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ABSTRACT 
 
 

Tropical cyclones (TCs) have a tremendous impact on coastal populations. Very 

intense winds, torrential rain and storm surges, which are related to TCs, pose a serious threat 

for human health, life and economy. Therefore it is important to know the past evolution, as 

well as the upcoming state of TCs activity. The observation-based studies so far haven’t 

reached consensus regarding TCs trends in the western North Pacific in the last decades. 

Therefore the main goal of this study is to construct and analyse the alternative, long-term and 

homogeneous TCs data set, using a dynamical downscaling approach. For this purpose, NCEP 

reanalysis was downscaled with a regional climate model (CCLM) for the period 1948-2011.  

First, it was required to assess the reliability of the TCs climatology derived from 

observations of the last decades. Analysis of data sets revealed strong discrepancies in TCs 

activity trends, varying between decreasing and increasing trends. These discrepancies were 

mainly attributed to different operational practises and changing over time measurement 

techniques applied by meteorological agencies to estimate TC intensities. Data set provided 

by Japan Meteorological Agency was assessed as the most homogenous and, in comparison to 

other data set, the most reliable one for deriving TCs climate statistics.  

The second part of the study investigates the potential of CCLM to construct an 

alternative long-term TCs climatology. It presents an assessment of model skill to simulate 

TCs climatology, with a focus on the influence of the spectral nudging technique.  Analysis 

has shown that CCLM has high skill to resolve TCs meso-scale features from the large-scale 

reanalysis. However, the simulated TC intensities are lower than the observed. Nevertheless, 

spectral nudging has a positive impact on simulated mean atmospheric TC conditions - and 

consequently - TC climatology, which justifies its application for regional long - term 

simulations of the past decades.  



The last part of the study presents and analyses the TCs climatology constructed for 

the western North Pacific for the period 1948-2011. Comparison with more recent 

observations (1978-2008) shows that the simulated TCs climatology: 

 represents realistically many important features of the TCs activity variability 

at inter-annual and inter-decadal time scales, 

 reproduces a realistic relationship between the large-scale atmospheric-oceanic 

fields, such as sea surface temperature and the Maximum Potential Intensity. 

The constructed TC climatology shows an increase and a north-westward shift of 

intense TC tracks for the period 1948-2011. Such changes in the TCs activity are related to 

the large-scale environmental patterns, which show also a shift of favourable for TCs genesis 

thermodynamic conditions toward north-west. 
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Chapter 1. Introduction 

 

Tropical cyclone (TC) activity is of obvious importance for societies. Especially 

coastal populations are directly exposed to its damaging impact on health, life and properties. 

Very intense winds, torrential rain and storm surges can cause extensive coastal flooding.   

TC Bhola (1970), which formed over the Indian Ocean, is the deadliest tropical 

cyclone on record. It killed more than 300 000 people [Southern, 1979] causing a powerful 

storm surge in the densely populated region of the Ganges Delta in Bangladesh. Typhoon 

Nina (1975), which is up to now the deadliest TC in the Pacific Ocean, killed up to 100 000 

people after causing a 100-year flood in China ([Anderson-Berry and Weyman, 2008]). 

Hurricane Katrina caused the death of at least 1800 people and the highest economical losses, 

estimated as $81.2 billion in property damage [Pielke et al., 2008]. 

Additionally, TCs may play an important role in the large-scale climate system. 

Recent studies ([Emanuel, 2001, Sriver and Huber, 2007, Pasquero and Emanuel, 2008, Hu 

and Meehl, 2009]) suggested that TCs can transfer huge amounts of heat into the ocean along 

its trajectories. Due to such processes global TC activity can affect the long-term oceanic 

meridional overturning circulation and the meridional heat transport. 

TC climatology and physical mechanisms of TCs formation are still a subject of 

ongoing research. This issue was primarily raised by [Gray, 1968]. The author presented the 

large-scale environmental factors necessary for TC formation. These factors are: high sea 

surface temperature (SST), high moisture content in the lower troposphere, conditional 

convective instability, cyclonic vorticity and weak vertical shear of horizontal winds. Changes 

of these conditions during the last decades and its possible impact on TC activity have 

stimulated a number of theoretical, modelling, and empirical studies. 
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Application of remote sensing techniques after 1970s facilitated TC observations. 

These were compiled into the form of a historical TC database, which enabled researchers to 

re-examine TC activity in the last decades. [Webster et al., 2005] have shown an upward trend 

in the intense (category 4-5 on the Saffir-Simpson Hurrican Scale) TCs in all ocean basins. 

[Emanuel, 2005] demonstrated a clear upswing in the potential destructiveness of TCs in the 

North Atlantic (NA) for the last three decades, based on the total dissipation of power. Many 

studies (e.g. [Emanuel, 2006, Mann and Emanuel, 2006, Trenberth and Shea, 2006]) 

interpreted such an increase as part of a long-term upward trend caused by anthropogenically 

induced global warming, others (e.g., Goldenberg et al. 2001) - as a positive phase of a 

multidecadal cycle of natural variability.  Rapidly changing TC activity was attributed mainly 

to increasing sea surface temperature over the North Atlantic basin ([Webster et al., 2005, 

Hoyos et al., 2006, Emanuel, 2005, Holland and Webster, 2007, Saunders and Lea, 2008]). 

Only few studies ([Landsea et al., 2004, Landsea, 2005, Landsea et al., 2006]) emphasized the 

uncertainty in determining factors controlling TC activity, provided by relatively short and 

contestable historical observations. 

For the western North Pacific (WNP), where intense TCs occur most frequently of all 

ocean basins, three independent observational data sets (best track data, hereafter referred to 

as BTD) provide records of TC activity since at least the 1950s. However, results driven by 

those data sets are ambiguous and differ among each other. Comparing the three BTD sets, 

Ren et al. (2011) showed increasing TC tendencies for the BTD from the Joint Typhoon 

Warning Center (JTWC) of the U.S.A., but decreasing tendencies for the other two data sets 

(of the Japan Meteorological Agency (JMA) and the China Meteorological Administration 

(CMA)).  

The reasons for such differences are associated with the Dvorak technique applied in 

the forecasting centers to estimate TC intensity. The Dvorak technique [Velden et al., 2006] 

has remarkable shortcomings. Firstly, it is based on subjective classifications of cloud patterns 
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visible in geostationary satellite imageries. The given classifications suffer from severe biases 

in estimated minimum central TC pressure ([Kossin and Velden, 2004]). Finally, an 

implementation of this technique with standards varying among the forecasting centers 

([Kamahori et al., 2006, Wu et al., 2006, Song et al., 2010, Barcikowska et al., 2012]) 

possibly lead to discrepancies between TC trends derived from BTD sets.  

Some studies (e.g. [Lander, 2008, Knaff and Sampson, 2006]) stated clearly that 

differences in estimated intensity among BTD sets are irreconcilable, and alternative data sets 

are necessary to derive unambiguous TC trends.   

Dynamical simulations provide an alternative way to construct long, homogeneous TC 

time series, giving a possibility to derive TC statistics and to analyse TC climatology. This 

enables researchers to study the impact of global warming on TC activity.  Coarse-resolution 

global circulation models (GCMs) have shown the capability to simulate TC-like vortices 

([Manabe et al., 1970, Bengtsson et al., 1982, Bengtsson et al., 1995]) and under increasing 

greenhouse gases project mostly a global decrease in TC frequency ([Broccoli and Manabe, 

1990, Bengtsson et al., 1995, Sugi et al., 2002, Sugi et al., 2009, Tsutsui, 2002]). Such results 

converge with the projections from high- resolution GCMs (~ 60 [km] and less) or regional 

climate models (RCMs). 

High-resolution GCMs simulate more realistic intensities, and thus are more suitable 

to investigate intense TCs.  Projections indicate an increase in global mean TC maximum 

wind speed, with the ratio (and sometimes even the sign of tendency) varying among 

individual basins. The upward trend is due to increasing frequency of intense TCs, with 

noticeable contribution from the western North Pacific ([Oouchi et al., 2006, Yoshimura and 

Sugi, 2005, Murakami et al., 2011a, Murakami et al., 2011b]). High-resolution GCM 

projections demand high computing capacity, therefore some of the studies applied time-slice 

experiments. This approach has also a considerable drawback, like reduced feasibility to 

distinguish between external greenhouse forcing signal and internal variability. Alternatively, 
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many studies apply downscaling methods using RCMs, focusing on regional climate long-

term projections. 

The conclusions drawn from experiments employing RCMs confirm previous 

findings, showing a decrease in TC frequency and an increase in TC intensity ([Knutson et al., 

1998, Knutsona and Tuleya, 2004, Knutson et al., 2008, Walsh and Ryan, 2000, Walsh, 

2004]). The projected changes are also supported by theoretical studies of potential intensity 

([Emanuel, 1987, Emanuel, 1988, Bister and Emanuel, 1998, Holland, 1997]). Potential 

intensity is minimum sustainable central pressure and maximum sustainable wind speed of a 

developed TC. It depends mainly on the sea surface temperature and convective available 

potential energy. Consequently, an increase in sea surface temperature will have positive 

impact on maximum attainable TC intensity, as projected in future scenarios. 

Atmospheric RCMs demonstrated high skill in simulating meso-scale features of TCs 

([Feser and von Storch, 2008b, Walsh, 2004, Bender et al., 2010]). An experiment with a 

hurricane prediction model which downscaled TC intensity to a resolution of ~ 10 [km] 

[Bender et al., 2010] has shown the RCM’s capability to simulate TC intensities of category 

5.  

On the other hand, RCM applications have some drawbacks, which should be 

regarded while interpreting RCMs results. Downscaled atmospheric fields may significantly 

deviate from the forcing fields, prescribed through the lateral boundary conditions. Many 

studies ([Kanamitsu et al., 2010, Leduc and Laprise, 2009, Nutter et al., 2004, Rapaic et al., 

2011, Seth and Giorgi, 1998]), investigated the influence of lateral boundary conditions and 

suggested their critical importance for long-term simulations.  

In order to simulate the mean TC climate correctly, the spectral nudging technique 

(SNT, [von Storch et al., 2000]) was applied. It improved large-scale circulation patterns and 

reduced significantly the sensitivity of simulated TC activity to the initial conditions. Spectral 

nudging was also applied by Knutson et al., 2007, who successfully downscaled TC 
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variability over the Atlantic for the recent three decades. Other ocean basins are lacking of 

such long-term simulations. 

As the observation-based studies so far haven’t reached consensus regarding TC 

trends in the western North Pacific in the last decades, the main goal of this study is to 

construct a long-term and homogeneous TC data set with a dynamical downscaling approach. 

Therefore the specific tasks for this work are: 

Chapter 3:  

 Assess the reliability of observational data sets (BTD) to derive climate statistics of 

TC activity over the WNP 

 Derive trends of TC activity over the WNP region for the last decades.  

Chapter 4: 

 Assess the capability of an RCM (CCLM) to derive TC activity statistics. This 

specifically includes the impact of spectral nudging on a simulated TC climatology. 

Chapter 5:  

 Validate the simulated TC climatology with recent observations  

 Derive a long-term climatology of TC activity over the WNP 

A summary and conclusions for all given results can be found in Chapter 6.  

 

This thesis includes results which were published in peer-review journals. All these results 

base entirely on my work. Chapter 3 bases on the manuscript: 

M. Barcikowska, F. Feser, and H. von Storch; Usability of best track data in climate statistics 

in the western north pacific. Monthly Weather Review, 2012, 140, 2818-2830.  

Chapter 4 comprises results, which contribute to the article:   

F. Feser and M. Barcikowska; 2012, The Influence of Spectral Nudging on Typhoon 

Formation in Regional Climate Models. Environmental. Research Letters, 2010, 7, 014024. 
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These results are included in sections 4.3.1 and 4.3.2 and originate mostly from my work 

(about 90%). The analysis given in the article was extended and is presented in detail in 

sections 4.3.3 and 4.3.4. Chapter 5 bases on the manuscript entitled: “Changes in tropical 

cyclone activity for the western North Pacific during the last decades, derived from a regional 

climate model” and was submitted to Journal of Climate. 
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Chapter 2. Model, tropical cyclone tracking and detection method  

 

2.1  CCLM model 

The regional climate model used to simulate long-term TC climate is COSMO-CLM 

(CCLM, www.clm-community.eu; ([Rockel et al 2008; [Steppeler et al., 2003]). The model 

domain covers the western North Pacific and South-East Asia (Figure 2.1), with a horizontal 

resolution of 0.5° (~ 55 km) and 32 vertical levels. The model is non-hydrostatic and the 

Kain-Fritsch scheme ([Kain, 2004]) was used as a convective parameterization.  

CCLM is driven by large-scale fields provided by global NCEP–NCAR reanalyses I 

([Kalnay et al., 1996, Kistler, 2001], hereafter called NCEP, at a horizontal resolution of T62 

(~ 210 km)) as boundary and initial conditions. Additionally, the spectral nudging technique 

[von Storch et al., 2000] hereafter referred to SNT) was applied to the whole model domain.  

This method adds a nudging term to the large-scale solution of regional model. It 

nudges atmospheric fields toward the direction of the global forcing fields. Therefore it 

prevents the model from excessive altering the large-scale circulation forced by lateral 

boundaries. The nudging terms are added only to the large spatial scales, larger than ~ 660 

[km]. SNT is applied only to the upper levels, above 850 hPa, and its strength increases with 

height, therefore it does not constrain the regional–scale processes influencing the model 

solution in the lower levels. For this study SNT was applied only for the horizontal wind 

components. 
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Figure 2.1 CCLM model domain and surface elevation (m) of the CCLM simulation for 
Southeast Asia and the western North Pacific with a grid distance of 0.5° latitude x 0.5° 
longitude.  
 

2.2  Tropical cyclones detection and tracking method 

TC tracks are extracted with a simple tracking algorithm ([Feser and von Storch, 

2008a]).  Primarily it searches potential TCs with local minimum sea level pressure and 

maximum wind speed. Localized points are connected with the closest ones in consecutive 1-

hrly time steps. Formed tracks are filtered through criteria specifying e.g. the maximum 

intensity or duration of storm. 

Three physical parameters defining the tracking criteria are: surface wind speed, sea 

level pressure and selected-scale sea level pressure. A meso-scale part of sea level pressure is 

extracted with a spatial digital band-pass filter ([Feser and von Storch, 2005]).  

A TC was identified when its lifetime maximum wind speed exceeded 18 [m s-1], 

minimum core pressure reached 995 [hPa], and when the filtered pressure anomaly dropped 

below -9 [hPa]. Additionally cyclonic disturbance had to last more than 48 hours. 
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These criteria were adjusted to extract TCs with a frequency that matches the observed 

climatological mean. For this purpose the period 1980-2007 was analysed, due to best quality 

of the reference data then. In that time the contribution of satellite observations improved 

significantly the homogeneity in observed TC records.  

More strict criteria have to be satisfied to detect only the strongest TCs. For this 

purpose the tracking algorithm was calibrated to identify mainly TC tracks which resemble 

BTD tracks of category 2 to 5. An intense TC in CCLM was identified when the TC lifetime 

maximum wind speed exceeded 24 [m s-1], minimum core pressure reached 995 [hPa], and 

the filtered pressure anomaly dropped below -18 [hPa]. Cyclonic disturbances had to last 

more than 48 hours. Applying too severe conditions would reduce the overall number and also 

the number of intense TCs. Therefore in practise, the most accurate selection aimed to: 

 capture the TC frequency close to the number of TCs recorded in BTD as intense 

ones  

 maximize the amount of TCs which resemble the intense ones in BTD in relation to 

the number of overall detected TCs. 

 

 

 

 

 

 

 

 

 

 

 



 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11

 

Chapter 3. Tropical cyclone trends derived from observations and their 

reliability 

 

3.1 Introduction 

TC activity trends derived from available BTD observations are limited by their short 

length and deficient homogeneity. The quality of BTD sets before the satellite era (up to the 

1970s) is hardly acceptable for use in statistical analysis, due to insufficient and changing 

observational techniques. Therefore the analysis of TC variability in the last century is 

generally constrained to the last four decades. However, the detection of significant climatic 

trends distinct from short-term oscillations within a 40-year period is very difficult.  

