distribution for the stable node (node 1) of the two-node model seems to be that the
unstable node (node 2) runs idle.
The aim of this section is to analyze whether there is an invariance of the uniformized
process X (of the two-node model) conditioned on node 2 was not idle for some time or
will never become idle again.
We will therefore denote the "bad" subset of the state space by F := N × {0} and the
"good" subset by F c := N× N+.

6.4.1 Technical lemmata and corollaries

The following lemmata and corollaries which are proved in the setting of De�nition 6.12
are technical and will be needed to prove the subsequent results.

Lemma 6.13. [JR95, p.903] Let Y be a discrete-time homogeneous Markov process with
discrete state space E. Denote by F a non-empty subset of E, F 6= E, and by F c its
complement, F c := E \ F 6= ∅. Assume that Y is irreducible and transient and that

P (Y (m) = j, τ > T ) > 0

holds for all m < T and all j ∈ F c. Then for all 0 ≤ m < n < T and all j, k ∈ F c holds

P (Y (n) = k|Y (m) = j, τ > T ) =

=
P (τ > T − n|Y (0) = k)

P (τ > T −m|Y (0) = j)
· P (Y (n−m) = k, τ > n−m|Y (0) = j).

The proof presented in [JR95, p.903] is done for an absorbing process in continuous time,
however the steps of the proof are similar for Lemma 6.13. Lemma 6.14 will be proved
likewise.

Lemma 6.14. Let Y be a discrete-time homogeneous Markov process with discrete state
space E. Denote by F a non-empty subset of E, F 6= E, and by F c its complement,
F c := E \ F 6= ∅. Assume that Y is irreducible and transient and that

P (Y (m) = j, σ < T ) > 0

holds for all m > T and all j ∈ F c. Then for all 0 ≤ T < m < n and all j, k ∈ F c holds

P (Y (n) = k|Y (m) = j, σ < T ) =

=
P (Y (r) ∈ F c, r > 0|Y (0) = k)

P (Y (r) ∈ F c, r > 0|Y (0) = j)
· P (Y (n−m) = k, τ > n−m|Y (0) = j).
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Proof. For all 0 ≤ T < m < n and all j, k ∈ F c holds

P (Y (n) = k|Y (m) = j, σ < T ) =

(♦1)
=

P (Y (n) = k, Y (m) = j, σ < T )

P (Y (m) = j, σ < T )

(♦2)
=

P (Y (n) = k, Y (m) = j, Y (r) ∈ F c, r ≥ T )

P (Y (m) = j, Y (r) ∈ F c, r ≥ T )

(♦1)
=

P (Y (r) ∈ F c, r > n|Y (n) = k, Y (m) = j, Y (r) ∈ F c, T ≤ r ≤ n)

P (Y (r) ∈ F c, r > m|Y (m) = j, Y (r) ∈ F c, T ≤ r ≤ m)
·

· P (Y (n) = k, Y (m) = j, Y (r) ∈ F c, T ≤ r ≤ n)

P (Y (m) = j, Y (r) ∈ F c, T ≤ r ≤ m)

(♦3)
=

P (Y (r) ∈ F c, r > n|Y (n) = k)

P (Y (r) ∈ F c, r > m|Y (m) = j)
·

· P (Y (n) = k, Y (m) = j, Y (r) ∈ F c, T ≤ r ≤ n)

P (Y (m) = j, Y (r) ∈ F c, T ≤ r ≤ m)

(♦1)
=

P (Y (r) ∈ F c, r > n|Y (n) = k)

P (Y (r) ∈ F c, r > m|Y (m) = j)
·

· P (Y (n) = k, Y (r) ∈ F c,m ≤ r ≤ n|Y (m) = j, Y (r) ∈ F c, T ≤ r ≤ m)︸ ︷︷ ︸
(♦3)
= P (Y (n)=k,Y (r)∈F c,m≤r≤n|Y (m)=j)

(♦4)
=

P (Y (r) ∈ F c, r > 0|Y (0) = k)

P (Y (r) ∈ F c, r > 0|Y (0) = j)
·

· P (Y (n−m) = k, Y (r) ∈ F c, 0 ≤ r ≤ n−m|Y (0) = j)

(♦5)
=

P (Y (r) ∈ F c, r > 0|Y (0) = k)

P (Y (r) ∈ F c, r > 0|Y (0) = j)
· P (Y (n−m) = k, τ > n−m|Y (0) = j),

where
(♦1)
= is the de�nition of conditional probability,

(♦2)
= is explained by

{ω : σ(ω) < T} = {ω : sup{n ≥ 0 : Y (n)(ω) ∈ F} < T} = {ω : Y (r)(ω) ∈ F c, r ≥ T},

(♦3)
= holds due to the Markov property and

(♦4)
= is valid because Y is homogeneous, and

�nally
(♦5)
= is explained by

{ω : τ(ω) > T} = {ω : inf{n ≥ 0 : Y (n)(ω) ∈ F} > T} = {ω : Y (r)(ω) ∈ F c, 0 ≤ r ≤ T}.

Lemma 6.15. Let Y be a discrete-time homogeneous Markov process with discrete state
space E. Denote by F a non-empty subset of E and by F c its complement set, F c :=
E \ F 6= ∅. For 0 ≤ T < n <∞ and all j ∈ F c holds

P (σ < T |Y (n) = j) = P (Y (r) /∈ F, r > 0|Y (0) = j) · P (Y (r) /∈ F, n ≥ r ≥ T |Y (n) = j).
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Proof. For 0 ≤ T < n <∞ and all j ∈ F c holds

P (σ < T |Y (n) = j) =

(♦1)
=

P (σ < T, Y (n) = j)

P (Y (n) = j)

(♦2)
=

P (Y (r) /∈ F, r ≥ T, Y (n) = j)

P (Y (n) = j)
(♦1)
= P (Y (r) /∈ F, r > n|Y (n) = j, Y (r) /∈ F, n ≥r ≥T )·P (Y (r) /∈ F, n ≥r ≥T |Y (n) = j)

(♦3)
= P (Y (r) /∈ F, r > n|Y (n) = j) · P (Y (r) /∈ F, n ≥ r ≥ T |Y (n) = j)

(♦4)
= P (Y (r) /∈ F, r > 0|Y (0) = j) · P (Y (r) /∈ F, n ≥ r ≥ T |Y (n) = j),

where (again)
(♦1)
= is valid due to the de�nition of conditional probability,

(♦3)
= holds due to

the Markov property,
(♦4)
= is valid because Y is homogeneous, and �nally

(♦2)
= is explained

by

{ω : σ(ω) < T} = {ω : sup{n ≥ 0 : Y (n)(ω) ∈ F} < T} = {ω : Y (r)(ω) /∈ F, r ≥ T}.

The following Corollary is a direct application of Lemma 6.14 and Lemma 6.15 for our
uniformized process X:

Corollary 6.16. Let X be the uniformized process from the two-node model (see De�ni-
tion 6.1) on the state space N2. Denote by pu the jump kernel of the uniformization. Let
F := N× {0} and F c := N× N+. Denote by ti jump times of the uniformized process X
and let ti+1 denote the next jump time after ti.
Assume that for all th > tT and j ∈ F c

P (X(th) = j, σ < tT ) > 0.

Then it holds for all j, k ∈ F c and 0 ≤ tT < th < th+1

P (X(th+1) = k|X(th) = j, σ < tT ) =
P (X(tr) ∈ F c, tr > 0|X(0) = k)

P (X(tr) ∈ F c, tr > 0|X(0) = j)
· pu(j, k),

and for 0 ≤ tT < th <∞ and all j ∈ F c holds

P (σ < tT |X(th) = j) =

= P (X(tr) /∈ F, tr > 0|X(0) = j) · P (X(tr) /∈ F, th ≥ tr ≥ tT |X(th) = j).

Lemma 6.17. Let X be the uniformized process from the two-node model (see De�nition
6.1) on the state space N2. Denote by pu the jump kernel of the uniformization. Let
F := N× {0} and F c := N× N+. Denote by ti jump times of the uniformized process X
and let ti+1 denote the next jump time after ti.
Then for all k ∈ F c and 0 ≤ tT < th < th+1 holds

P (X(th+1) = k,X(tr) ∈ F c, th+1 ≥ tr ≥ tT ) =

=
∑
j∈F c

P (X(th) = j,X(tr) ∈ F c, th ≥ tr ≥ tT ) · pu(j, k).
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Proof. For all k ∈ F c and 0 ≤ tT < th < th+1 holds with X being homogeneous:

P (X(th+1) = k,X(tr) ∈ F c, th+1 ≥ tr ≥ tT ) =

=
∑
j∈F c

P (X(th+1) = k,X(th) = j,X(tr) ∈ F c, th ≥ tr ≥ tT )

=
∑
j∈F c

P (X(th) = j,X(tr) ∈ F c, th ≥ tr ≥ tT )·

· P (X(th+1) = k|X(th) = j,X(tr) ∈ F c, th ≥ tr ≥ tT )︸ ︷︷ ︸
=P (X(th+1)=k|X(th)=j)

=
∑
j∈F c

P (X(th) = j,X(tr) ∈ F c, th ≥ tr ≥ tT ) · pu(j, k).

6.4.2 Results

The �rst result is for the uniformized process X conditioned on not having been idle on
the second component since some time - not necessarily from the start at time 0 - until
some jump time th. Recall F = N× {0}, F c = N× N+.

Proposition 6.18. Consider the two-node model from De�nition 6.1 with r(2, 0) > 0 and
µ1r(2, 1) < η1r(2, 0). Assume that the following conditions are ful�lled for all k1 ∈ N and
0 ≤ tT < th < th+1 (where th+1 is the next jump time after th):∑

k2∈N\{0}

P (X(th) = (k1, k2)|X(tr) ∈ F c, tT ≤ tr ≤ th) =

(
1− η1

µ1

)(
η1

µ1

)k1
, (6.34)

and

P (X(th) = (k1, 1)|X(tr) ∈ F c, tT ≤ tr ≤ th) ·
µ2r(2, 0)

ξ
=

=

(
1− η1

µ1

)(
η1

µ1

)k1
· P (X(th+1) ∈ F |X(tr) ∈ F c, tT ≤ tr ≤ th) ·

k1∑
i=0

(
−µ1r(2, 1)

η1r(2, 0)

)i
(6.35)

which is a correlation property.
Then for all k1 ∈ N holds

∞∑
k2=1

P (X(th+1) = (k1, k2)|X(tr) ∈ F c, tT ≤ tr ≤ th+1) =

(
1− η1

µ1

)(
η1

µ1

)k1
. (6.36)

Proof. Denote by pu the jump kernel of the uniformization with Poisson-ξ clock. For all
k1 ∈ N holds due to Lemma 6.17

∞∑
k2=1

P (X(th+1) = (k1, k2), X(tr) ∈ F c, th+1 ≥ tr ≥ tT ) =

=
∞∑
k2=1

∑
j∈F c

P (X(th) = j,X(tr) ∈ F c, th ≥ tr ≥ tT ) · pu(j; k1, k2),
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with the de�nition of the conditional probability this is equivalent to

∞∑
k2=1

P (X(th+1) = (k1, k2)|X(tr) ∈ F c, th+1 ≥ tr ≥ tT ) · P (X(tr) ∈ F c, th+1 ≥ tr ≥ tT ) =

=
∞∑
k2=1

∑
j∈F c

P (X(th) = j|X(tr) ∈ F c, th ≥ tr ≥ tT )·

· P (X(tr) ∈ F c, th ≥ tr ≥ tT ) · pu(j; k1, k2).

Deviding both sides of the equation by P (X(tr) ∈ F c, th ≥ tr ≥ tT ) yields

P (X(tr) ∈ F c, th+1 ≥ tr ≥ tT )

P (X(tr) ∈ F c, th ≥ tr ≥ tT )

∞∑
k2=1

P (X(th+1) = (k1, k2)|X(tr) ∈ F c, th+1 ≥ tr ≥ tT ) =

=
∞∑
k2=1

∑
(j1,j2)∈F c

P (X(th) = (j1, j2)|X(tr) ∈ F c, th ≥ tr ≥ tT ) · pu(j1, j2; k1, k2)

=
∞∑
k2=1

(
P (X(th) = (k1, k2)|X(tr) ∈ F c, th ≥ tr ≥ tT ) · pu(k1, k2; k1, k2)+

+ P (X(th) = (k1, k2 − 1)|X(tr) ∈ F c, th ≥ tr ≥ tT ) · pu(k1, k2 − 1; k1, k2)1N+(k2 − 1)

+ P (X(th) = (k1, k2 + 1)|X(tr) ∈ F c, th ≥ tr ≥ tT ) · pu(k1, k2 + 1; k1, k2)

+ P (X(th) = (k1 − 1, k2)|X(tr) ∈ F c, th ≥ tr ≥ tT ) · pu(k1 − 1, k2; k1, k2)1N+(k1)

+ P (X(th) = (k1 + 1, k2)|X(tr) ∈ F c, th ≥ tr ≥ tT ) · pu(k1 + 1, k2; k1, k2)

+ P (X(th) = (k1 + 1, k2 − 1)|X(tr) ∈ F c, th ≥ tr ≥ tT )·
· pu(k1 + 1, k2 − 1; k1, k2)1N+(k2 − 1)

+ P (X(th) = (k1 − 1, k2 + 1)|X(tr) ∈ F c, th ≥ tr ≥ tT )·

· pu(k1 − 1, k2 + 1; k1, k2)1N+(k1)
)
.

Plugging in the jump probabilities yields (recall k1 ≥ 0 is �xed)
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P (X(tr) ∈ F c, th+1 ≥ tr ≥ tT )

P (X(tr) ∈ F c, th ≥ tr ≥ tT )

∞∑
k2=1

P (X(th+1) = (k1, k2)|X(tr) ∈ F c, th+1 ≥ tr ≥ tT ) =

=
ξ − λ1 − λ2 − µ1(1− r(1, 1))1N+(k1)− µ2(1− r(2, 2))

ξ
·

·
∞∑
k2=1

P (X(th) = (k1, k2)|X(tr) ∈ F c, th ≥ tr ≥ tT )

+
λ2

ξ

∞∑
k2=1

P (X(th) = (k1, k2 − 1)|X(tr) ∈ F c, th ≥ tr ≥ tT ) · 1N+(k2 − 1)︸ ︷︷ ︸
=
∑∞
k2=1 P (X(th)=(k1,k2)|X(tr)∈F c,th≥tr≥tT )

+

+
µ2r(2, 0)

ξ

∞∑
k2=1

P (X(th) = (k1, k2 + 1)|X(tr) ∈ F c, th ≥ tr ≥ tT )︸ ︷︷ ︸
=
∑∞
k2=1 P (X(th)=(k1,k2)|X(tr)∈F c,th≥tr≥tT )−P (X(th)=(k1,1)|X(tr)∈F c,th≥tr≥tT )

+

+
λ1

ξ
1N+(k1)

∞∑
k2=1

P (X(th) = (k1 − 1, k2)|X(tr) ∈ F c, th ≥ tr ≥ tT )+

+
µ1r(1, 0)

ξ

∞∑
k2=1

P (X(th) = (k1 + 1, k2)|X(tr) ∈ F c, th ≥ tr ≥ tT )+

+
µ1r(1, 2)