Recent studies ([Ren et al., 2011, Song et al., 2010, Wu et al., 2006, Yu et al., 2007]) 

revealed that results are dependent on data sets and the statistics applied, confirming BTD 

data inhomogeneity and quality deficiencies for the WNP region. [Webster et al., 2005, 

Emanuel, 2005] claimed there would be an increase in the occurrence of the most intense TCs 

in the WNP. However, according to [Wu et al., 2006] who used several BTDs provided by 

different institutes, neither the numbers of the most intense TCs nor the power dissipation 

index defined by [Emanuel, 2005] shows an increasing tendency. Comparing three BTDs, 

[Ren et al., 2011] confirmed increasing TC tendencies for the Joint Typhoon Warning Center 

(JTWC) BTD, but they found decreasing tendencies in the data of the Japan Meteorological 

Agency (JMA) and the China Meteorological Administration (CMA). [Kamahori et al., 2006] 

found increasing numbers of TC days for categories 2 to 3 of the Saffir–Simpson Hurricane 

Scale (SSHS; Simpson 1974) and decreasing numbers in higher categories for JMA, while 

opposite trends were detected for the JTWC dataset. All these studies indicate a great 

dependency of the detected TC trends on the chosen BTD, pointing to data inhomogeneity 

and quality deficiencies in the WNP region. [Knaff and Sampson, 2006] considered any 
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detected intensity trend questionable before reanalyses employing datasets of TC intensity 

estimated with alternative techniques are incorporated.  

Others attempted to identify the reasons for the differences between BTD that affect 

TC activity trends ([Kamahori et al., 2006, Nakazawa and Hoshino, 2009, Song et al., 2010]). 

Many studies highlighted the different operational procedures used by the individual 

meteorological agencies to estimate TC intensity as a main cause for differing TC activity 

results. [Knapp and Kruk, 2010] attempted to minimize discrepancies among BTD by 

applying unified algorithms to operational data from all centers, resulting in more comparable 

BTDs. 

This chapter presents trends of TC activity for the WNP, derived from available BTD 

sets. Additionally, the reliability of given observational data sets is assessed.  

The following work is structured accordingly: 

 “Data and Methods” describes statistical methods applied in the study, and the data.   

 The first part of the section “Results and discussion” presents annual variability of TC 

activity for the last three decades (1977-2008). The next part shows the skill of 

current solutions for achieving homogeneity between climate statistics derived from 

individual data sets. In the latter part, the remaining discrepancies between BTD sets 

are analysed and evaluated using independent reference data sets.  

 Section 3.4 summarizes and concludes all given results. 

 
3.2 Data and methods 

Four different BTD sets were analysed in this study. They were provided by the 

following independent agencies: the China Meteorological Administration (CMA, 

www.typhoon.gov.cn ), the Regional Specialized Meteorological Center, Tokyo of the Japan 

Meteorological Agency (JMA, www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-

eg/besttrack.html) and the Joint Typhoon Warning Center (JTWC, 
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www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/wpindex.html). In addition, the 

International Best Track Archive for Climate Stewardship, (IBTrACS, 

http://www.ncdc.noaa.gov/oa/ibtracs/index.php?name=ibtracs-data) was used. This product 

combines BTD from different operational centers to create a global best track dataset (Knapp et 

al., 2010). Although IBTrACS can not serve as independent data, it provides useful 

information as it gives a merged BTD solution for which a data quality control was applied. 

BTD sets for the WNP contain TC centre, maximum sustained wind and central pressure at 6-

hour intervals. JTWC and CMA intensity values start with Tropical Depression strength, and 

JMA starts with Tropical Storm category. 

From 1977 JMA began recording maximum sustained wind speeds using the Dvorak 

technique ([Dvorak, 1972, Dvorak, 1973, Dvorak, 1975]). Since 1987, when aircraft 

reconnaissance flights ended in the WNP, this method became the main tool for compiling 

BTD sets. The technique estimates TC position and intensity using visible and infrared 

imagery from geostationary and polar-orbiting weather satellites. Cloud patterns identified 

from satellite sources serve as a basis for operational estimates of the TC development phase, 

namely Dvorak parameters (T-number and Current Intensity number).   

However, procedural rules to process satellite data differ among meteorological 

agencies. Dvorak parameters are related to TC intensity through conversions which were 

independently established for differing wind speed definitions in each operational center. 

While the JTWC uses 1-minute mean sustained 10 m wind speed, as designed originally by 

the Dvorak technique, other agencies use 10-min averaged values. JMA established a new 

conversion table in 1990 ([Koba et al., 1991]), which transfers operational parameters 

(Current Intensity) directly to TC intensity described as 10-min maximum sustained wind 

speed. 

The CMA data set specifies intensity in terms of “2-min mean maximum sustained 

wind speed [m s−1] near the storm centre”. However, this procedure contradicts the 
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description in [Yu et al., 2007] which states that the CMA agency uses an empirically 

established linear relationship between 1-min and 10-min averaged values and multiplies 

wind values by a factor of 0.871. The assumed application of a 10-min-average definition in 

the CMA data set is supported by findings of relatively small differences among JMA and 

CMA ([Knapp and Kruk, 2010]). IBTrACS data use 10-min sustained wind speed. 

In order to evaluate the BTD additional observational data sets were tested for their 

ability to serve as a reference. Blended Sea Winds provided by the National Oceanic and 

Atmospheric Administration's National Climatic Data Center ( 

http://www.ncdc.noaa.gov/oa/rsad/air-sea/seawinds.html , denoted as “NOAA”) contain 

ocean surface wind speed on a global 0.25° grid in 6 hourly time steps ([Zhang et al., 2006a, 

Zhang et al., 2006b]). The data are created by blending observations from multiple satellites 

with a simple spatial-temporally weighted interpolation.  

The quality of the blended product is related to the accuracy of the input data and 

sampling scheme of the observations. The number of long-term US satellites providing wind 

observations increased from one in 1987 to five in 2000. In this study years 2000 to 2008 

were analysed as they constitute a rather homogeneous temporal and spatial coverage. For this 

period wind observations are retrieved from: Quik Scatterometer (QuikSCAT), SSM/I (DMSP 

Special Sensor Microwave/Imager), AMSR-E (Advanced Microwave Scanning Radiometer 

of NASA’s Earth Observing System) and the Tropical Rainfall Measuring Mission (TRMM) 

Microwave Imager (TMI).  

Scatterometers measure instantaneous ocean surface wind vectors at 10m height with a 

grid-typical resolution of 25 km and are widely used in operationally prepared analyses and 

forecasts ([Bourassa, 2010, Brennan et al., 2009, Hoffman and Leidner, 2005]). They are 

intended to provide accurate ocean surface winds in all weather conditions except for rain 

conditions that occur often during high winds. QuikSCAT data, evaluated against buoys, is 

adhered to an 8-minute average. QuikSCAT winds were shown ([Brennan et al., 2009]) to 
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have high skills in intensity estimation for tropical storms strength. However, enhanced 

backscattering by rain may introduce a positive bias during tropical depressions and rain 

attenuation causes large negative biases for very high winds. Microwave observations flagged 

as contaminated by precipitation were excluded from the analysis. 

As reference data for the TCs of the strongest intensity, aircraft measurements were 

used. For the analysed period 2000-2008 the THORPEX Pacific Asian Regional Campaign 

(TPARC-2008) aircraft campaign took place in the WNP, which provided measurements of 

wind speed during TC events. Observations were obtained from Stepped-Frequency 

Microwave Radiometer (SFMR). Additionally we used the measurements from a field 

experiment in 2010: Impacts of Typhoons on the Ocean in the Pacific (ITOP-2010).  The 

databases for both campaigns are available online:  

http://www.aoml.noaa.gov/hrd/data_sub/hurr.html. 

 

3.2.1 Quantifying tropical cyclones trend differences derived from BTD sets 

TC trends for the period 1977-2008 were derived from several BTD sets and 

compared in the form of annual number of TC-days categorized by the SSHS scale. The 

analysis is constrained to TC observations recorded concurrently in all independent BTD sets. 

This excludes contributions of differing TC frequency among BTD sets to trend discrepancies 

and enables the identification of the reasons for differences in estimated intensity. 

Discrepancies among trends derived from 1-min (JTWC) and 10-min (JMA) sustained 

wind speed are discussed with regard to the impact of intensity definition on the derived 

climate statistics. The accuracy and effectiveness of two methods unifying wind definitions is 

assessed with respect to reduction of trend discrepancies.  

 The methods adjusting TC intensity definitions from 10-to-1 min averaging period 

were applied to JMA and CMA. The first method is based on the statistical, linear relationship 

between 10-min and 1-min averaged intensity ([Atkinson, 1974]). The data from JMA and  
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CMA (for CMA a 10-min average is assumed as stated in the previous section) multiplied by 

a factor of 1.14 are hereafter referred to as JMA*1.14, and CMA*1.14.  

 [Knapp and Kruk, 2010, Kruk et al., 2011] proposed an alternative method unifying 

wind definitions. They and other authors ([Song et al., 2010, Wu et al., 2006]) highlighted the 

problem of different algorithms applied during compilation of BTD sets, that convert 

operational parameters (derived from satellite imagery) to wind speed. Therefore the method 

proposed here reverses intensity values back to operational parameters (Current Intensity 

parameter) and then applies a single conversion table to all data sets. Following these 

guidelines, the JMA data set was reverted to Current Intensity numbers, using the conversion 

tables described in [Koba et al., 1991]. In a second step, we derive wind speed from Current 

Intensity numbers by applying the original Dvorak conversion table [Dvorak, 1984] used in 

JTWC. It is possible that the Koba conversion table was applied only to intensity records 

starting in 1991 and previous years were not updated to the new procedures ([Nakazawa and 

Hoshino, 2009]). However, the remapping method using the Koba conversion table was 

applied for the complete analysis. Consequently, years before 1987 should be analysed with 

extreme caution and have only minor impact on the conclusions derived in this article.  

The remaining reasons for BTD trend discrepancies are examined by comparing data 

sets with the same wind speed definition (JTWC and JMA/CMA adjusted to 1-min averaging 

period). The statistical analysis additionally includes yearly mean differences for TC center 

locations, annual distributions of differences between BTD sets for Current Intensity numbers, 

and TC center locations. The difference in TC location is estimated by a measure of distance 

(P) between two geographical points (x1, y1) and (x2, y2) on the Earth’s surface:   

          212121
1

0 coscoscossinsincos xxyyyyrP  
, (1) 

x and y are longitude and latitude, r0 is the radius of the Earth. 
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3.2.2 BTD-reference data comparison methods 

Independent reference data were employed to evaluate the remaining discrepancies 

between BTD sets. Due to a positive bias which occurs in QuikSCAT data for tropical 

depressions ([Hoffman and Leidner, 2005]) and frequently changing procedures in operational 

centers to identify this phase, the analysis focuses on concurrent records in BTD sets during 

tropical storm stage. As JTWC and JMA provide information about conversion tables in use, 

we use the JMA data set remapped to 1-min averaged wind speed using the Dvorak 

conversion table (as described in the previous section). Concurrent TC observations in BTD 

were compared with the NOAA wind data for the period 2000-2008, when QuikSCAT had a 

large impact. To derive maximum TC wind speeds from NOAA, the center positions given by 

JMA were used. TC circulation in developed systems vanishes at a finite horizontal radius 

with an upper boundary of approximately 1000 km ([Dean et al., 2009]). For small, 

developing or already dissipated cyclonic systems, it was assumed that the maximum wind 

speed is within a 500 km radius around a given location. Maximum intensities between the 

two data sets were compared for all concurrent TC cases. 

As microwave signal is vulnerable to heavy rain conditions, the NOAA data exclude 

such values of reduced accuracy. Therefore time steps with a number of missing values 

around a TC centre potentially high enough to mask a region of maximum wind speeds were 

also excluded from the comparison. 

For the comparison of the highest intensity typhoons the SFMR observations were 

used. Observations were obtained during several flights targeting TC centers of typhoons 

Sinlaku (2008), Jangmi (2008) and Megi (2010). SFMR measures wind speed values in 1 s 

intervals. To use these wind speeds compatible with BTD, the values were used in two forms: 

averaged over a 10 second and 1 minute interval. Similar to the previous method, the value of 

the maximum wind speed was derived by choosing the highest value within a certain radius 

from the TC center given by JMA.    
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3.3 Results and discussion 

3.3.1 Trends of tropical cyclones activity in WNP for 1977-2008 given by observations  

The following section compares TC activity over the WNP, inferred from different BTD sets.  

As intense and long-lasting TCs are most significant for socio-economic consideration, the 

analysis takes into account not only TC frequency, but also intensity and duration. BTD sets 

are examined in terms of the annually integrated TC lifetime, and analysed separately for 

intense (category 2-3, 4-5) and weaker TCs. The analysis takes into account only the 

observations recorded in all BTD concurrently, thus total TC records are the same for every 

data set. However, the number of records falling into individual intensity categories differs 

among data sets. 

Figure 3.1 presents annually accumulated TC-day records during the time period 

1977-2008 for categories 2-5, 4-5 and 2-3. Original data sets are IBTrACS, JMA and JTWC 

(reporting 1-min sustained wind speed). Data sets adjusted to a 1-min averaging period are 

JMA*1.14 and CMA*1.14 (which result from applying a multiplication factor to JMA and 

CMA) and JMADT (where a remapping method – using the original ([Dvorak, 1984]) 

conversion table - was applied to JMA Current Intensity numbers).  

JMA, IBTrACS and CMA show very similar TC-day numbers within categories 2-5 

(Figure 3.1 a,b,c). Records for JTWC are very close to the other BTD sets only for categories 

2-3 (Figure 3.1c).  For the highest categories (4-5), and consequently – in the category range 

2-5, JTWC numbers are substantially larger. Previous studies ([Knapp and Kruk, 2010, Song 

et al., 2010, Ren et al., 2011]) confirmed that fact by showing very strong discrepancies 

between JTWC and JMA wind speed values.  
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Figure 3.1 Annual TC-day numbers for SSHS intensity categories: top) 2-5, middle) 4-5, 
bottom) 2-3 for original BTD sets: JMA, CMA, JTWC, IBTrACS and modified BTD sets: 
JMA*1.14 (JMA multiplied by a factor), JMADT (JMA using the Dvorak conversion table). 
The x-axis shows years from the period 1977-2008. 
 

Trends in all independent data sets (JMA, CMA, JTWC) and IBTrACs show an increase for 

the intense TCs (category range of 2-5). However, TC activity in JMA, CMA and IBTrACS 

shows relatively small change (factor of 0.18) compared to the steady, strong upward trend in 

JTWC (factor of 0.65). This fact is related to the large trend discrepancies between JTWC and 

other BTD sets in the highest categories (4-5). In this intensity range JTWC shows a strong 

upward trend (0.27), while JMA, CMA and IBTrACs show oppositely- a downward or no 

trend.    
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Some studies analysed the reasons for apparent discrepancies. [Song et al., 2010, Kruk 

et al., 2011] suggested, that differences in records falling into individual categories are related 

to the intensity estimation methods, applied in operational centers producing BTD sets. [Song 

et al., 2010] pointed specifically to differing algorithms, used to convert operational 

parameters to TC intensity. 

[Knapp and Kruk, 2010] demonstrated that such discrepancies can be partly reduced 

by application of the same conversion algorithms to all BTD sets. Following this idea the 

conversion methods were unified and applied to JMA (CMA) in order to minimize trend 

discrepancies. 10-min intensity in JMA intensity was recalculated with application of the 

original Dvorak conversion table, applied in JTWC to estimate 1-min intensity (hereafter 

referred to JMADT). Alternatively, wind speed values in JMA (CMA) were adjusted to 1-min 

intensity by multiplying it with a factor of *1.14 (hereafter referred to JMA*1.14, CMA*1.14) 

suggested by [Atkinson, 1974]. 

Results of applied methods are shown in Figure 3.1a and confirm that the differences 

between BTD sets for categories 2-5 are significantly reduced. The average of annual relative 

differences between JMA (CMA) and JTWC decreased from 0.77 (0.57) to 0.19 (0.22) for 

JMA*1.14 (CMA*1.14). Trends of JMA increased from 0.18 to 0.45 (JMADT) and became 

more close to JTWC (0.65). Reduction of uncertainty range for derived trends confirms the 

increase of the intense TCs activity (category 2-5) observed in period 1977-2008. 

The impact of unification the conversion methods is less significant when adjusted 

data sets are analysed separately for categories 2-3 and 4-5 (Figure 3.1b,c). For categories 2-3 

BTD trends are similar, with upward trend of 0.22 for JMA and 0.27 for JTWC.  Adjusting 

the estimation methods of JMA to those applied in JTWC, increased the ratio of changes up 

to: 0.38 in JMADT and 0.56 in JMA*1.14. As the result, the uncertainty range for BTD trends 

increased towards higher values.  
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For the highest intensity categories (4-5) unification of conversion procedures reduced 

the differences between BTD, but not sufficiently to unify the trends among them. 

Figure 3.1c shows that trends in modified data sets (JMA*1.14, CMA*1.14, JMADT) 

still retain the decreasing character of 10-min wind speed BTD (JMA, CMA, IBTrACS). In 

contrast, 1-min wind speed BTD (JTWC) shows upward trends (0.39). The results for 

CMA*1.14 are almost identical to JMA*1.14 which suggests that 10-min-averaged wind 

speed values were used in CMA (see section 1.2).  

Figure 3.2 presents annually accumulated TC-day records for BTD sets for the 

Tropical Storm category. The picture shows, similarly to Figure 3.1, the original data sets 

(JMA, JTWC, IBTrACS) and the modified ones (JMA*1.14, CMA*1.14, JMADT), adjusted 

to wind speed definition with 1-min averaging period. The results show that both adjusting 

methods lead to smaller TC-day numbers for the tropical storm category. JMADT has 

systematically lower numbers because application of the Dvorak conversion degraded over 

30% of all records from the tropical storm to the tropical depression category. In contrast, 

application of the multiplication factor upgraded values to higher categories. Nevertheless the 

TC activity tendencies of the analysed records are in good agreement showing a slight 

increase until the mid-1990s and a decrease for the last decade.  

 

Figure 3.2 Annual TC-day numbers in the tropical storm intensity category, for original BTD 
sets: JMA, JTWC, IBTrACS and modified BTD sets: JMA*1.14, CMA*1.14 (JMA and CMA 
multiplied by a factor), JMADT (JMA using the Dvorak conversion table). The x-axis shows 
years from the period 1977-2008. 
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3.3.2 Impact of unification of conversion tables in BTD on climate statistics – discussion    

Results of trends, presented in the previous section, only show agreement among all 

independent BTD data sets when TC days of category 2 -5 (intense TCs) are considered 

together. JMA, CMA and JTWC all indicate an increase in TC activity for the last three 

decades. However, for the highest intensity categories (4-5) these BTD sets show different 

tendencies. Such differences are caused by intensity- estimation methods, which vary between 

agencies producing BTD sets. 

 It has been shown that unification of intensity- estimation methods can partially 

reduce existing discrepancies. Consequently, the uncertainty range in derived trends became 

smaller, confirming upward tendencies of TC activity for category range: 2-5. The impact of 

different conversion tables and theirs unification (with remapping and rescaling methods) on 

TC intensity estimation is visualized in Figure 3.3. It presents the functions, converting 

Current Intensity parameters to TC intensity, which are used in operational centers in the 

WNP region. For wind speed of category 1 and higher, both conversions – the Dvorak table 

used in JTWC and the linear factor (JMA*1.14) - provide higher wind speed values for the 

same Current Intensity parameter than the Koba conversion. Therefore application of such 

methods to JMA increases wind values, shifts TC records toward higher (2-5) categories, and 

consequently reduces differences between JMA (CMA) and JTWC. 

For categories 2-3, and 4-5 (Figure 3.1b,c) the unification of conversion methods did 

not relieve the uncertainty range among derived trends. A rescaling method applied to 

JMA*1.14 even increased the differences, compared to the JTWC in category 2-3. This is due 

to the fact that the multiplication factor is sufficiently high to increase and upgrade intensity 

records into categories 2-3, but not to the higher categories. Consequently TC records in 

JMA*1.14 are accumulated in the lower range (2-3), and show a much higher trend than 

JTWC in category 2-3. For the category 4-5 the trend remains negative, oppositely to JTWC.  
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Figure 3.3 Relationship of Current Intensity parameter to maximum sustained 10 m wind 
speed [m s−1]  using conversion tables used in JTWC (Dvorak), JMA (Koba), JMA*1.14 
(Koba multiplied by a factor of 1.14), CMA (Dvorak multiplied by a factor of 0.87). The x-
axis shows the Current Intensity numbers, while the y-axis shows wind speed [m s−1]. 
 

Such results indicate that conversion from 10-to-1 min averaged intensity with a 

rescaling method is not suitable for extreme winds. The multiplication factor enhances wind 

speed values linearly, for the whole data set distribution (Figure 3.3). However, the nonlinear 

sensitivity of high wind speed to the averaging period, which makes Atkinson's (1974) linear 

relation less accurate, creaks the risk of overestimating values in the lower intensity categories 

(2-3), while underestimating the highest ones.  

[Kamahori et al., 2006] confirmed such findings, showing high discrepancies in trend 

tendencies between JTWC and linearly modified JMA, but this comparison included all 

identified TCs in both data sets and not only the concurrent ones. They also found a strong 

increase in JMA TC-days for categories 2-3, and a decrease for categories 4-5, while JTWC 

showed opposite tendencies.  

Application of the original Dvorak conversion method is more suitable for the extreme 

winds, because it takes into account the non-linear effects of the averaging time interval. 
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Consequently, for the categories 2-3 and 4-5 the trend discrepancies between JMA and JTWC 

were reduced more efficiently, than with the linear method (Figure 3.1b,c). Especially for the 

extreme winds Dvorak conversion method shows higher skill, because it upgrades more 

records to categories 4-5. However, it is still not sufficient to reduce the trend differences 

completely. JMADT shows rather no trend, while JTWC demonstrates strong increase. 

Assuming the different conversion algorithms as the main reason of trend 

discrepancies, application of the same algorithms to BTD sets should reduce the difference in 

wind speed to zero. Although the remapping method leads to enhanced agreement in TC-days 

statistics for the highest wind speeds, the relatively high differences are still present. This 

indicates that there are additional contributing factors, which, in the earlier TC intensity 

estimation stage, cause discrepancies in operational parameters (T number, Current Intensity). 

 The differences among BTD sets have shown also temporal variation. High 

agreement in TC-day records is visible in the first years of the analysis (1977-1987). As a 

possible explanation, [Knapp and Kruk, 2010] suggested that the same Dvorak procedures 

(e.g. the same conversion algorithm) were applied for this period. In the second period (1988-

1997) numbers and trends among original BTD sets differ to a great degree. However, 

unifying wind speed definitions (application of the Dvorak table to BTD) did not efficiently 

resolve differences in the highest categories. Discrepancies among BTD sets in this period are 

increased, very similar to the strong increase of TC-day records in JTWC. To conclude, the 

unifying of conversion algorithms, and thus wind speed definitions, is necessary for an 

accurate assessment of BTD sets. However, the trend statistics derived from the given datasets 

remain inconsistent. This requires an explanation of the remaining differences, as presented in 

the following. 
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3.3.3 Can the reasons for discrepancies between BTD and the discrepancies themselves 

be evaluated? Reliability of climate statistics derived from BTD sets 

This part of the analysis focuses on additional reasons for discrepancies among trends 

derived from BTD, remaining after unification of wind speed definitions. The resulting 

discrepancies between JTWC and JMADT point to the differences among Current Intensity 

numbers provided by the BTD agencies. To visualize the problem, which cannot be resolved 

by applying the same Dvorak conversion algorithm, two intense typhoons, Isa (1997) and 

Dianmu (2004), are presented in Figure  3.4a,b.  

 

Figure 3.4 Wind speed time series for two TC events: a) Isa (1997), b) Dianmu (2004) for 
original BTD sets: JMA, CMA, JTWC, IBTrACS and modified BTD sets: JMA*1.14, (JMA 
multiplied by a factor), JMADT (JMA using the Dvorak conversion table). The x-axis shows 
time steps along the typhoon track, for which intensity in BTD sets was provided. 
 

The picture shows a time series of maximum wind speed given by different BTD.  

Differences between original 10-min JMA data and 1-min JTWC reach 30 [m s-1] during peak 

winds. Adjusting JMA to 1-min wind speed using a multiplication factor reduces the 

differences up to 25 [m s-1] for Isa and 20 [m s-1] for Dianmu. After applying the same Dvorak 

conversion table, differences with magnitude of 20 and 15 [m s-1] still remain, which 

correspond to a difference in Current Intensity parameters of 1.75 and 1 (Figure 3.3). For TC 

Isa, a high discrepancy is noticeable during the whole TC lifetime. For Dianmu, the main 

differences occur during the highest-intensity phase, when the TC in JMADT reaches the 
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fourth category. It is also worthy to note how the multiplication factor shapes the values 

during the TC lifetime. JMA*1.14 shows higher intensity than JMA/JMADT intensities in the 

categories tropical depression, tropical storm and 1, but lower intensity than JMADT in the 

peak categories. [Kruk et al., 2011] stated that for most TCs Current Intensity parameters 

estimated by the BTD agencies in the WNP are almost identical. However, it is worth 

pointing out that, for the highest-intensity categories, noticeable differences appear, as shown 

by the examples of TC Isa and TC Dianmu.  

Figure 3.5 presents these differences in a more systematic way. The picture shows the 

yearly distributions of differences between Current Intensity parameters in JTWC and 

JMADT, for years 1977- 2008. The x-axis shows years, while the y-axis shows Current 

Intensity difference. Size of the circles for a given Current Intensity difference indicates the 

percentage of a yearly sample (yearly number of joint for JTWC and JMADT TC 

occurrences). Given Current Intensity differences are presented for intensities separated into 

three categories: tropical depression-1, 2–3, and 4–5. Current Intensity parameters were 

derived from the wind speed, after the unification of intensity definition among BTDs (1-

minute averaged wind speed). Therefore presented differences correspond to the intensity 

differences, which are independent of intensity definition.  

 

Figure 3.5 Yearly distributions of Current Intensity number differences for JTWC- JMADT 
assigned to intensity categories: a) tropical depression, tropical storm, 1, b) 2-3, c) 4-5. The x-
axis shows years, while the y-axis shows Current Intensity difference. The size of the circles 
indicates the percentage of the occurrence number, counted for each year separately. 
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The distribution of differences in Current Intensity parameters reflects the 

discrepancies in the numbers of TC days falling into certain intensity categories (Figure 

3.1b,c). The most pronounced differences in Current Intensity parameters are visible for the 

period 1988–97, especially for the highest intensity categories (Figure 3.5c). In this period, 

the Current Intensity differences were increasing in time and in 1997 reached the magnitude 

of 2. For TCs of lower categories (Figure 3.5a,b) the Current Intensity differences are smaller. 

In the early 2000s Current Intensity discrepancies are still higher, especially for categories 4–

5. Two periods of the strongest Current Intensity discrepancies were also identified by 

[Nakazawa and Hoshino, 2009], who analyzed operational parameters from 1987–2006. They 

found a significantly higher numbers in JTWC for 1992–97 and 2000–05 in comparison to 

JMA.  

The reasons for enhanced Current Intensity discrepancies in 1990s and the early 2000s 

can be related to separately evolving practices and usage of different information sources by 

operational centers. JMA reports geostationary satellites to be the principal source of TC 

localization and intensity estimation. In contrast, JTWC emphasizes supplementing these data 

with other: remotely sensed and in situ observations that are useful for TC-center 

identification, defining TC structure, and providing more direct intensity estimation. To 

analyse the possible impact of different satellite-based sources on intensiaty estimation, the 

differences in TC position between BTDs were presented on Figure 3.6    

Figure 3.6a shows yearly distributions of differences between TC-center location in 

JTWC and JMA/JMADT, for years 1977- 2008. The x-axis shows years, while the y-axis 

shows distance between TC-center locations. Size of the circles for a given TC position 

difference indicates the percentage of a yearly sample (yearly number of joint for JTWC and 

JMADT TC occurrences). 
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Figure 3.6 a) Yearly distributions of TC position differences [unit: km] between JTWC and 
JMA. The x-axis shows years, while the y-axis shows TC-position difference. The size of the 
circles indicates the percentage of the occurrence number, counted for each year separately. b) 
Annual mean differences in TC position between JTWC and JMA. Differences including all 
intensities are shown in black. Differences separated by categories given by Current Intensity 
number: 1-4.75, 4.75-5.75, higher than 5.75 are shown in blue, green and red, respectively.  
 
 

Figure 3.6b shows annual means of TC center differences provided by JTWC and 

JMA. The mean annual differences in TC center position decrease with increasing intensity. 

The highest discrepancies occur for weak TCs (Current Intensity parameter range of 1–4.75), 

where often intensity and centers are difficult to estimate by low-resolved observations. In 

contrast, there is better agreement in locating the strongest TC centers. The most striking 

values are visible for the period 1988–98, when the aircraft reconnaissance era in the WNP 

was replaced by intensively developing satellite measurements. In that time widely distributed 

differences in TC locations were up to 150 [km] with mean annual differences varying 

between 30 – 50 [km]. After 1998 these differences are significantly smaller and do not 

exceed 30 [km]. The relationships between BTD trends in these distinct three periods 

correspond well with those of annual Current Intensity differences and TC-days trends 

(Figure 3.5 and Figure 3.1, respectively). The larger TC location differences for the midperiod 

correlates well with strong discrepancies in estimated Current Intensity parameters and in the 

numbers of TC-days falling into certain intensity categories. In the last decade the differences 
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in both: TC location and Current Intensity parameters show downward tendencies. The TC 

activity trends in that time are similar for JTWC and JMADT, even for the strongest 

categories. 

 

3.3.4 Additional contributors for BTD inconsistencies  

The analysis shows that differences in Current Intensity numbers and TC locations 

share a strong relationship. They are most distinguishable in the years 1987-1998, when the 

aircraft reconnaissance terminated and development of the intense satellite measurements 

began. Such coincidence suggests the usage of different information sources by JTWC and 

JMA may be a reason for the given TC trend differences. JMA reports usage of geostationary 

imageries only as a source for intensity estimation. In contrast, JTWC's operational center 

uses all available satellite data to ascertain the location and underlying storm structure and 

therefore improves the information used for imagery processing with the Dvorak technique. 

Such practises in JTWC might increase intensity values and contribute strongly to increasing 

tendencies of intense TC-days.  

Increasing coverage of microwave observations (SSMI) from 1987 onwards which 

reached the maximum in 1997, together with high-resolution scatterometer (ERS2) measuring 

in 1995-1997, helped in TC center positioning and analysis of the lower intensity systems. 

Enhanced radar usability and additional information of higher-resolution TRMM in 1997 

improved the accuracy of Dvorak-based estimations in JTWC. Introducing more and better 

spatially-resolved data certainly could affect the data set homogeneity and statistical 

information concerning derived trends. Extensive and irregular use of additional 

supplementary sources by one operational center and not the other, might lead to large 

Current Intensity discrepancies and opposite trends of intense TCs activity in comparison to 

other BTD.  The strong, increasing tendency in intense TC-days found in JTWC, especially 
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for the period 1987-1999, might be severely biased by inhomogeneities introduced by 

changing procedures and different information sources applied in the operational centers.  

It is suggested that apart from differing methods for converting Current Intensity 

numbers to intensities, Current Intensity discrepancies are the main contributor to differences 

between TC activity trends. The analysis indicates that discrepancies among operational 

parameters occur due to different data used as input for the Dvorak method applied in JTWC. 

However, to check the credibility of these parameters, they need to be compared with 

reference data. 

 

3.3.5 Can the Current Intensity discrepancies between BTD sets be evaluated? A 

NOAA-BTD, aircraft-BTD comparison 

To evaluate Current Intensity discrepancies, records for the years 2000-2008 in 

NOAA, JTWC and JMADT were analysed for the tropical storm  category. The main input of 

NOAA, QuikSCAT is stated as having highly reliable values for moderate and high tropical 

storm values, while slightly overestimating wind of tropical depression strength. However, it 

provides data adhered to 8-min average. For this reason, NOAA can underestimate values up 

to 2 [m s−1] when comparing with 1-min wind speed values within tropical storm category. 