ξ

∞∑
k2=1

P (X(th) = (k1 + 1, k2 − 1)|X(tr) ∈ F c, th ≥ tr ≥ tT )1N+(k2 − 1)︸ ︷︷ ︸
=
∑∞
k2=1 P (X(th)=(k1+1,k2)|X(tr)∈F c,th≥tr≥tT )

+

+
µ2r(2, 1)

ξ
1N+(k1)

∞∑
k2=1

P (X(th) = (k1 − 1, k2 + 1)|X(tr) ∈ F c, th ≥ tr ≥ tT ).︸ ︷︷ ︸
=
∑∞
k2=1 P (X(th)=(k1−1,k2)|X(tr)∈F c,th≥tr≥tT )−P (X(th)=(k1−1,1)|X(tr)∈F c,th≥tr≥tT )

With (6.34) this is equivalent to

P (X(tr) ∈ F c, th+1 ≥ tr ≥ tT )

P (X(tr) ∈ F c, th ≥ tr ≥ tT )

∞∑
k2=1

P (X(th+1) = (k1, k2)|X(tr) ∈ F c, th+1 ≥ tr ≥ tT ) =

=

(
1− η1

µ1

)(
η1

µ1

)k1
· 1

ξ

(
ξ − (λ1 + µ2r(2, 1)︸ ︷︷ ︸

(6.1)
= η1(1−r(1,1))

)− µ1(1− r(1, 1))1N+(k1)+

+
µ1

η1

(λ1 + µ2r(2, 1))︸ ︷︷ ︸
(6.1)
= η1(1−r(1,1))

1N+(k1) +
η1

µ1

µ1(1− r(1, 1))
)

− µ2r(2, 0)

ξ
P (X(th) = (k1, 1)|X(tr) ∈ F c, th ≥ tr ≥ tT )

− µ2r(2, 1)

ξ
1N+(k1)P (X(th) = (k1 − 1, 1)|X(tr) ∈ F c, th ≥ tr ≥ tT )
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⇔
P (X(tr) ∈ F c, th+1 ≥ tr ≥ tT )

P (X(tr) ∈ F c, th ≥ tr ≥ tT )

∞∑
k2=1

P (X(th+1) = (k1, k2)|X(tr) ∈ F c, th+1 ≥ tr ≥ tT ) =

=

(
1− η1

µ1

)(
η1

µ1

)k1
− µ2r(2, 0)

ξ
P (X(th) = (k1, 1)|X(tr) ∈ F c, th ≥ tr ≥ tT )

− µ2r(2, 1)

ξ
1N+(k1)P (X(th) = (k1 − 1, 1)|X(tr) ∈ F c, th ≥ tr ≥ tT ).

(6.35) yields

P (X(tr) ∈ F c, th+1 ≥ tr ≥ tT )

P (X(tr) ∈ F c, th ≥ tr ≥ tT )

∞∑
k2=1

P (X(th+1) = (k1, k2)|X(tr) ∈ F c, th+1 ≥ tr ≥ tT ) =

=

(
1− η1

µ1

)(
η1

µ1

)k1 [
1− P (X(th+1) ∈ F |X(tr) ∈ F c, th ≥ tr ≥ tT ) · 1

µ2r(2, 0)
·

(
µ2r(2, 0)

k1∑
i=0

(
−µ1r(2, 1)

η1r(2, 0)

)i
+
µ1

η1

µ2r(2, 1)1N+(k1) ·
k1−1∑
i=0

(
−µ1r(2, 1)

η1r(2, 0)

)i)]
=

(
1− η1

µ1

)(
η1

µ1

)k1 [
1− P (X(th+1) ∈ F |X(tr) ∈ F c, th ≥ tr ≥ tT )·

( k1∑
i=0

(
−µ1r(2, 1)

η1r(2, 0)

)i
+
µ1r(2, 1)

η1r(2, 0)
1N+(k1) ·

k1−1∑
i=0

(
−µ1r(2, 1)

η1r(2, 0)

)i)]
=

(
1− η1

µ1

)(
η1

µ1

)k1 [
1− P (X(th+1) ∈ F |X(tr) ∈ F c, th ≥ tr ≥ tT )·

( k1∑
i=0

(
−µ1r(2, 1)

η1r(2, 0)

)i
− 1N+(k1) ·

k1∑
i=1

(
−µ1r(2, 1)

η1r(2, 0)

)i
︸ ︷︷ ︸

=1

)]

⇔
∞∑
k2=1

P (X(th+1) = (k1, k2)|X(tr) ∈ F c, th+1 ≥ tr ≥ tT ) =

=

(
1− η1

µ1

)(
η1

µ1

)k1
·

· P (X(th+1) ∈ F c|X(tr) ∈ F c, th ≥ tr ≥ tT )
P (X(tr) ∈ F c, th ≥ tr ≥ tT )

P (X(tr) ∈ F c, th+1 ≥ tr ≥ tT )︸ ︷︷ ︸
=1

.

Remark 6.19. An analogical result for the conditional probabilities P (X(th) = k|τ > th),
k ∈ F c, can be deduced from Proposition 6.18 as a special case where tT = 0:
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Consider the two-node model from De�nition 6.1 with µ1r(2, 1) < η1r(2, 0) and r(2, 0) > 0.
Assume that the following conditions are ful�lled for all k1 ∈ N and 0 ≤ th < th+1 where
th+1 denotes the next jump time of X after th:∑

k2∈N\{0}

P (X(th) = (k1, k2)|τ > th) =

(
1− η1

µ1

)(
η1

µ1

)k1
, (6.37)

and

P (X(th) = (k1, 1)|τ > th) ·
µ2r(2, 0)

ξ
=

=

(
1− η1

µ1

)(
η1

µ1

)k1
· P (X(th+1) ∈ F |τ > th) ·

k1∑
i=0

(
−µ1r(2, 1)

η1r(2, 0)

)i
. (6.38)

Then for all k1 ∈ N holds

∞∑
k2=1

P (X(th+1) = (k1, k2)|τ > th+1) =

(
1− η1

µ1

)(
η1

µ1

)k1
. (6.39)

Remark 6.20. Although it is not obvious in the general case, there are similarities of
the formulas in Proposition 6.7 and in Proposition 6.18 which become visible when setting
tT = th = t0 = 0 in Proposition 6.18:
Consider the two-node model from De�nition 6.1 with µ1r(2, 1) < η1r(2, 0) and r(2, 0) > 0.
We have from Proposition 6.18 (and Remark 6.19) that if for all k1 ∈ N holds∑

k2∈N\{0}

P (X(0) = (k1, k2)|X(0) /∈ F ) =

(
1− η1

µ1

)(
η1

µ1

)k1
and

P (X(0) = (k1, 1)) · µ2r(2, 0)

ξ
=

=

(
1− η1

µ1

)(
η1

µ1

)k1
· P (X(t1) ∈ F,X(0) /∈ F ) ·

k1∑
i=0

(
−µ1r(2, 1)

η1r(2, 0)

)i
then for the uniformized process X holds for all k1 ∈ N

∞∑
k2=1

P (X(t1) = (k1, k2)|X(t1) /∈ F,X(0) /∈ F ) =

(
1− η1

µ1

)(
η1

µ1

)k1
.

While Proposition 6.7 states that if for all k1 ∈ N holds∑
k2∈N\{0}

P (X(0) = (k1, k2)) =

(
1− η1

µ1

)(
η1

µ1

)k1
and P (X(0) /∈ F ) = 1 and if furthermore

P (X(0) = (k1, 1)) · µ2r(2, 0)

ξ
=

(
1− η1

µ1

)(
η1

µ1

)k1
· P (X(t1) ∈ F ) ·

k1∑
i=0

(
−µ1r(2, 1)

η1r(2, 0)

)i
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(note that P (X(t1) ∈ F ) = P (X2(0) = 1) · µ2(1−r(2,2))
ξ

holds due to P (X2(0) = 0) = 0),
then for the uniformized process X holds for all k1 ∈ N

∞∑
k2=1

P (X(t1) = (k1, k2)|X(t1) /∈ F ) =

(
1− η1

µ1

)(
η1

µ1

)k1
.

We here have analyzed the queue length probabilities of the stable node 1 conditioned
on the unstable node 2 was not idle for some time.

It is also interesting to analyze the process after the last exit of the process out of the
"bad" subset F = N× {0} of the state space.
Such an analysis is motivated the following way: The queue length at node 2 will
eventually diverge out of the state space to in�nity - at least in the limit, so one may
think of a time of a last exit of the queue length process out of F = N×{0}. If the event
that node 2 runs idle is a critical event for a reproduction of queue length probabilities,
then the reproduction of at least the marginal queue length probabilities of the stable
node 1 for the jump times after the last exit out of this critical event could succeed.

Let us assume that for the uniformized queue length process X of the two-node model
(see De�nition 6.1) holds

P (σ < tT ) > 0

for 0 < tT <∞, where tT is a jump time. We then are interested whether the probability

P (X(th) = k|σ < tT )

or ∑
k2∈N+

P (X(th) = (k1, k2)|σ < tT ),

where k ∈ F c = N× N+, somehow remains invariant for all jump times th ≥ tT .
For 0 ≤ tT < th < th+1, where th+1 is the next jump time after th, holds for all k ∈ F c:

P (X(th+1) = k|σ < tT ) =

(∇1)
=
∑
j∈F c

P (X(th+1) = k,X(th) = j|σ < tT )

(∇2)
=
∑
j∈F c

P (X(th+1) = k|X(th) = j, σ < tT ) · P (X(th) = j|σ < tT )

(∇3)
=
∑
j∈F c

P (X(th) = j|σ < tT ) · P (X(tr) ∈ F c, tr > 0|X(0) = k)

P (X(tr) ∈ F c, tr > 0|X(0) = j)
· pu(j, k),

where
(∇1)
= is the law of total probability,

(∇2)
= is valid with the de�nition of conditional

probability and
(∇3)
= holds due to Corollary 6.16.

The equation

P (X(th+1) = k|σ < tT ) =

=
∑
j∈F c

P (X(th) = j|σ < tT ) · P (X(tr) ∈ F c, tr > 0|X(0) = k)

P (X(tr) ∈ F c, tr > 0|X(0) = j)
· pu(j, k), (6.40)
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which holds for 0 ≤ tT < th < th+1 (where th+1 is the next jump time after th) and for all
k ∈ F c, strongly reminds of the de�nition of γ-invariant measures.

De�nition 6.21. [CSP99, p.84] Let Y be a discrete-time homogeneous Markov process
on the state space E with one-step transition probability matrix p = (p(i, j) : i, j ∈ E). A
collection of non-negative numbers m = (m(i) : i ∈ E) with m 6= 0 satisfying

γ
∑
i∈E

m(i) · p(i, j) = m(j), j ∈ E,

is called a γ-invariant measure for p on E.

In [CSD06] a γ-invariant measure is de�ned for absorbing Markov chains:

De�nition 6.22. [CSD06, p.451] Let Z be an absorbing Markov chain on the state space
E with absorbing state δ ∈ E and with transition probability matrix p = (p(i, j) : i, j ∈ E).
A collection m := (m(j) : j ∈ E \{δ}) of non-negative numbers such that m is non-trivial
(m 6= 0) is called γ-invariant measure for p on E \ {δ} if

γ
∑

i∈E\{δ}

m(i)p(i, j) = m(j), j ∈ E \ {δ}.

Furthermore, a quasi-stationary distribution for such a chain Z is a proper probability
distribution m := (m(j) : j ∈ E \ {δ}) satisfying

Pm(Z(n) = j|τ > n) = m(j), j ∈ E \ {δ},

for all n ∈ N where τ is the time to absorption in δ.

Remark 6.23. In [CSD06] m of De�nition 6.22 would be called 1/γ-invariant. We
reformulated this for readability and comparison reasons.

Remark 6.24. De�nition 6.22 strongly resembles De�nition 6.6 where E = {0, 1, 2, ...}
and δ = 0.

Remark 6.25. The paper [CSD06] of P. Coolen-Schrijner and E. A. van Doorn as well
as the articles [DS67] and [JR95] deal with discrete-time absorbing Markov chains.
Most of the theory on quasi-stationary distributions is based on absorbing processes.
However, there are surveys on other classes of processes, e.g., in the paper [CSP99]
of P. Coolen-Schrijner and P. Pollett discrete-time Markov chains with linear, one-
dimensional state space and with almost sure drift to in�nity (i.e., they are transient) are
analyzed with respect to quasi-stationarity. It is remarkable that the results in [CSP99]
are proved by showing that the state probabilities of the original chain conditioned on not
having left state 0 for the last time are equal to the state probabilities of its dual absorbing
Markov chain conditioned on non-absorption.

Our approach here is di�erent from De�nition 6.22: We are interested in the time after the
last exit out of N×{0} which is not a matter in the theory of absorbing processes. (Once
absorbed, the process will stay in this state with probability one, thus there is no way out
of it and a further analysis of the behavior of the process after absorption can be omitted.)
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In (6.40) we do not consider all states in E = N2 but only the states in F c since it holds
from the de�nition of σ:

P (X(tr) = i|σ < tT ) = 0 ∀i ∈ F, tr > tT . (6.41)

That is why we can use De�nition 6.21:

If both of the following properties hold:

(i) the fraction
P (X(tr) ∈ F c, tr > 0|X(0) = k)

P (X(tr) ∈ F c, tr > 0|X(0) = j)

exists and is equal to some γ ∈ (0,∞) for all j, k ∈ F c for which pu(j, k) > 0,

(ii) for all k ∈ F c, th > tT , h ∈ N

P (X(th+1) = k|σ < tT ) = P (X(th) = k|σ < tT ) =: m(k), (6.42)

and there is at least one state j ∈ F c for which m(j) 6= 0,

then (6.40) implies that m = (m(k) : k ∈ N2) is a γ-invariant measure for pu.
If additionally∑

k∈N2

m(k)
(6.42)
=

∑
k∈N2

P (X(th+1) = k|σ < tT )
(6.41)
=

∑
k∈F c

P (X(th+1) = k|σ < tT ) = 1,

i.e., (P (X(th+1) = k|σ < tT ) : k ∈ N2) is a proper probability distribution, then it is
called a γ-invariant probability distribution for pu.

First of all, it should be answered whether property (i) can be veri�ed. The end of this
section will consist of an analysis of the fraction to be considered:

P (X(tr) ∈ F c, tr > 0|X(0) = k)

P (X(tr) ∈ F c, tr > 0|X(0) = j)
, j, k ∈ F c. (6.43)

Remark 6.26. About the numerator and the denominator of the fraction (6.43) we can
say the following:
For all k ∈ F c holds

P (X(r) ∈ F c, r ≥ 0|X(0) = k)
(41)
=
∑
i∈F c

P (X(r) ∈ F c, r ≥ 0, X(1) = i|X(0) = k)

(42)
=
∑
i∈F c

P (X(r) ∈ F c, r ≥ 0|X(1) = i,X(0) = k) · pu(k, i)

(43)
=
∑
i∈F c

P (X(r) ∈ F c, r ≥ 0|X(0) = i) · pu(k, i),

where
(41)
= holds with the law of total probability,

(42)
= is valid with the de�nition of condi-

tional probability and
(43)
= holds because X is homogeneous and Markovian.