Figure 3.7 presents the yearly distributions of differences between TC intensity in 

concurrent records of JTWC and JMADT. The x-axis shows years, while the y-axis shows 

intensity difference for the period 2000-2008. Size of the circles for a given intensity 

difference indicates the percentage of a yearly sample (yearly number of joint for JTWC and 

JMADT TC occurrences). In this comparison JTWC reveals systematically higher values 

compared to JMADT. For less than 15 % of all cases the absolute difference is smaller than 2 

[m s−1] which, according to [Kruk et al., 2011], is within the range of the remapping method's 

accuracy. However, for the majority of cases (60 %) JTWC is higher than JMADT by 2-8 [m 

s−1]. 
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Figure 3.7 Yearly distributions of TC intensity differences [unit: m s−1] for JTWC-JMADT, 
when intensity given by JTWC is in tropical storm category. The x-axis shows years, while 
the y-axis shows TC intensity difference. The circles indicate the percentage of the occurrence 
number, counted for each year separately.  
 

For our comparison the data was divided into two groups according to these relationships. For 

the first one, representing almost 60 % of cases, JMADT remains like JTWC within the 

tropical storm category. For the second group, representing over 40 % of the cases, JMADT is 

low enough to fall into the tropical depression category. To assess which agency gives more 

reliable parameters, these two groups are compared with NOAA. They are analysed 

separately, with a greater focus on the first one (tropical storm) due to high reference data 

reliability.  

Figure 3.8a,b presents differences for NOAA minus JMADT and for NOAA minus 

JTWC, computed for the 2000-2008 period, for both groups. For the group that contains data 

of both analysed BTD within the tropical storm category, NOAA remains closer to JMADT 

with 26% of the records remaining within absolute difference of 2 [m s−1] and 50 % within 4 

[m s−1]. However, NOAA presents slightly higher values than JMADT with a median for the 

differences in the range <0;2> [m s−1]. In comparison with JTWC, NOAA has lower values 

for more than 60% of the records, with the median within the range of <-4;-2> [m s−1]. 
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Figure 3.8 Distribution of TC intensity differences [unit: m s−1] for NOAA – JMADT (blue) 
and NOAA – JTWC (purple), for 2000-2008 period. In a) TC intensity in JTWC and JMADT 
is in the tropical storm category, b) intensity in JTWC is in the tropical storm category and 
JMADT degraded to the tropical depression. The x-axis shows TC intensity difference, while 
the y-axis shows percentage of analysed sample (number of joint for JTWC, JMADT and 
NOAA TC occurrences).  
 

For the second group, where JMADT indicates the tropical depression phase, only 15 % of the 

NOAA values remain within an absolute difference of 2 [m s−1] of JMADT. Here NOAA 

presents stronger tendencies towards higher values with a median of the difference in the 

range of <4;6> [m s−1]. However, this might be caused by a positive bias introduced by 

scatterometer data during rainy conditions for tropical depressions. Despite this fact, JTWC 

still remains higher than NOAA in almost 50 % of the cases. Figure 3.9a is a good example, 

showing the correspondence between intensity estimated by JTWC, JMADT and NOAA.  

The picture presents intensity time series for a TC Dolphin in 2008 provided by BTDs and 

NOAA. JTWC intensity show the highest values during the whole event, except for the 

tropical depression and early tropical storm phase when NOAA showed the highest values. 

For this TC the NOAA values remained noticeably closer to JMADT.  
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 The analysis in the previous sections has shown, that the highest intensity 

discrepancies still remain in the highest categories. Thus to evaluate TC intensity 

discrepancies in the highest categories, records for BTDs and aircraft measurements were 

compared. However after the termination of an aircraft reconnaissance over WNP in 1987, 

there were only two aircraft measurement campaigns focusing on the TCs intensity.  

Measurements during the maximum of TC lifetime intensity are available only for two intense 

TCs: Jangmi in 2008 (not shown) and Megi in 2010 (Figure 3.9c). For the TC Jangmi 

maximum wind speed estimates of JTWC (72 [m s−1]) match the observed ones better than 

JMADT. For this case JMADT presents the highest values (79 [m s−1]), while SMFR 60-sec 

observations show 68 [m s−1]. Figure 3.9c shows the intensity time series for supertyphoon 

Megi in 2010. For this event, SFMR measurements, even after averaging by 60 s interval, 

show the highest values (90 [m s−1]), while BTD estimations are 87 [m s−1] for JMADT and 

82 [m s−1] for JTWC. 

 

3.3.6 Accuracy of intensity estimations given by BTD sets - discussion 

To evaluate Current Intensity number discrepancies, BTD records were compared with 

satellite-based NOAA data and aircraft observations. NOAA serves as reference data for the 

lower intensity categories, while aircraft observations are used for the highest wind speed 

evaluation.  

Wind values derived from NOAA that provides data with reliable accuracy for the 

tropical storm phase, remain closer to JMADT than JTWC. Nevertheless, still a wide spread 

of differences exists among the data. JTWC shows much higher values than NOAA and 

JMADT, even in the group where JMADT falls into the tropical depression category and if a 

possible positive bias in NOAA has been taken into account. This indicates possible intensity 

overestimations in JTWC due to an erroneous contribution of Current Intensity parameters. 

Such overestimations may also be caused by supplementary data usage of JTWC, e.g. 
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QuikSCAT, which gives values averaged over a 25 km area and an 8-minute interval. These 

values would be treated as the minimum threshold for maximum wind speed estimated by a 

forecaster. In the result, JTWC may increase the final wind estimates to compensate for 

possible underestimations due to wind retrieval limitations. Figure 3.9a shows time series of 

TC intensity for typhoon Dolphin in 2008 and serves as an example for pronouncedly higher 

wind speed values of JTWC in comparison to reference data (NOAA) and alternative BTD. 

However, the indirect way of choosing the maximum wind speed for NOAA winds (which 

provide reliable information only for lower TC intensity categories), as well as the limited 

accuracy of the remapping method still contribute to the uncertainty in the estimation of BTD 

reliability. 

 The strongest discrepancies still remain in the higher part of the SSHS intensity scale. 

Therefore an evaluation of BTD categories 4-5 is crucial for determining trends in TC 

activity. As aircraft sensors are unable to provide direct measurements of 10 m 1min sustained 

wind speed, they only serve as input to prepare surface wind analyses. Here the initialization 

conditions and assimilation techniques are crucial to construct reliable analyses. 

 

Figure 3.9 TC intensity time series [unit: m s−1] for the: a) TC Dolphin (2008) for different 
best track data sets and NOAA, b) TC Sinlaku (2008), for BTD sets, TC reanalysis including 
aircraft reconnaissance (TCrean), and aircraft observations, c) TC Megi (2010) for BTD sets 
and aircraft observations (SFMR10s, SFMR60s). SFMR10s and SFMR60s are intensities 
averaged over 10 sec and 60 sec - time interval. The x-axis shows time steps within TC 
lifetime range, for which intensity was provided. 
 



 35

Figure 3.9b presents BTD, aircraft observations provided by SFMR taken during the 

TCS-08 2008 campaign, and an analysis reconstructed with those observations ([Zhang et al., 

2007]) for typhoon Sinlaku in 2008. The initialization scheme assimilates TC central 

minimum pressure given by JTWC, but the maximum wind speed for higher categories does 

not reach JTWC values. As the provided TC reconstruction may be also biased due to the 10 

km horizontal resolution, this can complicate the evaluation of BTD. On the other hand, the 

JTWC report [JTWC, 2009] states, that the aircraft measurements themselves for this TC had 

decisive impact on intensity estimation. Aircraft reconnaissance in this case helped to identify 

the second intensification phase. While for the first intensification phase the Dvorak technique 

estimated intensity with good accuracy, it underestimated the TC intensity during the second 

phase. The reconstructed reanalysis for the second period matches the observed values. 

The maximum TC lifetime intensity, measured during aircraft campaigns differs 

remarkably from intensity provided by BTDs. For typhoon Jangmi aircraft from TPARC 

campaign measured mean 60-sec value of 68 [m s−1] while JMADT estimated the highest 

values (79 [m s−1]). For TC Megi, SFMR 60-sec measurements show the highest values (90 

[m s−1]) of maximum wind speed. Additionally, the SFMR recorded the weakening of TC 

Megi faster than estimated by the Dvorak method. Landfalling TC situations, for which the 

reliability of Dvorak relationships is limited, require in-situ observations. [Nakazawa and 

Hoshino, 2009] also noticed differences in operational (Current Intensity- and T-) numbers 

among various BTD, both for intensification and weakening phases. Differing weakening 

ratios, after reaching TC maximum intensity in BTD sets, indicate that there may be 

differences between definitions for allowable intensity change (in the form of Current 

Intensity and T parameters). Such constraints ([Dvorak, 1984]) were gradually relaxed by 

JTWC during the 1990s ([Velden et al., 2006]), allowing for a faster weakening of intense 

TCs. These procedural changes possibly contributed to the existing discrepancies among 

BTD. 
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 Additionally, it is noticeable that in the developing stage of a typhoon, BTD in JTWC 

is strongly influenced by aircraft measurements (Figure 3.9c). These were possibly used to 

supplementary identify the early intensification phase.  

 

3.4 Trends of tropical cyclones activity for the period 1978-2008 and the reliability of 

statistics derived from observations - summary 

The analysis in this chapter presents variability of TC activity observed over the WNP 

for the period 1977-2008. Climate statistics, derived on basis of independently compiled data 

sets (BTD), indicate an increasing activity of intense TCs (category 2-5). The contribution to 

this trend by records of category 2-3 and 4-5 is ambiguous, therefore additionally the 

reliability of given BTD sets was investigated.  

It was confirmed that different methodologies, deriving TC intensities used by the 

meteorological agencies to produce BTD, influence TC activity trends. In order to minimize 

discrepancies existing between the individual data sets, two methods were applied.  

Both methods: the commonly used rescaling with a linear factor (used to homogenize 

BTD with different wind speed definition) as well as the remapping method proposed by 

[Knapp and Kruk, 2010] show high skill to reduce trend discrepancies, but only when 

categories 2-5 are considered together. Then all BTD sets show increasing numbers of 

annually accumulated TC-days for the period 1977-2008. 

 However, when analysing categories 2-3 and 4-5 separately, the methods’ skill differ. 

Rescaling with a multiplication factor leads to overestimated trends of TC-days for lower 

categories (2-3) while still underestimating the highest ones (4-5). An alternative method, 

which reconstructs TC intensity by remapping Current Intensity parameters with a Dvorak 

technique conversion ([Knapp and Kruk, 2010]) reduces most discrepancies for categories 2-

3. For the highest categories, the technique minimizes discrepancies only partly, TC activity 

trends in JMADT show no trend while strongly increasing trends are visible for JTWC. 
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An application of the same converting procedures to retrieve TC intensities should 

theoretically reduce the difference between the individual BTD to zero. However, remaining 

differences indicate that there are additional contributing factors leading to discrepancies in 

operational Current Intensity numbers.  

The distribution of the Current Intensity discrepancies in time corresponds to the 

differences in TC center positions. The largest discrepancies occur in the 1990s when higher-

resolution satellite observations were developing. The reduction and phasing out of aircraft 

data sources in the late 1980s may also have had an influence. 

This indicates that extensive and irregular use of additional supplementary sources by 

JTWC might cause huge Current Intensity discrepancies and opposite trends of intense TCs 

activity with other BTD.  The strong increasing tendency in intense TC-days found in JTWC, 

especially for the period 1987-1999, may be severely biased by inhomogeneities introduced 

by changing procedures and information sources. On the other hand JMA use mainly the 

geostationary satellite imagery for the intensity estimations. This might limit accuracy of the 

estimations, however it maintains homogeneity within the data set and makes this source 

more reliable for deriving climate statistics. 

For direct evaluation of accuracy in intensity estimated by BTD sets, JTWC and 

JMADT were compared to NOAA sea surface wind speeds and aircraft measurements. JTWC 

shows a systematic overestimation of both NOAA and JMADT for the tropical storm  

category, where NOAA data is considered to be very accurate. For the tropical storm category 

JMADT wind speed values remain closer to NOAA, although visible differences still exist. 

Higher Current Intensity parameter estimates as well as subjective interpretation of additional 

sources in JTWC (e.g. microwave wind retrievals) likely contribute to such results. It is 

concluded that JMA provides more reliable Current Intensity parameters than JTWC for the 

tropical storm wind speed range.  
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Sparse in-situ data limit the evaluation effort of BTD accuracy for the highest wind 

regimes. Aircraft campaign measurements in 2008 and 2010 show some agreement with 

maximum intensity estimations in BTD. For a more complete evaluation, aircraft data for the 

earlier period would be needed, when the accuracy uncertainties were the highest. 

Additionally, the analysis of some strong TC events like Sinlaku (2008) and Megi 

(2010) suggests that there are some deficiencies within the Dvorak technique procedures. 

Slow weakening ratios for BTD in comparison to in-situ observations indicate that not only 

the homogeneity has to be assured, but also that temporal non-changing methods to estimate 

TC intensities should be applied in all operational centers.  

Ultimately, the analysis presented demonstrates the importance to document those 

operational procedures that are applied for the Dvorak technique by the meteorological 

agencies; otherwise the interpretation of the results can lead to misleading conclusions. This 

may happen when considering ambiguously specified wind speed definitions in CMA or 

intensity in JMA before applying the [Koba et al., 1991] conversion table. It is suggested to 

pay special attention with regard to the highest wind regimes as the largest differences 

between BTD sets were found here. The differences in TC activity trends may require 

academic agreement on a set of procedures and a reanalysis of existing storm data. 
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Chapter 4. Capability of CCLM to dynamically downscale tropical cyclones 

 

4.1 State of regional climate model’s abilities to simulate tropical cyclones and related 

uncertainties 

RCMs become a powerful tool in reproducing the climate variability on different time 

scales as well as extreme climate events, when driven by good quality reanalysis ([Wang et 

al., 2004]). Since the first successful applications of RCMs by [Dickenson et al., 1989] and 

[Giorgi and Bates, 1989], much effort was focused on RCMs development and evaluation. 

Uncertainties in RCMs, as well as in GCMs come from many sources like: physical 

parameterizations, initial conditions, numerical algorithms, surface forcing, etc. Therefore for 

simulations of realistic TC features, the convective parameterization and horizontal resolution 

([Walsh, 2004, Walsh et al., 2004, Bender et al., 2010, Knutson et al., 2007, Grossmann and 

Morgan, 2011]) are of high importance. RCMs have also another, important source of error. It 

is related to the lateral boundary conditions, through which the large-scale atmospheric fields 

are prescribed ([Warner et al.1997]). Small RCM domains may constrain the solution to 

follow the conditions imposed from the forcing fields and inhibit development of the small-

scale features. Oppositely, for RCMs with large domains the ‘internal variability’ induced by 

initial conditions may deteriorate the large-scale fields. It happens especially when the forcing 

fields are provided only by lateral boundaries ([von Storch et al., 2000, Miguez-Macho et al., 

2004, Waldron and Horel, 1996]). Many studies ([Seth and Giorgi, 1998, Nutter et al., 2004, 

Wu et al., 2005, Nicolis, 2007, Vanvyve et al., 2008, Landman et al., 2005]) have shown that 

lateral boundary conditions are essential for successful long-term regional climate 

simulations. [Landman et al., 2005, Wu et al., 2012] found that the RCM domain choice and 

lateral boundary conditions location have a large impact on interannual variability of TC 

activity. [Kanamitsu et al., 2010] stated that ill-posed lateral boundary conditions cause a 
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large error in the low-frequency (climate time scale) atmospheric variability of downscaled 

fields. This significantly contaminates the interannual variability of the synoptic- and 

planetary-scale fields and consequently affects its long-term linear trend.  

To prevent the RCM solution from redundant deviating from the large-scale forcing 

fields, RCM simulations often use a spectral nudging technique ([SNT, [Kanamitsu et al., 

2010, Knutson et al., 2007, Castro et al., 2005]). SNT is based on the view ([von Storch, 

1999]), that small-scale features result from the interactions between large-scale atmospheric 

flow and smaller-scale geographic features (e.g. topography, land-sea interaction). Therefore, 

in contrast to the standard approach, SNT forces large-scale fields not only through the lateral 

boundaries, but also through the model interior. SNT forcing adds the nudging terms only to 

the large-scale solution and in the higher latitudes. This allows the smaller-scale processes, 

influenced by surface geographic features, to develop. Some studies applied this technique 

successfully also for the SE Asia domain ([Cha et al., 2011, Song et al., 2011, Yhang and 

Hong, 2011, Tang et al., 2010, Cha and Lee, 2009, Feser and von Storch, 2008a, Feser and 

von Storch, 2008b]). SNT effectively improves simulated mean climate in the WNP, namely: 

monsoon circulation, precipitation patterns, subtropical circulation ([Cha et al., 2008, Cha and 

Lee, 2009, Miguez-Macho et al., 2004, Wu et al., 2012]). The impact of spectral nudging on 

TC formation, development and associated large-scale circulation patterns has not yet been 

thoroughly explored. Some sensitivity experiments for a single typhoon case were shown in 

[Feser and von Storch, 2008b], but this case study cannot give answers for longer time 

periods. This work aims to answer the remaining questions related to the SNT impact on 

simulated TC climatology. Finally, it will assess the general capability of RCM (in this study 

- CCLM, Cosmo-Climate Lokal Model) with SNT applied to downscale TC intensity.    

The following part shows an analysis of the typhoon season 2004 simulated by CCLM, with- 

and without application of the SNT. Results are then compared with observational data sets 

(satellite data and reanalyses).   
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4.2 Experimental design, analysis methods, observational data 

Ten ensemble simulations with CCLM were computed, five - with application of SNT 

(SN), and five - without the SNT (NN).  Simulations differ only by starting dates, which were 

set to consecutive days between 01- 05.03.2004, for both ensemble members. The CCLM is 

configured according to the model description and settings provided in Chapter 2. The model 

domain, presented in Figure 2.1, includes the main TC genesis regions in the WNP. Therefore 

TCs are mainly generated within the model domain and not prescribed by lateral boundary 

conditions. Due to the large domain, the internal model variability should be large as well 

([Alexandru et al., 2007]). It describes the model’s ability to generate several possible 

atmospheric states for the same lateral boundary conditions. Spectral nudging reduces this 

internal model variability ([Weisse and Feser, 2003]) and thus leads to fewer differences 

between individual ensemble members and a smaller ensemble spread. 

The first simulated month wasn’t analysed to avoid possible spin-up effects on the 

computed climatology. Therefore ensemble simulations were analysed for the period April-

December 2004 during which 29 TCs were recorded by BTD over the WNP.   

To extract TCs from modelled data, a simple Lagrangian tracking algorithm ([Feser and von 

Storch, 2008a]) was applied. The description and settings of the algorithm are provided in 

Chapter 2.  

Simulated CCLM TC were defined as ‘overlapping’ the observed one (given by BTD), 

when the distance between both tracks was shorter than 500 [km] in at least 10 % of the 

longer track’s length. If several CCLM tracks corresponded to the same BTD track, then the 

one with the higher percentage of matching track’s length was chosen. The distances between 

simulated RCM and BTD tracks were computed with the great circle distance formula.  

As a reference for simulated TCs, BTD records provided by JMA were used. For 

evaluation purposes observations and reanalysis data were used: TRMM satellite precipitation 

data (horizontal resolution 0.25° (~ 28 km)); ERA-Interim ([Dee, 2011], horizontal resolution 
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T255 (~ 80 km)) and NCEP CFSR reanalysis data ([Saha, 2010], horizontal resolution 0.5° (~ 

55 km)).  

 

4.3. Representation of tropical cyclones features simulated with CCLM 

4.3.1. Impact of spectral nudging on tropical cyclones frequency, track patterns and 

spatial density 

The numbers and patterns of TC tracks simulated by CCLM are analysed and 

compared with the observed ones during the typhoon season 2004. Table 1 shows the total TC 

frequency and the number of TCs matching the observed ones for all simulations in both 

ensembles. The frequency of TCs identified in CCLM depends on the subjectively established 

tracking algorithm settings, therefore the relation between TC numbers in SN and NN is 

brought into focus. Results show that TC frequency is two times lower when the SNT is 

applied. However, the number of tracks matching the observed ones is two times higher. In 

CCLM-SN about 50 % of all TCs overlapped the observed ones, while in CCLM-NN - less 

than 20 %. This relation consequently influences the spatial patterns of TC track density, 

presented in Figure 4.1.  

Figure 4.1 shows the fields of TC density normalized by its spatial mean, for observed 

TCs (Figure 4.1a) and the simulated ones (CCLM-NN and CCLM-SN, Figure 4.1b and 4.1c, 

respectively). Both CCLM ensembles show realistic features of spatial density, with the 

highest TC density in the western part of the WNP (120°-150° E), where tracks often advance 

towards the SE Asian coast. The NN ensemble mean shows a more outspread pattern than the 

BTD, which is mainly due to enhanced TC activity along the SE Asian coast and in the 

eastern part of the WNP. The pattern of the SN ensemble mean resembles the features of the 

observed one much more. Consequently the pattern correlations between spatial track 

densities (Table 4.1) are higher for SN members than for NN, with values varying from 0.61- 

0.67 and 0.50-0.61 respectively. 
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Figure 4.1 TC spatial densities (TC occurrence within 2.5° latitude x 2.5 longitude grid boxes; 
normalized by the mean spatial density) for a) BTD; b) CCLM-NN; c) CCLM-SN. TC 
densities in BTD and CCLM ensemble mean are shaded. TC densities in the individual 
simulations of CCLM are shown as black contour lines and stand for the value 3. White color 
denotes the regions, where TC didn’t occur. 
 
 
Figure 4.2 shows simulated TCs matching the TCs recorded in BTD in a systematic way. The 

picture presents a distribution of deviations [km] between simulated TC tracks and the 

observed ones for CCLM-NN (left) and CCLM-SN (right) ensemble members. Every TC 

observed in the typhoon season 2004 is shown separately. 
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Table 4.1 The table shows the regional climate simulation ID, if spectral nudging was used, 
the simulation start date, the total track number and the number of tracks which overlap JMA 
best tracks. The last column shows the spatial pattern correlation (PC SPD) between spatial 
track densities of the individual CCLM simulations and the BTD. The simulations were all 
started at 12:00 am, the only difference between simulations 10-14 (without spectral nudging) 
and between runs 20 and 24 (with spectral nudging) is the starting date.  
 

Simulation 

ID 

Spectral 

nudging 
Start date 

Total 

track 

number

Overlapping 

tracks 

number 

PC 

SPD 

10 No 03/01/2004 66 12 0.50 

11 No 03/02/2004 65 10 0.59 

12 No 03/03/2004 65 9 0.61 

13 No 03/04/2004 64 7 0.55 

14 No 03/05/2004 62 10 0.57 

20 Yes 03/01/2004 40 21 0.67 

21 Yes 03/02/2004 31 20 0.61 

22 Yes 03/03/2004 31 22 0.64 

23 Yes 03/04/2004 29 19 0.66 

24 Yes 03/05/2004 28 20 0.64 

 

The size of the circles relates to the number of track points falling into the given distance 

interval. The color of the circles assigns individual ensemble member. The picture confirms 

that CCLM-SN simulates more TCs matching the observed ones, than CCLM-NN. Five TCs 

recorded in BTD were simulated only when the SNT was applied (CCLM-SN). Two other 

TCs were found only in CCLM-NN simulations. Three TCs from the season 2004 weren’t 

identified in any of the CCLM simulations. The distribution of distances between modeled 

and observed TCs has different features for NN and SN simulations. Deviations between 

tracks in CCLM-NN and BTD are large (up to 800 [km]) and differ significantly among 

ensemble members. In contrast, simulated TC tracks within the SN ensemble converge 

towards smaller distance intervals (100 ~ 200 [km]) and become less frequent towards larger 

distance intervals.  

 



 45

 
 

Figure 4.2 Differences of simulated TCs compared to BTD for the year 2004 for CCLM-NN 
(left) and CCLM-SN (right). The y-axis shows the individual TC IDs, those TCs which were 
not tracked in either NN or SN simulations were omitted (3, 11, 26). The x-axis shows 
distance intervals of 100 km. The size of the circles gives the number of track points classified 
into given distance intervals. The different colours depict the individual CCLM ensemble 
members. 
 

Such features of TCs simulated in SN and NN ensembles are well represented by 

Typhoon Songda, found in at least four members of each ensemble. Figure 4.3 shows the 

track of TC Songda, given by BTD observations and CCLM simulations. Observations 

recorded TC Songda’s formation in the eastern part of the WNP. The TC moved towards the 

SE Asian coast and recurved in the vicinity of Taiwan towards the North-East. NN tracks do 

not converge and spread into diverse directions, far from the observed TC. Two of the tracks 

didn’t recurve and hit the SE Asian coast, another two moved towards the North. In contrary, 

the SN tracks merged after a short while and then followed the TC track in BTD. Such 

features indicate that initial conditions have negligible impact on TCs simulated in CCLM-

SN. In other words, the SNT reduces the internal variability of simulated TC tracks which 

greatly improves its track patterns and spatial density.   
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Figure 4.3 Tracks of Typhoon Songda, given by best track data of BTD (black), CCLM–SN 
(red) and CCLM-NN (blue). 
 
 
4.3.2. Impact of spectral nudging on tropical cyclones intensity 

This section demonstrates the effect of spectral nudging on simulated TC intensity.  

The analysis focuses on maximum wind speed, vertical profiles of TC temperature anomalies 

and wind speed - pressure relationship. As TC Songda is representative for TC features in SN 

and NN simulations it will be referred to throughout the chapter.  

Figure 4.4 shows the surface horizontal wind fields of TC Songda for CFSR reanalysis 

(left), CLM-NN (middle), CLM-SN (right), at the time when observed and simulated TCs 

were relatively close to each other (Figure 4.3, 01.09.2004). The shaded pattern in CCLM-NN 

and CCLM-SN describes the first ensemble member. The contour lines are assigned to the 

remaining ensemble members.  
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Figure 4.4 Horizontal surface wind speed fields [m s-1] for TC Songda, on 1st September 
2004, 00:00. From left: CFSR reanalysis, CCLM-NN, CCLM-SN. For CCLM the first 
simulation (simulation no 10 and 20) of each ensemble is shaded, the other simulation are 
shown as contour lines: 10 [m s-1] as solid lines, 18 [m s-1] as dotted lines.  
 

Figure 4.5 Vertical temperature anomalies [unit: K degrees] averaged over the radial distance  
from the TC centre for typhoon Songda at its stage with maximum near-surface wind speed 
for NCEP CFSR (left), and CCLM-NN (middle) and CCLM-SN (right) ensemble means. The 
x-axis shows the radial distance [unit: km]. The left y-axis shows pressure levels [unit: hPa], 
the right y-axis shows height [unit: km].  

 

The cyclone in CFSR has a mature structure with a well-developed eye. TCs in all 

CCLM-SN members are located close to the observed one, but their evolving rainbands, small 

eye and eyewall indicate an early intensification phase. In contrast, to CCLM-SN, wind 

patterns and associated TC intensity in CCLM-NN vary among each member and deviate 

extensively from observations. For example, the first NN ensemble member (Figure 4.4, 

shaded with color) shows a well developed structure and wind speed higher than in SN and 
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CFSR. In the latter time steps, differences in the TC development phase between CCLM-NN 

and CCLM-SN become more distinct. While in SN simulations TC Songda constantly follows 

the track observed in CFSR, in CCLM-NN TCs deviate into diverse directions and reach 

different intensities.  

To understand the effect of the SNT on surface and higher atmospheric layers, vertical 

profiles of temperature anomalies for TC Songda are analysed. Figure 4.5 shows these 

profiles averaged over the radial distance from the TC center, for the CFSR reanalysis (left), 

CCLM-NN ensemble mean (middle) and CCLM-SN ensemble mean (right) at the time of 

maximum intensity recorded by BTD observations (04.09.2004-05.09.2004). Only two TCs 

from the CCLM-NN ensemble survived till the given time step and  reached their highest 

intensity at the same day or six days later (04.09.2004;10.09.2004). Four TCs from the SN 

ensemble followed the observed track and reached their highest intensity at the same day or 

one day later (05.09.2004; 06.09.2004). Simulated and observed TCs show well-developed, 

anomalously warm cores and cold areas in surrounding areas. CFSR and both ensembles 

extend their anomalies down to the sea surface. However, anomalies in the NN ensemble 

mean are slightly weaker than CFSR, while anomalies in SN are much stronger. Large 

deviations among CCLM-NN members, induced by internal variability of the model, have 

shown a counterbalancing effect on their mean TC intensity development. Oppositely, 

reduced internal variability in SN simulations has a positive impact on TC vertical 

development in the ensemble mean. 

Cha et al. (2011) recently suggested that nudging the large-scale solution to the higher 

model levels inhibits the TC intensification process. To verify that, the wind-pressure 

relationships in CCLM-NN and CCLM–SN TCs were compared. Figure 4.6 presents 

simulated intensities of all 6-hrly track points in the CCLM-NN and CCLM-SN simulations, 

in terms of wind speed and pressure. Blue lines show wind speed-pressure relationship, 

derived by a cubic spline fit for intensities given in CCLM and the black lines for BTD.  
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The relationship is in both cases quite similar, but values in NN show a wider spread 

around the fitted curve. For both ensembles, wind speeds shows underestimation, compared to 

BTD. Such underestimation occurs mainly when pressure drops below ~ 980 [hPa]. This 

implies that the resolution in CCLM is not sufficient to resolve the strong pressure gradients 

featuring intense TCs. The values in CCLM-NN reach lower minimum pressure, up to ~ 920 

[hPa], than CCLM-SN (~ 940 [hPa]). However, coinciding wind speed values in CCLM-NN 

don’t show significantly higher values. For both ensembles TC wind speed can not exceed the 

value of 40 [m s-1]. This result indicates an inhibiting impact of the SNT on low pressure core 

development. However, impact of the SNT on TC wind speed is negligible, due to other 

limiting factors related to model dynamical characteristics (e.g. resolution, convection 

scheme).       

 

Figure 4.6 Scatterplot of maximum surface wind speed [unit: m s-1] versus minimum pressure 
[unit: hPa] for all TCs during their lifetime for CCLM –SN (left) and CCLM –NN (right). 
Blue and black lines are cubic spline fits for CCLM and BTD observations, respectively.  
 

An inhibiting effect of the SNT may explain the slow intensification of TC Songda in 

CCLM-SN, compared to CCLM-NN and CFSR (Figure 4.4c, CCLM-SN). However, the 

intensity of this TC, at the maximum stage recorded by BTD, was lower in the CCLM-NN 

ensemble mean (Figure 4.5b, CCLM-NN). This indicates that the large internal variability, 
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when no SNT is applied, may have even stronger, negative impact on simulated TC intensity. 

For TC Songda a positive effect of the SNT, related to the reduction of internal variability, 

possibly compensates an inhibiting effect of the SNT (Figure 4.5c, CCLM-SN). 

 

 

Figure 4.7 TC mean wind speed spatial distribution (TC wind speed cumulated within 5° 
latitude x 5° longitude grid boxes; normalized by the mean TC spatial density) for a) BTD; b) 
CCLM-NN; c) CCLM-SN. Gridboxes where TC occurred less than 3 times are not shaded.   
 

A comparison of spatial distribution of mean TC intensity in simulations and BTD, 

shown in Figure 4.7, supports the previous findings. The picture presents the fields of 

accumulated TC maximum wind speed normalized by the number of TC occurrences falling 

into each grid box, for BTD (a), CCLM-NN ensemble mean (b) and CCLM-SN ensemble 

mean (c).  