The equation

P (X(r) ∈ F c, r ≥ 0|X(0) = k) =
∑
i∈F c

P (X(r) ∈ F c, r ≥ 0|X(0) = i) · pu(k, i)
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for all k ∈ F c implies that the function

P (X(r) ∈ F c, r ≥ 0|X(0) = •) : F c → [0, 1]

is a harmonic function ([Bre99, De�nition 2.1, p.179]) on F c for (pu(j, k) : j, k ∈ F c).
The substochastic matrix (pu(j, k) : j, k ∈ F c) is a one-step (taboo) probability matrix as
de�ned in [Chu67, Part I, �9, p.45]. The n-step taboo probability matrix with the taboo
set F in the sense of [Chu67] is given by (P (X(tn) = k, τ > tn|X(0) = j) : j, k ∈ F c)
which is substochastic as well and has the semigroup property, [Chu67, p.54].

Clearly, if P (X(0) = k) > 0 ∀k ∈ F c (which we assume), it holds

P (X(r) ∈ F c, r > 0|X(0) = k) ∈ [0, 1]

for all k ∈ F c due to the de�nition of a probability.
Moreover, for all k ∈ F c holds

P (X(r) ∈ F c, r > 0|X(0) = k) = lim
s→∞

P (τ > s|X(0) = k),

because

{ω : X(r)(ω) /∈ F ∀r ≥ 0} =
∞⋂
r=0

{ω : X(r)(ω) ∈ F c}

=
∞⋂
s=0

{ω : X(r)(ω) ∈ F c, 0 ≤ r ≤ s} =
∞⋂
s=0

{ω : τ(ω) > s}.

For the existence of the fraction (6.43) it is important to know whether

P (X(r) ∈ F c, r > 0|X(0) = j) > 0 ∀j ∈ F c.

If there exists a state j ∈ F c for which pu(j, k) > 0 for k ∈ F c and

P (X(r) ∈ F c, r > 0|X(0) = j) = 0

holds, then the process cannot be γ-invariant for pu, see equation (6.40). That is why we
assume (for a �rst approach) that for all j ∈ F c holds

P (X(r) ∈ F c, r > 0|X(0) = j) > 0 (6.44)

if pu(j, k) > 0 holds for k ∈ F c. Then for all these j ∈ F c with (6.44) the fraction (6.43)
exists and the equation

P (X(r) ∈ F c, r > 0|X(0) = k)

P (X(r) ∈ F c, r > 0|X(0) = j)
= lim

s→∞

P (τ > s|X(0) = k)

P (τ > s|X(0) = j)

(k ∈ F c) is valid, see [Kön01, Regel I c), p.43]. The question of interest is whether this
fraction lies in the interval (0,∞) and is invariant for all j, k ∈ F c or not.

Lemma 6.27. Consider the two-node model from De�nition 6.1 with uniformized queue
length process X on the state space N2 and with jump kernel pu. Let F := N × {0} and
F c := N × N+. Denote by ti jump times of the uniformized process X. Assume that
P (τ > ts|X(0) = j) > 0 holds for all j ∈ F c and all jump times ts. Then for all j, k ∈ F c

holds

pu(k, j) ≤ P (τ > ts|X(0) = k)

P (τ > ts|X(0) = j)
≤ 1

pu(j, j) · pu(j, k)
∀s ∈ N.
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Proof. We have

P (τ > ts|X(0) = k)

P (τ > ts|X(0) = j)
=

P (τ > ts|X(0) = k)

P (τ > ts−1|X(0) = j)
· P (τ > ts−1|X(0) = j)

P (τ > ts|X(0) = j)
. (6.45)

Similar to the proof of Lemma 2.3 in [JR95], it holds for all j, k ∈ F c

P (τ > ts−1|X(0) = k) ≥ P (τ > ts|X(0) = k)

=
∑
i∈F c

P (τ > ts, X(t1) = i|X(0) = k)

=
∑
i∈F c

P (τ > ts|X(t1) = i,X(0) = k) · pu(k, i)

=
∑
i∈F c

P (τ > ts−1|X(0) = i) · pu(k, i)

≥ P (τ > ts−1|X(0) = j) · pu(k, j). (6.46)

(6.46) implies with k = j and pu(j, j) > 0 for the second factor on the right-hand side of
(6.45)

1 ≤ P (τ > ts−1|X(0) = j)

P (τ > ts|X(0) = j)
≤ 1

pu(j, j)
,

and for the �rst factor on the right-hand side of (6.45)

pu(k, j) ≤ P (τ > ts|X(0) = k)

P (τ > ts−1|X(0) = j)

≤ P (τ > ts|X(0) = k)

P (τ > ts−2|X(0) = k) · pu(j, k)

≤ P (τ > ts|X(0) = k)

P (τ > ts|X(0) = k) · pu(j, k)
=

1

pu(j, k)
.

Even if one could prove that the sequences(
P (τ > ts|X(0) = k)

P (τ > ts|X(0) = j)
: s ∈ N

)
are unequal for di�erent j, k ∈ F c, this does not imply that the limit of the sequences
will be di�erent.

As shown in the above analysis there are certain di�culties to �gure out whether there
may be some kind of invariance of the probability P (X(th) = k|σ < tT ), where k ∈ F c, or
P (X1(th) = k1|σ < tT ), where k1 ∈ N, for all jump times th ≥ tT as well as for only one
step. The problem is the existence of the fraction (6.43) and its equality for all states.
This question remains unanswered in the present thesis and may be an interesting topic
for further research.
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6.5 Upper bound for the process of the stable subnet-

work

In this section we will give an upper bound, which is geometrically distributed at all times,
for the process of the stable part of the overall non-ergodic Jackson network.
One way to obtain this upper bound is by the pathwise coupling X ≤st X+ where X+

is the process of the Jackson network with in�nite supply at the unstable nodes, as done
in the proof of Theorem 5.10 with D = ∅. Jackson networks with in�nite supply where
all nodes i ∈ W without in�nite supply are stable (i.e., W ∩ U = ∅) have an ergodic
homogeneous Markov process X+

W (see Corollary 4.27), so from Theorem 4.26 X+
W has a

stationary and limiting distribution of the well known product form. Thus with S = W
and

XS = (Xi : i ∈ S) ≤st X+
S

X+
S = X+

W already is the desired upper bound for XS proved by pathwise coupling.

Another way which does not need a pathwise coupling to obtain the geometrically
distributed upper bound for XS where X is non-ergodic will be presented below. We
will start with the two-node model, but the results are similarly obtained for Jackson
networks with J nodes, 0 < J <∞.

The �rst result for the two-node model with uniformized queue length process is summa-
rized in the following proposition:

Proposition 6.28. Consider the two-node model, i.e., a Jackson network with two nodes
where node 1 is stable and node 2 is unstable. Denote by X the uniformized queue length
process, where the uniformization constant is ξ ≥ 2·

∑2
i=1(λi+µi), on the partially ordered

state space (E,≺) = (N2,≤2). Let pu denote the kernel of the uniformization. Assume
that the initial distribution PX(0) is such that for its marginal holds

P (X1(0) = n1) =

(
1− η1

µ1

)(
η1

µ1

)n1

, n1 ∈ N. (6.47)

Then for any (random) jump time tn of the process PX(tn) = PX(0) · (pu)n and for the
stable marginal holds

PX1(tn) ≤st geo0

(
1− η1

µ1

)
.

Before proving Proposition 6.28, some preliminary information may be in order:

De�nition 6.29. [KKO77, p.899] Let (E,≺) be a partially ordered space.
A set A ⊆ E is increasing (≡ isotone ≡ nondecreasing) if for x, y ∈ E holds:

(x ∈ A and x ≺ y) ⇒ y ∈ A.

A function f : E → R is increasing (≡ isotone ≡ nondecreasing) if for x, y ∈ E holds:

x ≺ y ⇒ f(x) ≺ f(y).
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Lemma 6.30. A Jackson network process X with non-decreasing service rates (which
we do have here) is stochastically (strongly) monotone, [Mas87, p.366]. This means that
the family of transition kernels is stochastically monotone with respect to ≤J , i.e., for all
states x, y ∈ E = NJ with x ≤ y coordinate-wise and all increasing sets A ⊆ E = NJ such
that either x ∈ A or y /∈ A holds:

q(x,A) ≤ q(y, A)

where q(x,A) :=
∑

z∈A q(x, z), [Mas87, Theorem 5.2, p.359].
Consider the uniformization of X with uniformization constant

ξ ≥ 2 · sup
z∈E

(−q(z, z)),

then the uniformized process is stochastically monotone as well, i.e., the family of the one-
step transition kernels pu of the uniformization is stochastically monotone with respect to
≤J .

Proof. We will show that the monotonicity of the Jackson network processX in continuous
time implies the monotonicity of the one-step transition kernel of the uniformization of
this process:
We have to show that, if the states x, y are ordered x ≤ y coordinate-wise and A is an
increasing set such that either x ∈ A or y /∈ A, then it follows for the one-step transition
kernel pu:

pu(x,A) ≤ pu(y, A).

Let x ≤ y hold. According to [Mas87, p.360] we need to check only the following three
cases:

• For x, y /∈ A:

pu(x,A) =
∑
z∈A

q(x, z)

ξ
=

1

ξ
q(x,A)

(∗)
≤ 1

ξ
q(y, A) =

∑
z∈A

q(y, z)

ξ
= pu(y, A)

where (∗) holds because of the monotonicity of the continuous-time X.

• For x, y ∈ A:

pu(x,A) =
∑

z∈A\{x}

q(x, z)

ξ
+
(

1−
∑

w∈E\{x}

q(x,w)

ξ

)
= 1−

∑
z∈Ac

q(x, z)

ξ

= 1− 1

ξ
q(x,Ac),

analogously it holds pu(y, A) = 1 − 1
ξ
q(y, Ac). With the monotonicity of the

continuous-time X it holds for all x, y ∈ A:

q(x,Ac) ≥ q(y, Ac)

which implies pu(x,A) ≤ pu(y, A).
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• For x /∈ A, y ∈ A:

pu(x,A) =
∑
z∈A

q(x, z)

ξ
=

1

ξ
q(x,A),

pu(y, A) =
∑

z∈A\{y}

q(y, z)

ξ
+
(

1−
∑

w∈E\{y}

q(y, w)

ξ

)
= 1−

∑
z∈Ac

q(y, z)

ξ

= 1− 1

ξ
q(y, Ac),

thus pu(x,A) ≤ pu(y, A) is equivalent to q(x,A) + q(y, Ac) ≤ ξ which holds if
ξ ≥ 2 · supz∈E(−q(z, z)), because:

q(x,A) + q(y, Ac) ≤ q(x,E \ {x}) + q(y, E \ {y}) = −q(x, x)− q(y, y)

≤ 2 · sup
z∈E

(−q(z, z)).

Lemma 6.31. (i) For a real-valued random variable X it holds with the usual stochastic
order ([MS02, De�nition 1.2.1, p.2]) X ≤st X + 1. [MS02, Property (T), pp.73-74]

(ii) The projection pr1 : RJ → R, pr1(x1, ..., xJ) = x1, is increasing with respect to ≤J .

(iii) Denote by Tr the one-step transition operator for a uniformized process, which
means for a uniformized process X where t1 is the next jump time after 0 we have
Tr(X(0)) = X(t1). If X and X̂ have the same transition operator Tr and are
stochastically monotone, then

X(0) ≤st X̂(0) ⇒ Tr(X(0)) = X(t1) ≤st X̂(t1) = Tr(X̂(0)),

see [MS02, Corollary 5.2.12, p.186].

Proof of Proposition 6.28. Consider a non-ergodic Jackson network with two nodes as
in the two-node model, so node 1 is stable and node 2 is unstable. Denote by X the
uniformized queue length process, where the uniformization constant is

ξ ≥ 2 ·
2∑
i=1

(λi + µi),

on the state space E = N2. Thus X is stochastically monotone, see Lemma 6.30.
It follows from Lemma 6.31(i)

(X1(0), X2(0)) ≤st (X1(0), X2(0) + 1). (6.48)

Let P (X1(0),X2(0)) be an initial distribution which ful�lls (6.47) which is

P (X1(0) = n1) =

(
1− η1

µ1

)(
η1

µ1

)n1

, n1 ∈ N.
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Then it holds for P (X1(0),X2(0)+1)

∞∑
n2=0

P (X1(0) = n1, X2(0) + 1 = n2) =
∞∑

n2=1

P (X1(0) = n1, X2(0) + 1 = n2)

=
∞∑

n2=1

P (X1(0) = n1, X2(0) = n2 − 1)

=
∞∑

n2=0

P (X1(0) = n1, X2(0) = n2)

= P (X1(0) = n1)

=

(
1− η1

µ1

)(
η1

µ1

)n1

. (6.49)

With (6.47) and (6.49) both vectors of random variables in (6.48) ful�ll that the marginal
distribution for the �rst coordinate (node 1) is the geometric distribution with rate (1−
η1/µ1).
With the stochastic monotonicity of Jackson network processes and with Lemma 6.31(iii)
(6.48) implies

Tr(X1(0), X2(0))︸ ︷︷ ︸
=(X1(t1),X2(t1))

≤st Tr(X1(0), X2(0) + 1)︸ ︷︷ ︸
=:(X

(1)
1 (t1),X

(1)
2 (t1))

, (6.50)

where Tr(X1(0), X2(0) + 1) ful�lls (6.47) because Proposition 6.2 applies here, together
with Lemma 6.31(ii) this implies

pr1(X1(t1), X2(t1)) ≤st pr1(X
(1)
1 (t1), X

(1)
2 (t1)) ∼ geo0

(
1− η1

µ1

)
. (6.51)

Again, with Lemma 6.31(i) it holds

(X1(t1), X2(t1)) ≤st (X
(1)
1 (t1), X

(1)
2 (t1)) ≤st (X

(1)
1 (t1), X

(1)
2 (t1) + 1). (6.52)

Since (X
(1)
1 (t1), X

(1)
2 (t1)) ful�lls (6.47), the same computations as in (6.49) imply that

(X
(1)
1 (t1), X

(1)
2 (t1) + 1) ful�lls (6.47) as well, i.e.,

pr1(X
(1)
1 (t1), X

(1)
2 (t1) + 1) ∼ geo0

(
1− η1

µ1

)
. (6.53)

We notate (X
(1)
1 (t1), X

(1)
2 (t1) + 1) =: (X

(2)
1 (0), X

(2)
2 (0)). With monotonicity it holds

(X1(t2), X2(t2)) ≤st Tr(X(1)
1 (t1), X

(1)
2 (t1)) ≤st Tr(X(2)

1 (0), X
(2)
2 (0))︸ ︷︷ ︸

=(X
(2)
1 (t1),X

(2)
2 (t1))

, (6.54)

where (X
(2)
1 (t1), X

(2)
2 (t1)) ful�lls (6.47) because Proposition 6.2 applies here, together with

Lemma 6.31(ii) this implies

pr1(X1(t2), X2(t2)) ≤st pr1(X
(2)
1 (t1), X

(2)
2 (t1)) ∼ geo0

(
1− η1

µ1

)
. (6.55)
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This method goes on such that by induction we get for all n ∈ N

P pr1(X1(tn),X2(tn)) = PX1(tn) ≤st geo0

(
1− η1

µ1

)
. (6.56)

The result (6.56) resembles the result given with the process of a Jackson network where
node 2 has an in�nite supply of work as upper bound which is ergodic:

X1(tn) ≤st X+
1 (tn) ∼ geo0

(
1− η1

µ1

)
. (6.57)

The di�erence between these two results is that (6.56) is obtained by analytical methods
only, while (6.57) is proved by pathwise coupling of the processes.