BTD reaches the highest values, often exceeding 30 [m s-1], distributed mainly in the 

vicinity of the SE Asian coast. Mean TC intensity fields in CCLM-NN follow an outspread 

pattern of spatial TC density (Figure 4.1b). This implies that for the eastern part of the WNP, 

the NN ensemble shows higher values than BTD. In SN such a deviation is reduced, as an 

aftermath of the improved TC track patterns (Figure 4.1c). For the regions in the vicinity of 

Taiwan, where TCs reach the highest intensities, SN shows values higher than NN.  Mean TC 

intensity in that regions exceeds 28 [m s-1] for CCLM-SN but does not exceed 26 [m s-1] in 

CCLM-NN. The results indicate that the SNT improves fields of spatial mean TC intensity. 
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Overall, the influence of the SNT on TC intensity results from two counteracting effects.  The 

reduction of the model’s internal variability shows a positive effect on the spatial distribution 

of TC tracks and intensity, which outweighs the inhibiting impact on TC vertical development 

processes.   

 

4.3.3 Impact of spectral nudging on tropical cyclones climatology 

The formation and development of tropical cyclones are strongly associated with 

environmental conditions. Sufficient ocean thermal energy, enhanced mid-troposphere 

relative humidity, and conditional instability support deep convection. Enhanced lower 

troposphere relative vorticity, weak vertical shear of horizontal winds and minimum distance 

by at least 5° in latitude from the equator are dynamical parameters which are necessary for 

tropical cyclogenesis. This section analyses the impact of the SNT on the large-scale 

atmospheric circulation shaping the TC activity climate. To understand this, the simulated TC 

climatology (for SN and NN) is compared with the observed one. 

 Figure 4.8 presents atmospheric fields for June, July and August 2004 for CFSR (left 

column), CCLM-NN ensemble mean (middle column) and CCLM-SN ensemble mean (right 

column). Fields assessing the dynamic conditions for tropical cyclogenesis are: a) 

geopotential height, b) zonal wind and c) relative vorticity, all on the pressure level of 850 

hPa. Fields related to the thermodynamic conditions are: d) relative humidity on the pressure 

level of 600 hPa, e) convective available potential energy, f) hourly precipitation. Fields of 

850 hPa geopotential height and 850 hPa zonal wind (Figure 4.8a,b) show that CCLM 

simulates realistic features of low-level circulation, similar to observed ones. However, 

CCLM-NN reveals much stronger than CFSR cyclonic anomaly in the subtropical WNP, 

which is associated with the Asian monsoon circulation. Anticyclonic circulation, forming as 

a subtropical high eastward from Japan, is weaker. In contrast, CCLM-SN captures the pattern 

and magnitude of monsoon circulation correctly. This has a positive impact on the simulated 
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subtropical high circulation. The strength and location of the subtropical high in CCLM-SN is 

close to the observed one (CFSR). 

The monsoon trough provides favourable conditions for TC genesis in the WNP. 

Therefore the skill of the model to reproduce monsoon environment determines the simulated 

TC activity. Westerly winds, relative vorticity and precipitation characterizing monsoon 

phenomena are in CCLM-NN largely overestimated (Figure 4.8b,c,f). The SNT substantially 

reduces such deviation, which consequently impacts TC activity in CCLM-SN. A reduced 

error of overestimated cyclonic circulation and an underestimated subtropical high in CCLM-

SN decreases TC activity and improves spatial track patterns (e.g reduces the TC outspread 

towards the eastern part of the WNP).   

Some downscaling studies ([Wu et al., 2012, Cha and Lee, 2009, Miguez-Macho et 

al., 2004]) confirmed the positive impact of the SNT on monsoon circulations and related 

spatial precipitation patterns. [Cha et al., 2008] additionally explained the mechanism causing 

enhanced precipitation when no SNT is applied. They have shown that strong zonal flow 

increases the planetary boundary layer mechanical mixing and consequently enhances latent 

surface heat fluxes. This in turn increases convective available potential energy, stimulates 

convective processes and may lead to intensified precipitation when no SNT is applied. 

Figures 4.8b,d,e,f confirm such findings. The strong westerly flow in the monsoon 

region, reproduced by CCLM-NN, coincides with an intensified and eastwardly extended 

convective available potential energy, relative humidity and precipitation patterns. In CCLM-

SN such deviation is reduced. This also explains the improvement of TC track and intensity 

patterns (Figure 4.1 and 4.7), e.g. reduction of TC activity in the eastern WNP. 

To conclude, the SNT shows a positive impact on both: dynamic and thermodynamic 

conditions, which significantly control TC activity. Large-scale circulation patterns associated 

with monsoon circulation and the subtropical high are improved. Consequently, the strong 

positive feedback between surface low-level winds, convective available potential energy and 
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precipitation is reduced. Results provided in this chapter indicate that TC climatology shows 

more realistic features when the SNT is applied. 

 

 

Figure 4.8 Time mean for June, July August season 2004 for: a) geopotential height on 850 
hPa [unit: m s-2], b) zonal wind on 850 hPa [unit: m s-1], c) relative vorticity on 850 hPa [unit: 
s-1], in CFSR (left column), CCLM-NN ensemble mean (middle column) and CCLM-SN 
ensemble mean (right column), 
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Figure 4.8 cd..: d) relative humidity on 600 hPa [unit: mm], e) convective available potential 
energy [unit: J kg-1], f) hourly precipitation [unit: mm] in CFSR (left column) CCLM-NN 
ensemble mean (middle column) and CCLM-SN ensemble mean (right column). Convective 
available potential energy is not provided by CFSR, therefore it is shown only for CCLM-NN 
and CCLM-SN. 
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4.3.4. Representation of the meso-scale features in TCs simulated by CCLM 

Following the results from the previous section, this part assesses the skill of the 

CCLM with the SNT applied (CCLM-SN) to add meso-scale value to the large-scale 

atmospheric information provided by the driving data. The performance of the CCLM is 

analysed with a focus on TCs wind speed and sea level pressure using Brier Skill Score (BSS) 

statistics. The BSS is estimated accordingly: 

BSS=1- (RMSE(Ycclm,Yref)/RMSE(Yncep,Yref)), (2) 

where: Ycclm and Yncep are the variables for CCLM and NCEP reanalysis respectively,  

Yref is the reference variable given by JMA, at a given time step. The BSS varies from 1, 

when CCLM perfectly fits the reference data, and tends to “– infinity” when CCLM deviates 

from the reference stronger than NCEP does. BSS equal zero would mean that CCLM is of 

equal skill as NCEP.  

 

Figure 4.9 Brier Skill Score (BSS) for CCLM wind speed (blue) and sea level pressure (red) 
between BTD and NCEP for ten chosen TCs. The x-axis shows ID number for each TC. The 
y-axis shows the BSS for each member of the five CCLM-SN ensemble simulations. 
 

 Figure 4.9 presents BSS estimated for maximum sustained wind speed and minimum 

sea level pressure for ten TCs, which were found in all SN simulations and which matched the 

TCs observed in BTD. The BSS shows positive skill in all simulated TCs. For wind speed, 

BSS varies from 0.49 (for the 0.25th percentile) to 0.73 (for the 0.75th percentile), while for 
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pressure the scores are slightly higher and vary from 0.55 to 0.77. The scores among the SN 

simulations vary in a small extent. In seven cases, the spread is smaller than 10 % of an 

average TC score. TC 402 showed the largest spread (up to 30 % from the average score), 

with BSS values varying from 0.3 to 0.5 in wind speed. The results indicate that CCLM 

improves the representation of TC features by adding meso-scale information to coarsely 

resolved reanalysis. The skill is higher for sea level pressure. However, simulated TCs are still 

much weaker than observed.  

 Figure 4.10 shows maximum lifetime TC intensity for the same ten TCs, shown in 

Figure 4.9. The picture shows wind speed underestimation of at least 10 [m s-1] and sea level 

pressure overestimation of at least 10 [hPa]. None of the simulated TCs exceeds the intensity 

of 40 [m s-1]. Consequently, TC lifetime maximum intensity is limited to the first SSHS 

intensity category in terms of maximum surface wind speed (< 43 [m s-1]), and the third 

category in terms of core pressure (> 945 [hPa]).  

 

 

Figure 4.10 Maximum lifetime TC intensity for all CCLM-SN simulations (black) and BTD 
observations (red dots), in terms of: wind speed [unit: m s-1] (left) and sea level pressure [unit: 
hPa](right). The x-axis shows ID number for each chosen TC.  

 
Figure 4.11 shows the distribution of TC intensity given by maximum lifetime 

sustained wind speed of all TCs in the CCLM-SN ensemble mean and for BTD for the 
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typhoon season 2004. The result suggests that CCLM simulates TCs which are two categories 

lower than observed ones, in terms of maximum wind speed.  

[Feser and von Storch, 2008a] confirmed that downscaling NCEP reanalysis to 55 km 

resolution with the RCM CCLM improves the representation of TC features. But many other 

studies ([Stowasser et al., 2006, Camargo et al., 2007, Knutson et al., 2007, Knutson et al., 

2008]) stated that 50 km resolution is too coarse for models to simulate realistic TC intensity. 

Some research ([Feser and von Storch, 2008a, Knutson et al., 2007]) also indicated that 

downscaling to finer resolutions may not have necessarily an additional impact on simulated 

TC intensity.  [Knutson et al., 2007] showed that downscaling to 18 km results in hurricanes 

of 3rd SSHS category in terms of pressure and 2nd category in terms of wind speed. 
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Figure 4.11 Distribution of TCs in the CCLM-SN ensemble mean (blue) and in BTD 
observations (red) sorted by SSHS intensity categories, based on TC lifetime maximum wind 
speed. The x-axis shows SSHS categories extended by tropical storm category.   
 

Results of [Knutsona and Tuleya, 2004] suggested that without a convective 

parameterization scheme which appropriately resolves small-scale processes, increasing 

horizontal resolution will have negligible impact on the structure and intensity improvements. 

[Moon et al., 2007] gave another explanation for deficiently simulated winds. They relate 

these to reduced surface drag in high wind conditions resulting from surface flux 

parameterizations. To conclude, CCLM shows positive, but limited skill to simulate realistic 
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TC intensity. This has to be taken into account while analysing TC climatologies, TC 

variability and trends in the following section.  

 

4.4 Capability and limitations of CCLM to simulate tropical cyclones climatology using 

spectral nudging 

In the first part of this chapter, the impact of the SNT on simulated TC activity was 

investigated. For this purpose TC frequency, spatial track patterns, TC intensity and related 

large-scale atmospheric fields simulated by CCLM with- and without SNT were compared 

with observations. Analysis has shown advantages and disadvantages of the SNT application. 

The SNT has shown a notable impact on TC intensity development. The maximum TC 

intensity is higher when no SNT is applied. The core pressure of the most intense TCs are up 

to ~ 20 [hPa] deeper in CCLM-NN. Differences in maximum TC wind speed are less distinct. 

Values in both analysed ensembles have shown an upper threshold of 40 [m s-1], which may 

result from additional, limiting factors e.g. resolution. Therefore these differences can be even 

higher for simulations of finer horizontal resolution.  

Given results may not necessarily indicate the negative, inhibiting impact of SNT on 

TC intensity. In contrary, absence of SNT may lead to enhanced TC intensity values. As 

shown in the previous sections, higher TC activity (intensity and frequency) in CCLM –NN 

results from the biased representation of mean TC climate. 

CCLM without spectral nudging showed large variability in simulated track patterns 

and associated TC intensity. Fields of TC track density showed systematic errors, which are 

associated with the simulated mean climate over SE Asia and WNP. In the CCLM – NN 

ensemble the mean monsoon circulation was amplified and the circulation in the subtropical 

high was weakened, compared to CFSR. This changed spatial track pattern and increased TC 

formation in the eastern part of the WNP. An ensemble simulation using five members turned 
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out to be not sufficient to capture the whole spectrum of internal model variability and to 

represent the TC climatology correctly.  

The SNT has shown a positive impact on the simulated TC climate and consequently 

spatial distribution of TCs and their intensity. Application of the SNT greatly reduced 

variability in TC track patterns, improved the skill of CCLM to reproduce TC activity and 

related large-scale atmospheric circulation. Simulated TC frequency decreased by a factor of 

2. But the number of TCs, matching the observations, increased by a factor of 2. Spatial fields 

of TC tracks and mean TC intensity were more accurate compared to observations. 

Exaggerated TC activity in CCLM-NN over the eastern part of the WNP was, after 

application of the SNT, significantly reduced. Moreover, for the regions with the highest 

observed intensities (in the vicinity of the SE Asian coast and Japan) the mean TC intensity 

increased, thus showing values more similar to the observed ones. This improvement results 

from the higher CCLM skill to reproduce large-scale patterns of dynamic and thermodynamic 

conditions when using spectral nudging.  

The second part of this chapter analyses the skill of CCLM-SN to downscale meso-

scale features of TCs of the typhoon season 2004. The results showed that CCLM has skill in 

adding meso-scale information to the large-scale reanalysis and this skill is higher for sea 

level pressure than for wind speed. However, CCLM is not capable to simulate TC intensities 

higher than the 2nd category. Consequently, the most intense TCs are weaker and the mean TC 

intensity distribution in CCLM is lower than observed. Therefore, in order to identify only the 

intense TCs, the intensity criteria defining TC events in the tracking algorithm had to be 

adjusted toward lower values.    

Overall, the SNT has demonstrated to be an efficient tool to control the internal model 

variability and consequently - to produce reliable TC climatologies. Therefore the SNT will 

be applied in a long-term simulation of past TC climate, which will be presented in the 
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following part. However, the limitations of the regional model to simulate realistic intensity 

features must be taken into account while interpreting the RCM simulation.    
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Chapter 5. A long-term tropical cyclones climatology over the period 1948-

2011  

5. 1 Introduction 

This work presents TC climatology for the last six decades (1948-2011) over the WNP 

and SE Asia using a dynamical downscaling approach with the regional climate model 

CCLM. While many downscaling studies focused on a shorter time scale, this is the first such 

long-term regional hindcast simulation of TC variability in the given region.  

In the previous chapter it was shown that CCLM using the spectral nudging technique (SNT) 

has high capability to reproduce TC climate. However, a numerical simulation running on a 

50 km horizontal resolution leads to underestimation of TC intensity. 

[Knutson et al., 2007] stated that for successful downscaling, models also have to be 

able to reproduce the relationship between TC activity and environmental factors controlling 

them. As shown in Chapter 3, feasibility of establishing such a relationship is limited, given 

the relatively short and inhomogeneous TC observations. While for the North Atlantic region 

TC activity was mostly associated with average sea surface temperature (SST) variations 

([Webster et al., 2005, Emanuel, 2005, Holland and Webster, 2007]) for the WNP region 

many studies failed to confirm such a relationship. [Wang and Chan, 2002] stated that SST 

anomalies do not determine the TC genesis location. [Chan and Liu, 2004] showed a negative 

correlation between TC number and SST in the WNP. [Chan, 2007, Chan, 2009] suggested 

that interannual variations of the intense TC numbers may be affected by both 

thermodynamical and dynamical environmental factors. Dynamical simulations give an 

alternative possibility to analyse the link between TC activity and environmental factors. Thus 

the following work will present also the relation between TC activity and thermodynamic 

factors (Maximum Potential Intensity (MPI) and SST) on interannual- and decadal time scale. 
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The following work is structured accordingly: 

 “Data and Methodology” describes statistical methods applied in the study, and the 

data.   

 In the first part of the section “Results” spatial and temporal TC variability simulated 

by CCLM is compared with the observed one (BTD), for the period 1978-2011. The 

second part shows a comparison of the simulated and observed relationship between 

TC activity and environmental factors.  The association with the environmental large-

scale patterns is quantified by means of Canonical Correlation Analysis. Finally, the 

TC activity changes for the whole period 1948-2011 are presented.  

 The “Summary and Conclusions” part provides an interpretation for the given results 

and summarises the main findings. 

 

5.2 Data and Methodology 

For comparison purposes we use BTD provided by the Japanese Meteorological Agency 

(JMA, www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/besttrack.html). These were 

found to be the most reliable BTD in terms of TC trends [Barcikowska et al., 2012]. The 

records from 1978, when the satellite observations allowed for better spatial homogeneity of 

TC observations, were chosen.  