Proposition 6.28 establishes the following result for the continuous-time queue length
process X of the two-node model:

Theorem 6.32. Consider the two-node model, i.e., a Jackson network with two nodes
where node 1 is stable and node 2 is unstable. Denote by X the (continuous-time) queue
length process on the state space E = N2. Assume that the initial distribution PX(0) is
such that for its marginal holds

P pr1◦X(0) = geo0

(
1− η1

µ1

)
Then for the stable marginal holds for all times t ≥ 0

P pr1◦X(t) ≤st geo0

(
1− η1

µ1

)
. (6.58)

Proof. From Proposition 6.28 we have that

P pr1◦X(tn) =
(
PX(tn)

)◦ pr1
=
(
PX(0) · (pu)n

)◦ pr1
≤st geo0

(
1− η1

µ1

)
.

Since with the uniformization kernel pu and uniformization constant ξ it holds for the
transition kernel p(t) of the continuous-time process X:

p(t) =
∞∑
n=0

e−ξt
(ξt)n

n!
(pu)n.

We have:

PX(t) = PX(0) · p(t) = PX(0) ·
∞∑
n=0

e−ξt
(ξt)n

n!
(pu)n =

∞∑
n=0

e−ξt
(ξt)n

n!
(PX(0) · (pu)n).

Applying the �rst projection implies:(
PX(t)

)◦ pr1
=
∞∑
n=0

e−ξt
(ξt)n

n!

(
PX(0) · (pu)n

)◦ pr1︸ ︷︷ ︸
(∗)
≤stgeo0

(
1− η1

µ1

)
(∗∗)
≤st geo0

(
1− η1

µ1

)
,

where (∗) holds with ξ ≥ 2 ·
∑2

i=1(λi + µi), see Proposition 6.28, and (∗∗) holds with the
mixture property of ≤st, see [MS02, Property (MI), p.74].
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The distribution geo0
(

1− η1
µ1

)
in Theorem 6.32 is an upper bound for the marginal

distribution of the queue length process X, if the process is started with a distribution
which has this geometrical distribution as marginal.
If the mean values of the marginal processes (from (6.58)) were equal or if there was
equality in (6.58), we would call it a (stochastically) invariant marginal distribution. The
mean values of the marginal processes at each time are not equal in general, as can be
seen in the following proposition.

Proposition 6.33. Consider the framework of Proposition 6.28. Assume that
P (X1(0),X2(0)) ful�lls (6.47). From the proof of Proposition 6.28 we know that

(X1(0), X2(0)) ≤st (X1(0), X2(0) + 1) =: (X
(1)
1 (0), X

(1)
2 (0))

implies for the �rst jump time t1

(X1(t1), X2(t1)) ≤st (X
(1)
1 (t1), X

(1)
2 (t1)),

where pr1(X
(1)
1 (t1), X

(1)
2 (t1)) ∼ geo0

(
1− η1

µ1

)
.

If neither r(2, 1) = 0 (which would mean that node 1 is an ergodic M/M/1 system) nor
P (X2(0) = 0) = 0 (which would yield the framework of Proposition 6.2) holds, then

E[X1(t1)] < E[X
(1)
1 (t1)].

Proof. The mean value of X(1)
1 (t1) is

E[X
(1)
1 (t1)] =

∑
n1∈N

n1 · P (X
(1)
1 (t1) = n1) =

∑
n1∈N

n1 ·
(

1− η1

µ1

)(
η1

µ1

)n1

.

For the mean value of X1(t1) we have to derive P (X1(t1) = n1) for all n1 ∈ N �rst:

P (X1(t1) = n1) =
∑
n2∈N

P (X(t1) = (n1, n2))

=
∑
n2∈N

P (X(0) = (n1, n2)) · 1

ξ

(
ξ − λ1 − λ2 − µ1(1− r(1, 1))1N+(n1)

− µ2(1− r(2, 2))1N+(n2)
)

+
∑
n2∈N

P (X(0) = (n1 − 1, n2)) · λ1

ξ
1N+(n1) +

∑
n2∈N

P (X(0) = (n1, n2 − 1)) · λ2

ξ
1N+(n2)

+
∑
n2∈N

P (X(0) = (n1 + 1, n2)) · µ1r(1, 0)

ξ
+
∑
n2∈N

P (X(0) = (n1, n2 + 1)) · µ2r(2, 0)

ξ

+
∑
n2∈N

P (X(0) = (n1 + 1, n2 − 1)) · µ1r(1, 2)

ξ
· 1N+(n2)

+
∑
n2∈N

P (X(0) = (n1 − 1, n2 + 1)) · µ2r(2, 1)

ξ
· 1N+(n1)
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⇔

P (X1(t1) = n1) =

=
∑
n2∈N

P (X(0) = (n1, n2)) · 1

ξ

(
ξ − λ1 − µ2r(2, 1)1N+(n2)− µ1(1− r(1, 1))1N+(n1)

)
+
∑
n2∈N

P (X(0) = (n1 − 1, n2)) · λ1 + µ2r(2, 1)

ξ
· 1N+(n1)

+
∑
n2∈N

P (X(0) = (n1 + 1, n2)) · µ1(1− r(1, 1))

ξ

− P (X(0) = (n1 − 1, 0)) · µ2r(2, 1)

ξ
· 1N+(n1)

=
∑
n2∈N

P (X(0) = (n1, n2)) · 1

ξ

(
ξ − (λ1 + µ2r(2, 1)︸ ︷︷ ︸

=η1(1−r(1,1))

)− µ1(1− r(1, 1))1N+(n1)
)

+
∑
n2∈N

P (X(0) = (n1 − 1, n2)) · 1

ξ
(λ1 + µ2r(2, 1)︸ ︷︷ ︸

=η1(1−r(1,1))

) · 1N+(n1)

+
∑
n2∈N

P (X(0) = (n1 + 1, n2)) · µ1(1− r(1, 1))

ξ

+ [P (X(0) = (n1, 0))− P (X(0) = (n1 − 1, 0) · 1N+(n1)] · µ2r(2, 1)

ξ

(6.47)
=

(
1− η1

µ1

)(
η1

µ1

)n1

· 1

ξ
·
(
ξ − η1(1− r(1, 1))− µ1(1− r(1, 1))1N+(n1)

+
µ1

η1

η1(1− r(1, 1))1N+(n1) +
η1

µ1

µ1(1− r(1, 1))
)

+ [P (X(0) = (n1, 0))− P (X(0) = (n1 − 1, 0) · 1N+(n1)] · µ2r(2, 1)

ξ
⇔

P (X1(t1) = n1) = (6.59)

=

(
1− η1

µ1

)(
η1

µ1

)n1

+ [P (X(0) = (n1, 0))− P (X(0) = (n1 − 1, 0) · 1N+(n1)] · µ2r(2, 1)

ξ
.

With (6.59) the mean value of X1(t1) is

E[X1(t1)] =
∑
n1∈N

n1 · P (X1(t1) = n1)

= E[X
(1)
1 (t1)] +

∑
n1∈N

n1 · P (X(0) = (n1, 0)) · µ2r(2, 1)

ξ

−
∑
n1∈N

n1 · P (X(0) = (n1 − 1, 0)) · 1N+(n1) · µ2r(2, 1)

ξ

= E[X
(1)
1 (t1)]− µ2r(2, 1)

ξ︸ ︷︷ ︸
>0 if r(2,1)>0

∑
n1∈N

P (X(0) = (n1, 0))︸ ︷︷ ︸
=P (X2(0)=0)

.
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Since ≤st holds in (6.58) and the mean values of the marginal processes are not equal at
all times in general, we call the resulting upper bound distribution in Theorem 6.32 a
stochastically sub-invariant distribution.