Statistics derived from the CCLM and observations are annually accumulated numbers 

of TC days and spatial density of TC occurrences. TC day numbers for all identified storms 

are provided for the years 1948-2011 in CCLM and 1951-2011 in BTD, in the summer season 

(July-October, hereafter JASO months). However, since TC intensity was recorded by BTD 

only since 1978, observed TC days of intense storms can be calculated only for the years 

1978-2011. For computing the spatial density of TC occurrences each 6-hourly TC position 

within a 5° latitude x 5° longitude grid box was counted. To define the dominant modes of TC 
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variability an empirical orthogonal function (EOF) analysis was applied for yearly spatial 

density fields for 1978-2011. The EOF ([North et al., 1982]) analysis defines the ‘key’ 

patterns featuring the variability of the input data. The importance of the patterns is given by 

the percentage of the variance they explain in the input data.  

 The long-term trend in CCLM (1948-2011) was derived from spatial density fields 

counting 1-hourly TC positions within 2° x 2° grid boxes. Spatial density fields were 

calculated for all identified storms and also just for the intense ones. Trends were computed 

with a linear regression approach using the least squares fit. Additionally, for five regions, 

where the most distinct long-term changes were found, a piecewise linear trend model was 

derived. The model was fitted to the data using a least squares method and it was assumed 

that there was at most one slope change. 

 The influence of large-scale circulation patterns on hindcasted TC variability was 

quantified with a Canonical Correlation Analysis (e.g.[von Storch and Zwiers, 1999]). The 

method estimates the maximum correlation between two multidimensional data sets.  Here we 

analysed the association of TC spatial density with Maximum Potential Intensity (MPI) 

patterns and SST. For this purpose the first five EOFs were computed using yearly anomalies 

of atmospheric variables calculated during JASO (July-October, hereafter JASO months) 

months. It is assumed that the first five EOFs represent the main patterns of variability and 

those were used for further analysis ([Leoncini et al., 2008, von Storch and Zwiers, 1999]).  

 Spatial density fields are discontinuous fields with high spatial variability. Therefore 

they were divided into subregions with distinct features of TC frequency (Figure 5.4). Table 

5.1 represents the statistics for the selected regions: average TC number (avg), average TC 

number for 2° latitude x 2° longitude grid boxes (avg norm), standard deviation (std dev), and 

least squares slope (lsq) of 6-hourly TC occurrences in 1978-2011. The MPI [Emanuel, 1988] 

is computed with a program provided by K. Emanuel on the website 

ftp://texmex.mit.edu/pub/emanuel/TCMAX/.  
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The yearly values of MPI and SST for the WNP region were calculated with the sea surface 

temperature (SST) fields that were used to drive the regional model as well as RCM 

temperatures and specific humidity content. 

 

Table 5.1 The statistics of TC occurrences in the regions selected for Canonical Correlation 
Analysis for 1978-2011: average number (avg), average number for 2° latitude x 2° longitude 
grid boxes (avg norm), standard deviation (std dev), and least squares slopes (lsq). 
 

 Region avg avg norm
std 
dev 

lsq 

1 105-122°E, 10-20°N 12.2 2.6 12.2 0.28 

2 122-138°E, 10-20°N 27.9 7.0 20.1 -0.03 

3 138-150°E, 10-20°N 15.5 5.2 16.5 -0.16 

4 150-160°E, 10-20°N 6 2.4 9.4 0.16 

5 105-115°E, 20-30°N 4.4 1.8 4.5 0.04 

6 115-130°E, 20-30°N 29.3 7.8 17.7 0.57 

7 130-145°E, 20-30°N 29.7 7.9 22.8 0.59 

8 145-160°E, 20-30°N 9.5 2.5 11.3 0.14 

9 120-130°E, 30-40°N 6.3 3.1 7.5 0.16 

10 130-145°E, 30-40°N 10.8 2.9 8.8 0.23 

11 145-160°E, 30-40°N 5.4 1.5 7.9 0.14 
 

 

5.3 Results 

5.3.1 Tropical cyclones spatial and temporal variability for the western North Pacific in 

modelled and observational data  

The spatial and temporal variability of hindcasted regional model TC activity is 

compared to an observational data set (BTD). The analysis focuses mainly on the last three 

decades (1978-2011) when satellites were used for constructing the best track data sets. 

However, due to the lack of in-situ measurements suitable for validation of BTD and 

inhomogeneities introduced by operational methods which changed over time during 

compilation of the data sets ([Barcikowska et al., 2012, Landsea et al., 2006]) BTD does not 

serve as a reference.  
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As shown in Chapter 1 statistics of TC frequency variability recorded by BTD give the 

most robust results for the intense TC’s (categories 2-5), showing agreement among all 

independent BTD sets. Thus temporal variability analysis is focused particularly on the 

intense TCs. The tracking settings were chosen so that the yearly mean number of simulated 

TCs is the same as observed, 25 TCs. However, for the main typhoon season (JASO) CCLM 

underestimates the mean TC number, showing on average 14.3 TCs while BTD gives 17.8 

TCs. The standard deviation remains the same (3.8) for both data sets. The RCM data set 

representing the most intense TCs shows mean frequency numbers twice as high (5.2 TCs, 48 

TC days) as the observed ones (2.4 TCs and 28 TC days). This is the effect of the tracking 

algorithm settings chosen which allow partly for a weaker TCs detection. The standard 

deviation for both data sets remains relatively high and similar: 2.1 TCs; 22.1 TC days for 

CCLM and 1.9; 24.4 for BTD respectively. The total variance of intense TC frequency 

numbers in CCLM may have been artificially influenced by weaker TCs falling into the 

distribution. 

 

Figure 5.1 TC spatial densities (accumulated TC occurrence per every 2° latitude x 2° 
longitude grid box; normalized by the mean spatial density fields) for a) BTD, b) CCLM in 
the period 1978-2011.  
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Figure 5.1 shows maps of TC occurrences during the 30-year simulation period, in 

BTD observations and CCLM simulation. Simulated TC occurrences show fairly realistic 

features, although the numbers in the main development region (10°-30° N, 120°-150° E) are 

too high in comparison to BTD. Simulated TC tracks are less extensive in north-eastward 

direction and rarely exceed subtropical latitudes. The numbers over the South-East China Sea 

region is comparable for simulated and observed fields. However, in CCLM higher values 

slightly spread toward the coastal region. 

 

Figure 5.2 Annual TC days counted for July-October seasons, normalized by the 
climatological mean value for CCLM (red) and BTD (black). TC days are counted for a) all 
TCs (denoted as CLM and BTD) and b) for the intense TCs (denoted as CLM2_5 and 
BTD2_5). Climatological means are derived separately for the pre-satellite period: 1948-2077 
and 1978-2011. BTD provides TC intensity estimations in the latter period, which limits its 
time series for the intense TCs to that period.  
 

Figure 5.2a presents time series of annually accumulated TC days, given by the 

CCLM and the BTD observations in JASO months. The time series for the observed intense 

TCs (Figure 5.2b) are shown from 1978, when the BTD begun TC intensity recordings. 

Therefore, to achieve an objective comparison we present normalized numbers whereby the 

mean was computed separately for the two periods: 1948-1977 and 1978-2011. For the first 
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period, before the satellites era began (1950, 1960s, early 1970s), BTD (similar to CCLM) 

show a strong increase and an abrupt drop of TC days in the early 1970s. From the 1980s both 

data sets show an increasing phase up to the early 1990s and smaller numbers of TC days in 

the last decade. However, CCLM shows a rather gradual decrease while BTD drops off 

abruptly. These differences are partly reduced when only intense TCs (Figure 5.2b) are 

analysed: for the period 1978-1998 both data sets show increasing tendencies and again a shift 

to smaller numbers afterwards.  

In order to analyse the spatial TC variability an EOF analysis is applied to the yearly 

occurrences of intense TCs in CCLM and BTD, for the period 1978-2011. Figure 5.3a and 

5.3c shows the first EOFs (EOF-1), which represent the main modes of inter-annual 

variability for TCs in CCLM and BTD, respectively. PC-1 in CCLM indeed follows the time 

series of yearly TC days with a correlation of 0.87. However, its EOF explains less (19%) of 

the total variance than EOF-1 in BTD (26%). Additionally it is assumed that the first EOF 

represents the main TC track patterns. The comparison indicates similar features in modelled 

and observed data sets. Positive loadings spread from the south-eastern part of the WNP and 

extend toward the SE Asia coast or recurve towards Japan. Negative loadings occur in the 

northern part of the Philippine Sea and the South China Sea for CCLM, and in the southern 

parts for BTD. There is also a visible shift in the CCLM pattern towards the North. The time 

series of the analysed EOF modes (PC-1) in CCLM and BTD share a correlation of 0.63. The 

PC-1s show most similarities in the first decade, but less similarity in the later period (1998-

2011). 

To analyse the decadal TC variability an EOF analysis is applied to yearly TC 

occurrences filtered with a 10-years Gaussian filter. Figure 5.3b and 5.3d shows the first 

EOFs (EOF-1), which represent the main modes of decadal variability for TCs in CCLM and 

BTD, respectively. The EOFs of both data sets explain 43% (CCLM) and 49% (BTD) of the 

total variance. The patterns show similar features and their PC-1s show a very strong 
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correlation (0.92). Both cases indicate decreasing TC activity below 20° latitude of the WNP 

for the last three decades. In addition CCLM indicates an increase of TC activity in the higher 

latitudes, with a maximum in the region located southward from Japan. EOF-2 (not shown) 

explains 25% of the total variance in CCLM and 19 % in BTD. It shows similar patterns with 

positive loadings for the north-western part of the WNP and negative ones for the south–

eastern part. Their PC-2s show a correlation of 0.66 and decreasing, negative values till the 

mid-1990s and an increase in the last decade. The EOF analysis suggests increasing TC 

activity in the subtropical latitudes related to a north-westward shift of TC tracks. 

 

 

Figure 5.3 First EOFs for CCLM's a) inter-annual and b) decadal variability, for the intense 
TCs (category 2-5), explaining 19 % and 43 % of the total variance, respectively. First EOFs 
for BTD's c) inter-annual and d) decadal variability, for intense TCs (category 2-5), 
explaining 26 % and 49 % of the total variance, respectively.  
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5.3.2 Tropical cyclones variability and associated environmental factors 

In the following we analyse the relation of intense TC variability to large-scale 

environmental patterns. We use MPI defined by [Emanuel, 1988] as the thermodynamic 

factor representing favourable conditions for TC genesis and intensification. Three factors 

shape the MPI value: sea surface temperature (SST), the outflow temperature, and convective 

available potential energy. A high MPI value indicates that a thermodynamic energy state 

exists prone for TCs to reach higher intensities.  

The association of yearly, intense TC activity with MPI is quantified with the 

Canonical Correlation Analysis (CCA; e.g. [von Storch and Zwiers, 1999]). This method 

derives the maximum correlation between EOFs representing the main MPI variability 

patterns and anomalies of TC occurrences. The first 5 EOFs explain 71% of the total variance 

for MPI and 84% for TC occurrences. The first five modes can be considered as a large 

fraction of TC activity which shows diverse spatial variability. 

Figure 5.4a shows the first pair of CCA patterns derived for fields of MPI anomalies 

(CCA MPI) and regionalized TC occurrences anomalies (CCA TC). CCA MPI pattern is 

shaded. Regions of CCA TC are marked with black lines, with region number (given in 

bracket) and corresponding correlation coefficients. CCA pair shares a correlation of 71%. 

MPI positive loadings are spread along the SE Asia coast towards the North-East. The 

associated pattern of CCA TC presents anomalously high values in the same regions with the 

maximum located in the subtropical latitudes (Figure 5.4, region numbers: 1,6,7). The time 

series of this pattern correlates well (0.88) with PC-1 which represents annual time series of 

the dominant EOF mode (EOF-1). Such a relation is reasonable since mainly those intense 

TCs which follow the track patterns of EOF-1 (Figure 5.4a) can cause anomalously high TC 

activity like in CCA TC (Figure 5.4, region numbers: 1, 6, 7). In other words only recurving 

TCs and those moving towards the North-East may influence TC activity in the mid-latitudes.  
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Figure 5.4b shows the time series of CCA MPI pattern (red) and yearly sea surface 

temperature anomalies (blue). The picture indicates that the yearly variability of CCA MPI 

pattern relates strongly to the mean SST anomalies in the WNP basin and follows its time 

series with a correlation of 0.85. This shows that SST determines MPI anomalies and 

influences the main mode of inter-annual variability of the intense TCs in the WNP. 

 

Figure 5.4 a) The first pair of canonical correlation patterns – derived between regional time 
series of TC occurrences anomalies (CCA TC) and fields of maximum potential intensity 
anomalies (CCA MPI). CCA pair shares a correlation of 71 % for the period 1978-2011. CCA 
MPI is color - shaded, CCA TC coefficients are given as numbers in each corresponding 
subregion. The number of the region is given in brackets. b) Time series of canonical 
coefficients of maximum potential intensity anomalies (CCA MPI, red) sharing a correlation 
of 85 % with mean sea surface temperature anomalies (blue) over the main TC genesis area in 
the WNP (100°E - 180°E, 5-30°N). The left y-axis shows canonical coefficients, the right y-
axis corresponds to the sea surface temperature anomalies. The x-axis shows years from the 
period 1978-2011. 
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To verify whether such a relationship exist for the observed TC activity, CCA analysis 

is performed between observed SST and TC activity, given by BTD observations and CCLM 

simulations. Figure 5.5 shows that the first patterns of SST (CCA SST) correlating with TC 

anomalies (CCA TC) in CCLM are very similar to the ones derived for BTD. The canonical 

correlation shared by CCA pairs is 58 % for CCLM and 59 % for BTD. The time series of the 

first CCA TC explains most of the variance of the yearly intense TC occurrences, but notably 

more for CCLM (89 %) than BTD (69 %). This confirms that SST anomalies along the SE 

Asian coast and subtropics strongly influence the intense TCs activity in the WNP, but other 

factors affect observed TC activity more than the simulated one.  

 

Figure 5.5 First pair of canonical correlation patterns derived between regional time series of 
TC occurrences anomalies (CCA TC) and fields of sea surface temperature anomalies (CCA 
SST). Sea surface temperature fields are provided by NCEP reanalysis. TC fields are derived 
from a) BTD observations, sharing a CCA correlation of 59 % b) CCLM, sharing a CCA 
correlation of 58 %. CCA SST is shaded, CCA TC coefficients are given as numbers in each 
corresponding subregion.  
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In order to relate the decadal variability of intense TCs to environmental factors a 

Gaussian filter with the window size of 10 was applied to the anomaly fields of TC 

occurrences and MPI. In the next step the first EOF of the filtered fields were compared.  

Figure 5.6 shows (a) the first EOF representing decadal variability of MPI, and (b) its time 

series (MPI PC-1) together with the PC-1 of decadal TC variability. The MPI pattern explains 

33% of its total variance and the pattern of TC occurrences 43%. The first MPI EOF shows 

positive anomalies increasing towards coastal SE Asia areas and towards the mid-latitudes. 

The time series of MPI PC-1 (Figure 5.6b) indicates that these anomalies occur mainly during 

the last decade, again following the increase of mean SST in the WNP. For the same time 

period positive values of TC PC-1 indicate anomalously high TC activity in the subtropical 

part of the WNP. The time series MPI PC-1 and TC PC-1 share a high correlation (0.91) 

pointing to a large influence of environmental factors on decadal changes in TC variability.  

 

Figure 5.6 a) First EOF representing decadal variability of the Maximum Potential Intensity in 
CCLM. b) EOF time series for: Maximum Potential Intensity (PC1 MPI, red) and TC-days 
number for the intense TCs (PC1 TC2-5, blue). Time series share a correlation of 91 %. The 
x-axis shows years from the period 1978-2011. 
 

5.3 Discussion of tropical cyclones variability and associated environmental factors 

The time series of the annual occurrences of the intense TCs as well as the time series 

representing its dominant mode (PC-1) show reasonable agreement (r=0.63 for PC-1s) 

between CCLM and BTD. The spatial patterns of EOF-1 are also similar. CCLM explains less 
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(19%) of the total variance than the BTD (26%), which may result from different 

methodologies used for TC identification and tracking. Especially weaker TCs which fall into 

the analysed distribution of intense TCs in CCLM may increase spatial variability in the data 

set. The spatial nature of the weak TCs differs from that of the intense TCs. Therefore if the 

spatial TC variance in CCLM is biased due to weak TCs the main variability mode (EOF-1) 

explains less of the total variance. 

A canonical correlation analysis demonstrated that simulated and observed TC activity is 

strongly related to thermodynamic factors. Anomalously high TC activity in the vicinity of 

the SE Asian coast and in the subtropics is massively influenced by MPI factors, showing 

high anomalies. The canonical correlation coefficient of 58 % for SST and 71 % for MPI 

anomalies in CCLM indicates that also other than thermodynamic factors contribute to TC 

variability. The time series of TC anomalies, represented by the first CCA TC pattern, 

determines almost 90% of simulated inter-annual TC variability. For the TC activity observed 

in BTD (JMA), canonical correlation patterns for CCA SST and CCA TC share a correlation 

of 59 %. However, CCA TC explains less variance (70 %) of observed inter-annual TC 

variability, which might be an effect of other climatic factors impacting TC activity or simply 

the inhomogeneities included in the BTD sets. [Chan, 2007, Chan, 2009] confirmed that inter-

annual variability of the intense TCs provided by BTD (JTWC) can not be entirely explained 

by SST or MPI averaged over the WNP basin. Instead, he suggested, that dynamic conditions 

(e.g. relative vorticity or vertical wind shear) may determine the inter-annual variability of the 

intense TCs in WNP. 

The dominant modes of interdecadal variability explain a high portion of the total variance in 

CCLM and BTD (43 % and 49 %, respectively) and share a high correlation. Both data sets 

show weakening TC activity for the tropical latitudes in the period 1978-2011. Such a 

decrease was shown also by [Liu and Chan, 2008] who examined EOFs of interdecadal TC 

variability given by different data sets (JTWC). Time series of the dominant EOF mode 
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[Liu and Chan, 2008] showed high TC activity over the tropical WNP in the 1980s and very 

low activity for the next decade. However, the EOF mode was derived for a longer period 

(1960-2005) and includes also weak TCs. Consequently its pattern is more complex and 

explains less of the total variance. 

While CCLM shows weakening TC activity in the tropics, an increase can be seen for the 

subtropics. Such an increase occurs at the same time with an increasing MPI for the 

corresponding regions. The northward shift of TC tracks was analysed by [Tu et al., 2009], 

who associated it with warm SST anomalies over the equatorial and central WNP in the last 

four decades. The authors showed within a model experiment that warm SST anomalies over 

the equator and the mid-latitudes induce low-level cyclonic winds in these regions. However, 

for the mid-latitudes the author could not confirm such a relation with observations. For the 

short period of observed warm SST anomalies in the WNP (2000-2006), observation data did 

not show anomalous trends of TC activity. On the other hand, the authors point to 

uncertainties of these results due to a small sample size and possible different results for an 

extended analysis for ongoing years. The results presented here imply that CCLM simulates 

TC activity realistically on inter-annual and decadal time scales. Its variability strongly relates 

to the changes in large-scale environmental patterns.  

 

5.4 Trend analysis 1948-2011 

 In the following the hindcasted trends for TC activity are analysed for the period 

1948-2011. Thus all material presented in this subsection is simulated by CCLM data. Figure 

5.7 presents trends for annually accumulated TC days for all storms and just for the intense 

ones, normalized by the according mean of the whole period. Both time series show an 

increasing trend, with a slope coefficient of 0.02 for the intense TCs and 0.009 for all storms. 

Additionally, there is also a shift towards less numbers visible, especially for the intense TCs 

in the last decade.  
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Figure 5.7 Annual TC days normalized by their mean values for the period 1948-2011, 
counted for JASO months in CCLM, and linear trends. The red curve represents all TCs and 
the blue curve represents only intense TCs (TC2-5). The x-axis shows years from the period 
1948-2011. 
 
  TC variability is mainly associated with MPI anomalies. Figure 5.8a presents the first 

CCA pattern derived for MPI (CCA MPI) sharing a correlation of 72 % with the pattern of 

intense TC occurrences (CCA TC) in the period 1948-2011. CCA MPI shows positive 

anomalies spread along the SE Asian coast and subtropics with the maximum located in the 

vicinity of Taiwan. The associated CCA TC pattern presents anomalously high TC activity in 

the corresponding regions (Figure 5.8a, region numbers: 1, 6, 7). Time series of CCA TC 

describe (Figure 5.8b) about 90 % of the year-to-year variance of simulated intense TC days 

in the period 1948-2011. 

 The spatial features of TC activity long-term trends are different for the intense TCs 

and the weaker ones. Figure 5.9 presents the fields for the long-term trends derived for the 

occurrences of all TCs (a) and only for the intense TCs (b). For all TCs the maximum is 

located in the South China Sea region, while for the intense ones it is in the subtropical 

latitudes, in the vicinity of Taiwan. Downward tendencies of TC activity are focused mainly 

in the south-eastern part (130-150°E, 10-20°N) of the WNP. 
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Figure 5.8 a) The first pair of canonical correlation patterns - derived between regional time 
series of TC occurrences anomalies (CCA TC) and fields of maximum potential intensity 
anomalies (CCA MPI). CCA pair shares a correlation of 72 % for the period 1948-2011. CCA 
MPI is shaded, CCA TC coefficients are given in each corresponding subregion. b) Annual 
TC days normalized by their mean values for the period 1948-2011, counted for JASO 
months in CCLM (red). Canonical coefficient time series of the TC occurrences anomalies 
(CCA TC) are shown in blue. The left y-axis shows the TC occurrences anomalies, the right 
y-axis shows canonical coefficients. The x-axis shows years from the period 1948-2011.  
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Figure 5.9 Trends for yearly TC occurrences, estimated with a linear regression using a least 
squares fit derived for every 2° latitude x 2° longitude grid box for a) all TCs and b) intense 
TCs; for the period 1948-2011.  
 

 Additionally, TC variability was analysed in the regions of: the South China Sea, 

vicinity of Taiwan, Philippine Sea, the north-eastern part of the WNP (145-160°E, 20-27°N), 

and the south-eastern part of the WNP (130-155°E, 5-15°N) in more detail. Figure 5.10 shows 

the annual variability and derived piecewise linear trends for all and only for intense storms in 

the given areas. The TC activity of all storms in the South China Sea (Figure 5.10a,b) shows a 

strong increase until the 2000s and a decrease in the last decade. It is also worthy to notice 

that the intense TCs did not enter this area at all in the first decade of the simulated period. 

The region in the vicinity of Taiwan (Figure 5.10c) is affected by increasing activity for all 

and for the intense storms starting in the 1980s. The trend for all storms in the Philippine Sea 

(Figure 5.10e) is less clear, but the intense storms show an increasing tendency. In the eastern 

parts of the WNP (Figure 5.10g,h) TCs occur sparsely, therefore counts of all storms were 

analysed in these areas. Here mainly a decrease for all storms in the analysed period can be 

seen. Additionally in the south-eastern part of the WNP (Figure 5.10h) numbers are increasing 

during the last decade.  

 Several observational studies that analysed the impact of typhoons in the WNP for 

shorter time periods [Ho et al., 2004, Wu et al., 2005] confirm partly our findings. [Ho et al., 

2004] found that in the period 1951-2001 the TC passage frequency over the South China Sea 
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slightly increased, but it decreased for the Philippine Sea and for the East China Sea. [Tu et 

al., 2009] found strong TC variability after 1982 and an abrupt shift of TC activity in the 

vicinity of Taiwan in the 2000s. The authors concluded that there is a northward shift of 

typhoon tracks. [Wu et al., 2005] identified a westward shift of TC track patterns in the WNP 

for the last decades and stated that there is a rising influence of TCs on subtropical East Asia. 

 

5.4 Tropical cyclones variability and changes during the last decades – analysis and 

comparisons with observations 

Long-term hindcasts of TC variability for the western North Pacific and South East 

Asia, computed with the atmospheric regional model CCLM, are analysed in this study. First, 

the inter-annual and decadal variability of hindcasted TC activity are compared to 

observations (BTD). An analysis of intense TCs in the period of 1978-2011 shows remarkable 

agreement. Second, the linkage of inter-annual TC variability with a large-scale 

environmental pattern was quantified with a canonical correlation analysis. The results show 

that TC variability is strongly related to the changes of thermodynamic factors controlling TC 

genesis and development. It is stated that CCLM can successfully hindcast TC variability 

which allows to derive and to assess long-term changes in storminess in the WNP.  

 The last part of this analysis presents hindcasted TC activity trends for the period 

1948-2011. The analysis takes into account all TCs and only the intense ones, identified in 

observations as category 2-5. For both analysed TC distributions, CCLM shows an upward 

trend. It is determined mostly by thermodynamic conditions, which in the vicinity of the SE 

Asian coast and subtropics are becoming more favourable for TC genesis and development.   

The regional hindcast shows that TC activity in the South China Sea region increased mainly 

due to weaker storms, while intense TCs increasingly affect the subtropical latitudes in the 

WNP. A downward TC activity trend is found in the south-eastern part of the WNP. 

Hindcasted TC activity in the WNP indicates an increase and north-westward tendencies of 
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track patterns for the period 1948-2011. This is consistent with more recent and shorter-period 

observations. 

 

Figure 5.10 Annual variability and piecewise linear trends for TC days for (a) the South China 
Sea, (c) vicinity of Taiwan and (e) the Philippine Sea. b, d, and f show the according trends  
for the intense TCs. g) shows annual variability and piecewise linear trends for TC days for 
the region 145°-160°E, 20-27° N and h) the same for the region 130°-155°E, 5-15°N. The x-
axis shows years from the period 1948-2011.  
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Chapter 6. Summary and Conclusions  

The enhanced global TC activity in the last years stimulated the research community 

to validate TC climatologies and to analyse changes in TC statistics over the last decades. 

Analysing different observational data sets, TC activity over the western North Pacific leads 

to ambiguous trend results ([Kamahori et al., 2006, Ren et al., 2011, Wu et al., 2006]). This 

demonstrates that a detection of changes in observed TC activity, as well as their attribution to 

environmental factors, is of limited feasibility. Thus, an alternative data set is needed, which 

should be sufficiently long and homogenous to derive TC climate statistics.  

This may be provided by high-resolution regional model simulations. Many studies 

([Feser and von Storch, 2008b, Knutson et al., 2007, Walsh, 2004]) successfully applied 

dynamical downscaling to simulate meso-scale features of TCs. [Knutson et al., 2007] 

reproduced the observed variability of TC activity during the last three decades over the North 

Atlantic. Therefore, atmospheric reanalysis data were downscaled with the spectral nudging 

technique. The main goal of this study was to construct and analyse a long-term TC 

climatology over the western North Pacific and South - East Asia, using a similar approach.   

For this purpose, NCEP reanalysis were downscaled with a regional climate model 

(CCLM) for the period 1948-2011. Additionally, a spectral nudging technique was applied, to 

prevent the model’s large-scale circulation fields from deviating too far from the global 

forcing fields. 

However, first it was required to assess TC climate on basis of observations of the last 

decades. Therefore the first part comprises TC frequency trends, derived from different 

observational data sets and evaluates their reliability. The analysis of BTD sets demonstrated 

a strong dispersion in TC trends, varying between decreasing and increasing trends. These 

discrepancies were mainly attributed to different methods, which were used by 

meteorological agencies to estimate TC intensities. These methods also changed over time. A 
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successive unification of these methods partly reduced these discrepancies. As a result, TC 

activity for higher intensity categories (category 2-5 according to the SSHS) showed an 

upward trend in all analysed BTD sets. However, intensity differences for the highest 

intensity categories (category 4-5) still remain. They are caused by changed usage of 

observational sources by JTWC. Therefore the interpretation of TC statistics derived from 

this BTD set requires special caution. In contrast, JMA uses only one source of satellite 

imagery. This maintains homogeneity within the data set and makes this source the most 

reliable for deriving climate statistics. In the latter part of the work it is used as a reference 

data set.  

The second part of the study investigates the potential to construct an alternative long-

term TC climatology through application of an RCM (CCLM). It presents an assessment of 

model skill to simulate TC climatologies, with a focus on the influence of the spectral 

nudging technique (SNT). Brier Skill Score statistics demonstrated high skill of the RCM to 

downscale TC meso-scale features from the large-scale reanalysis. However, the simulated 

TC intensities are lower than the observed ones by up to two SSHS categories. A comparison 

of wind speed - pressure relationship between simulations and observations shows that 

CCLM underestimates wind speeds when the pressure reaches values lower than ~ 980 [hPa]. 

This also indicates that the skill of CCLM is higher for sea level pressure than for wind 

speed. This may be caused by the insufficient horizontal resolution of the model (~ 50 km), 

which can not resolve realistic pressure gradients in intense TCs. Additionally, CCLM 

without the spectral nudging technique generates sometimes deeper TCs. CCLM –  NN 

simulates core pressures up to ~ 20 [hPa] lower than CCLM - SN. Nevertheless, spectral 

nudging significantly improved the representation of the mean TC climate - and consequently 

- the spatial fields of TC occurrences and the mean TC intensity fields. These findings 

corroborate that the SNT has a positive impact on simulated TC climatologies, which justifies 

its application for regional long - term simulations of the past decades. 
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The last part of the study presents and analyses a long-term TC climatology, 

constructed for the western North Pacific for the period 1948-2011. A comparison with more 

recent observations (1978-2008) provided by JMA data set demonstrates that: 

 the constructed data set represents realistic features of TC activity variability 

on inter-annual and inter-decadal time scales; 

  the simulated TC climatology gives a realistic representation of the large-scale 

environmental fields, such as sea surface temperature and the Maximum 

Potential Intensity. 

The long term TC climatology for the western North Pacific shows an increasing trend, with a 

short decrease in the last decade.  Additionally the following features can be seen: 

 an increasing activity of intense TCs is found in the subtropical latitudes,  

 an increasing activity of  weaker storms - over the South China Sea 

 decreasing tendencies of TC activity in the south-eastern part of the western North 

Pacific 

Overall, the constructed TC climatology shows an increase and a north-westward shift of 

intense TC tracks for the period 1948-2011. These TC activity features are related to the 

patterns of sea surface temperature and Maximum Potential Intensity. These fields also show 

a north-westward tendency (along the SE Asian coast and in the subtropical latitudes) towards 

favourable conditions for TC genesis. 

 This study demonstrated that the constructed data set can serve as an alternative for 

observations to assess TC activity changes during the last decades over the western North 

Pacific. However, due to specific characteristics of the CCLM model, the TC climatology has 

some deficiencies. The horizontal resolution, parameterization scheme or application of 

spectral nudging limits the capability of the model to simulate realistic TC intensities. 

Therefore the criteria of the tracking scheme were tuned accordingly to obtain the desired 

mean TC frequency. However, the TC data set may still be contaminated by other low-
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pressure systems. Therefore, to reduce the uncertainty caused by the tracking methodology, 

the analysis of the TC data set was mainly focused on intense TCs. An analysis of weak TCs 

requires more objective tracking criteria. The application of a higher resolution, improvement 

of parameterization schemes, and a better representation of small-scales process might also 

improve the simulation. Alternatively, statistical methods to extrapolate the simulated TC 

intensity, e.g. Extreme Value Theory, could serve this purpose.     

 The impact of greenhouse gases on current and future TC activity is still an open 

question, puzzling both science and governments. This study showed that CCLM can be a 

useful tool, contributing to the answer for the pending question. The model gives a realistic 

relationship between TC activity and the thermodynamic conditions determining TC genesis 

and development. An agreement with observations was shown for intense TC variability at a 

decadal scale. It also had a high correlation with mean sea surface temperature anomalies over 

the western North Pacific. On the other hand, observational studies [Chan and Liu, 2004, 

Chan, 2007, Chan, 2009], as well as the CCLM simulation, indicate that there are other 

factors which shape TC activity, namely: vorticity, wind shear and relative humidity. The 

CCLM skill to reproduce the mean TC climate has been greatly improved by the SNT, thus a 

constructed long-term data set provides great potential for further diagnostic studies.    

  CCLM proves be a useful tool for future projections, while it reproduces realistic 

relationships, between TC activity and environmental patterns affecting TC genesis and 

development. However, spectral nudging applied in future projections is a controversial issue. 

The nudging techniques constrain the model solution to follow prescribed large-scale fields. 

Therefore it is of primary importance to obtain high – quality GCM projections, serving as 

driving fields, which will skilfully capture the large-scale circulation patterns. 
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