Proposition 6.28 (and therefore Theorem 6.32) only uses Proposition 6.2 which is a result
for the two-node model, all other techniques hold for non-ergodic Jackson networks with
an arbitrary �nite number of nodes, too. Referencing Proposition 6.3 with D = ∅ yields
with similar computations the same result for the marginals of the stable subnetwork in
a non-ergodic Jackson network with J nodes, 0 < J <∞.
A similar result can be obtained for non-ergodic Jackson networks with unreliable nodes
as well, because

(Y,X) ≤st (Y,X + 1)

holds where Y can be considered as availability process and one may refer to Proposition
6.3 with D 6= ∅.
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Abstract

This thesis contributes to a better understanding of the behavior of queueing networks
that cannot approach a classical equilibrium state.

We consider Jackson networks with unreliable nodes which randomly break down and
are under repair for a random time. Our networks are described by Markov processes
the states of which incorporate the availability status and the queue-lengths vector.
For Jackson networks with unreliable nodes, it is known that, under ergodicity condi-
tions, the Markovian availability�queue-lengths process has a stationary product-form
distribution. Ergodicity conditions can be expressed as local rate conditions: The total
arrival rate at each node has to be strictly less than its maximal service rate. If for
some nodes the ergodicity condition is violated, the network process is not ergodic
and there cannot exist a stationary distribution. Nevertheless, we are able to obtain
the complete asymptotics for non-ergodic Jackson networks with unreliable nodes and
show that the state distribution of the stable subnetworks, i.e., the set of nodes where
the local rate condition is ful�lled, converges to a Jackson-type product-form distribution.

The characterization of the asymptotic behavior of non-ergodic Jackson networks with
unreliable nodes strongly relies on a detailed investigation of another class of generalized
Jackson networks, which is of interest for its own. In these networks some stations
may have an additional bu�er with an in�nite supply of lower priority jobs (customers)
served at that station whenever the station runs out of standard customers. Networks
incorporating such bu�ers are called Jackson networks with in�nite supply. We analyze
the stationary and limiting behavior of these networks with reliable nodes as well as with
unreliable nodes.

Our results o�er a new way to measure and assess the performance of non-ergodic
Jackson networks with unreliable nodes where steady-state methods cannot be applied
because no steady state exists. Using the obtained limiting distributions we are able
to compute long-time averages of the standard performance and availability metrics
explicitly.

The limiting distribution of the stable subnetworks of a non-ergodic network process has a
product form which resembles the product-form limiting and stationary distribution of an
ergodic network process. The observed structural similarities of the asymptotic results for
ergodic network processes and non-ergodic network processes on the stable subnetworks
pose the following question: Assume that the non-ergodic network is started with an
initial distribution which has the marginal limiting product-form distribution. Will this
distribution be preserved over time? It turns out that the answer is in general negative.
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However, there are subtleties which turn the question into the challenging problem to �nd
conditions which transform the limiting product-form distribution into a quasi-stationary
one, similar to those which occur when studying absorbing Markov processes. We prove
several results which contribute to a better understanding of the principles behind such
quasi-stationary behavior.



Zusammenfassung

Diese Arbeit liefert einen Beitrag zum besseren Verständnis des Verhaltens von
Warteschlangennetzen, welche sich nicht in ein klassisches Gleichgewicht einschwingen
können.

Es werden Jackson-Netzwerke mit unzuverlässigen Knoten, welche zufallsbeein�usst
ausfallen und daraufhin für eine zufällige Zeit repariert werden, betrachtet. Diese Netze
werden durch Markov-Prozesse beschrieben, welche die zeitliche Entwicklung sowohl des
Verfügbarkeitsstatus der Knoten im Netz als auch der vorliegenden Schlangenlängen
je Knoten im System abbilden. Für Jackson-Netze mit unzuverlässigen Knoten ist
bekannt, dass unter Ergodizitätsbedingungen der zugehörige Markovsche Verfügbarkeits-
und Schlangenlängenprozess eine stationäre Verteilung in Produktform besitzt. Die
Ergodizitätsbedingungen können als lokale Ratenbedingungen ausgedrückt werden: Die
Gesamtankunftsrate an jedem Knoten muss strikt kleiner sein als dessen maximale
Bedienrate (Kapazität). Ist für mindestens einen Knoten die Ergodizitätbedingung
verletzt, so ist der Markov-Prozess nicht ergodisch und kann keine stationäre Verteilung
besitzen. Dennoch kann die exakte Asymptotik für nicht-ergodische Jackson-Netze
mit unzuverlässigen Knoten bewiesen werden und die Zustandsverteilung der stabilen
Teilnetze (d.h. die Menge der Knoten, für welche die lokale Ratenbedingung erfüllt ist)
konvergiert gegen eine Verteilung in Produktform.

Die Charakterisierung der Asymptotik nicht-ergodischer Jackson-Netze mit unzuver-
lässigen Knoten beruht auf einer detaillierten Untersuchung einer weiteren Klasse
verallgemeinerter Jackson-Netze, die auch für sich genommen von Interesse ist. In
diesen Netzen können einige Bedienstationen zusätzlich ausgestattet sein mit einem
Pu�er mit einem unbegrenzten Angebot an Aufträgen geringerer Priorität, welche immer
dann abgearbeitet werden, wenn kein Standard-Auftrag aus dem Netz an dieser Station
wartet. Netze mit solchen Pu�ern werden Jackson-Netze mit "in�nite supply" genannt.
Das stationäre und Grenz-Verhalten dieser Netzwerke mit zuverlässigen aber auch mit
unzuverlässigen Knoten wird analysiert.

Die bewiesenen Ergebnisse ermöglichen es neue Methoden zu konstruieren zur Leistungs-
analyse und -bewertung nicht-ergodischer Jackson-Netze mit unzuverlässigen Knoten,
für welche stationäre Methoden nicht angewendet werden können, da keine stationäre
Verteilung existiert. Die erhaltenen Grenzverteilungen nutzend, können Langzeitmittel-
werte der Standardmaÿe für Leistungs- und Verfügbarkeitsanalysen explizit berechnet
werden.

Die asymptotische Verteilung für stabile Teilnetze eines nicht-ergodischen Netzwerk-
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prozesses hat eine Produktform, welche der Produktform der stationären und asympto-
tischen Verteilung in einem ergodischen Netzwerk stark ähnelt. Die beobachteten struk-
turellen Ähnlichkeiten der asymptotischen Ergebnisse für ergodische Netzwerkprozesse
und für nicht-ergodische Netzwerkprozesse (auf den stabilen Teilen) werfen die folgende
Frage auf: Angenommen das nicht-ergodische Netzwerk wird mit einer Verteilung ge-
startet, welche marginal (für das stabile Teilnetz) die Produktform besitzt. Wird diese
marginale Produktform-Verteilung mit Verlauf der Zeit bestehen bleiben? Es stellt sich
heraus, dass die Antwort im Allgemeinen negativ ist. Eine genauere Analyse führt dazu,
die Fragestellung in das sich als schwer zu bewältigend herausstellende Problem zu trans-
formieren, Bedingungen zu �nden, wodurch die Grenzverteilung eine quasi-stationäre
Verteilung wird, ähnlich wie jene quasi-stationären Verteilungen, die auftreten, wenn ab-
sorbierende Markov-Prozesse analysiert werden. Es werden Ergebnisse bewiesen, welche
dazu beitragen, die hinter solch quasi-stationärem Verhalten der betrachteten Systeme
stehenden Prinzipien zu verstehen.
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